e b
W

- _15.1 -u-_.l-: ._-I:y..

TEACH YOUR

TRS-80"

TO PROGRAM ITSELF
BY DAVID BUSCH

TAB|TAB BOOKS Inc.

BLUE RIDGE SUMMIT, PA. 17214

Also by the Author from TAB Books Inc.

No. 1698 25 Games for Your TRS-80 Model 100

Radio Shack, TRS-80, TRSDOS, and Scripsit are trademarks of the Radio
Shack Division of Tandy Corporation.

Microsoft BASIC and Microsoft BASIC Compiler are registered trademarks of
Microsoft Corporation.

PET, VIC-20, and Commodore 64 are trademarks of Commodore Business
Machines.

NEWDOS/80 is a trademark of Apparat, Inc.

PACKER is a trademark of Cottage Software.

FIRST EDITION

FIRST PRINTING

Copyright © 1984 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Busch, David D.
Teach your TRS-80 to program itself!

Includes index.

1. TRS-80 Model | (Computer)—Programming. 2. TRS-80
Model Il (Computer)—Programming. 3. TRS-80 Model 4
{Computer)—Programming. 1. Title. 1l. Title: Teach
your T.R.S.-80 to program itself! lil. Title: Teach your
TRS-eighty to program itself!

QA76.871833887 1884 001.84°2 84-2528
ISBN 0-8306-0728-6
ISBN 0-8306-1798-1 (pbk.)

10

1

Acknowledgment

Introduction
Word Counter
REM-over

Titler
Documenter
Tabber

Screen Editor
DataBase Starter
Program Proofer
Automatic Programmer Documentation
Visual Maker

Global Replacer

Contents

15
22

57

101
112
134

12

13

i4

16
17

18

Menu Master
Lister

Error Trapper
Chain Zanper
Translator
Document Sorter
Some Tips

Appendix: Converting Model il Programs
to the Model 4

Index

139
151
157
173
181
200

212

225

Acknowledgment

The material in Chapters 4, 6, 7, 8, and 16 originally appeared in
different form in Interface Age Magazine.

introduction

Yes, your TRS-80 I/1II or 4 can write its own programs. Instead of
laboriously crafting program lines and subroutines that will display
a series of instructional “frames” on the screen, you can let your
computer do all that work. You need only design the screen, using
word processing commands, and tell the computer how long you
want that frame displayed. The TRS-80 is perfectly capable of
writing a complete program that will do exactly that, without the
need for you to write one single line of code.

Or your TRS-80 can compose subroutines for you. Do youneed
some disk input/output routines and a string array to store data in?
Some data lines, perhaps? A menu? But you're not too eager to
write the code and figure out the proper ON . . . GOTO lines? That
task is a snap for the automatic TRS-80.

On the other hand, you may be weary of calculating tabs for
neatly formatted screen displays. Wouldn’t it be nice to just type
PRINTTAB(T) and let the computer figure out what value T should
be? Say no more. Your wish is well within the capabilities of the
Fort Worth Wonder.

As fabulous a set of tools as the TRS-80 line has been, most
users save only half the time they could with their computers.
Because I write dozens of programs a year, one of the first things |
did was write a number of programs that do nothing more than write
other programs for me. One of the first, and one I use more than any
other, was Screen Editor. It is simply a BASIC program that allows

vi

drawing on the screen any menu, title block, instructional screen,
or other material that will be needed in a program. Then, at the
press of the ENTER key, the screen just designed is magically
transformed into program lines. Ten minutes of coding can be
accomplished in a minute or less. (Since I have compiled into
machine code the BASIC Screen Editor shown in this book, the
chore takes no more than a second or two!)

Given the right tools, such as the 17 utility programs here, an
hour spent programming can be more fruitful than several hours
with manual methods. A third (or more) of the program lines in
some of the examples in this book were prepared by other programs
listed. Some programs were even used to write enhanced versions
of themselves.

All the programs in this book will work with TRS-80 Model I,
Model III, or Model 4 computers, and were written and tested on all
three. Some will run equally well with Model 4s as Model HIs.
Tabber, for example, asks the user if tabs should be centered for a
64-column screen, or an 80-column screen. Because they are writ-
ten in BASIC and use few PEEKs, the programs are readily trans-
ferable.

Those which PEEK into video memory, however, work on the
Model 4 only when the computer is operated in Model III mode.
Since the Model 4 has not been long on the market, and software is
still sparse, most users will have a Model Il operating system, such
as TRSDOS 1.3, NEWDO0S/80 2.0, or LDOS 5.1 to use Model III
applications programs on their Model 4. Those users, then, can run
some of the programs in this book in Model IlI mode, create the
programs of their choice, and then transfer them to Model 4 for-
matted disks for running. A few changes may have to be made to
account for the 80-column screen once the programs have been
transferred. In fact, Tabber, a program included in this book, can do
part of this chore for you.

Just as PEEKSs and POKEs have been avoided wherever possi-
ble, other statements that are “DOS dependent” have been
avoided. In most cases, strictly BASIC syntax common to all
TRS-80 computers is used. That is, all Radio Shack Model I/111/4
computers have similar disk input/output routines for sequential
files. Exotic file types are not used. In a few cases, special features
of popular disk operating systems are incorporated as options.
Program Proofer, for example, asks if the user is running
NEWDOS/80. If so, the program will use CMD“O” to sort the
variable and word list. Menu Master calls up various DOS com-

vii

mands using the ‘CMD"n” ’ syntax. Since users will customize this
program anyway, those with TRSDOS 6.0 or LDOS can change the
CMD to SYSTEM, and make other minor changes.

This book is only a jumping-off point. Many of the programs
were adapted from other programs. Visual Maker is based on
Screen Editor. Global Replacer is descended from Tabber. Simi-
larly, you can take ideas and suggestions here and develop pro-
grams of your own that will streamline your BASIC development
work. In addition, there are some ideas in Chapter 18 for using as
shortcuts other programs you already own, such as word processors
or keyboard utilities.

The 17 utility programs in “The Automatic TRS-80" actually
write programs for you, modify existing software, or give your
programs new capabilities and power. The novice or experienced
programmer can save hours of time on every program written.
Some of the examples were used to write programs in this book, or
to modify themselves. Here is a brief outline of the programs:

Visual Maker. Design a custom “slide” to appear on the
screen of your TRS-80, using graphics or alphanumeric characters.
Tell Visual Maker how long you want that slide to be displayed.
Then go onto the next slide. Or, you can draw from a library of slides
you have compiled.

Once your show is assembled into the order you want, Visual
Maker will write a complete BASIC program to display the slides
you designed for the intervals requested. No programming is re-
quired. You can even repeat the shows if you like, or end with a
menu that allows the user a choice of which show to see next.

DB Starter. Weary of writing custom database management
programs from scratch? DB Starter will do the basic skeleton for
you. Enter the number of menu choices, and the prompts to be
included in the menus. It will design the menu for you. Tell the
program you want input/output routines, feed in a few parameters,
and it will write the I/0 modules automatically. DB Starter will also
construct the necessary ON...GOTO lines, and insert REMarks at
line numbers where the programmer needs to build up the BASIC
skeleton. Your first several hours of programming are taken care of
for you.

Tabber. Want to center your screen output for prompts and
other messages? Just type PRINTTAB(T) in every line you want
centered. This program will go through an entire program, calculate
how long the message is, and write a new program line that TABs
the proper number of spaces. It works with 80-column Model 4
screens, as well as 64-column Model I and III screens.

viii

Proofer. Find misspelled keywords, mismatched paren-
theses, and other errors before runtime. This program helps you
debug, and provides a list of variable names used in the programas a
bonus.

Error Message. If you are impressed with the long error
messages of Disk BASIC, this program will knock you flat. Append
Error Message to your own BASIC program and insert the appro-
priate ON ERROR GOTO line. Any error will then be spelled out in
detail—with tips on how to find the exact error in your program. It is
an excellent utility for novice programmers, or anyone tracking an
elusive bug.

Screen Editor. You can use word processing command style
to design a custom screen. Then, press ENTER. This program
writes the BASIC program lines you need to reproduce your custom
screen in your own prograrm.

Documenter. Type out the instructions to go with your latest
program. Documenter will divide them up and write BASIC pro-
gram lines that present them as instructions at the beginning of your
program. It includes everything, even “Hit any key for next page”
prompts.

Menu Master. This program will let your computer AUTO on
power-up into a custom menu that summons the programs you use
most often, gives you directories of your disk drives, and does a
number of other small but useful jobs.

Word Counter. Why write a program to count words in files,
when you could do it manually almost as fast? Or could you?
Suppose you were writing a 10,000-word term paper, or a 70,000-
word book which had to come out at a contracted number of printed
pages. Word Counter will be far more useful to you than you might
think.

Global Replacer. Specify a string in your program of file—it
does not have to be a keyword—and this program will replace it
with the string of your choice.

REM-over. When you're down to your last blank disk or your
last few bytes of memory at 3 o’clock in the morning, you'll ap-
preciate the value of stripping the REM statements from a program.
REM-over does it for you in seconds.

Lister. Do you envy those glitzy-looking listings but hate the
work involved in formatting them, and begrudge the memory those
embedded spaces kill? Lister will help you out.

Translator. This program creates a Spanish-language tiny
BASIC to use as an educational aid, and then “compiles” the code

ix

created into runnable BASIC. The methodology used in Translator
also shows you how to write your own tiny BASICs in French or the
language of your choice.

Chain Zapper. If you're a NEWDOS/80 user, do you dread
the mailman bearing envelopes full of ZAPs for your operating
system? Chain Zapper writes chain files automatically to apply the
natches to vour DOS.

Titler. Create title listings for your programs simply by en-
tering the title itself. Titler will do the formatting, add your name
and address, and write the program lines for you.

The goal of this book is to help you to remember, when you're
slaving over a hot keyboard at 3 A.M., that computers are the
servants of mankind—and not vice versa.

Word Counter

Why not let your TRS-80 write its own programs? After all, much
program writing is nothing more complicated than building some-
thing from an inventory of prefabricated subroutines. Many pro-
grams have a great deal in common; it is the parameters which
change. Wouldn't it be simpler just to provide the parameters—and
let the computer do the routine stuff?

After all, one program may require a line like, FOR N=1 TO
100, while the next willneed FOR N=1 TO 200. Yet, each time, the
programmer had to type in the “FOR N =1 TO"” part. The reason the
computer never knew enough to supply the “FOR N=1 TO” is
that nobody fold it to. The TRS-80 Model I/11I and 4 computers can
do almost anything in the area of program-writing, if they are only
told exactly what to do.

“Applications generators” and other programs which write
other programs are old hat. They have been around for a number of
years, and can be purchased for large computers as well as small.
The concept behind them is simple: many programs have modules
that are much like those used in other software. Yet, in many cases,
the computer programmer writes a routine from scratch each time it
is needed. Why not build a library of routines and let the computer
draw on them as needed to write its own programs?

The reason a TRS-80 Model I/111/4 can write its own BASIC
programs lies in its ability to load two types of files into BASIC from
disk. The normal way a BASIC program is saved is in compressed

1

format. That is, BASIC keywords are tokenized, and, instead of the
entire keyword, a single byte representing that keyword is loaded
onto the disk. Rather than store the five letters that make up
“PRINT”, BASIC normally just stores 178, the decimal number that
represents “PRINT”. When you type SAVE“filename”, a program
is stored on disk in this form.

However, we can also type SAVE"filename”,A. Then, the
program will be saved in noncompressed “ASCII” format. That is,
every letter and number will be stored byte for byte on the disk,
exactly as the program appears when listed. The BASIC interpreter
has the capability of doing this conversion for us.

An ASCII file is nothing more than a text file. It is possible to
load a noncompressed program into a word processing program
such as Scripsit, edit it using powerful global search and replace
commands, and then save it back to disk in ASCII form.

Because of this dual capability we can also create programs
using a word processor, or, in the case of the programs in this book,
through the use of sequential disk files, which are also ASCII files.
The short program below serves as an example:

10 OPEN “O”,1,“TEST”

20 PRINT#1,“10 PRINT”;CHR$(34);“THIS IS A
TEST”;“CHR$(34)

30 CLOSE1

That test program will write a single line to the disk under the
filename “TEST.” That line will be, if loaded from BASIC, a short
program in the form:

10 PRINT“THIS IS A TEST”

We could also “build” the program lines from our own
parameters. Try this short program:

10 INPUT“Enter line number desired:”;LN

20 INPUT“Enter message desired :”;MESS$

30 INPUT“Want it to be PRINT or LPRINT”;CH$

40 IF CH$="PRINT” OR CH$=“LPRINT” GOTO 60

50 GOTO 30

60 OPEN “0",1,“TEST”

70 PROG$=STR$(LN)+CHR$(32)+CH$+CHRS(32)+
CHR$(34)+ MESS$+CHR$(34)

80 PRINT#1 PROGS

90 CLOSE 1

Most of the programs in this book with program-writing
routines do nothing more than assemble program lines in this
manner. Sometimes the input comes from the user. Other times it is
calculated. Still other times, some of the programs PEEK the
video memory (from 15360 to 16384) to see what has been printed
to the screen, and use that.

But the common thread is the use of ASCII files, which are
programs, as if they were data files. The first program presented,
“Word Counter,” illustrates the principle, though it does not create
any new program files itself. Instead, Word Counter reads in an
ASClII file, and counts the number of words. Most commonly these
files will be word processing text files, like those created by
Scripsit. However, Word Counter could just as easily be used to
count the number of words in a program.

Most of the techniques used in this book will be repeated in
later programs. Each will be explained in detail the first time it is
used. So, early programs are short because explanations are fre-
quent; later, longer programs will use many techniques that have
been previously explained and will thus require fewer discussions.

Programs in this book frequently access other programs that
have been stored in ASCII form on disk. You must save a program to
be used by another program in ASCII form, using the “, A” option. If,
in running one of the programs here, you see garbage on the screen,
you probably forgot to save the program in ASCIIL.

Word Counter is no exception. It will count words in a program
file the same as a text file, but only if both are in ASCIL. The
operator is asked to enter the name of the file to be processed in line
200. That file, F$, is opened, and one line is input from the disk. The
line is loaded by means of LINEINPUT#1 in line 220. IN-
PUT#1will accomplish much the same thing, except that it will not

A% Stores text line being examined.

AW Average word length in text.

C$ One-character string from middle of line.
CHAR Number of characters in whole file.

CuU Counter of number of words in file.

F$ Text file to be counted.

FL FLAG indicating end of file reached.

L$ Last character encountered.

N Loop counter.

SW Number of standard words in text.

Fig. 1-1. Variables used in Word Counter.

s I930®aRUD Sbeasae

9Ul} pue ‘SpIOM I93DBIBRYD-SATI , PIRPUR]S,,(T)dVL INI¥d O¥T
s JO IBdqUNuU Tel03

ay3 sopraoxd osTe 3T ‘UOTITPPR UL *3PWIOT, (Z)dVYL INI¥d O€T
« IIOSY UT ¥STP

03 pe103}s uesq sey 3jeyl STTF Aue Io0 ‘STTI 3IX93,(T)dVL INI¥d 0CT
w B UT sSpaom

Ten3o2 Jo Isqunu 3Y3 3Junod TTTM weiboird sTYL.(9)dV¥Ll INI¥d O0TT

LNIdd 00T

w I93UNOD PIOM S,I93TIM,(TC)AVYI INI¥d 06

LNI¥d:INI¥Yd:STO 08

¥¥x SUOTIONIISUT xxx 4+ SL

Z-Y¥ INIJ3d 0L
000% ¥YATO 09

yxyyrxyxevyyxxxrxvxvrvrvxry o 0G
» 2 2 0%
% I93Uno) PIOM # 1 0€
* # 1 0C
sxxxyexyrvrvvvvrxvrrrr o OT

“18uno) piop 4o Bunsy weiboid z- By WO

(SY)NIT OL T=N ¥0d 06

x¥yx SY UT IS30BIRYD UYOE® 3B OOT 03 dOOT x4y + SPC
($Y)NIT+IVHO=4YHD 0%2

¥xx OTTd UT SI®93dBIRYD TRIOL 03 $V IO UIBUST PPV xxx . SEZ
=14 NIHI (T)d0d J4I 0€Z

+¥¢ T O3 Deld 395 ‘punog oTT1d JO PUT IT xxx ., GZZ

SY/T# LOANIANIT 022

Sd'T’uIn NIJO 012

$d INANIANIT 002

{433UN0D 03 STTJ JO BWRU IS9JUH, (ST)EVLININd 06T

¥xx OTTd YSTQ SSOOOY ¢xx , S8T

INI¥d:INI¥d:STD 08T

0LT OLOD wu=$XAMNI 4TI OLT

w == ONUTIUOD 03 Aoy Aue 3ITH ==,(LT)9VL ININA:ININd 09T
w "3XS3 Oyl UuTr Spaom oyl jo Y3busT,(Z)EVL INI¥d 0ST

(g abed wouy panuyuon) “183uno) piopp Joj Bunsy weiboid ‘2-1. B4

STO FSTH NNY NIHL whu=$VY ¥0 wXu=$V dI 0OF¥
0€%? OLODuu=SVY JAI:SXAINI=SV 0OE€P

uN/Ku (0T)IVYLININA 0CF

ud®TTJ Id9Yjoue O3YD, (¥)HIYLININd OT¥

yxx CUTEDR® UNY xxx , SOF

dS010 00¥%

MS‘u= SQYOM YALOVIVYHO-FIAIA A0 °“ON. (LT)GYIINI¥NA 06€
S/9YHO=MS 08¢

INTYd 0LE

MY’ 4= HIONHT QYOM HOVIHTAV,(TZ)IVILININd 09€
ND/dVHI=MY 0GE

INI¥d 0¥%€

N0’ 4= SAYOM A0 YHIWNN. (£Z)IYLINI¥d 0€€
INIYd:INITYdSSTIO 0Z€

gxxy SITNSSOY INO JUTAL xzxx STE

0Z2Z OLO9 0T€

0Z€ 0109 T=T14 4I 00¢€

N IXAN 062

$0=8"1 ¢ 08¢

T+NO=ND NIHL (Z€)SUHO<>ST ANV (Z€)S$UHO=$D dI s 0Le
(T'N‘SY)SAIN=8D $ 092

accept string delimiters such as commas and quotation marks,
which are commonly used in both text and program lines. LINEIN-
PUT imposes no such restriction. It accepts everything up to the
next carriage return. This will be the end of a program line, or a
carriage return in the text itself.

To search for a word, we need to first decide just what a word
is. The easiest thing is to consider a word to be more or less, a
group of letters preceded and followed by a space. “CODEWORD”
is one word, even though two real words are embedded in it. “OH!
NO!” is two words. The punctuation is not part of each word, but,
for the purposes of this program it is considered so. This is because
Word Counter has been written to look for each space that is
preceded by a non-space. Counting spaces would be an inaccurate
way of counting words; the program instead looks at each character,
and, when it finds a space, looks to see if the preceding character
was a space. Ifnot, the end of a word has been deemed to have been
reached.

Referring to the variable chart and program listing (Figs. 1-1
and 1-2), we see that each line input, stored in A$, is examined one
character at a time ina FOR-NEXT loop beginning at line 250. The
loop repeats from 1 to the length of A$. Each time through, C$ is
assigned the value of the next character in the string through the use
of MID$(A$,N, 1).

Before the loop goes back to look at the next character, the
current character is stored in L$ (line 280), and becomes the last
character.

If C$ is a space (CHR$(32)), the program looks at the last
character checked, L$, to see if it was a space. If it was not a space
(that is, it was a character) then the program assumes the end of a
word, since no word contains an embedded space. Thus the word
counter CU, is incremented by one.

Once the program has looked at every character in the string, it
drops down to line 300, where the end-of-file flag is tested. If it is
equal to one, meaning the EOF marker has been reached, the
program goes to line 320 to present the results of the word count.
Otherwise, the program goes back to line 220 to input another line.

When the file is finished, the program prints the number of
words, CU, and then calculates the average word length, which is
the number of characters (CHAR) divided by the number of words.
The number of characters is also divided by five to total the amount
of “standard,” five-character words as well.

REM-over

In Chapter 1 we explored opening an ASCII disk file, either text or
program, reading it in line by line, and then examining the string of
characters in order to count the number of words. The next step is
to alter the file in some way, and then write a new, changed file to
disk. Several of the programs in this book are based on that princi-
ple, and the first of these is “REM-over.”

REM-over will read in a disk file, such as that shown in Fig.
2-1, and will print to disk a new file that is similar to the old one. The
only difference is that when the program encounters a remark.
designated either by “REM” or its apostrophic abbreviation (), the
remainder of the program line will be truncated. If a line consists
only of a line number and a remark, the line will be deleted from the
program entirely. The result will be a new program with all of the
comments removed, as shown in Fig. 2-2. Depending on the
number of remarks included in the original program, the new,
remarkless version may be significantly smaller, and therefore
consume less memory space.

Ordinarily, one might think that removing remarks from a
program would be ridiculously simple. Since the TRS-80 ignores
anything after REM or,” a program could simply search for those
two strings. However, to make things more interesting, you should
realize that REM or’ in quotes doesn’t count. That is, using REM as
part of an input prompt or in a PRINT statement does nof appear to
be a remark to the computer. For example:

8

10 ' Test of Program REM-OVER

20 REM Will Test REMOVAL of REMARKS

30 ' This Remark will be removed.

40 PRINT:PRINT: REM This one will be
removed.

50 PRINT"This REMARK: REM Will NOT be
removed."

60 PRINT"This one won't":REM This
one will.

40 PRINT:PRINT:

50 PRINT"This REMARK: REM Will NOT
be removed."

60 PRINT"This one won't"

Fig. 2-1. Target program for REM-over.

10 PRINT“This is NOT a REMark.”:REM But this IS.

REM-over takes care of this stipulation by simply looking at
each program line for quotation marks as well as remarks. If a REM
appears after one quote, but before the second, then it is contained
within the quotation marks. (This assumes that the programmer has
not mismatched quotes, and has included two for every prompt.)

The program, Figs. 2-3 and 2-4, begins by asking the operator
for the filename of the program which will have its remarks
REM-oved. This filename, F$, is used to form the filename of the
output file automatically. First, in line 100 the second filename,
F13, is formed by adding “/REM” onto it. If the filename happens
not to have an extension, as, for example, when F$=“TEST”, then
the new filename “TEST/REM” will be legal. A check is made later
in line 100 to see if this is so. F1 is equal to INSTR(F$,“/”). If
F1=0, that is, F$ does not contain a slash and extension, then the
program goes to line 110.

However, if a slash #s found and F1 does »ot equal zero, then
the portion of the filename up to the “/” (LEFT$(F$,F1-1)) is taken,

40 PRINT:PRINT:

50 PRINT"This REMARK: REM Will NOT
be removed."

60 PRINT"This one won't"

Fig. 2-2. Target program with remarks REM-oved.

A$ Line of program loaded from disk.

BS Middle string of program line.

F$ Filename of program being processed.
F1$ Filename of output file.

N Loop counter.

P Position to begin INSTR search.

o Position of first auote mark.

Q2 Position of second quote mark.

R Position of remark.

T$ String remaining after remark deleted.

Fig. 2-3. Variables used in REM-over.

and “/REM” tacked on. Next, both files are opened, and a single
line is input in line 140. Variable P, which is the position at which
the search for REMs begins, is set equal to one. Thus, the initial
search for remarks will begin at the first character of A$.

Because both REM and ’ can indicate remarks, two searches
must be conducted. First, in line 160, the program checks for,” and,
if an apostrophe is found, assigns variable R with the position of the
suspected remark. Control then branches to line 200. If no apos-
trophe is located, the program next checks for “REM”, in line 180.
If no remark is found, then the program line is already remark-free,
and the program branches to line 350.

Possible remark lines are examined further at a routine begin-
ning at line 200. There, Q1 is assigned the value equal to the
position of a quote mark. If none is found, a remark has indeed been
located, and control passes to line 260. If a quote is detected, then
REM-over looks at the rest of the program line, beginning at
position Q1+1 for a second quote. That value is Q2. If the position
of the remark, R, is less than Q1 (the remark appears before the first
quote, or is more than Q2 (it appears after the second quote), then a
remark is verified, and the program goes to line 260.

If neither condition is true, then the alleged remark is actually
within the quotes, and is disqualified. The program instead makes P
equal to the next position after the second quote (Q2+1), and
returns control to line 160 to see if any possible remarks exist after
position P. In this way, an entire multi-statement line can be looked
at, section by section, to detect all remarks.

When a valid remark is located, the program takes all of the
program line up to the remark itself, using A$=(LEFT$,R-1), asin
line 260. This, in effect, truncates the program at the remark.

We are not finished yet. After all, some program lines consist

10

“1on0-\3Y 10} Bunsy weibard p-g 614 =

T=d 0ST
SY/T# INANIFINIT OFT

xxx SUTT weirboxd PeOT xxx 1 SET

08€ OILOD (T)d0d AI O€T
$STA’Z/wOw NHJIO 0CT
Sd°T uIu NAIJO OTT
0TT OLOD: yHWHY/ u+(T-Td’$d) SLITT=$Td
gSTHd O0TT OLOD NAHL 0=Td JI:(u/u’Sd)YISNI=TJ? WIE/u+$d=$Td 00T
$d INANIANIT 06
«PoACWRI SYVWAY oAevy 03 weiboad jo sweu i193ud, (6)dVLINIYd 08
INIYd:INIYd:STO 0L
yyy OWRUDTTI IOIUH xxx ; S9

000S ¥VHTIO 09
sryxxyxxvrxyrxvxrvyry 4 0G

® x .« 0¥
Y I3/0~-WHY ¥ 1 OF
¥ ¥ 3 0C
sxxxxxxxxvexrrrx 3 0T

0TE OLOD LS<($€)DSY ¥0 8¥%>($€)DOSVY 4dI
(T/N’S$Y)SAIN=8€

(SY)NAT OL T=N d0d

(T-¥‘$Y) $1LITT=8V

x¥x SHUUWHY FFO dTIIIAS xwx

09T OLOD

T+20=4d

09Z 0IL09 z0<¥ ¥0 TO>¥ 41
((7€)SYHD SV’ T0)ULSNI=2D

T+10=10

092 OLO9 0=T0 JI:((PE)SUHD’SV‘d)ULSNI=TO

¥y AUV JT ‘SO30ND PUTI #xx
0GE€ OLOD 0=¥ dI

(uWHE L $Y/d)UISNI=Y

00Z OLOD 0<>¥ JI

(wiu’S¥? d)ILSNI=Y

g2 SYUYVYWEY IO0J OBUD sxxx

x4
08¢
oLe
09¢c

8s¢

0se
V) 44
0ET
0ce
0T1¢C
00¢

S6T
06T
08T
0LT
09T

SeT

12

(‘11 oBed woyy penunuoD) “Jerc-W3H 4o} Buney weiboid 'v-2 614 0

STO HSTd NNY NIHL w&,u=$V¥ YO uAu=$¥Y 4TI OF¥
0Z¥% OLO9D wu=$Y¥ JI:SAMINI=SY 0Z¥
w(N/X)u(62)9YLINI¥d 0TV

wd®TTJ I9Yjoue S59001d,(TZ)IVLININd 00¥
INIYd:INIYd 06€

x¥x CUTEDY xxx , G8E

dS010 08¢

0€T OLOD 0LE
SV /Z#INI¥d 09¢€
$¥ INI¥d 0SE

xxx ASTP 03 3urad ‘A3dws 30U BUTT FI xxx .« GPE
((T-(SVINTT) ‘$V) $LIATT=$V NIHL u®wu=(T’'$V)SIHOIY II OPDE
0ET OXO9 u u=$L II 0€E

0€ET OLOD wu=$I JI 02€

(N‘$Y)$AIR=$I OTE

N IX3IN 00¢€

of just a line number and a remark. Cutting off the remark leaves
only the line number. This is a bit untidy, and a waste of computer
memory as well. So, the program cycles through a FOR-NEXT loop
from 1 to the length of A$. Each time through, the string variable B$
is assigned the value of the middle character at position N. This
character is checked to see that it is a number in the range 0-9, since
all program lines hegin with numhers. As soon as B§ does NOT
equal a number, REM-over knows that the line number is complete,
and control drops down to line 310.

There, T$ is assigned the rest of A$. If T$ is empty, or consists
only of a space, then the program knows it has found an “empty”
program line, and loops back to line 130 without printing anything to
the disk. That line has been deleted from the program entirely.

If T$ does have characters, a check is made to see if the final
character is a colon, as would be the case if a remark followed a
colon on a multi-statement line:

10 PRINT“HELLO”:REM This is a remark.

If a colon is the last character, it is deleted in line 340. Then A$ is
printed to the screen, so the operator can monitor the progress of
the program, and also printed to the disk. Control goes back to line
130, where a check for the end-of-file is made, and another program
line input from the disk.

That’s all there is to REM-oving the REM-arks from your
programs.

14

Titler

Now we are ready for some real action. Making a few simple
changes in an existing program is kid stuff compared with the “real”
thing. That is, generating a new, never-before-existing program
line from your very own parameters. That's the function of Titler.
This program generates program title blocks like the one shown in
Fig. 3-1, which can be merged with your own programs. You don’t
have to tediously write the program lines yourself, format the title
block, or even supply your name and address every time. The
program will do that for you. As an added feature, your friends can
also use the program by supplying their own names.

This last capability is the result of what are known as “default”
values. That is, the programmer defines the contents of variables
(Fig. 3-2) storing name, address, and city. Every time the program
is run, you simply hit ENTER when asked whether or not a new
name and address should be input. (The question is posed in line
120, Fig. 3-3.) Then an INKEY$ loop repeats until the operator
presses a key, or hits ENTER. If “N” or ENTER (CHR$(13)) was
pressed, then the program drops down to line 280; N8, AD$, and
CT$ remain as they were defined in lines 70-90. The default values
are used.

If“Y” or some other key is pressed, however, the program will
ask for a name, address, city, state, and zip, and then assemble the
string variables N§, AD$, or CT$ on its own. In that way a regular

15

] ! AREARAARARERAARARkARERRRAR
2 0 % %
3" * Title Maker %
4 v % &
5 % % David D. Busch #
6 ' * 515 E. Highland Ave. ¥
7 ¢ % Ravenna,Ohio 44200 s
g v # %
9 ! B2 AEddRedbdhiikihikdhihkihin

Fig. 3-1. Sample title produced by Titler.

user can be accommodated, while leaving a path open for a friend to
use the program as well.

Next, the user is asked for the title of the program, and this is
stored in TITLES. The program checks to see which of the four
strings—TITLE$, name, address, or city—is the longest and will
thus determine how wide the title block will be. This width, A is
defined in line 350 as the length of the longest string, plus four. The
extra four characters will leave room for a space at each end of the
longest string, plus an asterisk used as the border.

A disk file named “Title” is opened, and a subroutine at line 760
is accessed to produce a string equal to the next line number to be
used in our miniprogram. This routine increments a counter, LC,

A% Used in INKEY$ loop.

A Length of widest line in title.

AD$ User’s address.

B Difference between length of line to be
incorporated in title and A.

B1 Number of spaces before line.

B2 Number of spaces after line.

C$ User city.

CT$ Name of user's city, state, zip.

LC Line counter

LN$ Program line currently being built.

N Loop counter.

S$ User state.

TITLES Title of program.

% User zip code.

Fig. 3-2. Variables used in Program Titler.

16

191) wesboud Joj Bunsy g€ By ™

-

LNI¥d:STD 09T
yxp °O3D ‘SWeN ISJUF xyyx , GST

08Z OLOD wU,=$¥ ¥O u4Nu.=$V ¥0 (E£T)S$YHO=$V JI 0GT

0FT OLO9uwu=8$V¥ JI:SATANI=SY OPT

u(S3ITNEISQ 3SN 03 <YHINI> ITH 3ISNL) 4 (ST)IVLINI¥Y OC€T
u(SS9IPPY pueR SWeN I93UH, (0Z)gVLININd:INIYd 0ZT
«I9ITIM YOO0THd °T3TLwW(E£Z)IVLININA OTT

INI¥d:STO 00T

wdT1Z ‘@3e3s ‘A3TD INOK,=$ID 06

uw©I9H SS8IPPVY INOX,=$AY 08

:wuwm SweN HﬁON:HmZ OB

#xx S3ITNeISQ x2x . G9

000T ¥YATIO 09

sxyxyexvververnvrrevsxr 1 0§

% x 1 0OF

¥ ISTITL weiboagd 5 , 0O

% g2 1 0C
[]

IZ LI ET L L L2 R T 22

ST
wITLILe ‘T uOuw NEAO

xxy OTTI YSTA UadO xxx o

P+Y=Y
($SID)INFT=¥ NAHIL ¥<(SID)INIT 4TI
($AV)NTT=¥ NIHIL ¥<($AY)NIT JI

(SNINFI=V NIHL U<($NI)NIT JI
($ATLIL)NAT=Y

S$ATLIL INANT

w$ wexboad jo 91313 I93uUd,(0C)IVLININA
INI¥d:SID

$Z+u ut$S+u’ w+$0=81D

$7 INANI

us opoD drz a93ud, (¥2)dVLINI¥d
$S INANI

w? 93B31S ISJUH, (GZ)AYLINIIA

$0 ILNANI

w® K3TD I93UH,(92)dYLINIYG

$av ILNdNI

u® SS2IPPY I93UH, ($2)dYILINI¥d
SN INdNI

st OWRU IDJUH,(9Z)dYVLINI¥d

oLE
09¢

GS¢E

13
0ve
0€e
143
0Te
00€
06¢
08¢
0Le
09¢
0se
ove
0ee
oce
01e
0oz
06T
08T
OLT

18

("21 ebed woyy penunuo) “opty weibosd io) Bunsry ‘g-g By D

-

T19~-€g=2€: (2/9)INI=Td ¢ (SID)NFTI~-¥=d 009

09. €9NS09 06S

SNT’T#INI¥d 08§

wrxut(TE'TH) SONIULS+SAY+(ZE/ TH) $ONIUIS+ux u+SNT=SNT 0LS
Ta-€9=24: (Z/9d)INI=TH: (SAY)NIT~V=d 09§

09L €90NS0D 0SS

SNT’T#INIYd OPS

urut(CTE/TH) SONTULS+SN+(ZE‘ TH) $ONTULS+ux u +SNT=SNT 0ES
Tg-9=2€: (Z/9)INI=Td: (SN)NTT-¥=9 0TS

09. €0S09 0TS

SNT‘T#INIHYd 00§

uxut(ZE€/V) SONTULS+ux u+SNT=$NT 06¥F

09L €NS09 08%

SNT’/T# ININA 0LV

sxut(TE/TH) $ONTULS+STTLIIL+(ZE / TH) $ONTULS+ux u+SNT=SNT 09
T19-9=24: (Z2/9)INI=T9: ($TTLIL)NIT~¥=d 0S¥

09L €NS0O 0v¥

SNT’T#INI¥d O€¥

wrut(ZE/V)SONIULS+ux u+SNT=SNT 0Z¥F

09. 90S09 0T¥

SNT‘ T#INTHYA 00F

(uxu’T+Y) SONIILS+SNTI=SNT 06€

09L 90S09 08¢

(‘61 ebed woy psnuyuo)) 18y] weiboid 10} Bunsr g-g ‘Bi4

NINLAY 0LL
(Z2€)SUHD+ 4 s u+ (OT) SULS=$NT: T+DT=DT 09L

2xy SIBDUNU SUITT JUSUWRIOUY xxse 5 §SL

ang 0s.

INI¥d 0¥%L

w° 0 (F€)SYHD? wITLILL?® (PE)SYHO S w TDUHAW, (62) EYLINIVA 0EL
w2443 usyy ‘QT ueyl IsybTY ST ISqUNU SUTT,LNI¥d 0TL
»3ISI1J eyl os wezboad 39bae] INOCA IOQqUNUSY,INIUd 0TL

INI¥d:STIO 00L

#yyx SUOTIONAJSUT TBUTI xxx 1 569

FS0TD 069
SNT’ THININA 089

(uxw’C+Y) SONITHIS+SNT=$NT 0L9

09L 9NS0D 099

SNT’T#INI¥d 069

e ut(ZE/Y) SONITHLS+us u+SNT=$NT 079

09L 90S09 0€£9

SNT’ TH#ININA 029

weut(ZE24) $ONTHLS+SIO+(ZE/ TD) $ONTHLS+ux u+SNTI=$NT 0T9

20

each time it is called. LN$ is then formed by converting the counter
LC to a string value, and adding an apostrophe (because our title
block will consist of remarks) and a space, CHR$(32). Then the
subroutine RETURNSs to the main program.

There, LN$ is first added to a string equal to A+2 in length,
consisting entirely of asterisks. So, the first line might look some-
thing like this:

1’ Hkok K

That line is PRINTed to the disk in line 400. Then the sub-
routine at 760 is called again, and a new line is similarly formed.
This line consists of a line number one greater than the last, the
apostrophe, an asterisk followed by a string of spaces equal to A,
and another asterisk. This line will look like this:

27 % *

The following line, containing the title itself, will have an
asterisk, some spaces, the title, some more spaces, and another
asterisk. The number of spaces will be divided as equally as possi-
ble fore and aft, so that the title will be centered. These spaces are
calculated by subtracting the length of the title from A, dividing the
result by 2, and assigning that value to the number of spaces
preceding the title, Bl1. The number of spaces following is the
number remaining after subtracting B1 from B. This is done, in-
stead of simply dividing B by two, because the result will not always
be even. It is sometimes necessary to make Bl one space larger
than B.

This centering procedure is repeated every line when the
name, address, and city are included in the title block. The block is
finished when a program line identical to line 1 is written to the disk.

The last step is to close the file. The user is instructed to
renumber the target program so that the first line number is larger
than 10, and then MERGE it with the TITLE file.

We have created a program from nothing. Next, things get a
little more complicated.

21

Documenter

Although I tried to impress you in the last chapter with the power of
Titler, the program was actually small potatoes. A bunch of pro-
gram lines consisting of nothing more than remarks isn’t a real
program. After all, a title block doesn't even do anything. “Docu-
menter,” on the other hand, writes real programs that really do
something. Best of all, your own input is kept to a minimum.

One of the difficulties of writing software is developing
documentation. At one end of the spectrum is the simple, interac-
tive, self-prompting program with multiple error traps that can be
run by the unsophisticated user with no instruction at all. The other
extreme is complex software, such as disk operating systems or
compilers, that require entire books or manuals to use properly.

Documenter is intended for the broad range between, i.e.,
those programs that require a few pages of quick instructions at the
beginning of the program to make running the software a little
simpler. The best part about this program is that it will format and
page instructions automatically, write the necessary code, and then
append them onto the beginning of your BASIC program. Procedure
for using the program is as follows:

1) Renumber your BASIC program so that the starting line
number is at least 100, and preferably 200 or higher. This insures
that your code will not overlap the instructions tacked onto the
beginning.

2) Save the program to disk in ASCII form. Then, load and run

22

Documenter with a disk containing the target program in one of the
disk drives.

3) Input instructions as desired. These may be typed in nor-
mally, with backspace used to rub out previous characters. How-
ever, a graphics block appears on the screen in the upper right
corner. This block indicates the 50-character mark, the “hot zone”
that approaches the right hand margin used in the instruction out-
put. If a word ends within this zone, the program will automatically
drop down to the next line. If you see that the word you are typing
will extend more than three or four characters past the beginning of
the hot zone, select an appropriate place for hyphenation, and insert
a hyphen. The program will recognize this character and drop down
a line at that point.

4) When all copy for instructions has been input, enter an
ampersand, which was chosen as a control character.

5) At this point, the program will create a group of directions,
an instruction set, so to speak, from your input. These will be in
proper program form as listed at the end of this chapter. When
complete, the instructions will be appended to the target program
you specified when Documenter was run.

6) Line 1 of the new program should be deleted, because it
contains the MERGE instructions. The program can then be run as
desired. Several pages of your instructions, developed to your own
specifications, will be displayed prior to the initial program lines of
the original software.

Variables used in Documenter are shown in Fig. 4-1, and the
program (listed in Fig. 4-2) works as follows. The user first
specifies the name of the previously stored (in ASCII) target pro-
gram. This is input into a string variable, TP$. Next, a subroutine

A$ Character input from keyboard through INKEY$
B$ String of characters input as copy.

Cc Counter for string array PROG$(n)

L$(n) Border array.

LN$ Stores program lines as compiled.

N Loop counter.

N1-N6 Loop counters.

P$(n) Print @locations.

PROGS$(n) Finished program.

TP$ Target program.

Fig. 4-1. Variables used in Documenter.

N LXAN
(N)$T avad
0T OL T=N ¥0Jd

0a o8 o0

¢y AVIYV OLNI HENILNOY ¥YIHAYOH AVHYE xwxx o

$dlé.: wexboxd 39bae3 Jo sweu 193Uy, ILNANIANIT
w°uot3do , ¥’, 8yl bursn ‘Jewroy (IIDSVY). LNI¥d
spPossaxduiod-~uou

uUT poaes uos(q aaery 3snu wexboxd 38biel Inox, INIAd
LNTdd3 871D

xyy SUOTIAIONIJISUT xxyp

T=0

(00T)SNT’(00T)$D0¥d’ (ZT)$1T WIA
0008 ¥VHATO

FREFFFRELEREES

* % 1

x A9jusumdod ¢

* ¥ 8
FEEEFFRLERREET

0sT
0vT
0ET
S¢T

0CcT
01T

00T
06

S8

24

“Jajuawnoo Joj Bunsy weibold ‘g ‘Gig %

$¥+s€=sd 00¢€

Omm 050D =w=uw4 AT OmN

0P € OLOD NIHL (ET)$YHO=SVY 4T 08T

0TS OLO9D: (T-($H)NTT’SH)SIdTT=6d NIAHL (8)$YHO=$¥ AT 0LT

09Z OLOD wu=$Y JI:SXMINI=SY 097

(T6T)SYHOHTIT ® INI¥d 0S¢

INTYd 0%

w 3TNDb 03 , ® , I93Uug °MOU SUOTIIDNIJSUT ISJUH,. INIUd 0¢€C
INIYd:STO 02¢

#xx AdOD NOILONYLSNI INANI xxx » STC

9GP Z6€£'82E€%92/002“9¢€T YIVd 012
oX IXINy 0 (X/LZT)IFSw w (X' T)L3Su’uT¥ OL 0=X ¥Odu’uN
IXANy‘w? (06T)SYHO'N ® INI¥d.’w568 OL ££8=N ¥Od. VIVA 00T
oN IXINu’uf(6GT)SYHO'N ® INIUdw‘u€9 OL T=N ¥0d. ¥YIVA 06T

IN IXIN ¢ 08T
(IN)$d avay P 0LT
9 OL T=IN 904 3 09T

#xx AVYYY OINI SNOILVDOT ., ® INI¥d. AVIY #xx 1 SST

(ZN)$T+s u+(Z+ZN)SULS=(Z+ZN) SN'T s

IT OL T=ZN ¥0od °

uSTO Zu=(Z)SNT

JHIADNIN ¥ALAY INIT SIHI HILIATIA

2dOLS: u+(PE) SUHD+SAL+(FE) SYUHO+w TOYIAW Tu=(T)SNI
099 dNsod

i)

$d=(D) $D04d

¢33 WYEO0Yd YIDYHEW JO0 SHENIT ISUYTA ATING xxx

09Z OLOD

T40=0

o zﬂwm

$£(9Z)SUHD? (6C)SUHD INI¥A

$d=(D) $904d

092 FSTH OFE OLOD (S¥)SUHO=SVY YO (Z€)SYHO=$VY dI

vxy AVMUY (N)$O0Yd NI $9 FIOLS xxx

092 OLOD 0G6>(SH)NIT 4TI
{8VY INI¥4

0S7v
ovv
0tv

0cv
0Tv
00%
06¢

G8¢

08¢
0oLE
09¢
0s¢
0ve
0ee

GC¢

0ze
0TE

26

(-2 ebed woyy panuyuon) 1ejuswinoo(4o} Bunsy weiboid 2 Big IS

N
EN IXAN ¢ 08§
GN IXIAN : 0LS
nt(Z€ -mva.UZHm_H.mz.f
u!ut(SN)Sd+u B INIUdu+(NT)SNI=(NT)$SNT : 09S
099 dNS0D 2 0GS
9 0L T=GN ¥0Jd 2 0¥S
(NT)$¥ILS+u OLOD wu+(¥E)SYHO+
(VE)SYHO+u=$XMINT JIT.+(NT)SNTI=(NT)SNT:099 €90S0D : 0€S
u®ut(VE)SYHO+,AONIINOD OL XIAM ANV LIH.+
(PE)SUHO+u’PTL ® INIUdW+(NT)SNI=(NT)SNI:099 €0S0D : 02¢
PN IXIN ¢ 0TS
u®ut(VE)SYHO+(YN+EN) $90dd+ (¥ E) SHHO+ ulut
(T+PN)Sd+u D INIVdW+(NT)SNT=(NT)$NT:099 9NS0D : 006
S O&L 0=¥N ¥OJd : 06V
9 ddIS O OL T=€¢N ¥0d : 08%

¥¥»¥ LNIWITHE HOVA HLIM SINIT . ® INI¥d, ATINH xxx 1« SLV

CN=NT 0LV
¢N LXIN : 097

(-z2 abed woyy penunuon) “seswnoog Joj Sunsy wesboid 2-v Big

NINLHEYS o+ (NT) SHLS=(NT)$SNT: T+NI=NT 099
gey INIT MIN SIVILINI ANV SUYILEWAN ANIT INFWHIONI #xx ¢ SS9
LTIOTANW, NOY 069

¢¥% SNOIILONUISNI/IADYVI ENIHWOD OL WYYOOHd YIADUAW NO¥ x#x o S79

1 FSO0TID 0%9

9N IX"IN ¢ 0€9

(9N)SNT’T# INI¥d $ 029
NT OL T=9N ¥0d ¢ 0T9

wIIOIHN ' T? wOw NIEJO 009
zxx MSIA OL WYIO0Ud YIDYHW HAYS xxy o G6S

(NT)$HLS+u OLODu+(¥E)STHO+
(9€) SUHD+u=SXAMNI JTI .+ (NT)SNI=(NT)SNTI:099 €NsS0D 065

28

that was parsed and entered as DATA lines is read into a string
array, L$(n). This 10-line subroutine prints a graphic border around
the screen of the TRS-80. The various portions of the routine,
minus line numbers, are stored in data lines at 190-200.

Next, a group of numbers (data line 210) is read into a second
array, P$(n). These numbers correspond to six screen locations
that will be used in PRINT @ routines to be created later. For
example, the first item of data, 136, will be used to PRINT @136
either instructional material or blanks to erase that portion of the
screen—without disturbing the graphics border around the edges.

At this point, the person running the program is urged to begin
entering the instructional copy. The right margin hot zone is first
placed on the screen, in line 250. Eventually this will scroll out of
sight, but the other lines of copy will constitute a sufficient remin-
der for most.

An INKEYS$ strobing loop in line 260 allows keyboard input of
any character. When A$ does not equal null (* "), control drops to
line 270, where a check is made to see if the backspace character
(CHR$(8)) has been entered. If so, the string that stores the current
input, B$, is rubbed out from the right side by one character.

If ENTER has been hit (CHR$(13)), control passes to line 340;
otherwise, unless the escape ampersand has been entered, A$ is
both added to B$, and printed to the screen. If B$ is not greater than
50 characters, then the program returns to the INKEY$ line for
additional input.

When 50 characters have been entered, the time is ripe to find
the end of a word. Control always drops to line 330, where Docu-
menter looks for a space, CHR$(32), or a hyphen, CHR$(45). If one
is not found, INKEYS$ is accessed for more input.

When the length of B$ is more than 50 and a space or hyphen is
recognized, then B$ is stored in a string array, PROG$(n). Then B$
is nulled and C (the PROG$(n) counter) is incremented by one; the
next time that portion of the program is called, B$ will be deposited
one element farther down in the array. This portion of the program
is used whenever ENTER is hit during the INKEY$ loop.

Input may continue until “&” is entered. At this point, the last
value of B$ is stored in PROG$(C), and construction of the program
subroutine begins. Program lines are stored in a string array,
LN$(n). These lines are assembled similarly to the titles in the last
chapter. That is, first a program line number is produced, and then
the necessary parts of the program line are added to that. The first
program line is always line number 1, followed by MERGE, a quote

29

¢y oyl

s2U0Z 30y, 3yl I93ud nok se {adiy Atdurts ©’96% ® INI¥d 8T
{ycweiboad 3ebiel oYl YITA,’Z6E D INI¥d LI

‘w WRYR

puadcde pue ‘yoes siojoeaeyd (¢ LArojewrxoxdde,’gzE 9§ INI¥d 9T
£, 3o

SSUTT OJUT SUOTIODATP Y3 Jewroy ATTedT3ewolne,’$9g ® INI¥d ST
CuTTTA

31 c°®#3toyo anok jo weaboad oisedg ® 103 SUOTI,‘00Z ® LNI¥d #T
£ ,~-ONIISUT

193u® 03 nok moTTe TITM weiboxad sTyg 2 9€T ® INI¥A €T

X LX4AN CT

(x'Lzm)adas 1T

(X‘1)38s 0T

T? OL 0=X ¥0d 6

N ILXEN 8

$(06T)SYHD’N ® INI¥A L

G68 O £€8=N ¥Od 9

N LXdN ¢

{(6ST)SYHD’N ® INI¥A ¥

€9 04 T=N ¥O4 €

STO 2

YAOEEW ¥HIJIY HNIT SIHL FLITIHAd WY “moamuzaoomamZH= IO¥EN T

30

"1ejuawnooq Aq peonpoud weiboid sidwes ‘g- Big s

7€ OLOD 4u=$XTMNI 4I b€

{wHONIINOD OL A¥M ANV IIHu’¥TL ® ININA €€

$y wIOJ

IIOSY UT peoaes 8q j3snuw weiboiad 3sbiey anox «’9G% ® INI¥A Z€

{y°®0eds ®© se TIaM se STY3,“‘26€ ® INTVYd TE
¢, ®@zTUboODBI

TTITs wexboad sy, -usaydiy e 3ISSUT O3 pSau NoAK,’8zE 9§ INI¥d 0OF

¢y ‘3yb1a

xaddn ay3 ut 3o01q sortydeab 23l 3sed sI93dRIRYD,‘y9Z B mszm 62
{, moJ

B UeYl SI0W pUSIXd TITM PIOM ® JT °pIoMm ® 30,700C ® INI¥d 8¢

{, pus

29Ul yoea1 noi usym SBUTT e umop doap TT1TM wexboxd,’9¢T B BZHMm LZ
$(ZTE€’SS)SONINIS’9SY § INI¥Nd 92

$(TE'SS)SONTULS Z6E B ININA SZ

$(TE'SG)SONTILS‘8ZE © INT¥d v2

uANm~mmvmeHmam~¢mN ® INI¥d €2

$(TE’SS)SONINLIS?00Z ® INI¥d 22

$(TE'SS)SONIULS 9ET ® INI¥A T2

02 OLO9 wu=$AMINI JdI 02
{wEONIINOD OL AHM ANV LIHu’%TL ® ININd 6T

(' L& obed.woy panunuos) “18wswnoaog Ag paonpoid weiboid sidwes “e-¢ Biyg

GG OLODuu=$XATINI AT GS
$(ZE€*GG)SONTULS‘9SY ® LINIVd G
$(Z€?GG)SONTIVIS‘Z6E ® INI¥dA €S
£(2€/6G)$ONTILS’8CE © INI¥Vd TS
£(Z2€’GG)S$ONTIEIS 9T © INI¥d TS
$(Z€'GG)SONTULS’00Z ® INI¥d 06
$(ZE GG)SONTILS’9ET @ LNIHUd 67

8% OLOD wu=SAMINI 4I 8%

¢ ANNIINOD OL XEM ANV IIH.’%TL ® INI¥d LY
fun’9GY ® INI¥A 9%

tun’Z6€ ® INI¥A SP

tuu’8ZE ® INI¥A ¥¥

{un’P9Z ® ININd €F

$wn’00Z ® INI¥d TV

£,002 ueysy IaybTy SISquMuU SUTT dARY PueR,’‘9E€T ® INI¥d TV
4(2E’GG)SONTHLS9GY ® INI¥A OF
$(2E’GG)SONTILSZ6E ® INI¥A 6€
4(ZE€'GG)S$ONINILS8ZE ® INI¥d 8€

1 (2€'GG)SONTULS¥9C ® LNI¥Vd LE
{(Z€/GG)SONIHLIS‘00C ® INIdVd 9¢€
$(ZE/GG)SONTHIS/9ET © LNI¥dA S€

mark, and the title of the target program. The second program line
is always “2 CLS".

The next few lines are always the lines which write the border
routine. They are assembled by adding elements of L$(n) to the
program line number produced by a FOR-NEXT loop beginning at
line 430.

Nested FOR-NEXT loops next construct the information
pages, divided into six lines per page. So, the outer loop steps from
1 to C (total number of lines) STEP 6. The inner loop determines
which PRINT @]location is used in that given program line. Each
screen has a “Hit any key to continue” line added, and an INKEY$
loop.

If all this is a bit unclear, carefully examine the program listing,
which is liberally sprinkled with comments. Also, look at the sam-
ple program, Fig. 4-3,, which was produced using Documenter. The
steps needed to assemble a finished program using operator input
will be explained further in later programs. This is just the begin-
ning.

Tabber

Time for a breather. Tabber is a simple yet elegant little program
that will be very useful to you. It creates no new program lines,
doesn’t make your computer operate 50 percent faster, and won't
even make your laundry whiter.

What it will do is automatically center various prompts that are
printed to the screen using PRINT or INPUT statements. Instead of
sloppy screen formatting, you can have neat copy. It will work with
both 64-column screens in the TRS-80 Models /111, and 80-column
screens of the Model 4. Best of all, you need to make only one small
change in your programming habits.

To center any prompt, simply type PRINTTAB(T) instead of
calculating the proper tab position yourself. See Fig. 5-1. With
messages that are going to be PRINTed to the screen, just insert
TAB(T). If a program presently includes the prompt after an INPUT
or LINEINPUT statement, you will have to do some rewritizg,
since there is no such thing (yet) as INPUTTAB(n) or LINEIN-
PUTTAB(n) statements for TRS-80 computers. Use the second
line, rather than the first in the examples below:

WRONG: 10 INPUT “Enter your name:";A$
RIGHT: 10 PRINTTAB(T)“Enter your name:”;:INPUT
A$
{(Model 4 users should separate PRINT and TAB, as well as LINE
and INPUT, with a space.)

34

10 PRINTTAB(T)"THIS PROGRAM DEMONSTRATES THE USE"
20 PRINTTAB(T)"OF TABBER/BAS. ANY PROGRAM USING"
30 PRINTTAB(T)"THE SPECIAL 'T' TAB WILL HAVE THAT"
40 PRINTTAB(T)"PROMPT CENTERED ON THE SCREEN"

Fig. 5-1. Target program to demonstrate Tabber.

You can even run programs using TAB(T) without running
them through Tabber. This is especially useful during program
development and testing. Simply insert the TAB(T)s as you go
along. Until the finished program has been processed by Tabber, all
prompts with TAB(T) will be printed flush left, so long as the
variable T is not used elsewhere within your program. If not, it will
have a default value of zero, and the program will tab zero spaces for
each prompt. Then, when the program is done, save it in ASCII form
and run Tabber. Tabber will search through each program line.
When it finds TAB(T) it will measure the length of the prompt
remaining, calculate how many spaces must be tabbed to center that
message on a 64- or 80-column screen, and then replace the “T”
with an appropriate number. Figure 5-2 shows our target program
after Tabber has finished its work.

A few programming tips are included in this program. Menu
input routines are one area ripe for improvement. Many programs
will offer the operator a choice of actions, listed in a “menu” on the
screen. Items from menus can be selected by having the user press
the first letter of the menu item name, enter the whole choice, or
enter a number that precedes the menu choice.

Having the user type in the whole name is rarely done, because
a simple typing error could invalidate an otherwise correct entry. If
a person wants a 64-column screen but types 63 instead, it is a
shame to make him or her redo the whole entry just for missing by
one, or, worse, having the program crash because it doesn't recog-
nize the choice. Entering one character is popular, especially when
amenu is accessed frequently. The user can easily memorize which
letter triggers which menu choice, because of the mnemonic con-
nection. The following is a typical letter-oriented menu:

(L)oad

(S)ave

(E)xit

(C)ontinue
A problem could occur if two menu choices started with the same
letter, and the programmer could not think of a convenient synonym
that used another initial letter. In addition, such menus force the

35

10 PRINTTAB(15)"THIS PROGRAM DEMONSTRATES THE USE"
20 PRINTTAB(15)“OF TABBER/BAS. ANY PROGRAM USING”
30 PRINTTAB(15)"THE SPECIAL 'T°' TAB WILL HAVE THAT"
40 PRINTTAB(17)"PROMPT CENTERED ON THE SCREEN"

Fig. 5-2. Target program with TABs inserted.

non-ty pist user to hunt around the keyboard for letters that may be
widely separated.

N umeric menus, on the other hand, have choices arranged in
neat rows across the top of the keyboard. The limitation is that only
10 mexu choices can be listed, if we want single-key entry (0-9).
Even then we open ourselves to problems, because the simplest
input methods could confuse a null entry (just pressing ENTER, for
example) with zero. It is possible to check the CHR$ values of the
entries, to differentiate between zero (CHR$(48)) and ENTER
(CHR$(13)). One could also extend a numeric menu by using
hexadecimal notation, following nine with A, B,C,D, or E.

In practice this is seldom needed. Tabber’s menu has only two
choice s, that between 64- and 80-column formatting. However, it
also uses a built-in error trap, something that is too often forgotten
by be ginning programmers. Some will write a menu routine like
this:

10 PRINT*1.) Load program”
20 PRINT*2.) Save program”
30 INPUT“Enter Choice”;CH
40 ON CH GOTO 100,200

Now, if a naive user enters “L” or “S”, or some other letter by
mistake, a cryptic “REDO FROM START” message will be dis-
played. That is of no help at all. Entering a number larger than two
will send the program to the line following 40, whatever that is. This
could crash the whole program. We can avoid the REDO message
by using CH$ instead of CH in the INPUT, since strings will ac-
cept letters as well as numbers. Converting to numerics, e.g.,
CH=VAL(CHS$), will send us to our ON CH GOTO line happily—
except we still haven’t handled the inappropriate input that might
result. It is also necessary for the user to remember to hit ENTER
before the input is accepted. The user either has to be sophisticated
enough to do this on his or her own, or else we have to waste a line
to prompt the user to do so.

Since all we want is a single character, why not use INKEY$ to

36

get it? Then, if the character is not valid, just send control back to
the INKEYS$ loop until a proper entry s made. That is what is used
in “Tabber,” the variables and listings for which are shown in Figs.
4-3 and 4-4. Line 120, for example, is an INKEY$ loop that repeats
until a character is pressed. That character, A$, is converted to a
number value, A, in line 130. If A<1 or A>2, the program loops
back; otherwise, it sets the value of S to either 64 or 80, as
appropriate.

Next, the user enters the filenames for the input and output
files, and a single line is loaded from disk, in line 230. The next line
looks for an occurrence of “TAB(T)” in the target program line.
Since the string “TAB(T)” is likely to be unique, no effort is made to
check if it is contained in quotes, or after a remark. Odds are that it
will never appear in your program, except where you actually do
want to center a prompt. This is mentioned because Tabber did
“crash” when it was used to process itself—caused by line 240, in
which TAB(T) is contained as part of the program itself, and not
before any prompt. In all other cases, TAB(T) will be followed by a
prompt and a matched pair of quote marks, but in this case that was
not true.

Whenever Tabber finds TAB(T), it looks for the position of the
first quote, loads the value of the rest of the program line after that
quote, and then cuts off the line following the second quote (line
280). B$ will then contain only the material in the prompt.

The next step is to measure the length of the prompt, subtract
that from S, which is the screen width (either 64 or 80 columns), and
divide by 2. The resulting number, D, is the number of spaces that
should be tabbed to center the prompt.

A new program line is then assembled in line 310, taking
everything that appears before the TAB(T), adding that to a string

A% Program line being examined.

B$ Portion of program line.

Cc Position of “TAB(T)" in program line.

C1 Position of quote in program line.

D Half the difference between prompt length
and display line length.

D$ Amount to tab, added to program line.

F$ File to be processed.

F2% Output file.

S Length of display line, either 64 or 80.

Fig. 5-3. Variables used in Tabber.

37

wd TIIA IN4IN0 J0 HWYN VHAINH, (8T)dYI INIVd
$d ILNANIANIT

u fUEYIINGD H9 O SHYI HLIM WYYO0dd YdINH. (ZT)EVL LNI¥d

ILNI¥d:LNI¥4:STD
#xy SS8001Id 03 OTTd JO SWeN ISAUH ygx

08=S FSTHA ¥9=S NAHI T=V¥ JI

0ZT OLOD Z<KY¥ ¥0 T>¥ JdI

($Y¥)TYA=Y

02T OLOD uwu=8$Y¥ JIS$EXIINI=SY

w® HOIOHD YHINH,(0Z)9YI INI¥dSINI¥Nd
«NHOTOD 08 (°Zu(02)9VLINI¥NA

oNHNTO0D ¥9 (°T1s(02)dVLINI¥Nd

ENAINOS NWATOOD 08 ¥O #9 ¥0d WYYDOYd SIL(ET)EVL LNI¥d
INI¥d:INI¥d:STO

000T ¥YHTO

BRBPPRXPIBPPRBRRRBRREL 5

L3 P

% Xaqqe] 3

% 8

8
]
[
PRERRBPERLPERRPLRBELE 2

06T
08T
OLT
09T

st

0ST
0%T
OET
0Ct
0TT
00T

08
0L

0S
oy
0¢
0¢c
0T

38

"1eqqey 1oj Bunsy wesboid v 614 R

SY/Z#INIYd 0€E
¢»x¥ ASTA O3 JUTId xxx 1 GCE

0¥Z 010D 0Z¢

(S+D/$Y) SATN+SA+(E+D‘ $VY) $1LATAT=$Y OTE
(Z2/(a)$d91s)$AIN=3a 00¢€

(Z/(($9)NAT-S))INI=A 062
(T-((PE€)SYHO/S$H)YILSNI‘$9) STATAT=8€ 082
(TO?$Y)$ATIW=89 0LZ

T+((PE€)SYHD ' SY ‘D)UISNI=TO 092

0€€ OLOD 0=D 4I 062
(u(L)EYLu‘SY)ILSNI=D 0%C
SY’/T#INANIINIT 0€C

¥xy OUTT ® PBOT xxx , GCC
$2d’C’w0uw NIAO 022

Sd’T’uwIu NIJO 0TZ
$Zd INANIINIT 002

(‘6€ abed woy panunuo)) “1eqqe] Joj Bunsy weiboid v-g B4

STO FSTH NNY NIHL whu=$VY ¥0 uwXu=$VY JAI 0%¥
0€% OLOD wu=$¥ JT:SXAMINI=$Y 0€¥
uw(N/X)u(62)9YLININA 0C¥

ué®TTI IBYlOoUR S$S9001d, (TZ)IYLINIYd 0TV
INIYdSINI¥d 00¥%

¥xx CUTEDY yxy , S6€

u QIHSINIAL (LZ)EYL INI¥d 06€
INTYd S INIIdSTO 08€

dsS0TO 0LE

0€Z OLOD 09¢

0LE OLOD (T)d0"H 4TI 0SE

SY INI¥d 0%E

40

representation of the tab value (the leading space has been deleted
in line 300), and finishing off with the rest of the program line,
beginning with “)”. Thus, the “T" has been deleted and replaced
with a number. The program then loops back to line 240 to see if any
more TAB(T)'s appear in the program line. This allows Tabber to
process multiple TAB(T)s appearing on a single line.

Once the work is finished, or if a line contains no TAB(T)s in
the first place, control drops down to line 330, where A$ is printed
to disk and screen. A check is made in line 350 to see if the
end-of-file has been reached. If not, the program loops back to line
230 to load another program line from disk. Otherwise, the process-
ing is finished.

41

Screen Editor

The next three programs in the book, Screen Editor, DB Starter,
and Proofer, make up a trilogy (of sorts) called “Automatic Pro-
grammer.” The three in the Automatic Programmer series are
related programs that might be thought of as integrated, but they
aren’t. No data files are transferable from one to the other. How-
ever, output from one of three can be processed or combined with
output from the others quite easily.

These programs are an attempt to present some professional
programming concepts, showing how error traps, help screens,
instructional files, etc., can enable programs to be self-doc-
umenting and usable even by the neophyte.

All three make use of a fourth program, “Automatic Program-
mer Documentation,” which serves as a help file and introduction to
all three. It also is a menu of sorts that can be used to load and run
one of the other programs.

The first of the Automatic Programmer series is Screen
Editor, which you will find to be one of the most useful programs in
this book. I relied heavily on it to write instructional screens for
many of the other programs here, and even for itself. With a few
minor changes, the program is compatible with the Microsoft
BASIC Compiler. A much faster-running compiled version was
used, cutting programming time down from a minute or two to afew
seconds.

Have you ever wished that you could design your program

42

menus, instruction screens, and other CRT displays with a word
processor or some similar program—and then tell your TRS-80
something like, “Hey, I want my screen output to look like this.
Please write a few lines of code for me that will reproduce this inmy
program.”

“Screen Editor” will do exactly that for you. Use it as a
screen-oriented text editor to lay out your display exactly as you
want it to appear. Then specify a beginning line number, line
number increment, and a filename for the finished code. The pro-
gram will then write a suitable subroutine that can be MERGEd
with an existing program to produce the desired display.

Ordinary, line-oriented program input and editing are some-
what tedious when neat, nicely formatted screen layout is desired.
It is necessary to use a copy of the TRS-80 Model I/III or 4 screen
map, and do a great deal of laborious notation on PRINT @locations,
or POKEs to video memory. Even less complicated layouts require
calculating TAB positions and other time-consuming tasks. Con-
sider the work that would be involved in programming a display to
provide the menu in Fig. 6-1.

With Screen Editor, simply use the arrow keys to move the
cursor around on the full screen. Press character keys to place
alphanumerics where desired. The layout can be quickly done by
eye. Then, hit ENTER, specify what line numbers are desired for
this subroutine, and collect a finished program module like Fig. 6-2
from your disk a few minutes later. There, stored in ASCII form and
ready for merging will be 16 program lines that reproduce what you
designed on the screen. Instead of 15 or 20 minutes of coding,
RUNning the program to check the appearance of the output, mak-
ing changes, and so forth, you have three to five minutes of typing
with a wordprocessor-like tool.

AERAXBREAA A AR A RAER
2 —Menu— ¥

1) Load disk file
* 2) Save disk file ¥
. 3) Create file

4) Access data base
x 9) Update data base =

* --> Enter choice:
2 2 F SRR XX EXEEE R XX

£

Fig. 6-1. A typical program menu.

20 cLs

30 PRINT TAB(S)Nﬁakﬂﬁﬁkﬁﬂﬁﬁﬁfe?
40 PRINT TAB(5)°% *
50 PRINT TAB(5)°*% SCREEN #
60 PRINT TAB(5)°% EDITOR hd
70 PRINT TAB(5)%°% ®
80 PRINT TAB(5)3******#(*******
90 PRINT

100 PRINT TAB(25) wééweheaeovivnivieasoainasen
110 PRINT TAB(25)°#% TYPICAL EXAMPLE SCREEN § ©
120 PRINT TAB(25) 4444444880808 04 08000080048 7
130 PRINT

140 PRINT

150 PRINT TAB(14)"This is a screen prepared by
the Screen Editor ©

160 PRINT

170 PRINT

180 PRINT

H!l’

200 A$=INKEY$:IF A$="" GOTO 200

3 3 3 28 &

Fig. 6-2. Example of program produced by Screen Editor.

The trick is accomplished by PEEKing into video memory,
noting what character (if any) has been placed there by the user, and
then assigning each screen line to a separate element of a string
array, L$(n). Then, each of the elements in L$(n) are used to
assemble an appropriate program line which PRINT the entire line
to the user’s screen. If, say, line one consists of four spaces,
fifty-six asterisks, and four more spaces, that entire line will be
PRINTed in the resulting program. No PRINT@’s or other calcula-
tions need to be made.

Screen Editor, in other words, reproduces your screen ar-
rangement, spaces and all. It may not be the most memory-efficient
way of invoking a desired screen within your program, but for disk
users with 32K or 48K of memory available, the waste will be
negligible compared to the time saved.

Actually, a nifty technique is used to eliminate the leading and
trailing spaces. As the program looks at each video line in turn, it
sets a BFLAG when it encounters the first non-space character, and
an EFLAG when it encounters the last non-space character on the
line.

In assembling the finished program lines, it constructs a
PRINTTAB statement that tabs to the position of the first non-
space. The following characters, spaces and all, are reproduced
until the last non-space, when a closing quote is added. Thus, aline
like:

44

Hello!
Would not be turned into a program line like this:

10 Print“ Hello! ”
Instead, the line would read:

10 PRINTTAB(10)“Hello!”

The program is divided into two main sections. The first allows
user input of the screen design. An INKEY$ keyboard strobing loop
looks for input (line 120). If ENTER has been pressed (CHR$(13)),
control drops down to the video memory peeking/program assem-
bly section. Otherwise, Screen Editor looks at the character input
to see if it was an arrow key (character strings 8,9,10,and 91). If so,
one of four subroutines which move the cursor in the indicated
direction are accessed.

The cursor is not allowed to move off the top of the screen, nor
past the 15th line of the display. To check for this condition, each
subroutine first looks to see whether or not the proposed position

A% Character input from keyboard, through INKEY$
B Beginning of video memory.

C Cursor character.

Cu Counter

E End of video memory.

EFLAG End of character line flag.

F$ Filename of output file.

IC Increment to increase line number by.

L$ Endof line character, either “;" or “”
LN$(n) Stores finished program lines.

LN$ Program line currently being built.

N Loop counter.

N1-N9 Loop counters.

PR$ Program line being read from video memory.
S9 Position in filename of */”

SP Space (CHR$(32)) as a cursor character.

t Value PEEKed in video memory.

Zz Position of cursor.

Z1 Check to see if middie of screen reached.

Fig. 6-3. Variables used in Screen Editor.

45

€ OL T=8N ¥Od =
0¥Z 010D

00C €NsSOD

0ge €0S0D

S0

#xyx CSUOTIONIAISUT xxx

(u2n ‘4 $9) W.UZHMH.H.WHWAN.H

2€=4dS:Ep=0:d=Z2 T=ND*6TEIT=T:09¢EST=H
NINLIET

0ZT OL09 wu=SVY JI:SAMINI=$Y

0P T OLOD

(00%)SNT WId
0LST OLOD YOY¥d NO
XA-¥ INIJ"d

0000T ¥VATIO

]

FRFFVARREEV SR RN RSP R RRERPRNES !
¥ » 8
® 103 TPd US310§5 ¥ '
» 2 3
[

RRUNPPPRRRBRPER LR PR RER

46

“Joup3 usslog 10j 6unsy weiboid v-9 Hi4

‘u¥

I03TPH U®@3a10§g , % uLNTYd
*u

Jsuwexboag orjzewolny * »aINTId
n:*
¥ udlNT¥d
LuNRRRRRBRERRENREE
¥EFFRRRERFRERRN LR RNRFRRRR SR AXE R e X 2R S22 ¥ 2 v 22 uNTUd
S1D
082 FSTI »O00/909dOIOV.NNY NIHL uwhAu=$Y Y0 wXu=S$V dI
uD0d/908d0LNYuNAY NIHL wUu=$Y YO0 uwHu=$V JI
09% OLOD :S8T0 NHHI wUu=SY¥ ¥0 uN.=$V 4T
0CT €NS0D
.A=*=~vmkuszam INIYd

Luxn *s3dwoxd

3ndutr 3sow 03 ,dTdH, IO ,H, ©dA3 osTe Aew NOX 4,INI¥d
oom gn0S09
Luxanf(€£9)9YL
fu—= & SUOTIONIRSUT UM NOK OQ —=-, ¢ (LT)EYL! uxnINT¥A
N3NITY
8N IXAN

Luxu(€9)9YL? uxuINI¥A

09¢
0se
ove

113
oce
0TE
00¢€
06¢
08¢
o0Le

09¢
0s¢

ove
0ee
0z¢e
0T?C

[
<

00S OLOD ¥<((6S ’$4)SAIW)NAT 4TI

08S OLO9 0=6S dI

(u/u’$d)UISNI=6S

069T €0S09 4Uu=$d ¥0 uwHu=$4 ¥O odTHH.=(¥% ‘$J)S$IdTT JI
¢4, ¢ AWYN FTITJ YAINT.ININI FNIT

gypy UDSIOS JO SWRUSTTIF IASJUH xxs

019 OLOD

009 €NS0D

INI¥d 3 ILNI¥d s LNIT¥d

0T=01:0T=N1

8N IXdN
==“A®vaZQ

00T O&L T=8N ¥O4

es o0 oo

, STO

- ——————— #wINI¥d

yosng °q praed s kg % uINIY¥d

0%s
0tEs
0Zs
0TS
00S

S6¥

067%
08%
0LY
097%
0S¥
ovd
0e?d
0cv
0T?v

00¥
06¢

08¢
0LE

48

(‘2 abed woy panunuon) “1oup3 usa10g 10§ Bunsy weiboid p-9 ‘Bi4 @

u J}ORXD

9yl 3® uaym Ix0sand ayjz saoerdsa yoorq sotydeab sbaeT,INI¥Yd 069
u ¥ ‘pssn

oq Aew uea1dS ©Y3} JO SDUTT USSIITI ISATF 9yl ATu0.ININd 089
uw °STOquAS

10 si9joexeyo ortasumueydie Aue I93us AW NOX °USBIOS,INIVd 0L
s 243 punoae

I08INd ,+, Y3} SA0W 03 SA9Y MmoaIe 9yl 3SM,(S)EVL INI¥d 099

g=Z 0G9

INI¥d 0¥%9

u JATNAOW ONINDISHA NIFYOS WOLSNOL(ET)HEVYL INIVd 0€9

ILNI¥d:STO 0C9

g2y SUOTIONIJSUT xxx o SGT9

E.H.mm-.h.:"m.m NI HL -.-."W.m 4 0T9
N3ONLEY 009

00S OLOD uwu=$d JdI 0665

00S OLOD 8<($A)NIT AT 08S
0T9 OLOD 0LS

00§ 0109 ZT<($4)NAT JT 096
00S OZ0D 0<((T ‘T+6S ‘$d)$ATIW)TYA I 0SS

yzx JOSIND OAOW gxx o 468

($¥)DS¥=Y 068

0ETT NIHL(8)SYHO=$¥ 41 0%8

0G0T NIFHIL(6)SUHO=$V JAI 0¢€8

0L6 NIHL(OT)SYHO=8V JI (T8

068 NAHL(T6)S$YHO=8¥ 4TI 0T8

0TZT OLOD :3dS ‘Z AMO4(ET)$UHO=$¥ JAI 008
0ZT1 90S09 06L

STO 08L

¢xy Indur paeoqiay I0F HOOT xxx 1 GLL

0CT 90S0D 0LL
w —= NIDIE OL XIM ANV LIH --u(ST)EVIL INI¥d 094

INI¥d:ILNTYd 0SL
w °“P2anjdeo o1e ejlep INOK STTYM 23 TUM,INIVd 0¥L

s Po3uTed
5q TTIM USDIDS °<Y¥AINI> 3ITY ‘poT3IsTies a1e nok USUM,INI¥d 0€L
s °D39 ‘saeproq
MRIp ‘U9810S 8Yl UO 3IX33 Aue ISA0 93TIm Aew NOX,INI¥d 0TL
¢ ,(uot3zTsod 03
Koy moxze 3ybTI JO peo3SUT pesn ST Ieq <odeds> USYM,ININd 0TL
. s Xeadde jou
se0(g) °buri9jzusd 03 PTE UR SB ‘U9DI0S BY3} JO I9IUDD,LINIVd 00L

50

('6v obed woy panunuog) “Joup3 ueesos 10} Bunsy weiBoid 'v-9 B4 5

1+Z=% 0LOT

dS ‘Z d30d 090T

06, NIHL I<T+%Z 4I 0SOT

06L OLOD 0%0T

£9=0 0€0T

O ‘7 a@¥Od 02Z0T

T6T=0 NIHL(ZE/TZ)INI=ZE/1% 4I 0T10T
09€ST~2=TZ 000T

v9+2=% 066

ds ‘Z d40d 086

06. NIHL I<V9+Z JI OL6

06L OLO9D 096

€¥=0 056

O ‘Z Id0od 0ove

T16T=0 NIHL(ZE/TZ)INI=CZE/1Z d4I 0f6
09€ST-2=1% 026

¥9-2=Z 0716

ds ‘2 a@dod 006

06L NAHIL €>%9-Z JAI 068

06L OLOD 088

O ‘% INOA :TI+Z=% NAHI IA>T+Z AT 0LS
¥ ‘Z @¥od 098

0=¢tN
0=D¥14d
0=DvT14d
¥9 dILS €TO0T OL 0=N ¥O4
T+00=0D
OI+NTI=NT
uSTOu+(0D) $NT=(ND) $NT
0ZST €Nso0O

#xx SUTINOY UDDIDS ¥S3d xxw

06L OLOD

€7=D

D ‘7 =@Mod

T6T=0 NAHL(ZE/TZ)INI=CE/T2Z dI
09€ST~2=1%

1-2=%

ds ‘% a3od

06, NIHIL T>T-Z dI

06L OXLOD

£¥=D

D ‘%7 daJo4d

16T=0 NAHL(ZE/TZ)INI=CE/T1Z 4I
09€ST-2=17%

¢ 00 00 06

08CT
0LCT
092t
04T
0¥CT
0€CT
0¢ct
0tz

S0CT

00T
06TT
08TT
OLTT
0911
0STT
O%TT
0eTT
0Z1T
OTTT
00TT
060T
080T

52

(15 obed wouy panunuo)) 1oup3 usaiog 10} Bunsy wesbold $-g B4 M

w0
ulat(PE€)SUHD+(VE) SUHO+(ND)SNT=(ND)SNT 08FT
N IXAN : Q0L¥VT
OI+NI=N1T : 09%T
1+00=0nD P 0SVI
wlNI¥d o+ (NT)SULS=(ND) SNT N2 A
0S¥ T OLOD : 0EPT
ST+(PE)SYHO+H((Z-OYTIL)-OVTIT ‘T “$¥d)SAIW+(VE)SYHO+

u(u+(T-9¥T49) SULS+)IYL INIVd o+ (NT)SHLS=(ND)SNT YA AN
Ob%T NIHL 0=9VTdd 4I : 0TVT
wa=ST FSTH ,»¢,4=$T NIHI ¥9=OVTJd 4dI A

(T-($¥d)NTT
/$¥d) $LdTT=$4d NIHL(ZE)SYHO=(T “$dd)SILHOIY dI : 06€T
IN IXIN $ 08€T
EN=9YTJIT NIHL ZE<>L 4dI : OLET
(L) SYHD+S¥d=%4d ¢ 09€T
08E€T FSTH EN=DVTJH :EN=DVTIJId NIHI ZTE<>I dI $ 0GE€T
09€T NIHIL 0<5VTIdd dI : OPET
T6T “09€ST+IN dNOd : 0€ET
(09€ST+1IN) JTFAd=1, : 02€T
T+EN=EN : 0TET
€9+N OL N=TN ¥od : 00€T
=="wmm s OmNH

NINIFY 089T
0ZT 9NS0® 0L9T

w«ueiboxd sumsax 03 Loy Aue ITH,(ST)HVYL INI¥d 09971
INI¥d 069T

NINLIF 0%9T

INI¥d:INIYd:STO 0£9T

00% FWNSTF 02Z9T

6N IXAIN 019T

00S OL T=6N ¥O04d 009T

TIF ¢, INIT NIL(S2Z)IYL INI¥d 06ST

piexey JOUYT NMONMNN saxxyxe(0C)dVL INI¥d 08ST
INIYdSINIYd O0LST

INIYd:STO 09ST

vyy dRAJL, JOIXT wyx o GGST

NINLIE 0SST
w wt+(NT)SIHIS=(ND)SNT OFST
T+00=ND 0€ST
OI+NT=NT 02ZST
0LLT OLO® OTST
(NT) $¥LS+,0L09
wt (FE€) SUHD+(PE) SUHO+ =SV JdI:SXTANI=$Vutu u+(0D)SNTI=(ND)S$SNT 00ST
02ST 90S09 06¥%T

('eg ebed woy panunuog) “Jomp3 usadg 1o} Busy weiboid v-9 Big F.‘5v

STO dSTI NNY NAHL whu=$V¥ ¥0 uXu=$V JI 0G8T
078T OLOD wu=SY JI:S$XAANI=SY OV8T
uw(N/X)u(62)9YLINIYd 0€8T

ulUSBIDS ISYJOoUu®R 90ONPOId, (TZ)HIVLININd 0Z8T
T 9S00 0T8T

N ILXEN ¢ 008T
(N)SNT/ T#INTHd : 06LT
0O 0L T=N 904 ¢ 08LT

SI’T’uOu NHAO OLLT
0€9T dNS0D 09LT

xxx JSTQ O] USBIDIDG 9ABS xxx ;5 GGLT

NINLAY 0GLT

$d¢u: HIWUNITIA ¥AINT,IOANI INIT OPLT

INTdd 0€LT

u°PO3OS[0X,INTHd 02LT

«2q TTTM 3ndut Inok x0 ‘oweu oTseq ST TeHOT ® oq,INI¥d OTLI
«ISTUW 3T —— Jues Nok sweuaTy SY3l ISJUS PTNOYS NOZX,INI¥Yd 00LT
0€9T 9NS0D 069T

xxx GT®H xxx , G89T

{

(P) for the cursor would be less than 15360 in video memory
(defined as B in line 140), or more than 16314 (defined as E in the
same line).

If the new move is okay, then a space (SP=32) is POKED into
the old location, and C (CHR$(43), a plus sign) is POKED into the
new. Control passes back to the INKEY$ line for further input. If the
character entered is not an arrow key, then that character is
POKED to the screen.

The second section of the program, beginning at line 1210,
PEEKs at the entire video memory, noting what character appears
there. Here the program lines, deposited into string array LN$(n),
are built. After all the screen has been read, an INKEYS$ loop is
constructed as a final line, to keep the new program’s display on the
screen until the user presses a key.

Finally, beginning at line 1760, the elements of LN$(n) are
printed to the disk under the filename specified. The finished screen
image is captured in program form for you to use in programs of your
own.

Like all the programs in the Automatic Programmer series,
Screen Editor has many error traps built in. Entering “Help” or “H”
to the input prompts will call up the help file, or display a tip. More
complex error traps will be discussed in later chapters.

56

DataBase Starter

For the microcomputer user, the self-programming computer is
still some time in the distant future. Or is it? There are three things
that computers have a knack for: processing data, controlling func-
tions, and constructing designs from smaller building blocks. The
first two are simple enough. Ask a computer to add 367 to 598, and it
will happily comply. Tell it to send a signal to port X whenever it
receives input from port Y, and a computer will gladly control your
carburetor, monitor your house, or keep your Boeing 747 on
course. When a human is available to provide a list of criteria and
parameters, a computer is entirely capable of combining compo-
nents from an existing library to assemble, or “design” a complex
product.

A computer program is nothing more than a design for ac-
complishing a desired task. Once a human being has determined
how to get from point A to point B, it is entirely practical to have a
computer choose from a library of subroutines to put together a
program. The next program in the “Automatic Programmer” series
is “DB Starter,” which illustrates the basic concept.

This program will ask the user for certain program parame-
ters, such as whether a “menu” is needed, whether or not data will
be stored in a string array, size of the array, and other information,
and then “write” a BASIC program skeleton that conforms to these
parameters.

Figure 7-1 is a sample program that was written by DB Starter.

57

JN‘T# LNANI
$d‘T?’wIu NIJO
$34,% FIWYN HTIId YHIINHT, IOANI
gsuyxsxx JSIAd WOEA HIId AYO0T ssxxxryr WIY
sxvryr HIAH INIINO¥ENS ©sedeled 3IelS LYASNI sxxxzrzx WIY
sxxery SUFH INIINO¥ENS '3led o3epdn LTUYASNI sxxsys WIY
sxxyrxy HSUIH INILOAOYINS BIe(d SSOOIDY LUHASNI nexxxx WIH
0L OLOD
00SZ ‘000Z “00ST ‘000T ‘00S €NSOD HD NO
OFPT OLOD & <HD ¥O0 T>HO JAI 2 ($HD)TIVA=HD
SHO?¢ 4y ¢ HOIOHD ¥AINIuINANI
INIYd
«dSIA O FIId FAYS (°S wINI¥VA
wMSIAd WOdd d1Id V0T (°¥% «INI¥Nd
uoseqeijed 3Iels (°€ LINI¥d
w®3Bd ®3epdn (°Z «INI¥d
wB3ed SS800Y (°T wINI¥d
LHMIVYd: ysyerrsrrreyr NIW zxzzryzrarzs wNIUd S LNTYd : STD
o IXAN: (D)S$YIA A¥Ad:y O T=D ¥od
0€ =DN
(v)SYIA’(0g ‘0T)$V¥d WId
drz‘euoyd‘ssoIppy‘/sWeN VIvd
2+ €/WIW JY¥ITIO

0€0c
0coc
0T0Z
000¢
00ST
000T
00s
OLT
091
0ST
0v1l
DET
0CcT
OTT
00T

58

"18uels ga Aq peonpoud weiboid jo eidwex3 *§-2 Big %

NINLEE 059C

($Y)TYA=Y 0¥92

0€9Z OLO9 wu=$VY JI:SXIINI=SY 0£9¢

sxzxx ANILAOWENS IOANI SAHEMNIT wxsxxxx WHY 029z
NINLIY: INTYd S INIYdSTD 0192

srzxryr INILOOYHAS NUHHYDS UVHTD wxyxxxr WIY 009¢
NINLIY 0652

dS0TD 08SZ

N‘T0D IXAN 0LGZ

w’uf (TOD’N)SYA’T# INI¥A 09ST

ON OL T=1T10D ¥0d 08SC

AN OL T=N ¥0d 0¥%SZ

AN‘T# INI¥A 0€£S2

$4’T’uwOn NIJO 02ST

$dfu? IWUN FTIId ¥YIINH, LOANI 0162

xxxzxy ASIA OL HTIA HAUS xxxxxyx WA 00s?¢
NINLIY 0602

dS0T0 0802

N‘T0D IXAN 0L02

(TOD‘N)SYA‘T# LOANI 0902

ON OL T=10D0 ¥04 0502

dN Ol T=N ¥0d4 0%0¢

The array in line 40 of the example was created and DIMensioned
according to user input requirements, just as the menu was con-
structed and subroutines allocated for later work by the human
programmer. Two subroutines relating to disk I/0 were actually
written entirely by the program. The finished code was then saved
to disk. As written, the program will do the following things:

1) Ask the user for beginning line number, and desired line
number increments.

2) Ask if a string array will be used to store data, and, if so,
allow the user to specify whether the array will be one- or two-
dimensional. The elements that should be DIMensioned are also
input.

3) A “menu” of reasonable size (i.e., which can fit on a single
screen) may be specified. Each choice can be described. Program
lines to print the menu to the screen will be created, along with an
“enter choice” prompt.

4) Each of the menu choices will be assigned a subroutine line
number—marked with a REMark—so the programmer can flush
them out later. An ON CH GOSUB line will be created, sending
control to each of the menu subroutines.

5) Disk file I/0 subroutines which will save or load data stored
in a one- or two-dimensional array are automatically created.

6) The user can also specify several other subroutines, suchas
CLS:PRINT:PRINT, and A$=INKEY$: IF Ag="" GOTO.

DB Starter will, then, create the basics of a simple database
management program which must be completed by the program-
mer. It doesn’t complete the program, but does save a great deal of
typing time. Arguably, there is a much simpler way of accomplish-
ing nearly the same thing, i.e., write out an all-purpose program
containing most-used modules, and then SAVE that program on a
convenient disk. When the time comes to create a new program, the
user can simply load the general module, delete lines not needed,
renumber, and do other minor work to tailor it into a skeleton for the
new project. Or structured programming techniques can be used,
with common variable names, routines, etc., to build a great many
program modules that can be readily transferred from one program
to another.

Programs that write other programs make the most sense
when developed for the unsophisticated user. That category might
include someone who is incapable of taking an all-purpose program

60

and changing the code to fit a new purpose —a nonprogrammer, or a
beginning programmer. Given a sufficiently sophisticated version
of DB Starter, the user might be able to answer a series of prompts
to inform the computer just what type of task had to be performed,
and then receive a finished program that will do the job.

DB Starter can only do a few things. While keeping the size of
the program down to what will comfortably fit in this book, I've left
the door open for ambitious programmers to expand its capabilities,
and to apply the concepts to their own work.

Using Figs. 7-2 and 7-3, let’s look at how the program works. It
consists of a series of modules, each designed to “create” a specific
type of BASIC code. The mechanics are simple. The lines of the
target program are assembled from the “library” of words and
phrases built into DB Starter. As each line of the target program is
completed, it is stored in a string array, LN$(n). The particular
element of LN$(n) is determined by a counter, CU.

Each time a new target program line is initiated, control is sent

A% Character input from keyboard through INKEY$

CFLAG Check to see end of DATA input.

CHS User choice input.

COL$ Number of elements in second dimension
of array.

Ccu Counter

D3% Data string.

D4 Number of data items entered by user.

DI Choice entered by user.

F$ Filename for output file.

IC Increment for line numbers.

IOFLAG Whether or not user will need I/0 routines.

LN$(n) Program lines being built.

MENU$ (n) Label for-menu choices.

Ml Number of choices to be on menu.

N Loop counter.

N1-N9 Loop counters.

NwW Loop counter.

P$ Substring of program line.

P1% Substring of program line.

ROWS Number of rows in user array.

Y$ Middie part of string.

Fig. 7-2. Variables used in DB Starter.
61

8N IXAN ¢
$uxn(€9)HdYL¢ wewINTHd s
€ OL T=8N ¥04 :

082 0OLOD

0TZ €90S09

0%€ 9Nsoo

S0
$GS+STAd+STS+uINIddw+$2S=8d
(7€) SUHD=S$Td

1=0nD

NINITT

02T OLOD uu=$V¥ JISSAMINI=SY
0¥ T OLOD

(02)ON‘(00¥%)SNT WId

0892 OLOD ¥o¥uyd NO

A-¥ INIJAHA

00001 ¥¥ATIO

)

RRRPPEEP R PRLRELRRPRLRLRPRY
%
" I93I1e3S osegeied «
8 ¥
PRPLLRLRLBLRYLERLRRRPTRPSRRR

e o > e e

62

"1euBIS g Jo} Bunsy weiboid ‘g-L ‘B4 %

4

° u¥

Isumezboad oT3eWO]NY ¥uLNI¥d 09€
r's
°u¥
*:BZHM@ Omm
LURERXFRENR
#%#«%%#*#*#*«****%«#**#%«*****%**k#**&%*%««%#%%%«*****#=HZHM@
ove
STD 0€€
062 dSTH ,O0A/50¥dOLNY.NNY NIAHL w&u=SY¥ ¥O uXu.=$V¥ JI 02€
#00d/90d9d0INAV uNOY NIHL wUuw=$Y Y0 4H.=$V¥ 4I 0TE
0TS OLOD :STO NHHL »U,=$¥ ¥0 uN.=S$Y JAI 00€
02T 9dNs09 06¢
.A=*=~¢m,mwszam INI¥d 082
Laux *s3dwoad
3ndut 3sow o3 ,4TdH, IO ,H, ©dL3 osTe Aew NOX ,INI¥d 0LZ
0TZ €90NS0D 09¢
uz*zuﬁmmvmﬂﬁnzll

¢ SUOT3IONIISUT jJueM NOX o --,¢ (LT)GVL? uxuINI¥d 062

¥xx CSUOTIONIJISUT xxx 4 S¥C

NINIIY 0%C

sy Weiboxd Jo sweu STII I2AUT xxx

099 O&LOD
04S dnsod
LNTId s LNITUd 2 LNIdd
0T=DI:0T=N1
8N IXdEN
uuzﬂawvaz.H
00T OL T=8N ¥O4
..:"mD
N LXIN
0=(N)ON
02 OL T=N ¥04d
T=0N:T=0D
480710
S0
NINLAEY

00 oo 0o F eo oo oo

ll 2w LNTEd

'
° &k
yosng °d pPTAed Pt »uLNI¥d
g
® &

I93axels dd 2 ulNIEd

Svs

ovs
0cs
0cs
0TS
00s
06¥
08%
0LY
097
0S¥
0vv
oev
0cv
0Tv
007%

06¢
08¢
0LE

64

("e9 abed woy panuyuo)) 18uels gq 104 buns) wesboid ‘g-2 ‘biy %

yxx Wexboaxd HBUTITIM IeIAS xxx 4 GCL

089 dNS0OD 0¢CL

NaInLgy 0T1L

" =+A2ﬂv%MEMHADUvWZQ 00L
T+00=0D 069

QI+NI=NT 089

¥¥y IOQUNU SUTT JUSWSIOUT yxx 4 GLI

0ZL OILOD 0L9

wlbSHLy=$d NIHL wu=$d JI 099

NINLIY 069

069 OLOD =="Wm 4I 0%9

0SS OLO9 8<($JINAT 4TI 0€9

099 0OLOD 029

06S OLOD ZTTI<(S$JAINIT AI 019

06S OLOD 0<((T ‘T+6S ‘$d)S$AIW)TIVA JI 009
0G5S OLOD ¥<((6S ‘$4)SAIWINIT AT 06S

0€9 OLO® 0=6S JI 08S

A=\=-WMVMEwZH"mm 0LS

0082 90S09 yUu=$d ¥0 sHu=$d ¥O .dTHH,=(¥ ‘$4)$IJ4FT 4TI 09S
$dfw ¢ FWUN FT1Id YAINTLIOINI ANIT 06S

w USTUTTF 03 i (PE)SUHO!w/u? (FE)SUHD?w IDIUF (ILNI¥A 006

u dTZ’9U0Ud’ssaIPPY’0Z’GE 3WIOF STYI,ININd 068

wUT

I93ug °YIVd PIom dU3l I193us 03 AIeSS909U 30U ST 3T, INIVd 088
wSOUTT

Jo zted zoyjzoue 3ndut pue YAINT ITUY USY3l ‘YIVd JO.INI¥d 0.8
4SOUTT OM3 ueyl axouw ou 3nduy °seuwod Y3TM @3eiedss,INI¥d 098
u°WeIboaxd o3ur US3ITIM 3C 0] SIUSWSTS eIEP IBJUH,LINIVL 068
NYNIII 078

u YIV¥Qu+(0D)$SNT=(ND)SNT 0€8

089 €NS0D 028

T+N0=0D 018

09, OLOD (08

068 OLO9 uky=$¥ ¥0 whu=$Y J4I 06L

0€0T OXLOD =C=“%4N d0 EZ:"WQ dI 08L

0%L OLOD 208Z€ €0S0D wUu=S$¥ ¥O uHuw=$¥ dI 0LL

0ZT 9nS0D 09L

wlSOUTT B3P SWOS PIINQ O3 OYIT NOA PTNOM,INIVYd 0GL

#yy SOUTT IR xxx o SPL

INIYd:INI¥d:STO 0L

8Z%E/WIN YYITOu+(ND) SNT=(ND)SN'T 0€L

66

(‘g9 afied woy panunuo)) ssuelg gq 10} Bunsy wesboid ‘g2 Bi4 mw

0CET NHHL =G=“%4 g0 ..Z:"m4 dI 0LOT

0€0T OLOD :0TZ6C 90S0D uwUu=$V VO uwHu=S$V 4TI 090T

0CT 90S0D 0S0T

uilexxe

butijzs e ur e3zep O/I YSTP ©103s weirboxd sSTY3l TITM.INI¥d 0F0T
INIYd:INIYd2:STO 0€0T

¥xx SAeixe prIng xxx ¢ GZOT

006 OILOD 0=9VYTdD J4I 0Z0T

SEA+(ND)SNT=(AD)ISNT 0TO0T

018 90S09 000T

T+vd=vAd 066

LN IXAN 086

T+vd=%d NIHL u’uw=$X JdI 0L6

(T ‘LN ‘$€d)$AIN=$X 096

($E€EAINTT OL T=LN ¥O0d 0S6

(T-(SEAINTT ‘$€A)$IITT=$€d NIHL o’u=(T ‘$€0)SIHOIY AI 0F6
T=9YT14D

$(T~(SEAINAT “$€A)STIATT=$€A NIHL u/u=(T ‘$€Ad)S$SILHOIY JAI 0€6
0€0T OLOD :0=9HVTIID u/u=$€Ad IAI 0Z6

$€d INANI ANIT 0T6

0ZET OLOD 24 (u+(ND)SNT=(ND)SNT NAHIL T=Id 4T

(MOY) $UIS+ u)SYA WIQL+(ND)SNI=(ND)SN1I

($MOY¥) TYA=MOY

0€CT

20€0E 9NS0D wlUwu=(T ‘$MOY)SIIATT Y0 wHu=(T ‘$MOY)S$IITT 41
$MO¥¢ ,oq Leaze ay3z plnoys sbael MOH,LNdNI

09ZT OLOD

($710D)TYA="T0D

($MO¥) TYA=MO¥

08TT

20€0€ 9NS0D WwHe=(T “$700)$ILJITT Y0 wUu=(T ‘$7T0D)S$LIAT AT
$TI0D¢4: (7TI0D) UOTSUSWTIP PUODSS UT SJUDUWS TS I93Ud, LOINI
09TT

$0€0€ 9NS09 uwHu=(T ‘S$MOY)SIJIHT Y0 uwlu=(T ‘$MOY¥)SLITT JdI
$MOY ¢, (MOY) UOTSUSWIP ISITF SY3 UT sjusuwe[® Auew MOH,LNdNI

0€CT OLOD T=IA 4T

OTTT NEHL ¢<Id ¥0 T>Id 4I

($Y)1T¥A=1d

00TT OXLOD :0C6C €ENSOD =£=“wﬂ g0 =m2“w4 41

0CT 90809

uéSUOTSUBWTIP OM] I0 DUO ARy Aeaae 92Ul TITM,LNI¥Yd
089 €NSOD

0G0T ESTA 060T NAHL wA,=$Y ¥O wX.=$V JI

0LZT
0921
0seC1
O5LOD
0%CT
oeect
0cct
0TZT
00T
0LOdD
06TT
08TT
050D
0LTT
09TT
0STI
0%TT
0ETT
0C1T
OTTT
00TT
060T
080T

68

(29 ofied woy panunuo)) “18uels gq 10} Buysy weiboid g-2 ‘Biy

INIVd:INIYd:STO 02V

NI=(T)WI OT¥%T

wINTUd y+STd+ usvyxxxrzxs

ONHAN swxxxxxxxxs wtSd+ L SINI¥d:STOu+(ND)SNT=(ND)SNT 00V T
089 90S09 06€T

0SET FSTH 06ET OLOD :$V INIVd NAHL wAu=$¥ YO 4Au=$V 4TI 08E€T
006T NIHL 4U,=%V ¥0 uNu=$V AI OLET

0.L8Z OLO9 wUu=$V ¥0 «Hu=S$V¥ JAI 09€T

0ZT 9NS0D 0SET

siNUsW e posu werboxd STY3I TTTMLINI¥A OVET

xxy SNUSKW PTITNY xxx SEET

9 IXAN:(9)SVId AVIY: .+ (¥d)$YLS+ o OL

T=9 ¥0du+(ND)SNTI=(ND)SNT :089 €NS0D :T+ND=ND NAHL 0<¥A JI OEET
u(ut(¥Q)STLS+

u) SYLAd WIAu+(ND)SNI=(ND)SNT :089 €NS0O NIAHL 0<¥d AI 0ZET

0EET 0LOD

Pu(ut(PA)SYLS+) SYIA’ u+(T-ND)SNT=(T~ND)$NT NIHL 0<¥d JI OTET
(T0D) SYLS+ w=ONu+(0D)$NTI=(ND)$SNT 00E€T

089 9NS09 06ZT

u(ut(TOD)SYULS+ u’u+(ND)SNTI=(ND)SNT 0821

[o2]
©

N IXdIN s

029T

06ST OLOD :09T¢ €NS0D

wUu=(N)$ONTW ¥0 uHu=(N)S$OANTW YO 4dTdH,=(N)SNNIW JI
(N)SONIW INANI
N¢,# ©0TOUD nusw JI0F T3qeT ISIUH,LNI¥d

HO OL T=N d0d4

OYTJ0I-HO=HO

00 09 00 o0

0L9T OLOD :T=N NHHI 9YTJ0I=HD JI

IW=HD

00ST OLOD

0GST OLOD 28V INIYd uN.=SV¥Y VO .U,=$¥ JI

06ST OLOD :s¥Y LNI¥d 3Z=95YTA0I NIHL wly=8¥¢ 90 uwXu=SVY JI
06%T OLOD :06TE dHNASOD =£="W¢ qJ0 =m=“%¢ dT
0CT 9NsoD

0191
0091
06ST
08ST
0LST
09ST
0GST
0¥ST
0€ST
02CST
0TST
00ST

¢w & STP wWOIz STT3F PROT,

pue ,}STp O3 SITJ SAeg, OPNTOUT SSOTOUD oYl TTTMu.LNIY¥L
08ST OLOD :IW=HD NHHI Z=IW JI

0GST NXIHI 0=Id 4TI

0Z%T OLOD Z>IW 4aI

($HD)TYA=IR

OL09 2:0€£0€ €NS09 wUu=(T “$HD)SIITT YO uwHu=(T ‘$HD)SIJIAT JAI
$HD! ,nuUSW SY3l uO S9VOTOYD AurWl MOH,LNdNI

06¥%T
0871
0LPT
09%T
0G%T
0CvT
0P?PT
0evT

70

("69 ebed woyy panunuon) "1ouels gqg 104 Bunsy weiboid ‘g-L B14 <

SON+ ,90S09 HO NOW+(ND)SNI=(ND)SNT 0T8T

089 90S09 008T

(((T-ND)$SNT)TVA)SHYILS+ 4OLOD

ut (IW)SULS+ u <HDO ¥O T>HD JI 2 (SHD)TIVA=HOu+(ND)SNTI=(ND)ISNT 06LT
089 9NS09 08LT

wSHO? u+$Td+ u ¢ HOIOHD YHINFT4+$Td+ »ILOdANIL+(0D)SNI=(ND)SNT O0LLT
089 9NS0O 09LT

((T-(SON)NIT) ‘$ON) SLITT=$0N 0GLT

MN IXAN * O%LT

o’ ut(ON) $ALS+SON=$ON : 0ELT
AN=(MN) QN $ 0CLT
0S»OI+NN=0N :0TLT

IN OL T=MN 304 : 00LT

wILNI¥du+(0D)SNTI=(ND)SNT 069T

089 9nS0D 0891

STd+ WMSIA OL dTId HAVSu+ w (" u+(T+N)SULS+$d+(ND)SNT=(ND)$NT
2089 €NSOD :$Td+ wMSIA WO¥d FTIId AYOTu+ u

(° ut+(N)SULS+$d+(ND)SNT=(ND)SNT 089 9NS0O NHHIL Z=9YTJOI J4I 0L9T

MN IXEN *: 099T

STd+(MN) SONTW+ o (° o+ (MN)SULS+8d+(0D) SNTI=(ND) $N'T : 0691
089 €NS0D : 0991

HO OIL T=MN ¥0d4 ¢ 0€£9T

wdN?T# IOANI »+(0D)SNTI=(ND)SNT 000¢C

089 €NS0D 066T

wSI T w+S$Td+ uIu+STd+ o NIJO u+(0D)SNTI=(ND)SNT 086T

089 €NS0D 0L6T

g%hm=+Wﬁm+

wd HWYN TITd VIINT +$Td+ o IONANIL+(0D)SNTI=(ND)SNT 096T

089 €NS0D 0S6T

[TE Y

MSIC WO¥d FTIIA AYOT sxxyxy WIH wt+ ((N)AN) SYLS=(ND)SNT 0%6T
(N)AN=NT 0€6T

0561 OILOD 34,MSId

WO¥dd F7Id QVOT gxexss WA »+(0D)SNI=(ND)SNT NIHL 0=IW I 0C6T
08€Z OLOD 0=IW ANY¥ 0=Id J4I 0T6T

089 €9nsS0® 006T

08€£Z NAHL Z<>9¥TJ0I I 068T

N IXH¥N ° 088T

pxexrss ot o JHEEH ANIIOO¥LANS o+ (N)SONHW+

uw DYASNI sxxerxry WIH wt ((N)ON) SULS=(ND) SNT ¢ 0L8T
(N)AN=N"I s 0981

089 dNSOD ¢ 0481

5YTJO0I-IW OL TI=N ¥0d 3 0¥8T

((T)WI)SYILS+ u O0LODu+(ND)$NT=(ND)SNT 0€8T
089 dNS0D 0¢8T

72

("12 obed woy panuiuo)) “sauels gq Joj Bunsy weiboid ‘g-2 B4 m

u$d? w+STd+

w® TWYN FTId YAINT o+$Td+ o INANIW+(0D)SNTI=(ND)$SNT 061C

089 dNsS0D 08TC
UEREREXE

MSIA OL ATId HAYS sxxxrs WIY wt ((THN)ON) $UIS=(ND)SNT 0LTT
(T+N)OAN=NT 0912

08TZ OLOD ‘*umzxxzx ASIA

OL JTIId FAVS sxxxzxs WIT u+(ND)SNT=(ND)SNT NIHIL 0=IW dAI 0STT
089 9NS0D 0% 1T

«NIOTTT w+(ND) SNT=(ND) $NT 0€TT

089 €NS0D 0Z1Z

udS0TIu+(0D)SNT=(ND)SNT 0TT1C

089 dNS0OD 00TC

uN’T0D o+(ND)SNTI=(ND)$NT NIHL Z=IAd AI 0602

wLXAN o+ (D) SNT=(ND)SN'T 0802

089 €0S0D 0L0ZC

=m=+ADUvW2ﬂﬂavawZﬂ

ASTH » (T0D’ u+(ND)SNT=(ND)SNT NIHIL Z=IA AI 0902

oN)SYA’‘T# ILOANIL+(0ND)SNTI=(ND)SNT 0502

089 €0S09 :4ON OL T=T0D ¥OJd,+(0ND)SNI=(ND)$NT NIHL ¢=Id JAI 0¥0C
089 9NS0D 0£0¢

odN O& T=N ¥90d.+(ND)SNI=(ND)S$NT 0202

089 dNs09 010¢

¢, <&auranoaqns NIFYOS YVATO, © Juem nok o@,LNIdd 08E€C
syxy & SOUTINOIANS xxy , SLEC

SNINTTT 4+ (QD) SNT=(ND)$SNT 0LET

089 9dNS09 09€¢C

wISOTIu+(ND) SNT=(ND)SN'T 0SET

089 dNS09 0VEC

SN?T0D o+ (0D)SNT=(ND)S$NT NIHL ¢=Id II 0€€TC
wIXANa+(0D)SNT=(ND)SN'T 0CET

089 9NS0OD 01€¢C

$Td+ w’u+$Td+ ufw+(0D)SNT=(ND)SNT 00€T
=A=+ADUvWZ..HnaDUvWZ~H

SSTT » (0D u+(ND)SNT=(ND)SNT NIAHL ¢=IAd 4TI 06¢C
WN)SYA’ T4 INI¥dL+(ND)SNTI=(ND)$NT 082C

089 €N309 :.ON OL T=T0D ¥Odu+(0D)$NI=(ND)$NT NIHL ¢=IA 4I 0LcC
089 90S0D 0922

wdN OL T=N YOdau+(0D)$NI=(ND)SNT 0522

089 €NS0D 0¥CC

wdN‘T# ININA o+(ND)SNT=(ND)SNT 0€ZT

089 €NS0D 022¢

W8I T u+$Td+ wOut+S$Td+ » NIAAO w+(ND)SNT=(0D)SNT 01CC
089 9NS0D 0022

74

(‘e ebed wouy panunuo)) seueis gqg 1o} bunsy wesboid "g-2 ‘Bi4 H

(NT)$dLS+

u 0L0D u+STA+STd+ w=$V JdI:$AMINI=S$V.4+(0D)SNT=(ND)SNT 0LS?Z
089 €90S09 0962

UXR R RE

INIINOYENS INANI SATINI sxxxxx WIS ,+(0D)SNT=(ND)$NT 0SSZ
089 €NS09 0¥SZ

06%¥2 OLOD 0€£SZ

0¥SZ OLOD :$V INIVd wA,=$V VO uXu=SV JI 0252

0292 OLOD :$V INI¥Yd uUu,=8$Y YO uNu=$¥ JII 0TST

08%Z OL0OD 3(0SZE dNsS0Od :ﬂz"%ﬂ J0 =m=nw4 4T 0067

0ZT 9NS0D 06¥%C

{4y <éaurynoaqmns ,LAdNI-$AHMNI, Ue juem nok og,INI¥d 08¥2
uNINLIY $ LNTYd S INI¥d STOu+ (ND) SNTI=(ND)SNT 0L¥C

089 €4NS09 09%2

[T X X X% X3

ANILOOYENS NIFYOS UVHATO xxvxxx WIM ut+ (0D)$NT=(ND)SNT 0S¥
089 4dNS0D 0v¥e

06€Z OLOD 0€¥C

08%Z OLOD u%ﬂ LNTUd =Q="W¢ Jq0 :z:umm dI 0Z¥%¢

07PZ OLOD 3$Y INI¥Nd 4Au=$V ¥0 uwAu=8VY dI 0T¥C

08€C OLOD t06C¢E 9NS0oo =£=“w4 30 =m="m¢ 4T 00¥%¢C

0CT dNS0D 06¢€C

BRRREL

INIYd S LNI¥d 2 STO
dOLS

6N IXHAN

00S OL T=6N ¥OJd

TIAS, ANIT NIL(GZ)9YL INI¥d
JOUHH NMONMNNO sxzxeze(0Z)9YL INITAL
INI¥dSINI¥d
ryp deI], JOIIT gy ,
NOY
FS0TO
IN IXIN

(IN)SNT ‘TH#INT¥d
N0 0L T=IN ¥0od
$d ‘T’u0uNAJO

ee¢ o©o¢ oo

vxx YSTP 03 wexboiad SITIM yxx

wNINLTT o+ (ND) $SNT=(ND) SNT
089 4NS0®

u (SY)IVA=Y .+ (ND) SNI=(ND) $NT
089 4Nsod®

ovLe
oeLe
0¢LT
0TLE
00Le
069¢
089¢

SL9¢C

0L92
099¢
049¢
0v9c
0€9¢
0¢9c
ST9¢
0T9¢
00%¢

06sc
08S¢

76

("2 abed woy panunuo)) “seuels aq 10 buns) wesboid g-2 Big ~

ubutags

B UT pPa103}s ATIUSTUSAUOD BI® e3®ep JO SWIOT AUueH,INTNd 0€62
0vLZ 9dNS09 0262

09LZ 050D 0162

OVET 010D 0062

0039 ‘STSqRT ‘S°0TOUD JO ISqUNMU I0F S)SE 3Ryl STnpow,INI¥d 0682
uTBTO®ds e Huisn poubiseop aq Aew snusy,INIdd 0882

0¥.Z 9NS0OD 0L8Z

NINLIY 098¢

$dfu: IWUNITIA YHINT.ININI INIT 0682

ILNI¥d 0¥8¢C

u *Po309(8x, INT¥d 0€8C

w®d TTITM 3ndut Inok 10 ‘sweu OTseq ST Tebol ®© °q,INI¥d 0Z8C
wISTU 3T —-— JUEBM NOKA SWEUSTTF 9Y3l I93US PINOYS NOX,INI¥d 0182
0vLZ 90S0D 008C

xxx SOUTINOY dTOH xxx .+ S6LZ

NINIFT 06L2

02T €0S09D 08LZ

wwexboxd sumsax o3 Aoy Aue ITH,(ST)EVI INI¥d 0LLZ
LNI¥d 09.2

N¥NIFY 06L2

09.2 OLOD 0L0E

» ° ATOUWSW

3ABS 03 pPoduU nok ueyl xsbieT yonu ayew JouU OJ,LNIdd 090¢€

»° (0€°0€)$¥a 3KAexie ue juem Jybruw ‘oTdwexs I104,INI¥d 0S0€

n®q

pinoys Kexae a8yl JO uUOISUSWTIP yoeo 8bIeT MmOy I93UH,INI¥d 0%0E
0¥PLZ 9NS0D 0£0¢€

09LC OLOD 0¢20¢€

w°ARIIR TRUOTSUSWTIP OM] ® @2SN,INI¥d 0TO0€

9I® SUWNTOO pue SMOX JI °paodax i1ad ,pIe2TI, 2UO0,INIYd 000€
«ATUO sey

UYOTUM UOTIPWIOJUT JOF Aelie TrRUOTSUSWIP-BUO ® 95 ,LNI¥d 0662
w STP

WOIJ pue 03 POpPROT PUR POI03S ATIUSTUSAUOD oq UBD,LNI¥Yd 086¢C
uSAeaze

9say], c°suumTod jussaixdex °O3e ‘sdoueTeq ‘jJunowe,INI¥d 0L6C
poeked

STTUYM ‘Mmox ® sjussaadea zsqumu YOoUd yoey °Aexre,INI¥d 096C

+[RUOTSUSWTP~OMT
B UT paI103s o ued jeyl eilep sjusssiadsi,INI¥d 056
uJO0Cq3O3YD

¥ °(T00’MOI)$¥A $STY3 SYTIT SHOOT UYoTym Kexie,INT¥d 0%62

78

°(-22 obed woy penunuon) 10ueis ga 10} Busy weiboid 'g-2 ‘Big

woARYy NOL S9OTOYD nuUaW JO ISqunu soUpsSI pue ‘nod I103,INIdd 0ZCE
aSouT3inox

9s9Yy3l 93TaIM TITM weiboagd °sS9x I93uUd PINOYS NOX,INI¥d 0T1ZE

w0/1I

YSTP peou pue ‘Lexxe bButals e peryroeds saey nokX II,INI¥A 00Z€
0%LZ 90S0D 06T€E

09LZ OLOD 08TE

ut 90TOUD nuduw s1Y3z 103 3dwoxd 10 Toqel 9Y3l ISIUHLINIAd OLTIE
0vLZ €0S0D 091¢€

09LC OLOD 0STE

u*PopPTAOId BUTINOIQNS,INIVNd OPTE

«SXDINI 9Yy3 9sn 10 ‘surjinox 3ndutr umo INOK ©3TaM USYL,INI¥d O0ETE
plsnu

nox c*nuauw umo anok ubrssp Aew nodk ‘a0 °saUTINOI,INI¥d 0ZTE
spburddeay

zoxx9 pue jandutr o3eradoadde 831aM pue nok I103,INI¥d OTIE

puauw

e ubtsep TIIM zsuwexboad orTjewolzny °*osooyd Aew x9S0, INI¥d 00TE
w243

oS nuaw ® paosu suorjouny aTdr3iTnw y3zTm swexboad 3I3SOW,INI¥Nd 060€

0vLZ 9NS0D 080€

(‘62 obed woyy panunuo)) “1suels ga o4 Hunsy wesboid g2 Big

09L¢ OLOD 0¢CtE
s PO3Se UsUMm UOTJIRWIOCIUT vlep 9yl I93ud,LINIdd 0TIEE

w3Sne °Aeiie BUTIls B OJUT WOY3 PeSI O3 SUTINOI ®,INI¥d 00€E
wY3TA buoTe ‘ATTedTiRWOlne SSUTT eiep PTINQ Aew MOZ,INI¥d 06T

0%L2 9dNS0D 08CE

09LC OLOD 0LCE
JaeIboad
anok ur auT3nNoIgqNs SIYJ Juem nok JT S9X IDIUH,INIVd 09Z€

0vLZ €0SOD 0STE
09LZ 0IO0D 0%TE

w °NOK

I03 po3edId 8q TITA STSqel nudj -om3 Xq 3Indut 03,INI¥A 0€TE

80

to a subroutine at line 680. There, the line number of the target (LN)
is incremented by IC (LN=LN-+IC) where IC is specified by the
user. Next, CU is increased by one so that the new program line will
be stored in the next available element of LN$(n). Finally, the new
line number (LN) is converted into a string, and assigned as the first
part of LN$(CU), along with a pair of spaces.

For example, if LN=100 and IC=10 when control is sent to
Line 680 of DB Starter, LN$(CU) will equal “110 ” when it
RETURNS. Each element of LN$(n) will begin with a line number,
usually larger by IC from the previous element. The exception is
when LN has been given a different value somewhere else in the
program.

The initial line of the program will CLEAR two thirds of
memory. Next, DB Starter asks the user whether or not a string
array will be used to store data. If so, the number of dimensions are
input into variable DI. If DI=2, then the user is asked to provide the
desired size for each of the two dimensions (ROW and COL). If
DI=1, then only ROW is used. The target program line is created by
combining the line number (already stored in LN$(n)) with DIM and
the array dimensions enclosed in parentheses. If a two-dimensional
array has been specified, an additional line is developed that defines
variable NC (number of columns) equal to COL. NC is used later in
the target program to control disk input and output.

If menu is needed, DB Starter obligingly creates a line that
labels one. Note that to make a PRINT statement it is necessary to
combine PRINT with quotes around the material to be printed.
Quotation marks (CHR$(34)) are stored in P1$, and this string
variable used whenever quotation marks are desired in the target
program.

The user is asked to input the number of choices required for
the menu. If DI=0 (that is, no string array was dimensioned), the
program assumes that disk file I/0 will not be required, and does
not offer the choice of taking advantage of the built-in disk I/0
subroutines. Of course, disk files consisting of nothing but numeric
values are possible, but the greater flexibility of storing both string
and numeric data as strings (and then converting to numbers with
VAL, as needed) makes it simpler for DB Starter to assume that
disk files will be loaded into and out of a string array only.

If a string array has been specified, then the user is asked if
“save file to disk” and “load file from disk” will be included in the
menu. If so, IOFLAG is set to 2. The user has told the program how
many choices will be included on the menu. This value is trans-

81

ferred to CH, which is used as a parameter in a FOR-NEXT loop
that allows input of the names of the menu choices.

If the built-in disk I/0 routines are desired, two is subtracted
from CH so that the user does not have to bother to input these.
That is, if five menu choices will be used, but two of them will be for
disk 1/0, the programmer has to enter only the other three. Then,

the menu display lines are created for all hut the dick routines.

Now things begin to get a little tricky. For each menu choice
the program has to create a subroutine location to which the target
program can branch, and space has to be allocated for them. So,
rather than using LN and incrementing it by IC, another variable,
NU, is used instead. NU is incremented by IC+50 for each of the
menu subroutines. For example, if IC=10, then each of the sub-
routines will be spaced 500 lines apart from each other. The starting
line number for each menu subroutine is stored in an array NU(n).

Next, a string representation of the starting line number for
each menu subroutine is needed (for an ON CH GOSUB 500,
1000, 1500, etc., statement). These are assembled with a comma
tacked on the end. Next, an INPUT “ENTER CHOICE :”; CH$ line
is created for the target program and an error trap is also built.
When the target program is run, if VAL(CHS$) is less than one or is
greater than MI (the number of menu choices available), the input is
refused.

All these subroutines targeted in the ON CH GOSUB line will
eventually RETURN, so control is sent back to the beginning of the
menu. Its starting line number had been stored earlier in IM(1) and
is used in line 670 to build a control-branching instruction. To aid
the programmer in finishing the skeletal program, a REM is in-
serted at each of the menu subroutine starting line numbers. Re-
member that it’s not a good idea to send control to a REM line (these
might be deleted later), so don’t simply begin writing the code at the
next available line number following the remark.

The next portion builds a simple disk input module, which will
ask the user a filename, open that sequential file, input from the file
the number of items in the file,and then begin a FOR-NEXT loop
from 1 to the number of items in the file. Within the loop, INPUT #1
loads the data. If the relevant array is two-dimensional, a nested
FOR-NEXT loop from 1 to the number of columns (NC, defined
early in the program) is used. Actual construction of the disk input
module is fairly clear cut. Its mirror-image twin is the Create Disk
Qutput routine, which performs its own function in nearly identical
fashion.

82

Other frequently needed modules can be added to DB Starter’s
“library” as required. I used “clear screen” and INKEY$ routines as
examples; you are free to add your own favorite subroutines as you
desire. The final portion of the program saves the finished target
program to disk under any desired legal name. A noncompressed
(ASCIN) file is created which may be loaded, finished, debugged,
and used as desired.

DB Starter is simple enough to form the basis for a much more
complex code-generating system. A big drawback is the need to
anticipate exactly what capabilities will be needed in the finished
program. If a subroutine isn't in the program generating system’s
library, or if the parameters are beyond its capabilities (i.e., a
three-dimensional array is required), the necessary code will have
to be built up from scratch. It is still beyond the capability of
microcomputers to use logic to create. Our silent servants must
wait for instructions from us before doing anything at all, no matter
how simple.

83

Program Proofer

In the two previous “Automatic Programmer” examples, we’ve
shown you how to let your computer write its own screens and
assemble program skeletons. Now here’s “Program Proofer,”
which allows a TRS-80 to partially debug its own programs by
checking the spelling of keywords and some syntax errors.
Some program errors caused by misspelled words lurk deep
within seldom-called code. Obvious bugs will ordinarily surface
during program development, because the interpreter will note a
syntax error when the line is run. Other errors, however, will not
be detected for some time, because the specific conditions that
invoke that program line are rare. In the worst possible situations,
these mistakes are hidden in error traps designed to help the
unsophisticated user, or they may cause the loss of valuable data.
Program Proofer will check every line of a program, and detect all
bad keywords. It will catch only typos, however; if you used
LPRINT when you meant PRINT, the bug will slip by unchecked.
Program Proofer was inspired by the plethora of spelling
checker programs which have become available in the past few
years. These useful software tools take any text document and
compare each word to an internal dictionary. Any word in your text
which does not appear in the dictionary is flagged as a possible
spelling error. This program works on exactly the same principal,
but with a much smaller dictionary of 112 keywords, most of which

84

are those used in Radio Shack’s Level II, Model IIl, or Model 4
BASIC interpreters.

Program Proofer examines every word in a target program,
ignoring words inside quotes—prompts, for example —numbers,
and arithmetic operators. The only letter combinations left are
keywords, variables, and misspelled words. Although it would be
possible to tell which of the remaining words are variables, leaving
only the incorrect keywords, I decided not to implement this fea-
ture. As written, Program Proofer has the added capability of
providing a variable cross-reference listing that includes line num-
bers.

Not throwing out variables also means that the operator has the
opportunity to look for variables which may have been spelled
incorrectly as well. This is important both to Model I/IIl users, as
well as Model 4 users, but for different reasons. Under Level Il or
Model III BASIC, PREVIOUS and PEVIOUS would appear as two
different variables, although PREVIOUS and PREVIUS would not.
With the earlier Microsoft BASIC, only the first two letters of the
variable name are significant, so finding such misspellings is im-
portant. With the Model 4, however, longer variable names are
allowed, so finding errors is even more important. PREVIOUS and
PREVIUS would, in fact, be different variables and cause an error if
the difference were unintentional.

The target program should not be one which has been tightly
packed with all spaces removed. These spaces are required with
Model 4’s BASIC, but optional under Level II or Model III BASIC.
Multiple statements per line are okay. However, keywords should
have spaces separating them, and there should be a space after the
line number and before the first word in the line. Other spaces may
be omitted. If you wish to proof a program which has been tightly
packed, use a utility such as PACKER, from Cottage Software. This
is an indispensable programmer’s tool that is especially helpful for
deciphering someone else’s coding logic.

When asked for the target program name, enter the file specifi-
cation of the previously saved ASCII format program. Each line will
be examined separately, and all words not included within quotation
marks compared with the internal dictionary. If a match is not found,
the questionable word (which may also be a variable) is stored away
for later reference. The number of parentheses are counted, and any
missing ones noted. Program Proofer will also locate absent quota-
tion marks, and list all the variables used in the program. For those
who are using NEWDOS/80 2.0, the bad words and variables are

85

presented in sorted, alphabetical order. In all cases, line numbers
are provided to make tracking down the errant bugs easier.

Here, briefly, is how Program Proofer works. (Refer to Figs.
8-1 and 8-2.) The 112 keywords are stored in a string array,
WRD$(26,16). Each of 26 rows in the array correspond to one of the
26 letters of the alphabet. The 16 columns allow for up to 16
keywords beginning with that letter. For example, ABS is stored in
WRD$(1,1), while AND is placed in WRD$(1,2).

This is accomplished in a FOR-NEXT loop beginning at line
760. The keyword is read from a data line, and the first letter
examined to determine its ASCII value. Then 64 is subtracted from
that value to obtain the alphabetic position, and thus the corre-
sponding ROW of WRD$(row,col). The keyword CDBL, which
begins with C (ASCII 67), is directed to Row 3 (67 minus 64). The
column is determined by a counter, A, which is incremented every
time a new keyword is READ, and reset to one each time a new
ROW is opened (A2 < > PREVIOUS).

AS Line of text being proofed.

BADS(n) Array storing bad words and variables.

D$ Temporarily stores good keyword names.

D2 ASC value of first character in keyword.

DOSFLAG Set to 1 if NEWDOS/80 used.

F$ Filename of program being proofed.

L Length of the program segment being
proofed.

LP Number of left parentheses.

M$ Middle string of SEG$

N Loop counter.

N1-N9 Loop counters.

NI, NU Counters

P Position of space in program line being
checked.

PARS$(n) Lines with odd number of parentheses.

PFLAG Send output to printer.

RP Number of right parentheses.

SEGS$ Program segment being proofed.

TESTS Program segment being tested.

WRDS$(n,n1) Array storing good keywords.

Z3 Number of lines printed.

ZU Number of lines printed.

Fig. 8-1. Variables used in Program Proofer.

86

As disk operating systems gain new features in their BASICs,
Program Proofer may be updated to include these new keywords
and commands. Add the word to the proper position in the DATA
lines and change the 112 to the new number of keywords. If a given
letter of the alphabet now has more than 16 keywords, it will be
necessary to reDIMension WRD$(row, col) as well.

The target program (F$) is OPENed, and LINEINPUT into
variable A$, a line at a time. The first space in the program line is
assumed to follow the line number, and the rest of the line is stored
in SEG$. A FOR-NEXT loop from 1 to L+1 (length of SEG$)
examines each character in the program line in turn.

When certain delimiters are reached, the program assumes
that the end of a word or variable has been located. These delimiters
include a space, quotation mark, comma, semicolon, parentheses,
colon, and arithmetic signs such as plus, minus, equals, more than,
or less than. At this point, control drops to a subroutine, where that
portion of the line, TESTS$, is subjected to a series of tests.

If TEST$="" (null), or if the value of the first character is
greater than zero (signifying a number), then the program jumps
back and begins looking at the next section of the program line.
Obviously, no variable or keyword can begin with a number. When
“REM” or its abbreviation * * ” is encountered, the program knows
that the rest of the program line should be ignored.

Once TESTS$ passes these checks, it enters a FOR-NEXT loop
from 1 to 16, which compares TEST$ with all the elements of
WRD$(row, col) beginning with the same letter of the alphabet as
TESTS$. If a match is found, FLAG is set to 1 and control drops to
1230, where counter NU is incremented and the suspect word
stored in string array BAD$(n), along with the line number where it
appears. The word itself is positioned first, followed by the line
number, so that the array may later be sorted into alphabetical
order. Finally, TEST$ is nulled and the rest of the line examined for
additional statements, variables, and keywords.

Any time a quotation mark is encountered, SFLAG is set to 1,
and additional characters in the line are ignored until the second
(“close quote”) is located. Then the following words are considered
and checked normally. Though no specific check for missing quota-
tion marks is built in, they will stand out like a sore thumb because,
in the final listing, words inside of prompts will be listed as bad
words.

A check is included for absent parentheses, however. Each
right parenthesis encountered in a program line increments variable

87

¥xx SUOTIONIISUT gxx

NINIIY
8N IXFIN
uckzavam¢EuE%=EZHmm s
€ OL T=8N ¥O0d

02Z OLOD

08T 90S0D

0T€ 90S09

ST

NINLIT

02T O109 wu=8$Y JI:$XMINI=SY
0% T 010D

(00Z)$avd “(0€)$Y¥d ‘(91 ‘9C)sSA¥M WId
0ZLT OLOD ¥OWYHA NO

A-¥Y INIJIdA

0000T ¥vdIO

RRERRRRRBRERBPEBREEPEREBRERREL
$ L3
% I93001g wexboid 2
% &
REPFPVP LRV PRERVRRRRRRRBRERRY

B & B

88

"18j001d4 wesboud 10} Bunsry '2-g¢ iy B

[+]
nzk
yosng °q praeqg s &g xulNI¥d 0GE
4
*a¥
YFA00dd WYIOH0ud »ulNI¥Yd OFE
r 4
*u¥
Isumexboid orjeWOlNY »uINI¥d Q€€
4
® u¥

»uINI¥d 0Z€
u=¥¥*¥*¥¥%

t«*«****%%%*«*«kk%*#**«%***k**«*%*****t***«*«#****#*****=B2Hmm
01E
SI10 00¢€
092 ST 4D0A/D0¥dOINYuNNY NIHL wLu=$¥ YO uwX.=$¥ JI 062
«D0d/950¥d0LAVuNOY NIHL owUu=$V ¥O0 wH.=$V J4I 082
00¥ O&LO® *STO NHHL :G:"m@ d0 o ="W4 dI 0LZ2
0CT 90809 09¢
{(uxu’P79)$ONINILS ININ¥A 062

Lux *s3dwoxd
Indut 3sow 03 ,dTHH, IO ,H, 9dA3 OsTe AeWw NOX x,INI¥d 0¥z
08T 90809 0¢€TC

tuxu®(€9)GYLS y—-
d SUOTIONIISUT JueM NOX OQ —-, ¢ (LT)EVL? uxuINIYd 022

wbSALy=$d NIHIL uu=S$d JI

NINLTT

0€E? OLOD wu=S$d JAI

0E¥ OLOO 8<(S$JA)INAT 4I

0%S 0LOD

0€P OLOD ZI<(SJ)INIT JI

0€EP OLOD O0<((T ‘T+6S “$4)$AIW)TIVA JI
0EP OLOD ¥<((6S “$d)$AIW)NIT AT

0TS OLOD 0=6S 4I

(u0/u’Sd)ILSNI=6S

0¢6T €NS09 yUu=$d ¥0 uwHu=$d ¥0 4dTdH.=(% ‘$d)$IITT 4I
$d%, ¢ HWUN HIIJd YIINTLIONINI INIT

zyx PoJooad ©q 03 sweuaTTF INAUIL xxx .

0%¥Ss OLOD

0Ey dNS0d

INIYd 3 LNTYd 3 LNTHEd
HS01D

SO

NINLIEg

0%s
0es
0cs
0TS
00s
06¥
08¥%
oLy
09%
0S¥
0v¥
0E®

SCv

0Cy
0T¥
007
06€
08¢
0LE

0o¢

90

(‘68 abed woy panuyuo)) ‘18j00id weiboid so) Bunsy “z-8 ‘B4 5

V¥ (VE)SYHD® ,SWRUSTTT,* (V€)SYHD?, FTAVS
:xejuis sTyl 9sn , (0T)9¥L INIVd 089
«LYWI0d (IIOSY) QUSSHYdWOO-NON NI JIAVS NIIL, (0T)EVL INTdd 0L9
#dIAYH HOTHM SATI4 NO X7INO SYHOM HTINAOW SIHI.(0T)d¥I ILNI¥Yd 099
INIJdd:INIdd:STO 069
YLAIVA “‘TIYA
‘94sn ‘ONISN ‘NOY¥I ‘JAJ0d¥I ‘O1 ‘S$AWIL ‘NIHI ‘NVYI ‘9v¥d YIvd 0%9
SONIYLS ‘$¥IS ‘dOLS ‘dALS ‘¥0S ‘NIS ‘NO9S ‘IdS ‘dAVS VIvd 0€9
NOJ ‘aNY ‘NY0I3H
‘ERNSTY ‘FY0LSHEY ‘IdSHY ‘WHY ‘avd¥ ‘S$IHOTY ‘WOONVY VIvd 029
INnd ‘sod ‘"Edod
‘INIOd ‘INT¥4d ‘¥IEd ‘1IN0 ‘NIJO ‘¥0 ‘NO ‘ION ‘IXAN ‘MIN VIvd 019
SSMW ‘SIMW ‘SAMW ‘JIO¥ANW ‘WIW ‘S$SAIW ‘WIW ‘95071 VYIVd 009
SILJdT ‘NIT ‘AV0T ‘IFST ‘INANIANIT
fINI¥4T ‘3dT ‘TIIM ‘INI ‘UISNI ‘S$AIMNI ‘INANI ‘dANI ‘dI YIVA 06S
L9 ‘dNS09 ‘0109 ‘XId ‘dFYd ‘$FYI ‘NA /LYWI0Jd
‘904 ‘ATAId ‘dXd ‘Yo¥¥d ‘¥d¥d ‘TY" ‘J40F ‘ANF ‘dSTd YIvVd 086
WIQ ‘¥1Sd3d ‘ONSJdd ‘INIJAHA ‘1I1daddd ‘¥1d
‘AINVA ‘YIVA ‘NJAJFIA ‘SAD ‘IAD ‘dAD “ONSO ‘Xd0D ‘S0D ‘amd
‘ST0 “MO0TO ‘FSOTO ‘¥VATID ‘NIVHOD ‘INID ‘$¥HO ‘1I4dD ¥IvVd 0LS
100d ‘DOISVd ‘NIV ‘OSVY ‘ANY ‘SdV VIv¥d 09S
gyoLsdyd 0SS

INTYd S INI¥d
T=9¥14S0d NAHL »Uu=$V ¥0 ulN.,=$¥ 4I
0€8 OLOD :S1D :000Z €NSO09 wUuw=SV ¥0 uH.=8$V dI
0ZT 9nS09
L ¢ 0°Z 08 sopmeN butuuni nok 2aY,‘8TL ® ININd
N IXIN
T+a=a
$d=(a ‘ezd)saum
T=0 :Zd=SNOIATYd NAHI SNOIATYI<>Zd AI
#9-((T “$0)sLddT1)OS¥=¢d
$d avay
ZIT O T=N ¥od

xxx AelIe O3UT SSWRU JO0D P2 xxx%

68 66 €6 0 Ao 00 00

a —— 9seoTd sSpuodes MeI VY -- ,’8TL ® INI¥d

INI¥d

u°JBWIOT IIDSY UT STTJF aInok saes 03 ud@330D6107,ININd
wOARY

noi ‘burpeol obeqieb ses nok yI °sury wexboad co:wszm
plusuej3e3s

3SITJ puer JISqunu SUTT usomlaq ooevds suo ueyl,INI¥d

«SS®T UY3TM Osoyl 10 ‘saT1J ,pe3yoed, uo yiom j0u Ael, ILNI¥d

LNT¥d

0LS8
098
0s8
078
0e8
0¢s8
018
008
06L
08L
0LL
0sL

SGL

0sL
ovL
oeL

0cL
0TL

00L
069

92

(16 ebed woy panunuo)) ‘18j001d weiboid 10j Bunsr 2-8 B4 %
0G0T NAHL 1<>OV1dS dI $ 0€0T
(T ‘IN “$53S)SAIW=SKH : 020T
T OL T=TN 904 ¢ 0TO0T

x¥x IOITUTTOP PIOMASY IOF IOOUD xxx 1 SOOT

T+($94S)NTIT=T 000T

(T+d ‘$Y)SAIN=$94S 066
((ZE)SYHD ‘$V)UILSNI=d 086
0=9VY1dS 0L6

0=1d 096

$V INI¥Yd 056

wu=$IS3L 0¥6

$¥ ‘T#INANI INIT 0€6
0€€T NIHL(T)J0"T JAI 026
$d ‘T’uwIuNIdO 0T6

*x¥ SOUTT UT peay ‘wexrboad uadO xxx .+ 506

INI¥d 006
« —— S9UTT wexboad ur Butpesy -- ,(YT)EVI INI¥d 068
INTH¥d:INI¥d:STO 088

ZN IXEN s 0221
0€EZT OJ0D :9T=¢N :T=9YTd NIHL(ZN ‘V¥)SAIM=$ISHL JI 2 0121
0€CT OLOD :9T=ZN NIHIL uwu=(ZN ‘¥)$quUM JI ¢ 0021
9T OL T=ZN ¥0d $ 06TT
79-¥=Y $ 08TT
0SZT OLOD 2,.=8ISTIL NIHI S9>V JI ¢ 0LTIT
((T ‘$ISHAL) $LJIHT)OSY=Y : 0911
06ZT OLOD 24 u=$ISHIL NAHIL 0<(SLSIL)TVA 4I ¢ 0STI
0921 NIHL u:o0=SILSHL ¥0 oWIW,=$ISHAL AI $ OFPTI
0621 NHHL uu=$ISHIL 4I s 0tT1T
0="14 : 0CTI
T+d¥=d¥ NHHI u(.=SW JI : 0TITT
T+d1=d71 NIAHL u)u=SW 4I ¢ 00TT
wu=8$LSHL NHHIL(ZE)SYHO=(T
ST-IN ‘$9dS)$AIW JAI2T=9Y1dS NAHL(PE)SYHO=SW JI $ 060T
0SZT OLOD 2 4u=S$ISAL $0=9V1JdS NIHIL T=DVT4S d4I ¢ 080T
0SZT OLOD ¢ 0LOT
SH+SILSHIL=$1SHL $ 090T
080T NHHL wuw=S$W ¥YO(0T)SUHO=SH
HC uwzu=S$W 90 u/u=$H YO uH#u=3$H Y0 u<u=S$SH YO0u>u=SHW
J0 .—nzﬂwz (0] =~="WE MOA@MvwmmU"WS d0 o :“Wz MHO».“B"WE
MOAvawmmUﬂmE 30 glgﬂwz dJ0 =+="mz q0 =A=“wz dI 2 060T
06ZT FSTH 080T NIHL(FE)STHO=SH JI ¢ 0%0T

94

(‘g6 abed woy panunuo)) “1aj00id weiboid ioj Buysry 'z-g Biy 0

[o)]
0%9T 9NS0D OLET
T=9VT1dd NIHI uwAu=$Y¥ 90 wAuw=S$V JAI 09€T
02T 90809 0SET
uéI93uTad 03 ob6 03 3ndzno juem nok odg,INI¥d 0FET
OGNITId3LNTYd:STO 0E€T

xxx S3ITNSax Ae1dsTd xxx . CECT

026 OLOD 02¢€T

0=dT:0=d9 0TET

uSISTHINHYVd o+$d+(IN)SYYd=(IN)$SYYd 00€T
wLHOIYu=$d FSTH 4wILdTT,=$d NIHI dI<dd 4TI 06CT

u ONISSIW 3 u+(d ‘$Y)S$LITT+ » ANIT.=(IN)SYYd 08CT

¥xy DUTSSTW USIRd wxx « SLZT

T+IN=IN 0LZT
OTET NIHL dT=d¥ 4I 09CT

IN IXAN * 062T
==“WEWME H OﬁNH
(d ‘$V)$TIaT+
u ANIT ¢ 4+SLSAL=(NN)SAYL :T+AN=0ON NAHL 0=9Y1d 4TI : 0€2T

INT¥d

€7 IXIN
(€2)$¥¥d INIYAT T=9VT1dd 4I
(€£Z)$¥v¥d ININd
009T €NSOD(TT/EZ)INI=TT/€2 4I

80 o0& 08 S0 PO

IN OL T=£Z ¥Ood
gxyx SUDIRd DUTSSTH MOUS xxx .
T=¢t7Z
00T 4NsOD

7N LXIN

1+02Z=0%

(PN) $Avd INI¥YdT NIHI T=9VT1dd AT

(PN) $aved ININd

09%T NIHL(T-¥N)savd=(yN)SAvVL 4I

009T 9NSO9(TT/NZ)INI=TT/NZ 4I
ON OL T=¥N ¥0od

88 6% ©0 68 B¢ €0 068

¥xx SOTqeTIRA pPu®R SPIOM QVd MOUS xxx

=02
00LT 9N0S0D 0=OVT4S0d 4dI

09ST
0EST
0esT
0TST
00ST
06¥%T

S8¥%T

08¥%T
0LPT
09v%1
0SPT
0vvl
0Evl
0C¥%T
OT?T
00%T

S6¢T

06¢T
08€T

96

('g6 abed woy panunuo)) 1850014 wesboid 10} Bunsiy ‘2-8 ‘614

INI¥d:STO
06LT OLOD ¥S<>T+Z/9¥F 4l

wxx del], IOXIF yxx

NINLIT

(T)savd ‘ON‘w0.AWO

NINLIT

LNTYd

uxy SHTAVIYVA ANV SONITTIASIW FATAISSOd #x «o(PT)EVIL INI¥d
LNTYd

INTHd

INTYd * LNI¥d :S'IO

NINLIF

0CT 90S0D

wXdM ANV LIHW(ZZ)EVL INI¥d

LNTEd

08€ OLOD

0ZT 9ns09

w(NIW NIVW O&L NINIFY OL ZXdM ANV IIH.(ST)EVL ILNIdd
LNIdd

aw == LSIT J0 ANF -- 4(02)€9V¥L INI¥d

0€ELT
02LT

STLT

0TLT
00LT
069T
089T
0L9T
0991
0S9T
0991
0€9T
0¢91
0T9T
009T
06ST
08ST
0LST
09ST
06ST

~
(]

INT3d s S1IO
wxy OUTINOY dATOH xxs .

0G68T €NS0D

NINIdya

02T 90809

Jueiboxd sumsex 03 Koy Aue ITH,(GT)IVL INI¥d
INTEd

NINILgI

INTUJ S ILNI¥d:STO

08¢ HRWNSHY

6N LXEN

00S OL T=6N ¥04

TIF S, ANIT NIL(SZ)d9¥lL LNI¥d

wxyrrr JOUUT NMONMNA sxxxxw(0Z)dYL INI¥d
LONIT¥d S LNIYd

0L8 HWASHYI

SID

6N ILXHN

00S OdL T=6N ¥O04

»wi3ISTIXS 30U seop STTF AeUL,(0Z)dV¥l LNI¥d

0C6T
ST6T

O0T6T
0061
068T
038T
0L8T
0981
0581
0781
0e8T
0281
0181
008T
06LT
0BLT
OLLT
09LT
0G6LT
0vLT

98

(26 abed woy panunuo)) “18j00id weiboid 1o} Bunsi "z-g ‘b4

0S8T €NS0D

0L8T OLOD
u*NOK 203

Sa[qeTIeA pue SPIOoM pPeq anok j3x0s TTTM wexboxd sTYl,INIVd
u2aIN3ess

butr3a08,¢ (F€)$WHO? wOw? (V€) $UHD! wAWD BY3 YITM,INI¥d
wOSESTdI I3 ® IO (°Z (08 SopmoN aary nok IT,INTId

LNT¥d:STID

0S8T 9NS0D

NIQLIA

$dfyt FWUNITIA YAINTLILOINI ANIT

LNTHd

u “Po309(81,INTYd

«2d TTTM 3ndut Inok 10 ‘sweu OTseq YSTQ [eboT ® oq,INIVd
wISORH

*pesajooad aq 03 STTIJ JO 2weu ay3z sjuem weiboid,INIuNd

0602
ovoc

0€0c

0coe
0To0C

0ooc
066T
086T
0L6T
0961
0S6T
oveT

0€6T

[2]
D

RP, while left parenthesis increase the value of LP. After the whole
program line has been checked, Program Proofer compares LF and
RP. If they don’t match, then the line in which the error appears is
stored in a string array PAR$(n), along with a note as to whether a
left or right parenthesis is missing. (If one statement is missing a
left parenthesis, while another statement later in that line is miss-
ing a right narenthesis, the values of LP and RP will match and the
error will not be caught. This should, however, be very rare.

When the end of file (EOF) marker is encountered, the user is
asked if results should be directed to a printer as well as to the
screen. Then, if NEWDOS/80 2.0 is available, the array BAD$(n) is
sorted into alphabetical order. Those of you using other disk
operating systems or sorting routines should note that taking ad-
vantage of this feature requires only a single line; the CMD“0”
invokes the sort. “NU” is specified to indicate that all NU units of
the array BAD$(n) should be sorted, beginning with element
number 1. If for some reason you do not want the array sorted, even
though NEWDOS/80 2.0 is available, simply “lie” to the program
when asked.

The suspect words are then printed out in groups of 11
words/lines. A counter, CU, keeps track of how many words are
printed or listed. A word/line combination is displayed only if it
does not equal the previous word/line, so if a variable or bad word
appears several times in a single line, it is pointed out just once.
When CU can be evenly divided by 11, the program branches to a
“paging” subroutine at line 1010. Once the variables and bad words
are listed, the program displays all the lines which contain missing
parentheses.

A number of enhancements are possible. The program could be
extended to check each variable against the keyword list, using
INSTR, to see if any have inadvertently included an illegal
keyword. This would be especially helpful for those of you with
Model I/III computers who like to use long, descriptive variable
names.

Checking the spelling of a computer program is much easier
than proofreading a document, because the number of legal words is
severely limited. Once a computer is told what words are allowable
in a program, it is a simple matter to leave some of the tedious
debugging to the machine.

100

Automatic
Programmer Documentation

Care to coast awhile? Here’s the program you don’t even have to key
in. Well, that is not entirely accurate. “Automatic Programmer
Documentation” is a help file for the preceding three modules. It is
included here to demonstrate how such help programs can be used
to make a complex piece of software more usable by a beginner. The
program itself actually has no other function than to serve as an
introduction to the Automatic Programmer series. You have four
options in this case.

1) If you have purchased the disk containing all the programs
in this book, the program should be included on your disk running
the three Automatic Programmer programs. It will be called as
needed, and serve as a menu gateway to the others.

2) You may type in the program as presented.

3) You can type in the BASIC program lines, but write the
others using Screen Editor. It will prepare the screens for you with
less typing on your part.

4) Just skip this chapter entirely and do without the help file
when running the other three programs.

A% User input from keyboard through INKEY$
L$ String of 64 asterisks.
N Loop counter.

Fig. 9-1. Variables used in Autoprogrammer Instructions.

101

uoumo: Auevw 103 saurl wexboxd orsed 8yl Jo Swos 0 LNTHd

.5 ©93TIm 03

zoandud Inok osn 03 nok smoyTe werboad sSTYL s uLNTYd

yosng °d pPTARd tAg

Isumexboig orjewolny

Sy memmm———————

IIIIIIIIII 2 nLNTHd

uz%

ukNT3d

m=«

ulNIdd

us#

» b NITId
‘uzvrrres

09T
0sT
0%1
0T
0¢tT
0TT

B R VvV R v g P R PP PP P P PR TR T EETETL LT IN A SR

#

00T

ST0 06
(uxu’P9)SONIVLS=ST 08
0LZ OLOD ¥owyd NO 0L
000G ¥vdITIO 09
FEREERFER RN RN RSN L RN R BB R VRN EY

*

¢ SUOT3ONI3SUI Jawwexboad 03Ny &

L3

*

RYERZRERLIVRNLVS VX PYLRRRRERL VL LRRES

s 0§
8
s O€
8
8

102

‘suononiisu; sewwesboidoiny Joy Bunsy weiboid 2-6 ‘Hi4

OTTT EWNSHY: . IATYA ¥SIA NI YHNWYEDONd .INT¥d
wOILVWOLAY ONINIVINOD MSIA I¥ASNI HSVITd.INIHd

00€
06¢

06 TWONSTY:N

LXEN:00S OL T=N JOJ:T¥HF!,# ANIT NI JOW¥H NMONMNN. INI¥d
06C OLOD ¥S=T+Z/99d 4T

0TE 0OLOD

0GZNIHL ="WNWMZH.NH

£$7 ININ¥G

: u¥

-= Ad¥ ANY LIH -~ *a LNIYd
o=*=Ammvm45-=*=EZHmm

fux ‘noik 1oz

SUOp @I€ ‘sSnusw ‘(SU0 STY} IYT[) SuUS8IOS amc0a ¥ nINTHd
{u¥ =-3ONI3SUT

burytam ‘Arowsw HutyyyTy ‘Aeize ue mca=0amcwﬁa@ *wILNI¥d
Luy se yons

‘syse3 ,burdesyssnoy, Ter3TUT AUuRK *uMmo anok *uLNT3d
fux JO sauTrjnoiqns

Y3TA 3NO ,YysaTF, ued nok YoTym 8IN3oNi3ys ¥ LNTYd

Lux butpoo

1UO3ST3Ys, © @onpoad TTTM 3T *ATTedT3RWOlIN® 4 ,INTH¥d
Lux sureaboaxd

08¢
0Lz
09¢
0se
ove

oee
0ce

012
00c
06T
08T
OLT

(3]

10

s -oxd ‘usyyg,
°p3sn 2q LAew sToquis pue SI930BIRYD OTISBUMU zu LNI¥d

fux eudre TTVW
*HUTITP® USSIOS-TINJ PUR TOIJUOD IOSIND Huisn #n LNI¥Vd

Lux aeadde
03 3T juesm nok se A[3oexe TeTISjRW SY3 ISJUS URD #u ILNIUd
Lux nok ‘ussids

a4yl uo 3x93 ay3z 2onpoadsx o3 sourl weiboid su LNI¥d
s purlTam
pue ‘suo STYl SYTIT ‘sebed 3no bHurddew JO pesajxsul #u GNI¥A

L °SUDB3I0S
TRUOTIONIJISUT SJTIM O3 T ©Sn ued nox (°T #2u LNIJd
4
° i
»«s ILNITEd
° %
sowT]} NnOoAk d@AeS TITM Y] SUOTIOUNI TNIaOsn su LNI¥d
Lux JOo aequmu
e sey Jsuwmeiboxd OTIeWOINY cyoeoadde sTyl 2o NIV
L 03 SoAT9sWRYl
pusT swexboad juswsbeuew 8seq ejled #u INITYd
unk
¥ INITEd

PRV ARURRFFRRBREELR
EEPERRERRPPPRRRRRLRR PSSR XX R R v e R v e vy rrrrerrn LNITIdSSTO

0cw
01?¥
00¥%
06¢
08¢
oLE
09¢
0se
ove
0€EE
oce
0TE

104

('e01 abed woy panuyuo)) suononiisuj Jewwesbordony toy Buys)) weiboid z-6 ‘B4

Lax 23eaId
03 posn 9q osTe Aew gsuweiboad orjewolny (°Z #a LNI¥d 0%S
4
*ud
~*= INITYd Omm
cSu¥
*wexboad asyjzo 10 ‘ssuweb ‘uUOT3IONIZSUT popTe za INI¥d 02S
{ux I930ndwod ‘ssauisnqg
® JIO0J Snusuw IO SSWRIJ TRISASDS 23310 03 *u INI¥d OTS
{,x Pojeadax
8q KLeuw ssoooxd sTYL °OM3 93Ul FOUIW pue ‘wexboad *u LNI¥d 00S
{,x bDuristxe
Ue y3Té 3IOTTFUOD 30U Op sSasqumnu BUTT |Y3x 3Jeyz os #u LNI¥d 06F
L ux 3T I9qunuax
Leuw nok ‘pesjesid ussq sey USDIOS B I93IV 2u LNI¥d 08¥
luvvvrrrenrns

LI EEXEE LRI R LR LR EL LR L EREEREEES XX TR EEE R L X E I
INI¥d:STO OLY
09% OLOD wu=$XIINI 4TI 09V
{47 INI¥d 0S¥
4
° ¥
—= X4 ANV LIH ~- xu INI¥Yd 09V
I'é
*u¥
*YSTP O3 poAeS pu®e US313TIMA 9 TITM SSUTT wexb ¥u LNI¥d OEW

105

Lus cuotjeTnd rurw

I93eT 103 Aeixe ue O3UT eIEP IRy QVIY OI ¢u LNI¥d

f{y,y OSUIINOI ®

93 TaIA pue ‘sjusuelels YILVd ‘SIsqunu SUTT JIASSUT 2u LNId
$ux I1tM xaumexboxd

OT3RWOINY °J[OSIT eIRp Tenjde aYjl I93Ud 4, INI¥d
) Sux A1duts
few noi ‘soury vIvd osn TTTAM wexboad anok II su INIMd

{47 INI¥ASSTO

029 OLODuu=S$XEINI 4I
£$T INT¥d

«:&.
== Xd¥ ANV LIH -~ *u GNITUd

4

© i
*®TTJ YSTP ® 03 sjuajuod s3Tt dump pue 2w INIYd
Sux Aexae
ue Ty O3 sauT3lNox O/I ISTP PITNg ‘Aexxe burtals ¥n LNI¥d
Lux B UOTSUSWTIP
03 souTT wexboxd 93Tam TTTM 3T °SIAYIO0 4, INI¥d
Lux Texsaes
U3atm buote ‘pesn s Aew sTnpow I83TIM ,U13I0S, ¥u INI¥d
mz# 24L

*UITH YIOM 03 nok 103 suolarays weiboad a1T3uUs 4, INTHd

0LS
099
0s9
0%9
0e9
0C9
0TS
009
066S
08¢S
0LS
09s

06¢

106

(‘so1 abed wos panuiuo)) "suononsisuj Jawwesboidoiny soj Sunsy weiboid "2-6 614

fux pue sdexj
I0II19 SPNTOUT US3]1TaIMm saUTT weaboad ayg % LNI¥d 008
£$7T INI¥A:STO 06L
08L OLODuu=$XEMINI JI 08L
$$7 INI¥A OLL
*u¥x
~= Xd¥ ANY LIH -~ »u LNI¥d 09L
Law *aur3jnoaqns
yoe® 93TIM O3 3I9YM MOUY NOK OS SUOTFIROOT xu INI¥d 0GL
wt.ﬂ 9soy3l 3e
sxojutod UYWAY IISSUT pPue ‘nok 103 SaUTT €NS0D xu INIUd OFL
fux °°°NO ®3TIM
T1T4 wexboad ay3 ‘@anjes3 sTY3 bursn usaym xu LNI¥d 0€L
1
*u¥
‘ejep I8Y3l0 pue ‘s90TOYD IsoYl} ¥u LNI¥d 0ZL
fuy 103 sTeqe]
‘s90TOYD JO I9qunu 8yl jo 3ndutr anok woxjy ‘nok xu INI¥d OTL

Lux 103 nuauw

' pPTINg OsTe ued 193ndwod 8yl °SUIINOI ISFITIM 4, ININd 00L
Lox VETY fI3

9yl JO 9Sn oS)YeW URD NOX ‘nUsw WO3ISND ® PIING x. INI¥Nd 069
Lux 03 @sooyd

nok JI °003 ‘nusw B 30NI35U0D Kew NOxK xs INI¥Nd 089

107

{¢7 INI¥dA
u:#
= Ad¥ AN¥Y LIH -~ #u GLNI¥Yd
m:#:AmmvmﬂamB¥BHZHmm
°umiP
°SJI0XI3 I3Y3l0 SwWOoSs pur ‘sssayiuszed zu GNI¥d
uxn peyoRUSTW
‘spromiey psTradsstw 103 Yoouo TTTA 3II °uel zu NIV
i Sun =3T1IM sAey
noik swexboxad sy3z pesayooid o3 ‘jusixs POl TWIT 2a ONI¥A
[e O
‘pesn 3q osTe ued xsumreiboig OorjeWORINY (°€ u fu %szw
uek
su GNIY4
«:.«
‘3sow a3yl sjunod »u LNI¥d
Sux 3T aI89ym
£31AT30910 INnOK 3Sn 03 nok mMOTT®R pue 3sey Kem »u LNIYd
Sux a3yl jo
3INO sOHTSe(3yl 136 TITA 3T ‘weiboad sjzstduod e ¥u LNINA
Lun ®31aM jo0u
TIT&4 Isumiexboid orjewolny ybnoyi(y °Jrosinok 2ae ININA
Lux wexboxd
03 ®A®RYy 30u op nok 3eyl ssanjesy nydisy asyzo gu LNTY4

0€6

0C6
016

006
068
088
0L8
098
0s8
0v8
0€E8
0Z8
018

108

(201 ebed woyy panuiuo)) suononasu) Jswwesbordony Joy Bunsy weiboid 2-6 ‘614

‘uxg JO0 0°Z 08

sopmeN 3FI -porTdwod sT wexboxd syj urt pasn xu INI¥A 090T
fux saTqeTrIea
pue sSpiom ;pedq, JO 3ISTIT 9OUSBIVISBI SSOID ¥ O %u INIYd 0S0T
4
cux
*sooeds 3I8SUT TITA YoTym ‘saurl ng INIdd 090T
fun -nox butroedun/buryoed
9TqeTTeAR ATTETOISWWOD 3Y3 JO *u INI¥d 0€0T
fux auo ybnoayl
unx 3s113 st weiboad 3ebiex 8yl JT 3Is9q xu INI¥d 0Z0T
Lux JI0M
TITA STnNpow 3YyJ °SUTT B UT Juswelels 3IsaTy #¥u INI¥d 0TOT
‘us °?y3 pue
Isqumu SUTT 9Yy3 usamilaq adeds ' aq pINOYs ¥u INI¥d 000T
m:# aa9yy,
*.padoed, 3q LON 3Isnu paydayd aq 03 weiboig o ¥u INI¥Nd 066
u:% ‘wIog
IIDSY UT paaes aq j3snu pajooxd aq o3 weaboig o xu INI¥d 086
furu(€9)GVLS uxwININd 0L6
u...q.
:930uU Sseald #u INI¥d 096

'
CUNNERERRRLRRNRRNRR

FRBBXREVLFX VX ERERFLVRSRRRPFEREXN PR R AR 2 22 ¥y LNIUd2STO
0976 OLOD wu=S$AdMNI dI

0S6
oveé

109

(‘601 abed woyy panunuoy) ‘suononuisuy) sewweiboidony Jo} bunsy weibaid g2-5 ‘614

e B 8 8 8 B B8 B B

0TI¢T OL0D 09CT

EWQN\MW&OOM&: NNY NEHL :ms"%4 dI 02T

2 SYE/LIVLSE0s NOY NIHL olu=SY JI 0%CT

uSYE/NITHOS wNOY NIHL oTu=SVY dI 0€CT

06 OIOD® =H="W¢ 0 » 3“%@ dI 0221

0TZT 010D wu=$¥ JISAMINI=SV 0TICT
PRPPPRPRPRERVRE Py pe e nrxvrevruvrrsvrrrrvren (TT)EVL INI¥d 00CT
2 (IT)EYL LNI¥d O06TT

%

* 1930014 wexboag unx o5 (°¢€ #+u(TT)EYL INI¥A 08TT
® I93I03S €Q UNI O (°¢ 20 (TT)EYL INI¥A OLTT
® I03TPE USSID§ UNI OF (°T #u(TT)EYL INI¥A 09TT
% === §881d == #u(TT)EYL INI¥d OSTT
® *suorjonizsut jeadax o3 ¥, ITH #u(TT)EYL INI¥d OVTT
8

2u(TT)EYL INI¥d OETT
FYENPNPL PP LB R LR RS e e e e e revrerevrrrvrenrrn (TT)EYD INT¥Yd OCTT
INT¥d:STD 0T1ITT
00TT OLOD wu=$XdMNI JI O00TT
qu INI¥Yd 060T
°ui
-= XdI¥ ANY¥ LIH =—-- R LNI¥d 080T
L TE

°po3x0s ©q TTTM ISTT STYl‘pasn ST Io3eT »u INTSd 0LOT

110

Now, wasn’t that easy? When the user specifies HELP in one of
the Automatic Programmer modules, a branch to a line that reads
RUN “AUTOPROG/DOC” will take place. This program will then
be loaded, and display the introduction to the other programs. At
the end, an INKEY$ loop will accept one of three menu choices,
loading and RUNning one of the three Auto Programmer modules.
That’s all there is to it. After a look at Figs. 9-1 and 9-2, class is
dismissed for recess.

111

Visual Maker

Though photographic in nature, conventional slide shows used in
business presentations rely more on text material, charts, and
graphs, than on actual pictorial subjects. “Visual Maker” is a pair of
programs written for the TRS-80 Model I/IIl and 4 that allows
designing a series of text and graphics “frames,” specifying how
long each should appear on the CRT screen, and assembling them
into a finished slide show.

Absolutely no user programming is required. The operator
simply “draws” on the CRT screen, using the arrow keys for cursor
control, placing alphanumeric characters and two types of graphic
blocks as desired. Then, when the <ENTER> key is hit, and that
frame is stored to disk. When all desired frames are assembled, a
second program is run. The operator is given the opportunity to load
and briefly check frames, in order, and then specify how many
seconds each should appear on the screen. Then, a BASIC program
is written that will display the frames as desired in a completed,
ready-to-run slide show.

Visual Maker is similar in concept to Screen Editor, which
writes BASIC subroutines that reproduce desired instructional
screens. In fact, I used Screen Editor to write all the instructions in
Visual Maker. The idea is to allow the user to enter various parame-
ters, and then have the computer generate BASIC code automati-
cally.

Visual Maker is very flexible in the ways users may assemble

112

A%
AN$

B

B1

C

C4

E
EFLAG
F$
FLAG
FR

‘N
N1-N3
PR$(n)
SP

T

T2

y4

Used in INKEY$ loop-

Used in INKEY$ loop.
Beginning of video memory.
ASC value of A$.

Cursor character.

Line number being PEEKed.
End of video memory.

End of character line.

Name of output file.
Autonumbering flag.

Frame counter.

Loop counter.

Loop counters.

Program lines stored in this array.
Space.

Value found by current PEEK.
Position of cursor.

POKE position for cursor.

Fig. 10-1. Variables used in Visual Maker.

slide shows. Using the first program of the pair, a broad “library” of
frames may be created that can be linked together by the assembler
program in any order desired. This is very similar to the way in
which many photographic slide shows are put together. Corporate
communications departments draw heavily on an existing stock file
of slides, minimizing the number of new frames that must be created
for a given show. The same basic material can be used to develop a
program tailored for employees, stockholders, directors, and the

public.
AN$ Used in INKEY$ loop.
F$ Filename of output file.
FR Frame counter.
IC Increment to increase line number.
LN Line number.
N$ Name of next slide to be added to show.
N2-N3 Loop counters.
PR$ Program line being built.
SC$ Seconds to display frame.
SP$ Space .
TM$(n) Stores show program lines.

Fig. 10-2. Variables used in Show Assembler.

113

¢ HONILNOD O&L Ad¥ ANV &LIH

cunx 03 Apeax aq

TIT/A MOUS PBYSTIUTI SYL °u2310s 3yl uo
zeadde o071 ,9pTIS, yoee uem nolk HBUOT MOy
nok :[se TIIM oTnpou ISTqWSSSE 3YJ, °MOUS
BPITS B O3UY ,Sawelj, IO SU99IDS 8yl

9 Tquesse usayl pue ‘ssuo DBUTSTIXO TIPS
1yo’1eIOS WOIJ SUd3IDS MBU PITNg Arwl NOX
*2U0 STY3 Se YyOoNns Sua.8IdS

TeuoIjlonzIzsur aonpordex TIIM Jeyl SaUTI

~-noIqns 93 TIM 03 pesn sq Aew wexboad STIYL
«#%%%«#%###&%##%#k«#*%########ﬂ%«««#*#####ﬁ««%#%=Amvmﬂﬁ

L2

#u(6)9YL INIYI
#u(6)9YL INI¥A
»u(6)9YL ININd
2u(6)9YI INI¥A
#u(6)9¥L INIY¥A
»u(6)9¥YL INIY¥A
20 (6)9¥L INI¥NJ
#p(6)EYL INIVA
20 (6)9YL INI¥A
#u(6)9YL INIJd
#u(6)9YL INI¥A
2u(6)9YL ININd
INTYd

INIII

ST

(9T)%¥d WId

X-¥ INIJHA

0000T ¥VATIO
e T ST E

% I9YeW TenSTIA

¥

*
¥
&*

BPRERPYRRELERR PR RRRLRRELRERY

0€e
0¢e
0T¢
0ce
06T
08T
0LT
09T
0sT
0%1
0eT
0eT
01T
00T

06

08

0L

09

0s

0v

0e
0T

114

“19%eN [ensiA Joj Bunsy weiboid ‘¢-01 ‘Big

*umop aoeds QU0 JIOSIND SAOK ¢ MOIIY Uumoqg ¥u LNI¥d 0GE
4
*u¥
*u8810s Jo doj 03 JIOSAIND SAOW ¢ moxxy dn 33ITYS ¥n LNI¥Wd 0OF€E
4
*
°dn MOX 8UO IOSIND SAOR moxay dp sw LNT¥d 0€E€
4
® n¥
"MOX JO 3IST JBJ O3 IO0SIND SDAORK @ MOIayY 333971 IITUS ¥u LNIYd 0CE
4
*u¥
*313J91 9ovds QU0 I0SIND SAOK Mox1Iy 33JO7 ¥a INI¥d OTE
! x°MOX
30 3ybTI IBJ 03 I0SIND SAOW : MOIAY IYBTH 3IFTYS ¥u INT¥d 00€
4
° n
*3ybra soeds suUO I0SIND BAOK moxay 3ybty xau LNI¥d 06C
4
MR 3
: SpuRWUWOD *»u LNI¥d 08C
u:«««*«*««««««*«««««««««««*«**«**«*«**««««««a*«««««***«*««*««a*«**=
INIdd 0LZ
ST0 09¢

0S5 OLO9 wu=SY JI:SATINI=SV 06T

B OXRRFRREIFNEXFRALERPEPPERS RPN XXX XX ¥ ¥R 22 ¥ xxx¥xxxxu (6)HdYL ILNI¥Vd 0%

[Te}

-

1

u ¥ 303 ysTM nok og 2u(9T)EYL ININ¥A 0%S
u FRREPRRXPFERyr¥verryyrvevevvrevrxrxs (9T)EVL INI¥A 0€G
LNTHd s DNTUd S LNTId s LNTYd ST 0C6

T=84: T=9VTd wA.,=$NV¥ ¥0 oXu=$NV 4I 0TS

00S OLOD uwu=$NY JI:SXAMNI=$NV 006G
PRRRyyxxrxrrereeoprrrxrrrxrprrrv(9T)EYL INI¥Vd 067

8

6 % == DITOYD I33JUY -—= 2 (9T)EYL INIVd 08%
n ¥ (N/X) »u(9T)EVIL INI¥d OLV
- cbutaequnu swexy 0 (9T)EVI INI¥Nd 097
a % OTjewoOlne juem NoA od #»u(9T)4dYL ILNI¥d 0S¥
6 FPETRRERRRreyrreryevrvryvrrrrrevrrw (9T)EVL INIVd OFF

LNTYd 2 LNIYd s LNIYd 3 LNI¥dSID Q€D
0Z% OLOD wu=$V JAIS$AMINI=S$Y 0C¥
m5*R%##*#«%*#**%#*k##**##««#***#%%k«%#%**#**###%#«««*tﬁ#k##%##«#%#E
LNIdEd 0TV
ne#
—— Koy Aue 3TH -- *u Bszm 00%
° umar
*2uely o2yl ss8o0agd ¢ < ¥¥INF > v»u LNI¥d 06C
u=¥ amamﬂﬁvwmmUmz
- }oo1q sortydeab jurag 3 »u INI¥YA 08C
u:* gaHmvammUE
rza LNI¥d OLE

L 1)
@

- 3oo01q sorTydeab juriag

116

('st1 abed woy panunuo)) 1eep ensiA 10} Bunsy weiboiyq 'g-01 Bi4 W

E e 2528t
* ¥ & &

*

(8/$d) $LITT=84d

$df, OWERUSTTA LIANANIANIT:?,.(SZ)EVI ININd
rryxxexrrrrrexrrrarerrxxxrxa(6T)9EVL INIUd

¥ »u(6T)EYL INI¥d
°sot1Ies ¥»u(6T)EVY]L INI¥A T=9VTId JI

¥ sweiy STY3 I03 *»u(6T)EYL INI¥d

» OUWeuU STTI e I9juUy *»u(6T)EYL INIYd

¥ry¥xxexxevxvvryeyvvrvyrervxxxxn(6T)9YL

INIY¥d

ONTEd 3 INTId : LNTUd S LNIdd 2 STD
0T9 010D

089 OLOS =m=nwz¢ a1

089 0OLOD =®="m24 aI

OQW 0409 :U:"WZQ a1

089 OLOD uDu=$NV JdI

aN¥ 4b,=$NV 90 .Ou.=$NV 4I

0T9 OLOD wu=$SNV JISAAINI=SNVY
XXX RXRFFFPFFPRRLLRRRR X222 0u (9T)AVL

—= 90TO0Yp a=juyg -—- *»u(9T)AVYL
#»u(9T)9VL

cuotrsses 3TN(0) ¥»u(9T)EYL
‘swreiy v 3TP(A) *»u(9T)EVL
‘dwexy e 83e8x() *»u(9T)9VL

INTUd
INTYd
LNI¥d
ENITdd
ILNIYd
LNIYd

09L
7A
ovL
o€l
0cL
0TL
00L
069
089
0L9
099
0s9
0v9
0€9
029
0T9
009
06S
08s
0LS
09¢s
0ss

-~

0ZTT OXOD (T16)$YHO=8VY dI
00%T OLOD (ET)S$YHO=SV¥ JI
060T OLOD ¥=T9 4I
($¥)osy=T1d

076 OLOD wu=SY JAISSAMINI=S$V

say J930®IRYD X0 INndUT MOIIY I0JF parvoqiay O°UD sxxx
2€=4ds

D’z daMod

£v=0

g4=2

PQEQT=Hs(09%EST=H

HS0'ID

£(9T)$¥d INI¥A
(T-((9T)$¥A)INTT’ (9T) $¥d) $TJAT=(9T) $¥d
(9T)$¥d‘T# INANI

N IXIN

£ (N)$¥d INI¥d

(N)$¥d’T# INANI

ST OL T=N ¥od

o)

$4'T’wIuw NIIO

068 O109:STD uOu=$N¥ YO uwdu=$SNV dI
(27(9d)$YLS) SATH+(S?$d) $LITT=8d NIHL T=95HVT1d JI

086
0L6
096
066
ove
Gt6
06
026
016
006
068
088
0Ls
098
0S8
ovs
0Es
0Z8
018
008
06L
08L
0LL

118

(‘211 ebed woy psnunuo)) “1exeyy fensi Joj Bunsi weiboid ‘g-0L B4 D

-

v

0¥6 OLOD 08TT

€9=0 OLTT

0% d304d 09T1T

T6T=D NIHL (ZTE/TZ)INI=CE€/T1Z AI1:09€ST-Z=T2Z OSTIT
#9-2=2 0%TT

ds’Z ¥J0d 0€T1T

0¥6 OLOD g>%¥9-% AI 0ZTIT

#x% Q0 IOSIND yxx , STIT

0%6 OILO9 OTTT

O'Z AM0d:T+%=%2 NHIHL I>T+Z 4I 00TT
¥/% 33404 060T

19=Y 080T

67 T=T9 NUHIL 8€=Td 4TI 0LOT
T6T=T9 NAHL ¥9=Td J4I 090T
0€ET OLOD (8)SUHO=SY J4I 0SO0T
09CT OXLOD (6)S$UHO=$V 4AI OV0T
06TT OLOD (0T)SYHO=$V JAI 0€0T
O78T OLOD (LZ)SYHO=$Y 4TI 02Z0T
09LT OLOD (9T)$YHO=$VY 4T 0T0T
089T OLOD (¥Z)S$YHO=8VY 4TI 000T
009T OLOD (SZ)SYHO=SY 4TI 066

T6T=D NAHL (ZE€/1Z)INI=CE/TZ JAIL209€ST~-Z=T12%
1-2=%

ds‘’z adod

0%6 OLOD TI>TI-Z dI

gxy AIST IOSIAND xzx

0¥6 OLOD

£9=0

0’7 I304d

T6T=D NAHL (2TE€/T1Z)INI=CE/1% mH“ommmHmmmHm
ds‘’z #d0d

0%6 OLOD H<I+%Z dI

zxx IUDTY JI0SIND yxx

0%6 OLOD

€9=D

0!’z ad0d

T6T=D NIHIL (Z€/1Z)INI=CE€/T1Z AI:09€ST-2=T1%
$9+Z=%

ds’7 da30d

0¥6 OLOD H<=%9+Z JI

#xy UMOQ JOSIND xxx

09¢€T
0SET
0PET

0€eET
GCET

0ceT
OTET
00ET

06CT
0821

0LeT
09¢T

Geel

0sC1
oveT
0€qT
0eeT
0TCT
00CT
06TT

S8TT

120

('611 abed woy penunuo)) “1exepy fensiA 10} Bunsy weibold 'g-01 Bi4

T "9S0T1D

, N IXIN
$(PE)SUHO! (N)SUA (VE)SUHD T INTYUd

9T O&L T=N ¥0d

$d‘T’u0u NIJO

#xx STA O3 STTd SABS xxx ,

N ILXIN =

wu=8dd:Sdd=($D)sud

IN LXEN
EN=DVYTIT NIHL CE<>OL JI2 (IL)SYHD+SUd=$8d
T6T‘09€ST+IN a0
(09€ST+IN)MIII=L
T+EN=EN

€9+N OL N=TN ¥O0d

T+%0=%D

¥9 d3IS €Z20T OXL 0=N ¥Od :
T=ND:dS‘’Z ANOd NHHIL T-3<>Z dI
xxxy USDIDG PEAY xxx

0¥6 050D

€¥=0

LA) (o): |

0SST
0vST
0esT
0ZST
0TST
SOST
00ST
06vT
08vT
0LYvT
0971
0SPT
ovvT
OEvT
0cvtT
0TvT
00vT
S6ET
06€T
08€T
OLET

121

=2

ds’Z aM0d

0¥6 OLOD €>¢d 41
96ZST+(79+TL)=C&L
08GT 9NSOD

gy UTBIBW 3F9T 03 I0SIND dump sgxx e

0¥6 OLOD

£9=D

0°% IM04d

¢L=2

ds‘’gz ayod

0¥6 OXL0D H<ZL 41
6SESTH+(79+TL)=CL
08ST NS0

¥y UTBIEW 3yBTY Of rosand dump yxy .
NENIFY

T+($9/(9~%))INI=TL

rxy MOY JOsSaIND SJITNOTRD =xzxx

02S OLOD

T+ad=44

0ZLT
0TLT
00LT
069T
0891

SL9T

0L9T
0991
0S9T
0%9T
0e9T
0291
0T9T
009T

S6ST

06sT
08ST

GLST

0LST
09ST

122

(‘121 abed woy panunuo)) “1exep [ensip Joj bunsy weiboid ‘g-0t By

12

0¥6 OLOD OT6T

€9=0 006T

O’z @M0d 0681

¢L-72=Z 0881

ds’z @dod 0L8T

0%6 OLOD €>25-Z AT 098T
P9+ (T-TL)=C¢L 0S8T

08ST 90S0D 0¥8T

¥¥% US9IDG JO doJ 03 z0san) dunpL yxy , SEST

076 OLOD 0€8T

€9=D 0Z8T

0’Z #MOd 0T8T

¢L+Z2=7 008T

ds‘z d3Ood 06LT

0¥6 OLOD I<Z+ZL AI 08LT
P9x(TIL-9T)=C1 OLLT

08ST €NS0D 09LT

¥x¥ USSI0S JO wojljod 03 10sin) dunp yyy , SGLT
0¥6 OLOD 0GLT

€v=0 0%LT
07 aMOd 0€LT

® butreq mou moys SpTTS #u(PT)EYI INIId
% Sy3 3O sweu 3y3 Is3jug #u(PT)EVL INI¥4
* #u(PT)EYL INI¥d

yrysrryrrrysexyryvrervenyxvrrryxvvrrxen (PT)9IVL LNIYd
INTYd S INTUJSINTIYd s LNI¥d:STID

gxx DOTQWOSSY ©q 03 OTTJA U2dO sxx

NInLIY
$dS+ (NT) $¥ILS=$4d 2 DI+NT=NT

pxy IOIUNOD SUTT JUSWSIDOUT yxy

0€T OLOD

T=44:0T=NT:0T=0I
(ZT€) $¥HD=8dS
(9T)SHL WId
0000T ¥VITIO

REPERERRRRBRRBRRPLRER
#* *
g JAOTquUOSSY MOUS
¥ L
YUV REPRLRIRBPURPEXESN

0LT

124

“Jejquiessy moys 10} bugsy weiboid p-01 ‘Bid

fa OWRU I93UY <===,(9T1)dVYI INI¥d

INTAd : INI¥d

4 ¥xyrexrxxxxvreervevypxvrxxvvvvvvevxxa(PT)IVL INI¥d
— (*3tnb o3 ,0,) ¥»u(PT)EYL ININA
u ¥ ¥=A¢va49 LNTId
u ¥ *MOys 9pTTS 8yl o3 »u(VT)9VL INTY4
u ¥ poppe 3q 03 sweijy j3xsu »u (PT)9VI ILNIYd
u ¥ 9Yy3 JO suweu oyl asjuyg #»u(PT)EYL INI¥d
u ¥ »u(PT)EVL INTUd

0s¢e
ove
oce
oze
0TE
00¢
06¢
08¢
oLz

B OEFEXERXRRFFXPXVRFRERRFNR¥¥xrxzexyxxevxvxxu(PT)EVL

INTYd * LNTYd : LNI¥d:INTYd
S0

¥xy OUWERIJF 3IxX3uU JOo sweu Indul xxyx ,

$42* wOu NIJIO

(8/34d)$TdTT=84

$d INANIANIT

{y dOWeU I93U¥ <===,(9T)dVL INI¥d:INI¥d:INIJd

N OREXRXXRRRRFEFRFRRRVRERRRxep ¥ evrrxxa (PT)EVI INIUd
u ¥ »u(PT)EYIL INI¥Ud
u ¥ ‘peTquesse »u(¥PT)EYL INTY4

092
0sc¢

Sve

ove
1} X4
0ece
0TC
0o0¢
06T
08T

D
3V
-

9T OL T=N ¥0d4 =
SN’T’uwIn NHJO

gyxzyy ST WOXI SwWead PROT zuxxxr 1

sID

$08 IOANIENIT

!, 3SPUODSS I93UF <===,(9T)dVL

LNTYd®

pryvyrrsrrrreervrvrrrrrrrrercxrrrrrern (1) EYL

L3
%
3*
¥*

*

#saﬁﬁvmmﬁ

kaﬁwﬁvm¢8

épedeTdsTp @9 03 swexy STyl 2u(PT)EYL
®)TT nok prnom Huoy MOH ru(PT)EYL
2u(¥1)49YL

LNTId
GNIEd
ENTEJ
LNITEJ
GNTEd
LNI¥d
LNIdd
LNIEd

s ¥¥¥yryeesrsrsesesrvyrrerrsvreyrvrvrervvrrsre (PT)EYD INIY4SINIYdLNIYd

xxy LAeTdsta 03 buoT MOH 93Ul

SO

RRE 0

0£0T OLO® uwbu=s$N ¥0 uwOu=SN 4I
SN INANTANIT

0TS
00¢

S6¥

06¥
08y
0LV
09%
0%¥
ovy
oew
0Cy
0T¥%
00%
06¢
ogt

GLE

0LE
09¢

126

(‘g21 obed woy panunuo)) -1ejquiassy moys 104 Sunsy weiboid p-01 Bi4

T+3d=94d
089 OLOD
0ZL OLOD uwhy=$NV ¥0 u4A4=$NV 4TI
OmN OBOG =C="WZ@ dq0 :Z:"WZ& dT

089 OLOD wu=$SNV JI:S$XAHINI=$NV
‘w 93Uy <===,(9T)dVL INIVd
INI¥d:INIYd

FEREFERRFRFFFPEIRLPRERRR R ek xxvv e rxyxra (PT)EVL INTIYUL

*

® K K K

»u (PT)EVL INI¥d

(N/X) »u (PT)IVYI INIVA
xu (PT)9YL INI¥NA
¢hexo sweay eyg xu (PT)EVL INI¥A

»u(PT)EVL LNI¥d

ocL
0TL
00L
069
089
0LO
099
0s9
0v9
0€9
0¢9
019
009

u #%%#*%*%###%**#%#%***%*%«*#*%*#%k%%:Aﬂva¢B

INTYd S INI¥d :INIYd S INI¥d

STD

T FS0TD

EN IXAN:00T OL T=€EN ¥0od

N IXIN
ZN IXIN:0S OIL T=¢N d0d
{(N)SWL INI¥d
(N)SWL’T# INdNI

%0 ae oo e

06S
086§
0LS
09¢s
06S
ovs
0€s
0zs

~
[a¥]
—

u ($HS) TYA+ILS=Ld «+5Ud=8dd
086 90S09
w((Z7481) SLHOTY)TYA=LS u+$¥d=8Ud
086 90S09
u(u+80S+4) $ULS=8TS u+$¥d=8Ud
086 94NS09
aSARIL=81 s+ $Ud=88d
0TIT 90S09
N IXAN
18 s“wmm
$9d’z# ININd
$dd INIdd
wlat(FE) SHHO+(N) SWI+(FE) SYHO+u INIVdu+$Ud=54d
01T €nS0D
9T OL T=N ¥0d
(€9°(9T)SHIL) $TAIT=(9T) SHL

00 ©0 8O 00 OO0 06 00

sxerrryr ASTA O JUTAJ sxxwsrs

086 d9NSOD
uSTOu+8Ud=84d
OTT 9NS0D

0T6
606
068
088
0L8
098
0s8
0v8
oes
0cs
0T8
008
06L
08L
0LL
09L

st
0sL

ovL
oeL

128

(‘221 abed woyy panunuo)) “1ejquiessy moys 10 Bunsy weiboid p-01 ‘Big %
-

d4s01D 060T

Sud‘Z# INI¥A 080T

(NT) $43LS+u OLOD.+$¥d=$ud 0L0T

0TT 9nS09 090T

=="wmm 0S0T

sud‘z# INIYA 0FOT

uSTOu+s¥d=$49d 0€£0T

O0TT 90S09 0201

NINLFY 0T0T

O0TT 9NS09 000T

$¥d INTId 066

$dd‘Z# INIUd 086

0SZ OILOD 0L6

086 €NS09 096

(NT) $4LS+s OL0D Ld<>((Z’$HWIL) SIHOIYW)TYA AT .+$8d=84d 0S6
086 9NS09 0¥6

u09-Ld=Ld NHHI 66<Id 4TI .,+$¥d=$¥d 0€6
086 NSO 0Z6

on on om om Sm oM

o on

o

11
1

062 OI09 LJI<>((Z’SAWIL) SLHOIU)TUA AT

09-1Jd=1Ld NHBI 6G<ILJ dI

($AS)TYA+LS=Ld

((Z?31)SIHOIY)TIVA=LS

(0T)$¥LS=44S

SHRIL=$J

wLNTIdd

WINT¥d

W INI¥d

SINT¥4

WINI¥d

wINT¥d

uINI¥d

wLNI¥d

wLNI¥d

cI9MeN TenstiA wLNI¥d
jJo sa31T1Tqeded 9y3 83RI3SUO «INI¥d
-uep 03 peojeaad bureq sswell JoO #LNTY¥d
S9TaI9Ss B Ut 38aATI ¥yl ST STYL ad:NTAd
WwINI¥d
#LNI¥d

oLNI¥d
€10

130

“195e fensip Aq peonposd wesbosd jo eidwexg ‘g-01 B4 &
—

S0 016

00S OLOD LA<>((Z'$IANIL)SIHOTIY)'IVA AT 00S
09-Ld=Ld NIHI 66<Id JII 06¥%

(SFS)TYA+LS=LJd 08%

((Z'$1)$LHOINY)IVA=LS 0LV

(0Z)s$¥1LS=89S 09%

SAWIL=$I 0GP

S 0% O 2% AN Sn en an Sn N S $a en 0n en

-~
=2

S8 2 ==z =

wlNTUd OV9

«LNTI¥d 0€¥

«LNI¥d 0Z%

«INI3d 0TV

«LNI¥d 00¥%

oLNT¥d 06€

wINT3d 08¢

«LNT¥d OLE

o LNT3d 09€

oLNT¥d 06G¢€

*moys «LNT¥d 0%€

PBUSTUTI ® O3UT WY} oTquosse wLNI¥d 0€€
usy3 ‘I031pe uLLads ayjl wLNI¥d 02€
bursn seweizy sjeeid K1durts o INITYd O0TE
«LNI¥d 00€

oLNI¥d 06C

870 0L¢

Thus you may design several dozen or several hundred frames
that can be used and reused in muitipie siide programs. Existing
frames can also be stored as a sort of visual “boilerplate” and edited
to form entirely new slides—without creating the entire visual from
scratch.

To use Visual Maker, the operator first is given the opportun-
ity to review the commands the visual editor reco gnizes. The arrow
keys move the cursor around the screen, with SHIFT plus arrow
jumping the cursor to the far edges of the screen (top, left and right
sides).

Striking an alphanumeric key reproduces that symbol on the
screen, much like a word processing program. In addition, two
different graphic blocks can be summoned by hitting the@key and
the & key. An entirely new frame may be created, or the filename of
an existing frame entered and that visual edited.

The screen editor written for Visual Maker is a fairly simple
one. Exiting from a given screen line should only be done at a point
in which a space already exists, otherwise the character in the
cursor position will be erased, or the line can be finished. The
cursor will wrap around to the next line. The graphic blocks can be
used to build charts, graphs, and other material. When you are
satisfied with the screen design, hit <ENTER>.

At this point, the program PEEKs each location of video
memory and stores the 64 characters of each line in a string vari-
able, PR$(n). See Fig. 10-1 and the listing (Fig. 10-3) in this
chapter. The sixteen elements of PR$(n) correspond to the sixteen
lines on the screen. The information about each frame is then stored
on disk. The filename for the frame, F$, is assembled from a prefix
supplied by the user and a frame number, FR, which is incrementd
each time a frame is designed during a given session.

This program may be changed easily by the user. If you do not
like the graphics blocks provided, change the definitions of them to
any character you please. You may also redefine any other keys to
any other characters or graphics blocks. Simply choose keys that
you do not plan to use in your screens. Some examples are the!, ¥,
#, and % keys. Then, add program lines. For example, to change
the quotation mark to a graphics block, type in:

xxxx IF B1=34 THEN B1=148

The second program, Show Assembler, takes the frames you
have developed and uses them to write a BASIC program that will

132

display the frames for the number of seconds you indicate. To use
the program (Figs. 10-2 and 10-4) you must supply a name for the
slide show being assembled and then enter the names of the frames
you want in the proper order. The program also asks the number of
seconds, generally from 2 to 30, that you want the frame displayed.

At this point the frame is loaded from disk and scrolled down
your screen for a quick, last minute check. If it is indeed the frame
you want, a complex series of procedures are carried out to write
the necessary program lines to display the frame.

The lines assembled look something like this:

10 T=20’ Time to display

20 T$=TIMES$

30 SE$=STR$(T)

40 ST=VALRIGHT$(T$,2))

50 FT=ST+VAL(SES$)

60 IF FT>59 THEN FT=FT-60

70 IF VALRIGHT$(TIMES$,2))< >FT GOTO 70
80 CLS

It is these lines which are assembled and printed to disk,
substituting the actual time the user specified to display the frame
for T. In this way, each successive frame will be displayed for the
amount of time desired by the user. A sample program produced by
Visual Maker is listed in Fig. 10-5.

Compared to DB Starter, Visual Maker is much more sophisti-
cated, because it will write complete, ready-to-run slide show style
programs, and several features have been added in screen editing
over Screen Editor itself.

133

Global Replacer

Here is another program in the “REM-over” mold. This one,
“Global Replacer,” demonstrates how one program can be adapted
to perform a second function. In concept the two are almost identi-
cal; instead of searching for remarks and then deleting them, how-
ever, the program looks for any string of the operator’s choice. The
string is then replaced with a second. The result is a global search-
and-replace operation on a program, much like the same function in
a word processing program.

Unlike some word processing programs, however, the user is
shown each occurrence of the search string and offered the oppor-
tunity to replace it. You can pick and chose which to replace and
which to leave alone. Variables and the listing are shown in Figs.
11-1 and 11-2, respectively.

The search string is input into S$ in line 90; since LINEINPUT
is used, the string may contain commas and other string delimiters.
The replacement string is entered into RE$. Then the input and
output files are opened, and the first program (or text) line is loaded
into A$ in line 260.

The user has been offered the option of deciding whether or not
the program queries before making the replacement. A search
routine basically identical to that used in REM-over hunts for the
string. The difference is that line 290, where the former program
had 'R=INSTR®,A$,“REM"Y, Global Replacer substitutes 5§ for

134

A% Stores program line being searched.
B$, CH$ Used in INKEYS$ loop.
E Length of string being searched for.

F$ Filename of program being searched.

F1$ Name of output file.

LS Left portion of program line.

N1 Loop counter.

P Position to begin search.

R Position of target string.

RE$ Replacement string.

S$ Target string.

Y$ String of spaces as long as replacement string.

Fig. 11-1. Variables used in Global Replacer.

REM. If R does not equal zero, then the line is cut into two sections.
L$ stores everything in the line up to the beginning of the search
string. R$ includes the rest of the line after the search string.
Another string, Y$, is constructed from a series of blanks equal in
length to the replacement string.

If the user has specified querying, control goes to line 360,
where an INKEY$ loop awaits keyboard input. Each time through
the loop L$, Y$, and R$ are printed on the same line, and are, aftera
short delay, followed by L$, RE$, and R$, The result is a flashing
display; the left and right portions of the program line remain on the
screen, while the potential replacement flashes on and off in its
place. A “Replace it?” prompt asks for a decision. The program will
only replace the string if a “Y” is entered; any other key will leave
the program line as it was. Once the string has been replaced, the
program branches back to look further. If the search string is not
found, the program line is printed to the disk in line 490, and a new
program line fetched.

Global Replacer is a short but powerful program that will let
you make changes rapidly in a given program. Should you decide to
change the name of a variable, substitute one keyword for another
(LPRINT for PRINT, for example), or change some prompts and
other material within quotes, it will handle them all. Its chief
advantage over using a text editor for the same chore is the ability to
examine each line before making the change. Those without word
processing programs can use this utility, too.

135

ST0
T=HD NHHIL uwfu=$HD ¥O u4wAuw=S$HD dI

06T OLO9 wu=$HD JI:SXMINI=$HD

uw(N/X)w(62)9YLINTEA

siyoes doeTdsx 03 asyjzdyM SSOOYD 03 JueMm Nok od,(6)dYLININd
IONIJdSINTEds 81D

$3¥ ILNANIANIT

w® U3Tm soerdax o3 burays xejud, (LT)dVLINI¥d
INI¥dINT¥d2STO

$S INANIINIT

w? I0J ydiess 03 Hutals 193ud, (8T1)HVLINIVG
INI¥d s INI¥d2STO

$d LNINIFNIT

»$ Pessedoid aq o3 weaboxad JO sweu I93UH, (ZT)IVLINIVd
INI¥d:LNIId 2 ST

yxy SIojouweIed dn 39S sxx

000S ¥YITO
PRRERLERRLERBFER
¥ ¥ 1
% Y4010 * 0
¥ ¥ 0
FERRRERFERURRLRES 0

0T1¢

136

-Jooe|day feqoin 104 Bunsy weiboid "g-11 B4

IXHAN:0S OL T=TIN ¥0d
SUISKISTILSTD INIUA
SATANI=$d

¥x¥x &3T 900TADY xxx

09% OLOD NAHL 0=HD 4I
(2€4 (STI)NIT) SONTULS=S$SX
(I+9/8Y) SATW=$Y
($S)NTT=1

(T-¥'$VY) $LAHT=8"1T

06% OLOD 0= J4I
($S/8V¥‘d)UILSNI=Y

I=d

STO NIHIL T=HD dI

SY’/T# INANIFINIT

xxy OUTT © PROT xxx

0Z2S 0LO9 (T)d0od 4I
$Td‘Z’wOu NIAO
$d'TwIu NIJO

¥¥¥ SOTTI YSTA USAO xxx
w199/ u+ (87 $d) SLITT=$Td

08¢
0LE
09¢

SG¢E

0s¢t
ove
0te
oce
0TE
00¢
06¢
08¢
0L
09¢

114

0s¢
ove
oee

144
0¢e

N~
32}
Dt

(-2e1 obed wosy panunuos) “1eoejday feqojo 104 Bunsy weiboid 2-11. By

STO HSTH NN¥ NIHL wAu=S$Y ¥0 uwX.=SY JI

096 060D uu=8V JI:SATINI=SV
u(N/X)u(62)dYLINIYd

2lOTTJ ISYjoue SSOD01d,(TZ)dVLINIUd
INI¥dININd

¥yy SUTEDR AT OQ xxx ,

HSO'ID

0SZ 0OLO®

SY INI¥d NAHIL 0=HD dI
SU=¢Vs{3aYiSTT# INIUA

#x% ASTP O3 IUTAd xx%

062 OLOD
T-($TI)NTT+($TI’ ¥/ d) YLSNI=d
SU+STI+$T=8Y

062 OLOD
T-($S)INTT+(S$S’/$¥‘d)HLSNI=a
09% OLOD uwhu=$8 Y0 uwRu=$€ JI
OWM OLOY =Enwm AT

w(N/K) ¢3T1 @0eT1doy,“‘g8L ® INI¥d
IXAN:0S OL T=IN ¥0d
SYLSHYL ST/ LGTZH INTUd

oLs
09§
0SS
ove
0ts

TA]

0cs
0TS
00¢S
O6¥
S8¥
08%
OLY
097
0S¥
ovvy
113
0cy
0Ty
00%
06¢

138

Menu Master

Strictly speaking, “Menu Master” is not a program-writing utility.
It won’t generate any lines for you, nor change an existing program.
However, it may speed your initial work somewhat, and it can be
interfaced with a variety of BASIC programs to save you time.

Menu Master is an all-purpose menu program that allows you
to summon any of 26 (or more) programs, functions, or commands at
the press of a single key. With it on your system disk, andan AUTO
command to load BASIC and run Menu Master on powerup, it is
possible to switch on your TRS-80 and go directly to your word
processing program, format a disk, or perform some other task by
hitting only one key.

As listed, the program does 26 things that I judged most useful
to me, as shown in Fig. 12-1, but you can substitute those more
suited to your own needs. Again, Menu Master takes advantage of
some of the features of NEWDOS/80. You may want to make
several changes to adapt the program to your own DOS.

The 26 menu choices are displayed in two columns of 13 each.
Every choice is preceded by a single letter or number; the first 10
are invoked by pressing numerals from zero through nine, while the
last 16 require pressing a letter from A to P. Either lowercase or
uppercase letters are fine.

The menu choices are sometimes a logical, sometimes eclectic.
Pressing zero through three summons the directories of Drives
zero to three. Since the numbers correspond to the drives, this

139

series is easy to remember. If you have fewer than four drives, you
can substitute a command of your choice.

Pressing other keys will command the system to copy a disk,
change the name of afile, copy a single file from Drive :0to Drive:1,
or format a disk. You may also purge a disk, change a disk’s name, or
fiddle with the SYSTEM or DRIVE specifications.

If your computer is going to sit around all day. you can even
turn on the clock and ask to be reminded when a certain time has
passed. Should none of these please you, feel free to substitute
commands of your own. The basic work has been accomplished for
you. See the variable chart in Fig. 12-2, and the listing in Fig. 12-3.

On entering the program, the user should make some sub-
stitutions in lines 80-110 for his or her own word processing,
communications, or spelling checker programs. The menu is then
displayed (after a check) in line 160, to see if the timer has been set.
If it has, the time for which the alarm is set is displayed at PRINT@
position 11, which is directly below the clock display on the Model
1/111. Model 4 users can change this to suit.

An INKEYS$ loop awaits input and, to help out, a flashing cursor
is printed after the ENTER CHOICE prompt by a routine at lines
340-370. While waiting for the user to press a key, the program also
repeatedly compares the current time, in line 380, with the time for
which the alarm is set.

Once akey is pressed, the program looks to see that only one of
the valid key choices has been entered. If a lowercase letter has
been pressed (i.e., C>96), then it is converted to uppercase. The
key depressed is used to send control to one of the subroutines that
carry out the desired function.

.) DIR :0 .) RUN Basic program

.) DIR :1 .) Load Basic program

.) DIR :2 Go to Basic

.) DIR :3 .) Go to DOS

.) Copy a disk .) FREE

.) Word Processing Purge disk
Communications Format disk :1

Format disk :0
Change name of disk
Change SYSTEM
Change DRIVES
Turn clock on
Reboot System

Run Spelling Checker
Change name of file
Copy file from :0 to :1
Process a file for Comm
Turn computer clock off
RILL a file from a disk

A PFPOWENALSWNFO
o s e o o
LLLILLLLLLLLLY
HOZRHMAUHIOBEBU
¢ s 4w o 8 0 °
e e e e

ENTER CHOICE : mmmrmmmmmi >

Fig. 12-1. Sample screen from Menu Master.

140

A% Used in INKEY$ loop.

AN$ Used in INKEY$ loop.

B$ Used with CMD to carry out function.

C Value of user choice.

CG$ Changes to SYSTEM or PDRIVE.

CH User choice.

CM$ Name of user text processor.

COs% Name of user communications program.
D$ Drive number.

G$ Used with CMD to carry out function.

| Position to POKE cursor.

N Loop counter.

N1$ Name of file to be changed.

N2$ New name of the file.

PR$ Name of program.

R$ Used with CMD to carry out function.
SPELL$ Name of user spelling checker.

TNS$ Time now.

TUS Time up.

WP$ Name of user word processing program.

Fig. 12-2. Variables used in Menu Master.

The rest of the program consists of modules to do the task
requested. In many cases the chore is a DOS function that, with
NEWDOS/80, is achieved by assembling a string, such as RS,
containing the command. For example, if the user presses zero, R$
will equal “DIR :0”. A simple CMD R$ line will implement the DIR
command. Other operating systems may use SYSTEM, or some
variation to do this task. (Hint: use Global Replacer to make this
change if you discover it after the program has been keyed in.)

The clock routine beginning at line 1000 required the most
programming. The user is asked what time he or she wishes to be
alerted, and the current time. The time is set, and TU$ given the
value of the time for which the alarm is set.

You could probably squeeze in more than 13 menu choices.
Model 4 computers, with 24 available screen lines should top out at
48 possibilities. Three columns of choices could up that to 72. You
might be hard pressed to find enough unique keys, and could have to
resort to upper and lowercase menu labels. But do you really think
you could come up with 72 different things for your computer to do?
Many of us don’t even own that many programs.

141

INIdd
200202801 %y I9S #u’TTIT ® INIUduw<>SOL AT
INI¥d:STIO

gyy NUSK AeTdSTA ssx

TeET=1TO

€00T=I

09LT OLOD ¥O¥YH NO

»I0Sse001d X835 INOA JO SWeN,=$HD

«I9302yD burireds anok jo sweN,=$TTHdS
LUeI60Id SUOTIROTUNUWOD INOA JO SWeN,=$0D
JWo3sks BuTrsseo01d PIOM INOX JO SWEN,=$dM

yyy SIOYOWRIRI gxx

Z-¥ LNIJEd

000T ¥VHTO
RELRELRPRFILLELE
B % 8
g JAOQSEH NUSH x
® ¥
RPRPPLPREELLEIRES

0LT
09T
0sT

Gyl

071
0eT
02T
0TT
00T

06

08

SL

0L
09
0s
4
0¢
0¢
0T

142

“18isey nua 1o} Bunsy wesboid 'g-g| By @

4
TO*I+09€ST ANOd OVE
SAMINI=SHD Q€€

fu<====== I FDIOHD ¥HINI ,(ZT)IYIINIYd 0Z¢

INIYd OTE

wW93sig

3004939y (°du(0€)HVL? ,YSTP ® WOXF STTF © TIIM (°Ds INI¥Nd 00€
4 uo

IO0TO uany (°0.(0€)GVL?uIFO OOTO zao3ndwod uang (°d, INIVd 062
«STATHA

obueyd (°Nu(0€)EVL¢,UWOD IOF STTJ ® SS9001d (°V.INIdd 082
wWALSXS

Sbueyd (°Wu(0€)EVL:uT: 03 02 Woxy oTTF AdOD (°6.ININA 0LZ
wASTP

JO sweu 9bueyd (°T,(0€)9¥L:,OTTI JO oweu sbueyd (°8,INTHd 092
w03 YSTP Jewrod (°Y,(0€)d¥L?,Id)X0ayD burTreds uny (°L,.INI¥d 052
T3 YSTP Jewrog (°Lu(0€)dVL,SUOTIROTURUMOD (°9,LNTVd 0%Z

wASTP 96aNd (°I.(0€)EVL! ,buTSSO001d PIOM (°G,.ININd 0£Z

wdd3d (°Hu (0€)GYL ,STP ® AdOD (°P, INI¥A 022

«S0d 03 0D (°9,i(0E)AYL?uE: WIA (°€LINIYd 0TZ

wOTSed 03 09 (°du(0€)dYLé,Z ¥IA (°Z.INI¥d 002

wrerboxd orseqg peoT (°T,(0€)EY¥I{.T: ¥IA (°Tu INTYd 06T

wexboxd orsed NOY (°Qu(0€)9VLY40° ¥IA (°0. ININA 08T

.OATID I0MOT UT ST PaTdod ©q 03 STP ©INS OYBW.INI¥d 06V
INI¥d:STO 08¥

yyx SPUBUMWOD BINODXI xxy 1 GLY

026°056°09ST“09%T“099T/0CFT“08ET 0T9/0SS 0SS 0SET’0

CET’09ET NTZT ' 0v6°0£6°0€8°0TL 00L°069°089/08% 0V TT 0V TT 0P TT OPTT

0LOD HO NO 0LV

¥S5-O0=HO 09V

0L%y 0O10D:98-D=HD NIHL 96<D 4I 0S¥

0€EE OLOD L6>D ANV 08<D dI 0O%¥

0€E OLOD TTTI<KO ¥O §9>D dI 0¢E¥

OL%? OXLOD:Ly~-O=HD 0CTH

0€F OLOD HASTI 0CH OLOD 6S>D ANV L¥<D 4I 0TV
(SHD)OS¥=D 00%

0€€ OLOD wwu=$HD JI 06¢€

080T OO $NI=(S’‘0T‘$TWIL)$AIW 4T 08¢

#xx d0 ST SWT} JT 998 O }OOYD xxx . SLE

N IXAN:0Z OL T=N ¥04 0Lt
CE€'I+09¢ST AMOA 09¢€
N IXEN:0CZ OL T=N 904 0S¢

144

(‘epy1 obed wouy panuiuo)) “ssisepy nuapy 4o} Bunsy wesbosd ‘g-g1 Bi4

INIdd:STO 01L

$d AWD: $TIHAS+u=Su=8" 00L

$9 QWO $0D+u=Su=%d 069

WM—. dmo: %&3‘?:“% ="W~m 089

Jwy‘’’1: 02 Adoo=s,AWD 0L9

NOY 099

$9 AWO 059

$A+u2 IOUNdL=$d 0%9

$a INANI 0€9

(€-0) @band 03 °ATIP YOTYM,INI¥d 0Z9
INI¥d:ININd:STO 019

NOY 009

06S OLO9 wu=$VY JI:SATINI=SVY 066

w== SNUTUOD 03 ALY Aue 3ITH ==,(ZT)IYLININd 086G
INI¥d :INI¥d OLS

wITII LAWO 096

INIJd:STD 0SS

wSusdWD 0%S

STD 0€S

02S OLOD wu=$V¥ JI:S$XTINI=SV 0ZS

wApea1 uaym Loy Aue 3ITH,INI¥d:ININd 0TS
w2ATIP 18ddn ut 03 pardodo 8q 03 YSTP Juelq 3INd,INI¥d 00S

145

wL00g=S sAWO 026

NOE 0T6

$9 awd 006

wI%u+SZN+y O3 02 u+STN+, AdOD,=$d 068

$TN=$ZN NIHI w.=$CN JI 088

SCHS

sweu po deooy 03 YHINT 3ITY IO ‘Sweu MdU I9JUH,ILAINIINIT 0LS8

$IN¢, T ®2ATIA

03 ps1dod o 03 (SATIQ UT STTJ JO SwWeu ISJUYH,INdINIINIT
0€L 90S0D

«T ©ATIQ 03 @ @ATIQ wox3y STTF AdoD,INTH¥d
INI¥d:STO

NOY3$d AWO3$2ZN+y wu+STN+, SWRUSI,=$H

$ZN¢, ¢ SwWeu MBU I93UH, LAdNIINIT

¢IN¢,épobueyd =9 03 STT3F JO SwWeu I93Ud,INdNIHANIT
0€L 9NS0D

ZmDBmmuwm DEUnw@+an Hﬁ@:“wm

0LL OLOD wu=$V¥ JI:SXAMINI=$V

wé(€=-0) AI03091TP YOTUM,INI¥d

NIOLFEY HSTHE 09L OLOD whuy=$Y¥ YO uAu=SY JII

0PL OLOD wu=SV¥ JdI:SXMINI=SY

wéISITIT KI103091TP YOOUD 03 uem NOA od,INIdd

06L OLOD

098
0S8
078
0€8
0z8
0T8
008
06L
08L
0LL
09L
0SL
0vL
0EL
02L

146

(‘sp1 abed woy panunuo)) “1sisepy nuayy Joj Bunsy weiboid ‘e-gt B4

$NL! .

SNL? .,

SHO+u? ¥IA,.=$9:ST0

OETT OLOD wu=SXHEMNI 4TI

080T OILOD

(P9’T6T)$ONINLS ININd

wiii MON, INI¥NA

(€2)$YHD INIUd

SO

0ST 0OLO®

$9 Awd

:OOn :+%Z-H_+= smzHH.:"%Q
SNI+u0u=$NI NIHL 0T>(SNIL)TVA JI
EMON II SI HWIL IVHM,IOdANIANI'T
$NI+u0.=$NTL NIHL O0T>($NIL)TVA JI

CAILYITIV d9 OL INYM NOX Od FWIL IVHM.IOANIANIT

ST
0ST OLO9 uwXu<>(T’$NV)SIITT JI

086 OLOD wuwu=$NV JI:S$XTINI=$NV
wlWIYIY NY LIS OL INVM NOX Od. INI¥d
INIH¥d ST

1001 AWD

0ST OLO9: uN‘JID0TD wAWD
SWO NNY

ov1T
OLTT
0C1T
OTTT
00TT
060T
080T
0LOT
090T
0S0T
0v0T
0€0T
020T
0TOT
000T
066
086
0L6
096
0S6
0veé
0€6

N~

14

Suddys

NOY F€ OL WYYO0dd JO AWYN YIINH, LNINIINIT:INIVd:LNI¥d:STID

MIN
$dd 4vo1

09¢T

0SET
OPET

$udé 2 daavon

g9 0L WYY50¥d A0 AWYN JFAINH, ININIANIT:INI¥Nd:INI¥d:STD
NO¥

$¥ dWD

SY+STN+w TIIMu=$Y

WA.N.«.S s ="w¢

06ZT OLOD:wu=$Y NIHI (E€T)$YHO=SV JI

09CT OLOD wu=$V JI:SATINI=$Y

w (AU® JOJ WAINA 3ITH) UO 3T ST SATIP YOTUM,ININ¥d
S$TN?¢, POTTITY °q 03 weaboad jo sweu i93Ud,ININIANIT
INI¥d

0€L €9NS0D

ININ¥d: ST

INTIJd:INI¥d ST

0ST 0OLO®

08TT OLOD uwu=$AEMNI JI

u== AONIINOD OL XIM ANV ILIH -- , (ST)9¥VILINI¥d
INI¥d:INI¥d

$9 dWD

OtET
0CeT
0TeT
06CT
08ZT
0LZT
09T
0sZT
0vCT
IR
02T
0TZT
oocT
06TT
08TT
0LTT
09TT
0STT

148

("Lp1 obed woy panunuo)) “1visew nuapy sop Bunsy weiboid 'g-21 B4

14

w? ©bueyd 03 SATIP YITUM.INI¥A 0LST
INIVd:INI¥d:STO 09ST

NN¥ 0GST

$¥ AWD 0WST

$90+(Z€) SHHO+$¥=8" 0€ST

$90 ILNAANIINIT 0ZST

u’ SIONVHD ¥HINT ,INIYd:INI¥d OTST
$9 dWdD 00ST

$0+u2 WALSAS.=$d 06%T

$d INANI 08¥%T

«WILSXS @bueyo 03 SATIP YOTUM.ININ¥A OLVT
INI¥d:INIVd:STO 09T

NO¥ 0SVT

$4 AWD OFFT

w03 IVWIOd.=$¥ 0€PT

ST0 0Z¥%T

NQd OT¥T

$¥ AWD 00FT

als .HGEO&:“%M 06¢T
INTYd:INI¥d:STO 08E€T

$¥d NN OLET

("6p L obed woiyy panunuo)) 18ise nuapy 10} Bunsy weiboid g-g1 ‘Bi4

0ST INASAY 09LT

0ETT OLOD 0GLT

w0 ONTIHWLTAYS OVLT

N0 0€LT

$9 AWO 02LT

SN+ =TWUN u»+$d+u? I0¥du=S$d OTLT
SN LNANIANIT Q00LT

wd HWYN MEN YIINH,INI¥d 069T

$d LNANI 089T

«dWYN FONVHD O MSIA HDIHM,ININd 0L9T
INI¥dINI¥dSTO 0991

NNY 09T

S¥ awd 0%9T

$90+(Z€) SYHO+$U=$9 0€9T

$90 ILNANIHENIT 0291

wd STONVHO YHINT,INIVd:INI¥Nd 0T9T
$9 AWd 009T

$A+, ¢ FAATIAd,=$¥ 06ST

$d INANI 08ST

150

Lister

Lister combines some of the features of programs introduced previ-
ously. Like many of them, it loads a program and looks at each line.
Then it examines the contents and performs some small trick that
we programmers will find of value. In this case, it will format
program listings into paged, neater groups.

The program asks the user to enter the name of the file to be
listed on the line printer. The page width in columns is entered,
along with the number of lines per page. Then, the file is opened and
a line input into A$.

Then the program enters a FOR-NEXT loop that begins 10
characters to the left of the desired column width. That is, if 50
columns are desired, the program starts checking a line to be listed
at the 40th character. This is considered the “hot” zone, where the
program begins looking for either a colon or a space. When one is
found, it splits the target program line at the colon or space and
LPRINTS the two parts, with some spaces added to indent the
second portion of the line past the line number above. The counter
for the number of lines printed so far, LL, is also incremented.
Whenever LL is greater than the desired number of lines per page, a
new page is started, with an appropriate heading.

Note: because some computer setups hang up when attempts
are made to LLIST without a printer being switched on or con-
nected, leave the REMs in place while typing and debugging Lister.
When everything is working fine, remove them and your listing will

151

19 i R A RARRRRARRARARRRNRRRR
20 ' * *
30 " * Word Counter *
40 v * *
50 | AR ARAERRRRRRRREANRR

60 CLEAR 4000

70 DEFINT A-Z

80 CLS:PRINT:PRINT

90 PRINT TAB(2l)"Writer's Word Counter
11}

100 PRINT

110 PRINT TAB(6)"This program will
count the number of actual words
ina™

120 PRINT TAB(2)"text file, or any
file that has been stored to disk
in ASCII *®

130 PRINT TAB(2)"format. In addition,
it also provides the total number
of 11}

140 PRINT TAB(2)"'standard ' five
character words, and the average
character "

150 PRINT TAB(2)"length of the words
in the text. "

160 PRINT:PRINT TAB(17)%== Hit any
key to continue == *®

170 IF INKEY$="" GOTO 170

180 CLS:PRINT:PRINT*® #**%* Access
Disk File #®%%

Fig. 13-1. Example of listing producer by Lister.

A% Stores program line being listed.
C$ Used in INKEY$ loop.

CcOoL$ Width of printout.

L$ Name of file to be listed.

LL Lines listed.

N Loop counter.

P Page number.

PG Lines per page

R$ Middle string of line being listed.

Fig. 13-2. Variables used in Lister.

152

g0 to the printer as well as to the screen. Figure 13-1 shows an
example of another program in this book that has been LLISTed
using Lister; variables and the listing are shown in Figs. 13-2 and
13-3.

153

sxy ©TTd YSTA U2dO sz

01% 90S0D

1=4d

($9d)TIYA=Dd

$9d4 INANT

wi@bed 18d sauTl AuBw MOH,(0T)dVLLNI¥d
($710D) TYA="TOD

$100 INdANI

ul®PTH SuUMTOD Auew MOH,(TZ)EYLINI¥d
$T INANIANIT

w3PO3ISTT ©q 03 ©1T3F JO Sweu Is3ud, (9T)dVLINI¥d
INI¥d S INIVd:STO

gy SIOYWRIR ADQUH sxx

000T ¥VATO
RPPRPPLABELRE 2
2 $ 8
¥ I9ISTT &
% L |
RREPFPPRLEEE o

GLT

OLT
09T
0ST
0% T
0eT
0¢T
0TT
00T
06
08
0L

S9

09
0s
0%
o€
0¢
0T

154

Jaisr jo bunsy gL By 19

dS0TIO 06G€

0ZZ OLOD 0O¥%E

06 TOLOD =="W¢ dI 0g€€

(T+N’$Y)SAIN=$V 0C¢

$(z€’G)$butaars Jurady, 24 (Z€/G)$ONIULS INTIHd OTE
T+TIT=TT:$T IUTAdT,3$T INI¥d 00€

(N’SY) SIJITT=$T 062

06T OLOD 082

$e JuTadr,:$V ININd 0LZ

N IXIN *: 092

062 OLOD ui.=$¥ 4I : 0S¢

062 OLOD (ZE€)SYHO=8Y 4TI : ove
(T‘N’$Y)SAIW=8Y : 0€C

700 OL OT-T00=N ¥0d : 022

SV’ T#INANIANIT 0TZ
x¥y UOTOD X0 @dedg 104 OOT xxx S0T
0Ty 9NsS0D 5d<T1T 4I 00¢

0S€ OLO9D (T)d0"d AT 06T
$T'T’uIu NHEJO 08T

(-ggt abed woy panunuo) “saisi jo bunsr 'g-e1 Bid

NINL3T 0L

T+d=d 09%

0=TT 0S¥

a!, obeq BurasTT ,¢$T uUTIdT, 0%F

0€% OLOD wu=$D JI:S$AMINI=$D 0€¥

w°9bed ISyjzoUR 3ISSUT OS®OTd,INI¥A:LNI¥d:INI¥d 0TV
INTHAT INIYdTs INTHATININAT, OTH

gxy OUIINOY ©bed xxy s SOV

aNZ FSTE NOY NIHL wfu=$¥ Y0 wXu=$V¥ 4I 00¥

06€ OLOD wu=$Y¥ JISAMINI=SVY 06¢
w(N/X)u(62)IVLINIYd 08€

w¢®TTJ I9Yzour ST, (EC)AVLILNIYA OLE
INI¥dsINIdd 09€

sxy & UTeDR AT OQ xys o GGE

156

Error Trapper

Error Trapper is dedicated to all of you who have written programs
containing a bug or two. Our handy BASIC interpreters are nice
enough to point them out to us at runtime. It would have been handy
to have the syntax errors (at least) brought to our attention when the
program line was first entered. But no, the computer is not that
accommodating. It reserves judgment until we actually try to run
the program.

Most amateur programs-and darned few professional BASIC
programs—take advantage of the error trapping possibilities of the
TRS-80. The machine not only tells us that there is an error, but in
many cases it will point out exactly what type of error has been
made. A clever code number is supplied, which can be manipulated
by the program. In many cases some routine could be written to
recover from the error. Or, in other cases, the error number could
be used to supply the user-operator with some hint of what he or she
has done wrong.

For example, a friendly prompt would be nice, something on
the order of, “Program tried to divide by zero. Are you sure all the
amounts you entered are correct?” Admittedly, many programmers
don't understand enough about errors to do anything about them.

That’s where Error Trapper comes in. Unlike Level Il BASIC,
Disk BASIC provides nice long error messages. Instead of “NF
Error” we get NEXT WITHOUT FOR, which is much clearer.
However, some of the more esoteric error messages may puzzle

167

INTYd 09T0T

uOPOW ANVYWWOD.INI¥d 0STOT

R it{eds g

0109 3dX3 nok prp ‘OSTY °OLOD IOSIIODUT I0F 3INOOBYDLINIHd O0FT0T
wISITI

d04d butasjunodous 3nOY3ITA IXAN 03 06 weaboxd,INIVd:INI¥d 0ETO0T
2I0d 3INOYITM 3IXON, INIUd 0ZI0T
0ZT’0Z0ZT’09€TT‘0P6TT‘0T6TT’0E8TT‘008TT“09€ETT“09

ETT/09C€TT'0LLTT 09€TT 09€ETT'00LTT“099TT“06STT 09STT 0ESTT08FTT?0
PPTIT’08ETT‘09€TT 0CETT06CTT OPCTT’08TTIT“OTTITIT“0E0TT’0L60T’0%60T"
0L8OT‘08LOT“0890T‘06S0T“0ZS0T‘0FPPOT“OVE0T’0820T“0Z20T“08T0T“0CTOT
g0S09 OF NO OTT0T

LZ-0d=0d NAHIL €2<0d JI 00TOT

STO 0600T

1+2/999=0d 0800T

0800T OILOD YOWNH NO 0LOOT

INIYd:STO 09001

s 0S00T
PRURPPRRRLNRPRERRRRRRRRRRERY » 0%00T
% ¥ 1 0E00T
% azaddea], 10119 % s 0200T
» * » OTOO0T
PERRY PSR L LV RN A PR ERRPRRRREY » 0000T

158

“1eddeiy 1013 10) Bunsy weiboid |-yt Big

06TCT OLOD 0€EEOT

«"B3eQ UT SWe3T Jo iaqumu J03 obiel 0ol aq, INI¥d 0ZE0T

uOSTe Aew dooT IXAN-JYOd °Oye3astw Aq 3no 3IFoT oI9M, INTHd 0TEO0T
wSUOU 'Yl SINS 99 03 SSUTT ejeQq IO°YD °*o[qeyrese, INI¥Nd 00€0T
wOIdM

UBY3 SwWS3T elep SI0W pedy O3 poyse sem weiboad, INITHd 06Z0T
«®38(d JO 3N, INI¥d 0820T

06TCT OLOD 0LZOT

uw"OT0POW BUTMOTTOF ®Y3 O3JUT, JINI¥d 0920T

WPutuuna

MOTT® joOou S®0p TOI3UOD weaboad aans oyew 03, INIYd 0SZ0T
J2UT3noiqns

STY3 03 rotad ArejeTpsumit soury weiboxd ooyd, INIVd 0VZO0T
u"&ATa9doadut

surjnoIqns ® 03 us3ljob saey Lew weirboag, INI¥d 0€ZO0T

«qUSOD 3JINOYITM uanlay, INIVd 02201

06TCT OLOD 0T12Z0T

»“UOT3EN3OUNd peq se [Sse, INI¥d 00Z0T

uSo3o0nb 10
sesoyjuazed bursstw ‘spiomksy parredssTw 103 o9y, ININd 06TOT

w0119 Xejuls,INI¥d
06TCT OLOD

08T0T
0LTOT

159

e Bbutbueyo Ag °gE (SnUTW X0) +FL°T Inoqe 3Jo, INI¥A 08%0T

2bura syl

ut oq ATuo ued szaqumu uoistoead STqnop I0 o1buts, INI¥d OL¥OT
»L9LZE URY3 I9bIRT ST JISqUMU BY3 JT INDO0 TITM STUI. INIVd 09%0T
w?XI9bo3UT

ue ST STgeTIeA ® 3JI °9bIeT 003 ST ISqUNU ¥, LNI¥d 0SVOT
wMOTJISA0, INI¥A 07H0T

06TZT OLOD 0E€VOT

w°Ioqunu xsbrel e 10 ‘96z sTenbs N, INI¥d 0CHOT

o fuexboad

8yl uTr I01x® SwWOos ybnoayz ‘3eyl (N)S$YHO INI¥d. INI¥UA OTHOT

Jo

ased Byl uT ‘10 0000, sTenba N uey3l ISA0DSTP, INIVL cowod
uPue

‘3uTT @Yl UT (N)YFHEd oAey Iybrw nok ‘eTdwexs 104, INI¥d 06€0T
9 °SUTT 3Byl JO SuOTIDUNI SY3 JO duo 103 pejInsun, LNIVd 08E0T

a8

ST 3ey3 onfes e 8q ATqeqoad TTTM duQ °SUTT werbord, INI¥d 0LEOT
243

uT seTqeTIeA 9Yyjl JO SonTea 9yl JuUTigd °Is}swered, INIVd ommoa
wTeDPOTTT

ue Hursn uorjerado ue wrogiad o3 poril wexrboid, INI¥d 0SE€0T
wITeD uoT3OouUNng TeboTTI. INI¥d OFEOT

160

("651 abed woy panunuo)) saddes) sou3 1o} Buns) weibold "1-v1 ‘Big

Juerboxd e ur sasymesTe woxy poTIed ST oury weaboad ,INI¥d 0G90T
w2 JT 3INO Pury 03 AJTTIIN SOUSISISI-SSOIOD B 9sn 03, INI¥d 0%90T

wB9PT

poob ®© ST 31 *UOT3O9S 3Jeyl pPaTTed YOTyMm SUTT, INI¥Yd 0€90T
sButpuodseaaod

9y3 3INOY3TM uoT3loes weiboad e PaITTY nok, INIVd 0290T

w'bUIlIP®

UT ‘10 °Ppe3IOBITP SBM TOIJUOD SIBYM BUTT BYIF,INIVd 0T90T

« Butiojus 3noyzTm ‘SUTT dAS0D I0 0L0D © pedil nox, INIYd 0090T
wSUTT pautzspun, INIVYd 06G0T

06TCT OLOD 08SO0T

w°AT21R1 3INg ‘STY3 SSned, INIYd 0LGO0T

wOSTe ued (9sed ofqrssod 3saom 8yl UT ‘QT €NS0D 0T)w LNI¥Yd 09G0T
gS@UT3INOI burtysueaq pejsau Arxedoaduy corqrssod JT, INI¥d 0SG0T
uwOZIS

Aexze uo umop In) °sdeaae abaie| Axsa Jo eosnedaq, INIVdd 0%SOT

u Axousuw yonw ooj dn sosn weiboard anok ‘ATSYTIT ISOW, INI¥d 0€SOT
wAIOWSK JO 3INQ, INIYd 02S0T

06TCT OLOOD 0TSOT

u “POPTOAR 3 TITM SIOIIS MOTIISA0, INI¥d 00S0T

s 3ISouw ‘uorsioaad syquop 1o o1burs 03 asbojzur woxF, INIVNd 06¥%0T

s ©TqeTIRA

-

©O

«PURWWOD NAY 9y} osn ‘pojeadax aq TT1TM weiboxd ® II, INI¥d 0T80T

w ©ODOUO
ueyl SI0Ul paIdjunodud aq 03 ATSYIT 3ou aae A=y3l, INI¥d 0080T
wOIBYM

‘wexboxd Jo Hutuuibeq e sjusWEILIS WIA °0®Td. INI¥Ud 06L0T
wAelly pauoOTSUSWIPOYW, INIV¥d 08L0T

06TZT OLOD O0LLOT

uS¥=(ZT)$ZS 0Cu. INIV¥d 09L0T

«(02)$1S WIA 0T. LNI¥Wd 0GLO0T

u$oTdwexs 104, INI¥d 0%LOT

w OUTT

wexboxd ayzy ut AT3jusioIITp sweu Aexaie oYyl perreds, INIHd 0€LOT
wOARY

nok 10 ‘Aexae eyl UOTISUSKIQ O3 uU2330610F 24y, INIYd 0CTLOT
pARu

noX ‘{7 ST 3T JI °ourT wexboad psjldoezye oyl uT, INI¥d O0TLOT
LOdTIosqgns

23 JO °onleA JUSIIND INO JUTAJ °POUOTISUSKHIA, INI¥d 00L0T

nSBM

ueyyl Isbie] JuswsTS ArIIR UR SSN 03 PaTI]3 weaboid, INIVd 0690T
uwobuey jyo 3no 3draosqns, INI¥d 0890T

06TZT OLOD 0L90T

»°3T DUTTTTY ®1039q, ININd 0990T

162

("191 ebed woy panuyuon) “1eddesy 1013 0} Bunsy wesboid *1-p1 ‘B4

06TCT OLOD 0960T

u * PuBUWOD

J09ITP ® se pesn 3 jouued pueuwmod LNANI ©UL, INI¥d 0S60T
w309ITP TebaTTI,INI¥d 0¥60T

06TZT OLOD 0€60T

s *PO300dx®> sem anfeA B uUsym 013z ,INIV¥d 0260T

uST

3T Aym Ino purg °pesn Hursq jouU ST S[qeTIRA BUOIM,ININd 0T60T
«2U3

3eyl 10 A13091100UT peTTeds Jou ST 3T Dans SYew 03 ,INI¥d 0060T
woTqeTIEA

}¥ooyD cuoTleaado UOTSTATP B UT pPoOsSn ST 3yl ,INI¥d 0680T
wOTqetaea

® UT anTeA oxoz e poonpoad sey Joxxs weiboid, ININd 0880T

w0197 Aq UOTSTATA,.LNI¥d 0L80T

06TCT OLOD 0980T

«uexboad syjz ut xoTTIE® °onTeA ® poubisse, INIYd 0S80T

wua9q

sey oTqeriea 3yl eyl aans S3jew ‘((N)SVY WIQ UT se), INIVd 0v80T
a’®TqeTIRA ® U3TM PBUOTSUSKIAQ burtsq sT Aexxe ue JI,, ININYd 0€80T

. *3USWe3e3s

WIQ 943 ¥ALJY TOIIUOD SIOBITP OI0D SY3 9INS Sew I0,ININd

0¢80T

163

uS924q

Gz ©q ATuo ued sjusweTe Aeiie pue seTdqerres HuTIlS,ININd O0ZTITT
wbuoT ooy butils,INI¥d OTTTITI

06TCT OLOD OO0TTT

s °obesssw IO0II® STY] ISIUNOOUS 30U TITM NOX ,INIdd 060TT

w—= 90'ds Butils sejeoorTe LATTeoTwRulp Spow § TSPOW,INI¥d 080TT
«°poUMsuUod sT ®deds HbuTals yonw MmOy uo, INI¥d 0LOTT

wbutpusdsp

‘srow I0 ‘00§ WYATD burpesa SUTT ® PPe O3, INI¥d 090TT

uO%

poeu Kvw nox °so3&q (g ATuo sejedolle welsds ayl, INI¥d 0SO0TT

» U233 TIA DUOU JI °PpOpPoOSU JusauwelILIS YVIATO I=baeT, INI¥d O0VOTT

wo0edg butils JO 3INO, INI¥d O0€O0TT

06TCT OLOD 0COTT

u°Aexae 10 ofqerxea burils ® ut § 3Yl,, INI¥4 OTOTI

«©PNTOUT

o3 burzzsbhbaoz Aq pesned aae os9Y3 ‘so9sed j3sow UI, INI¥Yd 000TT
u° (N) $¥HO=Y
X0 :mum4 umeEMNQ I04d °BSISA @DTA I0 9T(eTiIiehs, ILNI¥Yd 0660T
pOTISUMU

2 03 onTeA Dburils ® ubrsse 03 poTay weiboid, INIVd 0860T
wUoFeus T 2dAL,ILNIdd 0L60T

164

(€91 ebed woy penunuo)) “seddel} Jous3g Lo} Bunsi weiboid “1-y| Big

2 OUNS®Y ON, INI¥d
06TCT OLOO
u°I2A0 NOY SY3 3IeIS Isnuw NOx, JINIVd

06CTT
08CTT
0L2TT

» " (wexboad

®y3 butpus sny3) pe3Tpe sem ourT weiboxd e, INTSd 09ZTT

« 10 ‘popus pey weiboad zs33e INOD Podi3 noX 19Y3TH, INTHd 0SZTT
«d0UTIUOD 3, ue)D, INI¥d O0VZTII

06TZT OIOD 0€ZTIT

u’Kemlue

‘sede1d 3ybTI Sy3 uT sessyjusred oy3l Te 396 ISASN, ININd 0ZZTI
wITTA

nox °s3jusuodwod TeISASS OUT UMOP suoijeasdo jeaad, INI¥d 0TIZITI
(SY)NTT

(“T=((SYINTT’ ($O’ $E)ULSNI * $¥) $AIW) $IITT)=$Y » INT¥d 00ZTIT

ueSe 2eTnwaog uanQEOO gons PTOAY,, INI¥Yd 06TTIT

wXoTdwo) oog ernuxog burils, INI¥d 08TTI

06TZT OLOD OLTTI

w"BUOT 3ey3x HBurilys, INI¥d O09TTT

«STY3 OS)ew o3 opew sem jdwelje Aym pury syl °spow, ININd OSTIT
M elig-liitii(ele]

UT ($9TqeTIes)NdT INI¥d butrdhy Xq yjbusT pur3, INTNd OPTIII

» PU®e ‘SurT weiboaxd ut ssrqeTIRA buta3ys eyey °buoT, ININd 0ETTII

165

o to7duexs uoOUMIO) °POISJUD SEM PUBWUOD 3FOSIIODUT, INTYE 00GTT
»OIBYM

sos 07 spueumod }o2yd ‘oTsed YSTA HBursn Jou II, INI¥d 06%1T
«KTUQ OTsed 3STA,INI¥d 08FTI1

061CT OLOD OLPTIT

o *@ousnbas Huoam UT IO JDOSIIOOUT SeM adea, INIYd 09¥%TT

.58 yons ‘80INn0S SPISINO WOIZ andut ejed, INI¥d OSPTIT

2B3ep OTTJ Ped,INI¥d OF¥T1T

06TCT OLOD 0E?TIT

w 09€ST INOdw INI¥d 0CHTI

u($Y) $14dT=8Vs INI¥Gd OTVIT

wsSoTdwexy, INI¥d 00%TT

» °Spuexado

Kiessedoau a3yl JO SUO IPNTOUT 0O peoijoe1bou weiboxd, INIVd 06E€TT
Jpueaado BUTSSTW,.INI¥d 08ETT

06TCT OLOD OLETT

10119 oTqe3utadun,INIdd 09€TT

06T2T OLOD 0SETT

,cwerbord ur A1aee ooelgd -obessouw OLOD YOY¥H NOw LNIVd OVETI
s Kaesssosu oyl pessediq 1o ‘po3STOP 1906103 NOXK, INI¥d OEETT
LI0IIY 3INOYITM SunsadYy,INI¥d 0CETT

06TCT OLOD OTETT

»°burddeiy zoxxe Huranp popusd wexboid, INI¥d O0€TT

166

(‘591 abed woy panuyuo)) seddes] soug so Bunsy wesbosd “L-p i ‘614

06TZT OLOD 069TT
u*Bbuoam sweusarry porreds noX ‘10, INTHd 089TT
w®(S)aATIP

utr A73us1and SYSTIP UO jJou Sweu eyl Aq STTd,

LNTYd

«PUNOJ JON STTJALINI™d

06121 OLOD

« ‘PEOISUT POSN u99q SAeY PTNOYS T# INIYd IeY3 S3ON, INIVd
wSV’/Z# INI¥A 02. INIYUd

uSI' T wl (VE)SUHD! wOu ! (VPE)SUHDY W NAFAO 0Tw INIUd

w:oTduexy °posn seMm juswelev3lsS NIJO. INI¥Nd

YaTm poubrsse useq jou sey jeyl Isqunu IS9FInQ OTTd, INI¥d
wIoqUmN OT7Td Ped, INI¥d

06TCT OLOD

u*P®3J00H we3lsks burjeaado ys1g °sdooym, INIVNd

wI0II® Teuasjul, ILNIdd

06TZT OLOD

atA9IINQg ssodde~-Ulopurx

® 03 pe3edoTTe 9I19M s94q GGZ UPY] SIOW, INI¥d OVSTI
wMOTIISA0 PTOTIALINI¥d 0€STT

06TCT OLOD 02ZSTT

u"jUedW ST T-# ININI @I9UyM ‘T# INdANI. INI¥Nd OTSTT

0L9TT
0991T
0G9TT
0¥91T
0€9TT
0CcoTT
0T9TT

LuUe
009TT
06STT
08STT
0LSTT
09STT
0SSTT

N

16

sy3 07 TOX3UCO pues pue ‘STTF @Yl JO pus SY3z I0F, INI¥A 08BTT

% rel=]i ol
ued uUSUPE1R]S XXX OL09 (I93IIng STTI)J0F JI UB , aszmmOEmHH
utppe

1pozfs 3ey3 SOTIF Teriusnbes yjztm °sbaer 003 ST, aszm 098T1
n3BYd

dooT IXAN-¥0d X0 ‘o113 Kjdwe 103 3fO°yD °STIRTIRAV, INI¥d 0S8TI
«SBM URU} YSTP WOIJ elep SI10W pPeOT O3 PSTi3 weaboxd, INI¥Nd O¥S8STT
«.Puf 3Ised nduyl,INI¥d 0E€8TT

06TZT OLOD 0Z8TT

w°SOTTI TITY IO ‘3STP MmdU JISSUI, INI¥d 0T8T

«TIT0d {STA,.INI¥d 008TT

06TZT OLOD 06LTT

p°I0oxxe zo3ndwod Isyjzouy iSd000. INI¥d 08LTTI

pJ0II® O/I YSTALINIYd OLLTT

0612T OLOD 09LTT

»I 03 0 3yl sbueyd, INI¥d 0SLIT

wSY/T# INIYd 0Cu LINI¥d 0%LTT

ST T (FE)$UHOS w0 (PE)SYHD? w NHJO O0Tw INI¥A OELTT

=w®HQEMNﬂ °cpsSaIshA 20TA IO uuﬁmcws INITdSd 0C¢LTT

wXOF

pauedo useq pey 3BY3 ISFING B 03 SITAM 03 PITIY NOX, INI¥d OTLTI
4wOPOW ©TTd Ped.INI¥d 00LTT

168

("291 abed woy penunuo)) 1addes) sou3 105 Buysy wesboid -1 Bi4

u0U

ST 3eyl STTJ IYSTP ® 9basw 10 ‘uni ‘peol jouued Nox, INIVd 0€0ZT
«2TTd U Juswsjels 3I09ITA,ILNI¥d 020CT

06TCT OLOD OT0CT

uw A3TTRbOT

sweu 03 }O9Yyd 03 opew aq ued sdexl I0xay, INIVd 000ZT

u"PoubTSS®

buteq jou onyea TebSTIT @ans oxew 03 IO9YD, ININA 066TT

wOuRu

STTJ 103 pesn bursq afqeriea JI °921y3 ueyz IsHuUOT, INI¥d 086TT
wI9PUOT uOTSUS3X® I0oU’sI93Oo®BIRYD JYHT® UeYyl I9HUOT, ININd OL6TI
u®q

jouued ‘ST 3eY] °OTsed YSTQ Ul SOTTIF x0 swexboxd, INIUYd 096TT
pDuTWweu

103 s9TNI TTe O} WIOJUOD 3Isnl -TebsT jou sweuaTTd, INI¥d 0S6TT
wOUWRBUSTTA Ped,INI¥d O0V6TT

06TCT OLOD 0€6TT

wOVE’T ueyy xsbiel juswelels JNd © UT I9qunU pIoddy, INI¥d 0Z6TT
«I9qUNN PIOOaY Ped,INI¥d 0T6TT

06TCT OLOD 006TT

p *I9UURW ATISpPIO U® UT 9Tnpouw, INIId 068TT

w3XoU

169

(‘691 ebed woy penuyuo)) “1addes) Joug 10y Bunsy weiboid "1 Big

0L00T IWNSHY 002CT

TIH4, SUTT UT PoIINdD0 JIOXI® STYUL.LNIYd 06TC1T

06TCT OLOD 08TCT

» *PIOMSsed bBuoam pssn, INI¥d 0LTCT

uP®TUS(Q SS3D0V ©TTd,LNIdd 091ICT

06TCT OLOD 0STICT

wiumop aptsdn

YSTP I0 °PoIsaod ST yodojou 309301d 931IM, INI¥A OFTZT
uP®309301d ©3TIM YSTA,ILNIYd O0CTICT

06TCT OLOD 0CTICT

w°©339)STP STPUTS ® UO,INI¥d 0TTICT

LSureaboad

pue so11J 8% 3twiad Atuo TTTM wolsks burjeasdo, INI¥Nd 00TCT
wSOTTd AUBR OOL,INIdd 060CT

06TZT OLOD 080CT

»°OUTT ®Yy3 JOo butuurbaq, INI¥d 0L0ZT

[=}
o
®
.

oy3}

WOoIJ poAOWSI Ioqunu SUIT © pey sey eyl weaboxd, INI™d omomﬁ
s Ten3o®

ue X1qrssod ‘10 wioj IIDSY UT PoIo3ls OTTF 3IXS3 ©, INI¥A 050CT
uPROT

03 bBurijdwsije usym sSINDO0 STYJL ‘weiboaxd orseg ®, INI¥d 0%0CT

170

the best of us. Do you really know what sort of mistake will trigger
an ILLEGAL DIRECT message?

This program, when appended to your own program, will spell
it out for you. It provides really long error messages which, instead
of just telling you how you goofed, will suggest situations that might
have produced the error and places to check for the bug.

For example, if you see OUT OF DATA you know that the
computer would like more data items. Error Trapper suggests that
perhaps several data items were left out by mistake, or that the
FOR-NEXT loop which reads the data is too large. ILLEGAL
FUNCTION CALL suggests that the programmer list the offending
line, and print out from command mode some of the values of the
variables. Perhaps, it says, a number larger than 32767 was
PEEKed, or you attempted to PRINT CHR$(256).

Little understood is how the TRS-80 manages to do something
about errors. The secret is in line 10070, which is an ON ERROR
GOTO command that summons the computer’s interrupt routine.
Interrupts are different than normal statements. If a program line
says IF INKEY$=" " GOTO, it will act on that only at the exact
moment that the line is interpreted by BASIC. In order to make
INKEY$ work, we have to loop back, over and over, until something
happens.

However, once ON ERROR has been activated, the computer
can go on to other things. The program can perform all sorts of
different functions, and the interrupt routine will remain dormant
. . . until an error occurs. Then it will obey the command and send
control to the line previously specified.

You can’t even turn off the interrupt routine by exiting the
program. Run Error Trapper and hit Break at some point. Then,
trigger an error by typing in a syntax error or some other goof from
command mode. Oops! The program is running again, and you are at
line 10080. You didn’t even type RUN. That is the interrupt routine
at work.

Once an error has taken place, Error Trapper looks to see what
kind of error it is. An error deposits a value in the reserved variable
ERR. Dividing ERR by two and then adding one, we come up witha
number that relates to the error code; the same error always
produces the same unique number. We use that number in this
program in an ON...GOSUB line that directs control to the appro-
priate error message. In a real program you might substitute for the
message, some type of error trap or perhaps a routine that corrects
the error.

171

For example, if the error were FILE NOT FOUND, you might
write a routine that asks the user to check the filename, or deposit
the correct disk in the drive. Then it would ask again for the
filename. Using RESUME followed by a line number, control can be
returned to the main body of the program.

If you append Error Trapper to your own programs, you will
want to move the ON ERROR line higher in the program, so it will
be activated BEFORE the main body of the program is run. Error
Trapper is listed in Fig. 14-1.

172

Chain Zapper

Chain Zapper is aimed squarely at NEWDOS/80 users, but the idea
behind it can also be adapted by users of other operating systems.
To find out whether or not you qualify, ask yourself the following
question: Do you flinch every time you open an envelope containing
those familiar blue pages full of mandatory ZAPs for your favorite
disk operating system? The ones that inform you that you must type
in the following 47 bytes, plus half of SYS6/SYS, in order to avoid a
horrible problem that may crop up if more than seventeen directory
entries begin with the letter Q?

Those who faithfully apply ZAPs to their NEWDO0S/80
operating system, or to programs in order to make them compatible
with DOS, can now rely on their computer to take a good 50 percent
of the drudgery out of this patching. Chain Zapper is a program
which will create a custom chain file to do this chore.

Why not simply type in the ZAPs by hand, if they still must
(obviously) be entered into some other utility program. There are a
number of very good reasons. First, using Chain Zapper, you have
only to type the filename to be zapped, the relative sector, first
byte, and the actual ZAPs. This procedure can be repeated for any
number of desired ZAPs in one session. More importantly, you can
LOAD this chain file at any time, and proofread the patches you have
typed in before the dirty work is done on the disk.

The real time savings come in applying the patches. The chain
file created by Chain Zapper is activated merely by the normal

173

CHAIN command. If you have called up your ZAP file, NEWZAP,

. SITATY WUI7A FAD /. NN NRWTA 7 A [S, . o
Lype but‘uN Nuwanp.bnx \OL v ﬁuVVan,anP 1 udig

NEWDOS/80 2.0). In this case, ZAP is the section ID automatically
tagged onto the file by Chain Zapper.

The chain file will load SUPERZAP, invoke DFS (display file’s
sectors), enter the correct sector—plus MOD, the starting byte, all
the ZAPS, <ENTER> to finish the patching, and answer “Y" to the
“Okay to write modification to disk?” prompt.

Then the chain file will return control to the main SUPERZAP
menu and, if additional ZAPs have been included in the file, go on
and patch the next, and the next. If all the disks containing the
affected files are already loaded in the correct drives, the process
can be amazingly fast. The CRT screen flashes almost quicker than
the eye can follow.

In fact, the patching is so quick that it is a viable replacement
for copying sectors to update all your disks. Once you have ascer-
tained that a ZAP is correct (by proofreading before running the
chain file), and have run one version a few times to make sure that
everything seems to be okay, simply put other disks in drives and
ZAP them all automatically. You may want to save an unaltered
version, just in case. This is a technical term called “good data
processing practice,” or in layman’s language, “covering your
backside.”

While Chain Zapper will save an individual much time, it has
even more extensive application among user groups and computer
clubs. One person can create the file and share it with all other
members who are using NEWDOS/80. Copying disk sectors which
have been ZAPped is time-consuming, because different file rela-
tive sectors may be in different locations on disks. But the Chain
Zapper file doesn’t care where the program to be patched starts on
the disk. It invokes “DFS” for each file and relies on SUPERZAP to
find the correct location. Once one member has written the chain
file, it may be freely distributed for all to use.

This marvel of automation also makes it possible to goof on a
truly mammoth scale. Be careful when entering ZAPs.

There are several modifications you may wish to make. By
substituting OPEN “E” for OPEN “O” in line 180, and replacing the
default “ZAP"” section ID with a string variable that can be input with
an ID name by the user, one chain file can serve a continuing series
of ZAPS. When you receive your new patches, they can be added
onto the end of the existing ZAP chain file. OPEN “E” opens a
sequential file without resetting the EOF marker to zero, so the

174

new information is tacked onto the end. To invoke a specific set of
patches, you'll have to use the appropriate section ID in place of the
ZAP 1D supplied with the unaltered program.

The program described in Figs. 15-1 and 15-2, makes use of no
special routines. Some of the chain commands, such as SUPER-
ZAP, DFS, and MOD, are built in, and are automatically written to
the chain file with no user intervention. Other items, such as
filespec, first byte to modify, and the actual ZAPs, must be supplied
by the user. Apparat already formats all patches in filename, file
relative sector, relative byte, new bytes order.

Patches may be entered as one long string, up to 255 charac-
ters in length. One space, and one only, must be entered between
bytes. If you forget to space at the end of the patch, one will be
added. The program looks for these spaces, using INSTR, to divide
the ZAP into separate bytes. The bytes themselves are further
parsed into nybbles and written to the chain file. Individual patches
longer than 255 characters should be treated as two (or more)
separate ZAPs. Following each patch, the program will ask if the
user wishes to do another. If so, the input and disk write routines
are repeated (except for the initial lines which invoke SUPERZAP).

The EDIT mode has purposely been kept fairly primitive, in
order to discourage extensive use. You should be very careful when
entering the original ZAPS. They are all displayed on the screen, so
check them out before you hit ENTER. If a change must be made,
however, the user may specify the chain zapping file to be edited,
and type in the name of the affected program or other file. Chain
Zapper will then search through the chain file, and stop at the first

A% Used in INKEY$ loop.

E Counter for name of file being edited.
F$(n) File being edited.

F3% Name of file to which ZAPs are

being applied.
Fi$ Name of output file.
G$ New value.
HEX$ Hex values.
1% Used in INKEY$ loop.

N, N2 Loop counters.

Fig. 15-1. Variables used in Chain Zapper.

175

$Td%,: ATTedoT3RWOlNE poppe a9 T1TA TOL/
UoOTSUD3IXY °OTTF d¥Z JO Sweu ISJUF,INdNIIANIT
INI¥d:INI¥Nd:STO

gexery ATIA NIVHD dVYZ HLYHED zxexxx

0PS’0LT OLOD ¥ NO

0P T OLOD Z<Y ¥0 T>VY 412 ($Y)TVA=Y

07T OLOD wu=$V¥ JAISAMINI=$V

w== FDIOHO YHINHT ~--4(9)dVLLNI¥d

INT¥d

wOTTJ dyz BurlsTX® IIAH (°Z.(0T)EVLINI¥A
w®TTF dV¥Z Mou @3e81D (°T.(0T1)EVLINIVd

wd O3 ©YTT No& PTNOM, INIAd
INI¥dINI¥d:STO

gy DUSH gy o

(00S)$d WIA

0000T ¥V¥IIO
PRV BREPPPRBRRLLES 2
% % 1
¢ I0ddegz uteyd i ,
% L |
PR EETT IR L2 LL TN

08T
OLT

69T

09T
0sT
0v1
0T
0Cct
01T
00T

06

08

SL

0L
09
0S
0¥
0t
0¢
0T

176

1addez ueyn Joj Bunsy wesboid 2-g1 Biy

€ dJ9IS (SXIH)NIT OL T=N ¥od :
(Z€)SYHO+S$XAH=$XTH NHHI (Z€)SYHI<> (T‘$XHH)SLHOIY JI
mxﬂmmu..wu&.b yoes udDsMl}o(q 0ommw *sonTeA X9y maUu I=9j3Uud,, LN4ANI
(TET)SYHO+(T*$d) SIHOTY ' T# INI¥A
(TET)SUHOH(T*$A) SIJFTT’ T# INIUd

0€E OLOD TLO(SAINFAT 4I

$d¢.: A3TpOWw 03 ©3&q 3ISATF I93UH,IAANI
(TET)SYHO+uAu‘T# INIYA

(TET)SYHO+uO0u‘ T# INTHd

(TET)SYHD+uW. ‘T# ININd

Sd’‘T# INI¥d

0LZ OLOD 0>d JI:($d)TVA=d

$d¢,: I03D9s @AT3RTSI STTF IS3ud, INJNI
Sd‘T# INTYd

$df,% (°9ATIP Spuour LAew nox)

ddddyz ©9 03 oadse113 I=93ud, INANIANIT
uSJddu ' T# INTHA

«wdV¥Z293d0S.‘ T# INI¥d

uwdV¥Zu+(8CT)SYHD ' T# INI¥d

$I4’T!u0Ou NIAO

WIOL/ u+SId=$1d

0TZ OLO9 uwTOL/u=(¥*$I4d)SIHOIY JI

06¢
08¢
0LE
09¢
0st
ove
oce
oce
0T¢E
00¢e
06C
08¢
0Le
09¢

0s¢
ove
oee
oce
0Te
0oc
06T

N~

17

¢ 3S01D

0LS OLOD

019 OLOD (Z)Jd0d JI

(9)$4’2# INANTIANIT

T+9=H

$Id’C’ulu NAJO

$1df, ¢ Pe3lTPe® ©q O3 STTJ JO SuWeu ISJUH,LNdNIHANIT
INI¥d:INI¥Nd:STD

gexpyry HITJA NIVHD dVZ LIAH sswwex

08 OILOD
T ¥S01D
wbIXdw’T# INI¥d
0%2 010D uwAw=$I dI
067 OLOD wu=SI JI3SAMINI=SI
wéd¥Z ISyjoue J93UD 03 9YTIT NOA PTNOM,INIVd
(TET) S¥HD+uXw‘T# INI¥NA
(TET)SYHO+(ET) SUHD‘ T# NIV
(TET)SYHO+uXu ' T# INIYUA
(TET)SYHOH(ET)SUHD ' T# INI¥d
N LXEN
(TET)SUHOH (T2 $d)SATW’ T# INI¥L
(TET)SHHO+(T?$A) STIFT TH INI¥d
(((ZE€)SYHD SXIH)YILSNI ‘N $XTH) SAIW=8d

019
009
06S
08S
0LS
09s
0SS
ovs

GES

ots
0cCs
0TS
00s
06¥
087%
0LV
097%
0S¥
ovy
0E¥
0cy
0T¥
00%

178

(241 ebed woy panuguo)) seddez ureys Joj Bunsy weiboid ‘2-g1 ‘B4

T dS0ID 06L
ZN IXIN ¢ 08L
(ZN)SI‘T# INTHVd s 0LL
d OL T=¢ZN ¥d04 : 09.
$Id’T1’u0u NIJO 0GL
grzzex ASIA OL ITId QALIAHT ALIUM sxzexe s SVL
N IXIN : 0L
$9=(N) $d : 0€L
0%L OLOD:(TET)SUHO+$O=(N)$d
NIHL (TET)SYHO=(T’(N)$J)SIHOIY 4I s 0CL
$Di 43 OnTea mau I193ud, INdNI : 01L
0L OLOD uwdu<>$I ¥O uwdu<>SI JI : 00L
069 OLO9D wu=$I JI:SATINI=SI : 069
‘w wf(N)SJ INIVd : 089
0%7,L OLOD 0=9¥1d JdI : 0LS
T=OV'T1d NIHI $€JI=(N)Sd JI : 099
d OL T=N ¥0d : 069
uobueys 03 ,o, ‘LA1jus 3xX°oU °9S 03 1eg 9oeds 31TH,INI¥d 0%9
SEIy2
Pe3TP® 9q 03 sdez YSTYM 103 STTJ JO SWeU IS3UF,LNINTINIT 0€9
INIYd:INIYd:STO 029

»
~

™~

patch for that particular program. Each byte will be displayed. and
may be changed. If several separate ZAPs exist for a single pro-
gram, you may have to page through several patches to find the one
you want.

It is obvious, with postage and media costs as high as they are,
that it would be impossible for a company like Apparat to send out
chain files in disk or cassetie form to do our patching for us. Their
support in providing printed sheets for free (so far), is effort
enough. However, given a wide enough distribution of chain files
created by Chain Zapper, this tedious but necessary chore can be
minimized for many more users.

180

Translator

Most of the BASIC language’s limitations stem from its original
purpose as a high-level language that would be easy for beginners to
learn and use. Its strongest point—the simple English key-
words—provides an artificial barrier for those whose primary lan-
guage is not English. Some of the largest Spanish-speaking com-
munities in the world, for example, are in the United States. The
availability of a BASIC in Spanish might make it easier for these
citizens to use computers at an earlier age.

A machine-language Spanish-BASIC interpreter for any of
these would be ideal. Programs could be written in a Hispanic
version of BASIC, run, tested, and debugged in that form. Unfortu-
nately, that would be a major undertaking, best tackled by a
software house with some hopes of recouping the time investment
through sales—but one-tenth of a loaf is often better than none.
Translator is a simple pseudo-compiler that converts programs
written in Spanish tiny BASIC to standard BASIC for running.

In other words, the program is used to write the source code,
using the Level I type of Spanish keywords, instead of the English
BASIC equivalent. As each line is entered the program checks it for
various criteria (must begin with a line number, with no more than
one statement per line) and generates a new line of code, replacing
each of the Spanish keywords with the English equivalent. Both
versions may be saved to disk or listed at any time.

Translator combines some of the features of Global Replacer

181

and Program Proofer. It compares its internal list of allowable
keywords with those in the input lines, and replaces them with the
equivalents as needed.

Editing is accomplished by re-entering the line. The English
(“compiled”) version of the program is object code that may be
loaded and run under your BASIC interpreter, like any BASIC
program, as long as the code entered in Spanish conformed to the
normal syntax rules of BASIC. Ideally, the program should be used
by a person who already knows standard BASIC to teach a Spanish-
speaking person how to program.

The Spanish words chosen are not necessarily the best possi-
ble equivalents for the BASIC keywords they replace. The BASIC
translations were chosen using two criteria. The Spanish words had
to be short and mean approximately what the BASIC equivalents
mean. Because keywords have the effect of commands, the impera-
tive form of the verbs was used. Second, programming was made
easier by selecting Spanish words that were either the same length
or longer than the BASIC keywords.

Spanish Version

10 IMPRIMA "PROGRAMMA"

20 ENTRE "SU NOMBRE :";AS$

30 SI A$="DAVID" LUEGO IMPRIMA "HOLA
DAVID!*®

40 SI A$<>"DAVID" VAYA SUB 100

50 FIN

100 IMPRIMA "HOLA,";A$

110 RETORNE

English Version

10 PRINT FPROGRAMMA"

20 INPUT "SU NOMBRE :";A$

30 IF A$="DAVID" THEN PRINT "HOLA
DAVID!®

40 IF A$<>"DAVID" GOSUB 100

50 END

100 PRINT "HOLA," ;A$

110 RETURN

Fig. 16-1. Example of program produced by Translator.

182

A(n) Difference in length of keywords.

A% Line entered by user.
A13$ Used in INKEY$ loop.
B Position of quote in line input.
C Position of colon in line input.

COM$ Command entered by user.

CP$(n) Array storing program lines in English.
Cu Counter.

E2%(n) Array storing program lines in Spanish.
F$ Filename.

F3% Filename.

FLAG Shows whether instructions have been displayed.
G Loop counter.

IG$ Program line input by user.

L Length of program line.

N Loop counter.

NE$ Name of program in Spanish.

NI$ Name of program in English.

P Print @ position.

X Set X coordinate.

Fig. 16-2. Variables used in Translator.

To use the program the student types RUN in English, and is
shown a summary of the commands and statements available. This
list can be summoned at any time by typing HELP or AYUDA at the
“ > " prompt. An existing program may be loaded from the disk
using the CARGE command. Prompts ask for the name of the
program in Spanish and English. Then, a program can be edited, or
new lines added. Figure 16-1 shows both Spanish and English
versions of a program written using Translator.

A specific line in Spanish can be seen at any time by entering
ALISTE xxx, where xxx is the line number; by typingjust ALISTE,
the entire program will be presented, a section at a time. Entering
LIST, in English, will display the compiled English version.
NUEVO or CORRA will erase the current program in memory, and
allow starting over.

Only line numbers between 1 and 200 may be used, and only
single statements are allowed per line. Spaces must be used after
line numbers and between words. It is permissible to end a line with
a space, since one is added automatically. Spaces are essential,
because in searching for keywords the program looks not for, say,
the letters SI, but for <space>SI<space>. Otherwise, by the time

183

fun’d ® INI¥A
4470 ‘d ® INI¥d
NYNLEY
X IXIN
(X ‘L2T1)1dS
(X ‘1)14dS
¥ OL 0=X ¥0od
N IXIN
$(06T)SHHD ‘N ® INI¥d
S68 OL ££8=N ¥Od
N IXHEN
$(6ST)SYUHD ‘N B INTHUd
€9 0L T=N d0d

08 066 00 ©O0 06 00 60 @6

gxy ASPIOYH IUTIF sgx

0TZ O&LOD

000T ¥VEATIO
REBEVRERVRBERELE 0
¥ % 1
¥ IOJRISURILL g ,
% ¥
FHRUPERRBPLBREL 0

00¢
06T
081
0LT
09T
0ST
0%l
0eT
A
011
00T

08
SL
0L
09
0Ss
113

0¢
0t

184

ioejsuel | 10y Bunsy wesboid ‘g-91 By

MN OL T=N ¥04

zxy BlEQ SOUSBISIITA PeSY x«=»

N LXIN
:lﬂazv%mu
:z“szWNN

002 OL T=N ¥Ood

sxx SAeII® TION 8% .

FYoLsIy

ST1D

(TZ)$dS “(TZ)SET “(00Z)$dD “(002)$2T “(TZ)$A ‘(12)¥ WId
(Z€)$YHDI=$€D

(85) $YHO=$2D

(P€)SYHO=$TD

002=21

T1Z=MN

Z-Y¥ INIJHId

yxx OZTITRTIITUTL xxx

ove
GEE

0ce
0ce
0TE
oot

S6¢C

06¢
08¢
oLe
09¢
0s?
ove
o€z
oce
01¢

s0¢

Te}
oe]

-

N" ‘NO ‘ENNOLIFY ‘NINIFY ‘9NS VAVA ‘9dNSO9 VIvd 06¥

FJUNYISHEY ‘FY0LSHTY ‘¥ VAVA ‘0109 ‘T¥yod ‘S7TD YiIvVd 08%

OWIXO¥d ‘IXAEN ‘"SdAD ‘dOLS ‘vuvd

‘904 ‘0OEANT ‘NAHL ‘SOIYd ‘YIVd ‘IATTT ‘avd¥ ‘VWINAWI ‘INI¥d ‘NId
‘ONT ‘"HISITY ‘ISIT ‘THINA ‘INdNI ‘Yd¥00 ‘NN¥ ‘IS ‘dI YIvVd 0LV

T ‘T ‘T

40 ‘1 ‘¢ *T ‘z ‘T ‘¢ ‘0 ‘T ‘T ‘T ‘T ‘T ‘0 ‘T ‘0 ‘c ‘0 ¥YIv¥A 09V
N IXIN ¢ 0SP

(Z€ ‘(N)¥)S$ONIHLS+(N)SEI=(N) ST : 0FV

MN OL T=N ¥0d *: O€¥

sey UIDUST ozTTenDT 445 o ST

N IXIN ¢ 0Z¥%

$€0+(N) $NYAS+$ED=(N) SNYdS ¢ OTW

(N)$NYdS avay : 00F

$E€O+(N) $E€FA+$ED=(N) $€H : 06¢€

(N)$€" avEyd ¢ 08¢

MN OL T=N ¥0d 3 0LE

svy SpIOMK2Y ysTTbum pue ystuRdS DPRIY sz o« S9E
N IXIN 3 09¢

(N)Y aQvay 2 06G¢

186

(‘g1 obed woy penunuo)) “1oejsues] Joj Bunsy weiboid ‘€-91 ‘Bi4

®Yy3l JO suoTsasA om3 saaedsad weaboad aygL,’0zS ® INIYd 0S9
‘{u°pPoOSn 9q Aew sSpiom,‘9GH P ININd 0¥9

! ~RoYy

©dA3~1 TIATT ISOW °*s3jusTeatnbe yst1bug Y3l ,’Z6€ ® ININd 0E9
{,.30

peo3suT spaiomiay ystueds buisn sweaboad o3TaIM,‘8ZE ® ININd 0Z9
i, O3

sjuspn3ys buryeads-ystuedg smorre weiboad sSTYL, #9Z ® INI¥d OT9
{(Z€ “‘0G)$ONIVLS ‘%92 ® INIY¥d 009

0SS OLOD® 06S

0EPT OLOD :STO NAHL uN.=$TV 4I 08S

009 NIHL wXu=S$TV¥ JdI O0LS

0SS NIHIL wu=S$TV JdI 096

SAIAINI=$TV 0SS

‘{ul(N/X) SUOT3ONIISUT 3JueM 1ok od,’¥9Z ® ININd 0%S

! WIOIV'ISNYEL WY¥D0¥d HSITONI-HSINVAS.‘P¥T ® INI¥Nd 0€S

¥xy SUOTIONIISUT yxy . GTS

T=9V¥1d 0¢S

08 9NSOO 0TS

JOVH ‘Id7 ‘VION ‘WHY ‘Yav¥d ‘ddls viIvd

00S

187

06L NIHL wws= SAMMNI JAI 06L

fa *ATTe.’8%9 ® INI¥NA 08L
4 ,~ULTOU
NNY pue pSpEOT o¢ USY3} URD UOTSISA USTTOUTL’¥8S ® INI¥A 0LL
: Yl
°207T0YD INOK JO SOWRUSTIF ISpUn IYSTP O3 PoA®S,’02S ® INI¥d 09L
¢ ,9q
1]
Kew suorsasa ystrbum pue ystueds syl Ylod,‘9Sy & INI¥d 0SGL
£(Z€ ‘0G)$ONIMLS ‘Z6€ ® INI¥d 0%L
4
°mn
*DISYE-USTT.’82¢ @ INI¥d Q€L
{ ,=buyg
03UT poleTsuerl useq oAey Keoy3z Triun (x9391d,’y9Z @ INI¥A 0CTL
§ y=I93UT
ue jou ST STY}) WIOF eyl UT NO¥ 59 3Jou Kew,’00T aszmmOan
$uhoyl
systueds uy uel3Tam oq Kew swerboxd ybnoOyTV.’9€T d INI¥4 00L
069 NHHL wpu= %NQMZH JI 069
4,2 onurjuod o3 Koy Aue 3ITH «?T8L ® INI¥4 089
{,°UOTSI®A, ‘879 ® LINIUd OL9
¢wyst1bUm
¢, peje[sueal, e pue ‘ystuedg uy Suo ——u?%8S6 ® &INI¥Yd 099

¢ juexboad

188

("281 ebedauoy panuiuo)) “10ieisues} 1o} Buysy wesbold ‘-9 By

'

: SpNTOuUT 8S3YL °XeJuids O2II0D,‘$9Z B INIUd omm
03 axaype Aay3l 3T weaboad syz ojur ps3eI0dIODUT,’00Z B aszmgon
‘u
2q Lew pajeTsueI] JOU SPIOMADY DISVH YSTP I9Y30,‘9€T ® INIUd 006
068 NIHL wu= S$XHINI AI 068
(€ ‘0S)$ONINIS ‘879 ® INIYd 088
4
*u
*(BbutalTP® I THAAT SYTT) SUTT MSU 3Y3 Pue,’‘y8S d INI¥d 0.8
fa Jaqumu
SUTT 3ey3y I9jue-ax 3snl ‘surT Aue 3TPe OL,‘0ZS ® INI¥d 098
£(Z€ ‘0G)$ONINILS ‘9GF ® INI¥Nd 0s8

°n
*posn aq Aew 00Z./Z6€ ® INI¥d 0¥8
2

pue T uS9M39q sxsqumu SUTT ATUQ °SpPIoMm TT® PU®,’8ZE ® ININd omm
4

szsqumu SUTT I93je adeds e ppe JLSOAW I9SN °SUTT,‘$9Z ® INI¥d mmw

H aad

PoMOTTR ST jusuPjels auo ATuQ °popasu 2a39Yym, ‘002 d 92mmm 0T8

! .Spaomhoy

ystuedg 9yl bursn ‘weaboxd ut o2dX3 ‘ssn O5,.‘9€T ® INIYd 008

189

gsdo 0¢ n’C6E @ %ZHmm 080T

0% ¥ YAYA o?$TO¢uES0LLISTO!u=8Y IS 02

/8¢ ® INTYd 0LOT

‘w SV uSTO¢ W YHYTT

HS OWODwi$TO%s FWINA OT

u’%9Z ® ILNI¥d 090T

{(Z€ ‘0G)$ONIVLS ‘00Z ® INI¥d 0SOT

9YTT butylswos ool Iybtuw wesboaxd TeoTdL3 V,’9€T
ocet

$(Z€ ‘0S)$ONINLS ‘8%9 d

$(Z€ ‘0S)$ONIVLS ‘¥8S 9

$(2€ ‘0S)$ONIVLS ‘00C d

n_s ¢ STU3
ILINTdd 0%0T
ansod 0e0T
INI¥d 0201
INT¥8d OTOT
LNI¥d 000T

066 NIHL wu= $SAHMNI dI 066

:959Y3 O)IT 3ISTT © umoys oq TITA NOX ° ,YANAV,.’8%9

I0 ,dT¥H, I9y3zTe odA3 suorysenb Aue oAeY NOK II,’¥8S
£(2€ ‘0S)$ONIMLS ‘0TS

*(40‘aNy) saojzeaado ‘ (ANM’INI).’9S¥

‘suoTjouny se TIoM Se ‘SLJAAT’SIHOIY/VISNI ‘HSTHL’Z6¢€
£(Z€ ‘09)$ONINLS ‘82¢

@

@ @ (22

BZHMW 086

°
INIdd 0L6
INI¥d 096

4

°wm
INI¥d 0S6

°u
INI¥d 0%6
INT¥d 0€6

190

(‘681 abed woy panuiuo)) “iotejsues} Joj Buisy weiboid '€-91 Bi4

19

ty
({sTp op eumrerboxad eun xebieo) FOYVD,’8ZE B INT¥d 0%ZT

(STP Te euwexboxad eun Ieiioye) oOIIOYY,’¥9Z ® INI¥NA OEZT
r 4
*u
isopepuel SOT ,‘9¢€T ® INIVd 0ZZT
08 9ns0 01CT
STO 0021
0E¥YT OLOD 06TT
00C2T 90S0D 0811
OEVYT OLOD OLTIT
ST0 091T
0=0V14d 0STT
OVTIT NIHL we= $XAINI JI OVTIT
wexboxd uni o3 Aoy Aue ITH.’SLL ® ININA OETT
$(Z€ ‘0S)$ONIVIS ‘8%9 ® INIUA 0ZTT
(2 ‘0G)$ONINLS ‘v¥8S B aszw O0TTIT
*n

NIJd 06 028 @ INTYd 00TT
®
wiSTO! wASOL VIOHW{S$TO!w YWINAWI OF w/9G% ® INI¥d 060T

INIOLII=NINLHE
gNS YXAVYA=40S0D
FJI0g=810
IANVILSTY=TIOL ST
OHIXO¥Yd=LXdN
YHIYAWI=LNI¥Yd

I INI=LOdNI

(seThutr us eumerbord eun IeISTTV)

(Touedss ue euwexbord eun IeISTTY)

HOVH=LJ'T
Yavyd=ddLsS
dSdO0=d0LS
¥ YAYA=0LOD
ODENT=NUHL
HLSITY=LSIT

Ydd00=NNd

VION=WId.’879
Nd=NO. ‘78S
VI¥d=90d.’02S
SOIVA=Y1¥d.’9S¥
HATTI=A¥HYu 'C6 €
NIJI=0NH,‘82€

IS=dIn ‘ ¥9¢

$SOUOTORIRTOSD ST, 9€T

0621 NHHIL wu= SATMNI JI
2, <YFINT> o(ndud,’pTL ® INI¥d

)
®
)
®
®
)
)

C)

LNTdd
INI¥d
LNIdd
LNIdd
LNI¥8d
INTId
LNI¥d

LNIdd

FYYOL ‘ OATAN ‘ THU0D YANAV .’ #8S ® INI¥d

ISIT,?’96% ® INI¥d

AILSITY.’C6€ ® INI¥Ud

a
°u

0LeET
4

192

("161 abed woy panunuo)) “sojeisues] o) Hunsy weiboid g-91 Big

08¢
08¢
0E¥T OLOD :00CT 9NSOD
0EPT OLOD :00CT 9NSOD
0eee
08T¢C
0s0¢
068T

sy PUBWUWOD IO OOUD sxxx

NIHL
NHHL
NIHL
NUH.L
NIHL
NIHL
NHHL
NHHL

uAEON y=$WOD
s JI0Du=SHOD
udTHH s =$HWO0D
wd0A¥Y 4 =$HOD
uLSITs=SHOD
uDYYIu=SHOD
s JOHVY u=$HOD
IMH.H@:"%EOU

41
41
41
a4
a1
41
41
dI

(¥ ‘SY)SILITAT=$HOD
$¥Y ILNdNI ANIT

0=

1d

¢ u<wINI¥d

sxx INAUI PILOQASN 399 xxx 4

NINLIy

S0

NINIFY T=9V1d dI
06€T NIHL wwu= S$XIINI 4AI
£(Z€ ‘0S)S$ONIVLS “‘¥#TL ® INI¥NA

0%ST
0€ST
02ST
0TST
00ST
06%T
08vT
0Ly

S9vT

09%T
0S?vT
ovvT
0EPT

STPT

0ZvT
0TV T
00%T
06€T
08ET

(82
[¢)]
—

900 SONTIW OYIWAN NA NOOD WANIT YT HONIWODLINI¥d ¢I<IT 41
(SIL)TIYA=I"T
I IXAN
(T ‘%L ‘$VY)SAIN+SI=8L
0€LT NIHL(ZE)SYHO=(T ‘I ‘S$VY)SAIW 4I
(SY)NIT 0L T=1 ¥0d

gxx ISCQUNU SUTT IOF 3OBYUD xxx

::Hw%

0EPT

$ WANIT YA¥D NOIOWNYTIOAA YNA HINAWYTIOSHINI¥d NIHL 0<>D dI
0891 OLOD

0L9T NAHL Td<D dI

0L9T NAHIL €>0 dI

g+(S$TO ‘$M)VLSNI=Td

(T+9 ‘$Y)SATR=$M

0L9T NIEHI 0=9 JI

0891 NAIHI 0=d ANV 0=D JdI

(82D ‘$Y)ULSNI=D

($TD “$¥)YISNI=d

(Z€)SUHD+SY=8V

$V¥=$91

0EPT OLOD :STD NHHI . ¥YOH,=$WOD dI

89 00 60 00

0PLT
0ELT
0cLT
0TLT
00LT
069T

6891

08°T
0LO0D
0L9T
0991
069T
0791
0€9T
0291
0191
0091
06ST
08ST
OLST
09sT
08ST

194

('e61 obed way penunuo)) “1oejsues] 10} Bunsy weiboid ‘g-91 Bi4

0E¥YT OLOD

xxx SOUTT werboag ysiueds ISTT yxx .

06LT OLOD
(9)83=(T ‘d ‘$V¥)SAIN

¥xx UOTINITIISANS OHBW xxx

((D)S$HAINIT=T

06LT OLOD

098T NIHI Td<d JdI

098T NIHL €>d dI

0EYT OLOD

$¥=(IT)$dD

$OI=(IT)$2H

9 ILXIN
0€8T NIHL 0<d dI
((D)SNVAS ‘$V)ULSNI=d

MN OL T=9 ¥0d

¥¥x SPIOMASY ysTueds I0F HOOT xx4¢

wO¥IWON NO NOO VENIT VT FONIWODLLNIVd T>IT 4I
0EVT OLOD @

S88T

088T
0L8T

S98T1

098T
0S8T
0v8T
0€E8T
0281
0T8T
008T
06LT
08LT
OLLT
09LT
SEVT

0SLT
A O™

1o}

19

00Z OL T=N ¥0d : 0802
$IN ‘T’,0.NIA0 0LOZ

SINZ,¢ SHATONI NI YWY¥O0Wd VY1 3d FIGWON,ILNdNI 0902
$ANZ .S TONVAST NI YWYYO0Hd Y1 d3d FIGWONLILAINI 0502
zxx YSIA 03 swexboid oA®S xxx .« GF0C

0E7T 0OLOD 0%0¢

N IXgIN * 0£0¢T

$d INANI

$4,< MAINT > ALONdWH,INI¥d NIFHL(FT/ND)INI=FT/0D 41 s 0202
1+00=0D ¢ 0102

(N)$Zd INTIdd ¢ 0002

0€02 NIHL o’w=(N)$TH ¥0 wu=(N)$TH JI ¢ 066T

00Z OL T=N Y04 ¢ 086T

STO 0L6T

=00 0961

0EPT OLOD 0S6T

INI¥d 0%6T

096T ASTH (EA)SZH INIVYd NIHL 0<EA A1 0€6T
($ZA)TYA=EA 026T

(A ‘$¥)$AIRN=8CA 0T6T

096T N¥HIL O0=A dI 0061

($€D ‘$VY)HLSNI=A 068T

196

(‘s61 ebed woy panunuon) “1oejsuel} 10) Bunsy weiboid ‘g-91 B4 W

$€d ‘T’wIuNIJO 0LZZ
T IS0TD 0922

N IXIAN ¢ 0S22
(N)SZH ‘T#INANI INIT : oveze
00Z OL T=N ¥0d : 0€ZZ

$d ‘T’«IuNIJO 0222

(8 “$€4)S$LdTT=8¢d 0TC2

$€d%4% SHATONI NI VWVNOONMd VT A3d TUEWON.INANI 0022
(8 ‘$€4)SI14dT=8d 0612

$€d¢ut TTONVAST NI VYAVYOONd VT Hd HYGWONLINdNI 08TZ

¥¥x ST woxg swexboid peoT xxx . SLIC

0EPT OLOD 0OLTC
T @80T0 09T¢

N IXdIN ¢ 0612
$(ET)SYHD f(N)SAD ‘THINIUA : 0F1IC
002 OL T=N d04 ¢ 0€Te

SIN ‘T‘.,0uNIdO 0ZTZ

T 9S0TD 0T1T¢C

N IXAN ¢ 00TZ

L(ET)SUHD ¢ (N)$ZT ‘TH#ININA 0602

(261 obed woy psnunuon) “iomejsuel} Joj Bunsy weiboid 'g-91 Bi4

3dy,< ¥

"
o

0EYT OLOD 06ET

INIYd 08€Z

N IXAN ¢ 0LET

$8 INANI

IINT > FALNAWH.INI¥d NIHIL(PT/0ND)INI=F1/0D 4I : 09¢€C
T+00=ND 2 (N)$dD INI¥d NIAHL uu<>(N)$dD 4I ¢ 05¢€C
002 OL T=N ¥0d ¢ 0%¢€Z

gyx SWRIBOId ISTT xxx o SEETC

T=nD 0£€2

0EPT OLOD 0Z¢tC

1 FSOTIO 0TET

N IXAN ¢ 00€¢

(N)$dD ‘T#INdANI FNIT ¢ 0622

00Z OL T=N ¥0d4 ¢ 08¢¢

198

the loop which searches for keywords got to SIGUIENTE, the word
would have been changed to IFGUIENTE.

Examining the program, described in Figs. 16-2 and 16-3, we
can see that actual translation from Spanish to English is simple.
The programmer enters a line, which is loaded into A$ in line 1450.
The first four characters are checked to see if any of the allowable
commands are included. If not, then the line must begin with a line
number, or an error message will be generated. A check is made for
a colon outside quotes, which would indicate a multiple-statement
line. An error trap also checks to make sure that the line number is
within the range allowed.

A FOR-NEXT loop beginning at line 1760 compares each word
in the line with the permissible keywords, and, if one is found, the
substitution for the equivalent English keyword is made. Several
subroutines take care of LISTing the program lines, stored in two
string arrays.

The only hitch in Translator is a problem common to all com-
pilers. The programmer cannot run the program to test it until it has
been compiled. Then, if bugs are found, the compiled version
cannot be changed (because, in this case, the Spanish-speaking
person supposedly cannot understand the BASIC object code). Of
course, an English-speaking person can edit it, but for those for
whom Translator was intended the object code may mean about as
much as a machine-language dump.

Because Translator was meant as a learning tool, it was de-
signed to be easy to change. Keywords can be added by appending
them to the proper locations in the DATA lines, adding numeric
DATA that shows the difference in length between the longer
Spanish keyword and the shorter English equivalent. WR must also
be changed to reflect the new number of words.

This program will compile from any language. The user could
select keywords in, say, French, and enter them with their English
BASIC counterparts in the DATA lines. All the prompts in Spanish
will have to be changed as well, but these have purposely been kept
to a minimum in the program.

199

Document Sorter

The final program in the book will be of use to anyone who writes or
uses long documents, or who is interested in the clarity of their
writing style—even if they generate nothing longer than a memo or
letter. Document Sorter will provide you with an alphabetized list of
every word in a document, or even a book-length manuscript. In
fact, the program was written for that very purpose.

Are you preparing an index or glossary for a term paper,
article, or book you are working on? Curious about the scope of your
vocabulary? Document Sorter will take most text documents of
reasonable size, throw out the punctuation marks and numbers, and
collect the remaining words into a file sorted alphabetically. Dupli-
cates and many plurals of a root word are also ignored, so that you
wind up with a listing only of the unique words in your document.

This program was written recently to help in the preparation of
a particularly technical book. After about 60,000 words were run
through it, the result was a list of a few thousand unique words that
was further condensed to form a glossary and index. Document
Sorter will also work with your shorter text items, such as letters,
short stories, or school assignments. Odd punctuation won’t throw
it, and capitalized words are automatically converted to lowercase.
You can even use the program on your BASIC programs to find out
what keywords were used. Line numbers and other non-alphabetic
characters will be thrown out as well.

Those who want to measure the “fog index” in their writing can

200

use the program to compile a list of the commonly used words in
their written vocabulary. Just append a representative number of
letters or memos together, or any other documents that you want to
study, and run the program. Since duplicate words are eliminated,
the listing produced is a fair gauge of a vocabulary. If you wish,
changing a single line in the program will keep Document Sorter
from dropping the duplicates; in this case actual frequency of word
usage can be measured.

Note that you will need a text processor to generate the text
files to be checked. The program was tested with Scripsit files,
which were saved in ASCII form using the “S, A filename” syntax.
The program will work with any ASCII file, .including programs, if
the goal is to alphabetize the words used in the program listings.
Line numbers, other numeric constants, and many single-character
variables will be filtered out as well. Variable names with two or
more characters will be left alone, and sorted along with keywords
and words within prompts.

Also note that the program does not incorporate a sorting
routine of its own. Instead, it simply acts as a sophisticated filter,
and relies on the fast machine-language sort built into many operat-
ing systems. The sort used here is the CMD“0” sort found in
NEWDOS/80 2.0. This works with TRS-80 Models I and III, or
Model 4 operating in Model III mode.

Model III TRSDOS also has a similar CMD“O” string sort, and
some other operating systems may have their own provisions for
fast, machine-language sorts. Various utility programs can also be
adapted. Because of the size of the arrays used in this program (up
to 4,000 elements), I didn’t bother to include a BASIC sort routine,
which would be much too slow. Since Document Sorter requires a
disk drive anyway, most users should have an operating system
with a built-in sort.

Several interesting programming tricks make Document
Sorter an educational as well as useful module. Warning: This
program uses a lof of string space. As a result, it can take quite a
while to sort a fairly long document, say, one 3,000 to 4,000 words
long (that’s 13 to 18 double-spaced typewritten pages). The time
needed is the result of string “garbage collection,” during which
process the computer may appear as if it has locked up.

While there might be more efficient ways of carrying out the
designed functions, ones that would not involve this string collec-
tion bottleneck, the most obvious method was chosen for this book
because it was quicker to write, and easier to explain.

201

Your entire document to be sorted is loaded into memory at
one time, and is stored in a string array, WRD$(n). This array is
DIMensioned to 4,000 elements in line 80, and allows a document
with a maximum size of 4,000 words. This will handle most docu-
ments, although I had to break my book up into about 15 different
sections. Once the program had thrown out all the duplicates and
nonwords in each section, I was left with a much shorter collection
of words. These were merged and run through the program addi-
tional times until I ended up with a single sorted file.

Although the machine-language sort of your array is very fast,
parsing the document into individual words takes time. I'd recom-
mend letting the program run while you do something else. Shorter
documents can be processed much faster than the equivalent
amount of text in a single, longer document. That is, four 1,000-
word files will be sorted faster than one 4,000-word document.

The reason for this is that, as mentioned, some time is taken up
in so-called “garbage collection” as string space is consumed by
your program. With longer documents, the available string space
becomes smaller as more of the document is processed, so string
collection must be done more frequently.

Shorter documents do not require so much time at this task,
and thus run to completion sooner. Since [had time to spare, I wrote
the program to allow maximum document size, even if the longer
documents frequently slowed down the program. While it might
take two or three minutes to process a 1,000-word file, it can take
10 minutes (or longer) to handle a 4,000-word document. You can
let your computer operate unattended or, as I did, allow it to
process many files consecutively overnight. The way to do this will
be described later.

Garbage collection of unused string space can also be cut down
by CLEARing as much space at the beginning of the program as
possible. With a 4,000-element array, only about 24,000 bytes were
free for strings (line 60). If you will be sorting only shorter docu-
ments, you can decrease the size of the array to, say, 2,000 ele-
ments, and increase the available string space to 30,000 bytes or
more.

To help speed up Document Sorter, variables were defined as
integers (line 90). In addition, Model 4 owners can accelerate their
computer’s operation by including line 70. This OUT statement
allows running the Model 4 at full 4 MHz speed, even in Model I1I
mode. Owners of “real” Model Il or Model I computers will want to
delete line 70.

202

The first step in setting up Document Sorter is to decide what
characters will be considered word “delimiters.” That is, how do
we know when we have reached the end of a word? Obviously, a
space (CHR$(32)) indicates the end of a word. But most punctua-
tion, such as commas, periods, question marks, and (usually) apos-
trophes, also marks ends of words. Hyphens and other characters
such as parentheses and asterisks are also not found within words.
So Document Sorter looks for any of these and, if one is found, ends
the current word. The only exception is when a character other than
“s” follows an apostrophe. Thus, “can’t” or “I've” would not be
truncated after the apostrophe, but the terminal “s” on “America’s”
would be cut off. This effectively filters out possessive forms of
words, while allowing most contractions. A few contractions end in
“’s” (such as “it's” and “let’s”), but those are minor exceptions that
don’t detract seriously from the usefulness of this program.

Fortunately from a programming standpoint, most of the word
delimiters used by Document Sorter occur all in one place in the
standard ASCII list—CHR$(21) to CHR$(64). The program builds
one long string, containing one example of each, in lines 100 to
120. At this point, DELIMITS is equal to !“#%—'(*,-./
0123456789:; <=>?®@. Three more characters, CHR$ (140)-
CHR$(142), are used by Scriptsit to mark the ends of lines, para-
graphs,and pages. These are added to the list so that Document
Sorter will recognize them as end-of-word markers and filter them
out. If your own word processing program uses special CHR$
codes, add them to DELIMITS in line 130.

The next section, lines 140 to 200, asks the user for the desired
filename to process, and the filename of the output file (the sorted
words). If you have many documents to sort, as I did, you can
replace the LINEINPUT statements with a large FOR-NEXT loop
beginning at line 180 and ending at line 530. I called each of the files
I wanted to sort “CH1,” “CH2,” “CH3,” etc., and stored them on
disk under those names. Then, each time through the FOR-NEXT
loop, the filenames were constructed automatically:

160 FOR CHAPTER=1 TO 10

170 F$="CH"+MID$(STR$(CHAPTER),2)

180 F2$=F$+“/SRT”

530 NEXT CHAPTER

Actual processing of the file begins at lines 210-220, where a

203

A ahout accelierate account accounted
actual actually add added addition
additional adopted after again against

all allow allowed allowing allows alphabetic
alphabetically already also alternative
although america amount an and another
any anything anyway apostrophe appear
are array ariicie as ascii asks
assignments asterisks at automatically
available award awhile basic be because
been begin beginning begins bit bm book
bother break builds built busch but by
called can can't candidate capitalized
carrying case ch chance changes chapter
character check chose chr clearing

cline cmd codes coliect collection
command commas competion computer
condensed considered constructed
consumed containing content continue
contractions converted counter cu
current cut david decide deciding
decrease deemed defined delete delimit
delimiter designed desired detract did
didn’t different dimensioned disk

divided do document does doesn't don't
dos down drive drops duplicate each
easier educational effect effectively
efficient element else encountered end
ended ending ends enhancements entire
equal especially etc even example
except exception explain fast faster
feature few fifteen fig figured file

filename files filter filtered

filtering filters find finished first fog
followed following follows for form

format formed forms fortunately found
four free frequently from full fun

further garbage glossary goto had

handle has have help here how hypens i id
i've identical if ignored iii in

include including increase incremented
index indicate indicating individual
instance instead instr integers

interesting intervening into is isn't

it its itself just keeps kent keywords
killing know language large last leave

left legal len length let letter

letting line lineinput lines list

listing Im loaded located lock long

longer look looked iooks loop lot

Fig. 17-1. Words in Chapter 17, compiled by Document Sorter.
204

lowercase Is machine make many mark
marker marks maximum may mhz
memory merged message mid might
minor misnomer mode model module more
most much my name named names

nest newdos next ni non nonwords not nothing
noting now nulled number obvious
obviously occur odd of off offered ohio

on once one only operating operation
operator or other out output own page
paper paragraphs parentheses parsing
particular past periods pf pi place

plural point position possessive

possible preparation preparing present
previous printed process processed
processing program programming programs
proportionately provisions punctuation
question quicker quickly quite ran

range rd reached read real really

reason reasonably recently recognize
recommend reduced remaining reorder
replace requirements requires resisted
resuit resume right rm root routine run
running s' same save saved saver say
school scope screen scripsit second
section see seriously serves setting
several short shorter shown similar

since single size sized slip slowed smaller so
some something sooner sort sorted

sorter sorting sorts space spare

special speed spend srt standard
standpoint starts statement step stored
stories str string strip successive

such syntax system take taken takes
taking task temptation term terminal

text than that the their them then

there these things this those thousand
three through throw thrown thus time tm
to too total track tricks trs truncated

under understand unique until unused
unwanted up uppercase use used useful
user uses using usually utility valid

value variables variations various very
vocabulary wait want wanted warning was
way we well were what when where which
while whole will wind with within won't
word work working works worth would wrd
write written wrote ws year yet you

your zero

Total words in file : 1885.
Unique words in file ; 538.

205

$d%y ¢ I¥0S OL HAWUNITIA YEINH.LAINIANIT
LNIY¥d : LNTId

» 193108 JUsUMdOd, (0T)dYL LNIdd

STIO

¥#% SOTTF usdo ‘SSWRUSTTII ISJUF xyx

(Z%T)SHHO+(THT) SHHO+ (0P T) SYHO+SILIWITAA=SLIWITAA
N LXEN

(N) SYHO+SIINITIA=SLIWITIA

#9 O TZ=N ¥O0J

0LT
09T
0ST
OvT

SET

0T
0Ct
0TT
00T

yxy DUTIIS JIOJTWTITOP PAOM JONIAISUOD yxx o G6

7-¥ ILNIJHd
(000%)$auM WId
000%C UVHTIO

IR EEFXRRE R RL L L L LR
3* ¥
¢ I93I08 jusumdod
¥» *
PRENURERERERLRP L RIS

06
08
09

0S¢
0%
o€
0¢
0T

206

"18U0S Wwawnooq 1o} Bunsy wesboid 2-21 By I

20

(ND) $AYM INI¥d: 4 w=$D2$D=(ND)SAYM: T+0D=0D 00€

xx% AeII® O] DIOM PPY xxx . S62

0S€ OLO9 062
00€ OLOD uwSu=(T’/T+N‘$Y)SAIN 4TI 082
00€ OLOD wiuw<>$d AI 0LZ
0S€ OILOD HSTH
0LZ OLOD 0<>HOVTId 4I:($9‘SLIWITIA)ILSNI=HOVId 09¢
(TE+(SE)DSY) $UHO=$9 NHHL uZu>=$H ANV .Vu<=$9 JI 0SZ
(T/N’$Y) SAIN=89 0¥Z
(SY)NIT OL T=N ¥0d 0fZ

¥y SISITWITSP IOF YOBYD ‘OSBOIOMOT O3 JADAUOD xyyx , SZT

SY/ T#INANIANIT 022
08€ OLO9D (T)d0"E 4AI 012

yxx ST WOXJ SUTIT PeIY xxx i S0Z

$24/2%4wOu NIJO 002
$A'T’uIu NIJO 06T
$Cdl,y ¢ FWUNATIL INdIN0 YIINA.LOINIANIT 08T

Nd O&L T=N ¥Od

xy% ©ITF O3 spiom Hburjeodai-uou SFTIM xxx

(T)$aamM’Nd’ w0 uand
W SWILI »f0D¢y 0 FTI4 ONILYOS.LNI¥d
S0

¥xy KBII® I0S 3% 4

0TZ OL0D
N ILXIN
$8+$0=$D

yx¥ DIOM UDIIND O3 I93O0RIRYD PPV #x%

09€ OLOD:T-ND=ND

OVE OILOD ASTH 09€ OLOD wTw=(ND)SAUM VO 4B,=(0ND)$AEIM 4TI
09€ OLOD T<((ND)$AIM)NFT dI

09€ 0O1L09:T-ND=ND NHHL

QAA ADUvWszv-HAN\w g0 .-W-“ADUvWQMHB g0 -..nuavaWng dT

gy SISQUNU ‘SpIiom TTOU 3INO IADITTI xxsx

OT?
SOV

00%
06¢
08¢

GLE
0LE
09t
0s¢€
Gve
ove
0ce
oce

0TE

S0t

208

(*202 abed woy panunuo)) "1euog Juawnooq Joy bunsy weiboid 2-21 Big Qm

2

S0 0LS

NNY NIHI oXu=$¥ ¥0 u&,=$V JI 096

0SS OLOD"wﬂ mHnWNﬁMZHﬂwm (13731

u(N/X) ¢é9TT3F I9Yyjoue 3108 03 juem nok od, INI¥d 0FS
INIHd:INIYd:STO 0€S

xxx UTED® NOYW xxx . STS

gS0TO0 02§

0 uf(IN)S¥IS! 3 OTTF uT spaom snbtun,’Z4#INI¥Vd 0TS
w“uf(QO)SULSey ¢ OTTF UT SPIOM TRROL,‘ZHINI¥A 00S
uwu'Z# INI¥A 06%

xxx O©TTI O3 SITNSOI SITIM xxx . G8F

N LXIN 08%

T+IN=IN OL¥

fu wf(N)SQUM‘ZH#INTYA 09F

(N)$SQUIM INI¥d 0S¥

087 OLOD NHHL wuSu=(T’(N)SQIM)SIHOIY 4TI 0¥

0S¥ OLOD (((T-N)SAQUM)NIT’ (N)SAUM) STITTI<> (T-N)$AUM AT O€d
08% OLO9 (T-N)SAIM=(N)SAUM J4I 0Z¥%

line is read in from your ASCII text file. In addition to text files,
Document Sorter will also process prograins that you have saved in
ASCII form (SAVE“filename”,A), although most of the content
(such as line numbers) will be ignored.

If the end-of-file marker is not encountered, the program starts
a FOR-NEXT loop from 1 to the length of the current text line, AS$.
Each successive character in A$ is looked at, using MID$, and
stored in B$. If B$ is an alphabetic character in the range from
uppercase A to uppercase Z, it is converted to lowercase in line 250.
Then, a programming time-saver is used to see if B$ equals any of
the word delimiters.

One way to do this would be to nest yet another FOR-NEXT
loop, and check B$ against each delimiter character, which we
might have stored in a string array:

260 FOR N1=1 TO 46
261 IF B$=DELIMIT$(N1) GOTO 270
262 NEXT N1

This would slow things down quite a bit. An alternative would be to
use the DELIMIT$ we already defined, and check each character
against B$:

260 FOR N1=1 to LEN(DELIMIT$)
261 IF B$=MID$(DELIMIT$,N1,1) GOTO 270
262 NEXT N1

This is also a bit slow. Instead, INSTR looks at the whole DE-
LIMITS$ string and finds B$, if present, much more quickly. If the
position of any of the delimiters does not equal zero, the program
drops down to line 270, where it checks to see if B$ equals an
apostrophe (line 270). If it does, and the apostrophe is followed by
“s”, the word is allowed to continue to the next word delimiter.
(This might be a space; Document Sorter also does not filter out
possessives ending in “s’ ".)

Once a valid word ending has been located, the word counter
CU s incremented by 1, and the word, C$, is stored in WRD$(CU).
C$ is nulled to begin the next word, and the word is printed to the
screen.

Some words are filtered out at this point. If WRD$(CU) equals
nothing (“ ”), oris only the letter “s,” or has a value (indicating that
it isa number), then CU is reduced to its previous value, effectively
kiiling the word. Single character words other than “a” and “I” are
also left out of the array.

210

When the end of file is reached, the array is sorted.
NEWDOS/80 2.0’s syntax is shown in line 400; you may have to
make some changes to account for your particular DOS or sorting
utility. Then most of the sorted words are written to a disk file, with
one last filtering taking place.

Beginning at line 410, a FOR-NEXT loop from 1 to CU first
checks to see if WRD$(N) equals WRD$(N-1). This would indicate a
duplicate word. Only the first instance of a word is written to the
disk file. The program also checks to see if a word and the previous
word are identical except for a terminal “'s.” If so, the second word
(the plural) is not written to the file. Some plurals will slip past,
especially those divided from their root word by an intervening
word, such as “name named names.” I deemed it not worth the
bother to look for all plurals, because there are many not formed
using “s” that slip into the file anyway.

A counter, NI, keeps track of how many words are actually
written to the file. When finished, the program writes a message at
the end of the file noting how many total words were in the file, and
how many unique words have been printed to the file.

Then the operator is offered the chance to run the program
again. Now that you understand the workings of Document Sorter,
you might want to add enhancements that will filter out some of the
exceptions not accounted for. I've resisted the temptation to include
all the variations, to leave some of the fun up to you. For example,
to look for possessives ending in “s’, ” just add the following line:

415 IF RIGHT$(WRD$(N),2)="s’ " GOTO 480
or

415 IF RIGHT$(WRD$(N),2)="s’ " THEN WRD$(N)=
LEFT$(WRD$(N), LEN(WRD$(N)-1)

A sorted list of the words in this chapter, processed by Docu-
ment Sorter is shown in Fig. 17-1, while the program itself is listed
in Fig. 17-2.

21

Some Tips

The whole aim of this book has been to show you how to make your
programming more efficient by letting other programs write your
code for you. The 17 programs presented so far generate program
lines, modify software, or perform other tasks for you. However,
there is no reason to limit your automatic TRS-80 to just those
utilities included here. There are actually many, many programs on
the market that will streamline your work.

There is one tool you may not have thought of—unless you are
an old-time programmer, or write in assembly language or for
compilers. That utility is your word processor. Word processors of
today have much in common with text editors, used in the past to
write programs that are compiled or assembled into machine-
language code at runtime. However, most BASIC programmers
today have never written a program with a text processor. The
majority have worked only with interpreters. An interpreter is, of
course, a computer program that takes the instructions written by
the programmer, and translates it into the computer’s machine
language each time a line is run.

That is, when a line like FORN=1TO 50:B=A+C:NEXT N is
encountered, the interpreter will calculate the machine code fifty
different times. This is why interpreters are so much siower than
machine-language programs. However, there are advantages to
interpreters. One is that a program can be writien a smail part at a
time, with each section run, tested, and then modified immediately.

212

Another advantage is that interpreters can include error-trapping
features that handle user input —such as attempts to store numbers
larger than 32,767 in an integer variable—that might have been
unanticipated when the program was written.

Compilers and assemblers are less forgiving. Code is written,
and the source code used to produce the runtime object code.
Mistakes can only be corrected by modifying the source code and
then compiling or assembling new object code. Partially because of
this, BASIC interpreters have been the favored tool, but TRS-80
BASIC programmers have missed some of the editing and program
writing tools possible with word processors.

Unless special utility programs are used, the TRS-80 Models
I/111 and 4 rely on line-oriented editing. That is, if a change must be
made in line 40, the programmer types in EDIT 40 and makes
changes only to that one line. If a similar change must be made to
line 50 (such as changing all the PRINTSs to LPRINTS), it is neces-
sary to EDIT that line, and so on throughout the program. Making a
lot of changes to an existing program can be tedious and time-
consuming.

But wait. What if the program were loaded into the word
processor as if it were a document? Then the arrow keys could be
used to zip the cursor around the program, and changes could be
made by overtyping, global search and replace, and other powerful
features.

In truth, this screen-oriented program editing is nothing new.
Some computer systems, such as the Commodore PET, VIC-20,
Commodore 64, and even Radio Shack computers like the Model
100, use this type of editing, or some variation. With the Commo-
dore line, for example, any program line that appears on the screen
can be edited simply by placing the cursor over a character and
typing, inserting, or deleting as desired. If changes are to be
permanent, the programmer hits enter while the cursor is still on
the program line. Otherwise, (or by hitting shift RETURN) the
changes are ignored. Duplicating a program line can be ac-
complished simply by editing the line number. A copy of the line
appears under the new line number, while the old program line
remains.

With the TRS-80 Model 100, entering an edit command for a
line, or range of lines, actually causes the portable computer to
enter its TEXT mode, with each of the lines specified translated to
ASCII form for editing. In this case, however, a program line
number can be edited, but the old program line is deleted.

213

Although utilities are available to give other TRS-80s screen
editing, you probably own one aiready: your word processor. Pio-
grams can easily be loaded into Scripsit, edited, and put back on
disk. All of the programs in this book, in fact, were at least partially
edited using Scripsit.

The only “trick” to using a word processing program as a
nrogram editor is to remember to save the program from BASIC in
ASCII form. Then it will be loadable into the word processing
program. You must also take care to store the program from the WP
software in ASCII as well. With Scripsit, the syntax is “S,A
filename/ext.” If you forget this step and attempt to load the pro-
gram, only a few characters of garbage will appear on the screen.
Don’t panic. Return to the word processing program, reload the
compressed program file, and then reSAVE it in ASCIL

What can you do with a program in text form? For starters, how
about formatted listings even slicker than those produced by
Lister? The latter was provided both as an illustration and for those
who do not have a WP program. However, Scripsit was used to print
out the listings reproduced in this book. The word processing
software divided up the program lines into pages, and printed a
header at the top of each page.

By setting the window of the TRS-80s screen to the same
width as the paper being used, it was simple to scroll down through
the program text to see when lines were too long. In most pro-
grams, line breaks were chosen for clarity, and the next part of a line
indented. Scripsit was also used to add spacing betwen REMarks
and the program lines preceding and following.

Although, unlike interpreters, original code cannot be tested
by a WP program, there are advantages that make them very
desirable. Here are a few tips for using Scripsit to streamline your
program writing. Those of you with other WP programs can use
them as well, by applying the particular syntax and commands of
your favored text processor.

1) Put your most-used modules at the tips of your fingers.
Several phrases and program lines were written and encased in
blocks given unique markers. Then, when a phrase like A$ =
INKEY$:IF A$="" GOTO was needed, it was a simple matter to
type“@S@Q,” which is the Scripsit command for INSERT BLOCK.
When asked the name of the block, the letter for the desired phrase
was entered. The inserted block has no block markers and the
original block remains available for insertion in other positions.

214

Of course, it would have been simpler to write subroutines and
call these, rather than write the code over and over, even automati-
cally. But “easier” is not always as clear for someone attempting to
understand a BASIC program. So, in many cases subroutines were
avoided. Programming speed did not slow down, however, because
of the power of the word processing program.

2) Global searches, replaces, and deletions made writing the
programs in this book much easier as well. Halfway through a
program, on discovering that a variable name was ill-chosen, it was
a simple matter to replace all occurrences in a few seconds. Or,
“REM ***” could be changed to “’ ***" almost instantly. Some
program screens, written using Screen Editor, had PRINTTAB(0)
in a number of places. All the “TAB(0)” appearances could be
deleted just as quickly.

Care has to be taken when using this feature, however. A word
processor will not check to see if the string being changed is inside
quotes or not. Changing all PRINTs to LPRINT's can result in some
undesired modifications, such as LPRINT becoming LLPRINT,
or “IS YOUR PRINTER ON?” transformed into “IS YOUR
LPRINTER ON?”

3) Programs can be “cleaned up” quite easily. It is fast and
efficient to zip through a program with a word processor and touch
up sloppy coding, change all uppercase prompts to upper and lower-
case, or delete undesired spaces. After writing Tabber, I wanted to
go through some earlier programs and center prompts. However,
some program lines had prompts with (horrors!) embedded spaces:

10 PRINT “ DO YOU WANT TO:”

20 PRINT“ 1) RUN A PROGRAM”
30 PRINT “ 2) EXIT THIS PROGRAM”
40 PRINT “ ENTER CHOICE:”

While it was easy to type embedded spaces when writing the
original program, someone typing in the program from this book
would be hard-pressed to count the number of spaces needed to
properly format the lines on the screen. By replacing all PRINT ”
with '"PRINT” one space was closed up. Then, by replacing all
'PRINT” 'with simple PRINT and quotation marks, the excess
spaces inside the prompts were elminated. The PRINTAB(T)s

could then be put where needed, and Tabber did the rest.
Utilities need not stop at word processors, either. How much

215

would you pay for a program that would allow you to insert your 10
or 11 most-used subroutines into a program you are writing, at the
touch of a key? Would you like to be able to format a disk or produce
a backup copy by touching a key, or hit another to call up your word
processor, another utility, or BASIC?

There are a number of machine-language programs available
that will let you do just that. Many communications programs,
SuperScripsit, and other utilities also allow you to define keys. The
TRS-80 Model 100 supports redefining the special function keys
(butonly up to 15 characters), while the TRSDOS 6.0 supplied with
the TRS-80 Model 4 has its own keystroke multiplier capabilities.

Those who think that special function keys are best applied asa
kind of shorthand to eliminate typing in GOTO or other phrases
suffer from a failure of imagination. Programs which allow users to
define keys—a program called IRV, for example, allows keys to be
defined up to 255 characters—can be very useful in other ways.

The nice thing about general-purpose microcomputers is that
they can be custom-configured to perform specialized tasks tailored
to the exact needs of the end user. Thanks to sophisticated disk
operating systems, patches, special ROMs, and utility programs,
many features can be available on power-up or, at most, at the press
of afew keys. User-programmable special function keys can do a
great deal more than printing out a lengthy BASIC keyword.

Programmable function keys vary in their utility. Some pro-
grams allow reprogramming every key on the keyboard, while other
systems limit you to only one or two special function keys. You may
have tight limits on the number of keystrokes that can be pro-
grammed.

Many DOS functions can be compressed into several special
function keys. User-programmed keys also allow duplicating (and
improving on) other advanced DOS features with lesser operating
systems. It is possible to change the default drive number for DIR
under many types of DOS, so that every time youenter DIR you see
the directory of, say, Drive 1, instead of that of the system disk on
Drive 0. Program a key so that a shift key produces “DIR :1.” Other
keys can be programmed to provide directories of other drives—by
hitting two keys instead of seven.

Striking <shift>!on a TRS-80 can yield a COPY command,
complete with all the necessary <ENTER>s, to make a full disk
copy from Drive 1 to Drive 2. <Shift>X can produce “BOOT,”
aiiowing you to reboot the system without hitting the reset key or
typing the full word.

216

You can store several keyboard configurations with many pro-
grams. Have one setup for programming, another for operating.
While three or tour different configurations might be possible, it is
unlikely that an operator would bother to learn all those commands,
or mark the key fronts with all possible combinations.

Because some special function key programs allow multiple-
line programming, there is no reason why you can't define keys with
useful subroutines, which can then be added to your program at a
single stroke. For example, you can build the routine shown in Fig.
18-1 into a key program.

These two subroutines, because they total less than 255
characters, can be loaded into a single programmable key with a
program such as IRV. Then, when writing code that requires an
all-purpose disk 1/0 routine, simply hit <shift>>W and the above
lines will appear. By keeping the main program line numbers less
than 10000, the appending is automatic. If necessary, the standard
subroutines can be edited, renumbered, or moved as required.
Subroutines aren’t the only programs that can be entered as key
definitions. Any short program can be stored, such as your gas-
mileage calculator, a binary/decimal/hex converter, or a program
that prints out a frequently used expense report.

Or, try this program for one key:

10000 A3$=INKEY$:IF A$="" GOTO 10000

10100 INPUT A:B=B+A:PRINT B:GOTO 10100

10200 FOR N=32 TO 191:PRINT N;* .)”; CHR$(N);*
“ 7.:NEXT N:STOP

10000 OPEN "O",1,F$
10100 PRINT #1,NI

10200 FOR N =1 TO NI
10330 PRINT #1,DAS(N);","
10400 NEXT N

10500 CLOSE 1 Fig. 18-1. Example of function-key
10600 RETURN subroutines.

10700 OPEN “I".1,F$
10800 INPUT #1,NI
10900 FOR N=1 TO NI
11000 INPUT #1,DAS$(N)

11100 NEXT N
11200 CLOSE 1

11300 RETURN

217

By hitting the appropriate key, you can call up three or more
short programs that can be accessed by typing RUN 10100, etc.
Line 10000 is an input line that can be included anywhere in your
program. It serves as an example of typical much-used lines that can
be drawn from a stock library. Line 10100 simulates an adding
machine whenever a series of quick calculations are needed and you
require subtotals, or you don’t want to use your computer’s coiii-
mand mode. Line 10200 provides a quick listing of alphanumerics
and graphics, along with their applicable CHR$ codes for ready
access.

User-programmable keys are truly the programmer’s friend.
Do you frequently renumber your programs during writing to make
additional room between lines? Program a key to yield “RENUM
10,10 <ENTER>" (or whatever syntax your BASIC uses)
whenever you strike it. Another key could produce a REF variable
cross reference listing.

Your uses are limited only by the number of keys available for
programming. Having a key produce CMD"DIR” would be the
equivalent of the F1 (FILES) special function key on the Model 100.
You can come up with other applications not suggested here.

As aprogram is developed, it is good practice to save the work
in progress periodically, either to cassette or disk. Should a power
failure occur, hours of work are not lost. With disk-based systems,
backups are much easier—so simple, in fact, that many program-
mers end a session, look at the working disk’s directory, and see 10
or more versions of a program tucked away. This system works
fine, but few of us can remember what we called the last version.
Either we invoke a SYSTEM or CMD “DIR” to check, or play it safe
and skip a number or two.

Here’s a short program for disk users that can be appended to
the end of any program you are working on, and used to automati-
cally SAVE an updated version of a program under an appropriate
filename. To use it, remember to turn on your CLOCK. Then, by
typing GOTO 30000 at any point during program development, the
module will collect the current TIMES$, extract the hour and
minutes, and use that to make the filename.

30000 B$=TIME$:H$=MID$(B$,10,2)
30010 M$=MID$(B$.13,2)

30020 F$="PROG”+H$+M$

30030 SAVE F$

218

Save this in ASCII form on your disk, and then APPEND or
MERGE it to any program you choose (as long as it does not have
line numbers which conflict). You may want to EDIT line 30020,
replacing the string “PROG” with any four letters that are more
meaningful for the program you are developing. If you want to back
up the program to two (or more) disk drives automatically, add the
following lines:

30025 F1$=F$+" :1":F2$=Fg+" :2"
30035 SAVE F1$:SAVE F2$

These two short examples are just two of the utilities you can
write yourself to make your programming easier. This book should
have given you ideas for many others. The goal of the automatic
TRS-80 is to let the computer do all the work, and the programmer
do all the creating.

219

Appendix

Converting Model Il
to the Model 4

| Programs

One of the strongest advantages of purchasing a TRS-80 has been
the high degree of compatibility of all the computers in the line, at
least in the area of BASIC programming. If one avoids exotic file
types, such as those added by NEWDOS/80, and obscure com-
mands that aren’t needed for most applications, the same Disk
BASIC programs written for the TRS-80 Model I in the late 1970s
can be used with the Model 4 of the mid-1980s. All such programs
can be used on the Model 4 in Model III mode; many will be
compatible in Model 4 configuration as well.

This is also true for the programs in this book. They will run
as-is on Model I/III computers, or the Model 4 emulating a Model
I1I. All but a few can easily be converted to operate under TRSDOS
6.0 in full-fledged Model 4 mode. Here are a few tips on making the
conversion.

Model III and Model 4 BASICs are very similar in many
respects. However, there is a difference in the way the two com-
puters handle video displays. Models I and III both store informa-
tion about what is displayed on the screen in 1,024 memory loca-
tions, beginning at 15360. Two of the programs, Screen Editor and
Visual Maker, prepare program lines based on what has been
written to the screen by the user. These two cannot easily be
transferred over to the Model 4 mode. However, both can be used
with Model 4 computers in Model III mode, and the resulting
programs transferred to Model 4 TRSDOS disks.

220

Two other programs, Error Trapper and Chain Zapper, are
fairly specific for the disk operating systems of Models I and III. All
the other programs can and have been transferred to a Model 4
computer, and with only a few changes, successfully run.

Because of the scarcity of Model 4 software, most purchasers
of the computer will also have access to a Model III operating
system such as TRSDOS 1.3, NEWDOS/80, LDOS, DOSPLUS,
MULTIDOS, or a compatible system. Others might have a Model I
computer, with the Model 4 as a second, or replacement unit.

Such users might find it convenient to enter the programs in
the alternate mode, so they can be tested and compared with the
program listings in the book before conversion. Having a Model I1I
operating system will also allow full use of the two programs which
do not convert easily.

Once you have the programs on a Model I or Model ITI disk, it is
necessary to save them in ASCII form. Then load the TRSDOS 6.0
disk. If only the two built-in drives are available, it may be most
convenient to KILL extra files on the TRSDOS disk, to leave room
to transfer programs. With a Model 1 disk in Drive 1, simply type
REPAIR 1. This will make the necessary changes to the single
density Model 1 disk so that TRSDOS 6.0 can read it. Copy all the
files from the Model I disk to the TRSDOS 6.0 disk.

If the programs are on a TRSDOS 1.3 disk, the correct com-
mand is CONV :1 :0 (VIS,Q=N). Because NEWDOS/80 allows
changing the disk directory starting “lump,” the directories of
NEWDOS/80 Model I and Model III disks can differ from those of
TRSDOS 1.3. The PDRIVE specifications can vary widely as well.
The most foolproof way I have found when using NEWDOS/80 is
simply to put the programs on a single density Model I formatted
disk, and load into the Model 4 using REPAIR. For both Model I and
Model III, the NEWDOS/80 PDRIVE should be set to TI=A
TD=A. :

Once the program is deposited on a Model 4 disk, I recommend
going to BASIC and loading “GLOBAL” first of all. Check through
the program to make sure that there is a space between “PRINT”
and “TAB,” and “LINE” and “INPUT.” That, and the necessity to
make sure that THEN is always included in IF statements, are the
only changes necessary to all the rest of the programs. By checking
over Global Replacer first, you can use it to process all of the other
programs automatically. We told you that the TRS-80 would do all of
the work.

Next, do as outlined above. Run Global Replacer on each of the

221

other programs. Because Model 4 BASIC allows long variable
names, the spaces between variables and keywords are #0¢ op-
tional. If you happened to leave out spaces while typing in programs
from the book, the programs will test OK in Model IIl mode, but will
not operate under the Model 4 operating system. Global Replacer
can SEARCH for each occurrence of PRINTTAB and replace it with

PRINT TAB. It will do the same with LINEINPUT and LINE
INPUT. Then run the programs to see how they work. In most
cases, all will be fairly well.

Small syntax errors may appear. In Model I/1Il BASIC, a
statement like “IF N=2 PRINT “N=2" is perfectly legal. Many of
us who have been using these computers for long periods will leave
out the THEN, even if it appears in a program listing. The Model 4
requires THEN. If a Syntax Error appears in a line containing IF,
look to make sure that THEN is in the proper place.

Another typical problem will be in long variable names. Under
Model 17111 BASIC, only the first two characters are significant.
The Model 4 allows up to 40 characters. Those accustomed to the
earlier Radio Shack computers sometimes get sloppy and ab-
breviate variable names to only two characters in some places, but
use longer names in others.

Look at Translator in Chapter 16. The variable array SPAN$(n)
is defined, but under the Model I/1II mode it can be referred to as
SP$(n), as it is. However, the Model 4 will see those as two
different arrays. Check your programs carefully to make sure that
some of the longer variable names have not been misspelled or
changed from place to place in the programs.

CLEAR is used to allocate string space in the TRS-80 Model
I/1II computers. With the Model 4 such space is allocated dynami-
cally, so this statement clears the value of all variables and closes all
OPEN files (like RUN). It can also be used to set the highest
memory location for BASIC, and the amount of stack space. Since
none of these functions are required for the programs in this book,
you can DELETE the CLEAR statements if you wish.

ROW, which is sometimes used as a counter for two dimen-
sional arrays (e.g., ADDRESS$(ROW,COL)) is actually a keyword
under Model 4 BASIC. ROW(y) returns the row position of the
cursor. A few other words which could safely be used as variables
with the Model I/III are implemented as statements in the Model 4.
- These include SWAP, WAIT, WHILE, WEND, and WRITE. Extra
operators, such as MOD, are provided as well. None are used inany
of the programs in this book.

222

Because screen displays are 80 columns in the Model 4, and
only 64 columns in the Model I/I1I, a different arrangement may
appear in some programs. Most programs with PRINTTAB(n) will
operate just fine, but the tabbing will not center the text on the
screen. There will be extra space at the right side. This is no great
problem. If you wish, you can go through the programs and substi-
tute PRINTTAB(T) for those prompts you would like centered.
Then run Tabber on the target program.

Programs using PRINT@will definitely cause strange screens.
PRINT @ works with the Model 4, but the locations are different.
You may have to fiddle with the few PRINT@statements to come up
with new locations which look better.

Some changes will have to be made to Menu Master to account
for the differences in your operating systems. The program calls
various DOS functions, using NEWDOS/80 syntax. Instead of
CMD“DIR” you will want to use SYSTEM“DIR” under TRSDOS
6.0. Use BACKUP instead of COPY, DEVICE instead of PDRIVE
or SYSTEM, and make other changes as desired.

223

index

A
ALISTE (list) command, 182
Apparat, Inc., 180
Applications generators, 1
Arrow keys, ASCII codes for, 45
ASCII, 2
AYUDA (help) command, 183

B
BASIC, compatible file types of, 1
BASIC, Hispanic, 181
BASIC, limitations of, 181
BASIC, Model Ill vs Model 4, 220

c

Chain file, 173
CLEAR statement, 81, 202, 222
CMD"0O" command, NEWDOS/80,

201
Command, sort, 201
Commodore computers, 213
Compiler, Microsoft BASIC, 42
Compiler, pseudo-, 181
Compilers, error correction using, 213
CONV command, 221
CORRA command, 182
Cottage Software, 85

B
Database management program, 60
Default values, establishing, 15
Delimiters, common, 87

224

Delimiters, string, 7, 134

DFS function, NEWDOS/80, 174
Documentation, software, 22
DOSPLUS, 221

E
Editing, line-oriented, 213
Editing, screen-oriented, 213
Editors, text, 212
EOF marker, 7
Error messages, Disk BASIC, 157
Error messages, Level Il BASIC, 157
Errors, causes of, 84
Error trapping, 157
ERR variable, 171

F
File, chain, 173
File format, ASCHI, 2
File format, non-compressed, 2
File format, tokenized, 2
FILE NOT FOUND error, 172
“Fog index", 200
Frames, graphic, 112
Frames, text, 112
Function keys, defining, 216
Function keys, utility of, 216

G
“Garbage collection”, 201

i
“Hot zone", 23

I
ILLEGAL DIRECT error, 171
ILLEGAL FUNCTION CALL error, 171
INKEYS$ loop, 29, 111, 140
Input routines, menu, 35
Interpreters, advantages of, 212
Interrupt, error trapping, 171

K
Keys, function, 216

LDOS, 221

Leading spaces, elimination of, 44

Loop, INKEYS, 29, 45

Loop, strobing, 29

Lowercase letters, ASCH codes for,
140

Marker, EOF, 7

Menu, all-purpose, 139

Menu, letter-oriented, 35

Menu, numeric, 35

Menu input routines, 35
Microsoft BASIC Compiler, 42
Model 4, speed capability of, 202
MOD operator, Model 4, 222
MULTIDOS, 221

N
Names, variable, 85
NEWDOS/80, 85, 173, 220
NEXT WITHOUT FOR error, 157
NUEVO (new) command, 182
Null string, 29, 87

0
ON ERROR GOTO statement, 171
OUT OF DATA error, 171
OUT statement, Model 4, 202

P

PACKER (utility program), 85
Parsing, 29
PDRIVE specification, 221
PEEK function, 56, 132
POKE statement, 56
PRINT @ statement, incompatibility of,

223
Program, database management, 60
Program, functional definition of, 57
Programming, modular, 60
Programming, structured, 60
Programs, spelling checker, 84
Pseudo-compiler, 181

R
REDO FROM START message, 36
REM, abbreviation for, 8
REPAIR function, 221
RESUME statement, 172

S
SAVE command, “A” option, 3
Scripsit, 2
Scripsit, SAVE syntax for, 214
Scripsit, using, 214
Slide show, 112
Software, difficulty of, documentation
22
Spelling checkers, 84
String, null, 29, 87
Strobing loop, 29
SuperScripsit, 216
SUPERZAP, NEWDOS/80, 174
SWAP statement, Model 4, 222

T
TAB(T) routine, 34
Text editors, 212
THEN statement, omitting, 222
Tokenization, BASIC, 2
Trailing spaces, elimination of, 44
TRS-80 Model 100, 213

v
VAL function, 81
Values, default, 15
Variable names, significant charac-
ters of, 85
Variables, DB Starter program, 61
Variables, defined as integers, 202
Variables, Documenter program, 23
Variables, ERR, 171
Variables, Global Replacer program,
135
Variables, Instructions program, 101
Variables, Lister program, 153
Variables, Menu Master program, 141
Variables, Program Proofer program,
86
Variables, Program Titler program, 16
Variables, REM-over program, 10
Variables, Screen Editor program, 45
Variables, Show Assembler program,
113
Variables, Tabber program, 37
Variables, Translator program, 183
Variables, Visual Maker program, 113
Variables, Word Counter program, 3
Video memory, starting address of,
220

225

w Word delimiters, 203

WAIT statement, Modei 4, 222 Word processor, ulility of, 212
WHILE-WEND statement, Model 4, WRITE statement, Model 4, 222
222
Word, functional definition of, 7 2
Word, standard size of, 7 ZAP, NEWDOS/80, 173
226

Edited by Steven Moore.

Teach Your TRS-80™ to Program ltself!

If you are intrigued with the possibilities of the programs included in
Teach Your TRS-80™ to Program lItseif (TAB BOOK No.) 1798, you
should definitely consider having the ready-to-run disk containing the
software applications. This software is guaranteed free of manufac-
turer's defects. (If you have any probiems, return the disk within 30
days, and we'll send you a new one.) Not only will you save the time and
effort of typing the programs, the disk eliminates the possibility of errors
that can prevent the programs from functioning. Interested?

Available on 40-track double-density disk for Radio Shack TRS-80
Models lll and 4, with 48 K and two disk drives at $19.95 for each disk
plus $1.00 each shipping and handling.

I'm interestedin the ready-to-run disk for Teach Your TRS-80™ tofl
B Program ltself. Send me: ‘

E —_— disk for TRS-80 Models 1ll, and 4, 48K (60518)
— TAB BOOKS catalog

- Check/Money Order enclosed for $——__

B plus $1.00shipping and handling for each disk ordered

VISA — MasterCard

IAccount No. . Expires

E Name

|
Address
]

E City State Zip

] Signature

Mail To: TAB BOOKS INC.
P.O. Box 40
Blue Ridge Summit, PA 17214

(Pa. Add 6% sales tax. Orders outside U.S. must be prepared with international money orders in
U.S. dollars.)

TAB 1798 l
R SRR) R T B [() YR N R O T S O)) RN (PR A ey

227

Teach Your TRS-80™ to Program Itself!

by David Busch

Why spend hours writing program code when your TRS-80 can
do it foryou? It'strue . . . using the 16 programs included in this unique
guide, your TRS-80 Model |, lll, or 4 can generate ASCII files that can
be loaded and run as programs.

Here is everything you need to put your TRS-80 to work compos-
iIng subroutines, completing programs, setting TABs, or giving existing
software new capabilities and power. Each program is fully explained
and is readily adaptable to most TRS-80s.

Let “Visual Maker” design a custom “slide” to appear on the
screen of your TRS-80, using graphics and alphanumeric characters.
You decide how long the “slide” should be displayed, add more
“slides” and soon your TRS-80 will write complete BASIC programs to
display the “slides” as you requested! Want to center your screen
output for prompts and other messages? Tabber can do it for you,
quickly and easily.

All the groundwork for producing “user friendly” programs with
title screens, menus, and on-screen directions that are centered and
polished-looking can be done by the programs in this book. Think of
the time you can save using “Proofer’ to find your misspelled
keywords, mismatched parentheses, and other errors before you run
a program!

If you're abeginning programmer, “Error Message ' can't be beat.
It will locate your errors, plus, detail exactly what the problem is and
give you tips for tracking down every bug!

If you write programs to sell, this guide will save you countless
hours of programming. (In fact, the author used some of these pro-
grams to write other programs included in this guide.) Similarly, you
can take ideas and suggestions here and develop programs of your
own that will streamline your BASIC development work.

The possibilities are virtually unlimited once you put these in-
novative programs to use. Whether you're a novice or an experienced
programmer, this invaluable guide is guaranteed to save you hours of
time on every program you write.

David Busch has been involved in the computer industry since
1974 as a reporter, computerist, and author of more than 300 articles
and seven books on computer-related topics.

‘TAB\ TAB BOOKS Inc.
Blue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

FPT > s$11.350 ISBN 0-830k-179é8-1

PRICES HIGHER IN CANADA 1095-0784

