C.TX o E McGRAW-HILL

llllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllll
llllllllllllllllllll
llllllllllllllll
lllllllllllllllll
llllllllllllllllll
llllllllllllllllll
TOIic SESGARENESENES ENEE
lllllllllllllllllllll
lllllllllllllllllllll
lllllllllllllllllllllll
IIIIIIIIIIIIIIIIII

llllllll
llllllllllll

llllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllll

280 ASSEMBLY tA.NBUAGE PROGRAMMING
BY LANGE A. LEVENTHAL

280

ASSEMBLY LANGUAGE
PROGRAMMING

280

ASSEMBLY LANGUAGE
PROGRAMMING

Lance A. Leventhal

Osborne/McGraw-Hill
Berkeley, California

Published by
OSBORNE/McGraw-Hill

630 Bancroft Way

Berkeley, California 94710
U.S. A

For information on translations and book distributors outside of the U. S. A.,
please contact the publisher at the above address.
56789 DODO 8765432
ISBN 0-931988-21-7
Copyright © 1979 by McGraw-Hill, Inc.

All rights reserved. Printed in the United States of America. No part of this
publication may be reproduced, stored in any retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without the prior written permission of the publishers.

Cover design by K. L. T. van Genderen.

This book is dedicated to my colleagues at the Society for Computer Simula-
tion — Romeo Favreau. Natalie Fowler, Alexander McKenna. John McLeod,
Stanley Rogers. and Chip Stockton.

ACKNOWLEDGMENTS

The author would like to acknowledge the following people:

Mr. Curt Ingraham, Ms. Mary Borchers, and Ms. Janice Enger of Osborne/
McGraw-Hill, who made many corrections and suggestions; Mr. Winthrop
Saville of Sorrento Valiey Associates, who provided assistance and exam-
ples; Mr. Tom Littlefield of Littlefield/Smith Associates, who provided
reference material; Ms. Marielle Carter of Sorrento Valley Associates, who
typed some of the material; Mr. Stanley Rogers of the Society for Computer
Simulation, who has continued to suggest improvements in the author's writ-
ing style; and his wife Donna, for her patience and understanding throughout
the writing of this book.

Others who provided assistance and suggestions were Mr. Colin Walsh, Mr.
Gary Hankins, Mr. Romeo Favreau, Mr. David Buiman, Ms. Kati Bulman, Mr.
Robert Turner, Mr. Irv Stafford, Mr. John Burgar, Mr. Ferenc Montvai-Lako,
and Mr. Warren McKenna. Other students and colleagues also helped to keep
the author on the right track.

The author, of course, bears responsibility for any remaining errors, miscon-
ceptions, and misinterpretations.

Contents

Chapter Page

1 Introduction to Assembly Language Programming

How This Book Has Been Printed

The Meaning of Instructions
A Computer Program
The Programming Problem
Using Octal or Hexadecimal
Instruction Code Mnemonics
The Assembler Program
Additional Features of Assemblers
Disadvantages of Assembiv Language
High-level Languages
Advantages of High-level Languages
Disadvantages of High-level Languages
High-level Languages for Microprocessors
Which Level Should You Use?
How About the Future?
Why This Book?

References

'

Voo
N = = O

....._4___._._._._;_._;_;_4_._._._.
;
DL L L O0ONNOOA DN DN

2 Assemblers 2
Features of Assemblers 2

Assembler Instructions 2-

Labels 2

Assembler Operation Codes (Mnemonics) 2
Pseudo-operations 2

The Data Pseudo-operation 2-5
The Equate lor Define) Pseudo-operation 2-6
The Origin Pseudo-operation 2-7
The Reserve Pseudo-operation 2-7
Linking Pseudo-operations 2-8
Housekeeping Pseudo-operations 2
Labels with Pseudo-operations 2
Addresses and the Operand Field 2
Conditional Assembly 2
Macros 2
2

2

2

2

2

A D H W -

Comments

Types of Assembiers
Errors

Loaders

References

'

s

vif

Chapter
3

Contents (Continued)

The 280 Assembly Language Instruction Set

CPU Registers and Status Flags
Z80 Memory Addressing Modes
Implied

implied Block Transfer with Auto-Increment/Decrement

Implied Stack

Indexed

Direct

Program Relative

Base Page

Register Direct

immediate
Abbreviations
Instruction Mnemonics
Instruction Object Codes
Instruction Execution Times
Status
Instruction Descriptions
8080A/280 Compatibility

Zilog Z80 Assembler Conventions

Assembler Field Structure
Labels
Reserved Names
Pseudo-operations

Examples
Labels with Pseudo-operations
Addresses
Conditional Assembly
Macros

R R R R A i
o) o) e d e 3 3 3 DRI NI RN S e e e e e s 0 N O
NN NN SNNSNSNNNOOWS == 0O WN O
BHAENN-2OOCOOOD

Contents (Continued)

Chapter Page
4 Simple Programs 4-1
General Format of Examples 4-1
Guidelines for Problems 4-2
Program Examples 4-3
Ones Complement 4-3
8-Bit Addition 4-4
Shift Left One Bit 4-6
Mask Off Most Significant Four Bits 4-6
Clear a Memory Location 4-7
Word Disassembly 4-7
Find Larger of Two Numbers 4-9
16-Bit Addition 4-11
Table of Squares 4-12
16-Bit Ones Complement 4-14
Problems 4-15
Twos Complement 4-15
8-Bit Subtraction 4-15
Shift Left Two Bits 4-16
Mask Off Least Significant Four Bits 4-16
Set a Memory Location to All Ones 4-16
Word Assembly 4-16
Find Smaller of Two Numbers) 4-16
24-Bit Addition 4-16
Sum of Squares a4-17
16-Bit Twos Complement 4-18
5 Simple Program Loops 5-1
Examples 5-3
Sum of Data 5-3
16-Bit Sum of Data 5-6
Number of Negative Elements 5-9
Find Maximum 5-11
Justify a Binary Fraction 5-14
Problems 5-17
Checksum of Data 5-17
Sum of 16-Bit Data 5-17

Number of Zero, Positive. and

Negative Numbers 5-18
Find Minimum 5-18
Count 1 Bits 5-18

x

Contents (Continued)

Character-coded Data

Examples

Length of a String of Characters
Find First Non-blank Character
Replace Leading Zeros with Blanks
Add Even Parity to ASCH Characters
Pattern Match

Problems

Length of a Teletypewriter Message
Find Last Non-blank Character

Truncate Decimal String to Integer Form
Check Even Parity in ASClHl Characters
String Comparison

Code Conversion
Examples

Hex to ASCH

Decimal to Seven-Segment

ASCIl to Decimal

BCD to Binary

Convert Binary Number to ASCHl String

Problems

ASCH to Hex

Seven-Segment to Decimal
Decimal to ASCH

Binary to BCD

ASCII String to Binary Number

References

Arithmetic Problems
Examples

Mutltiple-Precision Addition

Block Move

Decimal Addition

8-Bit Binary Multiplication

8-Bit Binary Division

Self-Checking Numbers Double and
Double MOD 10

Problems

Multiple-Precision Subtraction
Decimal Subtraction

8-Bit by 16-Bit Binary Multiplication
Signed Binary Division

Self-Checking Numbers Aligned 1, 3, 7 MOD 10
References

S A
N

RO DD RS b ot s e

CJ)O’)G)O)CD(?)O)CDG)O)O’
—_ OO WWWDW =

Contents (Continued)

Chapter

9 Tables and Lists
Examples
Add Entry to List
Check an Ordered List
Remove Element from Queue
8-Bit Sort
Using an Ordered Jump Table
Problems
Remove an Entry from a List
Add an Entry to an Ordered List
Add an Element to a Queue
16-Bit Sort
Using a Jump Table with a Key
References

10 Subroutines

Subroutine Documentation

Examples
Hex to ASCII :
Length of a String of Characters
Add Even Parity to ASCll Characters
Pattern Match
Multiple-Precision Addition

Problems
ASCIHl to Hex
Length of an ASCII Message
Check Even Parity in ASCll Characters
String Comparison
Decimal Subtraction

References

11 Input/Output
Timing Intervals {Delays)
Delay Routines
Example
Delay Program Using Accumulators
Simple 1/0 Devices
The Z80 Parallel Input/Output Circuit (PIO)
PIO Mode Control
Configuring the PIO
Z80 Input/Output Instructions
Examples
A Pushbutton Switch
A Toggle Switch
A Multiple-Position (Rotary. Selector, or
Thumbwheel) Switch
A Single LED
Seven-Segment LED Display

Xi

Page

[<o]
R
-

(D(O(D('D(.DCDCD(D

PPPPOPPS
3t e b e ek 3 d OO U] -
OCOONINNOODODO

o
N

Contents (Continued)

Chapter

11 (Cont.) Problems
An on-off Pushbutton
Debouncing a Switch in Software
Control for a Rotary Switch
Record Switch Positions on Lights
Count on a Seven-Segment Display
More Compiex /O Devices
Examples
An Unencoded Keyboard
An Encoded Keyboard
A Digital-to-Analog Converter
Analog-to-Digital Converter
A Teletypewriter (TTY)
The Z80 Serial Input/Output Device (SIO)
Examples
Teletypewriter 1/0 via a USART
Standard Interfaces
Problems
Separating Closures from an Unencoded
Kevboard
Read a Sentence from an Encoded Keyboard
A Variable Amplitude Square Wave Generator
Averaging Analog Readings
A 30 Character-per-Second Terminal
References

12 interrupts
Z80 Interrupt System
Non-Maskable Interrupt
Z80 Interrupt Modes
780/8080 Interrupt Compatibility
PIO Interrupts
Examples
SIO Interrupts
Interrupt Examples
A Startup Interrupt
A Keyboard Interrupt
A Printer Interrupt
A Real-Time Clock Interrupt
A Teletypewriter Interrupt
More General Service Routines
Problems
A Test Interrupt
A Keyboard interrupt
A Printer Interrupt
A Real-Time Clock interrupt
A Teletypewriter interrupt
References

xii

Page

11-66
11-65
11-65
11-65
11-56
11-56
11-567
11-60
11-60
11-69
11-72
11-76
11-81
11-89
11-98
11-98
11-103
11-103

11-103
11-103
11-104
11-104
11-104
11-106

12-1
12-2
12-3
12-4
12-5
12-6
12-8
12-10
12-12
12-12
12-14
12-17
12-20
12-26
12-30
12-31
12-31
12-31
12-31
12-31
12-31
12-32

Contents (Continued)

Chapter

13 Problem Definition and Program Design
The Tasks of Software Development
Definition of the Stages
Problem Definition
Defining the Inputs
Defining the Outputs
Processing Section
Error Handling
Human Factors
Examples

Response to a Switch
A Switch-Based Memory Loader
A Verification Terminal
Review of Problem Definition
Program Design
Flowcharting
Examples
Response to a Switch
The Switch-Based Memory Loader
The Credit-Verification Terminal
Modular Programming
Examples
Response to a Switch
The Switch-Based Memory Loader
The Verification Terminal
Review of Modular Programming
Structured Programming
Examples
Response to a Switch
The Switch-Based Memory Loader
The Credit-Verification Terminal
Review of Structured Programming
Top-Down Design
Examples
Response to a Switch
The Switch-Based Memory Loader
The Transaction Terminal
Review of Top-Down Design

Review of Problem Definition and Program Design

References

Xiii

Page

13-1

13-1

13-3

13-3

13-4

13-4

13-6

13-6

13-6

13-6

13-6

13-8

13-11
13-15
13-16
13-17
13-19
13-19
13-20
13-22
13-26
13-28
13-28
13-28
13-28
13-30
13-30
13-36
13-36
13-36
13-38
13-43
13-44
13-45
13-45
13-46
13-47
13-49
13-49
13-50

Chapter
14

15

16

Contents (Continued)

Debugging and Testing
Simple Debugging Tools
More Advanced Debugging Tools
Debugging with Checklists
Looking for Errors

Debugging Example 1: Decimal to Seven-Segment

Conversion
Debugging Example 2: Sort into Decreasing
Order
Introduction to Testing
Selecting Test Data
Testing Example 1: Sort Program
Testing Example 2: Self-Checking Numbers
Testing Precautions
Conclusions
References

Documentation and Redesign
Self-Documenting Programs
Comments
Commenting Example 1: Multiple-Precision
Addition
Commenting Example 2: Teletypewriter Output
Flowcharts as Documentation
Structured Programming Languages as
Documentation
Memory Maps
Parameter and Definition Lists
Library Routines
Library Examples
Library Example 1: Sum of Data
Library Example 2: Decimal-to-Seven-Segment
Conversion
Library Example 3: Decimal Sum
Total Documentation
Redesign
Reorganizing to Use Less Memory
Major Reorganizations
References

Sample Projects
Project #1: A Digital Stopwatch
Project 32: A Digital Thermometer
References

index of Instruction Descriptions

Index

Xiv

Page

14-1
14-1
14-8
14-10
14-1

14-16

14-21
14-27
14-28
14-29
14-29
14-29
14-30
14-31

16-1
16-1
16-2

15-4
16-5
15-7

15-7
15-7
15-8
15-10
15-10
15-10

15-11
16-12
156-13
15-14
16-15
156-16
15-18

16-1
16-1
16-15
16-29

XV
xvii

Chapter 1
INTRODUCTION TO ASSEMBLY
LANGUAGE PROGRAMMING

This book describes assembly language programming. it assumes that you are
familiar with An Introduction To Microcomputers: Volume 1 — Basic Concepts
(particularly Chapters 6 and 7). This book does not discuss the general features of
computers, microcomputers, addressing methods, or instruction sets; you shouid
refer to An Introduction To Microcomputers: Volume 1 for that information.

HOW THIS BOOK HAS BEEN PRINTED

Notice that text in this book has been printed in boldface type and lightface type.
This has been done to help you skip those parts of the book that cover subject
matter with which you are familiar. You can be sure that lightface type only ex-
pands on information presented in the previous boldface type. Therefore, only read
bolidface type until you reach a subject about which you want to know more, at which
point start reading the lightface type.

THE MEANING OF INSTRUCTIONS

The instruction set of a microprocessor is the set of binary inputs which produce
defined actions during an instruction cycle. An instruction set is to a microprocessor
what a function table is to a logic device such as a gate, adder, or shift register. Of
course, the actions that the microprocessor performs in response to the instruction in-
puts are far more complex than the actions that combinatorial logic devices perform in
response to their inputs.

An instruction is simply a binary bit pattern — it must be § BINARY
available at the data inputs to the microprocessor at the j INSTRUCTIONS

proper time in order to be interpreted as an instruction. For ex-
ample, when the Z80 microprocessor receives the 8-bit binary pattern 10000000 as the
input during an instruction fetch operation, the pattern means:

“Add the contents of Register B to the contents of the Accumulator”.
Similarly, the pattern 00111110 means:
“Load the Accumulator with the contents of the next word of program memory”

The microprocessor (like any other computer) recognizes only binary patterns as in-
structions or data; it does not recognize words or octal, decimal, or hexadecimal num-
bers.

A COMPUTER PROGRAM

A program is a series of instructions that cause a computer to perform a particular
task.

Actually, a computer program includes more than instructions; it COMPUTER
also contains the data and memory addresses that the PROGRAM
microprocessor needs to accomplish the task defined by the in-

1-1

structions. Clearly, if the microprocessor is to perform an addition. it must have two
numbers to add and a destination for the result. The computer program must determine
the sources of the data and the destination of the result as well as specifying the opera-
tion to be performed.

All microprocessors execute instructions sequentially unless one of the instructions
changes the execution sequence or halts the computer (i.e.. the processor gets the next
instruction from the next consecutive memory address unless the current instruction
specifically directs it to do otherwise).

Ultimately every program becomes translated into a set of binary numbers. For
example, this is the Z80 program that adds the contents of memory locations
6016 and 614¢ and places the result in memory location 621g:

00111010
01100000
00000000
01000111
00111010
01100001
00000000
10000000
00110010
01100010
00000000

This is a machine language, or object, program. If this program OBJECT
were entered into the memory of a Z80-based microcomputer, the PROGRAM
microcomputer would be able to execute it directly. MACHINE

THE PROGRAMMING PROBLEM LANGUAGE

There are many difficulties associated with creating programs PROGRAM
as object, or binary machine language, programs. These are
some of the problems:

1} The programs are difficult to understand or debug (binary numbers all look the
same, particularly after you have looked at them for a few hours}.

2) The programs are slow to enter since you must enter each bit individually.

3) The programs do not describe the task which vou want the computer to perform in
anything resembling a human readable format.

4} The programs are long and tiresome to write.
5) The programmer often makes careless errors that are very difficult to find.

For example, the following version of the addition object program contains a single
bit error. Try to find it:

00111010
01100000
00000000
01000111
01110010
01100001
00000000
10000000
00110010
01100010
00000000

1-2

Although the computer handles binary numbers with ease, people do not. People find
binary programs long, tiresome, confusing, and meaningless. Eventually, a programmer
may start remembering some of the binary codes, but such effort should be spent more
productively.

USING OCTAL OR HEXADECIMAL

We can improve the situation somewhat by writing instruc- | OCTAL OR
tions using octal or hexadecimal, rather than binary, numbers. | HEXADECIMAL

We will use hexadecimal numbers in this book because they are
shorter, and because they are the standard for the microprocessor industry. Table 1-1
defines the hexadecimal digits and their binary equivalents. The Z80 program to add
two numbers now becomes:

At the very least, the hexadecimal version is shorter to write and not quite so tiring to
examine.

Errors are somewhat easier to find in a sequence of hexadecimal digits. The er-
roneous version of the addition program, in hexadecimal form, becomes:

3A

The mistake is easier to spot.

What do we do with this hexadecimal program? The microprocessor understands
only binary instruction codes. The answer is that we must convert the hexadecimal
numbers to binary numbers. This conversion is a repetitive, tiresome task. People who
attempt it make all sorts of petty mistakes, such as looking at the wrong line, dropping a
bit, or transposing a bit or a digit.

This repetitive, grueling task is, however, a perfect job for a com- § HEXADECIMAL
puter. The computer never gets tired or bored and never makes | LOADER

silly mistakes. The idea then is to write a program which takes
hexadecimal numbers and converts them into binary numbers. This is a standard
program provided with many microprocessors; it is called a ‘’hexadecimal loader.”’

Is a hexadecimal loader worth having? If vou are willing to write a program using binary
numbers, and vou are prepared to enter the program in its binary form into the com-
puter. then you will not need the hexadecimal loader.

1-3

If you choose the hexadecimal loader, vou will have to pay a price for it. The hex-
adecimal loader is itself a program which you must load into memory. Furthermore, the
hexadecimal loader will occupy memory — memory that you may want to use in some
other way.

The basic tradeoff. therefore, is the cost and memory requirements of the hexadecimal
loader versus the savings in programmer time.

A hexadecimal loader is well worth its small cost.

A hexadecimal loader certainly does not solve every programming problem. The hex-
adecimal version of the program is still difficult to read or understand: for example, it
does not distinguish instructions from data or addresses, nor does the program listing
provide any suggestion as to what the program does. What does 32 or 47 or 3A mean?
Memorizing a card full of codes is hardly an appetizing proposition. Furthermore. the
codes will be entirely different for a different microprocessor, and the program will re-
quire a large amount of documentation.

Table 1-1. Hexadecimal Conversion Table

Hexadecimal Binary Decimal
Digit Equivalent Equivalent
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 1"
C 1100 12
D 1101 13
E 1110 14
F 1111 15

INSTRUCTION CODE MNEMONICS

An obvious programming improvement is to assign a name to each instruction
code. The instruction code name is called a ‘mnemonic’’, or memory jogger. The
instruction mnemonic should describe in some way what the instruction does.

In fact. every microprocessor manufacturer {they can’t remember PROBLEM
hexadecimal codes either) provides a set of mnemonics for the WITH
microprocessor instruction set. You do not have to abide by the MNEMONICS
manufacturer’s mnemonics; there is nothing sacred about them.
However. they are standard for a given microprocessor and therefore understood by all
users. These are the instruction names that you will find in manuals, cards, books, arti-
cles, and programs. The problem with selecting instruction mnemonics is that not all in-
structions have “obvious’” names. Some instructions do have obvious names (e.g..
ADD. AND. OR), others have obvious contractions {e.g.. SUB for subtraction, XOR for
exclusive OR), while still others have neither. The result is such mnemonics as WMP.
PCHL, and even SOB (try and guess what that means!. Most manufacturers come up
with mostly reasonable names and a few hopeless ones. However, users who devise
their own mnemonics rarely seem to do much better than the manufacturer.

1-4

Along with the instruction mnemonics. the manufacturer will usually assign names to
the CPU registers. As with the instruction names, some register names are obvious {e.g..
A for Accumulator) while others may have only historical significance. Again. we will
use the manufacturer's suggestions simply to promote standardization.

If we use standard 280 instruction and register mnemonics, as ASSEMBLY
defined by Zilog, our 280 addition program becomes: LANGUAGE
LD A.(60H) PROGRAM
LD B.A
LD A (61H)
ADD AB
LD (62H).A

The program is still far from obvious. but at least some parts are comprehensible.
ADD A.B is a considerable improvement over 80: LD does suggest loading data into a
register or memory location. Such a program is an assembly language program.

THE ASSEMBLER PROGRAM

How do we get the assembly language program into the com- HAND

puter? We have to translate it, either into hexadecimal or into bin- ASSEMBLY
ary numbers. You can translate an assembly language program
by hand, instruction by instruction. This is called hand assembly.

Hand assembly of the addition program’s instruction codes may be illustrated as
follows:

Instruction Name Hexadecimal Equivalent
LD A.(NN) 3A
LD B.A 47
ADD AB 80
LD (NNJ.A 32

As in the case of hexadecimal to binary conversion, hand assembly 1s a rote task which
is uninteresting. repetitive. and subject to numerous minor errors. Picking the wrong
line, transposing digits. omitting instructions, and misreading the codes are only a few
of the mistakes that you may make. Most microprocessors complicate the task even
further by having instructions with different word lengths. Some instructions are one
word long while others are two or three words long. Some instructions require data in
the second and third words. others require memory addresses, register numbers, or
who knows what?

Assembly is another rote task that we can assign to the ASSEMBLER
microcomputer. The microcomputer never makes any SOURCE
mistakes when translating codes; it always knows how many PROGRAM
words and what format each instruction requires. The program

that does this job is called an ‘‘assembler’’. The assembler OBJECT
program translates a user program, of ‘‘source’’ program writ- PROGRAM

ten with mnemonics, into a machine language program, or
""object’’ program, which the microcomputer can execute. The
assembler’s input is a source program and its output is an object program.

The tradeoffs we discussed in connection with the hexadecimal loader are mag-
nified in the case of the assembler. Assemblers are more expensive, occupy more
memory. and require more peripherals and execution time than do hexadecimal
loaders. While users may {and often do) write their own loaders, few care to write their
own assemblers.

1-6

Assemblers have their own rules that you must learn to abide by. These inciude the
use of certain markers (such as spaces, commas, semicolons. or colons) in appropriate
places. correct spelling, the proper control information, and perhaps even the correct
placement of names and numbers. These rules typically are a minor hindrance that can
be quickly overcome.

ADDITIONAL FEATURES OF ASSEMBLERS

Early assembler programs did little more than translate the mnemonic names of instruc-

tions and registers into their binary equivalents. However, most assemblers now pro-

vide such additional features as:

1) Allowing the user to assign names to memory locations, input and output devices.
and even sequences of instructions.

2) Converting data or addresses from various number systems (e.g.. decimal or hex-
adecimall to binary and converting characters into their ASCIi or EBCDIC binary
codes.

3) Performing some arithmetic as part of the assembly process.

4) Telling the loader program where in memory parts of the program or data should be
placed.

5) Allowing the user to assign areas of memory as temporary data storage and to
place fixed data in areas of program memory.

6) Providing the information required to include standard programs from program li-
braries, or programs written at some other time, in the current program.

7) Allowing the user to control the format of the program listing and the input and
output devices emploved.

All of these features, of course, involve additional cost and memo- CHOOSING
rv. Microcomputers generally have much simpler assemblers than AN
do larger computers, but the tendency always is for the size of as- ASSEMBLER

semblers to increase. You will often have a choice of assemblers.
The important criterion is not how many offbeat features the assembler has, but rather
how convenient it is to work with in normal practice.

DISADVANTAGES OF ASSEMBLY LANGUAGE

The assembler, like the hexadecimal loader, does not solve ali the problems of
programming. One problem is the tremendous gap between the microcomputer in-
struction set and the tasks which the microcomputer is to perform. Computer in-
structions tend to do things like add the contents of two registers, shift the contents of
the Accumulator one bit, or place a new value into the Program Counter. On the other
hand. a user generally wants a microcomputer to do something like check if an analog
reading has exceeded a threshold. look for and react to a particular command from a
teletypewriter, or activate a relay at the proper time. An assembly language program-
mer must translate such tasks into a sequence of simple computer instructions. The
translation can be a difficult, time-consuming job.

Furthermore, if you are programming in assembly language, you must have detailed
knowledge of the particular microcomputer that you are using. You must know
what registers and instructions the microcomputer has, precisely how the instructions
affect the various registers, what addressing methods the computer uses, and a myriad
of other information. None of this information is relevant to the task which the
microcomputer must ultimately perform.

In addition, assembly language programs are not portable. PORTABILITY

Each microcomputer has its own assembly language. which
reflects its own architecture. An assembly language program written for the Z80 will

1-6

not run on the Motorola 6800. the Fairchild F8, or the National Semiconductor PACE.
For example, the addition program written for the Motorola 6800 would be:

LDAA $60
ADDA $61
STAA $62

The lack of portability not only means that you won't be able to use vour assembly
language program on another microcomputer, but it also means that you won’t be able
to use any programs that weren't specifically written for the microcomputer you are
using. This is a particular drawback for microcomputers, since these devices are new
and few assembly language programs exist for them. The result, too frequently, is that
you are on your own. If you need a program to perform a particular task. you are not
likely to find it in the small program libraries that most manufacturers provide. Nor are
vou likely to find it in an archive, journal article, or someone’s old program file. You will
probably have to write it vourself.

HIGH-LEVEL LANGUAGES

The solution to many of the difficulties associated with as- COMPILER

sembly language programs is to use, instead, ‘‘high-level’’ or
“procedure-oriented’’ languages. Such languages allow you to describe tasks in
forms that are problem oriented rather than computer oriented. Each statement in
a high-level language performs a recognizable function; it will generally corres-
pond to many assembly language instructions. A program called a compiler transl-
ates the high-level language source program into object code or machine language
instructions.

Many different high-level languages exist for different types of FORTRAN

tasks. If. for example, vou can express what you want the com-

puter to do in algebraic notation, you can write your program in FORTRAN (Formula
Translation Languagel), the oldest and one of the most widely used of the high-level
languages. Now, if you want to add two numbers, you just tell the computer:

SUM = NUMB1+NUMB2

That is a lot simpler {and a lot shorter} than either the equivalent machine language pro-
gram or the equivalent assembly language program. Other high-level languages in-
clude COBOL {for business applications). PASCAL (another algebraic languagel, PL/1 (a
combination. of FORTRAN, ALGOL, and COBOL), and APL and BASIC (languages that
are popular for time-sharing systems).

ADVANTAGES OF HIGH-LEVEL LANGUAGES

Clearly, high-level languages make programs easier and faster to write. A common
estimate is that a programmer can write a program about ten times as fast in a
high-level language as compared to assembly language. That is just writing the pro-
gram: it does not include problem definition. program design. debugging, testing. or
documentation, all of which become simpler and faster. The high-level language pro-
gram is, for instance, partly self-documenting. Even if you do not know FORTRAN, vou
probably could tell what the statement illustrated above does.

High-level languages solve many other problems associ- MACHINE

ated with assembly language programming. The high-level INDEPENDENCE
language has its own syntax {usually defined by a national or OF HIGH-LEVEL
international standard). The language does not mention the in- LANGUAGES
struction set, registers, or other features of a particular com-
puter. The compiler takes care of all such details. Programmers can concentrate on their
own tasks: they do not need a detailed understanding of the underlying CPU architec-
ture — for that matter. thev do not need to know anvthing about the computer they are
programming.

1-7

Programs written in a high-level language are portable — PORTABILITY
at least, in theory. They will run on any computer or OF HIGH-LEVEL
microcomputer that has a standard compiler for that language. LANGUAGES

At the same time, all previous programs written in a high-level

language for prior computers are available to you when programming a new computer.
This can mean thousands of programs in the case of a common language like FORTRAN
or BASIC.

DISADVANTAGES OF HIGH-LEVEL LANGUAGES

Well, if all the good things we have said about high-level languages are true, if you
can write programs faster and make them portable besides, why bother with as-
sembly languages? Who wants to worry about registers, instruction codes,
mnemonics, and all that garbage! As usual, there are disadvantages that balance
the advantages.

One obvious problem is that you have to learn the "‘rules” or SYNTAX OF
“syntax’’ of any high-level language you want to use. A high- HIGH-LEVEL
level language has a fairly complicated set of rules. You will find LANGUAGES
that it takes a lot of time {ust to get a program that is syntactically
correct (and even then it probably will not do what vou want). A high-level computer
language is like a foreign language. If you have a little talent, you will get used to the
rules and be able to turn out programs that the compiler will accept. Still, learning the
rules and trying to get the program accepted by the compiler doesn’t contribute
directly to doing your job.

Here. for example. are some FORTRAN rules:

« Labels must be numbers placed in the first five card columns
+ Statements must start in column seven

- Integer variables must start with the letters L. J. K. L. M, or N

Another obvious problem is that you need a compiler to transi- COST OF
ate programs written in a high-level language. Compilers are COMPILERS
expensive and use a large amount of memory. While most assem-
blers occupy 2K to 16K bytes of memory (1K = 1024), compilers occupy 4K to 64K
bytes. So the amount of overhead involved in using the compiler is rather large.

Furthermore, only some compilers will make the implementa- ALGEBRAIC
tion of your task simpler. FORTRAN, for example. 1s well-suited NOTATION
to problems that can be expressed as algebraic formulas. If.
however, your problem is controlling a printer, editing a string of characters, or monitor-
ing an alarm system, your problem cannot be easily expressed in algebraic notation. In
fact. formulating the solution in algebraic notation may be more awkward and more
difficult than formulating it in assembly language. One answer is to use a more suitable
high-level language. Some such languages exist, but they are far less widely used and
standardized than FORTRAN. You will not get many of the advantages of high-level
languages if you use these so-called system implementation languages.

High-level languages do not produce very efficient INEFFICIENCY
machine language programs. The basic reason for this is that OF HIGH-LEVEL
compilation 1s an automatic process which is riddled with com- LANGUAGES

promises to allow for many ranges of possibilities. The com-
piler works much like a computerized language translator — sometimes the words are
right but the sounds and sentence structures are awkward. A simple compiler cannot
know when a variable 1s no longer being used and can be discarded. or when a register
should be used rather than a memory location. or when variables have simple relation-
ships. The experienced programmer can take advantage of shortcuts to shorten execu-

1-8

tion time or reduce memory usage. A few compilers (known as optimizing compilers)
can also do this, but such compilers are much larger and slower than regular compilers.

The general advantages and disadvantages of high-level languages are:

Advantages:

« More convenient descriptions of tasks ADVANTAGES

» More efficient program coding ngH LEVEL

- Easier documentation LANGUAGES

« Standard syntax

+ Independence of the structure of a particular computer

» Portability

« Availability of library and other programs

Disadvantages:

« Special rules DISADVANTAGES

« Extensive hardware and software support required OF

« Orientation of common languages to algebraic or business mﬁgﬁi‘gé‘s
problems

- Inefficient programs
+ Difficulty of optimizing code to meet time and memory requirements
« Inability to use special features of a computer conveniently

HIGH-LEVEL LANGUAGES FOR MICROPROCESSORS

Microprocessor users will encounter several special difficulties when using high-
level languages. Among these are:

« Few high-level languages exist for microprocessors
« No standard languages are widely available

+ Few compilers actually run on microcomputers. Those that do often require very large
amounts of memory.

« Most microprocessor applications are not well-suited to high-level languages.
« Memory costs are often critical in microprocessor applications.

The lack of high-level languages is partly a result of the fact that microprocessors are
quite new and are the products of semiconductor manufacturers rather than computer
manufacturers.

Very few high-level languages exist for microprocessors. The most common are the
PL/1 type languages (such as Intel's PL/M. Motorola's MPL. and Signetics’ PLuS),
BASIC. and PASCAL.

Even the few high-level languages that exist do not conform to recognized standards,
so the microprocessor user cannot expect to gain much program portability, access to
program libraries, or use of previous experience or programs. The main advantages re-
maining are the reduction in programming effort and the smaller amount of detailed
understanding of the computer architecture that is necessary.

The overhead involved in using a high-level language with OVERHEAD
microprocessors is considerable. Microprocessors themselves are FOR

better suited to control and slow interactive applications than they HIGH-LEVEL
are to the character manipulation and language analysis involved LANGUAGES
in compilation. Therefore, most compilers for microprocessors will
not run on a microprocessor-based system. Instead, they require a much larger com-
puter, i.e.. they are cross-compilers rather than self-compilers. A user must not only

1-9

bear the expense of the larger computer but must also physically transfer the program
from the larger computer to the micro.

A few self-compilers are available. These compilers run on the microcomputer for
which they produce object code. Unfortunately, they require large amounts of memory
(16K or more). plus special supporting hardware and software.

High-level languages also are not generally well-suited to UNSUITABILITY
microprocessor applications. Most of the common languages OF HIGH-LEVEL
were devised either to help solve scientific problems or to han- LANGUAGES
dle large-scale business data processing. Few microprocessor
applications fall in either of these areas. Most microprocessor applications involve send-
ing data and control information to output devices and receiving data and status infor-
mation from input devices. Often the control and status information consists of a few
binary digits with very precise hardware-related meanings. If you try to write a typical
control program in a high-level language. you often feel like someone who is trying to
eat soup with chopsticks. For tasks in such areas as test equipment, terminals, naviga-
tion systems, signal processing. and business equipment. the high-level languages
work much better than they do in instrumentation, communications, peripherals, and
automotive applications.

Applications better suited to high-level languages are those which APPLICATION
require large memories. If, as in a valve controller, electronic game, AREAS FOR
appliance controller. or small instrument, the cost of a single LANGUAGE
memory chip is important, then the inefficiency of high-level LEVELS
languages is intolerable. If, on the other hand. as in a terminal or
test equipment, the system has many thousands of bytes of memory anyway. the ineffi-
ciency of high-level languages is not as important. Clearly the size of the program and
the volume of the product are important factors as well. A large program will greatly in-
crease the advantages of high-level languages. On the other hand, a high-volume ap-
plication will mean that fixed software development costs are not as important as
memory costs that are part of each system.

WHICH LEVEL SHOULD YOU USE?

That depends on your particular application. Let us briefly note some of the factors
which may favor particular levels:

Machine Language:

- Virtually no one programs in machine language. its use can- ?g:l"{: :JL?SES
not be justified considering the low cost of an assembler and LANGUAGE
the increase in programming speed an assembler provides.

Assembly Language:

- Short to moderate sized programs APPLICATIONS

- Applications where memory cost is a factor FOR ASSEMBLY

. C . LANGUAGE

- Real-time control applications

- Limited data processing

« High-volume applications

- More input/output or control than computation

High-Level Languages:

- Long programs APPLICATIONS

+ Low-volume applications requiring long programs FOR HIGH-LEVEL

e s - . LANGUAGE

- Applications requiring large memories

- More computation than input/output or control
- Compatibility with similar applications using larger computers

+ Availability of specific programs in a high-level language which can be used in
the application

Many other factors are also important, such as the availability of a larger computer for
use in development, experience with particular languages, and compatibility with other
applications.

If hardware will ultimately be the largest cost in your application, or if speed is critical
you should favor assembly language. But be prepared to spend extra time in software
development in exchange for lower memory costs and higher execution speeds. If soft-
ware will be the largest cost in vour application. vou shouid favor a high-level language.
But be prepared to spend the extra money required for the supporting hardware and
software.

Of course, no one except some theorists will object if you use both assembly and high-
level languages. You can write the program originally in a high-level language and then
patch some sections in assembly language. However. most users prefer not to do this
because of the havoc it creates in debugging, testing, and documentation.

HOW ABOUT THE FUTURE?

We expect that the future will tend to favor high-level languages for the following
reasons:

+ Programs always seem to add extra features and grow larger | FUTURE TRENDS
+ Hardware and memory are becoming less expensive IN LANGUAGE
» Software and programmers are becoming more expensive LEVELS

+ Memory chips are becoming available in larger sizes, at lower
“per bit” cost. so actual savings in chips are less likely

+ More compilers are becoming available
+ More suitable and more efficient high-level languages are being developed
+ More standardization of high-level languages will occur

Assembly language programming of microprocessors will not be a dying art any more
than it is now for large computers. But longer programs. cheaper memory, and more ex-
pensive programmers will make software costs a larger part of most applications. The
edge in many applications will therefore go to high-level fanguages.

WHY THIS BOOK?

If the future would seem to favor high-level languages, why have a book on as-
sembly language programming? The reasons are:

1) Most current microcomputer users program in assembly language (almost two-
thirds, according to one recent survey).

2) Many microcomputer users will continue to program in assembly language since
they need the detailed control that it provides.

3} No suitable high-level language has yet become widely available or standardized.

4) Many applications require the efficiency of assembly language.

5] An understanding of assembly language can help in evaluating high-level
languages.

The rest of this book will deal exclusively with assemblers and assembly language pro-
gramming. However, we do want readers to know that assembly language is not the
only alternative. You should watch for new developments that may significantly reduce
programming costs if such costs are a major factor in your application.

1-11

REFERENCES

Some overall comparisons of the time required to write various types of programs at
different language levels are in M.H. Halstead, Elements of Software Science, American
Elsevier. New York, 1977 and in V. Schneider. “Prediction of Software Effort and Project
Duration - Four New Formulas”. SIGPLAN Notices, June 1978, pp. 49-65.

Chapter 2
ASSEMBLERS

Thus chapter discusses the functions performed by assemblers, beginning with features
common to most assemblers. and proceeding through more elaborate capabilities such
as macros and conditional assembly. You may wish to skim this chapter for the present
and return to it when you feel more comfortable with the material.

FEATURES OF ASSEMBLERS

As we mentioned previously, today’s assemblers do much more than translate as-
sembly language mnemonics into binary codes. But we will first describe how an
assembler handles the translation of mnemonics before describing additional as-
sembler features. Finally, we will explain how assemblers are used.

ASSEMBLER INSTRUCTIONS

Assembly language instructions (or ‘‘statements’’) are divided ASSEMBLY
into a number of fields, as shown in Table 2-1. LANGUAGE
The operation code field is the only field which can never be FIELDS

empty; it always contains either an instruction mnemonic or a
directive to the assembler, called a pseudo-instruction, pseudo-operation, or
pseudo-op.

The address field may contain an address or data, or it may be blank.

Table 2-1. The Fields of an Assembly Language instruction

Operation Operand
Label Code or or Comment Field
Field Mnemonic Address
Field Field
START: LD A (VALT) :LOAD FIRST NUMBER INTO A
LD B.A :SAVE IN B
LD A.(VAL2) ;LOAD SECOND NUMBER INTO A
ADD AB ;ADD FIRST NUMBER TO A
LD (SUM).A ;STORE SUM
NEXT: ? ? :NEXT INSTRUCTION
VALT: DEFS 1
VALZ2: DEFS 1
SUM: DEFS 1

The comment and label fields are optional. A programmer will assign a label to a
statement or add a comment as a personal convenience, e.g., to make the program
easier to code and read.

2-1

Of course, the assembler must have some way of telling FORMAT |

where one field ends and another begins. Assemblers that use

punched card input often require that each field start in a specific card column. This is
a fixed format. However, fixed formats may be inconvenient when the input medium is
paper tape; fixed formats are also a nuisance to programmers. The aiternative is a free
format, where the fields may appear anywhere on the line.

If the assembler cannot use the position in the line to tell the fields
apart, it must use something else. Most assemblers use a -
special symbo! or delimiter at the beginning or end of each field. The most obvious
delimiter is the space character. Commas, periods, semicolons, colons, slashes, ques-
tion marks and other characters that would not otherwise be used in assembly
language programs also may serve as delimiters. Table 2-2 lists standard Zilog Z80 as-
sembler delimiters.

Table 2-2. Standard Z80 Assembler Delimiters

: after a label

‘space’ between operation code and address
, between operands in the address field
; before a comment

You will have to exercise a little care with delimiters. Some assemblers are fussy
about extra spaces or the appearance of delimiters in comments or labels. A well-
written assembler will handle these minor problems, but many assemblers are not
well-written. Our recommendation is simple: avoid potential problems if you can.
The following rules will help:

1) Do not use extra spaces, particularly after commas that separate operands.
2) Do not use delimiter characters in names or labels.

3) Include standard delimtters even if your assembler does not require them. Your pro-
grams will then be assembled by any assembler.

LABELS
The label field is the first field in an assembly language in- LABEL
struction; it may be blank. If a label is present. the assembler FIELD

assigns to the label the value of the address for the memory loca-
tion into which the first object program byte for that instruction is loaded. You may
subsequently use the label as data or as an address in another instruction’s operand
field. The assembler will replace the label with the assigned value when creating an ab-
ject program.

Labels are most frequently used in Jump, Call or Branch in- LABELS
structions. These instructions place a new vaiue in the Program { IN JUMP
Counter and so alter the normal sequential execution of instruc- INSTRUCTIONS

tions. JUMP 1501 means "‘place the value 16014 into the Pro-
gram Counter”. The next instruction to be executed will be the one in memory location
16016. The instruction JUMP START means “place the value assigned to the label
START into the Program Counter” The next instruction to be executed will be the one
In the memory location to which the label START has been assigned. Table 2-3 contains
an example.

2-2

Table 2-3. Assigning and Using a Label

ASSEMBLY LANGUAGE PROGRAM
START LOAD ACCUMULATOR 100

« (MAIN PROGRAM)

JUMP START

When the machine language version of this program is executed, the instruction JUMP
START causes the address of the instruction labeled START to be placed into the Pro-
gram Counter. The instruction with the label START will be executed next.

Why use a label? Here are some reasons:

1) A label makes a program location easier to find and remember.

2) The label can be moved to change or correct a program. You do not have to change
any subsequent instructions that use the label; the assembler will make all the
necessary changes.

3) The assembler or loader can relocate the whole program by RELOCATION
adding a constant (a relocation constant} to each address in CONSTANT
which a label was used. Thus we can move the program to
allow for the insertion of other programs or simply to rearrange memory.

4) The program is easier to use as a library program, i.e.. it is easier for someone else to
take your program and add it to some totally different program.

B} Youdo not have to figure out memory addresses. Figuring out memory addresses is

particularly difficult with microprocessors which have instructions that vary in
length.

It makes sense to assign a label to any instruction that you might want to use as a
destination or otherwise identify.

The next question is what label to use. The assembler often CHOOSING
places some restrictions on the number of characters {usually 5 LABELS

or 6), the leading character {often must be a letter), and the trailing
characters (often must be letters, numbers, or one of a few special characters). Beyond
these restrictions. the choice is up to you.

Our own preference is to use labels that suggest their purpose, i.e.. mnemonic labels.
Typical examples are ADDW in a routine that adds one word into a sum, SRETX in a
routine that searches for the ASCIl character ETX. or NKEYS for a location in data
memory that contains the number of key entries. Meaningful labels are easier to
remember and contribute to program documentation. Some programmers prefer to use
a standard format for labels. such as starting with LO00Q. These labels are self-sequenc-
ing {you can skip a few numbers to permit insertions), but they do not help document
the program.

Some label selection rules will keep you out of trouble. We RULES OF
recommend the following: LABELING

1} Do not use labels that are the same as operation codes or
other mnemonics. Most assemblers will not allow this usage; others will. but it is
very confusing.

2-3

2) Do not use labels that are longer than the assembler permits. Assemblers have
various truncation rules.

3) Avoid special characters {non-alphabetic and non-numeric) and lower-case letters.
Some assemblers will not permit them; others allow only certain ones. The simplest
practice 1s to stick to capital letters and numbers.

4) Start each label with a letter. Such labels are always acceptable.

5) Do not use labels that could be confused with each other. Avoid the letters I.Oand
7 and the numbers 0. 1 and 2. Also avoid things like XXXX and XXXXX. There's no
sense tempting fate and Murphy's laws.

6) When you are not sure if a label is legal, do not use it. You will not get any real
benefit from discovering exactly what the assembler will accept.

These are recommendations. not rules. You do not have to follow them, but don’t blame
us if you waste time on silly problems.

ASSEMBLER OPERATION CODES (MNEMONICS)

The main task of the assembler is the translation of mnemonic operation codes
into their binary equivalents. The assembler performs this task using a fixed table
much as you would if you were doing the assembly by hand.

The assembler must, however, do more than just translate the operation codes. It must
also somehow determine how many operands the instruction requires and what
type they are. This may be rather complex — some instructions (like a Halt) have no
operands. others (like an Addition or a Jump instruction) have one. while still others
{like a transfer between registers or a multiple-bit shift) require two. Some instructions
may even allow alternatives, e.g.. some computers have instructions (like Shift or Clear)
that can apply either to the Accumulator or to a memory location. We will not discuss
how the assembler makes these distinctions; we will just note that it must do so.

PSEUDO-OPERATIONS

Some assembly language instructions are not directly transl- PSEUDO-
ated into machine language instructions. These instructions OPERATIONS
are directives to the assembler; they assign the program to cer- ASSEMBLER

tain areas in memory, define symbols, designate areas of RAM for DIRECTIVE
temporary data storage, place tables or other fixed data in memo-
ry, allow references to other programs, and perform minor house-
keeping functions.

To use these assembler directives. or pseudo-operations, a programmer places the
pseudo-operation’s mnemonic in the operation code field and. if the specified pseudo-
operation requires it. an address or data in the address field.

The most common pseudo-operations are:

DATA

EQUATE or DEFINE
ORIGIN

RESERVE

Linking pseudo-operations are:
ENTRY
EXTERNAL

2-4

Different assemblers use different names for these operations. but the purposes are the
same. Housekeeping pseudo-operations include:

END
LIST
NAME
PAGE
SPACE
TITLE

We will discuss these pseudo-operations briefly, although their functions are usually
obvious.

THE DATA PSEUDO-OPERATION

The DATA pseudo-operation allows the programmer to enter fixed data into
memory. This data may include:

« Lookup tables

« Code conversion tables

- Messages

» Synchronization patterns

« Thresholds

- Names

- Coefficients for equations

+ Commands

» Conversion factors

« Weighting factors
Characteristic times or frequencies

» Subroutine addresses

» Key identifications

» Test patterns

- Character generation patterns

- Identification patterns

- Tax tables

+ Standard forms

+ Masking patterns

« State transition tables

The DATA pseudo-operation treats the data as a permanent part of the program.

The format of a DATA pseudo-operation is usually quite simple. An instruction
like:

DZCON DATA 12

will place the number 12 in the next available memory location and assign that
location the name DZCON. Usually every DATA pseudo-operation has a label. unless it
is one of a series of DATA pseudo-operations. The data and label may take any form
that the assembler permits.

Most assemblers allow more elaborate DATA instructions that handle a large amount of
data at one time, e.g.:

EMESS DATA 'ERROR’
SQRS DATA 1.49.16,25

2-5

A single instruction may fill many words of program memory. limited only by the length
of a line. Note that if vou cannot get all the data on one line, you can always follow one
DATA instruction with another. e.g..

MESSG DATA 'NOW IS THE”
DATA ‘TIME FOR ALL "
DATA ‘GOOD MEN*
DATA "TO COME TO THE~
DATA "AID OF THEIR *
DATA ‘COUNTRY’

Microprocessor assemblers typically have some variations of standard DATA
pseudo-operations. DEFINE BYTE or FORM CONSTANT BYTE handles 8-bit numbers;
DEEINE WORD or FORM CONSTANT WORD handles 16-bit numbers or addresses.
Other special pseudo-operations may handle character-coded data.

THE EQUATE (or DEFINE) PSEUDO-OPERATION

The EQUATE pseudo-operation allows the programmer to DEFINING
equate labels and names with addresses or data. This pseudo- NAMES
operation is almost always given the mnemonic EQU. The
names may refer to device addresses. numeric data, starting addresses, fixed ad-
dresses, etc.

The EQUATE pseudo-operation assigns the numeric value in its operand field to
the label in its label field. Here are two examples:

TTY EQU 5
LAST EQU 5000

Most assemblers will allow you to define one label in terms of another. e.g..

LAST EQU FINAL
ST EQU START+1

The label in the operand field must, of course, have been previously defined. Often, the
operand field may contain more complex expressions, as we shall see later. Double
name assignments {two names for the same data or address) may be useful in patching
together programs which use different names for the same variable (or different spell-
ings of what was supposed to be the same name}.

Note that an EQU pseudo-operation does not cause the as- SYMBOL
sembler to place anything into memory. The assembler simply TABLE
enters an additional name into a table (called a symbol table)
which the assembler maintains. This table, unlike the mnemonic table, must be in
RAM since it varies with each program. The assembler program will always need some
RAM to hold the symbol table; the more RAM it has, the more symbols it can accept.
This RAM is in addition to any which the assembler needs as temporary storage.

When do you use a name? The answer is: whenever you have a USE OF
parameter that has some meaning besides its ordinary numeric NAMES
value, or the numeric value of the parameter might be changed.
We typically assign names to time constants, device addresses, masking patterns, con-
version factors, and the like. A name like DELAY, TTY. KBD. NROW. or OPEN not only
makes the parameter easier to change. but it also adds to program documentation. We
also assign names to memory locations that have special purposes: they may hold data,
mark the start of the program, or be available for intermediate storage.

What name do you use? The best rules are much the same as CHOICE
in the case of labels, except that here meaningful names really OF
count. Why not call the teletypewriter TTY instead of X15. a bit NAMES

time delay BTIME or BTDLY rather than WW., the number of the

2-6

“GO" key on a keyboard GOKEY rather than HORSE? This advice seems straightfor-
ward, but a surprising number of programmers do not follow it.

Where do you place the EQUATE pseudo-operations? The PLACEMENT
best place is at the start of the program, under appropriate OF
comment headings such as 1/0 ADDRESSES. TEMPORARY DEFINITIONS

STORAGE, TIME CONSTANTS, or PROGRAM LOCATIONS. This
makes the definitions easy to find if you want to change them. Furthermore, another
user will be able to look up all the definitions in one centralized place. Clearly this prac-
tice improves documentation and makes the program easier to use.

Definitions used only in a specific subroutine should appear at the start of the
subroutine.

THE ORIGIN PSEUDO-OPERATION

The ORIGIN pseudo-operation {(almost always abbreviated ORG) allows the pro-
grammer to locate programs, subroutines, or data anywhere in memory. Programs
and data may be located in different areas of memory depending on the memory con-
figuration. Startup routines, interrupt service routines, and other required programs
may be scattered around memory at fixed or convenient addresses.

The assembier maintains a Location Counter (comparable to LOCATION
the computer’s Program Counter) which contains the location COUNTER
in memory at which the next byte of object code generated by
the assembler will reside when the program is loaded. An ORG pseudo-operation
causes the assembler to place a new value into the Location Counter, much as a Jump
instruction causes the CPU to place a new value into the Program Counter. The output
from the assembler must not only contain instructions and data, but must also indicate
to the loader program where in memory it should place the instructions and data.

Microprocessor programs often contain several ORIGIN statements for the following
purposes:

Reset {startup) address Main program
Interrupt service addresses Subroutines

Trap addresses Memory addresses for
RAM storage input/output devices
Memory stack or special functions

Still other ORIGIN statements may allow room for iater insertions, place tables or data in
memory, or assign vacant RAM space for data buffers. Program and data memory in
microcomputers may occupy widely scattered addresses to simplify the hardware.

Typical ORIGIN statements are:

ORG RESET
ORG 1000
ORG INT3

Some assemblers assume an origin of zero if the programmer does not put an ORG
statement at the start of the program. The convenience is slight; we recommend the in-
clusion of an ORG statement to avoid confusion.

THE RESERVE PSEUDO-OPERATION

The RESERVE pseudo-operation allows the programmer to ALLOCATING
allocate RAM for various purposes such as data tables, tem- RAM
porary storage, indirect addresses, a Stack, etc.

Using the RESERVE pseudo-operation, you assign a name to the memory area and
declare the number of locations to be assigned. Here are some examples:

NOKEY RESERVE 1
TEMP RESERVE 50
VOLTG RESERVE 80
BUFR RESERVE 100

You can use the RESERVE pseudo-operation to reserve memory locations in program
memory or in data memory; however the nature of the RESERVE pseudo-operation is
more meaningful when applied to data memory.

In reality. all the RESERVE pseudo-operation does is increase the assembler’s Location

Counter by the amount declared in the operand field. The assembler does not actually
produce any object code.

Note the following features of RESERVE:
1) The label of the RESERVE pseudo-operation is assigned the value of the first ad-
dress reserved. For example. the sequence:
ORG 3000
BUF1 RESERVE 100
BUF2 RESERVE 50
VOLTS RESERVE 5
assigns to the label BUF1 the value 3000, to BUF2 3100, and to VOLTS 3150.
2) You must specify the number of locations to be reserved. There is no default case.

3) No data is placed into the reserved locations. Any data that, by chance. may be in
these locations will be left there.

Some assemblers allow the programmer to place initial INITIALIZING
values in RAM. We strongly recommend that you do not RAM

use this feature — it assumes that the program (along with
the initial values) will be loaded from an external device le.g.. paper tape or floppy disk}
each time it 1s run. Most microprocessor programs, on the other hand, reside in non-
volatile ROM and start when power comes on. The RAM in such situations does not re-
tain its contents, nor is it reloaded. Always include instructions to initialize the RAM in
your program.

LINKING PSEUDO-OPERATIONS

We often want statements in one program or subroutine to EXTERNAL
use names that are defined elsewhere. Such names are called REFERENCES
external references; a special linker program is necessary to ac-
tually fill in the external values and determine if any names are undefined or doubly
defined.

The pseudo-operation EXTERNAL, usually abbreviated EXT, signifies that the
name is defined elsewhere.

The pseudo-operation ENTRY, usually abbreviated ENT, signifies that the name is
available for use elsewhere, i.e.. it is defined in this program.

The precise way in which linking pseudo-operations are implemented varies greatly
from assembler to assembler. We will not refer to such pseudo-operations again. but
they are very useful in actual applications.

HOUSEKEEPING PSEUDO-OPERATIONS

There are various housekeeping pseudo-operations, which affect the operation of

the assembler and its program listing rather than the output program itself. Com-
mon housekeeping pseudo-operations include:

1) END. which marks the end of the assembly language source program.

2) LIST. which tells the assembler to print the source program. Some assemblers allow
such variations as NO LIST or LIST SYMBOL TABLE to avoid long. repetitive list-
ings.

3} NAME or TITLE. which prints a name at the top of each page of the listing.

4) PAGE or SPACE. which skips to the next page or next line. respectively, and im-
proves the appearance of the listing, making it easier to read.

8) PUNCH. which transfers subsequent object code to the paper tape punch. This
pseudo-operation may in some cases be the default option and therefore unnecess-
ary.

LABELS WITH PSEUDO-OPERATIONS

Users often wonder if or when they can assign a label to a pseudo-operation.

These are our recommendations:

1) All EQUATE pseudo-operations must have labels: they do not make any sense
otherwise, since their purpose is to define the meaning of the labels.

2) DATA and RESERVE pseudo-operations usually have labels. The label identifies the
first memory location used or assigned.

3) Other pseudo-operations should not have labels. Some assemblers allow other
pseudo-operations to have labels, but the meaning of the labels varies. We recom-
mend that you avoid this practice.

ADDRESSES AND THE OPERAND FIELD

Most assemblers allow the programmer a lot of freedom in describing the con-
tents of the Operand Address field. But remember, the assembler has built-in
names for registers and instructions and may have other built-in names.

Some common options for the operand field are: DECIMAL
. DATA OR
1} Decimal numbers ADDRESSES

Most assemblers assume all numbers to be decimal unless they
are marked otherwise. So:

ADD 100

means “add the contents of memory location 100 decimal to the contents of the Ac-
cumulator”

2) Other number systems OTHER
NUMBER
SYSTEMS

Most assemblers will also accept binary. octal, or hexadecimal en-
tries. But you must identify these number systems in some way,
e.g.. by preceding or following the number with an identifying
character or letter. Here are some common identifiers:

B or % for binary

0. Q. C or @ for octal {we avoid O because of the confusion with zero).
H or $ for hexadecimal

D for decimal. D may be omitted: it is the default case.

2-9

Assemblers generally require hexadecimal numbers to start with a decimal digit le.g..
0A36 instead of A36) in arder to distinguish between numbers and names or labels. Itis
good practice to enter numbers in the base in which their meaning is the clearest —
..e., decimal constants in decimal; addresses and BCD numbers in hexadecimal; mask-
ing patterns or bit outputs in binary if they are short and in hexadecimal if they are long.

3) Symbolic names

Names can appear in the operand field: they will be treated as the data that they repre-
sent. But remember.there is a difference between data and addresses. The se-
guence:

FIVE EQU 5
ADD FIVE

will add the contents of memory location 5 {not necessarily the number 5} to the con-
tents of the Accumulator.

4) The current value of the location counter {usually referred to as * or $).
This is useful mainly in Jump instructions: for example:
JUMP $+6
causes a Jump to the memory location six words bevond the word that contains the
first byte of the JUMP instruction:

Memory

} JUMP $ + 6 code stored here

6 locations

g Jump here

Most microprocessors have many two and three-word instructions. Thus, you will have
difficulty determining exactly how far apart two assembly language statements are.
Therefore, using offsets from the Location Counter frequently results in errors that you
can avoid if vou use labels.

5) Character codes

Most assemblers allow text to be entered as ASCIl strings. Such | ASCH

strings may be surrounded either with single or double quotation | CHARACTERS
marks; strings may also use a beginning or ending symbol such as
A or C. A few assemblers also permit EBCDIC strings.

We recommend that vou use character strings for all text. it improves the clarity and
readability of the program.

6) Combinations of 1) through 5) with arithmetic, logical, or special operators.

Almost all assemblers allow simple arithmetic combinations such ARITHMETIC

as START+1. Some assemblers also permit multiplication, divi- | AND LOGICAL
sion, logical functions. shifts. etc. These are referred to as expres- EXPRESSIONS
sions. Note that the assembler evaluates expressions at assembly
time. Even though an expression in the operand field may volve multiplication. you

2-10

may not be able to use multiplication in the logic of your own program — unless you
write a subroutine for that specific purpose.

Assemblers vary in what expressions they accept and how they interpret them. Com-
plex expressions make a program difficult to read and understand.

We have made some recommendations during this section but will repeat them and
add others here. In general, the user should emphasize clarity and simplicity. There
is no pavoff for being an expert in the intricacies of assemblers or in having the most
complex expression on the block. We suggest the following approach:

1) Use the clearest number system or character code for data. Masks and BCD num-
bers in decimal, ASCII characters in octal. or ordinary numerical constants in hex-
adecimal serve no purpose and therefore should not be used.

2) Remember to distinguish data and addresses.

3) Don't use offsets from the Location Counter.

4} Keep expressions simple and obvious. Don’t rely on obscure features of the assem-
bler.

CONDITIONAL ASSEMBLY

Some assemblers allow you to include or exclude parts of the source program, de-
pending on conditions existing at assembly time. This is called conditional assem-
bly; it gives the assembler some of the flexibility of a compiler. Most microcomputer
assemblers have limited capabilities for conditional assembly. A usual form is:

IF COND

‘CONDITIONAL PROGRAM

ENDIF

If the expression COND is true at assembly time, the instructions between IF and ENDIF
{two pseudo-operations) are included in the program.

Typical uses of conditional assembly are:

1} To include or exclude extra variables.

2) To place diagnostics or special conditions in test runs.
3) To allow data of various bit lengths.

4) To create specialized versions of a common program.

Unfortunately, conditional assembly tends to clutter programs and make them difficult
to read. Use conditional assembly only if it is necessary.

MACROS
You will often find that particular sequences of instructions oc- DEFINING A
cur many times in a source program. Repeated instruction se- SEQUENCE OF
quences may reflect the needs of your program logic. or they INSTRUCTIONS

may be compensating for deficiencies in vour microprocessor's
instruction set. You can avoid repeatedly writing out the same instruction sequence by
using a macro.

Macros allow you to assign a name to an instruction sequence. You then use the
macro name in your source program instead of the repeated instruction sequence.

2-11

The assembler will replace the macro name with the appropriate sequence of in-
structions. This may be illustrated as follows:

Source Program Object Program

MAC1 MACRO {macro definition)
instruction M1
nstruction M2

instruction M3

ENDM {end of macro definition}

mstruction P1 {mam program} nstruction P1
instruction P2 —B=< instruction P2
instruction P3 nstruction P3

mstruction M1
MAC1 . M2
instruction M3

nstruction P4 instruction P4
nstruction P5 instruction P5

instruction P7 instruction P7

instruction M1
M2
instruction M3

nstruction P6 2 instruction P6
e

MAC1 S

instruction P8

mstruction P8
t -

mstruction P9 { instruction P9
mstruction M1
MAC1 \ —§»{ instruction M2
instruction M3
instruction P10 Py { mstruction P10
mstruction P11 instruction P11
° °
° °
° ®

Macros are not the same as subroutines. A subroutine occurs once in a program, and
program execution branches to the subroutine. A macro is expanded to an actual in-
struction sequence each time the macro occurs; thus a macro does not cause any
branching.

Macros have the following advantages: ADVANTAGES
OF MACROS

1) Shorter source programs.

2) Better program documentation.

3) Use of debugged instruction sequences — once the macro has been debugged.
vou are sure of an error-free instruction sequence every time you use the macro.

4) Easier changes. Change the macro definition and the assembler makes the change
for you every time the macro is used.

5) inclusion of commands. keywords, or other computer instructions in the basic in-
struction set. You use the macro as an extension of your instruction set.

The disadvantages of macros are: DISADVANTAGES

1) Repetition of the same instruction sequences since the | OF MACROS
macro is expanded every time it is used.

2-12

2) A single macro may create a lot of instructions.

3) Lack of standardization that may make the program difficult to read and unders-
tand.

4) Possible effects on registers and flags that may not be clearly stated.

One problem is that variables used in a macro are known only LOCAL OR
within it {i.e.. thev are local rather than globall. This can often GLOBAL
create a great deal of confusion without any gain in return. You VARIABLES

should be aware of this problem when using macros.

COMMENTS

All assemblers allow you to place comments in a source program. Comments have
no effect on the object code, but they help you to read, understand, and document
the program. Good commenting is an essential part of writing assembly language
programs; without comments, programs are very difficult to understand.

We will discuss commenting along with documentation in a | COMMENTING
later chapter, but here are some guidelines: TECHNIQUES

1) Use comments to tell what the program is doing, not what instructions do.
Comments should say things like “IS TEMPERATURE ABOVE LIMIT?", “LINE FEED
TO TTY". or "EXAMINE LOAD SWITCH".

Comments should not say things like “ADD 1 TO ACCUMULATOR" “JUMP TO
START", or “LOOK AT CARRY". You should describe how the program is affecting
the system; internal effects on the CPU are seldom of any interest.

2} Keep comments brief and to the point. Details should be available elsewhere in the
documentation.

3) Comment all key points.

4) Do not comment standard instructions or sequences that change counters and
pointers; pay special attention to instructions that may not have an obvious mean-
ing.

5) Do not use obscure abbreviations.

6) Make the comments neat and readable.

7) Comment all definitions. describing their purposes. Also mark all tables and data
storage areas.

8 Comment sections of the program as well as individual instructions.

9) Be consistent in your terminology. You can {should) be repetitive; you do not need
to consult a thesaurus. P

10) Leave vourself notes at points which you find confusing, e.g.. “REMEMBER CAR-
RY WAS SET BY LAST INSTRUCTION". You may drop these in the final documen-
tation.

A well-commented program is easy to work with. You will recover the time spent in

commenting many times over. We will try to show good commenting style in the pro-

gramming examples. although we often over-comment for instructional purposes.

TYPES OF ASSEMBLERS

Although all assemblers perform the same tasks, their implementations vary
greatly. We will not try to describe all the existing types of assemblers; we will
merely define the terms and indicate some of the choices.

CROSS-
ASSEMBLER

A cross-assembler is an assembler that runs on a computer
other than the one for which it assembles object programs.

The computer on which the cross-assembler runs s typically a

large computer with extensive software support and fast peripherals — such as an 1BM
360 or 370. a Univac 1108, or a Burroughs 6700. The computer for which the cross-as-
sembler assembles programs is typically @ microcomputer like the Z80 or MC6800.

Most cross-assemblers are written in FORTRAN so that they are portable.

A self-assembler or resident assembler is an assembler that runs RESIDENT
on the computer for which 1t assembles programs. The self-assem- ASSEMBLER
bler will require some memory and peripherals, and it may run

quite slowly.

A macroassembler is an assembler that allows you to define MACRO-
sequences of instructions as macros. ASSEMBLER
A microassembler is an assembler used to write the MICRO-
microprograms that define the instruction set of a computer. ASSEMBLER
Microprogramming has nothing specifically to do with

microcomputers.

A meta-assembler is an assembler that can handle many META-
different instruction sets. The user must define the particular in- ASSEMBLER
struction set being used.

A one-pass assembler is an assembler that goes through the ONE-PASS
assembly language program only once. Such an assembler must ASSEMBLER
have some way of resolving forward references, e.g.. Jump in-

structions which use labels that appear later in the source program. i.e.. that have not
yet been defined.

A two-pass assembler is an assembler that goes through the TWO-PASS
assembly language source program twice. The first time the ASSEMBLER

assembler simply collects and defines all the symbols; the
second time it replaces the references with the actual definitions. A two-pass as-
sembler solves most of the forward reference problems. However, macro expan-
sion and conditional assembly can cause problems. On some large machines seven
or more passes are needed to insure that all forward references are resolvable. A
two-pass assembler may be quite slow if no backup storage (like a floppy disk) is
available: then the assembler must physically read the program twice from a slow
input medium (like a teletypewriter paper tape reader). Most microprocessor-
based assemblers require two passes.

ERRORS

Assemblers normally provide error messages, often consisting of a single coded
letter. Some typical errors are:

1) Undefined name loften a misspelling or an omitted definition).
2) lllegal character {e.g.. a 2 in a binary number).

3) lllegal format (wrong delimiter or incorrect operands).

4) Invalid expression (e.g.. two operators in a row).

5) lllegal value (usually too large).

6) Missing operand.

7) Double definition fi.e.. two different values assigned to one name).

8) lllegal label {e.g.. a label on a pseudo-operation that cannot have one).

9) Missing label.

10} Undefined operation code.
In interpreting assembler errors, you must remember that the assembler may get off on
the wrong track if it finds a stray letter, an extra space, or incorrect punctuation. Many
assemblers will then proceed to misinterpret the succeeding instructions and produce
meaningless error messages. Always look at the first error very carefully; subsequent

ones may depend on it. Caution and consistent adherence to standard formats will
eliminate many annoving mistakes.

LOADERS

The loader is the program which actually takes the output (object code) from the as-
sembler and places it in memory. Loaders range from the very simple to the very com-
plex. We will describe a few different types.

A bootstrap loader is a program that uses its own first few in- BOOTSTRAP
structions to load the rest of itself or another loader program LOADER

into memory. The bootstrap loader may be in ROM. or vou may
have to enter it into the computer memory using front panel switches. The assembler
may place a bootstrap loader at the start of the object program that it produces.

A relocating loader can load programs anywhere in memory. it RELOCATING
typically loads each program into the memory space immediately LOADER

following that used by the previous program. The programs.
however, must themselves be capable of being moved around in this way. ie.. they
must be relocatable. An absolute loader, in contrast, will always place the programs in
the same area of memory.

A linking loader loads programs and subroutines that have LINKING
been separately assembled; it resolves external references — LOADERS
that is. an instruction in one module that refers to a label in
another module. Object programs loaded by a linking loader must be created by an as-
sembler that permits and marks external references.

An alternative approach is to separate the linking and loading LINK
functions and have the linking performed by a program called a EDITOR
link editor.

REFERENCES

A complete monograph on macros is M. Campbell-Kelly, An Introduction to Macros.
American Elsevier. New York, 1973.

Microprogramming is described conceptually in An_Introduction to Microcom-
puters: Volume 1 — Basic Concepts, Chapter 4. A more technical description is in AK.
Agrawala and 1.G. Rauscher. Foundations of Microprogramming. Academic Press. New
York, 1976.

You can find more detailed descriptions of assemblers and loaders in D.W. Barron, "As-
semblers and Loaders”. American Elsevier, New York., 1872 and in C.W. Gear, Com-
puter Organization and Programming. McGraw-Hill. New York, 1974.

2-16

Chapter 3
THE Z80 ASSEMBLY LANGUAGE
INSTRUCTION SET

We are now ready to start writing assembly language programs. We begin in this
chapter by defining the individual instructions of the Z80 assembly language in-
struction set, plus the syntax rules of the Zilog assembler.

We do not discuss any aspects of microcomputer hardware, signals, interfaces. or
CPU architecture in this book. This information is described in detail in An Introduction
to Microcomputers: Volume 2 — Some Real Microprocessors and Volume 3 — Some
Real Support Devices, while Z80 Programming for Logic Design discusses assembly
language as an extension of digital logic. In this book. we look at programming tech-
niques from the assembly language programmer’s viewpoint, where pins and sig-
nals are irrelevant and there are no important differences between a minicom-
puter and a microcomputer.

Interrupts, direct memory access. and the Stack architecture for the Z80 will be de-
scribed in later chapters of this book. in conjunction with assembly language program-
ming discussions of the same subjects.

This chapter contains a detailed definition of each assembly language instruction.
These definitions are identical to those found in Chapter 6 of Z80 Programming for
Logic Design.

The detailed description of individual instructions is preceded by a general discussion
of the Z80 instruction set that divides instructions into those which are commonly
used, infrequently used. and rarely used. If vou are an experienced assembly language
programmer. this categorization is not particularly important — and. depending on your
own programming prejudices. it may not even be accurate. If you are a novice assembly
language programmer, we recommend that you begin by writing programs using only
Instructions in the “commonly used” category. Once you have mastered the concepts
of assembly language programming. vou may examine other instructions and use them
where appropriate.

3-1

CPU REGISTERS AND STATUS FLAGS
The CPU registers and status flags for the Z80 may be illustrated as follows:

Sign
Zero

Auxiliary Carry
Panty/Qverflow
Subtract

Carry

P
s ‘ Z I lAc{ l /Ol N [C Flags
A Accumulator
B [
darv Data Counters
Secondary D E
A lators
L Primary Data Counter
s I z I IAc'I [%l N [C' § Alternate Fiags
A Alternate Accumulator
Alternate B c Akemcate Secondary
Secondary o E Data Counters
Accumuiators (f §, H L Alternate Primary Data Counter
spP Stack Painter
PC Program Counter
X Index Register
Y Index Register
t Interrupt Vector Register
R Refresh Register

The Accumulator is the primary source and destination for one-operand and two-
operand instructions. For example, the shortest and fastest data transfers between the
CPU and /0 devices are performed through the Accumulator. In addition. more Memo-
ry Reference instructions move data between the Accumulator and memory than bet-
ween any other register and memory. All 8-bit arithmetic and Boolean instructions take
one of the operands from the Accumulator and return the result to the Accumulator. An
instruction must therefore load the Accumulator before the Z80 can perform any 8-
bit arithmetic or Boolean operations.

The B, C. D, E, H, and L registers are all secondary registers. Data stored in any of
these six registers may be accessed with equal ease: such data can be moved to any
other register or can be used as the second operand in two-operand instructions.

There are, however, some important differences in the functions of Registers B, C. D, E.
H. and L.

Registers H and L are the primary Data Pointer for the Z80. That is to say. vou will
normally use these two registers to hold the 16-bit memory address of data being ac-
cessed. Data may be transferred between any registers and the memory location ad-
dressed by H and L. Since HL is the primary Data Pointer, it often takes fewer bytes of
object code and less instruction cycles to perform operations with it. The Z80 program-
mer should try to address data memory via Registers H and L whenever possible.

Within your program logic, always reserve Registers H and L to hold a data memo-
ry address.

3-2

Registers B, C, D, and E provide secondary data storage; frequently. the second
operand for two-operand instructions is stored in one of these four registers. (The first
operand is stored in the Accumulator, which is also the destination for the result.)

There are a limited number of instructions that treat Registers B and C, or D and E,
as 16-bit Data Pointers. But these instructions move data between memory and the
Accumulator only.

In your program logic you should normally use Registers B, C, D, and E as tempor-
ary storage for data or addresses.

Registers IX and 1Y are index registers. They provide a limited indexing capability of
the type described in An Introduction to Microcomputers: Volume 1 for short instruc-
tions.

The alternate registers F', A’, B’, C’, D', E', H', and L' provide a duplicate set of
general purpose registers. Just two single-byte Exchange instructions select and
deselect all alternate registers; one instruction exchanges AF and the alternate AF’
as a register pair. and one instruction exchanges BC, DE, and HL with the alternate BC’,
DE'. and HL". Once selected. all subsequent register operations are performed on the ac-
tive set until the next exchange selects the inactive set. The alternate registers can be
reserved for use when a fast interrupt response is required. Or, they may be used in
any desired way by the programmer.

There are a number of instructions that handle 16 bits of data at a time. These in-
structions refer to pairs of CPU registers as follows:

F and A
B and C
D and E
H and L
F and A’
B’ and c’
D’ and E
H’ and L
S N
High- Low-
order order
byte byte

The combination of the Accumulator and flags, treated as a 16-bit unit, is used only for
Stack operations and alternate register switches. Arithmetic operations access B and C.
D and E. or H and L as 16-bit data units.

The Carry status flag holds carries out of the most significant bit in any arithmetic
operation. The Carry flag is also included in Shift instructions: it is reset by Boolean in-
structions.

The Subtract flag is designed for internal use during decimal adjust operations. This
flag is set to 1 for all Subtract instructions and reset to O for all Add instructions.

The Parity/Overflow flag is a multiple use flag, depending on the operation being
performed. For arithmetic operations, it is an overflow flag. For input, rotate, and
Boolean operations, it is a parity flag, with 1 = even parity and 0 = odd parity. Dur-
ing block transfer and search operations, it remains set until the byte counter decre-
ments to zero; then it is reset to zero. {t is also set to the current state of the interrupt
enable flip-flop {IFF2) when a LD A.l or LD AR instruction is executed.

The Zero flag is set to 1T when any arithmetic or Boolean operation generates a
zero result. The Zero status is set to 0 when such an operation generates a non-
zero result.

3-3

The Sign status flag acquires the value of the most significant bit of the result
following the execution of any arithmetic or Boolean instruction.

The Auxiliary Carry status flag holds any carry from bit 3 to 4 resulting from the
execution of an arithmetic instruction. The purpose of this status flag 1s to simplify
Binary-Coded-Decimal (BCD) operations; this is the standard use of an Auxiliary Carry
status flag as described in An Introduction to Microcomputers: Volume 1. Chapter 3.

All of the above status flags keep their current value until an instruction that modifies
them 1s executed. Merely changing the value of the Accumulator will not necessarily
change the value of the status flags. For example, if the Zero flag is set, and a load im-
mediate to the Accumulator is executed, that causes the Accumulator to acquire a non-
zero value; the value of the Zero flag remains unchanged.

The 16-bit Stack Pointer allows you to implement a Stack anywhere in addressa-
ble memory. The size of the Stack is limited only by the amount of addressable memory
present. [n reality you will rarely use more than 256 bytes of memory for your Stack.
You should use the Stack for accessing subroutines and processing interrupts. Do not
use the Stack to pass parameters to subroutines. This is not very efficient within the
limitations of the Z80 instruction set. The Z80 Stack is started at its highest address. A
Push decrements the Stack Pointer contents; a Pop increments the Stack Pointer con-
tents.

The Interrupt Vector register and the Refresh register are special-purpose
registers not normally used by the programmer.

The Interrupt Vector register is used to store the page address of an interrupt response
routine; the location on the page is provided by the interrupting device. This scheme
allows the address of the interrupt response routine to be changed while still providing
a very fast response time for the interrupting device.

The Refresh register contains a memory refresh counter in the low-order seven bits.
This counter i1s incremented automatically after each instruction fetch and provides the
next refresh address for dynamic memories. The high-order bit of the Refresh register
will remain set or reset, depending on how it was loaded at the last LD R.A instruction.

280 MEMORY ADDRESSING MODES

The Z80 provides extensive addressing modes. These include:
+ Implied

» Implied Block Transfer with Auto-Increment/Decrement
- Implied Stack

- Indexed

+ Direct

+ Program Relative

- Base Page

- Register Indirect

- Immediate

3-4

Implied

In implied memory addressing, the H and L registers hold the address of the
memory location being accessed. Data may be moved between the identified memo-

ry location and any one of the seven CPU registers A. B, C. D, E. H, or L. For example, the
instruction

LD C.(HL)

loads the C register with the contents of the memory location currently pointed to by
HL. This is illustrated as follows:

S ZAcP/ON C

Data
A Yy ppag
8.C ﬂ-————!—
DE ?
HL pp aq
SP
PC mmmm mmmm + 1 Program
X Memory
ty
i 4E mmmm
R I mmmm + 1
mmmm + 2
mmmm + 3
LD C (HL)

) ——

s

7 6 5 4 3 2

LTI T

tf

Load Implied via HL

C Register

3-5

A limited number of instructions use Registers B and C or D and E as the Data
Pointer. These instructions move data between the Accumulator and the memory loca-
tion addressed by Registers B and C or Registers D and E. The instruction

LD

(BC).A

stores the contents of A into the memory location currently addressed by Register Pair
BC. This is illustrated as follows:

I TII]

A
B.C
DE
HL
SP
PC
X
Y

i
R

R —

S ZAcPONC

pp

mmmm

LD (BCLA
et v’

et

7 6 & 4 3 2 1

0

Gl o]

°f
J

mmmm + 1

Store Implied from A via BC

3-6

Data
Memory

Program
Memory

02

ppaq

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

implied Block Transfer With Auto-Increment/Decrement

Block Transfer and Search instructions operate on a block of data whose size is
set by the programmer as the contents of the BC register pair. In this form of ad-
dressing, a byte of data is moved from the memory location addressed by HL to
the memory location addressed by DE; then HL and DE are incremented and BC is
decremented. Data transfer continues until BC reaches zero, at which point the in-
struction is terminated. Variations include allowing other instructions to follow
each data transfer, with the programmer supplying the loopback; auto-decrement-
ing HL and DE instead of auto-incrementing; and a complementary set of Block
Search instructions that compare the memory byte addressed by HL with the con-
tents of the A register, setting a flag if a match is found.

The Load. Increment, and Repeat instruction
LDIR

1s illustrated as follows:

Set if BC-1-# 0 reset otherwise

S Z ACPyON C " Data
Y Me
LT To=Io]] @ mory

YY ppag
A ppqq + 1
8.C tt uy 4 mss + 1
D.E m SS YY rss
N~ L pp aq mwss+ 1
SP ppaqg+ 1
PC mmmm Program
X Memory
t ED mmmm
] — ™ o] o+
mmmm + 2
mmmm + 3

LDIR

- RO
Of — pw

}Load, Increment, and Repeat instruction

A similar group of Input/Output instructions is provided, allowing a block of data
to be input or output between memory and an 1/0 device. The I/0 port number is
taken as the contents of the C register, with the single B register used as the byte
counter. Memory is addressed by HL.

Implied Stack

Since the Stack is part of Read/Write memory, we must consider Stack instructions as
Memory Reference instructions. Push and Pop instructions move two bytes of data
between a register pair and the addressed Stack Pointer location, i.e.. current top-
of-stack. The Z80 Stack address is decremented with each Push and incremented with
each Pop. The instruction

is illustrated as follows:

S Z ACP/ON C

PUSH DE

ssss - 2

Data
£ Memory
aq
A op
B.C
D.E pp aq
HL
SP $SSS
PC mmmm Program
1X Memory
Y
f D5
R
PUSH DE

P N

7 6 5

ey st~
32 10

ClifofrJojijo]u)

T

PUSH
Register Pair DE

3-8

- ssss - 1
88SS

mmmm
mmmm + 1
mmmm +2
mmmm + 3

The Z80 also has instructions that exchange the two top-of-stack bytes with a
16-bit register — HL or one of the two index registers. The instruction

EX (SP).HL
is illustrated as follows:
S Z AcP/ON C bata
FCITTTT] Memory
A B aq ssss
8.C —— -) ssss+ 1
D.E ssss+2
HL XX
SP $SSS
PC mmmm mmmm + 1 Program
1X Memory
Y
! E3 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

3-9

Indexed

The Z80 has two 16-bit index registers, called IX and IY. They may be used in-
terchangeably. All memory reference operations for which (HL) can be specified can
alternatively be specified as an indexed operation. The difference between implied ad-
dressing using HL and indexed addressing using IX and IY is that the index operand
includes a displacement value that is added to the index address. In the instruction

ADD A (IX+40H)

the memory address is the sum of the contents of the IX register and 4016‘ This may be
illustrated as follows:

S ZACP/ON C Data
FEXIX]X[X]OfX] Memory
'] ppag
A XX XX + Yy H
B.C 4 M
DE v ppaa + 40
HL
sP
PC mmmm
X Ppaq
Y
| o) mmmm
; e 5] - 1
40 mmmm + 2
) mmmm + 3
i
ADD AMX + 40)
“———
7 6 5 4 3 1 0
1]l1jofrfrltiolt })
Add to A Indexed by IX instruction
1{ojojojojtr}jtrjo
ogi{oj1]0i1t}0] 0} O§Displacament

Direct

Direct addressing can be used to load the Accumulator with any 8-bit value from
memory, load BC, DE, HL, SP, IX, or IY with any 16-bit memory value, and jump or
call subroutines direct at any memory location. The 16-bit direct address is stored in
the last two bytes of the instruction. in low-byte high-byte order (this is the reverse of
the standard high-low scheme).

The instruction
LD ANETX)

loads the A register with the contents of the memory location addressed by the label
NETX. The instruction

LD HL{1FFH)

loads the L register with the contents of memory location 01FF, . and the H register
with the contents of memory location 020016' This may be illustrated as follows:

S ZAcP/ON C Data
A Yy O1FF
B8.C P — XX 0200
DE z ¥
HL XX Yy
SP
PC mmmm mmmm + 3 Program
1X Memory
Y
Y 2A mmmm
R { FF mmmm + 1
01 mmmm + 2
mmmm + 3
LD HL{IFFH)
7 6 5 4 3 2 1 0
0340|1{0}1]i0] 1 }0F Load HL Direct nstruction
T {1 [t }1]1v}1] 1]1} Direct address - low bvte
0010|0000 |1 §Direct addrass - High byte

The direct Jump instructions provide jumps and jumps-to-subroutines, both un-
conditional and conditional. These are all 3-byte instructions. with the direct address
stored in the second and third bytes of the instruction, as shown above for Load Direct.

There are three additional addressing modes used by Z80 Branch instruc-
tions: program relative, base page. and register indirect. In general, they are shorter
and/or faster than direct jJumps but may have more limited addressing capabilities.

Program Relative

Jump Relative instructions provide program relative addressing in the range -126,
+129 bytes from the first byte of the Program Relative instruction. These instructions
are all 2-byte instructions, with the signed displacement value stored in the second
byte of the instruction. There are unconditional and conditional relative jumps, as
well as a Decrement and Jump If Not Zero instruction (DJNZ) that facilitates loop
control.

Given the instruction
JR SRCH

assume that SRCH is a label addressing a location 5A 6 bytes up in memory from the
JR op-code byte. The operation may be illustrated as 1fonows:

S Z AcP/ON C Data

A
B8.C
DE
H.L
SP
PC mmmm mmsrzrn *+ Program
1X Memory
Y
{ 18 mmmm
R 5A mmmm + 1
mmmm + 2
mmmm + 3
mhat,
JR SRCH

5
0 Jump Relative instruction
0

r? 4 3 2 1 0\
0 1{1}j0(01}0
0 111140]

Displacement

Base Page

The Z80 has a modified base page addressing mode for the Restart instruction. This is
a special Call instruction that allows a single-byte instruction to jump to one of
eight subroutines located at specific points in lower core. The effective address is

calculated from a 3-bit code stored in the instruction. as follows:

Lower Core Address 3-Bit Code

00H
08H
10H
18H
20H
28H
30H
38H

000
001
010
011
100
101
110
1"

The decoded address value is loaded into the low-order byte of the Program Counter;
the high-order byte of the Program Counter is set to zero. For example, the instruction

RST OOH
is illustrated as follows:
S ZAcP/ON C
F
A
B.C
D.E 888§ - 2
HL
sP 5555
PC mmmm @
1X
Y
! 000
R
RST OOH
A/
7 6 5 4 3 2 1 0
Lilrfofofofifrir]
4 Restart ion

Address code

Data
Memory

mm+ 1

Program
Memory

C7

ssss - 2
ssss - 1

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Register Indirect

{n standard indirect addressing. a memory location contains the effective address, and
the instruction specifies the address of the memory location containing the effective
address. In register indirect addressing, a register contains the effective address, and
the instruction specifies which of the registers contains the effective address. Note that
for a Load. for instance. this is just another way of describing implied addressing.
However. the Z80 has Jump instructions that allow a jump to the memory location
whose address is contained in the specified register. This is a form of indirect ad-
dressing. and is described separately because. while most microcomputers have im-
plied addressing. very few have register indirect jumps.

The instruction
JP(HL)

directs that a jump is to be taken to the memory location whose address is contained in
HL. This may be illustrated as follows:

S Z AcP/ON C Data
A
B.C
D.E
HL [qq
sp :)
PC mmmm Program
X Memory
Y —
! ES mmmm
R mmmm + 1
mmmm + 2
mmmm+ 3
JP(HL}

“7 6 5 4 3 2 1 0

EIEE [o[1]o{ol}|JumpwaHL

Immediate

Some texts identify Immediate instructions as Memory Reference instructions. An Im-
mediate instruction is a 2-. 3-, or 4-byte instruction in which the last one or two bytes
hold fixed data that is loaded into a register or memory location. The 280 provides Im-
mediate instructions to:

load 8-bit data into any of the 8-bit registers,
load 16-bit data into any of the register pairs or 16-bit registers,
store 8-bit data into any memory location using implied or indexed addressing,

perform arithmetic and logical operations using the Accumulator and 8-bit im-
mediate data.

The instruction

LD BC,0BCH

loads the immediate data value BC1g into Register Pair BC. This may be illustrated as
follows:

A
B.C
DE
HL

SP
PC
X
Y
I
R

S ZACP/ION C

O TIT]

\ e~
mmmm mmmm + 3
LD BC, 0BCH
7 6 5 4 3 2 1 0
[ofojojolojolo]t]
[I Load | i to Register Pair

cjojo

Of~fun

(=3 BN B
ol-jw
o~~~
o
o

o
(=]

Register Pair BC

Immediate data - low-order byte

immediate data - high-order byte

3-15

Data
Memory
Program
Memory
01 mmmm
BC mmmm + 1
00 +2
+3

Table 3-1. Frequently Used Instructions of the Z80

Instruction Code

Meaning

ADC A

ADD

AND

CALL addr
CALL cond.addr
CP

DEC

JR cond,addr
LD reg.(HL)
LD A laddr
LD data

LD {HL).reg
LD (addr). A
D dst.src

RET cond

Add with Carry to Accumulator
Add

Logical AND

Call Subroutine

Call Conditional

Compare

Decrement

Decrement and Jump If Not Zero
input

Increment

Jump Relative

Jump Relative Conditional
Load Register

Load Accumulator Direct
Load Immediate

Store Register

Store Accumulator Direct
Move Register-to-Register
Output

Pop from Stack

Push to Stack

Return from Subroutine
Return Conditional

Rotate Accumulator Left Through Carry
Rotate Accumulator Right Through Carry

Shift Left Arithmetic
Shift Right Logical
Subtract

3-16

Table 3-2. Occasionally Used Instructions of the Z80

Instruction Code

Meaning

BIT

CPD. CPDR
CPI, CPIR
CPL

JP addr

JP cond.addr

LD A.(BC) or (DE)

LD HL.{addr)

LD reg. (xy+disp)

LD rp.{addr)

LD xv.{addr)

LD (BC) or (DE).A
(addr),HL
(xy+displ.reg
{addr).rp

LD (addr).xy
(i
(xy+dlsp) data

LDD. LDDR

LDl LDIR

NEG

NOP

OR

OuUTD. OTDR

QUTI. OTIR

RES

RETI

RL

RLC

RLCA

RR

RRC

RRCA

SET

SRA

XOR

Test Bit

Compare, Decrement, (Repeat)
Compare, increment, (Repeat)
Complement Accumulator
Decimal Adjust Accumulator
Disable Interrupts

Enable Interrupts

Exchange

Halt

Input, Decrement, (Repeat!
Input. Increment, (Repeat)
Jump

Jump Conditional

Load Accumulator Secondary
Load HL Direct

Load Register indexed

Load Register Pair Direct

Load Index Register Direct
Store Accumulator Secondary
Store HL Direct

Store Register Indexed

Store Register Pair Direct
Store Index Register Direct
Store Immediate to Memory
Store Immediate to Memory Indexed
Load, Decrement, {Repeat)
Load, Increment. (Repeat)
Negate (Twos Complement) Accumulator
No Operation

Logical OR

Qutput, Decrement, (Repeat)
Output, Increment, (Repeat)
Reset Bit

Return from Interrupt

Rotate Left Through Carry
Rotate Left Circular

Rotate Accumulator Left Circular
Rotate Right Through Carry
Rotate Right Circular

Rotate Accumulator Right Circular
Set Bit

Shift Right Arithmetic

Logical Exclusive OR

Table 3-3. Seldom Used Instructions of the Z80

Instruction Code Meaning
ADC HL.rp Add Register Pair with Carry to HL
CCF Complement Carry Flag
EXX Exchange Register Pairs and Alternatives
M n Set Interrupt Mode
RETN Return from Non-Maskable Interrupt
RLD Rotate Accumulator and Memory Left Decimal
RRD Rotate Accumulator and Memory Right Decimal
RST Restart
SBC Subtract with Carry (Borrow}
SCF Set Carry Flag
LD Al Load Accumulator from Interrupt Vector Register
D A.R Load Accumulator from Refresh Register
LD L.A Store Accumulator to Interrupt Vector Register
LD R.A Store Accumulator to Refresh Register
LD SP.HL Move HL to Stack Pointer
LD SP.xy Move Index Register to Stack Pointer
ABBREVIATIONS

These are the abbreviations used in this chapter:
AFB.CDEHL The 8-bit registers. A is the Accumulator and F is the Flag Word.

AF'.BC'.DE"HL' The alternate register pairs

addr A 16-bit memory address

x(b) Bit b of 8-bit register or memory location x

cond Condition for program branching. Conditions are:

NZ - Non-Zero Z = 0)

Z -ZerofZ=1)

NC - Non-carry {C =0}

C -CarryiC=1)

PO - Parity Odd (P =0)

PE - Parity Even P = 1)

P - Positive Sign (S =0)
M - Negative Sign (S = 1)

data An 8-bit binary data unit

datal6 A 16-bit binary data unit

disp An 8-bit signed binary address displacement
xx{HI} The high-order 8 bits of a 16-bit quantity xx
| Interrupt Vector register (8 bits)

X 1Y The Index registers (16 bits each)

label A 16-bit instruction memory address

xx{LO) The low-order 8 bits of a 16-bit quantity xx
LSB Least Significant Bit (Bit 0)

MSB Most Significant Bit Bit 7)

PC Program Counter

port An 8-bit 1/0 port address

3-18

pr

reg

™

SP
Xy
Object Code

Any of the following register pairs:

The Refresh register (8 bits)
Any of the following registers:

TImMmgoOo>

Any of the following register pairs:

Stack Pointer (16 bits)
Either one of the Index registers (X or 1Y)
bbb Bit number 000 (LSB) to 111 (MSB)

ccc Condition code 000 = non-zero

001 = zero
010 = no carry
011 = carry

100 = parity odd
101 = parity even
110 = positive sign
111 = negative sign

ddd Destination register — same coding as rrr
ppag A 16-bit memory address

rrr Register 1M1 =A
000=8B
001 =C
010=D
011 =E
100 =H
101 =L
sss Source register — same coding as rrr
X Index register 0=IX
1=1Y
XX Register pair 00 =BC
01 =DE
10 =HL

11 =8P {rp} or AF (pr
xxx Restart code {000 to 111)
W An 8-bit binary data unit

vyvy A 16-bit binary data unit

3-19

Statuses

n

1 <>

The 280 has the following status flags:

C - Carry status

z - Zero status

S - Sign status

P/O - Parity/Overflow status
Ac - Auxiliary Carry status
N - Subtract status

The following symbals are used in the status columns:
X - flag is affected by operation

{blank) - flag is not affected by operation

1 - flag is set by operation

0 - flag is reset by operation

U - flag is unknown after operation

P - flag shows parity status

¢} - flag shows overflow status

| - flag shows interrupt enabled/disabled status

Memory addressing: 11 the contents of the memory location
whose address is contained in the designated register. 2) an
1/0 port whose address is contained in the designated register.

The contents of a register or memory location.
For example:
{HL]} — [HL]} + 1

indicates that the contents of the memory location addressed by
the contents of HL are incremented. whereas:

[HL] — [HL] + 1

indicates that the contents of the HL register itself are incre-
mented.

Logical AND

Logical OR

Logical Exclusive-OR

Data is transferred in the direction of the arrow

Data is exchanged between the two locations designated on either
side of the arrows.

3-20

INSTRUCTION MNEMONICS

Table 3-4 summarizes the Z80 instruction set. The MNEMONIC column shows the
instruction mnemonic (IN, OUT, LD). The OPERAND column shows the operands,
if any, used with the instruction mnemonic.

The fixed part of an assembly language instruction is shown in UPPER CASE. The
variable part (immediate data, 1/0 device number, register name, label or address)
is shown in lower case.

For closely related operands, each type is listed separately without repeating the
mnemonic. For instance, examples of the format entry

LD rp.(addr)
xy,(addr)

are: LD BC(DAT2)
LD IX.{MEM)

INSTRUCTION OBJECT CODES

The object code aiid instruction length in bytes are shown in Table 3-4 for each
instruction variation. Table 3-5 lists the object codes in numerical order.

For instruction bytes without variations, object codes are represented as two
hexadecimal digits (e.g., 3F).

For instruction bytes with variations in one of the two digits, the object code is
shown as one 4-bit binary digit and one hexadecimal digit (e.g., 11 x 1 D) in Table
3-5. For other instruction bytes with variations, the object code is shown as eight
binary digits (e.g., 01sss001).

INSTRUCTION EXECUTION TIMES

Table 3-4 lists the instruction execution times in clock periods. Real time can be
obtained by dividing the given number of clock periods by the clock frequency. For
example. for an instruction that requires 7 clock periods. a 4 MHz clock will result in a
1.75 microsecond execution time.

When two possible execution times are shown (i.e., 5/11), it indicates that the
number of clock periods depends on condition flags. The first time is for ’condi-
tion not met,”’ whereas the second is for ‘’condition met.”

STATUS

The six status flags are stored in the Flag register (F) as follows:

Lolz] 2] Jeofn]c]
) f EEREK

These bits are not used
L—— Carry status (camy out of bit 7)
r——— Subtract status
(1 after subtract operation, 0 otherwise}
Parity/Overflow
{for logical operations, 1 for even, 0 for odd panty.
For arithmetic, 1 for overflow)

Auxiliary Carry status {carrv out of bit 3)
Zero status (1 for zero, 0 for nonzero}
Sign status {value of bit 7}

3-21

In the individual instruction descriptions, the effect of instruction execution on
status is illustrated as follows:

§ 2z AcPO N C

L1 Lelxfe]]

L—i—— Modified to reflect resuits of execution

Unconditionally reset to 0
Unconditionally set to 1
Unchanged

Unknown

An X identifies a status that is set or reset. A 0 identifies a status STATUS
that is always cleared. A 1 identifies a status that is always set. A CHANGES
blank means the status does not change. A question mark (?) WITH

means the status 1s not known. INSTRUCTION
EXECUTION

3-22

.. SSBIPPE UOHEUNSBP JUBLLBIZUI PUB JUNOD
81AQ JuBWaBQ JH JO SJUBILOD AQ PaSSEIPPE UOIEDO| AlowWwBws
03 D 40 s1uBIUOD AQ passalppe 110d (/) Wo1) ejep 40 a1Ag e Jajsuesy
L+ [TH]—[H]
L-[8l—(8]
oN—DHND ¢ é I3 Gt 4 Zv a3 |
. PRLBISURY BQ OF
Buiuiewa. s81Aq 40 JUN0J € SE'BAIBS g JO SIUBILOT ‘MO O} S85S8.IPPR
yBiy wouy BuloB JH 30 SHUBYUOD AQ PAsSBIPPE LOKERIO] AIOWBW 0}
0 40 sjuelu03 Aq passaippe L0d (/| Wosy 818p O 3OOIq B Jajsuel]
L-HE—{H])
L-@|l—ig}
00— (K] -
‘0 = [8] 1un jeaday e [é «SL/0Z z v8 a3 HANI [+]
.. PRIIBYSURY 3G 01 Buy
-UIBWa) S31Aq JO JUNCD € SE 8AI8S g JO Slusue) b1y 0} sasseippe
Mo} woy Buiob “H 30 sjusluod Aq passaippe uoneI0| AJowatu 0}
2 10 siudjuod Aqg passeippe 1od O/ W0 e1EP JO Y00|q B J8jsues]
L+ [H]—[H]
L-18]—[g]
o — M)
10 = {g] 1mun jesday 12 I3 é «~51/0Z [4 z8 a3 HiNI
pelaaye aq pm sbejy ayy Ajuo wFON s1 81Aq puooas
+ D 40 S1UBIUOD BY) Aq passaippe wod (/| wosy 183s)6a) 03 Induj
{10] — [Bas) x| d| x 1L z 000PPPLO @3 () Bau NI
V] :Glv-8y
Hod :/V-0V :Sng Ssalppy
Hod (/) passeppe ARSBIP Wo4) 10JRINWNoY 0} indy)
fmod) — v] ot z AA ga (Hod)'y NI
v lom| s soroAD
'peuiio}iad uonesedo sejAg epo9 190(q0 pueiedg Jluowisuy 8dA)
smejs R0
{8] Siv-gv

198G UONONIISU| 087 Ul JO AIRWIWING 7 H-E B|0B |

{D] Lv-Qv :sng sseippy .,

3-23

.. PBUBJSURY BG O}
Buiuiewas sejAQ JO JUNOD B SB BAIBS g JO SIUBILDT) 'MO| 0} Alowew
yBiy wouy BuoB ‘) 0 SIBLOD Ag passeippe Lod (/1 03 TH 40 SIus
-u02 AQ PasSeIpPe UOHEID| AJOWBW WOJ) BIEP JO $30|q € J8ysuel|
L[} [H]
L-l8l—I(8]
{fHN—10H
10 = (@] 1mun jesdey
.. PELIBISURY 8Q 0}
Bujuigws) SBIAQ §O JUNOD B SB BAIBS g JO SIUBIU0D yBiy o3 Atowsws
moj wozy BuioB ‘9 30 sueuoo Aq pesseippe lod (/) 03 H J0 sius}
-UDD AQ POSSeIpPe LUOHESD] AJOWBW WO BIED 1O ¥30|q © 18ysuel]
L+ [TH]—[H]
L-[g]—18]
{H}—10N
:0 = [@] Inun jeedey
..'D 10 SUBU0D By} Ag pessesppe Lod Q/| 01 JeisiBel woy Inding
[Bo1}— {01}
v} :Glv-8v
wod £ y-QV :SN{ SS8IppyY
uod Q/f Passappe AjloaNIp 0} 10)8INWINDDY WO4) INdING
[v]—[Hod}]
.. SSEIPPE UOHBUIISBP PUB JUNOD 8JAQ
yiog juswasoeq TH 4O SIUBI0D Ag pesseuppe uoleso; Alowsw
0} O 30 SJUBUOI Aq PBssaippe Hod ()/| Woi) BIEP JO 83AQ B Jejsuel)
L-[H]—[H]
L-@l—1a}
{oll—1H]l

3 é

«»81/0T

«51/02

zl

gi

88 a3

€8 Q3

L00sss10 a3

L]

Yv a3

Bas'(D)

v'{Hod)

4410

HiLo

ino

LNo

GNI

{penupuod) O/i

pewioped uoneiedo

Jy

o/d} s

2 8a|9AD

smeis

#2010

se3Ag

8po9 30030

pueiedO

2UOWBUA

odA),

(PBNUILUOD) 185 UOIONIISU| 08Z 8t JO AlBWWING 7 H-E @lqe)

8]
0]

Glv-8v

‘LVY-QV sNg SS8IpPY ..

3-24

ted J81s168) peiytoads ay) o sjuey

-U0D 8y} Aq PassaIppE UGHEDD| AIOWIBW WOJ) JOJEINWNDDY Peo
flag vl oa)}—Iv}

Aowsws passaip

-pe Apoenp oy seisibes xapuj 4o sed s9ysibes jO sjusUOD IS
[(ONAX] — [4ppe] “[(IH)AX | — [+ sppE]
20 {(0)d!) — [ppe] [(IH)d)) — (1 + ppe)

uoneoo| AJOWUBW PBSSBIPPE AROBJIP 0} TH JO SIUBUOD 310G
11— pppe]H]—[1L + 4ppe)

uoHEd0| AJoWas PassaIppe AjJ0B1Ip U SUBILOD JOIRINLINDDY BIOIS
{v]-— [ppe]

A

-Owetw passappe Apoaup woyy saisibes xepuj 10 sed seis1Ba1 peo
PP } — [{ONAX] {1 + 4ppe | — [{1H)AX |
40 [1ppe J — [(ONd!] 'L + 4ppe] — [(H)d1]

Ajowiaw passeippe Ajoaup wol H peoy
MPPE] — 1)L + 2ppe] —[H]

UCHED0| AJOWBLW PISSBIPPE ADBIP WO} JOIBINWNIDY peoT
[ppe] — [v]

0z
0z

gt

el

0z

o¢

gl

€l

<

vi
vOo

bbdd zz 101 LIxXEL
bbdd 100%xx10 G3
bbdd zz
bbdd gg
bbdd vz 10111x11
bbdd | 101xx10 03
bbdd yz

bbdd yg

3arv
(08)'v

Ax'appe)
di'pippe)
TH(IPpPe)
v'{ippe)
{(ippe)Ax
{1ppe)'di
(1PpPe) IH

Uppeyy

al

a7

an

al

al

a

al

sauesejey Atowey Alewnyg

.. §S8IppE 82IN0S PUB JUNOD 31Ag
Y30q JusWaI08Q I 0 SHUAU0O AQ passalppe Wod (/|) TH 30 Sus)
-u0d Aq passaippe uoHEdD| AJoWaw W) Blep J0 31Aq e Jajsuel)
L-[HI—[H]
L-[8l—(8]
HN— {0
.« SSBJPPE 80UNO0S juBIBIOUI pUE JUNDD
alAg Juawaidag D JO SIUBUOD AQ passalppe 1od /) O} JH 40 sjusy
-u00 AQ passaIppe uoneIo| AJoWBW WOl Blep JO 9)AQ B JBjsuRl)
L+ (H]—[H]
L-l8l—la]
[(OH— (1011

Sl

gl

av a3

€V a3

aLno

1LNo

{penunuog) 0/1

pauniojiad uoneledp

N | Ov

o/df §

smels

sejoh)
Pllvite]

selAg

ape) 198la0

pueiadp

aowaup

adA)

(PeNUITUOY) 185 UOIONIISU| 07 B} JO AIBWIWING ¥ {-€ 3]qe

{8] Siv-8v

{D] LVv-Ov :shg sSaippy..

3-25

‘pausjsuel} @q 0} s8JAQ JO JUNOD B SB 8AIBS
28 40 siusjuo) Mo| o) sassesppe ybiy wouy Buiob '3Qg Jo suey
-u09 8y} Aq PBSSBIPPE UOKHEDO| AJOWBLW By} O} “JH 4O SIUBII0D By}
Aq pesseippe m.o__muo_ Alowel 8y} WOy BIEP JO YOO|G B JBjsued]
1 -[08]—[08] -
L -] —[H] g
L -(30])~ (3a] H
[H]) — ({3a}} 3
10 = [D8] I3un jeadey olo «91/02 z 88 (3 Haai mu.r
paLB)suR) 8Q 0} S8IAQ JO JUNOD B SB BAIBS)
28 40 sjuejuoy) ‘ybiy 0} sesseippe mo| woiy Buioh ‘3g jJo siusl m.
-uoD By} AQ passesppe UOREOO0| ALOWBW BU) 0} TH JO SIUBILDD By} @
Aq pessesppe uoHeso) AIOWSW 8Yi WOJ BIEP JO 20|qQ B JBjSuel)]
L - [og]— (08] g
t+[HI—[H]
L+ [Fa]—[30]
[l —13al
;0 = [0@) 1un jeadey ol o +91/02 4 08 a3 Hiai
1esiBay xspuy|
JO S}UBJUOD O} BANIE|BS PESSBIPPE UONIRI0| AloWweus 0 JeisiBel 81015 dsip
[Bos] — [dsip + [AXx]] 6l € $SSOLL L0 10LLEXEL [Ber(dsip+Ax) alm
Buisseippe aae|es 8seq Buisn uoneso) Alowew wody seysibal peo dsip m
{dsip + [Ax]] — [Ba1} 61 € OLLPPPLO LOLLLXLL }dsip+Ax)'Bay al . <
“IH 10 siue) g g
-uDs 8y} AQ Passesppe uoneao| AIoLwBW 0} §JUBIUOD J8ysIBas B103g 2 m
[(Boa) — [[TH]) L L sssOiLi0 Ba1(TH) al g <
ned seysiBas payloeds ayy Jo = N
SJUBIU0D BY) AQ PeSSeIppE UONEDD| AIOLUBL 0} J0JBINWNDDY 81015 L L 44 v'(3q) m
Iv]—{i3a7] 0 [v]—([08]] L L z0 v'(08) a -
H 4O S)uBUOD AQ passaippe uoeo0| Alowew woyy Jeysibes peoy @
{[H]] — [Bes) L L OLLPPPLO {TH) ‘B al
v joid| s 9 | seprn
psuiopued uoneiedp solAg epo) 198{qQ pueiedQ OUOWBUA edA}
smeys #2010

(PENURILOY) 19 UOHONASU| OBZ BY} JO AlBWUING p-E 8IQBL

3-26

0182 $8WI008Q JUNOD 8]AQ BY} UBYM 10 PUNO} S YOJBW B UBym
doig mo| 03 sessasppe ybiy wosy Butob Y Jo s1usuD Ag passalp
-Pe ¥00]q AJ0WBW JO BSOY) YHM I0JBINWNDIY JO SJUBju0D 1edwoy)
L-[08]—1(08]
L=[MH]—[H]
(paydeye aue sBeyy Ao} [[H]] - [v]
0= (08140 [[MH]] = [V] inun jesdey X I XiX «91/02 [4 68 a3 Hado
0192 SOWI008] JUNOD BIAQ BY} UBYM SO PUNO} St YOJBLI B UBYM ©
dojg "yBiy 01 sessesppe Mo woJy Bulob "M 30 s)uUBUOD Ag passeip m
-pe %20|q AJOWe JO 8SOU} YHM I0JBJNLINDDY 10 SIUBIU0D 81edwio]) *
L-[081— (o8])
b+ [H) = [H] g
{pa1oayie ase sbey Ajuo) [[TH]) - (v] e
}0=[08] 40 [[IH]] = [v] |3un jesday X | X | X «81/0 [4 18 a3 HidO m.
junoY [’
8]Aq pue s8ssaippe UOIIBUIISEP PUR 80INOS JUBWIBIOBG 3(O Sius) m
-U0D By} AG PBSSBIPPE UOREIO| AIOLWIBLI BY) 0} TTH JO SIUBIDD By} s
Ag pessaippe uclEI0| AIOWBL Bl WOy BB JO 8}AQ BUOD JBSuel] W
L -[08]-(08] 2
L~ [(H]=[TH) H
t-130]— (30} 3
ORI —IEa) 0|x 9l [4 8v a3 aal
unod 8jAq jusw
-8108p PUB SBSSBIPPE UCLIBUNSEP PUB 82.N0S JUBLLBIOU) (] JO Sjusy
-u0d 8y} Ag pessesppe UOHEIO| AIOWBW BY} 0F JH 4O SJUBILOD BY)
Aq passesppe u0iEO0j AJOWBL BY) WIS BIEP JO BIAQ BUO JBJSUBL]
L-{08]—[08]
L+ [H]) = [H]
L+ (30]—{30]
[OH—(3a] 0 |Xx 9L z ov a3l a1
Ov |o/d| s s09AD
peuntopiod uoneledg soyig apog 108iq0 pueladQ JluoweuN adA}
emers %0010

(PBNUNUOY) 185 UONONIISU| OZ BY} JO AIBWWING v - 8jqe |

3-27

Buissaip
-pe aanejas aseq 10 Buissesppe paljduus Buisn j03gINWN2DY YUM HO 61 € dsip gg tOLLLXLL {dsip + Ax)
[dsip + (AXJIA V] — VIO [HITAIV]I—IV] i o | X L 3 98 (H) 40 7
Buissesppe 2
enne(e) eseq 10 Buissesppe paljduwl BuISn 101RINWINSDY YIIM ONY 6L € dsip gy LOLLLXEL | {dsip + Ax) m.
fdsip + (AX)V IV] — V] O I(HN VIV]— (V] i d | X L L 9V {TH) aNY .m
Buissesp z
-pe aanejel aseq Jo Buissaippe paydw Buisn Aued yum joengng 6l 1% dsip 36 LOLLLXLL {(dsip+Ax)y m
O-[dsip + X -V]— (V]I ([H]-[IV]—I[V] X10}§X L 3 36 (THY'Y Jol:] 2
Buissaippe aal <
-gja1 oseq 10 Buisseippe paydwy Buisn J0lRNWNI0Y WOI) 0eRgNG 61 € dsip 96 LOLLLXLL {dsip + Ax) N
fdsip + [(AxJ) - (W]— (V] O [[H]-IVI—I[V] X{10}|X L 3 96 (H) ans m
Bup 3
-ssaippe aAngjas aseq 10 Buissaippe payduwy Buisn Ael) yim ppy 6l [dsip 38 LOLLEXEL | (dsip+AX)y @
D4 [sip+ AX)J 4 (Y]~ [V] 0D +H[H] +V]— (V] X{0{X L L 38 {(H'Y aav
Buisseip
-pe sane|a: aseq Jo Buisseippe payjdus; Buisn JojeINwNddY 0} ppY 61 € dsip 98 LOLILXLL [{dsip+ Ax)Y
[dsip + [AX])] + [V] (V] IO [[TH]] +IV]—IV] X|0|X L L 98 (H)'VY aav
1UNOD BJAQ pue SSeippe JuelBIdag TH JO SiuBIU0D Aq pessaippe
UO1IBO0} AI0WBW JO BSOU} YHM J01R|NWNJDY JO SIUSIU0D 8sedwio)
L- (o8] — (98] g3
L= [HI—[H] a2
(pe1oaye ase sbeyy Auo) [(TH]] - [V] X1 x X 33 [4 6v a3 ado T a
1unod ajAq o3
JUBWBIOBP pUE SSBIPPE JUBWAIOU| TH 40 SIUBJU0D Ag pessaippe EY m.
U01IE20] AIOWSL JO 350U} U3iM JOJBINWINIDY 4O SIUBUCD 31edWwo) m M
L - (og1— o8] i
L+ [H]—[H]
{pa1oaye aie sbeyy Ajuo) [[H)] - [V] X | X |X 9l 14 lv a3 14D
dv ford| s 501940
peuiojiag vonieiedQ sejig apog 108lq0 pueiedp OIUOWBUN adA)
smeis X201 ’

(PENUIIUOD) 185 UOHONIISU} (BZ BUL JO AlBWWNS v -g Blqel

3-28

Aug) youriq ypm 3yBl LOKEDO| AJOWAW JO SIUBUOD 81eI0Y 30
[dstp + [Ax]] 40 [[TH]] ez v dsip @) LoLLEXLL | (dsip + Ax)
' 2
0 d X 1% 4 30 80 (H) ol:1-} .ww
o
<
"Aue) ybnoay; 18| UOIIBOD| AJOWBLW JO SJUBILOD BIRJOY ot m
[dsip + [AX]} 10 [[TH]] €T v dsip €D LOLLLXLL | {dsip + Ax) M
C |d X Sl 4 91 80 {IH) hL] .H
2
&
AueD youesq yum ye| {Bur
~SS8JPPE 8A138]81 BSEQ JO poi|dull) UOIIED0| AJOWBLY JO SJUBJLOD 81BJ0Y 90
{dsip + [Ax]} 10 {[TH]] €T v dsip g3 10L1LLXLL [(dsip + AX)
E . 0 |d}X Si z 90 80 {1H) et}
Buissaippe eanejes aseq 10 Buissaippe paydw Buisn Jueweneq €C € dsip GE LOLLLXL] {dstp + Ax)
L~ [dSIP + [AX)] — [dSIP + [AX]] 20 | - [[TH]] — [[TH]] x |o]x 1 L 13 (1H) 23a -
‘Buisseippe aanejes eseq 10 Buissesppe peidw Buisn juswelou) £¢ € dsip p€ LOLLEXLL {dsip + Ax) e 2
L+ [dSIPp + [AX]} — [dSIp + [AX]] 0 | + [[TH])— [[(IH]} X jolx 1L L vE (H) ONI g3
pejoaye ale sbey ayy Ajug Buissesppe aan 3 m.
-ejes eseq 10 Buisseippe patidw) Buish Jo1eNWNdaY YIM eiedwo) 6l € dsip 38 10LLLX1) (dsip + Ax) \om .W
[dstp + [AX])) - [v] 40 [[TH)} - [v) x|lolx L 1 ag {(H) Ele} 2@
Buisseppe eanejes 2]
eseq Jo Buissesppe payduwl Buisn J01eINWNOdY YIM HO-BAISN)OXT 6l € dsip 3y LOLLLXLL (dsip + Ax) W 2
[dsip + [AX] (V] — [V] 40 [[THII A IV] — [V] Ljd|X L 1 av (H) HOX
bl
v |o/d] s §8)0AD
psunojieg uopesedQ s01Ag 8pog 108lq0 pusiedQ JuoWaUN adAt
smms #%01D

(PaNURUOY) 185 UONONIISU| 087 BY} JO AlBWWING Y $-§ 8lqe]

3-29

(114S 1221507) S 4280 pue JyBL LONEIO| AIOWBW JO SHIUBIUOD UG 36
dsip + [Ax)] 10 [[WH]]
, net £2 v dsipgo LottixtL | (dsip + Ax)
0 o] [¢] d X Sl 4 3¢ 90 {H) HS
2
[
(131US dDuBWIHILY) | w
gSW easssaid pue jybi uoREOO) AlOWSW 4O SIUBILOD HIYS | <
g
ErA =
dsip + [Ax]} 10 @
{deip + (el o (Ol €T 14 dsipgd LoLiLxLL | (dsip + Ax) a
0|0 {diX Gl 4 3 80 (IH) vHS ?
Y
3
E_sm_ M.‘w
onswyYlsY) §ST {8810 pue 13 UOHEDC| AJOWBW JO SIUBIUOD IUS 9z Y
dsip + {Ax]} J0 E]
[dsip + (Ax]] 4o [[H 1] £z v dsip 83 LOLLLXLL | (dsip + Ax) H
0 0]Jo |4d}X S Z 9 80 (TH) vis =
Auen) ybnoayy B UOKEDO| AJ0WBW 4O SIUBJUOD BleloY a
dsip + [Ax]] J0 {{TH
tgsp + 1h 2o 1OH) £2 v dsip gD LOLLiXLL | (dsip + Ax)
(o] o d X Sl z 31 80 1) Hu
N |Ov |ord] s 601040
peuwiojiag uoneiedQ sejAg epog 198lq0 pusiedQ JUowmBUR odAj
smeg #0010

(PENUIIUOD) 185 UOHONIISU| 087 BYY JO AlBWWNS v -g B|qel

3-30

8ousnbes uy m
SNURUOD 'SSIMIBYIO [PANYSHES S| LORIPUOD 41 BUIINOIGNS WO LINSY L1/S ¢ 0002901 | puoo 134 3
BUNN0IGNS WOJ) WNjey m
¢+ [dS]—[dS] ®
[L+ (dS 1) — ()24] g
lds 1 — [ONad] oL i 60 134 g
‘aousnbas =%
U} 8NURUOD 'BSIMIBLIO IPAYSHES SI LONIPUOD 41 BUNNOIGNS O} dwnf L1/01 € bbdd Q10991 jeqe;‘puoa 1Vo ES
12qe) Ag pajusseidss ssasppe je Bunuels supnoigns o) dwnp m.
1998} — [3d }
¢-[dS]—[dS]
ON3d]}—~{z - 148 1]
{IHIDd] —[1 - [dS]] L € bbdd g5 1ege| TIv0
1815164 XBpU| 1O 4 Ul PaUIRIUCD SSRIPPR 0} duinf 8 z 63 LOLLLIxLL {Ax)
[AX]—[2d] 40 [TH] —[0d] v L 63 (TH) dr
J8unoy weiboig Jo sjuslu0Y juaseld 0} sanejas duinp &
(z-dsip) + T + [Dd]— 1341 i Z {z-dsip} 81 dsip ur m
1sqe) Aq pajuasaide) sseippe je uonanisut o} dwnp
18qe| — [0d } ol € bbdd g3 1eqe| dr
Buisseippe eep
anneja1 aseq o paydw) Buisn uonedo) AlowsL Ojul BleIPALIL) PROT) 6l v Ak dsip gg LOLLLXLL | (dSIp +AX) -
e1ep — [dsip + [AX]] 10 e1ep — [[H]] 01 z A 9g eep’{H) al w
12151601 xapuy 40 sied 1eysiBai OJul eIEP BjRIPAWIWY JO S)IG 9| PROT i 1 AAAA LZ LOLLILXLL glejepAx 2
gieep — [Ax] 10 giejep — [di}] ot % ARRA 1000XX0Q0 gleepds al M.
J1e1s1Bes ojuy sjeIpaWIWY peo
ejep — (Bas) L 4 AA 0L LPPPOO ejepBas al
Ov |ord{ s sopoh
pewojied uonesad %9010 saiAg epoy 328lqo pueisdQ DIVOWIBUA adA)
smeys

(PBNUNUOY) 18 UONONIISU| O8Z Y} JO AIBWWNG v H-g 8|qe]

3-31

‘0 10U S1 }NSB4 J JAUNoY
weiBoi4 JO SIUBU0D 0} BANES. dWINM PUB g JO SHUBIUOD JUBWEId8Q
{z~dsip) +Z + [0d] vewi‘o+ (8] 3

L-[8]—(8] €1/8 4 {z-dsip) 01 dsip ZNra
105081 51 Bely 0197 §1 18IUNOY WeB0I JO SIURUOD 0) BANEje) dwnp <
(z~dsip) + 2 + [0d]— [0d] UM 'O =2ZJI (4973 (4 {z-dsip) 02 dsip'ZN ur 3
105 51 Bejy 0187 4 18IUN0Y WeIBOI JO SIUBILOD 0) BANE(B) dwnf M
(- dsip} + 2 + [0d]— [0d] ueW 'L =2Z 4 [AYZA 4 {z-dsip) BT dsip'z Hr N
19581 51 Be)j AuRD) §1 18IUN0Q WeIBoid JO SIUBIUOD 0} BARRIES dwnp]
(2= dsIp} + 2 4 (Od]— [Od] VW 'O =D} fAvA 4 (z-dsip) OE dsip'ON ur]
105 51 Be)y AR §1 103UN0D WRIB0LY JO SIUBILOD 0} BANER) dwnp m.
(Z ~astp) + 2 +[0d) —~ [Dd] usli 'L =D 41 ZL/L [4 (z-dsip) 8E dsip') ur
ans si
UOIHPUOD By} J1 18qE) Ag peluasesds) SSBIPPE JB uonsnysul of dwnp
18qe| — [] UBH} ‘PUOD §j (o]} [bbdd Q1022211 |ege| puoa dr
pejoaye ase sbey
8yl AJUO SIUSIUCD I0JRINWNDDY UUM BiBp ejeipaLiul sedwogd
siep - [y] X 10 |X I3 4 AA 34 ejep 4o
JOIBINWNDOY YUM SieIpswiltll HO-8AIsn|ox]
elepAi{v]—I[v] i d X L Z AL 33 ewep HOX
1032|MUND2Y YItM B18IPBWIWI YO -
®ep AlY]—IV] 1]a|x L z AA 93 elep HO 3
10}RINWNIDY YA BlRIpBWWE ONY 4
eep Vivl—Iv] L]d]x L z Ak 93 eiep anv s
ALIBD) YNM Bieipsuwl 1080QNS M
D-eep-yj—(v] X {0 |Xx L 4 AA3a elep'y 08s m
101B)NWINOJY WO B1EIPBLULLI 10BIGNS B
@
ewep-iy]—I[v] X 10X L 4 AAgq eep ans
Aue) yum erelpswiil ppy
D+eep+vi—iv] X |0 |Xx L z AA 3D BjEp'Yy Jav
1018{NWINDDY 0} BIBIPBWIWE PPY
elep + (¥]—[v] x|lo|x L 4 AL 92 eep'y aav
Ov lo/d} s 01942
pounojiad uoneiedp 20 selAg apog 108iqo pusiedQ oloweuyy | edA)
smeig 3#201D

(PONUIIUOD) 186G UOHOMNIISU| OgZ 8U} JO AlBWWING v 'H-€ 3lqeL

3-32

siied 18351691 s1ewalje pue sied Jaysibas abueyoxy

[H] (]
[3ai J——{ B3al
1o8) (1:}) v L 6a xx3 3
smejs wesboid sjeussye pue snieys wesboad abueyoxy m
a
LAV] ——(3v] 14 L 80 AV'IY X3 2
TH Pue 3Q Jo suauoo abueyoxy ?
[H]——[30] v 1 83 IH3a X3 E)
181u104 %oelg 01 19351631 Xapu| JO SUBIU0D BAOpy 3
[Ax]—1dS} oL z 64 LOLLLXLL Ax'dg a1 2
18JUI0g ¥OBIG 0} |H O S)UBJUOD BAOKY 2
. @
[H]—[dS] 9 L 64 IHdS ai
101BINWN2Y Woiy Jasibes ysalay peo
fvl—I[4d] 6 4 iy a3 vy al
1018)NWND0Y WI0Y 18ysIBal 10}08 A jdniselu| peor
vl—11 6 z (v Qa3 vl al
101RINWN20Y 0} 48181631 YSeiyay JO SUBILOD BAOYY
H)—1Iv] ol Ix 6 4 4S5 a3 Hv al
10)eINWNodYy 0 18)si68) 10308 1ANLIBIU| JO SIUBILOD BAOK
I1—1Iv] 0 X 6 4 LS a3 al
740 H '3°'Q D '8 'V eq yoes Aew isp pue s suoneubisap
1Bay 1e1siBas uoneuNSEp 0) 49151681 BIINOS JO SIUBIUOD BAOHY
[015) — [isp] v 1 SSSPPPLO 218ysp a1
v o/l s sejoAD
pewojey uoiried selAg epo) 10elqQo pueiedQ Jluocweu adAj
smeig #00[)

(PANUIUOD) 185 UOKONIISU) 087 BY) JO AIBWIWNSG v b-g 9|qe)

3-33

(dS "Al '30 '8 = 44)
Al 18351681 X0pU} 3O SUBILOD 0} SIUBIUDD Jed teysifie) ppe UG-g1
(4] + [AIT—{Al} ¢ S1 [4 100 1X%00 ad UAL aav
{dS "XI '30 ‘0@ = dd)
X1 18151601 x8pu) JO S)UBIUOD 0} SIUBILOD sied JaisiBas ppe 319-9|
[dd] + [xt]— [Xi] ¢ St z L00L¥X00 aa dd'x| aav
H
30 SUBILOD WY SIUBUOD ued JBysIGes AeD ynm JoeAQNS JIG-g|
-} -[HI—[H] ¢ 0] X Gl 4 0100%x10 Q3 diH 288
1H 30 S1uBUod 0} SuBtL0d sied 1eisiBas Aued yYitm ppe 1g-gL 2
D4 (A1) + [(H]— [H] ¢ lolx st [4 0L0L*x10 Q3 4 oav <,
9H $0 sluBUDD 0} suslud sed seysibBal ppe ug-91 a
[di] + [H]— [H] [L L LOOLXX00 dIH aav]
pejosyye ale sbejy auy m‘
AlUQ 101B|NWN2DY JO SIUBILOD YIIM 1835168 4O SUBIUOD dledwo) m
[Bas]- (v} Xx|o|x v 1 Lol Bas 4o °
JOIRINWINIDY O SIUBIUCD Yiim 19351682 JO SIUBIIOD YO-BAISROX] e
[Bos J A (V]—1(V] Lt dix v L 1110101 Ba) HOX 2
1012{NWINT0Y JO SJUBIUOD YUM 18)sI5B1 JO SIUBIUOD HO
BorjAlV]I—IV] L4]x v L 01101 Bau HO
1018{NWNA0Y O SIUBJUODD Lim 18)siBial Jo sjuajuod aNy
2]V [V]—(V] L {djx v i 1100001 Bai aNY
J01R|NWINDDY WO AUED pue 181s1Bas Jo sjuBjL0d JoeAqgng
0-{Be)-v]—1(v] X 10X v 1 1111001 Bary 088
10}1INWINDDY WOy 1835158l JO SIUBIUOD J0RIIgNS
[Bos} - {v]—1Iv] x 1ol x 12 L 101001 Bas ans
10}8INWUIND0Y 0} Alie]) PUB 10)51582 JO SHUBIOD PPY
O+ (Bes]+ [v]—(V] x |o|x 4 L 11110001 Bory aav
10jejnWNooY 0} Jeysibes Jo suBL0D PPy
(o] + [V]— IV x jo|x v L 1100001 Bary aav
Ov jord| s sefoAg
poewoje4 uoielad) se1Ag apog o0lqo puesadg sluoweup} odAy
— %0010

(PENUNUOD) 189G UONONIISU| 08Z 8Y1 JO ARWIWING V¥ p-€ BIqe L

3-34

Augd youelq yum By 101enwnooy 8)e10y

Iv]
0 v i 40 vouy -
m
w
Auesy ybBnoayy o) JoleINWN2oY 8180y 4
g
-
0 v ! L1 VH 3
a
g
ALRD YoURIg UNM 18] J0IBJNWNDOY 01830y m
v]
0 v L Lo vOd
1eys160) xapu) 10 J1ed 183s)6aJ JO SIUBILOD JUBWBIOB(ot 4 82 101LLXt1 Ax
L - [AX]— {AX]40 | - [di]— [d1) 9 i LLOLXX00 ds o3d
sjuBjL0o 183sibal Jusweldag

| - {Bas}— [Baij Xio|x 4 L LOL4:00 Bas 03a
1eysiBas xepu) 10 Jeysibes 0 SIUBIUOD JusBIDY| ol 4 €7 10LLix1L Ax -
L+ [AX] e [AX] 20 | 4 [d1] — [di] 9 L LLOOXX00 di ONI 3
SJUBILO0D 483S1681 JUBWBIOY) m
| + [Bo1) — [Bo] x o] x v i 0014400 Bos INI o
{Iuswa|dwiod SOM}) 1032|NWNIDY ejeBan 2
L+ IY)—Iv] xlo|x g z vv a3 GEN 8
(Juswsdwoo $8UC) JOIBINWNDDY JuBwa|dwoy @

Yl—Iv] ! 14 1 42 1dd

spuessdo (10§ O 8oUBIBHIP 10 WNS BY)
8.8 SHUBILIOD 101B|NWNDDY Jey; Bulwnsse '10)e|nwnaoy Jsnipe [ewoaq X d X v L Lc vva
dv Jo/d| s selohg
peunojeg uonesedo %9012 seiig 8poy 108{q0 puesedQ DIVOWBUIN 8dA L
smeg

(PENUNUOD) 185 UOHONIISU| 087 941 JO AleWWING v H-€ dlge]

3-35

(BIuS oBBWYILY) 95T Jeald pue 48] J81sIBal J0 SHUBIL0D HIUS
[GETR]
0 0 ——fz L 0|d]|Xx 8 [4 1100100 82 6o, vis
Aue ybnoayy Jybu 19351601 10 S1UBU0D BlRI0Y
[Baa]
,_E,. 0|d]|X 8 4 42111000 80 Bau]
Aueg youesqg ynm JyBu 193s16as jo sjuajuo0 sejoy m
[Be1} @
- 3
0 <@G— old]|x 8 z L0000 89 Gay OHY [
E
8
Aue) ybnosy ey 18ysibe) Jo sjueluoD 81Oy a
[Baus} 2
a
2
o|dix 8 z 101000 82 Gau ™ ®
g
2
Aued youelg yum ey seysibal Jo sjusuoD SlEI0Y 2
fe1] W
0 |d]|Xx 8 z 1400000 82 Bas o
Aused ybBnoayy yBu 101enwnooy sjeioy
Iv)
0 v l El Vi
3
Vv |0/d| S s0j0AD
powiopled uoneredQ solAg epo) 108lq0 purisdQ UOWOUA adAj
smeys »001d "

(PanuIIUOY) 185 UOKONIISU] OBZ 8Y} JO AlBWNG & “p-€ 3lge L

3-36

‘pejosie 30U BJR JOJBIAWND
-0y 8y} 40 jley eddn sy jo 0 (Buissesppe paijdusy) uoneoso)
AJowsws pue J0JRINWND0Y By} usemisq Wbl NBIP Qog euo a0y
_ [H)] ‘ iv]
Fo m—¢ N._ —o m—« \.— d | X 81 Z £9 Q3 ayy
814] :
-
-3
‘PeloBye J0u BIe 10} 2
-BINWNDOY 8y} 0 J|BY seddn ey} 0 syuayuoy (Buisseippe peljdui) uoy m
-800] AJOWBLL PUE JOIB|RWINDDY BY) ussmieq 1e) NBIP a0g Buo ejeioy S
H
]
—5::‘ — ‘ v} m
—o m_e h— —o m_e h_ d | x 8L z 49 a3 am @
I
| g
§
(331Us 181607) S 1e8io pue Jybu 183siBa) JO S1UBIL0D PIYS 2
[Bed] -
d X 8 4 11100 80 Bos Hs
d X 8 4 41410100 80 Gou VHS
0/d{ S §8J19AD
paulojed uonriedQ sajAg epo) 128iq0 pusiedQ JIUOIBUAL odA)
smeys a0

(PanunIuOY) 185 UCNONIISU} O8Z BYl JO AlBWWING v p-€ 8iqe |

3-37

yoeig j0 doy pue 1151604 Xapuy 40 JH $O SiusLOD 8bueyoxy

[ldsl} ——11] or4 4 €3 LOLLLIXLL AX'(dS)
[t +[dS]] ——I[H] 6l L €3 H(dS) X3
193U10d YOBIS JUBWIBIOU)
pue 19351681 xopu) 10 sed 1351601 Ul RORIG 4O 4O} JO SHIUBU0D Ing o
T +[dS]—[dS) 8
L+ [dS 1] — [IH):d) vl z 13 LOLLLXLL Ax =
{[dS 1] — [{0Md] o1 I LOOOXXL L i d0d
1930104 JOBIG JUBWBIZBP
pue »oe3ig 30 doy uo eysifes xapu| 4o sed s93s1Be1 J0 SIUBUOD Ing
z-[dS1—[dS]
{od] — [z-[ds 11 Sl z S3 10LLIXLL Ax
[(iHpd] — [1-[dS 1] 1L ! LOLOXXLE 4d HSNd
(Buissauppe aanejel 0114949901
aseq 10 Buisseippe paydwi) UORESO] AIOWSBLW Ul i PaIEDIpU; j8saY £T 1 dsipgd 10LLIXLL fidsip + Ax)'g
0 — {Q)[dSIp + [AX]} 10 0 — (Q[TH]} Sl 4 01199904 80 {IH'g BEL]
11q 12151692 pelesipul Jasey
0 — (9)68) 8 [4 4uqqqoi 83 Boarq S3d -
{Buissaippe aAneles aseq 0lLiqqqilL =
10 Bussseippe psijdwi) uoneso) Asowsuws JO 11 PsIEdIpUI 318G €T v dsip g3 LOLLiXLd {dsip +Ax)'q m
L — (@)dsip + [Ax]l a0 L — (@)f[TH]) SL 4 oLiagqqiL 83 (H'a 13s 2
g Je3s160. pajeoiput 185 m
L — (q)Bas 8 4 Jiqqqli 89 Bas'q 138 2
{Buisseippe eane|; eseq 1o Buissaippe paljdusl) uoy 0114994910 3
~BO0} AJowaW By} 0 JIG PeID6|es JO JusWwe|dwioD Suie3u0D Beyy osez (Y4 ¥ dsip gD 10LLLXLL (dsip + Axy'q
(Q)(dstp + [AX)] —Z 10 (Q)[[IH]] — Z [A (11 4 01199910 82 {(HY'q 118
uq Jeis16as pajoees ayi J0 Jusweiduwsiod suieuod Beyy ciez
{@bes — z [A I3 8 [4 14199910 89 Barq 119
v |osaf s seioho
pewioped voneiedo salAg epo 108iqo puriedQ aluoweuyy adA)
smmg H00[D

(PENUNUOY) 185 UOHONIISU| OGZ BU} {0 AIBWIWING ¥ "p-¢ 3|qe L

3-38

uoleI}) BUO 104 S UMOYS 8L LORNDBXY,,

SBLOWAW B[NRIOA USa1}8s 01 SJON S8INd8xa ‘sjey Ndd 14 L 9L LIvH
paysejas 8ie SALIOWAW 8ji1e|0A — uoHeIedo ON 14 1 00 dON
Beyy AueD juswsjdwo) 7]
23—93 ¢ 14 3 4€ 400 8
Beyy Aued 10g H
[e) 0 14 3 LE 408
8 z ELRCE] 4
8 4 96 a3 L
T 40 ‘| "0 epow dnueiul Jeg 8 4 9% a3 0 I
1dnyelul BjGeNSELILOU WO} uInjey vi 4 Sy Q3 NL3Y
1dnuaul woyy winjey vi 4 av a3 1134 5
uoneao) pajeubisep je ueysay m
9u-g) — [0d] §
¢-ldS}—[dS]
[{0N2d] — [2-[dS 1]
[H)Od] — [1-[dS 1] i L LLLxxx)| u 1sH
‘sydnaeiul ajqeuy 14 13 ad 13
sjdnueiu ejqesiq 4 l £d 1q
Ov lord} s seroho
pswiojied uonyeied) o010 s01Ag 8po) 108{q0 pusiedQ JIUOWBUA adA)
smelg

(PANUIUOD) 185 UOIONIISU| O8Z Y} JO AleWUNS ¥ “H-€ Blqel

3-39

Table 3-5. Instruction Object Codes in Numerical Order

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION
00 NOP 39 ADD HL,SP
01 yyyy LD 8C,data16 3A ppaq LD A faddn)
02 LD (BCLA 3B DEC SP
03 INC BC 3C INC A
04 iNC :] b DEC A
05 DEC B 3Evyy LD A data
06 yy tD B.data 3F CCF
07 RLCA 4 0Osss LD B.reg
08 EX AFAF 46 w B{HL)
09 ADD HL,BC 4 1sss LD C.reg
0A Lo A/(BC} 4E] CHL)
0B DEC 8C § Osss LD D.reg
oc INC C 56 LD D.(HL}
oD DEC Cc 5 1sss 3] Ereg
OE yy LD Cdata 5E LD E(HL}
OF RRCA 6 Osss LD H.reg
10 disp-2 DINZ disp 66 LD H.(HL)
11 yyyy Lo DE.data16 6 1sss LD treg
12 LD (DE)LA 6E LD LHL)
13 INC DE 7 Osss LD {HL).reg
14 INC D 76 HALT
15 DEC D 7 1sss Lb Areg
16 yy [1s] D.data 7€ Lo AHL)
17 RLA 8 Orrr ADD Areg
18 disp-2 JR disp 86 ADD AfHL)
19 ADD HL,DE 8 trr ADC Areg
1A K] A{DE) 8E ADC AjHL)
18 DEC DE 9 Orrr SuB rag
1c INC E 96 suB (HL}
1D DEC E g trrr SBC Areg
1E yy €] £ data gk SBC AfHL)
1F RRA A Orrr AND reg
20 disp-2 JR NZ,disp A6 AND {HL}
21 yyyy LD HL.datat€ A trer XOR reg
22 ppag Lo {addr),HL AE XOR {HL)
23 INC HL B Orrr OR rag
24 INC H 86 OR (HL)
25 DEC H B irm cP rag
26 yy Lo H.data BE cpP {HL)
27 DAA co RET NZ
28 disp-2 JR Z disp Ct POP 8C
29 ADD HLHL C2 ppaq JP NZ.add:
2A ppaq LD HL (addr} C3 ppaq JP addr
28 DEC HL C4 ppaq CALL NZ,addr
2C INC L Cc5 PUSH BC
20 DEC L C6 yy ADD A data
2E LD L. data c7 RST 00H
2F CPL cs RET z
30 disp-2 JR NC disp o] RET
31 yyyy s} SP.datal6 CA ppaq Jp Z,addr
32 ppag LD {addr).A CB O Orr RLC reg
33 iNC sP CB 08 RLC {HL)
34 INC {HL} CB O inr RRC reg
35 DEC (HL} CB OE RRC {HL)
36 vy LD (HL).data CB 1 0nr RL reg
37 SCF CB 16 AL {HU)
38 JR C.disp CB11tmr RR reg

3-40

Table 3-5.

Instruction Object Codes in Numerical Order {Continued)

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION
CB 1E RR (HL) 0D CB disp 10bbb110 RES b {IX + disp}
CB 2 Onr SLA reg DD CB disp 11bbb110 SET bliIX + disp)
CB 26 SLA {HL) DD EY POP X
CB2 inr SRA reg DD E3 EX (SP)IX
CB 2E SRA {HL) DD ES PUSH X
CB3 inr SRL reg DD E9 JP {I1X)

CB 3 SRL (HL} 0D Fg LD SP.IX
CB Otbbbrrr BIT breg DE vy SBC A data
CB 01bbb110 BIT b, (HL} DF RST 18H
CB 10bbbrrr RES b.reg EQ RET PO

CB 10bbb110 RES b,(HL} E1 POP HL

CB 11bbbrrr SET b.reg E2 ppag JP PO.addr
CB 11bbb110 SET b,(HL) E3 EX (SP)LHL
CC ppaq CALL 2.addr E4 ppag CALL PO, addr
CD ppag CALL addr ES PUSH HL
CEyy ADC A data E6 yy AND data
CF RST 08H E7 RST 20H

Do RET NC E8 RET PE

D1 POP DE E9 JP (HL)

D2 ppag JP NC.addr EA ppag JP PE.addr
D3 yy ouTt (porthA EB EX DEHL
D4 ppaq CALL NC.addr EC ppag CALL PE,addr
Ds PUSH DE ED 01ddd000 IN reg,(C)
D6 yy suB data ED 01sss001 ouT {Cl.reg
D7 RST 10H ED O1xx 2 SBC HLmp
D8 RET [ED 01xx 3 ppaq LD (addr)rp
D9 EXX €D 44 NEG

DA ppag JP C.addr ED 45 RETN

DB yy N Afport) ED 010nn110 M m

OC ppqag CALL C.addr ED 47 LD LA

DD 00xx 9 ADD X.pp ED Oixx A ADC HLmp
DD 21 yyyy LD X.data16 €D 01xx B ppaq s} m.{addr)
DD 22 ppgq 13} {addr}IX ED 4D RET!

DD 23 INC X ED 4F LD RA

DD 2A ppag LD IX {addr) ED 57 LD Al

DD 2B DEC iX €D 5F Lo AR

DD 34 disp INC {IX + disp} ED 67 RRD

DD 36 disp DEC {IX + disp} ED 6F RLD

DD 36 disp yy LD (X + displ,data ED A0 LDl

DD 01ddd 110 disp LD reg,{IX + disp) ED A1 CPi

DD ¢ Osss disp Lo (IX + displ.reg ED A2 INt

DD 86 disp ADD A(IX + disp) ED A3 ouTt

DD 8E disp ADC A lIX + disp) ED A8 LDD

DD 96 disp suB {IX + dispi ED A9 CPD

DD 9E disp SBC A{IX + disp) ED AA iND

DD A6 disp AND {IX + disp) ED AB ouTD

DD AE disp XOR {IX + disp} €D BO LDIR

DD B6 disp OR {IX + disp) ED B1 CPIR

DD BE disp cP {IX + disp) ED B2 INIR

DD CB disp 06 RLC {IX + disp} ED B3 OTR

DD CB disp 0E RRC {IX + disp) ED B8 LDDR

DD CB disp 16 AL {IX + disp} ED B9 CPDR

DD CB disp 1€ RR {IX + disp} ED BA INDR

DD CB disp 26 SLA {1X + disp} ED BB OTDR

DD CB disp 2E SRA {1X + disp} EE yy XOR data
DD CB disp 3E SRL {IX + disp) EF RST 28H

DD CB disp 01bbb110 | BIT b.{IX + disp}

3-41

Table 3-5. Instruction Object Codes in Numerical Order (Continued)

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION
FO RET P FD 8E disp ADC A[lY +disp}
F1 POP AF FD 96 disp suB {1y + disp}
F2 ppaq JP P.addr FD 9E disp SBC ALY +disp}
F3 al] FD A6 disp AND {1y + dispi
F4 ppaq CALL P.addr FD AE disp XOR {tY + disp}
F5 PUSH AF FD B6 disp OR {IY +disp}
F6 vy OR data FD BE disp cP {IY + disp}
F7 RST 304 FD CB disp 06 RLC {IY + dispi
F8 RET M FD CB disp OF RRC iy + disp}
F8 Lo SPHL FD CB disp 16 RL {iY + disp}
FA ppaq JP M.addr FD CB disp 1E RR (iY + disp}
FB El FD CB disp 26 SLA {iY + disp)
FC ppaq CALL M,addr FD CB disp 2E SRA {1Y + disp)
FD 00xx 8 ADD Y.rr FD CB disp 3E SRL {IY + disp}
FD 21 yyyy LD 1Y data16 FD CB disp 01bbb110 BIT b{tY +disp}
FD 22 ppaq [8a] {addrllY FD CB disp 10bbb110 RES bltY + disp}
FD 23 INC Y FD CB disp 11bbb110 SET b {iY +disp}
FD 2A ppaq Lo 1Y {addr) FD E1 POP 1Y
FD 28 DEC iy FD E3 EX (SPLIY
FD 34 disp INC Y + disp) FD E5 PUSH Y
FD 35 disp DEC {iY + disp} FD E9 JP (4]
FD 36 disp yy LD (IY + disp).data FD F9 1a] SPIY
FD 01ddd 110 disp LD reg, (Y + disp) FE yy CcP data
FD 7 Osss disp LD {IY + displ.reg FF RST 38H
FD 86 disp ADD ALY +disp)

3-42

ADC A,data — ADD IMMEDIATE WITH CARRY TO
ACCUMULATOR

(
S ZAcP/ON C

Data
f XXX 0IX] Memory

A XX CH+xx+yy

PC mmmm mmmm + 2 Program
Memory

t CE mmmm

R — YY mmmm + 1
mmmm + 2
mmmm + 3

ADC A, data
o~ — e——
CE \2

Add the contents of the next program memory byte and the Carry status to the Ac-
cumulator.

Suppose xx=3A1g. yy=7C1g. and Carry=0. After the instruction

ADC A.7CH
has executed, the Accumulator will contain B61g:
3A = 0011 1010
7C = 0111 1100
Carry = 0
1011 0110

1setsSto1 T L-Non-zero result, setZ to 0
No carry, set C to O

Carry, set Ac to 1

S5
O%1=1.setP/O to 1 Addition instruction, set N to O

The ADC instruction is frequently used in multibyte addition for the second and subse-
guent bytes.

3-43

ADC A,reg — ADD REGISTER WITH CARRY TO
ACCUMULATOR

S ZAcP/ON C bata
F ﬂ Memory
A XX ;
B.C contents of
DE ——pAB,C,D,EH
HL orlisvyy
SP
PC mmmm mmmm + 1 Program
X Memory
Y
: 10001xxx fmmmm
" mmmm + 1
mmmm + 2
mmmm + 3
ADC A, reg
S - o
10001 XXX

a——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Add the contents of Register A, B, C. D, E. H or L and the Carry status to the Accumula-
tor.

Suppose xx=E31g, Register E contains AO1g. and Carry=1. After the instruction

ADC AE
has executed, the Accumulator will contain 8415:
E3 = 1110 0011
A0 = 1010 0000
Carry = 1
1000 0100
1setsStol tU LNon-zero result, set Z to O
Carry, set C to 1 No carry, set Ag to 0
A
14 1=0, setP/O t0 0 Addition instruction, set N to 0

The ADC instruction is most frequently used in multibyte addition for the second and
subsequent bytes.

ADC A,(HL) — ADD MEMORY AND CARRY TO
ADC A, (IX+disp) ACCUMULATOR
ADC A, (1Y +disp)

S Z AcP/ON C Data
F XXIXI0IX] - Memory
A %X XX+ yy +C A4 ppaq
B.C
D.E
H.L pp qqa
SP
PC ‘mmmm mmmm + 1 Program
X Memory
Y
i 8E mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of ADC A, {HL):
ADC A,{HL)
8E

Add the contents of memory location (specified by the contents of the HL register pair)
and the Carry status to the Accumulator.

Suppose xx=E316, yv=A01g. and Carry=1. After the instruction

ADC A HL)

has executed, the Accumulator will contain 8414:
E3 = 1110 0011
A0 = 1010 0000
Carry = 1

1000 0100

1setsStot tU L-Non~ze:ro result, set Z to 0
Carry, set C to 1 No carry, set Ac to 0
-

1% 1=0, set P/O to 0 Addition instruction, set N to 0
ADC A.(IX+disp)
N’
DD 8E d

Add the contents of memory location (specified by the sum of the contents of the IX
register and the displacement digit d} and the Carry to the Accumulator.

ADC A (Y-+disp)
N, g’ ~m—

FD 8E d

This instruction is identical to ADC A, (IX+disp). except that it uses the IY register in-
stead of the IX register.

The ADC instruction is most frequently used in muitibyte addition for the second and
subsequent bytes.

3-45

ADC HL,rp — ADD REGISTER PAIR WITH CARRY TOH AND L
S Z AcP/ON C

Data
F X IXTIXIXEOIX] Memory
A BC, DE. HL or SP
8.C ! - contain yyyy
D.E
HL XX XX xxxx++c, YYy
SP
PC mmmm Program
X Memory
v mmmm + 2
{ ED mmmm
R 01xx1010 fmmmm + 1
mmmm + 2
mmmm + 3
ADC HL,ip

ED 01xx1010
~——

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Add the 16-bit value from either the BC, DE. HL register pair or the Stack Pointer, and
the Carry status, to the HL register pair.

Suppose HL contains AB361g, BC contains 104416, and Carry=1. After execution of
ADC HL.BC
the HL register pair will contain:

AB36 = 1010010100110110
1044 = 0001000001000100
Carry = 1
10110101 0111 1011
1sets Stol

Non-zero result, set Z to 0

No carry. set C to 0 No carry, set Ac to 0

&
0% 0=0.setP/Oto 0 Addition instruction, set N to 0

The ADC instruction is most frequently used in multibyte addition for the second and
subsequent bytes.

3-46

ADD A,data — ADD IMMEDIATE TO ACCUMULATOR
S ZACP/ON C Data
F CXXIX[OIX] Memary
A
B.C
DE
H.L
SP

PC mmmm mmmm + 2 Program

X Memory
Y

1 C6 mmmm

d —— L= .
mmmm + 2
mmmm + 3

XX XX +yy

ADD A, data
N ——
Cé vy
Add the contents of the next program memory byte to the Accumulator.
Suppose xx=3A1g, yy=7C16. and Carry=0. After the instruction

ADD A,7CH

has executed. the Accumulator will contain B61g:
3A = 0011 1010
7C = 0111 1100

171011 0110
L

1setsSto1 tU Non-zero result, set Z to 0
No carry. set C to O

Carry, set Ac to 1

p
0% 1=1.setP/Oto 1 Addition instruction, set N to 0

This is a routine data manipulation instruction.

3-47

ADD A,reg— ADD CONTENTS OF REGISTER TO
ACCUMULATOR

S Z AcP/ON C

Data
FXTXIXTx [o1x] Memory
A XX
B.C | contents of
D' € ;-——’A,B,C,D.E.
HL HorlLisyy
sP
PC mmmm mmmm + 1 Program
IX Memory
Y
! 10000xxx } mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

ADD reg

— i ——

10000 xxx
——
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Add the contents of Register A, B, C, D, E. H or L to the Accumulator.
Suppose xx=E31g, Register E contains AO1g. After execution of

ADD AE
the Accumulator will contain 8316:
E3 = 1110 0011
A0 = 1010 0000
1,000 0011
1setsStol tU LNon-zero result, set Z 1o 0
Carry, set C to 1 No carry. set Ac to 0
S g
1% 1=0,setP/Oto 0 Addition instruction. set N to 0

This is a routine data manipulation instruction

3-48

ADD A,(HL) — ADD MEMORY TO ACCUMULATOR
ADD A, (IX+disp)
ADD A, (IY+disp)

S ZAgP/ON C

Data
4 EIEIEIR I Memary

A XX XX + Yy vy ppaq +d
B.C
DE
H.L
SP
PC mmmm Program
1X ppqq Memory
Y
| DD mmmm
R 86 mmmm + 1
d mmmm + 2
mmmm + 3

The illustration shows execution of ADD A, {IX-+disp).
ADD A, {IX-+disp)
N, s’

——

DD 86 d

Add the contents of memory location (specified by the sum of the contents of the IX
register and the displacement digit d) to the contents of the Accumulator.

Suppose ppqq=40001g, xx=1A1g, and memory location 400F1 6 contains 501g. After
the instruction

ADD A{IX+OFH)
has executed. the Accumulator will contain 6A14.

1A = 0001 1010
50 = 0101 0000

0110 1010

OsetsSto0 Ut LNon—zero result, set Z to O
No carry, set C to O
V_

No carry. set Ac to 0

0%0=0; setP/Oto 0 Addition instruction, set N to O
ADD A.(IY+gi§E)
FD 86 d

This instruction 1s identical to ADD A, (IX-+disp). except that it uses the IY register in
stead of the IX register.

ADD A.{HL)
S, o’
86

This version of the instruction adds the contents of memory location. specified by the
contents of the HL register pair, to the Accumulator.

The ADD instruction is a routine data manipulation instruction.

3-49

ADD HL,rp — ADD REGISTER PAIR TO H AND L

S Z AcP/ON C Data
Memory
A BC, DE, HL or SP
| contain yyyy
B.C f
D.E v
HL XX XX XXXX + YYYY
sP
PC mmmm Program
X Memory
mmmm + 1
1Y
1 00xx 1001 _} mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
ADD HL.mp
00 xx 1001

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Add the 16-bit value from either the BC, DE, HL register pair or the Stack Pointer to the
HL register pair.

Suppose HL contains 034A1g and BC contains 214C1g. After the instruction
ADD HL.BC
has executed, the HL register pair will contain 24961¢.

034A = 0000001101001010
214C = 001000010100 1100
00100100 1001 0110
No carry, set C to O “gp————————No carry, set Ac to 0

Addition instruction. set N to 0

The ADD HL.HL instruction is equivalent to a 16-bit left shift.

3-50

ADD xy,rp — ADD REGISTER PAIR TO INDEX REGISTER
S ZAcP/ON C

Data
FLL_IX] Jo]X] Memory

DE 13 S

PC mmmm
X ppaq

" | —

Program
Memory

11y11101 ymmmm

00xx 1001 I mmmm + 1
mmmm + 2
mmmm + 3

pRaq +rss

The illustration shows execution of ADD IX.DE.

Ky

11\/1 1101 OOxx 1001

O for Index register=IX OO for rp is register pair BC

1 for index register=I1Y 01 for rp is register pair DE
10 for rp is specified Index register
11 for rp is Stack Pointer

Add the contents of the specified register pair to the contents of the specified Index
register.

Suppose 1Y contains 4FF01g and BC contains 000Fg. After the instruction
ADD 1Y,BC
has executed. Index Register IY will contain 4FFFqg.

3-51

AND data — AND IMMEDIATE WITH ACCUMULATOR

S z ACP/ON Cc Data

FXIXTOT0] Memory
A XX XX VY
B8.C
D.E
H.L
sSP
PC mmmm mmmm + 2 Program
X Memory
Y
1 E6 mmmm
R i Y mmmm + 1
mmmm + 2
mmmm + 3
AND data
—— w——
E6 vy

AND the contents of the next program memory byte to the Accumulator.
Suppose xx=3A1g. After the instruction
AND 7CH

has executed. the Accumulator will contain 381g.

3A = 0011 1010
7C = 0111 1100
0011 1000
OsetsSto0 Three 1 bits, set P/O to O

Non-zero result, set Z to O

This is a routine logical instruction; it 1s often used to turn bits “off” For example. the
instruction

AND 7FH

will unconditionally set the high order Accumulator bit to O.

3-52

AND reg — AND REGISTER WITH ACCUMULATOR

S ZAcP/ON C " @ Data
F CIXIXT0T0] Mermory

A XX

contents of
. -—~ A BCD.E,

D.E

HL HorbLisyy

PC mmmm mmmm + 1 Program
X Memory

! 10100xxx_immmm

R mmmm + 1
mmmm + 2
mmmm + 3

AND reg
e ey
10100 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

AND the Accumulator with the contents of Register A, B, C, D. E, H or L. Save the result
in the Accumulator.

Suppose xx=E31g. and Register E contains AQ1g. After the instruction
AND E

has executed, the Accumulator will contain AD1g.

E3 = 1110 0011
A0 = 1010 0000
1010 0000
1setsSto1 Two 1 bits, set P/O to 1

Non-zero result, set Z to 0
AND is a frequently used iogical instruction.

3-53

AND (HL) — AND MEMORY WITH ACCUMULATOR
AND (IX+disp)
AND (1Y +disp)

S ZAcP/ON C Data
Memory
A XX XX *yY A2 ppaq +d
B8.C A
DE
H.L
SP
PC mmmm mmmm + 3 Program
X ppag. Memory
[D mmmm
R l . AB mmmm + 1
d mmmm + 2
mmmm + 3

The illustration shows execution of AND (Y +disp).
AND (Y +disp)
R o e
FD A6 d

AND the contents of memory location (specified by the sum of the contents of the IY
register and the displacement digit d} with the Accumulator.

Suppose xx=E31g. ppaq=40001g. and memory location 400F1g contains AO16. After
the instruction

AND (IY+OFH)
has executed, the Accumulator will contain AO16.
E3 = 1110 0111
A0 = 1010 0000
1010 0000
1setsStol Two 1 bits, set P/O to 1

Non-zero result, set Z to 0
AND (IX+disp)
Ntz e~
DD A6 d

This instruction 1s identical to AND (IY+disp), except that it uses the IX register instead
of the 1Y register.

AND (HL)
Nt
Ab

AND the contents of the memory location {specified by the contents of the HL register
pair) with the Accumulator.

AND is a frequently used logical instruction.

3-54

BIT b,reg — TEST BIT b IN REGISTER reg

S ZAcP/ON C

FluleoltfufoT]

YYYyByyyy

PC mmmm

: | —

Bit Tested

BIT

Sy

CBO1

NOODPWN—-O

b,

N

bbb

000
001
010
01
100
101
110
111

e

XXX
e

000
001
010
011
100
101
111

mmmm + 2

Register
B

C
D
E
H
L
A

Data
Memory

Program
Memory

cB

0 1bbbxxx

Place complement of indicated register's specified bit in Z flag of F register.

Suppose Register C contains 1110 1111. The instructi
to 1. while bit 4 in Register C remains 0. Bit O is the

3-55

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

on BIT 4,C will then set the Z flag
least significant bit.

BIT b,(HL) — TEST BIT b OF INDICATED MEMORY POSITION
BIT b, (IX+disp)
BIT b, (1Y +disp)

S Z AcP/ON C Data
> Memory
A S
B.C yyybyyyy [ppaa
DE
HL pp qq
SP
PC mmmm mmmm + 2 Program
X Memory
iy S
i B mmmm
R 01bbb110 frmmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of BIT 4.(HL). Bit O is the least significant bit.
BIT b, (HL
- ——

r——

cB Ol 399 110

Bit Tested bbb
000
001
010
011
100
101
110
11

Test indicated bit within memory position specified by the contents of Register HL. and
place bit's complement in Z flag of the F register.

Suppose HL contains 4000H and bit 3 in memory location 4000H contains 1. The in-
struction

NOOhAWN - O

BIT 3.(HL)
will then set the Z flag to O, while bit 3 in memory location 4000H remains 1.
‘BIT b, {IX+disp)

Pmaham, st e,

DD CB d 01 bbb 110
——

bbb is the same as in BIT b,{HL)

Examine specified bit within memory location indicated by the sum of Index Register X
and disp. Place the complement in the Z flag of the F register.

3-56

Suppose Index Register IX contains 4000H and bit 4 of memory location 4004H is O.
The instruction

BIT 4.(IX-+4H)
will then set the Z flag to 1. while bit 4 of memory location 4004H remains 0.
BIT b.{iY-+disp)
S~
L/ -
CBd 01 bbb 110
bbb is the same as in BIT b,{HL)

This instruction is identical to BIT b, IX-+disp). except that it uses the 1Y register instead
of the IX register.

P
FD

CALL label—CALL THE SUBROUTINE IDENTIFIED IN THE
OPERAND

S ZACP/ON C Data

FCITTTT] Memory
A fI_mm+3 Fxxxx-2
B.C mm XXXX~1
DE @ XXXX
HL
SpP XXXX
PC mmmm @ Program
X Memory
Y
i CD mmmm
R H { PP mmmm + 1
1 qq mmmm + 2
mmmm+3

CALL label
S s

CcDh ppaq
Store the address of the instruction following the CALL on the top of the stack: the top
of the stack is a data memory byte addressed by the Stack Pointer. Then subtract 2
from the Stack Pointer in order to address the new top of stack. Move the 16-bit address
contained in the second and third CALL instruction object program bytes to the Pro-
gram Counter. The second byte of the CALL instruction is the low-order half of the ad-
dress, and the third byte is the high-order byte.

Consider the instruction sequence:

CALL SUBR
AND 7CH

SUBR

After the instruction has executed. the address of the AND instruction is saved at the
top of the stack. The Stack Pointer is decremented by 2. The instruction labeled SUBR
will be executed next.

3-57

CALL condition,label — CALL THE SUBROUTINE IDENTIFIED IN
THE OPERAND IF CONDITION IS
SATISFIED

CALL condition, label
e aVeud N s =

"4

1 xxx 100 pp aq
i Condition Relevant Flag
000 NZ Non-Zero z
001 Z Zero z
010 NC Non-Carry C
011 C Carry C
100 PO Parity Odd P/O
101 PE Parity Even P/O
110 P Sign Positive S
111 M Sign Negative S

This instruction is identical to the CALL instruction, except that the identified
subroutine will be called only if the condition is satisfied: otherwise. the instruction se-
quentially following the CALL condition instruction will be executed.

Consider the instruction sequence:
L)
CALL i COND.SUBR

— H dition not satisfied
AND v 7C

condition i

satisfied -

SUBR

N

If the condition is not satisfied. the AND instruction will be executed after the CALL
COND.SUBR instruction has executed. If the condition is satisfied, the address of the
AND instruction is saved at the top of the stack, and the Stack Pointer is decremented
by 2. The instruction labeled SUBR will be executed next.

3-58

CCF — COMPLEMENT CARRY FLAG
S Z AcP/ON C

(I T I\ ’@

mmmm mmmm + 1
X

| | —

CCF

st

3F

Data
Memory

Program
Memory

3F

mmmm

mmmm + 1
mmmm + 2
mmmm+ 3

Complement the Carry flag. No other status or register contents are affected.

3-59

CP data — COMPARE IMMEDIATE DATA WITH
ACCUMULATOR

o T

S Z AcP/ON C

Data
F » Memory
A XX @
B.C
DE
HL
SP
pC mmmm mmmm + 2 Program
X Memory
Y
] FE mmmm
R ~ yv mmmm + 1
mmmm + 2
mmmm +3

CP data
S~ e
FE vy

Subtract the contents of the second object code byte from the contents of the Ac-
cumulator, treating both numbers as simple binary data. Discard the result; i.e.. leave
the Accumulator alone. but modify the status flags to reflect the result of the subtrac-
tion.

Suppose xx=E31g and the second byte of the CP instruction object code contains
AO1g. After the instruction

CP OAOQH

has executed, the Accumulator will still contain E316. but statuses will be modified as
follows:

E3
AO

OsetsSto0 UT LNon-zero result, set Z to O
No borrow, set C to O No borrow. set Ac to O
L
14 1=0, set P/O to 0 Subtract instruction, set N to 1
Notice that the resulting carry is complemented.

3-60

CP reg — COMPARE REGISTER WITH ACCUMULATOR

7S ZAcP/ON C

F

A
B8.C
DE
HL

SP
PC
X
Y
(
R

XX

-

|
f

mmmm

 —

CP reg

S Sa——
10111 xxx

e~
000
001
010
01
100
101
111

Contents of
ABCDEH
orLisyy

mmmm + 1

for reg=B
for reg=C
for reg=D
for reg=E
for reg=H
for reg=L
for reg=A

Data
Memory

Program
Memory

10711xxx

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Subtract the contents of Register A, B, C. D, E. H or L from the contents of the Ac-
cumulator. treating both numbers as simple binary data. Discard the result: ie.. leave
the Accumulator alone. but modify status flags to reflect the result of the subtraction.

Suppose xx=E31g and Register B contains AO16. After the instruction

CP B

has executed, the Accumulator will still contain E316. but statuses will be modified as
follows:

OsetsSto0

No borrow, set C to O

e

-
1% 1=0, set P/O to 0

Notice that the resulting carry is complemented.

3-61

1110 0011
1010 0000
0100 0017

No borrow. set Ac to 0

Non-zero result, set Z to 0

Subtract instruction, set N to 1

CP (HL) — COMPARE MEMORY WITH ACCUMULATOR
CP (IX+disp)
CP (IY+disp)

/J:\

S Z AcP/ON C Data
FXIXIxIx] Ix] Memory
A XX Y ppaq
B8.C
DE
HL PP qq
sP)
PC mmmm mmmm + 1 Program
1X Memory
Y
| BE mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of CP {HL):
CP {HL)
g, tizem’

BE

Subtract the contents of memory location (specified by the contents of the HL register
pair) from the contents of the Accumulator. treating both numbers as simple binary
data. Discard the result; 1.e.. leave the Accumulator alone, but modify status flags to
reflect the result of the subtraction.
Suppose xx=E31g and yy=A01g. After execution of

CP {HL)
the Accumulator will still contain E31g. but statuses will be modified as follows:

E3 1110 0011
AO 0110 0000

o100 0011

OsetsSto0 tU LNon-zero result. setZ to O
N‘oborrow‘ setCt00 No borrow. set Ag to-0

Py

[l

P
14 1=0, set P/O 10 0 Subtract instruction, set N to 1
Notice that the resulting carry is complemented.
CP {IX+disp)
- —

———

DD BE d

Subtract the contents of memory location (specified by the sum of the contents of the
IX register and the displacement value d} from.the contents of the Accumulator, treat-
ing both numbers as simple binary data. Discard the result; i.e., leave the Accumulator
alone, but modify status flags to reflect the result of the subtraction.

CP (IY+disp)
N e——

FD BE d

This instruction is identical to CP {(IX+disp), except that it uses the Y register instead of

the IX register.

CPD — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT ADDRESS AND BYTE COUNTER

©'S Z AcP/ON C

Data
Set if BC-1 #0,
F -n. reset otherwise Memory
ttuu-1
A XX
8.C tt uu vy DTQ
D.E 1
HL pp qq J
SP
PC mmmm Program
1X Memory
i o)
| ED r
| | — o L
mmmm + 2
mmmm + 3

Compare the contents of the Accumulator with the cont
{specified by the HL register pair)

CPD
\-—v./
ED A8

and BC register pairs. (BC is used as the Byte Counter.)

3-63

ents of memory location
- If Ais equal to memory, set Z flag. Decrement the HL

Suppose xx=E316. ppaq=400016. BC contains 00011g. and yy=A016. After the in-
struction

CcPD
has executed. the Accumulator will still contain E316, but statuses will be modified as
follows:

E3
AQ

Osets S to O<—J TU LNon‘zero result, set Zto 0
No borrow, set Ac to 0
The P/Q flag will be reset
because BC-1=0

]
-
-
(o]
(e
(=)
-
-

Subtract instruction involved,
setN to 1

Carry not affected.
The HL register pair will contain 3FFF1g, and BC=0.

CPDR — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT ADDRESS AND BYTE COUNTER.
CONTINUE UNTIL MATCH IS FOUND OR BYTE
COUNTER IS ZERO

CPDR
e
ED B9

This instruction is identical to CPD. except that it is repeated until a match is found or

the byte counter is zero. After each data transfer, interrupts will be recognized and two
refresh cycles will be executed.

Suppose the HL register pair contains 500016, the BC register pair contains 00FF18.
the Accumulator contains F91g. and memory has contents as follows:

Location Contents

500016 AA16
4FFF1 6 BC16
4FFE1 1916
4FFD1g 7A16
4FFC1s F91p
4FFB1g DD1g

After execution of
CPDR

the P/O flag will be 1. the Z flag will be 1. the HL register pair will contain 4FFB1g. and
the BC register pair will contain 00FA1g.

3-64

CPI — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT BYTE COUNTER.
INCREMENT ADDRESS

7S Z AcP/ON C 0

Data

Set if BC-1 #0,
F -n. reset otherwise remon
ttuu-1
A XX
B.C m U Yy ppbag
D.E ppaq + 1
HL pp aa
SP
oC — Program
x Memory
I ED mmmm
, e — AT} e+ 1
mmmm + 2
mmmm + 3

CPI
\‘\/_/
ED A1
Compare the contents of the Accumulator with the contents of memory location

{specified by the HL register pair). If A is equal to memory. set the Z flag. Increment the
HL register pair and decrement the BC register pair (BC is used as Byte Counter).

Suppose xx=E31g. ppag=400014. BC contains 003216, and yy=E31g. After the in-
struction

CPI

has executed. the Accumulator will still contain E31g, but statuses will be modified as
follows:

E3
-E3

t11t 0011
0000 1101

0000 0000

0 sets S to O<—J U1 LResult 150 setZ to 1
No borrow. set Ac to O
The P/O flag will be set
because BC-1 #0.

Il

Subtract instruction involved,
set N to 1.

Carry not affected.
The HL register pair will contain 40011g. and BC will contain 003115,

3-65

CPIR — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT BYTE COUNTER.
INCREMENT ADDRESS.
CONTINUE UNTIL MATCH IS FOUND
OR BYTE COUNTER IS ZERO

CPIR
o’

ED B1

This instruction is identical to CPl, except that it is repeated until a match is found or
the byte counter is zero. After each data transfer interrupts will be recognized and two
refresh cycles will be executed.

Suppose the HL register pair contains 460016, the BC register pair contains 00FF1g,
the Accumulator contains F91g. and memory has contents as follows:

Location Contents
450016 AA16
450116 1516
450216 F918
After execution of
CPIR

the P/O flag will be 1, and the Z flag will be 1. The HL register pair will contain 450316,
and the BC register pair will contain 00FC1g.

3-66

CPL — COMPLEMENT THE ACCUMULATOR
Zrcron © Data

Fi Memory
A XX XX
B.C
DE
H.L
SP
PC mmmm Program
X) Memory
Y

l 2F mmmm
R

mmmm + 1
mmmm + 2
mmmm + 3

CPL

D

2F

Complement the contents of the Accumulator. No other register's contents are
affected.

Suppose the Accumulator contains 3A1g. After the instruction
CPL
has executed, the Accumulator will contain C51g.

3A 0011 1010
Complement = 1100 0101

This 1s a routine logical instruction. You need not use it for binary subtraction; there are
special subtract instructions (SUB, SBC).

3-67

DAA — DECIMAL ADJUST ACCUMULATOR

S ZAcP/ON C

Data
J EIEIEIEImES Memory
A — Convert to
decimal
8.C
DE
H.L
SP
PC mmmm mmmm + 1 Program
X Memory
Y
i 27 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

DAA

-

27

Convert the contents of the Accumulator to binary-coded decimal form. This instruc-
tion should only be used after adding or subtracting two BCD numbers: i.e.. look upon
ADD DAA or ADC DAA or INC DAA or SUB DAA or SBC DAA or DEC DAA or NEG DAA

as compound. decimal arithmetic instructions which operate on BCD sources to gener-
ate BCD answers.

Suppose the Accumulator contains 391¢ and the B register contains 4716. After the in-
structions

ADD B
DAA

have executed, the Accumulator will contain 861g. not 8016.

780 CPU logic uses the values in the Carry and Auxiliary Carry, as well as the Ac-
cumulator contents, in the Decimal Adjust operation.

3-68

DEC reg — DECREMENT REGISTER CONTENTS

S ZAcP/ON C

FOXLXIX X]

8 2 Contents of A,
D'E B, C,‘ D, E. H,
RL orLisyy
SP
PC mmmm mmmm + 1
X
4
1
R
DEC reg
00 xxx 101
S~
000 for reg=8B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 forreg=A

Subtract 1 from the contents of the specified register.

Suppose Register A contains 501g. After execution of

Register A will contain 4Fqg.

DEC A

3-69

Data
Memory

Program
Memory

00xxx101

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

DEC rp — DECREMENT CONTENTS OF SPECIFIED REGISTER
DEC IX PAIR

DEC IY
S Z AcP/ON C

Data
A
8.C Contents of BC,
DE DE. HL or SP
H.L is yyvy
SP
PC mmmm mmmm + 1 Program
X Memory
Y
| Q0xx1011 j mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of DEC rp:
DEC rmp

B

00 xx 1011
——

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp 1s register par HL
11 for rp 1s Stack Pointer

Subtract 1 from the 16-bit value contained in the specified register pair. No status flags
are affected.

Suppose the H and L registers contain 2F0014. After the instruction
DEC HL
has executed, the H and L registers will contain 2EFFq6.

DEC IX
V

DD 2B
Subtract 1 from the 16-bit value contained in the IX register.
DEC 1Y
N, o’
FD 2B
Subtract 1 from the 16-bit value contained in the IY register.

Neither DEC rp. DEC IX nor DEC Y affects any of the status flags. This 1s a defect in the
Z80 instruction set, inherited from the 8080. Whereas the DEC reg instruction is used in
iterative instruction loops that use a counter with a value of 266 or less. the DEC rp
(DEC IX or DEC 1Y} instruction must be used if the counter value is more than 256. Since
the DEC rp instruction sets no status flags. other instructions must be added to simply

3-70

test for a zero result. This is a typical loop form:

LD DE.DATA :LOAD INITIAL 16-BIT COUNTER VALUE
LOOP - :FIRST INSTRUCTION OF LOOP

DEC DE :DECREMENT COUNTER

LD AD .TO TEST FOR ZERO, MOVE D TO A

OR E ;THEN OR A WITH E

JP NZ.LOOP :RETURN IF NOT ZERO

DEC (HL) — DECREMENT MEMORY CONTENTS
DEC (IX+disp)
DEC (Y +disp)

S ZAcP/ON C Data

FRXEXIXIX]]] Memory

A ®$ vy {ppag
B.C
D.E
H.L pp aq
SP
PC mmmm -mmmm + 1 Preram
X Memory
Y
i 35 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of DEC (HL):
DEC (HL)
N o

35

Subtract 1 from the contents of memory location {specified by the contents of the HL
register pair).

Suppose ppag=45001g. yy=5F1g. After execution of
DEC (HL)
memory location 456001 will contain 5E16.
5F 0101 111
-01 1111 111
1001 111

1
1
0
O sets S to Oﬂ—-u U LNon-zero result. set Z to O
Y 1
1% 1=0. setP/O to 0 No borrow, set Ac to 0

Subtract instruction, set N to 1

I

3-71

DEC {(IX+disp)
A e i

DD 35 d

Subtract 1 from the contents of memory location (specified by the sum of the contents
of the IX register and the displacement value dh.

DEC {(IY+disp)
A N e

FD 35 d

This instruction 1s identical to DEC {(IX+disp). except that it uses the lY register instead
of the IX register.

DI — DISABLE INTERRUPTS

S ZAcP/ON C Data

PC mmmm mmmm + 1 Program
X Memory

1 F3 mmmm

R l mmmm + 1
mmmm + 2
mmmm + 3

Di

——

F3

i\f_ljen this instruction s executed, the maskable interrupt request is disabled and the
INT input to the CPU will be ignored. Remember that when an interrupt is
acknowledged. the maskable interrupt is automatically disabled.

The maskable interrupt request remains disabled until it is subsequently enabled by an
El instruction.

No registers or flags are affected by this instruction.

3-72

DJNZ disp — JUMP RELATIVE TO PRESENT

CONTENTS OF PROGRAM COUNTER IF
REG B IS NOT ZERO

S Z AcP/ON ¢

xx-1 Data

. 4k’—— i
B.C XX J
D.E
HL
i
mmmm +
PC mmmm A Program
X Memory
Y
L 10 mmmm
R dd-2 mmmm + 1
mmmm + 2
mmmm + 3

DJNZ disp
S
10 dd-2

Decrement Register B. If remaining contents are not zero, add the contents of the DJNZ
instruction object code second byte and 2 to the Program Counter. The jump is
measured from the address of the instruction operation code, and has a range of -126 to
+129 bytes. The Assembler automatically adjusts for the twice-incremented PC.

If the contents of B are zero after decrementing. the next sequential instruction is ex-
ecuted.

The DJNZ instruction 1s extremely useful for any program loop operation. since the one

instruction replaces the typical “decrement-then-branch on condition’ instruction se-
quence.

El — ENABLE INTERRUPTS
S ZAcP/ON C

Data

PC mmmm @ Program
X Memory
| FB mmmm

R mmmm + 1

mmmm + 2
mmmm + 3

3-73

El

i

FB

Execution of this instruction causes interrupts to be enabled, but not until one more in-
struction executes.

Most interrupt service routines end with the two instructions:

El :ENABLE INTERRUPTS
RET :RETURN TO INTERRUPTED PROGRAM

If interrupts are processed serially. then for the entire duration of the interrupt service
routine all maskable interrupts are disabled — which means that in a multi-interrupt
application there is a significant possibility for one or more interrupts to be pending
when any interrupt service routine completes execution.

If interrupts were acknowledged as soon as the El instructions had executed, then the
Return instruction would not be executed. Under these circumstances, returns would
stack up one on top of the other — and unnecessarily consume stack memory space.
This may be illustrated as follows:

Interrupt

fnterrupt

Interrupt service routine
Interrupt

Interrupt service routine

Interrupt service routine

Bv inhibiting interrupts for one more instruction following execution of El, the Z80 CPU
ensures that the RET instruction gets executed in the sequence:

El :ENABLE INTERRUPTS
RET ;RETURN FROM INTERRUPT

It is not uncommon for interrupts to be kept disabled while an interrupt service routine
is executing. Interrupts are processed serially:

Interrupt Interrupt

AANEVARN

Interrupt service routine Interrupt service routine

3-74

EX AF,AF" —EXCHANGE PROGRAM STATUS AND ALTERNATE
PROGRAM STATUS

S Z AcP/ON C

‘I T =

)

A

Alternate
Register Set

B.C

—

7

DE

H.L

SP

PC mmmm

iX

Y

Program
Memory

!

R

08.

EX AF.AF
N ot

08

The two-byte contents of register pairs AF and A'F' are exchanged.
Suppose AF contains 4F991g and A'F' contains 10AA16. After execution of

EX AF.AF

AF will contain 10AA1g and AF will contain 4F991 6.

3-75

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

ro@mrem
mmao

EX DE,HL — EXCHANGE DE AND HL CONTENTS

S ZAcP/ON C Data
T il
A
B8.C
D.E PP aq
HL XX AA t)
SP
PC mmmm mmmm + 1 Program
X Memory
1Y
i EB mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
EX DEHL
N
EB

The D and E registers’ contents are swapped with the H and L registers’ contents.
Suppose pp=0316, qa=2A16. xx=411g and yy=FC16. After the instruction
EX DE.HL

has executed, H will contain 0316, L will contain 2A1g. D will contain 4116 and E will
contain FC1g.

The two instructions:

EX DEHL
LD A{HL)

are equivalent to:
LD A.{DE)
but if you want to load data addressed by the D and E register into the B register,

EX DE.HL
LD B.HL

has no single instruction equivalent.

3-76

EX (SP),HL — EXCHANGE CONTENTS OF REGISTER AND
EX (SP),IX TOP OF STACK
EX (SP)IY

S ZAcP/ON C

Data

A i 99 ssss
8C . —) ssss+ 1
DEY [2 ssss +2
H.L XX %9
SP SSSS
PC mmmm mmmm + 1 Program
X Memory
Y
[} E3 mmmm
] mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of EX (SP),HL.
EX (SP),HL
N o
E3

Exchange the contents of the L register with the top stack byte. Exchange the contents
of the H register with the byte below the stack top.

Suppose xx=211g. vv=FA16. pp=3A16. aq=E21g. After the instruction
EX (SP).HL

has executed. H will contain 3A1g, L will contain E216 and the two top stack bytes will
contain FA1g and 211g respectively.

The EX (SP),HL instruction is used to access and manipulate data at the top of the stack.
EX {SP),IX
N— o’
DD ES3

Exchange the contents of the IX register's low-order byte with the top stack byte. Ex-
change the IX register's high-order byte with the byte below the stack top.

EX (SPLIY
N
FD E3

This instruction is identical to EX {SP).IX, but uses the 1Y register instead of the IX
register.

3-77

EXX — EXCHANGE REGISTER PAIRS AND ALTERNATE
REGISTER PAIRS

S Z AcP/ON C Altemate

&
A A
B.C B.C
DE } — —f D E
HL] H.L

sP
PC mmmm mmmm + 1 Program
1X Memorv
Y
! D9 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

EXX

o

D9

The contents of register pairs BC. DE and HL are swapped with the contents of register
pairs B'C', D'E’, and H'L

Suppose register pairs BC, DE and HL contain 49011g. 5F0016 and 725116 respec-
tively, and register pairs B'C’. D'E’, H'L' contain 000015, 10FF16 and 333316 respec-
tively. After the execution of

EXX
the registers will have the following contents:

BC: 000014; DE. 10FF1g: HL: 333316:
B'C'" 49011g; D'E- 6F001g: HL" 725116

This instruction can be used to exchange register banks to provide very fast interrupt
response times.

3-78

HALT
S ZAcP/ON C

Data
A
B.C
DE
HL
sP

PC mmmm mmmm + 1 Program
iX

Memory
Y

! 76 mmmm
R

mmmm + 1
mmmm + 2
mmmm + 3

HALT
—r—

76
When the HALT instruction is executed, program execution ceases. The CPU requires

an interrupt or a reset to restart execution. No registers or statuses are affected:
however, memory refresh logic continues to operate.

3-79

IM 0 — INTERRUPT MODE 0

S Z ACP/ION C Data

A
8.C
DE
H.L
SP
PC mmmm mmmm + 2 Program
X Memory
Y
! — ED mmmm
R | | 46 mmmm + 1
mmmm + 2
mmmm + 3
1

MO
o’

ED 46

This instruction places the CPU in interrupt mode 0. In thuis mode. the interrupting
device will place an instruction on the Data Bus and the CPU will then execute that in-
struction. No registers or statuses are affected.

iM 1 — INTERRUPT MODE 1

M1
e "

ED 56

This instruction places the CPU in interrupt mode 1. In this mode. the CPU responds to
an interrupt by executing a restart {RST) to location 003816.

iM 2 — INTERRUPT MODE 2

M2
S,
ED 5E

This instruction places the CPU in interrupt mode 2. In this mode, the CPU performs an
indirect call to any specified location in memory. A 16-bit address is formed using the
contents of the Interrupt Vector (I} register for the upper eight bits. while the lower
eight bits are supplied by the interrupting device. Refer to Chapter 12 for a full descrip-
tion of interrupt modes. No registers or statuses are affected by this instruction.

3-80

IN A, (port) — INPUT TO ACCUMULATOR

S ZAcP/ON C

Data
A ‘——l

PC mmmm mmmm + 2 Program
X

Memory
Y

DB mmmm
R - vy mmmm + 1

mmmm + 2
mmmm + 3

IN A, {port)
DB vy

Load a byte of data into the Accumulator from the I/0 port lidentified by the second IN
instruction object code byte).

Suppose 3616 is held in the buffer of I/0 port 1A1g. After the instruction

IN A (TAH)
has executed. the Accumulator will contain 361g.

The IN instruction does not affect any statuses.
Use of the IN instruction is very hardware dependent. Valid 1/0 port addresses are

determined by the way in which 1/0 logic has been implemented. It is also possible to

design a microcomputer system that accesses external logic using memory reference
instructions with specific memory addresses.

3-81

INC reg — INCREMENT REGISTER CONTENTS

S Z AcP/ON C

Data
Memory
A
BC Contents of A,
DE B.C.D.E Hor
H.L Lisyy
SP
PC mmmm mmmm + 1 Program
X Memory
124
! 00xxx 100_§ mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
INC reg
-
00 xxx 100
——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Add 1 to the contents of the specified register.
Suppose Register E contains A81g. After execution of

INC E
Register £ will contain AS14.

3-82

INC rp — INCREMENT CONTENTS OF SPECIFIED REGISTER PAIR

INC IX
INC 1Y

S ZAcP/ON C

Data
Memory

Contents of BC,

DE, HL or SP

1S YYYY

PC mmmm

mmmm + 1

Program
Memory

00xx0011

The illustration shows execution of INC rp:

INC rp

00 xx 0011

——

00 for rp is register pair BC
01 for rp 1s register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

mmmm

mmmm+ 1
mmmm + 2
mmmm + 3

Add 1 to the 16-bit value contained in the specified register pair. No status flags are

affected.

Suppose the D and E registers contain 2F7A1g. After the instruction

INC DE

has executed. the D and E registers will contain 2F7B1g.

INC IX
S

DD 23

Add 1 to the 18-bit value contained in the IX register.

INC 1Y
N,
FD 23

Add 1 to the 16-bit value contained in the 1Y register.

Just like the DEC rp, DEC IX and DEC IY. neither INC rp, INC IX nor INC 1Y affects any
status flags. This is a defect in the Z80 instruction set inherited from the 8080.

3-83

INC (HL) — INCREMENT MEMORY CONTENTS
INC (IX+disp)
INC (1Y +disp)

S Z AcP/ON C

Data
£ m- Memory
A %% ppaq +d
B.C
D.E
H.L
sP
PC mmmm mmmm + 3 Program
IX pPagq Memory
1Y
| DD mmmm
R 34 mmmm + 1
ppaq +d d mmmm + 2
mmmm + 3

The illustration shows execution of INC (IX-+d):
INC (IX+disp)
S S

DD 34 d

Add 1 to the contents of memory location (specified by the sum of the contents of
Register IX and the displacement value d).

Suppose ppaq=40001g and memory location 400F1¢ contains 3616. After execution
of the instruction

INC (IX+OFH)
memory location 400F g will contain 3716.

3 = 0011 0110
1

01011 0111
OsetsSto0 UT Non-zero result, set Z to O
Carry status not affected 1 No carry, set Ac to O
f‘;
0+ 0=0, set P/O t0 0 Addition instruction. set N to 0

INC (IY+disp)
S, o o

FD 34 d

This instruction is identical to INC IX+disp). except that it uses the IY register instead
of the IX register.

INC (HL)
R N

34

Add 1 to the contents of memory location {specified by the contents of the HL register
pair).

3-84

IND — INPUT TO MEMORY AND DECREMENT POINTER

S ZAcP/ON C xx-1 Data
FlulXIuluPI l A /0 port yy Memory
A | l——-b ppag
B.C XX i Yv
D.E ppag-1
H.L pe agq
sp
PC mmmm Program
X mmmm + 2 Memory
ty
| ED mmmm
R AA mmmm + 1
mmmm + 2
mmmm + 3
IND
e
ED AA

Input from 1/0 port (addressed by Register C) to memory location (specified by HL).
Decrement Registers B and HL.

Suppose xx=051g, vv=151g. ppaa=240014. and 1915 is held in the buffer of 1/0 port
1616. After the instruction

IND

has executed, memory location 240014 will contain 1916. The B register will contain
0416 and the HL register pair 23FF16.

INDR — INPUT TO MEMORY AND DECREMENT POINTER
UNTIL BYTE COUNTER IS ZERO

INDR
S~
ED BA

INDR 1s identical to IND. but is repeated until Register B=0.

Suppose Register B contains 031, Register C contains 1516. and HL contains 24001g.
The following sequence of bytes is available at /0 port 151g:

1716. 5916 and AE1g
After the execution of

INDR

the HL register pair will contain 23FD1g and Register B will contain zero. and memory
locations will have contents as follows:

Location Contents

2400 1716
23FF 5916
23FE AE1g

This instruction is extremely useful for loading blocks of data from an input device into
memory.

3-85

INI — INPUT TO MEMORY AND INCREMENT POINTER

xx-1
S ZAcP/ON C < > Data

FCCI 1T 1T1) A 70 port vv Memory
A | L——-P ppagq

8.C XX = —J Yy

D.E ppaa+ 1
HL PP aq

PC mmmm Program
X mmmm + 2 Memory

1 | ED mmmm

R A2 mmmm + 1
mmmm + 2
mmmm + 3

INI
\._-v—/
ED A2
Input from 1/0 port (addressed by Register C) to memory location (specified by HL).
Decrement Register B increment register pair HL.

Suppose xx=0516. yy=1b16. ppaq=240016. and 1916 is held in the puffer of 1/0 port
1516
After the instruction

INI

has executed. memory location 24001g will contain 1916. The B register will contain
0416 and the HL register pair 240118.

INIR — INPUT TO MEMORY AND INCREMENT POINTER
UNTIL BYTE COUNTER IS ZERO

INIR
S

ED B2
INIR 1s identical to INI. but is repeated until Register B=0.

Suppose Register B contains 0316, Register C contains 1516. and HL contains 24001 6.
The following sequence of bytes 1s available at 1/0 port 1516:

1716. 5916 and AE1p
After the execution of
INIR

the HL register pair will contain 24031 and Register B will contain zero, and memory
locations will have contents as follows:

Location Contents

2400 1718
2401 5918
2402 AEqg

This instruction 1s extremely useful for loading blocks of data from a device into memo-
ry.

3-86

IN reg,(C) — INPUT TO REGISTER

S ZAGP/ON C Data
FEX]XJoixJol] 1/0 port yy Memory

A
B.C vy
DE
HL

SP

PC mmmm @ Program
1X Memory
Y
I ED mmmm
R 01xxx000 f mmmm + 1
mmmm + 2
mmmm + 3

" Horl
)

IN reg, (C)

B s s

ED 01 xxx 000

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=Et
100 for reg=H
101 for reg=L
111 for reg=A
110 for setting of status flags without
changing registers

Load a byte of data into the specified register {reg) from the 1/0 port {identified by the
contents of the C register).

Suppose 421¢ is held in the buffer of I/0 port 3616. and Register C contains 3614,
After the instruction

IN D.(C)
has executed. the D register will contain 421¢.

During the execution of the instruction, the contents of Register B are placed on the top
half of the Address Bus, making 1t possible to extend the number of addressable 1/0
ports.

3-87

JP label — JUMP TO THE INSTRUCTION IDENTIFIED
IN THE OPERAND

S ZAcP/ON C

Data
A
B.C
DE
HL
sP
PC mmmm Program
X Memory
Y
! l___———__—— C3 mmmm
R | § qq mmmm + 1
Bp mmmm + 2
mmmm + 3

JP label
Nt

C3 ppaq

Load the contents of the Jump instruction object code second and third bytes into the
Program Counter: this becomes the memory address for the next instruction to be ex-
ecuted. The previous Program Counter contents are lost.

In the following sequence:

JP NEXT
AND 7EH
NEXT CPL

The CPL instruction will be executed after the JP instruction. The AND instruction will
never be executed. unless a Jump instruction somewhere else in the instruction se-
quence jumps to this instruction.

3-88

JP condition,label — JUMP TO ADDRESS IDENTIFIED IN THE

OPERAND IF CONDITION IS

SATISIFED

JP cond. label
—

11 ¢c¢c 010 ppaq

Condition
000 NZ Non-Zero
001 Z Zero
010 NC No Carry
01 C Carmry
100 PO Panty Odd
101 PE Parity Even
10 P Sign Positive
11 M Sign Negative

Relevant Flag

P/0
S

o

S

This instruction 1s 1dentical to the JP instruction. except that the jump will be per-
formed only if the condition 1s satisfied: otherwise, the instruction sequentially follow-

ing the JP condition instruction will be executed.

Consider the instruction sequence

I
i

JP_; COND.LABEL
I

condition not satisfied

y AND * 7CH
condition
satisfied -
LABEL OR B

After the JP cond.label instruction has executed. if the condition 1s satisfied then the
OR instruction will be executed. If the condition 1s not satisfied, the AND instruction,

being the next sequential instruction. 1s executed.

3-89

JP (HL) — JUMP TO ADDRESS SPECIFIED BY CONTENTS
JP (IX) OF 16-BIT REGISTER
JP (1Y)

S z ACP/ON C Data

A
8.C
DE
HL pp a4
s Q
PC mmmm Program
[4 Memory
Y
: ES mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of JP (HL):

JP {HL)
S

E9

The contents of the HL register pair are moved to the Program Counter. therefore. an
implied addressing jump 1s performed.

The instruction sequence

LD H.ADDR
JP {HL}

has exactly the same net effect as the single instruction
JP ADDR

Both specify that the instruction with label ADDR 1s to be executed next.

The JP (HL) instruction 1s useful when vou want to increment a return address for a
subroutine that has multiple returns.

Consider the following call to subroutine SUB:

CALL SuB ;CALL SUBROUTINE
JP ERR ;ERROR RETURN
:GOOD RETURN

Using RET to return from SUB would return execution of JP ERR: therefore, if SUB ex-
ecutes without detecting error conditions, return as follows:

POP HL :POP RETURN ADDRESS TO HL
INC HL :ADD 3 TO RETURN ADDRESS
INC HL
INC HL
JP (HL) :RETURN

JP (X}

e

DD E9

This instruction is identical to the JP {HL} instruction. except that it uses the IX register

3-90

instead of the HL register parr.
JPAY)
\.\,‘—/
FD E9

This instruction is identical to the JP (HL) instruction, except that it uses the !Y register
instead of the HL register pair.

JR C,disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF CARRY IS SET

JR C. disp
e

e~

38 dd-2

This instruction is identical to the JR disp instruction. except that the jump 1s only ex-
ecuted if the Carry status equals 1, otherwise. the next instruction is executed.

In the following instruction sequence:

4000 JR

]

i

]

1

A
4002 AND * 7FH

4008 OR B

After the JR C,$+8 instruction, the OR instruction is executed if the Carry status equals
1. The AND instruction 1s executed if the Carry status equals 0.

3-91

JR disp — JUMP RELATIVE TO PRESENT CONTENTS OF

FCITT I

A
8.C
DE
H.L

SP
PC
1X
A4
!
R

PROGRAM COUNTER
S Z AcP/ON C

T

mim

JR disp
—— ———

18 dd-2

mmmm +
(dd-2)+2

Data
Memory

Program
Memory

18

dd-2

mmmm

mmmm + 1
mmmm + 2
mmmm +3

Add the contents of the JR instruction object code second byte, the contents of the Pro-
gram Counter, and 2. Load the sum into the Program Counter. The jump i1s measured
from the address of the instruction operation code, and has a range of -126 to +129
bytes. The Assembler automatically adjusts for the twice-incremented PC.

The following assembly language statement is used to jJump four steps forward from ad-

dress 40001g.

Result of this instruction is shown below:

3-92

JR $+4
Location Instruction
4000 18
4001 02
4002 -
4003 -
4004

- agg—— new PC value

JR NC.disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF CARRY FLAG IS RESET

JR NC.disp
‘\P“*
30 dd-2

This instruction is identical to the JR disp instruction, except that the jump is only ex-
ecuted if the Carry status equals O: otherwise, the next instruction I1s executed.

In the following instruction sequence:

4000 ADD | A.7FH
4001 !

€=0 4002 16=1
4003 JR 4 NCS$-3
4006 OR * B

After the JR NC.$-3 instruction, the OR instruction is executed if the Carry status equals
1. The ADD instruction is executed if the Carry status equals 0.

JR NZ,disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF ZERO FLAG IS RESET

JR NZ.disp
N Syt
20 dd-2

This instruction is identical to the JR disp instruction, except that the jump 1s only ex-
ecuted if the Zero status equals O: otherwise, the next instruction is executed.

In the following instruction sequence:

|
4000 JR 1 NZ$+6
1
4002 AND * 7FH
z=0 4004 - Z=1
40056 -
4006 OR B

After the JR NZ.$+6 instruction, the OR instruction I1s executed if the Zero status equals
0. The AND instruction is executed if the Zero status equals 1.

3-93

JR Z,disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF ZERO FLAG IS SET

JR Z.disp
N
28 dd-2

This instruction is identical to the JR disp instruction, except that the jump is only ex-
ecuted if the Zero status equals 1, otherwise. the next instruction is executed.

In the following instruction sequence:
4000 JR I 7.$+6
4002 AND | T7FH

s 4004 - VZ=°
4005 -
4006 OR B

After the JR Z.$+6 instruction, the OR instruction is executed if the Zero status equals
1. The AND instruction is executed if the Zero status equals 0.

LD A, — MOVE CONTENTS OF INTERRUPT VECTOR OR
LD A,R REFRESH REGISTER TO ACCUMULATOR

S ZAgP/ON C Data

r EXo x0T] Memory

A XX

B.C

D.E

HL
spP
PC mmmm mmmm + 2 Program

1X Memory
Y

i XX £D mmmm

R ‘ 1 57 mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of LD Al
LD AL
R N
ED 57

Move the contents of the Interrupt Vector register to the Accumulator, and reflect inter-
rupt enable status in Parity/Overflow flag.

Suppose the Interrupt Vector register contains 7F16. and interrupts are disabled. After
execution of

LD Al
Register A will contain 7F1g. and P/O will be O.
LD AR
e
ED 5F
Move the contents of the Refresh register to the Accumulator. The value of the interrupt
flip-flop will appear in the Parity/Overflow flag.

3-94

LD A, (addr) — LOAD ACCUMULATOR FROM MEMORY USING
DIRECT ADDRESSING

S ZAcP/ON C Data

A yvY et — yy ppaq
.C
D.E
HL
SP
PC mmmm mmmm + 3 Program
X Memory
Y
| 3A mmmm
R l qa mmmm + 1
pp mmmm + 2

mmmm + 3

LD A, (addr)
S

3A ppag

Load the contents of the memory byte (addressed directly by the second and third
bytes of the LD A.(addr) instruction object codel into the Accumulator. Suppose memo-
ry byte 084A1g contains 201g. After the instruction

label EQU 084AH

LD A {label)
has executed. the Accumulator will contain 2014

Remember that EQU is an assembler directive rather than an instruction: it tells the As-
sembler to use the 16-bit value 084A1g wherever the label appears.

The instruction

LD A.{label)

Is equivalent to the two instructions
LD HL.label
LD A (HL)

When vou are loading a single value from memory. the LD A, (label) instruction is prefer-
red. it uses one instruction and three object program bytes to do what the LD HL.label.
LD A.(HL) combination does in two instructions and four object program bytes. Also,
the LD HL.label. LD A,(HL) combination uses the H and L registers. which LD A.(label)
does not.

3-95

LD A, (rp) — LOAD ACCUMULATOR FROM MEMORY LOCATION
ADDRESSED BY REGISTER PAIR

S Z AcP/ON C Data
A vy i} Yy ppaq
B.C .
DE }-DBC or DE contain ppaq
HL
SP
PC mmmm mmmm + 1 Program
1X Memory
Y
1 000x1010 f mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

LD A.lrp)

000 x 1010
ot

0 if register pair=BC
1 if register pair=DE

Load the contents of the memory byte {addressed by the BC or DE register pair) into the
Accumulator.

Suppose the B register contains 081g, the C register contains 4A1g, and memory byte
084A 16 contains 3A1a. After the instruction

LD A.(BC)
has executed, the Accumulator will contain 3A16.

Normally, the LD A.{rp} and LD rp.data will be used together. since the LD rp.data in-
struction loads a 16-bit address into the BC or DE registers as follows:

LD BC.084AH
LD A.(BC)

3-98

LD dst,src — MOVE CONTENTS OF SOURCE REGISTER TO

DESTINATION REGISTER
S ZACP/ON C

D.E.HorlL
A
8.C Register A, B, C
DE ? D.E H L
HL
sP
PC mmmm mmmm + 1
IX
Y
{
R
LD dst, src
01 ddd sss
\W-/

000 for dst or src=B
001 for dst or src=C
010 for dst or src=D
011 for dst or src=F
100 for dst or src=H
101 for dst or sre=L
111 for dst or src=A

Data
Memory

Program
Memory

01dddsss

The contents of any designated register are loaded into any other register.

For example:
LD AB
loads the contents of Register B into Register A.
LD LD
loads the contents of Register D into Register L.
LD C.C

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

does nothing. since the C register has been specified as both the source and the

destination.

3-97

LD HL,(addr) — LOAD REGISTER PAIR OR INDEX REGISTER

LD rp, (addr) FROM MEMORY USING DIRECT ADDRESSING
LD IX,(addr)
LD 1Y, (addr)

S Z AcP/ON €

Data
A XX ppag
B.C Yy ppag + 1
DE y 1 12
HL vy XX
SP
PC mmmm mmmm + 3 Program
1X Memorv
Y
i 2A mmmm
R aq mmmm + 1
pp mmmm + 2
mmmm + 3

The illustration shows execution of LD HL(ppaq):

LD HL.addr
N i, o

2A ppaq
Load the HL register pair from directly addressed memory location.

Suppose memory focation 400416 contains AD1g and memory location 40051¢ con-
tains 121g. After the instruction

LD HL,(4004H)
has executed, the HL register pair will contain 12AD16.
LD rp. {addr}

P S
ED 01 dd 1011 ppaq

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Load register pair from directly addressed memory.

Suppose memory location 49FF1g contains BE1g and memory iocation 4A001g con-
tains 3316. After the instruction

LD DE.49FFH)
has executed, the DE register pair will contain 33BE14.

LD IX,{addr)
S e i

DD 2A ppag
Load IX register from directly addressed memory.

3-98

Suppose memory location D1114g contains FF16 and memory location D11214 con-
tains 5614. After the instruction

LD IX.D111H)
has executed. the IX register will contain 56FF1g.

LD IY.(addr)
o s,
FD 2A ppaq

Load 1Y register from directly addressed memory.
Affects IY register instead of IX. Otherwise identical to LD IX{addr).

LD LA— LOAD INTERRUPT VECTOR OR REFRESH
LD R,A REGISTER FROM ACCUMULATOR

S ZAcP/ON C

Data
---- Memory
A XX
B.C
D.E
H.L
SP
PC mmmm mmmm + 2 Program
1X Memory
Y
v ED mmmm
R E 4F mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of LD R.A:
LD RA
e Y
ED 4F
Load Refresh register from Accumulator.
Suppose the Accumulator contains 7F16. After the instruction
LD RA
has executed. the Refresh register will contain 7F1g.
LD LA
N -’
ED 47
Load Interrupt Vector register from Accumulator.

3-99

LD reg,data — LOAD IMMEDIATE INTO REGISTER

>

Z AcP/ON C

OO

A

8.C

Destination is

DE

Register A, B, C,

H.L

D.E.HorlL

SP

PC

mmmm

mmmm + 2

X

Y

t
R

——

LD reg.data

00 xxx 110 yy
e

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Data
Memory

Program
Memory

00xxx110

Yy

Load the contents of the second object code byte into one of the registers.
When the instruction

LD A2AH

has executed, 2A1g is loaded into the Accumulator.

3-100

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

LD rp.data — LOAD 16 BITS OF DATA IMMEDIATE INTO
LD IX,data REGISTER
LD lY,data

S ZAcP/ON C Data

A

BC Select BC, DE, HL or
D'E } / SP. Load ppaq into

HL ted destination
sSP

PC mmmm mmmm +3 Program

IX Memory

Y

{ 00xx0001 § mmmm

y | — W]

pp mmmm + 2

mmmm + 3

The illustration shows execution of LD rp,data:

32_ rp. data

00 xx 0001 ppaq
S——

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Load the contents of the second and third object code bytes nto the selected register
pair. After the instruction

LD SP.217AH
has executed. the Stack Pointer will contain 217A1g.
LD IX, data
S
DD 21 ppag
Load the contents of the second and third object code bytes into the Index register IX.
LD 1Y, data
R e
FD 21 ppaa
Load the contents of the second and third object code bytes into the Index Register IY

Notice that the LD rp,data instruction is equivalent to two LD reg.data instructions.
For example:

LD HL.032AH
is equivalent to

LD H.03H

LD L.2AH

3-101

LD reg,(HL) — LOAD REGISTER FROM MEMORY
LD reg, (IX+disp)
LD reg, (1Y +disp)

S Z AcP/ON C Data

A
8.C Register A, B, C, <@ vy ppaqg +d
DE D E HorkL
HL
SP
PC mmmm mmmm + 3 Program
X ppaa Memory
Y
i DD mmmm
R ‘ 01xxx110.§ mmmm + 1
d mmmm + 2
mmmm + 3

The illustration shows execution of LD reg. (IX+disp):
LD reg. (X + disp)

O e el s e

DD 01 xxx 110 d

B

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Load specified register from memory location {specified by the sum of the contents of
the IX register and the displacement digit d).

Suppose ppaa=40041g and memory location 401016 contains FF1g. After the instruc-
tion

LD BUX+0CH)
has executed, Register B will contain FFqg.

LD reg. Y +disp)
o ——— S~

FD 01 &1 10d
L———-»same as for LD reg.{IX+disp)

This instruction is identical to LD reg.{X+disp). except that it uses the 1Y register in-
stead of the IX register.

3-102

LD reg.(HL)

S s St

01 xxx 110
—p—
= same as for LD reg,(IX+disp)

Load specified register from memory location (specified by the contents of the HL
register pair).

LD SP,HL — MOVE CONTENTS OF HL OR INDEX REGISTER
LD SP,IX TO STACK POINTER
LD SP.1Y

S ZAcP/ON C

Data

A
B.C
DE
HL pp qq
SP D
PC mmmm mmmm + 1 Program
X Memory
Y
| F9 mmmm
R mmmm +
mmmm + 2
mmmm + 3

The illustration shows execution of LD SP HL:

LD SP.HL
N— mp—’

F9
Load contents of HL into Stack Pointer.
Suppose pp=081g and qq=3F1g. After the instruction
LD SP.HL
has executed. the Stack Pointer will contain 083F1g.
LD SP.IX
S~ —
DD F9
Load contents of Index Register IX into Stack Pointer.

LD SP.IY
Nty

FD F9
Load contents of Index Register IY into Stack Pointer.

3-103

LD (addr),A — STORE ACCUMULATOR IN MEMORY USING
DIRECT ADDRESSING

S Z AcP/ON C Data
A vy g vy ppaq
B.C
D.E
H.L
SP
PC mmmm mmmm +3- Program
X Memorv
Y
{ 32 mmmm
R l § qq mmmm + 1
PP mmmm + 2
mmmm + 3

LD (addr).,A

o

32 ppag

Store the Accumulator contents in the memory byte addressed directly by the second
and third bytes of the LD laddr).A instruction object code.

Suppose the Accumulator contains 3A1g. After the instruction
label EQU 084AH

LD {label). A
has executed, memory byte 084A1g will contain 3A16.

Remember that EQU is an assembler directive rather than an instruction? it tells the As-
sembler to use the 16-bit value 084AH whenever the word “label” appears.

The instruction
LD (addr).A
1s equivalent to the two instructions

LD H.label
LD {(HLLA

When you are storing a single data value in memory. the LD (label),A instruction is
preferred because it uses one instruction and three object program bytes to do what the
LD H{label), LD (HL),A combination does in two instructions and four object program
bytes. Also, the LD H{label), LD (HL),A combination uses the H and L registers, while the
LD (label),A instruction does not.

3-104

LD (addr),HL — STORE REGISTER PAIR OR INDEX
LD (addr),rp REGISTER IN MEMORY USING DIRECT
LD (addr),xy = ADDRESSING

S ZAcP/ON C Data

A — WY ppaq
B.C ya L XX ppag + 1
D.E yd 7
HL XX vy
SP
PC T Program
X Memory
Y
I ED mmmm
R l 01010011 | mmmm + 1
qq mmmm + 2
pp mmmm + 3

The illustration shows execution of LD (ppaq).DE:
LD (addr), rp
\‘V—/

g

ED 01 xx 0011 ppaq
L

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Store the contents of the specified register pair in memory. The third and fourth object
code bvtes give the address of the memory location where the low-order byte is to be
written. The high-order byte is written into the next sequential memory location.

Suppose the BC register pair contains 3C2A1g. After the instruction
label EQU 084AH

LD (label),BC

has executed. memory byte 084A1g will contain 2A1g. Memory byte 084B1g will con-
tain 3C1g.

Remember that EQU is an assembler directive rather than an instruction; it tells the As-
sembler to use the 16-bit value 084A15 whenever the word “label” appears.

LD (addr) HL
oyt S

22 'ppaq

This is a three-byte version of LD {addr).rp which directly specifies HL as the source
register pair.

3-105

LD f{addr X
ey S,

DD 22 ppag

Store the contents of Index register IX in memory. The third and fourth object code
bytes give the address of the memory location where the low-order byte is to be writ-
ten. The high-order byte is written into the next sequential memory location.

LD (addr)
—— g, o

i

FD 22 ppaq

This instruction is identical to the LD {addr).IX instruction. except that it uses the 1Y
register instead of the IX register.

3-106

LD (HL),data — LOAD IMMEDIATE INTO MEMORY
LD (IX+disp),data
LD (IY+disp),data

S Z AcP/ON C Data

A A} XX ppaq +d
8.C
DE
HL
SP
PC mmmm mmmm + 4 Program
X ppaq ’ Memory
Y
1 DD mmmm
R 36 mmmm + 1
ppqg +d — d mmmm + 2
N XX mmmm + 3

The illustration shows execution of LD {IX+d),xx:
LD (IX+disp).data
e e e o d
DD 36 d xx
Load Immediate into the Memory location designated by base relative addressing.
Suppose ppaq=54001g. After the instruction
LD {X+9),FAH
has executed. memory location 540914 will contain FA16.
LD {IY+displ.data
S— — SRy a———
FD 36 d xx

This instruction is identical to LD {IX+disp).data, but uses the |Y register instead of the
IX register.

LD (HL).data
S
36 XX

Load Immediate into the Memory location (specified by the contents of the HL register
pair).

The Load Immediate into Memory instructions are used much less than the Load Im-
mediate into Register instructions.

3-107

LD (HL),reg — LOAD MEMORY FROM REGISTER
LD (IX+disp).reg
LD (IY+disp).reg

S ZAcP/ON C Data
£ Memory
A Contents of A, B~ vy ppaq
8.C C D,E Horl
DE vy
HL [qq
sP
PC mmmm mmmm + 1 Program
X Memory
Y
i 01110xxx_| mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of LD {HL).reg:
LD (HL).reg
S——

01110 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Load memory location {specified by the contents of the HL register pair) from specified
register.

Suppose ppgq=45001g and Register C contains F916. After the instruction
LD (HLL.C
has executed, memory location 4560016 will contain F916.
w-i-disp)ﬂ

e
DD 01110 xxx d
same as for LD (HL}.reg

Load memory location (specified by the sum of the contents of the IX register and the

3-108

displacement value d) from specified register.

D {iY+disp).
L(Yg_@_p_)_rfg

FD 01110 %xx 4

same as for LD (HL).reg

This instruction is identical to LD (IX+disp).reg. except that it uses the 1Y register in-
stead of the IX register.

LD (rp),A— LOAD ACCUMULATOR INTO THE MEMORY
LOCATION ADDRESSED BY REGISTER PAIR

S ZAcP/ONC Data

A Yy -] Yy ppaq
B.C 1 BC or DE
DE) contain ppqq
H.L
SP
PC mmmm mmmm + 1 Program
1X Memory
Y
1 000x0010 | mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

LD {rplA

e -

0008’(‘0010

0O if register pair=BC
1 if register pair=DE
Store the Accumulator in the memory byte addressed by the BC or DE register parr.

Suppose the BC register pair contains 084A1¢ and the Accumulator contains 3A16.
After the instruction

LD (BCLA
has executed, memory byte 084A1g will contain 3A1g.

The LD (rp).A and LD rp,data will normally be used together, since the LD rp.data in-
struction loads a 16-bit address into the BC or DE registers as follows:

LD BC.084AH
LD (BC)LA

3-109

LDD — TRANSFER DATA BETWEEN MEMORY LOCATIONS,
DECREMENT DESTINATION AND SOURCE ADDRESSES

p
Set if BC-1 # 0, reset otherwise

S Z AcP/ON C Data
Memory
ppaq-1
A yv ppag
8.C 1t uu
DE " SS rrss-1
NHL pp qq vy ITSS
SP
PC mmmm Program
X Memory
1\
{ mmmm + 2 ED mmmm
; e 35—
mmmm + 2
mmmm + 3

LDD
\W‘

ED A8

Transfer a byte of data from memory location addressed by the HL register pair to
memory location addressed by the DE register pair. Decrement contents of register
pairs BC. DE, and HL.

Suppose register pair BC contains 004F 16, DE contains 454516, HL contains 201216,
and memory location 20121 contains 181g. After the instruction

LDD

has executed, memory location 454516 will contain 181g. register pair BC will contain
004E1g, DE will contain 464416, and HL wili contain 201116.

3-110

LDDR — TRANSFER DATA BETWEEN MEMORY
LOCATIONS UNTIL BYTE COUNTER IS
ZERO.DECREMENT DESTINATION AND
SOURCE ADDRESSES

LDDR
S,
ED B8
This instruction is identical to LDD, except that it is repeated until the BC register pair

contains zero. After each data transfer. interrupts will be recognized and two refresh cy-
cles will be executed.

Suppose we have the following contents in memory and register pairs:

Register/Contents Location/Contents

HL 201244 201216 1816
DE 454515 201118 AA1g
BC 00031g 201016 2516

After execution of
~ LDDR
register pairs and memory locations will have the following contents:

Register/Contents Location/Contents Location/Contents

HL 20091g 201216 1816 454516 1818
DE 454214 201116 AA1g 454416 AA1g
BC 00001¢ 20101 251¢ 454316 251g

This instruction is extremely useful for transferring blocks of data from one area of
memory to another.

3-111

LDI — TRANSFER DATA BETWEEN MEMORY
LOCATIONS.INCREMENT DESTINATION AND
SOURCE ADDRESSES

(" Set if BC-1 # 0, reset otherwise

S Z AcP/ON C @ Data
F_1 Jol fol |) Memorv

YY ppag
A ppag + 1
B.C tt uu
DE 11 Ss Yy rss

N L Bp aq

' ! !* rrss+ 1

ppag+ 1
PC mmmm Program
1X Memory
Y
i l ED mmmm

AO mmmm+ 1
mmmm + 2
mmmm + 3

LDI

e
ED AO

Transfer a byte of data from memory location addressed by the HL register pair to
memory location addressed by the DE register pair. Increment contents of register pairs
HL and DE. Decrement contents of the BC register pair.

Suppose register pair BC contains 004F1g, DE contains 464516, HL contains 201214,
and memory location 201216 contains 181p. After the instruction

LDI

has executed. memory location 454516 will contain 1816, register pair BC will contain
004E1g. DE will contain 454616, and HL will contain 201316.

3-112

LDIR — TRANSFER DATA BETWEEN MEMORY
LOCATIONS UNTIL BYTE COUNTER IS
ZERO.INCREMENT DESTINATION AND
SOURCE ADDRESSES

LDIR
N o
ED BO

This instruction is identical to LDI. except that it is repeated until the BC register pair
contains zero. After each data transfer. interrupts will be recognized and two refresh cy-
cles will be executed.

Suppose we have the following contents in memory and register pairs:

Register/Contents Location/Contents
HL 201276 201216 1816
DE 45451¢ 201316 CD1g
BC 000315 201416 FO15
After execution of
LDIR
register pairs and memory will have the following contents:
Register/Contents Location/Contents Location/Contents
HL 2015146 201216 181g 454516 181g
DE 454815 201316 CD1g 454615 CD1g
BC 00001g 20141 FO1g 454715 FO18

This instruction is extremely useful for transferring blocks of data from one area of
memory to another.

NEG — NEGATE CONTENTS OF ACCUMULATOR
S ZAcP/ON C

Data
PO IXExT 1 [x] Memary
A XX XX+ 1
B.C
DE
H.L
sSP
PC mmmm mmmm + 2 Program
IX Memory
Y
i ED mmmm
: — e -+
mmmm + 2
mmmm + 3

Negate contents of Accumulator. This is the same as subtracting contents of the Ac-
cumulator from zero. The result is the two's complement. 80H will be left unchanged.

Suppose xx=6A1g. After the instruction

NEG
has executed, the Accumulator will contain AB1g.
5A = 0101 1010
Two's complement = 1010 0110

3-113

NOP — NO OPERATION

S ZAcP/ON C Data
= -- Memory
A
B.C
DE
H.L
SP
PC mmmm mmmm + 1 Program
IX Memory
Y
| 00 mmmm
R mmmm + 1
mmmm + 2
mmmm+3

NOP
N

00

This 1s a one-byte instruction which performs no operation, except that the Program
Counter is incremented and memory refresh continues. This instruction is present for
several reasons:

1) A program error that fetches an object code from non-existent memory will fetch
00. It is a good idea to ensure that the most common program error will do nothing.

2) The NOP instruction allows vou to give a label to an object program byte:
HERE NOP

3) To fine-tune delay times. Each NOP instruction adds four clock cycles to a delay.

NOP is not a very useful or frequently used instruction.

3-114

OR data — OR IMMEDIATE WITH ACCUMULATOR

S ZAcP/ON C
FxIx]IxJofo]

A XX
B.C
DE
H.L

SP
PC mmmm mmmm + 2
IX
Y

' | —

xx OR yy.

OR data
—— e
F6 vy

Data
Memory

Program
Memory

F6

Yy

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

OR the Accumulator with the contents of the second instruction object code byte.

Suppose xx=3A1g. After the instruction
OR 7CH
has executed. the Accumulator will contain 7E1g.

3A = 0011 1010
7C = 0111 1100
0111t 1110

OsetsSto0 Six 1 bits. set P/O to 1

[—Non-zero result. setZto 0
This is a routine logical instruction: it is often used to turn bits “on". For example, the

instruction
OR 80H

will unconditionally set the high-order Accumulator bit to 1.

3-115

OR reg — OR REGISTER WITH ACCUMULATOR
S Z AcP/ON C

F

XX

Contents of A, B,

-@»C. D, E Horl

is vy

PC mmmm

mmmm + 1

OR reg
N s
10110 XXX

000 for reg=B

001 for reg=C

010 for reg=D

011 for reg=E

100 for reg=H

101 for reg=L

111 for reg=A

Data
Memory

Program
Memory

10110xxx

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Logically OR the contents of the Accumulator with the contents of Register A, B. C. D.
E. H or L. Store the result in the Accumulator.

Suppose xx=E31g and Register E contains A814. After the instruction

has executed, the Accumulator will contain EB16.

I

A8 =

1sets Stol

OR E
1110 0011
1010 1000
1110 1011

Six 1 bits, set P/O to 1

Non-zero result, set Z to 0

3-116

OR (HL) — OR MEMORY WITH ACCUMULATOR
OR (IX+disp)
OR (IY+disp)

S Z AcP/ON C Data

F XX o I0] Memory
A XX xx OR yy yy ppaq
B.C
D.E
HL pp qd
SP
PC mmmm mmmm + 1 Program
X Memory
Y
! B6 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of OR (HL):

OR (HL}
N~ o
B6

OR contents of memory location (specified by the contents of the HL register pair) with
the Accumulator.

Suppose xx=E316, ppaq=40001s. and memory location 40001g contains A81g. After
the instruction

OR (HL)
has executed. the Accumulator will contain EB1g.
E3 = 1110 0011
A8 = 1010 1000
1110 1011
1setsSto1 Six 1 bits, set P/0 to 1

Non-zero result, set Z to 0
OR (IX+disp)
N ——
DD B6 d

OR contents of memory location (specified by the sum of the contents of the 1X register
and the displacement vaiue d) with the Accumulator.

OR (IY+disp)
S et
FD B6 d

This instruction is identical to OR {(IX-+disp). except that it uses the IY register instead of
the IX register.

3-117

OUT (C),reg — OUTPUT FROM REGISTER

A
8.C
D.E
H.L
SP
PC
X
Y
[
R

S Z ACP/ON C

fITTTT]

,-——>r|/_o';iW|

mmmm

l________

OUT (Cl.reg
A o

ED 01

xxx 001

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Data
Memory
Register A, B, C,
D.E, HorlL
mmmm + 2 Program
Memory
ED
01xxx001

Suppose yy=1F1g and the contents of H are AA1g. After the execution of
OUT (CLH
AA1g will be in the buffer of I/0 port 1F186.

3-

118

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

OUTD — OUTPUT FROM MEMORY. DECREMENT ADDRESS

S Z AcP/ON C xx-1 Data

FlulxoTu 7] 1/0 port yy Memory
A | L—— ~ pPpaq

8.C XX '
D.E ; ppqa-1
H.L pp qq

SP
PC mmmm Program
4 mmmm + 2 Memory
Y
i ED mmmm
R AB mmmm + 1
mmmm + 2
mmmm+ 3

ouTD
e -
ED AB

Output from memory location specified by HL to I/Q port addressed by Register C.
Registers B and HL are decremented.

Suppose xx=0A16. vy=FF16, ppag=50001g. and memory location 50001g contains
7716. After the instruction

ouTD

has executed, 771g will be held in the buffer of 1/0 port FF16. The B register will con-
tain 0916, and the HL register pair 4FFF1q.

OTDR — OUTPUT FROM MEMORY. DECREMENT ADDRESS,
CONTINUE UNTIL REGISTER B=0 '

OTDR
\N
ED BB

OTDR is identical to OUTD. but is repeated until Register B contains 0.

Suppose Register B contains 031g, Register C contains FF16. and HL contains 50001.
Memory locations 4FFE1g through 500016 contain:

Location/Contents

4FFE1g CA1g
4FFF1g 1B1g
50001 Fl1g

After execution of
OTDR

register pair HL will contain 4FFD1g, Register B will contain zero, and the sequence
F116. 1B16. CA1g will have been written to 1/0 port FF16.

This instruction is very useful for transferring blocks of data from memory to output
devices.

3-119

OUTI — OUTPUT FROM MEMORY. INCREMENT ADDRESS

xx-1
S ZAcP/ON C Data

FllufxfuJult]] 1/0 port yy Memory
A ppaa
8.C XX /Yy -J
DE ppaq + 1
H.L’ pp qq
SP N
PC mmmm Program
IX mmmm + 2 Memory
1Y
i ED mmmm
R ‘ A3 mmmm + 1
mmmm + 2
mmmm + 3
ouTt
o
ED A3

Output from memory location specified by HL to 1/O port addressed by Register C.
Register B is decremented and the HL register pair is incremented.

Suppose xx=0A1g, yy=FF16. ppaq=560001g. and memory location 500016 contains
7716 After the instruction

OuTI

has executed, 771g will be held in the buffer of I/O port FF16. The B register will con-
tain 091 and the HL register pair will contain 500116,

OTIR — OUTPUT FROM MEMORY. INCREMENT ADDRESS,
CONTINUE UNTIL REGISTER B=0

OTIR
S
ED B3

OTIR is identical to OUTI. except that it is repeated until Register B contains 0.

Suppose Register B contains 041g. Register C contains FF16. and HL contains 500016.
Memory locations 50001g through 500316 contain:
Location/Contents

500016 CA1s
500116 1B16
50021 Bl1s
500316 AD1s

After execution of
OTIR

register pair HL will contain 50041, Register B will contain zero and the sequence
CA1g. 1B1g. B11g and AD1g will have been written to 1/0 port FF16.

This instruction is very useful for transferring blocks of data from memory to an output
device.

3-120

OUT (port),A— OUTPUT FROM ACCUMULATOR

S Z AcP/ON C Data

A
B.C
DE
HL

SP
PC mmmm mmmm + 2 Program
X Memaory
Y

i D3 mmmm

R - yv mmmm + 1
mmmm + 2
mmmm + 3

ouT {port). A

D3 %%

Output the contents of the Accumulator to the 1/0 port identified by the second OUT in-
struction object code byte.

Suppose 3616 1s held in the Accumulator. After the instruction
OUT (1AH)A
has executed, 3616 will be in the buffer of I/0 port 1A16.

The OUT instruction does not affect any statuses. Use of the OUT instruction is very
hardware-dependent. Valid /0 port addresses are determined by the way in which 1/0
logic has been implemented. It is also possible to design a microcomputer system that
accesses external logic using memory reference instructions with specific memory ad-
dresses. OUT instructions are frequently used in special ways to control microcomputer
logic external to the CPU.

3-121

POP rp — READ FROM THE TOP OF THE STACK
POP IX
POP IY

S Z AcP/ON C Data

j qq §SSS
A ’ 1 pp ssss + 1
8.C s88§ + 2
DE
HL
sSP SSSS &
PC mmmm mmmm + 1 Program
1% Memory
Y
! 71000001) mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
The illustration shows execution of POP BC.
POP
o~ oo~
11 xx 0001
00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is register pair A and F
POP the two top stack bytes into the designated register pair.
Suppose qq=0116 and pp=2A16. Execution of
POP HL
loads 0116 into the L register and 2A16 into the H register. Execution of the instruction
POP AF

loads 01 into the status flags and 2A1g into the Accumulator. Thus. the Carry status
will be set to 1 and other statuses will be cleared.

POP X
R N
DD E1
POP the two top stack bytes into the IX register.
POP Y
N
FD E1
POP the two top stack bytes into the IY register.

The POP instruction is most frequently used to restore register and status contents
which have been saved on the stack; for example. while servicing an interrupt.

3-122

PUSH rp — WRITE TO THE TOP OF THE STACK
PUSH IX

PUSH 1Y

S ZAcP/ON C Data

qq ssss-2
A pp ssss-1
B.C — ssss
DE
H.L
SP SSSS
PC mmmm mmmm + 2 Program
X Memory
Y ppag
! t: FD mmmm
R ES mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of PUSH 1Y
PUSH 1Y
R A —
FD E5
PUSH the contents of the IY register onto the top of the stack.
Suppose the 1Y register contains 45FF1g. Execution of the instruction
PUSH 1Y
loads 4516, then FF1g onto the top of the stack.
PUSH IX

A
DD EB
PUSH the contents of the IX register onto the top of the stack.
PUSH rp

11 xx 0101

00 for rp is register pair BC
01 for rp 1s register pair DE
10 for rp is register pair HL
11 for rp is register pair A and F

PUSH contents of designated register pair onto the top of the stack.
Execution of the instruction

PUSH AF
loads the Accumulator and then the status flags onto the top of the stack.

The PUSH instruction is most frequently used to save register and status contents; for
example, before servicing an interrupt.

3-123

RES b,reg — RESET INDICATED REGISTER BIT

S ZAcP/ON C Data
£ Memory
A YYYYYYYY
8.C ‘ .
D.E < J
HL
sP
PC mmmm mmmm + 2 Program
IX Memory
Y
1 C8 mmmm
R T0bbbxxx_§ mmmm + 1
mmmm + 2
mmmm + 3
RES b.reg

Bit bbb xxx Register
0 000 000 B
1 001 001 c
2 010 010 D
3 011 011 E
4 100 100 H
5 101 101 L
6 110 111 A

Reset indicated bit within specified register.
After the instruction
RES 6.H
has executed, bit 8 in Register H will be reset. (Bit 0 i1s the least significant bit)

3-124

RES b, (HL) — RESET BIT b OF INDICATED MEMORY POSITION
RES b, (IX-+disp)
RES b, (1Y +disp)

S ZAcP/ON C Data

A YYyyyyyv §ppaq+d
B.C
DE

H.L

sP

PC mmmm Program
X BPaq Memory
Iy

DD mmmm
R CcB mmmm + 1
d mmmm + 2
10bbb110 | mmmm +3
mmmm + 4

The illustration shows execution of SET b.{IX+disp). Bit 0 is execution of SET
b.{IX-+disp). Bit O is the least significant bit.

RES b.(IX+disp)

e .

DDCB d 10 bbb 110

bbb Bit Reset
000
001
010
on
100
101
110
1

Reset indicated bit within memory location indicated by the sum of Index Register IX
and d.

Suppose IX contains 411016, After the instruction
RES 0.1X+7)
has executed, bit O in memory location 41171 will be 0.
RES b,{IlY+disp)
—

N DL WN -0

FODCB d 10 bbb 110
S———
bbb is the same as in RES b, {IX+disp)
This instruction is identical to RES b, {IX+disp), except that it uses the IY register instead

3-125

of the IX register.
RES b.{HL)

——

CB 10 bbb 110

o

bbb 1s the same as in RES b.(IX+disp)
Reset ndicated bit within memory location indicated by HL.
Suppose HL contains 44444g. After execution of
RES 7.{HL)
bit 7 in memory location 44441 will be O.

RET — RETURN FROM SUBROUTINE

S ZAcP/ON C Data

’_{ qq XXXX
A pp XXXX + 1
8.C } XXXX + 2
DE
H.L
sP XXXX XXXX + 2
PC mmmm Program
X Memory
Y
i . C3] mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
RET
S——
C9

Move the contents of the top two stack bytes to the Program Counter: these two bytes
provide the address of the next instruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer by 2, to address the new top of stack.

Every subroutine must contain at least one Return (or conditional Return) instruction;

this is the last instruction executed within the subroutine. and causes execution to
return to the calling program.

3-126

RET cond — RETURN FROM SUBROUTINE IF CONDITION

IS SATISFIED

RET cond

e g,

11 xxx 000
000 NZ
001 Z
010 NC
011 C
100 PO
101 PE
110 P
111 M

Condition Relevant Flag
Non-Zero Z
Zero pA
Non-Carry C
Carry C
Parity Odd P/QO
Parity Even P/O
Sign Positive S
Sign Negative S

This instruction s identical to the RET instruction, except that the return is not ex-
ecuted unless the condition is satisfied: otherwise, the instruction sequentially follow-

ing the RET cond instruction will be executed.

Consider the instruction sequence:

CALL SUBR
AND 7CH<-\'

i
H
H
|
-]
: condition satisfied
|
7/

condition not
satisfied

OR 80H

:First subroutine instruction

After the RET cond is executed, if the condition is satisfied then execution returns to the
AND instruction which follows the CALL. If the condition 1s not satisfied. the OR in-
struction, being the next sequential instruction, is executed.

3-127

RETI — RETURN FROM INTERRUPT

S Z AcP/ON C Data

qaq XXXX
A pp XXXX + 1
8.C XXXX + 2
DE
HL
SP XXXX XXXX + 2
PC mmmm Program
X Memory
1Y
! ED mmmm
R 4D mmmm + !
mmmm + 2
mmmm + 3

RETI
e
ED 4D

Move the contents of the top two stack bytes to the Program Counter: these two bytes
provide the address of the next instruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer by 2. and address the new top of stack.

This instruction is used at the end of an interrupt service routine, and, in addition to
returning control to the interrupted program. it is used to signal an 1/0 device that the
interrupt routine has been completed. The 1/0 device must provide the logic necessary
to sense the instruction operation code: refer to An_Introduction to Microcom-
puters: Volume 2 for a description of how the RETI instruction operates with the Z80
family of devices.

3-128

RETN — RETURN FROM NON-MASKABLE INTERRUPT
S ZAGP/ON ¢

Data
F Memory
qaq mmmm
A 1 ep mmmm + 1
8.C mmmm + 2
D.E
HL
SP XXXX XXXX + 2
PC mmmm Program
1X Memory
Y
1 ED mmmm
3] l 45 mmmm + 1
mmmm + 2
mmmm + 3

RETN

-
ED 45

Move the contents of the top two stack bytes to the Program Counter: these two bytes
provide the address of the next instruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer by 2 to address the new top of stack.

Restore the interrupt enable logic to the state it had prior to the occurrence of the non-
maskable interrupt.

This instruction is Used at the end of a service routine for a non-maskable interrupt, and
causes execution to return to the program that was interrupted.

3-129

RL reg — ROTATE CONTENTS OF REGISTER LEFT

THROUGH CARRY

S ZAcP/ON

PC mmmm

The illustration shows execution of RL C.

RL reg
b and

CB 00010 xxx

o~

mmmm + 2

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Rotate contents of specified register left one bit through Carry.

Suppose D contains A91g and Carry=0. After the instruction

After

RL D
has executed, D will contain 521 and Carry will be 1:
Register D Carry

0 sets S to O~=at—
3 ones. set P/0O to O

3-130

Register D

70101001} [0 [01010010]

Data
Memory

Program
Memory

CcB

00010001

Carry

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Non-zero result, set Z to 0

RL (HL) — ROTATE CONTENTS OF MEMORY LOCATION

RL (IX+disp) LEFT THROUGH CARRY
RL (IY+disp)

{n-
S Z AcP/ON (Data
I3 Memory }
— T~ praa +d
A
B.C
D.E
HL
SP
PC mmmm mmmm + 4 Program
1X PPaq Memory
Y)
{ DD mmmm
R CB mmmm + 1
” d mmmm + 2
16 mmmm + 3
mmmm + 4

The illustration shows execution of RL (IX+disp):
RL (IX+disp)
o e and

DD CB 16

Rotate contents of memory location (specified by the sum of the contents of Index

Register IX and displacement integer d) left one bit through Carry.

Suppose the IX register contains 400016, memory location 40071g contains 2F1g. and

Carry is set to 1. After execution of the instruction
RL {IX+7)
memory location 40071g will contain 5F1g, and Carry is 0:

Before After
Memory Carry Memory Carry

00101111 [oror1i11] [0
N

0 sets S to Q=g
6 ones, set P/O to 1

RL (IY+disp)
‘V‘-/

FD CB d 16

Non-zero result, set Z to 0

This instruction 1s identical to RL (IX+disp), but uses the IY register instead of the IX

register.

3-131

RL (HL)
o
CB 16

Rotate contents of memory location (specified by the contents of the HL register pair)
left one bit through Carry.

RLA — ROTATE ACCUMULATOR LEFT THROUGH CARRY

S ZAcP/ON & Data
fCT o To] 3 Memory

PC mmmm mmmm + 1 Program
Memory
X
Y
| 17 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
RLA
N
17

Rotate Accumulator contents left one bit through Carry status.

Suppose the Accumulator contains 2A1g and the Carry status is set to 1. After the in-
struction

RLA
has executed. the Accumulator will contain F51g and the Carry status will be reset to 0:
Before After
Accumulator Carry Accumuiator Carry

01111010 11110101 [O]

3-132

RLC reg — ROTATE CONTENTS OF REGISTER LEFT CIRCULAR

-
S ZAcP/ON C Data
FEXIxlolx]o] e Memory
A

B.C
H.L |
sSP
PC mmmm mmmm + 2 Program
X Memory
Y
! l cB mmmm
R 00000011 fmmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of RLC E:

RLC reg

CB 000 00 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Rotate contents of specified register left one bit, copying bit 7 into Carry.
Suppose Register D contains A91g and Carry is 1. After execution of
RLC D
Register D will contain 5316 and Carry will be 1:
Before After
Register D Carry Register D Carry

10101001 [0107 0011
A

0 sets S to 0 =g—/ Non-zero result, set Z to 0
4 ones, set P/0 to 1

3-133

RLC (HL) —

FxIxTofxJof]

A
B.C
DE
HL
SP
PC
X
4

{

R

ROTATE CONTENTS OF MEMORY LOCATION
RLC (IX+disp) LEFT CIRCULAR
RLC (IY+disp)

S Z AcP/ON C

pp

ag

mmmm

e

The illustration shows execution of RLC (HL):

RLC (HUL)
Ve d

CB 06

Data
Memory
\— Hr—rea
mmmm + 2 Program
Memory
cB mmmm
06 mmmm + 1
mmmm + 2
mmmm + 3

Rotate contents of memory location (specified by the contents of the HL register pair)
left one bit, copving bit 7 into Carry.

Suppose register pair HL contains 54FF1g5. Memory location 54FF1g contains Ab1g.
and Carry 1s Q. After execution of

RLC {HL)

memory location 54FF1g will contain 4B1g. and Carry will be 1:

Before
Memory Carry

After

Memory

Carry

o] [o1oo7107i]

0 sets S to O g

4 ones, set P/O to 1

RLC (IX+disp)

ENA

DD CB d 06

Non-zero result, set Z 10 0

Rotate memory location (specified by the sum of the contents of Index register IX and
displacement integer d} left one bit, copying bit 7 into Carry.

Suppose the IX register contains 40001¢. Carry is 1. and memory location 40071 con-
tains 2F1g. After the instruction

RLC (X+7)

3-134

has executed. memory location 40071g will contain 5E16, and Carry will be 0:
Before After
Memory Carry Memory Carry

0010 1111 o1 1110l [0]
N

0 sets S to 0 -— Non-zero result, set Z to 0
5 ones, set P/O to 0

RLC (IY+disp)
A e e

AN

FD CB d 06

This instruction is identical to RLC (IX-+displ, but uses the IY register instead of the IX
register.

RLCA — ROTATE ACCUMULATOR LEFT CIRCULAR

-
S ZAcP/ON C Data
r L fo] Jol 4 Memory

A

B.C
D.E
H.L
SP :
PC mmmm mmmm + 1 Program *

X Memory
Y

{ 07 mmmm

R I mmmm + 1
mmmm + 2
mmmm + 3

RLCA
\W./

07
Rotate Accumulator contents left one bit. copying bit 7 into Carry.

Suppose the Accumulator contains 7A1g and the Carry status is set to 1. After the in-
struction

RLCA
has executed, the Accumulator will contain F41g and the Carry status will be reset to 0:
Accumulator Carry Accumulator Carry

o111 1010] [[iiioi00] [g

RLCA should be used as a logical instruction.

3-135

RLD — ROTATE ONE BCD DIGIT LEFT BETWEEN
THE ACCUMULATOR AND MEMORY LOCATION

S Z AcP/ON C Data

 CIXOIXIo] , g Memory

A X | v r ppaq
8.C
DE
HL PP qq
SP
PC mmmm mmmm + 2 Program
X Memory
tY
! ED mmmm
R v
6F mmmm + 1
mmmm + 2
mmmm + 3
RLD
\W.’
ED 6F

The four low-order bits of a memory location (specified by the contents of register pair
HL) are copied into the four high-order bits of the same memory location. The previous
contents of the four high-order bits of that memory location are copied into the four
low-order bits of the Accumulator. The previous four low-order bits of the Accumulator
are copied into the four low-order bits of the specified memory location.

Suppose the Accumulator contains 7F 16, HL register pair contains 400016, and memo-
rv location 40001g contains 121g. After execution of the instruction

RLD
the Accumulator will contain 7115 and memory location 400016 will contain 2F16:
Before After

Accumulator Memory Accumulator Memory
7 £ 1121 L7 T 1 1 (21El

high-order bit=0, set S to 0 -g— Non-zero result, set Z to 0
4 ones, set P/O to 1

3-136

RR reg — ROTATE CONTENTS OF REGISTER RIGHT THROUGH

CARRY
r q
S ZAcP/ON C Data
Memory
PC mmmm mmmm + 2 Program
X Memory
Iy
; cB mmmm
R 00011001 } mmmm + 1
mmmm + 2
mmmm + 3
The illustration shows execution of RR C:
B reg
CB 00011 xxx
Sy
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
Rotate contents of specified register right one bit through Carrv.
Suppose Register H contains OF 15 and Carry is set to 1. After the instruction
RR H
has executed, Register H will contain 871g, and Carry will be 1
Before After
Register H Carry Register H Carry
00001111 [[ooo0o0117]
A E A —
1setsS to 1 <a@—]-»Non-zero result, setZ to 0

4 ones. set P/0 to 1

3-137

RR (HL) — ROTATE CONTENTS OF MEMORY LOCATION

RIGHT THROUGH CARRY
RR (IX+disp)
RR (IY+disp)

iff—
S Z AcP/ON (Data
dEAEOEIE] Memory
B HHH
opaq +d
A
8.C
DE
HL
SP
PC mmmm mmmm + 4 Program
X Memory
Y ppag
(FD mmmm
R CB mmmm + 1
ppaq +d d mmmm + 2
1E mmmm + 3
mmmm + 4
The illustration shows execution of RR (IY+disp):
RR (IY+disg)
,}\\V[S‘
FD CB d 1E

Rotate contents of memory location {specified bv the sum of the contents of the 1Y
register and the displacement value d) right one bit through Carry.

Suppose the IY register contains 45001, memory location 460F1g contains 1D16. and

Carry is set to 0. After execution of the mstruction

RR {IY+OFH)
memory location 450F 1 will contain OE1g. and Carry will be 1.
Before After
Memory Carry Memory Carry

00011101] [0 [gooo1110]
~

0 sets S to O =@—
3 ones. set P/0Oto O

RR (IX-+disp)
R

DD CB d 1E

Non-zero result. set Z to 0

This instruction is identical to RR {IY-+displ, but uses the IX register instead of the 1Y

register.

3-138

RR (HL)

N, e
CB 1E

Rotate contents of memory location (specified by the contents of the HL register pair)
right one bit through Carry.

RRA — ROTATE ACCUMULATOR RIGHT THROUGH CARRY

S Z AcP/O N

Data
Memory
e
B.C
DE
HL
SP
PC mmmm Program
1X Memory
Y
r 1F mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
RRA
Sy~
1F

Rotate Accumulator contents right one bit through Carry status.

Suppose the Accumulator contains 7A16 and the Carry status is set to 1. After the in-
struction

RRA

has executed. the Accumulator will contain BD16 and the Carry status will be reset to
0:

Before After
Accumulator Carry Accumulator Carry

oo (9

3-139

RRC reg — ROTATE CONTENTS OF REGISTER RIGHT CIRCULAR

i}
S Z AcP/ON C Data
Memory
PC mmmm mmmm + 2 Program
X Memory
Y
! CB mmmm
R | 00001101 | mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of RRC L.
RRC reg
——

A

CB 00001 xxx

e~

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Rotate contents of specified register right one bit circularly, copying bit 0 into the Carry
status.

Suppose Register D contains A81g and Carry is 0. After execution of

RRC D
Register D will contain D41g. and Carry will be 1
Before After
Register D Carry Register D Carry

O [1oioi09]
e

1 sets S to 1w l—>Non-zero result. set Z to 0
4 ones. set P/O to 1

3-140

RRC (HL) — ROTATE CONTENTS OF MEMORY LOCATION

RRC (IX+disp) RIGHT CIRCULAR
RRC (IY+disp)

S ZAGP/ON C

Data
F XTI IXTe 3 Memory

: [e

ppaq
B.C
A
H,L] pp qaq
Sp
PC mmmm mmmm + 2 Program
X Memory
Iy
I CB mmmm
R OE mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of RRC (HL):
RRC {HL)
N— oy’

CB OE

Rotate contents of memory location (specified by the contents of the HL register pair)

right one bit circularly, copying bit O into the Carry status.

Suppose the HL register pair contains 450016, memory location 450016 contains

3416. and Carry is set to 1. After execution of

RRC (HL)
memory location 450016 will contain 1A1g, and Carry will be 0:
Before After
Memory Carry Memory Carry

00110100 (0607110701 [0]
Nwassrmn, v’

0 sets S to 0 g LNon-zero result. setZ to 0

3 ones, set P/0 to 0
RRC (IX+disp)

DD CB d O

Rotate contents of memory location (specified by the sum of the contents of the IX

3-141

register and the displacement value d) right one bit circularly. copying bit 0 into the Ca-
rry status.

RRC (IY+disp)

FD CB d O

This instruction is identical to the RRC (IX+disp) instruction, but uses the IY register in-
stead of the IX register.

RRCA — ROTATE ACCUMULATOR RIGHT CIRCULAR

e
Z AcP/ON C A Data
) Memory
PC mmmm mmmm + 1 Program
IX Memory
Y
i OF mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

RRCA
S o’
OF

Rotate Accumulator contents right one bit circularly, copyving bit O into the Carry status.

Suppose the Accumulator contains 7A1g and the Carry status is set to 1. After the in-
struction

RRCA

has executed, the Accumulator will contain 3D1g and the Carry status will be reset to
0:
Before After
Accumulator Carry Accumulator Carry

[goi1iio1] [@

RRCA should be used as a logical instruction.

3-142

RRD — ROTATE ONE BCD DIGIT RIGHT BETWEEN THE
ACCUMULATOR AND MEMORY LOCATION

S Z AcP/ON C Data
FxIxjofxjo] | (Mermory
A x |V r | s Yppaq
B.C {
DE 7
HL pp qaq
SP
PC mmmm Program
X Memory
Y
! ED mmmm
R 67 mmmm + 1
: mmmm + 2
mmmm + 3
RRD
N~
ED 67

The four high-order bits of a memory location (specified by the contents of register pair
HL) are copied into the four low-order bits of the same memory focation. The previous
contents of the four low-order bits are copied into the four low-order bits of the Ac-
cumulator. The previous four low-order bits of the Accumulator are copied into the four
high-order bits of the specified memory location.

Suppose the Accumulator contains 7F16. HL register pair contains 400016. and memo-
ry location 400016 contains 121g. After execution of the instruction

RRD
the Accumulator will contain 721g and memory location 400016 will contain F11g:
Before After
Accumulator Memory Accumulator Memory
7 E 112 |_7?2]]F]1l
\) \&/ A
\\\ :‘(’//
High-order bit=0. set S to 0 -#— "-> Non-zero result,
4 ones, set P/0 to 1 setZto 0

3-143

RST n— RESTART
S ZAcP/ON C Data

mm + 1 PPaa-2
A mm ppag-1
8.C ppad
DE
HL
SP ppaqg
PC mmmm Program
X Memory
Y e
{ 0000000000xxx000 11%xx 111] mmmm
R l mmmm + 1
mmmm + 2
mmmm + 3

BST 5

TT xxx 111
Call the subroutine origined at the low memory address specified by n.
When the instruction
RST 18H

has executed. the subroutine origined at memory location 00181¢ is called. The pre-
vious Program Counter contents are pushed to the top of the stack.

Usually, the RST instruction is used in conjunction with interrupt processing, as de-
scribed in Chapter 12.

If your application does not use all RST instruction codes to service SUBROUTINE
interrupts, do not overfook the possibility of calling subroutines CALL USING
using RST instructions. Origin frequently used subroutines at ap- RST

propriate RST addresses. and these subroutines can be called with
a single-byte RST instruction instead of a three-byte CALL instruction.

SBC A,data — SUBTRACT IMMEDIATE DATA FROM
ACCUMULATOR WITH BORROW

S Z ACP/ON C

Data
F Il @ Memory
A XX
B.C
DE
HL
sP
PC mmmm mmmm + 2 Program
1X Memory
Y
b l DE mmmm
R ~— vy mmmm + 1
mmmm + 2
mmmm + 3
SBC A, data
e s and

DE vy

Subtract the contents of the second object code byte and the Carry status from the Ac-
cumulator.

Suppose xx=3A1g and Carry=1. After the instruction

SBC A.7CH
has executed. the Accumulator will contain BD1g.

3A 0011 1010
Twos comp of 7C 1000 0100
Twos comp of Carry 1111 1111

17011 1101
1setsSto1l t LNon-zero result. set Z to 0
Borrow, set C to 1 Borrow. set Ac to 1

-t
1+ 1=0, set P/O to 0 Subtract instruction, set N to 1

[|

The Carry flag is set to 1 for a borrow and reset to 0 if there is no borrow.

3-145

SBC A,reg — SUBTRACT REGISTER WITH BORROW
FROM ACCUMULATOR

S Z AcP/ON C Data
FXIxIx]x] IX] Memory
A XX
BC Contents of A, B,
DE C.D.EHorlL
HL i5 Yy
Sp
PC mmmm mmmm + 1 Program
X Memory
1Y
! 7001 1xxx_jj mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

SBC A, reg
o
10011 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Subtract the contents of the specified register and the Carry status from the Accumula-
tor.

Suppose xx=E31g, Register E contains AO1g. and Carry=1. After the instruction

SBC AE
has executed. the Accumulator will contain 4216.
E3 = 1110 0011
Two's compof AO = 0110 0000
Twoscompof1 = 1111 1111
0100 0010
OsetsSto0 %U LNon-zero result, set Z to 0
No barrow, set C to O No borrow. set Ac to 0
L
14-1=0, set P/O to 0 Subtract instruction, set N to 1

The Carry flag is set to 1 for a borrow and reset to 0 if there is no borrow.

3-146

SBC A, (HL) — SUBTRACT MEMORY AND CARRY FROM
SBC A, (IX+disp) ACCUMULATOR
SBC A, (IY+disp)

S Z AcP/ON C

Data
FOXDXXTXTTX Mermory
A XX xx-yy-C vy ppag
B.C
D.E
HL pp qq
SP
PC mmmm mmmm + 1 Program
X Memory
Y
| 9E mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SBC A, {HL):
SBC A.(HL)

—— ——

9E

Subtract the contents of memory location {specified by the contents of the HL register
pair) and the Carry from the Accumulator.

Suppose Carry=0. ppgq=40001g, xx=3A16, and memory location 400016 contains
7C16. After execution of the instruction

SBC A, {HL)
the Accumulator will contain BE1g.
3A = 0011 1010
Two'scompof 7C = 1000 0100
Two's comp of Carry = 0

14011 1110
1setsSto1l U LNon-zero result. set Z to 0
Borrow. set C to 1 LBOI’I’OW. set Ac to 1
o5

0+ 0=0, set P/O to 0 Subtract instruction, set N to 1
The Carry flag is set to 1 for a borrow and reset to 0 if there is no borrow.
SBC A, {(IX+disp)
D Vo RSN

DD 9e d

Subtract the contents of memory location (specified by the sum of the contents of the
IX register and the displacement value d) and the Carry from the Accumulator.

SBC A.(Y+disp)
N g

P

FD SE d

This instruction is identical to the SBC A, (IX-+disp} instruction, except that it uses the IY
register instead of the IX register.

3-147

SBC HL,rp — SUBTRACT REGISTER PAIR WITH CARRY
FROM H AND L

S Z ACP/ON C

Data
13 Memory
A
B.C BC, DE, HL or SP
D.E contains yyyy
HL XX XX
SP
PC mmmm mmmm + 2 Program
1X Memory
Y
: ED mmmm
R 01xx0010 fmmmm + 1
mmmm + 2
mmmm + 3

SBC HL. rp

it
01 xx 0010

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp 1s Stack Pointer

Subtract the contents of the designated register pair and the Carry status from the HL
register pair.

Suppose HL contains F4A216, BC contains A03416, and Carry=0. After the instruction

SBC HL.BC
has executed, the HL register pair will contain 546E14:

Two's comp of F4A2
Two's comp of AQ34
Two's comp of Carry

1111 0100 1010 0010
0101 1111 1100 1100
0

0401 0100 0110 1110

L

OsetsSto0 $ Non-zero result, setZ to 0

No borrow. set C to O L
S

No borrow.

<id
1% 1=0,5etP/O 100 Subtract instruction.set N to 1
The Carry flag 1s set to 1 for a borrow and reset to O if there is no borrow.

3-148

SCF — SET CARRY FLAG
S ZAcP/ON C ’

Data
E Memory
A
B,C
D.E
H.L
SP
PC mmmm mmmm + 1 Program
X Memory
Y
{ 37 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
SCF
——
37

When the SCF instruction is executed. the Carry status is set to 1 regardless of its pre-
vious value. No other statuses or register contents are affected.

3-149

SET b,reg — SET INDICATED REGISTER BIT

S ZAcP/ON C Data
F Memory
A
B8.C
D.E f C
HL YYYY YYYY
SpP
PC mmmim mmmm + 2 Program
X Memory
4
! CB mmmm
R ‘ 11bbbxxx § mmmm + 1
) mmmm + 2
mmmm + 3
SET b.reg
CB 11bbb xxx
—— ——
Bit bbb xxx Register
0 000 000 B
1 001 001 C
2 010 010 D
3 011 oM E
4 100 100 H
5 101 101 L
6 110 111 A
7 1M
SET indicated bit within specified register. After the instruction
SET 2.L

has executed, bit 2 in Register L will be set. (Bit 0 is the least significant bit.)

3-150

SET b,(HL) — SET BIT b OF INDICATED MEMORY POSITION
SET b, (IX+disp)
SET b, (IY+disp)

S ZAcP/ON C

Data
CIILITD CO—pm
A YYYY yyvy | ppag
B.C
D.E
HL PP aq’
SpP
PC mmmm mmmm + 2 Program
X Memory
Y
! CB mmmm
R l T1bbb110 ¥ mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SET b,{HL). Bit O is the least significant bit.
SET b,(HL)
—— | —

ANy

CB 11 bbb 110

S

Bit Set bbb
000
001
010
011
100
101
110
111

Set indicated bit within memory location indicated by HL.

NOTHAWN O

Suppose HL contains 40001g. After the instruction
SET 5.{HL)
has executed, bit 5 in memory position 40001g will be 1.
SET b, {IX+disp)

e,
DD CB d 11 bbb 110

o

bbb is the same as in SET b,(HL)

Set indicated bit within memory location indicated by the sum of Index Register IX and
displacement.

3-151

Suppose Index Register IX contains 400014. After execution of
SET 6.(X+5H)

bit 6 in memory location 400516 will be 1.
SET b.{(Y-+disp)

e, e,
FD CB d 11 bbb 110
bbb is the same as in SET b,{HL)

This instruction is identical to SET b, {IX+disp}, except that it uses the IY register instead
of the IX register.

SLA reg — SHIFT CONTENTS OF REGISTER LEFT ARITHMETIC

S ZAcP/ON d Data
F ﬂﬂl‘ Memory

A
€ EF-H—I-—i—i—i—F s
D.E
H.L |
SP
PC mmmm mmmm + 2 Program
X Memorv
Y
! cB mmmm
R ‘ 00100001 | mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SLA C:
L8 e

CB 00100 xxx

S——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Shift contents of specified register left one bit, resetting the least significant bit to 0.
Suppose Register B contains 1F1g, and Carry=1. After execution of

SLA B
Register B will contain 3E1g and Carry will be zero.

3-162

Before After
Register B Carry Register B Carry

ROTTTTTo] (O
N, ——

~—» Non-zero resuit, set Z to 0

O sets S to 0 «g—
5 ones. set P/0 to 0

SLA (HL) — SHIFT CONTENTS OF MEMORY LOCATION

SLA (IX+disp) LEFT ARITHMETIC
SLA (IY+disp)

0
S Z AcP/ON C O Data

Memo
-~ vy
A L (M
BC 111l ppaa
D.E ’
H.L pp g9
SP
PC mmmm mmmm + 2 Program
X Memory
Y
| CB mmmm
R 26 mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SLA {HL):
SLA {HL)
N’

CB 26

Shift contents of memory location (specified by the contents of the HL register pair) left
one bit, resetting the least significant bit to 0.

Suppose the HL register pair contains 450016, memory location 450016 contains
8416, and Carry=0. After execution of

SLA {HL)
memory location 450016 will contain 0896, and Carry will be 1.
Memory Carry Memory Carry

10000100] [i] [90001000]
e,

0 sets S to 0 <@— LbNon-zero result, set Z to 0
1 one, set P/0 to O

3-153

SLA (IX+disp!

DB CB d 26

Shift contents of memory location (specified by the sum of the contents of the IX
register and the displacement value d} left one bit arithmetically, resetting least signifi-
cant bit to 0.

SLA {IY+disp)
FD CB d 26

This instruction is identical to SLA {IX+disp). but uses the IY register instead of the IX
register.

SRA reg — ARITHMETIC SHIFT RIGHT CONTENTS OF

REGISTER

S Z AcP/ON C Data

- Memory

Program

Memory

| cB mmmm

R | 00101111 | mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SRA A:
SRA reg

CB 00101 xxx
e

000 for reg=8
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Shift specified register right one bit. Most significant bit is unchanged.

Suppose Register H contains 5916, and Carry=0. After the instruction
SRA H

has executed, Register H will contain 2C1g and Carry will be 1.

3-154

Before After
Register H C Register H

c
01017001] [0] [00107100]
N, et

0 sets S to 0 =g~ L&Non-zero result, setZ to 0
3 ones, set P/O to 0
SRA (HL) — ARITHMETIC SHIFT RIGHT CONTENTS OF

SRA (IX+disp) MEMORY POSITION
SRA (IY+disp)

v rasrrere <
S Z AcP/ON Data
FAXIXJOX]O]V] Memory

A
B.C ppag +d
DE
H.L
SP
PC mmmm Program
1X PPaq . Memory
4
{ DD mmmm
R CB mmmm + 1
> d mmmm + 2
2E mmmm + 3
mmmm + 4

The illustration shows execution of SRA (IX+disp)
SRA {(IX+disp)
Nt A

DD CB 2E

Shift contents of memory location (specified by the sum of the contents of Register IX
and the displacement value d) right. Most significant bit is unchanged.

Suppose Register IX contains 340016, memory location 34AA1g contains 2716. and
Carry=1. After execution of

SRA (IX+0AAH)
memory location 34AA1g will contain 131g, and Carry will be 1.

Before After
Memory Carry Memory Carry

001007111 [co0T100717)
e e g

0 sets S to O <g——rq/ I-—-ﬂ»Non-zero result, setZ to 0
3 ones. set P/0 to 0

3-1565

SRA {IY-+disp)
Nt o’

FD CB 2E

This instruction is identical to SRA (IX+disp). but uses the IY register instead of the IX
register.

SRA (HL)
e
CB 2E

Shift contents of memory location {specified by the contents of the HL register pair)
right one bit. Most significant bit is unchanged.

SRL reg — SHIFT CONTENTS OF REGISTER RIGHT

LOGICAL
- — D
S ZAcP/ON C Data
[1 : Memory
PC mmmm mmmm + 2 Program
X Memory
Y
i CB mmmm
R 00111011 Immmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SRL E:

SRL reg
—— Sa——

CB 00111 xxx
N

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Shift contents of specified register right one bit. Most significant bit is reset to 0.
Suppose Register D contains 1F1g, and Carry=0. After execution of

SRL D
Register D will contain OF1g. and Carry will be 1.

3-156

Before After

Register D Carry Register D Carry
00011111 [0 [0000 11711
N, v’
4 ones, set P/0 to 1 L»Non-zero result, setZ to 0

SRL (HL) — SHIFT CONTENTS OF MEMORY LOCATION
SRL (IX+disp) RIGHT LOGICAL
SRL {IY+disp)

S ZACP/ON C Data

FlodxjofxJof | Memory
A T poag
B.C
D.E
HL pp 99
SP
PC mmmm mmmm + 2 Program
IX Memory
Y
! CB
R 3E mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SRL (HL):
SRL {HL)
N—

CB 3E

Shift contents of memory location (specified by the contents of the HL register pair)
right one bit. Most significant bit is reset to 0.

Suppose the HL register pair contains 200016, memory location 200016 contains 8F1g.
and Carry=0. After execution of

SRL (HL)
memory location 200016 will contain 4716, and Carry will be 1.
Before After
Memory Carry Memory Carry

10001111 [0} 010001731
N, e’

4 ones, setP/O to 1 l—> Non-zero result, set Z to 0
SRL {IX+disp)

DD CB d 3E

Shift contents of memory location (specified by the sum of the contents of the IX
register and the displacement value d) right one bit. Most significant bit is reset to 0.

3-167

SRL (IY+disp)
RN eaiihur aud

A

FO DB d 3E

This instruction is identical to SRL {IX+disp), but uses the 1Y register instead of the IX

register.

SUB data — SUBTRACT IMMEDIATE FROM ACCUMULATOR

S ZAcP/ON C
 CAEIESEI NN ER

A XX XX-YyY
B,C
D.E
HL

SP
PC mmmm mmmm + 2
IX
Y

: —

SUB data

D6 vy

Subtract the contents of the second object code byte from the Accumulator.

Suppose xx=3A1g. After the instruction
SUB 7CH
has executed, the Accumulator will contain BE16.

3A 0011 1010
Two's comp of 7C 1000 0100

1|O11 1110

([}

1setsStol

Data
Memory

Program
Memory

D6

- Yy

Borrow, set C to 1 J t——Borrow, setAc to 1
=

P
0%0=0,setP/Q 100 Subtract instruction, set N to 1

Notice that the resulting carry is complemented.

3-158

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

U LNon-zero result, set Z to 0

SUB reg — SUBTRACT REGISTER FROM ACCUMULATOR

S ZAcP/ON C Data
FRAXIXIX] 1]X] @ Memory

A XX
B.C Contents of A, B. C,
0.k D, E . HorlLisvy
H.L
SP
PC mmmm mmmm + 1 Program
1X Memory
Iy
{ 10010xxx_fmmmm
R mmmm + 1
mmmm + 2
mmmm + 3
SuB reg
S ——
10010 XXX
G o
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
Subtract the contents of the specified register from the Accumuiator.
Suppose xx=E3 and Register H contains AO1g. After execution of
SUB H
the Accumulator will contain 4316.
E3 = 1110 0011
Twoscompof AO = 0110 0000
01100 0011
Osets S to 0 LLNon-zero result, set Z to 0
No borrow. set C to 0 No borrow. set Ac to 0
V>
1% 1=0, set P/O to 0 Subtract instruction, set N to 1

Notice that the resulting carry is complemented.

3-159

SUB (HL) — SUBTRACT MEMORY FROM ACCUMULATOR
SUB (IX+disp)
SUB (IY +disp)

S Z AcP/ON C Data

F Memory

A X% XX-yy vy ppaq +d
B8.C
DE
HL
SP
PC mmmm Program
X Ppaq Memory
Y
! DD mmmm
R ’ 96 mmmm + 1
d mmmm + 2

mmmm + 3

The illustration shows execution of SUB (IX+d):
SUB (IX-+disp)
N g -’

DD 96 d

Subtract contents of memory location (specified by the sum of the contents of the IX
register and the displacement vaiue d) from the Accumulator.

Suppose ppaq=40001g. xx=FF1g. and memorv location 40FF1g contains 5016. After
execution of

SUB {IX+OFFH)
the Accumulator will contain AF1g6.
FF = 1111 1111
Two's compof 50 = 1011 000
1010 1111

1setsStol U’ LNon-zero result, set Z to O
Ng borrow, set C to 0 No borrow. set Ac to 0
P

P

1% 1=0, setP/Oto 0 Subtract instruction, set N to 1
Notice that the resulting carry is complemented.

SUB ({IY-+disp)
Nty S~

FD 96 d

This instruction is identical to SUB (IX+displ, except that it uses the Y register instead
of the IX register.

SUB (HL}
S
96

Subtract contents of memory location {specified by the contents of the HL register pair)
from the Accumulator.

3-160

XOR data — EXCLUSIVE-OR IMMEDIATE WITH ACCUMULATOR
S ZAcP/ON C

Data
FRxirIxfo]o]

Memory
A XX XX Myy
B.C
D.E
HL
SP
PC mmmm mmmm + 2 Program
1X Memory
Y
! EE mmmm
R | — vy mmmm + 1
mmmm + 2
mmmm + 3
XOR data
S—— ~—r—
EE vy

Exclusive-OR the contents of the second object code byte with the Accumulator.
Suppose xx=3A1g. After the instruction

XOR 7CH

has executed, the Accumulator will contain 4616.

3A = 0011 1010
7C = 0111 1100

0100 0110

OsetsSto0 Non-zero result, set Z to 0

Three 1 bits, set P/O to 0
The Exclusive-OR mnstruction is used to test for changes in bit status.

3-161

XOR reg — EXCLUSIVE-OR REGISTER WITH ACCUMULATOR

S ZAcP/ON C

s CIXIXIE0)
A)
8.C Contents of A, B,
. C.D,E HorlL
DE is yy
H.L
Sl
PC mmmm mmmm + 1
X
Y
i
R
XOR reg
10101 XXX

Sa——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Data
Memory

Program
Memory

10101xxx

Exclusive-OR the contents of the specified register with the Accumulator.
Suppose xx=E31g and Register E contains A01g. After the nstruction

has executed, the Accumulator will contain 4316.

E3
AO

OsetsSto0

XOR E
1110 0011
1010 0000

0100 0011

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Non-zero result, set Z to 0

Three 1 bits, set P/O to O
The Exclusive-OR instruction is used to test for changes in bit status.

3-162

XOR (HL) — EXCLUSIVE-OR MEMORY WITH ACCUMULATOR
XOR (IX+disp)

XOR (IY+disp)
S Z AcP/ON C

Data
E » n“m Memory
A XX XXV yY Yy ppaqg +d
B.C
DE
H.L
SP
PC mmmm Program
X ppaq Memory
Y
| DD mmmm
R — AE mmmm + 1
> d mmmm + 2
= mmmm + 3

The illustration shows execution of XOR (IX+disp):
XOR (IX+disp)
N

e

DD AE d

Exclusive-OR contents of memory location (specified by the sum of the contents of the
IX register and the displacement value d) with the Accumulator.

Suppose xx=E316. ppaq=450016, and memory location 46FF1g contains AO1g. After
the instruction

XOR {(IX+0FFH)
has executed. the Accumulator will contain 431g.
E3 = 1110 0011

A0 = 1010 0000
0100 0011

OsetsSto0 Non-zero result, setZ to 0

Three 1 bits, set P/O to 0
XOR (IY+disp)
NG S

FD AE d

This instruction is identical to XOR (IX+disp), except that it uses the IY register instead
of the IX register.

XOR (HL)
e e’
AE

Exclusive-OR contents of memory location (specified by the contents of the HL register
pair) with the Accumulator.

3-163

8080A/280 COMPATIBILITY

Although the 280 microprocessor can certainly be used on 8080A/280
its own merits, one of its important characteristics is its COMPATIBILITY
compatibility with the 8080A microprocessor. This com- FEATURES

patibility has the following features:

1) Al 8080A machine language instructions are also Z80 machine language instruc-

tions.
2) All 8080A registers are also Z80 registers (see Table 3-6).

3) Almost all 8080A programs will run on a Z80. with some minor differences to be

noted later.

4) The Z80 has instructions. registers, and other features not present on the 8080A,

so Z80 programs will not generally run on 8080A processors.

Note that this compatibility does not extend to assembly 8080A/Z80
language source statements since Z80 assemblers and 8080A ASSEMBLY
assemblers use different operation code mnemonics. Table 3-7 LEVEL
contains a list of the 8080A mnemonic codes and the corres- CONVERSION
ponding Z80 codes, while Table 3-8 is the same list organized

by Z80 codes.

Readers should note the binary coding limitations that this com- 8080A
patibility places on the extra features of the Z80 microprocessor. UNUSED
The 8080A has some unused operation codes (see Table 3-9) that OPERATION
are used for some of the Z80's extra instructions. But there are CODES
simply not enough such codes to cover the large number of

features in a simple form.

Thus. many of the added Z80 instructions require a 2-byte opera- 2-BYTE

tion code. The first byte 1s CB, DD. ED, or FD. Note the following OPERATION
meanings of these codes from Table 3-9: CODES

CB — a register or bit operation
DD — an operation involving register IX

ED — a miscellaneous non-8080A instruction not covered elsewhere

FD — an operation involving register 1Y

The second byte of the operation code describes the actual operation to be performed.

The end result is that these multi-byte instructions execute rather jFASTER AND
slowly {and use more memory) because an additional memory |SLOWER
access is required. The reader should be aware of this variation in EXECUTING
execution times and try to use faster executing instructions when INSTRUCTIONS

possible. This warning particularly applies to the extra shift

instructions (RLC, RRC, RL. RR. SRA. SRL) and to instructions involving the index

registers IX and Y.

There are a few minor incompatibilities between the 8080A/Z80
8080A and the Z80. These are: INCOMPATIBILITIES

1) The Z80 uses the P (or P/0) flag to indicate twos com-

2)

plement overflow after arithmetic operations. The 8080A always uses this flag for
parity.

The Z80 and 8080A execute the DAA instruction differently. On the Z80, this in-
struction will correct decimal subtraction as well as decimal addition. On the
8080A. it will correct only decimal addition.

The Z80 rotate instructions clear the Ac flag. The 8080A rotate instructions do
not affect the Ac flag.

3-164

Table 3-6. Register and Flag Correspondence between

Z80 and 8080A

A

TIXIMMMMQUOO®®E»

Z80 Register Pairs

280 Register 8080A Register

A
None
8
None
c
None
D
None
E
None
Least Significant Half of PSW
None
H
None
None
None
None
L
None
None
PC
SP

8080A Register Pairs

BC B
DE D
HL H
AF PSW
Z80 Flags 8080A Flags
C (Carry} C (Carryi
H {Half-Carry) AC {Auxiliary Cany)
N {Subtract} None
P/Q {Parity/COverflow) P (Parityj
S {Signj S {Sign)
Z (Zero} Z {Zero}
The 280 is not compatible with the extra features of 8085/280
the 8086 microprocessor. The codes used for RIM and INCOMPATIBILITIES
SIM on the 8085 are used for relative jumps {NZ and NC) on
the Z80.
Instruction timings on the 8080A, 8085, and Z80 all TIMING
differ. Programs that depend on precise instruction tim- INCOMPATIBILITIES

ings will therefore execute properly only on the pro-
cessor for which they were written.

The N flag on the Z80 occupies bit 2 of the F register; the corresponding bit in the

Processor Status Word of the 8080A is always a logic ‘1'.

3-165

Table 3-7 Correspondence between 8080A and 280 Mnemonics

8080A Mnemonic

280 Mnemonic

8080A Mnemonic

280 Mnemonic

ACl
ADC
ADD
AD!
ANA
ANI
CALL
cC
M
CMA
cMC
CMP
CNC
CNZ
cpP
CPE
CPI
CPO
cz
DAA
DAD
DCR
DCX
DI

El
HLT

INR
INX
JC
™M
JmP
JNC
P

JPE
JPO
Nra
LDA
LDAX

data
reg or M
reg or M
data
reg or M
data
addr
addr
addr

rag or M
addr
addr
addr
addr
data
addr
addr

]
reg or M
™

ADC
ADC
ADD
ADD
AND
AND
CALL
CALL
CALL
cPL
CCF
cP
CALL
CALL
CALL
CALL
CP
CALL
CALL
DAA
ADD
DEC
DEC
Di

Et
HALT

INC
INC
JP
JP
Je
JP
JP
JP
JP
JP
JP
[Ra]
LD

A data

A,reg or (HL)
Areg or {HL)
A data

rag or (HL)
data

addr

C.addr
M.addr

rag or (HL)
NC.addr
NZ,addr
P.addr
PE.addr
data
PO.addr
Z,addr

HL.mp
reg or (HL)
m

Alport)
reg or {HL)
™

C.addr
M,addr
addr
NC,addr
P,addr
NZ,addr
PE.addr
PO.addr
Z,addr

A {addr)
A(BC) or (DE)

LHLD
LXI
MoV
MoV
mvi
NOP
ORA
ORi
out
PCHL
POP
PUSH
RAL
RAR
RC
RET
RLC
RM
ANC
RNZ
RP
RPE
RPO
RRC
RST
RZ
sBB
SBi
SHLD
SPHL
STA
STAX
sTC
sus
Sut
XCHG
XRA
XRI
XTHL

addr
rp,data16
reg.reg or M
reg or Mreg
reg or M.data

reg of M
data
port

pr
pr

reg or M
data
addr

addr
BorD

reg or M
data

reg or M
data

NOP
OR
OR

JP

PUSH
RLA
RRA
RET
RET
RLCA
RET
RET
RET
RET
RET
RET
RRCA
RST
RET
SBC
S8C
LD
Lo
o
Lo

sus
SuB
EX
XOR
XOR
EX

HL (addr)
rp,datal6
reg,reg or (HL)
reg or (HLlreg
reg or {HL),data

reg or (HL
data
{portLA
{HL}

pr

pr

M
NC
NZ
P

PE
PO

n

Z

A.reg or (HL}
A data
{addr},HL
SPHL
{addr),A

{BC) or {DELA

rag or (HL)
data
DEHL

reg or (HL)
data
{SPLHL

3-166

Table 3-8. Correspondence between Z80 and 8080A Mnemonics

Z80 Mnemonic

8080A Mnemonic

Z80 Mnemonic

8080A Mnemonic

ADC Adats
ADC A(HL)
ADC A reg

ADC Afxy + disp)
ADC HL.m

ADD A.data
ADD AfHL)
ADD Areg

ADD Afxy + disp}
ADD HLrp

ADD X.pp

ADD Y.er

AND data

AND {HL)

AND reg

AND (xy + disp}
BIT b,(HL}

8iT b.reg

BIT b(xy + disp)
CALL addr

CALL C.addr
CALL M.addr
CALL NC.addr
CALL NZ.addr
CALL P.addr
CALL PE.addr
CALL PO,addr
CALL Zaddr
CCF

ce data

cP {HL}

cp reg

cP {xy + disp)
CcPD

CPDR

CcPi

CPIR

CPL

DAA

DEC {HL)

DEC reg

DEC P

DEC Xy

DEC (xy + disp)
Di

DJINZ disp

Ei

EX AF.AF
EX DEHL
EX (SPLHL
EX {SPLxy
EXX

HALT

M m

IN A fporti
IN reg.{C)
INC (HL}
INC reg

ACH data
ADC M
ADC reg
ADI data
ADD M
ADD reg
bap ™
AN} data
ANA M
ANA reg
CALL addr
[addr
™ addr
CNC addr
CNz addr
ol addr
CPE addr
CPO addr
cz addr
cMC

CPI data
CMP M
CMP reg
CMA

DAA

DCR M
DCR reg
DCX m

DI

El

XCHG

XTHL

HLT

N port
INR M
INR reg

INC [}

INC Xy

INC (xy + disp)
IND

INDR

N

INIR

JP addr

JP C.addr
Jp (HL}

JP M.addr
JP NC.addr
JP NZ.,addr
JP £,addr
JP PE.addr
Je PO,addr
JP Z.addr
JP Xy

JR C.disp
JR disp

JR NC.disp
JR NZ.disp
JR 2Z.disp
LD A (addr)

Lo A,(BC) or (DE)
LD Al

LD AR

LD (addr},A

LD {addr},BC or DE
LD {addr).HL

LD {addr),SP

LD {addr),xy

LD (BC) or {DELA
Lo BC or DE{addr}
LD HL {addr)

LD (HL).data

[1s] {HL).reg
Lo LA

LD RA

LD reg.data
LD reg,(HL)
Lo reg,reg

LD reg,(xy + disp)
LD rp.data16

Lo SP {addr)
LD SPHL
LD SP.xy

LD xy,data16

LD xy,{addr)

[Rs] {xy + displdata
LD {xy + dispireg
LDD

LDDR

L0

LDIR

NEG

NOP

OR data

INX m
JMP addr
JC addr
PCHL

JM addr
JNC addr
JINZ addr
JP addr
JPE addr
JPO addr
Jz addr
LDA addr
LDAX BorD
STA addr
SHLD addr
STAX BorD
LHLD addr
Mvi M.data
MOV Mureg

Mvi reg,data
MOV regM
MOV reg,reg

LXI rp,data16

— indicates that there is no corresponding mstruction.

3-167

Table 3-8. Correspondence between Z80 and 8080A Mnemonics {Continued)

280 Mnemonic

8080A Mnemonic

280 Mnemonic

8080A Mnemonic

OR
OR
OR
OTDR
OTIR
ouT
ouT
OuTD
ouTt
POP
POP
PUSH
PUSH
RES
RES
RES
RET
RET
RET
RET
RET
RET
RET
RET
RET
RET!
RETN
RL
AL
RL
RLA
ALC
RLC
RLC
RLCA
RLD

{HL)
reg
{xy + disp}

{Creg
{portlA

xy

b{HL)

b.reg

bixy + disp}

C
M
NC
NZ
P
PE
PO
z

{HU
reg
{xy + displ

(HL)
reg
{xv + disp}

QUT port

POP pr

PUSH pr

RNC

RR
RR
RR
RRA
RRC
RRC
RRC
RRCA
RRD
RST
SBC
SBC
SBC
SBC
$SBC
SCF
SET
SET
SET
SLA
SLA
SLA
SRA
SRA
SRA
SRL
SRL
SRL
suB
sus
sus
sus
XOR
XOR
XOR
XOR

(HL)
reg
{xy + disp}

{HL}
reg
{xv + disp}

n

A data

A (HL}

Areg

Ajxy + displ
HLmD

b,{HL)
b.reg

bixy + disp}
{HL)

reg

{xy + disp}
(HL)

reg

{xy + disp}
{HL)

reg

{xy + disp}
data

{HL)

reg

(xy + disp}
data

{HL)

reg

{xy + disp}

suB

XRA
XRA

data

reg

data

reg

data

reg

— indicates that there i1s no corresponding instruction

3-168

Table 3-9. Unused 8080A Operation Codes and Their Z80 Meanings

8080A Operation Code

280 Use

08
10
18
20 (RIM on 8085}
28
30 (SIM on 8085}
38
CcB
o]
DD
ED

FD

BIT, RES, RL, RLC. RR. RRC, SET, SLA, SRA, SRL

All instructions nvolving Register 1X.

EX AF.AF
DJUNZ disp
JR disp

JR NZ disp
JR Z.disp

JR NC.disp
JR C disp
EXX

ADC HLrmp
CPD

CPDR

CPI

CPIR

M m

N reg,(C}
IND

INDR

NI

INIR

Lo
LD
13}
Lo
LD
LD
LDD
LDDR
LDI
LDIR

Al NEG
AR OTDR
{addrlrp OTIR
LA QUT (Clreg
RA ouTD
rpladdr) QUTI

RETI

RETN

RLD

RRD

SBC HLrp

All instructions mvolving Register 1Y.

3-169

ZILOG Z80 ASSEMBLER CONVENTIONS

The standard 280 assembler is available from Z80 manufacturers and on the major

time-sharing networks; it is also part of most development systems. Cross assem-

bler versions are available for most large computers and many minicomputers.

ASSEMBLER FIELD STRUCTURE

The assembly language instructions have the standard field structure (see Table

2-1). The required delimiters are:

1) A colon after a label, except for the pseudo-operations EQU, DEFL, and
MACRO, which require a space.

2) A space after the operation code.

3) A comma between operands in the operand field. (Remember this onel)

4) A semicolon before a comment.

5) Parentheses around memory references.

Typical Z80 assembly language instructions are:

START: LD A.(1000) ;GET LENGTH
ADD HL.DE
HALT

LABELS

The assembler allows six characters in labels; the first character must be a letter,
while subsequent characters must be letters, numbers, ?, or the underbar
character (). We will use only capital letters or numbers, although some versions
of the assembler allow lower-case letters and other symbols.

RESERVED NAMES

Some names are reserved as keywords and should not be used by the program-
mer. These are the register names (A, B, C, D, E, H, L, |, R), the double register
names (XX, 1Y, SP), the register names (AF, BC, DE, HL, AF’, BC’, DE’, HL'), and
the states of the four testable flags (C, NC, Z, NZ, M, P, PE, PO).

PSEUDO-OPERATIONS

The assembler has the following basic pseudo-operations:

DEFB - DEFINE BYTE
DEFL - DEFINE LABEL
DEFM - DEFINE STRING
DEFS - DEFINE STORAGE
DEFW - DEFINE WORD
END - END

EQU - EQUATE

ORG - ORIGIN

DEFB, DEFM, and DEFW are the Data pseudo-operations used to DEFB,DEFM,
place data in ROM. DEFB is used for 8-bit data, DEFW for 16-bit DEFW

data. and DEFM for ASCII strings (63 or less characters long). The PSEUDO-
only unusual feature to remember s that DEFW stores the eight OPERATIONS
least significant bits of data in the first word and the eight most
significant bits in the second word. This is the standard 8080A/8085/Z80 procedure for
storing addresses in memory, but is contrary to normal practice. You must be aware of
the order when storing 16-bit data.

3-170

Note that DEFB and DEFW define the value of only a single byte or single word. respec-
tively. Establishing a table of values requires a series of DEFB or DEFW pseudo-opera-
tions. one for each byte or word of data.

Examples:

ADDR: DEFW 3165H

results in (ADDR) = 65, and (ADDR+1) = 31 (hexadecimal).

TCONV: DEFB 32

This pseudo-operation places the number 32 in the next byte of ROM and assigns the
name TCONV to the address of that byte.

ERROR: DEFM 'ERROR’
This pseudo-operation places the 7-bit ASCll characters E. R R. Q. and R in the next five
bytes of ROM and assigns the name ERROR to the address of the first byte.

OPERS: DEFW FADD

DEFW FSUB
DEFW FMUL
DEFW FDIV

This series of pseudo-operations places the addresses FADD. FSUB. FMUL, and FDIV In
the next eight bytes of memory and assigns the name OPERS to the address of the first
bvte. Note that the first byte contains the least significant bits of address FADD.

DEFS is the Reserve pseudo-operation used to assign locations in DEFS

RAM: it allocates a specified number of bytes. PSEUDO-
OPERATION

EQU is the Equate or Define pseudo-operation used to assign EQU

values to names. PSEUDO-
OPERATION

DEFL s similar to EQU, except that DEFL allows the name to be DEFL

redefined later. DEFL is much like the SET directive in other as- PSEUDO-

semblers. It should only be used to define assembly time variables OPERATION

li.e.. those variables used in conditional assembly or conditional

macro expansion statements).

ORG is the standard Origin pseudo-operation. ORG

280 . PSEUDO-

programs usually have several origins; the origins are used as
follows: OPERATION

1) To specify the RESET address (usually zero).

2) Tospecify interrupt entry points (usually 0 to 6616 but may be anywhere in memo-
ry.

3) To specify the starting address of the main program.

4) To specify the starting addresses of subroutines.

5) To define areas for RAM storage.

6) To define an area for the RAM Stack.

7} To specify addresses used for 1/0 ports and special functions.

3-171

Examples:

RESET EQU 0

ORG RESET
This sequence places the RESET instruction sequence in memory beginning at address
0.

INT1 EQU 38H
ORG INT1

The instruction sequence that follows is stored in memory beginning at location 3814

END simply marks the end of the assembly Ianguage program. END

The special purpose pseudo-operations COND. MACRO., ENDC. gii:z%'ON
and ENDM are described later in this chapter.

LABELS WITH PSEUDO-OPERATIONS

The rules and recommendations for labels with 280 pseudo-operations are as
follows:

1) EQU, DEFL, and MACRO require labels, since the function of these pseudo-opera-
tions is to define the meaning of that label.
2) DEFB. DEFM. DEFW, and DEFS usually have labels.

3) ORG., COND. ENDC. ENDM, and END should not have labels, since the meaning of
such labels 1s unclear.

ADDRESSES

The Zilog Z80 assembler allows entries in the address field in any | NUMBERS AND

of the following forms: CHARACTERS
IN ADDRESS

1) Decimal (the default casel FIELD

Example: 1247

2) Hexadecimal (must start with a digit and end with an H)
Examples: 142CH. OE7H

3) Octal (must end with O or Q. but Q is far less confusing)
Example: 1247Q or 12470

4) Binary (must end with B)
Example: 10010010001118

&) ASCI {enclosed in single quotation marks)
Example: "HERE'

6) As an offset from the Program Counter ($)
Example: $+237H

All anithmetic and logic operations within an address field assume ASSEMBLER
all arguments are 16-bit data; they produce 16-bit results. These | ARITHMETIC
operations are allowed as part of expressions in the address field. AND LOGICAL
OPERATIONS

When defining address constants, hexadecimal notation should
be used. Binary constants of 16 bits are unwieldy and hence error-
prone. Octal constants are inconvenient due to the fact that addresses are stored in
low-order byte high-order byte format. This division occurs in the middle of an octal
digit, which causes you to have to split a digit. For example. to express the address
9D7FH or 116577Q in low-high format you get 7F9DH or 77236Q. As you can see, in
hexadecimal notation the digits are simply transposed, while no such simple relation-
ship exists for octal notation.

3-172

OPERATOR FUNCTION PRIORITY
+ UNARY PLUS 1
- UNARY MINUS 1
NOT. or \ LOGICAL NOT 1
.RES. RESULT 1
b EXPONENTIATION 2
" MULTIPLICATION 3
/ DIVISION 3
.MOD. MODULO 3
.SHR. LOGICAL SHIFT RIGHT 3
.SHL. LOGICAL SHIFT LEFT 3
+ ADDITION 4
- SUBTRACTION 4
-AND. or & LOGICAL AND 5
OR. or LOGICAL OR 6
.XOR. LOGICAL XOR 6
EQ.or = EQUALS 7
.GT. or > GREATER THAN 7
LT or < LESS THAN 7
UGT. UNSIGNED GREATER THAN 7
JULT. UNSIGNED LESS THAN 7

In address expressions with more than one operator. the order of evaluation 1s defined
by the priorities given in the list above. Operators having the same priorities are evalu-
ated from left to right. Expressions in parentheses are evaluated first. Remember that
enclosing an expression entirely in parentheses indicates a memory address.

Note the following:

1

2)

3)

4)

The Result operator (.RES.) causes overflow to be suppressed: 1.e., a change in sign
caused by overflow into the sign bit does not result in an assembler error.

The shifts have the form:

.SHR. opl.op2
.SHL. op1l.,0p2

where op1 is the number to be shifted and op2 is the number of shifts. The shifts
are logical. i.e.. zeros are shifted into the high-order or low-order bits. respectively.
The comparison operators produce a result of either logical True {all ones) or logical
False (zero).

The operators .GT. and .LT. assume signed twos complement numbers, whereas
JUGT. and .ULT. assume unsigned operands. This means that, for .GT. and AT,
positive twos complement numbers are larger than negative twos complement
numbers. while the opposite is the case for .UGT. and .ULT.

3-173

CONDITIONAL ASSEMBLY

The 280 assembler has a simple conditional assembly COND AND
capability based on the pseudo-operations COND and ENDC. ENDC
COND s followed by an expression, for example: PSEUDO-

COND BASE - 1000H OPERATIONS
or
COND BASE - OPER1

If the expression is not zero. the assembler includes all of the instructions up to the
ENDC pseudo-operation in the program. if the expression s zero, the assembler ignores
all instructions between COND and ENDC.

We will not use conditional assemblies or refer to this capability again: it 1s sometimes
handy for adding or eliminating debugging instructions. or configuring unique versions
of a common program.

MACROS

The standard Z80 assembler has a macro capability that MACRO AND
assigns names to instruction sequences. Use the pseudo-opera- ENDM

tion MACRO to begin the definition and ENDM to end 1it. The PSEUDO-
macro may have parameters and may include any assembly OPERATIONS

language instructions except the definitions of other macros.

The macro capability is often a convenient programming shorthand, but we will not use
1t

Note that mstruction sequences defined by macros are generally quite short; they
should not exceed ten or fifteen instructions. Longer sequences should be made into
subroutines to conserve memory space.

Every MACRO pseudo-operation must have a label: the label is the name with which
vou identify the macro. For a discussion of this subject. see Chapter 2.

3-174

Chapter 4
SIMPLE PROGRAMS

The only way to learn assembly language programming is to write assembly
language programs. That is what we will do for the next six chapters, which con-
tain examples of typical microprocessor tasks. Problems at the end of each
chapter contain variations on the examples given in the text of the chapter. You
should try to run the examples on a Z80-based microcomputer system to ensure
that you understand the material covered in the chapter.

In this chapter we begin with some very simple programs.

GENERAL FORMAT OF EXAMPLES

Each program example contains the following parts: EXAMPLE
1) A title that describes the general problem. FORMAT

2) A statement of purpose which describes the specific task that
the program performs, plus the memory locations that it uses.

3} A sample problem showing input data and results.

4) A flowchart if the program logic is complex.

B) The source program or assembly language listing of the program.

6) The object program or hexadecimal machine language listing of the program.

7) Explanatory notes that discuss the instructions and methods used in the program.

The problems at the end of the chapter are similar to the examples; problems
should be programmed on a Z80-based microcomputer system using the examples
as guidelines.

The source programs in the examples have been constructed as follows:

1) Standard Zilog Z80 assembler notation is used. as sum- GUIDELINES
marized in Chapter 3. FOR
EXAMPLES

2) The forms in which data and addresses appear are selected for
clarity rather than for consistency. We use hexadecimal num-
bers for memory addresses, instruction codes. and BCD data: decimal for numeric
constants: binary for logical masks; and ASCH for characters.

3) Frequently used instructions and programming techniques are emphasized.

4) Examples illustrate tasks that microprocessors perform in communications, instru-
mentation. computer, business equipment, industrial. and military applications.

5) Detailed comments are included.

6) Simple and clear structures are emphasized. but programs are as efficient as possi-
ble within this guideline. The notes often describe more efficient procedures.

7) Programs use consistent memory allocations. Each program starts in memory loca-
tion 0000 (the RESET location) and ends with the HALT instruction. If your

microcomputer has no monitor and no interrupts, you may prefer to end programs
with an endless loop instruction, e.g.:

HERE: JR HERE

The hexadecimal version is 18 followed by FE. You may replace the HALT or JR
HERE instruction with a RESTART or JP instruction that transfers control back to
the monitor in some Z80-based microcomputers.

Consult the user's manual for your microcomputer to determine the required memory
allocations and terminating instruction for your particular system.

GUIDELINES FOR PROBLEMS

When tackling the problems at the end of each chapter, try PROGRANMMING
to work within the following guidelines: GUIDELINES

1)

2)

3)
4)

5)
6)
7

8)

9)

Comment each program so that others can understand it.

The comments can be brief and ungrammatical: they

should explain the purpose of a section or instruction in the program. Comments
should not describe the operation of instructions; that description is available in
manuals. You do not have to comment each statement or explain the obvious. You
may follow the format of the examples but provide less detail.

Emphasize clarity, simplicity, and good structure in programs. While programs
should be reasonably efficient, do not worry about saving a single byte of program
memory or a few microseconds.

Make programs reasonably general. Do not confuse parameters {such as the num-

ber of elements in an array) with fixed constants (such as or ASCH C).

Never assume fixed initial values for parameters, i.e.. use an instruction to load an
initial value into a parameter.

Use assembler notation as shown in the examples and defined in Chapter 3.
Use hexadecimal notation for addresses. Use the clearest possible form for data.

If your microcomputer allows it, start all programs in memory location 0000 and
use memory locations starting with 004016 for data and temporary storage. Other-
wise, establish equivalent addresses for your microcomputer and use them consis-
tently. Again, consult the user's manual.

Use meaningful names for labels and variables. e.g.. SUM or CHECK rather than X.
Y. orZ

Execute each program on your microcomputer. There is no other way of ensuring
that your program is correct. We have provided sample data with each problem. Be
sure that the program works for special cases.

We now summarize some useful information that you should keep in mind when
writing programs.

Almost all processing instructions (e.g.. ADD. SUBTRACT. USING THE
AND. OR} use the Accumulator. In most cases you will oad ACCUMULATOR

data into the Accumulator with LD. using either LD A.(addr) to

load data from any memory location or using LD A,(HL) to load
data from the address specified in Registers H and L. Remember that the parentheses
indicate a memory address rather than data.

The preferred method of accessing memory is using implied ad- USING
dressing via Registers H and L. that s, using {HL). This code causes REGISTER
the Z80 to perform a memory access using the address stored in PAIR HL

Registers H and L. You can use LD HL. data16 to load a fixed num-

ber into Registers H and L or LD HL.{addr) to load the contents of two successive memo-
ry locations into H and L. You can use INC HL or DEC HL to increment or decrement {by
1) the address in Registers H and L.

The 8-bit arithmetic and logical operations all use the data in the Accumulator as one of
their operands and place their result into the Accumulator.

Some of the 8-bit arithmetic and logical operations have special § SPECIAL
uses, for example: INSTRUCTIONS

SUB A {or XOR A) clears the Accumulator.

ADD A A shifts the Accumuiator feft one bit logically. This instruction also multiplies
the contents of the Accumulator by 2. AND A (or OR A) clears the Carry flag while
preserving the contents of the Accumulator.

A logical AND can mask off parts of a word. The required mask has "1’ bits in the posi-
tions that you want to reserve and ‘0’ bits in the positions that vou want to clear.

PROGRAM EXAMPLES
Ones Compiement

Purpose: Logically complement the contents of memory location 0040 and place the
result into memory location 0041,

Sample Problem:

(0040) = 6A
Result: (0041) = 95
Source Program:
LD A,(40H) :GET DATA
CPL ;COMPLEMENT
LD (41H).A ;STORE RESULT
HALT
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) {Mnemonic)
0000 3A LD A, (40H)
0001 40
0002 00
0003 2F CPL
0004 32 LD @1H),A
0005 41
0006 00
0007 76 HALT

The LD A.{addr) and LD (addr).A instructions contain addresses to determine the source
or destination of the data. The addresses are 16 bits long. with the eight least signifi-
cant bits in the word immediately following the instruction code and the eight most sig-
nificant bits in the next word (this order is contrary to normal computer practice). CPL is
a one-word instruction that inverts each bit of the Accumulator. it replaces each ‘0’
with a ‘1" and each "1" with a ‘0", just like a set of inverter gates.

HALT is used to end all the examples.

Note that we could afso place an address into Registers H and L and then use that ad-
dress throughout the program. This is shown in the following program.

4-3

Source Program:

LD HL,40H :POINT TO OPERAND

LD A.(HL) :GET DATA

CPL :COMPLEMENT

INC HL :POINT TO DESTINATION

LD (HL)LA ;STORE RESULT

HALT

Object Program:
Memory Address Memory Contents Instruction

(Hex) (Hex) {Mnemonic)
0000 21 LD HL.40H
0001 40
0002 00
0003 7E LD A, (HL)
0004 2F CPL
0005 23 INC HL
0006 77 LD (HL).A
0007 76 HALT

Which version do you think is better?

The two versions require the same number of bytes of memory even though the second
version is two instructions longer. This is because the second version uses fewer ex-
plicit addresses.

8-Bit Addition

Purpose: Add the contents of memory locations 0040 and 0041, and place the result
into memory location 0042.

Sample Problem:

(0040) = 38

{0041) = 2B
Result: (0042) = 63

Source Program:

LD A, {40H) :GET FIRST OPERAND
LD B.A :SAVE FIRST OPERAND
LD A, [41H) :GET SECOND OPERAND
ADD A.B :ADD OPERANDS
LD ({42H),A :STORE SUM

HALT

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 3A LD A, {40H)
0001 40
0002 00
0003 47 LD B.A
0004 3A LD A (41H)
0005 41
0006 40
0007 80 ADD AB
0008 32 LD {42H).A
0003 42
000A 00
0008 76 HALT

Here again. we could alternatively use Registers H and L as the source for all addresses.
Source Program:

LD HL.40H
LD A, (HL) :GET FIRST OPERAND
INC HL
ADD A, (HL) ;ADD SECOND OPERAND
INC HL
LD HL).A :STORE RESULT
HALT
Object Program:

Memory Address Memory Contents Instruction
(Hex) {Hex) {(Mnemonic)
0000 21 LD HL.40H
0001 40
0002 00
0003 7E LD A, (HL)
0004 23 INC HL
0005 86 ADD A (HL)
0006 23 INC HL
0007 77 LD (HL). A
0008 76 HALT

In this case, the program using Registers H and L is shorter than the one using direct
addressing. Why?

LD HL.40H loads the contents of the following two words of program memory into
Register Pair HL. The first word goes into Register L, the second into Register H.

The code (HL) means that data is obtained from or sent to the memory location ad-
dressed by Registers H and L. Thus, LD A, {HL} loads the Accumulator with the contents
of the addressed memory location; LD (HL),A loads the addressed memory location with
the contents of the Accumulator. ADD A,(HL) adds the contents of the location ad-
dressed by HL to the contents of the Accumulator. Remember that H and L contain a
16-bit address, but the memory location with that address contains eight bits of data.
Note the difference between ADD A,{HL) and ADD AH or ADD AL

INC HL performs a 16-bit increment in one instruction cycle. The CPU doesn’t use the
8-bit arithmetic unit for the increment; it uses the incrementer that 1t normally uses to
increment the 16-bit Program Counter.

LD A.(HL) and LD (HL).A are preferable to LD A.(addr) and LD (addr).A whenever you
use the same memory location repeatedly or use adjacent locations, because LD A.(HL)
and LD (HU).A require less program memory and time. Note. however. that you must
load Registers H and L before you can use (HL).

Shift Left One Bit

Purpose: Shift the contents of memory location 0040 left one bit and place the result
into memory location 0041. Clear the empty bit position. This type of shift is
known as a logical shift. In a logical shift, a value of zero is always shifted in.

Sample Problem:

(0040} = 6F
Result: (0041) = DE
Source Program:
LD A, (40H) :GET DATA
ADD AA ‘SHIFT LEFT
LD 41HLA :STORE RESULT
HALT
Object Program:
Memory Address Memory Contents Instruction
{Hex) (Hex) (Mnemonic)
0000 3A LD A, {40H)
0001 40
0002 00
0003 87 ADD AA
0004 32 LD {41H)LA
0005 41
0006 00
0007 76 HALT

ADD A.A simply adds the contents of the Accumulator to itself. The result, of course, is
twice the original data. which is the same result that a logical left shift would produce.
The least significant bit of the result is zero, since 0+0 = 1+1 =0: 1+1 also produces a
Carry to the next bit.

Alternatively, we could replace ADD AA with SLA A, certainly the more obvious
choice. However. SLA A requires two words of program memory and eight clock cycles.
while ADD A.A requires one word of program memory and four clock cycles. The
difference is caused by the fact that SLA A is one of the extra instructions added to the
original 8080A set {remember the comparison presented earlier).

Mask Off Most Significant Four Bits

Purpose: Place the least significant four bits of memory location 0040 into the least
significant four bits of memory location 0041. Clear the most significant four
bits of memory location 0041.

Sample Problem:
(0040)
Resuft: (0041}

3D
0D

4-6

Source Program:

LD A.(40H) ;GET DATA
AND 000011118 ‘MASK 4 LSB'S
LD {41H).A :STORE RESULT
HALT

Note: B means binary in standard Z80 assembler notation.
Object Program:

Memory Address Memory Contents Instruction

. {Hex) (Hex) {(Mnemonic)
0000 3A LD A, (40H}
0001 40
0002 00
0003 E6 AND 000011118
0004 OF
0005 32 LD @1H)L.A
0006 41
0007 00
0008 76 HALT

The mask (00001111) i1s written in binary to make its function clearer to the reader. Bin-
ary notation for masks is generally much clearer than hexadecimal notation, although
the results are the same. Hexadecimal notation should be used for masks longer than
four bits. The comments should explain the masking operation.

When the argument in the address field is a number. AND logically ANDs the contents
of the Accumulator with the contents of the word of program memory immediately
following the instruction. AND may be used to clear bits that are not in use. The four
least significant bits could be an input from a switch or an output to a numeric display.
Clear a Memory Location

Purpose: Clear memory location 0040.

Source Program:

suB A

LD {40H).A :CLEAR LOCATION 40

HALT

Object Program:
Memory Address Memory Contents Instruction

(Hex) (Hex) (Mnemonic)
0000 97 suB A
0001 32 LD (40H),A
0002 40
0003 00
0004 76 HALT

SUB A subtracts the number in the Accumulator from itself. The result is to clear the
Accumulator. SUB A. XOR A. or LD A.0 can all clear the Accumulator. LD A0 takes
more time and memory but doesn’t affect the status flags.

Word Disassembly

Purpose: Divide the contents of memorv location 0040 into two 4-bit sections and
store them in memory locations 0041 and 0042. Place the four most signifi-
cant bits of memory location 0040 into the four least significant bit positions

4.7

of memory location 0041: place the four least significant bits of memory
location 0040 into the four least significant bit positions of memory location
0042. Clear the four most significant bit positions of memory locations 0041

and 0042.
Sample Problem:
(0040) = 3F
Result: {0041} = 03
{0042) = OF
Source Program:
LD HL.40H
LD A {HL) \GET DATA
LD B.A
RRA -SHIFT DATA RIGHT 4 TIMES
RRA
RRA
RRA
AND 00001111B :MASK OFF MSB'S
INC HL
LD (HL)L.A :STORE MSB'S
LD AB :RESTORE ORIGINAL DATA
AND 000011118 :MASK OFF LSB'S
INC HL
LD (HLLA :STORE LSB'S
HALT
Object Program:

Memory Address Memory Contents Instruction
{Hex) {Hex) (Mnemonic}
0000 21 LD HL.40H
0001 40
0002 00
0003 7E LD A, (HL)
0004 47 LD B.A
0005 1F RRA
0006 1F RRA
0007 1F RRA
0008 1F RRA
0009 E6 AND 000011118
000A OF
0008 23 INC HL
000C 77 LD (HL).A
000D 78 LD AB
000E E6 AND 00001111B
000F OF
0010 23 INC HL
0011 77 Lb (HL)L.A
0012 76 HALT

Instructions using the address in Registers H and L occupy only one word of program
memory. However, HL must be loaded before the address can be used. Thus, implied
memory addressing saves time and memory, as compared to direct memory addressing.
only when the program repeatedly uses the same address or consecutive addresses.

RRC shifts the Accumulator right one bit circular, with the least significant bit going to
the most significant bit position and to the Carry. Shifting the Accumulator right four
times requires four RRCs. We could use SRL A to provide a logical shift directly (no final
AND would then be necessary). However, SRL A requires twice as much time and
memory as RRC. Try substituting SRL A for RRC and see the difference. Another alter-
native would be to use the RLD instruction to replace both the mask and the store.
However. this solution i1s not optimal in terms of either storage or execution speed due
to the constraint that the high-order nibble of each result must equal zero.

Many Z80 instructions affect a pair of 8-bit registers. The pairs are HL {H and L), DE (D
and E). and BC (B and C). Registers B. D. and H are the most significant eight bits of the
pairs: Registers C, E. and L are the least significant eight bits. The common instructions
that use pairs of registers are LD rp (Load Register Pair). INC rp {increment Register
Pair), DEC rp (Decrement Register Pair, and ADD HL.rp {Add Register Pair to H and L.

Find Larger of Two Numbers

Purpose: Place the larger of the contents of memory locations 0040 and 0041 into
memory location 0042. Assume that the contents of memory locations 0040
and 0041 are unsigned binary numbers.

Sample Problems:

a. (0040) = 3F
(0041) = 2B
Result: {(0042) = 3F
b. (0040) = 75
(0041) = A8
Result: (0042) = A8
Source Program:
LD HL.40H
LD A, (HL) :GET FIRST OPERAND
INC HL
cpP (HL) :IS SECOND OPERAND LARGER?
JR C.DONE
LD A (HL) ;YES, GET SECOND QPERAND INSTEAD
DONE: INC HL
LD (HL)LA :STORE LARGER OPERAND
HALT
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.,40H
0001 40
0002 00
0003 7E LD A (HL)
0004 23 INC HL
0005. BE CcpP {HL)
0006 30 JR NC.DONE
0007 01
0008 7€ LD A (HL)
0009 23 DONE: INC HL
000A 77 LD {HL)L.A
0008 76 HALT

4.9

CP (HL) sets the flags as if the contents of the memory location addressed by H and L
had been subtracted from the contents of the Accumulator. However, the contents of
the Accumulator are left unchanged for later comparisons or other processing.

If A is the contents of the Accumulator and X is the second operand for a CP instruc-
tion. then the flags are set as follows:

1 Zero=1ifA= X
Zero=0if A# X
2) Carry=1ifA<X
Carry=0if A > X
(A, X are unsigned binary numbers}

CP sets the Carry to 1 if a borrow would be necessary to actually perform the subtrac-
tion. i.e.. if the number being subtracted from the contents of the Accumulator is
greater than those contents. Thus, the sequence CP. JR NC.DONE causes a jump to
DONE if the contents of the Accumulator are greater than or equal to the other number.

JR NC.DONE causes a jump to memory location DONE if the Carry flag = 0. Otherwise
{if Carry = 1), the computer continues with the next sequential memory location after
the JR instruction.

DONE is a label, a name which you assign to a location in memory so that it is easier to
remember. Note that labels are followed by a colon on the line where they are defined.

The label makes the destination of the branch clearer, particulerly when relative ad-
dressing is being used. The assembler calculates the required offset (caution: some Z80
assemblers will not do this). Using a label is preferable to just specifyving the offset (i.e..
JR NC.$+3) since the Z80's instructions vary in fength. You could therefore easily make
an error in determining an offset.

If the branch conditions are not satisfied, the processor simply proceeds to the next se-
quential location in program memory (i.e.. it executes the instruction LD A, (HL)).

The 780 assemblers allow six characters in labels — the first must be a letter, while the
others mav be fetters or numbers {some special characters are allowed but we will not
use them).

The JR instruction uses relative addressing in which the second word of the instruction
is an 8-bit twos complement number that the CPU adds to the address of the next in-
struction to find the target address. In the example, the relative offset is 0009 (target
address) minus 0008 {address immediately following the branch) or 01.

We should note that some Z80 assemblers will not calculate the offset in the form
shown. These assemblers require an offset in the address field, rather than the label of
the target instruction. If you have such an assembler. use the form JR NC.DONE-$.
Remember that $ means “the address of the current instruction”

The Z80 has two sets of jump instructions, JP {Jump) and JR (Jump Relative). The JP
instructions require a complete memory address; they occupy three bytes of memory
and execute in ten clock cycles. The JR instructions require only a one-word offset;
they occupy two bytes of memory and execute in 12 cycles if a jump is actually per-
formed and in 7 if not. So the JR instructions use less memory than JP instructions but
may require a little extra time if a jump is performed {the extra time is used to execute
the required 16-bit addition of program counter and offset).

16-Bit Addition

Purpose: Add the 16-bit number in memory locations 0040 and 0041 to the 16-bit
number in memory locations 0042 and 0043. The most significant eight bits
are in memory locations 0041 and 0043, Store the result in memory loca-
tions 0044 and 0045, with the most significant bits in 0045.

Sample Problem:

(0040) = 2A
0041) = 67
0042) = r8
0043) = 14
Result: 672A + 14F8 = 7C22
(0044) = 22
(0045) = 7C
Source Program :
LD HL.(40H) :GET FIRST 16-BIT NUMBER
LD DE.(42H) ;GET SECOND 16-BIT NUMBER
ADD HL.DE :16-BIT ADDITION
LD (44H),HL ;STORE 16-BIT RESULT
HALT
Object Program :
Memory Address Memory Contents Instruction
{Hex) (Hex) {(Mnemonic)
0000 2A LD HL.(40H)
0001 40
0002 00
0003 ED LD - DE42H)
0004 5B
0005 42
0006 00
0007 19 ADD HL.DE
0008 22 LD ({44H),HL
0009 44
000A 00
000B 76 HALT

LD HL.(addr) loads Registers H and L from two memory locations, the one specified in
the instruction and the next consecutive one. The contents of the first addressed loca-
tion go to Register L. The contents of the next location go to Register H. Thus, LD
HL.(40H) means L = (40). H = (41). The actual transfer proceeds one byte at a time and
takes 16 clock cycles. The advantage of the 16-bit Load instruction over two 8-bit Load
instructions is that the CPU has to fetch only one instruction from memory.

Note the difference between LD HL.{addr), which loads the contents of the two RAM
locations at addr and addr+1 into H and L. and LD HL.data186, which loads the contents
of the next two bytes pointed to by the instruction counter into H and L. Since these
two bytes immediately follow the op-code, loads of this type are referred to as load im-
mediate instructions.

LD DE.(addr} is similar to LD HL.laddr) except that it takes one extra word of memory
and four more clock cycles. This is one of the instructions that is present in the Z80 set
but not in the 8080/8085 sets. An alternative approach is:

EX DE.HL :SAVE FIRST 16-BIT NUMBER IN DE
LD HL.(42H) :GET SECOND 16-BIT NUMBER

4-11

EX DE.HL exchanges the contents of Registers D and E with H and L. No numbers are
changed or destroved. The advantage of EX DE,HL will become obvious if you try to
replace it with a series of LD instructions.

ADD HL.DE adds the 16-bit number in Registers D and E to the 16-bit number in
Registers H and L. The result is placed into Registers H and L. ADD HL.DE actually adds
one byte at a time. It executes in 11 clock cycles.

LD (addr).HL stores the contents of Registers H and L into two memory locations, the
one specified in the instruction and the next consecutive one. The contents of L go into
the specified location and the contents of H go into the next location. Thus. LD (44H),HL
means (44) = L, {45) = H. As with LD HL.(addr). the actual transfer proceeds one byte at
a time and requires 16 clock cycles.

Although the Z80 is an 8-bit processor. it has instructions that handle 16-bit numbers.
These instructions are intended primarily for handling addresses. but you can also use
them for 16-bit data. The most common ones and their uses are:

1) ADD HL,rp — 16-Bit Add
Used to access tables and to add 16-bit data units
2) DEC rp — 16-Bit Decrement
Used to subtract one from the contents of a register pair
3) INC rp — 16-Bit Increment
Used to add one to the contents of a register pair
4) LD rp.datal6 — 16-Bit Load Immediate
Used to initialize a register pair with a fixed value, e.g.. the starting address of an ar-
ray or table
5) LD HL.{addr} — 16-Bit Load HL Direct
Used to place variable addresses into the main address register (H and L)
6) LD (addr).HL — 16-Bit Store HL Direct
Used to store addresses to memory from the main address register (H and L).

Table of Squares

Purpose: Calculate the square of the contents of memory location 0040 from a table
and place it into memory iocation 0041. Assume that memory location 0040
contains a number between 0 and 7 inclusive (0 < (0041) < 7).

The table occupies memory locations 0050 to 0067

Memory Address Entry
(Hex) (Hex) (Decimall
0050 00 0 (02)
0052 04 4 (22)
00563 09 9 (32)
Sample Problems:
a (0041) = 03
Result: (0042) = 09
b (0041} = 06
Resuit: (0042) = 24

4-12

Source Program:

LD A, (40H) :GET DATA
LD LA :MAKE DATA INTO 16-BIT INDEX
LD H.0
LD DE.SQTAB :GET STARTING ADDRESS OF TABLE
ADD HL.DE [INDEX TABLE WITH DATA
LD A (HL) :GET SQUARE OF DATA
LD (41H).A
HALT
ORG 50H ;SQUARE TABLE
SQTAB: DEFB 0
DEFB 1
DEFB 4
DEFB 9
DEFB 16
DEFB 25
DEFB 36
DEFB 49
Object Program:

Memory Address Memory Contents Instruction
{Hex) (Hex) (Mnemonic)
0000 3A LD A,(40H)
0001 40
0002 00
0003 6F LD LA
0004 26 LD H0
0005 00
0006 1 LD DE.SQTAB
0007 50
0008 00
0009 19 ADD HL.DE
000A 7€ LD A.(HL)
000B 32 LD {@1HLA
000C 41
000D 00
000E 76
0050 00 SQTAB: DEFB 0
0051 o1 DEFB 1
0052 04 DEFB 4
0053 09 DEFB 9
0054 10 DEFB 16
0055 19 DEFB 25
0056 24 DEFB 36
0057 31 DEFB 49

Note that you must also enter the table of squares into memory (the assembler pseudo-
operation DEFB will handle this). The table of squares is constant data, not parameters
that may change; that is why vou can initialize the table using the DEFB pseudo-opera-
tion. rather than by executing instructions to load values into the table. Remember that
the table is part of the program memory (ROM in most systems).

LD L.A moves the data in the Accumulator to Register L. The data is the eight least sig-
nificant bits of the index. You cannot always assume that the data presented to your

program is in the proper range. It is always a good practice to range check all critical
values. Range checking consists of testing a value to ensure that it is within the proper
lower and upper limits. Any byte can have a value in the range 0 to 255. If the value
stored in the byte at location 0040H is greater than seven. the program will reference
an undefined byte beyond the end of the square table, causing the program to generate
erroneous results Range checking will prevent this error from occurring.

LD H.0 clears Register H so that it does not interfere with the 16-bit addition of starting
address and index. Never assume that a register contains zero at the start of a program.

LD DE.SQTAB loads the starting address of the table into Registers D and E. We use D
and E for the starting address since the ADD HL instruction does not change D and E.
Thus, the starting address of the table will still be in D and E after the addition, in the
event that we want another element from the table.

ADD HL,DE adds the starting address and the index: the resultin H and L is thus the ad-
dress of the correct entry. LD A,{HL) then moves that entry to the Accumulator.

Arithmetic that a microprocessor cannot do directly in a few instructions is often best
performed with lookup tables. Lookup tables simply contain all the possible answers to
the problem: they are organized so that the answer to a particular problem can be
found easily. The arithmetic problem now becomes an accessing problem — how do
we get the correct answer from the table? We must know two things: the position of
the answer in the table (called the index) and the base, or starting, address of the table.
The address of the answer is then the base address plus the index.

The base address, of course. is a fixed number for a particular table. How can we deter-
mine the index? In simple cases, where a single piece of data is involved, we can organ-
ize the table so that the data is the index. In the table of squares, the Oth entry in the ta-
ble contains zero squared, the first entry one squared, etc. In more complex cases,
where the spread of input values is very large or there are several data items involved
{e.g.. roots of a quadratic or number of permutations). we must use more. complicated
methods to determine indexes.

The basic tradeoff in using a table is time vs. memory. Tables are faster, since no com-
putations are required, and simpler. since no mathematical methods must be devised
and tested. However, tables can occupy a large amount of memory if the range of the
input data is large. We can often reduce the size of a table by limiting the accuracy of
the results, scaling the input data, or organizing the table cleverly. Tables are often
used to compute transcendental and trigonometric functions, linearize inputs, convert
codes, and perform other mathematical tasks.

16-Bit Ones Complement

Purpose: Place the ones complement of the 16-bit number in memory locations 0040
and 0041 into memory locations 0042 and 0043. The most significant bytes
are in locations 0041 and 0043.

Sample Problem:

(0040) = 67
0041) = E2
Result: (0042} = 98
(0043) = 1D

The ones complement inverts each bit of the original number; the sum of the original
number and its ones complement will always be all 1 bits.

4-14

Source Program:

LD HL.(40H) :GET DATA
LD AL :COMPLEMENT 8 LSB'S
CPL
LD LA
LD AH :COMPLEMENT 8 MSB'S
CPL
LD H.A
LD {40H),HL :STORE ONES COMPLEMENT
HALT
Object Program:

Memory Address Memory Contents Instruction
(Hex) {Hex) {(Mnemonic)
0000 2A LD HL,(40H}
0001 40
0002 00
0003 7D LD AL
0004 2F CPL
0005 6F LD LA
0006 7C LD AH
0007 2F CPL
0008 67 LD H.A
0009 22 LD {42H).HL
000A 42
0008 00
000C 76 HALT

Despite the Z80's 16-bit instructions, you must use 8-bit instructions to perform most
arithmetic and logical operations. The 16-bit instructions can. however, be used to load
and store data and occasionally to do a few 16-bit arithmetic operations, such as addi-
tion, subtraction. incrementing, and decrementing. You will soon learn that the 16-bit
instructions are far from a complete set and you may often run into awkward probiems
if using them to manipulate 16-bit data. '

PROBLEMS
1) Twos Complement

Purpose: Place the twos complement of the contents of memory location 0040 into
memory location 0041. The twos compiement is the ones complement plus
one.

Sample Problem:
(0040} 3E
Result: (0041) = C2
The sum of the original number and its twos complement is zero {try the sample casel.
2) 8-Bit Subtraction

Purpose: Subtract the contents of memory location 0041 from the contents of memory
location 0040. Place the resuit into memory location 0042.

il

Sample Problem:

0040) = 77
(0041} = 39
Result: (0042) = 3E

4-15

3) Shift Left Two Bits

Purpose: Shift the contents of memory location 0040 left two bits and place the result
into memory location 0041, Clear the two least significant bit positions.

Sample Problem:
(0040) 5D
Result: {0041} = 74

4) Mask Off Least Significant Four Bits

Purpose: Place the four most significant bits of the contents of memory location 0040
into memory location 0041. Clear the four least significant bits of memory
{ocation 0041.

Sample Problem:
(0040} Cc4
Result: {0041) = CO

5) Set a Memory Location to All Ones
Purpose: Memory location 0040 is set to all ones (FF hex).

6) Word Assembly

Purpose: Combine the four least significant bits of memory locations 0040 and 0041
into a word and store them in memory location 0042. Place the four least sig-
nificant bits of memory location 0040 into the four most significant bit posi-
tions of memory location 0042; place the four least significant bits of memo-
v location 0041 into the four least significant bit positions of memory loca-
tion 0042.

Sample Problem:

(0040} = 6A
{0041} = B3
Result: (0042) = A3

7) Find Smaller of Two Numbers

Purpose: Place the smaller of the contents of memory locations 0040 and 0041 into
memory location 0042, Assume that 0040 and 0041 contain unsigned bin-
ary numbers.

Sample Problems:

a. (0040) = 3F
(0041) = 2B

Result: (0042) = 2B

b. 0040) = 75
0041) = A8

Result: (0042) = 75

8) 24-Bit Addition

Purpose: Add the 24-bit number in memory locations 0040, 0041, and 0042 to the 24-
bit number in memory locations 0043, 0044, and 0045. The most significant
eight bits are in memory locations 0042 and 0045: the least significant eight
bits are in memory locations 0040 and 0043. Store the result in memory
focations 0046, 0047. and 0048 with the most significant bits in 0048 and
the least significant bits in 0046.

4-16

Sample Problem:

(0040) = 2A

(0041) = 67

(0042) = 35

(0043) = F8

(0044) = A4

(0045) = 51

Result: {0046) = 22

0047) = 0OC

(0048) = 87
that is, 35672A
+51A4F8
870C22

9) Sum of Squares

Purpose: Calculate the squares of the contents ot memory locations 0040 and 0041
and add them together. Place the result into memory location 0042. Assume
that memory locations 0040 and 0041 both contain numbers between 0 and
7 inclusive (0 < (0040) < 7 and O < (0041) < 7). Use the table of squares
from the example entitled Table of Squares.

Sample Probiem:

(0040) = 03
(0041) = 06
Resuit: (0042) = 2D
thatis, 324+62= 9+ 36=45 |(decimall
= 2D {hex

10) 16-Bit Twos Complement

Purpose: Place the twos complement of the 16-bit number in memory locations 0040
and 0041 {most significant bits in 0041) into memory locations 0042 and
0043 (most significant bits in 0043).

Sample Problems:

a. (0040) = 00
(0041) = 58

Result: (0042) = 00

(0043) = A8

b. (0040) = 72
(0041) = 00

Result: (0042) = 8E

(0043) = FF

Chapter 5
SIMPLE PROGRAM LOOPS

The program loop is the basic structure that forces the CPU to repeat a sequence of in-
structions. Loops have four sections:

1) The initialization section, which establishes the starting values of counters, address
registers (pointers), and other variables.

2} The processing section. where the actual data manipulation occurs. This is the sec-
tion that does the work.

3) The loop control section. which updates counters and pointers for the next itera-
tion.

4) The concluding section. which analyzes and stores the results.

Note that the computer performs Sections 1 and 4 once, while it may perform Sections
2 and 3 many times. Thus, the execution time of the loop will mainly depend on the ex-
ecution time of Sections 2 and 3. You will want Sections 2 and 3 to execute as quickly
as possible; do not worry about the execution time of Sections 1 and 4. A typical pro-
gram loop can be flowcharted as shown in Figure 5-1. or the positions of the processing
and loop control sections may be reversed as shown in Figure 5-2. The processing sec-
tion in Figure 5-1 is always executed at least once, while the processing section in
Figure 5-2 may not be executed at all. Figure 5-1 seems more natural, but Figure 5-2 is
often more efficient and avoids the problem of what to do when there is no data (a
bugaboo for computers, and the frequent cause of silly situations like the computer
dunning someone for a bill of $0.00).

The loop structure can be used to process entire blocks of data. To accomplish this. the
program must increment an address register (usually register pair HL) after each itera-
tion so that the address register points to the next element in the data block. The next
iteration will then perform the same operations on the data in the next memory loca-
tion. The computer can handle blocks of any length with the same set of instructions.

Implied addressing through register pairs (particularly HL) is the key to processing a
block of data with the Z80. since it allows vou to vary the actual memory address by
changing the contents of registers. Indexed addressing, while longer and slower on the
Z80 than implied addressing, may be handy when processing more than one block of
data. Note that in the immediate and direct addressing modes, the addresses that are
used are completely determined by the instruction {and thus fixed if the program
memory is read-only).

5-1

Initialization
Section

—

Processing
Section

]

Loop Control
Section

Has

the task been

wCompieted
?

Conciuding
Section

Figure 5-1. Flowchart of a Program Loop

5-2

Initialization
Section

_...__>v

Loop Control
Section

Has

the task been

completed
?

Processing Concluding
Section Section

(=)

Figure 5-2. A Program Loop that Allows Zero lterations

EXAMPLES
Sum of Data

Purpose: Calculate the sum of a series of numbers. The length of
the series is in memory location 0041, and the series
begins in memory location 0042. Store the sum in
memory location 0040. Assume that the sum is an 8-bit
number so that you can ignore carries.

Sample Problem:

(0041} = 03
(0042) = 28
(0043) = 55
(0044) = 26
Result: (0040) = (0042) + (0043) + (0044)
= 28+55+26
= A3

There are three entries in the sum, since {0041)=03.

5-3

8-BIT
SUMMATION

Flowchart:

Note: {Pointer} is the contents of the memory location addressed by Pointer. Remember
that on the Z80, Pointer is a 16-bit address. while {Pointer} is an 8-bit byte of

data.
Source Program:
LD
LD

suB
SUMD: INC

Pointer = 41
Count = (Pointer}
Sum = 0

—

Pointer = Painter + 1
Sum = Sum
+ {Pointer}

Y

Count = Count - 1

HL.41H
B.(HL

HL
A, (HL)

NZ,SUMD
(40H).A

|
2

S
| Yes

{40} = Sum

:COUNT = LENGTH OF SERIES

:SUM = ZERO

:SUM = SUM + DATA

:STORE SUM

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.41H
0001 41
0002 00
0003 46 LD B.{HL)
0004 97 suB A
0005 23 SUMD: INC HL
0006 86 ADD A (HL)
0007 05 DEC B
0008 20 JR NZ.SUMD
0009 FB
000A 32 LD {40H).A A
000B 40
000C 00
000D 76 HALT

The initialization section of the program is the first three instructions which set the sum.
counter. and data pointer to their starting values.

Note that you can use LD to transfer data between memory and any of the primary
general purpose registers {i.e.. A, B, C. D, E. H, L) using the address in Registers H and L.
However, the only transfers allowed using direct addressing are those that move data to
or from the Accumulator {i.e.. LD A {addr) and LD (addr),A — there 1s no instruction LD
E.{addr), for example).

The processing section of the program is the single instruction ADD A, (HL) which adds
the contents of the memory location being addressed by Registers H and L to the con-
tents of the Accumulator. and stores the result in the Accumulator. This instruction
does the real work of the program.

The loop control section of the program consists of the instructions INC HL and DEC B.
INC HL updates the pointer so that the next iteration adds the next number to the sum.
DEC B decrements the counter that keeps track of how many iterations are left.

The instruction JR NZ causes a branch if the Zero flag is zero. The offset is a twos com-
plement number, and the count begins from the memory location immediately follow-
ing the JR instruction. In this case, the required jump is from memory location 000A to
memory location 0005. So the offset is:

0005 _ 05
-000A ~ +F6
FB

If the Zero flag 1s one, the CPU executes the next instruction in sequence {i.e., LD
{40H).A). Since DEC B was the last instruction before JR to affect the Zero flag. JR
NZ.SUMD causes a jump to SUMD if DEC B does not produce a zero result, i.e.:

SUMD if B #0
PC =
PC+2ifB=0

{The 2 is caused by the two-word JR instruction).

5-5

The loop control sequence DEC followed by JR NZ is so common that the Z80 has a
special instruction that both decrements the counter and performs the jump. This in-
struction is DINZ. Decrement and Jump on Not Zero, which decrements Register B and
then jumps by the specified relative offset if the remainder is not zero. So we could
change the end of the example to:

DJNZ SUMD
LD (40H).A
HALT
Which has the object form:
07 10 DJINZ SUMD
08 FC
09 32 LD {40H).A
0A 40
0B 00
ocC 76 HALT

This change saves one byte of memory and three clock cycles. Note, however. that you
must use Register B as the counter since this is the register that DJINZ decrements.

Since the offset in Z80 relative jJumps i1s only one byte long. such jumps can go no
further than 127 locations forward or 128 locations backward (actually 128 forward or
126 backward, since the count starts at the end of the 2-word instruction). Longer
jumps must use the JP instructions.

Most computer loops count down rather than up so that the Zero flag can serve as an
exit condition. Remember that the Zero flag 1s 1 if the result was zero and O if the result
was not zero. Try rewriting the program so that it counts up rather than down: which
method is more efficient?

The order of instructions is often very important. DEC B must come right before JR
NZ,SUMD. since otherwise the Zero result set by DEC B could be changed by another
instruction. INC HL must come before ADD A, (HL) or else the first number added to the
sum will be the contents of memory location 0041 instead of the contents of memory
location 0042.

16-Bit Sum of Data

Purpose: Calculate the sum of a series of numbers. The length of the series I1s tn
memory location 0042 and the series itself begins in memory location 0043.
Store the sum in memory locations 0040 and 0041 (eight least significant
bits in 0040).

Sample Problem:

(0042) = 03
(0043) = C8
(0044) = FA
(0045) = 96

Result: C8 + FA + 96 = 0268
(0040) = 58
0041) = 02

5-6

42
(Pointer)
0

Pointer
Count
Suml
Sumu

__.,*

([N]

0

Pointer = Pointer + 1
Sumi = Sumt
+{Pointer)

Sumu =Sumu + 1

Count = Count -1

NO @
Yes
{40} = Suml
(41} = Sumu

Source Program:

LD HL.42H

LD B.(HL) :COUNT = LENGTH OF SERIES

SUB A :LSB'S OF SUM =0

LD C.A :MSB'S OF SUM =0
DSUMD: INC HL

ADD A (HL) :SUM = SUM + DATA

JR NC.CHCNT

INC C :ADD CARRY TO MSB'S OF SUM
CHCNT: DJNZ DSUMD

LD HL.40H

LD (HLLA :STORE LSB'S OF SUM

INC HL

LD (HLL.C :STORE MSB'S OF SUM

HALT

5-7

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) {(Mnemonic)
0000 21 LD HL,42H
0001 42
0002 00
0003 46 LD B.{HL)
0004 97 suB A
0005 4F LD C.A
0006 23 DSUMD: INC HL
0007 86 ADD A (HL)
0008 30 JR NC.CHCNT
0009 01
000A 0C INC C
000B 10 CHCNT: DJNZ DSUMD
000C F9
000D 21 LD HL.40H
000E 40
000F 00
0010 77 LD (HL).A
0011 23 INC HL
0012 71 LD (HL).C
0013 76 HALT

The structure of this program is the same as the structure of the last one. The most sig-
nificant bits of the sum now must be initialized and stored. The processing section con-
sists of three instructions (ADD A,(HL}; JR NC.CHCNT; and INC C), including a Condi-
tional Jump.

JR NC,CHCNT causes a jump to memory location CHCNT if the Carry = Q. Thus. if there
is no carry from the 8-bit addition. the program jumps around the statement that incre-
ments the most significant bits of the sum. The relative offset is:

0o0oB
-000A
01

The relative offset for DUNZ DSUMD is:

0006 _ 06
-000D +F3
F9
INC C adds 1 to the contents of Register C. Note that INC BC is a 16-bit increment that
adds 1 to Register C and adds the resulting carry to Register B; INC C is an 8-bit incre-
ment that does not account for the carry.

Number of Negative Elements

Purpose: Determine the number of negative elements (most significant bit 1) in a
block. The length of the block is in memory location 0041 and the block itself
starts in memory location 0042. Place the number of negative elements in
memory location 0040,

Sample Problem:

Result:

Flowchart:

(0041)
0042)

(0040)

[1 A T
@
~

02. since 0043 and 0044 contain
numbers with an MSB of 1.

Pointer = 41
Count = (Pointer)
Nneg = O
——

Painter = Fointer + 1

1
{Painter) < 0
2

s
No

Nneg = Nneg + 1

Count = Count - 1

Yes

{40) = Nneg

5-9

Source Program :

LD HL.41H
LD B.(HL) :COUNT = NUMBER OF ELEMENTS
LD c.0 :NUMBER OF NEGATIVES = ZERO
SRNEG: INC HL
LD A, (HL) :GET NEXT ELEMENT
AND A ;IS MSB ZERO?
JP P.CHCNT
INC C :NO, ADD 1 TO NUMBER OF NEGATIVES
CHCNT. DJNZ SRNEG
LD AC :STORE NUMBER OF NEGATIVES
LD (40H), A
HALT
Object Program:
Memory Address Memory Contents Instruction
{Hex) {Hex) {Mnemonic)
0000 21 LD HL41H
0001 41
0002 00
0003 46 LD B.(HL)
0004 0E LD c.0
0005 00
0006 23 SRNEG: INC HL
0007 7E LD A (HL)
0008 A7 AND A
0009 F2 JP P.CHCNT
000A 0D
000B 00
000C ocC INC C
000D 10 CHCNT: DJNZ SRNEG
000E F7
000F 79 LD AC
0010 32 LD {40H).A
0011 40
0012 00
0013 76 HALT

AND A simply sets the flag bits according to the contents of the Accumulator without
affecting those contents; OR A has the same effect. This is necessary since merely load-
ing the Accumulator does not affect the flags.

JP P.CHCNT requires a full 16-bit address. There is no relative jJump on the Sign flag like
there is on the Carry and Zero flags.

Note that all we really want to do is test the value of bit 7 of the memory location ad-
dressed by Registers H and L. The 280 has a spectal bit testing instruction, BIT. that s
designed specifically for this purpose. BIT sets the Z flag to the complement of the indi-
cated bit within the indicated register or memory location. For example, BIT 5.D will set
Z to 1 if bit 5 of Register D is zero. and to O if bit 5 of Register D is one. An implementa-
tion of this alternative is as follows.

5-10

Source Program:

LD HL.41H

LD B.(HL) :COUNT = NUMBER OF ELEMENTS

LD c.0 :NUMBER OF NEGATIVES = ZERO
SRNEG: INC HL

BIT 7.(HL) (IS NEXT ELEMENT NEGATIVE?

JR Z.CHCNT

INC C :YES, ADD 1 TO NUMBER OF NEGATIVES
CHCNT: DJNZ SRNEG

LD AC :STORE NUMBER OF NEGATIVES

LD (40H).A

HALT
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.41H
0001 41
0002 00
0003 46 LD B.{HL)
0004 OE LD c.0
0005 00
0006 23 SRNEG: INC HL
0007 CB BIT 7.(HL)
0008 7E
0009 28 JR Z.CHCNT
000A 01
0008 ocC INC C
000C 10 CHCNT: DJNZ SRNEG
000D F8
000E 79 LD AC
000F 32 LD {40H).A
0010 40
0011 00
0012 76 HALT

BIT 7.(HL) sets the Z bit if bit 7 of the memory location addressed by RegistersH and L is
zero, and clears the Z bit if bit 7 of that location is one. BIT does not affect any registers
or memory locations.

This program uses JR Z.CHCNT since no incrementing is necessary if the addressed bit
is zero.

Still another approach would be to use the instruction RLC (HL) to shift the sign bit of
the data in memory to the Carry. The required jump would then be JR NC.CHCNT
However, this approach uses extra time (RLC (HL) takes 15 cycles as compared to the
12 needed by BIT 7.(HL)) and also changes the data in memory which may be needed
for other purposes. Note that these disadvantages are related; the extra time is needed
to return the result to the memory location.

Find Maximum

Purpose: Find the largest element in a block of data. The length of the block is in
memory location 0041 and the block itself begins in memory location 0042.
Store the maximum in memory location 0040. Assume that the numbers in
the block are all 8-bit unsigned binary numbers.

5-11

Sample Problem:

Result:

Fiowchart:

{0041)
(0042)
(0043)
(0044)
(0045)
{0046)

(0040)

o

05
67
79
15
E3
72

E3, since this is the largest of
the five unsigned numbers.

Pointer = 41
Count = (Pointer)
Max = 0

Pointer = Pointer + 1

Is
Max > (Pointer)
?
I No

Max = (Pointer}

Count =Count - 1

{40) = Max

—

5-12

Source Program:

LD HL.41H :POINT TO COUNT
LD B.(HL) :COUNT = NUMBER OF ELEMENTS
SUB A :MAXIMUM = MINIMUM POSSIBLE VALUE (ZERO)
NEXTE: INC HL
cpP (HL) IS NEXT ELEMENT ABOVE MAXIMUM?
JR NC.DECNT
LD A, (HL) :YES, REPLACE MAXIMUM WITH ELEMENT
DECNT: DJNZ NEXTE
LD (40H}LA :SAVE MAXIMUM
HALT
Object Program:
Memory Address Memory Contents Instruction
{Hex) (Hex) {Mnemonic)
0000 21 (D HL.41H
0001 41
0002 00
0003 46 LD B.(HL)
0004 97 SuB A
0005 23 NEXTE: INC HL
0006 BE cpP (HL)
0007 30 JR NC.DECNT
0008 01
0009 7€ LD A.{HL)
000A 10 DECNT: DJUNZ NEXTE
0008 Fg
000C 32 LD {40H).A
000D 40
000E 00
000F 76 HALT
The relative offset for JR NC.DECNT is:
000A
-0009
01
The relative offset for DJNZ NEXTE is:
0006 _ 05
-000C +F4
F9

The first three instructions of this program form the initialization section.

This program takes advantage of the fact that zero is the smallest 8-bit unsigned binary
number. When you set the register that contains the maximum value — in this case the
Accumulator — to the minimum possible value before you enter the foop. then the pro-
gram will set the Accumulator to a larger value unless all the elements in the array are
zeros.

The program works properly if there are two elements, but not if there are one or none
at all Why? How could you solve this problem?

The instruction CP (HL) sets the Carry flag as follows (ELEMENT is the contents of the
address in Registers H and L and MAX is the contents of the Accumulator):

CARRY = 1 if ELEMENT > MAX
CARRY = 0 if ELEMENT < MAX

If CARRY = 0. the program proceeds to DECNT and does not change the maximum. If
CARRY = 1. the program replaces the old maximum with the current element by ex-
ecuting the instruction LD A (HL).

The program does not work if the numbers are signed because negative numbers will
appear to be larger than positive numbers. The problem is somewhat tricky because
overflow could make the result appear to have the wrong sign.

Remember that overflow occurs when the magnitude of a result affects its sign bit. The
780 has a Parity/Overflow flag that indicates when twos complement overflow has oc-
curred. Arithmetic operations that result in overflow set this flag. You can then test its
value with the mstructions JP PE.ADDR (Jump on Parity Even — or Jump on Overflow)
or JP PO.ADDR {(Jump on Parity Odd — or Jump on No Overflow). One thing you may
have to watch is that this Z80 usage is inconsistent with the 8080A or 8085
microprocessors, which always use the P flag to indicate parity. The 8080A and 8085
microprocessors have no overflow indicator.

Justify a Binary Fraction
Purpose: Shift the contents of memory location 0040 left until the most significant bit
of the number is 1. Store the result in memory location 0041 and the number
of left shifts required i memory location 0042. If the contents of memory
location 0040 are zero, clear both 0041 and 0042.
Note: The process is just like converting a number to a scientific notatlonzzi"f'é)f'example:
0.0067 =5.7 x 10°°

Sample Problems:

a. (0040) = 22
Result: (0041} = 88

0042) = 02

b. (0040) = O
Result: (0041) = 80

0042) = 07

c. (0040) = CB
Result: (0041) = CB

(0042) = 00

d. (0040) = 00
Result: {0041) = 00

0042) = 00

5-14

Flowchart:

Source Program:

CHKMS. JP

DONE: INC

Nshft = 0
Numb = {40}

Is m
significant bit of B
Numb 1
?
No

Shift Numb
left 1 it
Nshft =Nsht + 1

(41} = Numb
(42) = Nshft

L

B.0
HL.40H
A.(HL)

Z.DONE
M.DONE

AA
CHKMS
HL
(HUL.A
HL
(HL).B

:NUMBER OF SHIFTS =ZERO

:GET DATA

:IS DATA ZERO?

:YES, DONE

:DONE IF SIGN BIT IS ONE
:ADD 1 TO NUMBER OF SHIFTS
:SHIFT LEFT ONE BIT

:SAVE JUSTIFIED DATA

:SAVE NUMBER OF SHIFTS

5-15

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) {(Mnemonic)
0000 06 LD B.0
0001 00
0002 21 LD HL.40H
0003 40
0004 00
0005 7€ LD A (HL)
0006 A7 AND A
0007 28 JR Z.DONE
0008 08
0009 FA CHKMS: JP M,DONE
000A 11
0008 00
000C 04 INC B
000D 87 ADD AA
000E Cc3 JP CHKMS
000F 09
0010 00
0011 23 DONE: INC HL
0012 77 LD (HL).A
0013 23 INC HL
0014 70 LD (HL).B
0015 76 HALT

JP M.DONE causes a jump to location DONE if the Sign bit is 1. This condition may
mean that the last result was a negative number or may just mean that its most signifi-
cant bit was 1 — the computer supplies only the results; the programmer must provide
the interpretation.

ADD A.A adds the number in the Accumulator to itself. The program uses this instruc-
tion. rather than RLA or RLCA, because ADD A affects the Sign bit while RLA and RLCA
do not.

We could reorganize this program so as to eliminate an extraneous JP and use relative
rather than absolute jumps. One reorganized version would be:

LD B.0 :NUMBER OF SHIFTS = ZERO
LD HL,40H
LD A (HL) .GET DATA
AND A :IS DATA ZERO?
JR Z.DONE :YES. DONE
DEC B :ADJUST NUMBER OF SHIFTS BACK ONE
CHKMS: INC B :ADD 1 TO NUMBER OF SHIFTS
RLA :SHIFT LEFT ONE BIT
JR NC.CHKMS :CONTINUE IF MSB NOT ONE
RRA :ADJUST DATA BACK
DONE: INC HL
LD (HLLA :SAVE JUSTIFIED DATA
INC HL
LD (HLLD :SAVE NUMBER OF SHIFTS
HALT

Show that this version also works. What are its advantages and disadvantages as com-
pared to the previous program?

PROBLEMS

1) Checksum of Data

Purpose: Calculate the checksum of a series of numbers. The length of the series is in
memory location 0041 and the series itself begins in memory location 0042.
Store the checksum in memory location 0040. The checksum is formed by
Exclusive-ORing all the numbers in the series together.

Note: Such checksums are often used in paper tape and cassette systems to ensure
that the data has been read correctly. The calculated checksum is compared to
the one stored with the data — if the two checksums do not agree, the system
will usually either indicate an error to the operator or automatically read the data
again.

Sample Problem:

(0041) = 03
(0042) = 28
(0043) = 55
(0044) = 26
Result: (0040) = (0042) @ (0043) @ (0044)
= 28@55@26
= 00101000
@ 01010101
01111101
@ 00100110
01011011
= 5B

2} Sum of 16-Bit Data

Purpose: Calculate the sum of a series of 16-bit numbers. The length of the series is in
memory location 0042 and the series itself begins in memory location 0043.
Store the sum in memory locations 0040 and 0041 {gight most significant
bits in 0041). Each 16-bit number occupies two memory locations, with the
eight most significant bits in the higher address. Assume that the sum can
be contained in 16 bits.

Sample Problem:

(0042) = 03
0043 = F1
(0044) = 28
(0045) = 1A
(0046) = 30
(0047) = 89
(0048) = 4B
Result: 28F1 + 301A + 4B89 =A494
(0040) = 94
0041) = A4

3) Number of Zero, Positive, and Negative Numbers

Purpose: Determine the number of zero, positive (most significant bit zero but entire
number not zerol, and negative {most significant bit 1) elements in a block.
The length of the block is in memory location 0043 and the block itself starts
1n memory location 0044. Place the number of negative elements in memory
location 0040, the number of zero elements in memory location 0041, and
the number of positive elements in memory location 0042.

Sample Problem:

{0043) = 06
(0044) = 68
(0045) = F2
(0046) = 87
(0047) = 00
(0048) = 59
0049) = 2A
Result: 2 negative, 1 zero, and 3 positive, so
(0040) = 02
(0041 = O1
(0042) = 03

4) Find Minimum

Purpose: Find the smallest element in a block of data. The length of the block is in
memory location 0041 and the block itself begins in memory location 0042,
Store the minimum in memory location 0040. Assume that the numbers in
the block are 8-bit unsigned binary numbers.

Sample Problem:

(0041} = 05
(0042) = 67
0043) = 79
(0044) = 15
{0045) = E3
(0046) = 72
Result: {0040) = 18, since this is the smallest of the

five unsigned numbers.

5) Count 1 Bits

Purpose: Determine how many bits in memory location 0040 are one and place the
result in memory location 0041.

Sample Problem:
{0040)
Result: (0041)

i

38 =00111011
05

I

Chapter 6
CHARACTER-CODED DATA

Microprocessors often handle character-coded data. Not only do keyboards,
teletypewriters, communications devices, displays, and computer terminals expect or
provide character-coded data: many instruments, test systems, and controllers also re-
quire data in this form. The most commonly used code is ASCII. Baudot and EBCDIC are
found less frequently. We will assume all of our character-coded data to be 7-bit ASCli
with the most significant bit zero {see Table 6-1).

1

Some principles to remember in handling ASCll-coded data are: HANDLING
The codes for the numbers and letters form ordered sub-se- RIS\gIII\ IN

2)

quences. The codes for the decimal numbers are hex 30
through 39. so that you can convert between decimal and
ASCl with a simple additive factor. The codes for the upper-case letters are hex 41
through 5A, so that you can do alphabetic ordering by sorting the data in increas-
ing numerical order.

The computer draws no distinction between printing and non-printing characters.
This distinction is made only by 1/0 devices.

An ASCII device will handle only ASCH data. To print a 7 on an ASClI printer. the
microprocessor must send hex 37 to the printer; hex 07 is the ‘bell’ character.
Similarly, the microprocessor will receive the character 9 from an ASCH keyboard
as hex 39: hex 09 is the tab’ character.

Some ASCII devices do not use the full character set. For example, control charac-
ters and lower-case letters may be ignored or printed as spaces or question marks.

Some widely used ASCIl characters are:
OA16 - line feed (LF)

0D, g - carriage return {CR)

2016 - space

3F16 - ? {question mark)

7F16 - rubout or delete character

Each ASCIHI character occupies seven bits. This allows a large character set but is
wasteful when the data is limited to a small subset such as the decimal numbers.
An 8-bit byte, for example. can hold only one ASCll-coded decimal digit, while ¥
can hold two BCD-coded digits.

6-1

Table 6-1. Hex-ASCll Table

Hex MSD
0 1 2 3 4 5 6 7
Hex LSD
[+] NUL DLE SP 0 @ 4 p
1 SOH | DC1 ! 1 A Q a q
2 STX DC2 2 B R b r
3 ETX DC3 # 3 C S c S
4 EQT DC4 $ 4 D T d t
-3 ENQ | NAK % 5 E U e u
[} ACK | SYN & 6 F \ f v
7 BEL | ETB 7 G W g w
8 BS CAN (8 H X h X
[} HT EM) 9 l Y i %
A LF SUB * H J Z i z
B VT | ESC + K [k {
c FF FS < L \ I |
D CR | GS - = M 1 m !
E SO RS > N A n ~
F Sl Us / ? 0 — 0 DEL
EXAMPLES

Length of a String of Characters

Purpose: Determine the length of a string of ASCH characters (seven bits with most
significant bit zero). The string starts in memory location 0041: the end of
the string is marked by a carriage return character (CR’, hex OD). Place the
length of the string {excluding the carriage return) into memory location
0040.

Sample Problems:

a. (0041} = 0D
Result: (0040) = 00 since the first character is a carriage return.
b. (0041) = 52 R
(0042) = 41 A
(0043) = 64 T
(0044) = 48 'H
(0045) = 45 'F
(0046) = B2 'R
(0047) = 0D CR
Result: {0040) = 086

Flowchart:

Pointer
Length

o
[~

18
Pointer} ="
Carriage Retum
{ Hex) 0D

Length = Length +1 _
Pointer = Pointer + 1 140 = tength

(=)

Source Program:

LD HL.41H :POINTER = START OF STRING

LD B.0 :STRING LENGTH = ZERO

LD A.ODH :GET ASCIHt CARRIAGE RETURN TO COMPARE
CHKCR: cCP (HL) IS CHARACTER A CARRIAGE RETURN?

JR Z.DONE :YES, DONE

INC B :NO, ADD 1 TO STRING LENGTH

INC HL

JR CHKCR :TRY NEXT CHARACTER
DONE: LD AB :SAVE STRING LENGTH

LD (40H).A

HALT

6-3

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.41H
0001 41
0002 00
0003 06 LD B.0
0004 00
0005 3E LD A ODH
0006 ob
0007 BE CHKCR: CP {HL)
0008 28 JR Z.DONE
0009 04
000A 04 INC B
0008 23 INC HL
000C 18 JR CHKCR
000D F9
000E 78 DONE: LD AB
000F 32 LD {40H).A
0010 40
0011 00
0012 76 HALT

The carriage return (CR) is just another ASCI character {hex 0D} as far as the computer
is concerned. The fact that the output device treats the carnage return as a control
character rather than as a printing character does not affect the computer.

The Compare instruction, CP, sets the flags as if a subtraction had been performed. but
leaves the carriage return character in the Accumulator for later comparisons. The Zero
(Z) flag is affected as follows:

Z =1 if the character in the string is a carriage return
Z =0 if itis not a carriage return

The instruction INC B adds 1 to the string length counter in Register B. LD B.0 initializes
this counter to zero before the loop begins. Remember to initialize variables before
using them in a loop.

This loop does not terminate because a counter is decremented to zero. The computer
will simply continue examining characters until it finds a carriage return. You may have
to place a maximum count in a loop like this to avoid problems with erroneous strings
that do not contain a carriage return. What would happen if the example program were
used with such a string?

Note that, by rearranging the logic and changing the initial conditions. you can shorten
the program and decrease its execution time. If we adjust the flowchart so that the pro-
gram increments the counter and pointer before it looks for the carriage return. only one
Jump instruction is necessary instead of two. The new flowchart and program are as
follows:

6-4

Flowchart:

Source Program:

CHKCR:

Pointer =
Length = -

—

Length = tength +1
Pointer == Pointer + 1

HL.40H
B.OFFH
A.ODH

HL

B

(HL)
NZ.CHKCR
AB
{40H).A

{Pomnter} =
CR {Hex 0D}
?

(400 = Length

:POINTER = BYTE BEFORE STRING
:LENGTH = -1
:GET ASCHl CARRIAGE RETURN TO COMPARE

:ADD 1 TO STRING LENGTH

:IS CHARACTER A CARRIAGE RETURN?
:NO. CHECK NEXT CHARACTER

:YES. SAVE STRING LENGTH

Object Program:

Memory Address Memorv Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL,40H
0001 40
0002 00
0003 06 LD B,OFFH
0004 FF
0005 3k LD A.ODH
0006 [o]»]
0007 23 CHKCR: INC HL
0008 04 INC B
0009 BE cP (HL)
000A 20 JR NZ,CHKCR
0008B FB
000C 78 LD AB
000D 32 LD (40H). A
000E 40
000F 00
0010 76 HALT

The task of looking for a particular value in a list, table, or string i1s a common one. The
280 microprocessor has. in fact, special instructions that simplify this task.

These special instructions are called Block Search Instructions; | BLOCK
they operate as follows: SEARCH

CPI compares the contents of the memory location addressed by INSTRUCTIONS

HL with the contents of the Accumulator (just like CP (HL)). It then

increments HL and decrements the byte counter (register pair BC). The Parity/Overflow
bit is reset if the byte counter is decremented to zero and set otherwise. CPD is the
same instruction except that 1t decrements HL instead of incrementing it.

CPIR and CPDR are the repeated forms of the Block Search instructions. These instruc-
tions repeat the basic Search instruction until either BC 1s decremented to zero or a true
comparison occurs fi.e.. A = {HL)). Remember that decrementing BC to zero resets the
Parity/Overflow bit, while finding a match sets the Zero bit.

Note that BC contains a 16-bit counter. Thus, the Block Search Instructions can handle
strings of any length.

A version of the previous program using CPI 1s shown below.
Source Program:

LD HL.41H :POINTER = START OF STRING

LD BC.0 :BYTE COUNTER = ZERO

LD A.0DH :GET ASCH CARRIAGE RETURN TO COMPARE
CHKCR: CP! :IS CHARACTER A CARRIAGE RETURN?

JR NZ.CHKCR :NO, CHECK NEXT CHARACTER

LD A.OFFH :YES, CALCULATE STRING LENGTH

SuB C

LD {40HLA :SAVE STRING LENGTH

HALT

6-6

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.41H
0001 41
0002 00
0003 01 LD BC.0
0004 00
0005 00
0006 3E LD A.ODH
0007 oD
0008 ED CHKCR: CPl
0003 Al
000A 20 JR NZ,CHKCR
0008 FC
000C 3E LD A.OFFH
000D FF
000E 91 SuUB C
000F 32 LD {40H),A
0010 40
0011 00
0012 76 HALT

A little manipulation is necessary to calculate the string length, since CPl decrements
the byte counter (BC) instead of incrementing it as we did with INC B in the earlier pro-
gram. Also. the byte counter is decremented one extra time when the carriage return is
found. How could vou adjust the initial conditions to handle this problem?

In fact, we can imorove the program even further by using CPIR to remove the need for
the relative jump JR. CPIR does everything that CPl does. but it also automatically
repeats the comparison procedure unless A = {HL} or BC has been decremented to zero.
The program using CPIR is shown below.

Source Program:

LD HL.41H :POINTER = START OF STRING

LD BC.0 :BYTE COUNTER = ZERO

LD A.ODH :GET ASCIl CARRIAGE RETURN TO COMPARE
CPIR :SEARCH FOR CARRIAGE RETURN

LD A.OFFH :CALCULATE STRING LENGTH FROM COUNTER
suB C

LD (40H).A :SAVE STRING LENGTH

HALT

6-7

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.41H
0001 41
0002 00
0003 01 LD BC.0
0004 00
0005 00
0006 3E LD A.ODH
0007 oD
0008 ED CPIR
0009 B1
000A 3E LD A QFFH
000B FF
000C 9 suB C
Q00D 32 LD (40H).A
000E 40
Q00F 00
0010 76 HALT

The multiple operation instructions like CP! and CPIR have the same effect as the se-
quences they replace. The savings in execution time and memory come about because
the processor needs fewer instructions for each pass through the loop. Thus, the real
savings is in loop execuion.

All these programs assume that the string is less than 256 bytes long. How would vou
change them to handle longer strings?
Find First Non-Blank Character

Purpose: Search a string of ASCll characters {seven bits with most significant bit zero)
for a non-blank character. The string starts in memory focation 0042. Place
the address of the first non-blank character into memory locations 0040 and
0041 (most significant bits in 0041). A blank character is hex 20 in ASCIL.

Sample Problems:

a. 0042y = 37 7
Result: (0040) = 42. since memory location 0042 contains a non-blank
character.
(0041) = 00
b. (0042) = 20 SP
(0043) = 20 SP
(0044) = 20 SP
(0045) = 46 F
(0046) = 20 SP
Result: (0040) = 4B, since the three previous memory locations all
contain blanks.
(0041} = 00

6-8

Flowchart:

Source Program:

Ponter = 42

Is

{Pointer) =

ASCIl blank
7

Pointer = Pointer + 1 (40 and 41) = Pointer

L

LD HL,42H ;POINTER = START OF STRING
LD A 20H :GET ASCHl SPACE FOR COMPARISON
CHBLK: CP HL) 1S CHARACTER AN ASCIH SPACE?
JR NZ,DONE :NO, THROUGH
INC HL
JR CHBLK :YES, EXAMINE NEXT CHARACTER
DONE: LD {(40H). HL :NO, SAVE ADDRESS OF FIRST NON-BLANK
CHARACTER
HALT
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.42H
0001 42
0002 00
0003 3E LD A.20H
0004 20
0005 BE CHBLK: CP (HL)
0006 20 JR NZ,DONE
0007 03
0008 23 INC HL
0009 18 JR CHBLK
000A FA
0008 22 DONE: LD {40H) HL
000C 40
000D 00
000E 76 HALT

6-9

Looking for spaces in strings is a common task. Spaces often are eliminated from
strings when they are used simply to increase readability or to fit particular formats. Itis
obviously wasteful to store and transmit beginning. ending or extra spaces. particularly
if you are paying for the communications capability and memory required. Data and
program entry, however, are much simpler if extra spaces are tolerated. Microcom-
puters are often used in situations like this to convert data between forms that are easy
for humans to use and forms that are efficiently handled on computers and com-
munications lines.

The instruction LD (addr),HL is convenient for storing addresses in the Z80 format (least
significant byte firstl. LD (40H).HL stores the contents of Register L in memory location
0040 and the contents of Register H in memory location 0041.

Again, if we alter the initial conditions so that the loop control section precedes the pro-
cessing section, we can reduce the number of bytes in the program and decrease the
loop’s execution time. The rearranged flowchart is:

Pointer = 41

——

Pointer = Pointer +1

is
‘Pointer} =
ASCIH blank
Hex 20}
2

{40 and 41} = Pointer

Source Program:

LD HL41H :POINT TO BYTE BEFORE STRING
LD A.20H :GET ASCH SPACE FOR COMPARISON
CHBLK: INC HL
cP (HL) ;IS CHARACTER AN ASCII SPACE?
JR Z.CHBLK YES. KEEP EXAMINING CHARACTERS
LD {40H),HL :NO, SAVE ADDRESS OF FIRST NON-BLANK
CHARACTER
HALT

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.41H
0001 41
0002 00
0003 3E LD A,20H
0004 20
0005 23 CHBLK: INC HL
0006 BE CP (HU)
0007 28 JR Z.CHBLK
0008 FC
0009 22 LD (40H).HL
000A 40
0008 00
000C 76 HALT

As in the previous example, we could replace the sequence INC HL, CP (HL) with the
single instruction CPl. However. since we do not need the byte counter in this program,
CPI takes just as much memory (two bytes) and more time {16 clock cycles instead of
13} than the instructions it replaces. We could not use CPIR here since we want the pro-
gram to terminate when the characters are not the same.

Replace Leading Zeros with Blanks

Purpose: Edit a string of ASCIl decimal characters by replacing all feading zeros with
blanks. The string starts in memory location 0041; assume that it consists
entirely of ASCll-coded decimal digits. The length of the string is in memory
location 0040.

Sample Problems:

a. (0040) = 02
0041) = 36 &
The program leaves the string unchanged. since the leading digit is not zero.
b. (0040) = 08
(0041) = 30 O
(0042) = 30 ‘O
(0043) = 38 '8
Result: (0041} = 20 SP
(0042) = 20 spP

6-11

Flowchart:

Source Program:

CHKZ:

DONE:

HL.40H
B.(HL)
AO

HL

(HL)
NZ.DONE
(HL),20H
CHKZ

Count =
Ponter = 41

s

Pointer} =
ASCII zero
(Hax7 30

ASCHi SP
= 20 {Hex) §

[pointer

Painter

:COUNT = STRING LENGTH
:GET ASC!l ZERO FOR COMPARISON

;IS LEADING DIGIT ZERO?

:NO. THROUGH

:REPLACE LEADING ZERO WITH BLANK
:EXAMINE NEXT DIGIT IF ANY

Single quotation marks around characters indicate ASCII.

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.40H
0001 40
0002 00
0003 46 LD B.(HL)
0004 3E LD AQ
0005 30
0006 23 CHKZ: INC HL
0007 BE CcpP {HL)
0008 20 JR NZ.DONE
0009 04
000A 36 LD {(HL),20H
000B 20
000C 10 DJINZ CHKZ
000D F8
000E 76 DONE: HALT

You will frequently want to edit decimal strings before they are printed or displaved to
improve their appearance. Common editing tasks include eliminating leading zeros,
justifying numbers, adding signs or other identifying markers, and rounding. Clearly,
printed numbers like 0006 or $27.34382 can be confusing and annoying.

Here the loop has two exits — one if the processor finds a non-zero digit and the other if
it has examined the entire string.

The instruction LD (HL),20H places 20 (hex) into the memory location addressed by
Registers H and L. You could also initialize Register C to 20 hex {i.e..LD C,20H) and use
LD (HL).C to replace the leading zero with a blank. Note the tradeoffs involved in this ex-
ample. LD {HL).C executes faster than LD (HL),20H and would thus decrease the inner
loop’s execution time. The overhead required, however, is an LD C.20H instruction in
the initialization section of the routine. If this example were to be used in a cash register
application, which sequence would vou choose and why?

All digits in the string are assumed to be ASCII: that is. the digits are hex 30 through 39
rather than the ordinary decimai 0 to 9. The conversion from decimal to ASCHl is simply
a matter of adding hex 30 to the decimal digit.

You mav have to be careful, when blanking leading zeros. to leave one zero in the event
that all the digits are zero. How would you do this?

Note that each ASCII digit requires eight bits, as compared to four for a BCD digit.
Therefore, ASCIl is an expensive format in which to store or transmit numerical data.

Add Even Parity to ASCHl Characters

Purpose: Add even parity to a string of 7-bit ASCIl characters. The length of the string
s in memory location 0040 and the string itself begins in memory location
0041. Place even parity in the most significant bit of each character by set-
ting the most significant bit to 1 if that makes the total number of 1 bits in
the word an even number.

6-13

Sample Problem:

Result:

Flowchart:

{0040}
(0041)
(0042)
(0043)
(0044)
(0045)
{00486)

0041)
(0042)
(0043)
(0044)
(0045)
(0048}

[O T T
w
@

1 [R
W
w

Pointer = 41
Count =

(40)

{Pointer} have
even panty
7

No

{Painter) = (Pointer}
OR 100000008
{set parity bit)

—=

Pointer = Pointer +1
Count = Count - 1

Source Program:

LD HL.40H
LD B.(HL) :GET STRING LENGTH
LD C.100000008 :GET PARITY BIT OF 1
SETPR: INC HL
LD A,(HL) :GET A CHARACTER
OR C :SET PARITY BIT TO 1 AND TEST PARITY
JP PO.CHCNT IS PARITY NOW EVEN?
LD (HL).A YES. SAVE CHARACTER WITH EVEN PARITY
CHCNT: DJNZ SETPR
HALT
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL,40H
0001 40
0002 00
0003 46 LD B.(HL)
0004 OE LD C.10000000H
0005 80
0006 23 SETPR: INC HL
0007 7E LD A, (HL)
0008 B1 OR C
0009 E2 JP PO,CHCNT
000A 0D
0008 00
000C 77 LD {(HL)LA
000D 10 CHCNT: DJNZ SETPR
000E F7
000F 76 HALT

Parity 1s often added to ASCll characters before they are transmitted on noisy com-
munication lines, to provide a simple error-checking facility. Parity detects all single-bit
errors but does not allow error correction f{i.e.. you know that an error has occurred
when the received parity is wrong, but you cannot tell which bit was changed).

LD C.100000008 saves a parity bit of 1 in Register C. (Note the use of the binary mask:
the purpose of the mask is clearer when it is specified in this manner rather than as 80H
or 128 decimal.)

The instruction OR C sets the parity {most significantl bit to 1 while retaining all the
other bits as they were, as well as setting the Z80 Parity flag.

The following procedure is used to determine if the parity of the byte in memory is odd
or even. We OR a parity bit into the byte loaded from memory and then test to see if the
parity is odd. If the parity is odd. then the byte in memory has even parity, and we jump
down to decrement the count of remaining bytes. If the parity is even, then we know
that the byte in memory has odd parity, and therfore we store the byte in the Ac-
cumulator into that memory location.

The conditional jJumps JP PO (Jump on Parity Odd) and JP PE {Jump on Parity Even) are
seldom used except in parity generation and checking. Note that there are no relative
jumps conditional on the value of the Parity bit, just as there are none conditional on
the value of the Sign bit.

6-15

Do not confuse the Parity bit ineluded in each character and the Z80's Parity flag,
which is set to 1 if the last arithmetic or Boolean result had even parity.

An alternative approach uses the Z80 SET instruction. This version takes a little longer
but does not require a temporary register for the parity bit.

Source Program:

LD HL,40H
LD B.(HL) :GET STRING LENGTH
SETPR: INC HL
LD A HL) :GET A CHARACTER
OR A :DOES CHARACTER HAVE EVEN PARITY?
JP PE.CHCNT
SET 7.(HL) :NO, SET PARITY BITTO 1
CHCNT: DJNZ SETPR
HALT
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) {(Mnemonic)
0000 21 LD HL.40H
0001 40
0002 00
0003 46 LD B.{HL)
0004 23 SETPR: INC HL
0005 7€ LD A, (HL)
0006 B7 OR A
0007 EA JP PE.CHCNT
0008 ocC
0009 00
000A CB SET 7.(HL)
0008 FE
000C 10 CHCNT: DJNZ SETPR
000D F6
000E 76 HALT

Pattern Match

Purpose: Compare two strings of ASCIl characters to see if they are the same. The
tength of the strings is in memory location 0041; one string starts in memory
location 0042 and the other in memory location 0052. If the two strings
match. clear memory location 0040: otherwise, set memory location 0040 to
FF hex (all ones).

Sample Problems:

a. (0041} = 03
(0042) = 43 C
(0043) = 41 A
(0044) = 54 T
(0052) = 43 'C
(0053) = 41 ‘A
(0054} = 54 T
Result: (0040) = 00. since the two strings are the same.

6-16

b. (0041) = 03
(0042) = 52 R
0043) = 41 A
(0044) = 54 T
(0052) = 43 C
0053) = 41 ‘A
(0054) = 54 T

Result: (0040) FF. since the first characters in the

strings differ.

Note: The matching process ends as soon as the CPU finds a difference — the rest of
the strings need not be examined.

Flowchart:

Pointer 2 = 52
Count = {41}
Mark = FF (hex}

Is

Painter 1} =

xy, (Pointer 2)
N}

BPainter 1 = Pointer 11
i + 1l

il Pointer 2 = Pointer 2,
/ + 18

L_Count = Count - 1

Mark = 0O
(40) = Mark

6-17

Source Program:

LD HL.41H
LD B.(HL) :COUNT = LENGTH OF STRINGS
INC HL :POINTER 1 = START OF STRING 1
LD DE,B2H :POINTER 2 = START OF STRING 2
LD C.OFFH :MARK = FF (HEX)
CHCAR: LD A.(DE) :GET CHARACTER FROM STRING 2
CcpP HL) :1S THERE A MATCH?
JR NZ,DONE NO, DONE
INC DE
INC HL
DJNZ CHCAR :CHECK NEXT PAIR IF ANY LEFT
LD c.0 :MARK = 0 IF ALL CHARACTERS MATCH
DONE: LD AC
LD {40H),A :SAVE MARK
HALT
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL,41H
0001 41
0002 00
0003 46 LD B.(HL)
0004 23 INC HL
0005 11 LD DE,62H
0006 52
0007 00
0008 OE LD C,OFFH
0009 FF
000A 1A CHCAR: LD A.(DE)
0008 BE CP (HL)
oooC 20 JR NZ.DONE
000D 06
000E 13 INC DE
000F 23 INC HL
0010 10 DJNZ CHCAR
0017 F8
0012 OE LD C.0
0013 00
0014 79 DONE: LD A.C
0015 32 LD (40H).A
0016 40
0017 00
0018 76 HALT

Matching strings of ASCIl characters is an essential part of looking for commands,
recognizing names, identifying variables or operation codes in assemblers and com-

pilers. finding files, and many other tasks.

The program uses two pointers, one in Register Pair HL and the other in Register Pair
DE. The only instructions that use the address in DE are LD A,{DE) {Load Accumulator
From Memorv Location Addressed by DE)} and LD (DE).A {Store Accumulator in Memory
Location Addressed by DE). Arithmetic and logical operations with memory and
transfers to or from other registers (e.g.. ADD A.(HL); AND (HL); LD B.(HL); LD HLL.E)
can only be performed using the address in Register Pair HL, or using an index register.

6-18

The order of operations is very important because of the small number of instructions
that use the address in Register Pair DE. You must move a character from the string
pointed to by DE to the Accumulator and compare it to a character in the string pointed
to by HL. This order of operations is necessary because the Z80 has no instruction
which allows a comparison to a character in a string pointed to by DE.

For example, if you replaced LD A,(DE) with LD A,{HL), what would the next instruction
be? This asymmetry is peculiar to the Z80 and can cause programming nightmares.

Note that each iteration updates both pointers.

This program could take advantage of the fact that a register is known to contain zero
after a particufar conditional jump is executed. When the DJNZ CHCAR instruction is
executed, if the branch is not performed, then we know that Register B contains zero.
Therefore, we can move Register B to Register C, our flag register. to indicate that a
match has been found.

We could also use the Z80's SET and RESET instructions to handle the flag if we
needed to conserve bits for other purposes.

PROBLEMS
1) Length of a Teletypewriter Message

Purpose: Determine the length of an ASCIl message. All characters are 7-bit ASCII
with MSB = 0. The string of characters in which the message is embedded
starts in memory location 0041. The message itself starts with an ASClI STX
character (hex 02) and ends with ETX (hex 03). Place the length of the
message (the number of characters between the STX and the ETX but in-
cluding neither) into memory location 0040,

Sample Problem:

(0041) = 40
(0042) = 02 STX
0043) = 47 G
0044) = 4F O
(0045) = 03 ETX
Result: (0040} = 02. since there are two characters between

the STX in location 0042 and ETX in
location 0045.

2) Find Last Non-Blank Character

Purpose: Search a string of ASCIl characters for the fast non-blank character. The
string starts in memory location 0042 and ends with a carriage return
character (hex OD). Place the address of the last non-blank character into
memory locations 0040 and 0041 (most significant bits in 0041).

Sample Problems:

a. (0042)
(0043)

Result: {0040)

37 7
0D CR
42. since the last {and only) non-blank character

1s in memory location 0042.
00

[

(0041)

6-19

b. 0042) = 41 ‘A
(0043) = 20 SP
(0044) = 48 'H
(0045) = 41 A
(0046) = B4 T’
(0047) = 20 SP
(0048) = 20 SP
(0049) = 0D CR
Result: {0040) = 46
{0041} = 00

3) Truncate Decimal String to Integer Form

Purpose: Edit a string of ASCH decimal characters by replacing all digits to the right of
the decimal point with ASCII blanks {(hex 20). The string starts in memory
jocation 0041 and is assumed to consist entirely of ASCll-coded decimal
digits and a possible decimal point (hex 2E). The length of the string is in
memory location 0040. If no decimal point appears in the string. assume that
the decimal point is implicitly at the far right.

Sample Problems:

a. (0040) = 04
(0041) = 37 7
(0042) = 2E
(0043) = 38 '8
(0044) = 31 "1
Result: (0041) = 37 7
(0042) = 2t
(0043) = 20 sSP
(0044) = 20 SP
b. (0040) = 03
0041) = 26 6
(0042) = 37 7
0043) = 31 'V
Result: Unchanged, as number is assumed to be 671.

4) Check Even Parity in ASCIl Characters

Purpose: Check even parity in a string of ASCIl characters. The length of the string is
in memory location 0041, and the string itself begins in memory location
0042. If the parity of all the characters in the string is correct, clear memory
location 0040; otherwise, place FF hex (all ones) into memory location 0040.

6-20

Sample Problems:

a. (0041) = 03
(0042) = B1
(0043) = B2
(0044) = 33
Result: (0040) = 00, since all the characters have even parity.
b. (0041) = 03
(0042) = B1
(0043) = B6
(0044) = 33
Result: (0040) = FF since the character in memory

location 0042 does not have even parity.
5} String Comparison

Purpose: Compare two strings of ASCH characters to see which is larger {i.e., which
follows the other in ‘alphabetical’ ordering). The length of the strings is in
memory location 0041: one string starts in memory location 0042 and the
other in memory location 00562. If the string starting in memory location
0042 is greater than or equal to the other string. clear memory location
0040: otherwise, set memory location 0040 to FF hex (all ones).

Sample Problems:

a. (0041) = 03
(0042) = 43 'C
(0043) = 41 A
(0044} = 54 'T
(0052) = 42 B
{0053) = 41 'A
(0054) = 54 T

Result: (0040} = 00. since CAT is ‘larger’ than BAT

b. (0041} = 03
(0042) = 43 C
0043} = 41 A
(0044) = 54 T
(0052) = 43 'C
(0053) = 41 A
(0054) = B84 T

Result: (0040) = 00, since the two strings are equal.

c. (0041) = 03
(0042) = 43 'C
0043} = 41 ‘A
(0044) = 54 T
(0052) = 43 C
(0063) = 65 ‘U
(0054) = 54 'T

1

Result: (0040} FF. since CUT is ‘larger’ than CAT.

6-21

Chapter 7
CODE CONVERSION

Code conversion is a continual problem in most microcomputer applications. Periph-
erals provide data in ASCIL. BCD. or various special codes. The system must convert the
data into some standard form for processing. Output devices may require data in ASCII,
BCD. seven-segment. or other codes. Therefore, the system must convert the results to
a suitable form after the processing is completed.

There are several ways to approach code conversion:

1) Some conversions can easily be handled by algorithms involving arithmetic or logi-
cal functions. The program may. however, have to handle some special cases sepa-
rately.

2) More complex conversions can be handled with lookup tables. The lookup table
method requires little programming and s easy to apply. However, the table may
occupy a large amount of memory if the range of input values is large.

3) Hardware 1s readily available for some conversion tasks. Typical examples are
decoders for BCD to seven-segment conversion and Universal Asynchronous
Receiver/Transmitters (UARTSs) for conversion between parallel {ASCII} and serial
(teletypewriter) formats.

In most applications, the program should do as much as possible of the code conversion
work. This results in a savings in parts and board space as well as in increased
reliability. Furthermore, most code conversions are easy to program and require little
execution time.

EXAMPLES
Hex to ASCII

Purpose: Convert the contents of memory location 0040 to an ASCIl character.
Memory location 0040 contains a single hexadecimal digit {the four most
significant bits are zero). Store the ASCIl character in memory location
0041.

Sample Problems:

a. (0040) = 0OC
Result: (0041) = 43 'C’

b. (0040) = 06
Result: {0041) = 36 6

7-1

Flowchart:

Source Program:

Data =(40)

Data = Data
+ ASCIE A
—-ASCH 8

-1

Result =

Data + ASCIl Zero

(41) = Result

LD A, [40H) :GET DATA

CcP 10 1S DATA 10 OR MORE?

JR C.ASCZ

ADD ACA9-1 :YES. ADD OFFSET FOR LETTERS

ASCZ: ADD AO :ADD OFFSET FOR ASCIHI
LD {41H),A :STORE ASCI RESULT
HALT
Object Program:
Memory Address Memory Contents Instruction

(Hex) (Hex) {Mnemonic)
0000 3A LD A.{40H)
0001 40
0002 00
0003 FE CP 10
0004 0A
0005 38 JR C.ASCZ
0006 02
0007 [ol} ADD AA-S-1
0008 07
0008 C6 ASCZ: ADD ACO
000A 30
0008 32 LD (41H).A
000C 41
000D 00
000E 76 HALT

7-2

In this program. the basic idea is to add ASCIi O to all the hexadecimal digits. This addi-
tion converts the decimal digits correctly; however. there is a break between ASCH 9
(39 hex) and ASCIl A {41 hex) which must be considered. This break must be added to
the nondecimal digits A, B. C, D. E, and F. This is accomplished by the ADD A instruc-
tion which adds the offset "A’-'9-1 to the contents of the Accumulator. Can vou explain
why the offset is 'A’-"9"-1?

Note that the addition terms are placed in the assembly language program in ASCII
form {apostrophes surround an ASCIl character or string of characters). The offset for
the letters is left as an arithmetic expression. The effort is to make the purpose of the
terms as clear as possible in the assembly language listing. The extra assembly time 1s a
very small price to pay for a large increase in clarity.

This routine could be used in a variety of programs; for example. monitor programs
must convert hexadecimal digits to ASCII in order to display the contents of memory
locations in hexadecimal on an ASCH printer or video display.

Another {quicker) conversion method that requires no conditional jumps at all is the
following program, described by Allison in Computer magazme1

LD A.{40H) :GET HEX DIGIT

ADD A.90H :DEVELOP EXTRA 6 AND CARRY
DAA

ADC A40H :ADD IN CARRY, ASCIl OFFSET
DAA

LD (41H).A :STORE ASCII DIGIT

HALT

Try this program on some digits. Can you explain why 1t works?

Decimal to Seven-Segment

Purpose: Convert the contents of memory location 0040 to a seven-segment code in
memory location 0042. If memory location 0040 does not contain a single
decimal digit. clear memory location 0042.

Seven-segment table: The following table can be used to convert decimal numbers to
seven-segment code. The seven-segment code is organized with the most significant
bit always zero followed by the code {1 = on, 0 = off) for segments g. f. e. d. c. b. and a
(see Figure 7-1).

Digit Code 2

OCONONDWN—=O
[=2]
w)

Figure 7-1. Seven-segment Arrangement

7-3

Note that the table uses 7D for 6 rather than the alternative 7C (top bar off) to avoid
confusion with lower case b. and 6F for 9 rather than 67 (bottom bar off). for no particu-

lar reason.
Sample Problems:

a. (0040) = 03
Result: (0042) = 4F
b. (0040) = 28
Result: (0042) = 00
Flowchart:

Data = (40}

Result =
Result =0
(SSEG + Datal
{42} = Result

Note that the addition of base address SSEG and index {DATA) produces the address
that contains the answer.

7-4

Source Program:

DONE:

SSEG:

B.O
A, {40H)

:GET ERROR CODE TO BLANK DISPLAY
:GET DATA

;IS DATA A DECIMAL DIGIT?

:NO. KEEP ERROR CODE

:YES, MAKE DATA INTO A 16-BIT INDEX

'GET BASE ADDRESS OF 7-SEGMENT TABLE
:FIND ELEMENT BY INDEXING

:GET 7-SEGMENT CODE FROM TABLE
:SAVE 7-SEGMENT CODE OR ERROR CODE

:SEVEN-SEGMENT CODE TABLE

7-5

Object Program:

Memory Address Memory Contents Instruction
(Hex) {Hex) (Mnemonic)
0000 06 LD B.0
0001 00
0002 3A LD A.{40H)
0003 40
0004 00
0005 FE cP 10
0006 0A
0007 30 JR NC.DONE
0008 08
0009 6F LD LA
000A 26 LD H0
000B 00
000C 11 LD DE,SSEG
000D 20
000E 00
000F 19 ADD HL.DE
0010 46 LD B.(HL)
0011 78 DONE: LD A.B
0012 32 LD @2H).A
0013 42
0014 00
00156 76 HALT
0020 3F SSEG: DEFB 3FH
0021 06 DEFB 06H
0022 5B DEFB 5BH
0023 4F DEFB 4FH
0024 66 DEFB 66H
0025 6D DEFB 6DH
0026 70 DEFB 7DH
0027 07 DEFB 07H
0028 7F DEFB 7FH
0029 6F DEFB 6FH

The program calculates the memory address of the desired code by adding the index
{i.e.. the digit to be displayed) to the base address of the seven-segment code table.
This procedure is known as a table lookup.

The assembly language pseudo-operation DEFB (Define Byte) places constant data into
program memory. Such data may include tables, headings. error messages, priming
messages. format characters, thresholds, etc. The label attached to a DEFB pseudo-
operation 1s assigned the value of the address into which the byte of data is placed.

Tables are often used to perform code conversions that are more complex than the pre-

vious example. Such tables typically contain all the results organized according to the
input data, e.g.. the first entry 1s the code corresponding to the number zero.

Seven-segment displays provide recognizable forms of the decimal digits and a few let-
ters and other characters. Calculator-type seven-segment displays are inexpensive,
easy to combine, and use little power. However. the seven-segment coded digits are
somewhat difficult to read.

The assembler simply places the data for the table into memory. Note that one DEFB
pseudo-operation fills one byte of memory. We have left some memory space between
the program and the table to allow for later additions or corrections.

7-6

An alternative approach would be to use one of the Z80's index
registers, say IX. The programmer must be aware of the following
features of the Z80's index registers:

1} The fixed offset in program memory is only eight bits long and
so cannot hold a complete memory address. It must be used either as a short dis-
placement or to hold the eight least significant bits of a memory address.

2) The index registers are 16 bits long. Either IX or IY can be loaded from memory just
like a register pair — from two consecutive memory addresses with the least sig-
nificant eight bits at the lower address.

3) All operations involving the index registers take extra time and memory because
one word of the operation code simply declares that an index register is to be used.

The following program uses Register IX to perform the table lookup:

Source Program:

USE OF 280
INDEX

REGISTERS

LD B.O :GET ERROR CODE TO BLANK DISPLAY
LD A, {40H) (GET DATA
CcpP 10 IS DATA A DECIMAL DIGIT?
JR NC.DONE :NO, KEEP ERROR CODE
LD HL.41H :SAVE TABLE PAGE NUMBER IN MEMORY
LD (HL).O
LD IX.(40H) :GET TABLE OFFSET
LD B.(IX+SSEG) :GET 7-SEGMENT CODE FROM TABLE
DONE: LD AB :SAVE 7-SEGMENT CODE OR ERROR CODE
LD 42H).A
HALT
Object Program:
Memory Address Memory Contents Instruction
{Hex) (Hex) (Mnemonic)
0000 06 LD B.O
0001 00
0002 3A LD A, (40H)
0003 40
0004 00
0005 FE CcP 10
0006 OA
0007 30 JR NC,DONE
0008 ocC
0009 21 LD HL.41H
000A 41
0008 00
000C 36 LD (HL).O
000D 00
000E DD LD IX,{40H)
000F 2A
0010 40
0011 00
0012 DD LD B.{IX+SSEG)
0013 46
0014 20
0015 78 DONE. .D AB
0016 32 LD {42H).A
0017 42
0018 00
0019 76 HALT

7-7

The indexed load instruction LD B,(iX + SSEG) adds the index li.e.. the digit to be dis-
plaved) to the base of the seven-segment table to get the address of the desired code.
Note that the 16-bit index register contains the data as its eight least significant bits
and the most significant bits of the starting address of the table as its eight most signifi-
cant bits. This odd arrangement is necessary because the offset included with the in-
dexed instruction is only eight bits long and can therefore hold only the eight least sig-
nificant bits of the starting address of the table.

A more general program would allow the table to be placed anywhere in memory. If the
table starting address is SSEGM (eight MSBs) and SSEGL (eight LSBs), the instruction
LD {HL).0 must be replaced by LD {HL),SSEGM. Why is this change necessary?

Note that all operations involving Index Register IX have a 2-word operation code in
which the first word is DD.

Clearly this is not a very efficient use of the index registers. These § MOVING DATA
registers really become useful when vou must access several data | WITHIN
in a block. The block might contain the characteristics of a | A BLOCK

message, the parameters of an equation. the current state of a pro-
cess or machine, or the data for a video display. You could, for example, take the con-
tents of the twelfth location in the block and move them to the twentieth location with
either of the following programs, assuming that the starting address of the block is
stored in memory locations PTR and PTR+1.

1) Using DE and HL.

LD DE.(PTR) :GET STARTING ADDRESS

LD HL12 :CALCULATE SOURCE ADDRESS

ADD HL.DE

LD A HL) :GET DATA FROM SOURCE

LD HL.20 :CALCULATE DESTINATION ADDRESS

ADD HL.DE

LD (HL)LA :MOVE DATA TO DESTINATION
2) Using IX.

LD IX.PTR :GET STARTING ADDRESS

LD AIX+12) :GET DATA FROM SOURCE

LD {IX+20),A :MOVE DATA TO DESTINATION

The program using the index registers is far shorter and clearer. Its only limitation is
that the offsets must be small enough to fit into an 8-bit byte.

ASCIl to Decimal

Purpose: Convert the contents of memory location 0040 from an ASCHl character to a
decimal digit and store the result in memory location 0041. If the contents of
memory location 0040 are not the ASCHl representation of a decimal digit.
set the contents of memory location 0041 to FF {(hex).

Sample Problems:

a. 0040) = 37 ‘7
Result: (0041) = 07

b. (0040} = 55
Result: (0041) = FF

7-8

Flowchart:

Data ={40)

Yes

Resuit =
Data - ASCII 0 Result = FF {Hex!
{41) = Result
Source Program:
LD B.OFFH :GET ERROR MARKER
LD A, {40H) :GET DATA
SUB o IS DATA BELOW ASCIl ZERQ?
JR C.DONE :YES., NOT A DIGIT
cpP ‘9’1 ;IS DATA ABOVE ASCII NINE
JR NC.DONE :YES. NOT A DIGIT
LD B.A :SAVE DIGIT IF VALID
DONE: LD AB ;SAVE DIGIT OR ERROR MARKER
LD {41H).A

7-9

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) {(Mnemonic)
0000 06 LD B.OFFH
0001 FF
0002 3A LD A, (40H)
0003 40
0004 00
0005 D6 SuUB o
0006 30
0007 38 JR C.DONE
0008 05
0009 FE CcP ‘g+1
000A 3A
0008 30 JR NC,DONE
000C 01
000D 47 LD B.A
000E 78 DONE: LD AB
000F 32 LD {41H)L.A
0010 41
0011 00
0012 76 HALT

This program handles ASCll-coded characters just like ordinary numbers. Note that the
decimal digits and the letters form groups of consecutive codes. Strings of letters (like
names) can be alphabetized by placing their ASCIl representations in increasing
numerical order (ASCHl B = ASCIl A + 1 for example).

Subtracting ASCII zero (30 hex) from any ASCH decimal digit gives the BCD represen-
tation of that digit.

ASCH to decimal conversion is necessary when decimal numbers are being entered
from an ASCH device like a teletypewriter or video terminal.

The basic idea of the program s to determine if the character is between ASCH 0 and
ASCH 9. inclusive. If the character is. it's an ASCII decimal digit. since the digits form a
sequence. It may then be converted to decimal simply by subtracting hex 30 (ASCIi 0),
e.g.. ASCII 7 - ASCIt 0 = 37-30 =7

Note that one comparison is done with an actual subtraction (SUB ‘0') since the subrac-
tion is necessary to convert ASClI to decimal. The other comparison is done with an im-
plied subtraction (CP '9'+1) since the final result is now in the Accumulator if the origi-
nal number was valid.

BCD to Binary

Purpose: Convert two BCD digits in memory locations 0040 and 0041 to a binary
number in memory location 0042. The most significant BCD digit is in
memory location 0040.

Sample Problems:

a. (0040) = 02
(0041) = 09

Result: {0042) = 1D (hex) =29 (decimall
b. {0040) = 07
0041} = O1

Result: (0042) = 47 (hex) =71 {decimal)

7-10

Note: No flowchart is included since the program multiplies the most significant digit
by 10 simply by using the formula 10x = 8x + 2x. Multiplying by 2 requires one
arithmetic left shift and multiplying by 8 requires three such shifts.

Source Program:

LD HL.40H :GET MOST SIGNIFICANT DIGIT (MSD)
LD A, (HL)
ADD AA :MSD TIMES TWO
LD B.A :SAVE MSD TIMES TWO
ADD AA :MSD TIMES FOUR
ADD AA :MSD TIMES EIGHT
ADD AB :MSD TIMES TEN
INC HL :POINT TO LEAST SIGNIFICANT DIGIT
ADD A (HL) :ADD TO FORM BINARY EQUIVALENT
INC HL
LD (HLLA :STORE BINARY EQUIVALENT
HALT
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.40H
0001 40
0002 00
0003 7E LD A (HL)
0004 87 ADD AA
0005 47 LD B.A
0006 87 ADD AA
0007 87 ADD AA
0008 80 ADD AB
0003 23 INC HL
000A 86 ADD A, (HL)
0008 23 INC HL
000C 77 LD (HL)LA
000D 76 HALT

BCD entries are converted to binary in order to save on storage and to simplify calcula-
tions. However. the conversion may offset some of the advantages of binary storage
and arithmetic.

This program multiplies the BCD digit in memory location 0040 by ten using repeated
additions.2 Note that ADD A,A multiplies the contents of the Accumulator by 2. This
allows you to multiply the contents of the Accumulator by small decimal numbers in a
few instructions. How would you use this procedure to multiply by 16? by 12? by 7?

BCD numbers require about 20% more storage than do binary numbers. Representing 0
to 999 requires 12 bits in BCD form but only 10 bits in binary (since
210 = 1024 = 1000).

Convert Binary Number to ASCII String

Purpose: Convert the 8-bit binary number in memory location 0041 to eight ASCI!
characters {either ASCIl 0 or ASCH 1} in memory locations 0042 through
0049 (the most significant bit is in 0042).

7-11

Sample Problem:

Result:

Flowchart:

CONV:

COUNT

(0041)

(0042)
(0043)
(0044)

= D2 =11010010

31 v
31 v
30 0
31 T
30 O
30 0
31 1
30 O

Pointer

Counter

Data =

41
{Pointer)
8

l

Pointer =
{Pointer) =
Shift Data

Pointer H
ASCH 0
left one bit

Counter =

Counter -1

(Pointer) =
ASCH 1, ie..
{Pointer) + 1

Coun

NC.COUNT
HL)
CONV

Is

ter O

:GET DATA

]

:COUNTER = NUMBER OF BITS IN WORD
:GET ASCII ZERO TO STORE IN STRING

:PUT ASCIl ZERO IN STRING
;IS NEXT BIT OF DATA 1?

YES, MAKE STRING ELEMENT ASCIHI ONE

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.41H
0001 41
0002 00
0003 7E L A HL)
0004 06 LD B.8
0005 08
0006 OE LD co
0007 30
0008 23 CONV: INC HL
0009 71 LD {HL).C
000A 17 RLA
0008 30 JR NC.COUNT
000C 01
000D 34 INC {HL)
000E 10 COUNT: DJINZ CONV
000F F8
0010 76 HALT

The ASCII digits form a sequence so ASCIl 1 = ASCIl 0+1. Remember that the Z80
registers have special uses. You should place the loop counter into Register B so that
vou can use the DJINZ instruction.

Be careful of the difference between INC HL. which adds one to the 16-bit contents of
Register Pair HL, and INC (HL). which adds one to the 8-bit contents of the memory
location addressed by Register Pair HL.

Binary-to-ASCIl conversion is necessary when numbers are printed in binary form on an
ASCIHl device.

The conversion to ASCIl simply invoives adding ASCH O (hex 30).

PROBLEMS
1) ASCIH to Hex

Purpose: Convert the contents of memory location 0040 to a hexadecimal digit and
store the result in memory location 0041. Assume that memory location
0040 contains the ASCII representation of a hexadecimal digit (7 bits with

MSB 0).

Sample Problems:

a. (0040) = 43 C
Result: (0041) = 0OC

b. (0040) = 36 ‘6

Result: {0041) = 06
2) Seven-Segment to Decimal

Purpose: Convert the contents of memory location 0U40 from a seven-segment code
to a decimal number in memory location 004 1. If memory location 0040 does
not contain a valid seven-segment code, set memory location 0041 to FF
(hex). Use the seven-segment table given under the Decimal to Seven-Seg-
ment example and try to match codes.

Sample Problems:

a. (0040) = 4F
Result: (0041) = 03
b. (0040) = 28
Result: (0041} = FF

3) Decimal to ASCIH

Purpose: Convert the contents of memorv location 0040 from a decimal digit to an
ASCII character and store the result in memory location 0041. If the number
in memory location 0040 is not a decimal digit, set the contents of memory
location 0041 to an ASCIl blank character (20 hex).

Sample Problems:

a. (0040) = 07
Result: (0041) = 37 7

b. ® {0040} = 55
Result: {0041} = 20 SP

4) Binary to BCD

Purpose: Convert the contents of memory location 0040 to two BCD digits in memory
locations 0041 and 0042 (most significant digit in 0041). The number in
memory location 0040 is unsigned and less than 100.

Sample Problems:

a. (0040) = 1D (29 decimal
Result: {0041} = 02
{0042) = 09

b (0040} = 47 {71 decimal)
Result: {0041} = 07
{0042) = 01

5) ASCIl String to Binary Number

Purpose: Convert the eight ASCIl characters in memory locations 0042 through 0049
to an 8-bit binary number in memory location 0041 (the most significant bit
is in 0042). Clear memory location 0040 if all the ASCHl characters are either
ASCH 1 or ASCII 0 and set it to FF otherwise.

Sample Problems:

a (0042) = 31 1
0043) = 31 'V
(0044) = 30 'O
(0045) = 31 'V
(0046) = 30 'O
(0047) = 30 O
(0048 = 31 ‘1
0049) = 30 O
Result: (0041} = D2
{0040) = 00
b. same as ‘a’ except:
(0045} = 37 '7
Result: (0040) = FF

REFERENCES

Allison, D.R.. “A Design Philosophy for Microcomputer Architectures,” Computer,
February 1977, pp. 36-41. This is an excellent article which we recommend highly.

Other BCD-to-binary conversion methods are discussed in J.A. Tabb and M.L.
Roginsky, “Microprocessor Algorithms Make BCD-Binary Conversions Super-fast,”
EDN. January 5, 1977. pp. 46-50 and in J.B. Peatman, Microcomputer-based
Design. McGraw-Hill. New York, 1977. pp. 400-406.

Chapter 8
ARITHMETIC PROBLEMS

Most arithmetic in microprocessor applications consists of multiple-word binary or
decimal manipulations. A decimal correction (decimal adjust) or some other means for
performing decimal arithmetic is frequently the only arithmetic instruction provided
besides basic addition and subtraction. You must implement other arithmetic opera-
tions with sequences of instructions.

Multiple-precision binary arithmetic requires simple repetitions of the basic single-word
instructions. The Carry bit transfers information between words. Add with Carry and
Subtract with Carrv use the information from the previous arithmetic operations. You
must be careful to clear the Carry before operating on the first words {obviously there is
no carry into or borrow from the least significant bits).

Decimal arithmetic is a common enough task for microprocessors that most have
special instructions for this purpose. These instructions may either perform decimal
operations directly or correct the results of binary operations to the proper decimal
form. Decimal arithmetic is essential in such applications as point-of-sale terminals,
calculators, check processors, order entry systems, and banking terminals.

You can implement muitiplication and division as series of additions and subtractions
respectively, much as they are done by hand. Double-word operations are necessary
since a multiplication produces a result twice as long as the operands. while a division
similarly contracts the length of the result. Multiplications and divisions are time-con-
suming when done in software because of the repeated arithmetic and shift operations
that are necessary. Of course, multiplying or dividing by a power of 2 is simple because
such operations can be implemented with an appropriate number of left or right
arithmetic shifts.

EXAMPLES
Muitiple-Precision Addition

Purpose: Add two multiple-word binary numbers. The length of the numbers (in bytes)
is in memory location 0040, the numbers themselves start (least significant
bits first) in memory locations 0041 and 0051, respectively, and the sum
replaces the number starting in memory location 0041.

8-1

Sample Problem:

Result:

that is,

Flowchart:

(0040)

(0041
(0042)
(0043)
(0044)

(0051)
(0052)
{0053

1| | R (A (I

[I

+

2F5BA7C3
14DF35B8

443ADD78B

Count

= {40}
Pointer 1 = 41
Pointer 2 = 51
Camy = 0
{Pointer 1) =
(Pointer 1} +
{Pointer 2} +
Carry

[

Pointer 1= Painter 1
+

Pointer 2= Pointer 2

+ 1
Count = Count - 1h

8-2

{This step also produces a new Carry}

Source Program:

LD HL.40H ;COUNT = LENGTH OF STRINGS {IN BYTES)
LD B.(HL)
INC HL ;POINTER 1 = FIRST WORD OF STRING 1
LD DEBTH :POINTER 2 = FIRST WORD OF STRING 2
AND A :CLEAR CARRY TO START
ADDW: LD A,(DE) :GET WORD FROM STRING 2
ADC A, (HL) :ADD WORD FROM STRING 1
LD (HL)L.A :STORE RESULT IN STRING 1
INC DE
INC HL
DJNZ ADDW
HALT
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) {(Mnemonic)
0000 21 LD HL.40H
0001 40
0002 00
0003 46 LD B.(HL)
0004 23 INC HL
0005 11 LD DE.B1H
0006 51
0007 00
0008 A7 AND A
0009 1A ADDW: LD A.(DE)
000A 8E ADC A.HL)
0008 77 LD HL.A
000C 13 INC DE
000D 23 INC HL
000E 10 DJNZ ADDW
000F F9
0010 76 HALT

The relative address for DINZ ADDW is:

The instruction AND A is used to clear the Carry bit. Any other logical operation would
have the same effect. The Carry must be cleared, since there is no carry involved in the

09 09
-10 = +FO
F9

addition of the least significant bytes.

The instruction ADC. Add with Carry, includes the Carry from the previous words in the
addition. ADC is the only instruction in the loop that affects the Carry Remember that

neither INC nor DJNZ does.

Both the pointer in Register Pair DE and the one in HL must be updated during each

iteration.

This procedure can add binary numbers of up to 256 bytes in DECIMAL
length. Note that the ten binary bits correspond to three decimal ACCURACY
digits, since 210 = 1024 = 1000. So, you can calculate the num- IN BINARY
ber of bits required to give a certain accuracy in decimal digits. For
example. ten decimal digit accuracy requires:

. 10 bits \ _ .
(10 digits) .x <3 dig:ts> = 33 bits

1f we were only transferring the data from one place in memory BLOCK

to another and not also processing it. we could use the Z80's TRANSFER
powerful block transfer instruction LDIR. This single instruction INSTRUCTIONS
moves a bvte of data from the address in HL to the address in
DE. increments the pointers in HL and DE. and decrements the byte counter in BC. It
repeats the move operation until BC is decremented to zero. LDI is the same instruction
without the repetition factor: LDD and LDDR are non-repeated and repeated moves.
respectively, that decrement the pointers rather than incrementing them.

A program to transfer a fixed number of bytes (LENGTH) from one place in memory
(starting at PTR1) to another place in memory (starting at PTR2) is the following.

Block Move
Purpose: Move a block of data BC characters long from the address in HL to the ad-
dress in DE.
Sample Problem:
(HL) = 40
(DE) = &0
BC) = 3
(0040) = 31
(0041} = 32
(0042) = 33
o050 = O
{0051) = 0
(0052) = O
Result: {(0060) = 31
0051) = 32
(0052) = 33
Source Program:
LD BC.LENGTH :COUNT = LENGTH OF TRANSFER (IN BYTES)
LD HL.PTR1 :POINTER 1 = START OF DATA SOURCE AREA
LD DE.PTR2 :POINTER 2 = START OF DATA DESTINATION
. AREA
LDIR
HALT

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 01 LD BC.LENGTH
0001
0002 LENGTH
0003 21 LD HL.PTR1
0004
0005 PTR1
0006 11 LD DE.PTR2
0007
0008 PTR2
0009 ED LDIR
000A BO
0008 76 HALT

Try to implement the same program without the LDIR instruction. How many bytes of
memory and ciock cycles does it require each way?

Decimal Addition

Purpose: Add two multiple-word decimal (BCD) numbers. The length of the numbers
is in memory location 0040, the numbers themselves start (least significant
bits first) in memory locations 0041 and 0051, respectively, and the sum

replaces the number starting in memory location 0041.

Sample Problem:

Result:

that is,

(0040)

(0041)
(0042)
(0043)
(0044)

{0051)
(0052)
(0053)
(0054)

(0041)
(0042)
(0043)
(0044)

inn

LI | '

36701985

+12663459

48365444

8-5

Flowchart:

Source Program:

LD
LD
INC
LD
AND
DECAD: LD
ADC
DAA
LD
INC
INC
DJNZ
HALT

Count
Painter 1
Pointer 2

Camry

51
]

o

Pointer 1} =
{Pointer 1) +
(Pointer 2} +
Carry +
Decimal correction

| {This step also produces a new Carry)

Pointer 1 =
Pomter 1 + 1
Paointer 2 =
Pointer 2 + 1

Count = Count -1

8-6

:COUNT = LENGTH OF STRINGS (IN BYTES)
:POINTER 1 = FIRST WORD OF STRING 1
:POINTER 2 = FIRST WORD OF STRING 2
:CLEAR CARRY TO START

:GET 2 DECIMAL DIGITS FROM STRING 2
:ADD PAIR OF DIGITS FROM STRING 1
‘MAKE ADDITION DECIMAL

:STORE RESULT IN STRING 1

Object Program:

Memory Address Memory Contents Instruction

(Hex) (Hex) (Mnemonic)
0000 21 LD HL.40H
0001 40
0002 00
0003 46 LD B.{HL)
0004 23 INC HL
0005 11 LD DE.B1TH
0006 51
0007 00
0008 A7 AND A
0009 1A DECAD: D A.(DE)
000A 8E ADC A (HL)
000B 27 DAA
000C 77 LD (HL)L.A
000D 13 INC DE
000E 23 INC HL
000F 10 DJNZ DECAD
0010 F8
0011 76 HALT

The Decimal Adjust instruction (DAA) uses the Carry (C) and Half

Carry (H) bits to correct the following situations: z§3m¢L

1) The sum of two digits is between 10 and 15, inclusive. In this
case, six must be added to the sum to give the right result, Le.

0101 (6)
+ 1000 (8)
1101 (D}
+ 0110
0001 0011 (BCD 13. which is correct)

2} The sum of two digits is 16 or more. In this case the result is a proper BCD number
but six less than it should be, i.e.
1000 (8)
+ 1001 (9)
0001 0001 (BCD 11)
+ 0110

0001 0111 (BCD 17. which 1s correct)

Six must be added in both situations. However, case 1 can be recognized by the fact
that the sum is not a BCD digit, it is between 10 and 15 (or A and F hexadecimal). Case
2 can be recognized only by the fact that the Carry (most significant digit) or Half Carry
{least significant digtt) has been set to 1, since the result is a valid BCD number. DAA is
the only instruction that uses the Half Carry. Note that DAA operates only on the Ac-
cumulator.

The Z80 microprocessor also has a flag that distinguishes be- | ADD/SUBTRACT
tween Add instructions (ADD. ADC) and Subtract instructions FLAG

(SUB. SBC). This flag. called the Add/Subtract flag or N flag, is
cleared by all Add instructions and set by all Subtract instructions. The sole use of this
flag 1s to allow the DAA instruction to correctly change binary addition into BCD addi-
tion and binarv subtraction into BCD subtraction. The 8080 and 8085 microprocessors
do not have an N flag. and so their DAA instructions operate properly only after addi-
tion.

8-7

DAA can be used only after instructions that place their result into the Accumulator
and that properly affect the Carry, Half-Carry, and Add/Subtract flags. Thus. you cannot
use DAA after INC (since INC does not affect the Carry), DEC. or any of the double-word
instructions that place their results into the index registers or Register Pair HL.

This procedure can add decimal (BCD) numbers of any length. ACCURACY IN
Here four binary bits are required for each decimal digit, so ten- BINARY AND
digit accuracy requires: BCD

10 x4 =40 bits

as opposed to 33 bits in the binary case. This is essentially five 8-bit words instead of
four. The decimal procedure also takes a little longer per word because of the extra
DAA instruction.

8-Bit Binary Multiplication

Purpose: Multiply the 8-bit unsigned number in memory location 0040 by the 8-bit
unsigned number in memory location 0041. Place the eight least significant
bits of the result into memory location 0042 and the eight most significant
bits into memory location 0043.

Sample Problems:

a. (0040) = 03
(0041) = 05
Result: (0042) = OF
0043) = 00
or in decimal 3 x5 =16
b. (0040} = 6F
{0041} = 61
Result: {0042) = OF
(0043) = 2A

or 111 x 97 = 10,767

You can perform multiplication on a computer in the same way that vou do long
multiplication by hand. Since the numbers are binary. the only problem is whether to
multiply by 0 or 1; multiplying by zero obviously gives zero as a result, while multiplying
by one produces the same number that vou started with {the multiplicand). So, each
step in a binary multiplication can be reduced to the following operation.

If the current bit in the multiplier is 1, add the multiplicand MULTIPLICATION
to the partial product. ALGORITHM

The only remaining problem is to ensure that vou line everything up correctly each
time. The following operations perform this task.

1) Shift multiplier left one bit so that the bit to be examined is placed into the Carry.
2) Shift product left one bit so that the next addition is lined up correctly.

The complete process for binary muitiplication is as follows: !

Step 1 - Initialization

Product =0
Counter=8

Step 2 - Shift Product so as to line up properly
Product = 2 x Product LSB =0)

Step 3 - Shift Multiplier so bit goes to Carry
Multiplier = 2 x Multiplier

8-8

Step 4 - Add Multiplicand to Product if Carry is 1
If Carry = 1. Product = Product + Multiplicand

Step 5 - Decrement Counter and check for zero
Counter = Counter - 1
If Counter # 0 go to Step 2

(n the case of Sample Problem b. where the multiplier is 61 (hex) and the multiplicand is
6F (hex) the process works as follows:

Initialization:

Product 0000
Multiplier 61
Multiplicand 6F
Counter 08

After first iteration of steps 2-5:

Product 0000

Multiplier Cc2
Mutltiplicand 6F
Counter 07

Carry from Multiplier 0

After second iteration:

Product OO06F

Multiplier 84
Multiplicand 6F
Counter 06

Carry from Multiplier 1

After third iteration:

Product 014D

Multiplier 08
Multiplicand 6F
Counter 05

Carry from Multiplier 1

After fourth iteration:

Product 029A

Multiplier 10
Multiplicand 6F
Counter 04

Carry from Multiplier 0

After fifth iteration:

Product 0534
Multiplier 20
Multiplicand 6F
Counter 03
Carry from Multiplier 0
After sixth iteration:
Product OA68
Multiplier 40
Mutltiplicand 6F

Counter 02
Carry from Multiplier 0

8-9

After seventh iteration:

Product

Multiplier
Multiplicand

Counter

Carry from Multiplier

After eighth iteration:

Product

Multiplier
Multiplicand
Counter

Carry from Multiplier

Flowchart:

14D0
80
6F

Multiplicand = {40}
Multiplier = (41)
Product = 0
Count = 8

I Product

{iMuitiplier =2xMultiplier

=2 x Product
(Shift left 1 bit}

(Shift left 1 bit)

Is g,
Carry from
Muttiplier 1

? s

Product =
Product +
Multiplicand

=

Count = Count - 1

{42 and 43} =

Product

Source Program:

LD HL.40H

LD E.(HL) ;GET MULTIPLICAND

LD D.0 ;EXTEND TO 16 BITS

INC HL

LD A (HL) :GET MULTIPLIER

LD HL.O :PRODUCT = ZERO

LD B.8 :COUNT = BIT LENGTH OF MULTIPLIER
MULT: ADD HL.HL ;SHIFT PRODUCT LEFT 1 BIT

RLA ;SHIFT MULTIPLIER LEFT 1 BIT

JR NC.CHCNT ;IS CARRY FROM MULTIPLIER 1?

ADD HL.DE :YES. ADD MULTIPLICAND TO PRODUCT
CHCNT: DJNZ MULT

LD (42H).HL :SAVE PRODUCT IN MEMORY

HALT
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.40H
0001 40
0002 00
0003 5E LD E.(HL)
0004 16 LD D.0
0005 00
0006 23 INC HL
0007 7E LD A (HL)
0008 21 LD HL.0
0009 00
000A 00
0008 06 LD B.8
000C 08
000D 29 MULT: ADD HL.HL
000E 17 RLA
000F 30 JR NC.CHCNT
0010 01
0011 19 ADD HL.DE
0012 10 CHCNT: DJNZ MULT
0013 F9
0014 22 LD (42H),HL
0015 42
0016 00
0017 76 HALT

Note that the multiplicand must be extended to 16 bits by clearing Register D so that it
can be added to the product using the ADD HL,DE instruction.

The instruction ADD HLHL acts as a 16-bit logical left shift for the 16-bit product.

In this program, the Z80 16-bit instructions handle data rather than addresses. LD HL,0
is used to initialize the product; ADD HL.HL to perform a 16-bit logical left shift; ADD
HL.DE to add the multiplicand to the partial product; and LD (42H).HL to store the
result in memory. You must be careful to extend 8-bit quantities (like the multiplicand
in this example) to 16 bits. Note that you cannot use the 16-bit facilities simultaneously
for addressing and data manipulation. However, if you have no other heed for the alter-
nate registers, you could save the old contents of the regular registers there and restore

8-11

them afterward using the EXX instruction. This instruction exchanges the contents of
Register Pairs BC., DE. and HL with the contents of their alternate counterparts in just
four clock cycles.

Besides its obvious use in calculators and point-of-sale terminals, multiplication is a key
part of almost all signal processing and control algorithms. The speed at which
multiplications can be performed determines the usefulness of @ CPU in process con-
trol, signal detection. and signal analysis.

The algorithm takes between 390 and 440 clock cycles to multiply on a Z80
microprocessor. The precise time depends on the number of one bits in the multiplier.
Other algorithms may be able to reduce the average execution time somewhat, but 400
clock cycles will still be a typical execution time for a software multiplicaticm.2

8-Bit Binary Division

Purpose: Divide the 16-bit unsigned number in memory locations 0040 and 0041
{most significant bits in 0041) by the 8-bit unsigned number in memory loca-
tion 0042. The numbers are normalized so that 1) the most significant bits of
both the dividend and the divisor are zero and 2) the number in memory
location 0042 is greater than the number in memory location 0041, ie.. the
quotient is an 8-bit number. Store the quotient in memory location 0043 and
the remainder in location 0044,

Sample Problems:

a. (0040) = 40 (64 decimal)
(0041} = 00
(0042) = 08
Result = {0043) =08
(0044) =00
ie. 64/8=8
b. {0040} = 6D ({12,809 decimal)
0041) = 32
{0042) = 47 (71 decimall
Result = {0043} =B5 {181 decimall
(0044} = 3A (68 decimall
e.. 12.809/71 = 181 with a remainder of 58
You can perform division on the computer just like you would per- DIVISION
form division with pen and paper, i.e.. using trial subtractions. ALGORITHM

Since the numbers are binary, the only question is whether the bit
in the quotient is O or 1, i.e.. whether or not the divisor can be subtracted from what is
left of the dividend. Each step in a binary division can be reduced to the following
operation:

I1f the divisor can be subtracted from the eight
most significant bits of the dividend without
a borrow, the corresponding bit in the quo-
tient is 1; otherwise it is O.

The only remaining problem is to line up the dividend and quotient properly. You can
do this by shifting the dividend and quotient logically left one bit before each tnial
subtraction. The dividend and quotient can share a 16-bit register. since the procedure
clears one bit of the dividend at the same time as it determines one bit of the quotient.

The complete process for binary division is:

Step 1 - Initialization:
Quotient =0
Counter =8

Step 2 - Shift Dividend and Quotient so as to line up properly:
Dividend = 2 x Quotient
Quotient = 2 x Quotient

Step 3 - Perform trial Subtraction. |f no Borrow add 1 to Quotient:
If 8 MSBs of Dividend > Divisor then
MSBs of Dividend = MSBs of Dividend - Divisor
Quotient = Quotient + 1

Step 4 - Decrement counter and check for zero:
Counter = Counter - 1
if Counter #0, go to Step 2
Remainder = 8 MSBs of Dividend

In the case of sample problem b, where the dividend is 326D (hex} and the divisor is 47
(hex!, the process works as follows:

Initialization:
Dividend 326D
Divisor 47
Quotient 00
Counter 00

After first iteration of Steps 2 - 4:
(Note that the dividend is shifted prior to the trial subtraction)
Dividend 1DDA
Divisor 47
Quotient 01
Counter 07

After second iteration of Steps 2 - 4:
Dividend 3BB4
Divisor 47
Quotient 02
Counter 06

After third iteration:
Dividend 3068
Divisor 47
Quotient 05
Counter 05

After fourth iteration:
Dividend 19D0
Divisor 47
Quotient 0B
Counter 04

After fifth iteration:
Dividend 33A0
Divisor 47
Quotient 16
Counter 03

After sixth iteration:
Dividend 2040
Divisor 47
Quotient 2D
Counter 02

After seventh iteration:
Dividend 4080
Divisor 47
Quotient B5A
Counter 01

After eighth iteration:
Dividend 3A00
Divisor 47
Quotient B5
Counter 00

So the quotient is BS and the remainder is 3A.

The MSBs of dividend and divisor are assumed to be zero so as to simplify calculations
(the shift prior to the trial subtraction would otherwise place the MSB of the dividend in
the Carry). Problems that are not in this form must be simplified by removing parts of
the quotient that would overflow an 8-bit word. For example:

1024 _ 400 (Hex) _ 100 (Hex)
=3 = 100 + —F

The last problem is now in the proper form. An extra division may be necessary.

8-14

Flowchart:

Source Program:

Div: ADD

CNT DJINZ

Divisor = (42
Count = 8
Quotient = O
Dividend =
2 x Dividend

Quotient

. 2 x Quotient
(Shift both feft 1 bit)

Is
Divisor
> 8 MSBs of
Divic’!end <

No

8 MSBs of
Dividend =8 MSBs
of Dividend - Divisor

Quotient =Quotient + 1;

s

Count =Count - 1

<>

Yes

{43) = Quotient
(44) = 8 MSBs of
Dividend

HL.{40H) :GET DIVIDEND

A, l42H) ;GET DIVISOR

C.A

B.8 :COUNT = NUMBER OF BITS IN DIVISOR
HL.HL ;SHIFT DIVIDEND, QUOTIENT LEFT 1 BIT
AH :CAN DIVISOR BE SUBTRACTED?

C

C.CNT :NO. GO TO NEXT STEP

H.A ;YES, SUBTRACT DIVISOR FROM DIVIDEND
L ;ADD 1 TO QUOTIENT

DIV

{43H).HL ;SAVE QUOTIENT. REMAINDER IN MEMORY

8-15

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 2A LD HL.(40H)
0001 40
0002 00
0003 3A LD A, {42H)
0004 42
0005 00
0006 4F LD CA
0007 06 LD B.8
0008 08
0009 29 DIV: ADD HLHL
000A 7C LD AH
000B 91 suB C
000C 38 JR C.CNT
000D 02
000E 67 LD H.A
000F 2C INC L
0010 10 CNT: DJNZ DIV
0011 F7
0012 22 LD ({43H),HL
0013 43
0014 00
0015 76 HALT

Register Pair HL hoids both the dividend and the quotient. The quotient simply replaces
the dividend in Register L as the dividend is shifted left logically.

For longer division problems, vou could use the instruction SBC HL. which subtracts the
contents of a register pair and the contents of the Carry from the contents of Register
Pair HL.

The instruction INC L sets the Ieast significant bit of the quotient to 1. since ADD HL.HL
has previously cleared that bit.

Division is necessary in calculators, terminals, communications error checking, control
algorithms. and many other applications.

This algorithm takes between 400 and 430 clock cycles to divide on a Z80
microprocessor. The precise time depends on the number of one bits in the quotient.
Other algorithms may reduce the average execution time somewhat, but 400 clock cy-
cles will still be typical for a software division. Some of the references listed at the end
of this chapter discuss faster methods for implementing division.

8-16

Self-Checking Numbers
Double Add Double Mod 10

Purpose: Calculate a checksum digit from a string of BCD digits. The length of the
string of digits (number of words) is in memory location 0041: the string of
digits {2 BCD digits to a word) starts in memory location 0042. Calculate the
checksum digit by the Double Add Double Mod 10 technique3 and store it in
memory location 0040.

The Double Add Double Mod 10 technique works as follows: SELF-CHECKING
NUMBERS

1} Clear the checksum to start.

2) Multiply the leading digit by two and add the result to the
checksum.

3) Add the next digit to the checksum.
4) Continue the alternating process until you have used all the digits.
B) The least significant digit of the checksum is the self-checking digit.

Self-checking digits are commonly added to identification numbers on credit cards, in-
ventory tags, luggage, parcels. etc.. when they are handled by computerized systems.
They may also be used in routing messages. identifying files, and other applications.
The purpose of the digits is to minimize entry errors such as transposing digits (69 in-
stead of 96), shifting digits {7260 instead of 3726), missing digits by one (65 instead of
64), etc. You can check the self-checking number automatically for correctness upon
entry and can eliminate many errors immediately.

The analysis of self-checking methods is quite complex. For example, a plain checksum
will not find transposition errors (4 + 9 = 9 + 4). The Double Add Double algorithm will
find simple transposition errors (2 x4 + 9 = 17 #2 x 9 + 4); but will miss some errors,
such as transpositions across even numbers of digits (367 instead of 763). However,
this method will find many common errors! The value of a method depends on what er-
rors it will detect and on the probability of particular errors in an application.

For example, if the string of digits is
549321
the result will be:

5x2+44+9x2+3+2x2+1=40
0 {least significant digit of a checksum)

Checksum
Self-checking digit

o

Note that an erroneous entry like 543921 would produce a different self-checking digit
{4). but erroneous entries like 049321 or 945321 would not be detected.

Sample Problems:

a. (0041) = 03
(0042) = 36
(0043) = 68
(0044) = 51
Result: Checksum =3x2+6+6x2+8+5x2+1=43
(0040) = 03
b (0041) = 04
(0042) = 50
0043} = 29
(0044) = 16
(0045) = 83
Result: Checksum=5x2+0+2x2+9+1x2+6+8x2+3=50
(0040) = 00

8-17

Flowchart:

Checksum = 0
Count = {41)
Pointer = 42

MSD ={Pointer)/ 16
LSD = Pointer AND
00001111B
Checksum =Checksurms
+ 2xMSD =LSD

-

Pointer = Pointer +1

Count = Count - 1

{40} = Checksum
AND 000011118

Source Program:

LD A.(41H) :COUNT = LENGTH OF STRING IN BYTES

LD B.A

LD C.0 ;CHECKSUM =0

LD HL.42H ;POINT TO START OF STRING OF DIGITS
CHDIG: LD A.(HL) :GET TWO BCD DIGITS FROM STRING

LD D.A :SAVE COPY

RRA :GET MSD BY SHIFTING AND MASKING

RRA

RRA

RRA

AND 000011118

ADD AA :DOUBLE MSD

DAA :MAKE DOUBLED MSD DECIMAL

ADD AC :ADD DOUBLED MSD TO CHECKSUM

DAA :KEEP CHECKSUM DECIMAL

LD C.A

LD AD .GET LEAST SIGNIFICANT DIGIT

AND 000011118 :(MASK OUT MSD)

ADD A.C :ADD LSD TO CHECKSUM

DAA :KEEP CHECKSUM DECIMAL

LD C.A

INC HL

DJINZ CHDIG

AND 00001111B :MASK OFF SELF-CHECKING DIGIT

LD (40H).A :SAVE SELF-CHECKING DIGIT

HALT

Object Program:

Memory Address ~ Memory Contents Instruction
(Hex) (Hex) {(Mnemonic)
0000 3A LD A.[41H)
0001 41
0002 00
0003 47 LD B.A
0004 OE LD c.0
0005 00
0006 21 LD HL.42H
0007 42
0008 00
0009 7E CHDIG: LD A, (HLU)
000A 57 LD D.A
0008 1F RRA
000C 1F RRA
000D 1F RRA
000E 1F RRA
000F E6 AND 00001111B
0010 OF
0011 87 ADD AA
0012 27 DAA
0013 81 ADD AC
0014 27 DAA
00156 4F LD C.A
0016 7A LD AD
0017 E6 AND 000011118
0018 OF
0019 81 ADD AC
001A 27 DAA
0018 4F LD CA
Q01C 23 INC HL
001D 10 DJNZ CHDIG
001E EA
001F E6 AND 000011118
0020 OF
0021 32 LD (40H).A
0022 40
0023 00
0024 76 HALT

The digits are removed by shifting and masking. Four right shifts are needed to separate
out the most significant digit.

A dgmmal adjust (DAA) must follow each addition to produce the proper decimal result.
A single DAA after a series of additions will not work {try it]). Remember that DAA
works only on the Accumulator.

There is no problem with carries from the decimal sum, since the procedure uses only
the least significant digit of the checksum anyway.

8-20

An alternative (and superior) approach is to use the Z80 DECIMAL SHIFT
decimal shift instruction RLD. This instruction is a 4-bit INSTRUCTIONS
shift that moves the contents of the four least significant

bits of the memory location addressed by HL into the four most significant bits of that
location, the previous contents of the four most significant bits of that location into the
four least significant bits of the Accumulator, and the previous contents of the four
least significant bits of the Accumulator into the four Ieast significant bits of the memo-
rv location. Thus, RLD not only moves a single digit to the Accumulator. but it also
shifts the next digit so that it can be moved to the Accumulator with the next RLD.
Figure 8-1 shows an example of how RLD works; RRD is the same instruction except
that the shift is right instead of feft.

The Double Add Double Mod 10 aigorithm can be implemented as follows using RLD:

Source Program:
LD

CHDIG: SuB

A,(41H)
B.A
C.0
HL.42H
A

AA
AC

C.A
A

AC

CA

HL

CHDIG
000011118
{40H).A

;COUNT =LENGTH OF STRINGS (IN BYTES)

;CHECKSUM =0

;POINT TO START OF STRING OF DIGITS
.CLEAR MSD

:GET MSD FROM STRING

:DOUBLE MSD

:MAKE DOUBLED MSD DECIMAL

:ADD DOUBLED MSD TO CHECKSUM
:KEEP CHECKSUM DECIMAL

:CLEAR MSD

GET LSD FROM STRING
:ADD LSD TO CHECKSUM
;KEEP CHECKSUM DECIMAL

:MASK OFF SELF-CHECKING DIGIT
-SAVE SELF-CHECKING DIGIT

8-21

Object Program:

Memory Address Memory. Contents Instruction
(Hex) {Hex) (Mnemonic)
0000 3A LD A l41H)
0001 41
0002 00
0003 47 LD B.A
0004 OE LD Cc.0
0005 00
0006 21 LD HL.42H
0007 42
0008 00
0008 97 CHDIG: SUB A
000A ED RLD
0008, 6F
000C 87 ADD AA
000D 27 DAA
O000E 81 ADD AC
000F 27 DAA
0010 4F LD C.A
0011 97 SUB A
0012 ED RLD
0013 6F
0014 81 ADD AC
0015 27 DAA
0016 4F LD C.A
0017 23 INC HL
0018 10 DJINZ CHDIG
0019 EF
001A E6 AND 000011118
0018 OF
001C 32 LD (40H).A
001D 40
001E 00
001F 76 HALT

We could improve this program even further (it is already shorter than the previous ver-
sion). Since we are dropping the most significant digit at the end anyway. there is no
reason to clear it out each time with the SUB A instruction.

8-22

Initial Conditions
{HL) = 4000

(A} =7F

(4000) = 12
After RLD

(A =71

(4000) = 2F

Befare

Accumulator Memory

High-order bit =0, set S to 0 et}
4 ones, set P/O to 1

After RRD

(A) =72
(4000} =F

Before

Accumulator

~

PE U

High-order bit =0. set S to 0 -

ﬁ
Accumuiator Memory
TN N B
p—
4 Non-zero result,
setZto 0
Ai(fr
Accumulator Memory
Lo 1=] 1]
N v’

= Non-zero result,

4 ones, set P/Cto 1 setZ2t0 0
Figure 8-1. Examples of the Z80 Digit Shifts
You can double a decimal number (in the Accumulator) by DOUBLING

adding 1t to itself and then performing a decimal correction,

Le.,

ADD A
DAA

You cannot use SLA A (Shift Left Arithmetic A) because that instruction always clears

.DOUBLE NUMBER
:AND MAKE RESULT DECIMAL

Remember that the Accumulator can hold only valid decimal digits in the range 0-99.

BINARY
NUMBERS

AND HALVING

the Half-Carry {only Add and Subtract instructions set H properly).

You can divide a decimal number by two simply by shifting it right logically and then
subtracting three from any digit that is eight or larger {since 10 BCD is 16 binary). The
following program divides a decimal number in memory location 0040 by two and

places the result into memory location 0041.

8-23

LD A.(40H) .GET DECIMAL NUMBER

SRL A :DIVIDE BY 2 IN BINARY

BIT 3.A [IS LEAST SIGNIFICANT DIGIT 8 OR MORE?

JR Z.DONE

SUB 3 ‘YES, SUBTRACT 3 FOR DECIMAL CORRECTION
DONE: LD {@1H),A :STORE NUMBER DIVIDED BY 2

HALT

Try this program and the method on the decimal numbers 28, 30. and 37 Do you un-
derstand why it works?

Rounding is simple whether the numbers are binary or decimal. A BINARY
binary number can be rounded as follows: ROUNDING

If the most significant bit to be dropped is 1.
add 1 to the remaining bits. Otherwise, leave
the remaining bits alone.

This rule works because 1 is halfway between 0 and 10 in binary, much as 5 s halfway
in decimal (note that 0.5 decimal = 0.1 binary).

So, the following program will round a 16-bit number in memory locations 0040 and
0041 {MSBs in 0041} to an 8-bit number in memory location 0041.

LD HL.40H
BIT 7.HL) IS MSB OF EXTRA BYTE 1?
JR Z.DONE
INC HL :NO, ROUND UP
INC (HL)
DONE: HALT

If the number is longer than 16 bits, the rounding must ripple through the other bytes
as needed.

Decimal rounding is a bit more difficult because the crossover DECIMAL
point is now BCD 50 and the rounding must produce a decimal ROUNDING
result. The rule 1s:

If the most significant digit is to be dropped
is 5 or more, add 1 to the remaining digits.

The following program will round a 4-digit BCD number in memory locations 0040 and
0041 (MSBs in 0041} to a 2-digit BCD number in memory location 0041.

LD HL.40H
LD A.(HL) :IS BYTE TO BE DROPPED 50 OR MORE?
cpP 50H
JR C.DONE
INC HL :YES, ROUND MSB'S UP
LD A(HL)
ADD Al
DAA :KEEP DIGITS DECIMAL
LD (HL)LA
DONE: HALT

Remember that the DAA instruction works only on numbers in the Accumulator. in this
case, we could round with the instruction INC A, since we know that the Carry is zero
(why? — remember the JR instruction). Normally. we need the sequence ADD A1
followed by DAA, since INC A does not affect the Carry.

8-24

Very often when performing multibyte twos complement
signed arithmetic, it is necessary to propagate the sign bit
through the high-order bytes. This operation can be performed

SIGN
PROPAGATION

in a straightforward manner if, as is usually the case, the sign is in the Carry. The SBC
A A instruction has the effect of propagating the state of the Carry throughout a word.
Since A-A always equals 0, SBC A.A is equivalent to subtracting the Carry from O and

can vyield only the values 0 and FFH.

PROBLEMS
1) Multiple-Precision Subtraction

Purpose: Subtract one multiple-word number from another. The length of the num-
bers is in memory location 0040, the numbers themselves start {least signifi-
cant bits first) in memory locations 0041 and 0051, respectively, and the
difference replaces the number starting in memory location 0041. Subtract
the number starting in 0051 from the one starting in 0041.

Sample Problem:

(0040) = 04
(0041) = C3
(0042) = A7
(0043) = 5B
(0044) = 2F
(0051) = B8
(0062) = 35
(0053) = DF
(0054) = 14
Result: {0041) = 0B
o (0042) = 72
0043) = 7C
(0044) = 1A
that i1s, 2F5BA7C3
~ 14DF3688
1A7C7208B

2) Decimal Subtraction

Purpose: Subtract one multiple-word decimal (BCD) number from another. The length
of the numbers is in memory location 0040, the numbers themselves start
{least significant bits first) in memory locations 0041 and 0051, respectively,
and the difference replaces the number starting in memory location 0041,
Subtract the number starting in 0051 from the one starting in 0041.

Sample Problem:

0040) = 04
(0041) = 85
0042) = 19
0043) = 70
0044) = 36
(0051) = 59
0052) = 34
(0053) = 66
(0054) = 12

8-25

Result: (0041) = 26
(0042) = 85
(0043) = 03
(0044) = 24
that is. 36701985
12663459
240385626

3) 8-Bit by 16-Bit Binary Multiplication

Purpose: Multiply the 18-bit unsigned number in memory locations 0040 and 0041
{most significant bits in 0041) by the 8-bit unsigned number in memory loca-
tion 0042. Store the result in memory locations 0043 through 0045, with the
most significant bits i memory location 0045.

Sample Problems:

a. (0040) = 03
0041) = 00
(0042) = 05
Result: (0043) = OF
(0044) = 00
(0045) = 00
that 1s, 3xb5 =156
b. (0040) = 6F
0041) = 72 {29.295 decimal)
(0042) = 61 (97 decimal)
Resuit: (0043) = OF
0044) = 5C
{0045} = 2B
that is, 29,295 x 97 = 2,841,615

4) Signed Binary Division

Purpose: Divide the 16-bit signed number in memory locations 0040 and 0041 {most
significant bits in 0041 by the 8-bit signed number in memory location 0042.
The numbers are normalized so that the magnitude of memory location 0042
15 greater than the magnitude of memory location 0041. Store the quotient
{signed) 1in memory location 0043 and the remainder (always positive) in
memory location 0044.

Sample Problems:

a. (0040) = CO
(0041) = FF (-64)
(0042) = 08
Result: {0043) = F8 {-8) quotient
(0044) = 00 (0} remainder
b. 0040) = 93
0041} = ED (-4717)
{0042) = 47 (71 decimal)
Resuft: (0043) = BD {-67 decimall
(0044} = 28 (+40 decimal)

Hint: Determine the sign of the result, perform an unsigned division. and ad-
just the quotient and remainder properly.

8-26

5) Self-Checking Numbers Aligned 1, 3, 7 Mod 10

Purpose: Calculate a checksum digit from a string of BCO digits. The length of the
string of digits (number of words) 1s in memory location 0041, the string of
digits (2 BCD digits to a word) starts in memory location 0042. Calculate the
checksum digit by the Aligned 1. 3, 7 Mod 10 method and store it in memory
location 0040.

The Aligned 1. 3, 7 Mod 10 technique works as follows:
1) Clear the checksum to start.
2) Add the leading digit to the checksum.
3) Multiply the next digit by 3 and add the result to the checksum.
4] Multiply the next digit by 7 and add the result to the checksum.
5) Continue the process {Steps 2-4) until you have used all the digits.
6] The self-checking digit is the least significant digit of the checksum:.
For example. if the string of digits is:
549321
the result will be:

Checksum = 5+3x4+7x9+34+3x2+7x1=96
Self-checking digit = 6
Sample Problems:
a. (0041) = 03
(0042) = 36
(0043) = 68
(0044) = 51
Result: Checksum =3+ 3x6+7x6+8+3x5+7x1=93
(0040) = 03
b. 0041) = 04
(0042) = 50
(0043) = 29
{0044) = 16
{0045) = 83
Result: Checksum =5+3x0+7x2+9+3x1+7x6+8
+3x3=90
(0040) = 00

Hint: Note that 7=2x3+4+1 and 3=2x1+1, so the formula
M; =2 xM;j.1 + 1 can be used to calculate the next multiplying factor.

8-27

REFERENCES

Several multiplication algorithms are described in T. Dollhoff. “Microprocessor
Software: How to Optimize Timing and Memory Usage. Part Four. Techniques for
the Zilog Z80,” Digital Design. February 1977, pp. 44-51.

Some microprocessors (such as the 9900, 8086, and Z-8000) have hardware
multiplication instructions that are somewhat faster. but maximum speed requires
the addition of external hardware.

Other methods for implementing multiplication. division, and other arithmetic tasks
are discussed in:

Geist, D. J.. “MOS Processor Picks up Speed with Bipolar Multipliers,” Electronics,
July 7. 1977, pp. 113-115.

Kolodzinski. A. and D. Wainland, “Multiplying with a Microcomputer,” Electronic
Design. January 18. 1978, pp. 78-83.

Mick, J. R. and J. Springer. “Single-chip Multiplier Expands Digital Role in Signal
Processing,” Electronics, May 13, 1976. pp. 103-108.

Parasuraman. B.. "“Hardware Multiplication Techniques for Microprocessor
Systems,” Computer Design, April 1977, pp. 75-82.

Tao, T. F. et al.. "Applications of Microprocessors in Control Problems,” 1977 Joint
Automatic Control Conference Proceedings. San Francisco, CA., June 22-24, 1977.

Waser. S.. "State-of-the-art in High-Speed Arithmetic Integrated Circuits,” Com-
puter Design, July 1978, pp. 67-75.

Weissberger, A. J. and T. Toal, “Tough Mathematical Tasks Are Child's Play for
Number Cruncher.” Electronics, February 17, 1877, pp. 102-107.

See J. R. Herr, “Self-Checking Number Systems.” Computer Design. June 1974,
pp. 85-91.

8-28

Chapter 9
TABLES AND LISTS

Tables and lists are two of the basic data structures used with all computers. We have
already seen tables used to perform code conversions and arithmetic. Tables may also
be used to identify or respond to commands and instructions, linearize data. provide ac-
cess to files or records. define the meaning of keys or switches, and choose among
alternate programs. Lists are usually less structured than tables. Lists may record tasks
that the processor must perform, messages or data that the processor must record, or
conditions that have changed or should be monitored. Tables are a simple way of mak-
ing decisions or solving problems, since no computations or logical functions are
necessary. The task. then. reduces to organizing the table so that the proper entry is
easy to find. Lists allow the execution of sequences of tasks. the preparation of sets of
results, and the construction of interrelated data files (or data bases). Probiems include
how to add elements to a list and remove elements from it.

EXAMPLES
Add Entry to List

Purpose: Add the contents of memory location 0040 to a list if it is not already pre-
sentin the list. The length of the list is in memory location 0041 and the list
itself begins in memory location 0042.

Sample Problems:

a. (0040) = 6B
(0041) = 04

0042) = 37

(0043) = 81

0044) = 38

(0045) = 1D

Resuit: (0041} = 05

(0046) = 6B

The entry is added to the list, since it is not already present. The length of the list is in-
creased by 1.

b. (0040) = 6B
0041} = 04
(0042) = 37
(0043) = 6B
(0044) = 38
(0045) = 1D

Result: No change, since the entry is already in the list.

9-1

Flowchart:

Source Program:

LD
LD
INC
LD

SRLST: CP

DONE: HALT

HL,40H
A HU
HL
B.{HL)

(HU)
Z.DONE

SRLST
{HLL.A
HL.41H
{HL)

(40)
{41
42

Entry
Count
Pointer

[|

Entry = (Pointer; B

Pointer = Pointer + 1
Count = Count - 1

I Yes

{Pointer} = Entry
(41) = (4N +1

:POINT TO ENTRY

:GET ENTRY

:POINT TO COUNT

:COUNT = LENGTH OF LIST
:POINT TO START OF LIST

:IS ENTRY = ELEMENT IN LIST?
:YES., THROUGH

:NO, GO ON TO NEXT ELEMENT

:ADD ENTRY TO LIST
:ADD 1 TO LIST LENGTH

9-2

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.40H
0001 40
0002 00
0003 7€ LD A, (HL)
0004 23 INC HL
0005 46 LD B.{HL)
0006 23 INC HL
0007 BE SRLST: cC°P (HL)
0008 28 JR Z.DONE
0009 08
000A 23 INC HL
0008 10 DJINZ SRLST
000C FA
000D 77 ADELM: LD (HL)LA
000E 21 LD HL41H
000F 41
0010 00
0011 34 INC (HL)
0012 76 DONE: HALT

We could also use the block search instruction CPIR in our example, as follows:
Source Program:

LD HL.40H :POINT TO ENTRY
LD A(HU) :GET ENTRY
INC HL :POINT TO COUNT
LD B.O :COUNT = LENGTH OF LIST (16 BITS)
LD C.{HL)
INC HL :POINT TO START OF LIST
CPIR :LOOK FOR ENTRY IN LIST
JR Z,DONE :DONE IF ENTRY FOUND
LD (HL)LA :OTHERWISE, ADD ENTRY TO LIST
LD HL.41H ;ADD 1 TO LIST LENGTH
DONE: HALT

9-3

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) {Mnemonic)
0000 21 LD HL.40H
0001 40
0002 00
0003 7E LD A (HL)
0004 23 INC HL
0005 06 LD B.0
0006 00
0007 4E LD C.(HL)
0008 23 INC HL
0009 £D CPIR
000A B1
000B 28 JR Z.DONE
000C 05
000D 77 LD (HLLA
000E 21 LD HL.41H
Q00F 41
0010 00
0011 34 INC (HL)
0012 76 DONE: HALT

Remember that CPIR automatically repeats the basic Search instruction until either BC
is decremented to zero or a true comparison occurs (ie. A= (HL)).

Be careful of the following slight differences from the previous version:

1) BC is a 16-bit counter. Thus, CPIR can handle strings longer than 256 bytes.

2) The Parity/Overflow bit (P/O} is cleared if BC is decremented to zero, and set other-
wise.

Clearly. this method of adding elements is very inefficient if the list

is long. We could improve the procedure by limiting the search to

part of the list or by ordering the list. We could limit the search by using the entry to get
a starting point in the list. This method is called “hashing”. and is much like selecting a
starting page in a dictionary or directory on the basis of the first letter in an entry. We
could order the list by numerical value. The search could then end when the list values
went bevond the entry {larger or smaller. depending on the ordering technique used). A
new entry would have to be inserted properly. and all the other entries would have to be
moved down in the list.

The program could be restructured to use two tables. One table could provide a starting
point in the other table; for example. the search point could be based on the most or
least significant 4-bit digit in the entry.

9-4

The program does not work if the length of the list could be zero lwhat happens?). We
could avoid this problem by checking the length initially. The initialization procedure
for the first program would then be:

LD HL.40H :POINT TO ENTRY

LD A(HL) :GET ENTRY

INC HL :POINT TO LENGTH

LD B.(HL) :COUNT == LENGTH OF LIST

INC HL :POINT TO START OF LIST

INC B 1S COUNT ZERO?

DEC B

JR Z.ADELM :YES. GO ADD ENTRY TO LIST
ADELM: LD (HL)LA :ADD ENTRY TO LIST

Note that the sequence INC, DEC is an easy way to check for a zero value in a register
without using the Accumulator or changing the value in the register.

The procedure:

LD HL,ADDR
INC (HL)

is @ quick way to add 1 to a counter in memory location ADDR without using the Ac-
cumulator. You can use DEC (HL) in a similar manner to subtract 1 from the counter. LD
(HL),CONST can place a starting value (such as zero) in the counter. Memory locations
should. of course. be used for counters only when no readily accessible registers are
available.

If each entry were longer than one word, a pattern-matching program would be necess-
ary. The program would have to proceed to the next entry if a match failed: that is, skip
over the last part of the current entry once a mis-match was found.

Check an Ordered List

Purpose: Check the contents of memory location 0041 to see if it is in an ordered list.
The length of the list is in memory location 0042; the list itself begins in
memory location 0043 and consists of unsigned binary numbers in increas-
ing order. If the contents of location 0041 is in the list, clear memory loca-
tion 0040: otherwise, set memory location 0040 to FF (hex).

Sample Problems:

a. (0041) = 6B
(0042) = 04
(0043) = 37
(0044) = 55
(0045) = 7D
(0046) = A1
Result: (0040) = FF, since 6B is not in the list.
b. (0041) = 6B
(0042) = 04
0043) = 37
(0044) = &5
0045) = 6B
(0046) = A1

Result: {0040) 00. since 6B is in the list.

9-5

Flowchart:

Entry = (41)
Count = {42)
Pointer = 43
Mark = 0

Pointer = Pointer +1
Count = Count - 1

Mark = FF {Hex}

The searching process is a bit different here since the elements are ordered. Once we
find an element larger than the entry, the search is over, since subsequent elements will
be even larger. You may want to trv an example to convince yourself that the procedure
works.

As in the previous problem. a table or other method that could SEARCHING
choose a good starting point would speed up the search. One METHODS
method would be to start in the middle and determine which half
of the list the entry was in, then divide the half into halves. etc. This method is called a
binary search, since it divides the remaining part of the list in half each time.

9-6

Source Program:

LD HL.41H :POINT TO ENTRY
LD A,(HL) :GET ENTRY
INC HL ;POINT TO LENGTH
LD B.(HL) :COUNT = LENGTH OF LIST
LD C.0 ;MARK = ZERO FOR IN LIST
INC HL ;POINT TO START OF LIST
SRLST: CP {HL) IS ENTRY = ELEMENT IN LIST?
JR Z.DONE :YES SEARCH COMPLETED
JR C.NOTIN ;ENTRY NOT IN LIST IF LESS THAN ELEMENT
INC HL
DJNZ SRLST
NOTIN: D C.OFFH :MARK = FF FOR NOT IN LIST
DONE: LD AC ;SAVE MARK
LD (40H)LA
HALT
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 21 LD HL.41H
0001 41
0002 00
0003 7E LD A, (HL)
0004 23 INC HL
0005 46 LD B.(HL)
0006 OE LD c.0
0007 00
0008 23 INC HL
0009 BE SRLST: CP {HL)
000A 28 JR Z.DONE
0008 07
000C 38 JR C.NOTIN
000D 03
000 23 INC HL
000F 10 DJNZ SRLST
0010 F8
0011 OE NOTIN: LD C.OFFH
0012 FF
0013 79 LD A.C
0014 32 LD {40H),A
0015 40
0016 00
0017 76 HALT

The Z80 block search instructions are not as useful here as in the previous example
because we want to do more than a simple search. Now we also want to check to see if
we have examined the relevant part of the list {i.e.. the part where the elements are less
than or equal to the entry). Try rewriting the program to use CPl. Remember that vou
must use the Parity/Overflow flag to determine if the byte counter has been decre-

mented to zero.

9-7

Remove Element from Queue

Purpose: Memory locations 0042 and 0043 contain the address of the head of the
queue (MSBs in 0043). Place the address of the first element (head) of a
queue into memory locations 0040 and 0041 (MSBs in 0041) and update
the queue to remove the element. Each element in the queue is two bytes
long and contains the address of the next two-byte element in the queue.
The last element in the queue contains zero to indicate that there is no next
element.

Queues are used to store data in the order in which it will be used. or tasks in the order
in which they will be executed. The queue is a first-in, first-out data structure: re.. ele-
ments are removed from the queue in the same order in which they were entered.
Operating systems: place tasks in queues so that they will be executed in the proper
order. 1/O drivers transfer data to or from queues so that it will be transmitted or
handled in the proper order. Buffers may be queued so that the next available one can
easily be found and those that are released can easily be added to the available storage.
Queues may also be used to link requests for storage, timing, or 1/0 so that they can be
satisfied in the correct order.

In real applications each element in the queue will typically contain a large amount of
information or storage space besides the address required to link the element to the
next one.

Sample Problems:

a. tggig; z gg} address of first element in queue
2883% Z gg} address of second element in queue
((%%i%) : 88} end of queue
Result: Eggi?; Z gg} address of element removed from queue
28833 N 38 } address of new first element in queue
) ggggg Z 88} empty queue
fosult :882?; : 88} no element available from queue

9-8

Flowchart:

Pointer =(42 and 43)
(40 and 41} = Pointer

Is
Pointer 0
?

42}

= (Pointer}
43) =

{Pointer + 1)

Source Program:

LD HL.(42H) :GET ADDRESS OF HEAD OF QUEUE

LD (40H),HL :REMOVE HEAD OF QUEUE

LD AH IS QUEUE EMPTY?

OR L

JR Z,DONE :YES, DONE

LD E.(HL) :NO. GET ADDRESS OF NEXT ELEMENT

INC HL

LD D.{HL)

LD (42H).DE :MOVE NEXT ELEMENT TO HEAD OF QUEUE

DONE: HALT
Object Program:
Memory Address Memory Contents Instruction

(Hex {Hex) (Mnemonic)
0000 2A LD HL.(42H)
0001 42
0002 00
0003 22 LD ({40H),HL
0004 40
0005 00
0006 7C LD AH
0007 B5S OR L
0008 28 JR Z.DONE
0009 07
000A 5k LD E.{HL)
000B 23 INC HL
000C 56 LD D.(HL)
000D ED LD {42H).DE
000E 53
000F 42
0010 00
0011 76 DONE: HALT

9-9

Queuing can handle lists that are not in sequential memory locations. Each element
must contain the address of the next element. Such lists allow you to handle data or
tasks in the proper order. change variables, or fill in definitions in a program. Extra
storage is required, but elements can easily be added to the queue or deleted from it.

Note the use of the sequence:

LD AH
OR L

to determine if the contents of a 16-bit register pair is zero. Remember that INC and
DEC do not affect any flags when applied to a register pair. Try to devise some other se-
quences that could handle this problem — it obviously occurs whenever vou use a 16-
bit counter rather than the 8-bit counter that we have used in most of the exampies.

One problem is that there is no instruction that loads a register pair using the address in
a register pair. A sequence of Instructions is necessary whenever a register pair must be
loaded directly.

It may be useful to maintain pointers to both ends of the queue rather than just to its
head. The data structure may then be used in either a first-in, first-out manner or in a
jast-in. first-out manner. depending on whether new elements are added to the head or
the tail. How would you change the program example so that memory locations 0044
and 0045 contain the address of the last element (taill of the queue?

If there are no elements in the queue. the program clears memory locations 0040 and
0041. A program that requested an element from the queue would then have to check
those memory locations to see if its request had been satisfied. Can you suggest other
ways to provide this information?

8-Bit Sort

Purpose: Sort an array of unsigned binary numbers into descending order. The length
of the array is in memory location 0040 and the array itself begins in memo-
ry location 0041,

Sample Problem:

(0040} = 06
0041) = 2A
(0042) = BB
(0043} = 60
(0044) = 3F
(0045) = D1
(0046) = 19
Result: (0041) = D1
(0042) = B5
(0043) = 60
(0044) = 3F
(0045) = 2A
(0046) = 19
A simple sorting technique works as follows: SIMPLE
SORTING
Step 1) Clear a flag INTER. ALGORITHM

Step2) Examine each consecutive pair of numbers in the array. If
any are out of order. exchange them and set INTER.

Step 3) If INTER = 1 after the entire array has been examined, return to Step 1.

9-10

INTER will be set if any consecutive pair of numbers is out of order. Therefore, if IN-
TER = 0 at the end of a pass through the entire array, the array is in proper order.

This sorting method is referred to as a “bubble sort” It is an easy algorithm to imple-
ment. However, other sorting techniques should be considered when sorting long lists
where speed is important.

The technique operates as follows in a simple case. Let us assume that we want to sort
an array into descending order; the array has four elements — 12, 03, 15. 08.

1st lteration:
Step 1} INTER=0
Step 2) Final order of the array is:

03
since the second pair (03,15) is exchanged and so is the third pair {03,08).
INTER = 1. -

2nd lteration:
Step 1) INTER =0
Step 2) Final order of the array is:

since the first pair {12,15) is exchanged. INTER = 1,
3rd Iteration:
Step 1) INTER=0

Step 2) The elements are already in order. so no exchanges are necessary and INTER
remains zero.

Flowchart:

Inter = O
Count = (40)-1
Pointer = 41

Temp = {Pointer)
(Pointer) = {Pointer + 1}
(Pointer +1) = Temp
inter = 1{

Pointer = Poainter +1
Count = Count - 1

Is

Inter O
?

Source Program:

SORT: LD C.0 :CLEAR INTERCHANGE FLAG
LD HL,40H :COUNT = LENGTH OF ARRAY
LD B.(HL)
DEC B :NUMBER OF PAIRS = COUNT-1
INC HL ;POINT TO START OF ARRAY
PASS1: (D A, (HL) :GET ELEMENT FROM ARRAY
INC HL
cpP (HU) IS T LESS THAN NEXT ELEMENT?
JR NC,CNT :NO, NO INTERCHANGE NECESSARY
LD D.{HL) :YES, INTERCHANGE ELEMENTS
LD (HLLA
DEC HL
LD {(HL.D
INC HL
D C.1 ;SET INTERCHANGE FLAG
CNT: DJINZ PASS1
DEC C ‘WAS INTERCHANGE FLAG SET?
JR Z,SORT :YES., DO ANOTHER PASS
HALT
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 0E SORT LD C.0
0001 00
0002 21 LD HL,40H
0003 40
0004 00
0005 46 LD B.(HL)
0006 05 DEC]
0007 23 INC HL
0008 7E PASS1: LD A (HL)
0009 23 INC HL
000A BE C (HL)
000B 30 JR NC.CNT
0oocC 07
000D 56 LD D.(HL)
000E 77 LD (HL),A
000F 2B DEC HL
0010 72 LD (HL).D
0011 23 INC HL
0012 QE LD C1
0013 01
0014 10 CNT: DJINZ PASS1
0015 F2
0016 oD DEC C
0017 28 JR Z.SORT
0018 E7
0019 76 HALT

The case where two elements in the array are equal is very important here. The program
should not perform an interchange in that case, since that interchange would occur in
every pass. The result would be that every pass would set the interchange flag, thus
producing an endless loop.

The program must reduce the counter by 1. since the number of consecutive pairs 1"
one less than the number of elements (the last element has no successor). Before stari
ing each sorting pass, we must be careful to reinitialize the counter, pointer, and in
terchange flag.

There are many possible minor variations on this program. For example, we could use
RES 0.C and SET 0.C to clear and set the interchange flag instead of LD C.0andLDC,1
We could also use the sequence MOV B,C followed by DJNZ SORT to check the in:
terchange flag.

Note that Register B should be used for the inner counter. since that counter is decre-
mented most frequently. This allows us to take maximum advantage of the DINZ in-
struction.

indexing would be a convenient way to perform the interchange if the Z80's index
registers were more accessible. Try rewriting the program so as to use one of the index
registers and compare the execution time and memory usage of the rewritten program
to those of the original program.

Using an Ordered Jump Tabie

Purpose: Use the contents of memory location 0040 as an index to a jump table start-
ing in memory location 0041. Each entry in the jump table contains a 16-bit
address with LSBs in the first word. The program should transfer control to
the address with the appropriate index; that is, if the index is 6, the pro-
gram jumps to address entry #6 in the table. Assume that the table has
fewer than 128 entries.

Sample Problem:

(0040) = 02
(0041} = 48
(0042} = 00
0043) = 4C
(0044} = 00
(0045) = 50
(0046} = 00
(0047) = 54
(0048} = 00
Result: (PC) = 0050, since that is entry #2.

(starting from zero} in the jump table.
Flowchart:

= {40} x 2
Base = 41

index

JELEM =
Base + index

¥
(PCl =

{(JELEM) (JELEM + 1}

The last box results in a transfer of control to the address obtained from the table.
Source Program:

LD HL.40H ;POINT TO INDEX

LD A,(HL) :GET INDEX

ADD AA :DOUBLE INDEX FOR 2-BYTE TABLE

LD EA

LD D,0 ;EXTEND INDEX TO 16 BITS

INC HL :BASE ADDRESS OF JUMP TABLE

ADD HL.DE JINDEX INTO JUMP TABLE

LD E,(HL) :GET LSB'S OF DESTINATION ADDRESS

INC HL

LD D.{HL) :GET MSB'S OF DESTINATION ADDRESS

EX DE.HL

JP (HL) :TRANSFER CONTROL TO DESTINATION
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) {Mnemonic)
0000 21 LD HL.40H
0001 40
0002 00
0003 7E LD A, (HL)
0004 87 ADD AA
0005 5F LD EA
0006 16 LD D.0
0007 00
0008 23 INC HL
0009 19 ADD HL.DE
000A 5E LD E.{HL)
0008 23 INC HL
000C 56 LD D.(HL)
000D EB EX DEHL
000E E9 JP (HL)

Jump tables are very useful in situations where one of several routines must be
selected. Such situations arise in decoding commands, selecting test programs, choos-
ing alternate methods, or selecting an 1/O configuration.

The jump table replaces a whole series of conditional jump operations. The program
that accesses the jump table could be used to access several different tables merely by
changing the starting address.

The data must be muitiplied by two to give the correct index. since each entry in the
jump table is a two-byte address.

The instruction JP (HL), which transfers the contents of Register INDIRECT
Pair HL to the Program Counter. is an indirect jump that is very JUMPS

handy in jump tables and monitor programs. Note that JP (HL) is a
Jump instruction. since it places a new value into the Program Counter; however, it
allows us to place a variable address directly into the Program Counter. All of the Condi-
tional Jump instructions {and the Call instructions) use fixed addresses. The only Jump
instructions with similar flexibility are the two-word instructions JP {IX) and JP {iY).

No ending operation is necessary, since JP {HL) transfers control to the address ob-
tained from the jump table.

PROBLEMS

1) Remove an Entry From a List

Purpose: Remove the contents of memory location 0040 from a list if it is present.
The length of the list is in memory location 0041 and the list itself begins in
memory location 0042. Move the entries below the one removed up one
position and reduce the length of the list by 1.

Sample Problems:

a. (0040) = 6B
{0041) = 04
(0042} = 37
(0043} = 61
(0044) = 28
(0045) = 1D
Result: No change, since the entry is not in the list.
b. (0040) = 6B
(0041) = 04
(0042) = 37
(0043) = 6B
(0044) = 28
{(0045) = 1D
Result: {0041) = 03
(0042) = 37
(0043) = 28
(0044} = 1D

The entry is removed from the list and the ones below it are moved up one position. The
length of the list is reduced by 1.

2) Add an Entry to an Ordered List

Purpose: Place the contents of memory location 0040 into an ordered list if it is not
already there. The length of the list is in memory location 0041, and the list
itself begins in memory location 0042, which consists of unsigned binary
numbers in increasing order. Place the new entry in the correct position in
the list. adjust the elements below it down. and increase the length of the

list by 1.
Sample Problems:
a. (0040) = 6B
0041) = 04
0042} = 37
(0043) = 55
{0044) = 7D
(0045) = A1
Result: (0041) = 05
(0044) = 6B
(0045) = 7D
(0046) = A1
b. (0040) = 6B
(0041) = 04
(0042) = 37
(0043) = 55
(0044) = 6B
(0045) = A1

Result: No change, since the entry is already in the list.
3} Add an Element to a Queue

Purpose: Add the address in memory locations 0040 and 0041 {MSBs in 0041} to a
queue. The address of the first element of the queue is in memory locations
0042 and 0043 (MSBs in 0043). Each element in the queue contains either
the address of the next element in the queue or zero if there is no next ele-
ment; all addresses are 16 bits long with the most significant bits in the
second word of the element. The new element goes at the end {tail) of the
queue; its address will be in the element that was at the end of the queue
and it will contain zero to indicate that it is now the end of the queue.

Sample Problem:

Eggj?; : 38} new element to be added to queue
882%; : gg} pointer to head of queue
Eggigz __=__ 83} last element in queue
Result: (0046) = 4D} old last element points to
{0047) = 00% new last element
((%%j[é)) - 88} new last element in queue

How would vou add an element to the queue if memory locations 0044 and 0045 con-
tained the address of the tail (last element) of the queue?

4) 16-Bit Sort

Purpose: Sort an array of unsigned 16-bit binary numbers into descending order. The
length of the array is in memory location 0040 and the array itself begins in
memory location 0041. Each 16-bit number is stored with the least signifi-
cant bits in the first word.

Sample Problem:

(0040) = 03
(0041) = D1
0042) = 19
0043) = 60
0044) = 3F
(0045) = 2A
(0046) = BS
Result: {0041) = 2A
(0042) = Bb
{0043} = 60
0044) = 3F
(0045) = D1
0046) = 19

The numbers are B52A, 3F60. and 19D1
5) Using a Jump Table With a Key

Purpose: Use the contents of memory location 0040 as the key to a jump table start-
ing in memory location 0041. Each entry in the jump table contains an 8-bit
key value followed by a 16-bit address {MSBs in second word} to which the
program should transfer control if the key is equal to that key vaiue.

Sample Problem:

(0040) = 38
0041} = 32
0042) = 4B
0043) = 00
(0044) = 35
(0045) = 4D
(0046} = 00
(0047) = 38
(0048) = 4F
(0049) = 00
Result: (PC) = O004F, since that address corresponds

to key value 38.

Try writing the program with and without the CPIR instruction. Can vou think of a way
to simplify the version that uses the CPIR instruction? Hint: place all the corresponding
8-bit words into separate tables so that the pr%;ram only has to add 1 to the table
pointer to move from one key value to the next.

9-18

REFERENCES

Knuth describes other searching techniques in his book The Art of Computer Pro-
gramming, Volume lil: Sorting_and Searching, Addison-Wesley, Reading, Mass.,
1978. Knuth also has discussed searching and hashing in a more elementary way
in an article entitled “Algorithms” (see the April 1977 issue of Scientific American).

There are many sorting algorithms that vary widely in efficiency. Knuth describes
some in the book mentioned above (The Art of Computer Programming, Volume
Hl: Sorting and Searching). Sorting and searching algorithms are also discussed in
K. A. Schember and J. R. Rumsey, “Minimal Storage Sorting and Searching Techni-
ques for RAM Applications, a Tutorial’. Computer. June 1977, pp. 92-100.

There are additional examples of the use of jump tables in L. A. Leventhal, “Cut
Your Processor's Computation Time". Electronic Design, August 16, 1977, pp-
82-89, and in Chapter 7 of J. B. Peatman, Microcomputer-Based Design. McGraw-
Hill, New York, 1977,

This method is discussed by T. Dollhoff in “Microprocessor Software: How to Op-
timize Timing and Memory Usage: Part Four: Techniques for the Zilog Z80".
Digital Design. February 1977, pp. 48-49.

Chapter 10
SUBROUTINES

None of the examples that we have shown so far is typically a program all by itself.
Most real programs perform a series of tasks. many of which mav be the same or may
be common to several different programs. We need a way to formulate these tasks once
and make the formulations conveniently available both in different parts of the current
program and in other programs.

The standard method is to write subroutines that perform particu- SUBROUTINE
lar tasks. The resulting sequences of instructions can be written LIBRARY

once, tested once, and then used repeatedly. They can form a
subroutine library that provides documented solutions to common problems.

Most microprocessors have special instructions for transferring SUBROUTINE
control to subroutines and restoring control to the main pro- INSTRUCTIONS
gram. We often refer to the special instruction that transfers
control to a subroutine as Call, Jump-to-Subroutine. Jump and Mark Place. or Jump
and Link. The special instruction that restores control to the main program is usually
called Return. On the Z80 microprocessor. the Call instruction (CALL) saves the old
value of the Program Counter in the RAM Stack before placing the starting address of
the subroutine into the Program Counter; the Return instruction (RET) gets the old
value from the Stack and puts it back in the Program Counter. The effect is to transfer
program control. first to the subroutine and then back to the main program. Clearly the
subroutine may itself transfer control to a subroutine. and so on.

In order to be really useful. a subroutine must be general. A routine that can perform
only a specialized task. such as looking for a particular letter in an input string of fixed
length. will not be very useful. If, on the other hand, the subroutine can look for any let-
ter in strings of any length, it will be far more helpful. We call the data or addresses that
the subroutine allows to vary “parameters”. An important part of writing subroutines is
deciding which variables shouid be parameters.

One problem is transferring the parameters to the subroutine: this PASSING
process is called passing parameters. The simplest method is for PARAMETERS
the main program to place the parameters into registers. Then the
subroutine can simply assume that the parameters are there. Of course, this technique
is limited by the number of registers that are available. The parameters may, however,
be addresses as well as data. For example, a sorting routine could begin with the start-
ing address of an array in Register Pair HL.

Other methods are necessary when there are more parameters. One possibility is to use
the Stack. The main program can place the parameters into the Stack and the
subroutine can retrieve them. The advantages of this method are that the Stack is es-
sentially unlimited in size, and that data in the Stack is not lost even if the Stack is used
again.

The disadvantages are that few Z80 instructions use the Stack, and the Call instruction
also stores the return address in the Stack. Another method is to use an area of memory
for parameters. The main program can place the address of the area into Register Pair
HL or into one of the index registers and the subroutine can retrieve the data as needed.
However, this procedure is awkward if the parameters themselves are addresses.

10-1

Sometimes a subroutine must have special characteristics. A 3f
subroutine is relocatable if it can be placed anywhere in memory. T)
You can use such a subroutine easily, regardless of the placement of other programs or
the arrangement of the memory. A strictly relocatable program can use no absolute ad-
dresses: all addresses must be relative to the start of the program. A relocating loader
is necessary to place the program in memory properly; the loader will start the program
after other programs and will add the starting address or relocation constant to all ad-
dresses in the program.

A subroutine is reentrant if it can be interrupted and called by the REENTRANT
interrupting program and still give the correct results for both the SUBROUTINE
interrupting and interrupted programs. Reentrancy is important for
standard subroutines in an interrupt-based system. Otherwise the interrupt service
routines cannot use the standard subroutines without causing errors. Microprocessor
subroutines are easy to make reentrant, since the Call instruction uses the Stack and
that procedure is automatically reenwant. The oniy remaining requirement Is that the
subroutine use the registers and Stack rather than fixed memory locations for tempor-
ary storage. This is a bit awkward. but usually can be done if necessary.

A subroutine is recursive if it calls itself. Such a subroutine clearly must also be re-
entrant. However. recursive subroutines are uncommon in microprocessor applications.

Most programs consist of a main program and several subroutines. This is advan-
tageous because you can use proven routines and debug and test the other subroutines
separately. You must, however, be careful to use the subroutines properly and remem-
ber their exact effects on registers and memory locations.

SUBROUTINE DOCUMENTATION

Subroutine listings must provide enough information so that DOCUMENTING
users need not examine the subroutine’s internal structure. SUBROUTINES
Among the necessary specifications are:

» A description of the purpose of the subroutine.
« A list of input and output parameters.

+ Registers and memory locations used.

+ A sample case.

If these guidelines are followed. the subroutine will be easy to use.

EXAMPLES

It is important to note that the following examples all reserve an area of memory for the
RAM Stack. If the monitor inyour microcomputer establishes such an area, you may use
it instead. If you wish to try establishing your own Stack area, remember to save and
restore the monitor's Stack Pointer in order to produce a proper return at the end of
your main program.

To save the monitor Stack Pointer, use the instruction LD (addr).SP. To restore the
monitor Stack Pointer, use the instruction LD SP.laddr). Both of these instructions re-

quire a two-byte operation code (ED 7B for loading the Stack Pointer, ED 73 for storing
it} in addition to the two bytes of address.

We have used address 0080 (hex) as the starting point for the Stack. You may have to
consistently replace that address with one more suitable for your configuration. You
should consult your microcomputer's manual to determine the required changes.

10-2

Hex to ASCH

Purpose: Convert the contents of the Accumulator to an ASCII character. Place the
result in the Accumulator. Assume that the Accumulator contains a single
hexadecimal digit.

Sample Problems:

a. A = 0cC
Result: (A} = 43 ‘C
b. A} = 06
Result: (A) = 36 6
Flowchart:

{A) = (A) +ASCH A -
ASCI 9 - 1

-—___.i

(A) = (A) + ASCH O

Source Program:

The calling program starts the Stack at memory location 0080, gets the data from
memory location 0040, calls the conversion subroutine, and stores the result in memory
location 0041.

ORG 0
LD SP,80H :START STACK AT LOCATION 0080
LD A,{40H) :GET DATA
CALL ASDEC :CONVERT DATA TO ASCII
LD (41H),A :STORE RESULT
HALT
The subroutine converts a hexadecimal digit to ASCH.
ORG 20H
ASDEC: CP 10 :IS DATA A DECIMAL DIGIT?
JR C,ASCZ
ADD A’A-'9-1 :NO, ADD OFFSET FOR LETTERS
ASCZ: ADD AT :CONVERT DATA TO ASCH
RET

10-3

Subroutine Documentation:

: SUBROUTINE ASDEC

- PURPOSE: ASDEC CONVERTS A HEXADECIMAL
DIGIT IN THE ACCUMULATOR TO AN
ASCIi DIGIT IN THE ACCUMULATOR

- INITIAL CONDITIONS: HEX DIGIT IN A

- FINAL CONDITIONS: ASCIi CHARACTER IN A

. REGISTERS USED: A

. SAMPLE CASE
INITIAL CONDITIONS: 6 IN ACCUMULATOR

FINAL CONDITIONS: ASCHl 6 {HEX 36)
IN ACCUMULATOR

Object Program:

Memory Address Memory Contents Instruction
{Hex) (Hex) (Mnemonic)

1) Calling program

0000 31 LD SP,80H
0001 80
0002 00
0003 3A LD A.(40H)
0004 40
0005 00
0006 CD CALL ASDEC
0007 20
0008 00
0009 32 LD 41H),A
000A 41
0008 00
000C 76 HALT

2) Subroutine
0020 FE ASDEC: CP 10
0021 0A
0022 38 JR C.ASCZ
0023 02
0024 Cc6 ADD ASCA-9-1
0025 07
0026 C ASCZ: ADD AQ
0027 30
0028 Cc9 RET

The instruction LD SP.80H starts the Stack at memory location 0080. Remember that
the Stack grows downward (to lower addresses). We usually place the Stack at the high

10-4

end of RAM (i.e.. the highest address) so that it will not interfere with other temporary
storage.

The Call instruction places the subroutine starting address (0020 hex) into the Program
Counter and saves the old Program Counter (0009 hex) in the Stack. The procedure is:

STEP 1 — Decrement Stack Pointer. save MSBs of old Program Counter in Stack.
STEP 2 — Decrement Stack Pointer. save LSBs of old Program Counter in Stack.

Note that the Z80 Stack Pointer always contains the address of the last occupied Stack
location.

The result in this case is:

007F) = Q0
(007e) = 09
(SP) = O007E

The value that i1s saved is the value of the Program Counter after the processor has
fetched the entire Call instruction from memory. Note that the address ends up stored
just like other Z80 addresses. with the least significant bits in the lower address.

The Return instruction loads the Program Counter with the contents of the bottom two
memory locations in the Stack. The procedure is:

STEP 1 — Load eight bits from Stack into LSBs of Program Counter. Increment Stack
Pointer.

STEP 2 — Load eight bits from Stack into MSBs of Program Counter. Increment Stack
Pointer.

The result in this case is:

(PC) = (007F) and (007E)
= 0009
(8P} = 0080

This subroutine has a single input parameter and produces a single result. The Ac-
cumulator s the obvious place to put both.

The calling program involves three steps: placing the data into the Accumulator, call-
tng the subroutine, and storing the result. The overall initialization must also place the
Stack in the appropriate area of memory.

The subroutine is reentrant, since 1t uses no data memory; 1t is relocatable. since the
address ASCZ is relative.

Note that the CALL instruction results in the execution of four or five instructions taking
36 or 38 clock cycles. A subroutine call can take a long time even though it appears to
be a single instruction in the program.

If you plan to use the Stack for parameters, remember that CALL places the return ad-
dress at the top of the Stack. You can increment the Stack Pointer twice INC SP) to get
past the return address, but you must also remember to adjust the Stack Pointer pro-
perly before returning. You can also move the Stack Pointer to Registers H and L with
the sequence:

LD HL.O
ADD HL.SP :MOVE STACK POINTER TO ADDRESS REGISTER

Now vou can use implied memory addressing with H and L to access data in the Stack.
Another alternative is to move the Stack Pointer to an index register (say IX) with the se-
quence:

LD 1X.0

ADD IX.SP ;MOVE STACK POINTER TO INDEX REGISTER

10-5

This afternative has the advantage that you can now access data and addresses in the
Stack with indexed offsets. Furthermore, Register Pair HL is immediately available for
use in the subroutine. Note that you can use the instructions LD SP.HL or LD SP.IX to
return an adjusted value to the Stack Pointer.

Length of a String of Characters

Purpose: Determine the length of a string of ASCII characters. The starting address of
the string is in Register Pair HL. The end of the string 1s marked by a carriage
return character (CR. hex OD). Place the length of the string {excluding the
carriage return) into the Accumulator.

Sample Problems:

a. HL) = 0043
(0043) = 0D
Result: (Al = 00
b (HL) = 0043
(0043) = b2 'R
0044) = 41 'A
(0048) = B4 'T
(0046) = 48 'H
(0047) = 45 °F
(0048) = 52 'R
(0049) = 0D CR
Result: (A} = 06
Flowchart:

Pointer HL
Count 0

Is
{Pointer}
CR (Hex 0D)

Count + 1
Pomter + 1

Count
Pointer

10-6

Source Program:

The calling program starts the Stack at memory location 0080, gets the starting address
of the string from memory locations 0040 and 0041, calls the string length subroutine,
and stores the result in memory location 0042.

LD SP.80H :START STACK AT LOCATION 0080
LD HL.(40H) 'GET STARTING ADDRESS OF STRING
CALL STLEN ‘DETERMINE STRING LENGTH

LD (42H).A :STORE STRING LENGTH

HALT

The subroutine determines the length of a string of ASCII characters and places the
length into the Accumulator.

ORG 20H
STLEN: LD B.O :STRING LENGTH = ZERO
LD A.ODH :GET ASCHl CARRIAGE RETURN
CHKCR: CP (HL) :IS CHARACTER A CARRIAGE RETURN?
JR Z.DONE YES. END OF STRING
INC B :NO, ADD 1 TO STRING LENGTH
INC HL
JR CHKCR
DONE: LD A.B
RET

Subroutine Documentation:

:SUBROUTINE STLEN

:PURPOSE: STLEN DETERMINES THE LENGTH OF A
STRING (NUMBER OF CHARACTERS BEFORE
A CARRIAGE RETURN)

JINITIAL CONDITIONS: STARTING ADDRESS OF
STRING IN REGISTER PAIR HL

‘REGISTERS USED: AB.H.L
:SAMPLE CASE:
STARTING CONDITIONS: (HL) = 0043

(0043) = 35, (0044} = 46, (0045) = 0D
FINAL CONDITIONS: (A} =02

10-7

Object Program:

Memory Address Memory Contents Instruction
(Hex! (Hex) (Mnemonic)

1) Calling program

0000 31 LD SP,80H
0001 80
0002 00
0003 2A LD HL, {40H)
0004 40
0005 00
0006 CcD CALL STLEN
0007 20
0008 00
0009 32 LD {42H).A
000A 42
0ooB 00
000C 76 HALT

2) Subroutine
0020 06 STLEN: LD B.0
0021 00
0022 3k LD A.ODH
0023 0D
0024 BE CHKCR: CP HL)
0025 28 JR Z.DONE
0026 04
0027 04 INC B
0028 23 INC HL
0029 18 JR CHKCR
002A F9
002B 78 DONE: LD AB
002C c9 RET

The calling program involves four steps: initializing the Stack Pointer, placing the start-
ing address of the string into Register Pair HL. calling the subroutine, and storing the
result.

The subroutine is reentrant, since it does not change the contents of any memory loca-
tions. It is relocatable. since all the Jump instructions use relative addresses.

The subroutine changes Register B and the address in Register Pair HL as well as the
Accumulator. The programmer must be aware that data previously stored in Register B
and the address previously loaded into HL will be lost: the subroutine documentation
must describe what registers are used.

An alternative to destroving register contents in the subroutine is to save them in the
Stack and then restore them before returning. This approach makes the calling routine
simpler. but costs extra time and memory {in the program and in the Stack).

This subroutine has a single snput parameter. which is an address. The best way to pass
this parameter is through a register pair and. since the HL pair is certainly the most flex-
ible as far as addressing options are concerned. it is the obvious choice.

The subroutine contains an unconditional Jump instruction, JR CHKCR. By altering the
initial conditions prior to entering the subroutine’s loop. can vou eliminate this jump?

If the terminating character were not always an ASCII carriage return. we could make
that character into another parameter. Now the calling program would have to place

10-8

the terminating character into the Accumulator and the starting address of the string
into Register Pair HL before calling the subroutine.

One way to pass parameters that do not depend on variable data is to place the values
In program memory immediately after the Call instruction. You can use the old Program
Counter (saved at the top of the Stack) to access the data, but you must adjust its value
properly before returning control to the main program. For example, we could pass the
value of the terminating character this way. The main program and subroutine would
be:

Calling program:

ORG 0
LD SP.80H :START STACK AT LOCATION 0080
LD (HL).40H :GET STARTING ADDRESS OF STRING
CALL STLEN :DETERMINE STRING LENGTH
DEFB .TERMINATOR = ASCII PERIOD
LD (42H).A :STORE STRING LENGTH
HALT

Subroutine:
ORG 20H

STLEN: POP DE .GET START OF PARAMETER LIST
LD A.(DE) :GET TERMINATING CHARACTER
INC DE ;ADJUST RETURN ADDRESS
PUSH DE
LD 8.0 ;STRING LENGTH = ZERO

CHKCR: cCP (HL) ;IS CHARACTER TERMINATOR?
JR Z.DONE YES, END OF STRING
INC B :NO, ADD 1 TO STRING LENGTH
INC HL
JR CHKCR

DONE: LD AB
RET

This subroutine is longer and uses Register Pair DE, but the calling program need not
load the terminating character into a register. The INC DE instruction is necessary to
force a return to the next instruction, rather than to the parameter list.

PUSH and POP transfer the contents of register pairs or index registers to and from the
RAM Stack. The eight least significant bits are removed first and stored last to retain
consistency with the Z80's upside-down method of storing 16-bit addresses. Remem-
ber that the RAM Stack grows downward (to lower addresses).

Add Even Parity to ASCIl Characters

Purpose: Add even parity to a string of 7-bit ASCIl characters. The length of the string
is in the Accumulator and the starting address of the string is in Register Pair
HL. Place even parity in the most significant bit of each character. i.e.. set the
most significant bit to 1 if that makes the total number of 1 bits in the worc
even.

10-9

Sample Problem:

(A = 06
HL) = 0041
0041) = 3
0042) = 32
(0043) = 33
(0044) = 34
{0045) = 35
(0046) = 36
Result: (0041) = B1
{0042) = B2
(0043) = 33
{0044) = B4
0045) = 35
{0046) = 36

Flowchart:

o
e
2
)

{Pointer} have
even parnty
?

{Pamter) = {Pointer}
OR 100000008
(Set Parity Bit)

__..___>*

Pomter = Pointer + 1
Count = Count - 1

10-10

Source Program:

The calling program starts the Stack at memory location 0080, sets the starting address
of the string to 0041, gets the string length from memory location 0030, and calls the
even parity subroutine.

ORG 0
LD SP.80H :START STACK AT LOCATION 0080
LD HL.41H :GET STARTING ADDRESS OF STRING
LD A,(30H) :GET STRING LENGTH
CALL EPAR
HALT
The subroutine adds even parity to a string of ASCH characters.
ORG 20H
EPAR: LD B.A
LD C.100000008 ;GET PARITY BIT OF 1
SETPR: LD A, (HL) :GET A CHARACTER
OR C :SET PARITY BIT TO 1
JP PO.CHCNT IS PARITY NOW EVEN?
LD (HL).A :YES. SAVE CHARACTER WITH EVEN PARITY
CHCNT: INC HL
DJNZ SETPR
HALT

Subroutine Documentation:

:SUBROUTINE EPAR

:PURPOSE: EPAR ADDS EVEN PARITY
TO A STRING OF 7-BIT ASCHi
CHARACTERS

:INITIAL CONDITIONS: STARTING ADDRESS
OF STRING IN HL, LENGTH OF STRING
IN A

:FINAL CONDITIONS: EVEN PARITY IN
MSB OF EACH CHARACTER

:REGISTERS USED: A,B.C.H.L

:SAMPLE CASE:
INITIAL CONDITIONS: (HL) = 0041
(A) =2. (0041) =32, (0042) =33
FINAL CONDITIONS: (0041) = B2, (0042) = 33

This subroutine has two parameters, an address and a number. Register Pair HL is used
to pass the address and the Accumulator to pass the number. No explicit results are
returned, since the subroutine affects only the MSB of each character in the string.

10-11

The calling program must place the starting address of the string into Register Pair HL
and the length of the string into the Accumulator before transferring control to the
subroutine.

The subroutine changes the values in Registers A, H. and L and uses Registers B and C
for temporary storage. It is reentrant, since it does not use any fixed memory locations
for temporary storage.

Object Program:

Memory Address Memory Contents Instruction
(Hex) {Hex) {Mnemonic)

1) Calling program

0000 31 LD SP.80H
0001 80
0002 00
0003 21 LD HL.41H
0004 41
0005 00
0006 3A LD A, (30H)
0007 30
0008 00
0009 cD CALL EPAR
000A 20
0008 00
000C 76 HALT

2) Subroutine
0020 47 EPAR: LD B.A
0021 OE LD C.10000000B
0022 80
0023 7E SETPR: LD A,(HL)
0024 B1 OR c
0025 £2 JP PO,CHCNT
0026 29
0027 00
0028 77 LD (HLLA
0029 23 CHCNT: INC HL
002A 10 DJINZ SETPR
0028 F7
002C c9 RET

Pattern Match

Purpose: Compare two strings of ASCII characters to see if they are the same. The
length of the strings is in the Accumulator. The starting address of one string
is in Register Pair HL: the starting address of the other is in Register Pair DE.
If the two strings match, clear the Accumulator: otherwise, set the Ac-
cumulator to FF {hex).

10-12

Sample Problems:

a. (A = 03
(DE) = 50
(HL) = 60

(0050) = 43 C'

0051 = 41 A

(0052) = 54 ‘T

(0060) = 43 ‘¢’

0061 = 41 A’

(0062) = 54 ‘T

Resuit: (A) = 0, since the strings are the same.

b. (A} = 03
(DE) = 50
HL) = 60

(0050) = 52 ‘R

0051) = 41 A

(0052) = 54 T

(0060} = 43 ¢’

(0061) = 41 ‘A

0062) = B4 T

Result: (A} = FF (hex), since the first characters differ.
Flowchart:

Pointer 1 = (DE}

Pointer 2 = (HL)

Count = (A}

is
{(Pointer 1} =
(Pointer 2)

(A} = FF (hex)

10-13

Source Program:

The calling program starts the Stack at memory location 0080. sets the starting ad-
dresses of the strings to 0050 and 0060. respectively, gets the string length from
memory location 0040, calls the pattern match subroutine, and places the result into
memorv location 0041,

ORG 0
LD SP.80H :START STACK AT LOCATION 0080
LD DE.60H :GET STARTING ADDRESS OF STRING 1
LD HL.60H :GET STARTING ADDRESS OF STRING 2
LD A,[40H) :GET STRING LENGTH
CALL PMTCH :CHECK FOR MATCH
LD {@41HLA :SAVE MATCH INDICATOR
HALT
The subroutine determines if the two strings are the same.
ORG 20H
PMTCH: LD B.A :COUNT = STRING LENGTH
LD C.OFFH :MARK = FF (HEX) FOR NO MATCH
CHCAR: LD A.(DE) :GET CHARACTER FROM STRING 1
CcP (HL) 1S THERE A MATCH WITH STRING 27
JR NZ.DONE :NO, DONE — STRINGS DO NOT MATCH
INC DE
INC HL
DJUNZ CHCAR
LD C.0 :MARK = ZERO, STRINGS MATCH
DONE: LD AC
RET

Subroutine Documentation:

;SUBROUTINE PMTCH

:PURPOSE: PMTCH DETERMINES IF TWO
STRINGS ARE EQUIVALENT

:INITIAL CONDITIONS: STARTING ADDRESSES
OF STRINGS IN DE AND HL,
LENGTH OF STRINGS IN ACCUMULATOR

:FINAL CONDITIONS: O IN A IF
STRINGS MATCH, FF IN A OTHERWISE

:REGISTERS USED: AB.D.EH.L

:SAMPLE CASE:
STARTING CONDITIONS: (HL} = 0050,
(DE) = 0060, (A} =2
(0050) = 36, (0051) =39
(0060) = 36, (0061) = 39
FINAL CONDITIONS: (A) =0 SINCE THE STRINGS MATCH

10-14

Object Program:

Memory Address Memory Contents Instruction

{Hex) (Hex) {(Mnemonic)

1) Calling program
0000 31 L.D SP.80H
0001 80
0002 00
0003 1 LD DE.60H
0004 60
0005 00
0006 21 LD HL,50H
0007 50
0008 00
0009 3A LD A, (40H)
000A 40
0008B 00
000C cD CALL PMTCH
000D 20
000E 00
000F 32 LD @1H).A
0010 41
0011 00
0012 76 HALT

2) Subroutine
0020 47 PMTCH: LD B.A
0021 0E LD C.OFFH
0022 FF
0023 1A CHCAR: LD A.{DE)
0024 BE CcP HL)
0025 20 JR NZ,DONE
0026 06
0027 13 INC DE
0028 23 INC HL
0029 10 DJINZ CHCAR
002A F8
0028 OE LD c.0
002C 00
002D 79 DONE: LD AC
002E Cc9 RET

This subroutine, like the preceding ones, changes all of the flags. You should generally
assume that a subroutine call changes the flags unless it is specifically stated other-
wise. If the main program needs the old flag values {for later checking). it must save
them in the Stack prior to calling the subroutine. This is accomplished with the PUSH
AF instruction.

The subroutine is reentrant and changes all the main registers except C.

This subroutine has three parameters — the two starting addresses and the length of
the strings. These parameters use five general-purpose registers.

10-15

Multiple-Precision Addition

Purpose: Add two multiple-byte binary numbers. The length of the numbers in bytes
is in the Accumulator. The starting addresses of the numbers are in Register
Pairs DE and HL. The starting address of the result is in Index Register IX. All
the numbers begin with the least significant bits.

Sample Problem:

(Al = 04
(DE) = 51
HL) = 61
Xy = 71
0051} = C3
0052) = A7
{0053) = 5B
(0054) = 2F
(0061} = B8
(0062) = 35
(0063) = DF
0064} = 14
Result: = (0071) =78
(0072) =DD
(0073) = 3A
0074) = 44
i.e. 2F5BA7C3
+ 14DF35B8
443ADD7B

Flowchart:

Count = (A}
Pointer 1 = (DE)
Pointer 2 = (ML}
Pointer 3 = (IX)
Cary = 0]
(Pointer 3} =
{Pointer 1)
+ (Pointer 2}
+ Camv
{This step also produces new Carry)

IPointer 1= Pointer1+ 1
§Pointer 2= Pointer2+ 1|
fPointer 3= Pointer3+ 1§
| Count = Count - 1

10-16

Source Program:

The calling program starts the Stack at memory location 0080, sets the starting ad-
dresses of the various numbers to 0050, 0060. and 0070, respectively. gets the length
of the numbers from memory location 0040, and calls the multiple-precision addition

:START STACK AT LOCATION 0080

:GET STARTING ADDRESS OF FIRST NUMBER
:GET STARTING ADDRESS OF SECOND NUMBER
:GET STARTING ADDRESS OF RESULT

:GET LENGTH OF NUMBERS IN BYTES
:MULTIPLE-PRECISION ADDITION

The subroutine performs multiple-precision binary addition.

subroutine.
ORG 0
LD SP.80H
LD HL.50H
LD DE.60H
LD IX.70H
LD A, (40H)
CALL MPADD
HALT
ORG 20H
MPADD: LD B.A
AND A
ADDW: LD A, (DE
ADC A, (HL)
LD (IX).A
INC DE
INC HL
INC IX
DJINZ ADDW
RET

Subroutine Documentation:

:SUBROUTINE MPADD

:PURPOSE: MPADD ADDS TWO

:COUNT = LENGTH OF NUMBERS IN BYTES
:CLEAR CARRY TO START

:GET WORD FROM FIRST NUMBER

:ADD WORD FROM SECOND NUMBER
:STORE ONE WORD OF RESULT

MULTIPLE-BYTE BINARY NUMBERS

:INITIAL CONDITIONS: STARTING ADDRESSES
OF NUMBERS IN D AND E. H AND L:
STARTING ADDRESS OF RESULT IN IX,

LENGTH OF NUMBERS IN A

;REGISTERS USED: A.B.D.E.H.L.IX

;SAMPLE CASE:

STARTING CONDITIONS: (HL) = 0050,

(DE) = 0060. {IX} = 0070, (A) =2,

(0050) = C3. (0051) = A7. (0060) = B8, (0061) = 35
FINAL CONDITIONS: {0070} =78, (0071) =DD

10-17

Object Program:

Memory Address Memory Contents Instruction

{Hex) (Hex) (Mnemonic)
1) Calling program
0000 31 LD SP.80H
0001 80
0002 00
0003 21 LD HL,50H
0004 50
0005 00
0006 11 LD DE.60H
0007 60
0008 00
0009 DD LD 1X.70H
000A 21
000B 70
000C 00
000D 3A LD A.(40H)
000E 40
000F 00
0010 ch CALL MPADD
0011 20
0012 00
0013 76 HALT
2) Subroutine

0020 47 LD B.A
0021 A7 AND A
0022 1A LD A,(DE)
0023 8k ADC A, (HL)
0024 DD LD {iX),A
0025 77
0026 00
0027 13 INC DE
0028 23 INC HL
0029 DD INC 1X
002A 23
0028 10 DJNZ ADDW
002C F5
002D C9 RET

We use Index Register IX to hold the result address. Try changing the program to use
Register Pair BC for this purpose. What happens to the counter?

We could also place the result address at the top of the Stack. The instruction EX
{SP),HL exchanges the top of the Stack and Register Pair HL. Change the program so

that it uses this instruction. but remember to increment all three pointers after each
iteration.

This subroutine has four parameters — three addresses and the length of the numbers.
Six 8-bit registers and the 16-bit Index Register IX are used for passing parameters.

10-18

PROBLEMS

Note that you are to write both a calling program for the sample problem and a properly
documented subroutine.

1) ASCII to Hex

Purpose: Convert the contents of the Accumulator from the ASCH representation of a
hexadecimal digit to the 4-bit binary representation of the digit. Place the
result into the Accumulator.

Sample Problems:

a. (A = 43 C
Result: (A} = OC

b. (A) = 36 6
Result: (A) = 06

2) Length of an ASCIl Message

Purpose: Determine the length of an ASCll-coded message. The starting address of
the string of characters in which the message is located is in Register Pair
HL. The message itself starts with an ASCIl STX character (hex 02) and ends
with ASCHl ETX (hex 03). Place the length of the message (the number of
characters between the STX and the ETX) into the Accumulator.

Sample Problem:

HL) = 0041
(0041) = 49
(0042) = 02 STX
0043) = 47 G
0044) = 4aF O
(0045) = 03 ETX
Result: (A = 02

3) Check Even Parity in ASCii Characters

Purpose: Check the even parity of a string of ASCII characters. The length of the string
is in the Accumulator and the starting address of the string is in Register Pair
HL. If the parity of all the characters in the string is correct. clear the Ac-
cumulator; otherwise, set the Accumulator to FF hex (all ones).

Sample Problems:

a. (A) = 03
(HL) = 0042
(0042) = B1
(0043) = B2
(0044) = 33
Result: (A} = 00. since all the characters have even parity
b. (A} = 03
HL) = 0042
(0042) = B1
(0043} = B6
(0044) = 33
Result: (A} = FF, since the character in memory location 0043

does not have even parity

10-19

4) String Comparison

Purpose: Compare two strings of ASCIl characters to see which is larger (i.e.. which
would follow the other in ‘alphabetical’ ordering).

The length of the strings is in the Accumuiator; the starting address of
string 1 is in Register Pair HL and the starting address of string 2 is in
Register Pair DE. If string 1 is larger than or equal to string 2. clear the Ac-
cumulator; otherwise, set the Accumulator to FF hex (all ones).

Sample Problems:

a. (A} = 03
(DE} = 0060
(HL) = 0050
(0050) = 43 'C
(0051 = 41 A
0052) = 54 T
(0062) = 42 'B
(0063} = 41 A
(0064) = 54 T
Result = (A} =00, since CAT is 'larger than BAT
b. (A = 03
(DE) = 0060
(HL) = 0050
0050) = 44 D
(0051) = 4F 'O
0052) = 47 ‘G
(0060} = 44 D’
(0061) = 4F 'O
0062) = 47 G
Result = (A) =00, since the two strings are equal
c. (A} = 03
(DE} = 0060
(HL} = 0050
0050) = 43 'C
0051 = 41 A’
(0052) = 64 T
(0060) = 43 'C
(0061) = 85 ‘U
(0062) = 54 'T
Result = (A) =FF (hex), since CUT is ‘larger’ than CAT

5) Decimal Subtraction

Purpose: Subtract one multiple-digit decimal (BCD) number from another. The length
of the numbers {in bytes) is in the Accumulator and the starting addresses of
the numbers are in Register Pairs DE and HL. Subtract the number with the
starting address in HL from the one with the starting address in DE. The
starting address of the result is in Index Register IX. All the numbers begin
with the least significant digits. The sign of the result is returned in the Ac-
cumulator — zero if the result is positive, FF (hex) if it is negative.

10-20

Sample Problem:

Resulit:

(A)
(DE)
(HL

{Ix)

{0050)
(0051)
(0052)
(0053)
(0060}

(0073)

L.e.

LI

00 {positive)
26
85
03
24

36701985

12663459

+ 24038526

10-21

REFERENCES

1. Other examples of this technique (for the 8080 microprocessor) are in S. Mazor and
C. Pitchford, “Develop Cooperative Microprocessor Subroutines,” Electronic
Design, June 7. 1978. pp. 116-118.

10-22

Chapter 11
INPUT/OUTPUT

There are two problems in the design of input/output sections: one is how to interface
peripherals to the computer and transfer data, status, and control signals; the other is
how to address 1/0 devices so that the CPU can select a particular one for a data
transfer. Clearly, the first problem is both more complex and more interesting. We will
therefore discuss the interfacing of peripherals here and leave addressing to a more
hardware-oriented book.

In theory, the transfer of data to or from an 1/0 device is similar to 1/0 AND
the transfer of data to or from memory. In fact, we can consider the MEMORY
memory as just another /O device. The memory is, however,
special for the following reasons:

1) It operates at almost the same speed as the processor.

2) It uses the same type of signals as the CPU. The only circuits usually needed to in-
terface the memory to the CPU are drivers, receivers, and level translators.

3) It requires no special formats or any control signals besides a Read/Write pulse.

4) It automatically latches data sent to it.

5) Its word length is the same as the computer's.

Most I/0 devices do not have such convenient features. They may operate at speeds
much slower than the processor. for example, a teletypewriter can transfer only 10
characters per second. while a slow processor can transfer 10,000 characters per sec-
ond. The range of speeds is also very wide — sensors may provide one reading per
minute, while video displays or floppy disks may transfer 250,000 bits per second.
Furthermore, 1/0 devices may require continuous signals (motors or thermometers), cur-
rents rather than voltages (teletypewriters]. or volitages at far different levels than the
signals used by the processor (gas-discharge displays). I/0 devices may also require
special formats. protocols, or control signals. Their word lengths may be much shorter
or much longer than the word length of the computer. These variations make the
design of I/0 sections difficult and mean that each peripheral presents its own special
interfacing problem.

We may. however. provide a general description of devices and in- 1/0
terfacing methods. We may roughly separate devices into three CATEGORIES
categories, based on their data rates:

1) Slow devices that change state no more than once per second. Changing their
states typically requires milliseconds or longer. Such devices inciude lighted dis-
plays, switches, relays, and many mechanical sensors and actuators.

2) Medium-speed devices that transfer data at rates of 1 to 10.000 bits per second.
Such devices include keyboards. printers, card readers, paper tape readers and
punches, cassettes, ordinary communications lines, and many analog data acquisi-
tion systems.

3] High-speed devices that transfer data at rates of over 10.000 bits per second. Such
devices include magnetic tapes, magnetic disks, high-speed line printers, high-
speed communications lines. and video displays.

111

The interfacing of slow devices is simple. Few control signals INTERFACING
are necessary unless the devices are multiplexed, i.e.. several SLOW DEVICES
are handled from one port, as shown in Figures 11-1 to 11-4.
input data from slow devices need not be latched, since it remains stable for a long time
interval. Output data must, of course. be latched. The only problems with input are
transitions that occur while the computer is reading the data. One-shots. cross-coupled
latches. or software delay routines can smooth the transitions.

A single port can handle several siow devices. Figure 11-1 shows a demultiplexer that
automatically directs the next cutput data to the next device by counting output opera-
tions. Figure 11-2 shows a control port that provides select inputs to a demultiplexer.
The data outputs here can come in any order, but an additional output instruction is
necessary to change the state of the control port. Output demultiplexers are commonly
used to drive several displays from the same output port. Figures 11-3 and 11-4 show
the same alternatives for an input muitipiexer.

Note the differences between input and output with slow devices:

1) input data need not be latched, since the input device holds the data for an enor-
mous length of time by computer standards. Output data must be latched, since
the output device will not respond to data that is present for only a few CPU clock
cycles.

2) Input transitions cause problems because of their duration; brief output transitions
cause no problems because the output devices (or the observers) react slowly.

3) The major constraints on input are reaction time and responsiveness, the major
constraints on output are response time and observability.

Medium-speed devices must be synchronized in some way to INTERFACING
the processor clock. The CPU cannot simply treat these devices MEDIUM-SPEED
as if they held their data forever or could receive data at any DEVICES

time. Instead, the CPU must be able to determine when a

device has new input data or is ready to receive output data. It must also have a way of
telling a device that new output data is availabie or that the previous input data has
been accepted. Note that the peripheral may be or contain another processor.

The standard unclocked procedure is the handshake. Here the

sender indicates the availability of data to the receiver and

transfers the data; the receiver completes the handshake by acknowledging the recep-
tion of the data. The receiver may control the situation by initially requesting the data or
by indicating its readiness to accept data; the sender then sends the data and com-
pietes the handshake by indicating that data is available. in either case. the sender
knows that the transfer has been completed successfully and the receiver knows when
new data is available.

Data Qutputs 0
Data Bus :>
Output Data
Port Inputs
Data Qutputs 1
Stobe —>
Port Selection Logic ‘
Demultiplexer
Data Qutputs 2
Clock >

—— .
Counter Data Outputs 3

s INpULS

|

The Counter controls where the Demuitiplexer sends the data.

Figure 11-1. An Output Demultiplexer Controlled by a Counter

Data Qutputs 0

I

Dasta N Data
Port Inputs

Data Outputs 1
Data Bus
4 Demultiplexer
Data Outputs 2
b Control —————1 Seloct Data Outputs 3
Port 4 Inputs

I

The CPU sends control information to the Control Port; that port determines
where the Demultiplexer sends the data.

Figure 11-2. An Output Demuitiplexer Controlled by a Port

11-3

ﬂ%

Port Selection Logic

ol Gamm—
Port
Enable
Clock
Counter
——— e

Dsta
Qutputs

Multiplexer

Inputs

Data Inputs O

I

Data Inputs 1

I

Data inputs 3

I

The Counter controis which input the Muttiplexer gates to the Input Port.

Figure 11-3. An input Multiplexer Controlled by a Counter

input Data Bus

Qutput Data Bus

|

e KT
Port

Control — .
Port . 2

Data
Outputs

Multiplexer

Select
Inputs

Data Inputs 0

I

Data lhputs 1

I

Data Inputs 2

I

Data Inputs 3

I

The control information which the CPU sends to the Control Port {with-an output operation)
datermines which input the Muitiplexer routes to the Data Port.

Figure 11-4. An Input Multiplexer Controlled by a Port

11-4

Figures 11-5 and 11-6 show typical input and output operations using the handshake
method. The procedure whereby the CPU checks the readiness of the peripheral before
transferring data is called “polling” Clearly, polling can occupy a large amount of pro-
cessor time if there are many I/0 devices. There are several ways of providing the
handshake signals. Among these are:

« Separate dedicated I/0 lines. The processor may handle these as additional I/0 ports
or through special lines or interrupts. The Z80 processor does not have serial /0 lines,
but the Z80 Parallel input/Output device: (or PIO) does.

- Special patterns on the I/0 lines. These mayv be single start and stop bits or entire
characters or groups of characters. The patterns must be easy to distinguish from
background noise or inactive states.

We often call a separate I/O line that indicates the availability of STROBE
data or the occurrence of a transfer a “strobe”". A strobe may, for
example, clock data into a latch or fetch data from a buffer.

Many peripherals transfer data at regular intervals; i.e.. synchronously. Here the only
problem is starting the process by lining up to the first input or marking the first output.
In some cases. the peripheral provides a clock input from which the processor can ob-
tain timing information.

Transmission errors are a problem with medium-speed devices. REDUCING
Several methods can lessen the likelihood of such errors; they TRANSMISSION
include: ERRORS

- Sampling input data at the center of the transmission interval
in order to avoid edge effects; that is, keep away from the edges where the data is
changing.

. Samgling each input several times and using majority logic such as best three out of
five.

« Generating and checking parity; an extra bit is used that makes the number of 1 bits
in the correct data even or odd.

+ Using other error detecting and correcting codes such as checksums, LRC
(longitudinal redundancy check), and CRC {cyclic redundancy check).

High-speed devices that transfer more than 10,000 bits per INTERFACING
second require special methods. The usual technique is to con- HIGH-SPEED
struct a special-purpose controller that transfers data directly DEVICES
between the memory and the |/0 device. This process is called DIRECT

direct memory access (DMA). The DMA controller must force MEMORY

the CPU off the busses, provide addresses and control signals ACCESS

to the memory, and transfer the data. Such a controller will be

fairly complex. typically consisting of 50 to 100 chips,

although LS! devices are now available.3 The CPU must initially load the Address and
Data Counters in the controller so that the controller will know where to start and how
much to transfer.

Input
Acknowledge

£

Data Bus Data

< 1/0 :
e Section” " C—-—-——— Peripheral

Data Ready
5

Peripheral provides data and Data Ready signal to computer 1/0 section.

a

Input
Acknowledg
]

Data Bus Data

. K B K/
‘ CPU ’ Section Penipheral

Data Ready

SR

b} CPU reads Data Ready signal from 1/O section {this may be & hardware interrupt connection).

Input
Acknowledge

o 224

Data Bus Data

" (::
* |
Section Periphera

Data Ready
—

¢l CPU reads data from I/0 section,

i fnput

Acknowledge
| SR—.
Data Bus Data

:> i 1/0 /‘:
CPU ; "
Section Peripheral

Data Ready
e

dl CPU sends Input Acknowledgs signal to I/0 section, which then provides input Acknowledge signal
to Peripheral {this may be a hardware connection}.

Figure 11-56. An Input Handshake

11-6

CcPU

a

CPU

b

ceu

Qutput Ready

Data Bus

/0
Section

——

Data

Peripheral Ready]|

t—————

Penpheral provides Penpheral Ready signal to computer 1/0 section.

Peripheral

Output Ready

Data Bus

1/0
Section

—-—-———.»

Data

Peripheral Ready

D Arsmnev——

Penpheral

CPU reads Penpheral Ready signal from I/O section {this may be a hardware interrupt connection),

Output Ready

Data Bus

)

/0
Section

........_.._’

Data

)

Peripheral Ready

ot ——————

c

CPU sends data to Penpheral.

cPU

Peripheral

Qutput Ready

Data Bus

1/0
Section

... e

Data

)

Peripheral Ready

B —

Peripheral

d} CPU sends Output Ready signal to Penpheral {this may be a hardware connection).

Figure 11-6. An Output Handshake

11-7

TIMING INTERVALS (DELAYS)

One problem that we will face throughout the discussion of in- USES OF
put/output is the generation of timing intervals with specific TIMING
lengths. Such intervals are necessary to debounce mechanical INTERVALS

switches (to smooth their irreguiar transitions), to provide pulses

with specified lengths and frequencies for displays, and to provide timing for devices
that transfer data regularly {for example, a teletypewriter that sends or receives one bit
every 9.1 ms).

We can produce timing intervals in several ways: METHODS

1} In hardware with one-shots or monostable multivibrators. FOR

These devices produce a single pulse of fixed duration in :rg&%cme
response to a pulse input. INTERVALS

2) In a combination of hardware and software with a flexible pro-
grammable timer such as the 280 Counter-Timer Circuit {or
CTC) for Z80 based microcomputers, as described in An Introduction to Microcom-
puters: Volume 2 — Some Real Microprocessors. The CTC can provide timing in-
tervais of various lengths with a variety of starting and ending conditions.

3) In software with delay routines. These routines use the processor as a counter. This
is possible since the processor has a stable clock reference, but it clearly under-util-
izes the processor. However, delay routines require no additional hardware and
often use processor time that would otherwise be wasted.

The choice among these three methods depends on your applica- CHOOSING
tion. The software method is inexpensive but may overburden the A TIMING
processor. The programmable timers are relatively expensive, but METHOD

are easy to interface and may be able to handle many complex
timing tasks.

DELAY ROUTINES

A simple delay routine works as follows: BASIC
; . SOFTWARE
Step 1} Load a register with a specified value. DELAY

Step 2) Decrement the register.
Step 3} If the result of Step 2 is not zero, repeat Step 2.

This routine does nothing except use time. The amount of time used depends upon the
execution time of the various instructions. The maximum length of the delay is limited
by the size of the register; however. the entire routine can be placed inside a similar
routine that uses another register. and so on.

The following example uses Register C and the Accumulator to TRANSPARENT
provide delays as long as 255 ms. The choice of registers is ar- DELAY

bitrary. You may. in fact. find the use of a register pair {e.g.. BC) ROUTINE

more convenient. A PUSH BC instruction at the start of the
delay routine and a POP BC at the end will result in a routine that does not affect any
registers at all. Such a routine is said to be “transparent” to the calling program. Note
that the PUSH and POP instructions must be included in the time budget.

EXAMPLE

Delay Program Using Accumulator

Purpose: The program provides a delay of 1 ms times the contents of Accumulator.
Flowchart:

Start

f

Count = MSCNT

—

Count = Count - 1

dn Y05

A} = (A) - 1

The value of MSCNT depends on the speed of the CPU and the memory cycle.

Source Program:

DELAY: LD C.MSCNT :GET COUNT FOR 1 MS DELAY

DLY1: DEC C :COUNT = COUNT -1
JR NZ.DLY1 :CONTINUE UNTIL COUNT = ZERO
DEC A ;DECREMENT NUMBER OF REMAINING MS
JR NZ,DELAY :CONTINUE UNTIL NUMBER OF MS = ZERO
RET

Object Program:

Memory Location Memory Contents Instruction
{Hex) (Hex) {Mnemonic)
0030 OE DELAY: LD C.MSCNT
0031 MSCNT
0032 oD DLY1: DEC C
0033 20 JR NZ.DLY1
0034 FD
0035 3D DEC A
0036 20 JR NZ DELAY
0037 F8
0038 co RET
Time Budget:
Instruction Number of Times Executed
LD C.MSCNT (A)
DEC C (A} x MSCNT
JR NZ.DLY1 (A} x MSCNT
DEC A (A
JR NZ.DELAY (a)
RET

The total time used should be (A} x 1 ms. If the memory is operating at full speed, the
instructions require the following numbers of clock cycles.

LD C.MSCNT 7

DEC C or DEC A 4

JR NZ 7 or12
RET 10

The alternative times for JR are for the condition being met (12} or not met (7).
Ignoring the CALL and RET instructions (which occur only once), the program takes:
(A) x (7+16 x MSCNT -5+ 16) - 5

clock cycles. The -5's are caused by the fact that JR takes less time during the final
iteration when the condition is not met.

So, to make the delay 1 ms.
13+ 16 x MSCNT = N¢

where N is the number of clock cycles per millisecond. At the Z80 DELAY
standard 4 MHz Z80 clock rate. N = 4000, so: LOOP
16 x MSCNT = 3987 CONSTANT

LMSCNT = 249 ihex F9) at a Z80 clock rate of 4 MHz]

11-10

SIMPLE 1/0 DEVICES

THE 280 PARALLEL INPUT/OUTPUT CIRCUIT (PIO)

The key element in most Z80 input/output sections is the Z80 Parallel Input/Output Cir-
cuit or PIO. This device combines latches, buffers, flip-flops, and other logic circuits
needed for handshaking and other simple interfacing techniques. The PIO contains
many logic connections. certain sets of which can be selected according to the con-
tents of programmable registers. Thus, the designer has the equivalent of a Circuit
Designer's Casebook under his control. The initialization phase of the program places
the appropriate values into registers to select the required logic connections. An in-
put/output section based on PIOs can handle many different applications, and changes
or corrections can be made in software rather than by rewiring.

Figure 11-7 is the block diagram of a PIO. The device contains two nearly identical 8-bit
ports — A, which is usually an input port, and B, which is usually an output port. Each
port (see Figure 11-8) contains:

+ An 8-bit Data Output register PIO REGISTERS
+ An 8-bit Data Input register AND
« A 2-bit Mode Control register, which indicates whether the CONTROL LINES

port is in an output, input, bidirectional, or control mode

+ An 8-bit Input/Output Control register. which determines whether the corresponding
data pins are inputs {1) or outputs (0} in the control mode

+ Two control lines (STB and RDY) that are configured by the Mode Control register.
These lines can be used for the handshaking signals shown in Figures 11-6 and 11-6.

+ A 2-bit Mask Control register {used only in the control mode) that determines the ac-
tive polarity of the inputs and whether they will be logically ORed or ANDed to form
an interrupt signal

« An 8-bit Mask register (used only in the control mode) that determines which port
lines will be monitored to form the interrupt signal

+ An 8-bit Vector Address register used with the interrupt system

For now, we will be concerned only with the Mode Control registers, the Input/Output
Control registers. and the control lines. We will discuss the interrupt-related features of
the PIO in Chapter 12.

The meanings of the bits in the various control and mask registers are related to the un-
derlying hardware and are entirely arbitrary as far as the assembly language program-
mer is concerned. You must either memorize them or look them up in this chapter and
in Chapter 12.

Each PIO occupies four input port addresses and four output port PIO
addresses. The B/A SEL (Port B or A select) and C/D SEL (Control ADDRESSES
or Data Select) lines choose one of the four ports as described in
Table 11-1. Most often, designers attach address bit Ag to the B/A SEL input and ad-
dress bit Aq to the C/D SEL input. The PIO then occupies four consecutive port ad-
dresses as described in the last column of Table 11-1.

Clearly there are far more internal control registers than there are port addresses for
them. In fact, all the control registers for each port occupy one address according to the
C/D SEL connection. So some of the data bits sent to a control register are actually used
for addressing purposes. Note the following situations {see Table 11-2):

Do = 0 means that the remaining data bits are loaded into the Interrupt Vector register.

11-11

. +5V GND &

Peripheral
Interface
g
Internal 8 Data or
Control % 7 # Control
cPu Logic
Interface 9 Port A
T
Data 8 . ve %
< Handshake
Bus >
Internal
CPU . Bus
Bus (r
170 8
PIO 6 s (. Data or
Control
Control —’L’
Lines Port B
/0
/ ~—
Interrupt Handshake
Control
3
interrupt

Control Lines

11-12

Figure 11-7 PIO Block Diagram
{Courtesy of Zilog)

Mode
Control Reg
(2 Bits}

Internal Bus Data Qutput 8-Bit
$ Reg —ﬂ Penpherai
(8 Bits} Data or
Control Bus
. —
Mask Mask
as| Data Input
Control Reg Input R
Reg h Data -
(2 its) {2 Bis) (8 gits)
* READY
Handshake Handshak
interrupt Requests e Controt P ancshake
Pt Requ Logic | STOBE Lines
e maend

" Input/OQutput
’ Select Reg
(8 Bits}

(Courtesy of Zilog)

11-13

Figure 11-8. Block Diagram of PIO Port

Table 11-1. PIO Addresses

CONTROL OR | PORT BOR A REGISTER PORT ADDRESS
DATA SELECT SELECT ADDRESSED (STARTING WITH PIOADD)
0 0 Data Register A PIOADD
0 1 Data Register B PIOADD+1
1 0 Control A PIOADD+2
1 1 Control B PIOADD+3

The port addresses assume that C/D SEL is tied to A1 and B/A SEL to Ag.

Table 11-2. Addressing of PIO Control Registers

REGISTER ADDRESSING

MODE CONTROL D3=Dg =Dy =Dg=1

INPUT/OUTPUT CONTROL NEXT WORD AFTER MODE CONTROL
SETS MODE 3

MASK CONTROL REGISTER D3=0,Dp=D1=Dp=1

INTERRUPT MASK REGISTER NEXT WORD AFTER MASK CONTROL
REGISTER ACCESSED WITH Dg = 1

INTERRUPT ENABLE D3=Dp=0,D1=Dg="1

INTERRUPT VECTOR Do =1

D3 =0, Dg =D = Dg = 1 means that the remaining data bits are loaded into the Mask
Control register. If Dg = 1, the next control word is loaded into the Interrupt Mask
register. Interrupts can be enabled or disabled with D3 =D2 =0, D1 =Dg = 1.

D3 =Dp = D1 =Dg = 1 means that the remaining data bits are loaded into the Mode

Control register. if D7 = Dg = 1 {control mode), the next control word is loaded into the

Input/Output Control register.

This sharing of an external address means that:

1) The programmer must be very careful of the order of operations. The meaning of a
particular Output instruction depends on the sequence in which it occurs.

2) The programmer should document the PIO configuration in detail. The device is
complex. and a reader is unlikely to be able to make much sense out of the se-
quence of operations that configures it.

We should note that one usually configures the control registers of the PIO just once in
the initialization phase of the program. The rest of the program then uses only the PIO
data registers.

11-14

PIO MODE CONTROL

The mode of operation of a PIO is established by writing a control PIO
word to the PIO in the form shown in Figure 11-1. Tabie 11-3 de- MODES
scribes the meanings of the various modes and the control words

required to establish them. Note that bits Dg and Dg are not used. When power is
turned on, the PIO comes up in mode 1 (input).

We may summarize the modes as follows:

1)

3

Mode 0 — QUTPUT PIO
Writing data into the port Output register latches the data and OUTPUT
causes it to appear on the port Data Bus. The READY (RDY) MODE

line goes high to indicate Data Ready; it remains high until the

peripheral sends a rising edge on the STROBE (STB) line to indicate Data Accepted
or Device Ready. The rising edge of STB causes an interrupt if the interrupt has
been enabled.

Mode 1 —INPUT PIO
The peripheral latches data into the port Input register using INPUT
the STROBE signal. The rising edge of STB causes an interrupt MODE

{if enabled) and deactivates RDY. When the CPU reads the
data, RDY goes high to indicate Data Accepted or Input Register Empty. Note that
the peripheral can strobe data into the register regardless of the state of RDY. The
programmer must thus handle the problem of overrun. i.e.. new data being placed
into the register before the old data is read.

Mode 2 — BIDIRECTIONAL PIO

This mode uses all four handshake lines. so it is allowed BIDIRECTIONAL
only on Port A. The Port A RDY and STB signals are used MODE

for output control and the Port B RDY and STB signals are
used for input control. The only difference between this mode and a combination of
modes O and 1 is that data from the Port A Qutput register is enabled onto the port
Data Bus only when A STB is active. This allows the Port A bus to be used bidirec-
tionally under the control of A STB {Output Data Request) and B STB {input Data
Available). Note that the B side control signals are governed by Input Register A in
this mode.

Mode 3 — CONTROL PIO

This mode does not use the RDY and STB signals. Itis in- | CONTROL

tended for status and control applications in which each MODE

bit has an individual meaning. When mode 3 is selected, PIO

the next control word sent to the PIO defines the directions DIRECTIONS IN
of the port data bits (Figure 11-9). A 1" in a bit position | CONTROL MODE
makes the corresponding bus line an input, while a ‘0’
makes it an output.

11-15

Set Mode

M1 Mo Mode [M1|M0]x]x]1l1l1 [1]
0 0 Output When selecting Mode 3, the next word must
0 1 Input set the 1/0 Register:

1 0 Bidirectionai -
1 1 it Control lx/cnl;/os]x/os*l/m]r/os‘l/ozl:/m]I/OO]

1/0 = 1 Sets bit to Input
1/0 =0 Sets bit to Output

PiO Mode § Meaning } Control Word

(Binary) (Hex)
0 Output 00001111 OF
1 Input 01001111 4F
2 Bidirectional | 10001111 8F
3 Control 11001111 CF

Note that bits 4 and 5 are not used and could
have any values.

Note the following features of the PIO modes: FEATURES OF

1

2)

3)
4

5)

6)

7)

8)

Figure 11-9. Mode Control for the Z80 PIO

PIO MODES

in modes 0.1, and 2 the peripheral indicates Data Ready.
Device Ready, or Data Accepted with a rising edge on the
STB line. This edge also causes an interrupt if the interrupt is enabled.

in modes 0.1. and 2 the PlO indicates Data Ready. Input Buffer Empty, or Data Ac-
cepted by sending RDY high. This signal remains high until the next rising edge on
STB.

Only Port A can be used bidirectionally. If Port A is in mode 2 (bidirectional). Port B
can only be in mode 3 (control} since no handshake lines are availabie.

The control mode (3) is the only mode in which the Input/Output Control register I1s
used. Otherwise, the entire port is used for either input or output.

There is no way for the processor to determine if a pulse has occurred on STB if in-
terrupts are not being used. The PIO is designed for use in interrupt-driven rather
than polling systems (see Chapter 12). STB should be tied low if it is not being
used.

The processor cannot directly control the RDY lines. The RDY line on a port goes
high when data is transferred to or from the port and goes low on the rising edge of
STB.

The contents of the data Output register can be read if the port is in the output or
bidirectional mode. If the port is in the control mode, the output register data from
the lines assigned as outputs can be read. The contents of control registers cannot
be read.

If the RDY output is tied to the STB input on a port in the output mode, RDY will go
high for one clock period after each output operation. This brief pulse can be used
to multiplex displays as shown in Figure 11-1.

11-16

CONFIGURING THE PIO

The program must select the logic connections in the PIO before transferring data to or
from it. This selection {or configuration) is usually part of the startup routine. Note that
the PIO comes up in the input mode with all interrupts disabled and inhibited and con-
trol signals deactivated (low) when power is turned on. However. the PIO does not have
a RESET input and does not necessarily return to the reset state when the CPU is reset.
The steps in PIO configuration are:

1) Establish the mode of operation by writing the ap- STEPS IN
propriate control words to the Mode Control register. CONFIGURING A
Interrupt control as well as 1/0 mode information may PIO

have to be sent.

2} I in mode 3. establish the directions of the I/0 pins by writing a control word to the
input/Output Control register. This word must follow the control word that selected
mode 3.

Let us now look at some examples of configuring a PIO without interrupts:
1} OUTPUT PORT

LD A,00001111B :MAKE PORT B QUTPUT
ouT (PIOCRB).A

2) INPUT PORT
LD A01001111B :MAKE PORT A INPUT

ouT (PIOCRA).A

3) BIDIRECTIONAL PORT
LD A, 10001111B :MAKE PORT A BIDIRECTIONAL
ouTt (PIOCRA),A

Remember that only Port A can be bidirectional and that Port B must then be a control
port.

4) CONTROL PORT, ALL INPUTS

LD A, 11001111B :MAKE PORT A CONTROL
ouTt (PIOCRA).A
LD AOFFH ;ALL BITS INPUTS

ouT (PIOCRA)LA
5) CONTROL PORT. ALL OUTPUTS

LD A.11001111B :MAKE PORT B CONTROL
ouT (PIOCRB).A
sus A :ALL BITS OUTPUTS

ouT (PIOCRB).A
6) CONTROL PORT. LINES 1.5,6 INPUTS. LINES 0.2,3.4.7 OUTPUTS

LD A,11001111B :MAKE PORT A CONTROL
ouT (PIOCRA)A
LD A.01100010B :LINES 1.5,6. INPUTS —0.2,3.4.7 QUTPUTS

ouT (PIOCRALA

11-17

280 INPUT/OUTPUT INSTRUCTIONS

The Z80 microprocessor has an extensive set of Input/Output 280 1/0
instructions. All 1/0 instructions use 8-bit device addresses. INSTRUCTIONS
thus allowing up to 256 input ports and 266 output ports. But

remember that each PIO occupies four output port addresses and four input port ad-
dresses.

The I/0O instructions can be grouped as follows:

1

2)

3}

4)

Instructions that use absolute addressing. IN A, (portl and OUT (port),A transfer
eight bits of data between the Accumulator and the port addressed by the second
byte of the instruction.

Single-byte instructions that use register indirect addressing. IN reg.(C) and OUT
(C).reg transfer eight bits of data between the specified register and the port ad-
dressed by Register C.

Block 1/0 instructions. INl and OUT! transfer eight bits of data between the memory
location addressed by Register Pair HL and the port addressed by Register C. Both
instructions then increment Register Pair HL and decrement the byte counter in
Register B. The Z flag is set if B is decremented to zero and reset otherwise. IND and
OUTD are the same instructions except that they decrement Register Pair HL in-
stead of incrementing it.

Repeated .Block 1/0 instructions. INIR and OTIR repeat the effects of INI and OUT],
respectively, until B is decremented to zero. INDR and OTDR have the same rela-
tionship to IND and QUTD.

You should note the following features of each group of instructions:

1

2)

Instructions with absolute addressing. 1/0
. INSTRUCTIONS
Data is always transferred to or from the Accumulator. WITH ABSOLUTE
- No flags are affected. ADDRESSING
« The port address is part of the program memory and
cannot be changed if that memory is read-only.
Single-byte instructions with register indirect addressing. 1/0
- Data can be transferred to or from any of the primary 8- INSTRUCTIONS
WITH INDIRECT
bit registers (A.B.C.D.EH.L). However. remember that ADDRESSING
Register C contains the port address.

«IN reg.(C) sets the Sign (S), Zero (2). and Parity (P/0)
flags according to the value of the input data. The Carry flag (C) is not modified.
but the Half Carry (H) and Negative (N) flags are reset. OUT (C).reg does not
affect any flags.

« The port address is always in Register C. This address is not 1/0 DRIVER

part of the program memory and could be a parameter for
an 1/0 subroutine {or 1/0 driver]. One 1/0O driver could thus be used in several
different applications or with several similar I/0O devices in the same application.

11-18

3) Block 1/0 instructions. BLOCK 1/0
INSTRUCTIONS

« Data is always transferred to or from the memory location
addressed by Register Pair HL.

+ The Z (Zero) flag is set if Register B is decremented to zero and cleared other-
wise. The S {Sign). P/O (Parity). and H (Half Carry) flags are affected, but their
final values are uncertain.

+ The port address is always in Register C. Here again, this address could be a
parameter for an {/O driver.

+ Register B is an 8-bit counter. Thus, the repeated Block 1/0 instructions can
transfer a maximum of 256 bytes. This differs from the Block Move and Block
Compare instructions, which use Register Pair BC as a 16-bit counter and can
handle up to 65K bytes.

Some examples of the various 1/0 instructions {without any 1/0
timing considerations) are: INSTRUCTION
1) Load the Accumulator from input Port 2. EXAMPLES

a. Using absolute addressing

IN A.(2)

b. Using register indirect addressing
LD Cc.2
IN AC)

2) Store the contents of the Accumulator in Qutput Port 5.
a. Using absolute addressing

ouT B).A

b. Using register indirect addressing
LD C5b
ouT CLA

3) Load memory location 0040 from Input Port 2.
a. Using absolute addressing

IN A.(2) :GET DATA
LD (40H),A :STORE DATA
b. Using register indirect addressing
LD C.2 :GET PORT NUMBER
IN A,(C) :GET DATA
LD (40H).,A :STORE DATA
¢. Using block I/0
LD C.2 :GET PORT NUMBER
LD HL.40H ;GET MEMORY DESTINATION
INI :GET DATA

11-19

4) Store the contents of memory location 0040 in Output rort 5.

a. Using absolute addressing

:GET DATA
:SEND DATA

;GET PORT NUMBER
:GET DATA

:GET PORT NUMBER
;GET MEMORY SOURCE

LD A, {40H)
ouT 6).A
b. Using register indirect addressing
LD (o8]
LD A.{40H)
ouT LA
¢. Using block I/0
LD C5
LD HL.40H
ouT!

:SEND DATA

5) Load memory locations 0040 through 0047 from Input Port 2.

a. Using absolute addressing

LD HL.40H :GET STARTING ADDRESS OF DATA
LD B.8 :BYTE COUNTER =8
INBYTE: IN A2) ;FETCH DATA BYTE
LD (HL).A ;STORE BYTE IN MEMORY
INC HL
DJNZ INBYTE
b. Using block /0
LD HL.40H :GET STARTING ADDRESS OF DATA
LD B.8 ;BYTE COUNTER =8
LD c.2 :GET PORT NUMBER
INBYTE: INI
JR NZ INBYTE
¢c. Using repeated block /0
LD HL.40H GET STARTING ADDRESS OF DATA
LD B.8 :BYTE COUNTER =8
LD c2 :GET PORT NUMBER
INIR :MOVE INPUT BYTES TO MEMORY

11-20

6] Send the contents of memory locations 0040 through 0047 to Output Port 5.
a. Using absolute addressing

LD HL.40H :GET STARTING ADDRESS OF DATA
LD B.8 :GET BYTE COUNTER
OTBYTE: LD A.(HL) :FETCH BYTE FROM MEMORY
ouTt ®).A :OUTPUT BYTE
INC HL

DJINZ OTBYTE
b. Using block I/0

LD HL,40H :GET STARTING ADDRESS OF DATA
LD B.8 :GET BYTE COUNTER
LD Cb :GET PORT NUMBER
OTBYTE: OUT! :OUTPUT BYTE FROM MEMORY
JR NZ,OTBYTE
¢. Using repeated block /0
LD HL.40H :GET STARTING ADDRESS OF DATA
LD B.8 :GET BYTE COUNTER
LD C.b :GET PORT NUMBER
OTIR :OUTPUT BYTES FROM MEMORY
Note that the repeated Block 1/0 instructions operate con- USING BLOCK

tinuously. You cannot provide any timing between 1/0 INSTRUCTIONS
transfers. Thus, these instructions cannot be used unless
the peripheral operates at the same speed as the processor or timing is handled sepa-
rately in hardware. Ways to handle timing in hardware include forcing the processor
into Wait states or buffering the data. Note that the Block 1/0 instructions all place the
contents of the byte counter (Register B) on the top half of the Address Bus during the
actual 1/0 transfer. In output operations, Register B is decremented first. The byte
counter value is then available to external circuitry.

An obvious application for Block 1/0 instructions is the configuration of PIOs. Several
words must often be sent to a control register to determine operating mode, select pin
directions, and establish the interrupt system. No timing problems occur, since PIOs
operate at the same speed as the CPU. We will discuss the configuration of Z80 PIOs
and serial interfaces (SIOs) with Block 1/0 instructions later in this chapter and in
Chapter 12.

In subsequent I/O examples, we will use mainly the instructions with absolute address-
Ing. You can easily substitute the instructions with register indirect addressing as long
as you remember to initialize Register C. We will occasionally indicate applications for
the Block 1/0 instructions.

11-21

+5V

AAA
\A-A

To CPU
s S PIO

o
Pushbutton
@)

Figure 11-10. A Pushbutton Circuit
EXAMPLES
A Pushbutton Switch

Furpose: To interface a single pushbutton switch (or a single-pole. single-throw (SPST)
switch) to a Z80 microprocessor. The pushbutton is 8 mechanical switch that
provides a single contact closure (i.e.. a logic zero) while pressed.

Circuit Diagram:

Figure 11-10 shows the circuitry required to interface the pushbutton. It uses one bit of
a Z80 PIO that acts as a buffer; no latch is needed. since the pushbutton remains
closed for many CPU clock cycles. Pressing the button grounds the PIO input bit. The
pullup resistor ensures that the input bit is one if the button is not being pressed.

Programming Examples:
We will perform two tasks with this ¢ircuit. They are:

al Set a memory location based on the state of the button.
b) Count the number of times that the button is pressed.

Task 1: Determine switch closure.

Purpose: Set memory location 0040 to one if the button is not being pressed. and to
zero if 1t 1s being pressed.

Sample Cases:

1) Button open li.e.. not pressed)
Result = (0040) = 01

2) Button closed (i.e.. pressed)
Result = {0040) = 00

11-22

Flowchart:

Source Program:

DONE:

LD A.01001111B
ouTt (PIOCRA).A
LD HL.40H

LD (HL).O

IN A.(PIODRA]
AND MASK

JR Z,.DONE

INC (HL)

HALT

(0040) = 0

Y

Input and mask
pushbutton
data

(0040) = 1

End

‘MAKE PORT A INPUT
:MARKER =0

:READ BUTTON POSITION
IS BUTTON CLOSED (0)?

YES, DONE
:NO. MARKER = 1

11-23

Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) {(Mnemonic)
0000 3E) A.01001111B
0001 4F
0002 D3 ouT (PIOCRA).A
0003 PIOCRA
0004 21 LD HL,40H
0005 40
0006 00
0007 36 LD (HL).O0
0008 00
0009 DB IN A.(PIODRA)
000A PIODRA
000B E6 AND MASK
000C MASK
000D 28 JR Z.DONE
000E 01
000F 34 INC (HL)

0010 76 HALT

The port addresses PIOCRA and PIODRA depend on how the PIO is connected in your
microcomputer. The PIO control lines are not used in this example. In fact, we could
place the A side of the PIO in the control mode with the starting sequence:

LD A11001111B :MAKE PORT A CONTROL
ouTt (PIOCRAJLA

LD A OFFH ;ALL BITS INPUTS

ouT (PIOCRALA

MASK depends on the bit to which the pushbutton is connected; it has a one in the
button position and zeros elsewhere.

Button Position Mask
(Bit Number} Binary Hex
0 00000001 01
1 00000010 02
2 00000100 04
3 00001000 08
4 00010000 10
5 00100000 20
6 01000000 40
7 10000000 80

If the button is attached to bit O or bit 7 of the input port, the program can use a Shift
instruction to set the Carry and thereby determine the button's state. For example,

Bit 7

IN A.[PIODRAJ :READ BUTTON POSITION
RLA 2IS BUTTON CLOSED {ZERO)?
JR NC.DONE ;YES. DONE

Bit O -

IN A.(PIODRA} :READ BUTTON POSITION
RRA 1IS BUTTON CLOSED (ZERO)?
JR NC.DONE :YES. DONE

11-24

The procedure for bit 7 is even simpler if we have the address of the PIO data register in
Register C. This is because the input instructions using register indirect addressing
le.g.. IN A,(C) affect the Sign flag. The required sequence is:

Bit 7 (PIODRA in Register C)

IN A.C) :READ BUTTON POSITION
JP P.DONE :DONE IF BUTTON CLOSED (ZERO)

If the button is attached to bits 6 or 7 of the input port, the program can use the Sign bit
to determine the button’s state. For example.

Bit7

IN A,{PIODRA} :READ BUTTON POSITION
AND A ;IS BUTTON CLOSED (ZERO)?
JP P.DONE :YES. DONE

IN A.(portl does not affect the flags: therefore, we must use the AND A instruction to
set the flags without changing the Accumulator.

Bit 6

IN A,(PIODRA) :READ BUTTON POSITION
ADD AA :IS BUTTON CLOSED (ZERO)?
JP P.DONE :YES, DONE

RLA cannot be used because it does not affect the Sign bit.

11-25

Task 2: Count switch closures.

Purpose: Count the number of button closures by incrementing memory location 0040
after each closure.

Sample Case:
Pressing the button ten times after the start of the program should give

(0040) = 0A
Note: In order to count the number of times that the button has SWITCH
been pressed, we must be sure that each closure causes a single BOUNCE

transition. However. a mechanical pushbutton does not produce a

single transition for each closure, because the mechanical contacts bounce back and
forth before settling into their final positions. We can use a one-shot to eliminate the
bounce or we can handle it in software.

The program can debounce the pushbutton by waiting after it DEBOUNCING
finds a closure. The required delay is called the debouncing IN SOFTWARE
time and is part of the specifications of the pushbutton. Itis
typically a few milliseconds long. The program should not examine the pushbutton dur-
ing this period. because it might mistake the bounces for new closures. The program
may either enter a delay routine like the one described previously or may simply per-
form other tasks for the specified amount of time.

Even after debouncing, the program must still wait for the present closure to end before
looking for a new closure. This procedure avoids double counting. The following pro-
gram uses a software delay of 1 ms to debounce the pushbutton. You may want to try
varying the delay or eliminating it entirely to see what happens. To run this program,
you must also enter the delay subroutine into memory starting at location 0030.

Flowchart:

Count =0

.
@ button being

pressed
?

Count = Count + 1

v

Debounce button
with 1 ms wait

Is
button still being

11-26

Source Program:

LD A.01001111B :MAKE PORT A INPUT
ouT (PIOCRA),A
LD HL,40H
LD (HL),0 ;CLOSURE COUNT = ZERO
CHKCL: IN A, (PIODRA) :READ BUTTON POSITION
AND MASK :IS BUTTON BEING PRESSED (0)?
JR NZ,CHKCL :NO, WAIT UNTIL IT IS
INC HL) :YES. INCREMENT CLOSURE COUNT
CALL DELAY ‘WAIT 1 MS TO DEBOUNCE
CHKOP: IN A,(PIODRA) :READ BUTTON POSITION
AND MASK :IS BUTTON STILL BEING PRESSED (0)?
JR Z.CHKOP :YES, WAIT FOR RELEASE
JR CHKCL ;NO, LOOK FOR NEXT CLOSURE
Object Program:
Memory Location Memory Contents instruction
(Hex) {Hex) {(Mnemonic}
0000 3E LD A.01001111B
0001 4F
0002 D3 ouT (PIOCRA),A
0003 PIOCRA
0004 21 LD HL.40H
0005 40
0006 00
0007 36 LD {HL).0
0008 00
0009 DB CHKCL: IN A, (PIODRA)
000A PIODRA
0008 E6 AND MASK
000C MASK
000D 20 JR NZ,CHKCL
000E FA
000F 34 INC {HL)
0010 CcD CALL DELAY
0011 30
0012 00
0013 DB CHKOP: iIN A,{PIODRA)
0014 PIODRA
0015 E6 AND MASK
0016 MASK
0017 28 JR Z,.CHKOP
0018 FA
0019 18 JR CHKCL
001A EE

The three instructions beginning with the label CHKOP are used to determine when the
switch reopens.

Clearly we do not really need a PIO for this simple interface. An addressable tri-state
buffer would do the job at far lower cost.

11-27

A Toggle Switch

Purpose: To interface a single-pole, double-throw (SPDT) toggle switch to a Z80
microprocessor. The toggle is a mechanical device that is either in the nor-
mally closed (NC) position or the normally open (NO) position.

Circuit Diagram:

Figure 11-11 shows the circuitry required to interface the |DEBOUNCING
switch. Like the pushbutton, the switch uses one bit of a Z80 |WITH

PIO that serves as an addressable buffer. Unlike the button, the CROSS-COUPLED
switch may be left in either position. Typical program tasks are NAND GATES

to determine the switch position and to see if the position has

changed. Either a one-shot with a pulse length of a few milliseconds or a pair of cross-
coupled NAND gates (see Figure 11-12) can debounce a mechanical switch.

The circuits will produce a single step or pulse in response to a change in switch posi-
tion even if the switch bounces before settling into its new position.

Programming Examples:

We will perform two tasks involving this circuit. They are:

1) Set a memory location to one when the switch is closed.

2) Set a memory location to one when the state of the switch changes.
Task 1: Wait for switch to close.

Purpose: Memory location 0040 is zero until the switch is closed and then is set to
one: thatis, the processor clears memory iocation 0040, waits for the switch
to be closed, and then sets memory location 0040 to one.

The switch could be marked Run/Halt. since the processor will not proceed until the
switch is closed.

Flowchart:

(0040) = 0

0040} = 1

11-28

+5V

To CPU
Switch Debounce P10 :
Circuit
NO
-
Figure 11-11. A Toggle Switch Circuit
+5V
& To I/O Port (PIO}
NC
Switch +5V
ONO

SO

Figure 11-12. A Debounce Circuit Based on Cross-coupled NAND Gates

11-29

Source Program:

LD
ouTt
LD
LD
WAITC: IN
AND
JR
INC
HALT

Object Program:

A,01001111B
(PIOCRA)LA
HL.40H

(HL).0
A.[PIODRA)
MASK
NZWAITC
(HL)

:MAKE PORT A INPUT

:MARKER = ZERO

:READ SWITCH POSITION

;IS SWITCH CLOSED (ZERO)?

:NO, WAIT FOR SWITCH TO CLOSE
:YES, MARKER =1

Memory Location Memory Contents instruction
(Hex) (Hex) (Mnemonic)
0000 3E LD A010011118B
0001 4F
0002 D3 ouT (PIOCRA}LA
0003 PIOCRA
0004 21 LD HL.40H
0005 40
0006 00
0007 36 LD (HL),0
0008 00
0009 DB WAITC: IN A.(PIODRA)
000A PIODRA
000B E6 AND MASK
000C MASK
000D 20 JR NZ,WAITC
000E FA
000F 34 INC (HL)
0010 76 HALT

11-30

Task 2: Wait for switch to change.

Purpose: Memory location 0040 remains zero until the switch position changes; i.e..
the processor waits until the switch changes. then sets memory location

0040 to 1.

Flowchart:
(40) = 0

Y

Oid data =
switch position

—y

New data =
switch position

Is
old data =
new data
?

{40) = 1

Source Program:

LD A,01001111B :MAKE PORT A INPUT
ouT (PIOCRA).A
LD HL.40H
LD (HL).0 ;MARKER = ZERO
IN A.(PIODRA) ;GET OLD SWITCH POSITION
AND MASK
LD B.A
SRCH: IN A.(PIODRA) :GET NEW SWITCH POSITION
AND MASK
cp B :ARE NEW AND OLD POSITIONS THE SAME?
JR Z,SRCH YES. WAIT
INC (HL) :NO, MARKER = ONE
HALT '

11-31

Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 3E LD A,01001111B
0001 4F
0002 D3 ouT (PIOCRA}LA
0003 PIOCRA
0004 21 LD HL,40H
0005 40
0006 00
0007 DB IN A, (PIODRA)
0008 PIODRA
0009 £6 AND MASK
000A MASK
0008 47 LD B.A
000C DB SRCH: IN A, (PIODRA)
000D PIODRA
000E E6 AND MASK
000F MASK
0010 B8 cpP B
0011 28 JR Z.SRCH
0012 F9
0013 34 INC HL)
0014 76 HALT

A Subtract or Exclusive OR could replace the Compare in the program. Either of these
instructions would, however, change the contents of the Accumulator. The Exclusive
OR would be useful if several switches were attached to the same PO, since it would
produce a one bit for each switch that changed state. How would vou rewrite this pro-
gram so as to debounce the switch in software?

11-32

—1 Ay
o —d Ag
g A,
t O - AZ To CPU
[O3 et B PIO
ke i ——
O 3 e LY
~Pd A
Common

Figure 11-13. A Multiple-Position Switch

A Multiple-Position (Rotary, Selector, or Thumbwheel) Switch

Purpose: To interface a multiple-position switch to a microprocessor. The lead corres-
ponding to the switch position I1s grounded, while the other leads are high
(logic ones).

Circuit Diagram:

Figure 11-13 shows the circuitry required to interface an 8-position switch. The switch
uses all eight data bits of one side of a PIO. Typical tasks are to determine the position
of the switch and to check whether or not that position has changed. Two special situa-
tions must be handled:

1) The switch is temporarily between positions so that no leads are grounded.

2) The switch has not vet reached its final position.

The first of these situations can be handled by waiting until the input is not all ones, i.e..
until a switch iead is grounded. We can handle the second situation by examining the
switch again after a delay {such as 1 or 2 seconds) and only accepting the input when
It remains the same. This delay will not affect the responsiveness of the system to the

switch. We can also use another switch {i.e., a Load switch) to tell the processor when
the selector switch should be read.

Programming Examples:
We will perform two tasks involving the circuit of Figure 11-13. These are:

a) Monitor the switch until it is in a definite position. then determine the position and
store its binary value in a memory location.

b} Wait for the position of the switch to change. then store the new position in a
memory location.

If the switch is in a position. the lead from that position is grounded through the com-
mon line. Pullup resistors on the input lines avoid problems caused by noise.

11-33

Table 11-3. Data Input vs. Switch Position

Data Input
Switch Position -

Binary Hex
0 11111110 FE
1 11111101 FD
2 11111011 B
3 11110111 F7
4 11101111 EF
5 11011111 DF
6 10111111 BF
7 01111111 7F

Task 1: Determine switch position.

Purpose: The program waits for the switch to be in a specific position and then places
the number of that position into memory location 0040.

Table 11-3 contains the data inputs corresponding to the various switch positions.

This scheme is inefficient, since 1t requires eight bits to distinguish among eight
different positions.

A TTL or MOS encoder could reduce the number of bits needed. USING
Figure 11-14 shows a circuit using the 74L.8148 TTL 8-t0-3 en- A TTL
coder.4 We attach the switch outputs in inverse order. since the ENCODER

7415148 device has active-low inputs and outputs. The output of

the encoder circuit is a 3-bit representation of the switch position. Many switches in-
clude encoders so that their outputs are coded. usually as a BCD digit {in negative
logic).

The encoder produces active-low outputs, so. for example, switch position 5, which is
attached to input 2. produces an output of 2 in negative logic lor 5 in positive logic).
You may want to verify the double negative for vourself.

A

5 i
7415148 02 g A5 o cPu
8t0-3 Ot f————piA; PO :>
Encoder 0g ffsmwmeee———if> Ag

?mlffm

Common l
‘=
-

Figure 11-14. A Multiple-Position Switch with an Encoder

11-34

Flowchart:

Source Program:

LD

CHKSW: IN

CHPOS:

DONE: LD

Data =
switch position

Shift data
nght 1 bit

No

Position =
Position + 1

{0040} = Position

L

A, 010011118
(PIOCRA).A
A.(PIODRA)
OFFH
Z.CHKSW
B.0

NC.DONE
B

CHPOS
HL,40H
(HL).B

o

‘MAKE PORT A INPUT

:GET SWITCH DATA

(IS SWITCH IN A POSITION?

:NO. WAIT FOR A POSITION
:SWITCH POSITION = ZERO

:IS NEXT BIT GROUNDED POSITION?
YES, SWITCH POSITION FOUND
:NO. INCREMENT SWITCH POSITION

:STORE SWITCH POSITION

11-35

Object Program:

Memory Location ~ Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 3E LD A.01001111B
0001 4F
0002 D3 ouTt (PIOCRA).A
0003 PIOCRA
0004 DB CHKSW: IN A,(PIODRA)
0005 PIODRA
0006 FE CcP OFFH
0007 FF
0008 28 JR Z,CHKSW
0009 FA
000A 06 LD B.O
000B 00
000C 1F CHPOS: RRA
000D 30 JR NC,DONE
000E 03
000F 04 INC B
0010 18 JR CHPOS
0011 FA
0012 21 DONE: LD HL.40H
0013 40
0014 00
0015 70 LD (HL).B
0016 76 HALT

Suppose that a faulty switch or defective PIO results in the input always being OFF16.
How could you change the program so that it would detect this error?

There is an unconditional jump, JR CHPOS, in the source program. Can you change the
initial conditions so as to make this instruction unnecessary?

This example assumes that the switch is debounced in hardware. How would you
change the program to debounce the switch in software?

11-36

Task 2: Wait for switch position to change.

Purpose: The program waits for the switch position to change and places the new
position (decoded) into memory location 0040. The program waits until the
switch reaches its new position.

Flowchart:
‘ Start »
——>y L i

Old data =
Switch position

Position = -1

=

Shift data right 1 bit

Is

old data

alt 1's
?

o)

New data = Position =
Switch position Position + 1

Yes

Is
new data
all 1's

?

No Yes

is

new data =

old data
2

i

End

Yes

{0040} = Positon

11-37

Source Program:

CHFST:

CHSEC:

CHPOS.

A,01001111B
(PIOCRALA
A, (PIODRA]
OFFH
Z.CHFST
B.A
A.{PIODRA}
OFFH
Z.CHSEC

B

Z,CHSEC
B.OFFH

B

C.CHPOS
HL.40H
(HL).B

;MAKE PORT A INPUT

:GET SWITCH DATA
:1S SWITCH IN A POSITION?
:NO, WAIT UNTIL IT IS

;GET NEW SWITCH DATA

;IS SWITCH IN A POSITION?

;NO, WAIT UNTIL IT IS

;IS POSITION SAME AS BEFORE?

:YES, WAIT FOR IT TO CHANGE

;SWITCH POSITION = -1

:INCREMENT SWITCH POSITION

:IS NEXT BIT GROUNDED POSITION?

:NO, KEEP LOOKING FOR GROUNDED POSITION
:STORE SWITCH POSITION

11-38

Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 3E LD A,010011118B
0001 4aF
0002 D3 ouT (PIOCRA)A
0003 PIOCRA
0004 DB CHFST: IN A,(PIODRA)
0005 PIODRA
0006 FE cpP OFFH
0007 FF
0008 28 JR Z,.CHFST
0009 FA
000A 47 LD B.A
0008 DB CHSEC: IN A,(PIODRA)
000C PIODRA
000D FE cpP OFFH
000E FF
000F 28 JR Z.CHSEC
0010 FA
0011 B8 cpP B
0012 28 JR Z.CHSEC
0013 F7
0014 06 LD B.OFFH
0015 FF
0016 04 CHPQS: INC B
0017 1F RRA
0018 38 JR C.CHPOS
0019 FC
001A 21 LD HL.40H
001B 40
001C 00
001D 70 LD (HL).B
001E 76 HALT

An alternative method for determining if the switch is in a position is:

CHKSW: IN A.(PIODRA)
INC A
JR Z.CHKSW

Why does this work? What happens to the input data?

11-39

A Single LED

Purpose: To interface a single light-emitting diode to a Z80 microprocessor. The LED
can be attached so that either a logic zero or a logic one turns it on.

Circuit Diagram:

Figure 11-15 shows the circuitry required to interface an LED. The LED

LED lights when its anode is positive with respect to its cathode CONTROL
{Figure 11-16a). Therefore, you can either light the LED by ground-
ing the cathode and having the computer supply a one to the anode {Figure 11-15b) or
by connecting the anode to +5 volts and having the computer supply a zero to the
cathode (Figure 11-15¢). Using the cathode is the most common approach. The LED is
brightest when it operates from pulsed currents of about 10 or 50 mA applied a few
hundred times per second. LEDs have a very short turn-on time {in the microsecond
range) so they are well suited to multiplexing {operating several from a single port). LED
circuits usually need peripheral or transistor drivers and current-limiting resistors. MOS
devices normally cannot drive LEDs directly and make them bright enough for easy
viewing.

Note: The PIO has an output latch on each port. However, the B port is normally used
for output, since it has somewhat more drive capability. In particular. the B port outputs
are capable of driving Darlington transistors (providing 1.5 mA minimum at 1.5 V).
Darlington transistors are high-gain transistors capable of switching large amounts of
current at high speed: they are useful in driving solenoids, relays, and other devices.

Task: Turn the light on or off.

Purpose: The program turns a single LED either on or off.

A. Send a Logic One to the LED (turn a positive display on or a negative display off).
Source Program:

{form data initially)

LD A,00001111B :MAKE PORT B OUTPUT
ouT {PIOCRBJ.A
LD A.MASKP :GET DATA FOR LED
ouT (PIODRB).A :SEND DATA TO LED
HALT

An alternative using the control mode is:
LD A,11001111B :MAKE PORT B CONTROL
ouT (PIOCRB).A
SuB A :MAKE ALL B LINES OQUTPUTS
ouT (PIOCRB).A
LD A MASKP :GET DATA FOR LED
ouTt (PIODRB).A :SEND DATA TO LED
HALT

(update datal
IN A,(PIODRB} :GET OLD DATA
SET LED.A ;TURN ON LED BIT
ouT (PIODRB}A ;SEND DATA TO LED
HALT

MASKP has a one bit in the LED position and zeros elsewhere. Note that we can read
the PIO Data Output register when the PlO is in the output mode. We can also read any
combination of input data and output register data when the PlO is in the control
mode; the combination is defined by the assignment of inputs and outputs.

11-40

>
:D »
>4

Anode E Cathode

L

+5v O

Basic LED circuitry. The resistor R should limit the maximum current to 50 mA and

a)
the average current to 10 mA,

From CPU

:> PIO Em— Drnver

Interfacing an LED with positive logic. A iogic “1° from the CPU turns the LED on.

bl
? + 5V
$n
From CPU
:> PIO 1 Drver
¢} Interfacing an LED with negative logic. A logic ‘0" from the CPU turns the LED on. The dnver or the CPU
may invert the logic levels.

Figure 11-16. Interfacing an LED

11-41

Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) {(Mnemonic}
{form data initially)
0000 3E LD A.00001111B
0001 OF
0002 D3 ouT (PIOCRB),A
0003 PIOCRB
0004 3E LD A MASKP
0005 MASKP
0006 D3 ouT {PIODRB).A
0007 PIODRB
0008 76 HALT
{update datal
0008 DB IN A, (PIODRB})
000A PIODRB
0008 CB SET LED.A
000C LED
000D D3 ouT (PIODRB),A
000E PIODRB
000F 76 HALT

B. Send a Logic Zero to the LED (turn a positive display off or a negative display onl.

The differences are that MASKP must be replaced by its logical complement
MASKN and SET LED.A must be replaced by RES LED,A. Note that the second byte
of the object code for SET LED.A and RES LED.A depends on the actual bit position
to which the name LED refers.

MASKN has a zero bit in the LED position and ones elsewhere.

11-42

Bg - 9

B iy —— f
From.CPU By {m i]
QI PIO By -1 Drvers i d Display

8y g] ¢

: P Lo ——&1h

8o Ly ——>a Common

Il
I
% O+sv
{Common- {Common-

By may be used for decimal pont LED. Cathode) Anode}

Figure 11-16. Interfacing a Seven-Segment Display

Seven-Segment LED Display

Purpose: To interface a seven-segment LED display to a Z80 microprocessor. The dis-
play may be either common-anode (negative logic) or common-cathode
(positive logic).

Circuit Diagram:

Figure 11-16 shows the circuitry required to interface a |COMMON-ANODE
seven-segment display. Each segment may have one, two. |OR

or more LEDs attached in the same way. There are two |COMMON-CATHODE
ways of connecting the displays. One is tying all the |DISPLAYS

cathodes together to ground (see Figure 11-17al; this is a
“common-cathode” display. Tying all the anodes together to a positive voltage supply
(see Figure 11-17b) is a “common-anode” displav. and a logic zero at a cathode lights a
segment. So the common-cathode display uses positive logic and the common-anode
display negative logic. Either display requires appropriate drivers and resistors.

The Common line from the display is tied either to ground or to +5 volts. The display
segments are customarily labelled:

a

11-43

a) Common-cathode

g O M-

®-
f O- ANV @ <

b} Common-anode +5V

Figure 11-17. Seven-Segment Display Organization

11-44

Table 11-4. Seven-Segment Representations of Decimal Numbers

N Hexadecimal Representation
umber Common-cathode Common-anode

o] 3F 40

1 06 79

2 5B 24

3 4F 30

4 66 19

5 6D 12

6 70 02

7 07 78

8 7F 00

9 67 18
Bit 7 is always zero and the others are g. f. e, d. ¢, b, and a in decreasing order of
significance.

Note: The seven-segment display is widely used because it SEVEN-SEGMENT

contains the smallest number of separately controlled seg- REPRESENTATIONS
ments that can provide recognizable representations of all
the decimal digits (see Figure 11-18 and Table 11-4). Seven-segment displays can also
produce some letters and other characters (see Table 11-5). Better representations re-
quire a substantially larger number of segments and more circuitry.5 Since seven-seg-
ment displays are so popular, low-cost seven-segment decoder/drivers have become
widely available. The most popular devices are the 7447 common-anode driver and the
7448 common-cathode driver: these devices have Lamp Test inputs (that turn all the
segments on) and blanking inputs and outputs (for blanking leading or trailing zeros).

11-45

0: Segments f. e, d. c, b.aon

a
O TC—— TS T————)

1: Segments ¢, b on

2: Segments g, e, d, b, a on

a
T ————

3: Segments g, d. ¢, b, aon

[~
T ——————————

4: Segments g, f. c. ban

§: Segments g, f, d, ¢, aon
a

Figure 11-18. Seven-Segment Representations of Decimal Digits

11-46

6: Segments g, f. e, d. c, a on

a
T ————

d

Note that the aitemate representation with aoff may

be reserved for the lower case letter 'b’.

7: Segments c. b, a on

a
—————————

8: Segments g, f. e. d, c. b, agn

a
A ——————

r————————
This is the same as LAMP TEST.

9: Segments g, f, ¢, b.aon

a
T —————————————

An aiternate has segment d on also.

Figure 11-18. Seven-Segment Representations of Decimal Digits

({Continued)

11-47

Table 11-5. Seven-Segment Representations of Letters and Symbols
Upper-case Letters

Hexadecimal Representation

Letter Common-cathode Common-anode
A 77 08
C 39 46
E 79 06
F 71 [¢]3
H 76 09
| 06 79
J 1E 61
L 38 47
0 3F 40
P 73 ocC
U 3E 41
Y 66 19

Lower-case Letters and Special Characters

Hexadecimal Representation

Character

Common-cathode Common-anode
b 7C 03
c 58 27
d BE 21
h 74 0B
n 54 2B
o} 5C 23
3 50 2F
u 1C 63
- 40 3F
? 53 2C

11-48

Task 1: Display a decimal digit.

Purpose: Display the contents of memory location 0040 on a seven-segment display if
it contains a decimal digit. Otherwise, blank the display.

Sample Problems:

a. (0040} =05
Result 1s 5 on display
b. {0040) =66

Result is a blank display
Flowchart:

Code
Data

Blank
(0040}

o

is
Data > 10
?

Yes

No

Code = (SSEG +
Data}

=

Send code
to display

11-49

Source Program:

LD A.00001111B ;MAKE PORT B OUTPUT
OuUT (PIOCRB).A

LD B.BLANK :GET BLANK CODE

LD A,(40H) :GET DATA

cpP 10 :IS DATA A DECIMAL DIGIT?

JR NC.DSPLY :NO, DISPLAY BLANKS

LD DE.SSEG :GET BASE ADDRESS OF SEVEN-SEGMENT
. TABLE

LD H.0 :MAKE DATA INTO 16-BIT INDEX

LD LA

ADD HLDE ;ACCESS ELEMENT IN TABLE

LD B.(HL) :GET SEVEN-SEGMENT CODE

DSPLY: LD AB
ouTt (PIODRB).A :SEND CODE TO DISPLAY
HALT
BLANK is 00 for a common-cathode display. FF for a common-anode display. An alter-

native procedure would be to put the blank code at the end of the table and replace all
improper data values with 10, i.e..

LD A, {40H) :GET DATA
cpP 10 ;IS DATA A DECIMAL DIGIT?
JR C.CNVRT :YES, CONVERT DIRECTLY TO SEVEN-SEGMENT
LD A,10 :NO. GET INDEX FOR BLANK CODE
CNVRT: LD DE.SSEG :GET BASE ADDRESS OF SEVEN-SEGMENT TABLE

Table SSEG is either the common-cathode or common-anode representation of the
decimal digits from Table 11-4.

11-50

Object Program:

Memory Location ~ Memory Contents Instruction

(Hex) (Hex) (Mnemonic)
0000 3E LD A, 000011118
0001 OF
0002 D3 ouT (PIOCRB},A
0003 PIOCRB
0004 06 LD B.BLANK
0005 BLANK
0006 3A LD A, (40H)
0007 40
0008 00
0009 FE cP 10
000A 0A
0008 30 JR NC.DSPLY
000C 08
000D 11 LD DE,SSEG
000E 20
000F 00
0010 26 LD H.0
0011 00
0012 6F LD LA
0013 19 ADD HL.DE
0014 46 LD B.{HL)
0015 78 DSPLY: LD AB
0016 D3 ouT (PIODRB)A
0017 PIODRB
0018 76 HALT

0020-0029 SSEG: (seven-segment code

table)

Several displays may be multiplexed, as shown in Figure 11-19. A brief strobe on the B
RDY line clocks the counter and directs data to the next display. Note that B RDY s tied
directly back to B STB, i.e.. the ready line essentially provides its own acknowledgment.
The timing of the PlO is such that this connection results in a strobe with a duration of
one clock period. Such a brief strobe is exactly what the counter requires. RESET starts
the decimal counter at nine so that the first output operation clears the counter and
directs data to the first display.

The following program uses the delay routine to pulse each of ten common-cathode
displays for 1 ms.

11-51

D. C. B, and A {D most significant, A

least significant) are the 4-bit output
from the counter. These 4 bits activate ﬁ Do . N ——
the comrespondingly numbered output
from the decoder, and hence the cor-
respondingly numbered displav. :> D1 <
), D2
b D3 ety
From CPU :>l D4 -
=) o 7
8o
). D5 e
B RDY
B STB D D6 e
[: > D7 O N—
p. D8
\ > D8
D » 9876543210
g1 Ciock
e
Decade ¢ 41010
Counter B8 > Decoder/Dnver
Reset [ama—

1

Figure 11-19. Multiplexed Seven-Segment Displays

11-52

Task 2: Display ten decimal digits.

Purpose: Displéy the contents of memory locations 0040 through 0049 on ten 7-seg-
ment displays that are multiplexed with a counter and a decoder.

Sample Problem:

(0040) = 66
0041} = 3F
0042) = 7F
0043) = 7F
(0044) = 06
(0045) = 5B
(0048) = 07
0047) = 4F
(0048) = 6D
(0049) = 7D

Display reads 4088127356
Source Program:

LD A,00001111B :MAKE PORT B OUTPUT
ouTt (PIOCRB).A

DRUN: LD HL.40H ;POINT TO START OF DATA
LD B.10 :NUMBER OF DISPLAYS = 10
LD C.PIODRB :GET PORT NUMBER

DSPLY: OUT1 ;SEND DATA TO DISPLAY
CALL DELAY ‘WAIT 1 MS
JR NZ,DSPLY :COUNT DISPLAYS
JR DRUN :START ANOTHER SCAN

. Here we must select the PIO output mode, since the circuit uses the handshake signals.

Note that OUTI sends the data to the output port addressed by Register C. increments
the address in Register Pair HL. and decrements the counter in Register B. We have
assumed that subroutine DELAY does not affect the Z flag so that it can be used after-
wards for a conditional branch.

11-53

Object Program:

Instruction

Memory Address Memory Contents
(Hex) (Hex) (Mnemonic)
0000 3E LD A,00001111B
0001 OF
0002 D3 ouT (PIOCRB).A
0003 PIOCRB
0004 21 DRUN: LD HL.40H
0005 40
0006 00
0007 06 LD B.10
0008 0A
0009 QE LD C.PIODRB
000A PIODRB
0008 ED DSPLY: OUTH
000C A3
000D CcD CALL DELAY
000E 30
000F 00
0010 20 JR NZ,DSPLY
0011 F9
0012 18 JR DRUN
0013 FO

11-54

PROBLEMS
1) An On-Off Pushbutton

Purpose: Each closure of the pushbutton complements (inverts) all the bits in memory
location 0040. The location initially contains zero. The program should con-
tinuously examine the pushbutton and complement location 0040 with each
closure. You may wish to complement a display output port instead. so as to
make the results easier to see.

Sample Case:
Location 0040 initially contains zero.

The first pushbutton closure changes»location 0040 to FF {hex), the second changes it
back to zero. the third back to FF (hex), etc. Assume that the pushbutton is debounced
in hardware. How would you include debouncing in vour program?

2) Debouncing a Switch in Software

Purpose: Debounce a mechanical switch by waiting until two readings, taken a de-
bounce time apart, give the same result. Assume that the debounce time {in
ms) is in memory location 0040 and place the switch position into memory
location 0041.

Sample Problem:
(0040) = 03 causes the program to wait 3 ms between readings.
3) Control for a Rotary Switch

Purpose: Another switch serves as a Load switch for a four-position unencoded rotary
switch. The CPU waits for the Load switch to close (be zero), and then reads
the position of the rotary switch. This procedure allows the operator to move
the rotary switch to its final position before the CPU tries to read it. The pro-
gram should place the position of the rotary switch into memory location
0040. Debounce the Load switch in software.

Sample Problem:

Place rotary switch in position 2. Close Load switch.

Resuit: (0040) =02

11-565

4) Record Switch Positions on Lights

Purpose: A set of eight switches should have their positions reflected in eight LEDs.
That is to sav. if the switch is closed (zero), the LED should be on, otherwise
the LED should be off. Assume that the CPU output port is connected to the
cathodes of the LEDs.

Sample Problem:

SWITCH 0 CLOSED

SWITCH 1 OPEN

SWITCH 2 CLOSED

SWITCH 3 OPEN

SWITCH 4 OPEN

SWITCH 5 CLOSED

SWITCH 6 CLOSED

SWITCH 7 OPEN
Result:

LED 0 ON

LED 1 OFF

LED 2 ON

LED 3 OFF

LED 4 OFF

LED 5 ON

LED 6 ON

LED 7 OFF

How would you change the program so that a switch attached to bit 7 of Port A of PIO
#2 determines whether or not the displays are active (i.e.. if the control switch is
closed, the displays attached to Port B reflect the switches attached to Port A; if the
control switch is open. the displays are always off}? A control switch is useful when the
displays may distract the operator, as in an airplane.

How would you change the program so as to make the control switch an on-off
pushbutton; that is, each closure reverses the previous state of the displays? Assume
that the displays start in the active state and that the program examines and debounces
the pushbutton before sending data to the displays.

5) Count on a Seven-Segment Dispiay

Purpose: The program should count from 0 to 9 continuously on a seven-segment dis-
play. starting with zero.

Hint: Try different timing lengths for the displays and see what happens. When does
the count become visible? What happens if the display is blanked part of the time?

11-56

MORE COMPLEX /O DEVICES

More complex I/0 devices differ from simple keyboards. switches, and displays in that:

1) They transfer data at higher rates.
2) They may have their own internal clocks and timing.

3) They produce status information and require control information. as well as
transferring data.

Because of their high data rates, you cannot handle these I/O devices casually. If the
processor does not provide the appropriate service, the system may miss input data or
produce erroneous output data. You are therefore working under much more exacting
constraints than in dealing with simpler devices. Interrupts are a convenient method
for handling complex I/0 devices, as we shall see in Chapter 12.

Peripherals such as keyboards. teletypewriters, cassettes. SYNCHRONIZING
and floppy disks produce their own internal timing. These WITH 1/0
devices provide streams of data, separated by specific tim- DEVICES

ing intervals. The computer must synchronize the initial in-

put or output operation with the peripheral clock and then provide the proper interval
between subsequent operations. A simple delay loop like the one shown previously can
produce the timing interval. The synchronization may require one or more of the follow-
ing procedures:

1) Looking for a transition on a clock or strobe line provided by the peripheral for tim-
Ing purposes. A simple approach would be to tie the strobe to a PIO STB input and
look for a change in the interrupt (INT) output. However. there is no way to directly
address the INT output {and thus determine its value) and no way to clear it other
than through an interrupt service routine. Thus, to use the PIO in a polling system.
one must make the strobe available at an input port and latch 1t if necessary. If the
strobe must be latched, a circuit must also be provided to clear the latch as part of
the subsequent input or output transfer.

2) Finding the center of the time interval during which the data is stable. We would
prefer to determine the value of the data at the center of the pulse rather than at
the edges. where the data may be changing. Finding the center requires a delay of
one-half of a transmission interval (bit time) after the edge. Sampling the data at
the center also means that small timing errors have little effect on the accuracy of
the reception.

3) Recognizing a special starting code. This is easy if the code is a single bit or if we
have some timing information. The procedure is more complex if the code is long
and could start at any time. Shifting will be necessary to determine where the
transmitter is starting its bits, characters, or messages (this is often called a search
for the correct "framing").

4) Sampling the data several times. This reduces the probability of receiving data in-

correctly from noisy lines. Majority logic {such as best 3 out of 5 or 5 out of 8) can
be used to decide on the actual data value.

Reception 1s, of course, much more difficult than transmission, since the peripheral con-
trols the reception and the computer must interpret timing information generated by
the peripheral. In transmission, the computer provides the proper timing and formatting
for a specific peripheral.

Peripherals may require or provide other information besides CONTROL
data and timing. We refer to other information transmitted by AND STATUS
the computer as “control information”; 1t may select modes of INFORMATION

operation, start or stop processes. clock registers, enable
buffers, choose formats or protocols. provide operator displays. count operations. or

11-57

identify the type and priority of the operation. We refer to other information transmitted
by the peripheral as “status information”; it may indicate the mode of operation. the
readiness of devices, the presence of error conditions, the format of protocol in use, and
other states or conditions.

The computer handles control and status information just like data. This information
seldom changes. even though actual data may be transferred at a high rate. The control
or status information may be single bits, digits, words, or multiple words. Often single
bits or short fields are combined and handled by a single input or output port.

Combining status and control information into bytes reduces the total number of 1/0
port addresses required by the peripherals. However, the combination does mean that
individual status input bits must be separately interpreted and control output bits must
be separately determined. The procedures for isolating status bits and setting or reset-
ting control bits are as follows:

Separating Out Status Bits SEPARATING

STATUS
INFORMATION

Step 1) Read status data from the peripheral

Step 2) Logical AND with a mask {the mask has ones in bit
positions that must be examined and zeros
elsewhere)

Step 3) Shift the separated bits to the least significant bit positions

If the field is a single bit, Step 2 is unnecessary since we can test the bit with the BIT in-
struction. If the single bit is in the most significant, next to most significant, or least sig-
nificant position, we can use shift logical (AND A or OR A) instructions to determine its
value. Remember also that the input instructions with register indirect addressing (e.g..
IN A,(C) affect the Sign flag. These somewhat more accessible bit positions are often
reserved for the most frequently used status information. You should try to write the re-
quired instruction sequences for the Z80 processor.

Step 3 is unnecessary if the field is a single bit, since the Zero flag will contain the com-
plemnent of that bit after Step 2 {try it!). A Shift or Load instruction can replace Step 2 if
the field is a single bit and occupies the least significant, most significant, or next to
most significant bit position. These positions are often reserved for the most frequently
used status information. You should try to write the required instruction sequences for
the 6800 processor.

Setting and Clearing Control Bits COMBINING
. CONTROL
Step 1) Read prior control information INFORMATION

Step 2) Logical AND with mask to clear bits (mask has zeros
in bit positions to be cleared. ones elsewhere)

Step 3) Logically OR with mask to set bits (mask has ones in bit positions to be set,
zeros elsewhere)

Step 4} Send new control information to peripheral

Here again the procedure is simpler if the field is a single bit and occupies a position at
the end of the word.

11-58

Some examples of separating and combining status bits are:

1) A 3-bit field in bit positions 2 through 4 of a PIO data register is a scaling factor.

Place that factor into the Accumulator.
. READ STATUS DATA FROM INPUT PORT
IN A, (PIQDR} :READ STATUS DATA

- MASK OFF SCALING FACTOR AND SHIFT

AND 000111008 .:MASK SCALING FACTOR

RRCA :SHIFT TWICE TO NORMALIZE

RRCA

2) The Accumulator contains a 2-bit field that must be placed into bit positions 3 and

4 of a PIO data register.

: MOVE DATA TO FIELD POSITIONS

RLA :SHIFT DATA TO BIT POSITIONS 3 AND 4

RLA
RLA

AND 000110008 :CLEAR OTHER BIT POSITIONS

LD B.A :SAVE NEW FIELD VALUE

: COMBINE NEW FIELD VALUE WITH OTHER DATA

IN A.(PIODRI) :CLEAR OLD FIELD VALUE

AND 111001118

OR B :INSERT NEW FIELD VALUE

out (PIODR),A

Documentation is a serious problem in handling control and
status information. The meanings of status inputs or control
outputs are seldom obvious. The programmer should clearly in-
dicate the purposes of input and output operations in the com-
ments, e.g.. “CHECK IF READER IS ON,” "CHOOSE EVEN

DOCUMENTING
STATUS AND
CONTROL
TRANSFERS

PARITY OPTION.” or “ACTIVATE BIT RATE COUNTER.” The bit manipulation, Logical.
and Shift instructions will otherwise be very difficult to remember, understand, or

debug.

11-59

Table 11-6. Comparison Between Independent Connections
and Matrix Connections for Keyboards

. Number of Lines with Number of Lines with
Keyboard Size {ndependent Connections Matrix Connections
3x3 9 6
4 x4 16 8
4x6 24 10
5x5 25 10
6x6 36 12
6x8 48 14
8x8 64 16

EXAMPLES
An Unencoded Keyboard

Purpose: Recognize a key closure from an unencoded 3 x 3 keyboard and place the
number of the key that was pressed into the Accumulator.

Keyboards are just collections of switches (see Figure 1 1-20). Small numbers of keys are
easiest to handle if each key is attached separately to a bit of an input port. Interfacing
the keyboard is then the same as interfacing a set of switches.

Keyboards with more than eight keys require more than one input MATRIX
port and therefore multibvte operations. This s particularly KEYBOARD
wasteful if the keys are logically separate, as in a calculator or ter-
minal keyboard where the user will only strike one at a time. The number of input lines
required may be reduced by connecting the keys into a matrix, as shown in Figure
11-21. Now each key represents a potential connection between a row and a column.
The keyboard matrix requires n + m external lines. where n is the number of rows and
m is the number of columns. This compares to n x m external lines if each key is sepa-
rate. Table 11-6 compares the number of keys required by typical configurations.

A program can determine which key has been pressed by using KEYBOARD
the external lines from the matrix. The usual procedure is a SCAN
“keyboard scan.” We ground Row 0 and examine the column
lines. If any lines are grounded. a key in that row has been pressed, causing a row-1o-
column connection. We can determine which key was pressed by determining which
column line is grounded: that is, which bit of the input port is zero. If no column line is
grounded, we proceed to Row 1 and repeat the scan. Note that we can check to see if
any keys at all have been pressed by grounding all the rows at once and examining the
columns.

The keyboard scan requires that the row lines be tied to an output port and the column
lines to an input port. Figure 11-22 shows the arrangement. The CPU can ground a par-
ticular row by placing a zero in the appropriate bit of the output port and ones in the
other bits.

The CPU can determine the state of a particular column by examining the appropriate
bit of the input port.

11-60

Kev 1

1

LY
0 O
5

Kay 2

+
v
—_0 O
5V
Key 3

1

_%
?
%

0 O

Each key is a switch (ust like a pushbutton and grounds an input it if it is pressed.

Figure 11-20. A Small Keyboard

Yol v T
Row 0 C/o f ‘/o

"o el TV
ot o v W

el Tl Ty
s oL L ad

Each key now serves to connect a row to a column. For nstance, key 4 connects row 1 to column 1.

Figure 11-21. A Keyboard Matrix

11-61

Data Bus
(from CPU)

% . & Row 0
Kev 3 \>/ o) Key 4 >/ (/ Key 5 y o/“

S I & Ll o
xeveyc/, Kev7>/c/l Kevsyf

02 /0 f /0 Row 2

Column O

o
s

Key 1yJ)

Wt

Column 1

Column 2

J"

Kev 2

"\)\<

PIO
Input
Port

4

Data Bus {to CPU)

Figure 11-22. 1/O Arrangement for a Keyboard Scan

11-62

Task 1: Determine key closure.

Purpose: Wait for a key to be pressed.

The procedure is as follows:

1) Ground all the rows by clearing all the output bits.
2) Fetch the column inputs by reading the input port.
3) Return to Step 1 if all the column inputs are ones.

Flowchart:

Source Program:

LD
ouTt
LD
ouTt
SuB
ouTt
WAITK: IN

A.010011118B

(PIOCRA}LA

A,000011118B

(PIOCRB).A
A
(PIODRB).A
A.{PIODRA)
000001118
000001118
ZWAITK

WAITING
FOR A
KEY CLOSURE

:MAKE PORT A INPUT

:MAKE PORT B OUTPUT

11-63

:GROUND ALL KEYBOARD ROWS

:GET KEYBOARD COLUMN DATA
:MASK COLUMN BITS

:ARE ANY COLUMNS GROUNDED?
:NO, WAIT UNTIL ONE IS

Object Program:

Memory Location ~ Memory Contents Instruction
(Hex) (Hex) {Mnemonic)
0000 3E LD A.010011118B
0001 4F
0002 D3 ouT (PIOCRA).A
0003 PIOCRA
0004 3E LD A, 000011118
0005 OF
0006 D3 ouT (PIOCRB}L.A
0007 PIOCRB
0008 97 SUB A
0009 D3 ouT (PIODRB).A
000A PIODRB
0008 DB WAITK: IN A, (PIODRA)
000C PIODRA
000D E6 AND 000001118
000E 07
000F FE CP 00000111B
0010 07
0011 28 JR Z WAITK
0012 F8
0013 76 HALT

PIO Port B is the keyboard output port and Port A 1s the input port.

Masking off the column bits eliminates any problems that could be caused by the states
of the unused input lines.

We could generalize the routine by naming the output and masking patterns:

ALLG EQU 111110008
OPEN EQU 000001118

These names could then be used in the actual program; a different keyboard would re-
quire only a change in the definitions and a re-assembly.

Of course. one port of a PIO is all that is really necessary for a 3 x 3 or 4 x 4 keyboard.
Try rewriting the program so that it uses only Port A. The PIO must be placed into the
control mode so that lines can be individually selected as inputs or outputs.

11-64

Task 2: Identify key.
Purpose: Identify a key closure by placing the number of the key into the Accumulator.
The procedure is as follows:
1) Set key number to -1, counter to number of rows, and output pattern to all ones
except for a zero in bit 0.
2) Ground a row by sending the output pattern to the keyboard output port.
3) Update the output.pattern by shifting the zero bit left one position.
4) Fetch the column inputs by reading the input port.
5} If any column inputs are zero, proceed to Step 8.
6) Add the number of columns to the key number to reach the next row.
7} Decrement counter. Go to Step 2 if any rows have not been scanned, otherwise to
Step 10.
8) Add 1 to key number. Shift column inputs right one bit.
9) If Carry = 1. return to Step 8.
10} End of program.

Flowchart:

Key Number = -1
Counter = Number

of rows
Scan Pattern” =

11111110

—

Ground row by
output of
Scan Pattern

any columns
grounded
2

No
Update Scan Pattern KEVKN‘-‘"&W' b 4 1
" ey Number
by shifting left Shift column inputs
circularly nght 1 bit
Key Number =
Key Number + No

Number of Columns
Counter = Counter - 1

Is
Counter 0

No

11-65

Source Program:

LD A.01001111B :MAKE PORT A INPUT
ouT (PIOCRA)LA
LD A.00001111B :MAKE PORT B OUTPUT
ouT (PIOCRB)L.A
LD B.3 :COUNT = NUMBER OF ROWS
LD C.PIODRB :GET OUTPUT PORT NUMBER
LD D.3 :GET NUMBER OF COLUMNS
LD E.11111110B :START SCAN PATTERN TO GROUND ROW
. ZERO
LD H.00000111B :GET KEYBOARD MASKING PATTERN
LD L.OFFH :KEY NUMBER =-1
FROW: OUT (CL.E :SCAN A ROW
RLC E :UPDATE SCAN PATTERN FOR NEXT ROW
IN A,(PIODRA} :GET KEYBOARD COLUMN DATA
AND H :MASK COLUMN BITS
cpP H :ARE ANY COLUMNS GROUNDED?
JR NZ,FCOL :YES, GO FIND WHICH ONE
LD AL :NO, UPDATE KEY NUMBER FOR NEXT ROW
ADD AD
LD LA
DJINZ FROW :EXAMINE NEXT ROW IF ANY LEFT
INC L :IDENTIFY CASE IN WHICH KEY NOT FOUND
JR DONE
FCOL: INC L :INCREMENT KEY NUMBER
RRA ;IS THIS COLUMN GROUNDED?
JR NC.FCOL :NO, EXAMINE NEXT COLUMN
DONE: HALT

11-66

Object Program:

Memory Address Memory Contents Instruction
(Hex) {Hex) (Mnemonic)
0000 3E LD A 01001111B
0001 4F
0002 D3 ouT (PIOCRA). A
0003 PIOCRA
0004 3E LD A,000011118B
0005 OF
0006 D3 ouT (PIOCRB).A
0007 PIOCRB
0008 06 LD B.3
0003 03
000A 0ot LD C.PIODRB
0008 PIODRB
000C 16 LD D.3
000D 03
000E 1E LD E.111111108B
000F FE
0010 26 LD H.00000111B
0011 07
0012 2E LD L. OFFH
0013 FF
0014 ED FROW: OUT (C)L.E
0015 59
0016 CB RLC E
0017 03
0018 DB IN A,{PIODRA)
0019 PIODRA
001A A4 AND H
0018 BC CP H
001C 20 JR NZ.FCOL
001D 08
001E 7D LD AL
001F 82 ADD AD
0020 6F LD LA
0021 10 DJUNZ FROW
0022 F1
0023 2C INC L
0024 18 JR DONE
0025 04
0026 2C FCOL: INC L
0027 1F RRA
0028 30 JR NC.FCOL
0029 FC
002A 76 HALT

Each time a row scan fails, we must add the number of columns to the key number so
as to move past the present row {try it on the keyboard in Figure 11-22).

11-67

What is the result of the program if no kevs are being pressed? Note the extra INC L in-
struction so that the program differentiates between no keys pressed and the last key
being pressed. What is the final value in the Accumulator for these two cases? Note
that the Zero flag could also be used to distinguish the case where no keys were
pressed. Can you explain how?

An alternative approach would be to use the PIO in its control mode so that lines could
be changed from inputs to outputs. The procedure would be:

1) Ground all the columns and save the row inputs.
2) Ground all the rows and save the column inputs.
3) Use the row and column inputs together to determine the key number from a table.

Try to write a program to implement this procedure.

This program can be generalized by making the numbey of rows, the number of col-
umns, and the masking pattern into named parameters with EQU pseudo-operations.

11-68

H @ Keyboard Data Inputs
Ay
Data Bus PO
to CPU
A STB :j-——- Keyboard Strabe
B4

Figure 11-23. 1/0 Interface for an Encoded Keyboard

An Encoded Keyboard

Purpose: Fetch data. when it is available. from an encoded keyboard that provides a
strobe along with each data transfer.

An encoded keyboard provides a unique code for each key. It has internal electronics
that perform the scanning and identification procedure of the previous example. The
tradeoff is between the simpler software required by the encoded keyboard and the
lower cost of the unencoded keyboard.

Encoded keyboards may use diode matrices, TTL encoders. or MOS encoders. The
codes may be ASCIl, EBCDIC, or a custom code. PROMSs are often part of the encoding
circuitry.

The encoding circuitry may do more than just encode key ROLLOVER

closures. 1t may also debounce the keys and handle “rollover.” the
problem of more than one key being struck at the same time. Common ways of han-
dling rollover are: “2-kev rollover,” whereby two keys (but not more} struck at the same
time are resolved into separate closures, and "'n-key rollover,” whereby any number of
keys struck at the same time are resolved into separate closures.

The encoded keyboard also provides a strobe with each data transfer. The strobe sig-
nals that a new closure has occurred. Figure 11-23 shows the interface between an en-
coded keyboard and the Z80 microprocessor. The rising edge of the strobe latches the
data into the input port. We also tie the strobe to the B side of the PlO so that the CPU
can determine when a rising edge has occurred. Of course, the B port of one PIO could
hold status signals from up to eight ports. The software would then have to determine
which ports were active with a shifting and masking operation.

We have assumed in the program that the strobe signal is long enough for the CPU to
handle it in software. If it is not, the signal will have to be latched and cleared (with
RDY) when the input or output transfer occurs.

You may have to watch the polarity of the strobe. since the PlO always reacts to a rising
edge. An inverter gate may be necessary.

11-69

Task: Input from keyboard.

Purpose: Wait for the rising edge of a strobe at the B port of a PIO and then place the
data from Port A into the Accumulator.

Flowchart:

Read
status port

is

Status bt

fow
7

Read
status port

Is

Status bit

high
?

Read
data port

The hardware must hold the control lines in a logic one state during reset to prevent the
accidental setting of status flags.

Source Program:

LD
ouT
LD
ouTt
LD
ouT
SRCHL. IN
BIT
JR
SRCHH: IN

A.010011118B
(PIOCRA).A
A,11001111B
(PIOCRB).A
A.OFFH
{PIOCRB).A
A,(PIODRB}
STB.A
NZ.SRCHL
A.{PIODRB)
STB.A
Z.SRCHH
A.(PIODRA)

:MAKE PORT A INPUT
:MAKE PORT B CONTROL
:ALL PORT B LINES INPUTS

:EXAMINE STATUS PORT

:HAS STROBE LINE GONE LOW?
:NO, WAIT UNTIL IT HAS
;EXAMINE STATUS PORT AGAIN
:RISING EDGE FOUND?

:NO. WAIT UNTIL ONE OCCURS
:YES, FETCH DATA

11-70

Object Program:

Memory Address Memory Contents Instruction
{Hex) {Hex) _ {(Mnemonic)
0000 3E LD A,01001111B
0001 4F
0002 D3 ouT (PIOCRA).A
0003 PIOCRA
0004 3E LD A, 11001111B
0005 CF
0006 D3 ouT (PIOCRB),A
0007 PIOCRB
0008 3E LD A OFFH
0009 FF
000A D3 ouTt (PIOCRB).A
000B PIOCRB
000C DB SRCHL: IN A.(PIODRB}
000D PIODRB
000E CcB BIT STB.A
000F ST8B
0010 20 JR NZ.SRCHL
0011 FA
0012 DB SRCHH: IN A.(PIODRB)
0013 PIODRB
0014 cB BIT STB.A
0015 STB
0016 28 JR Z,SRCHH
0017 FA
0018 DB IN A,(PIODRA)
0019 PIODRA
001A 76 HALT

If the CPU repeats this routine, it will not fetch another character until the next rising
edge occurs on the strobe line. A continuing high level on the strobe line will be ig-
nored.

STB depends on which bit of Port B is used. Figure 11-23 shows bit 4 being used, but
bits 0. 6, and 7 are, as usual. the easiest to examine. Try rewriting the program to use
the more accessible bit positions.

The second bvte of the Bit instructions depends on the value of STB but is not equal to
that value. For example, the second byte is 4F1g if STB = 1. 5714 if STB = 2. etc.

11-71

A Digital-to-Analog Converter

Purpose: Send data to an 8-bit digital-to-analog converter. which has an active-low
latch enable.

Digital-to-analog converters produce the continuous signals required by solenoids,
reiays. actuators, and other electrical and mechanical output devices. Typical conver-
ters consist of switches and resistor ladders with the appropriate resistance values.
The user must generally provide a reference voltage and some other digital and analog
circuitry, although complete units are becoming available at low cost.

Figure 11-24 describes the 8-bit Signetics NES018 D/A converter. which contains an
on-chip 8-bit parallel data input latch. A fow level on the | LE {Latch Enable) input gates
the input data into the latches, where it remains after LE goes high.

Figure 11-25 illustrates the interfacing of the device to a Z80 microprocessor. Here the
A side of the PIO is used to generate the Latch Enable signal. The RDY line from the PIO
could be used in the mode where it is tied to the STB line to form a pulse lasting one
clock cycle. However, one clock cycle may not be long enough, since the NE5018 re-
quires a 400 ns pulse. Furthermore, the polarity is the opposite of that needed by the
NE5018.

Note that the PIO latches the output data. The data therefore remains stable during and
after the conversion. The converter typically requires oniy a few microseconds to pro-
duce an analog output. Thus, the converter latch could be left enabled if the port were
not used for any other purpose.

In applications where eight bits of resolution are not enough, 10- to 16-bit converters
can be used. Additional port logic is required to pass all the data bits: some converters
provide part of this logic.

The PIO here serves both as a parallel data port and as a serial control port. Of course, if
Port A is used for control, it could actually handle up to eight bits.

Task: Output to converter.
Purpose: Send data from memory location 0040 to the converter.
Flowchart:

2 Data = (0040}

v

Send data
to converter

]

Pulse
Latch Enable

11-72

18118AUOD /A 8LOGIN SONBUBIS -1 | @inbiy

peydlew Ayewsey) eie pue {3 %G (Bnbe seneA Y IV .
A W0sH0

AAAL AN - AAA. B AAA D o 0
A A A 4 LA A4 LA A4 A A A ijodig
dwo) -
ova
) Y
o .
434
¥ A
seyoums Jva e
GND
Bojeuy
py
duo) 4 43dp
dwy nding
weun) ova
"o i
438 1N
|
e7N

8poN
wng Oo—e
SI0AUQ YOUMS
pue seyney
(o] as1 % % % % % % % P 85N
aNo 0aa 18a 8a £8a 80 580 980 (80 a

b

11-73

Data Bus
from CPU

—

By
Bg

PIO

A4

NES018
— [

Converter

Anslog
QOutput
-

Figure 11-25. Interface for an 8-bit Digital-to-Analog Converter

Source Program:

LD
ouT
SUB
ouT
LD
ouT
LD
ouTt
IN
RES
ouT
SET
ouT
HALT

A.11001111B
(PIOCRA),A

A

(PIOCRA)A
A.00001111B
(PIOCRB).A

A, l40H)
(PIODRB).A
A.(PIODRA)
4.A
(PIODRA}LA
4,A
(PIODRA}LA

:MAKE PORT A CONTROL

:MAKE PORT B OUTPUT

;GET DATA

;SEND DATA TO DAC
:GET OLD CONTROL DATA
:BRING LATCH ENABLE LOW

11-74

;ALL PORT A PINS OUTPUTS

:BRING LATCH ENABLE HIGH

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex! (Mnemonic)
0000 3E LD A,110011118B
0001 CF
0002 D3 ouT (PIOCRA}A
0003 PIOCRA
0004 97 SuUB A
0005 D3 ouT (PIOCRALA
0006 PIOCRA
0007 3E LD A,000011118
0008 OF
0009 D3 ouTt (PIOCRB).A
000A PIOCRB
0008 3A LD A, (40H)
000C 40
000D 00
000E D3 ouT (PIODRB),A
000F PIODRB
0010 DB IN A,(PIODRA)
0011 PIODRA
0012 cB RES 4,A
0013 A7
0014 D3 ouT (PIODRA).A
0015 PIODRA
0016 CB SET 4,A
0017 E7
0018 D3 ouT (PIODRAJ.A
0019 PIODRA
001A 76 HALT

The particular bit that must be set and reset depends, of course, on how the Latch Ena-
ble is connected to the control port. Bit 0 is often convenient to use for control purposes
since, if that bit is originally cleared, it can be set with an INC instruction and reset with
a DEC instruction.

We could use the automatic brief strobe from B ACK if the Latch Enable were active-
high (and if this strobe were long enough when B ACK is tied back to B STB). The pro-
gram would then be:

LD A,00001111B :MAKE PORT B OUTPUT

ouT (PIOCRB).A

LD A, {40H) .GET DATA

ouT (PIODRB).A :SEND DATA TO DAC AND ENABLE LATCH
HALT

An inverter gate could produce an active-low signal. Note how many fewer instructions
are necessary.

11-75

Analog-to-Digital Converter

Purpose: Fetch data from an 8-bit analog-to-digital converter that requires an Initiate
Conversion pulse to start the conversion process and has a Data Valid line to
indicate the completion of the process and the availability of valid data.

Analog-to-digital converters handle the continuous signals produced by various types
of sensors and transducers.8 The converter produces the digital input which the com-
puter requires.

One form of analog-to-digital converter is the successive approximation device, which
makes a direct 1-bit comparison during each clock cycle. Such converters are fast but
have little noise immunity. Dual slope integrating converters are another form of
analog-to-digital converter. These devices take longer but are more resistant to noise.
Other techniques, such as the incremental charge balancing technique, are also used.

Analog-to-digital converters usually require some external analog and digital circuitry,
although complete units are becoming available at low cost.

Figure 11-26 shows the 8-bit Teledvne Semiconductor 8703 A/D converter. The device
contains a result latch and tristate data outputs. A pulse on the initiate Conversion line
starts conversion of the analog input; after about two milliseconds the resuit will go to
the output latches, and the Data Valid output will indicate this by switching first low
and then high. Data is read from the latches by applying ‘0" to the ENABLE input.

Figure 11-27 shows the interface for the Z80 processor and the 8703 converter.9 Port B
is used to provide an Initiate Conversion pulse (active-high) of sufficient length. The
Data Valid signal is tied to A STB so that Data Valid going low and then high will latch
the converted data into Port A. The Data Valid signal is also tied to a bit of Port B so that
the CPU can determine its value. The important edge on the Data Valid line is the low-
to-high edge. which indicates the completion of the conversion. As in the case of the
encoded keyboard, additional circuitry will be necessary if the pulse on Data Valid is too
short to be handied in software. Note that we are using Port B here for both status and
control.

11-76

18118AUOD (/¥ €08 BUAPaleL '9g-1 1 @inbly

Av 9- = 33Up "AQl = ('54) NIA 10 uasoyo syusuodwoy,

Ag- 434p

ui—«oH

}

vYoze
U0t S svidy =y vroz-
0Z F4%) 8L £l
aNo SSp
PUEA eieQ - - - AS-
Asng ‘.m.m ——
I
‘ UM snlpy
8s1
- o e e e e e vz
- o —
eieg “ - aiBoy
ua-8 E] seyaNey s18UR0Y _oM::Mu AG+
nding aieg ,A“ o010 + 9l 4dotz =53 wriol = Ny
9!
- (5 |ewelu| 1018s8dWI0D ﬂl? Nip
aSW dWY d0 49 89 N JuWINY
38YN3 J g \W_M O .o
NOISHIANOD
sindino ALVILINI
Aeuig

aap,
6l
A+ Qlll.l

anie

11-77

Data Bus Analog
to CPU Input
Aq Teledyne 8703
< PIO . < A/D e a—
Ao Converter
A STB jett Data Initiate
85 B2 Valid Conversion

7 B

Figure 11-27. Interface for an 8-bit Analog-to-Digital Converter

Task: Input from converter.

Purpose: Start the conversion process, wait for Data Valid to go low and then high,
and then read the data and store it in memory location 0040.

Flowchart:

Puise Initiate
Conversion
line

conversion

compiete? (Has a

pulse occurred on

Data Valid}
?

Read data from
data mput port
{0040} = Data

Note that here the PIO serves as a parallel data port, a serial status port, and a senal
control port.

11-78

Source Program:

WTLOW:

WTHI:

LD
ouT
LD
ouT
LD
out
LD
ouT
suB
ouTt
IN
BIT
JR
IN

A.010011118B
(PIOCRA).A
A.11001111B
(PIOCRB).A
A,00001111B
(PIOCRB),A
A.001000008
(PIODRB),A

A

(PIODRB)LA
A,(PIODRB)
2.A
NZWTLOW
A.(PIODRB}
2,A
ZWTLOW
A.(PIODRA)
(40H).A

:MAKE PORT A INPUT

:MAKE PORT B CONTROL

:B4-7 OUTPUT. BO-3 INPUT

:SEND INITIATE CONVERSION HIGH
:SEND INITIATE CONVERSION LOW
:HAS DATA VALID GONE LOW?

:NO, WAIT
:IS DATA AVAILABLE?

:NO. WAIT
:YES, FETCH DATA FROM CONVERTER
SAVE CONVERTER DATA

11-79

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) {(Mnemonic)
0000 3E LD A.,01001111B
0001 4F
0002 D3 ouT (PIOCRA).A
0003 PIOCRA
0004 3E LD A,11001111B
0005 CF
0006 D3 ouT (PIOCRB).A
0007 PIOCRB
0008 3E LD A,000011118B
0009 OF
000A D3 ouT (PIOCRB),A
0008B PIOCRB
000C 3E LD A.00100000B
000D 20
000E D3 ouT (PIODRB}LA
000F PIODRB
0010 97 SUB A
0011 D3 ouT (PIODRB),A
0012 PIODRB
0013 DB WTLOW: IN A.(PIODRB)
0014 PIODRB
0015 CcB BIT 2.A
0016 57
0017 20 JR NZWTLOW
0018 FA
0019 DB WTHE: N A.{PIODRB)
001A PIODRB
001B cB BIT 2.A
001C 57
001D 28 JR ZWTHI
Q01E FA
001F DB IN A, (PIODRA)
0020 PIODRA
0021 32 LD (40H), A
0022 40
0023 00
0024 76 HALT

One approach to configuring PlOs is to use the repeated Block Output instruction OTIR
and a table in memory containing the words to be sent to the Control register. A typical
routine would be:

LD B.LENG :COUNT = NUMBER OF CONTROL WORDS

LD C.PIOCR :GET CONTROL PORT NUMBER

LD HL.CTLTAB :STARTING ADDRESS OF PIO CONTROL TABLE
OTIR :CONFIGURE PIO

In fact, another table (or the Stack) could be used to hold the number of control words
and the port number for each PIO.

11-80

One

woswe d L\ [J

s o o o 0 o
S — w‘ —
Start v Panty Stop Stop
Bit 7 Data Bits Bit Bit Bit
Character is ASCll ‘E’ with odd parity {45 hex).
R ber that the ion order is Start bit

{0°), bit 0, bit 1, bit 2, bit 3, bit 4, bit 5. bit 6, Parity
bit, Stop bit {'1"), Stop bit {'1).

Figure 11-28. Teletypewriter Data Format

A Teletypewriter (TTY)

Purpose: Transfer data to and from a standard 10-character-per- TTY

The common teletypewriter transfers data in an asynchronous
serial mode. The procedure is as follows:

1) The line is normally in the one state. STANDARD

2) A Start bit (zero bit) precedes each character. TTY

3) The character is usually 7-bit ASCIl with the least significant CHARACTER
bit transmitted first. FORMAT

second serial teletypewriter. INTERFACE

4) The most significant bit is a Parity bit, which may be even.
odd. or fixed at zero or one.

5) Two stop bits {logic one} follow each character.

Figure 11-28 shows the format. Note that each character requires the transmission of
eleven bits, of which only seven contain information. Since the data rate is ten charac-
ters per second. the bit rate is 10 x 11, or 110 Baud. Each bit therefore has a width of
1/110 of a second, or 9.1 milliseconds. This width is an average; the teletypewriter
does not maintain it to any high level of accuracy.

For a teletypewriter to communicate properly with a computer, the following pro-
cedures are necessary.

Receive (flowcharted in Figure 11-29): TTY

Step 1) Look for a Start bit (a logic zero) on the data line. aEé':;IEVE

Step 2) Center the reception by waiting one-half bit time, or 4.55
milliseconds.

Step 3) Fetch the data bits, waiting one bit time before each one. Assemble the data
bits into a word by first shifting the bit to the Carry and then circularly shifting
the data with the Carry. Remember that the least significant bit is received
first.

Step 4] Generate the received Parity and check it against the transmitted Parity. If
they do not match, indicate a "Parity error.”

Step 5) Fetch the Stop bits (waiting one bit time between inputs). If they are not cor-

rect (if both Stop bits are not one). indicate a “framing error.”

11-81

No

Wait one-half
bit time

¥

i
]

Count
Data = 0

—

Wait one bit time

y

Get input data
Carry = Input data
Shift data nght
with Carry

I

Count = Count-1

Yes

Generate
received parity

L

Parity correct
N ? (i.e., is panty =

received parity ?}

Panty
error

—

Count =2

_.»v

Wait one bit time

y

Get input data

Count =Count - 1

Figure 11-29. Flowchart for Receive Procedure

11-82

Task 1: Read data.

Purpose: Fetch data from a teletypewriter through bit 7 of a PIO data port and place
the data into memory location 0060. For procedure, see Figure 11-29.

Source Program:

(Assume that the serial port is bit 7 of the PIO and that no parity or framing check 1s
necessary)

LD A.01001111B :MAKE PORT A INPUT
ouT (PIOCRALA
WTSTB: IN A, {PIODRA)} :READ SERIAL LINE
RLA :IS THERE A START BIT?
JR C.WTSTB :NO, WAIT UNTIL THERE IS
CALL DHALF ;YES. DELAY HALF BIT TIME TO CENTER
LD D,10000000B :COUNT WITH BIT IN MSB
RCVB: CALL DFULL ‘WAIT 1 BIT TIME
IN A.(PIODRA)} ;READ SERIAL LINE
RLA :MOVE BIT TO CARRY
RR D :MOVE BIT TO ASSEMBLED WORD
JR NC.RCVB :CONTINUE IF COUNT BIT NOT IN CARRY
LD AD
Lb (60H).A
HALT
(Delay program)
ORG 30H
DHALF: PUSH DE :SAVE OLD REGISTERS
LD D.8 ;HALF BIT LENGTH COUNT
JR DLY16
DFULL: PUSH DE :SAVE OLD REGISTERS
LD D.16 ;FULL BIT LENGTH COUNT
DLY16: LD E.8DH :DELAY 1/16TH BIT TIME
DLY1: DEC E
JR NZ.DLY1
DEC D
JR NZ.DLY16
POP DE ;RESTORE OLD REGISTERS
RET

Remember that bit O of the data is received first.

11-83

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 3E LD A,01001111B
0001 4F
0002 D3 ouT (PIOCRA)A
0003 PIOCRA
0004 DB WTSTB: IN A, (PIODRA)
0005 PIODRA
0006 17 RLA
0007 38 JR C.WTSTB
0008 FB
0009 cD CALL DHALF
000A 30
0008 00
000C 16 LD D,10000000B
000D 80
000E cD RCVB: CALL DFULL
000F 35
0010 00
0011 DB IN A.(PIODRA)
‘0012 PIODRA
0013 17 RLA
0014 CcB RR D
0015 1A
0016 30 JR NC.RCVB
0017 F6
0018 7A LD AD
0019 32 LD {60H)LA
001A 60
0018 00
001C 76 HALT
0030 D5 DHALF: PUSH DE
0031 16 LD D.8
0032 08
0033 18 JR DLY16
0034 03
0035 D5 DFULL: PUSH DE
0036 16 LD D.16
0037 10
0038 1E DLY16: LD E,.8DH
0039 8D
003A 1D DLY1: DEC E
003B 20 JR NZ,DLY?
003C FD
003D 15 DEC D
003E 20 JR NZ.DLY16
003F F8
0040 D1 POP DE
0041 C RET

11-84

This program assumes that the Stack can be used for subroutine calls, i.e.. the monitor
must initialize the Stack Pointer. Otherwise you will have to initialize the Stack Pointer
as shown in Chapter 10.

The constants for the delay routine were calculated just as shown earlier in this chapter.
You might try determining them for yourself. The delays do not have to be highly accu-
rate because the reception is centered, the messages are short, the bit rate is low, and
the teletypewriter is not highly accurate itself.

How would you extend this program to check for the two stop bits? They must both be
one or a framing error has occurred.

You can extend this program to check odd parity by replacing the LD A.D instruction
with the sequence:

SuB A
AND D :IS PARITY ODD?
JP PE.PRERR :NO. PARITY ERROR HAS OCCURRED

11-85

.

L Carry = 0 (Start bit}
Get output data
Shift data left
circutarly with Carry
Count = 11

—

Semd data to
Qutput Port

v

Shift data right
circularly with Carry
Carry = 1 (Stop bit)
Wiait 1 bit time

I

Count = Count - 1

Figure 11-30. Flowchart for Transmit Procedure

Task 2: Write data.

Purpose: Transmit data to a teletypewriter through bit 0 of a PIO data register. The
data is in memory location 0060.

Transmit (flowcharted in Figure 11-30) TTY
o TRANSMIT
Step 1) Transmit a Start bit (i.e.. a logic zero). MODE

Step 2) Transmit the seven data bits, starting with the least sig-
nificant bit.

Step 3) Generate and transmit the Parity bit.
Step 41 Transmit two Stop bits (i.e., logic ones).

The transmission routine must wait one bit time between each operation.

11-86

Source Program: (Assume that parity need not be generated)

- MAKE PIO INTO OUTPUT PORT

LD

ouT

A.00001111B
(PIOCRB).A

GET DATA AND CLEAR START BIT

LD

ADD

LD

A.(60H)
AA
B.11

:MAKE PORT B QUTPUT

:GET DATA

:SHIFT LEFT AND FORM START BIT
;COUNT = 11 BITS

TRANSMIT A BIT AND UPDATE DATA

TBIT: OUT

(PIODRB).A :TRANSMIT A BIT
RRA :UPDATE FOR NEXT BIT
SCF :FORM STOP BIT (LOGIC ONE)

DELAY 9.1 MS AND COUNT BITS

CALL DFULL :DELAY 8.1 MS
DJINZ TBIT :COUNT DOWN 11 BITS
HALT

The DFULL subroutine is the same as before. Remember that bit O of the data must be

transferred first.

Object Program:

Memory Address Memory Contents Instruction
(Hex) {Hex) {(Mnemonic)
0000 3E LD A,000011118B
0001 oF
0002 D3 ouT (PIOCRB).A
0003 PIOCRB
0004 3A LD A, (B0H)
0005 60
0006 00
0007 87 ADD AA
0008 06 LD B.11
0009 0B
000A D3 TBIT: ouT (PIODRB).A
0008 PIODRB
000C 1F RRA
000D 37 SCF
000E CcD CALL DFULL
000F 35
0010 00
0011 10 DJNZ TBIT
0012 F7
0013 76 HALT

11-87

ADD A.A clears the least significant bit so that it can be used as the start bit. The most
significant bit is saved in the Carry. In actual applications, the startup routine should
place a logic ‘1’ on the teletypewriter line after configuration since that line should nor-
mally be in the mark {one) state.

Each character consists of 11 bits, starting with a start bit (zero} and ending with two
stop bits {ones).

This program can easily be extended to generate 7-bit characters with odd parity in the
most significant bit. The parity generation routine {to be inserted after LD A,{60H)) is:

ANA A :IS PARITY ODD?
JP PO.STBIT :YES. NO PROBLEM
SET 7.A :NO, MAKE IT ODD BY SETTING MSB
STBIT: ADD AA ;SHIFT LEFT AND FORM START BIT
How would you generate even parity?
These procedures are sufficiently common and complex to merit a UART

special LS! device: the UART. or Universal Asynchronous
Receiver/Transmitter. 10 The UART will perform the reception procedure and provide
the data in parallel form and a Data Ready signal. It will also accept data in parallel
form, perform the transmission procedure, and provide a Peripheral Ready signal when
it can handle more data. UARTs may have many other features, including:

1) Ability to handle various bit lengths (usually 5 to 8), parity options. and numbers of
Stop bits (usually 1. 1-1/2, and 2.

2) Indicators for framing errors, parity errors, and “overrun errors” (failure to read a
character before another one is received).

3) RS-23211 compatibility; i.e.. a Request-to-Send (RTS) output signal that indicates
the presence of data to communications equipment and a Clear-to-Send (CTS) in-
put signal that indicates, in response to RTS, the readiness of the communications
equipment. There may be provisions for gther RS-232 signals, such as Received
Signal Quality, Data Set Ready. or Data Terminal Ready.

4) Tristate outputs and control compatibility with a microprocessor.

5) Clock options that allow the UART to sample incoming data several times in order
to detect false Start bits and other errors.

6) Interrupt facilities-and controls.
UARTSs act as four parallel ports: an input data port, an output data port, an input
status port. and an output control port. The status bits include error indicators as well

as Ready flags. The control bits select various options. UARTs are inexpensive ($5 to
$50. depending on features) and easy to use.

11-88

THE 280 SERIAL INPUT/OUTPUT DEVICE (SIO)

The Z80 Serial Input/Output Device or SIO (see Figure 11-31) is a complete com-
munications controller specifically designed for use in Z80-based microcomputers. It
can serve a variety of communications functions, but we will only discuss its use as a
simple asynchronous receiver/transmitter.

The SIO has two complete channels {A and B) which can both FULL-
receive and transmit serial data (see Figure 11-32). Channels that DUPLEX
can receive and transmit simultaneously are called full-duplex.
Alternatives include half-duplex (able to transmit and receive, but not at the same
time), receive-only. and transmit-only.

An SIO occupies four input port addresses and four_output port Ssio
addresses. The B/A (Channel B or A Select! and C/D {Control or ADDRESSES
Data Select) lipes choose one of the four ports as described in Ta-
ble 11-7. Most often. designers attach address bit Ag to the B/A input and address bit
A1 to the C/D input. The SIO then occupies four consecutive port addresses as de-
scribed in the last column of Table 11-7.

As with the PIO, SIOs have more control registers than ad- ADDRESSING
dresses. [n fact, each SIO has eight registers in each chan- S10 READ AND
nel for control and three registers for status. Figure 11-33 WRITE REGISTER

contains diagrams of each control or Write register: Figure
11-34 contains diagrams of each status or Read register. Two transfers are required to
read or write any of the registers except Write Register 0. The first transfer (written into
Write Register 0) contains three bits that direct the next transfer to or from the selected
register. Note, in Figure 11-33, that these three bits occupy the three least significant
bit positions and that zeros in the other bit positions indicate a byte that has no function
other than addressing.

11-89

2
<@/~ Senal Data
2
Internal .‘—71—- Channel Clock
+5V GND @ Control /_'_> Channel A _—
Logic g} SYNC
L L ; -8 WAIT/RDY
N
8
Data 4’7‘» Internat
cPU ‘Bus ?SC’E‘? 8 Modem or
t
s K N ol over
1/0 Controls
6 Status
Contro!—+.>
N7
2
<7L'> Senal Data
internal i~ Channel Clock
Contral M Channel B
Logic @ SYNC
———@p> WAIT/RDY
%3
interrupt Control
Lines
Figure 11-31. Block Diagram of the Z80 SIO
Table 11-7. SIO Addresses
CONTROL OR |CHANNEL B OR A REGISTER PORT ADDRESS
DATA SELECT SELECT ADDRESSED (STARTING WITH SIOADD)
0 0 Data Register A SIOADD
0 1 Data Register B SIOADD+1
1 0 Control A SIOADD+2
1 1 Control B SIOADD+3

The port addresses assume that C/D is tied to Aq and B/A to Ag

11-80

TxD TxC

XMIT
Shift and
CRC Bit Insert SYNC
Generator Registers
XMIT
Buffer
Internal Bus Channel - SYNC
J .
b Control
A and
Status feee g WAIT/RDY
REC
FIFO
CRC SYNC
Checker REC Detect
Shift and
Bit Strp
RxD RxC

Figure 11-32. Block Diagram of SIO Channel

11-91

Write Registers

The 280 SIO eight regi in each that are prog d (written into) by the system software
1o confi the functional p lity of each ch I All Write regi with the ion of Write Register 0,
require two bytes to be properly programmed. The first byte contains three bits that point to the selected register
{DO-D2}; the second byte is the actual control word that is being written to that register to configure the SIO.

Write Register O is a special case. RESET (either internal or | input} will initialize the SIO to Write
Register 0. All basic commands (CMD2-CMDO) and CRC controis {CRCO, CRC1) can be accessed with a singie byvte
using Write Register 0. Y

Contained in the first byte of any Write register access ara the basic commands (CMD2-CMDQ) and the CRC con-
trols {CRCO,CRC1) so that maximum system control and flexibility is maintained.

lD7lDSlDSIMlDSlDZlD!IDOJ
8§ 444

trie

[} 0 0 Register 0
0 0 1 Register 1
0 1 0 Register 2
0 1 1 Register 3
1 0 0 Register 4
10 1 Register §
1 1 O Register 6
1 1 1 Register 7
0 0 0 NullCode
o 0 1 Send Abart {SDLC)
V] 1 [} Reset External or Status interrupts
0 1 1 Channet Reset
1 0 0 HReset Rx interrupt on First Character
1 0 1 Reset Tx Interrupt Pending
1 1 0 Error Resst
1 1 1 Retum from interrupt {Ch-A Only}.
Nult Code

Reset Rx CRC Chacker
Reset Tx CRC Generator
Reset CRC/SYNCS Sent/Sending Latch

o
0
1
1

Write Register 1

— D - O

E } Enable
Tx b pt Enable
Status Affects Vector (Ch-8 Only}

[} 0 Rx Interrupt Disable

0 1 Rx Interrupt on First Character Only or Eror

1 0 pt on All Rx Ch (Parity Affects Vector}

1 1 pt on Al Rx Ct (Parity Does Not Affect Vector}

WAIT/READY on R/T
WAIT FN/READY FN
Scsssmmemmemememememn \W AT /READY Enable

Figure 11-33. SIO Cgvn'tfol or Write Registers

11-92

Write Register 2

{nterrupt
Vector

Write Register 3

- - oo

Rx Enable

SYNC Ch Load Inhibit
Addi Search Mode (SDLC)
Rx CRC Enable

Enter Hunt Mode

Auto Enabl

Rx 5 Bits/Character
Rx 6 Bits/Character
Ax 7 Bits/Character
Rx 8 Bits/Character

- - O

Write Register 4

ID7lDBlDSlD¢lDalDZID‘I]DO|
A A

P L

t—— Parity Enabla__

Parity Even/Odd
0 0 SYNC Modes Enable
[} 1 1 Stop Bit/Character
1 0 1-1/2 Stop Bits/Character
1 1 2 Stop Bits/Character
[} 0 8 Bit SYNC Character
0 1 16 Bit SYNC Character
1 0 SDLC Mode (01111110 SYNC Flagi
1 1 External SYNC Mode
0 x1 Clock Mode
1 x18 Clock Mode
0 x32 Clock Mode
1 x84 Clock Mode

Figure 11-33. SIO Control of Write Registers (Continued)

11-93

Write Register &
fm]oeloslmloslozlmlool

L— Tx CRC Enable

RTS
SDLC/CRC-16
Tx Enable
Send BREAK

0 Tx 5 Bits (or Less)/Character

0 1 Tx 7 Bits/Character

1 Q0 Tx 6 Bits/Character

1 1 Tx 8 Bits/Character

DTR

{D7[DS]D§'D4103102ID1100!

t— SYNC Bit 0

SYNC Bit 1
SYNC Bit 2
SYNC Bit 3
SYNC Bit 4
SYNC Bit §
SYNC Bit 6
SYNC Bit 7

Also SDLC Address Fie!

Write Register 7
ID7LDS|DSIDA[D3 IDZ lmlDﬂl

t—- SYNC Bit 8

SYNC Bit 9

SYNC Bit 10

SYNC Bit 11 For SDLC it must be programmed
SYNC Bit 12 to “01111110” for Flag Recognition
SYNC Bit 13

SYNC Bit 14

SYNC Bit 16

Figure 11-33. SIO Control or Write Registers (Continued)

11-94

Read Registers

The 280 SIO contains three registers that can be read to obtain the status of each channel. Status information in-
cludes error conditions, interrupt vector, and standard communication interface protocol signals. To read the con-
tents of a selected Read register, the system software must first write out to the SIO the bvte containing pointer
information (DO-D2} in exactly the same manner as a Write register operation. Then. by issuing a READ operation,
the contents of the addressed Read/Status register can be read by the Z80 CPU.

The real power in this type of d is that the prog has plete freedom, after pointing to
the selected register. of either reading or writing to initialize or test that register. By designing software to initialize
the 280 SIQ in a moduler, structured fashion, the programmer can use the powerful Z80 Block 1/0 instructions to

significantly simplify and speed his software development and debug.

Read Register 0
lD7[DSlDS[D4lD3‘D2|D1 lDO]

7

Rx Ch Availabl
Interrupt Pending (Ch-A Oniy)
Tx Buffer Empty

DCD

SYNC/HUNT

CcTs

Sending CRC/SYNCS
BREAK/ABORT

Read Register 1

L All Sent
i-Field Bits i-Field Bits in
in Previous Second Previous
Byte Bvte
3
; ? g g 4 Residue Data for
8 Rx Bits/Character
! ! 0 ° 5 Programmed
o 0 1 0 6 g
1 0 1 0 7
0 1 1 0 8
1 1 1 1 8
0 [[2 8
Parity Ervor Special Rx
Rx QOverrun Error "
Condition
CRC/Framing Error
Interrupts

End of Frame (SDLC}

Figure 11-34. SIO Status or Read Registers

11-95

Read Register 2 (Channe! B Only}
[mluslos‘mluslozlm!m]

L.

Vi

vz

V3 Interrupt
v4 A Vectar
V8

Ve

v7

Figure 11-34. SIO Status or Read Registers (Continued)

11-96

Note the following special features of the SIO:

il

2)

Input and output instructions address physically distinct SPECIAL
registers. There is no way to read the control registers or write FEATURES
into the status registers. OF SI0

All control registers for a channel share a single port address.
Thus two bytes are required to change the contents of any control register except
Register 0.

RESET initializes the SIO to Write Register 0. It also disables Sio
both receivers and transmitters, deactivates all control sig- RESET

nals, and disables all interrupts. We will discuss the SIO inter-
rupt system in Chapter 12.

The SIO must be configured before it can be used. The easiest way to do this is by
placing the required bytes into a table and using the repeated Block I/0 instruction.
The table must include both the bytes needed to address the various registers and
the data that must be placed into them. A typical routine would be:

LD B.LENG :NUMBER OF WORDS IN TABLE
LD C.SIOCRA ;PORT NUMBER

LD HL.CTLTAB :START OF CONTROL TABLE
OTIR :CONFIGURE SIO

The RS-232 signals are all active-low. However, the SIO control bits for these sig-
nals are active-high (i.e., a logic ‘1’ in a control bit sends an RS-232 signal low).
The SIO requires an external clock. In asynchronous communications at 110 Baud.
1760 Hz is usually supplied and the X16 mode is used. The SIO will sample the bits
at the clock frequency for synchronization and to avoid false start bits caused by
noise on the line.

The Data Ready (Rx Character Available) flag is bit O of Read Register 0. The Periph-
eral Ready (Tx Buffer Empty) flag is bit 2 of Read Register 0.

Error status bits (parity, overrun, and framing) are in Read Register 1.

11-97

EXAMPLES
Teletypewriter 1/0 via a USART
Task 1: Read from teletypewriter through SIO

Purpose: Receive data from a teletypewriter through an SIO and place the data into
memory location 0040. The data is 7-bit ASCIl with odd parity.

Source Program:

LD A4 :ACCESS WRITE REGISTER 4
ouT (SIOCRALA
LD A,01000001B :X16 CLOCK MODE, ODD PARITY
out (SIOCRA)LA
LD A3 :ACCESS WRITE REGISTER 3
ouT (SIOCRA).A
LD A,01000001B ;7 BIT CHARACTERS. ENABLE RECEIVER
ouTt (SIOCRA)LA
SuB A :ACCESS READ REGISTER 0
ouT (SIOCRA)LA
WAITD: IN A.(SIOCRA) :GET STATUS
RRA :IS DATA AVAILABLE?
JR NC.WAITD :NO. WAIT
IN A,(SIODRA) :YES. GET DATA
LD (40H),A :SAVE DATA IN MEMORY
HALT

11-98

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 3E LD A4
0001 04
0002 D3 ouT (SIOCRA).A
0003 SIOCRA
0004 3E LD A,010000018B
0005 41
0006 D3 QUT - (SIOCRA},A
0007 SIOCRA
0008 3E LD A3
0009 03
000A D3 ouT (SIOCRA).A
0008 SIOCRA
000C 3E LD A,01000001B
000D 41
000E D3 ouT (SIOCRA).A
000F SIOCRA
0010 97 sSuB A
0011 D3 ouT (SIOCRA).A
0012 SIOCRA
0013 DB WAITD: IN A,(SIOCRA)
0014 SIOCRA
0015 1F RRA
0016 30 JR NC.WAITD
0017 FB
0018 DB IN A,(SIODRA)
0018 SIODRA
001A 32 LD {40H).A
0018 40
001C 00
001D 76 HALT

11-99

The program establishes Write Register 4 as follows:

Bits 7 and 6 = 01 to select X16 clock mode (1760 Hz | EXAMPLE
must be supplied) OF 810
Bit 1 =0 to select odd parity CONFIGURATION

Bit 0 = 1 to enable parity checking
The program establishes Write Register 3 as follows:

Bits 7 and 6 = 01 for 7 bits per character
Bit 0 = 1 to enable the receiver
The received data status bit is bit O of Read Register 0.

Note that any errors found will be reported in Read Register 1:

Bit 6 = 1 for a framing error (no stop bit) Sio
Bit5 = 1 for an overrun error (more data received before ERROR
previous data read) STATUS

Bit 4 = 1 for a parity error
Try adding an error checking routine to the program. Set

(0061) 0 if no errors occurred
1 if a parity error occurred
2 if an overrun error occurred

3 if a framing error occurred.

nnn

Note that the receiver always checks for one stop bit.

11-100

Task 2: Write to teletype through SIO.

Purpose: Send data from memory location 0040 to a teletypewriter through an SIO.
The data is 7-bit ASCHl with odd parity.

Source Program:

WAITR:

LD
ouTt
LD
ouTt
LD
out
LD
ouTt
SuB
ouT
IN
BIT
JR
LD
ouTt
HALT

A4
(SIOCRAJLA
A,01001101B
(SIOCRA).A
A5
(SIOCRA).A
A,001010008
(SIOCRA)LA

A

(SIOCRA).A
A.(SIOCRA}
2.A

ZWAITR

A, {40H)
(SIODRA},A

:ACCESS WRITE REGISTER 4

:X16 CLOCK MODE. 2 STOP BITS, ODD PARITY
:ACCESS WRITE REGISTER 5

.7 BIT CHARACTERS. ENABLE TRANSMITTER
:ACCESS READ REGISTER 0

:GET STATUS

:IS TRANSMITTER READY?

:NO, WAIT

YES, GET DATA
:AND TRANSMIT IT

11-101

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 3E LD A4
0001 04
0002 D3 ouT (SIOCRA).A
0003 SIOCRA
0004 3E LD A,01001101B
0005 4D
0006 D3 ouT (SIOCRA).A
0007 SIOCRA
0008 3E LD A5
0009 05
000A D3 ouT {SIOCRA).A
0008 SIOCRA
000C 3E LD A.001010008
000D 28
000E D3 ouT (SIOCRA)LA
000F SIOCRA
0010 97 SuUB A
0011 D3 ouT (SIOCRA),A
0012 SIOCRA
0013 DB WAITR: IN A.(SIOCRA)
0014 SIOCRA
0015 CB BIT 2.A
0016 57
0017 28 JR ZWAITR
0018 FA
0019 3A L.D A, {40H)
Q01A 40
0018 00
001C D3 ouT (SIODRAJ.A
001D SIODRA
001E 76 HALT

The program establishes Write Register 4 as follows:
Bits 7 and 6 =01 to select X16 clock mode (1760 Hz must be supplied}
Bits 3 and 2 = 11 to add 2 stop bits to each character
Bit 1 =0 to select odd parity
Bit 0 = 1 to enable parity generation
The program establishes Write Register 5 as follows:
Bits 6 and b = 01 for 7 bits per character
Bit 3 = 1 to enable the transmitter
The transmitter status bit is bit 2 of Read Register 1.

11-102

STANDARD INTERFACES

Other standard interfaces besides the TTY current-loop and STANDARD

RS-232 can also be used to connect peripherals to the microcom- INTERFACES
puter. Popular ones include:

1) The serial RS449. RS422, and RS423 interfaces. 3

2) The 8-bit parallel General Purpose Interface Bus, also known as IEEE-488 or .
Hewlett-Packard Interface Bus (HPIB).14

3) The S-100 or Altair/lmsai hobbyist bus.1® This is also an 8-bit bus.

4) The Intel Multibus. 18 This is another 8-bit bus that can. however, be expanded to
handle 16 bits in parallel.

PROBLEMS
6) Separating Closures from an Unencoded Keyboard

Purpose: The program should read entries from an unencoded 3 x 3 keyboard and
place them into an array. The number of entries required is in memory loca-
tion 0040 and the array starts in memory location 0041,

Separate one closure from the next by waiting for the current closure to end. Remember
to debounce the keyboard (this can be simply a 1 ms wait).

Sample Problem:
(0040) = 04
Entries are 7, 2. 2. 4

Result: {(0041) = 07
(0042) = 02
0043) = 02
0044) = 04

7) Read a Sentence from an Encoded Keyboard

Purpose: The program should read entries from an ASCIl keyboard (7 bits with a zero
Parity bit) and place them into an array until it receives an ASCll period (hex
2E). The array starts in memory location 0040. Each entry is marked by a
strobe as in the example given under An Encoded Kevboard.

Sample Probiem:
Entriesare H, E. L, L. O, .

Result: (0040} = 48 H
(0041) = 45 E
(0042) = 4C L
(0043) = 4C L
(0044) = 4F 0
(0045) = 2E

11-103

8) A Variable Amplitude Square Wave Generator

Purpose: The program should generate a square wave, as shown in the next figure,
using a D/A converter. Memory location 0040 contains the scaled amplitude
of the wave, memory location 0041 the length of a half cycle in milliseconds.
and memory location 0042 the number of cycles.

Assume that a digital output of 801¢ to the converter results in an analog output of zero
volts. In general. a digital output of D results in an analog output of VoyT = —VREF
(D-80)/80 volts.

Sample Problem:

(0040) = AQ (hex)
(0041} = 04
(0042) = 03
Resuit:
+VREF!

The base voltage is 801g = 0 volts.
Full scale is 10016 = -VRgF volts.
So A01g = (A0-80)/80 X -VRgF = -VReg/4

The program produces 3 pulses of amplitude VRgr/4 with a half cycle length of 4 ms.

9) Averaging Analog Readings
Purpose: The program should take four readings from an A/D converter ten millise-
conds apart and place the average in memory location 0040. Assume that
the A/D conversion time can be ignored.
Sample Problem:
Readings are (hex) 86, 89, 81, 84

Result: (0040) = 85

10) A 30 Character-per-Second Terminal

Purpose: Modify the transmit and receive routines of the example given under A
Teletypewriter to handle a 30 ¢cps terminal that transfers ASCIl data with one
stop bit and even parity. How could you write the routines to handle either
terminal depending on a flag bit in memory location 0060; e.g., (0060) =0
for the 30 cps terminal, (0060) = 1 for the 10 cps terminal?

11-104

10.

REFERENCES

Barnes, J, and V. Gregory, “Use Microcomputers to Enhance Performance with
Noisy Data,”” EDN, August 20, 1976, pp. 71-72.

Swanson. R.. “"Understanding Cyclic Redundancy Codes,” Computer Design,
November 1975, pp. 93-99; and McNamara. J. E.. Technical Aspects of Data
Communication, Digital Equipment Corp.. Maynard, Mass. 1977

For example. the Z80 Direct Memory Access Controller {or DMA) for Z80 based
microcomputers is described in An Introduction to Microcomputers: Volume 2 —
Some Real Microprocessors.

The TTL Data Book for Design Engineers, Texas Instruments inc.. P. O. Box 5012,

Dallas, Texas 75222, 19786.

Dilatush, E.. “"Special Report: Numeric and Alphanumeric Displays.” EDN, Febru-
ary 5. 1878, pp. 26-35.

See Reference 4.

Hnatek. E. R., A User's Handbook of D/A and A/D Converters, Wiley, New York,
1976.

See Reference 7

See also D. Guzeman, “"Marry Your uP to Monolithic A/Ds,” Electronic Design.
January 18, 1977, pp. 82-86.

For a discussion of UARTSs, see P Rony et al.. "The Bugbook lla,” E and L Instru-
ments Inc.. 61 First Street, Derby, CT. 06418; or D. G. Larsen et al.
“INWAS: Interfacing with Asynchronous Serial Mode,” IEEE Transactions on In-
dustrial Electronics and Control Instrumentation. February 1977, pp. 2-12. Also
see McNamara. Reference 2.

The official RS-232 standard s available as “Interface between Data Terminal
Equipment and Data Communications Equipment Employing Serial Binary Data
Interchange.,” EIA RS-232C August. 1969. You can find introductory descriptions
of RS-232 in G. Pickles, “Who's Afraid of RS-232?." Kilobaud, May 1977, pp.
50-54 and in C. A. Ogdin. "Microcomputer Buses — Part . Mini-Micro Systems.
July 1978. pp. 76-80. Ogdin also describes the newer RS-449 standard.

The SIO is discussed more completely in Volume 3 of An Introduction to

Microcomputers: the following reference describes its use as a data link con-

troller: Weissberger. A. J., "Data-Link Control Chips; Bringing Order to New Pro-
tocols,” Electronics, June 8. 1978, pp. 104-112.

Electronic Industries Association, “Electrical Characteristics of Balanced Voltage
Digital Interface Circuits,” EIA RS-422. April 1975.

Electronic Industries Association, “Electrical Characteristics of Unbalanced
Voltage Digital Interface Circuits.” EIA RS-423, April 1975.

Electronic Industries Association, “General Purpose 37-Position and 9-Position In-
terface for Data Terminal Equipment and Data Circuit Terminating Equipment
Employing Serial Binary Data Interchange.” EIA RS-449, November 1977

Morris. D.. “"Revised Data Interface Standards.” Electronic Design. September 1,
1977. pp. 138-141. I —

11-105

14.

15.

Institute of Electrical and Electronics Engineers, "IEEE Standard Digital interface
for Programmable Instrumentation.” |[EEE Std 488-1975-ANSI MC 1.1-1975.

J. B. Peatman. Microcomputer-Based Design. McGraw-Hill. New York,
1977: Loughry, D. C. and M. S. Allen, "IEEE Standard 488 and Microprocessor
Synergism.” Proceedings of the |EEE, February 1978, pp. 162-172.

Morrow. G.. and H. Fullmer. "Proposed Standard for the S-100 Bus,” Computer,
May 1978, pp. 84-89.

Smith, M. L., "Build Your Own Interface,” Kilobaud, June 1977, pp. 22-28.

Rolander, T.. "Intet Multibus Interfacing.” Intel Application Note AP-28, intel Cor-
poration, Santa Clara, CA., 1977

11-106

Chapter 12
INTERRUPTS

Interrupts are inputs that the CPU examines as part of each instruction cycle. These in-
puts allow the CPU to react to asynchronous events in a more efficient manner than
polling each device. When interrupts are utilized to initiate 1/0. generally more hard-
ware than ordinary, programmed /0O is required, but this provides a faster and more
direct response.

Why use interrupts? Interrupts allow events such as alarms, power REASONING
failure. the passage of a certain amount of time, and peripherals BEHIND
having data or being ready to accept data to get the immediate at- INTERRUPTS

tention of the CPU. The programmer does not need to poll every
device, nor need the programmer worry about the system completely missing events.
An interrupt system is like the bell on a telephone — it rings when a call is received so
that you don't have to pick up the receiver occasionally to see if someone is on the line.
The CPU can go about its normal business (and get a lot more done). When something
happens. the interrupt rouses the CPU and forces it to service the input before resuming
normal operations. Of course, this simple description becomes more complicated (just
like a telephone switchboard) when there are many interrupts of varying importance
and there are tasks that cannot be interrupted.

The implementation of interrupt systems varies greatly. CHARACTERISTICS
Among the questions that must be answered to character- OF INTERRUPT
ize a particular system are: SYSTEMS

1) How many interrupt inputs are there?
2) How does the CPU respond to an interrupt?

3) How does the CPU determine the source of an interrupt if the number of sources
exceeds the number of inputs?

4) Can the CPU differentiate between important and unimportant interrupts?
5) How and when is the interrupt system enabled and disabled?

There are many different answers to these questions. The aim of all the implementa-
tions, however, is to have the CPU respond rapidly to interrupts and resume normal ac-
tivity afterwards.

The number of interrupt inputs on the CPU chip determines the number of different
responses that the CPU can produce without any additional hardware or software. Each
input can produce a different internal response. Unfortunately, most microprocessors
have a very small number {one or two. typically) of separate interrupt inputs.

The ultimate response of the CPU to an interrupt must be to transfer control to the cor-
rect interrupt service routine and to save the current value of the Program Counter. The
CPU must therefore execute a Jump-to-Subroutine or Call instruction with the begin-
ning of the interrupt service routine as its address. This action will save the return ad-
dress in the Stack and transfer control to the interrupt service routine. The amount of
external hardware required to produce this response varies greatly. Some CPUs inter-
nally generate the instruction and the address. others require external hardware to
form them. The CPU can only generate a different instruction or address for each sepa-
rate input.

12-1

If the number of interrupting devices exceeds the number of in- POLLING
puts, the CPU will need extra hardware or software to identify the VECTORING
source of the interrupt. In the simplest case, the software can be a
polling routine which checks the status of the devices that may be
interrupting. The only advantage of such a system over normal polling is that the CPU
knows that at least one device is active. The alternative solution is for additional hard-
ware to provide a unique data input {or “vector”) for each source. The two alternatives
can be mixed; the vectors can identify groups of inputs from which the CPU can iden-
tify a particular one by polling.

An interrupt system that can differentiate between important and PRIORITY

unimportant interrupts is called a “priority interrupt system.” In-

ternal hardware can provide as many priority levels as there are inputs. External hard-
ware can provide additional levels through the use of a Priority register and comparator.
The external hardware does not allow the interrupt to reach the CPU unless its priority
is higher than the contents of the Priority register. A priority interrupt system may need
a special way to handle low-priority interrupts that may be ignored for long periods of
time.

Most interrupt systems can be enabled or disabled. in fact, most ENABLING
CPUs automatically disable interrupts when a RESET is performed AND

(so that the programmer can configure the interrupt system} and DISABLING
on accepting an interrupt (so that the interrupt will not interrupt INTERRUPTS
its own service routine). The programmer may wish to disable in-
terrupts while preparing or processing data, performing a timing loop. or executing a
multi-byte operation.

An interrupt that cannot be disabled {sometimes called a “non- NON-MASKABLE
maskable interrupt”’} may be useful to warn of power failure, an INTERRUPT
event that obviousiy must take precedence over all other ac-

tivities.
The advantages of interrupts are obvious, but there are also | DISADVANTAGES
disadvantages. These include: OF INTERRUPTS
1} Interrupt systems may require a large amount of extra

hardware.

2} Interrupts still require data transfers under program control through the CPU. There
is no speed advantage as there is with DMA.

3) Interrupts are random inputs, which makes debugging and testing difficult. Errors
may occur sporadically, and therefore may be very hard to find.

4) Interrupts may involve a large amount of overhead if many registers must be saved
and the source must be determined by polling.

Z80 INTERRUPT SYSTEM

The Z80's internal response to an interrupt is fairly compiex. since there are three
different operating modes. The interrupt system consists of:

1) An active-low maskable interrupt input (NT) and an active- 280
low non-maskable interrupt input (NMI). INTERRUPT
2) Two enable flip-flops (IFF1 and IFF2). IFF1 can be set or reset INPUTS

to enable or disable interrupts. |FF2 serves as temporary
storage for IFF1 during non-maskable interrupts.

12-2

The Z80 checks the current status of the interrupt system at the Z80

end of each instruction cycle. If an interrupt is active and enabled, INTERRUPT
the response is as follows:3 RESPONSE
1) The CPU disables the interrupt system by clearing IFF1. IFF2,

however, is left in its original state if a non-maskable interrupt has occurred. Note
that RESET ciears both interrupt flip-flops so that the system can be configured
before interrupts are enabied.

The CPU executes a special Interrupt Acknowledge cvcle, distinguished by the MT
signal {operation code fetch} being active, MREQ {memory request) inactive {so the
CPU will not perform its normal memory access). and IORQ (input/output request)
active so that an interrupt response vector can be placed on the Data Bus.

The remainder of the response depends on the interrupt mode and the source.

Note in particular that the Z80 will check for interrupts after each transfer or com-
parison in a Block Move, Block Compare, or Repeated Block 1/0 instruction.

The Z80 has the following special instructions for use with the 280 INTERRUPT
interrupt system: INSTRUCTION

1
2)

3

6)

7)
8)

El (Enable Interruptsl enables the maskable interrupt by

setting the interrupt flip-flops.

D! (Disable interrupts) disables the maskable interrupt by clearing the interrupt flip-
flops.

RST (Restart) is a one-word Call instruction that saves the current vaiue of the Pro-
gram Counter in the Stack and jumps to the address specified in the instruction.
Table 12-1 contains the various Restart instructions and their destination ad-
dresses. RST is often used in interrupt systems because it is a one-word instruction
that is easy to form and place on the Data Bus.

RET! (Return from Interrupt) acts exactly like a normal Return (RET) instruction ex-
cept that Z80 peripheral chips (PIOs, SIOs, and CTCs) recognize this instruction and
use it as a notification that the current interrupt service routine has been com-
pleted.

RETN (Return from Non-Maskable Interrupt acts exactly like a normal Return (RET)
instruction except that it loads IFF1 from IFF2 so as to restore the original state of
the interrupt system.

LD Al loads the Accumulator with the contents of the I {Interrupt Vector) register.
This instruction {and LD A.R) aiso places IFF2 into the P/0 bit of the Flag register.
That flag can then be tested or saved in the Stack.

LD LA loads the | {interrupt Vector) register with the contents of the Accumulator.
IM (Set Interrupt Mode) determines the mode in which interrupts are serviced. The
three options are 0. 1. or 2; these are described later in this chapter.

Non-Maskable Interrupt

The non-maskabie interrupt is an edge-sensitive (negative § Z80

edge triggered) input. The processor therefore reacts only to | NON-MASKABLE
the edge of a pulse on this line, and the pulse will not interrupt INTERRUPT

its own service routine. Non-maskable interrupts are useful for

applications that must respond to loss of power {i.e., must save data in a low-power
memory or switch to a backup battery). Typical applications are communications equip-
ment that must retain codes and partial messages and test equipment that must keep
track of partially completed tests.

12-3

Table 12-1 The Restart (RST) Instructions

RST Instruction Operation Code Destination Address
(Mnemonic} Hex} (Hex) {Decimal)
RST 0 c7 0000 0
RST 8 CF 0008 08
RST 10H D7 0010 16
RST 18H DF 0018 24
RST 20H E7 0020 32
RST 28H EF 0028 40
RST 30H F7 0030 48
RST 38H FF 0038 56

The Z80 responds to a non-maskable interrupt as follows:

1) it clears IFF1. thus disabling all interrupts (but saving the old state of IFF1 in IFF2).

2} ltignores the next instruction fetched from memory and instead jumps to memory
location 006616, saving the old value of the Program Counter in the Stack.

Remember that a RETN instruction at the end of the service routine will restore the old
state of IFF1 from IFF2.

We will not discuss the non-maskable interrupt further. Henceforth. we will assume
that all interrupt inputs are tied to INT.

Z80 interrupt Modes

The Z80 has three interrupt modes. The programmer can choose INTERRUPT
any of these modes with the appropriate IM instruction. On reset, MODES

the processor always enters Mode 0. The modes are:

Mode O

In this mode, the CPU uses the data input during the Interrupt Acknowledge cycle as an
instruction. This mode is the same as the 8080 interrupt response mode.

The normal data input that must be provided externally is a RST instruction {see Table
12-1).

RST is useful in interrupt systems for the following reasons: RESTART
INSTRUCTION

1) Itis a one-word instruction and so requires only one fetch
cycle.

2) 1t provides eight different destination addresses or vectors.

3) Its vectors are far enough apart to allow Jump instructions to reach the actual ser-
vice routines.

4) ltis easy to form, since five of the bits are always '1." An 8-to-3 encoder can provide
the other three bits quite easily.

RST has the following disadvantages:

1) It cannot provide more than eight vectors.

2) Its vectors are not far enough apart to allow space for entire interrupt service
routines.

3) lts vectors are in a fixed area of memory.

4) RST 0 has the same destination address as the RESET input and is therefore very

difficult to use. The system needs hardware to differentiate between RESET and
RST 0. since the two cannot be distinguished by software alone.

12-4

Remember that RST saves the old Program Counter in the Stack just as CALL does.
Mode 1

In this mode. the CPU ignores the data input during the Interrupt Acknowledge cycle
and always executes RST 38H. thus jumping to memory location 003816 and saving

the old Program Counter in the Stack. This mode is equivalent to Mode O if the data in-
put is always RST 38H (FF1g).

The advantage of this mode Is that no external hardware is required. Its disadvantages
are that there is no way to directly differentiate among interrupt sources and the
destination address is fixed. Mode 1 is useful in applications that have only one or two
interrupt sources and in which minimum hardware cost is essential.

Mode 2

In this mode, the CPU uses the data input as part of an address from which to get the
starting address of the interrupt service routine. When an interrupt is accepted, the
CPU:

1) Disables further interrupts by clearing IFF1 and IFF2.

2) Stores the old Program Counter in the RAM Stack.

3) Forms a pointer from the contents of Register | [eight MSBs) and the Data Bus input
during the interrupt Acknowledge cycle {eight LSBs). The ieast significant bit of
this pointer is forced to zero.

4) Fetches an address from the two memory locations starting with the one referred to
by the pointer (see Figure 12-1).

5) Transfers control to the address obtained from memory.
Interrupt response in this mode requires 19 clock cycles.

The advantage of this mode is that it can provide a full page of 128 interrupt service
vectors located anywhere in memory. The disadvantages of this approach are that the
interrupt response is slower and the system must be initialized, as follows:

1) The table of vectors must be loaded into memory if it is not in ROM.

2) Thel register must be loaded with the eight most significant bits {or page number)
of the table address. Note that RESET clears Register . You can load | with a value
as follows:

LD A.IPGNO ;GET INTERRUPT PAGE NUMBER
LD LA :STORE IN VECTOR REGISTER

3) Interrupt Mode 2 must be set with the instruction IM 2.

Mode 2 is designed to work with Z80 PIOs, SIOs, and CTCs. PIO and SIO interrupts are
described later in this chapter.

Z80/8080 INTERRUPT COMPATIBILITY

Mode O for the Z80 interrupt system is. as mentioned, identical to the 8080 interrupt
response. The 8080 does not have Interrupt Modes 1 or 2, although Mode 1 is really just
a special case of Mode 0. The 8080 also has no NMI input.

The 8085 has additional interrupt inputs. not available on either the 8080 or the Z80.
The 8085 also has a non-maskable interrupt {called TRAP) that forces a call to a
different address (241¢) than that used by the Z80 NMI input.

12-5

desired starting address
pointed to by:
Intarrupt
8 Bits from 7 bits from : Service
1 Register Peripheral 0 low-arder Routine
high-order Starting
Address
Table
/
Figure 12-1. Forming an Interrupt Vector in Interrupt Mode 2
PIO INTERRUPTS
Most Z80 interrupt systems involve PiOs. Each port of the PIO has PIO
the following features for use with interrupts: INTERRUPTS

1) An 8-bit Interrupt Vector register used to hold the eight least

significant bits of the table address formed by the CPU in Interrupt Mode 2.

2} An interrupt enable bit.

3) Anlinterrupt Control register used to determine the logical operation performed and
the active polarity monitored for generating interrupts in the control mode.

4) AnlInterrupt Mask register used to determine which data lines will be monitored to

generate interrupts in the control mode.

The Interrupt Vector register in each port can be accessed by writ-
ing a control word with a zero in its least significant bit. as shown
below (see also Table 11-2):

D7 D6 D5 D4 D3 D2 D1 DO

lV7IV6iVSIV4iV3|VZlV1 0

signifies this control word is an
inerrupt vector
A typical sequence to establish the value In this register is:

LD AIVECT
ouT (PIOCR).A

PIO
INTERRUPT
VECTOR

where IVECT has a ‘0" in its least significant bit. The starting address for the interrupt
service routine is at address IVECT on the page assigned to the table of starting ad-

dresses for service routines.

12-6

D7 D6 D5 D4 D3 D2 D1 Do
Enable AND/ High/ Mask 0 1 ; .
Interrupt OR Low follows

N

-~

used in Mode 3 only signifies interrupt control word

Figure 12-2. Format for a PIO Interrupt Control Word

D7 D6 D5 D4 D3 D2 D1 Do

mB7 MB6 MBS MB4 MB3 mB2 MB1 MBO

Only those port lines whose mask bit 1s zero will be monitored for generating an interrupt.

We can set the interrupt control word in each port by writing a PIO

control word with the format shown in Figure 12-2. If the port 1s 1n INTERRUPT
Mode 3. bits D6, D5. and D4 have the following meanings: CONTROL
1} D6 = 1 means that all monitored 1/0 lines must become active MODE

Figure 12-3. Format for a PIO Interrupt Mask

to cause an interrupt {i.e.. a logical AND), while D6 = 0 means
that any monitored 1/0 line becoming active will cause an interrupt (i.e.. a logical
ORI

Note that an interrupt occurs only if the logical equation is true when interrupts are
enabled or if it changes from false to true while interrupts are enabled.

2)

3)

D5 defines the active polanty {high or low) of the monitored 1/0 lines. D5 = 1
means active high. D5 = 0 means active low.

D4 =1 means that the next control word 1s an interrupt mask {Figure 12-3). Only
lines with a mask bit of zero will be monitored. D4 = 0 means that the mask does
not follow.

Bit 7 of the interrupt control word determines the value of the
interrupt enable flip-flop for the port. Interrupts may be gener-
ated if the flip-flop is set. Power-on resets this flip-flop. but
remember that the PIO has no RESET input. The interrupt ena-

ENABLING AND
DISABLING PIO
INTERRUPTS

ble flip-flop may be set or reset without affecting the rest of the interrupt control word
by writing a control word with the flip-flop value in bit 7 and 0011 in the four least sig-

nificant bits.

Setting bit 4 of the interrupt control word clears any pending interrupts. This can be
used to clear interrupts that may have occurred advertently during a reset.

12-7

Examples

1

2)

3

EXAMPLES OF
PIO INTERRUPT

interrupting output port with vector located at address
8015 Remember that the page number is in the CPU |

register. CONFIGURATION
LD A,00001111B :MAKE PORT B OUTPUT
ouT (PIOCRB).A
LD A 80H :VECTOR ADDRESS = 80 HEX
ouT (PIOCRA).A
LD A,10000011B ENABLE PIO INTERRUPT
ouT (PIOCRB),A

An alternative that clears pending interrupts as well as enabling interrupts from the
port Is:

LD A, 100101118
ouT (PIOCRALA

An interrupt will occur on the rising edge of STB.

:ENABLE PIO INTERRUPT

Interrupting input port with vector located at address 601g.

LD A,01001111B :MAKE PORT A INPUT

ouT (PIOCRA).A

LD A.60H :VECTOR ADDRESS = 60 HEX
ouT (PIOCRA).A

LD A,100000118 ;ENABLE PIO INTERRUPT

ouTt (PIOCRA),A

An interrupt will occur on the rising edge of STB.

Interrupting control port with vector located at address 4816. An interrupt will be
generated if data lines A4 and A7 both go low.

LD A,11001111B :MAKE PORT A CONTROL

ouT (PIOCRALA

LD A,10001000B :LINES 4,7 INPUTS - OTHERS OUTPUTS
ouT (PIOCRALA

LD A.48H :VECTOR ADDRESS = 48 HEX

ouT (PIOCRALA

LD A.11010111B :ENABLE PIO INTERRUPT

ouT (PIOCRA).A

LD A.011101118 :MONITOR LINES 4,7 ONLY

ouT (PIOCRA)A

The interrupt control word has:

bit 7 = 1 to enable the interrupt

bit 6 = 1 to generate an interrupt only if all monitored lines are or
become active (a logical AND)

bit5 = O to specify that a logic ‘0" is the active state to be monitored

bit4 = 1 to indicate that a mask word follows (and to reset pending

interrupts)

12-8

4) Interrupting control port with vector located at address 2816. An interrupt will be
generated if any of the data lines go high.

LD A,11001111B :MAKE PORT B CONTROL
ouT (PIOCRB).A

LD A.OFFH :ALL LINES INPUTS

ouT (PIOCRB).A

LD A.28H :VECTOR ADDRESS = 28 HEX
ouT (PIOCRB).A

LD A.10110111B ;ENABLE INTERRUPTS

ouT (PIOCRB).A

SuB A :MONITOR ALL LINES

ouTt (PIOCRB).A

The interrupt control word has:

bit7 = 1 to enable the interrupt

bit 6 = O to generate an interrupt if any monitored lines become active
(a logical OR)

bitb5 = 1 to specify that a logic '1" is the active state to be monitored

bit4 = 1 toindicate that a mask word follows {and to reset pending

interrupts).

Obviously a repeated Block Output instruction could be used to shorten these programs
considerably.

Each PIO also has a single interrupt output and enable signals DAISY

for daisy chaining. The INT output is active-low when the PIO CHAINING
has an interrupt request. The enable signals are: PIO

IE" (Interrupt Enable In) — high if no other devices of higher INTERRUPTS

priority are being serviced by a CPU interrupt service routine.

IEO (Interrupt Enable Out) — high if IEl is high and the CPU is not servicing an interrupt
from this PIO

IEl and IEO can be used to form a daisy chain (see Volume 1 of An PIO DAISY
Introduction to Microcomputers) in which PIOs and other devices CHAIN
that are connected to the chain closer to the CPU can block inter- SIGNALS

rupt requests from devices further from the CPU. The advantages
of the daisy chain are:

1) It identifies each source uniquely. ADVANTAGES

2) It requires no other hardware. Sg!l)\DVANTAGES
3) Itis easy to expand or rearrange in hardware. OF DAISY CHAIN
The disadvantages of the daisy chain are: INTERRUPTS

1) It can be varied or changed only in hardware.

2) It does not provide for eventual servicing of low priority in-
terrupts.

3) It requires extra time because signals must ripple through the chain.

The 280 automatically waits long enough for the signals to ripple through a chain of up
to four devices when operating in Interrupt Mode 2. Additional hardware can be added
to allow longer chains.

12-9

1

Note that a particular device in the chain operates as follows: DEVICE
It places its interrupt vector on the bus during an Interrupt ?Jinsx:gv
Acknowledge cycle only if it has a pending interrupt re- CHAIN
quest and Interrupt Enabie [n is high {indicating no higher

2)

priority devices are being serviced). Interrupt Enable Out is
also set low. Within a device, Port A interrupts take precedence over Port B inter-
rupts.

It subsequently brings its Interrupt Enable Out high lenabling lower priority
devices) only if a RET! instruction is executed while its Interrupt Enable In is high.

Thus. a particular device will be serviced only when it has the highest priority request
and will block lower-priority requests until its service routine has been completed. A
higher-prionity device can interrupt a lower-priority service routine without any
difficulty. Note that a RETI instruction at the end of the high priority routine will not be
recognized by the lower-priority device.

SI10 INTERRUPTS

The SIO can also serve as a source for interrupts. You shouid note Sio
the following features of the SIO interrupt-based systems: INTERRUPTS

1)

2)

3)

4)

The transmitter interrupt is enabled by setting bit 1 of Write
Register 1 on each channel.

The interrupt vector is affected by bits 2, 3, and 4 of Write Register 1 according to
Tables 12-2 and 12-3.

The interrupt vector is in Write Register 2 on Channel B only. It can be read from
Read Register 2 on Channel B only.

Bit D1 of Read Register 0 on Channel A is 1 if any interrupt condition is present-tp
the entire SIO. .

i

A 1]
Within an SIO, Channel A interrupts have priority over Channel B interrupts, receiver in-
terrupts have priority over transmitter interrupts, and transmitter interrupts have

priority over external or status interrupts.

SiOs can be used in a polling interrupt system. The CPU must POLLING
check each SIO for activity by examining bit 1 of Read Register 9 INTERRUPT
on Channel A; ie. SYSTEMS
SUB A :ACCESS READ REGISTER 0 WITH Si0s
ouT (SIOCRAJA
IN A,{SIOCRA) :GET SIO STATUS
BIT 1A :ANY INTERRUPTS PENDING?
JR NZ.SERVE YES, INTERRUPT ACTIVE

The important features of a Z80 polling system are:

1

2)

The first interrupt examined has the highest priority. since the remaining interrupts
will not be examined if the first one is active. The second interrupt has the next
highest priority. and so on.

The service routine must clear the SIO interrupt by reading or writing the appropri-
ate data register even if a data transfer is otherwise unnecessary.

12-10

Table 12-2. Further Vectoring of SIO Interrupts
(Bit 2 of SIO Write Register 1 on Channel B is 1)

Status Affects Vector (D2) (Channel B Only)

#f this bit 1s 1, the vector returned from an interrupt acknowledge cycle will be vanable according to the following:

v3 v2 V1

0 0 4] Ch B Transmit Buffer Empty
ChB 0 0 1 Ch B External/Status Change

0 1 0 Ch B Receive Character Available

0 1 1 Ch B Special Receive Condition*®

1 0 [s] Ch A Transmit Buffer Empty
chA 1 [} 1 Ch A External/Status Change

1 1 0 Ch A Receive Character Available

1 1 1 Ch A Spacial Receive Condition*

Parity Ermor or

Rx Overrun Emor or
CRC/Framing Error or
End of Frame (SDLC)

*Special Receive Conditions g

If this bit is 0. the fixed vector programmed in the Interrupt Vector register is returned.

Table 12-3. SIO Interrupt Modes
(Bits 3 and 4 of Write Register 1)

Rec Int Mode 0 (D3], Rec Int Mode 1 (D4)

Receive Interrupt Mode O and Receive Interrupt Mode 1 togather specify the vanous character available conditions:

D4 D3
Mode Rec Int Rec int
Mode 1 Mode 0
o 4] 0 Recewer interrupts disabled
1 o} 1 Receive interrupt on first character
only error
2 1 0 Interrupt on all Receive Characters-
Parity error affects Vector
3 1 1 interrupt on all Receive Characters-
Parity error does not affect Vector

12-11

INTERRUPT EXAMPLES
A Startup Interrupt

Purpose: The computer waits for a PIO interrupt to occur before starting actual opera-
tions.

Many systems remain inactive until the operator actually starts them or a DATA READY
signal is received. On RESET, such systems must initialize the Stack Pointer. enable the
startup interrupt, and execute a HALT instruction. Remember that RESET disables the
processor interrupt and power-on disables all PIO interrupts. In the flowchart, the deci-
sion as to whether startup is active is made in hardware {i.e.. by the CPU examining the
interrupt input internally) rather than in software.

Flowchart:

Initialize Stack Pointer

Enable startup
mterrupt on PIO

Enable CPU interrupt

is
startup

active

Source Program:
Main Program:
RESET EQU 0

ORG RESET
LD SP.100H :PUT STACK AT END OF MEMORY
LD A 010011118 ;PUT PIO IN INPUT MODE
ouT (PIOCRA).A
LD A,100001118 ;ENABLE PIO INTERRUPT
ouT (PIOCRA).A
El :ENABLE INTERRUPTS
HALT :AND WAIT
Interrupt Service Routine:
ORG INTRP
LD SP.100H 'REINITIALIZE STACK POINTER
JP START :START MAIN PROGRAM

12-12

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
Main Program:
0000 31 iD SP.100H
0001 00
0002 01
0003 3E LD A,010011118B
0004 4F
0005 D3 ouT {PIOCRA)A
0006 PIOCRA
0007 3E LD A.100001118B
0008 87
0009 D3 ouT {PIOCRA).A
000A PIOCRA
oooB FB El
000C 76 HALT
Interrupt Service Routine:

INTRP 31 LD SP.100H

INTRP+1 00

INTRP+2 01

INTRP+3 C3 JP START

INTRP+4

INTRP+5 START

The main program must initialize the Stack Pointer. since the interrupt response always
stores the old Program Counter in the Stack. Here the service routine simply reinitializes
the Stack Pointer before the actual startup routine is executed. An alternative would be
to increment the Stack Pointer twice before jumping to the startup routine. Remember
that the Z80 comes up in Interrupt Mode 0. Any other mode would require the execu-

tion of an M instruction.

The exact location of the interrupt service routine varies
with the microcomputer. If vour microcomputer has no
monitor, you can start the interrupt service routine
wherever the external hardware or vector table directs the
CPU. Of course, you should place the routine so that it does not interfere with fixed ad-
dresses or with other programs.

INTERRUPTS ON
PARTICULAR
MICROCOMPUTERS

If your microcomputer has a monitor, the monitor will often oc-
cupy the RESET and interrupt service addresses. It will then supply
service routines or the addresses of those routines. A typical moni-
tor routine initialization would be:)

MONIN: PUSH HL
LD HL.USRINT
JP (HL)

INTERRUPT
HANDLING
BY

MONITORS

;SAVE OLD REGISTER CONTENTS
:GET USER ADDRESS FOR SERVICE
:JUMP TO USER SERVICE ADDRESS

You must then place the address of your service routine into memory locations USRINT
and USRINT+1. using the normal Z80 address format with the least significant bits at
the lower address. Remember that MONIN is an address in the monitor program.

12-13

You can include the loading of memory locations USRINT and USRINT+1 in your main
program; i.e..

LD HL.INTRP :GET STARTING ADDRESS OF SERVICE
. ROUTINE
LD (USRINT)LHL :STORE IT AS USER ADDRESS

These instructions come before the enabling of the interrupts.

in this example. the return address that the Z80 stores in the Stack is not useful.
However, the main program still must initialize the Stack Pointer so that there is a
definite place to put that address. You may not need the LD SP instruction if the moni-
tor in your microcomputer manages the Stack Pointer.

The main program enables only the interrupt from the startup PIO. The PIO could, of
course, be in any mode. The interrupt is enabled by setting bit 7 of an interrupt control
word and writing that word to the PIO control port. The PIO interrupt is enabled before
the overall interrupt system is enabled with the El instruction.

Remember that RESET and accepting an interrupt automatically disable the interrupt
system. This allows the real startup routine to configure all the PIOs and other interrupt
sources without being interrupted.

No action is needed in the interrupt service routine, since the interrupt is automatically
cleared as part of the Interrupt Acknowledge cycle involving a particular PIO.

The implementations of the instructions El (Enable Interrupts) and DI (Disable Inter-
rupts) differ on the Z80. DI takes effect immediately after its execution, while El takes
effect after the execution of the following instruction. The reasoning behind this fact is
discussed in Chapter 3 under the description of the El instruction.

A Keyboard interrupt

Purpose: The computer waits for a keyboard interrupt and places KEYBOARB 1
: the data from the keyboard into memory location 0040. INTERRUPT |
Sample Problem:
Keyboard data = 06
Result: {0040) = 06

Flowchart:

Initialize Stack Pointer(}

Enable keyboard
intarrupt on P10

Enable CPU interrupt

Is .
there data
nfrom keyboard

(40): = data

12-14

Source Program:
Main Program:

RESET EQU 0
ORG RESET
LD SP.100H :PUT STACK AT END OF MEMORY
LD A,01001111B :PUT PIO IN INPUT MODE
ouT (PIOCRA),A
LD A, 100001118 :ENABLE PIO INTERRUPTS
ouT (PIOCRA)A
El :ENABLE CPU INTERRUPTS
HERE: JR HERE :DUMMY MAIN PROGRAM
Interrupt Service Routine:
ORG INTRP
EX AF.AF ;SAVE ACCUMULATOR, FLAGS
IN A.{PIODRA) :GET KEYBOARD DATA
LD (40H}A ;SAVE KEYBOARD DATA
EX AF,AF ;RESTORE ACCUMULATOR. FLAGS
El :RE-ENABLE INTERRUPTS
RETI
Object Program:
Memory Address Memory Contents Instruction
{Hex) {Hex) (Mnemonic)
Main Program:

0000 31 LD SP.100H

0001 00

0002 01

0003 3E LD A,01001111B

0004 4F

0005 D3 ouT {PIOCRA).A

0006 PIOCRA

0007 3E LD A, 100001118

0008 87

0009 D3 ouT (PIOCRA).A

000A PIOCRA

0008 FB El

000C 18 HERE: JR HERE

000D FE

Interruot Service Routine:

INTRP 08 EX AF.AF
INTRP+1 DB IN A,(PIODRA)
INTRP+2 PIODRA
INTRP+3 32 LD {40HLA
INTRP+4 40
INTRP+5 00
INTRP+6 08 EX AF.AF
INTRP+7 B El
INTRP+8 ED RETI
INTRP+9 4D

12-15

The JR HERE is an endless loop {jump-to-self) instruction that is used to represent the
ain program. After interrupts are enabled in a working system. the main program goes
about its business until an interrupt occurs and then resumes execution after the inter-
rupt service routine is completed.

The RET instruction at the end of the service routine transfers CHANGING THE
control back to the JR instruction. If you want to avoid this, you RETURN

can simply increment the Program Counter in the Stack, e.g.. ADDRESS
EX (SP)LHL :GET RETURN ADDRESS
INC HL :INCREMENT RETURN ADDRESS TWICE
INC HL
EX (SP).HL :RESTORE ADJUSTED ADDRESS TO STACK

The RET instruction will now transfer control to the instruction following the JR. Note
the use of EX {SP),HL: this instruction exchanges the contents of Register Pair HL with
the contents of the memory locations at the top of the Stack. By using it. we can adjust
the return address without affecting the contents of Register Pair HL.

Since the Z80 does not automatically save its registers. you can use them to pass
parameters and results between the main program and the interrupt service routine. So,
vou could leave the data in the Accumulator instead of in memory location 0040. This
is, however, a dangerous practice that should be avoided in all but the most trivial
systems. In most applications. the processor is using its registers during normal pro-
gram execution; having the interrupt service routines randomly change the contents of
those registers would surely cause havoc. In general, rio interrupt service routine should
ever alter any register unless that register's contents have been saved prior to its altera-
tion and will be restored at the completion of the routine.

Note that you must explicitly re-enable the interrupts at'the end of the service routine,
since the processor disables the interrupt system when it accepts an interrupt. Servic-
ing a PlO interrupt deactivates the interrupt signal so that the same interrupt is not ser-
viced again.

If interrupt service routines are never themselves interrupted (i.e., SAVING
there is only one level of interrupts), the instructions EX AF.AF VALUES IN
and EXX are a convenient way to save and restore the old contents PRIMED
of the user registers. EXX exchanges the contents of BC. DE. and REGISTERS

HL with the contents of their primed equivalents. The two instruc-
tions together take only two bytes of memory and eight clock cvcles. However. this
methad cannot be used if there are other interrupt levels {since there is only a single set
of primed registers) or if the primed registers are needed in either the main program or
the interrupt service routine.

A more general approach to saving and restoring registers is to use the Stack. PUSH
saves the contents of a register pair and POP restores the contents. However, PUSH
takes 11 clock cycles and POP 10. so this approach is slower. It also uses extra memory
locations in the Stack. The advantage of this method is that it can be expanded in-
definitely (as long as there is room in the Stack) since nested service routines will not
destroy the data saved by the earlier routines.

An alternative approach would be for the interrupt routine to FILLING A
maintain control until it received an entire line of text le.g.. a string BUFFER VIA
of characters ending with a carriage return). The main program INTERRUPTS
would be:

12-16

Main Program:
RESET EQU 0

ORG RESET
LD SP.100H :PUT STACK AT END OF MEMORY
LD A,01001111B :PUT PIO IN INPUT MODE
ouTt (PIOCRA),A
LD A,10000111B ENABLE PIO INTERRUPTS
ouTt (PIOCRA),A
LD HL,70H INITIALIZE BUFFER POINTER
LD ({40H),HL ;SAVE BUFFER POINTER
El :ENABLE CPU INTERRUPT
HERE: JR HERE :DUMMY MAIN PROGRAM
Interrupt Service Routine:
ORG INTRP
EX AF.AF :SAVE A, FLAGS
EXX :SAVE OTHER REGISTERS
LD HL.{40H) :GET BUFFER POINTER
IN A,(PIODRA) :GET KEYBOARD DATA
LD (HL).A :SAVE DATA IN BUFFER
cp CR IS DATA A CARRIAGE RETURN?
JR Z.ENDL :YES, END OF LINE
INC HL :NO, INCREMENT BUFFER POINTER
LD {40H), HL
EXX ;RESTORE OTHER REGISTERS
EX AF,AF ;RESTORE A, FLAGS
El :RE-ENABLE INTERRUPTS
RET!
ENDL: JP LPROC :PROCESS LINE WITHOUT INTERRUPTS

When the processor receives a carriage return, it leaves the interrupt system disabled
while it handles the line.

An alternative approach would be to fill another buffer while han- DOUBLE
dling the first one: this approach is called double buffering. BUFFERING

The line processing routine is begun at address LPROC with inter-
rupts disabled, the old register contents in the primed registers, and the original return
address at the top of the Stack.

In a real application, the CPU could perform other tasks between interrupts. It could, for
instance. edit. move. or transmit a line from one buffer while the interrupt was filling
another buffer.

A Printer Interrupt

Purpose: The computer waits for a printer interrupt and sends the data from memory
location 0040 to the printer.

Sample Problem:
(0040) = B1H
Result: Printer receives a 51H (ASCIl Q) when it is ready.

12-17

Flowchart:

Initialize Stack Pointer
§ Enable printer

interrupt on PIO
Data ={40)

]

Enable CPU interrupt

is

printer ready
?

Send data to printer

Source Program:
Main Program:
RESET EQU 0

ORG RESET
LD SP.100H
LD A,00001111B
ouT (PIOCRA).A
LD A,100001118
ouT (PIOCRA).A
El
HERE: JR HERE
Interrupt Service Routine:
ORG INTRP
EX AF.AF
LD A.(40H)
ouT (PIODRA).A
EX AF.AF
El
RETI

:PUT STACK AT END OF MEMORY
:PUT PIO IN OUTPUT MODE

;ENABLE PIO INTERRUPTS

;ENABLE CPU INTERRUPTS
:DUMMY MAIN PROGRAM

;SAVE ACCUMULATOR, FLAGS
:GET DATA

:SEND DATA TO PRINTER
;RESTORE ACCUMULATOR, FLAGS
:RE-ENABLE INTERRUPTS

12-18

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
Main Program:
0000 3 LD SP.100H
0001 00
0002 01
0003 3E LD A,00001111B
0004 OF
0005 D3 ouTt (PIOCRALA
0006 PIOCRA
0007 3 LD A,100001118B
0008 87
0009 D3 ouTt (PIOCRA).A
000A PIOCRA
0008 FB El
000C 18 HERE: JR HERE
000D FE
Interrupt Service Routine:
INTRP 08 EX AF.AF
INTRP+1 3A LD A, (40H)
INTRP+2 40
INTRP+3 00
INTRP+4 D3 ouTt (PIODRA),A
INTRP+5 PIODRA
INTRP+6 08 EX AF.AF
INTRP+7 FB8 £l
INTRP+8 eD RETI
INTRP+9 4D
Here, as with the keyboard, vou could have the printer continue to
interrupt until it transferred an entire line of text. The main pro- EMPTYING A
gram and the service routine would be: BUFFER WITH
INTERRUPTS
Main Program:

RESET EQU
ORG
LD
LD
ouTt
Ltb
ouT
LD
iD
El

HERE: JR

0

RESET
SP.100H
A.000011118B
(PIOCRA).A
A.10000111B
(PIOCRA).A
HL,70H
(40H)HL

HERE

:ENABLE PIO INTERRUPTS

INITIALIZE BUFFER POINTER
;SAVE BUFFER POINTER

;ENABLE CPU INTERRUPT
;DUMMY MAIN PROGRAM

12-19

:PUT STACK AT END OF MEMORY
:PUT PIO IN OUTPUT MODE

Interrupt Service Routine:

ORG INTRP
EX AF.AF :SAVE A, FLAGS
EXX :SAVE OTHER REGISTERS
LD HL.(40H) :GET BUFFER POINTER
LD A, (HL) :GET A BYTE OF DATA FROM BUFFER
ouT (PIODRA).A :SEND DATA TO PRINTER
cP CR :IS DATA A CARRIAGE RETURN?
JR ENDL YES, END OF LINE
INC HL :NO. INCREMENT BUFFER POINTER
LD (40H). HL
EXX :RESTORE OTHER REGISTERS
EX AF.AF :RESTORE A. FLAGS
El :RE-ENABLE INTERRUPTS
RET!
ENDL: JP LCOMP :HANDLE COMPLETED LINE

Again, double buffering could be used to allow 1/0 and processing to occur at the same
time without ever halting the CPU

A Real-Time Clock interrupt

Purpose: The computer waits for an interrupt from a real-time REAL-TIME
clock. CLOCK

A real-time clock simply provides a regular series of pulses. The in-

terval between the pulses can be used as a time reference. Real-time clock interrupts
can be counted to give any multiple of the basic time interval. A real-time clock can be
produced by dividing down the CPU clock. by using a separate timer or a programma-
ble timer like the CTC for Z80-based microcomputers, or by using external sources such
as the AC fine frequency.

Note the tradeoffs involved in determining the frequency of the FREQUENCY
real-time clock. A high frequency (say 10 kHz) allows the crea- OF REAL-TIME
tion of a wide range of time intervals of high accuracy. On the CLOCK

other hand, the overhead involved in counting real-time clock
interrupts may be considerable, and the counts will quickly exceed the capacity of a
single 8-bit register or memory location. The choice of frequency depends on the preci-
sion and timing requirements of vour application. The clock may. of course, consist
partly of hardware; a counter may count high frequency pulses and interrupt the pro-
cessor only occasionally. A program will have to read the counter to measure time to
high accuracy.

One problem is synchronizing operations with the real-time SYNCHRONIZATION
clock. Clearly, there will be some effect on the precision of WITH REAL-TIME
the timing interval if the CPU starts the measurement ran- CLOCK

domly during a clock period. rather than exactly at the
beginning. Some ways to synchronize operations are:

1} Start the CPU and clock together. RESET or a startup interrupt can start the clock as
well as the CPU.

2) Allow the CPU to start and stop the clock under program control.

3) Use a high-frequency clock so that an error of less than one clock period will be
small.

4) Line up the clock (by waiting for an edge or interrupt) before starting the measure-
ment.

12-20

A real-time clock interrupt should have very high priority, since }| PRIORITY

the precision of the timing intervals will be affected by any delay | OF REAL-TIME
in servicing the interrupt. The usual practice is to make the real- | CLOCK

time clock the highest priority interrupt except for power failure.
The clock interrupt service routine is generally kept extremely short so that it does not
interfere with other CPU activities.

a) Wait for Real-Time Clock
Source Program:

Main Program:

RESET EQU 0
ORG RESET

LD SP.100H ;PUT STACK AT END OF MEMORY
LD A,01001111B :PUT PIO IN INPUT MODE
ouTt (PIOCRA}LA
LD A,10000111B ENABLE PIO INTERRUPTS
ouT (PIOCRA).A
El ;ENABLE CPU INTERRUPTS
HERE: JR HERE ;DUMMY MAIN PROGRAM
Interrupt Service Routine:
ORG INTRP
HALT :END CLOCK INTERRUPT
Object Program:
Memory Address Memory Contents Instruction
{Hex) (Hex) {Mnemonic)
Main Program:
0000 31 LD SP.100H
0001 00
0002 01
0003 3E LD A,01001111B
0004 4F
0005 D3 ouT (PIOCRA).A
0006 PIOCRA
0007 3E LD A,100001118B
0008 87
0009 D3 ouT (PIOCRA), A
000A PIOCRA
0008 F8 El
000C 18 HERE: JR HERE
000D FE
Interrupt Service Routine:
INTRP 76 HALT

The service routine does not have to do anything. since servicing the PIO interrupt auto-
matically clears it and there is no data to send or receive.

The real-time clock interrupt always occurs on a rising edge if a PIO STROBE signal is
used for the clock input.

12-21

b) Wait for 10 Real-Time Clock Interrupts

Source Program:
Main Program:
RESET EQU 0

ORG RESET
LD SP.100H
LD A.01001111B
ouT (PIOCRALA
LD A,10000111B
ouT {PIOCRA).A
LD HL.40H
LD (HL).O
LD A.10
El

WTTEN: CP (HL)
JR NZWTTEN
HALT

Interrupt Service Routine:
ORG INTRP
EXX
EX AF.AF
LD HL.40H
INC (HL)
EX AFAF
EXX
El
RETI

:PUT STACK AT END OF MEMORY
:PUT PIO IN INPUT MODE

;ENABLE PIO INTERRUPTS
:CLOCK COUNTER = ZERO

:NUMBER OF COUNTS =10
:ENABLE CPU INTERRUPTS
;HAVE TEN COUNTS ELAPSED?
:NO, WAIT

:YES. DONE

:SAVE USER REGISTERS
:SAVE A, FLAGS
;INCREMENT CLOCK COUNTER

:RESTORE A, FLAGS
:RESTORE USER REGISTERS
;RE-ENABLE INTERRUPTS

12-22

Object Program:

Memory Address Mémory Contents Instruction
(Hex) (Hex) (Mnemonic)
Main Program:
0000 31 LD SP,100H
0001 00
0002 01
0003 3E LD A, 010011118
0004 aF
0005 D3 ouT (PIOCRA).A
0006 PIOCRA
0007 3E LD A,100001118
0008 87
0008 D3 ouT (PIOCRA).A
000A PIOCRA
000B 21 LD HL.40H
000C 40
000D 00
000E 36 LD HL).0
000F 00
0010 3E LD A0
0011 0A
0012 FB El
0013 BE WTTEN: CP {HL)
0014 20 JR NZ WTTEN
0015 FD
0016 76 HALT
Interrupt Service Routine:
INTRP B2} EXX
INTRP+1 08 EX AFAF
INTRP+2 21 LD HL.40H
INTRP+3 40
INTRP+4 00
INTRP+5 34 INC HL)
INTRP+6 08 EX AF.AF
INTRP+7 D9 EXX
INTRP+8 FB El
INTRP+9 ED RETI
INTRP+10 4D

An alternative approach uses the Stack to save and restore register values. Tosave H. L,
and the flags requires:

PUSH HL :SAVE REGISTERS H AND L
PUSH AF :SAVE ACCUMULATOR AND FLAGS
To restore them requires the sequence:
POP AF :RESTORE ACCUMULATOR AND FLAGS
POP HL ;RESTORE REGISTERS H AND L

Note that, if the Stack is used, registers must be restored in the opposite order from that
in which they were saved. Clearly the order in which EXX and EX AF.AF are executed
does not matter.

12-23

This interrupt service routine merely updates the counter in memory location 0040. it is

transparent to the main program.

A more realistic real-time clock interrupt routine could
maintain real time in several memory locations. For exam-
ple. the following routine uses addresses 0040 through 0043
as follows:

0040 - hundredths of seconds

0041 - seconds

0042 - minutes

0043 - hours
We assume that the routine is triggered by a 100 Hz clock.

Flowchart:

Clear clock interrupt
Hundredths =
Hundredths + 1

Hundredths = 0
Seconds =
Seconds + 1

Is

Seconds 60
5 y

Seconds =
Minutes =
Minutes + 1

Minutes = 0
Hours =
Hours + 1

12-24

MAINTAINING
REAL TIME

Source Program:

ORG INTRP
PUSH AF :SAVE REGISTERS
PUSH HL
LD HL.40H {UPDATE HUNDREDTHS OF SECONDS
INC HL)
LD A.100
cP (HL) 1S THERE A CARRY TO SECONDS?
JR NZ.DONE :NO. DONE
LD (HL).O :YES, HUNDREDTHS =0
INC HL ;UPDATE SECONDS
INC (HU)
LD A.60
cP (HL) ;IS THERE A CARRY TO MINUTES?
JR NZ.DONE :NO, DONE
LD (HL).0 :YES, SECONDS =0
INC HL :UPDATE MINUTES
INC (HL)
CcpP (HL) ;1S THERE A CARRY TO HOURS?
JR NZ,DONE :NO, DONE
LD {(HL).0 (YES, MINUTES =0
INC HL :UPDATE HOURS
INC (HL)
LD A24 :DAY COMPLETED?
JR NZ.DONE :NO, DONE
LD (HL).0 :YES, HOURS =0
DONE: POP HL :RESTORE REGISTERS
POP AF
El :RE-ENABLE INTERRUPTS
RETI
Now a wait of 300 ms could be produced in the main program with the routine:
LD HL.40H ;GET PRESENT TIME (HUNDREDTHS OF SECS)
LD A, (HL)
ADD A.30 :DESIRED TIME IS 30 COUNTS LATER
cP 100 :MOD 100
JR C.WT30
SUB 100
WT30: CP (HL) :DESIRED TIME REACHED?
JR NZWT30 :NO, WAIT

Be careful in this program of the difference between INC HL and INC (HL). INC HL adds
1 to the 16-bit contents of Register Pair HL, while INC (HL) adds 1 to the 8-bit contents
of the memory location addressed by HL.

Of course, the program could perform other tasks and check the elapsed time only oc-
casionally. How would vou produce a delay of seven seconds?. Of three minutes?

Sometimes you may want to keep time either as BCD digits or as ASCl characters. How
would vou revise the last program to handle these alternatives?

You can disable the clock interrupt lor any other interrupt) when it DISABLING
is no longer needed in any of the following ways. INTERRUPTS

11 By executing a Dl instruction in the main program. This disa-
bles the entire interrupt system.

2} By clearing bit 7 of the interrupt control word during the service routine or during
the main program. This disables only the interrupt from one port of one PIO.

12-25

3} By not re-enabling the interrupt during- the service routine.

Remember that the CPU automatically disables interrupts upon accepting one. Thus,
the interrupt system is disabled unless the service routine explicitly re-enables it. Note,
however, that you must be very careful about not re-enabling the interrupts. since the
main program wouid be compietelvy unaware that interrupts were no longer allowed. In
general, all interrupt service routines should re-enable the interrupts before return-
ing: any other policy means that the service routines are not transparent to the main
program.

A Teletypewriter Interrupt

Purpose: The computer waits for data to be received from a teletypewriter and stores
the data in memory location 0040.

a} Using an SI10 Si0
. . . . INTERRUPT
(7-bit characters with odd parity and 2 stop bits). ROUTINE
Source Program:
Main Program:
RESET EQU 0
LD A4 :ACCESS WRITE REGISTER 4
ouT (SIOCRA).A
LD A,01000001B ;X16 CLOCK MODE, PARITY
ouT (SIOCRA),A
LD A3
ouT (SIOCRA),A
LD A.01000001B .7 BIT CHARACTERS, ENABLE RECEIVER
ouT (SIOCRA}LA
LD Al :ACCESS WRITE REGISTER 1
ouT (SIOCRA}LA
LD A, 00011000B ;ENABLE RECEIVER INTERRUPT ON ALL CHARS
ouT (SIOCRALA
El :ENABLE CPU INTERRUPTS
HERE: JR HERE :DUMMY MAIN PROGRAM
Interrupt Service Routine:
ORG INTRP
PUSH AF ;SAVE ACCUMULATOR, FLAGS
IN A,(SIODRA) ;READ CHARACTER FROM SIO
LD (40H).A :SAVE CHARACTER IN MEMORY
POP AF ;RESTORE ACCUMULATOR, FLAGS
El ;RE-ENABLE INTERRUPTS
RETI

12-26

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) {(Mnemonic)

Main Program:

0000 3E LD A4

0001 04

0002 D3 ouT {SIOCRA).A

0003 SIOCRA

0004 3E LD A,010000018

0005 41

0006 D3 ouT {SIOCRA),A

0007 SIOCRA
0008 3E LD A3

0008 03

000A D3 out (SIOCRA)A

0008 SIOCRA

000C 3E LD A,01000001B

000D 41

000E D3 ouT (SIOCRA),A
000F SIOCRA

0010 3E LD A1

0011 01

0012 D3 ouT (SIOCRA),A

0013 SIOCRA

0014 3E LD A,000110008

0015 18

0016 D3 out {SIOCRA},A

0017 SIOCRA

0018 FB El

0019 18 HERE: JR HERE

001A FE

Interrupt Service Routine:

INTRP Fb PUSH AF
INTRP+1 DB IN A.{SIODRA)
INTRP+2 SIODRA
INTRP+3 32 LD {40H).A
INTRP+4 40
INTRP+5 00
INTRP+6 F1 POP AF
INTRP+7 FB El
INTRP+8 ED RETI
INTRP+9 4D

This service routine assumes that only the receive interrupt from one channel of the SIO
has been enabled. Otherwise, either further vectoring will be required by changing con-
trol bits Do, D3, and Dy of Write Register O (see the discussion of SIO interrupts earlier
in this chapter} or the routine will have to examine the status bits in Read Register 0.
The key status bits are:

Bit O - Receive Character Available — 1 when at least one character is available in the
receive buffers.

Bit 1 - Interrupt pending {Channel A only} — 1 if any interrupt is pending in the entire
Sio.

12-27

Bit 2 - Transmit Buffer Empty — 1 if the Transmit buffer is empty.

Obviously. it would be far shorter and simpler to configure the SIO by using a table (in
ROM) and the repeated Block 1/0 instruction, i.e..

LD B.6 :NUMBER OF BYTES IN CONFIGURATION
LD C.SIOCRA :SIO0 CONTROL PORT

LD HL.SIOTBL :START OF SIO CONFIGURATION TABLE
OTIR :CONFIGURE SIO

This method requires 9 bytes of memory for the program and 6 bytes for the table, as
compared to the 23 bytes used in the example to configure the SIO.

The program establishes the SIO registers as follows:
WRITE REGISTER 4
Bit 7 =0, bit 6 = 1 for X16 clock mode

Bit 1 =0 to select odd parity
Bit 0 = 1 to enable panty generation

WRITE REGISTER 3

Bit 7 =0. bit 6 = 1 to select 7-bit characters
Bit 0 = 1 to enable the receiver

WRITE REGISTER 1

Bit4 =1, bit 3 =1 to produce an interrupt on all received characters with parity errors
not affecting the vector.
The CPU clears the Received Character Available bit by reading a character from the

SI0 Data register. The Interrupt Pending bit is cleared automatically when the interrupt
is serviced.

b) Using a PIO START BIT

(Received data tied to data bit 7 of PIO Port A). INTERRUPT
Source Program:
Main Program:
LD A 110011118 :MAKE PORT A CONTROL
ouT (PIOCRAJ).A
LD A,10000000B ;MAKE BIT 7 INPUT, OTHERS QUTPUTS
ouT (PIOCRA)A
LD A, 100101118 ;ENABLE INTERRUFT ON START BIT (0)
ouT (PIOCRA),A
LD A.01111111B :MASK OUT ALL OTHER BITS
ouTt (PIOCRA),A
El JENABLE CPU INTERRUPTS
HERE: JR HERE ;DUMMY MAIN PROGRAM
Interrupt Service Routine:
ORG INTRP
PUSH AF ;SAVE ACCUMULATOR, FLAGS
LD A 00000111B ;DISABLE START BIiT INTERRUPT
ouT (PIOCRA).A
CALL TTYRCV :FETCH DATA FROM TTY
LD A,10000111B ENABLE START BIT INTERRUPT
ouTt (PIOCRA).A
POP AF ;RESTORE ACCUMULATOR. FLAGS
El :RE-ENABLE INTERRUPTS
RETI

12-28

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

Main Program:

0000 3E LD A.11001111B
0001 CF
0002 D3 ouT (PIOCRA)A
0003 PIOCRA
0004 3E LD A,10000000B
0005 80
0006 D3 ouT (PIOCRA}LA
0007 PIOCRA
0008 3E LD A.10010111B
0009 97
000A D3 ouT {PIOCRA}.A
0008 PIOCRA
000C 3E LD A 011111118
000D 7F
000E D3 ouTt (PIOCRA).A
000F PIOCRA
0010 FB El
0011 18 HERE: JR HERE
0012 FE
Interrupt Service Routine:
INTRP F5 PUSH AF
INTRP+1 3k LD A,000001118B
INTRP+2 07
INTRP+3 D3 ouTt (PIOCRA). A
INTRP+4 PIOCRA
INTRP+5 CcD CALL TTYRCV
INTRP+6 TTYRCV
INTRP+7
INTRP+8 3E LD A,100001118B
INTRP+9 87
INTRP+10 D3 out {PIOCRA}.A
INTRP+11 PIOCRA
INTRP+12 F1 POP AF
INTRP+13 FB El
INTRP+14 ED RETI
INTRP+15 aD

These programs assume that the monitor initializes the Stack Pointer. Otherwise, it will
have to be loaded in the main program.

Subroutine TTYRCV is the TTY receive routine shown in the previous chapter.

The edge used to cause the interrupt is very important here. An interrupt must occur
when the data line changes from the normal MARK or 1" state to the SPACE or ‘0’ state.
since this transition identifies the start of the transmission.

The service routine must disable the PIO interrupt, since otherwise each ‘1'-to-'0’ tran-
sition in the character will cause an interrupt. Of course, you must re-enable the PIO in-
terrupt after the entire character has been read.

12-29

Note the use of the PIO in the control mode:

1) The PIO is placed in the control mode by establishing Mode 3.

2) The next control word defines which data lines are to be inputs (1) and which are
to be outputs (0').

3) The interrupt control word has, besides the usual enable in bit 7,

bit 6 = 0 to perform a logical OR of the monitored data lines for an interrupt (not
used in this case. since only one line is monitored)
bit 5 = 0 to define the active polarity of the data lines as low (for the start bitin this
case)
bit 4 = 1 to indicate that a mask word follows.
4) The next control word contains the interrupt masks. Only those port lines with a
mask bit of zero will be monitored for generating an interrupt.

The net result is for an interrupt to be generated if bit 7 is zero or changes from one to
zero. Note that further interrupts occur only when a change occurs in the status of the
logical equation. Here again, the PIO could be configured by using a table and the re-
peated block output instruction.

MORE GENERAL SERVICE ROUTINES

More general service routines that are part of a complete inter- § TASKS FOR
rupt-driven system must handle the following tasks: GENERAL SERVICE
ROUTINES

1) Saving all registers that are used in the interrupt service

routine in the Stack so that the interrupted program can be
correctly resumed.

Remember that the Z80 Push instruction transfers a register pair {or an index register}
to the Stack. PUSH AF {F is the Flag register} transfers the Accumulator and flags to the
Stack.

A routine to save all the registers in the Stack would be:

PUSH AF :SAVE ACCUMULATOR. FLAGS
PUSH BC :SAVE REGISTERS B.C

PUSH DE ;SAVE REGISTERS D.E

PUSH HL :SAVE REGISTERS H.L

PUSH IX ;SAVE INDEX REGISTER IX
PUSH Y :SAVE INDEX REGISTER 1Y

EX AF.AF

EXX

PUSH AF :SAVE PRIMED ACCUMULATOR, FLAGS
PUSH BC :SAVE PRIMED REGISTERS B,C
PUSH DE :SAVE PRIMED REGISTERS D.E
PUSH HL ;SAVE PRIMED REGISTERS H.L

Of course, only those registers that are used by the interrupt service routine must be
saved.

2) Restoring all registers from the Stack after completing the interrupt service routine.
Remember that registers must be restored in the opposite order from that in which
they were saved.

3) Enabling and disabling interrupts appropriately. Remember that the CPU automat-
ically disables its interrupts upon accepting one.

The service routines should be transparent as far as the interrupted program is con-
cerned (i.e.. they should have no incidental effects).

12-30

Any standard subroutines that are used by an interrupt service routine must be
reentrant. If some subroutines cannot be made reentrant, the interrupt service routine
must have separate versions to use.9

PROBLEMS
1) A Test Interrupt

Purpose: The computer waits for a PlO interrupt to occur, then executes the endless
loop instruction:

HERE: JR HERE
until the next interrupt occurs.

2) A Keyboard interrupt

Purpose: The computer waits for a 4-digit entry from a keyboard and places the digits
into memory locations 0040 through 0043 (first one received in 0040). Each
digit entry causes an interrupt. The fourth entry should also result in the dis-
abling of the keyboard interrupt.

Sample Problem:
Kevboard data = 04, 06, 01, 07

Result: (0040) = 04
(0041) = 06
(0042) = O1
(0043) = 07

3) A Printer Interrupt

Purpose: The computer sends four characters from memory locations 0040 to 0043
(starting with 0040) to the printer. Each character is requested by an inter-
rupt. The fourth transfer also disables the printer interrupt.

4) A Real-Time Clock Interrupt

Purpose: The computer clears memory location 0040 initially and then complements
memory location 0040 each time the real-time clock interrupt occurs.

How would you change the program so that it complements memory location 0040
after every ten interrupts? How would vou change the program so that it leaves memo-
ry location 0040 at zero for ten clock periods, FFqg for five clock periods. and so on con-
tinuously? You may want to use a display rather than memory location 0040 so that it
will be easier to see.

5) A Teletypewriter Interrupt

Purpose: The computer receives TTY data from an interrupting SIO and stores the
characters in a buffer starting in memory location 0040. The process con-
tinues until the computer receives a carriage return (0D1g).

Assume that the characters are 7-bit ASCIl with odd parity. How would you change
vour program to use a PIO? Assume that subroutine TTYRCV is available, as in the ex-
ample. Include the carriage return as the final character in the buffer.

12-31

REFERENCES

1. You may want to review the discussion of interrupts in Voiume 1 of An Introduction
to Microcomputers.

2. For a discussion of designing with interrupts, see R. L. Baldridge. “Interrupts Add
Power. Complexity to Microcomputer System Design.” EDN. August 5. 1977. pp.
67-73.

3. See Volume 2 of An Introduction to Microcomputers.

4. See An Introduction to Microcomputers, Volume 2 and 8080A/8085 Assembly
Language Programming.

5. For further discussion and some real-life examples of designing Z80-based systems
with interrupts, see pp. 5-24 through 5-37 of Z80 Programming for Logic Design
and the following:

Baldridge. R. L.."“Interrupts Add Power. Complexity to Microcomputer System
Design,”” EDN, August 5, 1977, pp. 67-73.

Pond, R. M., “Let Microprocessors Communicate,” Electronic Design, November 8,
1977, pp. 88-90.

Shima, M.. and R. Blacksher. "Improved Microprocessor Interrupt Capability,”
Electronic Design. April 26, 1978. pp. 96-100.

Weller, W. J.. Practical Microcomputer Programming: the Z80. Northern Tech-
nology Books. Evanston, HIl.. 1978.

Winston, A. W., and T. B. Smith, “Use of the Z-80 in Data Collection and Control,”
IEC! '78 Proceedings - Industrial Applications of Microprocessors, March 20-22,
1978, pp. 208-214.

The Proceedings of the IEEE's Industrial Electronics and Controi Instrumentation
Group’s Annual Meeting on “Industrial Applications of Microprocessors” contains
many interesting articles. Volumes (starting with 1975} are available from [EEE Service
Center. CP Department, 445 Hoes Lane, Piscataway, NJ 08854.

12-32

Chapter 13
PROBLEM DEFINITION AND
PROGRAM DESIGN

THE TASKS OF SOFTWARE DEVELOPMENT

In the previous chapters, we have concentrated on the writing of short programs in as-
sembly language. While this is an important topic, it is only a small part of software
development. Although writing assembly language programs is a major task for the
beginner, it soon becomes simple. By now. you should be familiar with standard
methods for programming in assembly language on the Z80 microprocessor. The next
four chapters will describe how to formulate tasks as programs and how to com-
bine short programs to form a working system.

STAGES OF
SOFTWARE
DEVELOPMENT

Software development consists of many stages. Figure
13-1 is a flowchart of the software development process. Its
stages are:

+ Problem definition
» Program design
» Coding
+ Debugging
« Testing
» Documentation
- Maintenance and redesign
Each of these stages is important in the construction of a working system. Note that

coding, the writing of programs in a form that the computer understands, is only one of
seven stages.

In fact, coding is usually the easiest stage to define and per- RELATIVE
form. The rules for writing computer programs are easy to learn. IMPORTANCE
They vary somewhat from computer to computer. but the basic OF CODING
techniques remain the same. Few software projects run into trou-

ble because of coding: indeed. coding is not the most time-consuming part of software
development. Experts estimate that a programmer can write one to ten fully debugged
and documented statements per day. Clearly, the mere coding of one to ten statements
is hardly a full day’s effort. On most software projects, coding occupies less than 25% of
the programmer’s time.

Measuring progress in the other stages is difficult. You can say MEASURING
that half of the program has been written, but you can hardly say PROGRESS
that half of the errors have been removed or half of the problem IN STAGES
has been defined. Timetables for such stages as program design.

debugging. and testing are difficult to produce. Many days or weeks of effort may result
in no clear progress. Furthermore, an incomplete job 1n one stage may result in tremen-
dous problems later. For example, poor problem definition or program design can make
debugging and testing very difficult. Time saved in one stage may be spent many times
over in later stages.

13-1

Figure 13-1. Flowchart of Software Develooment

13-2

DEFINITION OF THE STAGES

Problem definition is the formulation of the task in terms of PROBLEM

the requirements that it places on the computer. For example, DEFINITION
what is necessary to make a computer control a tool. run a series
of electrical tests, or handle communications between a central controller and a remote
instrument? Problem definition requires that you determine the forms and rates of in-
puts and outputs, the amount and speed of processing that is needed, and the types of
possibie errors and their handling. Problem definition takes a vague idea of building a
computer-controlled system and defines the tasks and requirements for the computer.

Program design is the outline of the computer program which PROGRAM
wiil perform the tasks that have been defined. In the design DESIGN
stage, the tasks are described in a way that can easily be con-
verted into a program. Among the useful techniques in this stage are flowcharting,
structured programming, modular programming, and top-down design.

Coding is the writing of the program in a form that the com-
puter can either directly understand or translate. The form may

be machine language. assembly language. or a high-level language.

Debugging. also called program verification, is making the pro- DEBUGGING

gram do what the design specified that it would do. In this

stage, you use such tools as breakpoints, traces, simulators, logic analyzers, and in-cir-
cuit emulators. The end of the debugging stage is hard to define, since you never know
when you have found the last error.

Testing, also referred to as program validation, is ensuring that TESTING
the program performs the overall system tasks correctly. The

designer uses simulators, exercisers, and various statistical techniques to get some
measure of the program’s performance.

Documentation is the description of the program in the |DOCUMENTATION]
proper form for users and maintenance personne!. Docu-
mentation also allows the designer to develop a program library so that subsequent
tasks will be far simpler. Flowcharts, comments. memory maps, and library forms are
some of the tools used in documentation.

Maintenance and redesign are the servicing, improvement, MAINTENANCE
and extension of the program. Clearly, the designer must be AND
ready to handle field problems in computer-based equipment. REDESIGN

Special diagnostic modes or programs and other maintenance
tools may be required. Upgrading or extension of the program may be necessary to
meet new requirements or handle new tasks.

The rest of this chapter will consider only the problem definition and program
design stages. Chapter 14 will discuss debugging and testing. and Chapter 15 will dis-
cuss documentation, extension, and redesign. We will bring all the stages together in
some simple systems examples in Chapter 16.

PROBLEM DEFINITION

Typical microprocessor tasks require a lot of definition. For example, what must a pro-
gram do to control a scale, a cash register, or a signal generator? Clearly. we have a
long way to go just to define the tasks involved.

13-3

DEFINING THE INPUTS

How do we start the definition? The obvious place to begin is with the inputs. We
should begin by listing ali the inputs that the computer may receive in this applica-
tion.

Examples of inputs are:
- Data blocks from transmission lines
- Status words from peripherals
. Data from A/D converters

Then, we may ask the following questions about each input: FACTORS
IN INPUT

1) What is its form; i.e.. what signals will the computer actually
receive?

2} When is the input available and how does the processor know it is available? Does
the processor have to request the input with a strobe signal? Does the input pro-
vide its own clock?

3) How long is it available?
4) How often does it change, and how does the processor know that it has changed?
5) Does the input consist of a sequence or block of data? Is the order important?

6) What should be done if the data contains errors? These may include transmission
errors, incorrect data, sequencing errors. extra data, etc.

7) s the input related to other inputs or outputs?
DEFINING THE OUTPUTS

The next step to define is the output. We must list all the outputs that the computer
must produce. Examples of outputs include:

« Data blocks to transmission lines
« Control words to peripherals
- Data to D/A converters

Then, we may ask the following questions about each output: '

1) What is its form; i.e.. what signals must the computer produce?

2) When must it be available, and how does the peripheral know it 1s available?

3) How long must it be available?

4) How often must it change. and how does the peripheral know that it has changed?
5) Is there a sequence of outputs? Is the order important?

6) What should be done to avoid transmission errors or to sense and recover from pe-
ripheral failures?

7) How is the output related to other inputs and outputs?

13-4

PROCESSING SECTION

Between the reading of input data and the sending of output results is the processing
section. Here we must determine exactly how the computer must process the in-
put data. The questions are:

1

2)

3

What is the basic procedure (algorithm) for transforming input FACTORS IN
data into output results? PROCESSING

What time constraints exist? These may include data rates,
delay times, the time constants of input and output devices, etc.

What memory constraints exist? Do we have limits on the amount of program
memory or data memory, or on the size of buffers?

What standard programs or tabies must be used? What are their requirements?
What special cases exist, and how should the program handle them?
How accurate must the results be?

How should the program handle processing errors or special conditions such as
overflow. underflow. or ioss of significance?

ERROR HANDLING

An important factqr in many applications is the handling of errors. Clearly, the
designer must make provisions for recovering from common errors and for diagnosing
malfunctions. Among the questions that the designer must ask at the definition

stage are:
1) What errors could occur? ERROR
2} Which errors are most likely? If a person operates the {CONSIDERATIONS

system, human error is the most common. Following

human errors, communications or transmission errors are more common than
mechanical. electrical, mathematical, or processor errors.

Which errors will not be immediately obvious to the system? A special problem is
the occurrence of errors that the system or operator may not recognize as incorrect.
How can the system recover from errors with a minimum loss of time and data and
vet be aware that an error has occurred?

Which errors or malfunctions cause the same system behavior? How can these er-
rors or malfunctions be distinguished for diagnostic purposes?

Which errors involve special system procedures? For example, do parity errors re-
quire retransmission of data?

Another question is: How can the field technician systematically find the source of
malfunctions without being an expert? Built-in test programs, special diagnostics, or
signature analysis can help.

13-5

HUMAN FACTORS

Many microprocessor-based systems involve human interaction. OPERATOR
Human factors must be considered throughout the develop- INTERACTION

ment process for such systems. Among the questions that the
designer must ask are:

1)
2)

3)
4)
5)
6)
7
8)
9)
10)
1M

What input procedures are most natural for the human operator?

Can the operator easily determine how to begin, continue and end the input
operations?

How is the operator informed of procedural errors and equipment malfunctions?
What errors is the operator most likely to make?

How does the operator know that data has been entered correctly?

Are displays in a form that the operator can easily read and understand?

{s the response of the system adequate for the operator?

Is the system easy for the operator to use?

Are there guiding features for an inexperienced operator?

Are there shortcuts and reasonable options for the experienced operator?

Can the operator always determine or reset the state of the system after interrup-
tions or distractions?

Building a system for people to use is difficult The microprocessor can make the
system more powerful, more flexible, and more responsive. However. the designer still
must add the human touches that can greatly increase the usefulness and attractive-
ness of the svstem and the productivity of the human operator.

EXAMPLES
Response to a Switch

Figure 13-2 shows a simple system in which the input is from DEFINING

a single SPST switch and the output is to a single LED display. SWITCH AND
In response to a switch closure, the processor turns the dis- LIGHT

play on for one second. This system should be easy to define. SYSTEM

Let us first examine the input and answer each of the questions SWITCH AND
previously presented: LIGHT INPUT

1

2)
3)
4)

5)
6)

7)

The input is a single bit. which may be either ‘0" (switch
closed) or ‘1" {switch open).

The input is always available and need not be requested.
The input is available for at least several milliseconds after the closure.

The input will seldom change more than once every few seconds. The processor
has to handle only the bounce in the switch. The processor must monitor the
switch to determine when it is closed.

There is no sequence of inputs.

The obvious input errors are switch failure, failure in the input circuitry, and the
operator attempting to close the switch again before a sufficient amount of time
has elapsed. We will discuss the handling of these errors later.

The input does not depend on any other inputs or outputs.

13-6

Input
Port I
+5v ——

Qutput
Port

CPU

The switch input 1s a '1" if the switch is open, ‘0 if the
switch is closed. The CPU applies the output to the
cathade of the LED; a ‘0 lights the display.

The next requirement in defining the system is to examine the SWITCH
output. The answers to our questions are: AND LIGHT
1) The output is a single bit, which is ‘0" to turn the display on, QUTPUTS

Figure 13-2. The Switch and Light System

‘1" to turn it off.

2) There are no time constraints on the output. The peripheral does not need to be in-
formed of the availability of data.

3) If the display is an LED, the data need be available for only a few milliseconds at a
puise rate of about 100 times per second. The observer will see a continuously lit
display.

4) The data must change (go off) after one second.

B) There is no sequence of outputs.

6) The possible output errors are display failure and failure in the output circuitry.

7) The output depends only on the switch input and time.

The processing section is extremely simple. As soon as the switch input becomes
a logic ‘0", the CPU turns the light on (a logic ‘0’) for one second. No time or memo-
ry constraints exist.

Let us now look at the possible errors and malfunctions. These SWITCH AND

are:
« Another switch closure before one second has elapsed
« Switch faiiure
« Display failure
« Computer failure

LIGHT ERROR
HANDLING

Surely the first error is the most likely. The simplest solution is for the processor to 1g-
nore switch closures until one second has elapsed. This brief unresponsive period will
hardly be noticeable to the human operator. Furthermore, ignoring the switch during
this period means that no debouncing circuitry or software is necessary. since the
system will not react to the bounce anvway.

13-7

Clearly. the last three failures can produce unpredictable results. The display may stay
on. stay off. or change state randomly. Some possible ways to isolate the failures would
be:

« Lamp-test hardware to check the display; i.e., a button that turns the light on
independently of the processor

. A direct connection to the switch to check its operation

« A diagnostic program that exercises the input and output circuits

If both the display and switch are working, the computer is at fault. A field technician
with proper equipment can determine the cause of the failure.

A Switch-Based Memory Loader

Figure 13-3 shows a system that allows the user to enter DEFINING A

data into any memory location in a microcomputer. One in- SWITCH-BASED
put port, DPORT, reads data from eight toggle switches. MEMORY LOADER
The other input port, CPORT, is used to read control infor-

mation. There are three momentary switches: High Address, Low Address and
Data. The output is the value of the last completed entry from the data switches;
eight LEDs are used for the display.

The system will also. of course, require various resistors, buffers, and drivers.

We shall first examine the inputs. The characteristics of the switches are the same as
in the previous example; however. here there is a distinct sequence of inputs, as
follows:

1) The operator must set the data switches according to the eight most significant
bits of an address, then

2) press the High Address button. The high address bits will eppear on the lights, and
the program will interpret the data as the high byte of the address.

3) Then the operator must set the data switches with the value of the least significant
byte of the address and

4) press the Low Address button. The low address bits will appear on the lights, and
the program will consider the data to be the low byte of the address.

5) Finally, the operator must set the desired data into the data switches and

6) press the Data button. The display will now show the data, and the program stores
the data in memory at the previously entered address.

The operator may repeat the process to enter an entire program. Clearly, even in this
simplified situation, we will have many possible sequences to consider. How do we
cope with erroneous sequences and make the system easy to use?

Output is no problem. After each input, the program sends to the displays the
complement (since the displays are active-low) of the input bits. The output data
remains the same until the next input operation.

The processing section remains quite simple. There are no time or memory con-
straints. The program can debounce the switches by waiting for a few milliseconds, and
must provide complemented data to the displays.

13-8

J Data Switches
(e,

—o%
oo

o

input
p— Port O/
DPORT O
oo
oo
Data SN,
‘ o—e
Bus
—L High Address
QO O
cPu S —— |;put :TJE Low Address
ort
CPORT I
Data
O O
+5V
o]
- @
———@——wv—v
——@——'w»—-«
\:> Output ‘9 vV
Port

Figure 13-3. The Switch-Based Memory Loader

13-9

The most likely errors are operator mistakes. These include: MEMORY
« Incorrect entries LOADER
ERROR
» Incorrect order HANDLING

. Incomplete entries; for example, forgetting the data

The system must be able to handle these problems in a reasonable
way. since they are certain to occur in actual operation.

The designer must also consider the effects of equipment failure. Just as before,
the possible difficulties are:

« Switch failure
« Display failure
- Computer failure

In this system. however, we must pay more attention to how these failures affect the
system. A computer failure will presumably cause very unusual behavior by the system,
and will be easy to detect. A display failure may not be immediately noticeable: here a
Lamp Test feature will allow the operator to check the operation. Note that we would
like to test each LED separately, in order to diagnose the case in which output lines are
shorted togethet In addition. the operator may not immediately detect switch failure;
however, the operator should soon notice it and establish which switch is faulty by a
process of elimination.

Let us look at some of the possible operator errors. Typical errors OPERATOR
will be: ERROR
CORRECTION
Erroneous data , IN MEMORY
« Wrong order of entries or switches LOADER
« Trving to go on to the next entry without completing the current
one

The operator will presumably notice efroneous data as soon as it appears on the dis-
plays. What is a viable recovery procedure for the operator? Some of the options are:

1) The operator must complete the entry procedure; i.e.. enter Low Address and Data
if the error occurs in the High Address. Clearly, this procedure is wasteful and
would only serve to annoy the operator.

2) The operator may restart the entry process by returning to the high address entry
steps. This solution is useful if the error was in the High Address, but forces the
operator to re-enter earlier data if the error was in the Low Address or Data stage.

3) The operator may enter any part of the sequence at any time simply by setting the
Data switches with the desired data and pressing the corresponding button. This
procedure allows the operator to make corrections at any point in the sequence.

This type of procedure should always be preferred over one that does not allow immedi-
ate error correction, has a variety of concluding steps. or enters data into the system
without allowing the operator a final check. Any added complication in hardware or
software will be justified in increased operator efficiency. You should aiways prefer to
let the microcomputer do the tedious work and recognize arbitrary sequences; it never
gets tired and never forgets what was in the operating manual.

A further helpful feature would be status lights that wouid define the meaning of the
dispiay. Three status lights, marked “High Address”. “Low Address”. and "Data”.
would let the operator know what had been entered without having to remember which
button was pressed. The processor would have to monitor the sequence, but the added
complication in software would simplify the operator’s task. Clearly, three separate sets
of displays plus the ability to examine a memory location would be even more helpful to
the operator.

13-10

" Keyboard et Kevboard Strobe
tnput Port C:Keyboard Data
Dispiay disal
Cutput Ports} isplay
e’ D XMIT }.———8 Peripheral Ready Strobe
CPU
. Output Port : To Central Computer
e RCV jatff——— Data Strobe
w From Central Computer
el B ispi
Q Status Light USY Display
Qutput Port @ READY Display

Figure 13-4. Block Diagram of a Verification Terminal

We should note that, although we have emphasized human interaction, machine
or system interaction has many of the same characteristics. The microprocessor
should do the work. If complicating the microprocessor’'s task makes error recov-
ery simple and the causes of failure obvious, the entire system will work better
and be easier to maintain. Note that you should not wait until after the software has
been completed to consider system use and maintenance: instead. you should include
these factors in the problem definition stage.

A Verification Terminal

Figure 13-4 is a block diagram of a simple credit-verification
terminal. One input port derives data from a keyboard (see
Figure 13-5); the other input port accepts verification data
from a transmission line. One output port sends data to a set of
displays (see Figure 13-6); another sends the credit card number to the central
computer. A third output port turns on one light whenever the terminal is ready to
accept an inquiry, and another light when the operator sends the information. The
“‘Busy’’ light turns off when the response returns. Clearly, the input and output of
data will be more complex than in the previous case, although the processing is still
simpie.

DEFINING A
VERIFICATION
TERMINAL

13-11

4 § 6 CLEAR

1 2 3 SEND

The digit keys allow digit entries.
CLEAR deletes the entire entry.
SEND transmits the entry to the central computer.

Figure 13-5. Verification Terminal Keyboard

READY BUSY
by B e oy iy S oy Y oy
I oy I o B e B Dy B ey Y e B oy B ey Yy |

The display consists of ten 7-segment displays, which may be multiplexed, controiled by a shift
register, or addressed separately. Two additional lights, READY and BUSY, are also present.

Figure 13-6. Verification Terminal Display

13-12

Additional displays may be useful to emphasize the meaning of the response. Many ter-
minals use a green light for “Yes". a red light for “No", and a yellow light for “Consult
Store Manager.” Note that these lights will still have to be clearly marked with their
meanings to allow for a color-blind operator.

VERIFICATION
TERMINAL
INPUTS

Let us first look at the keyboard input. This is. of course,
different from the switch input, since the CPU must have some
way of distinguishing new data. We will assume that each key
closure provides a unique hexadecimal code (we can code
each of the 12 keys into one digit) and a strobe. The program will have to recogn-
ize the strobe and fetch the hexadecimal number that identifies the key. There isa
time constraint, since the program cannot miss any data or strobes. The constraint is
not serious, since keyboard entries will be at least several milliseconds apart.

The transmission input similarly consists of a series of characters, each identified
by a strobe (perhaps from a UART). The program will have to recognize each
strobe and fetch the character. The data being sent across the transmission lines
is usually organized into messages. A possible message format is:

« Introductory characters. or header

» Terminal destination address

» Coded ves or no

» Ending characters, or trailer
The terminal will check the header. read the destination address, and see if the
message is intended for it. If the message is for the terminal, the terminal accepts the
data. The address could be (and often is) hard-wired into the terminal so that the ter-

minal receives only messages intended for it. This approach simplifies the software at
the cost of some flexibility.

The output is also more complex than in the earlier examples. | VERIFICATION
If the displays are multiplexed, the processor must not only | TERMINAL
send the data to the display port but must also direct the data | OUTPUTS

to a particular display. We will need either a separate control port

or a counter and decoder to handle this. Note that hardware blanking controls can
blank leading zeros as long as the first digit in a multi-digit number is never zero. Soft-
ware can also handle this task. Time constraints include the pulse length and frequency
required to produce a continuous display for the operator.

The communications output will consist of a series of characters with a particular
format. The program will also have to consider the time required between charac-
ters. A possible format for the output message is:

« Header

» Terminal address

» Credit card number

» Trailer

A central communications computer may poll the terminals, checking for data
ready to be sent.

The processing in this system involves many new tasks, such as:

» ldentifying the control keys by number and performing the proper actions
+ Adding the header. terminal address, and trailer to the outgoing message
+ Recognizing the header and trailer in the returning message

« Checking the incoming terminal address

13-13

Note that none of the tasks involve any complex arithmetic or any VERIFICATION
serious time or memory constraints. TERMINAL

The number of possible errors in this system is, of course, E&?‘J%HLING
much larger than in the earlier examples. Let us first consider
the possible operator errors. These include:

- Entering the credit card number incorrectly

- Trying to send an incomplete credit card number

« Trying to send another number while the central computer is processing one
« Clearing non-existent entries

Some of these errors can be easily handled by correctly structuring the program. For ex-
ample, the program should not accept the Send key until the credit card number has
been completely entered. and it should ignore any additional keyboard entries until the
response comes back from the central computer. Note that the operator will know that
the entry has not been sent, since the Busy light will not go on. The operator will also
know when the keyboard has been locked out {the program is ignoring keyboard en-
tries), since entries will not appear on the display and the Ready light will be off.

Incorrect entries are an obvious problem. If the operator recog- CORRECTING
nizes an error. he can use the Clear key to make corrections. The KEYBOARD
operator would probably find it more convenient to have two Clear ERRORS

kevs. one that cleared the most recent key and one that cleared
the entire entry. This would allow both for the situation in which the operator recog-
nizes the error immediately and for the situation in which the operator recognizes the
error late in the procedure. The operator should be able to correct errors immediately
and have to repeat as few keys as possible. The operator will, however, make a certain
number of errors without recognizing them. Most credit card numbers include a self-
checking digit; the terminal could check the number before permitting it to be sent to
the central computer. This step would save the central computer from wasting precious
processing time checking the number.

This requires. however, that the terminal have some way of informing the operator of
the error, perhaps by flashing one of the displays or by providing some other special in-
dicator that the operator is sure to notice.

Still another problem is how the operator knows that an entry has been lost or pro-
cessed incorrectly. Some terminals simply unlock after a maximum time delay. The
operator notes that the Busy light has gone off without an answer being received. The
operator is then expected to try the entry again. After one or two retries, the operator
should report the failure to supervisory personnel.

Many equipment failures are also possible. Besides the displays, keyboard, and
processor, there now exist the problems of communications errors or failures and
central computer failures.

13-14

The data transmission will probably have to include error checking and correcting pro-
cedures. Some possibilities are:

1) Parity provides an error detection facility-but no correction CORRECTING
mechanism. The receiver will need some way of request- TRANSMISSION
ing retransmission, and the sender will have to save a copy ERRORS
of the data until proper reception is acknowledged. Parity
is, however, very simple to implement.

2) Short messages may use more elaborate schemes. For example, the ves/no
response to the terminal could be coded so as to provide error detection and cor-
rection capability.

3) An acknowledgement and a limited number of retries could trigger an indicator
that would inform the operator of a communications failure (inability to transfer a
message without errors) or central computer failure {no response at all to the
message within a certain period of time). Such a scheme. along with the Lamp
Test, would allow simple failure diagnosis.

A communications or central computer failure indicator should also “unlock” the ter-
minal, i.e., allow it to accept another entry. This is necessary if the terminal will not ac-
cept entries while a verification is in progress. The terminal may also unlock after a cer-
tain maximum time delay. Certain entries could be reserved for diagnostics; i.e.. certain
credit card numbers could be used to check the internal operation of the terminal and
test the displays.

REVIEW OF PROBLEM DEFINITION

Problem definition is as important a part of software development as it is of any
other engineering task. Note that it does not require any programming or
knowledge of the computer; rather, it is based on an understanding of the system
and sound engineering judgment. Microprocessors can offer flexibility that the
designer can use to provide a range of features which were not previously availa-
ble.

Problem definition is independent of any particular computer, computer language,
or development system. It should, however, provide guidelines as to what type or
speed of computer the application will require and what kind of hard-
ware/software trade-offs the designer can make. The problem definition stage is
in fact independent of whether or not a computer is used at all, aithough a
knowledge of the capabilities of the computer can help the designer in suggesting
possible implementations of procedures.

13-16

PROGRAM DESIGN

Program design is the stage in which the problem definition is formulated as a pro-
gram. If the program is small and simple, this stage may involve little more than
the writing of a one-page flowchart. If the program is larger or more complex, the
designer should consider more elaborate methods

We will discuss flowcharting, modular programming, structured programming, and
top-down design. We will try to indicate the reasoning behind these methods, and
their advantages and disadvantages. We will not, however, advocate any particular
method since there is no evidence that one method is always superior to all others. You
should remember that the goal is to produce a good working system. not to follow
religiously the tenets of one methodology or another.

All the methodologies do, however, have some obvious princi- BASIC

ples in common. Many of these are the same principles that apply PRINCIPLES

to any kind of design. such as: OF PROGRAM
1} Proceed in small steps. Do not try to do too much at one DESIGN

2)

5)
6)

7)

8)
9)

10)

1M

time.

Divide large jobs into small, logically separate tasks. Make the sub-tasks as inde-
pendent of one another as possible, so that they can be tested separately and so
that changes can be made in one without affecting the others.

Keep the flow of control as simple as possible so as to make it easier to find errors.
Use pictorial or graphic descriptions as much as possible. They are easier to
visualize than word descriptions. This is the great advantage of flowcharts.
Emphasize clarity and simplicity at first. You can improve performance (if necess-
ary) once the system is working.

Proceed in a thorough and systematic manner. Use checklists and standard pro-
cedures.

Do not tempt fate. Either do not use methods that vou are not sure of. or use them
very carefully. Watch for situations that might cause confusion, and clarify them
as soon as possible.

Keep in mind that the system must be debugged. tested and maintained. Plan for
these later stages.

Use simple and consistent terminology and methods. Repetitiveness is no fault in
program design, nor is complexity a virtue.

Have your design completely formulated before vou start coding. Resist the
temptation to start writing down instructions: it makes no more sense than mak-
ing parts lists or laying out circuit boards before you know exactly what will be in
the system.

Be particularly careful of factors that may change. Make the implementation of
likely changes as simple as possible.

13-16

Input/Output

Processing operation
{Arithmetic, Logic, Data Movement)

Decision logic

Subroutine

Connector point

Connector arrows

Terminal point

U100l

{Beginning or Ending}

Figure 13-7. Standard Flowchart Symbols

FLOWCHARTING

Flowcharting is certainly the best-known of all program design methods. Programming
textbooks describe how programmers first write complete flowcharts and then start
writing the actual program. In fact. few programmers have ever worked this way, and
flowcharting has often been more of a joke or a nuisance to programmers than a design
method. We will try to describe both the advantages and disadvantages of flowcharts,
and show the place of this technique in program design.

The basic advantage of the flowchart is that it is a pictorial |ADVANTAGES OFI
representation. People find such representations much more |FLOWCHARTING

meaningful.than written descriptions. The designer can visual- i
ize the whole system and see the relationships of the various parts. Logical errors and

inconsistencies often stand out instead of being hidden in a printed page. At its best,
the flowchart is a picture of the entire system.

13-17

Some of the more specific advantages of flowcharts are:

1

2)
3)

4)

5)
6)

These advantages are all important. There is no question that |DISADVANTAGES
flowcharting will continue to be widely used. But we should [OF

note some of the disadvantages of flowcharting as a pro- [FLOWCHARTING
gram design method, e.g.:

1
2)
3)
4)
5)

6}

Standard symbols exist {see Figure 13-7} so that flowcharting forms are widely
recognized.

Flowcharts can be understood by someone without a programming background.

Flowcharts can be used to divide the entire project into sub-tasks. The flowchart
can then be examined to measure overall progress.

Flowcharts show the sequence of operations and can therefore aid in locating the
source of errors.

Flowcharting is widely used in other areas besides programming.

There are many tools available to aid in flowcharting. including programmer's
templates and automated drawing packages.

Flowcharts are difficult to design, draw, or change in all except the simplest situa-
tions.

There is no easy way to debug or test a flowchart.
Flowcharts tend to become cluttered. Designers find it difficult to balance between

the amount of detail needed to make the flowchart useful and the amount that
makes the flowchart little better than a program listing.

Flowcharts show only the program organization. They do not show the organization
of the data or the structure of the input/output modules.

Flowcharts do not help with hardware or timing problems or give hints as to where
these problems might occur.

Flowcharts allow for highly unstructured design. Lines and arrows backtracking

and looping all over the chart are the antithesis of good structured design princi-
ples.

Thus, flowcharting is a helpful technique that vou should not try to extend too far.
Flowcharts are useful as program documentation, since they have standard forms
and are comprehensible to non-programmers. As a design tool. however, flowcharts
cannot provide much more than a starting outline; the programmer cannot debug a
detailed flowchart and the flowchart is often more difficult to design than the program
itself.

13-18

EXAMPLES
Response to a Switch

This simple task, in which a single switch turns on a light FLOWCHARTING
for one second, is easy to flowchart. In fact, such tasks are SWITCH AND
typical examples for flowcharting books, although they form a LIGHT SYSTEM
small part of most systems. The data structure here is so simple
that it can be safely ignored.

Figure 13-8 is the flowchart. There is little difficulty in deciding on the amount of
detail required. The flowchart gives a straightforward picture of the procedure, which
anyone could understand.

Note that the most useful flowcharts may ignore program variables and ask questions
directly. Of course. compromises are often necessary here. Two versions of the
flowchart are sometimes helpful — one general version in layman’s language,
which will be useful to non-programmers, and one programmer’s version in terms
of the program variables, which will be useful to other programmers.

A third type of flowchart, a data flowchart, may also be [DATA

helpful. This flowchart serves as a cross-reference for the other |FLOWCHARTS
flowcharts, since it shows how the program handles a particular
type of data. Ordinary flowcharts show how the program proceeds. handling different
types of data at different points. Data flowcharts, on the other hand, show how particu-
lar types of data move through the system, passing from one part of the program to
another. Such flowcharts are very useful in debugging and maintenance. since errors
most often show up as a particular type of data being handled incorrectly.

13-19

Turn fight on

Has

1 second

elapsed
?

Turn light off

Figure 13-8. Flowchart of One-Second Response to a Switch

The Switch-Based Memory Loader

This system (see Figure 13-3) is considerably more complex
than the previous example, and involves many more decisions.
The flowchart (see Figure 13-9) is more difficuit to write
and not as straightforward as the previous example. In this
example, we face the problem that there is no way to debug or
test the flowchart.

FLOWCHARTING
THE
SWITCH-BASED
MEMORY LOADER

The flowchart in Figure 13-9 includes the improvements we suggested as part of the
problem definition. Clearly, this flowchart is beginning to get cluttered and lose its
advantages over a written description. Adding other features that define the mean-
ing of the entry with status lights and allow the operator to check entries after comple-
tion would make the flowchart even more complex. Writing the complete flowchart
from scratch could quickly become a formidable task. However, once the program has

been written, the flowchart is useful as documentation.

13-20

High byte of
Address =
Switches

Low byte of
Address =
Switches

Data = Switches

Y

]

y

Lights = Switches

Lights = Switches

Y

¥

Lights = Switches

¥

Wait
debounce
time

Wait
debounce
time

Store Data
at Address

Still
High Address
button ?

Figure 13-9. Flowchart of Switch-Based Memory Loader

13-21

Clear Entry Array

Key Pointer = Start
of Entry Array

Key Counter =0

i
‘
?

Key = Keyboard
input Data
{Key Pointer} = Key

Y

Key Pointer =

Key Pointer + 1
Key Counter =

Kay Counter + 1

R

Yes
s
No

Figure 13-10. Flowchart of Keyboard Entry Process

The Credit-Verification Terminal

In this application (see Figures 13-4 through 13-6), the
flowchart will be even more complex than in the switch-based
memory loader case. Here, the best idea is to flowchart sec-
tions separately so that the flowcharts remain manageable.
However, the presence of data structures (as in the multi-digit
display and the messages! will make the gap between
flowchart and program much wider.

FLOWCHARTING
THE CREDIT
VERIFICATION

FLOWCHARTING
SECTIONS

Let us look at some of the sections. Figure 13-10 shows the keyboard entry process
for the digit keys. The program must fetch the data after each strobe and place the
digit into the display array if there is room for it. If there are already ten digits in the ar-

ray. the program simply ignores the entry.

The actual program will have to handle the displays at the same time. Note that either
software or hardware must de-activate the keyboard strobe after the processor reads a

digit.

13-22

Clear Displav Array

Key Pointer = Start
aof Display Array

Key Counter =0

Key = Keyboard
Input Data

Is

Kev Send
?

Koy Po K

Kev Pointer =
Key Pointer + 1

Kev Counter =

Key Counter + 1

Figure 13-11. Flowchart of Keyboard Entry Process with Send Key

Figure 13-11 adds the Send key. This key. of course, is optional. The terminal could
just send the data as soon as the operator enters a complete number. However, that
procedure would not give the operator a chance to check the entire entry. The
flowchart with the Send key is more complex because there are two alternatives.

1) If the operator has not entered ten digits. the program must ignore the Send key
and place any other key into the entry.

2) If the operator has entered ten digits. the program must respond to the Send key by
transferring control to the Send routine, and ignore all other keys.

Note that the flowchart has become much more difficult to organize and to follow.
There is also no obvious way to check the flowchart.

13-23

Clear Display Array

Key Pointer = Start
of Display Armay

Key Counter = 0

Key = Keyboard
input Data

Yes
Key Counter 10

No
is Yes No
Key Send
» £
I No
{Kev Pointer} = Key

Key Pointer =
Key Pointer + 1

l

is
Key Send

Figure 13-12. Flowchart of Keyboard Entry Process with Function Kevs

Figure 13-12 shows the flowchart of the keyboard entry process with all the func-
tion keys. In this example, the flow of control 1s not simple. Clearly, some written
description i1s necessary. The organization and lavout of complex flowcharts requires
careful planning. We have followed the process of adding features to the flowchart one
at a time, but this still results in a large amount of redrawing. Again we should remem-
ber that throughout the keyboard entry process. the program must also refresh the dis-
plays if they are multiplexed and not controlled by shift registers or other hardware.

13-24

Header flag =0
Parity Errar flag =0
Address Match flag=0
Address Pointer =Start

of terminal address
Address Counter =0
Nmess =0

3 character ready
92

Yes Address

Match flag 1
?

Parity correct
?

Messg (Nmessi =
Character
Nmess =Nmsss + 1

Parity Error

Yes

Address
Counter 3
i

Address Match
flag = 1

Header flag = 1

Address Counter =
Address Counter+ 1 Turn off Busy

Address Pointer = light
Address Pointer + 1

i i
‘ Uisplay answer ’

RTRAN

Figure 13-13. Flowchart of Receive Routine

13-25

Figure 13-13 is the flowchart of a receive routine. We assume that the serial/paralle!
conversion and error checking are done in hardware (e.g.. by a UART). The processor
must:

1) Look for the header (we assume that it is a single character).

2) Read the destination address (we assume that it is three characters long) and see if
the message is meant for this terminal: i.e.. if the three characters agree with the
terminal address.

3) Wait for the trailer character.

4) |f the message is meant for the terminal, turn off the Busy light and go to Display
Answer routine.

5) In the event of any errors, request retransmission by going to RTRAN routine.

This routine invoives a large number of decisions, and the flowchart is neither simple
nor obvious.

Clearly, we have come a long way from the simple flowchart {Figure 13-8) of the
first example. A complete set of flowcharts for the transaction terminal would be
a major task. It would consist of several interrelated charts with complex logic. and
would require a farge amount of effort. Such an effort would be just as difficult as writ-
ing a preliminary program. and not as useful, since vou could not check it on the com-
puter.

MODULAR PROGRAMMING

Once programs become large and complex, flowcharting is no longer a satisfactory
design tool. However, the problem definition and the flowchart can give vou some idea
as to how to divide the program into reasonable sub-tasks. The division of the entire
program into sub-tasks or modules is called ‘‘modular programming.”’ Clearly, most
of the programs we presented in earlier chapters would typically be modules in a large
system program. The problems that the designer faces in modular programming are
how to divide the program into modules and how to put the modules together.

The advantages of modular programming are obvious: ADVANTAGES
OF MODULAR

1 A [1 . d X
) single module is easier to write, debug. and test than an PROGRAMMING

entire program.

2) A module is likely to be useful in many places and in other
programs, particularly if it is reasonably general and performs a common task. You
can build up a library of standard modules.

3) Modular programming allows the programmer to divide tasks and use previously
written programs.

4) Changes can be incorporated into one module rather than into the entire system.

5) Errors can often be isolated and then attributed to a single module.

6) Modular programming gives an idea of how much progress has been made and
how much of the work is left.

13-26

The idea of modular programming is such an obvious one |DISADVANTAGES
that its disadvantages are often ignored. These include: OF MODULAR

1)
2)

3

B)

Fitting the modufes together can be a major problem. par- PROGRAMMING

ticularly if different people write the modules.
Modules require very careful documentation, since they may affect other parts of
the program, such as data structures used by all the modules.

Testing and debugging modules separately is difficult. since other modules may
produce the data used by the module being debugged and still other modules may
use the results. You may have to write special programs (called “drivers”) just to
produce sample data and test the programs. These drivers require extra program-
ming effort that adds nothing to the system.

Programs may be very difficult to modularize. If you modularize the program poorly,
integration will be very difficuit, since almost all errors and changes will invoive
several modules.

Modular programs often require extra time and memory, since the separate
moduies may repeat functions.

Therefore. while modular programming is certainly an improvement over trying to write
the entire program from scratch, it does have some disadvantages as well.

Important considerations include restricting the amount of information shared by
modules, limiting design decisions that are subject to change to a single module
and restricting the access of one module to another.

An obvious problem is that there are no proven, PRINCIPLES OF
systematic methods for modularizing programs. We MODULARIZATION
should mention the following principles:

1
2)

Modules that reference common data should be parts of the same overall module.
Two modules in which the first uses or depends on the second. but not the reverse,
should be separate.

A module that is used by more than one other module should be part of a different
overall module than the others.

Two modules in which the first is used by many other modules and the second is
used by only a few other modules should be separate.

Two modules whose frequencies of usage are significantly different shouid be part
of different modules.

The structure or organization of related data should be hidden within a single
module.

If you find it very difficult to modularize your program, it is a strong indication that
the problem is poorly defined, and redefinition is called for. Too many special cases.
each requiring special handling. or the use of a large number of variables, each requir-
ing special processing. are problems that can be most efficiently handled. by redefining
the tasks at hand.

13-27

EXAMPLES
Response to a Switch

This simple program can be divided into two modules: MODULARIZING
N . THE SWITCH

Module 1 waits for the switch to be turned on and turns AND LIGHT

the light on in response. SYSTEM

Module 2 provides the one-second delay.

Module 1 is likely to be specific to the system. since it will depend on how the switch
and light are attached. Module 2 will be generally useful. since many tasks require
delays. Clearly. it would be advantageous to have a standard delay module that could
provide delays of varving lengths. The module will require careful documentation so
that vou will know how to specify the length of the delay. how to call the module, and
what registers and memory locations the module affects.

A general version of Module 1 would be far less useful, since it would have to deal with
different types and connections of switches and lights.

You would probably find it simpler to write a module for a particular configuration of
switches and lights rather than try to use a standard routine. Note the difference be-
tween this situation and Module 2.

The Switch-Based Miemory Loader

The switch-based memory loader is difficult to modularize, |MODULARIZING
since all the programming tasks depend on the hardware |THE

configuration and the tasks are so simple that modules |SWITCH- BASED
hardly seem worthwhile. The flowchart in Figure 13-9 sug- |MEMORY LOADER
gests that one module might be the one that waits for the
operator to press one of the three pushbuttons.

Some other modules might be:
« A delay module that provides the delay required to debounce the switches

« A switch and display module that reads the data from the switches and sends it to
the displays

« A Lamp Test module

Highly system-dependent modules such as the last two are unlikely to be generally
useful. This example is not one in which modular programming offers great advantages.

The Verification Terminal

The verification terminal, on the other hand. lends itself very MODULARIZING
well to modular programming. The entire system can easily be THE
divided into three main modules: VERIFICATION

- Keyboard and display module TERMINAL

« Data transmission module
- Data reception module
A general keyboard and display module could handle many keyboard- and display-
based systems. The sub-modules would perform such tasks as:
« Recognizing a new keyboard entry and fetching the data
» Clearing the array in response to a Clear key
+ Entering digits into storage
« Looking for the terminator or Send key
- Displaying the digits

13-28

Although the key interpretations and the number of digits will vary, the basic entry.
data storage, and data display processes will be the same for many programs. Such
function keys as Clear would also be standard. Clearly, the designer must consider
which modules will be useful in other applications, and pay careful attention to
those modules.

The data transmission module could also be divided into such sub-modules as:

1) Adding the header character.

2) Transmitting characters as the output line can handle them.

3) Generating delay times between bits or characters.

4) Adding the trailer character.

5) Checking for transmission failures. i.e.. no acknowledgement or inability to
transmit without errors.

The data reception module could include sub-modules which:

1} Look for the header character.

2) Check the message destination address against the terminal address.
3) Store and interpret the message.

4) Look for the trailer character.

B) Generate bit or character delays.

Note here how important it is that each design decision (such as | INFORMATION
the bit rate. message format. or error-checking procedure) be im- | HIDING
plemented in only one module. A change in any of these decisions | PRINCIPLE

will then require changes only to that single module. The other
modules should be written so that they are totally unaware of the values chosen or the
methods used in the implementing module. An important concept here is the “’infor-
mation-hiding principle,"5 whereby modules share only information that is ab-
solutely essential to getting the task done. Other information is hidden within a
single module.

An important use of this principle is in error handling. Whenever a module detects a
lethal error, it should not undertake recovery procedures. Instead, it should pass the er-
ror status back up to the calling module and allow it to make the decision of how to
recover from the error. The reason for this is that the lower level procedure often does
not have enough information to adequately decide what recovery procedures are
necessary. For example, suppose we have a module that accepts numeric input from a
user. This module terminates normally when the user enters a string of numeric digits
terminated by a carriage return. Entry of any non-numeric characters causes the
module to immediately terminate abnormally. Since the module does not know in what
context it is being used (i.e.. is it part of an assembler, an interactive editor, or a file
management system?) it cannot make a valid decision of what action to take when en-
countering an invalid character. If a single error recovery method was designed into the
module, it would lose its generality and become specific to those situations that employ
this error recovery technique.

13-29

REVIEW OF MODULAR PROGRAMMING

Modular programming can be very helpful if you abide by RULES FOR
the following rules: MODULAR
PROGRAMMING

1) Use modules of 20 to 50 lines. Shorter modules are
usually a waste of time, while longer modules are seldom
general and may be difficult to integrate.

2) Try to make modules reasonably general. Differentiate between common
features like ASCIl code or asynchronous transmission formats, which will be the
same for many applications and key identifications, and number of displays or
number of characters in a message. which are likely to be unigue to a particular ap-
plication. Make the changing of the latter parameters simple. Major changes like
different character codes should be handled by separate modules.

3) Take extra time on modules like delays, display handlers, keyboard handlers. etc.
that will be useful in other projects or in many different places in the present
program.

4) Try to keep modules as distinct and logically separate as possible. Restrict the
flow of information between modules and implement each design decision in a
single module.

5) Do not try to modularize simple tasks where rewriting the entire task may be
easier than assembling or modifying the module.

STRUCTURED PROGRAMMING

How do you keep modules distinct and stop them from interacting? How do you
write a program that has a clear sequence of operations so that you can isolate
and correct errors? One answer is to use the methods known as “’structured pro-
gramming’’, whereby each part of the program consists of elements from a limited
set of structures and each structure has a single entry and a single exit.

Figure 13-14 shows a flowchart of an unstructured program. If an error occurs in
Module B, we have five possible sources for that error. Not only must we check each se-
qguence, but we also have to make sure that any changes made to correct the error do
not affect any of the other sequences. The usual result is that debugging becomes like
wrestling an octopus. Every time vou think the situation 1s under control. there is
another loose tentacle somewhere.

13-30

No

Yes

No

The solution is to establish a clear sequence of operations so BASIC

that you can isolate errors. Such a sequence uses single-entry, STRUCTURES
single-exit modules. The basic modules that are needed are: OF

1) An ordinary sequence; i.e.. a linear structure in which ggg‘éﬁ?ﬁl&?NG

Figure 13-14. Flowchart of an Unstructured Program

statements or structures are executed consecutively. In
the sequence:

S1

S2

S3

the computer executes S1 first, S2 second. and S3 third. S1, S2, and S3 may be
single instructions or entire programs.

A conditional structure.

The common one is “if C then S1 else S2." where C is a condition and S1 and S2
are statements or sequences of statements. The computer executes S1 if C is true,
and S2 if C is false. Figure 13-15 shows the logic of this structure. Note that the
structure has a single entry and a single exit: there is no way to enter or leave S1 or
S2 other than through the structure.

A loop structure.

The common loop structure is “while C do S.” where C is a condition and S is a
statement or sequence of statements. The computer checks C and executes Sif C
is true. This structure (see Figure 13-16) also has a single entry and a single exit.
Note that the computer will not execute S at all if C is onginally false, since the
value of C 1s checked before S is executed.

13-31

S1 S2

Figure 13-15. Flowchart of the If-Then-Else Structure

Figure 13-16. Flowchart of the Do-While Structure

In most structured programming languages. an alternative looping construct is pro-
vided. This construct is known as the do-until clause, Its basic structure is “do S until
C”. where C is a condition and S is a statement or sequence of statements. It is similar
to the do-while construct except that the test of the looping condition C is performed at
the end of the loop. This has the effect of guaranteeing that the loop is always executed
at least once. This 1s illustrated by the flowchart in Figure 13-17. The common index-
controlled or DO loop can be implemented as a special case of either of these two basic
looping constructs.

13-32

Start

S
0 Yes
No

End

4)

Figure 13-17. Flowchart of the Do-Until Structure

A case structure.

Although not a primitive structure like sequential, if-then-else, and do-while, the
case structure is so commonly used that we include it here as an adjunct to the
basic structure descriptions. The case structure is “case | of SO, S1. .. .Sn", where |
1s an index and SO. S1, . . .Sn are statements or sequences of statements. If | is
equal to zero then statement SO is executed:; if | is equal to 1 then statement S1 is
executed. etc. Only one of the n statements is executed. After its execution, control
passes to the next sequential statement following the case statement group. If | is
greater than n (i.e.. the number of statements in the case statement), then none of
the statements in the case statement is executed, and control is passed directly to
the next sequential statement following the case statement. This s illustrated by
the flowchart in Figure 13-18.

Note the following features of structured programming:

1)
2)

3)

Some examples of the conditional structure illustrated in EXAMPLES
Figure 13-15 are: OF
1) S2 included: STRUCTURES

Only the three basic structures, and possibly a small number of auxiliary
structures, are permitted.

Structures may be nested to any level of complexity so that any program can,
in turn, contain any of the structures.

Each structure has a single entry and a single exit.

if X > 0 then NPOS = NPOS + 1
else NNEG = NNEG + 1

Both S1 and S2 are single statements.

2)

S2 omitted:
if X#0 then Y = 1/X

Here no action is taken if C {X #0) is false. S2 and “else” can be omitted in this case.

13-33

Figure 13-18. Flowchart of the Case Structure

Some examples of the loop structure illustrated in Figure 13-16 are:

1} Form the sum of integers from 1 to N.
=0
SUM =0
do while I <N
=141
SUM =SUM +1
end

The computer executes the loop as long as | < N. If N =0, the program within the “do-
while” is not executed at all.
2) Count characters in an array SENTENCE until you find an ASCH period.

NCHAR =0

do while SENTENCE (NCHAR) # PERIOD
NCHAR = NCHAR + 1

end

The computer executes the loop as long as the character in SENTENCE is.not an ASCH
period. The count is zero if the first character is a period.

13-34

The advantages of structured programming are: ADVANTAGES OF

1)

2)

STRUCTURED

The sequence of operations is simple to trace. This allows PROGRAMMING

vou to test and debug easily.

The number of structures is limited and the terminology is
standardized.

The structures can easily be made into modules.

Theoreticians have proved that the given set of structures is complete; that is, all
programs can be written in terms of the three structures.

The structured version of a program is partly self-documenting and fairly easy to
read.

Structured programs are easy to describe with program outlines.

Structured programming has been shown in practice to increase programmer pro-
ductivity.

Structured programming basically forces much more discipline on the programmer
than does modular programming. The result is more systematic and better-
organized programs.

The disadvantages of structured programming are: DISADVANTAGES

1)

2)

3)

5)

6)

Only a few high-level languages (e.g.. PL/M, PASCAL) will oF
: STRUCTURED

directly accept the structures. The programmer therefore PROGRAMMING

has to go through an extra translation stage to convert the

structures to assembly language code. The structured ver-

sion of the program, however, is often useful as documentation.

Structured programs often execute more slowly and use more memory than

unstructured programs.

Limiting the structures to the four basic forms makes some tasks very awkward to
perform. The completeness of the structures only means that all programs can be
implemented with them: it does not mean that a given program can be imple-
mented efficiently or convenientiy.

The standard structures are often quite confusing, e.g.. nested "if-then-else” struc-
tures may be very difficult to read. since there may be no clear indication of where

the inner structures end. A series of nested “"do-while” loops can also be difficult to
read.

Structured programs consider only the sequence of program operations, not the
flow of data. Therefore. the structures may handle data awkwardly.

Few programmers are accustomed to structured programming. Many find the stan-
dard structures awkward and restrictive.

We are neither advocating nor discouraging the use of structured programming. It
is one way of systematizing program design. In general, structured programming
is most useful in the following situations:

« Larger programs, perhaps exceeding 1000 instructions WHEN TO USE
« Applications in which memory usage is not critical. STRUCTURED
+ Low-volume applications where software development costs, PROGRAMMING

particularly testing and debugging. are important factors.

« Applications invoiving string manipulation. process control.
or other algorithms rather than simple bit manipulations.

13-35

In the future, we expect the cost of memory to decrease, the average size of
microprocessor programs to increase, and the cost of software development to
increase. Therefore, methods like structured programming, which decrease soft-
ware development costs for larger programs but use more memory, will become
more valuable.

Just because structured programming concepts are usually expressed in high-level
languages does not mean that structured programming is not applicable to assembly
language programming. On the contrary, the assembly language programmer, with the
total freedom of expression that assembly level programming allows. needs the struc-
turing concepts provided by structured programming. Creating modules with single
entry and exit points, using simple control structures and keeping the complexity of
each module minimal makes assembly language coding more efficient.

EXAMPLES
Response to a Switch

The structured version of this example is: STRUCTURED
SWITCH = OFF m‘gﬁ:AMMING
“aEAD SwiTCH SWITCH AND
end LIGHT SYSTEM
LIGHT = ON
DELAY 1
LIGHT = OFF

ON and OFF must have the proper definitions for the switch and light. We assume that
DELAY is a module that provides a delay given by its parameter in seconds.

A statement in a structured program may actually be a subroutine. However, in order to
conform to the rules of structured programming, the subroutine cannot have any exits
other than the one that returns control to the main program.

Since “do-while” checks the condition before executing the loop. we set the variable
SWITCH to OFF before starting. The structured program is straightforward, readable,
and easy to check by hand. However, it would probably require somewhat more memo-
ry than an unstructured program, which would not have to initialize SWITCH and could
combine the reading and checking procedures.

The Switch-Based Memory Loader

The switch-based memory loader is a more complex struc- |STRUCTURED
tured programming problem. We may implement the PROGRAMMING
flowchart of Figure 13-9 as follows (an - indicates a com- |FOR THE

ment): SWITCH-BASED
MEMORY LOADER

« INITIALIZE VARIABLES
HIADDRESS =0
LOADDRESS =0

« THIS PROGRAM USES A DO-WHILE CONSTRUCT WITH NO CONDITION

« (CALLED SIMPLY DO-FOREVER). THEREFORE. THE SYSTEM CONTINUALLY
« EXECUTES THE PROGRAM CONTAINED IN THIS DO-WHILE LOOP.

do forever

13-36

+ TEST FOR HIADDRESS BUTTON; PERFORM THE REQUIRED PROCESSING
«IFIT IS ON.

if HHADDRBUTTON = 1 then
begin
HIADDRESS = SWITCHES
LIGHTS = SWITCHES
do
DELAY (DEBOUNCE TIME)
until HITADDRBUTTON # 1
end

+ TEST FOR LOADDRESS BUTTON: PERFORM LOW ADDRESS PROCESSING
- IFIT IS ON.

if LOADDRBUTTON = 1 then
begin
LOADDRESS = SWITCHES
LIGHTS = SWITCHES
do
DELAY (DEBOUNCE TIME)
until LOADDRBUTTON # 1
end

« TEST FOR DATABUTTON, AND STORE DATA INTO MEMORY
«IFIT IS ON.

if DATABUTTON =1 then

begin
DATA = SWITCHES
LIGHTS = SWITCHES
{(HIADDRESS, LOADDRESS) = DATA
do

DELAY (DEBOUNCE TIME)

untii DATABUTTON # 1

end

end

.

« THE LAST END ABOVE TERMINATES THE
. do forever LOOP

Structured programs are not easy to write, but they can give a great deal of insight into
the overall program logic. You can check the logic of the structured program by hand
before writing any actual code.

13-37

The Credit-Verification Terminal

Let us look at the keyboard entry for the transaction terminal. STRUCTURED
We will assume that the display array is ENTRY. the keyboard |PROGRAM FOR
strobe is KEYSTROBE, and the keyboard data is KEYIN. The struc- THE CREDIT-

tured program without the function keys is: VERIFICATION

NKEYS = 10 TERMINAL

. STRUCTURED
KEYBOARD

. CLEAR ENTRY TO START ROUTINE

do while NKEYS > 0
NKEYS = NKEYS -1
ENTRY(NKEYS) =0

end

. FETCH A COMPLETE ENTRY FROM KEYBOARD

do while NKEYS < 10
if KEYSTROBE = ACTIVE then
begin
KEYSTROBE = INACTIVE
ENTRY(NKEYS) = KEYIN
NKEYS = NKEYS + 1
end
end

Adding the SEND key means that the program must ignore extra digits after it has
a complete entry, and must ignore the SEND key until it has a complete entry. The
structured program is:

NKEYS = 10

.

» CLEAR ENTRY TO START

do while NKEYS >0
NKEYS = NKEYS - 1
ENTRY(NKEYS) =0
end

.

« WAIT FOR COMPLETE ENTRY FOLLOWED BY SEND KEY

do while KEY # SEND or NKEYS #10
if KEYSTROBE = ACTIVE then

begin
KEYSTROBE = INACTIVE
KEY = KEYIN
if NKEYS # 10 and KEY # SEND then
begin

ENTRY{NKEYS) = KEY
NKEYS = NKEYS + 1
end

end
end

13-38

Note the following features of this structured program.

1) The second if-then is nested within the first one, since keys are only entered after a
strobe is recognized. If the second if-then were on the same level as the first, a
single key could fill the entry, since its value would be entered into the array during
each iteration of the do-while loop.

2) KEY need not be defined initially, since NKEYS is set to zero as part of the clear-
ing of the entry.

Adding the CLEAR key allows the program to clear the entry originally by simulat-
ing the pressing of CLEAR; i.e., by setting NKEYS to 10 and KEY to CLEAR before
starting. The structured program must also clear only digits that have previously been
filled. The new structured program is:

+ SIMULATE COMPLETE CLEARING

NKEYS = 10
KEY = CLEAR

« WAIT FOR COMPLETE ENTRY AND SEND KEY

do while KEY #SEND or NKEYS # 10

+ CLEAR WHOLE ENTRY IF CLEAR KEY STRUCK

if KEY = CLEAR then
begin
KEY =0
do while NKEYS > 0
NKEYS = NKEYS - 1
ENTRY(NKEYS) =0
end
end

« GET DIGIT IF ENTRY INCOMPLETE

if KEYSTROBE = ACTIVE then
begin
KEYSTROBE = INACTIVE
KEY =KEYIN
if KEY < 10 and NKEYS # 10 then
begin
ENTRY(NKEYS) = KEY
NKEYS = NKEYS + 1
end
end
end

Note that the program resets KEY to zero after clearing the array. so that the operation is
not repeated.

13-39

Wae can similarly build a structured program for the receive
routine. An initial program could look just for the header and
trailer characters. We will assume that RSTB is the indicator that a
character is ready. The structured. program is:

» CLEAR HEADER FLAG TO START

HFLAG =0

+ WAIT FOR HEADER AND TRAILER

do while HFLAG = 0 or CHAR # TRAILER

« GET CHARACTER IF READY, LOOK FOR HEADER

if RSTB = ACTIVE then

begin

RSTB = INACTIVE

CHAR = INPUT

if CHAR = HEADER then HFLAG =1
end

13-40

STRUCTURED
RECEIVE
ROUTINE

Now we can add the section that checks the message address against the three
digits in TERMINAL ADDRESS (TERMADDR). If any of the corresponding digits
are not equal, the ADDRESS MATCH flag (ADDRMATCH) is set to 1.

« CLEAR HEADER FLAG, ADDRESS MATCH FLAG, ADDRESS COUNTER TO START

HFLAG =0
ADDRMATCH =0
ADDRCTR =0

+ WAIT FOR HEADER. DESTINATION ADDRESS AND TRAILER

do while HFLAG = 0 or CHAR # TRAILER OR ADDRCTR #3

+ GET CHARACTER IF READY

if RSTB = ACTIVE then

begin
RSTB = INACTIVE
CHAR = INPUT
end

+ CHECK FOR TERMINAL ADDRESS AND HEADER

if HFLAG = 1 and ADDRCTR #3 then
begin
ADDRMATCH =1
ADDRCTR = ADDRCTR + 1
end
if CHAR = HEADER then HFLAG =1
end

The program must now wait for a header, a three-digit identification code, and a trailer.
You must be careful of what happens during the iteration when the program finds the
header. and of what happens if an erroneous identification code character is the same
as the trailer.

13-41

A further addition can store the message in MESSG. NMESS is the number of
characters in the message; if it is not zero at the end, the program knows that the
terminal has received a valid message. We have not tried to minimize the logic ex-
pressions in this program.

+ CLEAR FLAGS, COUNTERS TO START

HFLAG =0
ADDRMATCH =0
ADDRCTR =0
NMESS =0

« WAIT FOR HEADER, DESTINATION ADDRESS AND TRAILER

do while HFLAG = 0 or CHAR # TRAILER or ADDRCTR #3

- GET CHARACTER IF READY

if RSTB = ACTIVE then

begin
RSTB = INACTIVE
CHAR = INPUT
end

- READ MESSAGE IF DESTINATION ADDRESS = TERMINAL ADDRESS

if HFLAG = 1 and ADDRCTR = 3 then
if ADDRMATCH = 0 and CHAR #TRAILER then
begin
MESSGINMESS) = CHAR
NMESS = NMESS + 1
end

+ CHECK FOR TERMINAL ADDRESS

if HFLAG = 1 and ADDRCTR # 3 then
if CHAR # TERMADDR(ADDRCTR) then
begin
ADDRMATCH =1
ADDRCTR = ADDRCTR + 1
end

» LOOK FOR HEADER

if CHAR = HEADER then HFLAG =1
end

13-42

The program checks for the identification code only if it found a header during a pre-
vious iteration. It accepts the message only if it has previously found a header and a
complete, matching destination address. The program must work properly during the
iterations when it finds the header. the trailer and the last digit of the destination ad-
dress. It must not try to match the header with the terminal address or place the trailer
or the final digit of the destination address in the message. You might try adding the
rest of the logic from the flowchart (Figure 13-13) to the structured program. Note
that the order of operations is often critical. You must be sure that the program
does not complete one phase and start the next one during the same iteration.

REVIEW OF STRUCTURED PROGRAMMING

Structured programming brings discipline to program design. It forces you to limit
the types of structures you use and the sequence of operations. It provides singie-
entry, single-exit structures, which you can check for logical accuracy. Structured
programming often makes the designer aware of inconsistencies or possible com-
binations of inputs. Structured programming is not a cure-all, but it does bring
some order into a process that can be chaotic. The structured program should also
aid in debugging, testing, and documentation.

Structured programming is not simple. The programmer must not only define the
problem adequately, but must also work through the logic carefully. This is
tedious and difficult, but it results in a clearly written, working program.

The particular structures we have presented are not ideal and | TERMINATORS
are often awkward. In addition, it can be difficult to dis- |FOR

tinguish where one structure ends and another begins, partic- | STRUCTURES
ularly if they are nested. Theorists may provide better struc-
tures in the future, or designers may wish to add some of their own. Some kind of
terminator for each structure seems necessary, since indenting does not always clarify
the situation. “"End" is a logical terminator for the "do-while” loop. There is no obvious
terminator. however. for the "if-then-eise” statement; some theorists have suggested
“endif’ or “fi" {"if" backwards], but these are both awkward and detract from the
readability of the program.

Woe suggest the following rules for applying structured pro-
gramming:

RULES FOR
STRUCTURED
PROGRAMMING

1) Begin by writing a basic flowchart to help define the
logic of the program.

2) Start with the “sequential,” *if-then-else,” and *’do-while"’ constructs. They
are known to be a complete set, i.e., any program can be written in terms of these
structures.

3} Indent each level a few spaces from the previous level. so that you will know
which statements belong where.

4) Use terminators for each structure; e.g.. “end"” for the "do-while” and “endif" or
“fi” for the “if-then-else”. The terminators plus the indentation should make the
program reasonably clear.

5) Emphasize simplicity and readability. Leave lots of spaces, use meaningful
names, and make expressions as clear as possible. Do not try to minimize the logic
at the cost of clarity.

6] Comment the program in an organized manner.

7} Check the logic. Try all the extreme cases or special conditions and a few sample
cases. Any logical errors vou find at this level will not plague vou later.

13-43

TOP-DOWN DESIGN

The remaining problem is how to check and integrate modules BOTTOM-UP
or structures. Certainly we want to divide a large task into [DESIGN
sub-tasks. But how do we check the sub-tasks in isolation and

put them together? The standard procedure, called ‘‘bottom-up design,”’ requires
extra work in testing and debugging and leaves the entire integration task to the
and. What we need is a method that allows testing and debugging in the actual
program environment and modularizes system integration.

This method is ““top-down design.”” Here we start by writing TOP-DOWN
the overall supervisor program. We replace the undefined sub- DESIGN
programs by program ‘‘stubs,’” temporary programs that may METHODS
either record the entry, provide the answer to a selected test STUBS
problem, or do nothing. We then test the supervisor program

to see that its logic is correct.

We proceed by expanding the stubs. Each stub will often con- EXPANDING
tain sub-tasks, which we will temporarily represent as stubs. |STUBS

This process of expansion, debugging, and testing continues ADVANTAGES
until all the stubs are replaced by working programs. Note that OF TOP-DOWN
testing and integration occur at each level, rather than all at the DESIGN

end. No special driver or data generation programs are necessary.
We get a clear idea of exactly where we are in the design. Top-
down design assumes modular programming, and is compatible with structured
programming as well.

The disadvantages of top-down design are:

1) The overall design may not mesh well with system hard- |DISADVANTAGES
ware. OF TOP-DOWN

2) It may not take good advantage of existing software. DESIGN

3) Stubs may be difficult to write, particularly if they must
work correctly in several different places.

4) Top-down design may not result in generally useful modules.

5) Errors at the top level can have catastrophic effects, whereas errors in bottom-up
design are usually limited to a particular module.

In large programming projects, top-down design has been shown to greatly im-
prove programmer productivity. However, almost ail of these projects have used
some bottom-up design in cases where the top-down method would have
resulted in a large amount of extra work.

Top-down design is a useful tool that should not be followed to extremes. It pro-
vides the same discipline for system testing and integration that structured pro-
gramming provides for module design. The method, however, has more general
applicability, since it does not assume the use of programmed logic. However,
top-down design may not result in the most efficient implementation.

13-44

EXAMPLES
Response to a Switch

The first structured programming example actually demon- TOP-DOWN
strates top-down design as well. The program was: DESIGN
SWITCH = OFF 2;3""_"';&#
do while SWITCH = OFF SYSTEM
READ SWITCH
end
LIGHT =ON
DELAY 1
LIGHT = OFF

These statements are really stubs, since none of them is fully defined. For exam-
ple. what does READ SWITCH mean? If the switch were one bit of input port SPORT, it
really means:

SWITCH = SPORT AND SMASK
where SMASK has a ‘1" bit in the appropriate position. The masking may. of course, be
implemented with a Bit Test instruction.
Similarly. DELAY 1 actually means (if the processor itself provides the delay):

REG = COUNT
do while REG #0
REG = REG - 1
end
COUNT is the appropriate number to provide a one-second delay. The expanded ver-
sion of the program is:
SWITCH =0

do while SWITCH =0
SWITCH = SPORT AND MASK

end

LIGHT =ON

REG = COUNT

do while REG #0
REG =REG -1

end

LIGHT = NOT (LIGHT)

Certainly this program is more explicit, and could more easily be translated into
actual instructions or statements.

13-45

The Switch-Based Memory Loader
This example is more complex than the first example, so we TOP-DOWN

must proceed systematically. Here again. the structured pro- DESIGN OF

gram contains stubs. : SWITCH-BASED
.)) , MEMORY

For example. if the HIGH ADDRESS button is one bit of input LOADER

port CPORT. “if HIADDRBUTTON = 1" really means:

1) Input from CPORT

2) Complement

3) Logical AND with HAMASK

where HAMASK has a ‘1’ in the appropriate bit position and '0Os’ elsewhere. Similarly
the condition "if DATABUTTON = 1" really means:

1} Input from CPORT

2) Complement

3) Logical AND with DAMASK

So. the,jnitial stubs could just assign values to the buttons, e.g..

HIADDRBUTTON =0
LOADDRBUTTON =0
DATABUTTON =0

A run of the supervisor program should show that it takes the implied “else” path
through the “if-then-else” structures, and never reads the switches. Similarly. if the
stub were:

HIADDRBUTTON = 1

the supervisor program should stay in the "do while HIADDRBUTTON = 1" loop wait-
ing for the button to be released. These simple runs check the overall logic.

Now we can expand each stub and see if the expansion produces a reasonable
overall result. Note how debugging and testing proceed in a straightforward and
modular manner. We expand the HADDRBUTTON = 1 stub to:

READ CPORT
HIADDRBUTTON = NOT (CPORT) AND HAMASK

The program should wait for the HIGH ADDRESS button to be closed. The program
should then display the values of the switches on the lights. This run checks for the
proper response to the HIGH ADDRESS button.

We then expand the LOW ADDRESS button module to:

READ CPORT
LOADDHBUTTON = NOT (CPORT) AND LAMASK

With the LOW ADDRESS button in the closed position. the program should display the
values of the switches on the lights. This run checks for the proper response to the LOW
ADDRESS button.

Similarly, we can expand the DATA button module and check for the proper response
to that button. The entire program will then have been tested.

When all the stubs have been expanded, the coding, debugging, and testing
stages will all be complete. Of course, we must know exactly what results each
stub should produce. However, many logical errors will become obvious at each
level without any further expansion.

13-46

Kevboard

Yes

Transmit

Receive Display

L]
(=)

Figure 13-19 Initial Flowchart for Transaction Terminal

The Transaction Terminal

This example, of course, will have more levels of detail. We
could start with the following program (see Figure 13-19 for
a flowchart}:

KEYBOARD

ACK =0

do while ACK =0
TRANSMIT
RECEIVE

end

DISPLAY

TOP-DOWN
DESIGN OF
VERIFICATION
TERMINAL

Here KEYBOARD, TRANSMIT, RECEIVE, and DISPLAY are program stubs that will
be expanded later. KEYBOARD. for example. could simply place a ten-digit verified

number into the appropriate buffer.

13-47

VER =0

KEYIN
KEYDS

| |

Figure 13-20. Flowchart for Expanded KEYBOARD Routine

The next stage of expansion could produce the following pro- EXPANDING
gram for KEYBOARD (see Figure 13-20): THE
KEYBOARD
VER =0
do while VER =0 ROUTINE
COMPLETE =0
do while COMPLETE =0
KEYIN
KEYDS
end
VERIFY
end

Here VER = 0 means that an entry has not been verified; COMPLETE = 0 means that
the entry is incomplete. KEYIN and KEYDS are the keyboard input and display routines
respectively VERIFY checks the entry. A stub for KEYIN would simply place a random
entry {from a random number table or generator) into the buffer and set COMPLETE to
1.

We would continue by similarly expanding, debugging, and testing TRANSMIT,
RECEIVE. and DISPLAY. Note that you should expand each program by one level
so that you do not perform the integration of an entire program at any one time.
You must use your judgment in defining levels. Too small a step wastes time,
while too large a step gets you back to the problems of system integration that
top-down design is supposed to solve.

13-48

REVIEW OF TOP-DOWN DESIGN

Top-down design brings discipline to the testing and integration stages of pro-
gram design. It provides a systematic method for expanding a flowchart or prob-
lem definition to the level required to actually write a program. Together with
structured programming, it forms a complete set of design techniques.

Like structured programming, top-down design is not simple. The designer must
have defined the problem carefully and must work systematically through each
level. Here again the methodology may seem tedious, but the payoff can be sub-
stantial if you follow the rules.

We recommend the following approach to top-down design: FORMAT
1) Start with a basic flowchart. ;%F:, DOWN
2) Make the stubs as complete and as separate as possible. DESIGN

3) Define precisely all the possible outcomes from each stub
and select a test set.

) Check each level carefully and systematically.

) Use the structures from structured programming.

6] Expand each stub by one level. Do not try to do too much in one step.

) Watch carefully for common tasks and data structures.

8) Test and debug after each stub expansion. Do not try to do an entire level at a
time.

9) Be aware of what the hardware can do. Do not hesitate to stop and do a little

bottom-up design where that seems necessary.

REVIEW OF PROBLEM DEFINITION AND PROGRAM DESIGN

You should note that we have spent an entire chapter without mentioning any
specific microprocessor or assembly language, and without writing a single line of
actual code. Hopefully, though, you now know a lot more about the examples than
you would have if we had just asked you to write the programs at the start.
Although we often think of the writing of computer instructions as a key part of
software development, it is actually one of the easiest stages.

Once you have written a few programs, coding will become simple. You will soon
learn the instruction set, recognize which instructions are really useful, and
remember the common sequences that make up the largest part of most pro-
grams. You will then find that many of the other stages of software development
remain difficult and have few clear rules.

We have suggested here some ways to systematize the important early stages. In
the problem definition stage, you must define all the characteristics of the
system — its inputs, outputs, processing, time and memory constraints, and error
handling. You must particularly consider how the system will interact with the
larger system of which it is a part, and whether that larger system includes
electrical equipment, mechanical equipment, or a human operator. You must start
at this stage to make the system easy to use and maintain.

In the program design stage, several techniques can help you to systematically
specify and document the logic of your program. Modular programming forces you
to divide the total program into small, distinct modules. Structured programming
provides a systematic way of defining the logic of those modules, while top-down
design is a systematic method for integrating and testing them. Of course, no one
can compel you to follow all of these techniques; they are, in fact, guidelines more
than anything else. But they do provide a unified approach to design, and you
should consider them a basis on which to develop your own approach.

13-49

REFERENCES

1. See. for example. V. P. Srini, “Fault Diagnosis of Microprocessor Systems.” Com-
puter, January 1977. pp. 60-65. For a description of signature analysis. see G. Gor-
don and H. Nadig, “Hexadecimal Signatures lIdentify Trouble-spots in
Microprocessor Systems.” Electronics, March 3, 1977. pp. 89-96. There is also an
Application Note (#222) entitled "A Designer's Guide to Signature Analysis”
available from Hewlett-Packard.

2. For a brief discussion of human factors considerations, see G. Morris. “Make Your
Next Instrument Design Emphasize User Needs and Wants,” EDN, October 20,
1978, pp. 100-105.

3. D.L Parnas {see the references below) has been a leader in the area of modular pro-
gramming.

4. Collected by B. W. Unger {see reference below).
5. Formulated by D. L. Parnas.

The following references provide additional information on problem definition and pro-
gram design:

Chaplin, N.. Flowcharts, Auerbach, Princeton, N. J.. 1971.

Dahl, O. J.. C. A. R. Hoave, and E. W. Dijkstra, Structured Programming. Academic
Press, New York, N. Y., 1972.

Dalton, W. F.. "Design Microcomputer Software like Other Systems — Systematically.”
Electronics, January 19, 1978, pp. 97-101.

Dijkstra, E. W., A Discipline of Programming. Prentice-Hall. Englewood Cliffs, N. J..
1976.

Halstead, M. H.. Elements of Software Science, American Elsevier. New York, 1877.

Hughes. J. K. and J. I. Michtom. A Structured Approach to Programming, Prentice-Hall.
Englewood Cliffs, N. J., 1877

Morgan, D. E. and D. J. Taylor. "A Survey of Methods for Achieving Reliable Software,”
Computer. February 1977, pp. 44-52.

Myers, W.. “The Need for Software Engineering.” Computer. February 1978, pp. 12-26.

Parnas. D. L.. "On the Criteria to be Used in Decomposing Systems into Modules,” Com-
munications of the ACM. December 1972, pp. 1053-1058.

Parnas, D.L.."A Technique for the Specification of Software Modules with Examples.”
Communications of the ACM. May 1973, pp. 330-336.

Schneider, V.. “Prediction of Software Effort and Project Duration — Four New For-
mufas.” SIGPLAN Notices, June 1978, pp. 49-69.

Shneiderman, B. et al.. “Experimental Investigations of the Utility of Detailed Flow-
charts in Programming,” Communications of the ACM. June 1977. pp. 373-381.

Ulrickson, R. W., “"Software Modules Are the Building Blocks.” Electronic Design.
February 1. 1977, pp. 62-66.

Ulrickson, R. W., "Solve Software Problems Step-by-Step.” Electronic Design. January
18. 1977, pp. 54-58.

Unger, B. W., “Programming Languages for Computer System Simulation.”” Simulation,
April 1978, pp. 101-110.

13-50

Wirth, N.. Algorithms + Data Structures = Programs, Prentice-Hall, Englewood Cliffs,
N. J., 1976.

Wirth, N.. Systematic Programming: an Introduction, Prentice-Hall, Englewood Cliffs, N.
J., 1973

Yourdon, E. U., Techniques of Program Structure and Design. Prentice-Hall, Englewood
Cliffs, N. J., 1975.

13-51

Chapter 14
DEBUGGING AND TESTING

As we noted at the beginning of the previous chapter, debugging and testing are
among the most time-consuming stages of software development. Even though such
methods as modular programming, structured programming, and top-down design
can simplify programs and reduce the frequency of errors, debugging and testing
still are difficult because they are so poorly defined. The selection of an adequate set
of test data is seldom a clear or scientific process. Finding errors sometimes seems like a
game of “pin the tail on the donkey.” except that the donkey is moving and the pro-
grammer must position the tail by remote control. Surely. few tasks are as frustrating as
debugging programs.

This chapter will first describe the tools available to aid in debugging. It will then
discuss basic debugging procedures, describe the common types of errors, and
present some examples of program debugging. The last sections will describe
how to select test data and test programs.

We will not do much more than describe the purposes of most of the debugging tools.
There is very little standardization in this area, and not enough space to discuss all the
devices and programs that are currently available. The examples should give you some
idea of the uses, advantages, and limitations of particular hardware or software aids.

SIMPLE DEBUGGING TOOLS

The simplest debugging tools available are:
+ A single-step facility

- A breakpoint facility

+ A Register Dump program (or utility)

+ A Memory Dump program

The single-step facility allows you to execute the program one SINGLE-
step at a time. Most Z80-based microcomputers have this facility, STEP
since the circuitry is fairly simple. Of course, the only things that
you will be able to see when the computer executes a single-step are the states
of the output lines that you are monitoring. The most important lines are:

» Data Bus
+ Address Bus

» Control lines MREQ (Memory Request). IORQ (Input/Output Request), RD (Memory
Read). and WR (Memory Write).

If you monitor these lines (either in hardware or in software), you will be able to
see the progression of addresses, instructions, and data as the program executes.
You will be able to tell what kind of operations the CPU is performing. This infor-
mation will inform you of such errors as incorrect Jump instructions, omitted or mcor-
rect addresses, erroneous operation codes. or incorrect data values. However, vou can-
not see the contents of registers and flags without some additional debugging facility
or a special sequence of instructions. Many of the operations of the program cannot be
checked in real time.

14-1

Table 14-1. 780 Restart and Interrupt Addresses

Instruction or External Input Instruction Object Code Destination Address
(Mnemonic) Pin) (Hex) (Hex)
RST 00H Cc7 0000
RST 08H CF 0008
RST 10H D7 0010
RST 18H DF 0018
RST 20H E7 0020
RST 28H EF 0028
RST 30H E7 0030
RST 38H or INT in Mode 1 FF 0038
Nmi 0066
There are many errors that a single-step mode cannot help vou LIMITATIONS
to find. These include timing errors and errors in the interrupt OF SINGLE-
or DMA systems. Furthermore. the single-step mode s very STEP MODE

slow. typically executing a program at less than one millionth

of the speed of the processor itself. To single-step through one second of real processor
time would take more than ten days. The single-step mode is useful only to check the
logic of short instruction sequences.

A breakpoint is a place at which the program will automat-
ically halt or wait so that the user can examine the current

status of the system. The program will usually not start again until the operator re-
quests a resumption of execution. Breakpoints allow you to check or pass through an
entire section of a program. Thus, to see if an initialization routine s correct, vou can
place a breakpoint at the end of it and run the program. You can then check memory
locations and registers to see if the entire section is correct. However. note that if the
section 1s not correct, you'll still have to pin down the error, either with earlier break-
points or with a single-step mode.

Breakpoints complement the single-step mode. You can use breakpoints either to
localize the error or to pass through sections that you know are correct. You can
then do the detailed debugging in the single-step mode. In some cases. breakpoints
do not affect program timing: thev can then be used to check input/output interrupts.

Breakpoints often use part or all of the microprocessor interrupt RST AS A
system. Some microprocessors have a special SOFTWARE INTER- BREAKPOINT
RUPT or TRAP facility that can act as a breakpoint. On the Z80, if
you are not already using all the RST vectors in your program, you can use the RST
{Restart) instruction as a breakpoint. Table 14-1 gives the destination addresses for
the various RST instructions. Chapter 12 describes the RST instruction in more detail.
The breakpoint routine can print register and memory contents or just wait (e.g.. ex-
ecute HALT or a conditional jump dependent on a switch input) until you allow the
computer to proceed. If you are not using the maskable interrupt {INT) or the non-
maskable interrupt (NMI) in your system. you can use those vectors as externally con-
trolled breakpoints. But remember that the interrupts {including NMI) and RST use the
Stack and Stack Pointer to store the return address. Figure 14-1 shows a routine where
RST results in an endless loop. You would have to clear this breakpoint with a RESET or
interrupt signal.

14-2

Figure 14-1. A Simple Breakpoint Routine

ORG 18H
RST18 EQU 18H
JR RST18 WAIT IN PLACE

The simplest method for inserting breakpoints is to replace the first byte of the in-
struction with a RST instruction or to replace the instruction with a Jump or CALL
instruction. Use of a RST instruction is preferred on the Z80. since it involves the
replacement of only a single byte, whereas a JP or CALL involves three bytes. The JR
instruction is not suitable for breakpointing because you cannot guarantee that the
debug software is within -126 to +129 bytes of the instruction being breakpointed.
Multiple-bvte instructions used to implement breakpoints can cause problems on the
Z80 due to the presence of single-byte instructions. To illustrate this program, examine
the program segment shown below:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
100 78 LD AE
101 87 L1: ADD AA
102 87 L2: ADD AA

If you wish to set a breakpoint at location 10016 using a 3-byte CALL or JP. the code at
locations 10115 and 1021g will also get overlaid by the CALL or JP instruction. This
means that the debugger has to be aware that these locations have also been modified.
Any transfers of control to L1 or L2 while the breakpoint s set will produce unexpected
results unless the debugger 1s designed to catch this case. This added complexity can
be avoided by using a RST instruction.

INSERTING
BREAKPOINTS

Many monitors have facilities for inserting and removing
breakpoints implemented via some type of Jump instruction.
Such breakpoints do not affect the timing of the program until
the breakpoint is executed. However. note that this procedure will not work if part or all
of the program s in ROM or PROM. Other monitors implement breakpoints by actually
checking the address lines or the Program Counter in hardware or in software. This
method allows breakpoints on addresses in ROM or PROM. but it may affect the timing
if the address must be checked in software. A more powerful facility would allow the
user to enter an address to which the processor would transfer control. Another
possibility would be a return dependent on a switch:

ORG 18H
RST18 EQU 18H

PUSH AF :SAVE ACCUMULATOR, FLAGS
WAITS: IN A.[PIODRA) :GET SWITCH DATA

BIT SW.A 1S SWITCH CLOSED?

JR NZWAITS :NO. WAIT UNTIL IT IS

POP AF .RESTORE ACCUMULATOR. FLAGS

RET

Remember to re-enable the interrupts if the routine uses an external interrupt input.

Store all registers
in Stack
COUNT = Number of
bytes in register =22
Data Pointer =
Stack Pointer + 20

[

Store Data Pointer
in Stack

—=

Data Pointer =
Data Pointer - 1

v

Print (Data Pointer}
as 2 hex digits
COUNT = COUNT -1

Yes

Restore all registers
from Stack

Figure 14-2. Flowchart of Register Dump Program

A Register Dump utility on a microcomputer is a program that
lists the contents of all the CPU registers. This information is
usually not directly obtainable. The following routine will print

REGISTER
DUMPS

the contents of all the registers on the system printer, if we assume that PRTHEX
prints the contents of the Accumulator as two hexadecimal digits. Figure 14-2 is a
flowchart of the program and Figure 14-3 shows a typical result. We assume that the
routine is entered with a CALL instruction that stores the old Program Counter at the

top of the Stack.

14-4

: PLACE ALL CPU REGISTER CONTENTS IN STACK (PC ALREADY ON STACK)

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
EX
EXX
PUSH
PUSH
PUSH
PUSH

AF SAVE REGULAR USER REGISTERS

IX :SAVE INDEX REGISTERS

AF.AF ;ACCESS AND SAVE PRIMED CPU REGISTERS

: USE STACK POINTER AS STARTING ADDRESS

LD
ADD
LD
ADD
PUSH

HL.0 :GET STACK POINTER

HL.SP

DE.20 ;COMPUTE ORIGINAL STACK POINTER
HL.DE

HL :SAVE ORIGINAL STACK POINTER IN STACK

: PRINT CONTENTS OF REGISTERS
: ORDER IS PC(HIGH),PC(LOW),AF.B.C.D.E.H.LIX(HIGH)IX{LOW).IY (HIGH),
IY{LOW).A"F.B".C".D"E.H L' .SP(HIGH).SP{LOW)

LD
PRNT1: DEC
LD
CALL
DJINZ

B.22 :NUMBER OF BYTES = 22
HL

A.HU) :GET A BYTE FROM STACK
PRTHEX :AND PRINT IT

PRNT1

: RESTORE REGISTERS FROM STACK

POP
pPOP
poP
POP
POP
EX

EXX
POP
pPOP
POP
POP
POP
poP
RET

HL :POP AND DISCARD ORIGINAL STACK POINTER
HL :RESTORE PRIMED CPU REGISTERS

tY -RESTORE INDEX REGISTERS

HL :RESTORE REGULAR CPU REGISTERS

14-5

42 {F)
07 B)
3E ()
23 (0]
01 £
17 {H)
01 L
D3 {IX)
58

E2 (i}
A2

36 a)
67 {F)
E8 B
11 (og}
EB o}
09 E)
D7 (H)
66 L
68 (STACK POINTER)
£2

Figure 14-3 Results of a Typical Z80 Register Dump

14-6

A Memory Dump is a program that lists the contents of memo- MEMORY
ry on an output device (such as a printer). This is a much more DUMP
efficient way to examine data arrays or entire programs than just
looking at single locations. However. very large memory dumps are not useful (except
to supply scrap paper) because of the sheer mass of information that they produce.
They may also take a long time to execute on a slow printer. Small dumps may,
however, provide the programmer with a reasonable amount of information that
can be examined as a unit. Relationships such as regular repetitions of data pat-
terns or offsets of entire arrays may become obvious.

A general dump s often rather difficult to write. The programmer should be careful of
the following situations:

1) The size of the memory area exceeds 256 bytes. so that an 8-bit counter will not
suffice.

2) The ending location 1s an address smaller than the starting location. This can be
treated as an error. or simply cause no output. since the user would seldom want to
print the entire memory contents in an unusual order.

Since the speed of the Memory Dump depends on the speed of the output device, the
efficiency of the routine seldom matters. The following program will ignore cases
where the starting address is larger than the ending address, and will handle
blocks of any length. We assume that the starting address is in Register Pair DE and
the ending address is in Register Pair HL.

. STOP IF ENDING ADDRESS BEFORE STARTING ADDRESS

AND A :CLEAR CARRY

SBC HL.DE ;IS ENDING ADDRESS BEFORE STARTING?

JR C.DONE YES, DO NOT DUMP ANYTHING

XCHG :GET STARTING ADDRESS INTO HL

INC DE :COUNT = NUMBER OF LOCATIONS TO BE
: DUMPED

. PRINT CONTENTS OF LOCATIONS

DUMP: LD A.HU) :GET CONTENTS OF A LOCATION

CALL PRTHEX :AND PRINT IT

INC HL

DEC DE

LD AE :ALL LOCATIONS DUMPED?

OR D

JR NZ.DUMP ;NO. CONTINUE DUMPING
DONE: HALT

Note that the only 16-bit Subtract instruction is SBC, which subtracts the contents of a
register pair and the Carry from Register Pair HL. SBC, like other Subtract instructions.
sets the Carry if a borrow is required {contrary to what some Z80 manuals say).

Figure 14-4 shows the output from a dump of memory locations 1000 to 101F.

14-7

23 1F 60 54 37 28 3E 00
6E 42 38 17 59 44 98 37
47 36 23 81 E1 FF FF 5A
34 ED BC AF FE FF 27 02

Figure 14-4. Results of a Typical Memory Dump

This routine correctly handles the case in which the starting and ending locations are
the same (try it!). You. will have to interpret the results carefully if the dump area
includes the Stack, since the dump subroutine itself uses the Stack. PRTHEX may also
change memory and Stack locations.

In a memory dump. the data can be displayed in a number of different ways. Common
forms are ASCH characters or pairs of hexadecimal digits for 8-bit values and four hex-
adecimal digits for 16-bit values. The format should be chosen based on the intended
use of the dump. It is almost always easier to interpret an object code dump if it 1s dis-
played in hexadecimal form rather than ASCII form.

A common and useful dump format 1s illustrated here:
1000 54 68 65 20 64 75 6D 70 The dump

Each line consists of three parts. The line starts with the hexadecimal address of the
first byte displayed on the line. Following the address are eight or sixteen bytes dis-
played in hexadecimal form. Last 1s the ASCII representation of the same eight or six-

teen bytes. Try rewriting the memory dump program so that it will print the address and
the ASCII characters as well as the hexadecimal form of the memory contents.

MORE ADVANCED DEBUGGING TOOLS

The more advanced debugging tools that are most widely used are:

+ Similar programs to check software
« Logic analyzers to check signals and timing

Many variations of both these tools exist. and we shall discuss only the standard
features.

The simulator is the computerized equivalent of the pencil-and- SOFTWARE
paper computer. It is a computer program that goes through the SIMULATOR
operating cycle of another computer, keeping track of the con-
tents of all the registers, flags, and memory locations. We could. of course, do this
by hand, but it would require a large amount of effort and close attention to the exact
effects of each instruction. The simulator program never gets tired or confused. forgets
an instruction or register. or runs out of paper.

Most simulators are large FORTRAN programs. They can be purchased or used on the
time-sharing services. The Z80 simulator 1s available in several versions from different
sources.

14-8

Typical simulator features are:

1) A breakpoint facility. Usually. breakpoints can be set after a particular number of
cycles have been executed. when a memory location or one of a set of memory
locations is referenced. when the contents of a location or one of a set of locations
are altered. or on other conditions.

2) Register and memory dump facilities that can display the values of memory loca-
tions, registers, and /0 ports.

3) A trace facility that will print the contents of particular registers or memory loca-
tions whenever the program changes or uses them.

4) A load facility that allows you to set values imitially or change them during the
simulation.

Some simulators can also simulate input/output. interrupts, and even DMA.
The simulator has many advantages:

1} It can provide a complete description of the status of the computer. since the
simulator program is not restricted by pin limitations or other characternistics of the
underlying circuitry.

2) ltcan provide breakpoints, dumps. traces. and other facilities, without using any of
the processor's memory space or control system. These facilities will therefore not
interfere with the user program.

3) Programs, starting points, and other conditions are easy to change.

4) Al the facilities of a large computer. including peripherals and software, are availa-
ble to the microprocessor designer.

On the other hand, the simulator is limited by its software base and its separation
from the real microcomputer. The major limitations are:

1) The simulator cannot help with timing problems. since it operates far more slowly
than real time and does not model actual hardware or interfaces.

2) The simulator cannot fully model the input/output section.

3} The simulator 1s usually quite slow. Reproducing one second of actual processor
time may require hours of computer time. Using the simulator can be quite expen-
Sive.

The simulator represents the software side of debugging; it has the typical ad-
vantages and limitations of a wholly software-based approach. The simulator can
provide insight into program logic and other software problems, but cannot help
with timing, 1/0, and other hardware problems.

The logic or microprocessor analyzer is the hardware solution LOGIC

to debugging. Basically, the analyzer is the parallel digital ver- ANALYZER
sion of the standard oscilloscope. The analyzer displays informa-
tion in binary, hexadecimal or mnemonic form on a CRT, and has a variety of triggering
events, thresholds, and inputs. Most analyzers also have a memory so that they can dis-
play the past contents of the busses.

The standard procedure is to set a triggering event. such as the occurrence of a particu-
lar address on the Address Bus or instruction on the Data Bus. For example, one might
trigger the analyzer if the microcomputer tries to store data in a particular address or ex-
ecute an input or output instruction. One may then look at the sequence of events that
preceded the breakpoint. Common problems you can find in this way include short
noise spikes (or glitches), incorrect signal sequences, overlapping wave-forms,
and other timing or signaling errors. Of course, a software simulator could not be
used to diagnose those errors any more than a logic analyzer could conveniently
be used to find errors in program logic.

14-9

Logic analyzers vary in many respects. Some of these are: IMPORTANT
. FEATURES
1) Number of input lines. At least 24 are necessary to monitor OF LOGIC
an 8-bit Data Bus and a 16-bit Address Bus. Still more are
ANALYZERS
necessary for control signals, clocks. and other important in-

puts.

2) Amount of memory. Each previous state that is saved will occupy several bytes.

3) Maximum frequency. It must be several MHz to handle the fastest processors.

4) Minimum signal width {important for catching glitches).

5) Type and number of triggering events allowed. Important features are pre- and
post-trigger delays; these allow the user to display events occurring before or
after the trigger event.

6) Methods of connecting to the microcomputer. This may require a rather complex
interface.

7} Number of display channels.

8) Binary. hexadecimal or mnemonic displays.

9) Display formats.

10} Signal hold time requirements.

11) Probe capacitance.

12) Single or dual thresholds.

All of these factors are important in comparing different logic and microprocessor

analyzers, since these instruments are new and unstandardized. A tremendous variety
of products 1s already available and this variety will become even greater in the future.

Logic analyzers, of course, are necessary only for systems with complex timing.
Simple applications with low-speed peripherals have few hardware problems that
a designer cannot handle with a standard oscilloscope.

DEBUGGING WITH CHECKLISTS

The designer cannot possibly check an entire program by hand: however, there are
certain trouble spots that the designer can easily check. You can use systematic hand
checking to find a large number of errors without resorting to any debugging tools.

The question is where to place the effort. The answer is on WHAT TO
points that can be handled with either a yes-no answer or with INCLUDE IN
a simple arithmetic calculation. Do not try to do complex CHECKLIST

arithmetic. follow all the flags. or try every conceivable case. Limit

your hand checking to matters that can be settled easily. Leave the complex problems
to be solved with the aid of debugging tools. But proceed systematically; build vour
checklist, and make sure that the program performs the basic operations correctly.

The first step is to compare the flowchart or other program documentation with
the actual code. Make sure that everything that appears in one also appears in the
other. A simple checklist will do the {ob. It is easy to completely omit a branch or a pro-
cessing section.

Next concentrate on the program loops. Make sure that all registers and memory
locations used inside the loops are tnitialized correctly. This is a common source of er-
rors; once again, a simple checklist will suffice.

Now look at each conditional branch. Select a sample case that should produce a
branch and one that should not; try both of them. Is the branch correct or reversed? If
the branch involves checking whether a number is above or below a threshold. try the
equality case. Does the correct branch occur? Make sure that your choice s consistent
with the problem definition.

14-10

Look at the loops as a whole. Try the first and last iterations by hand: these are often
troublesome special cases. What happens if the number of iterations is zero; 1.e.. there
1s no data or the table has no elements? Does the program fall through correctly? Pro-
grams often will perform one iteration unnecessarily, or. even worse. decrement coun-
ters past zero before checking them.

Check off everything down to the last statement. Don’t assume (hopefully} that
the first error is the only one in the program. Hand checking will allow you to get
the maximum benefit from debugging runs, since you will get rid of many simple
errors ahead of time.

A quick review of the hand checking guestions: HAND

1) Is every element of the program design in the program (and g:igl;:ggs
vice versa for documentation purposes)?

2) Are all registers and memory locations used inside loops in-
itialized before they are used?

3) Are all conditional branches correct?

4) Do all loops start and end properly?

5} Are equality cases handled correctly?

6} Are trivial cases handled correctly?

LOOKING FOR ERRORS

Of course, despite all these precautions (or if you skip over COMMON

some of them), programs often still don't work. The designer ERRORS

is left with the problem of how to find the mistakes. The hand
checklist provides a starting place if you didn’t use it earlier; some of the errors
that you may not have eliminated are:

1) Failure to initialize variables such as counters, pointers, sums, etc. Do not
assume that registers. memory locations. or flags necessarily contain zero before
they are used.

2) Inverting the logic of a conditional jump, such as using Jump on Carry when vou
mean Jump on Not Carry. Remember the effects of a comparison or subtraction (A
is the contents of the Accumulator. M the contents of the register or memory loca-

tionl:
Zeroflag = 1TifA=M
= 0ifA#M
Carry flag = 1ifA <M
= 0ifA>M

Note particularly that Carry = 0 if A = M. (the equality case). So. Jump on Carry
means jump.if A < M, and Jump on Not Carry means jump if A > M. If you want
the equality case on the other side, try either reversing the roles of A and M or
adding 1 to M. For example, if you want a jump if A > 10, use:

CP 10
JR NC.ADDR
If. on the other hand. you want a jump if A > 10, use:
cP "
JR NC,ADDR

3} Updating the counters and pointers in the wrong place or not at all. Be sure
that there are no paths through a loop that either skip or repeat the updating in-
structions.

14-11

4)

Failure to fall through correctly in trivial cases such as no data in a buffer, no
tests to be run, or no entries in a transaction. Do not assume that such cases will
never occur unless the program specifically eliminates them.

Other problems to watch for are:

5)

7

8)

©

)

10}

11

12)

13)

14)

Reversing the order of operands. Remember that the LD instruction moves the
second operand into the first operand. For example, LD B.A moves the contents of
A to B, not the other way around.

Changing condition flags before you use them.

Remember that INC and DEC. when applied to a single register or memory loca-
tion, affect all the flags except Carry. Remember also that POP AF and EX AF.AF
affect all the flags. and that Logical instructions clear the Carry.

Failing to change condition flags when you intend to.
The Zero and Sign flags may not represent the current state of the Accumulator.
since many instructions (particularly LD) do not change the flags. Note that incre-
menting or decrementing register pairs (for example, INC HL or DEC BC) and com-
plementing the Accumulator {CPL) affect no flags at all.

Confusing values and addresses.

Remember that LD HL,1000H loads HL with the number 1000 (hex) while LD
HL.(1000H) loads HL with the contents of memory locations 1000 and 1001. A
similar distinction applies to LD A.,COUNT and LD A.{COUNT).

Accidentally reinitializing a register or memory location.

Make sure that no Jump instructions transfer control back to initialization state-
ments.

Confusing numbers and characters.

Remember that the ASCIl and EBCDIC representations of digits differ from the
digits themselves. For example. ASCIl 7 ts hex 37, whereas hex 07 is the ASCII
BELL character.

Confusing binary and decimal numbers.

Remember that the BCD representation of a number differs from its binary repre-
sentation. For example, BCD 36. when treated as a simple hexadecimal constant.
1s-equivalent to 54 decimal {try it).

Reversing the order in subtraction. Be careful also with other operations (like
division) that do not commute. Remember that SUB and CP produce A-M, not
M-A.

ignoring the effects of subroutines and macros.

Don’t assume that calls to subroutines or invocations of macros will not change
flags. registers, or memory locations. Be sure of exactly what effects subroutines

or macros have. Note that it is very important to document these effects so that
the user can determine them without going through the entire listing.

Using the Shift instructions improperly.

Remember the precise effects of RLC, BRL, RRC., RR. SLA, SRA. and SRL. They are
all 1-bit shifts. SLA and SRL both clear the empty bit. SRA preserves the sign
{most significant bit) by extending it to the nght. RLC and RRC are circular shifts
that do not include the Carry in the circular register; RL and RR are circular shifts
that include the Carry. Remember that these instructions affect all the flags, even
if thev are applied to the data in a memory location. Note, however, that the one-
word shifts RLCA. RLA, RRCA. and RRA affect only the Carry.

14-12

15)

16)

19)

20)

21)

22)

Counting the length of an array incorrectly.

Remember that there are five (not four) memory locations included in addresses
0100 through 0104. inclusive.

Confusing registers and register pairs.

Remember that the CPU registers and register pairs are physically the same. You
can use them singly for 8-bit data or in pairs for addresses or 16-bit data, but not
both at the same time. Note that INC HL actually increments L. affecting H only if
L is incremented to zero.

Confusing 8- and 16-bit registers.

The Accumulator and other CPU registers are eight bits long. while the index
registers, Program Counter, Stack Pointer. and register pairs are 16 bits long. You
cannot transfer the contents of a 16-bit register to an 8-bit register or vice versa.

Forgetting that 16-bit numbers or addresses occupy two memory locations.

LD HL.{40H) loads Register Pair HL with the contents of memory locations 0040
and 0041. Similarly. PUSH DE stores Register Pair DE in two Stack locations. Also
remember that the Z80 stores all 2-byte quantities in low-order/high-order format.
For example, LD (40H),HL will store the contents of Register L in location 0040
and the contents of Register H in location 0041.

Confusing the Stack and the Stack Pointer.

DEC. INC, and LD affect the Stack Pointer, not the contents of the Stack. PUSH
and POP transfer data to or from the Stack. Remember that CALL. RET. RETI.
RETN. and RST also use the Stack to save or restore the Program Counter. The
response to an interrupt always involves saving the old Program Counter in_the
Stack even if no explicit instruction is obtained externally (as in responding to NMI
or to INT in interrupt modes 1 or 2). Note that such instructions as EX (SP).HL do
not affect the Stack Pointer; they exchange the top two memory locations in the
Stack with the contents of a register pair or Index register. but leave the Stack
length unchanged.

Forgetting to initialize the Stack Pointer.

Remember that you must place the proper memory address into the Stack Pointer
before calling any subroutines or performing any Stack operations.

Changing a register or memory location before using it.

Remember that LD changes the contents of the destination {but not the source).
Be careful of instructions that implicitly use certain registers — for example.
DJUNZ decrements Register B: LDI, LDIR. LDD. LDDR, CPI, CPIR, CPD. and CPDR
all decrement the Byte Counter in Register Pair BC and increment or decrement
Register Pair HL. LDI, LDIR. LDD. and LDDR also increment or decrement Register
Pair DE. INI. INIR, IND. INDR, OUTI, OUTIR. OUTD. and OTDR all decrement
Register B and increment or decrement Register Pair HL.

Forgetting to transfer control past sections of the program that should not be
executed in particular situations.

Remember that the computer will proceed sequentially through the program
memory unless specifically ordered to do otherwise.

14-13

Interrupt-driven programs are particularly difficult to debug, DEBUGGING
since errors may occur randomly. If. for example, the program INTERRUPT-
enables the interrupts a few instructions too early, an error will oc- DRIVEN

cur only if an interrupt is received while the program is executing PROGRAMS

those few instructions. In fact you can usually assume that ran-
domly occurring errors are caused by the interrupt system.2 Typical errors in inter-
rupt-driven programs are:

1)

2)

3)

5)

6)

Forgetting to re-enable interrupts after accepting one and servicing it.

The processor disables the interrupt system automatically on RESET or on accept-
ing an interrupt. Be sure that no possible sequences fail to re-enable the interrupt
svystem. Remember that, in addition to re-enabling interrupts, the program often
has to perform some action to cause the interrupting signal to be reset. If this is not
done, it will appear as if the interrupting device is constantly requesting service.

Using the Accumulator before saving it; i.e.. PUSH AF must precede any input
or output operations that.involve the Accumulator.

Forgetting to save and restore the Accumulator and flags (Register Pair AF).

Restoring registers in the wrong order.

If the order in which they were saved was:
PUSH AF
PUSH BC
PUSH DE
PUSH HL

the order of restoration should be:

POP HL
POP DE
POP BC
POP AF

Enabling interrupts before establishing all the necessary conditions such as
priority. flags. PIO and SIO configurations, pointers, counters, etc.
A checklist can aid here.

Leaving results in registers and destroying them in the restoration process.
As noted earlier. registers should not be used to pass information between the
regular program and the interrupt service routines.

Forgetting that RST (and NMI) leaves an address in the Stack whether you
use it or not.

You may have to re-initialize or update the Stack Pointer.

Not disabling the interrupt during multi-word transfers or instruction se-
quences.

Watch particularly for situations where the interrupt service routine may use the
same memory locations that the program I1s using.

Hopefully, these lists will at least give you some ideas as to where to look for er-
rors. Unfortunately, even the most systematic debugging can still leave some
truly puzzling problems, particularly when interrupts are involv«d.3

14-14

Data = (40}

Is
Yi
Date > 9

?

No

Result = (SSEG Resuit =0
+ Data)
(41) = Result

Figure 14-5. Flowchart of Decimal to Seven-Segment Conversion

14-15

Debugging Example 1: Decimal to Seven-Segment Conversion

The program converts a decimal number in memory location 0040 DEBUGGING
to a seven-segment code in memory location 0041. It blanks the A CODE
display if memory location 0040 does not contain a decimal num- CONVERSION
ber. PROGRAM
Initial Program (from flowchart in Figure 14-5):

LD A, 40H :GET DATA

cP 9 IS DATA A DECIMAL DIGIT?

JR C.DONE :NO, KEEP ERROR CODE

LD HL.{SSEG) :GET BASE ADDRESS OF 7-SEGMENT TABLE

LD D.A

ADD HL.DE FIND ELEMENT BY INDEXING

LD A HL) :GET 7-SEGMENT CODE FROM TABLE
DONE. LD @1HLA :SAVE 7-SEGMENT CODE OR ERROR CODE

HALT
SSEG: DEFB 3FH

DEFB 06H

DEFB 5BH

DEFB 4FH

DEFB 66H

DEFB B6DH

DEFB 70H

DEFB O7H

DEFB 7DH

DEFB 6FH

Using the checklist procedure, we were able to find the following errors:

1} The block that cleared Resuit had been omitted.

2) The conditional branch was incorrect.

For example, if the data (s zero. CP 9 sets the Carry, since 0 < 9. However. the jump on
the opposite condition {i.e.. JR NC,DONE) still did not produce the correct result. Now

the program handles the equality case incorrectly since, if the data 15 9, CP 9 clears the
Carry and causes a jump. The correct version is:

CcpP 10 IS DATA A DECIMAL DIGIT?
JR NC.DONE :NO. KEEP ERROR CODE

14-16

Second Program:

LD B.0 :GET ERROR CODE TO BLANK DISPLAY
LD A.40H :GET DATA
cpP 10 :IS DATA A DECIMAL DIGIT?
JR NC.DONE :NO. KEEP ERROR CODE
LD HL.(SSEG) :GET BASE ADDRESS OF 7-SEGMENT TABLE
LD D.A
ADD HL.DE ;FIND ELEMENT BY INDEXING
LD A {HL) :GET 7-SEGMENT CODE FROM TABLE
DONE: LD 41HLA :SAVE 7-SEGMENT CODE OR ERROR CODE
HALT
SSEG: DEFB 3FH
DEFB 06H
DEFB 5BH
DEFB 4FH
DEFB 66H
DEFB 6DH
DEFB 7DH
DEFB 07H
DEFB 7DH
DEFB 6FH

This version was hand checked successfully.

Since the program was simple. the next stage was to single-step through it with read
data. The data selected for the trials was:

0 (the smallest number)
9 (the largest number)
10 (a border case)

6B (hex) {random)

The first trial was with zero in location 0040 (hex). The first error was obvious — LD
A.40H loaded the number 40 into A. not the contents of memory location 0040. The
correct instruction was LD A.[40H]. After this correction was made. the program moved
along with no apparent errors until it tned to execute the LD A.(HL} instruction.

The contents of the Address Bus during the data fetch was 0647. an address that did
not even exist in the microcomputer. Clearly, something had gone wrong.

It was now time for some more hand-checking Since we knew that JR NC.DONE was
correct. the error was beyond that nstruction but before LD A.(HL). A hand check
showed:

1) LD HL.(SSEG) places 3F (hex) into L and 06 (hex) into H.

This is clearly wrong. We want LD, HL.SSEG. not LD HL.(SSEG). That 1s. we want
the address SSEG. not the contents of that address. to be loaded into Register Pair
HL.

2) LD D.A places 0 into Register D.
This is wrong — the data should be placed into E. since we want to add it to the
least significant bits of the table address. In fact. an instruction should clear
Register D. since the erroneous program was not initializing or changing the other
half of Register Pair DE at all.

14-17

Third Program:

LD B.0 :GET ERROR CODE TO BLANK DISPLAY
LD A, (40H) :GET DATA
cp 10 :IS DATA A DECIMAL DIGIT?
JR NC.DONE :NO. KEEP ERROR CODE
LD HL.SSEG :GET BASE ADDRESS OF 7-SEGMENT TABLE
LD EA
LD D.0 :USE DATA AS 16-BIT INDEX
ADD HL.DE :FIND ELEMENT BY INDEXING
LD A (HL) :GET 7-SEGMENT CODE FROM TABLE
DONE. LD {41HLA :SAVE 7-SEGMENT CODE OR ERROR CODE
HALT
SSEG: DEFB 3FH
DEFB 06H
DEFB 58H
DEFB 4FH
DEFB 66H
DEFB 6DH
DEFB 7DH
DEFB 07H
DEFB 7DH
DEFB 6FH
This program produced the following results:
% Result
00 3F
09 6F
0A 0A
68 68

The program was not clearing the result if the data was invalid, 1.e.. greater than 9. The
program never used the blank code in Register B. Since the program was simple. il
could be tested for all the decimal digits. The results were:

Data Result
3F

CONOOHEWN—=O
()]
O

Note that the result for number 8 1s wrong — 1t should be 7F Since everything else 15
correct, the error 1s almost surely in the table. In jact. entry 8 in the table had been
miscopied.

14-18

The final program is:

- DECIMAL TO 7-SEGMENT CONVERSION

DONE: LD
LD
HALT

SSEG. DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

:GET ERROR CODE TO BLANK DISPLAY
:GET DATA

IS DATA A DECIMAL DIGIT?

:NO. KEEP ERROR CODE

;GET BASE ADDRESS OF 7-SEGMENT TABLE

:USE DATA AS 16-BIT INDEX
:FIND ELEMENT BY INDEXING
:GET 7-SEGMENT CODE FROM TABLE

:SAVE 7-SEGMENT CODE OR ERROR CODE

The errors encountered in this program are typical of the ones that Z80 assembly
language programmers should anticipate. They include:

1) Failing to initialize registers or memory locations.

S ow N

5

) Inverting the logic on conditional branches.

)} Branching incorrectly in the case in which the operands are equal.

} Confusing immediate and direct addressing. 1.e.. data and addresses.
) Failing to distinguish between 8-bit data and 16-bil addresses.

8) Branching to the wrong place so that one path through the program s incorrect.
7) Copying lists of numbers lor instructions) incorrectly.

Note that straightforward instructions like ADD. SUB. AND, etc., seidom produce any
problems. One particularly annoying error that you should watch for 1s reversing the
operands on LD instructions. Many of these errors can be eliminated through the use of
a low-level system programming language like PLZ/ASM.

14-19

Interchange flag = 1
Count = Langth

of
Pointer = Start
of Amay!

Aray

{Pointer] >
{Pointer + 1)
?

Interchangse {Pointer}
{Pointer + 1)
Interchange flag =0

| A—

Pointer = Pointer + 1
Count = Count - 1

Is

{nterchange

flag 0
?

Figure 14-6. Flowchart of Sort Program

14-20

Debugging Example 2: Sort into Decreasing Order

The program sorts an array of unsigned 8-bit binary numbers into DEBUGGING
decreasing order. The array begins in memory location 0041 and A SORT
its length 1s in memory location 0040. PROGRAM
Initial Program (from flowchart in Figure 14-6):

LD C.0 :CLEAR INTERCHANGE FLAG

LD A, (40H) :COUNT = LENGTH OF ARRAY

LD C.A

LD HL41H :POINT TO START OF ARRAY
PASS1: LD A.{HL) :GET ELEMENT FROM ARRAY

INC HL

CcpP (HL} AS 1T LESS THAN NEXT ELEMENT?

JR C.CNT :NO. NO INTERCHANGE NECESSARY

LD (HLLA :YES. INTERCHANGE ELEMENTS

INC HL
CNT DJINZ PASS1

DEC C ‘WAS INTERCHANGE FLAG SET?

JR NZ.PASS1 :YES. DO ANOTHER PASS

HALT

The hand check shows that all the blocks in the flowchart have been implemented in
the program and that all the registers have been initialized. The conditional branches
must be examined carefully. The instruction JR C.CNT must force a branch if the new
value is less than or equal to the old value. Note that the equality case must not result in
an interchange. since this will create an endless loop with the two equal elements
being switched back and forth.

Try an example:

{0040) 30
(0041) 37

CP {(HL) results in the calculation of 30—37. The Carry is set to one. This example
should result in an interchange but does not.

(I

JR NC.CNT will provide the proper branch in this case. If the two numbers are equal,
the comparison will clear the Carry and JR NC.CNT is again correct.

How about JR NZ,SORT at the end of the program? If there are any elements out of
order. the interchange flag will be one. so the branch is wrong. It should be JR Z,SORT.

Now let's hand check the first iteration of the program. The initialization results in the
following values:

A = COUNT
B = COUNT
C =20
HL = 0041
The effects of the loop instructions are:
LD AHL) A = {(0041)
INC HL (HL = 0042
cp (HL) :{0041)-(0042)
JR NC.CNT
LD (HL)L,A :(0042) = {004 1)
INC HL ‘HL = 0043
CNT: DJINZ PASS1 ;B = COUNT-1

14-21

Note that we have already checked the Conditional Jump instructions. Clearly the logic
is incorrect. If the first two numbers are out of order, the results after the first iteration

should be:

(0041)
(0042)
HL

B

Instead, they are:
(0041)
(0042)

HL
B

[T}

it #

OLD (0042)
OLD (0041)
0042
COUNT-1

UNCHANGED
OLD (0041}
0043
COUNT-1

The error in HL is easy to correct. The second INC HLU is unnecessary and should be
omitted. The interchange requires a bit more care and a temporary register, i.e.,

LD
LD
DEC
LD
INC

D.{HL)
HLLA
HL
{HLLD
HL

An interchange always requires a temporary storage place in which one number can be
saved while the other one is being transferred.

14-22

All of these changes require a new copy of the program, i.e.,

LD C.0 ;CLEAR INTERCHANGE FLAG
LD A, (40H) ;COUNT = LENGTH OF ARRAY
LD C.A
LD HL.41H ;POINT TO START OF ARRAY
PASS1: LD A, (HL) :GET ELEMENT FROM ARRAY
INC HL
cpP (HL) S [T LESS THAN NEXT ELEMENT?
JR NC.CNT :NO. NO INTERCHANGE NECESSARY
LD D.{HL) :YES, INTERCHANGE ELEMENTS
LD (HL).A
DEC HL
LD {(HLL.D
INC HL
CNT: DJNZ PASS1
DEC C ‘WAS INTERCHANGE FLAG SET?
JR NZ.PASS1 :YES. DO ANOTHER PASS
HALT
How about the last iteration? Let's say that there are three elements:
(0040) = 03
(0041) = 02
(0042) = 04
(0043) = 06

Each time through, the program increments Register Pair HL by one. So. at the start of
the third iteration,

(HL) = 0041+ 2 = 0043

The effects of the loop instructions are:

LD A HL) A ={0043)
INC HL HL = 0044
cp (HL) :(0043)-(0044)

This 1s incorrect; the program has tried to move beyond the end of the data. The pre-
vious iteration should, in fact. have been the last one, since the number of pairs i1s one
less than the number of elements. The correction is to reduce the number of iterations
by one: this can be accomplished by placing DEC B after LD A, {40H).

How about the trivial cases? What happens if the array contains no elements at
all, or only one element? The answer is that the program does not work correctly
and may change a whole block of data improperly and without any warning (try
itl). The corrections to handle the trivial cases are simple but essential; the cost
is only a few bytes of memory to avoid problems that could be very difficult to
solve later.

14-23

The new program is:

LD C.0 :CLEAR INTERCHANGE FLAG
LD A, [40H) ;COUNT = LENGTH OF ARRAY
CP 2 :DOES ARRAY HAVE 2 OR MORE ELEMENTS?
JR C.DONE :NO, NO ACTION NECESSARY
LD B.A
DEC B :NUMBER OF PAIRS = COUNT-1
LD HL.41H :POINT TO START OF ARRAY
PASS1: LD AHL) :GET ELEMENT FROM ARRAY
INC HL
cpP (HL) J1S IT LESS THAN NEXT ELEMENT?
JR NC.CNT :NO, NO INTERCHANGE NECESSARY
LD D.(HL) :YES. INTERCHANGE ELEMENTS
LD (HLLA
DEC HL
LD {HLL.D
INC HL
CNT DJUNZ PASS1
DEC C ‘WAS INTERCHANGE FLAG SET?
JR NZ.PASS1 :YES. DO ANOTHER PASS
HALT

Now 1t's time to check the program on the computer or on the simulator. A simple set of
data 1s:

{0040) = 02
(0041 = 00
{0042) = 01

This set consists of two elements in the wrong order. The program should take two
passes. The first pass should rearrange the elements, producing:

(0041} = O1
(0042) = Q0
cC =01
The second pass should complete the operation and produce:
Cc = 00

This program 1s rather long for single stepping. so we'll use breakpoints instead. Each

breakpoint will halt the computer and print the contents of all the registers. The break-

points will come:

1) After LD HL.41H to check the initialization.

2) After CP (HL) to check the comparison.

3) After the second INC HL (i.e.. just before the label CNT) to check the interchange.

4) After DEC C to check the completion of a pass through the array. The contents of
the registers after the first breakpoint were:

Register Contents

A 02
B 01
C 00
H 00
L 41

These are all correct, so the program is performing the initialization correctly in this
case.

14-24

The results at the second breakpoint were:

Register Contents

A 00
B 01
C 00
H 00
L 42
CARRY 1

These results are also correct. The results at the third breakpoint were:
Register Contents

A 00
B 01
C 00
D 01
H 00
L 42
Checking memory showed:
0041) = O1
(0042) = 00

The results at the fourth breakpoint were:

Register Contents

T OO W>
o
(&3

42

Here. Register C does not contain the correct value — it should have been set to one to
indicate that an interchange had occurred. In fact, a look at the program shows that no
instruction ever changes C to mark the interchange. The correction is to place the in-
struction LD C.1 after JR NC.CNT

Now the procedure is to load Register C with the correct value and continue. The sec-
ond iteration of the second breakpoint gives:

Register Contents

A 00
B 00
C 00
H 00
L 43
CARRY 1

Clearly the program has proceeded incorrectly without remnitializing the registers (par-
ticularly HL). The conditional jump that depends on the interchange flag should transfer
control all the way back to the start of the program. not to the label PASS1.

14-25

The final version of the program is:

SORT: LD c.0
LD A (40H)
cpP 2
JR C.DONE
LD B.A
DEC B
LD HL.41H
PASST LD AL HL)
INC HL
cp {HL)
JR NC.CNT
LD o
LD D.{HL)
LD {HLLA
DEC HL
LD {HL).D
INC HL
CNT DJNZ PASS1
DEC o
JR NZ.SORT
HALT

:CLEAR INTERCHANGE FLAG

:COUNT = LENGTH OF ARRAY

:DOES ARRAY HAVE 2 OR MORE ELEMENTS?
:NO, NO ACTION NECESSARY

:NUMBER OF PAIRS = COUNT-1
:POINT TO START OF ARRAY
GET ELEMENT FROM ARRAY

IS IT LESS THAN NEXT ELEMENT?
:NO. NO INTERCHANGE NECESSARY
;YES. SET INTERCHANGE FLAG
INTERCHANGE ELEMENTS

‘WAS INTERCHANGE FLAG SET?
'YES. DO ANOTHER PASS

Clearly we cannot check all the possible input values for this program. Two other simple
sets of data for debugging purposes are:

1) Two equal elements

2} Two elements already in decreasing order

(0040) = 02
(0041) = 00
0042) = 00
0040) = 02
0041) = 01
(0042} = 00

14-26

INTRODUCTION TO TESTING

Program testing is closely related to program debugging. USING TEST
Surely some of the test cases will be the same as the test CASES FROM
data used for debugging, such as: DEBUGGING
+ Trivial cases such as no data or a single element

+ Special cases that the program singles out for some reason

- Simple examples that exercise particular parts of the program

In the case of the decimal to seven-segment conversion program, these cases
cover all the possible situations. The test data consists of:

+ The numbers O through 9
« The boundary case 10
» The random case 6B

The program does not distinguish any other cases. Here debugging and testing are
virtually the same.

In the sorting program, the problem is more difficult. The number of elements could
range from O to 255, and each of the elements could lie anywhere in that range. The
number of possible cases is therefore enormous. Furthermore, the program is
moderately complex. How do we select test data that will give us a degree of confi-
dence in that program? Here testing requires some design decisions. The testing
problem is particularly difficult if the program depends on sequences of real-time data.
How do we select the data, generate it, and present it to the microcomputer in a
realistic manner?

Most of the tools mentioned earlier for debugging are helpful TESTING
in testing also. Logic or microprocessor analyzers can help AIDS
check the hardware; simulators can help check the software. j
Other tools can also be of assistance, e.g.,

1) 1/O simulations that can simulate a variety of devices from a single input and a
single output device.

2} In-circuit emulators that allow you to attach the prototype to a development
system or control panel and test it.

3) ROM simulators that have the flexibility of a RAM but the timing of the particular
ROM or PROM that will be used in the final system.

4) Real-time operating systems that can provide inputs or interrupts at specific
times {or perhaps randomly) and mark the occurrence of outputs. Real-time break-
points and traces may also be included.

5) Emulations (often on micro programmable computers) that may provide real-time
execution speed and programmable 1/0.5

6) Interfaces that allow another computer to control the /O system and test the
microcomputer program.

7) Testing programs that check each branch in a program for logical errors.

8) Test generation programs that can generate random data or other distributions.

Formal testing theorems exist. but they are usually applicable only to very short pro-
grams.

You must be careful that the test equipment does not invalidate the test by
modifying the environment. Often, test equipment may buffer, fatch, or condition
input and output signals. The actual system may not do this, and may therefore
behave quite differently.

14.27

Furthermore, extra software in the test environment may use some of the memo-
ry space or part of the interrupt system. It may also provide error recovery and
other features that will not exist in the final system. A software test bed must be
just as realistic as a hardware test bed, since software failure can be just as critical as
hardware failure.

Emulations and simulations are, of course, never precise. They are usually ade-
quate for checking logic, but can seldom help test the interface or the timing. On
the other hand, real-time test equipment does not provide much of an overview of
the program logic and may affect the interfacing and timing.

SELECTING TEST DATA

Very few real programs can be checked for ali cases. The designer must choose a
sample set that in some sense describes the entire range of possibilities.

Testing should. of course. be part of the total development pro- STRUCTURED
cedure. Top-down design and structured programming provide for TESTING

testing as part of the design. This 1s called structured testmg.6
Each module within a structured program should be checked separately. Testing, as
well as design, should be modular, structured, and top-down.

But that leaves the question of selecting test data for a TESTING
module. The designer must first list all special cases that a SPECIAL
program recognizes. These may include: CASES

« Trivial cases
- Equality cases
+ Special situations

The test data should include all of these.

You must next identify each class of data that statements FORMING
within the program may distinguish. These may include: CLASSES
OF DATA

- Positive or negative numbers
» Numbers above or below a particular threshold

. Data that does or does not include a particular sequence or character
« Data that is or 1s not present at a particular time

If the modules are short. the total number of classes should still be small even though
each division s multiplicative; 1e.. two two-way divisions result in four data classes.

You must now separate the classes according to whether the SELECTING
program produces a different result for each entry in the class DATA FROM
(as in a table) or produces the same resuit for each entry (such CLASSES

as a warning that a parameter is above a threshold). In the dis-
crete case, one may include each element if the total number i1s small or sample if the
number 1s large. The sample should include all boundary cases and at least one case
selected randomly. Random number tables are available in books. and random number
generators are part of most computer facilities.

You must be careful of distinctions that may not be obvious. For example, an 8-bit
microprocessor will regard an 8-bit unsigned number greater than 127 as nega-
tive; the programmer must consider this when using conditional branches that
depend on the Sign flag. You must also watch for instructions that do not affect
flags, overflow in signed arithmetic, and the distinctions between address-length
{16-bit) quantities and data-length (8-bit) quantities.

14-28

Testing Example 1: Sort Program

The special cases here are obvious: TESTING
A SORT
No elements in the array PROGRAM

+ One element, magnitude may be selected randomly

The other special case to be considered is one in which elements are equal.

There may be some problem here with signs and data length. Note that the array itself
must contain fewer than 256 elements. The use of the instruction LD C.1 or SET 1.C
rather than DEC C to clear the interchange flag means that there will be no difficulty if
the number of elements or interchanges exceeds 128.

We could check the effects of sign by picking half the regular test cases with numbers
of elements between 128 and 255 and half between 2 and 127. All magnitudes should
be chosen randomly so as to avoid unconscious bias as much as possible.

Testing Example 2: Self-Checking Numbers (see Chapter 8)

Here we will presume that a prior validity check has ensured that TESTING AN
the number has the right length and consists of valid digits. Since ARITHMETIC
the program makes no other distinctions, test data should be PROGRAM

setected randomly. Here a random number table or random num-

ber generator will prove ideal; the range of the random numbers is O to 9.

TESTING PRECAUTIONS

The designer can simplify the testing stage by designing pro- RULES FOR
grams sensibly. You should use the following rules: TESTING

1)

2)

Try to eliminate trivial cases as early as possible without in-
troducing unnecessary distinctions.

Minimize the number of special cases. Each special case means additional testing
and debugging time.

Consider performing validity or error checks on the data prior to processing.

Be careful of inadvertent and unnecessary distinctions, particularly in handling
signed numbers or using operations that refer to signed numbers.

Check boundary cases by hand. These are often a source of errors. Be sure that the
problem definition specifies what 1s to happen in these cases.

Make the program as general as reasonably possible. Each distinction and separate
routine increases the required testing.

Divide the program and design the modules so that the testing can proceed In
steps in conjunction with the other stages of software development.

14-29

CONCLUSIONS

Debugging and testing are the stepchildren of the software development process.
Most projects leave far too little time for them and most textbooks neglect them.
But designers and managers often find that these stages are the most expensive
and time-consuming. Progress may be very difficult to measure or produce.
Debugging and testing microprocessor software is particularly difficult because
the powerful hardware and software tools that can be used on larger computers
are seldom available for microcomputers.

The designer should plan debugging and testing carefully. We recommend the
following procedure:

1)

2)
3)
4)

5)

6)
7

8)

Try to write programs that can easily be debugged and tested. Modular pro-
gramming, structured programming, and top-down design are useful techni-
ques.

Prepare a debugging and testing plan as part of the program design. Decide
early what data you must generate and what equipment you will need.
Debug and test each module as part of the top-down design process.

Debug each module’s logic systematically. Use checklists, breakpoints, and
the single-step mode. If the program logic is complex, consider using the soft-
ware simulator.

Check each module’s timing systematically if this is a problem. An
oscilloscope can solve many problems if you plan the test properly. If the tim-
ing is complex, consider using a logic or microprocessor analyzer.

Be sure that the test data is a representative sample. Watch for any classes of
data that the program may distinguish. Include all special and trivial cases.
If the program handles each element differently or the number of cases is
large, select the test data randomly.

Record all test results as part of the documentation. If problems occur, you
will not have to repeat test cases that have already been checked.

14-30

REFERENCES

For more information about logic analyzers, see:

R. L. Down, “Understanding Logic Analyzers,” Computer Design. June 1977, pp-
188-191.

W. A. Farnbach, “Bring up Your uP.” Electronic Design, July 10. 1976, pp. 80-85.

B. Farly, “Logic Analyzers Aren’'t All Alike,” Electronic Design, Feb. 1. 1978. pp.
70-76.

K. Pines, "What Do Logic Analyzers Do?,” Digital Design. September 1977, pp.
55-77.

N. A. Robin. "The Logic Analyzer: A Computer Troubleshooung Tool.” Computer
Design. March 1976, pp. 89-96.

S. Runvon, “Focus on Logic and uP Analyzers,” Electronic Design, February 1.
1977. pp. 40-50.

A. Santoni, “The Latest Logic Analyzers Offer More Functions and Less Cost,”
Electronic Design, Feb. 1, 1978, pp. 26-32.

See W. J. Weller, Assembly Level Programming for Small Computers, Lexington
Books, Lexington. Mass., 1975.

Some guidelines for debugging interrupt problems are given in R. L. Baldrige. “In-
terrupts Add Power. Complexity to Microcomputer System Design.” EDN. August
5, 1977, pp. 67-73.

See C. Bass, "PLZ: A Family of System Programming Languages for
Microprocessors,” Computer. March 1978, pp. 34-39.

See, for example, H. R. Burris, “Time-Scaled Emulations of the 8080
Microprocessor,” Proceedings of the 1977 National Computer Conference. pp.
937-946.

See D. A. Walsh, “Structured Testing.” Datamation, July 1977, pp. 111-118,

Testing (and debugging) are also discussed in R. A. DeMillo et al.. “Hints on Test
Data Selection: Help for the Practicing Programmer.” Computer. April 1978, pp.
34-41 and in W. F. Dalton. "Design Microcomputer Software, Electronics, January
19. 1978. pp. 97-101.

Random numbers and their generation are discussed in T. G. Lewis, Distribution
Sampling for Computer Simulation, Lexington Books. Lexington, Mass., 1975 and
inR. A. Mueller. et al.. “A Random Number Generator for Microprocessors,”” Simula-
tion. April 1977, pp. 123-127.

14-31

Chapter 15
DOCUMENTATION AND REDESIGN

The working program is not the only requirement of software development. Ade-
quate documentation is also an important part of a software product. Not only
does documentation help the designer in the testing and debugging stages, it is
also essential for later use and extension of the program. A poorly documented
program will be difficult to maintain, use, or extend.

Occasionally, a program uses too much memory or executes too slowly. The
designer must then improve it. This stage is called redesign, and requires that you
concentrate on the parts of the program that can yield the most improvement.

SELF-DOCUMENTING PROGRAMS

Although no program is ever completely self-document- | RULES FOR
ing, some of the rules that we mentioned earlier can help. | SELF-DOCUMENTING
These include: PROGRAMS

» Clear. simple structure with as few transfers of control
(jumps) as possible

« Use of meaningful names and labels

= Use of names for I/0 devices, parameters. numerical factors. etc.

« Emphasis on simplicity rather than on minor savings in memory usage, execution
time, or typing

For example, the following program sends a string of characters to a teletypewriter:

LD A.{2000H)

LD B.A

LD HL,1000H
W: LD A (HU)

ouT ®).A

CALL XXX

INC HL

DJINZ w

HALT

Even without comments we can improve the program, as follows:

MESSG EQU 1000H
COUNT EQU 2000H
TTYSIO EQU 6

LD A (COUNT)

LD B.A

LD HL.MESSG
OUTCH: LD A HU)

ouTt (TTYSIOLA
CALL BITDLY

INC HL
DJUNZ OUTCH
HALT

15-1

Surely this program is easier to understand than the earlier version. Even without
further documentation, you could probably guess at the function of the program and
the meanings of most of the variables. Other documentation techniques cannot
substitute for self-documentation.

Some further notes on choosing names: CHOOSING

1)

USEFUL

Use the obvious name when it is available, like TTY or CRT NAMES

for output devices, START or RESET for addresses, DELAY or
SORT for subroutings, COUNT or LENGTH for data.

2) Avoid acronyms like S16BA for SORT 16-BIT ARRAY. These seldom mean any-
thing to anybody.

3) Use full words or close to full words when possible, like DONE. PRINT. SEND. etc.

4) Keep the names as distinct as possible.

COMMENTS

The most obvious form of additional documentation is the comment. However,
few programs (even those used as examples in books), have effective comments.
You should consider the following guidelines for good comments.

1)

2)

3)

Don’t repeat the meaning of the instruction code. Rather. COMMENTING
explain the purpose of the instruction in the program. Com- GUIDELINES
ments like

DEC B B =B-1
add nothing to documentation. Rather. use

DEC B ;LINE NUMBER = LINE NUMBER-1
Remember that you know what the operation codes mean and anyone else can
look them up in the manual. The important point is to explain what task the
program is performing.

Make the comments as clear as possible. Do not use abbreviations or acronyms
unless they are well-known (like ASCII, PIO. or UART) or standard {like no for num-
ber. ms for miilisecond, etc.). Avoid comments like
DEC B (LN = LN-1
or
DEC B DEC LN BY 1

The extra typing simply is not all that expensive.

Comment every important or obscure point. Be particularly careful to mark
operations that may not have obvious functions, such as

AND 110111118 . TURN TAPE READER BIT OFF

or

ADD HL.DE INDEX GRAY CODE TABLE
Clearly. 1/O operations often require extensive comments. If you're not exactly
sure of what an instruction does, or if you have to think about it, add a clarifying
comment. The comment will save you time later and will be helpful in documenta-
tion.

16-2

4) Don’t comment the obvious. A comment on each line simply makes it difficult to
find the important points. Standard sequences like
INC HL
DJNZ SEARCH

need not be marked uniess you're doing something special. One comment will
often suffice for several lines. as in

RRCA :SWAP DIGITS

RRCA

RRCA

RRCA

LD AC {EXCHANGE MOST SIGNIFICANT, LEAST
LD C.B . SIGNIFICANT BYTES
LD B.A

5) Place comments on the lines to which they refer or at the start of a se-
quence.

6) Keep your comments up-to-date. If you change the program. change the com-
ments.

7) Use standard forms and terms in commenting. Don't worry about repetitiveness.
Varied names for the same things are confusing, even if the variations are just
COUNT and COUNTER, START and BEGIN, DISPLAY and LEDS. or PANEL and
SWITCHES.

There's no real gain in not being consistent. The variations may seem obvious to
you now, but may not be clear later: others will get confused from the very begin-
ning.

8) Make comments mingled with instructions brief. Leave a complete explanation
to header comments and other documentation. Otherwise, the program gets lost
in the comments and vou may have a hard time even finding it.

9} Keep improving your comments. If you come to one that you can’t read or un-
derstand. take the time to change it If you find that the listing is getting crowded.
add some blank lines. The comments won't improve themselves: in fact. they will
Just become worse as you leave the task behind and forget exactly what vou did.

10} Before every major section, subsection, or subroutine, insert a number of
comments describing the functions of the code that follows. Care should be
taken to describe all inputs, outputs, and side effects. as well as the algorithm
emploved.

11) Itis good practice when modifying working programs to use comments to in-
dicate the date, author, and type of modification made.

Remember, comments are important. Good ones will save you time and effort. Put
some work into comments and try to make them as effective as possible.

15-3

Commenting Example 1: Multiple-Precision
Addition

The basic program is:

LD A,{30H)
LD B.A
LD HL.41H
LD DES51H
AND A
ADDWD: LD A.{DE}
ADC A {HL)
LD HLLA
INC DE
INC HL
DJINZ ADDWD
HALT

COMMENTING
EXAMPLES

First, comment the important points. These are typically initializations, data fetches.
and processing operations. Don’t bother with standard sequences like updating poin-
ters and counters. Remember that names are clearer than numbers, so use them freely.

The new version of the program is:
:MULTIPRECISION ADDITION

;THIS PROGRAM PERFORMS MULTI-BYTE ADDITION

;INPUTS‘. LOCATION 30H = LENGTH OF NUMBERS (IN BYTES)

LOCATIONS 41H-50H = FIRST ADDEND IN LSB—MSB ORDER

: LOCATIONS 51H-60H = SECOND ADDEND
:OUTPUTS: LOCATIONS 41H-61H = SUM

LENGTH EQU 30H
NUMBH1 EQU 41H
NUMB2 EQU 51H

LDA LENGTH :COUNT = LENGTH OF NUMBERS {IN BYTES)

LD B.A
LD HL.NUMB1 :START AT LSB'S OF 1ST NUMBER
LD DE.NUMB2 ;START AT LSB'S OF 2ND NUMBER
AND A

ADDWD: LD A.(DE) :GET 8 BITS OF 2ND NUMBER
ADC A.(HL) :ADD 8 BITS OF 1ST NUMBER
LD (HLLA ;STORE RESULT IN 1ST NUMBER
INC DE
INC HL
DJNZ ADDWD
HALT

Second. look for anv instructions that might not have obvious
functions and mark them. Here, the purpose of AND A is to clear
the Carry the first time through.

Third. ask yourself whether the comments tell you what you would
need to know if you wanted to use the program, e.g.:

QUESTIONS
FOR
COMMENTING

1) Where is the program entered? Are there alternative entry points?

2) What parameters are necessary? How and in what form must they be supplied?

15-4

3} What operations does the program perform?
4) From where does it get the data?

5) Where does it store the results?

6) What special cases does it consider?

7) What does the program do about errors?

8) How does it exit?

Some of the questions may not be relevant to a particular program and some of the
answers may be obvious. Make sure that you won't have to sit down and dissect the
program to figure out what the answers are. Remember that too much explanation is
just dead wood that you will have to clear out of the way. Is there anvthing that vou
would add to or subtract from this listing? If s0, go ahead — you are the one who has to
feel that the commenting is adequate and reasonable.

. MULTIPRECISION ADDITION

;THIS PROGRAM PERFORMS MULTI-BYTE ADDITION

: INPUTS: LOCATION 30H = LENGTH OF NUMBERS {IN BYTES)
LOCATIONS 41H-50H = FIRST ADDEND IN LSB—MSB ORDER

LOCATIONS 51H-60H = SECOND ADDEND
OUTPUTS:LOCATIONS 41H-51H = SUM

LENGTH EQU 30H :LENGTH OF NUMBERS

NUMB1 EQU 41H :LSB’S OF 1ST NUMBER AND RESULT
NUMB2 EQU 51H :LSB'S OF 2ND NUMBER
LDA LENGTH :COUNT == LENGTH OF NUMBERS (IN BYTES)
LD B.A
LD HLNUMB1 START AT LSB'S OF 1ST NUMBER
LD DENUMB2 :START AT LSB'S OF 2ND NUMBER
AND A :CLEAR CARRY TO START
ADDWD: LD A DE) :GET 8 BITS OF 2ND NUMBER
ADC A (HL) ;ADD 8 BITS OF 1ST NUMBER
LD (HLLA :STORE RESULT IN 1ST NUMBER
INC DE
INC HL
DJUNZ ADDWD
HALT

Commenting Example 2: Teletypewriter Output
The basic program is:

LD A,(60H)
ADD AA
LD B.11

TBIT: ouT (PIODRB).A
RRA
SCF
CALL BITDLY
DJUNZ TBIT
HALT

15-5

Commenting the important points and adding names gives:

:TELETYPEWRITER OUTPUT PROGRAM

;THIS PROGRAM PRINTS THE CONTENTS OF MEMORY LOCATION 60H TO THE
TELETYPEWRITER

INPUTS: LOCATION 60H = CHARACTER CODE
QUTPUTS: NONE

TTYPIO EQU PIODRB

NBITS EQU 1 :NUMBER OF BITS PER CHARACTER
TDATA EQU 60H ;ADDRESS OF CHARACTER 70O BE
. TRANSMITTED

LD A.(TDATA) :GET DATA

ADD AA ;SHIFT LEFT AND FORM START BIT

LD B.NBITS :COUNT = NUMBER OF BITS PER CHARACTER
TBIT: ouT (TTYPIO)LA ;SEND BIT TO TTY

RRA :UPDATE FOR NEXT BIT

SCF :FORM STOP BIT (LOGIC ONE)

CALL BITDLY :DELAY 1 BIT TIME

DJINZ TBIT

HALT

Note how easily we could change this program so that it would transfer a whole string
of data, starting at the address in locations DPTR and DPTR + 1 and ending with an
03" character (ASCH ETX). Furthermore, let us make the terminal a 30 character per
second device with one stop bit (we will have to change subroutine BITDLY). Try mak-
ing the changes before looking at the listing.

;STRING OUTPUT PROGRAM

;THIS PROGRAM QUTPUTS A STRING TO THE TERMINAL. TRANSMISSION CEASES
WHEN AN ASCIHl ETX (30H) IS ENCOUNTERED

INPUTS: LOCATIONS 60H-61H CONTAIN ADDRESS OF

STRING TO QUTPUT
OUTPUTS: NONE

DPTR EQU 60H ;LOCATION OF OUTPUT BUFFER START

. ADDRESS

ENDCH EQU 03 :ENDING CHARACTER = ASCIl ETX
NBITS EQU 1 :NUMBER OF BITS PER CHARACTER
TTYPIO EQU PIODRB

LD HL,(DPTR) :GET STARTING ADDRESS OF STRING
TCHAR: LD A (HL) :GET A CHARACTER

cpP ENDCH ;IS IT ENDING CHARACTER?

JR Z.DONE :YES, DONE

ADD AA ;SHIFT DATA LEFT AND FORM START BIT

LD B.NBITS :COUNT = NUMBER OF BITS PER CHARACTER
TBIT: ouT (TTYPIOL.A :SEND BIT TO TTY

RRA :UPDATE FOR NEXT BIT

SCF :FORM STOP BIT {LOGIC ONE)

CALL BITDLY ;DELAY 1 BIT TIME

DJNZ TBIT

INC HL

JR TCHAR
DONE: HALT

16-6

Good comments can make it easy for you to change a program to meet new require-
ments. For example, try changing the last program so that it:

« Starts each message with ASCII STX (02 hex) followed by a three-digit identification
code stored in memory locations 0030 through 0032

+ Adds no start or stop bits

« Waits 1 ms between bits

« Transmits 40 characters, starting with the one located at the address in DPTR and
DPTR+1

+ Ends each message with two consecutive ASCHl ETXs (03 hex)

FLOWCHARTS AS DOCUMENTATION

We have already described the use of flowcharts as a design tool | HINTS FOR

in Chapter 13. Flowcharts are also useful in documentation, partic- | USING

ularly if: FLOWCHARTS
« They are not so detailed as to be unreadable

« Their decision points are clearly explained and marked

» They include all branches

+ They correspond to the actual program listings

Flowcharts are helpful if they give you an overall picture of the program. They are not
helpful if they are just as difficult to read as an ordinary listing.

STRUCTURED PROGRAMS AS DOCUMENTATION

A structured program can serve as documentation for an assembly language program

if:

» You describe the purpose of each section in the comments

« You make it clear which statements are included in each conditional or loop structure
by using indentation and ending markers

» You make the total structure as simple as possible

- You use a consistent, well-defined language

The structured program can help vou to check the logic or improve it. Furthermore.
since the structured program is machine-independent, it can also aid you in implement-
ing the same task on another computer.

MEMORY MAPS

A memory map is simply a list of all the memory assignments in a program. The map
allows you to determine the amount of memory needed. the locations of data or
subroutines, and the parts of memory not allocated. The map is a handy reference for
finding storage locations and entry points and for dividing memory between different
routines or programmers. The map will also give you easy access to data and
subroutines if vou need them in later extensions or in maintenance. Sometimes a
graphical map s more helpful than a listing.

15-7

A typical map would be: TYPICAL
MEMORY
MAP
Program Memory
Address Routine Purpose
0000-0002 RESET TRANSFERS CONTROL TO MAIN PROGRAM IN LOCATION
40 HEX

0038-003A INTRPT TRANSFERS CONTROL TO INTERRUPT SERVICE
IN LOCATION 300 HEX

0040-0266 MAIN MAIN PROGRAM

0270-027F DELAY DELAY PROGRAM

0280-0290 DSPLY DISPLAY CONTROL PROGRAM

0300-0340 KEYIN INTERRUPT CONTROL PROGRAM FOR KEYBOARD

Data Memory

1000 NKEYS NUMBER OF KEYS
1001-1002 KPTR KEYBOARD BUFFER POINTER
1003-1041 KBFR KEYBOARD BUFFER
1042-1051 DBFR DISPLAY BUFFER

1052-105F TEMP TEMPORARY STORAGE
10E0-10FF STACK RAM STACK

The map may also list additional entry points and include a specific description of the
unused parts of memory.

PARAMETER AND DEFINITION LISTS

Parameter and definition lists at the start of the program and each subroutine
make understanding and changing the program far simpler. The following rules can
help:

1

2)

3)

4)

Separate RAM locations, 1/0 units, parameters, defini- RULES FOR
tions, and memory system constants. DEFINITION
LISTS

Arrange lists alphabetically when possible, with a descrip-
tion of each entry.

Give each parameter that might change a name and include it in the lists. Such
parameters may include timing constants, inputs or codes corresponding to partic-
ular keys or functions, control or masking patterns, starting or ending characters,
thresholds, etc.

Make the memory system constants into a separate list. These constants will
include Reset and interrupt service addresses, the starting address of the program,
RAM areas, Stack areas. etc.

Give each port used by an I/O device a name, even though devices may share
ports in the current system. The separation will make expansion or reconfiguration
much simpler.

15-8

A typical list of definitions will be:

;MEMORY SYSTEM CONSTANTS

RESET

EQU 0
INTRP EQU 38H
START EQU 40H
KEYIN EQU 300H
RAMST EQU 1000H
STKPTR EQU 1100H
.1/0 UNITS
DSPLY EQU OEOH
KBDIN EQU OETH
KBDOUT EQU OEOH
TTYPIO EQU OFCOH

'RAM LOCATIONS

ORG RAMST
NKEYS DEFS 1
KBDPTR DEFS 2
KBDBFR DEFS 40H
DSPBFR DEFS 10H
TEMP DEFS 14H
‘PARAMETERS
BOUNCE EQU 2
GOKEY EQU 10
MSCNT EQU 133
OPEN EQU OFH
TPULS QU 1
.DEFINITIONS
ALLT EQU OFFH
STCON EQU 8O

TYPICAL
DEFINITION
LIST

:RESET ADDRESS

[INTERRUPT ENTRY

:START OF MAIN PROGRAM
:KEYBOARD INTERRUPT PROGRAM
;START OF DATA STORAGE
:START OF STACK

:OUTPUT PIO FOR DISPLAYS
INPUT PIO FOR KEYBOARD
:OUTPUT PIO FOR KEYBOARD
;TTY DATA PORT

:NUMBER OF KEYS
:KEYBOARD BUFFER POINTER
:KEYBOARD INPUT BUFFER
:DISPLAY DATA BUFFER
.TEMPORARY STORAGE

:DEBOUNCING TIME IN MS
(ADENTIFICATION OF ‘GO’ KEY
:COUNT FOR 1 MS DELAY

:PATTERN FOR OPEN KEYS

:PULSE LENGTH FOR DISPLAYS IN MS

;ALL ONES PATTERN
:START CONVERSION PULSE

Of course, the RAM entries will usually not be in alphabetical order, since the designer
must order these so as to minimize the number of address changes required in the pro-

gram.

15-9

LIBRARY ROUTINES

Standard documentation of subroutines will allow you to build up a library of
useful programs. The idea is to make these programs easily accessible. A standard for-
mat will allow you or anyone else to see at a glance what the program does. The best
procedure is to make up a standard form and use it consistently. Save these programs
in a well-organized manner (for example. according to processor, language. and type of
program). and vou will soon have a useful set. But remember that without organiza-
tion and proper documentation, using the library may be more difficult than rewrit-
ing the program from scratch. Debugging a system requires a precise understanding
of all the effects of each subroutine.

Among the information that you will need in the standard form is: STANDARD

« Purpose of the program PROGRAM
LIBRARY

» Processor used FORMS

» Language used

« Parameters required and how they are passed to the subroutine

« Resuits produced and how they are passed to the main program

« Number of bytes of memory used

« Number of clock cycles required. This number may be an average or a typical figure,
or it may vary widely. Actual execution time will, of course, depend on the processor
clock rate

« Registers affected

« Flags affected

« A typical example

« Error handling

+ Special cases

» Documented program listing

If the program 1s complex, the standard library form should also include a general

flowchart or a structured program. As we have mentioned before, a library program is

most likely to be useful if it performs a single distinct function in a reasonably general

manner.

LIBRARY EXAMPLES

Library Example 1: Sum of Data

Purpose: The program SUMS8 computes the sum of a set of 8-bit unsigned binary num-
bers.

Language: Z80 assembler.

Initial Conditions: Starting address of set of numbers in Register Pair HL, length of set
in Accumulator.

Final Conditions: Sum in Accumulator.

Requirements:

Memory - 7 bytes.

Time - 13 + 26N clock cycles. where N is the
length of the set of numbers.

Registers - A. B, H. L.

All flags affected.

15-10

Typical Case: {all data in hexadecimal)

Start:

HL = 0050

A = 03
(0050) = 27
(0051} = 3E
(0052) = 26
End:

A = 8B

Error Handling: Program ignores all carries. Carry bit reflects only the last operation.
Initial contents of Accumulator must be 1 or more.

Listing:
:SUM OF 8-BIT DATA

Sums: LD B.A :COUNT = LENGTH OF DATA BLOCK

SuB A :SUM = ZERO
ADD8: ADD A(HL) ;SUM = SUM + DATA ENTRY
INC HL
DJNZ ADD8
RET

Library Example 2: Decimal-to-Seven-Segment Conversion

Purpose: The program SEVEN converts a decimal number to a seven-segment display
code.

Language: Z80 assembler.

Initial Conditions: Data in Accumulator.

Final Conditions: Seven-segment code in Accumulator.
Requirements:

Memory - 26 bvtes, including the seven-segment table (10 en-
tries).

Time - 74 clock cycles if the data is valid, 40 if it is not.

Registers - A, B, D.E H. L

All flags affected.

Input data in Accumulator is destroyed.

Typical Case: (data in hexadecimal)

Start:

A = 05
End:

A = 66

Error Handling: Program returns zero in the Accumuiator if data is not a decimal digit.

16-11

Listing:
;DECIMAL TO SEVEN-SEGMENT CONVERSION

SEVEN: LD B.0 :GET ERROR CODE TO BLANK DISPLAY

cP 10 :IS DATA A DECIMAL DIGIT?

JR NC.DONE :NO. KEEP ERROR CODE

LD LA :YES, MAKE DATA INTO A 16-BIT INDEX

LD H.O

LD DE.SSEG :GET BASE ADDRESS OF 7-SEGMENT TABLE

ADD HL.DE ;FIND ELEMENT BY INDEXING

LD B.{HLI :GET 7-SEGMENT CODE FROM TABLE
DONE: LD AB :SAVE 7-SEGMENT CODE OR ERROR CODE

RET
SSEG: DEFB 3FH

DEFB 06H

DEFB 5BH

DEFB 4FH

DEFB 66H

DEFB 6DH

DEFB 7DH

DEFB 07H

DEFB 7FH

DEFB 6FH

Library Example 3: Decimal Sum
Purpose: The program DECSUM adds two multi-word decimal numbers.
Language: Z80 assembler.

Initial Conditions: Address of LSBs of one number in Register Pair HL, address of LSBs
of other number in Register Pair DE. length of numbers (in bytes) in
A. Numbers arranged starting with LSBs at lowest address.

Final Conditions: Sum replaces number with starting address in Register Pair HL.

Requirements:
Memory - 11 bytes.
Time - 13 + 80N clock cycles, where N is the number of
bytes involved.
Registers - A, B.D.E H. L
All flags affected. Carry shows if sum produced a carry.

Typical Case: (data in hexadecimal)

Start:
HL = 0060
DE = 0050
A = 2
0060} = 34
(0061) = 55
(0050) = 88
(0051 = 15
End:
(0060} = 22
0061} = 71
CARRY = 0

16-12

Error Handling: Program does not check the validity of decimal inputs. Accumulator
must be 1 or greater.

Listing:

DECSUM: LD B.A ;COUNT = LENGTH OF NUMBERS (IN BYTES)
AND A :CLEAR CARRY TO START

DECADD: LD A,(DE) ;GET 2 DECIMAL DIGITS FROM STRING 2
ADC A, (HL) :ADD PAIR OF DIGITS FROM STRING 1
DAA :MAKE ADDITION DECIMAL
LD (HL).A :STORE RESULT IN STRING 1
INC DE
INC HL
DJINZ DECADD
RET

TOTAL DOCUMENTATION

Complete documentation of microprocessor software will in- | DOCUMENTATION
clude all or most of the elements that we have mentioned. So, § PACKAGE

the total documentation package may involve:

« General flowcharts

« A written description of the program

- A list of all parameters and definitions

+ A memory map

» A documented listing of the program

+ A description of the test plan and test results

The documentation may also include:
» Programmers’ flowcharts

» Data flowcharts

+ Structured programs

The documentation procedures outlined above are the minimal acceptable set of
documents for non-production software. Production software demands even
greater documentation efforts. The foliowing documents should also be produced:
« Program Logic Manual

» User Guide

» Maintenance Manual

The program logic manual expands on the written explanation produced with the
software. It should be written for a technically competent individual who may not
possess the detailed knowledge assumed in the written explanation in the software.
The program logic manual should explain what the design goals of the system were,
what algorithms were chosen to implement these goals, and what tradeoffs had to be
made in achieving them.

It should then explain in great detail what data structures were employed and how they
are manipulated. It should provide a step-by-step guide to the inner workings of the
code. Finally. it shouid contain any special tables or graphs that help explain any of the
concepts embodied in the code. Code conversion charts, state diagrams, translation
matrices, and flowcharts should be included.

The user guide is probably the most important and most overlooked piece of docu-
mentation. No matter how well a system is designed, it is useless if no one can
use it effectively. The user guide should provide all users, sophisticated and un-
sophisticated, with an introduction to the system. !t should then provide detailed ex-

16-13

planations of system features and their use. Use plenty of examples because a good ex-
ample can crystallize the information contained in many pages of text. Step-by-step
directions shouid be given. Test the user guide, i.e.. try out the step-by-step usage pro-
cedures as you have documented them. Programmers with detailed knowledge of a
system’s design often take shortcuts that are not at all apparent to the general reader.
An entire book could be written about the writing of user guides, and further discussion
1s bevond the scope of this book. However, remember that you can never spend too
much effort in preparing a user guide, because it will be the most used of all system
documents.

The maintenance manual is designed for the programmer who has to modify the
system. [t should outline step-by-step procedures for those reconfigurations designed
into the system. In addition. it should outline any provisions placed into code for future
expansion.

Documentation should not be taken lightly or postponed until the end of the soft-
ware development. Proper documentation, combined with proper programming
practices, is not only an important part of the final product but can also make
development simpler, faster, and more productive. The designer should make con-
sistent and thorough documentation part of every stage of software development.

REDESIGN

Sometimes the designer may have to squeeze the last microsecond of speed or
the last byte of extra memory out of a program. As larger single-chip memories have
become available, the memory problem has become less serious. The time problem, of
course, is serious only if the application is time-critical; in many applications the
microprocessor spends most of its time waiting for external devices, and program speed
is not a major factor.

Squeezing the last bit of performance out of a program is COST OF
seldom as important as some writers would have you believe. REDESIGN
In the first place, the practice is expensive for the following

reasons:

1) It requires extra programmer time, which is often the single largest cost in software
development.

2) It sacrifices structure and simplicity with a resulting increase in debugging and
testing time.

3) The programs require extra documentation.

4} The resulting programs will be difficult to extend, maintain, or re-use.

in the second place, the lower per-unit cost and higher performance may not really
be important. Will the lower cost and higher performance really sell more units? Or
would vou do better with more user-oriented features? The only applications that
would seem to justify the extra effort and time are very high-volume, low-cost
and low-performance applications where the cost of an extra memory chip will far
outweigh the cost of the extra software development. For other applications, vou
will find that vou are playing an expensive game for no reason.

However, if you must redesign a program, the following MAJOR OR
hints will help. First, determine how much more perfor- MINOR
mance or how much less memory usage is necessary. If REORGANIZATION

the required improvement is 25% or less, you may be
able to achieve it by reorganizing the program. If it is more than 25%, you have
made a basic design error; you will need to consider drastic changes in hardware
or software. We will deal first with reorganization and later with drastic changes. You
should also look at Chapter 5 of Z80 Programming for Logic Design for some examples.

16-14

Note particularly that saving memory can be critical if it allows a program to fit into the
limited amount of ROM and RAM available in a simple one-chip or two-chip microcom-
puter. The hardware cost for small systems can thus be substantially reduced, if their
requirements can be limited to the memory size and 1/0 limitations of that particular
one-chip or two-chip system.

REORGANIZING TO USE LESS MEMORY

The following procedures will reduce memory usage for Z80 SAVING
assembly language programs: MEMORY

1

Replace repetitious in-line code with subroutines. Be

sure, however, that the CALL and RETURN instructions do not offset most of the
gain. Note that this replacement usually results in slower programs because of the
time spent in transferring control back and forth.

2) Use register operations when possible. But remember the cost of the extra in-
itialization.

3} Use the Stack when possible. The Stack Pointer is automatically updated after
each use so that no explicit updating instructions are necessary.

4) Eliminate Jump instructions. Try to reorganize the program or use indirect jumps
{(JP (HL) or JP (IX or 1Y)), RST, or RETURN instructions.

6] Take advantage of addresses that you can manipulate as 8-bit quantities.
These include page zero and addresses that are multiples of 100 hexadecimal. For
example, you might try to place all ROM tables in one 1001g-byte section of
memory, and all RAM variables into another 1001g-byte section.

6) Organize data and tables so that you can address them without worrying
about address calculation carries or without any actual indexing. This will
again allow vou to manipulate 16-bit addresses as 8-bit quantities. See pages 5-1
to 5-6 of Z80 Programming for Logic Design for an example.

7) Use the 16-bit instructions to replace two separate 8-bit operations. This
may be particularly useful in initialization or storing results.

8] Use leftover results from previous sections of the program.

9) Take advantage of such instructions as INC (HL), DCR (HL), LD {HL), RL (HL), and
RR (HL). which operate directly on memory locations without using registers.

10) Use INC or DEC to set or reset flag bits.

11) Use relative jumps rather than jumps with direct addressing.

12) Take advantage of the Block Move, Block Search, and Block 1/0 instructions
whenever you are handling blocks of data.

13) Watch for special short forms of instructions such as the Accumulator shifts
(RLCA. RLA, RRCA, and RRA) and DJNZ.

14) Use algorithms rather than tables to calculate arithmetic or logical expressions
and to perform code conversions. Note that this replacement may result in slower
programs.

15) Reduce the size of mathematical tables by interpolating between entries. Here
again, we are saving memory at the cost of execution time.

16) Take advantage of the alternate register set to cut down on the use of
storage. This can save time as well.

Although some of the methods that reduce memory usage also SAVING

save time, you can generally save an appreciable amount of EXECUTION

time only by concentrating on frequently executed loops. Even TIME

15-15

completely eliminating an instruction that is executed only once can save atmosta few
microseconds. But a savings in a loop that is executed frequently will be multiplied
many times over.

So, if you must reduce execution time, proceed as follows:

1) Determine how frequently each program loop is executed. You can do this by
hand or by using the software simulator or another testing method.

2) Examine the loops in the order determined by their frequency of execution,
starting with the most frequent. Continue through the list until you achieve the re-
quired reduction.

3) First, see if there are any operations that can be moved outside the loop, i.e..
repetitive calculations, data that can be placed into a register or the Stack. ad-
dresses that can be placed into register pairs or index registers, special cases or
errors that can be handled elsewhere, etc. Note that this will require extra in-
itialization and memory but will save time.

4) Try to eliminate Jump statements. These are very time-consuming. Or. use
jumps with direct addressing that require more memory but less time than jumps
with relative addressing.

5) Replace subroutines with in-line code. This will save at least a CALL and a
RETURN instruction.

6) Use the Stack for temporary data storage.

7) Use any of the hints mentioned in saving memory that also decrease execu-
tion time. These include the use of block handling instructions. 8-bit addresses,
16-bit instructions, RST. special short forms of instructions. etc.

8) Do not even look at instructions that are executed only once. Any changes
that vou make in such instructions only invite errors for no appreciable gain.

9) Avoid indexed and relative addressing whenever possible because they take
extra time.

10) Use tables rather than algorithms; make the tables handle as much of the tasks
as possible even if many entries must be repeated.

MAJOR REORGANIZATIONS

If you need more than a 25% increase in speed or decrease in memory usage, do
not try reorganizing the code. Your chances of getting that much of an improve-
ment are small unless you call in an outside expert. You are generally better off
making a major change.

The most obvious change is a better algorithm. Particularly if BETTER

vou are doing sorts, searches, or mathematical calculations, you ALGORITHMS
may be able to find a faster or shorter method in the literature.
Libraries of algorithms are available in some journals and from professional groups. See,
for example, References 1 through 10 at the end of this chapter.

More hardware can replace some of the software. Counters, shift registers.
arithmetic units. hardware multipliers, and other fast add-ons can save both time and
memory. Calculators, UARTS, keyboards. encoders, and other slower add-ons may save
memory even though they operate siowly. Compatible parallel and serial interfaces, and
other devices specially designed for use with the Z80 may save time by taking some of
the burden off the CPU.

15-16

Other changes may help as well: OTHER
MAJOR

1) A CPU with a longer word will be faster if the data is long CHANGES

enough. Such a CPU will use less total memory. 16-bit pro-
cessors, for example, use memory more efficiently than 8-bit
processors, since more of their instructions are one word long.

2) Versions of the CPU may exist that operate at higher clock rates. But remem-
ber that vou will need faster memory and I/0 ports, and you will have to adjust any
delay loops.

3} Two CPUs may be able to do the job in parallel or separately if you can divide the
job and solve the communications probiem.

4} A specially microprogrammed processor may be able to execute the same pro-
gram much faster. The cost, however, will be much higher even if vou use an off-
the-shelf emulation.

5] You can make tradeoffs between time and memory. Lookup tables and function
ROMs will be faster than algorithms, but will occupy more memory.

This kind of problem, in which a large improvement is neces- | DECIDING
sary, usually results from lack of adequate planning in the ON A MAJOR
definition and design stages. In the problem definition stage | CHANGE

you should determine which processor and methods will be
adequate to handle the problem. If you misjudge, the cost later will be high. A
cheap solution may result in an unwarranted expenditure of expensive develop-
ment time. Do not try to just get by; the best solution is usually to do the proper
design and chalk a failure up to experience. If you have followed such methods as
flowcharting, modular programming, structured programming, top-down design,
and proper documentation, you will be able to salvage a lot of your effort even if
you have to make a major change.

16-17

10.
11

REFERENCES

Collected Algorithms from ACM. ACM, Inc., P. O. Box 12105, Church Street Sta-
tion, New York 10249.

Chen, T. C.. "Automatic Computation of Exponentials. Logarithms, Ratios. and
Square Roots.” 1BM_Journal of Research and Development. Volume 18. pp.
380-388, July, 1972

H. Schmid, Decimal Computation, Wiley-Interscience, New York, 1874,

Knuth. D. E.. The Art of Computer Programming, Volume 1: Fundamental
Algorithms, Addison-Wesley. Reading, Mass.. 1967

Knuth, D. E. The Art of Computer Programming._Volume 2: Seminumerical
Algorithms. Addison-Wesley. Reading. Mass.. 1969.

Knuth, D. E.. The Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison-Wesley. Reading, Mass., 1973.

Carnahan, B. et al.. Applied Numerical Methods, Wiley, New York. 1969.

Despain, A. M. “Fourier Transform Computers Using CORDIC lterations,” [EEE
Transactions on Computers, October 1974, pp. 993-1001.

Luke, Y. L.. Algorithms for the Computation of Mathematical Functions, Academic
Press, New York, 1977.

Hwang. K., Computer Arithmetic, Wiley. New York, 1978.

Dollhoff. T.. “Microprocessor Software: How to Optimize Timing and Memory
Usage. Part Four: Techniques for the Zilog Z80.” Digjtal Design, February 1977,
pp. 44-51.

16-18

Chapter 16
SAMPLE PROJECTS

PROJECT #1: A Digital Stopwatch

Purpose: This project is a digital stopwatch. The operator enters STOPWATCH
two digits (minutes and tenths of minutes) from a INPUT
calculator-like keyboard and then presses the GO key. PROCEDURE
The system counts down the remaining time on two
seven-segment LED displays {see Chapter 11 for a description of unencoded
keyboards and LED displays).

Hardware: The project uses one input port and one output port {one Z80 Parallel
Input/Output Device or PIO), two seven-segment displays, a 12-kev keyboard. a 7404
inverter, and either a 7400 NAND gate or a 7408 AND gate, depending on the polarity
of the seven-segment displays. The displays may require drivers, inverters, and resis-
tors. depending on their polarity and configuration.

The hardware is organized as shown in Figure 16-1. Output lines 0. 1, and 2 are used to
scan the keyboard. Input lines 0. 1, 2, and 3 are used to determine whether any keys
have been pressed. Output lines 0, 1, 2. and 3 are used to send BCD digits to the seven-
segment decoder/drivers. Output line 4 is used to activate the LED displays (if line 4 is
‘1". the displays are litl. Qutput line 5 is used to select the left or right display; output
line 5 is 1" if the left display is being used, ‘0’ if the right display is being used. Thus.
the common line on the left display should be active if line 4 is *1" and line 5 is "1". while
the common line on the right display should be active if line 4 is ‘1" and line 5 is ‘0".
Output line 6 controls the right-hand decimal point on the left display. It may be driven
with an inverter or simply left on.

Keyboard Connections: The keyboard is a simple calculator keyboard available for
50¢ from a local source. It consists of 12 unencoded key-switches arranged in four rows
of three columns each. Since the wiring of the keyboard does not coincide with the ob-
served rows and columns, the program uses a table to identify the keys. Tables 16-1
and 16-2 contain the input and output connections for the keyboard. The decimal point
key is present for operator convenience and for future expansion; the current program
does not actually use the key.

In an actual application, the keyboard would require pullup resistors to ensure that the
inputs would actually be read as logic ‘1's when the keys were not being pressed. It
would also require current-limiting resistors or diodes on the output port to avoid
damaging the drivers in the case where two outputs were driving against each other.
This could occur if two keys in the same row were pressed at the same time. thus con-
necting two different column outputs.

16-1

B b (0t used)
Bg
Output Bg
Port By
P10 B3
Port B) Bg
8y Py
- l L
Cp C1 G2 L D Dy Dz D3 Dy Dy Dz D3
Ag feaff——— Ry DP
Input Display Display
Port Ay f<@—1R; and and
PIO Kevboard Driver Driver
Ayl
PortA) R {ieft) {right)
Ag fetit———{ Rg
Common Common

Figure 16-1. Digital Stopwatch {/0 Configuration

Table 16-1. Input Connections for Stopwatch Keyboard

Input Bit Keys Connected
0 ‘'3.6.'8
1 ‘2.6, Y
2 LT
3 4, GO’

Table 16-2. Qutput Connections for Stopwatch Keyboard

Output Bit Keys Connected
0 ‘0,234
1 1.8 9", ‘GO’
2 ‘BL6L 7Y

16-2

General Program Flowchart:

initialization

Is
Key closed

tdentify
key closure

H

ave
2 digits bean

kev decimal
point or "GO’
2

Save key vaiue

Count time on LEDs

|

kay still closed
?

No

16-3

Display Connections: The displays are seven-segment displays with their own in-
tegral decoders. A typical example would be the Texas Instruments TIL309 device,
which has an internal TTL MSI chip with latch, decoder. and driver. Clearly, standard
seven-segment displays would be cheaper but would require some additional software
{the seven-segment conversion routine shown in Chapter 7). Data is entered into the
display as a single binary coded decimal digit; the digits are represented as shown in
Figure 11-15. The decimal point is a single LED that is turned on when the decimal
point input is a logic ‘1" You can find more information about displays in References 10
and 11 at the end of this chapter.

Program Description:

The program is modular and has several subroutines. The emphasis s on clanty and
generality rather than efficiency; obviously, the program does not utilize the full
capabilities of the Z80 processor. Each section of the listing will now be described in
detail.

1} Introductory Comments
The introductory comments fully describe the program. these comments are a
reference so that other users can easily apply. extend. and understand the pro-
gram. Standard formats. indentations, and spacings increase the readability of the
program.

2) Variable Definitions
All variable definitions are placed at the start of the program so that they can easily
be checked and changed. Each variable is placed in a list alphabetically with other
variables of the same type; comments describe the meaning of each vanable. The
categories are:
al Memory system constants that may vary from system to system depending on

the memory space allocated to different programs or types of memories

b} Temporary storage (RAM) used for vanables
¢} 1/0 (PIO) port addresses
d} Definitions
The memory system constants are placed in the definitions so that the user may
relocate the program, temporary storage. and memory stack without making any
other changes. The memory constants can be changed to accommodate other
programs or to coincide with a particular system’s allocation of ROM and RAM ad-
dresses.
Temporary storage 1s allocated by means of DEFS (Define Storage) pseudo-opera-
tions. An ORG (origin} pseudo-operation places the temporary storage locations in
a particular part of memory. No values are placed in these locations so that the
program could eventually be placed in ROM or PROM and the system could be
operated from power-on reset without reloading.
Each port address occupied by a PlO is named so that the addresses can easily be
changed to handle varied configurations. The naming also serves to clearly dis-
tinguish control registers from data registers.
The definitions clarify the meaning of certain constants and allow parameters to
be changed easily. Each definition is given in the form (binary. hex. octal. ASCHi. or
decimall in which its meaning is the clearest. Parameters (such as debounce time)
are placed here so that they can be varied with system needs.

16-4

3)

B)

Initialization

Memory location O (the reset location on the Z80 microprocessor) contains a jump
to the starting address of the main program. The main program can thus be
placed anywhere in memory and reached via a "RESET" signal.

The initialization consists of four steps:

al Place a starting value in the Stack Pointer. The Stack is used only to store
subroutine return addresses.

bl Configure the PIO control registers.
¢l Start the number of digit keys pressed at zero.

d Initialize the location where the next digit key pressed will be saved to the
start of the digit key array. An indirect procedure is used, in which KEYAD
contains the address in which the next digit will be placed. Each time a digit
kev is recognized. the contents of KEYAD are incremented so that the next
digit key will be placed into the next memory location.

Look for Key Closure
Flowchart:

Ground all keyboard
columns

Key closures are identified by grounding all the keyboard columns and then
checking for grounded rows {i.e.. column-to-row switch closures). Note that the
program does not assume that the unused input bits are all high; instead. the bits
attached to the keyboard are isolated with a logical AND instruction.

Debounce Key

The program debounces the key closure in software by waiting for two millise-
conds. This is usually long enough for a clean contact to be made. Subroutine
DELAY simply counts with Register C for 1 millisecond. The number of millise-
conds is in the Accumulator. DELAY would have to be adjusted if a slower clock or
slower memories were being used. You could make the change simply by redefin-
ing the constant MSCNT.

16-5

6)

Identify Key Closure

Set key table pointer
to KTAB - 1

Set pattern pointer
to PATT

Flowchart:

Ground a keyboard
column by output of
{pattern pointer}

Increment key tablg

of keva in a column pointer by 1

(KCOL) Increment Shift keyboard input
i right 1 bit

pattern pointer by 1

Kev ID =
{key table pointer)
Use key table pointer
to get key ID

The particular key closed is identified by grounding single columns and observing
whether a closure is found. Once a closure 1s found (so the key column is known),
the key row can be determined by shifting the input.

The patterns required to ground single keyboard columns are in a table PATT in
memory. The final pattern in the table is a marker (ECODE) which indicates that all
the columns have been grounded without a closure being found. This pattern also
indicates to the main program that the closure could not be identified (e.g.. the
key closure ended or a hardware error occurred before we could find the closure).

16-6

7

8)

The key identifications are in table KTAB in memory. The KEY
keys in the first column (attached to the least significant out- TABLE

put bit) are followed by those in the second column, etc.
Within a column, the key in the row attached to the least significant input bit is
first, etc. Thus. each time a column is scanned without finding a ciosure, the num-
ber of keys in a column (NROWS) must be added to the key table pointer in order
to move to the next column. The key table pointer is also incremented by one
before each bit in the row inputs is examined; this process stops when a zero input
is found. Note that the key table pointer is started one location before the table,
since it is always incremented once in the search for the proper row.

If we cannot identify the key closure, we simply ignore it and look for another
closure.

Act on Key Identification

If the program has enough digits {two in this simple casel, it looks only for the GO
key and ignores all other keys. If it finds a digit key, it saves the value in the key
array, increments the number of digit keys pressed, and increments the key array
pointer.

If the entry is not complete, the program must wait for the key closure to end so
that the system will not read the same closure again. The user must wait between
key closures (i.e.. release one key before pressing another onel. Note that the pro-
gram will identify double kev closures as one key or the other. depending on
which closure the identification routine finds first. An improved version of this
program would display digits as they were entered and would allow the user to
omit a leading or trailing zero, (i.e., key in """, “7", “GO"" to get a count of seven-
tenths of a minute).

Set Up Display Output

The digits are placed in registers or memory locations with bit 4 set so that the
output is'sent to the displays. Bits 5 and 6 are set for the most significant digit to
direct the output to the left dispiay and to turn on the decimal point.

Pulse the LED Displays

Each display is turned on for two milliseconds. This process is repeated 1500
times in order to get a total delay of 0.1 minutes. or 6 seconds. The pulses are fre-
quent enough so that the LED displays appear to be lit continuously.

16-7

10) Decrement Display Count
Flowchart:

Left Display = (End >

Left Display - 1

End of timer
program

The value of the less significant digit is reduced by one. If this affects bit 4
(LEDON — used to turn the displays onl. the digit has become negative. A borrow
must then be obtained from the more significant digit. If the borrow from the more
significant digit affects bit 4. the count has gone past zero and the countdown is
finished. Otherwise, the program sets the value of the less significant digit to 9
and continues.

Note that comments describe both sections of the program and individual statements.
The comments explain what the program is doing. not what specific instruction codes
do. Spacing and indentation have been used to improve readability.

16-8

:PROGRAM NAME: TIMER

.DATE OF PROGRAM: 10/24/78

:PROGRAMMER: LANCE A. LEVENTHAL

:PROGRAM REQUIREMENTS: D1 (209) BYTES

:RAM REQUIREMENTS: 5 BYTES

:1/0 REQUIREMENTS: 1 INPUT PORT. 1 OUTPUT PORT (1 Z80 PIO)

.THIS PROGRAM IS A SOFTWARE TIMER WHICH ACCEPTS INPUTS FROM A
CALCULATOR-LIKE KEYBOARD AND THEN PROVIDES A STOPWATCH
COUNTDOWN ON TWO 7-SEGMENT LED DISPLAYS IN MINUTES AND TENTHS
OF MINUTES

;KEYBOARD

:A 12-KEY KEYBOARD IS ASSUMED
:THREE COLUMN CONNECTIONS ARE OUTPUTS FROM THE PROCESSOR
. SO THAT A COLUMN OF KEYS CAN BE GROUNDED
:FOUR ROW CONNECTIONS ARE INPUTS TO THE PROCESSOR SO THAT
. COMPLETED CIRCUITS CAN BE IDENTIFIED
THE KEYBOARD IS DEBOUNCED BY WAITING FOR TWOQO MILLISECONDS
. AFTER A KEY CLOSURE IS RECOGNIZED
A NEW KEY CLOSURE IS IDENTIFIED BY WAITING FOR THE OLD ONE
. TO END SINCE NO STROBE IS USED
:THE KEYBOARD COLUMNS ARE CONNECTED TO BITS 0
. TO 2 OF THE PIO B PORT
.THE KEYBOARD ROWS ARE CONNECTED TO BITS 0
TO 3 OF THE PIO A PORT

;DISPLAYS

. TWO 7-SEGMENT LED DISPLAYS ARE USED WITH SEPARATE DECODERS
. (7447 OR 7448 DEPENDING ON THE TYPE OF DISPLAY)
.THE DECODER DATA INPUTS ARE CONNECTED TO BITS 0 TO 3
. OF THE PIO B PORT
:BIT 4 OF THE PIO B PORT IS USED TO ACTIVATE THE LED
. DISPLAYS (BIT 41S 1 TO SEND DATA TO LEDS)
:BIT 5 OF THE PIO B PORT IS USED TO SELECT WHICH
LED IS BEING USED (BIT 5 1S 1 IF THE LEADING DISPLAY
. IS BEING USED. O IF THE TRAILING DISPLAY IS BEING USED)
:BIT 6 OF THE PIO B PORT IS USED TO LIGHT THE DECIMAL
POINT LED ON THE LEADING DISPLAY (BIT 6 IS 1 IF
THE DISPLAY IS TO BE LIT)

'METHOD

:STEP 1 - INITIALIZATION
THE MEMORY STACK POINTER (USED FOR SUBROUTINE RETURN
ADDRESSES) IS INITIALIZED. THE NUMBER OF DIGIT KEYS PRESSED IS SET
TO ZERO. AND THE ADDRESS INTO WHICH THE NEXT DIGIT KEY
IDENTIFICATION WILL BE PLACED IS INITIALIZED TO THE FIRST ADDRESS

. IN THE DIGIT KEY ARRAY

:STEP 2 - LOOK FOR KEY CLOSURE
ALL KEYBOARD COLUMNS ARE GROUNDED AND THE KEYBOARD ROWS
ARE EXAMINED UNTIL A CLOSED CIRCUIT IS FOUND

16-9

:STEP 3 - DEBOUNCE KEY CLOSURE

. A WAIT OF 2 MS IS INTRODUCED TO ELIMINATE KEY BOUNCE

:STEP 4 - IDENTIFY KEY CLOSURE
THE KEY CLOSURE (S IDENTIFIED BY GROUNDING SINGLE KEYBOARD
COLUMNS AND DETERMINING THE ROW AND COLUMN OF THE KEY
CLOSURE. A TABLE IS USED TO ENCODE THE KEYS ACCORDING TO THEIR
ROW AND COLUMN NUMBER
IN THE KEY TABLE, THE DIGITS ARE IDENTIFIED BY THEIR VALUES,
THE DECIMAL POINT KEY IS NO. 10. AND THE “GO” KEY IS NO. 11

STEP 5 - SAVE KEY CLOSURE
DIGIT KEY CLOSURES ARE SAVED IN THE DIGIT KEY ARRAY UNTIL
TWO DIGITS HAVE BEEN IDENTIFIED. DECIMAL POINTS, FURTHER DIGITS,
AND CLOSURES OF THE “GO” KEY BEFORE TWO DIGITS HAVE BEEN
IDENTIFIED ARE IGNORED
AFTER TWO DIGITS HAVE BEEN FOUND. THE “"GO” KEY IS USED TO
START THE COUNTDOWN PROCESS

STEP 6 - COUNT DOWN TIMER INTERVAL ON LEDS
A COUNTDOWN 1S PERFORMED ON THE LEDS WITH THE LEADING DIGIT
REPRESENTING THE REMAINING NUMBER OF MINUTES AND THE TRAILING
DIGIT REPRESENTING THE REMAINING NUMBER OF TENTHS OF MINUTES

iTIMEH VARIABLE DEFINITIONS
:MEMORY SYSTEM CONSTANTS

BEGIN EQU 50H :BEGIN IS STARTING MEMORY LOCATION
. FOR PROG
LASTM EQU 1000H :LASTM IS STARTING STACK ADDRESS
TEMP EQU 800H ;TEMP IS START OF RAM STORAGE
:RAM TEMPORARY STORAGE
ORG TEMP
KEYAD: DEFS 2 :KEYAD HOLDS THE ADDRESS IN THE

DIGIT KEY ARRAY IN WHICH THE
IDENTIFICATION OF THE NEXT DIGIT
. KEY WILL BE PLACED
KEYNO: DEFS 2 :KEYNO IS THE DIGIT KEY ARRAY - IT
HOLDS THE IDENTIFICATIONS OF THE
. DIGIT KEYS THAT HAVE BEEN PRESSED
NKEYS: DEFS 1 'NKEYS HOLDS NUMBER OF DIGIT KEYS
PRESSED

;I/O UNITS AND PIO ADDRESSES

bIODRA EQU OEOH INPUT PIO FOR KEYBOARD

PIOCRA EQU OE2H

PIODRB EQU OETH :OUTPUT PIO FOR KEYBOARD AND
DISPLAY

PIOCRB EQU OE3H

;DEFINlT!ONS

DECPT EQU 6 ;BIT POSITION TO TURN ON DECIMAL

POINT LED

16-10

ECODE EQU OFFH :ERROR CODE IF ID ROUTINE DOES NOT FIND
KEY

GOKEY EQU 11 :IDENTIFICATION NUMBER FOR "GO" KEY
LEDON EQU 4 :BIT POSITION TO SEND OUTPUT TO LEDS
LEDSL EQU 5 :BIT POSITION TO SELECT LEADING
. DISPLAY
MSCNT EQU OF9H :COUNT NEEDED TO GIVE 1 MS DELAY TIME
MXKEY EQU 2 ‘MAXIMUM NUMBER OF DIGIT KEY
. CLOSURES USED
NROWS EQU 4 ‘NUMBER OF ROWS IN KEYBOARD OR KEYS
. IN COLUMN
OPEN EQU 000011118 :INPUT FROM KEYBOARD IF NO KEY
. CLOSED
TPULS EQU 2 :NUMBER OF MS BETWEEN DIGIT DISPLAYS
TWAIT EQU 2 ‘NUMBER OF MS TO DEBOUNCE KEYS
ORG 0

‘RESET ROUTINE TO REACH TIMER PROGRAM
' P BEGIN :FIND TIMER PROGRAM

;INITlALIZATION OF TIMER PROGRAM

ORG BEGIN

LD A.01001111B :MAKE PIO PORT A INPUT

ouTt (PIOCRA},A

LD A.000011118 :MAKE PIO PORT B QUTPUT

ouTt (PIOCRB).A

LD SP.LASTM :PUT STACK AT END OF MEMORY

SuB A

LD (NKEYS).A :NUMBER OF DIGIT KEYS PRESSED = ZERO
LD HL.KEYNO :STARTING LOCATION FOR DIGIT KEYS

LD (KEYAD)HL

'SCAN KEYBOARD LOOKING FOR KEY CLOSURE
START: CALL SCANC ‘WAIT FOR KEY CLOSURE
‘WAIT FOR KEY TO BE DEBOUNCED

LD A TWAIT :GET DEBOUNCE TIME IN MS
CALL DELAY ‘WAIT FOR KEY TO STOP BOUNCING

;IDENTIFY WHICH KEY WAS PRESSED

CALL IDKEY IDENTIFY KEY CLOSURE
cpP ECODE ‘WAS KEY CLOSURE IDENTIFIED?
JR Z,START :NO., WAIT FOR ANOTHER CLOSURE

{ACT ON KEY IDENTIFICATION

16-11

B.A :SAVE KEY NUMBER

HL.NKEYS :CHECK FOR MAXIMUM NUMBER OF DIGIT
. KEYS

A HU)

MXKEY :HAS MAXIMUM BEEN REACHED?

Z.KEYF :YES. LOOK FOR GO KEY

AB :NO. LOOK FOR DIGIT KEYS ONLY

10 IS THIS KEY A DIGIT?

NC.WAITK :NO. IGNORE IT

{HL) :YES. INCREMENT DIGIT KEY COUNTER

HL,(KEYAD) :SAVE KEY NUMBER IN ARRAY

{HLLA

HL

(KEYAD),HL

;WAIT FOR CURRENT KEY CLOSURE TO END

WAITK: CALL
JR

SCANO ‘WAIT FOR KEY TO BE RELEASED
START :GO LOOK FOR NEXT KEY

;LOOK FOR GO KEY IF ENOUGH DIGITS FOUND

KEYF. LD
cp
JR

AB :GET NUMBER OF KEY PRESSED
GOKEY IS 1T “"GO™ KEY?
NZ WAITK :NO. IGNORE IT

;PUT DIGITS INTO REGISTERS FOR DISPLAY

LD
LD
SET
SET
SET
INC
LD
SET

HL.KEYNO

D.{HL) :GET LEADING DIGIT
DECPT.D :TURN ON DECIMAL POINT
LEDON.D :SET QUTPUT TO LEDS
LEDSL.D :SELECT LEADING DISPLAY
HL

E.{HL) :GET TRAILING DIGIT
LEDON.E :SET OUTPUT TO LEDS

"PULSE THE LED DISPLAYS

LD
LEDLP: LD
TLOOP: LD
LDPUL. OUT
LD
CALL
ouT
LD
CALL
DJUNZ
DEC
JR

C.PIODRB :GET OUTPUT PORT ADDRESS

H.6 :SET COUNTERS FOR 6 SECONDS
B.250

€).0 :OUTPUT LEADING DIGIT TO LED 1
A.TPULS :DELAY BETWEEN DIGITS

DELAY

(C)LE :OQUTPUT TRAILING DIGIT TO LED 2
A.TPULS :DELAY BETWEEN DIGITS

DELAY

LDPUL

H

NZ.TLOOP

:DECREMENT COUNT ON LED DISPLAYS

16-12

DEC E :COUNT DOWN TRAILING DIGIT

BIT LEDON.E :IS TRAILING DIGIT PAST ZERO?

JR NZ.LEDLP :NO., CONTINUE

DEC D :COUNT DOWN LEADING DIGIT

BIT LEDON.D :IS LEADING DIGIT PAST ZERQ?

JP Z,BEGIN YES. WAIT FOR NEXT TIMING TASK
LD E.Q :NO. SET TRAILING DIGIT TO 9

SET LEDON.E .SET OUTPUT TO LEDS

JR LEDLP RETURN TO DISPLAY SECTION

;SUBROUTINE SCANC SCANS THE KEYBOARD WAITING FOR A KEY CLOSURE
:ALL KEYBOARD INPUTS ARE GROUNDED

SCANC: SUB A ;GROUND ALL KEYBOARD COLUMNS
out (PIODRB).A
IN A.[PIODRA)
AND OPEN :IGNORE UNUSED INPUTS
cpP OPEN ARE ANY KEYS CLOSED?
JR Z,SCANC :NO. CONTINUE SCANNING
RET

;SUBROUT!NE DELAY WAITS FOR THE NUMBER OF MILLISECONDS SPECIFIED
. IN REGISTER A

DELAY’ EXX :SAVE USER REGISTERS

DLY1: LD C.MSCNT :LOAD REGISTER C FOR 1 MS
WTLP: DEC c SWAIT 1 MS
JR NZ WTLP
DEC A :COUNT DOWN NUMBER OF MS
JR NZ.DLY1
EXX .RESTORE USER REGISTERS
RET

:'SUBROUTINE IDKEY DETERMINES THE ROW AND COLUMN NUMBER OF THE
KEY CLOSURE AND IDENTIFIES THE KEY BY USING A TABLE

EDKEYt LD BC.PATT ;POINT TO SCAN PATTERNS
LD HL.KTAB-1 :START KEY TABLE POINTER
LD DE.NROWS :GET NUMBER OF KEYS IN A COLUMN

ESCAN KEYBOARD COLUMNS SUCCESSIVELY LOOKING FOR CLOSURE

FCOL: LD A.(BC) :GET PATTERN TO GROUND COLUMN
cpP ECODE ‘ALL COLUMNS SCANNED?
RET Z YES. RETURN WITH ERROR CODE
ouTt (PIODRBJ.A :SCAN COLUMN
IN A.(PIODRA)
AND OPEN IGNORE UNUSED INPUTS
cpP OPEN :ANY KEYS IN THIS COLUMN CLOSED?
JR NZ.FROW :YES, GO DETERMINE CLOSURE ROW
ADD HL.DE ;NO, MOVE KEY TABLE POINTER TO
. NEXT COLUMN
INC BC :POINT TO NEXT SCAN PATTERN
JR FCOL

16-13

;DETERMINE ROW NUMBER OF CLOSURE

#ROW' INC HL :MOVE KEY TABLE POINTER TO NEXT ROW
RRCA :NEXT ROW GROUNDED?
JR C.FROW :NO, KEEP LOOKING

;IDENTIFY KEY FROM TABLE

LD AHL) GET KEY NUMBER
RET

:SCAN PATTERNS USED TO GROUND ONE COLUMN AT A TIME
:ERROR PATTERN USED TO INDICATE THAT ALL COLUMNS HAVE BEEN SCANNED
THE COLUMN ATTACHED TO OUTPUT BIT O IS SCANNED FIRST, THEN

THE ONE ATTACHED TO OQUTPUT BIT 1. ETC.

PATT DEFB 000001108
DEFB 000001018
DEFB 000000118
DEFB ECODE

"KEYBOARD TABLE

:COLUMNS ARE PRIMARY INDEX, ROWS SECONDARY INDEX

:THE KEYS IN THE COLUMN ATTACHED TO QUTPUT BIT O ARE FOLLOWED
BY THOSE IN THE COLUMN ATTACHED TO OUTPUT BIT 1. ETC. WITHIN
A COLUMN. THE KEY ATTACHED TO INPUT BIT O IS FIRST FOLLOWED

. BY THE ONE ATTACHED TO INPUT BIT 1, ETC.

:THE DIGIT KEYS ARE O TO 9. DECIMAL POINT IS 10. GO IS 11

KTAB: DEFB 3 :CO.RO
DEFB 2 :CO.R1
DEFB 0 ;CO.R2
DEFB 4 :CO.R3
DEFB 8 :C1.RO
DEFB 9 :C1.R1
DEFB 1 :.C1.R2
DEFB 1 :C1.R3
DEFB 5 :C2.RO
DEFB 6 :C2.R1
DEFB 7 :C2.R2
DEFB 10 :C2,R3

:SUBROUTINE SCANO SCANS THE KEYBOARD WAITING FOR KEY CLOSURE TC
END SO NEXT CLOSURE CAN BE FOUND

SCANO: SuB A :GROUND ALL KEYBOARD COLUMNS

ouT (PIODRB).A

IN A, {PIODRA)

AND OPEN :IGNORE UNUSED INPUTS

CcP OPEN ;ARE ANY KEYS STILL CLOSED?
JR NZ.SCANO :YES. CONTINUE SCANNING
RET

END

16-14

PROJECT #2: A Digital Thermometer

Purpose: This project is a digital thermometer which shows the temperature in
degrees Celsius on two seven-segment displays.

Hardware: The project uses one input port and one output port, two seven-segment
displays, a 74L.S04 inverter. a 74L.S00 NAND gate or a 74LS08 AND gate depending on
the polarity of the displays. an Analog Devices AD7570J 8-bit monolithic A/D con-
verter, an LM311 comparator, and various peripheral drivers, resistors. and capacitors
as required by the displays and the converter. (See Chapter 11 and Reference 1 at the
end of this chapter for discussions of A/D converters)

Figure 16-2 shows the organization of the hardware. Output line 7 from PIO Port B is
used to send a Start Conversion signal to the A/D converter. Input lines 0 through 7 are
attached directly to the eight digital data lines from the converter. Output lines 0
through 3 are used to send BCD digits to the seven-segment decoder/drivers. Output
line 4 activates the displays and output line 5 selects the left or right display {line5is ‘1’
for the left display).

The analog part of the hardware is shown in Figure 16-3. The THERMOMETER
thermistor simply provides a resistance that depends on tem- ANALOG
perature. Figure 16-4 is a plot of the resistance and Figure 16-5 HARDWARE
shows the range of current values over which the resistance is
linear. The conversion to degrees Celsius in the program is performed with a calibration
table. The two potentiometers can be adjusted to scale the data properly. A clock for
the A/D converter is generated from an RC network. The values are R7=33 kQ} and
C1=1000 pF. so that the clock frequency is about 75 kHz. At this frequency. the max-
imum conversion time for eight bits is about 50 microseconds. A much longer delay is
allowed for conversion so that no check for the end of conversion is necessary. The 8-
bit version of the converter requires the following special connections. The eight data
lines are DB2 through DB9 (DB1 is always high during conversion and DBO low). The
Short Cycle 8-bit input (pin 26-SC8) is tied low so that only an 8-bit conversion is per-
formed. In the present case. High Byte Enable {pin 20-HBEN) and Low Byte Enable (pin
21-LBEN) were both tied high so that the data outputs were always enabled.

The A/D converter uses the successive approximation method to perform a conversion.
The ADC's data register is connected to the inputs of an internal D/A converter whose
output (available at OUT1 and QUT2) is compared to the analog input. When a conver-
sion is Initiated. the ADC logic sets the data register to all zeros with the exception of
the most significant bit (MSB), which is set to one. If the analog input is less than the
resulting internally generated analog value, then the MSB is reset to zero; otherwise it
remains a one. The next most significant bit is then set to one and the process repeated
until all eight bits have been “tested” in this way. After the eighth cycle. the value in the
register is the value which most closely corresponds to the analog input.

This method is fast, but it requires that the input be stable during the conversion pro-
cess. Rapidly changing or noisy inputs would require additional signal conditioning. The
references at the end of this chapter describe more accurate methods for handling
analog (/0.

16-15

By
Bg | (not used)
Output Bg
port B4
pio B3
portB) B2 >
By
By © l
y ey | | 1y
Start Dy D1 Dy, D Do D1 Dy, D
A7 fel—— Conversion RIS 0Ttz
Ag leth—
Input A5 i Display Display
Port A4 fes— A/D and and
P10 Az @ Converter Driver Dnver
Port Al Ay fet——— tieft) {right!
Ay ftt
Ao [
Comman Common

Analag Input

Figure 16-2. /0 Configuration for a Digital Thermometer

16-16

VRer
-0V

+15V

Ry
Thermustor

R8
68 kQ

R6

50 kQ2
OFFSET ADJ
A5V +15V
+15V 45V
22 1
R3
2000 ,§ Vec Voo
| Vaer ouT1
+5V
ouT2
R7
33kQ
24
§CLOCK comp
8
C1 AD7570J gmro = (not used)
1000 pF A/D 9
Converter SYNC = {not used)
10
DBY frm—i A7
A
11
ANALOG 088l 26
INPUT »
R4 1kQ 12
Gain Adjust DB7 = A5
13
+5V DB6 i AL \ 10 5o
20 14
| HBEN pas g a3 f POtA
21 15
| LBEN DB4 fellie A2
25 16
From PIO Port B, bit 7 ~=mme§ STRT DB3— A1
p1:] N— 17
{not used) maf BUSY DB2 i A0 /
27 1
‘——uBSEN DB1} -—8-—(nct used)
268 19
SC8 DBO g (not used)
AGND DGND
ls lzs
i) —A m=—D
= = =

Note: If positive VReg ts used, the ANALOG INPUT range is O to -VREF. and the
COMPARATOR's (-1 input should be connected to OUT1 (pin 4) of the AD7570.

Ry is the thermistor. The analog input from the voltage divider 1s:

Since Rg = 68 k{2, the mput is:

Rt has a minimum value of 34 k) {T=50°C. see Figure 16-4) so full scale 1s 10 Volt.

R
8 x15 voit
Rg + Ry
1.02MQ

Y2+ 14
Ry + 68 k&l ©

16-17

Figure 16-3. Digital Thermometer Analog Hardware

1 000 000
T(C) | R{Ohm)
0 365 000
25 100 000
()~ 50 34 000
- . 100 6 000
E T
£ LS
g Sea
g 100000 f— O
2 T
%
.g ~ -~
< ~ =
~ ~
~
o)
10 000 '
0 25 50
Temperature (°C)
Figure 16-4. Thermistor Characteristics
(Fenwal GA51J1 Bead)
100
The curve is linear fi.e.. the resistance is
independent of current} for currents less
than 0.1 milliampere.
S w0
w
H
0.01 0.1 1.0
| {miliampere)

Figure 16-5. Typical E-I Curve for Thermistor (25°C)

16-18

General Program Flowchart*

Initislization

._.'

Send Start
Conversion signat
to A/D converter

Y

Wait 1 ms

y

Read data from
A/D converter

Y

Convert data to
degrees Celsius

temperature on
LEDs for six seconds

16-19

Program Description:

1)

2)

3)

4)

Initialization

Location O (the Z80 microprocessor RESET location) contains a jump to the starting
address of the main program.The initialization configures the PIO control registers
and starts the Stack Pointer at the highest address in RAM. The Stack is used only
to store subroutine return addresses.

Send START CONVERSION Signal to A/D Converter

The CPU pulses the START CONVERSION line by first placing a *1" on line 7 of PIO
Port B and then piacing a ‘0" on that fine. Each input from the converter requires a
starting pulse.

Wait 1 ms for Conversion

A delay of 1 ms after the START CONVERSION pulse guarantees a completed con-
version. Actually, the converter takes only a maximum of 100 microseconds for an
8-bit conversion. We could reduce the delay by checking the BUSY signal from the
converter. This signal is either a 1" {conversion complete} or ‘0 {conversion in
progress) if the BUSY ENABLE line is addressed. In the present case there is no
reason to speed the conversion process. Clearly, interrupts could be used with
BUSY tied to the PIO STROBE line.

Read Data from A/D Converter

Reading the data involves a single input operation. We should note that the Analog
Devices AD7570J has an Enable input and tristate outputs so that it could be tied
directly to the microprocessor Data Bus.

The 7570 converter is, of course, underutilized in this particular application. partic-
ularly since we are interfacing it to the Z80 processor through a PIO. A simpler 8-bit
A/D converter such as the Nationai 5367 device would do the job at lower cost:
this device is available in an 18-pin package, has a START CONVERSION input. and
provides tristate outputs. It also has output latches and an END OF CONVERSION
output signal.

16-20

5)

Convert Data to Degrees Celsius

Flowchart:

Value = Data recaived
from A/D converter
Index = 0
Painter. = Start of table

Is
{Pointer} >

Value
?

index=lIndex + 1

Temperature = Index
Pointer = Painter + 1

The conversion uses a table that contains the largest in- USING A

put value corresponding to a given temperature. The pro- CALIBRATION
gram searches the table, looking for a value greater than TABLE

or equal to the value received from the converter. The first
such value it finds corresponds to the required temperature; that is, if the tenth
entry is the first value larger than or equal to the data. the temperature is 10
degrees. This search method is inefficient but adequate for the present applica-
tion.

Note that we must keep the entry number in decimal rather than binary. The in-
struction sequence "ADD A.1: DAA" keeps the index as two decimal digits in-
stead of a binary number. For example. the entry number after 9 (00001001 bin-
ary) will be decimal 10 (00010000 BCD]) rather than binary ten {00001010). The
reason for this is that we plan to display the temperature as two decimal digits and
would have to convert it from binary to decimal otherwise.

The table could be obtained by calibration or by a mathematical approximation.
The calibration method is simple. since the thermometer must be calibrated any-
way. The table occupies one memory location for each temperature value to be
displaved‘1

To calibrate the thermometer. you must first adjust the potentiometers to produce
the proper overall range and then determine the converter output values corres-
ponding to specific temperatures.

16-21

6) Prepare Data for Display
Flowchart:

Get igast significant
digit and set
output to LEDs

]

Get most
significant digit

is
most
significant digit
0?

Set output to LEDs

The least significant digit is masked off. We set the bit that BLANKING
turns on the displays. The result is saved in Register E. A LEADING
ZERO

The only difference for the most significant digit is that a lead-
ing zero is blanked {i.e.. the displays show “blank 7" rather
than 07" for 7°C). This simply involves not setting the bit that turns on the dis-
plays if the digit is zero. The result is saved in Register D.

16-22

7

Display Temperature for Six Seconds
Flowchart:

Count = TSAMP

—

Send most
significant digit
to left display

]

Wiit 2 ms

Y

Send least
significant digit
to right display

y

Wait 2 ms

[

Count =Count - 1

Each display is pulsed often enougn so that it appears to be lit continuously. If
TPULS were made longer (say 50 ms), the displays would appear to flash on and
off.

The program uses a 16-bit counter to count the time between temperature sam-
ples. The Z80 has instructions to increment or decrement 16-bit register pairs or n-
dex registers. However, these instructions do not affect the flags. so there is no way
to directly determine when the counter reaches zero. So we make this determina-
tion by logically ORing the eight most significant and the eight least significant bits
of the counter. If that result is zero, the 16-bit counter is zero.

16-23

:PROGRAM NAME: THERMOMETER

:DATE OF PROGRAM: 10/20/78

:PROGRAMMER: LANCE A. LEVENTHAL

:PROGRAM MEMORY REQUIREMENTS: 154 BYTES

;RAM REQUIREMENTS: NONE

:1/0 REQUIREMENTS: 1 INPUT PORT, 1 OUTPUT PORT (1 Z80 PIO)

:THIS PROGRAM IS A DIGITAL THERMOMETER THAT ACCEPTS INPUTS FROM
AN A/D CONVERTER ATTACHED TO A THERMISTOR, CONVERTS THE INPUT
TO DEGREES CELSIUS. AND DISPLAYS THE RESULTS ON TWO
SEVEN-SEGMENT LED DISPLAYS

-A/D CONVERTER

"THE A/D CONVERTER IS AN ANALOG DEVICES 7670J MONOLITHIC CONVERTER
. WHICH PRODUCES AN 8-BIT QUTPUT
:THE CONVERSION PROCESS IS STARTED BY A PULSE ON THE START
: CONVERSION LINE (BIT 7 OF PIO PORT B
:THE CONVERSION IS COMPLETED IN 50 MICROSECONDS AND THE
DIGITAL DATA IS LATCHED

‘DISPLAYS

:TWO SEVEN-SEGMENT LED DISPLAYS ARE USED WITH SEPARATE DECODERS
. (7447 OR 7448 DEPENDING ON THE TYPE OF DISPLAY)
:THE DECODER DATA INPUTS ARE CONNECTED TO BITS 0 TO 3 OF
: PIOPORT B
:BIT 4 OF PIO PORT B IS USED TO ACTIVATE THE LED DISPLAYS
: (BIT 41S 1 TO SEND DATA TO LEDS)
:BIT 5 OF PIO PORT B IS USED TO SELECT WHICH LED IS BEING
USED {BIT 5 1S 1 IF THE LEADING DISPLAY IS BEING USED.
0 IF THE TRAILING DISPLAY IS BEING USED)

‘METHOD

;STEP 1 - INITIALIZATION
THE MEMORY STACK (USED FOR SUBROUTINE RETURN ADDRESSES) IS
. INITIALIZED
:STEP 2 - PULSE START CONVERSION LINE
THE A/D CONVERTER'S START CONVERSION LINE (BIT 7 OF PIO
PORT B) IS PULSED
;STEP 3 - WAIT FOR A/D QUTPUT TO SETTLE
: A WAIT OF 1 MS ALLOWS FOR COMPLETION OF THE CONVERSION
:STEP 4 - READ A/D VALUE, CONVERT TO DEGREES CELSIUS.
A TABLE IS USED FOR CONVERSION IT CONTAINS THE MAXIMUM
. INPUT VALUE FOR EACH TEMPERATURE READING
:STEP 5 - DISPLAY TEMPERATURE ON LEDS
THE TEMPERATURE IS DISPLAYED ON THE LEDS FOR SIX SECONDS
BEFORE ANOTHER CONVERSION IS PERFORMED

“THERMOMETER VARIABLE DEFINITIONS

;MEMORY SYSTEM CONSTANTS

16-24

BEGIN
LASTM

EQU
EQU

50H
1000H

;I/O UNITS AND PIO ADDRESSES

PIODRA
PIOCRA
PIODRB
PIOCRB

EQU
EQU
EQU
EQU

.DEFINITIONS

LEDON
LEDSL
MSCNT
STCON
TPULS
TSAMP

EQU
EQU
EQU
EQU
EQU
EQU

ORG

OEOH
OE2H
OEMH
OE3H

4
5

OFgH
100000008
2

1500

0

;STARTING ADDRESS OF MAIN PROGRAM
;STARTING ADDRESS FOR RAM STACK

:INPUT PIO FOR CONVERTER

:OUTPUT PIO FOR DISPLAYS

:BIT POSITION TO SEND DATA TO LEDS

:BIT POSITION TO SELECT LEADING DISPLAY
:COUNT NEEDED TO GIVE 1 MS DELAY
;OUTPUT TO BRING START CONVERSION HIGH
:DISPLAY PULSE LENGTH IN MS

;TSAMP IS THE NUMBER OF TIMES THE
.DISPLAYS ARE PULSED,IN A

:TEMPERATURE SAMPLING PERIOD. THE
;LENGTH OF A SAMPLING PERIOD IS THUS
;2°TPULS*TSAMP MILLISECONDS.THE FACTOR
:OF 2*TPULS IS INTRODUCED BY THE FACT
:THAT EACH OF 2 DISPLAYS IS PULSED FOR

, TPULS MS

;RESET ROUTINE TO REACH THERMOMETER PROGRAM

JP

BEGIN

:FIND THERMOMETER PROGRAM

;INITIALIZAT‘ON OF THERMOMETER PROGRAM

;PULSE START CONVERSION LINE

START:

ORG
LD
ouTt
LD
ouT
LD

LD

ouTt
SuB
ouT

BEGIN
A.010011118
{PIOCRA).A
A.000011118
(PIOCRB).A
SP,LASTM

A.STCON
(PIODRB).A
A
(PIODRB).A

:MAKE PIO PORT A INPUT
;MAKE PIO PORT B OUTPUT

:PUT STACK AT END OF RAM

:SEND START CONVERSION HIGH

;SEND START CONVERSION LOW

16-25

;DELAY 1 MS FOR CONVERSION

LD Al ;CONVERSION DELAY TIME IN MS
CALL DELAY ‘WAIT FOR CONVERSION

;READ DIGITAL DATA FROM CONVERTER

IN A.(PIODRA) :GET DATA FROM A/D CONVERTER
;CONVERT A/D DATA TO 2 BCD DIGITS

CALL CONVR :CONVERT DATA TO BCD

;GET LEAST SIGNIFICANT DIGIT

LD B.A :SAVE BCD DIGITS

AND OFH :MASK OFF LSD

SET LEDON.A :SET OUTPUT TO LEDS
LD EA :SAVE LSD IN REGISTER E

;GET MOST SIGNIFICANT DIGIT, BLANK LEADING ZERO

LD AB :RESTORE BCD DIGITS
RRCA ;SHIFT MSD
RRCA
RRCA
RRCA
AND OFH :MASK OFF MSD
JR Z.SVMSD :DON'T TURN DISPLAY ON IF VALUE ZERO
SET LEDON.A :SET OUTPUT TO LEDS
SET LEDSL.A :SELECT LEADING DISPLAY
SVMSD: LD D.A :SAVE MSD IN REGISTER D

':PULSE THE LED DISPLAYS

LD C.PIODRB :GET QUTPUT PORT ADDRESS
LD HL.TSAMP ;GET 16-BIT PULSE COUNTER

DSPLY: OUT €).D ;OUTPUT LEADING DIGIT TO DISPLAY
LD ATPULS :DELAY DISPLAY PULSE LENGTH
CALL DELAY
out (C).E ;OUTPUT TRAILING DIGIT TO DISPLAY
LD A TPULS :DELAY DISPLAY PULSE LENGTH
CALL DELAY
DEC HL .COUNT DOWN 16-BIT COUNTER
LD AH :REMEMBER DEC HL DOES NOT SET Z FLAG
OR L
JR NZ.DSPLY :CONTINUE PULSING DISPLAYS
JP START :GO SAMPLE TEMPERATURE AGAIN

;SUBROUTiNE DELAY WAITS FOR THE NUMBER OF MILLISECONDS SPECIFIED
IN REGISTER A

16-26

bELAY: EXX :SAVE USER REGISTERS

DLY1: LD C.MSCNT :LOAD REGISTER C FOR 1 MS DELAY
WTLP: DEC C SWAIT 1 MS

JR NZWTLP

DEC A :COUNT DOWN NUMBER OF MS

JR NZ.DLY1

EXX ;RESTORE USER REGISTERS

RET

;SUBHOUTINE CONVR CONVERTS INPUT FROM A/D CONVERTER TO DEGREES
. CELSIUS BY USING A TABLE. INPUT DATA IS IN THE ACCUMULATOR.
RESULT IS 2 BCD DIGITS IN THE ACCUMULATOR

;REGlSTERS USED: AB.CHL

CONVR: LD HL.DEGTB :GET BASE ADDRESS OF CONVERSION
. TABLE
LD B.A :SAVE A/D INPUT
LD C.0 START DEGREES AT ZERO
CHVAL: LD A, (HL) :GET ENTRY FROM TABLE
CcpP B ;IS A/D INPUT BELOW ENTRY?
LD A.C :GET VALUE IN DEGREES CELSIUS
RET NC :YES. VALUE FOUND
ADD A1 :NO. ADD 1 TO DEGREES
DAA .KEEP DEGREES IN BCD
LD C.A
INC HL
JR CHVAL

:TABLE DEGTB WAS OBTAINED BY CALIBRATION WITH A KNOWN REFERENCE

:DEGTB CONTAINS THE LARGEST INPUT VALUE THAT CORRESPONDS TO A

. PARTICULAR TEMPERATURE READING {.E.. THE FIRST ENTRY IS DECIMAL
58 SO AN INPUT VALUE OF 58 IS THE LARGEST VALUE GIVING A ZERO
TEMPERATURE READING - VALUES BELOW ZERC ARE DISPLAYED AS ZERO

16-27

DEGTB:

232
236
241
245
249
253
255

16-28

References

1. A method that uses far less memory is described in T. A, Seim, “Numerical Interpola-
tion for Microprocessor-based Systems.” Computer Design. February 1978, pp. 111-
116.

See also:

2. Auslander, D. M. et al., “Direct Digital Process Control: Practice and Algorithms for
Microprocessor Applications,” Proceedings of the IEEE, February 1978, pp. 199-208

3. Bernstein. N.. “What to Look for in Analog Input/Output Boards.” Electronics, Janu-
ary 18, 1978. pp. 13-119

4. Bibbero, R. J.. Microprocessors in Instruments and Control. Wiley, New York, 1977

5. Burton, D. P. and A. L. Dexter, Microprocessor Systems Handbook, Analog Devices.
inc.. P.O. Box 796, Norwood, MA. 02062, 1977

6. Finkel. J. . Computer-Aided Experimentation, Wiley, New York, 1975

7. Garrett. P. H.. Analog Systems for Microprocessors and Minicomputers, Reston Pub-
lishing Co.. Reston, VA, 1978

8. Hnatek, E. R.. A User's Handbook of D/A and A/D Converters, Wiley, New York,
1976

9. Mrozowski, A.. “Analog Output Chips Shrink A-D Conversion Software.” Electronics,
June 23, 1977, pp. 130-133

10. The Optoelectronics Data Book. Texas Instruments, Inc.. P.O. Box 5012, Dallas, TX.,
1978

11. The Optoelectronic Designer's Catalog, Hewlett-Packard Inc., 1820 Embarcadero
Road. Palo Alto, CA. 84303.1978

12. Peatman, J. B.. Microcomputer-based Design, McGraw-Hill, New York. 1977

13. Rony, P.R. et al.. “Microcomputer Interfacing: Sample and Hold Devices.” Computer
Design, December 1977. pp. 106-108

14. Sheingold, D. H. ed.. Analog-Digital Conversion Notes, Analog Devices. inc.. P. O.
Box 796, Norwood, MA. 02062, 1977

16-29

Index of Instruction Descriptions

ADC Adata 3-43

ADC Areg 3-44

ADC A.{HL) 3-45

ADC A{IX + disp) 3-45
ADC AlY + disp] 3-45
ADC HLip 3-46

ADD Adata 3-47

ADD Areg 3-48

ADD A (HL) 3-49

ADD A{IX + disp) 3-48
ADD A.llY + disp) 3-49
ADD HLrp 3-50

ADD xy.rp 3-51

AND data 3-52

AND reg 3-53

AND (HL) 3-54

AND (IX + disp) 3-54
AND (IY + disp) 3-54

BIT breg 3-55
BIT b.(HL) 3-56
BIT b.{IX + disp) 3-56
BIT b.{lY + disp) 3-66

CALL label 3-57
CALL condition.label 3-58
CCF 3-89

CP data 3-60
CPreg 3-61

CP (HL) 3-62

CP (IX + disp) 3-62
CP (IY + disp) 3-62
CPD 3-63

CPDR 3-84

CPI 3-65

CPIR 3-66

CcPL 3-67

DAA 3-68

DECreg 3-69
DECp 3-70

DEC IX 3-70

DEC 1Y

DEC (HL) 3-71

DEC (IX + disp) 3-71
DEC (IY + disp) 3-71
Dl 3-72

DJINZ disp 3-73

El 3-73

EX AFAF 3-75
EX DEHL 3-76

EX (SPLHL 3-77
EX (SPVLIX 3-77
EX (SPLIY 3-77
EXX 3-78

HALT 3-79

MO 3-80

M1 3-80

M2 3-80

IN Afport] 3-81
INCreg 3-82
INCrp 3-83

INCIX 3-83

INC1Y 3-83

INC (HL} 3-84

INC (IX + disp) 3-84
INC (IY + disp} 3-84
IND 3-85

INDR 3-85

INI 3-86

INIR 3-86

IN reg.(C) 3-87

JP label 3-88

JP condition,label 3-89
JP (HL) 3-90

JP(IX) 3-90

JP (Y} 3-90

JR Cdisp 3-91

JR disp 3-92

JR NCdisp 3-93

JR NZdisp 3-93

JR Zdisp 3-94

LD Al 3-94
LD AR 3-94
LD Aladdr} 3-95
LD Alip) 3-96
LD dstsrc 3-97
LD HL{addr} 3-98
LD rp.faddr) 3-98
LD IX.(addr} 3-98
LD IY.(addr) 3-98
LD LA 3-99
LDRA 3-99
LD reg.data 3-100
LD rpdata 3-101
LD IX.data 3-101
LD Iy data 3-101
LD reg.(HL) 3-102
LD reg, (X + disp} 3-102
LD reg.{lY + disp) 3-102
LD SPHL 3-103
LD SPIX 3-103
LD SPIY 3-103
LD (addr).A 3-104
LD {addri,HL 3-105
D (addrl.rp 3-105
D (addr)xy 3-105
LD (HL).data 3-107
LD {IX + displ.data 3-107
LD (IY + displdata 3-107

xXv

Index of Instruction Descriptions (Continued)

LD (HUlreg 3-108 RLD 3-136
LD (IX + displ.reg 3-108 RRreg 3-137
LD {lY + displ.reg 3-108 RR (HL) 3-138
LD {rp).A 3-109 RR (IX + disp) 3-138
LDD 3-110 RR {IY + disp) 3-138
LDDR 3-111 RRA 3-139
LDl 3-112 RRC reg 3-140
LDIR 3-113 RRC (HL) 3-141
RRC (IX + disp} 3-141
:gf’, 31111?1 BRC (1Y + disp) 3-141
g RRCA 3-142
OR data 3-115 RRD 3-143
ORreg 3-116 RSTn 3-144
OR (HL) 3117 SBC Adata 3145
OR (IX + disp) 3-117
! SBC Areg 3-146
OR {ly + disp} 3-117
oUT (@) 3118 SBC A,(HL) 3-147
oUTD ';‘391119 - SBC AlIX + disp) 3-147
) SBC A(lY + disp) 3-147
OTDR 3-119
SBC HL.rp 3-148
OUTI 3-120 SCE | 3.140
OTIR 3-120

SET breg 3-150

OUT (porth A 3-121 SET bl 3-151
POPp 3-122 SET b.(IX + disp) 3-151
POP X 3-122 SET b.{IY + disp) 3-151
POPIY 3-122 SLATteg 3-152

PUSH p 3-123 SLA (HU 3-153

PUSH IX 3-123 SLA (X + disp) 3-153
PUSH IY 3-123 SLA (IY + disp) 3-153

SRA reg 3-154

SRA {HL) 3-155

SRA {(IX + disp) 3-15b
SRA {IY + disp) 3-155
SRL reg 3-156

RES b.reg 3-124
RES B.(HL) 3-126
RES b.{IX + disp) 3-125
RES b.ilY + disp} 3-1256

e SAL (HLI 3-157
RETI 3128 SAL (IX + displ- 3-157
RETN 3129 SRL (1Y + displ 3-157
AL req 3130 SUB data 3-158

g SUBreg 3-159
RL (HL) 3-131

SUB (HL) 3-160
SUB (IX + disp) 3-160
SUB {IY + disp) 3-160

RL (IX + disp) 3-131
RL (Y + disp) 3-131

RLA 3-132

RLC reg 3-133 XOR data 3-161

RLC (HL) 3-133 XOR reg 3-162

RLC (IX + disp) 3-134 XOR (HL) 3-163

RLC (IY + disp} 3-134 XOR (IX + disp) 3-163
RLCA 3-135 XOR {lY + disp) 3-163

xvi

Index

Accumulator, using the, 4-2
Add/Subtract flag, 8-7

questions for, 15-4
Common-anode or common-cathode displays.

Address field, numbers and characters in, 3-172 11-43
Algebraic notation, 1-8 Compiler. 1-7
Algorithm cost of, 1-8

multiplication. 8-8
simple sorting. 9-10
Allocating RAM. 2-7
Arithmetic and Logical Expressions, 2-10
ASCH
characters, 2-10
handling data n, 6-1
Assembler, 1-5
arithmetic and logical operations, 3-172
choosing an. 1-6
meta-. 2-14
micro-, 2-14
one-pass, 2-14
resident, 2-14
two-pass. 2-14
Assembler directive, 2-4
Assembly language
applications, 1-10
fields, 2-1
program, 1-5

Basic software delay, 11-8
BCD and binary, accuracy in. 8-8
Blanking a leading zero, 16-22
Block 1/0 instruction, 6-6

use of. 11-21
Block. moving data within, 7-8
Block search mnstructions, 6-6
Block transfer instructions, 8-4
Binary and BCD, accuracy in, 8-8
Binary instructions, 1-1

rounding, 8-24
Binary numbers, doubling and halving, 8-23
Bootstrap loader. 2-15
Bottom-up design. 13-44
Breakpoint, 14-2

insertion of, 14-3

RST as, 14-2
Buffer

double buffering, 12-7

emptying with interrupts, 12-19

filling via interrupts, 12-16
Buffer. emptying with interrupts, 12-19

Calibration table. use of, 16-21
Character format. 11-81
Checklist. what to include in, 14-10
Coding. 13-3

relative importance of. 13-1
Commenting

examples. 15-4

guidelines, 156-2

techniques. 2-13

Computer program, 1-1

COND and ENDC pseudoc-operations, 3-174
Control and status information. 11-57
Control information, combining, 11-568

Credit verification terminal. structural program

for, 13-38
Cross-assembler, 2-14

Daisy chain
device operation in, 12-10

interrupts. advantages and disadvantages,

12-9

PIO interrupts, 12-9
Data. forming classes of, 14-28

moving within a block, 7-8
Data flowcharts, 13-19
Debouncing

in software, 11-26

with cross-coupled NAND gates, 11-28
Debugging, 13-3

code conversion program, 14-6

interrupt-driven programs, 14-14

sort program, 14-6

use of test cases from. 14-27
Decimal

accuracy in binary, 8-4

adjust, 8-7

data or addresses. 2-9

rounding. 8-24

shift instructions, 8-21
DEFB. DEFL. DEFM, DEFS, DEFW pseudo-

operaltions, 3-170, 3-171
Definition list

rules for. 15-8

typical. 15-9
Definitions, placement of. 2-7
Delay loop constant, 11-10
Delimiters, 2-2
Direct memory access (DMA), 11-5
Disabling interrupts, 12-25

Displays, common-anode or common-cathode,

11-43
Division algorithm, 8-12
Documentation, 13-3
of status and control transfer. 11-59
of subroutines, 10-2
package, 15-13
Double buffering, 12-7

8-bit summation, 5-3
8080A unused operation codes, 3-164
8080A/Z80

assembly level conversion, 3-164

xvii

Index (Continued)

8080A/Z80 (continued)
compatibility features, 3-164
incompatibilities, 3-164

8085/Z80 incompatibilities, 3-165

ENDC and COND pseudo-operations, 3-174

Error constderations, 13-5

Errors, common, 14-11

Example format, 4-1

Examples. guidelines for, 4-1

Execution time, saving, 156-15

External references, 2-8

Flowcharting
advantages of, 13-17
credit verification, 13-22
disadvantages of, 13-18
sections, 13-22
switch and light system, 13-19
switch-based memory loader, 13-20
Flowcharts
data, 13-19
funts for use, 15-7
Format, 2-2
FORTRAN, 1-7
Full-duplex. 11-89

General service routines, tasks for. 12-30

Hand assembly, 1-6

Hand checking questions, 14-11

Handshake, 11-2

Hashing. 9-4

Hexadecimal loader, 1-3

Hexadecimal or octal. 1-3

High-level language
advantages of. 1-9
applications for. 1-10
disadvantages of. 1-9
inefficiency of, 1-8
machine independence, 1-7
overhead for. 1-9
portability of, 1-8
syntax of. 1-10
unsuitability of, 1-10

Index registers, use of, 7-7
Information hiding priciple, 13-29
initializing RAM, 2-8
{nput. factors in, 13-4
Instructions
defining a sequence of. 2-11
faster and slower executing, 3-164
Interfaces. standard, 11-103
Interfacing
high-speed devices. 11-5
medium-speed devices, 11-2
stow devices, 11-2
interrupts

xviii

disabling, 12-2, 12-25

disadvantages of. 12-2

enabling, 12-2

emptying a line buffer with, 12-19

handling by monitors, 12-13

inputs, 12-2, 12-3

instruction, 12-3

keyboard, 12-14

modes. 12-4

non-maskable, 12-2. 12-3

on particular microcomputers, 12-13

PIO, 12-6. 12-7

reasoning behind, 12-1

S10. 12-26, 12-10

start bit interrupt, 12-28

systems, charactenstics of, 12-1
/0

and memory, 11-1

categories, 11-1

driver, 11-18

instruction examples. 11-19

instructions with absolute addressing, 11-18

Jumps, indirect, 9-15

Key closure, waiting for, 11-62

Key table, 16-7

Keyboard errors, correcting, 13-14
Keyboard interrupt 12-14

Kevboard routine, expanding the. 13-48
Keyboard scan. 11-60

Label field, 2-2
Labeling, rules of. 2-3
Labels
choice of, 2-3
In jump instructions, 2-2
Language levels
application areas for. 1-10
future trends in. 1-11
LED controf, 11-39
Link editor, 2-15
Linking loaders, 2-15
Loader
bootstrap, 2-15
hexadecimal. 1-3
linking, 2-15
memory, 13-10, 13-28
relocating. 2-15
Local or global variables, 2-13
Location counter, 2-7
Logic analyzer, 14-9
important features of, 14-10
Logtcal and arithmetic expresstons, 2-10

Machine language
applications for, 1-10
program. 1-2
MACRQ and ENDM pseudo-operations, 3-174

Index (Continued)

Macro-assembler, 2-14
Macros
advantages of, 2-12
disadvantages of, 2-12
Maintenance and redesign, 13-3
Matrix keyboard, 11-60
Memory dump. 14-7
Memory loader error handling. 13-10
Memory map. typical, 15-8
Meta-assembler, 2-14
Micro-assembler, 2-14
Mnemonics. probiems with, 1-4
Modular programming
advantages of, 13-26
disadvantages of. 13-27
rules for. 13-30
Modularization
principies of, 13-27
switch and light system, 13-28
switch-based memory loader, 13-28
verification terminal, 13-28
Multiplication algorithm, 8-8

Names
choice of, 2-6. 16-2
defining, 2-6
use of, 2-6
Number systems, 2-9
Numbers, self-checking, 8-17
Non-maskable interrupt, 12-2. 12-3

Object program, 1-2, 1-5

Octal or hexadecimal, 1-3
One-pass assembler, 2-14
Operation codes, two-word, 3-164

Operator error connection in memory loader,

13410
Operator interaction. 13-6
ORG pseudo-operation, 3-171

Passing parameters, 10-1
PIO
addresses. 11-11
bidirectional mode, 11-15
control mode. 11-15
daisy chain signals, 12-9
directions in control mode, 11-15
input mode, 11-15
interrupts, enabling and disabling, 12-7
modes, 11-15, 11-16
output mode, 11-15
registers and control lines, 11-11
steps in configuring, 11-17
Polling. 12-2. 12-10
Polling interrupt systems with Si0s, 12-10
Portability, 1-6
Primed registers, saving values in, 12-16
Priority, 12-16
Problem definition, 13-3

Xix

Processing, factors in, 13-6
Program design, 13-3

basic principles of. 13-6
Programming guidelines, 4-2
Pseudo-operations, 2-4

COND, 3-174

DEFB. 3-170

DEFL. 3-171

DEFM, 3-170

DEFS, 3-171

DEFW, 3-170

END, 3-172

ENDC, 3-174

ENDM, 3-174

EQU, 3-171

MACRO. 3-174

ORG, 3-171

RAM

allocating, 2-7

initializing, 2-8
Real-time clock. 12-20

frequency of, 12-20

priority of, 12-21

synchronization with, 12-20
Real time, maintaining, 12-24
Receive routine, structured, 13-40
Redesign and maintenance, 13-3
Redesign, cost of, 15-14
Re-entrant subroutine, 10-2
References, external, 2-8
Register dumps, 14-4
Register Pair HL, using, 4-2
Relocating loader, 2-15
Relocation, 10-2
Relocation constant, 2-3
Reorganization, major or minor, 15-14
Resident assembler, 2-14
Restart instruction, 12-4
Return address. changing the, 12-16
Rollover. 11-69
RST as a breakpoint, 14-2

Searching methods, 9-6
Self-checking numbers, 8-17
Self-documenting programs, rules for, 15-1
Seven-segment representations, 11-45
Sign propagation. 8-25
Simple sorting algorithm, 9-10
Single-step, 14-1
Single-step mode, limitations of, 14-2
Sio

addresses, 11-89

configuration, example of, 11-100

error status, 11-100

interrupt routine, 12-26

interrupts, 12-10

read and write register. addressing, 11-89

index (Continued)

SIO (continued)
reset, 11-97
special features of. 11-97
Software developement, stages of, 13-1
Software simulator, 14-8
Source program. 1-5
Special instructions, 4-3
Standard interfaces, 11-103
Standard program library forms, 15-10
Standard TTY, 11-81
Start bit interrupt, 12-28
Status and control transfers, documenting,
11-59
Status changes with instruction execution, 3-22
Status information, separating, 11-68
Stopwatch input procedure, 16-1
Strobe, 11-5
Structures, examples of, 13-33
terminators for. 13-43
Structured kevboard routine, 13-38
Structured program for credit verification
terminal. 13-38
Structured programming
advantages of. 13-35
basic structures of, 13-31
disadvantages of. 13-35
for switch-based memory loader, 13-36
in switch and light system. 13-36
rules for, 13-43
when to use. 13-35
Structured receive routine. 13-40
Structed testing, 14-28
Stubs. 13-44
Subroutine instructions, 10-1
Subroutine library, 10-1
Subroutines. documenting, 10-2
Switch and light error handling, 13-7
Switch and light input, 13-6
Switch and light outputs, 13-7
Switch and light system, defining, 13-6
Switch-based memory loader, defining, 13-8
Switch bounce, 11-26
Symbol table, 2-6
Synchronizing with 1/0 devices, 11-57

Terminators for structures, 13-43
Testing. 13-3
arithmetic program, 14-29

rules for. 14-29

sort program, 14-29

special cases, 14-28
Testing aids, 14-27
Testing. structured, 14-28
Thermometer analog hardware, 16-15
Timing incompatibilities, 3-165
Timing intervais

methods for producing, 11-8

uses of. 11-8
Timing method, choosing a, 11-8
Top-down design

advantages of. 13-44

disadvantages of. 13-44

format for. 13-48

methods, 13-44

of switch and light system. 13-45

of switch-based memory loader. 13-46

of verification terminal. 13-47
Transmission errors

correcting, 13,16

reducing, 11-56
Transparent delay routine, 11-8
TTL encoder. using a, 11-34
TTY

interface, 11-81

receive mode, 11-81

standard TTY, 11-81

transmit mode, 11-86
Two-pass assembler 2-14
Two-word operation codes, 3-164

UART. 11-88

Varniables, local or global, 2-13
Vectoring, 12-2
Verification terminal

defining a, 13-11

error handling, 13-14

inputs, 13-13
outputs, 13-13
280

delay loop constant, 11-10
index registers, use of, 7-7
interrupt inputs, 12-2
interrupt instruction, 12-3
interrupt response, 12-3

1/0 instructions, 11-18
non-maskable interrupt, 12-3

About the Author

Lance A. Leventhal is a partner in Emulative Systems Company, a San
Diego-based consulting firm specializing in microprocessors and
microprogramming. He serves as Technical Editor of the Society for Com-
puter Simulation and as a Contributing Editor for Digital Design. He is a na-
tional lecturer on microprocessors for the IEEE, the author of five books
and over forty articles on microprocessors, and a regular contributor to
such publications as Simulation, Digital Design, and Kilobaud.

Dr. Leventhal's previous experience includes affiliations with Linkabit Cor-
poration, Intelcom Rad Tech, Naval Electronics Laboratory Center and Har-
ry Diamond Laboratories. He received a B.A. degree from Washington
University in St. Louis, Missouri, and M.S. and Ph.D. degrees from the
University of California at San Diego. He is a member of SCS, ACM, and
IEEE.

OSBORNE/McGraw-Hill GENERAL BOOKS

An Introduction to Microcomputers series
by Adam Osborne

Volume 0 — The Beginner’'s Book

Volume 1 — Basic Concepts

Volume 2 — Some Real Microprocessors {1978 ed.)

Volume 3 — Some Real Support Devices (1978 ed.)
Volume 2 1978-1979 Update Series
Volume 3 1978-1979 Update Series

The 8089 1/0 Processor Handbook
by Adam Osborne

The 8086 Book
by R. Rector and G. Alexy

8080 Programming for Logic Design
by Adam Osborne

6800 Programming for Logic Design
by Adam Osborne

Z80 Programming for Logic Design
by Adam Osborne

8080A/8085 Assembly Language Programming
by L. Leventhal
6800 Assembly Language Programming
by L. Leventhal
6502 Assembly Language Programming
by L. Leventhal
Z8000 Assembly Language Programming
by L. Leventhal et al.
Running Wild: The Next Industrial Revolution
by Adam Osborne
PET-CBM Personal Computer Guide
by Carroll Donahue and Janice Enger
PET and the IEEE 488 Bus (GPIB)
by E. Fisher and C. W. Jensen

OSBORNE/McGraw-Hill SOFTWARE

Practical Basic Programs
by L. Poole et al.

Some Common BASIC Programs
by L. Poole and M. Borchers

Payroll with Cost Accounting - CBASIC
by Lon Poole et al.

Accounts Payable and Accounts Receivable - CBASIC
by Lon Poole et al.

General Ledger - CBASIC
by Lon Poole et al.

Some Common Basic Programs — PET/CBM
edited by Lon Poole et al.

280 ASSEMBLY I.ANGUAGE PRUGBAMMING

~ BY LANCE 'A: LEUENTHAL

280 ASSEMBLY LANGUAGE PROGRAMMING
provides comprehensive coverage of the 280
microprocessor assembly language.
Programming examptes illustrate software
development concepts and actual assembly
language usage. Assemblers and assembler
directives.are also explained:

Features include:

* More than 80 sample programming-problems

* Al problem solutions in sourcq code and

dbject code

* Bdch 280 instruction fully explained

* Complete Z80 instruction set reference table
~+ + Z80 Assembler conventions .

* . 2801 O devices'and interfacing methods

¢ _Comparisons of Z80 and 8080A /8085
' mstruction sets and interrupt structure

-l‘.’«n‘: ISBN'0931988-21-7

