Cat. No. 62-2067 Ten Dollars and Nmety Fwe Cents
® & &
MAOUQIO ¢ I QTR

Programming
- in Style

Tns-aow

S

By Thomas Dwyer
and Margot Critchfield

v

. ®._ 3JJA)S Ul bulwweiboid 08-SH1L |

An inventive, idea-oriented approach to creative programming for those who
have mastered the fundamentals of Level 1l BASIC . .. Chock full of program
and programming ideas!

A

PROGRAMMING
IN SYTLE

Thomas Dwyer
Margot Critchfield

University of Pittsburgh

lllustrations by

Margot Critchfield

RADIO SHACK
A Division of Tandy Corp.
Ft. Worth, Texas 76102

PROGRAMMING
IN STYLE

The authors of the programs provided with this book have carefully
reviewed them to ensure their performance in accordance with the
specifications described in the book. Neither the authors nor BYTE
Publications Inc, however, make any warranties whatever concerning
the programs, and assume no responsibility or liability of any kind for
errors in the programs or for the consequences of any such errors. The
programs are the sole property of the authors and have been registered
with the United States Copyright Office.

Dwyer, Thomas A 1923-
You just bought a personal what?

Includes index.

1. Minicomputers. 2. Microcomputers. 3. Mini-
computers--Programming. 4. Microcomputers--Programming.
1. Critchfield, Margot, joint author. II. Title.
QA76.5.D96 001.64'04 80-14410
ISBN 0-07-018492-5

Copyright © 1980 by Thomas Dwyer. All Rights Reserved. No part of
this book may be translated or reproduced in any form without the prior
written consent of Thomas Dwyer.

ISBN 0-07-018492-5

1.5

CONTENTS

Preface wvii

LEARN COMPUTER PROGRAMMING AT HOME

1.0 Introduction 3 1.1 Computer Hardware Plus Software: The New
Cybernetic Clay. BONJOUR 5 1.2 HYACINTH: The World's Shortest
Impressive BASIC program. GUTENTAG. GOTCHA 12 1.3 More about
BASIC. PRINTPI, FIELDS, SURVEY. RICHQUIK 19 1.4 How to Feed Data
to a Computer. INPUT, HEIGHT, CARPET1. CARPET2, READDATA.
GROCERY1. GROCERY2, (ENERGY) 23 1.5 Decision Making in Pro-
grams; Flowcharts. VOTER, RETIRE, ANSWER 29 1.6 Computer Loops
and Arrays. DRILL, SQCUBE. GOWRONG1, GOWRONG2, GOWRONGS3,
SALEDATA., ICECREAM. DOGSALES, DOGDAYS 34 1.7 Processing
Words. FAMOUS, SAM, POEM, APRIL1I 43 1.8 Built-in Functions in
BASIC. DICE, CRAPS. TABGRAPH 47 1.9 Other Features of BASIC.
STARS. FANCY. THROW A PARTY 51 Exercises 55 Sources of Further
Information 57

STRUCTURED PROGRAMMING FOR BEGINNERS: INTRODUCING THE
FORMAT FOR THE REST OF THE BOOK 59

PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT 65

2.0 Introduction: Computers, Games, and Learning 65 2.1 Simple Number
Games. ARITH, DATARITH, DATARIT2, DATARIT3. DATARIT4,
RNDARITH, MULT. VARIETY1, VARIETY2, SQROOT 67 2.2 Time Out
to Learn Some Extended BASIC. LRDEMO, VALDEMO, ASCDEMO,
PRUDEMO, BUGPROG, OKPROG 76 2.3 Finding Your Way around
Number Land. GUESS1, GUESS2, SRCH1, SRCH2 SRCH3 86 2.4 Word
Games. SCRAM1, SCRAM2, SCRAM3. CIPHER 96 2.5 Space Games.
BABYQ, BABYZAP 122 2.6 Games and Graphics. SETPLOT, TRIGPIX,
ARROW?2, (ELBLASTO) 137 Exercises 142 Sources of Further Information
143

vi

GETTING SERIOUS: HOME FINANCE AND BUSINESS
PROGRAMS 145

3.0 Introduction 145 3.1 What's Possible? The World of Data Process-

ing 147 3.2 Simple Finance Programs. LOAN1, SAVE, LOAN2, AMORT,
FINANCE, FINAN2 149 3.3 Data Based Business Applications 163 3.4
Small Data Based Programs. ESTIMATE, (CATERER) 164 3.5 Screen-
Oriented Transactions. SALESLIP, HARDSALE 169 3.6 Data Based Finan-
cial Reports, MONEY, MONEY2 (CHECKBAL) 176 Exercises 189 Sources of

Further Information 190

HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER
SYSTEM 193

4.0 Introduction 193 4.1 Why More Equipment? Examples of What's
Possible 195 4.2 Adding Hard Copy. MONYLIST, TAXRPT. SNAP-
SHOT 199 4.3 Adding Disk Storage. FILEBOX, FILEDEMO. FILEBOX2,
FILEBOX3. HASHDEMO. (HASHFILE), (MONEYDISK) 210 4.4 Word Pro
cessing and Linked Lists. EDIT1000, EDIT2000 230 4.5 Machine Language
Anyone? MLDEMO 242 4.6 Should You Invest in a Business Microcom-
puter? EDIT5000. (EDIT7000). (TEXTFORM) Sources of Further Information
250

SOFTWARE CITY: SOLUTIONS TO THE PROJECTS 253
APPENDIX A. SUMMARY OF EXTENDED BASIC 319
APPENDIX B. ASCII CODES 337

INDEX 341

PREFACE

The new low-cost microcomputers for homes, schools, and businesses are
shaking up our ideas about computing. They are also a lot of fun.

This is a book for anyone who would like to know more about what
these machines can do, and how to make them do it. It's a collection of
practical ideas for using a personal computer at home or at work, together
with information on how to develop innovative uses of your own.

The key word here is innovative. The real magic of computing is that
even a beginner can improve on the work of others. Our goal is to show
you how, using a structured approach to developing creative applications.
“Structured” means based on a discipline that will steer you around most
of the pitfalls of do-it-yourself programming. “Creative” means going
beyond what's been done, flavoring all your ideas with a sprinkling of
imagination.

We'd also like to convince you that while the road to imaginative
computing can be a challenging one, it's less difficult to navigate than
many imagine. People of all ages and backgrounds are proving this every
day. In different ways and at different levels, of course, but that’'s what
makes the whole thing so interesting.

In particular, there are two flexible options available to any begin-
ning computer user. The first (we'll call it plan A) is for the person who
wants to put a computer to work right away, building on application ideas
and techniques developed by someone else. Plan A means you not only
buy a computer, but you also buy the “intelligence” it needs to operate.
You do this by purchasing pre-written computer programs. These are sets
of instructions for controlling the actions of the machine. They come in
printed form (like this book), or on magnetic tapes and disks. Computer
programs are often referred to collectively as “computer software.” Using
computer software prepared by someone else is something like using
prerecorded music on your hi-fi: easy, pleasurable, and educational, but
not directly connected with the creative side of things.

The second option (plan B) is to “learn computer programming at
home.” The idea is to find out how to write your own software. This takes
more patience and perseverance, and (like learning to make your own

vii

viii

music) the results may not be very professional at first. Yet those who
choose this option and succeed even mildly claim that it's “like nothing
I've ever experienced—totally fascinating.”

This book is for personal computer users interested in either plan. To
make it a plan A book, you can copy any of the programs we show in the
text (or answer section) into your computer “as is,” and have fun using it.
Most of the programs have been written in Microsoft extended BASIC,
using a Radio Shack TRS-80 computer. However, we've also included in-
formation showing how to translate some of the extended features of this
BASIC into “minimal” BASIC.

To follow plan B, you'll want to use the book’s programs, text, and
self-study projects as stepping stones to writing your own programs. This
approach will take more time, and only you will know if it was worth the
effort. But one thing is certain: Even if you decide to go back to plan A,
buying most of your programs from others, your experience with pro-
gramming will have made you a more discerning software consumer.

The real payoff to mastering a personal computer, whether done with
your own or someone else’s programs, is the sense of intellectual satisfac-
tion you'll eventually experience. This isn't easy to describe, but when it
finally all comes together, you'll know. It will probably happen on the
same day you decide that investing in a personal computer was a pretty
good idea after all.

NOTE ON THE PROGRAMS IN THIS BOOK

Each of the working programs we’ll present has been given a unique “file
name.” File names printed in capital letters (for example DICE, GUESSI, or
SALESLIP) refer to.computer programs that appear in the explanatory part
of the book (Chapters 1-4). The techniques used to design as well as write
these programs are also explained. Readers are encouraged to try their
hands at using similar techniques to design their own programs.

In addition, there are a number of program ideas first presented as self-
study projects. These are indicated by names in italicized capital letters (for
example RNDARITH, SCRAM3, or MONEY2). These programs are left in-
complete in the front of the book so you can practice filling in the details.
However, sample solutions in the form of complete listings are given in
Chapter 5 {Software City).

For readers who want to go beyond the projects, we've inciuded a
number of superprojects. Solutions for these are not given in the book, so
they would make good course projects in schools. Superprojects are indi-
cated by italicized capital letters in parentheses-—for example (CATERER),
or (EDIT7000).

The programs and project solutions for the first three chapters were
written in TRS-80 (Microsoft) Level Il BASIC. Chapter 4 programs and pro-
ject solutions were written in the disk-extended form of this BASIC. Infor-
mation on converting some of the features of Level Il to minimal BASIC can
be found in section 2.2.

PROGRAMMING
IN STYLE

—

, NS
ol MM/V///fW/ f\/w/wm./mww
T A A Ry
wwvwwvww%%%j M%w./@ L) S
PR TR R i~y <=

> P RE RS -
EEEeah 7&,%) %MMW aRa)
TSP S mnwrﬂwnmn g ,CMAW%\ <A

AT MM N7 aaed
P = %/”Mm I qwk nMJ 5 A \J
el o \(ARREES —)<
vm fﬁwur,wﬁ/ memmnﬂ Tut\v M[ﬁﬂ,i
Vf\ QC../..;i 2. AAAAAMM W = LTA
5 W=k L
s Y O

So sy

L=t ¢ RYu S SUngie s poenst SRRy - o T it = et — el = et o - e

LEARN COMPUTER
PROGRAMMING

AT HOME

1.0 INTRODUCTION

The start of the computer age is usually given as 1946, the year the
pioneering ENIAC digital computer produced its first useful results. If the
scientists of that day had predicted that within one generation there would
be hundreds of thousands of far more powerful machines in the homes of
ordinary people, they would have been labeled as impossible dreamers. If
only ten years ago it had been claimed that several million copies of books
on the technical aspects of computing would find their way into these
same homes, most publishers would have dismissed the number as totally
unrealistic.

That such predictions would have been right on target is now a mat-
ter of record. The wide, wild and woolly world of personal computing is
expanding rapidly, and where it will stop nobody knows.

If you have just joined the festivities, or even if you are only thinking
about it, one of the questions you are undoubtedly asking is “What's per-
sonal computing really like?”

Part of the answer is that it’s lots of fun. But there are also overtones
of mystery and magic, with dozens of unknowns to be fearlessly faced.

3

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

Not the least of these is an avalanche of new jargon that sounds like
dialogue from the space-saloon scene in a science fiction movie.

BEEP! -+ BLEPLEEP
—rme e CPU X9
BREPL 48K RAM----
16 K ROM, XYZ BUS

GAZ RS-232-C _Jg(7)dx
GLIZAGLAF -+~ LI'F’IO) 2S5I0

it ‘
- {S\ ;

}

The obvious follow-up question to ask is “How much of this technical
double-talk do I have to unravel before I can buy and use a computer in-
telligently?” The answer is “Surprisingly little.” Let’s see why.

The mysteries of computing can be lumped into two big categories
called hardware and software. In this chapter we'll start by briefly describ-
ing the hardware part. We'll then switch over to the software area, and
spend most of our time there. Our game plan will be something like that of
the flight instructor who tells you a little about the mechanical side of your
airplane (the hardware), but who then spends most of the days ahead
showing you how to fly it. Later on, after you have a good feel for what
your machine can do, you can return to a more profitable study of the
hardware and how it works.

Learning “how to fly” in the world of computing translates into learn-
ing how to write good programs. This can be an expensive skill to acquire,
as the thousands of people who enroll in computer programming schools
each year can testify. A personal computer makes an excellent tool for
those who'd rather learn about programming on their own. The bonus is
that the hardware you buy to learn programming has many other applica-
tions. Chapters 2, 3 and 4 will look at some of these, while continuing to
teach the principles of good programming by example.

The best way to learn computer programming is to write pro-
grams—Iots of them. The programs in the first half of this chapter are
short enough to be tried in one sitting. Even if you've written programs
before, it will be worth trying them as warm-up exercises. Things get more
challenging after section 1.5 and that’s when you can expect to burn more
midnight oil than usual. When you get to the end of this chapter, you will
have covered about as much material as is given in a first college course.
The last project (Throw A Party) will probably seem like a good idea by
then.

Section 1.1 Computer Hardware Plus Software: The New Cybernetic Clay 5

1.1 COMPUTER HARDWARE PLUS SOFTWARE: THE NEW

CYBERNETIC CLAY

=

&
&

//\._.»

Let’s assume that with the help of friends, a knowledgeable salesperson,
and lots of reading, you've finally selected a computer. The big question
now is what will it do after you bring it home and set it up.

The answer is “Nothing special.” Of course you knew this, and before
the rest of the family has a chance to send your computer, (and possibly
you) back for a refund, you intend adding the software needed to make
things start happening.

Software is a word that refers in a general way to sets of computer in-
structions called computer programs. Without programs, computer hard-
ware can be thought of as a kind of “cybernetic clay,” waiting to be mold-
ed into any one of countless shapes. It's the programmer who makes this
happen, and it's with good reason that the process is often called “the art
of computer programming.”

Software is a coined word, so you won't find any Latin or Greek
roots for it in the dictionary. It was invented by computer people to mean
“the complement of hardware.” This explains why the spelling “softwear”
— which has appeared in print — is incorrect; there's no connection be-
tween computer programs and cashmere sweaters.

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

Software is an intriguing thing. You can't touch it, or bolt it to the
computer mainframe the way you can electronic circuit cards. Engineers
can electronically store software in silicon chips, at which time it’s often
called firmware. But such chips are just particular realizations of a much
more general concept. The essence of software is that it represents ideas of
far greater complexity than found in any one physical device. It's a pro-
duct of our minds much more than our hands.

Now for a remarkable surprise. Despite the fact that software is a
somewhat abstract, intangible thing, the majority of beginners can learn
to create and use it. This is not true of hardware. The reason is that one
can learn to write programs by trying things. Nothing will be hurt by ex-
perimentation. If you make a wrong connection in hardware, however,
there’s a good chance that some expensive parts will go up in smoke.

Kinds of Software

~ Ll Computer programs fall into one of two general categories: system soft-
ware and application software. System software is usually supplied with
the computer, and it consists of computer programs that help you use the
machine itself. The most valuable system program supplied with
microcomputers today is what's called a BASIC interpreter. This is a pro-
gram that helps you write other programs called application software.

COMPUTER'S MEMORY

OUTPUT

BASIC
INTERPRETER

COMPUTER’'S
CENTRAL)
PROCESSING)

UNIT

YOUR
APPLICATION

PROGRAM

WRITTEN
IN BASIC

KEYBUARD =V

The term application software refers to those programs that help you
use the computer for specific tasks. For example, business application pro-
grams are really sets of instructions that show the computer how to keep
inventory records, update accounts receivable, print payroll checks, and

Section 1.1 Computer Hardware Plus Software: The New Cybernetic Clay 7

so on. For schools, application programs might focus on helping students
handle problems in science and math, or on exploring ideas that go
beyond textbook problems. For a scientist, application programs include
simulations, gathering of lab data, analysis of experiments, modeling, and
complex computations. Actually, all the programs in this book are ap-
plication programs. Some are fun, some are serious. As you'll see, the
range is almost limitless.

An Example

Let's do a run-through of what it's like to actually use a personal com-
puter. The hardware we'll use is shown in the photo. There are many
other makes of computers that work in a similar manner. If you're trying
any of these ideas on a different machine, you'll want to use the reference
manual that comes with it to clarify any differences in operating pro-
cedures.

The Radio Shack TRS-80 model I computer consists of a keyboard unit that also
contains the computer’s memory and processing circuits, a video display for
showing output, and a cassette tape recorder for saving programs. An extended
BASIC interpreter is stored in “read only memory” (also inside the keyboard
case), and it's ready for use as soon as the machine is turned on.

As the photo shows, our computer has a keyboard for input, a TV-
like screen for output, and a cassette tape machine for storage. What you

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

can't see in the photo are the electronic memory and processing circuits
which are on compact circuit boards inside the computer case.

To use a personal computer for a given purpose—say, to play a game
or balance a checking account—there are four steps to follow:

1. Get the machine ready.

2. Feed in the instructions that explain what you want done. This is
called entering or loading the program.

3. Command the computer to carry out these instructions and give
you whatever output (answers) are expected.

4. Shut the machine down.

For most machines, step 1 is really easy. All you do is put the plug in
the wall and push a few buttons to “on.” After a few seconds warm-up the
word READY, or a similar prompting message, will appear on the screen.
This means the machine is ready to accept instructions, so go on to step 2.

You can enter instructions into the computer in one of two ways. You
can either load them from a tape cassette (or disk) on which they were
previously recorded, or you can type them in at the keyboard. Let’s look
at an example of step 2 where the instructions are typed in from the
keyboard.

We'll type in a program that has four lines of instructions. Each line is
called a statement, and it's written with a kind of code called a computer
language. The most common computer language used on personal com-
puters is called BASIC (short for Beginner's All-purpose Symbolic Instruc-
tion Code).

Here's what the user sees after typing in the four BASIC statements labeled 10, 20,
30, and 40. These make up a BASIC program which has been stored in the com-
puter’s memory, but which has not yet been executed (run).

Section 1.1 Computer Hardware Plus Software: The New Cybernetic Clay 9

Notice in the above photo that the machine prompts you for each
new line with the symbol > . You type everything after this symbol. You
also press the ENTER key (on other machines this may be called
something else, such as RETURN) at the end of each line to get a new
prompting symbol on the next line.

We won't explain exactly what these four lines of BASIC mean (that's
coming). However, you can get a pretty good idea of what this program
tells the computer to do by going to the next step and running it.

Step 3 is easy. To run, or execute, a program, you simply type RUN,
and press the ENTER key. Watch what happens:

NEMORY SIZE?

RADIO SHACK LEVEL 11 BSIC
MBFRK=1T05 ‘
528 PRINT TAB(KY; “BON.OUR"

538 NEXT K :

»48 END

After typing in the BASIC program, the programmer next typed RUN, and press-
ed the ENTER key. The machine immediately executed (carried out) the BASIC
instructions. In this example, the instructions were to print the word
“BONJOUR" five times, moving it over ("tabbing” it) 1 space the first time, 2
spaces the second time, and so on up to 5 spaces for the fifth time.

As you can see, our program told the computer to print the phrase
“BONJOUR” five times, but to TAB (move horizontally) over a little bit
each time. It's a silly program, but it illustrates the technique for entering
and running all BASIC programs, no matter how complicated.

The fourth step is also easy, at least if you don't want to save your
program. You simply turn all the units off. However, this will cause your
program to disappear. If you want to save it for future use you must first
copy it onto tape or disk. To do this on most machines, you first put a
blank tape in the cassette machine. Then you type CSAVE, meaning

10

CHAPTER1 LEARN COMPUTER PROGRAMMING AT HOME

cassette save, start the tape machine recording, and press ENTER. When
the computer prints READY, or an equivalent statement, you'll know
your program is saved, and you can go ahead with turning everything off.
The next time you want to use this program, it can be read from the tape
by typing the command CLOAD, starting the tape machine, and then
pressing ENTER.

BASIC programs can be saved by recording them on tape cassettes. The pro-

grams can then be “loaded” directly from the tape at a later date with no need to
re-type the BASIC statements. Tapes should be kept away from magnetic fields
(including those around power supplies, TV sets, power cords, and motors).

Section 1.1 Computer Hardware Plus Software: The New Cybernetic Clay 11

Magnetic disks can also be used to save programs and other information. The
minidisk shown here is actually a circular piece of flexible (floppy) plastic inside
the 5Y4 inch square jacket you see. After it's placed in the disk drive it will rotate
at 300 revolutions per minute, allowing for rapid saving and loading of programs

and data. Chapter 4 discusses other uses of these disks, including “data-based”
business applications,

Since various makes of computers use slightly different procedures,
you'll want to read the instruction manual for the machine you're using
before doing any of the above. However, you'll find that the procedures
on most machines are similar, and that after a few experiments the whole
process will become second nature.

12 CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

1.2 HYACINTH: THE WORLD'S SHORTEST IMPRESSIVE
BASIC PROGRAM. GUTENTAG, GOTCHA

Let's suppose you're visiting a computer store with a friend named
Hyacinth. You find a machine that's guaranteed to understand programs
written in BASIC, and it’s all turned on and ready to go. You ask if you
can try a BASIC program, and the friendly salesperson says, “Sure.”

The first thing you want to do is type NEW, followed by pressing
ENTER. This erases any old program that may have been in the
computer’s memory. You should then see something like the word
READY or OK, and a readiness symbol like > . This means it's your turn
and you can type in some BASIC statements. For example, you might
type:

>10 PRINT “HELLO”
>20 PRINT “FRIEND”

Don't forget to push ENTER at the end of each line. You have just
entered a BASIC program with two statements. To see it work, you next
type the command RUN, and press ENTER. Here's what should happen:

> RUN
HELLO
FRIEND

Personal computers can be purchased through retail stores where technical

assistance is available. This photo was taken at the Computer House, one of the
many independent computer stores around the country.

Sectionl.2 HYACINTH: The World’s Shortest Impressive BASIC program 13

O.K. so far? Now let’s impress your friend Hyacinth with a trickier
program. First type NEW (this is going to be a new program), and then
type the following (don't forget to press ENTER at the end of each line):

>NEW
>10 PRINT "HYACINTH!!!";
>20 GO TO 10
>30 END
Hold it! Suppose you made a mistake and typed
10 PRINT “LYACINTH!!!”;
No problem. Just retype the bad line.
10 PRINT “HYACINTH!!!”;

The rest of the lines are still in the computer. If you want to make sure

you have it all O.K., just type the command LIST. Here's what you'll see:

© X8 PRINT “LYRCINTHIIE;

IHTHIHES;

fTHI11%;

Everything after each symbol > was typed by the programmer. Notice that line
10 was re-typed (after line 30) to correct a mistake. Then LIST was typed (follow-
ed by pressing ENTER) to verify which statements were currently in the com-
puter's memory.

The command LIST told the computer to print (or list) out all the
BASIC statements it currently has in memory. Notice that commands do
not have a line number.

Both commands and statements must always be followed by the
pressing of the ENTER key. This does not show on the screen, but nothing
will be entered into the computer until you press this key. Also, if an error
message shows up, this means that the offending line was not entered.
Any time you're not sure of what has been entered, just type the command
LIST.

14

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

This is a standard computer keyboard as found on a professional machine. The
key at the right labelled CAR RET means “carriage return,” and it should be
pressed at the end of every line the user types.

This is the keyboard on the TRS-80 model 1 computer. The key marked ENTER
should be pressed at the end of every line the user types.

Sectionl.2 HYACINTH: The World’s Shortest Impressive BASIC program 15

So far you've entered a three-line program, but the computer has not
executed (carried out) your instructions. To make it do this, you simply
type the command RUN:

RN | '
HYACINTH! 1 IHYACTNTH! | THYACINTHY | IHYACINTH! | THYACINTH! | IHYACINTH!
. 1IHYACINTH! | IHYACINTH! | IHYACINTH! | PHYACINTH! ! IHYACINTH! ! IHYAC
HI 1 IHZACTNTH! 1 IHYACINTH! L IHYACTNTH! | IHYACINTH! | IHYRCTHTH
HTH! | IHFACTNTHY | IHYACTNTH! ! THYACINTH! ! IHYACINTHI | 1
CTHTHI | IHFACTNTH! | IHYACTNTHY | CHYACINTHY | IHYACTNTH! | 1Ky
YACTHTH | IHYACTNTH! | IHYACTNTHY | IHYACTNTHE L IHYRCTNTH! 1
. IHYRCTHTHI L IHYACTNTH! | HYACINTH! | IHYACINTH! | HYACINTH L s
LU IHYACTNTHY | THYACINTHY | 'HYACINTH! ! IHYACINTHY | IHYACTNTH! t 1
* THI T IHYACTNTH THYACTNTH! | IHYACINTHI | IHYACINTHI L IHYACTNTHI 11
THTHI {THYACINTHE | YACINTHY | IHYACINTHE | IRYACINTH | IVACTNTHI 11157
ACTNTH! 1 THYACTNTH! | IHYACINTH! | THYACINTH! | IHYACINTH! | IHYACTHTH: 11
HYACTHTH! 1 THYACINTH! | THYACINTH | IHYACINTH! | IHYACINTH! | IHYACINTH!
¢ THYACINTH! | IHYACINTH! | IHYACINTH! | IHYACINTH! | IHYACINTH! | IHYACINT
HE L THYACTNTHE L RYACINTHY | SHYACINTH! {IRYACINTHI | IHYACINTHY L IHYECT
NTH! { THYACTNTH! | IHYACINTH! | IRYACINTHY | IRYACINTHY | IHYACINTHI LIHY

This is what the screen will look like when the program HYACINTH is run.
Actually, the pattern you see will “scroll” upward since the program continues to
print new lines at the bottom of the screen until you press BREAK.

No you haven't broken the computer. This is a silly program
deliberately chosen to give you lots of action from only two statements.
The first statement (line 10) says to print the message HYACINTH!!! on
the screen. The computer does this, and then goes on to execute the next
statement in line 20. But this says go back to line 10. So the computer obe-
diently does this, and prints HYACINTHI!!! again. It's printed right after
the first message because line 10 ended with a semicolon (;). If the
semicolon had not been there, the message would have printed on a new
line.

Do you see what's happening? Our program contains what's called an
infinite loop, and it will go on forever printing HYACINTH!!!, branching
back (GO TO) to line 10 and so on. The program will never get to line 30
(END).

To stop such a program, a special key must be pressed. On some
computers it’s labeled BREAK. On others, you must press both the control
key (CTRL) and the C key simultaneously. This is called a “control-C”.

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

 ACINTHY THYACINTH | HYACINTH 'Hmmm I TR

HYACINTH! | IHYRCINTH! | IHYACINTHI | IHVACINTH! L IHYRCINTH! | IHYACINTH!
 LUHYACINTH! | IHYACINTH! ! IHYACINTH! | (HYACINTH! L IHYACINTH! | IHYACINT
HY T IHYACINTHY | HYACINTHE | IRYACINTHY | IHYACTNTHY | HYACINTHI | IHYECT

NTH! ETHYACINTH! | IHYACINTH! {HYACINTH! | HYACINTH! | IHYECINTH! | v
CINTH! | IHYRCTHTH! LTHYBCINTH! HYACINTH! | LHYGCTHTHI | HYRCTHTHY
 YRCIHTHY LIHYACTNTH! | IHYACINTHY | IHYACINTHL L IHYRCTHTHY {IHYCTHTHE L
THYACTNTHI | IHYACINTH! LTHYACINT! | IHVACINTHL|IRYECINTH! | HYACTHTH
[LIHYACINTH! | EHYACTNTHY | URYACINTH ! IRYACINTH! | HYACINTH ! IVECIN

THY LIHYACINTHL T IHYACINTH! | IHVACINTH! 1 IHYACINTH! HYACINTH! 1 HYAC
ImwlrmmxmwHmnmmwnmmmmmlmwmemwnm

When you press BREAK the execution of the program is interrupted, and a
message telling you which statement was being executed at that time is printed.

Section1.2 HYACINTH: The World’s Shortest Impressive BASIC program 17

Review

Here's what we've learned so far:

1. You write BASIC programs by typing in BASIC statements. These
must have line numbers, and you must press ENTER after you
type each line.

2. To make things happen, you type BASIC commands, again
followed by pressing ENTER. These don’t have line numbers. The
commands we've seen so far are NEW, RUN, LIST, CSAVE, and
CLOAD. The last two commands are written as SAVE and LOAD
on some machines.

3. To make corrections in BASIC statements, retype the entire line
followed by pressing ENTER.

4. Most programmers number BASIC statements 10, 20, 30, and so
on. This way, if they forget a line it can be added at the bottom
as in the following:

> 10 PRINT “STAND BY”

> 20 PRINT “BLAST OFF”’

> 15 PRINT “FOR"

> RUN

STAND BY

FOR

BLASTOFF
The computer inserted statement 15 in its proper place between
statements 10 and 20. If you don't believe it, type LIST and see.

5. BASIC statements have to use certain keywords, put together in
just the right way. Some keywords we've seen so far are
PRINT, GOTO, and END. We've also used the function TAB

(see section 1.8).
Project GUTENTAG (Note: Chapter 5 contains solutions to all projects.)

1. Type the program from section 1.1 into a computer and run it.
Then retype line 20 with BONJOUR changed to GUTEN TAG and
run it,

2. Now see if you can use TAB(X) to make the message GUTEN
TAG move over two spaces each line. (Hint: In BASIC, 2*K
means multiply Kby 2. So forK =1, 2, 3, ..., etc., 2*K = 2, 4,
6, ..., etc.)

Project GOTCHA

The program to print HY ACINTH looks best on a screen that uses 64 col-
umns to display output. Some computers can use a different number of
columns, and on these machines names with different numbers of
characters create better patterns. For example, the TRS-80 computer uses

18

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

a double-sized character set when you push the shift and right arrow
(—)keys, giving the effect of a 32-column screen. In a program you can get
the same effect by using the statement PRINT CHR$(23). To go back to
normal characters, use the statement CLS, meaning clear screen, or press

the CLEAR key.

Write a program that creates an interesting pattern of names using
double-sized characters. The photograph shows one possibility. You
should ask why we used 11 characters for the message “* GOTCHA! *”.

What other numbers or patterns would look good?

** GOTCHA! %% GOTCHA! %% GOTCHA
! %% GOTCHA! ¥k GOTCHA! %% GOTCH

75HH! #* FDTEHﬁ' #k GOTCHA! % uuT,
CHA! #% GOTCHA! %% GOTCHA! #% GO
TCHa! %% GOTCHA! *% GOTCHA! #*% G
OTCHA! %% GOTCHA! #% GOTCHA! #%
GOTCHA! #% rDTani ** GOTCHA!

CHAT ¥¥ GDTCHfsl !

*% GOTCHAT ¥ GOTCHA! %% G GOTCH

#¥k GOTCHA! ¥k GOTCHQ!,**vGGTCv‘.

This is output of the type suggested for project GOTCHA. It's similar to

HYACINTH, but modified to look best in a 32-column format.

Section 1.3 More about BASIC 19

1.3 MORE ABOUT BASIC: PRINTPI, FIELDS, SURVEY, RICH-
QUIK

Let's now go on to a more serious (but not quite as flashy) program. We'll
use PRINT again, but this time for printing both messages and the results
of calculations. We'll also use the new keyword LET.

First, let's examine some of the things that can be included in PRINT
statements with a program that does a simple calculation:

- : ™
This is a (REMARK) statement. Remark statements are used
to explain what programs do. The computer ignores remark
statements duW
5 REM---PRINTPI---
10 PRINT "APPROXIMATION TO PI"
20 PRINT "355/113 = ";355/113,"FINISHED"
30 END
These two statements
produce these two lines
of output
>RUN
APPROXIMATION TO PI
355/113 = 3,14159 FINISHED
\ J

1. The first thing you can see from this example is that anything inside
quotation marks is printed exactly as you gave it.

2. When you don't use quotation marks, the computer will first do the
arithmetic called for and then print the answer. In our example
“355/113 = " was printed as is, but 355/133 was first evaluated (us-
ing division), and then the result was printed as 3.14159.

3. When you want several items of output printed on the same line, you
use either a semicolon or a comma between them in the PRINT state-
ment. The semicolon forces answers to print close together, while the
comma spreads the answers out. The amount of spreading depends
on the computer. Semicolons usually force things together as closely
as possible, leaving one space on either side of numbers (but none for
letters). Commas usually force the output to fall into fields 14 to 16
spaces wide. The following program can be used to see what the
spacing is on your computer.

20

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

~ ™

7 REM---FIELDS---

8 PRINT"SHOWS THE SPACING CAUSED BY ',' AND ';'"

9 PRINT" 5 10 15 20 25 30 35 40 45 50"

10 PRINT"=---I====J====I====]====]====]=m==]=-==]-=e-]-—=-T"

2() PRINT “lll;"2ll;"3";"4"

30 PRINT 1; 2; 3; 4

40 PRINT |lll|'ll2",|l3l!’l|4ll T

50 PRINT 1, 2, 3, 4

60 END
Lines 20 and 40 print characters
but lines 30 and 50 print numbers,
leaving room for + or — signs

> RUN

SHOWS THE SPACING CAUSED BY ',' AND ';'

5 10 15 20 25 30 35 40 45 50
D ! Rttt R e el et bl el et g |
1234
1 2 3 4
1 2 3 4
1 2 3 4
\. J

So far we've only printed the results of calculations that use fixed
numbers (such as 113 and 355). These are called constants. Things get
more interesting in BASIC when both constants and variables are used. As
the name says, variables represent data that can change.

Variables are possible because microcomputers store the data
(numbers and/or characters) used by programs in erasable locations in
their memory. When you use BASIC, you can refer to each of these loca-
tions with what's called a variable name. This consists of a single letter,
like A, B, or X, or a single letter followed by a single digit, like A6, B8, or
X3, as shown below:

Variable
Name
|
X 35.89
Value
of the

Variable

Section 1.3 More about BASIC 21

The LET statement
10 LET X = 35.89
does two things. It associates the name X with one of the computer’s
memory locations, and then stores the number 35.89 in that location.
When you want to find out what number is stored in a location, you use a
statement like this:
20 PRINT X
Notice that this doesn’t mean print the letter X; it means print the number
that is stored in the location named X. To erase the number stored in X
and replace it, for example with 2.5, you use a statement like this:
90 LET X = 2.5
Here’s a program to type in and run which uses the LET statement.
This program calculates the percent of people in a survey who were
Republicans and the percent who were Democrats. Recall that if 5 out of
20 people do something, the percent will be (5/20)*100, or 25%. Before
typing in this program, don't forget to erase the previous program by typ-
ing NEW.

~
Notice that arithmetic can
be done in LET statements
5 REM---SURVEY (USES LET STATEMENT)---
10 LET D = 4832
20 LET R = 3741
30 LETT = R + D €
40 PRINT "TOTAL VOTES = "; T
50 PRINT "PERCENT DEMOCRATS"; (D/T)*100; "s" l
60 PRINT "PERCENT REPUBLICANS"; (R/T)*100; "&"
70 END
>RUN
TOTAL VOTES = 8573
PERCENT DEMOCRATS 56.363 %
PERCENT REPUBLICANS 43.637 %
J

We used parentheses in lines 50 and 60 to make sure that the computer
grouped the proper numbers together. For example:

10/(2 -+ 3) means 10/5 = 2 but

10/2 ++ 3 means 5 + 3 = 8
Note that the symbols for addition, subtraction, multiplication, and divi-
sion in BASIC are +, —, *, and /, respectively. Another symbol used is
the up-arrow to mean exponentiation. Writing 21 5 means raise 2 to the 5th
power, which is equivalent to calculating 2 * 2 * 2 * 2 * 2,

22

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

Project RICHQUIK

Write a program which when run shows how much money would be paid
ondays1, 2, 3, 4, 5, 10, 20, and 30 at a job where the contract specifies $2
for the first day, with the salary doubled each succeeding day. Here's what
the output could look like:

>ROUN
DAY 1
DAY 2
DAY 3
DAY 4
DAY 5
DAY 10
DAY 20
DAY 30

o un

ot

2
4
8
1
3

6

2
1024
1.04858E+06

1.07374E409 «—

This means 1,048,580

This means 1,073,740,000

Hint: For day 3, the following statement works
50 PRINT “DAY 3 = $";2 *2 * 2

but so does
50 PRINT “DAY 3 = $";213

So, for day 5 you can use
60 PRINT “DAY 5 = $";215

and so on.

If you haven't seen the notation E+ 06 before, don’t be surprised. It's
a computer shorthand which means move the decimal point 6 places to the
right, while E-06 is shorthand for move the decimal point 6 places to the
left. The shorthand was devised to save space when printing very large or
very small numbers.

In our sample output, the numbers 1.04858E+06 and 1.07374E+09
are therefore shorthand for 1,048,580 and 1,073,740,000, respectively.
Mathematically, E+ 06 means times 10 to the 6th power, and E+09 means
times 10 to the 9th power. If you get a number like 1.04858E-06 it means
1.04858 times 10 to the —6th power (which is .00000104858).

Section 1.4 How to Feed Data to a Computer

1.4 HOW TO FEED DATA TO A COMPUTER: INPUT,
HEIGHT, CARPETI, CARPET2, READDATA, GROCERY]1,

GROCERY2, (ENERGY)

23

Suppose you want to write a program that calculates the area of a square.
You'll have to tell it how big one side is. This is called inputting data to the
program. There are several ways to do this. The one we'll examine first
uses what is called the INPUT statement. Here's how it works:

e 2
10 REM---INPUT (USES INPUT STATEMENT)---
20 PRINT "WHAT IS ONE SIDE OF THE SQUARE IN INCHES"
30 INPUT S <
40 PRINT "AREA OF SQUARE = ";S*S;" SQ. IN."
50 GOTO 20
60 END
This statement makes the
program print a ? and then
wait until you type in a
value for 5, followed by
pressing return or enter
> RUN
WHAT 1S ONE SIDE OF THE SQUARE IN INCHES
?2 1 €
AREA OF SQUARE = 1 SQ. IN.
WHAT IS ONE SIDE OF THE SQUARE IN INCHES
? 25
AREA OF SQUARE = 625 SQ. IN,
WHAT IS ONE SIDE OF THE SQUARE IN INCHES
? 36456
AREA OF SQUARE = 1.32904E+09 SQ. IN.
WHAT IS ONE SIDE OF THE SQUARE IN INCHES
?
BREAK IN 30:]
READY This is shorthand for
1,329,040,000 sq inches
The program was
stopped by pushing
the break key after
the last?
\. J

Line 10 is called a REMARK statement, It's ignored by the computer.
It's used to help explain programs to people. So the first line actually exe-
cuted by the computer is line 20.

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

Executing line 20 causes a prompting message to be printed. It asks
you to type in the length of one side of your square. When line 30 is exe-
cuted by the computer, the program prints a question mark, and then
stops. It is now waiting for you to type in a number after the question
mark, and press the ENTER key. As soon as you do this, the number you
typed is stored in the variable S, and the program continues to line 40
where it prints the correct area. Line 50 makes the program repeat, asking
for another S, and so on. To stop this program, press BREAK (or
CONTROL-C).

— I

> 10
> 20
> 30
> 40
> 50

X Thanns

30

X +Y
PRINT X Y ,Z
END
I - —
15 “45
QN A ‘)

INPUT
INPUT
LET Z

K< X

|
s
A i
COMPUTER
I - p

Suppose now you want to write a program that gives you the height
of someone in centimeters if you supply the height in feet and inches. This
time you'll have to input two numbers (one for feet, one for inches).
Here's how it's done:

10 REM--~HEIGHT (USES 2 INPUT VARIABLES)---
20 PRINT
30 INPUT F, I

40 PRINT "YOU ARE"™; (12*F+I)*2.54;" CM. TALL"

50 END

>RUN

TYPE YOUR HEIGHT AS FT., IN.

"PYPE YOUR HEIGHT AS FT., IN."

&
~

? 4,11

YQU ARE 149,86 CM. TALL

READY
> RUN

TYPE YOUR HEIGHT AS FT., IN.
.5

? 6,1

pd

Notice that once a program
is in the computer's memory
you can run it as often

<

as you wish

YOU ARE 186.69 CM. TALL

READY

Section 1.4 How to Feed Data to a Computer 25

The INPUT statement causes the computer to print a question mark
(?) and then wait for you to type two numbers. It expects these two
numbers to be separated by a comma. When you type these numbers,
followed by pressing the ENTER key, your numbers are stored in the
variables we called F and I in the program. The program then proceeds in
the sequence of the remaining line numbers, giving your height in both
inches and centimeters.

Project CARPET1
Wrrite a program that asks for the dimensions (in feet) of a bedroom, living

room, and den, and then prints the total number of square feet of carpet
needed. A run might look like this:

>RUN

TYPE LENGTH, WIDTH (IN FT.) OF
BEDROOM: 2 20,15

LIVING ROOM: ? 25,18

DEN: ? 15,21

TOTAL CARPET NEEDED = 1065 SQ. FT.

Project CARPET2

Write a program that does the same as CARPET1, and also prints the
number of square yards of carpet needed, as well as the total cost. (Note:
You'll have to add an INPUT statement that requests cost per square
yard.) Here's a sample run:

>RUN

TYPE LENGTH, WIDTH (IN FT.) OF
BEDROOM: ? 20,15

LIVING ROOM: ? 25,18

DEN: 2 15,21

TOTAL CARPET NEEDED = 1065 SQ. FT.
WHAT IS COST PER SQ. ¥YD. ? 13.95
TOTAL CARPET NEEDED = 118.333 5Q. ¥YDS.

TOTAL COST = §$ 1650.75

26

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

Using READ and DATA Statements

So far we've seen that a BASIC program can store data in a computer’s
memory in two ways. For example, to put the numbers of Republican,
Democratic, and other voters in the variables R, D, and X, one method is
to use LET statements as follows:

10 LET R = 4568

20 LET D = 5132

30 LET X = 489

The second method is to use INPUT statement(s) which request the

data during each RUN of the program:
10 PRINT “TYPE # OF REPUBLICANS, DEMOCRATS, AND ‘OTHER"”
20 INPUT R, D, X
20 PRINT “TOTAL VOTERS = “; R + D + X
RUN
TYPE # OF REPUBLICANS, DEMOCRATS, AND ‘OTHER’
14568, 5132, 489
TOTAL VOTERS = 10189

A third approach is to use the READ and DATA statements as il-
lustrated in the following program:

5 REM---READDATA (USES READ, DATA STS.)~--
7 PRINT "** COMPARISON OF SURVEYS #**"

10 READ R, D, X

20 LEP T = R + D + X

30 PRINT "TOTAL VOTERS = ";T

40 PRINT "PERCENT REPUBLICANS = ";R/T * 100;"%"
50 PRINT "PERCENT DEMOCRATS = ";D/T * 100;"%"
60 PRINT "PERCENT OTHERS = ";X/T * 100;%"%"
7O PRINT ".uevivevevannvcveonnssncanannsnns "

80 GOTO 10

89 REM---DATA FOR TWO SURVEYS---
90 DATA 4568, 5132, 489, 4532, 5134, 523 €-\\
100 END

The first three pieces of
data are read by line 10.

>RUN]
%% COMPARISON OF SURVEYS ** Then when line 80 says
TOTAL VOTERS = 10189 go (back) to 10, the
PERCENT REPUBLICANS = 44.8327 % .

[}
PERCENT DEMOCRATS = 50.368 8 second three pieces of

PERCENT OTHERS 4,79929 § data are read.

TOTAL VOTERS = 10189

PERCENT REPUBLICANS = 44.4793 %
PERCENT DEMOCRATS = 50.3877 %
PERCENT OTHERS = 5.,13299 %

OUT OF DATA IN 10

I\ \)]

=

27

Section 1.4 How to Feed Data to a Computer
When line 10 is executed, the computer looks for a DATA statement
(which it finds in line 90), and then stores the first three numbers it finds at
line 90 in the variables R, D, and X. One advantage to this method is that
the DATA statements can have lots of data. If you then execute the READ
statement several times, it will go along the DATA list picking up new
values. Which data is used is determined by an invisible pointer that
moves along the list of data each time a variable is used. In our example,
the pointer moves three positions for each READ.
Here's another example showing how this feature can be used to print

unit price labels for the shelves in a grocery. The variables used are:

@® N for product number

@ Q for package quantity, in ounces

@ P for price in dollars

e ™\
4 REM---GROCERYl (MAKES UNIT PRICE LABELS)---
S P RIN T = o o o o e e o "
10 READ N, Q, P
20 PRINT"PRODUCT QTY (0Z.) PRICE"," UNIT PRICE"
30 PRINT N; TAB(7);Q; TAB(17);P, 100*P/Q; "CENTS PER 0Z."
40 GOTO 5
50 paTa 1, 16, .89, 2, 8, 1.49
60 DATA 3, 24, .99, 4, 2.5, 3.50
70 END
>RUN
PRODUCT QTY (0Z.) PRICE UNIT PRICE
1 16 89 5.5625 CENTS PER 0Z.
PRODUCT QTY (0Z.) PRICE UNIT PRICE
2 8 1.49 18.625 CENTS PER OZ.
PRODUCT QTY (0OZ.) PRICE UNIT PRICE
3 24 .99 4.125 CENTS PER OZ.
PRODUCT QTY (0Z.) PRICE UNIT PRICE
4 2.5 3.5 140 CENTS PER O2Z.
OUT OF DATA IN 10
. J

Qur program contains data for 4 products, organized in groups of
three data items. We put these values in two DATA statements, but we
could just as well have used one long DATA statement, four short ones, or
any other combination. The only important consideration is that the data
always appear in the sequence N, Q, P, N, Q, P... etc.

When this program starts, the data pointer is at the 1. At the first
READ, three pieces of data (1, 16, .89) are used, so when the second
READ occurs as a result of the GOTO in line 40 the pointer will be at the
2, and so on. When the last three pieces of data are finally read, the

28

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

pointer is at the end. When the program goes back to line 10 to read more
data, the message OUT OF DATA IN 10 is printed and the program stops.

Project GROCERY2

Modify the GROCERY1 program so it produces labels for ten products
that have weights marked in both pounds and ounces.

Superproject (ENERGY)

Wrrite a program that stores data about the quantity, price, and calories
per ounce for two food products. The program should print out the price
per ounce, calories per ounce, and price per calorie for each product, and
for a combination of products. For example, suppose milk costs 60 cents
per quart, and a breakfast cereal costs 69 cents for a 6-ounce box. If the
nutrition information printed on the side of the box states that a 1-ounce
serving of dry cereal has 90 calories, while ¥z cup (4 oz.) of milk has 80
calories, here’s what the output might look like:

PRODUCT PRICE($) QTY.(OZ.) ¢/OZ. CAL/OZ. ¢/CALORIE

CEREAL .69 6 11.5 90 12777
MILK .60 32 1.875 20 .09375
COMBINATION OF 1 OZ. CEREAL WITH 4 OZ. MILK

TOTAL COST(¢) = 19.0

TOTAL CALORIES = 170
¢/CALORIE = 0.11176

Section 1.5 Decision Making in Programs; Flowcharts 29

1.5 DECISION MAKING IN PROGRAMS: VOTER, RETIRE,
ANSWER

The most interesting programs are those that make decisions by using
what are called conditonal branching statements. The IF ... THEN state-
ment in BASIC makes this possible. It tells the computer to do one thing if
a certain condition is true, but to do another thing if that condition is
false. The ... represents the condition.

Here's an example which we have run twice to show the two
possibilities:

10 REM-~-VOTER (USES CONDITIONAL ST.)=---
15 PRINT "WHAT IS YOUR AGE";

25 INPUT A

35 IF A < 18 THEN 65

45 PRINT "YOU ARE ELIGIBLE TO VOTE."

55 STOP

65 PRINT"YOU WILL BE ABLE TO VOTE IN";18-A;"YEARS."

75 END
The indentations in lines
45 and 55 help you see which
statements are executed
when A < 18 is false

>RUN

WHAT IS YOUR AGE? 12

YOU WILL BE ABLE TO VOTE IN 6 YEARS.
READY

>RUN

WHAT IS YOUR AGE? 18

YOU ARE ELIGIBLE TO VOTE.

BREAK IN 55

READY

Statement 35 is the IF ... THEN statement, The part written A < 18 is the
condition being tested. You read it: “A is less than 18.” The last part
written as THEN 65 gives the line number that the computer will execute
next if the condition is true. If the condition is false, the rule is that the
computer will execute the statement right after the IF ... THEN statement.
In our example, this is statement 45.
The statement
55 STOP

means that the computer is to stop executing the program at line 55; it
should not go on to the end, but stop right where it is. You can have
several STOP statements in a program, but only one END, which must be
the last statement. Incidentally, the semicolon at the end of line 15 is what
causes the 7 from the INPUT statement to appear on the same line.

30 CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

Using Flow Charts to Picture Programs

Programs with conditional statements can be tricky to follow. A diagram
showing all the paths possible through the program helps a lot. This a call-
ed a flowchart. Here's how our previous program would look in flowchart

form.

/ 15 PRINT "WHAT IS
YOUR AGE";

25 INPUT A

35

IF A<18 TRUE

THEN 65

45 PRINT "YOU ARE
ELIGIBLE TO VOTE."

65 PRINT "YOU WILL
BE ABLE TO VOTE IN";
18-A; "YEARS."

(rsenn)
—

A flowchart uses boxes with different shapes for different purposes.
The conditional statement is shown as a diamond-shaped box, and it in-
dicates the two possible branches (paths) the computer can take. It
represents the IF ... THEN statement.

Section 1.5 Decision Making in Programs; Flowcharts 31

A NOTE ON FLOWCHARTS

Flowcharts were developed in the early days of computing to help program-
mers keep track of the logic behind the program, especially when it invol-
ved complex “branching” or “jumping.” The arrows on the lines made jump
statements (like GOTO), and conditional branching statements (like IF ...
THEN) easier to follow. Unfortunately, the final result often ended up look-
ing like what some writers called a “bowl of spaghetti.” It soon became clear
that additional techniques were needed.

With the development of high-level languages (like BASIC), there has
been a movement away from detailed flowcharts. The goal today is to make
the logic of the program self-documenting. This is done partly by breaking a
large program into small program modules, partly by using lots of REM
(remark) statements that explain each module, partly by insisting that pro-
grammers discipline themselves to keep most of the branching within the
modules, and partly by extending higher-level languages to include struc-
tured branching statements. An example of a structured branching state-
ment is [F.... THEN ... ELSE .. (this will be explained in section 2.2). The
combined use of all these techniques is usually called structured program-
ming.

Structured programming doesn’t work very well for complicated appli-
cations unless it’s used along with something called structured program
design. We'll discuss some of the techniques used in structured program
design in Chapter One and a Half, and use a structured design approach to
all the programs from Chapter 2 on. Our approach will use several infor-
mal, common sense techniques that work very well in practice. There have
also been more formal techniques developed, including one called Warnier-
Orr diagrams. Several good articles on this technique can be found in the
book Program Design, volume 1, Programming Techniques, Blaise W.
Liffick, ed., BYTE Publications, Peterborough, N.H., 1978.

Other shapes of boxes are used as shown.
There are six types of conditions that can be used in BASIC:

® A<B means “A is less than B”

® A>B means A is greater than B”

® A=8B means “A is equal to B”

® A <=DB means “either A is less than B or A is equal to
B

® A >=DB means “either A is greater than B or A is equal
to B”

® A <>DB means“A is not equal to B”

Project RETIRE

Modify the VOTER program so that it also prints the message “P.S. YOU
ARE ELIGIBLE FOR ‘OVER 65" BENEFITS” where appropriate.

32

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

More About LET Statements

In addition to being able to store data in a variable, the LET statement can
do computations on the right side of the = sign, before storing the results.
For example,

10 LET A = 3.1416*18*18/4
will first calculate the quantity shown on the right side (the area of an
18-inch pizza), and then store the answer in A.

An even trickier calculation is one where the contents of a variable
are changed on the right side, and the result stored back in the same
variable. For example, if X = 12, then LET X = X + 1 will first calculate
the expression on the right side as 12 + 1, and then store the result, 13,
back in X. So X has been changed from 12 to 13. This is very handy for
counting purposes. Here's a program that illustrates how counting is used
to control how often a loop (from lines 30 to 70) is executed.

10 REM---ANSWER (USES LET TO INCREASE COUNTER)---
20 LET C = 1

30 IF C > 5 THEN 80 <€

40 PRINT "ANSWER #";C

50 PRINT “=—=m—-—mmmmm e "

60 LET C =C + 1

70 GOTO 30 i '

80 END Another way to interpret line 30
is to read it as meaning “"While
C < = 5 do everything up to line

>RUN 80 over and over”

ANSWER #

ANSWER #

ANSWER #

ANSWER #

ANSWER #

Section 1.5 Decision Making in Programs; Flowcharts 33

How to Interrupt the Printing of Output

The amount of output you can display on a video screen is limited to a fix-
ed number of lines—for example 16 or 24. If your program produces more
than this number as output, you won't see all of it on the screen. The
beginning lines will scroll up out of view. For example, if you try the pro-
gram ANSWER we’ve just shown, but with the number 5 in line 30 chang-
ed to a 15, the first lines of output will flash by so fast you won't see them.
Of course, if you had a printer or typewriter-like terminal for output, all
of the output results would be preserved on paper.

To get around this problem, there is a way you can freeze the video
output on many computers. On the Radio Shack TRS-80, you press the
SHIFT and @ keys at the same time. On other systems you press the con-
trol and S keys (called control-S). To resume printing on the Radio Shack
screen you press any key. On other systems, you might press control-S or
control-Q.

Another trick for handling this problem is to write your program so
that it prints only a limited number of lines at a time and then asks you if
you are ready to continue. This technique is illustrated in the next section
in the program DOGSALES.

34 CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

1.6 COMPUTER LOOPS AND ARRAYS: DRILL, SQCUBE,
GOWRONGI1, GOWRONG2, GOWRONG3, SALEDATA,
ICECREAM, DOGSALES, DOGDAYS.

One of the strong points of computers is that they can do lots of
repetitious work quickly. BASIC allows you to ask for repetitive com-
putations by using the FOR and NEXT statements. These specify what is
called a loop in the program. For example, suppose you want to generate a
list of the decimal equivalents of drill bit sizes given as fractions of an inch.
Here's how you can do this with three lines of BASIC:

5 REM---DRILL~~--
10 PRINT"FRACTION","DECIMAL EQUIVALENT"
20 FOR N=1 TO 8

30 PRINT N; "/ 8", N/8
40 NEXT N \

>0 END Line 30 is the body of the
loop. It's executed 8 times.

>RUN
FRACTION DECIMAL EQUIVALENT

1/ 8 .125

2/ 8 .25

3/ 8 .375

4 /8 .5

5/ 8 .625

6 / 8 .75

7/ 8 .875

8 / 8 1

Lines 20, 30, and 40 form our loop. Line 30 is called the body of the

loop, and the computer will execute this statement over and over. How
often line 30 is repeated, and which values of N are used in its calculations
are determined by the FOR statement. In our case, line 30 will be executed
8 times, with N going through the sequence 1, 2, 3, 4, 5, 6, 7, and 8.

Project SQCUBE

Wrrite a program that calculates and prints the squares and cubes of the
numbers from 1 to 12.

Section 1.6 Computer Loops and Arrays 35

Nested FOR Loops

Now for some fun. Let's try making the body of one FOR loop be another
FOR loop. This is called nesting one loop inside the other. Watch what
happens:

5 REM~--GOWRONGl---

10 PRINT

“"THIS IS A COMPUTER..."

20 FOR J
30 PRIN

= 1 TO 2 u(/”—‘\
T "NOTHING CAN"

40 FOR
50 PR
60 NEXT

K =1 TO 3 This is the
INT "GO WRONG." .
K inner loop

70 NEXT J

80 END

>RUN
THIS IS A

NOTHING CAN

GO WRONG.
GO WRONG.
GO WRONG.

NOTHING CAN

GO WRONG.
GO WRONG.
GO WRONG.

This is the

COMPUTER. ..
outer loop

You can pretty well figure out what nested loops do by examining the
output of this program. To get an even better insight into what’s happen-
ing, try the following projects.

Project GOWRONG2

Change line 50 in the previous program to the following:

50 PRINT “GO WRONG”, “J = 7" ;’K = "K
Now pretend you're a computer, and simulate the running of this pro-
gram. Write down the output you think the computer will produce on a
piece of paper. Then check your results by actually running the program.

Project GOWRONG3

Write a silly message program of the type just shown that uses three nested
FOR loops.

36

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

Subscripted Variables

Suppose you want to write a program to study the sales in your new ice
cream business for the 30 days of the month. You'd like to use the variable
D1 to mean sales on day 1, D2 to mean sales on day 2, and so on. Unfor-
tunately you'll soon run out of variable names since D10, D11, D12, etc.
are illegal in BASIC. Even worse, you'd need thirty INPUT statements to
enter the sales data into your program!

To get around this dilemma, BASIC allows you to use subscripted
variables. These start with a letter, but are followed by any integer in
parentheses. Examples are A(4), B(56), and Z(357). The neat part about
subscripted variables is that the number in parentheses can be represented
by a variable. So we can use D(I) to mean the sales on day I, and let the
computer select I from 1 to 30 (or any other number) in our program.

Here is an example showing how this works. It uses a FOR loop to
input as many sales figures as you specify with N. It then calculates the
largest sale L, the smallest sale S, and the average sale value A. The daily
sales are stored in the subscripted variables D(1), D(2), D(3), and so on.
The collection of all these variables is called a one-dimensional array.
(Some books call an array a table, while others call it a vector.)

COMPUTER'’S
MEMORY

D(1) = 47
D(2) = 24
D(3) = 78

Section 1.6 Computer Loops and Arrays 37

10 REM---SALEDATA (CALCULATES MIN,MAX,TOTAL,AVG)---
15 DIM D(30)

20 PRINT"HOW MANY DAYS (MAX.= 30)";
25 INPUT N

30 IF N > 30 THEN 20

35 IF N < 1 THEN 998

40 FOR I = 1 TO N

50 PRINT"SALES FOR DAY #";I;

60 INPUT D(I)

70 NEXT I

75 PRINT" ...vvvueeesnceeeeEND OF DATA..ceruveanunass”®

80 LET L = D(1)] J/
90 LET S = D{1) N

We start by using D(1) as
both the largest and
smallest sale

100 LET T = D(1)

110 FOR I = 2 TO N

120 IF D{I) > L THEN LET L = D({I) .

130 IF D{(I) < S THEN LET S = D(I) ~

140 T =T + D(I)

150 NEXT I

160 PRINT"SMALLEST SALE ‘"'S TAB({25); "TOTAL SALES =";T

170 PRINT"LARGEST SALE =";L;TAB(25);"AVERAGE SALE =";T/N

998 PRINT"..................FINISHED.................

999 END
But when we find a better
value, we make a change.

>RUN

HOW MANY DAYS {(MAX.= 30)2 9

SALES FOR DAY # 1 ? 47

SALES FOR DAY # 2 2 24

SALES FOR DAY ¢ 3 ? 78

SALES FOR DAY # 4 2 O

SALES FOR DAY # 5 2 12

SALES FOR DAY # 6 2 33

SALES FOR DAY # 7 2 79

SALES FOR DAY # 8 ? 80

SALES FOR DAY # 9 ? 32

wesecvecevuaavassEND OF DATA. ... vevvecennas

SMALLEST SALE = 0 TOTAL SALES = 385

LARGEST SALE = 80 AVERAGE SALE = 42,7778

ceeeeecene eeeveess FINISHED. . e cvivvevnconnnss

38

y//ja@g@@ ; W\%?m

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

Our program starts with the statement DIM D(30) which means
“dimension (set aside) 30 variable names D(1), D(2), etc. up to D(30).”
Some computers also give you an extra variable name D(0) at the begin-
ning of the list. The sales data is then INPUT with the FOR loop in lines 40
to 70. Then a second FOR loop is used to search through all these figures
to find the largest, L, the smallest, S, and the total, T (in lines 110 to 150).

The trick to finding L and S is to start by guessing that the first sale is
both the largest (line 80) and the smallest (line 90). When a better value is
found, it is used instead (lines 120 and 130). The total sales are accu-
mulated in line 140 where each new sale is added to the previous total T.
The average sale is calculated as T/N and printed with the other results in
lines 160 and 170.

Since this is the most complicated program we've shown so far, don't
be surprised if you have to restudy it a few times to fully understand how
it works. Note: Lines 120 and 130 of SALEDATA use an extended IF state-
ment. This allows the keyword THEN to be followed by certain other
BASIC words (like LET, PRINT, or GOTO). Chapter 2 discusses extended
BASIC statements in greater detail.

Project ICECREAM

See if you can write the preceding program using only one FOR loop.
Hint: Use the INPUT loop to also calculate S, L, ard T. Before going into
this loop, set T = 0, L = 0, and S = 999999. (Why?)

W’ﬁu\)[ro@//] J‘ \\

Section 1.6 Computer Loops and Arrays 39

Two-Dimensional Arrays

Suppose you manage a chain of pushcart hot dog vendors. A map of the
city showing where they operate looks like this:

You decide to store the sales figures in a computer program, and
would like to use variables that correspond to these locations. That's easy
in BASIC, since you can use variables with two subscripts. So S(3,4) could
be used to mean sales at the corner of Third Avenue and Fourth Street,
S(10,2) for 10th Avenue and Second Street, and so on.

Here’s a program to collect the sales data and give back a report on
sales along each street, sales along each avenue, and total sales for the
entire city:

40

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

100
104

105
106
110
120
130
140
150

155
160
170
180
185
190
200
205
206
210
220
240
245
250
260
270
280
285
290
295

305
310
320
330
340
350
360
370
380
390
400
405
410
420
430
440
450
460
470
475
480
490
500
510
515
520
999

REM---DOGSALES (USES 2-D ARRAYS)-——=-=-======—===--===-o
cLs

PRINT"#***%%#* REPORT OF HOTDOG SALES ***#**u

PRINT

DIM S{11,9), R{11), C(9)

- " ", .
PRINT"HOW MANY AVENUES"; Here's where the number of

INPUT M

PRINT"HOW MANY STREETS"; sales of each street corner
INPUT N are fed into the computer
REM---AN IMPROVED PROG. WOULD CHECK IF M,N ARE LEGAL---

FOR I = 1 TOM
PRINT"TYPE";N; "SALES FOR AVENUE";I
FOR J = 1 TO N
PRINT "AT STREET #"; J;
INPUT S({I,J) €
NEXT J
PRINT"PRESS ENTER (OR RETURN) TO CONTINUE--READY";
INPUT D$
NEXT I
REU---SUMMARY BLOCK-—===—==mm—m = mm e oo e e e m e e
PRINT"SUMMARY OF SALES (STS. SHOWN ACROSS, AVES. DOWN)"
FOR J = 1 TO N

PRINT TAB(6*J);"S";J;
NEXT J
PRINT
FOR J=1 TO N+l

And here's where all the
information about various
sales totals is generated

FOR I = 1 TO M and printed

PRINT"AY;I;":";
FORJ = 1 TO N
LET R(I) = R{I) + S({1,J)
LET C{J) = C{(J) + S{I,J)
PRINT TAB{(6*J);S({(I1,J):
NEXT J
PRINT
NEXT I
PRINT
PRINT"PRESS ENTER (OR RETURN) TO CONTINUE--READY";
INPUT D$
REM---SUM OF AVE. SALES BLOCK--—--=——=-===———==m————ee e
PRINT"TOTAL SALES BY AVENUES"
FOR I = 1 TO M
PRINT "FOR AVE #";I;"TOTAL =";R(I)

NEXT I

PRINT"PRESS ENTER (OR RETURN) TO CONTINUE--READY";
INPUT D$

PRINT

REM---SUM OF ST. SALES BLOCK-=—==--—===—--———m e — e

PRINT "TOTAL SALES BY STREETS"
FOR J = 1 TO N

PRINT"FOR ST. #";J;"TOTAL =";C{J)
NEXT J
PRINT
PRINT"*#*#%*#** END OF REPORT *****%" &

END

Section 1.6 Computer Loops and Arrays

41

~N

*%**k%** REPORT OF HOTDCG SALES *#**%*%%
HOW MANY AVENUES? 3
HOW MANY STREETS? 4
TYPE 4 SALES FOR AVENUE 1
AT STREET # 1 ? 34
AT STREET # 2 2 46
AT STREET # 3 2 58
AT STREET 4 4 ? 98
PRESS ENTER (OR RETURN) TO CONTINUE--READY?
TYPE 4 SALES FOR AVENUE 2
AT STREET # 1 2 44
AT STREET 4% 2 ? 85
AT STREET # 3 ? 57
AT STREET # 4 ? 62
PRESS ENTER (OR RETURN) TO CONTINUE-~READY?
TYPE 4 SALES FOR AVENUE 3
AT STREET # 1 ? 95
AT STREET # 2 ? 75
AT STREET # 3 ? 36
AT STREET # 4 ? 88
PRESS ENTER (OR RETURN) TO CONTINUE--READY?
SUMMARY OF SALES (STS. SHOWN ACROSS, AVES. DOWN)

51 S 2 s 3 S 4
A1l : 34 46 58 98
A 2 : 44 85 57 62
A 3 : 95 75 36 88
PRESS ENTER (OR RETURN) TO CONTINUE--READY?
TOTAL SALES BY AVENUES
FOR AVE # 1 TOTAL = 236
FOR AVE # 2 TOTAL = 248
FOR AVE # 3 TOTAL = 294
PRESS ENTER {OR RETURN) TO CONTINUE-~READY?
TOTAL SALES BY STREETS
FOR ST. # 1 TOTAL = 173
FOR ST. # 2 TOTAL = 206
FOR ST. # 3 TOTAL =.151
FOR ST. # 4 TOTAL = 248
*hhkkkh END OF REPORT **%%xx#%

J/

The first part of the statement
110 DIM S(11,9), R(11), C(9)

means “dimension (reserve) a two-dimensional array called S with at most
11 rows for avenues, and 9 columns for streets.” Later, when you use
INPUT S(1,]) or PRINT S(I,]) you then automatically refer to a computer
location that corresponds to sales at the corner of Avenue I and Street J.
The same DIM statement is used to reserve eleven locations, R(11), for
holding the sums of sales by avenues (rows), and nine locations, C(9), for

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

the sums of sales by streets (columns). A good way to study this program
is to picture the computer’s memory as being structured in the form of a
rectangular table of variables for S, plus two one dimensional arrays for R
and C.

COMPUTER'S MEMORY
S(1,2) = 46]S(1.3) — 58|S(1,4) = 98]5(1,5) = 0 |S(L6) = 0 [$(1,7) = 0 |S(1,8) = 0| S5(1,9) =0
S(2,2) = 85[5(2,3) = 57|S(2,4) = 62{S(2,5) = 0 [5(2,6) =0 {5(2,7) =0 |5(2,8) = 0 $(2,9) =0
75(5(3,3) = 36|5(3,4) = 88 |5(3,5) = 0 |S(3,6) = 0 |S(3,7) =0 [5(3,8) =0}5(3,9) =0
= 0 0|S(a,3) = 0/54.4) = 0[S(a,5 =0 |S(4,6) =0 |S(4,7) = 0 |5(4,8) =0 |5(49) =0
= 0 015(5,3) = 0[5(5.4) = 01S(55) = 0 [S(5,6) = 0 [S(5,7) = 0 |S(5,8) =0 5(59) =0
0 = 015(6,3) = 0[S(6,4) = 0[S(6,5) = 0 [S(6,6) = 0 [5(6,7) = 0 |S(6,8) = 0] 5(6,9) =0
0] = 0J5(7,3) = 0|5(7,4) = 015(7,5) =0 [S(7,6) =0 |S(7,7) = 0 |5(7,8) = O S(7,9) = 0O
= 0 = 05(8,3) = 0]S(8.4) = 0l5(8,5) =0 |S(8,6) = 0 |5(8,7) =0 |5(88) =0]5(8,9) =0
= 0 = 0[509,3) = 015(9,4) = 0]5(9,5) = 0 [S(9,6) =0 {S(9,7) = 0 5(9,8) = 015(9,9 =0
= (= 0|su0,3) = 0|S(10,4) = 0|5(10,5) = 0]S(10,6) = 0]5(10,7) = 0{5(10,8) = 0] 5(10,9) = 0
= 0 0l5(11,3) = 0|S(11,4) = 0|S(11,5) = 0[S(11,6) = 0|S(11,7) = 0]S(11,8) = 0| S(11,9) = 0
1) = 236 C() = 173
2) = 248 C(2) = 206
3) =294 C3) = 151 Note: Zeros are shown in the un-
4) 0 C(4) = 248 used parts of the arrays since most
5= 0 ce) = o e e ol vasailos e somm fon
6)= 0 Ce) = 0 program is run.
(7)= 0 C7)= 0
8= 0 C@) = 0
R@®) = 0 C@O) = 0
R(10) =
R(11) =
Project DOGDAYS

Enter the program DOGSALES in your computer, get it to work, and then
save it on tape (or disk). This is a long program and it will be easy to make
typing mistakes, producing what are called bugs (errors in the program). If
this happens, get a friend to do the typing while you proofread over his or
her shouider. We've calied the project DOGIDAYS because that's what the
first few days of debugging will seem like.

After you have it working, see if you can improve the program so
that it checks for illegal input. For example, in the question HOW MANY
AVENUES?, the inputs —3, 0, 4.5, or 12 should be rejected as illegal.
Another improvement would be to distinguish between a street corner
where there is no hot dog cart, and a corner where there is a cart but no
sales. In this second situation the number zero should be entered for sales
and it should go into calculating totals. In the first case, a —1 should be
entered to mean no cart and it should not go into calculating totals.

43

Section 1.7 Processing Words

1.7 PROCESSING WORDS: FAMOUS, SAM, POEM, APRIL1

: Computer programs written in BASIC can handle letters as well as
numbers, using variables that have a dollar sign ($) added to a letter (for
example A%, B$, etc). These are called string variables, where string means
any sequence of characters like X, 31, JOHN, BAHI!!, or even
GUSUMPH#@ *!---. Below is a simple example you can use on visitors.
When the INPUT statement causes the ? to print, you then type a name
(string) which gets stored in A$. You can see that the INPUT statement
can use string variables as well as numeric variables.

I
f1g
e N\
10 REM~~~-FAMOUS =~~~
20 PRINT"WHAT IS YOUR NAME";
30 INPUT AS
40 PRINT"*** GOOD GRIEF AN
50 FOR K = 0 TO 20 STEP 5 <
60 PRINT TAB(K);"IT'S THE FAMOUS GENIUS ";AS
70 NEXT K
80 PRINT"?2?22?222?2?2?2?-~WHO'S ";AS;"--2222222?2?22"
90 END
>RUN
WHAT IS YOUR NAME? ISABELLE T. SMITH
* ok GOOD GRIEF * kK
IT'S THE FAMOUS GENIUS ISABELLE T. SMITH
IT'S THE FAMOUS GENIUS ISABELLE T. SMITH
IT'S THE FAMOUS GENIUS ISABELLE T. SMITH
IT'S THE FAMOUS GENIUS ISABELLE T. SMITH
IT'S THE FAMOUS GENIUS ISABELLE T. SMITH
?22222222?22--WHO'S ISABELLE T. SMITH--?2?2??2?22?2?2?2?
READY
This makes K = 0,5,10,15,20.
Another way to write this
program would be to change
line 50 to 50 for K = 0to 5
and change tab (K) to tab (4*K)
N y,
V This program should work on most computers. However, with some
\ » of the simpler BASIC interpreters, you may have to first dimension

(reserve space) for the string variable by starting with a statement like this:
15 DIM A%(25)

The key word TAB(K) in this program causes each line of output to

be printed K spaces over to the right. This feature is useful for producing

graphical output. We'll show some examples of computer graphics in the

1:"4’ S
Pon >y 54

i

44

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

next chapter. We'll also have more to say about string variables there, in-
cluding subscripted string variables like A$(I), or P$(L,J).

Project SAM

If your computer allows only 40 characters on a line, the previous pro-
gram will spill over from line to line. Rewrite FAMOUS so it stays within
40 columns. Hint: Change line 50 to

50 FOR K = 0 TO 10 STEP 2
You'll also want to shorten line 80, and input a shorter name, like SAM.
On some machines you may also have to add the line,

15 DIM A%$(25)

 WHAT IS YOUR NQME" Sl’-‘ll‘l
R OF CDURSE Aok
HI 5AM : .

::—::::—":"—::—*:mm!"irl” _ﬂgrq:::r::-::z:a::-:::r—nmmmm::;WW“"W::ﬁm&mm

This is an example of output from a program similar to FAMOUS that uses
double-sized characters, with 32 characters printed on each line.

Project POEM

Find a standard poem that can be varied by changing some of its words.
Then write a program that allows the user to input those words, storing
them in string variables like A$, B$, C$, etc. It should then print back the
poem with the user’s words inserted in the proper place. Here's an example
of what a run might look like:

Section 1.7 Processing Words 45

T
>RUN
WITH YOUR HELP, THIS PROGRAM WILL
WRITE AN 'ORIGINAL' POEM.
WHAT'S A GOOD WORD FOR A PLACE--
LIKE DESERT, MOON, FOREST, ALLEY, ETC. ? ARCTIC
THANKS.
GIVE ME A PLURAL NOUN FOR SOME
THINGS THAT BELONG ON LAND. ? HOT CAKES
THANKS.
NOW I NEED A PLURAL NOUN FOR SOME
THINGS THAT LIVE IN THE SEA. ? OYSTERS
THANKS.
A RIDDLE
THE MAN IN THE ARCTIC ASKED OF ME,
HOW MANY HOT CAKES GROW IN THE SEA?
I ANSWERED HIM AS I THOUGHT GOOD,
AS MANY AS OYSTERS GROW IN THE WOOD.
WANT TO PRINT IT AGAIN (Y = YES)? NO
WANT TO WRITE ANOTHER (Y = YES)? NO
J

Project APRILI

Wrrite a program that creates filler paragraphs for the April 1st issue of a
newspaper. First find a paragraph on some general subject, using the in-
side pages of the paper. It should be fairly short, 50 to 150 words. Then
choose words that can be replaced without completely losing the meaning
of the sentences they are in. Have the program ask the user for an ap-
propriate part of speech for each blank—without revealing the paragraph,
of course. Then have the program print the paragraph with the user’s
chosen words inserted. You can help the humor along by narrowing the
choice at times; for example, ask for a geographical place, a number, an
exclamation, the name of an animal, and so on. (Note: This program can
make a good vocabulary and spelling exercise for youngsters, especially
when they try to outdo each successive run.)
A sample of the output for APRIL1 is given on the next page.

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

x* APRIL 1ST NEWSPAPER ARTICLE *

PLEASE TYPE IN THE FOLLOWING:

A NOUN (A MESSY SUBSTANCE) ?2 GLUE
A NOUN (PERSONAL PROPERTY) ? HAT

0OH, HOW DO YOU SPELL THE PLURAL OF THAT? HATS
THE NAME OF A CRAFT OR INDUSTRY ? PLUMBING
A TOOL ?2 CROWBAR
A COMMON HOUSEHOLD ARTICLE ? BED

AND HOW DO YOU SPELL THE PLURAL OF THAT? BEDS
ANOTHER HOUSEHOLD ARTICLE ? SALAMI
A LIQUID ? SODA POP

THANK YOU.

AUNT HOMEBODY

WE'VE TOLD YOU HOW TO REMOVE GLUE SPOTS FROM
WALLS AND FURNITURE~--NOW FOR HATS!

THE PLUMBING ASSOCIATION TELLS US THAT IF THE
HAT IS WASHABLE AND HAS ONLY A FEW SPOTS, DO THIS:

REMOVE AS MUCH OF THE GLUE AS POSSIBLE WITH A
DULL CROANBAR (A LEFT-HANDED CROWBAR IS PERFECT). NOW PLACE
THE STAINED AREA BETWEEN BEDS AND PRESS WITH A
WARM SALAMI. AFTER YOU HAVE DONE THIS, PLACE THE
HAT, STAIN SIDE DOWN, ON A BED AND RUB ANY
REMAINING STAIN ON THE BACK WITH SODA POP.

LET DRY AND LAUNDER AS USUAL.

A NOTE ABOUT THE INPUT STATEMENT

The program FAMOQUS shows that INPUT can be used with a string
variable like ‘A$. You can also use several string variables after INPUT,
separating them with commas. The user must then supply several strings,
also separating them with commas. Example:

> 10 PRINT “TYPE LAST NAME, FIRST NAME"
> 20 INPUT L$, F$
> 30 PRINT “YOUR NAME IS ";F$;” “;L$
> RUN
> TYPE LAST NAME, FIRST NAME
7 SMITH, HORATIO

YOUR NAME IS HORATIO SMITH

One problem can arise: There's no way to input a single string that contains
2 comma. The computer will think you were trying to input two strings,
and complain. To get around this, a special statement called LINE INPUT
has been invented. It will be explained in chapter 4, section 4.2

Section 1.8 Built-in Functions in BASIC 47

1.8 USING BUILT-IN FUNCTIONS IN BASIC. DICE, CRAPS,
TABGRAPH

If you've done much mathematical calculation, you know that you must
occasionally obtain values like sines, cosines, logarithms, square roots,
and so on from a handbook. TRS-80 Level II BASIC does this for you
automatically for a number of such functions. For example, SQR(X) gives
you the square root of X, SIN(A) gives you the sine of A, INT(N) gives the
integer part of N, ABS(Y) gives the absolute value of Y, and so on. Other
BASIC dialects may use slightly different names for these functions.

Absolute value is handy in finding the distance between two
numbers, regardless of sign (ABS(5-3) = 2, but also ABS(3-5) = 2). This is
applied in checking for correct answers in Project VARIETY which is
discussed in the next chapter. This example also shows you how to use the
SQR and INT functions.

- Games, quiz programs, and simulations all become more interesting
when you are able to use “surprise” or random numbers. In BASIC,
RND(0) (or on some computers RND(1)) gives you a random number be-
tween 0 and 1 which seems to be selected by chance each time RND(0) is
used. You can get larger random numbers by multiplying RND(0) by a
constant, or adding something to it. For example, INT(6 * RND(0) + 1)
will give random numbers that are integers between 1 and 6.

Here's a simple dice throwing program that uses this formula:

100 REM---DICE (USES RANDOM NUMBER FUNCTION)---
105 PRINT"*** DICE ROLL ***"

110 LET C = 0

120 PRINT"WHAT IS YOUR POINT (2 TO 12)";

130 INPUT P

140 IF P > 12 THEN PRINT"TOO LARGE": GOTO 120
150 IF P < 2 THEN PRINT"TOO SMALL": GOTO 120

160 REM~~--THIS IS START OF DICE THROWING LOOP---
170 LET DI = INT(6*RND(0)+1) P
180 LET D2 = INT(6*RND{0)+1) <
190 LET S = Dl + D2

200 PRINT"THE DICE ARE THROWN...THE SUM IS";S

210 LET C = C + 1

220 IF S = P THEN 300

230 GOTO 170

300 PRINT"*** YOU MADE YOUR POINT IN";C;"THROWS."
310 PRINT"WANT TO TRY TO DO BETTER ";

320 INPUT AS

330 IF LEFTS(AS,1) = "Y" THEN 110

340 END

Each time line 170 or 180
is executed, a new random
number from 1 to 6 is produced.
On the TRS-80 you could change
these lines to

D1 = RND(6) D2 = RND(6)

48

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

>RUN
%* DICE ROLL *

WHAT IS YOUR POINT (2 TO 12)? 7

THE DICE ARE THROWN,...THE SUM IS 10
THE DICE ARE THROWN...THE SUM IS 8
THE DICE ARE THROWN...THE SUM IS 8
THE DICE ARE THROWN...THE SUM IS 9
THE DICE ARE THROWN,..THE SUM IS 12
THE DICE ARE THROWN...THE SUM IS 9
THE DICE ARE THROWN...THE SUM IS 5
THE DICE ARE THROWN...THE SUM 1S5 11
THE DICE ARE THROWN...THE SUM IS 5
THE DICE ARE THROWN...THE SUM IS 11
THE DICE ARE THROWN...THE SUM IS 7
**% YOU MADE YOUR POINT IN 11 THROWS.
WANT TO TRY TO DO BETTER ? YES

WHAT IS YOUR POINT (2 TO 12)? 11
THE DICE ARE THROWN...THE SUM IS
THE DICE ARE THROWN...THE SUM IS
THE DICE ARE THROWN...THE SUM IS
THE DICE ARE THROWN...THE SUM IS
THE DICE ARE THROWN...THE SUM IS
THE DICE ARE THROWN...THE SUM IS
THE DICE ARE THROWN...THE SUM IS
THE DICE ARE THROWN...THE SUM IS
THE DICE ARE THROWN...THE SUM IS 10
THE DICE ARE THROWN...THE SUM IS 11
**% YOU MADE YOUR POINT IN 10 THROWS.
WANT TO TRY TO DO BETTER ? YUP

VT WWI b

WHAT IS YOUR POINT (2 TO 12)2 7
THE DICE ARE THROWN...THE SUM IS
THE DICE ARE THROWN...THE SUM IS
THE DICE ARE THROWN...THE SUM IS
THE DICE ARE THROWN...THE SUM IS
THE DICE ARE THROWN...THE SUM IS
% yOU MADE YOUR POINT IN 5 THROWS.
WANT TO TRY TO DO BETTER ? NOPE

~No o

Project CRAPS

Wrrite a program that simulates playing the game of craps. This will re-
quire you to look up the rules of the game, think them through carefully
nAd wrrito RACIC atntomontc ﬂn (1) acl Hno person uﬂ'\af 1"\1c]"\nn]/rn“

and write BASIC statements that (1) ask th

(so when he wins or loses it can be changed), (2) ask the person how much
he is betting, (3) roll each die (using statements like those in DICE), (4) use
conditional statements to determine if the player won or lost, (5) add or
subtract from the bankroll, and (6) ask if the person wants to play again.
A simplified flowchart based on the usual rules of Craps is shown on the
facing page.

Section 1.8

THE COME-OUT ROLL

"YOUR POINT IS P."

THE POINT ROLL

"YOU CRAPPED OUT."

"YOU MADE YOUR POINT."

Built-in Functions in BASIC

THE RULES OF CRAFPS

ROLL DICE
R=RND(...)

49

YES
YES A j
"NATURAL"
YES
“CRAP"
YES i
YES
P=R
R
ROLL DICE
R=RND(...)
YOU LOSE-
SUBTRACT
BET FROM
BANKROLL
YOU W/N-
ADD BET
TO BANKROLL

50

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

This flowchart only details the rules which govern the playing of Craps.
Additional steps are necessary to provide input from the players, output
messages to the players, multiple games, etc. For some help see page 75 of
BASIC and the Personal Computer (Addison Wesley, Reading MA
01867).

Project TABGRAPH

Write a program that uses the SIN(A) and COS(A) functions together with
TAB(X) to plot a wiggling curve. If this subject is new to you, Chapter 3 of
Basic and the Personal Computer discusses several versions of SIN and
COS graphs. Chapter 7 of the same book shows the techniques that can be
used for plotting more complex mathematical functions.

Here's what a sample run would look like if the amount tabbed over
was controlled by COS(2*A) + SIN(A), where A can be thought of as an
angle going from 0 to 9.5 radians.

Section 1.9 Other Features of BASIC 51

1.9 OTHER FEATURES OF BASIC. STARS, FANCY, THROW
A PARTY

We've now covered the most important features of standard BASIC
(sometimes called minimal BASIC). The vocabulary that’s been developed
is sufficient for handling a large variety of programs. However, experience
has shown that programmers are a restless and imaginative lot, and they
keep on asking for more and more capabilities. This has resulted over the
years in what is usually called extended BASIC, a language that includes
minimal BASIC as a subset, but adds many other powerful features.

The best known extended BASIC is the version produced by the
Microsoft Company, marketed under such names as TRS-80 Level II
BASIC, Altair BASIC, PET BASIC, Exidy Sorcerer BASIC, APPLESOFT
BASIC, OSI BASIC, and several others. We'll take a look at most of the
extra features of TRS-80 Level II BASIC in the remaining chapters of the
book (particularly in Chapter 2, section 2.2).

In this section we'll conclude our discussion of minimal BASIC by
introducing three additional statements that will set the scene for some of
the projects coming up in Chapter 2.

GOSUB 900

This statement is a way of saying to the computer, “Go do the subroutine
that starts at line 900. When you find the word RETURN, come back to
this statement and continue with the next statement.”

A subroutine is a small subprogram imbedded inside a main program.
One reason for using a subroutine is that it can be called upon from dif-
ferent parts of the main program. For example, a subroutine to print a line
of N stars could be called upon three times in the elementary math pro-
gram shown on the next page.

52 CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

()
10 REM—=-=—~ STARS (DEMONSTRATES GOSUB) -~---
20 PRINT "HI. TYPE A NUMBER FROM 1 TO 15";
30 INPUT N

40 IF N>15 THEN 20
50 IF N<1 THEN 20
60 PRINT "GREAT. DID YOU KNOW THAT";N;"STARS +";N;

65 PRINT "STARS =";N+N;"STARS ?"
70 PRINT "TO SEE WHY, COUNT THE STARS BELOW"
80 PRINT

90 GOSUB 900
100 PRINT " + ";
110 GOSuUB 900
120 PRINT hlnd
130 PRINT " = "; the subroutine is used

140 LET N=N+N 3 times in this program

150 GOsuB 900 ———TL
X

160 STOP

900 REM -~- SUBROUTINE TO PRINT N STARS --~-
910 FOR K= 1 TO N

920 PRINT "*";

930 NEXT K

940 RETURN

990 END

The arrows show how

<

>RUN

HI. TYPE A NUMBER FROM 1 TO 152 5

GREAT. DID YOU KNOW THAT 5 STARS + 5 STARS = 10 STARS ?
TO SEE WHY, COUNT THE STARS BELOW

kkkhk 4 khkkkk
= Hkkkkkkkhkkk

ON K GOTO 80, 110, 140, 170

This statement allows branching to one of several statements (in our
example these would be the statements with line numbers 80, 110, 140,
and 170). There can be a reasonably long list of these line numbers, cor-
responding to as many cases K as you wish to consider. When K = 1, the
program branches to the first line number, when K = 2, to the second line
number, and so on. Here's an example using four line numbers:

Section 1.9 Other Features of BASIC

53

-~
10 REM ~--- PFANCY (DEMONSTRATES ON K GOTQO) ---
20 PRINT "HOW FANCY DO YOU WISH TO GET";
30 INPUT K
40 IF K > 4 THEN 20
50 IF K < 1 THEN 20
60 ON K GOTO 80, 110, 140, 170
70 REM --- FIRST CASE =---
80 PRINT "YOU TYPED A 1. THAT'S FANCY."
90 GOTO 20
100 REM -~-- SECOND CASE ---
110 PRINT "YOU TYPED A 2, THAT'S VERY FANCY."
120 GoTO 20
130 REM -~~~ THIRD CASE ---
140 PRINT "YOU TYPED A 3. THAT'S SUPER FANCY,"
150 GOTO 20
160 REM~—~~ FOURTH CASE ---
170 PRINT "YOU TYPED A 4. THAT'S ULTRA FANCY."
180 GOTO 20
190 END
>RUN
HOW FANCY DO YOU WISH TO GET? 2
YOU TYPED A 2., THAT'S VERY FANCY.
HOW FANCY DO YOU WISH TO GET? 1
YOU TYPED A 1. THAT'S FANCY.
HOW FANCY DO YOU WISH TO GET? 3
YOU TYPED A 3. THAT'S SUPER FANCY.
HOW FANCY DO YOU WISH TO GET? 4
YOU TYPED A 4., THAT'S ULTRA FANCY.
HOW FANCY DO YOU WISH TO GET?
BREAK IN 30
READY
>
J

Note: This program can only be stopped by pressing BREAK.

ON K GOSUB 900, 1000, 1100, 1200

This works in a manner similar to ON K GOTO The difference is that
each line number must correspond to a subroutine. When K = 1, the pro-
gram branches to the first of these subroutines, when K = 2, it goes to the
second, and so on. In each case, when the RETURN at the end of the
subroutine is encountered, the program then automatically goes back to
the line right after the ON K GOSUB statement. An example of a situation
in which this statement is useful will be discussed in Chapter 2, section 2.1
under the heading Project VARIETY1. A more advanced example of its

use will be given in Chapter 3, section 3.6 in the program MONEY.

54

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

Project THROW A PARTY

As mentioned in the introduction, the first chapter of this book covers
about as much material as found in some introductory computer program-
ming courses. This means that you shouldn't expect to understand
everything on a first reading, and that it will be helpful to go over the
material several times, at least if you're new at programming.

A good trick for reviewing new ideas and really mastering them is to
try to explain them to others. The problem is finding victims for such an
experiment. One way might be to throw a party where you just happen to
have your computer up and running. Then when someone expresses in-
terest in the gadget, you'll have an excuse for showing off some of the pro-
grams you've written and explaining how they work. If possible, let the
other person do the typing at the keyboard. Also don't be too anxious to
correct his or her mistakes—remember, your goal is to learn as much as
your “student,” and seeing what bugs others find in your work can be
really educational.

YOU HAVE SOMETHING
IN COMMON WITH THE
PERSON WEARING A

PURPLE LOVEBEAD
BRACELET.

/‘ WANT NAME? NO

Section 1.9 Other Features of BASIC 55

Exercises for Chapter 1

Here are some exercises to try before moving on to the next chapter. Some of
them ask you to simulate a run. To do this, divide your work paper into two
parts. On the left, draw a picture of the computer’s output screen (or paper). On
the right, draw a box for each program variable, and put a zero (or space) in each
box for a start. Then trace through the program statements just as the computer
would, placing the output you'd get in the output space, while changing variable
values as called for. Example:

REM %%% EXERCISE $0. SIMULATE A RUN OF THIS PROGRAM $3%%
FOR K=1 TO 3

LET A=2*K+10

PRINT K,A

NEXT K

END

To simulate a run, you would trace through this program in the order 10, 20, 30,
40, 50, 20, 30, 40, 50, 20, 30, 40, 50, 60. When finished, here’s what you'd have

on your paper:

OUTPUT VARIABLES
> RUN
1 12 K 1 2 3
2 14
3 16 A 12 14 16

To check your work, you can then try the program on an actual computer. If
the results are different be sure to figure out what went wrong before going
ahead.

REM %%% EXERCISE 1. SIMULATE A RUN OF THIS PROGRAM %%%
LET A=4

LET B=3

LET S=A+B

PRINT S; "COME"; S+A

END

56

CHAPTER 1 LEARN COMPUTER PROGRAMMING AT HOME

In exercises 2 and 3, first fill in the missing parts, then simulate a RUN of the

program.
10 REM $%% EXERCISE 2. FILL IN THE MISSING ~---- PARTS %%%
20 PRINT "HOW MANY QUARTERS DO YOU HAVE";
20 TNPUT Q
40 PRINT "THAT'S EQUAL TO"; ——--- ; "PENNIES"
50 PRINT "IT'S ALSO EQUAL TO"; -—--- ; "DOLLARS"
40 END
10 REM %%% EXERCISE 3. FILL IN THE MISSING ~~=--- PARTS $%%
20 PRINT "HOW MANY QUARTERS, DIMES, AND NICKELS DO YOU HAVE";
30 INPUT Q,D,N
40 PRINT "THAT'S EQUAL TO"; ~~=-- ; "PENNIES™
50 PRINT "IT'S ALSO EQUAL TO"; ----- ; "DOLLARS"
60 END
10 REM $%% EXERCISE 4. SIMULATE A RUN OF THIS PROGRAM %%%
20 PRINT "THIS PROGRAM HAS BEEN"
30 FOR I= 1 TO 3
40 PRINT "BROUGHT TO YOU"
50 FOR J= 1 TO 2*I
60 PRINT "LIVE!!! ";
70 NEXT J
80 PRINT
90 NEXT I
100 END

Section 1.9 Other Features of BASIC 57

SOQURCES OF FURTHER INFORMATION FOR CHAPTER 1.

1. BASIC and the Personal Computer (Addison-Wesley Co., Reading, Mass.,
1978). This is a 440-page book that covers BASIC in detail. It also examines
a variety of applications, and discusses such subjects as computer art, sor-
ting, minimax games, sequential files, simulations, and color graphics.

2. Creative Computing. (51 Dumont Pl., Morristown, NJ 07960) A monthly
magazine that features an informal coverage of many topics, and regularly
publishes game programs in BASIC.

3. BYTE. (70 Main St., Peterborough, NH 03458) The oldest, largest, and best
regarded of the small computer magazines. It is worth saving back issues as
a reference collection.

4. Personal Computing. (1050 Commonwealth Ave., Boston, Mass. 02215)
This magazine is aimed at the beginning computer user. It has also carried a
large number of articles reporting on the progress of computer chess.

5. OnComputing. (70 Main St., Peterborough, NH 03458) This is a new per-
sonal computing magazine with a slant toward the beginner. It includes ex-
tensive equipment reviews.

1

///»/X\/W \ |
= X k//\// 2 IS AT |
e\ \M//./ V/V;U/\/\.)W N D /V//vv .
_— VU/VV,UMVW/UV -J/MM = \
= e
_ P \Mku s ,J.J/J 2 V//.M/-V \%WNU\MVMP
AN ’ mvw St iy
TN NS =5
N AlllE22 1331 T
95 =2 DaSyvi
PPl ks 11913 1
- uMVUV ﬂ / L)(TATA
/ /J vaw/ —¢ 1 J)
e \\ P WV.VWA vo/.// —=
573 < mfvwwwf TR
™ N VW > ,M#Wf# M/u w/% W/ —
\4 v VL/\V B Nt S A\t .M/ N2 .
el - S
A Seatitig] R
. - wvvhvvvwbwwdm W_A /M l\mw
™ wwwwvw(mﬂnw Rioa\
W= SESHErL M M B\
g o

a-half

Structured Program Design

In Chapter 1 we introduced the vocabulary of minimal BASIC and
demonstrated how it can be used to write computer programs. As the
vocabulary increased, these programs became longer, a pattern which will
continue throughout the remainder of the book. To make these longer
programs more readable, we'll include a variety of remark statements in
the listings.

However, something more than readability is needed to help you
think out and design longer programs. Experience has shown that describ-
ing and designing computer programs in a consistent, orderly fashion is
what helps most. A scheme for doing this in five steps will be explained in
this chapter. The use of this scheme will then be illustrated in the design of
all the major programs ahead.

In case you're wondering, the longer application programs in this
book, or in any other book, weren’t immediately written in the form you
see. Revisions and improvements are a way of life in the world of com-
puting. Although you may not follow the suggested design sequence for
every program you write, we think that keeping this procedure in the back
of your mind will make the creative process a little smoother, and the final
product clearer and easier to debug.

Here are the five steps in program design we suggest you follow and
which we'll illustrate in the chapters ahead.

59

60

Step 1 The Idea Try to be clear about what it is you want the program to
do. If it's a game, you should explain the order of play, the rules to be
followed, how winning and losing will be determined, and what the out-
come will be. If it's a business program, you should describe its purpose,
the transaction data to be gathered, and the final reports that will be pro-
duced. In general, you should be clear about the what and why of your
idea. Like any preliminary step, you may have to come back to this stage
more than once before your program is completed.

Step 2 A Sample Run What do you want the computer to print out? What
do you want the user to type? Some parts you forgot to include under step
1 may pop up here. If there is more than one possibility in a particular in-
teraction, write out an example of each possibility. Think about what sort
of instructions a person using the program might need, and when they
should be printed out. How do you tell the user what to type for an input?
At the end of the program, should there be a final message to the user?
You might even draw a sequence of TV display screens and write the ex-
pected results of a run inside them. Putting this step ahead of writing the
program may seem a little strange, since it means you must imagine the
run first. But give it a try; we think you'll eventually find it a powerful

technique.

61

Step 3 High-Level Design Now that you know what the program is sup-
posed to do, and what its output will look like, you can start thinking
about the major tasks the program must carry out, and the order in which
they should be done. Try to hold off from writing actual computer code
just yet. Pretend you have someone else to take care of the details—you
just have to lay out the general plan of the program (this is the meaning of
“high-level design”). You are like an executive giving orders: “First do this,
then do this, ... last of all, do this.” The result should be an outline (or in
the case of simpler programs, a complete statement) of the program, writ-
ten in English. The English language, when used carefully, is an excellent
high-level tool.

Remember to think about what variables you will need. In planning
longer programs, it is a good idea to make a table of variable names and
their meanings. Decide whether you want to store some values in an array
using subscripted variables like X(1), X(2), and so on, or in a two-
dimensional array using variables like X(1,1), X(1,2), and so on. This is
called deciding on your data structures.

If a very similar task is done more than once in the program, such as
drawing a dashed line, or stopping to wait for the user to read the display
and push a button, try making it into a subroutine.

Finally, convert some, or all, of the sentences in your high-level
design into BASIC remark statements like:

10 REM---"BUCKSHOT"” (HUNT SIMULATION GAME)---
100 REM---GIVE INSTRUCTIONS, INITIALIZE VARIABLES---
200 REM---BEGIN GAME LOOP---

1000 REM---SUBROUTINE (DRAWS A LINE)---
1100 REM---SUBROUTINE (DISPLAYS GRAPHICAL OUTPUT)---

Each remark statement above describes a block of BASIC code for which,
in this example, up to 99 numbered statements can be written in step 4.

62

Step 4. Coding the Program With all this planning out of the way, you're
almost home free. You can now settle down to writing the actual BASIC
statements that make the computer do what you want. By the way, you
may have to revise your plans; move a block of code to a different posi-
tion or add new blocks you hadn’t thought of before. Don’t despair! This
is all part of the art of programming.

Hint: If you write a GOTO (or an IF...THEN) statement that sends
control back to an earlier statement, and then find yourself writing
another GOTO statement to get around a later block of code, you'd better
think about rearranging some blocks of code, even if it takes extra typing.

Step 5 (Optional) Future Extensions and Revisions Once you have a work-
ing program, two things are likely to happen: (1) You will keep on adding
sections or making changes, making it “just a bit better” or “just a bit more
fun,” or (2) you will be inspired to write a whole new program along
somewhat the same lines, but for a different purpose. This is the habit-
forming part of programming a computer. In moderation, it's quite
harmless, and often very intriguing. However there may come a time
when moving on to new challenges is the best way to grow. That's when
the best advice will be “go back to Step 1”.

63

SOURCES OF FURTHER INFORMATION.

The five stages of program design discussed in this chapter are related to what
some authors call structured program design. The idea is to organize the total
design process so that the final pieces all fit together neatly. Structured design is a
form of discipline that forces you to think about where you are headed before
you try to get there.

The phrase structured programming has a narrower meaning. It says that the
coding of a program (step 4) must carefully adhere to the high-level design (step
3), and that the programmer should avoid jumping around (or into or out of) the
major blocks in the high-level design. This is why some people associate struc-
tured programming with avoiding haphazard use of the GOTO statement. An
advanced book on structured program design is Software Tools by Kernighan
and Plauger (Addison-Wesley Co., Reading, Mass., 1976). A good series of
articles on structured programming appeared in BYTE magazine in 1978 (July, p.
32, August, p. 143, and September, p. 68). A collection of 17 articles and essays
(including 10 reprints from BYTE) on the subject can be found in the BYTE Book

Program Design.

PUT AN EDUCATIONAL

GAME ROOM

IN YOUR BASEMENT

2.0 COMPUTERS, GAMES, AND LEARNING

Some folks don't like to admit it, but people young and old often learn
more at play than in school. It's now possible to combine the playing of
games with learning in a new and intriguing way. How? With computer
fantasy games based on mathematics, logic, and word manipulation. This
use alone can easily justify the cost of a home computer.

In this chapter we're going to look at a number of games, but we're
going to concentrate on those that have the bonus of being educational.
We think you'll find that the word educational in this case is not
synonymous with boring. In fact the situation is just the opposite. That's
why kids, including some with gray hair, get very sharp at the skills in-
volved in computer game playing. There's little doubt that children can
get a real head start on lots of useful skills if they have access to a home

computer.

65

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

The games we'll examine center on three themes: number games,
word games, and science fiction space games. Some of these programs are
obviously connected with school learning, while others involve ideas not
found in most classrooms. But they all have the elements of suspense and
surprise that are characteristic of friendly human-computer interactions.

In addition to their recreational and educational value, the game pro-
grams in this chapter were selected for a third reason. They illustrate a
number of general programming techniques that will prove valuable in
other settings. By the end of the chapter you will have used such exotic
ideas as “modular program design,” “uniformly distributed pseudo-
random numbers,” “two-dimensional data structures,” and “binary search
algorithms.” And it won't even hurt.

Section 2.1 Simple Number Games 67

2.1 SIMPLE NUMBER GAMES. ARITH, DATARITH,
DATARIT2, DATARIT3, DATARIT4, RNDARITH, MULT,

VARIETY1, VARIETY2, SQROOT

SR\
Nm%
= 3

DN

¢

Although the idea of a quiz has associations with school, it is really a kind
of game. After all, if you come up with the right answer, you win; if not,
you lose. Our first attempt to describe the process of designing a struc-
tured computer program will be an arithmetic quiz. Frankly, this is
because a computer naturally “takes” to this sort of quiz. We will go on to
word quizzes and space games later.

Program ARITH

The Idea

The idea behind any arithmetic quiz can be stated briefly: give the person
some problems, collect the answers, see if they are right or wrong, keep a
score, give the person the score. In order to make this into a computer pro-
gram, we'll have to be a little more specific.

How many problems will the program give? One solution is to ask
the person how many he or she wants. What kind of problem? Well, for a
start let's just do addition problems. Where do we get the numbers to
make up the problems? Again, let's ask the person for the numbers.

Now that we're fairly specific about what we want to do, let’s imagine
what a run would look like.

Sample Run

Coming up with a run before writing the program is difficult at first. It
takes imagination and experimentation. You try to anticipate what the
person will need to see, things such as:
@ a heading to announce what the program is going to do
@ the proper wording of the requests for the number of problems
and the numbers to be used
@ the form for printing out the problem. This one is done horizon-
tally to save space on a TV display screen, but many school
children demand the vertical form
@ what to actually print out if the answer is right or wrong, and
how to express the score

68

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

RUN

ADDITION PRACTICE

HOW MANY PROBLEMS DO YOU WANT? 3

TYPE IN 2 NUMBERS SEPARATED BY A COMMA? 2,2
2+ 2= 74

RIGHT!!

TYPE IN 2 NUMBERS SEPARATED BY A COMMA? 143,276
143 + 276 = 2 219

WRONG. THE ANSWER IS 419

TYPE IN 2 NUMBERS SEPARATED BY A COMMA? 9,13
9 + 13 = ? 22

RIGHT! !

YOUR SCORE IS 66.6667 % RIGHT.

In our run, you'll notice that we decided to print out the percent right
rather than the percent wrong. We also decided to give the right answer
after the person types in the wrong one. This is a good idea for most quiz

programs.

High-Level Design

Now let’s try a high-level design for this program. What we want the pro-

gram to do is:
0. Print a heading.
Find out how many problems the person wants.

Present the problem.
Get the person’s answer.

g W

message for either, and count the correct answers.
Go back and generate the next problem (step 2).
7. When finished generating problems, print the score.

o

A set of BASIC REMARK statements for this high-level design might

look like this:

10 REM-—-ARITH (USES INPUT TO GET NUMS.)---

S S A

100 REM---INTRODUCTION, INITIALIZE VARIABLES---

200 REM---GENERATE PROBLEM---

300 REM---PRESENT PROBLEM---

400 REM--INPUT ANSWER---

500 REM---CHECK IF ANSWER IS RIGHT/WRONG---
600 REM---GET NEXT PROBLEM---

700 REM---REPORT SCORE---

800 REM---FUTURE EXTENSION OF PROGRAM---

Generate a problem, but first get two numbers from the person.

Check if the answer is correct or incorrect, print out an appropriate

Section 2.1 Simple Number Games 69

Line 10 shows that it's a good idea to start with a remark that
explains what file name this program will be stored under in mass storage.
A little note in parentheses says what is unique or important about this
program. Line 100 indicates that this block is where you introduce the pro-
gram to the user and put values in memory for any variables you may
need. This is called initializing the variables because these beginning, or
initial, values may change later in the program. So line 100, in this case,
takes care of points 0 and 1 of the high-level design.

The rest of the remarks correspond closely to the steps in the high-
level design, except for line 800. It's a good idea to reserve a bunch of line
numbers toward the end of your program for extensions to the program.
You might put your END statement at line 900, leaving 100 line numbers
free. Of course it's easy to move an END statement, but why not leave
room to put a subroutine or some DATA statements down there.

Coding the Program

Without further discussion, let’s look at what a complete version of this
arithmetic quiz program might look like coded in BASIC. Notice that all
our remark statements are still there, making it easy to put the working
BASIC statements in their proper order.

10

100
110
120
130
140
200
205
210
220
300
310
400
410
500
510
520
530
550
560
600
610
700
710
800
900

REM—---ARITH
REM=--~-INTRODUCTION, INITIALIZE VARIABLES---

(USES INPUT TO GET NUMS.)=-====-

PRINT"ADDITION PRACTICE"

LET R = 0

PRINT "HOW MANY PROBLEMS DO YOU WANT";
INPUT N

REM==~GENERATE PROBLEM=—=——m—m o e e e e
FORI =1 TON

PRINT "TYPE IN 2 NUMBERS SEPARATED BY A COMMA";

INPUT A,B
REM~---PRESENT PROBLEM=m=mm= e
PRINT A;II+II;B;II= ll;
REM-—-=INPUT ANSWER-~—=~—m-m s e o m e e
INPUT X
REM-~-CHECK IF ANSWER IS RIGHT/WRONG-----
IF X = A + B THEN 550
PRINT "WRONG. THE ANSWER IS";A+B
GOTO 610
PRINT "RIGHT! ("
LET R =R + 1
REM---GET NEXT PROBLEM----=wm—w—ee-—m— e m
NEXT I
REM—--~REPORT SCORE—==m—momm o o e o
PRINT "YOUR SCORE IS ";R/N*100;"% RIGHT."
REM~~~FUTURE EXTENSION OF PROGRAM=-—-=—==—=—-
END

From now on
REM(ARK) statements
will be used to help
explain what each
part of the program
does. These are not
used by the computer,
so typing them in is
not necessary unless
you want to save a
documented form of
the program.

70

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

Since there are no new features of BASIC used in this program, let’s go
right on to the extensions or improvements that can be made.

Future Extensions and Revisions

At this point you might decide that asking the person for two numbers
every time is boring. There must be a better way. As a matter of fact there
are several. Here's one: You can put pairs of numbers for A and B in
DATA statements and have the program read in two values every time it
generates a problem. Of course, you should warn the person not to ask for
more problems than there are pairs of values.

Project DATARITH

Write a program that modifies ARITH to use DATA statements as the
source of numbers for the problems. It is only necessary to change a few
lines in ARITH and add the DATA statements, as follows:

10 REM~--DATARITH (USES READ,DATA FOR NUMS.)---
100 REM---INTRODUCTION, INITIALIZE VARIABLES---
110 PRINT “ADDITION PRACTICE”

120 LETR =0

130 PRINT “"HOW MANY PROBLEMS (UP 'O 10)";

140 INPUT N

150 IF N > 10 THEN 130

200 REM---GENERATE PROBLEM-----mmmemmmmemeeee

205 FORI =1TON

220 READ A,B

230 DATA 2,3, 3,7, 7,9, 9,12, 12,5

240 DATA 12,7, 13,7, 13,8, 14,9, 15,20

610 NEXT I

Project DATARIT2

Children like hearing the same story over and over. A lot of youngsters
like seeing the same arithmetic problems over and over, too. Write a pro-
gram that uses READ and DATA statements as in the program segment
given above. Then, to make it possible for your program to start again at
the beginning of the data without having to rerun it, the keyword
RESTORE should be used before branching back to the beginning of the
program. The statement “840 RESTORE" means “Reset the READ pointer
back to the beginning of the DATA.”

Section 2.1 Simple Number Games 71

800 REM---FUTURE EXTENSION OF PROGRAM----------

810 PRINT “WANT TO TRY THE SAME PROBLEMS AGAIN
(Y = YES)";

820 INPUT A$%

830 IF A$<> "“Y"THEN 900

840 RESTORE

850 GOTO 140

900 END

Project DATARIT3

In DATARITH, if line 150 is omitted, and the user asks for more than 10
problems, the program will terminate with an OUT OF DATA error
message when an attempt is made to read an 11th pair. There are at least
two ways to cure this limitation: (1) store lots of values in your data (100
pairs?) and hope for the best, or more logically, (2) use the RESTORE
keyword whenever the last data pair is read. How do you get the program
to know when the last pair has been read? Here's one way. Add the
following:

225 IF INT(1/10) = 1710 THEN RESTORE
And here’s another way:

240 DATA 12,7, 13,7, 13,8, 14,9, 15,20, 0,0

225 IF A = 0 THEN RESTORE: I = I - 1: GOTO 610
Naturally, if you change the number of pairs of values you have in the
DATA statements, you must change the “10” in the first version of line
225 to whatever number of pairs of values you actually have. If you
change your DATA statements and use the second method, you must
remember always to make the last pair of values 0,0. Why two zeros?
Because the READ statement in this particular program will look for two
more values. If it only finds one, you'll still get an OUT OF DATA error
message.

Project DATARIT4

Suppose DATARITH had lots of pairs of values, and they were carefully
arranged in order of increasing difficulty like this:

230 DATA 2,2,3,2,1,4,5,5,6,2

235 DATA 3,7, 4,5, 8,6, 4,7, 5,8

240 DATA 9,6, 9,9, 10,7, 12,8, 13,6

245 DATA 14,8, 15,6, 15,9, 16,5, 16,9

250 DATA 17,5, 17,9, 18,2, 18,6, 19,5

255 DATA 19,8, 20,5, 21,8, 22,9, 23,8, 0,0

Could you change the program so that the person using it could choose
easy, medium, or hard problems? This means you would have to get the
program to start generating problems from pairs of values not at the

72

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

beginning of the data, but further down the list. This can be done by
adding a “dummy” READ statement.

160 PRINT “HOW HARD? 0=EASY, 1=MEDIUM, 2=HARD";
170 INPUT X

180 IF X = 0 THEN 205

190 FORI = 1 to X*10

192 READ D,D

194 NEXT I

The variable D is a dummy, that is, its value is never used. The FOR loop
in line 190 causes X*10 pairs of values to be read into D. This causes the
pointer which keeps track of what values have been used up to move
down X*10 pairs. So the program will start generating problems from the
11th pair of values if X = 1, and from the 21st pair if X = 2.

Project RNDARITH

Another way to get the computer to provide numbers for the problems is
to use the RND(0) function. This can be done by eliminating lines 210 and
220 of ARITH and substituting lines which use INT(N), the integer func-
tion, along with RND(0) to create surprise numbers for A and B. But now
you must decide how big (or small) you want these numbers to be. We
suggest the following:
220 LET A = INT(RND(0) * 15 + 1)
230 LET B = INT(RND(0) * 15 + 1)
This will give numbers from 1 to 15 for A and B. If you want to have dif-
ferent numbers, you must change the formula while keeping in mind the
following ideas:
® INT(...) means you want an integer, not a number with a frac-
tion. Whatever is calculated inside () will lose its fractional
part.
® RND(0) gives a random number from 0 to .999999 (in TRS-80
Level II BASIC).
© RND(0) * 15 converts the random number to the range 0 to
14.999, so INT{RND(0) * 15) will give you one of ihe 15 integers
from 0 to 14.
® INT(RND(0) * 15 + 1) means you prefer your random number
to range over 15 integers from 1 to 15.
Now suppose you want your problems to have integers that start at 5 and
end at 30. That means you want a total of 26 integers (30 - 5 + 1, where
the + 1 is needed if you want to include 30). So your formula would read:
220 LET A = INT(RND(0) * 26 + 5)
It's a good idea to write some short programs which create random
numbers with different ranges until you get used to the formula.

Section 2.1 Simple Number Games 73

Note on Random Numbers and the RND Function

Many number and word games benefit from the use of the RND function'in
BASIC. The space game BABYQ explained in section 2.5 will also depend

. on RND to keep it interesting. This shouldn’t be too surprising. Even the

- most ancient games used randomizing devices, ranging from sticks that
could come to rest in only one of two ways when tossed (binary dicel); to
the knuckle bones of sheep which could land in one of four positions. The
six-sided cubic die used today was probably introduced by the Lydians of
Asia Minor, while Roman dice with 14 and 20 sides have been found. In all

~‘cases the intent was to generate an outcome that could not be predicted
exactly for each toss. Such an outcome is often called a random (as opposed
to. deterministic) event.

Even when events are random, we can say something about the prob-
ability of an individual event happening. If, for example, we find that in
throwing one six-sided die 600 times each numbered face comes up about
100 times, we can say that the probability of getting a 1 is 1/6, the prob-
ability of getting a 2 is 1/6, the probability of getting a 3 is 1/6, and so on.
We can also say that the numbers 1, 2, 3, 4, 5, and 6 are generated with a
uniform distribution—no number gets favored over the others.

In BASIC, when you use a statement like LET R = RND(0) (Warning:
on some machines LET R = RND(1) is the correct form), a number from 0
up- to, but not including, 1 is generated. When a statement containing
RND(0) is used more than once, or when it's part of a statement inside of a
loop, different numbers may be generated each time the statement is
executed. The numbers are said to be generated randomly because there
doesn't seem to be any way to predict which number will appear next.
Actually, the numbers are generated by a small subprogram inside BASIC
that modifies the previous number each time it's used. Eventually, after
much use, this subprogram will repeat its sequence of random numbers all
over again. Since the output of the RND subprogram is deterministic, RND
should really be called a pseudo-random number generator. In practice,

¢ you'll probably never know the difference, and you can assume that RND'is
giving you true random numbers with uniform distribution.

One last thing. On. some computers the sequence of pseudo-random
numbers generated by RND starts all over again each time you run the pro-
gram. This can be useful when testing a program, but it could spoil the fun
for certain games. If this happens on your machine, try putting the state-
ment 10 RANDOM (or 10 RANDOMIZE) at the beginning of the program.

Project MULT

Programs like ARITH, DATARITH, and RNDARITH can just as easily
become quizzes on subtraction, multiplication, or division. But suppose
that you want the program to say something besides RIGHT!! every time
that the answer is correct. Try writing a multiplication quiz which ran-
domly chooses to print RIGHT!!{, CORRECT!!, or VERY GOOD!! when
the answer is right. After line 530 and before line 600 you will need to do
the following:

74

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

@ Create a random number from 1 to 3; say, Z.

® Use a statement like: ON Z GOTO 550, 555, 560.

® At each line number mentioned above, print a message, then go
on with the program.

® Remember to count right answers.

Surprise messages for the wrong answer are also possible. If the pro-
gram is to be used among friends, some insults expressed in the latest slang
might be fun, but you'd better not upset any strangers; they might mangle
your microcomputer.

Project VARIETY1

Write a math practice program which codes the following high-level

design.

1. Introduction, initialize variables.

2. Ask the person how many problems are wanted.

3. Ask the person what kind: addition, subtraction, multiplication, or
division.

4. Generate a problem; pick two random numbers, one ranging from
10 to 99, the other from 1 to 9.

5. Present the problem. Use four subroutines, one for each of the four
operations, to present the problem and calculate the correct answer.

6. Check if the person’s answer is “very close to” the correct answer.
Print messages for right or wrong, count the right answers.

7. When finished, print the number correct.

8. Ask if the person wants more problems.

Some hints: Ask the person to type a number for the operation
wanted, say, 1, 2, 3, or 4. Store this number in K, using INPUT K. Then
use the statement

190 ON K GOSUB 1000, 2000, 3000, 4000
to branch to line 1000 if K == 1, line 2000 if K = 2, and so on.

The idea of “very close to” brings in the idea of a tolerance. Tolerance
is some small amount, like .1, by which the answer is allowed to differ
from the correct answer. Since it doesn’t matter if the answer if greater or
smaller than the correct one, we can use the absolute value function in
constructing our conditional. If A holds the correct answer, and N is the

person’s answer, a test for “0.1 closeness” would look like this:

Wed LAOSCIITee

200 IF ABS(N — A) < .1 THEN 300

Project VARIETY2

Extend the VARIETY1 program in the following ways (expressed as a
modified high-level design):

1, 2, 3. The same as in VARIETY].

4. Generate a problem, ask the person to say how many digits

Section 2.1 Simple Number Games 75

are wanted for each of the two numbers, then pick two ran-
dom numbers with that many digits.

5. Present the problem. In each subroutine set a variable T to a
specific tolerance.
6. Check the person’s answer, but use T instead of .1.

7, 8. The same as in VARIETY1.

Project SQROOT

Very often in real life an arithmetically exact answer is not needed.
Estimating quickly is a valuable skill. Quizzes can be written which
reward fairly close answers to problems like: square roots; difficult addi-
tion, subtraction, multiplication, or division problems; addition of three
or more large numbers; and so on. The definition of fairly close varies
with each type of problem. In general, T should probably be expressed as
a percentage of the answer, rather than a set amount.

Write a program that asks the person for the approximate square root
of a randomly generated number and gives a congratulatory message that
depends on how close the answer was to the correct one, but with the
error expressed as a percent of the correct value.

76

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

2.2 TIME OUT TO LEARN SOME EXTENDED BASIC.
LRDEMO, VALDEMO, ASCDEMO, PRUDEMO, BUGPROG, OKPROG

The best known extended BASICs are those written by the Microsoft
Company (including TRS-80 Level II BASIC, APPLESOFT BASIC, PET
BASIC, and many others). Actually there are three sizes of Microsoft
BASIC, often referred to as 8 K, 12 K, and 18 K disk extended BASIC.
Chapter 4 explains what these terms mean. Since the features of 8K
extended BASIC are found within the bigger versions, we will concentrate
mostly on the 8K features. Here are the most useful ones:

Multiple Statements on One Line

You can put several statements on one line of extended BASIC, using the
colon to separate statements. You can also omit the key word LET any
time you wish. For example instead of
10 LET A = 49
20 LET B = 68
30LETC = —12
you can write
10A = 49: B = 68: C = —12
A good way to read the colon here is as the words “and also,” so this
statement says “let A = 49 and also let B = 68 and also let C = —12."”
Here's a one-line FOR loop that uses the colon. It stores the numbers
from 1 to 10 in the locations A(1), A(2), A(3), and so on up to A(10):
95 FOR K = 1 TO 10: A(K) = K: NEXT K
The use of the colon should not be overdone. Only put statements on
the same line that are related to the same task; otherwise your program
will become very hard to read.

e e ™ e L\—_‘
—
e,

Section 2.2 Time Out to Learn Some Extended BASIC 77

The Extended IF Statement

The IF statement can be extended in three ways. The first is to allow one or
more statements after the word THEN, instead of a line number. Here are
two examples:

1SIFX > 10 THENLETY = 5« 10

25 IF E = 0 THEN PRINT “OUT OF ENERGY": LET E = 100: GOTO 99

In the second example the colon is used to link together three different
statements which are to be executed when the condition E = 0 is true.
When the condition is false, none of these statements are executed; the
program goes on to the next numbered statement.

The second extension of IF. . . THEN uses the word ELSE to show
what should be done when a condition is false. Again, colons can be used
to group several statements together.

350 IF X>9 THEN PRINT “TOO LARGE"”: X=X-—1 ELSE
PRINT “RESULTS O.K.”: S=S+X

The third extension is to allow several conditions to be used in the
conditional part of the IF statement, provided they are joined by the
“logical” connectives AND, OR, or NOT. For example:

S0IF X =9 ANDY = 9 THEN 2000
This means that if both conditions are true then branch to line 2000.
60IFE <« 20 0R T > 99 THEN 3000
This means that if either condition is true then branch to line 3000.
70 IF NOT (X = 9 AND Y = 9) THEN 4000
This means that if it's not true that both X = 9 and Y = 9, then branch to
line 4000.

What To Do If You Don’t Have Extended BASIC

Each of the extended statements we've shown so far can be rewritten in
minimal BASIC by using several simpler statements. Here are some
examples showing how the extended statements just shown can be
translated back to minimal BASIC.
Undoing multiple statements per line is easy. Just write a new line for
each colon (:). For example, the FOR loop we showed as line 95 becomes:
95 FORK =1TO 10
100 A(K) = K
105 NEXT K
The IF. . . THEN followed by multiple statements (line 25 above) is a
little trickier to translate.
25 IFE = 0 THEN 50
30 REM -------STATEMENTS FOR E NOT =0 GO HERE --------
35 GOTO 99
40 REM

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

50 PRINT “OUT OF ENERGY"
55 LET E = 100
99 REM ----m-memmmemme CONTINUE PROGRAM HERE --------~=nnne
The IF. . . THEN. . . ELSE statement (line 350 above) gets translated
in a similar manner.

350 IF X > 9 THEN 380
355 REM---mmmmmmemms ELSE BLOCK ------
360 PRINT “RESULTS O.K.”
365 LET X =S + X
370 GOTO 400
375 '
380 REM----r—mmmeemae THEN BLOCK ----—--
385 PRINT “TOO LARGE”
390 IETX =X —1
400 REM---m-mmmmeeem CONTINUE PROGRAM ------
The apostrophe used in 375 “ is a shorthand for REM allowed in some
BASICs. We used it just to space things out for readability. You can also
use 375 REM, or just omit this line.
Here's how the AND connective (line 50) is translated:
50 IF X = 9 THEN 70
60 GOTO 80
70 IFY = 9 THEN 2000
80 REM---AT LEAST ONE CONDITION NOT TRUE IF
AT THIS LINE--- (etc.)
(200(; REM---BOTH CONDITIONS TRUE IF AT THIS LINE---
etc.
The OR condition (line 60) is translated as follows:
60 IF E < 20 THEN 3000

65 IF T > 99 THEN 3000
The logical NOT can be eliminated by using the complementary con-

dition:

NOT X = 9 becomes X <> 9

NOT X < 9 becomes X >= 9

NOT X > 9 becomes X <= 9
and so on. When NOT modifies a group of conditions (as in line 70), then
some laws of logic (De Morgan's laws) tell us that we must use the com-
plementary conditions and also interchange AND with OR and vice versa.
So

70 IF NOT (X = 9 AND Y = 9) THEN 4000
should be rewritten as

70[F X <> 90ORY <> 9 THEN 4000
This can then be written in minimal BASIC as

70 IF X <> 9 THEN 4000

57 IFY <> 9 THEN 4000

Section 2.2 Time Qut to Learn Some Extended BASIC 79

What To Do If You Run Out of Memory

The programs shown so far are small enough to fit in the memory of just
about any machine. Some of the programs ahead are longer, however,
and a machine with 4 K bytes (K = 1024, so 4 K = 4096) of memory may
not be adequate. The most obvious solution is to buy more memory, and
this kind of expansion is discussed in Chapter 4.
It's also possible to reduce the memory required by a program by
“condensing” it as follows:
1. Remove all REMARK (REM or ’) statements, and remove the un-
necessary spaces from other statements.
2. Use the colon to squeeze several statements on a line, and omit un-
necessary keywords such as LET, or THEN in THEN PRINT.
3. Reduce the size of arrays. Instead of DIM A(200), try to get along
with A(50). Of course this will also mean simplifying the program
to use a more limited range of subscripts.

Longer Variable Names

Extended BASIC allows up to eight letters for variable names, provided
the first two letters are unique. For example, you could refer to the X and
Y coordinates of a space ship called Entelechy with the variables XENTEL
and YENTEL, while you could call the coordinates of the evil Klipton ship
XKLIPT and YKLIPT. That way it's much easier to remember what these
variables stand for. Of course that's a lot of typing, so the variable names
XE, YE, XK, and YK are perhaps a better choice.

The longer variable names must begin with a letter, and then use only
numbers or letters. They must also avoid the reserved words of BASIC
(FOR, LET, PRINT, etc). For example, the name SHIFT would cause trou-
ble because it contains IF.

String Arrays

Let’s first review the idea of numerical arrays. In section 1.6 of Chapter 1,
the subscripted variables D(1), D(2), ..., D(30) are used to mean the sales
of a business on day 1, day 2, ..., day 30. This means that the sales data
was stored in 30 consecutive locations that occupy a block of memory. We
sometimes say that the data in this block is related or structured. All the
entries are sales, and adjacent memory locations represent adjacent days
on which the sales took place. This kind of structure goes under several
names: array, linear array, one-dimensional array, vector, one-
dimensional table, or simply table.

80

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

We've also seen that BASIC allows two-dimensional arrays of
numerical data, also called two-dimensional tables, or matrices. For exam-
ple, suppose your store sold three flavors of ice cream, and you wanted to
keep tabs on the sales of each flavor for the 30 days of the month. Then a
natural way to organize or structure this numerical data is to store it in a
table with three columns, one for each flavor, and thirty rows, one for
each day, using an array of the form S(I,J), where I references a flavor,
and | a day.

In extended BASIC you can also store string data in arrays, provided
the array name ends in a dollar sign ($). Most extended BASICs allow
both one-dimensional string arrays, with variable names like N$(K), and
two-dimensional string arrays, with variable names like A%(1,J). The idea
is that you can store blocks of strings together, where each string can
usually be anywhere from 0 to 255 characters long. So N$(1) might con-
tain the 3-character siring “JOE,” while N$(2) might contain the
14-character string “J.R. SMYTH II.” (However, in some versions of
BASIC, N$(K) means “the Kth character in the string N$.”) Examples of
how one-dimensional string arrays can be used are shown in the programs
SALESLIP (section 3.5) and MONEY (section 3.6). For example, in
SALESLIP the array D$(I) is used to hold descriptions of items sold in a
store. So it can be pictured as a block like the following:

D$(1) RED LAMP

D$(2) SMALL TABLE

D%(3) WOOL RUG

D%(4) WHITE DRAPES
...etc...

An example showing the use of a two-dimensional string array is
found in the program BABYQ (section 2.5). There the array A$(I,J) is used
to hold the symbols displayed on a 9 by 9 game board.

String Functions

Strings can be combined by using the + operator. This is called con-
catenation. If A$ = “SNOW” and B$ = “FLAKE" then PRINT A% + B%
will produce “SNOWFLAKE.” To do fancier things with strings, extended
BASIC also has a number of string functions. Here are some examples
showing how these functions work.

LEFT$(A$,M) gives the leftmost M characters of A$, while
RIGHT$(A$,N) gives the rightmost N characters. Try this demonstration
program.

Section 2.2 Time Out to Learn Some Extended BASIC 81

10 REM =—w——- LRDEMO —~—-~

20 AS="SNOW"

30 B$="FLAKE"

40 PRINT LEFTS$(AS$,2) + RIGHTS(BS,3)
50 END

SNAKE

MID$(A$,P,N) gives you N characters from the “middle” of A$ start-
ing at position P. So PRINT MID$(“SNOWING",2,3) would give you
NOW. Actually P can be any position, including P = 1, so the word mid-
dle is a little deceptive.

LEN(B$) gives you the length of B$ (which means the number of
characters in B$). LEN(“SNOW") is 4 and LEN(“FLAKE") is 5.

VAL(N$%) converts a string made up of decimal digits into a genuine
number. This is important when you want to do arithmetic with N$.
Here’s an example:

N
10 REM ————- VALDEMO ——=ww
20 A$="42 CENTS"
30 CS=LEFTS$(AS,2)
40 C=VAL(CS$) /100
50 PRINT AS$;" = $";C
60 PRINT "3 ITEMS AT ";AS$;" COST";3*C
70 END
RUN
42 CENTS = § .42
3 ITEMS AT 42 CENTS COST 1.26
J

ASC(AY) is the ASCII code function. Each character in a string is
represented inside the computer as a number called its ASCII code. ASCII
means American Standard Code for Information Interchange. To find
what this code is and perhaps do something with it, extended BASIC uses
the ASC(A$) function. Since only one code can be found at a time,
ASC(”APPLE”) will only give you the code for the first letter, A, which is
65 in decimal notation. So ASC(”“APPLE"”), ASC(“ART”) and ASC(“A”)
all return the value 65. To get each of the individual ASCII codes for the
characters in a string, you can combine ASC with MID$ as follows:

82

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

N
10 REM ——-w- ASCDEMQ —-———
20 A$="ABCDE"
30 FOR P=1 TO 5
40 PRINT ASC(MIDS(AS,P,1)):
50 NEXT P
60 END
RUN
65 66 67 68 69
S/

CHR$(X) is a function which gives you the character corresponding
to the ASCII code X. Thus PRINT CHR$%$(65) would print the character A.
Note: The ASCII codes from 1 to 32 are used for special control purposes,
and do not correspond to printable characters. The printable codes go
from 32 to 127. To see what they are, run this program:
10 FOR X = 32 to 127
20 PRINT X, CHR$(X)
30 NEXT X
The ASCII codes are summarized in Appendix B.
Longer examples showing how string functions can be used will be
found in the programs CIPHER (section 2.4), MONEY (section 3.6), and
EDIT5000 (section 4.5).

PRINT USING

This special form of the print statement allows you to control exactly how
many digits are printed for numerical quantities, and how many
characters are printed for strings. It also lets you control exact spacing be-
tween items on an output line. For example, suppose Q represents the
quantity of an item that costs C dollars, and D$ holds a description of the
item. The following demonstration program shows the difference between
PRINT and PRINT USING:

Section 2.2 Time Out to Learn Some Extended BASIC

83

~
10 REM ——wwm PRUDEMO (PRINT USING) =—w=w—-
15 LET Q=42
20 LET C=100 - 100/3
25 LET D$="ASH TRAY, SILVER"
30 PRINT "OUTPUT WITH ORDINARY PRINT"
35 PRINT Q, DS, C
40 PRINT "...uuuurennnnnnnnas tessanasans cemuon cevesessensveennonnn
45 PRINT "OUTPUT WITH PRINT USING"
50 F$="QTY: ### ITEM: % % COST: S#{s.$4"
55 PRINT USING F$; Q, DS, C
60 END
RUN
OUTPUT WITH ORDINARY PRINT
42 ASH TRAY, SILVER 66.6667
OUTPUT WITH PRINT USING
QTY: 42 ITEM: ASH TRAY COST: § 66.67
J

The format F$ is a string that gives “a picture” of the output line. The
symbol “###" is a temporary place holder in this string for a 3-digit
number, “% %" is a place holder for an 8-character string, and
“#id4 ##" is a place holder for a number which will print in a format that
has 3 digits before the decimal, and exactly 2 after the decimal. You con-
trol how many digits are printed by the number of # symbols you use. Lots
of examples of PRINT USING are given in Chapters 3 and 4 in connection
with business application programs. Incidently, although it’s hard to see,
you should notice that the “% %" in our format has 6 spaces between
the % signs to specify a total of 8 positions.

CLEAR 500

This statement is used at the beginning of a program that expects to use
lots of strings and/or lots of characters. BASIC normally lets you use a
total of up to 50 characters in all the strings of a program. But if you use
the statement 10 CLEAR 500, then your program will be able to use up to
500 locations of memory for strings, where each location called a byte of
memory holds 1 character. You will know that you need this statement if
you get the error message “OUT OF STRING SPACE.” Don’t confuse
CLEAR with CLS which simply means “clear the screen” on the TRS-80.

Direct Mode Computing; Debugging Programs
Many versions of BASIC allow you to write one line programs that

execute immediately after you press ENTER or RETURN. These do not
have line numbers, and they are not saved in memory. One use of such

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

programs is to use the computer as a calculator. For example, if you want
the volume of a 14 inch diameter sphere using the formula 4/3 * PI * R *R
* R just type
PRINT 4/3 = 3.1416 * 7 * 7 * 7 (ENTER)
and you'll get:
1436.76
To compute several quantities, a loop using the colon can be used:
FOR K = 1 TO 10: PRINT K * K;: NEXT K (ENTER)
1 4 9 16 25 36 49 64 81 100
When a program has bugs (errors), you can use direct mode after you
run it to investigate what values the variables had. This often gives you an
idea about what went wrong. For example, suppose you tried to write a
program to compute the sum of the first N integers, but got an obviously
wrong answer when you tried it for N = 5 (the answer should be 5 + 4 +
3424+ 1=15).

N
10 REM =——n = BUGPROG === e

15 DEFINT A-Z 'THIS MAKES ALL VARIABLES INTEGERS

20 PRINT "SUM OF POSITIVE INTEGERS FROM 1 TO";

30 INPUT N

40 s5=1 : I=1

50 IF I>N THEN 90

60 I=I+]

70 §=S+I

80 GOTO 50

90 PRINT "SUM OF POSITIVE INTEGERS REQUESTED IS"; S

>RUN
SUM OF POSITIVE INTEGERS FROM 1 TO? 5
SUM OF POSITIVE INTEGERS REQUESTED IS 21
READY
>PRINT S, N, I

21 5 6
READY

Section 2.2 Time Out to Learn Some Extended BASIC 85

The run of BUGPROG above was followed by use of direct mode to
“look at” S, N, and 1. This showed that N was 5 but I was 6, and pin-
pointed the bug as the test at line 50 which should have been

50 IFI > = N THEN 90

Project OKPROG

Make the change in line 50 suggested above, and then run the program
with every possible input data you can think of. Is there any way you can
make the program produce incorrect output? If not, you have what com-
puter scientists call a “correct” program, a very rare bird. It is claimed by
some that most programs in the world are not correct; that for some set of
input data, the program will produce unexpected and sometimes
disastrous results. Learning to have a healthy questioning attitude toward
computer output may be one of the most valuable contributions personal
computing can make to its practitioners.

86 CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

2.3 FINDING YOUR WAY AROUND NUMBERLAND.
GUESS1, GUESS2, SRCH1, SRCH2, SRCH3

When learning any new subject, there needs to be a period of free play, a
chance to skim over the subject matter before trying to absorb the precise
details. Some elementary math classes do this with concrete objects and
games. But why stop there? This need for experimental fiddling recurs at
higher levels, no matter how serious the new subject matter.

One of the most useful contributions computers can make is to allow
people to do a lot of fiddling. In particular, computer games make a great
medium for playing with mathematics, often at much deeper levels than
the player suspects.

One of the simplest number games, “guess my number,” illustrates
this idea. It's a good way to fiddle with the elementary ideas of larger,
smaller, and between, but it also involves some not-so-elementary ideas
like “What's the most efficient way of finding a number, with the least
number of guesses?”’, and “What is the least number of guesses?”

Let’s first look at a simple number guessing game where both the per-
son and the computer get their chance to guess a number. The computer
will use a technique called binary search. Then we'll discuss how to apply
this technique to the problem of searching for arbitrary data in an ordered
list.

Section 2.3 Finding Your Way around Number Land 87

Program GUESS1

The Idea

The computer will randomly choose a number, let’s say from 1 to 100. The
person will try to guess it. There will be a message saying “Too high,” or
“Too low,” or “Right, you got it.” If the person is really bad at guessing,
the program will end the guessing after, say, 10 turns and tell the person
what the number was. The program then asks if the person wants to play
again. If not, it goes on to the next part of the program.

This program is really going to be two programs in one. In the second
part, the computer will guess a number that the person chooses. It will use
a method based on the idea of binary search. Thus, it will give the person
a hint of how to proceed the next time he or she tries to guess the com-

puter’s number.

A Sample Run

a number of additional features have appeared.

GUESS MY NUMBER GAME

I'VE GOT A NUMBER BETWEEN 1 AND 100.
YOUR GUESS IS--2 1000

MUST BE <= 100

YOUR GUESS 18--? -99

MUST BE >= 1

YOUR GUESS 1S--? 99

NOPE, TOO HIGH.

YOUR GUESS 1S--? 98

NOPE, TOO HIGH.

YOUR GUESS 15--2 97

NOPE, TOO HIGH.

YOUR GUESS IS-~? 96

NOPE, TOO HIGH.

YOUR GUESS IS--? 95

NOPE, TOO HIGH.

YOUR GUESS IS--2? 94

NOPE, TOO HIGH.

YOUR GUESS 15--2? 93

NOPE, TOO HIGH.

YOUR GUESS 18--2 92

NOPE, TOO HIGH.

YOU HAVE HAD 10 TURNS, THAT'S THE LIMIT.
MY NUMBER WAS 78 . WANT TO PLAY AGAIN (Y = YES)? NO
O.K.

NOW I WANT TO GUESS YOUR NUMBER.

YOU PICK A NUMBER FROM 1 TO 100,

In this sample run of both parts of the guessing game, you will notice that

88

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

~
DON'T TELL ME WHAT IT IS!
JUST TYPE H IF MY GUESS IS TOO HIGH,
L IF MY GUESS IS TOO LOW, AND R IF I GET IT RIGHT.
GOT A NUMBER (Y = YES)? Y
I GUESS... 50 , aM I -- H, L, OR R? H
I GUESS... 25 , AM I -- H, L, OR R?2 H
I GUESS... 12 , aMm I -- H, L, ORR? H
I GUESS... 6 , aM I -- H, L, OR R? H
I GUESS... 3 , aM I -- H, L, OR R? H
I GUESS... 1 , aMm 1 -- H, L, OR R? 2
YOU DIDN'T TYPE H, L, OR R? H
DID YOU GIVE ME THE RIGHT CLUES?
LET ME TRY AGAIN.
I GUESS... 50 , aM I -- H, L, OR R? H
I GUESS... 25 , aM I -- H, L, OR R? H
I GUESS... 12 , aM I -- H, L, OR R? H
I GUESS... 6 , aM I -- H, L, OR R? H
I GUESS... 3 , aM I -- H, L, OR R? H
I GUESS... 1 , aM I -- H, L, OR R? L
I GUESS... 2 , AM I -- H, L, OR R? R
I GOT IT IN 7 TURNS.
WANT TO PLAY AGAIN (Y = YES)? NO
0.K. BYE NOW.
_/

The new features are as follows:

® If the person types in a guess greater than 100 or less then 1, ex-
planatory messages are printed out and the program branches back
to the input request.

@ When the right number is guessed, the number of turns it took is
printed out.

@ In the second part, new instructions on what to do are printed for
the user.

® The program first asks if the person has a number. This gives time
to think. Also if the person does not want to play, a response
other than Y’ will end the program.

® After each guess, there is a reminder that the person is expected to
type “H”, “L”, or "R".

® If anything else is typed, an explanatory message is printed and

the program goes back to the input statement.

Tinally, if the person gives inconsis

trying to fool the computer), the program prints a message and

starts the guessing all over.

® At the end of either part, the person is asked whether he wants to
play again.

nt clues {1k
LN AR

@

Section 2.3 Finding Your Way around Number Land 89

High-Level Design

The high-level design for the two parts of this program could be organized

as seven blocks each:

Give instructions, initialize variables (a counter, T).

Generate a random number, X, between 1 and 100.

Check to see if the player has taken too many turns.

Ask the player to guess; input the guess as G.

Test if person's guess is greater than, less than, or equal to the ran-

dom number, or if it’s illegal. Print messages for each possibility

and go to the appropriate next step.

When too many turns have been taken, give the answer.

7. Ask if the person wants to play again; if yes, go to 2, otherwise go
to 8.

8. Computer guesses number: give instruction, initialize variables
(turn counter T, high H, low L).

9. Ask player if he has picked a number; if not, end the program.

10. Generate computer’s guess, (see explanation of algorithm in
Coding the Program section.)

11. Ask for the player’s clue.

12. Test if clue is L, H, R, or if it's illegal. Print messages for each
possibility, and go to appropriate next step.

13. If clues are inconsistent print mesage and go to 9 (see Coding sec-
tion for how the program knows the clue is inconsistent).

14. After the right answer is found, ask if person wants to play again;
if yes, go back to 9.

N e

o

Coding the Program

Coding the first part of this program is pretty straightforward. The second
part is a little trickier. It must generate a series of guesses which get pro-
gressively closer to the person’s secret number. If you examine the series of
guesses in the sample run of the second part of the program you will see
what the program’s strategy is.

At the beginning of the game, all the program “knows” is that the
highest the secret number could be is 100 and the lowest it could be is 1. It
uses a binary search strategy to zoom in on the exact number. It starts by
making the first guess a number half-way between the highest and the
lowest possibilities. So the first guess is 50. If it’s told this number is right,
it's finished! If it is given the clue “Too high,” then the highest the number
could be is 49. If the clue is “Too low,” the lowest it could be is 51. The
next guess should be halfway between the new highest and lowest
values—1 and 49, or 51 and 100, respectively. That means the second
guess should be 25 or 75. Highest and lowest values will keep getting closer

90

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

together as the program zooms in on the secret number X.
For example, if the second guess is not right, here is a chart showing
what the third guess will be for each possible clue.

SECOND HIGHEST LOWEST THIRD
GUESS CLUE X CAN BE X CAN BE GUESS
25 Too High 24 1 12
25 Too low 49 26 37
75 Too high 74 51 62
75 Too low 100 76 88

The formula for calculating a guess halfway between the highest and

lowest possible values is:

G=H+1L)2
This gives values of 12.5, 37.5, 62.5, and 88 for the third guess. Since we
want a whole number for the guess, we can use the INT function to get the
greatest integer less than this expression by using:

G = INT((H + L)/2)

For each new clue, the L and H values get closer together. If the
lowest value gets to be greater than the highest, the program “knows”
something is wrong! The clues were inconsistent. This won't happen in the
first part where the program is giving out the clues, but it might happen in
the second part when the person is giving the clues. It turns out that the
best place to put an IF statement testing for inconsistent clues (L. > H) is
just before the statement that creates the new guess (at line 1230). (Readers
who have studied other languages will recognize that this gives a WHILE
structure. The block 1240-1350 is executed over and over
WHILE L <= H.)

1ST GUESS
2ND GUESS (TOO HIGH)
(TOO LOW) 3RD GUESS
HIGH
aTH Guess | LTO0 HICH)
(TOO HIGH)
5TH GUESS
(RIGHT)
i ¥ 1 1 1 1
12 25 *31 37 62 75 88 100

LOCATION OF
SECRET NUMBER (28)

Section 2.3 Finding Your Way around Number Land

91

460

500

510

520

600

610

620

1000
1001
1002
1005
1010
1020
1030
1040
1050
1100
1110
1120
1200
1210
1230
1240
1250
1260
1300
1310
1320
1330
1340
1350
1400
1410
1420
1500
1510
1520
1530
9999

Thhkhkkhhhkkhkhhhhhhh kA hkhkhdbhhhhhkhkhhhhhhhkdhkhhhkhhhhhbhhhhk

x GUESS1 (USES BINARY SEARCH) *
I R T e T e T T Y 2 R R L 2

CLS
PRINT"GUESS MY NUMBER GAME"
PRINT"I'VE GOT A NUMBER BETWEEN 1 AND 100."

X = INT(RND(0)*100 + 1)
R ASK PLAYER TO GUESS==m==m====—==———mmomemmm e
IF T > 10 THEN 510
PRINT"YOUR GUESS IS--";: INPUT G
oo TEST IF GUESS IS ILLEGAL, >, <, OR = —====—==n
IF G > 100 PRINT "MUST BE <= 100": GOTO 460
IF G < 1 PRINT "MUST BE >= 1": GOTO 460

IF G > X PRINT "NOPE, TOO HIGH.": GOTO 460
IF G < X PRINT "NOPE, TOO LOW.": GOTO 460
PRINT"YOU GOT IT IN";T;"TURNS!!! ";: GOTO 610

T =T + 1: GOTO 310
'-==--TOO MANY TURNS, GIVE ANSWER~-=—-=—===—c==—————
PRINT"YOU HAVE HAD";T-1;"TURNS, THAT'S THE LIMIT."
PRINT"MY NUMBER WAS";X;". ";
ommmm AGATN? == m o m oot e e
PRINT"WANT TO PLAY AGAIN (Y = YES)";: A$=" ": INPUT AS
IF AS = "Y" THEN 105

1

' PERSON CHOOSES NUMBER, COMPUTER GUESSES
1
CLS: PRINT"O.K."

PRINT"NOW I WANT TO GUESS YOUR NUMBER."

PRINT"YOU PICK A NUMBER FROM 1 TO 100,"

PRINT"DON'T TELL ME WHAT IT IS!"

PRINT"JUST TYPE H IF MY GUESS IS TOO HIGH,"

PRINT"L IF MY GUESS IS TOO LOW, AND R IF I GET IT RIGHT."
P —— ASK PLAYER TO PICK NUMBER-—--—wememmeee e ————
PRINT"GOT A NUMBER (Y = YES)";: A$=" ": INPUT AS$

IF AS <> "Y" THEN 1530

o GENERATE COMPUTER'S GUESS--=—=--=—=——mm==———
L=1: H=100: T = 0

IF L > H THEN 1410
G = INT((L+H)/2)
PRINT"I GUESS...";G;", AM I -- H, L, OR R";
T = T+l
I GET CLUE, TEST IF H, L, R, OR ILLEGAL=======~
INPUT CS$

IF C$ = "H" THEN H = G-1: GOTO 1230
IF C$ = "L" THEN L = G+l: GOTO 1230
IF C$ = "R" PRINT"I GOT IT IN";T;"TURNS.":GOTO 1510

PRINT"YOU DIDN'T TYPE H, L, OR R";:GOTO 1310
too e NOT FOUND (CLUE IS INCONSISTENT)-=-————====—--
PRINT"DID YOU GIVE ME THE RIGHT CLUES?"
PRINT"LET ME TRY AGAIN. ": GOTO 1210
tmmm AGATN 2 o m o o o e
PRINT"WANT TO PLAY AGAIN (y = YES)";: AS$=" ": INPUT AS$
IF A$ = "Y" THEN 1110
PRINT"O.K. BYE NOW."
END

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

Project GUESS2

Write a program similar to GUESS 1 in which the range of numbers,
instead of always being 1 to 100, can be chosen by the player. Lines like
the following would be added:

120 PRINT “WHAT'S THE HIGHEST THE NUMBER CAN BE";: INPUT H
130 PRINT “WHAT’'S THE LOWEST THE NUMBER CAN BE”;: INPUT L
140 PRINT “T'VE GOT A NUMBER BETWEEN";L;”"AND";H

Line 210 must also be changed (see project RNDARITH, section 2.1).

In line 405, the number of turns allowed should really change,
depending on the range of numbers. When using the binary search
technigue, you can determine the greatest number of guesses needed for
any range of numbers by determining which “powers of 2" the range (the
number of numbers) falls between, and choosing the higher power. Some
“powers of 2" are as follows:

20 = 1 22 = 32 210 = 1024
2t = 2 20 = 64 21 = 2048
22 = 4 27 = 128 22 = 4096
22 = 8 28 = 256 2% = 8192
2% =16 2° = 512 2% = 16384

The last number in this table indicates that binary search would take
14 tries at most to find a given integer in a set of anywhere from 8192 to
16383 consecutive ordered integers.

In GUESS1, the range contained one hundred numbers which went
from 1 to 100, so the greatest number of guesses required was seven (the
actual number depends on the secret number). Notice that if the range
contained the one hundred numbers from 200 to 300, the maximum would
still be seven guesses; it's the number of numbers that counts. So if you
play the game specifying one thousand numbers from 1500 to 2500, it will
take ten guesses at most to guess the number. A program can calculate this
maximum number of guesses by comparing the size of the range with
increasing powers of 2. Another approach is to use the LOG(X) function
(see the text box, Note on Using Logarithms te Analyze a Binary Search).

If you add this feature to your program and find the greatest number
of guesses, T1, needed, you can then limit the number of turns the person
can have to, say, T1 + 2. You can also have the computer comment
whenever it starts to guess the person’s number:

I THINK I CAN GUESS IT IN ... TURNS.
where ... is the value of T1.

In line 1210 new variable names L1 and H1 will be needed, since L and
H are now used for the variable starting values. Corresponding changes
must be made in 1230, 1240, 1320, and 1330.

Section 2.3 Finding Your Way around Number Land 93

Future Extensions and Revisions

A more usual application of the binary search method is to rapidly look
through ordered lists of data items, stored in arrays or on files, for some
specific data item. The item you are trying to find is called the key. It may
or may not be in the list. The data must be in order, that is, have already
been sorted, to make the binary search method work. (Why?) The other
method commonly used to find an item of data is the sequential search
method. This means simply to start at the beginning of the list, comparing
the key item with each data item in turn until the match is found or the list
is exhausted. This method works on sorted or unsorted data, but it's slow
for large lists.

Project SRCH1I

Wrrite a program that uses the binary search method to count how many
times certain “standard” words occur in a text (sentence, paragraph, etc)
typed in by you. The program should first read an ordered list of the stan-
dard words from data statements into an array, A$(100). As an example of
a standard list, you can use the following data taken from a recent study
of school books (grades 3 through 9). This list represents the 100 most fre-
quently used words found in these books. The list has already been
alphabetized to enable the binary search method to work. It consists of the
word, followed by its rank (its “popularity” in school books.).

240 DATA A, 4, ABOUT, 48, AFTER, 94, ALL, 33
242 DATA AN, 39, AND, 3, ARE, 15, AS, 16

244 DATA AT, 20, BE, 21, BEEN, 75, BUT, 31
246 DATA BY, 27, CALLED, 96, CAN, 38, COULD, 70
248 DATA DID, 83, DO, 45, DOWN, 84, EACH, 47
250 DATA FIND, 87, FIRST, 74, FOR, 12, FROM, 23
252 DATA HAD, 29, HAS, 62, HAVE, 25, HE, 11

254 DATA HER, 64, HIM, 67, HIS, 18, HOW, 49
256 DATA 1, 24, IF, 44, IN, 6, INTO, 61
258 DATA 1S, 7, IT, 10, ITS, 76, JUST, 97
260 DATA KNOW, 100, LIKE, 66, LITTLE, 92, LONG, 91
262 DATA MADE, 81, MAKE, 72, MANY, 55, MAY, 89
264 DATA MORE, 63 MOST, 99, MY, 80, NO. 71

266 DATA NOT, 30, NOW, 78, OF, 2, ON, 14
268 DATA ONE, 28, ONLY, 85, OR, 26, OTHER, 60

270 DATA OUT, 51, OVER, 82, PEOPLE, 79, SAID, 43

94

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

272 DATA SEE, 68, SHE, 54, SO, 57, SOME, 56
274 DATA THAN, 73, THAT, 9, THE, 1, THEIR, 42
276 DATA THEM, 52, THEN, 53, THERE, 37, THESE, 58
278 DATA THEY, 19, THIS, 22, TIME, 69, TO, 5

280 DATA TWO, 65, UP, 50, USE, 88, VERY, 93
282 DATA WAS, 13, WATER, 90, WAY, 86, WE, 36

284 DATA WERE, 34, WHAT, 32, WHEN, 35, WHERE, 98
286 DATA WHICH, 41, WHO, 77, WILL, 46, WITH, 17
288 DATA WORDS, 95, WOULD, 59, YOU, 8, YOUR, 40

Next, the program should ask you to input your text, one word at a
time. As soon as you input a word, it should print the following informa-
tion: the word, its position number in the alphabetized standard list (or
the message “not found”), and how many times it has been used so far in
your text. The program should tell you to type $$$ when finished with
inputting. It should print as a final summary the whole standard list of
words with two numbers next to each word—the number of times it was
used in your text, and the rank.

Incidentally, the highest frequency words, found on standard lists,
are mostly building block words: conjunctions, prepositions, pronouns,
and very general adjectives and adverbs. The first 250 of these words often
make up 80% of a text. By contrast, even very familiar concrete nouns
and verbs occur much less frequently. Some researchers believe they can
establish the possible authorship of anonymous texts by tabulating the
occurrences of these building block words and comparing the totals to
those from a known text. This is an example of a kind of research that is
only feasible on a large scale with the help of computers.

Project SRCH2

Modify SRCHI by substituting a sequential search algorithm for the
binary search algorithm. Compare the times needed to find an item at the
beginning of the list, in the middle, and at the end. What can you conclude
about the two methods for a list of 50 words? For a list of 500 words?

Proiect SRCH3

Modify SRCHI so that the text is stored in DATA statements and then
read, instead of inputted. In Chapter 4 we'll talk about using disk data
files, and a good extension of SRCH3 would be to replace the READ and
DATA statements by the use of the GET (from a file) statement.

Section 2.3 Finding Your Way around Number Land 95

NOTE ON USING LOGARITHMS TO ANALYZ_E A BINARY SEARCH

The maximum number of guesses needed to find X in the range L < = X <
= H by binary search can be obtained by asking what power of 2 the quan-
tity H = L + 1 is “closest” to. To see what “closest” means, let's examine
several ranges of numbers in the worst case situation where the answer is
the highest number H, but the binary search continues to select the mid-
point M. o

For example:

Range at
Start =
L, H: 13 14 15 16 17 18 19 110 ..
Guess = M: 2 2 3 3 4 4 5 5 ..
New Range: 3.3 3,4 4,5 4.6 5,7 5.8 6,9 6,10 ...

44 55 66 77 78 89 910 ...

Guess = M: @ 3 4 5. .6 6 7 8

New Range: -

Guess = M;: = @ @ @ @ 7 8 9
New Range: - - - - . 88 99 1010. ..
Guess = M: - - - - - @

The circles show where we finally guess the answer H. Notice that for the
ranges 1 to 4, 1to 5, 1to 6, and 1 to 7 it takes three guesses for this worst
case situation. To say this another way, the worst case is three guesses when
the range contains 4, 5, 6, or 7 numbers. Now,; what might each of these
numbers have in common? Well, 4 = 212.0000, 5 = 212.3219, 6 =
212.5850, and 7 = 212.8074. If we take each of these exponents; (the
number after the | symbol), add 1, and then take the integer part, we get 3.
Ahal But how can we make a formula out of this? If we pull out our old
Algebra II book, we find that another way to write 7 = 212.8074 is
LOG,(7) = 2.8074
So the maximum number of guesses needed for seven numbers is
INT(LOG,(7) + 1) = 3
In BASIC, there is a function called LOG(X) but it isn’t base 2. But the same
math book tells us that we can get a base 2 log by using LOG(X)/LOG(2)-
So the formula for the most guesses needed in a binary search is
INT(LOGH = L + 1)/LOG@2) + 1)
where H — L + 1 says how many numbers are in the range H to L.

96

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

2.4 WORD GAMES. SCRAM1, SCRAM2, SCRAM3, CIPHER

v
E
R
8
[o]
PAlSISwORID[S
Al [T|ojo E
I ol R
Plali IRIED B
M T [VIAIRINIS
GlAME |
SiAlY| 1 IN|GIS

It comes as a surprise to many people that computers can be used to
manipulate words as well as numbers. However, manipulating words is
quite a different process from understanding them, and as we'll see in this
section, it's the programmer who has to provide all the intelligence in
word oriented programs.

The principal technique for doing this is to store word meanings right
in the program, and then use IF statements to check these meanings
against other data, usually a string that was input by the person using the
program. A more flexible technique for storing word meanings is to use
disk files, treating them as a kind of electronic dictionary. (Disk files will
be discussed in Chapter 4.)

All the programs in this section use DATA statements to store words.
However the last program, CIPHER, also introduces the technique of
modifying words or messages by use of a simple mathematical transforma-
tion. This technique can be extended considerably, and there is now an
active field of research investigating the properties of such transformations
(see the box, Note on Ciphers and Codes).

Program SCRAM1

The Idea

This program is a word quiz. The person will be asked how many words
are wanted. The program will present a word to be guessed on the screen
with the letters scrambled —and then make it disappear! A clue will also be
given: a short definition, a synonym, or a phrase to be filled in. The per-
son will be asked to type in the word. If the answer is wrong, the person
gets a second chance and the word is displayed again—and disappears
again. When all the words have been presented, the number right and
wrong will be displayed.

The words, clues, and scrambled words will all be stored in DATA
statements. The program will start at a random word each time the pro-
gram is run or the person asks to play again. Otherwise, the data will be
read in order.

A Sample Run
Since the program uses the computer screen to present the scrambled word

and make it disappear, we'll show the sample run in a series of
photographs.

Section 2.4 Word Games 97

This sequence of photographs shows what the interaction between the player and
the game SCRAMI looks like. Since CLS (clear screen) is used between plays,
only the necessary information is displayed at any one time.

6t SCRAMBLED WORD GRE 84
TYPE THE WORD HHOSE LETTERS RE SCRAMELED
ON THE SCREEN. MOTICE THE CLIE,

. ENTER T0 CONTIMEY _

- HOU MY HORIS 0 YOU M2 3.

98

CHAPTER 2

PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

Section 2.4 Word Games 99

AT IS YOR RSIER? ERTH
CORIGT T
- PRESS ENTER TO CONTINE?

ks e

100 CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

Section 2.4 Word Games 101

AT IS YOUR ANSHER? DOG
RIGHT! | .
 PRESS ENTER TO CONTINE?

102 CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

Section 2.4 Word Games 103

OHER E'*T M

104 CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

Section 2.4 Word Games 105

Notice how often the program stops and waits for the person to press
ENTER, or some other response. It's important not to give the person too
much to read at one time. How much? It depends on the complexity of
what is printed, and it's partly a matter of taste. In general, it's better not
to cram the screen full of words. This program avoids printing too much
by using the clear screen (CLS) command often.

The scrambled word is printed in double-sized letters on the TRS-80.
We'll see the details of how to do that later under Coding the Program.

High-Level Design

1. Initialize variables, give instructions to the person. Variables are:
D$, a dummy variable (its value is not used); N, the number of
words wanted; W, number wrong; R, number right; F, a flag (see
section on Coding the Program).

2. Generate a quiz word, print the scrambled word and clue.

a. Start at a random word each turn.

b. Don't forget to test if you're at the end of the data each time
the word (W$), clue (C$), and scrambled word (S$) are read.

c. Give the person time to read the scrambled word before it
disappears. (Use an empty loop to wait a short time.)

3. Get the person’s answer, A$; check if it's right or wrong.

a. If it's right (A$ = WS$), count it right, go back to 2.

b. If it's wrong:
(1) the first time, give the person another chance.
(2) the second time, tell what the word was, count the answer

wrong, go back to 2.
4. End of the game.

a. Display the number right and wrong.

b. Ask if the person wants to play again. If yes, go back to 1, but
skip the instructions; if no, end.

5. Data: Words, clues, scrambles. There will be 20 sets of three items
each.

Notice that high-level steps 2 and 3 taken together form the main game

loop. If the game is to be played by two persons, they should alternate,

and each ask for the same number of words.

Coding the Program

The heart of this program is its data and the manner in which it is read and
printed. Because the data remains the same, we want the program to start
at a random word each game. To do this we use a “dummy” READ state-
ment in a Joop somewhat similar to Project DATARIT4 in section 2.1. In
SCRAM], the loop counter X goes from 1 to some random integer from 1
to 20; that is, it goes from 1 to INT(20*RND(0)+1). When the expression

106

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

INT(20*RND(0)+1) = 1, the dummy READ in line 206 is executed once.
So the “real” READ in line 220 gets its data from the second DATA state-
ment. When INT(20*RND(0)+1) = 20, the dummy READ goes through
20 DATA statements, and the real READ uses the 21st DATA statement.

Will the first DATA statement ever be read? Yes. This is because of
the way the main game loop from line 210 to 370 is written. Three data
items are read in at once. This makes sense because they are related: the
word, the clue for that word, and the scrambled version of that word.
Immediately the program tests with an IF statement, to see if the data
pointer is at the end of the data. If it is, RESTORE sets the pointer back to
the first DATA statement. This “recycles” the data (as in Project
DATARITS3, section 2.1), and so whenever the dummy loop reads 20 data
triples, the first quiz word printed out will be from the first DATA state-
ment.

Since we are going toc make the clue and the scrambled word dis-
appear from the screen, and the computer works fast, an empty loop is
inserted at line 240 to make the computer slow down. You may decide that
300 times around the loop is either too much or too little. If so, change it.
(If you are using a computer with printed output, these lines as well as all
the clear screen commands can be deleted. In that case the method of
printing out the scrambled word will also need to be altered.)

On the TRS-80, double-width letters are obtained by pressing shift
and right arrow. The way to do this inside a program is to use the
CHR$() function. Since 23 is the ASCII code for shift-right arrow (on
the TRS-80), PRINT CHR$(23) will have the same effect as pressing those
keys. Not all but many special control features of computers can be
obtained using CHR$() (see section 2.2, and Appendix B). A clear screen
command switches off the double-width letters, and goes back to normal
sized ones. PRINT @ is another interesting feature of the TRS-80. Here
we've used it simply to move the cursor six lines down and 16 spaces over
before starting to print the scrambled word (PRINT @ will be explained
more fully later, but notice that the value used, 400, is 6 * 64 + 16 = 400).
Other computers may have a different way to let you start printing where
you want. You'll have to be a little creative at this point if you're using a
different machine.

In order to give the person a second chance before being counted
wrong, the program must know whether a wrong answer has been given
once or twice for a particular quiz word. For that purpose we make use of
a flag. This is a general idea in computer programming that will come in
handy many times. The flag is simply a variable whose value changes for
different program segments. Depending on the meaning the programmer
decides upon, these values then control how the program branches,
something like signal flags on a highway.

The flag variable, F, in SCRAMI1 starts out as a 0. If the person gets a
wrong answer the first time, F is changed to a 1 and the person gets
another chance. The next time the person gets a wrong answer, F = 1 so
the program branches differently. The program counts this answer as

Section 2.4 Word Games 107

wrong, tells what the answer was, and goes on to the next word.

But flags can be a little tricky: once F is changed to a 1, you must be
careful to change it back to a 0 as soon as its signalling job is done. Since,
on the second chance, the person might get either a right or a wrong
answer, F is changed to O in both lines 320 and 330, even though
sometimes F would be 0 anyway. In this program, there are other posi-
tions at which F could be turned on and off; the ones you see in the listing
were chosen to be close to the most obvious place a change needs to be
made.

10
11
12

101
102
105
110
120
122
125
128
130
135
140
150
200
201
202
205
206
207
210
220
225
230
240
245
250
252
255
256
257
270
280
300
301
302
310
320
325
330
340
350
355
360
370
400

thhhkk
tk
Thdkk%

CLS
PRINT"
PRINT"
PRINT"
PRINT
PRINT"
PRINT"
IF N

CLS: RESTORE

FOR X
READ D
NEXT X
FOR I
READ
IF
PRIN
FOR
CLS:
PRIN
FOR
PR
NEXT
FOR
CLS

PRIN
IF A
PR
IF

PR
PRIN
NEXT I

AAhkARFR AR hhkAhhhhhkAhhhkhhkhkhkhkhhhhkhkhhkkkhhhhhhkhkk

SCRAM1 (WORD QUIZ) *
KRR K A AK AR KARA KRR AR AR AR KR A AR R AR AR KRR A AR A kKK

INITIALIZE, GIVE INSTRUCTIONS

*** SCRAMBLED WORD GAME **#*"
TYPE THE WORD WHOSE LETTERS ARE SCRAMBLED"
ON THE SCREEN. NOTICE THE CLUE."

PRESS ENTER TO CONTINUE";: INPUT D$: CLS

HOW MANY WORDS DO YOU WANT";: N=0: INPUT N
< 1 THEN 130

= 1 TO INT(20*RND(0)+1) 'WILL START AT

$,DS,DS 'RANDOM WORD
'EACH GAME

= 1 TO N

Ww$, C$, Ss§

WS = "S$" THEN RESTORE: GOTO 220 '‘RECYCLE DATA
T"CLUE IS: ";CS
Z = 1 TO 300: NEXT 2 '"WAIT
DISPLAY SCRAMBLED WORD=-~=- s e e e e e

PRINT CHRS$(23) 'BIG LETTERS
T @ 400,; 'MOVE CURSOR
J = 1 TO LEN(SS) 'PRINT S$

INT MIDS(SS,J,1);" "; '‘ONE LETTER

J ‘AT A TIME
Z = 1 TO 300: NEXT 2 "WAIT

T"WHAT IS YOUR ANSWER";: AS=" ": INPUT AS
$=W$ PRINT "RIGHT!": F=0: R=R+l: GOTO 360
INT"WRONG, "

F=1 THEN F=0: W=W+l: GOTO 355

PRINT"TRY AGAIN."

F=1: GOTO 240

INT"THE WORD WAS: ";W$

T"PRESS ENTER TO CONTINUE";: INPUT D$: CLS

108

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

401
402
420
430
440
450
500
501
502
510
515
520
525
530
535
540
545
550
555
560
565
570
575

585
590
595
600
605
610
999

END OF GAME, DISPLAY SCORE

PRINT" (YOU GOT";R; "RIGHT ANSWERS, AND";W;"WRONG.)"
PRINT"WANT TO PLAY AGAIN (Y = YES)";: A$=" ": INPUT AS
IF A$="Y" THEN 130

PRINT"O.K. 'BYE NOW.": GOTO 999

L]

DATA: WORDS, CLUES, SCRAMBLES

HOME, WHERE YOU LIVE, MHEO

OLD, NOT NEW, LDO

EARTH, OUR PLANET, HRETA

DOG, A PET, GDO

MOTHER, FEMALE PARENT, OHRETM
QUICKLY, NOT SLOWLY, YKIQLCU
CHILDREN, YOUNGSTERS, EDICNRLH
INDIANS, COWBOYS & ——===== . SADININ
FIRE, DON'T PLAY WITH ----, REIF
BECAUSE, WHY? --w-==w- , EASEUCB
REMEMBER, OPPOSITE OF FORGET, EEBREMMR
SOMETIMES, NOT ALWAYS, EIEOSMTMS
MOUSE, QUIET AS A ~-—=—- , EUOMS
DIFFERENT, NOT THE SAME, TEEFDNRFI
WHALE, LIVES IN THE SEA, EAWLH
SCIENTIST, DOES EXPERIMENTS, TINISSTEC
TRAIN, RAILROAD, NATIR

WAVES, THE SEA HAS ----- ¢+ SVWEA
NECESSARY, NEEDED, YASCNRSEE
INSECT, BUG, TENCSI

$,$,8

Future Extensions and Revisions

After playing SCRAM1 a while, you begin to memorize the data. This can
be an asset if you're interested in memorizing that data, but it can be a
liability if you're looking for a surprise each time. The simplest way to
change a program like this is to type in a new batch of data from time to
time.

The program can also be changed so that the scrambled word is
presented differently. The letters can be scattered all over the screen at
random positions just to make guessing a bit more interesting. It would
also be fun if the first presentation of the word was in regular-sized letters,
and the second chance used double-width letters for emphasis. Another
extension would be to choose words randomly from the available data.

Section 2.4 Word Games. 109

QLU IS: DABALER

These two photographs show the clue given in SCRAM2. The first scrambled
word is given with normally-sized letters, and erased from the screen after about
a second. If the player doesn't get the word, the word is repeated with double-
sized letters as shown in the second photograph, and again erased after a brief
display. The timing for the display could be varied for different levels of players
by changing the "do nothing” wait loop (see line 270 in SCRAM1) to FORZ =1
TO V : NEXT V, where V is varied from about 900 for beginners to about 50 for

speed reading experts.

110

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

Project SCRAM?2

Wrrite a program that has the above improvements. These changes are

summarized in the following high-level design:

1. Initialize and give instructions. (Same as SCRAM1, but dimension

an array P(15) for the random positions.)

2. Generate a quiz word.

a. Choose a random word each time a word is presented. This
means the randomizing loop with the dummy READ should be
inside the main loop. Precede it with a RESTORE.

Read the data and print the clue. (Similar to SCRAM1).

c. The loop for printing the scrambled word will contain several
processes:

(1) Choose a random position on the screen (a random
number to be used by a PRINT @ statement).

(2) Make sure this position has not already been used to print
a letter.

(3) Print the letter.

Check the answer. (Same as SCRAM1.)

End of the game, print the score. (Same as SCRAMI.)

5. The data. (Same kind as SCRAM1 but you may as well use dif-

ferent words.)

= W

Some Hints on Coding the Program

Since there is a RESTORE statement within the loop, there is no need to
test if the data pointer is at the end of the data each time the real READ
statement is executed. But since no recycling of the data is done, the first
DATA statement will never be read. To remind yourself of this fact (and
not waste a good word) make the first DATA statement look like this:
510 DATA X, X, X

Follow it with 20 more DATA statements (each containing a word, clue,
and scrambled word). The dummy READ loop will randomly read from 1
to 20 DATA statements before the real READ gets a chance. There will be
21 DATA statements altogether.

More About PRINT @

In this and the next project we will create some random numbers which
will be used by the PRINT @ statement, so we need to visualize clearly
how this works on the screen. The TRS-80 (Model I) has a screen which
displays 16 lines of 64 characters each, a total of 1024 characters. PRINT
@ refers to these character-spaces by numbering them consecutively from
0 (upper left corner) to 1023 (lower right corner) as follows:

Section 2.4 Word Games.

111

0 1 2 3 3 (60| 61| 62| 63
64| 65| 66| 67 { { 124 | 125] 126 | 127
128 | 129 | 130 | 131 (7 188 | 189 | 190 | 191
192 | 193 | 194 | 195 5) 252 | 253 | 254 | 255
256 | 257 | 258 | 259 } } 316 | 317 | 318 | 319
320 | 321 | 322 | 323) < 380 | 381 382 383
384 | 385 | 386 | 387 } (444 | 445 | 446 | 447
448 | 249 | 450 | 451) / 508 | 509 | 510 511
512 | 513 | 514 | 515 g) 572 | 573 | s574| 575
576 | 577 | 578 | 579 5) 636 | 637 | 638 639
640 | 641 | 642 | 643 K \ 700 | 701 | 702 | 703
704 | 705 | 706 | 707] { 764 | 765 | 766 | 767
768 | 769 | 770 | 771 } ? 828 | 829 | 830 | 831
832 | 833 | 834 | 835 ? 892 | 893 | 894 | 895
896 | 897 | 898 | 899 } 956 | 957 | 958 | 959
960 | 961 | 962 | 963) 1020 {1021 | 1022 | 1023

It's best to

think of this mass of numbered spaces in line length
batches; that is, in groups of 64. For SCRAM2 we don't want to use the
whole screen for scattering our scrambled word, perhaps just 10 lines out
of the 16. We know by now that

INT(RND(0) * (64 * 10))

will give us random integers from 0 to 639. (We've left the 640 as the
expression “64 * 10" so you can keep track of how many lines-full of
character spaces there are.)

~

POSTIONS 0 TO 639 CORRES-
POND TO THE TOP TEN
LINES OF THE SCREEN.

—~

112

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

But we want to reserve six lines at the top of the screen for presenting the
clue, asking for the answer, responding, telling the person “right”,
“wrong”, etc. So we'll use

INT(RND(0) * (64 * 10) + (64 * 6))
to give us random integers from 384 to 1023. These correspond to PRINT
@ positions on lines 7 through 16 of the screen:

(-)

 POSITIONS 384 TO 1023 COR-
RESPOND TO THE BOTTOM
~ TEN LINES OF THE SCREEN,

- _

Now we have the right range of numbers, but in order to print double-
width letters on the TRS-80, we must generate only random even integers.
Even integers are those that have two as a factor, so all we have to do is
figure out what expression will generate random integers in a range exactly
half what we want, and then multiply it by 2. Better still, let the computer
do the work.
INT((RND(0) * (64 * 10) + (64 * 6))/2) * 2

For example, 385/2 = 192.5, the “integer part of” 192.5 = 192, and
192 *2 = 384.

Previously we suggested the values for PRINT @ positions be stored
in an array. This is because the next thing that must be done in the pro-
gram is to check if this position has been used before to prini a letter of the
current quiz word. If this is not done the program might randomly choose
the same position more than once and overprint, which would make it too
difficult to guess the word. A high-level design for this part of the program
is as follows:

1. Choose the random position, store it in an array.
2. If this is the first one, skip the next step.
3. Compare this random position with each previous one, and if it's

the same position, go back to step 1.

4. If it's not the same, go ahead and print the letter in that position.

Section 2.4 Word Games. 113

Note: Successive PRINT @ statements require a semicolon at the end of thé "
statements, otherwise each one will do a line feed and carriage return, eras-
ing the line on the screen below the one which was just used and rolling up
the contents of the screen if the position was on the last line. The semicolon
prevents this. .

Project SCRAM3

Now that you have a couple of word guessing games, you might as well go
on to bigger and better things,—say a sentence guessing game. Write a
program that takes the words of a sentence or a proverb, scatters them
over the screen in random positions, and in a new random order each
time. Ask the person to type in the words in the correct order. No clue is
needed, but you'd better not make the scrambled words disappear. Start
at a random proverb each time the program runs or if the person wants to
play again.

&HQT IS YCI.R ANSHER?

(TYPE IT IN ONE WORD AT A TINE FM.NIM EACH 7)
2LIE

? DOl

7 HITH

ot

This is a sample run of SCRAM3. The scrambled proverb is first printed in the
lower part of the screen. The player then tries to type it in the correct order after
each 7 mark starting near the top of the screen. As new words are entered, parts
of the scrambled proverb may be erased, so the player should try to figure out the
whole proverb before typing in any words.

114

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

First think about how your data will be written. This will affect how
your dummy READs and real READs work. Since this program will deal
with words separately, the data should probably look like this:

510 DATA A, BAD, PENNY, ALWAYS, COMES, BACK, $
Some proverbs take up more than one DATA statement, so the dollar sign
($) allows a test for checking the end of one proverb. The last DATA state-
ment is:

630 DATA $$$
This triple dollar sign is an arbitrary string we've selected to allow testing
for the end of all the proverbs.

No proverb has more than 15 words, so the arrays for storing random
positions P(), scrambled word order S(), the words of the proverb
W$(), and the person’s answer A$() are all dimensioned at 15.

A high-level design for this program will be similar to SCRAMI and
SCRAM?2. A more detailed high-level design for part 2 of SCRAM3 is as
follows:

2. Generate the quiz proverb.

a. Choose a random proverb for each game. This randomizing
process should be outside the main game loop, as in SCRAMI.
It will have two parts: (1) a dummy READ loop that moves a
pointer through the data one word at a time, and (2) a loop
that then reads up to the end of whatever proverb this data
pointer randomly landed on. This way the real READ state-
ment will start at the first word of a proverb. In each loop,
care should be taken to test for the end of the data.

b. Read the words of a proverb into an array W$(). Remember
the number of words read (ie:, don't reuse the counter
variable, preserve it).

c. Create a random ordering for the words. To do this fill an ar-
ray S() (the same length as W$()) with the numbers from 1
to the number of words in W$(), but in scrambled (random)
order. Start with a random number R, in the proper range,
and place a 1 in S(R). Repeat for 2, 3, etc. You can test if S(R)
has already been filled if you put zeroes in S() before you
start. If it has been filled, just fill the next empty variable in
the array (R = R + 1). If the loop gets to the end of the array
while looking for an empty spot to place a number, just reset
R to 1 and keep looking.

d. Display the words scattered randomly. As in SCRAM2, fill an
array with random positions for use by a PRINT @ statement,
checking to see that none has been used before. This time, we
suggest using only every 16th number in the range, using the
same trick as was used to get even numbers. The PRINT state-
ment will look like this:

280 PRINT @ P(K), W$(S(K));
P(K) is a randomly chosen position, while W$(S(K)) is a ran-

Section 2.4 Word Games. 115

domly chosen word from the proverb. Notice it uses a
subscripted subscript!

Project CIPHER

Write a secret code game. This project will use the technique learned in the
previous word quiz programs, but its structure is somewhat different. The
first three steps of the design process are shown in full.

Idea

To make secret codes into a game, this program will present a coded
message, then ask the person to type in a letter, and the letter he or she
N\ thinks it stands for. The program will attempt to decode the message using
\ the replacement scheme denoted by those two letters (see Note on Ciphers
and Codes). The program will print the coded message, and the message
will still be gibberish if the letters were wrong. If they are right, that's the
end of the game, a score is printed, and the person can play again. If they
are wrong, the person has three choices:

1. Try to decode the message again (type in two more letters).

2. Try a new message in the same code.

3. Give up.

In order to play this game well, the person should understand what
kind of code or cipher is being used, what kind of messages will be sent,
and have some ideas about looking for common English words in the cod-
ed messages. Since this will make the instructions quite long, the person
should have the choice of skipping them.

Sample Run

% DECODE THE SECRET MESSAGE *
DO YOU NEED INSTRUCTIONS (YES/NO)? YES

HERE IS A CODED MESSAGE: Q HUT QFFBU
HERE IT IS DECODED: A RED APPLE

PRESS ENTER TO SEE WHAT THE CODE WAS?

* * * * * *

ABCDEFGHIJKLMNOPQRSTUVWXY?Z

D T T S S S N O N N W O N O W N U U U W U

QRSTUVWXYZABCDEFGHIJKLMNOP
IN THIS GAME, NEW CODES ARE MADE BY ‘SHIFTING'

THE ENCODING ALPHABET TO A NEW POSITION

116

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

PRESS ENTER TO SEE A NEW CODE?

ABCDEFGHIJKLMNOPOQRSTUVWXYZ
AR T T T T T N N O O O O N O N O O T U U
EFGHIJKLMNOPQRSTUVWXYZABCD

PRESS ENTER TO CONTINUE?

TO PLAY THIS GAME YOU MUST--
1. LOOK AT THE CODED MESSAGE ON THE SCREEN.
2. PICK ONE LETTER AND FIGURE OUT WHAT
LETTER WAS ENCODED TO GET IT.

PRESS ENTER TO CONTINUE?

HERE ARE SOME CLUES:
~--ALL THE MESSAGES ARE OLD FAMILIAR SAYINGS.
-~SOME ONE-LETTER WORDS IN THEM ARE: I, A.
--SOME TWO-LETTER WORDS IN THEM ARE:
TO, AT, 1S, IN, IT, OF.
-~SOME THREE-LETTER WORDS IN THEM ARE:
AND, ALL, BUT, NOT, THE.
PRESS ENTER TO CONTINUE?

YOUR SCORE WILL DEPEND ON HOW MANY MESSAGES
YOU NEED TO SEE BEFORE DISCOVERING THE CODE
(1 = 1008 2 = 50% 3 = 33% 4+ = 0).
PRESS ENTER TO START THE GAME?
HERE IS THE CODED MESSAGE:
OIIT CSYV ICIW STIR FIJSVI QEVVMEKI, LEPJ WLYX EJXIVAEVHW

WHAT LETTER DO YOU THINK YOU CAN DECODE? I
WHAT LETTER DO YOU THINK IT STANDS FOR? E

THE DECODED MESSAGE IS:
KEEP YOUR EYES OPEN BEFORE MARRIAGE, HALF SHUT AFTERWARDS
CONGRATULATIONS.

YOU HAVE BROKEN THE CODE AFTER RECEIVING

1 MESSAGE (8).

YOUR SCORE IS 100 %.
WANT TO SEE ANOTHER MESSAGE--WITH A NEW CODE? YES
HERE IS THE CODED MESSAGE:
RHN VTG EXTW T AHKLX MH PTMXK, UNM RHN VTG'M FTDX BM WKBGD

WHAT LETTER DO YOU THINK YOU CAN DECODE? T
WHAT LETTER DO YOU THINK IT STANDS FOR? I

THE DECODED MESSAGE IS:

GWC KIV TMIL I PWZAM BW EIBMZ, JCB GWC KIV'B UISM QB LZQVS

Section 2.4 Word Games. 117

SORRY, THAT'S NOT IT.

WOULD YOU LIKE TO ...
1. TRY DECODING THE MESSAGE AGAIN.
2. TRY DECODING A DIFFERENT MESSAGE (SAME CODE).
3. GIVE UP ON THIS CODE.

TYPE 1, 2, OR 3?2 1
HERE IS THE CODED MESSAGE:
RHN VIG EXTW T AHKLX MH PTMXK, UNM RHN VTG'M FTDX BM WKBGD

WHAT LETTER DO YOU THINK YOU CAN DECODE? T
WHAT LETTER DO YOU THINK IT STANDS FOR? A

THE DECODED MESSAGE IS:
YOU CAN LEAD A HORSE TO WATER, BUT YOU CAN'T MAKE IT DRINK

CONGRATULATIONS.
YOU HAVE BROKEN THE CODE AFTER RECEIVING
1 MESSAGE (S).
YOUR SCORE IS 100 %.
WANT TO SEE ANOTHER MESSAGE--WITH A NEW CODE? YES

HERE IS THE CODED MESSAGE:
DEJXYDW YI SUHJQYD YD JXYI MEHBT RKJ TUQJX QDT JQNUI

WHAT LETTER DO YOU THINK YOU CAN DECODE? Y
WHAT LETTER DO YOU THINK IT STANDS FOR? S

THE DECODED MESSAGE 1IS:
XYDRSXQ SC MOBDKSX SX DRSC GYBVN LED NOKDR KXN DKHOC

SORRY, THAT'S NOT IT.

WOULD YOU LIKE TO ...
1. TRY DECODING THE MESSAGE AGAIN.
2. TRY DECODING A DIFFERENT MESSAGE (SAME CODE).
3. GIVE UP ON THIS CODE.

TYPE 1, 2, OR 3? 2
HERE IS THE CODED MESSAGE:

EX, MXQJ Q JQDWBUT MUR MU MUQLU MXUD VYHIJ MU FHQSJYSU JE TUSUYL
U

WHAT LETTER DO YOU THINK YOU CAN DECODE? E
WHAT LETTER DO YOU THINK IT STANDS FOR? O

CONGRATULATIONS.

YOU HAVE BROKEN THE CODE AFTER RECEIVING

2 MESSAGE(S).

YOUR SCORE IS 50 %.
WANT TO SEE THE MESSAGES AND CODED MESSAGES
YOU RECEIVED IN THIS CODE (Y/N)? Y
NOTHING IS CERTAIN IN THIS WORLD BUT DEATH AND TAXES
DEJXYDW YI SUHJQYD YD JXYI MEHBT RKJ TUQJX QDT JONUI

118

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

OH, WHAT A TANGLED WEB WE WEAVE WHEN FIRST WE PRACTICE TO DECEIV
E
EX, MXQJ Q JQDWBUT MUR MU MUQLU MXUD VYHIJ MU FHQSJYSU JE TUSUYL
U

WANT TO SEE ANOTHER MESSAGE--WITH A NEW CODE? YES
HERE IS THE CODED MESSAGE:

CSY GER PIEH E LSVWI XS AEXIV, FYX CSY GER'X QEOI MX HVMRO

WHAT LETTER DO YOU THINK YOU CAN DECODE? X
WHAT LETTER DO YOU THINK IT STANDS FOR? S

THE DECODED MESSAGE 1S:
XNT BZM KDZC 2 GNQRD SN VzSDbQ, ATS XNT BZM'S LZJD HS CQHMJ

SORRY, THAT'S NOT IT.

WOULD YOU LIKE TO ...
1. TRY DECODING THE MESSAGE AGAIN.
2. TRY DECODING A DIFFERENT MESSAGE (SAME CODE).
3. GIVE UP ON THIS CODE.

TYPE 1, 2, OR 3? 3
YOUR SCORE IS 0%.

WANT TO SEE ANOTHER MESSAGE--WITH A NEW CODE?NO
%% END OF SECRET CODE GAME ***

High-Level Design

1. Initialize, give instructions.

a. Ask if person wants instructions; if not go to Ic.

b. Explain about codes, the order of playing, clues, scoring.

c. “Press ENTER to start game.”

2. Read and encode the message.

a. Pick a random proverb each game.

b. Pick a random number R for the code (from 1 to 25).

c. Read the proverb into one string M$() using concatenation
(see section 2.2).

d. Create a coded mesage CM$() by adding R to the ASCII
value of each letter in M$(). (Punctuation marks and spaces
should be the same in CM$() as they were in M$().

3. Display the coded message; get the input; decode the message.

a. Print the coded message, get the person’s input, X$, Y$.

b. Subtract the ASCII value of one input letter from the other to
get a decoding value, Q.

c. Reverse the coding process, creating a decoded message, DM$.

d. Print the decoded message, compare it with M$().

Section 2.4 Word Games. 119

e. Ifitis correct, go to 4; if not, give the person three choices:
(1) Try to decode the message again; go to 3a.
(2) Try a new message in the same code; go to 2c.
(3) Give up; go to 4b.

End of game; display score; print out messages and coded

messages.

a. For correct decoding: calculate score, print message.

b. Recalculate score if the person gave up; print score.

c. If there was more than one message looked at, ask if person
wants to see them. If not, go to 4e.

d. Print messages and coded messages.

e. Ask if person wants to play again. If yes, go to 2.

Data: old, familiar proverbs again.

Hints on Coding the Program

Since this program deals with the message as a whole, rather than as
separate words, the DATA statements should contain parts of the pro-
verbs that are as large as possible. Since these parts will contain spaces and
punctuation marks, they will be surrounded by quotation marks. For

example:

505 DATA “IT'S BETTER TO HAVE LOVED AND LOST THAN NEVER TO”
510 DATA "HAVE LOVED AT ALL", $

616 DATA $%%

In this case $ allows a test for the end of one proverb, while $$$ allows a
test for the end of all the data.

To find out if a character within the message is not a letter, test if its

ASCII value is greater than 90 or less than 65.

If adding the coding or decoding value makes a number greater than

90 or less than 65, a non-letter character will result; be sure to test for this
and avoid it by adding or subtracting 26. Here is a simple example of
adding a coding value called SH (for shift):

134

138
140
142
144
148
149
150

PRINT:PRINT “PRESS ENTER TO SEE A NEW CODE";: INPUT D$

PRINT: FOR I = 65 TO 90: PRINT CHR$(I);” ”;: NEXT I
PRINT: FOR I = 1 to 26: PRINT CHR$(92);" ;: NEXT I; PRINT
SH = 41

FOR I = 65 to 90

IFI + SH > 90 THEN SH = SH - 26

PRINT CHR$(I+SH);";

NEXT I: PRINT

120

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

This code will print an alphabet (line 138) and a shifted alphabet (line 149).

This program takes up a lot of string space. We found that CLEAR
900 was necessary.

The messages and coded messages, M$() and CM$() are stored in
arrays so that if the person asked for more than one message in the same
game, he or she can ask to have them all printed out at the end of the
game.

When creating M$(), CM$(), or DM$ by repeatedly con-
catenating characters, you must start with a null or empty string. To make
sure of this you need statements like:

220 M$(C) ="": CM$(C) = "
314 DM$ = "

Notes on Ciphers and Codes

The words code, cipher, and cryptogram all refer to schemes for disguising

information in some manner. However, the three words have different
,teéhni’c’al meanings (not always observed) as follows:

A cryptogram is defined as “something written in code or c1pher 50
s a’general word that includes the other two. A code is defined as a system
. ikof symbols, letters, or words used to transmit arbitrarily defined meanings.

When a college administrator says “we give equal emphasis to research and
teaching,” it could be a code that means “publish or perish.” If a baseball
_coach signals a bunt by scratching his nose, that's also a code. There’s no
~ way to decipher a code by a mathematical formula; you need a dictionary-
type listing called a codebook. The file names of programs in this book are a
kind of code. You can guess what BABYZAP might mean, but to be sure
you have to look it up.

A cipher, on the other hand, uses some kind of mathematical transfor-
mation for methodically changing the parts of a message. Two types of
transformation used are transposition and substitution. A transposition
scheme is one that changes the position of the symbols in a message, turning
a word like SECRET into, say, CREEST. The various SCRAM programs in
this section use transposition.

~ The second and more useful transformation is substitution. This
involves replacing each symbol in the message with another symbol taken
from the basic set of characters. The most famous substitution scheme is the
Caesar cipher (reportedly used by Julius Caesar) in which each letter of the
alphabet is replaced by a letter a fixed distance, R, away. The distance from
AtoBis1, AtoCis2 AtoDis 3, and so on. The distance going
backwards in the alphabet is taken as a negative number. So for R = —1,
IBM becomes HAL. The project CIPHER uses a Caesar substitution cipher,
choosing the distance R randomly for each game.

The Caesar cipher is easy to “crack” (decipher) since all the letters have
the same R added to them. This means letters that appear frequently in
English, such as E, also appear frequently in the cipher text, and it's easy to
guess what they are. A better scheme is one that uses several distances in
succession (say 7, 3, 5) for successive letters, repeating this key pattern as
often as needed. But unless the pattern is very long, experts can also crack
this kind of cipher. The only theoretically uncrackable cipher is one where
the key is as long as the message, and where the key is never used more than

Section 2.4 Word Games. 121

once, This scheme gives rise to the one-time-pad cipher, in which a fresh;,
and very long, key is printed on each page of a book (the pad). A page is
used once by both sender and receiver, who have duplicate copies, and then
destroyed. Such pads, printed on very thin paper with very tiny numbers
have reportedly been rolled up to look like cigarettes.

The one-time pad scheme is unbreakable, but delivering all those pads
around the world without interception becomes a monumental problem. A
way to avoid this problem has recently been developed, using what is called
a ‘public key encryption scheme. This means that keys for enciphering
messages can be made public, with a personal key for each receiver. But
only the receiver will know: how to decipher a message written with his key.
This is because the publicly known enciphering scheme is not easily revers-
ed. (Most substitution ciphers ‘are easy to reverse. For example you can
reverse the cipher which changes IBM to HAL by using +1 instead of —1.)

The enciphering schemes used in public key systems are called one-way
trap door functions; They're called one-way because the enciphering pro-
cess is almost impossible to reverse. It has been estimated that even if an
extremely fast computer were used, it would take millions of years to find a
reverse key. They're called trap door functions because if you know where
the “secret lever” is, which means if you know a secret number, thé reverse
process is relatively easy; taking only a few seconds on a computer. A long
and somewhat technical article on public key encryption systems appeared
in the August 1979 issue of Scientific American. Two other articles on
encryption can be found in the 1979 March and April issues of BYTE
magazine.:'A fascinating book on the history of ciphers and codes is The
Code Breakers by David Kahn.

122

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

2.5 Space Games. BABYQ, BABYZAP

7

W)
o,

Let's now leave the land of computer number and word games, and climb
aboard the modern magic carpet of fantasy space games. These come in all
sizes and shapes, and untold numbers of them have been written for
microcomputers. Some are simple, some very complex; a few have even
attracted a national following. But like the photos in the wallet of a proud
parent, computer games mean a lot more to their inventors than to the
casual observer.

Our goal in this section is to help you take part in inventing a “space
trek” game. It may be simpler than other space games you have seen, but
because you will understand how it was designed and put together, it, and
the extensions you devise, may end up being among your favorites.

Program BABYQ

The Idea

This will be a game program with two adversaries: the human player (as
captain of a ship called E), and the computer (in the guise of an evil force
called K). These two adversaries will take turns making moves within the
confines of a miniature galaxy, displayed on the video screen as a 9 by 9
grid. There will be well-defined rules for determining the outcome of each
move. The human player will have the goal of reaching a position called
the “star gate,” but of course a lot can happen along the way.

To clarify how all of this goes together, let's take a look at the rules in
more detail and illustrate how they work with a sample run.

Sample Run

The run is shown as a sequence of time frames (indicated by printing TF =
1, TF = 2, TF = 3, and so on at the right of the screen). The rules that
govern what happens for each time frame are the following:

1. The game is played on a 9 by 9 grid. A position is described with
integer coordinates X and Y.

2. The player of the game is the commander of the E (Entelechy
Quest) ship. The E ship starts out at position 1,1 with 100 units of
energy (EE = 100) and in time frame 1 (TF = 1).

3. The E ship can be moved to any X,Y position on the grid, provid-
ed the distance travelled is not greater than EE/100. Distance
travelled is calculated by the Pythagorean theorem. Example: To
go from 2,3 to 5,7 means going along a triangle with sides of
length 3 (5-2) and 4 (7-3), so distance equals SQR(9 + 16) = 5.
This move is not allowed if EE is less than 500.

Section 2.5

4.

Space Games 123

The E ship can increase its energy 10% per time frame by resting,
that is, by staying in its present position.

After each E ship move, a K-mine is planted at a randomly chosen
position of the grid. If this position is the same as the new E posi-
tion, the E ship is blown back to start, 1,1, and its energy is re-
duced by 30%.

If the E ship moves into a position where there is an old K-mine
planted, the results are the same as in 5.

The E ship’s goal is to go through the star gate at position 9,9.
When the letter G appears in this position the gate is closed, and
trying to go through will bounce E back to start. When it is open
it will appear blank, and going through will give the player the
winning message “YOU HAVE ACHIEVED STAR DIMENSION,”
along with a rating score. This rating = 10 * EE/(TF + 1).

The star gate is protected by a star barrier shown with the symbol
“#" Moving to one of these positions will bounce the E ship back
to start.

The game is ended before Star Dimension is achieved if either too
much time is taken (TF > 99), or if the energy of the E ship gets
too low (EE < 20).

With these rules in place, we're ready for our first trek. Here we go:

i
i
§
i
¥
¥
§

R W oY - 00w
i
i
i
i
i

|l c< I S I |
[I]
w
L= T S A |
[S2 0 S I A |
(<2 N T T I |
~t b &t
[l S A |
o

YOUR MOVE (MAX. DIST. = EE/100):

INSUFFICIENT ENERGY, DISTANCE REQUEST

YOUR MOVE (MAX. DIST. = EE/100):
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 1 , 7

PRESS ENTER FOR NEXT TIME FRAME

--READY?

In this first time frame, E tries to move a
distance of 1.414 (from 1,1 to 2,2). But with
an energy of EE = 100, the maximum
distance allowed is 100/100 = 1. So E
X, > 2 decides to rest (stay at 1,1) instead.
D= 1.

? 1

[i

124 CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

4 N\
9 - - - - - - - * G
8 B T
7 K - - = = = = = =
6 o
Z o Notice that the energy of the E ship is now
3 - - e e e e = - - EE = 110, a 10% increase from resting. Also
2 T T notice that the K-mine released in time frame
1 E - - = - - - - - 1 is now displayed at 1,7. E continues to rest
YOUR MOVE (MAX. DIST. = EE/100): X,Y =2 1,1
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 2 , 2
PRESS ENTER FOR NEXT TIME FRAME --READY?
et
- N
9 - - - - = - - * @
8 - - - - - - - * *
7 K - - =~ - - - - -
6 .
5 - — - - — - — — -
4 -_ — - - — - — - —
3 - e e e e e e EE is now 121, but more K-mines are starting
2 - K - - - - - = - to appear. The star gate at 9,9 (which was
1 E - - - = = - = - , open in time frame 1) is closed, but E isn't
1 2 3 4 5 6 7 8 9 EE=121 TF =3 close enough to worry about this yet.
YOUR MOVE (MAX. DIST. = EE/100): X,¥Y =2 1,1
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 5 , 9
PRESS ENTER FOR NEXT TIME FRAME ~-READY?
_ Y,
e ~
9 - - - - K - - * g
8 — - - - - - - * *
7 K - - - - = - - -
6 - e e e e e e e
5 - e e . e e e -
4 — — - -~ - — - - -
T S A K-mine has appeared very close to E (at
2 - K - - - - - - - 2,2). But this is still a miss. E decides to rest
1 E - - == - - - = one more time and then...
1 2 3 4 5 6 7 8 9 EE = 133 TF = 4

YOUR MOVE (MAX. DIST. = EE/100): X, Yy =2 1,1
RESTING: ENERGY INCREASED 10%

K-MINE RELEASED AT 8 , 7

PRESS ENTER FOR NEXT TIME FRAME --READY?

Section 2.5 Space Games 125

~N
9 - - - - K - - *
8 - — - - o~ - - * *
7 K - - - - - - K -
6 - e e e e e e e -
5 P - — - - - - —
4 - e e e e e = e -
3 - - e e e e e -
2 - K e = e e e e E becomes aggressive and deliberately (7)
1 E = = = = = = « = moves to 2,2. The explosion blows E back to
1 2 3 4 5 6 7 8 9 EE =146 TF = 5 1,1 and reduces EE by 30%, but...
YOUR MOVE (MAX. DIST. = EE/100): X, Y =2 2,2
K-MINE RELEASED AT 5 , 5
X E 2 L SRR 1222
YOU HAVE HIT A K-MINE. YOU'RE BLOWN BACK TO START.
ENERGY LOSS 1S 30%
PRESS ENTER FOR NEXT TIME FRAME ~-~READY?
J/
N\
9 - - - - K - - *
8 e
7 K - - - - - - K =
6 - e e e e e e
5 - - - - - - - -
4 - e e e e e e e -
3 - - - - - T In time frame 6 you can see that the K-mine
1 E - - - - T Tz at 2,2 has been disintegrated by E’s previous
1 2 3 4 5 6 7 8 9 EE =102 TF = 6 move.
YOUR MOVE (MAX. DIST. = EE/100): X, Yy =2 1,1
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 1 , 3
PRESS ENTER FOR NEXT TIME FRAME --READY?
J
M\
9 - - - - K - - *
8 .
7 K - - = = = = K =~
6 .- e e e e -
5 - - - - K - - - =
‘é ; - - T T T E decides to lie low for the next 4 time frames
S and rebuild energy. (Notice that the star gate
1 E = = = = e e e - is open again. This happens about 30% of
1 2 3 4 5 6 7 8 9 EE =112 TF = 7 the time.)
YOUR MOVE (MAX. DIST. = EE/100): X, Yy =2 1,1
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 4 , 7
PRESS ENTER FOR NEXT TIME FRAME ~-READY?

126 CHAPTER 2
9 - - - - K - = * @
8 B
7 K - - K - =- - K -
6 .
5 - - - - K - - = =
4 o
3 K - - = = = = - =
2 . - — - - - - — -
1 E - = = = = - = -
1 2 3 4 5 6 8 9 EE = 124 TF = 8
YOUR MOVE (MAX. DIST. = EE/100): X,Y =2 1,1
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 6 , 9
PRESS ENTER FOR NEXT TIME FRAME --READY?

-
9 - - - - K K - * G
8 B
7 K - - K - - - K -
6 - — . - - - - - —
5 - - - - K - = - -
4 - - e e e e e -
30K - = - e = e - -
2 - e - - e e e = -
1 E - - - - - - = -
1 2 3 4 5 6 7 8 9 EE =136 TF =9
YOUR MOVE (MAX. DIST. = EE/100): X,Y =2 1,1
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 5 , 7
PRESS ENTER FOR NEXT TIME FRAME ~--READY?
-
e
9 - - - - K - * G
8 - e e e e e = k%
7 K - - K K - - K -
5 — - . — - - - — —
5 - - - - K - - - -
4 - e e e e e e e .
30K - - - = - - - -
2 - . e e e e = e
1 E - - - - - - -
1 2 3 4 5 6 7 8 9 EE =150 TF = 10
YOUR MOVE (MAX. DIST. = EE/100): X,Y =? 2,2
K-MINE RELEASED AT 7 , 7
PRESS ENTER FOR NEXT TIME FRAME --READY?

PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

Meanwhile, the K-mines keep on coming. So
far all the K-mines are showing up at new
positions. However, it's possible for a
K-mine to be released at the same position
twice.

One suggestion for extending the game is to
mark a position with two K-mines different-
ly, and make this a mine that can “reach out”
to impact E. More on this idea later.

E decides to start moving, and goes to 2,2.

Section 2.5

Space Games

9 . - - -
8 - - . -
7 K - - K
6 — — - —
5 - . - -
4 - - e -
3 K - - -
2 - E - -
1 - - -

1 2 3 4

YOUR MOVE (MAX.
K-MINE RELEASED
PRESS ENTER FOR

IR 1R R
I
=
i) o* %
I

¢
i
]
I

5 6 7 8 9

DIST. = EE/100):
AT 1, 9
NEXT TIME FRAME

EE = 150 TF = 11
X, Y =2 3,3

--READY?

9 K - - - K K = *

8 -~ - — - - - - * X

7 K - - K K - K K -

6 - - — - - - - - -

5 - - - - K - - = =

4 - - - -~ - - - - -

3 K - E - - - = = =

2 - - - - - - - P -

1 - - - - - - - - -

1 2 3 4 5 6 7 8 9 EE =150 TF = 12

YOUR MOVE (MAX. DIST. = EE/100): X,Y =2 4,4
K-MINE RELEASED AT 3 , 4

PRESS ENTER FOR NEXT TIME FRAME --READY?

9 K - - - K K ~- *

8 F e

7 K - - K - K K -

6 - - - - - - - - -

5 - = - - K - = - -

4 - - K E - - =- - =

3 K - = = = = = = -

2 - - - - — - - P -

1 .

1 2 3 4 6 7 8 9 EE = 150 TF = 13

YOUR MOVE (MAX. DIST. = EE/100): X,Y =2 4,4
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 5 , 6
PRESS ENTER FOR NEXT TIME FRAME --READY?

127

Another diagonal move by E, this time to

3,3.

E goes to 4,4 but realizes that to move more
than 1 over and 1 up,” more energy is need-

ed...

...s0 E rests again. Now 10% of 150 = 15, so

the new EE should = 165.

128 CHAPTER 2
r A
9 K - - - K K =- *
8 — - - - - - - * *
7 K - - K K - K K -
6 - - - - K - - = -
5 - - - = K = - - =
4 - - K E - - = - -
3 K - -~ - = - - - -
2 - - - - - - - - —
1 . - - - — - - - -
1 2 3 4 5 6 7 8 9 EE-=165 TF = 14
YOUR MOVE (MAX. DIST. = EE/100): X,Y =? 4,4
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 7 , 3
PRESS ENTER FOR NEXT TIME FRAME --READY?
_ J
()
9 K - - - K K - *
8 - - - - - - - * *
7 K - - K K - K K -
6 - - - - K - - - =~
5 - - = - K - - - -
4 - - K E - - - - =
3 K - - - - - K - =
2 - - - - — - — - -
1 - - - _, - - - - -
1 2 3 4 5 6 7 8 9 EE-=181 TF = 15
YOUR MOVE (MAX. DIST. = EE/100): X,Y =2 4,4
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 9 , 6
PRESS ENTER FOR NEXT TIME FRAME --READY?
.)
. ™)
9 K - - - K K =- *
8 - = e e e - e kK
7 K - - K K - K K -
6 - - - - K - - - K
5 - - - - K - - - =
4 - - K E - - - - -
3 K - - - - - K - =
2 - e e e e e~
1 - = e e e e e e -
12 5 6 7 8 9 EE =199 TF = 16
YOUR MOVE (MAX. DIST. = EE/100): X,Y =? 4,4
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 9 , 4
PRESS ENTER FOR NEXT TIME FRAME ~--READY?
- J

PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

More rest. A quick calculation shows that to
move 2 units in one direction requires at
least 200 units of energy, so...

...E rests again. If E should want to go 2
units in one direction and 1 unit in another,
the distance is SQR(1 + 4) = 2.236, so EE
will have to be 224. (If you look ahead to TF
= 17 you'll see that E didn't know this.)

One more rest. E seems to be lucky, not be-
ing hit despite all the K-mines being released.

Section 2.5

Space Games

9 K - - -
8 - - e -
7 K - - K
6 - . - -
5 - - - -
4 - - K E
3 0K - - -
2 - — - -
l - - - -
1 2 3 4
YOUR MOVE (MAX.

INSUFFICIENT ENERGY,

YOUR MOVE (MAX.
K-MINE RELEASED
PRESS ENTER FOR

P RR=R 1R
1t
[
§
PR 1IR o*»Q

'
f
=
i

5 6 7 8 8

DIST. = EE/100):
DIST. = EE/100):
AT 8 , 1

NEXT TIME FRAME

DISTANCE REQUESTED

EE = 219 TF = 17

X, Y =2 6,5
= 2.23607
X,Y =2 6,4
~-~READY?

9 K - - -
8 - - - -
7 K - - K
6 - P - -
5 - - e -
4 - - K -
3 K - - -
2 - e - -
1 - - - -
1 2 3 4
YOUR MOVE (MAX.

K-MINE RELEASED
PRESS ENTER FOR

K K - * G
- - - * *
K - K K -
K - - - K
K = = = =
- E =- - K
- — K - -
- - - K -
6 7 8 9
DIST. = EE/100):
AT 3, 1

NEXT TIME FRAME

EE = 219 TF = 18
X, Y =2 8,4

--READY?

9 K - - -
8 - - - -
7 K - - K
6 - - — -
5 - - - -
4 - - K -
3 K - - -
2 - . e -
1 - - K -
1 2 3 4
YOUR MOVE (MAX.

K~-MINE RELEASED
PRESS ENTER FOR

K K - * G
- - - * *
K - K K -~
K - - - K
K —-— - - -
- - - E K
- - K - -
- — P K -

6 7 8 9

DIST. = EE/100):
AT 4 , 5
NEXT TIME FRAME

EE = 219 TF = 19
X,Y =? 8,6

~-READY?

129

Another miss by the K-mine. Just what is the
chance of being hit?

Missed again! The reason is that the prob-
ability of a K-mine having the same X coor-
dinate as E is 1/9, and the probability that it
will have the same Y coordinate is also 1/9,
but the probability that both coordinates
will be the same is (1/9) * (1/9) = 1/81.

Made more confident by this lesson from
probability theory, E decides to go on the
move again.

130 CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

~ N\
9 K - - - K K - * (
8 . - - - - - - * *
7 K - - K K - K K -
6 - - - =~ K - - E K
5 - - - K K - - = =
4 - - K - - - - - K Of course, E must be careful not to land ona
3 K - - - - - K - - K-mine already planted, or hit a * (and be
i - ; - - T - ; - bounced back to the start).
l1 2 3 4 5 6 7 8 9 EE = 219 TF = 20
YOUR MOVE (MAX. DIST. = EE/100): X, Y =2 9,7
K-MINE RELEASED AT 4 , 9
PRESS ENTER FOR NEXT TIME FRAME --READY?
\. J
r ™
9 K - - K K K - * G
8 R
7 K -~ - K K - K K E
6 - - - - K - - - K
5 - - - K K - =~ - -
4 - - K - - - - - K
3 K - - - - - K - - E is now as close as possible to G, but the
% . ; -7 T ;(' - gate is closed. So E stays put, b]:l)llikil]ini up
- - T - i ossible hit by a
1 2 3 4 5 6 7 8 9 EE =219 TF =21 more energy (to survive any poss y
new K-mine).
YOUR MOVE (MAX. DIST. = EE/100): X, Y =2 9,7
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 3 , 2
PRESS ENTER FOR NEXT TIME FRAME --~READY?
\— W
e 7\
9 K - - K K K - * G
8 - e e e e e -k
7 K - - K K - K K E
6 - - - - K - - - K
5 - - - K K - - =~ -
4 - - K - - - - - K
3 K - - - - - K - -
f - - § - - - - ; - The gate is still closed, so E continues to rest
: I -z - and start sweating).
1 2 3 4 5 6 7 8 9 EE = 241 TF = 22 (g)
YOUR MOVE (MAX. DIST. = EE/100): X, Y =2 9,7
RESTING: ENERGY INCREASED 10%
K-MINE RELEASED AT 4 , 7
PRESS ENTER FOR NEXT TIME FRAME ~-READY?

131

Section 2.5 Space Games

(N\

9 K - - K K K =- *

8 - e e e e e k%

7 K - - K K - K K E

6 - - - - K - - - K

5 - - - K K - - - =

4 - - K - - - - - K

3 K - - - - K - -

2 - - K - - - - - -

1 - = K = = - - K - The i | E quickl d

_ _ gate is open! E quickly types 9,9 an

1 2 3 456 7 8 9 EE=265 TF=23 makes it through to the next dimension

YOUR MOVE (MAX. DIST. = EE/100): X,Y =2 9,9 (another galaxy with another set of game

Ly R R R T R R R R P T rules?). -

IZ SR RS E SRR LRSS R RS RS R R R R EEEEEEER]

% YOU HAVE ACHIEVED STAR DIMENSION **%*

*hx YOUR RATING IS 110.76 *EK
KRR AR KK KRR I AR AR KRR KA A R AR AR R AR R AR R AR KKK

hkARNKkARhkXkkkkkhhhhhhhhkhhhkkhkhhhkhhhhhrhhhk

As a little surprise, if you achieve Star Dimension the game ends with
a star pattern that we can't really show in a book. The photo gives some
idea of what it looks like, but there is also a random on/off motion of the
star symbols you'll want to see on a real screen.

+ e
LR,
et *n +

When the player of BABYQ finally makes it through the star gate, a score is
printed followed by a blinking pattern of stars. These are created by lines 2050 to
2070 in the program.

132

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

High-Level Design; Stepwise Refinement

From our run you can see that the BABYQ program is going to be a little
more complicated than most of the other games we've described, so trying
to do the high-level design in one “pass” won't be easy. It's time to in-
troduce another professional programming technique called stepwise
refinement.

The idea is to first develop a high-level design that describes only the
major steps in the program, sweeping as many details as possible under the
rug. Then we'll go back and expand each of these major steps into a
medium-level design. The language used will still be English, but it will
start to sound more like extended BASIC. (This is why some books call the
instruction written at this stage pseudo code. It's code that is almost
understandable by a real computer, but not quite.)

Using this approach, we'll first describe the design of BABYQ in terms
of eight major steps, and then see how these can be refined into pseudo
code, followed by a translation into the actual code of BASIC:

1. Get things set up. Initialize the board, energy allocation, posi-

tions of objects, time frame, etc.

Set up a loop to run through the game’s various time frames.

Display the game board to the player(s).

Give the E ship its turn to play; check validity of the move.

Move the E ship; check for star barrier or star gate collision.

Give the enemy K creatures their turn; check validity of the

move,

7. Check for a collision between E and a K-mine; take appropriate
action where called for.

8. If the game is finished display the final results; otherwise go

back to 2 for a new time frame.

As you can see, the instructions in our program are fairly general,
and they next need to be spelled out in greater detail. For example, step 4
could be refined into more specific steps as follows:

4(a). Request E to type in the new position desired.

4(b). If E didn't stay within the 9 by 9 board limit, repeat the input
request.

4(c). Calculate the distance E wants to move.

4(d). If E doesn’t have enough energy to move the distance requested,

N AN

repeat the input request.
Step 5 could be refined into five steps:
5(a). Erase the old E symbol by replacing it with a
5(b) Put the new E coordinates in XE and YE. If E has bumped into
the star barrier, go to a special “barrier routine.”
5(d). If E is trying to go through the star gate, go to a special “gate
routine.”
S5(e). If E didn't move at all increase its energy, EE, by 10%.

ioar

Section 2.5 Space Games 133

Step 6 might be refined as four finer steps.

6(a). Use the random number generator RND(0) to determine the
coordinates XK and YK for the K-mine.

6(b). Make sure a mine wasn’t placed in an illegal position (in the star
gate or on the star barrier). If it was, go back to 6(a).

6(c). When the K-mine position is legal, put the symbol K in position
XK, YK of the string array that represents the game board.

6(d). Print a message telling the player where the K-mine was releas-
ed.

Similar refinements would be made for the other steps in our pro-
gram. There is no single best way in which to do this refinement. There is
plenty of room for individual variation and style among programmers.
Try your hand at it; you could very well come up with a better approach.

Coding the Program

The coding of BABYQ shown in the following listing adheres closely to
the high-level design just discussed. An additional help that should be
given to readers of longer programs is a table showing what variables are
used, and what they mean. Here’s such a table for BABYQ, followed by
the program itself:

Variable Meaning

AS(L)) The 9 by 9 string array to hold the game board symbols.
I points to the row in the array, and J points to the col-
umn,

XE,YE The X and Y coordinates of the E ship’s present position.

TF Time frame (number of plays).

EE Energy of the E ship.

XY Coordinates for the E ship’s desired next position (input
by the player).

DE Distance from E ship’s present position (XE,YE) to the

desired next position (X,Y).
XK, YK The X and Y coordinates of the latest K-mine.

NOTE: The distance DE is calculated using the Pythagorean theorem which
says that DE = “the square root of the sum of the squares of the two sides of
the right triangle which has DE as its hypotenuse.”

134

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

1O "k h kR R A A AR A A A A A A R AR R A A A A AR A A AN AR A AR A A A XA A A A AAK

11 '* BABYQ {QUEST TYPE SPACE GAME) *
R R R R N I I T ™

20 CL

J 00 M o e e e e e o e e e o o e 1 e e [QU S ——
101 ° INITIALIZE VARIABLES

102 'mmmmmmmmmm e S
110 PRINT"*** BABY QUEST RUNNING -- STAND BY ***"

120 DIM A$(9,9)
130 FORI = 1 TO 9
140 FORJ =1 TO 9

150 LET AS(I,J) = "-"

160 NEXT J

170 NEXT I

180 XE = 1: YE = 1: TF = 0: EE = 100

190 A$(9,9) = "G": A$(9,8) = "*": AS(8,9) = "*": AS(8,8) = "x"
2 00 ' :::::::::::===:=::=====================================
201 ¢ MAIN LOCP STARTS HERD

202 !

210 TF = TF + 1: CLS

215 IF RND({0) < 0.3 THEN AS$(9,9) = " " ELSE AS${(9,9) = "G"
220 AS(XE,YE) = "E"

300 !

301 '-e————— e DISPLAY UNIVERSE-= o m e e e e e e e e e
310 FOR Y = 9 TO 1 STEP -1: PRINT Y;" ",

320 FOR X =1 TO 9

330 PRINT AS(X,Y);" ",

340 NEXT X

350 PRINT

360 NEXT Y

370 PRINT" 1 2 3 4 5 6 7 8 9 ",

380 PRINT TAB(43);"EE =";INT(EE):" TF =".TF

400 ¢

40] 'emem——m INPUT & PROCESS E MOVE-—==--=me— e e

410 PRINT"YOUR MOVE {(MAX. DIST. = EE/100): X,Y =";:INPUT X,Y
420 IF X<1 OR X>9 OR Y<1 OR ¥Y>9 PRINT"ILLEGAL COORD.":GOTO 410
430 DE = SQR{(X~XE) [2 + (Y-YE)[2)

440 IF DE <= EE/100 THEN 510

450 PRINT"INSUFFICIENT ENERGY, DISTANCE REQUESTED =";DE

460 GOTO 410

500 °

501 'wmmmmm— MOVE E SHIP; CHECK FOR GATE COLLISION-===—=—-
510 AS(XE,YE) = "-"

520 XE = INT(X): YE = INT(Y)

530 IF AS(XE,YE) = "*" THEN 1000

540 IF XE = 9 AND YE = 9 THEN 2000

fi o

550 IF DE 0 PRINT"RESTING: ENERGY INCREASED 10%":EE = 1.1*EE
600 °

601 '--mwe————— PLACE A K~MINE- -~ == e e e e e e e
610 XK INT(9 * RND{(0) + 1)

<
=~
[

620 INT (9 * RND(Q) + 1)

630 IF XK * YK >= 64 THEN 610

640 AS(XK,YK) = "K*"

650 PRINT"K-MINE RELEASED AT";XK;:;",": YK

700 !

701 'eemmm e CHECK FOR COLLISION WITH K-MINE---=—=cemm
710 IF AS(¥E,YE) = "-" THEN 810

720 PRINT"#4###d:z2::: 111 oz bdgss”

730 PRINT"YOU HAVE HIT A K-MINE. YOU'RE BLOWN BACK TO START."
740 PRINT"ENERGY LOSS IS 30%": EE = .7 * EE

750 AS{(XE,YE) = "-n

760 XE = 1: YE = 1

Section 2.5 Space Games 135

4)
800 '
8§01 'wmmmmom———— CHECK FOR END OF GAME---==m==—m—-—————owom—mo—
810 IF EE < 20 OR TF > 99 THEN 3000
820 PRINT"PRESS ENTER FOR NEXT TIME FRAME --READY";: INPUT AS
900 GOTO 210
990 °
998 ' END OF THE MAIN LOOP
909 'so=zrs=corssssssSsrsosrsoCSSTTSSSESSSSSSEosasSoEsIoIEszss
1000 "= mmmm e e e e
1001 ¢ STAR GATE BARRIER COLLISION
1002 Mmoo e o e o e o e
1016 PRINT: PRINT"YOU HIT THE STAR GATE BARRIER"
1020 PRINT "POW!itiltlprrrroerrrarrrprrpe”
1025 PRINT "IT'S BACK TO START FOR YOU"
1030 XE=1: YE=1
1090 GoTO 820
2000 Mo mm o o e
2001 ¢ STAR DIMENSION CHECK
200 2 P m e e e e e
2005 IF A$(9,9)="G" PRINT "YOU TRIED TO ENTER A CLOSED GATE

ve... YOU ARE SENTENCED TO START OVER":XE=1:YE=1:GOTO 820

2007
2008 ' —mmmmmmmm——e—m e VICTORY !!! ==—mmmmm————mm—e
2009 PRINT Nbhkkhhhkhdhhhhhhhhhhhhhrhhhkhhrhhhhddrhhhi®
2010 PRINT Wk hkhhhkhkhhhhhhhhhhhhkhhkhkhhhrkhhhahhhhdhhthin
2020 PRINT "*** YOU HAVE ACHIEVED STAR DIMENSION *#*#*"
2025 PRINT "*** YOUR RATING IS";10*EE/(TF+1);TAB(37);"***"
2026 PRINT Nhkhhkthhhhkhhhkhdhhhhhhrhhhhhhhhhhkkrhhhdrhrid
2028 PRINT NkkhhhhhhhhthhhhhhhkhhArkrhdhdrh bk ddhddhonn
2030 FOR I=1 TO 1000:NEXT I
2050 FOR I= 1 TO 500
2060 PRINT @ RND(1010)-1, "* . + M
2070 NEXT 1
2090 GOTO 10000
3000 F o o o o o o e o e S e
3001 E OUT OF ENERGY
3002 tom o o o e e e e
3010 PRINT "YOU ARE FINISHED ~-- THIS IS THE END"
3020 PRINT "ENERGY ="; EE; "TIME FRAME ="; TF
10000 END

\§ J

Future Extensions
>

In the present version of the game, the K-mines are placed at random posi-
tions of the grid, so it’s possible for more than one K-mine to be placed in
the same position. When that happens, a fancier game might convert the
original K-mine into an L-mine (L for “lollapalooza”). The L-mines could,
like the more advanced pieces in chess, be given the ability to “reach out”
and hit the E ship from a distance. Another extension would be to add a
refueling base where the E ship could go to increase EE. However, this
base would sometimes disappear, showing up again at a new position that
was randomly selected.

136

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

Project BABYZAP

Extend BABYQ so that repeated K-mines change into L-mines, where
L-mines act just like K-mines when they hit E directly. However, they
should also be able to hit the E ship with “ray guns.” These rays can shoot
only in directions parallel to the X or Y axes, and only have an effect up to
a distance of 2 units. A ray gun hit shouldn’t blow the E ship back to start,
but it should deplete the E ship’s energy by 20/DL percent, where DL is the
distance from E to the L-mine (ie: energy should decrease by 20% or 10%
for distances of 1 or 2). When an L-mine shoots its ray gun, it should be
weakened and revert to a K-mine.

g

R
— M LAr

=

|

Section 2.5 Space Games 137

2.6 GAMES AND GRAPHICS. SETPLOT, TRIGPIX, ARROW2,

(ELBLASTO)
7 N TT7
N
= S

an

-

Computer output is what you see printed on a video screen or on the
paper of a computer printer. It is usually made up of alphanumeric
characters. These include the alaphabet, numbers, and special symbols
(like #, —, or *). Using the TAB(X) function, it's possible to produce pic-
torial or graphical output with these symbols. An example of an
alphanumeric graph was shown in section 1.8 in the project TABGRAPH.
The plotting there was done using the asterisk (*) symbol.

Several versions of BASIC permit you to put other graphical symbols
on the video screen. Some also have statements that allow you to turn
small “points” (which are actually rectangles of light) on or off. Since these
points are smaller than the alphanumeric characters, more of them can be
plotted per inch, giving a picture of higher resolution.

On some computers (eg: the Apple 1) the BASIC statement that plots
a small point on the screen at a position X units to the right, and Y units
down is PLOT X,Y. On the TRS-80 computer, the plotting statement is
SET(X,Y), while RESET(X,Y) is used to erase a point.

The values of X and Y can be calculated by using assignment (LET)
statements in the program. On the TRS-80, setting X to values from 0 to
127 would move the plotting point from the extreme left to the extreme
right, while setting Y to values from 0 to 47 would move the point from
top to bottom. The choice of these numbers was a TRS-80 hardware
design decision. Other machines use different values.

Program SETPLOT

The Idea

Here's a program to plot 43 points on a TRS-80 screen. The points form an
approximation to a straight line that goes from the upper left hand corner
toward the lower right hand corner of the screen. Each successive point is
plotted at a position that is 3 units over and 1 unit down from the previous
position,

138

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

Sample Run

The output of SETPLOT is an approximation to a straight line made up of 43
SET(X,Y) plotting symbols (small rectangles), followed by the printing of some
messages at different parts of the screen using the PRINT @ feature. When the

program finishes, the computer prints READY, and this erases the last plot sym-

bol. To avoid this, add the "stall” statement 100 GOTO 100. If you do this,

you'll have to press BREAK to get out of the program.

Coding the Program

For this short program we'll dispense with the high-level design and go
right to the code. The first point is plotted at the position (0,0). Then
“displacements” of 3 and 1 are added to (0,0), giving (3,1). This addition
continues in a FOR loop, giving points at (6,2), (9,3), and so on up to
(126,42).

Section 2.6 Games and Graphics 139

e A
10 REM --- SETPLOT (SHOWS USE OF SET(X,Y) AND PRINT @ —--
12 CLS 'THIS MEANS CLEAR SCREEN ON THE TRS~-80
15 X=0 : ¥Y=0
20 SET(X,Y)
30 FOR P=1 TO 42
40 LET X=X+3
50 LET Y=Y+1
60 SET(X,Y)
70 NEXT P
80 PRINT @ 660, "HOW ABOUT THAT";
90 PRINT @ 832, "*** THE END ***"
. J
This program also illustrates the use of the PRINT @ feature in
TRS-80 BASIC. This allows you to start printing alphanumeric informa-
tion at any one of 1024 positions on the screen. The positions on the first
line are numbered 0, 1, 2, 3, and so on up to 63. So the second line begins
with position 64, the third line begins with position 128, and so on. To
print the message “"HOW ABOUT THAT" on line 13, 20 positions to the
right on the video display you would use
60 PRINT @ 13 * 64 + 20, “HOW ABOUT THAT";
or simply
60 PRINT @ 852, "HOW ABOUT THAT";
The semicolon (;) is used at the end if you want to suppress the normal
linefeed after a PRINT (which would erase the next line).
Program TRIGPIX
7 1T/,
N
— = The Idea
~ S
/1 l \\\\ Graphs of values of X and Y determined by more complicated
I mathematical formulas can also be plotted. Here's a program that plots the

SIN(X) function for 64 values of the angle X, for X = 0, 0.1, 0.2, 0.3, and
so on up to 6.3.

140

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

Sample Run

The program TRIGPIX uses the SET(X,Y) function to plot a curve generated by
one cycle of the sine function, scaling the output to fill the screen.

Coding the Program

Again we'll skip the high-level design and go right to the code. Since X
goes from 0 to 6.3, and trigonometry books tell us that SIN(X) goes from
—1 to +1, the values of X and Y have to be scaled from these
mathematical values to TRS-80 “plotting values.” The scaled plotting
values corresponding to X and Y are called X1 and Y1 in our program.

REM --- TRIGPIX (USES SET(X,Y) TO PLOT SIN({A) ON TRS-80)
CLS
FOR X=0 TO 6.3 STEP .1
LET X1=20%*X
LET Y=SIN(X)
LET Y1=47-23.5%{¥+1)
SET(X1,Y1)
NEXT X

Section 2.6 Games and Graphics 141

Project ARROW?2

Study the subject of projectile motion (the book BASIC and the Personal
Computer explains the key formulas on pages 265 and 267). Then write a
program that allows the user to shoot an arrow at a randomly placed
target. The trajectory should be displayed using the SET(X,Y) statement.
Here is a photo of what the output might look like.

KERPLOP 111
Y0U MISSED BY 28,7865 YIS,

HAVE 2 ARROHS LEFT #k
TI5 111 YARDS MY,

Here's a sample of what the output of ARROW?2 should look like. The target T is
always printed in the same place, but the distance this represents is chosen ran-
domly for each run.

Superproject (ELBLASTO)

Solutions to superprojects are not given in the book, so you're on your
own for this one. After studying ARROW?2, write a program that “shoots”
the great El Blasto from a circus cannon toward a net. The user should be
allowed to adjust the angle of the cannon, and the initial velocity for each
shot. When El Blasto misses the net, a CRUNCH!! message should be
printed at the approximate spot. When he hits the net, he should bounce
up with joy. You might also want to make use of double-sized letters
(available on the TRS-80) for the CRUNCH!! or other) messages. The
technique for producing double-sized letters was explained in section 2.4
as part of project SCRAM_2. Since switching to double-sized letters on the
TRS-80 affects the whole screen, it is usually preceded by a clear screen

142

CHAPTER 2 PUT AN EDUCATIONAL GAMEROOM IN YOUR BASEMENT

command (CLS); switching back to regular-sized letters is also
accomplished with the clear screen command.
Exercises for Chapter 2

Here are some more exercises to try before moving ahead. Try them as pencil
and paper exercises first, and then check your results on a computer.

10
20
30
40
50
60
70
80
90
100
110
120
130
140

REM %%% EXERCISE 5. FILL IN THE MISSING --=—- PARTS %%%
PRINT "TYPE 3 NUMBERS SEPARATED BY COMMAS ";
INPUT -——~~
PRINT "WHAT IS"; A; "+"; B; "+"; C
INPUT X
IF ~=ww- THEN 90
PRINT "NOPE. ANSWER WAS"; —=w--
GOTO ~w=—mm—
PRINT "VERY GOOD 11!!”
PRINT "WANT ANOTHER (Y=YES)";
INPUT RS
IF —emm THEN 20
PRINT "SO LONG FOR NOW"
END

10
20
30
40
50
60
70
80

REM %%% EXERCISE 6. SIMULATE A RUN OF THIS PROGRAM
FOR I=1 TO 5
FOR J=1 TO 6
PRINT TAB(10*(J-1));1*J;
NEXT J
PRINT
NEXT I
END

Section 2.6 Games and Graphics 143

100
110
120
130
140
145
150
160
170
180
185
190
195
210
220
230
240
250
260

REM %%% EXERCISE 7. SIMULATE A RUN OF THIS PROGRAM %%%
DIM W$(21)
PRINT "AFTER EACH ? TYPE ONE WORD OF A SENTENCE."
PRINT "TYPE A PERIOD WHEN DONE. LIMIT IS 20 WORDS."
REM —w=www INPUT WORDS INTO STRING ARRAY ~=w=-
K=1
IF K>20 THEN 210

PRINT "WORD # "; K;

INPUT W$ (K)

IF W$S(K)= "." THEN 210

LET WS(K)=W$(K) + " "

K=K+1
GOTO 150
PRINT: PRINT "HERE'S ANOTHER WAY OF SAYING THAT" : PRINT
FOR J=K TO 1 STEP -1

PRINT WS (J);
NEXT J
PRINT: PRINT: PRINT "DONE"
END

SOURCES FOR FURTHER INFORMATION FOR CHAPTER 2

From the long, historical point of view, computer games are simply the latest
extension of an already rich cultural invention. So if you get serious about
creating your own computer games, you should take a look at this heritage.
There is at least one historian, Huizinga, who argues that all of culture reveals a
gamelike quality. The following list of references is a good starting point for fur-

ther study.

1. Ahl, David. BASIC Computer Games. (Morristown, N.].: Creative Com-
puting Press, 1978).

2. Falkener, Edward. Games Ancient and Oriental and How to Play Them.
(New York: Dover Press, 1961).

3. Huizinga, Johan. Homo Ludens, A Study of the Play-Element in Culture.
(Boston: The Beacon Press, 1950).

4. McConville, Robert. The History of Board Games. (Palo Alto, Calif.,
Creative Publications, 1974).

5. People’s Computer Company. What To Do After You Hit a Return. (Menlo
Park, Calif.: People’s Computer Co., 1975).

6. Recreational Computing, People’s Computer Co., Box E, 1263 El Camino
Real, Menlo Park, CA 94025.

7. Emmerichs, Jack. SUPERWUMPUS (BYTE Publications, Peterborough NH
03458; 1978)

A

AARIANSE
UMM

INAIAAIAA,

VYN

T
R g
i
/

, W,
v /ﬂ///é:?w/////
\ LRGN

< >
A B

Aﬂ.

€6 AN N P
R VO I I | N |
[P

=<

—t

Tl

GETTING SERIOUS:
HOME FINANCE AND

BUSINESS PROGRAMS

3.0 INTRODUCTION

The computer applications we're about to examine are often called
“serious” because they’re connected with the financial complications in-
volved in making a living. They are also connected with tasks most of us
would like to see disappear: keeping records, calculating taxes, balancing
budgets, and trying to decipher the complicated formulas institutions such
as banks and brokers live by.

145

146

\

i / \ —) 7
PR i“ e N e

There has been a fair amount of “oversell” on what a computer can

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

e AT I |
X[x] A > |
s x> x|
‘J
1]

X%

s L

N

/74

)

m, - RSN\ M=

.\l

do in these areas. The truth is that introducing a computer into your finan-
cial life may turn out to increase your work. But it is still worth trying,
and for three good reasons:

1.

The organizational discipline needed to get your personal or
business financial operations in a form that a machine can com-
prehend will make your future record-keeping much easier, even if
you eventually decide to throw out the computer.

There will be spin-offs in the form of insights you have not had
before: revelations about both good and foolish practices of which
you weren't aware simply because you hadn’t taken the time to
track them down.

If you get involved in the program design, and if it actually
works, you will experience a satisfaction that might just turn the
unpleasant chores of record-keeping into fun.

In summary, expect use of business and home finance computer

systems to increase your work load at first, even if someone else writes the
programs. But once the startup period is behind you, there should be less
and less demand on your time for unproductive clerical tasks. There

chould alse be an increase in the control

and undorctanding Af vanr
AL AN AL~ LR A —NSA Al AL ANA AL U LA AL 16 A 'y AL

finances.

Section 3.1 What's Possible? The World of Data Processing 147

3.1 WHAT’'S POSSIBLE? THE WORLD OF DATA

PROCESSING

There are three basic operations involved in any computerized business
system: the gathering of data; the processing of this data; and the produc-
ing of output that gives new insights into what the original data means.
The complexity of a business computer program therefore depends on
how much data there is, and how fancy the user wants to be in processing
it for output. A fourth factor that complicates larger business systems is
that of security. This involves programming a system of checks and
balances to prevent or detect errors and/or tampering with the system.
Security can also involve encryption processes that are based on
sophisticated mathematics. Except for some simple checks on the validity
of input data, and the equality of sums calculated in more than one way,
the business programs in this book do not address the question of security.

The following table shows the kind of data the programs in this
chapter work on, the processing they perform and the output that they
produce. The programs have been chosen to illustrate the most common
types of business-related data processing and there are undoubtedly
several variations on each of these themes that will occur to you. Also
keep in mind that the addition of disk drives and a printer (explained in
Chapter 4) will permit further expansion of these ideas.

SUMMARY OF PROGRAMS AND PROJECTS IN CHAPTER 3

PROGRAM INPUT DATA USED PROCESSING/OUTPUT
1. LOAN1 Amount of money Uses the formula for add-
borrowed on interest to calculate
Annual interest rate and print equalized
Time to pay back (in monthly loan payments
months)

2. LOAN2 Same as LOAN1 Uses the formula for in-
terest on declining balance
to produce a chart of
declining monthly loan
payments.

3. SAVE Balance in savings account Uses formula for tom-

Annual interest rate pound interest to print a

Time left in bank (in days) table showing the interest
accumulated daily and the
total balance.

4. AMORT Same as LOAN1 Uses the amortization for-

mula to find equalized
monthly payments with
interest on declining
balance. Also shows por-

148 CHAPTER 3

5. FINANCE &
FINAN2

6. ESTIMATE

7. SALESLIP

8. HARDSALE

9. MONEY &
MONEY2

These are user-selected
“menu’’ programs that com-
bine programs 1, 2, 3, and 4
into one package.

Uses input statements to get
variable information about
a building to be painted;
uses data statements to get
cost of paints and labor.

Uses a screen-oriented input
format to gather sales data
at a sales counter; allows
for changes or correc-

tions in data.

Same as SALESLIP.

Uses a screen-oriented input
format to gather data on all
checks and deposits for a
personal financial system.

GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

tion of each payment that
is interest, and portion
that repays the loan.
Calculates and prints totals
two ways.

Calculates areas for each
kind of paint coverage,
adds in labor costs, and
prints total job cost.

Uses simple arithmetic and
tax formulas to produce an
itemized bill; calculates
change.

Produces a “hard copy”
(printed on paper) version
of the itemized bill.

Produces a statement
showing sum of checks
written, sum of deposits,
and final balance in the
account; the program
includes an editor and
“hooks” to a disk file

version.

Note: Further extensions of MONEY and MONEY2 are given in Chapter 4,
along with several programs in the important area of word processing. The
use of disk-based data files is also discussed there.

3.2 Simple Finance Programs 149

3.2 SIMPLE FINANCE PROGRAMS: LOAN1, LOAN2, SAVE,

AMORT, FINANCE, FINAN2

In this section we're going to look at four programs that calculate the in-
terest on either a loan or on savings. They are similar in many ways, but
different enough to merit separate treatment. At the end of the section
we'll suggest a project that puts all four programs into a single package

called FINANCE.

LOAN1

The Idea

When you buy something on the installment plan, you are usually told
that the brand new gadget you would like can be had for only a small pay-
ment of X dollars per month. Somewhere in the fine print you also find
out how many months it will take to finish paying off your debt.

To arrive at the monthly payment X, some loan companies first
calculate interest on the total cost of the item, then add it to the cost, and
divide by the number of months.

Example: Suppose a motorbike costs $3000, and the payments are to
be spread over 36 months. If the interest is 9% per year, then,

Interest = .09 * 3000 * 36/12 = $810

Each monthly payment = (3000 +810)/36 = $105.83
This is called calculating payments with add-on interest. It is not a very
favorable method for the consumer, since it charges full interest over the
entire life of the loan even though part of the original loan is paid back
each month. Let’s write a program that sheds some light on the amounts
involved.

Sample Run

The program first of all asks the person to input the amount to be bor-
rowed, often called the principal, (in our example, the cost of the bike,)
the number of months to pay it all back, and the interest rate per year.
Then it prints out a report giving the amount of the monthly payment, the
number of months to pay, the principal, the amount of interest paid per
month, the total interest paid, and the total amount paid back.

150 CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

* TNSTALLMENT PAYMENTS WITH ADD-ON INTEREST *
AMOUNT BORROWED (PRINCIPAL)? 3000

NUMBER OF MONTHS TO PAY? 36

INTEREST RATE PER YEAR (6.5% = 6.5)? 9

MONTHS PRINCIPAL INTEREST MONTHLY
TO PAY PER MO. PAYMENT
36 $ 3,000.00 $ 22.50 $ 105.83
TOTAL TOTAL AMOUNT
INTEREST PAID BACK
$ 810.00 $ 3,810.00

AGAIN (Y = YES)? NO

Notice that a good deal of attention is paid to arranging this output
on the screen or paper. A good arrangement can help in reading the infor-
mation. This is where the PRINT USING statements of extended BASIC
come in handy. Also, there was some thought about how the person
should type in the interest rate. The decison was that asking a person to
type 6% as 6 rather than as .06 would produce fewer errors on input. The
program must then multiply R * .01 to get the correct interest rate for
actually calculating the interest.

At the end, the program asks if the person wants to use it again. This
is nicer than simply ending the program and having the person type RUN
to start it again.

High-Level Design

The program can be designed in terms of four blocks:

1. Get input: principal P, months M, interest rate R.

2. Do calculations: R = R * .01, total interest Tl = P * M * R / 12.

3. Print out, in readable form: M, P, TI/M, (P + TI)/M, TL, P +
TI.

4. Ask if person wants to use program again; if yes go to 1, other-
wise end the program.

Coding the Program

Since we plan later to include this program as part of a larger one, we will
use line numbers from 200 to 300.

Section 3.2 Simple Finance Programs 151

N
200 IEEZ 2SS RS R R R RS RS sRRRRER R R R A A AR XES YRR
201 '+ LOAN1 *
202 thhkhkhkhkkhhhhhkhhkhhkhkhhkhhkhkhhkhkhkhkhhkhkrhhkhkhhhhkhbhhhkhkhkhhkhkhhhhk
205 CLS: A$=" *
207 PRINT"* INSTALLMENT PAYMENTS WITH ADD-ON INTEREST *"
210 'm=mmmm—mm- GET INPUT-~-———==m== === mmmmmmmmm o mmmmmm
212 PRINT"AMOUNT BORROWED (PRINCIPAL)";: INPUT P
215 PRINT"NUMBER OF MONTHS TO PAY";: INPUT M
216 IF M <= 0 OR INT(M) <> M THEN 215
220 PRINT"INTEREST RATE PER YEAR (6.5% = 6.5)";: INPUT R
222 "emmmmmee o CALCULATE================ == mmmmmm oo
225 R = R * .01
226 TI =P * M * R / 12 '‘TOTAL INTEREST
227 'mmmmmmmmee PRINT REPORT---==============—m—m—mmmooee
229 PRINT
230 PRINT"MONTHS", "PRINCIPAL", "INTEREST", "MONTHLY"
240 PRINT"TO PAY",, "PER MO.", “PAYMENT"
250 FOR K = 1 TO 60: PRINT"-";: NEXT K: PRINT
255 F1$ =" §4 SHEH, hiH.HE SHE#, #4444 SH##, HhH. 3"
260 PRINT USING F1$; M, P, TI/M, (P+TI)/M
265 PRINT
270 PRINT,,"TOTAL","TOTAL AMOUNT"
271 PRINT,,"INTEREST","PAID BACK"
275 FOR K = 1 TO 60: PRINT"-";: NEXT K: PRINT
279 F2S ="SHid, HEb. 44 SHi#, HEH.#3"
280 PRINT TAB(29);: PRINT USING F2$; TI, P+TI
285 'mm—memmeee AGATIN? === === m = m = o e e
290 PRINT"AGAIN (Y = YES)";: INPUT AS: IF A$ ="Y" THEN 205
Y

In line 205, CLS clears the screen of the video display. Making A% a
blank lets you press ENTER to mean “no” in response to the input state-
ment in line 290. On some systems, if you have previously input a 'Y’ into
A$%, later pressing ENTER or RETURN will not change this.

In line 226 the total interest is calculated. Since the interest rate is
given for one year but the period of the loan is in months, not years, the
interest rate R is divided by 12. The quantity R/12 is often called the mon-
thly interest rate. The remainder of the calculations are pretty straightfor-
ward.

SAVE

The Idea

Banks are limited by law to maximum interest rates for each type of sav-
ings account. However, they can increase the actual interest paid by
compounding the interest several times a year, often daily. Since the in-
terest is added to the balance each day and the following day’s interest is
calculated on this slightly larger balance, a higher actual interest rate

152

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

results. The difference is not great, but it is attractive to investors.

The effective annual yield can be made even higher by compounding
daily with a rate of R/360 based on a 360-day year, while giving the actual
interest for a 365-day year. Using this technique, a 5.25% annual rate pro-
duces a yield of 5.47%.

Sample Run

This program will ask for the person’s starting balance, the number of
days left in the bank, and the interest rate per year. It will then print a
table showing each day’s balance and interest earned. Finally it will print
the balance and total interest earned.

* SAVINGS ACCT. INTEREST, COMPOUNDED DAILY *
STARTING BALANCE? 3000

NUMBER OF DAYS COMPOUNDED? 60

INTEREST RATE PER YEAR (6.5% = 6.5)? 5
-~-CONTINUE? Y

DAY BALANCE INTEREST
0 3000 0
1 3000.42 .416667
2 3000.83 .416725
3 3001.25 .416782
4 3001.67 .41684
5 3002.08 .416898
6 3002.5 .416956
7 3002.92 .417014
8 3003.34 .417072
9 3003.75 .41713
10 3004.17 .417188
11 3004.59 .417246

-~CONTINUE? Y
12 3005 .417304
13 3005.42 .417362
14 3005.84 .41742
15 3006.26 .417478
16 3006.67 .417536
17 3007.09 .417594
18 3007.51 .417652
19 3007.93 .41771
20 2008, 34 .417768
21 3008.76 .417826
22 3009.18 .417884
23 3009.6 .417942

--CONTINUE? Y
24 3010.02 .418
25 3010.43 .418058
26 3010.85 .418116
27 3011.27 .418174
28 3011.69 .418232
29 3012.11 .41829

Section 3.2

Simple Finance Programs

153

~
30 3012.53 .418348
31 3012.94 .418406
32 3013.36 .418464
33 3013.78 .418523
34 3014.2 .418581
35 3014.62 .418639
--CONTINUE? Y
36 3015.04 .418697
37 3015.46 .418755
38 3015.87 .418813
39 3016.29 .418872
40 3016.71 .41893
41 3017.13 .418988
42 3017.55 .419046
43 3017.97 .419104
44 3018.39 .419162
45 3018.81 .419221
46 3019.23 .419279
47 3019.65 .419337
~-CONTINUE? Y
48 3020.07 .419395
49 3020.49 .419454
50 3020.9 .419512
51 3021.32 .41957
52 3021.74 .419628
53 3022.16 .419687
54 3022.58 .419745
55 3023 .419803
56 3023.42 .419862
57 3023.84 .41992
58 3024.26 .419978
59 3024.68 .420037
~--CONTINUE? Y
60 3025.1 .420095
~-CONTINUE? Y
BALANCE TOTAL INTEREST
$ 3,025.10 25.102700
AGAIN (Y = YES)? NO
J

This program will be written for a microcomputer with a 16-line
video screen display, so the program will pause after each main section of
the program and wait for the user to hit any key (such as ENTER) before

printing any more. It will also pause after every 11 lines of the table. This
leaves room for showing the heading, and the line taken by the word
“CONTINUE.” Finally, the program asks if the person wants to use it
again, as in the previous program.

154

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

High-Level Design

Get input: Balance P, days D, interest rate R.

Do calculations: R = R * .01 / 360; initialize total interest T1 =
0. (TT will be accumulated during the creation of the table, below.)
Calculate and print table: day number J, current balance P, and
interest for each day I1.

Print a summary showing the final balance and the total interest.
Ask if person wants to use program again; if yes go to 1, other-
wise, end the program.

Coding the Program

400

405

Thhhhhhhhhhrhhhhhhhkhhhhhhhhhhhrhhkhhhhhkrhkdhhhhhkhhrtikd

1%

IR AR RSSEEREASE AR AR ERR R XXX Z RS2 22X 22X 2 2 2 3

CLS: A$="
PRINT"* SAVINGS ACCT. INTEREST, COMPOUNDED DAILY *"

D GET INPUT === === o e e e e e
PRINT"STARTING BALANCE";: INPUT P

PRINT"NUMBER OF DAYS COMPOUNDED";: INPUT D

IF D <= 0 OR INT(D) <> D THEN 417

PRINT"INTEREST RATE PER YEAR (6.5% = 6.5)";: INPUT R
PRINT"--CONTINUE";: INPUT D$

—————————— CALCULATE & PRINT TABLE--=-—=—==———————————e
.01 / 360 'BANKER'S YEAR = 360 DAYS
PRINT"DAY", "BALANCE", "INTEREST

R =

R *

SAVE d

"

FOR K 1 TO 60: PRINT"-";: NEXT K: PRINT
PRINT 0, P, O
TI = 0
FOR J 1 T0D
IF J/12 = INT(J/12) PRINT"--CONTINUE";: INPUT D$
I1 =P *R
TI = TI + Il
P=P+ 1I1
PRINT J, P, Il
NEXT J
PRINT"~--CONTINUE";: INPUT DS
le e e SUMMARY = o o o o e
PRINT, "BALANCE" ,"TOTAL INTEREST"

FOR K = 1 TO 60: PRINT"-";: NEXT K: PRINT

Xg=" ShE, 444 42 Bid dbddsan

PRINT USING X$; P, TI

e mm e AGATN === === == o e '
PRINT"AGAIN (Y = YES)";: INPUT A$: IF AS="Y" THEN 405

Section 3.2 Simple Finance Programs 155

In line 430, R is changed to the interest for one “banker’s day” (1/360 of a
year) before beginning the loop that makes the table. TI must be made
zero in case you use the program more than once without typing RUN. In
line 443, the condition says, “if | divides evenly by 12, that is, if]/12 has
no fractional part, wait for input.” Its effect is to pause at every 12th J. D$
is a “dummy” variable. Its value is not used, it just allows you to type in
anything (including the ENTER key) to make the program continue exe-
cuting.

Future Extensions and Revisions

Our program showed the interest for each day. This is a good way to see
the effect of compounding daily. However, if you only want to see the
final amount, the fix is simple: just remove the PRINT statement (line
455). If you would like to see the interest at a few intermediate times, say,
every 30 days, use the same trick employed in line 443. You can do this by
keeping the 455 PRINT statement, but preceding it with the statement
452 [F J/30 < > INT(J/30) THEN 460
The output will be neater if you take out line 443, and add the statement
457 PRINT“--CONTINUE";: INPUT D%

LOAN2

The Idea

The add-on interest method of paying for “renting” money is usually not
used on large loans. Instead, interest is only charged on the unpaid
balance of the principal. So if the same interest rate is quoted by two lend-
ing institutions, but one uses the first method and the other the second,
you will pay much less interest using the second method.

Sample Run

This program asks for the same input as LOAN1, but, after dividing the
principal by the months to get an equal principal payment for each month,
it calculates the interest for each month in a loop and prints a table. Since
the unpaid balance declines each month, so does the interest payment and
the total monthly payment.

156 CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

’
* TINSTALLMENT PAYMENTS WITH INT. ON UNPAID BAL. *
AMOUNT BORROWED (PRINCIPAL)? 3000
NUMBER OF MONTHS TO PAY? 36
INTEREST RATE PER YEAR (6.5% = 6.5)? 9
~~-CONTINUE? Y
MONTH PRINCIPAL INTEREST + PRINCIPAL = MONTHLY
NUMBER OWED PAYMENT PAYMENT PAYMENT
1 $ 3,000.00 $ 22.50 $ 83.33 $ 105.83
2 $ 2,916.67 $ 21.88 $ 83.33 $ 105.21
3 $ 2,833.33 $ 21.25 $ 83.33 $ 104.58
4 $ 2,750.00 $ 20.63 $ 83.33 $ 103.96
5 $ 2,666.67 $ 20.00 $ 83.33 $ 103.33
6 $ 2,583.33 $ 19.38 $ 83.33 $ 102.71
7 $ 2,500.00 $ 18.75 $ 83.33 $ 102.08
8 $ 2,416.67 $ 18.13 $ 83.33 § 101.4¢
9 $ 2,333.33 $ 17.50 $ 83.33 $ 100.83
10 $ 2,250.00 $ 16.88 $ 83.33 $ 100.21
11 $ 2,166.67 $ 16.25 $ 83.33 $ 99.58
--CONTINUE? Y
12 § 2,083.33 § 15.63 $ 83.33 $ 98.96
13 $ 2,000.00 $ 15.00 $ 83.33 $ 98.33
14 $ 1,916.67 $ 14.38 $ 83.33 $ 97.71
15 $ 1,833.33 $ 13.75 $ 83.33 $ 97.08
16 $ 1,750.00 $ 13.13 $ 83.33 $ 96.46
17 $ 1,666.67 $ 12.50 $ 83.33 $ 95.83
18 $ 1,583.33 $ 11.88 $ 83.33 § 95.21
19 $ 1,500.00 $ 11.25 $ 83.33 $ 94.58
20 $ 1,416.67 $ 10.63 $ 83,33 $ 93.96
21 $ 1,333.33 $ 10.00 $ 83.33 S 93.33
22 $ 1,250.00 $ 9.38 $ 83.33 $ 92.71
23 $ 1,166.67 $ 8.75 $ 83.33 $ 92.08
--CONTINUE? Y
24 $ 1,083.33 $ 8.13 $ 83.33 $ 91.46
25 $ 1,000.00 $ 7.50 $ 83.33 $ 90.83
26 $ 916.67 $ 6.88 $ 83.33 $ 90.21
27 $ 833.33 $ 6.25 $ 83.33 $ 89.58
28 $ 750.00 $ 5.63 $ 83.33 $ 88.96
29 $ 666.67 $ 5.00 $ 83.33 $ 88.33
30 $ 583.33 $ 4.38 $ 83.33 $ 87.71
31 $ 500.00 $ 3.75 $ 83.33 $ 87.08
32 $ 416.067 $ 3.13 $ 83.33 $ 86.46
33 $ 333.33 $ 2.50 $ 83.33 $ 85.83
34 $ 250.00 $ 1.88 $ 83.33 $ 85.21
35 $ 166.67 $ 1.25 $ 83.33 $ 84.58
-~CONTINUE? Y
36 $ 83.33 $ 0.63 $ 83.33 $ 83.96
-~CONTINUE? Y
TOTAL TOTAL TOTAL
INTEREST PRINCIPAL PAYMENTS
$ 416.25 $ 3,000.00 $ 3,416.25
AGAIN (Y = YES)? NO

Section 3.2 Simple Finance Programs 157

More information is printed out in this table. (Confession: it's made
to be similar to the output of the next program, for comparison.) The table
shows not only month number, the principal still owed, the interest paid
each month, and the total monthly payment, but also the part of the pay-
ment which is the payment on the principal. At the end, the summary
shows not only total interest and total amount paid back, but the total of
the principal payments. These should add up to the amount borrowed
within the accuracy of your machine. This is usually about 6 significant
figures.

High-Level Design

1. Get input: principal P, months M, interest rate R.

Do calculations: R = R * .01, principal payment P1 = P/M.

3. Calculate and print table: month number J, principal owed P, cur-
rent month’s interest I1, principal payment P1, and the monthly
payment P1 + I1.

5. Ask if person wants to use program again; if yes go to 1, other-
wise end the program.

N

Coding the Program

This program combines ideas from LOAN1 and SAVE. In fact, about all
you must remember is that since the principal payment stays the same it
should be calculated outside the loop. And since the program now
accumulates three sums inside the loop, TI, SP, and TP, these should all
be set equal to zero just before entering the loop.

300
301

302
305
307
310
312
315
316
317
319
320
322
324
325
326
327
329
330

(2R R R X T R R R R R R RS S XX RS R RRRS SRR SR RS R X YRR R RS R R 2 2 X XX

vx LOAN2 *
thhkhkhkhkhbhkdhkrhhhhkhrhkhdhkhkhkhhkbhhhdhhbhhdbhhhhbhhhhdhbhhhdhbhrhbhhhkkk
CLS: A$=" "

PRINT"* INSTALLMENT PAYMENTS WITH INT. ON UNPAID BAL. *"
1

PRINT"AMOUNT BORROWED (PRINCIPAL)";: INPUT P
PRINT"NUMBER OF MONTHS TO PAY";: INPUT M

IF M <= 0 OR INT(M) <> M THEN 315

PRINT"INTEREST RATE PER YEAR (6.5% = 6.5)";: INPUT R
PRINT"--CONTINUE";: INPUT D$

fommm e CALCULATE FIXED QUANTITIES----==—======—==
R=R* .01

——————————— CALCULATE & PRINT TABLE-=-—-——-——wermae———

TI = 0: TP = 0: SP = 0

PRINT "MONTH PRINCIPAL INTEREST + PRINCIPAL = MONTHLY"
PRINT"NUMBER OWED PAYMENT PAYMENT PAYMENT"
FOR K = 1 TO 60: PRINT"-";: NEXT K: PRINT

158

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

332
340
342
345
350
355
360
363

370
372
374
375
377
380
382
383
384
385

F3$ ="
FOR J

#E SH#E HEL 4 SH, H4E. 4 S, h¥¥. 44 S#,888. 48"

=1 TO M

IF J/12 = INT{(J/12) PRINT"--CONTINUE";: INPUT D$

I1 =

P*R /12

PRINT USING F3$; J, P, I1, Pl, Pl+I1

=3
L)
houn

P =
NEXT J
PRINT"
'

PRINT

TI + Il
TP + P1 + I1
SP + Pl
P - Pl

--CONTINUE"; : INPUT DS$

TAB(21); "TOTAL TOTAL TOTAL"

PRINT TAB(21);"INTEREST PRINCIPAL PAYMENTS®

FOR K
F4s ="
PRINT
|

PRINT"

= 1 TO 60: PRINT"-";: NEXT K: PRINT
SHE, HHE. 44 SHt#, Hi4. 44 SHid Hid. 44"
TAB(19); :PRINT USING F4$; TI, SP, TP

AGAIN (Y = YES)";: INPUT AS$: IF AS$="Y" THEN 305

4 W/
\\\\ /

W\

Znr

AMORT

The Idea

This program will print out the same information as LOAN2, but with a
new wrinkle added. Sometimes there is an advantage to having all the
payments on a loan be equal, even though interest is being paid on the
unpaid balance. This is called an amortized payment schedule or an amor-

tization table.

A special formula is used to calculate the equal monthly payments.
Interest is calculated on the unpaid balance each month, and the principal
payment is what is left when this interest payment is subtracted from the

monthly payment.

Sample Run

Section 3.2

Simple Finance Programs

159

* AMORTIZATION TABLE *
AMOUNT BORROWED (PRINCIPAL)? 3000
NUMBER OF MONTHS TO PAY? 36

INTEREST RATE PER YEAR ({6.5% =
-~CONTINUE? Y

MONTH PRINCIPAL
NUMBER OWED
1 $ 3,000.00
2 $ 2,927.10
3 $ 2,853.65
4 $ 2,779.65
5 $ 2,705.10
6 $ 2,629.99
7 $ 2,554.31
8 $ 2,478.07
9 $ 2,401.25
10 $ 2,323.86
11 $ 2,245.89
-~CONTINUE? Y
12 $ 2,167.33
13 $ 2,088.19
14 $ 2,008.45
15 $ 1,928.11
16 $ 1,847.17
17 $ 1,765.62
18 $ 1,683.46
19 $ 1,600.69
20 $ 1,517.29
21 $ 1,433.27
22 $ 1,348.62
23 $ 1,263.33
~-CONTINUE? Y
24 $ 1,177.41
25 $ 1,090.84
26 $ 1,003.62
27 $ 915.74
28 $ 827.21
29 $ 738.01
30 $ 648.15
31 $ 557.61
32 $ 466 .39
33 $ 374.49
34 $ 281.89
35 $ 188.61

--CONTINUE? Y

36 $

94.62

~-CONTINUE? Y

AGAIN (Y

YES)? NO

INTEREST
PAYMENT

22.50
21.95
21.40
20.85
20.29
19.72
19.16
18.59

WA Annwminn wnnnnymnnnmnnn
[
o
.
o
W

wnnnnnnnnnununn
N=3
.
[o¢]
o

TOTAL
INTEREST

6.5)? 9

+

PRINCIPAL
PAYMENT

$

L nwnnnnnvnrnnn nn wnwnrnnnnnnnn

vt nunnnnnnnn

72.90
73.45

94.62

TOTAL
PRINCIPAL

i}

»nnnnnnnnnninnn NN nanian

RORGEGIEGEDRGIEERGIEGI R 3

MONTHLY
PAYMENT

95.40

TOTAL
PAYMENTS

160 CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

High-Level Design

1. Get input: (same as LOAN2).

2. Do calculations: R = Rx .01/12, (For E see below, Coding the
Program.)

3. Calculate and print table: (same variables as LOAN2, different
calculations.)

4. Print summary: TI, SP, TP.

. Ask if person wants to use program again; if yes go to 1, otherwise

end the program.

n

Coding the Program

500 [FTTELEEEIE IS AR SRR ESSSSR X222 Rttt s attl

501 '* AMORT *
502 THAER AR R AR A AR AAAA AR A AN AN R Ak A A AN Ak Ak kb kb hkhkhn
505 CLS: AS=" "

507 PRINT"* AMORTIZATION TABLE *"

510 '—=m=—=mmmm GET INPUT===========m==——m—mm—m o m e
515 PRINT"AMOUNT BORROWED (PRINCIPAL)";: INPUT P

517 PRINT"NUMBER OF MONTHS TO PAY";: INPUT M

518 IF M <= 0 OR INT(M) <> M THEN 517

519 PRINT"INTEREST RATE PER YEAR (6.5% = 6.5)";: INPUT R
520 PRINT"--CONTINUE";: INPUT D$

522 'mmmmm—mmom CALCULATE FIXED QUANTITIES—-===-========—==
523 R =R * .01 / 12

524 E = (P * R * (1 + R)[M) / ({1 + R)[M-1)

525 'mmmm—mmmee CALCULATE & PRINT TABLE--—=========--=——-=o

526 TI = 0: TP = 0: SP = 0

527 PRINT"MONTH PRINCIPAL INTEREST + PRINCIPAL = MONTHLY"
529 PRINT"NUMBER OWED PAYMENT PAYMENT PAYMENT"
530 FOR K = 1 TO 60: PRINT"-";: NEXT K: PRINT

532 F35=" ## SH#H, HEH.HE SH #4448 SHoHHE.HE SH HEE.487

545 FOR J = 1 TO M

550 IF J/12 = INT(J/12) PRINT"~-~CONTINUE";: INPUT D$
555 I1 =P *R

560 Pl = E - Il

565 IF J = M THEN Pl = P: Il = E - P1

570 PRINT USING F3$; J, P, I1, Pl, E

575 TI = TI + Il

580 TP = TP + Pl + I1

584 SP = SP + P1

587 P =P - Pl

590 NEXT J

600 PRINT"--CONTINUE";: INPUT DS$

602 ' SUMMARY = o o e o o o ot e e
605 PRINT TAB(21);"TOTAL TOTAL TOTAL"
610 PRINT TAB(21);"INTEREST PRINCIPAL PAYMENTS"™
615 FOR K = 1 TO 60: PRINT"-";: NEXT K: PRINT

620 FAS="SH##, ###. 44 SHEH, HHH. 4% SHES HER.HET

630 PRINT TAB{19);: PRINT USING F4$; TI, SP, TP

635 'm—emm—m e AGAIN? -~ — - mmm e e

640 PRINT"AGAIN (Y = YES)";: INPUT AS: IF AS$="Y" THEN 505

afia ©O

Section 3.2 Simple Finance Programs 161

Line 524 contains the formula for finding the equal monthly payment that
will take care of both the principal payments and interest on the unpaid
balance. The formula uses the “1” symbol to mean “raise to the power.”
Mathematicians would write the formula as follows:

E=P*R*(1+R)M

where R is the monthly interest rate.

1+ RM™—-1
For example, if R = .09/12 = .0075, P = 3000, and M = 36,
E = 3000 * .0075 * 1.0075% = 22.5 * 1.30864
1.0075% —1 1.30864 —1
_ 29.444
= 03085 — #9540

Future Extensions and Revisions

These short programs are handy to have around. Even more convenient
would be a larger program that contained all four shorter programs in a
way that made them easy to use.

Project FINANCE

Write a program to accomplish the above improvements. A high-level

design for such a larger program would be:

1. Present the user with information on four different programs, and
instructions on how to choose one. This is called a menu.

. Obtain the user’s input; go to steps 3, 4, 5, 6, or 7.

. Do LOAN1; when finished go to 1.

. Do LOAN2; when finished go to 1.

. Do SAVE; when finished go to 1.

. Do AMORT; when finished go to 1.

. End

NOY s W BN

Use lines 100 to 200 for the menu section. If you have a MERGE
command, use it to bring each earlier program into memory and then
modify the whole to make FINANCE. If you don't have MERGE, see if
there is another way to combine programs on your system; otherwise you
will have to re-type each program.

162

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

Project FINAN2

Study the listing of your FINANCE program. Look for repeated lines or
blocks of code which could be made into subroutines. Write a program
(modify FINANCE) so that some or all repeated code is placed in
subroutines. Note: You may find that for some short repeated statements
it is almost as much trouble to make it into a subroutine as to type the
code repeatedly each time it is needed. Keep in mind that the main reason
for using subroutines is to organize your thinking. So if making part of a
program into a subroutine helps you to design, read, or understand a pro-
gram, do it. Otherwise just leave the repeated code where it is.

Section 3.3 Data Based Business Applications 163

3.3 DATA BASED BUSINESS APPLICATIONS

il
U, WWMW
/L’M-’—f‘*w WMW///M

QE‘T 7ay/ o

P&

The word data is the plural of datum which means a piece of information.
For example, the age of one person in a group is a datum while informa-
tion about the ages of all the people in the group is data. Similarly, one
temperature measured by a scientist in a lab is a datum, while the set of all
temperatures measured in an experiment is data.

Most data comes in the form of what are called “n-tuples.” This is a
fancy way of saying that data can come singly (1-tuples), in pairs
(2-tuples), triples (3-tuples), quadruples (4-tuples), and so on. For exam-
ple, data on ages might be given in the form of pairs (John, 32), (Sue, 17),
and (Rover, 7). Data from a lab might come in the form of triples like
pressure, temperature, volume. These n-tuples are also called data points
because they are sometimes recorded as small marks on graph paper. A
collection of many data points is called a data base.

What has all this to do with business applications? The answer is “A
lot!” Most of the record keeping in both personal and business systems
actually amounts to collecting and using large amounts of data. There is
also a growing interest in this area on the part of computer scientists, and
there is now a specialization called “data base management.” The next
three programs illustrate some of the simpler ways in which business pro-
grams can both create and use data bases. Chapter 4 examines several
additonal examples which utilize disks and printers to do even fancier
things with data. These include MONYLIST, SNAPSHOT, FILEBOX, and
EDIT1000. Longer programs that extend these ideas are introduced as pro-
jects, with complete solutions given in Chapter 5.

164 CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

3.4 SMALL DATA BASED PROGRAMS. ESTIMATE,
(CATERER)

Our first data based program will use only simple BASIC, but it will il-
lustrate the distinction between transaction data and master file data. This
distinction applies to most data based applications, and it will reappear in
all the remaining business programs.

Program ESTIMATE

The Idea

Suppose you have a part-time job painting house interiors. People have
heard about your work, and the phone calls are starting to come in: “I'd
like my house painted. What do you charge?” Instead of just guessing, you
decide to write a program that will provide an immediate and fairly ac-
curate answer for each inquiry.

This is a good program to study even if you don't paint houses. That's
because the basic idea applies to many other businesses—to any enterprise
where a customized estimate is needed for each job. No matter what the
specific application, the same three basic operations are involved:

1. Special data unique to the customer is first gathered. In our paint-
ing example we input this data as the number of rooms, their
dimensions, and the kind of paint desired. Data that is entered at
the time a specific customer is handled is called transaction data.

2. Additional “older” data is then read from a master file. In our ex-
ample the master file will consist of data statements that store the
price per gallon for each kind of paint, the number of square feet
covered by a gallon, and some conversion factors that estimate the
cost of labor. This data may have to be updated occasionally, but
probably not more than once a month.

3. All of this information is then put together with formulas that
calculate the total cost of labor, materials, fixed expenses, and
applicable tax. (If the total is too high you could then run a loan

program from FINANCE to give the customer figures on financing
the job!)

Sample Run

Here's what the ESTIMATE program might look like during a run. You
should imagine that this program is being run on the painter’s desk-top
computer while he is talking to a client on the telephone. This way instant
estimates can be provided, and quotes for several alternate schemes given
by simply rerunning the program.

Section 3.4 Small Data Based Programs

165

<*D> INTERIOR PAINTING ESTIMATE <k

HOW MANY ROOMS TO BE PAINTED (1 TO 10)? 3

NAME OF ROOM # 1 ? LIVING ROOM

L, W, H OF LIVING ROOM IN FT. (E.G. 30,20,8)? 25,20,10

TYPE OF PAINT FOR LIVING ROOM (1, 2, OR 3)? 2

NAME OF ROOM # 2 ? BEDROOM

L, W, H OF BEDROOM IN FT. (E.G. 30,20,8)2? 20,15,8

TYPE OF PAINT FOR BEDROOM (1, 2, OR 3)2? 1

NAME OF ROOM # 3 ? KITCHEN

L, W, H OF KITCHEN IN FT. (E.G. 30,20,8)? 15,15,8

TYPE OF PAINT FOR KITCHEN (1, 2, OR 3)?7 3

ROOM AREA GALS $ PAINT

HOURS

$ LABOR

LIVING ROOM 1400 3.11111 36.5556
BEDROOM 860 2.15 16.1035
KITCHEN 705 1.28182 20.3809
PRESS 'ENTER' FOR TOTALS -~ READY?

% TOTAL ESTIMATE FOR ALL 3 ROOMS #**%
TOTAL AREA (SQ. FT.) = 2965

TOTAL HOURS OF LABOR = 36,2394

TOTAL COST OF PAINT = $ 73.04

TOTAL COST OF LABOR = §$ 271.80

SUB-TOTAL PAINT AND LABOR = $ 344.84
PLUS 10% TRAVEL & SETUP = § 34.48
PLUS 6% LOCAL TAX =

--------------------------------- N N

ESTIMATE FOR TOTAL JOB = $ 400.01

18.6667
8.6
8.97273

64.5
67.2955

The High-Level Design

layout.

In addition to specifying the three operations mentioned earlier (input the
transaction data, read the master file data, and calculate the final estimate)
our high-level design will want to include a new feature. It should specify
the organization of the data by showing what is often called the data

For the ESTIMATE program, we'll specify the data layout as follows:

1. Transaction Data: This will be entered during a run via 3 input

statements.

N = number of rooms to be painted

L{I), W({I), H(I) = dimensions for room #I in feet
T(I) = Type of paint for room #I (entered as

1, 2, or 3 for flat latex, semi-gloss, or special).

166

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

2. Master Data File: This will be read during a run from data
statements. There will be three data statements in our file, each
containing the quadruple; paint type, dollars per gallon, square
feet covered per gallon, hours of labor per gallon.

1001 DATA 1, 7.49, 400, 4
1002 DATA 2, 11.75, 450, 7
1003 DATA 3, 15.90, 600, 12

For example, statement 1001 contains data that says paint of type 1
(latex) costs 7.49 per gallon, it covers 400 square feet per gallon, and it
takes about 4 hours per gallon to apply.

Using data statements like this implies that the data must be organized
and used sequentially. A run of a BASIC program that uses sequential
data always begins reading at the first item, and then goes through all the
data in the order shown. It is as though the data were recorded on a tape
which is always rewound to the start for each program run. As a matter of
fact, this data could be stored on a data tape instead of in data statements.
The only change in the final program would be to change the READ state-
ment to something like INPUT #—1 (which on the TRS-80 means read
from tape machine #1; for the exact tape statement on any other machine
you will have to check its manual).

The reason we emphasize that this data is stored sequentially is to
alert you to the fact that your program may have to read through some
unwanted data in order to arrive at the information actually desired. One
technique for doing this was explained in section 2.1 under project
DATARIT4. Another approach is to avoid the problem by first reading
the master data into arrays. We'll use this approach in the block beginning
at line 300. Since arrays can be accessed randomly, we can then use the
master data any way we want. Here’s a high-level design based on this ap-
proach.

100 © INITIALIZE VARIABLES: PRINT HEADING

200" INPUT TRANSACTION DATA INTO ARRAYS

300 ©° READ MASTER FILE DATA INTO ARRAYS

400 ° CALCULATE MATERIAL AND LABOR COSTS FROM
DATA

500 © PRINT SUMMARY OF ESTIMATED COSTS

1000 * PUT MASTER FILE DATA STATEMENTS HERE

Coding the Program

Section 3.4 Small Data Based Programs

167

10

20

30

110
120
130
140
200
201
202
210
211
215
220
230
240
245
250
252
255
260
270
300
301
302
310
320
330
400
401
402
410
411
415
420
425
430
435
440
445
450
455
460
465
470
475
476
480
485
500
501
502
510
520
530
540
550
555
560
565
570
575
580

AR RS2 SR s R E R 2 X R E R R R R T R TS

v ESTIMATE (ESTIMATES COST OF PAINTING) *
VAR KRR AR R KA KRR AR R AR R AR AR kAR Ak A AR R A AR AR A AR Ak kK h ko
CLEAR 300: CLS

' DEFAULT DIM FOR ALL ARRAYS 1S.10

PRINT " <*> INTERIOR PAINTING ESTIMATE <k

PRINT"HOW MANY ROOMS TO BE PAINTED (1 TO 10)";:INPUT R
IF INT{R)<>R OR R<l OR R>10 THEN 210
PRINT
FOR J=1 TO R
PRINT"NAME OF ROOM #";J;:INPUT NS$(J)
PRINT"L, W, H OF ";N$(J);" IN FT. (E.G. 30,20,8)";
INPUT L{J),W(J),H(J)
PRINT"TYPE OF PAINT FOR ";NS(J);" (1, 2, OR 3)";
INPUT P(J)
IF INT(P(J))<>P{(J) OR P(J)<1 OR P(J)>3 THEN 250
PRINT

FOR K=1 TO 3
READ D, C({(K), A(K), T(K)
NEXT K

CLS:PRINT"ROOM" ; TAB(12) ; "AREA" ; TAB (22) ; "GALS";
PRINT TAB(32);"$ PAINT";TAB(43);"HOURS";TAB(54);"$ LABOR"
PRINT STRINGS(60,"=")
W=7.5 'CURRENT HR. WAGE
FOR J=1 TO R
RA(J)=2*H(J) *(L(J)+W(J))+L(J) *W(J)
TA=TA+RA (J)
RG (J)=RA (J) /A(P(J))
RM (J)=RG(J)*C(P(J))
TM=TM+RM {J)
RH (J)=RG (J) *T (P (J))
TH=TH+RH (J)
RL(J)=RH (J) *W
TL=TL+RL(J)
PRINT LEFTS$ (N$(J),11);TAB(12);RA(J);TAB(22);RG(J);
PRINT TAB(32);RM({J);TAB(43);RH(J);TAB(54);RL(J)
NEXT J

PRINT: PRINT"*** TOTAL ESTIMATE FOR ALL";R;"ROOMS #**%n
PRINT "TOTAL AREA (SQ. FT.) =";TA

PRINT "TOTAL HOURS OF LABOR =";TH

PRINT USING "TOTAL COST OF PAINT = S####.4#4";TM

PRINT USING "TOTAL COST OF LABOR = S$$####.4#";TL
T=TL+TM: PRINT

PRINT USING "SUB-TOTAL PAINT AND LABOR SHEEEE.HE";T
PRINT USING "PLUS 10% TRAVEL & SETUP SHEEEE.H4V ;L 1*T
PRINT USING "PLUS 6% LOCAL TAX SHdHE.#4";.06*T
PRINT STRINGS(50,".")

PRINT USING "ESTIMATE FOR TOTAL JOB

SHHER. HE";T*1.16

168

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

999

1000
1001
1002
1003
9999

==z==== MASTER DATA STATEMENTS =====s=====
1,7.49,400,4
2,11.75,450,6
3,15.90,550,7

Future Extensions and Revisions

The principal extension to an estimating program is to revise the model
(formulas) used, on the basis of experience, There are many factors that go
into making a good estimate, and your first program may miss some of
them. An experienced person should continually evaluate the results of the
computer program to see if and what changes ought to be made. This is a
good example of why there is no substitute for human judgment; the com-
puter should always be viewed as a tool for supporting that judgment, not
replacing it.

Superproject (CATERER)

Write a program that allows a caterer to quickly give estimates for serving
various kinds of meals. Allow the customer to specify such things as
choice and quantity of several entrees, with or without the customer’s own
dishes, buffet or sit down, and any other special features you deem
desirable. It would be a good idea to research this by first talking to a few
caterers. Do not be surprised if you find that some of them haven't
developed definite procedures for calculating estimates. In situations like
this, the programmer’s most difficult task is to define the problem before
attempting to design a solution. If you ever start working as a computer
consultant, defining your client’s problem will become as time consuming
as solving it.

Section 3.5 Screen-Oriented Transactions 169

3.5 SCREEN-ORIENTED TRANSACTIONS. SALESLIP,

HARDSALE

Being able to put transaction data into a computer quickly makes all the
difference in certain business applications. The BASIC input statement is a
big help here. It can be made even more useful by combining it with the
TAB function, and other special features that place the prompting symbol
(?) in more natural places.

The next program shows how this works for a computer “sales slip”
program that is a much more powerful business tool than it may seem at
first. This is because it gathers transaction data at the time of a sale which
can later be used for all sorts of other things. For example, this same data
can be used to produce invoices, inventory lists, profit reports, tax
records, and mailing lists.

Program SALESLIP

The Idea

Let's imagine a small retail store (say, a shop that sells hand made products
produced by local artists) where all sales are recorded on a sales slip. So, at
the time of a sale, a clerk records such things as name and address of the

customer, quantity and description of each article bought, and unit price. The

sales clerk also has to do the arithmetic needed to calculate total price, tax,

total amount due, and the change due to the customer after payment is

made.

Our idea is to place a small computer with a video screen at the sales
counter and do all of the above electronically. So we will want the printing
on the screen to prompt the sales clerk to enter the needed information.
There should also be provisions for making changes or correcting typing
mistakes. Thus a simple editor should be built into the program. Finally, there
should be “hooks” to the future. By this we mean that the program should
have provision for such things as printing invoices on paper (in case the
owner buys a printer), or saving charge account information on a magnetic
disk file (in case the owner later decides to add disk drives of the type
described in Chapter 4).

Sample Run

The first part of the run is shown in photograph A. The clerk types in the
data shown after each question mark. Everything else is printed by the
program.

170

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

CSHESSLIP 4T WIE: 6T, 237 1982 it

CSTORER WOE? JOHH G SMITH
STREET ADIRESS? 2385 E. MAIN ST,

7 HIWILLE 18324 :
gry CATE DESCRIPTION LNIT PRICE

2445 7 JHITE RUG ?,18.‘?5,

When SALESLIP is first run, the clerk enters sales data as shown. To stop enter-
ing data, a zero is entered. To change an entry, the command C is used. When
finished, the command F is entered, producing the final sales slip as shown in the
next photograph.
The second part of the run is shown in the photograph on the next page.
This output appears right after the clerk types F (for finished) at the end of
the first part of the run as shown above.

Section 3.5 Screen-Oriented Transactions 171

{¥> MADE BY HAND SHOPS (¥

INVOICE ¥ 4857 DATE: OO, 235 198
SOLD TO: JOHH G, SHITH el
2%5 E. AN 5T,
CITY HIDYILLE 19324

IESCRIPTION PRICE

2
b.77
TYPE P TO PRINT, ¥ TC YOID? P TOTAL = | 119.67

This is the electronic sales slip that is produced when F is typed. All the arithmetic
is done, giving the final sum owed. The formula for sales tax will have to be
modified for different localities.

High-Level Design

We will organize our program around seven blocks, with two of them (the
printer routine at line 4000 and the charge account section at line 500)
reserved for future use.
100" INITIALIZE DATA AND SALES SLIP #
200" INPUT SALES TRANSACTION DATA, USING
SUBROUTINE 2000 TO DO FANCY “CURSOR
CONTROL"” OF THE INPUT PROMPT SYMBOL (?)
300 ALLOW CORRECTIONS TO BE MADE OR SALES
SLIP TO BE VOIDED
400 PRINT A NICELY FORMATTED SALES SLIP ON
THE SCREEN WITH ALL THE CALCULATIONS
COMPLETED
500" FUTURE CHARGE ACCOUNT SECTION
2000" SPECIAL SUBROUTINE FOR MANIPULATING THE
INPUT ? PROMPT SYMBOL (THIS IS ALSO
CALLED “CURSOR CONTROL")
4000" FUTURE SUBROUTINE FOR PRINTING THE SALES
SLIP ON PAPER

172

CHAPTER 3 GETTING SERIQUS: HOME FINANCE AND BUSINESS PROGRAMS

Coding the Program

The technique used by this program to place the INPUT question mark at
several places on the same line (see photograph A) is shown in lines 2010
to 2040. In line 2010, the middle of the statement says INPUT Q(N). For
N = 1, this produces one ? as follows:

ITEM 127
Now if line 2020 said

PRINT TAB(14);:INPUT C$(N)
there would be a second 7 placed 14 spaces to the right. But this would be
on a new line so we'd have

ITEM 1:7

?

Fortunately, on the TRS-80, there is a special control character that says
go back up one line. Its ASCII code is 27. So you can use the CHR$ func-
tion in the following way:

2010 PRINT “ITEM”;N;":";:INPUT Q(N)

2020 PRINT TAB(14); CHR$(27);:INPUT C%(N)
This produces, for N = 1,

ITEM 1:7 12 7 AJ-42
where the 12 is typed by the clerk (and stored in Q(1)) as the quantity
bought of item 1, and AJ-42 is typed by the clerk (and stored in C$(1)) as
the catalog number of item 1.

Here's a table of the variables and arrays used in SALESLIP, followed
by a listing of the program.

Variable Meaning

M, DY Month, day, year of sale.

M$ Month name.

S Sales slip number

Q() Array to hold quantities of items sold.
C$() Array to hold catalog (or stock) numbers.
D$() Array to hold description of items sold.
P() Array to hold prices of items sold.

N$ Customer name.

S$ Customer street address.

Z% Customer city and zip code.

N Current item number being processed.
L Largest item number processed.

C Item number to be changed.

A% Answer to program branch question.

E Extended price for each item.

T Total cost of all items.

X Sales tax at 6%.

Section 3.5 Screen-Oriented Transactions 173

10 'hkkkkkkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkkhhhkhhkhhkkhkkhhhkkk

20 *'* SALESLIP (COLLECTS TRANSACTIONS & PRINTS BILL) *

30 ThRAh AR A KRR A AR KRR AR KRR R AR R AR AR R AR A A A A KA KA KRR R AR AN KRRk K

40 CLS: CLEAR 500

00 f o o e e e e e e e e e e e e 8 o e

101 ¢ INITIALIZATION

L 02 P m e e e e e e e e e e e e e e et e o o e

110 DATA"JAN.","FEB.","MAR.","APRIL","MAY" , "JUNE","JULY", "AUG."

120 pATA "SEPT.","OCT.","NOV.","DEC."

125 PRINT "DATE (mm,DD,YY)";: INPUT M,D,Y

130 FOR K=1 TO M: READ M$: NEXT K

140 PRINT "TYPE LAST SALES SLIP # USED";: INPUT S: S=S+l

160 DIM Q(25),C$(25),D$(25),P(25)

200 o o e i e et e e e e o i P P s S o o

201 ' SALES DATA ENTRY

D02 Y o i om0 . A P

210 CLS: PRINT "SALES SLIP #";S; TAB(27);"DATE: ";M$;" ";D;",":1900 + Y
220 PRINT M. uuiueeuennsoononssesnssoassonsosssassassannasnnas’

225 L=0

230 PRINT "CUSTOMER NAME";:INPUT NS$

240 PRINT "STREET ADDRESS";:INPUT S$

250 PRINT "ZIP CODE";:INPUT 28

255 PRINT "TYPE QryY CAT# DESCRIPTION UNIT PRICE (0 = EXIT)
260 L=L+1

280 N=L : GOSUB 2000

290 GOTO 260

U0 P m oo e e S i e e A o e e

301 ¢ CORRECTION ROUTINE

302 e et e i e B P o o

310 PRINT "TYPE F IF FINISHED, C TO CHANGE, R TO RESUME, V TO VOID";
315 INPUT AS

320 IF A$="F" THEN 400

330 IF A§="C" THEN 360

340 IF AS$="V" THEN 210

345 IF AS$="R" THEN 280

350 GOTO 310

360 PRINT "WHICH ITEM # TO BE CHANGED";:INPUT C

365 IF C > L THEN 360

370 N=C: GOSUB 2000

375 IF C=L THEN L=L+1

380 GOTO 310

G Q0 " = o m o e e i ot o e o e o 2 o S S S B S o o e o o o

401 ' VIDEO SALES INVOICE

402 T e e e e e e e e e e e

410 CLS: PRINT TAB(15); "<*> MADE BY HAND SHOPS <*>"

415 PRINT: PRINT "INVOICE #";S, TAB(39); "DATE: ";M$;" ";D;",";1900+Y
420 PRINT "SOLD TO: "; NS

425 PRINT TAB(9);SS$

430 PRINT TAB(9);"CITY ";28

440 PRINT

445 PRINT " QTY CAT# DESCRIPTION PRICE TOTAL"

450 PRINT Muiiereenonenanonenasonnessansnsnsasssnasnsnncssconssnasncas’

455 T=0

460 FOR K=1 TO L~-1

465 E=P (K) *Q (K)

468 FS="ITEM ##: #4#¢# % % % $ 4.8 FEEdd. 44"
470 PRINT USING F$;K,Q(K),CS$(K),DS$S(K),P(K),E

475 T=T+E

480 NEXT K

485 PRINT

486 X=.06*T

487 PRINT TAB (47);:PRINT USING " SUM = ####.44";7T

174

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

PRINT TAB(47);:PRINT USING " TAX #Hdd.#4"; X

PRINT TAB (47);:PRINT USING "TOTAL HE#4 . HE";THX

PRINT CHRS$(27);"TYPE P TO PRINT, V TO VOID";:AS$="":INPUT AS$
IF A$="V" THEN 210

IF AS$S="P" THEN 497

PRINT "??? PLEASE RETYPE";:INPUT AS$: GOTO 494

PRINT "IF CASH, TYPE PAYMENT; IF CREDIT TYPE O";:INPUT A

L |

PRINT "CHARGE ACCT. SECTION NOT WRITTEN YET *** RECORD BY HAND"

PRINT "PRESS 'ENTER' TO CONTINUE -- READY";:INPUT AS$

GOTO 4010
B o e e o v o e oo - T " " > o T " = - T W 07 Vo (" T T e (o (S WA " o S S W o Sl Y
' CURSOR~-CONTROLLED INPUT SUBROUTINE
8 o e e o o o . o o o o o o o . P . o o o o S " £ T, P . i e e o T o o . e o e s o,
PRINT "ITEM";N;":";:INPUT Q(N):IF Q(N)=0 THEN 300

PRINT TAB(14);CHR$(27);:INPUT C$(N):IF C$(N)="0" THEN 300
PRINT TAB (23);CHR$(27);:INPUT D$(N):IF D$(N)="0" THEN 300
PRINT TAB (37);CHR$(27);:INPUT P(N):IF P(N)=0 THEN 300
RETURN
B s oo o s e o e e a0 v . o o o o am ol e S S o S G S S e S VR D A e e S P YIS A i T P - -
' LINE PRINTER SECTION
b o e e e v o oo s S o o i i Al W S SN S S G W M . S 7 T T S e i e e o . o e S O o P G - oy "
PRINT "TURN PRINTER ON -- READY";:INPUT A$
PRINT "LINE PRINTER SECTION NOT WRITTEN YET"
PRINT "RESUME(R), PRINT AGAIN(P), OR QUIT (Q)";:A$="":INPUT AS
IF A$="R" THEN S=S+l: GOTO210
IF A$="P" THEN 4010
IF A$="Q" THEN 99939
GOTO 4090
END

Future Extensions

The most obvious extension to this program is to print the final sales slips
on paper to make a permanent file of these transactions and give a copy to
the customer. Other extensions would depend on the use of disk storage,
and as mentioned earlier, there are all kinds of possibilities ranging from

inventory control to maintaining an accounts receivable file.

Section 3.5 Screen-Oriented Transactions 175

Project HARDSALE

Finish subroutine 4000 for use with a hard copy printer. This is a
computer-controlled printing device that puts its output on paper. For the
TRS-80 machine, you can do this by imitating block 400, but using
LPRINT instead of PRINT. (The keyword LPRINT comes from “line
printer.” This is a high-speed mechanism that puts out a whole line at a
time with synchronized impacts of hammers that hit the paper against a
rapidly moving belt of metal typefaces. However the printers typically
used on small computers print one character at a time from left to right
like typewriters. It is more accurate to call them “high-speed sequential
character printers,” but computer vendors are not always that careful with
their terminology.)

176

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

3.6 DATA BASED FINANCIAL REPORTS. MONEY, MONEY2,

(CHECKBAL)

In this section we'll concentrate on a home finance program that will seem

to be a fancy check balancing system. But as you will soon find out,
there’s more to it than meets the eye.

Program MONEY

The Idea

The simplest kind of personal accounting system is a single entry checking
account. The main accounting task required is to reconcile the balance
(checks or cash deposited minus the checks written) with the bank's
monthly statement. Let's use a computer to keep track of these two kinds
of transactions: checks written to others and deposits to your account.
While we're at it, we will also record cash receipts and payments. By giv-
ing each of these transactions a code, we can relate them to various
income tax forms. That way it should be possible to automate much of the
reporting that is required at tax time.

This suggests that there should eventually be two major parts to our
program: the transaction (data gathering) part, and the report generating
part. Each of these parts will, in turn, have several sub-parts. The pro-
gram will allow us to choose which part and which sub-part we want by
using what is called a selection menu.

A Sample Run

In the run that follows, you will see that some of the sub-parts are missing.
They will be added later. To follow the run, imagine that the user is a part-
time consultant who writes software for clients. It is a small operation, so
he or she keeps pertinent records in four file folders (or boxes) correspond-
ing to the four quarters of the year. We will call these the reporting
periods, with the idea that the computer will be used once each period to

anthar Ant mwAd onmorais vk Thrrin in 3
gauier Gawa aniG generaie reporis. Luring a perlud, written records,

cancelled checks, deposit slips, sales slips for cash purchases, bank
statements, credit card bills, etc. are filed in their appropriate folder.

Of course, you may wish to use a different number of periods, say 12,
depending on how timely you want your reports to be. The program
allows this, but it's up to you to start each period by telling the program
what the balance was at the end of the previous period. This is necessary
because we will not use tapes or disks for saving data; that is coming later.
Here is our sample run:

io:
ATl

Section 3.6 Data Based Financial Reports 177

x> FINANCIAL TAX/REPORTING SYSTEM <>

FOR CALENDAR YEAR 197 84

FOR PERIOD #? 2

STARTING BALANCE THIS PERIOD (E.G. 589.65)? 350.89
CK. ACCT. OR BANK NAME? UNION NATIONAL

STARTING CK. # THIS PERIOD? 123

STAND BY

<<K< MAIN MENU SELECTION >>>

TRANSACTION (1), REPORT (2), OR EXIT (3)? 1

< TRANSACTION MENU SELECTION >
CK PAYMENTS BY YOU
CASH PAYMENTS BY YOU
CK RECEIPTS DEPOSITED BY YOU
CASH RECEIPTS
EXIT FROM TRANSACTION SECTION

U abs Lo B+
Howonoun

—
-
N
-
w
-

4, OR 52 1 This was typed as "Broken
Arms APT” but overwritten
by the next item. However it

is all in memory for later printing.

*** CURRENT CK BALANCE THIS PERIOD =$ 350.89

TO MAKE A CHANGE OR EXIT TYPE 0,0 FOR MO,DAY

TO RESTART A LINE TYPE ~1 IN ANY COLUMN

CK # MO,DAY: AMT: VENDOR: FOR: TAX CODE: %: ACT#
123 2 10,222 42.59 ? AJAX BOOKS? COMPUTER B? CC26 ? 100? 680
124 2 10,307 189.60 ? MUTUAL CO.? INSURANCE ? AAS 20 ? 740
125 2 11,4 2 250 ? BROKEN ARM? RENT ? CCle 2 20 2 320
126 2 0,0 2

EXIT(E), CHANGE(C), RESUME(R), OR LIST(L)? E

< EXIT FROM TRANSACTION SECTION >
>>> CURRENT BALANCE =-131.3
*** WARNING: CURRENT CHECKING BAL. IS NEGATIVE ***
SAVE (S), RESUME(R), OR EXIT(E)? E

178 CHAPTER 3 GETTING SERIQUS: HOME FINANCE AND BUSINESS PROGRAMS

< TRANSACTION MENU SELECTION >
CK PAYMENTS BY YOU
CASH PAYMENTS BY YOU
CK RECEIPTS DEPOSITED BY YOU
CASH RECEIPTS
EXIT FROM TRANSACTION SECTION

U s o N
woHonounon

1, 2, 3, 4, OR 52 2

PAY% MO,DAY: AMT: VENDOR: FOR: TAX CODE: %: ACT#
1 2 9,14 2 12 ? YELLOW CAB? TAXI ? EB3 ? 1002 210
2 ? 11,232 37.50 ? LA FONDUE ? BUS. MEAL ? CC21 ? 50 ? 720
3 20,0

EXIT{(E), CHANGE(C), RESUME(R), OR LIST(L)? L
LIST OF PAY TRANSACTIONS NOW IN G ARRAY
1 9/14 5 12.00 YELLOW CAB TAXI EB3 100 210
2 11723 $ 37.50 LA FONDUE BUS. MEAL cc2l 50 720
EXIT(E), CHANGE(C), RESUME(R), OR LIST(L)? E

Use of the

< EXIT FROM TRANSACTION SECTION > ,
list feature

>>> CURRENT BALANCE =-131.3
% WARNING: CURRENT CHECKING BAL. IS NEGATIVE *
SAVE{S), RESUME(R), OR EXIT(E)? E

< TRANSACTION MENU SELECTION >

1 = CK PAYMENTS BY YOU
2 = CASH PAYMENTS BY YOU
3 = CK RECEIPTS DEPOSITED BY YOU
4 = CASH RECEIPTS
5 = EXIT FROM TRANSACTION SECTION
1, 2, 3, 4, OR 52 3
Pressing "Enter” here
gives a default value
of 100% tax-related
A
DEP# MO,DAY: AMT: VENDOR: FOR: TAX CODE:{ %: ACT#
1 ? 8,4 ? 821 ? GLOBAL INT? -1
1 ? 8,4 ? 812 ? GLOBAL INT? AUG. PAY ? AAl ? 2 410
2 211,232 150 ? BYTE ? ARTICLE ? CC4 ? ? 430
3 2 0,0
EXIT(E), CHANGE {(C), RESUME(R), OR LIST(L)? L
LIST OF DEP TRANSACTIONS NOW IN G ARRAY ¢
1 8/ 4 $ 812.00 GLOBAL INTL. AUG. PAY AAl 100 410
2 11/23 S 150.00 BYTE ARTICLE cc4 100 430

EXIT{E), CHANGE(C), RESUME(R), OR LIST(L)? E

Section 3.6 Data Based Financial Reports 179

< EXIT FROM TRANSACTION SECTION >
>>> CURRENT BALANCE = 830.7
SAVE (S), RESUME(R), OR EXIT(E)? E

< TRANSACTION MENU SELECTION >
CK PAYMENTS BY YOU
CASH PAYMENTS BY YOU
CK RECEIPTS DEPOSITED BY YOU
CASH RECEIPTS
EXIT FROM TRANSACTION SECTION

Ul W N
o nun

i, 2,

w
-

4, OR 5?7 4

CsH# MO,DAY: AMT: VENDOR: FOR: TAX CODE: %: ACT#
1 ? 11,1472 20 ? UNKLE BEN ? GYFT ? GGl ? ? 506
2 20,0

EXIT(E), CHANGE(C), RESUME(R), OR LIST{(L)? C €

CHANGE DATA FOR WHICH #? 3

CSH# # TOO HIGH

EXIT(E), CHANGE(C), RESUME(R), OR LIST(L)? C

CHANGE DATA FOR WHICH #? 1

CSH# MO,DAY: AMT: VENDOR: FOR: TAX CODE: %: ACT#

1 ? 11,142 20 ? UNCLE BEN ? GIFT ? GGl ? ? 999 &

EXIT(E), CHANGE(C), RESUME{R), OR LIST(L)? E

< EXIT FROM TRANSACTION SECTION >
>>> CURRENT BALANCE = 830.7
SAVE (S), RESUME(R), OR EXIT(E)? E

This illustrates
the “change” feature
for correcting errors

CK PAYMENTS BY YOU

CASH PAYMENTS BY YOU

CK RECEIPTS DEPOSITED BY YOU
CASH RECEIPTS

EXIT FROM TRANSACTION SECTION

Ul b i DO
wononoun

1, 2,

w
-

4, OR 57 5

180 CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

<<< MAIN MENU SELECTION >>>

TRANSACTION (1), REPORT {(2), OR EXIT (3)? 3

!

Typing 2 would produce
the message "report section
not written yet.” This is a

“hook" to a future expansion.

*** END OF PERIOD 2 TRANSACTIONS FOR 1984 ***

--

STARTING CHECKING ACCOUNT BALANCE WAS $ -131.30
CLOSING CHECKING ACCOUNT BALANCE IS $ 830.70

STARTING CK # THIS PERIOD WAS 123
HIGHEST CK # THIS PERIOD WAS 125

>>> THE NEXT TIME THIS PROGRAM IS RUN RESPOND AS FOLLOWS:
FOR PERIOD # ? 3

STARTING BALANCE THIS PERIOD ? 830.7

STARTING CK # THIS PERIOD ? 126

PROGRAM IS ABOUT TO TERMINATE. VERIFY O.K. (Y/N)? Y

High-Level Design

This program is going to be the most ambitious one so far. We've shown
that the trick to designing large programs is to organize them as a collec-
tion of smaller programs sometimes called program modules. For a more
complex program, the high-level design will want to say not only what the
program modules are, but also describe how they interconnect.

A good tool for showing the interconnections between program
modules is a macro flow diagram. This is similar to a flowchart, except
that only the major ideas are shown. Detail is suppressed so that the
designer can “think big thoughts,” postponing the description of details as
long as possible.

The next figure shows what a macro flow diagram for our MONEY
program might look like. You'll notice that it contains a hook for the
TAXRPT program that will be coming along later on. For the present,
we'll concentrate on the transaction part of the program since that’s where
all the data is gathered. The job of generating reports (in TAXRPT) is pro-
perly postponed as a second stage project. Incidentally, what we've called
a hook is also referred to as a program stub (since it is incomplete).

Section 3.6 Data Based Financial Reports 181

100 INITIALIZATION

A

\

9910 EXIT

210 MAIN MENU SELECTION

l
v

v

EXIT | 1010 SUB-MENU FOR MONEY TRANSACTIONS 5010 "HOOK" TO REPORT SUB-MENU AND TAXRPT

1410 SETUP 4--{_“3}_"___[1510 SETUP 4—'___192__] 1610 SETUP 4—-{ 1070] 1710 SETUP <—-—L_}31>_|
G PARAME- G PARAME- G PARAME- G PARAME-

TERS FOR TERS FOR TERS FOR TERS FOR

CHECK CASH CHECK ACCT CASH

PAYMENTS PAYMENTS DEPOSITS RECEIPTS

| 1110 G(ENERAL) TRANSACTION MODULE 3010 SUBROUTINE
1150 PROCESS ONE TRANSACTION; PUT IN G ARRAY »| TO COLLECT
1165 IF MO/DAY= 0,0 GOTO 1210 ELSE GOTO 1150 DATA AND
1210 CHOOSE ONE OF FIVE OPTIONS (E,R,L,V, C) - STORE IT IN THE
e Toom—————= o e e o ——————1] G ARRAY
1230 | 1222 1260 | 1225 1245
E(XIT) : R(ESUME) : L{IST) | v(0i0)"HoOK" { C(HANGE)
| GO0TOII35 | U60P THROUGH | | [eosus 1910 | [coLLeCT >
= | L2 ARRAY I goTo1210| || CHANGED
| : 60TO 1210 } { DATA <
: : I { GOTO 1210
|

v

) 4

4010 CLEANUP MODULE

1910 SUBROUTINE
TO VOID TRANSACTIONS

4030 "HOOK"

GOTO 4020

TO DISK SAVE '
ROUTINE 4110

! 4040 RESUME
DOING SAME KIND
OF TRANSACTION
l {GOTO 1134)

4050
EXIT

GOTO 1010

4510 SAVE G PARAMETERS.

<t

Coding the Program

The best way to study the listing of MONEY is in conjunction with the
macro flow diagram. The BASIC line numbers in each macro box corres-
pond to actual line numbers in the final program.

The trickiest part of the program is the way in which a single pro-
cedure (called the GENERAL TRANSACTION MODULE) at line 1110
handles four different kinds of transactions. These are: check payments;
cash payments; checking account deposits* and cash receipts. This is
possible because the four transactions are similar, differing mainly in the
names they bear, and in whether they are added or subtracted from the
final balance (the explanations for TR$ and M1 given below explain how

these differences are handled).

*In our program we call either checks or cash put in the checking account deposits (DEP). If a check
received is not deposited, it will be treated as a cash receipt (CSH).

182

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

The following list of variable names and data structures will also help
you read and follow the final program listing. Incidentally, line 112 (DE-
FINT C-P) says “all variable names beginning with C up to (and including)
P will be integers,” while line 114 (CLEAR 2000) means “set aside 2000
locations (bytes) for storing string (character) information in arrays like

GV$(I), GD$(I), GF$(I), and GL%(1).”

Variables Meaning

IY Last two digits of the year.

P Reporting period number.

BS Balance in checking account at the start of the period.
BC Current balance in checking account.

CA$% Name of checking account bank.

CS First check # at the start of the period.

CK Current check # about to be processed.

CH Highest check # processed in this period.

DS First deposit # at the start of the period.

DK Current deposit # about to be processed.

DH Highest deposit # processed in this period.

PS First cash payment # at the start of the period (=1).
PK Current cash payment # about to be processed.

PH Highest cash payment # processed in this period.
HS First cash receipt # at the start of the period (=1).
HK Current cash receipt # about to be processed.

HH Highest cash receipt # processed in this period.

F$, D$, F1$, F2$% and LP$ are printing formats.

GD() General array to hold dates.

GA() General array to hold amounts.

GVS$() General array to hold vendors names.
GD$() General array to hold descriptions (‘for ...).

GL$() General array to hold tax form and line number.

GP() General array to hold % of GA for tax purposes.

GC() General array to hold accounting category number.

MS Integer which expresses menu selection.

TRS$ General transaction identifier for screen display ("CK#”,
"PAY#", “DEP#", or “CSH#").

GS General transaction starting number.

CK General transaction current number,

GH General transaction highest number.

XX Starting number for voiding transactions.

M Month of transaction.

D Day of transaction.

AM Variable to temporarily hold amount of transaction.

M1 Multiplier for calculating balance (+1 for DEP, —1 for

CK, 0 otherwise).
A% Inputted answer to question.

Section 3.6 Data Based Financial Reports 183

C1 Parameter for transforming the transaction numbers into a
selected range of G array indices, 1. This technique is ex-
plained further in the Department of Further Explanation,
below.

MAX The maximum array index for each type of transaction.

Note: In line 3025, inputting —1 is a signal to re-do the line.

Note: In line 3027, MM means “multiple payees (or payers)” for a transac-
tion, This feature is not implemented in the present program.

Note On TR$: the identifier CK# is used for checks you wrote to others;
PAY# refers to cash payments you made to others; DEP# means deposits
made to your checking account (it could mean checks or cash, but for some
people it will be synonymous with “checks deposited”); CSH# refers to
money you received from others that was not deposited in your checking
account,

Department of Further Explanation

One way to design this program would be to use four different sub-
programs to handle the four different kinds of transactions, (check paid,
cash paid, deposits made, and cash receipts not deposited). But these are
very similar kinds of transactions, so a more efficient approach would be
to write one general transaction subprogram, and then adapt it to the four
specific transactions. This is the approach our program uses.

The general transaction subprogram is found in lines 1110 to 1290. To
show how it works, here’s a picture of the data structure it uses, along
with some typical data that might be stored in it. The structure consists of
7 arrays used as follows:

Date Amount Vendor Description Tax Form Tax Percent Account #

I GD(I) GA®) GVH(I) GD$(I) GF$(I) GP(I) GCI)
0 -1

1 1022 42.59 AJAX BOOKS COMPUTER BK CC26 100 680

2 1030 189.60 MUTUAL CO. INSURANCE AA5 0 740

3 1104 250.00 BROKEN ARMS RENT CC16 20 320

4 -1

99 —1

100 -1

101 914 12.00 YELLOW CAB TAXI EB3 100 210
102 1123 37.50 LA FONDUE BUS. MEAL CcCa21 50 720
103 -1

149 -1

150 -1

151 804 812.00 GLOBAL INTL AUG. PAY AAl 100 410

184

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

152 1123 150.00 BYTE ARTICLE CC4 100 430
153 ~1
189 -1
190 -1
191 1114 20.00 UNCLE BEN GIFT GG1 100 506
192 -1
200 -1

The —1 is put in each date entry during initialization. It is over-
written when actual data is entered. It will prove useful later on when we
want to print out just those contents of the array that contain real data,
since our print routine can say IF GD(I) < 0 THEN “don’t print.” The
spaces at positions 0, 100, 150, and 190 are reserved for possible future use
as headers for each sub-section of the array.

Each of the arrays is divided into four parts, with each part reserved
for a specific kind of transaction. For example, although array elements
for the date are all called GD(I), for “checks paid” I goes from 1 to 99, for
“cash paid” I goes from 101 to 149, for “deposits made” I goes from 151 to
189, and for “cash received” I goes from 191 to 200.

How does the general transaction subprogram know which of these
parts of the array to use? The answer is in the formula

I =(GK —-GS) —C1

The quantities GK, GS, and C1 are changed for each kind of transac-
tion. GK means the general current transaction number, GS means the
general starting transaction number, and C1 means the place in the array
where the particular kind of transaction starts. For “checks paid” C1 =1,
for “cash paid” C1 = 101, for “deposits made” C1 = 151, and for “cash
received” C1 = 191.

C1 is called a parameter (a constant that depends on the type of trans-
action). It is “passed on” to the general transaction subprogram in one of
the subroutines you see at lines 1410, 1510, 1610, or 1710. You will also
see that a number of other parameters are passed by these subroutines,
and that's what customizes the general transaction subprogram for each
kind of special transaction. For example, for a checking account deposit
with a current deposit number of DK = 20, where the deposit numbers
started at DS == 15, line 1610 makes GS = 15, and GK = 20. It also makes
C1 = 151, so our formula for I becomes

[= (GK — GS) + C1 = 20 — 15 + 151 == 156
Thus check deposit number 20 has all its information (date, amount, ven-
dor, etc.) stored in the 156th location of each G array (in GD(156),
GA(156), GV$(156), and so on).

Here’s a listing of MONEY. It's a long program, but if you read it in
conjunction with the macro flow diagram we gave earlier, and with a pic-

Section 3.6 Data Based Financial Reports 185

ture of how the data is stored in the various G arrays, it should start to
make sense after a few days (and nights) of study.

10
15
20

100
101
102
105
110
112
114
115
117
120
130
140
150
160
165
170

. DK=DS : DH=DS-1 'CURRENT & HIGHEST DEP #
PK=PS : PH=PS5-l 'CURRENT AND HIGHEST CASH PAY #
HK=HS : HH=HS~-1 '"CURRENT AND HIGHEST CASH RCVD #
FS="#44 #4/44% SHE#H. 44 3 $ % % % HEE $E4
DS="She ¥ 44"
F1e="¢444: #4/44/4% SHHEHE. 44 3 g"
F25=" 3§ %% BEE HEE"

khkhhkhkhhhhhhhhhhhhhAhhhkh A kA AR AR A XA kAR A XA AT Ak hk
* MONEY *

* COMPUTERIZED FINANCIAL/TAX REPORTING SYSTEM *
AR A AA KKK KRR R A AR AR AR KRR AR AN R KRR ANk kA kA h kA AR KA A kXK

CLS

PRINT " <ED> FINANCIAL TAX/REPORTING SYSTEM <*>
DEFINT C-P

CLEAR 2000

PRINT STRINGS (60,"-")
13

INPUT "FOR CALENDAR YEAR 19";1Y
IF IY<70 OR I¥Y>99 PRINT "INVALID YEAR" : GOTO 120
INPUT "FOR PERIOD $"; P

IF P<l OR P>366 PRINT "INVALID PERIOD #" : GOTO 140
INPUT "STARTING BALANCE THIS PERIOD (E.G. 589.65)"; BS
BC=BS 'INITIALIZE CURRENT CK BALANCE

INPUT "CK. ACCT. OR BANK NAME"; CAS

INPUT "STARTING CK. # THIS PERIOD"; CS

CK=CS '*CK IS CURRENT CK ABOUT TO BE PROCESSED
CH=CS~-1 'CH IS HIGHEST CK # ALREADY PROCESSED

L]

PRINT:PRINT TAB({25);"STAND BY"
DS=1 : PS=1 : HS=1 'STARTING DEP, CASH PAY, & CASH RCVD S

LP$=F1$+F2$
DIM GD({200),GA{200),GVS$(200),GD$(200),GF$(200),GP{200),GC(200)

PRINT " <<K MAIN MENU SELECTION >>>
PRINT STRINGS$ (60,"-")
INPUT "TRANSACTION (1), REPORT (2), OR EXIT (3)"; MS
IF MS<1 OR MS>3 THEN 230
ON MS GOTO 1010, 5010, 9910

]

! TRANSACTION PROGRAMS

1 e e e o e e o . o o o e
! TRANSACTION SUB-MENU SELECTION

b et e o e mm o (e . T o — — - —— o " 4 - - o ———— - " 7 o T~ " o " -
CLS

PRINT " < TRANSACTION MENU SELECTION >"
PRINT STRINGS(60,"-")

PRINT" 1 = CK PAYMENTS BY YOU"

PRINT" 2 = CASH PAYMENTS BY YOU"

PRINT" 3 = CK RECEIPTS DEPOSITED BY YOU"

PRINT" 4 = CASH RECEIPTS"

PRINT" 5 = EXIT FROM TRANSACTION SECTION"

186

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

1050
1055
1060
1065
1070
1100
1101
1102
1110
1115
1120
1125
1130
1132
1134
1135
1140
1150
1155
1157
1160
1165
1170
1175
1200
1201
1210
1215
1222
1230
1235
1237
1240
1241
1242
1245
1247
1248
1250
1253
1254
1256
1257
1258
1259
1260
1261
1263
1265
1270
1290

1AN0N
Fo AVAV]

1401
1402
1410
1490
1500
1510
1590
1600
1610
1690

PRINT
INPUT"1, 2, 3, 4, OR 5"; MS
IF MS<1l OR MS>5 THEN 1055
IF MS=5 THEN 210
ON MS GOSUB 1410, 1510, 1610, 1710
B e o s o o o o o 1o " — - " " o i oo e Y. 40 e S Yo S T o . o .
' MAIN TRANSACTION PROGRAM
b e e e o e i e o i o o o S o0 o s 4 T om0 S . o A S Yl S o e o ALt S S T T S S o S
CLS
PRINT "*** ".LEFTS(TRS,3);" TRANSACTIONS FOR PERIOD";P;"OF";1900+1Y
PRINT "#*#*%* STARTING CK BALANCE THIS PERIOD =";TAB(36); USING D$;BS
PRINT "*** CURRENT CK BALANCE THIS PERIOD =";TAB(36); USING D$;BC
PRINT "TO MAKE A CHANGE OR EXIT TYPE 0,0 FOR MO,DAY"
PRINT "TO RESTART A LINE TYPE -1 IN ANY COLUMN"
PRINT STRINGS$(60,"-")
PRINT TRS;" MO,DAY: AMT: VENDOR: "
PRINT "FOR: TAX CODE: %: ACT#"
GK=GH+1 'GK IS TR. # ABOUT TO BE PROCESSED
I=(GK-GS)+C1l 'INDEX TO TR. RECORDS IN G ARRAY
IF I>MAX PRINT "OUT OF SPACE" : GOTO 1210
GOSUB 3010 'COLLECT TR. DATA
IF M=0 AND D=0 THEN 1210
GH=GH+1
GOTO 1150
L]
e reeaa eceses TRANSACTION EXIT ROUTINE..cccoewosoooes
PRINT "EXIT(E), CHANGE{(C), RESUME(R), OR LIST(L}";
INPUT AS
IF A$="R" THEN 1135
IF AS$S="E" THEN 4010
IF AS$="L" THEN 1258
IF AS$="C" THEN 1245
GOTO 1210
L]
"vereeevvrees CHANGE ROUTINE....oeceooon.
PRINT "CHANGE DATA FOR WHICH #"; :INPUT GK
IF GK>GH PRINT TRS"™ # TOO HIGH": GOTO 1210
IF GK<GS PRINT "TOO LOW" : GOTO 1210
I=(GK-GS)+Cl : BC=BC~-M1*GA(I)*.01
PRINT TRS;" MO,DAY: AMT: VENDOR:: "
PRINT "FOR: TAX CODE: %: ACT#"
GOSUB 3010 : GOTO 1210
1]
'eeevveeeowes LIST ROUTINE...ceeeononoones
PRINT "LIST OF ";LEFT$(TRS$,3);" TRANSACTIONS NOW IN G ARRAY"
FOR J=GS TO GH

K={J-G5)+C1l
M=INT{GD(K)/100) : D (K)-M*100
PRINT USING F$;J,M,D,GA({K)*.01,GVS$(K),GD$(K),GFS$(K),GP(K),GC (K)

NEXT J

GOTO 1210

' SUBROUTINES TO PASS TRANSACTION PARAMETERS

b e ot e e e e o n s e o S S o S 2 e 2 27 o 2 S S . S Sl P S 4B Ml 1S i S S e S

TR$="CK #" : GS=CS : GH=CH : GK=CK : MAX=99 : Cl=1 : Ml=-1

RETURN

L]

TR$="PAY#" : GS=PS : GH=PH : GK=PK : MAX=149 : Cl=101 : M1=0
RETURN

1]

TRS="DEP#" : GS=DS : GH=DH : GK=DK : MAX=189 : Cl=151 : Ml=l

RETURN

Section 3.6 Data Based Financial Reports 187

1700
1710
1790
3000
3001
3002
3010
3012
3015
3016
3017
3018
3025
3030
3045
3055
3057
3058
3060
3065
3090
4000
4001
4002
4010
4012
4015
4020
4030
4040
4050
4060
4100
4101
4110
4510
4530
4550
4555
4560
4565
4570
5000
5001
5002
5010
5055
5090
9000
990¢

9901
9902
9910
9915
9920
9930
9935
9940
9950
9960
9965

TR$="CSH#" : GS=HS : GH=HH : GK=HK : MAX=199 : Cl=191 : M1l=0
RETURN

PRINT GK;TAB(5);: INPUT M,D: IF M=0 AND D=0 THEN 3090

IF M<0 OR D<0 THEN 3010

GD(I)=100*M + D

AM=0: GV$(I)="NO ENTRY": GDS$(I)="NO ENTRY"

GF$(I)="NONE": GP$=" ": GC(I)=0

PRINT TAB(12);CHRS$(27);:INPUT AM:IF AM<O THEN 3010

PRINT TAB(21);CHRS$(27);:INPUT GV$(I):IF GVS$(I)="-1"THEN 3010
PRINT TAB(33);CHRS(27);:INPUT GD$(I):IF GDS$(I)="-1"THEN 3010
PRINT TAB(45);CHRS$(27);:INPUT GF$(I):IF GF$(I)*“~1“THEN 3011
PRINT TAB(53);CHRS$(27);:INPUT GP$:IF GP$S="-1"THEN 3010
BC=BC+AM*M1

GA (I)=INT (100*AM)

IF GP$="" OR GP$=" " THEN GP(I)=100 ELSE GP(I1)=VAL(GPS$)
PRINT TAB(58);CHR$(27);:INPUT GC(I): IF GC{I)<0 THEN 3010
RETURN

! TRANSACTION "CLEAN-UP" PROGRAM; DISK SAVE

PRINT: PRINT" < EXIT FROM TRANSACTION SECTION >"

PRINT ">>> CURRENT BALANCE =";BC

IF BC<0 PRINT "#*** WARNING: CURRENT CHECKING BAL.IS NEGATIVE ***"
PRINT"SAVE (S), RESUME(R), OR EXIT(E)";:INPUT AS$

IF A$="S" THEN 4110

IF AS="R" THEN 1134

IF AS$="E" THEN 4510

GOTO 4020

ettt DISK SAVE ROUTINE.....ccceveua.
PRINT “NO DISK SAVE YET": GOTO 4020
[}

CK=CH+1

IF TR$="CK #":CS=GS:CH=GH:CK=GK: GOTO 1010
IF TR$="DEP#":DS=GS :DH=GH:DK=GK: GOTO 1010
IF TRS$="PAY#":PS=GS:PH=GH:PK=GK: GOTO 1010
IF TRS$="CSH#":HS=GS:HH=GH:HK=GK: GOTO 1010
PRINT "ERROR IN TR$ =-- IT = ";TR$: STOP

! REPORT GENERATING PROGRAMS

PRINT "REPORT SECTION NOT WRITTEN YET"
FOR J=1 TO 500: NEXT J 'DELAY LOOP
GOTO 210

CLS: PRINT "**%* END OF PERIOD";P;"TRANSACTIONS FOR";1900+IY;"***"
PRINT STRINGS$(50,"."): PRINT

PRINT USING "STARTING CHECKING ACCOUNT BALANCE WAS S#####.44";BS
PRINT USING "CLOSING CHECKING ACCOUNT BALANCE 1S SHé###.#4";:BC
PRINT

PRINT "STARTING CK # THIS PERIOD WAS ";CS

PRINT "HIGHEST CK # THIS PERIOD WAS ";CH: PRINT

PRINT ">>> THE NEXT TIME THIS PROGRAM IS RUN RESPOND AS FOLLOWS:"
PRINT "FOR PERIOD # ?2";P+1

188

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

N
9970 PRINT "STARTING BALANCE THIS PERIOD ?";BC
9975 PRINT "STARTING CK # THIS PERIOD ?";CH+1 : PRINT
9980 PRINT "PROGRAM IS ABOUT TO TERMINATE. VERIFY O.K. (Y/N)";
9985 INPUT Z$: IF LEFTS(Z$,1)<>"Y" THEN 210
9999 END
J

Project MONEY2

The high-level flow diagram for MONEY shows a subroutine beginning at
line 1910 to be used for voiding a group of transactions. This subroutine is
missing from MONEY, having been left as a “low-level refinement to be
added later on.

Write the code for a void subroutine, and add it to MONEY to make
MONEY2. Also add the command V (void) as part of the instructions in
line 1210. Insert a new line as follows:

1225 IF A$ = “V” THEN GOSUB 1910 : GOTO 1210
Thus when a user types “V” in response to the question at line 1210, he
should be sent to subroutine 1910. There he should be asked at which tran-
saction number the voiding should start. All transactions at and above
this number should then be cancelled. As part of a void, don't forget to
reset the highest transaction number processed (GH), and readjust the
check balance (BC) where appropriate.

Superproject (CHECKBAL)

The check balance reported by the program MONEY is based on all the
checks you have written and entered into the program for a given period,
and all the deposits you have made. The statement of your checking
balance you receive from the bank may be for an earlier date, and so it
will be lacking the latest information. As a result, it will be higher than the
latest balance your program calculates by the sum of the checks you have
written that were not yet returned to the bank. It will be lower than your
balance by the sum of the deposits you made that have not yet been
recorded by the bank.

Wrrite a program module for MONEY that asks you for the amounts
of the missing checks and missing deposits, and then prints a balance that
compares with the bank’s statement. Write this module as a report pro-
gram that starts at line 6010. You will also want to write a menu sub-
program for selecting reports (starting at line 5010) which has as its initial
choice this “checking account balance” report.

Section 3.6 Data Based Financial Reports 189

Note: There will be other reports added to this program in chapter 4.
So far; MONEY is mainly a data gathering instrument that will seem: to
waste a lot of the information you type into it. Do not despair—it will
become increasingly useful as more and more report modules are added. If
you need some help with (CHECKBAL), take a look at the program
MONYLIST is section 4.2: This shows how to write the menu subprogram
for selecting reports at line 5010, and it contains an example of a report pro-
gram at line 7010.

Exercises for Chapter 3

The following exercises contain several useful programming techniques con-
nected with the idea of sorting. They are more advanced than the previous exer-
cises, and will require more time to complete.

~N
10 REM $%% EXERCISE 8 (INSERTION SORT). SIMULATE A RUN %%%
15 PRINT "NUMBERS TO BE SORTED ARE:"
18 N=10
20 FOR K=1 TO N: READ R(K): PRINT R(K): NEXT K
25 DATA 23,67,12,90,2,52,86,20,13,88
30 FOR J=2 TO N
70 I=J~1: R=R(J)
80 IF I<=0 THEN 120
85 IF R>=R(I) THEN 120
90 R(I+1)=R(I)
100 I=I-1
110 GOTO 80
120 R(I+1)=R
130 NEXT J
180 PRINT "#*** READY TO SEE SORTED NUMBERS ***",:INPUT DS
190 FOR K=1 TO N: PRINT R(K): NEXT K
200 END
Wy
10 REM %$%% EXERCISE 9. MODIFY EXERCISE 8 SO THAT IT FILLS
11 REM $%% THE R() ARRAY WITH 100 RANDOM NUMBERS, AND THEN
12 REM %%% SORTS THE ARRAY IN ASCENDING ORDER.

190

CHAPTER 3 GETTING SERIOUS: HOME FINANCE AND BUSINESS PROGRAMS

9 REM

10 REM
11 REM
12 REM
13 REM

$EY —mmmmmm e ———— EXERCISE 10 -===—mm==mmmmmm e
$3% MODIFY EXERCISE 8 SO THAT IT READS STRINGS INTO AN
$%% ARRAY R$(), AND THEN SORTS AND PRINTS THE ARRAY IN
$3% ASCENDING ORDER. FOR SOME HELP SEE 'BIT OF BASIC'

$%% BY T. DWYER & M. CRITCHFIELD (ADDISON WESLEY CO.)

SOURCES OF FURTHER INFORMATION FOR CHAPTER 3

Business application programs often appear in the magazines and books mention-
ed at the end of Chapter 1. Two additional magazines that publish business
applications are:

1. Interface Age (P.O. Box 1234, Cerritos, CA 90701).

2. Microcomputing (Peterborough, NH 03458)

There are a number of application areas that are similar to business pro-
grams even though they don’t involve financial record keeping. Data based diet
information programs would fall into this category. Several examples of diet in-
formation programs can be found in Chapter 8 of the book BASIC and the Per-
sonal Computer (referenced at the end of Chapter 1). This chapter also explains a
business invoicing program.

!

P‘-n..",«f

ﬁ,)“-n .»-"J/\-ﬂ/u f -

I PSP SO DN DN N A R PN P D W S I N e
L R o T [V . DURUY, SRR - SNRY - SR » WURUR y ey e 4 N B n n

‘_ﬁAﬂAAnnAnma.ﬁM“Aﬂ/‘vb\"ﬂvA‘nﬂﬂ_ﬂ

i

)

y

W

1l

T X
T1C
I

/l\ |
T

Bwis
T

I/
II

HOW TO TAKE THE PLUNGE:
UPGRADING TO A BIGGER
COMPUTER SYSTEM

4.0 INTRODUCTION

The applications shown up to this point were designed for use on personal
computers with a consumer price tag —machines costing about the same
as a hi-fi system or video tape recorder. In this chapter we'll look at what's
possible if and when you decide to expand your computer into a more
sophisticated system, particularly by adding professional-grade
peripherals. A peripheral is any device that can be connected to a com-
puter. The two most valuable peripherals for serious computing are
printers and disk drives, and we'll give most of our attention to discussing
how these can be used effectively.

We'll also spend some time explaining the features of what is usually
called disk-extended BASIC, basing our discussion on the version
developed by the Microsoft company. Microsoft disk-extended BASIC is
available for most personal computers, and it includes features that are
very similar to those found in BASIC PLUS, a professional-level language
used on Digital Equipment Company computers. Our examples were all
run on a Radio Shack TRS-80 system using the disk operating system call-
ed TRSDOS (TRS-80 Disk Operating System). When this disk system is

193

194 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

added to a Level II TRS-80 computer, it gives you all the important
features of Microsoft disk-extended BASIC.

The third thing we will do in this chapter is introduce some new tech-
niques from the world of computer science. In particular, we will discuss
several file handling techniques in section 4.3, including something called
hashing, and explain the use of linked list data structures in section 4.4.
This will then open the door to writing a text editing program which will
serve as the basis for a useful word processing system.

Section 4.1 Why More Equipment? Examples of What's Possible 195

4.1 WHY MORE EQUIPMENT? EXAMPLES OF WHAT'S
POSSIBLE

A computer system can be expanded in two ways: by adding external
devices (peripherals), and by expanding the circuitry within the computer
itself. New circuitry can often be added by plugging additional circuit
boards into empty expansion slots. Another possibility on some machines
is to plug small plastic enclosures called integrated circuit (IC) chips into
sockets left open for that purpose. The two most popular circuit additions
are memory boards, or memory chips, and interface boards, (or in some
cases, interface expansion boxes.)

Why Add More Memory?

Microcomputers usually have two kinds of memory: read only memory
(usually abbreviated ROM), and programmable memory (also called main
mermory, user memory, or simply memory.) Often the term RAM, or ran-
dom access memory, is used in the microcomputer literature for program-
mable memory. The word random means that each byte can be access-
ed directly without running through all the preceding bytes in sequence.
ROM memory also has this property, so you can think of ROM as
meaning “random read only memory”.

ROM is used to store permanent information, such as the BASIC in-
terpreter needed to translate your programs into detailed machine code.
The user cannot change the contents of ROM memory. User memory, on
the other hand, is used to hold the latest BASIC program you have written
or loaded from tape or disk. It's also used to hold data—often transaction

196 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

data of the kind we have seen in the programs ESTIMATE, SALESLIP,
and MONEY. For example, in MONEY, the transactions were stored in
seven arrays of 200 locations each, so there were 1400 locations of RAM
reserved (dimensioned) for this program. Some of these locations held
numbers while others held strings. Let’s see how much memory is actually
required for holding numbers and strings.

The basic unit of memory storage is one byte. A byte consists of 8
binary digits called bits. A bit can only have one of two values, called 0
and 1. If you think about all the ways 8 bits can be arranged, you discover
that there are 256 possibilities, so one byte can store this many different
kinds of information.

Bytes are sometimes used to store characters. For example, the
character A is stored as the byte 01000001. Bytes can also be used to repre-
sent numbers. For example, the pattern 01000001 can also be interpreted
as the number 65 (because it represents 2¢ + 2° = 64 + 1). Since most
applications require numbers greater then 256, two bytes are usually used
to represent integers, and four bytes are used to represent floating point
numbers, numbers with decimals that are moved around automatically,
like 3.14159 or 314.159. Strings take as many bytes for storage as there are
characters in the string. For example, “GOOD MORNING” takes 12
bytes. Your BASIC program also takes one byte for each character used in
typing it.

The conclusion to all this is that if you want to write long programs,
or use Iots of numbers or strings, you'll need plenty of programmable
memory. A small system may have 4,000 bytes of memory (abbreviated 4
K), a medium system may have 16 K, and a large system 32 K to 64 K. All
the programs in the previous two chapters will work on a machine with
16 K bytes of memory; the programs in chapter 1 require less than 4 K
bytes.

Why Disks?

Although 48 K bytes of user memory is a lot, there are many applications
where even more storage is needed. The solution to this program is to use
magnetic disks as a form of external or mass storage to hold the data for
such applications. We'll explain how this is done in section 4.3.
Another use of disks is to store your BASIC programs. You do this by
giving each program a file name (for example, BABYQ) and then typing
SAVE "BABYQ". When you want to use this program at a later date, you
simply type LOAD “BABYQ", and a copy of the program will be transfer-
red from disk into main memory. The file names are limited to 8
characters on many systems (now you know why some of our program
names were spelled in abbreviated form—Ilike MONYDISK). There are
many special features which can make a file name more meaningful or
protect the file from accidental damage. The disk manual for your system
should be consulted to see what these are, and how they are used.

Section 4.1 Why More Equipment? Examples of What's Possible 197

[

This is the model I TR5-80 computer equipped with an expansion interface box
(under the video display), and two minidisk drives (on the right). The display on
the screen is a directory of the programs (or "files”) stored on one of the disks.

Another reason for adding disks is that you can then use what's called a
disk operating system (DQS). This is a collection of system software pro-
grams. One of the most important of these is an extension of BASIC called
disk-extended BASIC. This includes many additional language features,
and we'll discuss a number of these in section 4.3. One you should know
about now is LINE INPUT, used as follows:

130 LINE INPUT A$%

This differs from INPUT in two ways. First, it does not cause a ? to be
printed. Second, it allows you to type a string for input that includes com-
mas as part of the string. This last feature will be very important for the
text editor program described later in section 4.4.

Why a Printer?

Printers enable you to get a permanent record on paper, called hard copy
of program listings and program output. Several kinds of printers are
available. The distinction between line printers and sequential character
printers was explained at the end of section 3.5 as part of project HARD-
SALE. Most printers used with microcomputers are of the sequential
character type, printing one character at a time. Another factor that must
be considered is the type of interface used. The word interface describes
the circuitry used to transmit signals between the computer and its
peripherals—in this case to transmit characters from computer to printer.

198 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

>RLUM
¢ COMPARISON OF
TOTAL YWOTER: = 1

There are two kinds of printer interfaces: parallel (information sent 8 bits
at a time), and serial (information sent 1 bit at a time). Serial interfaces are
a little more expensive, but they provide more flexibility. For example, on-
ly serial information can be sent over telephone lines. The most common
serial interface is called the RS-232-C standard. We won't go into further
detail, but advise that before you buy a printer you should make sure your
computer can interface to it properly. The best way is to work with a local
dealer who will guarantee that the combination you select will work.

The other decision you have to make is choosing between a dot
matrix and a letter-quality impact printer. Below is an example showing
the difference. As you can see, the letter-quality printer is preferable for
such applications as letter writing, contract preparation, or in general,
situations where quality and clarity are important.

> RUN
SURWEYS ok ** COMPARISON OF SURVEYS **
s R TOTAL VOTERS = 10189

PERCENT REFUBLICANS = 44, 2227 | PERCENT REPUBLICANS = 44.8327 %
PERCENT DEMOCREATE = 5@ 365 ¥ | PERCENT DEMOCRATS = 50.368 %
FERCEMT OTHERS = 4 72925 | PERCENT OTHERS = 4,79929 %
TOTAL YOTERS = 18189 TOTAL VOTERS = 10189

FERCENT REPUBLICAMS = 44 473% x| PERCENT REPUBLICANS = 44,4793 %
FERCENT DEMOCRRATS = SE ZE7TF x| PERCENT DEMOCRATS = 50.3877 %
FERCEMT OTHERS = 5 43239 x| PERCENT OTHERS = 5.13299 %

OUT OF DRTA IM 18

© © © VP U O U VST T OV U Y VOO D W E OO0 E OO VOO GO

OUT OF DATA 1IN 10

Section 4.2 Adding Hard Copy 199

4.2 USING A PRINTER. MONYLIST, TAXRPT, SNAPSHOT

The programs in this section produce output that can be displayed on
either a dot matrix or an impact printer. Some of these printers are design-
ed for use with parallel interfaces of the type built into the TRS-80 expan-
sion interface box. However, a number of impact printers can only be con-
nected to a serial RS-232-C interface. Some computers have this interface
built in, while others require the addition of a special RS-232-C circuit
board.

An R5-232-C interface board is shown here installed in the TR5-80 expansion box
(top center of the photograph). A flat ribbon cable connected to this board can be
seen coming out of the front of the expansion box. This cable is then connected to
the letter-quality printer/terminal shown on the left. The keyboard on the
printer/terminal is not used in this arrangement; all control of input and output
comes from the TRS-80.

Program MONYLIST

The Idea

The program MONEY in section 3.6 concentrated on the gathering of
transaction data: checks written, cash paid, deposits made, cash received.
It also allowed the user to input tax classification information: a tax-form

200

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

code, the percent used for taxes, and an account number. However, the
program never used this information—in fact the only thing it did was to
keep track of the checking account balance! It's time to correct this defi-
ciency by expanding MONEY to make better use of all that data.

In MONYLIST we'll expand MONEY (or MONEY2) by first adding a
menu selection routine at line 5010. This will allow the user to choose one
of several report-generating programs, in the same way that the routine
starting at line 1010 allows the user to choose between different kinds of
transaction-gathering programs. Then we'll write the code for generating
one of these reports, starting at line 7010. This report will be a listing of all
the transaction data that is currently in the various G arrays: GD(),
GA(), GV$(), GD$(), GF$(), GP(), and GC().

We'll assume that the report is to be listed on a printer. This is done
on the TRS-80 by using LPRINT instead of PRINT in output statements.
On other machines there is a special command to switch output from the
video screen to the printer. On the Apple, for example, you type PR#1.
On these machines you don't have to change PRINT to LPRINT—all
output is automatically directed to the printer connected at the given inter-
face slot (#1 in the Apple example).

A Sample Run

Part of the run below is shown on the video display. This is followed by
showing the actual hard copy produced on the printer.

r N\
< REPORT MENU SELECTION >
0 = EXIT FROM REPORT SECTION
1 = CHECKING ACCOUNT BALANCE
2 = PRINTED LIST OF ALL TRANSACTIONS
3 = TAX FORM REPORTS
0, 1, 2, OR 3?2 2
TURN PRINTER ON -~ READY? YEP
\ J
LIST OF ALL TRANSACTIONS FOR PERIOD 2 OF 1988
CHECKING ACCOUNT IS AT SEVENTH RESERVE BANK
STARTING BALANCE WAS § 500.00
#%* CHECKING ACCOUNT PAYMENTS **%
CK# DATE: AMOUNT: TO: FOR: FORM: TX%: ACCT:
123 11/12 § 350.00 HAPPY PLAZA SEPT. RENT CCle 30 980
124 12/13 $ 230.00 COUNTY TAXES bbl2 100 890

8 et e s B Bt W S e T s B s e S e i it Bt e et S B S o W Ot i B M s e S B S s o At ot B A b s o o Bt St e e v o B e Bt s Rt St et o B i s e o S B S B

Section 4.2 Adding Hard Copy 201

**% CASH PAYMENTS **%

PAY# DATE: AMOUNT: TO: FOR: FORM: TX$% ACCT:
1 12/15 $ 20.00 TAXI NO ENTRY NONE 100 0

e e S Gt o s B, o B i o B o, s B i o i it A B Mo S A S i i B S & A e s e s B A e St B S S R o St B Y A s S e S B B B v e S

*** CHECKING ACCOUNT DEPOSITS ***

DEP# DATE: AMOUNT: FROM: FOR: FORM: TX% ACCT:
1 12/18 $ 200.00 BOSS PAY AA 100 340
2 12/23 $ 300.00 TRUE CONFESSION ARTICLE CCl6E 100 440

e e i M S B s B st et o Bt B, B B, St B e it i A s e et Bt s St S S A e S S B s B A B S o s e e s Bt Bt S G S s o b B A $am S S T, B

**% CASH RECEIPTS NOT DEPOSITED *#*%*

CSH# DATE: AMOUNT: FROM: FOR: FORM: TX% ACCT:
1 12/ 1 $ 23.00 NO ENTRY NO ENTRY NONE 100 0

g L L LT Y oy Ry SRy R WP WD Uiy Vg ey ooy

CURRENT CHECKING ACCT. BALANCE IS § 420.00

High-Level Design

Since we planned on adding both these new features back in the design of
MONEY (remember our hooks?), there’s no need for much of a high-level
design—it's already been taken care of. The main thing to do is to stick to
the line numbers we reserved for the report menu selection and for the ac-
tual reports. When a report is finished, the program should always branch
back to the report menu section. When EXIT is chosen from this menu, the
program should then branch back to the main menu section.

Coding the Program

The only new feature of BASIC needed for coding this program is the
LPRINT statement which is used in several places starting at line 7015.
Most of the printing is done by the subroutine in lines 7510 to 7590. Each
part of the G array is printed in turn by calling on this subroutine. Notice
that the subroutine contains a test to see if the data is —1 (IF GD(K) < 0).
This way no time will be wasted printing out rows of G that do not yet
contain transaction data. Here's a complete listing of MONYLIST that in-
cludes all the features of MONEY2 and MONEY:

202

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

~
10 [XSl ERE XSRS TR E LY ELTIPRETETETELELELEE]

15 ¢ * MONYLIST *

20 ' * COMPUTERIZED FINANCIAL/TAX REPORTING SYSTEM *

40 P A AR R A AR AR AR AR R AR AR AR R R AR R AR ARR AR AR R A ke AR kA h Rk

100 ' s e mm

101 °* INITIALIZE VARIABLES; DECLARE DATA TYPES

102 ' s o e e e e

105 CLS

110 PRINT " <*> FINANCIAL TAX/REPORTING SYSTEM <*>
112 DEFINT C-P

114 CLEAR 2000

115 PRINT STRINGS(60,"-")

120 INPUT "FOR CALENDAR YEAR 19";IY

130 IF IY<70 OR IY>99 PRINT "INVALID YEAR" : GOTO 120

140 INPUT "FOR PERIOD #"; P

150 IF P<1 OR P>366 PRINT "INVALID PERIOD #" : GOTO 140

160 INPUT "STARTING BALANCE THIS PERIOD (E.G. 589.65)"; BS
165 BC=BS "INITIALIZE CURRENT CK BALANCE

170 INPUT *CK. ACCT. OR BANK NAME“; CA$

175 INPUr "STARTING CK. # THIS PERIOD"; CS

176 CK=CS 'CK IS CURRENT CK ABOUT TO BE PROCESSED
177 CH=CS-1 'CH IS HIGHEST CK # ALREADY PROCESSED
179 PRINT:PRINT TAB (25);"STAND BY"

180 DS=1 : PS=1 : HS=1 'STARTING DEP, CASH PAY, & CASH RCVD #S
181 DK=DS : DH=DS-1 '"CURRENT & HIGHEST DEP #

183 PK=PS : PH=PS-1 '"CURRENT AND HIGHEST CASH PAY #

184 HK=HS : HH=HS-1 'CURRENT AND HIGHEST CASH RCVD #

185 FS="44# ##/44 SHE#4. 4% 2 $ % $ 3% $ HH# H44
186 DS="S####4. #4"

187 F1S="44##: #4/88/44% SHidtd. 44 % 3"

188 F2$=" % $ % % hEE HERC

189 LPS=F1S$+F2$

190 DIM GD(200),GA(200),GVS (200),GD$(200),GF$(200),GP(200) ,GC (200)
198 FOR J=1 TO 200: GD(J)=-1: NEXT J

200 ' mem—-—o o

201 ' MAIN MENU SELECTION

202 L o s e S . o e i o . e 7 e o e o T T o o P o ok o o P i T o o . i o o i e i P

210 CLS

220 PRINT " <<< MAIN MENU SELECTION >>>

225 PRINT STRINGS(60,"-")

230 INPUT"EXIT (0), TRANSACTIONS (1), OR REPORTS (2)"; MS

240 IF MS<O OR MS>2 THEN 230

250 ON MS+1 GOTO 9910, 1010, 5010

999

1000 4 e e e e T e e T T I L S T S S S N SN DN DT SO I I NI T IS
1001 ° TRANSACTION PROGRAMS

1002 °*

1003 ' memmmm e e
1004 TRANSACTION SUB-MENU SELECTION

1005 1 oo e et e
1010 CLS

1020 PRINT " < TRANSACTION MENU SELECTION >"

1030 PRINT STRINGS(60,"~")

1035 PRINT" 0 = EXIT FROM TRANSACTION SECTION"
1040 PRINT" 1 = CK PAYMENTS BY YOU"

1042 PRINT" 2 = CASH PAYMENTS BY YOQU"

1044 PRINT" 3 = DEPOSITS TO YOUR CHECKING ACCOUNT"
1046 PRINT" 4 = CASH RECEIPTS NOT DEPOSITED"

1050 PRINT

1055 INPUT"O, 1, 2, 3, OR 4"; MS

1060 IF MS<0 OR MS>4 THEN 1055

1065 IF MS=0 THEN 210

1070 ON MS GOSUB 1410, 1510, 1610, 1710

Section 4.2 Adding Hard Copy

203

PRINT "*** ".LEPTS$(TRS,3);" TRANSACTIONS FOR PERIOD";P;"OF";1900+IY
PRINT "*** gSTARTING CK BALANCE THIS PERIOD =";TAB(36); USING D$;BS
PRINT "*** CURRENT CK BALANCE THIS PERIOD =";TAB(36); USING D$;BC

PRINT "TO MAKE A CHANGE OR EXIT TYPE 0,0 FOR MO,DAY"
PRINT "TO RESTART A LINE TYPE -1 IN ANY COLUMN"
PRINT STRINGS$(60,"-")

PRINT TRS;" MO,DAY: AMT: VENDOR: "
PRINT "FOR: TAX FORM: %: ACT#"
GK=GH+1 'GK IS TR. # ABOUT TO BE PROCESSED
I=(GK~GS)+Cl '"INDEX TO TR. RECORDS IN G ARRAY
IF I>MAX PRINT "OUT OF SPACE"™ : GOTO 1210
GOSUB 3010 'COLLECT TR. DATA
IF M=0 AND D=0 THEN 1210

GH=GH+1

GOTO 1150

'eeaesesesees s TRANSACTION EXIT ROUTINE..v.eeeecvene

PRINT "EXIT(E), CHANGE(C), RESUME(R), LIST(L), OR VOID(V)";
INPUT AS

IF A$="R" THEN 1135

IF A$="V" THEN : GOSUB 1910: : GOTO 1210

IF AS="E" THEN 4010

IF As$="L" THEN 1258

IF A$="C" THEN 1245

GOTO 1210

1)

' eteeessesss CHANGE ROUTINE.u.vsevenonan
PRINT "CHANGE DATA FOR WHICH #";:INPUT GK
IF GK>GH PRINT TR$" # TOO HIGH": GOTO 1210

IF GK<GS PRINT "TOO LOW" : GOTO 1210

I=(GK~-GS)+Cl : BC=BC-M1*GA (I)*.0l

PRINT TR$;" MO,DAY: AMT: VENDOR: "3

PRINT "FOR: TAX CODE: %: ACT#"

GOSUB 3010 : GOTO 1210
1]
'veeenererane s LIST ROUTINE et eenencnnnnss
PRINT "LIST OF ";LEFT$(TRS,3);" TRANSACTIONS NOW IN G ARRAY"
FOR J=GS TO GH

K=(J-GS)+Cl

M=INT(GD(K)/100) : D=GD(K)-M*100

PRINT USING F$;J,M,D,GA(K)*.01,GVS (K) ,GD$ (K) ,GF$ (K) ,GP (K) ,GC (K)
NEXT J
GOTO 1210

TR$="CK #" : GS=CS : GH=CH : GK=CK : MAX=99 : Cl=1 : Ml=-1
RETURN

1

TR$="PAY#" : GS=PS : GH=PH : GK=PK : MAX=149 : C1l=101 : M1=0
RETURN

]

TRS="DEP#" : GS=DS : GH=DH : GK=DK : MAX=189 : Cl=151 : Ml=l
RETURN

]

TRS="CSH#" : GS=HS : GH=HH : GK=HK : MAX=199 : Cl=191 : M1=0
RETURN

204

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

PRINT " * HIGHEST TRANSACTION # PROCESSED SO FAR IS";GH
PRINT " * VOID REMOVES DATA FROM # XX ON UP. WHAT VALUE"
PRINT " * OF XX DO YOU WISH TO VOID FROM (-1 MEANS NONE)";
INPUT XX
IF XX<0 THEN 1990
IF XX<GS PRINT "TR # TOO LOW. XX =";:GOTO 1930
IF XX>GH PRINT "TR # TOO HIGH. XX =";:GOTO 1930
FOR J=XX TO GH
K=(J-GS)+Cl
BC=BC~-M1*GA (K) *. 01
NEXT J
GH=XX-1
PRINT "ALL TRANSACTIONS FROM #";XX;"ON UP ARE VOID"
PRINT "HIGHEST TRANSACTION # PROCESSED IS NOW";GH
RETURN

! SUBROUTINE TO COLLECT TRANSACTION DATA

PRINT GK;TAB(5);: INPUT M,D: IF M=0 AND D=0 THEN 3090

IF M<O OR D<0 THEN 3010

GD(I)=100*M + D

AM=0: GVS$(I)="NO ENTRY": GDS$(I)="NO ENTRY"
GF$(I)="NONE": GP$=" ": GC(I)=0

PRINT TAB(12);CHRS$(27);:INPUT AM:IF AM<0 THEN 3010

PRINT TAB (21);CHRS$(27) ;: INPUT GV$(I):IF GVS(I)="~1"THEN 3010
PRINT TAB (33);CHRS$(27) ;: INPUT GDS$(I):IF GD$(I)="-1"THEN 3010
PRINT TAB (45);CHRS(27) ;: INPUT GF$(I):IF GFS$(I)="-1"THEN 3011
PRINT TAB (53);CHRS(27);:INPUT GP$:IF GP$="-1"THEN 3010
BC=BC+AM*M1

GA(I)=INT(100*AM)

IF GP$="" OR GP$=" " THEN GP (I)=100 ELSE GP(I)=VAL(GPS$)
PRINT TAB(58) ;CHRS(27) ;: INPUT GC(I): IF GC(I)<0 THEN 3010
RETURN

¢ TRANSACTION "CLEAN~ UP“ PROGRAM; DISK SAVE

PRINT: PRINT" < EXIT FROM TRANSACTION SECTION >"

PRINT ">>> CURRENT BALANCE =";BC

IF BC<0 PRINT "#*** WARNING: CURRENT CHECKING BAL. IS NEGATIVE *%**"
PRINT"SAVE (S), RESUME(R), OR EXIT(E)";:INPUT AS$

IF A$="S" THEN 4110

IF A$="R" THEN 1134

IF A$="E" THEN 4510

GOTO 4020

1

'escccsosasoassDISK SAVE ROUTINE. .cccccocsocs
PRINT "NO DISK SAVE YET": GOTO 4020
]

CK=CH+1

e mDQ-—"f"V JI"-I‘Q-—CS'CH—C LK

IF TRS“"DEP#"'DS-GS DH—GH:DK=GK: GOTO 1010
IF TRS="PAY#":PS=GS:PH=GH:PK=GK: GOTO 1010
IF TR$="CSH#":HS=GS:HH=GH:HK=GK: GOTO 1010
PRINT "ERROR IN TR$ -- IT = ";TRS$: STOP

' REPORT GENERATING PROGRAMS

3

cKr corn 1N
NN A va

-

CLs

PRINT " < REPORT MENU SELECTION >
PRINT STRING$(6O)

PRINT " = EXIT FROM REPORT SECTION"

PRINT * l =

CHECKING ACCOUNT BALANCE" J

Section 4.2 Adding Hard Copy 205

~
5042 PRINT " 2 = PRINTED LIST OF ALL TRANSACTIONS"

5044 PRINT " 3 = TAX FORM REPORTS"

5050 PRINT

5055 INPUT "0, 1, 2, OR 3"; MS
5060 IF MS<0 OR MS>3 THEN 5055
5070 IF MS=0 THEN 210
5080 ON MS GOTO 6010, 7010, 8010
5090 GOTO 210
6010 GOTO5010

L

7000 e e
7001 ' PRINTED LIST OF ALL TRANSACTIONS ENTERED

TO02 t o e e e
7010 PRINT "TURN PRINTER ON -- READY";:INPUT 2§

7015 LPRINT "LIST OF ALL TRANSACTIONS FOR PERIOD";P;"OF";IY+1900"
7016 LPRINT "CHECKING ACCOUNT IS AT ";CAS;" BANK"

7017 LPRINT USING "STARTING BALANCE WAS S#####.#4";BS

7025 LPRINT" "

7030 PFS="4## ##/#% SHEHE. #E 3 3"

7031 PFS$=PFS$+" % $ % $ H44 HERE"

7110 LPRINT" ":LPRINT"*** CHECKING ACCOUNT PAYMENTS ***":[PRINT" "
7120 LPRINT"CK# DATE: AMOUNT: TO: FOR";

7121 LPRINT": FORM: TX%: ACCT:"

7130 LO=1: HI=99: S=CS: Cl=1: GOSUB7510

7210 LPRINT" ":LPRINT"*** CASH PAYMENTS *#**".LPRINT" "

7220 LPRINT"PAY# DATE: AMOUNT: TO: FOR";

7221 LPRINT": FORM: TX$% ACCT:"

7230 LO=101: HI=149: S=PS: Cl=101: GOSUB 7510

7310 LPRINT" ":LPRINT"*** CHECKING ACCOUNT DEPOSITS #***".LPRINT" "
7320 LPRINT"DEP# DATE: AMOUNT: FROM: FOR";

7321 LPRINT": FORM: TX% ACCT:"

7330 LO=151: HI=189: S=DS: Cl=151: GOSUB 7510

7410 LPRINTY ":LPRINT"*** CASH RECEIPTS NOT DEPOSITED *#*#*":[PRINT" *
7420 LPRINT"CSH# DATE: AMOUNT: FROM: FOR";

7421 LPRINT": FORM: TX$ ACCT:"

7430 LO=191: HI=200: S=HS: Cl=191: GOSUB 7510

7480 LPRINT"™ ":LPRINT "CURRENT CHECKING ACCT. BALANCE IS ";

7481 LPRINT USING "S#####.#4";BC
7490 GOTO 5010
7499 !
7500 ! PRINT SUBROUTINE
7501 ¢
7510 FOR K=LO TO HI
7520 IF GD(K)<0 THEN 7580
7530 J=K+5~C1
7540 M=INT(GD(K)/100): D=GD(K)-M*100: A=GA(K)/100
7550 LPRINT USING PF$;J,M,D,A,GVS$(K),GDS(K),GFS$(K),GP(K),GC (K)
7560 NEXT K
7580 LPRINT STRINGS(70,"-")
7590 RETURN
8010 GOTOS5010
t

9900 1 e e e e e e e e e

9901 FINAL EXIT MESSAGES

9902 1 e e e i et o i

9910 CLS: PRINT "*** END OF PERIOD";P;"TRANSACTIONS FOR";1900+IY;"***"
9915 PRINT STRINGS(50,"."): PRINT

9920 PRINT USING "STARTING CHECKING ACCOUNT BALANCE WAS SH###H.#4";BS
9930 PRINT USING "CLOSING CHECKING ACCOUNT BALANCE IS SH##HH.#4":BC
9935 PRINT

9940 PRINT "STARTING CK # THIS PERIOD WAS ";CS

9950 PRINT "HIGHEST CK # THIS PERIOD WAS ":CH: PRINT

9960 PRINT ">>> THE NEXT TIME THIS PROGRAM IS RUN RESPOND AS FOLLOWS:"

206

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

9965
9970
9975
9980
9985
9999

PRINT
PRINT
PRINT
PRINT
INPUT
END

"FOR PERIOD § ?2";P+l

"STARTING BALANCE THIS PERIOD ?";BC

"STARTING CK # THIS PERIOD ?";CH+1 : PRINT

"PROGRAM IS ABOUT TO TERMINATE. VERIFY O.K. (Y/N)";
Z$: IF LEFT$(2$,1)<>"Y" THEN 210

Project TAXRPT

Wrrite a program that extends MONYLIST by adding another report sub-
program starting at line 8010. This report should also be done on a printer,
and it should consist of summaries of all transactions that correspond to a
given tax code. For example, if you have used the code CC to mean “tax
form C,” then the dialogue could look something like this:

REPORT FOR WHICH TAX FORM CODE?CC
TRANSACTIONS APPLICABLE TO TAX FORM WITH CODE CC

CHECK PAYMENTS MADE BY YOU:

CK #: DATE: AMOUNT: TO: FOR: TAX AMT: ACCT #:
123 10/22/84 42.59 AJAX BOOKS COMPUTER BK 42.59 680
125 11/04/84 250.00 BROKEN ARMS RENT 50.00 320

SUM OF FORM CC CHECK PAYMENTS = 92.59

CHECK RECEIPTS DEPOSITED BY YOU:

DP # DATE: AMOUNT: FROM: FOR: TAX AMT: ACCT #:
2 11/23/84 150.00 BYTE ARTICLE 150.00 430

SUM OF FORM CC CHECK RECEIPTS = 150.00

CASH PAYMENTS MADE BY YOU:

CH #: DATE: AMOUNT TO: FOR: TAX AMT: ACCT #:
2 9/14/84 37.50 LA FONDUE BUS. MEAL 18.75 720

SUM OF FORM CC CASH PAYMENTS = 18.75

Of course these reports would normally be much longer. In this case, it
would also be useful to break each report down by line number on a given
tax form. A tax code like CC16 would mean line 16 on form C. Since the
tax form codes were entered as strings, you can use the LEFT$ and MID$
functions to separate the two parts as follows:

FORM$ = LEFT$(GF$(K), 2)

LINE$ = MID$(GF$(K),3,LEN(GF$(K) —-2))
Other reports based on account numbers could be handled in a similar
manner. With a little ingenuity, you can extend this program in many

directions.

Section 4.2 Adding Hard Copy 207

Program SNAPSHOT

The Idea

The preceding examples were illustrated on a TRS-80 computer, using the
BASIC statement LPRINT (instead of PRINT) to direct the program’s out-
put to a printer. But suppose you want to print everything that appears on
the video screen out on paper. For example, suppose you want to show
the responses typed in by someone after an INPUT statement as follows:

10 PRINT “WHAT'S YOUR NAME";

20 INPUT A%

30 PRINT “HI";A%

RUN

WHAT'S YOUR NAME? PASCAL

HI PASCAL

All of the above will appear on video screen, but how do you get it on
paper? To show the program part (lines 10, 20, 30) on a printer, you type
LLIST on the TRS-80. To show the output, you can try changing PRINT
to LPRINT, but all you'll see on paper is this:

WHAT'S YOUR NAME
HI PASCAL
The word RUN, the ?, and the user’s response will be missing.

[t would be a lot better in applications that use the INPUT statement
if everything shown on the screen could be printed on paper. The program
SNAPSHOT will do this, using a trick that involves the key word PEEK.

PEEK(L) is a BASIC function that returns the numeric value of the
contents of any byte in memory, provided you supply the address L of
that byte. The memory addresses in most microcomputers go from 0 to
65535. If you type

PRINT PEEK(15360)
what you'll see printed on the video screen is the numeric value of the byte
at memory location 15360. If you type

PRINT CHR$(PEEK(15360))
then you'll see the ASCII character corresponding to the number stored in
location 15360. Both of these examples also work with LPRINT, putting
the results on the printer.

The next thing you need to know is that there are 1024 characters,
including spaces, displayed on the screen of a TRS-80 computer and that
the numeric codes for these are stored in memory at locations 15360 up to
16383. So if we write a program that PEEKs in each of these locations, and
then LPRINT'S the corresponding ASCII characters, we'll be able to print,
on paper, a “snapshot” of exactly what’s on the screen.

208 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

Coding the Program

We'll skip right to the code since this is a short program. It uses line
numbers starting at 32000, so that you can easily add this subroutine at the
end of another main program. We've used variable names ending in 9 so
that conflict with the variables in the main program will be unlikely.

The outer loop in SNAPSHOT (line 32010) runs through the 16 lines
on the TRS-80 screen. The loop in 32030 to 32050 finds out how many
non-blank characters are in each video screen line by counting backwards
from the right until an ASCII code greater than 32 is found (32 is the code
for space; codes 33 to 126 mean a printable character). Then the loop in
32060 to 32080 concatenates (strings together) these characters into L9$.
Line 32090 prints this string on paper, and 32100 caiculates the stariing
address for the next line of the video screen.

1 CLEAR 500

31999 sSTOP 'SNAPSHOT SUBROUTINE
32000 N9=15359

32010 FOR L9=1 TO 16

32020 Los=""

32030 FOR W9=64 TO 1 STEP -1

32040 IF PEEK(N9+W9) > 32 THEN 32060
32050 NEXT W9

32060 FOR K9=1 TO W9

32070 L9S$S=L9S+CHRS (PEEK (N9+K9))
32080 NEXT K9

32090 LPRINT L9S

32100 N9=N9+64

32110 NEXT L9

32120 RETURN

To use SNAPSHOT, it should be added to the main program with
which you want to use it. This can be done by loading the main program,
and then typing in SNAPSHOT. A better way, if you have a disk system,
is to first type in SNAPSHOT and then save it as an ASCII file by typing
SAVE “SNAPSHOT"”, A. To attach it to a main program which was
previously saved on disk (for example SAVE “POEM") do this:

> LOAD “POEM”
> MERGE “SNAPSHOT”
If you now type LIST, you'll see that you have both programs merged.

The last thing to do is put the statement GOSUB 32000 at those places
in the main program where you want to capture video output on paper. If
there are several places, use GOSUB 32000: CLS so that the screen gets
cleared after each snapshot is taken. Since SNAPSHOT stores quite a few

Section 4.2 Adding Hard Copy 209

characters in the variable 199, it is also necessary to put the statement 1
CLEAR 500 at the beginning of the program, which sets aside extra space
needed for the strings.

All the sample runs in this book that show responses to INPUT
statements were printed by using SNAPSHOT. Here's an example show-
ing how we used it to display what the video screen looked like for Project

POEM. (To see a run of this program, see section 1.7.)

1cC
10
15
20
30
40

250
320
320
320
320
320
320
320
320
320
320
321
321
321

LEAR500

REM --- POEM ---
CLS
PRINT"WITH YOUR HELP, THIS PROGRAM WILL"
PRINT"WRITE AN 'ORIGINAL' POEM."

PRINT
PRINT"WHAT'S A GOOD WORD FOR A PLACE--"
PRINT"LIKE DESERT, MOON, FOREST, ALLEY, ETC. "
INPUT P$

PRINT"THANKS."

PRINT"GIVE ME A PLURAL NOUN FOR SOME"
PRINT"THINGS THAT BELONG ON LAND. "3
INPUT QS
PRINT"THANKS."

PRINT"NOW I NEED A PLURAL NOUN FOR SOME"
PRINT"THINGS THAT LIVE IN THE SEA. "
INPUT RS
PRINT"THANKS."
PRINT

GOSUB 32000:CLS ¢
PRINT" A RIDDLE"

PRINT

PRINT"THE MAN IN THE ";P$;" ASKED OF ME,"
PRINT"HOW MANY ";Q$;" GROW IN THE SEA?"
PRINT"I ANSWERED HIM AS I THOUGHT GOOD,"
PRINT"AS MANY AS ";RS$;" GROW IN THE WOOD."
PRINT

PRINT

PRINT"WANT TO PRINT IT AGAIN (Y = YES)";
AS = " v

INPUT AS

IF AS = "Y" THEN 130

PRINT"WANT TO WRITE ANOTHER (Y = YES)";

AS = " ow
INPUT AS
GOSUB 32000 ¢£
END

00 N9=15359

10 FOR L9=1 TO 16
20 L9$=""

30 FOR W9=64 TO 1 STEP -1
40 IF PEEK(N9+W9) > 32 THEN 32060
50 NEXT W9
60 FOR K9=1 TO W9
70 L9$=L9S$+CHRS (PEEK (N9+K9))
80 NEXT K9
90 LPRINT L9S§
00 N9=N9+64

10 NEXT L9
15 RETURN

~e

These cause SNAPSHOT
to transfer all of the
preceding dialogue from
screen to printer

(two screenfulls in this
example).

This is the snapshot
subroutine (see also)
line 1).

210 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

4.3 ADDING A DISK SYSTEM: FILEBOX, FILEDEMO,
FILEBOX2, FILEBOX3, HASHDEMO, (HASHFILE),
(MONEYDISK)

Of all the ways to extend and improve a personal computer, adding disk
storage (along with system software called a disk operating system) should
rank high on anyone’s priority list. It's an addition that’s guaranteed to
make computing more fascinating, opening up areas of application equal
to anything done by the “pros.”

The cost of adding a disk system has lessened quite a bit in recent
years, and it's comparable to the cost of adding a printer. However, unlike
learning to use a printer, learning to use a disk system to its full potential
will take time. Mastering all the features of a good disk system is
analogous to learning to use all the power of BASIC. In both cases there’s
a forest of technical foliage to be cut away before one can get to the “good
stuff.”

In this section we'll try to get to the good stuff rather quickly, while
advising you not to be afraid to go back and beat the path down again and
again until it feels comfortable. Our approach will be based on a human-
oriented description of the use of disk files for data storage. As will be seen
in subsequent sections, this use of disks is at the heart of most modern in-
formation and data processing applications.

The word file refers to a collection of pieces of information called
records, where each record is made up of individual data items.For exam-
ple, a recipe file is a collection of records, each one of which contains
several items that tell a cook how to prepare a dish. A library card catalog
is a file in which each record is also a card. In this case a card record con-
tains items such as catalog number, book title, author, publisher, and so
on. An insurance company file could be a collection of records in the form
of manila folders, each one containing such items as customer account
number, name, address, medical history, and insurance policies issued.

Program FILEBOX

The Idea

The idea behind the program FILEBOX is to use a magnetic disk instead of
paper for storing data files. The computer will be used for quickly storing
records of data items on this disk file, for quickly retrieving selected por-
tions of these records, and for changing and updating records.

A good way to describe what we want the program to do is to com-
pare its operation with a manual file card system. We can see that there
are seven main operations to be considered:

Section 4.3

MANUAL FILE CARD SYSTEM

1. Select (by name) one of the file boxes sitting on
a shelf above your desk. Set it on the desk in one of
several numbered work places reserved for this

purpose.

Adding Disk Storage 211

COMPUTER DISK FILE SYSTEM

1. Select (by name) one of the files stored on the
computer's magnetic disk. Associate it with a
channel/buffer number in the computer by using
the OPEN statement.

LI R R T LU O L B O B A N N N (R N A R TR R R R R N S L A AR RN R LN R A S A AN VR IR RS

A

2. If this is a new file, make sure there are nice
clean cards in the box, and number them, say from
1 to 25.

3. Decide how many items you want to put on
each card, and in what position they should go.

4. Choose a card and pull it from the box. Hold it
close enough to see what's on it.

5. Ifit's blank, or if it contains outdated informa-
tion, write new data on it if you wish.

6. To make later access of records by number
easier, hire a clerk to type a list of all the reference
numbers, followed by the key data item associated
with each number.

2. If this is a new disk file, magnetically record
initial data on it, associating each record in the
file with a physical record number called PR %.

3. Use the FIELD statement to describe the posi-
tions of data items in each record, and how large
they can be.

4. Use the GET statement to bring a record from
disk into main memory. Print it on the video
display to see what's on it.

5. If the record is marked “blank,” or if it con-
tains outdated information, use the PUT statement
to write new data on the disk record if you wish.

6. To make access of records easier, add a routine
to your program which can print a list of all the
record numbers, followed by the key data item
associated with each number.

212

CHAPTIER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

7. When finished, put all cards back and return 7. Use the CLOSE statement to “detach” the disk

the box to its shelf.

file from your program.

We'll return to these seven steps in the high-level design, but let’s first see
what a run of a computer version of FILEBOX looks like.

A Sample Run

We've decided to put three items on each record in this program: a key
word, information related to the key, and the number of times the record
has been accessed. For example, the information on record #14 might be
pictured as follows:

Record #14

[CIGARS | MANILLA ROPE & TOBACCO, 487-2315]5]

The 5 at the end means that this record has been retrieved 5 times since it
was first put on file. In our program, this record would be referenced by
letting PR% = 14

In the first sample run, a file called MEMO is used to hold these
records. At this time it is a new file, so the program initializes it with
blanks for the data, and a 0 (zero) for “number of times accessed.” Then
the user stores new data in some of its records (these can be chosen in ran-
dom order). Each time the user decides to look at any of these newly
created records, the access number is increased by 1. If the data is changed
on an old record, the access number is set back to 1.

THIS PROGRAM ALLOWS YOU TO SAVE AND/OR RETRIEVE PAIRS

OF DATA OF THE FORM (KEY, INFO). EXAMPLES:

KEY? SAUERBRATEN INFO? OLD HEIDELBERG, 555-1234

KEY? ACE BONDS INFO? SAFE DEP BOX 24, MARGINAL TRUST CO.

NAME OF DATA FILE? MEMO
>>> WARNING: DO NOT EXIT THIS PROGRAM BY PRESSING BREAK <<<
THIS IS A NEW FILE. STAND BY FOR INITIALIZATION

RECORD # (0 = EXIT)? 1

* RECORD # 1 IS BLANK *

......... DO YOU WISH TO ..eeveesn.

CHANGE (C) , DELETE(D), OR RESUME(R)? C

TYPE NEW DATA FOR RECORD # 1

KEY : SAUERBRATEN

INFO: ALPINE VILLAGE, 555-9876, MUSIC AFTER 8

Section 4.3 Adding Disk Storage 213

TN
RECORD # (0 = EXIT)? 3
* RECORD # 3 IS BLANK *
weceeseee DO YOU WISH TO +evvvuneon
CHANGE (C) , DELETE(D), OR RESUME(R)? C
TYPE NEW DATA FOR RECORD # 3
KEY : VEGETARIAN
INFO: CORNUCOPIA REST., 334 ATWOOD ST., 234-9987
RECORD § (0 = EXIT)? 1
DATA FOR RECORD # 1
KEY : SAUERBRATEN
INFO : ALPINE VILLAGE, 555-9876, MUSIC AFTER 8
THIS RECORD HAS BEEN ACCESSED 1 TIME(S)
tecoceces DO YOU WISH TO weveanesnn
CHANGE (C), DELETE(D), OR RESUME(R)? R
RECORD # (0 = EXIT)? 5
* RECORD # 5 IS BLANK *
ceoccecss DO YOU WISH TO voeveunnn
CHANGE (C) , DELETE(D), OR RESUME(R)? C
TYPE NEW DATA FOR RECORD # 5
KEY : AAA
INFO: TOWING SERVICE AT 555-4567
RECORD 4 (0 = EXIT)? 0
QUIT(Q), PRINT KEYS(P), OR RESUME(R)? P
PRINT ROUTINE MISSING AT PRESENT
QUIT(Q), PRINT KEYS(P), OR RESUME(R)? Q
* END OF PROGRAM -- ALL FILES ARE CLOSED *
S

The next run shows what happens when this program is used at a
later date. The file MEMO is now an “old” one, so it is not initialized.
Previously stored information can be retrieved or changed. And of course
new information can still be stored on the unused records of the file.

THIS PROGRAM ALLOWS YOU TO SAVE AND/OR RETRIEVE PAIRS

OF DATA OF THE FORM (KEY, INFO). EXAMPLES:
KEY? SAUERBRATEN INFO? OLD HEIDELBERG, 555-1234
KEY? ACE BONDS INFO? SAFE DEP BOX 24, MARGINAL TRUST CO.

NAME OF DATA FILE? MEMO
>>> WARNING: DO NOT EXIT THIS PROGRAM BY PRESSING BREAK <<<

NOTE: THIS IS AN OLD FILE

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

RECORD # (0 = EXIT)? 1

DATA FOR RECORD # 1

KEY : SAUERBRATEN

INFO : ALPINE VILLAGE, 555-9876, MUSIC AFTER 8
THIS RECORD HAS BEEN ACCESSED 2 TIME(S)
teeeeaces DO YOU WISH TO vuevueeonen

CHANGE (C), DELETE(D), OR RESUME(R)? R

- s e 7 o " T Y e e (s T " L T (o S D s o . " o ———— —

RECORD # (0 = EXIT)? 3

DATA FOR RECORD # 3

KEY : VEGETARIAN

INFO : CORNUCOPIA REST., 334 ATWOOD ST., 234-9987
THIS RECORD HAS BEEN ACCESSED 1 TIME (S)

veeecosces DO YOU WISH TO veeveeens

CHANGE (C) , DELETE(D), OR RESUME(R)? D

a2 -~ g i 2 G Qo 2~ o W o i e s - o -

RECORD # (0 = EXIT)? 3

* RECORD ¢ 3 IS BLANK *

teeeceeas DO YOU WISH TO seveceoen
CHANGE (C), DELETE(D), OR RESUME(R)? R

RECORD # (0 = EXIT)? 1

DATA FOR RECORD # 1

KEY : SAUERBRATEN

INFO : ALPINE VILLAGE, 555-9876, MUSIC AFTER 8
THIS RECORD HAS BEEN ACCESSED 3 TIME(S)
ceceseses DO YOU WISH TO ..ccensees

CHANGE (C) , DELETE(D), OR RESUME(R}? X

CHANGE (C) , DELETE(D), OR RESUME(R)? R

-] s o (2 o " o S " 4 o S A S i S i e G D S (. e S i A S " o~ - -

RECORD # (0 = EXIT)? O
QUIT(Q), PRINT KEYS(P), OR RESUME(R)? Q
* END OF PROGRAM -- ALL FILES ARE CLOSED *

High-Level Design

The seven steps given in our earlier comparison of a manual filing system

with computer files can also be used for the design of FILEBOX. These can

be restated more fully as follows:

1. Print instructions, input name of data file, and open it for use with
a channel/buffer number from 1 to 15. This number will be used
in the rest of the program to refer to this file. This is like using a
channel number in a TV set to refer to one of the thousands of
possible station names. Just as channel 2 can refer to WCBS in one
place, but to WXYZ somewhere else, channel/buffer 2 can refer to
the file MEMO at one time, but to STARTREK at another. You
determine the correspondence, using the OPEN statement explain-
ed below.

Section 4.3 Adding Disk Storage 215

2. If the file is new, initialize it with blank records and set the access
numbers to zero.

3. Ask the user which record number is desired. Then take care of a
number of technical matters:

(a) Convert the record number supplied by the user into a
physical record number. In FILEBOX the physical record
number PR % will simply be made equal to the user’s
number.

(b) Use the FIELD statement to arrange the file buffer area in a
way that matches the way you want data items stored in each
record.

4. GET the desired record from the disk file, and display its contents
on the screen.

5. Allow the user to PUT new or revised data on the record just
displayed, if desired. Also allow the user to delete data.

6. Repeat steps 3, 4, and 5 until user says “exit.”

7. Clean up time. Print a list of keys if desired; close the file.

Coding the Program

Before presenting the code for FILEBOX, we'll explain six new statements
found in Microsoft disk-extended BASIC: OPEN, FIELD, LSET, GET,
PUT, and CLOSE. Our explanations will correspond to the way these
statements are used on a TRS-80 computer using TRSDOS (the TRS-80
Disk Operating System). We'll also explain use of the four special BASIC
functions MKS, MKI, CVS, and CVI.

How Disk Files Are Accessed

A mini-disk can hold about 90,000 bytes of information, where each byte
can represent one character (like A, B, Z, 3, =, +, and so on). The infor-
mation is recorded on 35 concentric tracks, with each track broken down
into 10 sectors. Each sector holds 256 bytes, so you can see the actual total
is 10+256+35 = 89,600 bytes. One sector is used for each physical record
in a data file, so that means 256 characters can be stored on a physical
record. However, since one byte is not available to the user, from now on
we'll use the number 255. You should also be aware that some of the
tracks on a disk are reserved for system use, so the space available for user
files will be less than the disk’s maximum capacity.

216 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

SECTOR NUMBERS - \ /

TRACK 1,SECTOR 8
DATA 256 BYTES

TRACK/SECTOR ID FOR
TRACK 1, SECTOR 8

TRACKS 1,2,-36

7
DIRECTION OF ROTATION /

Disk-extended BASIC allows you to move exactly one record at a
time from disk to user memory, and vice versa. The record is stored in a
portion of memory called a disk I/O buffer. There can be up to fifteen of
these buffers, and each one holds 255 bytes. The BASIC key words GET
and PUT are used to move things from disk to buffer and vice versa, while
the key word OPEN is used to say which buffer will be used for a given
file.

An Example: Suppose the file MEMO has five physical records stored
on a disk. You decide to work on some of these records at random using
disk T/0 buffer 1. So you need the BASIC statement

110 OPEN "R”, 1, "MEMO”
The “R” means that this file will be used randomly. You can ask for any
record in any order—you don’t have to go through the records sequential-
ly, as with tape.

Here's a picture of what happens when you transfer a record, (for ex-
ample, #3) from disk and store it in buffer 1, and vice versa:

Section 4.3

Adding Disk Storage

217

THE HEAVY LINE SHOWS
A FILE WITH FIVE RECORDS
STORED ON DISK
BUFFER 1
GET 1,3
(255 BYTES)
BASIC
PROGRAM
PHYSICAL BUFFER 2 WITH 3
RECORD #3 (255 BYTES)| FILES
(256 BYTES) OPEN
PUT 1,3
BUFFER 3
(255 BYTES)
MAIN MEMORY

To make the transfer of record #3 from disk to memory, your pro-
gram must use a statement like this:
310 GET 1,3
To reverse the operation, transferring what'’s in the buffer back to
disk (presumably because you've made some changes in the data), your
program needs a statement like this:
410 PUT 1, 3
So far so good. However, once the data for the desired record has
been moved into the buffer, the big question is how does your program get
at it? The answer is that you use the FIELD statement to set up pointer
names. These look like string variable names (such as A$, D$, K%$(I)), but
they refer only to the contents of the fielded buffer. For example,
210 FIELD 1, 11 AS A%, 50 AS B$, 2 AS C$
can be pictured as doing the following:

Buffer 1: | A% B$ C$
11 bytes 50 bytes 2 bytes

192 bytes not made
accessible

If you next use the statements

410 GET 1, 3

420 PRINT A%, B%, C$
you will then see what's in the third record at the parts of the buffer these
names point to, with 11, 50, and 2 bytes printed for A$, B$, and C$,
respectively.

The reverse procedure is a little trickier. For example, suppose you

want to store an 11-character word, followed by a 50-character definition,

218

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

followed by a 2-letter code, putting all three items on record #4 of the file
DATA opened for use with buffer 1. To do this, you must first field the
buffer, and then load it up with data by using LSET statements as follows:
150 FIELD 1, 11 AS A$, 50 AS B$, 2 AS C$
160 LSET A% = “PELICAN”
170 LSET B$ = “HIS BILL HOLDS MORE THAN HIS
BELLYCAN"
180 LSET C$ = “XX”
190 PUT 1, 4
LSET is a special buffer assignment statement that must be used when
placing data into a buffer. It means “left set,” that is, place the left-most
part of the string given in each statement at the position specified by the
FIELD statement, using exactly the number of bytes specified. If any bytes
are unused, space characters (ASCII 32) are inserted as needed. If there
aren’t enough bytes, the string will be truncated, ie: chopped off, on the
right.

Saving and Retrieving Numbers

The use of the dollar sign ($) in buffer pointer names is to remind you that
only string (ASCII character) information can be stored on disk data files.
To store numbers, you must first make them into a string, using the
special MKS$() and MKI$() functions. When these strings are later
retrieved from disk, they are converted into numbers with the CVS()
and CVI() functions. The S in these function names means “single preci-
sion decimal number” (like 3.14159), while the I means “integer number”
between — 32,768 and 32,767, inclusive. It turns out that the single preci-
sion numbers require four bytes when stored as strings, while integer
numbers take only two bytes.

For example, suppose we wish to store an integer number on record
#4 of the file DATA in the position pointed at by C$. The number is to
start out as 0, and increase by 1 every time the record is accessed by a GET
statement. Here's a BASIC program that does this, printing out the con-
tents of the record each time it's updated. You can see what was PUT into
record #4 each time around the loop by drawing a box around all the out-
put to the right of the = signs.

Section 4.3 Adding Disk Storage 219

N
100 REM -=-—-- FILEDEMO -----

110 OPEN "R", 1, "DATA" 'USE BUFFER 1 FOR THE RANDOM FILE "DATA"

120 S$="BEGIN: " 'INITIALIZE THE STRING S$

130 FIELD 1, 25 AS T$, 2 AS C$ 'DEFINE 2 POINTER POSITIONS FOR BUFFER 1

140 LSET T$=S$ 'PLACE S$ IN BUFFER AT POSITION TS

150 LSET C$=MKIS$(0) 'MAKE 0 INTO A STRING AND PLACE AT CS$S

155 LPRINT TAB(25);"T$";TAB(51);"CS"
156 LPRINT TAB(25); "/";TAB(51);"/"

160 FOR C%=1 TO 10 !m=z======== BEGIN LOOP =s==s======
170 pPUT 1, 4 'PUT CONTENTS OF BUFFER ON DISK RCD #4
180 GET 1, 4 'BRING DISK RECORD §#4 BACK INTO BUFFER
190 LPRINT "DATA ON RECORD #4 "; 'PRINT OUT TS PART OF BUFFER AS A
195 LPRINT "NOW = ";TS$;CVI(C$) 'STRING AND C$ PART AS AN INTEGER
200 S$=5$+CHRS (64+C%) ‘ADD AN ALPHABETIC CHARACTER TO S$§
210 LSET C$=MKIS$(C%) 'MAKE C% INTO A STRING AND PUT AT C$
220 LSET T§$=S$ 'PLACE LATEST S$ IN BUFFER AT POSITION TS
230 NEXT C% !==s=z======= END LOOP =s==s=======
240 CLOSE: END 'CLOSE ALL FILES; DISCONNECT BUFFERS
>RUN

T$ Ccs

v/

DATA ON RECORD #4 NOW = BEGIN: 0
DATA ON RECORD #4 NOW = BEGIN: A 1
DATA ON RECORD #4 NOW = BEGIN: AB 2
DATA ON RECORD #4 NOW = BEGIN: ABC 3
DATA ON RECORD #4 NOW = BEGIN: ABCD 4
DATA ON RECORD $4 NOW = BEGIN: ABCDE 5
DATA ON RECORD #4 NOW = BEGIN: ABCDEF 6
DATA ON RECORD #4 NOW = BEGIN: ABCDEFG 7
DATA ON RECORD #4 NOW = BEGIN: ABCDEFGH 8
DATA ON RECORD #4 NOW = BEGIN: ABCDEFGHI 9

This is the data
that was put on
record #4 (and

retrieved using
GET) in filedemo

The preceding is a complete, but not very useful program that
demonstrates the most important features of disk BASIC. Notice that the
last statement is CLOSE (or CLOSE 1). The CLOSE statement should
always be at the end of a program that uses disk files. It should also be us-
ed any place an opened file will not be accessed for a while.

WARNING!!! If a file program you are testing gets interrupted
because of an error or a BREAK, the CLOSE statement won't be executed.
In this case you should immediately type “CLOSE" in direct mode.

Let’s now look at the program FILEBOX which uses all the techniques
just discussed, but in a more useful application. The name of the data file

220

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

is supplied by the user in line 170 and stored in F$. Line 180 connects this
file to buffer 1. Line 190 uses the special “last on file” function LOF(1) to
tell us the number of the last physical record recorded on the buffer 1 file.
If LOF(1) = 0 it's a new file that needs to be initialized: otherwise it's an
old file with previously recorded data.

10

20

30

110
115
120
130
150
160
170
172
175
177
180
190
195
200
201
202
210
216
217
220
230
240

301
302
310
320
330
350
360
390

401
402
410
415
417
420
430
440
450
451
452
455
460
461
462
463
464
500

IEEE XSRS SRS LRSS SRR LSRR SE R LRSS SR EEEEEEEREEEREESEEEE LSS

vk FILEBOX (SAVES AND RETRIEVES DATA USING DISKS) *
I R T I Yy
CLEAR 500 : CLS

ON ERROR GOTO 989

PRINT "THIS PROGRAM ALLOWS YOU TO SAVE AND/OR RETRIEVE PAIRS"

PRINT “OF DATA OF THE FORM (KEY, INFO). EXAMPLES:"
PRINT "KEY? SAUERBRATEN INFO? OLD HEIDELBERG, 555-1234"
PRINT "KEY? ACE BONDS INFO? SAFE DEP BOX 24, MARGINAL TRUST CO."

PRINT:PRINT"NAME OF DATA FILE";:INPUT FS$

IF F$="" THEN 999

IF LEN (F$)>8 OR ASC(F$)<65 OR ASC(F$)>90 PRINT "BAD NAME":GOTO 170
PRINT ">>> WARNING: DO NOT EXIT THIS PROGRAM BY PRESSING BREAK <<<"
OPEN "R", 1, F$

IF LOF (1)>0 PRINT "NOTE: THIS IS AN OLD FILE": GOTO 310

PRINT "THIS IS A NEW FILE. STAND BY FOR INITIALIZATION"

Cg=0
FIELD 1, 61 AS T$, 2 AS C$
LSET T$=" ": LSET C$=MKIS$(C%)
FOR PR%=1 TO 25

PUT 1, PR%
NEXT PR%

PRINT M o e o e o o o o e e "
PRINT "RECORD # (0 = EXIT)";: INPUT KN%

IF KN%=0 THEN 910

GOSUB 810 'CALCULATE PHYSICAL RECORD # & SUBRECORD #
IF PR%>25 PRINT "FILE SIZE EXCEEDED": GOTO 310

FIELD l, 11 AS AS$, 50 AS BS, 2 AS CS$

GET 1, PR%
C$=CVI(C$): IF C%<>0 THEN 420
PRINT"* RECORD #";KN%;"IS BLANK *": GOTO 455
PRINT "DATA FOR RECORD #"; KN%
PRINT "KEY : ";AS
PRINT "IWFO : ";BS$
PRINT "THIS RECORD HAS BEEN ACCESSED";C%;"TIME(S)":C%=C%+1
LSET C$=MKIS$ (C%)

PUT 1, PR% 'PUT NEW # OF ACCESSES ON RECORD
PRINT ".¢ecoeses DO YOU WISH TO cosccscess
PRINT"CHANGE (C), DELETE(D), OR RESUME(R)"::RS$="":INPUT RS
IF R$="R" OR R$="" THEN 310

IF R$="C" THEN 510

IF R$="D" LSET AS$=" ":LSET B$=" ":C%=0:GOTO 540

GOTO 460

Section 4.3 Adding Disk Storage

221

f
501 ' INPUT NEW DATA AND SAVE IT ON DISK
B 02 T o e e e o e o o o o o S et o
510 C%=1: PRINT "TYPE NEW DATA FOR RECORD #";KN%
520 PRINT "KEY : ";:LINEINPUT K$: LSET AS$=KS$
530 PRINT "INFO: ";:LINEINPUT I$: LSET BS$=IS$
540 LSET C$=MKI$(C%)
550 PUT 1, PR$
590 GOTO 310
B D0 7 o o memm o o e e o o . o
8§01 CALCULATE PHYSICAL RECORD # AND SUBRECORD #
BOZ M o e e e e e e e e e e e
810 PR%=KN% ‘PR IS SAME AS NUMBER INPUT BY USER IN
820 'THIS SIMPLIFIED VERSION OF F1LEBOX
890 RETURN
G 0 o o omem
901 ' EXIT ROUTINE; LIST ALL KEYS ON FILE IF DESIRED
902 M i o o e o e e o
910 PRINT "QUIT(Q), PRINT KEYS(P), OR RESUME(R)";: INPUT RS
915 IF R$="Q" THEN 990
920 IF RS$="P" THEN 940
925 IF R$="R" THEN 310
930 GOTO 910
940 PRINT"PRINT ROUTINE MISSING AT PRESENT": GOTO 910
989 PRINT "ERROR DETECTED IN PROGRAM"
9390 CLOSE
999 PRINT "#* END OF PROGRAM -~ ALL FILES ARE CLOSED *":END
\

Future Extensions and Revisions

The program FILEBOX is wasteful of disk space since it only uses 63 bytes
for each user record, while a disk physical record can hold up to 255 bytes..
This suggests storing several user records in each physical record (PR %).
With 63 bytes per user record, we can put four user records in each
physical record. Some books call the user record a logical record because.
its number is in the user’s head, not in the physical machine. If we give \
each of the user logical records a key number, KN% =1, 2, 3, 4, ..., etc.,
and divide each physical record PR% into four subrecords labelled SR %
=0, 1, 2, 3, here’s a picture showing how we can store four times as much

information in a file:

222

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

SR% =0 SR% =1 SR% =2 SR% =3
PR% =1|KN% = 1| KN% = 2 [KN% = 3 |[KN% = 4
PR% = 2| KN% = 5| KN% = 6 [KN% =7 |[KN% = 8
PR% = 3| KN% = 9| KN% = 100KN% = 11]KN% 12

etc. etc.

Diagram showing a file layout with 4 subrecords on each physical record.

All the variables have had the percent sign (%) added to indicate that
BASIC should treat these as integers. In this picture, it is understood that
each of the logical records, (the small boxes with the key numbers KN %
inside,) is analogous to one file card of information. The data stored in the
logical records will be in the form described by the user with the FIELD
statement.

Project FILEBOX2

Modify FILEBOX so that each logical record still consists of 11 bytes for
the key, 50 bytes for the information, and 2 bytes for the number of times
accessed, but so that there will be four logical records stored in each
physical record. The trick will be to field the 255-byte buffer as follows:

11 | 50 2511 50 2511 50| 2 111 50

JE— J—
o - v S

SR% =0 SR% =1 SR % = 3 SR % =

We could field the buffer into this form by using a very long FIELD state-
meni, using a lot of pointer names (12 in our exampie). But then we'd have
the problem of figuring out which pointer names go with which
subrecord. One solution to this problem is to use subscripted pointer
names. For example, the three pointers for subrecord #0 could be called
A%(0), B$(0), and C%(0). Then those for subrecord #1 would be called
A%(1), B$(1), C$(1), those for subrecord #2, A$(2), B$(2), C$(2), and so
on. Here's how buffer 1 can be fielded using this scheme for four
subrecords:

Section 4.3 Adding Disk Storage 223

210 FOR SR% = 0to 3

220 FIELD 1, (SR% * 63) AS D$, 11 AS A$(SR%), 50 AS
B$(SR%), 2 AS CH(SR%)

230 NEXT SR %

The trick is to use a dummy pointer D$ which successively forces the
field statement to skip over O positions, 63 positions, 126 positions, and
189 positions of the buffer before setting the real pointers AS(), B$(),
and C$().

In many applications there is no need to use subscripted pointers since
the program deals with only one logical record at a time. This is the case
with FILEBOX2. Once the user inputs the key number, this can im-
mediately be translated into unique physical record, and subrecord
numbers. In this program, we refer to each logical record by the key
number KN%, which is input by the user. The physical record ~nd
subrecord numbers are calculated, in subroutine 800 by the formulas:

PR% = INT(KN% — 1)/4) + 1

SR% = KN% — 4+ (PR% — 1) —1
Then the buffer pointers for this subrecord should be set by using the
statement

FIELD 1, (SR% * 63) AS D$, 11 AS A$, 50 AS B$, 2 AS C$
To see how these formulas work, try them out for the key numbers 1, 2, 3,
4,5, ..., 12 and then compare what you get with the file layout diagram
shown earlier. For example, for KN% = 8 you should get:

PR% = INT(7/14) + 1 =1+ 1= 2

SR% =8 —4*2—1)—1=8—-4—1=3
Thus when the user gives a key number KN% = 8, which means he wants
the 8th logical record in the file, these formulas say that logical record 8 is
located on physical record #2, but in the fourth subrecord position (SR %
= 3). The field statement locates this logical record by setting up the
pointers as follows:

D$ A$ B$% CS
PR% = 2| - 189 : 11 50 2
For SR% = 3, the dummy So here’s the fourth subrecord,
pointer D$ is fielded as 3* 63 = which is where logical record 8 is
189. stored.

What this all comes down to is that when the user asks for logical
record 8 (KN% = 8), the program must do three things:
1. Calculate PR% = 2
2. Calculate SR% = 3
3. Execute the field statement
FIELD SR% * 63 AS D$, 11 AS A%, 50 AS BS, 2 AS C$
which for this case is the same as
FIELD 189 AS D$, 11 AS A%, 50 AS B$, 2 AS C$
These three actions must be taken for every new value of KN% sup-
plied by the user, so they must be handled by statements that are executed

224

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

each time around the main loop of the program (lines 310 to 590).

For FILEBOX2, use all the above ideas to modify FILEBOX so that it
can store a total of 100 logical (user) records using only 25 physical
records.

Project FILEBOX3

To use the previous two programs the user must supply the key number
(KN %) of the logical record desired. It may be difficult to remember these
numbers. To help out someone who'd like a memory jogger, modify
FILEBOX2 so that it produces a printed list of the key numbers KN %
followed by the key data item. Here’s what the printout should look like:

N
#: KEY #: KEY #: KEY $: KEY
1: SAUERBRATEN 2: 3: 4:

5: AAA 6: CIGARS 7 8: SUSIE
9: 10: 11: 12:
13: FISH 14: LOANS 15: INSURANCE 16:
17: 18: 19: 20:
21: 22: 23: 24:
25;: 26: 27: 28:
29: 30: 31: 32:
33: 34: POKER 35: 36:
37: 38: 39: 40:
4]1: 42: 43: 44:
45: 46: 47: 48:
49: 50: 51: 52:
53: 54: 55: 56:
57: 58: 59: 60:
61: 62: 63: 64:
65: 66: 67: 68:
69: 70: 71: 72:
73: 74: 75: 76:
77: 78: CONCERTS 79: 80:
81: 82: 83: 84:
85: 86: 87: 88:
89: 90: 91: 92:
93: 94: 95: 96
97: 98: BUS SKED 99: TAXI 100:

Beyond FILEBOX3; Hash Coding

In many applications it’s desirable to use more complicated key numbers.
For example, a business data system might use 7-digit account numbers
(like AN% = 9645234). The problem is that these numbers are too big for
use as key numbers. It's out of the question to reserve one logical record
for each possible account number (there are millions of them!).

One technique for getting around this difficulty is called hash coding.

)

S o,
©.q

(-]

OU
5.90%3R

] 20
T o L/
(T oéo“éco)dd ?gq

Q

go

Section 4.3 Adding Disk Storage 225

The idea is to convert a large number like 9645234 into a simple key

number KN % that takes on the values 1, 2, 3, 4, 5, ..., and so on, up to

the maximum size of your file. A typical hash coding procedure has two

parts:

1. Generate a small number KN% from the big number AN%, input
by the user, or from a key word input by the user.

2. Make sure KN% hasn't already been used (this is called detecting
collisions). If it is, set KN % equal to the next unused number.

Step 1 of this procedure can be explained by comparing it to a parking
garage which has the innovative feature that when you enter, the atten-
dant converts your license plate number (AN %) into a smaller parking
stall number (KN%). The conversion is done by a formula that says
“divide AN% by a prime number just a little less than the number of park-
ing stalls, and set KN % equal to 1 + the remainder.” For example, if your
license plate number is 6358 and there are 100 stalls, we could use the rule
“KN% = remainder + 1" after dividing by 97. This will make KN %
come out to be 54, since

65
97)6358
582

538
485

53

and remainder + 1 = 54.

So you are told to park in stall #54. The reason for the +1 in the for-
mula is that we don’t want to have a stall #0.

Step 2 at this garage says, “If there's already a car parked in stall 54,
try stalls 55, 56, and so on until you find an empty one.” There are better
rules that could be used, but this one has the virtue of simplicity. Its also
understood that if you get to stall #100 and find it occupied, you continue
your search back at stall #1, 2, ..., and so on. If after 100 tries you strike
out, there’s obviously no room!

Now when you come back to retrieve your car, suppose you find that
you forgot your stall number, but you can see your license plate number is
6358. The attendant quickly uses his computer to “hash” this into 53 + 1
= 54 and tells you that you will probably find your car in stall 54, but if
it's not there, you should find it with just a small sequential search of stalls
55, 56, and so on.

In our example, we divided by 97 because it is a prime number. It has
been found that using a prime divisor “scatters” the data around a lot bet-
ter. However, it would be a bad idea to try and squeeze 97 cars into a
97-stall garage. There should be more stalls than cars to avoid having too
many collisions in a row. In our example we've assumed 100 stalls, cor-
responding to the number of records in FILEBOX3. For more on the sub-
ject of hashing, see the BYTE Book, Program Design.

226

CHAPTER4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

The same ideas can be applied to key items expressed as strings. For
example, we can take the key items used in FILEBOX and hash them into
key numbers KN %, say from 1 to 97.

To do this, we must first change a key string, say CIGARS, into a
number. One way is to convert each of the letters in CIGARS into its
ASCII code, and then find the sum of these codes. To make the same letter
yield a different number in different words, we can multiply the code by
the position in the word. Using this scheme, the word BOB would become:

Letter ASCII Code Position Product
B 66 1 66
O 79 2 158
B 66 3 198

AN% = SUM = 422

Next we use the divison by 97 trick, and make KN % = the remainder plus
one. A formula for the (remainder + 1) after division by 97 is

KN% = AN% — 97 * INT(AN% — 1)/97)
For example:

When AN% = 1, KN% 1

When AN% = 97, KN% = 97

When AN% = 98, KN% =1

When AN% = 99, KN% = 2, and so on.

For BOB, KN% = 422 — 97 * INT(421/97) = 422 — 97 * 4 = 422 — 388
34.

Here's a test program that converts strings into key numbers using
these formulas:

~
REM ~--- HASHDEMO (HASHES STRINGS INTO INTEGERS 1 TO 97) ===
LPRINT "STRING =", " ANg% =", "KNg="
LPRINT e e e e e e et e "
READ S$
IF S$="XXX" THEN 990

GOSUB 210 'CONVERT SS$ TO AN%
LPRINT SS$, ANg, KN%
GOTO 20
STOP

'——-— SUBROUTINE TO CONVERT S$ TO INTEGER KN%, 1<=KN%<=97 —=-
0 AN%=0

FOR K=1 TO LEN(S$)

AN$=AN% + K*ASC(MIDS(SS,K,1))

NEXT K

KN$=AN%~97*INT ((AN%-1)/97)

RETURN

'-—~ SAMPLE STRINGS ===

DATA CAT, CIGARS, DOG, SAUERBRATEN, JOHN

DATA 621-4839, 123-45-6789, A, AB, ABC

DATA BOB, MCZART, GILDA, SHAKESPEARE, AGENT 007

DATA BACH, BEETHOVEN, BRAHMS, VERDI, PUCCINI

Section 4.3

Adding Disk Storage

227

~
350 DATA ALPHA, BRAVO, CHARLIE, M61l, M62, M63, M64, M65
355 DATA“ZZZZZZZ2222"
390 DATA XXX
>RUN
STRING = AN% KN %
CAT 449 61
CIGARS 1594 42
DOG 439 51
SAUERBRATEN 4948 1
JOHN 760 81
621-4839 1890 47
123-45-6789 3489 94
A 65 65
AB 197 3
ABC 398 10
BOB 422 34
MOZART 1679 30
GILDA 1042 72
SHAKESPEARE 4841 88
AGENT 007 2553 31
BACH 685 6
BEETHOVEN 3437 42
BRAHMS 1596 44
VERDI 1107 40
PUCCINI 2063 26
ALPHA 1070 3
BRAVO 1164 97
CHARLIE 2035 95
M6l 332 41
M62 335 44
M63 338 47
M64 341 50
M65 344 53
ZZ22222%22% 5940 23
Y,

Notice that there were no collisions until BEETHOVEN came along.

For all 28 strings there were 4 collisions: between BEETHOVEN and
CIGARS, M63 and 621-4839, ALPHA and AB, Mé4 and BRAHMS. Using
the “next available slot” rule would resolve these collisions by putting
BEETHOVEN in 42, M63 in 48, ALPHA in 4, and Mé4 in 51, all of which

happened to be free in this example.

Superproject (HASHFILE)

Modify FILEBOX3 so that the user inputs a key string in line 320, instead
of a key record number KN%. The program should then hash this into
KN % (from 1 to 100), increasing KN % as needed to avoid collisions, and
then calculate the proper PR% and SR% values for storage or retrieval.

228

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

Note: Your program will have to know whether you want to save or
retrieve information before doing this. The handling of collisions is different
for these two cases (think about the garage analogy). It will also be
necessary to allow the user to delete records when the file gets too full (this
is like having cars leave the garage.)

Superproject (MONYDISK)

The program MONEY, explained at the end of Chapter 3, allows the user
to input all kinds of financial data. But when the computer is turned off,
this data all disappears. It would be much better if the data were saved on
a disk file for future use and/or modification.

Write a program called MONYDISK that saves the data in G on disk,
where G is shorthand for all the arrays GD(), ..., GC(). Use G to store
all the data in main memory while the program is in use. But just before
ending, the program should save all the G array information on a disk file.
The name of this file should be established when the program is first run,
and it should be keyed to the financial period given at the beginning of the
program (eg: DATA284 for the second period of 1984). This can be done
by letting the file name F$ = “DATA"” + STR$(P) + STRH(Y).

If the program is later run for that same period, all the data on
DATA284 should automatically be moved from disk into the G array
before any new transactions are accepted. Then the variables for current
check number, deposit number, checking account balance, etc. should be
set to their proper new values. A convenient place to store this informa-
tion is in the records corresponding to the header positions we reserved in
G at locations 0, 100, 150, and 190.

These headers can also be used for another purpose. You will recall
that the G array was rather large; it could hold up to 200 rows of data. To
avoid copying unused parts of the G array onto disk, a useful technique is
to store the number of locations actually used in each part of G in the cor-
responding header. These numbers can then be used to control how many
logical records are saved on disk. For example, if only rows 1 to 10 are us-
ed in the check payment part of G, then the number 10 should be stored as
part of the header in row 0. This header, and the ten rows of check pay-
ment data should be PUT on the file, but not rows 11 to 99. Later, when
the program GETs this information, it can use the 10 in the header to
know that the next ten records should be loaded back into locations 1 to
10 of G. It will also know that the very next logical record is the header
corresponding to row 100 in G, and be able to use the information in that
header to load the next portion of G, and so on down the file.

As you can see, this is a tough one. Take your time, and plan on try-
ing a few smaller experiments to check out your ideas before writing a full
blown version of MONYDISK. For example, see if you can write a pro-

Section 4.3 Adding Disk Storage 229

gram that just saves and retrieves the “used” portions of one small array
using the header technique suggested above. Invent other experiments in a
similar manner, but keep them simple. Conquering each of these smaller
projects will make the final project seem easier. Have fun!

230 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

4.4 WORD PROCESSING AND LINKED LISTS: EDIT1000,
EDIT2000, EDIT5000, (EDIT7000), (TEXTFORM)

In this section we're going to put together a program called EDIT1000 that
can be applied to word processing, one of the most valuable applications
of small computers developed to date. As the name suggests, a word pro-
cessing system is used for creating, modifying, and manipulating
documents made up of words, or in general, of any symbols that can be
printed on paper. These documents can be short memos, business letters,
contracts, reports, term papers, magazine articles, or even books.

The hardware for a word processing system consists of four major
components:

1. A video terminal (screen and keyboard) used for entering and
modifying text.

2. A letter-quality printer for producing the final output.

A disk system for storing documents as data files.

4. The computer itself, including sufficient memory and the needed
interface circuits.

In addition to the hardware, there are two kinds of software used:
1. A text editing program (usually just called an editor) that allows

you to enter text, change it, delete it, move it around, save it,

and/or retrieve it.

2. A text formatting program that takes the text produced by the
editor and rearranges margin settings, spacing between lines,
paragraph indentations, right just.fication, page numbering, and so
on, in accordance with your instructions.

The most important of these two programs is the editor, since you
can always format the text to some extent by the way you type it into the
editor. In this section we'll show you how to write a simple but effective
editor called EDIT1000. The features of EDIT1000 are based on the design
specifications of the UNIX editor developed at Bell Laboratories. In sec-
tion 4.6 we'll suggest additional features, resulting in the EDIT5000 pro-
gram.

Nad

Linked Lists

Before designing and coding EDIT1000, it will be helpful if we take time
out to discuss a data structure called the Iinked list. Once this is
understood, it will be much easier to see how EDIT1000 works.

A non-computer example will help set the scene. Imagine that you are
a writer with the following rather strange way of doing things. Instead of
using ordinary sheets of paper, you write everything on file cards, putting
only one line on each card. The cards are kept in a file box, and the
numbers 1, 2, 3, 4, ... are written in the upper left hand corner in ink. The
rule is that the cards will always be kept in the file box in the order given

by the inked numbers.

Section 4.4 Word Processing and Linked Lists 231

Next, using pencil (because you expect to make some changes), you
write a number in the lower right hand corner that “points to” or links
each card to its successor. So when you first start, on card #2 you write a 3
as the link, on card #3 you write a 4 as the link, and so on. The last card
has no successor, so you make its link 0 (zero). Here's a picture of what
you have so far.

100 <—
MEMO: FIRST ~,
AVAILABLE FREE 99 <
SPACE FOR TEXT \
IS AV=2 e° \\
.® \ 0
o '«\\\ \
100
> \
N
, o=~ \ \\ ZERO HERE MEANS
—l 2 N \ \ "THERE ARE NO
N\ \ 5 ADDITIONAL CARDS
INDEX OR ——&| 1 \\ \ AVAILABLE IN THE
“SLOT" \ 4 PILE.
NUMBER \ Iy
_ 3 Je—l— Nk ACTING &S A

FORWARD POINTER (FP)

TEXT BEGINS ON---&0

L——ZERO MEANS "NO ADDITIONAL TEXT IS
ON FILE AT PRESENT."

You can see from the diagram that each link is like the phrase “con-
tinued on card xx,” except on card 1. We have used card #1 for a special
purpose: to tell us where the first line of text of our article begins. Since we
haven't written anything yet, we initialize the link on card #1 with a 0
(zero) to mean “no text in the file.” Later on, as the file fills up with lines of
text, a zero link will also be used on the last text-holding card to mean “no
additional text in the file.”

You'll also see another message, written on a piece of memo paper,
that tells the author which is the first card available for writing text. Since
card #1 is used for a special purpose, the first available card is initially #2,
so we mark AV = 2 on the memo paper.

In our computer editor program, each card will correspond to an en-
try in a string array T$(I). The card number will correspond to the index I.
It will be handy to call T$(I) “the Ith slot in the T$ array.” The links will be
stored in a separate “forward pointer” array FP(I). This can be pictured as
sitting right next to T$(I). Here's what these arrays will look like initially.

232 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

| T$() FP(I)
1 0
2 3
3 4
AV = 2
98 99
99 100
100 0
This structure is called a linked list. The two most important opera-
tions in using this structure with an editor are appending (or adding) lines
of text, and deleting lines of text. For example, here’s what the arrays will
look like after initially appending four lines of text:
I T$D) FP(D)
1 (not used) 2
, PI”EIZ'II{E??II{\{EA% P(I:&I\I/DI})UTERS ARE GREAT BECAUSE (1) 3
3 (2) THEY KEEP THE KIDS OFF THE STREET, 4
4 (3) THEY EXERCISE YOUR IMAGINATION, 5
AV = 6 5 AND (4) THEY OPEN UP NEW CAREERS. 0
6 7
7 8
100 0

To help illustrate a tricky point, we used a text that had numbers in it
corresponding to the order in which text was initially entered. For exam-
ple, the text “AND (4) THEY OPEN UP NEW CAREERS.” was initially
the fourth line entered. Note that these text line numbers are not the same
as the slot numbers given by I. Also note that the zero link has shifted
from slot 1 to slot 5.

Now let's see what happens when the author decides to squeeze in a
new line right after the current second line. For example, suppose he wants

AV

I

7

Section 4.4 Word Processing and Linked Lists 233

to make “PREVENTING WASTED HOURS AT THE POOL HALL,” the
new third line of text. One way to handle this request would be to move
the last two lines down in order to “open up” a space. A much easier (and
as we'll see rtaore powerful) approach is to put the new text in the first
available space, which is presently AV = 6, and then re-link in such a way
that the order in which lines of text are to be read can be obtained from the
links. Here's what we'll have:

I T$(0) FP(I)
1 {not used) 2
5 I;IEEIIE%%I\IIEACI:.H%RII\)/IPU I'ERS ARE GREAT BECAUSE (1) 3
3 |(2) THEY KEEP THE KIDS OFF THE STREET, 6
4 |(3) THEY EXERCISE YOUR IMAGINATION, 5
5 [AND (4) THEY OPEN UP NEW CAREERS. 0
6 |PREVENTING WASTED HOURS AT THE POOL HALL, 4
7 8
8 9
100 0

To read the text now, look at the number in FP(1) to find out where the

text starts, and then follow the links. Doing this will give you slots 2, 3, 6,

4, 5. If you want to know the implicit line numbers, that is, numbers that

say in what order the text will eventually be printed, you'll have to count

as you go down the list “1, 2, 3, 4, 5.”

Question:Is “(3) THEY EXERCISE YOUR IMAGINATION" still the
third line of the text?

Answer: Nol! It's now the fourth line. Simply count as you read in the
proper order to see why.

To delete a line, all you do is readjust the links to point around the
deleted line, and then put the slot number of the deleted line at the top of
the list of available space (in AV). You don’t have to erase the contents of
the deleted line since that will happen automatically the next time a new
line is appended at AV; when something is stored in computer memory the
old contents are always erased. For example, here’s what the arrays would
look like if the second line of text were deleted.

234

AV

Il

3

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

I T$() FP(I)
1 (not used) 2
5 %%I%SYOI%A% }?ﬁhﬁﬁUTERS ARE GREAT BECAUSE (1() 6
3 (2) THEY KEEP THE KIDS OFF THE STREET, 7
4 (3) THEY EXERCISE YOUR IMAGINATION, 5
5 AND (4) THEY OPEN UP NEW CAREERS. 0
6 PREVENTING WASTED HOURS AT THE POOL HALL, 4
7 8
100 0

To read the text, you now follow the sequence 2, 6, 4, 5. Slot #3 is no
longer used for text, so we put it back at the top of the list of available
space. To follow the list of available space, you start with the slot # in AV,
and follow the links. This now gives slots 3, 7, 8, 9, ..., 100. As you can
see, there are really two lists intertwined in T$(I), a list of text lines, and a
list of available space. Let's now see how these ideas can be applied to an
editor program.

Program EDIT1000

The Idea

We want to write an editor program that allows a person to manipulate
text. The text will be kept in an array T$() which can also be called a
text buffer. The user will be able to use one-letter commands like
A(ppend) text, D(elete) text, C(hange) text, L(ist) text on the video screen,
and P(rint) text on paper. There will also be commands that allow the user
to G(oto) any line, ask for H(elp), ask for I(nformation) about line
numbers, T(ransfer) the contents of the video screen to paper, and V(erify)
which line is currently being edited. Blocks of line numbers for later ver-
sions of the program which have additional commands such as W(rite)
text on a disk file will also be reserved.

A Sample Run

In the run below, the EDIT1000 program was used to write a short
announcement for use in a newsletter or on a bulletin board. Every place
you see CMD? means that the editor program received a command from

Section 4.4 Word Processing and Linked Lists 235

the user. The command A is used to add or append lines of text starting
after the line number you give. To get started, you append text after line O,
which means starting with line 1. To get out of append mode you type a
single period. This puts you back in command mode. The example shows
use of several other commands. You should notice in particular that fre-
quent use of the L(ist) command is helpful in keeping track of the latest im-
plicit line numbers. Anything after the symbol “>" is text that was
entered by the user. Anything after ”:” is text that was printed by the com-
puter to help the user remember what was in a given line.

AFTER 'CMD?' TYPE A(PPEND), C(HANGE), D(ELETE), G(0O TO)
H(ELP), I(NFO), L(IST), P(RINT), T(RANSFER), OR V(ERIFY).
RESPOND TO OTHER ? PROMPTS WITH A LINE #. RESPONDING WITH
'ENTER' GIVES CURRENT LINE #. USE I CMD TO FIND CURRENT #.
CURRENT LINE NUMBER NOW = 0. TO APPEND TEXT
AT LINE # 1 RESPOND CMD? A AFTER? O

This text is appended
as lines 1, 2 and 3 (after 0).
The period in 4 means end
of text.

L R R R R I I I I R R A A I A R NN RN

CMD? A AFTER? 0
1> *** S50UTH BROOKLYN COMPUTER CLUB ***
2>NOTICE OF FORTHCOMING MEETINGS
3>GO0OD NEWS! WE HAVE 4 GREAT MEETINGS LINED UP.

4>.
CMD? C FROM? 2 T0? 2w (' Line 2 is changed
2:NOTICE OF FORTHCOMING MEETINGS
25 NOTICE OF FORTHCOMING MEETINGS 11 to 99 means list
CMD? L. FROM? 1 TO? 99 -
1: *** SOUTH BROOKLYN COMPUTER CLUB *#% all the text there is
2 NOTICE OF FORTHCOMING MEETINGS

3:GO0D NEWS! WE HAVE 4 GREAT MEETINGS LINED UP.

CMD? A AFTER? 3
4>MARCH 1: PROF. T. URING WILL SPEAK ON TAPE MACHINES
5>APRIL 3: JOHN ROM WILL TALK ABOUT LOSING YOUR MEMORY
6>MAY 22: MS. FLO DISK WILL SHOW SLIDES OF TERMINALS

7>.
CMD? D FROM? 4 TO? 4 Line 4 is deleted
CMD? L FROM? 1 TO? 99

1: **%* SOUTH BROOKLYN COMPUTER CLUB **%

2: NOTICE OF FORTHCOMING MEETINGS

3:G00D NEWS! WE HAVE 4 GREAT MEETINGS LINED UP.

4:APRIL 3: JOHN ROM WILL TALK ABOUT LOSING YOUR MEMORY

5:MAY 22: MS. FLO DISK WILL SHOW SLIDES OF TERMINALS ~
CMD? A AFTER? 4

5>APRIL 9: JOE RAM WILL DEMONSTRATE HIS ACME III MICRO

More text is appended,
this time after line 3

Notice the new line
numbering at lines

6>1

72 CMD 1 gives information
CMD? D FROM? 6 TO? 6 about line numbers
CMD? I
CURRENT LINE IS # 5 HIGHEST LINE IS # 6

CMD? G WHERE? 6
6:MAY 22: MS. FLO DISK WILL SHOW SLIDES OF TERMINALS
CMD? A AFTER? 6
7>JUNE 16: BIG ELECTION MEETING. NO SPEAKER.
8>.
CMD? I
CURRENT LINE IS # 7 HIGHEST LINE IS # 7

G 6 means go go
line 6 and display it

N J

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

~
CMD? L FROM? 1 TO? 7

1: *%* GOUTH BROOKLYN COMPUTER CLUB **x%

2: NOTICE OF FORTHCOMING MEETINGS

3:GOOD NEWS! WE HAVE 4 GREAT MEETINGS LINED UP.
4:APRIL 3: JOHN ROM WILL TALK ABOUT LOSING YOUR MEMORY
5:APRIL 9: JOE RAM WILL DEMONSTRATE HIS ACME III MICRO
6:MAY 22: MS, FLO DISK WILL SHOW SLIDES OF TERMINALS
7:JUNE 16: BIG ELECTION MEETING. NO SPEAKER.

CMD? A AFTER? 3
4>THREE OF THEM WILL FEATURE OUTSTANDING SPEAKERS
5>1

The I in line 5 was
a mistake so we type
a period to get back

6> into CMD mode. Typing
CMD? D FROM? T0? < D followed by pressing
CMD? L FROM? 1 TO? 99 ‘Enter’ for line numbers

1: **% SOUTH BROOKLYN COMPUTER CLUB **%* means 'Delete the

2: NOTICE OF FORTHCOMING MEETINGS current line' (which

3:G00D NEWS! WE HAVE 4 GREAT MEETINGS LINED UP. is #5)

4: THREE OF THEM WILL FEATURE OUTSTANDING SPEARERS Aw/wrk

5:APRIL 3: JOHN ROM WILL TALK ABOUT LOSING YOUR MEMORY

6:APRIL 9: JOE RAM WILL DEMONSTRATE HIS ACME III MICRO

7:MAY 22: MS. FLO DISK WILL SHOW SLIDES OF TERMINALS

8:JUNE 16: BIG ELECTION MEETING. NO SPEAKER.

CMD?2 A AFTER? 2

3> &—

Typing either a space
or 'Enter’ at line 3

4>. will force a blank
CMD? L FROM? 1 TO? 99 line in the text.
1: %% SOUTH BROOKLYN COMPUTER CLUB *%*%*
2: NOTICE OF FORTHCOMING MEETINGS
3: —
4:GOOD NEWS! WE HAVE 4 GREAT MEETINGS LINED UP.
5: THREE OF THEM WILL FEATURE OUTSTANDING SPEAKERS
6:APRIL 3: JOHN ROM WILL TALK ABOUT LOSING YOUR MEMORY
7:APRIL 9: JOE RAM WILL DEMONSTRATE HIS ACME III MICRO
8:MAY 22: MS. FLO DISK WILL SHOW SLIDES OF TERMINALS
9:JUNE 16: BIG ELECTION MEETING. NO SPEAKER.
CMD? A AFTER? 5
6>
7>.
CMD? L FROM? 1 TO? 99
1: **% SOUTH BROOKLYN COMPUTER CLUB **%*
2: NOTICE OF FORTHCOMING MEETINGS
3:
4:GO0OD NEWS! WE HAVE 4 GREAT MEETINGS LINED UP.
5:THREE OF THEM WILL FEATURE OUTSTANDING SPEAKERS
6:
7:APRIL 3: JOHN ROM WILL TALK ABOUT LOSING YOUR MEMORY
8:APRIL 9: JOE RAM WILL DEMONSTRATE HIS ACME III MICRO
9:MAY 22: MS. FLO DISK WILL SHOW SLIDES OF TERMINALS
10:JUNE 16: BIG ELECTION MEETING. NO SPEAKER.
CMD? I
CURRENT LINE IS # 10 HIGHEST LINE IS # 10
CMD? A AFTER? 10
11>
12> * k% PLEASE POST * ok %
13>, We're finished so let's
CMD? P FROM? 1 T0? 12 & put the text out on a
TURN PRINTER ON -- READY? printer without line numbers

Section 4.4 Word Processing and Linked Lists 237

k& k

GOOD NEWS!

APRIL 3:
APRIL 9:
MAY 22:
JUNE 16:

SOUTH BROOKLYN COMPUTER CLUB *#**
NOTICE OF FORTHCOMING MEETINGS

JOHN ROM WILL TALK ABOUT LOSING YOUR MEMORY
JOE RAM WILL DEMONSTRATE HIS ACME III MICRO
FLO DISK WILL SHOW SLIDES OF TERMINALS And here’s

what shows up

MS.

BIG ELECTION MEETING. NO SPEAKER.

* k%

WE HAVE 4 GREAT MEETINGS LINED UP.
THREE OF THEM WILL FEATURE OUTSTANDING SPEAKERS

PLEASE POST *** on the printer

High-Level Design

The EDIT1000 program can be designed with five main program modules,
followed by a number of command modules (in this case, six). We'll make
provisions for expanding the program by reserving blocks of line numbers
for additional command modules. The modules are as follows:

1.

Gl W

Set up line number variables; dimension arrays.
Give directions; open files (in advanced version)
Initialize the linked list.

Ask the user for a command.

Interpret the command, and branch to one of the command modules
that follow.

I{nformation) command.

A(ppend) command.

C(hange) command.

D(elete command.

L(ist) command.

P(rint) command.

Future command modules.

Note: All command modules end with “GOTO step 4.”

Coding the Program

Before studying the code, you should know that there are two variables
used to keep track of line numbers. These are CL, for current line number,
and HL, for highest line number. CL keeps track of the line number you
have most recently worked with, while HL holds the highest line number
entered so far. HL starts out as 0, and every time a line is added it gets in-
creased by 1. Every time a line is deleted, it gets decreased by 1.

238 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

There are also two variables, sometimes called pointers, used to keep
track of which slot T$(I) corresponds to the current and highest line
numbers. The current line pointer is called CP, and it “points” to the slot
which holds the current line of text. In other words, the current text is in
T$(CP). Think of CP as the number written (in ink) in the upper left hand
corner of the file card holding the current text, while CL is the number you
would get if you counted lines of text while following the links to get to
this current text.

Similarly, a variable (or pointer) called HP is used to point to the slot
where the highest line-numbered text is actually stored. In other words,
the text with the highest line number is in T$(HP). Keep in mind that it’s
quite possible for text with a high line number (say HL = 10) to be stored
in a low slot number (say HP = 3). This could happen if the text in slot 3
had been deleted earlier in the editing session.

The heart of the editor is the append module. Let's look at its design
in further detail. Assume that the user has asked to append text after line
L1. Then we must do the following (the program line numbers that will be
used in the final program precede each step):

1310 Check that L1 is not greater than HL.
1311 Input the line of text into a temporary buffer B$.

1312 Make B$ = “ ” if the user hit ENTER.
1315 If the user typed a period, exit from this module by way of line
1390.

1320 If not, make sure space is available in the linked list.

1325 Make the current line number (about to be appended) = L1 +
1.

1330 Start at the first slot (I = 1); start counting lines (K = 1).

1335- Go down through the linked list, following the pointers (I =

1340 FP(l)), and counting (K = K + 1) until either we hit the end
(FP(I) = 0), or we reach the desired line number (K = CL).

1350 Grab the first available slot (J = AV), and reset AV to the next
free space (AV = FP(])).

1355 Change the link in the new slot to the link that was in the
previous slot (FP(J) = FP(I)).

1360 Change the link in the previous slot to the new slot number

(FP(I) =]).
1365 Maove the text from the temporary buffer into the new slot
(T$(J) = BY).

1370 Reset the current pointer (CP = J) and increase the highest line
number (HL = HL + 1).
1375 Reset the highest line pointer only if the new text has the highest
line number (IF CL = HL THEN HP = CP).
1380 Go back to 1310 to possibly append another line of text.
1390 A period was typed, so go back for another command.
The above code is an English version that is a lot briefer when written
in BASIC. You should study it by comparison with the actual lines of

Section 4.4 Word Processing and Linked Lists 239

BASIC from 1310 to 1390 in the program listing. The other modules work
in a similar manner, and you should be able to figure them out with lots of
doodling on paper to trace the changes in links. These ideas are usually
taught in upper level college courses, so they may be a bit “slippery” at
first. Here's a listing of the entire program EDIT1000:

10

20

30

110
120
130
140
190
191
192
200
201
202
210
215
216
300
301
302
310
320
325
330
340
400
401
402
450
455
500
501
502
510
511
515
529
530
532
534
536
539
540
542
544
546
548
590
601
602
610
620
640
650
690

~
hhkhkhkhkhkhkhkhkdhhhhhkhhhhhhhkhkhhkhkhkkhkhkkhhkhkhkhkhkhkhkhkhhkrhkhkhhhhhhkd
* EDIT1000 (LINE EDITOR PROGRAM, PHASE 1) *
KAhhkkkhkhhhkhkRRkRkhkRhhkRhkhAkAkhkhkhkdhkhkhkhhkrhkkhkhhhhkhkhhkhkhhkhk
DEFINT A-Z 'ALL VARIABLES TO BE INTEGER
CL=0 : HL=0 'CL IS CURRENT LINE #
CLEAR 5000 '‘HL IS HIGHEST LINE #
DIM T$(100), FP(100) 'T$() IS TEXT ARRAY BUFFER
CLS 'CLS MEANS CLEAR SCREEN
'CLEAR 5000 MEANS RESERVE
5000 BYTES FOR STRINGS
1 e e et oo o e o o o e o S S S 2 e S 0 e 7 . o . O 2 S o
' GIVE DIRECTIONS; OPEN FILES
1 e e o e i o s 2 S . A 9 . e e o S e P . S . o i
GOSUB 610:PRINT "CURRENT LINE NUMBER NOW = 0. TO APPEND TEXT"
PRINT "AT LINE § 1 RESPOND CMD? A AFTER? 0"
PRINT i ieeeenaoonoacascccacsasssascsncsscacssossnncnonsse
1 e e o e e o o o e e . S o S B S o o S B S S 2 1
' INITIALIZE LINKED LIST
1 e e e e e s e i e e S e s o S S S e b S i O o S " o 7 o e
AV=2 : FP(1)=0 '‘AV PTS TO TOP OF AVAIL LIST
FOR I=2 TO 99 'FP(1) PTS TO TOP OF TEXT LIST
FP(I)=I+1 *0 SIGNALS END OF LIST
NEXT I
FP (100) =0
1 e o 1 ot S St S o O i B S i S ot S B S
' INPUT COMMAND
1 e st o e 2 s e o e . e o S o S i B o S S o St A S S0 1 2 e
PRINT"CMD? ";:LINE INPUT LS 'L$ HOLDS CMD CODE
L1=CL : L2=CL '‘DEFAULT VALUES
1 e e e e i . S S St b 0 S A 0t B S O S i o . e e S e S S e
' INTERPRET COMMAND
1 e e e v e v o . e 9 S . S S S S S . S e S i . 00 e o o
IF L$="I" THEN 1010
IF L$="H" GOSUB 610: GOTO 450
IF L$="V" PRINT USING"##:";CL; :PRINT T$(CP):GOTO 450
[}
IF L$="A" V$="AFTER" ELSE IF L$="G" V$="WHERE" ELSE V$="FROM"
PRINT TAB (10);CHRS$(27);VS$;:INPUT Ll: L2=L1
IF L$="A" THEN 1310
IF L$="G" THEN 1610
1
PRINT TAB(20);CHR$(27);"TO";: INPUT L2
IF L$="L" THEN 1610
IF L$="D" THEN 1510
IF L$="C" THEN 1410
IF L$="P" THEN 1710
PRINT "NO SUCH COMMAND" : GOTO 450
t
'eeeveesceee HELP SUBROUTINE ..civueven.
PRINT"AFTER 'CMD?' TYPE A(PPEND), C(HANGE), D(ELETE), G(O TO)"
PRINT"H(ELP), I(NFO), L(IST), P(RINT), T(RANSFER), OR V(ERIFY)."
PRINT"RESPOND TO OTHER ? PROMPTS WITH A LINE $. RESPONDING WITH"
PRINT"'ENTER' GIVES CURRENT LINE #. USE I CMD TO FIND CURRENT #."
RETURN

240

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

1000
1001
1002
1010
1090
1300
1301
1302
1310
1311
1312
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1390
1400
1401
1402
1410
1415
1420
1425
1430
1435
1440
1445
1450
1452
1455
1490
1500
1501
1502
1510
1511
1512
1515
1520
1525
1530
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590

- —— o S o~ o o T A " " S T W " s s o T M T S o o - o o o

PRINT "CURRENT LINE IS #";CL;" HIGHEST LINE IS #";HL
GOTO 450 'RETURN FOR NEW CMD
1

IF L1>HL PRINT "LINE # TOO HIGH" :GOTO 450
PRINT USING "##>";L1+1;:LINE INPUT BS

IF LEN(B$)=0 THEN B$=" "

IF B$="." THEN 1390

IF AV=0 PRINT "BUFFER FULL": GOTO 1390
CL=L1+1
I=1 : K=1
IF FP(I})=0 OR K=CL THEN 1350 'T IS LINE POINTER
I=FP(I) : K=K+1 : GOTO 1335 'K IS LINE COUNTER
i
J=AV : AV=FP (J)
FP (J) =FP (I)
FP(I)=J
T$(J)=B$
CP=J : HL=HL+1l 'CP IS PTR TO CURRENT LINE
IF CL=HL THEN HP=CP 'HP IS PTR TO HIGHEST LINE
L1=CL : GOTO 1310
GOTO 450 'RETURN FOR NEW CMD
U e e e o e e o e o o o S S S S S e e A S s T T~ o — oo W W S - - -
' C COMMAND (CHANGE LINES L1 TO L2)
Uy S U TR P ————
CL=L1
IF L2>HL PRINT "2ND LINE TOO HIGH":GOTO 450
I=1 : K=l
IF FP(I)})=0 OR K=CL THEN 1440
I=FP(I) : K=K+1 : GOTO 1425
L]
IF FP(I)=0 PRINT "NO SUCH LINE" : GOTO 1490
CP=FP (1)
PRINT USING "#4#:";CL; : PRINT TS (CP)
PRINT USING "$##>";CL; : LINE INPUT TS$(CP)
IF CL<L2 THEN CL=CL+l1 : GOTO 1420
GOTO 450 'RETURN FOR NEW CMD
0 e o e s e o o o o " o i o o o SO . i S S S S - o sl S S W S e -
' D COMMAND (DELETE LINES L1 TO L2)
e e b om0 o Sy i i s P e o R O A O S S e A A LD AL S . S i oo W G N T o
CL=L1
IF L2>HL THEN L2=HL
FOR C=0 TO L2-L1
I=1 : K=1
IF FP(I)=0 OR K=CL THEN 1540
I=FP(I} : K=K+l : GOTO 1520
¥
IF FP(I)=0 PRINT "NO TEXT TO DELETE": GOTO 1585
J=FP (1)
FP (1) =FP (J)
FP (J)=AV
AV=J
HL=HL-1
Cp=1
IF HL=CL THEN HP=CP
NEXT C
CL=Ll-1l: IF CL<0 THEN CL=0
GOTO 450 'RETURN FOR NEW CMD

Section 4.4 Word Processing and Linked Lists 241

e ~
1600 ' e e e
1601 ° L COMMAND (LIST LINES L1 TO L2)
1602 '"me e
1610 I=FP(l) : K=1
1615 IF L2>HL THEN L2=HL
1620 IF I=0 PRINT "BUFFER EMPTY" : GOTO 1690
1630 IF K<L1 THEN 1650
1640 CP=I: PRINT USING "##:";K;: PRINT TS(I)
1650 I=FP(I) : K=K+1
1655 IF K>L2 THEN 1680
1660 GOTO 1630
1680 CL=K-1
1690 GOTO 450 'RETURN FOR NEW CMD
1700 Mo e e e e e e e
1701 ! P COMMAND (PRINTS ON LINE PRINTER)
1702 "o m e e
1710 I=FP(l) : K=1
1715 IF L2>HL THEN L2=HL
1720 IF I=0 PRINT "BUFFER EMPTY" : GOTO 1790
1725 PRINT "TURN ON PRINTER -~ READY";:INPUT 2$
1730 IF K<Ll THEN 1750
1740 CP=I: LPRINT TS$(I)
1750 I=FP(I) : K=K+l
1755 IF K>L2 THEN 1780
1760 GOTO 1730
1780 CL=K-1
1790 GOTO 450 'RETURN FOR NEW CMD
1799 '===== BLOCKS RESERVED FOR FUTURE COMMANDS =====
1801 ° M COMMAND (MOVE BLOCKS OF TEXT)
1901 E COMMAND (ECHO BLOCKS OF TEXT)
2001 R COMMAND (READ FILE INTO BUFFER AFTER CL)
2101 ' W COMMAND (WRITE BUFFER ONTO FILE)
2201 ¢ F COMMAND (FIND LINE WITH /TEXT/)
2301 ' C/ COMMAND (CHANGE /TEXT1/ TO /TEXT2/)
\ e J
Future Extensions and Revisions
o>

Further extensions to this program will be discussed in section 4.6.
However, one modification that should be considered here has to do with
the use of the LINE INPUT command used in lines 450, 1311, and 1452. If
you have a TRS-80 with Level Il BASIC, but don't yet have disk-extended
BASIC, LINE INPUT isn’t available. This causes problems as explained in
the note at the end of section 1.7. A way around this for Level II users is
found in the next project.

Project EDIT2000

Write a subroutine that simulates LINE INPUT in Level Il BASIC by using
the INKEY$ function (described on page 5/5 of the TRS-80 Level Il BASIC
reference book). Then modify EDIT1000 to use this subroutine so that text
with commas can be input to the editor.

242 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

4.5 MACHINE LANGUAGE ANYONE? MLDEMO

The principal theme of this book has been a structured approach to
creative programming. The principal tool recommended for pursuing this
theme has been extended BASIC, used in conjunction with a five step
design process. One might very well ask if languages other than BASIC
could work in such a setting. The answer is a definite “Yes.” In fact one of
the reasons for stressing a structured design approach is to make the ap-

plications independent of the computer language used.
There are now several other interesting languages available for per-

sonal computers. On the one hand there are older languages (like FOR-
TRAN) resurrected mostly because they are familiar to experienced pro-
grammers. There are also some new faces on the scene, with Pascal as the
most interesting contender. We won't discuss either of these here except to
warn you that the advocates of these and other languages tend to get car-
ried away in extolling their virtues. Be assured that all computer languages
have their faults, some of them very serious. Also be assured that you're
not going to find a language with a better mix of conviviality and ex-
pressiveness than extended BASIC.

The main fault of BASIC is actually a consequence of its principal vir-
tue: ease of use in an interactive mode. Technically this is because BASIC
is usually implemented as an interpreter rather than a compiler. An inter-
preter translates one line at a time into machine code, (ie: instructions, all
in binary representation, that a computer understands directly) and it does
this every time the line is executed. So in a loop, lots of time is spent with
the translation process. On the other hand, a compiler waits until you've
entered the entire program, and then it translates it as a whole into
machine code. So with a compiler, if you have made no mistakes, you can
execute the machine language translation rather than the original BASIC
program (called the source program). The problem is that doing all this,
and keeping track of which stage you're at is more complicated than just
saying RUN.* The advantage to using a compiler is that the execution time
of the machine language program it produces will be very fast. But getting
it to successfully produce a correct machine language program could take
lots of your time.

One way to get some of the advantages of speed while still using an
interactive BASIC interpreter is to translate parts of the program into
machine code “by hand,” and to replace the corresponding lines of BASIC
with a call to this machine language program. However, this is not easy to
do at piesent. Fortunately, most applications don't need all that speed (the
main exception is animated computer graphics).

*Also with a compiler you cannot stop and print (or modify) variables, and then continue by typing
CONT. To see one reason why you'd want to do this reread Program BUGPROG in section 2.2

Section 4.5 Machine Language Anyone? 243

Program MLDEMO

To satisty a natural curiosity about how one goes about mixing machine
language with BASIC, we'll show you a demonstration program called
MLDEMO in this section. However, we won’t explain the machine code
(this would really take another book). The program allows you to choose
between using BASIC and machine language to do the following task: suc-
cessively fill the screen with the letter A, then the letter B, and so
on,through the alphabet up to Z. The speed with which this task is ac-
complished will be quite different when using machine language. In fact it
is so fast, the program includes a feature that allows you to slow it down
different amounts by inputting something called a wait counter. If you
enter 255 for the wait counter, the program will wait about 0.8 of a second
between putting up each screenful of letters. If you try a wait count of
10—zap! Try it and see what happens.

One possible use of this program is as a speed reading machine to
teach children the alphabet. In this case, the child will probably prefer the
BASIC version at first.

The machine code for displaying the alphabet at different speeds is
found in lines 160, 165, and 170. This won't make any sense to you, of
course. We got this code by first writing the program in something called
assembly language, then translating it into hexadecimal machine
language, finally changing this into the decimal numbers you see. This
machine language program is loaded into memory by the loop containing
the POKE statement in line 140. It is “called upon,” and executed, by the
USR1 function in line 550. Line 110 tells the USR1 function where we pok-
ed the machine language program (at hexadecimal address 5000 which is
the same as 5 * 4096 = 20480 decimal).

Even if you didn’t understand a word of the above, go ahead and use
the program. Here it is.

10 REM**

20 REM* MLDEMO (COMPARES BASIC WITH MACHINE LANGUAGE) *
30 REM**
50 CLS

100 "o

101 ' INITIALIZATION; LOAD 2-80 ML PROGRAM

L0 P e e e e e e i o e e e e o e o e -

110 DEFUSR1=&H5000

115 K=0

120 PRINT "STARTING LOC FOR ML PROG IS 20480"

122 PRINT "CHANGE LINES 125 AND 110 IF A DIFFERENT LOC 1S USED."
125 s=20480

130 READ X

135 IF X<0 THEN 210

140 POKE S+K,X

244

CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

145
150
160
165
170
200
201
202
210
211
212
218
219
220
230
240
250
260
290
300
301
302
310
315
317
320
330
340
350
360
370
380
390
395
400
401
402
410
412

417
440

500
501
502
510
515
520
525
530
535
540
545
546
547
550
610
620
625
626
630
999

K=K+1

GOTO 130
DATA 22,26,30,65,33,0,60,1,0,4,115,35
DATA 11,120,177,194,10,80,28,33,255,255

! PRINT INSTRUCTIONS; INPUT USER'S CHOICE

PRINT "THIS PROGRAM DISPLAYS A SCREEN FULL OF A'S, OF B'S"
PRINT "OF C'S ETC. UP TO Z'S. YOU HAVE A CHOICE OF SEEING"
PRINT "IT RUN WITH 2 VERSIONS OF bASIC OR MACHINE LANGUAGE."
PRINT "DO YOU WANT BASIC (B), POKE BASIC (P),"

PRINT " MACHINE LANGUAGE (M), OR EXIT (E)";
INPUT AS
IF AS$="B" THEN 310

IF A$="P" THEN 410
IF A$="M" THEN 510
IF AS="E" THEN 999

GOTO 218

B o e e o e o 1 1o T oo o " 7 i i W S WS S o e e A . o o S T e T . o

! BASIC VERSION (USES PRINT STATEMENT)

B o e e e o s o i i v e " o " A o o Tt " T T T S T o o i Y " 7 T
PRINT "BASIC USING PRINT--GET YOUR WATCH SET--READY";

INPUT D$
CLS
FOR A=65 TO 90
FOR L=1 TO 16
FOR C=1 TO 64
PRINT CHRS$({A);
NEXT C
NEXT L
CLS
NEXT A
GOTO 610 'GO TO "DONE" SECTION
]

! COMPACT BASIC VERSION USING POKE

T=15360: B=16383: A=65: 2=90

PRINT "BASIC USING POKE--~GET YOUR WATCH SET--READY";
INPUT D$

CLS

FORL=ATOZ : FORP=TTOB : POKEP ,L:NEXT :CLS : NEXT :CLS

GOTO 610 'GO TO "DONE" MESSAGE

L

CLS : PRINT "Z-80 ML PROGRAM"
PRINT "ENTER WAIT COUNTER (0 TO 255)7;
INPUT W
IF W<0 OR W>255 THEN 515
POKE S+21, W
IF W>0 THEN 550
PRINT "ENTER LOW ORDER WAIT BYTE (1 TO 255)%;

INPUT LB
IF LB<1 OR LB>255 THEN 540
POKE S+20, LB
HL=USR1 (X)
CLS
PRINT CHRS(23):PRINT @ 468, "DONE"

PRINT @704, "PRESS ENTER TO CONTINUE--READY";
INPUT DS : CLS

GOTO 218

END

Section 4.5 Machine Language Anyone?

A NOTE ON ASSEMBLY LANGAUGE

The program MLDEMO is written in BASIC, but it contains a
machine language program stored in the form of decimal numbers. These
are found in the DATA statements beginning at line 160 with the sequence
22, 26, 30, 65, and so on. When not using BASIC, these same machine
language instructions are sometimes written as hexadecimal numbers (see
Appendix A for an explanation of how decimal numbers can be written as
hexadecimal numbers). If written in hex, this same machine language pro-
gram would be written as the sequence 16, 1A, 1E, 41, and so on.

Programmers find it difficult to memorize all these strange looking
machine codes, so they use something called assembly language instead. An
assembly language program looks like this:

LD D, 1AH ; LOAD THE NUMBER 26 IN D
LD E, 41H ; LOAD THE NUMBER 65 IN-E
.......... etc. ..o

Here's a complete listing of the machine language program used in
MLDEMO. The first column: (5000, 5002, etc.) gives the hex memory
addresses where: the program is stored. The second column shows the
machine language program written in hex (161A, 1E41), etc.). You should
mentally insert a space between each pair of these symbols and read this as
16 1A 1E 41 etc. The third column is the set of editor line numbers used to
write the assembly language program. These are numbered 00100 to 00310
in steps of 10 in our example. The last three columns are the assembly
language form of the program. This is written first, using an editor pro-
gram. Then it is run through a system program called an assembler which
produces the first two columns:.

sERa BELEE ORG SEEEH Loop
zCHE BE1i6 YIDEG EQU ZCEEH

SEEE 161A HEL 26 LD . 1AH through
SORZ LE44 @10 LD E; d41H the 26
S@Ed 21EEZ0 0 GA146 START LD HL, WIDED lotters
SHOT G1H004 GElSH LD B, 4EEH

SaeR 7R BELEH LOOF LD CHLY, E of the
SEE 23 BE17A MG HL alphabet
SPEC OB HELE0 DEC EC

SEED 7R EEL S LD BB

SA0E Bl BEZEE R c

SOEF C2BASE BEs JF HZ, LaoP

Sei2 1C & ING E Loop
Se1s ZiFFFF @R LD HL. BFFFFH through
SE16 ZE BEZ4E WATT DEC HL the 1024
S617 70 G LD A, H)
S61S BS & aF {L locations of
SE1R CZIESE IF HZ. HALT video memory
SELC 15 DEC D

51D CoE45R =l JE HZ. START

SE28 Y R FET

BEaG 16 EHD

BEgEE T Dela'y lO?p
WAIT to give time
LOOP S8R

for reading
screen

START S0ad
VIDED Cad

245

246 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

4.6 SHOULD YOU INVEST IN A BUSINESS
MICROCOMPUTER?

Now that we've seen some of the ways in which printers and disk
drives can turn a personal computer into a professional machine, it's
logical to ask what other improvements can be made. One possibility is to
add more exotic peripheral devices, such as game paddles; voice syn-
thesizers, which allow the computer to talk to you; speech recognizers,
which allow you to talk to the computer; music synthesizers; device con-
trollers, to turn appliances on or off; and device sensors, to check if win-
dows, doors, etc are open or closed. All of these are fun, and available for
most low-cost personal computers.

Suppose your interests lie more in the direction of business-related ap-
plications, including such things as word processing, payroll management,
inventory control, accounts receivable, and so on? Then it makes sense to
consider investing in a second machine. We used the word invest, rather
than buy, to emphasize that more money will be involved, and that your
decision should be based on the return you expect, possible tax credits,
and other business-like considerations.

There have been some impressive price reductions in business com-
puting systems in recent years, and you can now start with an investment
that's less than the price of an automobile or small delivery van. The
things to look for in purchasing such a machine are (1) good system soft-
ware, especially a powerful, proven disk-extended BASIC, (2) a profes-
sional video monitor with 24 lines of 80 characters each, (3) adequate disk
storage capability—at least a million bytes (which suggests 8-inch disks),
(4) a modern and relatively fast central processing unit, (what most people
would call the computer), (5) lots of main memory, preferably 64 K bytes
total, and (6) provision for expansion, especially through RS-232-C inter-
faces. It is understood that a good printer would be added to this system,
but this could very well be the printer you already own. For word process-
ing applications a letter-quality printer should be used.

Section 4.6 Should You Invest in a Business Microcomputer? 247

This is the TR5-80 model II computer. It features a screen with 24 lines of 80
characters each, two built-in RS-232-C interfaces plus a parallel printer interface,
and plug-in memory boards. One 8" floppy disk drive is built into the video
display unit, and three more drives can be added externally. Its disk-extended
BASIC has all the features described in this chapter.

In addition to hardware and system software (like BASIC and DOS),
a professional system needs good application software. This can be pur-
chased as is, or it can be customized to your special needs. This book has
tried to show you some of the techniques used in designing and coding
such customized software. As you now know, it can be a challenging and
time-consuming task. If you decide to hire someone else to do the job,
keep in mind that large computer users have learned that this is no area in
which to be penny-wise and pound-foolish. They have found that the cost
of software in a big installation will often be more than that of the hard-
ware. They have also found that maintaining software, ie: making
changes, adding new features, and getting rid of bugs, is going to represent
a major part of its cost. This is why we strongly advocate that you buy
software that is very well-documented. If you expect to maintain it
yourself, then only buy software for which the source code (eg: a BASIC
listing) is furnished.

A good question to ask is whether you should attempt software
maintenance, even assuming you have well-documented source listings.
As our final project and superproject we'll suggest some additions and im-
provements to EDIT1000. If you can handle these (allowing for lots of trial
and error), the answer is that you can probably handle some of your own
software devleopment and maintenance, and more importantly, that you

248 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

would probably enjoy doing it. If you had to depend a lot on looking at
our solution to the project, but you basically understood the solution after
you saw it, then the answer is that you are capable of supervising a pro-
grammer who does the actual coding according to your specifications
(which is a very important consideration.) Here's the project, followed by
the superproject.

Project EDIT5000

Improve EDIT1000 by adding the following commands and command

modules:

1. T(ransfer). This should use the SNAPSHOT program explained in
section 4.2 to transfer whatever is on the screen onto the printer,
including all the commands that were given.

2. C/OLD/NEW/. This is a “contextual” form of the C(hange) com-
mand. It should allow you to change part of the current line as
follows:

14: HI JOHN, HOWS IS YOU?

CMD? C/WS IS/W ARE/

14: HI JOHN, HOW ARE YOU?

3. F(ind). This locates the next line containing a given text as follows:
CMD? F/O.K./

17: YOUR PACKAGE WAS RECEIVED O.K.

The most difficult of these new modules is C(hange). Here are some
ideas on how to write it. The line numbers in our explanation correspond
to those used in the solution shown in chapter 5.

450 Input the command into L$ as usual.

520 See if someone typed C/OLD/NEW/, by asking IF
LEFT$(L$,2)="C/". If they did, go to the new contextual
change module at line 2310 (if not, check for other commands).

2310 Initialize R$ as the empty string; this is where we'll put “OLD".

2315- Extract the characters between the first two slashes one by one,

2325 using concatenation (+) to string them together in the variable
R$. The trick to extracting each character is to use
MID$(L$,P,1) for P = 3, 4, 5, ... until a slash is found.

2330- Extract the characters between the second and third slash. Use

2345 the MID$ function again, but this time starting at position Q =
P + 1, and going to a position one less than the number of
characters in L$ (LEN(L$) — 1).

2350- Now take the OLD text in R$ (which has a length of LR =

2390 P—3), and successively try to match it with the same number of
characters in T$(CP). If you find a match (line 2365), then make
up a new string for T$(CP) that consists of everything up to
OLD, plus NEW, plus everything after OLD (line 2380).

249

Section 4.6 Should You Invest in a Business Microcomputer?

The above is tricky, but the string functions in BASIC make it
relatively easy to write. It would be a good idea to restudy the explana-
tions of these functions given at the end of section 2.2 before trying this
module. (Incidently, it would be much harder to write this program in a
professional language such as FORTRAN because it does not have such
string functions.)

The command F/TEXT/ uses some of these same ideas. However, the
solution we've shown has a problem: it only finds the first occurrence of
TEXT. In the spirit of ending by encouraging a creative approach to pro-
gramming, we will leave you with the superproject (EDIT7000) which sug-
gests removing this “bug,” and adding two more command modules as
follows.

Superproject (EDIT7000)

1. Modify the F(ind) commmand so that it searches forward from
the current line number each time it's used, cycling back
through the top of T$() if necessary.

2. Add a W(rite) command that saves the contents of the buffer
T$(I) onto a given disk file.

3. Add a R(ead) command that loads the contents of a given file
into T%(I).

4. Add a Q(uit) command that ends the program, but first gives

you a chance to save T$() on disk if you haven't already done

so, and which then closes all files.

For some help with 2, 3, and 4 restudy the program FILEBOX and the
projects FILEBOX2 and FILEBOX3.

Since all the projects and superprojects were based on extensions of
programs explained in the book, you may be wondering if you could han-
dle a tough programming assignment that didn’t have this kind of help.
There’s only one way to find out. Here you go.

Final Superproject (TEXTFORM)

Wirite a program that uses the text file produced by (EDIT7000) as input,
and produces a custom formatted printed page as its output. Instructions
explaining what kind of formatting you want should be inserted in the text
in the form of two-letter commands preceded by a period. For example, to
make part of a text indent 5 spaces and print with double spacing between
lines, with another part indented 10 spaces, with single spacing between
lines, you might insert commands as follows (using (EDIT7000)):

1 > .IN5

2 > .LS2

3 > This is text that will

4 > be double spaced and

250 CHAPTER 4 HOW TO TAKE THE PLUNGE: UPGRADING TO A BIGGER COMPUTER SYSTEM

> indented 5 spaces to the right.
> .IN10
> .LS1
> But this text will be
> single spaced and indented
10 > ten spaces to the right.
When run through (TEXTFORM), this text would print as follows:

0O 30 W

This is text that will

be double spaced and

indented 5 spaces to the right.
But this text will be

single spaced and indented
ten spaces to the right.

Use your imagination to add other useful commands (or ask a typist what
he or she would like to have). Bon Voyage!

SOURCES OF FURTHER INFORMATION FOR CHAPTER 4

1. The best way to keep up with new hardware is to read the advertisements in
the magazines referenced in earlier chapters. Professional journals like
Computer Design are also helpful.

2 BYTE, Creative Computing, Microcomputer, Interface Age, and Personal
Computing, all carry reviews of equipment. A new computing magazine for
beginners that has longer, in-depth equipment reviews (in addition to many
other features) is onComputing (70 Main St., Peterborough, NH 03458).

4. We haven't discussed computer music but it's a fascinating subject. The best
technical journal in this area is Computer Music (People’s Computer Co.,
Box E, 1263 El Camino Real, Menlo Park, CA 94025).

5. If you are interested in assembling a customized computer, subscribe to
5-100 Micro Systems, Box 1192, Mountainside, NJ 07092.

“/\./\-

B WO DR IR N

N S D A N D B B N\
R DN R T B P N
S P R BN P PN PNV

[S 4 ¥

" DTS o TSV o SOV w ot

& Jeocat ~ pampen 4 fwnes * R G Bt ez Rennriat ~ et " 7 o

CHAPTER 5

SOFTWARE CITY:

SOLUTIONS TO
THE PROJECTS

5.0 INTRODUCTION

The following sections contain solutions for all of the projects in this
book. The shorter programs are written in minimal BASIC, while the
longer programs use the features of TRS-80 Level II extended BASIC. The
solutions for Chapter 4 were written on a TRS-80 disk system, using the
disk operating system TRSDOS along with the disk-extended BASIC on
this machine (which is essentially Microsoft disk-extended BASIC).

The solutions for Chapter 1 are given in section 5.1, solutions for
Chapter 2 in section 5.2, and so on. The solutions given here represent on-
ly one of the possible approaches for each project, and you shouldn't
hesitate to develop variations or improvements of your own. Although all
the programs were successfully run in the form shown, it should be
understood that there is no guarantee that you won't find bugs. In fact,
since the solutions are meant to be used as learning aids rather than as pro-
duction programs, safety features such as tests for illegal input have been
occasionally omitted, especially where the extra code might have been
confusing.

253

254 CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

5.1 SOLUTIONS TO THE PROJECTS IN CHAPTER 1.

Solutions to the Projects in Section 1.2

Project GUTENTAG

This program is very similar to the program BONJOUR in section 1.1. It is
meant to be a first experience in typing and modifying a BASIC program.

5 REM --- GUTENTAG ---

10 FOR K=1 TO 5

20 PRINT TAB(2*K); "GUTENTAG"
30 NEXT K

40 END

>RUN
GUTENTAG
GUTENTAG
GUTENTAG
GUTENTAG
GUTENTAG

Project GOTCHA

This program is similar to HYACINTH, section 1.2, but it produces out-
put which looks best on a 32-column video screen. The solution given here
is for a TRS-80 computer using double-width letters.

NEW

10 CLS

20 PRINT CHR$%(23)

30 PRINT “* GOTCHA! *7;

40 GOTO 3¢

RUN
To stop this program, press BREAK. If you then type LIST you'll see the
program in double-sized letters. To see the program in regular-sized let-
ters, press CLEAR, and type LIST again.

255

Solution to the Project in Section 1.3

Project RICHQUIK

RICHQUIK prints out both words and the results of calculations. It shows
how large numbers are printed with scientific notation.

\
5 REM---RICHQUIK--- .
10 PRINT "DAY 1 = ";2][1 The symbol ([) is the way
gg ggigg :"325 § = :’gg some printers show the arrow
40 PRINT "DAY 4 - e (1). When entering this pro-
50 PRINT "DAY 5 = ";2(5 gram, type 2[1 as 211.
60 PRINT "DAY 10 = ";2[10
70 PRINT "DAY 20 = ";2[20
80 PRINT "DAY 30 = ";2[30
90 END
>RUN
DAY 1 = 2
DAY 2 = 4
DAY 3 = 8
DAY 4 = 16
DAY 5 = 32
DAY 10 = 1024
DAY 20 = 1.04858E+06
DAY 30 = 1.07374E+09
y,

Solutions to the Projects in Section 1.4

Project CARPETI

This program takes input values from the user and produces calculations
based on them.

256 CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

5 REM--~CARPET1---

10 PRINT "TYPE LENGTH, WIDTH (IN FT.) OF"
20 PRINT "BEDROOM: ";

30 INPUT L1, W1 !

40 PRINT "LIVING ROOM: ";

50 INPUT L2, W2

60 PRINT "DEN: ";

70 INPUT L3, W3

80 LET T = L1*Wl + L2*W2 + L3*W3

90 PRINT "TOTAL CARPET NEEDED = ";T;" SQ. FT."
100 END

>RUN

TYPE LENGTH, WIDTH (IN FT.) OF
BEDROOM: ? 20,15

LIVING ROOM: ? 25,18

DEN: ? 15,21

TOTAL CARPET NEEDED = 1065 SQ. FT.

Project CARPET2

CARPET2 requires adding another request for input, ie: cost per yard.
This value is then used to get a total cost estimate.

5 REM---CARPET2 (CALCS. COST)~---

10 PRINT "TYPE LENGTH, WIDTH (IN FT.) OF"
20 PRINT "BEDROOM: ";

30 INPUT L1, W1

40 PRINT "LIVING ROOM: ";

50 INPUT L2, W2

60 PRINT "DEN: ";

70 INPUT L3, W3

80 LET T = L1*Wl + L2*W2 + L3*W3

90 PRINT "TOTAL CARPET NEEDED = ";T;" SQ. FT."
100 PRINT “WHAT IS COST PER SQ. ¥YD. ";
110 INPUT C

120 PRINT "TOTAL CARPET NEEDED = ";T/9;" SQ. ¥YDS."
130 PRINT "TOTAL COST = $";(T/9)*C

140 END

>RUN

TYPE LENGTH, WIDTH (IN FT.) OF
BEDROOM: 2 20,15

LIVING ROOM: ? 25,18

DEN: ? 15,21

TOTAL CARPET NEEDED = 1065 SQ. FT.
WHAT IS COST PER SQ. ¥YD. ? 13.95
TOTAL CARPET NEEDED = 118.333 SQ. YDS.

TOTAL COST = §$ 1650.75

257

Project GROCERY 2

This is a modification of GROCERY1. It produces more shelf labels, and
handles both pounds and ounces in the data.

N
2 REM---GROCERY2 (TAKES WEIGHT IN LBS., 0Z.)---
3 LET S=0
4 PRINT " = m o o e e e "
5 IF S<4 THEN 10
6 PRINT "TYPE 'ENTER' TO SEE MORE OUTPUT--READY";
7 INPUT D$
8 LET S=0
9 PRINT " === = m o o e "
10 READ N, L, %, P
15 LET Q=16*L+%
20 PRINT"PRODUCT LBS. 0%Z. PRICE","UNIT PRICE"
30 PRINT N;TAB{(7);L;TAB(12);%;TAB(17);P,100%P/Q;"CENTS PER 0%Z."
35 LET S=S+l
40 GOTO 4
50 DATA 1, 1, 0, .89, 2, 0, 8, 1.49
60 DATA 3, 1, 8, .99, 4, 0, 2.5, 3.50
70 DATA 5, 10, 0, 2.99, 6, 0, 12, 1.25
80 pata 7, 5, 0, 1.27, 8, 1, 0, 4.99
90 paTa 9, 0, 12, 2.77, 10, 1, 8, 12.89
100 END
>RUN
PRODUCT LBS. OZ. PRICE UNIT PRICE
1 1 0 .8¢ 5.5625 CENTS PER OZ.
PRODUCT LBS. OZ. PRICE UNIT PRICE
2 0 8 1.49 18.625 CENTS PER OZ.
PRODUCT LBS. OZ. PRICE UNIT PRICE
3 1 8 .99 4.125 CENTS PER 0Z.
PRODUCT LBS. OZ. PRICE UNIT PRICE
4 0 2.5 3.5 140 CENTS PER O%.
TYPE 'ENTER' TO SEE MORE OUTPUT--READY?
PRODUCT LBS. OZ. PRICE UNIT PRICE
5 10 0 2.99 1.86875 CENTS PER 0%.
PRODUCT LBS. OZ. PRICE UNIT PRICE
6 0 12 1.25 10.4167 CENTS PER OZ.
PRODUCT LBS. OZ. PRICE UNIT PRICE
7 5 0 1.27 1.5875 CENTS PER OZ.
PRODUCT LBS. OZ. PRICE UNIT PRICE
8 1 0 4.99 31.1875 CENTS PER O%.
TYPE 'ENTER' TO SEE MORE OUTPUT--READY?

258

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

N
PRODUCT LBS. 0Z. PRICE UNIT PRICE

9 0 12 2.77 23.0833 CENTS PER OZ.
PRODUCT LBS. 0Z. PRICE UNIT PRICE

10 1 8 12.89 53.7083 CENTS PER OZ.
OuT OF DATA IN 10
READY

J

Solution to the Project in Section 1.5

Project RETIRE

This program is similar to the program VOTER. It adds another condi-
tional statement.

10 REM--~-RETIRE (ADDS MESSAGE)---

15 PRINT "WHAT IS YOUR AGE";

25 INPUT A

35 IF A < 18 THEN 65

45 PRINT "YOU ARE ELIGIBLE TO VOTE."
50 IF A < 65 THEN 55

51 PRINT"YOU ARE ELIGIBLE FOR '65+' BENEFITS."
55 STOP

65 PRINT"YOU WILL BE ABLE TO VOTE IN";18-A;"YEARS."
75 END

> RUN

WHAT IS YOUR AGE? 18

YOU ARE ELIGIBLE TO VOTE.

BREAK IN 55

READY

> RUN

WHAT IS YOUR AGE? 66

YOU ARE ELIGIBLE TO VOTE.

YOU ARE ELIGIBLE FOR '65+' BENEFITS.

mnnAY T BEE
DIVGON L o

READY

259

Solution to the Project in Section 1.6

Project SQCUBE

This program gives further practice in making the computer print out
tables of calculations using a FOR loop.

N
10 REM---SQCUBE--~
20 PRINT"NUMBER","SQUARE","CUBE"
30 FOR X = 1 TO 12
40 PRINT X, X*X, X*X*X
50 NEXT X
60 END
>RUN
NUMBER SQUARE CUBE
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
11 121 1331
12 144 1728
J
Project GOWRONG2
GOWRONG?2 gives more practice using nested FOR loops.
~
5 REM---GOWRONG2-~--
10 PRINT "THIS IS A COMPUTER..."
20 FOR J = 1 TO 2
30 PRINT "NOTHING CAN
40 FOR K =1 TO 3
50 PRINT "GO WRONG.","J =";J,"K =";K
60 NEXT K
70 NEXT J
80 END

260 CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

>ROUN
THIS IS A COMPUTER...
NOTHING CAN

GO WRONG. J =1 K =1
GO WRONG. J =1 K = 2
GO WRONG. J =1 K = 3
NOTHING CAN
GO WRONG. J = 2 K = 1
GO WRONG. J = 2 K = 2
GO WRONG. J = 2 K = 3
\.
Project GOWRONG3
More nested FOR loops (three this time) are used in this program.
-

10 REM---GOWRONG3--~

20 FOR X = 1 TO 3

30 PRINT"THE GREEN KNIGHT"
40 FOR Y = 1 TO 2

50 PRINT" RODE" ;

70 FOR 2 = 1 TO 2

80 PRINT" OVER THE HILL,";
90 NEXT 2

95 PRINT

100 NEXT Y

110 NEXT X

120 PRINT"IN SEARCH OF THE DRAGON."
130 END

>RUN
THE GREEN KNIGHT
RODE OVER THE HILL, OVER THE HILL,
RODE OVER THE HILL, OVER THE HILL,
THE GREEN KNIGHT
RODE OVER THE HILL, OVER THE HILL,
RODE OVER THE HILL, OVER THE HILL,
THE GREEN KNIGHT
RODE OVER THE HILL, OVER THE HILL,
RODE OVER THE HILL, OVER THE HILL,
IN SEARCH OF THE DRAGON.

Project ICECREAM

261

This is a modification of SALEDATA. It uses one FOR loop instead of

two.

10 REM---ICECREAM (SALEDATA VERSION 2)---~
15 DIM D(30)

20 PRINT"HOW MANY DAYS (MAX.= 30)";

25 INPUT N

30 IF N > 30 THEN 20

35 IF N < 1 THEN 998

40 LET L = 0
45 LET S = 999999
50 LET T = 0
60 FOR I = 1 TO N

70 PRINT"SALES FOR DAY #";I;
75 INPUT D(I)

120 IF D{(I) > L THEN LET L = D(I)

130 IF D(I) < S THEN LET S = D(I)

140 T =T + D(I)

150 NEXT I

155 PRINT"......... sevene ..END OF DATA......... cesewd”
160 PRINT"SMALLEST SALE =";S;TAB(25); "TOTAL SALES =";T
170 PRINT"LARGEST SALE =";L;TAB(25);"AVERAGE SALE =";T/N
998 PRINT"vevvrnnennnns FINISHED. .c v v nneenens v
999 END

>RUN

HOW MANY DAYS (MAX.= 30)? 9

SALES FOR DAY # 1 ? 47

SALES FOR DAY # 2 ? 24

SALES FOR DAY # 3 2 78

SALES FOR DAY # 4 2?2 0

SALES FOR DAY # 5 ? 12

SALES FOR DAY # 6 2 33

SALES FOR DAY # 7 2 79

SALES FOR DAY # 8 2 80

SALES FOR DAY # 9 ? 32

ceseveseesearuaaa END OF DATA.

SMALLEST SALE = 0 TOTAL SALES = 385

LARGEST SALE = 80 AVERAGE SALE = 42.7778

C v reeac e ee+. FINISHED............. e

262

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS
Solution to the Project in Section 1.7

Project SAM

This program is a modification of FAMOUS that will print out nicely with
a 40-column video screen.

 SLIST ‘ '
19 PRINT "anT IS YOUR MAME";

=8 F’F‘IHT "'*** OF COURC'E +++ "o
46 FOR E-= 1 TO 18 .
- IHT TFIB'.’F’}F"HI *'_f-ﬁ:if
HEZT K .
FE IHT"FLF!II TCI EE xLIU.
i 8 _

The photograph shows a solution to the project SAM that was listed using
double-sized letters. To obtain such a listing, first press CLEAR to get a fresh
screen. Then press the SHIFT and right arrow (~) to go into double-sized mode,
and type LIST. A photo of a run of SAM was shown in section 1.7.

Project POEM

v e s pdwmmen T e Vs € M Lt I T e
Hc;c 1D a dLIIPAC CAalllpue UL a puUclit Wutul& proglidlil, Luyui WUl Ubd dlt

combined with a standard text in print statements.

263

10 REM --- POEM ~~-
20 PRINT"WITH YOUR HELP, THIS PROGRAM WILL"
30 PRINT"WRITE AN 'ORIGINAL' POEM."

40 PRINT
50 PRINT"WHAT'S A GOOD WORD FOR A PLACE--"
60 PRINT"LIKE DESERT, MOON, FOREST, ALLEY, ETC. ";

65 INPUT P$

70 PRINT"THANKS."

80 PRINT"GIVE ME A PLURAL NOUN FOR SOME"

85 PRINT"THINGS THAT BELONG ON LAND. b
86 INPUT Q$

90 PRINT"THANKS."

100 PRINT"NOW I NEED A PLURAL NOUN FOR SOME"
110 PRINT"THINGS THAT LIVE IN THE SEA. v,
115 INPUT RS

120 PRINT"THANKS."

130 PRINT

150 PRINT" A RIDDLE"

160 PRINT

170 PRINT"THE MAN IN THE ";P$;" ASKED OF ME,"
180 PRINT"HOW MANY ";Q$;" GROW IN THE SEA?"
190 PRINT"I ANSWERED HIM AS I THOUGHT GOOD,"
200 PRINT"AS MANY AS ";RS;" GROW IN THE WOOD."
205 PRINT

206 PRINT

210 PRINT"WANT TO PRINT IT AGAIN (Y = YES)";
220 As - " "

225 INPUT AS

226 IF AS = "Y" THEN 130

230 PRINT"WANT TO WRITE ANOTHER (Y = YES)";
235 As - " n

240 INPUT AS

250 IF AS$ = "Y" THEN 40

260 END

>RUN
WITH YOUR HELP, THIS PROGRAM WILL
WRITE AN 'ORIGINAL' POEM.

WHAT'S A GOOD WORD FOR A PLACE--

LIKE DESERT, MOON, FOREST, ALLEY, ETC. ? ARCTIC
THANKS .
GIVE ME A PLURAL NOUN FOR SOME
THINGS THAT BELONG ON LAND. ? HOT CAKES
THANKS .
NOW I NEED A PLURAL NOUN FOR SOME
THINGS THAT LIVE IN THE SEA. ? OYSTERS
THANKS.

A RIDDLE

THE MAN IN THE ARCTIC ASKED OF ME,
HOW MANY HOT CAKES GROW IN THE SEA?
I ANSWERED HIM AS I THOUGHT GOOD,
AS MANY AS OYSTERS GROW IN THE WOOD.

WANT TO PRINT IT AGAIM (Y = YES)? N
WANT TO WRITE ANOTHER (Y = YES)? N

264

CHAPTER & SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

Project APRILI

Again the basic idea is to fill in the blanks with the user’s words and have
the computer print out the results.

- h
10 e e e e e e e e e e
11 7 APRIL1 (INSERTS USER”S WORDS IN A TEXT)
12’ __
15 CLS
20 PRINT"*** APRIL 1ST NEWSPAPER ARTICLE ***
30 PRINT
40 CLEAR 200
100 REM--~-GET PERSON"S WORDS—=—====—-=—-——mom——— e
110 PRINT"PLEASE TYPE IN THE FOLLOWING:"
120 PRINT"A NOUN (A MESSY SUBSTANCE) "3
125 INPUT AS
130 PRINT"A NOUN (PERSONAL PROPERTY) "
135 INPUT BS$
140 PRINT" OH, HOW DO YOU SPELL THE PLURAL OF THAT";
145 INPUT C$
150 PRINT"THE NAME OF A CRAFT OR INDUSTRY "3
155 INPUT D$
160 PRINT"A TOOL "3
165 INPUT ES$
170 PRINT"A COMMON HOUSEHOLD ARTICLE "3
175 INPUT F$
180 PRINT" AND HOW DO YOU SPELL THE PLURAL OF THAT";
185 INPUT G$
190 PRINT"ANOTHER HOUSEHOLD ARTICLE "3
195 INPUT H$
196 PRINT"A LIQUID ";
197 INPUT I$
198 PRINT" THANK YOU."
200 REM---PRINT NEWS ARTICLE, INSERT WORDS----~—----
202 FOR I = 1 TO 200: NEXT I: CLS
205 PRINT
210 PRINT
215 PRINT" AUNT HOMEBODY"
220 PRINT
225 PRINT" WE“VE TOLD YOU HOW TO REMOVE ";A$;" SPOTS FROM"
230 PRINT"WALLS AND FURNITURE--NOW FOR ";C$;"!"
235 PRINT" THE ";D$;" ASSOCIATION TELLS US THAT IF THE"
240 PRINT B$;" IS WASHABLE AND HAS ONLY A FEW SPOTS, DO THIS:"
245 PRINT" REMOVE AS MUCH OF THE ";AS$;" AS POSSIBLE WITH A"
250 PRINT"DULL ";E$;" (A LEFT-HANDED ";E$;" IS PERFECT). NOW PLACE"
255 PRINT"THE STAINED AREA BETWEEN ";G$;" AND PRESS WITH A"
260 PRINT"WARM ";HS;". AFTER YOU HAVE DONE THIS, PLACE THE"
265 PRINT BS$;", STAIN SIDE DOWN, ON A ";F$;" AND RUB ANY"
270 PRINT"REMAINING STAIN ON THE BACK WITH ";IS$"."
275 PRINT" LET DRY AND LAUNDER AS USUAL."
L 500 END
J

Solutions to the Projects for Section 1.8

Project CRAPS

This program uses the RND function in a game situation—as a subroutine
in a Craps simulation program (subroutines are explained in section 1.9).

265

100
101
102
110
120
130
135
140
145
150
152
154
160
170
200

210
220
230
240
250
260
280
290
295
300
305
310
320
330
400
405
410
420
445
450
455
460
470
480
490
1000
1001
1002
1010
1020
1030
1040
1050
1060
1070
9999

P e ASK FOR BANKROLL, BET----=--

PRINT"SIMULATED CRAPS. WHAT IS YOUR BANKROLL";

INPUT M

IF M < 5 THEN PRINT"NOT ENOUGH FOR THIS GAME.": GOTO 120
PRINT"YOUR BET IS...";

B=0

INPUT B

IF B > M THEN PRINT"TOO HIGH.";: GOTO 140
IF B < 1 THEN PRINT"TOO LOW.";: GOTO 140
PRINT"***T0 ROLL DICE PRESS ENTER (OR RETURN) AT THE ?2***"
GOsUB 1000 'ROLLS DICE

B TEST FOR WIN, LOSE OR POINT~---=--—
IF R = 7 THEN 400

IF R = 11 THEN 400

IF R = 2 THEN PRINT"SNAKE EYES": GOTO 300
IF R = 3 THEN PRINT"CRAPS": GOTO 300

IF R = 12 THEN PRINT"BOX CARS": GOTO 300
LET P = R: PRINT"YOUR POINT IS";P;

GOsuB 1000 ‘'ROLLS DICE

IF R = 7 THEN PRINT"CRAPPED OUT":GOTO 300
IF R = P THEN 400

————————— LOSE CALCULATION=——=—w-
PRINT" SORRY, YOU LOSE. “;
LET M = M - B
PRINT"YOU NOW HAVE $";M
GOTO 450
e i atat WIN CALCULATION-=-=---
PRINT" YOU WIN! ";
LET M = M + B
PRINT"YOU NOW HAVE $";M
R e DECIDE WHETHER TO CONTINUE-=-==~-~
IF M <= 0 THEN PRINT"LOOKS LIKE YOU'RE BROKE": GOTO 480
PRINT"WANT TO PLAY AGAIN (Y = YES)";
INPUT XS
IF X$ = "Y" THEN 140
PRINT"YOU ENDED WITH S";M;". “;

! SUBROUTINE: ROLL DICE

PRINT" "

INPUT RS

LET D1 = INT(RND(O)*6 + 1)
LET D2 = INT{(RND{O)*6 + 1)

LET R = D1 + D2

PRINT"YOUR ROLL IS";R;". ";
RETURN

END

266

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

Project TABGRAPH

This is a first exercise in mathematical graphing using the TAB function.
You could also print out the values of Y and study them from a numerical
as well as a pictorial point of view.

10 REM —==w=- TABGRAPH =-~—=-

20 FOR A=0 TO 9.5 STEP .2

30 LET Y=COS{2*A)+SIN(A)

40 PRINT TAB(15*Y+30); "*"

50 NEXT A *
60 END *

267

5.2 SOLUTIONS TO THE PROJECTS FOR CHAPTER 2

Solutions to the Projects in Section 2.1

Project DATARITH

The following four programs, DATARITH, DATARIT2, DATARIT3
(version 1), and DATARIT3 (version 2), are arithmetic quizzes like
ARITH. They show some of the different ways data can be handled with
DATA statements.

10

100
110
120
130
140
150
200
205
220
230
240
300
310
400
410
500
510
520
530
550
560
600
610
700
710
800
900

HOW

>RUN
ADDITION PRACTICE

2+ 3=
RIGHT!!

3+ 7 =
WRONG.

7 + 9 =
WRONG.
YOUR SCORE IS

REM---DATARITH (USES READ,DATA FOR NUMS,.)~---
REM--~INTRODUCTION, INITIALIZE VARIABLES~--
PRINT "ADDITION PRACTICE"
LET R = 0
PRINT"HOW MANY PROBLEMS (UP TO 10)";
INPUT N
IF N > 10 THEN 130
REM~~~GENERATE PROBLEM= === o e s o e o
FOR I = 1 TO N

READ A,B

paTa 2,3, 3,7, 7,9, 9,12, 12,5

paTa 12,7, 13,7, 13,8, 14,9, 15,20

REM~~—PRESENT PROBLEM= == o s o o e s o e

PRINT A;"+";B;"= ",

REM~~-INPUT ANSWER---

INPUT X

REM---CHECK IF ANSWER IS RIGHT/WRONG-==-—=-

IF X = A + B THEN 550

PRINT "WRONG. THE ANSWER IS";A+B
GOTO 610

PRINT "RIGHT!!"

LET R =R + 1
REM~---GET NEXT PROBLEM==wmemm e r e e e e
NEXT I
REM~-~-REPORT SCORE-=-—————m— e e e e
PRINT "YOUR SCORE IS ";R/N*100;"% RIGHT."
REM~~-~FUTURE EXTENSION OF PROGRAM= === ==
END

MANY PROBLEMS (UP TO 10)? 3
? 5

? 11
THE ANSWER IS 10

?2 17
THE ANSWER IS 16
33.3333 % RIGHT.

268

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

Project DATARIT2

10 REM~---~-DATARIT2Z2 (USES RESTORE)-=====—=mmm——m—
100 REM--~INTRODUCTION, INITIALIZE VARIABLES——~
110 PRINT "ADDITION PRACTICE"

120 PRINT"HOW MANY PROBLEMS (UP TO 10)";

130 INPUT N

140 LET R = 0

150 IF N > 10 THEN 130

200 REM---GENERATE PROBLEM=mm—=——ecme—— o m e
205 FOR I = 1 TO N

220 READ A,B

230 paTa 2,3, 3,7, 7,9, 9,12, 12,5

240 paTa 12,7, 13,7, 13,8, 14,9, 15,20

300 REM~-~«=PRESENT PROBLEM = m = e o v 1 o o o
310 PRINT A;"+";B;"= ";

400 REM--~-INPUT ANSWER~---

410 INPUT X

500 REM~--CHECK IF ANSWER IS RIGHT/WRONG=-'--—-
510 IF X = A + B THEN 550

520 PRINT "WRONG. THE ANSWER IS";A+B

530 GOTO 610

550 PRINT "RIGHT!!"

560 LET R =R + 1

600 REM---GET NEXT PROBLEM=====mmmmm—mmommmmmmm
610 NEXT I

700 REM==~REPORT SCORE==== == == s o vmn i oo =
710 PRINT "YOQUR SCORE IS ";R/N*100;"% RIGHT."
800 REM~--FUTURE EXTENSION OF PROGRAM--======—=

810 PRINT"WANT TO TRY THE SAME PROBLEMS AGAIN (Y =

820 INPUT AS

830 IF AS <> "Y" THEN 900
840 RESTORE

850 GOTO 140

900 END

>RUN

ADDITION PRACTICE

HOW MANY PROBLEMS (UP TO 10)? 3
2+ 3= 225

RIGHT!!

3+ 7= 7210
RIGHT!!

7+ 9= 7?17

WRONG. THE ANSWER IS 16

YOUR SCORE IS 66.6667 % RIGHT.

WANT TO TRY THE SAME PROBLEMS AGAIN (Y = YES)? Y
2 + 3= 72

BREAK IN 410

Project DATARIT3

269

10
100
110

205
220
225
230
240
300
310
400
410
500
510
520
530
550
560
600
610
700
710
800
900

REM--~~DATARIT3 (1 - USES INT(I/10))=--~
REM-~~~INTRODUCTION, INITIALIZE VARIABLES~---
PRINT "ADDITION PRACTICE"
LET R = 0
PRINT"HOW MANY PROBLEMS";
INPOT N
REM~--GENERATE PROBLEM====mem e e e
FOR I = 1 TON

READ A,B
IF INT(I/10) = I/10 THEN RESTORE

DATA 2,3, 3,7, 7,9, 9,12, 12,5

DATA 12,7, 13,7, 13,8, 14,9, 15,20

REM-~--PRESENT PROBLEM======mmmm e mmmmmm e

PRINT A;"+";B;"= ;
REM--~INPUT ANSWER---
INPUT X

REM=-~~CHECK IF ANSWER IS RIGHT/WRONG-—-==~-~

IF X = A + B THEN 550
PRINT "WRONG. THE ANSWER IS";A+B
GOTO 610
PRINT "RIGHT!!"
LET R =R + 1
REM~~~GET NEXT PROBLEM-===—=mwmme e e e e
NEXT I
REM===REPORT SCORE=— ===t e e e e
PRINT "YOUR SCORE IS ";R/N*100;"% RIGHT."
REM~~~FUTURE EXTENSION OF PROGRAM=======w--
END

REM~-~DATARIT3 (2 - USES A = (0 })---
REM--~INTRODUCTION, INITIALIZE VARIABLES~--
PRINT "ADDITION PRACTICE"
LET R = 0O
PRINT"HOW MANY PROBLEMS";
INPUT N
REM-—~~GENERATE PROBLEM====mmmee e
FOR I =1 TON
READ A,B
IF A = 0 THEN RESTORE: I=I-l: GOTO 610
pATA 2,3, 3,7, 7,9, 9,12, 12,5
bATA 12,7, 13,7, 13,8, 14,9, 15,20, 0,0

REM~--PRESENT PROBLEM=====m=m e

PRINT A;"+";B;"= “;
REM---INPUT ANSWER-~-~
INPUT X

REM~-~CHECK IF ANSWER IS RIGHT/WRONG-------

IF X = A + B THEN 550
PRINT "WRONG. THE ANSWER IS";A+B
GOTO 610
PRINT "RIGHT!!"
LET R = R + 1
REM~~==GET NEXT PROBLEM—=m=m = e e e
NEXT I
REM===REPORT SCORE==—= et e
PRINT "YOUR SCORE IS ";R/N*100;"$ RIGHT."
REM---FUTURE EXTENSION OF PROGRAM=—=~-———w--
END

270

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

Project DATARIT4

This program is the fanciest data-using arithmetic quiz, but it allows the
user to specify different levels of difficulty in the quiz.

N
10 REM---DATARIT4 {USES DUMMY READ)---
100 REM=~-INTRODUCTION, INITIALIZE VARIABLES---
110 PRINT "ADDITION PRACTICE"
120 LET R = 0
130 PRINT"HOW MANY PROBLEMS";
140 INPUT N
160 PRINT"HOW HARD? O0=EASY 1=MEDIUM 2=HARD";
170 INPUT X
180 IF X = 0 THEN 205
190 FOR I = 1 TO X*10
192 READ D,D
194 NEXT I
200 REM--~GENERATE PROBLEM—=—— = mm e o o cm o
205 FOR I = 1 TO N
220 READ A,B
225 IF A = 0 THEN RESTORE: I=I-l: GOTO 610
230 DATA 2,2, 3,2, 1,4, 5,5, 6,2
235 paTa 3,7, 4,5, 8,6, 4,7, 5,8
2490 pATA 9,6, 9,9, 10,7, 12,8, 13,6
245 DATA 14,8, 15,6, 15,9, 16,5, 16,9
250 paTa 17,5, 17,9, 18,2, 18,6, 19,5
255 paTa 19,8, 20,5, 21,8, 22,9, 23,8, 0,0
300 REM-~~PRESENT PROBLEM=-—-—ve—err e m——e———
310 PRINT A;"+";B;"= “;
400 REM~-~~INPUT ANSWER-~-
410 INPUT X
500 REM=---CHECK IF ANSWER IS RIGHT/WRONG===—===--
510 IF X = A + B THEN 550
520 PRINT "WRONG. THE ANSWER IS";A+B
530 GOTO 610
550 PRINT "RIGHT!!"
560 LET R=R + 1
600 REM=-~--GET NEXT PROBLEM=-=——=w—c—mmeoww———————
610 NEXT I
700 REM~--REPORT SCORE— === === o o o o o = o o e e
710 PRINT "YOUR SCORE IS ";R/N*100;"% RIGHT."
800 REM-~-FUTURE EXTENSION OF PROGRAM-———-—=—=-—=
900 ERND
S

Project RNDARITH

The following five arithmetic quizzes use the RND function in various
ways to get the numbers for the problems. They do not use DATA
statements.

271

10 REM—~--RNDARITH (USES RND TO GET NUMS.)-====
100 REM---INTRODUCTION, INITIALIZE VARIABLES-==
110 PRINT "ADDITION PRACTICE"

120 LET R = {

130 PRINT "HOW MANY PROBLEMS DO YOU WANT";

140 INPUT N

200 REM===GENERATE PROBLEM= === o e
205 FOR I = 1 TO N

220 LET A INT{RND(0)*15)+1

230 LET B INT(RND(Q)*15)+1

300 REM---PRESENT PROBLEM-==wmec e
310 PRINT A;"+";B;"= ¥,

400 REM~—-~TINPUT ANSWER= ==~ e e e e
410 INPUT X

500 REM-~-CHECK IF ANSWER IS RIGHT/WRONG—~——~
510 IF X = A + B THEN 550

520 PRINT "WRONG. THE ANSWER IS";A+B

530 GOTO 610

550 PRINT "RIGHT!!"

560 LET R =R + 1

600 REM---GET NEXT PROBLEM= = = s e
610 NEXT I

7U0 REM===REPORT SCORE==== == e e e e e
710 PRINT "YOUR SCORE IS ";R/N*100;"% RIGHT."
800 REM--~FUTURE EXTENSION OF PROGRAM=====mmm—
900 END

>RUN

ADDITION PRACTICE

HOW MANY PROBLEMS DO YOU WANT? 3
15 + 15 = 2 30

RIGHT!!
3 +4= 27

RIGHT!!
5+ 14 = 2 20

WRONG. THE ANSWER IS 19

YOUR SCORE IS 66.6667 % RIGHT.

Project MULT

MULT adds interest to the quiz by giving different responses to a correct
answer (it makes use of ON K GOTO).

10 REM-~--MULT ({(USES RANDOM REWARDS)==m=mmmm—u=
100 REM--~INTRODUCTION, INITIALIZE VARIABLES---
110 PRINT "MULTIPLICATION PRACTICE"

120 LET R = 0

130 PRINT "HOW MANY PROBLEMS DO YOU WANT";

140 INPUT N

200 REM---GENERATE PROBLEM-~——-=--cmc e

272

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

~N
205 FOR I =1 TO N

220 LET A = INT(RND(0)*20)+1

230 LET B = INT{RND{0)*10)+1

300 REM=~=~=PRESENT PROBLEM— == —mm o e o e e
310 PRINT A;"*";B;"= ";

400 REM=~~INPUT ANSWER= == mm o o o i e o e
410 INPUT X

500 REM-~-~CHECK IF ANSWER IS RIGHT/WRONG====-—
510 IF X = A * B THEN 540

520 PRINT "WRONG. THE ANSWER IS";A*B

530 GOTO 610

540 LET Z = INT(RND(0)*3+1)

545 ON Z GOTO 550, 555, 560

550 PRINT "RIGHT!!"

551 GOTO 570

555 PRINT "VERY GOOD!!"
556 GOTO 570

560 PRINT “CORRECT{!*

570 LET R=R + 1

600 REM---GET NEXT PROBLEM==——==——mmmemm e mm e m
610 NEXT I

700 REM~==-REPORT SCORE-===—m=mme—— e m e e
710 PRINT "YOUR SCORE IS ";R/N*100;"% RIGHT."
800 REM---FUTURE EXTENSION OF PROGRAM---=mm==m—-
900 END

>RUN

MULTIPLICATION PRACTICE

HOW MANY PROBLEMS DO YOU WANT? 3
20 * 4 = 2?2 80

3 *8 = 2?2 27
WRONG. THE ANSWER IS 24
6 * 9 = ? 54
VERY GOOD!!
YOUR SCORE IS 66.6667 % RIGHT.

>RUN
MULTIPLICATION PRACTICE
HOW MANY PROBLEMS DO YOU WANT? 3

20 * 3 = 2 60
CORRECT! !

16 * 5 = 2 80
RIGHT!!

16 * 9 = 2 144
VERY GOOD!!
YOUR SCORE IS 100 % RIGHT.

Project VARIETY1

The next two programs, VARIETY1 and VARIETY2, use the ON K
GOSUB statement, as well as some interesting variations on RND. They
reward “pretty close” answers as well as exact ones.

273

10
100
105
110
120
200
210
220
230
240
300
310
320
330
400
410
420
500
510
520
530
540
550
560
600
610
700
710
720
730
740
800
1000
1010
1020
1030
1100
1110
1120
1130
1200
1210
1220
1230
13060
1310
1320
1330
9999

REM~---VARIETY1 (MATH QUIZ + - * [/)Jwm—===
REM-~-INTRO., INITIALIZE VARIABLES-~==~w—=--
R=0: X=0
PRINT"HOW MANY PROBLEMS";

INPUT P
REM-=-CHOOSE + ~ * / s e
PRINT"WHAT KIND?"

PRINT" ADDITION = 1 SUBTRACTION = 2"
PRINT" MULTIPLICATION = 3 DIVISION = 4
INPUT K
REM~~-GENERATE PROBLEM~ === e e e e
FOR I = 1 TO P

N1 = INT{RND(0) * 90 + 10)

N2 = INT(RND(O) * 9 + 1)
REM~-~PRESENT PROBLEM/INPUT ANSWER~~-~==--

ON K GOSUB 1000, 1100, 1200, 1300

INPUT N
REM---CHECK IF ANSWER IS RIGHT/WRONG-=--=-=~

IF ABS(N-A) < .1 THEN 540

PRINT"SORRY, THE ANSWER WAS";A
GOTO 560

PRINT"RIGHT! ! "

R=R+1
NEXT I
REM=~~PRINT SCORE==~ = o e e it e e e e
PRINT"DONE. YOU HAD";R;"CORRECT. ";
REM=~—-AGAIN?===—- 2 ot o s o e 2 e e
PRINT"WANT TO DO SOME MORE (YES=1)";

INPUT X

IF X=1 THEN 105
GOTO 9999
REM~-=-FUTURE EXTENSION==—mm e e e e e
REM~-~-SUBROUTINE FOR ADDITION=-===—e=mmwm———
PRINT N1l;"+";N2;"= ";

A = Nl + N2

RETURN

REM~-~-SUBROUTINE FOR SUBTRACTION= ===~
PRINT N1;"-";N2;"= ";

A = N1 - N2

RETURN

REM---SUBROUTINE FOR MULTIPLICATION=~=-==-—=
PRINT N1;"*";N2;"= “;

A = N1 * N2

RETURN

REM-~--SUBROUTINE FOR DIVISION-—~==—==mmm———
PRINT N1;"/";N2;"= “;

A = N1 / N2

RETURN

END

274

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

Project VARIETY2

10

11

100
105
110
120
200
210
220
230
240
250

270
280
290
300
310
320
330
400
410
420
500
510
520
530
540
550
560
600
700
710
720
730
740
800
1000
1010
1020
1025
1030
1100
1110
1120
1128
1130
1200
1210
1220
1225
1230
1300
1310
1320
1325
1330
9999

REM---VARIETY2 (MATH QUIZ + - * / }==v=-
REM~-- (VARIABLE DIGITS, TOLERANCES)---=-==~-
REM~-~INTRO.,, INITIALIZE VARIABLES-~-—=-=~--
R=0: X=0
PRINT"HOW MANY PROBLEMS";
INPUT P
REM-—-CHOOSE + = * / ==-=m——=mmmmmmemomoo
PRINT"WHAT KIND?"
PRINT" ADDITION = 1 SUBTRACTION = 2"
PRINT" MULTIPLICATION = 3 DIVISION = 4 --";
INPUT K
PRINT"HOW MANY DIGITS IN THE TWO NUMBERS?"
PRINT"TYPE 2,1 FOR PROBLEMS LIKE 27 + 9 s
INPUT D1, D2
pl = 10[(D1-1)
D2 = 10[{(D2~1)
REM-~-~GENERATE PROBLEM---——--—mwe—————————
FORI =1 TO P

N1 INT({(RND(O) * 9 + 1) * D1)

N2 INT((RND(0O) * 9 + 1) * D2)
REM-~--PRESENT PROBLEM/INPUT ANSWER=—=—==—=-

ON K GOSUB 1000, 1100, 1200, 1300

INPUT N
REM--~CHECK IF ANSWER IS RIGHT/WRONG======

IF ABS{N-A) < T THEN 540

PRINT"SORRY, THE ANSWER WAS";A
GOTO 560

PRINT"RIGHT! "

R=R+1
NEXT I N
REM===PRINT SCORE === = omm o o o om s o m om mm om e
PRINT"DONE. YOU HAD";R; "CORRECT. v
REM == = AGA TN 7w o o e e m e o
PRINT"WANT TO DO SOME MORE (YES=1)";
INPUT X
IF X=1 THEN 105
GOTO 9999
REM=~-FUTURE EXTENSION—-=m=m—me—————— e e e

Hon

REM---SUBROUTINE FOR ADDITION=-=-—m——wwm——
PRINT N1;"+";N2;"= ";

A = N1 + N2

T = .01

RETURN

REM~-~~-SUBROUTINE FOR SUBTRACTION-==—=-— -
PRINT N1;"-";N2;"= “;

A = Nl - N2

T = .01

RETURN

REM~-—~SUBROUTINE FOR MULTIPLICATION-==—--—
PRINT N1;"*";N2;"= ";

A = N1 * N2

T = .05

RETURN

REM~--SUBROUTINE FOR DIVISION-—-====m=e—-—
PRINT N1;"/";N2;"= ";:

A = Nl / N2

T = .1

RETURN

END

275

Project SQROOT

This is a quiz on estimating square roots. It is actually a less complicated
program than VARIETY1 and VARIETY2. It rewards “pretty close”
answers using a percentage error criterion.

-
10 REM---SQROOT {QUIZ, ESTIMATING SQ. ROOTS)=—--
100 REM-~~INTRO., INITIALIZE VARIABLES-——=————mm—=
110 PRINT"PRACTICE ESTIMATING SQUARE ROOTS"
120 PRINT" TRY TO GET THREE ANSWERS IN A ROW"
130 PRINT"™ WITH LESS THAN 5% ERROR EACH."
140 K=0: ag=""
200 REM—--GENERATE PROBLEM= === ot e e
210 Q = INT(RND(0) * 100 + 1)
220 R = SQR(Q)
300 REM---PRESENT PROBLEM/GET ANSWER=—==—==—== —————
310 PRINT"WHAT IS THE SQUARE ROOT OF";Q:;" ":
320 INPUT A
400 REM---CHECK IF ANSWER IS CLOSE=-=mmemmmmme e
410 IF ABS(A/R-1) < .01 THEN PRINT" WOW!": K=K+1l: GOTO 440
420 IF ABS(A/R-1) < .05 PRINT " PRETTY GOOD": K=K+l: GOTO 440
430 PRINT" WAY OFF-- > 5% ERROR": K=0
440 PRINT" SQUARE ROOT WAS";R
450 PRINT USING " YOU MISSED BY ##.## %";100*ABS{(A/R-1)
460 IF K < 3 THEN 210
500 REM—=—SCORE= === e e e e e
510 PRINT"CONGRATULATIONS, THAT'S 3 IN A ROW WITH < 5%"
600 REM—=~AGAIN?= == m e e et e
610 PRINT"WANT TO TRY AGAIN (YES = Y)";
620 INPUT AS
630 IF AS = "Y" THEN 140
999 END
J

Solution to the Project in Section 2.2

Project OKPROG

This is a deceptively simple program. It shows how to eliminate the error
in BUGPROG.

276

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

N
10 REM =======—=c—om——oee OKPROG ===============ee-

15 DEFINT A-Z 'THIS MAKES ALL VARIABLES INTEGERS

20 PRINT "SUM OF POSITIVE INTEGERS FROM 1 TO";

30 INPUT N

40 sS=1 : I=1

50 IF I>=N THEN 90

60 I=I+1

70 S=5+1

80 GOTO 50

90 PRINT "SUM OF POSITIVE INTEGERS REQUESTED IS"; S

>RUN

RUN

SUM OF POSITIVE INTEGERS FROM 1 TO? 5
SUM OF POSITIVE INTEGERS REQUESTED IS 15
READY

> RN

SUM OF POSITIVE INTEGERS FROM 1 TO? -6.8
SUM OF POSITIVE INTEGERS REQUESTED IS 1
READY

>RUN

SUM OF POSITIVE INTEGERS FROM 1 TO? 3.1416
SUM OF POSITIVE INTEGERS REQUESTED IS 6
READY

Solutions to Projects in Section 2.3

Project GUESS2

This is an improvement on GUESS 1, using the values input by the player
to set the range of numbers to be guessed.

10
11
12
100

1N
4 V4L

102
105
120
130
135
140
150
155
160
170
180

R Y X 2RSSR EE LR LA SRS SRS RS A LR SRS S

' GUESS2 (VARIABLE RANGE) *

(R 2122222222222 X222 X2 222 3 R X 222 22 a2 R XA Rty

CLS: PRINT"GUESS MY NUMBER GAME"
PRINT"WHAT'S THE HIGHEST THE NUMBER CAN BE"
PRINT"WHAT'S THE LOWEST THE NUMBER CAN BE";
IF L >= H THEN PRINT"?2?22? ";: GOTO 120

IF INT (H)<>H OR INT{L)<>L PRINT"?2?? INTEGERS ONLY,PLEASE!":GOTO 120
T=1:J=1: K=1

- FIND # OF GUESSES NEEDED--------=—==-=-=====———

K=K * 2

IF K >= (4 - L + 1) THEN T1 = J: GOTO 210

J=J + 1: GOTO 160

: INPUT H
INPUT L

e we

277

200
210
220
300
310
320
400
410
420
430
440

460

500

510

520

600

610

620

1000
1001
1002
1005
1010
1020
1030
lo40
1050
1060
1100
1110
1120
1200
1210
1230
1240
1250
1260
1300
1310
1320
1330
1340
1350
1400
1410
1420
1500
1510
1520
1530
9999

X = INT(RND{0) * (H-L+l) + L)
PRINT"I'VE GOT A NUMBER BETWEEN";L;"AND";H
e ASK PLAYER TO GUESS=——=======m=mmmmmommmmmee
IF T > Tl + 2 THEN 510
PRINT"YOUR GUESS IS--";: INPUT G
R TEST IF GUESS IS ILLEGAL, >, <, OR = ==-=-—=ux
IF G > H PRINT "MUST BE <=";H : GOTO 460
IF G < L PRINT "MUST BE >=";L: GOTO 460
IF G > X PRINT "NOPE, TOO HIGH.": GOTO 460
IF G < X PRINT "NOPE, TOO LOW.": GOTO 460
PRINT"YOU GOT IT IN";T;"TURNS!!! ";: GOTO 610
T =T + 1: GOTO 310
R e TOO MANY TURNS, GIVE ANSWER==-=—=-=========eaoe
PRINT"YOU HAVE HAD";T- l'"TURNS, THAT'S THE LIMIT."
PRINT"MY NUMBER WAS";X;". *";

PRINT"WANT TO PLAY AGAIN (Y = YES)";: $“" ": INPUT AS
IF A$ = "Y" THEN 105

CLS: PRINT"O.K."

PRINT"NOW I WANT TO GUESS YOUR NUMBER."

PRINT"YOU PICK A NUMBER FROM";L;"TO";H

PRINT"DON'T TELL ME WHAT IT IS!"

PRINT"JUST TYPE H IF MY GUESS IS TOO HIGH,

PRINT"L IF MY GUESS IS TOO LOW, AND R IF I GET IT RIGHT.
PRINT"I THINK I CAN GUESS IT IN";T1;"TURNS."

o ASK PLAYER TO PICK NUMBER===-======m==mm—mmmeee
PRINT"GOT A NUMBER (Y = YES)";: A$=" ": INPUT AS

IF A$ <> "Y" THEN 1530

e GENERATE COMPUTER'S GUESS=-=====n==mm o e
Ll = L: HL = H: T = 0

IF L1 > H1 THEN 1410

G = INT((L1+H1)/2)

PRINT"I GUESS...";G;", aMm I -- H, L, OR R";

T = T+l
P GET CLUE, TEST IF H, L, R, OR ILLEGAL-==—====

INPUT CS$

IF C$ = "H" THEN Hl = G-1: GOTO 1230

IF C$ = "L" THEN L1 = G+1: GOTO 1230
IF C$ = "R" PRINT"I GOT IT IN";T;"TURNS.":GOTO 1510

PRINT"YOU DIDN'T TYPE H, L, OR R";:GOTO 1310

e NOT FOUND (CLUE IS INCONSISTENT)=w===wm=mm-==m
PRINT"DID YOU GIVE ME THE RIGHT CLUES?"

PRINT"LET ME TRY AGAIN. ": GOTO 1210

o AGA TN 2= == = = e e e
PRINT"WANT TO PLAY AGAIN (Y = YES)";: A$=" ": INPUT AS
IF A$ = "Y" THEN 1110

PRINT"O.K. BYE NOW."

END

278

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

Project SRCH1

The following three programs, SRCHI, SRCH2, and SRCH3 extend the
idea of searches (both binary and sequential) into an experiment. The set-
ting for the experiment is the application of computers to the analysis of
text by searching for common words and counting their occurrence.

b b et b et bt b
S WWN RN O

nwoumtoun oo

N
o C oo
~ouout

202
205
210
215
220
225
240

244
246
248
250
252
254
256
258
260
262
264
266
268
270
272
274

280

300

thhhhhkhhhkrhhhhhhhkhhhkhhhhhhhhhhhhhhkhhkhhdkhhhhhhhbhihik

' SRCH1 (BINARY SRCH, INPUT STS.) *
Vkkhk ok kA Ak kA RRRRRRA KRRk hkhh kR khkhhhkkkkhhhhkkkkkh kK
CLS

PRINT"**%% WORD OCCURRENCE COUNTER ***"

PRINT

PRINT"THIS PROGRAM COUNTS HOW MANY TIMES THE"
PRINT"COMMONEST WORDS OCCUR IN THE TEXT YOU TYPE IN.
PRINT

PRINT"PLEASE TYPE IN YOUR WORD(S), ONE AT A TIME."
PRINT"WHEN YOU ARE FINISHED, TYPE $§$S$."

PRINT" (OMIT ALL PUNCTUATION MARKS.)"

PRINT GOsuUB 1000

DIM AS$(100),

R(100), A(lOO)
FORI = 1 TO 100

READ AS(I),

A(I) = 0
NEXT I
DATA A, 4, ABOUT, 48, AFTER, 94, ALL, 33
DATA AN, 39, AND, 3, ARE,15, AS,16
DATA AT, 20, BE, 21, BEEN, 75, BUT, 31
DATA BY,27, CALLED, 96, CAN, 38, COULD, 70
DATA DID, 83, DO, 45, DOWN, B4, EACH, 47
DATA FIND,87, FIRST, 74, FOR,12, FROM, 23
DATA HAD, 29, HAS,62, HAVE, 25, HE, 11
DATA HER,64, HIM,67, HIS,18, HOW, 49
DATA I,24, IF,44, IN, 6, INTO, 61
DATA 1IS,7, IT,10, 178,76, JUST, 97
DATA KNOW,100, LIKE, 66, LITTLE, 92, LONG, 91
DATA MADE,S81, MAKE, 72, MANY, 55, MAY, 89
DATA MORE,63, MOST, 99, MY, 80, NO, 71
DATA NOT, 30, NOW, 78, oF, 2, ON, 14
DATA ONE, 28, ONLY, 85, OR, 26, OTHER, 60
DATA OUT,51, OVER, 82, PEOPLE, 79, SAID, 43
DATA SEE, 68, SHE, 54, S0,57, SOME, 56
DATA THAN,73, THAT, 9, THE, 1, THEIR, 42
DATA THEM,52, THEN, 53, THERE, 37, THESE, 58
DATA THEY,19, THIS, 22, TIME, 69, TO, 5
DATA TWO, 65, uP, 50, USE, 88, VERY, 93
DATA WAS,13, WATER, 90, WAY, 86, WE, 36
DATA WERE,34, WHAT, 32, WHEN, 35, WHERE, 98
DATA WHICH,41, WHO, 77, WILL, 46, WITH,17
DATA WORDS, 95, WOULD, 59, You, 8, YOUR, 40

279

330
340
345
350
355

365
370
380
385
400
401
402
404
405
406
407
408
409
410
414
415
420
430

AS(I+50) ,A(I+50),R(1+50), AS(I+75),A(I+75),R(I+75)

440

4,0

14000
1001
1002
1010
9999

~N
PRINT"WORD “;:X$="": INPUT XS$
IF X$ = "$$S" THEN 404
PR INT "'";Xs; ne IS";
IF L. > H PRINT " NOT FOUND ON STANDARD LIST.": GOTO 385
M = INT({(L + H)/2)
IF AS(M) > X$ THEN H = M - 1: GOTO 350
IF AS(M) < X$ THEN L = M + 1l: GOTO 350
A(M) = A(M) + 1: P$ = " WORD #" 4+ STR$(M) + "™ "
PRINT P$;"ON STD.LIST";TAB(35);"USED";A(M);"TIME(S) IN YOUR TEXT."

GOTO 310

! ’ PRINT SUMMARY: WORD & TIMES USED

PRINT"*** SUMMARY ***"

PRINT"DATA IS IN THE FOLLOWING ORDER: THE WORD,"

PRINT"THE NUMBER OF TIMES YOU USED IT, ITS RANK"

PRINT" (FREQUENCY) IN THE STANDARD LIST,"

GOSUB 1000

Ss="% sHEH HEE 2 shER HEH % FhES HEE % SHEH HEE"
PRINT"WORD USED RANK WORD USED RANK WORD USED RANK WORD USED RANK"
FOR I = 1 TO 25

C=C+1: IF C/14 = INT(C/14) THEN GOSUB 1000

PRINT USING SS$; AS(I),A(I),R(I), AS(I+25),A(1+25),R(I+25),

NEXT I
GOTO 9999

! SUBROUTINE, INTERRUPTS PRINTING

PRINT"~~~CONTINUE";: INPUT DS$: CLS: RETURN
END

Project SRCH2

This program is similar to SRCHI except that it uses a sequential search
instead of binary search.

=
[SES N

110
120
125
130
135
140
145
155

165

Thhdhhhhhkhhhhhkhhhdhkhhkhhkhkhhhkdhhhrhkkikhhkhhhhhrhkhhk

'E SRCH2 (SEQUENTIAL SRCH, INPUT STS.) *
P Rhhk kAR KRR A KRR R AR R R I AR AR R AR ARARARRR R AR KRR A A AR KRR Kk
CLS

PRINT" *** WORD OCCURRENCE COUNTER ***"

PRINT

PRINT"THIS PROGRAM COUNTS HOW MANY TIMES THE"
PRINT"COMMONEST WORDS OCCUR IN THE TEXT YOU TYPE IN.
PRINT

PRINT"PLEASE TYPE IN YOUR WORD(S), ONE AT A TIME."
PRINT"WHEN YOU ARE FINISHED, TYPE S§."

PRINT" (OMIT ALL PUNCTUATION MARKS.)"

PRINT: GOSUB 1000

280

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

254

258
260
262
264
266
268
270
272
274
276
278
280
282
284
286
288
300
301
302
330
340
345
350
355
360
365
370
380
385
400
401
402
404
405
406
407
408
409
410
414
415
420
430

440

! READ STANDARD LIST (WORD, RANK)
DIM AS(100), R(100), A(100)
FORI = 1 TO 100

READ AS(I), R(I)

a(ly =0
NEXT I
DATA A, 4, ABOUT, 48, AFTER, 94, ALL,33
DATA AN, 39, AND, 3, ARE, 15, AS,16
DATA AT, 20, BE,21, BEEN, 75, BUT, 31
DATA BY, 27, CALLED, 96, CAN, 38, COULD, 70
DATA DID,83, DO, 45, DOWN, 84, EACH, 47
DATA FIND,87, FIRST, 74, FOR,12, FROM,23
DATA HAD, 29, HAS, 62, HAVE, 25, HE,11
DATA HER,64, HIM,67, HIS, 18, HOW, 49
DATA 1,24, ir,44, IN, 6, INTO,61
DATA IS,7, 17,10, ITS,76, JusTt,97
DATA KNOW,100, LIKE, 66, LITTLE,92, LONG, 91
DATA MADE, 81, MAKE, 72, MANY, 55, MAY, 89
DATA MORE, 63, MOST, 99, MY, 80, NO,71
DATA NOT, 30, NOW,78, OF, 2, ON,14
DATA ONE, 28, ONLY, 85, OR, 26, OTHER, 60
DATA OUT,51, OVER, 82, PEOPLE, 79, SAID,43
DATA SEE, 638, SHE, 54, s0,57, SOME , 56
DATA THAN,73, THAT, 9, THE, 1, THEIR,42
DATA THEM, 52, THEN, 53, THERE, 37, THESE, 58
DATA THEY,19, THIS, 22, TIME, 69, TO,5
DATA TWO, 65, up,50, USE, 88, VERY, 93
DATA WAS,13, WATER, S0, WAY, 86, WE, 36
DATA WERE,34, WHAT, 32, WHEN, 35, WHERE, 98
DATA WHICH,41, WHO, 77, WILL,46, WITH,17
DATA WORDS, 95, WOULD, 59, You, 8, YOUR, 40
1 e o e et o s o e v . T e e i o i T o S e S T S S e e o o b o o1 T o i 2
! INPUT/SEQUENTIAL SEARCH LOOP
b e e e e o e e e e o e o i o e ot o o o e o S s o
PRINT"WORD ";:X$="": INPUT X$

IF X$ = "SSS" THEN 404

PR INT nun;x$;u| IS";

FORM = 1 TO 100

IF XS = AS(M) THEN 370

NEXT M

PRINT" NOT FOUND ON STANDARD LIST.": GOTO 385

A(M) = A(M) + 1l: P$ = " WORD $#" + STRS (M) + " "

PRINT PS;"ON STD.LIST":TAB(35);"USED";A (M) ;"TIME(S)IN YOUR TEXT."
GOTO 330

! PRINT SUMMARY: WORD & TIMES USED

b e e e et i o o e e it St o e St T i e S S o o VRl T o e W T S o T o S o o [

c =0

PRINT"*** SUMMARY #***¥

PRINT"DATA IS IN THE FOLLOWING ORDER: THE WORD,"

PRINT"THE NUMBER OF TIMES YOU USED IT, ITS RANK"

PRINT" (FREQUENCY) IN THE STANDARD LIST."

GO3UB 1000

55="% Sht #4803 SEfE ##E 03 sH#d HEF B sHEHE HERT
PRINT"WORD USED RANK WORD USED RANK WORD USED RANK WORD USED RANK"
FOR I = 1 TO 25

C=C+l: IF C/14 = INT(C/14) THEN GOSUB 1000

PRINT USING SS; AS(I),A(I),R(I), A$(I+25),A(I+25),R(1+25),
AS(I+50) ,A(I+50),R(I+50), AS$(I+75),A(I+75),R(I+75)
NEXT I

281

450 GOTO 9999

L OG0 "= = oo m
1001 ° SUBROUTINE, INTERRUPTS PRINTING

1002 "= o m e mm o e
1010 PRINT"---CONTINUE";: INPUT D$: CLS: RETURN

9999 END

Project SRCH3

This program is similar to SRCHI except that it uses DATA statements for
storing the user’s text.

~
T thhhkARAKKAKAKARKKAARKKRRR KRR KRR R KRR KRR AR AR AR K h kK

11 t* SRCH3 (BINARY SRCH, DATA STS.) *

12 thkkkhkAkA KRR K AKKAKRRKKRARK KRR AR R AR R KRR R X Rk h ok hhk

110 CLS

120 PRINT"*** W{ORD OCCURRENCE COUNTER ***"

125 PRINT

130 PRINT"THIS PROGRAM COUNTS HOW MANY TIMES THE COMMONEST"
135 PRINT"WORDS OCCUR IN THE TEXT IN THE DATA STATEMENTS."
140 GOSUB 1000

150 CLS

D 00 T oo o o e o e o o e

201 ¢ READ STANDARD LIST (WORD, RANK)

2 02 1 o e o e o e

205 DIM AS(100
210 FOR I = 1
215 READ AS(
220 A(I) =0
225 NEXT I

240 DATA A, 4,
242 DATA AN,39,
244 DATA AT, 20,
246 DATA BY,27,
248 DATA DID, 83,
250 DATA FIND,87,
252 DATA HAD,29,
254 DATA HER,64,
256 DATA 1,24,

258 DATA IS,7,

260 DATA KNOW,100,
262 DATA MADE,81,
264 DATA MORE,6 3,
266 DATA NOT, 30,
268 DATA ONE,28,
270 DATA OUT,S1,
272 DATA SEE,68,
274 DATA THAN,73,
276 DATA THEM,52,
278 DATA THEY,19,

ABOUT, 48,
AND, 3,
BE, 21,
CALLED, 96,
DO, 45,
FIRST, 74,
HAS, 62,
HIM,67,
IF, 44,
IT,10,
LIKE, 66,
MAKE, 72,
MOST, 99,
NOW, 78,
ONLY, 85,
OVER, 82,
SHE, 54,
THAT, 9,
THEN, 53,
THIS,22,

AFTER, 94,
ARE, 15,
BEEN, 75,
CAN, 38,
DOWN, 84,
FOR,12,
HAVE, 25,
HIS,18,
IN, 6,
178,76,
LITTLE, 92,
MANY, 55,
MY, 80,

oF, 2,

OR, 26,
PEOPLE, 79,
50,57,
THE, 1,
THERE, 37,
TIME, 69,

ALL, 33
AS,16
BUT, 31
COULD, 70
EACH, 47
FROM, 23
HE, 11
HOW, 49
INTO, 61
JUsT, 97
LONG, 91
MAY, 89
NO, 71
ON, 14
OTHER, 60
SAID, 43
SOME, 56
THEIR, 42
THESE, 58
TO, 5

282

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

280
282
284
286
288
300
301
302
310
320
325
340
345
350
355
360
365
370
380
385
400
401
402
404
405
406
407
408
409
410
414
415
420
430

DATA TWO, 65, UP, 50, USE, 88, VERY, 93
DATA WAS,13, WATER, 90, WAY, 86, WE, 36
DATA WERE, 34, WHAT, 32, WHEN, 35, WHERE, 98
DATA WHICH,41, WHO, 77, WILL, 46, WITH,17
DATA WORDS, 95, WOULD, 59, You, 8, YOUR, 40
b e e e e o e s v e o o e s ' i o m e Y o o . o . o o e e i . . o o o Lt S s s S T o s e e e

' INPUT/BINARY SEARCH LOOP

b e e e s o it e o s S e e e . . o ot 2 e P . o e S s Tl o . S o e o7 o o e S

L =1: H= 100

C=C+l: IF C/14 = INT(C/14) THEN GOSUB 1000

READ XS
IF X$ = "$$S$" THEN 404
PR INT "'";XS;"'";TAB(II)" IN"‘

IF L > H PRINT " NOT FOUND ON STANDARD LIST.": GOTO 385
M = INT((L + H)/2)
IF AS(M) > X$ THEN H = M - 1: GOTO 350
IF AS(M) < X$ THEN L = M + l: GOTO 350
A(M) = A{M) + 1l: P$ = " WORD #" + STRS(M) + © =©
PRINT P$;"ON STD.LIST";TAB(45);"USED";A (M); "TIME(S)."
GOTO 310

C =290
PRINT" * %% SUMMARY ***"
PRINT"DATA IS IN THE FOLLOWING ORDER: THE WORD,"
PRINT"THE NUMBER OF TIMES YOU USED IT, ITS RANK"
PRINT" (FREQUENCY) IN THE STANDARD LIST."
GOSUB 1000
S$="% sHEE #EE 3 SHEH HEE % BHEE HHEE 3 SHEE #HE"
PRINT"WORD USED RANK WORD USED RANK WORD USED RANK WORD USED RANK"
FOR I = 1 TO 25
C=C+l: IF C/14 = INT(C/14) THEN GOSUB 1000
PRINT USING S$; AS(I),A(I),R(I), AS(I+25),A(I+25),R(I+25),

A$(I+50),A(I+50),R(I+50), A$(I+75) A(I+75),R(I+75)

440
450
500
501
502
510
511
512
513
514
515
516
517
518
519
520
521
522

NEXT I

GOTO 9999

! TEXT TO BE ANALYZED

b e o o o e i i S e e S o 7. S S S o T m o o Tem T et e o S o o o i m o o . S o o T e e 2 . S e o
DATA WHEN,IN,THE,COURSE,OF, HUMAN,EVENTS,IT,BECOMES

DATA NECESSARY, FOR,ONE, PEOPLE,TO,DISSOLVE, THE

DATA POLITICAL, BANDS,WHICH,HAVE, CONNECTED,THEM,WITH
DATA ANOTHER,AND,TO,ASSUME,AMONG, THE , POWERS ,QOF , THE
DATA EARTH,THE,SEPARATE,AND,EQUAL,STATION,TO,WHICH
DATA THE,LAWS,OF,NATURE,AND,OF,NATURE'S,GOD,ENTITLE
DATA THEM,A,DECENT,RESPECT,TO,THE ,OPINIONS,OF

DATA MANKIND, REQUIRES,THAT,THEY, SHOULD,DECLARE , THE
DATA CAUSES,WHICH,IMPEL, THEM, TO,THE ,SEPARATION

DATA WE,HOLD,THESE,TRUTHS,TO,BE,SELF,EVIDENT,THAT
DATA ALL, MEN, ARE,CREATED,EQUAL,THAT.THEY.ARE

DATA ENDOWED, BY, THEIR,CREATOR,WITH,CERTAIN

DATA UNALIENABLE,RIGHTS,THAT,AMONG, THESE,ARE,LIFE

523 pDATA LIBERTY, AND, THE , PURSUIT ,OF , HAPPINESS, $$$

590 GOTO 9999

1000 P e
1001 ¢ SUBROUTINE, INTERRUPTS PRINTING

1002 *m e e e e e
1010 PRINT"-~-~CONTINUE";: INPUT D$: CLS: RETURN

9999 END

283

Solutions to Projects in Section 2.4

Project SCRAM?2

This program is an improvement on SCRAMI with fresh data and several
added features.

10

11

12

100
101
102
105
110
120
122
125
128

135
140
150
200
201
202
205
207
210
215
220
225
230
235
237
240
245
250
252
255
260
265
270
275
280
285
290
300
301
302
310
320
325

340
355

IS SRS SRS ESEES SRR R RS R RS R ER RS R SRR REEEEEEESESES
vx SCRAM2 (WORD QUIZ) *
TARARAAARRAR AR AR IR R AR AR A AA R AR R A A AR R AR R AR K AR KA AR A ALk X
' INITIALIZE, GIVE INSTRUCTIONS

CLS: DIM P(15)

PRINT" *** SCRAMBLED WORD GAME TWO ***"
PRINT"TYPE THE WORD WHOSE LETTERS ARE SCRAMBLED"

PRINT"ON THE SCREEN. NOTICE THE CLUE."

PRINT

PRINT"PRESS ENTER TO CONTINUE";: INPUT DS$: CLS

PRINT"HOW MANY WORDS DO YOU WANT";: N=0: INPUT N
IF N < 1 THEN 130

CLS

FOR I = 1 TO N

RESTORE

FOR X = 1 TO INT(20*RND(0)+1) 'WILL START AT
READ D$,DS$,DS$S 'RANDOM WORD

NEXT X 'EACH WORD

READ W$, C$, s$

PRINT"CLUE 1S: ";C$

FOR 2 = 1 TO 300: NEXT 2 'WAIT

IF F=1 THEN CLS: PRINT CHR$(23) 'BIG LETTERS
'-=--~PRINT EACH LETTER IN A RANDOM POSITION====w=--
FOR J = 1 TO LEN (S§)
P(J) = INT((RND(O) * (64 * 10) + (64 * 6))/2) * 2
et CHECK IF POS. SAME AS ANY PREVIOUS POS,======-
IF J = 1 THEN 275
FORK =1T0OJ -1

IF P(J) = P(K) THEN 250
NEXT K
PRINT @ P(J), MIDS$(SS,J,1);
FOR Z = 1 TO 200: NEXT 2 'WAIT
NEXT J
FOR 2 = 1 TO 300: NEXT Z: CLS 'WAIT

PRINT"WHAT IS YOUR ANSWER";: A$=" ": INPUT AS$
IF A$=W$ PRINT "RIGHT!": F=0: R=R+l: GOTO 360
PRINT"WRONG, "
IF F=1 THEN F=0: W=W+l: GOTO 355
F=1: PRINT"TRY AGAIN.": GOTO 235
PRINT"THE WORD WAS: ";W$

284 CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

e 2
360 PRINT"PRESS ENTER TO CONTINUE";: INPUT D$: CLS
370 NEXT I
400 N e o e e e e e e
401 ° END OF GAME, DISPLAY SCORE
4 02 T e o e e e e
420 PRINT" (YOU GOT";R;"RIGHT ANSWERS, AND";W;"WRONG.)"
430 PRINT"WANT TO PLAY AGAIN (Y = YES)";:A$=" ":INPUT AS

440 IF A$="Y" THEN 130

450 PRINT"SO LONG.": GOTO 999

500 'mmmmmmmmmm o o
501 ° DATA: WORDS, CLUES, SCRAMBLES

502 o ——————
510 DATA X,X,X

515 DATA GRANDILOQUENT, BOMBASTIC, NUOINRGADLQET

520 DATA KOALA, TEDDY BEAR, AAKLO

525 DATA PITTANCE, DOLE, CATPENTI

530 DATA ATTAIN, ACHIEVE, ITATAN

535 DATA SERMON, HOMILY, NMEORS

540 DATA SHACKLE, TO HOG-TIE, EKASLCH

545 DATA BACKWARD, RETROGRADE, DAKARWCB

550 DATA SENILE, DODDERING, EIELNS

555 DATA TRITE, STEREOTYPED, RETIT

560 DATA AMATEUR, DABBLER, RETAAMU

565 DATA COLLECT, AMASS, TELOCLCT

570 DATA ALWAYS, FOREVER, YAWALS

575 DATA FANTASTIC, CHIMERICAL, CTANFATSI

580 DATA CORPULENT, OBESE, TEURCNLPO

585 DATA PICKLE, DILL ====-- » EKILCP
590 DATA INVENT, CREATE, TENNVI
595 DATA PLEASE, --——--— & THANK YOU, EELPAS

600 DATA WISE, SAGE, SIEW

605 DATA SWEAR, AFFIRM, RESAW
610 DATA TURBID, MUDDY, DIBRUT
999 END

Project SCRAMS3

SCRAMS3 extends the ideas in SCRAM2 using sentences instead of words

as data.
4 N\

10 TAXAKREXRARRRRRARRRRRRRABRAR AR A AR RARAhkhhhhkkhkhkhhhkhikhkhkik*k
11 vk SCRAM3 (PROVERB QUIZ) *
12 ThAARAAK AR KRR R A XA AR ARAAR KRR A AR ARk khhhhAhrhAXhkhhkhkihhkk
100 e e e
101 ¢ INITIALIZE, GIVE INSTRUCTIONS

L0 P e

103 CLEAR 100

105 CLS: DIM P(15), WS(15), S{15), AS$(15)

110 PRINT" *%% SCRAMBLED PROVERB GAME *#%*"

120 PRINT"TYPE THE PROVERB WHOSE WORDS ARE SCRAMBLED"
122 PRINT"ON THE SCREEN. IT IS AN OLD FAMILIAR SAYING."

285

128
130
135
140
200
201
202
205
206
207
208
210
211
212
214
215
220
222
224
226
227
229
230
235
237

242
244
245
249
250
255
260
265
270
275

285
300
301

305
306
310
315
320
325
327
330
335
340
345
350
385
395
400
401
402
410
430
4490
450

PRINT: PRINT"PRESS ENTER TO CONTINUE";: INPUT D$: CLS
PRINT"HOW MANY PROVERBS DO YOU WANT";: N=0: INPUT N
IF N < 1 THEN 130

FOR X = 1 TO INT(150 * RND(0)+1)

READ DS 'WILL START AT
IF DS = "$$$" THEN RESTORE 'RANDOM PROVERB
NEXT X 'EACH GAME
READ DS
IF DS = "S" THEN RESTORE
IF DS <> "S" THEN 210
¥ e READ N PROVE RBS = o o oo e o e o s e o om e
FOR I = 1 TO N
J =1
READ WS (J)
IF W$(J) = "$$$" THEN RESTORE: GOTO 222
IF WS(J) <> "$" THEN J=J+1: GOTO 222
J=J -1
Ve e CREATE A RANDOM ORDERING FOR WORDS ===—=w=m————-
FOR K = 1 TO J: S(K) = 0: NEXT K
FOR K = 1 TO J
R = INT(RND(0) * J + 1)
IF S(R) = 0 THEN S(R) = K: GOTO 245
R =R+ 1: IF R > J THEN R = 1
GOTO 240
NEXT K
Vo e DISPLAY THE WORDS SCATTERED RANDOMLY--—m= ===~
FOR K =1 T0O J
P(K) = INT((RND(O) * (64 * 10) + (64 * 5))/16) * 16
IF K = 1 THEN 280
FORL = 1 TO K -~ 1 '‘CHECK IF
IF P(K) = P(L) THEN 255 'SAME POSITION
NEXT L 'USED BEFORE
PRINT @ P(K), WS(S(K)):
NEXT K
b e e - - o —_—— - - — - - - - —-—— v —— v~ " ———_— " " oo -
' GET ANSWER, CHECK IF RIGHT/WRONG
b e e o o s et vt o o oo e o - -~ - - " ———— .t i o - -~ i o on
PRINT @ 0O, "WHAT IS YOUR ANSWER?"
PRINT" (TYPE IT IN ONE WORD AT A TIME, FOLLOWING EACH ?)"
FOR K = 1 TO J
INPUT AS(K)
IF AS(K) <> W$(K) THEN 330
NEXT K
PRINT"RIGHT!!": F=0: C=C+l: GOTO 385
PRINT"WRONG."
IF F = 0 THEN F = 1: PRINT"TRY AGAIN.": GOTO 305
F = 0: PRINT"THE ANSWER IS:"
FOR K = 1 TO J: PRINT WS$(K);" ";: NEXT K
PRINT
PRINT"PRESS ENTER TO CONTINUE";: INPUT DS: CLS
NEXT I
T e st o o o s i, i o oms . 12 o o v o oo S S " S -~ —— 7 (420], 2 Do o T o o S At 7
' END OF GAME, DISPLAY SCORE
T it e o e s . 2 o e i e . m o 5o o o - T] 1" o S o 1 ot o s A kL s s oo S o
PRINT"YOU GOT";C; "RIGHT OUT OF";N;"PROVERB(S)."

PRINT"WANT TO PLAY AGAIN (Y = YES)";:A$=" ":INPUT AS
IF AS$="Y" THEN 130
PRINT"SO LONG.": GOTO 999

286

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

500
501
502
510
515

525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
999

DATA A, BAD, PENNY, ALWAYS, COMES, BACK, $

DATA A, BARKING, DOG, NEVER, BITES, $

DATA ABSENCE, MAKES, THE, HEART, GROW, FONDER, $

DATA ALL, WORK, AND, NO, PLAY, MAKES, JACK, A, DULL, BOY, S
DATA A, STITCH, IN, TIME, SAVES, NINE, $

DATA BETTER, THE, LEADER, IN, A, VILLAGE, THAN, SECOND
DATA IN, ROME, S

DATA BREVITY, IS, THE, SOUL, OF, WIT, $

DATA CONSIDER, THE, ANT, THOU, SLUGGARD, AND, BE, WISE, $
DATA CLEANLINESS, IS, NEXT, TO, GODLINESS, $

DATA DO, UNTO, OTHERS, AS, YOU, WOULD, HAVE, THEM

DATA DO, UNTOQO, YOU, S

DATA DON'T, TEACH, YOUR, GRANDMOTHER, TO, SUCK, EGGS, S
DATA EVERY, CLOUD, HAS, A, SILVER, LINING, S

DATA EVIL, TO, HIM, WHO, EVIL, THINKS, $

DATA FINE, WORDS, BUTTER, NO, PARSNIPS, S

DATA FINGERS, WERE, MADE, BEFORE, FORKS, $

DATA FOOLS, RUSH, IN, WHERE, ANGELS, FEAR, TO, TREAD, $
DATA GOD, HELPS, THOSE, WHO, HELP, THEMSELVES, §

DATA HE, WHO, FIGHTS, AND, RUNS, AWAY, LIVES, TO, FIGHT
DATA ANOTHER, DAY, $

DATA LIE, DOWN, WITH, DOGS, GET, UP, WITH, FLEAS, $
DATA NEVER, MARRY, A, WIDOW, UNLESS, HER, FIRST

DATA HUSBAND, WAS, HANGED, $

DATA S

Project CIPHER

This secret code game uses a cipher, or mathematical transformation, for
disguising the message.

[
[S - WE Y S e

10l
lu2
104
108
110
111
112
114
118

~N
VA AR KR AR KA A A A A AR K KRR A A A AR R A ARk kA A A A AR KRR KA AR A KKK KRR KK
'k CIPHER (SECRET CODE GAME) *
' x NOTE: THE WORD 'CODE' IS USED IN THIS GAME *
' TO MEAN THE SAME AS 'CIPHER'. FOR AN EX- *
i DILANATION QOF THE DIFFERENCE, SEE SECTION 2.4, *

ThhkAXhdhhhdhdr bbb hhhhohhhhhhhhhkhhhhhkhhrhhrrrbhrhhhhrhd

! INITIALIZE, GIVE INSTRUCTIONS

CLS: CLEAR 900

PRINT" *%% DECODE THE SECRET MESSAGE *#*x"

PRINT"DO YOU NEED INSTRUCTIONS (YES/NO)";:AS$=" ":INPUT AS
IF LEFTS(AS,1l) <> "y" THEN 204

PRINT: PRINT" HERE IS A CODED MESSAGE: Q HUT QFFBU"
PRINT® HERE IT IS DECODED: A RED APPLE": PRINT
PRINT"PRESS ENTER TO SEE WHAT THE CODE WAS";: INPUT D$

287

120

PRINT" * il *
PRINT"A BCDE FGHIJZKILMN
FOR I = 1 TO 26: PRINT CHRS$(92);"
PRINT"Q RS TU VW XY ZABCD
PRINT: FOR Z = 1 TO 300: NEXT Z
PRINT" IN THIS GAME, NEW CODES ARE MADE BY 'SHIFTING'"
PRINT" THE ENCODING ALPHABET TO A NEW POSITION"

*
QRSTUVWIXYZ2"
NEXT I: PRINT

GHIJEKLMNOP"

*
oP
" .
E F

PRINT: PRINT"PRESS ENTER TO SEE A NEW CODE";: INPUT D$
PRINT: FOR I = 65 TO 90: PRINT CHRS$(I);" ";: NEXT I
PRINT: FOR I = 1 TO 26: PRINT CHR$(92);" ";: NEXT I: PRINT
SH = 4
FOR I = 65 TO 90

X =1 + SH

IF X > 90 THEN X = X - 26

PRINT CHRS$(X);" ";
NEXT I: PRINT

PRINT: PRINT"PRESS ENTER TO CONTINUE";: INPUT D$: CLS

PRINT" TO PLAY THIS GAME YOU MUST--

PRINT" 1. LOOK AT THE CODED MESSAGE ON THE SCREEN."
PRINT" 2. PICK ONE LETTER AND FIGURE OUT WHAT"
PRINT" LETTER WAS ENCODED TO GET IT."

PRINT: PRINT"PRESS ENTER TO CONTINUE";: INPUT D$: PRINT
PRINT" HERE ARE SOME CLUES:"

PRINT" --ALL THE MESSAGES ARE OLD FAMILIAR SAYINGS."
PRINT" --SOME ONE-LETTER WORDS IN THEM ARE: I, A."
PRINT" ~--SOME TWO-LETTER WORDS IN THEM ARE:"

PRINT" TO, AT, IS, IN, IT, OF."

PRINT" --SOME THREE-LETTER WORDS IN THEM ARE:"
PRINT" AND, ALL, BUT, NOT, THE."

PRINT: PRINT"PRESS ENTER TO CONTINUE";: INPUT D$: CLS

PRINT" YOUR SCORE WILL DEPEND ON HOW MANY MESSAGES"
PRINT" YOU NEED TO SEE BEFORE DISCOVERING THE CODE"
PRINT" (1 = 100% 2 = 50% 3 = 33% 4+ =0)."

PRINT: PRINT"PRESS ENTER TO START THE GAME";: INPUT D$
L}

L READ & CODE MESSAGE
b e e e e e - - —— — —— N Y — "~ — " —— " " 1 " " 1~ _— o~
CLS
FOR X = 1 TO INT(30 * RND(0) + 1)
READ D$ 'PICK A
IF D$ = "$$$" THEN RESTORE 'RANDOM
NEXT X 'MESSAGE
READ DS$:IF D$S="$$S" RESTORE

IF D$ <> "$" THEN 210
e NEW RANDOM SHIFTmmmmm o e
C = 0: R = INT(RND(0) * 25 + 1)
D READ MESSAGE == ==mm == m == e e e mm e
cC=C+1
Ms(c) - "": CMs(c) = LR
READ DTS

IF DT$="$$$" THEN RESTORE: GOTO 225

IF DTS <> "$" THEN M$(C) = MS(C) + DT$: GOTO 225
fmmem CREATE CODED MESSAGE==mmmmmmm——mm e
FOR I = 1 TO LEN (M$(C))

CR$ = MIDS$(M$(C),I,1)
PRINT @ 55, I; CRS
IF ASC(CR$)>90 OR ASC(CR$)<65 THEN CM$(C)=CM$ (C)+CRS$: GOTO 265
NC = ASC(CRS) + R
IF NC > 90 THEN NC = NC - 26
CM$(C) = CMS$(C) + CHRS (NC)
NEXT I

288

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

435
455
460
465
470
500
501
502
505
510
520
525
530
535

! DISPLAY CODED MESSAGE, GET INPUT, DECODE MESSAGE

CLS: PRINT"HERE IS THE CODED MESSAGE:"
PRINT: PRINT CM$(C): PRINT

PRINT" WHAT LETTER DO YOU THINK YOU CAN DECODE";
X$ = " ": INPUT XS$
PRINT" WHAT LETTER DO YOU THINK IT STANDS FOR";
Y$ = " ": INPUT Y$
. IF ASC(XS$)>=65 AND ASC(X$)<=90 AND ASC(YS$)>=65 AND ASC(Y$)<=90 THEN

PRINT" 2222": GOTO 306
[P CREATE & PRINT DECODED MESSAGE~==mm—=—=—===n-
Q = ASC(X$) - ASC(YS$): DM§ = ""
FOR I = 1 TO LEN (CMS$(C))
CR$ = MIDS(CMS$(C),I,1)
PRINT @ 55, I; CRS$
IF ASC (CRS$)>90 OR ASC (CR$)<65 THEN DM$=DM$+CR$:GOTO 326
DC = ASC(CR$) - Q
IF DC < 65 THEN DC
IF DC > 90 THEN DC
DMS$ = DM$ + CHRS (DC)
NEXT I
CLS: PRINT"THE DECODED MESSAGE IS:"
PRINT: PRINT DMS$: PRINT
[COMPARE MESSAGES —=m=—m=mm o e e
IF M$(C) = DMS THEN PRINT"CONGRATULATIONS.": GOTO 404
PRINT"SORRY, THAT'S NOT IT."
PRINT"WOULD YOU LIKE TO ..."
PRINT" 1. TRY DECODING THE MESSAGE AGAIN."
PRINT" 2. TRY DECODING A DIFFERENT MESSAGE (SAME CODE)."
PRINT" 3. GIVE UP ON THIS CODE.
PRINT: PRINT"TYPE 1, 2, OR 3";: A = 0: INPUT A
ON A GOTO 304, 215, 416
IF A <1 ORA > 3 THEN 336

' END OF GAME, DISPLAY SCORE, MESSAGES

IF C > 3 THEN S = 0 ELSE S8 = INT(1/C * 100)

DC + 26
DC - 26

it H

PRINT" YOU HAVE BROKEN THE CODE AFTER RECEIVING"
PRINT" ";C;"MESSAGE (S5)."

IF A =3 THEN S = 0: A = 0

PRINT" YOUR SCORE 1IS";S;"%."

IF C < 2 THEN 455

PRINT"WANT TO SEE THE MESSAGES AND CODED MESSAGES"
PRINT"YOU RECEIVED IN THIS CODE (Y/N)";:A$=" ":INPUT AS$
IF LEFTS$(AS$,1) <> "Y" THEN 455
FOR I = 1 TO C

PRINT M$(I): PRINT CMS(I): PRINT
NEXT I: PRINT

PRINT"WANT TO SEE ANOTHER MESSAGE-~WITH A NEW CODE";

AS = " ": INPUT AS

IF LEFTS{(AS,1) = "Y" THEN 204
GOTO 999

DATA "IT'S BETTER TO HAVE LOVED AND LOST THAN NEVER TO"
DATA " HAVE LOVED AT ALL", $

DATA "KEEP YOUR EYES OPEN BEFORE MARRIAGE, HALF SHUT"
DATA " AFTERWARDS", §$

DATA "MAN WORKS FROM SUN TO SUN, WOMAN'S WORK IS"

DATA " NEVER DONE", $

314

289

~
540 DATA NOTHING IS CERTAIN IN THIS WORLD BUT DEATH AND TAXES,S$
545 DATA "OH, WHAT A TANGLED WEB WE WEAVE WHEN FIRST WE"
550 DATA " PRACTICE TO DECEIVE", $
555 DATA "PEOPLE WHO LIVE IN GLASS HOUSES SHOULD NOT THROW"
560 DATA " STONES", $
565 DATA "TAKE CARE OF THE PENNIES, THE DOLLARS WILL TAKE"
570 DATA " CARE OF THEMSELVES", $
575 DATA "WHEN A MAN IS WRAPPED UP IN HIMSELF,"
580 DATA " THE PACKAGE IS SMALL", $
585 DATA "YOU CAN CATCH MORE FLIES WITH HONEY THAN WITH"
590 DATA " VINEGAR", $
600 DATA "YOU CAN LEAD A HORSE TO WATER,"
605 DATA " BUT YOU CAN'T MAKE IT DRINK", $
610 DATA S
999 PRINT" *** END OF SECRET CODE GAME ***": END
J
Solution to Project in Section 2.5
Project BABYZAP
This is an improved version of BABYQ. It has more hazards than BABYQ
in the form of L-mines.
N
lU LA KRKRAAAKRRKRAKRRAARKRARK R AR AT AKRA AKX A A AR AR KRR A RXAAA NI RN AN A KRR A A A A A
11 '* BABYZAP (BABYQ WITH L-MINE RAY WEAPONS) *
12 thRAk kA hkARRARRKAARKKRAR AR AR AR KA AR KRR R AR KAk hh bk hkhkhkh*k
20 CLS
100 b e et et ooty o ot e e e o <o . o . 1 e e . 4 A . A 4 . L S . . . e o s . o e e . S o o A S i
101 ¢ INITIALIZE VARIABLES
102 e e et e e ot o s T o e 7ot i o 1 S ot o L o o o o e o e . Ot o O 480 S . S o . S T P . e T
110 PRINT"*** BABY ZAP RUNNING ~- STAND BY *#**v
120 DIM AS$(9,9)
130 FORI = 1 T0O 9
140 FORJ =1 TO 9
150 LET AS$(I,J) = "-"
160 NEXT J
170 NEXT I
180 XE = 1: YE = 1: TF = 0: EE = 70
190 A$(9,9) = "G": AS(9,8) = "*": A$(8,9) = "*": A$(8,8) = "x"
20() ':=::::====:===‘=======================:=================
201 MAIN LOOP STARTS HERE
202 ¢
210 TF = TF + 1: CLS
215 IF RND(0) < 0.3 THEN AS(9,9) = " " ELSE AS$(9,9) = "G"
220 AS(XE,YE) = "E"
300 !
301 'mmmmm e DISPLAY UNIVERSE === mimim e
310 FOR Y = 9 TO 1 STEP -1: PRINT Y;" ";
320 FOR X =1 TO 9

290 CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

330 PRINT AS$(X,Y);" "
340 NEXT X
350 PRINT

360 NEXT Y

370 PRINT" 1 2 3 4 5 6 7 8 9 ";

380 PRINT TAB(43);"EE =";INT(EE);" TF =";TF

400 !

401 '--mmm——— ~=~INPUT & PROCESS E MOVE —= = s o o o o e
410 PRINT"YOUR MOVE (MAX. DIST. = EE/100): X, Y =";:INPUT X,Y

420 IF X<1 OR X>9 OR Y<1 OR Y>9 PRINT"ILLEGAL COORD.":GOTO 410
430 DE = SQR((X~XE)[2 + (Y-YE)[2)
440 IF DE <= EE/100 THEN 510
450 PRINT"INSUFFICIENT ENERGY, DISTANCE REQUESTED =";DE
460 GOTO 410
H

501 '-~------—-MOVE E SHIP; CHECK FOR GATE COLLISION=-==-----
510 AS(XE,YE) = "-"

520 XE = INT(X): YE = INT(Y)

530 IF AS(XE,YE) = "*" THEN 1000

540 IF XE = 9 AND YE = 9 THEN 2000

550 IF DE = 0 PRINT"RESTING: ENERGY INCREASED 10%":EE = 1.1*EE
600 '

601 '——mm——mm- PLACE A K-MINE== === === === e oo =

610 XK = INT(9 * RND(O0) + 1)

620 YK = INT(9 * RND(O) + 1)

630 IF XK * YK >= 64 THEN 610

640 IF AS(XK,YK)="K" OR AS$(XK,YR)="L" AS(XK,¥YK)="L":GOTO 650
645 AS (XK,YK)="K"

650 PRINT"K-MINE RELEASED AT";XK;",";YK

700

701 "= CHECK FOR COLLISION WITH K OR L MINE-—-=~--—~—
710 IF AS(XE,YE) = "~-" THEN 790

720 PRINT"######:::::: PLE ssssr s BEHERR"

730 PRINT"YOU HAVE HIT A MINE. YOU'RE BLOWN BACK TO START."
740 PRINT"ENERGY LOSS IS 30%": EE = .7 * EE

750 AS(XE,YE) = "-"

760 XE = 1: YE = 1

790 GOSUB 5020 'CHECK FOR L-MINE RAY DAMAGE

800 '-~-—m CHECK FOR END OF GAME-~-—~-==—=—=-=—

810 IF EE < 20 OR TF > 99 THEN 3000

820 PRINT"PRESS ENTER FOR NEXT TIME FRAME ~~READY";: INPUT AS
900 GOTO 210

990

998 ! END OF THE MAIN LOOP

R R I e
T 000 f o e e e e
1001 ¢ STAR GATE BARRIER COLLISION

1002 teemmommmme e i

1016 PRINT: PRINT"YOU HIT THE STAR GATE BARRIER"
1020 PRINT "POW!llilrrprrrrytpprrrrrpprrorreprepne®
1025 PRINT "IT'S BACK TO START FOR YQU"

L0300 XE=1l: YE=l

2005 IF AS$(9,9)="G" PRINT "YOU TRIED TO ENTER A CLOSED GATE
«eees YOU ARE SENTENCED TO START OVER":XE=1:YE=1:GOTO 820
2007 !

58]
<
<
(e 2]

———————————————— VICTORY !!! =mmmm———— i — e
2000 PRINT "khkhkhkhkhk ks hhk Rk khhhhhk kR Ak h Ak khhkhkhk

2010 PRINT "hkkhkkhkbkhhhhhhhhhkhhhhhhhhhhhhdhhkhhhkhhkhhhn

291

2020 PRINT "*** YOU HAVE ACHIEVED STAR DIMENSION **x#
2025 PRINT "*** YOUR RATING IS";10*EE/(TF+1);TAB(37);"**x*"
2026 PRINT "hkAkkxrxhkhkhhhkAh kAR AR ARK KRk Ak h kR AAKAA KKK
2028 PRINT "hhkkhkhhkhkRkhRkhkhhhhhhR kA hhkhhhkkhhhkArkA K& N
2030 FOR I=1 TO 1000:NEXT I
2050 FOR I= 1 TO 500
2060 PRINT @ RND(1010)-1, "* , + i
2070 NEXT I
2090 GOTO 10000
FOOO ' e o o o ot o o o 2 o s 1 1 o . o . 1 o . S o o
3001 E OUT OF ENERGY
3002 F i e i o e e e e e e e et e e e
3010 PRINT "YOU ARE FINISHED --- THIS IS THE END"
3020 PRINT "ENERGY ="; EE; "TIME FRAME ="; TF
3090 sSTOP
S O00 N o e e e e i e
5001 ! SUBROUTINE TO CHECK FOR L~MINE RAY HITS
G Q2 ! o s i o o o o 1 o o o e o . o 88 o e 2t o o e 2
5020 FOR XSCAN=1 TO 9
5025 IF AS(XSCAN,YE)<>"L" THEN 5040
5030 IF ABS (XSCAN-XE)=2 THEN EE=EE*.9:PRINT"X2-RAY HIT*** EE=";EE
5035 IF ABS (XSCAN-XE)=1 THEN EE=EC*.u:PRINT"X1-RAY HIT*** EE=";EE
5040 NEXT XSCAN
5050 FOR YSCAN=1 TO 9
5055 IF AS(XE,YSCAN)<>"L" THEN 5070
5060 IF ABS(YSCAN-~-YE)=2 THEN EE=,9*EE:PRINT"Y2~RAY HIT*** EE=";EE
5065 IF ABS (YSCAN-YE)=1 THEN EE=.8*EE:PRINT"Y1-RAY HIT*** EE=";EE
5070 NEXT YSCAN
5090 RETURN
10000 END
J/

Solutions to Projects in Section 2.6

Project ARROW?2

This program graphically displays an arrow shot by the player at a ran-
domly placed target.

~N
B TRk KA KRR AR KA AR AR AR KA AR KRR KRR A AR R AR AR R AR AR AR AR R ARk hk
6 '* ARROW2 (TRAJECTORY GRAPHICS GAME) *
7 '* THIS PROGRAM WAS WRITTEN FOR THE TRS-80 *
8 '* USING THE SET (X,Y) GRAPHICS COMMAND. *

G TAAARKR KRR AR KA KRR AR AR R A AR AR A KRR AR KRRk kA AR AR AR A A kAR Rk kK
10 CLS: RANDOM

15 G=32.2

20 PRINT"HOW MANY ARROWS DO YOU WANT";

30 INPUT N

32 D=INT(100 * RND(0) + 50)

33 51=98/D 'X SCALE FACTOR

292

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

350

530
535
540
550
560
570
580
590
900

! START OF LOOP

FOR L=1 TO N

PRINT"YOUR TARGET IS";D;"YARDS AWAY."

PRINT"WHAT ANGLE,VELOCITY WILL YOU USE (E.G. 35,50): ";
INPUT A,V

IF A>89 OR A<15 PRINT"ANGLE MUST BE 15 TO 89":GOTO 60

IF V>100 OR V<50 PRINT"VELOCITY MUST BE 50 TO 100":GOTO 60
CLS

A=A * 3.14159265/180

R =V * V x SIN(2*A) /G

H = (V * SIN(A)) [2/(2*G)

]

e e —— DISPLAY AXES~——m—m=mm=m

FOR K=1 TO 15: PRINT "!": NEXT K

PRINT “%%;

FOR K=3 TO 50: PRINT "-";: NEXT K

PRINT @1009, "T--(" ;RIGHTS(STRS(D),LEN(STRS$(D))-1);" ¥YDS)--";
1

e CALCULATE AND PLOT TRAJECTORY-=-——-
T1=2*V*SIN(A) /G

K1=51*V*COS (A)
K2=82*V*S5IN(A)
K3=G*52/2
FOR T=0 TO T1 STEP T1/50
X=INT(K1*T+2.5)
Y=INT ((K2~K3*T) *T+2)

IF Y>47 OR Y<0 OR X>127 OR X<0 THEN 395
SET(X,47-Y)
NEXT T

t

'--—~--~PRINT RESULTS~~--~-

PRINT @ 0, "KERPLOP 1!11!"

IF ABS(R-D) < 3 PRINT "HIT !!l!1tt1t": GOTO 515
PRINT "YOU MISSED BY";R-D;"YDS."

PRINT

PRINT"*** YOU HAVE";N-L;"ARROWS LEFT ***"
NEXT L

]

' END OF MAIN LOOP
PRINT"YOU'RE OUT OF ARROWS-~-SCORE = 0"
PRINT"IF YOU WANT TO TRY AGAIN TYPE RUN."
STOP
o CALCULATE SCORES FOR HITS~~==—~=
PRINT"YOU USED";L;"OUT OF YOUR";N;"ARROWS."
PRINT"YOUR FINAL SCORE IS";
PRINT 100 * (12 -~ L)/(L * N)
PRINT"POSSIRBRIT,E SCORES FOR SOME CHOTICES OF ARROWS ARE:"
PRINT" 1~ARROW 2-ARROWS 3-ARROWS 4-ARROWS 5-ARROWS 6~ARROWS"
FOR K =1 TO 6

FOR N = K TO 6

PRINT TAB (9% (N-1)+3);100%* (12-K)/(K*N);

NEXT N
PRINT
NEXT K
END

5.3 SOLUTIONS TO THE PROJECTS IN CHAPTER 3

Solutions to the Projects in Section 3.2

Project FINANCE

293

This program is a menu program which includes LOAN1, SAVE,

AMORT, and LOAN2.

~ ™
10 ThkhhkhkhhhhkhxhkhhhhkhhhhkhhhhhkrAhhhhhhhkhkdkkhhkhhA kAR d A R rhhhhd
11 '+ FINANCE (4 BORROWING/SAVING INTEREST REPORTS) *
12 IR EE AR R EEEE IR R R R R R R Ry Ry R R P e, R L L]
100 M e e e e e
101 ° PRESENT MENU
102 e o e e
105 CLS: N=0
106 PRINT" **%* BORROWING & SAVING CALCULATIONS ***"
108 PRINT
110 PRINT"CHOOSE ONE OF THE FOLLOWING:"
120 PRINT" 1. INSTALLMENT PAYMENTS, WITH ADD-ON INTEREST."
130 PRINT" 2. INSTALLMENT PAYMENTS, WITH INT. ON UNPAID BAL."
140 PRINT" 3. SAVINGS ACCT. INTEREST, COMPOUNDED DAILY."
150 PRINT" 4. INSTALLMENT PAYMENTS, WITH AMORTIZATION."
160 PRINT" 5. END THE PROGRAM,
170 PRINT"TYPE 1, 2, 3, 4, OR 5 =-=";:INPUT N
175 IF N<1 OR N>5 THEN 170
180 ON N GOTO 205, 305, 405, 505, 9999
200 ThhhhkhhhkhhhkhhbhhbrhdhhbhhhAdd Ak hthhdhhhrhhrhdrrhrtrhhd
201 '* LOAN1 *
202 AR AR LR R R EEEEEEEEZEEEEE R EEREE R X ERE R T T TR P LR R RO g
205 CLS: AS=" "
207 PRINT"* INSTALLMENT PAYMENTS WITH ADD-ON INTEREST *"
N GET INPUT= === == mmm e o o e e e
212 PRINT"AMOUNT BORROWED (PRINCIPAL)";: INPUT P
215 PRINT"NUMBER OF MONTHS TO PAY";: INPUT M
216 IF M <= 0 OR INT(M) <> M THEN 215
220 PRINT"INTEREST RATE PER YEAR (6.5% = 6.5)";: INPUT R
N CALCULATE — == === == == e e e
225 R = R * .01
226 TI =P * R * M / 12 '"TOTAL INTEREST
227 'emmmmemeen PRINT REPORT=======m = e
229 PRINT
230 PRINT"MONTHS", "PRINCIPAL", "INTEREST", "MONTHLY"
240 PRINT"TO PAY",, "PER MO.", “PAYMENT"
250 FOR K = 1 TO 60: PRINT"-";: NEXT K: PRINT
255 F1$ =" ## S, H44, H4%. 48 SH, H#E. 44 SHE, HEH.#4"
260 PRINT USING F1$; M, P, TI/M, (P+TI)/M
265 PRINT
270 PRINT,,"TOTAL","TOTAL AMOUNT"
271 PRINT,,"INTEREST","PAID BACK"
275 FOR K = 1 TO 60: PRINT"-";: NEXT K: PRINT
279 F25 ="SHEH, HEE. 4R SH,H#4, $4H. 44"
280 PRINT TAB(31);: PRINT USING F2$; TI, P+TI
285 'mmmmmmemee AGAIN === = m e
290 PRINT"AGAIN (Y = YES)";: INPUT A$: IF AS$ ="Y" THEN 205
q J

294

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

295
300
301
302
305
307

312
315
316
317
319
320
322
324
325
326
327
329
330
332
340
342
345
350
355
360
363
365
370
372
374
375
377
380
382
383
384
385
390
400
401
402
405
410
412

417
418
420
422
425

435
437
438
439
440
443
444
445
450

GOTO 105

1A AR AT AR A AR A A AR AR A AR A A A A A A AR A A A A A AT A A A A dbehkh b b hhh

' LOAN2 *
By R R R R 2222222222 222X X2 X R RS2 R £ R R 2 2 % &
CLS: A$=" "

PRINT"* INSTALLMENT PAYMENTS WITH INT. ON UNPAID BAL. *"
—————————— GET TNPUT == m e e oo m o e o o
PRINT"AMOUNT BORROWED (PRINCIPAL)";: INPUT P

PRINT"NUMBER OF MONTHS TO PAY";: INPUT M

IF M <= 0 OR INT(M) <> M THEN 315

PRINT"INTEREST RATE PER YEAR (6.5% = 6.5)";: INPUT R
PRINT"—-CONTINUE"" INPUT D$

—————————— CALCULATE FIXED QUANTITIES-===r-m——m=m——————
R =R * .01

emmemmmm e CALCULATE & PRINT TABLE==---======m=======
TI = 0: TP = 0: SP = 0

PRINT"MONTH PRINCIPAL INTEREST + PRINCIPAL = MONTHLY"
PRINT"NUMBER OWED PAYMENT PAYMENT PAYMENT"
FOR K = 1 TO 60: PRINT"-";: NEXT K: PRINT
F3$ =" ## SHEH, HHE 4 Sh,oREH.HE SH,oHEE.HE SHoREE.HET
FOR J = 1 TO M

IF J/12 = INT(J/12) PRINT"--CONTINUE";: INPUT D$

Il =P *R /12

PRINT USING F3$; J, P, I1, Pl, Pl+Il

TI = TI + Il

TP = TP + Pl + Il

SP = SP + Pl

P=P - Pl
NEXT J
PRINT"--CONTINUE"; : INPUT DS

—————————— SUMMARY === === — === === — oo
PRINT TAB(21);"TOTAL TOTAL TOTAL"
PRINT TAB({21);"INTEREST PRINCIPAL PAYMENTS"
FOR K = 1 TO 60: PRINT"~";: NEXT K: PRINT
FAS ="SH#, hhh. 44 SHER, BHE . HE SHid, FHe.H8"
PRINT TAB(19);:PRINT USING F4§; TI, SP, TP

----------- AGAIN? === === oo s oo ms oo
PRINT"AGAIN (Y = YES)";: INPUT A$: IF A$="Y" THEN 305
GOTO 105
PAA R IR A AR A AR AR A AR AR A A AN b kA kb kb hh kb b hhhdhathdd
i SAVE *
R R R A AR E R TR AR RS R RS E AL LR R]
CLS: A$=" "
PRINT"* SAVINGS ACCT. INTEREST, COMPOUNDED DAILY *"
—————————— GET INPUT—= === =rm == mmm o mmm mmm oo o
PRINT"STARTING BALANCE";: INPUT P
PRINT"NUMBER OF DAYS COMPOUNDED";: INPUT D
IF D <= 0 OR INT(D) <> D THEN 417

PRINT"INTEREST RATE PER YEAR (6.5% = 6.5)";: INPUT R

PRINT"--CONTINUE"; : INPUT DS
———————————— CALCULATE & PRINT TABLE==—=======wm=====—=x
R =R * .01 / 360 'BANKER'S YEAR = 360 DAYS

PRINT"DAY", "BALANCE", "INTEREST
FOR K = 1 TO 60: PRINT"~";: NEXT K: PRINT

PRINT 0, P, O
TI = 0
FOR J =1 TO D
IF J/12 = INT(J/12) PRINT "~--CONTINUE";:INPUT D$
I1 =P * R
TI = TI + Il
P=P+I1

295

455 PRINT J, P, Il

460 NEXT J
465 PRINT"--CONTINUE";: INPUT DS
N I = SUMMARY == = == = o o e e

472 PRINT, "BALANCE","TOTAL INTEREST"
474 FOR K = 1 TO 60: PRINT"-";: NEXT K: PRINT

477 X$=" SHE, 44444 TI I T A
478 PRINT USING X$; P, TI
480 'm-mmmmmmmm AGAIN? === === m o o e e e

485 PRINT"AGAIN (Y = YES)";: INPUT AS: IF AS="Y" THEN 405
495 GOTO 105

500 'hkkkkkkhkhkkhhhkhhhhhhhkhhhhdhkhkhhhhhhhhhhhhhhhhdhhhhdhk

501 *'=* AMORT *
VLR L 2 LR T e T
505 CLS: Ag=" "

507 PRINT"* AMORTIZATION TABLE *"

510 'm-mmmmmmm- GET INPUT—===m == e e e e
515 PRINT"AMOUNT BORROWED (PRINCIPAL)";: INPUT P

517 PRINT"NUMBER OF MONTHS TO PAY";: INPUT M

518 IF M <= 0 OR INT(M) <> M THEN 517

519 PRINT"INTEREST RATE PER YEAR (6.5% = 6.5)";: INPUT R
520 PRINT"--CONTINUE";: INPUT D$

522 'mmmmmmmeee CALCULATE FIXED QUANTITIES=====-====mme-u

523 R =R * .01 / 12

524 E (P * R * (1 +R)[M) / ((1 + R)[M=-1)

525 '—mmmmmmmoo CALCULATE & PRINT TABLE--===m = s e

526 TI = 0: TP = 0: SP = 0

527 PRINT"MONTH PRINCIPAL INTEREST + PRINCIPAL = MONTHLY"
529 PRINT"NUMBER OWED PAYMENT PAYMENT PAYMENT"
530 FOR K = 1 TO 60: PRINT"-";: NEXT K: PRINT

532 F38=" ## SHe# HER.HE SHo HE4. 44 SH,o###H.## SH,o #hd. 48"
545 FOR J = 1 TO M

550 IF J/12 = INT(J/12) PRINT"--CONTINUE";: INPUT DS

555 I1 = P * R
560 Pl = E - 11
565 IF J = M THEN P1 = P: I1 = E - Pl
570 PRINT USING F3$; J, P, Il, P1, E

575 TI = TI + Il

580 TP = TP + P1 + 1I1

584 SP = SP + Pl

587 P =P - Pl

590 NEXT J

600 PRINT"-~CONTINUE";: INPUT DS

602 '—wmmmmm - SUMMARY = = e o e e e it e ot e e
605 PRINT TAB(21);"TOTAL TOTAL TOTAL"
610 PRINT TAB(21);"INTEREST PRINCIPAL PAYMENTS"
615 FOR K = 1 TO 60: PRINT"-";: NEXT K: PRINT

620 FAS="SH#, 444,44 SH#H, HEH. 44 SH#EE, HEs. 8"

630 PRINT TAB(19);: PRINT USING!F4$; T, SP, TP

635 'eem——— e AGAIN 2= e et e e e e e e e e

=t~
z
g
c
=
3
<N
=
m
b
W
H
v
=
T
&
Z
15}
o
w

640 PRINT"AGAIN (Y = YES)"
650 GOTO!105
9999 END

296

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

Project FINAN2

This is an improvement on FINANCE that uses subroutines for input and

printing.

10

11

12

100
101
102
105
106
108
110
120
130
140
150
160
170
175
180
200
201
202
205
207
210
220
222
225
226
227
229
230
240
250
255
260
265
270
271
275
279
280
285
290
295
300
301
302
305
307
310
315
319
320

2222223 XXX R R RN REEEEEEERE RS X RS R AR R EERERESEEE LS

' FINAN2 (USES SUBROUTINES) *

IEEEE R R LA LS XTSRS RS REE SRS R R RS EEE SRR RS R SRR RS LR SN

b o o e e wn o o o e e e o o o o o T o~ " " " o0 1o 42 2o o ot T o o T o ki 1o T At i o S o o oo

' PRESENT MENU

b e e e o e o s o e o i " oo ot S i e A S e e o T oD " 1l o 7o o " " —— o 7o~ 1 o T "
CLS: N=0

PRINT" *%% BORROWING & SAVING CALCULATIONS **=*"
PRINT

PRINT"CHOQSE ONE OF THE FOLLOWING:"

PRINT" 1. INSTALLMENT PAYMENTS, WITH ADD-ON INTEREST.
PRINT" 2. INSTALLMENT PAYMENTS, WITH INT. ON UNPAID BAL."
PRINT" 3. SAVINGS ACCT. INTEREST, COMPOUNDED DAILY."
PRINT" 4. INSTALLMENT PAYMENTS, WITH AMORTIZATION."
PRINT" 5. END THE PROGRAM.

PRINT"TYPE 1, 2, 3, 4, OR 5 =--";:INPUT N

IF N<1 OR N>5 THEN 170

ON N GOTO 205, 305, 405, 505, 9999

(E2 X222 2 X E R R R R ER R R R R RS SRS XSS ERE R R E RS SRS R LRSS
' LOAN1 *
EET SRS LR EEEEEEAZEA RS EESE SRR ERSESEEREEEE SR EEE L ER S
CLS: A§=" "

PRINT"* INSTALLMENT PAYMENTS WITH ADD-ON INTEREST *"
---------- GET INPUT======= === = mm o s oo m o
GOSUB 1010

----------- CALCULATE= === === === = o s oo o oo o
R=R* .01

TI =P * R * M / 12 'TOTAL INTEREST

D et PRINT REPORT-=---=--- e
PRINT

PRINT"MONTHS", "PRINCIPAL", "INTEREST", "MONTHLY"
PRINT"TC PAY",, "PER MO.", "PAYMENT"
GOSUB 1130

F1$ =" #4¢ SH,o bk, EHEL 44 SH,oH4#.H4 SHE, HEE. "

PRINT USING F1$; M, P, TI/M, (P+TI)/M
PRINT

PRINT,,"TOTAL","TOTAL AMOUNT"
PRINT,,"INTEREST","PAID BACK"

GOsUB 1130

F2S ="S### 444,44 S, hE#, HEE. 1"
PRINT TAB(31),: PRINT USING F2$; TI, P+TI

PRINT"AGAIN (Y = YES)";: INPUT AS$: IF A$ ="Y" THEN 205
GOTO 105

IR XA EEEEEEEAEEEE SRS LR R RS RS R R SRR RS RN R EEEEEE]

' LOAN2 *

Tk ok ko kk kR Rk kR kAR R Ak h kAR Ak h ok h kA hhhh Ak kR ok kR kA kR A R R A
FLS As_" "

PRINT"* INSTALLMENT PAYMENTS WITH INT, ON UNPAID BAL., *"

GOosuB 1010
GOSUB 2010

297

322
324
325
326
330
340
342
345
350
355
360
363
365
370
372
374
380
383
384
385
390
400
401
402
405
410
412
415
417
418
420
422
425
430
435
437
438
439
440
443
444
445
450
455
460
465

472
474
477
478
480
485
486
500
501
502
505
507
510
515
520

e CALCULATE & PRINT TABLE----=—m—e-mes—cm———
TI = 0: TP = 0: SP = 0
GOsuB 1070
FOR J =1 TO M
IF J/12 = INT(J/12) THEN GOSUB 2010
I1 =P *R / 12
PRINT USING F3$; J, P, 11, Pl, P1+I1

TI = TI + 11
TP = TP + P1 + I1
SP = SP + Pl
P =P - Pl
NEXT J
GOSUB 2010
B atut SUMMARY = = = o o e e e e e e e

GOsSuUB 1150
PRINT TAB(19);:PRINT USING F4S; TI, SP, TP
)

___________ DGR TN P oo = im o om it e e
PRINT"AGAIN (Y = YES)";: INPUT AS$: IF AS="Y" THEN 305
GOTO 105
(R XSS RS S ER SRS EREEEREEEEE RS SRR R FER SRR R R R R EEE R R R R KRR N
vH SAVE *
IEEEEEE RS SRR R SRS RER SRR REERRRAEEER R AR RERRS R R R R RN X
CLS: AS=" "

PRINT"* SAVINGS ACCT. INTEREST, COMPOUNDED DAILY *"
D s GET INPUT—= == mmm mtm o m e

PRINT"STARTING BALANCE";: INPUT P

PRINT"NUMBER OF DAYS COMPOUNDED";: INPUT D

IF D <= 0 OR INT(D) <> D THEN 417

PRINT"INTEREST RATE PER YEAR (6.5% = 6.5)";: INPUT R
GosuB 2010

P e CALCULATE & PRINT TABLE------—-—--=————————

R =R * ,01 / 360 'BANKER'S YEAR = 360 DAYS
PRINT"DAY", "BALANCE", "INTEREST

GOSUB 1130

PRINT 0, P, O

T = 0

FOR J = 1 TO D
IF J/12 = INT(J/12) THEN GOSUB 2010
Il = P * R
TI = TI + I1
P =P + Il
PRINT J, P, Il
NEXT J

——————————— SUMMARY == = == = = = = = ot ot e
PRINT, "BALANCE" ,"TOTAL INTEREST"

GOSUB 1130

Xg=" S, #4444 kb Hhadae”

PRINT USING X$; P, TI

PRINT"AGAIN (Y = YES)";: INPUT AS$: IF AS="Y" THEN 405
GOTO 105

IR RS EEEEEREEEEEERSEESEE SRR SRS SRR EREER SRR R SRR E R KX

TE AMORT *
Tk hkhhk kA kR Ak ko k kA KRR AR A AR AR AR ARk h kA kAR Rk hh ok ko k&
CLS: as=" "

PRINT"* AMORTIZATION TABLE *"

)

Gosus 1010
GOsuB 2010

298

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

523
524
525
526
530
545
550

560
565
570
575
580
584
587
590
600
602
610
630

299¢

R it ettt CALCULATE FIXED QUANTITIES-====-—==m—=—m=—
R=R* .01 / 12

E=(P *R* (1L +R)[M) / ({1 + R)I[M-1)

ittt b CALCULATE & PRINT TABLE~==——mm==—r————————
TI = 0: TP = 0: SP = 0

GOSsuB 1070

FORJ =1 TO M

IF J/12 = INT(J/12) THEN GOSUB 2010
Il =P *R
Pl = E - Il
IF J = M THEN Pl = P: Il = E - Pl
PRINT USING F3$; J, P, Il, Pl, E
TI = TI + Il
TP = TP + Pl + Il
SP = SP + Pl
P=pP - Pl
NEXT J
GOSUB 2010
o SUMMARY == == = = = o e
GOSUB 1150
PRINT TAB(19);: PRINT USING F4$; TI, SP, TP
R AGATN? == === = o e o e
PRINT"AGAIN (Y = YES)";: INPUT A$: IF AS$="Y" THEN 505

GOTO 105

GOTO 9999
! SUBROUTINE, GETS INPUT
b o e e e o . oo oo o o . o S " o e i S e i T S S W WD S AR S o b S S T i S -
PRINT"AMOUNT BORROWED (PRINCIPAL)";: INPUT P
PRINT"NUMBER OF MONTHS TO PAY";: INPUT M

IF M <= 0 OR INT(M) <> M THEN 1020

PRINT"INTEREST RATE PER YEAR (6.5% = 6.5)";: INPUT R

RETURN

! SUBROUTINE, HEADING l, LOAN2, AMORT

b o o o e s o o S~ " v~ i = /o i 7o s o o o " o — T W "
PRINT"MONTH PRINCIPAL INTEREST + PRINCIPAL = MONTHLY"
PRINT"NUMBER OWED PAYMENT PAYMENT PAYMENT"
GOSUB 1130 'DRAWS LINE

F38=" ## SHEE HEH.HE SH#H.H4 Sk Rt #E Sk hEE.HE"
RETURN

FOR K=1 TO 60: PRINT" ";: NEXT K: PRINT: RETURN
I

! SUBROUTINE, HEADING 2, LOANZ2, AMORT

U e e - - - ————— T " " " " > an Lt T " "~ T > "~ 1 17 -2 oy ‘7o T R e T T o o

PRINT TAB(21) ;"TOTAL TOTAL TOTAL"

PRINT TAB(21);"INTEREST PRINCIPAL PAYMENTS"

GOSUB 1130 'DRAWS LINE

F4S="S#, #44. 4% Shith, f#d. 04 SHiHh, #H8. 48"

RETURN

! SUBROUTINE, SCREEN PAUSE

PRINT"—-CONTINUE";: INPUT D$ RETURN
END

299

Solution to the Project in Section 3.5

Project HARDSALE

This program is an extension of SALESLIP which prints the final saleslip
on a computer-controlled printer.

Thhkhhd Ak AR Rk AR KA A AR A AR RKA AR KARA AR ARk h kAR kAR R A Ak A A AR kA hh K

' HARDSALE (COLLECTS TRANSACTIONS & LPRINTS BILL) *
B e Y e Y R R L A

DATA"JAN, " ,"FEB.","MAR.","APRIL","MAY" "JUNE","JULY","AUG."
DATA "SEPT.","OCT.","NOV.","DEC."

PRINT "DATE (mm,DD,YY)";: INPUT M,D,Y

FOR K=1 TO M: READ MS$: NEXT K

PRINT "TYPE LAST SALES SLIP # USED";: INPUT S: S=S+1

DIM Q(25),C$(25),D$(25),P(25)

e o o i ot i it S o L S o o P 40 e S W . o . L . s o i S W o L S T - —" T T 7o s S0

: SALES DATA ENTRY

Y e e e e s . S S S S o S T T P T T A . S o i o S o S S0 B S o e S

CLS: PRINT "SALES SLIP #";S; TAB(27);"DATE: ";MS$;" ";D;",";1900 + Y
0

L=0

PRINT "CUSTCMER NAME";: INPUT N§$

PRINT "STREET ADDRESS";:INPUT S$

PRINT "CITY & ZIP";:INPUT ZS$

PRINT "TYPE QTY CAT # DESCRIPTION UNIT PRICE (0 = EXIT)
L=L+1

N=L : GOSUB 2000

GOTO 260

b e e e e e o o it i e . e e e o o e . o i b o . o S o . e o o

! CORRECTION ROUTINE

1 e e e e ot 2 S o e b e o S 0 e o o e s o

PRINT "TYPE F IF FINISHED, C TO CHANGE, R TO RESUME, V TO VOID";

INPUT AS

IF AS="F" THEN 400

IF A$="C" THEN 360

IF A$="V" THEN 210

IF A$="R" THEN 280

GOTO 310

PRINT "WHICH ITEM # TO BE CHANGED";:INPUT C
IF C > L THEN 360

N=C: GOSUB 2000

IF C=L THEN L=L+1

CLS: PRINT TAB(15); "<*> MADE BY HAND SHOPS <*>"
PRINT: PRINT "INVOICE #";S, TAB(39); "DATE: ";MS;" ";D;",";1900+Y
PRINT "SOLD TO: "; N$

PRINT TAB(9);S$

PRINT TAB(9);2$

300

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

—
440 PRINT
445 PRINT " QTY CAT# DESCRIPTION PRICE TOTAL“
450 PRINT M. ivueseomonseonooansacsssosnsannasacssnsconsnssconsnsscss'
455 T=0
460 FOR K=1 TO L-1
465 E=P (K) *Q (K)
468 FS="ITEM ##: ##4# % $ 3 % #HE.#E $HeHE. A"
470 PRINT USING F$;K,Q(K),CS$S(K),DS(K),P(K),E
475 T=T+E
480 NEXT K
485 PRINT
486 X=.06*T 'CHANGE TAX FORMULA FOR YOUR STATE
487 PRINT TAB(47);:PRINT USING " SUM = ####.#4";T
488 PRINT TAB (47);:PRINT USING " TAX = ####.##":X
489 PRINT TAB(47);:PRINT USING "TOTAL = ####.4#";T+X
490 PRINT CHRS$(27):;"TYPE P TO PRINT, V TO VOID";:A$="":INPUT AS$
494 TIF AS="V" THEN 210
495 IF AS$S="P" THEN 497
496 PRINT "??? PLEASE RETYPE";: INPUT AS$: GOTO 494
497 PRINT "IF CASH, TYPE PAYMENT; IF CREDIT TYPE 0";:INPUT A
498 IF A>0 PRINT USING "CHANGE IS ##.##";A-T-X: GOTO 4010
G 00 P e e i e 2 T e
501 ! CHARGE ACCOUNT SECTION
B 02 o o S T e
510 PRINT "CHARGE ACCT. SECTION NOT WRITTEN YET *** RECORD BY HAND"
590 PRINT "PRESS 'ENTER' TO CONTINUE -~ READY";:INPUT AS
595 GOTO 4010
2 000 M e e e o i o e e e
2001 ¢ CURSOR ~CONTROLLED INPUT SUBROUTINE
D 002 P o o o e e o o o o
2010 PRINT "ITEM"; N'“:""INPUT Q(N):IF Q(N)=0 THEN 300
2020 PRINT TAB(14) sCHRS(27);: INPUT CS$(N):IF CS(N)="0" THEN 300
2030 PRINT TAB(23);CHR$(27);:INPUT DS$S(N):IF DS(N)="0" THEN 300
2040 PRINT TAB(37);CHRS$(27);: INPUT P(N):IF P(N)=0 THEN 300
2050 RETURN
4 QOO P e e 1 T o
4001 ° LINE PRINTER SECTION
G 002 7 e o o o o e
4010 PRINT "TURN PRINTER ON -~ READY";:INPUT AS
4020 LPRINT TAB(18) ARSI TEPREDTE DT DT LD IEDTELDTED LD
4021 LPRINT TAB(18);:"<*> RN
4022 LPRINT TAB(18);"<*> MADE BY HAND SHOPS <R
4024 LPRINT TAB(18);"<*> PITTSBURGH, PA 15213 <*>"
4025 LPRINT TAB(18);"<*> KEHM
4026 LPRINT TAB(lS);"<*><*><*><*><*><*><*><*><*><*>"
4028 LPRINT®" ¢
4030 LPRINT" ":LPRINT"INVOICE #";S,TAB(39);"DATE:";M$;" ";D;",";1900+Y
4032 LPRINT"SOLD TO: ";N$
4034 LPRINT TAB(9);S$
4036 LPRINT TAB(9);Z2$
4038 LPRINT " "
4040 LPRINT" QTY CAT# DESCRIPTION PRICE TOTAL"
4042 LPRINT" . vueoeeonnnesscacenascsnscansaosssosassassoosassnosossas!
4046 FOR K=1 TO L~1
4048 E=P (K) *Q (K)
4050 FS$=FS$
4052 LPRINT USING FS$;K,Q(K),CS$(K),DS(K),P(K),E
4056 NEXT K
4058 LPRINT" "
4062 LPRINT TAB(47);: LPRINT USING" SUM = ####.#4";7T
4064 LPRINT TAB (47);: LPRINT USING" TAX = ####.##";X
4066 LPRINT TAB(47);:LPRINT USING"TOTAL = ####.4#4";T+X

301

4068
4070
4080
4082
4085
4090
4092
4094
4096
4099
9999

)

LPRINT" ":IF A>0 THEN 4080

LPRINT"*** CREDIT PURCHASE -~ ABOVE TOTAL IS DUE IN 25 DAYS***":GOTO 4085
LPRINT USING "AMOUNT REMITTED = ####.#4";A

LPRINT USING " YOUR CHANGE = ####.4#4";A~-T~X

FOR I=1 TO 10:LPRINT" ":NEXT I
PRINT "RESUME(R), PRINT AGAIN (P), OR QUIT(Q)";:AS$="":INPUT AS

IF AS$="R" THEN S=S+l1: GOT0210
IF AS="P" THEN 4010

IF AS$S="Q" THEN 9999

GOTO 4090

END

Solution to the Project in Section 3.6

Project MONEY2

This program is an extension of MONEY. It adds a V(oid) command in
lines 1210 and 1225, and has the void subroutine in lines 1900 to 1990.

—~
10 * AR ARK AR AR AR R R AR AR AR IR AR AR R AR AR A AR AR R AR A AR A AR AR KA A &

15 ¢ * MONEY?2 *

20 ' * COMPUTERIZED FINANCIAL/TAX REPORTING SYSTEM *

40 VoA AR KRR R A AR R AR R R R A AR R AR AR AR A AR R AR AR A AR A AR A A A A kA A A KT KA

100 b o o i i e e B s 1t o S e 2 i o o v S e B e S P B S8 S 4 s 0 e £ e e . e o mn

101 INITIALIZE VARIABLES; DECLARE DATA TYPES

102 e e o e e e i i 1 B T o 2 7 2 2 ot et 1 P B e e . ot e e S e e et 21 e oo o oo

105 CLS

110 PRINT " <*> FINANCIAL TAX/REPORTING SYSTEM <*>
112 DEFINT C-P

114 CLEAR 2000

115 PRINT STRINGS (60,"-")

120 INPUT "FOR CALENDAR YEAR 19";1Y

130 IF IY<70 OR IY>99 PRINT "INVALID YEAR" : GOTO 120

140 INPUT "FOR PERIOD #"; P

150 IF P<l OR P>366 PRINT "INVALID PERIOD #" : GOTO 140

160 INPUT "STARTING BALANCE THIS PERIOD (E.G. 589.65)"; BS

165 BC=BS "INITIALIZE CURRENT CK BALANCE

170 INPUT "CK. ACCT. OR BANK NAME"; CAS

175 INPUT "STARTING CK. # THIS PERIOD"; CS

176 CK=CS 'CK IS CURRENT CK ABOUT TO BE PROCESSED
177 CH=CS-1 'CH IS HIGHEST CK # ALREADY PROCESSED
179 PRINT:PRINT TAB(25);"STAND BY"

180 DS=1 : PS=1 : HS=1 'STARTING DEP, CASH PAY, & CASH RCVD #S
181 DK=DS : DH=DS-1 "CURRENT & HIGHEST DEP #$

183 PK=PS : PH=PS-1 "CURRENT AND HIGHEST CASH PAY #

184 HK=HS : HH=HS-1 "CURRENT AND HIGHEST CASH RCVD #

185 FS="##4 ##/## SHH#E. ## % $ % $ % % HHd B44
186 DS="SH#sh#. 44"

187 FP1S="¢444: ##/84/8% SHESEH. 54 % "

302

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

188

189

190

198

200

201

202

210

220

225

230

240

250

999

1000
1001
1002
1003
1004
1005
1010
1020
1030
1040
1042
1044
1046
1048
1050
1055
1060
1065
1076
1099
1100
1101
1102
1110
1115
1120
1125
1130
1132
1134
1135
1140
1150
1155
1157
1160
1165
1170
1175
1200
1201
1210
1215
1222
1225
1230
1235
1237

F2§=" % % % $ OREE HER"
LP$=F1$+F 2%
DIM GD(200),GA(200),GV$(200),GD$(200),GF$(200),GP(200),GC(200)

' MAIN MENU SELECTION

b e o s e o e e e e 2 e e e B B e e S S B B . i e e
CLS

PRINT " <LK MAIN MENU SELECTION >>>
PRINT STRINGS$(60,"-")

INPUT "TRANSACTION (1), REPORT (2), OR EXIT (3)"; MS
IF MS<1 OR MS>3 THEN 230
ON MS GOTO 1010, 5010, 9910

+ T T T T T e e e e e e T T T AR M N AN I I I N R T N ORI RN
' TRANSACTION PROGRAMS

]

b o - - i o o7 o - 7 T (oo e o i i S S T YA W T o ot o B O Y Do S o T W o B W
' TRANSACTION SUB-MENU SELECTION

b e ot o o o W s o A iy . S S o W W W W (e S . i S B A O T e e B i Y B o i S T
CLS

PRINT " < TRANSACTION MENU SELECTION >"
PRINT STRINGS(60,"-")

PRINT" 1 = CK PAYMENTS BY YOU"

PRINT" 2 = CASH PAYMENTS BY YOU"

PRINT" 3 = CK RECEIPTS DEPOSITED BY YOU"

PRINT" 4 = CASH RECEIPTS"

PRINT" S = EXIT FROM TRANSACTION SECTION"

PRINT

INPUT"1, 2, 3, 4, OR 5"; MS

IF MS<1 OR MS>5 THEN 1055

IF MS=5 THEN 210

ON MS GOSUB 1410, 1510, 1610, 1710

CLS

PRINT"*** " :LEFTS (TRS$, 3) ; "TRANSACTIONS FOR PERIOD"; P; “OF" ;1900+1Y
PRINT "#** STARTING CK BALANCE THIS PERIOD=";TAB(36); USING D$;BS
PRINT "*** CURRENT CK BALANCE THIS PERIOD =";TAB(36); USING D$;BC
PRINT “TO MAKE A CHANGE OR EXIT TYPE 0,0 FOR MO,DAY"

PRINT "TO RESTART A LINE TYPE -1 IN ANY COLUMN"
PRINT STRINGS (60,"-")
PRINT TR$;" MO,DAY: AMT: VENDOR: ";
PRINT "FOR: TAX CODE: %: ACT#"
GK=GH+1 'GK IS TR. # ABOUT TO BE PROCESSED
I=(GK-GS)+C1 *INDEX TO TR. RECORDS IN G ARRAY
IF I>MAX PRINT "OUT OF SPACE" : GOTO 1210
GOSUB 3010 'COLLECT TR. DATA
TF M=0 AND D=0 THEN 1210

GH=GH+1

GOTO 1150
’
s .TRANSACTION EXIT ROUTINE....... ceeees

PRINT "EXIT(E), CHANGE (C), RESUME(R), LIST(L), OR VOID(V)";
INPUT A$

IF AS="R" THEN 1135

IF AS="V" THEN : GOSUB 1910: : GOTO 1210

IF AS="E" THEN 4010

IF AS="L" THEN 1258

IF AS="C" THEN 1245

303

N

GOTO 1210
)
L e CHANGE ROUTINE....ceeeuouan
PRINT "CHANGE DATA FOR WHICH #";:INPUT GK
IF GK>GH PRINT TRS$" # TOO HIGH": GOTO 1210

IF GK<GS PRINT "TOO LOW" : GOTO 1210

I=(GK-GS)+C1l : BC=BC-M1*GA (I)*.01

PRINT TRS;" MO,DAY: AMT: VENDOR: "

PRINT "FOR: TAX CODE: %: ACT#"

GOSUB 2010 : GOTO 1210
¥
Y. e LIST ROUTINE...uueuueu... e
PRINT "LIST OF ";LEFTS(TRS,3);" TRANSACTIONS NOW IN G ARRAY"
FOR J=GS TO GH

K=(J-GS)+C1

M=INT (GD(K)/100) : D=GD(K)-M*100

PRINT USING F$;J,M,D,GA(K)*.01,GVS$(K),GDS$(K),GF$ (K),GP(K),GC (K)
NEXT J
GOTO 1210
b e o e e D - 1] Y e er o Y B o AL o e 0 e £ B o S e e B o o S S S S S W o S
' SUBROUTINES TO PASS TRANSACTION PARAMETERS
TR$="CK #" : GS=CS : GH=CH : GK=CK : MAX=99 : Cl=1 : Ml=-1
RETURN
)
TRS="PAY#" : GS=PS : GH=PH : GK=PK : MAX=149 : Cl=101 : M1=0
RETURN
1]
TR$="DEP#" : GS=DS : GH=DH : GK=DK : MAX=189 : Cl=151 : Ml=l
RETURN
)
TRS="CSH#" : GS=HS : GH=HH : GK=HK : MAX=199 : C1=191 : M1=0
RETURN
b e ot e ot s it e B 4 i W i i . 7 St S e S S S e St 2 St 1 A G o o Do o S 5 4 i S B o o s e o
' SUBRQUTINE TO VOID TRANSACTIONS
b o o o kit ot ot o et 2t 1 e S S . B 8 e e o S o o S0 o e 2o e 2 e
PRINT " * HIGHEST TRANSACTION # PROCESSED SO FAR IS";GH
PRINT " * VOID REMOVES DATA FROM # XX ON UP. WHAT VALUE"
PRINT " * OF XX DO YOU WISH TO VOID FROM (-1 MEANS NONE)";
INPUT XX
IF XX<0 THEN 1990
IF XX<GS PRINT "TR # TOO LOW. XX =";:GOTO 1930
IF XX>GH PRINT "TR # TOO HIGH. XX =";:GOTO 1930
FOR J=XX TO GH

K=(J-GS)+C1

BC=BC-M1*GA (K)*.01
NEXT J
GH=XX-1

PRINT "ALL TRANSACTIONS FROM #";XX;"ON UP ARE VOID"

PRINT "HIGHEST TRANSACTION # PROCESSED IS NOW";GH
RETURN

PRINT GK;TAB(S);: INPUT M,D: IF M=0 AND D=0 THEN 3090

IF M<0 OR D<0 THEN 3010

GD(I)=100*M + D

AM=0: GV$(I)="NO ENTRY": GD$(I)="NO ENTRY"

GFS(I)="NONE": GP$=" ": GC(I)=0

PRINT TAB(12);CHRS(27);:INPUT AM:IF AM<O THEN 3010

PRINT TAB(21);CHRS$(27);:INPUT GVS$(I):IF GVS$(I)="-1"THEN 3010
PRINT TAB(33);CHR$(27);:INPUT GD$(I):IF GDS(I)="-1"THEN 3010

304

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

PRINT TAB(45);CHRS(27);:INPUT GFS(I):IF GFS$(I)="-1"THEN 3011
PRINT TAB(53);CHRS(27);:INPUT GP$:IF GP$="-1"THEN 3010
BC=BC+AM*M1

GA (I)=INT (100*AM)

IF GPS$="" OR GP$=" " THEN GP(I)=100 ELSE GP (I)=VAL (GPS)
PRINT TAB(58);CHRS(27);:INPUT GC(I): IF GC(I)<0 THEN 3010
RETURN

__ ’

! TRANSACTION "CLEAN-UP" PROGRAM; DISK SAVE

PRINT: PRINT" < EXIT FROM TRANSACTION SECTION >"

PRINT ">>> CURRENT BALANCE =";BC

IF BC<0 PRINT "#**% WARNING: CURRENT CHECKING BAL. IS NEGATIVE **#*"
PRINT"SAVE (S), RESUME(R), OR EXIT(E)";:INPUT AS

IF A$="S" THEN 4110

IF A$="R" THEN 1134

IF AS$S="E" THEN 4510

GOTO 4020

¥

‘eeneann weees«DISK SAVE ROUTINE....eeeenvane
PRINT "NO DISK SAVE YET": GOTO 4020
¥

CK=CH+1

IF TRS="CK #":CS=GS:CH=GH:CK=GK: GOTO 1010
IF TR$="DEP#":DS=GS :DH=GH:DK=GK: GOTO 1010
IF TRS="PAY#$#":PS=GS:PH=GH:PK=GK: GOTO 1010
IF TRS$S="CSH#":HS=GS :HH=GH:HK=GK: GOTO 1010
PRINT "ERROR IN TR$ -- IT = ";TR$: STOP

]

! REPORT GENERATING PROGRAMS

\]

PRINT "REPORT SECTION NOT WRITTEN YET"

FOR J=1 TO 500: NEXT J 'DELAY LOOP

GOTO 210

B e o o o o S o o D T e Moy o e g A A M e ke S e S S e e T T T T M M e e e g T e e e e

CLS: PRINT "*#*%* END OF PERIOD";P;"TRANSACTIONS FOR";1900+IY;"#*=**"
PRINT STRINGS(50,"."): PRINY
PRINT USING "STARTING CHECKING ACCOUNT BALANCE WAS SH#4#H#4. $4"BS

PRINT USING "CLOSING CHECKING ACCOUNT BALANCE IS S####s.##":BC
PRINT

PRINT "STARTING CK # THIS PERIOD WAS ";CS

PRINT "HIGHEST CK # THIS PERIOD WAS ";CH: PRINT

PRINT ">>> THE NEXT TIME THIS PROGRAM IS RUN RESPOND AS FOLLOWS:"
PRINT "FOR PERIOD # ?";P+1

PRINT "STARTING BALANCE THIS PERIOD 2";BC

PRINT "STARTING CK # THIS PERIOD ?";CH+l : PRINT

PRINT "PROGRAM IS ABOUT TO TERMINATE. VERIFY O.K. (Y/N)";

INPUT 2$: IF LEFTS$(2$,1)<>"y"™ THEN 210

END

305

5.4 SOLUTIONS TO THE PROJECTS IN CHAPTER 4

Solution to the Project in Section 4.2

Project TAXRPT

This program extends MONYLIST by adding another report which sum-
marizes transactions sorted by the tax code they correspond to. Only the
second half of the program is shown. The first half is the same as

MONYLIST and MONEY2.

e ™
5000 ' R N N NSNS NSNS T oI oo I o I S0 50 I 50 05 ST ST NN I M I T I I NN LMD M T I oIh o e e
5001 ! REPORT GENERATING PROGRAMS
5002 !
5010 CLS: Fl=0
5020 PRINT " < REPORT MENU SELECTION >
5030 PRINT STRINGS(60,"-")
5035 PRINT " 0 = EXIT FROM REPORT SECTION"
5040 PRINT " 1 = CHECKING ACCOUNT BALANCE"
5042 PRINT " 2 = PRINTED LIST OF ALL TRANSACTIONS™"
5044 PRINT " 3 = TAX FORM REPORTS"
5050 PRINT
5055 INPUT "0, 1, 2, OR 3"; MS
5060 IF MS<0O OR MS>3 THEN 5055
5070 IF MS=0 THEN 210
5080 ON MS GOTO 6010, 7010, 8010
5090 GOTO 210
6010 GOTO 5010
T 000 o e e e e e e e e e e e e e
7001 ! PRINTED LIST OF ALL TRANSACTIONS ENTERED
T 002 M e e e e e
7010 PRINT "TURN PRINTER ON -~ READY";:INPUT 2§
7012 LPRINT" ":LPRINT" ":LPRINT" ":LPRINT" *
7015 LPRINT "LIST OF ALL TRANSACTIONS FOR PERIOD";P;"OF";IY+1900"
7016 LPRINT "CHECKING ACCOUNT IS AT ";CAS;" BANK"
7017 LPRINT USING "STARTING BALANCE WAS S#####.##";BS
7025 LPRINT" *®
7030 PFRS="44% #&/#4 SH#ss. 4% % g"
7031 PFS=PFS+" % % 3% S HEHE HERE"
7110 LPRINT" ":LPRINT"*** CHECKING ACCOQUNT PAYMENTS ***".[pPRINT" "
7120 LPRINT"CK# DATE: AMOUNT: TO: FOR";
7121 LPRINT®: FORM: TX%: ACCT:"
7130 LO=1: HI=99: S=CS: Cl=1: GOSUB7510
7210 LPRINT" ":LPRINT"*** CASH PAYMENTS *#**":[PRINT" "
7220 LPRINT"PAY# DATE: AMOUNT : TO: FOR";
7221 LPRINT": FORM: TX% ACCT:"
7230 LO=101: HI=149: S=PS: Cl=10l1: GOSUB 7510
7310 LPRINT" ":LPRINT"*** CHECKING ACCOUNT DEPOSITS *#**".[PRINT" "
7320 LPRINT"DEP# DATE: AMOUNT : FROM: FOR";
7321 LPRINT": FORM: TX% ACCT:"
7330 LO=151: HI=189: S=DS: Cl=151: GOSUB 7510
7410 LPRINT" ":LPRINT"*** CASH RECEIPTS NOT DEPOSITED ***":LPRINT" "
7420 LPRINT"CSH# DATE: AMOUNT: FROM: FOR";
7421 LPRINT": FORM: TX% ACCT:"
7430 LO=191: HI=200: S=HS: Cl=191: GOSUB 7510
___ J

306

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

IF Fl=1 THEN 8010

LPRINT" ":LPRINT "CURRENT CHECKING ACCT. BALANCE IS5 ";
LPRINT USING "S#####.#4";BC
GOTO 5010

' PRINT SUBROUTINE
FOR K=LO TO HI
IF GD(K)<0 THEN 7580
IF F1=0 THEN 7530
IF GFS$(K)<>TF$ THEN 7560
J=K+3-C1
M=INT(GD(K)/100): D=GD(K)~M*100: A=GA(K)/100
LPRINT USING PFS$;J,M,D,A,GVS(K),GDS(K),GFS(K),GP(K),GC (K)
NEXT K
LPRINT STRINGS(70,"-")

PRINT "REPORT FOR WHICH TAX FORM CODE ($$=EXIT)";:INPUT TFS$
IF LEN (TFS$)<>2 PRINT "TYPE 2 CHARACTERS":GOTO 8010

IF TF$="$S$" THEN 8080

PRINT "TURN PRINTER ON -- READY";:INPUT 735

LPRINT" ":LPRINT" ":LPRINT" ":LPRINT STRINGS$(70,"=")
LPRINT "*** TRANSACTIONS FOR TAX~FORM CODE ";TF§;" ****"
LPRINT STRINGS(70,"=")

Fl=1 'FLAG TO ENABLE TESTS AT LINES 7450 & 7525
GOTO 7025 'USE PRINT ROUTINE ALREADY WRITTEN

REM LINES 7450, 7524, AND 7525 WERE ADDED TO ALLOW

REM THIS REPORT TO SHARE USE OF THE PRINT ROUTINE AT 7000
F1=0 'TURN OFF TAX RPT FLAG

GOTO 5010

1

CLS: PRINT "*** END OF PERIOD";P;"TRANSACTIONS FOR";1900+IY;"***"
PRINT STRINGS(50,"."): PRINT

PRINT USING "STARTING CHECKING ACCOUNT BALANCE WAS S#####.4##";BS
PRINT USING "CLOSING CHECKING ACCOUNT BALANCE IS SHi###.#4";BC
PRINT

PRINT "STARTING CK # THIS PERIOD WAS ";CS

PRINT "HIGHEST CK # THIS PERIOD WAS ";CH: PRINT

PRINT ">>> THE NEXT TIME THIS PROGRAM IS RUN RESPOND AS FOLLOWS:"
PRINT "FOR PERIOD # 2";P+l

PRINT "STARTING BALANCE THIS PERIOD 2";BC

PRINT "STARTING CK # THIS PERIOD ?";CH+l1 : PRINT

PRINT "PROGRAM IS ABOUT TO TERMINATE. VERIFY O.K. (Y/N)";

INPUT Z$: IF LEFTS(Z2$,1)<>"Y" THEN 210

END

307

Solutions to the Projects in Section 4.3

Project FILEBOX2

This program is an improvement of FILEBOX. It is very similar, but it
fields the 1/0 buffer to put four logical (user) records in each physical
record.

10

20

30

110
115
120
130
150
160
170
172
175
177
180
190
195
200
201
202
210
215
216
217
218
220
230
240
300
301
302
310
320
330
350
360
390
400
401
402
410
415
417
420
430
440
450
451
452

~

PAKA R AR AR RA IR A A AR AR R AR AR AR IR AR AR AR A AARKR A AR AR AR AR AR AR KA AR A AR A AR A AR AKX

'* FILEBOX2 (EXTENSION OF FILEBOX; PUTS 4 SUBRECORDS ON EACH RECORD) *
¥ **
CLEAR 500 : CLS

ON ERROR GOTO 989

PRINT "THIS PROGRAM ALLOWS YOU TO SAVE AND/OR RETRIEVE PAIRS"

PRINT "OF DATA OF THE FORM (KEY, INFO). EXAMPLES: "

PRINT "KEY? SAUERBRATEN INFO? OLD HEIDELBERG, 555-1234"

PRINT "KEY? ACE BONDS INFO? SAFE DEP BOX 24, MARGINAL TRUST CO."
PRINT:PRINT"NAME OF DATA FILE";:INPUT FS

IF F$="" THEN 999

IF LEN(F$)>8 OR ASC({F$)<65 OR ASC(F$)>90 PRINT "BAD NAME":GOTO 170
PRINT ">>> WARNING: DO NOT EXIT THIS PROGRAM BY PRESSING BREAK <<<"
OPEN "R", 1, F$

IF LOF(1)>0 PRINT "NOTE: THIS IS AN OLD FILE": GOTO 310

PRINT "THIS IS A NEW FILE. STAND BY FOR INITIALIZATION"

1

Cy=0

FOR SR%=0 TO 3
FIELD 1, (SR%*63) AS D$, 61 AS TS, 2 AS CS
LSET T$=" ": LSET C$=MKIS$(C%)

NEXT SR%

FOR PR%=1 TO 25

PUT 1, PRS%

PRINT o m s o e e e e e e e "
PRINT "RECORD # (0 = EXIT)";: INPUT KN%

IF KN$=0 THEN 910

GOSUB 810 'CALCULATE PHYSICAL RECORD # & SUBRECORD #

IF PR%>25 PRINT "FILE SIZE EXCEEDED": GOTO 310

GET 1, PR%
Ce=CVI(CS$): IF C%<>0 THEN 420
PRINT"* RECORD #";KN%;"IS BLANK *": GOTO 455
PRINT "DATA FOR RECORD #"; KN%
PRINT "KEY : ";AS
PRINT "INFO : ";BS$
PRINT "THIS RECORD HAS BEEN ACCESSED";C%;"TIME(S)":C%=C%+1
LSET C$=MKIS$(C%)
PUT 1, PR% 'PUT NEW # OF ACCESES ON RECORD

308

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

N
455 PRINT "..0sevess DO YOU WISH TO s.veeoano"
460 PRINT"CHANGE (C), DELETE(D), OR RESUME(R)";:R$="":INPUT R$
461 IF RS="R" OR R$="" THEN 310
462 IF R$="C" THEN 510
463 IF R$="D" LSET AS=" ":LSET BS$=" ":C%=0:GO0TO 540
464 GOTO 460
SO0 Vo o i o e e o e e
501 ° INPUT NEW DATA AND SAVE IT ON DISK
G ()2 1 o o o o e i e e i e
510 C%=l: PRINT "TYPE NEW DATA FOR RECORD #";KN3%
520 PRINT "KEY : ";:LINEINPUT KS : LSET AS$=KS
530 PRINT "INFO: ";:LINEINPUT IS : LSET BS=IS
540 LSET CS$=MKIS(C%)
550 PUT 1, PR%
590 GOTO 310
B 00 P o o e e o o o i i
801 ' CALCULATE PHYSICAL RECORD # AND SUBRECORD #
B2 e e e e
810 PRE&=INT((KN%~-1) /4)+1
820 SR$=KN%~-4*% (PR$~1)~1
890 RETURN
Q) Vo e o e o e s e e i A i s s e
901 ' EXIT ROUTINE; LIST ALL KEYS ON FILE IF DESIRED
G (2 T e o e e o e e s o
910 PRINT “"QUIT(Q), PRINT KEYS (P}, OR RESUME(R)";:INPUT RS
915 IF R$="Q" THEN 990
920 IF RS="B" THEN 940
925 IF R$S="R" THEN 310
930 GOTO 910
940 PRINT"PRINT ROUTINE MISSING AT PRESENT": GOTO 910
989 PRINT "ERROR DETECTED IN PROGRAM"
990 CLOSE
999 PRINT "* END OF PROGRAM ~- ALL FILES ARE CLOSED *":END
J/
Project FILEBOX3
This is another extension of FILEBOX and FILEBOX2. It produces a list of
key numbers and the associated key data items.
N
1 O Thdhhhh bk A A A AR A AR A A A A A FT AR ARA N AR AR A A A A AN A AR R A A A AR AR A A A AR A kR
20 ' FILEBOX3 (ADDS PRINTING OF KEYS TO FILEBOX2) *

fhkhhhhhh kA AN AR A AXAAAAAAARA A AR AR R A A AT A A A A A bk A h kA hhhddn

CLEAR 500 : CLS
ON ERROR GOTO 989
PRINT "THIS PROGRAM ALLOWS YOU TO SAVE AND/OR RETRIEVE PAIRS"

PRINT "OF DATA OF THE FORM (KEY, INFO). EXAMPLES: ¥

PRINT "KEY? SAUERBRATEN INFO? OLD HEIDELBERG, 555-1234"

PRINT "KEY? ACE BONDS INFO? SAFE DEP BOX 24, MARGINAL TRUST CO."
PRINT:PRINT"NAME OF DATA FILE";:INPUT FS$

IF F$="" THEN 999

IF LEN(F$)>8 OR ASC(F$)<65 OR ASC(F$)>90 PRINT "BAD NAME":GOTO 170

309

177
180
190
195
200
201
202
210
215
216
217
218
220
230
240
300
301
302

320
330
350
360
390
400
401
402
410
415
417
420
430
440
450
451
452

460
461
462
463
464
500
501
502
510
520
530
540
550
590
800
801
802
810
820
890
900
901
902
910
915

PRINT ">>> WARNING: DO NOT EXIT THIS PROGRAM BY PRESSING BREAK <<«*"
OPEN "R", 1, FS
IF LOF(1)>0 PRINT "NOTE: THIS IS AN OLD FILE": GOTO 310
PRINT "THIS IS A NEW FILE. STAND BY FOR INITIALIZATION"
e et e e e e e ot 1o o o e P e £ e e e o et e e e e e e e
' INITIALIZE 25 PHYSICAL DISK RECORDS
b e e it o e e S i 2 oo o S o i o £ o e e o o o o o . o e s 20 o S o o o s o e 2
C%=0
FOR SR%=0 TO 3
FIELD 1, (SR%*63) AS DS, 61 AS TS, 2 AS C$
LSET T$=" ": LSET CS$S=MKIS$(C%)
NEXT SR%
FOR PR%=1 TO 25
PUT 1, PR%
NEXT PR%
§ e e s o e e ot st e v St o e o S e . S < S S o i <o o 2 o P o o 2 . S S 2 i 3
' DETERMINE RECORD #'S; FIELD THE I/0 BUFFER
b e e o et ot o et o o s i 7o 2 i . i 2 . S 7 S s e o S0 o S 20 2 . o e £ o0 e o oo
PRINT T e e e e et 2t o s e o e s s 0 1 S 1 e o e P 0 P i . S S S i 275 e e 2 20 S e e e o "
PRINT "RECORD # (0 = EXIT)";: INPUT KN%
IF KN$=0 THEN 910
GOSUB 810 'CALCULATE PHYSICAL RECORD # & SUBRECORD #
IF PR%>25 PRINT "FILE SIZE EXCEEDED": GOTO 310
FIELD 1, (SR%*63) AS DS, 11 AS AS$, 50 AS BS, 2 AS C$S
et et o e o et ot o o i e . e ot e Lt o e 2 20 o . o . o 4 4. S . T 0 0 S e e 7 o o o s o s
! RETRIEVE DATA FROM DISK AND DISPLAY IT
b e e e et e e e ot o 2 tam v o e 1 s o S i o . o . i S 0 S S 0 S S 2o e o o s oo
GET 1, PR%
CE=CVI(CS): IF C%<>0 THEN 420
PRINT"* RECORD #";KN%;"IS BLANK *": GOTO 455
PRINT "DATA FOR RECORD #"; KN$%
PRINT "KEY : ";AS
PRINT "INFO : ";BS
PRINT "THIS RECORD HAS BEEN ACCESSED";C%; "TIME(S) ":C%=C%+1
LSET CS$=MKIS$(C%)
PUT 1, PRS% 'PUT NEW # OF ACCESES ON RECORD
PRINT "ueeeeeese DO YOU WISH TO vivveeeea®
PRINT"CHANGE (C) , DELETE (D), OR RESUME (R)";:R$="":INPUT RS
IF R$="R" OR R$="" THEN 310
IF R$="C" THEN 510
IF R$="D" LSET A$=" ":LSET BS=" ":C%=0:G0T0 540
GOTO 460
b e et o e e e e i 1 om0 o i S o s £ e o o o St . o £ . S o 2 e e o oo o
! INPUT NEW DATA AND SAVE IT ON DISK
Y e e e e o o ot e e et o o e 2 e o 2 e £ S 40 2o S S 1 e o e 2 o e 2 o e o
C%=1: PRINT "TYPE NEW DATA FOR RECORD #";KN$%
PRINT "KEY : ";:LINEINPUT KS$: LSET AS$=KS$S
PRINT "INFO: ";:LINEINPUT IS : LSET BS$=IS
LSET C$=MKIS(C%)
PUT 1, PR%
GOTO 310
e e e e e e e o o e o e o 2 ot 2 S e e 2 e e e e et e e e 1 et oo e
' CALCULATE PHYSICAL RECORD # AND SUBRECORD #
b e e et e o e e e e o o 2 o et e e e e o e e e e e e e e
PR$=INT ((KN%~-1)/4)+1
SR¥=KN%-4* (PR%~1)~1
RETURN
b e e e e e e o ot . 1 o s 2 o 2 s o o s o P . e e e e e e 2 o et e o e e e e oot o
' EXIT ROUTINE; LIST ALL KEYS ON FILE IF DESIRED
b e o o o o a1 ot e o 1 st A o S om0 . P o . B . i e . 2 S 2 o 47 . S PO S S S i i i
PRINT "QUIT(Q), PRINT KEYS(P), OR RESUME(R)";:INPUT RS
IF RS$="Q" THEN 990

~

310

CHAPTER5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS
N
920 IF RS="P" THEN 940
925 IF R$="R" THEN 310
930 GOTO 9160
940 FOR J%=0 TO 3
945 FIELD 1, (J%*63) AS DS, 11 AS KYS$(J%), 50 AS ES$, 2 AS AS$(J%)
950 NEXT J%
952 N%$=l: PRINT "*** TURN PRINTER ON -~ READY";: INPUT 2Z$
953 LPRINT " #: KEY ¥: KEY #: KEY $: KEY"
954 LPRINT"~-—==m=m-m e e e e e "
955 FOR PR%=1 TO 25
960 GET 1, PRS%
965 FOR J%=0 TO 3:LPRINT USING "###: ";N$+J%;:LPRINT KY$(J%);:NEXT J%
968 LPRINT" ": N%=N%+4
970 NEXT PRS
975 GOTO 910
989 PRINT "ERROR DETECTED IN PROGRAM"
990 CLOSE
999 PRINT "* END OF PROGRAM -- ALL FILES ARE CLOSED *":END
_/
Solution to the Project in section 4.4
Project EDIT2000
To write EDIT2000 start with EDIT1000, and then replace lines 450, 1311,
and 1452 as shown. Next add the subroutine to simulate LINE INPUT,
using line numbers 10000 to 10050 as given below.
N
JO ' A A R A AR A A AR RN AR AN AR AR A A A AN AR AR AR A A A A kA Ak h kb bk k
20 ' * EDIT2000 (LINE EDITOR PROGRAM, PHASE 2) *
30 ' AREAAAKAAKAKRAX R AR AR AR AR A kA Ak khhhhhhhhkh kA hhhhrhkhkh
110 DEFINT A-Z 'ALL VARIABLES TO BE INTEGER
120 CL=0 : HL=0 ‘CL IS CURRENT LINE §
130 CLEAR 5000 'HL IS HIGHEST LINE #
140 DIM T$(100), FP(100) 'T$() IS TEXT ARRAY BUFFER
190 CLS 'CLS MEANS CLEAR SCREEN
191 'CLEAR 5000 MEANS RESERVE
;gz '5000 BYTES FOR STRINGS
O e e e e e e e o o o e T T o S i " S 7ot 72 270 1 1 T o o 2 e i o e o
201 ' GIVE DIRECTIONS; OPEN FILES
20 2 e e e e i e e o o o e e i o
210 GOSUB 610:PRINT "CURRENT LINE NUMBER NOW = 0, TO APPEND TEXT"
215 PRINT "AT LINE # 1 RESPOND CMD? A AFTER? 0"
216 PRINT M.iuieutuoeencnooososcsoonansoasnsasoonsonacacaoas”
300 e e e e e
301 INITIALIZE LINKED LIST
302 e e o e e e e e e e e
310 AV=2 : FP(1)=0 'AV PTS TO TOP OF AVAIL LIST

311

(320
325
330
340
400
401
402
450
455
500
501
502
510
511
515
529
530
532
534
536
539
540
542
544

548
590
601
602
610
620
640
650
690
=000
1001
1002
1010
1090
1300
1301
1302
1310
1311
1312
1315
1320

1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1390
1400
1401
1402
1410
1415

FOR I=2 TO 99 'FP(1) PTS TO TOP OF TEXT LIST
FP(I)=I+1 '0 SIGNALS END OF LIST

NEXT I

FP(100)=0

' INPUT COMMAND

B e e o s o o i o et s S o o . S T oo S A . S S S 0 S 1 1o o e o 2 s o o

PRINT"CMD ";: INBUT L$ 'L§ HOLDS CMD CODE

L1=CL : L2=CL 'DEFAULT VALUES

' INTERPRET COMMAND

et o om0 . o e S S 3. o o . e i 1A ks e 8 2 e s e o i o 2 i i o

IF L$="I" THEN 1010

IF LS$="H" GOSUB 610: GOTO 450
IF L$="V" PRINT USING"##:";CL;:PRINT T$(CP):GOTO 450
]

IF L$="A" VS$="AFTER" ELSE IF LS$="G" VS$="WHERE" ELSE V$="FROM"
PRINT TAB(10);CHRS$ (27);VS$; :INPUT L1l: L2=L1

IF LS$="A" THEN 1310

IF L$="G" THEN 1610

¥

PRINT TAB(20);CHRS (27);"TO"; : INPUT L2
IF L$="L" THEN 1610

IF LS$="D" THEN 1510

IF L$="C" THEN 141¢

IF LS$="P" THEN 1710

PRINT "NO SUCH COMMAND" : GOTO 450

L}

'eeeeeesess. HELP SUBROUTINE ..vevenvene

PRINT"AFTER 'CMD?' TYPE A (PPEND), C(HANGE), D(ELETE), G(O TO)"
PRINT"H (ELP), I(NFO), L(IST), P(RINT), T(RANSFER), OR V(ERIFY)."
PRINT"RESPOND TO OTHER ? PROMPTS WITH A LINE #. RESPONDING WITH"
PRINT"'ENTER' GIVES CURRENT LINE #. USE I CMD TO FIND CURRENT #."
RETURN

' I COMMAND (INFORMATION)

b e e e o o e s i i i i e o o e i o S . i . . o7 S 0 S 20 o o o o e

PRINT "CURRENT LINE IS #";CL;" HIGHEST LINE IS #";HL
GOTO 450 'RETURN FOR NEW CMD

IF L1>HL PRINT "LINE # TOO HIGH":GOTO 4150

PRINT USING "§#>";L1+1;:G0SUB 10010 'SIMULATED LINE INPUT

IF LEN (B$)=0 THEN BS$=" "

IF BS$="_" THEN 1390

IF AV=0 PRINT "BUFFER FULL": GOTO 1390

CL=L1+1

I=1 : K=1

IF FP(I)=0 OR K=CL THEN 1350 'I IS LINE POINTER
I=FP(I) : K=K+1 : GOTO 1335 'K IS LINE COUNTER

J=AV : AV=FP(J)

FP(J)=FP(1)

FP(I)=J

T$(J)=B$

CP=J : HL=HL+l 'CP IS PTR TO CURRENT LINE
IF CL=HL THEN HP=CP 'HP IS PTR TO HIGHEST LINE
L1=CL : GOTO 1310

GOTO 450 'RETURN FOR NEW CMD

CL= Ll
IF L2>HL PRINT "2ND LINE TOO HIGH" :GOTO 450

312

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

Vam
1420 I=1 : K=l
1425 IF FP(I)=0 OR K=CL THEN 1440
1430 I=FP(I) : K=K+1 : GOTO 1425
1435 °*
1440 IF FP(I)=0 PRINT "NO SUCH LINE" : GOTO 1490
1445 CP=FP(I)
1450 PRINT USING "##:";CL; : PRINT T$(CP)
1452 PRINT USING "##>";CL;:GOSUB 10010: T$(CP)=BS
1455 IF CL<KL2 THEN CL=CL+l : GOTO 1420
1490 GOTO 450 'RETURN FOR NEW CMD
1500 ' mmmmmmmmmmmmm e e m e o e o e
1501 D COMMAND (DELETE LINES L1 TO L2)
1502 'mmmmmmm—mmmm o mm e e m e
1510 CL=L1
1511 IF L2>HL THEN L2=HL
1512 FOR C=0 TO L2-L1
1515 I=1 : K=l
1520 IF FP(I)=0 OR K=CL THEN 1540
1525 I=FP({I) : K=K+1 : GOTO 1520
1530 °
1540 IF FP(I)=0 PRINT "NO TEXT TO DELETE": GOTO 1585
1545 J=FP(I)
1550 FP(I)=FP(J)
1555 FP(J)=AV
1560 AV=]
1565 HL=HL~-1
1570 CP=I
1575 IF HL=CL THEN HP=CP
1580 NEXT C
1585 CL=Ll~-1: IF CL<0O THEN CL=0
1590 GOTO 450 'RETURN FOR NEW CMD
1600 ‘'emmmm e ———————
1601 L. COMMAND (LIST LINES L1 TO L2)
1602 *mmmmmm oo
1610 I=FP(l) : K=l
1615 IF L2>HL THEN L2=HL
1620 IF I=0 PRINT "BUFFER EMPTY" : GOTO 1690
1630 IF K<L1 THEN 1650
1640 CP=I: PRINT USING "##:";K;: PRINT TS$(I)
1650 I=FP(I) : K=K+1
1655 IF K>L2 THEN 1680
1660 GOTO 1630
1680 CL=K~-1
1690 GOTO 450 'RETURN FOR NEW CMD
1700 Mo e e e
1701 ¢ P COMMAND (PRINTS ON LINE PRINTER)
JT02 P o e o o e e e e e e e e e e e
1710 I=FP(l) : K=1
1715 IF L2>HL THEN L2=HL
1720 IF I=0 PRINT "BUFFER EMPTY" : GOTO 1790
1725 PRINT "TURN ON PRINTER -~ READY";:INPUT Z$
1730 IF K<L1 THEN 1750
1740 CP=I: LPRINT TS$ (I)
1750 I=FP(I) : K=K+l
1755 IF K>L2 THEN 1780
1760 GOTO 1730
1780 CL=K-1
1730 COTO 450 'RETURN FOR NEW CMD
1799 ‘'===== BLOCKS RESERVED FOR FUTURE COMMANDS =====
1801 ° M COMMAND (MOVE BLOCKS OF TEXT)
1901 ! E COMMAND (ECHO BLOCKS OF TEXT)
2001 ¢ R COMMAND (READ FILE INTO BUFFER AFTER CL)
2101 ° W COMMAND (WRITE BUFFER ONTO FILE)
2201 ! F COMMAND (FIND LINE WITH /TEXT/)
2301 ° C/ COMMAND (CHANGE /TEXTl/ TO /TEXT2/)

313

- ™
10000 REM*** SUBROUTINE TO SIMULATE 'LINE INPUT L$' #*#
10010 BS=""
10020 V9$=INKEYS: IF V9$="" THEN 10020
10025 IF B$<>"" PRINT CHRS (24);
10030 IF ASC(V9$)=13 THEN 10050
10035 PRINT V9S$;: PRINT CHRS (95);
10040 BS$=BS$+V9S: GOTO 10020
10050 PRINT " ":RETURN
\\ J
Solution to Project in Section 4.6
Project EDIT5000
This program is an extension of EDIT1000. It adds several new com-
mands: T(ransfer), C(hange)/old/new/, and F(ind).
e 2
lO t hAhkAkkAhkAhhkkRARkhkAA kA kAR AR I kA kAIA kA hhhrbhhkhhhhhkrhhrhhd ik
20 v * EDIT5000 (LINE EDITOR PROGRAM, PHASE 5) *
30 ' khkhkhhkkhkrARAkAAXRAKRRARIAAKR KRR A A XA ARk hhhh kAo hkhhxhhkrkdhhk
110 DEFINT A-Z 'ALL VARIABLES TO BE INTEGER
120 CL=0 : HL=0 'CL IS CURRENT LINE #
130 CLEAR 5000 'HL IS HIGHEST LINE #
140 DIM T$(100), FP(100) "T$() IS TEXT ARRAY BUFFER
190 CLS 'CLS MEANS CLEAR SCREEN
191 '"CLEAR 5000 MEANS RESERVE
192 '5000 BYTES FOR STRINGS
200 ' e e e e
201 GIVE DIRECTIONS; OPEN FILES
202 1 o et oo e o o s ot oA = o o S S o S o o o ot o e o o e T 7o 1 s 7 S
210 GOSUB 610:PRINT "CURRENT LINE NUMBER NOW = 0. TO APPEND TEXT"
215 PRINT "AT LINE # 1 RESPOND CMD? A AFTER? 0"
216 PRINT “...... C et teeeeeeetaeteeeeraasaaranneneaananass
B0 T e o o o o 1 et o o et o £
301 ° INITIALIZE LINKED LIST
J 02 N e e i e e e o i o o e e s e e i o o
310 AV=2 : FP(1)=0 'AV PTS TO TOP OF AVAIL LIST
320 FOR I=2 TO 99 "FP (1) PTS TO TOP OF TEXT LIST
325 FP(I)=I+l '0 SIGNALS END OF LIST
330 NEXT I
340 FP(100)=0
800 Mmoo
401 INPUT COMMAND
B 02) e e e e e
450 PRINT"CMD? ";:LINE INPUT L$ 'L$ HOLDS CMD CODE
455 L1=CL : L2=CL 'DEFAULT VALUES
\. J

314

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

690

1000
1001
1002
1010
1090
1300
1301
1302
1310
1312
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1390
1400
1401
1402
1410
1415
1420
1425
1430
1435

IF L$="I" THEN 1010

IF L$="H" GOSUB 610: GOTO 450

IF L$="T" THEN 32000

IF L$="V" PRINT USING"#4#:";CL;:PRINT T$(CP):GOTO 450
IF LEFTS(LS,2)="C/" THEN 2310

IF LEFTS$(LS,2)="F/" THEN 2210

IF L$="A" VS="AFTER" ELSE IF L$="G" VS$="WHERE" ELSE V§$="FROM"
PRINT TAB(10);CHRS(27);VS;:INPUT L1: L2=Ll1

IF L$="A" THEN 1310

IF L$="G" THEN 1610

¥

PRINT TAB(20);CHRS$(27);"TO";: INPUT L2
IF L$="L" THEN 1610
IF L$="D" THEN 1510
IF L$="C" THEN 1410
IF L$="P" THEN 1710

PRINT "NO SUCH COMMAND" : GOTO 450

1

'eeeeseevses HELP SUBROUTINEvenccee

PRINT"AFTER 'CMD?' TYPE A(PPEND), C(HANGE), D(ELETE), G(O TO)"

PRINT"H(ELP), I(NFO), L(IST), P(RINT), T(RANSFER), OR V(ERIFY)."
PRINT"RESPOND TO OTHER ? PROMPTS WITH A LINE #. RESPONDING WITH"
PRINT"'ENTER' GIVES CURRENT LINE #. USE I CMD TO FIND CURRENT #."
RETURN

b e s o e o o o e o o o e S o M S o o o o o o o ' o o el e

! I COMMAND (INFORMATION)

b o i oy e o o o T o W A A S i o o o " T~ T T o o S S o o Al e S et S

PRINT "CURRENT LINE IS #";CL;" HIGHEST LINE IS #";HL
GOTO 450 'RETURN FOR NEW CMD

PRINT USING"##>";L1+1l;: LINE INPUT B$
IF LEN(B$)=0 THEN B§=" "

IF BS$S=".," THEN 1390

IF AV=0 PRINT "BUFFER FULL": GOTO 1390

CL=L1+1

I=1 : K=1

IF FP(I)=0 OR K=CL THEN 1350 *T IS LINE POINTER
I=FP(I) : K=K+1 : GOTO 1335 'K IS LINE COUNTER

J=aV : AV=FP (J)

FP(J)=FP (1)
FP(I)=J
T$(J)=BS$
CP=J : HL=HL+1 'CP IS PTR TO CURRENT LINE
IF CL=HL THEN HP=CP 'HP IS PTR TO HIGHEST LINE
L1=CL : GOTO 1310
GOTO 450 'RETURN FOR NEW CMD
b et e o o e e o S o o ot v o o s i . e i o i o A R T o o o o oo v T i S S
! C COMMAND (CHANGE LINES L1 TO LZ)
U s et oo e v s s o B o e s T o P M R D " V> D i W i) 7w . o b . o . e o T .
CL= Ll
IF L2>HL PRINT "2ND LINE TOO HIGH":GOTO 450
I=1 : K=1
IF FP(I)=0 OR K=CL THEN 1440
I=FP(I) : K=K+1 : GOTO 1425

315

1440
1445
1450
1452
1455
1490
1500
1501
1502
1510
1511
1512
1515
1520
1525
1530
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1600
1601
1602
1610
1615
1620
1630
1640
1650
1655
1660
1680
1690
1700
1701
1702
1710
1715
1720
1725
1730
1740
1750
1755
1760
1780
1790
1799
1801
1901
2001
2101
2201
2210
2215

IF FP(I)=0 PRINT "NO SUCH LINE" : GOTO 1490
CP=FP (1)
PRINT USING "##:";CL; : PRINT TS$(CP)

PRINT USING "##>";CL; : LINE INPUT TS (CP)
IF CL<L2 THEN CL=CL+1 : GOTO 1420
GOTO 450 'RETURN FOR NEW CMD
)

CL=L1
IF L2>HL THEN L2=HL
FOR C=0 TO L2-~L1
I=1 : K=1
IF FP(I)=0 OR K=CL THEN 1540
I=FP(I) : K=K+1 : GOTO 1520
1
IF FP(I)=0 PRINT "NO TEXT TO DELETE": GOTO 1585
J=FP(I)
FP(I1)=FP(J)
FP(J)=AV
AV=J
HL=HL~1
CP=I
IF HL=CL THEN HP=CP
NEXT C
CL=L1l-1: IF CL<0 THEN CL=0
GOTO 450 'RETURN FOR NEW CMD
1

I=FP(l) : K=1

IF L2>HL THEN L2=HL

IF I=0 PRINT "BUFFER EMPTY" : GOTO 1690
IF K<Ll THEN 1650
CP=I: PRINT USING "#4:";K;: PRINT T$(I)
I=FP(I) : K=K+l
IF K>L2 THEN 1680
GOTO 1630

CL=K-1

GOTO 450 'RETURN FOR NEW CMD

I=FP(l) : K=1

IF L2>HL THEN L2=HL

IF I=0 PRINT "BUFFER EMPTY" : GOTO 1790
PRINT "TURN PRINTER ON ~~ READY";:INPUT 78§

IF K<L1 THEN 1750
CP=I: LPRINT TS(I)
I=FP(I) : K=K+1
IF K>L2 THEN 1780
GOTO 1730
CL=K-1
GOTO 450 'RETURN FOR NEW CMD
'=m=== RBLOCKS RESERVED FOR FUTURE COMMANDS =====
! COMMAND (MOVE BLOCKS OF TEXT)
COMMAND (ECHO BLOCKS OF TEXT)
COMMAND (READ FILE INTO BUFFER AFTER CL)
COMMAND (WRITE BUFFER ONTO FILE)
COMMAND (FIND LINE WITH /TEXT/)
LP=LEN(LS$)-3
P$=MIDS(LS,3,LP): IF LP=0 P$=" "

1
L
1

mEomzR

316

CHAPTER 5 SOFTWARE CITY: SOLUTIONS TO THE PROJECTS

2220
2225
2230
2235
2240
2245
2250
2255
2260
2301
2310
2311
2312
2313
2315
2320
2325
2330

I=1 : K=1
I=FP(I)
IF I=0 PRINT "NOT FOUND": GOTO 450

FOR Q=1 TO LEN(TS$(I))

IF MIDS(TS(I),Q,LP)=P$ THEN 2255

NEXT Q

K=K+1 : GOTO 2225
Cp=I : CL=K
PRINT USING"##:";CL;:PRINT T$(CP):GOT0450
' C/ COMMAND (CHANGE /TEXT1l/ TO /TEXT2/)
RS="": P=3
IF LEN(L$)<3 PRINT "TYPE IN FORM C/OLD/NEW/": GOTO 450
IF RIGHTS(LS,1)<>"/"PRINT "NEED SLASH AT END":GOT0450
IF RIGHTS(LS,2)="//"PRINT "NEED TEXT BETWEEN LAST 2 SLASHES" : GOTO450
X$=MIDS (LS,P,1)
IF X$="/" THEN 2330

RS=R$+XS: P=P+1l: GOTO 2315
N$=" "

2335 FOR Q=P+1 TO LEN(LS$)-1

2340 NS$S=N$4MIDS (LS,0Q,1)

2345 NEXT Q

2350 LT=LEN(T$(CP)): LR=P-3

2360 FOR Q=1 TO LT

2365 IF MID$(TS(CP),Q,LR)=R$ THEN 2375

2370 NEXT Q

2375 IF Q>LT PRINT R$;" NOT FOUND": GOTO 450

2380 T$(CP)=LEFTS$(T$(CP),Q-1)+NS+RIGHTS (T$(CP),LT-Q-LR+1)
2385 PRINT USING"##:";CL;: PRINT T$(CP)

2390 GOTO 450

31997 'memmmmmmmmmm e e —

31998 ' T COMMAND (TRANSFER SCREEN IMAGE TO PRINTER)
31999 e e

32000 N9=15359

32005 PRINT CHR$(27);:PRINT TAB(40);" "
32010 FOR L9=1 TO 16

32020 L9s=""

32030 FOR W9=64 TO 1 STEP -1
32040 IF PEEK(N9+W9) > 32 THEN 32060

32050 NEXT W9
32060 FOR K9=1 TO W9:

32070
32080
32090
32100

L9$=L9$+CHRS$ (PEEK (N9+K9))
NEXT K9

LPRINT L9$

N9 =N9+64

32110 NEXT L9
32115 CLs
32120 GOTO 450

APPENDIX A

Summary of Level II BASIC

Variable Names (examples)

A z Al Z9

AC ZT B(D) X{.7)

N(X1) QMRD,CO)) S(X,Y,Z) A$ Al
B$(I) BC(L]) D2%(R,C,L) A% A#

Variable Types (see DEFINT, DEFSNG, etc.)

Type Example Values
A Undeclared (numeric) 1, —1, .99, 75.95 (same as single precision, below)
A% String “HIl”, “ANYTHING (UP TO 255
CHARACTERS)~ — + =1@# % &:;1"
A% Integer 1, —1, 99, —32768, +32767

319

320

Al Single Precision
A# Double Precision

1.0, —1.0, .999999, —1.701411E+38, 804.123
1.0, —1.0, —1.701411832544556D + 38,
804.123456123456

Operators and Relations

+ > AND
— < OR
* = NOT
/ > =
I <=

<>

Commands (In=line number, inc=increment, var=variable, exp=expression, n=number)

Command Explanation Example
AUTO In, inc Automatic line numbering:
To get 10, 20, 30 . . . AUTO
To get 5, 10, 15, 20 . . . AUTO 5,5
To get 100, 102, 104, AUTO 100, 2
To exit from AUTO press BREAK.
CLEAR n Resets all variables to zero or CLEAR
null. Specifies bytes of memory CLEAR 500
to be reserved for string storage. 10 CLEAR 200
(Default is 50 bytes.)
CLOAD "tilename” Erases program in memory. Search- CLOAD
es for and loads file stored on a CLOAD"1”
cassette. Only first letter of name is CLOAD"A”

CLOAD? filename”

CONT

CSAVE "“filename”

used. If no name is given first file
encountered is loaded.

Does not erase memory. Searches
for and compares the named file
with the file currently in memory.

Continues execution of a program
after STOP statement or hitting
BREAK.

Stores the program currently in
memory on cassette tape, labels it
with the filename.

CLOAD”ANIMAL”

CLOAD?
CLOAD?"A”

CONT

CSAVE"A”

DELETE In-In

EDIT In

LIST In-In

LLIST In-In

NEW

RUN In

SYSTEM

TROFF

TRON

Erases program lines from memory.
To erase a range of lines-
To erase all lines up to 50-
To erase line just entered-

Puts the computer in edit mode,
allowing use of the subcommands:
L X, I, A E Q, H, nD, nC, nSc,
and nKc. Hit shift t to exit from a
subcommand. Hit ENTER or type E
to exit from edit mode.

Displays program lines currently in
memory. Use shift @ to halt the
display of a long program, hit any
key to resume.

To display line just entered-

To display whole program-

Same as LIST but output is sent to
the printer.

Erases all program lines. Sets
variables to zero or null.

Executes the program, starting at
that line number. If no line number
given, it starts at the beginning.
Also used as a statement. Resets all
variables (does a CLEAR).

Puts the computer in system mode.
Allows loading and running of
machine language programs.

Turns off the Trace function.

Turns on the Trace function.
Programs run subsequently will
display currently executed line
number in addition to program’s
output. Also used as a statement,

321

DELETE 10
DELETE 10-50
DELETE -50
DELETE.

EDIT 100

LIST 10
LIST 10-100
LIST 50-
LIST -100
LIST.

LIST

LLIST 10
LLIST 10-100
LLIST 50-
LLIST -100
LLIST.
LLIST

NEW

RUN 100

RUN
500 RUN 10

SYSTEM

TROFF

TRON
RUN

10 TRON

50 TROFF

322

Statement Explanation Example
CLEAR See Commands
CLS Clears the video screen 35 CLS

DATA item list

DEFINT letter range

DEFSNG letter range

DEFDBL letter range

DEFSTR letter range

DIM var (n,n,...)

ELSE

END

ERL
ERR/2+1

ERROR code

Allows you to store data items
within the program. See READ.

Variable names starting with letters
in the range given will be treated as
integer type.

Variable names starting with letters
in the range given will be treated as
single precision type.

Variable names starting with letters
in the range given will be treated as
double precision type.

Variable names starting with letters
in the range given will be treated as

string type.

Reserves memory space for arrays.
Default is 11 elements, 0-10.

See IF ... THEN ... ELSE

Optional. Terminates execution of a
program normally.

See Special Functions.
See Special Functions.
Simulates the specified error during

execution. Used to test an ON
ERROR GOTO statement.

1000 DATA “APPLES”, “LB.”,

10 DEFINT A-L
10 DEFINT A,B,C

10 DEFSNG M-Q
10 DEFSNG M,N

10 DEFDBL R-W
10 DEFDBL R

10 DEFSTR X-Z
10 DEFSTR X,Y,Z

.49

10 DIM A(100), B(10,20), C$(100)

15N = 20
20 DIM D(N, 50)

9999 END

150 ERROR 1

FOR...TO...STEP

GOSUB In

GOTO In

IF...THEN...ELSE

INPUT item list

INPUT#~1, item list

Sets up a loop. The program
statements following it are repeated
for as many steps (increments) as it
takes to get from the initial value of
the counter variable to the final
value. A NEXT statement is
required at the end of the sequence
of statements. Loop executes at least

once,

Branches to the line number given
but ‘remembers’ where it was. Sub-
routine at that line number should
end with a RETURN statement
causing a branch back to the state-
ment following the GOSUB.

Branches to the line number given.
Used as a command to run a program
without resetting all variables.

Conditional statement. Computer
tests a logical or relational expression;
if true it does the THEN part(s).

If false, it does the ELSE part(s)

10 FOR I=1 TO 10

10 FOR J=0 TO 100 STEP 5

10 FOR K=50 TO —50 STEP —1
10 FOR X=1.5 TO 15.5 STEP .5
10 FOR Q=1 TO N STEP R+2
10 FORT=QTOP—-1

10 GOSUB 1000

20 (rest of the program)
999 END

1000 (subroutine)

1020 RETURN

50 GOTO 5
GOTO 10

10 IF X<Y THEN 100

10 IF B$="Y" THEN Z=1 :PRINT “YES”

(optional). It then goes on to the following

instruction.

Allows person to input values from
the keyboard. Stops execution and
prints 7. Items can be typed in
separated by commas or ENTER.

Allows values to be read from a
tape cassette.

10 IF Y=X THEN 100 ELSE 1000

10 IF Y>M THEN M =Y ELSE N=Y:D=C

10 INPUT X
10 INPUT A$,X, B$, Y

10 INPUT “TYPE YOUR NAME";N$

10 INPUT#—1,X, Y,Z,P$,D$,Q%

323

324

LET var=value

LPRINT item list

NEXT var

ON ERROR
GOTO In

ON var GOSUB

In, In,...

ON var GOTO

In, In,...

OUT port, value

POKE address,value

Assignment statement. LET is
optional. Stores value in
variable name mentioned.

Like PRINT but output is sent to
the printer., LPRINT @ does not

work but all other versions of
PRINT statements do. See PRINT.

Required at the end of a sequence
of statements to be repeated by a
FOR loop. Counter variable name
is optional.

Allows you to write a special
routine at the given line number,
ending it with RESUME. This will
be executed when an error in
execution occurs—instead of the
usual BREAK.

Like ON var GOTO but control
returns after executing the sub-
routine to the statement following
the ON var GOSUB.

Allows branching to one of many
line numbers, depending on the

value of var. If var=1, the first line

number is used, if var=2, the

second, etc.; var can be an expression.

OCutputs a value to the specified
port, which is connected to a
peripheral device. Ports are
numbered 0-255, value can be

0-255. See Special Functions, INP (port).

Loads a value (from 0-255) into the
given address. See Special
Functions, PEEK (address).

10 LET Z=10026.359

10 LET B$="AMOUNT"
10 X=X+1

100 Y=Y—(Y *.1)

10 S=S+A

10 LPRINT “SUMMARY"”
20LPRINT X, Y, X +Y

10 FOR X=2 TO 102 STEP 2
20 (statements)

50 NEXT X

5 ON ERROR GOTO 100
10 (rest of program)

100 (special routine)
120 RESUME

10 ON Y GOSUB 1000, 2000, 3000
20 (rest of program)

10 ON X GOTO 100, 200, 300

250 OUT 12,10
250 OUT 255,A

500 POKE 32765,211
500 POKE 32764,B

PRINT item list

PRINT @ pos,item

PRINT TAB(n) item

PRINT USING
string;item list

PRINT#~1, item list

RANDOM

Prints an item or list of items on the
display. Does calculations. Commas
cause items to be spread out, semi-
colons keep them close together.

A semicolon at the end will cause
the next thing printed to begin
where the last PRINT statement left
off, otherwise the next line is
cleared and used.

Like PRINT but specifies where on

the display screen printing is to

start. O is the upper left corner position,
1023 is the lower right corner.

Use a semicolon at the end to

prevent clearing the next line.

Like PRINT but moves cursor to a
specified position on the current

line (0,255). If the value is greater
than the line length on the display
or printer, the next line will be used.

Allows you to specify a format

using a string. Special characters

**, %%, +, —. 1, % %, and

1111) are used within the string to
show fields to be filled with variables.

Allows values of the given
variables to be recorded on a tape cassette.

Causes the random number function
RND to produce a new set of
random numbers on successive runs.

325

10 PRINT 10279 + 64823

10 PRINT “HI!"

10 PRINT X,Y,Z

10 PRINT X+3*X

10 PRINT “"AMT:"; X, "DISC:";Y
10 PRINT “X+Y=";

10 PRINT @ 510, “MIDDLISH";

50 PRINT TAB(5)
50 PRINT TAB(X) “TABLE”
50 PRINT TAB (T+5) Z

10 AS= "SSH# ### - #H##H
20 PRINT USING A$;A,B

10 PRINT USING “% %";B$

10 C$="NAME IS % %"
20 PRINT USING C$;N§$

10 PRINT#-1,A,B,C,D$,E$ F$

5 RANDOM
10 X = RND(0)

326

READ item list

REM

RESTORE

RESUME

RETURN

RUN

STOP

THEN

TROFF

TRON

Assigns values from DATA state-
ments to the given variables. Keeps
track of which values have already
been read; always attempts to read
the next unused value unless a

RESTORE statement is encountered.

Remark statement. Ignored by the
computer. Used to explain parts of

’

a program. Abbrev.
Causes the next READ statement
to start over at the beginning of

the data. See READ.

See ON ERROR GOTO.

Ends a subroutine; sends control
back to the statement following the
GOSUB.

See Commands.

Interrupts execution and prints a
BREAK IN In message. To restart
type CONT.

See IF...THEN...ELSE

See Commands.

See Commands.

10 READ A$,X,B$,Y

1000 DATA “APPLE",.25, "ORANGE",.50

1001 DATA 0,0,0,0

10 REM---MAIN LOOP---
20 '--—-INITIALIZE VARIABLES----

20 IF A$="0" THEN RESTORE

100 RESUME
100 RESUME NEXT
100 RESUME In

100 (subroutine)
120 RETURN

500 STOP

String Functions

327

Function Explanation Example/Result Returned
ASC({string) Returns the ASCII code (in PRINT ASC("A")
decimal) for the first character of 65
the string. PRINT ASC("AARDVARK")
65
T$="A":PRINT ASC(T$)
65
CHR$%(exp) Returns the character which has the PRINT CHR$(65)
ASCII code given, If the code is A
one for a graphics character or a 10 CLS: PRINT CHR$(23)
control function, that function is perform- (changes display to double-sized letters)
ed.
FRE(string) Returns the number of bytes of PRINT FRE(D$%)
string storage space currently 25
available. Argument in parenthesis
has no meaning, it's a dummy.
INKEY$% Scans the keyboard, returns one 10 A$=INKEY$%

LEFT%(string,n)

character if a key is being pressed,
or a null string if no key is being
pressed. ENTER is not needed.

Returns a substring of the string,
n characters long, starting at the left.

20 IF A$=""THEN 10
30 IF A$="B" PRINT “BANG!"

A$="PEARTREE"
PRINT LEFT$ (A%,4)
PEAR

PRINT LEFT$ (A$%,LEN(A$)—2)
PEARTR

328

LEN(string)

MID%(string,p,n)

RIGHT$%(string,n)

STR$(exp)

STRINGS$(n,x)

VAL(string)

Numeric Functions

ABS(x)

ATN(x)

CDBL(x)

CINT(x)

Returns the number of
characters in the string, See LEFT$.

Returns a substring of the string,

n characters long, starting with the
pth character. If n is not given,

the rest of the string is

returned.

Returns a substring of the string,
n characters long, ending at the right.

Makes a string which looks like the
given numeric expression.

Produces a string of x's, n
characters long. x can be a quoted
character or a number. If x is a
number, CHR$(x) is printed n times.

Returns the number represented by

the string. Trailing characters are
ignored.

Absolute value of x. x may be a

numeric variable, expression, or constant.

Returns angle whose tangent is x
(in radians), Multiply by 57.29578
to get degrees.

Converts x to a double-precision
number.

Converts x to an integer. x must
be between —32768 and +32767.
Returns the greatest integer less
than x.

PRINT LEN (“PEARTREE")
8

A%$= “"RENOVATION"
PRINT MID$(A$,3,4)
NOVA

PRINT MID$(A$,3)
NOVATION

PRINT RIGHT$ (A$%,3)

ION
A=—5.2376
BS="////"

PRINT B$+STR$(A) +B$
/1171 —58.2376/11/

PRINT STRINGS$ (10,"7")
MM

PRINT VAL (”123 FOURTH ST.”)

123

PRINT VAL (“1.32E+07")
1.32

PRINT VAL ("75.95")+35
80.95

PRINT ABS (—23), ABS(49.2)
23 49.2

PRINT ATN(15)

1.50423

PRINT CDBL (1)/3

.3333333333333333

PRINT CINT (327.549); CINT (—3.2)

327 — 4

COS(x)

EXP(x)

FIX{x)

INT(x)

LOG(x)

RND(0)

RND(n)

SGN({x)

SIN(x)

SQR(x)

TAN(x)

Special Functions

ERL

Cosine of angle x (in
radians).

Returns e*, the inverse of LOG.

Makes x an integer by deleting
the fractional part.

Converts x to an integer. x is not
limited to —32768 to +32767.
The greatest integer less than x is
returned.

Returns log(x), the inverse of EXP.

Returns a random number between
0 and 1. Unless the statement
RANDOM is used, the numbers
generated may be the same on
successive runs of the program.

Where n is an integer from 1 to
32767, returns a random integer
between 1 and n inclusive.

Returns —1 if x is negative, 0 if x
is 0 and +1 if x is positive.

Sine of angle x (in radians). To
convert x in degrees use X *

.0174533

Square root of x.

Tangent of angle x (in radians).

Returns the line number in which
an error has occurred. Used with
ON ERROR GOTO.

329

PRINT COS(2.2)
—.588501

PRINT EXP(1.5)
(4.48169)

PRINT FIX (1234.5678), FIX(—2.34)
1234 -2

PRINT INT (98765.43), INT(~2.34)
98765 —3

PRINT LOG (4.48169)
1.5

PRINT RND(0)
.325471

PRINT RND (6);RND(6); RND(6)
4 61

PRINT SGN (—35);SGN(0); SGN(456)
-1 0 +1

PRINT SIN(.8)

717356

PRINT SQR(25)

5

PRINT TAN(2)
—2.18504

10 PRINT "ERROR AT LINE";ERL

330

ERR/2+1

INP(port)

MEM

PEEK (address)

POINT (x,y)

POS(x)

RESET(x,y)

SET(x,y)

USR(x)

VARPTR(var)

Like ERL but ERR returns a value
related to the code of the error;
ERR/2+1= true error code.

Returns a value (1 byte) from the
given port.

Returns the number of unused and
unprotected bytes in memory.

Returns the value (decimal form)
stored at the given address.

Returns —1 if the specified graphics
block is “on”, returns 0 if it is
“off”. The upper left graphics block
has coordinates 0,0, the lower right
block has 127,47.

Returns the current cursor position
on the display screen (0—63).
Argument is a dummy, use any
number.

See SET.

Turns on the graphics block
specified by the coordinates. To
turn if off use RESET.

Calls a machine language sub-
routine (written by the user) and
passes the argument to it. If not
needed, the argument is a dummy.
Only one such subroutine is
allowed in Level II BASIC.

Returns an address which can be

used to locate a variable in memory.

10 PRINT “ERROR #”; ERR/2+1

100 P =INP(230)
PRINT MEM
1256

PRINT PEEK (15360)
65

100 IF POINT (50,60) THEN 500

100 PRINT TAB (POS(0)+5) "NEXT WORD";

50 SET(A,B)
60 RESET(A,B)

45 R = USR(N)

In disk
BASIC use
45 R=USR1(N)

10 K = VARPTR (A$%)

331

SUMMARY OF TRS-80 DISK-EXTENDED BASIC

Constants
&Hdddd Hexadecimal and octal constants PRINT &HS5200,&05100
&Oddddd (base 16 and base 8) can be POKE&H3C00,42
assigned and used directly. 10 FOR 1= (&H3C00) TO(&H3FFF) STEP(&H40)
Commands
Command Explanation Example

(Many new commands are available in the TRSDOS mode; only three are included here: BASIC, BASIC «, and BASIC2.
All other commands shown are used in disk BASIC.)

BASIC Loads Disk Extended BASIC into BASIC
memory. Uses most of Level II
BASIC routines and adds others.
Takes up 5.8K bytes of memory.

BASIC * Like BASIC but previously loaded BASIC *
BASIC program is not lost.

BASIC2 Gives you Level II BASIC. BASIC2

CLOAD Same as Level II except type CLOAD
CMDT” first, CMD"R” when
finished. No filename is allowed.

CLOAD? filename Same as Level II except type CLOAD?
CMD“T" first, CMD"R” when
finished. It will only work with
programs CSAVEd through Disk BASIC.

CSAVE filename Same as Level Il except type CSAVE “1”
CMD"T" first, CMD"R” when
finished. Filename is required.

332

CMD"D”

CMD"R”

CMD“S”

CMD"T”

KILL“filename”

LOAD filename”, R

MERGE"filename”

RUN"filename” ,R

SAVE“filename”, A

Loads and executes the TRSDOS
DEBUG program. Does not effect
your BASIC program. To re-enter
BASIC, type G.

Starts the clock, enables interrupts.
Returns to the operating system

command mode (TRSDOS). Does
not re-initialize. BASIC program is

lost unless BASIC = is used to reenter.

Stops the clock, disables interrupts.
Use before any BASIC tape
input/output operation.

Deletes the file from the disk;
filename can include :0, :1, or :2 for
the specific disk drive. Final ” is
optional.

Loads a file from the disk, erases
the current file in memory, clears
all variables, closes all files. R is
optional, if used, files are left open
and program is run. Used as a
statement to chain programs.

Like LOAD but current program is
not erased. Current lines will be
erased if merged file has same line
numbers. Merged file must be in
ASCII format.

Like LOAD...R loads and runs file.
R is optional, if used files are left
open. Used as a statement.

Saves BASIC programs on disk.
A is optional, it requests ASCII
format rather than compressed
format.

CMD“D”

CMD"R”

CMD"S”

CMD"T”

KILL“GRAPH1:1”

LOAD “GRAPH2",R
LOAD "ANIMAL"
10 LOAD "MARK3",R

MERGE “SUBR1”

RUN"FANCY"”
RUN“FAR1”,R
10 RUN"”STAR”

SAVE”"ANIMAL"
SAVE"SUBR1:1",A

Statements
Statement Explanation Example
CLOSE n, n, ... Closes access to a file. If no 9998 CLOSE 1,2,3
buffer numbers are mentioned, all
open files are closed. See OPEN. 9998 CLOSE
DEF FNname Defines a function which you 10 DEF ENC#A)=1/(A*A)
(vars)=exp create and then use like a BASIC

DEF USRn = exp

ERROR

FIELD n, m AS var$,

q AS var$, ...

GET n, m

INPUT#n,var,
var,...

LINE INPUT

“prompt”;var$

function. Name is any valid BASIC
variable; it designates the type of
value returned. Must have at least
one variable argument but it can be
a dummy,

Designates the entry address for
a USRn subroutine.

Same as Level II except it writes
out the error message.

Assigns field sizes (in bytes) to file
buffer.

Read a record from disk, random
access mode. n is buffer channel
number, m is record number. If no
record number, the current record
will be read.

Reads values from disk into
variables mentioned. n is the buffer
channel previously assigned to a

sequential file whose format is known.

Like INPUT, but no ? is displayed,
and all characters typed in are
accepted and stored in one string
variable. ENTER terminates the
input string. Prompt is optional.

100 DEF USR3 = &H7D00

150 ERROR 1

100 FIELD 1, 255 AS A%

100 FIELD 1, 16 AS AS$, 25 AS BS, ...

100 OPEN"R",1, “DEMO”

110 FIELD 1, 127 AS AS, 127 AS B$
120 GET 1,50

130 GET 1

130 INPUT#1, A,B,C
130 INPUT#1, A$%,B$,C$
130 INPUT#1, X.X$,Y,Y$

100 LINE INPUT “:"; A%(I)
100 LINE INPUT B$

333

334

LINE INPUT#n, var,

var,...

LSET var$ = exp$

MID$(var$,p,n)=
exp$

OPEN”m",n,
“filename”

PRINT#n,exp;
exp;...

PRINT#n,USING
var$;exp;exp;...

PUT n, m

RSET var$=exp$

Reads a line of data, sequential
mode. Ignores usual formats. Reads
up to 255 characters into one
variable,

Places a value (converted to a
string) in the specified buffer field
var$, starting at the left filling in
with blanks to the right. For
random access files.

Allows you to replace part of a
string, var$, starting at the pth
character and continuing for n
characters, with another string,
exp$. If n is omitted the length of
exp$ or the remaining part of var$
is used. The length of var$ remains
the same.

Opens a disk file for access
(creates the file if necessary). “m”
is I for sequential input mode, O
for sequential output mode, or R
for random 1/0O mode. File is
associated with buffer channel

number n (from 1-15).

Writes values onto a disk file,
sequential mode. Analogous to

PRINT. n is a channel already OPENed.

Similar to PRINT USING; var$
contains a format string.

Wirites a record to disk, random
access mode. The reverse of GET.

Places a value (converted to a
string) in the specified buffer field
var$, ending at the right and filling
in with blanks to the left. For
random access files.

100 LINE INPUT #1, TEMP$

100 LSET A$ = “FERDINAND”
110 LSET B$ = MKS$(12345.6)

A$ = "GUTTERSNIPE”
MID$(A$’2,9)=ll**'k***'k'k*”
PRINT A%

G*********E

100 OPEN"1",1, "NAME"
100 OPEN"O",1, “MESSAGE"
100 OPEN “R”,1, "INFO"

110 PRINT#1, A,B,C
110 PRINT#1,X,X$,Y,Y$

110 PRINT#1, USING A$;Y;Z

120 PUT 1,50

100 RSET A$= "FERDINAND"
100 RSET B$=MKS$(12345.6)

String Functions

Function

Explanation

335

Example/Result
Returned

INSTR(p,var1$,
var2$)

Numeric Functions

USRn({x)

Special Functions

CVD(var$)

CVI(var$)

CVS(var%)

EOF(n)

LOF(n)

Searches through string variable
varl$ to see if it contains var2$.
Starts searching at pth character. If
p is not given, 1 is assumed.
Returns the position number where
var2$ is found to have started, or a
0 if not found.

Similar to USR except 10 sub-
routines (0 to 9) are allowed.

Converts the value found in a
buffer field from string to double-

precision number form. Inverse of MKDS.

Converts the value found in a
buffer field from string to integer
form. Inverse of MKI$.

Converts the value found in a
buffer field from string to
single-precision number form.
Inverse of MKS$.

Returns a 0 (false) when the end-
of-file record has not yet been
read, and —1 (true) when it has. n

is the buffer number of an open file.

Returns the number of the highest
numbered record in the file.

15 X=INSTR (M$, "SAM")

110 DEFUSR1 = &H5000

550 HL=USR1(X)

10 GET 1
20 A¢=CVD(AS)

10 GET 1
20 A% =CVI(A$)

10 GET 1

20 Al=CVS(A%)

500 IF EOF(5) THEN 9998

50 FOR I=1 TO LOF(1)

336

MKD$%(exp#)

MKI%(exp$)

MKSS$(exp!)

TIME$

Converts a doubie-precision
number into the form of an 8-byte
string. Inverse of CVD.

Converts an integer into the form

of a two-byte string. Inverse of CVI.

Converts a single-precision
number into the form of a four-
byte string. Inverse of CVS.

Returns a string composed of the
date and time currently stored in
the real time clock memory area.
This is set tising TRSDOS
commands TIME and DATE, or by
using POKE.

500 LSET A$= MKD$(A#)
510 PUT 1

500 LSET A$=MKI$(A %)
510 PUT 1

500 LSET A$=MKSSH(A!)
510 PUT 1

PRINT TIMES

12/10/79 12:30:45

10 T$=TIMES

APPENDIX B

ASCII Codes

Most modern computers use the American Standard Code for Information Interchange (abbreviated ASCII) to represent
characters such as letters, numbers and special symbols inside the machine. There are 128 ASCII codes used for this pur-
pose. They are written as the decimal numbers 0 to 127 in BASIC. In machine language programming they are usually
represented by the hexadecimal numbers 0 to 7F. Hexadecimal (also called “hex”') numbers use the 16 digits 0, 1, 2, 3, 4,5,6,
7.8,9, A, B, C, D, E, and F. The hex number A is the same as 10 in decimal, B is 11, and so on up to F which is 15. To go
higher than this several hex digits are used, with powers of 16 understood as multipliers. For example, 7F in hex translates
into the decimal number 7x16'+F+16°=112+415+1=127.

The first 31 codes are used for control purposes. The TRS-80 uses thirteen of these as shown in our first table. These con-
trol functions can be called upon from BASIC by using the CHR$ (D) function, where D is the decimal ASCH code. For ex-
ample to obtain double sized characters you use the BASIC statement PRINT CHRS$ (23). To move the cursor up you use
PRINT CHRS$ (27), and so on.

337

338

ASCH Control Codes Used on the TRS-80

Hex Decimal Result
8 8 Move Cursor Left & Erase Character
D 13 Carriage Return
E 14 Cursor On
F 15 Cursor Off
17 23 Double Sized Characters
18 24 Move Cursor Left
19 25 Move Cursor Right
1A 26 Move Cursor Down
1B 27 Move Cursor Up
1C 28 Move Cursor to Top Left
1D 29 Move Cursor to Start of Line
1E 30 Erase to End of Line
1F 31 Erase to End of Screen

The ASCII codes from 32 to 127 are used to represent printer characters. To see what characters the codes produce on a

specific printer, you can run the following program. The code 32 means print a space, so nothing will show on paper. Our
run was on a printer that had both upper and lower case letters.

4 D
5 CLEAR 500
10 REM ———=- ASCII (HEX AND DECIMAL ASCII PRINTING CODES) =---
20 DIM H$(127),C$(16)
30 FOR K=0 TO 15: READ C$(K): NEXT K
40 DATA 011,2,3,4,516'7'8'9'AIBICIDIEIF
50 FOR D=0 TO 127
60 H1=INT(D/16): H2=D-H1*16
70 H$(D)=CS$(H1)+CS$(H2)
80 NEXT D
90 LPRINT " ASCII PRINTING CODES. H = HEX, D = DECIMAL"
95 LPRINT" "
100 FOR I=1 TO 2:LPRINT " H D CHRS (D) ";:NEXT I: LPRINT
110 LPRINT Moo s o e e e e e e e e S eSS —— e "
120 G$=" %% i ! "
130 FOR D=32 TO 63
140 FOR I=0 TC 64 STEP 32
150 LPRINT USING G$; H$(D+I), D+I, CHRS(D+I);
160 NEXT I: LFRINT
170 NEXT D

. J

339

N
RUN
ASCII PRINTING CODES. H = HEX, D = DECIMAL

H D CHR$(D) H D CHRS$(D) H D CHR$(D)
20 32 40 64 @ 60 96 *
21 33 ! 41 65 A 61 97 a
22 34 " 42 66 B 62 98 b
23 35] 43 67 c 63 99 c
24 36 $ 44 68 D 64 100 4
25 37 % 45 69 E 65 101 e
26 38 & 46 70 F 66 102 £
27 39 ' 47 71 G 67 103 g
28 40 (48 72 H 68 104 h
29 41) 49 73 I 69 105 i
2A 42 * 4A 74 J 6 106 3
2B 43 + 4B 75 K 6B 107 k
2C 44 4c 76 L 6C 108 1
2D a5 - 4D 77 M 6D 109 m
2E 16 . 4E 78 N 6E 110 n
2F 47 / 4F 79 o} 6F 111 o
30 48 0 50 80 P 70 112 p
31 49 1 51 81 0 71 113 q
32 50 2 52 82 R 72 114 r
33 51 3 53 83 5 73 115 s
34 52 4 54 84 T 74 116 t
35 53 5 55 85 u 75 117 u
36 54 6 56 86 v 76 118 v
37 55 7 57 87 W 77 119 w
38 56 8 58 88 X 78 120 X
39 57 9 59 89 Y 79 121 y
3A 58 : SA 90 yA 7A 122 z
3B 59 ; 5B 91 [7B 123 {
3C 60 < 5C 92 \ 7C 124

3D 61 = 5D 93] 7D 125 }
3E 62 > 5E 94 - 7E 126 ~
3F 63 ? 5F 95 7F 127

I

ABS(X), 47, Appendix A
AMORT, 158

amortization table, 158-161
AND, 77

ANSWER, 32

application software, 6
apostrophe (REM), 78
APRIL1, 45

array, one-dimensional, 36, 79
array, two-dimensional, 39, 80
ARITH, 67-70

arithmetic expression, 19, 32
ARROW2Z, 141

ASC(X$), 81, Appendix A
ASCDEMO, 82

ASCII codes, 337

ASCII file, 208

assembly language, 243-245

BABYQ, 122
BABYZAP, 136

INDEX

BASIC, 8

BASIC interpreter, 6
BASIC summary, 319
binary search, 89, 92-94
bit, 196

block, 61

BONJOUR, 8

BREAK key, 15, 16
buffer pointer names, 217
BUGPROG, 84

byte, 196

CARPET1, 25

CARPET2, 25

(CATERER), 168
channel/buffer number, 214
(CHECKBAL), 188
CHR$(23), 18, 106
CHR$(X), 82, Appendix A
CIPHER, 115

cipher, 120

CLEAR key, 18

CLEAR, 83, Appendix A
CLOAD, 10, 17

CLOSE, 219, Appendix A
CLS, 18, Appendix A
code, 120

colon, 76

comma (see PRINT)
command, 17
commands, BASIC, 320
compiler, 242

Computer House, 12
concatenation, 80
condition, 29, 31
conditional branching, 29
constant, 20

control codes, 338
control-C, 15
corrections, 17

COS(X), 50, Appendix A
CRAPS, 48

341

342

cryptogram, 120

CSAVE, 9, 17

cursor control, 171-174
CVI(X$), 218, Appendix A
CVS(X$), 218, Appendix A

DATA, 26, 70, 105, 110, 114, 119,
166, Appendix A

data base, 163-166, 210

data files, 210

data layout, 165

data structures, 61

DATARIT2, 70

DATARIT3, 71

DATARIT4, 71

DATARITH, 70

debugging, 83

decimal codes, ASCII, 338

DEFINT, 182, Appendix A

DICE, 47

DIM, 38, Appendix A

direct mode computing, 83

disk files, 210

disk 170 buffer, 216

disk operating system (DOS), 193,
197

disk-extended BASIC, 193, 331-336

DOGDAYS, 42

DOGSALES, 40

dot matrix printer, 198

DRILL, 34

dummy variable, 72

dummy READ, 105

E notation, 22
(EDIT7000), 249
EDIT1000, 234
EDIT2000, 241
EDIT5000, 248
editor, 230
{ELBLASTOQO), 141
END, 69, Appendix A
(ENERGY), 28
ENTER key. 9, 17
ESTIMATE, 164
execute, 15
extended BASIC, 76
extended IF, 77
external storage, 196

FAMOUS, 43
FANCY, 53
FIELD, 217

fields, printing, 20
FILEBOX, 210
FILEBOX2, 222

FILEBOX3, 224
FILEDEMO, 219

files, 210

FINANZ2, 162
FINANCE, 161
firmware, 6

flag, 106

floppy disk, 11, 210-229
flow charts, 30, 31
FOR, 34, Appendix A
functions, BASIC, 47, 327-331

GET, 217

GOTO, 15, Appendix A
GOTCHA, 17
GOWRONGLI, 35
GOWRONG2, 35
GOWRONGS3, 35
graphics, alphanumeric, 50, 123
graphics, point, 137
GROCERY]1, 23
GROCERY2, 28
GUESS1, 87

GUESS2, 92
GUTENTAG, 17

hard copy printer, 197
HARDSALE, 175

hash coding, 224-228
HASHDEMO, 226
(HASHFILE), 227

HEIGHT, 24

hex codes, ASCII, 338
hexadecimal numbers, 243, 245
HYACINTH, 13

ICECREAM, 38

F ... THEN, 29, Appendix A

IF ... THEN ... ELSE, 77,
Appendix A

INPUT, 23-25. Appendix A

inputting strings, 46

INT(X), 47, 72, Appendix A

interface, 197

interpreter, 61, 242

keyboard, 14

LEFT$(A$.M), 80. Appendix A
LEN(X$), 81, Appendix A

LET, 21, 32, Appendix A
letter-quality printer, 198

LINE INPUT, 197, 241, Appendix A
line numbers, 17

linked lists, 230

LIST, 13, 17, Appendix A

LOAD (CLOAD), 17
LOAN1, 149

LOAN2, 155

LOF(X), 220, Appendix A
LOG(X), 95, Appendix A
logical record 221-225
loop, 35

LPRINT, 175, Appendix A
LRDEMO, 81

LSET, 218, Appendix A

machine code, 242, 245
machine language, 242, 245
macro flow diagram, 180, 181
magnetic disk, 11

mass storage, 196

master file, 164

matrices, 80

memory, 79, 195

menu, 161, 176

MERGE, 208

MID%(A$.P,N), 81, Appendxx A
minidisk, 11

MKI$(X), 218, Appendlx A
MKS$(X), 218, Appendix A
MLDEMO, 243
module, 1, 180
MONEY, 176
MONEY2, 188 ‘
(MONEYDISK), 228
MONYLIST, 199
MULT, 73

multiple statements on one line, 76

nested FOR loops, 35
NEW, 12, 17, Appendix A
NEXT, 34, Appendix A
NOT, 77

n-tuple, 163

OKPROG, 85

ON K GOSUB, 53, 74, Appendix A
ON K GOTO, 52, 73, Appendix A
one-dimensional array, 36

OPEN, 216, Appendix A

operators, BASIC, 320

OR, 77

parallel interface, 198
parentheses, 21

PEEK(X), 207. Appendix A
peripheral, 193, 246

physical record, 211, 221-225
plan A, vi

plan B, vi

POEM, 44

POKE, 243, Appendix A

PRINT, 12, 17, 19, Appendix A

PRINT @, 106, 110, 113,
Appendix A

PRINT USING, 82, Appendix A

printer, 197

PRINTPI, 19

program, 4, 6, 8, 17

program stub, 180

PRUDEMO, 83

pseudo code, 132

PUT, 217, Appendix A

Pythagorean theorem, 133

Radio Shack TRS-80, Model I, 7, 197

Radio Shack TRS-80, Model II, 247

RAM, 195

RANDOM (RANDOMIZE), 73,
Appendix A

random numbers, 47, 73

READ, 26-28, 70, 71, 105, 110, 114,
119, Appendix A

READDATA, 26

READY, 10

record, 210

REM (remark statement), 69,
Appendix A

report generating, 176

RESET(X,Y), 137, Appendix A

RESTORE, 70, 71, Appendix A

RETIRE, 31

RETURN key, 9

RICHQUIK, 22

RIGHTS$(A%,N), 80, Appendix A

RND(0), 47, 72, 73, 111, 112,
Appendix A

RNDARITH, 72

ROM, 195

RS-232-C standard, 198-199
RUN, 9, 17, Appendix A

SALESLIP, 169
SALEDATA, 37

SAM, 44

SAVE, 151, Appendix A
SAVE (CSAVE), 17, Appendix A
SCRAM1, 96

SCRAM2, 110

SCRAM3, 113

scroll up, 33

sector, 215

semicolon (see PRINT)
sequential search, 93

serial interface, 198
SET(X,Y), 137, Appendix A
SETPLOT, 137

SIN(X), 50, 134, Appendix A
SNAPSHOT, 207

software, 4

solutions to projects, 253-316
source program, 242
SQCUBE, 34

SQROOT, 75

SRCH1, 93

SRCH2, 94

SRCH3, 94

STARS, 52

statement, 8, 17

stepwise refinement, 132
STOP, 29, Appendix A
string, 80

string array, 79

string variable, 43

343

structured program design, 31, 59, 63
structured programming, 31, 63

stub, 180

subscripted variables 36

SURVEY, 21

system software, 6

table, 36

table, one-dimensional, 79
TAB(X), 9, 17,.50, Appendix A
TABGRAPH, 50

TAXRPT, 206

text editor, 230

TEXTFORM, 249

text formatter, 230
THROW A PARTY, 54
tolerance, 74

transaction data, 164, 176
TRIGPIX, 139
two-dimensional arrays, 39-42
two-dimensional table, 80

VAL(X$), 81, Appendix A
VALDEMO, 81

variable, 20, 36

variable name, 20
variable name, long, 79
VARIETY1, 74
VARIETY2, 74

vector, 36, 79

video output, freeze, 33

VOTER, 29

WHILE, 90
word processing, 230

:: in Sty

A treasure chest of applications-
for your TRS-80! Plus ideas for
creating your own programs!

About the Authors

Thomas A. Dwyer is Professor of Computer Sciences at

the University of Pittsburgh, PlllsburQ Pennsylvania. He
earned his Ph.D. degree at Case |nsmufq of Technology, and

has taught at both the university and high school levels, with
interests in microcomputers and the innovative application of
computers to education. He was Director of Project Solo and
Soloworks, experiments in computing for secondary school
students. He is the author of numerous articles on personal com-
puters as well as the books, A Guided Tour of Computer Programming
(1973) and (with Ms. Critchfield) A Computer Resource Book,
Algebra (1975) and BASIC and the Personal Computer (1978).

Margot Critchfield is a doctoral student in Foundations in

Education at the University of Pittsburgh. Ms. Critchfield studied

art at the Cleveland Institute of Art and anthropelogy and education at
the University of Pittsburgh. where she earned hég B.A. and M.Ed. degrees.
Ms. Critchfield served as Senior Research Assoclate for Project Solo
and the Soloworks Lab. and has authored severalbarticles on computers
in education. computer graphics. and computer aft. She is presently
Senior Research Associate for a new project in th@ educational use of
microcomputer networks. 3

Radio Shack ! A Divi§

on of Tandy Corporation

