TRS-80 P

TRS-80 Portable Computer
Subroutine Cookbook

TRS-80 Portable Computer
‘Subroutine Cookbook

DAVID D. BUSCH

Brady Communications Company, Inc., Bowie, Maryland 20715
A Prentice-Hall Publishing Company

Note to Authors

Do you have a manuscript or software program refated to petsonal
computers? Do you have an idea for developing such a project? If
0, we would like to hear from you. The Brady Company produces
a complete range of books and applications software for the per-
sonal computer market. We invite you to write to David Culverwell,
Publishing Director, Brady Communications Company, Inc., Bowie,
Maryland. 20715.

Publishing Director: David Culverwell
Acquisitions Editor: Gisele M. Asher
Production Editor/Text Design: Janis K. Oppelt
Art Director/Cover Design: Don Sellers
Assistant Art Director. Bernard Vervin
Manufacturing Director: John A. Komsa

Typesetter: PageCrafters, inc. Oswego, New York
Printer: R. R. Dennelley & Sons Co., Harrisonburg, Virginia
Typefaces: Novarese {text); Cheltenham {display)

TRS-80 Portable Computer Subroutine Cookbook

Copyright © 1984 by Brady Communications Company. Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any form
of by any means, electronic or mechanical, including photocopying and recording, or by any
information storage and retrieval system. without permission in writing from the publisher. For
information, address Brady Communications Company, Inc., Bowie Marvland, 20715,

Library of Congress Cataloging in Publication Data

Busch, David D.

TRS-80 portable computer subrourtine cookbook.

Inchudes index.

I. TR3-80 Portable Computer (Computeri—Programming. 2. Subroutines (Computer programs)
I Title. I1. Title: TRS-80 portable computer subrotutine cookbook.
QAT6HB TIB84B8T7 1984 001.64'2 84-11135

ISBN 0-8%303-904-7

Frentice-Hall [nternational, Inc., London
Frentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hal! of Australia, Pty.. Ltd., Sydney
Prentice-Hall of India Private Limited. New Delhi
Prentice-Hall of Japan, Inc. Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books. Limited, Petone. New Zealand
Editora Prentice-Hall Do Brasil LTDA., Rio de Janciro

Printed in the United States of America

84858687 88809091929394 10987654321

CONTENTS

INTRODUCTION

ONE: SIMULATING JOYSTICKS AND PADDLES

Joystick Subroutine
Herizontal Paddle Simulation
Vertical Paddle Simulation
Drawing Subroutine

TWO: USING THE CLOCK AND INTERRUPTS

Elapsed Time

Timer

second Timer

TIME$ Interrupt
Modem/RS5232 Interrupt
Function Key Interrupt
Error Handler

THREE: USING SOUND

Music

Siren

Bomb

Alarm

UFO

Computer
Laser

Roulette Wheel
Heartbeat
Clock

ix

]

G0 WUt BN

15

16
19
21
23
25
27
29

33

34
36
38
39
41
42

- 44

45
47
18

FOUR: BASIC TRICKS

Function Keys
PEEK Screen
Reverse Screen
Number Input
Letter Input
Case Converter
String Sort
Number Sort
Array Loader

FEIYE: GANE ROUTINES

Random Seed
Deal Cards
Random Range -
Coin Flip

Dice

Delay Loop

SIX: DATA FILES

Sequential File—Write to RAM
Sequential File—Read from RAM
Sequential File—Write to Tape
Sequential File—Read from Tape

SEVEN: BUSINESS AND FINANCIAL SUBROUTINES

Loan Amount
Payment Amount
Number of Payments
Years to Reach Desired Value
Compound Interest
Rate of Return
Dollars and Cents
Temperature

Date Formatter
Menu

Time Adder

MPG

vi

53
54
56
58
59
61
63
64
67
69

73

74
76
79
81
83
85

-89

91
92
54
96

99

100
102
104
106
109
110
112
114

116 -

118
120
123

Insert String
CHR$ Value
SWAP

Remove Remarks
Center Tabs
Count Words
Global Search

Peek Bit

Bit Displayer

Bit to One

Bit to Zero
Reverse Bit -
Binary to Decimal
Rounder

EIGHT: ADD NEW CAPABILITIES

NINE: BITS AND BYTES

GLOSSARY

INIDEX

vii

127

128
130
132
134
136
139
141

147

149
150
152
154
155
157
158

161

165

INTRODUCTION

Be forewarned. This book is unlike any other collection of subroutines that you might
have seen before. Herein are 70 useful, ready-to-transplant subroutines and program-
ming tips that you can use to make your own programs simulate joystick action or re-
sound with music. These are TRS-80 Portable Computer specific routines that take the
mystery out of using function keys, the built-in clock, interrupt routines, and other special
TRS-80 features.

Most “subroutine” books are top-heavy with exotic math functions and rarely used
statistical programs. Those were fine back in the days when microcomputers were used
primarily by scientists, computer nuts, and other high-tech types who doted on newer
and better ways of doing Fast Fourier transforms.

Howcver, the TRS-80 Portable Computer, while it is a powerful, capable micro-
computer, is being sold to a broad range of users. Some only want to use programs
for business. Many maore are interested in learning programming but may have a skimpy
technical background otherwise. Then, there are those of you who really do understand
computers but would like to avoid reinventing the wheel.

The TRS-80 Portable Computer Subroutine Cookbook is meant for all of you, There are some
general, useful routines included here. But the book also bristles with modules designed
specifically to perform some sorely needed task for the TRS-80 Portable Computer
alone.

Nine subroutines are included that add crucial BASIC functions that were left out of
the already feature-packed BASIC ROM. SWAP variable values; insert a larger string
within another. Do global search and replace functions.

Interested in using the arrow keys as pscudo-joysticks to manipulate objects on the
screen? Just transplant one of the joystick routines included in this book. We even show
you how to move your missiles and enemy aliens around on the screen.

Using the TRS-80 Portable Computer’s real-time clock to measure elapsed time or
to control outside events is also provided for. Generate musical notes within your own
programs—or add sound effects. Ready-made subroutines are provided for your use.

Or manipulate the TRS-80 to your heart's content. One subroutine will show you how
to invoke reverse character sets.

Games players will find tips on routines that spice up their own arcade-quality games,
while those interested in programming for business will revel in the user-friendly input
routines, menus, and sort routines.

ix

More advanced programmers can use several routines as utilities to make their work
easier, while doing sophisticated "soft” POKing of individual bits within a rmultipurpose
TRS-8Q Portable Computer register.

We've gone light on the “basic” subroutines, although plenty of the more important
conversion and financial routines are provided, The emphasis here is on modules you
can't find anywhere else but which will help you improve your programrming
immediately.

Sorting is another task that is typically very slow in BASIC., However. because of the
great demand for this routine, two sorts are included here. For limited-size lists, one
of them should be entirely acceptable.

Blow To Use This Book

This is not a first programming book. You should have some familiarity with BASIC,
and know what a FOR-NEXT loop is. Ideally. you should have written several programs
on your own, and be ready to tackle some more sophisticated programming.

While many of the subroutines in this book are ready-to-run programs in their own
right, they will be most useful to you when you transplant them into YOUr OWn programs.
In doing so. it may be convenient to relocate them. Some utilities are available to
renumbcr programs for you as an aid to relocating them.

To make things easier. the routines are divided into sections. The basic routine itself
is clearly labelled. This portion may be renumbered and placed wherever convenient.
If renumbering manually. make sure the GOTO's and GOSUB s in the new modules are
correct. You don’'t want a line that reads:

1908 AS=INKEY$:IF Af="" GOTO 160

Another section of each subroutine will usually be labelled “Initialization.” These fines
will contain values that must be set once during a program, before the routine is run.
Or, the variables will be those that must be defined by your program before calling the
subroutine. Frequently, these lines can be deleted or an equivalent line placed within
your own program. The explanation with each subroutine tells the purpose of the im-
portant variables. . '

The purpose of all the variables that you need to define, as well as the variable returned
by the subroutine for your program's use, is explained as well. Because the operation
of many subroutines is rather complex, some of the variables used only internally, as
well as various operations, may not be explained This should be rare, as the line-by-
line descriptions cover nearly all the functions of every program. However. if this book
does not tell you what a variable does. it is information you do not need to know in order
to use the subroutine.

In some cases there are several related routines. For example. there are several
joystick routines. Some of the concepts are explained only once. At times, you will be
directed to look at previous subroutines for longer explanations. This allows you to ac-
cess the routines in any order, without reading the entire book,

All the odd special TRS-80 characters have been left out of this book. If a graphics
symbol is used in a subroutine, the CHR$ code is substituted instead.

X

Both the graphics symbol and CHRS code will perform the proper function. Deleting
the extra graphics makes the subroutines shorter and easier to understand. This is a
subroutine cookbook; the finishing touches of the meal are up to you.

Variable names have been chosen, when possible, to reflect their functions in the
subroutines. In most cases, the variable names from one subroutine do not conflict with
those of another. However, when writing a complex program using several of these
modules, you should check to see that the same variable is not used twice for different
purposes. Keep in mind that only the first two letters are significant in TRS-80 BASIC.
So, PAYMENT, used in one subroutine, is actually the same as PAID, which might be
used in a second. You should take this precaution with any program you write, whether
“foreign’” subroutines are being transplanted or not.

If you are eager to get started, and have some experience in programming, you might
want to skip ahead to any subroutine that looks tempting.

Good luck. You should find this book a short-cut to programming proficiency. To
paraphrase a common saying, if you use a subroutine correctly three times, it will be
a permanent part of your vocabulary. Given a bit of practice, you can soon have all your
friends drooling over your programs, and asking you for your favorite subroutine
recipes.

' Merging Subroutines With Youwr Programs

One of the best things about subroutines is that they can be reused many times within
an existing program, and put to work in many different pieces of software, as well. Once
you have typed in, say, a joystick routine from this book, you will not need to retype
it every time you write a new program requiring joystick handling. Because the
subroutines in this book have been designed as stand-alone modules, with both the
input and output clearly defined, they can be recycled quite easily. You will want to store
your subroutine “library” on tape, in RAM, or, when available, on disk or some other
mass storage medium, and call them into your programs as needed.

Incorporating existing code into a program is called “merging” and can be accomplish-
ed in many different ways. The very simplest can be used if only one stock subroutine
will be used in your new program. In such cases, just load the subroutine you want in-
to memory, and write all the other program lines around it.

But, what if you want to incorporate several subroutines into a program, or add them
to one which has already been written? Doesn't loading a new subroutine or program
destroy anything that is in memory? Not necessarily. The TRS-80 Portable Computer
has a powerful, simple, merge command that allows merging program lines and
subroutines.

First. let's look at the two kinds of merging. In one case, your existing program and
the subroutines to be merged have line numbers that do not conflict. Perhaps one or
the other has low line numbers, while the code to be merged has high line numbers,
That is. your program is numbered from 100 to 1000, while the subroutine(s) to be added
all have line numbers higher than 1000. Computerists have a special name for this kind
of merge: “appending.” One program or module is added to, or appended to, the end
of the other. This method is easiest to use because there is no danger that wanted pro-
gram lines will be written over with those of the merged program.

X1

However, in the case of true merges, your target program may have program lines
that are inclusive of those in the subroutine to be merged. Your program numbered
from 100 to 1000 can be merged with a subroutine that is numbered from 500 to 600.
If any duplicate lines exist, those of the original program will be replaced by those of
the merged program. With some planning. such a merging scheme can also be suc-
cessful. You would need to make sure that the the program and the routine to be merged
have no program line numbers in common. The way to do this is to purposely leave
a gap between lines 500 to 600 in your original program. Or perhaps those lines are
occupied by a subroutine that you no longer want. When using this type of merge, be
certain that there are no “leftover” lines from the original subroutine or program
overlapping with those of your subroutine. For most users, the append type of merge
is the safest and easiest to implement.

To MERGE with the Portable Computer, go to BASIC, and load the module that you
wish to add to memory. The original program lines can be either a .BA or .DO file. The
subroutine or program that you wish to MERGE must be stored as a .DO file. You might
have created it using TEXT. Or you can load any .BA file and store it as a .DO file by
using the .DO extension when doing the SAVE.

To MERGE just type:

MERGE " filename.do"

That's all there is to it. The TRS-80 Portable Computer assumes that you want to
MERGE a RAMfile, and does the work for you. Of course, like all of the Computers 100's
[/O-commands, you can also MERGE from tape, COM. or MDM, just by prefacing the
filename with "CAS:", "COM:" or "MDM:" (e.g.. MERGE"COM:filename.do").

Unlike some other computers, this model makes it easy for you to maintain a large,
useful, subroutine library.

Sample Merging Rumn;
Subroutine {lines 10-250)

10 7 REERREXAXXKARRERRNARHH¥

20 ' ¥
30 ' ¥ COMPOUND INTEREST ¥
Lp v o% - X
S5O 1 ORRRXXEERRRKKKKRRRKRKKRKRK
6f ' e
79 ! + + VARIABLES + +
80 ! RATE: INTEREST RATE
%0 ! YEARS: YEARS COMPOUNDED
1@ ' FUTURE: FUTURE VALUE
11¢ ' AMOUNT: AMOUNT TO BE COMPOUNDED
129
!

130 ' mmmmmmmmm e

xii

140 ' %%% INITIALIZE **¥

150 RATE=10
16§ AMOUNT = 1000
17¢ PERIOD =365
180 YEARS=1p
199 GOTO 260

200 ' ¥%% SUBROUTINE *%x

210 RATE =RATE/100

220 FUTURE = AMOUNT* (1+ RATE/PERIODS)* (PERTODS*YEARS)
: LOAN = PAYMENT* (1~ (1 + RATE)* -NUMBER) /RATE

239 FUTURE = INT(FUTURE*10@+ .5) /100

24(% RETURN

25 ' ¥%¥% YOUR PROGRAM STARTS HERE %%

Program merged with subroutine:

26@ CLS:

270 PRINT "COMPOUND INTEREST"

287 PRINT CHR$(17)

29¢ INPUT "INTEREST RATE" ;RATE

30@ INPUT "YEARS TO BE COMPOUNDED" ; YEARS
31¢ INPUT "AMOUNT TO BE COMPOUNDED™ ; AMOUNT
32¢ INPUT "COMPOUNDING PERIODS/YR" ;PERIODS
230 GOSUB 21¢

34@ PRINT "FUTURE VALUE:";FUTURE

350 PRINT "DO IT AGAIN?™

36@ PRINT TAB(4)'"Y/N?™

370 AP=TINKEY$:IF A$="" GOTO 370

38p IF A3="Y" OR A$="y" THEN GOTO 260
390 IF AF="N" OR A$="n" THEN END

4@0 GOTO 390

xiii

Limits off Liability and
Disclaimer of Warramnty

The author and publisher of this book have used their best efforts in preparing this book
and the programs contained in it. These efforts include the development, research, and
testing of the programs to determine their effectiveness. The author and the publisher
make no warranty of any kind, expressed or implied. with regard to these programs,
the text, or the documentation contained in this book. The author and the publisher
shall not be liable in any event for claims of incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use of the text or
the programs. The programs contained in this book and on any diskettes are intended
for use of the original purchaser-user. The diskettes may be copied by the original
purchaser-user for backup purposes without requiring express written permission of
the copyright holder.

Trademarks of Material
Mentioned in this Text

MASTERMIND: Invicta

DUNGEONS & DRAGONS: TSR Hobbies, Inc.

RADIO SHACK MACHINES: Tandy Corporation

IBM PERSONAL COMPUTER: International Business Machines Corporation
COMMODORE VIC-20 MACHINES: Commodore Business Machines, Inc.
COMMODORE 64 MACHINES: Commodore Business Machines, Inc.

Xv

2 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Let's start off by adding a new capability to your Micro Executive Workstation—the
simulation of joysticks and paddles. Though these devices are now most frequently seen
in arcade-styte shoot-em-ups, they have many applications in business, engineering,
and science. Joysticks, in particular, make an excellent input device whenever it is
necessary to position the cursor on the screen with some accuracy.

While the TRS-80 doesn't pretend to be a computer-assisted drafting tool, its lack of
a joystick control is a drawback that can be remedied. This chapter contains four
subroutines that allow you to use the arrow keys to simulate a joystick’s directional func-
tions. Your program can also use any key of your choice (such as the SPACE bar) to
simulate the FIRE button of joysticks and paddles.

From a programmer’s standpoint, the use of the simulated joystick breaks down in-
to several neat modules. We need to know where on the TRS-80's screen the object
to be moved is. We also must check, as often as possible, the status of player's joystick
to see if it is pressed in any direction or if the FIRE button has been depressed. If so,
the programmer must update the location of the object on the screen. This is usually
done by changing the value of the location where the object is printed, by adding or
subtracting. We need to put the object in the new position and, if we do not want to
leave a "trail"" behind the object, erase its image from the old location.

Four subroutines that follow demonstrate alternate ways of moving objects in BASIC,

-using the arrow keys as a controller.

The different routines have been included in this section to allow several different
types of object movement in your programs. The first joystick subroutine in this chapter
allows moving an object only in north, south, east, or west directions. The next routine
permits movement only left or right, like a paddle, but allows you to pick which row
your object will reside in. The third subroutine of the group performs a similar paddle-
type unidirectional movement but vertically.

One subroutine demonstrates how to “'move” an object by erasing its old position
after the move has been made. The others illustrate leaving a “'trail” behind the moving
object. Both types of movement will be useful for game programs.

A final subroutine, DRAW, brings all the elements together in a short program that
will allow you to draw on the screen using a joystick. Pressing a non-arrow key changes
the cursor character to that of the key pressed.

Joystick Subroutine

WHAT IT DOES

Moves object north, south, east and west
using arrow keys as joystick.

Variables

¢ E: End of screen
* Bl Current position of object

SIMULATING JOYSTICKS AND PADDLES 3

e MOVE. Direction of move for object, to be used to increment Bl
* F1: Status of FIRE button (SPACE bar).

How To Use The Subroutine

The arrow keys can be used to simulate the north, south, east, and west movements
of a joystick. Your games and applications can use the status of this joystick to control
the actions of your programs. Usually, the movement of the joystick directs the move-
ment of an object on the screen. That is, when the joystick is pressed left, the object
moves left. Motion to the right, up, and down can also be accomplished.

There is no reason why a joystick could not be applied to other program tasks,
however. Such input might be appropriate for a very young user who does not know
how to type on the keyboard. Moving the joystick to the left might trigger one pictorial
“menu’ choice; to the right, another. Pressing the FIRE button could advance the pro-
gram to the next screen, and so forth.

This subroutine, while written with object movement in mind, can easily be adapted
to that type of application. The basic routine will, if called repeatedly, monitor the status
of the arrow key joystick and provide a value that indicates which way the cursor should
move. Only north, south, east, or west movement is allowed with this routine, which
is best suited for many "maze’ and similar games.

Call the subroutine whenever you wish to check on the status of the joysticks. The
value of MOVE can be used with Bl (the current position of the object) to move the
object or to direct some other program action. The value of F1, the FIRE button of the
joystick. is also returned, although it is not used in this subroutine. You can make press-
ing the FIRE button accomplish some other task. such as clearing the screen:

465 IF Fl=1 THEN CLS:

This subroutine prints an asterisk character on the screen. You may change the
character by substituting some other character for the asterisk.

The routine leaves a “trail " of the character behind it. You can erase this by PRINT
@ B1-MOVE with CHRS(32).

Variables Not To Be Changed By User

e E: End of screen. You will not want your object to move beyond this value or else
it will be "off* the screen and will crash your program!
* B: Beginning of screen. Same as above, only for start of screen PRINT @ positions.

Line-By-Line Description
Line 70: Define beginning and end of screen.
Line 250: Wait for user to press key.

Line 260: Deterrmine ASC value of key pressed. If it was SPACE bar, then change FIRE
variable, Fi, to 1.

Lines 270 to 300: Depending on which arrow key was pressed, change value of the
move, MOVE, to —40 (up), 40 (down). 1 (right) or —1, (left).

4 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Line 330: Clear screen.
Line 340: Access the subroutine.

Line 350: Change position of cursor, Bl, to account for move, MOVE. If new posi-

tion is beyond screen limits, change back to former value.

Line 360: Print asterisk at Bi.

You Supply

B1: Current position of object. This will be a number between B and E. Your program
should always check to make sure that BI is never less than B or greater than E. You
may want to define B1 =B at the beginning of the program to start in the upper left. That
is done in this subroutine. Or, choose some other position. Each movement of the cursor
is made by changing the value of Bl and then PRINTing @ Bl with the CHRS of the
character you want. Erase Bl from its old position by PRINTing @. its former value, with
CHRS(32). (a space).

MOVE: Direction of move, to be used to increment B1. If the cursor is to move to the
right one space, then MOVE will equal + 1. If the move will be to the left, MOVE will
equal — 1. Upward movement is produced by making MOVE equal the value of one
whole row, —40. Downward movement is accomplished by making MOVE equal +40.

- RESULT

Object will move on screen under joystick control,
in north, south, east, or west directions.

1@ P REEERXEAXREERREKRHKNRKK¥

20 ' % *
3@ ' * JOYSTICK SUBROUTINE *
Lp ' % *

BE T ORKERERRREXKAXERKERARKRXX

6@ ' *¥x%x INITIALIZE *¥%

79 B=@:E=318
8@ GOTO 339
o
199 * + + VARIABLES + +
17 MOVE: MOVE FOR JOYSTICK
199 ! Bl: POSITION FOR OBJECT
t
f
t

200 B: BEGINNING OF SCREEN
210 E: END OF SCREEN
220 F1: STATUS OF FIRE (SPACE BAR)

U

SIMULATING JOYSTICKS AND PADDLES

24@ ' ¥%x SUBROUTINE %X

250 A3=INKEY$:IF A$="" GOTO 250

260 J1=ASC(A$):IF J1=32 THEN F1=1:RETURN ELSE F1=0
279 IF J1=3@ THEN MOVE=-4(:RETURN

280 IF J1=31 THEN MOVE=4{:RETURN

299 IF J1=29 THEN MOVE=-1:RETURN

3PP IF J1=28 THEN MOVE=1:RETURN

310 RETURN

320 ' *%%¥ YOUR PROGRAM STARTS HERE ¥¥x

330 CLS

34 GOSUB 250

350 B1=B1+MOVE:IF B1<B OR B1>E THEN B1=B1-MOVE
36@ PRINT @ B1,"x";

370 GOTO 340

Horizontal Paddle Simulation

WHAT IT DOES

Moves object left and right only.

Variables

ROW: Row to move object in
B: Beginning of that column
E: End of that column

B1: Position of object
CURSR: Cursor character
MOVE: Direction of move
F1: Status of FIRE button.

How To Use The Subroutine

The Micro Executive Workstation currently has no provision for attaching paddles.
However, their movement from side to side, as used in breakout-type games, can be

simulated by using just the arrow keys.

In any case, some games work better when the arrow keys are used for movement
from side to side. This approach makes game programming simpler. Move an object
one column to the right when the right arrow is pressed and move one row left when

the left arrow is pressed.

6 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

This subroutine will tell you whether or not either case has occurred, plus it will report
on the status of the FIRE button.

Your program should repeatedly check to see if MOVE has a value and take action
accordingly. Your object might be located along one bottom of the screen in a posi-
tion defined as, say, B1. This will be increased or decreased by 1 each time an arrow
key is pressed from side to side. Make sure that Bl never exceeds the end of the screen
when PRINTing objects to the screen. A more complete discussion of moving objects
on the screen is included with the previous subroutines.

Line-By-Line Description

Line 180: Define an array capable of keeping track of four possible values for move-
ment, even though only two directions are used in this subroutine. The module
represents a second, different technique for passing the value of the arrow key pressed
on to MOVE and can be adapted for four-directional play.

Line 190: Define DATA for direction of movement when joystick is pressed in any
of the four possible values. In this case, only two are used, to provide for movement
from side to side.

Lines 200 to 220: Read move data into array.

Line 240: Define ROW to move cursor in.

Line 250: Determine starting position of cursor.

Line 260: Calculate end PRINT position of that column.
Line 270: Define beginning PRINT position of the column.
Line 280: Define cursor character. User may change.
Line 310: Wait for user to press key.

Line 320: Determine ASCII value of key pressed, and see if FIRE button (SPACE bar)
was pressed.

Line 330: If arrow key not pressed, MOVE=0.

Line 340: MOVE equals |1 element of array.

Line 370: Access the subroutine.

Line 380: If MOVE is not zero, erase old character.

Line 390: Update value of B1 by adding MOVE.

Line 400: If new value of B! is outside COL, change back.
Line 410: PRINT cursor character at Bl.

Line 420: Repeat.

You Supply

Just move joystick. COL can be defined as the screen column on which the object
moves. CURSR can be defined as any character you wish.

SIMULATING JOYSTICKS AND PADDLES

RESULT

Object will move on screen under joystick control,
side to side only.

]_Q TORERREXRXERARKRX RN

20 ' ¥ *

30 ' ¥ MOVE OBJECT

4p ' % LEFT OR RIGHT

50 ' % %

6@ TOXEXRRERERARRRRKRXX

0 ! mmmm e m e
80 ' 4+ + VARIABLES + +

99 ' ROW: ROW TO MOVE IN

199 ' B: BEGINNING OF THAT ROW
119 ' E: END OF THAT ROW

12p ' B1l: POSITION OF CURSOR

r
f
t
13 ' CURSR: CURSOR CHARACTER
4
!

140 MOVE: DIRECTION OF MOVE
150 F1: STATUS OF FIRE (SPACE BAR)
160 | mmmmmmmmmmmmm e e

179 ' *%x INITIALIZE *%x

18@ DIM MOVE(4)
199 DATA 1,-1,0,0
209 FOR N=1 TO 4
219 READ MOVE(N)
220 NEXT N

230 CHAR={

240 ROW=5

250 B1=CHAR + ROW¥4(
269 E=B1+39

279 B=B1

28@ CURSR =43

290 GOTO 370

300 ' *%% SUBROUTINE %%

310 A$=INKEY$:IF A$="" GOTO 310

320 J1=ASC(A$):IF J1=32 THEN F1=1:RETURN ELSE F1=0
330 IF J1<28 OR J1>31 THEN MOVE=@:RETURN

34() MOVE=MOVE(J1-27)

350 RETURN

8 _ TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

36@ ' *%% YOUR PROGRAM STARTS HERE ¥¥¥

37@ GOSUB 310

38p IF MOVE< >@ THEN PRINT @ B1,CHR$(32);
399 B1=B1+MOVE

409 IF B1<B OR B1>E THEN B1=B1-MOVE

41¢ PRINT @ B1,CHR$(CURSR);

419 GOTO 379

Vertical Paddle Simulation

WHAT IT DOES

Moves object up and down only,

Variables

e COL: Row to move object in
¢ B: Beginning of that column
e E: End of that column

® BI: Position of object

¢ CURSR: Cursor character

¢ MOVE: Direction of move

¢ F1: Status of FIRE button.

How To Use The Subroutine

The TRS-80 currently has no provision for attaching paddles. However, their move-
ment up and down, as used in PONG-type games, can be simulated by using just the
up-down arrow keys.

In any case, some games work better when the arrow keys are used for movement
up and down. This approach makes game programming simpler. Move an object up
one row when the up arrow is pressed and move one row down when the down arrow
is pressed.

This subroutine will tell you whether or not either case has occurred, plus it will report
on the status of the FIRE button.

Your program should repeatedly check to see if MOVE has a value and take action
accordingly. Your object might be located along one side of the screen in a position
defined as, say. B1. This will be increased or decreased by 40 each time an arrow key
is pressed up or down. Make sure that B1 never exceeds the end of the screen when
PRINTing objects to the screen. A more complete discussion of moving objects on the
screen is included with the previous subroutines.

SIMULATING JOYSTICKS AND PADDLES 9

Line-By-Line Description

Line 180: Define an array capable of keeping track of four possible values for move-
ment, even though only two directions are used in this subroutine. The module
represents a second, different technique for passing the value of the arrow key pressed
on to MOVE and can be adapted for four-directional play.

Line 190: Define DATA for direction of movement when joystick is pressed in any
of the four possible values. In this case, only two are used., to provide for movement
up and down.

Lines 200 to 220: Read MOVE data into array. Since the first two elements are both
0. no movement will occur if the right or left arrows are pressed. By substituting — I
and +1 for the zeroes in the data line, four-way control is restored.

Line 240: Define COL to move cursor in.

Line 250: Determine starting position of cursor.

Line 260: Calculate end PRINT position of that column.
Line 270: Define beginning PRINT position of the column.
Line 280: Define cursor character. User may change.
Line 310: Wait for user to press key.

Line 320: Determine ASCIl value of key pressed, and see if FIRE button (SPACE bar)
was pressed.

Line 330: If arrow key not pressed, MOVE=0.

Line 340: MOVE equals]I element of array.

Line 370: Access the subroutine.

Line 380: If MOVE is not zero, erase old character.

Line 390: Update value of Bl by adding MOVE.

Line 400: If new value of Bl is outside COL, change back.
Line 410: PRINT cursor character at Bl.

Line 420: Repeat.

You Supply

Just move joystick. COL can be defined as the screen column on which the object
moves. CURSR can be defined as any character you wish.

RESULT

Object will move on screen under joystick control,
up or down only,

10

10
20
30
4
50
60
70
80
o0
100
119
120
130
140
159
160

179

18p
190
200
210
220
230
240
250
269
270
280
299

300

310
320
330
340
350

360

370
380
390
400

TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

XXX XKXXXX XXX RHXX
* *
¥ MOVE OBJECT *

¥ TUP AND DOWN %
* *

HEXKKAXXXXXXXREXXK

+ + VARIABLES + +
COL: COLUMN TO MOVE IN
' B: BEGINNING OF THAT COLUMN
" E: END OF THAT COLUMN
' Bl: POSITION OF CURSOR
' CURSR: CURSOR CHARACTER
' MOVE: DIRECTION OF MOVE
' Fi: STATUS OF FIRE (SPACE BAR)

" ——— —— — — o T ——— ———— — i Al -

1

' %%% INITIALIZE *¥¥

DIM MOVE(4)
DATA g)@)‘4@14®
FOR N=1 TO 4
READ MOVE(N)
NEXT N

CHAR=90

COL=5
B1=CHAR + COL*8
E=B1+7

B=B1

CURSR=43

GOTO 379

' ¥%x SUBROUTINE XX

AP=INKEY$:IF Ag="" GOTO 310

J1=ASC(A$):IF J1=32 THEN F1=1:RETURN ELSE F1=0
IF J1<28 OR J1>31 THEN MOVE=@:RETURN

MOVE =MOVE(J1-27)

RETURN

' ¥%%¥ YOUR PROGRAM STARTS HERE **x

GOSUB 319

IF MOVE< >@ THEN PRINT @ B1,CHR$(32);
B1=B1+MOVE

IF B1<B OR B1>E THEN B1=B1-MOVE

419 PRINT @ B1,CHR$(CURSR);
420 GOTO 370

SIMULATING JOYSTICKS AND PADDLES 11

Drawing Subroutine

WHAT IT DOES

Draws on screen, changing cursor character as desired.

Variables

e Bl: Current position of cursor
¢ MOVE: Direction of move, to be used to increment Bl
e CURSR: Current cursor character.

How To Use The Subroutine

Using the computer joystick to sketch on the screen is a natural application. This
subroutine, similar to the last, has the added feature of automatically changing the cursor
character, under direction of the operator. Pressing the FIRE key (SPACE bar) will clear
the screen.

You can adapt this subroutine to many different types of programs—for drawing floor
plans—and other design projects.

If you press an alpha key the cursor will change to that letter or, if GRAPH or the CODE
key, the graphics character associated with that key. A short sound routine is also in-
cluded to mark the movement around the screen audibly.

Variables Supplied By The Subroutine

Bl Current position of cursor. This will be a number between B and E. Your program
should always check to make sure that Bl is never less than B or greater than E. You
may want to define Bl =B at the beginning of the program to start in the upper left.
Or, choose some other position. Each movement of the cursor is made by changing
the value of Bl and then PRINTing @ B! with the the character you want. Erase Bl from
its old position by PRINTing its former value with CHRS(32) (a space).

MOVE: Direction of move, to be used to increment Bl. If the cursor is to move to
the right one space, then MOVE will equal +1. If the move will be to the left, MOVE
willequal — 1. Upward movement is produced by making MOVE equal the value of one
whole row, —40. Downward movement is accomplished by making MOVE equal +40.

Line-By-Line Description

Line 140: Define an array capable of keeping track of four possible values for move-
ment.

Line 150: Define DATA for direction of movement when joystick is pressed in any
of the four possible values.

Lines 160 to 180: Read move data into array.

12 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Lines 190 to 210: Define beginning and end of screen.
Line 220: Define cursor character. Program will change.
Line 250: Wait for user to press key.

Line 260: If ESCape key pressed, then clear screen.
Line 270: Determine ASCII value of key pressed.

Line 280: If arrow key not pressed, MOVE=0, and cursor changes to that character.
Line 290: MOVE equals |1 element of array.

Line 300: Return.

Line 320: Access the subroutine.

Line 330: Make beep.

Line 340: Update B1 by MOVE.

Line 350: Cancel if Bl outside screen limits.

Line 360: PRINT cursor character to screen.

Line 370: Repeat.

You Supply

CURSR: Current cursor character. This number is PRINTed into position Bl to paint
on the screen.

RESULT

Drawing on screen, with variety of cursor characters.

SIMULATING JOYSTICKS AND PADDLES

10 ' ORRRRERRK

20 ' * *

30 ' * DRAW *

AP 1 % *

5@ 1 RERRRRRKR

60 ! e
70 ! + + VARIABLES + +

8g ! MOVE: DIRECTION OF MOVE
% ' B1: POSITION OF CURSOR
190 ' CURSR: CURSOR CHARACTER
119 !

120 1 e e

139 ' *¥%% INITIALIZE *¥¥
14% DIM MOVE(4)

150 DATA 1,-1,-403,40
16@ FOR N=1 T0 4
17@ READ MOVE(N)

18@ NEXT N

199 B1=1:B=B1

209 CLS

219 E=318

220 CURSR=43

230 GOTO 320

24 ' *%% SUBROUTINE ***
250 A$=1INKEY$:IF A$="" GOTO 250

260 IF A$=CHR$(27)THEN CLS:MOVE =@:RETURN
270 J1=ASC(A$)

28@ IF J1<28 OR J1>31 THEN MOVE=0:CURSR=ASC(A$) :RETURN

299 MOVE=MOVE(J1-27)
309 RETURN

319 ' *¥% DRAW SUBROUTINE *¥*

320 GOSUB 258

330 BEEP

340 B1=B1+MOVE

350 IF B1>E OR B1<B THEN B1=B1-MOVE
360 PRINT @ B1,CHR$(CURSR);

370 GOTO 320

13

16 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Many of the previous Radio Shack computers have used the Zilog Z-80 microprocessor
chip. The TRS-80 Model 100 was the first to use a related semiconductor, the 80C85.
This is a CMOS version of the veteran 8085 microprocessor, a member of the same 8008,
8080, Z-80 family that is so popular among Radio Shack and CP/M-based computers.
The CMOS attributes allow the chip to be operated at much lower power levels; hence
the viability of the battery-operated Model 100. ,

While the 8085 shares many of the same instructions as the Z-80 used in other Radio
Shack computers, it does have much better “interrupt” features. That is, the
microprocessor will, when told, constantly poll various registers for activity. When the
right sort of action is found, the chip interrupts whatever else is going on and can, if
we tell it to, go do something else instead.

The most commonly used interrupt routine from BASIC is ON ERROR GOTO.... Unlike
other commands, we do not have to enter an interrupt-based command at the time we
want it to be carried out. Instead, we place ON ERROR at the beginning of a program.
The computer remembers that we have turned this feature on, and when an error is en-
countered, it will send program control where we choose, rather than invoking the
normal error routine.

The TRS-80 has a variety of ON...GOSUB routines available. In all cases, your program
merely starts the routine at the beginning and then goes on to do other tasks as you
wish. For example, ON KEY GOSUB will interrupt whatever you are doing whenever
one of the defined function keys is pressed. You can define one or all eight function
keys for this routine. The others are ignored.

ON MDM and ON COM will interrupt your program whenever a character is received
from the built-in modem or arrives over the RS232 port, respectively. In this way, your
computer can carry out one task but still not miss data coming in from another com-
puter through the modem or serial port.

ON TIMES GOSUB will let you be a clock-watcher, with your program interrupting you
when a desired time is reached. This is a handy way of providing for a timer in any BASIC
program you might have.

Timing is one of the most interesting interfaces your Portable Computer has with the
real world. The TRS-80 has a built-in mechanism that allows it to measure seconds,
minutes, and hours. This feature is known as the real-time clock, and it can be used by
the programmer to keep track of events, such as the length of time needed to complete
games. Some of the subroutines in this book are your keys to using the real-time clock
of your TRS-80 computer.

Because the TRS-80's real-time clock is accurate under most circumstances, it can be
used to time events fairly precisely. This might be useful in competitive games, typing
tutors, and other programs that measure elapsed time accurately.

ELAPSED TIMIE

WHAT IT DOES

Measures difference between two times.

USING THE CLOCK AND INTERRUPTS 17

Variables

* HOUR: Elapsed hours
* MIN: Elapsed minutes
* SEC: Elapsed seconds.

How To Use The Subroutine

This subroutine takes the time when the program starts running and compares it to
the current time when you press a key (or perform some other task in the program that
you write). It then calculates the elapsed time.

It is not necessary to set the real-time clock to the correct time to run this routine.
Note that the subroutine should not be used to time very long events because the clock
returns to 00:00:00 at midnight. But for anything short of a day or which does not begin
on one day and end the next, the subroutine should do just fine. Most programs will
not need to time that long a period for a single run.

Line-By-Line Description

Line 160: Set FS (finish time) to equal the current time, TIMES. Then determine the
value of the hour.

Line 170: Find value of minutes.

Line 180: Find value of seconds.

Lines 190 to 210: Figure starting hour, minutes, and seconds.

Line 220: Figure difference, in seconds, between starting and finishing times.
Line 230: If difference is less than 60 seconds, then elapsed time equals the difference.
Line 240: If difference is less than an hour, go figure minutes and seconds elapsed.
Line 250: Calculate elapsed hours.

Line 260: Calculate elapsed minutes.

Line 270: Calculate elapsed seconds.

Lines 280 to 290: Print results.

Line 320: Take starting time.

Line 330: Wait awhile. Your program could have a game or some other activity replac-
ing this.

Line 340: When it is necessary to calculate the elapsed time (in this case, because
a key was pressed, access the subroutine).
You Supply

Your program should set S$ to equal TIMES when you wish to start timing and then
call the subroutine when the end of the timing cycle is over.

18

TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

RESULT

Elapsed time is measured.

19
20
30
4
50
60
70
80
o0
100
1109
120
139
140

150

160
170
180
190
200
210
220
230
240

t
t
§

FHHKHHKHHHK KKK XX

*

*

* ELAPSED TIME *

*

*

XREH KKK KKK KRR N R XX

+ + VARIABLES + +

HOUR:
MIN:
SEC:

GOTO 320

ELAPSED HOURS
ELAPSED MINUTES
ELAPSED SECONDS

' ¥%¥ SUBROUTINE *%¥

F$=TIME$: FH=VAL(LEFT$(F$,2))
FM=VAL(MID$(F$,4,2))

FS=VAL(RIGHT$(F$,2))

SH=VAL(LEFT$(S$,2))

SM=VAL(MID$(S$,4,2))

SS=VAL(RIGHT$(S$,2))

DF = (FH¥ 3600 + FM*60 + FS) - (SH* 3600 + SM¥60 + SS)
IF DF<6@ THEN SEC=DF:GOTO 280

IF DF<36@@ THEN GOTO 260

25@ HOUR = INT(DF/36@@) :DF = DF-HR* 3600

2600 MIN=INT(DF/60)

279 SEC = DF-MIN*6{Q

28@ PRINT TAB(2)"IT TOOK YOU ";HOUR

29¢ PRINT TAB(2)MIN; "MIN. AND ";SEC;"SEC."
309 RETURN

310 ' *%* YOUR PROGRAM STARTS HERE *¥¥

320 S$=TIME$

330 A$=1INKEY$:IF A$="" GOTO 33(

340 GOSUB 16p

350 GOTO 320

USING THE CLOCK AND INTERRUPTS 19

Timer

WHAT IT DOES

Sets computer as a timer.

Variables

FHS: Finish hour
FMS Finish minutes
FS$ Finish seconds
FTS$ Finish time.

How To Use The Subroutine

Having the computer signal us at some future time can be a useful function. This
subroutine asks what time we want to be alerted. It will then constantly compare the
updated current time with the calculated finish time, and when that time is reached.
signal.

You are prompted for all the information needed.

Note that the computer can't do any other functions while this subroutine is running.
The subroutine’s chief value, in fact, is to demonstrate how efficient the ON TIMES inter-
rupt routine which follows is for BASIC programming.

In order to come close with this subroutine, it would be necessary to change the
module so that the line which compares the current time with the target time (IF
VAL(TIMES) > VAL{FTS) GOTOQ...} is imbedded within your main program and checked
before branching to each new function. Or you could write a GOSUB line that goes to
that line repeatedly during FOR-NEXT or GET loops.

Line-By-Line Description
Lines 170 to 210: User enters amount of time to be measured.
Line 220: Announce timing cycle.
Line 230: Take current time.
Lines 240 to 250: Figure the minutes and hours to start.
Lines 260 to 270: Calculate value of finish hours and minutes.

Lines 280 to 300: Construct string representations of the finish hours, minutes, and
seconds.

Lines 310 to 320: Add leading Os as necessary.

20 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Line 330: Construct finish time string.

Line 340: Clear screen.

Line 350: PRINT finish time to screen.

Line 360: PRINT current time to screen.

Line 370: Check to see if finish time has been reached.
Line 380: Otherwise, repeat.

Line 390: Notify time is up.

You Supply

You enter the time to be counted off.

RESULT

Computer signals at end of requested time interval.

1@ 7 REXRXKAXRK®

20 ' % *

30 ' % TIMER ¥

4O 1 ¥ *

50 1 KXRKRRXKK

60 GOTO 410

g
80 ! + + VARIABLES + +

%0 ! FH$ FINISH HOUR

100 ! FM$ FINISH MINUTES

119 FS$ FINISH SECONDS

120 ! FT$ FINISH TIME

139

140 ' e

160 ' *x% TIME TO BE MEASURED %%

USING THE CLOCK AND INTERRUPTS

170 PRINT" TOTAL TIME TO BE COUNTED:"

18@ INPUT" ENTER HOURS: " ;HR$

19 INPUT" ENTER MINUTES: " ;MN$

209 HR=VAL(HR$)

210 MN=VAL(MN$)

22¢ PRINT TAB(4)"TIMING CYCLE™"

230 T$=TIMES

240 HN=VAL(LEFT$(T$,2))

250 MP=VAL(MID$(T$,4,2))

260 FM=MP+MN:IF FM>59 THEN FM=FM-6@0:HN=HN+1

27% FH=HN+HR:IF FH>23 THEN FH=FH-24

28@ FH$=MID$(STR$(FH),2)

290 FM$=MID$(STR$(FM),2)

3p@ FS$=MID$(T$,7)

319 IF VAL(FH$) <9 THEN FH$="@" +MID$(FH$,2):
IF VAL(FH) <1 THEN FH$="gg"

320 IF VAL(FM$) <9 THEN FM$="@" +MID$(FM$,2):
IF VAL(FM$) <1 THEN FM$="pQ"

33p FT$=TFH$+ FM$+ FS$

340 CLS:

350 PRINT @ 5,"FINISH TIME: ";FH$;":";FM$;

36@ PRINT @ 45, "CURRENT TIME: ";TIME$;

37¢ IF VAL(TIME$) >VAL(FT$) GOTO 399

380 GOTO 350

390 PRINT"TIME IS UP. " :BEEP:RETURN

L@@ ' ¥*% YOUR PROGRAM STARTS HERE *¥¥%

41 PRINT
420 GOSUB 179

Second Timmer

21

WHAT IT DOES

Counts off seconds.

Variables

s SEC: Number of seconds to count off.

22 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

How To Use The Subroutine

This subroutine shows yet a third way of using the computer as a timer. With this
method, a FOR-NEXT loop repeats once for each second until the required interval
has elapsed. How do we make sure that each iteration of the loop takes exactly one
second? At the start of the loop. the current value of TIMES is taken. Then, the pro-

gram pauses and compares the new time with the past value of TIMES. If they are iden-
tical (meaning less than one second has elapsed), the subroutine continues to wait.
Only when an additional second has ticked off will the next trip through the loop take
place.

When a certain number of seconds should be counted off, this method is faster than
using the Micro Executive Workstation's interrupt feature. This is because the starting
time doesn't have to be equated with the time at the finish. This method is very simple
for figuring intervals that are measured in whole seconds. To count off 122 seconds,
merely enter that amount when prompted. There is no need to convert to minutes or
hours.

Like all non-interrupt-driven routines, this one does prevent your program from
tackling other chores during the timing interval.

Line-By-Line Description
Line 140: Start subroutine from [to number of seconds desired, SEC.
Line 150: Take current time.
Line 160: Compare current time to see if one second has elapsed. Loop if not.
Line 170: Print current time to screen.
Line 180: Count off next second.
Lines 190 to 200: Notify that time is up.

Line 240: Ask user for number of seconds to count.

You Supply

Value for SEC. either through user input, or by defining this variable.

RESULT

TRS-80 signals at end of requested number of seconds.

USING THE CLOCK AND INTERRUPTS 23

10 ! ERRRERKRRRK

20 ' % *

30 ' * SECOND ¥

4p ' * COUNTER ¥

50 ' % ¥

6F ! ERRRKRRKRKRKX

70 GOTO 220

80 ! —mmmmm—e——m———————————————
9% ' + + VARIABLES + +
199 ! SEC: NUMBER OF SECONDS
119 ! TO BE COUNTED
120 ! mmmmmr e

139 ' *x% TIME TO BE MEASURED *x¥

14p FOR N=1 TO SEC

150 T$=TIME$

160 IF T$=TIME$ GOTO 16¢
170 PRINT @ 6@,TIMES;
18(NEXT N

199 CLS

200 PRINT "TIME IS UP."
210 RETURN

220 ' ¥%¥ YOUR PROGRAM STARTS HERE *¥%

230 PRINT
24@ INPUT"HOW MANY SECONDS TO COUNT";SEC
250 GOSUB 14¢

Time$ [mterrupt

WHAT IT DOES

Allows computer to interrupt task at requested time.

Variables

e TIMES: Current time
e FTS: Finish time.

How To Use The Subroutine

This subroutine uses the ON TIMES = interrupt routine to notify you when the desired
time interval has elapsed. The module asks for the time when the "alarm” is desired,
and sets the interrupt routine to trigger the notification subroutine when that time rolls
around. Your program can go on and do other things in the meantime.

24 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Line-By-Line Description
Lines 160 to 190: Ask user for time to be alerted, in HH:MM:SS format.
Lines 200 to 220: Extract hours, minutes, and seconds.
Lines 230 to 240: Check for proper format.
Line 250: Turn on TIMES interrupt.
Line 260: Set ON TIMES to requested finish time.
Line 300: Notify that time has expired.
Line 340: Access the subroutine.

Line 350: Print current time.

You Supply

Time when alarm should be triggered.

RESULT

Your program is interrupted when desired time is reached.

1@ TR RRERNARRRX
20 ' % *
30 ' ¥ TIME$ X
4@ ' * INTERRUPT ¥

50 ' % %

6@ TOXXRHRRNIRNK KR

0/
8p ! + + VARIABLES + +

%0 !

199 ' TIME$: CURRENT TIME

119 ' FT$: FINISH TIME

129

£

140 GOTO 330

150 ' *%% SUBROUTINE *¥%%

USING THE CLOCK AND INTERRUPTS 25

16p CLS

17¢ PRINT"What time would you like to be alerted:?"

18¢ PRINT "Use HH:MM:SS format"

199 INPUT FT$

200 A$=LEFT$(FT$,2)

210 B$=MID$(FT$,4,2)

220 C$=RIGHT$(FT$,2)

230 IF VAL(A$)>23 OR VAL(B$)>59 OR VAL(C$)>59 THEN PRINT
"WRONG FORMAT! " :GOTO 188

240 IF MID$(FT$,3,1) < >":" AND MID$(FT$,6,1) < >":" THEN
PRINT "WRONG FORMAT!":GOTO 180

25¢p TIME$ ON

260 ON TIME$=FT$ GOSUB 290

270 RETURN

280 ' ¥%x TIME IS UP *x%

299 CLS
30@ PRINT "TIME IS UP!":BEEP
31p STOP

320 ' ¥%% YOUR PROGRAM STARTS HERE ¥¥¥

330 PRINT

34@ GOSUB 160

350 PRINT @ 10@,TIMES$;
360 GOTO 350

Modem/RS232 Interrupt

WHAT IT DOES

Interrupts program when signal is received
over the RS232 or modem.

Variables

e BS: Character received.

How To Use The Subroutine

This subroutine provides a demonstration of the ON MDM and ON COM interrupt routines.
As with ON ERROR and ON TIMES, your program can be going about its business while con-
stantly checking the built-in modem or RS232 interface for input. When a character is received,
the program can immediately branch to the designated subroutine.

26 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

You might want to use this feature while your TRS-80 is connected to another computer. You
may run your BASIC program, and be signalled by the other computer when necessary.

The routine was written for RS232 use, with 300 baud communications using a seven-bit word,
even parity, one stop bit, and XON/XOFF enabled. That is, the protocol is the “37EIE” setting,
as explained in the TRS-80 manual.

You may change the routine to substitute the builtin modem by using MDM wherever COM
appears in the listing. That is, line 130 should read OPEN "MDM:37EIE” . etc. Line 140 would
be MDM ON, instead of COM ON, and line 150 should read ON MDM GOSUB 180.

You may also change the protocols, following the style used by TELCOM (or, actually, any
of the Portable Computer's programs). For example, “5811D" would activate 1200 baud com-
munications with an 8-bit word, Ignore parity, 1 stop bit, and with XON/XOFF disabled.

Line-By-Line Description
Line 120: Set maximum number of files.
Line 130: Open communications channel to accept input.
Line 140: Turn on interrupt feature.
Line 150: Define subroutine to branch to.
Line 180: Accept one character from the channel.
Line 190: Print character received to screen.

Line 220: Your program starts here.

You Supply

Communications parameters, as desired.

RESULT

Your program is interrupted when signal is
received over the modem or RS232.

10 1 RXREEEXXRXRRXKEXRHRNRHH

20 ' % *
30 ' ¥ RS232 INTERRUPT

4P 1% *

BE T ORRIERERKERARKKRARKKKAR

60 ' mm e
79 ! +++ VARIABLES +++
8@ ! B$ CHARACTER RECEIVED
% !

USING THE CLOCK AND INTERRUPTS

119 ' *%% INITIALIZE %

120 MAXFILES=1

139 OPEN "COM:37E1E" FOR INPUT AS 1
140 COM ON

15@ ON COM GOSUB 180

16@ GOTO 220

179 ' *%% SUBROUTINE *¥¥

189 B$=INPUT$(1,1)

19¢ PRINT BS$;

200 RETURN

210 ' *%% YOUR PROGRAM STARTS HERE #*%x
220 A$=INKEY$:IF A$="" GOTO 220

230 PRINT A$;
240 GOTO 220

Function Key [nterrupt

27

WHAT IT DOES

Sends control to desired subroutine when
a function key is pressed.

Variables

¢ None

How To Use The Subroutine

With ON MDM or ON COM, we had the option of sending control to only one
subroutine when the interrupt was triggered. With ON KEY, as many as eight

subroutines, one for each of the special function keys, can be designated.

The command allows accounting for as many or as few of the function keys as we wish:

ON KEY GOSUB 1000, ,2000,,,3000

This would activate F1, sending control tc line 1000, F3 (line 2000), and F6 (line 3000).
The commas designate keys to be skipped. And, since none of the other keys are de-

fined, the TRS-80 will ignore them.

As with all the interrupt routines (except ON ERROR), ON KEY must be activated,

in this case with the KEY ON command.

28 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Line-By-Line Description
Line 110: Turn on interrupt routine.

Line 180: Define keys to be used and subroutine lines.

Lines 180 to 220: Subroutines. Replace with the desired functions you want to
include.

Line 250: Wait for user to press key.
Line 260: Notify that key was pressed.

You Supply

Subroutines to carry out desired actions.

RESULT

Program interrupted when defined function key pressed.

1@ 7 KAREKXRRXRAAKRERRRKRERRRRK KR

20 ' % *
3¢ ' % FUNCTION KEY INTERRUPT *
LY ' % *
50 1 RXXAEAXXEARXXERRREREX XK RRX
60 ' m e

70 ++4+4 VARIABLES +++
8p ! NONE

9 !

S

119 KEY ON

129 ON KEY GOSUB 188,208, ,220
130 GOTO 250

179 ' ¥x¥ SUBROUTINES *x*

189 PRINT "KEY 1 PRESSED."
19¢ RETURN
20@ PRINT "KEY 2 PRESSED."
219 RETURN
22¢ PRINT "KEY 4 PRESSED."
230 RETURN

240 ' ¥¥¥ YOUR PROGRAM STARTS HERE *¥x
250 AP=INKEY$:IF A$="" GOTO 250

260 PRINT A3; "KEY PRESSED. "
279 GOTO 250

USING THE CLOCK AND INTERRUPTS 29

Error Handler

WHAT IT DOES

Provides longer error messages.

Variables

¢ ERR: Error code
e ERL: Line error is in.

How To Use The Subroutine

You may put this routine within programs you are debugging, as a speedier way of
determining what errors have taken place. There is no need to look up the cryptic two-
character error codes that the Portable Computer provides.

You may also build in error-trapping routines to help the naive user better operate
your program. Once an error has been found and control sent to the proper subroutine,
you may correct the problem and then RESUME the program at an appropriate place.
The Portable Computer allows sending control back to the same place the error took
place (RESUME) or at the following line (RESUME NEXT). In many cases, RESUME is
not appropriate, because the error is a fatal one. Some suggested results are included;
you may change them to suit your own programs.

Line-By-Line Description
Line 140: Activate ON ERROR interrupt routine.
Line 170: Assign variable E with error code.
Lines 180 to 220: Calculate which subroutine to access.
Line 230: Access error routine.

Lines 250 to 540: Print error messages.

You Supply

Program to be error-trapped.

RESULT

Longer error messages printed to screen.

30 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

10 7 REEXXEEERXRRRRRXRRAR

20 ' ¥ *

30 ' ¥ ERROR HANDLING *
4p v % *

5O 1 ORXRAKKREKARKKNRRRNRKH

]
79 ' +++ VARIABLES +++
gg !

99 ! ERR: ERROR CODE

199 ' ERL: LINE ERROR IS IN
119

1200 ' e

13@ ' *%%¥ INITIALIZE *¥%

149 ON ERROR GOTO 17¢
15¢ GOTO 56

160 ' ¥%% SUBROUTINE *%%

173 E=ERR

18@ IF E>22 AND E<51 THEN E=21:G0TO 220

1990 IF E>58 THEN E=21:GOTO 22¢

200 IF E=57 THEN E=21:G0OTO 220

219 IF E>50 AND E<58 THEN E=E-29

220 IF ERL=65535 THEN PRINT "ERROR MADE IN DIRECT MODE"
:GOTO 230

23¢9 PRINT "ERROR IN LINE";ERL:ON E GOSUB 250,260,279 ,28@,290,
300,310,320,330,340,350,360,370,380,390,400,410,420,430,
440,450 ,460,470,480,490,500,510,520,530 , 548

240 RESUME

250 PRINT"NEXT without FOR" ;STQP

26@ PRINT"Syntax Error" :STOP

27¢ PRINT"RETURN without matching GOSUB" :STQP

28@ PRINT"Not enough DATA available, " :STOP

299 PRINT"Illegal function call.":STQP

309 PRINT"Overflow error.":STOP

310 PRINT"Out of Memory. " :STOP

320 PRINT"Undefined line number.":STOP

330 PRINT"Subscript out of range.":STOP

340 PRINT "Re-dimensioned array.":RESUME NEXT

350 PRINT"Division by Zero":RESUME NEXT

36 PRINT"Illegal direct™:STOP

370 PRINT"Mixed string and numeric variable types.":STOP

38 PRINT"Out of string space. CLEAR more." :STOP

39¢ PRINT"String too long" :RESUME

4@@ PRINT"String formula too complex. Rewrite.":STOP

USING THE CLOCK AND INTERRUPTS

41@ PRINT"Can't Continue. " :STOP

42@ PRINT"Input/output error.":STOP

43@% PRINT"ON ERROR without RESUME. " :RESUME

44(PRINT"RESUME encountered without ERROR. " :RESUME
45@¢ PRINT "Undefined Error.":RESUME

460 PRINT"Missing Operand" :STOP

470 PRINT"File number unavailable.":RESUME NEXT

48@ PRINT"That file not OPEN":STOP

49@ PRINT"File not found":FILES:STOP

509 PRINT"That file already open" :RESUME NEXT

510 PRINT"Input past end of the file":RESUME NEXT
520 PRINT "Bad file name" :RESUME

53@ PRINT"Statement without line number in file" :STOP
54@ PRINT"That file has not been OPENed. " :STOP

55@ ' *%%x YOUR PROGRAM STARTS HERE ¥¥X

56@ PRINT .

31

34 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

The TRS-80 Portable Computer has only primitive sound capabilities, when compared
to some home computers. It has only two sound commands, BEEP and SOUND, to
deliver notes from the built-in speaker. BEEP allows no arguments. With SOUND, you
can specify both a note and duration:

SOUND 12000, 19

The note can range over five octaves, and the time interval can range from a fraction
of a second to several seconds. This chapter includes one routine that will turn your
computer keyboard into a piano to allow you to play notes by pressing appropriate keys.
The other nine subroutines produce different sound effects which you can drop into
your game, personal, or business programs as appropriate.

Musiie

WHAT IT DOES

Uses keyboard to generate various musical notes.

Variables

P(n): Note value

NMES(n): Name of note

NT$(14): Key corresponding to note
LTH: Length of note.

How To Use The Subroutine

Use this subroutine where you want to have the Micro Executive Workstation
keyboard simulate a piano. Pressing appropriate keys on the home row produces a note
from the speaker. In addition, the name of the note (and a sharp symbol if the note is
sharp) is printed to the screen. Some of the keys are deactivated because, as music
students will know, there is only a half-step between some notes on the scale and others.
Therefore, there is no sharped (or flatted) note between them. Music students will also
recognize that flats are simply another way of writing a sharp note, (e.g.. Bflat is the
same as A#).

The user can “learn” the TRS-80 keyboard. and begin to play songs using the sound
capabilities of the portable.

Line-By-Line Description
Line 160: Define length of note to be played.

Line 170: DIMension arrays to store names of notes, proper keys, and note values.
Lines 180 to 200: Read note names into array.

USING SOUND 35

Lines 210 to 230: Read acceptable keys into array.

Lines 240 to 260: Read note values into atray.

Lines 280 to 310: DATA for above arrays.

Line 330: Wait for user to press key.

Line 340: If key was carriage return, end subroutine.

Line 350 to 370: See if key matches list of acceptable choices.
Line 390: Play note.

Line 400: Erase old note name on screen.

Line 410: Print name of new note.

Line 440: Access subroutine.

You Supply

No user input required, other than to play keyboard.

RESULT
Music played from TRS-80's speaker.

10 REM *%¥¥¥XXXXRHHKHKXKK¥¥

20 REM * *

3@ REM ¥ MUSICAL NOTES %

40 REM * *

5@ REM X¥XX%%%X% %K% % %KX HH%¥

60 REM memm oo
7@ REM ++ VARIABLES ++

8) REM P(n): NOTE VALUE

99 REM NME$(n): NAME OF NOTE
1¢@ REM NT$(14): KEY CORRESPONDING

110 REM TO NOTE

120 REM * LTH: LENGTH OF NOTE
130 REM

140 REM ——— e oo

150 REM *¥¥ INITIALIZE %%

36 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

160 LTH=2¢¢

179 DIM NME$(14),NT$(14),P(14)

18¢ FOR N=1 TO 14

199 READ NME$(N)

209 NEXT N

219 FOR N=1 TO 14

220 READ NT$(N)

230 NEXT N

240 FOR N=1 TO 14

25@ READ P(N)

26@ NEXT N

27¢ DATA G,G# ,A,A#,B,C,C#,D,D#,E,F,F#,G,G#
28@ DATA A,Vw,S,E,D,F,T,G,Y,H,J,I1,X,0

299 DATA 12538,11836,11172,10544,9952,9394,8866
309 DATL 8368,7908,7456,7932,6642,6269,5918
310 GOTO 449

320 REM *¥¥ SUBROUTINE *¥¥

330 A$=INKEY$:IF A$="" GOTO 330
349 IF A$=CHR$(13) THEN RETURN
350 FOR N=1 TO 14

360 IF A$=NT$(N) GOTO 39¢

370 NEXT N

38p9 GOTO 33p

399 SOUND P(N),LTH

4LOp PRINT @ 1g," ";

41p PRINT @ 10,NME$(N);

42@ GOTO 330

43) REM %¥% YOUR PROGRAM STARTS HERE *¥%
44p GOSUB 330

Sirem

WHAT IT DOES

Siren sound routine to produce sounds
for games, other applications,

Variables

® NI: Number of repeats of sound effect.

USING SOUND 37

How To Use The Subroutine

Call subroutine when siren sound is desired. You may experiment with loops and ac-
tual numbers used to produce a different sound effect. Try varying the values used with
the SOUND statement. The first value controls the note produced while the second ad-
justs the length of time the note is played. Five octaves are encompassed between the
numbers 12538 (at the low end) and 415 (at the high end).

Line-By-Line Description

Line 160: Begin loop of ten repetitions.

Lines 170 to 190: Loop through notes from 400 to {2000, in increments of 500. Pro-
duces falling pitch.

Lines 200 to 220: Rising pitch.

Line 250: Access the subroutine.

You Supply

No user changes required.

RESULT

Siren sound emitted for game play or other applications.

10 1 RERRARKKR

20 ' ¥ x

3¢ ' % SIREN *

4p v % ¥

BE T ORRRRXRRKX

6@ !

TP ! e ————————————
8p ! ++ VARIABLES ++

9 !

190 N1: NUMBER OF REPEATS
119 !

120

130 " e e

14 GOTO 260

159 ' *%% SUBROUTINE %%x

38 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBQOK

16@¢ FOR N1=1 TO 1@

17@ FOR N=40@ TO 12000 STEP 500
18@ SOUND N,1

199 NEXT N

209 FOR N=120p@ TO 4p@ STEP -50@
21 SOUND N, 1

220 NEXT N

230 NEXT N1

24@ RETURN

250 ' ¥%¥ YOUR PROGRAM STARTS HERE %%

26@ GOSUB 16¢

Bomb

WHAT IT DOES

Bomb sound routine to produce sounds
for games, other applications.

Variables

* None.

How To Use The Subroutine

Call subroutine when bomb sound is desired. You may experiment with loops and
actual numbers used to produce a different sound effect. Try varying the values used
with the SOUND statement. The first value controls the note produced, while the second
adjusts the length of time the note is played. Five octaves are encompassed between

the numbers 12538 (at the low end) and 415 (at the high end).

Line-By-Line Description
Lines 160 to 180: Produce falling sound.
Lines 190 to 210: Rising sound, explosion.

Line 240: Access the subroutine.

You Supply

No user changes required.

USING SOUND

39

RESULT

Bomb sound emitted for game play or other applications.

AREXAXKXA

19 !

20 ' ¥ *

3@ ' ¥ BOMB «*

Lp v ¥ *

5O 1 ORRRXXRKKK

6g !
.
8 ! ++4 VARIABLES ++

90 !

129 ! NONE

119 !

120 '

130 ! mmmmm e

140 GOTO 24@
150 ' %%% SUBROUTINE %%

160 FOR N=8@@ TO 8@@p@ STEP 20

17¢ SOUND N,1

18@ NEXT N

199 FOR N=130¢@ TO 8pQ9 STEP -10p@
209 SOUND N,1

219 NEXT N

220 RETURN

230 ' *¥% YOUR PROGRAM STARTS HERE

24p GOSUB 160

Alarm

WHAT IT DOES

Alarm sound routine produces sounds
for games, other applications.

40

TRS-80 PORTABLE COMPUTER SUBRQUTINE COOKBOOK

Variables

* N!: Number of repeats.

How To Use The Subroutine

Call subroutine when alarm sound is desired. You may experiment with loops and
actual numbers used to produce a different sound effect. Try varying the values used
with the SOUND statement. The first value controls the note produced, while the second
adjusts the length of time the note is played. Five octaves are encompassed between

the numbers 12538 (at the low end) and 415 (at the high end).

Line-By-Line Description

Line 160; Repeat sound N1 (10) times.

Lines 170 to 220: Produce rising sound.

Line 240: Access the subroutine.

You Supply

No user changes required.

RESULT

Alarm sound emitted for game play or other applications.

10
20
30
49
o0
60
790
8P
90
109
119
120

!
t
1

139
14¢ GOTO 230

KRKAAKKAX
* *

* ALARM ¥
* *
KHEARKKXX

++ VARIABLES ++

N1: NUMBER OF REPEATS

—— ——— A —— T S SN S S U G WD GED GED S S W W A W

150 ' *¥%¥ SUBROUTINE %¥x

USING SOUND

160 FOR N=1 TO N1

179 FOR N2=28p@@ TO 110@@ STEP 100
189 SOUND N2,1

199 NEXT N2

200 NEXT N

219 RETURN

2200 ' *¥%%¥ YOUR PROGRAM STARTS HERE *¥*

230 GOSUB 16¢

UFO

41

WHAT IT DOES

UFO sound routine to produce sounds
for games, other applications.

Variables

* None.

How To Use The Subroutine

Call subroutine when UFO sound is desired. You may experiment with loops and ac-
tual numbers used to produce a different sound effect. Try varying the values used with
the SOUND statement. The first value controls the note produced, while the second
adjusts the length of time the note is played. Five octaves are encompassed between

the numbers 12538 (at the low end) and 415 (at the high end).

Line-By-Line Description
Lines 160 to 170: Define two notes for UFO to play.
Lines 180 to 190: Alternate those two notes.
Lines 200 to 210: Reduce A by 100 increase B by 100.
Line 220: If A is out of range, end subroutine.

Line 250: Access subroutine.

You Supply

No user changes required.

42 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

RESULT

UFO sound emitted for game play or other applications.

10 1 ORERRRRRXX

20 ' ¥ *

30 ' ¥ UFO ¥

L 1% *

5O 1 ORRRRRRRKK

G/

L
8p ! ++ VARIABLES ++

9 ! '

199 NONE

119 ¢

120 '

130 ! mmmemmmmm——mmm— e mmmmmmmmem

149 GOTO 25¢
159 ' *%% SUBROUTINE %%

160 A=13p00

170 B=40p¢

180 SCUND A,1

199 SOUND B, 1

200 A=A-109

219 B=B+ 100

22 IF A= <1 THEN RETURN
230 GOTO 18¢

24 ' ¥%% YOUR PROGRAM STARTS HERE *¥¥

250 GOSUB 16@

Computer

WHAT IT DOES

Random, computer-like sound routine to produce
sounds for games, other applications.

USING SOUND 43

Variables

¢ None.

How To Use The Subroutine

Call subroutine when computer sound is desired. You may experiment with loops
and actual numbers used to produce a different sound effect. Try varying the values
used with the SOUND statement. The first value controls the note produced, while the
second adjusts the length of time the note is played. Five octaves are encompassed
between the numbers 12538 (at the low end) and 415 (at the high end). '

Line-By-Line Description
Line 150: Repeat 100 times.
Line 160: Select random note.
Line 170: Select random length.

Line 180: Play note.

Line 220: Access subroutine.

You Supply

No user changes required.

RESULT

Computer sound emitted for game play or other applications.

1@ 7 REERERRKRHNKR

20 ' % *

30 ' ¥ COMPUTER ¥

V7 A *

5@ 1 RERERXRXKAKK

60 !

70 ! e
8@ ' ++ VARIABLES ++

92 !

109 ! NONE

119 !
e

139 GOTO 220

140 ' ¥%x SUBROUTINE *%x

44 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

150 FOR N=1 TO 10p
160 R=RND(1)*13000
17¢ L=RND(1)*1p

18 SOUND R,L

190 NEXT N

2(% RETURN

210 ' ¥x¥ YOUR PROGRAM STARTS HERE *¥¥
220 GOSUB 150

Laser

WHAT IT DOES

Laser sound routine to produce sounds
for games, other applications.

Variables

¢ None.

How To Use The Subroutine

Call subroutine when laser sound is desired. You may experiment with loops and ac-
tual numbers used to produce a different sound effect. Try varying the values used with
the SOUND statement. The first value controls the note produced, while the second ad-
justs the length of time the note is played. Five octaves are encompassed between the
numbers 12538 (at the low end) and 415 (at the high end).

Line-By-Line Description
Line 160: Loop from 400 to 8000 in increments of 1000.
Line 170: Make laser sound.

Line 220: Access subroutine.

You Supply

No user changes required.

RESULT

Laser sound emitted for game play or other applications.

USING SOUND

1P 1 ORRERRERKK

20 ' X% *

3@ ' * LASER ¥

Ap ' % *

50 1 RRREKRXKRK

69 !

70 ! e e em
8@ ! ++ VARIABLES ++

o9 !

100 ! NONE

11p !

120 !

130 " e e e

140 GOTO 220

15@ ' %%% SUBROUTINE *¥*¥

169 FOR N=40@ TO 8p@@ STEP 1000
17@¢ SOUND N,1

18¢ NEXT N

190 SOUND 400,10
20@ RETURN

219 ' *%¥x YOUR PROGRAM STARTS HERE %%
220 GOSUB 16@

Roulette Wheel

45

WHAT IT DOES

Makes roulette wheel sound, which slows down gradually,
for games, other applications.

Variables

® None.

How To Use The Subroutine

Call subroutine when wheel sound is desired. You may experiment with loops and
actual numbers used to produce a different sound effect. Try varying the values used
with the SOUND statement. The first value controls the note produced, while the second
adjusts the length of time the note is played. Five octaves are encompassed between

the numbers 12538 (at the low end) and 415 (at the high end).

46 TR5-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Line-By-Line Description
Line 160: Set initial delay at 10.
Line 170: Loop sound from 400 to 12000.
Line 180: Increase length of delay loop.
Line 190: Count off delay.
Line 200: Play sound.
Line 240: Access subroutine. -

You Supply

No user changes required.

RESULT

Roulette wheel-type sound emitted for
game play or other applications.

1@ 1 RREAARRRKARRRRKRKRK

20 ' x %

3@ ' * ROULETTE WHEEL *

4 % *

B T ORRRRRKKKKRRRXKKKR XK ¥

60 !

7O ! el
8g ! ++ VARIABLES ++

2% !

199 NONE

119 !

120 '

130 ' e

140 GOTO 240
150 ' *%% SUBROUTINE *%%

160 DELAY=1¢

170 FOR N=40@ TO 12000 STEP 200
180 DELAY=DELAY*1.05

199 FOR D=1 TO DELAY:NEXT D
209 SOUND N,1 '

210 NEXT N

22() RETURN

230 ' %%*¥ YOUR PROGRAM STARTS HERE *¥%¥
24(GOSUB 160

USING SOUND 47

Heartbeat

WHAT IT DOES

Heartbeat sound routine to produce sounds
for games, other applications.

Variables

® None.

How To Use The Subroutine

Call subroutine when heartbeat sound is desired. You may experiment with loops
and actual numbers used to produce a different sound effect. Try varying the values
used with the SOUND statement. The first value controls the note produced, while the
second adjusts the length of time the note is played. Five octaves are encompassed
between the numbers 12538 (at the low end) and 415 (at the high end).

Line-By-Line Description
Line 160: Repeat 20 times.
Line 170: Produce first thump.
Line 180: Wait.
Line 190: Produce second thump.
Line 200: Wait slightly longer.

Line 210: Repeat.

Line 240: Access subroutine.

You Supply

No user changes required.

RESULT

Heartbeat sound emitted for game play or other applications.

48 = TRS-80 PORTABLE COMPUTER SURRQUTINE COOKBOOK

1F 1 REERRRERRRNKH ‘ ‘
20 1 % ¥

3@ ' * HEARTBEAT * .

40 ' % %

5@ 1 RREXRRERERRRK

60 !

TP ! e o
8p ! ++ VARIABIES ++

%9 !

190 1 NONE

119 !

129!

1 B it

140 GOTQ 249
15@ ' *¥%¥% SUBROUTINE %X

160 FOR N1=1 TO 20

17@ SCUND 14¢9@,1

18¢ FOR N=1 TO 1@@:NEXT N
199 SOUND 14908,5

209 FOR N=1 TO 3@Q:NEXT N
219 NEXT N1

220 RETURN

23¢ ' *%* YOUR PROGRAM STARTS HERE ¥¥*¥

24(GOSUB 160

Clock

WHAT IT DOES

Clock ticking sound routine to produce sounds
for games, other applications.

Yariables
* N2: Number of ticks.

How To Use The Subroutine

Call subroutine when clock sound is desired. You may experiment with loops and ac-
tual numbers used to produce a different sound effect. Try varying the values used with

USING SOUND 49

the SOUND statement. The first value controls the note produced, while the second
adjusts the length of time the note is played. Five octaves are encompassed between
the numbers 12538 (at the low end) and 415 (at the high end).

Line-By-Line Description
Line 160: Repeat ten times.
Line 170: Tick.
Line 180: Wait.
Line 190: Tock.
Line 200: Wait again.
Line 210: Repeat

Line 240: Access subroutine.

You Supply

No user changes required.

RESULT

Clock sound emitted for game play or other applications.

1P ' AREXRRANXK

20 ' % %

30 ' % TICK *

4p 1 ¥ *

5@ T REXXKXRKXXX

60

N
8p ++ VARIABLES ++

99

199 ' N2: NUMBER OF TICKS

119

12p

130 ' mmmmmme e

140 N2=10:G0T0 240

150 ' *x* SUBROUTINE *¥¥

50 TRS-80 PORTABLE COMPUTER SUBROUTINE COQOKBOOK

16 FOR N1=1 TO N2

179 SOUND epg@,1

189 FOR N=1 TO 20@:NEXT N
199 SOUND &pg@, 1

209 FOR N=1 TO 20@:NEXT N
21f NEXT N1

22f) RETURN

<238 ' *%¥% YOUR PROGRAM STARTS HERE *#%

24 GOSUB 169

M

54 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOQOK

Here are some BASIC routines that will make your programming a bit easier. These
are general subroutines that can be applied to many different programs. One lets you
PEEK the Portable Computer’s equivalent of screen memory to see what characters are
displayed there. Another lets you define a pair of variables that will turn on and off the
reverse screen display attribute.

While redefining the function keys can be accomplished from BASIC just by typing
"KEY (number},(string),” there are times when you might want to accomplish this under
program control. A subroutine lets you do the redefinition (plus return the keys to
normal) from within a program.

Three other modules are “user interface” routines that trap errors by permitting the
operator to enter ONLY the type of input that is required by the program. If numbers
only, or alpha characters only, are desired, that is what the routines will accept. The
third accepts either lowercase or uppercase entries and converts the lowercase
characters to upper.

By using these, you can explore the concept of error traps and see how avoiding im-
proper entries can reduce the frustration of first-time users of your programs.

Two sort routines are included for those who need to rearrange lists of numbers or
strings: Bubble sorts are used. as these are the easiest to understand and to modify.
If you are interested in a faster, more sophisticated. but more difficult to follow, sort,
Radio Shack’s user’s guide has a routine which sorts *.DO" files, using the Shell-Metzner
sort. .

Loading arrays with data is one of the most frequent requirements for any BASIC pro-
gram. Beginners are often confused by arrays. Yet, this is one of the most important
concepts after FOR-NEXT loops and program branching (GOTO, GOSUB). The array-
loading subroutine is included here primarily for educational value. If you don’t under-
stand how to fill an array, you probably couldn't use it properly. The example presented
is a fully working program that the user can RUN and experiment with until arrays are
more fully understood.

The array routine can be transplanted to other programs, however, and interfaced
with RAM or tape file read/write routines provided later in this book, to build a com-
plete data base program with permanent files.

Function Keys

WHAT IT DOES

Redefines function keys, or restores them
to normal, under program control.

Variablés

* K: Key to reprogram
® SS: New definition of that key.

BASIC TRICKS 57

How To Use The Subroutine

The TRS-80 Portable Computer doesn't have screen memory like the TRS-80 Models
land 1II. With those computers, the user can PEEK video memory to see what characters
are currently being displayed and can POKE new characters there, as desired. You can-
not POKE characters with the Micro Executive Workstation; however, a representation
of the screen DOES exist in RAM. It is practical to PEEK those locations to see what
is currently being displayed.

This capability is especially useful for games in which we want to see what lies ahead
of our moving ship or missile. Placing graphics on the screen has to be done using PRINT
@. which is, fortunately, very fast. We can PRINT @ any of 320 locations on the screen,
fromO0to 319. If the PRINT @ statement is followed by a semicolon (except for the last
screen position), the screen will not SCROLL. Thus, "PRINT@ A’ will function nearly
the same as POKing to video memory on other computers. PEEKing to A-512 will func-
tion the same as PEEKing to video memory.

The following subroutine handles the chore for you automatically. While it asks you
which address to PEEK, your actual program will probably define A depending on the
movement of a screen object or some other parameter.

Line-By-Line Description
Line 140: Define PRINT @ address to PEEK.
Line 150: Check that RAM location and assign value to CHARS.

You Supply
PRINT @ address to PEEK.

RESULT

CHARS will equal character printed on screen.

10 1 ORREXARRRXRXAXAKK KX

20 ' % *

39 ' ¥ PEEK SCREEN *

4 ' ox ¥

50 1 ORARRERAKRXXRKKRKK

6@ GOTO 18¢

70 ' mmemmee— e
89 ! ++ VARIABLES ++
99 ! A: POSITION TO PEEK
100 ! CHAR$: CHARACTER FOUND
119 ¢

58 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

139 ' *%* SUBROUTINE *¥¥

14@ INPUT"WHICH PRINT @ POSITION?";A
15 CHARS$ =CHR$(PEEK(A-512))
16@ RETURN

179 ' *%¥% YOUR PROGRAM STARTS HERE *¥¥

18p GOSUB 140
199 PRINT "FOUND : " ;CHAR$

Reverse Screen

WHAT IT DOES
Turns REVERSE SCREEN attribute on and off.

Variables

¢ REVS: Variable to turn REVERSE on
® FFS: Variable to turn REVERSE off.

How To Use The Subroutine

Although the feature is not well-documented, the TRS-80 is able to turn its reverse
character mode on and off from BASIC. The correct sequence is ESC "p” (note: it must
be lowercase p, not uppercase P) to turn on the reverse attribute. ESC “q" will turn
reverse off. You can’t do this from command mode. That is, holding down the escape
key and pressing "'p”” has no effect. However, the feature works fine from within a pro-
gram. Rather than typing PRINT CHR$(27);"p" repeatedly, (CHR$(27) is the escape
character), we can define a variable, REVS, as CHR$(27)+CHRS{1 12). Then PRINT REVS
will turn the trick for us. This subroutine also defines FF$ as CHR$(27)+CHRS(1 1 3) to
turn the attribute off when we want.

Line-By-Line Description
Line 140: Define REVS.

Line 150: Define FFS.

Lines 190 to 200: Provide an example of each type of screen attribute.

You Supply

PRINT statements where you desire reverse characters.

BASIC TRICKS

59

RESULT
REVERSE turned on and off.

1P 7 REERERREERKRRRRRRX

20 ' % *

30 ' ¥ REVERSE SCREEN *

Lg% ¥

P T ORXXEERRUKRRRK AKX KK X

6@ GOTO 180
L —
80 ! ++ VARIABLES ++

90 ! REV$: TURNS REVERSE ON
109 ! FF$: TURNS REVERSE OFF
119 !

120 " e

130 ' *x% SUBROUTINE *%%

140 REV$ =CHR$(2’7) + CHR$(112)

15@ FF$=CHR$(2’7) +CHR$(113)

160 RETURN

170 ' *%% YOUR PROGRAM STARTS HERE *%%

18@% GOSUB 140
199 PRINT REV$; "THIS IS REVERSED"
200 PRINT FF$; "THIS IS NORMAL"

Number nput

WHAT IT DOES

Allows user to input only numbers.

Variables

* [Number entered
® |S: String entered.

60 TRS5-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

How To Use The Subroutine

Well-written programs include features that trap possible errors by the user—or avoid
them entirely. When numbers only are expected for INPUT, an elegantly constructed
program will accept only numeric entries and reject everything else.

The most common procedures all have drawbacks. A line like 10 INPUT A" will in-
deed accept only numbers. However, if a user happens to enter a string instead, only
a cryptic "RE-DO FROM START" message will be displayed. That's not much help for
a naive operator.

Another less-than-perfect solution is to use a line like 10 INPUT AS:A=VAL(AS):IF
A<1GOTO 10". If the user enters alpha characters, the program loops back and the
input must be repeated. :

This subroutine takes a different approach. It totally ignores non-numbers: if the
operator presses an illegal key, it isn't even echoed to the screen. The keyboard
responds only when numeric keys are pressed.

The secret is an AS=INKEYS$ loop. If the user presses a number key, that letter is added
to IS. When AS$ equals CHR$(13), a carriage return, then input is over. Otherwise, the
loop repeats allowing additional numeric entries.

When the subroutine ends, variable | will have the value of the user's entry.

Line-By-Line Description
Line 140: Wait for user entry.
Line 150: If key pressed was RETURN, then input is finished.
Line 160: If key was less than O or greater than 9, go back and wait for another entry.
Line 170: Print acceptable key pressed to screen.
Line 180: Add key to previous entries.
Line 190: Go back for more entries.
Line 200: Variable | equals value of entries.

Line 230: Access the subroutine.

You Supply

User may change the upper and lower limits in line 160 to restrict the range of numbers
to be entered. This might be useful when getting input for, say, a menu with only five
choices. All numbers over five and all alpha characters would be ignored.

RESULT

Only user numeric input, in the form of
positive numbers, is allowed.

BASIC TRICKS 61

10 ¢t R KWK KN KKK,

20 ' % *

30 ' % NUMBER INPUT ¥

4o % *

50 1 RRAXRXRXREXEXAXAX

< R —
78 ' ++ VARIABLES + +
8¢ ' I: NUMBER ENTERED
99 ' I$: STRING ENTERED
109 !

3, O —

12¢ GOTO 230
139 ' ¥*% SUBROUTINE *¥*

140 A$=INKEY$:IF A$="" GOTO 140
150 IF A$=CHR$(13) GOTO 20¢

160 IF A$<"@" OR A$>"9" GOTO 140
17@¢ PRINT A$;

180 I$=1I$+A3

199 GOTO 14@

200 I=VAL(I$):PRINT

21p RETURN

22p ' ¥¥% YOUR PROGRAM STARTS HERE *¥¥

230 GOSUB 140

Letter Imput

WHAT IT DOES

Allows user to input only alpha characters.

Variables

® [$: String entered.

How To Use The Subroutine

At times you will want only alpha characters to be input in a program with all other
entries, such as numbers or graphics characters, to be ignored. For example, word
games might allow only the 26 letters A-Z while rejecting other keys entirely.

62 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

This subroutine does exactly that. The user may enter any alpha character, Others
are ignored. If the operator presses an illegal key, it isn't even echoed to the screen.
The keyboard responds only when alpha keys are pressed.

The secret is an AS=INKEYS loop. If the user presses a letter key, that letter is added
to 1. When AS equals CHRS(13), a carriage return, then input is over. Otherwise, the
loop repeats allowing additional alphabetic entries.

When the subroutine ends, variable 1$ will have the value of the user’s entry.

Line-By-Line Description
Line 130: Wait for user entry.
Line 140: If key pressed was RETURN, then input is finished.
Line 150: If key was less than A or greater than Z, go back and wait for another entry.
Line 160: Print acceptable key pressed to screen.
Line 170: Add key to previous entries.
Line 180: Go back for more entries.

Line 210: Access the subroutine.

You Supply

User may change the upper and lower limits in line 150 to restrict the range of alpha
characters that can be entered. This might be useful when getting input for, say, a game
like Mastermind (™) where only the letters A-E are wanted. All numbers, graphics, and
alpha characters larger than E can be ignored.

RESULT
Only user alpha input is allowed.

10 1 REEKEXERERERANKRHX

20 ' % *

33 ' ¥ LETTER INPUT *

4O 1 o *

S5O T ORRRXREAXRAXEKRRRR

< L
70 ' ++ VARIABLES ++
80 ' I$: STRING ENTERED
99 !

B e ——

119 GOTO 210

129 ' ¥%% SUBROUTINE *%%

BASIC TRICKS 63

13¢ A$=INKEY$:IF A$="" GOTO 13¢
14p IF A$=CHR$(13) GOTO 1990

150 IF A$<"A" OR A$>"Z" GOTO 130
16 PRINT A$;

170 1$=13=A%

189 GOTO 130

199 RETURN

20@ ' ¥x%¥ YOUR PROGRAM STARTS HERE *¥X

219 GOSUB 130

Case Converter

WHAT IT DOES

Changes lowercase input to uppercase.

Variables

¢ [S: String entered.

How To Use The Subroutine

Many times our error traps in programs check to see if an acceptable key has been
pressed. We may want the user to enter "Y' or "'N" answers only, or our program will
check a name or other entry against a list. However, the TRS-80 can produce upper-
case and lowercase. 'Y does not equal "'y’ and “JONES" is completely different from
“Jones”* to the computer.

This subroutine will check each character entered. and if it is lowercase, convert it
to uppercase. Only letters in the range "a” to “z"* are affected. All other input is pass-
ed through unchanged.

Line-By-Line Description
Line 130: Wait for user entry.
Line 140: If key pressed was RETURN, then input is finished.
Line 150: if key was lowercase a through z, change to uppercase.
Line 160; Print acceptable key pressed to screen.
Line 170: Add key to previous entries.
Line 180: Go back for more entries.

Line 210: Access the subroutine.

64 TR5-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

You Supply

Only user input needed.

RESULT

User alpha input is all uppercase.

_‘]_E TOXRRRRKKNERRRKHRRX

20 ' % *

3@ ' % CASE CONVERT X
R ¥

50 1 XEXERKRERKRRXRKX

6 ! emmmm——mmmme e
70 ++ VARIABLES ++
80 ' I$: STRING ENTERED
o !

11 R

119 GOTO 219
120 ' ¥*% SUBROUTINE *¥*

130 A3=INKEY$:IF A$="" GOTO 130

140 IF A$=CHR$(13) GOTO 190

150 A=ASC(A$):IF A>96 AND A<123 THEN A$=CHR$(A-32)
16@ PRINT A$;

179 I$=1I$+A$

183 GOTO 130

199 RETURN

PP ' *¥%¥ YOUR PROGRAM STARTS HERE *¥*
219 GOSUB 130

Strimg Sort

WHAT IT DOES
Alphabetizes a list.

Variables

* NU: Number of items to be sorted
® USS(n): Array storing list to be sorted.

BASIC TRICKS 65

How To Use The Subroutine

Sorting a list is a common need for many programs. Data files, mailing lists, and other
groups may be more easily handled when sorted. This routine is a simple bubble sort
which will alphabetize any list that has been loaded into an array, USS(n).

Although, as written, the subroutine asks the user to enter the list from the keyboard,
any means can be used to load the array. The file may also be read from disk or tape,
for example, using one of the routines presented later in this book.

The bubble sort is so-called because each entry in the array is examined and then
allowed to rise up past the one below until it encounters a “'smaller” item. When com-
paring strings, smaller is defined as an entry that, when alphabetized, comes before
the larger entry. That is, “computerization” is smaller than “contain”” even though it
has more letters, because it would be placed on an alphabetized list first. In computer
terminology, we would say that: “‘computerization”” < "‘contain” is a true statement. In
making the comparision between strings, the computer will look at as many characters
in the string as necessary to differentiate. For example, “'contain’ < “contains’”.

in the bubble sort, each element of the array will gradually rise until it encounters
a smaller item. Gradually, each member of the list “floats’ up to its proper place in the
array.

While such sorts are not very fast, small lists of, say, 30 or 40 items, the speed is
satisfactory.

Line-By-Line Description
Line 130: Define NU, the number of units in the array to be sorted.

Line 140: DiMension the array to proper size.

Lines 170 to 200: User enters each array item in random order. A RAM or tape file
read routine could be substituted for these lines to sort an existing string file.

Line 210; Start loop from 1 to the number of items to be sorted.

Line 220: Start a nested loop from 1 to 1 fewer than the number of items to be sorted.
Line 230: Make AS equal to the N1th item of the array.

Line 240: Make BS equal to the item following AS in the array.

Line 250: If the "higher” element, AS, is already smaller than BS, then BS remains
where it is and the inner loop steps off the next value of N1.

Lines 260 to 270: If BS is smaller than AS, then the two strings are swapped. with
B$ moving ahead one element and AS being pushed down one.

Lines 280 to 290: The inner and outer loops are incremented.

Lines 300 to 320: The sorted list is printed to the screen.

You Supply

You should define NU, the number of items to be sorted, as well as supply the data
for the array, USS(n).

66

TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOCK

RESULT
List is sorted alphabetically.

TORRRERKRHRHHHKR KKK
1o *
' ¥ STRING SORT *
T *
UOXRXAERHARARRRKKR

- —— ———— - . - S - ————— -

! ++ VARIABLES ++
' NU: NUMBER OF ITEMS SORTED
! US$(N): ARRAY WITH ITEMS

120 ' *%%x INITIALIZE *%*

139 NU=19¢
149 DIM US$(NU)
159 GOTO 350

16@ ' ¥%% SUBROUTINE #¥*

179 FOR ITEM=1 TO NU
18 PRINT"ENTER # ";ITEM
19¢ INPUT US$(ITEM)
20@ NEXT ITEM

210 FOR N=1 TO NU

22¢ FOR N1=1 TO NU-N
230 A$=US$(N1)

249 B$=US$(N1+1)

250 IF A$<B$ THEN GOTO 280
260 US$(N1) =B$

279 US$(N1+1) =A$

28(p NEXT N1

290 NEXT N

3¢9 FOR N=1 TO NU

31 PRINT US$(N)

32¢ NEXT N

330 RETURN

340 ' *%% YOUR PROGRAM STARTS HERE %%

350 GOSUB 179

BASIC TRICKS 67

Number Sort

WHAT IT DOES
Sorts group of numbers by size.

Variables

e NU: Number of items to be sorted.
® US(n): Array storing list to be sorted.

How To Use The Subroutine

Sorting a list of numbers is a common need for many programs. Checking account
files and other groups of numbers often have to be sorted to be most useful. This routine
is a simple bubble sort, which will sort any group of numbers that have been loaded
into an array, US(n).

Although, as written, the subroutine asks the user to enter the number list from the
keyboard, any means can be used to load the array. The file may also be read from
RAM or tape, for example, using one of the routines presented later in this book.

The bubble sort is so-called because each entry in the array is examined and then
allowed to rise up past the one below until it encounters a “smaller”” item. Numeric
sorts are easier to understand than string sorts because simple number comparisons
are used. That is, 1237 is always larger than 32.6 and smaller than 7844. Gradually each
member of the list “floats” up to its proper place in the array.

While such sorts are not very fast with small lists of, say. 30 or 40 items, the speed
is satisfactory.

Line-By-Line Description
Line 130: Define NU, the number of units in the array to be sorted.
Line 140: DIMension the array to proper size.

Lines 170 to 200: User enters each array item in random order. A RAM or tape file
read routine could be substituted for these lines to sort an existing string file.

Line 210: Start loop from | to the number of items to be sorted.

Line 220: Start a nested loop from 1 to 1 less than the number of items to be sorted.
Line 230: Make A equal to the Nl1th item of the array.

Line 240: Make B equal to the item following A in the array.

Line 250: If the “higher" element, A, is already smaller than B, then B remains where
it is, and the inner loop steps off the next value of N1.

Lines 260 to 270: If B is smaller than A, then the two numbers are swapped. with
B moving ahead one element, and A$ being pushed down one.

Lines 280 to 290: The inner and outer loops are incremented.
Lines 200 to 320: The sorted list is printed to the screen.

68 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

You Supply

You should define NU, the number of items to be sorted. as well as supply the data
for the array, US(n).

RESULT

List of numbers is sorted by size.

1@ TN WHWNRAREHKRNKR%

20 ' X *

30 ' % NUMBER SORT ¥

Lot % *

5@ T XRRXAXRAKKNRRXX

bf ! mmmm——m—m e ——mccc————————
70 ++ VARIABLES ++

8p NU: NUMBER OF ITEMS SORTED
9 ! US(N): ARRAY WITH ITEMS
109

110 ' —mmmmm————————————————

120 ' *x%% INITIALIZE **¥

130 NU=1p
14@ DIM US(NU)
15@ GOTO 350

16 ' ¥x%% SUBROUTINE *%x

179 FOR ITEM=1 TO NU

180 PRINT"ENTER # " ;ITEM
19¢ INPUT US(ITEM)

200 NEXT ITEM

219 FOR N=1 TO NU

220 FOR N1=1 TO NU-N

230 A=US(N1)

249 B=US(N1+1)

250 IF A<B THEN GOTO 28@
260 US(N1) =B '
279 US(N1+1)=A

280 NEXT N1

290 NEXT N

3¢9 FOR N=1 TO NU

319 PRINT US(N)

320 NEXT N

330 RETURN

BASIC TRICKS 69

34() ' *%* YOUR PROGRAM STARTS HERE *X

350 GOSUB 179

Array Loader

WHAT IT DOES

Loads array with data.

Variables

* NROWS: Number of rows in array
® NCOLUMNS: Number of columns in array.

How To Use The Subroutine

An array is a table with rows and columns storing lists of data. In a checkbook register,
each row might contain information about a single check/deposit transaction. The col-
umns would contain specific entries, such as check number, payee, date, and amount.

Once a data file has been assembled with such information, a routine is needed to
load it into an array where it can be manipulated, sorted, added to, or entries deleted.
This subroutine does exactly that. Although written for a string array, it can be con-
verted to a numeric array simply by deleting the variable type specifier, "'$.”” That is,
DTAS{row.column) should become DTA({row,column), and AS should be changed to A.

Study this example to learn more of how arrays work, as they are one of the most
important concepts in BASIC programming.

Line-By-Line Description

Lines 140 to 150: Define number of rows and columns in the data file. User should
change these numbers to reflect their own data.

Line 160: Dummy data, in this example a name, address, and phone number.
Line 170: DIMension array to size specified by values of NR and NC.

Lines 200 to 210: Begin nested loops that repeat for the number of rows and the
number of columns.

Line 220: READ item of DATA.

Line 230: Place data in current array element, defined by ROW and COLUMN, in
FOR-NEXT loop. Each time through the inner loop, column will be incremented by one
while ROW remains the same. When finished, ROW is incremented by one and the inner
loop repeats. As aresult, DTAS(1,1) is loaded first, followed by DTAS(1,2) and DTAS(1,3).
Then DTAS$(2.1) and so forth are filled from the DATA.

70 TRS-80 PORTABLE COMPUTER SUBROQUTINE COOKBOOK

Lines 240 to 250: Increment the FOR-NEXT loops.
Line 290: Access the subroutine.

Lines 300 to 350: Print out the data loaded into the array.

You Supply

The number of rows, NROWS, and number of columns, NCOLUMNS, should be
specified. Data can be supplied from DATA lines, or, better, read in from RAM or tape.

RESULT

Data list is loaded into array.

10 7 O REREXRXXRKKAXRNX

20 1 % *

30 ' % ARRAY LOADER *

Lo ' % *

50 1 RAEXRXRAXKKXKKRNX

60 ! memm—mmm e
70 ++ VARIABLES ++

8p

9 NROWS: NUMBER OF ROWS
109 NCOLUMNS: NUMBER OF COLUMNS
11p

120 ' —mmmemmmmm e mmm e

130 ' %%% INITIALIZE %%

140 NROWS=2

15¢ NCOLUMNS =3

160 DATA JOE,2 PINE,232-4531,SAM,1 ROE,445-3622
179 DIM DTA$(NR,NC)

180 GOTO 280

199 ' *%%x SUBROUTINE *¥x

209 FOR ROW=1 TO NROWS

210 FOR COLUMN=1 TO NCOLUMNS
220 READ A$

230 DTA$(ROW,COLUMN) =A$

240 NEXT COLUMN

250 NEXT ROW

260 RETURN

27@ ' *¥% YOUR PROGRAM STARTS HERE %%

28@ PRINT

299 GOSUB 200

303 PRINT"NAME ADDRESS PHONE"
310 PRINT

32¢ FOR ROW=1 TO NROWS

339 FOR COL=1 TO NCOL

349 PRINT DTA$(ROW,COL);" n;
350 NEXT COL

36@ PRINT

379 NEXT ROW

BASIC TRICKS

71

i

bl | i
it

R

i

b
5

e
F e

74 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Games are probably among the most popular programming exercises for beginners
and advanced users alike. On your first day with a computer you can easily learn to write
a "'Craps’'-playing program. Somewhere short of your first year with the machine, you
will probably investigate writing an arcade-type. joystick-activated, shoot-em-up.

In either case, you can use the routines in this book to avoid reinventing the wheel.
Actually, the subroutines useful for games programming are not confined to this section.
Many of the modules presented so far can be transplanted to games programs.

Here are five more subroutines that are particularly applicable to games. Three deal
with universal "tools” of games: decks of cards, rolling pairs of dice, or flipping coins.
The dice module is especially flexible, because it allows you to define how many sides
each die will have. Dungeons and Dragons (T™™) players take note!

Randomness is an essential factor in many types of games, and one subroutine in this
section allows you to specify the drawing of random numbers in any range you choose.
If your game happens to need random numbers larger than 100 and smaller than 999,
the routine can handle that nicely.

Arcade-style programs frequently need a slowdown feature. Delay loops that change
in length, getting faster or slower, are a neat way to accomplish this. A subroutine is
provided that does all the work for you.

One topic that needs to be addressed is the TRS-80's inability to generate true ran-
dom numbers. The computer instead provides numbers from a pseudorandom list. This
list is very long, and thus many numbers can be produced before it repeats. But the
TRS-80 will always start at the same position on the list and thus generate the same ran-
dom numbers each time.

We can compensate for this somewhat by “‘using up” a random number of the
numbers from this list before we start to draw them for our own program. A convenient
way to do this is to take the number of seconds currently on the real-time clock, and
then take that many random numbers, assigning them to a dummy variable prior to
beginning the actual program. The random seeding routine used in this book looks
something like this and is taken from the one included in the handbook published by
Radio Shack:

1¢@ FOR N=1 TO VAL(RIGHT$(TIME$,2))
11¢ DU=RND(1) -
129 NEXT N

All the routines that call for random numbers use this subroutine. Of course, the start
points in the random sequence will only vary from 0 to 59. If you want additional ran-
domness, use the subroutine which follows, which makes use of a random seed entered
by the program operator.

Random Seed

WHAT IT DOES

Sets random start point,

GAME ROUTINES 75

Variables

¢ DU: Dummy variable to use up pseudorandom numbers.
¢ SEED: Random seed entered by user.

How To Use The Subroutine

Include in any program where many random numbers will be drawn or which will be
run so many times that having only start points from 0 to 59 is not sufficient.
User can enter new random seed each time program is run.

Line-By-Line Description
Line 140: User enters seed number.
Lines 150 to 160: Seed calculated using seconds on TIMES.

Lines 170 to 190: Dummy random numbers expended.

Line 220: Access the subroutine.

You Supply

No changes needed.

RESULT

Random numbers reseeded.

1@ 7 RREXEHERRXKRERXK

20 ' % %

3% ' % RANDOM SEED *

4 1 % *

50 7 RAXXEAXXRRARXNKXR

6f ' mmmmmme—mee———mmemeemm
70 ' ++ VARIABLES ++
80 ' ° DU: DUMMY VARIABLE
99 ' SEED: USER INPUT

100 '

51 1 S

1290 GOTO 220

139 ' *¥% SUBROUTINE ¥%x

76 TRS-80 PORTABLE COMPUTER SUBROUTINE COQOKBOOK

14@ INPUT "ENTER A NUMBER FROM 1 TO 10@";NU$
15@ SEED = VAL(NU$) -
160 SEED = SEED*VAL (RIGHT$(TIMES,2))

179 FOR N=1 TO SEED

18% DU=RND(1)

199 NEXT N

20@ RETURN

21@ ' *%¥x YOUR PROGRAM STARTS HERE *%*

22p GOSUB 14

Deal Cards

WHAT IT DOES
Shuffles and deals deck of cards.

Variables

¢ DECKS(n): Deck of cards
e CARDS: Card drawn from deck
e DRAW: Random number.

How To Use The Subroutine

Many game programs require dealing a deck of cards. Your own programs may
simulate drawing from a randomly shuffled deck simply by calling the subroutine begin-
ning at line 370. The deck has already been assembled (lines 210 to 360) using the
graphics characters for suits and the numbers or words for the value of the cards.

If you need to determine the rank of the card for your program, all cards through the
10 may be ascertained by a line such as: "V=VAL(CARDS)".

IF V=0 then four more lines are needed, such as. “IF LEFTS(CARDS,1)="]" THEN
V=11" or "IF LEFTS(CARDS,1}="Q" THEN V=12."

This is a very fast shuffling routine, which requires only 52 tries to deal 52 cards. Some
slower algorithms (a formula for performing a task or computing a result} may repeatedly
access "empty"” deck positions when looking for the remaining cards.

The routine starts off by setting NC (number of cards) to 52. Inline 410, the computer
selects a number between 1 and NC (52 this time) and that element of DECK$(n)
becomes the card drawn. This leaves a “'hole” in the deck at position DRAW. We fill
it up by taking the last card in the deck, which is DECKS(NC), and placing it in
DECKS(DRAW). This leaves the “hole” at the end, but we then change NC to equal NC-1,
so the computer will only draw from the elements 1 through 51 on the next time through.
Third time, it will choose 1 through 50, and so forth. It does not matter that we have
mixed up the order of the deck, as we want the cards shuffled in the first place.

GAME ROUTINES 77

Each element of DECK$(n) consists of a number, or face card name, plus the CHRS$
value for the suit. This produces a full deck of 52 cards.
Line-By-Line Description

Line 130: DiMension an array to represent the deck of cards.

Line 160: READ CHRS codes corresponding to the graphics characters for individual
Ssuits into array.

Lines 170 to 190: Set new random start point.
Line 210: Begin FOR-NEXT loop from 1 to 4, one trip through for each individual suit.

Line 220: Increment CU, which keeps track of which element of DECKS(n) is being
created. CU will range in value from 1 to 52.

Lines 230 to 290: Create the face cards for each suit.

Lines 300 to 330: Create numbered cards for each suit, through a FOR-NEXT loop
from 2 to 10 (deuce to ten). A string representation of each number is added to ** OF **
and the suit symbol, SUITS$(SUIT)

Line 340: Repeat loop.

Line 350: Define number of cards, NC, as initially equalling 52.

Line 360: GOTO main program.

Line 370: If any cards are remaining, access the “draw” routine.

Lines 380 to 390: If none remaining, tell player that the deck has been dealt.

Line 410: Draw a random card number smaller than NC, the number of cards
remaining.

Line 420: Make card drawn, CARDS, equal the DRAW element of the array DECKS$(n).
Line 430: Place the last card in the array in the hole left behind by the drawn card.
Line 440: Reduce the size of the deck by one card.

Line 480: Access the subroutine.

You Supply

No user input needed.

RESULT

Deck of 52 cards may be dealt out as needed.

78 TRS-80 PORTABLE COMPUTER SUBRCUTINE COOKBOOK

1@ TOXEXRXXXRAXHREARK

20 ' % *

3¢ ' % DEAL CARDS *

A *

5@ TOXXEARXXAXXAXNNX

60 ' mmmmmmmmmmemmmmme————-
70 ++ VARIABLES ++
8p ! DECK$(N) : DECK

9g CARDS : CARD DRAWN
109 ' DRAW: RANDOM CARD
119

=Y S —

13¢ DIM DECK$(52)
14@ DATA 156,157,158,159

15@ ' %¥X READ SUITS %¥¥

16% FOR N=1 TO 4:READ A:SUIT$(N)=CHR$(A) :NEXT N
17¢ ' *x% SET RANDOM START POINT *%%

18¢ FOR N=1 TO VAL(RIGHT$(TIMES$,2))

199 DU=RND(1)

200 NEXT N

200 ' x%% ASSEMBLE DECK *%¥

(program continued)

GAME ROUTINES 79

210 FOR SUIT=1 TO 4

220 CU=CU+1 '

230 DECK$(CU) ="ACE QF " +SUIT$(SUIT)
240 CU=CU+1

250 DECK$(CU) ="KING OF " +SUIT$(SUIT)
260 CU=CU+1

270 DECK$(CU) =~ QUEEN QF " +SUIT$(SUIT)
280 CU=CU+1

2990 DECK$(CU) ="JACK OF " +SUIT$(SUIT)
300 FOR N=2 TO 1¢

319 CU=CU+1

320 DECK$(CU)=STR$(N)+" OF "+SUIT$(SUIT)
330 NEXT N

340 NEXT SUIT

350 NC=52

360 GOTO 470

370 IF NC< >0 GOTO 41¢

380 CARD="1"

390 PRINT"DECK GONE!! "

409 RETURN

41 DRAW= INT(RND(l)*NC) +1

420 CARD$ =DECK$ (DRAW)

430 DECK$(DRAW) =DECK$(NC)

440 NC=NC-1

45@ RETURN

46@ ' *%¥*% YOUR PROGRAM STARTS HERE *¥%
470 PRINT

489 GOSUB 37¢
499 PRINT CARD$

Random Range

WHAT IT DOES

Allows choosing random numbers in any range.

Variables

* HIGH: Top of range

¢ MINIMUM: Bottom of range
¢ DF: Difference

® NU: The number chosen.

80 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

What makes a game a game and not a test? Randomness is one element found in
many, but not all, games. Random numbers selected by the computer determine the
changes in some games that the player must contend with. Lacking randomness, a game
is either a test of memory or a contest of strategy. A little of all three elements makes
for a good game, and this subroutine lets you get greater control over randomness than
- unadorned Radio Shack BASIC.

The TRS-80 can choose pseudorandom numbers. That is, although they appear to be
random, the numbers actually are drawn from a long list. Even though the sequence
is the same each time, the list of numbers is very long. and the starting position is usually
different, so the numbers appear to be random to the player.

Some BASICs allow choosing a random number larger than one but smaller than
another integer. The simple command RND(N), is used where N is the upper limit. RND(7)
would produce numbers from one to seven, for example. The Micro Executive Work-
station will generate random numbers larger than zero and smaller than one. So. we
might get .74329, .15832, or some other value. To get numbers in a given range 1 to
N, we must multiply the random number by N and add one. That is, INT(RND(1)*7)+ 1
will produce numbers larger than one and no larger than seven.

But what if some other range is desired—such as numbers between 43 and 198? This
subroutine will pluck them out of randomland for you. From user-supplied minimum
and maximum numbers, it will select random integers only in the desired range.

Line-By-Line Description

Line 160: Define the highest random number desired, the lowest, and find the dif-
ference between them.

Lines 170 to 190: Set random start point.

Line 200: Choose a random number in the range 1 to DF, find the difference, then
add the minimum number to that to produce a number in the desired range.

Line 230; Print the result.

Line 240: Access the subroutine.

You Supply

Define HIGH and MINIMUM to set the limits for the random range you want.

RESULT

Only random numbers in the specified range will be produced.

GAME ROUTINES 81

10 1 RRRRRRERRERRRKAKR

20 ' % *

30 ' * RANDOM RANGE *

Lo v % *

5@ 1 RXRRRRXRKAXKRRKR

6 ! cmmmmmmemme—mmmmemem
70 ! +-+ VARIABLES ++

8@ !

9% ! HIGH: TOP OF RANGE
100 ' MINIMUM: BOTTOM OF RANGE
119 ' DF: DIFFERENCE
129 ! NU: NUMBER CHOSEN
139 !

140 ' mmmmmmm e

15@ ' *¥%* INITIALIZE %%
160 HIGH=1Q@:MINIMUM=15:DF =HIGH-MINIMUM+ 1
17¢ FOR N=1 TO VAL(RIGHT$(TIME$,2))

18 DU=RND(1)

190 NEXT N

195 ' ¥%% SUBROUTINE ¥

20@ NU=TINT(RND(1)*DF) +MINIMUM
219 RETURN

22¢) ' **¥% YOUR PROGRAM BEGINS HERE *¥¥
23@ PRINT NU;
24@ GOSUB 190

Cofm Flip

WHAT IT DOES

Flips coin, producing heads or tails.

Variables

¢ FLIP: Random value, either one or two
e FLIPS: Name of side chosen
¢ COINS(n): Coin array.

82 TR5-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Some beginner level statistical experiments and a few games need to simulate coin
flips. For example, you may want to construct a loop that flips a coin 1000 times and
adds up the number of heads and tails to check the randomness of your computer.

This subroutine will flip the coin for you, producing the name of the side—either
"HEADS" or "TAILS"—after each flip. The module can be adapted to larger ranges of
choice, with more than two names to be applied. For example, the array names might
be NORTH. SOUTH, EAST, and WEST, and the 2 in line 180 changed to a 4. Then, ran-
dom directions will be chosen.

Line-By-Line Description
Line 130: Define array as "HEADS" and "TAILS."
Lines 140 to 160: Set random start point.
Line 180: Produce value for variable FLIP of either 1 or 2.

Line 190: Assign "HEADS" or “TAILS" to FLIP$, depending on which random number
was chosen.

Line 220: Access the subroutine.

Line 230: Print result.

You Supply

No user input needed.

RESULT
Coin flipping simulated.

10 1 REXRERXRRKKXK
20 ' % %
3@ ' * COIN FLIP *
4O 'O *
S@ 1 REERRREERRRNK
60 ! mmmmmmm—e——mm e
79 ! ++ VARIABLES ++
8p ! COIN$(N): COIN ARRAY
90 ! FLIP: RANDOM VALUE 1-2
100 ! FLIP3: SIDE FLIPPED
110 " el

12¢ ' ¥%% INITIALIZE *¥%*%

GAME ROUTINES 83

130 COIN$(1) = "HEADS" :COIN$(2) = "TAILS"
149 FOR N=1 TO VAL(RIGHT$(TIMES,2))

159 DU=RND(1)

160 NEXT N

179 GOTO 229

175 ' ¥%% SUBROUTINE *%¥
189 FLIP=INT(RND(1)*2)+1

199 FLIP$=COIN$(FLIP)

208 RETURN

219 ' *%% YOUR PROGRAM STARTS HERE *¥¥
220 GOSUB 18¢

230 PRINT FLIP$
249 GOTO 22¢

Dice

WHAT IT DOES

Simulates roll of dice.

Variables

e DI: Value of Die #1
® D2: Value of Die #2
® ROLL: Total of roll.

This dice-rolling subroutine includes a short sound module to provide an additional
bit of realism. it will roll two dice, each producing a number between one and six. The
value of each die, as well as the total roll, is figured.

Dungeons and Dragons players can specify how many sides each die in the pair will
have. In adapting this subroutine for that feature, you might want to add a line like
INPUT"ENTER NUMBER OF SIDES"*;SIDE before each roll. If only one die is needed,
both will be rolled anyway. Just choose which one will “count” ahead of time, either

D1 or D2. Variable ROLL will store the total count.
Line-By-Line Description
Line 130 to 150: Set random start point.

Line 170: Roll two dice, each producing numbers in the range | to SIDES, with SIDES
defined as the number of sides you wish on the dice.

84 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Line 180: Make ROLL the total of the two dice.
Line 190: Return to main program.

Line 220: Define number of sides on dice.
Line 230: Access the subroutine.

Lines 240 to 260: Print results of roll.

You Supply
Number of sides of die.
RESULT
N-sided dice are rolled, and the value of each
plus total roll reported.
10 1 REERRKAR
20 ' % *
3@ ' * DICE ¥
L@t % *
SO T ORREERARN
60 GOTO 279
7
8g ! ++ VARIABLES ++
9@ ! D1: DIE #1 TOTAL

1g¢ ' D2: DIE #2 TOTAL
11¢ ' ROLL: TOTAL OF ROLL
2

139 FOR N=1 TO VAL{RIGHT$(TIMES$,2))
149 DU=RND(1)
150 NEXT N

16@ ' *%% SUBROUTINE ¥

179 D1=1INT(RND(1)*SIDES) + 1:D2=INT(RND(1)*SIDES) + 1
180 ROLL=D1+D2

20@ ' *%% YOUR PROGRAM STARTS HERE %%

219 PRINT

220 SIDES=6

230 GOSUB 15¢

240 PRINT" DIE #1:";D1
250 PRINT"™ DIE #2:";D2
26@ PRINT "TOTAL :";
2709 PRINT ROLL

GAME ROUTINES 85

Delay Loop

WHAT IT DOES

Delays loop changes in length.

Variables

¢ DELAY: Initial delay
¢ CHANGE: Amount of change.

How To Use The Subroutine

In games, delay loops are frequently used to display messages on the screen for a
given length of time. However, another important use is to control the speed of move-
ment or some other play action. By having a FOR-NEXT loop count off between each
move, a short delay can be built in. A loop from 1 to 100 might slow things down ap-
preciably. while setting the upper limit to 10 would produce only a negligible impact.

This subroutine allows the user to vary the length of the delay loop so that action
will get faster and faster—until the FOR-NEXT loop is performed only once each time
and, therefore, has almost no effect on the program.

Alternatively, the loop can get longer and longer, so the program will slow down. You

might want to place some upper limit, so that the action deesn’t stop completely after
a few minutes.

Line-By-Line Description
Line 140: Set initial delay to 1000.
Line 150: Set change factor to .9.
Line 180: Count off the delay.
Line 190: Change value of delay.
Line 230: Access the subroutine.
Line 240: Inform player that delay is finished.
Line 250: Repeat, with shortened delay.

You Supply

An initial value is needed for DELAY. A high number will start the program off very
slowly. A lower number will produce a more moderate beginning speed. You also must
define the amount of CHANGE. Fractional numbers will cause DELAY to get smaller each
time. Thatis, if DELAY is 1000 at first, and CHANGE is .90, then DELAY will be set to 900
on the second time through the loop, 810 the third time, and 729 the third time.

86 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

As decimal fractions approach 1.0, the amount of speedup each time will be smaller,
producing a slower acceleration. Smaller fractions, such as .75 or even .50 will rev up
the speed quite quickly.

CHANGE can also be defined as a number larger than one. Setting it to 1.1 will slowly
increase the delay each time. Any number larger than 1.5 (such as two or three) will
probably slow down the program much more than you desire.

RESULT

Program speeds up, or slows down gradually,
at a rate selected by user.

10 7 RRRERRRRNK

20 ' * *

30 ' % DELAY *

4g ' % *

50 1 KAXRRNRKH

6 ! mmmmm——mm— e ——c—————
70 ! ++ VARIABLES ++

8g ! DELAY: INITIAL DELAY
9 ! CHANGE: AMOUNT OF CHANGE
199 PLUS OR MINUS
119

1200 ' mmm e

130 ' *%% INITIALIZE *¥*¥

149 DELAY = 1p0@
150 CHANGE= .90
160 GOTO 230

179 ' *%% SUBROUTINE *%*

189 FOR N=1 TO DELAY
190 NEXT N

200 DELAY =DELAY*CHANGE
219 RETURN

22() ' ¥¥% YOUR PROGRAM STARTS HERE **x
239 GOSUB 18¢

24(PRINT"FINISHED™"
25@ GOTO 23¢

B
i

P

i

i

90 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

A file” is any collection of information that is stored on disk or tape. Computer
software is a type of file called a program file. These .BA files can be loaded by the
Portable Computer and can provide the BASIC interpreter with instructions that
can be used to perform a task. Raw information can also be stored as a file, even
though the computer cannot load it and act on it directly. These “data files’” must
usually be loaded into memory through another program or subroutine, which con-
tains the actual instructions for accessing the information. If proper line numbers
are in place, the computer can load .DO files just as if they were programs.

The use of data files is one of the basic tools of business and personal program-
ming, because data files let you keep permanent records that can be accessed,
printed out, manipulated, and otherwise used in a practical manner. Data files are
akin to programs in that, lacking some mass storage for the data (or program), we
would have to type the information in every time we turned on the computer. In
many ways, however, a computer program is a more complicated file. Programs
have line numbers and links that tell the computer where the next line number is.
Data files consist of just an ASCII representation of the information as it was written
to the disk or tape; they are words, numbers, and punctuation, and almost nothing
more.

The most commonly used file is the sequential file. Because this type is easiest
to understand and use, sequential file systems are emphasized in this book.

The cassette recorder is a good analog to sequential files, i.e., serial files. A pro-
gram is a sequential file, which is stored one byte at a time on your program tape
or disk in the same order in which it is LISTed. In the case of cassette tapes, the
program is continuous on one long piece of tape. Programs are stored in RAM the
same way. .

Sequential data files also operate this way. If your program needs some infor-
mation for the middle of a data file, it must read in the entire file, make any changes
it wants, and then write the entire file back to the tape or disk.

To read a given data file, we first OPEN a channel for that information to be sent.
Then we INPUT# (with the # being followed by the number we have assigned to
the input channel, e.g.. INPUT#1) data to a variable of our choice. Writing to a disk
or tape file is done by OPENing a channel for output and using the PRINT# state-
ment to print information from a variable to the file.

OPEN just prepares the data channel for us, however. To actually read or write
data, we must use INPUT# or PRINT#, with each followed by the logical file number
we are using.

So. we might have the following collection of lines:

10 MAXFILES =2 ! We want to have two channels available.
20 OPEN "FILE1" FOR INPUT AS1 ' Source file.
30 OPEN "FILE2" FOROUTPUT AS2 ' New data file.

40 LINEINPUT#1, A$ ' Load a line from source file.
50 PRINT#2,A$! Print it to data file.
6@ CLOSE ! Close the files.

This would be a simple data file routine. The subroutines that follow show you how
to write and load files to RAM, from RAM, to tape, and from tape. Examine them care-
fully until you know how data files operate.

DATA FILES 91

Sequential File=Write to RAM

WHAT IT DOES

Writes a sequential data file to RAM.

Variables

* NI: Number of items in file
¢ DTAS(n): Array storing data file,

How To Use The Subroutine

This subroutine provides a sample file writing routine that will take data that has been
loaded into a string array, DTAS(n), and write it to RAM. The same routine can be used
with numeric arrays, simply by removing the variable type specifier, “$"". from DTAS(n).

Your program should also update NI each time more items are added to the array.

Line-By-Line Description
Line 140: Set number of items in file to 10.
Line 150: DIMension DTAS to NI elements.

Line 170: OPEN the data file given the filename in quotes. You can substitute your
own filename, or a variable, like F$, and then define F$ through user INPUT.

Line 180: Print, as the first item in the data file, the number of items in the file, NI.
Lines 190 to 210: PRINT each of the items in the array to the data file.
Line 220: CLOSE the file.

You Supply

Your program must furnish data for DTAS(n) either from kevboard entry or loaded
from some tape or RAM file. The counter N1 should be redefined to reflect the number
of items in the fite each time an update is made. You should substitute your filename
for Yfilename’ in line 170.

RESULT

Data file written to RAM.

92 TRS-80 PORTABLE COMPUTER SUBRQUTINE COOKBOOK

10 1 REEERAKKREXRRERE SRR

20 1 * %

38 ' % SEQUENTIAL FILE *

4@ ' ¥ WRITE TO RAM *

50 ' % *

H@ T OREEREREEF KR AERRKRX

T ' e e
&g ! ++ VARIABLES ++

o9 ! NI: NUMBEE OF ITEMS IN FILE
19p ! DTA$(N): ARRAY STORING FILE
119 !

120 1 s e

130 ' ¥%x INITTALIZE *¥%%

14 NI=1@:DIM DTA$(NI)
150 GOTO 249

16@ ' ¥%% SUBROUTINE ¥%%

17¢ OPEN "FILENAME" FOR OUTPUT AS 1
18@ PRINT# 1,NI

199 FOR N=1 TO NI

209 PRINT# 1,DTA$(N)

219 NEXT N

220 CLOSE 1: RETURN

230 ' *x¥ YOUR PROGRAM STARTS HERE *%¥

24 GOSUB 170

Sequential File—Read From RAM

(WHAT IT DOES

‘ Reads a sequential data file from RAM.

Variables

* NI: Number of items in file
* DTAS(n}: Atray storing data file
* AD: Amount of room beyond number of items in file to allow for expansion.

DATA FILES 93

How To Use The Subroutine

This subroutine provides a sample file reading routine that will take data that has been
written to RAM and load it into a string array, DTAS(n). The same routine can be used
with numeric arrays, simply by removing the variable type specifier, "$". from DTAS(n).

The routine will first read NI, the number of items in the file, from RAM. Then the array
is DIMensioned to NI+ AD. This will allow AD more elements in the array for expan-
sion during the session.

NOTE: You cannot reDIMension the array without generating an error. AD should
be defined large enough to allow plenty of space for additions during any one session.
Your program should also update NI to equal Nl=AD before writing back to tape, if
you use the Write Routine supplied with this book.

Line-By-Line Description
Line 140: Set number of items that can be added to the file in one session to L0O.

Line 160: OPEN the data file given the filename in quotes. You <an substitue your
own filename, or a variable, like FS, and then define F$ through user INPUT.

Line 170: INPUT the number of items currently in the file.

' Line 180: DIMension the array to NI plus AD, allowing room for additional items.
Lines 190 to 210: INPUT each of the items in the array to the data file.

~Line 220: CLOSE the file.

You Supply

Your program should change the counter NI to reflect the number of items in the file each
time an update is made. You should substitue your file name for “filename* in line 160

RESULT

Data file read from RAM.

HEXREEEXAXAXAAAXA XX
* *

1
1
3@ ' * SEQUENTIAL FILE *
t
)
!

49 ' % READ FROM RAM *

50 1 *

6@ EXRAXEAERXXARLLAXKAARY

0 ! mmmmmmmmmmmemmmammme————————————
8g ++ VARIABLES ++

o¢ ' NI: NUMBER OF ITEMS IN FILE
199 ' DTA$(N): ARRAY STORING FILE

119

94 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

13¢ ' *%% INITIALIZE *%¥
140 MAXFILES=2:AD=1:G0TO 240
15@ ' *%% SUBROUTINE *%¥%

16¢ OPEN "RAM:FILENAME" FOR INPUT AS
17¢ INPUT#2,NI ‘
189 DIM DTA$(NI+AD)

199 FOR N=1 TO NI

20@ INPUT #2,DTA$(N)

210 NEXT N

220 CLOSE 2:RETURN

23 ' ¥¥%X YOUR PROGRAM STARTS HERE *¥
24@ GOSUB 160

Sequential File—Write to Tape

WHAT IT DOES

Writes a sequential data file to tape.

Variables

® NI: Number of items in file
* DTAS(n): Array storing data file.

How To Use The Subroutine

Sequential files are the most popular data files because they are easiest to understand.
With the Portable Computer's 1500 baud tape storage speed, such files are even respec-

tably fast.

However, this subroutine provides a sample sequential file writing routine that will
take data that has been loaded into a string array, DTAS(n), and write it to tape. The
same routine can be used with numeric arrays, simply by removing the variable type

specifier, “'$"”, from DTAS(n).

Your program should also update NI each time more items are added to the array.

Line-By-Line Description
Line 140: Set number of items in file to 10.
Line 150: DIMension DTAS to NI elements.

. DATA FILES 95

Line 170: OPEN the data file given the filename in quotes. You can substitute your
own filename, or a variable, like F$, and then define F$ through user INPUT.

Line 180: Print, as the first item in the data file, the number of items in the file, NI.
Lines 190 to 210: PRINT each of the items in the array to the data file.
Line 220: CLOSE the file:

You Supply

Your program must furnish data for DTAS(n), either from keyboard entry or loaded
from some tape or RAM file. The counter NI should be redefined to reflect the number
of items in the file each time an update is made. You should substitute your filename
for “filename™ in line 170.

RESULT

Data file written to tape.

1p ! EAEXRREREXKARRAKKNX

20 ' % *

39 ' % SEQUENTIAL FILE *

4p ' % VWRITE TO TAPE *

50 1 ¥ %

6@ POoREXKERRXXKAXKAXKKX KK

7O ! eemm———mmeemmm—mm— e e -
8p ++4 VARTABLES ++

99 ' NI: NUMBER OF ITEMS IN FILE
199 ' DTA$(N): ARRAY STORING FILE

110

117} [S

13@ ' *%¥ INITIALIZE *¥¥

140 MAXFILES=2:NI=1¢
15¢ DIM DTA$(NI)
168 GOTO 250

17¢ ' *%% SUBROUTINE *¥¥

18¢9 OPEN "CAS:FILENAME" FOR OUTPUT AS 1
199 PRINT#1,NI

2090 FOR N=1 TO NI

21¢ PRINT # 1,DTA$(N)

2200 NEXT N

230 CLOSE 1:RETURN

24@ ' ¥%% YOUR PROGRAM STARTS HERE ¥¥*
250 GOSUB 180

96 TRS-80 PORTABLE COMPUTER SUBRQUTINE COOKBOOK '

Sequential File—=Read From Tape

WHAT IT DOES

Reads a sequential data file from tape.

Variables

® NI: Number of items in file
* DTAS(n}: Array storing data file
¢ AD: Amount of room beyond number of items in file to allow for expansion.

How To Use The Subroutine

This subroutine provides a sample file reading routine that will take data that has been
written to tape and load it into a string array. DTA$(n). The same routine can be used
with numeric arrays simply by removing the variable type specifier, '$”, from DTAS(n).

The routine will first read NI, the number of items in the file, from the tape. Then the
array is DIMensioned to NI+ AD. This will allow AD more elements in the array for ex-
pansion during the session.

NOTE: You cannot reDIMension the array without generating an error, AD should be
defined large enough to allow plenty of space for additions during any one session. Your
program should also update NI to equal NI+ AD before writing back to tape, if you use
the Write Routine supplied with this book.

Line-By-Line Description
Line 150: Set number of items that can be added to the file in one session to 10.

Line 170: OPEN the data file given the filename in quotes. You can substitue your
own filename, or a variable, like F$, and then define F$ through user INPUT.

Line 180: INPUT the number of items currently in the file.

Line 190: DIMension the array to NI plus AD. allowing room for additional items.
Lines 200 to 220: INPUT each of the items in the array to the data file.

Line 230: CLOSE the file.

Lines 260 to 280: Print data file to screen.

You Supply

Your program should change the counter NI, which should be redefined to reflect the
number of items in the file each time an update is made. You should substitue your file
name for “filename” in line 160.

DATA FILES

97

RESULT

Data file read from tape.

19
20!
30!

!
50 !
60 '
79 '
89 !

109
119

120
130

140

150
160

179

189
199
209
219
220
230
240

245

250
260
279
280

FRERRXXHKERRKKXKKKAX
* *
¥ SEQUENTIAL FILE *

¥ READ FROM TAPE *
* *
EAHRXKERHERKKERKK KKK

++ VARIABLES ++
NI: NUMBER OF ITEMS IN FILE
' DTA$(N): ARRAY STORING FILE
' AD: NUMBER OF EMPTY SPACES AT
END OF FILE

! ¥%% INITIALIZE *¥¥

MAXFILES=2:AD=10
GOTO 250

' *%¥% SUBROUTINE ¥¥¥

OPEN "CAS:FILENAME" FOR INPUT AS 2
INPUT # 2,NI

DIM DTA$(NI+AD)

FOR N=1 TO NI

INPUT # 2,DTA$(N)

NEXT N

CLOSE 2:RETURN

t %%% YOUR PROGRAM STARTS HERE *¥¥

GOSUB 189

FOR N=1 TO NI
PRINT DTA$(N)
NEXT N

100 TRS-80 PORTABLE COMPUTER SUBRQUTINE COOKBOOK

The TRS-80 Portable Computer, touted as the "Micro Executive Workstation,” is most
popular among businesspeople. Much of the early software was aimed at this market.
Although business programs have much in common with games and utilities in BASIC,
they also have their own special requirements. A business application will rarely deal
with RND but will often have to handle dollars-and-cents. Money matters—figuring loan
amounts, monthly payments, interest—and formatting of the output are important con-
siderations. Business applications also involve keeping track of the date or time in order
to pinpoint when a transaction took place.

The business subroutines in this book are not limited to those in this chapter. When
writing your own programs, you might want to take advantage of special user input
routines, or sorts, like those in Chapter 4.

Business programs also have a need for keeping records. The results of one session
may have to be stored for access in the next session. This brings up a requirement for
data files which were discussed in the last section. 4

The subroutines in this chapter all handle some aspect of business. The first three
calculate loan amounts, number of payments, and monthly payment. The number of
years required to reach a given savings goal is handled by another subroutine, while
compound interest is calculated by an additional module. Correct formatting of dollars-
and-cents and dates are also accounted for by another pair. Temperature conversion
and figuring miles per gallon (MPG) are also included as examples of the types of
algorithms that might be useful in a typical business program.

Making your program easier to use through a clever menu is also explained. You may
substitute the tasks of your choice and then write the appropriate branches.

Loam Amnount

WHAT IT DOES

Calculates size of loan, given monthly payment,
interest rate, and length of loan.

Variables

e RATE: Interest rate

e LOAN: Amount of loan
NUMBER: Months of loan
PAYMENT: Monthly payment.

How To Use The Subroutine

This routine will calculate the maximum amount of money that can be borrowed, given
a fixed interest rate, the desired monthly payment, and the months the loan will run.
You might use this subroutine to calculate how expensive an automobile you can buy
given, say, a 36-month repayment period. a 15 percent interest rate, and the top monthly

BUSINESS AND FINANCIAL SUBROUTINES 101

payment you can afford, say, $200. In this case, the subroutine would deliver the answer;
$5769. Since very few cars can be purchased for that little, you might want to play with
the figures a bit. What if a 48-month loan is taken out instead? In that case, a more
reasonable $7186 can be borrowed.

Having these figures available allows the purchaser to make some intelligent deci-
sions. For example, extending the loan by 12 months provides $1417 more principal
to borrow, but at the cost of $2400 in additional payments (5200 x 12). Is the purchase
worth an additional $1000 in interest? Or can the auto be financed by finding the extra
$1400 from some other source, such as trading in a third car that the owner had planned
on keeping an extra year? Or, should you shop a bit more extensively for a better interest
rate? If your credit union offers a bargain-basement 12 percent interest rate, you can
borrow $7594 at the same interest rate—more than $400 more without increasing the
~ monthly payment.

Or, if you already have the car picked out, this routine will tell you how much down
payment you will have to come up with to make up the difference between the loan
amount and the price of the car.

Line-By-Line Description

Line 150 to 170: Define the interest RATE, monthly PAYMENT you can afford, and
the NUMBER of payments to be made. Your program can substitute INPUT lines to
receive these figures from the user.

Line 200: Change yearly interest rate in whole percent to decimal figure per month,
e.g., 12 percent equals 12/1200 or .01 per month,

Line 210: Calculate loan amount.
Line 220: Round off to two decimal places.
Line 230: Return to main program.

Line 240: Access the subroutine.

You Supply

You must define these variables: PAYMENT (the monthly payment desired), RATE
{interest rate in percent, i.e., 10.5 equals 10.5 percent), and NUMBER (number of months
loan will run). The subroutine will return LOAN, or the maximum loan amount given
those parameters.

RESULT

Loan amount calculated.

102 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOQOK

1@ ! RREXEEXRERXRRKRK

2P ' ¥ ¥

30 ' ¥ LOAN AMOUNT *

4D T X *

BO T ORRRRRRKNNRNN RN

Bf ! e =
70 ! ++ VARIABLES +--

8@ ! RATE: INTEREST RATE
o9 ! LOAN: AMOUNT OF LOAN
100 ! NUMBER: MONTHS OF LOAN
119 ! PAYMENT: MONTHLY PAYMENT
120 !

130 ' mmm e

140 ' *%% INITIALIZE **¥%

15@ RATE=10
16¢ PAYMENT =19
179 NUMBER =36
180 GOTO 25@

190 ' *x% SUBROUTINE *¥*

200 RATE=RATE/120¢

219 LOAN=PAYMENT*(1-(1+ RATE)*-NUMBER) /RATE
22@ LOAN = INT(LOAN*10@+ .5) /100

23@ RETURN

24 ' ¥¥¥ YOUR PROGRAM STARTS HERE *¥*%
25@ GOSUB 20¢
260 PRINT LOAN

Payment Amoumnt

WHAT IT DOES

Calculates monthly payment given interest rate,
number of payments, and loan amount.

Variables

RATE: Interest rate

LOAN: Amount of loan
NUMBER: Months of loan
PAYMENT: Monthly payment.

BUSINESS AND FINANCIAL SUBROUTINES 103

How To Use The Subroutine

This routine will calculate the monthly payment given a fixed interest rate, the loan
amount, and the months the loan will run.

You might use this subroutine to calculate your monthly auto payment given, say,
a 36-month repayment period, a 15 percent interest rate, and an amount to be financed
of, say, $8000. It will produce the answer, $277. By shopping around for different in-
terest rates, or varying the number of payments, you can calculate the effect on your
monthly payment until a satisfactory amount has been worked out.

The subroutine would also be valuable for those considering consolidating a numbe-
of debts. Add up the current pay-offs of the loans you wish to combine and then us:
this subroutine to calculate how much your new monthly payment will be.

Line-By-Line Description

Line 150 to 170: Define the amount of the LOAN, the interest RATE in whole per-
cent per year, and the NUMBER of monthly payments. Your program can substitute
INPUT lines to have this information entered by the user.

Line 200: Change RATE to percentage.

Line 210: Calculate PAYMENT.

Line 220: Round off PAYMENT to two decimal places.
Line 270: Print result.

You Supply

You must define these variables: LOAN (the original amount to be financed), RATE
(interest rate in percent, i.e., 10.5 equals 10.5 percent), and NUMBER (number of months
loan will run). The subroutine will return PAYMENT, which is the monthly payment,
against principal and interest.

RESULT

Loan payment calculated.

»
10 ! XEARERXRKHKKAKRRR KX
20 ' ¥ ¥
3@ ' % PAYMENT AMOUNT *
49 ' % *
5@ PO EARERARRRRRRNRX
60 ! cmmmmm— e
70 ++ VARIABLES ++
80 ' RATE: INTEREST RATE
9g ! LOAN: AMOUNT OF LOAN

169 ' NUMBER: MONTHS OF LOAN
119 ' PAYMENT: MONTHLY PAYMENT

104 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

14 ' *¥% INITIALIZE *¥¥

150 LOAN=10@
160 RATE=1f
17¢ NUMBER =36
189 GOTO 269

190 ' *%% SUBROUTINE *%%
200 RATE=RATE/100
210 PAYMENT =LOAN* (RATE/12) /(1-(1+ (RATE/12))" -NUMBER)

22() PAYMENT = INT(PAYMENT*100 + .5) /100
230 RETURN

250 ' ¥%x YOUR PROGRAM STARTS HERE *#%¥

260 GOSUB 200
279 PRINT PAYMENT

Number of Payments

WHAT IT DOES

Calculates number of payments given interest rate,
monthly payment, and loan amount.

Variables

RATE: Interest rate

LOAN: Amount of loan
NUMBER: Months of loan
PAYMENT: Monthly payment
WP: Number of whole payments
FP: Amount of final payment.

How To Use The Subroutine

This routine will calculate the number of payments given a fixed interest rate, the loan
amount, and the monthly payment required.

You might use this subroutine to calculate how long your auto loan will run, given an
interest rate of, say 15 percent, a loan amount of $8000, and a monthly payment of $250.
Since most automobile loans are for fixed periods of 18, 24, 36, or 48 months the figures

BUSINESS AND FINANCIAL SUBROUTINES 105

will be approximate. That is, an answer of 41 months will be produced using the 15
percent/$250/$8000 example. So, you will know that you can borrow somewhat more
than $8000 for 48 months or somewhat less for 36 months.

More commonly, you will use this subroutine to figure out how long it will take to
pay off a debt. such as a credit card account, with an open-ended number of payments.
If your charge card balance is $3000, and you plan on making $ | 50 monthly payments
until it is paid off, given an 18 percent monthly interest rate, the program will inform
you that it will take 24 months to dispose of the balance..

Line-By-Line Description

Line 170 to 190: Define the amount of LOAN, the interest RATE, in whole percent,
and the monthly PAYMENT desired. Your subroutine can substitute INPUT statements
to have this information supplied by the user.

Line 220: Change RATE to monthly decimal value, that is, 12 percent per year equals
12/1200 or .01 per month.

Line 230: Calculate number of payments.

Line 240: Calculate number of whole payments.
Line 250: Figure amount of final, partial payment.
Line 280: Access the subroutine.

Lines 290 to 310: Print results.

You Supply

You must define these variables: LOAN (the original amount to be financed), RATE
(interest rate in percent, i.e., 10.5 equals 10.5 percent), and PAYMENT (the amount of
the monthly payment). The subroutine will return NUMBER, which is the number of
monthly payments that will be required.

RESULT

Number of loan payments calculated.

106 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOCK

1@ XXX XRRANRARERRRXX

20 ' % ¥

39 ' * NUMBER PAYMENTS %

Ly o %

5@ TR REANKRRERRRRARNNX

6 ' mmmmm e
7% ++ VARIABLES ++

80 ' RATE: INTEREST RATE

99 ' LOAN: AMOUNT OF LOAN

199 ' NUMBER: MONTHS OF LOAN

119 ' PAYMENT: MONTHLY PAYMENT

129 ' WP: NUMBER OF WHOLE PAYMENTS
139 ' FP: AMOUNT OF FINAL PAYMENT
149 '

150 ' mmmmmm e

160 ' *¥% INITIALIZE *¥%

170 LOAN=1500
18@ RATE=12

199 PAYMENT =109
200 GOTO 28§

21@ ' *¥x SUBROUTINE ¥%x

220 RATE=RATE/1200

23@ NUMBER = LOG(PAYMENT/(PAYMENT-AMOUNT*RATE)) /LOG (1 + RATE)
24 WP = INT(NUMBER)

253 FP = PAYMENT* (NUMBER-WP)

26% RETURN

270 ' ¥x¥ YOUR PROGRAM STARTS HERE %%
280 GOSUB 220
290 PRINT WP; "PAYMENTS OF § " ;PAYMENT

309 PRINT "PLUS FINAL PAYMENT OF"
31 PRINT "$";FP

Years to Reach Desfred Value

WHAT IT DOES

Calculates number of years required to reach desired amount,
given interest rate, and original amount.

BUSINESS AND FINANCIAL SUBROUTINES 107

Variables

o RATE: Interest rate

®* YEARS: Years compounded

FUTURE: Future value desired
AMOUNT: Amount to be compounded.

How To Use The Subroutine

This routine will calculate the number of years required to reach a desired money
value, given a fixed interest rate, and the original investment value. The routine assumes
that no additional amounts are added to the principal. That is, an original amount is
deposited in a bank and left there to accumulate for a number of years. An inheritance
might be placed in the bank and allowed to build until retirement, college, or some other
need for the money arises.

Line-By-Line Description

Lines 160 to 190: Define FUTURE, desired future value, the interest RATE in whole
percent per year, and the PERIODS, the number of compounding periods per year.
Your subroutine can substitute INPUT statements to allow the user to enter these
figures.

Line 220: Change RATE to decimal figure.

Line 230: Calculate number of years needed to produce the goal value.
Lines 240 to 260: Figure number of whole months and years.

Line 290: Access the subroutine.

Lines 300 to 370: Print results.

You Supply

You must define these variables: FUTURE (desired future value), RATE {interest rate
in percent, i.e., 10.5 equals 10.5 percent), and PERIODS (number of compounding
periods per year). The subroutine will return YEARS, or the number of years that will
be required to reach the desired value.

RESULT

Years calculated.

108 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

10 7 REAXARXRAXRK XK RRRN
20 ' % *
39 ' * YEARS TO REACH ¥
4@ ' % DESIRED VALUE ¥

50 1 % *

6@ L R R R R R R Rt R n]

7P ' e mm——— e

8@ ! ++ VARIABLES ++

99 ! RATE: INTEREST RATE

100 ! YEARS: YEARS COMPOUNDED

119 ! FUTURE: FUTURE VALUE DESIRED
120 ! AMOUNT: AMOUNT TO BE COMPOQUNDED
139

S

150 ' ¥x%¥ INITIALIZE *¥%

160 RATE=10

179 AMOUNT = 190@
18¢ PERIOD= 365
199 FUTURE = 2000
200 GOTO 29p

21p ' *x% SUBROUTINE *¥¥

220 RATE=RATE/100

230 YEARS = LOG(FUTURE/AMOUNT) /((LOG(1 + RATE
/PERIODS)) ¥PERIODS)

249 MTH= YEARS-INT(YEARS)

25 MTH= INT(MTH*12)

26(YEARS=INT(YEARS)

27@ RETURN

280 ' ¥¥% YOUR PROGRAM STARTS HERE *¥*%

290 GOSUB 220

309 CLS

319 PRINT "@$";AMOUNT;" WILL"

320 PRINT "COMPOUND TO $";FUTURE
330 PRINT "IN ";YEARS;" YEARS

34@ PRINT MTHS;" MONTHS™

350 PRINT "AT " ;RATE*1@@;" PERCENT"
36@ PRINT "COMPOUNDED ";PERIODS

370 PRINT "TIMES A YEAR."

BUSINESS AND FINANCIAL SUBROUTINES 109

Compound Interest

WHAT IT DOES

Calculates compounded amount of investment, given
original value, interest rate, and time period.

Variables

RATE: Interest rate

YEARS: Years compounded

FUTURE: Future value

AMOUNT: Amount to be compounded.

How To Use The Subroutine

This routine will calculate the compounded future value of an investment, given the
interest rate, present value, and original amount.

You might use this subroutine to calculate how much your savings account will be
worth if allowed to compound for a given period of time.

Line-By-Line Description

Lines 150 to 180: Define original principal AMOUNT, the interest RATE in whole per-
cent, and the number of YEARS to be compounded.

Line 210: Change RATE to decimal value,

Line 220: Calculate FUTURE value.

Line 230: Round off value to two decimal places.
Line 260: Access the subroutine.

Lines 270 to 300: Print results.

You Supply

You must define these variables: AMOUNT (the original amount), RATE (interest rate
in percent, i.e., 10.5 equals 10.5 percent), and YEARS (number of years to be com-
pounded). The subroutine will return FUTURE, or value of the compounded investment.

RESULT

Compound interest calculated.

110 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

.

1P 1 ORRRRERRRFRRERRKKNKK

20 ' % *

3¢ ' ¥ COMPOUND INTEREST *

40 ' % *

B 1 ¥RHHRKRIIIIIRRER KK RHHK

6f) ! —ememmmmmme—mee—memmm————————————-
70 " ++ VARIABLES ++

8p ! RATE: INTEREST RATE

99 ' YEARS: YEARS COMPOUNDED

199 ' FUTURE: FUTURE VALUE
11p ' AMOUNT: AMOUNT TO BE COMPOUNDED
120 !

T ———

14@ ' *%% INITIALIZE *¥%%

150 RATE=1p

160 AMOUNT = 1p@@
17¢ PERIOD =365
180 YEARS=19
199 GOTO 260

200 ' *%% SUBROUTINE *¥¥

210 RATE =RATE/100

220 FUTURE = AMOUNT#*(1+ RATE/PERIODS)* (PERIODS*YEARS)
23@ FUTURE = INT(FUTURE*100+ .5) /100

240 RETURN

250 ' *%%x YOUR PROGRAM STARTS HERE **%

260 GOSUB 21f

279 CLS:

280 PRINT "$";AMOUNT; " LEFT"
29¢ PRINT YEARS;" YEARS WILL"
399 PRINT " GROW TO $";FUTURE

Rate of Returm

WHAT IT DOES

Calculates interest rate, given present and future value,
and number of compounding periods.

BUSINESS AND FINANCIAL SUBROUTINES 111

Variables

e RATE: Interest rate

* YEARS: Years compounded

* FUTURE: Future value

¢ AMOUNT: Amount to be compounded.

How To Use The Subroutine

This routine will calculate the interest rate on an investment, given the present value,
future value, years compounded, and number of compounding periods. You could use
this to figure what sort of a return your investments are providing you, as a means of
deciding whether to continue or look for new investments.

Line-By-Line Description

Line 150 to 180: Define the present (or original) value of the investment, the number of
YEARS it has or will be compounded. and the FUTURE (or current, if the investment is an
old one) value. Your subroutine can substitute INPUT lines to have user enter these values.

Line 210: Figure interest RATE.

Line 220: Change RATE to whole percent,
Line 250: Access the subroutine.

Lines 260 to 310: Print results.

You Supply

You must define these variables: AMOUNT (present value), FUTURE (future value),
YEARS (number of years to be compounded) and PERIODS (number of compounding
periods). The subroutine will return RATE, the interest rate.

RESULT

Interest rate calculated.

10 T XRAXRRERKEERRERRNKX

20 ' % *

30 ' % RATE OF RETURN ¥

R %

5O 1 ORRRARAARRRXRAKKKRKRK

60 ' m e
70 ! ++ VARIABLES ++

8@ ! RATE: INTEREST RATE

%9 ! YEARS: YEARS COMPQUNDED

100 ' FUTURE: FUTURE VALUE

119 ! AMOUNT: AMOUNT TO BE COMPOUNDED
1209 !

L R —

112 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

14@ ' *¥% INITIALIZE *¥¥

150 YEARS=10
169 AMOUNT = 10¢@
17p9 PERIOD=365
18p FUTURE = 2000
199 GOTO 25@

209 ' *%% SUBROUTINE *¥*¥

21¢ RATE= ((FUTURE/AMOUNT)* (1/(PERIODS¥YEARS))-1)*PERIODS
220 RATE =RATE*1p0
23@ RETURN

24@ ' *%% YOUR PROGRAM STARTS HERE ¥¥*

25@ GOSUB 2109

260 CLS

273 PRINT "$" ; AMOUNT

280 PRINT "TO PRODUCE $";FUTURE
299 PRINT "IN ";YEARS; "YEARS"
3p@ PRINT "REQUIRES AN INTEREST"
31@ PRINT "RATE OF ";RATE

Dollars and Cemnts

WHAT IT DOES

Formats dollars and cents,

Variables

e A: Dollars and cents amount to be formatted
e D$: The dollar figure, formatted.

How To Use The Subroutine

Business programs frequently work with money, and it is desirabie to format the
dollars and cents output into conventional form. That is, the decimal point is followed
by two numbers only, and a trailing zero or two will be included as needed. A figure
should appear as $12.50 or $13.00 rather than $12.5 or $13.

This subroutine will round off any fractional cent larger than one-half cent to the next
larger penny and round anything smaller to the next lower amount. The correct number
of zeros will be added to amounts evenly divisible by 10.

NOTE: the caret symbol (*) in the program listing stands for the SHIFT 6 on the
keyboard. :

BUSINESS AND FINANCIAL SUBROUTINES 113

Line-By-Line Description
Line 140: Define dollars and cents amount to be formatted.

Line 170: Define number of decimal places to round off figures. For dollars-and-cents,
P will always equal 2.

Lines 180 to 190: Round off figure by adding 5.5. multiplying it by 100, taking the
integer part of the result, and dividing by 100.

Line 200: Produce string representation of result.

Lines 210 to 240: Check DS for a decimal point.

Line 250: If no decimal point found, add ".00"".

Lines 260 to 300: If only one number to right of decimal point, add "'0.”
Line 330: Access subroutine.

Line 340: Print result.

You Supply

Your program should define A, the dollars-and-cents amount to be formatted. The
routine will return D$, which is the formatted figure.

RESULT
Dollar amount is properly formatted for display.

10 7 REEXEARERERRERRAEXHERR

20 ' % *

30 ' * DOLLARS AND CENTS *
R *

5@ PORRXEKRERERAXRNRARAXRX

60 ' —mmmmmm—e——c—cc———————————
70 ++ VARIABLES ++

8p ! A: DOLLARS AND CENTS
99 ! AMOUNT TO BE FORMATTED
199 ' D$: DOLLAR FIGURE

119 REM

120 ' mmmmmm e

130 ' *%% INITIALIZE *¥¥

140 A=55.345
150 GOTO 330

160 ' ¥¥x SUBROUTINE *¥¥

114 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

179 P=2
180 C=A+5.5%1¢"-(P+1)
199 B=INT(C*19"P)/10*P
20@ Dg="$" +STR$(B)
21p FOR N=1 TO LEN(D$)
22¢ T$=MID$(D$,N,1)

230 IF T§="." GOTO 270
240 NEXT N

259 D$=D$+ ".pp"

26 RETURN

27¢ L$=LEFT$(D$,N)

28@ R$=MID$(D$,N+1)

299 IF VAL(R$) <1@ THEN R$=R$+ "gn
300 D$=L3+R$

31p RETURN

32p) ' ¥*¥% YOUR PROGRAM STARTS HERE ¥

330 GOSUB 17¢
340 PRINT D$

Temperature

WHAT IT DOES

Calculates Celsius and Fahrenheit.

Variables

* F: Fahrenheit temperature
* C: Celsius temperature,

How To Use The Subroutine

This subroutine will convert Celsius temperatures to Fahrenheit and vice versa. The
sample routine has a short INPUT section that asks for the temperatures to be entered

from the keyboard.

Line-By-Line Description
Lines 150 to 160: Figure Fahrenheit temperature.
Lines 170 to 180: Figure Celsius temperature.

Lines 210 to 250: User enters temperature to convert.

BUSINESS AND FINANCIAL SUBROUTINES 115

Lines 260 to 270: Check to see if Fahrenheit or Celsius.
Lines 280 to 290: If wrong, make user reenter.,
Lines 300 to 310: Access proper subroutine.

Line 320: Print results of conversion.

You Supply

You should define a value for either F or C, depending on which way the conversion
will go. This will usually be input from the keyboard. The alpha character ending the

input, either "F"" or “C", should be supplied to determine which type of conversion
will be activated.

RESULT

Temperature converted to alternate value.

10 " EXEREAKXEXRXXNXX
20 ' % *
3¢ ' * TEMPERATURE *
49 v % *
50 1 REKRREXRKRHRXKNXX

60 ' *%x INITIALIZE *¥*x

79 GOTO 200

0
9 ! ++ VARIABLES ++

100 F: FAHRENHEIT

119 C: CELSIUS

129

130 " e e

140 ' *%% SUBROUTINE *¥%

15@ C=VAL(AN$)

160 F=1INT((9/5)*C+ 32) :RETURN
170 F=VAL(AN$)

189 C=INT((F-32)%(5/90)) :RETURN

199 ' *%% YOUR PROGRAM STARTS HERE ¥¥¥

116 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

209 PRINT

210 PRINT"ENTER TEMPERATURE"

22¢ PRINT"IN THIS FORM:"

23@ PRINT CHR$(34);52C;CHR$(34);" OR "
24@ PRINT CHR$(34);98F;CHR$(34);"."
25@ INPUT AN$

260 A$=RIGHT$(AN$,1)

279 IF A3="F" OR A$="C" THEN GOTO 30@
280 PRINT "WRONG FORMAT. "

299 GOTO 220

309 IF A$="F" THEN GOSUB 170

310 IF A$="C" THEN GOSUB 150

320 PRINT F;"F., = ";C;"C."

Date Formatter

WHAT IT DOES
Formats dates to MM/DD/YY style.

Variables

* DTES: DATE

¢ MNTHS: Months
¢ DAYS: Day

® YEARS: Year.

How To Use The Subroutine

This subroutine will accept input of month, day, and year, and format it into MM/DD/YY
style. That is. December 3, 1947 will be displayed as 12/03/47 or 12/03/1947. As writ-
ten, the module prompts the operator to enter the values. It disallows illegal months
(smaller than one or larger than 12). Other checks are made to make sure the day of
the month is acceptable. For example, June 31 and February 30 are not allowed.
February 29 is permitted only during leap years.

Where needed, a leading zero is added, along with backslashes to produce the desired
format. This subroutine can be used in any business program where the operator is
asked the date, and it is important to have a uniform format.

Line-By-Line Description
Line 160: Enter month to be formatted.
Lines 170 to 180: Check to see that MNTH is at least 1 but no more than 12.

BUSINESS AND FINANCIAL SUBRQUTINES 117

Line 190: If MNTH is less than 10 then MNTHS="0"" plus the string representation
of MNTH. That is, *'9"" becomes "09.”

Lines 200 to 220: Enter day of month, which must be at least 1 and less than 31.

Line 230 to 250: Check to see if month should have only 30 days, and force user
to reenter if an illegal date has been entered.

Line 260: Enter year.

Lines 270 to 310: If leap year, then February may have 29 days, otherwise, only 28
allowed.

Line 320: If DAY is less than 10 then add leading "0.”
Line 330: Construct MM/DD/YY string.
Line 370: Access the subroutine.

Line 380: Print result.

You Supply

The date to be formatted must be supplied from the keyboard.

RESULT

Properly formatted date.

10 ' ORERRRREERHERKERKRNRKR

20 ' % *

30 ' *¥ DATE FORMATTER ¥

4 1 % *

5@ ! ORRERRREERRERRRERNRER

6@ GOTO 360

70 ' cmmmmmm——mm e ——————
89 ! 4+ VARIABLES ++

o9 ' DTE$: DATE

100 ! MNTH$: MONTHS

119 ! DAY$: DAY

120 ¢ YEAR$: YEAR

139 !

140 ' e o

150 ' *x%¥ SUBROUTINE *¥*%

118 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

160 INPUT"ENTER MONTH: " ;MNTH$

170 MNTH=VAL(MNTH$)

189 IF MNTH<1 OR MNTH>12 GOTO 16¢

199 IF MNTH< 1@ THEN MNTH$="@" +RIGHT$(MNTHS,1)
200 INPUT"ENTER DAY : ";DAY$

210 DAY=VAL(DAY$)

220 IF DAY<1 OR DAY>31GOTO 2¢@

230 IF MNTH=4 OR MNTH=6 OR MNTH=9 OR MNTH=11 GOTO 250
24 GOTO 260

250 IF DAY>3p GOTO 200

26@0 INPUT"ENTER YEAR : ";YEAR$

270 YEAR=VAL(YEARS$)

28p IF YEAR/4 < > INT(YEAR/4)GOTO 31¢

299 IF MNTH=2 AND DAY>29 GOTO 20@

300 GOTO 320

319 IF MNTH=2 AND DAY>28 GOTO 20¢

320 IF DAY<1@ THEN DAY$="O" +RIGHT$(DAYS,1)
330 DTE$=MNTH$+ " /" +DAY$+ " /" + YEARD

34p RETURN

350 ' *¥% YOUR PROGRAM STARTS HERE ¥%%
360 CLS:

379 GOSUB 169
38p PRINT DTE$

NMenu

WHAT IT DOES

Menu template for user programs

Variables

® NCS: Number of choices on menu.

How To Use The Subroutine

Most programs with more than one function feature a menu of choices for the user
to select from. This subroutine is a menu “template” that can be fleshed out with choices
of your own selection and routines that fulfill each menu item.

If you define the number of selections on the menu at the beginning of your program,
the menu will automatically reject illegal choices, i.e., those that are out of the allowed
range. Users choose one of up to nine selections by pressing a single key.

BUSINESS AND FINANCIAL SUBROUTINES 119

Once the operator has selected a menu item, the routine branches to modules written
by the user to carry out the menu functions. To expand the number of menu items,
redefine NC. If more than nine choices are listed, you will have to sacrifice single key
entry. Replace line 240 with INPUT AS. Then, any number can be entered.

Note that no menu functions are provided at lines 1000, 2000, 3000, and 4000; you
must write those routines yourself.

Line-By-Line Description
Line 70: Define number of menu choices available.

Lines 150 to 160: Clear screen, and present menu title. Line 160 may be changed
by user to label specific menu.

Lines 160 to 200: Labels for the menu choices.
Line 210: Prompt user choice.
Line 220: Wait for user input.

Lines 230 to 240: If entry is less than | or Jarger than the number of choices available,
go back and continue waiting.

Line 250: Access subroutine specified by user, at Lines 1000,2000,3000 or 4000.

You Supply

You should define NC to equal the number of menu choices. You will need to write
subroutines to accomplish your various tasks, using line 250 as a model to direct control.

RESULT

Operator can select from list of menu choices.

10 ! ORARRRRXX
20 ' % *
3@ ' % MENU *
49 ' % *
5@ 1 ORRARRRKX

6@ ' %%% INITIALIZE %¥%¥

79 NC=4

89 GOTO 28¢
e —

109 ++ VARIABLES ++

119 NC: NUMBER OF MENU CHOICES
129 !

7T 1 R —

120 TRS-80 PORTABLE COMPUTER SUBRQUTINE COOKBOOK

140 ' %*% SUBROUTINE *¥*

15¢ CLS

16@ PRINT TAB(6)"*% MENU %%

17@ PRINT TAB(3)"1. FIRST CHOICE"
18@ PRINT TAB(3)"2. SECOND CHOICE"
19¢ PRINT TAB(3)"3. THIRD CHOICE"
2p@ PRINT TAB(3)"4. FOURTH CHOICE"
21@ PRINT TAB(6) "ENTER CHOICE"
220 A$=INKEY$:IF A$="" GOTO 249
239 A=VAL(A$)

2409 IF A<1 OR A>NC GOTO 240

250 ON A GOSUB 100@,2000,3000,4000
26@ RETURN

27@ ' *xx YOUR PROGRAM STARTS HERE *¥%¥

280 PRINT

290 GOSUB 150

309 END

Q9@ ' x¥* FIRST SUBROUTINE ¥¥*

19@@ RETURN

1999 ' *%*% SECOND SUBROUTINE #*¥%

2000 RETURN

2990 ' *%% THIRD SUBROUTINE **¥

3009 RETURN

3990 ' ¥%X*% FOURTH SUBRQUTINE %*¥**

4@P® RETURN
Time Adder
WHAT IT DOES

Totals seconds, minutes, and hours.
Variables

e TM: Total minutes
¢ TS: Total seconds
¢ TH: Total hours

BUSINESS AND FINANCIAL SUBROUTINES 121

¢ MIN: Minutes to be added in
e HOUR: Hours to be added in
e SECS: Seconds to be added in.

How To Use The Subroutine

Various programs, such as timers, must add minutes and seconds and hours, and
come up with a total, despite the clumsy base-60/base-24 numbering system
combination.

This subroutine takes the total seconds, minutes, and hours at any time and adds in
user-supplied figures, producing a new set of totals.

Line-By-Line Description
Line 160 to 180: Define the current total minutes, hours, and seconds.

Lines 190 to 210: Define the number of hours, minutes, and seconds to be added
to the above variables.

Lines 240 to 300: Add current total to additional minutes, seconds, and hours, in
form of total number of seconds.

Lines 280 to 290: Figure whole hours, and subtract that number of seconds (hours
X 3600) from the total number of seconds.

Line 300 to 310: Figure whole minutes, and subtract that number of seconds (minutes
x 60) from total seconds.

Line 340: Access the subroutine.

Lines 350 to 380: Print the results.

You Supply

You must supply start up values for TS, TM, and TH or else they will default to those
shown in lines 160 to 180. You may change these defaults to zeros if you wish. Your
program should furnish MIN, HOUR, and SECS values.

RESULT

New total time calculated.

122 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

10 1 RERRARRRKRRKER
20 ' * *

30 " % TIME ADDER *

L T ¥ *

S50 1 FREXRAARRKRKXKRX

60 ' e
70 ! ++ VARTABLES ++

8¢ ' TM: TOTAL MINUTES

9P ' TS: TOTAL SECONDS

10f ' TH: TOTAL HOURS

11¢ ' MIN: MINUTES TO BE ADDED
12¢ ' HOUR: HOURS TO BE ADDED
13p ' SECS: SECONDS TO BE ADDED
149

i

155 ' *%% INITIALIZE %%

160 TM=54
170 TH=49
189 TS=30
190 MIN=3¢
209 HOUR=2
219 SECS=3p
220 GOTO 340

23@ ' %%¥%x SUBROUTINE *¥%

24 TM=TM+ MINX6@
250 TS=TS+ SECS

260 TH=TH -+ HOUR* 360
270 TS=TM+TS+TH
280 TH=INT(TS/3600)
290 TS=TS-TH*360@
309 TM=INT(TS/6Q)
310 TS=TS-TM*6

329 RETURN

33@ ' *%%¥ YOUR PROGRAM STARTS HERE ¥

340 GOSUB 249

350 CLS

36@ PRINT"SECONDS: " ;TS
379 PRINT"MINUTES:";TM
380 PRINT"HOURS: " ;TH

BUSINESS AND FINANCIAL SUBROUTINES 123

MPG

WHAT IT DOES

Calculates auto miles per gallon.

Variables

¢ BEGN: Starting odometer reading
¢ ODOM: Current odometer reading
* GALLNS: Gallons of gas consumed between readings.

How To Use The Subroutine

This routine will figure your gas consumption, given the starting and ending odometer
readings and number of gallons of gas consumed. To be accurate, you should top off
your gas tank before writing down BEGN value, and top it off again when recording
ODOM. Any gas put in between those two should be added to the final fill up. In other
words, the MPG can be figured for the aggregate of a number of tanksful of gas.

Line-By-Line Description

Lines 140 to 160: Define current ODOMeter reading, the BEGN, or initial odometer
reading, and the number of gallons, GALLNS of gas used. Your subroutine can use IN-
PUT statements to allow the user to enter these values.

Line 190: Calculate MPG.
Line 200: Round off MPG.
Line 230: Access the subroutine.

Lines 240 to 250: Print results.

You Supply

You need to enter values for BEGN, ODOM, and GALLNS, as outlined above. Variable
MPG will store final miles per gallon figure.

RESULT
MPG calculated.

124 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

10 1 RERKKKH

20 ' % *

30 " x MPG ¥

Lo 1 ¥ *

5@ 1 KRRKXHX

T

70 ' ++ VARIABLES ++

80 ' BEGN: STARTING ODOMETER
99 ' ODOM: CURRENT ODOMETER
199 ' GALLNS: GALLONS GAS USED
119 ¢

1200 ' e

139 ' %%% INITIALIZE *¥x

140 ODOM= 36420
150 BEGN=360@1
16@ GALINS=13.8
179 GOTO 230

18@ ' *¥* SUBROUTINE %%
199 MPG= (ODOM-BEGN) /GALLNS

209 MPG=INT(MPG*10+ .5) /10

21¢ RETURN

220 ' %%% YOUR PROGRAM BEGINS HERE ¥
230 GOSUB 19¢

249 CLS
25@ PRINT "MPG= ";MPG

o

128 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

When compared to the BASICs supplied with other computers in the same price range,
the BASIC included in the Portable Computer stacks up very well indeed. There are many
statements and commands that were missing in earlier Radio Shack offerings. The BASIC
is more similar to that used in the IBM Personal Computer, and other state-of-the-art
micros than it is to the interpreter originally supplied with the TRS-80 Model 1 and 1
computers. '

There are many important capabilities—such as MOD, INSTR, and MID$ = that are not
featured in such top selling competing brands as the Commodore VIC-20 and
Commodore 64,

Even so, there is room to add some capabilities to your Micro Executive Workstation
through this collection of subroutines. One will allow you to remove remarks that have
been put in a program, thus making the program more compact, and palatable to the
RAM-hungry Portable Computer. Another program lets you center TABBed prompts
automatically.

There are several subroutines useful for processing TEXT files and programs which
have been saved in .DO form. You may insert strings under program control, perform
global search and replaces, and count the number of words in a document.

Finally, we have included two subroutines which provide a quick way of determining
the CHR$ code for any key pressed and to swap variables within a program.

Insert String

WHAT IT DOES

Inserts string into another.

Variables

* TARGTS: Main string
* SUBS: String to be inserted into main string
* PLACE: Position to put SUBS.

How To Use The Subroutine

Sometimes, a string to be inserted may need to be longer or shorter than the string
replaced. This subroutine takes care of that with a few limitations.

Like all TRS-80 strings, neither TARGTS$ nor SUBS can be longer than 255 characters,
The resulting string with SUB$ inserted must be shorter than 255 characters as well.

In the subroutine as written, the target string is "THIS IS THE MAIN STRING OF
CHARACTERS", while the SUBS is defined as “TEST"". Since the PLACE where we want
to insert it is position 7, the new string will read: “THIS IS THE TEST MAIN STRING OF
CHARACTERS".

ADD NEW CAPABILITIES 129

Line-By-Line Description

Lines 140 to 160; Define the SUBS, the TARGTS, and PLACE where the SUBS will
be inserted.

Line 190: Take the leftmost characters in the target string up to, and including, posi-
tion PLACE.

Line 200: Take the rightmost characters in the target string, starting with one after
position PLACE.

Line 210: Construct new target string, from L$, SUBS, and RS.
Line 240: Access the subroutine.

Line 250: Print result.

You Supply

Values for the main string, TARGTS, the string to be inserted, SUBS. and the position
where it will be put, PLACE.

RESULT
TARGTS will have SUBS inserted in it, at position PLACE.

1P 1 REEKRERIERRERHNK
20 ' ¥ *
3@ ' * INSERT STRING$ ¥
Ly v ¥ *
BE 1 RRRHRRRHHIRHIRH KR
6 ! ecemmmmmmm————————————————

78 ' ++ VARIABLES ++

8¢ ' TARGT$: MAIN STRING

9 ' SUB$: STRING TO BE INSERTED
109 ' PLACE: POSITION TO PUT SUB$
116

I L

130 ' *%¥% INITIALIZE %¥¥*

14@ SUB$= "TEST "

150 TARGT$= "TARGET STRING LETTERS"
160 PLACE=12

179 GOTO 240

18@ ' *x¥ SUBROUTINE *¥¥

130 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

199 L$=LEFT$(TARGTS,PLACE)
200 R$=MID$(TARGT$,PLACE+1)
210 TARGT$=L$+ SUB$+R$

220 RETURN

230 ' *x*% YOUR PROGRAM STARTS HERE *¥*
240 GOSUB 19¢
25@ PRINT TARGT$

CHRS$ Value

WHAT IT DOES
Returns CHRS code for any key.

Variables

¢ A: CHRS value of last key pressed.

How To Use The Subroutine

When printing graphics or alphanumerics via PRINT CH R$(n), it is necessary to know
the CHRS code for a given key. If many keys are used, looking them all up on a table
in a reference book can be time consuming. Instead, add this subroutine to the end of
your program, and call it as needed.

Just why would you want this capability? The answer lies in the differences in the ways
computers and human beings like to process information. People are comfortable
handling mixtures of alpha and numeric characters: computers recognize just binary
numbers—ones and zeros. When string data is fed to the computer, it must be converted
to a series of numbers that the processor can handle.

ASCII, or American Standard Code for Information Interchange, is one standard of
communication that has been agreed upon so that computers can exchange
alphanumeric information in a form that is common to processors with differing
operating systems and languages. Radio Shack departs somewhat from this code for
the Portable Computer, especially when using the graphics characters. However, the
standard alphanumeric symbols are accurately portrayed with the CHRS(n) statement.
That is, PRINT CHR$(65) will produce an uppercase “A” in Radio Shack BASIC, just as
in other BASICs.

But even if you don't have a modem and aren’t communicating with other com-
puterists, there are many times when it is necessary to translate a string into the cor-
responding ASCII code, or vice versa. In some cases, only a few characters need to be
converted, so a table of codes and their string values will do the job. Other times, longer
messages must be deciphered.

ADD NEW CAPABILITIES 131

One good application for ASCII characters in programs is in game-writing. Writers
of BASIC adventure-style programs may wish to ""hide’" messages from those casually
listing the program. The CHRS{(n) function can be used to assign the desired string values
to string variables that are called at appropriate points in the program. CHRS$(n) returns
a one-character string that corresponds to the ASCII code of n. For example, PRINT
CHRS(65) will produce an uppercase “A” on the screen.

A BASIC Adventure might have use for a message such as:

"LOOK IN THE HOLLOW STUMP."

This hint could be labeled H1$, and concatenated using CHR$(n) and the ASCII
codes:

1p@ DATA 76,111,111,1¢7,32,105,119,32,116,104
,101,32,104,111,108,108,111,119, 32,
115,116,117,109,112,32
119 FOR N=1 to 25:READ A
129 H1$"H1$+ CHR$(A)
130 NEXT A .

Additional DATA lines and FOR-NEXT loops could be used to put any number of
messages into string variables which are difficult to read accidentally. Of course, any
knowledgable programmer could pick the BASIC game apart or enter PRINT H1$ from
command mode once the program has been run past the initialization point. But, this
technique assumes that the object is to protect the game player who innocently LISTS
the program and doesn't want to spoil the fun. The same method can be used to "hide”
program credits within BASIC code.

Line-By-Line Description
Line 140: Wait for user to press a key.
Line 150: Find ASCII value of that key.
Lines 160 to 170: Print result.

Line 210: Access the subroutine.

You Supply

Just press the key that you want to check.

RESULT

Variable A will equal CHRS value of that key.

132 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

1@ 1 O RRRERERKXK KR KRK

20 ' *

3@ ' * CHR$ VALUE *

A L *

5@ 1 RRAKRRXRRKKRKRKRK

6f ' e
7 ! +-+ VARIABLES ++

8p !

o9 ! A: CHR$ VALUE OF KEY
199 !

110 " memmm e e

120 GOTO 209

139 ' *%x SUBROUTINE *¥¥

140 A3=INKEY$:IF A$="" GOTO 130

150 A=ASC(A$)

160 PRINT"CHR$ VALUE OF KEY";A$

179 PRINT"IS :";A

189 RETURN

190 ' ¥%* YOUR PROGRAM STARTS HERE *xx

200 GOSUB 149
21¢ GOTO 2p9

Swap

WHAT IT DOES
Simulates SWAP function found in some other BASICs.

Variables

* AS: First variable
® B$: Second variable.

How To Use The Subroutine

Exchanging the value of one variable for that of another cannot be done in one step
in Radio Shack’s BASIC. This feature is useful in sorts and some other types of program-
ming where the value of one variable needs to be traded with the value of another.

This subroutine will do that for any two string variables. To use it with numeric
variables, either use a second identical subroutine, with the string identifiers removed

ADD NEW CAPABILITIES 133

(i.e.. DUMMY=A, A=B. B=DUMMY). Or a less elegant way is to change the numeric
variables to strings before calling the routine. This can be done as follows:

A$"STR$(A) : B$ =STR$(B) :GOSUB xxx: A=VAL(A$) :B=VAL(B$)

Not exactly efficient, right? Use two subroutines instead, one for strings and one for
numbers.

Line-By-Line Description
Lines 130 to 140: Define initial value of A$ and BS.
Line 170: Temporarily assign A$ to a dummy variable, DUMMYS.
Line 180: Make AS equal to BS.
Line 190: Make B$ equal to DUMMYS, which stores the original value of AS.
Line 220: Print original value.
Line 230: Access the subroutine.
Line 240: Print the results.

You Supply

Values for AS and BS, or A and B. the two variables which must be swapped.

RESULT

Values exchanged.

10 7 RRRRNKRR

2 ' ¥ %

30 ' % SWAP *

40 ' % *

BP T RRARRNHH

60 ! mmmm— e eeeee
79 ' ++ VARIABLES ++

80 ! A$: FIRST VARIABLE

99 ! B$: SECOND VARIABLE

100 !

B

120 ' *%%¥ INITIALIZE *¥%*

139 A$="FIRST"
149 B$= "SECOND"
150 GOTO 220

134 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

160 ' %%% SUBROUTINE **¥

170 DUMMY$=A$
18p A$=B$
199 B$ =DUMMY$
209 RETURN

21¢ ' *%%* YOUR PROGRAM STARTS HERE *¥¥
220 PRINT "A$=";A$;"B$=";B3

230 GOSUB 179
240 PRINT "A$=";A$;"B$=";B3

Remove Remarks

WHAT IT DOES

Removes remarks from programs.

Variables

P: Position to begin search

R: Position REMark found
Ql-Q2: Position of quotes

AS: New line built by program.

How To Use The Subroutine

You should store the program that you want to remove remarks from in .DO form.
This is accomplished from BASIC by appending the .DO extension to the filename. Your
new program, without remarks, will also be stored as a .DO file. You can load this into

BASIC and then SAVE as a .BA file that you can load and run.

Line-By-Line Description
Line 160: CLEAR 5000 bytes of string space.
Line 180: Clear screen.
Lines 190 to 200: Build input/output file names.
Lines 230 to 240: OPEN files.
Line 260: If end of program, then end.
Line 270: Read in a program line.
Line 280: Set start position of search at 1.

ADD NEW CAPABILITIES

Line 300: Lock for v~
Line 320: Look for "REM”.

Lines 350 to 380: Look for quotation marks.

Lines 410 to 440: Parse program line.

Lines 510 to 530: PRINT new line to file, screen, and return for more.

Line 540: Close file.

You Supply

User supplies program to be processed.

135

RESULT

Remarks removed from program.

1p
20
30
50
69
70
8¢
o0
190
119
120
130
140
150
160

179
180
19¢
200
219
220

230
240

RERHRXRXEKRXRXHRHKAK
* *
¥ REMOVE REMARKS ¥
* %
EAXRRKRKRKKRKRKKRHKRK

e — T T T D R W Wt W - - - - S S G S G S e S e s - ———

+-+ VARIABLES ++

P: Position to begin search
R: Position REMark found
Q1-Q2: Position of quotes

A$: New line built by program

- = == == -

T i . o Y T SR S W G S S S S - ——

CLEAR 5000

' %¥%¥ INPUT PROGRAM TO PROCESS *¥x

CLS:PRINT:PRINT

PRINT"Enter name of program to have REMARKS removed:"
LINEINPUT F$

F13 =LEFT$(F$,4) + "RM.DO"

' ¥%% OPEN FILES *%x

OPEN F$3 FOR INPUT AS 1
OPEN F13 FOR OUTPUT AS 2

136 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

25@ ' *%¥% READ IN A LINE *xx

26@ IF EOF(1) GOTO 549
279 LINE INPUT #1,A$
280 P=1

290 ' ¥xx CHECK FOR ' OR REM %¥¥

309 R=INSTR(P,A$,"'")
319 IF R< >@ GOTO 350
32¢ R=INSTR(P,A$, "REM")
330 IF R=0 GOTO 510

34p ' *%% REMARK FOUND %

35@ Q1=1INSTR(P,A$,CHR$(34)):IF Q1=0 GOTO 41¢
360 Q1l=Q1+4+1

378 Q2=INSTR(Q1,A$,CHR$(34))

38p IF R<Ql OR R>Q2 GOTO 410

390 P=Q2+1

4P@ GOTO 309

410 A$=LEFT$(A$,R-1)

42 FOR N=1 TO LEN(A$)

43“ B$=MID$(A$,N:1)

449 IF ASC(B$) <48 OR ASC(B$)>57 GOTO 460
45@ NEXT N

460 T$=MID$(A$,N)

47¢ IF T$=m GOTO 260

480 IF T$=" " GOTO 260

499 IF RIGHT$(A$,1)=":" THEN A$=LEFT$(A$, (LEN(A$)-1))

5@@ ' *%% PRINT TO FILE %¥¥
519 PRINT A$
5200 PRINT#2,A$

530 GOTO 260
540 CLOSE

Center TABS

WHAT IT DOES

Centers TABs in a program.

ADD NEW CAPABILITIES 137

Variables

e C. Location of TAB marker in line
® C1: Location of quote
¢ AS: Program line being processed.

How To Use The Subroutine

if you want to have your prompts neatly centered on the screen of your TRS-80, simply
substitute the statement "TAB(T) * in your program at any place where you wish to have
the prompt that follows centered.

This subroutine will go through your program and calculate the length of the prompt,
then rewrite the line so that a new TAB value will be substituted for T. The resulting
prompt will be centered.

You should store the program that you want to process in .DO form. This is ac-
complished from BASIC by appending the .DO extension to the filename. Your new
program, with centered TABs, will also be stored as a .DO file. You can load this into
BASIC and then SAVE as a .BA file that you can load and run.

Line-By-Line Description
Line 130: CLEAR 1000 bytes of string space.
Line 140: Set maximum number of files at 2.
Line 150: Clear screen.
Lines 200 to 230: Enter names of input and output files.
Lines 240 to 250: OPEN files.
Line 270: Load a program line.
Line 280: Look for TAB(T).
Line 300: Look for quote.
Lines 310 to 320: Parse line.
Line 330: Calculate centering.
Line 340: Convert centering to string.
Line 380: Print line to RAM file.
Line 400: If end of the file, END.
Line 410: Go back for more.
Line 420: CLOSE.

You Supply

User supplies program with TAB(T)’s inserted.

138 TRS-80 PORTABLE COMPUTER SUBRQUTINE COOKBOOK

RESULT

Program prompts centered.

10 ' RRERRRRAXERNRRKRNRK

20 ' % %

30 ' % CENTER TABS *

AR *

B@ 1 RXRRERERERNRNRRKRKR

3 S,
e ! ++ VARIABLES ++

8@ ! C: Location of TAB marker in line
op ! Cl: Location of quote

1@ ' A3: Program line being processed.
119 ¢

£

139 CLEAR 1000

140 MAXFILES=2

15@ CLS:PRINT:PRINT
160 PRINT

17@ PRINT

180 ' *%* Enter Name of File to Procesg ¥¥¥

199 CLS:PRINT:PRINT

2¢® PRINT "ENTER PROGRAM WITH TABS TO BE CENTERED:"
219 LINEINPUT F$

22¢) PRINT "ENTER NAME OF OUTPUT FILE :"

239 LINEINPUT F2$

24p OPEN F$ FOR INPUT AS 1

25p OPEN F2$ FOR OUTPUT AS 2

26@ ' *%% Load a Line *¥x

27¢ LINEINPUT #1,A$

280 C=INSTR(A$, "TAB(T)")

299 IF C=@ GOTO 380

309 C1=INSTR(C,A$,CHR$(34)) +1

31¢ B$=MID$(A$,C1)

320 B$=LEFT$(B$, INSTR(B$,CHR$(34))-1)
330 D=INT((4@-LEN(B$))/2)

340 D$=MID$(STR$(D),2)

350 A$=LEFT$(A$,C+3) +D$+MID$(A$,C+5)
360 GOTO 280

ADD NEW CAPABILITIES 139

370 ' ¥%% Print to RAM *¥x

380 PRINT#2,A$
399 PRINT A$
499 IF EOF(1) GOTO 420

419 GOTO 270
42p CLOSE
Count Words
WHAT IT DOES
Counts words in TEXT file.
Variables

¢ CHAR: Number of characters in file
e (C8: Current character
e [$: Last character.

How To Use The Subroutine

This subroutine will count the number of words in any TEXT file or any other .DO file,
such as programs that have been stored in that form. It will also provide the average
word length and number of standard five character words in the file.

Line-By-Line Description

Line 120: Clear 4000 bytes of string space, and define variables as integers for extra
speed.

Line 130: Set maximum files at 1, and clear screen.

Lines 150 to 160: Enter name of file to process. and OPEN it.

Line 170: Load a line from the file.

Line 190: Add length of characters in line to total.

Line 210: Look at each character in the line.

Line 220: Take one character from the line. determined by FOR-NEXT counter, N.

Line 230: If the character is a space, and the last one was NOT a space, then a word
has ended.

Line 240: Make the last character equal current character.
Line 260: If at end of file, END.
Lines 290-350: Print results of count.

140 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

You Supply

User supplies text file to count.

RESULT

Number of words in file compiled.

1@ 1 RRREEEREEXRRRRRRRRKRK

20 ' % *

39 ' ¥ COUNT WORDS

AP v ox ¥

5@ 1 RXXRKEXXXXRRRKRXNRRX

6 ' e e
70 ! ++ VARIABLES ++

8pg ! CHAR: NUMBER OF CHARACTERS IN FILE
op ! Ch: CURRENT CHARACTER

190 ! L$: LAST CHARACTER

110 ' s

120 CLEAR 4@@@:DEFINT A-Z
1309 MAXFILES=1:CLS:PRINT:PRINT

140 ' *%% ACCESS RAM FILE *¥¥

150 PRINT"Enter name of file to count:"
160 LINEINPUT F$:0PEN F$ FOR INPUT AS 1
17@ LINEINPUT #1,A$

180 ' ¥%% ADD TO TOTAL *¥¥
190 CHAR=CHAR + LEN(A$)
200 ' *%%x LOOK AT EACH CHARACTER *¥¥

219 FOR N=1 TO LEN(A$)

2200 C$=MID$(A$,N,1)

230 IF C$=CHR$(32) AND L$< >CHR$(32) THEN CU=CU+1
240 L$=C$

25@ NEXT N

260 IF EOF(1) THEN GOTO 29¢

27@ GOTO 17¢

280 ' *%% PRINT RESULTS ¥x

ADD NEW CAPABILITIES

299 CLS:PRINT:PRINT

3PP PRINT"WORDS: " ;CU

319 AW=CHAR/CU

32¢ PRINT"AVG. LENGTH:";AW

339 SW=CHAR/5

34p PRINT"NO. 5-CHAR. WORDS:":SW

141

350 CLOSE
Global Search
WHAT IT DOES
Performs global search and replaces.
Variables

* LS: Right portion of program line
® RS: Left portion of program line
® RES: Replacement string.

How To Use The Subroutine

TEXT's FIND feature does not allow you to do global search and replacements in a
file without repeatedly entering commands. This subroutine will go through a file and
replace any string with any other string. It will do this globally, or ask you at each occur-
rence whether or not you want to replace this example. Thus, you can replace some

occurrences of a word, but leave others alone.

The program will also work on BASIC programs. You should store the program that
you want to do the global search and replace function on in .DO form. This is accomplish-
ed from BASIC by appending the .DO extension to the filename. Your new program,
with changes, will also be stored as a .DO file. You can load this into BASIC and then

SAVE as a .BA file that you can load and run.

Line-By-Line Description
Line 150: Clear 5000 bytes of string space and set maximum files to 2.
Line 170: Clear screen.
Lines 180 to 190: Enter name of file to be searched.
Lines 200 to 220: Enter string to search for.
Lines 230 to 250: Enter string to replace with.
Lines 260 to 300: Replace all?
Line 320: Set up output file name.
Lines 340 to 350: OPEN RAM files.

142 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Line 360: If end of FILE then END processing.
Line 380: Load line of file.

Lines 390 to 420: Look for search string.
Line 430: Take left portion of line.

Line 440: Determine length of search string.
Line 450: Take right portion of line.

Line 460: Add spaces where necessary to fill out line.
Lines 490 to 560: Ask if replace it.

Line 570: Set new search start point.

Line 580: Go back search same line for more.
Line 590: Construct new line.

Line 630: Print new file to RAM.

Line 670: CLOSE files.

You Supply

User supplies TEXT file to be processed. Will also work on programs saved in .DO
format.

RESULT

Global search and replace carried out.

1@ 7 RXRHIHHRHKARR KRR RRKR

20 ' % *

3¢ ' ¥ GLOBAL SEARCH ¥

40 ' % UTILITY *

50 ' % *

OF ! XHHHHRHRAKRRRERNRXRNRR

7B | e

8g ! ++ VARIABLES ++

99 ! R$: RIGHT PORTION OF PROGRAM LINE
19¢ ' L$: LEFT PORTION OF PROGRAM LINE
11¢ ' RE$: REPLACEMENT STRING

120 ' S$: STRING BEING SEARCHED FOR
139 !
P —

159 CLEAR 50@@:MAXFILES=2

ADD NEW CAPABILITIES 143

160 ' %%¥% DEFINE FILES #***

170 CLS:PRINT:PRINT

180 PRINT"Enter name of program to be processed :":PRINT
199 LINEINPUT F$

20@ CLS:PRINT:PRINT

219 PRINT"Enter string to search for :":PRINT

220 LINEINPUT S$

230 CLS:PRINT:PRINT

24p PRINT"Enter string to replace with :":PRINT

250 LINEINPUT RE$

26@ CLS:PRINT:PRINT

27¢ PRINT"Do you want to choose whether to replace each?™
283 PRINT"(Y/N)"

290 CH$=INKEY$:IF CH="" GOTO 290
309 IF CH}="Y" OR CH$="y" THEN CH=1
319 CLS

320 F1$=LEFT$(F$,4) + "GB.DO"
330 ' *%x OPEN RAM FILES *¥%

340 OPEN F$ FOR INPUT AS 1
350 OPEN F1$ FOR OUTPUT AS 2
36@ IF EOF(1) GOTO 660

370 ' ¥%¥ LOAD LINE %%x

380 LINEINPUT #1,A$

399 IF CH=1 THEN CLS

4LOp P=1

41 R=1INSTR(P,A$,S$)

420 IF R=0@ GOTO 630

430 L$3=LEFT$(A$,R-1)

440 E=LEN(S$)

450 R$=MID$(A$,R+E)

460 Y$=STRING$(LEN(RES),32)
47¢ IF CH=¢ THEN GOTO 590

48 ' *%% REPLACE? *%

(program continued)

144 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

490 B$=INKEY$

500 PRINT @@,L$;Y$;R$

510 FOR-N1=1 TO 5@:NEXT

520 PRINT @,L$;RE$;R$;

530 FOR N1=1 TO 5@:NEXT

540 PRINT @ 10@, "Replace it? (Y/N)"
55¢0 IF B$="" GOTO 490

560 IF B§=1"Y" OR B$="y" GOTO 590
570 P=INSTR(P,A$,S$) + LEN(S$)-1
580 GOTO 419

590 A$=L3$+RE$+R$

609 P=INSTR(P,A$,RE$) + LEN(RES)-1
610 GOTO 419

62@ ' *x% PRINT FILE %X

630 PRINT#2,A$

649 IF CH=@ THEN PRINT A$
659 GOTO 36¢

660 PRINT #2,A%

670 CLOSE

5

“

o

i

3

1001100

01010000

148 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

This section is for those at the threshold of advanced programming. All but one of
the routines in this part of the book deals with viewing and manipulating the individual
bits within single bytes in your computer’'s memory.

This book doesn't purport to explain assembly or machine language. However, these
routines will be helpful for those who are just beginning to explore this area, as well as
those who want to do some sophisticated, memory-efficient BASIC programming that uses
various “'spare” memory locations to store information (beyond the reach of the casual
intruder). Therefore, there won't be a lengthy discussion of how to use these subroutines.
If you don't know how already, they probably wouldn't be of much use to you.

As you know, each memory location stores a single, 8-bit byte. The binary numbers
look something like this:

19119111

In many cases, the value of this whole byte is of use to us. Using a full byte allows
us to have a total of 256 different “'states’ in that location and, therefore, 256 different
characters or conditions.

However, some functions do not have that many possibilities. A feature may be on
or off, for example. We could store a *'1” in that location (00000001 in binary) if the
feature is on and a "'0’* (00000000 in binary) if it is off. You can see, though, that the
other seven bits will never be used.

Boolean math is a way of performing certain bit-level operations. For example, when
two bytes are compared using the OR operator, the result will be a 1 whenever that bit
in either byte isa 1. ‘

For example:
Original byte: 19119119 OR
Comparison byte: 91109011
Resuit: 11119111
AND will produce a | when both are 1, as in the example that follows:
Original byte: 10119119 AND
Comparison byte: @1109@11
Result: 00190010

IF NOT A=1 will produce a zero (false) value, if A does equal 1. There are a number
of other Boolean operators, including exclusive OR (XOR). but none of these are used
in this book. What these subroutines let you do is manipulate individual bits, in order
to set certain registers which may not require an entire byte. Rather than POKing a
number into a memory location and changing the contents of bits that do not concern
you, use the “'soft”” POKing routines presented here to alter only the desired bit.

One of the subroutines in this section will allow PEEKing at any given bit within a byte.
Another will set any chosen bit to one, turning a feature “on.” A third will set any bit
to zero, turning that feature "off.” What if you don’t care whether the bit is on or off,
but would like to set it to the other condition? In computer programming, this is known
as a "toggle.” Hitting the switch one time turns the feature on or off, depending on its
previous condition. Hitting it again does the reverse. The “reverse bit"” subroutine will
toggle any bit you like for you. Another routine, "'Bit Displayer,” will show the status
of all the bits in a byte. In effect, it translates the byte into binary.

The final subroutine rounds off numbers, to any specified degree of precision. While
not dealing with bits, it is included in this section as a general number crunching utility.

BITS AND BYTES 149

Peelk Bit

WHAT IT DOES
Looks at status, 0 or 1, of any selected bit in a given byte.

Variables:

* ADDRESS: Location to PEEK
e BIT: Bit to examine
¢ V: Value of that bit, either 0 or 1.

How To Use The Subroutine

You can get maximum mileage from your computer's RAM locations by using many
for multiple purposes. A given location has eight bits, making up its byte. The status
of one bit might be used to indicate whether a certain feature is on or off. Another bit
in the same byte might be used to toggle some entirely different function.

Accordingly, it is useful to look at just one bit in a byte, to see its status. Your pro-
gram may take some action based on what is found, i.e., "IF V=0 THEN PRINT 'THE
FEATURE IS OFF.”

NOTE: The caret symbol (#) indicates the SHIFT 6 key.

Line-By-Line Description
Line 70: Define ADDRESS to PEEK.
Line 80: Define BIT to look at.
Line 180: Determine number to AND with byte.
Line 190: AND byte with P to determine status of the bit.
Line 220: Access subroutine.
Lines 230 to 240: Print resuits.

You Supply

Define BIT as the bit, 1-8, that you want to examine and ADDRESS as the memory
location to be PEEKed. V will indicate whether the bit is on or off by equaling either
1 orQ. '

RESULT
Status of bit displayed.

150 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

1@ 7 EXAEXAXRHRRHR

20 ' % *
30 ' * PEEK BIT *
4p 1 % *

5@ 1 ORERRRERNNRK

60 ' *x% INITIALIZE *%¥

7@ ADDRESS = 36879

89 BIT=3

99 GOTO 229

190 ' mmmmem e
11p ++ VARTABLES ++

12¢ ' ADDRESS: LOCATION TO PEEK
139 ' BIT: BIT TO EXAMINE
4 'V VALUE OF BIT

150
S

17¢ ' *%% SUBROUTINE #¥¥

18p P=BIT-1

19¢ V= (PEEK(ADDRESS)AND(2*P))/(2P)
20@ RETURN

21§ ' *%*¥ YOUR PROGRAM STARTS HERE *¥x

220 GOSUB 18¢

23p CLS:
24@ PRINT V
Bit Displayer
WHAT IT DOES
Shows pattern of all eight bits within a byte.
Converts the decimal value to binary.
Variables

* ADDRESS: Location to POKE
® BITS: Bit pattern.

BITS AND BYTES 151

How To Use The Subroutine

This subroutine will display all of the bits within a byte. Each position will be indicated
by a one or a zero.

NOTE: The caret symbol (*) indicates the SHIFT 6 key. You could also use this
subroutine to provide a quick way of converting a number from decimal (in the range
0to 255 only) to binary. Simply POKE the number to an unused memory location, and
then immediately call this subroutine to PEEK that address. Quite a roundabout way
of performing the task but useful if you are writing software that you deliberatly want
to be difficult to change, e.g., protection purposes.

This subroutine will also serve as a means of converting decimal numbers smaller than
255 to binary. Simply substitute your variable for PEEK(ADDRESS), and define the
variable as the decimal number you want to convert.

Line-By-Line Description
Line 70: Define address to be PEEKed.
Line 170: Null any previous value of BYTES
Line 180: Provide TAB to print result.

Lines 190 to 230: Repeat through each bit of byte, AND each bit with the next highest
power of two, and store the result in GS, which will store the on/off status of each bit.
Then, add GS$ to BYTES.

Line 270: Access subroutine.

Line 280: Print result.

You Supply

You must define ADDRESS as the memory location, in decimal, that you want to PEEK.
The subroutine returns BITS, which is a representation of all the bits within that byte.

RESULT

All bits within a byte are displayed.

10 7 RERERRKXKRKRXRKKX
20 ' * *
3@ ' * BIT DISPLAYER *
A L ¥
SO 1 ORMRRKRHEHKRAKRKKK

6@ ' *x% INITIALIZE *%¥

152 TRS-80 PORTABLE COMPUTER SUBRQUTINE COOKBOOK

79 ADDRESS = 36879

89 GOTO 260

17
109 ++ VARTABLES ++
119 ° ADDRESS: MEMORY BYTE
120 TO DISPLAY
130 BIT$: BIT PATTERN
14p ¢

150 1 e

16@ ' *¥%x SUBROUTINE *¥x

17¢ BIT$=n"r

18@ PRINTTAB(4)"™";

190 FOR N=7 TO @ STEP-1

20P V= (PEEK(ADDRESS)AND(2*N))/(2*N)
210 G$=MID$(STR$(V),2)

220 BIT$=BIT$+G$

230 NEXT N

24() RETURN

250 ' *x* YOUR PROGRAM STARTS HERE *¥¥

260 PRINT

279 GOSUB 170

280 PRINT"ADDRESS: " ;ADDRESS
290 PRINT PEEK(ADDRESS);" ="
30@ PRINT TAB(4)BIT$

Bit to One

WHAT IT DOES

Soft POKEs any desired bit within a byte so that it now
has the value of one, without changing any other bits.

Variables

* ADDRESS: Location to POKE

® BITS: Bit to change to one.

How To Use The Subroutine

This subroutine will take any bit within a byte, and change that value to one, regardless
of what it was before. None of the other bits within the byte will be altered. This ability

BITS AND BYTES 153

is useful for toggling certain features within a multipurpose byte that may also be used
to control other parameters of the Portable Computer.
NOTE: The caret symbol (*) indicates the SHIFT 6 key.

Line-By-Line Description
Line 70: Define ADDRESS to PEEK and POKE.

Line 80: Define BIT to change to a value of 1.
Line 170: POKE BIT to one.

You Supply

You must define ADDRESS as the memory location, in decimal, that you want to
POKE. BIT should be given the value of the bit, 1-8, that you want changed to a value
of one.

RESULT
Bit within a byte is changed to one.

10 1 KRR RRENRRH
20 ' % *
30 ' ¥ BIT TO ONE ¥
49 ' ¥ *
BO 1 ORRERRRRKRKKRKKRK

60 ' ¥%x INITIALIZE *¥%
7@ ADDRESS = 36878

89 BIT=3

99 GOTO 209

100 ' memmmmmeec e
119 ! ++ VARIABLES ++

129 ' ADDRESS: LOCATION TO POKE
139 ' BIT: BIT TO CHANGE TO ONE
149

150 " —cmemeeeecmcccm——————————

160 ' *xx SUBROUTINE k%

17¢ POKE ADDRESS,PEEK(ADDRESS)OR(2 BIT)
18(RETURN

19¢ ' *x% YOUR PROGRAM STARTS HERE *%¥

209 PRINT
219 GOSUB 17¢@

154 TRS5-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Biit to Zero

WHAT IT DOES

Soft POKEs any desired bit within a byte so that it
now has the value of zero, without changing any other bits.

Variables

¢ ADDRESS: Location to POKE
* BITS: Bit to change to zero.

How To Use The Subroutine

This subroutine will take any bit within a byte and change that value to zero, regardless
of what it was before. None of the other bits within the byte will be altered. This ability
is useful for toggling certain features within a multipurpose byte that may also be used
to control other parameters of the TRS-80.

NOTE: The caret symbol (*) indicates the SHIFT 6 key.

Line-By-Line Description
Line 70: Define ADDRESS to PEEK and POKE.

Line 80: Define BIT to change to a value of 0.
Line 170: POKE BIT to one.

You Supply

You must define ADDRESS as the memory location, in decimal, that you want to
POKE. BIT should be given the value of the bit, 1-8, that you want changed to a value
of zero.

RESULT
Bit within a byte is changed to zero.

10 1 RERRRAEKERRKRKR

20 1 % *
30 ' ¥ BIT TO ZERO *
Lp T % ¥

BEO T OXERXERHHRHRRNXX

BITS AND BYTES

6@ ' *¥%x INITIALIZE *%¥

7@ ADDRESS = 36879

8¢ BIT=3

9@ GOTO 200

u0 R ———

119 ++ VARIABLES ++

12¢ ' ADDRESS: LOCATION TO POKE

139 ' BIT: BIT TO CHANGE TO ZERO

140
160 ' *¥% SUBROUTINE ¥¥x

179 POKE ADDRESS,PEEK(ADDRESS)AND(255-(2*BIT))
18 RETURN

19@ ' *x* YOUR PROGRAM STARTS HERE ¥¥¥

29@ PRINT
21(GOSUB 170

Reverse Bit

155

WHAT IT DOES

Soft POKEs any desired bit within a byte so that it
now has the opposite value without changing any other bits.

Variables

o ADDRESS: Location to POKE
® BIT: Bit to reverse.

How To Use The Subroutine

This subroutine will take any bit within a byte and change that value to the opposite
of what it was before. If the bit was one, it will be changed to zero. A zero bit will be
given a value of one. None of the other bits within the byte will be altered. This ability
is useful for toggling certain features within a multipurpose byte that may also be used
to control other parameters of the TRS-80. Using this subroutine, you do not need to
know whether the feature is on or off. "Reverse Bit"* will change it to the other status

automatically.
NOTE: The caret symbol (*) indicates the SHIFT 6 key.

156 TRS-80 PORTABLE COMPUTER SUBRQUTINE COOKBOOK

Line-By-Line Description
Line 70: Define ADDRESS to PEEK and POKE.
Line 80: Define BIT to reverse.

Lines 170 to 180: Find out value of the bit then reverse that using OR.

You Supply

You must define ADDRESS as the memory location, in decimal, that you want to
POKE. BIT should be given the value of the bit, 1-8, that you want changed to reverse
in value. :

RESULT

Bit within a byte is reversed.

1P 7 REERERERRXRRRNR

29 ' % *
3@ ' * REVERSE BIT *
Ap ' ¥ *

5Q POoRRERRERRRNNNRER
6@ ' *%% INITIALIZE *¥x*

7@ ADDRESS = 36878

89 BIT=3

99 GOTO 21p

1 e ——
119 ++ VARIABLES ++

12¢ ' ADDRESS: LOCATION TO POKE
139 ' BIT: BIT TO REVERSE
140 '

L ———

16@ ' **% SUBROUTINE *¥X

17@ M=1-(PEEK(ADDRESS)AND(2"BIT))/(2"BIT)

18¢ POKE ADDRESS,PEEK(ADDRESS)AND(255-(2*BIT))OR(M*(2~BIT))
199 RETURN

20@ ' *%% YOUR PROGRAM STARTS HERE %¥X

219 PRINT
220 GOSUB 179

BITS AND BYTES 157

Binary to Decimal

WHAT IT DOES

Changes binary number to decimal equivalent,

Variables

¢ AS: Binary number in string form
e A: Decimal equivalent.

How To Use The Subroutine

Several of the subroutines in this book, and many more that you will prepare, will
require supplying decimal equivalents of binary numbers. For example, producing pro-
grammed character sets involves setting each bit of a byte either ON or OFF depend-
ing on the desired status of the equivalent picture element. Once the binary number
has been “designed.” the user needs the decimal equivalent for the appropriate POKE
statement. ‘

This routine will calculate the decimal numbers for you. Just enter the binary number

when asked. The routine will check to see that ONLY 1's and O's have been entered,
then figure the result.

NOTE: The caret symbol (*) indicates the SHIFT 6 key.
Line-By-Line Description

Lines 150 to 160: Look at each binary character, and raise any 1's to the power of
two indicated by its position within the byte.

Lines 200 to 210: Ask user for binary number to convert.
Lines 220 to 270: Check for presence of illegal characters.
Line 280: Access subroutine.

Line 290: Print result.

You Supply

You must enter the binary number to be converted.

RESULT

Binary number converted to decimal.

158 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

10 1 RAREHEHREKRRKRNRRHR

20 ' % *
30 ' * BINARY/DECIMAL *
4@ ' % *

5@ 7 RXEXRAKKREXXXHXNKNHR

6@ ' xx% INITIALIZE *%%

70 GOTO 2¢¢
]
og ! ++ VARIABLES ++

199 ' A$: BINARY NUMBER IN STRING FORM.
119 ' A: DECIMAL EQUIVALENT

120

1 I ——

14p ' %%% SUBROUTINE *¥¥

150 FOR N=1 TO LEN(A$)

160 A=A+ 2~VAL(MID${A$,N,1)
170 NEXT N

18p RETURN

199 ' *%* YOUR PROGRAM STARTS HERE *%%

209 CLS

21@ INPUT "ENTER NUMBER TO CONVERT: ";A$
22() FOR N=1 TO LEN(A$)

230 T$=MID$(A$,N,1)

249 IF T$="@" OR T$="1" GOTO 27¢

250 PRINT "NOT BINARY NUMBER"

260 GOTO 219

270 NEXT N

280 GOSUB 150

200 PRINT A$"=";A

Rounder

WHAT IT DOES

Rounds positive number and cuts off after
desired number of decimal places.

Variables

® A: Number to be rounded
* P: Digits desired to right of decimal point
* B: Rounded value.

BITS AND BYTES 159

How To Use The Subroutine

The TRS-80 is sometimes a great deal more accurate than we need. For example, our
car may get 24.3459121 miles per gallon, but we would be happy to know that it is close
to 24.3. This subroutine can be used to produce the desired degree of precision, while
still rounding the numbers so that the figure is as accurate as the significant digits reflect.

NOTE: The caret symbol (*) in the program listing stands for SHIFT 6 key.

Line-By-Line Description
Line 150: Define number to be rounded.
Line 160: Define number of digits to right of decimal desired.
Line 190: Add rounding factor.

Line 200: Take integer portion of number multiplied by 10 raised to P power, and
divide that by 10 raised to P power.

Line 230: Access subroutine.
Line 240: Print result.

You Supply

You should define A to be the number to be rounded. P will equal the number of digits
to the right of the decimal point that you want. The subroutine will return B, the rounded
value. If B has a fractional decimal part that ends in zero, the zero will not be printed, even
though that many decimal places have been requested. For example, if two decimal -
places are desired. 55.344 and 55.399 will be returned as 55.34 and 55.4 respectively.

RESULT

Number rounded as specified.

10 7 RERHARRKKRRX

20 ' % *

3¢ ' * ROUNDER *

L ' % *

5@ 1 AXRXAXRKKKRX

Bf ! e
70 ! ++ VARIABLES ++

83 ' A: NUMBER TO BE ROUNDED
99 ' P: DIGITS DESIRED TO

199 RIGHT OF DECIMAL POINT
11¢ ' B: ROUNDED VALUE
129

160 TRS-80 PORTABLE COMPUTER SUBRQUTINE COOKBOOK

140 ' *¥%% INITIALIZE *%x

150 A=55.534

160 P=2

17¢ GOTO 23¢

18@Q ' ¥¥% SUBROUTINE *¥¥

199 C=A+5.5%19"~(P+1)

200 B=INT(C*10"P)/19*P

210 RETURN

220 ' ¥¥% YOUR PROGRAM STARTS HERE *¥*

230 GOSUB 19¢
240 PRINT B

Glossary

Algorithm: A formula or method for performing a given task, such as
MPG=MILES/GALLNS.

Alphanumeric: Characters that are letters or numbers, as opposed to graphics
or control characters. Alphanumerics include the upper and lowercase alphabet, as well
as the digits 0 to 9.

AND: Boolean operator that compares each bit of a byte with the corresponding
bit in another byte and produces a 1 if both are equal to 1.

Append: To add to the end of, as to append one file onto another.

Array: A method of storing information in the computer’'s memory. An array can
have one dimension, as AS(n), with each element (or “"compartment’’) in the array storing
one piece of information. Arrays may also have more than one dimension, e.g..
AS(row,col), and store rows and columns of information. Multidimensional arrays are
like tables with horizontal and vertical slots.

Arrays may also be either of the numeric or string type. With a numeric array. each
element can store one number:; a string array can accommodate a single string per com-
partment but that string can be up to 255 bytes long and, therefore, contain more than
one character.

ASCII: American Standard Code for the Interchange of Information. A common code
used by most computer systems for storage of information, especially text files. It pro-
vides a basis for sharing files between unlike computers.

Binary: The base-two number system used by computers, which consists of 1's and
0's only.

Bit: The smallest unit of information that can be processed by the TRS-80: short for
binary digit. A bit represents either 1 or 0, with eight bits making up a single byte.

Boolean math: A type of algebra named for George Boole, which uses two-valued
variables (on/off true/false) suitable for use by binary computers like the TRS-80. Certain

161

162 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Boolean operators, such as AND and OR, are used with many subroutines to examine
memory registers on the bit level.

Cursor: The block character, or any other character, used to mark the current
printing position on the screen.

Decimal: Base-10 numbers: the commonly used number system. The TRS-80 asks
for decimal numbers, and returns decimal numbers for PEEK and POKE operations, even
though it processes them in binary form internally.

Decrement: To decrease a variable by one. However, the word is also commonly
used when the number is being decreased by some larger amount, as to "'decrement
by two.”

Default: Any value used automatically if no other value is supplied by the program
or user.

Download: To capture a file through telecommunications into the computer's
memory buffer and then to write it to tape or disk for permanent storage. Programs or
text files can be transmitted to your computer through a modem and then downioaded.

File: Any collection of information on disk, tape. or in RAM. BASIC and machine-
language programs, as well as text material, are all files.

Function key: The row of eight keys at the extreme top of the computer keyboard
which can be used as additional keys to direct control to subroutines or functions of
the programmer’s choice.

Increment: To increase the value of a variable by one. This is also commonly used
to denote increasing a variable by any amount, such as "'to increment by four.”

Initialize: To set variables to a desired beginning value at the start of a program
or at the beginning of a subroutine. For example:

1pB=0

20 INPUT A
30 B=B+A
4@ PRINT B
5@ GOTO 20

You would want to initialize B, as in line 10, each time the subtotal should be eliminated
and the addition started from zero again.

Garbage: Random information with no meaning. Every memory location contains
something,. If it is not meaningful information placed there by the computer or user,
it is termed garbage.

Merge: To combine two programs in such a way that their line numbers become
mixed. While MERGING may produce alternating lines in the resulting programs.
However, if there are duplicate line numbers, the program added will write over the
same lines in the original program.

GLOSSARY 163

Modem: Modulator-demodulator. A device that converts the computer's signals
to sounds that can be transmitted over telephone lines. The modem also receives
sounds and converts them back for the computer to use.

Null modem: An adapter plug or cable that reverses the SEND and RECEIVE lines
of two RS-232 serial interface devices. It enables two computers to be wired directly
together to communicate without one computer’s SEND signals being sent to the SEND
lines of the other and RECEIVE trying to RECEIVE from the other.

Offset: A way of addressing memory through the use of a relative address rather
than an absolute address. If a certain memory block is located between 30000 and
31000, we can POKE the first location in that block by either of the two methods
following:

19 POKE 30009,X

or

19 OFFSET = 30009

20 POKE OFFSET + 1,X

The second method is often clearer and can also be used when the memory location
defined by OFFSET can vary.

OR: A Boolean operator that is used to compare one byte with another on a bit for

bit level. If a bit and the corresponding bit in the other byte are either 1, OR will produce
a 1 as the result.

Parallel: A method of transferring data an entire bit at a time by sending each of
the eight bits along a separate parallel address line simultaneously. Serial transfer, on
the other hand, transmits each of the eight bits one at a time.

Port: One of the "windows’* used by the Portable Computer to talk to the outside
world. The RS232 interface is a type of port.

Prompt: A message to the computer user asking for information. The following
INPUT statement includes a prompt:

10 INPUT "ENTER YOUR NAME" ;A$

Pseudo-random: Numbers which appear to be random but which are actually
taken from a very long list of numbers. The list is so long that it takes a great deal of
time before it repeats, and since the computer can be made to start at a different position
in the list each time, the series seems to be different.

Random access: A method of getting data, either from memory or from some
mass storage device, which allows going directly to the information required and using
it, without accessing any of the other information in the file or memory.

Real-time clock: The built-in clock in the computer that keeps track of elapsed
time since the clock was last reset by the user.

164 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

Register: A location storing a status of some type. Some types of registers are
located in the computer's microprocessor and can be accessed only through machine
language. Some memory locations in the computer perform a register-like function, tell-
ing the computer whether a certain feature is ON or OFF, telling the volume of a sound
oscillator. or supplying some other status report.

Rheostat: A variable resistor, like those used in paddles, which lets more electricity
flow when turned one way and less when turned the other.

RS-232:A serial interface device that allows the computer to communicate with
devices like printers or modems one bit at a time.

Sequential: A serial file access method in which each piece of information is stored
after another and must be written or accessed in that fashion.

Serial: Sequential data storage or transfer.

String delimiter: A character that the computer recognizes as the “end” of a
given string input. The most common string delimiters are commas and quotation marks.

String variable: A variable that can store alpha information only. Strings can in-
clude numbers, punctuation marks, and graphics, but the computer recognizes them
only as characters, not as values.

Subroutine: A program module that performs a specific task, called through the
GOSUB statement and ending with RETURN, which directs program control back to the
instruction following the GOSUB.

Toggle: A feature that can be either ON or OFF is sometimes “toggled” between
the two, like a light switch.

Upload: To store a file from disk or tape in the computer's memory buffer and then
send it through telecommunications to another computer, which can then write it to
tape or disk for permanent storage {downloading).

A
algorithm 76, 100
array 9, 11-12, 34-35, 54, 65,
68-70, 77, 82, 91-96

ASCII 90, 130
B
BASIC Extension Subroutines
- 128-144
baud 26, 94

binary 148, 157

bit 148—~151, 153-156

boolean 148

Business Subroutines 100-124
byte 148-151, 153, 154, 157

C
cards 76-77
Clock Subroutines 16-31
CODE 11
coin 74, 81-82
controller 2
counter 93, 96
cursor 2-6, 89, 11~12

D
Data File Subroutines 90-97
default 121
delay 46, 85-86
dice 74, 83~84
dummy 75

Indesx

165

F
file 54, 65, 67. 69, 90-94
function key 16, 27, 54-55

G

Game Subroutines 2—-13, 74—-86
GRAPH 11
graphics 11, 77

I

Input Subroutines 59-64

integer 80, 159

interpreter 90

interrupt 16,19, 22-23, 25, 27-29,
55

Interrupt Subroutines 16-31

J
joystick 2—-4, 6,9, 11, 74
Joystick Subroutine 2—13

L
logical 90

M
menu 3, 55, 100, 118
microprocessor 16
modem 16, 25-26
music 34

(0]
octave 34,37-38,40-41,43-45,47, 49

166 TRS-80 PORTABLE COMPUTER SUBROUTINE COOKBOOK

P
paddles 2, 5, 8
Paddle Subroutines 2-13
parameter 101
parity 26
PEEK 54-57, 148-149, 151,
153~155
pitch 37
pseudorandom 74, 80

R

RAM 54-55, 57, 67, 70, 90-93, 95,

128, 142, 149
random 43, 74-77, 79, 80-81, 83
real-time clock 16-17
register 16

S
screen 2—-4, 6,9, 11-12, 20, 22, 26
screen memory 35, 54, 56-58,

62, 67
seed 7475
sequential 90, 92, 94, 96
sort 54, 65, 67-68, 132
Sorting Subroutines 6469
sound 11, 34-35, 37-45, 47-48
sound effects 34-50
Sound Subroutines 34-50
speaker 34-35
statistical 82

T
template 118

TEXT 128, 139, 141
toggle 149, 154
transaction 100

U
update 93, 95-96

Whet Your Programming Appetite With a “Cookbook” Approach
to Writing Quality Programs on the TRS-80 Portable Computer!

Acclaim from prepublication reviewers:

“This book can’t miss! It's well-organized and well-written. . .even the novice can
handle the programs!”

“The writing style and level of presentation are excellent. . .the author has a natural
talent for communicating computer lingo and writing for a specific audience —the
experienced beginner!”

Here's a programming “cookbook” that offers a potpourri of machine-specific
subroutines designed to help improve your programming expertise on the TRS-80!
This unique programming guide includes 70 ready-to-merge subroutines plus pro-
gramming tips to make your own programs sizzle! These easy-to-follow subroutines
are ingredients to “recipes” for your programming proficiency, designed to take the
mystery out of using function keys, designing character sets, joystick action, sound,
and other special features of the TRS-80 Portable Computer. No more “stewing’ over
exotic, topheavy math functions and statistics! Complete with line-by-line descrip-
tion of each subroutine presented, this book also includes:

% Subroutines for generating musical notes or adding sound effects within your
own programming!

* Subroutines for business/financial users and advanced programmers as well!
Subroutines for adding your own special characters when the TRS-80s are
not enough for your needs!

* Tips on routines to make your games of arcade-quality!

Plus— a comprehensive glossary and index!

Simulating Joysticks And Paddles/Using The Clock And Interrupts/Using Sound/
Basic Tricks/Game Routines, Data Files/Business And Financial Subroutines/Add-
New Capabilities/ Bits and Bytes

ISBN 0-89303-904-7

