i
TRS-80 Zis
MORE THAN BASIC

BY JOHN PAUL FROEHLICH

ﬁ i Mmm CONTINUING EDUCATION SERIES'™
Y edited by Larsen, Titus & Titus

The Blacksburg Continuing Education™ Series

The Blacksburg Continuing Education Series™ of books provide a Llaboratery—or experiment-
oriented approach to electronic topics. Present and forthcoming fitles in this series include:

Basic Business Software

Circuit Design Programs for the TRS-80

Design of Active Filters, With Experiments

Design of Op-Amp Circuits, With Experiments

Design of Phase-Locked Loop Circuits, With Experiments

Design of Transistor Circuits, With Experiments

Design of VMOS Circuits, With Experiments

8080/8085 Software Design (2 Yolumes)

8085A Cookbook

555 Timer Applications Sourcebook, With Experiments

Guide to CMOS Basics, Circuits, & Experiments

How to Progrom and Interface the 6800

Microcomputer—Analog Converter Software and Hardware Interfacing
puter Inferfacing With the 8255 PPl Chip

NCR Basic Electronics Course, With Experiments

NCR Data Communications Concepts

NCR Data Processing Concepts Course

NCR EDP Concepts Course

PET Interfacing

Programming and Interfacing the 6502, With Experiments

6502 Software Design

6801, 68701, and 6803 Microcomputer Programming and Interfacing
6809 Microcomputer Programming & Interfacing, With Experiments
TEA: An 8080/8085 Co-Resident Editor/Assembler

TRS-80 Interfacing (2 Volumes)

In most cases, these books provide both text material and experiments, which permit one to
demonstrate and explore the concepts that are covered in the book. These books remain among
the very few that provide step-by-step instructions concerning how to learn basic electronic con-
cepts, wire actual circuits, test microcomputer interfaces, and program computers based on popu-
lar microprocessor chips. We have found that the books are very useful to the electronic novice
who desires to join the “electronics revolution,” with minimum time and effort.

Additional information about the ““Blacksburg Group’ is presented inside the rear cover.

Jonathan A. Titus, Christopher A. Titus, and David G. Larsen
“The Blacksburg Group”

Bug symbol trademark Nanotran, Inc., Blacksburg, VA 24080

TRS-80°¢
More Than BASIC

by
John Paul Froehlich

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA,

Copyright © 1981 by John Paul Froehlich

FIRST EDITION
FIRST PRINTING-1981

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.
While every precaution has been taken in the
preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-21813-5
Library of Congress Catalog Card Number: 81-52158

Edited by: Richard Krajewski
Mlustrated by: T. R. Emrick

Printed in the United States of America.

G

G

=

Preface

Only recently has it been possible to manufacture a computer
that is truly portable. Thus the microcomputer revolution has been
launched, and society must learn to cope with this latest techno-
logical rocket. Computer literacy is as necessary for survival as
reading, writing, and arithmetic. The literacy is obtained, like other
skills, through exposure and practice. Learning to use the computer
and learning to program the computer are two different activities.
Using the computer with prepackaged programs that provide spe-
cific functions is definitely an advantage, but to know how to pro-
gram the computer to solve each unique problem is the level of skill
I am addressing.

Programming may be accomplished by using the various pro-
gramming languages available for computers. Some of these lan-
guages are transportable; that is, they are recognized by different
machines with few changes, if any. BASIC, Pascal, FORTRAN, and
COBOL are examples of such transportable languages. The skill I
want the reader to acquire is more fundamental, for it involves pro-
gramming in the instruction code of the processor. The instruction
code is what interprets the higher level languages, such as BASIC,
to a level that the processor can understand. In this case, a micro-
processor will be studied because of its small size. In general, the
instruction code is not transportable.

What are the advantages of using instruction code? There are
many, for instance, speed of execution and conservation of memory.
But in my opinion, the most important advantage lies in the funda-
mental understanding of how a computer operates, which is neces-
sary in the use of instruction code. The concepts of programming and
the skills acquired can be applied in all programming situations
from the application of the transportable languages to the use of
those esoteric codes defining the instruction set of a unique micro-
processor. This understanding makes programming in any of the
computer languages much easier, and the mystery of what is hap-
pening inside those boxes that contain computers becomes clear.
The relationship between hardware and software as an integrated
system is made understandable. Equipped with that knowledge,
you are better able to design dedicated systems to perform specific
applications using the new technology for intelligent and flexible
control.

To learn this skill, it is necessary to have a development system.
A development system is just that—its function is to help you de-
velop systems. Generally, a particular microprocessor must be chosen
for the controller to be used in the final design. It is helpful, but
not necessary, to have this same microprocessor as part of the de-
velopment system. If it is the same, a simulator to simulate the de-
sired controller is not necessary. In this case, I have chosen the Z-80
microprocessor manufactured by the Zilog Corporation. It is also
available from several other manufacturers. The instruction codes
of this microprocessor are also executable to a large extent, but not
fully, on the 8085 and 8080 microprocessors manufactured by the
Intel Corporation. The popularity of the Z-80 microprocessor makes
it an ideal choice for a system controller. The development system
is obtained by altering a Radio Shack TRS-80 Model T or Model II1.
We are fortunate in that the TRS-80 uses the Z-80 as its controlling
microprocessor. The alteration to the TRS-80 can be accomplished
by loading object code from a tape cassette or disk, or by removing
the operating system in the read-only memory supplied with the
BASIC machine, and replacing this memory with preprogrammed
memory containing the object code that supports the FROLIC de-
velopment system.

A microprocessor does not make a development system, but a
monitor to exercise the controlling microprocessor provides us with
a tool to aid in writing software. Such a monitor is described in
this book. Chapter 1 provides a detailed description of the hard-
ware of both the Model I and Model III systems. Chapter 2 de-
scribes the FROLIC monitor and the commands available to the
user with this monitor. Some hardware is described that allows the
inclusion of a single-stepping feature, an attractive additional com-
mand to aid in system development. The ability to obtain written
text or “hard copy” used to trace system development is provided
in Chapter 3. Chapter 4 describes the hardware for programming
erasable programmable read-only memory (EPROM) devices. This
is a state-of-the-art programmer with features that are not normally
found on the commercial equivalents at one hundred times the cost.
The source code for driving the programmer for programming the
most popular EPROMs is also given. In addition, the appendixes
provide all the source code for the monitor. You are encouraged to
use this code in any manner you deem appropriate. With a little
study and acquired skill, it is hoped that you will alter the monitor
to customize it for your own applications.

Joun Pavur FrOEHLICH

<

&

Acknowledgments

A special thanks goes to Lewis Winston Grower of United Tech-
nology, who helped with the presentation of the material in this
book. Others who also aided are Jon and Christopher Titus, of the
Blacksburg Group, Katherine Delventhal, Nancy Klock, Scott Math-
ein, Lenard Lazar, Anthony Lincoln, and Ralph Zegarali. In addi-
tion, acknowledgments are extended to those students at the Uni-
versity of Hartford who have used the monitor and made suggestions
resulting in the format as described in this book. Finally, gratitude
is given to Jack Summers, who provided the core software for the
EPROM programmer. 1 bear the full responsibility for the contents
and organization.

Joun Paur FROEHLICH

Contents

CHAPTER 1

More Tuan BASIC . e e e
Model I TRS-80®—TRS-80 Model III—Modification of the TRS-80~
Conclusion

CHAPTER 2

TaE MONITOR
Command Format—Command Execution—S Command—I Command—
D Command-G Command—X Command—X Command (Modify)—E
Command—-C Command-T Command—A Command—F Command—
Q Command—-@ Command—H Command-N Command—O Command
—M Command—V Command—-W Command—R Command~L, P, and U
Commands—Buffer—BS and B Commands—Z Command (Single-Step)

CHAPTER 3

Harp Copy FroM THE MONITOR .

Serial Interface Driver Code for RS-232C—Serial Input—Serial Interface
Receiver for RS-232C

CHAPTER 4

PROM PrOGRAMMER
Erasable Programmable ROMs — Programming Considerations — Single-
Voltage EPROMs — 8755 EPROM 1/0 Chip — EPROM Programmer
Hardware — Programming the 2708 EPROM — Programming the 2716
EPROM — Programming the 8755 EPROM

11

85

. 97

APPENDIX A

CoMMAND SEQUENCE TABLE

APPENDIX B

REFERENCES .

APPENDIX C

HARDWARE AND SOFTWARE SUPPLIER .

APPENDIX D

Source Listine For FROLIC MONITOR FOR THE
Moper I TRS-80

APPENDIX E

Sourck Listing For FROLIC MoniTor FOR THE MoODEL 111
TRS-80 .

APPENDIX F

Source ListinG For THE 2708 EPROM PROGRAMMER .

APPENDIX G

Source ListinG For TEHE 2716 EPROM PROGRAMMER .

APPENDIX H

Source Listine For THE 8755 EPROM PROGRAMMER .

INDEX

121

125

127

.129

157

185

197

.207

217

i,

CHAPTER 1

More Than BASIC

One wonders about the number of applications for which the
TRS-80° system can be utilized. Two models are of particular con-
cern. These are the Model I and Model III, as shown in Figs. 1-1
and 1-2. As originally conceived by Radio Shack, the computer was
constructed to execute programs using the BASIC language. BASIC,
in the Radio Shack implementation, is an easy-to-use high-level lan-
guage. (It is called high-level because while it is more easily under-
stood by humans, it is not directly understandable by the computer.
It must be translated into low-level instruction code, also known as
machine code.) Each program line is scanned by an interpreter,
translated, and then processed at program execution time. This
method of execution wastes processor cycles and consumes a rela-
tively large amount of memory. (This can be easily demonstrated
by running BASIC programs that require a considerable amount of
computation and comparing them with a similar machine code pro-
gram.) Many applications would benefit if they were programmed
in the native instruction set of the processor, rather than in the
higher level language that needs an interpreter. This would not only
decrease the time of execution, but would reduce the memory re-
quirement necessary to execute the same operation. The BASIC in-
terpreter that consumes a considerable portion of memory would
no longer be needed. Though machine code is more difficult to write
than BASIC, the speed and memory factors make using the instruc-
tion set worth the extra effort.

A way to reduce the awkwardness of writing in hard-to-under-
stand machine code (which is made up entirely of numbers) is to

*TRS-80 is a registered trademark of the Tandy Corporation.

1

Fig. 1-2. TRS-80 Model 11l microcomputer system.

use assembly language. Assembly language assigns a very short
mnemonic, or abbreviation, to every machine code instruction. This
way, vou can use the abbreviations instead of the numbers. An inter-
preter for the assembly language, called an assembler, translates the

12

%3
E N

abbreviations into machine code. Most of the speed and memory of
straight machine code is retained while writing difficulty decreases.

Unfortunately, Radio Shack does not fully support the use of their
system for machine code or assembly language programming. At the
time of this writing, the programs that are available consist of T-
BUG and an editor/assembler (EDT/ASM) for the TRS-80 series
which includes the Model I and Model III, Level I and Level II
machines.

T-BUG is a rather primitive monitor that allows the execution of
machine code. This monitor is extremely sensitive to operator error,
and after several hours one tires of its awkwardness.

The extremely versatile editor/assembler available from Radio
Shack, which is used to write assembly language programs, is ham-
pered because the execution of this program relies on the tape sys-
tem. As a consequence, the editing and assembling process is quite
slow, particularly for the Level I system because of its slower cas-
sette data rate of 250 bits/second. The Level II system has the ad-
vantage of increased cassette speed, which is extended to 500 bits/
second. Still, the use of this system for program development is far
from desirable. Conditions improve considerably if one is fortunate
enough to own an expansion interface that includes the disk oper-
ating system. However, the editor/assembler is not available from
Radio Shack in a form that will operate with this system, but it is
available from sources other than Radio Shack, thus allowing the
use of the disk system in program development. It should be noted
that Radio Shack does supply an improved monitor with the disk
system (D-BUG). However, it has one major flaw: it does not exe-
cute programs in real time. This makes it extremely difficult to de-
bug critical time-delay loops. (This is explained later.) Monitors
are available from other sources and many are quite good. Tt was
with some of this software that the system presented was developed.

The approach in this book is entirely different. The intent is to
provide a complete turnkey development system that rivals those
supplied by the major microprocessor manufacturers. (A turnkey
system is one that is so complete that all the user needs to do is
“turn the key” to begin operation.) To have such a turnkey opera-
tion it is necessary to alter the read-only memory in the TRS-80
system. If such a “drastic” modification is not desired, then the user
may load the software provided into a convenient set of locations
and still have a powerful system. It seems that the only disadvan-
tage of this approach is the additional overhead of loading the oper-
ating system every time it will be used. If a user chooses to alter
the read-only memory (a procedure described later in this chapter)
he should be aware that before any repairs are made on the com-

13

puter, the original read-only memory (ROM) must be replaced in
the keyboard unit before the equipment is returned to a Radio Shack

service center. Radio Shack charges an additional fee for servicing
if the seal on the keyboard unit has been broken. I have found the

need for service on the keyboard unit to be rare. One can always
use the software approach or use an external ROM technique. The
advantage of placing the monitor in ROM is one of instant avail-
ability as soon as the system is turned on; otherwise you must rely
on the system-command loading procedures, an adequate compro-
mise. If one is sure he has a reliable unit, the ROMs in the keyboard
unit may be replaced with the development system ROMs, which
now provide turnkey operation.

The reader is free to determine the extent of modification to be
performed on the TRS-80 system. In order to help you to create a
development system from your TRS-80, the architecture of various
models is described.

As received, a Model I or Model III of the TRS-80 consists of a
keyboard with electronics and a video monitor. In addition, the
Model I includes a cassette-style tape recorder. The major differ-
ence between these two models is that the Model III is a self-
contained unit with provision made to add floppy disks internal to
the system. The memory structure of both models is exactly the
same with respect to memory allocations (memory-mapped video
and keyboard, read/write memory, ROM, etc.); however, the units
differ in level structure by the amount of ROM actually installed
in them. If the unit is a Level I system, the BASIC interpreter ROM
occupies the lowest 4K of memory space, and the next 8K of mem-
ory is uncommitted. In the Level II unit the BASIC interpreter ROM
occupies the first 12K of memory space. The Model III TRS-80 uses,
in addition, the next 2K of ROM starting at memory locations 3000H
to 3800H (H = hexadecimal) for system utilities. With the exception
of the tape storage and retrieval system, input and output operations
are accomplished through memory locations. That is, the data from
the keyboard is entered into the computer by reading memory loca-
tions 3800H through 38FFH. Data generated by the processor is dis-
played to the video screen by writing into locations 3CO0H through
3FFFH. In general, the second half of the fourth 4K block of mem-
ory starting with 3800H through 3FFFH is used for input and output.
In addition, the Model I requires 32H locations immediately fol-
lowing 3800H for communicating with the disk, real-time clock, cas-
sette relay output latch, and the printer interface. Not all of these
locations are used by the system, but the placement of the memory
references effectively removes this space from being available for
general-purpose use.

14

3

-5,

Memory space starting at 4000H and above is available for gen-
eral memory purposes. The 4K machines have 4K dynamic read/
write (R/W) or random-access memory (RAM) devices occupying
4000H to 4FFFH, and 16K machines have 16K dynamic read/write
devices occupying 4000H to 7FFFH. In both models the total mem-
ory expansion capability is to 48K. The Model I microcomputer can
readily be expanded from 4K to 16K by a slight internal alteration
to the keyboard unit which involves changing the 4K R/W dynamic
memories (a set of 8 IC chips) to 16K devices, and the reconfigura-
tion of 2 DIP shunts. The DIP shunts can be replaced with dual in-
line switches to allow for making these changes. Further expansion
to the memory is possible with an expansion interface that can be
your own design or the expansion unit available from Radio Shack.
The expansion unit attaches to the TRS-80 using the 40-line edge-
card connector. Memory expansion for the Model III unit is much
simpler, since the memory expansion capability is part of the desk-
top unit.

To help clarify the memory structure of the two models, a mem-
ory map of the TRS-80 system is shown in Table 1-1.

As stated earlier, the significant difference between the Level 1
and Level II systems is the 12K BASIC read-only memory (ROM).
The 12K ROM supports an expansion interface and increased tape
speed for program storage from 250 b/sec (bits-per-second) for the
Level I machine to 500 b/sec for the Level II machine. In addition,
the Model III can operate at tape speeds of 500 b/sec and 1500 b/
sec. If BASIC is “your language,” then the ROM as supplied by
Radio Shack should be considered because the disk BASIC does not
use all of the utilities or subroutines provided in the ROM. A total
commitment to the Radio Shack system must be considered if ex-
tended BASIC programming is required.

There is no intention to use BASIC in the development system
that will be described here, so it will not be discussed further.
Attention will be focused on the architecture of the system that is
the same whether it is a Model I or a Model III system.

Some of the differences and similarities between the various TRS-
80 models have been described. More details of these models will be
given later in this chapter. The important similarity that we wish to
emphasize is that the computational “heart” of the two systems is
identical. The computational device employed is a device called a
microprocessor. This device is a complex design of thousands of tran-
sistors and resistors in an economical, and physically small, package.
The TRS-80 exploits the microprocessor’s computational character-
istics to the extent that the TRS-80 is, indeed, a microcomputer.

Industrial pressures did not cause the development of the micro-

15

Table 1-1. Memory Maps of Model | and Model 111
TRS-80 Systems

Hexadecimal Model § Model i
Address Levell Level it Level ! Level {it
0000-0FFF 4K BASIC 12K BASIC 4K BASIC 12K BASIC
1000-1FFF ROM ROM ROM ROM
2000-2FFF
3000-3FFF { 1
3000-37DF 2K ROM for
37E0-37FF System Utilities
Memory-Mapped | Memory-Mapped | Memory-Mapped Memory-Mapped
37E8 Printer 37E0 Disk Select | 37E8 Printer 37E8 Printer
37E4 Relay

37E8 Printer
37EC CMD/Status

37ED Track
37EE Sector
37EF Data
3800-3BFF | Keyboard Keyboard Keyboard Keyboard
Matrix Matrix Matrix Matrix
3C00-3FFF | Video Video Video Video
Display Display Display Display
Start of Read/Write Memory
A000-4FFF 4K Dynamic RAM Ends at 4FFFH
5000-5FFF 8K Dynamic RAM Ends at 5FFFH
6000-7FFF 16K Dynamic RAM Ends at 7FFFH
End of Available RAM in Model |
8000-BFFF 32K Dynamic RAM Ends at BFFFH
Model | Requires Expansion Interface
COO0Q-FFFF 42K Dynamic RAM Ends at FFFFH

processor to be used for the development of home computers. Indus-
trial pressures were focused at producing a device that would sim-
plify the development and/or increase the intelligence of controllers
while simultaneously reducing costs. The purpose of an intelligent
controller is to reduce the complexity and cost of performing a spe-
cific operation. In industry, the less complexity involved, the greater
the reliability and the greater the ease of manufacture.

To keep the cost of an intelligent controller low, most controllers
do not include a full ASCII keyboard, a crt monitor, nor the BASIC
language. Instead, a limited amount of external controls and indi-
cators, if any, are usually involved. Instead of BASIC programming,
only the machine language of the microprocessor is used. The use of
the machine language of the microprocessor is more primitive in
its structure when compared to BASIC. However, it is more flex-
ible, faster, can be made to operate in real-time, and uses far less

16

&

v

memory for a programmed function. (Remember that the Level 1
uses 4K of memory and the Level II uses 12K of memory alone to
hold the BASIC interpreter and the system utilities.)

Some examples of intelligent controllers using microprocessors are
found in heating controllers, automated test equipment, automotive
products, sewing machines, microwave ovens, and the tremendous
variety of hand-held electronic games presently appearing on the
consumer market. When industry decides to build any of these de-
vices, a development system is usually employed. A development
system allows the designer to develop and test the software used
to control a microprocessor, to emulate the microprocessor, and to
examine the execution of the control function in process. Typically
a development system runs into thousands of dollars. There is, how-
ever, an inexpensive solution.

The solution is to modify a TRS-80 for the following reasons.
First and foremost is that the microprocessor used in the TRS-80
system is a Z-80, designed and manufactured by the Zilog Corpora-
tion and second-sourced by the Mostek Corporation. Many of the
Z-80 microprocessor instructions are directly compatible with the
Intel 8080 and 8085 microprocessors, second-sourced by many com-
panies. These three devices are used extensively by industry in con-
trol applications. It is true that both the 8080 and 8085 have fewer
instructions, and there are hardware differences between the Z-80
and the Intel devices. However, there are more similarities than dif-
ferences, and the ease of making adjustments encourages the use of
the development system to be described, whichever processor is
chosen. The software and optional hardware features which are
presented in this book allow the system to have all the capabilities
of a comprehensive development system. For turnkey operation this
involves the purchase of erasable programmable read-only memory
(EPROM) at an additional cost of about $20. (A preprogrammed
version of this EPROM is available. The address of the supplier is
given in Appendix C.) The last consideration is the availability of
the data, address, and control lines at the edge-card connector of the
keyboard unit. It is also possible to implement the TRS-80 unit in
the actual control application and utilize its internal Z-80 as the
controlling microprocessor. If this is done, the crt and keyboard are
available for the small investment in the Radio Shack TRS-80 com-
puter which includes 4K RAM and either 4K, 8K, 12K, or 14K ROM
capabilities.

To take advantage of the TRS-80 as a development system, one
should be familiar with the Z-80 processor. The best source for this
information is one of the manufacturer’s technical reference man-
uals for this device. (See Appendix B.) The link of the Z-80 micro-

7

processor to the external world with the TRS-80 is either the 40-line
(Model I) or the 50-line (Model III) edge-card connector. The sig-
nals present on these edge-card connectors are listed in Tables 1-2
and 1-3. The use of these connectors is one of the most significant
differences between the Model I and Model III TRS-80 Radio Shack
systems. Historically, the Model I system was first available. There-
fore, the Model I system is first covered in the “in-depth” discussion
which follows. The edge-card connector is presented first, and then
the details of the port assignments, video access, graphic capabilities,
keyboard input, and information storage and retrieval are presented.
The Model III description follows; it concentrates on the significant
differences between the two models.

MODEL | TRS-80

Shown in Table 1-2 are the signals present at the 40-line edge-
card connector. Most of the lines are buffered, and it may be desir-
able to buffer those remaining lines if you are going to interface
to this connector. Let’s examine each of the terminations at this edge
connection.

The terminations from the processor board fall into the following
categories:

1. Data

2. Address

3. System Control
4. Interrupt

Data

The first terminations to be considered are the data lines. These
eight lines are bidirectional, and therefore data is available from the
processor or made available to it. These lines are buffered using
741.5367 (DM8097) TTL circuits, which are hex three-state nonin-
verting buffers. As the buffers are three-state, the TEST line controls
the three-state function while the microprocessor determines the di-
rection of the data flow. Even though the TEST line has control over
the data buffers, this is not its only function.

Address

There are 16 address lines which are all output lines. This gives
the processor the capability of addressing 65,536 locations. The same
type of buffer is used on these lines, and the activation is controlled
by the TEST signal.

18

L

.

Table 1-2. Edge-Card Connections for Interfuce Signals
Available From the TRS-80 Model | System

Signal
Pin Name Description
RAS/ Row Address Strobe Output for 16-Pin Dynamic RAMs
SYSRES/ System Reset Output, Low During Power Up Initialize or
Reset Depressed
3 cas/ Column Address Strobe Output for 16-Pin Dynamic RAMs
4 Al0 Address Output
5 A12 Address Output
6 A3 Address Output
7 A5 Address Output
8 GND Signal Ground
9 All Address Output
10 Al4 Address Output
11 A8 Address Output
12 out/ Peripheral Write Strobe Output
13 WR/ Memory Write Strobe Output
14 INTAK/ Interrupt Acknowledge Output
15 RD/ Memory Read Strobe Qutput
16 MUX Multiplexer Controi Output for 16-Pin Dynamic RAMs
17 A9 Address Output
18 D4 Bidirectional Data Bus
19 IN/ Peripheral Read Strobe Output
20 D7 Bidirectional Data Bus
21 INT/ Interrupt Input (Maskabie)
22 D1 Bidirectional Data Bus
23 TEST/ A Logic 0 on TEST/ input Three-States AQ-A15, D0-D7,
WR/, RD/, IN/, OUT/, RAS/, CAS/, MUX/
24 Dé Bidirectional Data Bus
25 A0 Address Output
26 D3 Bidirectional Data Bus
27 Al Address Output
28 D5 Bidirectional Data Bus
29 GND Signal Ground
30 Do Bidirectional Data Bus
3 A4 Address Bus
32 D2 Bidirectional Data Bus
33 WAIT/ Processor Wait Input, to Allow for Slow Memory
34 A3 Address Output
35 A5 Address Output
36 A7 Address OQutput
37 GND Signal Ground
38 A6 Address Output
39 GND Signal Ground
40 A2 Address Output
¥ 3 5 7 " 13 13 w 18 2 3 %5 ke i 3t 3 35 37 39
I |0 0 ot 5 N e o O o 6 o N e O O o 0 e
O L e e T o o O

VIEW FROM REAR

NOTE: [means Negative {Logical 0) True Input or Output

System Control

The next four signals control the direction of data flow to/from
the processor at the correct time in the processor cycles. They are
obtained from the CPU control system signals originating from the
Z-80 microprocessor. These signals, as defined by the Zilog Cor-
poration, are memory request (MREQ/), input/output request
(IORQ/), read (RD/), and write (WR/). These are not the sig-
nals at the 40-pin edge connector, but are signals generated by the
Z-80 chip. (The */’ is used to indicate active-low, logic zero asser-
tion of these signals.) Proper gating of these lines gives us the four
TRS-80 bus control signals: read (RD/), write (WR/), input (IN/),
and output (QUT/). These signals are active, or asserted, in the low
state, thus the “slash” (a convention used throughout this book to
indicate an active low condition). The RD/ and WR/ are used for
memory reference instructions; the IN/ and OUT/ are used for pe-
ripheral control to port locations. These signals make interfacing to
the computer bus a minimal effort.

Intervupt

The next lines considered are the interrupt (INT/) and interrupt
acknowledge (INTAK/). As delivered, the TRS-80 system allows
using only one of the three interrupt modes that the Z-80 micro-
processor supports. The expansion interface that supports the disk
operating system contains a real-time clock that provides a 25-ms
interrupt to the INT/ line for some real-time apphcatlons The TRS-
80 system uses this signal to support a 24-hour clock. It is important
to realize that if the expansion interface is connected and the inter-
rupt is enabled through a software command, a system “crash” will
result if software to support the requested interrupt is not present
in memory. Radio Shack has provided the software on the Level II
system to support the clock. However, once you modify the system
with the new software (a software modification here, not hardware)
a potential loss of control is possible. The single-step feature in the
FROLIC monitor uses the interrupt to end execution of a single in-
struction. The expansion interface 25-ms clock must be altered to
prohibit interrupts if the single-step option is desired.

Having the full interrupt features of the Z-80 microprocessor is
not necessary for successful use of the FROLIC monitor. However,
in some applications, the availability of the full interrupt features
may be useful.

Two interrupt modes that the Z-80 uses cause a vector to the ad-
dress 0038H. These are the mode 0 and mode 1 interrupts. At power-
up and reset, mode 0 is automatically enabled. Even though the

20

e

il

mode is established, the microprocessor will not respond to inter-
rupts unless the interrupt enable instruction (EI) is executed using
the proper software command. With mode 0, it is necessary to strobe
an FFH onto the TRS-80 data bus using the INTAK/ to cause a
vector to 0038H. Up to eight restart vectors may be strobed on the
data lines. In fact, the instruction does not need to be one of the re-
start instructions (RST), but any valid instruction in the Z-80 in-
struction set may be used. Further details can be obtained from the
Z-80 technical manual. However, by changing the mode of interrupt
from 0 to 1 using the appropriate instruction (IM 1), it is not nec-
essary to strobe an instruction on the data lines. The processor auto-
matically vectors to address 0038H. The TRS-80 only supports the
Z-80 mode 1 interrupt, and the Z-80 only vectors to the RST 38H
address.

The strobing of instructions or address data into the proces-
sor from a peripheral is one of the functions of the INTAK/ line.
Its function is identical to that of the RD/, except that the source of
the data is not from a memory reference. If mode 0 is used, you
should not expect an FFH to be strobed on the data lines by default
without supplying the necessary hardware using the INTAK/ to
guarantee its presence.

The third mode of interrupt (mode 2) is a vector type, but in
this case the lower 8 bits of the address of a pointer where the ac-
tual interrupt program resides are strobed on the data lines using
the INTAK/ signal. The high-order address of the pointer is ob-
tained from data present in a special register (I register) in the
microprocessor. Instructions to load the high-order vector in the I
register and to indicate a mode 2 interrupt must be executed before
any interrupt using this mode is executed.

Another function of the INTAK/ line is to indicate to the periph-
erals that an interrupt has occurred. This line was provided in the
TRS-80 design so that interrupt flags can be cleared without soft-
ware overhead. As we see, it can also be used if the TRS-80 is modi-
fied for mode 0 or mode 2 interrupts to perform the strobing of data
as just described.

To take advantage of the first and third modes of interrupt on
a Model I TRS-80 system, a slight modification must be implemented
within the keyboard unit. It involves the alteration of the TEST/
line input circuitry. Later in this chapter a list of the modifica-
tions that can be made to the Radio Shack Model I and Model
III systems will be given. To use these modes after the hardware
modifications have been made, it is necessary to provide the soft-
ware support that will alter the mode and load the interrupt vec-
tor if required.

21

Additional Control Signals

The WAIT/ line is used to “inject” wait states into the program
flow in order to accommodate slow devices. This will not be used,
nor considered further. Caution: Holding the wait state line low for
a period longer than 0.5 ms will disrupt the normal operation of the
dynamic random-access memories.

The SYSRES/ line is used to reset the system. Because of the use
of dynamic memory, it was necessary to use the nonmaskable inter-
rupt input for system reset. This will point the microprocessor to a
known address when the reset push button to the left of the edge-
card connector is depressed. This reset is useful when a system
“crash” occurs. The use of nonmaskable interrupt instead of the
RESET pin of the microprocessor allows for the refreshing of dy-
namic memories without data losses.

The TEST/ line isolates the Z-80 from the external devices. It
places all data and address lines, the RD/, WR/, IN/, OUT/, RAS/,
CAS/, and MUX/ signals in the high impedance “third” state. The
TEST/ line may be modified in the development system, but it is
easily restored if servicing is required.

The row-address strobe (RAS/), column-address strobe (CAS/),
and multiplex control line (MUX/) are used to expand memory us-
ing dynamic random-access memories (RAM). It is quite easy to
interface the system to dynamic RAM because of the presence of
these signals.

Absent Control Signals

One of the signals absent on the edge connector is halt acknowl-
edge (HALT/). It is impossible to use the assembly-language
HALT instruction in an unmodified TRS-80 system, for the designer
of the Radio Shack system has taken the HALT signal and ored it
with the RESET signal, and the output of this gate goes to the non-
maskable interrupt pin of the microprocessor. This results in re-
setting the system if a HALT instruction is executed by the micro-
Processor.

Another signal absent from the edge-card connector is the line
which indicates that the machine is in a fetch state of the machine
cycle (M1/). This line is useful for single-step hardware modifica-
tion, but not essential. A reference to this line occurs at the end
of Chapter 2. If the use of this line is desired, an additional modifi-
cation is required and is given in the section dealing with the single-
step implementation.

A ground is provided in several locations. In older units, +5 V dc
is accessible at pin 39; however, a modification by Radio Shack re-

22

i

moves this power connection in newer models. In any event, you
should not attempt to use the TRS-80 +5 V for any external circuits.
An external power supply should be used for such external circuits,
along with a common ground connection to the TRS-80.

This completes the discussion of the signals available at the edge-
card connector. It is helpful to discuss features that involve hard-
ware peculiar to the TRS-80. These include port assignment and
functions, video, graphic capabilities, keyboard, information stor-
age and retrieval by tape, and lower-case conversion possibilities.
Some schematics are presented, but these illustrations are not de-
tailed. In many cases, the schematics are modified in order to aid
understanding. Functional purpose is the primary concern. This is
necessary if one wishes to understand the instructions contained
within the monitor as listed in the Appendixes. If this is of no con-
cern, skim this section and go to the modification description.

Port Assignments

Only one port is assigned in the Model I TRS-80 system, and
that port is FFH, which is used for both input and output. As an
output port, the TRS-80 uses bits 0 and 1 of the port bus to produce
a square wave of 0.85 volt peak amplitude. This signal is applied
to the input of a cassette recorder by way of the 5-pin DIN con-
nector. Actually, any audio recorder may function as a recording
device. The logic on bits 0 and 1 of port FFH determines the volt-
age level. A 0.46-volt level is established by outputting zeros on
these two lower-order bits (bit 0 = 0 and bit 1 = 0). When the two
bits equal 01 (base 2), a 0.85-volt level is produced. When the two
bits equal 10 (base 2), a 0.00-volt level is produced. The 11 (base
2) condition is not used. Bit 2 of port FFH is used to control the
motor of the recorder. and when high it activates a reed relay switch,
turning on the recorder. Bit 3 is the last bit of this port to be used
by the TRS-80 system. This bit allows control of the large graphic
or alphanumeric presentation to the video screen. Normally 1024
locations are used for the display of data written to the screen R/W
memory located from 3CO0H to 3FFFH. In the enhanced display,
only the even memory locations are used, and the data characters
residing in these locations are extended horizontally and occupy
two positions on the video screen. Therefore, only 512 locations are
visible, and 16 lines of display data are possible.

As an input, port FFH uses only two bits. Bit 7 is used for read-
ing the cassette. Bit 6 contains the information for enhanced dis-
play mode. If enhanced horizontal presentation is currently acti-
vated, then this bit is 1. Otherwise, it is 0, indicating normal screen
presentation.

23

Video Output

Information can be “viewed” by the user by writing to memory
locations 3CO0H to 3FFFH. The data located at these addresses is
shared by the crt and the microprocessor. Through the use of spe-
cial decoding ROMs, this data is converted to familiar characters
and is displayed on the monitor screen. The characters shown are
those defined by the American Standard Code for Information Inter-
change (ASCII). Without modifications, only upper-case charac-
ters, numerals, and punctuation marks are available. In addition
there is a set of graphic “characters.” The pattern of a graphic “char-
acter” is determined from the byte written to the shared video R/W
memory. If the most significant bit (7) is active or high, the result-
ing display is graphic; otherwise, the display is alphanumeric. The
six lower bits of the byte written to the screen R/W memory lo-
cated from 3CO0H to 3FFFH determine the pattern on the video
screen. This memory space results in 16 lines, each having 64 char-
acter or graphic positions. If bit 7 is a logic 1, the remaining six bits
can generate one of 64 possible graphic characters within each of
the 1024 graphic block positions. As the TR-80 Model I is deliv-
ered, there are only 7-bit words available for storage in the video
RAM. The “missing” bit (6) is not used. Therefore, the patterns and
characters formed on the display are “repeated” and thus are not
dependent on the absent bit. Fig. 1-3 shows how the six bits deter-
mine the screen pattern. With the aid of the monitor, you can write
graphic words to the video addresses. This is a good method of
seeing the graphic capabilities of the TRS-80.

Radio Shack provides a lower-case modification for the Model I
that adds the “missing” memory bit and expands the video word
to a full byte. Also included in this modification is a replacement

BYTE STORED IN LOCATIONS 3000 TO 3FFF
EITHER LOGIC 1 OR LOGIC 0 (DON'T CARE)

GRAPHIC CHARACTER ACTIVE LOGIC 1

IF LOGIC 1 IN BIT POSITION, THAT PIXEL WHITE
IF LOGIC O IN BIT POSITION, THAT PIXEL BLACK

BIT POSITION

Fig. 1-3. Graphic patterns formed with the six least significant bits.

24

T

=

for the video character-generating ROM, which provides for down-
ward extension, thus allowing characters such as y and g to extend
below the line. You can add your own modification by providing the
additional memory and a switch to activate it, thereby obtaining
the full display features available in the ROM. However, one must
replace the ROM character generator with the updated version to
obtain the automatic extension feature. It is suggested that if lower-
case is required, you purchase the LC modification kit from Radio
Shack. The feature may be nice but it is not essential to the devel-
opment system.

Keyboard Input

The keyboard is a matrix device, and the layout of the keys in
relationship to the data and address lines is shown in Fig. 1-4. Some
logic has been omitted from the schematic so as not to clutter the
presentation. The most important feature of this arrangement is the
many possibilities for decoding. In fact, one page (256 bytes) of
memory is lost to this area, but this results in many unique codes
(upwards of 200). The addressable memory space that is used to
detect a response on the data lines starts with address 3801H and
continues to 38FFH. To obtain a unique code, the programmer must
be careful. For example, the addressing of memory 38FFH results
in the possibility of any key producing a response, since all eight
address lines will be active, whereas addressing 3808H will only
produce a response if the X, Y, or Z key is depressed. The matrix
of the keyboard is such that a unique line is accessed by the fol-
lowing address excitations: 3801H, 3802H, 3804H, 3808H, 3810H,
3820H, 3840H, and 3880H. Since location 3880H has only one key
attached, the SHIFT key, accessing this location may be used for
quick unique exits from a software loop. An example of the short
assembly-language code required to detect this key closure is shown:

EXIT LD A, (3880H) ;READ DATA AT LOCATION 3880H

OR A :SET ZERO FLAG AND
RET Z ;RETURN TO LOOP IF NONZERO
;START OF ESCAPE

If one wishes to see if any key is pressed, replacing 3880H with
38FFH accomplishes this.

It is obvious from the schematic which keys will produce data on
the data lines (when pressed) if their particular line is accessed.
It is the function of the key-scan routine to eliminate “bounce.”
(Mechanical switches take time to settle, and the processor speed
in executing code is such that contact bounce, or repeated open-
ing and closing, results in producing multiple readings of the key
unless corrective action is taken.) Another function of the scanning

25

ADDRESS

3801H

3802H

3804H

3808H

3810H

38204

3840H

3880H

Ay

Ay

Ay

Ay

Ag

Ag

A7

KEYBOARD/

MEMORY MAPPED
ADDRESS 38XXH

v KEYS ARE NORMALLY OPEN PUSH SWITCHES

RO 0 00
Sasasas

210000
00000000,
A A a0R0R0 00

Kc0 KC; KCy KCq KCq KC,
* /RIGHT\ 37
\SHIFT/ / \ / \
:
1 A |
By Dy) 03 D4 Ds Dg Dz
DATA LINES

*Model 1: Right shift, left shift on data line 0.
Model lil: Left shift data fine 0, night shift data line 1.

Fig. 1-4. Keyboard matrix for Model | and Model 11l microcomputer systems.

routine is to produce a code to represent the key. The American
Standard Code for Information Interchange (ASCII) format is the

usually accepted form.

Tape Input/Output

A few words on the tape format as established by Radio Shack
for the Level II systems follow. The rationale for this format is

26

I

7

sound, but problems in saving data do arise due to head alignment
and improper recording and playback levels. Careful attention must
be paid to these levels.

Information saving and retrieval in the TRS-80 system uses mag-
netic recording media with a standard audio cassette as the storage
element. Certified computer tape improves the reliability, but ex-
change of information between systems sometimes presents a prob-
lem. It is also useful to bulk-erase a cassette before it is reused to
store new information.

Data is recorded at the rate of 500 b/sec. This rate corresponds
to approximately 62 bytes per second. To maintain compatibility
with existing object code tapes produced by Radio Shack and other
sources, this format is used for cassette storage in the FROLIC moni-
tor program.

Data is stored on the tape by a series of pulses. The pulses are
spaced every 2 ms, which establishes the frame for written data.
As you probably know, the data is in serial form, one bit after the
other, and consists of representations for logic 1 and logic 0. To re-
cord a logic 1. an additional pulse is recorded within the 2-ms time
period. A center position of 1 ms is chosen. The absence of a pulse
indicates a logic 0, and, consequently, both logic conditions may now
be represented. The pulses are generated for recording using the two
least significant bits of a data byte written to port FFH. The refer-
ence level is established from the output of 00 in these bt positions.
This produces a dc level of 0.46 volt. A pulse is formed by the out-
put of three consecutive bit patterns that change the reference level
first to 0.85 volt, then to 00 volt, with a final return to the 0.46-volt
reference. The upper and lower voltages are each held for approxi-
mately 0.1 ms. Therefore, the pulse is formed by output of a 01, a
short delay, output of a 10, another short delay, and finally an out-
put of 00. {In this illustration, only bits 0 and 1 of the port output
are given.) All of these data patterns are written to port FFH with
bit 2 active to maintain the recorder in a running state. Fig. 1-5
shows the levels associated with the output patterns in relation to
the pulses and pulse separation for the transmission of both a logic
0 and a logic 1.

Tape Data Format

In order that this technique of recording data to cassette tape
be successful, it is necessary to synchronize the data and establish
a format so that the receiving device can process the data in an
acceptable manner. In addition, an error-detection byte is added
to provide simple indication of a valid transfer from tape to CPU.
The following scheme is used for writing data on the cassette re-

27

e ' il i
2 milliseconds ———————i— 1 millisecond — OUTPUTFF LEVEL

i
—J: =— (.2 millisecond 00H 0.46 VOLT
i

0tH 0.85 VOLT
02H 0.00 VOLT
03H NOT USED

i
i
i
i

0.85v

0.46V

0.00v

LOGIC 0

]
i
LOGIC 1 :
H

Fig. 1-5. Data pulses for cassette output.

corder. First, the recorder is turned on with the 0.46-volt level es-
tablished. An output of 40H to port FFH starts the write routine.
A time delay is necessary to allow the recorder to reach constant
speed. One second is sufficient, but generally a longer delay exists
on tapes. Logic 1s and Os are written on the tape, but in order to
establish data presence, a synchronization byte is required. The in-
dication that data is about to be available is flagged by the decoding
of an A5H, which is the tape synchronization mark. From this time
on, synchronization must be maintained, or an unsuccessful write
will be the result. Immediately following the A5SH synchronization
mark is the label mark 55H. The next six bytes of data are used for
tape identification. Data must be present to fill these six locations,
or synchronization is lost during the read command. After the iden-
tification, the next byte must be either a 3CH or a 78H. The 3CH
indicates a data block follows. A 78H indicates the execute address
of the loaded program to the reading routine.

The data blocks are formatted in the following manner. The first
byte following the 3CH indicates the number of data bytes in the
block. A 00H means 256 data bytes. This is the maximum for a block
length. The minimum block length is indicated by a 01H, which
states that only one data byte is present in the block. The next two
bytes written to the tape are the low and high addresses which es-
tablish the starting location of that data block. The reading routine
uses this data to indicate the starting address in memory for deposit.
Error detection is provided using a checksum. The checksum is
formed by the addition of each byte written to the tape starting
with the value of the address. Only one byte is used for the com-
puted checksum. Therefore, all carries are ignored. This sum is
stored in memory and updated as the writing of the block continues.
Upon completion of a block, the checksum is output as the last data

28

P—

g

in the block. It is not included in the checksum computation, but
it is compared against the computed checksum. If the two check-
sums are equal, then data transfer occurred without error (it is as-
sumed). If more data is to be written, the block mark 3CH is used
to signal that more data follows.

The last information written on the tape is used to indicate the
execute address of the program just written. A 78H is the signal to
the reading program that the next two bytes on the tape form the
address of execution. Like most addresses, the low byte precedes
the high byte. No checksum is used in this block. The last three
bytes complete transcription of the tape.

The method used for reading a tape produced in the TRS-80
format just described will require a conditioning circuit to convert
the pulses on the tape to logic levels suitable for decoding. The pulse
described has a fundamental period of 0.2 ms. As a result, there is
a strong fundamental at 5000 Hz. This frequency is suited for the
audio cassette with the higher harmonics filtered by the electronics
in the recorder. The presence of a pulse on the cassette tape causes
a data latch consisting of a set-reset logic flip-flop to be set. If one
viewed the output of the cassette on an oscilloscope it would reveal
a few cycles forming a tone burst with a fundamental of 5000 Hz.
The tone bursts are amplified and rectified. As a result of this pro-
cess, a negative asserted pulse latches the flip-flop. Any new puises
processed by the electronics will have no effect on the latch unless
this latch is cleared. The clearing of the data latch is accomplished
using a hardware-software technique. The technique generates the
necessary signals that clear the latch. If you study the monitor list-
ing in Appendixes D and E under the section dealing with the cas-
sette-read section, you will notice the instruction OUT (OFFH) A.
Any data may be output at this time. However, for the Model I sys-
tem, the cassette unit must remain on. This requires the presence
of a logic 1 in position bit 2 of the port FFH latch. Since the elec-
tronics used for recording are not active during the reading process,
the states of the data in bits 0 and 1 are of no consequence. The
graphic mode used to control the width of characters written to the
crt RAM is controlled by bit 3. This also does not affect the tape
function. Therefore, the only bit of consequence in clearing the
latch is bit 2, which must remain active.

If upon clearing the latch with an OUT {0FFH),A, a read using
IN A,(OFFH) results in the presence of a logic 1 in bit 7, then a
pulse passed the read tape head. If logic 0 is in bit 7, then no pulse
is present.

The software required to read a data track first looks for pulses
or single bits. A “leader” is always written that consists of up to

29

256 pulses spaced 2 ms apart. The minimum number of pulses re-
quired is that which ensures that the cassette has reached its opera-
tional speed. To read a TRS-80 tape you must first obtain synchro-
nization. This is accomplished by reading data pulses and storing
these pulses by shifting them sequentially into a register. Testing
this register for the sync mark ASH after each shift will at some time
produce the required synchronization. Once this is established, the
data then can be read a byte at a time. The sequence used in the
software to read the tape will first search for the identification mark
55H. This mark must be the byte following the sync mark. Follow-
ing the identification mark are 6 bytes used for a tape label. The
data mark 3CH is the next byte in the sequence. It is followed with
the byte used to indicate the number of data bytes in the current
block. The low address followed by the high address informs the
software of the address of the first location at which data is to be
stored in memory.

The data bytes are next in sequence. The last byte in the block
is the checksum. The calculation of checksum byte started with the
loading address and ended with the last data value in the block.
The tape reading finishes when the software detects the execute
address mark 78H in place of 3CH. The execute address follows in
two bytes, but there is no checksum computed for this address.

TRS-80 MODEL I

Only the changes in the hardware of the Model III which di-
rectly affect the operation of the FROLIC monitor are given in
this section. The two models are configured with identical memory
mapping, and this contributes to the compatibility between the sys-
tems, The differences occur in five areas. The first section covers
the Model III bus; the second, the port assignments; the third, the
video display; the fourth, the keyboard; and the fifth, information
storage and retrievil.

The interface of the TRS-80 Model III to the external world con-
sists of a 50-pin edge-card connector. There is no relationship be-
tween this connector and the 40-line edge-card connector used for
the Model 1. Only those signals for port select and control or reset
are included on this edge-card connector. These include address
lines, data lines, and control lines. To allow data flow at the edge-
card connector, the edge-card connector is made active by an out-
put of 10H to port ECH. This is one of the new ports that is avail-
able on the Model III system. Table 1-3 shows the signals available
at this edge-card connection. Every signal has a ground associated
with the line. Disabling the 50-line connector so that no signals are

30

;%‘s« T

Table 1-3. Interface Signals Available From the TRS-80

Model HI
Pin Number Function for TRS-80 or Z-80
1 Data O
3 Data 1
5 Data2
7 Data 3
9 Data 4
1 Data 5
13 Data 6
15 Data 7
17 Address 0
19 Address 1
21 Address 2
23 Address 3
25 Address 4
27 Address 5
29 Address 6
31 Address 7
33 IN/
35 out/
37 RESET/
39 INT/
41 1/o wait/
43 DATA BUS IN/
45 (Not Used)
47 mi/
49 I0REQ/
2-50 (Even) Ground
El ki 7 3 11 13 15 17 13 21 23 75 27 23 31 23 35 37 39 41 1 A5 7 49
s e T s T T o 1 S s e s s e A e s e 2 o o st 6 I e O o 1 O e 5 o e |
S O O O O O O O T o O o O o o e
VIEW FROM REAR, COMPUTER INVERTED

present on the bus may be accomplished by an output of a 0 in the
fourth bit of port EOH.

Port Assignments

The following ports are used in the Model 11I: EOH, E4H, ESH,
E9H, EAH, EBH, ECH, FOH, F1H, F2H, F3H, F4H, and FFH.
(Ports EOH and ECH are not uniquely decoded. That is, E1H, E2H,
and E3H may be used to address port EOH; and EDH, EEH, and
EFH may be used to address port ECH.) Not all the functions of
these ports are known at this writing, but those relevant to the
FROLIC monitor are described. Ports FFH, EOH, and ECH are
important to the FROLIC monitor.

Port FFH functions as both input and output. As an output port,

31

the least significant bits (0 and 1) are used for level control in the
recording process as they were in the Model I system. The function
of the other bits of this port is not known. As an input port, it ap-
pears the function of the least significant bit (0) is pulse detection
and timing from the cassette recorder input conditioner. Bit 1 is
used as a flag to signal that the cassette motor is operating. Bit 2
is used to indicate that the extended graphic mode is active. (The
Model I system used bit 6 as this flag.) Bit 3 shows that the alter-
nate character set is active. Bit 4 is used to show that the external
i/o data and control lines are active. Bit 5 is unknown. Bit 6 is al-
ways active, but its function is also unknown. Bit 7 is from the data
latch. It is set by data pulses from the output of the cassette. It is
reset by an input to port FFH, and its function is identical to that
in the Model I system. However, the function of bit 0 of Port FFH
is different than that of bit 7, in that it is active during data transi-
tions, and not latched as is bit 7. The data latch, you recall, stores
flux transitions that pass the read head of the cassette player. These
transitions are either the data or separation pulses. However, bit 0
is active only when a pulse is detected. There is retention in a latch
unless another transition is detected, at which time the flag is com-
plemented. After a long delay with no flux transitions, the flag is
automatically cleared.

Port ECH (EDH, EEH, and EFH) controls some of the periph-
eral functions of the TRS-80 Model III. The operating state of these
peripherals is made known by the input status of port FFH. To acti-
vate these functions, outputs to port ECH are made. The cassette re-
corder motor, the mode that controls the horizontal width of the
crt display, the selection of character sets, and 50-line bus activa-
tion are all controlled by this port. To turn on the cassette, a 02H
is written to port ECH. Likewise, an output of 04H alters the hori-
zonal size, a 08H selects the alternate character set, and a 10H
enables the control-data lines for external i/o. An output of 20H
alters the status flag of port FFH, but the function of this flag is
unknown at this time. The activation of the remaining three bits, 0,
6, and 7, produces no visible effect.

Port EOH is used as a priority interrupt control and status port.
The highest priority device is connected to bit 0, and the lowest is
connected to bit 7. A logic 0 (active low) indicates a device has
requested an interrupt. The status of those devices requesting to
interrupt is determined by an input of port EOH. To allow a de-
vice to interrupt, port EOH must enable a gate to allow the inter-
rupt to reach the status latch. In addition, the instruction EI (en-
able interrupt) must have been executed. For an example, an OUT
EOH 01H or 02H allows the data pulse from the cassette tape to

32

b
r

.

produce an interrupt. Depending upon which data was output,
the pulse produces the highest or second highest priority. The
Model IIT uses this for tape read operations. An OUT EOH 04H sets
bit 3. This allows the real-time clock pulse to interrupt the proces-
sor. OUT EOH 08H allows the interrupt from the external bus to
reach the processor. The source of other interrupts is not known,
but locations in R/W memory make it possible to direct control to
any place in memory. The locations for transfer in the unmodified
TRS-80 Level II are at 403DH, 4206H, 4209H, 4040H, and 4043H.
The addresses are listed in interrupt priority and are levels 3, 4, 5,
6, and 7. In a system of your design, your software should interro-
gate port EOH, and control transfer should be specified by your
program.

Ports ESH, E9H, EAH, and EBH are used for the RS-232C com-
munication link. These function in identical manner to the functions
of the RS-232C used in the Model 1. An interface is required to take
advantage of these ports.

Ports F0, F1, F2, F3H, F4H, and E4H are used for the floppy disk
controller. A Western Digital FD1791 is used in this application.
Port F4H controls the drive select with the least significant bits used
for drive selection. It appears bit 7 of this port controls the density
mode, with a logic 1 indicating double density. Bit 6 controls the
gating of the data request line (DQR) to the wait pin of the Z-80
processor. This allows the processor to go into a wait state until the
byte of data from the disk controller is available. This does not dis-
turb the memory refresh cycle. When the processor examines the
software control for disk boot-up, an output is made to port F4H
of value C1H. Port FOH is used for command words and status.
Port F1H is used for track data, and F2H is used for sector data.
Port F3H is used for the data. Port E4 is also used in disk opera-
tions. The most significant bit is used. It is assumed that this allows
the interrupt of the controller to interrupt the Z-80 microprocessor
when it has finished the current command from the disk controller.

Video Output

The changes to the video section are also significant. Both upper-
case and lower-case characters are available. (The FROLIC moni-
tor uses only the upper-case values and masks out the new charac-
ters. However, by changing the mask, the user has access to the
lower-case letters.) Through the use of a port control, a second
set of characters is available. The port output functions as a hard-
ware mask, and activation of the alternate character generator is
made through port control as will be described in the next section.
The characters that are available consist of the standard upper- and

33

lower-case alphabet, some Japanese symbols or character sets, the
Greek alphabet, Spanish, French, and German accents and mark-
ings, and other special graphics and symbols, Figs. 1-6 and 1-7 dis-
play the complete character sets available. The set shown in Fig. 1-6
occurs when bit 3 of port ECH is low, while the set shown in Fig. 1-7
occurs when bit 3 of port ECH is high. The two sets of characters
are displayed, including graphics. Notice there is considerable dupli-
cation, particularly in the alphabetic character set. The graphic char-
acters are the same as those used in the Model I, but logic 1 in the

Fig. 1-6. Character set available with bit 3 port ECH low on TRS-80 Model 111,

most significant bit position is not used. Instead, these characters are
displayed by outputting the hexadecimal values 80H (a graphic
blank) through BFH (full white). The least significant bits control
the 64 patterns identical to the patterns formed in the Model I sys-
tem. The enhanced or extended size is also available, but the ports
used to enable this function and test the mode activation flag are
changed.

Keyboard Input

Only one change is made on the keyboard logic, and it affects the
data available on the data lines when the location 3880H is ad-
dressed. The right shift key data appears on bit 0, and the left shift
data appears on bit 1, instead of both on bit 0 as in the Model I
system. As a result, there are additional decoding capabilities and
more control characters possible on the Model III system.

34

g

Fig. 1-7. Character set available with bit 3 port ECH high on TRS-80 Model 111,

Tape Input/Output

Cassette tape input and output is controlled by port FFH. The
bits used for reading and writing are the same as those used in the
Model I system, but the remaining bits of port FFH do not provide
the same functions. The cassette is capable of operating at a data
rate of 1500 b/sec using the improved hardware support on the
Model 111

Interrupts

Hardware has been included to allow the use of all the interrupt
features of the Z-80 processor. It is not necessary to use this hard-
ware. The interrupts are possible using all three modes (0, 1, and 2)
without any hardware modifications.

MODIFICATION OF THE TRS-80

We have two methods of modifying the TRS-80 into a develop-
ment system.

The first involves only software. By simply loading the monitor
from tape into available read-write memory and using the SYSTEM
command available on Level II machines, all commands in the
FROLIC monitor are available. This modification is only possible
for the Level II machines, since no method exists for setting break-
points in a Level I unit.

The second method involves the replacement of the BASIC ROMs.

35

This replacement means the loss of the BASIC programming fea-
ture. These ROMs are replaced with a single programmed EPROM
containing the FROLIC monitor. Because of the hardware differ-
ences between the Model I and Model I1I systems, these EPROMS
are not interchangeable. For a successful modification it is necessary
to have the correct EPROM. The source codes of the two variations
of the monitor are listed in Appendixes D and E. To replace the
ROM:s with the single EPROM, the seal on the unit must be broken.
Because the warranty is now voided, there will be an additional
charge levied by Radio Shack if service is required on the system.

To remove the BASIC ROMs, the following procedure must be
followed. It is necessary that a 2716 EPROM be available pre-
programmed with the correct version of the monitor. This EPROM
may be purchased from the supplier listed in Appendix C or pro-
grammed from the source listings given. An EPROM programmer
facility is available with the new monitor, but it is not available
until the modification is made. If one starts with a cassette contain-
ing the monitor and builds the EPROM programmer described in
Chapter 4, the task is simplified. With the programmer, burn in a
clean 2716 EPROM with the object code for the Model I system.
You now have the monitor in EPROM ready for insertion. This
EPROM must be the single, +5 volt variety. It is important that
you program the correct program for the model you are modifying.
If you are modifying a Model 111, go to the section that deals with
the modification of that system.

Modification of the Model i

To modify the TRS-80 Model I, the removal and replacement of
the BASIC ROMs is necessary. The TRS-80 keyboard must be
opened. To do this, place the keyboard unit face down and remove
the six Phillips type screws located on the underside of the keyboard.
A metalized paper seal may be hiding one of these screws, so be
sure you have removed six of them. After removing the screws,
carefully place the keyboard unit face up, and then lift the top cover,
exposing the bare keyboard. With extreme caution, so as not to
damage the flexible connector between the keyboard and the CPU
board, lift the keyboard in a manner somewhat similar to the open-
ing of a book. Unfold the board toward you with its bound axis
parallel to your chest. Fig. 1-8 shows the exposed computer board.
You should see five soft plastic spacers that must be lifted while
balancing the keys in one hand. Be careful not to lift the bottom
plastic protective cover, as this may place undue strain on the very
sensitive connection between the two printed circuit boards. After
the plastic spacers have been removed, carefully lift the CPU board

36

e

St

Fig. 1-8. Circuit board layout for TRS-80 Model 1.

from the bottom plastic protective cover. Once again try not to lift
the entire unit because of the strain this imposes on the interconnec-
tion. After successful separation, lay the keyboard and CPU flat on
a protective, nonconductive surface. I have spent many hours oper-
ating the computer in this position, and with reasonable care no
damage will come to the unit.

In a Level I unit and a late model Level II, there is no umbilical
cable to the electronics supporting the BASIC ROMs. It is assumed
you have such a machine in front of you. A following paragraph will
describe the procedure for those units with attached ROMs. Simply
remove the two ROMs located in the center of the unit. They are
identified by the small letters Z-33 and Z-34, most likely above and
to the right of the ROM sockets. Fig. 1-9 shows an enlarged view
of the two ROM sockets with the FROLIC monitor EPROM in
place. Note carefully the position of pin 1 on the ROM chips. (Pin 1
is on the end of the chip that is notched or marked in some other
way. As shown in Fig. 1-9, pin 1 is always to the left of the notch.)
Also, make a careful note of the position of the ROM. Mark it if
necessary on the printed circuit board using a grease pencil, an

37

E 7913418
MBMZT716

Fig. 1-9. Detail of ROM placement in a Model | TRS-80.

adhesive label, or any other convenient, nonconductive method. .
The ROMs are generally tight in the socket, so remove them with &
great care by prying up evenly on both ends.

If the unit you are modifying is a Level I, the new 2716 EPROMs
can be placed in either socket position and still operate correctly.
If you are modifying a Level 11, then place the preprogrammed 2716
in socket Z-33. Since this application only requires one EPROM, no
conflict exists in the memory space. However, it is not possible to
have two 2716s reside in both sockets at the same time and have the
memory space contiguous. That is, there must be a 2K break be-
tween the two memories. The select logic for the BASIC ROMs
along with the general decoding logic is the final topic of this chap-
ter. Let it suffice to state that if one desires to use the 4K or 8K
total ROM space available in one socket, it is recommended that a
2732 EPROM or 2764 EPROM (single voltage) that occupies only
one socket be used. Other possibilities exist and will be covered. ‘

After making sure the EPROM is properly installed, it is possible ’
to test the unit by attaching all the connecting cables. Be very care-
ful, since connector orientations are different from what they are in e
the closed operating condition. The DIN plug closest to the center
of the board is used for the power supply. The center DIN plug
connects the monitor, and the DIN plug at the outer edge is used
for the cassette player. All should test successfully with the prompt
“FROLIC:” appearing at the bottom extreme left of the screen. If

38

this does not occur, replace the BASIC ROMs and check the unit.
If the unit operates correctly, the EPROM containing the monitor
is at fault, in which case it must be reprogrammed or replaced.

The modification of a Level II machine with the slave memory is
almost identical to the procedure used in altering the Level I unit.
In these earlier units, there is an umbilical plug connecting one of
the ROM sockets to the supporting electronics containing the Level
II BASIC ROMs. In addition, there are some extra wires used for
addressing. These will not cause trouble when the umbilical plug is
removed from its socket. Protect the plug on the end of the cable
by any convenient method. Some electrical adhesive tape may be
used to achieve isolation of this connection. Proceed as in the Level
I modification by inserting the programmed EPROM into socket Z-
33 of the two available sockets, and test the system.

Interrupt and Halt Modifications—A third method of modification
is merely an extension of the second method in which the mode 1
and mode 2 interrupt feature, as well as the HALT feature, of the
Z-80 microprocessor is enabled. In order to obtain this flexibility,
the Z-80 microprocessor chip (the only 40-pin device in the key-
board unit, labeled Z-40) must be removed and altered.

Fig. 1-10. Z-80 modifications for halt
and interrupt features.

If you wish to obtain the full interrupt feature, remove the Z-80
microprocessor from its socket. The BUSRQ/ pin {number 25) must
be bent outward with great care. Between pin 25 and pin 11, the
+5 V dc line, you must attach a 4700 ohm, ¥4 watt, 5% tolerance
pull-up resistor. Fig. 1-10 shows this modification. With this altera-

39

tion complete, all interrupt features of the Z-80 microprocessor are
now available.

As mentioned earlier in this chapter, the HALT mnemonic is not
available to the user in the unaltered TRS-80. The designers of the
TRS-80 chose to take the halt acknowledge signal (HALT/) and
gate it into the nonmaskable interrupt (NMI/) input. To enable
the use of the HALT instruction, this line must be removed. The al-
teration is possible using the same technique used for engaging the
full interrupt feature. In this case, microprocessor pin 18, HALT/,
is bent outward. Between pin 18 and pin 11, the +5 V dc line, attach
a 4700 ohm, Y4 watt, 5% tolerance resistor. This leaves a floating
input to Z53 (74LS132), a quad 2-input NaND Schmitt trigger. There
is no problem with the floating input, since the other side of that
gate is tied to the +5 V supply. If this makes you uncomfortable,
tie pins 1 and 2 of Z53 together. The two modifications described
give the user complete control in the implementation of all the
Z-80 features.

Note that the original Z-80 could be saved and a second Z-80 mi-
croprocessor chip could be altered using the pull-up resistors and
pin 11 for sourcing the 5 V dc supply. If one is careful with his
soldering procedure, no damage will be inflicted upon the micro-
processor. Fig, 1-10 shows a possible arrangement and sequence of
attaching these pull-up resistors. If repair is required to the TRS-
80, the original Z-80 may be inserted into the 40-pin socket, and
there will be no visible evidence of any alteration except the obvious
broken seal on the protective cover.

Memory Decode Logic—If all the alterations described have been
completed, the transformation of the TRS-80 to a development sys-
tem is now complete. However, some words are necessary about
memory expansion to this basic unit if expansion to the full 16K
is desired. An understanding of the operation of the dynamic RAMs
used in the TRS-80 units is necessary to aid in your modifications
to the memory system.

First, consider the hardware conveniences supplied with Model 1,
Level I and Level II units that overlap both ROM and RAM ad-
dressing capabilities. There are two DIP shunt sockets, X-3 and
X-71, located inside the keyboard unit. (They may be labeled Z-3
and Z-71 on the circuit board.) It was suggested earlier that you re-
place these shunts with DIP switches. See Fig. 1-11, which shows
these two switches relative to the Z-80 microprocessor. Through
various switch combinations, the memory may be configured in a
variety of combinations.

The memory mapping of the lower 32K {the total available mem-
ory space within the keyboard unit) is controlled by the two DIP

40

s

e

&

R

Fig. 1-11. Switch socket positions of DIP shunts X-3 and X-71.

shunts shown in Fig. 1-11. DIP shunt X-3 is located to the right of
the memory near the reset button. DIP shunt X-71 is located near-
est the ROM sockets. The distinctive style of these packages makes
it impossible to overlook them.

The function of X-3 is address decoding. The 32K of memory is
segmented into 4K blocks through the use of a dual 2-input to 4-line
decoder/demultiplexer (74L.5156). This device is configured to func-
tion as a 1-of-8 decoder of address lines Al4, Al13, and A12. Address
line 15 is used to select this chip when the computer is accessing
the lower 32K of memory. The RAS/ (row-address strobe, active-
low), which is in fact the MREQ/ (memory-request signal, active-
low) from the Z-80 microprocessor, also is used to activate address
selection. Fig. 1-12 shows the significant features of the address
select decoder. The exact diagram is obtainable from the TRS-80
technical manual, which is needlessly complex for the presentation
here.

The 32K block can be subdivided further into the upper 16K block
and the lower 16K block. Address selection for the upper 16K block
is straightforward. When the appropriate connections are made on

41

A2 i b 151 4K
A13 =] b——2nd 4K ¢ (ROM SELECT)
A14 o——em 310 4K

10F8 p——4h 4K {KEYBOARD AND VIDEO)
DECODER

fo—- 5ih 4K
O Gth 4K
MEMRQ (HIGH) Cs/ (RAM SELECT)
O—m 7th 4K
NOT A15

pp— 8ih 4K

Fig. 1-12. Address selection of lower 32K memory.

the DIP shunt, 4K blocks are selected to activate the MEM/ line
which enables the memory present in the sockets to be available
to the Z-80 microprocessor data lines. Three types of dynamic RAM
devices can occupy the eight sockets: 4K X 1 RAMs, 8K X 1 RAMs,
or 16K X 1 RAMs. Selection of the amount of RAM is controlled
by DIP shunt X-3, while the shunt at X-71 determines the size of
dynamic RAM which may be placed in the memory sockets. Table
1-4 shows the connections to be made to determine how the upper
16K of RAM is accessed.

Read-Only Memory Expansion—The lower 16K of address decod-
ing is not as simple, since there is a great deal of flexibility over the
use of this space. Only three of the four 4K blocks are available at
the DIP shunt. The missing block address space 3000H to 3FFFH
is not present. You should recall that this block of memory contains
the video and keyboard addresses. Even though it would be nice
to place a monitor in part of this unused space, it would require spe-
cial decoding to accomplish this. The other three 4K blocks are the
first 12K of ROM that is used to support the Level II BASIC, or the
4K Level T BASIC. Because this ROM has been made available in
a variety of IC packages, Radio Shack provided some flexibility in
the use of the lower 12K. DIP shunt X-3 also controls how the two
ROM sockets are addressed, since these sockets may hold 1K, 2K,
4K. and 8K ROM devices. For convenience, socket Z-33 is called
ROM A, and socket Z-34 is called ROM B. DIP shunt X-3 now takes
on the significance shown in Table 1-5 in addressing this memory.

Table 1-4. Shunt Connections for X-3 to Allow for 4K R/W
Memory Selection

From Pin To Pin Addresses
2 15 1st 4K 4000H to 4FFFH
3 14 2nd 4K 5000H to 5FFFH
4 13 3rd 4K 6000H to 6FFFH
5 15 4th 4K 7000H to 7FFFH

42

4

i

e

Table 1-5. Shunt Connections for X-3 to Aliow for 4K ROM
Memory Selection

From Pin To Pin Address
1 16 1st 4K ROM B 0000H to OFFFH
7 10 Ist 4K ROM A OOCOH to OFFFH
8 9 2nd 4K ROM A 1000H to 1FFFH
6 11 3rd 4K ROM B 2000H to 2FFFH

Notice that a 2K ROM could be plugged into socket Z-33 and
Z-34 as is done on some Level I units. Logic internal to the ROM
itself used for address selection prevents conflict in this address space
and is independent of which socket holds the 0000H address as long
as shunt strapping allows access to the correct location. This is ac-
complished in the Level I units by strapping pins 1 to 16 and 7 to 10
at shunt X-3.

It is also possible to use a single 4K ROM, and again it could be
placed in either socket. In both cases the DIP shunt connections
between pins 1 and 16 and pins 7 and 10 are shorted. Only one such
device is allowed if the shunt is so configured. One can be selective
as to which socket is used by controlling the DIP shunt strapping.
This is the preferred method of ROM selection.

An 8K ROM can be placed in Z-33 with the appropriate closures
between pins 7 and 10 and pins 8 and 9 made at the X-3 DIP socket.
However, if the 8K ROM is placed in Z-34 (the adjacent ROM
socket holder), the switch does not provide for all the necessary
closures using the DIP shunt. By using jumpers to make connec-
tions between pins 1 and 16 and between pins 9 and 11 (this is
necessary, for both pins are on the same side of the dual-in-line
configuration), one can address the first 8K of ROM using socket
Z-34. Tt is interesting to note that Radio Shack originally found it
to be less expensive to add the external ROM printed circuit board
for the 12K BASIC ROMs than to manufacture 8K and 4K ROMs
for use in these on-board sockets. The addressing capabilities are
there to use. The potential provided in this home computer by mak-
ing use of customized ROMs is exciting and worth expanding.

Read/Write Memory Expansion—The control over addressing the
dynamic RAMs that are compatible with the TRS-80 keyboard unit
is provided by the DIP shunt in position X-71. To understand its
function it is necessary to look at the dynamic RAM pinout of the
series suitable to operate in these sockets, as shown in Fig. 1-13.
Two types of RAM can be used in this unit. They are 1 bit wide,
and hence eight devices are required for the addressed word. The
“length” of dynamic RAM installed can be 4K or 16K. Although it

43

Az

A

“Hate

PN CONFIGURATION

Ny
i 18] Vsg
2 151 /5
3 141 Dgyy
4 13| &S
5 12} Ay
§ 1] Ay
7 10| Ay
8 8 | Veo
PIN HAMES
Ag-A; ADDRESS INPUTS
CAS COLUMN ADDRESS STROBE
€5 cHiP SELECT
Oy DATAWN
Ogys DATA OUT
fAS ROW ADDRESS STROBE
PIN CONFIGURATION
S
t 16| Vsg
2 15| CAS
3 141 Doy
4 13 A"
5 121 Ay
6§ 1] oAy
7 0] A5
8 9| Veo

S6000. S6002: Ag at Vg duang rov addsess vahe
SB001, S6003: Ag al Vy during row address valid.

PIN HAMES

AgAg ADDRESS INPUTS

CAS COLUMM ADDRESS STROBE
Dy DATA M

Dpyr DATA OUT

AAS ROW ADDRESS STROBE

J—

LOGIC SYMBOL

— Ay Oy —

i

— Ay

1 45

el RAS

——d AS Ogur f—

e WE

B 4]

WE
Veg

Vop
Vss

WRITE ENABLE
POWER {—5V)

POWER (+5V}

POWER (+12V)
GROUND

X 1.

—d Ay

LOGIC SYMBOL

e [

—1 M

JR—

e

—d RAS Oy

e} CAS

e WE

WE
Vig
Ve
Voo
Vs

&
a8

WRITE ENABLE
POWER {5V}

POWER (+5V)

POWER {+12V)
GROUND

(B) 2109 8K x 1.

Fig. 1-13. Logic symbols and pin configurations for

2

{

is possible to use 8K dynamic RAM, there is a problem with the
installation of these memories because two versions of this memory
are available. Details for installation of all of the memories are
given. Notice in Fig. 1-13 that only pin 13 shows a change. If 4K
devices are used, then pin 13 functions as a chip select (CS/). For
8K devices this pin functions as an address input and chip enable.
With 16K devices the chip enable availability is lost, but no serious
problem results. Because of these few differences, each memory
group size is considered separately. The DIP shunt arrangements
given for each group can be seen in Table 1-6.

Table 1-6. Dip Shunt Connections on X-71 for Dynamic
R/W Memory Selection

(Check X-3 for absolute address and range.)

4K RAM 16K RAM 8K RAM (Lower) 8K RAM (Upper)
2-15 1-16 1-16 1-16
4-13 3-14 3-14 3-14
6-11 5-12 5-12 5-12
8-9 7-10

Because of the large address space accessed, it would not be
possible to address 4K of memory with only six address inputs.

Pit CONFIGURATION LOGIC SYMBOL

— A

Oy |2 15| €A
1 A Oy

WE |3 14| Dgyy

e By

RAS | 4 131 Ag

— 4
JU—
—_ 2
Al 1] Ay ¢

—— RAS Ogyr

e} CAS

PIN RAMES
Ag-Ag ADDRESS INPUTS WE

TAS COLUMH ADDRESS STROBE Vgg
Dy BATAM Vo
Dgyr DATA OUT Yoo

RAS ROW ADDRESS STROBE Vgg

(C) 2117 16K x 1.
dynamic RAM memory in the TRS-80 microcomputer.

WRITE ENABLE
POWER {5V}
POWER {45V}
POWER {+12V)
GROUND

Hence, multiplexing the address lines using the RAS/ (row address
strobe, active low) and CAS/ (column address strobe, active low)
allows 12 address inputs and consequently the ability to address
4096 memory locations. The address bit assignments A0, Al, A2,
etc., are arbitrary, and any order of addresses placed on these pins
would result in a unique location being accessed. Multiplexing a
19-bit address to 6 lines is accomplished with two quad 2-to-1 multi-
plexers (74LS157). Arrangement of the shunts at X-71 determines
the size of memory addressed. In this case, the addresses A0, Al,
A2, A3, A4, and A5 are strobed during the RAS/. During the column
address strobe (CAS/), A6 is directed to the A0 input, A7 to the Al
input, A8 to the A2 input, A9 to the A3 input, A10 to the A4 input,
and A11 to the A5 input. The CE/ (chip enable, active low) is made
available from RAM/ (memory decode, active low). DIP shunt X-3
selects the appropriate 4K block. In most systems, including the
monitor, this is the first 4K block from 4000H to 4FFFH. However,
any 4K block could be selected as was shown using DIP shunt X-3
in Table 1-4. The strappings for DIP shunt X-71 for dynamic mem-
ory selection are shown in Table 1-6.

Memory addressing for the 16K devices replaces the CE/ line
with A6, With this addition of another pin for addressing, 14 ad-
dress bits can be strobed into the chip memory latches, which re-
sults in 16.384 locations being accessed. The CE/ function for these
memories is combined with the RAS/. The additional external hard-
ware to provide for the decoding is minor when compared to the in-
creased memory capacity. The DIP shunts at X-71 must be changed
to reflect the insertion of the larger memory chips. The new posi-
tions are shown in Table 1-6. By installing 16K RAM:s into the TRS-
80, the DIP shunt routes address line A6 to the A6 input (formerly
the CE/ of the 4K memories). This address is strobed along with
the other addresses during the RAS/ activation. However, during
the CAS/ activation Al3 is directed to A0, and A12 to A6. All other
addresses, A7 through All, remain the same as those strobed with
the 4K devices during the CAS/ activation. An examination of Ta-
ble 1-6 should help to clarify the addressing scheme for each of
these different types of RAMs.

The 8K dynamic RAMs present another variation for the A0 input.
In this case the A0 line is used to strobe the operating half of a 16K
dynamic RAM. Tt is not clear why this method of 8K implementation
is used. Intel Corporation supplies an 8K dynamic RAM that uses the
A6 input during the CAS/ to function as a chip enable. Two versions
are available, one in which the memory device is enabled with this
line input low, and the other when this line input is high. Thus the
chip enable feature is still provided for in the 8K device. If A6 is

46

P—

s

low, the lower 8K is addressed; if it is high, the upper 8K is ad-
dressed. The unique location is determined by the logic levels
strobed with the other address lines. (It appears that these de-
vices are fallouts from the manufacture of 16K memory.) DIP
shunt X-71 makes provision for a logic high/low not for pin A6
but for AO. It seems that Radio Shack was going to have an 8K
RAM manufactured with this specification. One assumes that be-
cause of the low cost and availability of 16K memory, making cus-
tomized versions of 8K devices became prohibitively expensive, and
the scheme was discarded. If an 8K dynamic RAM system is de-
sired, this can be accomplished through the use of the 16K mem-
ories. This will allow 8K of additional ROM within the keyboard
unit. You must supply your own hardware to decode the ROM ad-
dress space. DIP shunts on X-71 provide for either the low or high
addresses on A13. Memory not to be accessed may be isolated with
DIP shunt X-3. Few systems have been modified to use 8K of RAM.
However, the electronics for such a conversion is present, in this un-
orthodox fashion. Table 1-6 lists the DIP shunt selections possible
for an 8K implementation. Do not forget to make the appropriate
range selections with X-3.

To clarify further the address data on the dynamic RAM pins
during the RAS/ and CAS/, Table 1-7 is provided.

Modification of the Model 11

To modify the Model II1, the ROMs must be removed from the
desk-top unit. To accomplish this, rest the unit on its back or top,
protecting the surface with a soft cloth or foam padding. There are
10 Phillips screws surrounding the outside of the Model III. Do not
remove the screws in the plastic feet. The function of the feet is to
support the unit and prevent marring. They do not retain the cover
and will have no effect on the disassembly. Remove the 10 screws
at the outer edge. You will notice that these screws have different
thread styles and lengths. The three shortest have machine threads
and are in the front holding that portion of the case that covers the
keyboard. Behind these, toward the edge and in line with the front
of the crt structure, are two longer machine-thread screws. These
screws are in a well about 34 inch deep. The remaining five screws
are l-inch sheet-metal screws. One of these screws may be covered
with the seal that refers to the warranties. The breaking of the seal
will result in an additional service charge if the unit is to be re-
turned for repair. (If this unfortunate event should occur, do not
forget to restore the original ROMs in the unit.) After the 10 screws
have been removed, do not lift the base because there is one more
retaining screw holding the cover in place. The final screw that must

47

Table 1-7. Pin Assignments and Signals Present on Dynamic

R/W Memory
Pin Assignment RAS/ cas/ 4K | RAS/ 8K & 16K CAs/ 8K | CAS/ 16K
5 A0 A0 A6 AD Gor +5 Al3
7 Al Al A7 Al A7 A7
6 A2 A2 A8 A2 A8 A8
12 A3 A3 A9 A3 A9 A9
11 A4 A4 A0 A4 A0 Al0
10 A5 A5 A1l A5 All AN
13 CEf or A6 | RAM/ RAM/ A6 A12 A2
1 Vbb
2 DIN
3 WE/
4 RAS/
8 vdd
9 Vcc
14 DOUT
15 CAS/
16 Vss

be removed is in the top center of the back of the unit. In the in-
verted position, this screw is in the center back near the resting sur-
face. Remove this last screw, and carefully lift the base from the top
cover. The top cover holds the crt and associated electronics and is
attached to the main base with a long connecting cord. Lift the base
vertically high enough to clear the circuit board from the neck of
the crt and the cover. The base is light, so with reasonable caution
no problem will occur. After you are certain of being clear of the
top cover, rotate the base by 180 degrees and set it on its plastic
feet. The removal of the BASIC ROMs can now take place.

Facing the unit from the rear, you will notice in the lower right-
hand corner three large 24-pin dual in-line integrated packages
(refer to Fig. 1-14). These are the three ROMs that contain the
Level 11 BASIC. If the Model I1I is a Level I, there will be only one
socket of the three filled, the extreme left socket. Fig. 1-15 shows
an enlarged view of the ROM sockets with the FROLIC monitor
in place. These sockets are labeled U104, U105, and U106. The
socket closest to the cassette plug is U106, the system utility ROM.
The memory capacity of this IC is 2K X 8. The center socket, U105,
can hold a 4K X 8 ROM. The left socket is U104, and it resides at
the starting address, 0000H. In a Level I system the size of this ROM
is 4K X 8, and in a Level II system it is 8K X 8. It is this ROM that
must be removed to reconfigure the TRS-80 into the FROLIC de-
velopment system. Therefore, remove it, but note the position of
pin 1, which is in the top left corner of the package. The ROM will

48

i-_‘
Fig. 1-15. Detail of ROM placement in a TRS-80 Model 111,

be tightly pressed into its socket, so remove it with great care using
a small flat-blade screwdriver which allows you to get between the
ROM and the socket for greater leverage. After the ROM has been
removed, you are ready to replace it with a 2716 EPROM obtained
from the supplier listed in Appendix C or with a 2716 EPROM that
you have programmed using the object code given for the Model 11T

49

in Appendix E. Pin 1 is inserted in the upper left of socket Ul04.
However, with a 2716 EPROM, one precaution must be observed. It
is necessary to raise pin 21 to +5 V dc to enable the chip at addresses
that start with location 0000H. This is accomplished by making
a connection between pin 24 (the V) and pin 21. This can readily
be observed in Fig. 1-15. The ROM supplied from the listed source
has this jumper in place. Pin 21 must be (or is) bent slightly out-
ward so that it will not be pressed into the socket when it is inserted.
It is possible to place either a 2732 (4K X 8) or a 2764 (8K X 8)
EPROM in this socket. The 2732 and 2764 do not require a jumper
wire. (A note of caution concerning the 2716. If it is necessary to
reprogram this EPROM, do not attempt to program the 2716 with
this jumper in place.)

The Model III may be tested with the cover off. After the EPROM
is in place, place the crt screen in a position so you can see it. Turn
on the unit with the switch under the keyboard on the right. The
“FROLIC:” prompt should appear on the lower left of the screen.
If not, replace the original ROM, and try the unmodified system.
If all is well, as it should be, the fault is in the EPROM. Return it
to the supplier, or check the object code against the listings for the
Model IIT unit given in Appendix E.

Unlike the Model 1, full memory expansion is provided for on the
microcomputer circuit board. In the upper right corner are sockets
for 24 dynamic R/W memory devices. The first row may take eight
of either the 4K X 1 or 16K X 1 dynamic RAM devices. If the unit

i & & 3 T‘W* : ?aﬂk-—

Fig. 1-16. Dynamic R/W memory placement in the TRS-80 Model {11,

50

4

- g

s

A

Fig. 1-17. Jumper placement for 4K
and 16K memory selection in TRS-80
Model 111, e [] :

FF FF

66 66 D

4K MEMORY 16K MEMORY

is a Model III Level 1, the 4K devices are residing in the upper row,
with all other socket holders empty. To convert to a 16K machine,
it is necessary to change the address select and chip enable of this
first row. This is accomplished by special jumpers to the left of the
memory. Refer to Fig. 1-16, in which the jumpers are shown near
socket U-7 and near RP-3. The upper jumper is labeled, from top to
bottom, S, T, and U. The lower jumper is labeled EE, FF, and GG.
For 4K memory, T is jumpered to U with S open, and FF is jump-
ered to GG with EE open. For 16K memory, S is jumpered to T
with U open, and EE is jumpered to FF with GG open. Fig. 1-17
shows the placement of the jumpers for the two types of memory
that may occupy the first row.

The memory can be expanded to the full 48K capability by filling
the remaining 16 RAM sockets with 4116 dynamic memories. The
jumpers to the left of memory should be in the 16K position as
shown in Fig. 1-16.

CONCLUSION

The information provided in this chapter is to aid in understand-
ing the TRS-80 system. To some readers the material may appear
too complex, and to others not complex enough. Attention was given
to memory utilization, input through the keyboard, output to the
crt, and tape storage techniques. The software provided requires
some knowledge of these system components. It is also hoped that
the potential for this low-cost microprocessor development system
is realized. Its uses may be far removed from those envisioned by
the TRS-80 system designers.

51

The intent of this book is to provide the software to obtain a so-
phisticated monitor operable on the TRS-80 system. The software
is given in the Appendixes. Chapter 2 describes the command set
of this monitor.

52

CHAPTER 2

The Monitor

The FROLIC monitor transforms the TRS-80 microcomputer into
a sophisticated and manageable development system. The monitor
allows the user to interact directly with the TRS-80 at the machine-
language level, to enter and execute machine-language programs,
to read and write machine language tapes using audio cassettes and
a recorder, to use editing and debugging facilities, and to program
several of the currently popular and readily available programmable
read-only memories (PROMs).

The monitor is intended to replace the first 2048 (2K) bytes of
read-only memory currently residing in any of the TRS-80 Model
III and Model I microcomputers. An EPROM is used for this re-
placement. Alternatively, the monitor program may be entered into
memory using a cassette as presented in Chapter 1. The advantage
of ROM replacement is that this allows instant availability of the
monitor on power-up.

COMMAND FORMAT

Most commands are designed to be single-character commands.
Up to three hexadecimal addresses may follow a command. In this
text the hexadecimal representation is always indicated by the pres-
ence of a terminating upper case H with the only valid address digits
being 0 through 9 and A through F. Likewise, decimal addresses
terminate with an upper-case D with the only valid entries being
the digits 0 through 9, and binary addresses terminate with an upper-
case B with the only valid entries being 0 or 1. Upon entering a com-
mand, addresses and address data are separated by spaces with the

53

first space being optional. The letter “T” is used to separate ad-
dresses, as though the “T” represents “through.” The command for-
mats that represent typical command entries into the monitor are
shown in Table 2-1.

Table 2-1. Typical Monitor Command Instructions

Command Definition
C No address required
D40 0040H is the only address affected
D4000 4000H is the only address affected
D400074040 4000H through 4040H is affected
D4000 40 40H or 64D positions are affected, an alter-
nate form of the preceding
M4000T4040 5000 Three fieids are the maximum
M4000 40 5000 An alternate form of preceding format
D934000 564040 Equivalent to D4000T4040 or D4000 4040
Note that:

A. Commands may not need addresses.

Leading zeros are optional.

Leading spaces are optional, and only the first occurrence is

used for separation of address or data fields.

. If more than four hexadecimal numbers are entered together,

only the last four are recognized.

. If the T delimiter is not used, spaces may be used instead with
the first address indicating the initial address and the second
hexadecimal value representing the number of positions af-
fected, first address inclusive.

F. If entered addresses or address data is separated by a letter

other than T or a space, the command is ignored.

H T O

COMMAND EXECUTION

All commands are executed by depressing the <ENTER> key.
Editing of a command or command string is done through the use
of the left arrow key for backspacing, which allows you to “back up”
to the error for correction. Command editing may be continued until
<ENTER> is finally depressed.

The monitor for the TRS-80 is described in the text that follows.
At the end of the text, documentation is included to enable you to
modify any of the subroutines to fit your particular purposes. Expan-
sion to 26 commands is possible, one for each letter of the alphabet.
In addition, the “at” @ is included, for a total of 27 commands. Most
commands utilize a letter that is close to describing the desired com-

54

mand. For example, to display a section of memory the upper-case D
is used, indicating “Display.” Also, depending upon the command,
up to three data fields are required. Certain formats are used to spec-
ify ranges of addresses that occur in these commands. A great deal
of effort was made to be consistent.

Monitor operation is indicated by the initial “FROLIC:” prompt.
This “sign-on” appears in the lower left area of the screen, at the
beginning of the sixteenth line. If this is not the case, resetting the
CPU using the reset button should result in the display of the
prompt.

Table 2-2 shows a list of the 27 possible commands. Each com-
mand is described in the text that follows.

Table 2-2, List of Available Commands in the FROLIC Monitor

Command Definition

@ Fill memory with constant

A ASCH display of memory specified in command

B Repeat last command saved in buffer

B(S) Save command string and execute with a B command

C Ciear screen

D Display memory in hexadecimal format in range specified

E Execute with current screen data

F Used for searching for a single byte of data over the range
specified

G Go and execute the program starting at specified address

H Hexadecimal sum and difference

| insert data from command string

J Not used

K Not used

L Produce hard copy on listing device (if this option is
loaded)*

M Move memory data from one location to another

N Input data from input port(s)

o} Qutput data to port specified

P Program PROM (if option loaded)*

'Q Search memory for a two-byte word in INTEL format, low

byte followed by high byte

R Read cassette tape using Radio Shack 500 bits/second
format

S Substitute to memory from keyboard input

T Transfer data from previously allocated screen storage to
crt display

U User assignable*

\' Verify memory

w Write a cassette tape using Radio Shack 500 bits/second
format

X Examine and alter Z-80 registers

Y Not used

z Single-step (hardware must be implemented)*

*The implementation of these commands is described in text.

55

Commands are executed from a buffer. When any key is pressed,
its ASCII (American Standard Code for Information Interchange)
value will be stored in this buffer. Multiple commands may be en-
tered by separating each command by a comma. The buffer is lo-
cated starting at address 4080H and ending at address 417FH.

For proper command execution, the correct format must be en-
tered. If you fail to enter the correct format, execution is attempted,
but it will cease when an unexpected character is encountered. At
this time, the complete command buffer is displayed with a “?” over
the nonexecutable entry. If possible, any additional commands that
remain in the command buffer will be executed; otherwise execu-
tion stops. The prompt reappears, and the correct format of the
command must be entered. Editing of the line is possible until
<ENTER> is depressed. You can “escape” from the command se-
quence executing by actuating the <BREAK> key. Then the com-
puter will indicate that the monitor is ready to accept a new com-
mand.

To use the monitor, it is necessary to specify a command and
where necessary specify the data fields describing the extent of op-
eration of the command. Each command has its particular field
specification. In some cases similar formats occur in several of the
command felds. For example, both the A and D commands require
a beginning address and a specification for the number of bytes to
be displayed. If an error is made in the entry, it is only necessary to
use the backspace arrow to “rub out” the last entry or entries and
insert the correction. In any address or address field, only the last
four hexadecimal digits are accepted as valid data.

Assume you have entered a command and it is executing, and you
wish to halt or abort the command. The process may be halted by
pushing down and holding down the space bar. This stops execution
for as long as the space bar is depressed. To stop execution com-
pletely, simply depress the <BREAK> key. The “FROLIC:” indi-
cates that the monitor is ready for its next instruction. ,

There are five delimiters or separators used in this monitor. The
space “ 7, the “T”, the period “.”, the comma “, and the slash “/”.
Other characters of the ASCII set used are the <ENTER> or car-
riage return (CR or ODH), and start-of-heading (SOH or 01H).
The <ENTER> is reserved to indicate to the monitor the command
string is to be executed. Hidden from the user’s view is 01, which
is used by the monitor to indicate that the last command in the se-
quence has been executed. The meaning of start-of-heading is im-
portant, since the monitor detects the 01H value. The comma “r
is used to separate commands. It is the only separator used for this
purpose. You may observe this by noting the last entry in the buffer

56

G

G e

when an error is encountered, for even though you depressed the
<ENTER>, a comma terminates the command string. The period
“.” is used for the entering of data to be used as breakpoints. The “/”
indicates an address change in both the substitute and insert com-
mands. Particulars are covered in upcoming sections that deal with
the command descriptions.

Fach command is described in detail. These are presented not in
alphabetical order, but in a utilization order to allow you to start to
use this monitor by knowing only a few commands. As with all pro-
grams and systems, usage breeds familiarity. You should practice
with a few commands and then add commands as needed. The table
in Appendix A places the commands in alphabetical order for quick
reference.

S COMMAND

The most flexible of the monitor commands is the S (Substitute)
command. This command allows the user to insert data into mem-
ory. When using this command an address is required in order to
specify where substitution is to take place. The usual format is an S
followed by an address. For example:

S4400<ENTER>

Execution of this command results in the display of the address,
4400H, in the lower-left portion of the screen followed by a colon
and the data currently located at that address. A question mark ends
the sequence, prompting the user for an entry from the keyboard.
The display resulting from the execution of the above command,
54400 <ENTER> is:

4400: XX?

(where XX is the hexadecimal data stored at 4400H)

You may now enter data. Only valid hexadecimal data is accepted.
To use this command, several choices are available. If no change in
the data is desired, the user simply depresses the space bar. This
advances the memory pointer to the next location. Valid hex data is
entered by way of the keyboard, the last two hex digits before de-
pressing the <ENTER> key replacing the memory contents. You
may note that if an entry is made which is not hexadecimal, a “?”
will appear. Any number of “?” symbols may separate the last two
valid entries. It is not necessary to re-enter the command mode to
change the address. It is only necessary to enter the new address
followed by the “/” in place of the data. The new address location
is displayed in the lower left-hand corner. Substitution of data may

57

now continue as before. It should also be noted that when data is
entered into a memory location, that location is then re-read and dis-
played as an “echo.” This technique makes it evident that if data
insertion is attempted in ROM or outside of valid read/write mem-
ory, the echoed data will not agree with the desired data to be de-
posited and, therefore, corrective action is required. Additional flex-
ibility is demonstrated in that it is also possible to step backward
using the back arrow or “rubout.” If, while in the command entry
mode a rubout occurs, in this case in the S command, the address is
decremented by one and displayed along with the data currently
residing at that location. To exit from the substitute command mode
the <ENTER> key is depressed twice in succession. It should be
pointed out that the double <ENTER> will not alter the contents
of the last memory location.

I COMMAND

A second method is available to substitute data into memory using
the I (Insert) command. For example:

14400 00 11 22 33 44 4410/ AA BB CC<ENTER>

As before, the beginning address of the substitution follows the I
command. However, instead of using <ENTER> the user deposits
the data in sequence. Each value is separated by a space, the delim-
iter which is used after each data entry. The sequence continues for
as many entries as desired. The execution of the I command shown
in the example would result in the data 00H, 11H, 22H, 33H, and
44H inserted in sequence starting at 4400H and ending at 4404H.
Notice the next entry (4410/) is terminated with a */”, which
changes the pointer, causing the insertion to continue at the new
location. The data AAH, BBH, and CCH is inserted at 4410H
through 4412H. After entry of this command, the display appears
as follows:

4400: 00 11 22 33 44
4410: AA BB CC

After the data is entered, you can see the displayed deposits when
the command is executed by depressing <ENTER>. It should be
noted that the question mark is not used in this command. The dis-
play is similar to that obtained with the D command (which fol-
lows). Like the S command, these deposits are echoed. If an attempt
is made to deposit data in memory other than RAM, the display will
reflect it.

58

sl

2,

D COMMAND

After data is deposited using either the S or I command, you can
examine this data through the use of the D (Dispiay) command. A
“D” followed by an address with no range specified results in the
display of the data in 40H locations. A wider range of data can be
observed by using a block format. A block is specified by first using
a space as a delimiter after the start address is entered and then fol-
lowing the definition with a value that indicates the block length.
For example:

D4800 10<{ENTER>

results in the display of 16 (10H) memory locations. Block lengths
up to FFFFH are possible.

An alternative form of this command is to use the beginning ad-
dress followed by a “T”, then the ending address. The result is that
the block is specified by the range of the entry. For example, the dis-
play commands shown below result in a display of 40H locations
beginning with address 4040H.

D4040 T 407F<ENTER>
or
D4040 40<ENTER>>

Note that the space delimiters as shown on either side of the T are
not required. The display that results after executing this command
follows:

4040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
4050: 00 G0 00 00 00 00 00 00 00 00 00 00 00 00 00 00
4060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Q0 00
4070: 00 00 00 00 00 00 00 00 0O 00 0O 0O 00 00 00 00

G COMMAND

After you examine your program in its hexadecimal form and you
are convinced that the object code shown should run successfully,
execution or testing is the next logical step in program development.
This is accomplished with the G (Go) command. The G command
requires an address at which execution is to begin. This address can
be specified as part of the command, or it can be obtained from the
program counter register as saved from a previous execution. In its
most simple application, the G followed by an address causes execu-
tion to begin at the address specified. You must be as sure as possible
that when this command is executed your program will not produce
a system “crash,” in which case the computer is advancing through

59

memory in an uncontrolled fashion. A reset will quickly return con-
trol to the monitor program, but the contents of RAM, and as a con-
sequence, your program, may have been altered. As an example of
the use of the G command, first insert the following object code by
using the I command:

14400 00 3E 2F AF C3 00 44<ENTER>

The monitor responds with an echo of the object code at these
addresses.

4400: 00 3E 2F AF C3 00 44

This code when executed using the G command does the following:
the 00 is a NOP or no-operation (the program counter is advanced),
then the computer loads the accumulator with 2FH, clears it (which
does affect the flag register), and then does this all over again, and
again, and again. It will serve as an excellent demonstration for the
G command. With the program in place, execute the following com-
mand:

G4400<ENTER>

Nothing happened, or did it? First you will notice no prompt. Now
you should also notice that there is no response to any key entry.
What is happening is that the microprocessor is executing code that
causes the computer to be in an endless loop. The only choice possi-
ble for you at this time is to push the reset. You could use the power-
on clear by turning the power off and turning it back on again. How-
ever, the program you just entered would be destroyed because of
the volatile nature of the dynamic RAM.

Obviously, you would like to have more control over the execution
of a program during the program development stage, and a con-
trolled return to the monitor is desirable. This can be accomplished
by means of breakpoints. Simply stated, a breakpoint in a program
causes execution of your program to cease at a point you have speci-
fied, and control is returned to the monitor, When control returns to
the monitor, the states of all of the Z-80 registers are saved and then
displayed immediately on the crt screen. The condition of the screen
may also be saved, as will be shown later. Also displayed on return
are the next four bytes which start with the data pointed to by the
program counter. This code display occurs only when a breakpoint
is encountered. You should also be aware that the code at the break-
point is not executed. As will be shown later, the state of the registers
is always available to the user upon request using the X command.
If this request is made, the object codes starting at the breakpoint
ARE NOT displayed. If the program terminated at a requested

60

e

breakpoint, execution can continue by entering “G” followed by a
new breakpoint. You may have more than one breakpoint.

To use the breakpoint feature, two alternatives can be employed.
If the execution is to start at an address other than that specified by
the program counter, the user enters the following type of command:

G4400.4401 <ENTER>

In this case, execution starts at location 4400H, with the breakpoint
set at address 4401H. If the short test program used with the G com-
mand is still in R/W memory, the computer executes the 00H, or no-
operation command, and then reaches the breakpoint. Once the
breakpoint has been reached, the monitor responds with the follow-
ing display. The format of this display is covered in detail in the X
command.

P=4401 $=4300 X=0000 Y=0000 N==00 1=00 V=3C00
A=00 B=00 C=00 D=00 H=00 L=00 M=0000 F=00
A’00 B'00 C'00 D'00 H'00 L'00 M'0000 FQ0

4401: 3E 2F C3 00 44

The program counter is now at address 4401H, which was the speci-
fied breakpoint. It is assumed that at location 4401H there is an exe-
cutable instruction. That is, the breakpoint cannot exist within the
address field of a call or jump instruction, nor can it be in a position
that data would occupy. For example, you cannot execute the follow-
ing sequence and expect to return to the monitor at the break.

G4401.4402<ENTER>

The data at 4402H is 2FH, and this is part of the load-accumulator
instruction. There exists an instruction in the Z-80 code with a value
of 2FH. However, when the load is executed the 2FH is considered
data. When a breakpoint is requested, the instruction residing in
that location is replaced with an instruction which causes a return
to the monitor. Upon such a return, all breakpoints are cleared, so
all of the original program steps are restored to their original state,
as they were loaded prior to the use of any breakpoints. The only
restriction placed on the breakpoint is that it must occupy the posi-
tion of an instruction.

More than one breakpoint can be specified. In fact, room is pro-
vided in R/W storage for at least ten breakpoints. It is not envisioned
that any user will require that many breakpoints in checking the
operation of a program. For you to implement the multiple break-
point feature, you simply place your breakpoints in sequential fash-
ion using the period as a delimiter. For example, the following is
the format:

61

G4400.4401.4403.4304 < ENTER>

With this command, all instructions at the three locations specified
are replaced with a single-byte call to the monitor. Each instruction
is saved in R/W memory along with its address. Execution begins at
the specified address and stops at the first breakpoint encountered.
All breakpoints are cleared, and the instruction formerly occupying
that position is replaced. The breakpoints are entirely “transparent”
to the user unless, of course, the user has lost control in his program
because a crash has occurred. On rare occasions, this crash may not
manifest itself to the user, and unexplained problems may appear.
If the program counter does not agree with one of the set break-
points, an improper termination has occurred. Also, if upon exami-
nation of your program, some unexplained FFH codes appear in
the program, a crash has occurred. The FFH is used by the monitor
to indicate a breakpoint, and it remains if a break is not terminated
properly. If the crash is not severe, the monitor will attempt to clear
breakpoints upon the depressing of the reset button.

Assuming a proper break is encountered and program execution
is to continue at the address of the breakpoint, the user may restart
the program by using the G followed immediately by the new break-
points.

G.4403.4404<ENTER>

Notice the use of the period to indicate the breakpoint location im-
mediately following the G. Notice also that upon termination from
the program by means of a breakpoint the program counter agrees
with one of the specified breakpoints.

As indicated earlier, there are two methods of setting the break-
points. The second method makes use of relative addressing. The
addresses are relative to the program counter, and the arithmetic
operations of plus (+) and minus (—) are used for breakpoint
entry. The value following the operand is added to or subtracted
from the program counter to establish the breakpoint. The range
of change (“bias”) is 0000H to FFFFH. Of course, the use of large
relative jumps (biases) can result in what is called “wrap-around”;
that is, once the value of the microprocessor’s program counter ex-
ceeds FFFFH, it wraps around to 0000H without regard to the over-
flow. An example of the use of the relative breakpoint feature is:

G4401.+2.+3.— 1 <ENTER>
Here the breakpoints are the same as if the following were entered.
G4401.4403.4404.4400 < ENTER>

This feature makes breakpoint entry more convenient. Try it with

62

2

g

the example program. The first breakpoint returns control to the
monitor with the program counter at 4403H.

Since the register display occurs when a breakpoint is encoun-
tered, let us examine in detail what the various registers represent.

X COMMAND

The X (eXamine registers) command is executed by pressing the
X key after the prompt appears on the monitor or by making it part
of the command buffer. In both cases, the register data displayed is
that generated by the user during execution of the test program and
not the data generated by use of the Z-80 internal registers by the
monitor. The command:

X< ENTER>

produces the following display when the system is first powered.
P=0000 $=4300 X=0000 Y=0000 N=00 i=00 V=3C00
A=00 B=00 C=00 D=00 E=00 H=00 L=00 M=0000 F=00
A’00 B'00 C’00 D'00 E’00 H'00 L'00 M'0000 F'00

The first position on the first line is the program counter (P=). In
the power-up initialization it is set to 0000H. If a G is entered as a
command. the monitor would cause execution of the program begin-
ning at that location. The next register displayed is the user stack-
pointer. The monitor initializes a reserved area for the user stack.
This area is not used for any other purpose and extends from 42C0H
to 42FFH. The stack is used in reverse order, and the first position
filled with data is one less than that indicated by the stackpointer.
The stackpointer always resides at one location above that location
used to store the data on the stack. Therefore, data should be stored
in the stack beginning at 42FFH. If the stack is not changed by using
a stack modification instruction, then this register should be at
4300H. The monitor stack resides at 42CO0H and ends at 4280H.

The third and fourth locations contain the information stored in
index registers IX and IY.

The next register is the N register, and it can take one of two
values. If the value is 00H, then the maskable interrupt is not en-
abled and no interrupts are possible when control is passed to the
user program. If the register contains a 01H, then the interrupt is
enabled when control passes to the user program. The 1 register is
the interrupt vector register and has meaning only if the vectored
interrupt mode (mode 2) is enabled. This register contains the up-
per portion (the high-order byte) of the address of the vector. The
lower address is available from data strobed on the data lines. This
occurs when the interrupt acknowledge (INTAK/) is issued by the

63

processor after an interrupt is requested. It is possible to cross page
boundaries, although the technical manuals seem to imply that this
is not the case. More detail of the use of the I register is given in the
section dealing with the hardware modification that enables the full
interrupt structure of the Z-80 microprocessor.

The last entry in the first line is the location of stored video infor-
mation. This is a monitor function and not a Z-80 function. The video
information consists of 1024 bytes of data that make up the screen.
Upon initialization, the video pointer resides at the same location
as the beginning of the video screen memory block. The data located
at these screen memory positions is stored in those same positions
when control returns to the monitor. This data is then scrolled when
the register information is displayed. Any writing to addresses in
memory that reference the upper video starting at 3CO0H and end-
ing at 3CBFH are scrolled and lost forever and cannot be recalled
by the user. It is sometimes desirable to see alterations you wish to
make to the screen display area of memory without having them
scrolled upward when return is made to the monitor. If the V ad-
dress is changed to point to 1024 locations of selected R/W memory,
the data present in the video memory block at breakpoint time is
transferred to the location starting at the address indicated. At any
time. while under monitor control, this data can be viewed using
the T (Transfer) command (the changing of the pointer may be
accomplished with the X command as will be shown). Therefore,
any data written to the screen while in the user program is readily
observable. It should also be noted that before execution of your
program the screen data present at the pointer is transferred back
to the screen.

The next two lines of the display register command contain the
data present in all of the Z-80 registers. All of the registers internal
to the Z-80 processor are loaded with the displayed data (in this
case 00). This particular pattern is present at power-up as part of
the initialization. A return through a proper breakpoint saves the
status of these registers at the time of the break. They are displayed
from left to right starting with the A {accumulator) register, the
B and C registers, the D and E registers, and the H and L registers.
The next pesition is the H and L combined to form M (memory
pointer) (added because of the many references made by this
pointer). The next position is the F or flag register. This register
shows the flags that are set.

SZXHX/NC
The above F register display is interpreted as sign, zero, not used,

64

g

s

s

.
LT

half carry, not used, parity/overflow, subtract, and carry. If no al-
phabetic representation appears, it implies that no flags are set.

The last two lines are of the same format. The difference is that
the first represents the working registers and the second represents
the mirror or prime registers. The use of these registers is primarily
for servicing interrupts quickly, but they come in handy for many
operations that require the use of a register without destroying the
previous value in that register. All the registers internal to the Z-80
processor are loaded with the data displayed. and a return to the
monitor through a proper breakpoint saves the status of the Z-80
registers at the time of the break.

X COMMAND (MODIFY)

The X command may be used to modify the contents of any of the
displayed registers. To use this feature, you enter the new data pre-
ceding the <ENTER>. For example, to change the video storage
from 3CO0H to 4CO0H, perform the following:

XV4COOH< ENTER>

The monitor responds,
V=3C00 V=4C00

The change remains in effect until the register is altered with the X
command, a power reset occurs, or a GO command is executed. To
change any of the other registers the format is the same. Just follow
the X with the register name as displayed. The registers are as fol-
lows: P (Program counter), S (Stack pointer), X (IX Register), Y
(IY Register), N (Interrupt enable upon execution—00 for no and
01 for yes), I (Interrupt high vector address in the Z-80 micropro-
cessor), V (Video storage in RAM), A, B, C, D, E, H, L {the work-
ing registers), M (pointer formed by HL), and A’, B’, C’, D', E/,
H’, L', M’ (mirror registers).

Note that the command,

XF' FF<ENTER>
produces the display:

F00 F'FF SZXHX/NC

All of the registers are alterable with Z-80 object code. However,
once the video storage address is changed, only the XV, GO, or
power-on clear operations can reset this address. Once located to a
valid R/W location, the execution of a G command takes the data

at that location and transfers it to the screen RAM prior to execution.
You may wonder where the “garbage” comes from when you execute

65

this command. Returning from a break takes the data in the screen
area and saves it at the allocated storage area. This is done so that
user programs that require the video as the output device can be
developed with greater ease.

A method exists for clearing the screen prior to execution. A sec-
ond command for execution with breakpoints is included in the
monitor command set. This is the E command and is the topic of
the next section.

E COMMAND

The E (Execute) command is identical to the G command, except
that the current screen information is used at the start of execution.
If in the user program any output to memory 3CO0H to 3FFFH oc-
curs, the new data replaces the data formerly in the addressed posi-
tion. This command, in conjunction with the C, T (descriptions of
these follow), and XV commands, may be used for scroll protection.
When scrolling occurs, the top line of the crt display is erased, and
the lines below are all shifted upward by a single line. Essentially,
this is a line-feed when the carriage is returned on a typewriter. The
FROLIC monitor allows you to protect the display area so that this
information is not lost. This is done with the XV command as de-
scribed. As with the G command, return from execution relocates
the screen data to the storage area indicated by the V address. It is
the user’s responsibility to keep a record of the memory space to
avoid conflicts. The format of this command is:

EA500<ENTER>

Like the G command, execution begins at location 4500H. The dif-
ference is that the screen data is not replaced with the data that was
in the reserved memory space. Breakpoints may be included as
shown:

E4500. 1.4510<ENTER>
Breakpoints set here are 4501H and 4510H. To clear the screen area

prior to execution, use the C command.

C COMMAND

The C (Clear) command clears the screen. If in your program
development the screen is to be used as an output device, it may
be desired to have the ASCII “blank” character fill these RAM loca-
tions. Execution of the C command clears the screen. Utilization is

66

3

P

P

the same as other commands, except that no address or data fields
are required. For example:

C<(ENTER>
produces in the lower left corner the prompt

FROLIC:

The rest of the screen is clear. It should be noted that the sign-on
with the prompt “:” is the result of return to the execution of the
command mode. The CLEAR key is identical in function to the C
command. Depressing this key produces a C in the command buffer.
In both cases, the clear is a two-step operation that makes accidental
use of this command more difficult. To view the data, the T com-

mand is used. With the T command, the prompt does not appear.

T COMMAND

The T (Transfer) command transfers the stored screen informa-
tion located at the address specified by the V register (which is not
a Z-80 register). For this command to be effective, the screen storage
must be changed prior to using this command. This is done with the
XV command as previously described. Therefore, returns from the
user program caused by execution of the E, G, or Z (hardware option
to be described) commands result in the information stored in the
crt R/W memory being moved to the allocated area. That informa-
tion may be recalled for inspection while in the command mode by
using the T command. The result is scroll protection, because after
a breakpoint is encountered while the microprocessor is executing
object code, execution ceases, and the screen data is stored begin-
ning at the location stored in the V register. This data is restored to
the screen using the T command, just as it was when execution was
interrupted. In this case, the sign-on message does not appear in
the crt field. However, the cursor may be present (a function of the
position of the G or E command in sequential executions).

Change the video pointer to 4CO0H, and execute a G with a
breakpoint. Alter the data on the screen with a series of <EN-
TERS>s. Now, to view the data stored in the reserved memory space
(as determined by the V field at the time the G reached its break-
point), enter,

T<ENTER>

The stored data now replaces the data on the screen. Note the
change in the screen. If the executed program had cleared the screen
(at this point, it does not matter how this was accomplished) the

67

“FROLIC:” would not appear on the crt screen. Although not ap-
parent, the monitor is waiting to accept a new command. Any key
entry will be displayed with the cursor mark reappearing after the
entry. Continuation of execution using the G (or Z) command auto-
matically returns the stored data to the screen just prior to execu-
tion.

Caution is required for the use of this command in a command
sequence, for its return is always to the command entry point of the
monitor. It can only be the terminal command of a command se-
quence, for any command that exists after it is not executed by the
monitor. This is the only command that functions in this manner.
Grouping of commands for execution is covered in later sections.

A COMMAND

The A (display [A]SCII) command is for American Standard
Code for Information Interchange display. This means that if the
character in memory has an ASCII equivalent or graphic represen-
tation (Radio Shack format), it can be displayed in a single position
representative of the hexadecimal value. Even though the graphic
character is not part of the ASCII code, the pattern of the graphic
byte is written to the screen area. In fact, the only pattern that is not
displayed is the 08H (backspace or rubout). If this code is in the
field specified in the command, the byte prior to 08H is also not dis-
played. The crt driver program automatically removes data prior to
the rubout. Since the A command is primarily intended for the dis-
play of ASCII-based text information, there is no correction for the
rubout due to the limited EPROM space. The format of this com-
mand is the same as that of the D command. Two options are pos-
sible: the block format and the through format. A typical command
follows:

A3C00 100<ENTER>

This command results in the display of the 100H locations of the
video screen area beginning at 3CO0H. These lines consist of an ad-
dress followed by 32 decimal characters. The same display of ASCII
characters can occur by entering the alternate format,

A3COOTICFF< ENTER>

F COMMAND

The F (Find) command allows the user to find a single byte of
data within the range specified by the address fields. Three fields
are required in this format: the starting location, the ending location

68

o,

e

S

or number of bytes to search, and the byte desired to be found. For
example,

FOOOOT4FFFH F3<CENTER>

or
FO000 5000 F3<ENTER>
searchs memory for all occurrences of F3H, starting at 0000H and

ending at 4FFFH. Each address at which the byte is found is dis-
played in the following manner:

0014: F3
00XX: F3
00XX: F3

Q COMMAND

The Q (Quest) command is similar to the F command with this
important difference: a two-byte search is made. The format is the
same as that of the F command, but the data is interpreted as an
address, so if the following is entered into the buffer:

QOC40TO7FF 4000<CENTER™>
or
Q0040 780 4000H<ENTER>>
the result is a search for the low-order byte 00H followed in memory

by the high-order byte 40H, made over the range specified. The re-
sult should produce the following display:

0080: 00 40
0345: 00 40

This format of low-followed-by-high is a function of address data
for the microprocessor. That format was preserved in the implemen-
tation of this command.

@ COMMAND

The @ {(fill @) command allows the user to fill memory with a
constant. Two more ways to clear the screen follow:

(@3CO0T3FFF 20<CENTER>
or
(@3C00 0400 80<CENTER>>

By necessity, this is a three-field command. In this case, the third
field is the data to be deposited in memory over the range given. In

69

the first example, the ASCII blank (20H) is deposited. In the sec-
ond example, the graphic blank (80H) is deposited. They both per-
form the same function. If more arguments are typed in than can be
used by the command, the monitor accepts only that required, and
it ignores the extra fields. The space is used as the delimiter for the
last argument. This command can be used for presetting memory
space to a reference byte such as 00 or FF.

You must be very careful when using the fill command. If a block-
type format is used, it is all too easy to wipe out important data such
as the user program, saved video information, or other critical data.

H COMMAND

The H (Hexadecimal arithmetic) command is used for hexadeci-
mal arithmetic. The format contains two fields. The display first
shows the result of the second argument added to the first, and then
the second argument subtracted from the first. This command is use-
ful for computing offsets for loading from cassette tape. An example
of its use:

H9000 3000< ENTER>

results in the following display:

C000:6000

N COMMAND

The N (iNput) command is used to read the status of any input
ports that may be attached to the TRS-80. The format also allows
reading a range of inputs by specifying the range using the “T” as
the delimiter or by specifying the number using the <SPACE> as
the delimiter. To show an example of the format, port FF is used.
As you know, for Model I and III systems, port FF is available with
bit 7 used for data from a cassette. Also, if the system is a Model I,
bit 6 is used to indicate activation of the large graphic mode. For a
Model III system, port EC, bit 2 serves this same function. Unless
other ports have been decoded (as is the case with a Model III
system), reference to any port other than FFH will result in an FFH
display, since the dataform of unused inputs is detected as all ones.
An example of a single port input with a Model I is:

NFF 1<ENTER>
The display on the crt screen is

FF: 7F

70

or
FF: 3F

depending upon the activation state of the large-graphic feature.
On a Model I1I system the display is

FF: 40

The N command may respond to a range of inputs by default if
no range is specified. The default range is 40H, as with the D and A
commands. If one of the following formats is used:

NOOTOS < ENTER >
or
NOO 5<ENTER>>
the output is as follows:

00:FF 01:FF 02:FF 03:FF 04:FF

O COMMAND

The O (Output) command is used to output data to a port speci-
fied in the format. Of course, the hardware for the port must exist
in order for the command to have meaning. The Model I and III
TRS-80s have output ports already available as mentioned in an
earlier chapter. As an illustration of the use of the O command, the
large-graphic feature is enabled through a port access. In a Model I
system, a OSH written to port FF enables this feature. In a Model 11,
a 04H to port EC enables the graphic. The following example shows
how to enable the large-graphic display in a Model I system.

OFF 08<ENTER™>
or, for the Model 111

OEC 04 < ENTER>

The screen now shows every other location (the even locations). In a
Model I system, the keyboard scan checks for large-graphic enable
and compensates by inserting the additional increment in the mem-
ory pointer. This is true only for the Model I system because of the
limited EPROM memory that required more space in the Model III
computer. Increased visibility due to the larger size is an apparent
advantage through the use of this command on the Model 1. In
either case, previously written data or data transferred using any
move-memory type of command displays only the even locations of
the screen R/W memory.

71

The graphic feature is reset through output of 00H to port FF
for the Model 1, or to port EC for Model III. Any command involv-
ing cassette operations, any command with a syntax error in its for-
mat, or any command that causes a power-on clear resets the large-
graphic feature.

A second example using port FF on the Model I or port EC on
the Model III activates the cassette motor. Using the O command,
execute

OFF 04<ENTER> (Model 1)
or

OEC 02<{ENTER> (Model 1D

The cassette motor is now active. By using the O command, the
motor can be turned off by resetting the appropriate bit.

M COMMAND

The M (Move) command is used for block moves of memory
from one location to another. Three fields are required to execute
this command. The format for the first two fields is the same as for
the A and D commands. That is, the format consists of a beginning
address, a space, and a block length, or the beginning address
through the ending address. The third argument is the beginning
address of the destination block. Be careful not to destroy data by
improper use of this command. The following example shows both
ways of performing block moves:

M6000T601F 7000<ENTER>
or

Mé6000 20 7000<CENTER>

In this example, the 20H bytes located starting at 6000H are moved
to 7000H. In many cases duplicating your program in memory saves
re-entry of the object code if a system crash occurs. Of course, there
are malfunctions that destroy everything in the memory space, in
which case nothing is gained by making a backup copy of your pro-
gram in RAM. A long program could be saved on tape as an alterna-
tive option.

YV COMMAND

The V command compares and verifies one block of data against
another. It is automatically called if a block transfer is used. This

72

Lo

g

@

instantly informs the operator if an attempt is made to move to read-
only memory. The format for the V command is the same as that of
the M command. Three fields are required: a start address, an end
address or block length, and the location at which the verification
is to begin. An example is:

V6000T601F 7000<ENTER>
or
V6000 20 7000<ENTER>

Any difference that exists between the blocks is printed on the
listing device. A display occurs only if the two locations differ. For
example:

6013: 67 7013: D3

W COMMAND

This command and the next command concern themselves with
the writing of programs on cassette tape and the reading of those
tapes back into the system. The format used in the transcription of
these tapes is the same as that used by the TRS-80 Level II system.
The speed is 500 b/sec. In producing a tape, a name may be as-
signed. Up to six ASCII identifiers are possible.

The W (Write) command is used to produce a tape in the TRS-80
format. To execute the command it is entered as follows:

W4400 100 4400 NAME<ZENTER>
or,

W4400T44FF 4400 NAME<TENTER>

The use of the name is optional, but an execution address must be
given, or improper operation results. The space delimiter precedes
the name to indicate that a name is to be written. If not present, the
space allocated for a name on the tape is filled with 20H, the ASCII
representation of a blank character. The execution address does not
have to be the same as the starting location. However, the execution
address is placed in the program counter register when the tape is
read using the R command, To terminate the W command for any
reason, simply depress the <SHIFT> key.

R COMMAND

The reading of a cassette tape occurs by using the R (Read)
command. This command has an address field associated with it that

73

is optional. If an address is entered, the data is interpreted as an
offset and is added to the address that is read from the tape at the
beginning of each block. This allows the tape to be loaded in any
available R/W memory. It is particularly useful for the loading of
data to be used for the programming of EPROMs. In these cases, the
execution address is often in locations other than that available as
R/W memory in the TRS-80 system. In computing offset, the H com-
mand is used.
The format of the R command is,

R<(ENTER> (no offset)
or,

R4200< ENTER>.

In the latter case, 4200H is added to each address during the reading
sequence. If the tape is being read properly, the name appears after
proper detection of the sync marker. No name results in a displace-
ment of the cursor by six spaces. If no error occurs during the read,
the execution address appears after the name (if present), and con-
trol returns to the monitor. The program counter register is also
loaded with the starting address. As a consequence, execution of the
loaded program can proceed by entering a G, E, or Z (ontional
hardware required) command without the address in the format.

An error during the R command results in a buffer display with a
“?” in the location of the R command. This error results from im-
proper adjustment of the level control on the recorder or a bad
recording. The error itself is usually an improper checksum. Also,
there are cases in which the sync mark cannot be detected. Depress-
ing the <SHIFT> at any time terminates the R command.

L, P, AND U COMMANDS

The next three commands require hardware modifications to the
TRS-80 system. The L command allows hard copy, and more infor-
mation on hard-copy devices is given in Chapter 3 along with soft-
ware support. The P command allows EPROMs to be programmed.
Hardware and software to support this feature are given in Chapter
4. The last command in this section is the U command. It provides
an access to system R/W memory and return to the monitor for user
defined commands. A fourth command (Z) is available to allow for
a single-step function; the explanation and hardware requirements
are given at the end of this chapter.

74

e

5
y

L Command

The L {List) command is used for listing on a hard-copy device.
It is assumed that a hard-copy device is available and the appropri-
ate software support is loaded into the system. The L command acts
as a switch and is activated any time the L. command is executed in
a command string. The first time the L is encountered, it turns on
the hard-copy feature. The next time the L is executed, the listing
on the hard-copy device stops. This command requires no address
fields. For example,

L<ENTER>

is all that is required to activate the hard-copy device. The appropri-
ate firmware (software plus hardware) must be available to support
the option. Output may be through the cassette terminal and is avail-
able as a 20-mA current loop or as RS-232C voltage levels. A possible
hardware interface is shown in Chapter 3. If this option is not used,
this command may function as a user specified command. The user
specified program should start at 4018H. A three-byte jump may be
inserted to cause execution of the driver program or the user speci-
fied program. The rules for using this jump and return from it are
covered in the U command and in the software sections dealing with
the printer.

P Command

The P command is used to program EPROMs. Chapter 4 deals
with the hardware required to provide this feature. This command,
along with the U and L commands, does not have a resident pro-
gram in the monitor. However, upon power-up initialization, returns
(RET a C9H) are inserted into locations which normally would
provide the monitor access to a user program. If the options are to
be used, a jump (C3H) to the address of the user supplied routine
must replace the appropriate C9H in the R/W memory referenced
by the command. The address of the jump for EPROM program-
ming is 401BH through 401DH. Greater flexibility in the program-
ming of EPROMs is thus provided. For example, the programs used
for programming 2716 EPROMs, 2708 EPROMs, or 8755 EPROMs
can be entered as presented in Chapter 4 (Chapter 4 is devoted to
the PROM programmer). The addresses of execution are loaded
into the referenced vector when the tape containing the EPROM
programming code is loaded into memory. The reset does not clear
these addresses. These locations are cleared through one of the fol-
lowing operations: a power-on clear when the system is turned on,
or the execution of a G0000. The latter assumes that the monitor
resides at 0000H.

75

To use this command, the user must first load the EPROM pro-
gram routine. This can occur at any time prior to the execution of
the command. Depressing the P followed by the <ENTER> trans-
fers control to the EPROM programming routine. Depending upon
the software used to drive the programmer, fields may also be in-
cluded in the entry when this command is executed. The software
in Chapter 4 does not pass information to the programmer using

the address fields.

U Command

The U (User) command is identical in operation to the P com-
mand, but in this case a user written program resides at the address
specified, This program must be loaded, of course, previous to its
execution, and RAM locations 401EH to 4020H must contain a jump
instruction (C3H) followed by the address at which the user pro-
gram resides.

Another consideration that must be included in the object code is
a correction in the buffer pointer that resides in the IY register.
Commands without fields do not advance the buffer pointer. Al-
though the command you insert executes (if correctly written),
upon return the monitor expects a comma in the buffer. Since the
buffer is not advanced, the unexpected U causes the buffer to be dis-
played with the “?” replacing the U. This may produce strange be-
havior if a BS command (to be covered in the next section) is used
at the end of a command sequence.

Two methods to correct the pointer may be employed. The first
uses any subprogram in the monitor that accesses the buffer and
therefore increments the pointer. For example in the listings in Ap-
pendixes D and E, the programs labeled GHL, G2N, G3N, and GET
all advance the buffer pointer. Remember, you are not leaving the
monitor with the register states changed as happens in the G, E,
and Z commands. Using the U command is part of the monitor code,
and, therefore, any change to a register is transparent to you and not
observable with the X command. The other method is to increment
the data in the IY register by using the instruction INC IY (FD 23)
in your driver program. Here is an example of a program that pro-
vides a short time delay between commands. The code is loaded
starting at address 4300H.

4300 FD23 DELAY INC IY ;ADJUST POINTER

4302 210000 LD HL,0000H ;INITIALIZE COUNT
4305 25 DEL DEC H ;DECREMENT HIGH
4306 C20543 JP NZDEL ;DO UNTIL ZERO

4309 2D DEC L :NOW DECREMENT LOW
430A C20543 JP NZ.DEL ;DO UNTIL ZERO

430D C9 RET ;BACK TO MONITOR

76

Pt

To use this program, load the code using the I command. At the
same time change the return at 401EH to C3H and insert the 00H
and 43H in the next two locations. Keep in mind the low-high for-
mat. Transfer is now possible from the monitor to the delay program.
The following command sequence accomplishes both requirements:

14300 FD 23 21 00 00 25 C2 04 42 2D C2 04 42 C9 401E/ C3 00
43<ENTER>

The U command is ready for testing. The jump to this command does
not change unless a GO or power-on clear occurs. To use the U com-
mand enter,

U<ENTER>

Notice the short delay before the sign-on appears on the monitor
screen. Save this program, for it is used in the demonstration of the
commands B and BS.

It was already indicated that all unused commands in the com-
mand table are available for use. The buffer pointer must be adjusted
if no reference to the buffer is made. Although there is no link pro-
vided in R/W memory for these, as is the case for the L, P, and U
commands, the use of these commands may be acquired by repro-
gramming the EPROM that contains the monitor program. Chapter
4 shows how this is possible.

BUFFER

In the description of the commands presented so far, reference
has often been made to the buffer or to the buffer string. The monitor
presented in this chapter is in fact an interpreter, and all of the com-
mands described may be entered as a series of commands forming a
command string. You may exercise this option by using the comma
“,” in place of the <ENTER>. The latter occurs only once, and that
is at the end of the sequence. While entering commands in the buffer,
the rubout or backarrow allows removing improper entries. If the
command sequence is extremely large, the use of the <BREAK>
allows exit without execution. There are 256 decimal locations re-
served for the buffer, so an upper limit to the number of commands
is imposed. An example demonstrating the use of the command
string follows. This command sequence enters object code in mem-
ory, displays the code, clears the crt screen, relocates the saved video
information for recall, executes the program using the just cleared
screen, returns at the selected breakpoint, and transfers the video
information back to the screen as it was upon reaching the break-
point.

77

14800 3E 41 2A 00 3D,D4800 5,C,XV4C00,E4800.+5,T<ENTER>

Data is entered directly from the command string. The execution of
this short program results in the 41H or “A” being written at location
3DO00H, which is in the first position of the fourth line. This does not
occur until the E4800 is executed. When the <ENTER> is de-
pressed, the string is executed as follows: First the data is entered
with the I command, the data is displayed with the D command, and
then the screen is cleared with the C command. The XV4C00 pro-
vides a place in RAM to save the data on the screen upon reaching
the breakpoint. The actual execution of the program is accomplished
with the E4800. With the T command the result is viewed: a blank
screen and the “A” as described. This termination of the command
string with the “T” is the only valid position of the T command. It
can be used alone for transfer after a command string has been
executed.

It was indicated earlier that you could enter data interactively
from the keyboard through the use of $4800 (in lieu of 14800) and
by omitting the data sequence. However, keep the rest of the entry
as shown in the example. The data for executing the short program
may now be entered through the keyboard with the <ENTER>
now used to deposit the data in memory. Upon completion, depress
<ENTER> twice. This causes execution of the remaining string as
in the first example.

If the delay program (given in the U command section) is resident
in the monitor, this second example may be more convincing as an
illustration. In the command sequence, the delay program is con-
sidered the program developed, and it is tested as follows:

X,G4200.+2,U,G.+3,U.G.4206,U,G.4209,U,G.420A,U,G.420D < ENTER >

The delay is short, so pay attention to the H and L registers. Break-
points are placed after critical instructions. This demonstration se-
quence illustrates the use of the monitor as a development tool. The
X command at the start of the sequence displays the status of all the
registers at the start of execution, and therefore, when G4200 is exe-
cuted, the data in these registers is transferred into the Z-80 registers.
At the first break, after the INC IY instruction, the automatic display
of the internal registers shows that the only register altered is the Y
register, and its value has been incremented by one. The next break-
point shows the H and L registers initialized to 0000H. The follow-
ing breakpoint occurs after the H register is decremented from 00H
to FFH. This is the first instruction to alter the flag register, and the
Z flag is absent from the flag display. {In the Z-80 instruction set,
double register increments and decrements do not affect the status
of the flags.) The break at 4209H occurs after the H register is dec-

78

v

remented 256 times, and the zero flag is observable. The last break
is after 65,536 decrements. The H and L registers are now both zero,
and the zero flag is zero. The last command in the sequence is exe-
cuted, and control is passed back to the monitor for the next com-
mand instruction.

A third example of the use of the command sequence further dem-
onstrates its power. In this example, we demonstrate the usefulness
of the monitor as a teaching device to aid in understanding the in-
struction set of the Z-80 processor. Assume for the moment you wish
to identify the difference between the compare and subtract instruc-
tions. The data in the accumulator is less than the data it is to be
compared with, which resides in the B register. Enter the following
command sequence:

14300 B8 90,XF00,XA85,XBYE.H85 9E,G4300.-+ 1,XA85,XF00,
G.+ 1< ENTER>

The object codes for the two instructions (compare A register with
B register [BSH] and subtract B register from A register [90H]) are
entered at 4300H and 4301H. The flag register is cleared of flags
(XF00), and the A and B registers are initialized. The H command
is used to see the sum and difference of 85H and 9EH, and the com-
pare is executed. Since A is less than B, the carry is set. This is a
convention opposite to what you would expect in twos (or tens)
complement arithmetic, but more familiar to the process you use in
decimal subtraction. The compare is accomplished with a subtract.
This operation does not use the status of the carry (borrow), similar
to other logic instructions. Furthermore, the accumulator is not al-
tered. Since the two numbers are different, the zero flag is not set.
Also the second number is greater than that in the accumulator.
Therefore, a carry (borrow) is generated. In subtract operations,
the meaning of the carry flag is the same as a borrow. Since this op-
eration was a subtract, the N flag is set. The other flag set is the H
flag, and it would have meaning if the original entries were binary
coded decimal. The overflow flag is not set, since the number is rep-
resentative of the subtraction within the range of —128 to +127. In
this case a —98 (9EH in twos complement) was subtracted from a
—123 (85H), leaving a —25 (ETH). The subtract instruction that
follows shows this to be true. It was not necessary to initialize the
accumulator with the 85H since this data was not destroyed by the
compare instruction. After the subtract is executed, you will notice
that the accumulator now contains E7H (the H command shows the
difference to be FFETH), and the flags are the same as for the pre-
vious compare.

The addition of the command sequence buffer to the monitor is

79

its most powerful attribute, and, as a result, two additional com-
mands are available.

BS AND B COMMANDS

The BS (Buffer Save) command saves the command sequence in
a reserved area for repeated execution. You simply enter a BS as
part of the string and the buffer is saved during execution of the
sequence. To execute the saved buffer, a B (execute Buffer) com-
mand, transfers control to the buffer, and execution of the buffer
begins immediately. The B should terminate the sequence, since any
instruction that follows the B cannot be executed. The reason for
this is that after the transfer execution begins with the first command
in the buffer. It is quite easy for you to enter into endless loops with
this command. For instance, the following loops upon itself, saving
itself and executing itself endlessly.

BS,B<(ENTER>

To regain control of the command buffer, depress the reset switch.
The use for this command is unlimited. Although there can only be
one saved buffer sequence resident in the monitor, nothing prevents
the user from saving this sequence with the move command (M), or
storing the buffer on cassette tape. To aid you, you should know that
the buffer is located from 4180H to 427FH. The memory after these
addresses, up to 4300H, is used for stack storage. Oné€ can use the
move command to change the saved buffer to regain a desirable se-
quence of commands, then execute the B command. Testing hard-
ware involving input, output, or a combination is possible with the
command. For example, to check for proper address decoding in
your interface design, you could execute the sequence:

BS,N80,028,B<ENTER>

This results in the “strobing” of the device address signals for ports
80H and 28H along with IN/ and OUT/ signals. To exit from this
loop, depress the <BREAK> key.

A second example of this command shows entry of complex break-
points. The program counter must be initialized with the XP, G, or
E commands. Entering the sequence

BS,G.4303.4304.4309.43E2,B<ENTER>

results in register displays in the order the breakpoints were reached.
Holding of the space bar allows examination of the data in the reg-
isters.

Continuous single-stepping in read-only memory in addition to
R/W memory is possible if the single-step hardware has been imple-

80

D

mented. The description of this next command completes the
chapter.

Z COMMAND (SINGLE-STEP)

The Z (single-step) command requires a hardware modification
to implement. It is a most attractive addition to the command set,
for this is one way to execute instructions in ROM. Coupled with
the BS and B commands, the Z command aids significantly in soft-
ware development. The execution address, which loads the program
counter, can be initialized with the same convention used in the G
or E commands. If the hardware is not present, a breakpoint should
be included, and the command will function. However, one obvious
and significant difference occurs if you do this: the program counter
decrements upon return, because the instruction at the breakpoint
address is never executed when using the breakpoint feature. In-
stead, the single byte call of the RESTART instruction replaces the
normal instruction residing at that address. However, the Z com-
mand, or single-step, in contrast, executes the instruction located at
the position of the current program counter. The instruction may be
any length and any type. Jumps or calls, single or two byte loads,
and even those four byte Z-80 codes are all executed. The instruc-
tions may exist in ROM or in RAM. The format for this command is

Z<ENTER>
or

Z4800<ENTER>

However, there is one feature you must be aware of when using
the single-step option. If the instruction to be executed is a disable
interrupt, return to the monitor will not occur since the hardware
uses the interrupt to accomplish this end. (If the execution is in R/W
memory, a breakpoint may be appended to the Z command, and
return will occur at this breakpoint. If this does occur, the program
counter as displayed by the P register will be one greater than the
breakpoint. An adjustment must be made to correct this register to
continue with proper execution.)

The mode of interrupt should remain mode 1. The other two
modes, 0 and 2, may work. In mode 0, the interrupting device is ex-
pected to place any instruction on the data lines during the INTAK/
time, and the microprocessor executes it. By default, in the Model I
an FFH is strobed on the data lines, unless you have altered the sys-
tem with additional hardware to strobe these data lines. An FFH
instruction is an RST 38H, the same as used for the breakpoints. Thus,

81

the return back to the monitor will be to the register save routines.
This is not the case with a Model III; if the mode of interrupt was
changed to mode 0 under a user software routine, then hardware
must be supplied to accomplish the strobing of an FFH onto the
data lines. In interrupt mode 1, the data lines need not be strobed,
and the microprocessor responds automatically to the interrupt by
executing a restart to location 0038H. This is the mode of interrupt
initialized by the monitor during power-up.

You can use mode 2, but the LSB of an address and not a restart
is strobed onto the data lines during the INTAK/ time. The MSB of
the address is obtained from the (I) vector. (Refer to the TRS-80
technical manual for more detail.) This address must point to a
location that will cause execution to take place at the register save
routines in the monitor program. Hardware must be supplied, and
in addition if the unit is a Model I, the interrupt alteration must be
made. (Refer to Chapter 1.) This last method for single-stepping
should be avoided uniess absolutely necessary for your program de-
velopment, at which point you must design the hardware to support
the use of this mode of interrupt.

An example of the usefulness of the Z command is shown by using
the following sequence:

BS,Z B<ENTER>

The program counter should be initialized to the starting address
external to this string, and the stackpointer should not conflict with
the monitor stack. The crt will display the register status as each in-
struction is executed. If a hard-copy device is available and the driver
program loaded, the addition of the L command to the sequence
will provide a hard-copy output.

BS,L,Z,L,B<ENTER>

The L could also be activated external to the command. The listing
device will trace the execution of each step in the program until you
cease its operation using the <BREAK> key.

The hardware modification for the single-step addition is shown
in Fig. 2-1. These modifications can be made internally by altering
the CPU socket or externally by using the system bus signals avail-
able at the edge-card connector. Two design possibilities exist, as
shown in Fig. 2-1. The single-step hardware must use a port to acti-
vate the shift register. The port chosen for this application is port
00H. A slight difference exists in the designs between the two TRS-
80 models. For the Model 1, the instruction fetch cycle signal (M1/)
is not available at the edge-card connector. Instead of using the fetch
cycle to advance the low logic level through the shift register, the

82

LR

2,

(401937109 N3d0)
LoyL

A3 404 G3SN /QY 4

[

M0 404 03SA /1N 41

O LNITYNHIEXT

O 1 T3A0N /AYLINI

/AVLNE

2ESIPL

O UI300W /703401

Hp 9g 4p 3o 9 %p 8p Yo w3

412

]

v
[£ 1R 172

143

AG+

00svL

4

O [l 7300W /1

Oremrereenme() | TIAON /Y

v

g
9 I N
SA 1o |2
v S
A 829
€x v29
N> w< £
‘A by w
04 Oy
8818YL -
91
A+

Fig. 2-1. Single-step circuit diagram for TRS-80 Model | and Model II1.

RD/ signal is used for this function. Because there are more memory
references, a different output from the shift register is required. The
tapped positions for these control signals are referenced in the sche-
matic. The complete design is shown in Fig. 2-1.

The theory of operation of this circuit is to use a port write to
activate a low level in a data latch, then shift this low through a shift
register, The data latch is cleared after the first shift using output
Q. of the T4LS164. If single-step is required, the port write is to port
00H (the only time this port is accessed by the monitor). The exe-
cution of the Z command sets a flag, and if true when tested the EI
and OUT (00H) A instructions are executed. If the flag is not true,
these instructions are bypassed. For single-step to occur, the low
bit from the latch must be shifted through the shift register. For each
M1/ or RD/, this low bit is shifted. You simply count the number of
memory references (M1/ or RD/) and tap the shift register at that
point in order to produce the single-step interrupt. A second data
latch is used to hold the interrupt request (INT/) line low until it
is acknowledged by the CPU (INTAK/), which then resets the data
latch and returns the INT/ to the high logic state. In the monitor as
written, there is one instruction with three memory references be-
fore the single-step interrupt can occur. Depending upon the
TRS-80 model used, the instruction fetch (M1/ for the Model III),
or the memory reference (RD/ for the Model I) produces an inter-
rupt at the appropriate time resulting in the execution of a single
instruction. Of course, if there is a possibility of interrupts from
other sources that may have been implemented on the system, a
break may occur somewhere between the JP (JUMP) instruction
and the last memory reference. If this is a possibility, examine the
program counter upon return. This register is your indication of what
has occurred.

Key elements in the hardware design are the port decode and shift
activization. The 1 of 8 decode (74L.S138) was chosen to give flexi-
bility in port choice, but modifications in the software must reflect
any port change. The shift register is constantly shifting a high
through it each time an instruction fetch or memory reference is
made. The 741.5164 shifts on the positive edge of either of these two
signals. The moment execution reaches the user’s program, a latch
is set to activate the interrupt line. This latch is cleared with the in-
terrupt acknowledge signal. The interrupt signal from the shift reg-
ister has provision to be gated with an external interrupt to allow
for greater flexibility in system design.

84

Rt

&

o

s

CHAPTER 3

Hard Copy From
the Monitor

When editing programs, it is often useful to have a listing of the
instruction codes on paper. One of the cheaper sources for hard copy
is the teletypewriter. Though slow, it has a proven record of reliabil-
ity. A software option is included in this chapter: a teletypewriter
driver routine. To use this software option, a hardware interface is
required. A circuit is provided that allows two-way communication
with a serial device through the cassette DIN plug. If only the serial
printing option is required, then the hardware that converts the tele-
typewriter data transmission signals to TTL levels (suitable for in-
put to the TRS-80 using the cassette plug) can be omitted. To acti-
vate the teletypewriter list option, a program must be entered into
memory. The program and the loading steps are given later in this
chapter. The L command is used to activate the printing device, as
described in Chapter 2.

The program given drives a serial device, which may be com-
patible with either RS-232C voltage levels or 20-milliampere current
loops. Implementing the circuit is straightforward, since the control
of the circuit is determined by the software.

The hardware schematics for serial input/output are shown in
Figs. 3-1, 3-2, and 3-3. For serial transmission to a printer, a com-
parator converts the audio cassette signals to bipolar voltage levels
that are compatible with the RS-232C interfaces in most serial print-
ers. Since a few printers require a 20-milliampere current drive,
additional hardware is used to generate the necessary current levels
from the bipolar voltage signals. The hardware that receives the

85

+12v
q AS-232C CONNECTIONS

———
b AAA—O PIN 8 CARRIER DETECT
1.2k4
412V
——AN-—O PIN 6 DATA SET READY
z +12v AN
4TKE < L AAA—O PIN 5 CLEAR TO SEND
2N 1.2kQ
CA3140T 6
O A
5 Lo thzas PIN 3 TRANSMIT DAT.
PIN3 O
" kaé J-:—o PIN 1 CHASSIS GROUND
Ng1s ¥ < ==
—12v -
PIN 2 O O PIN 7 SIGNAL GROUND
Nesensomnamngrennnssssond b

TRS-80 CASSETTE
DIN CONNECTOR

PNP +
3906
120
: 20mA
(V2 WATT) } CURRENT LOOP
L
33k £ oo [
25V
Al resistors 2 watt unless noted. &
+12v N —12v

Fig. 3-1. Printer driver circuit for RS-232C and 20-mA current loop.

serial data from the teletypewriter, as shown in Fig. 3-3, is more
complex. Because of the nature of the TRS-80 cassette input and the
format of serial data, an unconventional circuit is required. The de-
tails describing this circuit are presented later in the chapter.

The most universally accepted format was established by the
Electronic Industries Association (EIA). The voltage format is
known as the RS-232C, the C indicating that this is the latest re-
vision. The Bell System developed this standard in cooperation with
the EIA as the standard for interface between data terminal equip-
ment and data communication equipment employing serial binary
interchanges of information; that is, interchanges of one bit at a
time.

According to the standard, the voltage level under open-circuit
conditions must not exceed a magnitude of 25 volts. The driver as-
serts a voltage that is between —5 V dc and —15 V dc relative to
signal ground to indicate a MARK condition (logic level 1), indi-
cating the presence of a data bit. The driver asserts a signal level that
is between +5 V dc and +15 V dc relative to signal ground to indi-
cate a SPACE condition (logic level 0), indicating the absence of a
data bit. Often chosen for the dc levels of MARK and SPACE are
—12 V dc and +12 V dc. There are loading requirements in addition

86

+5v
Q RS-232C GONNECTIONS
A e
AMA~-O PIN 8 CARRIER DETECT
1.2k

PIN 6 DATA SET READY

Y 4.7k9§

4.7k0 §
SN7406 PIN 5 CLEAR TO SEND
N
-0 Pl T MIT
TRS-80 CASSETTE npn 7 3 TRANSHIT DATA
PIN CONNECTOR 2N2222 I
Ay ==
PIN 3 OPEN COLLECTOR PIN 1 CHASSIS GROUND
200 B _}
E =
PIN 2 O O PIN 7 SIGNAL GROUND

All resistors s watt.

B

Fig. 3-2. Alternate printer driver for R§-232C (not to specifications).

+5v
1ka 74604
POV ! Dc 2
20mA 560 g}r +5v
CURRENT LOGP
914 SN74C02 2222
-y TRS-80 CASSETTE
DIN CONNECTOR
5V _—
PIN 4

SN74C02
PN 2

RECEIVED pyy
DATA
74004

SIGNAL
srouno M7 9 04 8 6 o< 5 4 O< 3
CHASSIS _L
R, S 68K
waooug PN oj) % 6.8 To.oaa;u:

R e ed =
RS-2326 OSCILLATOR | = 2.5 kHz

CONNECTIONS

Ry & 6.8ka

1

P= 0.405 R,
R1C<R‘ Rt 0.593>

Fig. 3-3. Input circuit for the reception of R5-232C and 20-mA cusrent
loop signals by the TRS-80.

to the requirements for specific voltage levels. The load the receiver
presents to the driver should be between 3000 and 7000 ohms. The
driver must be able to function under the load presented by the re-
ceiver and maintain voltages within the dc levels of +15 V dc and
—15V dc. Under no load conditions may this level rise above the 25-

volt limit.
87

Physically, a 25-pin plug is often associated with this standard.
The signal assignments for these pins are shown in Chart 3-1. Pins
2 and 3 change their orientation depending on whether the device is
the originating equipment or the terminal equipment.

Chart 3-1. RS-232C Interface Circuit Functions

Pin 1. Protective Ground — Electrical Pin 14, Secondary Transmitted Data —

equipment frame and ac power ground.
Pin 2. Transmitted Data—Data originated
by the terminal to be transmitted via the
sending modem.

Pin 3. Received Data—Data from the re-
ceiving modem in response to analog
signals transmitted from the sending mo-
dem.

Pin 4. Request to Send (RTS)—Indicates to
the sending modem that the terminai is
ready to transmit data.

Pin. 5. Clear to Send (CTS)—Indicates to
the terminal that its modem is ready to
transmit data.

Pin 6. Data Set Ready (DSR)—Indicates to
terminal that its modem is not in a test
mode and modem power is on.

Pin 7. Signal Ground — Establishes com-
mon reference between modem and ter-
minal.

Pin 8. Received Lline Signal Detector
(LSD)—Indicates to the terminal that its
modem is receiving carrier signals from
the sending modem.

Pin 9. Reserved for test.

Pin 10. Reserved for test.

Pin 11. Unassigned.

Pin 12. Secondary Received Line Signal
Detector—Indicates to the terminal that
its modem is receiving secondary carrier
signais from the sending modem.

Pin 13. Secondary Clear to Send—Indi-
cates to the terminal that its modem is
ready to transmit signals via the second-
ary channel.

Data from the terminal to be transmitted
by the sending modem’s channel.

Pin 15. Transmitter Signal Element Timing
--Signai from the modem to the transmit-
ting terminal to provide signal-element
timing information.

Pin 16. Secondary Received Data—Data
from the modem's secondary channel in
response to analog signals transmitted
from the sending modem.

Pin 17. Receiver Signal Element Timing—
Signal to the receiving terminal to pro-
vide signai-element timing information.

Pin 18. Unassigned.

Pin 19. Secondary Request to Send—Indi-
cates to the modem that the sending
terminal is ready to transmit data via
the secondary channel.

Pin 20. Data Terminal Ready (DTR)—indi-
cates to the modem that the associated
terminal is ready to receive and transmit
data.

Pin 21. Signal Quality Detector — Signal
from the modem telling whether a de-
fined error rate in the received data has
been exceeded.

Pin 22. Ring Indicator (Rl) — Signal from
the modem indicating that a ringing sig-
nal is being received over the line.

Pin 23. Data Signal Rate Selector—Selects
one of two signaling rates in modems
having two rates.

Pin 24. Transmit Signal Element Timing—
Transmit clock provided by the terminal.
Pin 25. Unassigned.

The current loop is another widely used standard. It originated
with Jean-Maurice-Emile Baudot, a French engineer. The principle
in this communication link is the maintenance of a constant current.
Two conditions are possible; the current flows, or it does not. Con-
tinuity, or current flowing, denotes the MARK. The interruption of
flow denotes the SPACE. At first, when the link is established, cur-

88

sy

rent flows. An interruption of the circuit indicates the start of data
transmission. The current on the line is switched on and off, and in
this manner it is possible to send code for the character that is trans-
mitted. A series of stop bits or logic ones indicates to the receiver
that the code has been transmitted. The line remains closed until
the start of the next character transmission. This method of sending
information in single characters, rather than in blocks of characters,
is called asynchronous communication.

A popular current level used to indicate the presence of a data
link is 20 mA, and you will often hear the reference made to the 20
mA current loop communication link,

The communication between the monitor and the listing device
is asynchronous. By convention, serial teleprinter systems have
adopted the idle, or wait, condition to be indicated by the MARK.
Synchronization for a word of transmitted data is indicated by the
presence of a start bit or SPACE, followed by 8 bits of data. The bit
sequence for each character ends with a MARK which is transmitted
for at least one bit time, and often for two, depending upon the con-
vention that has been adopted for the communication loop. In true
asynchronous form, the line remains in the MARK state until the
next data word is to be transmitted. This format is the same for both
standards, either voltage or current. The bit times are determined
by the rate at which transmission is to occur. A typical sequence of
logic levels for the 11-bit serial data (start bit, 8 data bits, and 2 stop
bits) is shown in Fig. 3-4. Data rates are often specified in baud, in
honor of Jean-Maurice-Emile Baudot, who originated the Baudot
5-bit code.

The characteristic that is important in design considerations for
the TRS-80 is the constant level of current or voltage if no bit
changes occur in the serial transmission. For the TRS-80 to receive

}';5 TO 8 DATA BITS‘—I MINIMUM STOP BITS 1, 1%/2, OR 2
IDLE STATE TIME A

MARK CONDITION

1
1
1
|
-
1
o
3
4
]
3

I
1
|
3
t
}
1

| S
[SR

o e
L et st

SPACE CONDITION it

%)
<1
=
-
=1
@
1
N
|
P
i
@
~

START BIT OF
BIT NEXT DATA

LSB = Least significant bit.
MSB = Most significant bit.

Note: For 20mA, mark equals 20mA current
space equals 0 current

For RS-232C. mark equals —3 to —15 velis
space equals +3 to +15 volts

Fig. 3-4. Serial data format for RS-232C and 20-mA signals.

89

this code, it is necessary to introduce a level change. This is covered
in the section dealing with the hardware.

The software supporting the driver for the monitor assumes a data
rate of 110 b/sec, which is the traditional speed used for teletype-
writer-based communication links. This data rate results in the
transmission of ten characters per second. A character is defined by
an 8-bit code. The code is not Baudot, but the newer American
Standard Code for Information Interchange (ASCII). This is a
7-bit code, and the additional bit transmitted is used for simple
error detection. This additional bit is called the parity bit. Its value,
a one or zero, is used to make the sum of MARK bits in the word
equal to an even number (in which case even parity exists), or to
make the number of MARKs in the word an odd number (to indi-
cate odd parity). For example, the 8-bit ASCII value for the
NUL is 00H if parity is even, and 80H if parity is odd. By conven-
tion for teletypewriter systems, there is one start bit and there are
two stop bits, in addition to the eight bits required for the ASCII
character. This makes the number of bits transmitted per character
equal to eleven. The bit time for transmission is 9.09 ms.

The hardware shown in Fig. 3-1 converts the output from the cas-
sette DIN plug to the EIA levels. In Chapter 1, it was shown that
the output to the cassette is controlled by the logic levels on bits
0 and 1 of port FFH to produce a voltage on pin 3 relative to pin 1
on the DIN plug of the TRS-80. To refresh your memory, the follow-
ing three states are used. A 00 (00H) in the last two bit positions
produces a dc level of 0.45 V, a 01 (01H) produces a 0.85 V level,
and a 10 (02H) produces a 0.0 V level. This voltage is applied to the
noninverting input of an operational amplifier (CA3140T). The am-
plifier is operating at very high gain, and in this design functions as
a comparator. The reference voltage on the inverting input is ob-
tained from a forward-biased signal diode (1N914). The reference
is approximately 0.6 V. The normal output to bits 0 and 1 of port
FFH is 00, and the 0.45 V produced is not sufficient to saturate the
amplifier to +12 V. Therefore, the output to the RS§-232C connector
is —12 V, the MARK level. Only the binary 01 in the last two bits
produces the “true” SPACE (+12 V level) and triggers the start-of-
transmission signal. If a standard RS-232C connector is used on the
printing device, the appropriate levels are applied to the Clear to
Send, Data Set Ready, and Carrier Detect lines to allow the listing
device to respond to a transmitted signal. The hardware also pro-
vides the transistor circuit needed for a 20-mA current loop. The
voltage or current levels are a function of the hardware, but the soft-
ware that transmits the serial data to the listing device is the same,
no matter which transmission standard is used.

920

g

g

3

s

Fig. 3-2 shows an alternate form of the RS-232C interface. This
does not meet the RS-232C standards, but the circuit functions well
for most serial interfaces. Its most outstanding feature is its sim-
plicity. Any voltage level less than +3 V dc results in a negative as-
sertion, or MARK condition, on the RS-232C line.

A software listing to produce hard copy is given. The software is
activated by a toggle-type switch. This switch sets a flag, and when
the processor is executing code at the end of the crt routine, it tests
the flag to see if a hard-copy listing has been requested. If so, a call
to the hard-copy routine is executed, and a single character is sent
to the listing device. The toggle switch is activated by the L com-
mand in the buffer during command execution. The hard-copy flag
is set and reset with the L. command. Of course, the L may stand
alone or appear several times, but each time it is encountered it
turns on or off the listing device. It is necessary for you to patch a
three-byte jump instruction in the referenced R/W memory vector
location to cause transfer to the program that supports your output
device. This jump must be placed in locations 4018H through
401AH. The actual driver software may be placed in the RAM area
or in ROM. Locations from 0800H through 37DFH in a Model 1
system are available if the monitor resides in the first 2K of ROM.
In a Model III system, locations up to 37FFH are available, but you
must avoid location 37E8H. This location in memory is used by the
screen printer. If a Radio Shack printer is connected to your system,
the status of the printer is available if you read data from this ad-
dress. Data is latched in a special output buffer to drive the printer
if you write data to this memory location. In the Model II1, the hard-
ware decode is supplied, so you could write your own software
driver to take advantage of its presence.

SERIAL INTERFACE DRIVER CODE FOR RS-232C

An example of a driver program for the hardware described is
provided. The structure of the software program is straightfor-
ward. The first output is a 9.09 ms start pulse, followed by the 8-bit
data stream (least-significant bit through most-significant bit), and
ending with two stop bits. This rate is the standard 110 b/sec rate.
To change data rates it is only necessary to change the length of the
time delay used to output the MARK and SPACE levels. Table 3-1
shows the factors to be used for delays for other data rates.

The source code shown in Example 3-1 (see page 93) provides
a routine to write to the RS-232C serial device. Data to be output
must be placed in the C register before this program is used. This
program must be entered into RAM, because it is not located in the

91

Table 3-1. Data Rate Factors for RS-232C Serial Input

- Baud Model 1 Model 111
110 0268H 02BDH
300 OODFH 0110H
600 006CH 007BH
1200 0033H 003BH

FROLIC ROM. It has been written to reside at locations 4300H
through 4339H, but it may be relocated if desired.

The program listed may be entered into the RAM locations given
using either the I command or S command. The jump (C3H) is en-
tered into location 4018H, and 4019H and 401AH contain the data
00H and 43H using the Intel format. The object code may be stored
on cassette tape for future use with the following command se-
quence:

W4018 3 0 LIST1,W430074348 0000 LIST2<TENTER>

To load this program when hard copy is desired, the following com-
mand sequence is used:

R,R<ENTER>

You may now execute the L. command and obtain a listing of all
monitor activities.

SERIAL INPUT

It may also be desirable to be able to read data from a punched
tape, a modem {often used for telephone links), or an external key-
board. The hardware presented in Fig. 3-3 can be used to convert
the RS-232C levels from the external driver to levels that drive the
input circuits of the TRS-80. This circuit may appear to be unusual
unless you understand how the signals from the cassette are con-
verted to TTL levels. The signal conditioner in the TRS-80 does not
allow direct current amplification. Only ac voltages can be passed
by the circuit to set the data latch. The TRS-80 circuit is a high-pass
active filter with a two kilohertz breakpoint frequency. In order for
the 110 b/sec signal to be transmitted to the data latch, it is gated
with a higher frequency signal. The circuit consists of an oscillator
and a logic gate. When the clock frequency generated by the oscilla-
tor is gated with the serial transmission, the newly formed signal is
suitably matched to the electronics of the TRS-80, and this gated sig-
nal carries the data information contained in the serial signal. Fig.
3-5 shows the gated clock signal produced by the hardware. The

92

2

Examrere 3-1.

ORG 4300H
4300 F5 TTYP PUSH AF ;SAVE REGISTERS
4301 C5 PUSH BC ;ON STACK
4302 E5 PUSH HL
4303 79 LD AC ;DATA IN C REGISTER
4304 F5 PUSH AF SNEED LATER
4305 CD2143 CALL TPOUT ;OUT DATA ON SERIAL DEVICE
4308 71 POP AF ;RETRIEVE DATA
4309 FEOD CP ODH ;CARRIAGE RETURN
430B CC1243 CALL ZLNFD ;NEED A LINE FEED
430F El POP HL ;RESTORE REGISTERS
430F C1 POP BC
4310 F1 POP AF
4311 C9 RET
4312 3EQ0A LNFD LD, A,0AH
4314 CD2143 CALL TPOUT
4317 OF04 LD C.4H ;DO NOT NEED C ANYMORE
4319 AF NULLS XOR A
431A CD2143 CALL TPOUT
431D 0D DEC C
431E 20F9 JR NZ,NULLS
4320 C9 RET
4321 B7 TPOUT OR A ;CLEAR CARRY FOR START BIT
4322 0609 LD B,9D :START BIT PLUS 8 DATA
4324 F5 TP1 PUSH AF ;SAVE
4325 D43643 CALL NC,SPACE
4328 DC3C43 CALL C,MARK
4328 F1 POP AF
432C 1F RRA
432D 10F5 DJNZ TP1
432F CD3C43 CALL MARK ;TWO STOP BITS
4332 CD3C43 CALL MARK
4335 C9 RET
4336 3E01 SPACE LD A,0TH
4338 D3FF QUT(OFFH),A
433A 1804 JR DELAY
433C 3E02 MARK D A02H
433E D3FF OUT(OFFH),A
4340 1800 JR DELAY ;KEEP STATE TIME SAME
4342 216802 DELAY LD HL,0268H ;SEE TABLE FOR BAUD RATES)
4345 2B DEL1 DEC HL
4346 7C LD AH
4347 B5 OR L
4348 20FB JR NZ,DELY
4349 C9 RET

MARK produces a series of 0.25-ms pulses, while the SPACE in-
hibits any pulses from passing through the gate. Thus, it is possible
to latch the bits in the serial word, and write a program that can be
used to convert the latched information into 8-bit words. The inter-
nal TRS-80 set/reset register used for the cassette input indicates

93

PIN 3:

CLOCK FROM NOR GATE
2.5 kHz OSCILLATOR m s MARK SPACE

PN 2: . 5V 70 TRS-80
DATA FROM MARK +5V :Do——-— l { CASSETTE
20mA OR 5 oy DI CONNECTOR
RS-232 SOURCE
P v
convertepTo orRcE O
TIL LEVELS

R — —— sssssssmgnssissinad
INPUT SIGNAL OUTPUT SIGNAL

Note: A mark will not set data latch.

A space will set data laich.

Fig. 3-5. Forming a data latch signal for the TRS-80.

the presence of a data pulse in the data stream. Before any data can
be read, the latch must be cleared. After a pulse is detected in the
input stream of serial bits, the latch is set. To reset the latch after
each bit has been detected, it is necessary to do an output to port
FFH. Port FFH, you may recall, is used for both reading and writing
of data during cassette operations. In this application, we are using
these inputs to detect serial data. There are upper limitations on the
baud rate, but 110 and 300 b/sec are possible with the hardware
shown. The software program given in Example 3-2 accepts data
from the cassette input and writes it to the screen. You must alter
this software to tailor it to your own requirements. If a hard-copy
driver is resident, you may “echo” or transmit the data to this device.
The patch to the external keyboard is made through the U command,
so the appropriate jump must be placed at 401BH through 401DH.

SERIAL INTERFACE RECEIVER FOR RS-232C

Note: this program allows reading of an RS-232C signal from an
external device connected to the cassette input DIN connection.
Upon return from this routine, the accumulator contains the 8 bits
of the received character. Because of the many general applications
of this program, you may wish to modify it.

The hardware described in this chapter is not required for estab-
lishing data links between two TRS-80 computers. Data transmis-
sion using the cassette plug is possible if phase or frequency coding
is used to format the data. This is the type of format used to produce
a TRS-80 cassette tape. It is necessary to provide a voltage gain for
the cassette output signal to raise its level to drive the cassette input
of another TRS-80 computer. The input impedance to the amplifier
is 100 ohms, which is relatively low, so some additional drive capa-
bilities are required. A comparator is used to raise the level of 0.85 V
dec to a TTL level. Fig. 3-6 shows a suitable driver.

We have used the TRS-80 cassette input/output for data trans-
mission rates of 5000 b/sec. This is only possible if the TRS-80 cas-

94

e

s

ExamrLe 3-2.

ORG 4400H ;START OF PROGRAM
HALFD EQU 0133H ;HALF DELAY TIME
#{070H FOR 300 BAUD)
DEL1 EQU O01CDH ;3/4 DELAY TIME
#OA9H FOR 300 BAUD)
DEL3 EQU 0099H ;1/4 DELAY TIME
;{(038H FOR 300 BAUD)
4400 D9 KEY EXX ;SAVE REGISTERS
4401 AF XOR A ;CLEAR ACC TO USE IN OUTPUT
4402 D3FF OUT (OFFH),A :RESET DATA FLAG
4404 3A8038 KEY1 LD A,/(3880H),A SEE IF SHIFT PRESSED
4407 B7 OR A ;ESCAPE FROM READ
4408 CA6600 JP Z,0066H ;RETURN TO MONITOR
440B DBFF IN A, (OFFH) ;LOOK FOR START BIT
440D 17 RLA ;BIT 7 SHIFTS TO CARRY
440E 30F4 JR NC,KEY1
4410 0608 LD B,08D ;BYTE OF DATA
4412 113301 LD DE, HALFD ;HALF DELAY TIME
4415 CD3244 CALL DELAY ;CENTER POSITION
4418 11CDO1 BYTE LD DE,DELT :DELAY 3/4 BIT TIME
441B CD3244 CALL DELAY
441E AF XOR A
441F D3FF OUT (OFFH),A ;CLEAR DATA FLAG
4421 119900 LD DE,DEL3 ;QUARTER OF DELAY TIME
4424 CD3244 CALL DELAY
4427 DBFF IN A,(OFFH) ;GET DATA
4429 17 RLA PUT IN CARRY
442A CB19 RR C ;SHIFT INTO C
442C 10EA DJNZ BYTE ;GET 8 BITS
442E 79 1D AC ;DATA INTO AC FOR RETURN
442F 2F CPL ;COMPLEMENT DATA
4430 D9 EXX ;RESTORE REGISTERS
4431 C9 RET ;RETURN TO CALLING PROGRAM
4432 1B DELAY DEC DE
4433 7B LD AE
4434 B2 OR D
4435 20FB JR NZ,DELAY
4437 C9 RET ;RETURN TO CALLING PROGRAM
END

sette hardware patch has not been installed on the units. In addi-
tion, different data formats and lower input levels are required
(0.85t0 1.2 V dc). To see if your unit is modified, examine the serial
number. If it has a -01 appended, the modification has been installed
and must be removed to obtain higher baud rates. In the high-speed
communication link, the cassette is not used. Only for direct com-
munication between TRS-80s and other TTL compatible inputs is
the link used. For example, we use this method to down-load pro-
grams assembled on the TRS-80 to Intel SBC 80/10 and 80/20 sin-
gle-board computers.

95

+5V

6.8 kﬂ%
<

NPN 2N2222
OR, FOR MULTIPLE DRIVE UNITS,
NPN TIP 30 OR ZN3055

PIN3 O +

OUTPUT FROM PIN 4

TRS-80 CASSETTE ng1e ¥
DIN CONNECTOR

INPUT 7O :
TRS-80 CASSETTE :
DIN CONNECTOR

PINZ O O PIN 2
R e Nt e/
SOURCE DESTINATION UNIT(S} e

Fig. 3-6. A master-slave connection between TRS-80 computers.

Most small hobby computers use low-cost cassette recorders and
cheap cassettes. In the TRS-80 Model I system, reliability is a prob-
lem. Overall system performance depends on the quality of the
recorder and the quality of the tape, and not on the format used.
Significant improvement in the cassette electronics allowing in-
creased speed is provided on the Model III system. To take full ad-
vantage of the higher speed, the time delay routines must be altered
in the monitor. However, to maintain compatibility between the
two systems, the 500 b/sec data rate was maintained in the monitor i
listing.

R]

9% .

CHAPTER 4

PROM Programmer

After an often used program has been developed and tested, you
might want to store the object code in nonvolatile memory, that is,
in Programmable Read-Only Memory (PROM). The use of PROM
allows the system designer to remove power knowing that once
power is restored the program is available immediately to perform
its intended function. A software and hardware option controlled
by the monitor supports the programming of PROMs, in particular
both the 2708 and 2716 EPROMs. The EPROM is an Erasable Pro-
grammable Read-Only Memory. The satisfaction received in seeing
the object code of your program execute in a stand-alone turnkey
operation is worth the development effort. The ROM that contains
the object code that defines the TRS-80 development system is one
such example. Since all mnemonic listings and commented source
codes are listed in the appendixes, you could now delete or add in-
structions to customize the system for your own personal use. Space
has been provided in the command look-up table for user-generated
commands. The U command as previously explained has a jump to
a RAM address at which you insert a jump to your program. The
P command is reserved for PROM programming. The object codes
for programming several popular EPROMs are given in this chapter.
If EPROM programming is not desired, this monitor command may
be used for an alternative purpose. The other commands, not used
by the monitor but in the command table, nevertheiess, have been
assigned restart instructions in place of any two-byte address. The
RST 38 (FFH) is used for this purpose because an FFH state is the
condition of an erased EPROM location. Furthermore, this pattern
as an instruction is used for returns from breakpoints. Accidental

97

use of one of these instructions returns control to the monitor with-
out loss of system control. The FFH allows you to program jumps
directly into the command table without a branch to RAM location.
As will be shown later, the monitor ROM is first transferred to a
clean EPROM using the program option. The jumps are then pro-
grammed “over” the FFH instructions. There is provision on the
TRS-80 board for an additional 2K EPROM {(2716).

ERASABLE PROGRAMMABLE ROMS

The most popular programmable read-only memory to program is
the erasable type (EPROM). This EPROM family was first intro-
duced by the Intel‘Corporation. The availability of EPROM devices
made the rapid development of microprocessor control systems pos-
sible. The only nonvolatile memories prior to EPROM were core
memory, fusible-link memory, and masked read-only memory. Core
memory is expensive, since it must be strung by hand. Masked and
fusible devices, once programmed, are totally useless if an error is
accidentally programmed into the device. With EPROM, however,
high-intensity short-wave ultraviolet light can be used to erase the
device. These light sources are readily available for many suppliers.
Programming errors are more frequent than one would care to admit.

EPROM Physics

An elementary description of how the ultraviolet erasable
EPROM operates is now presented. The actual memory element is
an insulated-gate metal-oxide-semiconductor field-effect transistor.
The conduction state of the device is controlled by the gate. If the
transistor is biased in the conduction mode, one logic state is as-
serted, and if it is biased in the nonconducting mode, the opposite
logic state exists, Through manufacturing methods, the gate may be
isolated as well as insulated. The insulation makes the impedance
extremely large. The isolation plays another significant role, as you
will soon learn. There is an inherent capacitance present because of
the physics of the device (two plates separated by a dielectric).
Through the use of various manufacturing techniques, this capaci-
tive effect may be exaggerated. The presence or absence of charge
on this capacitor determines in which state of conduction the tran-
sistor is operating. Once the capacitor is charged, the isolation pro-
vides no discharge path. To program the device, high voltages are
used to break down the insulating dielectric and charge the capaci-
tor. Eight capacitors attached to eight gates determine the program
pattern of one word or byte. The state of charge on these capacitors
is determined by the programming word, and only those gates whose

98

<

state of conduction must be altered are altered. Once programmed,
the device has a very long retention of the data pattern. Statistics
show that in most cases the EPROM does not lose its pattern over the
lifetime of the equipment in which it is operating,

The method used to erase the EPROM is to expose the device to
high-energy short-wave ultraviolet light through its specially con-
structed quartz window. The energy from the radiation breaks down
the dielectric and allows the capacitor to lose its charge. All this takes
place in a controlled environment in order to prevent damage to the
EPROM. The time period for the process is about 20 minutes for
currently available devices. Once erased, the EPROM can be repro-
grammed. If equipment using the EPROM is exposed to high-inten-
sity UV radiation and no protection to the device is provided, failure
in operation is to be expected.

Programmable EPROMs

Many types of PROMs may be programmed with the monitor de-
velopment system through the use of the P command. Prior to using
the P command, the EPROM programmer software must be entered
into RAM memory for execution. Preferably, this should be done
from cassette tape using the R command. Two things must happen
for a successful load. The jump instruction with appropriate address
must be entered into 401BH through 401DH, and the object code for
the programmer must be entered, starting at the address of the
jump. Three EPROM programming routines are presented in this
chapter along with the necessary hardware that will allow use of
these programs.)

The first EPROM described is the 2780 multivoltage device,
which was introduced by Intel Corporation. These EPROMs are
contained in 24-pin dual in-line packages and require three voltages
to operate (+12, +5, and —5 V). In addition, a +25 V programming
pulse is required in the programming mode. This EPROM is second-
sourced by many manufacturers. The data storage capacity of the
EPROM is 1024 words of 8 bits each, or 1K X 8. A second device
with larger memory storage was introduced by Texas Instruments
Inc. (TI), the TI 2716. Programming it is the same as programming
Intel’s 2708. In this case, the storage capacity is 2048 words, or
2K x 8,

Intel also produces a 2K EPROM, but it is a single-voltage
EPROM. This EPROM still requires a high voltage to program it,
but the process is much simpler. A programmer for these devices is
included in this chapter, and the details are presented in the section
devoted to the programming process. Intel chose to call this
EPROM a 2716. (This is not a printer error, the number is the same!)

99

At the same time, they introduced a +5 V dc 1K EPROM, calling it
a 2758. These are most likely rejects from the 2716 processes with
only half of the unit functional. A similar case occurred with the
yields from the 2708 devices, producing the 2704 EPROM, a 512-
byte version of the 1K device. (In any event, one must now be care-
ful to note the manufacturer of the EPROM, as well as the type
number of the device.)

Texas Instruments also supplies a single-voltage 2K EPROM, the
9516. Both the 2716 and the TI 2516 devices are pin compatible and
available in a 24-pin dual in-line package. The memory capacity of
EPROM:s keeps expanding, and 4K single-voltage versions are avail-
able from many sources.

The last device considered in this chapter is more than an
EPROM. In addition to the programmable memory, the device in-
cludes two input and/or output ports. It is directly compatible with
the 8085 and 8748 microprocessors. This multipurpose IC is the
8755 and is manufactured by Intel Corporation. With a little “hard-
ware” overhead, it can function on a Z-80 system such as the TRS-80.
However, it is assumed that the 8755 will operate in an 8085 system
such as the three-chip set described in the 8085 literature. The mem-
ory capacity of this device is the same as the capacity of the 2716.
The programming of this EPROM is another variation of the tech-
nique used for the Intel 2716, but in addition there is sharing of
address and data lines. Another difference exists in the packaging of
the 8755, a 40-pin dual in-line device. It requires a special program-
ming socket to accommodate the larger size.

Fig. 4-1 shows the pin configurations for the various EPROMs
that can be programmed by the monitor system. The software pack-
ages given herein can program all of these devices. The user may
wish to modify the software and hardware to program the 2732 (a
4K version of the 5 V 2716 EPROMs). But, there are critical differ-
ences in the pin functions between these two EPROMs. Also be
aware that the program pulse is active low on the 2732 EPROM. A
slight modification is necessary to program the Intel 2758 or TI 2508.
The pin for the TTL programming pulse is changed, and a software
correction is required. Refer to the programming specifications from
the manufacturer if it is necessary to program this device.

PROGRAMMING CONSIDERATIONS

Before the hardware is considered, a brief presentation of the pro-
gramming of these three families of EPROMs must be presented.
The programming methods as well as the number of voltages re-
quired to operate the device do influence the hardware design. The

100

e

LEE

one item common to all EPROMs presented in this text is their
erased state, FFH in all locations.

The programming of the multivoltage devices is substantially
different from the programming of the single-voltage EPROMs. This
is true whether the device is a 1K or 2K byte EPROM. A more com-
plicated procedure is required for the multivoltage devices, since
these devices must be programmed sequentially in large blocks. The
blocks are programmed many times in order to guarantee adequate
programming. The exact process for programming may be obtained
from the specification sheets provided by the manufacturer of each
particular EPROM. For the most part, Intel specifications are used
in the programs presented. The following sequence is necessary in
the programming of the 2708 family of EPROMs.

The procedure for a program sequence starts with applying +12
V dc to the PROG/CS pin. The voltage at this pin remains high dur-
ing the entire programming process. The address of the location to
be programmed is placed on the address lines, followed by the data
byte on the data lines. Some settling time is required so that all the
signals can become stable before the programming pulse is applied.
Twelve ps is a sufficient time, and the short delay caused by the
instruction fetch and execute time fills this requirement. Next, a
programming pulse is applied to the programming pin. The ampli-
tude of this pulse is +25 V dc, but its width may vary according to

./ -

R 2] Yeo A 24| Veo

A |7 23] 4 a2 7] 5

A |3 22] Ves a1 7] A

Ayl 2tf Vg LT 21| Vgg

A3y 20| £E ey LY Y 20} CEprey

A v,
2104 19| Vop 2|6 2108 9] Voo

1917 X 8) K% 8

AT 181 PROG a7 e

{Continued on next page.)
Fig. 4-1. Types of EPROMs that can be programmed by the monitor.

101

Ag

Ay

A

A3

A

A

%

0

%

A

Ay

Ay

Ay

A

A

A

G

0,

%

./
) 2
2 2
3 2
4 2
5 20
5 T 2716 9

@ X 8
7 18
3 17
g 16
10 15
il 14
12 13

o/
i 24
2 2
3)
4 7
5)
3 19

2158

{1XK X 81

7 18
8 V7
g %
0 15
i 14
12 13

Veg (PE}

Vs

Ag

Voo

TE (PROG}

Ag

Vop

OE/PGM

A

Ay

Ay

Az

&l

0

o

o;

A7

Ag

As

Ay

Ay

A

A

%

o

0;

V55

2508
1K X 8)

INTEL 2716
(KX 8

il

20

24

Vee

Ve

L/PGM

Voo

Ag

CE/PGM

@

102

Fig. 4-1 (cont). Types of EPROMs that

PROG/CE,

CE;

CLK

RESET

Voo

READY

(]

2

ALE

A0,

A0,

8755
{2 X 8)

36

35

34

33

2

3o

21

Vee

#8;

Plg

FBs

B,

[N

P8,

P8,

P8,

#ay

PAy

Ay

PA

Phg

A

Ay

A

A

A

L

0

0,

Vs

S
i 24} Ve
H 23| Ag
3 2] Ay
4 21§ Aye
5 20} DE/ vpp
§ 2132 19] Ao
(4K X 8)
7 18 | CE/PGR
8 7] 0
] 18] 05
I 15 05
] 14} 0
12 3]0
Pin Names

ADg-AD; Address Data Lines

Voo
V55

Address Lines

Data Lines

Chip Enable

Dutput Enable

Address Latch Enable

Select Relerence Level
Program

High Voltage Program Pulse
High Vattage Programming Voltage
Program £nable (12 Veils)
+5 Voits

Ground

Program functions refer 1o text.

<an be programmed by the monitor. ..

103

a predetermined relationship. (Intel specifies +26 V dc, but other
manufacturers specify +25 V dc. The 25 V specification was used in
the design of the programmer described.) The pulse may range
from 100 us to as long as 1000 us. An empirical relationship between
the number of program cycles and the width of the pulse has been
established by Intel. (A program cycle is the time required to ad-
dress and program all the locations within the EPROM.) If the pro-
gram pulse is too wide, damage caused by overheating a location
will result. If the pulse is too short, breakdown of the dielectric can-
not be guaranteed, and an infinite number of cycles could not pro-
gram the device. Hence, the two extremes are established.

A wide pulse allows a greater charge to be passed to the isolated
capacitor. Hence, programming should occur with fewer passes. Con-
versely, the shorter pulse width allows a lesser charge to flow to the
capacitor. Thus the relationship between the width and the number
of passes is established. The product of the number of passes and the
pulse width must be at least 0.1 second to ensure that proper pro-
gramming has occurred. For example, if the width of the pulse is
one ms, then 100 passes would be the minimum number to ensure
proper charge on the capacitor. Extending the number of passes
does not ensure a better programmed word, since the charging of a
capacitor is governed by an exponential relationship, and a large
number of addition cycles provides only a slight increase in the
charge. The charging of the capacitor could come about using a
shorter pulse, in which case more passes would be required. If the
pulse width is reduced to 100 us, then 1000 passes would be required
to obtain the same effective charge as that obtained with the one ms
pulse width. These two extremes define the permissible program-
ming time for the EPROM. Stated mathematically,

N=0.1/twp
where,
N is the number of program cycles,
twp is the width of the program pulse.

The program sequence requires incrementing the address, apply-
ing the new data byte to be programmed, and then turning on a
program pulse. This process must be repeated N times before the
programming has been properly accomplished. Programming all
locations of a 2708 device takes approximately 2 minutes.

If partial programming of a 2708 device is required, the data loca-
tions to be programmed are loaded in the usual manner, but the pro-
gram cycle must artificially introduce a time period to compensate
for the time absent from the program loop because not all locations
are being programmed. This prevents damage to the programmed

104

<t

e

device. One method used to create the delay is to program the same
data that exists in the chip, changing only those locations in which
the data is to be altered. This may be accomplished by transferring
the data existing in the EPROM into a buffer area in spare memory,
altering the locations in which changes are to be made, and then
- proceeding to program the entire block as if it were the first time
that the EPROM was being programmed.

SINGLE-VOLTAGE EPROMS

The programming of the single-voltage devices is a much simpler
process. In addition to the hardware differences, the controlling soft-
ware is dramatically changed. The significant difference is that any
location can be altered, providing the new pattern is compatible
with the old pattern. The programming may be done in a random
fashion. To program the 2716, the following sequence is performed
in the programming algorithm. To initiate the program mode, a
+25 V dc programming voltage is applied to the program pin. The
high voltage is not pulsed but is constant. This voltage must be
applied after power-up (that is, the +5 V dc is applied to the chip
first), and it must not make a transition from 0 to 25 volts. The only
allowable transitions are +5 V dc to +25 V dc and +25 V dc to
+5 V dc. It may be only the Intel device that does not allow this
transition, but in the hardware and the software presented, only the
5-t0-25 and 25-to-5 volt transitions are possible. The device can be
programmed in any order, but the new data pattern must not con-
flict with the data to be written over. This means that a zero may be
programmed in any location where a one exists in the byte pattern,
but a one cannot be programmed over a zero. The programming is
accomplished with a single 50 ms, +5 V pulse on the V,, pin.

If the system microprocessor is 8080 compatible, it may be desired
to program 00H in all unused locations, since a 00H is a no operation
{NOP) instruction.

8755 EPROM 1/0 CHIP

The 8755 is not programmed in the same fashion as the Intel 2716
device. The random, single-programming pulse technique is used,
but in this case, the pulse is on the +25 V dc line. Other changes
include a large socket holder that must now hold a 4-pin package,
and shared data and address lines. In the programmer design, the
EPROM is connected to the common function pins of the 2716, ex-
cept that the only address lines connected are the high-order bits
8,9, and A. The data and the low-order address share the same pins.

105

This is accomplished with the address latch enable (ALE) signal,
which is not directly available with a Z-80 based system, but may
be simulated with the software to allow both the programming and
verification of data. Other lines support the memory and input-out-
put functions.

EPROM PROGRAMMER HARDWARE

The hardware used to program the EPROMs uses an 8255 pro-
grammable peripheral interface (PPI) chip. This chip is available
from many sources at a reasonable cost. While it is possible to build
the programmer for under $20 if zero-force insertion sockets are
avoided, you would be wise to use these sockets to avoid damaging
the expensive EPROMs. In connecting the EPROM programmer to
the TRS-80 bus, the address lines are buffered, but the data lines are
not. Separate sockets for 2716, 2708, and 8755 EPROMs are used in
the design. You must be extremely careful not to plug a single-volt-
dge device into a multivoltage socket. Also, be aware that the pro-
gramming circuitry is connected to all device sockets, so only one
EPROM device should be installed for any one programming ses-
sion. Violation of this rule will result in permanent damage to the
EPROM. BE CAREFUL!

Fig. 4-2 outlines the circuit of the EPROM programmer, and Figs.
4.3 through 4-6 show details for specific EPROMs. The +25 V dc
source is shared by all devices. To program 270% devices (Fig. 4-3),
this voltage source must be able to sink several milliamperes. This
explains the presence of a special active current sink in the design.
The single-voltage 2716s and 8755s require that this voltage go from
45 to +25 V dc, instead of from 0 to 25 V, so the circuit design re-
flects this requirement (Figs. 4-4 and 4-5). The difference in the ap-
plication of these voltages is determined by software, and is depen-
dent upon which device is to be programmed. For example, the 2716s
allow this voltage to be constant while the EPROM is being pro-
grammed, whereas the 8755s require that the voltage supplied be a
programming pulse of 50 ms duration. Yet another requirement ex-
ists for programming the 2708s, since these require 0 or +12 V dc
to be applied to the chip select/program enable line (CS/ PROG)
instead of the normal TTL levels of 0-and +5 V dc.

To program the Texas Instruments TI2716s. which you recall are
programmed in a manner similar to the 2708s, more hardware
changes are needed (Fig. 4-6). The change shown allows the selec-
tion of either the upper or lower IK sections of the EPROM. With
this modification, the software routines supplied can program the
TI device, providing it is done in two sections.

106

G

&

308L

v0SIvL

£

=]
R IR I T = IR

14
6l
8
s
9t
gl
vi
el
4t
66L8

[24
€2

N e

~ @ o o«

1
9t
St
128
£l
I
oL

&

8042

8l

02
61
[24
€2

~ W on T Mo e

2
9l
St
vl
£l
i
ol
[
gLz

= . AG+
M_w 9z 8 91

.Alc.h. Noamm> p o 29y,
il ey 19 P
<2 oy 29 i
SRLLE B vzo pl—s
thd oy Py S a—L | L
LN Y) LA
- s v
e
] gy
i 95 by |-
I o |-£ >
A.am. *gg ay omw -
o ME ww P

= gy
ULLE [1353 £ NAnw -
2] ogy $0SIWL
<£E] 1y q £ >
] ayy 5 & >
<] sy sq pB& -
PLLLA QU g >
b tyy gg L -
] oy g X -
wbd 1y 1 b8
-~ oy o £

052 L6628
i€ 9
62 8
I 5
52 ie
£ ve
iz ov
6t 2
o 5
€€ 6t
5 2t
2 2
st 0z
£ v
1 8

6 8t
! %2
g 2
£ a
‘ o

aNg

Sy
Sy
by
Ey
2y

ty
Oy
/NI
/400

/1383y

&
%
S0
'
£g
¢
‘g
O

111 1300W 1 1300w

HOLJINNOD 3903

Fig. 4-2. The basic EPROM programmer.

107

If you have no intention of programming a particular EPROM,
the implementation of the corresponding hardware is not necessary.
The major feature to consider is the flexibility that this particular
EPROM programmer provides.

+12v 4255
Ay —8-> 18
p A -—-7-4» 19
U e 20
Ag -?a- 21
2N2222 Ay e 22
Ag -Tb 23
Ag ——2—-> 24
s 25
Ay 14
A8 2 15
9 22
2708 B 5> 4
Sl 5 8
Dy 7—» 2
+12v 5 f3> !
Dy T»- 40
O | 39
2.2kq Og -TG_» 38
+5V +5V 20 | — A ETa 3
CS/WE Vo [0 9V
) Veg 570 —5V
4 Vpp =0 +12v
10 kQ 741804 210 kO 7406 v 19
LS KP)]
3 1 =
e 13
. 12

Fig. 4-3. 2708 EPROM programming circuitry.

The flexibility of the EPROM programmer is provided by the
8255 PPI, a very powerful device. A detailed explanation of this
chip is available from the specification sheets. Another excellent
reference is Goldsbrough’s book?, which is devoted to the 8255 PPI
interface chip. The monitor software utilizes mode 0 (not to be con-
fused with interrupts) for programming, reading, and verification.
Since a particular port on this chip may be either an output or an
input (a function of the control word used to initialize the device),
data may be written on the data lines for programming and read
from the data lines for verification. Also note that the RESET line is
active high. At power-up it is necessary that all ports be configured
in the input state, producing a high-impedance state at their corre-
sponding pins. Pull-up resistors guarantee that no high voltages are
applied to an EPROM socket while in the initialization process. It

108

e

pree

o,

o

I — 8255

Vee Y 4 b 18

8 19

f - 20

Ayt 21

hy | 22

A5 b 23

A5 [24

o 25

NE -

2716 A9 22 "

10 19 b

0o =5 4

O 3

Dy = 2

b 13 =

U 13 >0

U I3 %

% 5 38

el ki a7

o 17

pR06 | = 10
Vep 5] P~ To 8755 Socket, Pin 5, See Fig. 4-5.

1N4G01

VOBt 007 7406 781504

8 8 8 5
4.7k

+25V
4.7kQ

Fig. 4-4. Circuitry used to program the 2716.

is best to keep all EPROMs out of sockets until it is time to program
them,

The following port assignments are made on the 8255 and can be
verified by observing the circuit diagram. Port A is used for data
and changes from an input to an output depending upon the func-
tion and the use of the appropriate control word. Bits 0 through 7
are connected to the data lines of the 2708 and 2716 EPROMs. The
monitor addresses this port with an 8CH. When programming the
8755s, these lines are used for both data and address information.
You may observe this by noting the connections on the 8755 socket.

Port B, addressed by the monitor with 8DH, is used for low ad-
dresses in both the 2708 and 2716 devices, but not for the 8755. Port
A is used in this case.

Port C, addressed as 8EH, is used for both address information
and control in the programming of all EPROMs. The four least sig-

109

AD; B—
ADg f—
ADg j—
ADy [t
ADy
ADy f——
ADy
ADy b
Ay b=
Ag
Ay =
70 po—>
CLK =
iR jo—b=
W po—=
CEp =
PROG/CE, f—>=

10/8

ALE >

8755

Voo et

RESET Vg Ty
4 20

5
Voo |0 +5&v

“From 2716 dnver cucuit, see Fig. 4-4.

2708

15 o e

2

24

23

Il
R

21

mgl

S

BEEEE

w

EXISTING SOCKET

8255

Voo

Vop

Fig. 4-5. Programming circuitry for

8755 EPROM 1/0.

W,

e =8 LR e A A N RN AL
[i I

~

PROGRAM Voo

|24 veRIFEV R
7

— [ol W

22 UPPER
21 ,‘5
20 2

Tl 2716 5 LOWER pto V5

—{g SW,
17 .
16 %
15 4
14

— 13
13

Ti2716 SOCKET

PIN 18 PULSE = 25V DC

Note: All pins except pins 20 and 24 interconnect directly to equivalent focations from the 2708.

Fig. 4-6. Programming the T1 2716 with 2708 circuitry.

nificant bits are used for addressing. The remaining bits are used for
control purposes that provide the program pulses or voltage levels.
The function depends upon which device is to be programmed.
However, the four most-significant bits have dedicated EPROM

110

device functions. The specific allocation of each pin is given in the
software-hardware section for programming a particular class of
'EPROM. The last port address, port 8FH, is used to supply the con-
trol word that determines the port configuration of the 8255,
There is a general method of implementing the EPROM routines.
Depending upon which EPROM family is to be programmed, the
particular software to drive the programmer must be entered in
memory. These software routines are provided in the sections cover-
ing each EPROM family type. If relocation is necessary, it is best
that it be done with an editor/assembler. After entry and verification
of the object code, the program may be stored on cassette tape. This
is done using the W command. How the jump vector is loaded into
locations 401BH to 401DH is a matter of choice. The vector may be
entered using the monitor at the time the tape containing the
EPROM program is loaded. An alternative is to produce a tape con-
taining the jump information using the W command to save the
three bytes that form the jump. Assuming the object code to be used
for programming an EPROM is loaded at 443FH through 47B4H
and the code to support the jump vector is entered at 401BH through
401DH, execution of the following statement on the monitor saves
the jump vector and the program on cassette tape for future use:

W401B 3 0066 PSTART,W 443FT47B4 0066 EPROMI<CENTER>

The execution address is always loaded into the program counter.
A safe re-entry into the monitor at location 0066H is the same as
pushing the reset push button. When it is necessary to program a
specific family of EPROM, the tape is read using two R commands:

R,R<ENTER>

After loading the program, executing the P command causes the
monitor to execute the EPROM programming software. All the
reading, verification, and programming options are then available.

In the presentations that follow dealing with the EPROM fami-
lies, the first section gives the pin assignments, and a second section
lists the source code to be used to “drive” the EPROM programmer.

PROGRAMMING THE 2708 EPROM

To program the 2708 EPROM it is necessary to supply addresses,
data, and control pulses to the device. The addresses are latched at
ports B and C on the 8255. The 2708 is a 1K EPROM, so ten address
lines are required (A, through Ay). The low byte address lines
defining the location of the data word to be programmed are at-

1

tached to port B bits 0 through 7, which equate to address lines
0 through 7. Addresses A8 and A9 are connected to port C, bits 0
and 1. Bits 2 and 3 are not used in this programming module. Al-
though not documented in this section, these bits could be used for
programming the TI2716 if appropriate hardware and software
changes are incorporated. (Note that it is possible to program the
TI2716 with the hardware presented using the modification shown
in Fig. 4-6. This modification treats the TI2716 as two 1K sections
with each section programmed independently, as previously noted.
A switch controls which block is addressed by the EPROM pro-
grammer.) Bits 4 and 5 of port C are used for control of dc levels
and for the programming pulse. Chip select and program (CS/
PROG) pin 20 of the 2708 is controlled by bit 4. In the program-
ming process, this terminal must be driven at +12 V dc to provide
the program enable (PROG) function. To accomplish this in the
design, an open-collector TTL device (74LS06) is used with pull-up
resistors to +12 V. Bit 5 of port C supplies the programming pulse
that is applied to pin 18 of the 2708. The duration and the number
of programming loops are determined by the software. The data is
applied to the 2708 through port A. During reading and verifying
the programmed bytes, this port changes directions and becomes an
input port, and the data is read by the monitor through this port. The
control word of the 8255 determines the direction of data flow. The
remaining pins of the 8255 are not used in the programming, read-
ing, and verifying of 2708 EPROMs. These bits are masked with the
software to appropriate levels to prevent possible damage to other
devices when the 2708 command function is executed.

The sequence for programming the 2708 requires the presence of
a block of data of 1024 bytes. If you must program only a few loca-
tions, transfer the contents of the EPROM to a buffer, and change
the locations in question. Remember that a 2708 location that con-
tains FFH can be programmed to any pattern, and that only the 1s
in a bit pattern can be programmed to 0s. Thus, it is possible to
“write over’ a programmed location without first erasing the
EPROM, but only logic 1s may be changed to logic 0s, and not vice
versa. With this technique, you can program any number of bytes.
The program supplied uses this method for programming shorter
blocks.

In the development of the software used to program the 2708s, the
following procedure is used: Port A is configured as an output port
for data. Port B and port C, bits 1 and 2, are also configured as out-
put ports, and they hold the address information. The address of the
EPROM location to be programmed is transferred to the 10 bits of
the designated address ports. Port A is then set with the data word

112

#

e

to be programmed. The high-order bits of port C perform the fol-
lowing functions. First, bit 4 is set high, enabling the write enable
line (PROG). Next, after a delay of at least 12 us, which allows the
data and address lines to stabilize, the programming pulse is acti-
vated by writing a 1 to bit 5 of port C, while keeping all other bits
unchanged. This write pulse is maintained for a time that may vary
between 100 and 1000 us. This is a function of the processor clock;
the software must reflect the correct time delay for the Model I or
Model III. This wait period defines the pulse width of the program-
ming pulse. Bit 5 is reset after the selected pulse, and all other bits
must remain unchanged. The programming procedure is repeated
for the next EPROM address until all desired words have been pro-
grammed. At this point, one loop has been programmed, and the
process must continue over again until the loop requirement is satis-
fied, that is, until each EPROM location has been programmed the
correct number of times (corresponding to the ratio of the total pro-
gram period to the pulse width period, which equals the number of
loops).

Using the EPROM Programmer

After the program to be put in the EPROM is available on cassette
tape, available in another EPROM, or entered using the monitor, the
programming session can start. Be sure the software contains the
correct time delay for the model in use. If the program to be put into
the EPROM is on tape or is to be entered using the monitor, the pro-
gram should be placed in memory above 5000H. The EPROM pro-
grammer uses most of the R/W memory below 5000H. If the data
to be programmed is available in a compatible ROM or previously
programmed EPROM, then it can be entered using the R command
described below.

Five commands are possible in the EPROM programmer mode.
All commands are interactive; that is, return to the monitor functions
oceurs only if requested. To terminate a command without returning
to the monitor, use the <SHIFT> key. The programmer message:

2708 EPROM PROGRAMMING PROGRAM
>

appears on the crt screen. This is the same message that appears
when the P command of the monitor is used.
Read Command

The first command is a read (R), in which the contents of an in-
serted ROM or EPROM are transferred to the addresses specified
by the user for possible review and modification. The first field deter-

113

mines the placement of the data read from the ROM or EPROM, and
the second field determines the number of data bytes to be read. The
third field is an offset-in the EPROM start address. If you wish the
first location in the EPROM to be loaded in the first RAM location
specified, this field may be omitted in the command:

R '5000T53FF. 000<CENTER>> or, ‘R ‘5000 400 000<CENTER>>
R 5000T53FF<ENTER> (no offset)
R 5000752FF 100 <ENTER>

The data in the EPROM locations specified is transferred to memory
starting at address location 5000H. If no offset is given, or if it is
000H, the data in the first location is transferred to 5000H. If an
offset is present in the command, the transfer from the EPROM
starts at the offset address and continues until the entire block length
specified is transferred.

Verification Command

The second command allows verification (V) of all or part of the
data within the EPROM. The data to be verified must be loaded into
the monitor from a cassette tape, another ROM or programmed
EPROM, or code already present in R/W memory. Assuming that a
previous read command loaded the data to be verified with the con-
tents of the EPROM, then:

V 5000T53FF 000<CENTER>> or, V 5000 400</ENTER>

compares the data in the EPROM with the data at memory locations
5000H through 53FFH. Any discrepancies appear on the crt screen.
The format shows the address and data in the memory followed by
- the address and data in EPROM. For example the crt display shows

MEMORY: XXXX XX PROM: XXXX XX
XX DESCREPANCIES

for each discrepancy, and terminates the list with the total number

of differences in the range indicated. Any block length can be speci-
fied.

Programming Command

The third option is the programming (P) command. Any number
of data bytes can be programmed. The data to be programmed is
entered by one of the methods described for the verification com-
mand. The programming time is approximately 2 minutes and is in-
dependent of the block length. The format for this command is

P 5000T53FF 000< ENTER>> or, P5000 400< ENTER>

114

G

e

which takes the data present at locations 5000H through 53FFH and
places it into EPROM locations 0000H through 03FFH. As with the
read and verify commands, it is not required to start at the first loca-
tion in the EPROM. For example, assume you wish to program loca-
tions 0050H through 014FH of the EPROM with the data located
from 5230H through 532FH. The format to perform this program-
ming function is as follows:

P 5230T532F 50< ENTER>>, or P5230 100 50<CENTER>

The programmer automatically verifies the data in the EPROM with
the data in R/W memory. Any differences are shown using the same
format as that used in the verification mode. It is possible to program
only one byte of a 2708 EPROM, but the time required is the time
of programming all locations within the EPROM.

Short-Cycle Program Command

You may also request the short-cycle (S) option by using the
fourth command, which programs the EPROM and then verifies it
after each programming loop through the block being programmed.
In this way, time is saved, since all of the loops may not be required
to program the EPROM successfully. To be sure that the EPROM
has been completely programmed, the short-cycle program repro-
grams the EPROM for several additional cycles. This programming
method may save you some time during program development, but
it does not meet the manufacturer’s specifications and should not be
used for the final programming of the EPROM that will be used in a
product or application. To use the short-cycle programming, the
following command is used:

S 5000T53FF 000<ENTER> or, S 5000 400<ENTER>

This command performs the programming function of transferring
the data at memory locations 5000H through 53FFH into EPROM
locations 0000H through 03FFH. Programming continues until ver-
ification shows no errors. This produces a programmed device in
less than 30 seconds when a new 2708 EPROM is used.

Exit Programmer Command
The final command,
E<{ENTER>

allows return to the FROLIC monitor for the monitor functions.

Program Locations for the 2708 EPROM

The software shown in Appendix F is annotated in the hope that
you can follow the programming sequence and add or remove code

115

as you deem appropriate. The address to be placed in the jump vec-
tor locations 401CH and 401DH is 443FH. Remember to place the
address in the Intel format of low byte followed by high byte.

PROGRAMMING THE 2716 EPROM

The hardware configuration for the single-voltage 2716 EPROM
is similar to that for the 2708. Port B is used for the lower address
bits, and port C bits 0, 1, and 2 are used for the additional addresses.
This makes a total of 11 addresses, and, therefore, 2048 locations can
be addressed. Port A is used for data, and it can be programmed to
write or read depending upon the function desired. Bit 3 of port C
is used for the chip select (CS/) at pin 20. Unlike the 2708, it is not
necessary to raise the level of this pin to +12 V dc to program the
EPROM. Only one high voltage is required, which is not pulsed but
is constant. Control of this voltage is obtained from bit 6 of port C,
which raises pin 21 of the 2716 to +25 V dc when programming is to
start. The actual programming of a word into the EPROM takes
place using a single TTL-level pulse of 50 ms duration on the pro-
gramming pin (PROG), which is pin 18 of the 2716. This pulse is
output from bit 7 of port C. The two remaining bits of port C are
used to program 2708 EPROMs. Software is used to control the ad-
dress, data, and pulse width.

If you study the schematic diagrams (Figs. 4-2 through 4-4), you
can see that the programming operations for the 2716 and the 2708
are separate. It is possible to write software that copies the contents
of one of these PROMs to the other without the need of an inter-
mediate buffer.

The sequence used for programming the 2716 is vastly different
from the procedure used to program the 2708. The 2716 may be pro-
grammed in a random manner, and it is possible to program a single
byte in 50 ms, a great improvement over the time required to pro-
gram a 2708.

The procedure is as follows: the address is placed on the address
lines using ports B and C. The program pin voltage of pin V,, is
brought to the +25 V dc level. It is possible to have done this first,
since the data read operation for the verification of these devices can
take place with this pin at the +25 V dc level. The data is written to
port A as an output port, and a +5 V dc pulse is applied to the PROG
pin for 50 ms, keeping all other bits unchanged. The +25 V may be
removed, but if more data is to be programmed, it must be present
until the entire programming sequence is finished. Since the address
is still on the address lines after a location has been programmed, it
is possible to verify the programmed data word by changing port A

116

%

e

G

from an output to an input. This is accomplished by using the appro-
priate command word. The +25 V dc line does not have to be
changed to 5 V dc in this read operation.

This completes the programming process with the data word hav-
ing been written in the location specified by the address lines. This
data can be removed only through the application of high-intensity
ultraviolet light. The erasure process is not as selective as the pro-
gramming process, and all bits are erased when the EPROM chip
is subjected to the ultraviolet light.

The monitor commands used to program the 2716 EPROM are the
same as those used to program the 2708. However, there is no short-
cycle program command. After the EPROM programming program
has been entered in memory, it should be saved using the W com-
mand. When the P command is executed, a message is displayed
indicating the EPROM family that the software supports. In this
case it would indicate that 2716s may be programmed. This is done
to help you avoid programming the wrong EPROM family. The op-
tions allow for reading (R), verifying (V), and programming (P)
of the total EPROM, as well as operating on single bytes. An exam-
ple of programming a single byte is done using a block specification
of 1, or

P 5135T5136 135<(ENTER> or, P 5135 1 135<ENTER>

In this case, the data located in memory location 5135H is trans-
ferred to the 0135H EPROM location. Verification is automatically
performed.

The program also allows programming the 1K, +5 V dc 2508 or
2758 EPROMs if a software change is made to apply the program-
ming TTL pulse to pin 20 instead of pin 18. CAUTION! Damage to
the 2508 or 2758 results if this change in software is not made. Refer
to the Intel or Texas Instruments specifications for programming
these devices.

The software shown in Appendix G is annotated with the hope
that you can follow the programming sequence and add or remove
code as you deem appropriate. The address to be placed in the jump
vector location 401CH and 401DH is 4400H. Remember to place the
address in the Intel format of low byte followed by high byte. When
saving the program on tape, note the starting and ending addresses
as shown in the listing,

PROGRAMMING THE 8755 EPROM

The next EPROM type that the EPROM programmer can support
is the 8755 device. This integrated circuit contains not only 2K % 8

17

of memory, but also two input/output ports. The added ports make
it necessary for the manufacturer to increase the size of the package
to 40 pins. It also is necessary to share lines to provide all of the
needed functions. Therefore, the data and low address use a com-
mon set of pins. This is made possible by the addition of the address-
latch enable (ALE). (Note that this chip is not directly compatible
with the Z-80 microprocessor because of the shared lines. It is possi-
ble to adapt the 8755 so that it could operate on the TRS-80 bus.
However. it is being assumed that this chip is to be used in a special
dedicated microprocessor controller which was developed with the
TRS-80 development system to run on an 8085 system.) Because of
the multiplexed address and data bus, the programming of the
device is complicated slightly. In this adaptation, the 8255 is also
used to access the input-output control pins of the 8755. More in-
formation on this chip may be found in the 8085A Cookbook? or in
application literature on this product.

The procedure used for the programming of the 8755 EPROM is
as follows: the low address is placed on the data lines, using PPI
port A, and is latched into the 8755 through the use of the ALE input,
pin 11. Port B, bit 0, is used to control this line. All addresses must
be present when the latching action occurs. This includes the high
address bits (A8, A9. and Al10) that are obtained from port C bits
0, 1, and 2. The ALE line is high or goes high during the address
set-up. The input-output memory (10/M) line is also latched in at
this time. This line is brought low using port B, bit 1. A low on the
I0/M line establishes the device as memory. The two chip-enable
lines, CE1/PROG, pin 1 (active low and also functions as the pro-
gram select when active high) and CE2, pin 2 (active high), must
also be asserted at the time the address is set up. Port B, bits 2 and
3, control the chip select lines. When the above conditions are valid
(address on address lines, chip selects active, and IO/M low), the
ALE is brought low, which latches both the address and the memory
logic states in the 8755. Once this data is latched, the PROG/CE1
may be activated, changing it from a low to a high, establishing the
program mode. The PROG pin must remain high until after the
programming pulse has been applied. Data is placed on the data
lines of port A. After a delay of 2 us, Vg, pin 5 (driven by port C,
bit 6 of the 8255), is pulsed from its +5 V dec level to +25 V de for
50 ms, producing the programming pulse. The 8755, like the 2708,
requires that the high voltage be pulsed to program the word. How-
ever, unlike the 2708, only one pulse is required for programming.
The PROG/CEL input should remain high for an additional 2 us
after a word is programmed. If desired, a verify or read (RD/)
can be initiated to check the validity of the programmed word.

118

S
S

Port A of the peripheral chip must be reversed from output to
input using the control word. The address is still latched because
the ALE has remained low during the programming sequence.
Therefore, all that is required after the data flow is reversed is to
assert the read line (RD/) using port B, bit 7. The data is read from
the peripheral chip by reading the value from port A. If it is the
same as the word programmed, verification is complete. As with the
2716 EPROM, data may be programmed in a random fashion. It is
also possible to write over data, if only logic 1s are to be changed
to logic 0s. The opposite is not possible without a complete erasure
of the EPROM.

The software shown in Appendix H is provided to support the
programming of the 8755 devices. The commands are the same as
those used in the other EPROM programmers. When the P com-
mand is executed, a message informs you which device this program
supports. The commands are read (R), verify (V), and program
(P).

The command format for programming the 8755 EPROM:s is iden-
tical to the formats for the 2708 and 2716 EPROMs. The software is
loaded by any convenient method, then stored on cassette tape.

The software shown in Appendix H is annotated with the hope
that you can follow the programming sequence and add or remove
code as you deem appropriate. The address to be placed in the
jump vector location 401CH and 401DH is 4400H. Remember to
place the address in the Intel format of low byte followed by high
byte. When saving the program on tape, note the starting and ending
addresses as shown in the listing. Remember to include the jump vec-
tor when originating this tape. Reference should be made to the
section dealing with the 2708 EPROM.

REFERENCES

1. Goldsbrough, P. F. Microcomputer Interfacing with the 8255 PPI. Chip.
Indianapolis: Howard W. Sams & Co., Inc., 1979.

2. Titus, C. A, Larsen, D. G,, and Titus, J. A. 8085A Cookbook. Indianapolis:
Howard W, Sams & Co., Inc., 1980.

1y

W, . . *

APPENDIX A

Command Sequence Table

NOTE: Most <{ENTER>s may be substituted with () (s} and commands may be se-
quenced. The only exception is the T command.

Com-
.| mand

Function

Command and Parameters

@

BS

Fill memory with a constant

.over specified range.

Display data over specified
range, ASCil representation
of hex data.

Execute saved command
buffer.

Save present commands in
buffer.

Clear screen.

Display data in hexadecimal
format over specified range.
The address is at the begin-
ning of each line, followed
by the data in it. Up to six-
teen memory addresses are
displayed.

.| Execute starting at address

specified. Current screen
data is used at start of exe-
cution. When a breakpoint is

@<LOW ADDRESS> T < HIGH ADDRESS>>
< CONSTANT> <ENTER>>

@<LOW ADDRESS>> < HIGH ADDRESS>
<BLOCK LENGTH>> < CONSTANT>
< ENTER>

A<LOW ADDRESS> T < HIGH ADDRESS>
< CONSTANT> < ENTER>

A<LOW ADDRESS>> < HIGH ADDRESS>
<BLOCK LENGTH> < ENTER>

B<ENTER>
BS<ENTER>

C<ENTER>

D<LOW ADDRESS> T <HIGH ADDRESS>
< ENTER>

D<{LOW ADDRESS> <HIGH ADDRESS>
<(BLOCK LENGTH> <ENTER>

E<{ADDRESS>.<BREAKPOINT>
< ENTER>

E<{ADDRESS >.<BREAKPOINT>.
< BREAKPOINT> <CENTER>

121

Com-
mand

Function

Command and Parameters

reached, the data residing in
the current screen locations
is transferred to the memory
locations specified by the
V(ideo) pointer.

Find single data byte over
range specified. Display ad-
dress of each occurrence on
crt screen.

Execute starting at address
specified. The data in the crt
R/W memory is replaced by
that stored in the memory
locations referenced to by
the V(ideo) register. When a
breakpoint is reached, the
data in the crt locations is
stored at the addresses spec-
ified by V.

Hexadecimal sum and dif-
ference of two values. Value
2 is added to value. 1; then
value 2 is subtracted from
value 1.

Insert object code or data
into memory starting at ad-
dress specified. Address may
be changed using the /. The
buffer is only 255 bytes
long, and when it is full no
further data is accepted. De-
posit is accomplished by
pressing <ENTER>>.

Not used.

Not used.

Hard copy flag toggle for
listing on printer. (Hard copy
driver program must- be
loaded in R/W memory. See
text.)

Move the contents of mem-
ory contained in locations
specified to new locations
starting at specified destina-
tion address,

Input data from input port
or range of ports.

E<{ENTER>> (Current Program Counter is used
for execute address.)

F<LOW ADDRESS> T <{HIGH ADDRESS>
< DATA> <ENTER>

F<LOW ADDRESS> <HIGH ADDRESS>
<BLOCK LENGTH> <{DATA> < ENTER>

G<ADDRESS >.</BREAKPOINT> <ENTER>

G<ADDRESS >.<BREAKPOINT>.
<BREAKPOINT> <ENTER>

G<CENTER> (Current Program Counter is used
for execute address.)

H<VALUET1 > <VALUE2> <ENTER>

I<CADDRESS> <DATA> <DATA>. ..
<DATA> <ENTER>

1<ADDRESS> <DATA>>. . .<{DATA>
<ADDRESS>/ <(DATA>. . .<DATA>
< ENTER>

L<ENTER>

M<LOW ADDRESS> T <HIGH ADDRESS>
<DESTINATION ADDRESS> <ENTER>

M<LOW ADDRESS> < HIGH ADDRESS>
<LENGTH> <CDESTINATION> <ENTERD>

N<CPORT NUMBER> < ENTER>>
N<PORT NUMBER> T
<PORT NUMBER END> <CENTER>>
N<CPORT NUMBER> < NUMBER OF. PORTS>.
< ENTER>>

122

ez

A

£

Com-
mand

Function

Command and Parameters

Output data to port specified.
Program EPROMs. (It is re-
quired that this option is
available in R/W memory.
See text.)

Search for two-byte word in
Intel format, low byte fol-
lowed by high byte. Each
occurrence is displayed.

Read cassette tape uwsing
TRS-80 500 bits per second
format. A bias may be en-
tered, and the value of this
bias is used to offset the
placement of the data in
memory from that specified
in the format.

An alternate form of substi-
tuting object code or data
into R/W memory. This com-
mand is interactive. A double
< ENTER>> returns to buffer
sequence execution,

Transfer data in video stor-
age to screen to show the
state of the crt when a
breakpoint was encountered.
The V register must point to
the starting location of the
storage address. If V is
3CO0H (default value), then
the data is stored in the
video R/W memory and will
be scrolled. This command is
useful when program devel-
opment uses video screen lo-
cations for ifo.

User assignable. (Option must
be loaded into R/W memory.
See text.)

Verify locations specified in
first locations specified with
the data in locations starting
at the address in the desti-
nation field.

Write a tape cassette using
Radio Shack format. Name is
optional.

O<PORT NUMBER> <(DATA> <ENTER>
P<ENTER>

Q<LOW ADDRESS> T <CHIGH ADDRESS>
<DATA> <ENTER>

Q<LOW ADDRESS> < HIGH ADDRESS>
< BLOCK LENGTH> <{DATA> <ENTER>

R<ENTER>
R<BIAS> <(ENTER>

S<ADDRESS>> < ENTER> < DATA > < ENTER>
< SPACE>> < ADDRESS>>/ < DATA>
<ENTER> <DATA> <RUBOUT>
<REPLACEMENT DATA>> < ENTER>
<ENTER>

T<ENTER>

U<ENTER>

VLOW ADDRESS> T <HIGH ADDRESS>
< DESTINATION ADDRESS> <ENTER>

VLOW ADDRESS> <HIGH ADDRESS>
<LENGTH> <{DESTINATION> < ENTER>

W< START ADDRESS>T<END ADDRESS>
<EXECUTE ADDRESS>> (< NAME>)
<ENTER>

123

Com-

isters. Valid register names

are as follows:

P Program counter

§ Stack Pointer

X IX Register Y Y Register

N Interrupt Flag 1 set O not
set

I Interrupt Vector

V Video screen storage
pointer

A, B, C, D, H, L, F Registers

A, B,C, D, FE, H, U F
Alternate Registers

Not used.

Single-step function. Hard-
ware must be installed for
this command to function,

mand Function Command and Parameters
W< START ADDRESS> <{LENGTH>
< EXECUTE ADDRESS> (<NAME>)
<ENTER>
X Examine and/or modify reg-] X<CENTER> (All registers dispiayed, no modifi-

cations.)

X<CREGISTER> < ENTER> (Only specified reg-
ister displayed.)

X<REGISTER> <{DATA>> <ENTER>> (Data re-
places former contents.)

Z<ENTER> (Current program counter is used
for start address.)

Z<EXECUTE START ADDRESS><(ENTER>

Z.<BREAKPOINT><ENTER> (In case command
executed is a disable interrupt, the breakpoint
is used to return to monitor.)

£

124

&

APPENDIX B

References

. Zilog Z-80 Technical Manual. Cupertino, Calif.: Zilog Corp., 1976.
. TRS-80 Microcomputer Technical Reference Handbook. Radio Shack, 1978.

. TRS-80 Model 111 Operation and Basic Language Reference Manual. Radio
Shack, 1980.

. McNamara, John E. Technical Aspects of Data Communication. Maynard,
Mass.: Digital Press, 1977.

. Radio Shack Service Manual, TRS-80 Model III Microcomputer. Radio
Shack, 1980.

. Intel Component Data Catalog 1980. Santa Clara, Calif.: Intel Corporation,
1980,

. Goldsbrough, Paul F. Microcomputer Interfacing With the 8255 PPI Chip.
Indianapolis: Howard W. Sams & Co., Inc., 1979.

125

#,

APPENDIX C

Hardware and Software
Supplier

An EPROM chip containing the FROLIC™ monitor is available
for both the Model I and Model III TRS-80 computers. Due to dif-
ferences in the computer circuits, the software is not exactly equiva-
lent. However, the monitor functions are the same.

The source program is also available for both computers on a cas-
sette tape. The monitor may be used with 16K, 32K, or 48K of read/
write memory. A floppy disk containing the source program and the
object program is available for computers with 16K, 32K, or 48K of
read/write memory.

The electronic components, printed circuit boards, and other sup-
plies for the single-step interface, the EPROM programmer, and
the serial i/o interface are also available. Each kit or assembled unit
is supplied with a cassette tape that contains the source program(s)
for the interface. These program tapes may be purchased separately.

All of the hardware and software is available from:

Frolic Devices
P. O. Box 772
Bloomfield, CT 06002

A stamped, self-addressed envelope may be sent to Frolic Devices
for current prices and delivery information.

127

u7

APPENDIX D

Source Listing for
FROLIC Monitor for the
Model | TRS-80

129

4012
Q0FF
4000
4080
4180
4040
4040
4042
4043
4044
4045
4048
404A
4048
4024
4024
4026
403C
403A
4080
3C00
4047
4046
403E
4018
401B
401E
4300
42C0
42A0

0000

0000
0001
0003
0006
0008
000B
000E
0010
0013
0014
0016
0018
001B
001D
001E
0020
0023
0026
0028

130

AF
D3FF
210040
1803
€30040
010003
1803
€30340
77
ED56
1803
30640
EDAL
F3
1803
30940
E22B00
18EB
c30C40

00010
00020
00030
00040
00050
060060
00070
00080
00090
001060
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00250
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00450
00500
00510
00520
00530
00540
00550
00560
00570

RSTLOC
RST
REF
BUFFER
TEM
REF1
CURSOR
SSFLAG
COUNT
CMARK
BPNO
BPOINT
PRNTFG
PRIMF
REF2
SSTACK
BOTMS
PCSAVE
HLSAVE
BREAKS
VIDEO
OLD
UCFLAG
SCREEN
TTYP
PROM
USER
USERSP
MONSP
JMp

s1

52
S3

54

MODEL I TRS-8C DEVELOPMENT SYSTEMS
DISK NAME MODI/ASM
MODEL I FROLIC MONITOR

EQU 40128

EQU OFFH

EQU 04000H :START OF RAM

EQU REF+80H

EQU REF+180H :SAVED BUFFER AREA
EQU REF+40H

EQU REF1

EQU REF1+2 ;s SINGLE STEP FLAG
EQU REF1+3H

EQU REF1+4H

EQU REF1+5H

EQU REFI1+8H ;BUFFER POINTER
EQU REF1+0AH

EQU REF1+0BH

EQU REF+24H

EQU REF2

EQU SSTACK+2H

EQU REF2+18H

EQU PCSAVE-2

EQU BUFFER :JUST BELOW BUFFER
EQU 3C00H

EQU REF+47H

EQU REF+46H

EQU PCSAVE+2H

EQU REF+18H

EQU REF+1BH

EQU REF+1EH

EQU REF+300H ;USER STACK POINTER
EQU USERSP-40H :MONITOR STACKPOINTER
EQU MONSP-20H :TOP OF MONITOR STACK
ORG 000008

X0R A ;CLEAR AC

ouT (OFFH) ,A sLOWER CASE AND CASSETTE OFF
LD HL,REF ;SYSTEM RAM

JR S1 +BY PASS RESTARTS

Jp 4000H sRST 1

LD BC,0300H :CLEAR 1ST 3 PAGES

JR S2

JP 4003H $RST 2

LD (HL).A

Ml :SET INTERRUPT MODE 1
JR 83

JP 4006H :RST 3

CPI

DI :DISABLE INTERRUPTS
JR S4

JP 40094 :RST 4

JP PO,CON ;CONTINUE INITIALIZATION
JR S2 ;CONTINUE TO CLEAR RAM
JP 400CH sRST 5

7

002B
002D
002F
0030
0033
0036
0038
0038
003C
003D
003E
003F
0040
0041
0042
0043
0044
004B
004C
004E
0051
0054
0057
005A
005D
0061
0063

0066
0069
006C
006F
0072
0073
0076
0078
0079
0078
007¢C
007D
007E
0080
0083
0086
0087
008a
008D
008F
0091
0094

0097
0099
009C
008D

ED732440
3EAQ
324440

31BE42
CDh0701
CD8AOL
218040
E5
CD2701
362C

31C042
210403
ES5
CDI9EOL
CDEF02
28FB
D640
DAOCO3
212p03

FESA
D20C03
87

S5F

00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00830
00500
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140

CON

CON1

TABLE

SIGNON

CONZ

RSTART

COMAND
coml

CHMND

CD

LD A,0C9H

JR CON1

NOP

JP 400FH

LD SP,USERSP
JR CON2

JP 40128

DEFB 0ODH

DEFB 0CH

DEFB 01H

DEFB 0BH

DEFB OAH

DEFB 08H

DEFB 091

DEFB 20H

DEFB 0bH

DEFM 'FROLIC:'
DEFB 011

Lb C,08

LD HL,TTYP
CALL FILL1
CALL CLEARS
LD HL,3CO0H
LD (SCREEN) ,HL
LD (SSTACK),SP
LD A,0AOR

LD (CMARK),A

RESET START OF

LD SP,MONSP-2
CALL CLRBP
CALL PMSG1
LD HL,BUFFER
PUSH HL

CALL BUF

LD (HL),2CH
INC BL

LD (HL},01H
POP HL

LD (BL},A
PUSH HL

POP IY

LD SP,MONSP
LD HL,CONTIN
PUSH HL

CALL NEWLIN
CALL GET

JR Z,CD

SuB ‘e’

JP C,ERROR
LD HL,COMTAB

Ccp rz!

JP NC,ERROR
ADD A,A

LD E,A

sFILL
:RST 6
:SET USER STACK

sRST 7

:WILL INITIALIZE CURSOR

;END OF MESSAGE
;LOAD RETURNS IN USER RAM
;START OF FILL

:CLEAR SCREEN ONLY ON POWER UP

sINITIALIZE USER STACK
sCURSOR MARK
:PLACE IN RAM

PROGRAM

;INITIALIZE STACK

:CLEAR BREAKPOINTS

:FROLIC:

;BUFFER BEGINNING

;SAVE FOR LATER

;BUFFER AVAILABLE FOR OTHERS
;DELIMITER

:BREAK AT END OF BUFFER
:GET BUFFER BEGINNING

:PUT ODH, ERRORS WILL DO LINEFEED

:BUFFER POINTER FOR MONITOR
;NECESSARY FOR COMMARDS
:RETURN ADDRESS ON STACK
sPUT RETURN ADDRESS ON STACK
;SAVES DOING IT IN COMMAND

;GET WILL GET FIRST NON ZERO CHAR

; IGNORE LEADING SPACES
;BORROW IF < @

:A 0C IF °

;POINT TO COMMAND TABLE

;A BORROW IS ALWAYS GENERATED
;BORROW VALID € THRU 2

:DOUBLE NUMBER
;FOR DOUBLE ADD

131

00%E
00A0
00Al
00AZ
00A3
00A4
Q0AS

00A6
ooa7
00A8

00AB E

00AC
Q0AF
00B0
0083
00B4
0oB7
00B8
00BB
00BC
00BD
00BE
00Cl1
00c2
00C4
00C5
00C8
00CB
0o0cC
00CF
00Do
00Dl
00D2
00D3
00D4
00D5
00D7
00D8
00DA
00DD
00DE
00DF
00ELl
00E3
00E6
00E9
00ED
00EF
00F3
00F4
00F5
00F8
00FB
00FE
0101
0104

132

010004
EDSB3E40
EDBO
FD2A4840
3B

3B
Cbo701
31BE42
CD8605
2A3C40
010500
C3A703

01150
01160
01170
01180
0119%0
01200
01210
01220
01230
01240
01250
01260
01270
01280
01250
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01580
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710

RSAVE

EXX

SAVEl

LD D,0H
ADD HL,DE
LD E,(HL)
INC HL
LD D, (HL)
EX DE,BL
Jp (EL)

EX (SP) . HL
DEC HL

LD (PCSAVE) ,HL
POP HL

LD (HLSAVE) (HL
PUSH AF

LD HL,0002H
ADD HL,SP

LD (SSTACK) ,HL
POP AF

LD SP,HLSAVE
PUSH DE

PUSH BC

PUSH AF

LD A, (SSFLAG)
OR A

JR Z,EXX

XOR A

LD (SSFLAG) ,A
LD HL, (PCSAVE)
INC HL

LD (PCSAVE),HL
EXX

PUSH HL

PUSH DE

PUSH BC

EX AF,AF’

PUSH AF

LD A,I

LD H,A

LD L,00H

JP PO,SAVEl
INC L

PUSH HL

PUSH 1Y

PUSH IX

LD HL,3C00R
LD BC.0400H
LD DE. (SCREEN)
LDIR

LD 1Y, (BPOINT)
DEC 8P

DEC 8P

CALL CLRBP

LD SP,MONSP-2
CALL XALL

LD HL, (PCSAVE)
LD BC,05H

JP DISP1

:BE AT A PAGE BOUNDARY

;ADD WITH CARRY SET FROM COMPARE

:GET LOW BYTE

:GET HIGH BYTE
:JUMP TO ADDRESS

;EXECUTE REST OF COHMMAND

:GET PROGRAM COUNTER
$ADJUST
;AND SAVE

;SAVE HL AND ADJUST STACKPOINTER

;SAVE FLAGS IN FORMER HL
:ADJUST FOR RST OR INT
:GET SYSTEM USER STACK
YSTEN STACK STORAGE
sGET FLAGS BACK

; START OF REGISTER SAVE

;FLAGS ON STACK

s SINGLE STEP?

s TEST

:NO SINGLE STEP IF ZERO
$+NOW ZERO

;CORRECT FLAG

:GET PC COUNTER

;ADJUST

s REPLACE

:GET INT VECTOR AND IFF FLAG

;STORE IN H
;INITIALIZE L

:IF PARITY FLAG NOT SET IFF INT D
;IFF SET INDICATE WITH NON ZERO
ySAVE INT VECTOR AND INT SET FLAG

:START OF SCREEN TRANSFERRED

;AREA STARTING AT SCREEN

sGET LAST POSITION IN BUFFER

:MUST NOT DESTROY STACK

:CLEAR BREAK POINTS
; CORRECT STACK
;DISPLAY REGISTERS
:GET PROGRAM COUNTER
;NUMBER OF BYTES

s DISPLAY

s

]

0107 210000 01720 CLRBP LD HL,00H :CLEAR

010A 3A4540 01730 LD A, (BPNO} :LD HL WITH NO OF BPOINTS
010D B7 01740 OR A $SET ZERO FLAG
010E 6F 01750 b L,A ;STORE JUST IN CASE
010F C8 01760 RET %2 :IF NO BREAKPOINTS GO TO CO!MAND
0110 C1 01770 POP BC :GET RETURN ADDRESS
0111 29 01780 ADD HL,HL :DOUBLE VALUE IN L
0112 29 01790 ADD HL,HL :AND AGAIN
0113 EB 01800 EX DE,HL
0114 218040 0l8lo LD HL,BREAKS
0117 EDS52 01820 $BC HL,DE :BORROW CLEAR DECREMENT STACK
0118 F9 01830 LD SP,HL ;NEW STACK POSITION TOP
011A C5 01840 PUSH BC
0118 E1 01850 POP HL sREADY FOR RETURN
011C 47 01860 LD B.A +SHOULD STILL HAVE NUMBER
011D F1 01870 CLRBP1 POP AF
0l11E D1 01880 POP DE
O011F 12 01890 LD (DE).,A
0120 10FB 01900 DJINZ CLRBP1
0122 AF 01910 XOR A
0123 324540 01820 LD (BPNO).A ;PUT ZERO IN BPNO
0126 E9 01930 JP (HL} :HL HL HAS RETURN ADDRESS
01940 B
01950 +FILL BUFFER WITH COMMAND STRING
01960 H
0127 3E40 019870 BUF LD A,40H ;IF ENTERED HERE ONLY UPPER CASE
0129 324640 01980 LD (UCFLAG) .A :40H 15 UPPER FLAG, 60H FOR LC
012¢C 23 01990 BUFO INC HL :LEAVE ROOM FOR BUFFER COUNT
012D 0601 02000 LD B,0lH :ROOM FOR COUNT.,COMMA,AND O0lE
012F CD6EOQ2 02010 BUF1 CALL GBYTE :GET CHARACTER RETURN WITH DATA
0132 FEO1 02020 CP 01n ;ESCAPE FROM BUFFER ENTRY
0134 CA6600 02030 JP Z,RSTART RETURN TO COMMAND, SP IS OK
0137 FEOD 02040 Cp 0pH ;CARRIAGE RETURN
0139 C8 02050 RET 2 ¢RETURN TO CALLING ROUTINE
013A FEOC 02060 CP 0CH :CLEAR SCREEN
013C 2812 02070 JR 2.PCH :CHANGE DATA TO K COMIMAND
013E FEO08 02080 DELETE CP 08H s BACKSPACE?
0140 2010 02090 JR NZ,PCHAR :NO INSERT CHAR INTO BUFFER
0142 3E01 02100 DLT LD A,01H :BEGINNING
0144 B8 02110 CP B I8 IT
0145 28B8ES8 02120 JR %,BUF1 sCAN'T GO BACK FURTHER
0147 2B 02130 DLTE DEC HL ;DECREMENT BUFFER
0148 05 02140 DLTE1 DEC B :AND COUNT
0149 3E08 02150 LD A.08H
014B CDB201 02160 CALL CRT :REMOVE FROM SCREEN
014F 18DF 02170 JR BUF1 :GET NEXT CHAR
0150 3E43 02180 PCH LD A,'C' sCLEAR SCREEN
0152 04 02190 PCHAR INC B ;IS THERE ROOHM?
0153 28F2 02200 JR Z,DLTE :NO SO DO AUTOMATIC 08H
0155 77 02210 LD (HLJ,A
0156 CDB201 02220 CALL CRT ;LOAD IN BUFFER AND DISPLAY
0159 23 02230 INC HL ;NEXT POSITION IN BUFFER
015A 18D3 02240 JR BUF1 :GET NEXT CHARACTER
02250 :
02260 ;FOLLOWING ARE PRINT ROUTINES AND DATA
02270 :CONDITIONING FOR THESE SUBROUTINES
02280 H

133

015C
015F
0160
0163
0164
0165
0166
0167
0168
016A
016C
016E
0170
0173
0174
0175
0177

0178
017A
017D
017E
0180
0183
0186
0188

0isa
018D
018E
0190
0191
0194
0195

0197
0198
0199
019A
0198
01sC
019D

019E
01A0
01A2
01n4
01Aa5
0laB

134

CDA201 02250 SPCHL
7E (023060 PPHL
CD6301 02310 PHEX
OoF 02320 PHEXH
OF 02330
OF 02340
oF 02350
F5 02360 PHEXL
E60F 02370
FEOA 02380
3007 02380
F630 02400
CDA401 02410 PHEX1
Fl 02420
o3} 02430
C637 02440 ADJUST
18F7 02450

02460

02470

02480
7C 02490 PNHL
CD6001 02500
7D 02510
18E0 02520
CDSECL 02530 ADDR

CD7901 02540 ADDR1

3E3A 02550 ADDR2
18la 02560

02570

02580

02590
214300 02600 PMSGL
7E 02610 PMSG
FEOL 02620
ce 02630
CDB201 02640
23 02650
18F6 02660

02670

02680

02690
29 02700 LDHL
29 02710
28 02720
29 02730
B5 02740
6F 02750
Ccs 02760

02770

02780

02730
3EQOD 02800 NEWLIN
1802 02810
3E20 02820 SPACE
F5 02830 PRNT
CD7EQ2 02840 PRNT1
FEOL 02850

CALL SPACE sPRINT A SPACE FOLLOWED BY e

LD A, {(HL) ;THE NUMBER LOCATED AT (HL)
CALL PHEXH ;TWO NIBBLES MUST BE OUTPUT
RRCA ;GET HIGH HEX VALUE

RRCA

RRCA

RRCA ;SWAP COMPLETE

PUSH AF ;GET LOW HEX VALUE

AND OFH s MASK

CP 0AH ;GREATER THAN 9

JR NC,ADJUST ;THEN NO CARRY

OR 30H :NOW ASCII FOR 0-9

CALL PRNT ;OUTPUT

POP AF ;GET AND ADJUST SP

RET

ADD A,37H $ADJUST FOR ALPHABETIC

JR PHEX1

;PRINTS NUMBER IN HL REGISTER AS ADDRESS

; .

LD A,H :PRINT H FIRST B

CALL PHEX Ef

LD A,L (NOW L

JR PHEX :RETURNS FROM CRT PROGRAM

CALL NEWLIN :DO CR AND LINE FEED

CALL PNHL ;PRINTS HL WHICH IS ADDRESS

LD A,':? :DELIMITER

JR PRNT .

:PRINT MESSAGE e

LD HL,SIGNON ;FROLIC:

LD A, (HL) :GET DATA

CP OlH :END OF MESSAGE MARK

RET 2 ;RETURNS FROM MESSAGES VIA BREAK

CALL CRT

INC HL :NEXT DATA

JR PMSG

;SHIFT DATA THROUGH HL PAIR

ADD HL,HL {SHIFT

ADD HL,HL

ADD HL,HL

ADD HL,HL

OR L ;OR AC IN SHIFT PATTERN

LD L.,A ;REPLACE L

RET

:PRINTS DATA IN A TO PRINT DEVICE 3

! i

LD A,ODH ;LINE FEED ?

JR PRNT :WANT TO BREAK ON NEW LINES

LD A,20H :SPACE ADJUST

PUSH AF : SAVE

CALL CHKIN ;HAS BREAK OR SPACE

CP 01H :BEEN PRESSED R
EA

01AA
01laD
G1AF
01B1

01B2
01B3
01B4
01B6
01B8
01BA
01BC
01BD
01lBE
01BF
01C2
01C4
01Cé
oics
0ica
01CC
01CD
01CE
01D0
01Dl
01D3
01D5
01p8
0lDB
O1DE
01E0
01EL
OlE4
01E7
01E8
0lEA
0lEB
01EE
0lFl
01ir2
01F3
0lr4

01F7 B

0lF8
ClFB
QLFC
01FD
0lFE
0201
0203
0205
0206
0208
0209

CA6600
FE20
28F4
F1

41840
79

D9

<9
21003C
FD23
CB74
co
3620
23
18F8

02860
02870
02880
02830
02900
02910
02920
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020
03030
03040
03050
03060
03070
03080
03090
03100
03110
03120
03130
03140
43150
03160
03170
03180
43190
03200
03210
03220
03230
03240
03250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03390
03400
03410
03420

CRT

CRTL

FULSCN

LINEF

BKSP

ouT2

CLEARS

CLEAR

JP 7,RSTART ;CONTINUE WITH BUFFER
CP 20H

JR Z,PRNT1 ;YES, WAIT FOR RELEASE
POP AF sFALL INTO CRT DISPLAY

:CRT DISPLAY

EXX ;CRT OUTPUT OF DATA IN A

PUSH AP

IN A, (QFFH) +CHECK FOR LARGE GRAPHICS
AND 40H :ZERO LARGE,NZ REGULAR

LD B,0OH sFLAG FOR LARGE CHARACTERS
JR NZ,CRT1

INC B ;FLAG FOR REGULAR CHARACTERS
POP AF ET CHARACTER BACK

PUSH AF sREPLACE ON STACK

LD HL, (CURSOR)}

LD (HL) ,20B :REMOVE CURSOR

CP ODH :CARRIAGE RETURN

JR Z2,LINEF

Cp 08H ; BACKSPACE

JR Z,BKSP

LD (HL},A ;PLACE CHARACTER ON SCREEN
INC HL :ADVANCE CURSOR

DJINZ FULSCN

INC HL

BIT 6.,H ;OFF PAGE?

JR Z,007T2

LD BC,03C0H :1024-64 MEMORY BYTES

LD DE,VIDEO
LD HL,VIDEO+64D :;ONE LINE FROM PAGE TOP
LDIR

EX DE,HL :CLEAR LAST LINE

CALL CLEAR ;CLEAR LAST LINE

LD HL,VIDEO+961D ;BEGIN OF LAST LINE
DEC HL

DJINZ 0UT2

DEC HL

LD (CURSOR} ,HL

LD A, (CMARK) $MONITOR OR USER?

LD (HL).,A sCURSOR MARK

POP AF :GET DATA FROM STACK

LD C,A ;SAVE IN C REGISTER

LD A, (PRNTFG) ;GET HARD COPY FLAG

OR A ;IF NON ZERO CALL PRINT
CALL NZ,TTYP :IN RAM A JUMP TO USER ROUTINE
LD A,C :RESTORE DATA TO A

EXX +REPLACE THOSE REGISTERS
RET

LD HL,VIDEO

INC IY :CORRECT BUFFER

BIT 6,H s FINISHED

RET NZ fWHEN THIS BIT GOES ONE
LD (BL),20H :SPACE ON SCREEN

INC HL : NEXT

JR CLEAR ;CONTINUE WITH CLEAR

135

0208
020E
020F
0212
0213
0214
0217
0218
0218
021D
0220
0222
0224
0226
0228
022B
022E
0231
0233
0236
0237
0239
023A
023B
023C
023D
023E
0241

0243
0246
0249
024B
024E
0251
0254
0257
0252
025C

025D
025F
0260
0261
0263
0264
0265
0267
0269
026A
026C

136

CD1402
EB
€D4302
EB

o2}
CD4302
EB
CDF102
3821
CCEF02
28FB
FE54
280D
FD2B
CDF102
€20C03
CD4302
1807
Cb4302
3F

214000
1887

210000
CDEF02
28FB
¢D5D02
DAOCO3
CD9701
CDEF02
€D5D02
30F5
co

03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
03570
03580
03590
03600
03610
03620
03630
03640
03650
03660
03670
03680
03650
03700
03710
03720
03730
03740
03750
03760
03770
03780
03790
03800
03810
03820
03830
03840
03850
03860
03870
03880
03890
03900
03910
03920
03930
03940
039850
03960
03970
03980
03990

G3N

G2N

G2NO

G2N1

G2N2

G2N3

GHL

GHLO

GHL1

VALHEX

:FILL ROUTINES FOR ADDRESS OR DATA

CALL G2N $GET TWO NUMBERS HL AND BC

EX DE,HL ;SAVE HL VALUE IN DE

CALL GHL :GET 3RD ARGUMENT

EX DE.HL :THIS GOES IN DE REGISTER
RET sWITH HL START ADDRESS
CALL GHL $GET 2 NUMBERS FIRST FOR HL
EX DE.HL

CALL GET1 :GET LAST DATA IN BUFFER
JR C,G2N3 :FOR LONGEST INSTRUCTION
CALL Z,.GET sEITHER COULD BE T

JR Z,G2N0 1SKIP SPACES

[N ; THROUGH TILL LAST ADDRESS
JR Z.G2N1 :GO COMPUTE BLOCK LENGTH
DEC IY :ADJUST POINTER

CALL GET1 :LAST IN BUFFER

JP NZ,ERROR ;ONLY VALID DELIMITERS
CALL GBL ;GET BLOCK LENGTH

JR G2N2 :GO STORE IN HL

CALL GHL :+END ADDRESS MUST COMPUTE
CCF :CLEAR FLAG

SBC HL,DE

INC HL :NEED ONE MORE

LD B,H :STORE LENGTH IN BC

LD C,L

EX DE,HL ;PUT START ADDRESS BACK
RET

LD HL,40H :MINIMUM LENGTH 40H

JR G2N2 }STORE IN BC

:GET VALID HEX IN HL REGISTER

LD HL,0000H ;INITIALIZE TO ZERO

CALL GET

JR Z,GHLO :SKIP SPACES

CALL VALHEX :CHECK FOR VALIDITY

JP C,ERROR :THIS MUST CLEAR BREAK POINTS
CALL LDHL ;SHIFT INTO HL PAIR

CALL GET

CALL VALHEX

JR NC,GHL1

RET ;AND RETURN TO CALLING PROGRAM

;CHECK IF VALID HEX NO.

ADD A,O0DOH :IF BETWEEN 30 AND 39

ccr sAND 41 AND 47 CARRY GENERATED
RET C sRETURN NOT VALID FLAG

Cp 0AH :IF LESS THAN 10 VALID

[lety :VALID RETURN IS NO CARRY

RET NC :BETWEEN 0 AND 9 AND VALID

ADD A,O0F9H :IF BETWEEN 17H AND 22H

CP OAH ;THIS WILL FLAG

RET C :ERROR THOSE FEW

Cp 108

CCr :IF OVER OFH NO CARRY

&

R

026D

026E
026F
0272
0275
0276
0278
02739
G27A
027¢C
027D
027E
0281
0282
0283
0284
0287
0288
028a
028C
028F
0290
0292
0293

0294
0287
029a
0298
029¢C
029E
02a0
02al1
02n4
02A5
0246
02a7
02a9
02A7
02AC
02aE
02B0
02B1
0282
0283
0284
02B5
02B6

02B9 4

02BA
02BC
028D

(5]

ES
CD7EQ02
214740
BE
28F7
77

B7
28F3
El

c9
3AT7F38
B7

c8

DY
CD9402
57
0600
10FE
CD9402

010000
210138
7E

B7
2008
CB25

04000
04010
04020
04030
04040
04050
04060
04070
04080
04090
04100
04110
04120
04130
04140
04150
04160
04170
04180
04190
04200
04210
04220
04230
04240
04250
04260
04270
04280
04290
04300
04310
04320
04330
04340
04350
04360
04370
04380
04390
04400
04410
04420
04430
04440
04450
04460
04470
04480
04490
04500
04510
04520
04530
04540
04550
04560

GBYTE

CHKIN

TWO

Dl

KYDL

NEXT

HDATA

LOWBIT

RET

sGET CHARACTERS
PUSH HL
CALL CHKIN
LD HL,OLD
CP (HL}

JR Z,GBYTE+1
LD (BHL),A
OR A

JR Z,GBYTE+1
POP HL

RET

LD A, (387FH)
OR A

RET 2

EXX

CALL KYD1
LD D,A

LD B,00H
DINZ D1

CALL KYDI1

CP D

JR NZ,TWO
EXX

RET

:KEY SCAN

LD BC,0000B
LD HL,3801H
LD A, (HLJ
OR A

JR NZ,HDATA
SLA L

INC BC

JP P,NEXT
X0R A

RET

RRA

JR C,LOWBIT
INC B

JR HDATA
BIT 6,L

JR NZ,SPEC
LD A,C

RLCA

RLCA

RLCA

OR B

D C,A

LD A, (3880H)
LD B.A

LD A,08H

CP L

JR C,NALPHA

:RETURN WITH PROPER FLAG

:WANT NEW CHARACTER

s NO NULLS

:GET CHARACTER
:SAVE
: SHORT DELAY

+1S IT THE SAME
:NOT SAME TRY AGAIN

:TURN ON BIT ZERO SCAN TO START
:GET DATA

;ESCAPE

LINE 6 SPECIAL CHARACTERS

;5 LSB HAVE LOW DATA
IS SHIFT KEY PRESSED?
;THIS INFORMATION IS IN B

:IF CARRY NOT ALPHA CHAR

137

02BF

02C2
02C3
02C5
02Cc7
02C8
02CA
02CB
02Cp
02CF
02Dp1

02D2 C

02D4
02D6
02D7
02Dp$%
02DA
02DD
02DF
02E1
02E2
02E4
0285
02E7

02EA 7

02EB
02EC
02ED
02EE

02EF
02F1
02F4
02F6
02F9
02FB
02FC
02FE
02FF
0300
0301

0302
0304
0307
0309
0306C
030E
0311
0314
0316
0318
031B

138

3A4640

Bl
CB40
2001

FD23
FD7E0Q
FEOL
CA6CO0
FE20
c8
FE2C

FD23
CDF102
28F9
DA8000
3E3F
FD7700
CDEF02
3802
18r9
218040
CDBDO1

04570
04580
04590
04600
04610
04620
04630
04640
04650
04660
04670
04680
04690
04700
04710
04720
04730
04740
04750
04760
04770
04780
04790
04800
04810
04820
04830
04840
04850
04860
04870
04880
04890
04500
04910
04920
04530
04940
04950
04960
04970
04980
04990
05000
05010
05020
05030
5040
05050
05060
05070
05080
05050
05100
05110
05120
05130

CAPIT
NALPHA

NALPH1

CHAR

NOT7

SPEC

GET
GET1

GET3

CONTI1
CONTIN

ERROR

ERO

ERL

LD A, (UCFLAG)

OR C

BIT 0,B

JR NZ,CAPIT
RET

RES S5.A

RET

BIT 5.L

JR Nz ,NOT7
LD A,30H

OR C

BIT 0.,B

JR NZ,CHAR
RET

RES 4.A

RET

LD A, (3820H)
CP 10H

JR C,NALPH1
LD A,B

XOR OlH

LD B,A

JR NALPH1
LD HL,TABLE
LD A,B

ADD A,L

LD L,A

LD A, (HL)
RET

&,

:60H HERE IF LOWERCASE REQUIRED
:OTHERWISE 40H FOR ONLY UPPERCASE
:WAS SHIFT PRESSED

;AC HAS UPPER CASE DATA

:THIS IS NOW CHARACTER

;TABLE MUST BE LOCATED
;SUCH THAT THE FOLLOWING ADDITION
:DOES NOT CROSS BOUNDRIES

;GET FETCHES NEXT DATA IN INPUT STRING
:BY INC FIRST IY WILL ALWAYS POINT TO LAST VALUE

INC IY

LD A, (IY+0H)
cp ClH

Jp 7 .COMAND
CP 20H

RET Z

[S: I

RET N2

OR A

sCr

RET C

INC IY

CALL GET1
JR 2,CONTI1
JP C,CMND
LD A,"?!

LD (IY+0).A
CALL GET

JR C,ER1

JR ERU

LD HL,BUFFER
CALL PMSG

sENTER HERE FOR LAST ENTRY
: BREAK?

: START ALL OVER

:SPACE SET ZERC FLAG

sFLAG SPACES

:IF COMMA SET CARRY

;ALL OTHERS RETURN

;NO ZERO

:SET CARRY

: NEXT

;LAST CHARACTER IN STRING

;SKIP TRAILING SPACES H
:FINISH OLD OR BACK TO BEGIN }
;SHOW AT END

$SHOW IT .
:ADJUST BUFFER :
:WANT NEXT COMMA o
:0UT ONLY WITH TRUE COMMA
:ODH STARTS THIS LINE
;OUTPUT BUFFER TEXT TO ERROR

it

031E
0321
0323
0325
0327
0329
032B

032D
032F
0331
0333
0335
0337
0339
0338
033D
033F
0341
0343
0345
0347
0349
034B
034D
034F
0351
0353
0355
0357
0359
035B
035D
035F
0361

0363
0366
0368
0368
036E
036F
0372
0374
0375
0376
0378

CDh0701
DBFF
E640
2002
3E08
D3FF
18D7

B703
6303
7A03
FEO1
A403
D903
D8o7
C603
7804
CF04
0Co03
0Co03
ACO4
B704
8004
C504
1B40
D407
2307
F204
C603
1E40
3F0S
6406
SE05
0C03
€103

CD1402
1620
CD8goo1
CDA201
7E
CDB201
EDAl
EOQ

15
28EE
18r4

05140
05150
05160
05170
05180
05190
05200
05210
05220
05230
05240
05250
05260
05270
05280
05290
05300
05310
05320
05330
05340
05350
05360
05370
05380
05390
05400
05410
05420
05430
05440
05450
(05460
05470
05480
05490
(5500
05510
05520
05530
05540
05550
05560
05570
05580
05590
05600
05610
05620
05630
05640
05650
05660
05670
05680
05690
05700

TOFFl

ER2

COMTAB

ASCII
ASCII1

ASCII2
ASCII4

CALL

IN A,

CLRBP
(OFFH)

AND 40H
JR NZ,ER2

LD A,
OUT (QOFFH) ,A

08H

JR CONTIN

:COMMAND TABLE

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

FILL
ASCII
BUFFR
CLEARS
DISPLY
GO
FINDON
ENTER
HEXM
SUBSM
ERROR
ERROR
LIST
MOVE
InN

ouT
PROM
FINDTO
READ
INSERT
ENTER
USER
VERIFY
WRIT
EXAM
ERROR
STEP

:CLEAR BREAKPOINTS
:GET STATUS OF SCREEN
:IF ONE SMALL GRAPHIC
:TURN OFF GRAPHIC

;LD GRAPHIC CONTROL
sALL SET

;CONTINUE WITH BUFFER

:FILL ADDRESS SPACE WITH CONSTANT
+ADDRESS OF ROUTINE

;ADDRESS OF BUFFER PROGRAM
:CLEAR SCREEN WITH 20H

:ADDRESS OF ROUTINE

;EXECUTE WITH CURRENT SCREEN
SEARCH FOR SINGLE BYTE
sEXECUTE WITH OLD SCREEN DATA
;ADDRESS OF HEXM

; INSERT DATA FROM BUFFER

3d

iK

: TOGGLE HARDCOPY SWITCH
:ADDRESS OF HNOVE

+ INPUT FROM PORT

:OUTPUT TO PORT

: PROM PROGRAMMER

:SEARCH FOR TWO BYTE INTEL FORMAT
sREAD A CASSETTE TAPE WITH BIAS
;DATA FROM KEYBOARD

:TRANSFER FROM SCREEN TO VIDEO
;USER ROUTINE

1ADDFESS OF VERIFY

sWRITE A TAPE ON CASSETTE
:ADDRESS

;SINGLE STEP IF HARDWARE ADDED
:WITH OLD SCREEN DATA

; COMMAND SUBROUTINES

sDISPLAY

éALL

LD D,

CALL
CALL

LD A,

CALL
CPI

G2N
32p
ADDR
SPACE
(HL)
CRT

RET PO

DEC D
JR Z,

ASCII]

JR ASCII2

IN ASCII FORMAT WITH GRAPHICS

:GET ARGUMENTS

:56 DECIMAL POSITIONS MAX

¢+ PRINT LOCATION OF BEGINNING LINE
;1 SPACE

:GET DATA

;ASCII DUMP FINISHED?
:CHANGE LATER FOR STRING
sFINISHED WITH LINE?
;NOT FINISHED WITH LINE
iNOT FINISHED

;BUFFER SAVE ANB EXECUTE ROUTINES

139

037A
037D
0380
0382
0384
0385
0388
038B
038E
0390
0392
0393
0396
0399
039C
039D
039F
03A1

03A4
03A7
03AA
03AD
03AF
03B0
03B1
03B3
03B5

0387
03BA
03BB
03BC
03BE
03BF

03C1
03C3

03Ce
03C3
03CC
03CF
03Dp1
03p4
03D6

140

CDEFQ2
DA9303
FES3
2801
Cc9
218040
010001
118041
EDBO
FD23
Cc9
218041
010001
118040
DS
FDEl
EDBO
C38a00

CDl402
CD8001
CD5C01
EDAl

£poB02

3E0L
324240

2A3E40
11003C
010004
EDBO

CDF102
FE54

CA6F00

05710
05720
05730
05740
05750
05760
05770
05780
05790
05800
05810
05820
05830
05840
05850
05860
05870
05880
05890
05500
05910
05920
05830
05940
05950
05960
05970
05980
059980
06000
06010
06020
06030
06040
06050
06060
06070
06080
06090
06100
06110
06120
06130
06140
06150
06160
06170
06180
06190
06200
06210
06220
06230
06240
06250
06260
06270

BUFFR

SAVE

TRAN

DISPLY
DISP1
DISP2

FILL

FILLL

STEP

ENTER

CALL GET :GET NEXT DATA

JP C,TRAN ; TRANSFER SAVED BUFFER
Ccp 'st ; SAVE BUFFER

JR Z,SAVE +IGNORE ALL ELSE

RET :CONTINUE AND IGNORE

LD HL,BUFFER s BUFFER BEGINNING

LD BC,100H ; PLENTY

LD DE,TEM :PLACE TO SAVE

LDIR : TRANSFER COMMAND TEXT
INC 1Y ;BYPASS THE S FOR CONTIN
RET

LD HL,TEM

LD BC,100H ;ONE PAGE OF BUFFER

LD DE,BUFFER

PUSH DE

POP IY

LDIR R

Jp CD :QUICK WAY TC LOAD BUFFER .

:DISPLAY IN HEXFORHAT .

CALL G2N :GET ARGUMENTS J%
CALL ADDR :PRINT MEM ADDRESS

CALL SPCHL :SPACE FOLLOWED BY HEX DATA

CPI s+ INCREMENT POINTERS

RET PO :BC=0 THEN DONE

LD A,L sGET ADDRESS OF MEM

AND OFH sMASK ALL BUT LOW

JR Z.DISP1 sNEXT LINE

JR DISP2 GO FINISH LINE

;FILL MEMORY WITH CONSTANT

CALL G3N ;sGET 3ARGUMENTS, WHERE,

LD AE ;BOW MANY AND WHAT
LD (HL),A :DO IT

CPI : INCREMENT POINTERS
RET PO ;FINISHED?

JR FILL1 : CONTINUE

:SINGLE STEP EXECUTE WITH LAST SCREEN DATA

LD A,01 ;SINGLE STEP FLAG

LD (SSFLAG) .A :STORE AND FALL INTC GO :
LD HL,(SCREEN) ;CURRENT SCREEN STORAGE

LD DE,3CO00H :TO BE PLACED HERE

LD BC,0400H ;ALL 1024 OF THEM "
LDIR :DOES IT s
CALL GET1 :LAST IN STRING]
C ‘! ;TRANSFER IS ALL THAT IS

JP %,.COM1 :REQUIRED THEN RETURN NO PROMPT

:GET PC AND EXECUTE WITHOUT SCREEN
;IF ENTERED AT GO

G

03D9
03DB
03DD
03E0
03E2
03E5
03E8
03EB
03EE
03F1
03F3

03F5
03F7
Q3r9
03FB
03FE
0401

0403

0406

0408
040A
040C
040E
0410

0413

0414
0415
0416
0418
0419
041a
0418
041E
0420
0423
0424
0427
0428
042a
042D
042E
0431
0432
0434
0436

043A
043D
0440

0443
0446
0448
044C
044F
0451
0453
0454

18DD
FD224840
21D300
22p042
21FBC3
227242
2A3C40
22Rn442
312640
DDE1
FDEl
Fl
ED47

06280
06280
06300
06310
06320
06330
06340
06350
06360
06370
06380
06390
06400
06410
06420
06430
06440
06450
06460
06470
06480
46490
06500
06510
06520
06530
06540
06550
06560
06570
06580
06590
06600
06610
06620
06630
06640
06650
06660
06670
06680
06690
06700
06710
06720
06730
06740
06750
06760
06770
06780
06790
06800
06810
06820
06830
06840

GOl
GO2

BREAK

BREAKL

PLUS

MINUS

LDREG

LD B,00H

INC IY

LD HL,RSTLOC
LD (HL),0C3H
LD HL,RSAVE
LD (RSTLOC+1),
LD SP,BREAKS
CALL GET1
CALL Z.GET

JR Z,G02

JR C,LDREG

CP I.I

JR Z,BREAK
DEC IY

CALL GHL

LD (PCSAVE) ,HL
JR GOl

CALL GET

Cp '+!

JR Z,PLUS

CPp '~?

JR Z,MINUS
DEC 1Y

CALL GHL

LD A, (HLJ)

PUSH HL

PUSH AF

LD A,RST

LD (HL) ,A

INC B

LD A,B

LD (BPNO),A
JR GOl

CALL GHL

EX DE,HL

LD HL, (PCSAVE)
ADD HL,DE

JR BREAK1
CALL GHL

EX DE,HL

LD HL, (PCSAVE)
OR A

SBC HL,DE

JR BREAK1

LD (BPOINT),IY
LD HL,00D3H
LD (IMP) ,HL
LD HL,O0C3FBH
LD (JMP+2),HL
LD HL, (PCSAVE)
LD (JMP+4),HL
LD SP,BOTHMS
POP IX

POP 1Y

POP AF

LD I,A

:BREAK COUNTER
;ADJUST BUFFER

PUT JUMP THERE

sADDRESS FOR JUMP
HL; ADDRESS

:BREAKSTACK

:NEXT DATA IN BUFFER

sNEXT IN BUFFER

:USE STORED PC

i BREAKPOINT?

+IT IS A BREAK

:ADJUST FOR 1ST DIGIT OF ADDR
; START OR BREAK

sNEW PC

:CONTINUE

i NEXT CHARACTER

tRELATIVE JUMP

:NO RELATIVE JUMP
;GET ABSOLUTE VALUE
:GET CODE AT ADDRESS
:SAVE ADDRESS

:SAVE DATA

sRESTART

;SAVE IT AS BREAK
;BREAK COUNTER

;SAVE

+CONTINUE

:GET RELATIVE VALUE
;SAVE IN DE

: PROGRAM COUNTER
:BREAKPOINT COMPUTED

+GET RELATIVE VALUE

;CLEAR CARRY

sRELATIVE JUMP COMPUTED
;SAVE BUFFER POINTER AT BPOINT
:0UT INSTRUCTION PORT 00

:ENABLE INT AND JUMP

EXECUTE ADDRESS
:ADDRESS IN PLACE
sREGISTER DATA

:RESTORE 1IX AND 1Y
: INTERRUPT INFORMATION
;LOAD INTERRUPT VECTOR

141

0456
0458
0459
045A
0458
045C
045D
045E
045F
0460
0461
0462
0465
0466
0468
046A
046D
046E

0470
0471
0474
0475

0478
0478
047C
047F
0480
0481
0484
0485
0486
0487
0489
048C

048D
0490
0491
0492
0493
0486
0499
049C
049E
04A1
044
04n7
04A8
04A3

142

F1
C3A042
F1
C3A342

06850
06860
06870
06880
06890
06900
06910
06920
06930
06940
06550
06960
06970
06980
06990
07000
07010
07020
07030
07040
07050
07060
047070
07080
07090
07100
07110
07120
07130
07140
07150
07160
07170
07180
07190
07200
07216
07220
07230
07240
47250
07260
07270
07280
07290
07300
07310
07320
07330
07340
07350
07360
07370
07380
07380
07400
07410

GO4

POPAF

HEXM

IN

INNEXT

JR NC,G04
EX

POP AF
POP BC
POP DE
POP HL
BXX

EX AF,AF'
POP AF
POP BC
POP DE

;IF CARRY NO INTERRUPTS
; INTERRUPTS REQUESTED
;THIS TIME IT IS AF'
;PRIMES IN PLACE

:NOW SWITCH

LD HL, (SSTACK) :GET SYSTEM STACK POINTER

LD SP,HL
LD HL, (HLS
PUSH AP

LD A, (SSFL
OR A

JR Z,POPAF

{WITH HARD

POP AF
JP JMP
POP AF
JP JMP+3

sHEX MATH

CALL GHL
EX DE,HL
CALL GHL
PUSH HL
ADD HL,DE
CALL ADDR1
POP HL

EX DE,HL
X0R A

SBC HL,DE
CALL PNHL
RET

; INPUT FRO

CALL G2N
Lb B,C

b C,L

LD A,C
CALL PHEX
CALL ADDR2
CALL SPACE
IN A, (C)
CALL PHEX
CALL SPACE
CALL SPACE
DEC B

RET Z

INC C

:STACK IN PLACE
AVE) :HL OK

;SAVE AF ON USER STACK
AG) :SINGLE STEP?

:THIS IS HOW WE FIND OUT

WARE TO PRODUCE INTERRUPT

:DO OUTPUT AND ENABLE INT
:RESTORE REGISTERS
;GO EXECUTE

FIRST SUM THEN DIFFERENCE
;GET ARGUMENTS

: 2ND ARGUMENT

1SAVE 2ND ARGUMENT
$GET SUM

;NUMBER FOLLOWED BY
:GET 2ND BACK

;PUT IN PROPER ORDER
:CLEAR BORROW FLAG
;GET DIFFERENCE
:DISPLAY SECOND RUMBER
;FINISHED

M PORT XX AND DISPLAY

$+GET PORT DESIRED

:NUMBER OF INPUT PORTS IN SEQUENCE
:C HAS PORT TO INPUT

A GETS PORT NUMBER

;OUTPUT PORT NUMBER

:OUTPUT A :

:GET DATA
:OUTPUT DATA
: SPACE

$ALL PORTS INPUT
:YES, COMMAND STRING
:NEXT PORT

&
S,

b
;-

e

04AA

04AC
04AE
04B1
04B3
04B6

04B7
04BA
04BB
04BC
04BD
04BF
04Co0
04C1
04C2

04C5
04cs
04C9
04cCC
04CE

04CF
04D2
04D5
04D6
04D9
04DC
04DE
04E0Q
04EL
04E2
04E3
04E6
04E7
04EA
04EB
04ED
04EF
04F0

04F2
Q4F5
04F8

18E6

FD23
3A4A40
EEQL
324240
c9

CDOBO2
E5

D5

C5
EDBO
C1

Dl

El
€34205

CD4302
4D
CD4302
ED69
Cc9

CD4302
CD8001
E5
CD4302
CDF102
FE2F
280D

CD4302
CD8001
CD5Co1

07420
07430
07440
07450
07460
07470
07480
07480
07500
07510
07520
07530
07540
07550
07560
07570
07580
07590
07600
07610
07620
07630
0764¢C
07650
07660
07670
07680
07690
07700
07710
07720
07730
07740
07750
07760
07770
07780
07750
07800
07810
07820
07830
07840
07850
07860
07870
07880
07890
07900
0791¢
07920
07930
07340
07950
07960
07970
07980

LIST

MOVE
Movl

ouT

SUBSM
SUBS
SUBS1

SUBS3

NEWAD]1
NEWADR

INSERT
INS1
INS2

JR IMNEXT

:TURN ON HARD COPY FLAG

INC 1Y ;ADJUST POINTER

LD A, (PRNTFG) :GET CURRENT FLAG

XOR 01B ;TOGGLE TO OPPOSITE STATE
LD (PRNTFG).A ;RETURN TO STORAGE

RET sCONTINUE STRING

;MOVE MEMORY

CALL G3N :GET ARGUMENTS OF FROM

PUSH HL ;HOW MUCH AND TO

PUSH DE

PUSH BC :SAVE ARGUMENTS FOR VERIFY
LDIR :ONE OF THOSE NICE %-80 CODES
POP BC :RESTORE

POP DE

POP HL ;RESTORED NOW

JP VERIF1 1JUMP TO VERIFY
:OUTPUT HEX DATA TO PORT XX

i
CALL GHL :+GET PORT NUMBER

LD C,L $PORT MUST BE IN C
CALL GHL :GET DATA

ouT (C),L :OUTPUT

RET ;s FINISHED

:SUBSTITUTE MEMORY FROM STRING OR KEYBOARD

CALL GHL :GET ADDRESS

CALL ADDR s PRINT IT

PUSH HL ;SAVE IT

CALL GHL sGET NUMBER IN HL

CALL GET1 sLAST IN STRING

cp '/t ;ADDRESS OR DATA

JR Z,NEWADL ;1T IS ADJUST STACK AND IY
LD A,L sONLY L USED

POP HL :GET ADDRESS

LD (HLJ.2 s STORE

CALL SPCHL :SHOW US

INC HL s NEXT FORWARD POSITION
CALL GET1 :+LAST STRING ENTRY

RET C $WAY OUT

JR SUBS1 ;CONTINUE INSERTION OF DATA
INC IY sADJUST 1Y

POP DE :DON'T DESTROY NEW ADDRESS
JR SUBS :PRINT NEW ADDRESS

;FROM KEYBOARD

i
CALL GHL +GET ADDRESS

CALL ADDR
CALL SPCHL ;SPACE FOLLOWED BY DATA

143

Q4FB
04FC
04FF
0501
0503
0506
0509
0508
050D
050F
0511
0513
0515
0518
051A
051C
051F
0521
0522
0525
0528
0528
0528
052C

052D 7

052E
0531
0532
0534
0535
0537
0538
0539
053B
053D
053E

053F
0542
0543
0545
0547
0548
054B
054E
054F
0552
0555
0558
0559
055A
0558
055¢C

144

E5
210000
0601
3E3F
CbB201
CD6E02
FEOD
282E
FEOS8
2826
FE20
2813
CDB201
FE2F
2818
CD5b02
38EQ
04
Cb9701
€30605
El
1803
7D

CDOBO2
1A
EDAL
2813
2B
CD8001
Cb5C01
EB
CDhA201

07990
08000
08010
08020
08030
08040
08050
08060
08070
08080
08090
08100
08110
08120
08130
08140
08150
08160
08170
08180
08180
08200
08210
08220
08230
08240
08250
08260
08270
08280
08290
08300
08310
08320
08330
08340
08350
08360
08370
08380
48390
08400
08410
08420
08430
08440
08450
08460
084740
08480
08490
08500
08510
08520
08530
08540
08550

PRINIT

INS3

INCK

ENT

ENT1

NADDS

BACKW

FIRST

VERIFY
VERIF1

VERF2

PUSH HL

LD HL,O00H
LD B,01n
LD A,*'2"
CALL CRT
CALL GBYTE
CP ODH

JR 2,FIRST
CP 08n

JR 2Z,BACKW
CP 20H

JR Z.INCK
CALL CRT
Ccp '/

JR Z.NADDS
CALL VALHEX
JR C,PRINIT
INC B

CALL LDHL
JP INS3
POP HL

JR ENT1

LD AL

POP HL

LD (HL),A
CALL SPCHL
INC HL

JR INSI
POP DE

JR INS1
POP HL

DEC HL

JR INS1
DJINZ ENT
POP HL

RET

i

s VERIFY MEMORY
CALL G3N
LD A, (DE)
CPI

JR Z,VERF2
DEC HL
CALL ADDR
CALL SPCHL
EX DE,HL
CALL SPACE
CALL ADDRI1
CALL SPCHL
EX DE.HL
INC HL

INC DE

RET PO

JR VERIF1

; SAVE ADDRESS

sCLEAR DATA

; COUNT

:PROMPT FOR SUBSTITUTE KEYBOARD
:TELL WE ARE LOOKING FOR DATA
:DATA FROM KEYBOARD

:ENTER?

;GO BACK

;RETURN PRINT ADDRESS
$WILL NOT ALTER DATA
: INCREMENT AND KEEP

:NEW ADDRESS

;LAST STRING WAS ADDRESS
:I8 IT HEX

:TRY AGAIN

;SHIFT INTO HL PAIR
:GET OLD ADDRESS

:ONLY INFO IN L REQUIRED

:SPACE FOLLOWED BY DATA

:PRINT LAST ADDRESS

:GET ARGUMENTS

;AGREES SO CONTINUE
;GO BACK FOR DISPLAY
;ADDRESS

:AND DATA AT ADDRESS

s NOW OTHER

; SPACE

:ADDRESS BUT NOT NEW LINE
:DATA AT OTHER ADDRESS
:RESTORE

:RESTORE HL

:INC OTHER POINTER
:FINISHED?

:CONTINUE

;EXAMINE REGISTERS

A

&

&,
y

T

055E
0561
0563
0565
0566
0569
056B
056D
056F
0571
0572
575
0576
0579
057C
057E
0581
0584
0586
0587
058A
058D
0550
0593
0596
0598
0598
059D
Q5A0
0543
054
05A5
05A8
05A%
05AA
05AD
O5AE
05B1
05B3
054
05B7
05B9
05BA
05BD
05BE
05C1
05C2
05C3
05C5
05C6
05C7
05C8
5C9
a5CC
05CD
05CE

CDEF02
28FB
1821
F5
CDEFO02
D627
2804
FD2B
3EFF

214406
012000
EDAl
CAl106
E20C03
18F6
AF
324B40
216206
CDC6O5
CDAZ201
214406
0606
CDBS05
0609
CD9EOL
CDBS05
E5

08560
08570
08580
08550
08600
08610
08620
08630
08640
08650
08660
08670
08680
08690
048700
08710
08720
08730
08740
08750
08760
08770
08780
08790
08800
08810
08820
08830
08840
08850
08860
08870
08880
08890
083900
08910
08920
18930
08940
08950
08960
08870
08980
08950
09000
08010
09020
09030
09040
09050
09060
09070
09080
09090
08100
09110
09120

EXAM

EXAM2

EXAM3

CONTCP

XALL

ALL3

ALL1

PVAL

PVAL1

CALL GET

JR Z.EXAM
JR C,XALL
PUSH AF
CALL GET
SUB 11

JR Z,EXAM2
DEC 1Y

LD A,OFFH
INC A

LD (PRINF!.,A
POP AF

LD HL,XTAB
LD BC,32D
CPI

JP Z.FOURD
JP PO,ERROR
JR CONTCP
XOR A

LD (PRIMF).,A
LD HL,PCP
CALL PVAL
CALL SPACE
LD HL,XTAB
LD B,6H
CALL ALLL
LD B,9H
CALL NEWLIN
CALL ALL1
PUSH HL
PUSH BC
CALL FLAGP
POP BC

POP HL

LD A, (PRIMF)
INC A

LD (PRIMF},A
Cp 028

RET 2

LD HL,RA
JR ALL3
PUSH BC
CALL PVAL
PUSH AF
CALL SPACE
POP AF

POP BC

DJNZ ALL1
RET

LD B, (HL}
INC HL

LD A, (HL)
LD DE,SSTACK
ADD A,E

LD E,A

LD A,D

sNEXT IN STRING

;IF , EXAMINE ALL

;SAVE REGISTER

;PRIME OR NOT

;1IF PRIME STORE 0lH IN PRIMF
;NO NEED TO CORRECT POINTER
sADJUST BUFFER POINTER

sWHEN INC WILL BE 0

;IT IS NOW 01H

$+FLAG REFLECTS PRIME REGISTER
;GET REGISTER NAME

:32 CHARACTERS AND DATA LOCATIONS

;COMPARE (HL} TO A AND INC

:1NOT IN TABLE

:CONTINUE COMPARISON

;CLEAR A

:MUST BE ZERO

: PROGRAM COUNTER IN XTAB
sPRINT 'P' AND CONTENTS OF PC

:REGISTER TABLE
sREST OF REGISTERS

:DISPLAY §,IX,IY,N,I,V
:NINE REGISTER DATA DISPLAY

:PRINT FLAG DATA

:PRINT NAME AND VALUE

;REST OF REGISTERS

;HL POINTS TO REG NAME
+POINT TO BIAS

:SIGN WILL HAVE DATA AS TO 1 OR 2

;GET HIGH ORDER

145

05CF
05D1
05D2
05D3
05D4
05D7
05DA
05DB
05DD
05DE
05E0
05EL
05E3
05E5
05E7
05EA
05EC
05EE
Q5F0
05F1
05F4
05F5
05F6
05F9
05FA
05FB
Q5FE
0601
0603
0605
0606
0608

060A 7

060B
060E
060F
0611
0612
0613
0614
0617
0612
061C
061E
0620
0623
0624
0625
0626
0627
062A
062B
062C
062D
0630
0631
0634

146

09130
09140
09150
09160
09170
09180
09190
09200
09210
09220
09230
09240
09250
09260
09270
09280
09290
09300
09310
09320
09330
09340
09350
09360
09370
09380
09380
09400
09410
09420
09430
09440
09450
09460
09470
09480
09490
09500
09510
09520
09530
09540
09550
09560
09570
09580
09590
09600
09610
09620
09630
09640
09650
09660
09670
09680
09690

NPRIM
PRIME

ONEB

FLAGP

FLAGL

OFLAG
FLAG2

FOUND

FOUNDL

NOTTWO

ADC A,00H
LD D,A

INC HL

LD A,B
CALL CRT
LD A, (PRIMF}
OR A

JR Z,NPRIM
LD AE

SUB 8H

LD E,A

LD A,
JR PRIME
LD A,'=’
CALL CRT
BIT 7.E

JR Z,0NEB
RES 7,E

LD A, (DE}
CALL PHEX
DEC DE

LD A, {(DE)
CALL PHEX
RET

LD B,A
CALL SPACE
LD HL,FTAB
SLA B

JR C.OFLAG
RET 2

LD A,20H
JR FLAG2
LD A, (HL)
CALL CRT
INC HL

JR FLAGL
LD C, (HL)
LD B.A

LD A,C
CALL PVAL1
CALL GET
JR C,NOTIWO
JR Z,FOUND1
DEC IY
CALL GHL
LD A,L

Lb (DE},A
LD A,C

A

JP P,NOTTWO
INC DE

LD A.H

b (DE) A
CALL SPACE
LD A,C

CALL PVALL
LD C,A

: PAGE BOUNDRY
;DOUBLE BYTE ADD
;POINT TO NEXT ENTRY
s PRINT NAME

;CHECK FOR ONE OR TWO BYTE NUMBER
:NO ADJUST IF ONE BYTE

;TWO BYTE, CORRECT BIAS

:GET VALUE

sPRINT IT

:DECREMENT POINTER

;GET VALUE

;SAVE BIAS AND NUMBER OF BYTES
;B REGISTER GETS NAME

;BIAS INTO AC

:WRITE FORMER CONTENTS

:DATA TO REPLACE OR END

;NEXT IN STRING

;SKIP BLANK (20H)

:ADJUST BUFFER POINTER GHL WANTS
;VALID HEX IN FIRST POSITION
$MOVE TO STACK ’

;IF ONLY ONE ITS IN L

;SIGN HAS 1,2 INFORMATION

:SET FLAG

;IF POSITIVE ONLY ONE BYTE

+GET HIGH DATA

;GET REGISTER INFORMATION

;DATA LAST PRINTED INTC C

0635
0636
0638
0639
063B
063C
0644
0645
0646
0647
0648
0648
064A
064B
064C
064D
064E
064F
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
065a
0658
065C
065D
065E
065F
0660
0661
0662
0663

0664
0667
0668
0669
066A
066C
066E
0670
0672
0673
0676
0678
067A
067D
067F
0682

CDECO06
10FB
3EAS
CDEC06
3E55
CDECO06
0606

09700
09710
08720
09730
08740
08750
08760
09770
09780
05730
09800
09810
09820
09830
09840
058850
09860
09870
09880
09890
9900
09810
08520
09930
49940
09950
09960
09870
09980
09990
10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
1023¢
10240
10250
10260

FTAB
XTAB

PCP

-

WRIT

GNAM3

DT
LEAD
WRIT1

LD A,B
Cp 'F?
LD A,C
JR 2,FLAGP
RET

DEFH 'SZXHX/NC'®
DEFM 'S?
DEFB 81H
DEFNM 'Xf
DEFB 83H
DEFM 'Y!
DEFB 85H
DEFM 'I°
DEFB 078
DEFM *N!
DEFB 061
DEFM *'V?
DEFB 9BH
DEFH A"’
DEFB 118
DEFM 'B'
DEFB 13H
DEFM 'C!
DEFB 12H
DEFM ‘D!
DEFB 15H
DEFM 'E'
DEFB 143
DEFM 'H'
DEFB 17H
DEFM 'L
DEFB 16H
DEFM 'NM'
DEFB 97H
DEFM 'F*
DEFB 10H
DEFM 'P'
DEFB 998

:CHECK FOR FLAG
:IF FLAG PRINT FLAGS

:DATA BACK TO A FOR FLAG PRINT

sRETURN TO STRING PROCESS

CASSETTE WRITE ROUTINE

CALL G3N
PUSH DE
PUSH HL
PUSH BC
LD A,4H
OUT (OFFH} .2
LD B,00H
DJNZ DT
LD A,B
CALL TOUT
DJNZ LEAD
LD A,0ASH
CALL TOUT
LD A,55H
CALL TOUT
LD B,06H

: ZERO ACCUMULATOR

:SYNC MARK

:FILE NAME MARK
:WRITE NAME HEADER
:6 BYTE NAME

147

0684
0687
0689
068C
068E
0691
0693
0695
0697
0699
069C
069E
06SF
06A0
06A1
06A4
06A5
06A8
06AA
06AB
06AD
06B0
06B1
06B4
0685
0688
06B9
06BC
06BD
06C0o
06C1
06C2
06C3
06C4
06C7
06C8
06C9
06CA
06CB
06CD
06CE
06D0
06D1
06D2
06D4
06D5
06D8
06DA
06DD
06DE
06DF
06E2
06E3
06E6
06E9
06EC
06ED

148

€32103
DS
0EC8

10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10370
10380
10390
10400
10410
10420
10430
10440
10450
10460
10470
10480
10490
16500
10510
10520
10530
10540
10550
10560
10570
10580
10590
10600
10610
10620
10630
10640
10650
10660
10670
10680
10630
10700
10710
10720
10730
10740
10750
10760
10770
10780
10790
10800
10810
10820
10830

WNAME

FINB

WRIT3

WRIT2

TDATA

TDATAL

FINISH

WRITS

TOUT

CALL GET1 :LAST ENTRY

JR C,FINB ;IF COMMA NO NAME FILL BLANKS
CALL GET :NEXT ENTRY

JR C,.FINB sFINISH WITH BLANKS
CALL TOUT :WRITE NAME

DJINZ WNANE

INC IY :ADJUST BUFFER

JR WRIT3 ;FULL NAME

LD A,20H ;FINISH WITH BLANKS
CALL TOUT

DJNZ FINB

POP DE

POP HL

DEC D

JP M,FINISH

XOR A

CALL TDATA

JR WRIT2

LD B,A

LD A,3CH

CALL TOUT

LD A,B

CALL TOUT

LD A,L

CALL TOUT

LD A,H

CALL TOUT

LD A,H

LD (3FFEH) ,HL : SHOW SOMETHING

LD A,H

ADD A.L : START OF CHECKSUM ?

-

P

LD C,A ;CHECKSUM STORAGE ;
LD A, (HL) 7
CALL TOUT
LD A, (HL)
ADD A,C
LD C,A
INC HL
DJNZ TDATAL -
LD A,C

JR TOUT Y
XOR A

CP E

JR %,WRITS ;NOTHING TO WRITE EXCEPT HEAD

LD A,E :MORE TO COME

CALL TDATA

LD A.78H ;LAST BLOCK HEADER

CALL TOUT

POP HL ;EXECUTE ADDRESS

LD A,L

CALL TOUT

LD A,H

CALL TOUT

CALL PNHL ; SHOW ADDRESS

JP TOFF1 ;TURN TAPE OFF

EXX ; SAVE REGISTERS

LD C.8

e

06EF
06F0
06F1
06F4
06F5
06F6
06F7
06FA
06FB
06FD
0700
0701
0702
0705
0706
0708
0709
0708
070D
070F
0711
0712
0714
0716
0718
071A
071C
071E
0720
0722

0723
0726
0728
072A
072¢C
Q72F
0731
0734
0735
0737
0739
073B
073E
0740
0742
0745
0747
074A
074C
074E
0751
0752
0753
0755

CDEF02
28FB
3807
FD2B
CD4302
1803
210000

3E04
D3FF
FD2B
CDAEOQ7
FEAS
20F9
2R4040
0606
CDAZ207
FE55
2039
CDA207
77

23
10F9
23

10840
10850
10860
10870
10880
10890
10900
10810
10920
10930
10940
10850
10960
10970
10980
10990
11000
11010
11020
11030
11040
11050
11060
11070
11080
11090
11100
11110
11120
11130
11140
11150
11160
1117¢6
11180
11150
11200
11210
11220
11230
11240
11250
11260
11270
11280
11290
11300
11310
11320
11330
11340
11350
11360
11370
11380
11390
11400

TOUT1

PULSE

Pl

P2

P3

READ

RD11
RD22

RD1

RD2

LD D.,A

SCF

CALL PULSE
LD A,D

RLCA

LD D,A

CALL PULSE
DEC C

JR NZ,TOUT1
LD A, (3880H)
OR A

EXX

JP NZ,TOFFl

OUT (OFFH) A
LD B,20D
DJNZ P1

AND 03H

RLA

OR 04H

oUT (0FFH) ,A
LD B,20D
DJINZ P2

LD A,04H

OUT (OFFH) ,A
LD B,94D
DJINZ P3

RET

;CARRY WILL OUPTUT A PULSE

;OUT SYNC PULSE
;GET DATA BIT
;PUT IN CARRY

sRETURN TO D REGISTER

:0UT WHATEVER

+SHIFT PRESSED
:SET FLAG

1 RETURN REGISTERS
:+IF NON-ZERO GET OUT

+WHEN RLA 04 WHICH IS OUT 00
:OR 01 WITH CASSETTE ON

; SHORT DELAY

;KEEP INFORMATION BUT NO

:CARRY

;KEEP RECORDER ON
;IF 1 ANOTHER PULSE

:DELAY

;RETURN TO ZERC LEVEL
sREMAINDER OF MILLISECOND

CASSETTE READ ROUTINE

CALL GET
JR Z,READ
JR C,RDl1
DEC 1Y
CALL GHL
JR RD22
LD HL,00H
PUSH HL
LD A,4H
ouUT (OFFH) ,A
DEC 1Y
CALL BIT
CP OASH
JR NZ,RD1
LD HL, (CURSOR)
LD B,6H
CALL BYTE
CP 55H

JR NZ,TOFF
CALL BYTE
LD (BL) A
INC HL
DJINZ RD2
INC HL

:SKIP SPACES

tADJUST

sWILL POP TO DE

sTURN ON TAPE
;ADJUST

;SYNC?

:GET CURSOR WANT LOAD FAST

;ADJUST POINTER AND PROVIDE SPACE

;s SPACE

149

0756
0759
075C
075E
0760
0762
0764
0767
0768
076B
076C
076F
0770
0773
0774
0775
0776
0777
0778
077B
077¢C
077D
077E
077F
0781
0784
0785
0787
078A
078D
078E
0791
0792
0793
0796
0797
079A
079D
079F
07A2
07A3
07A4
07A6
07a9
07AB
07AC
07AD
07AE
07AF
0780
07B2
0784
0787
07B8
07BA
07BC
07BD

150

224040
CDA207
FE78
2828
FE3C
2023
CDA207

11410
11420
11430
11440
11450
11460
11470
11480
11490
11500
11510
11520
11530
11540
11550
11560
11570
11580
11590
11600
11610
11620
11630
11640
11650
11660
11670
11680
116590
11700
11710
11720
11730
11740
11750
11760
1177¢0
11780
11780
11800
11810
1is20
11830
11840
11850
11860
11870
11880
11890
11300
11910
11920
11930
11940
11950
11960
11970

RD3

RD4

TOFF
END1

BYTE

BYTEL

BIT

BIT1

BITS

LD (CURSOR} ,HL
CALL BYTE
CP 78H

JR Z.END1
CP 03CH

JR NZ,TOFF
CALL BYTE
LD B,A
CALL BYTE
LD L,A
CALL BYTE
LD H,A

LD (3FFEH) . HL
ADD A,L

LD C,A

POP DE
PUSH DE
ADD HL,DE
CALL BYTE
LD (HLJ,A
INC HL

ADD A,C

LD C,A
DJINZ RD4
CALL BYTE
Cp C

JR Z,RD3
JP ERROR
CALL BYTE
LD L,A
CALL BYTE
LD H,A

POP DE

LD DE,O00H
ADD HL,DE
CALL PNHL
LD (PCSAVE),HL
INC IY

JP TOFF1
PUSH BC
PUSH HL

LD B,8H
CALL BIT
DJINZ BYTEL
POP HL

POP BC

RET

PUSH BC
PUSH AF

LD A,4H
OUT (OFFH) ,A
LD A, {(3880H)
OR A

JR NZ,TOFF
IN A, (OFFH)
RLA

JR NC,BIT1

&,

s START OF CHECKSUM
;GET BIAS FOR LOAD

;BIAS ADDED TO HL

:GET CHECKSUM

sHL HAS START ADDRESS

;CORRECT STACK AND ZERO

:STORE TO PC PLACE
$+ADJUST BUFFER N
: TURNTAPE OFF

;RESET LATCH BEFORE READ

$SEE IF ESCAPE

sWAIT FOR PULSE
}

&
r

07BF 0640 11980 LD B,40H :SHORT DELAY

07C1 10FE 11990 BIT2 DJNZ BIT2
07C3 3E04 12000 LD A,4H
07C5 D3FF 12010 QuUT (OFFH) ,A :RESET LATCH
07C7 0680 12020 LD B,80H ;WINDOW TO LOOK FOR PULSE
07C9 10FE 12030 BIT3 DJNZ BIT3
07CB DBFF 12040 IN A, (OFFH) ;IN DATA A 1 IS IN POSITION (7}
07CD 4F 12050 LD C,A
07CE F1 12060 POP AF
07CF CB11 12070 RL C
07D1 17 12080 RLA :ONE BIT ROTATE THROUGH AC
07D2 C1 12090 POP BC
07D3 C9 12100 RET
12110 H
12120 IND ONE OR TWO BYTES
12130 H
07D4 3E02 12140 FINDTO LD A,02H ;FLAG FOR FINDING TWO BYTES
0706 1802 12150 JR FIND
07D8 3E01 12160 FiNDON LD A,01H :FLAG FOR FINDING ONE BYTE
07DA 324340 12170 FIND LD (COUNT) ,A :SAVE FOR REFERENCE
070D CDOBO2 12180 CALL G3N :GET ARGUMENTS
07E0 7B 12190 FND1 LD A(E :LOW ORDER BYTE OR ONLY BYTE
07El EDAl 12200 FND2 CPI ;IS IT THERE
07E3 EO 12210 RET PO :FINISHED AND NOT FOUND
07E4 20FB 12220 JR NZ,FND2 ;NOT THERE BUT CONTINUE SEARCH
07E6 3A4340 12230 LD A, (COUNT} :MORE THAN ONE
07E9 3D 12240 DEC A ;IF ONE NOW ITS ZERO
07EA 2806 12250 JR Z,SHOW
07EC 7A 12260 LD A,D :NEED SECOND BYTE
07ED BE 12270 CP (HL} ;IT MUST BE NEXT. THE CPI INC HL
07EE 2802 12280 JR Z,SHOW :IT WAS THERE 50 SHOW IT
07F0 18EE 12290 JR FND1 :CONTINUE SEARCH START WITH FIRST
07F2 3A4340 12300 sHOW LD A, (COUNT) ;GET NUMBER, DESTROYED BY DEC
07F5 C5 12310 PUSH BC :SAVE
07F6 4F 12320 LD C.A ;PREPARE FOR DISPLAY
07F7 0600 12330 LD B,00H
07F8 2B 12340 DEC HL fADJUST HL
07FA CDA703 12350 CALL DISPl :SHOW ADDRESS FOLLOWED BY DATA
07FD C1 12360 POP BC :GET BYTES REMAINING
07FE 18E0 12370 JR FNDL :CONTINUE GET ALL OCCURRENCES
12380 H
0000 12390 END

00000 TOTAL ERRORS

ADDR 0180 02530 05590 05830 07760 07970 08430
ADDRLI 0183 02540 07180 08470

ADDR2 0186 02550 07330

ADJUST 0175 02440 02350

ALLI G5B9 08980 08820 08850 09040
ALL3 059B 08830 08970

ASCITI 0363 05570 05250

ASCII]1 0366 05580 05660

ASCIIZ 036E 05610 05670

ASCII4 036F 05620

BACKW 0537 08290 08080

BIT 07AE 11880 11280 11830

151

BIT1 07B4 11920 11970
BIT2 07C1 11850 11930 -
BIT3 07CS 12030 12030
BITS 07BA 11950 -
BKSP 01E7 03210 03070 ¢
BOTMS 4026 00220 06800 rFa
BPNO 4045 00160 01730 01920 06600
BPOINT 4048 00170 01630 06730
BREAK 0403 06460 06410
BREAK1 0413 06530 06660 06720
BREAKS 4080 00250 01810 06350
BUF 0127 01870 00930
BUFO 012C 01990
BUF1 012F 02010 02120 02170 02240
BUFFER 4080 000950 00250 00910 05120 05760 05840
BUFFR 037A 05710 05260
BYTE 07R2 11800 11330 11360 11420 11470 11490 11510 11590
11650 11690 11710
BYTE1 O07A6 11830 11840
CAPIT 02C8 04630 04610 i
CD 008A 01050 01060 05880
CHAR 02D7 04720 04700
CHKIN 027E 04140 02840 04050
CLEAR 0203 03370 03150 03410
CLEARS OlFE 03350 00796 05270
CLRBP 0107 01720 00890 01660 05140
CLRBP1 011D 01870 01800
CMARK 4044 00150 00840 03250
CMND 0080 01010 05060
COM1 006F 00910 06240
COMAND 006C 00900 04940 "
COMTAB 032D 05240 01090
CON 002B 00580 00550 .
CON1 0033 00620 00590 :
CONZ 004C 00760 00630
CONTCP 057C 08710 08740
CONTI1 0302 05030 05050
CONTIN 0304 05040 01020 02860 05200
COUNT 4043 00140 12170 12230 12300
CRT 01B2 02930 02160 02220 02640 05620 08030 08110 09170
09270 09460
CRT1 Q1BD 03000 02980
CURSCR 4040 00120 03020 03240 11310 11410
D1 028A 04210 04210
DELETE 013E 02080
DISP1 03A7 05930 01710 05590 12350
DISP2 (3AA 05940 06000
DISPLY 03A4 05920 05280
DLT 0142 02100
DLTE 0147 02130 02200
DLTE1 0148 02140
DT 0670 10180 10180
END1 078A 11690 11440
ENT 0528 08210 08320
ENT1 052E 08240 08200
ENTER 03C6 06180 05310 05440
ERO 0311 05090 05110

e
H

152

ER1
ER2
ERROR

EXAM
EXAM2
EXAM3
EXX
FILL
FILL1
FINB
FIND
FINDON

FINDTO

FINISH
FIRST
FLAG1
FLAG2
FLAGP
FND1
FND2
FOUND
FOUND1
FTAB
FULSCHN
G2N
G280
G2N1
G2N2
G2N3
G3N
GBYTE
GET

GET1

GET3
GHL

GHLO
GHL1
GNAM3
GO

GOl
G02
GO4
HDATA
HEXM
HLSAVE
IN
INCK
INNEXT
INS1
INS2
INS3
INSERT

0318
0329
030C

055E
0571
0575
gocr
0387
03BB
0697
07DA
07D8
07D4
06D0
0538
0601
060B
05FA
07E0
07E1l
0611
0617
063C
01Dl
0214
021p
0233
023A
023E
0208
026E
02EF

02F1

02FF
0243

0246
0251
066A
03p9
03EB
03EE
0459
02R6
0478
403A
048D
0528
0492
04F5
04Fr8
0506
G4F2

05120
05190
05070

08570
08660
08680
01450
06060
06080
10350
1217¢6
12160
12140
10680
08320
09400
09460
08370
12190
12200
03490
09530
09750
03120
03500
03540
03630
03670
03710
03450
04040
04810

04920

04550
43760

03770
03810
10150
06290
06360
06370
06870
04400
07130
00240
07280
08190
07310
07970
07980
08040
07960

05100
05170
01080
08730
05480
08630

01390
05240
00780
10280
12150
05300
05410
10410
08060
09480
09440
08880
12290
12220
08720
09550
09390
03100
03450
03550
03570
03620
03530
06060
02010
01050
06460
03520
10270

03470
06670
07960
03780
03840

05290
06450
06380
06850
04340
05320
01270
5380
08100
07420
08260

08180
05430

01120
11680
08580

06110
10300

09730
12370

05570

03720
07550
04080
03540

08570
03550

03500

07130

09570

06610

04430

01330

08280

03600 03800 05340 05350 05490

10370

05920

08380
04110
03770
08610
05040

03610
07150
11210

06980

08310

07280

1lo0lio
08040
03820
09530
06220

03630
07670

12180

05090
10290
06360

06430
076390

05710 06370
11170
07790 07870

06520 06620
07750 07780

153

JMP
KYD1
LDHL
LDREG
LEAD
LINEF
LIST
LOWBIT
MINUS
MONSP
MOV1
MOVE
NADDS
NALPH1
NALPHA
NEWAD1
NEWADR
NEWLIN
NEXT
NOT7
NOTTWO
NPRIM
OFLAG
OLD
ONEB
ouT
ouTr2
Pl

P2

P3

PCH
PCHAR
PCP
PCSAVE

PHEX
PHEX1
PHEXH
PHEXL
PLUS
PMSG
PMSG1
PNHL
POPAF
PPHL
PRIME
PRIMF
PRINIT
PRNT
PRNTI1
PRNTFG
PROM
PULSE
PVAL
PVALL

RA
RD1

154

4280
0294
0197
0436
0673
01D5
04AC
02AC
0428
42C0
04BA
04B7
0534
02CF
02CB
04ED
04EF
019E
029A
02DA
062D
05E5
060A
4047
05F5
04C5
01EB
070D
0718
0720
0150
0152
0662
403¢

0160
0170
0163
0167
0420
018D
018A
0179
0474
01l5F
05E7
4048
0501
01a4
01A5
404A
401B
0706
05C6
05C9
0650
0738

00350
04300
02700
06730
10200
03140
07470
04440
06670
00340
07560
07550
08270
04670
04650
07800
07910
02800
04320
04740
09660
09260
09450
00270
09340
07670
03240
11020
11080
11120
02180
02150
10060
00230

02310
02410
02320
02360
06620
02610
02600
02490
07080
02300
09270
00130
08020
02830
02840
00180
00310
10980
09060
045090
09880
11280

06750
04180
03810
06390
10210
03050
05360
04410
06500
00350

05370
08130
04760
04560
07810

01040
04370
04660
058540
05200
09410
04060
09290
05390
03130
11020
11080
11120
02070
02050
08770
00240
06640
02500
02450
02310

06480
02660
00800
02540
07020

09250
08670
08150
02410
02880
03290
05400
10860
08780
09520
08960
11300

06770 06790 07070 07080

04220
08170

00880

04800

02530

09620

03220

00290
06690
02520

05130
07230

08760
02560
07480
10900

08890
09680

glolo0

08840

01250
06780
07320

10800

08910

02810
07500

01670

01420 01440 01690 06440

11770

07360 09320 09350

11760

08930 09180

RD11
RD2
RD22
RD3
RD4
READ
REF

REF1

REF2
RSAVE
RST
RSTART
RSTLOC
s1

s2

S3

54
SAVE
SAVEl
SCREEN
SHOW
SIGNON
SPACE

SPCHL
SPEC
SSFLAG
SSTACK
STEP
SUBS
SUBS1
SUBS3
SUBSH
TABLE
TDATA
TDATAL
TEM
TOFF
TOFF1
TOUT

TOUTL
TRAN
TTYP
WO
UCFLAG
USER
USERSP
VALHEX
VERF2
VERIF1
VERIFY
VIDEO
WNAME
WRIT

0731
074E
0734
0759
0778
0723
4000

4040

4024
00A6
00FF
0066
4012
0008
0013
001B
0023
0385
00DE
403E
07F2
0043
01A2

015C
02E7
4042
4024
03C1
04D2
04D5
04EQ
04CF
003B
06AR
06C3
4180
0787
0321
06EC

06F0
0393
4018
0284
4046
401E
4300
025D
0557
0542
053F
3C00
0689
0664

11230
11360
11240
11420
11580
11170
00080

00110

00200
01230
00070
00880
00060
00440
00470
00510
00550
05760
01560
00290
12300
00730
02820

02290
04810
00130
00210
06150
07760
07770
07820
07750
00650
10450
10590
00100
11680
05150
10820

10850
05820
00300
04180
00280
00320
00330
03890
08510
08390
08380
00260
10290
10110

11190
11390
11220
11670
11640
05420
00090
00310
00120
00190
00210
06330
06560
02030
06310
006420
00450
00490
00536
05740
01540
00810
12250
02600
02290
03010
05940
04450
01370
00220
05500
07920
078580

5330
04810
10430
10650
05780
11350
10810
10200
10510
10820
05720
00770
04240
01980
05450
00340
03730
08410
07630
05460
03150
10320
05470

11180

00100 00110 00200 00270 00280 00300

00320

00330

00410

00130 00140 00150 00160 00170 00180

00230

06340

00560

01610
12280

05600
09380
07850

01410
00820

10720
05820
11460
10960
10230
16520
03310
04570

00620
03830

08530

03160

06180

07340
09660
07980

06160
01310

11940
11790
10250
10600

08140

03200

07370 07380 08460 08790
08240 08440 08480

07000
06960 039090

10310 10360 10470 10490
10670 10740 10770 10790

03350

155

WR1T1
WR1T2
WRIT3
WRITS
XALL
XTAB

156

0678
06A0
069E
o6D8
0586
0644

10220
10400
10380
10730
08750
09760

10440
10340
10700
01680 08590
08690 08800

s

i

APPENDIX E

Source Listing for
FROLIC Monitor for the
Model Il TRS-80

157

0001LC ;
€0020 : MODEL III TRS-80 DEVELOPMENT SYSTEH
00030 DISK NAME MODIII/ASM
00040 MODEL III FROLIC MONITOR
00050
4012 00060 RSTLOC EQU 4012H
O00FF 00070 RST EQU OFFH
4000 00080 REF EQU 04000H i START OF RAM
4080 00090 BUFFER EQU REF+80H
4180 00100 TEM EQU REF+180H ; SAVED BUFFER AREA
4040 00110 REF1 EQU REF+40H §
4040 00120 CURSOR EQU REF1
4042 00130 SSFLAG EQU REF1+2 $+SINGLE STEP FLAG
4043 00140 COUNT EQU REF1+3H
4044 00150 CMARK EQU REF1+4H
4045 00160 BPNO EQU REF1+5H
4048 00170 BPOINT EQU REF1+8H :BUFFER POINTER P
404A 00180 PRNTFG EQU REF1+0AH g
4048 00150 PRIMF EQU REF1+0BH 4
4024 00200 REF2 EQU REF+24H
4024 00210 SSTACK EQU REF2
4026 00220 BOTMS EQU SSTACK+2H -
403C 00230 PCSAVE EQU REF2+18H -
403A 00240 HLSAVE EQU PCSAVE-2
4080 00250 BREAKS EQU BUFFER ;JUST BELOW BUFFER S
3C00 00260 VIDEO EQU 3CO0H i
4047 00270 OLD EQU REF+47H &K,
4046 00280 UCFLAG EQU REF+46H
403E 00290 SCREEN EQU PCSAVE+2H
4018 00300 TTYP EQU REF+18H
401B 00310 PROM EQU REF+1BH
401E 00320 USER EQU REF+1EH
4300 00330 USERSP EQU REF+300H $USER STACK POINTER
42C0 00340 MONSP EQU USERSP-40H :;MONITOR STACKPOINTER
42A0 00350 Jmp EQU MONSP~20H ;s TOP OF MONITOR STACK
00360 H
0000 00370 ORG 0000H :¥%% FOR SYSTEM LOAD *#*%*
00380 H
0000 AF 00390 XOR A :CLEAR AC
0001 D3EC 00400 OuT (0ECH].A :LOWER CASE AND CASSETTE OFF
0003 210040 00410 LD HL,REF ;s SYSTEM RAN
0006 1803 00420 JR 81 :BY PASS RESTARTS
0008 C30040 00430 JP 4000H sRST 1
0008 010003 00440 Sl LD BC,0300H ;CLEAR 1ST 3 PAGES
Q00E 1803 00450 JR 82
0010 C30340 00460 Jp 4003H :RST 2
0013 77 00470 s2 LD (HL).,A
0014 ED56 00480 M1 :SET INTERRUPT MODE 1
0016 1803 00490 JR §3
0018 C30640 00500 JP 4006H $RST 3
001B EDAl 00510 s3 CPI M
001D F3 00520 DI sDISABLE INTERRUPTS -
001E 1803 00530 JR 54
0020 €30940 00540 JP 4009H :RST 4 .
0023 E22B00 06550 s4 JP PO,CON :CONTINUE INITIALIZATION ’
0026 18EB 00560 JR S2 :CONTINUE TO CLEAR RAM &,
0028 C30C40 00570 JP 400CH :RST S

158

3

002B
002D
002F
0030
0033
0036
0038
003B
003C
003D
003E
003F
0040
0041
0042
0043
0044
004B
¢04cC
004E
0051
0054
0057
005A
005D
0061
0063

0066
0069
006C
006F
0072
0073
0076

0078 2

00679
0078
007¢C
607D
007E
0080
0083
0086
0087
008a
008D
008F
0091
0694

0097
0098
008sC
008D

ED732440
3EAQ
324440

31BE42
Cp0701
CD8AO1
218040
ES
Cp2701
362C

211B03

FE5A
D20003
87

SF

00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00500
00910
00920
00930
00940
00950
00960
00970
00980
00950
01000
01010
01620
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140

CON

CONL

TABLE

SIGNON

CONZ2

RSTART

COMAND
CoMl

CMND

CD

LD A,0C9H

JR CON1

NOP

JP 400FH

LD SP,USERSP
JR CON2

JP 4012H

DEFB ODH

DEFB OCH

DEFB 0l1H

DEFB 0BH

DEFB 0AH

DEFB 08H

DEFB 09H

DEFB 20H

DEFB 0DH

DEFM 'FROLIC:'
DEFB 01H

LD C,08

LD HL,TTYP
CALL FILL1
CALL CLEARS

LD HL,3CO0H

LD (SCREEN) ,HL
LD (SSTACK),SP
LD A,O0AOH

LD (CMARK) ,A

RESET START OF

LD SP,MONSP-2
CALL CLRBP
CALL PMSG1
LD HL,BUFFER
PUSH HL

CALL BUF

LD (BL),2CH
INC HL

LD (HLJ,01lH
POP HL

LD (HLJ,A
PUSH HL

POP 1Y

LD SP,MONSP
LD HL,CONTIN
PUSH HL

CALL NEWLIN
CALL GET

JR 2,CD

SUB '@’

JP C,ERROR
LD HL,COMTAB

CP 'zt

JP NC,ERROR
ADD A,A

b E.A

sFILL
;RST 6
$SET USER STACK

sRST 7

sWILL INITIALIZE CURSOR

;END OF MESSAGE
+LOAD RETURNS IN USER RAM
;START OF FILL

:CLEAR SCREEN ONLY ON POWER UP

sINITIALIZE USER STACK
;CURSOR HMARK
sPLACE IN RAM

PROGRAM

s INITIALIZE STACK

:CLEAR BREAKPOINTS

s FROLIC:

;BUFFER BEGINNING

;SAVE FOR LATER

sBUFFER AVAILABLE FOR OTHERS
sDELIMITER

;BREAK AT END OF BUFFER
;GET BUFFER BEGINNING

;PUT ODH,ERRORS WILL DO LINEFEED

:BUFFER POINTER FOR MONITOR
s NECESSARY FOR COMMANDS
sRETURN ADDRESS ON STACK
:PUT RETURN ADDRESS ON STACK
:SAVES DOING IT IN COMMAND

$GET WILL GET FIRST NON ZERO CHAF

1 IGNORE LEADING SPACES
;BORROW IF < @

;A 00 IF °

;POINT TO COMMAND TABLE

;A BORROW IS ALWAYS GENERATED
;BORROW VALID @ THRU 2

;DOUBLE NUMBER
;FOR DOUBLE ADD

159

009E
00a0
00Al
00A2
00A3
00a4
00AS5

00A6
00Aa7
00AS8
00AB
00AC
Q0AF
00B0
00B3
00B4
ooB7
00B8
00BB
00BC
00BD
00BE
00ClL
00c2
00C4
00C5
00C8
00CB
06CC
00Cr
00D0
00D1
00D2
00D3
00D4
00D5
a0D7
00D8
00DA
00DD
00DE
00DF
00EL
00E3
00E6
00ES
0OED
00EF
00F3
00F4
00F5
00F8
00FB
00FE
0101
0104

160

010004
ED5B3E40
EDBO
FD2A4840

C€39503

01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01450
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710

RSAVE

EXX

SAVEL

LD D,OH
ADD HL,DE
LD E,(HL}
INC HL
LD D, (HL)
EX DE,HL
Jp (HL)

EX (SP),HL
DEC HL

LD (PCSAVE),HL
POP HL

LD (HLSAVE),HL
PUSH AF

LD HL,0002H
ADD HL,SP

LD (SSTACK) ,HL
POP AF

LD SP,HLSAVE
PUSH DE

PUSH BC

PUSH AF

LD A, (SSFLAG)

LD (SSFLAG) ,A
LD HL,{PCSAVE)
INC BL

LD (PCSAVE) ,HL
EXX

PUSH HL

PUSH DE

PUSH BC

EX AF,AF’

PUSH AF

LD AL

LD H,A

LD L,00H

JP PO,SAVEL
INC L

PUSH HL

PUSH IY

PUSH IX

LD HL,3CO0H
LD BC,0400H
LD DE, (SCREEN)
LDIR

LD IY,{BPOINT)
DEC sp

DEC SP

CALL CLRBP

LD SP,MONSP-2
CALL XALL

LD HL, (PCSAVE)
LD BC,05H

JP DISP1

:BE AT A PAGE BOUNDARY
:DAD WITH CARRY SET FROM COMPARE
:GET LOW BYTE

:GET HIGH BYTE
;1 JUMP TO ADDRESS
;EXECUTE REST OF COMMAND

;GET PROGRAM COUNTER
;ADJUST
;AND SAVE

;SAVE HL AND ADJUST STACKPOINTER
:SAVE FLAGS IN FORMER HL

:ADJUST FOR RST OR INT %
:GET SYSTEM USER STACK g
:SYSTEM STACK STORAGE
:GET FLAGS BACK

:START OF REGISTER SAVE

:FLAGS ON STACK

i SINGLE STEP?

:TEST

;NO SINGLE STEP IF ZERO
:NOW ZERO

$CORRECT FLAG

;GET PC COUNTER

$ADJUST

:REPLACE

;GET INT VECTOR AND IIF FLAG
$STORE IN H

sINITIALIZE L

:IF PARITY FLAG NOT SET IFF INT D
:IFF SET INDICATE WITH NON ZERO
;SAVE INT VECTOR AND INT SET FLAG

:START OF SCREEN TRANSFERRED }
;AREA STARTING AT SCREEN

;GET LAST POSITION IN BUFFER
;MUST NOT DESTROY STACK

:CLEAR BREAK POINTS S
3 CORRECT STACK
:DISPLAY REGISTERS
:GET PROGRAM COUNTER
i NUMBER OF BYTES
:DISPLAY

0107 210000 01720 CLRBP LD HL,00H :CLEAR

010A 3A4540 01730 LD A, (BPNO} :LD HL WITH NO OF BPOINTS
010D B7 01740 OR A :SET ZERO FLAG
010E 6F 01750 LD L,A ; STORE JUST IN CASE
010F C8 01760 RET 2 3+IF NO BREAKPOINTS GO TO COMMAND
0110 Ci 01770 POP BC ;GET RETURN ADDRESS
0111 29 01780 ADD HL,HL ;DOUBLE VALUE IN L
0112 29 01790 ADD HL,HL sAND AGAIN
0113 EB 01800 EX DE,HL
0114 218040 01810 LD HL,BREAKS
0117 ED52 01820 S$BC HL,DE ;BORROW CLEAR DECREMENT STACK
0119 F9 01830 LD SP,HL ;NEW STACK POSITION TOP
011A C5 01840 PUSH BC
011B E1 01850 POP HL sREADY FOR RETURN
011C 47 01860 LD B,A ; SHOULD STILL HAVE NUMBER
011D Fl 01870 CLRBP1 POP AF
0l1iE D1 01880 POP DE
011F 12 01890 LD (DE).A
0120 10FB 01900 DJNZ CLRBP1
0122 AF 01810 XOR A
0123 324540 01920 LD (BPNO) ,A ;PUT ZERO IN BPNO
0126 E9 01930 JP (BL) ;HL HAS RETURN ADDRESS
01940 H
01950 ;FILL BUFFER WITH COMMAND STRING
01960 H
0127 3E40 01970 BUF LD A,40H :1IF ENTERED HERE ONLY UPPER CASE
0129 324640 01980 LD (UCFLAG) .A ;40K IS UPPER FLAG, 60H FOR LC
0l2C 23 01950 BUFO INC HL ;LEAVE ROOM FOR BUFFER COUNT
012D 0601 02000 LD B,01H :ROOM FOR COUNT,COMMA,AND OlH
012F CD5D02 02010 BUF1 CALL GBYTE ;GET CHARACTER RETURN WITH DATA
0132 FEOL 02020 CP 01B 1ESCAPE FROM BUFFER ENTRY
0134 CA6600 42030 JP Z,RSTART sRETURN TO COMMAND, SP IS OK
0137 FEOD 02040 CP ODH :CARRIAGE RETURN
0139 C8 02050 RET 2 sRETURN TO CALLING ROUTINE

013A FEOC 02060 CP OCH :CLEAR SCREEN
013C 2812 02070 JR Z,PCH :CHANGE DATA TO K COMMAND
013E FE08 02080 DELETE CP 08H s BACKSPACE?
0140 2010 02090 JR NZ,PCHAR sNO INSERT CHAR INTO BUFFER
0142 3E01 02100 pLT LD A,01lH :BEGINNING?
0144 B8 02110 Cp B :
0145 28ES8 02120 JR %,BUFL :CAN'T GO BACK FURTHER
0147 2B 02130 DLTE DEC HL ;DECREMENT BUFFER
0148 05 02140 DLTE1 DEC B ;AND COUNT
0149 3E08 02150 LD A,08H
0148 CDB201 02160 CALL CRT ;REMOVE FROM SCREEN
0l4E 18DF 02170 JR BUF1 :GET NEXT CHAR
0150 3E43 02180 PCH LD A,'C’ ;CLEAR SCREEN
0152 04 02150 PCHAR INC B ;1S THERE ROOM?
0153 28F2 02200 JR Z,DLTE ;NO SO DO AUTOMATIC 08H
0155 77 02210 LD (HL),A
0156 CDB201 02220 CALL CRT :LOAD IN BUFFER AND DISPLAY
0159 23 02230 INC HL s NEXT POSITION IN BUFFER
015A 18D3 02240 JR BUF1 :GET NEXT CHARACTER
02250 H
02260 :FOLLOWING ARE PRINT ROUTINES AND DATA
02270 ;CONDITIONING FOR THESE SUBROUTINES
02280 H

161

015C
015F
0160
0163
0164
0165
0166
0167
0168
016A
016C
0l6E
0170
0173
0174
0175
0177

0179
017A
017D
017E
0180
0183
4186
0188

018A
018D
018E
0190
0191
0154
0195

0197
0198
0199
019A
0198
019C
019D

019E
01A0
01A2
014
01AS

162

CDA201
7E
CDb6301
OF

OF

oF

OF

F5
E60F
FEOA
3007
F630
CDA401
Fl

c9
€637
18r7

7C
CD6001
7
18E0
CDIEOL
CD7901
3E3A
181a

214300
7E
FEOL
of:}
CDB201
23
18F6

29

3E0D
1802
3E20
F5
CD6D02

02250
02300
02310
02320
42330
02340
02350
02360
02370
02380
02380
02400
02410
02420
02430
02440
02450
02460
02470
02480
02490
02500
02510
02520
02530
02540
02550
02560
02570
02580
02550
02600
02610
02620
02630
02640
02650
02660
02670
02680
02690
02700
02710
02720
02730
02740
02750
02760
02770
02780
02790
02800
02810
02820
02830
02840
02850

SPCHL
PPHL
PHEX
PHEXH

PHEXL

PHEX1

ADJUST

PNHL

ADDR
ADDR1
ADDR2

PMSGL
PMSG

LDHL

NEWLIN

SPACE
PRNT
PRNT1

CALL SPACE :PRINT A SPACE FOLLOWED BY

LD A, (HL) ;THE NUMBER LOCATED AT (HL)
CALL PHEXH :TWO NIBBLES MUST BE OUTPUT
RRCA ;GET HIGH HEX VALUE

RRCA

RRCA

RRCA ;SWAP COMPLETE

PUSH AP :GET LOW HEX VALUE

AND OFH +MASK

CP OAH ;GREATER THAN 9

JR NC,ADJUST :THEN NO CARRY

OR 30H ;NOW ASCII FOR 0-9

CALL PRNT ;OUTPUT

POP AP ;GET AND ADJUST 8P

RET

ADD A,37H ;ADJUST FOR ALPHABETIC

JR PHEX1

:PRINTS NUMBER IN HL REGISTER AS ADDRESS

LD A,H s PRINT H FIRST

CALL PHEX -
LD A,L ;NOW L A
JR PHEX ;RETURNS FROM CRT PROGRAM

CALL NEWLIN :DO CR AND LINE FEED

CALL PNHL ;PRINTS HL WHICH IS ADDRESS

LD A,':" ;DELIMITER

JR PRNT

+PRINT MESSAGE

LD HL,SIGNON sFROLIC:

LD A, (HL) :GET DATA

CP OlH {END OF MESSAGE MARK

RET Z ;RETURNS FROM MESSAGES VIA BREAK

CALL CRT

INC HL :NEXT DATA

JR PMSG

:SHIFT DATA THROUGH HL PAIR

ADD HL,HL ;SHIFT %
ADD HL,HL ;
ADD HL,HL

ADD HL,HL

OR L ;OR AC IN SHIFT PATTERN

LD L,A ;REPLACE L

RET

;PRINTS DATA IN A TO PRINT DEVICE .
; el
LD A,ODH ;LINE FEED

JR PRNT :WANT TO BREAK ON NEW LINES

LD A,20H ; SPACE ADJUST

PUSH AF ; SAVE

CALL CHKIN ;HAS BREAK OR SPACE

e

01A8
01AA
01AaD
01AF
0iBl

01B2
01B3
01B4
0187
01B9
01BB
01BD
01BF
01C1
01c2
01C3
01C5
01C7
01lca
01CD
01D0
01lp2
01D3
01lp6
01Dp9
0lpa
01pD
0lEQ
01ELl
0lE2
01E3
01E6
01E7
0lEA
0lEB
01EC
01ED
QlF0
01F2
0lF4
0lF5
01F7
01F8

01FA
01FD
0lFE
0201
0202
0203
0206
0207

FEOL
CA6600
FE20
28F4
Fl

CD0302
EB
CD3202
EB
co
CD3202
EB
CDE5S02

02860
02870
02880
02890
02900
02910
02920
02930
02940
02950
02960
023870
02980
02990
03000
03010
43020
03030
03040
03050
03060
03070
03080
039090
03100
03110
03120
03130
03140
03150
03160
03170
03180
03190
03200
03210
03220
03230
03240
03250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03380
03400
03410
03420

CRT

LINEF

BKSP
ouT2

CLEARS

CLEAR

G3N

G2N

CP 01H
JP Z,RSTART
CP 20H
JR Z,PRNT1L
POP AF

;CRT DISPLAY

BXX

PUSH AF

LD HL,{(CURSOR)
LD (HLJ,20H
CP ODH

JR Z,LINEF
CPp 08H

JR Z,BKSP
LD (HL),A
INC HL

BIT 6,H

JR Z,0UT2
LD BC,03C0H
LD DE,VIDEO

LD HL,VIDEQ+64D

LDIR
EX DE.HL
CALL CLEAR

;BEEN PRESSED
:BACK TO BUFFER

:YES, WAIT FOR RELEASE
:FALL INTO CRT DISPLAY

;CRT OUTPUT OF DATA IN A
:SAVE ON STACK

:REMOVE CURSOR
:CARRIAGE RETURN

; BACKSPACE

;PLACE CHARACTER ON SCREEN
:ADVANCE CURSOR

:OFF PAGE?

:1024~-64 MEMORY BYTES

;ONE LINE FROM PAGE TOP

:CLEAR LAST LINE
;CLEAR LAST LINE

LD HL,VIDEQ+961D;BEGIN OF LAST LINE

DEC HL

LD (CURSOR) (HL
LD A, (CMARK)
LD (HL),A
POP AF

b C,A

LD A, (PRNTFG)
OR A

CALL NZ,TTYP
LD A,C

EXX

RET

LD HL,VIDEO
INC IY

BIT 6,H

RET NZ

LD (HL),20RH
INC HL

JR CLEAR

;MONITOR OR USER?
:CURSOR MARK

;GET DATA FROM STACK
:SAVE IN C

s HARD COPY?

:IN RAM A JUMP TO USER ROUTINE

sRESTORE DATA IN C
:ADJUST THOSE REGISTERS

: CORRECT BUFFER

s FINISHED

sWHEN THIS BIT GOES ONE
:SPACE ON SCREEN

:NEXT

:CONTINUE WITH CLEAR

;FILL ROUTINES FOR ADDRESS OR DATA

CALL G2N
EX DE,HL
CALL GHL
EX DE,HL
RET

CALL GHL
BEX DE,HL
CALL GETI1

:GET TWO NUMBERS HL AND BC
:SAVE HL VALUE IN DE

;GET 3RD ARGUMENT

;THIS GOES IN DE REGISTER
¢WITH HL START ADDRESS

:GET 2 NUMBERS FIRST FOR HL

:GET LAST DATA IN BUFFER

163

020A
020C
020F
0211
0213
0215
0217
021A
021D
0220
0222
0225
0226
0228
0228
022a
0228
022¢C
022D
0230

0232
0235
0238
023A
023D
0240
0243
0246
0249
024B

024¢C
024E
024F
0250
0252
0253
0254
0256
0258
0259
025B
025C

025p
025E
0261
0264
0265

164

3821
CCE302
28FB
FES54
280D
FD2B
CDES02
C20003
€D3202
1807
¢D3202
3F
ED52

44

4D

EB

c9
214000
18F7

210000
CDE302
28FB
CD4C02
DAQOO3
CD8701
CDE302
£D4co2
30F5
c9

C6D0
3F
D8
FEQA
3F
Do
C6F9
FEQA
D8
FE10
3F
[o°]

ES
CD6D02
214740
BE’
28F7

03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
03570
03580
03590
03600
03610
03620
03630
03640
03650
03660
03670
03680
03630
03700
03710
03720
03730
03740
03750
03760
03770
03780
03790
03800
03810
03820
03830
03840
03850
03860
03870
03880
03890
03900
03910
03920
03930
03940
03950
03960
03970
03980
03990

G2NO

G2N1

G2N2

G2N3

GHL
GHLO

GHL1

VALHEX

GBYTE

JR C,G2H3
CALL Z,GET
JR 2,G2NO
cp '’

JR %,G2N1
DEC 1Y
CALL GETL
JP NZ,ERROR
CALL GHL
JR G2N2
CALL GHL
CCr

SBC HL,DE
INC HL

LD B,H

LD C,L

EX DE,HL
RET

LD HL,40H
JR G2N2

;FOR LONGEST INSTRUCTION
;EITHER COULD BE T

;SKIP SPACES

:THROUGH TILL LAST ADDRESS k
$1GO COMPUTE BLOCK LENGTH
;ADJUST POINTER

:LAST IN BUFFER

;ONLY VALID DELIMITERS
$GET BLOCK LENGTH

GO STORE IN HL

:END ADDRESS MUST COMPUTE
:CLEAR FLAG

i

;NEED ONE MORE i
;STORE LENGTH IN BC .

;PUT START ADDRESS BACK .

:MINIMUM LENGTH OF 40H J@
s STORE IN BC

iGET VALID HEX IN HL REGISTER

LD HL,0000H
CALL GET

JR %,GHLO
CALL VALHEX
Jp C,ERROR
CALL LDHL
CALL GET
CALL VALHEX
JR NC,GHL1
RET

;CHECK IF VALID
ADD A.0DOH
CCF

RET C

CP OAH

CCF

RET NC

ADD A,0F9H
CP ORH

RET C

CP 10H

CCF

RET

:GET CHARACTERS

i

PUSH HL
CALL CHKIN
LD HL,OLD
CP (HL}

JR 2,GBYTE+1

s INITIALIZE TO ZERO

:SKIP SPACES

:CHECK FOR VALIDITY

;THIS MUST CLEAR BREAK POINTS
:SHIFT INTO HL PAIR

;AND RETURN TO CALLING PROGRAM

HEX NO.

:IF BETWEEN 30 AND 39

:+AND 41 AND 47 CARRY GENERATED
;RETURN NOT VALID FLAG

;IF LESS THAN 10 VALID

sVALID RETURN 1S NO CARRY
:BETWEEN 0 AND 9 AND VALID ¢
;IF BETWEEN 17H AND 22H

:THIS WILL FLAG

;ERROR THOSE FEW

;IF OVER OFH NO CARRY
sRETURN WITH PROPER FLAG £

sWANT NEW CHARACTER

4

0267
0268
0269
026B
026C
026D
0270
0271
0272
0273
0276
0277
0278
0278
027E
027F
0281
0282

0283
0286
0289
028a
0288
028D
028F
0290
0293
0294
0295
0296
0298
0299
0298
029D
029F
02A0
02a1
0222
02A3
02n4
02A5
Q2a8
02A8
02AB
02AD
02AE
0280
02B1
0283

02B6
02B7
02B9
02BB

380C
3R4640

Bl
CB40
2001
c9

04000
04010
04020
04030
04040
04050 CHKIN
04060
04070
04080
04080 TWO
04100
04110
04120 D1
04130
04140
04150
04160
04170
04180
04190
04200
04210 KYD1
04220
04230 NEXT
04240
04250
04260
04270
04280
04290
04300
04310 HDATA
04320
04330
04340
04350 LOWBIT
04360
04370
04380
04390
04400
04410
04420
04430
04440
04450
04460
04470 NOSFT
04480
04490
04500
04510
04520
04530
04540
04550
04560

LD (HL),A
OR A

JR Z,GBYTE+1
POP HL

RET

LD A, (387FH)
R A

RET 2

EXX

CALL KYD1
LD D,A

LD B,00H
DJNZ D1
CALL KYD1
CP D

JR NZ,TWO
EXX

RET

;KEY SCAN

LD BC,0000H
LD HL,3801H
LD A, (HLJ)
OR A

JR NZ,HDATA
SLA L

INC BC

JP P,NEXT
XOR A

RET

RRA

JR C.LOWBIT

JR NZ,SPEC
LD A,C
RLCA
RLCA
RLCA
OR B
LD C,A
LD A, (3880H)
OR A
JR Z,NOSFT
LD A,01H
LD B,A
LD A,08H

L

JR C,NALPHA
LD A, (UCFLAG)

OR C

BIT 0,B

JR NZ,CAPIT
RET

:NO NULLS

+GET CHARACTER
:SAVE
;$SHORT DELAY

:IS IT THE SAME

;NOT SAME TRY AGAIN

:TURN ON BIT ZERO SCAN TO START

$GET DATA

;ESCAPE

;LINE 6 SPECIAL CHARACTERS

:5 LSB HAVE LOW DATA

:IS SHIFT KEY PRESSED?
sSHIFT KEY IN TWO PLACES

: INFORMATION OF SHIFT IN B
;IF CARRY NOT ALPHA CHAR

:60H HERE IF LOWERCASE REQUIRED

;OTHERWISE 40H FOR ONLY UPPERCASE

:WAS SHIFT PRESSED

165

02BC
02BE
02BF
02C1
02C3
02C5
02C6
02C8
02CA
02CB
02CD
02CE
0201
02p3
02D5
02D6
02p8
02D%
02DB

02DE 7

02DF
02E0
02E1
02E2

02E3
02E5
02E8
02EA
02ED
02EF
02F0
02F2
02F3
02F4
02F5

02F6
02F8
02FB
Q2FD
0300
0302
0305
0308
030A
030C
030F
0312
315
0317
03198

166

04570
04580
04590
04600
04610
04620
04630
04640
04650
04660
04670
04680
04690
04700
04710
04720
04730
04740
04750
04760
04770
04780
04790
04800
04810
04820
04830
04840
04850
04860
04870
04880
04890
04960
04910
04520
04830
04940
04950
04960
04870
04580
04990
05000
05010
05020
05030
05040
05050
05060
05070
05080
05080
05100
05110
05120
05130

CAPIT
NALPHA

NALPHL

CHAR

NOT7

SPEC

GET
GET1

GET3

CONTI1
CONTIN

ERROR

ERO

ER1

TOFF1
ER2

RES 5,A
RET

BIT 5.L

JR NZ,NOT7
LD A,30H
OR C

BIT 0,B

JR NZ,CHAR
RET

RES 4,A

RET

LD A, (3820H)
CP 10H

JR C,NALPH1

JR NALPH1
LD BHL,TABLE
LD A,B

ADD A,L

LD L,A

LD A, (HL}
RET

:AC HAS UPPER CASE DATA

:THIS IS NOW CHARACTER

s TABLE MUST BE LOCATED
;SUCH THAT THE FOLLOWING ADDITION
:DOES NOT CROSS BOUNDRIES

:GET FETCHES NEXT DATA IN INPUT STRING
;BY INC FIRST IY WILL ALWAYS POINT TO LAST VALUE

INC IY

LD A, {IY+0H)
CP 01H

JP Z,.COMAND
CP 20H

RET 2

cp ',

RET NZ

OR A

SCF

RET C

INC IY

CALL GET1

JR %,CONTI1
JP C,CMND

LD A,'?!

LD (IY+0),A
CALL GET

JR C,ER1

JR ERO

LD HL,BUFFER
CALL PMSG
CALL CLRBP
LD A,00H

OuT (OECH) ,A
JR CONTIN

:COMMAND TABLE

sENTER HERE FOR LAST ENTRY
; BREAK?

:START ALL OVER

;SPACE SET ZERO FLAG

:FLAG SPACES

:IF COMMA SET CARRY

:ALL OTHERS RETURN

:NO ZERO

:SET CARRY

tNEXT

:LAST CHARACTER IN STRING
;SKIP TRAILING SPACES
sFINISH OLD OR BACK TO BEGIN
:SHOW AT END

;SHOW IT

;ADJUST BUFFER

sWANT NEXT COMMA

;OUT ONLY WITH TRUE COMMA
:0DH STARTS THIS LINE
;OUTPUT BUFFER TEXT TO ERROR
sCLEAR BREAKPOINTS

fALL SET
;CONTINUE WITH BUFFER

0318
031D
031F
0321
0323
0325
0327
0329
032B
032D
032F
0331
0333
0335
0337
0339
033B
033D
033F
0341
0343
0345
0347
0349
034B
034D
034r

0351
0354
0356
0359
035C
035D
0360
0362
0363
0364
0366

0368
036B
036E
0370
0372
0373
0376
0379
037¢C

A503
5103
6803
EDO1
9203
€703
C307
B403
6D04
C404
0003
0003
Al04
ACO04
8204
BAO4
1B40
BFO7
1107
E704
B403
1E40
3405
5906
5305
0003
AF03

CD0302
1620
CD8001
CDA201
7E
€DB201
EDA1
EO

15
28EE
18F4

CDE302
DA8103
FES3
2801
c9
218040
010001
118041
EDBO

05140
05150
05160
05170
05180
05180
45200
05210
05220
05230
05240
05250
05260
45270
05280
05290
05300
05310
05320
05330
05340
05350
05360
05370
05380
05390
05400
05410
05420
05430
05440
05450
05460
05470
05480
05490
05500
05510
05520
05530
05540
05550
05560
05570
05580
0559¢
05600
05610
05620
05630
05640
05650
05660
05670
05680
05690
05700

COMTAB

ASCII
ASCIIl

ASCII2
ASCII4

BUFFR

SAVE

6EFW FILL :FILL ADDRESS SPACE WITH CONSTANT

DEFW ASCII :ADDRESS OF ROUTINE

DEFW BUFFR ;ADDRESS OF BUFFER PROGRAM
DEFW CLEARS ;CLEAR SCREEN WITH 20H

DEFW DISPLY :ADDRESS OF ROUTINE

DEFW GO sEXECUTE WITH CURRENT SCREEN
DEFW FINDON : SEARCH FOR SINGLE BYTE

DEFW ENTER +EXECUTE WITH OLD SCREEN DATA
DEFW HEXM +ADDRESS OF HEXM

DEFW SUBSM : INSERT FROM BUFFER

DEFW ERROR id

DEFW ERROR ;K

DEFW LIST +TOGGLE HARDCOPY SWITCH

DEFW MOVE ;ADDRESS OF HMOVE

DEFW IN :INPUT FROM PORT

DEFW OUT :OUTPUT TO PORT

DEFW PROM : PROM PROGRAMMER

DEFW FINDTO :SEARCH FOR TWO BYTE INTEL FORMAT
DEFW READ sREAD A CASSETTE TAPE WITH BIAS
DEFW INSERT ;DATA FROM KEYBOARD

DEFW ENTER :TRANSFER FROM SCREEN TO VIDEQ
DEFW USER :USER ROUTINE

DEFW VERIFY DDRESS OF VERIFY

DEFW WRIT RITE A TAPE ON CASSETTE

DEFW EXAM :ADDRESS

DEFW ERROR

DEFW STEP :SINGLE STEP IF HARDWARE ADDED

sWITH OLD SCREEN DATA
;COMMAND SUBROUTINES
:DISPLAY IN ASCII FORMAT WITH GRAPHICS

CALL G2N +GET ARGUMENTS

LD D,32D :56 DECIMAL POSITIONS MAX

CALL ADDR ;PRINT LOCATION OF BEGINNING LINE
CALL SPACE 1 SPACE

LD A, (HL) :GET DATA

CALL CRT

CPI ¢ASCII DUMP FINISHED?

RET PO ;CHANGE LATER FOR STRING

DEC D ;FINISHED WITH LINE?

JR Z,ASCII ;NOT FINISHED WITH LINE

JR ASCII2 s NOT FINISHED

sBUFFER SAVE® AND EXECUTE ROUTINES

CALL GET :GET NEXT DATA

JP C,TRAN :TRANSFER SAVED BUFFER
Cp st ;s SAVE BUFFER

JR Z,SAVE : IGNORE ALL ELSE

RET :CONTINUE AND IGNORE
LD HL,BUFFER sBUFFER BEGINNING

LD BC,100H ; PLENTY

LD DE,TEM :PLACE TO SAVE

LDIR : TRANSFER COMMAND TEXT

167

037E FD23
0380 C9S
0381 218041
0384 010001
0387 118040
038A D5
038B FDE1L
038D EDBO
.038F C38a00

0392 CD0302
0395 CDpBOO1
0398 CD5CO1
0398 EDAL
039D EO
G39E 7D
039F E60F
03Al 28F2
03A3 18F3

03A5 CDFAOL
03A8 7B
03A9 77
03AA EDAl
03AC EO
03AD.18FA

03AF 3E01
03B1 324240

0384 2A3E40
03B7 11003C
03BA 010004
03BD EDBO

03BF CDE502
03C2 FE54

03C4 CA6FO00

03C7 0600
03C9 FD23
03CB 211240
03CE 36C3
03D0 21A600
03D3 221340

168

05710
05720
05730
05740
05750
05760
05770
05780
05790
05800
05810
05820
05830
05840
05850
05860
05870
05880
05890
05900
05910
05920
05930
05940
05950
05960
05970
05980
05990
06000
06010
06020
06030
06040
06050
06060
06070
06080
06090
06100
06110
06120
06130
06140
06150
06160
06170
06180
06190
06200
06210
06220
06230
06240
06250
06260
06270

TRAN

DISPLY
DisPl
DISP2

FILL

FILL1

STEP

ENTER

GO

INC IY :BYPASS THE S FOR CONTIN
RET

LD HL,TEM

LD BC,100H ;ONE PAGE OF BUFFER

LD DE,BUFFER

PUSH DE

POP IV

LDIR .
Jp CD ;QUICK WAY TO LOAD BUFFER -

Er

;DISPLAY IN HEX.FORMAT

CALL G2N ;GET ARGUMENTS 5&
CALL ADDR :PRINT MEM ADDRESS

CALL SPCHL ;s SPACE FOLLOWED BY HEX DATA

CPI ;s INCREMENT POINTERS

RET PO ;BC=0 THEN DONE

LD AL :GET ADDRESS OF MEM

AND OFH sMASK ALL BUT LOW

JR 2,DISP1 sNEXT LINE

JR DISP2 :GO FINISH LINE

;FILL MEMORY WITH CONSTANT

CALL G3N :GET 3ARGUMENTS, WHERE.,
LD A/E :HOW MANY AND WHAT

LD (HL).A ;DO IT

CPI ; INCREMENT POINTERS

RET PO s PINISHED?

JR FILL1 sCONTINUE

o

;SINGLE STEP EXECUTE WITH LAST SCREEN DATA
LD A,01 +SINGLE STEP FLAG
LD (SSFLAG) ,A ;STORE AND FALL INTO GO v

LD HL, (SCREENJ :CURRENT SCREEN STORAGE

LD DE,3CO00H :TO BE PLACED HERE j
LD BC,0400H :ALL 1024 OF THEM

LDIR :DOES IT 58,
CALL GET1 ;LAST IN STRING

cp ! s TRANSFER 1S ALL THAT IS

JP 2,COM1 sREQUIRED THEN RETURN NO PROMPT

ET PC AND EXECUTE WITHOUT SCREEN
F ENTERED AT GO

i

.b B,00H :BREAK COUNTER
INC IY ;ADJUST BUFFER

LD HL,RSTLOC

LD (ELJ,0C3H ;PUT JUMP THERE
LD HL,RSAVE :ADDRESS FOR JUMP

LD (RSTLOC+1} ,BL:ADDRESS

S

&

03D6
03D9
03DC
03DF
03E1
03E3
03ES
03E7
03E9
03EC
03EF
03F1
03F4
03F6
03F8
03Fa
03FC
03FE
0401
0402
0403
0404
0406
0407
0408
0409
040C
G40E
0411
0412
0415
0416
0418
041B
041C
041F
0420
0422
0424
0428
0428
042E
0431
0434
0437
0434
043D
043F
0441
0442
0444
0446
0447
0448
0449
044a
0448

318040
CDES502
CCE302
28FB
3841
FE2E
280A
FD2B
CD3202
223C40
1BES8
CDE302
FE2B
2816
FE2D
281C
FD2B
CD3202
7E

ES

F5
3EFF

FD224840
21FBD3
224042
2100C3
22p242
2A3C40
222442
312640
DDE1
FDEL
Fl
ED47
3001
FB

Fl

Cl

Dl

El

DS

06280
06290
06300
06310
06320
06330
06340
06350
06360
06370
06380
06390
06400
06410
06420
06430
06440
#6450
06460
06470
06480
06490
06500
06510
06520
06530
06540
06550
06560
06570
06580
06580
06600
06610
06620
06630
06640
06650
06660
06670
06680
06690
06700
06710
06720
06730
06740
06750
06760
06770
06780
06790
06800
06810
06820
06830
06840

GO1
GO2

BREAK

BREAKI

PLUS

MINUS

LDREG

GO4

LD SP,BREAKS
CALL GET1
CALL 2.GET
JR %,G02

JR C,LDREG
cp .t

JR Z,BREAK
DEC IY

CALL GHL

LD (PCSAVE) ,HL
JR GO1

CALL GET

Cp '+

JR Z,MINUS
DEC 1Y
CALL GHL
LD A, (HL}
PUSH HL
PUSH AF

LD A,RST
LD (HL},2
INC B

EX DE,HL

LD HL, {(PCSAVE)
ADD HL,.DE
JR_BREAK1
CALL GHL

EX DE.HL

LD HL, (PCSAVE)
OR A

SBC HL,DE

JR BREAK1

LD (BPOINT),IY
LD HL,0D3FBH
LD (JMP) ,HL
LD HL,0C300H
LD (JMP+2) ,HL
LD HL, (PCSAVE)
LD (JMP+4) ,HL
LD SP,BOTHS
POP IX

POP IY

POP AP

LD I,A

JR NC,G04

EX

POP AF

POP BC

POP DE

POP HL

EXX

;i BREAKSTACK

;NEXT DATA IN BUFFER

:NEXT IN BUFFER

:USE STORED PC
: BREAKPOINT?
:IT IS A BREAK

:ADJUST FOR 18T DIGIT OF ADDR

;START OR BREAK
;NEW PC
:CONTINUE

:NEXT CHARACTER
;RELATIVE JUMP

i NO RELATIVE JUMP
:GET ABSOLUTE VALUE
t+GET CODE AT ADDRESS

;SAVE ADDRESS
$SAVE DATA

$RESTART ,TRS-80 USES 7 FOR TIME

;SAVE IT AS BREAK

:BREAK COUNTER

: SAVE
:CONTINUE

:GET RELATIVE VALUE

;SAVE IN DE
+PROGRAM COUNTER

; BREAKPOINT COMPUTED

:GET RELATIVE VALUE

:CLEAR CARRY

:RELATIVE JUMP COMPUTED
:SAVE BUFFER POINTER AT BPOINT
:ENABLE INTERRUPT AND OUT

:PORT AND JUMP

:EXECUTE ADDRESS

:ADDRESS IN PLACE

$REGISTER DATA

:RESTORE IX AND IY

; INTERRUPT INFORMATION
;LOAD INTERRUPT VECTOR
7IF CARRY NO INTERRUPTS
: INTERRUPTS REQUESTED
:THIS TIME IT IS AF!

:PRIMES IN PLACE

169

044C
044D
044E
044F
0450
0453
0454
0457
0458
0458
045C
045E
0460
0462
0463

0465
0466
0469
046A

046D
0470
0471
0474
0475
0476
0479
047n
047B
047C
047E
0481

0482
0485
0486
0487
0488
048B
048E
0491
0493
0436
0499
045C
045D
049E
049F

04AL

170

F1
C3A042
Fl
C3A342

CD3202

CD0302
41

4D

79
CD6001
CD8601
CDa201
ED78
CD6001
CDA201
CDA201
05

Cc8

0C
18E6

FD23

06850
06860
06870
06880
06890
06900
06910
06920
06930
06940
06950
06960
06970
06980
06990
07000
07010
07020
07030
07040
07050 POPAF
07060
07070
07080
07080
07100 HEXM
07110
07120
07130
07140
07150
07160
07170
07180
07190
07200
07210
07220
07230
07240
07250 IN
07260
07270
07280 INNEXT
07290
07300
07310
07320
07330
07340
07350
07360
07370
07380
07390
07400
07410 LIST

EX AF,AF' ;NOW SWITCH 4

POP AF i
POP BC g
POP DE

LD HL,(SSTACK) :GET SYSTEM STACK POINTER :
LD SP,HL :STACK IN PLACE s
LD HL, (HLSAVE) :HL OK

PUSH AF :SAVE AF ON USER STACK .
LD A, (SSFLAG) 1 SINGLE STEP? ’
OR A s TEST e
JR Z,POPAF :IF ZERO NO SINGLE STEP -
LD A,08H ;ENABLE INTERRUPT FROM EXTERNAL BUS

ouT (OEOH) ,A :USING PORT EOH

RLCA :08 BECOMES 10 WHICH ENABLES

QUT (OECH) ,A :ADDRESS, DATA, AND CONTROL LINES

sWITH HARDWARE TO COUNT OUT TO PRODUCE INTERRUPT

H
POP AF :RESTORE REGISTERS

JP JMP ;SET SHIFT REGISTER FOR SINGLE STEP
POP AF ;RESTORE REGISTERS

JP JMP+3 ;EXECUTE BYPASSING STEP INTERRUPT
;HEX MATH FIRST SUM THEN DIFFERENCE

CALL GHL :GET ARGUMENTS

EX DE,HL

CALL GHL ; 2ND ARGUMENT

PUSH HL ;s SAVE 2ND ARGUMENT

ADD HL.DE 1GET SUM

CALL ADDR1 :NUMBER FOLLOWED BY :

POP HL 1GET 2ND BACK

BEX DE,HL ;PUT IN PROPER ORDER

XOR A 1CLEAR BORROW FLAG :
SBC HL,DE ;GET DIFFERENCE

CALL PNHL sDISPLAY SECOND NUMBER

RET + FINISHED .
; INPUT FROM PORT XX AND DISPLAY &
CALL G2N ;GET PORT DESIRED

Lb B,C :NUMBER OF INPUT PORTS IN SEQUENCE

b C,L :C HAS PORT TO INPUT

Lb A,C ;A GETS PORT NUMBER

CALL PHEX ;OUTPUT PORT NUMBER

CALL ADDR2 :QUTPUT A :

CALL SPACE

IN A.(C) :GET DATA

CALL PHEX :OQUTPUT DATA

CALL SPACE :+SPACE

CALL SPACE

DEC B :ALL PORTS INPUT

RET Z :YES COMMAND STRING

INC C i NEXT PORT

JR INNEXT

INC IY :ADJUST POINTER

04A3
04A6
04a8
04AB

04AC
04AF
04B0
04B1
04B2
04B4
0485
04B6
0487

04BA
04BD
04BE
04C1
04C3

04C4
04C7
g4aca
04CB
04CE
04D1
04D3
04D5
0406
04D7
04D8
04DB
04DC
04DF
04E0
04E2
04E4
04ES
04E7
G4AEA
04ED
04F0
04F1
04F4
04r6
04F8
04FB
04FE
0500
0502

3A4A40
EEQ]1
324A40
c9

CDFAQ1
ES

C33705

CD3202
4p
CD3202
EDE9
co

CD3202
<D8001
ES
CD3202
CDE502
FE2F
280D
7D

CD3202
CD8001
CD5C01
ES
210000
0601
3E3F
CDB201
CD5D02
FEOD
282E
FEOB

07420
07430
07440
07450
07460
07470
07480
07490
07500
07510
07520
07530
07540
07550
07560
07570
07580
07590
07600
07610
07620
07630
07640
07650
07660
07670
07680
07690
07700
07710
07720
07730
07740
07750
07760
07770
07780
07790
07800
07810
07820
07830
07840
07850
07860
07870
07880
07890
07900
07910
07920
07930
07940
07950
07960
07970
07980

MOVE
MOV

ouT

SUBSM
SUBS
SUBS1

5UBS3

NEWAD1
NEWADR

INSERT

INS1
INS2

PRINIT

INS3

LD A, (PRNTFG) :GET CURRENT FLAG

XOR OlH :TOGGLE TO OPPOSITE STATE
LD {PRNTFG) A sRETURN TO STORAGE

RET :CONTINUE STRING

:MOVE MEMORY

CALL G3N :GET ARGUMENTS OF FROM

PUSH HL :HOW MUCH AND TO

PUSH DE

PUSH BC :SAVE ARGUMENTS FOR VERIFY
LDIR :ONE OF THOSE NICE 2~80 CODES
POP BC :RESTORE

POP DE

POP HL +RESTORED NOW

JP VERIF1 ;JUMP TO VERIFY
:OUTPUT HEX DATA TO PORT XX

CALL GHL :GET PORT KUMBER

Lb C,L :PORT MUST BE IN C
CALL GHL :GET DATA
ouUT (C).,L :OUTPUT

RET :FINISHED

;SUBSTITUTE MEMORY FROM STRING OR KEYBOARD

CALL GHL :GET ADDRESS

CALL ADDR s PRINT IT

PUSH HL $SAVE IT

CALL GHL :GET NUMBER IN HL

CALL GET1 :LAST IN STRING

Cp /¢ :ADDRESS OR DATA

JR Z,NEWAD1 :IT IS ADJUST STACK AND IY
LD A,L ;ONLY L USED

POP HL :GET ADDRESS

LD (HL),A ; STORE

CALL SPCHL s SHOW US

INC HL s NEXT FORWARD POSITION

CALL GET1 ;LAST STRING ENTRY

RET C 1WAY ouT

JR SUBS1 :CONTINUE INSERTION OF DATA
INC 1Y :ADJUST IY

POP DE :DON'T DESTROY WEW ADDRESS
JR SUBS :PRINT NEW ADDRESS

CALL GHL :GET ADDRESS

CALL ADDR

CALL SPCHL :SPACE FOLLOWED BY DATA
PUSH HL ;SAVE ADDRESS

LD HL,O00H :CLEAR DATA

LD B,O0lH : COUNT

LD A, 72! :PROMPT FOR SUBSTITUTE KEYBOARD
CALL CRT :SHOW WE ARE LOOKING FOR DATA
CALL GBYTE :DATA FROM KEYBOARD

CP ODH :ENTER?

JR Z FIRST

CP 08H :GO BACK

171

0504
0506
0508
050A
050D
050F
0511
0514
0516
0517
051a
051D
051E
0520
0521
0522
0523
0526
0527
0528
0527
a52C
052D
052E
0530
0532
0533

0534
0537
0538
053A
053C
053D
0540
0543
0544
0547
054a
054D
054E
054F
0550
0551

0553
0556
0558
055A
055B
055E
0560
0562
0564

172

CDFAQ1
1a
EDAL
2813
2B
€p8ool
CD5C01
EB
CDA201
Cp8301
CD5C0L1
EB

23

13

EO
18E4

CDE302
28FB
3821
FS
CDE302
D627
2804
FD2B
3EFF

07990
08000
08010
08020
08030
08040
08050
08060
08070
08080
08090
08100
08110
08120
08130
08140
08150
08160
08170
08180
08190
08200
08210
08220
08230
08240
08250
08260
08270
08280
08290
08300
08310
08320
08330
08340
08350
08360
08370
08380
08390
08400
08410
08420
08430
08440
08450
08460
08470
08480
08490
08500
08510
08520
08530
08540
08550

INCK

ENT

ENT1

NADDS

BACKW

FIRST

VERIFY
VERIF1

VERF2

EXAM

JR 2,BACKW
CP 20H

JR 7, INCK
CALL CRT
cp /¢

JR Z,NADDS
CALL VALHEX
JR C,PRINIT
INC B

CALL LDHL
JP INS3
POP HL

JR ENTL

LD A,L

POP HL

LD (HL) ,A
CALL SPCHL
INC HL

JR INS1
POP DE

JR INSL
POP HL

DEC HL

JR INS1
DJNZ ENT
POP HL

RET

:VERIFY MEMORY
CALL G3N
LD A, (DE)
CPI

JR %,VERF2
DEC HL
CALL ADDR
CALL SPCHL
EX DE.HL
CALL SPACE
CALL ADDR1
CALL SPCHL
EX DE.HL
INC HL

INC DE

RET PO

JR VERIF1

CALL GET
JR %,EXAM
JR C,XALL
PUSH AF
CALL GET
SUB L
JR Z%,EXAM2
DEC IY

LD A,0FFH

:RETURN PRINT ADDRESS
:WILL NOT ALTER DATA
: INCREMENT AND KEEP

;NEW ADDRESS

;LAST STRING WAS ADDRESS
;IS 1T HEX

:TRY AGAIN

sSHIFT INTO HL PAIR
:GET OLD ADDRESS

:ONLY INFO IN L REQUIRED

:SPACE FOLLOWED BY DATA

:PRINT LAST ADDRESS

:GET ARGUHMENTS

;AGREES SO CONTINUE
:GO BACK FOR DISPLAY
:ADDRESS

;AND DATA AT ADDRESS
:NOW OTHER

: SPACE

;ADDRESS BUT NOT NEW LINE
;DATA AT OTHER ADDRESS
;+RESTORE

$RESTORE HL

s INC OTHER POINTER

s FINISHED?

;CONTINUE

:NEXT IN STRING

sIF C, EXAMINE ALL

i SAVE

:PRIME OR NOT

:IF PRIME STORE 0lH IN PRIMF
;NO NEED TO CORRECT POINTER
sADJUST BUFFER POINTER

;WHEN INC WILL BE 0

4
E

0566
0567
056A
056B
056E
0571
0573
0576
0579
057B
a57C
057F
0582
0585
0588
0588
058D
0590
0592
0595
0598
0599
059A
059D
059E
059F
05A2
05A3
05A6
05A8
05A8
05AC
05AE
05AF
05B2
05B3
05B6
05B7
0588
05BA
05BB
05BC
05BD
0SBE
05C1
05C2
05C3
05C4
05C6
05C7
05C8
05C9
05CC
05CF
05D0
05p2
05D3

3C
324B40
Fl
213906
012000
EDAL
CAQ606
E20003
18F6
AF
324B40
215706
CDBBO5
CDAZ201
213906
0606
CDAEQGS
0609
CD3SEO1
CDAEOS
ES

C5
CDEF05
Ccl

El
3n4B40
3C
324B40
FEO2
c8
214506
18E2

78
CDB201
3A4B40
B7
2808
7B
D608

08560
08570
08580
08590
08600
08610
08620
08630
08640
08650
08660
08670
08680
08690
08700
08710
08720

" 08730

08740
08750
08760
08770
08780
08790
08800
08810
08820
08830
08840
08850
08860
08870
08880
08890
08900
08910
08920
08930
08940
08950
08960
08970
08980
08990
09000
08010
038020
09030
09040
09050
09060
09070
09080
09090
09100
08110
09120

EXAMZ

EXAM3

CONTCP

XALL

ALL3

ALL1

PVAL

PVAL1

INC A

LD (PRINMF).A
POP AF

LD HL,XTAB
LD BC,32D

CPI

Jp 2,

FOUND

JP PO,ERROR
JR CONTCP

XOR A

LD (PRIMF),A
LD HL,PCP

CALL
CALL

PVAL
SPACE

LD HL,XTAB

b B,

CALL

LD B,

CALL
CALL
PUSH
PUSH
CALL

6H
ALL1
94
NEWLIN
ALL1
HL

BC
FLAGP

POP BC
POP HL

LD A,

(PRIMF)

INC A
LD (PRIMF},A
CP 02H

RET Z

LD HL,RA
JR ALL3

PUSH
CALL
PUSH
CALL

BC
PVAL
AF
SPACE

POP AF
POP BC

DJNZ
RET

LD B,

ALLL
(HL)

INC HL

LD A,

(HL)

LD DE,SSTACK
ADD A,E
LD E,A

LD A,

OR A

JR 2,
LD A,

(PRIMF}

NPRIM
E

SUB 8H

;IT IS NOW OlH
:FLAG REFLECTS PRIME REGISTER
:GET REGISTER NAME

:32 CHARACTERS AND DATA LOCATIONS

:COMPARE (HL) TO A AND INC

;NOT IN TABLE

;CONTINUE COMPARISON

;CLEAR A

sMUST BE ZERO

: PROGRAM COUNTER IN XTAB
;PRINT 'B' AND CONTENTS OF PC

sREGISTER TABLE
sREST OF REGISTERS

:DISPLAY S,IX,IY¥,N,I,V
s NINE REGISTER DATA DISPLAY

:PRINT FLAG DATA

:PRINT NAME AND VALUE

:REST OF REGISTERS

+HL POINTS TO REG NAME
:POINT TO BIAS

$SIGN WILL HAVE DATA AS TO 1 OR 2

;GET HIGH ORDER
;PAGE BOUNDARY
:DOUBLE BYTE ADD
sPOINT TO NEXT ENTRY
:PRINT NAME

173

05D5
05D6
05p8
05DA
05DC
05DF
05E1
05E3
05E5
05E6
05ES9
05EA
05EB
05EE
05EF
05F0
05F3
05F6
05r8
05FA
05FB
05FD
O5FF
0600
0603
0604
0606
0607
0608
0609
060C
060F
0611
0613
0615
0618
0619
061A
061B
061C
061F
0620
0621
0622
0625
0626
0629
0624
062B
062D
06 2E
0630
0631
0639
063A
063B
063C

174

5F
3827
1802
3E3D
CDB201
CB7B
2807
CBBB
1a
CD6001
1B

ia
CD6001
c9

47
CDA201
213106
CB20
3805
ce
3E20
1801
78
CDbB201
23
18F0
4E

47

79
CDBEQS
CDE302
3811
28r9
FD2B
Ch3202
7D

12

79

B7
F22206
13

7C

12
CDA201
79
CDBEOS
4F

78
FE46
79
28BF
c9

53

53

81

58

83

03130
09140
09150
09160
09170
09180
09190
09200
08210
09220
09230
09240
09250
09260
69270
09280
09290
09360
09310
09320
09330
08340
09350
09360
09370
09380
09390
08400
09410
09420
09430
09440
09450
09460
09470
09480
09490
09560
09510
09520
09530
09540
098550
09560
09570
09580
05590
08600
09610
09620
09630
05640
09650
09660
09670
09680
09690

NPRIM
PRIME

ONEB

FLAGP

FLAGL

OFLAG
FLAG2

FOUND

FOUND1

NOTTWO

FTAB
XTAB

b E,A

LD A, 'Y
JR PRIME
LD A,'='
CALL CRT
BIT 7.,E

JR Z.0NEB
RES 7,E

LD A, (DE}
CALL PHEX
DEC DE

Lb A, (DE)
CALL PHEX
RET

LD B,A
CALL SPACE
LD HL,FTAB
SLA B

JR C,OFLAG
RET 2

LD A,20B
JR FLAG2
LD A, (BL)
CALL CRT
INC HL

JR FLAG1
LDb C, (BL)
LD B,A

LD A,C
CALL PVAL1
CALL GET
JR C,NOTTWO
JR %Z,FOUND1
DEC IY
CALL GHL
b A,L

LD (DE),A
LD A,C

OR A

JP P, NOTTWO
INC DE

LD A.H

LD (DE),A
CALL SPACE
LD A,C
CALL PVALl
LD C.,A

LD A,B

CP 'F!

LD A,C

JR 2,FLAGP
RET

DEFM 'SZXHX/NC'
DEFM 'S’
DEFB 81H
DEFM 'X"'
DEFB 83H

;CHECK FOR ONE OR TWO BYTE NUMBER
:NO ADJUST IF ONE BYTE

;TWO BYTE, CORRECT BIAS

:GET VALUE

$PRINT IT

:DECREMENT POINTER

;GET VALUE

1SAVE BIAS AND NUMBER OF BYTES
:B REGISTER GETS NAME

:BIAS INTO AC

;WRITE FORMER CONTENTS

;DATA TO REPLACE OR END

:PRINT NEW DATA

:SKIP BLANK (20H)

$+ADJUST BUFFER POINTER GHL WANTS
;VALID HEX IN FIRST POSITION
$1MOVE TO STACK

;IF ONLY ONE ITS IN L

;SIGN HAS 1,2 INFORMATION

:SET FLAG

:IF POSITIVE ONLY ONE BYTE

sGET HIGH DATA

:GET REGISTER INFORMATION

:DATA LAST PRINTED INTO C
;CHECK FOR FLAG

:IF FLAG PRINT FLAGS

;DATA BACK TO A FOR FLAG PRINT

$RETURN TO STRING PROCESS

&

063D
063E
063F
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
064a
064B
064C
064D
064E
064F
0650
0651
0652
0653
0654
0655
0656
0657
0658

0659
065C
065D
065E
065F
0661
0663
0664
0667
0669
066B
066E
0670
0673
0675
0678
0674
067D
067F
0682
0684
0686
0688
068A
068D
06 8F

CDPAOL
D5

ES

5
3802
D3EC
AF
CDDD06
10FB
3EAS
CDDDO06
3E55
CDDDO6
0606
CDE502
380E
CDE302
3808
CDDD06
10F6
FD23
1807
3E20
CDDDO06
10F9
233

08700
09710
09720
09730
09740
09750
09760
09770
09780
09790
09800
09810
09820
05830
09840
09850
09860
09870
09880
09890
09500
09910
09920
09930
09940
09950
09960
09870
09980
08950
100600
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260

PCP

e e

RIT

GNAM3

LEAD
WRIT1

WNAME

FINB

WRIT3

DEFM 'Y!
DEFB 85H
DEFM 'I*
DEFB 078
DEFM ‘N
DEFB 06H
DEFM ‘V!?
DEFB SBH
DEFM 'A°
DEFB 11H
DEFM 'B!
DEFB 13H
DEFM 'C!
DEFB 128
DEFM 'D!
DEFB 15H
DEFM 'E'
DEFB 14H
DEFM 'H!
DEFB 17H
DEFM ‘L'
DEFB 16H
DEFM 'M*
DEFB 97H
DEFM 'F*
DEFB 10H
DEFM 'P'
DEFB 99H

WRITE TO CASSETTE TAPE

CALL G3N
PUSH DE
PUSH HL
PUSH BC
LD A,2H
OUT (QECH) ,A
XOR A
CALL TOUT
DJNZ LEAD
LD A,0ASH
CALL TOUT
LD A,55H
CALL TOUT
LD B,06H
CALL GET1
JR C,FINB
CALL GET
JR C,FINB
CALL TOoUT
DJINZ WNAME
INC 1Y

JR WRIT3
LD A,20H
CALL TOUT
DJINZ FINB
POP DE

i ZERO ACCUMULATOR

:SYNC MARK

:FILE NAME MARK

iWRITE NAME HEADER

:6 BYTE NAME

;LAST ENTRY

:IF COMMA NO NAME FILL BLANKS
s NEXT ENTRY

sFINISH WITH BLANKS

iWRITE NAME

:ADJUST BUFFER
iFULL NAME
$FINISH WITH BLANKS

175

ez

0690 Ei 10270 POP HL .
0691 15 10280 WRIT2 DEC D
0692 FAC106 10290 Jp M,FINISH P
0695 AF 10360 XOR A
0696 CD9BO6 10310 CALL TDATA
0699 18F6 10320 JR WRIT2
0698 47 10330 TDATA LD B.A
069C 3E3C 10340 LD A,3CH
069E CDDDO6 10350 CALL TOUT
06A1 78 10360 LD A,B
06A2 CDDDO6 10370 CALL TOUT
06A5 7D 10380 LD A,L
06A6 CDDDO6 10390 CALL TOUT
06A9 7C 10400 LD A,H
06AA CDDDO6 10410 CALL TOUT
06AD 7C 10420 LD A,H
06AE 22FE3F 10430 LD (3FFEH) ,HL ;SHOW SOMETHING
06B1 7C 10440 LD A,H
0682 85 10450 ADD A,L :START OF CHECKSUM
06B3 4F 10460 LD C,A ;CHECKSUM STORAGE
06B4 TE 10470 TDATAL LD A, (HL)
06B5 CDDD06 10480 CALL TOUT ;
0688 7E 10490 LD A, (HL)]
0689 81 10500 ADD A,C i
06BA 4F 10510 LD C,A
06BB 23 10520 INC HL
06BC 10F6 10530 DINZ TDATAL
06BE 79 10540 LD A,C
06BF 181C 10550 JR TOUT
06C1 AF 10560 FINISH XOR A .
06C2 BB 10570 CPE
06C3 2804 10580 JR Z,WRITS ;NOTHING TO WRITE EXCEPT HEAD S,
06C5 7B 10590 LD A,E
06C6 CD9BO6 10600 CALL TDATA
06C9 3E78 10610 WRITS LD A,78H ;LAST BLOCK HEADER
06CB CDDD06 10620 CALL TOUT
06CE E1 10630 POP HL ;EXECUTE ADDRESS
06CF 7D 10640 LD A,L
06D0 CDDDO6 10650 CALL TOUT
06D3 7C 10660 LD A,H
06D4 CDDDO6 10670 CALL TOUT
06D7 CD7901 10680 CALL PNHL ;SHOW ADDRESS
06DA C31503 10690 JP TOFF1 :TURN TAPE OFF
06DD D9 10700 TOUT EXX ;SAVE REGISTERS
06DE OE08 10710 LD C,8
06E0 57 10720 LD D,A
06E1 37 10730 TOUT1 SCF :CARRY WILL OUTPUT A PULSE
06E2 CDF706 10740 CALL PULSE :OUT SYNC PULSE
06E5 78 10750 LD A,D ;GET DATA BIT
06E6 07 10760 RLCA :PUT IN CARRY
06E7 57 10770 LD D,A :RETURN TO D REGISTER .
06E8 CDF706 10780 CALL PULSE ;OUT WHATEVER [
06EB 0D 10790 DEC C 4
06EC 20F3 10800 JR Nz2,TOUT1)
06EE 3A8038 10810 LD A, (3880H) ;SHIFT PRESSED
06F1 B7 10820 OR A :SET FLAG
06F2 D9 10830 EXX ;RESTORE REGISTERS
e
176

06F3
06F6
06F7
06F9
06FA
06FC
O06FE
0700
0702
0703
0705
0707
0709
070A
a70C
070E
0710

0711
0714
0716
0718
071A
071D
071F
0722
0723
0725
0727
0729
072C
072E
0730
0733
0735
0738
073A
073C
073F
0740
0741
0743
0746
0748
074B
074D
074F
0751
0754
0755
0758
0758
075C
075D
0760

€21503
Cc9
3E00
17
D3FF
0610
10FE
E601
17
D3FF
0610
10FE
AF
D3FF
0674
10FE
c9

CDE302
28FB
3807
FD2B
Cp3202
1803
210000
E5
3E02
D3EC
FD2B
CDSBO7
FEAS
20F9
224040
0606
CDBF07
FE55

10840
10850
10860
10870
10880
10890
10900
10910
10920
10930
10940
10950
10860
10970
10980
10990
11000
11010
11020
11030
11040
11050
11060
11070
11080
11090
11100
11110
11120
11130
11140
11150
11160
11170
11180
11180
11200
11210
11220
11230
11240
11250
11260
11270
11280
11290
11300
11310
11320
11330
11340
11350
11360
11370
11380
11350
11400

PULSE

Pl

P2

P3

0 we ne e

EAD

RD11
RD22

RD1

RD2

RD3

JP NZ,TOFF1l
RET

LD A,00H

RLA

OUT (OFFH) ,A
LD B,16D
DJINZ P1

AND O1H

RLA

OUT (OFFH) ,A
LD B,16D
DJINZ P2

X0R A

QUT (O0FFH) .A
1D B,116D
DJNZ P3

RET

:IF NON-~ZERO GET OUT

:CLEAR AC WITHOUT CLEARING CARRY

:00 OR 01 DEPENDING UPON DATA

; SHORT DELAY

:KEEP INFORMATION BUT NO
:CARRY

:IF 1 ANOTHER PULSE
:DELAY

sRETURN TO ZERO LEVEL

sREMAINDER OF MILLISECOND

READ CASSETTE TAPE

CALL GET

JR Z,READ

JR C,RD11
DEC IY

CALL GHL

JR RD22

LD BHL,00H
PUSH HL

LD A,02H

OUT (O0ECH) ,A
DEC IY

CALL BIT

CP 0A5H

JR NZ,RDL

LD HL, (CURSOR}
LD B,6H

CALL BYTE

CP 55H

JR NZ,TOFF
CALL BYTE

LD (HL},A
INC HL

DJNZ RD2

LD (CURSOR) ,BL
CALL BYTE

CP 78H

JR Z,END1

CP 03cCH

JR NZ,TOFF
CALL BYTE

LD B,A

CALL BYTE

LD L,A

CALL BYTE

LD H,A

LD (3FFEH),HL
ADD A,L

:SKIP SPACES

sADJUST

sWILL POP TO DE

:TURN ON TAPE
:ADJUST

3 SYNC?

;GET CURSOR WANT LOAD FAST

:ADJUST POINTER AND PROVIDE SPACE

:START OF CHECKSUM

177

0761
0762
0763
0764
0765
0768
0769
076A
076B
a76C
076E
0771
0772
0774
0777
0774
0778
077E
077F
0780
0783
0784
0787
078A
078C
078F
0790
0791
0793
4796
0798
0798
079A
4798
079C
079D
0798
07A0
07A3
0724
0746
07A8
07A9
07AB
07AD
07AF
07B0
0782
07B4
0786
07B8
07B9
07BA
07BC
07ED
07BE

178

€30003
CD8Fo7
6F
CD8F07
67

D1
110000
19
€D7501
223C40
FD23
C31503
5

E5
0608
CD9BO7
10FB

11410
11420
11430
11440
11450
11460
11470
11480
11480
11500
11510
11520
11530
11540
11550
11560
11570
11580
11590
11600
11610
11620
11630
11640
11650
11660
11670
11680
11690
11700
11710
11720
1173¢
11740
11750
11760
11770
11780
11790
11800
11810
ils820
11830
11840
11850
11860
11870
11880
11890
11800
11810
11820
11830
11940
11950
11960
11970

RD4

TOFF
END1

BYTE

BYTEL

BIT

BIT1

BITS

BIT2

BIT3

LD C,A

POP DE
PUSH DE
ADD HL,DE
CALL BYTE
LD (HL!,A
INC HL

aADD A,C

p C,A
DJNZ RD4
CALL BYTE
Cp C

JR Z,RD3
JP ERROR
CALL BYTE
b L,A
CALL BYTE
LD H,A

POP DE

LD DE,00H
ADD HL,DE
CALL PNHL
LD (PCSAVE] ,HL
INC IY

JP TOFF1l
PUSH BC
PUSH HL

LD B,8H
CALL BIT
DJINZ BYTEL
POP HL

POP BC

RET

PUSH BC
PUSH AF
XOR A

OUT (OFFH) ,A
LD A,{3880H)
OR A

JR NZ,TOFF
IN A, (OFFH)
RLA

JR NC,BIT1
LD B,6EH
DJNZ BIT2
X0R A

ouT (OFFH) ,A
LD B,98H
DJINZ BIT3
IN A, (OFFH)
b C,A

POP AF

:GET BIAS FOR LOAD

:BIAS ADDED TO HL

;GET CHECKSUM

;HL HAS START ADDRESS

;CORRECT STACK AND ZERO

;STORE TO PC PLACE
;ADJUST BUFFER
; TURN TAPE OFF

sRESET LATCH BEFORE READ

;SET FLAG IF EITHER SHIFT PRESSED

;WAIT FOR PULSE
:SHORT DELAY

:RESET LATCH
sWINDOW TO LOOK FOR PULSE

IN DATA A 1 IS IN POSITION (T}

;ONE BIT ROTATE THROUGH AC

P

07BF 3E02
07C1 1802
07C3 3E01
07C5 324340
07C8 CDFAQ1

07CB 7B

07CC EDAlL

07CE EO

07CF 20FB
07D1 3A4340

07D4 3D

07D5 2806

07D7 TA
07D8 BE

07D9 2802
07DB 18EE
07DD 3A4340

07E0 C5
07E1 4F

07E2 0600

07E4 2B

07E5 CD9503

07E8 Cl

07E9 18E0Q

0000

00000 TOTAL

ADDR
ADDR1
ADDR2
ADJUST
ALL1
ALL3
ASCII
ASCIIl
ASCIi2
ASCII4
BACKW
BIT
BIT1
BIT2
BIT3
BITS
BKSP
BOTMS
BPNO
BPOINT
BREAK
BREAK1
BREAKS
BUF
BUFO
BUF1
BUFFER

0180
0183
0186
0175
05AE
0590
0351
0354
035C
035D
052C
079B
0780
07AD
07B4
0726
01Dp9
4026
4045
4048
03F1
0401
4080
0127
012C
012F
4080

11980
11990
12000
12010
12020
12030
12040
12050
12060
12070
12080
12090
12100
1211¢
12120
12130
12140
12150
12160
12170
12180
12190
12200
12210
12220
12230
12240
ERRORS

02530
02540
02550
02440
08880
08730
05480
05490
05520
05530
08200
11740
11780
11850
11890
1l8lo
03130
00220
00160
00170
06390
06460
00250
01970
01990
02010
00050

FINDTO

FINDON
FIND

FND1
FND2

SHOW

05500
07150
07300
02380
08720
08870
05160
05570
05580

07990
11150
11830
11850
iisse

03010
06730
01730
01630
06340
06590
01810
00930

02120
00250

+FIND ONE OR TWO BYTES

i

LD A,02H :FLAG FOR FINDING TWO BYTES

JR FIND

LD A,01H sFLAG FOR FINDING ONE BYTE

LD (COUNT) ,A ;SAVE FOR REFERENCE

CALL G3N :GET ARGUMENTS

LD A,E ;LOW ORDER BYTE OR ONLY BYTE
CPI ;IS IT THERE

RET PO sFINISHED AND NOT FQUND

JR NZ,FND2 :NOT THERE BUT CONTINUE SEARCH
LD A, (COUNT) :MORE THAN ONE

DEC A ;IF ONE NOW ITS ZERO

JR Z,SHOW

LD A,D +NEED SECOND BYTE

CP (HL) +IT MUST BE NEXT. THE CPI INC HL
JR Z,SHOW :IT WAS THERE SO SHOW IT

JR FNDL :CONTINUE SEARCH START WITH FIRST
LD A, (COUNT) :GET NUMBER, DESTROYED BY DEC
PUSH BC 7 SAVE

LD C,A : PREPARE FOR DISPLAY

LD B,00H

DEC BL sADJUST HL

CALL DISP1l :SHOW ADDRESS FOLLOWED BY DATA
POP BC ;GET BYTES REMAINING

JR FNDL ;CONTINUE GET ALL OCCURRENCES
END

05850 07700 07880 08340
08380

08750 08940

11690

01920 06530
06660

06650
06280

02170 02240
00910 05060 05670 05750

179

BUFFR
BYTE

BYTEL
CAPIT
CD
CHAR
CHKIN
CLEAR
CLEARS
CLRBP
CLRBP1
CMARK
CHND
COM1
COMAND
COMTAB
CON
Conl
CONZ
CONTCP
CONTI1
CONTIN
COUNT
CRT

CURSOR
Dl
DELETE
DISPl
DISP2
DISPLY
DLT
DLTE
DLTEl
END1
ENT
ENT1
ENTER
ERO
ER1
ER2
ERROR

EXAM
EXAM2
EXAM3
EXX
FILL
FILL1
FINB
FIND
FINDON
FINDTO
FINISH
FIRST
FLAGL

180

0368
Q78F

0793
02BC
008A
02CB
026D
01F2
01ED
0107
011D
4044
0080
006F
006C
031R
0028
0033
004C
0571
02F6
02F8
4043
01B2

4040
0279
013E
0395
0398
0392
0142
0147
0148
0777
0520
0523
03B4
0305
030C
0317
0300

0553
0566
056A
00CF
03a5
03A9
0688
07C5
07C3
07BF
06C1
0530
05F6

05620
11660

11690
04570
01050
04660
04050
03270
03250
01720
01870
00150
01610
00810
00500
05150
00580
00620
00760
08610
04970
04980
00140
02940

00120
04120
02080
05850
05860
05840
02100
02130
02140
11550
08120
08150
06100
05030
05060
05100
05010

08470
08560
08580
01450
05980
06000
10230
12030
12020
12000
10560
08230
09300

05170
11200
11510
11700
04550
01060
04640
02850
03110
00790
00890
01900
00840
05000
06160
04880
01080
00550
00590
00630
08640
04990
01020
12030
02160
09170
02960
04120

01710
05920
05190

02200

113060
08230
08110
05220
05050
05040

01080
08630
45390
08530

013380
05150
00780
10160
12010
05210
05320
10290
07970
05380

11230 11280 11330 11350 11370 11450
11550 11570

05790

03960
03310
05180
01660 05080

03150

05110

12080 12160

02220 02650 05530 07940 08020 09070
09360

03140 11180 11270

05910 12210

05350

01120 03500 03700 05250 05260 05400
11540
08480

06030
10180 10250

£,
P |

s

FLAG2
FLAGP
FND1
FND2
FOUND
FOUNDI1
FTAB
G2N
G2N0
G2N1
G2N2
G2N3
G3N
GBYTE
GET

GET1

GET3
GHL

GHLO
GHL1
GNAM3
GO

GOl
GO2
GO4
HDATA
HEXM
HLSAVE
IN
INCK
INNEXT
INSl
INS2
INS3
INSERT
IMP
KYD1
LDHL
LDREG
LEAD
LINEF
LIST
LOWBIT
MINUS
MONSP
MOVl
NMOVE
NADDS
NALPH1
NALPHA
NEWAD1
NEWADR
NEWLIN

0600
O5EF
07CB
g7ce
0606
060C
0631
0203
020C
0222
0229
022D
01FA
025D
02E3

02E5

02F3
0232

0235
0240
065F
03c7
03D9
03DC
0447
0295
046D
403A
0482
051D
0487
04EA
04ED
04FB
04E7
42A0
0283
0197
0424
0664
01c7
04A1
0298
0418
42C0
04AF
Q4AC
0529
02C3
02BF
04E2
04E4
019

09360
038270
12050
12060
09390
09430
08650
03400
03440
03530
03570
03610
03350
03950
04850

04860

04930
03660

03670
03710
10050
06220
06290
06300
06800
04310
07100
00240
07250
08100
07280
07880
07890
07950
07870
00350
04210
02710
06660
10080
03060
07410
04350
06600
00340
07500
07480
08180
04610
04590
07840
07850
02810

09340
08780
12150
12080
08620
09450
09290
43350
03450
03470
03520
03430
05980
02010
01050
06390
03420
10150

03370
06600
07870
03680
03740

05200
06380
06310
06780
04250
05230
01270
05250
08010
07390
08170

08090
05340
06680
04090
03710
06320
10080
02990
05270
04320
06430
00350

05280
08040
04700
04500
07750

01040

09630
12230

05480

03620

07490

03990

03440

08470
034980

03400
07100
09470

06540

04340

01330

08180

06700

04130

08080

00880

04740

02530

05840

08290
04020
03670
08510
04980

03510
07120
11080

06910

08220

06720

01010

08740

07250

10010 12040
07950

03720 05030
09430 10170
06140 06290

03530 06360
07610 07630

07040 07060

01670

05620
11040
07730

06450
07690

06300

07810

06550
07720

181

NEXT
NOSFT
NOT7
NOTTWO
NPRIM
OFLAG
OLD
ONEB
ouT
ouT2
Pl

P2

P3

PCH
PCHAR
PCP
PCSAVE

PHEX
PHEX1
PHEXH
PHEXL
PLUS
PMSG
PMSGIL
PNHL
POPAF
PPHL
PRIME
PRIMF
PRINIT
PRNT
PRNT1
PRNTFG
PROM
PULSE
PVAL
PVALL
RA
RD1
RD11
RD2
RD22
RD3
RD4
READ
REF

REF1

REF2
RSAVE
RST
RSTART
RSTLOC
S1

52

182

0289
02AD
02CE
0622
05pA
O5FF
4047
05EA
04BA
01DA
06FE
0707
070E
0150
0152
0657
403C

0160
0170
0163
0167
040E
018D
018a
0178
0469
015F
05DC
404B
04F6
01A4
01A5
4044
401B
06F7
05BB
05BE
0645
0729
071F
073C
0722
0746
0765
0711
4000

4040

4024
00a6
O00FF
0066
4012
000B
0013

04230
04470
04680
05560
09160
09350
00270
09240
07610
03140
16900
10950
10850
02180
02190
09960
00230

02310
02410
02320
02360
06550
02620
02610
02490
07050
02300
09170
00190
07930
02840
02850
00180
00310
10860
08960
08990
05780
11150
11100
11230
11110
11280
11450
11040
00080

00110

00200
01230
00070
00880
00060
00440
00470

04280
04450
04600
05440
09100
09310
03970
09180
05300
03050
10900
10950
10990
02070
62090
08670
00240
06570
02500
02450
02310

06410
02670
00500
02540
06950

09150
08570
08060
02410
02890
03190
05310
10740
08680
09420
08860
11170
11060
11260
11090
11530
11500
05330
00030
00310
00120
00190
00210
06260
06490
02030
06240
00420
00450

08520

00290
06620
02520

05070
07200

08660
02560
07420
10780

08890
09580

11050
00100
00320
00130

00230
02870
06270
00560

01250
06710
07290

10680

08810

02820
07440

01420

11630

07330

11620

08830

01440 01630 06370
09220 09250

09080

00110 00200 00270 00280 00300

00330

00410

00140 00150 00160 00170 00180

s3

54
SAVE
SAVELl
SCREEN
SHOW
SIGNON
SPACE

SPCHL
SPEC
SSFLAG
SSTACK
STEP
SUBS
SUBS1
SUBS3
SUBSH
TABLE
TDATA
TDATAL
TEM
TOFF
TOFF1
TOUT

TOUTL
TRAN
TTYP
TWO
UCFLAG
USER
USERSP
VALHEX
VERF2
VERIF1
VERIFY
VIDEO
WNAME
WRIT
WRIT1
WRIT2
WRIT3
WRITS
XALL
XTAB

001B
0023
0373
O0ODE
403E
07DD
0043
01A2

015C
02DB
4042
4024
03AF
04C7
G4ca
04D5
04C4
003B
069B
06B4
4180
0774
0315
06DD

06EL
0381
4018
0273
4046
401E
4300
024C
054rF
0537
0534
3C00
067A
0659
0669
0691
068F
06CH
0578
0638

00510
00550
05670
01560
00290
12160
00730
02830

02290
04750
00130
00210
06070
07700
07710
07760
07690
00650
10330
10470
00100
11540
05090
10700

10730
05730
00300
04090
00280
00320
00330
03800
8420
08300
08290
00260
10170
10010
10100
10280
10260
10610
08650
09660

00490
00530
05650
01540
00810
12110
02610
02290
08910
05860
04360
01370
00220
05410
07860
07830

05240
04750
10310
10530
05690
11220
10650
10080
103%0
10800
05630
00770
04150
01980
05360
00340
03690
08320
07570
05370
03070
10200
05380

10320
10220
10580
01680
08590

01610
12140

05510
09280
07790

01410
00820

10600
05730
11320
10840
10110
10410
03210
04510

00620
03730

08440

03080

08490
087060

06100

07310
09560
07890

06080
01310

11800
11650
10130
10480

08050

03120

07340 07350 08370 08690
08150 08350 08390

06930
06890 08590

10190 10240 10350 10370
10550 10620 10650 10670

03250

183

off,

TR,

APPENDIX F

Source Listing for the
2708 EPROM Programmer

185

443F

443F
4441
4444
4445
4448
4448
444E
4451
4454
4457
4458
445B
445D
445E
4460
4461
4463

4465
4467
4467
446C
446F
4471
4474
4476
4479
4478
447D
447F
4481
4483
4486
4489
448C
448F
4491
4494

186

FDES
CD8946
AF
32B547
218846
CD8DO1
21D%46
CD8DOL
21BE47
ES
CD2701
3620
23
3630
23
362C
FDE1

FD23
FD7EQGD
FE52
CA9C44
FES6
CAA544
FES0
CAAE44
FES3
2812
FE45
2816
FE2C
C26544
216547
CDB8DO1
C34444
3EOL
32B547
C3AE44

00010
060020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570

PR10

PR20

SPROG

PROM ~ BURN A 2708
DISK NAME P2708/A5M
FOR MODIFIED TRS-80 SYSTEMS

COMMANDS:

READ: B MEMORY ADDR., # BYTES, PROM ADDR.
VERIFY: v " 12 ", "
PROGRAM: P b . vy, "
SHORTP: S " " "
EXIT: E

SUBROUTINES USED FROM MONITOR:
BUF, G3N, PMSG

ORG 0443FH

PUSH 1Y :SAVE MONITOR POINTER

CALL SR ;SET UP AND REMOVE VOLTAGES E 5
XOR A ;CLEAR SHORT PROGRAM CYCLE FLAG

LD (SPFLAG) ,A

LD HL,MES1 ;PRINT 'PROM PROGRAMMING PROGRAM'
CALL PMSG

LD HL,MES2 ;PRINT PROMPT (>

CALL PMSG

LD HL,BUFFER

PUSH HL

CALL BUF :GET DATA

LD {(HL},20H :PUT SPACE

INC HL

LD (BL),30H ;IN CASE THIRD ARGUMENT NOT ENTERED
INC HL

LD (HLJ.',! :END

POP IV

BRANCH TO CORRECT SECTION OF PROGRAM DEPENDING
ON COMMAND ENTERED

INC IY

LD A, (IY+0)

CP 'R’

JP %,RCHMD
ryt

JP 2,VCHD

1pt
JP % ,PCHMD -
(S
JR Z,SPROG o,
CP 'E!
JR Z,EXIT ;IF EXIT, RETURN TO HONITOR

et :IF COMMA, PRINT 'UNKNOWN COMMAND'
JP NZ,PR20
I.D HL,MESA
CALL PMSG
JP PR10O
LD A,0lH ;1 SET FLAG
LD (SPFLAG) ,A
JP PCHD

R

4

4497 FDE1 00580 EXIT POP 1Y

4499 FD23 00580 INC IY
4498 C9 00600 RET :BUFFER POINTER ADJUSTED
00610
00620
00630 : R - READ
00640 ;
449C CDOBO2 00650 RCHMD CALL G3N :GET DATA *ADDRESS CHANGE MODEL III*
449F CD7745 00660 CALL READ :SUBROUTINE READ DOES THE VWORK
4472 C34444 00670 JP PR1O
00680 :
00690 : V - VERIFY
00700
44A5 CDOBO2 00710 vCHMD CALL G3N :GET DATA *ADDRESS CHANGE MODEL III*
44A8 CDY9045 00720 CALL VERIFY +SUBROUTINE VERIFY DOES THE WORK
44AB C34444 00730 JP PR10O
00740
00750 P - PROGRAM
00760 :
44AE CDOBO2 00770 PCHMD CALL G3N ;*ADDRESS CHANGE MODEL III*
44B1 ED43B847 00780 LD (NBYTES),BC ;SAVE ARGUMENTS
44B5 ED53BA47 00790 LD (PROMA},DE
44B9 22BC47 00800 LD (MEMA} ,HL
44BC 010004 00810 LD BC,1024 ¢+READ THE WHOLE
44BF 210148 00820 LD HL,FWM :PROM INTO MEMNORY
44C2 110000 00830 LD DE,00H
44C5 CD7745 00840 CALL READ
00850 :
00860 : CHECK IF IT'S DIRTY
00870
44C8 210148 00880 LD HL,FWHM
44CB 010004 0083¢C LD BC.1024
44CE 7E 00900 P10 LD A, (HL}
44CF FEFF 00810 CP OFFH
44D1 C2E444 00920 JP NZ,P20 sIT'S DIRTY
44D4 23 00930 INC HL
44D5 0B 00940 DEC BC
44D6 78 00950 LD A,B
44D7 Bl 00960 OR C
4408 C2CE44 00970 JP NZ,P10
44DB 217647 00980 LD HL,MESB
44DE CD8DO1 00990 CALL PMSG
44E1 C34045 01000 JP P80 :IT'S CLEAN
44E4 211247 01010 P20 LD HL,MESS
44E7 CD8DO1 1020 CALL PMSG :PRINT *DIRTY PROM,'
01030 :
01040 : DETERMINE WHETHER IT CAN BE PROGRAMMED
01050 IF ATTEMPT IS MADE TO CHANGE A 0 70 1,
01060 : IT WON'T WORK
01070 :
44EA 210148 01080 LD HL,.FWM
44ED ED5BBA47 01090 LD DE.{PROMA)
44F1 19 0llo0 ADD HL,DE :DE = ADDRESS OF PROM DATA
44F2 EB 01110 EX DE.BL
44F3 2ABC47 01120 LD HL, (MEMA)
44F6 ED4BBB47 01130 LD BC, (NBYTES)
44FA 1A 01140 P30 LD A,{(DE)

187

44FB
44FC
44FD
4500
4501
4502
4503
4504
4505
4508
4508
450E
4511
4514
4517
451A
451D
451E
451F
4521
4524
4526
4528
452B
452E
4531
4534
4537
453A
453D

4540

4543
4546
4549
454D
4548
454F
4552
4556
4558
4558
455C
455E
4561
4564
4568
456C
456F
4572
4575

188

FEOD

C21D45
215147
CD8DOo1
C31445
212147
CD8Dpol
C34444

218247

€DBDO1
210148
ED5BBA47
19

EB
2ABC47
ED4BB847
EDBO
3AB547
B7

2014
CDOD46
2ABC47
ED5BBA47
ED4BB847
CDY045
C34444
CD4A46
18EA

01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01430
41500
01510
01520
01530
01540
01550
01560
01570
01580
01580
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710

P70

PNO

SHORT

CPL

AND (HL)

JP NZ,PNO :IF NZ IT WON'T WORK

INC DE

INC HL

DEC BC

LD A.B

OR C

JP Nz ,P30

LD HL,.MES7 :PRINT 'IT COULD WORK'
CALL PMSG

LD HL,MES8 ;PRINT 'CONTINUE?'

CALL PMSG

LD HL,BUFFER

CALL BUF

LD HL,BUFFER

INC HL ;CHECK IF YES OR NO TYPED IN
LD A, (BL)

cp o'yt :IF YES, CONTINUE

JP Z,P80

CP 'N*

JP %,PR10 ;IF NO, GO BACK TO BEGINNING
Cp ODH

JP Nz,p70

LD HL,MESS ;PRINT 'ANSWER YES OR NO!
CALL PMSG

JP P60

LD HL,MES6 sPRINT '"IT WON'T WORK'
CALL PMSG

JP PR10O :GO BACK FOR NEW COMMAND

ATTEMPT TO PROGRAM THE 2708

LD HL,MESC sPRINT'WAIT FOR PROGRAMMING
MAX TIME 2 MINUTES®

CALL PMSG

LD HL,FWM

LD DE.(PROMA} ;DE = PROMA + FWM

ADD HL,DE

EX DE,HL

LD HL, (MEMAJ
LD BC, (NBYTES)

LDIR :COPY MEMORY INTO BUFFER AREA
LD A, {SPFLAG) :SHORT CYCLE REQUEST

OR A :SET FLAG

JR NZ,SHORT

CALL PROG ; PROGRAM IT

LD HL.(MEMA)

LD DE, (PROMA}

LD BC, (NBYTES)

CALL VERIFY

JP PR10O

CALL PGS :REPEAT PROGRAM CYCLE TO VERIFY
JR P90

READ - READ PROM INTO MEMORY

|
r

A,

4577
457A
4578
457D
457E
4580
4582
4583
4584
4586
4587
4588
4589
458A
4588
458C
458F

4590
4581
4594
4597

4598
4598
459C
459E
458F
45A1
45A3
4504
45A5
457
4548

45AB
45AC
458D
45AF
45AF
45B2
45B3
45B6
4587

CD8946
7B
D38D
7a
F670
D38E
Cc5

Cl

ES
210000
228647
El

CD8946

CAE945

Cc5
E5
D5
F5
11E546
7C
CD9%446
13
13

01720
01730
01740
01750
01760
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870
01880
01880
019060
01910
01920
01930
01540
01250
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160
02170
62180
02150
02200
02210
02220
02230
02240
02250
02260
02270
02280

READ
RD10O

< we ae e ae e we

ERIFY

VE10

= # BYTES TO READ
DE = PROM ADDRESS
= MEMORY ADDRESS

CALL SR ;SET UP CHIP TO READ
LD A,E

OUT (PB),A :OUTPUT AO-A7

LD A,D

OR 708

ouT (PC),A ;OUTPUT AS8-AlQ

PUSH BC

POP BC

IN A, {PA} :GET DATA BYTES

LD (BL),A ;STORE IT IN MEMORY
INC DE

INC HL iGET READY TO READ NEXT BYTE
DEC BC

LD A,B

OR C

JP NZ,RD10

RET

VERIFY ~ VERIFY MEMORY AGAINST PROM MEMORY
HL

DE
BC

MEMORY ADDRESS
PROM MEMORY ADDRESS
BYTES TO VERIFY

PUSH HL

LD HL,0000H :ERRS = 0
LD (ERRS).HL

POP HL

CALL SR ;SET UP CHIP TO READ
LD AE

OUT (PB},A ;OUTPUT AO-A7

LD A,D

OR 70H

ouT (PC),A ;OUTPUT A8-AlQ

PUSH BC

POP BC

IN A, (PA}

CP (BL)

JP %,VEL00 ;IF MATCH, INCREMENT POINTERS

THERE IS A DISCREPANCY
WRITE 'MEMORY: XXXX XX PROM: XXXX XX'

PUSH BC

PUSH HL

PUSH DE

PUSH AF

LD DE,MES31 :FORMAT MEMORY ADDRESS
LD A,H

CALL I2AH

INC DE

INC DE

189

45B8 7D 02250 LD A.L

45B9 CD9446 02300 CALL I2AH
45BC 11EA46 02310 LD DE,MES32 ;FORMAT MEMORY CONTENT)
45BF TE 02320 LD A, (HL) 8
45C0 CD9446 02330 CALL I2AH 9
45C3 11FB46 02340 LD DE,MES34 ;FORMAT PROM CONTENTS
45C6 F1 02350 POP AF
45C7 CD9446 02360 CALL I2AH
45CA 11F646 02370 LD DE.MES33 -
45CD El1 02380 POP HL :GET PROM MEMORY ADDRESS
45CE ES5 02390 PUSH HL .
45CF 7C 02400 LD A,H ¢
45D0 CD9446 02410 CALL I2AR ;FORMAT PROM MEMORY ADDRESS
45D3 13 02420 INC DE
45D4 13 02430 INC DE
45D5 7D 02440 LD AL
45D6 CD9446 02450 CALL I2AH
45D9 2AB647 02460 LD HL, (ERRS} ;ERRS = ERRS + 1
45DC 23 02470 INC HL
45DD 22B647 02480 LD (ERRS) ,HL
45E0 21DC46 02490 LD HL,MES3
45E3 CD8DO1 02500 CALL PMSG :PRINT THE DISCREPANCY
45E6 D1 02510 POP DE
45E7 El 02520 POP HL
45E8 Cl 02530 POP BC
02540 ;
45E9 13 02550 VE100 INC DE
45EA 23 02560 INC HL
45EB 0B 02570 DEC BC
45EC 3A8038 02580 LD A, {(3880H)
45EF B7 02590 OR A ;SHIFT FOR ESCAPE
45F0 CO 02600 RET N2
45F1 78 02610 LD A,B
45F2 Bl 02620 OR C
4ASP3 C29B45 02630 Jp NZ,VE1l0
02640 :
45F6 2BB647 02650 LD HL, (ERRS) 1 FORMAT ERRS .
45F9 11FF46 02660 LD DE.MES41 :
45FC 7C 02670 LD A.H
45FD CD9446 02680 CALL I2AH
4600 13 02690 INC DE)
4601 13 02700 INC DE N
4602 7D 02710 LD A,L %
4603 CD9446 02720 CALL I2AH
4606 21FPE46 02730 LD HL,MES4 ;PRINT 'XXXX DISCREPANCIES'
4609 CD8DO1 02740 CALL PMSG
460C C9 02750 RET
02760
02770 PROG — WRITE MEMORY INTO PROM
02780
02790 ALL 1024 WORDS OF THE DATA BUFFER ARE
02800 WRITTEN TO THE PROM., TIME APPROXIMATELY 2 MINUTES
02810 ;
460D 016400 02820 PROG LD BC,100D :NUMBER OF PROGRAM LOOPS
4610 3E80 02830 PROGC LD A,80H :MODE 0, ALL PORTS = OUTPUT
4612 D38F 02840 ouT (PO),A
4614 3E20 02850 LD A,20H

190

4616
4618
461B
461E
461F
4621
4622
4624
4625
4627
4628
462A
462B
462D
462F

4630
4632
4634
4635
4637
4639
463C
463D
463E
463F
4640
4641
4642

4645 0

4646
4649

464n
464D
4650
4651
4653
4654
4657
4658
4659
465C
465F
4660
4661
4662
4663
4666
4667
4669
466A
466C

D38E
21004C
11FF03
7E
D38C
7B
D38D
7a
F620
D38E
F5

Fl
EE20
D38E
c5

010100
CD1046

02860
02870
02880
02890
02900
02910

02920

02930
02940
02950
02960
02870
02980
02990
03000
03010
03020
03030
03040
03050
03060
03070
03080
03090
03100
03110
03120
03130
03140
03150
03160
03170
03180
03190
03200
03210
03220
03230
03240
03250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03390
03400
03410
03420

PG10
PG20

PG30

PGS
PGs1o0

PGS20

ouT (PC),A
LD HL,ILWM
LD DE,1023
LD A, (BLJ
OUT (PA},A
LD A,E

OUT (PB),A
1D A,D

OR 20H

ouT (PC),A
PUSH AF
POP AP

XOR 208
ouT (pC),a
PUSH EC

CRITICAL TIME -

LD B,133D
DJINZ PG30
POP BC

XOR 20H
OUT (2C),A
LD A,(3880H)
OR A

RET Nz

LD A,D

OR E

DEC HL

DEC DE

JP NZ,PG20
DEC C

JP NZ,PGl0
RET

;SET WRITE ENABLE

:HL = ADDR OF LAST WORD IN BUFFER

:OUTPUT DO-D7

;OUTPUT AQO-A7

;OUTPUT AB-AlQ
:SHORT DELAY

:PULSE IT

MODEL DEPENDENT

:** MODEL III 152D OR 98H **
sWAIT 1.0 MILLISECONDS

:END OF PULSE

;SHIFT FOR ESCAPE

;sFINISHED A PROGRAM LOOP?

:FINISHED WITH LOOP?

SHORT - SHORT PROGRAM CYCLE

LD BC,0001H
CALL PROGC
INC B

LD A,68D
CP B

JP Z,PGS20
INC C

PUSH BC
CALL SR

1D A, (3880H)
OR A

RET Nz

INC DE

INC HL
CALL CHECK
POP BC

JR NZ,PGS10
LD C,B

SRL C

JR PROGC

s INTIALIZE COUNT

;ONE LOOP DEFINED BY C

:KEEP TRACK OF LOOPS

¢NO LONGER THAN LONG PROGRAM

:AFTER 256, BAD PROM

sSET UP FOR 1 PASS

i SAVE

;SET UP TO READ

:SHIFT FOR ESCAPE

;CORRECT DE TO 0000H
+ADJUST HL ALSO

:NO VERIFICATION, TRY AGAIN
:REPEAT FOR HALF NUMBER

: PROGRAM REMAINING CYCLES

191

466E
4671
4672
4674
4675
4677
46789
467A
4678
467C
467D
467F
4680
4681
4682
4683
4684
4685
4686
4688

4689
468B
468D
468F
4691
4692
4693

4694
4695
4696
4697
4699
4698
469E
46A0
46A2
46A3
46A4
46A5
46A6
46A7
46A8
46A9
46AB

192

010004
7B
D38Dp
7A
F670
D38E
Cc5
C1
s
Cl
DB8C
BE
co
13
23
0B
78
Bl
20E3
c9

3E90
D38F
3E30
D38E
c5

c9

03430
03440
03450
03460
03470
03480
034390
03500
03510
03520
03530
03540
03550
03560
03570
03580
03590
03600
03610
03620
03630
03640
03650
03660
03670
03680
03690
03700
03710
03720
03730
03740
03750
03760
03770
03780
03790
03800
03810
03820
03830
03840
03850
03860
03870
03880
03890
03900
03810
03920
03930
03940
03850
03960
03970
03980
03990

CHECK
CH1

SR

Fbne nvoae e

2AH

IH10

CHECK - LIKE VERIFY BUT NO MESSAGES

LD BC,0400H :CHECK ALL

LD A,E

ouT (PBI,A :LOW ADDRESS

LD A,D

OR 70H

ouT (PC),A ;HIGH ADDRESS AND CONTROL
PUSH BC

POP BC

PUSH BC

POP BC

IN A, (PA) $READ PROM

CP (HL)

RET NZ :RETURN IF NO CHECK
INC DE

INC HL

DEC BC

LD A,B

OR C

JR Nz,CHl

RET

SR - SET UP CHIP TO READ

LD A,50H

ouT (P0),A sMODE 0, PORT A = INPUT
LD A,30H sPORT B + C = QUTPUT
OUT (PC).A

PUSH BC

POP BC ;SHORT DELAY

RET

I2AH - INTEGER TO ASCII HEX

A = INTEGER TO CONVERT
DE = ADDRESS OF ASCII BUFFER
ONLY THE FLAG REGISTER IS ALTERED

PUSH BC

INC DE ;CONVERT LAST NIBBLE FIRST
LD B.A ;SAVE THE INTEGER

AND OFH

CP 0AH

JP M,IH1O

ADD A,07 sADD 7 FOR A~F

ADD A,30H

LD (DE),A

DEC DE ;NOW CONVERT FIRST NIBBLE
LD A,B

RLCA sPUT LEFT NIBBLE

RLCA ; IN RIGHT NIBBLE

RLCA

RLCA

AND OFH

CP 0AH

s

)

46AD
46B0
4682
46B4
46B5
46B6
46B7

46B8
4689
46BA
46D8
46D9
46DA
46DB
46DC
46DD
0004
46E9
0002
46EC
0004
46FA
0002
46FD
46FE
0004
4703
4711
4712
4713
4720
4721
4734
4735
4745
4746
4750
4751
4752
4764
4765
4766
4775
4776
4777
4781
4782
4783
4797
4798
4784

0001
0002
0602
0602

FAB246
€607
€630
12

78

C1

c9

0D
oD
32
01

04000
04010
04020
04030
04040
04050
04060
04070
04080
04090
04100
04110
04120
04130
04140
04150
04160
04170
04180
04190
04200
04210
04220
04230
04240
04250
04260
04270
04280
04290
04300
04310
04320
04330
04340
04350
04360
04370
04380
04390
04400
04410
04420
04430
04440
04450
04460
04470
04480
04490
04500
04510
04520
04530
04540
04550
04560

IH20

ﬁESl

MES2

MES3
MES31
MES32
MES33
MES34
MES4
MES41
MESS

MES6
MES7
MESS

MES9
MESA
MESB
MESC

SPrLAG
ERRS
NBYTES
PROMA

Jp M.
ADD A,7

IH20

ADD A,30H
LD (DE).,A

LD A,

B +RESTORE REGISTERS

POP BC

RET

DEFB
DEFB
DEF]
DEFB
DEFB
DEFHN
DEFB
DEFB
DEFH
DEFS
DEFHM
DEFS
DEFHM
DEFS
DEFH
DEFS
DEFB
DEFB
DEFS
DEFM
DEFB
DEFB
DEFM
DEFB
DEFM
DEFB
DEFN
DEFB
DEFH
DEFB
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFM
DEFB

DEFS
DEFS
DEFS
DEFS

0pH
ODH

'2708 EPROM PROGRAMMING PROGRAM®

01ln

0Dy

st

0lH

0DH
"MEMORY: '
4

s

4
2
! PROM: !

4

) 1

2

0lH

0bH

4

' DISCREPANCIES'
01lH

ODH

'DIRTY PROM. '
01H

'IT WILL HNOT WORK.
01H

*1T COULD WORK. !
014

*CONTINUE? '

01H

0DH

*ANSWER YES OR NO:
01n

QDH

'UNKNOWN COMMAND'
01H

ODH-

'CLEAN PROM'

0lH

0DH

‘WAIT FOR PROGRAMMING'

ODH

'MAXIMUM TIME ABOUT 2 MINUTES!

OlH

1
2
2
2

$ADD 7 FOR A-F

.

193

0002
0043
0400
4C00

0127
018D
020B
a08C
008D
008E
008F
0000

00000 TOTAL

BUF
BUFFER
CH1
CHECK
ERRS
EXIT
FWh
G3N
I2AH

IH10
IR20
WM
MEMA
MES1
MES2
MES3
MES31
MES32
MES33
MES34
MES4
MES41
MESS
HES6
MES7
MES8
MESS
MESA
MESB
MESC
NBYTES
PO
P10
P20
P30
P50
P60
P70

194

0127
47BE
4671
466E
47B6
4497
4801
0208
4694

46A0
46B2
4C00
47BC
46B8
46D9
46DC
46E5
46EA
46F6
46FB
46FE
46FF
4712
4721
4735
4746
4751
4765
4776
4782
4788
008F
44CE
44E4
44FA
4508
4514
451D

04570
04580
04590
04600
04610
04620
04630
04640
04650
04660
04670
04680
04690
04700
04710
ERRORS

04640
04580
03470
03460
04540
00580
04590
04660
03830

03800
04020
04600
04570
04080
04120
04150
04170
04180
04210
04230
04250
04260
04280
04320
04340
04360
04380
04410
04440
04470
04550
04700
00500
01010
01140
01250
01280
01310

00270
00250
03640
0337¢
02020
00490
00820
00650
02260
02720
03880
04000
02870
00800
00210
00230
02430
02240
02310
02370
02340
02730
02660
01010
01420
41240
01260
01350
00520
00980
01480
00780
02840
00970
00920
01230

01410
01380

DEFS 2

DEFS 67

DEFS 1024
EQU FWM+1023

MONITOR SUBROUTINES

EQU 0127H
EQU 01&DH
EQU 020BH
EQU 8CH
EQU 8DH
EQU BER
EQU 8FH
END

;MODEL III NO CHANGE
ODEL III NO CHANGE
:MODEL III EQU OlFAH

01290

01280 01300

02460 02480 02650

00880 01080 01510 04600

00710 00770
02300 02330 02360 02410 02450 02680

01120 01550 01620

01130 01560 01640
43700

R

5

o2,

PCHMD
PG10
PG20
PG30
PGS
PGS10
PGS20
PMSG

PNO
PR1O
PR20
PROG
PROGC
PROMA
RCHMD
RD10
READ
SHORT
SPFLAG
SPROG
"SR
VCHD
VE10
VE100
VERIFY

4540
4561
008C
008D
008E

44AE
4618
461E
4632
464A
464D
4668
018D

4537
4444
4465
460D
4610
47BA
449C
457A
4577
4572
4785
448F
4689
4445
4598
45E9
4590

01480
01620
04670
04680
04690

00770
02870
02890
03050
03230
03240
03400
04650

01420
00190
00380
02820
02830
04560
00650
01770
01760
01670
04530
40550
03690
00710
02060
02550
02000

01000
01680
01840
01780
01810
03720
00450
03180
03160
03050
01670
03380
03280
00220
01400
01170
00540
00510
01610
03240
00790
00410
01910
00660
01600
00200
00470
00180
00430
02630
02150
00720

01340
02130
02070
02100

00570

00240
01430

00670

03420
01090

00840
00560
01760

01650

02900
02920
02860

00530
01500

00730

01520

01580
02050

03560
03480
02950 02990 03080 03510

00990 01020 012506 01270
02500 02740

01360 01440 01660

01630

03310

195

APPENDIX G

Source Listing for the
2716 EPROM Programmer

197

4400

4400
4402
4405
4408
4408
440E
4411
4414
4415
4418
4417
441B
441D
441E
4420

4422
4424
4427
4429
442C
442E
4431
4433
4436
4438
4434
443C
443F
4442
4445
4448
4447
444C

444D
4450

198

FDES

CDF845
212746
CD8Do1
214846
CDaDnol
214547

€b2701
3620
23
3630
23
362C
FDE1

FD23
FD7E00Q
FE52
CA4D44
FES56
CA5644
FE50
CASF44
FE45
280E
FE2C
C22244
21p44e6
CD8DO1
C30544
FDEL
FD23
c9

CDOBO2
CD1E45

00010
00020
00030
40040
06050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00280
00300
00310

00320

00330
00340
00350
00360
00370
00380
00350
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00516
00520
00530
00540
00550
00560
00570

PR1O

PR20

EXIT

RCMD

PROM - BURN A 2716
DISK NAME _ P2716/ASM
FOR MODIFIED TRS5-80 SYSTEMS

COMMANDS:

READ: R MEMORY ADDR., # BYTES, PROM ADDR.
VERIFY: v " v T "
PROGRAM: P " . o "
EXIT: E

SUBROUTINES USED FROM MONITOR:
BUF, G3N, PMSG

ORG 04400H

PUSH IY :SAVE MONITOR POINTER

CALL SR $+SET UP AND REMOVE VOLTAGES

LD HL,MESL :PRINT 'PROM PROGRAMMING PROGRAM'
CALL PMSG

LD HL,MES2 :PRINT PROMPT (>}

CALL PMSG

LD HL,BUFFER

PUSH HL

CALL BUF

LD (HL),20H :PUT SPACE

INC HL

LD (BHL},30H :IN CASE THIRD ARGUMENT NOT ENT
INC HL

LD (HL),',?' END

POP 1Y

BRANCH TO CORRECT SECTION OF PROGRAM DEPENDING
ON COMMAND ENTERED

INC 1Y

LD A, (IY+0)

Cp 'R'

JP Z,RCMD

Cp V'

JP Z,VCHMD

cp 'p!

JP Z,PCHMD
tgt

JR Z,EXIT :IF EXIT, RETURN TO MONITOR
e :IF COMMA, PRINT *UNKNOWN COMMAND®

JP NZ,PR20

LD HL,MESA

CALL PMSG

JP PR10O

POP IY

INC IY $1ADJUST BUFFER

RET

R - READ

CALL G3N :*ADDRESS CHANGE MODEL III*
CALL READ ;SUBROUTINE READ DOES THE WORK

T

P

s

4453

4456
4459
445C

445F
4462
4466
446A

446D
4470
4473
4474
4476
4477
4479
447B
447C
447D
447F
4481
4484
4485
4486
4487

4488 ¢

448B
448E
4491
4494
4497

449A
44SE
44A1
44A5
4428
44A9
44AB
44AC
44AE

C30544

ChoBO2
CD3745
C30544

CpoBO2
ED433F47
ED534147
224347

CDFB845
010008
7B
D38D
7A
F670
D38E
c5

Ccl
DB8C

€D8Do1

ED5B4147
214347
ED4B3F47
CDFB845

00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
06740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00820
003930
0094¢
00950
00960
60570
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140

P

CMD

PCHD

P20

P30

JP PR10O
V -~ VERIFY

CALL G3N ; *ADDRESS CHANGE MODEL III*

CALL VERIFY : SUBROUTINE VERIFY DOES THE WORK

JP PR1O

P - PROGRAM

CALL G3N ; *ADDRESS CHANGE MODEL III*
LD (NBYTES},BC ;SAVE ARGUMENTS

.D (PROMAJ,DE

LD (MEMA},HL

CHECK IF IT'S DIRTY

BC = #0F BYTES TO CHECK

HL = MEMORY TO PROGRAM

DE = OFFSET ADDRESS

CALL SR ;SET UP TO READ

LD BC,0800H ;CHECK ENTIRE EPROM
LD A,E ;LOW ADDRESS

QUT (PB).A

Lb A,D :HIGH ADDRESS AND CONTROL
OR 070H

ouT (PC).A

PUSH BC

POP BC ; SHORT DELAY

IN A, (PA) ;GET DATA

CP OFFH

JP NZ,P20 :IT'S DIRTY

INC HL

DEC BC

LD A,B

OR C

JP NZ,Pl0

LD HL,MESB

CALL PMSG

JP P8O :IT'S CLEAN

LD HL,MESS

CALL PMSG ;PRINT 'DIRTY PROM.'

DETERMINE WHETHER IT CAN BE PROGRAMMED
IF ATTEMPT IS MADE TO CHANGE A 0 TO 1,
IT WON'T WORK

LD DE, (PROMAJ

LD HL, (MEMA}

LD BC, (NBYTES)

CALL SR $SET UP TO READ
LD A,E

OUT (PB},A

b A,D

OR 070H

OUT (PC),A

199

44B0
44B1
44B2
4484
44B5
44B6
4489
44BA
44BB
44BC
44BD
44BE
44C1
44C4
44C7
44CA
44CD
44D0
44D3
44D6
44D7
44D8
44DA
44DD
44DF
44E2
44E4
44E7
44EA
44ED
4470
44F3
44F6

44F8

44FC
44FF
4503
4506
450A
450D
4510
4514
4518
451B

451E
4521

200

€D8Dpol
C30544

210947

Cb8DOoL
ED4B3F47
284347
ED5B4147
CDB645
274347
ED5B4147
ED4B3F47
CD3745
€30544

CDFB45
78

01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01350
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01580
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710

P50

P60

P70

PNO

e e
©
o

PS50

READ
RD10O

PUSH BC
POP BC

IN A, (PA)
CPL

AND (HLJ
JP Nz,PNO
INC DE

INC HL

DEC BC

Lb A,B

OR C

JP NZ,P30
LD HL,MES7
CALL PMSG
LD HL,MESS8
CALL PMSG
LD HL.BUFFER
CALL BUF
LD HL,BUFFER
INC HL

LD A, (HL)
cp o'y’

JP %Z,P80
CP 'N!

JP Z,PR1O
CP 0DH

JP NZ,P70
LD HL.MESS
CALL PMSG
JP P60

LD HL,MES6
CALL PMSG
JP PR10O

: SHORT DELAY

;IF N2 IT WON'T WORK

;PRINT 'IT COULD WORK'

:PRINT 'CONTINUE?®

:1CHECK IF YES OR NO TYPED IN

:IF YES, CONTINUE

sIF NO, GO BACK TO BEGINNING

:PRINT *ANSWER YES OR NO'

:PRINT *IT WON'T WORK'

:GO BACK FOR NEW COMMAND

ATTEMPT TO PROGRAM THE 2716 EPROM

LD HL,MESC

CALL PMSG

LD BC, (NBYTES!}

LD HL, (MEMA)

LD DE, {PROMA)

CALL PROG
LD HL, (MEMA)

LD DE, {PROMA)
LD BC, (NBYTES)

CALL VERIFY
JP PR10O

:PRINT'WAIT FOR PROGRAMMING
: MAX TIME 2 MINUTES'

;OFFSET
: PROGRAM IT

READ - READ PROM INTO MEMORY

BC
DE
HL

BYTES TO READ
PROM ADDRESS
MEMORY ADDRESS

['

CALL SR
LD A,E

:{SET UP CHIP TO READ

iy

4522
4524
4525
4527
4529
4523
4528
452D
452E
452F
4530
4531
4532
4533
4536

4537
4538
453B
453E

453F
4542
4543
4545
4546
4548
4544
454B
454C
454D
454E
4550
4551

4554
4555
4556
4557
4558
455B
455C
455F
4560
4561
4562
4565
4568

D38D
7A
F670
D38E
Cc5
Cl
DBBC
77
13

0B
78
B1
€22145
c9

ES
210000
223047
El

CDF845

CAS245

Cc5
E5
D5
F5
115446
7C
Cb0346
13
13
7D
Cp0346
115946
7E

01720
01730
01740
01750
01760
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870
01880
01890
01900
01910
01520
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280

VERIFY

VE10

OUT (PB).A ;OUTPUT AO-A7

LD A,D

OR 070H

ouT (pC),A :OUTPUT A8-Al0

PUSH BC

POP BC : SHORT DELAY

IN A, (PA} :GET DATA BYTES

LD (HL).A :STORE IT IN MEMORY
INC DE

INC HL :GET READY TO READ NEXT BYTE
DEC BC

LD A,B

OR C

JP NZ,.RDI1O

RET

VERIFY - VERIFY MEMORY AGAINST PROM MEMORY

HL = MEMORY ADDRESS
DE = PRCM MEMORY ADDRESS
BC = # BYTES TO VERIFY

PUSH HL

LD HL,0000H fERRS = 0
LD (ERRS} ,HL

POP HL

CALL SR :SET UP CHIP TO READ
LD A,E

OUT (PB).,A :OUTPUT AQ-A7

LD A,D

OR 070H

QuT (PC) A ;OUTPUT A8-ALQ

PUSH BC

POP BC

PUSH BC

POP BC

IN A, {PA)

CP (HL}

JP 2,VE100 :IF MATCH, INCREMENT POINTERS

THERE IS A DISCREPANCY
WRITE 'MEMORY: XXXX XX PROM: XXXX XX'

PUSH BC

PUSH HL

PUSH DE

PUSH AF

LD DE,MES31 : FORMAT MEMORY ADDRESS
LD A,H

CALL I2AH

INC DE

INC DE

LD A,L

CALL I2AH

LD DE,MES32 s FORMAT MEMORY CONTENT
LD A, (HL)

201

4569
456C
456F
4570
4573
4576
4577
4578
4579
457¢C
457D
457E
457F
4582
4585
4586
4589
458C
458F
4590
4591

4592
4593
4594
4595
4598
4599
459A
4598
459C

459F
45A2
4575
45R6
45A9
45AA
45AB
45AC
45AF
45B2
45B5

4586
4588
45BA
45BD
45C1
45C5
45C6
45C8
45CS

202

CD0346
116446
Fl
CD0346
116546
El
E5
7C
{D0346
13
13
7D
CDO0346
2A3D47
23
223D47
214B46
€D8Dol
Dl
El
Ccl

C24245

2A3D47
116E46

3E80
D38F
2n4347
ED5B4147
ED4B3F47

02290
02300
02310
02320
02330
02340
02350
02360
02370
02380
02390
02400
02410
02420
02430
02440
02450
02460
02470
02480
02490
02500
02510
02520
02530
02540
02550
02560
02570
02580
02590
02600
02610
02620
02630
02640
02650
02660
02670
02680
02690
02700
02710
02720
02730
02740
02750
02760
02770
02780
02736
02800
02810
02820
02830
02840
02850

VELOO

i
PROG

PG10O

PG20

CALL I2AH

LD DE,MES34 s FORMAT PROM CONTENTS
POP AF

CALL IZ2AH

LD DE,MES33

POP HL :GET PROM MEMORY ADDRESS
PUSH HL

LD A,H

CALL I2AH ;FORMAT PROM MEMORY ADDRESS
INC DE

INC DE

LD A,L

CALL I2AH

LD HL, (ERRS) ;ERRS = ERRS + 1

INC HL

LD (ERRS),BL

LD HL,MES3

CALL PMSG :PRINT THE DISCREPANCY
POP DE

POP HL

POP BC

INC DE

INC HL

DEC BC

LD A,(3880H) ;SHIFT FOR ESCAPE
OR A

RET NZ $ ABORT

LD A,B

OR C

JP Nz,VE10

LD HL.(ERRS) ; FORMAT ERRORS
LD DE,MES41

LD A,H

CALL I2AH

INC DE

INC DE

LD A,L

CALL I23H

LD HL,MES4 :PRINT *XXXX DISCREPANCIES®
CALL PMSG

RET

PROG - WRITE MEMORY INTO PROM

LONGEST TIME APROX. 2 MIN.

LD A,80H :MODE 0, ALL PORTS = OUTPUT

ouT (PO),A

LD BL, (MEMA) ;HL = ADDR OF FIRST WORD IN BUFFER
LD DE, {PROMA) ;OFFSET

LD BC, (NBYTES)

LD A, (HL)

ouT (PA),A ;OUTPUT DO-D7

LD A,E

ouT (PBJ,A :OUTPUT AO-A7

&,

i
b

45CB
45CC
45CE
45D0
45D1
45D2
45D4
45D6

45D8

45DB
45DC
45DD
45DE
45E0
45EL
45E2
45E4
45E6
45E8
45EA
45ED
45EE
45EF
45F0
45F1
45F2
45F3
45F4
45F7

45F8
45FA

45FC
45FE
4600
4601
4602

4603
4604
4605
4606

7A
F638
D38E
C5
F5
D38E
EE80
D38E

01800D

3E90
D38F

3E7C
D38E
C5
Cl
c9

02860
02870
02880
02890
02900
02810
02920
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020
03030
03040
03050
03060
03070
03080
03090
03100
03110
03120
03130
03140
03150
03160
43170
03180
03190
03200
03210
03220
03230
03240
03250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03390
03400
03410
03420

PG30

R

el

12AH

LD A,D

OR 038H :TURN ON +25 AND OUT ENABLE (20)
OuT (PC).,A :OUTPUT A8-~AlQ

PUSH BC :SAVE

PUSH AF :SAVE

OUT (PC),A : PROGRAMMING STARTS

XOR 80H

ouT (PC),A :+PULSE IT

CRITICAL TIME - MODEL DEPENDENT

LD BC,0D80R :** QF6EH MODEL III **

: 50 MILLISECOND DELAY

DEC BC SWAILIT

LD A,B

OR C

JR NZ,PG30

POP AF

POP BC ;REGISTERS RESTORED
XOR 80H

ouT (PC},A +END OF PULSE

OR 070H ;ALL VOLTAGES OFF
OUT (PC).,A

LD A,(3880H) iSHIFT FOR ESCAPE
OR A

RET N2 ; ABORT

DEC BC

LD A.B

OR C :SET 0 FLAG FOR END
INC HL :ADJUST POINTERS
INC DE s NEXT LOCATION

JP Nz ,PG20 :IF NOT FINSHED, DO NEXT
RET

SR -~ SET UP CHIP TO READ

LD A,90H

ouT (PO} ,A :MODE 0, PORT A = INPUT
:PORT B AND C = QUTPUT

LD A,70H

OUT (PC).,A

PUSH BC

POP BC : SHORT DELAY

RET

I2AH - INTEGER TO ASCII HEX
A = INTEGER TO CONVERT

DE = ADDRESS OF ASCII BUFFER
ONLY THE FLAG REGISTER IS ALTERED

PUSH BC

INC DE ;CONVERT LAST NIBBLE FIRST
LD B,A ;SAVE THE INTEGER

AND OFH

203

4608
460A
460D
460F
4611
4612
4613
4614
4615
4616
4617
4618
461A
461C
461F
4621
4623
4624
4625
4626

4627
4628
4629
4647
4648
4649
464A
464B
464C
0004
4658
0002
465B
0004
4669
0002
466C
466D
0004
4672
4680
4681
4682
468F
4690
46A3
46A4
46B4
46B5
46BF
46C0
46C1
46D3
46D4
46D5
46E4

204

FEOA
FAOF46

03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
03570
03580
03590
03600
03610
03620
036306
03640
03650
03660
03670
03680
03650
03700
03710
03720
03730
03740
03750
03760
037706
03780
03790
03800
03810
03820
03830
03840
03850
03860
03870
03880
03890
03300
03810
03920
03930
03940
03950
03960
035970
03980
039390

IH10

IB20

MES1

MES2

MES3

MES31
MES32
MES33
MES34
MES4

MES41

HMESS

MES6
HMES7
MESS

MES9

MESA

b,
pF

CP OAH

JP M,

IR10

ADD A.07 :ADD 7 FOR A-F

ADD A,30H

Lb (DE) A

DEC DE +NOW CONVERT FIRST NIBBLE

LD A,

RLCA
RLCA
RLCA
RLCA

B
:+PUT LEFT NIBBLE
IN RIGHT NIBBLE

AND OFH

CP 0AH
JP M,

1H20

ADD A,7 :ADD 7 FOR A~F ¥
ADD A,30H
LD (DE).A

b A,

B ;RESTORE REGISTERS

POP BC

RET

DEFB
DEFB
DEFHM
DEFB
DEFB
DEFM
DEFB
DEFB
DEFM
DEFS
DEFM
DEFS
DEFHM
DEFS
DEFH
DEFS
DEFB
DEFB
DEFS
DEFHM
DEFB
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFH
DEFB
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB

0DH

ODH ;SPACE TO AID READ
'2716 EPROM PROGRAMMING PROGRAM'
01"

ODH

l)!

01n

ODH

TMEMORY: '

PROM: °*

[SIPIN RS

0l

0DH

4

' DISCREPANCIES'
01H

0DH

'DIRTY PROM. ' ¥
OlH

TIT WILL NOT WORK. °*

01H

'IT COULD WORK. °*

01H

"CONTINUE? ' .
01

ODH F 4
*ANSWER YES OR NO: '

01H

ODH

TUNKNOWN COMMAND®

01H

LR

46E5 0D
46E6 45
4708 01
4709 0D
470A 57
471E 0D
471F 4D
473B 01

0001
0002
0002
0002
0002
0043

0127
018D
0208
008C
008D
008E
008r
0000
00000 T

BUF
BUFFER
ERRS
EXIT
G3N
IZ2AH

IH10
IH20
MEMA
MES1
MES2
MES3
MES31
MES32
MES33
MES34
MES4
MES41
MESS
MES6
MEST
MES8
MES9
MESA
MESB
MESC
NBYTES

OTAL

0127
4745
473D
4448
020B
4603

460F
4621
4743
4627
4648
4648
4654
4659
4665
466A
466D
466E
4681
46590
46A4
46B5
46C0
46D4
46E5
4709
473F

04000
04010
04020
04030
04040
04050
04060
04070
04080
04090
04100
04110
04120
04130
04140
04150
04160
04170
04180
04190
04200
04210
04220
04230
04240
04250
ERRORS

04180
04140
04100
00500
04200
03380

03460
03580
04130
03640
43680
03710
03730
03750
03770
03790
03810
03820
03850
03880
03900
03920
043940
03970
04000
04030
04110

MESB

MESC

SPFLAG
ERRS
NBYTES
PROMA
MEMA
BUFFER

00240
00220
01960
00440
00560
02220
02680
03440
03560
00710
00180
00200
02450
02200
02270
02330
02300
02680
02620
00990
01450
01270
01290
01420
00470
00960
01510

DEFB
DEFM

DEFB 0

DEFB
DEFM
DEFB
DEFHM
DEFB

DEFS
DEFS
DEFS
DEFS
DEFS
DEFS

MONT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
END

01320
01310
02420

00620
02260

01070

0DH

'EPROM CLEAN IN LOCATIONS REQUESTED'
1n

0DH

"WALIT FOR PROGRAMMING'

ODH

'MAXIMUM TIME ABOUT 2 MINUTES'

0lH

1
2
2
2
2
67
TOR SUBROUTINES
01278 ;MODEL III NO CHANGE
018DH ;MODEL III NO CHANGE
020BH sMODEL II1 EQU Ol1FAH
8CH
8DH

8EH
8FH

01330
02440 02610

00680
02250 02320 02370 02410 02640

01550 01580 02790

00650 01080 01540 01600 02810

205

PO
P10
P20
P30
P50
P60
P70
P80
PS0
PA
PB
PC

PCMD
PGL0
PG20
PG30
PMSG

PNQ
PR1O
PR20
PROG
PROMA
RCMD
RD10
READ
SPFLAG
SR
VCMD
VE10
VE100
VERIFY

206

008F
4473
4494
44A8
44C4
44CD
44D6
44F9
450D
008C
008D
008E

445F
45BA
45C5
45DB
018D

44F0
4405
4422
45B6
4741
444D
4521
451E
473C
45F8
4456
4542
4592
4537

04240
00810
0059¢
01100
01280
01310
01340
01510
01580
04210
04220
04230

00680
02790
02820
0299¢
04190

01450
00180
00350
02770
04120
00560
01710
01700
04050
03240
00620
02000
02510
01940

02780
00950
00900
01260

01440
01410
00980

00880
00820
00850
03060
00420

03170
03020
00190
01430
01200
00450
00460
01570
00700
00380
01850
00570

00170
00400
02590
02110
00630

03250

01370
01170 01780
01110 01720

01140 01750
03080 03280

00210 00480
01460 01530

00580 00640

01060 01560

00790 01090

01610

02090
02010
02040

00870
02460
01390

01580

01700

02830
02850
02880

01000
02700
01470

02800

01990

02910 02930

01280 01300

01620

S
S,

4

APPENDIX H

Source Listing for the
8755 EPROM Programmer

207

00010 PROM - BURN A 8755

00020 : DISK NAME P8755/ASM :
00030 ; FOR MODIFIED TRS-80 SYSTEMS)
00040
60050 COMMANDS :
00060 READ: R MEMORY ADDR., # BYTES, PROM ADDR.
00070 VERIFY: V " . L "
00080 ; PROGRAM: P " P L "
00090 ; EXIT: E
00100
00110 : SUBROUTINES USED FROM MONITOR:
00120 BUF, G3N, PMSG §
00130 :
00140 : PORT ASSIGNMENTS
00150 ; K
00160 : PORT A
60176 ; ADDRESS 0~7 DATA 0-7 E 3
00180
00190 : PORT B
00200 ;BO - ALE Bl - I0O/M B2 - PROG/CEl B3 - CE2
00210 ;B4 - /IOW B5 - /I0R B6 - CLK E7 - /RD
60220
00230 ; PORT C
00240 :BO - A8 Bl - AS B2 - Al0 B3} - XX
00250 ;B4 ~ XX B5 - XX 86 - PROG PULSE B7 - XX
00260 :
4400 00270 ORG 04400H
00280 :
4400 FDES 00290 PUSH IY ;SAVE MONITOR POINTER
4402 CDFA45 00300 CALL SO $SET UP AND REMOVE VOLTAGES
4405 213646 00310 PRIO LD HL,MES1 :PRINT 'PROM PROGRAMMING PROGRAM'
4408 CDBDO1 00320 CALL PHMSG
440B 215746 00330 LD HL,MES2 ;PRINT PROMPT (>
440E CDBDO1I 00340 CALL PMSG
4411 215447 00350 LD HL,BUFFER
4414 ES 00360 PUSH HL
4415 CD2701 00370 CALL BUF ;GET COMMAND BUFFER
4418 3620 00380 LD (HL},20H ;PUT SPACE
441n 23 00390 INC HL
441B 3630 00400 LD (HL),30H :IN CASE THIRD ARGUMENT NOT ENT
441D 23 00410 INC HL ‘
441E 362C 00420 LD (HL},'.' :END
4420 FDE1 00430 POP IY
00440 ; .
00450 BRANCH TO CORRECT SECTION OF PROGRAM DEPENDING :
00460 : ON COMMAND ENTERED 3
00470 :
4422 FD23 00480 PR20 INC IY
4424 FDTEO0 00490 LD A, (IY+0)
4427 FES52 00500 CP 'R'
4429 CA4D44 00510 JP %,RCHMD
442C FES56 00520 cp tv!
442E CA5644 00530 JP Z.VCMD
4431 FES0 00540 cp 'p!
4433 CA5F44 00550 JP 7,PCHD
4436 FE4S 00560 CP 'E!
4438 280E 00570 JR 7,EXIT :IF EXIT, RETURN TO MONITOR

208

4437
443C
443F
4442
4445
4448
44448
444C

444D
4450
4453

4456
4459
445C

445F
4462
4466
4464

446D
4470
4473
4476
4478
4470
447C
4478
447F
4480
4482
4484
4487
4488
4489
448A
4488
448E
4491
4494
4497
449A

FE2C
C22244
21E346
CD8DO1
£30544
FDEL
FD23
Cco

CDOBO2
CD2445
C30544

CDOBO2
€D4045
C30544

CDOBO2
ED434E47
ED535047
225247

Dloaos
CDFA45
CD0146
3ES0
D38F
3E38
D38D

Bl

C27044
21F446
CD8DO1
C3FFr44
219046
CD8Do1

00580
0590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00750
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
003900
009810
60s20
00930
00940
00950
00960
00970
00980
00990
01000
0l01¢
01020
01030
01040
01050
01060
01070
01080
1090
01100
01110
01120
01130
01140

EXIT

RCMD

VCMD

PCHD

P10

P20

cp ', ;IF COMMA, PRINT 'UNKNOWN COMMAND'
JP NZ,PR20

LD HL,MESA

CALL PMSG

JP PR1O

POP IY

INC 1Y +ADJUST BUFFER

RET

R - READ

CALL G3N +GET ARGUMENTS

CALL READ :SUBROUTINE READ DOES THE WORK
JP PR1O

V -~ VERIFY

CALL G3N :GET ARGUMENTS

CALL VERIFY $+SUBROUTINE VERIFY DOES THE WORK
JP PRI1O

P - PRCGRAM

CALL G3N

LD (NBYTES) .BC ;SAVE ARGUMENTS

LD (PROMA),DE

LD (MEMA) ,HL

CHECK IF IT'S DIRTY

BC = #CF BYTES TO CHECK

HL = MEMORY TO PROGRAM

DE = OFFSET ADDRESS

LD BC,0800H :CHECK ENTIRE EPROM
CALL SO ;SET UP AS OUTPUT
CALL LADR :LATCH ADDRESS IN 8755
LD A,90H :CHANGE A TO INPUT PORT
OUT (PO} ,A sSEND TO CONTROL

LD A,RD :SET RD LOW

OUT (PB).,A

PUSH BC

POP BC ; SHORT DELAY

IN A, (PA) :GET DATA

CP OFFH

JP NzZ,P20 $IT'S DIRTY

INC HL

DEC BC

LD A,B

OR C

JP NZ,P10

LD HL,MESB

CALL PMSG

JP P80 :IT'S CLEAN

LD HL,MESS

CALL PMSG :PRINT 'DIRTY PROM.'

DETERMINE WHETHER IT CAN BE PROGRAMMED

448D
44A1
44p4
4448
44AB
44AE
44B0
44B2
44B4
44B6
44B7
44B8
44BA
44BB
44BC
44BF
44C0
44C1
44C2
44C3
44C4
44C7
44CA
44CD
44D0
44D3
44D6
44DS
44DC
44DD
44DE
44E0
44E3
44E5
44E8
44EA
44ED
44F0
44F3
44F6
44F9
44FC

44FF

4502
4505
4509
450C
4510
4513
4516

210

ED5B5047
2R5247
ED4B4E47
CDFA45
CD0146
3E90
D38F
3E38
D38D

5

Cl

DBBC

2F

A6
C2F644

CD8D01
£30544

211847

CD8D01
ED4B4E47
2A5247
ED5B5047
CDCO045
275247
ED5B5047

01150
01160
0117¢
01180
01150
01200
61210
01220
01230
01240
01250
01260
01270
01280
01280
01300
01310
01320
01330
01340
01350
01360
01370
01380
01380
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710

P30

PNO

Pao

P90

IF ATTEMPT IS MADE TO CHANGE A 0 TO 1,
IT WON'T WORK

LD DE, (PROMA}

LD HL,(MEMA)

LD BC, (NBYTES)

CALL SO :SET UP AS ALL OUTPUT
CALL LADR

LD A,90H sCHANGE TO INPUT PORT E
ouT (PO} ,A s
LD A,RD $SET TO READ

o

POP BC : SHORT DELAY i
IN A, {(PA) A
CPL

AND (HL)

JP NZ,PNO ;IF NZ IT WON'T WORK

INC DE

INC HL

DEC BC

LD A,B

OR C

JP NZ,P30

LD HL,MES7 ;PRINT 'IT COULD WORK'

CALL PMSG

LD HL,MESS ;PRINT 'CONTINUE?'

CALL PMSG

LD HL,BUFFER

CALL BUF

LD HL,BUFFER

INC HL ;CHECK IF YES OR NO TYPED IN
LD A, (HL)

cp 'y :IF YES, CONTINUE

JP %,P80

CP 'NY

JP Z,PR10 ;IF NO, GO BACK TO BEGINNING
CP 0ODH

JP NZ,P70

LD HL,MES9 :PRINT 'ANSWER YES OR NO'
CALL PMSG

JP P60 !
LD HL,MES6 :PRINT 'IT WON'T WORK' &
CALL PMSG

Jp PR1O ;GO BACK FOR NEW COMMAND

ATTEMPT TO PROGRAM THE 8755 EPROM

LD HL,MESC ;PRINT'WAIT FOR PROGRAMMING
: MAX TIME 2 MINUTES'

CALL PMSG

LD BC, (NBYTES)

LD HL, (MEMA}

LD DE, (PROMA} ;OFFSET

CALL PROG ; PROGRAM IT

LD HL, (MEMA)

LD DE, (PROMA)

s

3

451A
451E
4521

4524
4527
4525
452C
452E
4530
4532
4533
4534
4536
4537
4538
4536
453A
4538
453C
453F

4540
4541
4544
4547

4548
454B
454E
4550
4552
4554
4556
4557
4558
4557
455B

4558
455F
4560

ED4B4E47 01720
CD4045 01730
€30544 01740
01750
01760
01770
01780
01790
01800
01810
CDFA45 01820
CD0146 01830

3E90 01840
D38F 01850
3E38 01860
D38D 01870
5 01880
C1 01890
DB8C 01500
77 01910
13 01920
23 0193¢
0B 01940
78 01950
Bl 01960
C22445 01870
ce 01980
01990
02000
02010
02020
02030
02040
02050
ES 02060

210000 02070
224C47 02080
El 020590

02100
CDFA45 02110
CD0146 02120

3E90 02130
D38F 02140
3E38 02150
D38D 02160
C5 02170
<l 02180
DBSC 02150
BE 02200
CaAl4S 02210

02220

02230

02240

02250
5 02260
ES 02270
D5 02280

5T e we an we e aw e

G ne e e e v e e

ERIFY

H
VE10

e e w v

LD BC, (NBYTES)
CALL VERIFY
JP PR1O

READ -~ READ PROM INTO MEMORY

BC = # BYTES TO READ
DE = PROM ADDRESS
HL = MEMORY ADDRESS

CALL SO ;SET UP CHIP AS OUTPUT
CALL LADR

LD A,90H :DATA IN

OuUT (PO),A

LD A,RD ;READ 8755

OUT (PB),A

PUSH BC

POP BC ;i SHORT DELAY

IN A, (PA) ;GET DATA BYTES

LD (BHL),A ;STORE IT IN MEMORY
INC DE

INC HL ;GET READY TO READ NEXT BYTE
DEC BC

LD A,B

OR C

JP NZ,READ

RET

VERIFY - VERIFY MEMORY AGAINST PROM MEMORY
HL

DE
BC

MEMORY ADDRESS
PROM MEMORY ADDRESS
BYTES TO VERIFY

]

PUSH HL
LD HL,0000H ;ERRS = 0
LD (ERRS) ,HL

POP HL

CALL SO ;SET UP CHIP TO ALL OUTPUT
CALL LADR

LD A,90H

ouT (PO),A ;DATA IN

LD A,RD :SET UP TO READ

ouT (PBJ,A

PUSH BC

POP BC

IN A, (PA)

CP (HL}

Jp z,VELl0Q ;IF MATCH, INCREMENT POINTERS

THERE IS A DISCREPANCY
WRITE 'MEMORY: XXXX XX PROM: XXXX XX'

PUSH BC
PUSH HL
PUSH DE

n

4561
4562
4565
4566
4569
456A
4568
456C
456F
4572
4573
4576
4579
457n
457D
4580
4581
4582
4583
4586
4587
4588
4589
458C
458F
4590
4593
4596
4599
458C
459D
459E
459F
45A0

45A1
45A2
45A3
45A4
45A5
45h6

45A9
45AC

45AF 7

45B0
45B3
45B4
45B5
45B6
45B9
45BC
45BF

212

Bl
€24845

2p4aca7
117p4e

C
CD1246
13
13
7D
CD1246
217C46
Cp8pol
c9

02250
02300
02310
02320
02330
02340
02350
02360
02370
02380
02390
02400
02410
02420
02430
02440
02450
02460
02470
02480
02480
02500
02510
02520
02530
02540
02550
02560
02570
02580
02590
02600
02610
02620
02630
02640
02650
02660
02670
02680
02690
02700
02710
42720
02730
02740
02750
02760
02770
02780
02790
2800
02810
02820
02830
02840
02850

VEL00

PUSH AF

LD DE,MES31 ; FORMAT MEMORY ADDRESS
LD A,H

CALL I2AH

INC DE

INC DE

LD A,L

CALL I2AH

LD DE,MES32 s FORMAT MEMORY CONTENT
LD A, (HL)

CALL I2AH

LD DE,MES34 :FORMAT PROM CONTENTS
POP AF

CALL I2AH

LD DE,MES33

POP HL ;GET PROM MEMORY ADDRESS
PUSH HL

LD A.H

CALL I2AH s FORMAT PROM MEMORY ADDRESS
INC DE

INC DE

LD A.L

CALL I2AH

LD HL, (ERRS) ;ERRS = ERRS + 1

INC HL

LD (ERRS) ,HL

LD HL,MES3

CALL PMSG ;PRINT THE DISCREPANCY
LD A,(3880H) :CHECK FOR SHIFT

OR A

RET Nz sABORT

POP DE

POP HL

POP BC

INC DE
INC HL
DEC BC
LD A,B

[of
JP NZ,VELOD

LD HL, (ERRS) :FORMAT ERRS
LD DE,MES41

LD A,H

CALL I2AH

INC DE

INC DE

LD A,L

CALL I2AH

LD HL,MES4 :PRINT 'XXXX DISCREPANCIES'
CALL PMSG

RET

PROG — WRITE MEMORY INTO PROM

LONGEST TME APROX. 2 MIN.

A,

gz

02860
45C0 2A5247 02870 PROG LD HL, (MEMA) :HL = ADDR OF FIRST WORD IN BUFFER

45C3 EDSBS047 02880 LD DE, {PROMA) :OFFSET
45C7 ED4B4EAT7 02890 LD BC, (NBYTES)
45CB 3A8038 02900 PG20 LD A, (3880H) ;CHECK FOR SHIFT
45CE B7 02910 OR A
45CF CO 02920 RET Nz iABORT
45D0 CDFA45 02930 CALL SO :ALL OUTPUT
45D3 CDO146 02940 CALL LADR
45D6 7E 02950 Lb A, (HLJ $GET DATA
45D7 D38C 02960 OuT (PA).A :OUTPUT DATA
45D9 3EBC 02970 LD A,PGWD :TURN CN CE2,PROG, & +25 OFF
45DB D38D 02980 OUT (PB),A
45DD 3ECF 02990 LD A,O0CFH ;ONLY WANT BITS 6 & 7 LOW FOR PULSE
45DF C5 03000 PUSH BC ;1 SAVE
45E0 F5 03010 PUSH AF 1 SAVE
45E1 D38E 03020 OUT (PC),A ; PROGRAMMING STARTS
03030 :
03040 CRITICAL TIME - MODEL DEPENDENT
03050 ;
45E3 01800D 03060 LD BC.ODBOH :** QF6EH MODEL III **
03070 : 50 MILLISECOND DELAY
45E6 OB 03080 PG30 DEC BC SWAILT
45E7 78 03090 LD A,B
45E8 Bl 3100 OR C
45E9 20FB 03110 JR Nz,PG30
45EB F1 03120 POP AF
45EC C1 03130 POP BC tREGISTERS RESTORED
45ED EE40 03140 XOR 401 : PULSE OFF
45EF D3BE 03150 OuT (PC).,A :END OF PULSE, VOLTAGES OFF
45F1 OB 03160 DEC BC
45F2 78 03170 LD A,B
45F3 Bl 03180 OR C $SET 0 FLAG FOR END
45F4 23 03190 INC HL sADJUST POINTERS
45F5 13 03200 INC DE :NEXT LOCATION
45F6 C2CB45 03210 JP N%Z,PG20 ;IF NOT FINSHED, DO NEXT
45F9 C8 03220 RET
03230 :
03240
03250
03260 S0 - SET UP CHIP TO OQUTPUT
03270
45FA 3E80 03280 SO LD A,80H
45FC D38F 03290 ouT (PO} .,A :MODE O, ALL OUTPUT
45FE C5 03300 PUSH BC
45FF Cl 03310 POP BC : SHORT DELAY
4600 C9 03320 RET
03330
03340 ; LATCH ADDRESS ON 8755
03350
4601 7B 03360 LADR LD A,E ;E HAS OFFSET LOW ADDRSS
4602 D38C 03370 OUT (PA).A :TO DATA ADDRESS LINES
4604 7A 03380 LD A,D ;HIGH ADDRESS
4605 F678 03390 OR 78H : PROGRAM VQLTAGE OFF
4607 D38E 03400 OUT (¥C).,A ;ADDRESS AND VOLTRGES SET
4609 3EBY9 03410 LD A,ADDSET ;ADDRESS SET UP
460B D38D 03420 QuT (FB) .2

213

460D
460F
4611

4612
4613
4614
4615
4617
4619
461C
461E
4620
4621
4622
4623
4624
4625
4626
4627
4629
462B
462E
4630
4632
4633
4634
4635

4636
4637
4638
4656
4657
4658
4659
465A
465B
0004
4667
0002
466A
0004
4678
0002
4678
467C
0004
4681
468F
4690

214

3EBS
D38D
c9

01
0D

20
0D

03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
03570
03580
03590
03600
03610
03620
03630
03640
03650
03660
03670
03680
03690
03700
03710
03720
03730
43740
03750
03760
03770
03780
03790
03800
03810
03820
03830
03840
03850
03860
03870
03880
03890
03900
03910
03920
0393¢
03940
03950
03960
03970
03980
03930

[T

2AH

IH10

1E20

MES1

MES2

MES3

MES31
MES32
MES33
MES34
MES4

MES41

MESS

LD A,ALEON
oUT (PBJ,A
RET

;ADDRESS LATCHED

I2AH - INTEGER TO ASCII BEX

R = INTEGER TO CONVERT
DE = ADDRESS OF ASCII BUFFER
ONLY THE FLAG REGISTER IS ALTERED

PUSH BC

CP OAH

Jp M,IH1O
ADD A,07
ADD A,30H
LD (DE).A
DEC DE

LD A,B
RLCA

RLCA

RLCA

RLCA

AND OFH
CP OAH

JP M,IH20
ADD A,7
ADD A,30H
LD (DE).,A
LD A,B
POP BC
RET

DEFB 0DH
DEFB ODH

:+CONVERT LAST NIBBLE FIRST
;SAVE THE INTEGER

$ADD 7 FOR A~F

+NOW CONVERT FIRST NIBBLE

$PUT LEFT NIBBLE
: IN RIGHT NIEBLE

$ADD 7 FOR A-F

;RESTORE REGISTERS

DEFHM '8875 EPROM PROGRAMMING PROGRANM'®

DEFB 0lH
DEFB ODH
DEFN '>*
DEFB 01H
DEFB 0DH
DEFM 'MEMO
DEFS 4
DEFM '
DEFS 2
DEFM '
DEFS 4
¢
2

1

DEFH
DEFS
DEFB OlH
DEFB 0ODH
DEFS 4

RY: °*

PROM:

v

DEFM ' DISCREPANCIES'

DEFB G1lH
DEFB 0DH

iy

4691 44
469E 01
468F 49
46B2 01
46B3 49
46C2 01
46C4 43
46CE 01
46CF 0D
46D0 41
46E2 01
46E3 0D
46E4 55
46F3 01
46F4 0D
46F5 45
4717 01
4718 0D
4719 57
472D 0D
472E 4D
474A 01

0001
0002
0002
0002
0002
0043

00B8
00BY
0038
00BC

0127
018D
0208
008C
008D
008E
008F
0000

00000 TOTAL

ADDSET
ALEON
BUF
BUFFER
ERRS
EXIT
G3N

00B3S
00B8
0127
4754
474C
4448
0208

04000
04010
04020
04030
04040
04050
04060
04070
04080
04090
04100
04110
04120
04130
04140
04150
04160
04170
04180
04190
04200
04210
04220
04230
04240
04250
04260
04270
04280
04290

MES6
MES7
MES8
MESS

MESA
MESB

MESC

SPFLAG
ERRS
NBYTES
PROMA
MEMA
BUFFER

04310
04320
04330
04340
04350
04360
04370
04380
04390
04400
04410
04420
04430
04440
04450
04460
ERRORS

04330
04320
04390
04280
04240
00630
04410

0341¢
03430
00370
00350
02080
00570
00690

DEFM 'DIRTY PROM. °*
DEFB 01H

DEFM 'IT WILL NOT WORK.

DEFB 0lH

DEFM 'IT COULD WORK.
DEFB 01H

DEFM 'CONTINUE? *
DEFB 01H

DEFB ODH

DEFM 'ANSWER YES OR NO:

DEFB 01E
DEFB ODH

DEFM 'UNKNOWN COMMAND®

DEFB 01H
DEFB 0DH

DEFM 'EPROM CLEAN IN LOCATIONS REQUESTED'

DEFB 01H
DEFB ODH

DEFM 'WAIT FOR PROGRAMMING'

DEFB ODH

DEFM 'MAXIMUM TIME ABOUT 2 MINUTES'

DEFB 0l1H

DEFS 1
DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 67

PROGRAMMING CONSTANTS

EQU OBSH
EQU OBSH
EQU 038H
EQU 0BCH

MONITOR SUBROUTINES

EQU 0127H
EQU 018DH
EQU 020BH
EQU 8CH
EQU 8DH
EQU BEH
EQU 8FH
END

01440
01430 01450
02520 02540 02710

00750 00810

:LATCHES ADDRESS LINES

;SET UP ADDRESS DATA FOR LATCH
sREAD EPROM

:CE2 RIGH

:MODEL III NO CHANGE
:MODEL III NO CHANGE
:MODEL III EQU OlFaH

215

I12BH

IH10
IK20
LADR
MEMA
HMES1
MES2
MES3
MES31
MES32
MES33
MES34
MES4
MES41
MESS
MES6
MEST
MESS
MES9
MESA
MESB
MESC
NBYTES
PO
P10
P20
P30
P50
P60
P70
P8e

VE100
VERIFY

216

4612

03530

461E 03600
4630 03720
4601 (3360
4752 04270
4636 03780
4657 03820
465A 03850
4663 03870

4668

03890

4674 03910
4673 03930

467C
467D
4690
469F
46B3
46C4
46CF
46E3
46F4
4718
474E
oo8r
4470
4497
4478
44CA
44D3
44DC
44FF
4513
008C
008D
008E
445F
45CB
45E6
00BC
018D

44F6
4405
4422
45C0
4750
444D
0038
4524
45FA
474B
4456
4548
45A1
4540

03550
03960
03590
04020
04040
04060
04080
04110
04140
04170
04250
04450
060920
01110
01210
01400
01430
01460
01630
01700
04420
04430
04440
00810
02900
03080
04350
04400

01570
00310
00480
02870
04260
00690
04340
01820
03280
04230
00750
02110
062640
02060

02320
02780
03580
03700
00930
00840
00310
00330
02550
02300
02370
02430
02400
02790
02720
01110
01570
013580
01410
01540
00600
01080
01630
00820
00950
01070
01020
01380

01560
01530
01100

01000
00970
03020
00550
03210
03110
02970
00320
01550
01320
00620
00590
01690
00830
00510
00960
00700
00300

00530
02690
02210
00760

02360 02390 02420 02470 02510 02740

01220 01830 02120 02940
01190 01670 01700 02870

01200
01246

01490
01290

01260
03150

00340
01580

00710

01180
01250

01970
00920

01730

01660
01850

01900
01870
03400

00610
01650

00770

01680
01860
01210

01720
02140

02190
02160

01090
02560

01510

01710
02150
01820

02890
03290

02960
02980

01120
02800
01590

02880

02110

03370
03420 03440

01400 01420

01740

02930

)

s

Iindex

A Command(s)—cont
A, 68
@ command, 69-70 B, 80-81
A command, 68 BS, 80-81
Address, 18 buffer save, 80-81
ASCII, 24 C, 66-67
display, command, 68 clear, 66-67
Assembler, 12 D, 59
Assembly language, 12-13 display, 59
Assignments, port, 23, 31-33 ASCII, 68
Asynchronous communication, 89 E, 66
examine registers, 63-65
B execute, 66
buffer, 80-81
B command, 80-81 execution, 54-57
BASIC, 11 exit programmer, 115
Baud, 89 F, 68-69
rate, 94 fill, 69-70
Bias, 62 find, 68-69
Blocks, data, 28-29 format, 53-54
Bounce, contact, 25 G, 59-63
Breakpoints, 60-63 go, 59-63
BS command, 80-81 H, 70
Buffer, 77-80 hexadecimal arithmetic, 70
execute, command, 80-81 1,58
save command, 80-81 input, 70-71
insert, 58
L,75
¢ list, 75
C command, 66-67 of, 55
Cagsette recorders, 96 M, 72
Checksum, 28-29, 30 move, 72
Clear command, 66-67 N, 70-71
Code, serial interface driver, 0, 71-72
for RS-232C, 91-92 output, 71-72
Command(s) P, 75-76, 114-115
@, 69-70 programming, 114-115

217

Command(s}—cont

Q, 69

quest, 69

R, 73-74

read, 73-74, 113-114

S, 57-58

short-cycle program, 115

single-step, 81-84

substitute, 57-58

T, 67-68

transfer, 87-68

U, 76-77

user, 76-77

vV, 72-73

verification, 114

W, 73

write, 73

X, 63-65

(modify), 65-66

Z,81-84
Connectors, edge-card, 18, 30-31
Contact bounce, 25
Control

signals, 22-23

systems, 20
“Crash,” 59-60
Current loop, 88-89

D

D command, 59
Data, 18
blocks, 28-29
format, tape, 27-30
rate, 90
Development system, 17
DIP shunts, 15, 40-41, 42-43, 43-47
Display
ASCII command, 68
command, 59
Driver code, serial interface,
for RS-232C, 91-92

E command, 66

Edge-card connector, 30-31
Editor/assembler, 13

8255, 106

218

8755, 100
EPROM
i/o chip, 105-106
programming, 117-119
EPROM(s)
8755, programming, 117-119
i/o chip, 8755, 105-106
physics, 98-99
programmable, 99-100
programmer
hardware, 106-111
using, 113
single-voltage, 105
2708
program locations for, 115-116
programming, 111-116
2716, 99
programming, 116-117
2732, 100
2758, 100
2780, 99
Erasable programmable
read-only memory, 97, 98
ROMs, 98-100
Examine registers command, 63-65
Execute
buffer command, 80-81
command, 66
Execution, command, 54-57
Exit programmer command, 115

F

F command, 68-69
Fill command, 69-70
Find command, 68-69
Format
command, 53-54
data, tape, 27-30
FROLIC monitor, 53

G

G command, 59-63
Go command, 59-63

H

H command, 70

s

R

Halt modifications, 39-40

Hardware, EPROM programmer,
106-111

Hexadecimal arithmetic command, 70

I command, 58
Input
command, 70-71
keyboard, 25-26, 34
/output, tape, 26-27, 35
serial, 92-94
Insert command, 58
Interface
programmable peripheral, 106
‘RS-232C, alternate, 91
serial
driver code for RS-232C, 91-92
receiver for RS-232C, 94-96
standard, 86
Interrupt, 20-21, 35
modes, 20-21
modifications, 39-40
I/0 chip, EPROM, 8755, 105-106

K
Keyboard input, 25-26, 34

L command, 75

Light, ultraviolet, 99

List command, 75

Logic, memory decode, 40-42
Loop, current, 88-89

M

M command, 72
Machine code, 11
Mark, 86, 89
Memory
decode logic, 40-42
erasable programmable read-only,
97, 98
expansion, read-
only, 42-43
write, 42-43

Memory—cont
map, TRS-80, 15
programmable read-only, 97
read
-only, expansion, 42-43
/write, expansion, 43-47
Microprocessor, 15
Model
1, Modification of, 36-47
III, Modification of, 47-51
Modes, interrupt, 20-21
Modification of
Model
1, 36-47
111, 47-51
TRS-80, 35-51
Monitor, FROLIC, 53
Move command, 72

N
N command, 70-71

0

O command, 71-72
Output
command, 71-72
video, 24-25, 33-34

p

P command, 75-76, 114-115
Physics, EPROM, 98-99
Plug, 25-pin, 88
Port assignments, 23, 31-33
PPI chip, 106
Program locations for the 2708
EPROM, 115-116
Programmable
EPROMs, 99-100
peripheral interface, 106
read-only memory, 97
Programmer, EPROM
hardware, 106-111
using, 113
Programming
command, 114-115
considerations, 100-105

219

Programming—cont
8755 EPROM, 117-119
2708 EPROM, 111-116
2716 EPROM, 116-117
PROM, 97

Q

Q command, 69
Quest command, 69

R

R command, 73-74
Rate
baud, 94
data, 90
Read
command, 73-74, 113-114
-only memory expansion, 42-43
/write memory expansion, 43-47
Receiver, serial interface,
for RS-232C, 94-96
Recorders, cassette, 96

ROMs, erasable programmable, 98-100

RS-232C, 86-88
driver code for, 91-92
serial interface receiver for, 94-96

S

S command, 57-58
Serial
input, 92-94
interface
driver code for RS-232C, 91-02
receiver for RS$-232C, 94-96
Short-cycle program command, 115
Shunts, DIP, 40-41, 42-43, 43-47
Signals, control, 22-23
Single-
step command, 81-84
voltage EPROMs, 105
Space, 86, 89
Stackpointer, 63
String, buffer, 77
Substitute command, 57-58
System control, 20

220

T-BUG, 13
T command, 67-68
Tape
data format, 27-30
input/output, 26-27, 35
Transfer command, 67-68
TRS-80, 11, 14-18
Model
I, 18-30
111, 30-35
modification of, 35-51
Turnkey system, 13
20-mA current loop, 89
2708 EPROM

program locations for, 115-116

programming, 111-116
2716 EPROM, 99
programming, 116-117
2732 EPROM, 100
2758 EPROM, 100
2780 EPROM, 99

u

U command, 76-77
Ultraviolet light, 99
User command, 76-77

A

V command, 72-73
Verification, 73

command, 114
Video output, 24-25, 33-34

w

W command, 73
Write command, 73

X

X command, 63-65
(modify), 65-66

Z

Z command, 81-84
Z-80, 17

R

e

mn

READER SERVICE CARD

2 ng
To better serve you, the reader, please take a moment to fill out
this card, or a copy of it, for us. Not only will you be kept up to date

on the Blacksburg Series books, but as an extra bonus, we will
randomly select five cards every month, from all of the cards sent to
us during the previous month. The names that are drawn will win,
absolutely free, a book from the Blacksburg Continuing Education
Series. Therefore, make sure to indicate your choice in the space
provided below. For a complete listing of all the books to choose
from, refer to the inside front cover of this book. Please, one card
per person. Give everyone a chance.

In order to find out who has won a book in yourarea, cali (703)
953-1861 anytime during the night or weekend. When you do call,
an answering machine will let you know the monthly winners. Too
good to be true? Just give us a call. Good luck.

If I win, please send me a copy of:

I understand that this book will be sent to me absolutely free, if my
card is selected.

For our information, how about telling us a little about
yourself. We are interested in your occupation, how and where you
normally purchase books and the books that you would like to see
in the Blacksburg Series. We are also interested in finding authors
for the series, so if you have a book idea, write to The Blacksburg
Group, Inc., P.O. Box 242, Blacksburg, VA 24060 and ask for an
Author Packet. We are also interested in TRS-80, APPLE, OSI
and PET BASIC programs.

My occupation is
I buy books through/from
Would you buy books through the mail?
I'd like to see a book about
Name
Address
City
State Zip

MAIL TO: BOOKS, BOX 715, BLACKSBURG, VA 24060

iy

L

A

The Blacksburg Group

According to Business Week magazine (Technology July 6, 1976) large scale integrated circuits
or LS| “chips” are creating a second industrial revolution that will quickly invelve us all. The
speed of the developments in this area is breathtaking and it becomes more and more difficult to
keep up with the rapid advances that are being made. It is also becoming difficult for newcomers
to “get on board.”

It has been our objective, as The Blacksburg Group, to develop timely and effective educational
materials that will permit students, engineers, scientists, technicians and others to quickly learn
how to use new technologies and electronic techniques. We continue to do this through several
means, textbooks, short courses, seminars and through the development of special electronic de-
vices and training aids.

Our group members make their home in Blacksburg, found in the Appalachian Mountains of
southwestern Virginia. While we didnt actively start our group collaboration until the Spring
of 1974, members of our group have been involved in digital electronics, minicomputers and
microcomputers for some time.

Some of our past experiences and on-going efforts include the following:

~The design and development of what is considered to be the first popular hobbyist computer.
The Mark-B was featured in Radio-Electronics magazine in 1974. We have also designed several
8080-based computers, including the MMD-1 system. Qur most recent computer is an 8085-based
computer for educational use, and for use in small controllers.

—The Blacksburg Continuing Education Series™ covers subjects ranging from basic electronics
through microcomputers, operational amplifiers, and active filters. Test experiments and examples
have been provided in each book. We are strong believers in the use of detailed experiments and
examples to reinforce basic concepts. This series originally started as our Bugbook series and many
titles are now being translated into Chinese, Japanese, German and ltalian.

-We have pioneered the use of small, self-contained computers in hands-on courses for micro-
computer users. Many of our designs have evolved into commercial products that are marketed
by E&L Instruments and PACCOM, and are available from Group Technology, Ltd., Check, VA
24072.

—Ovur short courses and seminar programs have been presented throughout the world. Programs
are offered by The Blacksburg Group, and by the Virginia Polytechnic Institute Extension Divi-
sion. Each series of courses provides hands-on experience with real computers and electronic
devices. Courses ond seminars are provided on a regular basis, and are also provided for groups,
companies and schools ot a site of their choosing. We are strong believers in practical labora-
tory exercises, so much time is spent working with electronic equipment, computers and circuits.

Additional information may be obtained from Dr. Chris Titus, the Blacksburg Group, Inc. (703)
$51.9030 or from Dr. Linda Leffel, Virginia Tech Continving Education Center (703) 961-5241.

Our group members are Mr. David G. Larsen, who is on the faculty of the Department of Chem-
istry at Virginia Tech, and Drs. Jon Titus and Chris Titus who work full-time with The Blacksburg
Group, all of Blacksburg, VA.

TRS-80°
MORE THAN BASIC

This book presents a monitor program that makes a
TRS-80 Model | or lIl microcomputer into a develop-
ment system.

e The TRS-80 can be converted by loading object code
from cassette or diskette, or by ROM replacement.

e The monitor executes valid instructions or commands,
and it flags emors.

¢ The development system can be used to program in
Z-80 mnemonics.

e Over 26 commands are available; the user is given
total documentation.

The book also
e Describes hardware for a single-stepping feature.

e Discusses hardware for programming most of the
popular EPROMs.

® Provides source codes for the monitor and the
EPROM programmer.

e Presents hardware and software features of the TRS-80
Models | and lIl.

Howard W. Sams & Co., Inc.

1300 W 62nd Straet,. Indianapolis, Indiana 46268 USA

ISBN: 0-672-21813-5

