'TAB| 1468 $11.95

VERBAL CONTROL

WITH

MICROCOMPUTERS

BY MIKE RIGS5BY

@ Py 1 K]

pe M

A

VERBAL CONTROL
WITH

MICROCOMPUTERS

VERBAL CONTROL
WITH

MICROCOMPUTERS

BY MIKE RIGSBY

TAB 'TAB BOOKS Inc.

NOTICE: Apple ll, Integer Basic, and Applesoft are trademarks of Apple Com-
puter, Inc.; Voxbox and TRS-80 are trademarks of Tandy Corp.; VET-2 and
KEYVET are trademarks of Scott Instruments; Cognivox is a trademark of
Voicetek; PET and CBM are trademarks of Commodore Business Machines;
AIM-65 is a trademark of Rockwell; Sorcerer is a trademark of Exidy Corp.

FIRST EDITION

FIRST PRINTING

Copyright © 1982 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Rigsby, Mike.
Verbal control with microcomputers.

Includes index.
1. Automatic speech recognition. 2. TRS-80 (Computer)
l. Title.
TK7895.965R53 001.64'42 82-7039
ISBN 0-8306-2468-6 AACR2
ISBN 0-8306-1468-0 (pbk.)

o o H W

~

10

Contents

Introduction

Spoken Words

Removing Noise—Volume and Speech—Duration—Length and
Volume Combined—System Definitions—Frequency—Digital
Voice—Slurring, a Task for Continuous Systems—Algorithms

Commercial Recognizers
Digital Speech Processor—Cognivox—VET-2—Aids for Hand-
icapped People—Uninterruptible Power Supply

Easily Constructed Sound Controls
Sound Plot

Sound

Listening Typewriter

Radio Control
High-Speed-Recognition

US.A.

Stomper

vii

15

21
26
30
37
47
52

70

L
12

13

14

15

16

17
18

Voxbox Typewriter 87

Basic Electronics 95
IC Package—Diagrams—Logic Families—Construction Aids—
Electrical Rules—Software

1802 Microprocessor Instructions 109
Memory Reference—Registers—Logic—Arithmetic—Short
Branch—Long Branch— Skip— Control—input-Output

The Recognizer 127
Input and Filters—Processor—Output
Length for the Recognizer 142

Length Program Listing with Comments— Descriptions of Memory
Locations

Frequency for the Recognizer 226
Frequency Program Listing with Comments

The Z-80 Recognizer 253
The Future 296
Souices 299

Index 302

Introduction

Machines can listen and respond to our spoken commands. Voice-
actuated typewriters, sound-controlled toys, and interactive video
games can all be built today without great expense. Imagine a
battery-powered computer that can distinguish words; imagine
building it for less than one hundred dollars! Consider using a
TRS-80 computer to recognize words without any extra hardware
or modifications. These are all possible and are explained here.

This book is composed of various practical applications of
voice recognition technology. From the high school student seeking
a science project, to the handicapped person, to the computer
hobbyist, to the serious experimenter, there is information here for
all

You should approach this book from your own vantage point.
Chapter 1 is a general overview of speech and the problems it
presents to machine recognition. Chapter 2 describes devices that
are commercially available for attachment to microcomputers. This
chapter is good for the nontechnical person seeking off-the-shelf
equipment to recognize verbal commands. Chapter 3 details two
simple sound control projects, neither of which requires great
electrical knowledge. Chapters 4 through 10 are programs
(software) for the TRS-80 Model I, Level I, computer with a 16K
memory. The programs accept sound input through the cassette
recorder and require no external hardware (though a hand-held
microphone would be useful). These programs could easily be

vii

adapted to any microcomputer that allows BASIC access to input
data from the cassette port.

Chapter 4 provides a visual display of a spoken word. The
TRS-80 Model II1, Level II, 16K computer is slightly different from
the Model I, but can use the software in Chapters 4 through 10if the
expression “=255" is changed to “> 200" every single time it
appears in a program listing. Chapter 5 is a demonstration that
allows the computer to recognize a word from a vocabulary of five.
Chapter 6 allows for hands-off operation of a printer. A severely
handicapped person could produce printed copy using this program,
a computer, and a printer. Chapter 7 provides a simple method for
voice control of external devices using a standard microcomputer
no difficult wiring is required. Chapter 8 provides an example of fast
speech recognition. Chapter 9 is an educational program aimed at
about a fourth grade level; it draws a map and asks questions about
the directional relationships of the states. Chapter 10is an animated
game with sound output and voice control. Chapter 11 provides
software for a voice-operated printer, though it requires the use of
the Voxbox peripheral unit.

Chapters 12 through 16 are more technical and deal with
construction of acomplete computer system, the Recognizer, which
has been built and tested. Chapter 12 is an elementary refresher
course in practical electronics and electrical construction. Chapter
13 explains the operation of the 1802 microprocessor and its in-
struction set. Chapter 14 details the construction of the Recognizer.
Chapter 15 explains in great detail one program which works with
the Recognizer, and Chapter 16 explains an even better program.

All the information in this book (except Chapter 2, for which I
thank the manufacturers) was generated in my house with limited
equipment.

I would like to thank my wife Annelle for her patience and
support (and also for pulling our infant daughter Ember off the
computer innumerable times).

viii

Chapter 1
Spoken Words

Speech and noise are often difficult to separate. On a street, in the
office, or at a party, people frequently find it troublesome to distin-
guish spoken words from background sounds. Volume is sometimes
the characteristic used to separate desired speech from undesired
noise. Consider the case of four people in an automobile, two in the
front seat and two in back. Each pair can carry on a conversation
while ignoring the talk between the others. Volume is the primary
means of separation. A similar situation exists when communicating
in a sporting arena; the nearest person produces loud sounds most
of the time, but noise is clearly competitive with the sounds of
interest.

REMOVING NOISE

Mechanical control of these variables is possible, but each
method has limitations. The simplest and most often chosen method
uses an insensitive microphone. It must be placed very close to the
mouth of the person whose speech is to be recognized. The insensi-
tive microphone will tend to ignore sounds more than a few feet
away, thus cancelling out distant noise. The extremely close prox-
imity of this pickup to the lips (the instructions for many units
specify that the microphone should “almost touch the lips”) pro-
vides good separation between noise and the desired sound to be
distinguished by the computer. However, holding the microphone
near the mouth defeats one of the desired characteristics of voice

control—hands-off capability. Although a headset can be used to
free your hands, such constraints do not allow you to enter a room
and talk to the computer from any position.

Another method of separating noise from speech involves the
use of an amplifier with automatic level control. The automatic level
control can use a threshold value below which all sounds will be
ignored and above which all sounds will be amplified. This will
eliminate the noise until speech is uttered (or some other sound
breaks the threshold level). If you do not use an automatic level
control, the noise will be present when the amplifier is on, and it will
cloud the information available for deciphering the spoken word.
Automatic level control systems can also use filters to eliminate
low-frequency or high-frequency components from the sounds
being amplified. Using such a system complicates the input
mechanism considerably, and leaves the designer with many vari-
ables that may be difficult to anticipate and deal with. Building a
device for use in a home, for example, would require knowledge of
expected noises. The smooth, even sound of a forced-air heating
system would be more easily ignored than the sudden popping of a
pine log in a fireplace. Clearly, automatic level control alone is not
sufficient to separate voice from noise.

Yet another possibility involves the use of a computer to
eliminate random, non-regular noise while passing sounds of regu-
lar frequencies and volume levels. Software to accomplish such
goals would be complex, and many assumptions would be neces-

sary.

VOLUME AND SPEECH

Inflection, the emphasis placed on certain syllables, is another
tool available for use in volume considerations of sound. Any dictio-
nary will show the proper place for emphasis on a given word.
However, people do not always follow these rules. The emphasis on
any given syllable will vary not only from person to person, but also
from time to time in the speech of a single person.

If the first syllable in a word were always given strong em-
phasis, it would be easy to tell where one word stops and another
begins. Detecting inflection is possible and is a good task for a
computer. Inflection, being a stronger emphasis on one part of a
word than others, is easier to detect by ear than by machine. The
Recognizer designed for this book cannot distinguish syllables from
one another; thus it cannot look at al the syllables and quantify the

loudest one as the point of inflection. It must also be recalled that
more than one spot in a word may receive emphasis.

The difference between the non-emphasized portion of speech
and the rest of the word is rather small on a quantitative basis. The
waveform of a word is so rugged that odd spikes may appear
seemingly at random throughout the considered specimen. To view
such differences and put them into terms that can be handled by
electrical apparatus requires equipment such as that illustrated in
Fig. 1-1. The speech considered must be viewed as an alternating
current waveform, the power of which is to be measured on an
average—but continuing—basis. The electrical wave representing
the sound must be passed through a full-wave rectifier bridge (to
convert it to a rough form of direct current) and a capacitor must be
placed across it to smooth the wave out. This smoothing prevents
one spike of high magnitude but short duration from outranking
several spikes which are less high, though higher than average. The
value of the capacitor cannot be chosen without knowledge of how

PROGRAM
CONTROL
AND
MEMORY

- IA/D +

— CONVERTER

~~
MICROPHONE

PROCESSOR

Al !

—
YN\ OUTPUT
DRIVER
CONTROLLED
DEVICE

Fig. 1-1. Block diagram of speech recognizer.

much power is delivered from the amplifier, and how much
smoothing out is desired.

Ornice the smooth waveform is obtained, it must be placed into a
form that a computer canrecognize, that is a digital format. A device
know as an analog-to-digital converter is required to accomplish
this task. Such devices are moderately complex. They are also
expensive.

Volume drop is another phenomenon that makes voice recogni-
tion difficult. Just as certain portions of a word are stressed, other
portions are left unstressed or nearly silent. When the word “mi-
crocomputer” is spoken, there is a trailing off and near pause after
the “micro-" and before the “-computer”. This volume drop trails off
into the area of noise, giving a recognizer the problem of deciding
whether the word has ended or not. Volume alone fails as a criteria
for use by the sophisticated recognizer because it is not sufficient to
determine word ending.

Figure 1-2is a view of the electrical waveform generated by an
amplifier when the word “Michael” is spoken. “Michael” will be
used often when representations of a word are made in this book.
The vertical axis in Fig. 1-2 is the magnitude (volume) of the spoken
word. The horizontal axis represents time with the total being equal
to about one second. Starting at the left is a low volume wave lasting
for about one-tenth of a second; this is the “mmm” sound. For about
three-tenths of a second a much louder wave appears; this is the “i”
sound. This rapidly tapers off into an area of no volume. This volume
drop, as mentioned earlier, occurs in many words but is not readily
apparent as the word is spoken. After the silent spot comes a
medium volume burst of high frequency pulses; they represent the
“ch” sound. They taper off and are followed by a brief volume drop.
Last is a high volume, lower frequency brust with a slow taper at the
end, representing the “ael” sound. This lasts for a total of about
two-tenths of one second.

If the word is said more slowly, a very similar pattern will
appear, but each segment will be longer. The frequencies within
each segment will not change. Each segment followed by a volume
drop tapers off. The beginning edge of a segment may be tapered or
sharp. The waveform is rather symmetrical about a center line,
meaning that what occurs above the center line may be seen below
that line. Figure 1-3 shows the same word after going through a
bridge rectifier, but before being smoothed with a capacitor. At this
point the volume levels are more apparent, and the frequency
characteristic is still visible. Figure 1-4 shows the waveform after

4

«'|BYIIN,, piom aU} Jo wuojerepp "2-L *Big

I —
E——
—
E——
I —
E—
E—
——
I—

13v HO
N

"paynoas Buiaq ey JorRUSIN,, JO WIojoABM “€-1 *Bid

[

-

“Jojioeded e AQ payjoows pue paynoas buleq saye ,[1oBUdI, JO WiojeARM ‘b-L Big IS

1av HO | N

capacitor smoothing; the volume elements of the word are now
more readily visible.

DURATION

Duration is another quantity available for consideration when
attempting to decode sounds. The length of different words varies,
unfortunately, from person to person and from time to time with the
same person. The spoken length of a word cannot be obtained
intuitively by merely looking at the spelled word length. “Stop,” for
example, is as long or longer than “forward,” because the “0” is held
for a significant time in “stop.”

Duration can be difficult to ascertain because of the volume
drops which occur between syllables in many words. Determining
the length of a word requires a knowledge of when the word begins
and when it ends. One often-used method for making such a deter-
mination requires that words be spoken one at a time (isolated) with
a significant time gap before and after the word. A recognition unit
can start counting time when adequate volume is detected, and quit
counting time after a significant volume drop occurs. Two items
arise for consideration at this point. How much time is too great for
avolume drop? If time has been counted from the commencement of
adequate volume until some point after sound has disappeared, how
is the last volume drop subtracted from the total time? A rough
number to use for separation is one-half second; it provides an
adequate gap which assures the word is reliably finished. Subtrac-
tion of the extra time is easily accomplished through a computer
program, a task which could prove more difficult to do with hard-
wired circuitry.

For a system which does not continuously attempt recognition,
a noticeable time delay is introduced by the “volume drop for
one-half second” method. Consider a simple system which listens
to commands to operate a radio-controlled toy. Assume the comput-
ing process to take no time (a false assumption, as it will require
time); there will be a delay of one-half second after a command
(stop,” for example) has been issued before the command can be
executed. In other words the entire word must be taken in before it
can be determined what the word means. This is slow, but it
simplifies the process of understanding what has been said.

Using length alone obviously limits the vocabulary available,
as merely five to ten length ranges exist for words. Slurring more
words together as they are commonly spoken would provide a

greater capability, but effective verbal control with a 25-word
slurred sentence would be impractical.

Length can be used in sophisticated systems to aid in noise
elimination. If a sound exists at a consistent volume level for too
long a period of time, then it must be some form of noise. This noise
can be stored and subtracted from any potential word being heard. A
key problem here is the same one faced before—just how much time
a steady sound must exist to be considered not part of a word.

LENGTH AND VOLUME COMBINED

Length and volume together can be used to create a simple,
though somewhat limited, recognition system. Taking a sound and
amplifying it are necessary for any system. The system roughed out
in Fig. 1-5 could be used to control a television or lights inaroom. It
would have a command recognition involving only two responses,
but would be relatively free from false operations. The amplifier
must be adjusted so that ordinary talking and room sounds will not
exceed the threshold required for recognition attempts. To operate
the system requires raising your voice, at which point the timer will
start. If the sound coming from the amplifier is sufficiently loud, it
will go through the rectifier and be converted into rippled direct
current; then it will be smoothed by the capacitor (chosen to hold
the signal up for short word drops) and operate the timer. If the
sound is too short, the timer will reset and nothing will happen. If it
is of fair length (the word “on,” for example), and it goes away, then
the first output will be activated. If it is longer (for example, the
words “turn off” slurred together), then the second output will be
activated. The advantages of such a system include simplicity (no
computer) and microphone independence. Noise is separated from
the desired commands by the requirement that the user shout. This

AMPLIFIER

____’ uONu

Vv gy

“TURN
—>
MICROPHONE RECTIFIER OFF”

AND
CAPACITOR TIMER

Fig. 1-5. Block diagram of two response sound control system.

forces the separation. The microphone need not be close to the user
and can be placed in any convenient location.

SYSTEM DEFINITIONS

A speaker-trained, voice-dependent, isolated-word recognizer
sounds more involved than it actually is. A device that is speaker-
trained must be taught by the person who is to use it. Voice depen-
dence is another way of saying that the machine should only respond
to one person’s voice. Before running off to purchase one of these
devices to use as a key for your front door, note that this is not the
purpose of being voice dependent. Voice-dependent systems are
more easily designed than voice-independent systems; they will
work for the person who trains them, and they may also work for
someone else who has a similar sounding voice. A voice-dependent
system to open your front door could be built with a high degree of
selectivity, but a sore throat could leave you locked out until spring!
Isolated-word systems can respond to only one word at a time, and
that word must be preceded and followed by a period of silence, in
order that the recognizer may know what it is trying to recognize.

A speaker-independent, word-isolated system still requires that
the word under consideration be preceded and followed by a period
of silence, but it does not require training and it should respond to
the voice of any person. Such systems in use now usually have a
small vocabulary and operate over a phone line (you call themup and
speak a number in response to a question). They have several
“templates” of different voice characteristics in their memory sys-
tem and they attempt to fit the caller into a category as fast as
possible so they can then recognize what is uttered. Different
categories are needed because the duration of speech and frequency
response of a Southern male may be significantly different from the
duration and frequency of a Northern female. This type of recog-
nizer usually attempts to put the caller into the proper category, and
then acts much the same as a speaker-trained system.

A continuous recognizer is the most sophisticated type. It at-
tempts to understand what it is hearing while it is being spoken to.

A sound-controlled switch is merely a device that responds to
the presence of high volume sound. These devices can be used for
on-off switches so that they are on when the sound occurs and off
when it disappears. An alternate type latches on when the high level
sound occurs, and it must be manually reset.

A sound-controlled switch with logic is merely a simple switch
that can be used for some form of sequential control. The logic can

10

be nothing more than a stepping relay. For example, a four-step
sound-controlled switch could cause a toy to go forward, then right,
then left, then stop. Each sound would cause the toy to perform the
next step in the sequence.

A limited recognition sound-controlled switch utilizes some
technique other than volume (usually length) to provide greater
selectivity than a sound controlled switch. Such a device can distin-
guish a few commands, such as “go” and “stop,” based solely on
length and volume. The selectivity is not exclusive; such a switch
will enter the “go” mode if “a” is pronounced, or the “stop” mode if
“help” is pronounced. In other words, any sound which is loud
enough and of the proper length will cause the device to operate.

A limited recognition sound-controlled switch with logic al-
lows for more deliberate and unlimited control. Using two variable
length commands and a stepping switch to advance from point to
point, you can obtain precise control. Consider a case where the two
commands are “go” and “activate;” the “go” command could be used
to advance a stepping relay and illuminate an indicator light that
shows what you want the toy to do. The command “activate” could
then be used to cause the selected function to be performed. For
example, a toy might have four lights, indicating forward, right, left,
and stop. The command “go” could cause the lights to move sequen-
tially from forward to right to left to stop. When the light indicating
what you want the toy to do is illuminated, you could then speak the
command “activate.” This will cause the toy to perform the action
that you have selected.

Numerous devices are available commercially that adapt to
various microcomputers for the purpose of recognizing speech. In
Chapter 2 these units will be described, their features listed, and
suppliers given.

FREQUENCY

Because many frequencies are found in speech, a method can
be used to detect frequencies and their presence or absence. A filter
inan electrical circuit is much the same as a filter in an air condition-
ing system; it allows some things to go through while stopping
others. There are several types of filters available; two major
categories are active and passive. Active filters use electronic com-
ponents such as integrated circuits or transistors, and they require
the application of power in order to perform their duty. Passive

filters are composed of elements such as capacitors and inductors,
and they work without an external power source. Active filters are

11

more easily designed to pass desired frequencies and block unde-
sired frequencies than are passive filters. They are also more
economical.

The type of filter which will be of concern to the recognition
builder is the bandpass filter. Several criteria must be assigned
when a filter is designed. There must be a center frequency known
as the pass frequency. The bandwidth determines what other fre-
quencies will be allowed to go through. Important as bandwidth is
the attenuation level outside the bandwidth. Theoretically, all fre-
quencies will be passed; some will meet with more resistance than
others. This resistance must be set to a particular value so that
electronic components beyond the filter will ignore frequencies
outside the approved bandwidth. Decisions must be made regarding
the number of frequencies of interest, and the bandwidth of each.
The narrower the bandwidth, the more difficult the filter is to build.
The more filters you use, the more information your machine has
available to make recognition decisions.

Frequencies readily available are those from 500 to 3,000
hertz. Frequency is measured in a quantity known as herfz. One
hertz is one cycle per second. One cycle per second is a way of
describing the phenomenon that occurs when a voltage starting at
zero goes positive, then back to zero, then negative, and then back
tozero.This occurrence (zero to positive to zero to negative to zero)
is known as acycle. If this cycle occurred one time during a second it
would be said to have a frequency of one hertz. If it occurred 500
times during one second, then it would have a frequency of 500
hertz. This cycle does not have to occur five hundred times tohave a
frequency of five hundred hertz; it must merely occur fast enough so
that if it lasted for one second, 500 cycles would occur.

Inexpensive microphones and amplifiers do not have excellent
frequency pass characteristics. To expand the range would require
costly equipment; the merit of this is doubtful, at least until the
information in the available band s fully utilized. Telephone lines do
not significantly exceed this range and would therefore not provide
any better information to a unit which could handle more.

DIGITAL VOICE

Voice produces an alternating waveform that is well balanced.
Although this wave is fairly symmetrical about a center line, it
varies in amplitude (volume) and shape of pulse (Fig.\l—ﬁ).

To handle this wave using digital electronics, it must be di-
gitized. A Schmitt trigger circuit will do this by rendering a positive

12

Fig. 1-6. Diagram of a rectified smoothed wave.

output when the input exceeds an arbitrary level and rendering a
ground (negative) output when it falls below the trigger level (Fig.
1-7).

The places where a wave goes from high to low or low to high
through the center line are called zero crossings. Zero crossings may
be counted, inasmuch as they provide another clue to the informa-
tion stored within the spoken word. The total number of zero
crossings are related to frequencies involved and duration of
speech.

SLURRING, A TASK FOR CONTINUOUS SYSTEMS

Slurring is a common attribute of speech. People in general
conversation do not leave space between words, but slur all words
and sentences together. Some people speak very rapidly and leave
less space between words than they do between syllables. This
slurring effect makes it difficult to pick a single word out of spoken
conversation for detection.

Continuous recognition is the process whereby words not spo-
ken by themselves are processed. An effective continuous system
must take the individual sounds of words, phonemes, and recognize
them while words are being spoken. These phonemes must be put
together and pieced into words. Possibly this could be done by one
microprocessor with sophisticated software or by several—one
gathering and holding the information while the others examine it,
not concerned about getting a little behind or having to stop pro-
cessing to listen. Key words may be used by a recognizer to help
understand what filler words were used but poorly understood. For
example, we might even hear someone say, “I went ta town and
drove my card, which needed gasulane.” Given the previous sen-
tence, it would not be difficult to surmise that the proper statement
would be “I went to town and drove my car, which needed gasoline.”

ALGORITHMS

How right is right? When comparing an unknown word against
test samples, how good must the comparison be? As it gets close to

13

Fig. 1-7. Digital version of wave in Fig. 1-6.

being perfect, there will be more correct answers. Matches will
occur less frequently. If the acceptable range is lowered, a word will
be identified more often, but the wrong words will be identified
more often also.

Any recognition system requires an algorithm upon which to
base its operation. An algorithm is a method or “game plan” upon
which decisions are made. Some compromise between complexity
of hardware and software is usually made, though a designer with a
particular skill in one area might base his system primarily upon the
fundamentals with which he felt the most comfortable. Obviously
one could utilize volume, duration, frequency, zero crossings,
pauses, context, and various human samples to establish a system.
Each of these variables contains variables and decisions which can
be made. Only the more elemental systems will be detailed here;
moving beyond that is beyond the scope of the concepts presented
here.

14

Chapter 2
Commercial Recognizers

Among the devices commercially available to attach to microcom-
puters is the Voxbox recognizer for the TRS-80 microcomputer.
This unit, sold by Radio Shack, allows words or phrases to operate
the computer. It attaches to the expansion interface or to the card
edge connector at the rear of a Model I machine. It can accept up to
32 words or phrases, each with a length less than one and two-
tenths seconds. The device is an isolated-word, speaker-trained
device. To operate the system, you need a Model I TRS-80 with
Level II BASIC and at least 16K of RAM. The Voxbox recognizer
includes a push-to-talk microphone that must be held almost at the
lips for recognition to occur. Each word or phrase must begin with at
least one-tenth of a second of continuous speech. The end of the
word is indicated by the first silence of at least one-tenth of a
second. The unit operates from its own power supply, included. It is
recommended for use primarily as entertainment. Physically the
box is about the size of a paperback book and is colored the same as
the computer. At the rear of the Voxbox is a card edge connector
which is pin for pin identical to the one at the rear of the keyboard
unit. With a printer attached at this connector and with the proper
software, it is possible to type by talking (see Chapter 11).

The Voxbox recognizer works best in a quiet room where
background noise is not present. Like most recognizers, this one
can be fooled easily. The goal is to achieve understanding. It will
recognize and do so with an accuracy of better than 90 percent, with
reasonable effort on the part of the user.

15

Software is included in the purchase, along with instructions to
aid in individually written programs. A machine-language driver
must first be loaded, and this must occur after the question MEM-
ORY SIZE is requested by the computer. The memory size must be
set in order that the driver program will be loaded into the highest
part of the RAM memory, away from the area in RAM where most
BASIC programs are stored. After the driver is loaded, a program
written in BASIC may be loaded into the computer. Three programs
are included: Inventory Demonstration, Lunar Lander, and Voice
Plotter. The Inventory Demonstration program allows you to enter
and correct data numbers by verbal command. Nothing happens
with these numbers other than appearing on the video display, but it
is an interesting way of indicating the device potential. The Lunar
Lander program is a game wherein data for a space craft landing is
entered and altered by voice command. The game lacks sophistica-
tion, but the effect of verbal entry makes it fascinating. The Voice
Plotter program gives a graphic representation of the frequencies
and energy in any spoken word. This word picture visibly dem-
onstrates how very differently the same word is pronounced by
different people, or by the same person twice.

In all of these programs there is a training mode and an
operating mode. In the training mode, each desired word must be
pronounced one or more times. The 32 word vocabulary allows for
32 entries; that can be 32 different words or 16 words twice or four
words eight times or any other combination totaling no more than
32. The advantage of training more than once on each word is that
such training increases the probability of a correct match in the
operating mode. The words spoken may be in any language (they
don’t even have to be words), but they must be repeatable. The
operate mode takes whatever sounds are input and compares them
with the learned patterns in memory. If there is an acceptable
comparison, the computer declares a match. A recognition parame-
ter is available in the driver software and it may be changed to
increase or decrease the flexibility of the match. It should be noted
that the Voxbox recognizer is speaker-trained and for that reason
will usually not respond to the same words spoken by another
person. Complete details are provided in the documentation to
enable you to write your own programs.

DIGITAL SPEECH PROCESSOR

The lowest priced recognition unit I have found is the Digital
Speech Processor by Design Solution, Inc. This unit works with any

16

Model I Level Il TRS-80 system, though a Level Il with disk drive is
recommended to “reduce voice image loading times.” To quote
from Design Solution’s literature:

“Experiment with Digital Speech Synthesis and recognition
using a BASIC editor program provided with this system. Speech is
entered, digitized, and stored in memory or on disk files. Vocabul-
ary files are constructed using Digital core images of your voice.
Labeled and indexed sounds, words, and phrases are then available
for use in your basic programs. Different vocabulary files can be
loaded for different BASIC programs, etc. . . . Experiment with data
compression from BASIC by increasing and decreasing sample
rates. Develop your own voice recognition programs. Simulate low
pass, bandpass, and high pass filters. This is truly a software man’s
dream come true. Enter a string of numeric data and let your
TRS-80 repeat it to you. Let your TRS-80 dictate data files for error
checking, etc.

“The Digital Speech Processor lends itself totally to music
synthesis. Its internal D/A [digital-to-analog] converter and your
software can create almost any imaginable waveform. Modify
timbre, attack/decay, and pitch, all from software.

“The Digital Speech Processor has a self-contained condensor
microphone for voice or music input. The DSP alsofeatures a 2-inch
speaker and amplifier for output of speech and music. Extended
features include input active and modulation level prompting indi-
cators and an auxiliary output for your external amplifier, stereo,
tape recorder, etc. . ..”

A 40-conductor cable is required but not supplied for connec-
tion to the TRS-80. This is available from Radio Shack in the form of
a 40-conductor ribbon cable (part #278-771) and two edge connec-
tors (part #276-1558).

COGNIVOX

The Cognivox recognizer produced by Voicetek, is another
unit available at the low end of the cost spectrum. It is also an
isolated-word, speaker-trained system. Cognivox can handle a 32-
word vocabulary and can provide voice response as well as recogni-
tion. Each word must be spoken by the user three times in the
training mode. Word length must be greater than 150 milliseconds
and less than three seconds. Software is provided on a cassette tape
rather than as a listing. Software available includes two sophisti-
cated speech-operated video games, as well as utilities—such as a
talking calculator, vocal memory dump, and so forth. This unit can

17

be used to generate or study music. It works on the TRS-80 without
the expansion interface. The producer states that is uses a “novel
speech processing technique based on the time domain signal and
proprietary non-linear pattern matching techniques.”

Cognivox can be purchased for many systems, including
Rockwell’s AIM-65, the PET/CBM, the Apple II, Exidy’s Sorcerer,
and the TRS-80. A version is also available for any Z-80 central
processing unit with a parallel I/O port available for interfacing.

VET-2

Scott Instruments produces a voice entry terminal, the VET-2
which is designed for data entry where keyboard entry proves
inefficient. Available for the Apple II or TRS-80, this unit interfaces
with off-the-shelf software or programs written in BASIC,
Integer-BASIC, Applesoft BASIC, or machine code. With the Apple
II computer only, the VET-2 may be used in “parallel” with the
keyboard—a key may be pressed or the name for that key may be
spoken. This Keyvet feature enables the user to run existing
software under voice control without modifying the software. It
should be noted that some programs may have memory conflicts
with the VET-2; also, the Keyvet feature does slow execution time
(normally not noticeable). Therefore, every application may not
work. This unit along with an Apple II computer would enable a
severely handicapped programmer to return to work and use his
voice, instead of the keyboard. It could also be used with off-the-
shelf Apple peripherals to aid handicapped people in performing
tasks which used to require human assistance.

The VET-2 handles a 40-word vocabulary, though it has a
provision for adding additional multiples of 40 on disk, and these can
be linked to provide a larger vocabulary. Memory space utilized for
the 40-word vocabulary is about 4,600 bytes, while the control
software uses about 6,000 bytes—for a total of about 10.6K bytes of
memory utilized within the microcomputer. Like the other units,
this one has a training mode and a run mode, though there is great
flexibility in the training mode (words can be changed or retrained
at any time without losing the resident program). With a properly
chosen vocabulary and certain prompting features, this unit can be
used by several people with high accuracy. VET-2 utilizes fre-
quency, zero crossings, and amplitude as quantities to consider in
recognizing voice.

Three outstanding people shared their expertise in speech
sciences, electronics, and computing to develop this device. Dr.

18

Brian Scott, president of Scott Instruments, obtained his Doctorate
degree under the advisory of Dr. Ronald A. Cole at the University of
Waterloo, Canada, specializing in the theory and application of
speech perception. R. Gary Goodman received his Ph.D. in Com-
puter Science from Stanford University. Among his accomplish-
ments was the design of the language used by HARPY, the first
1,000-word continuous speech recognition system. Lee Hardesty
obtained his Bachelor's degree in Mathematics at North Texas
State University. He pursued interests which led to skill in elec-
tronics and establishment of a business that provided hardware and
consultation for research and commercial enterprises. This combi-
nation of talents enables the VET-2 to respond in a manner similar
to the way the human mind functions.

This device is the most expensive considered here, but it is
much less costly than most commercial units and has been commit-
ted to serious purposes, such as aids for the severely handicapped.

AIDS FOR HANDICAPPED PEOPLE

One promising area for these machines is in the field of aids for
handicapped people. Voice control can allow persons to program or
operate computers with all the skill of non-disabled people. People
with severe lack of motor control can use voice control. (However,
physical control is necessary to turn on computers and load the
software necessary for voice control.) The ability to link the voice
software to other software is needed if the recognizer is to perform
any useful task. Output control is needed to operate real-world
equipment.

An example of such a system might be an electrically con-
trolled wheelchair being driven by a quadriple amputee. With a
headset he could give verbal commands which would then be sent
by radio to a nearby microcomputer. The microcomputer could
process the command and execute the appropriate output, perhaps
sending a radio command to the wheelchair ordering motion in some
specific direction. The fallibility of any such system and all of its
components must be considered before undertaking such a task.
Such a wheelchair would need to move very slowly in order that
time would be available to process commands and try again should
an error occur. Electrical interference of the drive motors could
affect the radio transmissions or the local logic decoding controls.
This interference (caused by brushes on the motors) could cause
numerous problems in the electronic circuits if control and motor
circuits are served from the same battery source. Electrical inter-

19

ference from the computer itself is significant, and could affect the
radio transmissions. The wheelchair would have to have backup
failsafe devices, such as bumper switches to stop operation in the
event of object contact. Failure of the operator to maintain voice
control is a distinct possibility, a cough or excitement could change
the voice pattern and render such recognition devices temporarily
useless.

Although several cautions have been noted, control of many
devices is feasible. A TRS-80 Model I, Level I, with 16K of
memory and the additions of a Voxbox and an output controller
(available from Radio Shack) would be capable of controlling
appliances, lights, or any number of electrical items. (See
SOURCES for robot arm suppliers.)

UNINTERRUPTIBLE POWER SUPPLY

When committing a recognizer to serious applications, the
problem of maintaining a reliable power supply becomes significant.
In business and industry there are many computer applications that
are considered to be so critical that computer failures cannot be
tolerated. Computers that handle airline reservations, for example,
cause chaos if they lose their memory or foul transactions in prog-
ress. Electric utilities are not in a position to provide the absolutely
reliable service so essential to these operations. Although the local
power company does not wish to drop a computer that is controlling
a wheelchair, they have miles of power lines that can be faulted by
car accidents, squirrel misjudgements, falling trees, lightning, anda
host of other uncontrollables. The only solution is to install a UPS,
or uninterruptible power supply. A UPS unit is basically an inverter
that takes direct current electricity and converts it into alternating
current of the proper frequency and voltage. UPS systems have a
battery to provide the energy when power lines fail. Such systems
must be sized to handle the computer and all necessary peripherals
for the desired period of outage time. The greater the power
supplied and the longer it must be provided, the more the unit will
cost. The units are measured in watts, an electrical quantity which
is the same as the product of amps and volts. One supplier of these
units is Sun Research, Inc. (Box 210; New Durham, NH 03855;
phone (603) 859-7110. (For commercial recognizers; see

Sources.)

20

Chapter 3
Easily Constructed Sound Controls

A simple hardware device is the voice-operated switch. Such a
switch merely causes some action to occur when it detects sound. A
simple switch, latching a relay on, is shown in Fig. 3-1. The mi-
crophone takes sounds and converts them to a weak electrical
signal. This signal is amplified by the Darlington transistor, Q1. The
transistor is normally turned off and will turn on when positive
voltage is applied to the base. When the transistor is off, no voltage
is developed across R1. When a sufficiently loud sound occurs, a
small wave of energy leaves the microphone, and during positive
portions of the wave cycle it turns the transistor on. When the
transistor is on, voltage is developed across the potentiometer.
This positive voltage goes to the gate lead of the SCR, or silicon-
controlled rectifier. The reason for the potentiometer is that the full
six volts of the battery (minus a small loss in the transistor) appears
across the resistor, and this high voltage would damage the SCR if
applied to the gate lead. When the SCR gate lead is made more
positive than the cathode by about 1.5 volts, it goes into conduction
and passes current. It will continue to pass current (whether voltage
is present at the gate or not) until the current path is somehow
broken externally. When the SCR is passing current, the relay coil
will energize and its normally open contact will close, allowing
some item to be controlled (a light, for example). To turn the light
off will require opening S1, which will open the current path through
the SCR and allow it to cease conducting. When the switch is closed,

21

y .

RELAY

e

\NV L

iﬂt
_‘~ 2

Fig. 3-1. Voice-operated switch schematic.

the device will be prepared to operate again upon the next sufficient
sound.

The usefulness of a one-time latched switch is limited. It could
be used to turn on lights at the sound of a car horn, or lights in a
building upon the clapping of hands or the sound of a shrill whistle.
The requirement of physical involvement to manually reset the
sound recognizer severely restrains the useful applications.

Adding logic to the sound switch makes it more useful. To keep
the concept simple, relay logic is used instead of electronics. The
logic system will allow the sound switch to operate four lights in
sequence. The first loud sound will illuminate lamp number one.
The next sound will operate lamp two, then three, then four. The
fifth sound will reset the system and the sixth wound will start over
again by lighting lamp number one.

It is first necessary to understand the diagrams before explain-
ing the system. Figure 3-2 shows the coil and contact symbols. The
round circle represents arelay coil, the number or letter inside that
circle is used to represent that relay. If proper voltage is applied
across that coil, it is assumed that the relay will pick up. Contacts

22

=i 2@

la
Fig. 3-2. lllustration of relay coil C
and contact symboals. “COIL"

are drawn in the position they would be found if their relay coil were
de-energized. The labeling I (1) indicates the relay coil and contact
used. The part of the label outside the parenthesis defines the relay
coil controlling the contact. The label component within paren-
thesis tells which contact is being used and is primarily intended to
show how many contacts are utilized.

Our simple sound-controlled switch perceived sound only one
time, and then latched its relay in the energized position, requiring
the physical operation of a switch to return to the ready position. To
circumvent this seal-up characteristic, two relays have been used
(see Fig. 3-3),IA and I. A contact of IA, IA(1) closes upon energiza-
tion of coil IA. This causes relay coil I to be energized and its
normally closed contact I(1) opens, resetting the electronics of the
sound switch and de-energizing coil IA, which in turn drops coil L.
Contact I(2), normally open, will briefly close and then open during
this operation. Contact I(2) is the initiating contact used by the logic
counter circuit shown in Fig. 3-4.

Consider the diagram in Fig. 3-4. Starting in the reset position,
all relay coils are de-energized. Upon receipt of an appropriate
sound, the sound-switch causes contact I(2) to close. I(2) of course

(1)
)
A3 B3 Ccs3 D3

l
I
|
H
|
i
|
1

O==%

Fig. 3-3. Anti-seal-up system and relay logic output.

23

"yoUms punos auj 1o} o1bo| Aejey ‘p-¢ *Bi4

1

(14 el
@3]
— (a (€)e .HL%
()2
L (e ()2 Ew)3 o
e : @a—_— @1
| (@a_—

(ol

24

will quickly open, but the situation needs to be studied in slow
motion. Current will flow upward through I(2), 3(2), 2(2), 1(2), and
A, energizing relay A. Remember that relay coil A has been ener-
gized; that causes contact A(3) to make up and allows light number
one to come on (see Fig. 3-3). A(1) makes up, providing another
path from positive to the coil of relay A. Contact F(1), coil 1, contact
2(1), and A(1) provide an alternate voltage path for current to the
coil of A. Relay coil 1 will not be energized until contact I(2) drops
out, for I(2) is shorting out coil 1. When contact I(2) opens up, coil A
will continue to be energized through the F(1), 1, 2(1), A(1) path.
The two six volt coils, 1 and A are in series with a 12-volt supply,
thus they both receive the necessary energy to operate. Lamp
number one will stay lit until the next operation of 1(2).

Upon the next closure of I(2), a path is established from I(2)
through 3(2), 2(2), 1(3), and A(2) to coil B. B energizes, lighting
lamp number two and creating the path F(1), 2, 3(1), and B(1) to coil
B. When I(2) opens, coil 2 energizes and drops coil 1 by opening
contact 2(1) which in turn drops relay coil A, turning off light
number one, The process continues.

Upon the next closure of 1(2), a path is established from I(2)
through 3(2), 2(3), and B(2) to coil C. This illuminates lamp number
three and sets up the C coil holding path F(1), 3, 1(1), C(1), C. When
1(2) opens, coil 2 is dropped by 3(1) and this also drops B which
turns lamp number two off. Lamp number three is now sealed on.

Upon the next closure of I(2), a path is established from I(2)
through 3(3), and C(2) to coil D. D(3) closes and lamp number four
lights. A path is established through F(1), 1, 2(1), and D(1) tohold D
energized. Upon the opening of I(2), relay 1 is energized, dropping
coil C and light number three.

Upon the closure of I(2) a path is created through 1(2), 3(2),
2(2), 1(3), and D(2) to coil E. E(2) energizes coil F which causes
F(1) to open, dropping coils 1, D, and E. If I(2) remains closed very
long, coil A will be energized and the sequence will restart, If 1(2)
drops out promptly, no coils will be energized and the circuit will be
ready to commence counting at the next sound.

25

Chapter 4
Sound Plot

It is not necessary to buy or build complex peripheral devices for
the purpose of experimenting with voice recognition. An ordinary
TRS-80 Model I can be used if a tape recorder and the proper
software are available. Any computer which allows software control
of the cassette input port can operate as a voice recognizer.

A cassette recorder will function as an amplifier if it is in the
record mode and if the amplifier output is taken through the ear-
phone jack. For TRS-80 users this means removing the plugs from
the aux and mic jacks and depressing the small lever in the left rear
of the tape compartment while depressing the record and play
buttons. Of course one could place a cassette in the recorder rather
than depress the lever in the rear of the tape compartment, but
there is no purpose served by recording on the tape and most
recorders will stop when the tape reaches the end.

All the programs from here through Chapter 10 have been
written BASIC for a TRS-80 with no external equipment (besides
a tape recorder). For the “80” computer the port is latched and it
must be reset each time the data value is high. The entire operation
is so slow in BASIC that no more than 30 or 40 bits of information
can be input per second, and this information is nothing more than
volume or absence of volume data. Surprisingly, much can be done
with such limited information. As with most systems, the closer one
tets to the microphone, the better the results will be.

The Sound Plot program that follows takes a spoken word and

26

displays its representation in bar graph form on the video screen. It
first asks for a word, then displays the representation along with an
indicator line (so that the graph can be accurately transferred to
paper, if desired). Next there is a time delay followed by a question
requiring the depression of the Enter key. Without this required
depression, it would be easy to make a noise and erase the existing
plot before it had been adequately considered. This program is
useful for “grooming” a recognition vocabulary; it allows you to see
how closely two similar words appear. With this knowledge, it is
possible to select a vocabulary that will be most easily distin-
guished by the machine. This is also a useful tool for examining
speech patterns and considering algorithms that would enhance
speaker-independent recognition.

Following the operation of this program, line 10 clears the
video screen. Line 20 clears space for an array named SND with
dimensions of six rows by 30 columns. This numbering system is
slightly deceptive, for the computer starts counting at zero instead
of one. This program does not need so large an array; it is a
carryover from earlier development attempts. Line 25 moves pro-
gram control to line 1000. Lines 1000 through 1020 print instruc-
tions on the video screen. Line 1030 moves program control to line
30 and line 32 sets the variable Y equal to zero. Line 40 causes X to
equal the value found at input port number 255. Input port number
255 is the cassette input; if you are using a computer other than the
TRS-80 model I, this statement would have to be changed to match
the reality of that system. Line 50 tests to see if sound was found at
the input port; if sound was greater than the threshold value, the
number input will be 255, otherwise it will be 127. If sound is found,
the program jumps to line 65; otherwise it goes to line 60 and loops
until sound is detected. Line 65 clears the video screen again. Line
70resets the input port—without this statement the program would
go to 255 upon the first detection of sound and remain at that value.
Line 80 causes row 1 column 0 to be filled with the value of X, which
happens to be 255 on the first pass. Each future time this statement
is passed, the row will continue to be 1 but the column will assume
whatever value Y has taken on. Line 90 examines the cassette port
again, assigning the value received to X. Line 100 advances the
count of Y. Line 110 tests to see if Y is equal to 31, anumber beyond
the range allowed for at the time when the array was set up. If Y is
equal to 31, then the program jumps to line 200; otherwise, it
advances to line 120, which jumps back to line 70 and continues the
loop.

27

Lines 210 and 211 set variables equal to zero. Line 220 pulls the
value found in row 1 column 0 out of the array and lets it equal to the
variable C. Lines 230 and 240 test the value of C. Since C must be
either 255 or 127, those are the numbers tested. If 255 is found, D is
made to equal nine. D will be set on the video screen in a later step,
and it must be noted that nine will produce a trace higher on the
screen than will ten; therefore nine corresponds to 255, the number
input representing a higher volume sound. Line 250 increments the

‘ 10 CLEAR SCREEN, SET UP ARRAY SPACE I

l 1000 LIST INSTRUCTIONS FOR RECORDER SETUPI

COr—==1
[30 REQUEST INPUT |
40 SOUND .

PRESENT? NO

65 CLEAR SCREEN AND STORE
SOUND DATA IN ARRAY
¥

I 200 SET INITIAL VALUES FOR VARIABLES l
A

A >
[220 PRINT ONE POINT ON THE SOUND GRAPH |

270 1SPLOT

FINISHED? 500 TIME DELAY

l 285 PRINT INDICATOR SCALE BENEATH GRAPH

YES

Fig. 4-1. Flowchart for Sound Plot program.

28

value of B for the next pass of this loop. Line 260 places a small
square on the screen, one position of the bar graph. Line 270
increments F, the variable which determines which position is to be
printed on the video screen. Line 280 causes the program to escape
this loop when the array values are nearly exhausted. Lines 285,
286, 287, 600, and 610 are used to print a broken line beneath the
graph which may be used for visual examination of the exact spacing
of high and low sounds found in the word tested. Line 290 jumps to
220 and causes the loop to continue. Lines 500 and 510 generate a
time delay. Line 515 requires depression of the Enter key to
continue. Line 520 returns control to line 30 and the process is
completed.
A flowchart for this program is given in Fig. 4-1.

SOUND PLOT PROGRAM LISTING

10 CLS
20 DIMSND(6,30)

25 GOTO 1000

30 PRINT"SAY A WORD"

32 Y=0

40 X=INP(255)

50 IF X=255 THEN 65

60 GOTO 40

65 CLS

70 0OUT255,00

80 SND(1,Y)=x

90 X=INP(255)

100 Y=Y+1

110 IF Y=31 THEN 200

120 GOTO 70

200 PRINT

210 B=0

211 F=0

220 c=SND(1,8)

230 IF C=255 THEN D=9

240 IF C=127 THEN D=10

250 B=B+1

260 SET(F,D)

270 F=F+1

280 IF F=30 THEN 500

285 G=G+1

286 IF 6=2 THEN 600

287 SET(F,12)

290 GOTO 220

500 FOR X=1 TO 1000

510 NEXT X

515 INPUT"CONTINUE";A

520 GOTO 30

600 G=0

610 GOTO 290

1000 PRINT"REMOVE 'AUX' AND 'MIC' PLUGS FROM TAPE RECORDERM
1010 PRINT"PUSH LITTLE BUTTON IN TAPE COMPARTMENT AT LEFT REARY
1020 PRINT"OR INSERT TAPE AND DEPRESS 'PLAY' AND 'RECORD' BUTTONS™
1030 GOTO 30

29

Chapter 5

Sound
N Y S e e

Sound represents a true example of speaker-dependent voice rec-
ognition. In this program five words are learned by the computer.
The five words are: “goodbye,” “hello,” “Michael,” “go,” and
“Annabelle.” Figure 5-1illustrates these five words in my voice. As
in the previous program, input is through the cassette recorder.
This program will not work well unless the lips of the operator are
almost touching the microphone of the recorder. The program first
exhibits a learning mode during which it will ask for each word to be
spoken (one at a time). Next it will request that one of the learned
words be spoken. The program will determine which word was
spoken. When in the running mode (recognizing spoken words),
there will be a gap of several seconds between speaking and recog-
nition. This time delay is a result of the numerous comparisons and
decisions being made by manipulations in the BASIC language.

It would not be difficult to expand the vocabulary or the number
of passes on each word, but the recognition time will increase
significantly with each addition. It is not necessary to use the words
provided. For example, “adios” could be spoken in place of “good-
bye,” but the word “goodbye” would be displayed on the screen
when “adios” was spoken. To change the word list, each word must
be changed in two places as follows:

goodbye lines 30 and 470
hello lines 80 and 480
Michael lines 140 and 490

30

“HELLO”

“GOODBYE"

“MICHAEL”

“GO"

“ANNABELLE”

Fig. 5-1. Plot of five selected words.

g0 lines 200 and 495
Annabelle lines 260 and 497

Remember when changing vocabulary that similar sounding
words are difficult to distinguish. Even excellent recognizers have

31

10 CLEAR SCREEN
SET UP ARRAY SPACE

Y

30 REQUEST “GOODBYE"

500 STORE SOUND

Y

80 REQUEST "HELLO”

500 STORE SOUND

Y

140 REQUEST "MICHAEL”

Fig. 5-2. Flowchart of Sound program.

32

500 STORE SOUND
v

200 REQUEST “GO”

21
SOUND

PRESENT? NO

| 500 STORE SOUND|

v

| 260 REQUEST “ANNABELLE” [

L
SOUND

PRESENT? NO

YES
[500 STORE SOUND |

Cc

1
[320 REQUEST UNKNOWN WORD |

330
SOUND

PRESENT?

Fig. 6-2. Continued from page 32.

33

370 CLEAR SCREEN
PRINT “RECOGNIZING”

500 STORE SOUND

y

380 SET UP FIRST WORD TO BE COMPARED

| 1000 OBTAIN COMPARISON SCORE |

400 LET E1 EQUAL COMPARISON SCORE

Y

410 SET UP SECOND WORD TO BE COMPARED

Y

1000 OBTAIN COMPARISON SCORE
v

410 CONTINUE COMPARISONS

Y

465 CLEAR SCREEN

Y

470 CHECK FOR HIGHEST COMPARISON
SCORE AND PRINT WORD

Fig. 5-2. Continued from page 33.

34

difficulty with words like “bog” and “dog.” Although the manipula-
tions in this program consume considerable time, the program itself
does not occupy much memory. Because this program is small, it
would be easy to adapt to games or other programs.

Figure 5-2 is a flowchart of the program.

SOUND PROGRAM LISTING

10 CLS
20 DIMSNDC6,30)

30 PRINT"SAY GOODBYE"
35 P=1

40 X=INP(255)

50 IF X=255 THEN 70

60 GOTO 40

70 GOSUB 500

80 PRINT"™ SAY HELLO"
90 P=2

100 X=INP(255)

110 IF X=255 THEN 130
120 GOTO 100

130 GOSUB 500

140 PRINT "SAY MICHAEL"
150 P=3

160 X=INP(255)

170 IF X=255 THEN 190
180 GOTO 160

190 GOSUB 500

200 PRINT" SAY GO"
210 P=4

220 X=INP(25%5)

230 IF X=255 THEN 250
240 GOTO 220

250 GOSUB 500

260 PRINT"™ SAY ANNABELLE"
270 P=5

280 X=INP(255)

290 IF X=255 THEN 310
300 GOTO 280

310 GOSUB 500

320 PRéNT"SAY ONE OF THE TRAINED, BUT DESIRED WORDS"
330 P=

340 X=INP(255)

350 IF X=255 THEN 370
360 GOTO 340

370 CLS

371 PRINT"RECOGNIZ ING"
372 GOSUB 500

380 B=1

390 GOSUB 1000

400 E1=E

410 B=2

420 GOSUB 1000

430 E2=2

35

440 B=3:GOSUB1000:E3=E

450 B=4:GOSUB1000:EL=E

460 B=5:GOSUB1000:E5=E

465 CLS

470 IFE1.E2ANDE1,E3ANDE1,E4ANDE1.ES PRINT"GOODBYE"
480 IFE2.E1ANDE2,E3ANDE2,.E4ANDE2,E5 PRINT"HELLOY
490 IFE3.E1ANDE3,E2ANDE3,ELANDE3.E5 PRINT"MICHAEL"Y
495 IFEL,E1ANDEL,E2ANDEY4 ,E3ANDEL E5 PRINT"GO"

497 IFE5,E1ANDES.E2ANDE5,E3ANDES.E4 PRINT"ANNABELLE"
498 GOTO 1510

500 Y=0

510 SND(P,Y)=X

520 Y=Y+1

530 OUT255,00

540 IFY=31 THEN RETURN

550 X=INP(255)

560 GOTO0510

1000 Y=0

1005 E=0

1010 IF SND(6,Y)=SND(B,Y) THEN E=E+l

1020 Y=Y+l

1030 IF Y=31 RETURN

1040 GOTO 1010

1510 GOTO 320

36

Chapter 6
Listening Typewriter

The Listening Typewriter program enables you to control a printer
(or interfaced typewriter) by voice. The program is very reliable,
easy to operate, and does not require a microphone close to the
speaker. It can be used by a severely physically disabled person
who can see and utter sound under intelligent control.

The program must be loaded and put into the RUN mode, the
same as any BASIC program. Your cassette recorder must be set up
toreceive sound, as explained in the instructions which the program
displays. After getting through the instructions (which require
depressing the Enter key) the program operates entirely by voice.
The letters of the alphabet are sequentially flashed at the top of the
screen. After Z comes the words “SPACE” and “PRINT.” When a
desired letter appears, the operator must make a sound (“now,”
“stop,” “go,” or any utterance) and the letter (or space) will be
added to the message line at the bottom of the screen. As soon as
the letter appears on the message line, this request will appear in
the center of the screen: “DO YOU WISH TO CANCEL THIS
LETTER?” If the character added to the message line is not de-
sired, make a sound and it will disappear; otherwise it will become a
permanent path of the message in a few seconds. The letters will
continue to cycle until another repeats this cycle.

If the cycle is stopped when “PRINT” is at the top of the
screen, the message “LET’S PRINT” will appear at the very bottom
of the display while “SAY STOP TO CANCEL THE PRINT OP-

37

{5 PRINT INSTRUCTIONS |

| 2130 ADVANCE WHEN READY |

[2140 PRINT INSTRUCTIONS |

[2265 ADVANCE WHEN READY |

| 2267 PRINT INSTRUCTIONS |

| 2360 ADVANCE WHEN READY |

[2370 TIME DELAY |

2385 PRINT STAR AT
END OF MESSAGE LINE

[20 ESTABLISH ARRAY SPACE |

30 PRINT LETTER “A”
AND PREPARE FOR SUBROUTINE

%

[1500 SET UP ARRAY |

| 1800 PRINT ARRAY ON PRINTER |

1810 CLEAR SCREEN OF OLD
INFORMATION

v

| 1530 TIME DELAY FOR PRINTER |

Fig. 6-1. Flowchart of Listening Typewriter program.

38

30 PRINT LETTERS, ONE AT A TIME
AND GO TO SUBROUTINE AT
LINE NUMBER 500

|392 PRINT “PRINT” |

1000 SOUND
PRESENT?

1040 TIME
DELAY OVER?

1060 PRINT “LET'S PRINT"
AND TIME DELAY

v

1060 DISPLAY CANCEL PRINT
QUESTION

I

1100 SOUND
PRESENT?

1140 TIME
DELAY OVER?

[1200 CLEAR PRINT MESSAGES |

[1220 TIME DELAY |

Fig. 6-1. Continued from page 38.

39

550
TIME DELAY
COMPLETE?

500 SOUND

PRESENT?
NO

YES

580 PRINT LETTER ON MESSAGE

LINE AND ADVANCE MESSAGE COUNT RETURN

586 IS MESSAGE
TOO LONG?

| 587 STORE LETTER IN ARRAY |

| 590 TIME DELAY |

610 PRINT “DO YOU WISH TO
CANCEL THIS LETTER?”

Y

620 SOUND
PRESENT?

650 TIME DELAY

COMPLETE? NO

Fig. 6-1. Continued from page 39.

40

()

690 REMOVE LETTER
FROM SCREEN

v

705 TIME DELAY

(DO

[670 CLEAR MESSAGE |

i

RETURN
Fig. 6-1. Continued from page 40.

ERATION” will appear in the center. If another noise is uttered, the
print operation will be cancelled and the cycle will continue. If not
cancelled, the message line will be printed and cleared off the video
screen in preparation for the next line of information. Before the
characters cycle again there will be a delay of about eight seconds;
this is to allow any printer noises to subside before the program
begins “listening” again.

It will be noticed that a star exists at the right end of the
message line. When the message reaches that point, it will be
printed wheter a print command is issued or not.

It is possible to obtain excellent results using this program, but
it is rather tedious and can become frustrating. After practice, the
time delays could be shortened considerably to decrease the
tedium. The delay locations are:

Delay between letters line 550
Delay for letter cancellation line 660
Delay after “PRINT” line 1040

41

Delay for print cancellation line 1150

Delay after printing message line 1530
Delay after instructions line 2370
Delay after “LET’S PRINT” line 1070

Where the program statement begins with IF, the number after the
equal sign should be decreased to decrease the delay and increased
to increase delay. Should the statement begin with FOR, then the
number after TO should be decreased to decrease delay and in-
creased to increase delay.

This program could be improved in several ways, one of which
would be to include numbers as well as letters. The word
“NUMBER?” could be added to the sequence and it could trigger a
mini-sequence of numbers upon request. Rather than sequencing
through all the letters every time, it would be feasible to sequence
through five groups (each of which contained five or six letters) and
command the group to stop. The group could then sequence until a
letter was chosen, thus requiring two voice commands per letter.
This would prevent the operation from ever being more than eleven
spaces away from a desired letter as opposed to the maximum of 28
spaces with the Listening Typewriter program.

Figure 6- 1 indicates the program flow.

LISTENING TYPEWRITER PROGRAM LISTING

11 GOTO 2000

15 PRINT@8SYL "%
20 DIMP$C100)

30 PRINT@S0,"A "
4o A$="AM

50 GOSURS500

60 PRINT3S0,"B"
70 A$="B"

80 ~OSUBS00

90 PRINT@90,"cC"
100 A$=ven

110 GOSUB500

120 A$="D"

130 PRINT@90,"D"
140 GOSUB500

150 A$=VE"

160 PRINT@90,"E"
170 GOSUBS00

180 AS="F"

190 FRINT@90,"F"
200 GOSUB500

203 A$="G"

206 PRINTE90,"G"
209 GOSUB500

212 A$="H"

215 PRINTERO,"H"
218 GOSU"500

221 AS="I

224 FRINT@90,"I™
227 GOSUB500

230 A$=m"yv

233 PRINTB90,"J"
236 GOSUB500

239 A$="KM

242 PRINTR:O0,"K"
245 GOSUBS00

248 A$=mL"

251 #RINTR90,"L"
254 GOSU500

257 A$="MM

260 FRINT@90,'"M"
263 GOSUBS00

266 AS="N"

269 PRINTQ90,"N"
272 GOSUB500

275 A$="o"

278 PRINT@90,"O%
281 GOSUBS00

284 A$=mpn

287 PRINTR90,"P"
290 GOSUB500

293 A§="qn

296 PRINTE90,"0"
299 GOSUBS500

302 AS="R"

305 PRINT@90,"R"
308 GOSUB500

311 ASuS"

314 RINT@90,"S"
317 COSUB500

320 A$="T"

323 PRINT@9D,"T"
326 COSUR500

329 Ajuyv

332 PPINT@GO,"U"
335 GOSURS500

338 As=tyn

341 PRINTRQ,"VH
344 GOSUB500

347 Ag="y"

350 PRINTR90,"W"
353 GOSUBS00Q

356 AS=x"

359 PRINT@9C,"X"
362 GOSUBS00

365 AS="y"

368 PRINT@Q0,"Y"
371 €OSUB500

374 ps=nzn

377 PPINTQ@90,"Z"
380 GOSUBS500

383 ASzn v

386 PRINT@90,"SPACE"
389 GOSUB500

392 PRINT@90,"PRINT v
395 GOSUB1000

398 GOTO 30

500 Y=0

510 OUT255,00

520 Y=Y+1

$30 S=INP(255)

540 IF $=255 THENS580
550 IF Y=20THEN RETURN
560 GOTO 520

580 PRINTAD,A$

585 D=D+1

586 IF D=89LTHEN 1500
587 N=N+1

588 P$(NI=AS

590 FORY=1T0200

600 NEXT Y

610 PRINT@576,"DO YOU WISH TO CANCEL THIS LETTER?Y
620 Y=0

625 OUT255,00

§=INP(255)
IFS=255 THEN 690
Yz=Y+1
IFY=100 THEN 670
GOTO €30
PRINTA576,"
PETUPN
PRINTACD-1)," "
PSCNY=" W
D=D=-1
N=M-1
FOR Y=1T0100
MEXT Y
€OTO €70
Y=0
oyT255,00
S=1MP(255)
Y=Y+1

TF £=255 THEN 1060
IF ¥Y=25 THEN PETURII

cOTO 1020

PRPINTA905,"LET'S ORINT"

FORY=1 TO 200
HEXT Y

PPINTA576,"SAY STOF TO CANCEL THE PRINT MPFRATION"

Y=0

1110 OUT255,00
1120 S=INP(255)

1140 Y=Y+1

1160 GOTO 1120
1200 PRINT@576,"
1210 PRINT@905,"
1220 FORY=1 TO 100
1230 MNEXT Y

RETURN

1500 GOTO 1600

1510 D=832

1520 PRINT@832,"
"

PRINTR576,"
FOP Y=1 TO &60
MEXT Y
RETURN
B$=P3C1)
c4$=pP$(2)
D$=P$(3)
ES=P$Cl)
F$=P$(5)
G$=P$(6)
H$=P5$(7)
1$=P$(8)
J$=P5(9)
r$=pP$C10)
L$=p$C11)
M$=P$C12)
N$=P$C13)
0$=P5$C14)
05$=p5(15)
P$=P$(16)
s$$=P$C17)
T5=P$(18)
u$=P$C19)
v§=pP$(20)
ws=p$(21)
X$=p$(22)
Y$=P$(23)
2$=P$(24)
A15=P$(25)
B16=P$(26)
C1$=P5(27)
D1$=P$(28)
E1$=P$(29)
F1$=P$(30)

IF §=255 THEN 1200
IF ¥Y=100 THEN 1500

1690
1693
1696
1699
1702
1705
1708
1711
1714
1717
1720
1723
1726
1729
1732
1735
1738
1741
1744
1747
1750
1753
1756
1759
1762
1765
1768
1771
1774
1777
1780
1783
1786
1800

1803
1804,

1805

1810
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2265
2267
2270
2280
2290
2300

615$=P$(31)
H1$=P$(32)
11$=P$(33)
J18=PS(34)
K1$=P5(35)
L15=P$(36)
M1$=pP$(37)
N1$=P$(38)
015=P4$(39)
P18=P5CHN)
018=P$Ck1)
P18=P$(H2)
S$15=P$C43)
T1$=PsCLL)
U1$=P$(kL5)
V1$=PSCLED
W1$=P$Cu7)
X18=P5(48)
Y15=p5C49)
Z215=P$(50)
A25=P5(51)
82%$=P%(52)
€25=P$(53)
D2$=P$(54)
E25=P3(55)
F25=P$(56)
625=P5$(57)
H24=P$(58)
128=P5(59)
J2$=P$C6N)
K25=P5(61)
L25=P$(62)
M2$=P$(63)

LPRINTBS;CS;DS;ESFS 68 HS 18,08,k ;L8 M8;NS;08;08;RE;88;
TS;U8; VS WS XS;Y8;25;A18;B1%;C15;D18;E18;F18;G18;H1$;T118;U14;K1
$;L15;M1$;N15;015;P15;015;R15;513;T18;U1$;V1$;w16;X15;Y158;21%;A2
$:B25;C28;D2%;E25;F25;G25;H25;125;U2%;K25;L24;M2%

FOR QR=1 70 63
PR(QR)=nn
NEXT QR

GOTO "1510

PRINT"THIS VOICE CONTROLLED PRINTER PROGRAM REOUIRES THATY
PRINT"YOUR PRINTER BE ON NOW,."™:

PRINT

PRINT"REMOVE ANY TAPE FROM THE CASSETTE."

PRINT"REMOVE THE
PRINT

'AUX!

AND 'MIC' PLUGS FROM THE RECORDER."

PRINT"PUSH THF LITTLE CATCH AT THF LFFT RFAR OF THE TAPF"
PRINT"COMPARTMENT WHILE DEPRESSING THE 'PLAY' AND 'RECORD'"

PRINT"BUTTONS."
PRINT

PRINT"WHEN THIS HAS BFEM COMPLETFD, THE RFCORD MFCHAMISM!
PRINT"SHOULD BE PUNNING WITH ONLY OME PLUE (FAR) INSERTFD,"

PRINT

INPUT"PRESS EMTER FOR THF PEST OF THF INSTRUCTTIONEY;AR

cLsS

PRINTYLETTERS WILL FLASH IN ALPHABETICAL SENUENMCF AT “1'E™
PRINT"UPPER CENTFP OF THF SCREEN, “HEN YOU SFF A LETTFR"
PRINT"THAT YOU DESIPE TO HAVE FRINTFD, SAV 'G0'."

PRINT

PRINT"THAT LETTER WILL RE DISPLAYFD ON A MESSARE LINE ATY
PRINT"THE BOTTOM OF THE SCREEN, A MESSAGE WILL THEN APPEAR"
PRINTYNEAR THE CENTER OF THE SCREEN, THE MESSAGE READS, 'DO
PRINT"YOU WISH TO CANCEL THIS LETTER?' IF YOU REPLY, 'YES'"
PRINT"THE LETTER WILL BE REMOVED AND THE SEQUENCE CONTINUE,"
PRINTYREMAIN SILENT AND THE LETTER WILL BECOME PART OF THE"
PRINT"LINE TO BE PRINTED."

PRINT

INPUT"DEPRESS ENTER TO SEE THE REST OF THE INSTRUCTIONS";RT

CLS

PRINT"AFTER 'Z' IS DISPLAYED COME THE WORDS 'SPACE' AND"

PRINTHIPRINT',

'SPACE'

1S USED TO INSERT A SPACE AND"

PRINT"'PRINT' CAUSES THE LINE TO BE TRANSFERRED TO THE PRINTER"

PRINT

45

2310
2320
2330
2340
2350
2360
2370
2380
2385
2390

46

PRINT"THERE WILL BE A STAR AT THE END OF THE MESSAGE LINE,"
PRINT"IF YOU ATTEMPT TO SET A LETTER IN PLACE OF THE STAR,"
PRINT"THE LINE WILL AUTOMATICALLY BE PRINTED,"

PRINT

PRINT"DEPRESS ENTER, WAIT ABOUT TEN SECONDS AND THE"
INPUT"PROGRAM WILL BEGIN';RT

FOR Y=1T03500

NEXT Y

CLS

GOTO 15

Chapter 7
Radio Control

The Radio Control program is designed to provide sound control of
a simple radio-operated toy. A small quantity of hardware must be
constructed and modified to utilize this piece of software.

The most economical radio-controlled toys have a controller
with one button. When that button is depressed, the toy ceases
forward motion and some kind of pointer turns indicating the direc-
tion of motion in which the toy is prepared to go. When this
directional indicator reaches the desired point, the button is re-
leased and the toy starts to travel in that direction. This program
allows the cassette recorder to function as the input device through

R = 5-VOLT RELAY (D.C.)
Fig. 7-1. Output controller via video display.

47

| CLEAR SCREEN |

I PRINT INSTRUCTIONS AT TOP I

o)

i

YES
4

PRINT “ON" IN LARGE LETTERS
ACTIVATE SQUARE

TIMEDELAY

#

YES

CLEAR “ON” AND DEACTIVATE SQUARE

v

l

PRINT “OFF"IN LARGE LETTERS

| TIMEDELAY |

» YES
CLEAR “OFF”

v

Fig. 7-2. Flowchart of Radio Control program.

48

which sounds are taken and utilized for control of the toy. When a
sound of sufficient volume is detected, the word “ON” appears in
giant letters across the screen and the pushbutton on the toy
controller is pressed by the computer. When another sound is
detected, the word “OFF” appears and the button is released.

The question which immediately comes to mind is, “How does
the computer push the button?” There lies the significant value of
this system; there is an easy method by which output control may be
gained from the video monitor of any computer. A simple photo-
resistor (part #276-116, available at Radio Shack) in series with the
coil of a relay (see Fig. 7-1) will cause the relay to operate when
exposed to light and release when exposed to darkness. This photo-
cell will control the relay when placed against the video monitor and
exposed to light or darkness. The Radio Control program turns a
square on and off to correspond with the words “ON” and “OFF.”
This square is located in the lower right-hand corner of the monitor.
You can attach the photoresistor in any manner that seems feasible
(such as tape) but it should not receive undue amounts of room light.

In the program you may notice that the square as well as the
large words are generated using POKE statements. These provide
for greater speed of display and less statement lines than would be
necessary for the SET statement. When typing a program contain-
ing POKE statements, it is wise to save the listing on tape before
running because errors could destroy the program. To put it another
way, 30 minutes of typing can disappear when you run the program if
something was POKED in the wrong place.

It is necessary to take the contacts of our relay and wire them
in parallel with the contacts of the single pushbutton on the toy
controller. This should prove to be simple, but a soldering iron will
be required.

Of course, you could set up an entire row of photoresistors (or
phototransistors) and control many squares. Controlling items in
the real world is not limited to computers with costly output ports;
anyone can gain physical control of the world in this manner.

Figure 7-2 is a flowchart of this simple program.

RADIO CONTROL PROGRAM LISTING

10 CLS

20 PRINT'"ASSURE THAT YOUR VIDEO PICKUP UNIT IS IN PLACE."
30 PRINT"SET UP THE CASSETTE RECORDER TO RECEIVE SOUND."
LQ PRINT"'ON' WILL FUNCTION LIKE 'BUTTON PUSHED'."

50 PRINT"'OFF' WILL FUNCTION LIKE 'BUTTON RELEASED'."

60 0UT255.00

49

70 X=INP(255)
80 IFX=255THEN 100
90 GOTO 60

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700

50

FORY=16248 TO 16255
POKE Y,191

NEXT Y

FOR Y=16312 TO 16319
POKEY, 191

NEXT Y

FOR Y=16376 TO 16383
POKEY, 191

NEXT Y

POKE15700,191

FOR Y=15701 TO 15704
POKEY, 131

NEXT Y

POKE15705, 191
POKE15708,191
POKE15709, 140
POKE15710,176
POKE15713,191
POKE15764,191
POKE15769,191
POKE15772,191
POKE15775,191
POKE15777,191
POKE15828,191
POKE15833,191
POKE15836,191
POKE15841,191
POKE15892,191
FORY=15893 TO 15896
POKEY, 176

NEXTY

POKE15839,191
POKE15897,191
POKE15900,191
POKE15903, 131
POKE15904, 140
POKE15905,191

FORY=1 TO 100

NEXT Y

OUT255,00

X=INP(255)

IF X=255THEN 530
GOTO 490

cLS

POKE15700,191

FOR Y=15701 TO 15704
POKEY, 131

NEXT Y

POKE15705,191
POKE15708,191

FOR Y=15709 TO 15713
POKEY, 131

NEXT ¥

POKE15716,191

FOR Y=15717 TO 15722
POKEY, 131

NEXT Y

POKE 15764,191

POKE 15769,191
POKE15772,191

FOR Y=15773 TO 15776

710
720
730
740
750
760
770
780
790
800
810
820
830
835
840
850
860
870
880
890
900
910
920
930
940

POKE Y,176

NEXT Y

POKE 15780,191
FOR Y=15781 TO 15784
POKEY, 176

NEXT Y
POKE15828,191
POKE15833,191
POKE15836,191
POKE15844,191
POKE15892,191

FOR Y=15893 TO 15896
POKEY, 176

NEXT ¥
POKE15897,191
POKE15900,191
POKE15908,191

FOR Y=1 TO 100
NEXT Y

0UT255,00
X=INP(255)

IF X =255 THEN 930
GOTO 900

CLS

GOTO 100

51

Chapter 8
High-Speed-Recognition

To some people the time delay for recognition proves to be objec-
tionable; for others, the problem of speaker-dependence is unac-
ceptable. If there are but a few commands in need of recognition, it
is possible (easy even) to move away from speaker dependence and
toward high-speed recognition.

The first step toward such recognition software is to reduce
the commands to the least possible number. Voice recognition must
be acknowledged as the most sensitive program function; therefore
the vocabulary must be built around it, not the reverse. Use the
Sound Plot program to select words that are distinctly (and repeata-
bly) different. Speak each potential word several times and record
theresults on paper. A sample group of words may be viewed in Fig.
8-1. Notice that there are differences for each word spoken by the
same person.

Search for similarities and differences. An algorithm must be
built around these qualities. For the sample program of this chapter,
words “up,” “down,” and “fire” were selected. “Attack” was too
different from the other three. The recognition software awaits
sound; if that sound lasts for less than seven units of time, the word
is declared to be “up.” If it lasts longer than seven units but less than
14, the word is declared to be “down.” If it lasts longer than 14 units
of time, the word is declared to be “fire.”

To summarize the process: select a vocabulary. Be flexible;
“up” could be “raise,” “lift,” “pull up,” “move higher,” or many

52

UP upP

DOWN DOWN
FIRE FIRE
ATTACK ATTACK

L1 |-

Fig. 8-1. Plot of several test words.

other statements. Use the Sound Plot program to determine which
choices are best. Compare the chosen words and find easily distin-
guished differences. Keep the algorithm simple so that recognition
will be rapid.

Following is a program listing for a high speed recognition
program. Remember that programs need not be long and complex to
perform interesting tasks.

HIGH-SPEED RECOGNITION PROGRAM LISTING

10 CLS 100 PRINT"FIRE"
20 Q=0 110 FOR W=1 TO 80
25 OUT 255,00 120 NEXT W

26 Z=INP(255) 130 GOTO 20

27 IF 722200 THEN 30 500 Q=Q+1

28 GOTO 26 510 GOTO 70

30 FOR D=1 TO 30 1000 PRINT"UP"

40 0ouT255,00 1010 GOTO 110

50 X=INP(255) 1500 PRINT"DOWN"

60 IF X200 THEN 500 1510 GOTO 110
70 NEXT D

80 IF Q37 GOTO 1000

90 IF Q>14 GOTO 1500

95 PRINTQ

53

Chapter 9
U.S.A.

U.S.A. is a fully sound-controlled game. Designed primarily for
teaching directional skills to students at about the fourth grade
level, the game can defeat most adults at the difficult level. The easy
version of the game displays a map of the continental United States
with each state’s initials placed on the map. Questions are asked
about the relative position of one state to another (north, south,
east, or west) and an answer must be given before the next question
is displayed. The computer keeps score and displays that score
after each question. If an erroneous answer is given, the correct
response will be displayed. No question requires difficult decisions,
and the positions involved are clear; nothing is “northeast” or
southwest.”

The difficult version of the game is like the simple one, except
that the names of the states are not given on the map. After all the
questions have been answered, a reward phrase of some type will
be displayed, depending upon the number of correct answers and
the version of the game played.

After the game has been loaded and the cassette recorder has
been set to receive sounds, type RUN and then depress Enter. The
keyboard will not be used again. Instructions will be presented;
making any sound will cause the program to advance. A training
mode will be entered and the words requested will be “north-
bound,” “southward,” “east,” and “go west.” More instructions will
be given; to advance, you must utter any sound. A question will be

54

2 SET UP VARIABLE VALUES
SET UP ARRAY SIZE

v

7500 PRINT INSTRUCTIONS
ON SCREEN

I

6100

SOUND
PRESENT?

7557 GO SUB 6300

v

6300 TIME DELAY
REQUEST TRAINING ON
“NORTHBOUND”

v

6320
SOUND
PRESENT?

6500 DISPLAY STAR AND
STORE WORD “PICTURE” IN ARRAY

v

6350 REQUEST “SOUTHWARD”
TRAINING

Fig. 9-1. Flow diagram of U.S.A. program.

55

[6500 STORE WORD PICTURE _|

[6400 REQUEST “EAST" TRAINING |

| 6600 STORE WORD PICTURE |

v

6450 REQUEST “GO WEST"
TRAINING

v
[6500 STORE WORD PICTURE |

v

7560 DISPLAY INSTRUCTIONS
ON SCREEN

7630 “"DO YOU DESIRE
THE DIFFICULT VERSION
OF THE GAME?"

12 PRINT NAMES
OF STATES AND MAP

7640 PRINT MAP ONLY

A 4

Fig. 9-1. Continued from page 55.

56

10005 PRINT QUESTION

6600 LISTEN FOR SOUND,
DECODE IT—GO TO APPROPRIATE
SCORING SUBROUTINE 12,600;
12,800; 12,400; OR 12,200 AND
RETURN FOR NEXT QUESTION

v

10045 CONTINUE QUESTIONS
AND OBTAIN ANSWERS

v

13000 BASED ON SCORE AND VERSION
PLAYED, DISPLAY “REWARD PHRASE"

Fig. 9-1. Continued from page 56.

asked about playing the difficult or easy version of the game.
Remaining silent for a few seconds will result in the easy version;
talking will cause the program to jump to the difficult version. Then
the map will be displayed and a question will be asked at the bottom
of the screen. The answer should be one of the trained phrases. A
star will be displayed to indicate that recognition is in progress (it
takes several seconds to perform this manipulation in the BASIC
language). When the computer has determined what was said, it will
printaletter, “N,” “S,” “E,” or “W”—for north, south, east, or west.
Do not rest at this point, if the letter that comes up is not the one
requested, say “no” and that answer will be cancelled. The com-
puter will await your response and try again. Do not make a sound
when the letter appears if it is the answer desired; otherwise, the
computer will erase it, and you will have to answer again. When the
answer has been recognized and accepted, it will be checked for
accuracy. If it is wrong, the correct answer will be displayed fol-
lowed by the present score. If correct, the present score will be
displayed. Then the next question will be asked. There are about 25
questions.

It is quite probable that a better selection of directional words
can be found than the ones given; if so, the lines which should be
changed are:

57

Northbound line 6307

Southward line 6350
East line 6400
Go West line 6450

When you use the Sound Plot program it is possible to select
words which are different enough to allow for easy recognitiom.
When training, remember to speak clearly without abnormal inflec-
tion and stay close to the microphone. For the computer to recog-
nize a word, it must “hear” a word just as it was spoken during the
training section.

Figure 9-1 is a flowchart of this program.

U.S.A. PROGRAM LISTING

2 A$="HUMAN"

3 DIMSND(5,30)

;. D$="N"

5 GOTO7500

10 CLS

11 GOTO 15

12 CLS

13 GOSUBB0OO

15 GOTO 180

20 FOR L=0 TO A
30 SETCX+L,Y)

40 MEXTL

50 RETURN

60 FOR L=0 TO A
70 SET(X,Y+L)

80 NEXT L

90 RETURN

100 FOR L=0 TO A
110 SETCX+L,Y+L)
120 NEXT L

130 RETURN

140 FOR L=0 TO A
150 SET(X=L,Y+L)
160 NEXT L

170 RETURN

180 Y=1

190 SET(6,Y)

200 SET(7,Y)

210 Xx=10

220 A=6

230 GOSUB20

0 v=2
250 SET(5,Y):SET(8,Y):SET(9,Y)
¥=17

290 A=10

295 GOSUB20

300 X=118

310 A=3

315 GOSuB 20

320 Y=3:X=5:A=2:G0SUB6D

360 SET(21,Y):SET(23,Y):X=28:A=11:60SUB20
410 X=65:A=1:60SUB20

440 SET(117,Y)

450 SET(C122,Y)

460 Y=L4:ISET(6,Y):X=20:A=4:GOSUB6O
510 SET(23,Y)

520 X=40:A=24:GOSUB20

550 SET(67,Y)

560 x=117

570 A=3

580 GOSUB60

590 SET(123,Y)

600 SET(124,Y)

58

1110
1120
1130
1140

Y=5:SETC7,Y) tSETC24,Y) :X=47 :A=5{6OSUBGO

SET(61,Y)

X=68

A=5

GOSuUB20

SET(116,Y)

SET(125,Y)

Y=6:SET(5,Y) 1X=8:A=12:60SUB20
=62:A=3:605UB60
=78:A=6:GOSUB20

SETC24,Y):X
SET(73,Y):X
X=111

A=l

GOSuUB20
X=121

A=3

GOsSUB20

=7

SET(H,Y)
SET(25,Y)
xX=71
A=6
GOSUB 20
SET(85,Y)
X=108
A=2
GOSUB20
SET(112,Y)
X=115
A=2
GOSUB 60
SET(120,Y)
Y=8

SET(3,Y)
X=18

A=2

GOSUB 20
SET(26,Y)
X=47

A=8

GOsSuUB 20
SET(71,Y)
Xx=78

Azb

GOsuB 20
X=87

A=l

GOSUB 20
SETC107,Y)
SET(112,Y)
SET(118,Y)
SETC119,Y)
Y=9

SETC1,Y)
SET(2,Y)
SET(19,Y)
X=27

A=20
GOSuB 20
X=56

A=6

GOsuB 20
SET(70,Y)
X=82

A=l

GOSUB 60
SET(85,Y)
SET(86,8)
SET(91,Y)
Xx=101
A=5
GOSuUB20
SET(107,Y)
SET(114,Y)
SET(113,8)
X=115

59

A=2
GOSUB 60
x=31

A=l
GOSUB 60
X=63

A=l
GOSUB 60
SET(71,Y)
SET(B4,Y)
X=91

A=2

GOSUB 20
X=101

A=0

GOSUB 20
X=114

A=5

GOSUB 60
SET(119,Y)
SET(120,Y)
Y=11

X=2

A=9
GOsSus 20
X=100

3 A=7

cOSUB20
X=46

A=5

GOSUB 60
SET(72,Y)
SETC73,Y)
SET(85,Y)
SET(94,Y)
SET(101,Y)
SETC108,Y)
SETC109,Y)
X=114

Ash

GosSus 20
SET(120,Y)
Y=12
SET(1,Y)
SET(10,Y)
X=12

A=6

GOSUB 20
SET(63,12)
SET(64,12)
SET(65,12)
SET(66,11)
SET(67,11)
SET(68,11)
SET(69,11)
SET(70,11)
X=71
A=3

GOSuB 20
X=86

A=2

GOSUB 60
SET(94,Y)

GOSUB 20
SET(117,Y)
SET(119,Y)
Y=13

X=0

&4=2

GOSUB €0
SET(10,Y)
X=19

Az12

GOSUB 20
X=46

A=17

2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
272¢0
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010

GOSUB 20
X=75

A=7

GOSUB 20
SET(86,Y)
SET(93,Y)
X=97

A=2

GOSUB 20
SET(111,Y)
SET(115,Y)
SET(116,Y)
Y=14
SETC0,Y)
SET(9,Y)
SET(24,Y)
SET(76,Y)
X=83

A=9

GOSUB 20
X=94

A=2

GOSuB 20
SET(112,Y)
Y=15
SETCO,Y)
SET(8,Y)
X=23

A=2

GOSUB 60
X=32

A=7
GOSUB 20
SET(64,Y)
X=75

A=3
GOSUB 60
SET(83,Y)
X=90
A=2

€OSUB 60
X=106
A=6

GOSUB 20
Y=16
SET(C1,Y)
SET(9,Y)
X=34

A=5
GOSUB 60
X=40

A=10
GOSUB 20
X=50

A=5
GOSUB 60
X=64

A=11
GOSUB 20
X=83

A=3
GOSUB 60
Xx=98

A=l
GOSUB 20
SET(105,Y)
SET(C106,Y)
X=113

A=2

€OSUB 60
Y=12

X=99

A=Y

GOSUB 60
Y=17

X=2

A=3

COSUB 60
SET(10,Y)
X=50

61

3020 A=7

3030 GOSUB 20
3040 SET(66,Y)
3050 SET(C97,Y)
3060 SETC103,Y)
3070 SET(104,Y)
3080 SET(107,Y)
3090 SET(108,Y)
3100 Y=18

3110 SET(C11,Y)
3120 SET(12,Y)
3130 Xx=22

3140 As2

3150 GOSUB 60
3160 X=58

3170 A=8

3180 GOSUB 20
3190 SET(76,Y)
3200 Xx=92

3210 Azh

3220 GOSUB 20
3230 SET(102,Y)
3240 X=109

3270 Y=19

3280 SET(13,Y)
3290 Xx=67

3300 A=3

3310 GOSUB 60
3320 SET(C77,Y)
3330 SET(78,Y)
3340 X=84

3350 A=3

3352 SET(88,17)
3353 SET(89,17)
3354 SET(91,17)
3355 SET(87,18)
3360 GOSUB 20
3370 SETC97,Y)
3380 X=102

3390 A=0

3400 GOSUB 20
3410 SET(112,Y)
3420 Y=20

3430 SET(1h4,Y)
3440 SET(15,Y)
3450 SET(21,Y)
3460 SET(78,Y)
3470 SET(82,Y)
3480 SET(83,Y)
3490 X=92

3500 A=S

3502 SET (102,20)
3510 GOSUB 20
3520 X=108

3530 A=5

3540 GOSUB 20
3550 Y=21

3560 SET(3,Y)
3570 SET(16,Y)
3580 SET(21,Y)
3590 x=23

3600 A=16

3610 GOSUB 20
3620 X=48

3630 A=10

3640 GOSUB 20
3645 SET(C107,21)
3650 SET(C79,Y)
3660 SET(81,Y)
3670 X=85

3680 A=6

3690 GOSUB 20
3692 X=97

3693 A=9

3694 GOSUB20
3700 SET(113,Y)
3710 Y=22

3720 SET(H4,Y)

62

4240
4250

4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
L4440
4450
4460
4470
4480
4490

x=17
A=3
GOSUB 20
X=32
A=S
GOSUB 60
X=40
A=7
cOSUB 20
X=47
Az7
GOSUB 60
X=57
A=11
cosus 20
X=68
A=z5
GOSUB 60
X=80
Azl
GOSUB 20
X=97
A=0
GOSUB 20
SET(112,Y)
Y=23
X=h
A=3
GOSUB 20
X=54
A=3
GOSUB 60
x=18
A=k
GOSUB 60
X=47
A=7
GOSUB 20
X=68
Az11
GOSUB 20
x=97
A=9
GOSUB 20
SET(112,Y)
SET(110,24)
SET(111,24)
Y=24
X=8
A=2
GOSUB 20
X=79
A=17
cOsuB 20
Xx=107

SETC10,Y)
SET(78,Y)
X=84

Az6

GOSUB 60
SET(91,Y)
X=97

A=2

GOSUB 20
SETC107,Y)
Y=26

X=11

A=7

GOSUB 20
X=54

A=5

GNSUB 20
SET(78,Y)
SET(91,Y)
SET(100,Y)
SETC101,Y)
SETC106,Y)

63

Y=27

x=17

A=2

GOSUB 20
X=60

A=9

GOSUB 20
X=77

A=2

GOSUB 60
SET(92,Y)
SET(C102,Y)
SETC104,Y)
SET(105,Y)
Y¥=28

X=20

A=3

GOSUB 20
SET(31,Y)
X=69

A=8

GOSUB 20
SET(92,Y)
SETC103,Y)
Y=29

X=24

A=23
GOSUB 20
SET(69,Y)
SET(93,Y)
SET(102,Y)
Y=30
SET(39,Y)
SET(70,Y)
X=71

A=3
GOSUB 60
SET(77,Y)
x=42

A=9
GOSUB20
SETC103,Y)
Y=31
SETCH0,Y)
SETC41,Y)
SET(77,Y)
X=82

A=2

GOSUB 60
A=9

GOSUB 20
X=104

A=3

GOSUB 100
Y=32
SETCH2,Y)
X=78

A=2

GOSUB 20
X=92

A=7

GOSUB 20
X=98

Azl

GOSUB 100
Y=33
SETC42,Y)
SETCH3,Y)
X=47

A=l

GOSUB 20
X=68

A=8

GOSUB 20
SET(81,Y)
SET(82,Y)
Y=34

X=4b

A=2

GOSUB 20

5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
54640
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5570
5580
5590
5600
5610
5611
5612
5613
5620
5626
5627
5628
5630
5632
5634
5640
5650
5652
5654
5660
5662
5664
5670
5672
5674
5680
5682
5684
5686
5700
5800
5810
5820
5850
6000
6010
6011
6012
6013
6014
6015
6019
6020
6021
6029
6030
6031
6032
6100
6110
6120
6130
6150
6160

SET(52,Y)
X=65

A=2
GOSus 20
X=77

A=3

GOSUB 20
Y=35
SET(53,Y)
SET(S54,Y)
SET(C63,Y)
SET(64,Y)
X=108

A=2

GOSUB 60
Y=36

X=55

A=2

GOSUB 100
SET(62,Y)
SETC103,Y)
SETC104,Y)
Y=37
SET(61,Y)
SET(105,Y)
SET(106,Y)
Y=38

X=57

A=5

GOSUB 20
SET(107,Y)
GOTO 5800
SET(109,5)
SET(108,5)
SET(110,5)
SET(114,3)
SETC114,4)
SET(115,5)
SET(121,9)
SET(122,9)
SET(123,9)
SET(118,12)
SET(121,11)
SET(122,11)
SET(123,11)
SET(124,12)
SET(125,13)
SET(125,14)
SET(115,15)
SET(116,15)
SETC117,15)
SET(114,17)
SET(115,17)
SET(116,17)
SET(117,18)
RETURN

IF Z$=Y"Y" THEN5850
IFZ$="YES" THEN 5850
GOTO 5612
RETURN

cLs
PRINT@249,"N"
PRINT@313,"i"
LETA2=375
GOSUB6020
GOSUB6030
GOTO 7500
LETA22635
PRINT@A2, "Wl ¢E"
RETURN
A5=701
PRINT@AS,";"
RETURN
PRINT@505,"s"
0uT255,00
SN=INP(255)
IF SN=255 RETURN
GOTO 6110
0UT255,00
PQ=0

65

6170
6172

FOR XZ=1 TO 30
NEXT XZ

6180 CLS

6190
6195
6200
6210
6220
6230
6240
6300
6305
6306
6307

PRINT"IF YOU DESIRE THE DIFFICULT VERSION, SAY 'YES'™
PRINT"IF NOT, PLEASE REMAIN SILENT"
SN=INP(255)

PQ=PQ+1

IF PQ=35 RETURN

IF SN=255 THEN Z$="y"
GOTO 6200

FOR TQ=1T0500

NEXTTO

0UT255,00

PRINT"SAY 'NORTHBOUND'*
X=INP(255)
IFX=255THENG 345

GOTO 6320

GOSUBE500

PRINT"SAY SOUTHWARD"
p=2

X=INP(255)
IFX=255THEN6395

GOTO 6370

GOSUBE500

PRINT"SAY EAST"

p=3

X=INP(255)
IFX=255THENGULS
GOTO6420

GOSUBE500

PRINT"SAY GO WEST"
P=4

X=INP(255)
IFX=255THEN6492
GOTO6470

GOSUB6500

RETURN

Y=0

POKE16383,42
SND(CP, Y)=X

Y=Y+l

0uT255,00
IFY=31POKE16383,32
IFY=31THENRE TURN
X=INP(255)
GOT06510

P=5

0UT255,00
X=INP(255)
1FX=255 THEN6650
GOT06620
GOSUB6500

8
GOSUB6800
E1=E

B9=2:GOSUB6S00 :E2=E
B9=3:GOSUB6800 :E3=E
B9=4:G0SUBE800 EL=E
1FE1.E2ANDE 1, E 3ANDE1,E4THEND§ =N
1FE2,E1ANDE2 .E3ANDE2, E4THENDS ="'S"
1FE3,E1ANDE 3, E2ANDE 3 ,E4 THENDS="E"
1FEL, E1ANDEY4 ,E2ANDEG ,E 3THEND $ ="W"
PRINT@958,D$

60T020000

IFG$="E"G0T012600
IFG$="W"GOTO012800
IFG$="S"C0T012400
IFE$="NYG0OT012200

Y 0

=0
xFSNDCS,Y) SNDCBY, Y)THENE=E+1
Y=Y+l
IFY=31RETURN
GOT06820

3

PRINT@128,"IN THIS GAME, A MAP OF THE STATES WILL 8E"
PRINT"BE DRAWN. OQUESTIONS WILL BE ASKED AND I KEEPY
PRINT"SCORE. IF YOUR ANSWER IS CORRECT, YOU GET ONE"

PRINT"POINT; IF NOT, I GET THE POINT,":!PRINT

7550 PRINT'SAY 'CONTINUE' TO PROCEED"

7555 GOSUBGIUO

7557 GOSUB6300

7560 CLS:PRINT"TO ANSWER A QUESTION, SAY ONE OF THE FOLLOWING:"
7570 PRINT"NORTHBOUND, SOUTHWARD, EAST, GO WEST'

7600 PRINT

7620 PRINT"YOU WILL HAVE A CHOICE OF THE EASY OR HARD VERSION"
7622 PRINTUOF THIS GAME., IF YOU WISH TO PLAY THE EASY VERSION,"

PRINT"THEN REMAIN SILENT UNTIL THE NEXT QUESTION DISAPPEARS."
PRINT" SAY 'GO' TO GET TO THE NEXT QUESTION"

GOSUB 6100

GOSUB6150
IFZ$="Y"THEN 7640

IF Z$="YES"THEN 7640
GOSUB12

GOTO 10005

GOTO 10000

7624
7626
7628
7630
7635
7636
7637
7638
7640
8000

8005
8010
8020

NY
8030
8040

PRINT@56, "NH"
PRINT@70,"WA
PRINT@144,"MT
PRINT@198,"0R
MAY
PRINT@274,"WY
PRINT@327,"NV

ND MN"
10 SD

NE

vt MEM

Wl Ml

PA cT
IL IN OH

NJ RIM
PRINT@386, "CA
DE"

PRINT@491,"
FRINT@573,";5"
PRINT@524,"AZ
GOSUB6019
PRINT 0616,"MS AL
GOSUB 6029
PRINTR668,"TX
8100 PRINTG755,"FL
8110 RETURN

10000 GOSUB 10

10005 PRINT@829," ":PRINT"IF YOU MOVED FROM TENNESSEE (TN) TO NORTH"
10010 PRINT "CAROLINA (NC), YOU WOULD BE MOVING IN WHAT DIRECTION"
16$2"E" 1605UB6600

10045 PRINT@829," ":PRINT"IF I GO FROM GEORGIA (GA) TO FLORIDA CFL),"
10050 PRINT 'WHAT DIRECTION DO [GO":G4="S":GOSUBGE0D

10061 PRINT@823," ":PRINT'LEAVING MONTANA CMT) WHICH DIRECTION IS NEW"
10070 PRINT"MEXICO (NMD":G$=¥'S":GOSUREEDD

1cogo FRINT@829," ":PRINT"TO GO FROM NORTH DAKOTA (ND) TO NEBRASKA

CNED ONE"

10100 PRINT"MUST TRAVEL WHICH WAYM:G$="S":GOSUB6600

10110 PRINT@823," ":PRINT"A TRUCK IN WISCONSIN CWI) CARRIED FREIGHT
TO NEW YORK C(NY)."
10120 PRINT"WHICH
10140 PRINT@B29,"
VISITING FROM!
10150 PRINT"SOUTH
"NYGOSUB66 00
10170 PRINT2829,"

uT MO KY WV VA

NC

co
NY
oK

8050 KS
8060
8062
8070
8071
8080
8081
8090

TN

NM AR scY

GAM

LA "
S“

DIRECTION DID THE TRUCK TRAVEL":C$="E":GOSUBGE00
"IPRINT"A BOY IN PENNSYLVANIA (PA) HAD COUSINS
CAROLINA (SC)., WHICH WAY DID THE COUSINS TRAVEL":G$=
"IPRINT"A MAN IN TLLINOIS CIL) DROVE TO IMDIANA CIND."
10180 PRINT"WHICH WAY DID HE DRIVE":G$="E'":GOSUB6600

10200 PRINT@829," ":PRINT"LEAVING UTAH (UT) WHICH WAY"

10210 PRINT"IS NEVADA (NV)'":G$="W":GOSUBEE00

éOZgP PRINT @829," ":PRINTYIF YCU FLY FROM SOUTH CAROLINA (SC) TO ARKANSAS
AR)"

10240 PRINT"WHICH WAY WILL YOU RO":G$="W":GOSUBE600

10260 PRINT@829," ":PRINT"TO GO FROM MISSOURI (M0) TO MINNESOTA

(MN) ONE MUST™

10270 PRINT"TRAVEL WHICH WAY™:G$="N":GOSUB6600

PRINT@829," ":PRINT"WHICH WAY IS RHODE ISLAND (RI) IF YCU ARE

PRINT"MAINE
PRINT@829,"

(MED":6$="S"160SUB6600
MWIPRINT"A MAN LEFT ARIZONA (AZ) TO VACATION IN IDAHO (I

PRINT"WHICH WAY DID HE GO":G$="N":GOSUB6600
PRINT@829," ":PRINT"IF YOU LIVED IN OHIO (OH) AND MAILED A PACKAGE

PRINT"DELAWARE (DE) WHICH DIRECTION WOULD THE PACKAGE GO":G$=
E16OSUB6600

10380 PRINT@829," ":PRINT"IF YOU FLY FROM CALIFORNIA (CA) TO WEST VIR
GINA (WVO"

10390 PRINT"WHICH WAY WILL YOU GOM™:G$="E":GOSUB6600

10410 PRINT@829," ":PRINT"A WOMAN LIVING IN VIRGINIA (VAD DROVE TO KENT
UCKY (KYD"

10420 PRINT"WHICH WAY DID SHE DRIVEM™:G$="W'":GOSUB6600

67

10440 PRINT@829," ":PRINT"WHICH WAY IS IOWA (IA) IF YOU HAPPEN TO BE
N

10450 PRINTYNEW JERSEY (NJU)":G$="W":GOSUBE600

10470 PRINT@829," ":PRINT"TO MOVE FROM CONNECTICUT (CT) TO MASSACHU

SETTS (MADY

10480 PRINT"REQUIRES TRAVEL IN WHAT DIRECTION":G$="N":GOSUB6600
10490 PRINT @829," ":PRINT"A DOG IN TEXAS (TX) WALKED FOR MONTHS
TO REACHY

10500 PRINT"HIS HOME IN SOUTH DAKOTA (SD), HE WALKED WHICH WAY"
GS="N" 1GOSUB6600

10520 PRINT@829,“ WIPRINT"A FAMILY IN MICHIGAN (M1) TRAVELED TO THE
BEACH'

10530 PR]NT"IN ALABAMA (AL). WHICH DIRECTION DID THEY TRAVEL":G$=

"SI GOSUB660D

10550 PR:NT@829," WIPRINTMTO GO FROM NEW HAMPSHIRE (NH) TO VERMONT (VT)
10560 PRINT"REQUIRES TRAVEL IN WHICH DIRECTION":G$="W":GOSUB6600
10580 PRINT @ 829," ":PRINT"A GIRL IN WYOMING (WY) WANTED TO SKI I

N COLORADO (CO)"

10590 PRINT"WHAT WAY DID SHE WISH TO TRAVEL™:G$="S":GOSUBG600
10610 PRINT@829," ":PRINTYA FARMER IN MISSISSIPPI (MS) WENT HUNTING IN"
10620 PRINT"LOUISIANA (LA). WHICH WAY DID HE GO":G$="W":GOSUB6600
10640 Palur@szg," "IPRINT"TO MOVE FROM NEVADA (NV) TO KANSAS CKS)
REOUIRES

10650 PRINT"TRAVEL IN WHAT DIRECTION":G$="E":GOSUB6600

10670 PRINT@R29," ":PRINT"TWO MEN IN OREGON (OR) SAILED A BOAT TO"
10680 PRINT"WASHINGTON (WA). WHICH WAY DID THEY SAIL™:G$="N":GOSUB6600
10710 PRINT@829," ":PRINT"LEAVING OKLAHOMA COK)"

10720 PRINT"WHICH DIRECTION IS ARKANSAS'":G$="E":GOSUB6600

10740 PRINT @829," “:PRINT"THE END IS HERE"

10750 GOTO 10750

12200 IFD$="N"THEN12280

12210 C=C+1

12220 1F C+B=25 THEN 13000

12230 PRINT@829," ":PRINT"THE CORRECT ANSWER IS NORTH."

12240 PRINTYCOMPUTER ";C;" LFY T LY

12250 FOR X=1 TO 1500

12260 NEXT X

12270 RETURN

12280 B=B+1

12290 IF C+B=25 THEN 13000

12300 PRINT@829," ":PRINT"YOU ARE CORRECT,"

12310 PRINT"COMPUTER ";C3" YA "B

12320 FOR X=1 TO 1500

12330 NEXT X

12340 RETURN

12400 IFD$="S"THEN 12480

12410 C€=C+1

12420 IF C+B=25 THEN 13000

12430 PRINT@829," ":PRINT"THE CORRECT ANSWER IS SOUTH."

12440 PRINTMCOMPUTER ";C;" WA B

12450 FOR X=1 TO 1500

12460 NEXT X

12470 RETURN

12680 B=B+1

12690 IF C+B=25 THEN 13000

12500 PRINT@829," '":PRINT"YOU ARE CORRECT."

12510 PRINTCOMPUTER ";C;" A8 Mp

12520 FOR X=1 TO 1500

12530 NEXT X

12540 RETURN

12600 1FD$="E"THEN12680

12610 C=C+1

12620 IF C+B=25 THEN 13000

12630 PRINT@829," ":PRINT"THE coppscr ANSVER 1S EAST,"

12640 PRINT"COMPUTER ";C;3" "IAS ;Y ";R

12650 FOR X=1 TO 1500

12660 NEXT X

12670 RETURN

12680 B=8+1

12690 IF C+B=25 THEN 13000

12700 PRINT@829," ":PRINT"YOU ARE CORRECT,Y

12710 PRINTYCOMPUTER “;C;" "AS;" "R

12720 FOR X=1 TO 1500

12730 NEXT X

12740 RETURN

12800 IFD$="W"THEN 12880

12810 C=C+1

12820 IF C+B=25 THEN. 13000

12830 PRINT@829," ":PRINT"THE CORRECT ANSWER 1S WEST,"

12840 PRINT"COMPUTER '";C;" "AS;" Me

68

12850 FOR X=1T0 1500

12860 NEXT X

12870 RETURN

12880 B=B+1

12890 IF C+B=25 THEN 13000

12900 PRINT@829," ":PRINT"YOU ARE CORRECT,"
12910 PRINTCOMPUTER "™;C;" ';A$;" ";p
12920 FOR X=1 TO 1500

12930 NEXT X

12940 RETURN

13000 IFB=25 THEN 13500

13010 1F8,19 THEN 14000

13020 TFZ$="Y"THEN 13100

13030 IF Z$="YES"THEN 13100

13040 CLS

13050 PRINT@320," "

13055 GOSUB 15000

13060 PEINTAs", THAT WAS A GOOD TRY, I BET YOU CAN DO BETTER NEX
T TIME.

13070 END

13100 CLS

13105 GOSUB 15000

13110 PRINT@320," ":PRINTAS$"™, PERHAPS YOU SHOULD TRY THE EASY VERSI
ON AGAIN,"

13115 END

13500 IFz$="Y"THEN 13600

13510 IF Z$="YES"THEN 13600

13515 CLS

13520 PRINT@320," ":PRINTAS$", YOU MAY BE A GENIUS,."

13525 PRINT"TRY TO BEAT ME AT THE HARD"

13530 PRINT"VERSION OF THE GAME,"

13535 GOSUB 15000

13540 END

13600 CLS

13610 PRINT@320," "“:PRINT"PERFECT SCORE"

é}GIS Pﬁ!NTAs", YOU ARE A SUPER GENIUS, YOU WON===~CONGRATULATI
NS ===

13620 PRINTAS"™, WHAT NAME SHALL I CALL YOU OTHER THAMN SUPER™
13621 INPUT"GENIUS";RS$

13630 CLS

13640 PRINT@320," ":PRINTA$M, ;R§", W;Mee__SUPER GENIUS-===¥
13650 END

14000 IFZ4$="Y" THEN 14500

14010 IF Z$="YES" THEN 14500

14020 CLS

14030 PRINT@320," ":PRINTASY, THAT WAS A GOOD JOB, TPY AGAIN A

ND SEE IF YOU CAN DO EVEN BETTER.Y

14035 GOSUB15000

14040 END

14500 CLS

14510 PRINT@320," ":PRINTA$"™, YOU ARE CLOSE TO BEING A GFNIU
S. KEEP ON TRYING=--GOOD LUCK"

14515 GOSUB 15000

14520 END

15000 PRINTUCOMPUTER ™ " Hoas;Y ",

15001 RETURH

20000 OUT255,00

20005 ZR=0

20010 X=INP(255)

20015 ZR=ZR+1

20020 IF X=255 THEN 20050

20030 IFZR=50 THEN6760

20040 GOTO020010
20050 PRINT@958,"
20055 FORQOP=1TO50
20056 NEXTQP

20060 GOTO6600

69

Chapter 10

Stomper

Stomper is a unique game program that utilizes voice-independent
recognition, smooth animated graphics, and sound output. Only a
standard TRS-80 Model I, Level II computer with 16K RAM, an
amplifier for the sound output, and enough time to input the listing
given in this chapter, is required.

The Stomper is a small man who begins his life at the upper
right-hand corner of the video monitor. He stands there happily
doing nothing, but life cannot be so simple. From the left side of the
monitor come the monsters, one at a time, to complicate the situa-
tion. If a monster hits Stomper or if Stomper hits a monster, then life
terminates. Fortunately, it is impossible for a monster to travel to
the top of the screen. Stomper is safe there. Unfortunately,
monsters who make it to the right edge of the screen are rewarded
by decreasing the value of Stomper’s life. Stomper starts with
nothing. He is allowed a temporary dip in the flow of life, but should
his vital signs sink below nine on a point scale, he is termi-
nated. There is a way to exist, and even grow. Stomper will respond
to voice commands. He can go up and down or he can stop and
stomp. If he stomps a monster, the monster will cry and fall off the
bottom of the screen; Stomper’s life will be improved by one point.

The monsters are more evil than they look. Some have been
known to exude a foul substance beneath their bodies, the odor of
which is sufficient to kill a man even should he be a fair distance
clear of their nasty, cavity ridden teeth. Monsters reaching the right

70

edge of the screen are rather stupid. They simply pile up there until
some of their carnivorous relatives come along to clear up the mess.

You, the great wizard outside the computer, control Stomper
with your booming voice. When you talk, everybody stops to listen.

Moving from this fanciful game description into the mechanics
of operation, Stomper becomes a learning aid for those who desire
to combine some of the novel techniques available today in pro-
gramming. The recognition mode used in this program utilizes the
high-speed mode of recognition-~that is, the meaning of the word is
declared when you stop speaking into the microphone. The se-
verely limited vocabulary (three words) was chosen based upon
length differences found in the first voiced portion of each word or
phrase. The choices “up,” “down,” and “stompem” for (stomp them)
will be found to be of different lengths and these lengths will be
fairly constant from person to person. The recognition factors are
found in lines 9050 and 9060. The value found at line 9050 is the
value of Q for which “up” will be recognized. The value found at line
9060 is the one for which “down” is detected. Anything greater than
these values will be assumed to be the “stompem” request. Judici-
ous logic enhances the recognition process. If the little man is at the
upper limit of the screen and a sound shorter than “stompem” is
heard, he will go down. A similar situation exists at the bottom of
the screen. Put another way, if Stomper is at the top of the screen,
he can’t go up; the only choices to which he will respond are “down”
and “stompem.” If the request is anything except “stompem,” he
assumes it to mean “down.”

As with the other recognition programs, the best results are
obtained if the operator is very close to the microphone and no
peripheral noises are presented. A cassette recorder operating in
the record mode (with aux and mic plugs removed) can be used as
the input device. An external microphone plugged into the mic jack
works best, though the system will work with commands shouted
into a built-in condensor microphone. The plug that normally goes
into the aux jack can be placed into an amplifier (Radio Shack sells a
battery-powered unit for under fifteen dollars) for the sound effect
output. String variables such as A$ may be used to represent a
graphic picture, such as that of a man. If this is done, one need only
use a statement such as PRINT AT 10, A$ and the picture will be
displayed in the upper left-hand corner starting at screen position
10. The speed of this operation is such that flicker-free animation
becomes possible.

Towards the back of the Radio Shack manual is a page that lists

71

Graphics Characters and assigns them the numbers 128 through
191. These characters (along with control codes, number 0 through
31) may be used to represent any picture that can be drawn using a
video display worksheet (Fig. 10-1). There is a limitation on the
string variable of 255 characters. Any picture requiring more than
255 elements must be drawn using more than one string variable.
Getting the graphic elements into the string variable is ac-
complished by means of READ and DATA statements, such as
those beginning at line 1000. Towards the first part of the program,
a CLEAR statement (see line number five) is normally needed to
reserve adequate string storage space. Time is consumed reading
the DATA statements, though it need be done only once during the
operation of the program. It will be noticed that a time delay exists
in Stomper while “STOMPER IS HUNTING HIS BOOTS.” This
delay occurs because the strings are being loaded with information
via the READ statements.

Consider an example, the drawing of a man and his representa-
tion as A$. Examine Fig. 10-2, the construction of A$. In line 1000,
A$ is defined as nothing. Line 1010 determines exactly how many
elements are used in this construction. Line 1020 causes a value to
be read. Line 1030 tells what to do with that value. If the value in the

PRINT
4 TAB

AT 0 1]1]2] 8 5

0
0 1

2

3
64 4

5

Y

Fig. 10-1. Portion of video display worksheet for TRS-80.

72

INNSSN
Fig.10-2.Head and neck of
Si(g)mper, pieec?awisi: neck © m

ik

DATA statement is a positive number, A$ will accept a character
unit. If the value in the DATA statement is negative, A$ will accept
a control unit. The statement A$ = A$ + is a method of adding the
new character or control unit to the ones set up on preceding passes
ofthe FOR ... NEXT loop which is being executed. The expression
CHRS$ (128+X) allows X to be a number between 0 and 63 (rather
than 128 through 191), thus saving the continual typing of a third
digit in the DATA statements. The expression CHR$ (26) is a
downward linefeed for the video display; the expression STRING$
(ABS(X),8) causes the display to back up and erase the number of
spaces defined by X. Line 1040 continues the loop. The next few
lines are DATA statements representing the picture. Line 1090is a
RETURN from this subroutine that is done when all the reading is
completed.

To summarize, you must create a picture first on some type of
video worksheet. You must then break it into graphic characters.
These characters have numbers which must be assigned to a string
variable. At the end of each line of the drawing, it is necessary to
return the imaginary cursor to the starting point of the next line; a
control number (negative number in this example) is used for that
purpose.

You can notice on Fig. 10-3 that space exists around the figures
represented by the variables. These arbitrary blanks aid in the
animation process. If you want to move the character represented
by A$ down the screen, it could be accomplished by statements such
as PRINT AT 0, A$:PRINT AT 64, A$. The top of the head left over
from the first PRINT statement would be erased by the second
statement. The A$ man cannot be used for upward movement on the
screen because he will leave a trail of feet as the movement occurs.
If you examine the video screen layout (see Fig. 10-1) it can be seen
that the smallest PRINT motion in the horizontal plane covers two
rectangles—location 0 and location 1 are two blocks apart. The
smallest vertical motion covers three rectangles—location 0 and
location 64 are three blocks apart. Smooth, slow animation there-
forerequires that three frames be drawn for vertical motion and two

73

N
N
A\

| |2

2 =

B% Cc$
o o H$
E$ e G$
N$

MS

N

SN

Fig. 10-3. Graphic elements of The Stomper.

for horizontal motion of the same figure. Erasure characteristics are
different for up, down, left, and right motions; therefore many
figures must be drawn and properly placed for animation.

All statements in a program require time to execute and time
spent away from graphic action must be limited or the motion will be
“jerky.” This is why the program assumes the peculiar flow seen in
Fig. 10-4, is a flowchart of this program. It would be possible to
examine the little man’s position, compare it to the monster’s,
check for sound input, generate sound output, perform whatever
action was needed, and keep up with the score in a very straightfor-
ward manner. The comparisons and calculations consume too much

time and would cause rough movement. The approach used here

74

B Mark of Beast
B1 (131 + (64*B)) Starting address for Beast
M Mark of Man (Stomper)
M1 (((M-1)*64)+45) Address for man
DD Code to action
1—up
2--down
- : s 3—stomp
Table 10-1. Variable List. I Loop variable
X Data variable
B2 Present location of Beast
B3 B2-B1
D Loop variable in sound area
Q Counter in sound area
X1 Sound input variable
MF Man's future
§C Score
HOUSEKEEPING

INSTRUCTIONS

—(©)

l 90 SET MAN AT TOP WITH UPWARD DESIRE l

5000 SIT AT TOP

5100 STOMP SUCCESSFULLY |——D\ e

5300 STOMP UNSUCCESSFULLY

/" 15500 MOVE DOWN \

5800 MOVE DOWN AND BE HIT [-$—/—/)

]
O\

] %

//) 6300 MOVE UP AND BE HIT(_—/

/ 6500 SIT AT BOTTOM

6700 SIT AT BOTTOM AND BE HIT

e 6900 STOMP AND BE HIT

Fig. 10-4. Flowchart of The Stomper program.

75

9000
UP OR DOWN?

9400
AT UPPER
LIMIT?

9410
AT LOWER
LIMIT?

G } DD=VALUE DEFINED |

e {79450 DD=2 (DOWN) |———

9480 DD=1(UP) [—

9500 MAN
POSITION

BOTTOM

Fig. 10-4. Continued from page 75.

76

7

| 7000 MONSTER POINT; SUBTRACT SCORE |

| 15000 MONSTER DIVES |

[INCREASE STOMPER'S SCORE |
) 4

|
| SETRANDOMB |

Fig. 10-4. Continued from page 76.

GOTO 5000
“SIT AT TOP"

GO TO 5300
“STOMP UNSUCCESSFULLY"

GO TO 5100
"STOMP SUCCESSFULLY"

LOWER

| CALCULATE FUTURE PATH |

- . COLLISION
@0 TO 5500; "MOVE DOWN COURSE?

YES
‘ GO TO 5800; “MOVE DOWN AND BE HIT")

(STOMP) 3

I CALCULATE FUTURE PATH [

2(LOWER)

GO TO 5100
"STOMP SUCCESSFULLY",
GO TO 6900
“STOMP AND BE HIT"

GO TO 5300
“STOMP UNSUCCESSFULLY”

lCALCULATE FUTURE PATH l

YES

COLLISION
COURSE?,

GO TO 5800
"MOVE DOWN AND BE HIT"
GO TO 5500
“MOVE DOWN"

Fig. 10-4. Continued from page 77.

78

GO TO 6000
"MOVE up"

COLLISION
COURSE?,

GO TO 6300
“MOVE UP AND BE HIT"

(STOMP) 3

COLLISION
COURSE?

GO TO 6900
“STOMP AND BE HIT”
GO TO 5300
“STOMP UNSUCCESSFULLY"

GO TO 6700
“SIT AT BOTTOM AND BE HI

)

GO TO 6500
“SIT AT BOTTOM"

4
<

v

[cALCuLATE FUTURE PATH |

COLLISION
COURSE?

YES

QMOVE UP AND BE

GO TO 6300

@

GO TO 6000
“MOVE upP”

Fig. 10-4. Continued from page 78.

allows the animation to proceed checking only for one position and
sound input.

Sound output is achieved easily. The statements OUT 255,
02:0UT 255, 00 will cause one square pulse to be generated. The
more times this is done, the higher the frequency of sound taken
from the output aux plug.

A variable listing, Table 10-1, indicates the major variables
used in the program.

STOMPER PROGRAM LISTING

3 RANDOM

5 CLEAR1500

10 CLS

15 PRINT"STOMPER IS HUNTING HIS BOOTS, WAIT A FEW
SECONDS PLEASE."

17 GOTO 30

20 PRINT"THIS IS A VOICE INPUT PROGRAM WHICH INCLUDES
GRAPHICS"

22 PRINT"AND SOUND EFFECTS. DISCONNECT THE 'MIC' JACK.
CONNECT"

24 PRINT"THE 'AUX' JACK TO AN AMPLIFIER. VOICE INPUT
WILL BE"

26 PRINT"THROUGH THE RECORDER. DEPRESS THE 'RECORD' AND
'PLAY'™

28 GOTO 30000

30 GOSUB1000:GOSUB1100:GOSUB1200:GOSUB1300:G0OSUB1400:
GOSUB1500

40 GOSUB1600

50 GOSUB1700:G0SUB1800:GOSUB1900:60SUB2000:60SUB2100:
GOSUB2200:G0SUB2300

55 GOSUB2400:GOSUB2500

57 GOTO 20

60 DD=1

70 B=3

80 B1=C131+(64%B))

85 B2=B1

90 M=1

100 M1=45

105 CLS

110 GOTO 5000

1000 As="n

1010 FOR I=1 TO 35

1020 READ X

1030 IF X»=0 THEN A$=A$+CHR$(128+X)ELSEAS$=AS+CHRS$(26)+

STRINGSCABS(X),8)

1040 NEXT I

1050 DATA 0,0,0,0,0,0,0,0,-8

1060 DATA0,0,63,59,55,63,0,0,-8

1070 DATA 32,48,51,59,55,51,48,16,-8

1080 DATA 2,48,63,15,15,63,48,1

1090 RETURN

1100 BS=""

1110 FOR I=1 TO 30

1120 READ X

1130 IFX>=0THENB$=B$+CHR$(128+X)ELSEB$=B$+CHR$(26)+

STRINGSCABS(X),8)

80

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230

1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

1340
1350
1360
1370
1380
1390
1400
1410
1420
1430

1440
1450
1460
1470
1480
1490
1500
1510
1520
1530

1540
1550
1560
1570
1600
1610
1620
1630

1640
1650
1660
1670
1680
1690
1700
1710

NEXT 1

DATA 0,0,63,59,55,63,0,0,-8
DATA 32,48,51,57,54,51,48,16,-8
DATA 2,0,63,15,15,63,48,1,-8
DATA 0,3,3

RETURN

Cszun

FOR I =1 TO 30

READ X

IF X2=0 THENCS$=C$+CHR$(C128+X)ELSECS=CS+CHRS(26)+
STRINGS$(CABS(X),8)

NEXT I

DATA 0,0,63,59,55,63,0,0,-8
DATA 32,48,51,57,54,51,48,16,-8
DATA 2,0,63,15,15,63,48,1,-8
DATA 0,12,15

RETURN

D$=Il"

FOR I=1 TO 30

READ X

IF X?=0THENDS$=D$+CHRS(128+X)ELSED$=D$+CHRS(26)+
STRINGS CABS(X)D,8)

NEXT 1

DATA 0,0,63,59,55,63,0,0,-8
DATA 32,48,51,57,54,51,48,16,-8
DATA 2,0,63,15,15,63,48,1,-8
DATA 0,48,63

RETURN

Es:n"

FOR I=1 TO 36

READ X
IFX?=0THENES=E$+CHR$(128+X)ELSEES=E$+CHRS(26)+
STRINGS(ABS(X),8)

NEXT I

DATA 0,0,63,59,55,63,0,0,-8
DATA32,48,51,59,55,51,48,16,~8
DATA 2,48,63,15,15,63,48,1,-8
DATA 0,0,0,0,0,0,0,0,-0

RETURN

F$'—‘""

FORI=1 TO 13

READ X
IFX?=0THENF$=F$+CHRS(128+X)ELSEF$=FS+CHRS(C26)+
STRINGSCABS(X),8)

NEXT 1

DATA 0,48,55,21,-7

DATA 0,48,60,63,63,63,55,51
RETURN

G$=""

FORI=1 TO 25

READ X

IFX>=0 THENGS$=G$+CHR$(128+X)ELSEGS=GS+CHRS(26)+

STRINGSCABS(X),8)
NEXT 1

DATA 0,0,0,0,-7
DATA0,0,0,48,55,21,0,0,-8
DATA 48,60,63,63,63,55,3,0,-2
DATA3,0

RETURN

H$=""

FOR I=1 TO 14

81

1720
1730

1740
1750
1760
1770
1800
1810
1820
1830

1840
1850
1860
1870
1880
1890
1895
1900
1910
1920
1930

1940
1950
1960
1970
1980
1990
1995
2000
2010
2020
2030

2040
2050
2060
2070
2080
2090
2095
2100
2110
2120
2130

2140
2150
2160
2170
2180
2190
2195
2200
2210
2220
2230

2240
82

READ X
IFX»=0THENHS$=H$+CHRS(128+X)ELSEH$=H$+CHRS(26)
+STRING$ (ABS(X),8)

NEXT I

DATA 0,32,58,59,-7
DATA0,32,56,62,63,63,63,51,17
RETURN

I$=ll"

FOR I=1 TO 44

READ X

IFX>=0 THENIS$=I$+CHRS$(128+X)ELSEI$=1$+CHRS$(26)+
STRINGS$CABS(X),8)

NEXT 1

DATA 0,0,0,0,0,0,0,0,-8

DATA 0,0,48,48,48,48,0,0,-8
DATA 0,0,63,62,61,63,0,0,-8
DATA 40,12,60,62,61,60,12,20,-8
DATA 0,12,15,3,3,15,12,0

RETURN

d$=||"

FOR I=1 TO Lk

READ X
IFX¥=0THENUS$=U$+CHRS(128+XDELSEU$=U$+CHRS$(26)+
STRINGS$(ABS(X),8)

NEXT 1

DATA 0,0,0,0,0,0,0,0,=-8

DATA 0,0,60,44,28,60,0,0,-8
DATA 0,0,15,47,31,15,0,0,-8
DATA 10, 3,63' 63’ 63;63) 3' 5"’8
DATA 0,3,3,0,0,3,3,0

RETURN

K$=""

FOR I=1 TO Lk

READ X
IFX?=0THENKS=KS$+CHRS (1284 X)DELSEKS=KS+CHRS(26)+
STRING$CABS(X),8)

NEXT I

DATA 0,0,48,48,48,48,0,0,-8
DATA0,0,63,62,61,63,0,0,-8

DATA 40,12,60,62,61,60,12,20,-8
DATA 0,12,15,3,3,15,12,0,-8
DATA 0,0,0,0,0,0,0,0

RETURN

L$=ll|l

FOR I=1 TO 44

READ X
IFX2=0THENLS=LS+CHRSC128+X)ELSELS=L$+CHRS(26)+
STRINGS$(ABS(X),8)

NEXT 1

DATA 0,0,60,44,28,60,0,0,-8
DATA 0,0,15,47,31,15,0,0,-8
DATA 10,3,63,63,63,63,3,5,~8
DATA 0,‘3,3,0,0;3'3'0"'8

DATA 0,0,0,0,0,0,0,0

RETURN

Mgznn

FOR I=1 TO 28

READ X
IFX>=0THENM$=M$+CHRS(128+X) ELSEM$=M$+CHRS(26)+
STRING$CABS(X),8)

NEXT 1

2250
2260
2270
2280
2290
2300
2310
2320
2330

2340
2350
2360
2370
2380
2390
2400
2410
2420
2430

2440
2450
2460
2470
2480
2485
2490
2495
2500
2510
2520
2530

2540
2550
2560
2570
2580
2590
2600
2610
5000
5005
5010
5020
5025
5030
5050
5100

5,02
5110
5120
5130
5140

5300

5310

DATA 0,0,0,0,-7

DATA 0,0,0,0,28,20,0,-7
DATA 0,48,60,63,63,29,12,=7
DATA 3,3,3,3,3,3,12

RETURN

N$=l"l

FOR I=1 TO 28

READ X

IFX¥=0THENNS$=N$+CHR$ (128+XDELSENS=N$+CHRS(26)+
STRINGS$CABS(X),8)

NEXT 1

DATA 0,0,0,0,=-7

DATA 0,0,0,0,48,16,0,-7
DATA 0,0,48,60,61,53,48,-7
DATA 12,15,15,15,15,13,48

RETURN

o$="ﬂ

FOR I=1 TO 71

READX
IFX>=0THENO$=0$+CHR$(128+X)ELSEO$=0$+CHR$(26)+
STRING$(ABS(X),8)

NEXT 1

DATA 23)3I3J313)3)3)3)3)3)21)-11

DATA 21,0,0,0,0,0,0,0,0,0,21,-11

DATA 23l317l3)3131313)3J3121)-11

DATA 21,0,0,0,0,0,0,0,0,0,21,-11

DATA 21,0,0,0,0,0,0,0,0,0,21,-11

DATA 21,63,42,21,63,42,21,63,42,21,21
RETURN

p$=l|ll

FORI=1TO071

READX
IFX)=0THENP$=P$+CHR$(128+X)ELSEP$=P$+CHR$(26)+
STRING$ CABS(X),8)

NEXT 1

DATA 23,3,3,3,3,3,3,3,3,3,21,-11

DATA 21,0,0,0,0,0,0,0,0,0,21,-11

DATA 23)3;3; 313131313J3131211-11

DATA 21,0,0,0,0,0,0,0,0,0,21,-11

DATA 21,0,0,0,0,0,0,0,0,0,21,-11

DATA 21,0,42,21,0,42,21,63,42,21,21
RETURN

PRINT@45,E$

PRINT@1005,A$; :PRINT@B2,F$;
0UT255,00:PRINT@B2,HS;

B2=B2+1

IFB2-B1254THEN7000

IFINP(255)2200 THEN 9000

GOTO 5005

PRINT@M1,E$; :PRINT@B2,F$; :0UT255,00:PRINT@M1,BS; :
PRINT@B2,H$; :0UT25

B2=B2+1

IFINP(255).255 THEN 9000

IFB2-B1240 THEN 15000

PRINT@M1,C$; :PRINT@MI1,D$; :PRINT@B2,F$; :PRINT@MI,
C$; :PRINT@M1,B $;:GOTO 5100

PRINT@M1,E$; :PRINT@B2,F$; :0UT255,00:PRINT@M1,BS; :
PRINT@B2,H$;: OUT255,02

B2=B2+1

83

5315 IFB2-B1254THEN7000

5320 IFINP(255)2200 THEN 9000

5340 PRINT@M1,C$; :PRINT@M1,DS$; :PRINT@B2,F$; :PRINTEMI,
C$; :PRINT@M1,B $; :GOTO 5300

5500 PRINT@M1,LS$; :PRINT@B2,FS;

5510 PRINT@M1,KS; :PRINT@B2,HS$; :0UT255,00

5520 B2=B2+1:PRINT@M1,A$;

5525 IFB2-B1>54THEN7000

5530 PRINT@B2,F$;:IFINP(255)>200 THEN 3000

5540 M1=M1+64:1FM1=749THEN9500

5550 PRINT@M1,LS;:PRINT@B2,HS;

5560 PRINT@M1,KS$; :B2=B2+1:PRINT@B2,F$;

5570 PRINT@M1,A$; :PRINT@BZ,HS$;

5575 1FB2-B1>54THEN7000

5580 IF INP(255)»200 THEN 9000

5590 M1=M14+64:IFM]I=749THEN9500

5610 GOT05500

5800 PRINT@M1,LS$; :PRINT@B2,FS;

5810 PRINT@M1,K$; :PRINT@B2,HS$;:0UT255,00

5820 B2=B2+1:PRINT@MI1,AS;

5830 PRINT@B2,F$;:IFINP(255)>200 THEN90OD

5840 IFB2-B1237 THEN20000

5842 M1=M1+64

5845 IFM12=749 THEN 9500

5850 PRINT@MI1,LS$; :PRINT@B2,HS;

5860 PRINT@M1,KS$;:B2=B2+1:PRINT@B2,F$;

5870 PRINT@M1,A%; :PRINT@B2,HS;

5880 IFINP(255)2200 THENG000

5890 IFB2-B1237THEN20000

5900 M1=M1+64:G0OT05800

6000 PRINT@M1,K$; :PRINT@B2,F$;

6010 PRINT@M1,LS; :PRINT@B2,HS$; :0UT255,00

6020 B2=B2+1:PRINT@M1,E$; :M1=M1-64

60625 IFB2-B1>54THEN7000

6030 PRINT@B2,F$;:IFINP(255)>200 THEN 9000

6040 IFM1=45 THEN 6100

6045 B2=B2+1

6050 PRINT@M1,K$; :PRINT@B2,HS;

6060 PRINT@M1,L%;:B2=B2+1:PRINT@B2,F$;

6070 PRINT@M1,ES$; :PRINT@B2,H$; :M1=M1-64

6075 1FB2-B1)S4THEN7000

6080 IFINP(255)200 THEN 9000

6090 IFM1=45 THEN 6100ELSE6000

6100 PRINT@45,ES$; :PRINT@1005,A%;

6110 GOT09500

6300 PRINT@M1,KS$; :PRINT@B2,F$;

6310 PRINT@M1,L$; :PRINT@B2,HS;:0UT255,00

6320 B2=B2+1:M1=M1-64:PRINT@M1,AS;

6330 PRINT@B2,F$;:IFINP(2552>200 THEN 9000

6340 IFB2-B1237 THEN 20000

6350 PRINT@M1,K$; :PRINTEB2,HS;

6360 PRINT@M1,L$;:B2=B2+1:PRINT@B2,F$;

6370 M1=M1-64:PRINT@M1,AS; :PRINTEB2,HS$;

6380 IFINP(255)2200 THEN 9000

6390 IFB2-B1237 THEN 20000FELSE5300

6500 PRINT@M1,ES; :PRINTEB2,F$;

6510 OUT255,00:PRINT@B2,HS$;

6520 B2=B2+1

6525 IF B2-B1»5LTHEN7000

6530 IF INP(255)2200 THEN 9000 ELSE6500

6700 PRINT@M1,ES$; :PRINT@B2,F$;

84

6710
6720
6730
6900

6910
6920
6930
7000
7010
9000
9005
9010
9020
9030
9040
9050
9060
9070
9c80
9100
9110
9200
9300
9400
9410
o420
9450
9480
9500
9508
9510
9520
9530
10000
10002
10005
10010
10020
10030
10040
10500
10510
10520
10530
11000
11005
11010
11020
11030
11040
11300
11310
11320
11330
11600
11610
11620
11630
12000
12005

0UTZ255,00:PRINT@B2,HS;
B2=B2+1:IFINP(2553>200 THEN 9000
IF(B2-B1) 237 THEN200QO0ELSEE700
PRINTQM1,E$; :PRINT@B2,F$; :0UT255,00:PRINTEML,BS; :
PRINT@B2,H$; :0UT255,02

B2=B2+1

IFINP(255)2200THENQ0QO
1FB2-B1>37 THEN 20000ELSE6900
SC=SC-1

IFSC=~10 THEN 2000CELSE15120
Q=0

FOR D=1 TO 30
0UT255,00
X1= INP(255)

IF X19200 THEN9100
NEXT D

IF Q,4 THEN 9200

IF Q,6 THEN 9300
DD=3
GOTO 9500
Q=Q+1
GOTO 9040
DD=1:GOTO 9400
DD=2:GOTO 9430

IF M=1 THEN 9450

IF M=12 THEN 9480
GOTO 9500
DD=2:60T09500
DD=1:GOTO 9500
M=(M1+19)/64

IFM1=45 THEN 10000

IF M1=1005 THEN 10000

IF M1»=749 THEN 12000
GOTO 11000

M=(M1+19)/64

B3=B2-B1

IF DD=1 THEN 5000

IF DD=2 THEN 10500
M=(M1+19)/64

IF M=B THEN 5100

GOTO 5300

B3=82-B1

MF=((41-B3)/1.5)+M

IF(MF-B)»0 AND (MF-B)<5 THEN 5800
GOTO 5500

B3=B2-B1

IFDD=1THEN11600

IF DD=2 THEN 11300

1IF B=M THEN 5100

IF (M-B)>0 AND (M-B)<¢<5 THEN 6900
GOTO 5300

B3=B2-B1

MF=((41-B3)/1.5)+M

IF (MF-B)20 AND (MF=B)¢5 THEN 5800
GOTO 5500

B3=B2-B1

MF=M-((41-B3)/1.5)

IF (MF-B)20AND(MF-B)<5 THEN 6300
GOTO 6000

B3=B2-B1

IFDD=1 THEN 12600

85

12010
12020
12030
12300
12310
12600
12610
12620
15000

15010
15020
15030
15100
15110
15120
15130
15135
15140
15150
15160
20000
20005
20007
20010

20015
20020
20030
20040
20042
20045
20050 G
30000
30010
30015
30020
30030
30040
30050

30060
30070

30080
30090
30100
30110
30120

30130
30132

30133
30135
30150

86

IF DD=2 THEN 12300

IF (M-B3)20 AND (M-B3)¢5 THEN 6900
GOTO 5300

IF(M-B)>0 AND (M-B)<5 THEN 6700
GOTO 6500

MF=M=-((41-B3)/1.5)

IF(MF-B) 20AND(MF-B)<5 THEN 6300

GOTO 6000
PRINT@B2,6%$;:0UT255,00:0UT255,02;:PRINT@B2,M$; : OUT
255,00:0UT 255,02 :PRINT@B2,N$; :0UT255,00:0UT255,02
B2= BZ+64

IF B2»832THEN15100

GOTO 15000

CLS

PRINT@M1,ES$; :SC=5C+1

PRINT@1015,5C;

B=10%(RNDC0D) :B=INT(B)

IF B=0 THEN B=1

B1=C131+(64%B))

B2=B1

GOTO 9500

CLS

P=0

PRINT@415,"MONSTER WINS";
PRINT@400,F$;:0UT255,00:0UT255,02:PRINT@337,
G$; :P=P+1
0UT255,00:0UT255,02:0UT255,00:0UT255,02

IF P=50 THEN 20040

GOTO 20010

INPUT"TO PLAY AGAIN, HIT THE ENTER KEYY;B9
SC=0

CcLS

GOTO 60

PRINT"BUTTONS WHILE PUSHING THE LATCH AT
THE REAR OF THE"

PRINT"TAPE COMPARTMENT--SEE PICTURE BELOW."
PRINT@960,"DEPRESS ANY KEY TO CONTINUE";
PRINT@540,0%; :PRINT@S540,P$; :Z$=INKEYS
IFZ$‘""THEN30020 ELSE 30040

CcLS

PRINT'MONSTERS COME FROM THE LEFT, 'STOMPER' IS AT
THE"

PRINT"RIGHT. STOMPER UNDERSTANDS'UP', 'DOWN', AND "
PRINT"'STOMPEM'.STOMPER JUMPS UP BEFORE

HE STOMPS."

PRINT"IF THE MONSTER HITS STOMPER

(OR VISA VERSA)--"

PRINT"TOO BAD! THE SCORE IS DISPLAYED

AT THE LOWER"

PRINT"RIGHT PORTION OF THE SCREEN.

YOU HAVE A CREDIT"

PRINT"LIMIT OF NINE POINTS.

GET CLOSE 7O THE MICROPHONE"

PRINT"TO HELP STOMPER UNDERSTAND.

REMEMBER THAT HE HEARS"

PRINT"EVERYTHING THAT IS GOING ON IN YOUR ROOM."
PRINT" HINT: MONSTERS HAVE FIENDISH

ODORS WHICH EXTEND"

PRINT'" SOME DISTANCE BENEATH THEIR BODIES"
INPUT"DEPRESS ENTER TO CONTINUE";Z$

GOTO 60

Chapter 11
Voxhox Typewriter

Worth mentioning is the Voxbox, a peripheral unit designed for the
TRS-80 Model I computer and sold by Radio Shack. This unit is
being discontinued, but many people own them and a few probably
exist on store shelves. The unit first retailed for $179, but was
reduced to $49 in 1980; thus it represents a bargain for those who
can find and use it. Using the Voxbox requires a TRS-80 Model I,
LevelIl, with at least 16K of RAM, and a cassette recorder. It works
with or without the expansion interface.

This device includes a push-to-talk microphone, power supply,
connecting cables, software, and the decoder unit itself. Although it
connects to the card edge connector at the rear of the keyboard unit
(unless the expansion interface unit is involved) an additional con-
nector is supplied on the Voxbox so that you can use a printer or a
peripheral device. The Voxbox includes a machine-language driver
program which must be loaded when you turn on the computer.
BASIC programs may then access this program by means of the
USR command. Included with the unit is a Plot program which
displays the characteristics detected when a word is spoken. Also
included is an Inventory Demo program which illustrates how a
voice-controlled inventory system might be operated. This pro-
gram operates from an imaginary inventory and could not be used
without rewriting for “real world” purposes. Finally, there is a
Lunar program which simulates landing a spacecraft on the moon.
No graphics are included, and I lost interest in it quickly.

87

3 DIMENSION ARRAY
CLEAR SCREEN
SETUP MESSAGE LINE

| 15 PRINT INSTRUCTIONS |

10140 ADVANCE WHEN READY

v

| 10150 REQUEST MEMORY SIZE OF MACHINE |

v

40 ESTABLISH STARTING POINT FOR
MACHINE LANGUAGE PROGRAM

v

100 INITIALIZE MACHINE LANGUAGE PROGRAM

[110 TRAINING |

915 JUMP

3000 TRAINING

v
| 920 SETUP VIDEO SCREEN |

@, v

1
| 950 REQUEST INPUT |
4

, 960 PERFORM MACHINE LANGUAGE RECOGNITION |

| 980 GO SUBROUTINE AT 2000 |

Fig. 11-1. Flowchart of Voxbox program.

88

2000 ASSIGN LETTER TO
NUMERICAL VALUE OF W

2280 YES

IS REQUEST
BACKSPACE?

4000 REMOVE LAST CHARACTER |

\' 4

982
IS REQUEST
PRINT?

990
IS MESSAGE
LINE TOO

LONG?

985 PRINT LETTER ON SCREEN
AND INCREMENT COUNTERS

988
WAS LAST
CHARACTER
BACKSPACE?

6000 PUT LETTERS IN ARRAY

6630 PRINT ARRAY DATA
AT LINEPRINTER

Y

6640 RESET VIDEO SCREEN
FOR FURTHER INPUT

Fig. 11-1. Continued from page 88.

89

The 32-page instruction manual includes listings of the BASIC
programs along with instructions for changing the rejection parame-
ter in the machine language driver program. The instructions for
writing your own BASIC programs contain a significant flaw on page
23. When setting up the training section of a program, TA (found in
line 1010) represents the address used to POKE the training index
number. Line 1010 should be changed to AB=AD*256. Line 1020
should be changed to TA=AB+1018: IF TA>32767 then
TA=TA~ 65536. The completed sample program on page 25and 26
of the Voxbox manual includes modifications to this effect.

The program presented in this chapter is similar to the Listen-
ing Typewriter of Chapter 6 in that it allows for voice control of a
printing device. In this program, each letter is trained as well as the
commands “space,” “backspace,” and “print.” The letter desired
must be spoken into the microphone and it will appear on the
message line. Errors can be corrected by using the word
“backspace,” which will cause the previous character to disappear.
A cursor moves on the message line in this program, helping to
indicate whether spaces have been accepted or not.

To say that this program works well would be somewhat of a
deception; letters like “B,” “D,” and “E” are often confused.
Further training on similar letters could improve the performance,
but the software provided only allows for 32 sounds to be trained.
Memory space is available for further training, but the machine-
language driver would have to be modified (not an easy task) to
accept more patterns. To be fair, humans have the same difficulty.
Anyone who has phoned in a catalog order has to use phrases such as
“B as in boy—E as in elephant” to aid the listener at the other end.
The use of key words rather than letters might possibly improve the
performance of the program.

When similar words are trained several times, the Voxbox
works with a high degree of accuracy. Software for the Voxbox (like
many recognition units) is virtually non-existent. You must write it
yourself. This software shortage has certainly influenced the low
popularity of the unit, because the hardware performs well.

Figure 11-1 is a program flowchart.

VOXBOX TYPEWRITER PROGRAM LISTING

3 $=832

5 DIMS$(100)

10 CLS

15 GOT010000

20 PRINTQ@0,"I1S THIS A 16K, 32K OR 48K SYSTEMY
30 INPUT" (TYPE 16, 32 OR 48)";MsS

90

40 IF MS=16 THEN AD
50 IF MS=32 THEN AD
60 IF MS=48 THEN AD
70 GDTO 30

80 POKE16526,6

90 POKE16527,AD

750

X=USR(CO0)

TR=0
PRINT
GosuB
TR=1

"SAY
5000

PRINT"SAY

GOsuUB
TR=2

5000

PRINT"SAY

GOSUB
TR=3
PRINT
GosuB
TR=4
PRINT
GOsSuUB
TR=S
PRINT
GOSuUB
TR=6
PRINT
GOSUB
TR=7
PRINT
GOsuB
TR=8
PRINT
GOsSuB
TR=9
PRINT
Gosus
TR=10

PRINT
GosuB
TR=11
PRINT
Gosus
TR=12
PRINT
GosuB
TR=13
PRINT
GOSUB
TR=14
PRINT
GOSUB
TR=15
PRINT
Gosus
TR=16
PRINT
GOSUB
TR=17
PRINT
GOSUB
TR=18
PRINT
GOsuB
TR=19
PRINT
GOsuB
TR=20
PRINT
GOsus
TR=21
PRINT

5000

"SAY
5000

"SAY
5000

"SAY
5000

"SAY
5000

"SAY
5000

"SAY
5000

"'SAY
5000

"SAY
5000

"SAY
5000

'SAY
5000

"SAY
5000

"SAY
5000

"SAY
5000

"SAY
5000

"'SAY
5000

"SAY
5000

"'SAY
5000

VSAY
5000

"SAY

A

tgn

tom

lDl"

'El"

'F'"

G

THn

rpen

g

K

T

TMen

INtT

Io'"

tptn

IQ "

IR'"

tgtn

1Tin

ym

lv'"

=112:G0OTO80
=176:60T080
=240:G0OT080

91

760 GOSUB 5000

770 TR=22

780 FRINT "SAY 'w'V
700 cGSUE 5660

£0C¢ TR=23

810 PRINT "SAY ftx'n
820 GOSUB 5000

830 TR=24

840 PRINT M“SAY ty'w
850 GOSuB 5009

860 TR=25

870 PRINT "SAY 'z
880 GOSUB 5000

890 TR=26

900 PRINT "SAY 'SPACE'Y
910 GOSUB 5000

915 GOSUR3000

920 CLS

930 POKE 16526,3

940 POKE 16547,AD

945 PRINTQE93,"=

946 POKE16192, 140

950 PRINT@20,"NEXT LETTER"
960 X=USR(C0)

970 W=PEEK(TA)

975 SK=0

980 GOSUB 2000

982 IF ¥=28 THEN 6000
985 PRINTQS,WS

986 POKE(C15361+5),140
987 S§4$(S-832)=wW$

988 IFSK=1GOT0950

990 S=S+1

995 [FS=894 THEN 6000
1000 GOTO 950

2000 IFW=0 WS="A"
2005 PRINTE@100," "
2010 IFW=]1 wi="B"
2020 IFw=2 ws="c"
2030 IFW=3 w$="p"
2040 YFWs4 WH="EM
2050 IFW=5 WS="fF"
2060 IFW=6 w$="G"
2070 IFW=7 wi="H"
2080 IFW=8 W$="I"
2090 IFW=9 W$="y"
2100 IFW=10 W$="K"
2110 IFW=11 w="L"
2120 IFW=12 WS="M"
2130 IFW=13 WS="N"
2140 IF W=14 ws="o"
2150 IFW=15 ws="p"
2160 IFW=16 ws="Q"
2170 IFW=17 W§="R"
2180 1FW=18 wi=vs"
2190 IFW=19 wW="T"
2200 IFW=20 wWS="y"
2210 IFW=21 w§=ny"
2220 IFW=22 WS="w"
2230 IFW=23 wé="x"
2240 IFW=24 ws="y"
2250 IFW=25 wh=nz"
2270 IF W=26 THEN wW4=" v
2280 IF W=27 GOSUB 4000
2300 RETURN

3000 TR=27

3010 PRINT"SAY 'BACKSPACE'"
3020 GOSUB 5000

3030 TR=28

3040 PRINT"SAY 'PRINT'™
3050 GOSUR S000

3060 RETURN

92

4000 wWe=""

4005 PRINT@(S+1)," "

4010 S=5-1

4015 SK=1

4020 POKE(15360+S), 140

4030 RETURN

5000 IF AD=112 THEN DD=28672
5002 IF AD=176 THEN DD=45056
5004 IF AD=240 THEN DD=61440
5006 TA =DD+1018

5008 IF DD.32767 THEN TA=TA-65536
5020 POKE 16526,0

5030 POKE 16527,AD

5040 POKETA,TR

5050 X=USRC0)

5060 IF PEEK(TA),.0 THEN GOTO 5090
5070 RETURN

5090 PRINT"ERROR"

5100 GOTO 5020

6000 A$=S$(0)

6010 B$=55(1)

6020 €5$=5%(2)

6030 D5=55(3)

6040 E$=S5(H)

6050 F$=5$(5)

6060 G$=5%(6)

6070 H$=S5(7)

6080 1$=5%(8)
6090 J$=55C9)
6100 K$=5$C10)
6110 L$=55C11)
6120 M3=55(12)
6130 N$=S$(C13)
6140 05=55C14)
6150 P$=55C15)
6160 Q3=5$(16)
6170 R$=55(C17)
6180 T$=55C18)
6190 U5=S5(C19)
6200 v$=5$(20)
6210 x35=55(C21)
6220 Y$=55(22)

6230 Z2$=5%(23)

6240 Al$=55(24)
6250 81$=5$(25)
6260 C15=5$(26)
6270 D15=55(27)
6280 E1$=5%(28)
5290 F14$=5$(29)
6300 G15=5$(30)
6310 H1$=55(31)
6320 115=5$(32)
6330 J1$=55(33)
6340 K15=55(34)
6350 L1$=5%(35)
6360 M15=5$(36)
6370 N1$=5%(37)
6380 01$=5%(38)
6390 P15=5%(39)
6400 Q15=5$(40)
6410 R15=5$C41)
6420 S15=55C42)
6430 T15=55C43)
6440 U1$=SSCLL)
6450 V15=55C45)
6460 W15=55C46)
6470 X1$=S5(H7)
6480 Y15$=5$(48)
6490 Z215=55Ch9)
6500 A25=55(50)
6510 B25=55(51)
6520 €2$=5$(52)

6530
6540
6550
6560
6570
6580
6590
6600
6610
6620
6630
T$;U$
N15;0
$;F25
6640
6650
6660
6670
106000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10160

D2%=55(53)
E25=55(54)

F2$=55$(55)
G2%=5%$(56)
H2$=5$(57)

125=55(58)
J25=55(59)
K24$=5%(60)

L28=55(61)
M25=55(62)
LPRINTAS;B$;C$;D8;ES;FS;365;HS;15;U8;KS; LS M8;:NS;05;P4;04;RS;
sVS;X$5Y8;25;A18;B18;C146;D18;E15;F15;G18;H1$;0156;K1$;L15;M1$;
1$;P1$;0153R1$;S1$;T1$;UI$;VIS;W1$;X16;Y1$;214;A2$;825;C24;D2
3F2$;62%;H2%;125;025;K24;L25;M2%
CLS
§=832
PRINT@R93, &Y
GOT0950

PRINT"THIS PROGRAM CONSISTS OF A LEARNING AND AN"
PRINT"OPERATING PHASE. FIRST YOU MUST SPEAK ALL THE™
PRINT"LETTERS AND A FEW WORDS AS THEY ARE RENUESTED."
PRINT

PRINT" AFTER THIS TRAINING, YOU WILL BF ASKED"
PRINT"FOR THE NEXT LETTER. SAY THAT LETTER AND IT"
PRINT"SHOULD APPEAR AT THE BOTTOM OF THE SCREEN."
PRINT"IF IT DOES NOT APPEAR, SAY 'BACKSPACE' AND THE"
PRINT"INCORRECT LETTER OR SPACE WILL BE REMOVED,"
PRINT" SAY 'PRINT' TO CAUSE A LINE TO BE PRINTED."
PRINT

PRINT" IF YOU RUN INTO THE STAR AT THE END OF THE"
PRINT"LINE, THE PROGRAM WILL CAUSE THE LINE TO PRINT"
PRINTMAUTOMATICALLY."

INPUT"HIT THE ENTER KEY TO CONTINUE";RZ

cLS

GOTO 20

Chapter 12
Basic Electronics

To the uninitiated, the diagrams and strange little “bugs” found in
electronic circuits are bewildering, but they need not be mysterious
(see Fig. 12-1 for circuit elements). It is not difficult to build or
understand circuits, but some preliminary concepts and information
need to be presented to give you the knowledge you need to
construct the projects in this book. Integrated circuits—ICs—are
basic building blocks of complex devices. ICs can be thought of as
“black box” devices—it is only necessary to know what comes out
for certain inputs. It is no more necessary for you to understand the
internal workings of a silicon chip than it is for a bus driver to
understand the workings of a diesel engine. Digital integrated
circuits take information, which is either high or low (positive
supply voltage or negative supply voltage), and perform logical or
mathematical operations. The pins on the IC may be classified in
one of three ways. Either they are for power supply, for inputs, or
for outputs. Integrated circuits need not be digital; some types are
called linear. Linear ICs perform nondigital functions. An audio
amplifier and a timer are examples of linear integrated circuits.
Linear circuits may be connected to capacitors, resistors, poten-
tiometers, crystals, and other such devices to control the operation
of the circuit. Linear circuits have up to four types of pins: power
supply, input, output, and control. Digital circuits, it should be
pointed out, can directly control other digital circuits without the
need for resistors, capacitors, and other components.

95

'sloquifs Jnoug “-g |t *Bi4

HO 31vO 31vO m_._.<® 31vO
JAISNTOX3 H31H3ANI HON aNVN H3dd4ng anNv

— = < =~ —<+ <E —CF

HOLSISNVHL
HOLIMS asnd HOL1IDVvdvD dNd HOS 340I1a
$ S _, 1 AMW m X N &
11ND2dI0 HO1SIS3H HOLSISNVHL Jaola
a3LvdD31NI NdN H3aN3z

96

All electronic circuits require energy and for that reason some
form of power supply must be provided. Some integrated circuits
will tolerate little variance in the voltage supplied. Therefore, they
must have a regulated direct current supply. Batteries provide
smooth, ripple-free direct current (ripple is the bumps found in
rectified alternating current, see Fig 12-2), but the voltage they
supply changes with the energy being drawn by various devices and
the voltage decreases as the battery is drained. Regulator inte-
grated circuits (linear ICs) will take any reasonable voltage, such as
9volts from a battery, and regulate it to some lower voltage, such as
5volts. These are much simpler to design and use than the complex
regulated supplies built a few years ago. A complete supply from an
alternating source requires a transformer to reduce the voltage
from the outlet to a lower level such as 12 volts. This alternating
voltage can be converted to a rippled nonalternating voltage by the
use of diodes. The ripple can be smoothed out with a capacitor and
the raw dc (direct current) voltage can be applied to the input of an
IC regulator. The regulator has an output pin and a ground; the

Fig. 12-2. Alternating voltage before and after rectification.

97

ground is tied to negative for reference, and output is the regulated
voltage supply. A small capacitor is often placed across the input
and the output to ground to enable the IC to respond more rapidly to
changes in the input or output.

Regulator ICs, like many other linears, have a power rating
(usually one amp or more) which indicates how much power they
can handle. This rating assumes proper heat dissipation, a situation
that occurs if the circuit is securely fastened to a piece of metal
where the heat it generates can be carried away. Without this heat
sink, the unit is good for only a fraction of its rating—perhaps
one-tenth or less of what the specifications claim.

IC PACKAGE

Digital integrated circuits are primarily housed in dual inline
packages (Fig. 12-3). This means that the devices are packaged in a
rectangular piece of plastic or ceramic with wires protruding from
the two longer sides. There is a standard numbering system that can
be used to quickly find a desired pin (the wires coming from the IC
are called pins). To use the numbering system, you must know
whether you are looking at the top or bottom of the package. When
holding the IC between your fingers, the pins will tend to stab one
finger. The side with the sharp pins is the bottom. The side from
which no pins protrude is the top. Viewed from the top, there is an
indicator, usually a depression in the packing material toward one
end. Also, there may be a dot used as an indicator. Unfortunately,
some packages have a dot at one end and a depression at the other;
the depression is always the indicator. Viewed from the top with the
depression end pointing upward, pin number one is the uppermost
wire on the left. Pin number two is the wire immediately below pin
one. The numbering continues down the left side of the chip until
there are no more wires on the left. At the point, go across the chip
to the right and count upward. For a 14-pin circuit, the pins are
numbered one through seven on the left, starting at the top and
going down. They are numbered eight through fourteen on the right
starting at the bottom and going up. A regrettable fact of life is that
some aspects look different when the IC is viewed from the bottom.
Wiring is done from the bottom and troubleshooting is usually done
from the top; confusion is inevitable.

DIAGRAMS

Circuit diagrams may be drawn in many ways. The ones in this
book include block diagrams showing the general concepts ac-

98

1 V14 14 "} 1
7 3 ~ 8 s 1 _F 7
TOP BOTTOM
VIEW VIEW
TOP
BOTTOM

Fig. 12-3. Integrated circuit numbering.

complished, and wiring diagrams showing the interconnections of
all components. Logic diagrams indicating all logic functions per-
formed are not practical due to the large number of functions
performed by some of the microprocessor related circuits. The
wiring diagrams are actually hybrid drawings showing some of the
logic symbols and some logic blocks. Each logic unit on the diagram
has a number inside the figure. That number represents the inte-
grated circuit used and the commercial circuit type (number used to
purchase the circuit or look it up in a technical reference manual).
Some integrated circuits contain six or more logic gates, and these
gates may be drawn separately, but they will all have the same
number inside the figure—indicating that they are physically con-
tained in the same package. The numbers outside the figure repre-
sent pin numbers. Components such as resistors, capacitors, and
transistors will also be shown. On these devices it will be necessary
to examine the package they come in to determine which pin is
which. Resistors are not polarity-sensitive and one lead is as good
as another for wiring. The primary flow of diagrams is from left to
right, though it is sometimes necessary to bring a signal back to the
left after it has been created.

LOGIC FAMILIES

Digital logic integrated circuits are not all the same. There are
several families of logic circuits that perform the same function in

99

nonidentical ways. For example, the supply voltage, energy con-
sumption, speed, noise immunity, and cost of OR gates will vary,
though all units will require one or more “true” inputs to yield a
“ture” output.

Two popular logic families are CMOS (complimentary metal
oxide semiconductor) ant TTL (transistor-transistor logic). CMOS
logic consumes very little power and usually accepts a wide range of
power supply voltages, from 3 to 18 volts. A CMOS chip, operating
from a 5-volt power supply has a minimum high (true) output
voltage of 4.75 volts and a.maximum low (false) output voltage of .3
volts. CMOS circuits tend to be static-sensitive and can be damaged
if the pins are touched by someone who has scuffed his feet on the
carpet.

TTL logic consumes more power and tolerates the limited
voltage supply range of 4.75 to 5.25 volts. Such a chip operating
froma 5-volt power supply has a minimum high output voltage of 2.5
volts and a maximum low output voltage of 1.5 volts. CMOS and
TTL circuits can be used in the same circuits operating froma 5-volt
power supply, but they may or may not communicate successfully
with one another. TTL circuits have a greater output power capabil-
ity and thus can drive larger loads than CMOS circuits, though
neither can handle much. There are exceptions to the rules, some
CMOS circuits are designed to interface with and accept TTL
levels. External pull-up resistors can be used to pull TTL high
levels up to an acceptable level for CMOS.

Most processors are TTL compatible. The Z-80 and 8080 as
well as the 1802 microprocessor interface directly to TTL memory
circuits, because TTL memories are the most common and econom-
ical.

CONSTRUCTION AIDS

When you build individual circuits, you must install sockets.
Because wire wrapping is a fast method of building unique devices,
sockets are mandatory for such construction. Although it is possible
to wrap wire directly to the legs of integrated circuits, it is not wise
to do so. If the circuit fails, swapping it becomes a monumental task
of unwrapping, restripping or lengthening wires. Likewise, the
chance of damaging of CMOS circuit with static electricity is mag-
nified if it must be handled 15 or 20 times as opposed to merely
inserting it in a wired socket once. The pins of integrated circuits
are not very long and the amount left after they are inserted through

100

perforated board is minimal indeed, so it is rather difficult to make
more than one connection on a pin.

The disadvantages of sockets include cost, along with the
potential failure of an IC pin to contact a socket pin. Unless the total
circuit is to be subjected to drastic environmental changes that
could cause things to shrink and expand, it is doubtful whether
printed circuits could actually prove more reliable than sockets.
Printed circuits are cheaper to build on a mass basis. Sockets are
highly desirable if a circuit is built up on a printed circuit board
because soldered chips are most difficult to remove. It is also
difficult to solder integrated circuits into place without subjecting
the pins to excessive heat, which may cause failure.

Wire wrapping is a technique that greatly simplifies the con-
struction of prototype circuits for the hobbyist. To build complex
systems requires wiring connections from place to place. The old
way of handling that situation was to cut a piece of wire, strip the
ends, mechanically connect the two ends by bending or twisting the
wire with pliers, and then apply solder—taking care not to create
a cold solder joint or to overheat anything. In contrast, wire wrap-
ping requires the use of small gauge wire (about #30) which is
coated with a special insulation. This insulation can be easily
stripped with a wire wrapping tool. There are two types of wire
wrapping tools. The wire wrap pencil is manual and similar to the
old mechanical system of wiring while the slit type tool involves a
new technique and is much faster. The pencil requires taking the
wire, cutting it and stripping the ends (easily accomplished by using
a stripper built in the wiring pencil) then twisting four or five turns
around whatever leads are to be connected. No soldering is re-
quired, the connection provides low resistance, and the process is
much faster than the strip-and-solder method. Stripping dispensers
along with precut and stripped wire are available to make the
method even more convenient. The wire size is small and cannot be
used for large power-handling jobs.

The slit type tool takes a pool of wire and feeds it down the
center of a wrapping pencil. The tool must merely be rotated about
the legs of a wire wrap socket four or five times (the tool slits the
wire as it is rotated), then move on to the next point to be con-
nected. When it is time to end the series of connections, a small
lever is pushed on the slit pencil and the wire will be cut. This
method is about six times as fast as the wiring pencil and the initial
tool cost is modest. The disadvantage is that the tool must be used

101

on wire wrap sockets (sockets with square posts) or it will not slit
the wire. It cannot be used to wire to the leg of a transistor or a
resistor because it will not slit the insulation from the wire. The
wiring pencil can be used for connections to components, so long as
the component lead is not too large in diameter (anything works up
to the size of leads on Y%2-watt resistors). Wire wrap sockets along
with the integrated circuits make a creation which is about three-
quarters of an inch thick; if this is unacceptable (builting boards to
fit in an Apple II computer, for example) there are other methods
that use small wire and heat to remove the insulation, allowing for a
thinner installation.

There are numerous types of board on which you can mount
electronic projects. A pre-drilled phenolic board, dilled with inte-
grated circuit spacing, is ideal. Plug-in boards can be purchased at
greater expense, but they serve no purpose unless you already have
something for them to plug into. To mount the phenolic board to its
housing (metal case, wood, plastic, etc.) drill holes in the phenolic
and add standoffs. If standoffs are not readily available a small
diameter bolt of appropriate length can be used with several nuts
placed on the bolt to achieve the desired standoff distance.

Another good tool for use in prototype construction is the
modular integrated circuit breadboard socket (part #276-174 at
Radio Shack) which will accept circuits directly into its holes. This
socket has strips of commonly bussed holes (five common holes per
IC pin spacing) which allow the placement of an integrated circuit
and the addition of up to four wires leaving from that pin location.
Solid wire from #22 to #30 can be used to interconnect pins. This
hookup wire can be plugged into the holes and pulled out time after
time, rapidly and without any special tools. Use of this breadboard
unit allows for the building and testing of a design, then the rapid
rearrangement of components to optimize the circuit (or make it
work at all).

Static electricity is hazardous to many semiconductors, par-
ticularly CMOS and FET advices. Although modern integrated
circuits are internally protected against static damage, they can be
harmed, and care should be taken during handling and wiring.
Static-sensitive components normally are packed in conductive
foam; it is best to leave them in this foam until their final destination
is prepared. Static electricity is most prevalent when the air is dry
and physical objects are cool. Homes which are heated with forced-
air are prime places for people (on a cold day) to scuff around and
build up static charge. Possibly the best technique for static relief

102

(short of ripping out carpet and installing a humidifier) is to touch a
large metal object and discharge immediately before contacting
static-sensitive devices.

ELECTRICAL RULES

For those not well versed in electricity, the next section
explains Ohm’s law and a few basic concepts that are important to
an understanding of why odd little components are sprinkled about
in electronic circuits (see Table 12-1).

V=IR, voltage is equal to current multiplied by resistance.
That is Ohm’s law and the essence of electrical engineering. Using
algebra, there are two variations on that formula, I=V/R and
R=V/I. Before proceeding, an explanation is due concerning volt-
age, current, and resistance. Voltage is the potential force that will
be used to cause action to occur. Imagine separating all men and all
women; taking the men to one hill and the women to another hill
miles away. For the men and women to get together requires
desire; the greater the separation, the greater the desire required if
they are to meet in the center. This is the concept of voltage.
Voltage is the desire of electrons to get together with protons. The
greater the separation, the greater the voltage. Consider the sepa-
rated men and women again. Imagine a huge impenetrable ocean
separating the sexes. That is the concept of resistance. Resistance is
the blockage or bottlenecking of the flow of electrons. If the resis-
tance is infinite, no electrons can flow and nothing happens; the
voltage (potential) is preserved and nothing happens. Back to the
example, allow one small ship to be released on the ocean; some
men and women would leave their lands and join the others, but it
would be a slow process. This is the analogy to current, the flow of
electrons across the resistance. The less the resistance (more
ships) the greater the flow (current). Given this analogy, you can
see that a circuit must have resistance or there will be chaos—a
large current flow and collapse of voltage.

V=IR V=Voltage
1=Current
R=Resistance
1=V /R
R=V /I
Table 12-1. Formulas. P=RR P=Power
R(series)=R1 + R2 + R3
R(parallel)=((R1) (R2) (R3)) /(R1 + R2 + R3)
C=Capacitance:
Cf(parallel)=C1 + C2 + C3
Clseries)= ((C1) (C2) (C3)) /(C1 + C2 + C3)

103

One other formula is important, P=I°R or power is equal to
current times current times resistance. This formula is used to
determine the power-handling requirements of various compo-
nents. Power is measured in watts. Using the formula developed in
the last paragraph, R=V/I and substituting that in P=I°R, you come
up with the formula P=(1» (V/I) which reduces to P=VI or power
equals voltage times current. When you install a resistor it is
necessary to know what resistance to select (how many ohms) and
what physical size (how many watts). Given the voltage supplied to
a circuit and measuring the ohms, you can find the amps flowing in
the area by using the formula I= V/R. With the current known it is
possible to determine the power which will be dissipated by the
resistor using P=I’R because I and R are known. Any wattage equal
to higher than the calculated value will be sufficient. Note that the
rating of the resistor is a value defined for free-air placement. Few
resistors have that sort of air circulation, as they are normally
confined on one side to a board. Thus a ¥2-watt resistor mounted
against a board will not continuously tolerate one-half watt.

Resistors come in standard values and it is not always possible
to purchase the value needed for a particular design. When this
occurs, you have to combine available resistors to create the proper
effective value. Resistors placed in series add mathematically; in
other words a 100 ohm resistor in series with a 37 ohm resistor
yields an effective resistance of 137 ohms. Resistors placed in
parallel have an effective resistance equal to the product of the
resistors divided by their sum. For example, 3 ohms paralleled with
5 ohms paralleled with 2 ohms is equal to: 3 times 5 times 2 divided
by 3 plus 5plus 2 or 30 divided by 10 for a total resistance of 3 chms.
The power capability required of each resistor is still calculated
using P=I°R after using I=V/R to determine the current flow. When
dealing with a series combination of resistors, the voltage across
each resistor is not equal to the total power supply voltage. The
voltage across the resistors divides in proportion to the relative
resistance of each unit. With a 5-volt power supply connected
across a series combination of a 3.5 ohm resistor and a 1.5 ohm
resistor; there would be 3.5 volts developed across the 3.5 volt
resistor and 1.5 volts across the 1.5 ohm resistor.

Capacitors are often seen in circuits, and they can be used to
accomplish numerous tasks. A capacitor is an energy storage de-
vice, it allows electrons to pile up or be released, depending upon
whether the rest of the circuit is rising in voltage or falling. As a
filter in power supplies, the capacitor charges when rectified alter-

104

nating voltage rises and it discharges when the alternating voltage
falls. The release of energy when the alternating wave is falling fills
in the gap and creates a flatter waveshape. If the capacitor is large
enough, the rectified wave will be almost as smooth as voltage from
a battery. Stray voltage spikes can be induced into circuitry by the
arching of brush type motors (sewing machines, for example) or
other noise sources. These high stray voltages can damage inte-
grated circuits or fool them into thinking a legitimate pulse has
occurred. Voltage cannot rise rapidly across a capacitor unless that
voltage is supported by a large amount of energy (high current);
thus noise spikes, though large in voltage, will collapse tonegligible
values when placed against capacitors. For this reason, capacitors
are frequently employed at various points to “eat” noise.

Capacitors may be manufactured from various materials and
the different types vary in cost, reliability, temperature stability,
storage capacity, and polarization. Some capacitors will accept
positive or negative voltage on either terminal and they are known
as nonpolarized capacitors. This type is frequently found on re-
frigerator motors and other alternating current devices. Polarized
capacitors accept positive voltage on one end and negative on the
other; they are not to be reversed or they will quickly fail. These are
typically found in direct current applications where polarity is
controlled, such as electronic circuits, power supplies in particular.
The polarity marking is usually a band near the end where positive
voltage is to be applied. Some manufacturers ring the unit with
minus signs and arrows pointing to one end; that is the end which
should have negative voltage applied to it.

Capacitors add directly in parallel; a 30 microfarad capacitor
and a 15 microfarad capacitor in parallel have a combined capaci-
tance of 45 microfarads. In series they combine by using the project
of the units divided by the sum. With the 30 and 15 units, the series
combination would equal 30 times 15 (450) divided by 30 plus 15
(45) for a total of ten microfarads.

Soldering, if it is deemed necessary, should be done with the
lowest wattage iron possible. The joint (not the solder) should be
heated with the iron and the solder should be placed against the joint
until it melts and is drawn into the connection. Solder should not be
used to make connections; the connections should be physically
good before the iron is brought near. Solder merely secures the
joint. Cold solder joints are dull-appearing spots where the hot
solder was dropped onto the connection; this type of joint may not
work or function electrically.

105

A permanent black marking pen can be used to denote inte-
grated circuit numbers upon the back of perforated boards during
wiring. Placing a dot in the position of the number one pin will help
eliminate the confusion that occurs when trying to convert from the
top to bottom views of data sheets or schematics.

A list of parts suppliers is given at the back of this book. They
offer the types of parts and tools needed to begin electronic con-
struction. Also listed are several magazines which carry excellent
advertisements and articles.

SOFTWARE

Software is a necessary concern when dealing with computer
systems. Software is a set of instructions which tell the hardware
(physical circuitry) what to do. There are numerous “languages”
which may be used to program computers, BASIC, FORTRAN,
COBOL, and many others. Thse are high-level languages, because
they accept English language instructions such as JUMP and
GOTO. Assembly language is a lower-level language. Assembly-
language programming uses codes like LDA which represent a
processor operation. Assembly language does not directly support
complicated operations, such as multiplying numbers or calling
subroutines. Numerous codes must be combined to achieve the
same goal which a single high-level instruction could accomplish.
The bottom level of software is machine-language programming.
Machine language is the actual code used by the integrated circuit to
perform its tasks. Although it is the lowest level language, it is also
the most difficult to use; but it is the only one that does not require
other programs to make it work. BASIC for example, is a program
contained (usually) in read only memory (ROM) within a com-
puter such as the TRS-80. Upon receipt of a command such as
GOTO, the program determines that actions are necessary to ac-
complish that goal and does all the necessary machine-language
manipulations to accomplish the task. Machine-language program-
ming is dependent entirely upon the type of microprocessor inte-
grated circuit used; the instruction sets (that tell the microproces-
sor exactly what to do) vary from unit to unit.

A reasonable question to ask would be, “Why does anyone
want to program in machine language?” There are many reasons for
doing so. First, machine language is fast. All other languages ulti-
mately must arrive at machine code to run; the “middleman” is
eliminated if high-level languages are not used. Machine language is
up to 300 times faster than BASIC, an important factor when dealing

106

with graphics or rapidly occurring events. Machine language can be
used to write programs that occupy a minimal amount of memory
space—an important consideration when trying to save money on
hardware (extra memory costs more). Machine language is an
excellent learning tool; anyone who can program in machine code
can easily master the more simple higher languages.

Speech recognition, particularly continuous recognition and
speaker-independent recognition, will require rapid processing of
significant quantities of data. The fastest handling of this data will be
through machine language programming. An understanding of these
principles will enable the designer to take in and put out information
in whatever form is most convenient. Knowing how to write this
type of program will enable the experimentalist to built inexpen-
sive dedicated computer systems for burglar alarms, toys, test
equipment, speech recognizers, or anything that you can imagine.

Before delving into the specifics of the 1802 microprocessor
instructions, there are several fundamental concepts that must be
covered. The hexadecimal numbering system is used for instruc-
tions and memory location identification rather than base ten num-
bers. Base ten numbers are the ones used in everyday life, seven
plus seven equals 14 and the like. Base ten numbers are set up ona
multiples-of-ten basis. Perhaps you have heard statements such as
“His salary is in the six-figures range.” That would mean that the
person being referred to earns more than $100,000. Each digit inthe
base ten system represents ten times as much as the digit im-
mediately to the right. Consider the number 439; it is composed of
four times 100 plus three times ten plus nine times one. Hexadeci-
mal, or base 16, is not so easy to handle mentally, but it is a logical
system for handling digital data. Because a digital bit (the smallest
amount of information a computer can record) can be only high or
low in voltage (one or zero) it has but two states. Everything must
be based upon a system which in its natural state utilizes multiples
of two. A system based upon multiples of two is called the binary
system. The binary system is inconvenient to use because of the
length of the numbers. To establish the number 55,000 (base ten) in
binary (base two) would require 16 digits. To avoid long numbers,
yet remain consistent with the multiples of two, the hexadecimal
system was devised. Four binary bits have a maximum number of
possible distinct combinations equal to 16 (base ten). These num-
bers are represented in the hex system as shown in Table 12-2.
Note that hex numbers are identical to base ten numbers until ten
(base ten) is reached, then we have A. B represents 11, C repre-

107

Table 12-2. Numbering Systems

Base Ten Base Sixteen
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 C
13 D
14 E
15 F
16 10
?fsc:izngal numbers are constructed as in the example below:
1 x 10,000 plus 4B37=
4 x 1,000 plus 4 x 4,096 plus
3 x 100 plus B x 256 plus
2 x 10 plus 3 x 16 plus
8 x 1. 7 x1.

sents 12, D represents 13, E represents 14, and F represents 15.
Zero is the sixteenth number in the system just as zero is the tenth
number in the base ten system. A factor which is certain to cause
confusion when dealing with computers is the place where number-
ing starts. To find the fifth memory location physically within a
system, look for address location four—remember that the first
memory location is address location zero.

Most common microprocessors are eight-bit machines. This
means that they manipulate eight bits at one time. Eight bits can be
represented by two binary groups of four or by two hexadecimal
numbers. The hex system will be used. Computers are not very
smart; they can only do a few very simple tasks. They can move bits
around from one place to another, they can add in binary, and they
can compare two numbers and tell which is greater or if the two are
equal. That is about it. Everything else from space war games, to
complex math, to industrial control, depends upon the ability of
someone to reduce complex problems to these very simple manipu-
lations.

108

Chapter 13
1802 Microprocessor Instructions

The 1802 microprocessor integrated circuit was chosen for this
recognizer because it is well suited for control applications. Other
types are better suited for math just as some are best for operating
color graphics on televisions. Most microprocessor circuits can be
adapted to most projects; the speed of operation and difficulty of
programming will be influenced by the microprocessor chosen.
Please note that the instruction set given here and the program
listed will not work for any type of microprocessor other than the
1802.

The internal register arrangement of the 1802 is shown in Fig.
13-1. The number of bits handled by each register is also shown.
There are 16 general-purpose 16-bit registers, R(0).1 through
R(F).1. Because this is an eight-bit microprocessor, it can handle
only eight bits at a time, not 16. These 16 registers are therefore
broken down into 32 eight-bit registers. The registers are nonethe-
less often used in groups of two with the ending designation (R(?).1
referring to the high-order eight bits and the designation (R?).0
referring to the low-oreder eight bits. The “?” in the parentheses
could be any hexadecimal number from O to F. These registers can
be used to store information or to point to memory locations. The
1802 (as most microprocessors) will readily address up to 64,000
eight-bit groups or bytes of memory. Recall that 16 bits are neces-
sary to define a unique location from a group of over 64,000. Any of
these 16-bit register pairs can be sequentially placed (eight bits at a

109

8 8

BITS _ BITS
RO | R(0).0 D
R().1 | R(1).0 8BITS
R@1 | RE@.0
P
4BITS
X
4BITS
8BITS
e N
| N
[1oF(18m)
la@sm
R(E)1 | R(E).0 ieqem
RF).1 | REF).0]

Fig. 13-1. 1802 register arrangement.

110

time) on the memory address lines to define a specific spot in
memory. These 16 bits can also be placed in the 16-bit A register
where they may be increased or decreased one number at a time.
Form the A register they can be returned to the register from which
they came or placed in another register. Registers N, P, and X are
four-bit registers which hold a binary code equivalent to one digit of
a hexadecimal number. This binary code is usd to refer to one of
the 16-bit register paris. Register T is a temporary eight-bit regis-
ter. I is a four-bit register used along with the N register to hold the
code being executed. Note that the N register may act as a special
code, depending upon the instruction being input. The D register is
the primary place where comparisons occur and through which
information is usually passed. The ALU (arithmetic-logic-unit) is an
eight-bit unit which performs arithmetic and logic operations. It
takes the byte in the D register and a byte on the data bus (obtained
from memory), performs its function and places the result in the D
register. A single-bit register DF is set to 1 or 0 depending upon
whether a carry, no carry, no borrow, or borrow has occurred. Q is a
flip-flop which can be set high or low and can be tested (asked
whether it is high or low) by proper instruction command. IE is the
interrupt enable flip-flop which may be used to allow or disallow
interrupts. There are 93 primary instructions listed in Table 13-1.
These are broken into nine groups: memory reference, register
operations, logic operations, arithmetic operations, short branch,
long branch, skip, control, and input-output. Each group and instruc-
tion will be described in the following pages.

MEMORY REFERENCE

The memory reference group is used to get information into
and out of memory locations. A typical computer has an operating
program to direct all activities. This is normally placed in some
form of permanent memory, which cannot be accidentally written
upon. Unless the system is dedicated to perform a very specific task
without processing input information, there will be volatile memory
which may be written into, erased, and changed at will. Where these
two types of memory are located is dependent upon the physical
construction of the system. Frequently, the operating program fills
the lower numbered spaces in memory while the RAM is located in
the upper parts. Part of the operating program (a few bytes) must be
placed in the lowest part of memory. When the computer system is
turned on, it will begin to sequence through memory, starting at the
lowest possible address. Whatever it finds in the lowest spot will be

111

112

Table 13-1..1802 Primary Instruction Set.

INSTRUCTION CODE OPERATION

Memory Reference

LOAD VIA N ON M(R(N))>D; FOR N NOT 0
LOAD ADVANCE 4N M(R(N))}>D; R(N)+l

LOAD VIA X FO M(R(X))>D

LOAD VIA X AND ADVANCE 72 M(R(X))=»D; R(X)+1

LOAD IMMEDIATE F8 M(R(P))>D; R(P)+1
STORE VIA N SN D-M(R(N))

STORE VIA X AND 73 D*M(R(X)); R(X)-1

DECREMENT

Register Operations

INCREMENT REGISTER N IN R(N)+1
DECREMENT REGISTER N 2N R(N) -1
INCREMENT REGISTER X 60 R(X)+1
GET LOW REG N 8N R(N) 0D
PUT LOW REG N AN D»R(N).0
GET HIGH REG N 9N R(N) . 1D
PUT HIGH REG N BN D»>R(N).1

Logic Operations

OR F1 M(R(X)) OR D=D
OR IMMEDIATE F9 M(R(P)) OR D»D; R(P)+1
EXCLUSIVE OR F3 M(R(X)) XOR D+D
EXCLUSIVE OR IMMEDIATE FB M(R(P)) XOR D»D; R(P)+1
AND F2 M(R(X)) AND D+D
AND IMMEDIATE FA M(R(P)) AND D=D; R(P)+1
SHIFT RIGHT F6 gH;gg g)RIGHT, LSB(D)»DF,
»
SHIFT RIGHT WITH 76 SHIFT D RIGHT, LSB(D)»DF,
CARRY DF-+MSB (D)
RING SHIFT RIGHT
SHIFT LEFT FE SHIFT D LEFT, MSB(D)»DF,
0-LSB(D)
SHIFT LEFT WITH 7E SHIFT D LEFT, MSB(D)-»DF,
CARRY DE»LSB (D)

RING SHIFT LEFT

Arithmetic Operations

ADD F4 M(R(X)) + D=DF,D

ADD IMMEDIATE FC M(R(P)) + D+DF, D; R(P)+1

ADD WITH CARRY 74 M(R(X)) + D + DF»DF,D

ADD WITH CARRY 7C M(R(P)) + D + DF»DF,D
IMMEDIATE R(P) + 1

SUBTRACT D FS M(R(X))-D»DF,D

SUBTRACT D IMMEDIATE FD M(R(P))-D>DF, D3 R(P)+1

SUBTRACTWD WITH 75 M(R(X))-D-(NOTDF)»DF, D
BORRO!

SUBTRACT D WITH 7D M(R(P)) -D-(NOT DF)>DF, DN;
BORROW, IMMEDIATE R(P) + 1

SUBTRACT MEMORY F7 D-M(R(X))»DF, D

SUBTRACT MEMORY FF D-M(R(P))=DF, D;

IMMEDIATE R(P) + 1

SUBTRACT MEMORY WITH 77 D=-M(R(X))~-(NOT DF)»DF, D
BORROW

SUBTRACT MEMORY WITH 7F D-M(R(P))~-(NOT DF)»DF, D
BORROW, TMMEDLAYVE nep) + 1

SHORT

Table 13-1. Continued from page 112.

Branch Instructions--Short Branch

BRANCH

NO SHORT BRANCH
SHORT BRANCH IF D=0

SHORT

D NOT

SHORT
SHORT

BRANCH IF
0

BRANCH IF
BRANCH IF

OR ZERO

SHORT

OR
SHORT
SHORT
SHORT
SHORT

SHORT
SHORT

BRANCH IF
GREATER

BRANCH IF
BRANCH IF
BRANCH IF
BRANCH IF

BRANCH IF
BRANCH IF

(1=Vss)

SHORT

BRANCH IF

(0=Vcc)

SHORT

BRANCH IF

(1=Vss)

SHORT

BRANCH IF

(0=Vcc)

SHORT

BRANCH IF

(1=Vss)

SHORT

(0=
SHORT

BRANCH IF
Vec)
BRANCH IF

(1=Vss)

SHORT

BRANCH IF

(0=Vcc)

DF=1
POS

EQUAL
DF=0
MINUS
LESS
Q=1
Q=0
EFl=l
EFl1=0
EF2=1
EF2=0
EF3=1
EF3=0
EF4sl
EF4=0

30
38
32
3A

33

3B

31
39
34
3c
35
3D
36
3E
37
3F

M(R(P))aﬂ(
R(P) + 1

IF D=0, M(
ELSE R(P) +
IF D NOT O,

P).0
R(g))*R(P) .0
M(R(P)}aR(P)

ELSE P(P) +
IF DF=l, M(R(P))aR(P) 0

ELSE R(P) +

IF DF=0, V(R(P))»R(P) 0

ELSE R(P) +

IF Qul, M(
ELSE R(P) +
IF N=0, M(

P(P])aR(P) 0
R(P))aR(P) 0

ELSE R(P) + 1

IF EFl=1,

M(R(P))>R(P).0

ELSE R(P) +1

IF EF1=0,

ELSE R(P) +

IF EF2=1,

ELSE R(P) +

IF EF2=0,

M(?(P)),R(P).O
M(E(P))eP(P)-O
M(R(P))=>R(P) .0

ELSE R(P} + 1

IF EF3=1,
ELSE R(P) +
IF EF3=0,
ELSE R(P) +
IF EF4=1,
ELSE R(P)
IF EFd4=0,
ELSE R(P) +

M(?(P)}aR(P).o
M(T(P)}»R(P).O
M(R(P))>R(P).0
M(%(P)}*R(P).O

Branch Instructions--Long Branch

LONG BRANCH

NO LONG BRANCH
LONG BRANCH IF D=0

LONG BRANCH IF D NOT 0

LONG BRANCH IF DF=1

LONG BRANCH IF DF=0

LONG BRANCH IF Q=1

LONG BRANCH IF Q=0

SHORT

SKIP

LONG SKIP
LONG SKIP IF D=0

LONG SKIP IF D NOT O

Co

c8
c2

CA
c3

CB

C1

c9

38
Cc8
CE

cé

M(R(P))>R(
M(R(P) + 1
R(P) + 2

IF D=0, M(
M(R(P) + 1

P).1
}*R(P).0

R(P))=~R(P).1
)>R(P

‘o

IF D NOT 0, M(R%P))+R(P) 1

M(R(P) + 1

)»R(P).0

IF DF=1, M(R(P))»>R(P).1

M(R(P) + 1
ELSE R(P)

)>R(P).0
+ 2

IF DF=0, M(R(P))*R(P).1

M(RCP) + 1
ELSE R(P)
IF Q=1, M(
MRCP) '+ 1
ELSE R(P)
IF Q=0, M(

)*R(P).0

+ 2
R(P))»R(P).l
}aR(P).

+

R(P)}»R(P).l

M(R(P) + 1)»R(P).0
ELSE R(P) + 2

Skip Instructions

R(P) + 1
R(P) + 2
IF D=0, R(
ELSE CONTI

P) + 2
NUE

IF D NOT 0, R(P) + 2

ELSE CONTI

NUE

113

Table 13-1. Continued from page 113.

LONG SKIP IF DFel CF IF DF=1, R(P) ¢ 2
ELSE CONTINUE
LONG SKIP IF DF=0 C7 IF DF=0, R(P) + 2
ELSE CONTINUE
LONG SKIP IF Q=1 €D IF Q=1, R(P) + 2
. ELSE CONTINUE
LONG SKIP IF Q=0 C5 IF Q=0, R(P) + 2
ELSE CONTINUE
LONG SKIP IF IE=l CC IF IE=l, R(P) + 2

ELSE CONTINUE

Control Instructions

IDLE 00 WAIT FOR DMA OR
INTERRUPT' M(R(0))>BUS

NO OPERATION C4 CONTINU

SET P DN NP

SET X EN N-*X

SET Q 7B 1»Q

RESET Q 7A 0+Q

SAVE 78 T>M(R(X))

PUSH X,P TO STACK 79 (X, P)-T (X P)*M(R(Z))
THEN p-X

RETURN 70 T(géx))a(xm) R(x) + 1
-,

DISABLE 71 M(R(X))3(X,P); R(X) + 1
031E

Input--Output Byte Transfer

OUTPUT 1 61 M(R(X))*BUS; R(X) + 1;
N LINES = 1
OUTPUT 2 62 M(R(X))-’BUS' R(X) + 13
N LINES = 2
OUTPUT 3 63 M(n(xnoaus. R(X) + 1;
LINES = 3
OUTPUT 4 64 M(R(X))aBUS; R(X) + 1;
N LINES = 4
OUTPUT § 65 (R(x))-aus- R(X) + 13
N LINES =
OUTPUT 6 66 M(R(X))»BUS' R(X) + 1;
N LINES = 6
OUTPUT 7 67 M(R(X))#BUS; R(X) + 1;
N LINES = 7
INPUT 1 69 wﬁ’acg(x)), BUS»D;
INPUT 2 6A BUSsM(R(X)); BUS>D;
N LINES = 2
INPUT 3 6B BUSSM(R(X)); BUS+D;
N LINES = 3
INPUT 4 6C BUS=M(R(X)); BUS+D;
N LINES = 4
INPUT § 6D BUSSM(R(X)); BUSeD;
N LINES = §
INPUT 6 6E BUSSN(R(X))3 BUS»D;
6
INPUT 7 6F BUS=M(R(X)); BUS»D;
N LINES = 7

assumed to be an instruction. It is therefore necessary that the first
byte in the system be an instruction. That instruction could be
merely a command to jump somewhere else and find the program,
but such is infrequently the case.

114

The first instruction, LOAD VIA N takes a memory byte and
loads it into the D register. Register N is ahexadecimal value from 1
to F (0 is not allowed; it conflicts with another instruction) and it
determines which general purpose register pair is the data pointer.
Suppose the value of N is 3; then the 16 bits in register pair R(3).1
and R(3).0 define the address of a memory location. Whatever is in
that memory location will be moved to register D.

LOAD ADVANCE does the same thing as LOAD VIA N with
one additional function, It takes the 16 bits in the general-purpose
register pair and adds one to the total after it has placed the data in
D.

LOAD VIA X takes a memory byte and loads it into the D
register. The hexadecimal number is the X register that determines
which register pair will contain the address of the memory byte to
be moved. This differs from LOAD VIA N in that the instruction
itself in LOAD VIA N determined which register pair would be the
memory location pointer. The value in the X register has to be set
with another instruction.

LOAD VIA X AND ADVANCE does the same as LOAD VIAX
with one additional function. It takes the 16 bits in the general-
purpose register pair and adds one to the contents of that register
pair after moving the memory byte to the D register. It does not
increase the value of the number stored in the X register.

LOAD IMMEDIATE takes the memory byte pointed to (the
next byte in sequence in the operating program) and moves it into
the D register. Register P is incremented by one so that the next
byte it examines (in sequence in the operating program) will be an
instruction.

STORE VIA N takes the contents of the D register and places
those contents into memory. The value of N determines which
general register pair is used to point out a memory address into
which the value from D will be stored. The contents of the D
register do not change.

STORE VIA X AND DECREMENT takes the contents of the
D register and places those contents into memory. The memory
location is determined by the contents of a general register pair; the
hexadecimal number in register X defines the register pair (0 to F)
that will point to the memory location. After placing the value from
register D into memory, the contents of register D remain un-
changed. The contents of the general register pair (the address of
the memory location where the byte was stored) is decreased by
one count.

115

REGISTERS

The next group of instructions allows for manipulations of the
general-purpose registers. The manipulations include increasing or
decreasing the numbers in the general purpose registers. These
instructions also allow the programmer to put numbers into the
registers or take them out. It needs to be noted here that all
numbers going into or out from the registers must go through the D
register.

INCREMENT REG N causes the value within a general-
purpose register to be increased by one unit. The value of the N
register determines which register pair is to be incremented. This
instruction applies to the register pair, not to memory.

DECREMENT REG N causes the value within a general-
purpose register to be decreased by one unit. The value of the N
register determines which register pair is to be decremented.

INCREMENT REG X causes the value within a general-
purpose register to be increased by one unit. The value within the X
register determines which register pair is to be incremented.
Another instruction is required to set a value in the X register which
will be used to point to the general-purpose register that this
instruction increments.

GET LOW REG N takes the value stored in a low-order
member of a register pair and places that value into the D register.
The value of the N register determines which register pair is being
considered; the instruction itself defines the transfer to be the eight
bits of the lower order into the D register.

PUT LOW REG N takes the number stored in register D and
places the value in the low order member of a general register pair.
The value of register N determines which register pair will have its
low-order member replaced by the value that is in register D.
Register D remains unchanged throughout this operation.

GET HIGH REG N take the value stored in a high-order
member of a register pair and places that value into the D register.
The value of the N register determines which register pair is being
considered; the instruction itself defines the transfer to be the eight
bits of the lower order into the D register.

PUT HIGH REG N takes the number stored in register D and
places that value in the high-order member of a general register
pair. The value of register N determines which register pair will
have its low-order member replaced by the value that is in register
D. Register D remains unchanged throughout this operation.

116

LoGIC

Logic operations are used to perform manipulations utilizing
logic functions, or to test specific bits in a byte or to alter the
structure of a byte.

OR performs the logical or function with two eight-bit
operands. One operand is the byte stored in the D register, and the
other operand is a memory byte. The memory byte's address is
found in a general register pair, the pair defined by the hexadecimal
digit stored in the X register. Each bit of one byte is compared to the
corresponding bit of the other byte; if either bit is high, then the
output bit for that location will be high. The result of this compari-
son is placed in the D register.

OR IMMEDIATE takes the data in register D and compares it
with the next byte in the program sequence. The two bytes are
given a corresponding bit by bit OR comparison and the result of the
comparison is placed in the D register. The contents of the program
counter are incremented by one. The program counter is a
general-purpose register pair, the one designated by the four-bit
register P. The number contained within this general-purpose reg-
ister pair is the address of the memory location containing instruc-
tion byte of the program being run. This instruction is a two-byte
instruction; the first byte tells the 1802 that the next byte in the
programis not an instruction but rather information to be compared.
The contents of the program counter always advance one count after
executing an instruction; but the program counter must advance
once (automatically) and once by force of the instruction toreach the
next instruction in sequence.

EXCLUSIVE OR performs the exclusive or logic function upon
two eight-bit operands. One operand is the byte stored in the D
register and the other operand is a memory byte. The memory
byte’s address is found in a general register pair, the pair defined by
the hexadecimal digit stored in the X register. Each bit of one byte
is compared to the corresponding bit of the other byte; if one and
only one bit is high then the output bit for that location will be high.
The result of this comparison is placed into the D register.

EXCLUSIVE OR IMMEDIATE is very similar to EXCLU-
SIVE OR, the difference being in the location of the two bytes to be
compared. For this instruction, one byte is found in the D register
while the other byte to be compared is found as the next byte in the
program sequence. The contents of the program counter (general-
purpose register pair) must be incremented by one because thisis a
two byte instruction.

117

AND takes two bytes and performs the logical and function, bit
by bit on corresponding bits. The and function merely states that
both bits must be high if the output is to be high. One of the two
bytes being compared is found in the D register, the other is ina
memory location whose address is in a general purpose register
pair. The contents of register X point to the general purpose
register pair which points to the memory location of the memory
byte. The results of this AND operation are placed into the D
register.

AND IMMEDIATE is the same as the AND function except
that the bytes come from a different location and the program
counter is incremented by one count. One of the two bytes comes
from the D register while the other is the byte found next in the
program sequence. The results are placed into the D register and
the general-purpose register pair used as the program counter is
incremented once because this is a two-byte instruction.

SHIFT RIGHT takes the contents of the D register and shifts
the bits right one position. The rightmost bit (least significant bit) is
moved into the DF register. The leftmost bit (most significant bit)
has a zero shifted into its place.

SHIFT RIGHT WITH CARRY—RING SHIFT RIGHT takes
the contents of the D register and shifts the bits right one position.
The rightmost bit is moved into the DF register, and the bit
formerly in the DF register is moved into the leftmost bit of the D
register. In other words, nine bits are being handled and are moving
in a ring, the ninth bit being whatever is in the DF register.

SHIFT LEFT takes the contents of the D register and shifts
the bits left one position. The leftmost bit (most significant bit) is
moved into the DF register. The rightmost bit (least significant bit)
has a zero shifted into its place.

SHIFT LEFT WITH CARRY—RING SHIFT LEFT takes the
contents of the D register and shifts the bits left one position. The
leftmost bit is moved into the DF register and the bit formerly in the
DF register is moved into the rightmost bit of the D register.

ARITHMETIC

The next group of instructions to be considered is the arith-
metic group. All that can be done is to add or subtract bytes, but all
other functions can be created by manipulating these and the logic
functions.

ADD takes the contents of the D register and adds that to a
byte from memory. The memory location is defined by the contents

118

of a general register pair; that pair being specified by the contents of
the X register. The result of the addition is placed in the D register.
A flag is set in the DF register; a high bit means a carry has
occurred, a low bit means no carry.

ADD IMMEDIATE adds the contents of the D register to the
next byte in the program sequence. The DF register is set high if a
carry occurs, low if not. The result of the addition is placed in the D
register. The general register pair that serves as the program
counter is incremented by one; this is necessary since this is a
two-byte instruction.

ADD WITH CARRY takes the byte contained by register D and
adds that to a byte from memory adding also the contents of the DF
register. The memory location’s address is the same as the contents
of the general register pair pointed to by the contents of the X
register. Results of this operation are placed in the D register with
any carry causing the DF bit to be high; no carry and the DF bit is
low.

ADD WITH CARRYIMMEDIATE takes the byte contained by
register D and adds that to the byte next in the program sequence
adding also the contents of the DF register. The results are placed
in the D and DF registers. This is a two-byte instruction, thus the
general-purpose register pointed to by the contents of register P is
incremented by one.

Computers do not subtract well; they add. To subtract, this
computer adds using the two's complement method. This takes
each bit of the subtrahend and complements (makes high bit low and
low bits high) it adding this to the minuend plus one.

SUBTRACT D takes a byte from memory and subtracts the
byte in the D register, placing the result in the D register and
setting a high or low in the DF register. If DF is high, then no
borrow has occurred and D is a true positive number. If DF is low,
then a borrow has occurred and the result in the D register is atwo’s
complement.

SUBTRACT D IMMEDIATE takes a byte from memory and
subtracts from it the byte in the D register, placing the result in the
Dregister and setting a high or low flag in the DF register. The byte
from memory is the next byte in the program sequence, thus making
this a two byte instruction. The general register pair pointing to the
memory location for the controlling program is advanced one count
so that the next step in the program sequence will be an instruction.

SUBTRACT D WITH BORROW allows subtraction while
keeping track of a possible previous borrow operation. It takes a

119

byte from memory and from this subtracts the contents of the D
register and the inverse of the DF register (high if DF is low, low if
DF is high). The memory byte’s address is found in the general-
purpose register pair that is pointed out by the contents of the X
register. The result of the subtraCtion is placed in the D register. If
DF is high, then no borrow has occurred and the contents of D
represent a true positive number. If DF is low, then a borrow has
occurred and the contents of D represents a two’s complement
negative number.

SUBTRACT D WITH BORROW IMMEDIATE is the same as
SUBTRACT D WITH BORROW except that the byte from which
the D register is subtracted is found in the next position in the
program memory. This instruction is a two-byte instruction, the
second byte being data; of course, the program counter (general
register pair) must be incremented by one count.

SUBTRACT MEMORY takes the information in the D register
and subtracts a memory byte from the contents of D. The results of
this subtraction go into the D and DF registers. The memory byte
subtracted is found by taking the contents of register X which
defines a general register pair and using the contents of that regis-
ter pair as the address of the memory byte to be subtracted.

SUBTRACT MEMORY IMMEDIATE takes the information
inthe Dregister and subtracts from it a memory byte. The results of
this subtraction go into the D and DF registers. The memory byte
subtracted is the next byte in the program sequence, making this a
two-byte instruction and calling for an advance of the program
counter.

SUBTRACT MEMORY WITH BORROW takes the contents
of the D register and subtracts from it a memory byte and the
inverse of the DF register. This operation keeps up with any
previous borrow operations which may have occurred. The memory
byte is the one addressed by the general register pair which the
contents of the X register points to. Results of this operation go into
the D and DF registers, and the content of the DF register has the
same meaning as it does in all other subtract operations.

SUBTRACT MEMORY WITH BORROW IMMEDIATE takes
the contents of the D register and subtracts from it a memory byte
and the inverse of the DF register. This operation is identical to
SUBTRACT MEMORY WITH BORROW except that the byte
subtracted is the next byte in the program sequence, making this a
two-byte instruction. The program counter is advanced one count.

120

SHORT BRANCH

The next group is the short branch and limited test group set of
instructions. They allow the program counter to jump anywhere
within a group of 256 bytes when the appropriate conditions (if any)
are met. The test instructions provide for a short branch jump if the
test requirements are satisfied. An area of potential confusion
exists in the instruction names. When the instruction says, if
EF1=1,itmeansif EF1=low. For these instructions only a one is
taken to be low, and a zero is taken to be high.

SHORT BRANCH is anunconditional instruction which causes
the program to jump to another spot a short distance away. The
branching can only occur within 256-byte group. The contents of the
low-order byte of a general register pair (the pair being used to
address memory locations where the program is found) is changed
to equal the next byte found in the program memory sequence. This
is a two-byte instruction, the first byte being the actual instruction
and the second byte being data. There is no forced additional count
on the program count register because the program count register
(general register pair) has a new value—the one assigned by this
instruction. This is essentially a GOTO instruction which causes
the program to jump somewhere away from the one-byte-at-a-time
ascension which it normally follows.

NO SHORT BRANCH causes the program counter (general
register pair containing the address of the memory byte which is the
portion of the program being acted upon) to skip the next byte in
sequence.

SHORT BRANCHIF D=0is a conditional branch statement. If
the contents of register D equal zero, then the low-order byte of the
program counter (general register pair) will be changed to the value
found in the next memory byte in the program sequence. If D equals
zero, the program jumps to the prescribed location; otherwise, the
program skips the next memory byte in sequence and operates upon
the next instruction.

SHORT BRANCH IF D NOT ZERO is a conditional branch
statement similar to SHORT BRANCH IF D=0. The only differ-
ence is that the program jumps to the prescribed location if the
contents of D do not equal zero.

SHORT BRANCH IF DF=1, SHORT BRANCHIF POSITIVE
OR ZERO, SHORT BRANCH IF EQUAL OR GREATER are de-
scriptions of the same instruction. This instruction examines the
value stored in the DF register. If that value is high then the

121

low-order byte of the program counter (general register pair) will
be changed to the value found in the next memory byte in the
program sequence, otherwise, the next memory byte in the pro-
gram sequence will be skipped.

SHORT BRANCH IF DF=0, SHORT BRANCH IF MINUS,
SHORT BRANCH IF LESS are descriptions of the same instruc-
tion. This instruction examines the value stored in the DF register.
If that value is low then the low-order byte of the program counter
(general register pair) will be changed to the value found in the next
memory byte in the program sequence; otherwise, the next mem-
ory byte in the program sequence will be skipped.

SHORT BRANCH IF Q=1 tests the output of the Q flip-flop; if
it is high, the low-order byte of the program counter is replaced by
the value found in the next memory byte. If this is not the case, the
next memory byte in sequence is skipped over.

SHORT BRANCH IF Q=0teststhe output for the Qf{lip-flop; if
it is low the low-order byte of the program counter is replaced by
the value found in the next memory byte. If this is not so, the next
memory byte in sequence is skipped.

SHORT BRANCH IF EF1=1 tests the input line EF1. If this
line is low (remember that one means low and zero means high for
the EF lines) then the low-order byte of the program counter is
changed to the value of the next byte in the program sequence. If
this is not the case, the next byte in the program sequence is
skipped.

SHORT BRANCH IF EF1=0 tests the input line EF1. If this
line is high (remember again that 1 means low and 0 means high for
the EF lines) then the low-order byte of the program counter is
changed to the value of the next byte in the program sequence. If
this is not the case, the next byte in the program sequence is
skipped.

Short branch for EF2, EF3, and EF4 are the same as for EF1,
the only difference being which input line is being tested by the
instruction.

LONG BRANCH

Long branch instructions are capable of moving the program

counter anywhere within the 64,000 bytes of memory the processor
is capable of addressing.

' LONG BRANCH is an unconditional jump instruction that

requires three bytes. The first byte is the instruction, the second

byte replaces the high-order byte of the general register pair that is

122

being used as the program counter (pointing to the memory location
where the next instruction is to be found). The third byte replaces
the low-order byte of the program counter. The next memory byte
will be considered to be an instruction; its location is defined by the
previous two bytes.

NO LONG BRANCH causes the program counter (general
register pair which addresses the memory byte used in the program
sequence) to skip the next two bytes in the program sequence. This
is the same instruction as LONG SKIP.

LONG BRANCH IF D=0 causes the program to jump to a
specified location if the contents of the D register are low. The
program jumps by changing the contents of the program counter
(general register pair) to the value specified in the second and third
bytes of the LONG BRANCH instruction, the second byte replacing
the high-order byte of the program counter and the third byte
replacing the low order byte of the program counter. If the value in
the D register is high, then the second and third bytes of this
instruction are skipped.

LONG BRANCHIF D NOT ZERO is the same as the previous
instruction except that the jump occurs if D is high and the continue
occurs if D is low.

LONG BRANCH IF DF=1 is a three byte instruction that
causes the program counter to jump to a new location if the contents
of DF are high (the jump is accomplished as in the previous instruc-
tions). Of course the entire three bytes are skipped if the contents of
DF are low.

LONG BRANCH IF DF=0 is similar to the previous instruc-
tion except that the jump occurs if the contents of the DF register
are low. If the contents of DF are high, this three byte instruction is
passed over with no further action.

LONG BRANCH IF Q=1 tests the value of the Q flip-flop. If it
is high, then the program counter is changed as in all the other long
branch instructions. If low, it is skipped as in the other instructions.
This is also a three byte instruction.

LONG BRANCH IF Q=0 tests the value of the Q flip-flop and
jumps if that value is low. Otherwise, the entire three-byte instruc-
tion is bypassed with no action.

SKIP

The SKIP instructions allow the processor to ignore the next
one or two bytes in the instruction sequence. Most of these instruc-
tions require that some condition be met before the skip is allowed.

123

These instructions skip by advancing the program counter (general
register pair) by one count or two counts. If the required conditions
are not met, then the program counter advances normally with no
special count, thus enabling the next byte in the program sequence
to be executed.

SHORT SKIP is an arbitrary instruction that forces the pro-
gram counter to advance one time (thus jumping over one byte). Itis
the only skip instruction that does not call for an advance of two
counts. This is the same instruction as NO SHORT BRANCH.

LONG SKIP, the same instruction as NO LONG BRANCH, is
arbitrary and forces the program counter to advance two counts
(jumping two memory bytes).

LONG SKIP IF D=0 tests the value within the D register. If
that value is low, then the program counter skips two counts;
otherwise it continues in sequence.

LONG SKIP IF D NOT 0 examines the value within the D
register and causes the program counter to skip two counts if the
value found is high; otherwise the count continues in sequence.

LONG SKIP IF DF=1 examines the value within the DF
register and causes the program counter to skip two counts if the
value found is high; otherwise the count continues in sequence.

LONG SKIP IF DF=0 tests DF and causes the program
counter to skip two counts if the value found is low; otherwise it
continues in sequence.

LONG SKIP IF Q=1 examines the state of the Q flip-flop and
skips two counts (program counter) if Q is high; otherwise it
continues in sequence.

LONG SKIP IF Q=0 tests the Q flip-flop and skips two counts
(program counter) if Q is low; otherwise it continues in sequence.

LONG SKIP IF IE=1 tests the IE register and causes the
program counter to skip two counts if the value found is high;
otherwise it continues in sequence.

CONTROL

The control group of instructions allow certain specialized
functions to occur.

IDLE causes the program to stop where it is until an interrupt
or direct memory access is received by the low indication of the
DMA IN, DMA OUT, or INTERRUPT lines on the microprocessor
circuit. The contents of the memory byte addressed by the general
register pair zero are placed on the data bus.

124

NO OPERATION causes the program counter to proceed to
the next step in the program sequence. This is a time waster and is
frequently used when generating time delay.

SET P takes the last four bits of the instruction byte and places
them into the P register. In other words, the contents of the N
register are placed into the P register, then the program counter
moves along to the next instruction.

SET X takes the last four bits of the instruction byte and places
them into the X register. The contents of N, in other words, are
moved into the X register; then on to the next instruction.

SET Q causes the Q flip-flop to assume the high state.

RESET Q causes the Q flip-flop to assume the low state.

Before moving into the next group of control instructions it is
appropriate to consider the purpose of interrupts. Interrupts enable
a computer to perform many tasks seemingly at the same time.
Consider the task of using a computer to monitor a group of sensors
used in a burglar alarm system for a home. The expense of a
computer is great to devote entirely to such a purpose when one
considers that the machine will operate day and night, perhaps
never having to act upon a violation. A more reasonable approach
would be to allow the computer to play games or perform other
tasks and only handle the burglar alarm when a sensor has been
violated. The interrupt line merely tells the computer that some-
thing that occurs rather infrequently has occurred. It is a problem
for the program writer to establish priorities and determine when to
“service” the interrupt. An analogous situation occurs when a tele-
phone rings; the options include answering it immediately, answer-
ing it after some time, or ignoring it altogether.

The computer must remember where it was before “servicing”
the interrupt if it is to resume normal operation after handling the
special situation. When the interrupt line goes low, a certain se-
quence of events occurs if the interrupt enable flag, IE, is high. That
" sequence includes storing the existing values from the X and P
registers in the eight-bit register T (temporary). The contents of P
go into the lower four bits while X goes into the higher four bits. At
the same time the value of one is forced into the P register and two
into the X register. The IE register is set low, disabling any further
interrupts until readied by program control.

SAVE causes the byte of information stored in the T register to
be placed in the memory location addressed by a general register
pair. The general register pair doing this addressing is the one
defined by the value found in the register X.

125

MARK is a fairly complex instruction which does several
things. First, it places the contents of the X and P registers in the
temporary register T. Next, it moves the contents of register T into
the memory location which is addressed by the contents of the
general register pair number two. The value contained in register P
is placed into register X. The value found in general register pair
number two is decreased by a count of one.

RETURN places new values in the X and P registers. These
values come from the memory byte that is addressed by a general
register pair. Which general register pair addresses this memory
location is determined by the contents of the register X. The
contents of the general register pair located by X are increased one
count. The interrupt enable flag IE is set to a high level.

DISABLE performs the same operation as “RETURN” except
that the interrupt enable flag is set to a low level. This causes the
processor to ignore the interrupt enable line in the event that it
should be active.

INPUT-OUTPUT

The final group of instructions to be considered are the input
and output group. These are used to get information into the pro-
cessor from external sources and to pass information outside the
processor.

OUTPUT causes the contents of a memory byte to be placed
on the data bus while also pulling high one or more N lines from the
processor. The memory byte to be placed on the bus is addressed by
a general register pair. The general register pair used is the one
pointed to by the contents of the X register. The three low-byte bits
of the N register are placed onto the N lines during this step. This
operation occurs very rapidly and must be latched by external
circuitry if the data is to be observed.

INPUT takes a byte which is placed on the data bus (this byte
must be placed on the data bus at the appropriate time—something
that will be covered in the hardware description of the speech
recognizer) and puts that byte into a memory location. The memory
location is the one addressed by the general register pair which is
located by the contents of the register X. The input byte from the
databusis also placed in the D register. The three N lines are pulled
high in correspondence with the contents of the N register. If N is
nine, then the N lines equal one; if N contains A, then the N lines
equal two; etc.

126

Chapter 14
The Recognizer

Examining the recognizer, one can see that there are four major
units which form the speech recognition device (Fig. 14-1). These
four blocks are: input stage, processor stage, output stage, and
power supply.

The input stage uses a microphone, an amplifier, frequency-
selective filters, and squaring apparatus. Its purpose is to obtain
sound from the air, break it into defined components, and prepare
those components for processing.

The processing stage obtains its data from the input stage as
well as the control switches. Given this information, it analyzes the
data in a fashion determined by the program (software) by whichitis
operating. Included here are the processor (it makes decisions and
shuffles information around) and the control switches (they tell the
processor what functions are desired). Two groups of memory are
utilized. One type of memory cannot be altered by program control
or loss of power, that type (EPROM, or Erasable Programmable
Read Only Memory) contains the resident program, the instruc-
tions which tell the processor what to do. The other type of memory
(RAM) can be changed by program control and is subject to “forget-
ting” if power is removed. The EPROM controls all activity and the
RAM is used to store input information and data which has been
manipulated.

The output stage takes information from the processor and
converts it to some usable form. In this case it causes lights to be on

127

POWER

— — -SUPPLY—
——— e INPUT- — — — r B
r INPUT - Y
I |
! '| FILTER | | { y POWER II
L ==
- === _ L ———1

l SWITCHES

_d

9
g lfpnom RAM } [_ = == — —QUTPUT—
g g T | ! OUTPUT 00000

£ T I

s |

i |
| f PoRT DISPLAY
|
|] e 1
1 processor ——

——— —

Fig. 14-1. Block diagram of The Recognizer.

D

or off and relays to be energized or not. The output stage by its
electrical configuration takes information from the processor at a
time when all electrical signals are right. Correct timing on the
electrical signals is controlled by program commands to the proces-
sor. Which command to issue depends upon wiring of the output
stage. Although it is possible to build a system by starting with
either software or hardware and then making the other fit, it is
usually easier to define the hardware first. This is because
software, usually, is more easily changed than hardware.

The power supply is the final necessary component for a
system. Criteria to be considered here include: regulation, source,
and availability. Computer components work best when they per-
form within specified voltage ranges; therefore (considering how
cheaply and easily regulation may be provided), it is best toregulate
the supply. Most components do not simply fail if they are subjected
to voltages which are out of tolerance; they become erratic and
cause the system to occasionally do odd things.

Whether to use batteries or electricity from a wall plug is
another consideration. Batteries will simplify cost of the supply
itself, but they will be a bother as they must continually be re-
charged (more circuits and more expense) or replaced (more ex-
pense).

Availability is the final consideration. Can the system tolerate
going down if the lights in the building blink? The speech recogni-
tion system shown here will have to be retrained upon power loss.
This could be a real problem if the application were for a handi-
capped person who could not restart the system alone. A combina-
tion of battery and wall supply can provide better supply availabili-
ty. Mobility of the unit would require the supply to have battery
capability.

128

INPUT AND FILTERS

Construction of active filters is likely to be the most difficult
task attempted in building a recognition unit. Design of such filters
is a task which can best be described separately (see Sources).
Difficulty arises with the actual value of components (as opposed to
the value marked). Resistors and capacitors are always rated at a
certain value plus or minus a few percent. Following the instruc-
tions given here should result in having three filters that will pass
three different ranges of frequencies (see Fig. 14-2).

For a microphone I used the least expensive cassette mi-
crophone available. Rather than building an amplifier, I purchased
Radio Shack’s mini-amplifier (catalog number 277-1008), and it has
proven to be adequate. The output of that amplifier comes into
resistor R1 across which a voltage-varying wave is produced when
sounds occur. The amplifier is powered by a battery (its own
supply), and it must therefore be referenced to the Recognizer
supply. This is the reason for connecting one side of the resistor to
positive.

The operational amplifier (triangle in the middle of circuitry) is
biased positive; therefore its output is positive except when a sound
occurs and its pulse is negative. The 74LS367 is a Schmitt trigger
gate. This tends to square the erratic pulse that comes from the
operational amplifier. The various resistors and capacitors are used
to bias and permit feedback in such a way as to cause the operational
amplifier to pass a limited specific frequency range. The adjustable
resistor (R13 from frequency one) is part of the biasing arrange-
ment. Although values have been assigned for these potentiome-
ters, they may well have to be set to something different. I would
recommend that ten turn potentiometers be used because of the
critical nature of tuning these filters.

As mentioned earlier, the output of the operational amplifiers
is normally positive (high) and that is passed through the Schmitt
trigger as a positive (high) signal. Only when sound is present does
this signal go low. This point is emphasized to clear some confusion
which may result. The output of the Schmitt trigger is tied directly
toa EF line on the microprocessor circuit. In the software (instruc-
tions in a computer program) is a loop which effectively says that if
the EF line is one, then jump to a recognize subroutine, other-
wise, continue to loop (see 00,30; frequency program). That in-
struction would seem to be incorrect, based on the physical facts;
since EF goes low when there is a sound and stays high when there

129

3K R1o
1
. 13 2 3
01s 1 >
ok ol Lre
R4 4 22K
.0001 "7 R11
53
K
' 7K {
R3 5
Jox |01 4
) , 48 16
K
.0001—
cs R12)
52
K
R2 7
12K ‘ -°l‘ = >
0001 48K
cs R13
52K

R1
80 Q2

%}—4

130

Fig. 14-2. Three-frequency bandpass filter for The Recognizer.

isnot a sound. For the EF lines on the 1802 processor circuit, one is
defined as a low and zero is defined as a high.

Each of the three frequency filters have the same setup but
different component values. The concept here is simple; it is that
low-frequency sounds will be passed by one filter, mid-frequency by
another, and high-frequency by the third. Human utterances may
contain any combination of these. The output of this input stage (F1,
F2, and F3) could be tied through an input port to any computer and
with appropriate software used for voice recognition. Obviously
you could use more filters, each with a narrower passband, and
gather more information to use in recognition determinations.

Without a signal generator and oscilloscope, these fllters are
difficult to tune, but not impossible. Attach a voltmeter between one
of the output lines (F1) and ground. Hum a low note into the
microphone and adjust R13 for maximum deflection on the meter.
Perform a similar adjustment for F2 (midrange) and F3 (high-
frequency).

PROCESSOR

One way to approach the processor stage is to consider the
1802 microprocessor circuit pin by pin (Fig. 14-3). Pins one and 39
(clock and crystal) are tied to Q1, R14, C7 and C8. These compo-
nents (along with some things internal to the 1802) oscillate and
provide timing for the processor. In the example built here, a 1
megahertz crystal was used as the timebase. Higher speed (larger
numbers in megahertz) crystals may be used, but there are several
things that should be understood before you attempt such actions.
There are speed limitations within the 1802, about four megahertz
for such a circuit operating from a 5-volt supply. Some versions of
the 1802 will accept a 10-volt supply and the maximum frequency
for running is about 6 megahertz then. The faster the speed of
operation, the more radio frequency interference will be generated.
This will show up on televisions and radios in the vicinity of the
circuit. Putting the entire circuitry in a metal box will usually
eliminate this problem. Lead length and circuit design become more
important at higher speeds; wire wrap construction and wires run-
ning wildly about may not be acceptable due to inductance of these
wires at the higher speeds. All components, including memory,
must be capable of operating at the higher speeds. The faster the
microprocessor is running, the lower must be the access time for
memory circuits (the lower a memory’s access time, the more it
costs).

131

“Jaziubooay oy} jo abejs Aiowsw pue 10Sse01d “€-¥} "Big

noml Q\ _IIIIVE
¥ —
0a< —W& 0z »cd
< i NNY
muw.m 0S0%_ L1 ©—
HMN* M@A o [NEVI1
S 2s
g+
| NNy
Gt S N cL vt o
fa i dids
L { ol
o1 Z 2081
z v
LIV
Ly ¢ u
< Gid B
: =52 :
I >
ov S+ e ov %

adiN

132

-2¢€1 abed woiy panuuo) ‘g-pL 614

EN
adL
E\b
0a
L Tera s’
ot .
Lfo1 6 |
100¥ oL 6
6| |8
gl
€ viie viie 91/2
100V] G+ +
v e
8t I G+e8L | _I.
19313s S+ et
G+ Ly
LY
ov

aui

(4]
(32
g

Faster crystals do affect software operation. A timing loop
which takes ten seconds with a 1 megahertz crystal in place will
take two and one half seconds with a 4 megahertz crystal. Obvious-
ly, this same ratio will apply to any timed function. The advantage to
more speed is simply the ability to do more things in a given period
of time.

Pin number two (the wait line) will halt the processor's activity
cleanly when used. The Recognizer does not have any reason to
perform this function; therefore it is unused. To assure that the
processor does not merely halt at some time, this pin is tied to the
positive 5-volt supply. Any input line that is not forced high or low
may be interpreted by the processor in any manner it desires; for
this reason unused inputs must be forced into a state where they
will cause no problems.

Pin number three (clear) is active when electrically low. When
this pin is active, the processor ceases running and returns to its
initial state. Letting this pin go high causes the processor to start
running from the initial state. Starting at the initial state means that
the software will be executed from the very beginning. In the
Recognizer this pin is connected to pin 15 of a 4050 buffer circuit.
Pins 14 and 15 of this buffer circuit are tied together, appearing to
short the buffer out. Keeping that bypass jumper in mind, notice the
S1 (reset-run switch) causes pin 14 of the buffer to be held high or
low. When S1 is moved from one position to another there is a time
when it is connected to neither plus voltage nor ground. During this
time the buffer circuit will remain in the state it was last in due to
the jumper feedback. The jumpered buffer is very effective at
eliminating bounce (mechanical vibration caused by metal hitting
metal in a switch). Without this buffering, high-speed oscillations
could reach the processor input pin and cause unpredictable proces-
sor activity (such as starting somewhere besides the beginning).

Pin number four is the Q output. It can be made high or low by
software control and its position can be checked by software con-
trol. For controlling a single point or generating a series of pulses,
this line would be useful. This pin is set high and low in the
Recognizer software, but it is not used to perform any external
function. The software is not making use of the line, but of the ability
to remember whether it has been set or not. Since there is no
external purpose for this line, it is not connected to anything.

Pins five and six are state codes which tell what type of
operation the processor is performing at any given time. They serve
no purpose in the Recognizer and are therefore not used.

134

Pin number seven (memory read) is used in conjunction with
other outputs to determine when to read from memory. There are
three memory circuits in the recognizer and they form two groups of
memory which are to be handled. The 2716 circuit is an EPROM
(Erasable Programmable Read Only Memory). The 1802 cannot put
anything into this circuit, it can only take data out; therefore there is
no reason to perform any activity upon the 2716 other than an
occasional read. The 2716 contains 2048 address locations and each
address location is composed of eight bits of memory.

There are two 2114 circuits which together form the second
group of memory. The 2124 is a RAM (random access memory).
The 1802 can put things into or take things out of these circuits;
therefore it will be necessary to read from and write these chips.
Each 2114 contains 1024 address locations and each location is
composed of four bits of memory. Because the 1802 system is based
upon the usage of eight bits it is necessary to use two four-bit
memories for the storage and retrieval of eight-bit words.

A decision was made to have the 2716 placed in the memory
system starting at location zero and ending at location 2047. The
place in the memory system for the 2114 memory starts at address
2048 and ends at address 3071. The previously mentioned ad-
dresses were defined in the decimal system; to be consistent with
the hexadecimal system used in the software listings the 2716
memory runs from 00,00 to 07,FF and the 2114 runs from 08,00 to
0B,FF. Although the placement of the memory is arbitrary, there is
an overwhelming reason for putting the nonvolatile (EPROM)
memory first. Nonvolatile memory will contain the program upon
which the system operation is based; the processor will seek in-
structions starting at the lowest memory number and then work its
way up.

Not forgetting the memory read line, it is necessary to con-
sider several other lines to clear up the picture of memory addres-
sing. Pins 25 through 32 are memory address lines, pin 25 being the
least significant and pin 32 the most significant. Things get compli-
cated at this point. To address 64,000 memory locations requires 16
address lines, yet only eight are provided. The 1802 sets the
address lines twice for each address. The first time it sets the
high-order eight bits; the second time it sets the low-order eight
bits. While the high-order eight bits are set, pin number 34 (TPA) is
made active. This causes the 4042 circuit in the Recognizer to take
four bits on the input (pins four, seven, 13, and 14 of the 4042) and
transfer that information to the output (pins two, 10, 11 and one of

135

the 4042) and latch the output side such that that data will stay until
the next pulsing of TPA, pin number 34 of the 1802. The 1802 then
sets the low-order eight bits of the address. At this point there are
twelve lines of address information available in the Recognizer, AQ
through A7 direct from the 1802, and A8 through A11 latched via the
4042. The inverse of A1l is also brought out from the 4042. These
lines are sufficient to address all the memory locations that will be
used by the Recognizer. Upon completion of the address (while the
address lines are still active), the memory read (pin seven) or
memory write (pin 35) line is made active to indicate which opera-
tion is expected.

With this background it is possible to consider the 2716
(EPROM) and how it knows when it is supposed to output data onto
the bus. Pin number 20 of the 2716 is the enable line for the
memory. If pin number 20 goes low then it will place on the data bus
whatever information is contained in the memory location which is
defined by the bits on the address bus.

Examining pin 20 of the 2716 circuit, it can be seen that pin 10
of the 4001 is the source of this enabling signal. Pins eight and nine
of the 4001 are tied together, thus the two-input NOR logic gate will
function as an inverter. When the input to pins eight and nine is high,
the output at pin 10 will be low and the 2716 will be enabled.
Backing up from this point you arrive at pin number three of the
4001 circuit. For pin three to be high (translating through to activate
the 2716) both input pins one and two must be low. If either pin
number one or pin number two of the 4001 circuit are high, then the
2716 memory will be disabled. Address line A1l will be low until
the memory address passes 07,FF. Address line A11 will then be
high until the address passes OF ,FF; a point which will not occur
with the Recognizer software. Because address line All is tied to
pin number two of the 4001, the 2716 circuit can only be enabled if
the address is less than 08,00 (or some points greater than
OF FF—not possible in this system). To enable the 2716 requires
that pin number one of the 4001 be low also. Pin number one is
connected to the memory read line, a line which is normally high.
Memory read goes low when the processor desires to read some-
thing from memory. Therefore you may conclude that the 2716 will
only be enabled when the address is lower than 08,00, and a memory
read operation is requested.

Mention has been made of the data bus that corresponds to pins
eight through 15 on the 1802. The least significant bit on the bus is
labeled DO and that is associated with pin number 15. The most

136

significant bit on the bus is labeled D7 and is associated with pin
number eight. The data bus connects the 1802 processor with the
2716 (memory holding the program) with the 2114’s (memory for
temporary storage of data) and the 1852 (output port).

Selection of the 2114 circuits for read and write operations is
probably the most complex portion of the processor circuitry. When
the address lies between 08,00 and 0B,FF and a read or write
operation is requested, these circuits must perform. Pin number
eight on the 2114 is the chip enable line, when it is brought low then
something is going to happen. When pin eight is low, the 2114 will
either put data onto the data bus or take data off and store it in the
location defined by the address lines. Whether it is putting or taking
depends upon pin number ten of the 2114; a high causes the circuit
to read (put data onto the bus) while a low causes it to take (write
into storage). To restate this, when it is desired to store something
in the RAM (2114), it is necessary for the memory address to be
between 08,00 and 0B, FF, for the pin number eight of the 2114 tobe
low, and for pin number ten of the 2114 to be low. If it is desired to
read something from the RAM (2114), the address must be between
08,00 and OB, FF that pin number eight of the 2114 must be low, and
pin number 10 of the 2114 must be high.

To accomplish the last task mentioned is easy for pin number
ten on the 2114. Tying pin ten to the memory write line from the
processor (pin 35 of the 1802) will cause this point to be high during
any operation except a write {storage into memory). Pin number
eight of the 2144 is more involved. It is connected to pin 11 of the
4011 circuit. Input pons 12 and 13 control output pin 11; they must
both be high for pin 11 to be low (therefore enabling the 2114 to
operate). Pin 12 of the 4011 is connected to the A11 address line
which will be high during the address interval 08,00 to 0B,FF (it will
also be low from 00,00 to 07,FF, disabling the 2114 circuits during
those address intervals). Pin 13 of the 4011 must be high when a
read or write operation is to occur—and no other time. Three of the
NAND gates on the 4011 are wired to act as inverters; this was done
to save the labor and expense of adding another circuit onto the
board. Those three gates are the ones defined by pin combinations
1,2,3;5,6,4;8,9,10. The memory read signal (active when low, high
most of the time) is inverted by the time it reaches pin three of the
4011 circuit. The memory write signal (active when low, high most
of the time) is inverted by the time it reaches pin four of the 4011
circuit. Pins three and four of the 4011 are connected to pins 12 and
13 of the 4001 respectively. If either pin 12 or 13 of the 4001 is high,

137

then pin 11 of 4001 will be low making eight and nine of 4011 low;
which in turn makes 10 of 4011 high, making 13 of 4011 high. This
occurs if memory read or memory write are active. The combina-
tion of the correct address and memory read or memory write active
will enable the 2114 circuits.

Pins 16 and40 on the 1802 are power supply pins requiring plus
5 volts.

Pins 17, 18, and 19 are input-output command pins defining
which port is to be used for an input-output command. Pin 18 (N1) is
wired in the Recognizer and it responds to an OUTPUT, PORT
TWO command. The three bits NO (least significant), N1, and N2
(most significant) allow for the construction and definition of eight
ports. The N1 line (pin 18 of the 1802) along with memory read (pin
seven of the 1802) and TPB (pin 33 of the 1802) combine to tell the
1852 circuit that it is time to take the information on the data bus and
put it (latched) onto the output lines, (4, 6, 8, 10, and 15) of the 1852.

Pin number 20 of the 1802 is where the negative power supply
(ground) is placed on the processor.

Pins 21 through 24 represent EF4 to EF1 respectively. These
lines may be examined by the processor under software control at
any time desired, therefore forming a four-bit input port of sorts.
Pins 36, 37, and 38 of the 1802 are various input output request lines
not used in the Recognizer. They should be tied to positive 5 volts
through a resistor to prevent them from causing some undersired
operation.

OUTPUT

Output circuitry centers around the 1852 output port (see Fig.
14-4). The output port is tied to the data bus and some control lines.
At the right moment (determined by a combination of memory read,
N1, and TPB) the port moves into action. It takes the data on the bus
and puts it on the output lines, latching it at the output. Latching the
data simply means that the output will be set and remain in that state
regardless of the data bus until the control lines from the correct
combination again. It must be remembered that all the instructions
from the memory and many other information transactions are
conducted on the data bus. This port will handle up to eight outputs,
though only five are wired. The one labeled “output 0” is the least
significant bit of an output byte. This output port does not have the
capability of handling much power; it cannot even turn a small light
on or off. To amplify this signal, a small transistor (2N222) is used
(Fig. 14-5). The output of the 1852 circuit is connected directly to

138

-1loziubooay au] jo abeys Jnding “p-¢1 “Bi4 %

-

N
gdl
14 ._.%O HMIN 60
0 1NO
oa
etz
G+ |
- L
- 2s81 —
- _——
- —p G+
S+aq¥c
1037138
OHIN
LY

ouT o0

ouT 2
“— — — —ETC.
+5 7805 _L ,'<} 1
S A T
GND +— >
i 470 uF /15 VOLTS
RECTIFIER
ov BRIDGE
AC SOURCE
JURCE |

Fig. 14-5. Output drive circuit and power supply.

the base of the transistor. The emitter is tied to ground (negative).
The collector is tied to the cathode of a light emitting diode and the
anode of the diode is connected through a 270 ohm (Y2-watt) resistor
to the positive 5-volt supply.

If the voltage at the base of the transistor is the same as that
found at the emitter (negative), then the transistor acts like an open
switch; it does not conduct and does not allow the diode to light. If
voltage applied to the base is significantly more positive than the
voltage found at the emitter, the transistor will conduct, allowing
the diode to light. Using the transistor this way causes it to function
as a switch in which the power controlled is much greater than the

140

power required to control. The light emitting diode cannot tolerate
more than about 2 volts across its leads, otherwise it will burn out.
To limit this voltage (and the current which will overheat it) a 270
ohm resistor is placed in series with the supply. Each of the outputs
is set up in the same fashion. The transistor can handle more load
than the diode, therefore a relay coil can be placed in parallel with
the diode-resistor combination, providing contacts for other activ-
ity.

The power supply shown is rather simple with 9 volts coming
in through the jack supplied. This voltage is rectified (therefore it
can be alternating or direct current, polarity does not matter) and is
filtered with a capacitor; then it goes through diodes to the 7805
regulator circuit. The 7805 circuit takes the input and provides a
constant 5 volt output. The battery shown is a backup supply
utilizing a 6 volt battery. The diodes prevent the battery from taking
current from the normal source (which is at 9 volts), yet they allow
it to provide the energy if the other source fails. The 7805 circuit
generates a significant amount of heat and it must be mounted on
metal (preferably a commercial heat sink) to prevent damage from
overheating. Note that the heat sink will get rather warm to the
touch.

141

Chapter 15
Length for the Recognizer

Utilizing the Length program with the Recognizer provides a sim-
ple approach to sound recognition. As established here, the learn-
run switch has no function and the run-reset switch has limited use.
Moving this switch to the reset position then to runfully enables the
system.

Upon operation of the run-reset switch, all lights will be off
After a sound is detected, there will always be a light on. Four
words or phrases of varying length may be distinguished; for exam-
ple, “go,” “stop,” “turn right,” and “please turn to the left” work
well Natural speech must be used here, meaning that no significant
gap is allowed between words. When a sound is detected, one of the
lights will be selected for illumination, regardless of what the sound
or word may be. Using a processor and software for this type of
function is clearly a case of overkill, amuch simpler system could be
devised without the need for filters, processor, and memories.

This system can be effectively used for control at a distance
from the microphone. Such a device can operate lights or a televi-
sion without the necessity of having a sound pickup close to the lips
of the operator. In order words ordinary room sounds could be
eliminated with the volume control and only shouted commands
used to exercise control. The sound pickup (microphone) would
best be placed on the ceiling or away from point where it might
be triggered by ordinary talking. Be forewarned that loud laughter,
like you find at parties can operate this type of system.

142

[00,00 TURN ALL LIGHTS OFF |

[00.08 CLEAR REGISTERS |

N
SOUND

PRESENT?

00,18 COUNT AND STORE TIME
THAT SOUND EXISTS. ADVANCE
AFTER SOUND HAS CEASED

00,52 POINT TO DESIRED
OUTPUT FOR LONG WORD

®

00,57 POINT TO DESIRED
QUTPUT FOR MEDIUM LONG WORD

0044
SOUND

MEDIUM LONG?

YES

00,49
SOUND
MEDIUM SHORT

YES 00,5C POINT TO DESIRED

OUTPUT FOR MEDIUM SHORT WORD

®

00, 0E JUMP TO “SET UP"
FOR SHORT WORD

v

00,61 POINT TO DESIRED
QUTPUT FOR SHORT WORD

®

00,64 TURN ON LIGHT
WHICH HAS BEEN SET UP

] 00,69 TIME DELAY {

Fig. 15-1. Program flowchart of Length for The Recognizer.

143

More phrases could be accepted by changing the software, but
the commands quickly become so long that the control delay be-
comes serious. Using the commands listed with the Recognizer, it
is possible to control (by using the relay contacts) aradio-controlled
toy. Remember that the command “please turn to the left” con-
sumes so much time that the toy can move about two feet while the
command is being issued.

This program was written for purposes—it is a fairly
simple machine-language creation. It is good to use as a test upon
the completion of Recognizer construction because of the limited
likelihood of putting an error into the EPROM.

Figure 15-1 shows the flowchart. A commented listing of the
machine code follows. After that comes a byte-by-byte description
of the memory locations and what each step accomplishes.

LENGTH PROGRAM LISTING WITH COMMENTS
ADDRESS CODE COMMENTS

00,00 F8 This group of instructions causes 00 to be output.
00,01 79

00,02 A9

00,03 F8

00,04 00

00,05 B9

00,06 E9

00,07 62

00,08 F8 This group of instructions causes 00,00 to be placed in
00,09 00 register pairs four, five and six.

00,0A A4

00,0B B4

00,0C AS

00,0D BS

00,0E A6

00,0F B6

00,10 34 Here theinput lines are tested. If sound is present, then the
00,11 18 program jumps to-00,18; otherwise it stays in this loop.
00,12 35

00,13 18

00,14 36

00,15 18

00,16 30

00,17 10

00,18 F8 Reaching this address requires escape from the loop which
00,19 4F beganat 00,10. This block of code places the value 00,4F
00,1A A7 into the general register pair number seven.

00,1B F8

144

ADDRESS CODE COMMENTS

00,1C 00

00,1D B7

00,1E 34 These instructions test each input line for sound present or

00,1F 32 absent. If present, the program jumps to 00,32. If absent, it

00,20 35 progresses without jumping.

00,21 32

00,22 36

00,23 32

00,24 27 These instructions decrement the value contained in regis-

00,25 87 ter seven and cause the program to jump to 00,2A if that

00,26 32 value is equal to zero. Otherwise, the program jumps to

00,27 2A 00,1E.

00,28 30

00,29 1E

00,2A 15 Reached from 00,27, these instructions first increment the

00,2B 85 value in register five. If that value is equal to 10, then the

00,2C FD program jumps to 00,3F. Otherwise, the program returns

00,20 10 to 00,18.

00,2E 32

00,2F 3F

00,30 30

00,31 18

00,32 14 Reached from 00,1F or 00,21 or 00,23, these instructions

00,33 27 first increment the value contained by register four. Next,

00,34 87 the value contained by register seven is decremented and

00,35 32 then tested. If it equals zero, the program jumps to 00,18.

00,36 18 If not equal to zero, this loop is run several times until it

00,37 C4 does. The C4 instructions are used to create about the

00,38 C4 same timing as occurs from 00,1E to 00,28.

00,39 C4

00,3A C4

00,3B C4

00,3C C4

00,3D 30

00,3E 33

00,3F 84 This instruction takes the value held in the low order byte
of general register pair number four and places it into the D
register for testing. This instructionis reached from 00,2F.

00,40 FD If the value held in register four is equal toor greater than

00,41 49 49 the program jumps to 00,52; otherwise it continues to

00,42 38 00,44.

00,43 52

00,44 84 If the value held in register four is equal to or greater than

00,45 FD 32 the program jumps to 00,57; otherwise it continues to

00,46 32 00,49.

00,47 3B

00,48 57

145

ADDRESS CODE COMMENTS

00,49 84 If the value held in register four is equal to or greater than
00,4A FD 19 the program jumps to 00,5C; otherwise it continues to
00,48 19 004E.

00,4C 3B

00,4D sC

00,4E Cc4 Since the value in register four is obviously less than 19,
00,4F C4 the program jumps to 00,61.

00,50 30

00,51 61

00,52 F8 Reached from 00,43, this instruction places 75 into the low
00,53 75 order byte of the nine register and then jumps to 00,64.
00,54 A9

00,55 30

00,56 64

00,57 F8 Reached from “00,48”, this instruction places “76" into the
00,58 76 low order byte of the nine register and then jumps to 00,64.
00,59 A9

00,5A 30

00,58 64

00,5C F8 Reached from 00,4D, this instruction places 77 into the low
00,5D 77 order byte of the nine register and then jumps to 00,64.
00,5E A9

00,SF 30

00,60 64

00,61 F8 Reached from 00,51, this instruction places 78 into the low
00,62 78 order byte of the nine register.

00,63 A9

00,64 F8 These instructions cause the memory byte addressed by
00,65 00 the contents of register pair number nine to be output.
00,66 B9

00,67 E9

00,68 62

00,69 F8 This is a time delay loop which will jump to 00,08 upon
00,6A FF completion of the delay.

00,68 AA

00,6C F8

00,6D OF

00,6E BA

00,6F 2A

00,70 9A

00,71 32

00,72 08

00,73 30

00,74 6F

00,75 08 Indicates the longest word

146

ADDRESS CODE

00,76
00,77
00,78
00,79

04
02
01
00

COMMENTS

Indicates word next-to-longest
Indicates word next-to-shortest
Indicates the shortest word

Indicates nothing recognized

147

DESCRIPTIONS OF MEMORY LOCATIONS

MEMORY LOCATION (00,00)

Instruction F8 79

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 00 0 00 02
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 ? ? 4 ? ?
5 ? ? S ? ?
6 ? ? 6 ? ?
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 ? ? 9 ? ?
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D ? D 79
Four and One Bit Registers

Register Contents Register Contents
I F 1 7
N 8 N 9
X ? X ?
P 0 P 0
DF ? DF ?

This instruction places 79 into the D register. This step is one
of a series designed to force an output of 00 as soon as the program
runs. The 00 will cause all output lines to be low, thus all light
emitting diodes will be off and all relays will be in non-energized
state.

148

MEMORY LOCATION (00,02)

Instruction A9

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 02 0 00 03
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 ? ? 4 ? ?
5 ? ? 5 ? ?
6 ? ? 6 ? ?
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 ? ? 9 ? 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 79 D 7
Four and One Bit Registers
Register Contents Register Contents
I A I A
N 9 N 9
X ? X ?
|3 0 P 0
DF ? DF ?

Contents of the D register 79 are placed in the low order byte
of the general register pair number nine. The 1802 microprocessor
circuit will only output a byte from a memory location; therefore it is
necessary to define which location (memory address 00 79) will
contain the desired data.

149

MEMORY LOCATION (00,03)

Instruction F8 00

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 03 0 00 05
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 ? ? 4 ? ?
5 ? ? S ? ?
6 ? ? 6 ? ?
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 ? 79 9 ? 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D 79 D 0
Four and One Bit Registers
Reg%ster gontents Reg%ster Contents
0

N 8 N 0
X ? X ?
P 0 P 0
DF ? DF ?

The high-order byte of general register pair number nine is set
to 00. Although that may be the contents of that location on power-
up of the microprocessor, it is a good programming habit to assume
that data is correct only if placed there under program control

150

MEMORY LOCATION (00,0S)

Instruction B9

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 05 0 00 06
1 ? ? 1 ? ?
2 ? ? 2 ?
3 ? ? 3 ? ?
4 ? ? 4 ? ?
S ? ? 5 ? ?
6 ? ? 6 ? ?
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 ? 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 00 D 00
Four and One Bit Registers
Register Contents Register Contents
1 B I B
N 9 N 9
X ? X ?
P 0 p 0
DF ? DF ?

Again the contents of the D register (now 00) are being moved;
this time to the high order byte of general register pair number nine.
The D register is the common place through which most data is
moved. This completes the loading of a general register pair with an
address.

151

MEMORY LOCATION (00,06)

Instruction E9

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 06 0 00 07
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 ? ? 4 ? ?
5 ? ? S ? ?
6 ? ? 6 ? ?
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 00 D 00
Four and One Bit Registers
Register Contents Reg%ster Contents
E E
N 9 N 9
X ? X 9
P 0 |4 0
DF ? DF ?

In the instruction E9 the E is the instruction itself while the
second number (9 in this case) is the data being moved. The
contents of the X register are changed to the same thing as the
number following the E.

152

MEMORY LOCATION (00,07)

Instruction 62

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 07 0 00 08
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 ? ? 4 ? ?
5 ? ? 5 ? ?
6 ? ? 6 ? ?
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 00 D 0
Four and One Bit Registers
Register Contents Register Contents
I 6 1 6
N 2 N 2
X 9 X 9
P 0 P 0
DF ? DF ?

The 62 causes the memory byte addressed by the general
register pair pointed to by X to be placed on the bus for output on
port number two. What this means is that the contents of X (9) point
to general register pair number nine. General register pair number
nine contains the number 00,79 which is the address of the memory
byte to be output. Examine memory location 00,79 to see that 00 is
the data being output.

153

MEMORY LOCATION (00,08)
Instruction F8 00

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 08 0 00 0A
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 ? ? 4 ? ?
S ? ? 5 ? ?
6 ? ? 6 ? ?
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 00 D 00
Four and One Bit Registers
Register Contents Register Contents
1 F 1 0
N 8 N 0
X 9 X 9
P 0 p 0
DF ? DF ?

This instruction places 00 in the D register. Why was this
done, considering the fact that 00 is the number already containedin
D? The answer is programming inefficiency; I did not know what the
contents of D might be when I was writing this step.

154

MEMORY LOCATION (00,0A)

Instruction A4

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 0A 0 00 0B
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 ? ? 4 ? 00
5 ? ? 5 ? ?
6 ? ? 6 ? ?
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 00 D 00
Four and One Bit Registers
Register Contents Register Contents
1 A 1 A
N 4 N 4
X 9 X 9
P 0 P 0
DF ? DF ?

The purpose of this and the next five instructions is to insure
that register pairs, four, five, and six start with a value of 00,00. This
is a preliminary part of the program, establishing empty registers
for possible future use. The low order byte of general purpose
register pair number four is set to 00 with this step.

155

MEMORY LOCATION (00,0B)

Instruction B4

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 0B 0 00 0C
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 ? 00 4 00 00
5 ? ? 5 ? ?
6 ? ? 6 ? ?
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
o ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register
Reg[i)ster gontents Reg[i)ster gontents
Four and One Bit Registers

Reg%ster gontents Reg%ster gontents
N 4 N 4
X 9 X 9
p 0 P 0
DF ? DF ?

Here the high order byte of general register pair number four is
given the value 00.

156

MEMORY LOCATION (00,0C)

Instruction AS

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 ocC 0 00 0D
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 ? ? 5 ? 00
6 ? ? 6 ? ?
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 0 D 00
Four and One Bit Registers
Register Contents Register Contents
1 A 1 A
N 5 N 5
X 9 X 9
P 0 p 0
DF ? DF ?

Here the low order byte of general register pair number five is
given the value 00.

157

MEMORY LOCATION (00,0D)

Instruction BS

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 0D 0 00 OE
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 ? 00 5 00 00
6 ? ? 6 ? ?
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 00 D 0
Four and One Bit Registers
Register Contents Reg%ster Contents
I B B
N 5 N S
X 9 X 9
P 0 P 0
DF ? DF ?

The high order byte of general register pair number five is
given the value 00.

158

Instruction A6

Before Instruction

Register High Low
00

Four and One Bit Registers

0 0E
1 ? ?
2 ? ?
3 ? ?
4 00 00
5 00 00
6 ? ?
7 ? ?
8 ? ?
9 00 79
A ? ?
B ? ?
C ? ?
D ? ?
E ? ?
F ? ?
Register Contents
D 00
Register Contents
I A
N 6
X 9
p 0
DF ?

MEMORY LOCATION (00,0E)

After Instruction

Register Pairs

MO W>OONANTERNNI~D

Eight Bit Register
Register
D

Register High Low
00

OF
? ?
? ?
? ?
00 00
00 00
? 00
? ?
? ?
00 79
? ?
? ?
? ?
? ?
? ?
? ?
Contents

00

Register Contents
I

N
X
p
DF

VOOV

The low order byte of general register pair number six is given

the value 00.

159

Ins

Before Instruction

MEMORY LOCATION (00,0F)
truction B6

Register Pairs

After Instruction

Register High Low Register High Low
0 00 OF 0 00 10
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 00 5 00 00
6 ? 00 6 00 00
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? ? ?

Eight Bit Register

Register Contents Register Contents

D 00 D 00

Register Contents

160

Four and One Bit Registers

1 B

N 6 N 6
X 9 X 9
P 0 P 0
DF ? DF ?

Register Contents
1

The high order byte of general register pair number six is
given the value 00.

MEMORY LOCATION (00,10)

Instruction 34 18

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 10 0 00 12
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
S 00 00 5 00 00
6 00 00 6 00 00
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Ccntents
D 00 D 00
Four and One Bit Registers
Register Contents Register Contents
I 3 I 1
N 4 N 8
X 9 X 9
p 0 P 0
DF ? DF ?

This instruction tests the input line, EF1. If EF1 is low (re-
member that an electrical low is a 1 for the EF lines) then the
program counter is changed to 18. This segment of the program is
testing the input lines to determine if sound is present or not. No
sound results in a high input to the EF line which results in the
program testing the next EF line as indicated above. If sound were
present and affecting the above line, then general register pair
number zero (low byte) would be changed to the value 18 and that
would be the next instruction used.

161

MEMORY LOCATION (00,12)

Instruction 35 18
Before Instruction

Register High Low
00

0 12
1 ? ?
2 ? ?
3 ? ?
4 00 00
5 00 00
6 00 00
7 ? ?
8 ? ?
9 00 79
A ? ?
B ? ?
C ? ?
D ? ?
E ? ?
F ? ?

Register Contents
D 00

Four and One Bit Registers

Register Contents
1 b

S
N 5
X 9
p 0
DF ?

After Instruction

Register Pairs

Register High Low
00

TIMT O >OONNRANBL NN =D

Eight Bit Register
Reg%ster

14
? ?
? ?
? ?
00 00
00 00
00 00
? ?
? ?
00 79
? ?
? ?
? ?
? ?
? ?
? ?
Contents
0

Register Contents
1

N
X
P
DF

OO 00

Similar to the previous instruction, this one tests the EF2 line.
If sound is present (electrical low on EF2) then the program counter
is relocated to memory byte location 00,18. The register contents
above assume that no sound was found, thus the program continues

to the next step.

162

MEMORY LOCATION (00,14)

Instruction 36 18

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 14 0 00 16
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 00 5 00 00
6 00 00 6 00 00
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 00 D 00
Four and One Bit Registers
Reg%ster gontents Register (ltontents
I
N 6 N 8
X 9 X 9
P 0 P 0
DF ? DF ?

Again the instruction is a test of an external line, EF3. If sound
is present (remember that sound being present causes an electrical
low in this hardware system; sound present could cause an electri-
cal high—calling for a different instruction—if the hardware were
put together differently) then the program moves to byte 00,18. The
register contents listed assume no sound, thus the program ad-
vances to byte 00,16.

163

MEMORY LOCATION (00,16)
Instruction 30 10

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 16 0 00 10
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 00 5 00 00
6 00 00 6 00 00
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D 00 D 00
Four and One Bit Registers

Reg%ster gontents Reg%ster (llontents
N 0 N 0
X 9 X 9
P 0 p 0
DF ? DF ?

Reaching this point in the program means that the outputs of
the three filters have been tested and found to indicate no sound
present. Logically, what must be done is to continue testing these
filter outputs until sound occurs. This instruction causes the pro-
gram counter (register pair number zero) to hold a value 00,10. The
next instruction to be executed will be the one at memory location
00,10. The program will remain in this loop until a sound occurs.

164

MEMORY LOCATION (00,18)
Instruction F8 4F

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 18 0 00 1A
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 00 5 00 00
6 00 00 6 00 00
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D 00 D 4F
Four and One Bit Registers

Reg%ster Contents Reg%ster gontents
N 8 N F
X 9 X 9
p 0 P 0
DF ? DF ?

The only way to reach this point is to find a sound at instruction
00,10; 00,12; or 00,14. The program has determined that a sound
exists, it now must figure out how long it exists and based upon that
cause the appropriate output line to become active. Because the
microprocessor executes instructions so rapidly and words occur so
slowly, time delays must be introduced into the program. This step
places 4F into the D register. 4F is a number that will be placed in a
register and decreased one count at a time to achieve a timing goal.

165

MEMORY LOCATION (00,1A)

Instruction A7
Before Instruction After Instruction
Register Pairs

Register [igh Low Register High Low
0 00 1A 0 00 1B
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 00 5 00 00
6 00 00 6 00 00
7 ? ? 7 ? 4F
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? o ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Repister

Register Contents Register Contents

D 4F D
Four and One Bit Registers

Register Contents Register Contents
1 A 1 A
N 7 N 7
X 9 X 9
P 0 P 0
DF ? DF ?

The value in the D register (4F) is placed into register 7, low

byte, where it may be accessed later in the program.

166

MEMORY LOCATION (00,1B)
Instruction F8 00

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 1B 0 00 1D
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 00 5 00 00
6 00 00 6 00 00
7 ? AF 7 ? 4F
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
c ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 4F D 00
Four and One Bit Registers
Register Contents Register Contents
I F 1 0
N 8 N 0
X 9 X 9
P 0 p 0
DF ? DF ?

This instruction is used to insure that the value 00 is present in
the high order byte of register pair number seven. As the program
turns out, it is not necessary that this step and the following one be
performed Although I reworked this program several times, it
seems to be possible to continue finding better and shorter ways the
program could have been written. To remove these bytes would
require changing addresses throughout the program, an effort not
worth the time involved

167

Instruction B7

Before Instruction

Register High Low
00

MEMORY LOCATION (00,1D)

After Instruction

Register Pairs
Register High

Low
1E
?
?
?
00
00
00
4F
?
79

(S Ra K0 R Ko Ko

0 1D 0 00
1 ? ? 1 ?
2 ? 7 2 ?
3 ? ? 3 ?
4 00 00 4 00
5 00 00 5 00
6 00 00 6 00
7 ? 4F 7 00
8 ? ? 8 ?
9 00 79 9 00
A ? ? A ?
B ? ? B ?
C ? ? o ?
D ? ? D ?
E ? ? E ?
F ? ? F ?
Eight Bit Register
Register Contents Register Contents
D 00 D 0
Four and One Bit Registers
Register Contents Register Contents
1 B 1 B
N 7 N 7
X 9 X 9
P 0 p 0
DF ? DF ?

the high order byte of general register pair number seven.

168

This step takes the value in the D register (00) and places it in

MEMORY LOCATION (00,1E)

Instruction 34 32

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 1E 0 00 20
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
S 00 00 5 00 00
6 00 00 6 00 00
7 00 4F 7 00 4F
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 0 D 0
Four and One Bit Registers
Register Contents Register Contents
I 3 1 3
N 4 N 2
X 9 X 9
p 0 P 0
DF ? DF ?

Again the EF lines (EF1in this case) are being tested to see if
sound is present. If sound is present, the program will proceed to
the instruction at location 00,32; otherwise it will continue.

169

Instruction 35 32
Before Instruction

Register High Low
00

Register Contents
0

D

F

Register Contents
I

3
N 5
X 9
p 0
DF ?

MEMORY LOCATION (00,20)

After Instruction
Register Pairs
Register gggh Low

0 20 0 22
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 00 5 00 00
6 00 00 6 00 00
7 00 4F 7 00 4F
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register
P.eg'ijster gontents

our and One Bit Registers
Register Contents

N
X
P
DF

~NOWN W

The input line, EF2 is tested by this instruction. If the line is
electrically low the program counter is set to 00,32; otherwise it
continues to 00,22. The register contents shown above indicate a
high input on EF2, no sound present.

170

Instruction 36 32
Before Instruction

Register High Low
0 00

22
1 ? ?
2 ? ?
3 ? ?
4 00 00
5 00 00
6 00 00
7 00 4F
8 ? ?
9 00 79
A ? ?
B ? ?
c ? ?
D ? ?
E ? ?
F ? ?

Register Contents
D 00

Four and One Bit Registers

Register Contents
I

N
X

P
DF

DO WOW

MEMORY LOCATION (00,22)

After Instruction

Register Pairs
Register H%gh
0

MIOOUNTW BN VIR AN D

Eight Bit Register
Register
D

Low

24
? ?
? ?
? ?
00 00
00 00
00 00
00 4F
? ?
00 79
? ?
? ?
? ?
? ?
? ?
? ?
Contents
0

Register Contents
I

N
X
P
DF

DO WNWK

If the input line EF3 s electrically low, then program control is
transferred to the instruction byte at location 00,32; otherwise, the
program continues at byte 00,24. The assumption used above is that
EF3 remains electrically high.

171

MEMORY LOCATION (00,24)

Instruction 27

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 24 0 00 25
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 00 S 00 00
6 00 00 6 00 00
7 00 4F 7 00 4E
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D 00 D 0
Four and One Bit Registers

Reg%ster gontents Reinster czrontents
N 7 N 7
X 9 X 9
p 0 P 0
DF ? DF ?

The only way to reach this point in the program is to have
detected a sound and then fail to detect sound on a following test
(00,1E; 00,20; 00,22). This instruction decreases the value held in
register number seven by one count (note the value 4E instead of
4F). Remember that the next time the program comes through this
point it will subtract one from the value held in register seven, but
the value held in register seven can be 4F or any smaller quantity
(depending on how many times the program has been through this
loop).

172

MEMORY LOCATION (00,25)

Instruction 87
Before Instruction

Register High Low

0 00 25
1 ? ?
2 ? ?
3 ? ?
4 00 00
4] 00 00
6 00 00
7 00 4E
8 ? ?
9 00 79
A ? ?
B ? ?
c ? ?
D ? ?
E ? ?
F ? ?

Register Contents
D 0

After Instruction

Register Pairs
Register H%gh
0

0

1 ?
2 ?
3 ?
4 00
5 00
6 00
7 00
8 ?
9 00
A ?
B ?
C ?
D ?
E ?
F ?

Eight Bit Register

Low
26
?

Register Contents
D 4

Four and One Bit Registers
Register Contents

Register Contents
1

N
X
P
DF

NOWNN

1 8
N 7
X 9
P 0
DF ?

This instruction moves the low order byte of general register
pair number seven into the D register. In other words, the number
found in the low order byte of register pair seven can now be found

in the D register.

173

MEMORY LOCATION (00,26)

Instruction 32 2A

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
00 26 0 00 28
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 00 5 00 00
6 00 00 6 00 00
7 00 4E 7 00 4E
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register

Register Contents Register Contents

D 4E D 4E
Four and One Bit Registers
Reg%ster Contents Reg%ster gontents
3

N 2 N A
X 9 X 9
p 0 P 0
DF ? DF ?

This instruction tests the contents of the D register. If the
contents of D equal zero, then the program counter would change to
00,2A and that is where the next instruction would be found. Be-
cause the contents of register D equal 4E, the program advances to
the next instruction in sequence, 00,28.

174

MEMORY LOCATION (00,28)
Instruction 30 1E

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 28 0 00 1E
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 00 3 00 00
6 00 00 6 00 00
7 00 4E 7 00 4E
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D AE D 4E
Four and One Bit Registers

Register Contents Register Contents
I 3 1 1
N 0 N E
X 9 X 9
p 0 p 0
DF ? DF ?

This instruction defines the end of a loop. It causes the pro-
gram to jump back to the instruction at 00,1E. This is accomplished
by changing the low order byte of general register pair zero. There
are two ways to escape this loop; if a sound is recognized, the
program will advance to 00,32; if silence continues until register

seven is decreased to the value zero then the program will move to
00,2A.

175

MEMORY LOCATION (00,2A)

Instruction 1§

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 2A 0 00 2B
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 00 5 00 01
6 00 00 6 00 00
7 00 4E 7 00 4E
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ?

Eight Bit Register

Register Contents Register Contents

D 4E D 4
Four and One Bit Registers

Register Eontents Reg%ster (ltontents
N 5 N 5
X 9 X 9
P 0 P 0
DF ? DF ?

The only way to reach this point is to go through the loop
(00,1E through 00,28) without recognizing a sound 79 times con-
secutively (79 equal 4F in bias 16 numbering system). This instruc-
tion increases the value found in register pair number five by one
count. The count of 79 must occur 16 times before enough silence
has elapsed to consider the word finished.

176

MEMORY LOCATION (00,2B)

Instruction 85

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 2B 0 00 2C
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
S 00 01 5 00 01
6 00 00 6 00 00
7 00 4E 7 00 4E
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Pegister
Register Contents Register Contents
D 4 D 01
Four and One Bit Registers
Reg%ster Contents Reg%ster Contents
8
N S N 5
X 9 X 9
P 0 P 0
DF ? DF ?

This instruction moves the value found in the low order regis-
ter of general pair number five into the D register.

177

MEMORY LOCATION (00,2C)
Instruction FD 10

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 2C 0 00 2E
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4E 7 00 4E
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ?
Eight Bit Register
Register Contents Register gontents
D 0 D
Four and One Bit Registers
Register gontents Reg%ster gontents
I
N D N 0
X 9 X 9
P 0 P 0
DF ? DF 1

This instruction subtracts the contents of register D form 10;
the result of which is “OF.” This result is placed in register D. The
value “1” is placed in register DF to indicate that the result of this
subtraction is a true positive number.

178

MEMORY LOCATION (00,2E)
Instruction 32 3F

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 2E 0 00 30
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4E 7 00 4E
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D OF D OF
Four and One Bit Registers
Reg%ster Contents Reg%ster gontents
3
N 2 N F
X 9 X 9
p 0 P 0
DF 1 DF 1

This instruction tests the contents of the D register and
changes the program counter to 00,3F if those contents happen to be
equal to zero. Since they are not, the program counter moves to
00,30. The location 00,3F is the address where a determination is
made to the length of the spoken word.

179

MEMORY LOCATION (00,30)
Instruction 30 18

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 30 0 00 18
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 00
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4E 7 00 4E
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? o ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D OF D OF
Four and One Bit Registers

Reg%ster gontents Reg%ster (l:ontents
N 0 N 8
X 9 X 9
p 0 P 0
DF 1 DF 1

This instruction is found at the end of a loop and it changes the
program counter (register pair zero) to 00,18.

180

MEMORY LOCATION (00,32)

Instruction 14

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 32 0 00 33
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 00 4 00 01
S 00 01 5 00 01
6 00 00 6 00 00
7 00 AE 7 00 AE
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register gontents Register Contents
D D 0
Four and One Bit Registers
Reg%ster Contents Register Contents
1 I 1
N 4 N 4
X 9 X 9
P 0 P 0
DF 1 DF 1

This step increases the value contained in register pair number
four by one count. The count in register number four will be used to
determine the length of the word.

181

MEMORY LOCATION (00,33)

Instruction 27

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 33 0 00 34
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 01
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4E 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D 0 D OF
Four and One Bit Registers

Reg%ster (ztontents Reg%ster gontents
N 7 N 7
X 9 X 9
P 0 P 0
DF 1 DF 1

This instruction decreases the value contained in register pair
number seven by one count. Consider the instructions at 00,1E;
00,20; and 00,22. One of those transferred the program to 00,32
therefore bypassing the timing loop instructions which commence
at 00,24. This and the next group of instructions are used for timing.

182

MEMORY LOCATION (00,34)

Instruction 87

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 34 0 00 35
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 01
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D OF D 4D
Four and One Bit Registers
Register Contents Register Contents
I 8 I 8
N 7 N 7
X 9 X 9
|4 0 P 0
DF 1 DF 1

The contents of the low order byte of general register pair
number seven are placed into the D register.

183

Instruction 32 18
Before Instruction

Register High Lo
0 00 35
1 ? ?
2 ? ?
3 ? ?
4 00 01
5 00 01
6 00 00
7 00 4D
8 ? ?
9 00 79
A ? ?
B ? ?
c ? ?
D ? ?
E ? ?
F ? ?
Register Contents
D 4D
F
Register Contents
1 3
N 2
X 9
P 0
DF 1

184

MEMORY LOCATION (00,35)

After Instruction
Register Pairs

w Register High Low
0 00 37
1 ? ?
2 ? ?
3 ? ?
4 00 01
5 00 01
6 00 00
7 00 4D
8 ? ?
9 00 79
A ? ?
B ? ?
C ? ?
D ? ?
E ? ?
F ? ?
Eight Bit Register
Reg%ster Sontents
our and One Bit Registers

Reg}ster Eontents
N 8
X 9
P 0
DF 1

Should the contents of the D register equal zero, program
execution would continue at location 00,18.

MEMORY LOCATION (00,37)

Instruction C4

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 37 0 00 38
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 01
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 4D D 4D
Four and One Bit Registers
Register Contents Register Contents
I C I C
N 4 N 4
X 9 X 9
p 0 p 0
DF 1 DF 1

This and the five C4 instructions which follow do nothing but
pass time. This portion of the program is a timing loop and those six
“do nothing” commands correspond roughly to the time spent mov-
ing from 00, 1E to 00,24. The idea is that the same timing loop time
occur whether sound or silence initiates the timing.

185

MEMORY LOCATION (00,3D)
Instruction 30 33

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 3D 0 00 33
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 01
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 4D D 4D
Four and One Bit Registers
Register gontents Reg%ster Contents
3
N 0 N 3
X 9 X 9
| 4 0 | 4 0
DF 1 DF 1

This instruction marks the end of a timing loop. It returns
program control to location 00,33, The only way to escape the loop
occurs at 00,35 when the contents of register number seven have
been decreased to zero.

186

MEMORY LOCATION (00,3F)

Instruction 84

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 3F 0 00 40
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 01
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 00 D 01
Four and One Bit Registers
Reg%ster gontents Reg%ster Contents
8
N 4 N 4
X 9 X 9
| 4 0 P 0
DF 1 DF 1

The only way to get to this instruction is to jump from 00,2E
and this only occurs when the contents of the D register equal zero.
In physical terms, it means that a sound has occurred and has been
followed by a sufficient period of silence. The contents of register
four (low order byte) are not placed into the D register for examina-
tion.

187

MEMORY LOCATION (00,40)

Instruction FD 49
Before Instruction
Register Pairs

Register High Low
00

0 40 0
1 ? ? 1
2 ? ? 2
3 ? ? 3
4 00 01 4
5 00 01 5
6 00 00 6
7 00 4D 7
8 ? ? 8
9 00 79 9
A ? ? A
B ? ? B
C ? ? C
D ? ? D
E ? ? E
F ? ? F

Eight Bit Register

Register gontents Register
D D

Four and One Bit Registers
Reg%ster Contents

Register Contents

F
N D N
X 9 X
P 0 p
DF 1 DF

After Instruction

Register High Low

42

O et e

-QN)'Q'Q-Q-\’;Q&OOO@-\)&

Contents

48

O 0O

Contents of register D are subtracted from 49. The results of
this subtraction are placed in the D register and the DF flag is also

set; the 1 indicating that no borrow occurred.

188

MEMORY LOCATION (00,42)

Instruction 3B §2

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 42 0 00 44
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 01
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 48 D 4
Four and One Bit Registers
Register Contents Register Contents
1 3 I 5
N B N 2
X 9 X 9
p 0 P 0
DF 1 DF 1

This instruction tests the contents of the DF register. If DF
equaled zero (meaning a borrow had occurred in the previous
operation) then program control would jump to 00,52. Since no
borrow occurred in the previous operation, the sound identifier
(number in register pair number four) is less than 49.

189

Instruction 84

Before Instruction

MEMORY LOCATION (00,44)

After Instruction
Register Pairs

W Register High Low
0 00 45
1 ? ?
2 ? ?
3 ? ?
4 00 01
5 00 01
6 00 00
7 00 4D
8 ? ?
9 00 79
A ? ?
B ? ?
C ? ?
D ? ?
E ? ?
F ? ?
Eight Bit Register
Reg%ster ggntents

Four and One Bit Registers

Register High Lo
0 00 44
1 ? ?
2 ? ?
3 ? ?
4 00 01
5 00 01
6 00 00
7 00 4D
8 ? ?
9 00 79
A ? ?
B ? ?
c ? ?
D ? ?
E ? ?
F ? ?

Register Contents
D 4

Register Contents
I 8
N 4
X 9
P 0
DF 1

190

Reg%ster Contents
8
N 4
X 9
p 0
DF 1

This step takes the contents of register four (low order byte)
and places those contents into the D register.

MEMORY LOCATION (00,45)
Instruction FD 32

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 45 0 00 47
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 01
S 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 01 D 31
Four and One Bit Registers
Reg%ster gontents Register Contents
1 3
N D N 2
X 9 X 9
p 0 P 0
DF 1 DF 1

Contents of register D are subtracted from 32. The results of
this subtraction are placed in the D register and the DF flag is also
set, the 1 indicating that no borrow occurred.

191

MEMORY LOCATION (00,47)
Instruction 3B 57

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
00 47 0 00 49
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 0l
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
c ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 3 D 31
Four and One Bit Registers
Register gontents Reg%ster Contents
1 5
N B N 7
X 9 X 9
P 0 |4 0
DF 1 DF 1

This instruction tests the value contained by register DF. If the
result had been zero, the program counter would have advanced to
00,57. The sound identifier (number contained in register four) is
less than 32.

192

MEMORY LOCATION (00,49)

Instruction 84

Before Instruction After Instructien
Register Pairs

Register High Lew Register High Low
0 00 49 0 00 4A
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 01
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4n 7 00 4n
8 ? ? 8 ? ?
) 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? n ? ?
E ? ? E ? ?
F ? ? r ? ?

Fight Bit Register

Register Contents Register Contents

P 31 n 01
Four and One RBit Pegisters

Pegister Contents fegister Contents
I 8 1 8
N 4 N 4
X 9 X 9
p 0 p 0
DF 1 NF 1

The sound identifier (number contained in register four) is
moved into the D register again.

193

MEMORY LOCATION (00,4A)
Instruction FD 19

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 4A 0 00 4C
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 01
S 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D 01 D 1
Four and One Bit Registers

Reg%ster gontents Reg%ster gontents
N D N 9
X 9 X 9
P 0 P 0
DF 1 DF 1

Contents of register D are subtracted from 19. The results of
this subtraction are placed in the D register and the DF flag is also
set, the 1 indicating that no borrow occurred.

194

MEMORY LOCATION (00,4C)
Instruction 3B SC

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 AC 0 00 4E
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 01
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? c ? ?
D ? ? D ? ?
B ? ? E ? ?
F ? ? F ?
Eight Bit Register
Register Contents Register Contents
D 18 D 1
Four and One Bit Registers
Reg%ster Contents Reg}ster (Stontents
3
N B N c
X 9 X 9
P 0 P 0
DF 1 DF 1

This instruction tests the value contained by register DF. If the
result had been zero, program counter would have advanced to
00,5C. The sound identifier (number contained in register four) is
less than 19.

195

MEMORY LOCATION (00,4E)

Instruction C4

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
00 4E 0 00 4F
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 01
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
c ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 18 D 18
Four and One Bit Registers
Register gontents Reg%ster gontents
N 4 N 4
X 9 X 9
P 0 P 0
DF 1 DF 1

This instruction and the one following it (C4 at location 00,4F)
do nothing but consume time. They exist because the previous
version of the program contained an incorrect two-byte instruction;
it was easier to delete the incorrect instruction and replace it with
“do nothing” commands than to relocate addresses before and after
this instruction.

196

MEMORY LOCATION (00,50)
Instruction 30 61

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 50 0 00 61
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 01 4 00 01
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D 18 D 18
Four.and One Bit Registers

Register Contents Register Contents
3 1 6
N 0 N 1
X 9 X 9
P 0 P 0
DF 1 DF 1

Because this sound had not proven to be one of the three
possible longer sounds tested above, it must be the shortest sound
of the four; therefore the program counter is set to 00,61 which is
the address to commence an appropriate output. This instruction
merely changes the low order byte of general register pair zero to
61

197

MEMORY LOCATION (00,52)
Instruction F8 7§

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 52 0 00 54
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 50 4 00 50
S5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D F9 75
Four and One Bit Registers
Register Contents Register Contents
1 F I 7
N 8 N S
X 9 X 9
P 0 p 0
DF 0 DF 0

The only way to reach this point would be to have a sound
identifier (number in register four) that is greater than 48. After the
subtraction the DF register would contain 0 and program control
would be transferred to this point. This instruction places 75 into
the D register; 75 is the low order byte of the memory address
which contains the output data for a long word.

198

MEMORY LOCATION (00,54)

Instruction A9

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 54 0 00 55
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 50 4 00 50
S 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 79 9 00 75
A ? ? A ? ?
B ? ? B ? ?
C ? ? o ? ?
D ? ? D ? ?
E. ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register gontents Register antents
D 7
Four and One Bit Registers
Register Contents Register Contents
I A 1 A
N 9 N 9
X 9 X 9
P 0 P 0
DF 0 DF 0

This instruction takes the value found in register D and trans-
fers that value to the low order byte of general register pair number
nine.

199

MEMORY LOCATION (00,55)

Instruction A9

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 55 0 00 64
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 50 4 00 50
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 75 9 00 75
A ? ? A ? ?
B ? ? B ? ?
C ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D 75 D 75
Four and One Bit Registers

Reg%ster gontents Reg%ster gontents
N 0 N 4
X 9 X 9
p 0 P 0
DF 0 DF 0

Control of the program is transferred to 00,64 by this instruc-
tion. This instruction completes the setup necessary for the output
of a byte indicating that a long word has occurred.

200

MEMORY LOCATION (00,57)
Instruction F8 76

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 57 0 00 59
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 33 4 00 33
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 75 9 00 75
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D FF D 76
Four and One Bit Registers
Reg%ster Contents Register Contents
F I 7
N 8 N 6
X 9 X 9
P 0 P 0
DF 0 DF 0

To reach this point in the program requires that the sound
identifier (number in register four) be greater than 31 and less than
4A (49 subtracted from 49 at location 00,40 would leave the DF
register holding one). This step places 76 into the D register. 76 is
the low order byte of the memory address for a data byte which will
be the output of the word which is the third longest.

201

MEMORY LOCATION (00,59)

Instruction A9

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 59 0 00 SA
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 33 4 00 33
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 75 9 00 76
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 7 D 76
Four and One Bit Registers
Register Contents Register Contents
1 A 1 A
N 9 N 9
X 9 X 9
p 0 | 4 0
DF 0 DF 0

This instruction places the value 76 into the D register.

202

MEMORY LOCATION (00,5A)
Instruction 30 64

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 SA 0 00 64
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 33 4 00 33
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 76 9 00 76
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 76 D 76
Four and One Bit Registers
Register Contents Register Contents
1 3 1 6
N 0 N 4
X 9 X 9
P 0 P 0
DF 0 DF 0

This instruction transfers control of the program to 00,64
where an output operation will occur. This is accomplished by
moving the contents of the D register into the low order byte of
general register pair zero.

203

MEMORY LOCATION (00,5C)

Instruction F8 77
Before Instruction
Register Pairs

Register High Low Register High Low
0 00 5C 0 00 SE
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 1A 4 00 1A
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 76 9 00 76
A ? ? A ? ?
B ? ? B ? ?
c ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D FF D 77

Four and One Bit Registers
Register Contents
I

Register Contents

F
N 8 N
X 9 X
P 0 P
DF 0 DF

7
7
9
0
0

After Instruction

Reaching this place in the program requires that the sound
identifier (number in register four) be greater than 18 and less than
32. The instruction here places 77 into the D register because 77 is
the location of the data byte to be output as a representation of the

word just longer than the shortest one.

204

MEMORY LOCATION (00,SE)

Instruction A9

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 SE 0 00 SF
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 1A 4 00 1A
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 76 9 00 77
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? ?
Eight Bit Register
Register Contents Register Contents
D 77 D 77
Four and One Bit Registers
Register Contents Register Contents
1 A I A
N 9 N 9
X 9 X 9
P 0 p 0
DF 0 DF 0

This instruction places the contents of the D register into the
low order byte of general register pair number nine.

205

MEMORY LOCATION (00,5F)
Instruction 30 64

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 SF 0 00 64
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 1A 4 00 1A
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? 8 ? ?
9 00 77 9 00 77
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 77 D 77
Four and One Bit Registers
Register Contents Register gontents
I 3
N 0 N 4
X 9 X 9
P 0 P 0
DF 0 DF 0

This instruction transfers control of the program to 00,64
where an output operation will occur. This is accomplished by
moving the contents of the D register into the low order byte of
general register pair zero.

206

MEMORY LOCATION (00,61)
Instruction F8 78

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
] 00 61 0 00 63
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 77 9 00 77
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 77 D 78
Four and One Bit Registers
Register Contents Register Contents
1 F 1 7
N 8 N 8
X 9 X 9
p 0 P 0
DF 0 DF 0

Reaching this place in the program requires that the sound
identifier (number in register four) be less than 19. This instruction
places 78 into the D register because the contents of the memory
byte at location 00,78 represent the shortest word possible.

207

MEMORY LOCATION (00,63)

Instruction A9

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 63 0 00 64
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 77 9 00 78
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 7 D 78
Four and One Bit Registers
Register Contents Register Contents
I A I A
N 9 N 9
X 9 X 9
P 0 P 0
DF 0 DF 0

This instruction places the contents of the D register into the
low order byte of general register pair number nine.

208

MEMORY LOCATION (00,64)

Instruction F8 00

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 64 0 00 66
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 78 9 00 78
A ? ? A ? ?
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D 78 D 00
Four and One Bit Registers

Reg}ster Contents Reg%ster gontents
N 8 N 0
X 9 X 9
P 0 P 0
DF 0 DF 0

This is the output section of the program, used to illuminate
the appropriate light emitting diode after a sound has been decoded.
Getting to this point requires either ajump from 00,55; 00,54; 00,5F
or falling through from 00,63. This instruction places 00 into the D
register for transfer in the next step to another register.

209

MEMORY LOCATION (00,66)

Instruction B9

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 66 0 00 67
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
] 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 78 9 00 78
A ? ? A ? ?
B ? ? B ? ?
C ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 00 D 0
Four and One Bit Registers
Register Contents Register Contents
1 B 1 B
N 9 N 9
X 9 X 9
P 0 P 0
DF 0 DF 0

The contents of D (00) are placed in the high order byte of
general register pair number nine. As a programmer, it is not
always obvious just what happens to be residing within a register;
therefore, the safe thing to do is insert the desired value when
needed rather than take a chance that things may work out. Evena
chart like this one can be deceptive in a longer program; the
contents of the registers may vary at any given point, depending
upon the program path taken to arrive at that point.

210

MEMORY LOCATION (00,67)

Instruction E9

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 67 0 00 68
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 78 9 00 78
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D 0 D 0
Four and One Bit Registers

Reg%ster gontents Reg%ster gontents
N 9 N 9
X 9 X 9
P 0 P 0
DF 0 DF 0

This instruction sets the value within the X register to 9. This
instruction, like the last one, is not necessary in this program; but is
part of a good practice; assuring that the pointer is pointing to the
desired register pair. Remember that errors in software can be very
difficult to find unless all code is written in understandable logical

groupings.

21

Instruction 62
Before Instruction

Register High Lo
0 00 68
1 ? ?
2 ? ?
3 ? ?
4 00 05
S 00 0l
6 00 00
7 00 4D
8 ? ?
9 00 78
A ? ?
B ? ?
C ? ?
D ? ?
E ? ?
F ? ?

Register Contents
D 0

Reg%ster Contents

N
X
P
DF

COWVN

MEMORY LOCATION (00,68)

After Instruction

Register Pairs

w Register High Low
0 00 69
1 ? ?
2 ? ?
3 ? ?
4 00 05
S 00 01
6 00 00
7 00 4D
8 ? ?
9 00 78
A ? ?
B ? ?
c ? ?
D ? ?
E ? ?
F ? ?
Eight Bit Register
Regli)ster gontents

0
Four and One Bit Registers

Reg%ster Contents

N
X
P
DF

COONO

The instruction causes the memory byte addressed by the
general register pair pointed to by the X register to be placed on the
output bus for output port number two. The X register points to
register pair number nine. Pair number nine addresses location
00,78. The contents of 00,78 (01) will be output. Port number two
refers to a hardware configuration which is wired to respond to an
“output port number two” instruction.

212

MEMORY LOCATION (00,69)
Instruction F8 FF

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 69 0 00 6B
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 0S
5 00 01] 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 78 9 00 78
A ? ? A ? ?
B ? ? B ? ?
c ? ? (o ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 0 D FF
Four and One Bit Registers
Register Contents Register Contents
1 F 1 F
N 8 N F
X 9 X 9
p 0 P 0
DF 0 DF 0

This instruction is the first in a group designed to cause a time
delay. After a word has been heard and decoded some time elapses
before the system is allowed to listen for another word. The pur-
pose of this is to prevent a long word (with a gap in the middle) from
being interpreted two or three times. This particular instruction
places FF into the D register.

213

MEMORY LOCATION (00,6B)
Instruction AA

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 6B 0 00 6C
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 78 9 00 78
A ? ? A ? FF
B ? ? B ? ?
c ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D F D FF
Four and One Bit Registers

Register gontents Reg%ster gontents
I
N A N A
X 9 X 9
P 0 P 0
DF 0 DF 0

The low order byte of register pair A has been loaded with the
value FF by this instruction.

214

MEMORY LOCATION (00,6C)
Instruction F8 OF

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 6C 0 00 6E
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 78 9 00 78
A ? FF A ? FF
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D FF D OF
Four and One Bit Registers
Register Contents Register Contents
1 F I 0
N 8 N F
X 9 X 9
P 0 P 0
DF 0 DF 0

This instruction places OF into the D register for transfer to
another place later.

215

MEMORY LOCATION (00,6E)

Instruction BA

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 6E 0 00 6F
1 ? 7 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
S 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 78 9 00 78
A ? FF A OF FF
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register
Regli)ster gontents Regli)ster gontents
Four and One Bit Registers

Register Contents Reg%ster gontents
I B
N A N A
X 9 X 9
P 0 P 0
DF 0 DF 0

The contents of the D register OF are transferred into the high
order byte of register pair A with this instruction.

216

MEMORY LOCATION (00,6F)

Instruction 2A

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 6F 0 00 70
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 78 9 00 78
A OF FF A OF FE
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D OF OF
Four and One Bit Registers
Reg%ster Contents Reg%ster gontents
2
N A N A
X 9 X 9
P 0 p 0
DF 0 DF 0

This instruction decreases the contents of register pair A by
one count form OF,FF to OF,FE. The operation of this timing loop is
straightforward. A number (OF FF) is placed into a register (A).
The contents of that register are decreased by one count. The
contents of the A register are tested; if zero then escape is provided
from the loop. If the contents are not zero then another count is
taken from the contents,

217

MEMORY LOCATION (00,70)

[nstruction 9A

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 70 0 00 71
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 0S 4 00 0S
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 7 ? 8 ? ?
9 00 78 9 00 78
A OF FE A OF FE
B ? ? B ? ?
C ? ? c 7 ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Reg[i)ster ggntents Regli)ster Contents
Four and One Bit Registers
Reg%ster gontents Reg%ster Contents
9
N A N A
X 9 X 9
P 0 |4 0
DF 0 DF 0

This instruction moves the high order byte of general register
pair A into the D register. At this point, the contents of D equal the
contents of high register A; but that will not be the case most of the
time. As the rest of the loop is followed it will become obvious that
register A is being decremented with each pass and the values
therefore frequently changing.

218

MEMORY LOCATION (00,71)

Instruction 32 08
Before Instruction
Register Pairs

After Instruction

Register High Low Register High Low
0 00 71 0 00 73
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 78 9 00 78
A OF FE A OF FE
B ? ? B ? ?
C ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?

Eight Bit Register

Register Contents Register Contents

D OF 0

Reg%ster Contents

3
N 2 N
X 9 X
P 0 P
DF 0 DF

D F
Four and One Bit Registers
Register Contents
1

OOV O

This instruction tests the contents of the D register. Were the
results equal to zero (indicating that the loop had been run many
times) the program would return to 00,08. Since that is not the case,

the program counter advances to 00,73.

219

MEMORY LOCATION (00,73)
Instruction 30 6F

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 73 0 00 6F
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
5 00 0l 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 78 9 00 78
A OF FE A OF FE
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 0 D OF
Four and One Bit Registers
Register Contents Register Contents
I 3 I 6
N 0 N F
X 9 X 9
p 0 P 0
DF 0 DF 0

Reaching this place in the program indicates that the timing
loop is in progress, but not finished. This instruction returns pro-
gram control to 00.6F where the contents of register A are de-
cremented and then tested again.

220

MEMORY LOCATION (00,75)

Instruction 08 (Data)

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 68 0 00 69
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 0s 4 00 05
5 00 01 5 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 75 9 00 75
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 00 D 0
Four and One Bit Registers
Register gontents Reg%ster gontents
I
N 2 N 2
X 9 X 9
P 0 P 0
DF 0 DF 0

This is a data byte and it is only addressed as part of the
instruction 62 found at location 00,68. Note that the program area
starting at 00,52 sets up this data byte to be the one addressed by
the 62 instruction. This byte is “output” causing one line to be
electrically high (and one light-emitting diode lit), the one repre-
senting the longest word.

221

MEMORY LOCATION (00,76)
Instruction 04 (Data)

Before Instruction After Instruction
Register Pairs

Register High Low Register High Low
0 00 68 0 00 69
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 0s 4 00 05
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 76 9 00 76
A ? ? A ? ?
B ? ? B ? ?
o ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? |3 ? ?

Eight Bit Register

Register Contents Register Contents

D 00 00
Four and One Bit Registers

Reg%ster gontents Reg%ster gontents
N 2 N 2
X 9 X 9
| 0 p 0
DF 0 DF 0

This is a data byte and it is only addressed as part of the
instruction 62 found at location 00,68. Note that the program area
starting at 00,57 sets up this data byte to be the one addressed by
the “62” instruction. This byte is “output” causing one line to be
electrically high (and one light-emitting diode lit), the one repre-
senting the word next in length to the longest.

222

MEMORY LOCATION (00,77)
Instruction 02 (Data)

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 68 0 00 69
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 77 9 00 77
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? F ?
Eight Bit Register
Register Contents Register Contents
D 00 D 00
Four and One Bit Registers
Reg%ster Contents RegfItster Contents
6 6
N 2 N 2
X 9 X 9
P 0 p 0
DF 0 DF 0

This is a data byte and it is only addressed as part of the
instruction 62 found at location 00,68. Note that the program area
starting at 00,5C sets up this data byte to be the one addressed by
the 62 instruction. This byte is “output” causing one line to be
electrically high (and one light emitting diode lit), the one repre-
senting the word next in length to the shortest.

223

MEMORY LOCATION (00,78)

Instruction 01 (Data)

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 68 0 00 69
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 00 05 4 00 05
5 00 01 S 00 01
6 00 00 6 00 00
7 00 4D 7 00 4D
8 ? ? 8 ? ?
9 00 78 9 00 78
A ? ? A ? ?
B ? ? B ? ?
C ? ? c ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? F ? ?
Eight Bit Register
Register Contents Register Contents
D] D 00
Four and One Bit Registers
Register Contents Register Contents
1 6 1 6
N 2 N 2
X 9 X 9
p 0 P 0
DF 0 DF 0

This is a data byte and it is only addressed as part of the
instruction 62 found at location 00,68. Note that the program area
starting at 00,61 sets up this data byte to be the one addressed by
the 62 instruction. This byte is “output” causing one line to be
electrically high (and one light emitting diode lit), the one repre-
senting the shortest length word.

224

MEMORY LOCATION (00,79)
Instruction 00 (Data)

Before Instruction After Instruction
Register Pairs
Register High Low Register High Low
0 00 07 0 00 08
1 ? ? 1 ? ?
2 ? ? 2 ? ?
3 ? ? 3 ? ?
4 ? ? 4 ? ?
) ? ? S ? ?
6 ? ? 6 ? ?
7 ? ? 7 ? ?
8 ? ? 8 ? ?
9 00 79 9 00 79
A ? ? A ? ?
B ? ? B ? ?
C ? ? C ? ?
D ? ? D ? ?
E ? ? E ? ?
F ? ? F ? ?
Eight Bit Register
Register Contents Register Contents
D 0 D 00
Four and One Bit Registers
Register Contents Register gontents
1 6 1
N 2 N 2
X 9 X 9
P 0 P 0
DF ? DF ?

This is a data byte and it is only addressed as part of the
instruction 62 found at location 00.07. Note that the program area
starting at 00.00 sets up this data byte to be the one addressed by
the 62 instruction. This byte is “output” causing all lines to be
electrically low and all light-emitting diodes to be off.

225

Chapter 16
Frequency for the Recognizer

With the Frequency program the Recognizer becomes a powerful
device for the deciphering of verbal sounds. With this program the
system is speaker-dependent, meaning that the person using the
device must also train it. To operate the system, you must first set
the run-reset switch to the reset position, and then place the
learn-run switch in the learn position. Set the amplifier toa loud (not
distorted) position. Upon moving the run-reset switch to the run
position, one light will be illuminated. This represents the first
word, and it is wise to mark on a sheet of paper taped to the system
which light represents which word. Upon detection of a sound, the
Recognizer will illuminate an additional light (two lights on) indicat-
ing that sound is being input. If the input sound is too long (more
than about 1.5 seconds) then it will be rejected and the light for the
first word will be lit alone. If the learning process was successful,
then the second light (alone) will be illuminated after the sound
indicated (two lights on) situation has passed. Upon detection of the
next sound, an additional light will come on (two lights lit) until the
successful or unsuccessful completion of the learning for that word.
Successful completion will be noted by illumination of the third light
alone. Unsuccessful completion will be noted by the illumination
again of the second position light alone. This process will be com-
pleted through the five words until the last word is learned, at which
point all the lights will come on.

After the learning process has been completed, it is time to go
into the run mode. First move the run-reset switch into the reset

226

position. Next move the learn-run switch into the run position.
Finally, move the reset-run switch back to the run position. All the
lights should go out. When a sound is heard that the Recognizer
determines to be one of the learned words, it will illuminate the

[00,00 TURN ALL LIGHTS OFF |

00,08

WHAT IS THE
POSITION
OF THE
LEARN-RUN
SWITCH?

LEARN

00,10 CLEAR MEMORY AND PREPARE
TO LEARN WORD NUMBER ONE

A 2
00,28 OUTPUT WORD NUMBER
ONE READY LIGHT

00,38 OUTPUT WORD NUMBER
ONE "LEARNING IN PROGRESS” LIGHTS

v

| 0040 PREPARE FOR LEARN SUBROUTINE |

Fig. 16-1. Program flowchart of Frequency for The Recognizer.

227

00,54 CLEAR MEMORY AND PREPARE
TO LEARN WORD NUMBER TWO
l

00,6A OUTPUT WORD NUMBER
TWO READY LIGHT

00,72
SOUND
PRESENT?

NO

YES

00,A1 OUTPUT WORD NUMBER
TWO “LEARNING IN PROGRESS" LIGHTS

[00,AC PREPARE FOR LEARN SUBROUTINE |

00,BB CLEAR MEMORY AND PREPARE
TO LEARN WORD NUMBER THREE

|
00,00 OUTPUT WORD NUMBER
THREE READY LIGHT

00,08
SOUND NO
PRESENT?

YES

00,E0 OUTPUT WORD NUMBER THREE
“LEARNING IN PROGRESS” LIGHTS

I 00,E8 PREPARE FOR LEARN SUBROUTINE

Fig. 16-1. Continued from page 227.

228

00,FA CLEAR MEMORY AND PREPARE
TO LEARN WORD NUMBER FOUR
v
01, 0F OUTPUT WORD NUMBER
FOUR READY LIGHT

01, 1F OUTPUT WORD NUMBER FOUR
“LEARNING IN PROGRESS” LIGHTS

v

| 03,70 PREPARE FOR LEARN SUBROUTINE |

03,82 CLEAR MEMORY AND PREPARE
TO LEARN WORD NUMBER FIVE

v

03,97 OUTPUT WORD NUMBER
FIVE READY LIGHT

03, A7 OUTPUT WORD NUMBER FIVE
“LEARNING IN PROGRESS" LIGHTS

v

| 03,AF PREPARE FOR LEARN SUBROUTINE |

Fig. 16-1. Continued from page 228.

229

[037C1 OUTPUT FIVE LIGHTS TO |
INDICATE LEARNING COMPLETED

03, C9 STAY HERE UNTIL RESET
SWITCH IS OPERATED

00,80 JUMP

] 02,BC TURN ALL LIGHTS OFF I

] 02,C4 CLEAR MEMORY SPACE FOR UNKNOWN WORD |

[020D PREPARE FOR LEARN SUBROUTINE |

02,FB PREPARE FOR COMPARISON
AGAINST WORD NUMBER ONE

03,10 PREPARE FOR COMPARISON
AGAINST WORD NUMBER TWO

Fig. 16-1. Continued from page 229.

230

03,25 PREPARE FOR COMPARISON
AGAINST WORD NUMBER THREE

03,3A PREPARE FOR COMPARISON
AGAINST WORD NUMBER FOUR

©

03,4F PREPARE FOR COMPARISON
AGAINST WORD NUMBER FIVE

©

l 04,00 TIME DELAY THEN LISTEN AGAIN ‘

05,00 TURN ON “WORD NUMBER
ONE RECOGNIZED"” LIGHT

©

05,20 TURN ON “WORD NUMBER
TWO RECOGNIZED” LIGHT

©

Fig. 16-1. Continued from page 230.

231

05,40 TURN ON “WORD NUMBER
THREE RECOGNIZED” LIGHT

©

05,60 TURN ON “WORD NUMBER
FOUR RECOGNIZED" LIGHT

®

05,80 TURN ON “WORD NUMBER
FIVE RECOGNIZED" LIGHT

®

01,2C STORE SOUND IN MEMORY LOCATION
WHICH HAS BEEN PREPARED. IF
SOUND LASTS TOO LONG, GO TO
PREPARED LOCATION FOR UNSUCCESSFUL
RETURN; OTHERWISE GO TO PREPARED
LOCATION FOR SUCCESSFUL RETURN

@ RETURN

01,F4 COMPARISON IS MADE BETWEEN
THE UNKNOWN WORD AND ONE KNOWN
WORD. IF THE WORDS ARE SIMILAR, A
SUCCESS IS DECLARED AND THE PROGRAM
GOES TO ONE OF THE “TURN ON WORD
RECOGNIZED” AREAS

RETURN

Fig. 16-1. Continued from page 231.

232

appropriate light (and operate the relay if one is wired). The light
will stay illuminated until the Recognizer recognizes another word.

At memory location 02,16 is the validity parameter, 57. By trial
and error this seems to be a number which works well A higher
number (up to 63) will result in greater accuracy but less likelihood
of making a match at all. A lower number will result in more
matches, but lower ability to distinguish between words.

The Recognizer works well when compared to devices avail-
able at this time. Room for improvement in software alone is
tremendous. Each word is learned only one time; two or three
patterns per word would better cover differences in an individual’s
speech. Also, 100 bytes of RAM are used for each pattern, and only
three bits of each byte are filled. Nearly three times the resolution
presently obtained could be gained by filling this unused space.
Good use of memory space and increased memory supply could
greatly enhance the information available for comparisons. The
algorithmused here s very simple; store a patternand compareit to
the unknown pattern, and declare a match if the two are close
enough. More sophisticated programs (which compensate for speed
of speaking for example) could enhance the system potential.

Hardware improvements are possible, too. The new Electri-
cally Alterable Programmable Read Only Memories could be
trained and have the capability of remembering what was taught
after the power has failed and returned. The cost is quite high now,
but it is likely to fall rapidly on this new technology. More filters
would provide more information. Multiple microprocessors can be
placed under parallel control for rapid comparison to a large known
vocabulary.

Figures 16-1 shows how the program progresses. Following is
a commented listing that explains the operation of the software.

FREQUENCY PROGRAM LISTING WITH COMMENTS

00,00 F8 These instructions cause the contents of a memory byte to
00,01 80 be output. The address 00,80 is placed in register pair
00,02 A6 number six. The contents of register six 00,80 are used to
00,03 F8 address a memory byte, contents of which are 00. 00
00,04 00 causes all output lights to be off (00 means all off in this
00,05 B6 hardware system).

00,06 E6

00,07 62

00,08 C4 These instructions merely pass time and serve no useful
00,09 Cc4 purpose. Should one desire to do something else before
00,0A C4 continuing this program, jump instructions could be substi-
00,0B C4 tuted here.

233

00,0C
00,0D

00,0E
00,0F

00,10
00,11
00,12
00,13
00,14
00,15
00,16
00,17
00,18

00,19
00,1A
00,1B
00,1C
00,1D
00,1E
00,1F
00,20

00,21
00,22
00,23
00,24
00,25
00,26
00,27

00,28
00,29
00,24
00,23
00,2C
00,2D
00,2E
00,2F

00,30
00,31
00,32
00,33
00,34
00,35
90,36
00,37

234

Ca
C4

3F
90

These instructions test the learn-run switch. If the switch
is in the learn mode, then the program goes to address
00,10. If the switch is in the run mode then the program
goes to address 00,90. Position of the switch is determined
by examining the state of the EF4 line (high or low), for the
switch is physically tied to the EF4 line on the processor
circuit.

This sequence places the address 08,00 into register pair
number two and then it places the value 00 into the memory
location addressed by register two. In other words, mem-
ory location 08,00 is filled with the value 00.

This group increments the number contained in register
pair two by one count. Next it checks the low order byte to
seeif it is equal to 63 (63 is not a base ten number). If equal
to 63, then the program jumps to 00,21; otherwise it re-
turns to 00,16 at which it will zero out another memory
location and increment pair two again.

The contents of the low order byte of register pair number
two are set to 00. The Q flip-flop is set to zero.

The contents of memory location 00,81 are output, the
result being 01 on the output lines. This causes one LED to
be illuminated.

These instructions test the input lines from the three
frequency fillers. If sound is present on any of the lines, the
program will progress to location 00,38; otherwise it will
run a loop from 00,30 to 00,37 until a sound is detected.

00,38
00,39
00,3A
00,38
00,3C
00,3D
00, 3E
00,3F

00,40
00,41
00,42
00,43
00,44
00,45
00,46
00,47
00,48
00,49
00,4A

00,48
00,4C
00,4D
00, 4E
00,4F
00,50

00,51
00,52
00,53

00,54
00,55
00,56
00,57
00,58
00,59

00,5A
00,58
00,5C
00,5D
00,5E
00,5F
00,60
00,61
00,62
00,63
00,64
00,65
00,66
00,67
00,68
00,69

These instructions cause the memory byte at location
00,83 to be output. 11 is output, indicating that word
number one is being trained.

00,54 is placed in register pair number three. This is set up
as a return address if the soon to be attempted subroutine
is successful in detecting a word.

00,10is set inregister pair number four as areturn address
if the soon to be attempted subroutine is unsuccessful.

This jumps to the subroutine which stores the word “pic-
ture” in memory.

This sets 08,64 as the address which will define the start-
ing point for the block of memory used to store word

). 4

number two's “picture.”

These instructions place 00 in the memory locations to be
used for word number two storage. They also assure that
the Q flip-flop is in the low state.

235

00,6A
00, 6B
00,6C
00,6D
00, 6E
00,6F
00,70
00,71

00,72
00,73
00,74
00,75
00,76
00,77
00,78
00,79

00,7A
00,78
00,7C
00,7D
00, 7E
00,7F

00,80
00,81
00,82
00,83
00,84
00,85
00,86
00,87
00,388
00,89
00,8A
00,88

00,8C
00,8D
00,8E
00,8F

00,90
00,91
00,92

00,93
00,94
00,95
00,96
00,97
00,98
00,99
00,9A
00,98

236

This block of instructions causes 02 to be output. 02 is only
one line, thus one LED will be illuminated.

This is a loop from which escape is possible only if sound is
detected. Upon detection of sound, the program jumps to
00,Al.

These bytes are mere “filler” and will never be executed;
therefore it matters not what information they contain.

These are “data” bytes used for output. When an output is
required, one of these locations is selected for output.

This is unused memory space upon which this program will
never operate.

If the learn-run switch is in the run mode (00,0E); the
program jumps here. This is a long jump, moving to 02,BC.

These bytes are “fillers.” Nothing happens here because
this area is always jumped over.

00,9C
00,9D
00,9E
00,9F
00,A0

00,Al
00,A2
00,A3
00,A4
00,A5
00,A6
00,A7
00,A8
00,A9
00, AA
00,AB

00,AC
00,AD
00, AE
00,AF
00,B0
00,B1

00,B2
00,B3
00,B4
00,B5
00,B6
00,B7

00,B8
00,B9
00,BA

00,BB
00,BC
00,BD
00,BE
00,BF
00,C0

00,C1
00,C2
00,C3
00,C4
00,C5
00,Cé
00,C7

00,C8
00,C9
00,CA
00,CB
00,CC

This block of instructions causes 12 to be output. 12 causes
two lines to be active.

This sets the successful return address for the 01,2C sub-
routine.

This sets the address for an unsuccessful return from the
01,2C subroutine.

This jumps to the subroutine which stores the word “pic-
ture” in memory.

This sets 08,C8 as the address which will define the start-
ing point for the block of memory used to store word
number three's picture.

These instructions place 00 in the memory locations to be
used for word number three storage. They also assure that
the Q flip-flop is in the low state.

237

00,CD
00,CE
00,CF

00,00
00,D1
00,D2
00,D3
00,D4
00,D5
00,D6
00,D7

00,D8
00,D9
00,DA
00,DB
00,DC
00,DD
00,DE
00,DF

00,E0
00,E1
00,E2
00,E3
00,E4
00,ES
00,E6
00,E7

00,E8
00,E9
00,EA

00,EB
00,EC
00,ED
00 ,EE
00,EF
00,F0
00,F1
00,F2
00,F3
00,F4
00,F5
00,F6

00,F7
00,F8
00,F9

00,FA

00,FB
00,FC

238

This block of instructions causes 04 to be output. 04 is only
one line, thus one LED will be illuminated.

This is a loop from which escape is possible only if sound is
detected. Upon detection of sound, the program jumps to
00,E0.

This block of instructions causes 14 to be output. 14 causes
two lines to be active.

This group assures that the contents of high order register
of pair number two contains the value 08.

This sets the successful return address for the 01,2C sub-
routine.

This sets the address for an unsuccessful return from the
01,2C subkroutine.

This jumps to the subroutine which stores the word picture
in memory.

This sets 09,2C as the address which will define the start-
ing point for the block of memory used to store word
number four’s picture.

00,FD
00,FE
00,FF

01,00
01,01
01,02
01,03
01,04
01,05

01,06
01,07
01,08
01,09
01,0A
01,08
01,0C
01,0D
01,0E

01,0F
01,10
01,11
01,12
01,13
01,14
01,15
01,16

01,17
01,18
01,19
01,1A
01,18
01,1C
01,1D
01,1E

01,1F
01,20
01,21
01,22
01,23
01,24
01,25
01,26

01,27
01,28
01,29

01,2A
01,28

01,2€C
01,20

These instructions place 00 in the memory locations to be
used for word number four storage. They also assure that
the Q flip-flop is in the low state.

This block of instructions causes 08 to be output. 08 is only
one line, thus one LED will be illuminated.

This is a loop from which escape is possible only if sound is
detected. Upon detection of sound, the program jumps to
01,1F.

18 is output by these commands. 18 causes two lines to be
active.

This causes program control to jump to 03,70 and is the
result of hand assembly, not good programming
techniques.

These locations are unused.

This marks the starting point of a subroutine.
This routine fills the block of memory which is pointed to

239

01,2E
01,2F

01,30
01,31
01,32
01,33
01,34
01,35

01,36
01,37
01,38
01,39
01,3A
01,38

01,3C
01,3D
01,3C
01,3F
01,40
01,41
01,42
01,43
01,44
01,45
01,46
01,47

01,48
01,49

01,4A
01,4B

01,4C
01,4D
01,4E
01,4F
01,50

240

A8
C4

39
71

85

10
32
74

by register pair number two. A representation of the fre-
quencies present is stored by these instructions within that
memory. This routine also tests the length of time that
sound is heard; if it is too long to store in the alotted
memory, the sequence is considered to be unsuccessful
and program control is returned to the address defined by
the contents of register pair number four. If successful,
program control is returned to the address defined by the
contents of register pair number three. The four instruc-
tions listed here; 01,2C through 01,2F merely place 00into
the low order byte of register pair number eight.

All contents of register pair number five are set to zero.

A number 4F is set in register pair seven. This number
defines the number of attempts to detect sound which will
be made for each memory location.

These instructions test the input lines to determifie if
sound is present. If present, the program jumps to a sub-
routine at 01,59 or 01,61 or 01,69. Each of these sub-
routines return control to this loop. Each pass through this
loop decrements the number stored in register pair seven.
When the low order byte contains the value 00, escape is
made to 01,48.

These instructions increment registers two and eight.
Register two addresses the memory location being filled.
Register eight is used to store a number which represents
the length of the sound heard thus far.

This tests to see if the Q flip-flop is low.

1f low, then no sound was detected during the 01,3C to
31,47 loop. If no sound was detected, then control of the
program moves to a short subroutine at 01,71.

These instructions take the contents of the low order byte
of register pair number five and subtract that number from
10. If the results are zero, then program control goes to
01,74. Contents of register five indicate the number of
times that no sound has been detected by the loop 01,3C to

01,51
01,52
01,53
01,54
01,55

01,56
01,57
01,58

01,59
01,5A
01,58
01,5C
01,5D
01,5E
01,5F
01,60

01,61
01,62
01,63
01,64
01,65
01,66
01,67
01,68

01,69
01,6A
01,68
01,6C
01,6D
01,6E
01,6F
01,70

01,71
01,72
01,73

01,74
01,75
01,76
01,77
01,78
01,79
01,7A

88
FD
63
32
95

7A
36

01,47. Moving to 01,74 is the only way to escape this
subroutine successfully. This test determines that a suffi-
cient period of silence has passed (the 10 in 01,4E) to
indicate that the spoken word has ended.

This tests the contents of low order register eight. If the
loop has been passed too many times (loop starting at
01,3C) then the word is too long and the program jumps to
01,95.

If the tests above have failed (not enough silence to end or
not so much sound as to force an end) then the Q flip-flop is
set to a low value and the program returns to 01,36.

This subroutine can only be reached from 01,3D. It sets a
high value into the Q flip-flop. It forces the least significant
bit in a memory location to contain the value 1. The mem-
ory location affected is the one addressed by the contents
of register pair number two. Control is returned to 01,3E.

This subroutine can only be reached from 01,3F. It sets a
high value into the Q flip-flop. It forces the second bit from
the right in a memory location to contain the value 1. The
memory location affected is the one addressed by the
contents of register pair number two. Control is returned
to 01,40.

This subroutine can only be reached from 01,41. It sets a
high value into the Q flip-flop. It forces the third bit from
the right in a memory location to contain the value 1. The
memory location affected is the one addressed by the
contents of register pair number two. Control is returned
to 01,42.

This subroutine can be reached from 01,4B. It increments
the value held in register pair number five when no sound
has been detected in the loop 01,3C to 01,47.

These instructions place 01,80 in register pair number
nine. Pair number nine then becomes the program counter,
thus the program jumps to 01,80 at the end of this block of
instructions. This point in the program is reached by jump-
ing from 01,50.

241

01,78
01,7¢C
01,7D
01,7E
01,7F

01,80
01,81
01,82
01,83
01,84

01,85
01,86
01,87
01,88
01,89
01,8A
01,8B

01,8C
01,8D
01,8E
01,8F

01,90
01,91
01,92
01,93
01,94

01,95
01,96
01,97
01,98
01,99
01,9A
01,98
01,9C
01,9D
01,9E
01,9F
01,A0

01,A1
01,F3
01,F4
01,F5

01,F6
01,F7

242

00
00
00
00
00

83
93

BO
DO

This is an unused block of memory which this program will
never operate upon.

This moves the contents of register pair number three
(address for a successful return) into register pair number
zero. Register pair number zero is then made the program
counter, thus the program jumps to the address which
corresponds to the number which is held in pairs zero and
three.

This block of instructions is reached from 01,9E, a timing
loop. This block changes the program counter from regis-
ter zero to register nine after the address 01,90 has been
placed in register pair number nine. The program jumps to
01,90.

This is an unused block of memory which this program will
never execute.

This moves the contents of register pair four into register
pair zero. Register pair four, one may recall, contains the
address for an unsuccessful subroutine return. The pro-

gram will jump to whatever address is represented by the
contents of register pair number four, whichnow is also the
contents of pair zero, the program counter again.

This timing loop, reached from 01,55 is used to generate a
delay after a sound has proven to be too long to store in
memory. This is used to keep the program from taking the
last portion of a long sound and storing it as if it were a
complete word.

Unused memory; developing a program by hand often re-
sults in such gaps as this.

These instructions insure tha the value contained by regis-
ter pair number five is now equal to 00,00. This block of
instructions marks the beginning of the subroutine which
compares the unknown sound against known sounds.

01,F8
01,F9

01,FA
01,FB
01,FC
01,FD
01,FE
01,FF

02,00

02,01
02,02

02,03
02,04

02,05
02,06
02,07
02,08
02,09
02,0A

02,08
02,0C

02,0D
02,0F
02,0F

02,10
02,11
02,12
02,13

02,14
02,15
02,16
02,17
02,18

EA
F3

32
0D

1A
3R
FD
57
32
14

30
00
15

30
05

C4

C4
C4

85
FD
57

30

These instructions place the value 09,F4 into the B regis-
ter pair. 09,F4 is the starting address for the memory block
which contains the unknown word (word being recog-
nized).

This instruction takes a type of information from the mem-
ory location addressed by register pair B and places that
information into the D register. The value contained in the
B register pair (address) is incremented by one count.

These instructions compare one byte of the known word
(found in register pair A) to the byte in register D (un-
known word).

After the above comparison, register D will either contain
zero (an exact match) or some other value (meaning the
bytes compared were different). If an exact match was
found, then the program jumps to location 02,0D; other-
wise it continues to 02,05.

These instructions increment the count in register pair A
(address of memory of known word). They also test the
value found in the B register. If the low order byte of B is
found to contain 57, then all bytes have been compared and
the program jumps to 02,14.

This causes the program to jump back to 02,00 where the
loop will be run again.

This point is reached by a jump from 02,04.

These instructions increment the count contained in regis-
ter pair number five (this count is equal to the number of
matching memory bytes found during the test). The pro-
gram then jumps to 02,05.

These bytes of memory are unused by this program.

These instructions compare the number of matching bytes
found to the validity parameter, 57 found at location 02,16.
Decreasing 57 would result in more matches but less
accuracy. Increasing 57 (up to the limit of 63) would in-
crease accuracy but decrease the number of successful

243

02,19
02,1A
02,1B
02,1C
02,1D
02,1E
02,1F

02,20
02,21
02,22

02,23
02,24
02,25
02,26
02,27

02,28
to
02,2F

02,30
02,31
02,32
02,33
02,34
02,35
02,36

02,37
02,3F

02,40
02,41
02,42
02,43
02,44

02,45
02,BB

02,BC
02,BD
02,BE
02,BF
02,C0
02,Cl
02,C2
02,C3

244

finds. If this comparison is deemed successful, then the
program jumps to 02,30; otherwise is continues to the next
byte in sequence.

These instructions cause the program to jump to 02,23.
They also cause register pair nine to be the program
counter rather than pair zero.

These locations are unused by this program.

Contents of the D register (address for an unsuccessful
return from this subroutine) are placed in the zero register
pair and the zero pair is again made the program counter.

These locations are unused by this program.

This location is reached by a jump from 02,18 upon deter-
mination that the sound heard matches the sound being
compared from memory. These bytes cause the programto
jump to 02,40 and they case register pair nine to be the
program counter.

These bytes are unused by this program.

The address for a successful return, contained in the C
register pair, is loaded into the zero register pair and then
the program jumps to that location because the zero regis-
ter is again made program counter.

These locations are unused by this program.

Reached from 00,92; this group of instructions causes 00 to
be output (all LEDs off). This mark the start of the RUN
section of the program.

02,04
02,C5
02,C6
02,C7
02,C8
02,C9

02,CA
02,CB
02z,CC
02,CD
02,CE
02,CF
02,00
02,01
02,02
02,D3
02,D4

02,D5
02,D6
02,07
02,D8
02,D9
02,DA
02,DB
02,DC

02,DD
02,DE
02,DF
02,E0
02,E1
02,E2
02,E3
02,E4
02,E5
02,E6
02,E7
02,E8

02,E9
02,EA
02,EB
02,EC
02,ED
02,EE

02,EF
02,F0
02,F1
02,F2
02,F3
02,F4

02,FS

F8
F4
A2
F8
09
B2

F8
00
52
12
82
FD
57
32
DS

CA

34
DD
35
DD
36
DD
30
D5

C4
C4
C4
C4
c4
C4
F8
FB
A3
F8
02
B3

F8
BC
A4
F8
02
B4

F8
F4
A2
F8
09
B2

C4

This places the starting address for the unknown word into
register pair two.

The block of memory to be used for storage of the unknown
word is filled with the value 00.

This loop tests for sound and jumps to 02,DD whenever a
sound is detected.

This block of instructions is used to set register pair three
with an address which will be used for successful return
from a subroutine.

This sets an address in register pair four which will be used

for an unsuccessful return from a subroutine.

This sets the address of a memory location which will be
filled by the upcoming subroutine.

This causes a jump to the subroutine at 01,2C. This sub-

245

02,F6
02,F7
02,F8
02,F9
02,FA

02,FB
02,FC
02,FD
02, FE
02,FF

03,00

03,01
03,02
03,03
03,04
03,05
03,06

03,07
03,08
03,09
03,0A
03,08
03,0C

03,00
03,0E
03,0F

03,10
03,11
03,12
03,13
03,14
03,15

03,16
03,17
03,18
03,19
03,1A
03,18

03,1C
03,1D
03,1E
03,1F
03,20
03,21

03,22
03,23

246

routine will fill a memory block with a sound picture,
unless the sound is too long. It will return to either the
successful or unsuccessful location.

Reached by a successful return from the 01,2C subroutine,
arriving at this point means that an unknown sound has
been placed into memory. Whether or not that sound is one
of the learned words remains to be determined.

These instructions place 08,00 into the A register pair.

The Dregister is filled with the address for an unsuccessful
return from the next subroutine.

Register pair Cis filled with an address which will be used
for a successful return from the next subroutine encoun-
tered.

This jumps to the subroutine which compares the unknown

sound with a known sound.

This sets a starting address in register A which will be
used for comparison in an upcoming subroutine.

This fills the D register with 03,25 for an unsuccessful
subroutine return.

This places 05,20 in the C register for a successful return
from the upcoming subroutine.

This jumps to 01,F4, the location of the comparison sub-
routine.

03,24

03,25
03,26
03,27
03,28
03,29
03,2A

03,28
03,2C
03,2D
03,2E
03,2F
03,30

03,31
03,32
03,33
03,34
03,35
03,36

03,37
03,38
03,39

03,3A
03,38
03,3C
03,3D
03,3E
03,3F

03,40
03,41
03,42
03,43
03,44
03,45

03,46
03,47
03,48
03,49
03,4A
03,48

03,4C
03,4D
03,4E

03,4F
03,50
03,51
03,52

This places 08,C8 into the A register pair.

This places 03,3A into the D register pair.

This places 05,40 into the C register pair.

This jumps to 01,C4, the comparison subroutine.

This places 09,2C into the A register pair.

This places 03,4F into the D register pair.

This places 05,60 into the C register pair.

This jumps to 01,F4, the comparison subroutine.

This places 09,90 into the A register pair.

247

03,53
03,54

03,55
03,56
03,57
03,58
03,59
03,5A

03,58
03,5C
03,5D
03,5E
03,5F
03,60

03,61
03,62
03,63

03,64
to
03,6F

03,70
03,71
03,72
03,73
03,74
03,75
03,76
03,77
03,78

03,79
03,7A
03,78
03,7C
03,7D
03,7E

03,7F
03,80
03,81

03,82
03,83
03,84
03,85
03,86
03,87

03,88

03,89
03,8A

248

This places 04,00 into the D register pair.

This places 05,80 into the C register pair.

This jumps to 01,F4, the comparison subroutine.

These locations are not used by this program.

This sets the address for a successful return from the
01,2C subroutine.

This places 00,FA in the number four register pair.

This jumps to 01,2C, the subroutine which stores the word
“picture” in memory.

This places 09.90 in the number two register pair.

These instructions place 00 in the block of memory ad-
dressed by the contents of general register pair number
two. This is the space used for word number five storage.
They also assure that the Q flip-flop is in the low state.

03,88
03,8C
03,8D
03,8E
03, 8F
03,90
03,91
03,92
03,93
03,94
03,95
03,96

03,97
03,98
03,99
03,9A
03,98
03,9C
03,9D
03,9E

03,9F
03,A0
03,Al
03,A2
03,A3
03,A4
03,A5
03,A6

03,A7
03,A8
03,A9
03,AA
03,AB
03,AC
03,AE

03, AF
03,B0
03,B1
03,82
03,83
03,84
03,B5
03,B6
03,87

03,B8
03,B9
03,BA
03,BB
03,BC
03,BD

These instructions cause 10 to be output. 10 represents
one line, thus one LED will be illuminated.

This is a loop from which escape 1s possible only if sound is
detected. Upon detection of sound, the program jumps to
03,A7.

15is output by these commands. 15 causes two lines to be

active.

This sets 03,C1 in the number three register pair.

This places 03,93 in general register pair number four.

249

03,BE
03,BF
03,C0

03,Cl1
03,C2
03,C3
03,C4
03,C5
03,C6
03,C7
03,C8

03,C9
03,CA

to
03,FF

04,00
04,01
04,02
04,03
04,04
04,05
04,06
04,07
04,08
04,09
04,0A
04,08
04,0C
04,0D
04,0E
04,0F
04,10
04,11

04,12
04,13
04,14

04,15
to
04,FF

05,00
05,01
05,02
05,03
05,04
05,05
05,06

250

This causes the program to jump to 01,2C.

This causes 1F to be output. 1F illuminates five LED’s.

This marks the end of the learning sequence.
The program will remain here, looping until some external
activity occurs (reset switch is operated).

These locations are not used by this program.

These instructions form a time delay and they are reached

from various places after a successful recognition se-
quence. The time delay assures that the “recognized” light
for the appropriate word will remain lit for a brief time
before the unit commences searching for another word.

This jumps to 02,C4, the place where the RUN part of the
program starts listening.

These locations are not used by this program.

This causes 01 to be output then it jumps to 04,00.

05,07
05,08
05,09
05,0A

05,08
to
05,1F

05,20
05,21
05,22
05,23
05,24
05,25
05,26
05,27
05,28
05,29
05,2A

05,28
to

05,3F
05,40
05,41
05,42
05,43
35,44
05,45
05,46
05,47
05,48

05,49
05,4A

05,48
to

05,5F
05,60
05,61
05,62
05,63
05,64
05,65
05,66
05,67
05,68

05,69
05,6A

05,68
to
05,7F

These locations are unused in this program.

This causes 02 to be output and the program jumps to
04,00.

These locations are unused in this program.

This causes 04 to be output. The program then jumps to
04,00.

These locations are unused in this program.

This causes 08 to be output. The program then jumps to
04,00.

These locations are unused in this program.

251

05,80
05,81
05,82
05,83
05,84
05,85
05,86
05,87
05,88
05,89
05,8A

252

This causes 10 to be output. The program jumps to 04,00.

Chapter 17
The Z-80 Recognizer

More people are familiar with Z-80-based computers than with
processors such as the previously discussed 1802. This chapter
illustrates a fully developed and tested microcomputer system for
voice recognition utilizing the Z-80 circuit. The computer described
here may be easily built by following the detailed assembly instruc-
tions given. The input stage does not utilize filters, thus the verbal
command must be processed solely upon the basis of a squared-up
waveform. Software listed is similar to the Length program for the
1802 and it does not support any learning techniques or pattern
comparison. The system shown here does not utilize the Random
Access Memory or memory select circuits. Why then, you may ask,
should I bother to build them? The emphasis here is upon construc-
tion of a working microcomputer for verbal recognition. The input
port will accept eight bits of information. though only one is being
used. The same filter shown in an earlier chapter could be built to
provide three bits of input data; remember that this unit will readily
accept up to eight channels of data. More sophisticated software can
be written (or purchased; see Table 17-1) to utilize the Random
Access Memory provided.

Figure 17-1 illustrates the major functions performed by this
unit. Sound comes through a microphone, is amplified by an
amplifier, and is sent to an input port of the computer. The computer
processes this information according to the instructions received
from the memory (software). Under software control, lights are
illuminated to represent recognition of a word or phrase.

253

*(sopjoy pue sjje @ 9) Aianeq }oA-6 ((1eindwod o} Jeyydwe 103U 0}) So|qed suoydosonw ‘aim deim eam (Aug) 3oq B 1N HuIS fesy :oSIN
uid-pL
uid-gi
uld-ve
uld-o

S1%208 deam asip

Vv8001-2.2 1equnu Soferes soeys oipey :sayyduty
aoaid yout 9 x Yout { :pieog paieiopad

mouyy sjgnoq ajod elbuis :yoms

nem-z4 ‘wyo OP2 ‘€LY ‘2 ‘1 1Y ‘0LY ‘64
Hem-z4 ‘wyo 046 Y ‘vy

Hem-zj wyo 0Ee '8 ‘ZH ‘OH ‘eH ‘2H ‘IH

WeMm -3 wyo 08 -0H

HOA-0S ‘Id Lt :loyoeden

ZHW 10°2 :feIship

fisurea Auy (g) :epolq Bummuz bR

G08. :101e|nbay abejjon

vi12 (2) :(nvy) Aowapy

2128 (2) :uod indinp-induy

(1.200€ "BD ‘SS0I0ION ‘S86 X08 "O°d *SIONPoId 8010\ Jendwio) :Wolj siqelieAe ol WolSAS SIYL UO HIoM {Iim 18Ul SINOHJT) 9122 ‘WOHIS
08-Z :10ss8001dosoipy

00¥2 :901 ‘SOl

20vL ¥0l

YovL :€01 ‘201 ‘1OI1.

*1azjud09ay (8-Z 10} 117 SUed *|-L| 3lqeL

254

1H0d
1Nd1no

i

AHOW3IN

‘wesAs uonubose: 08-Z jo weibelp yo0ig 121 Biy

1H0d
1NdNI

'1’
‘l

HOSS3004d

—— 1NdNI

H3ldINdNY

ﬂl aNNos

wn
7o)

2

This computer is battery powered and can be built for less than
$100. With the software provided, it will respond to sound of
varying length, the shortest sound being word number one and the
longest being word number five. The same hardware (physical
device described in detail in this chapter) can have a learn and run
mode with different software. Recall that software is the set of
instructions placed in the Erasable Programmable Read Only
Memory (EPROM). A 2716 (EPROM) purchased from any
source will not contain software. You, the user must have the desired
program set in the EPROM. Obtain programming equipment and set
the EPROM vyourself, send the program listing and EPROM to
someone who provides such service, or purchase a programmed
EPROM from the source listed in this chapter. The computer will
do nothing without software.

Figures 17-2 through 17-5 are the schematic diagrams of the
Z-80 based recognition computer. The 80-ohm resistor in the upper
left-hand corner of Fig. 17-2 is used as a load for the audio amplifier.
The ohmic value must be greater than 8 ohms (typical load for an
amplifier) in order that voltage developed across the resistor can
achieve logic highs. Do not use an amplifier from a home entertain-
ment system, as this high impedance load could cause the amplifier
to damage itself The input to pin 11 of IC3 is held low (by the
ground on the 80 ohm resistor) until a sound of sufficient magnitude
is amplified. This high-level sound is inverted (and squared) by IC3
leaving a low output on pin 10 of IC3. This low-level signal goes to
pin three of the 8212 input IC. When the proper software request
occurs, this low signal is passed through the 8212 IC to pin 4 and
ultimately to the Z-80, pin 14. Reviewing this action, a high level
sound produces a low level on the DO data line of the processor
when the processor requests an input.

Pins 16 and 25 of the Z-80 are input lines related to interrupt
handling (something not used in this system configuration); there-
fore they must be connected to a logic “high” signal to prevent them
from becoming active. Pins 17 and 24 of the Z-80 likewise must be
tied to the positive supply to prevent unwanted processor activity.
Pin six of the Z-80 is the clock (oscillator) input to the processor. A
high speed square wave is developed by the crystal, capacitor, gates
and resistors connected to pin six. This clock signal goes to pin
11 of the 8212 output IC where it is used for synchronizing the
output information. Recall that the computer data bus can contain
input information, software instructions, memory data, or output
information; it is necessary to let the output circuit know exactly

256

"uopoas ndut pue Jossedoid Leindwod 0g-7 Jo onewsyds “2-2} b4

MOOT0 N
vosee
gy 1353w 4/
5 A6 AS
8 9
Hi—p o+ o—p G+

' NNY
4/ A 05

& 816 ddiv \|

° g 7

ZHIN
-1 e :
wOlka mlor S AWS g €
J4Sryo > E— MZ% ' WA 1 ¢
za—td 2L 08z Ve v
Tlo4e——— _ voee
o T £ o VOL6
3 ed U0t6 oy
SsH
ol AL
M ot M2
U0Ee 008 H3I4NdAY
Se AMA—P G+ oY Wod4

cd

257

"UORDBS 013U 21B0] pue Indul t1eNduId 08-Z JO dewaydS 'e-L} Bl

W_*nzl jol=]1]}
mcwm_z
10—
sd—?
_m i mo.....mm
21|01 1a—
61 m_ a
le 9
_ TV LY
b
1NdNiciecs
0c 9t
LLEL 2l 228L6.S¢E
v v2 |1e —L1NdNi
7 it

258

*Aiddns Jemod pue Aiowsw feindwod 08-Z Jo onewaYdS -2 1 614

WVH3

43

N*\

S+ S+ S+

ano 3 A Mtz OHelsH L
el Lt el |1t e 02 6 LLVI9L

G+ €—1S08. z_‘ 8L 80F viact 8l 8 0L vilzgt

1no vLIE pLIg 9122

6 IS 6 9LL E£L S i
(AY3LIVE 170A 6) + — Silzile]v]9 n_m\l_ silziyzivlo : ct 6Llec c ¥ 9 8

T

8L Jggit|€ls|z

44

259

*syBy pue uod ndino ueindwod 08-Z Jo dnewayos "g-2} "bi4

. . 1N0
- 0] 8 LE MOO10
9
- hﬁ o—
s am|razneazr |zaa |, 1nd18o -
S L7 C,_ n SR e Y /Z & le8 91 ¥a
< S = = = < 2 |+ a3 6 €d-
AL LALLANGES ALL AL okt g-2d
TR TR 777FN o 7 -C OD
MA I MA LML M% M2 erlum\
UVoye SV0YeSuoree Uove 2 U0ve v
€idq cldq i od 64 bl
€l
o+ < . . Z
S+

260

when it is to respond lest it output garbage. Pins 29 and 11 are the
power supply pinsof the Z-80. Pin 26 of the Z-80 is tiedtothe
run-reset switch. A positive voltage applied on this pin will allow
the processor to run; a negative voltage will reset it (placing the
program counter back to the zero position). Pins five, six, nine, and
eight of IC3 are used to debounce the operation of the switch. R8 is
used to additionally insure that transients do not occur while the
run-reset switch is between positions.

Pins 30 through 40 and pin one of the Z-80 are address lines A0
through All. These lines determine which memory location is
being selected for operation by the processor. (They can be used to
select from numerous input output port combinations, though the
system is not constructed for such here). Pin one of the Z-80, All, is
used (along with other logic) to select either the EPROM or RAM
memory. To expand the memory beyond the level established in
this system would require additional logic to insure proper memory
selection at all times. R7 is used to aid in this selestion process by
assuring that the output of pin one of the Z-80 will always be high
unless pulled low by the Z-80.

Pins 14, 15, 12, 8, 7, 9, 10, and 13 of the Z-80 represent the data
bus, DO through D7. Information flows to and from memories and
port on this bus.

Pin 27 of the Z-80 is not used in this application and it does not
need to be connected to anything. Pins 19 through 22 are control
lines used to aid in the establishment of proper timing for various
devices in the computer system. An input signal is generated by a
combination of RD and IORQ. An output signal is generated by a
combination of WR and IORQ. Note that a system with more than
one input or more than one output port would require more sophis-
ticated logic because of select information placed on the address
lines.

The EPROM (first 2048 bytes of memory) is enabled when
Al1is low, RD is highand MREQ is low. The RAM is enabled when
All is high, MREQ is low and RD or WR are low. The 8212 output
IC will drive the light-emitting diodes without the aid of external
transistors. R9 through R13 are required in series with the LEDs to
prevent high voltage damage to the LEDs. The 7805 regulator
circuit provides the proper supply voltage to power the circuitry.

Construction of this computer is not difficult, though it will
require eight to ten hours of labor. Acquire all the parts needed and
lay them out on the perfboard as shown in Fig, 17-6. This is a top
view of the computer; only the regulator circuit will be wired from

261

-199ndwiod 10} Addns jjoa-g eAnisod aq [m Baj b1y “weisAs seyndwos 1oj (punosb osie) 1ndul eAneBau Aieneq
eq iim Baj sejuan ‘Indul eanisod Atereq oq |m Ba) o “yuis 1eay uim ysny ole Aau eyl 0s 508, Jo sbaj eoeld ‘inoAejseindwos jomaindo] "g-£1 “Big

~

— =~ ®

1NdNI

ano

g+

262

REERYE NG
® 6 o o o 0 @
A T A A P
S T o716 P
212} i P
INPUT ' : : Sy
RO . S i
. : . Hc2t ficid : -
e R10, oL1s ¢ H E . E H M Ro
o Rit o -g. E E . e °* : E . .
cRi2. a0 1@ : *« INPUT
L R13e o5 lsa1al p sz g owop ot p g JACKK
OUTPUT jcs ficat dlca: o CHYSTALEIgE
s e ° . ¢ » 4 . *D
L] L) - . L] L] . .

C1

Fig. 17-7. Attach positive 5-volt supply to the top of R1. Connect the top of R1 to
the top of R2, the top of R2 to the top of R3, the top of R3 to the top of R6, the top
of R6 to the top of R7, the top of R7 to the top of R8, and the top of R8 to pin 18 of
the 2114 indicated.

this side. Fasten the regulator through its heatsink to the perfboard
with a nut and bolt. Turn the board over. All parts should stay in
place (the sockets will stay; the other components may have to be
temporarily taped until they are wired). After the components are
wired, the wires will hold them down; external methods of securing
the devices are not necessary.

Figures 17-7 through 17-46 indicate which wires to place in
which location. Each figure shows five or six connections. Make

B © ool
croooeo
® 5 ® ¢ 0 o P
T %23 g2t : : . .
PR TS B H : : :
HEE S A t2716 ¢ : : ©
: H :40 *4 . E . M .
80123 I : :
INPUT | $ zs0 : . ..
: : SW1
3 . . .
¢« RO "CHe : : .
TRo. e}l HSH : foe
o Rt o+ 420 5 .l .
eRIZ . L3 ¢ 2 .
AR T + INPUT
*LEe :9212: P Pt 13 JACK
lics* 11ca33 CRYSTAL:C:
OUTPUT H : ! RSR4Cr * 6%

Fig. 17-8. Connect pin 6 of the Z-80 to pin 9 of IC2. Connect 5 of IC2 to the bottom
of R5. Connect 5 of IC3 to 9 of IC3.

263

SW1

Oé.

o
(28]
N

s00000

C1

N.......

““eoeeoce

qa 8N

AN ™ v <t

e00peOCEOC '__
) o o
%D. O
..........-z N v -
(A o s i 1
° @ °

264

* INPUT
JACK

[A XX N NN J
Qo
(X R NN ¥ J
-
<
-
(]
oD-o
o
(&)
S
[E’: L
o £
(A XXX KX J
m
O

IC5

Fig. 17-9. Connect 24 of 2716 to 21 0f 2716. Connect 1 of 2716 to 19 of 2716. Attach 11 of 2716 to 12 of Z-80. Attach 12 of 2716 to 29 of Z-80.

Or © o=
oo
H s 2:) 2% H H H H ®
A P : :
N : 2716 : :
R BRI . : : :
: , ' : . :
=8212. * . :280 . . . [
INPUT 1c2 : E SW1
. RO, C RS I
. R0, L1 H H . Ro
R10 Q2. . H . .
« AT, 3. & 3 *. INPUT
«R12, 01 ics . . JACK
Rig, ‘o ezl Pl . ek
* : OUTPUT : R CRYSTAL:¢"3
. P H

Fig. 17-10. Attach 13 of 8212 Input to 14 of 8212 Input. Connect 5 of 2114 right to
5 of 2114 left. Connect 6 of 2114 right to 6 of 2114 left. Connect 17 0f 2716 t0 13
of Z-80. Attach 12 of IC1 to 2 of IC5.

these connections and check them carefully. The figures represent
the bottom view and indicate exactly where the wires must go. One
incorrect connection can cause improper operation of the computer.

A flowchart of the software is given in Fig. 17-47. Initially, all
lights are off (after the run-reset switch has been moved from the
reset position to the run position). When a sound is detected, the
program goes through a delay (half a second) then checks for sound
again. Because the processor is very fast and because many highs

T
s : :2:| gz.l H . . . ©
o :1: - . . :
. . ele eie . M : :
TR
8212 : : : : .
INPUT Ic2 Ic1 ;%80 SW1
* B9 . Pod : :
e RIO, oLt ¢ : [e : .
i\ o2s o . ¢ s 3 Ro
« Ri1 . o3 H 4 LA . o °
e 33 « *INPUT
cRize dd : I o5 s cs . . JACK
e« Ri3 . 8212 s 2 - . M ’F; ¢ . o
oUTPUT & ¢ & & & 3 RSRAC . 3G3
: . e e CHY?TAL:S M
3 oo : :

Fig. 17-11. Attach 2 of 8212 Input to 12 of 8212 input. Connect 7 of 8212 Input to
9 of 8212 Input. Connect 4 of 2114 right to 4 of 2114 left. Connect 7 of 2114 right
to 7 of 2114 left. Attach 5 of 2114 right to 8 of 2716.

265

8212 EEEREE
INPUT ceeee
¢ . 2% L2l . : . . ®
I S T S P
R F LT 12716 & : :
[-] s c4r : : : :
vl Pozeo } “ .
: : swi
« R EC: :CE : :
. oL1- : H :l 25 ol 1: M : °
RRICEPT O R A Ro
A T ' .
. R12 . iA! : : |C5 ‘C4 lCa .. |NPUT
. Ri3 . > 82127 s o e s« JACK

R5R4Cr et
CRYSTALL"S

OUTPUT &
I : I %

Fig. 17-12. Connect 9 of 8212 Input to 16 of 8212 Input. Connect 6 of IC1 to 3 of
IC4. Connect 9 of IC1 to 1 of IC5. Attach 4 of IC5 to 12 of ICS.

ssesgee
sescoce
sseces,

andlows occur withina vocalized sound, the computer checks for
sound 256 times before declaring that no sound exists. If no sound is
found then the position one light is illuminated, a time delay occurs,
and the computer awaits the next sound. If sound is detected in this
loop, a time delay occurs and the computer checks for sound further
down the flowchart. The lights will not go out again unless the
computer is reset.

Table 17-2 is an assembly and machine code listing of software
for the Z-80 computer.

e o & o 0 0

[IXEFEXEXRR RN
XXX AIEXE R 2]
(XX EE R R X3
(AR XN NN}
[EXEEZ R 2]
2000000S o
scspnosscece ©
[EXEXEXEE RN 3

IC2

Seevsesesssvvsseses
®evecscessessenscee

ssose
cvesse
esecse
sseceo

e o 0o o o
» o ¢ o o
o)
[$4]
E]
.
3
.
3
.

ecesssvcsae
XXXyl
(9}
W
ssssss
.
esscese

essessssace
.

eseee
X Xxxxs
cescee
sesos

§[

essccee

Fig. 17-13. Attach 7 of IC2to 7 of IC5. Connect 14 of IC2 to 14 of IC5. Attach 14 of
IC3 to 14 of IC4. Connect 7 of IC3 to 7 of IC4.

266

* o o o @

T o: st P : :
: . : :
hd . e M4 * o
‘.ﬁ. ° E E
* * e ¢ 3 % oiCH . *
. « * ° A H . . s . .
. . ¢ . E : |C2H .
LR - R B T
. . : HEEIE s S c:
R S S * i6a
Csb——d ca] - - -I

Fig. 17-14. Connect 14 of IC1 to 14 of IC2. Connect 7 of IC1 to 7 of IC2. Attach 7

of IC4 to 7 of IC5. Attach 14 of IC4 to 14 of IC5. Attach 14 of IC6 to 14 of IC3.
Attach 7 of IC6 to 7 of IC3.

As in the other recognition devices, proximity of the micro-
phone to the mouth of the speaker is a significant factor in the
functioning of the system.

* & o ® 00
ErE2dE
N PERETTI | R ..
SRR N P ©
R T $2716% : :
HE | R . . :
B212° * : : : . o e
INPUT HE sw1
‘RO . A -
L d L M 4 . L . .
«R1I0 « oLl @ [T ° :
o 2 M s I MR FjD
*RI e g3 ¢ 3 IC2 C1 . « * INPUT
e R12 ‘L4: . 5 o o o o @ . * JACK
R R LT
OUTPUT & ¢ ¢ ¢ & ¢ CRYSTALIs 3
ics lca” Cica” e e e *t

Fig. 17-15. Connect 13 of 8212 Output to 14 of 8212 Output. Connect 6 of 8212
Inputto 15 of Z-80. Connect 14 of 2114 left to 14 of 2716. Connect 13 of 2114 left
to 15 of 2716.

267

e o o & o 0
8212 Rreex
'NPUT ® o o * o 0@
iz et o) ®
B O P : :
H BH YL T
: : : : :
| $ 280 & R
Ic2 IC1 : : swWi1
. R : :
CRIO. 4 ¢ ¢ iobod : HE
. R11 . :La: E. § . . . 'Y FiD
"RI2, 4 1% g5 g4 o3 *. INPUT
° . M °
*RI8 . L5 Jppt 11 1 f i IRSRAC o JACK
OUTPUT + ¢ & & & 3% CRYSTAL:/C:
L S I CRER
o o o . .

Fig. 17-16. Connect 2 of 8212 Input to 16 of 8212 Input. Connect 20 of 8212 Input
tot2 of 2716. Connect 2 of 2716 to 1 of 2114 right. Connect 15 of 2114 right to 22
of 2716.

2R ©
H t 2716 : :
‘8212 : : :
INPUT 3 280 ¢ coe
Ic2 IC1 : : SW1
RY . H : :
TR T - - : N
RIO- T 2t it i Ro
R11 . L3 E 3 : ® .
R12. oM 1 e———— *INPUT
R13 . A S SR - JRsmc‘ . et JACK
OUTPUT 2 ¢ ¢ & & ¢ CRYSTAL3g ¢
fcs’ ica’ icst e e e *

Fig. 17-17. Connect R9 left to R10 left to R11 left to R12left to R13 left. Connect
14 of 2114 right to 9 of 2716, Connect 10 of 2716 to 13 of 2114 right. Connect 10
of 2114 left to 4 of IC3.

268

.-
* m_m Ex
. sesceee 86& Pm
. scecsee tm 1} WJ
SE ® . o
~ O = .
©e o - o - = cees
5O 2
c&® » sescovs
e ndl- -
. 8% .8 =
vy * o (Ne
-8 2
-
32 o N
sececes o~ .'Ws. m o%
-
S secsecsssscctentnns .
sssces esceseo &O PREXIIL
SUUORRRN rvu : ®9 8
© oy cessese
—” socese ®scces s 3&
0 ssese
. o.o..om‘-.... sceces sesscee H..U\s..mn.n...... WM..:... m..
ecsessse ceccsee
: ecoco? essssce m..;mv. =
. - N
e o f s el e scecsccepes et neeesee
=g
® ecesscose oole -o.-n/_m m Q . sCHe moa-ooa m-..- .s
. ~a 00O «€H.
eccescese O Y= s OO QY « =
-oooo-.-noﬂvU o an e/He seasssse s --oo-n/_u
sssstcee O <+ & ..IDr
FTS% e8He e SE
CO eveccses BU
seessnes sosecsees oIN sssssscsscs O
. . mmm
LA XX ZRN] o
388z ceeeeegy -t ..
¢ M <0
s o o . 8...@ Wv 4|.|._ 358
- sessosessse |-
o3 N2 e e e
o
e e & o o 4I.m2 resrcccs g O= o =g N o
oag /n rrec o
Fma . . ° .

269

Fig. 17-19. Connect 14 of 8212 Input to 24 of 8212 Input. Connect 13 of 8212
Inputto R9 left. Connect 12 of 2114 left to 16 of 2716. Connect cathode of L2to 6

of 8212 Output.

SR HHEE - : :
A BN o3 12716 § : :
S il r4' P P
8212° . HIS | {0 ..
INPUT 2, Jo1 : : sW1
* RO . rummren EEE SR : P
+ R10 » t; I Ro
. . : : . . . 3 .
SR D L.
e R12 & *Lde M . | * INPUT
CRI3, LS Sgappt 2 3 % P RSAAC o ‘_g,ci JACK
OUTPUT & ¢ & & & ¢ cRYsTALLICE
. . » L] . . [[]
0|050 .'04. '|Ca' . o o

Fig. 17-20. Connect 22 of 8212 Input to 20 of 8212 Input. Connect 16 of 8212
Inputto 18 of 8212 Input. Connect 1 of 8212 inputto 11 of IC6. Connect 3 of 2114
right to 4 of 2716. Connect 12 of 2114 right to 11 of 2716.

ONOBN
8212 [EGEII.IIDZG
INPUT | -
. . 2% v 2. . .
g [:] : :
S DY R LA HE ®
:ze0 : . e
co . : : SW1
«R9 . s B : :
R INEIE T S - : P
2 3 e HI Ao
IR TP S S Ic1 .
« R12, eLde 2 o *.INPUT
SR13 . CLST lgarpt i)t or o ob sl s s | JACK
OUTPUT 2 ¢ % & ¢t ¢ CRYSTAL $ Ct
Jcs s’ et e R

Fig. 17-21. Connect 20 of 8212 Input to 18 of 8212 Input. Connect 16 of 2114 left
to 23 of 2716. Connect 2 of 2114 right to 3 of 2716. Connect 1 of IC2 to 3 of IC5.

270

O QNN =
8212 roocoeo e
INPUT ¢ s
. : :2: :2: : : . .
] IS E L : : : :
N B R : . : H
Pood g $ 278: P
: \ E . N
t 280 3 ¢
3 . SW1
. R, J :'C?': o1y : :
« R10. Lie S HERE : PP
| 2¢ . ¢ e L
R, 45 & 8 o
cR12e ¢ 2 lics 14 ic3 © e
LTRSS T i S 0 | H
« RI3 82120 1 1 3 1 RSR4C . g
OutPUT ¢ ¢ & & ¢ ¢ CRYSTAL:;":
. M * o « o . oD o
- L] L] L]

e o o

Fig. 17-22. Connect 24 of 8212 Input to 2 of 8212 Output. Connect 12 of 8212

Inputto 2 of 8212 Output. Connect 10 of 8212 input to 13 of 2716. Connect 8 of
8212 Input to 12 of Z-80.

® 0 0 0 0
ON WM N
[s st s oy s s
I A T
PR S ENC
: :4“]. 4 : : : :
821 ' : -l : : . .
INPUT ! HES w1
ic2, Ict, : :
« RO . $s e : :
NN EETE TR ST B A : ‘R
« BRI .o d H I . . NPUT
eRi2 ook 33 o o 3 .
.Ls. . . . (3 . . . (3 o & O [3 JACK
« RI3 *go12°l 2 ¢ 2 T ¢ S RSR4C1 :IC.
outeull £ 3 F P i i cRvgTALl -|
. e .

Fig. 17-23. Connect 4 of 8212 Input to 9 of 2716. Connect 17 of 2114 rightto 1 of

2716. Connect 8 of 2114 left to 8 of 2114 right. Connect 1 of 8212 Output to 3 of
ICé.

271

[y (e} (=]
x -2 -
26 =8 5%
Zg L= L3
Y < O ==
(] ‘e . == . ..
.= ®ssscse 2.4!. - .
(724 Qe = - 3 o-ﬁ%-:
o essease O oy (7] = o
-) sesssee
<< - O . 3
of . og. ks o <
Mt
esscessnsssscsssssse e QO o cCc lm
om . ﬁnw m Secessccsssncsssce® OO *
P <
1 e . =0 o o .
N o £ 6 <) .
sesessscsssscsscsseve o2 N o
3....‘.- - ~
c 42 9000800 CCNOBRRGSERY essasse
““esveese ”Cnlv
N
ssscee eesssne S o
oo.n——o-ocno- 153 hd.v [™
I.‘.... l.....l‘ 1tmv ssscsscccss
28
qreeees pgeeseees EX
m.:..- m.-.:.o < o AT R A S 3
“GDI *ay° sscssee™— -
2 L L]
Sessseseses = ..I.o4l ch.-
z %9 9H [
N w O . e essteces R
pa-] [
2w|.|v - c WiB, Nt nE
-.-.--.80 B m BH® ceeccene ”U
eC sevcssssces (7
m - M‘coo-o-o
o s o o -
O LR A o= . .o
T89S S seccsese o o o
reeeeeeeeeagE T o= 39339
1U L] - . L . 44 T.'.l...’. L] b .
a% R =) e o 0 s e
crereeneene®ZE O - @ rRE 8T
CCaTEea 5N Zeeevenonne P -
= CEracaco
LI wL~o0 ¢« o o o o

Fig. 17-25. Connect 11 of 8212 Input to 13 of 8212 Input. Connect 20 of 2716 to

11 of IC5. Connect 13 of IC1 to 1 of IC4. Connect 10 of IC1 to 13 of IC5.

272

©scseses

N

ecepesse AN~ <

= o . =
oXx o0 UW
g3 =P Sz
WJ mz Z5
. . < O . .
T . Yo ® - c
o= scoesve ™o - ecesoee
7] Q N = 1) O
= © — = ©
d ®ecessco o m . ®ecsser
- [« I -
- <
) .,m . omt % MM L] nm . ° a—m-
— - c QOu >
CTTTTY } e ocm . m - sosessessessessense ocm .
om ° [&] d o -m A
o% ® .lnh m m o2 L]
.m.um ®ecs00cescecvssovass .
m.lll..' 4C .I....a
. [&]
Teeveres M $ 2
o
se00ac00 (X} o Z oee Sesense
5 T =% SR ITE F B
Seereees Seeens G © 2. creees®
== ~
o
oY~ e eesese noeeece mm o [He fosossccsess AL ssceee
o2yl Q 8] <N O o
®scsecse ~eeceso - Ql e CHe —essnse . -
~EHe - 5 « €Y.
~9y* - N3 +9H. .
*lH® cecvess -'-c.oooc-n./..U O ~ . o escesseecle O
. o v v < 0 [« Ve 4 ssseese 2D-
84 cecssee m/o:HIv - % e Q4. 211.4 S
o sesess
secsenesesld S g e ®3
[=gye}
SO
LA AN [} scescnee s o 0 e e
599335 O£ J J9933
08000000000 = ® ° s o o . ¢« e o o ®
a>D © .2 . -oo-..-.QT
~a Y 3 . ° ° N 1U . ° . . .
32 Ny §Z
®ovsvosecee — o m i} .m.w 1“” ssecsssnsseP= =) n1u. = m m.lu
rococ oo o N o ocooe
. . L3 . . .H lOl

273

put to 10 of IC3. Connect bottom of R7 to 1 of

Z-80. Connect 8 of IC2 to 11 of 8212 Output. Connect 8 of IC1 to 9 of ICS5.

Fig. 17-27. Connect 3 of 8212 In

‘Indinp 2128 Jo 2 ol ndinp 2128 Jo
£1106UU0D) '08-Z J0 2 01INAIND 212840 91 108UL0D “INAINO 2128 JO S| 01 G 1O BPOYIED10BULOYD "91.L2 JO ¥} 01 indul 212810 G 1 1weuu0D *82-L1 “Bid

. e o ¢ 8Ol Ol GO
9. ..

*IVLSAHD
ols 'V
: LOvH SH

(XY XN N J
[XN X R NN]

[E XX XN N

[A X RN LR

[AR XN NN}

[A XN RN N}
000006 0

e« €lH.

MOVl eple ¢ Cld *

1NdNI. * :
® —.0_0 NO—- N o€l Py LIY o
Dm M ™ u . * oNl—o
. . o b T . . olTe ¢ OlY o
: : oot .- 6d.
WS : : \ TNdNI |
ol [,])
. . : 912 e Ve oo
. : . M i S A .
M M . M 4 D 4 . .
* . 2gs es o
B b b
-~ NWOH N

274

'901 J0 G 01 901 40 ¥ 193UOD 901 JO €1 01 901 JO | 198UOD "9D
001 0} 08-ZJ0 LZ190ULOD 'EO11O | O} LOI 1O | 198ULGD ‘9122 10 €4 OHUBL ¥4 12 40 6 109UUOD 01120 b2 0} IUBH p1.12 1 81 100UL0D ‘62-21 Bid

YO vH SH

75

N

. . <% €3l OISOl
o Qe ° . " . . ” “
CodNgwesawo ¢ ¢t 8 @t 0
] R I R - I
SOV 000 m m *Hle L] N_vm 'y
1NdNI N ST R R AT A
. PiE b b e coms
: : Tl * 6d ¢
IMS . . <ol
HMS : : LNdNI
: 08z : . . .clcs,
: : : : L
: : | VA N S
: : : : S S
D3 oD
—~NWoH N®

. ‘08-Z J0 0€ 01 91/2 0 £ 198UU0D
08-Z 0 L€ 019122 JO 9 108UU0) "08-Z JO 2€ 0} 9L/2 O G 193UU0Y) “08-Z JO €€ 0} 9122 10 ¥ 108UUO0Y) "08-Z JO ¥E 019122 J0 € 108uuo)) *0e-L| "B

giwisawo i of i i
e o ¢ PHeH ¢ ¢ o o ¢ ¢ 1Ndino
e o e o W_ . . Ps Y ° ° NNPNQM oge s ClY -
MOV o €0l 0l SOl o . . .
] o . 4l cid
INdNI * . . e
¢ © ® ° 3 " N ® —,—.m b4
ay -
* e s e 2 . o °l7- ° o °
. e T - o . » 64H »
IMS ¢ . %0} 2ol
C wowN/ :
: W oLL2 e oivr s f
. . . sbe ST o .
. . . . sbe olke o .
¢ * 2s 2: o :
© oo oo 1NdNI
232332 cie8

276

|

IC3

5 x
52
Z5
.T— °
.; * 8600000
(%) Oco
° -
0006000
-
o
e . .
w
-
fpeeeec0ss000000000 —OQ‘_'
o < ©
0 *@
N __g:'ﬁ
20000000000 esachooe
®oo0 L]
Onoolo

®#09000e00

oooooo«;noto §
~— [XN NN NN
N~ j
(oY
oececscecee oytofeege
O
"“eoceolge

L

[XX N R X N]

L0

o o
g
0000000000&5
-] ° ®
o
Oo'oQoinno?Z QO v
D~
O @
L . .

®goc000ees

;0
33
. o
L4 L]
N ™
-
o @
[.

Fig. 17-31. Connect 3 of IC2 to top of C1. Connect 10 of IC2 to top of R5. Connect 9 of IC2 to bottom of C1. Connect 6 of IC3 to 10 of IC3.

277

B«
o O
z5
) LI
ha .
'; [XYY XX XN
7] O
° [XXX XXX]
a 2
L vl o p—e
wn
- 2>
eeveccsscsselsacoee -g ?-:) L]
o *C °
o]
N E e
seoeseossebdor
[N NN NN]
(2]
O

coe 5...0.'. 8.......

(s} T eesvocee T ee00000

0000600

.LH. (XX EX KX X N mooooooo

*cde 9.""" ~~socecee e

OEH.

* OY° -

¢ [He ceoscseee ®oevvoscsce ™

e 8He N v v~ < Na
saceo0s000 Nl—-

. 23
¢eseccsose secsseeccss
A~ v
0000000 e o o o ®

i R

Nl‘— seccescccee e © & o o
¥ .
oo . e o]
m-z':oooo-ooo.ou O ~ 8 M
M ™ ™ ¥ T
@ C C c @
° [L] [] L]

278

Fig. 17-32. Connect 23 of 2716 to 38 of Z-80. Connect 1 of 2716 to 37 of Z-80. Connect 2 of 2716 to 36 of Z-80. Connect 3 of 2716 to 35 of Z-80.

Connect 9 of 2716 to 14 of Z-80.

ndino ZizggooLoipI0 O
BPOYIED 108UL0Y '08-Z 40 6 01INdUI 212840 £ 1 109UU0D "08-Z J0 0L 01INdU) 2128 J0 61 198UU0D'91.£2 J0 £| 01Indu| 212810 12 lsuuo) ee-LL B4 o

7

: o.,wm IV1SAHD A A
o e ° 1D $HGH ¢ . b
e hd) L] L4 [} ® ® ® L) 3 ﬂ .ml_. m_-m
SOV * . 0] IR 7o ol A ST
1NdNI® . e o« o] T T €T ey -
ay SR I I
e ° ° u " m n N " bl A o * 0ld -
: : Sl - 64 .
LMS m : ol eol
© T ! 08z ° . . LNdNI
L] ° L] ®]
B : s oLLes L
: : P SR
: : . . SLe kT 2
® - gt izt @
233333
® ® 0o 0 0o ¢

801 J0 S 01 08-Z J0 0g 198uu0) "GO J0 O} O} LD} Jo 8 1oduuo) SOl
100} LO1§O $199UU0D 08-Z JO 22 0} LD} 4O 1 308UU0D WU 1 L2 J0 €01} ¥1 12 J0 £109UL0D "IYBU 71 12 J0 2 0L S| 1 1.2 J0 g 10auu0D "ve-Lt Bid

. . .« EO $OI SOl

uomm IVISAHO A .

s o Fnwvm._mw_ s .« s . 221280 ogqe e °
vwoiﬂ S | S vt zi”
LNndN* . : A L ST

Dm . " ® ° n ONI_.
: i R R S S T
m ./ﬂ " m m P mm °®
. . 2ol
v : : o) 9
: 08z ° . .
: : oz :V: A CHEE R
® : : : : T RN
S 1NdNT
DIVIVITD cke8
- NWAHAND

280

* 1Y
*cH
* €4
* OH
o /H
e 84

8212

L]
.
L]
L]
°

INPUT

© =

hn
500090500630 20080000

o
o]
N

9900000000000 0%00

N LY

[{e]
bt
N~
[aY]

[XXX XN]
AN~
o0coeo

LN J
<t
0

([E A NN N R Y]
AN+~ <

(A XN NN XN]

000000090000

.no: A oéo
n
S e
30,
.E °
LN E NN N]
8

t000000

C4

eoo000ee

.0.:‘0.

[Te]

-
L] L
[FYEX NN] ..NE
-—
PN =
0 =2
00c0000ceee O
. .O’; .L‘;
i Bt
® © 0 ¢ o
[[L] . ®
O ~ N o
D = = e
O Cowwrew
® ¢ o e o

Z-80.Connect 11 of IC1 to 8 of IC5.Connect 2 of IC1 to 2 of IC6.Connect 2 of IC21t0 51C5. Connect 12 0fIC6

Fig. 17-35. Connect 15 0f 2716 to 9 of

to 8 of ICé6.

281

Bx
53
Z3
=
@ sceele
@ Qo
oooou.
° C‘E ° '&"
o Lo
7
e 0000000000000 0000 .GE o
o xO .
N 6
Om °

[XX NN NN NN]

-
N
o

*lHe
ecH o
.SH.
.QH.
¢ ® cevccone
ey

[EXXEX NN]

8212

[
2
o
Z

282

[X RN X XNNJ

C

c2

.n....

C3

—
—ooocolo

e YYYYYX)

m.......

Fig. 17-36.Connect 1 of 2-80 to 9 of IC1.Connect 2 of IC1 t0 2 0f IC4.Connect 2 of IC3 to 3 of IC3. Connect 10 of IC6 to 9 of IC6. Connect 1 of IC6 0 6

of IC6.

B x
a O
z5
¢ °
© = :
F= ecsccoe
(%}
¢ seceses
o I
oL o .5.
>
XXX XY Y} .68 °
<
T °
.E .

beecoococensscoceloe
8cscecee

[a2]
Q
©coe00000
escescvsccee §...'"’ §..OO.Q.
®e0ccee seseses
S Ry Do eecee
(@]
T #scesse “eesces e
-
[FYEXRERE RN NN S
SE
0D
00000000000 o
» o6 8 o O
b I
- e © © o o
SSD L4 L] [] [] °
o
00coe 000 w_z_ O N O
‘ I M ™ v = -
O orrocoe o
¢ ¢ © e o

putto 13 0f8212Input. Connect 5 of 8212 Input to 7 0f 8212 Input. Connect 11 0f 8212 Inputto 24 of 2716.Connect

Fig. 17-37. Connect24 0f82121In

16 of 2716 to 10 of Z-80.

28

W

* Y
o2y
e CHe
e OH*
e lHe

5w
33
2%
. .,
hay .
% [X XY XN X]
Qo
secesce
2
b P
%
SE
.
.vo
m ®
.E ®
m..‘....
O

(X3 .
—000c00

C

© T esessece

[FX X NN NN]

e8He N+ <

284

A X R X TN N J

[VIR O
seccesse o o o
o33
scecccccccs LI
° . °
este0s0Ocs 0 o -
N = =
o o @@
L] * o

(XX EXER XN NJ

3

m.......

O

—
LICC N NN

Al
—
QA
«Q

e ® L4 L]
el 5e :
‘ OUTPUT

R12
- R13

Fig. 17-38. Connect 22 of 2716 to 39 of Z-80. Connect 18 of 2716 to 12 of 2716. Connect 10 of 2716 to 15 of Z-80.

B«
© e
- 2%
= ® e
(] ®
0vesosoo
Qo
Gececee
S
050
>
sccoescebenceveeso) (QJ: N
] .
N .&) R
booo.lo.loo

00sc0seseey T-'000vee ececsee
© gouoooco §..‘...‘
~
N XXXXXX)
.l-H. eecoccceocee o Hesessee
scde 9"""' 900....0
;e
'Z.H. seseceee '.coo.oooons
gy ST NE
XXy by =
D
®tecccose “"'.""'O

® .C’.) .L{;
M I
NF.....Q....Q & © 9 o o
-2
Al QL (] (] ® L] °
oz
~——00000000s00 O ~ AN ™
M ™ ™ ™
C ©C o C o

Fig. 17-39. Connect 29 of Z-80 to SW1 right. Connect 11 of Z-80 to SW1 left. Connact 26 of Z-80 to 8 of IC3. Connect 5 of IC3 to SW1 center.

285

“bH JO WOROG 0} 201 §O 198UU0Y "PH J0 do1 0} 20| JO £108UU0D 08-Z 40 91 O} 2H JO WOROQ108UU0D 08-Z 40 | | 0} do} LH 198uL0D "0v-L1 "Bid

I

$9; o OWHSH: : i ¢ 3
P0IRVISAHO 22 2 sl Pt Indwno
s . eqge 8ol Tieieey L.t B e
PN N O S R
.) . e ofe ' .
ay e it o . m e ° b
o . .] | S Y L I
m m . . . o e 64 °
LMS : : 1010 2ol
R : . -
: 08Z : : : :
: : P o1z 2 23S 2
: : : : I T
) . . . izt gt ot
© N 1NdNI
IDDD DD zles
- NWRH N

286

'G1J09pouB 0} €1 H J01YBLI08UUOD "#7J0 8POUE 0l 2L H J01uBLI0aUL0D "€ 7J0 apouE 0} | i H JO 1B 198UL0D 2T J0 9POUE 0} 0 1Y J0 1B 0auU0)
*1 7740 3poue 0} 64 Jo b 198UL0D "D} O | | 03 OY JO WoRoq 108UU0D "0Y 40 do} 0} 08-Z J0 62 108UUOY €D JO G 01 8H JO WONO] 8uuo) Ly-21 Big

Pol . 2 R
$015 TVLSAHO > H i o
e opdedf: s i 1oz LNdine TT
. L lmo_o OVO—. .mO—. "NFN@" Oml—\
AOVr . . e epe== ClH -
in . e .
n_z_ (4 n ° ® . [o®|_.l _.—.m d
N 1
. : I I S 5) L R
. . « ¢+ s e 6d o
LMS m . 2] cOl
s 087 ¢ . .
S S ozt AR
@ : : : . S TR
* Lfer oz oo
® & o o 0- ..FD&Z—
233333 218
o ® o 0 0 @

287

GND

®e000coe0csosssapOs

(o]
[o0]
N

e |He
(4 =K]

©

~—
~
QY]

SWi1

° €Y
9d
e JHoe
o QY e

8212
INPUT

288

®ess000

A v - <t

[AN R NN NN]

LA X KX N

O

T"eecceee

Nl".l‘. ‘

—o e

R9

Ex
a O
z5
® e
¢ [XX Y XX N)
Qo
[XN NN NN]
<
.é ° /c’?)”
>
-
.C)CJ)
.E L)
.E o

C3

T}
Q

8212
OUTPUT

©®oc090000

o 1o
ol 2e
el 3e
o| 4
0L5.

R10

R11
R12
R13

®eenooo

“Teeeceee

s00000 0

Fig. 17-42. Connect 29 of Z-80 to ground (top side of board). Connect 17 of Z-80 t0.24 of Z-80. Connect 24 of Z-80 to bottom of R3.Connect 5 of IC2

to top of crystal. Connect bottom of crystal to bottom of R4.

Ex
52
ZS
o'_ ° .
.C% ¢ [XXX X ¥
@ ° eoecooe
o <
e [(Co .b—).
\—ﬁ >
XXX XYY YYVY W YY) '65 °
o 0.
N og °
9ecs0eosennoeosofoe
cee

(A XA XX N] (EEX R TN

© ~~eoceesoo §oooooao
~
N sseccne
¢ |He bmwocesseccee o ntececee
*CHo 900.0000 Qo.onooo

] EHQ
¢ Y -

Connect24 of 2716 to 11 of Z-80. Connect cathode of L1 to 4 0f 8212 Output. Connectcathode of L3 to

QLHO seceeoe e ...]..[....!5
o5
eeesccee'...O

AN - <

Fig. 17-43. Connect bottom of R6 to 4 of IC3.

8 of 8212 Qutput.

[[

D9938

I~ eescessccen e o & o o
ga L] L] [] L [

Al

CDZ‘DO...O.... (o)) 9 :: Sll ?_)
[0 s O o o i o
L [(] [°

28

©

©

e lHe
edH o
s CH o
e OY*
o /He
e 8H e

8212
INPUT

290

sescescscssocsaceee

o
[o¢]
N

seco0cccoocsceccedoe

Ex
53
2%
~— :.
E; [XY XXX
@ - ©
Qosssee
2
'E' a'J).
T
cO0 °
3 .
oﬁ% .
(o.......
O

e9000080000

2716

[XX RN N R LALR]

'.'...IO

e0e0o00080OS

(XX R X X)
-

~~ocecoese

el N X XN X R J

1C2

bo0c000

00oc0 0000

.'('.)
g
® o
L] [] []
o
D -
C @
e o o

[To]

5
NE
=
o
*O
0
39
[N 4
® L]
N M
oo
o
L] L]

Fig. 17-44. Connect 11 of 2114 left to 17 of 2716. Connect 10 of 2114 left to 10 of 2114 right. Connect 8 of 2114 left to 6 of IC5.

‘991 J0 01 O} LD JO G 108UU0Y) "08-Z JO 61 O} 1Ol J0 € 108uuo) 'gLz2 jo L O} ucmz viie &
109198UU0D 912240 €1 O1UBU #1210 | 1103UOD WBH VL LZ40 L1 018l #1120 LI T0OUUOD WU DL LZ1O L 01 HOI ¥1 1210 | 108UL0D ‘Sp-24 Bld

9

$ON\visawo P P8 of ot
OIPN ophey ¢+ Pl : 1IndLnO
e o I - - ST - LR o £
o £ol__ 0l 6ol . . .wu__. . o
1NdNI ° . R
v e o o o T €1 e 1y .
ay s ¢ 3 cer
L > forr o ko
s : : ol zor °
: 08Z : : : . .
: : — o122 b 1 IR EE
: : : T TS B
: : : : 8 BTH
P e L
238333 cles

4 .
¢ XY XX
o [A X NN NN]
o . .
(A
XXX EXEXEXXXNEE Y S A QN J ° °
L 2 ®
. .

XXX XXX ERN YN A XN
9000000

®oe00o00

[A X XN XX]
eeo0ss00000

eevsore YY)
[} ° ®eceeececoe .cﬁ'." (XXX XX N
[] [} O

veoeeee XXXl

L] ®
° [
® [XX N XN) Ceocccoceee
[°

(A X NN N YT N R

0000000

scececcese0 ® @ & o o

292

Fig. 17-46. Connect 18 of 2114 right to 14 of IC2. Connect 9 of 2114 right to 7 of IC2. Connect jack wires (output of amplifier) to RO.

ALLLIGHTS OFF

- 3
a

TIMEDELAY

BEEN
HERE 256
TIMES?,

LIGHT #1 ON

\ 4

TIME DELAY LIGHT #2 ON

v

BEEN
HERE 256
JIMES?

YES

LIGHT #3 ON

A\ 4

TIME DELAY

LIGHT #4 ON

LIGHT #5 ON

Fig. 17-47. Flow diagram of Length program for Z-80 based computer.

293

Table 17-2. Assembly and Machine Code Listing of Software for Z-80 Computer.

MEMORY 280 ASSEMBLY
ADDRESS CODE LINE # LABEL ASSEMBLY CODE

0000 00100 ORG 00

0000 3EFF 00110 LD A,0FFH
0002 D301 00120 ouT 1,A
0004 DBO1 00130 SND IN A,(01D
0006 1F 00140 RRA

0007 DAOLOO 00150 JP C,SND
000A 21FF60 00160 D1 LD HL,60FFH
000D 2B 00170 D2 DEC HL

000E 3E00 00180 LD A,00
0010 B4 00190 OR H

0011 CA1700 00200 JP Z,CONT
0014 C30D00 00210 JP D2

0017 ObFF 00220 CONT LD B,0FFH
0019 DBO1 00230 INi IN A,C(01)
0018 1F 00240 RRA

001C D22A00 00250 JP NC,D3
001F 05 0026u DEC B

0020 C21900 00270 JP N7, IN1
0023 3EFE 00280 LD A,0FFH
0025 D301 00290 oLT 1,A
0027 C38E00 00300 JP DFLAY
002A 21FF60 00310 D3 LD HL,€0FFH
002D 2B 00320 D4 DEC HL

002E 3EO00 00330 LD A,00
0030 B4 00340 OR H

0031 CA3700 00350 JP Z,CONT1
0034 C32D00 00360 JP Dk

0037 O6FF 00370 CONT1 LD B,0FFH
0039 DBO1 00380 IN2 IN A,C01D
003B 1F 00390 RRA

003C D24A00 00400 JP NC,D5
003F 05 00410 DFC B

0040 C23900 00420 JP NZ, IN2
0043 3EFD 00430 LD A,O0FDH
0045 D301 ooL440 ouTt (o,A
0047 C38E00 00450 JP DELAY
004A 21FF60 00460 D5 LD HL,60FFH
004D 2B 00470 D6 DEC HL

00LE 3E00 00480 LD A,00
0050 B4 00490 OR H

0051 CA5700 00500 JP Z,CONT2
0054 C34D0O 00510 JP D6

0057 O6FF 00520 CONT2 LD B,0FFH
0059 DBO1 00530 IN3 IN A,C01)
005B 1F 00540 RRA

005C D26A00 00550 JP NC,D7
005F 05 00560 DEC B

0060 C25900 00570 JP NZ, IN3
0063 3EFB 00580 LD A, O0FBH

294

MEMORY
ADDRESS

0065
0067
006A
006D
006E
0070
0071
0074
0077
0079
0078
007¢C
007F
0080
0083
0085
0087
008A
008cC
008E
0091
0092
0094
0095
0098
0000

Tahle 17-2. Continued from page 294.

280
CODE

D301
C38E00
21FF60
2B
3E00
BY4
CA7700
C36D00
06FF
DBO1
1F
D28A00
05
C27900
3EF7
D301
C38E00
3EEF
D301
21FFFF
2B
3E00
B4
CA0LOO
C39100

ASSEMBLY

LINE# LABEL ASSEMBLY
00590 ouT
00600 JP
00610 D7 LD
00620 D8 DEC
00630 LD
oo6k40 OR
00650 JP
00660 JP
00670 CONT3 LD
00680 IN4 IN
00690 RRA
00700 JP
00710 DEC
00720 JP
00730 LD
00740 ouT
00750 JP
00760 D9 LD
00770 ouT
00780 DELAY LD
00799 DELAY1l DEC
00800 LD
00810 OR
00820 JP
00830 JP
00840 END

00000 TOTAL ERRORS

DELAY
D9
ING
CONT3
D8

D7

1 0091
008A
0079
0077
006D
006A
0059
0057
004D
00LA
0039
0037
002D
008E
002A
0019
0017
000D
000A
0004

CODE

C01),A"
DELAY
HL,60FFH
HL

A,00

H
Z,CONT3
D8

B, 0FFH
A,C0D)

NC, D9
B

NZ, ING4
A,0F7H
1,A
DFLAY
A, OEFH
01),A
HL, OFFFFH
HL

A, 00

H
Z,SND
DELAY1

295

Chapter 18
The Future

Is it possible to build a typewriter that accepts normal speech and
converts it into written words. In my opinion the answer is yes; but
today’s technology imposes some restrictions. In the system en-
visioned (Fig. 18-1) the operator must train the system to a selected
group of phonemes (sounds), probably about 200. The filter and
digital converter section would be more elaborate than any laid out
in this book (examine more frequencies, signal strength, etc.). This
would involve greater memory and slower operation as the com-
parisons involve mountains of data possibilities. A single mi-
crocomputer would get lost in the onslaught of data. The largest
most powerful computer would rapidly fall behind. There are too
many comparisons. Parallel processing is the answer. After digitiz-
ing the data, a “select” computer would pass about one second
worth of speech to an available recognition computer. The recogni-
tion computer would attempt to decipher the phonemes used. It and
the recognition computer handling “before” and “after” data would
often have to get together (via the select computer) to assess
overlapping phonemes. Completed phonemes would be passed to
the spelling computers where they would be converted into words.
Difficult cases would be passed back to the control computer which
would take raw data representing the same time period and convert
it with different filters and try on the “tough case” recognizers.
Successful chunks of data would be passed to the buffer as spelled
words. The control computer must keep up the gaps and hold the

296

“JejumadA) ssajfey eAnoaye ue Joj uoneinbiyuoo sigissod e jo weibelp ooig *|-81 ‘Bl

' Y 4

H344ng

L4 v
T13dS < ‘90034 I.ll.J
HI1LNAWOD
T N T0HINOD
: > A 4
5 ¢ S H31HIANOD
T13ds < - ' S 3IODVHOLS
9003 EETRIE I R
_ L i
v
Z 2 HILNAWODL, | MILHIANOD
T13ds < 9003y 103138 H3L
~ »
3 < 1
T13dS 90934

297

data from the printer until the long sounds and the tough sounds
have been processed.

It might take 40 microcomputers, maybe 60. The delay from
voice input to printed output should be one minute or less.

Would this system cost too much for the small office? Perhaps
the first machines would, but that shouldn’t prevent their develop-
ment. Such a computer in a central location could accept tapes over
phone lines and return data via phone to a local printer. With such a
system, a computer could serve many small users. An enterprising
soul could establish such a business now, using human typists at
word processing computers to handle letters and reports via phone.

Will the ultimate computer language be a native human lan-
guage? Eventually machines will utilize such an interface to make
the devices “friendly” to more people. Use of the same language
(English for example) will not help in machine-to-machine com-
munication—not if people-to-people communication in English is to
be used as an example of harmonious communication and under-
standing.

298

Sources

PARTS SUPPLIERS

Advanced Computer Products
P.O. Box 17329

Irvine, CA 92713

Digi-Key Corp.
Highway 32 South
Thief River Falls, MN 56701

Jameco Electronics
1355 Shoreway Road
Belmont, CA 94002

RECOGNITION DEVICES

Audio Signal Processor
Design Solution Inc.

1608 Huntsville Road
Fayetteville, AR 72702

Tel (501) 521-0281
$99.95 without necessary connecting cable. Works with TRS-80

Model I Level I1. Ask Design Solution about Model II1. Provides for
voice input and output

Cognivox

Voicetek

299

P.O. Box 388

Goleta, CA 93116

$119.00 to $249.00 depending on unit selected. Works with AIM-65,

PET, Apple, Sorcerer, Z-80 based systems. TRS-80 111, 16K. Pro-

vides voice input and output 32-word vocabulary.

VET-2

Scott Instruments

815 North Elm

Denton, TX 76201

Tel: (817) 387-9514

$895.00. Requirves Apple II, 48K, and at least one disk drive or
TRS-80 Model with 32K and two disk drives. 98 % accuracy; multiple
user capability; 40-word vocabulary with overlay feature allowing for
additional groups of 40 words; rapid response time; can be used as

substitute keyboard with Apple computer. Handicapped persons are
using these units; for details contact Scott Instruments.

ROBOT ARMS

RHINO XR-1, (RS232C interface)

16 ounce lift at extension

$2400.00 in 1981

Sandhu Machine Design, Inc. Sales Dept.
308 South State

Champaign, IL 61820

Tel: (217) 352-8485

THE MICROBOT MINIMOVER-5
8 ounce lift extended

$1695.00 in 1981

Advanced Computer Products

P.O. Box 17239

Irvine, CA 92713

(714) 558-8813

Doring Associates

1744 Route 9

Clifton Park, NY

12065-2497

Tel (518) 371-9499

Arm complete with interface
$1995.00 in 1981

Sorrento Valley Associates, Inc.

300

11722 Sorrento Valley Road
San Diego, CA 92121

HIGH TECHNOLOGY MAGAZINES

Robotics Age

P.O. Box 512

Tujunga, CA 91042

Articles and ads related to robots, arms, and sensors; 60 pages of
very high quality information.

Radio-Electronics

Subscription Service

Box 2520

Boulder, CO 80322

Articles, projects, ads, equipment reports; 150 pages about elec-
tronics and the newest happenings. Recent series included “How to
Build a Home Robot” and “How to Build a Home Satellite Receiv-
er.” Articles are written very clearly; this is a good place to learn
about electronics. Ads include many suppliers of electronic compo-
nent.

BYTE

P.O. Box 590

Martinsville, NJ 08836

Articles, ads, reviews; 500 pages about various microcomputer
topics. Excellent ads, many articles are rather advanced, though the
novice can find some things of interest.

80 Microcomputing

P.O. Box 981

Farmingdale, NY 11737

Articles, ads, reviews; 425 pages dedicated to topics relating to
Radio Shack computers. Most articles are clear and practical. Al-
though it covers only one manufacturer’s product, this is an excel-
lent publication form which to learn what microcomputing is all
about.

RECOGNITION LITERATURE

Teaching Your Computer to Talk by Edward R. Teja. Published
by TAB Books, Inc., Blue Ridge Summit, PA 17214.

Voice News (newsletter). Published by Stoneridge Technical Ser-
vices, P.O. Box 1891, Rockville, MD 20850. Tel (301) 424-0114.

301

Index

B]

A

Algorithms, 13

Amplifiers, 9, 12, 127, 129

Amplifier with automatic level control,
2

Apple Il system, 18

Arithmetic instructions, 118

Assembly code for Z-80 computer,
295

Assembly language, 106

B
Batteries, 97, 128
Bit, 107
Black-box devices, 95
Boards for circuitry, 102

c
Capacitors, 104, 129
Circuit construction aids, 100
Circuit diagrams, 98
Circuitry, output, 138
Circuit symbols, 96
CMOS logic, 100
Cognivox recognizer, 17
Coil symbols, 23
Computer, Z-80, 253
Computer use for noise removal, 2
Contact symbols, 23
Control instructions, 124
Current, 103
Cycle, 12

302

D
Darlington transistor, 21
Design Solution, Inc., 16
Digital electronics, 12
Digital Speech Processor, 16
Dual inline packages, 98

E
Electricity, formulas for working wi th,
103
Electricity, static, 102
EPROM, 127, 135
Exidy Sorcerer system, 18

F
Filter, bandpass, 12
Filters, 11, 127, 129
Formulas, 103
Frequencies of speech, 11
Frequency program listing, 233

G
Game, sound-controlled, 54
Game, voice-independent recog ni-
tion, 70
Graphics characters, 72

H
Handicapped, aids for, 19
Hertz, 12
Hexidecimal numbers, 107
High-Speed Recognition program list-
ing, 53

ICs, 95

Infiection, 2

Input-output instructions, 126
Instruction set, 1802, 114
Integrated circuits, 95

L
Languages, computer, 106
Length program listing, 144
Limited test group instructions, 121
Listening Typewriter program listing,
42

Logic, adding to switches, 22
Logic families, 99

Logic operations, 117

Long branch instructions, 122

M
Machine code for Z-80 computer, 295
Machine language, 106
Memory, erasable programmable
read-only (EPROM), 127
Memory, random access, (RAM), 135
Memory, read-only (ROM), 106, 127
Memory, The Recognizer, 132
Memory locations, descriptions of,
148-225
Memory reference group, 111
Microphones, vii, 1, 12, 127, 129
Microprocessors, 108
Microprocessor, 1802; 100, 107, 253
Microprocessor, 1802 register ar-
rangement, 110
Microprocessor, 8080; 100
Microprocessor, Z-80, 18, 100

N
Noise, 1
Noise removal, 1
Numbering systems, 107, 108

0
Ohm's law, 103
Operating program, 111

P
PET/CBM system, 18
Phonemes, 13
Pins of The Recognizer, 132, 234
Power supply, 20, 97, 128
Processor stage, 131
Program, operating, 111

Programs, computer requirements
for, vii
Program using 5 words, 30

R
Radio Control program listing, 49
Radio Shack, 15,17
RAM, 127, 135
Recognition, continuous, 13
Recognition, high-speed, 52, 71
Recognizer, hardware improvements
for The, 233
Recognizer, speaker-trained, voice-
dependent, 10
Recongizer, Z-80, 253
Recorder, cassette, vii, 26
Registers, general-purpose, 116
Resistance, 103
Resistors, 104, 129
Rockwell AIM-65 system, 18
ROM, 106

S
Schmitt trigger circuit, 12
Schmitt trigger gate, 129
Scott Instruments, 18
Short branch instruction, 121
Skip instructions, 123
Slurring of words, 8, 13
Sockets, 100
Software, 106
Software for Z-80 computer, 294
Soldering, 105
Sound, duration of, 8, 9
Sound amplification, 9
Sound Plot program listing, 29
Sound waveforms, 5-7
Speech, 1, 2
Speech conversion to written words,
296
Speech frequencies, 11
Speech recognition devices, 11
Speech recognition device, units of,
127
Speech recognizer, 3
Squaring apparatus, 127
Stomper graphic elements, 74
Stomper program listing, 80
Sun Research, Inc., 20
Switch, sound controlled, 10
Switch, voice-operated, 21

T
Tools for circuit building, 101, 102
Toy, radio-operated, 47
TTL logic, 100
Typewriter, keyless, 297

303

Typewriter to convert speech to writ-
ten words, 296

U
UPS, 20
U.S.A. program listing, 58

v
VET-2 voice terminal, 18
Video display worksheet, 72
Voicetek, 17
Voice waveform, 12
Voltage, 103
Volume, 1,2, 9
Volume drop, 4

304

Voxbox recognizer, 15, 87
Voxbox software, 16
Voxbox Typewriter program, 90

w
Watts, 104
Waveform, voice, 12 -
Wire wrapping, 100
Word length, 8, 9
Words, distinguishing similar, 31
Worksheet, video display, 72

z
Zero crossings, 13

N

(Verbal Control with Microcomputers
by Mike Rigsby

You don't have to own a lot of expensive equipment or be an
electronics wizard to get your computer to recognize and respond to
voice commands. This unique guidebook shows you how simple and
inexpensive it really is to use verbal control 10 accomplish a wide
range of tasks from TV or appliance control to educational and game
applications! You'll learn how to apply speech recognition using a
software approach and your TRS-80 Model | Level Il machine or any
standard BASIC microcomputer; by using off-the-shelf commercial
peripherals; or with a stand-alone recognizer unit that you can build
yourself for less than $100!

Written in easy-to-follow style and non-technical language, this
book begins with a look at speech and the problems it presents for
machine recognition. There's also an overview of the commercially
available add-ons or peripherais you can use for verbal control. The
primary emphasis of the book, however, is on software control—
simple recognition routines you can use with your BASIC computer,
instead of the normal INPUT or IN commands. Written for the TRS-80
Model | with Level I! BASIC and 16K of RAM, the programs are easily
adaptable to any computer that uses an input port. Seven software
examples are included, each written in standard BASIC and fully
annotated and mapped so you can easily make changes for your
special application needs.

If your computer happens to be one without a user port, this book
shows you how to build a Z-80 microprocessor based system capabie
of recognizing words. Plus, you'll get all the software you need to put it
to work!

Mike Rigsby is an electrical engineer with the Georgia Power
Company. A computer hobbyist, he has written programs and articles
for several leading cornputer magazines.

OTHER POPULAR TAB BOOKS OF INTEREST

Teaching Your Computer To Talk—a manual of Microprecessor Interfacing (No. 1396 —$7.95

command and response (No. 1330—$8.95 paper; $13.95 hard)
paper; $15.95 hard) The Art of Computer Programming (No. 1455—
The Complete Microcomputer Systems Handbook $10.95 paper; $15.95 hard)
(No. 1201 —$9.95 paper only) Projects in Machine Intelligence for Your Home
Computer Peripherals That You Can Build (No. Computer (No. 1391 —$10.95 paper; $17.95
1449—$13.95 paper; $19.95 hard) hard)
The Microcomputer Builder's Bible (No. 1473 — How To Design and Build Your Own Custom Robot
$12.95 paper; $18.95 hard) (No. 1341 —$12.95 paper; $18.95 hard)

TAB BOOKS Inc.

Blue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

\F‘HCES righer in Canada ISEN 0'3306'1463'0/

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf

