BOOK 2

TRS-80
INTERFACING

BY JONATHAN A TITUS, CHRISTOPHER A. TITUS, & DAVID G. L ARRSEN

1 § BLACKSBURG < inhe (ovearon semes

The Blacksburg Continving Education™ Series

The Blacksburg Continuing Education Series™ of books provide a laboratory—or experiment-
oriented approach to electronic topics. Present and forthcoming titles in this series include:

Advanced 6502 Interfacing

Analog Instrumentation Fundamentals

Apple Interfacing

Basic Business Software

BASIC Programmer’'s Notebook

Circuit Design Programs for the Apple I

Circuit Design Programs for the TRS-80

Design of Active Filters, With Experiments

Design of Op-Amp Circuits, With Experiments

Design of Phase-locked Loop Circuits, With Experiments
Design of Transistor Circuits, With Experiments

Design of VMOS Circuits, With Experiments

8080/8085 Software Design (2 Volumes)

8085A Cookbook

Electronic Music Circuits

555 Timer Applications Sourcebook, With Experiments
Guide to CMOS Basics, Circuits, & Experiments

How to Program and Interface the 6800

Introduction to FORTH

Microcomputer—Analog Converter Software and Hardware Interfacing
Microcomputer Interfacing With the 8255 PPl Chip
Microcomputer Design and Maintenance

NCR Basic Electronics Course, With Experiments

NCR Data Communications Concepts

NCR Data Processing Concepts Course

NCR EDP Concepts Course

PET Interfacing

Programming and Interfacing the 6502, With Experiments
16-Bit Microprocessors

6502 Software Design

6801, 68701, and 6803 Microcomputer Programming and Interfacing
The 68000: Principles and Programming

6809 Microcomputer Programming & Interfacing, With Experiments
TEA: An 8080/8085 Co-Resident Editor/Assembler

TRS-80 Assembly Language Made Simple

TRS-80 Interfacing (2 Volumes)

TRS-80 More Than BASIC

" EEENENRNENEMNEEREE N B B I BN I BN I I I N RN I I I R R I I B

In most cases, these books provide both text material and experiments, which permit one to
demonstrate and explore the concepts that are covered in the book. These books remain among
the very few that provide step-by-step instructions concerning how to learn basic electronic con-
cepts, wire actual circuits, test microcomputer interfaces, and program computers based on popu-
lar microprocessor chips. We have found that the books are very useful to the electronic novice
who desires to join the “electronics revolution,” with minimum time and effort.

Jonathan A. Titus, Christopher A. Titus, and David G. Larsen
"The Blacksburg Group”

Bug symbol trademark Nanotran, Inc., Blacksburg, VA 24060

Preface

In this book, the second of two books on interfacing the popular
TRS-80* computer from Radio Shack, we will be introducing you
to some of the advanced interfacing techniques that will allow you
to do real things with your computer. You will find that these tech-
niques can be applied to computer applications in your home, in a
research laboratory, in a school laboratory, or in situations where it
is just simply fun to experiment with some of the things that a com-
puter can do. Some of these interfacing techniques can be applied
with little difficulty, while others will require a careful analysis of
the device or instrument that is to be interfaced to the computer.

In particular, you will learn how the computer can be used to
drive high-current and high-voltage loads with open-collector chips,
with triacs, with solid-state relays, with transistor drivers, and other
interface circuits. You will learn how the computer can be used to
generate voltage and current signals that can be used in a variety of
control applications, from controlling servo motors in an X-Y plotter,
to controlling a programmable power supply. You will also learn
how the computer can be used to measure unknown voltages and
currents that may arise from solar collector temperature sensors,
level detectors, and other voltage-output transducers. Since many
computers are being used to control devices that are located at some
distance from the central processing unit {CPU), we have spent a
great deal of time describing the use of asynchronous-serial com-
munication schemes, and we have provided remote control circuits
that allow you to control Universal Asynchronous Receiver/Trans-
mitter (UART) chips, analog-to-digital converters, digital-to-ana-

s TRS-80 is a trademark of Radio Shack, a division of Tandy Corp.

log converters, and other devices that can be located from several
feet from the computer to several thousand feet from it. We will
also introduce you to several new interface/controller chips, such as
the Intersil ICL7109 A/D converter, and the Motorola MC14469 re-
mote control chip.

Since the basics of TRS-80 interfacing have been covered in de-
tail in TRS-80 Interfacing, Book 1, Howard W. Sams & Co., Inc.,
Indianapolis, IN 46206, we have not reviewed them here to any
extent, and we expect that you have mastered the basics of input
port construction, output port construction, device addressing, and
simple software development. You will also find that we have
skipped over a detailed discussion of the internal operations of
many of the interface devices that are described. We don’t feel
that this is information that is necessary to the design of interface
circuits, although you may find that it is “nice to know,” once the
interface has been tested, and is operational. Likewise, we doubt
that there are many readers who can provide a detailed description
of how automatic transmissions work, yet we all depend upon them.

The actual uses of the interface circuits that we describe are up
to you. While we will describe how to control high-voltage loads,
and how to measure small voltages, what you do with these ideas
is entirely up to you, whether you decide to build a small rocket
engine tester, or an egg sorter. You will find that the circuit descrip-
tions are as complete as possible, and that we have included pin
numbers for most of the complex circuits, so that you can use them
directly. Likewise, the software examples are complete, and you can
use them as they are, or modify and adapt them for your own pur-
poses. We have tried to avoid the use of “general” block diagrams
and simple flow charts that do little to increase your understanding
of the principles of interfacing computers to external devices.

Since we have provided fairly complete examples, we have de-
cided not to include experiments in this book. Doubtless, some of
our readers will miss this, but since the circuits and programs are
useful, as is, we expect that many readers will experiment with these
as they wish, making up for the lack of experiments.

In this book, some simple assembly-language programs are intro-
duced and explained. These programs deal with simple X-Y displays,
controlling a USART chip, and interrupt service subroutine op-
erations. As in the first TRS-80 interfacing book, a knowledge of
assembly-language programming is not necessary, but it can be quite
helpful, particularly if you are going to try to use interrupts. For
additional information on assembly-language programming, we refer
you to 8080/8085 Software Design, Books 1 and 2, and Z-80 Micro-
processor Programming & Interfacing, Book 1, Howard W. Sams &
Co., Inc., Indianapolis, IN 46206. The majority of the programs have

S

%

S

(>

:«“‘%

been written in BASIC, and we have not used “tricks” to perform
special functions in the programs. We are sure that some readers
will be able to “shorten” the programs, to make them a bit more
efficient, but efficiency was not our goal; simplicity and ease of un-
derstanding seemed more important.

Many of the concepts and techniques detailed in this book have
been incorporated into a formal course, TRS-80 Interfacing and
Programming, taught periodically through the Virginia Polytechnic
Institute’s Extension Division. For additional information about
specific course offerings, we suggest that you call the Virginia Tech
Center for Continuing Education (703) 961-5182, or Dr. Chris
Titus of The Blacksburg Group, at (703) 951-9030. These courses
are also offered on an in-house basis.

The Blacksburg Group continues to be interested in adding new
titles to the “Blacksburg Continuing Education Series,™” and we
are interested in talking with readers who have ideas for new books,
or who may have outlines or manuscripts in preparation. A complete
packet of information for prospective authors is available upon re-
quest from The Blacksburg Group, Inc., P. O. Box 242, Blacksburg,
VA 24060.

In conclusion, we hope that you enjoy reading this book on TRS-
80 interfacing techniques, and we hope that you will find at least
a few ideas and circuits that will inspire you to do some interesting
and creative things with your computer.

David G. Larsen, Christopher A. Titus
and Jonathan A. Titus
“The Blacksburg Group”

Contents

CHAPTER 1

Mortors, Lamps, BELis, AND WHISTLES 9

Objectives — Open-Collector Circuits — Open-Collector Decoders —
Peripheral Drivers and Transistor Arrays — An Addressable Driver
— Controlling AC Line Loads — Relay Protection — Some Solid-
State Relay Manufacturers — References

CHAPTER 2

ANALOG AND Dicrrar. ConvERsioNs AND DaTa Processng . . B3

Objectives — Digital-to-Analog Converters — D/A Converter Appli-
cations — Using D/A Converters for Graphics — Using Analog-to-
Digital Converters — A List of Representative Analog-Digital Con-
verter Manufacturers — References

CHAPTER 3

SoMmEe Pracricar, Data PROCESSING 121

Objectives — Data Sampling — Scaling — Averaging — Digital Fil-
tering — Method of Least Squares — References

CHAPTER 4

Seriar. CommunicaTioNs AND REmote CoNTROL, 143

Objectives — Asynchronous-Serial Data Transfers — Interfacing and
Using the USART — The UART — Using the UART for Remote
Control — UARTs and Analog/Digital Converters — UARTs and
Digital/Analog Converters — Multiple UART Systems — An Ad-
dressable UART

CHAPTER 5

TRS-80 INnteRRUPTS97

Objectives — Elementary Interrupts — Z-80 Interrupts and TRS-80
Interrupts — Interrupt Control Hardware — Interrupt Control Soft-
ware — Priority Interrupts — Interrupt Applications

APPENDIX A
AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE
(ASCH) CopE CHART937
APPENDIX B
IM6402/IM6403 UNIVERSAL ASYNCHRONOUS RECEIVER
TransmrrTer (UART) Data Seeer 239
Inpex 949

o

A

Motors, Lamps,
Bells, and Whistles

Whenever people are faced with a microcomputer interfacing
task in which the computer will be used to control so-called real
world devices, they are also faced with the need to control, or
drive, devices that may require high voltages, high currents, or
both. Whether your computer will be controlling a few light-emit-
ting diodes (LEDs), or a high-power motor, you will need to con-
cern yourself with electronic devices that can easily translate the
logic signals of the computer into the proper voltages and currents
that will be compatible with the external devices that are to be
controlled. The drive circuits that will be described in this chapter
will range from low-current and low-voltage, to high-current and
high-voltage device controllers. Of course, there will always be al-
ternative methods that may be used, that will accomplish the same
interfacing task, so rather than provide an exhaustive coverage of
many, many different driver circuits, we have chosen to provide a
sampling of typical circuits that you should find to be readily adapt-
able to your interfacing needs. We will place our emphasis on the
hardware aspects of these interface circuits, since the software that
may be used to control these drivers should be second nature at
this point.

OBJECTIVES

At the end of this chapter, you will be able to:

® Design circuits that use open-collector gates and decoders to
drive low-voltage and low-current devices.

® Describe the use of open-collector decoders for memory expan-
sion decoding.

Describe the different types of peripheral drivers and transistor
arrays currently available.

Design high-current lamp-driver circuits.

Discuss surge currents in lamp-driver circuits.

Design driver circuits that use transistor arrays.

Design addressable latch-driver circuits.

Design solid-state relay circuits for controlling motors, lamps,
and other line-voltage operated devices.

Discuss the use of optical couplers for isolation.

® ©© @ @ @

-]

OPEN-COLLECTOR CIRCUITS

The simplest driver circuits already exist within the SN7400-series
of integrated circuits. These devices have output transistors in which
the collector lead of the transistor is uncommitted, and is provided
as the output of the particular gate, decoder, multiplexer, or other
open-collector-type function. A typical open-collector device is rep-
resented by the circuit diagram shown in Fig. 1-1.

In this circuit, which happens to represent an inverter function,
the output terminal is the uncommitted collector of the output tran-
sistor. Notice, though, that the emitter terminal of the transistor is
connected to the ground signal. This means that the output of the
transistor will be connected to the ground signal when the transistor
is conducting. However, the unconnected transistor collector will
have no voltage associated with it when the transistor is no longer
conducting, Unlike other SN7400-series devices, the open-collector
device does not have a logic one output. The other SN7400-series

o +5V

OUTPUT

INPUT O

AN

:

Fig. 1-1. Schematic diagram for an SN7405 open-collector inverter circuit.

10

P o

devices have a “committed” collector, so that the output is “pulled-
up” to a logic one, when the output transistor is not conducting.
Additional internal circuitry is used to perform the pull-up function.
It is important that you realize that most SN7400-series devices have
a logic one, or a logic zero, output state, but that without some sort
of pulling-up action, the open-collector devices simply provide a
path to ground, or block it. At this point, you may be wondering
why anyone would be interested in these devices.

The open-collector devices were quite important in computer cir-
cuits prior to the widespread availability of three-state devices, since
the open-collector devices could act as if they were “disconnected”
from a signal line. In this way, they could either pull-down a signal
line, or they could be disconnected from the line, allowing other
devices to control it. If the devices on such a bus had distinct logic
one outputs, the presence of logic one and logic zero states on the
bus at the same time might cause some devices to burn out. Since
none of the open-collector devices can generate a distinct logic one
output, a simple pull-up resistor was used to cause the bus to be in
a logic one state, unless one of the open-collector gates was pulling
it down to ground through its output transistor. Many of the early
minicomputers, such as Digital Equipment Corporation’s PDP-8
family, used the open-collector bus technique. A typical open-col-
lector bus is shown in Fig. 1-2. In this circuit, the individual bus
drivers are connected to the bus, one at a time, so that data present
at their inputs are transferred onto the bus, and to the receiving
device, in this case, a simple inverter. To simplify the distinction
between open-collector gates, and “normal” gates, we have used the
“double-bar” at the input side of open-collector devices.

+5V

10009
SN7404

} : DATA

SN7403 SN7403 SN7403

ENABLE ENABLE ENABLE

Fig. 1-2. A typical open-collector bus configuration.

1"

In three-state bus systems, it is important that only one output
to the bus be activated at one time. In open-collector bus systems,
this is not a problem, since the activation of two or more bus drivers
will not increase the current flow on the bus, since the current is
limited by the 1000-ohm pull-up resistor at the end of the bus. You
should note that in the open-collector bus circuit shown in Fig. 1-2,
data is passed through the open-collector drivers, but the data is
inverted, a logic one becomes a logic zero, while a logic zero be-
comes a logic one. The receiving inverter circuit reconstructs the
data properly. The standby condition of bus is a logic one.

While open-collector devices are still frequently used in com-
puter buses, and in interfaces, they are being replaced by three-state
buses, and three-state bus drivers. Three-state buses have their ad-
vantages, but open-collector devices are still popular because they
have the capability of making, or breaking, a circuit path to ground.
In this way, they are readily adapted to driving low-current and
low-voltage devices, such as small reed relays and LEDs. Actually,
the open-collector devices “sink” current to ground, but the word
driver is more frequently used for devices of this type. If you are
going to be driving a few low-voltage, low-current devices, you
will find that the open-collector devices are ideal.

Table 1-1. Current-Sinking Capablilitios of Some $SN74-Series Devices

Device Family
74— 74H— 74L— 7418— 745—
—00 Quad NAND 16 20 3.6 8 20
-03 Quad NAND 16 20 3.6 8 20
—05 Hex INVERTER 16 20 3.6 8 20
—12 Tri NAND 16 20 3.6 8 20
—22 Dual NAND 16 20 3.6 8 20
Note: All currents in milliamperes, at a ma: of 5.5 volts.

The information in Table 1-1 shows the current sinking capability
of some of the open-collector devices in several of the SN7400 de-
vice families. The maximum current sinking is provided by the
SN74H-series and the SN74S-series devices, at 20 milliamperes
(mA) per output. This is quite adequate for small reed relays and
LEDs. While standard SN7400-series devices have a current sink-
ing capability of 16 mA, they have active pull-up devices that gen-
erate the logic one output, and they should not be used to drive
relays, LEDs, or other nonlogic devices, directly. Likewise, you
should not try to use an output from a latch, flip-flop, or counter
to drive a nonlogic device, without using an open-collector driver.
Some typical application of open-collector devices for the control
of an LED indicator and a low-current relay are shown in Fig. 1-3.

12

TN

+5V oV+

2200
7y
RELAY COIL
1N4148
LED
1 = ON 1
0 = OFF [[::>c ——{:: *:)o———____
INPUT
SN7405 SN7403
QO V+

(@) LAMP

>

SN7407

Fig. 1-3. Typical uses of open-collector driver circuits.

You should note that the maximum voltage that can be applied to
the open-collector devices listed in Table 1-1 is +5.5 volts.

In some applications, however, it would be useful to have open-
collector devices that could handle higher voltages, and higher
currents. There are other devices within the SN7400-series that have
these capabilities. These open-collector devices are listed in Table
1-2. Note that all of these devices are contained in the SN7400 se-
ries, and not in the SN74LS-, SN74S-, or other families. Buffers, in-
verters, and gates are all available with the high-voltage and high-
current capabilities. These types of devices are frequently used in
those applications in which some high-voltage load must be driven
by the computer, for example, a +12-volt relay. The high-voltage

Table 1-2. Maximum Current and Voltage Levels
for Some Open-Collactor Devices

Device Inax (MA) Viax (V)
7406 Hex INVERTER 40 30
7407 Hex BUFFER 40 30
7416 Hex INVERTER 40 15
7417 Hex BUFFER 40 15
7426 Quad 2-input NAND 16 15
7433 Quad 2-input NOR 48 5.5
7438 Quad 2-input NAND 48 5.5

13

open-collector devices are also used as interface circuits between
the transistor-transistor logic (TTL) family, and other logic fami-
lies in which higher voltages are used to represent the logic one and
logic zero logic levels. An example is an interface between a TTL
circuit, and a circuit that uses complimentary metal-oxide semi-
conductor (CMOS) logic chips. A sample circuit is provided in
Fig. 1-4. This interfacing technique is important if you will be us-
ing the CMOS family of devices for external digital circuits. The
CMOS family is frequently used in industrial applications, since
it has more noise immunity than the TTL family, and it finds use
in remote, or battery-powered applications because of its low power
consumption.

+5V +12V
? %
e AAA

TTLINO I[: ‘rL_— >O———O CMOS OUT

SN7407
JUuL coaoti Uy

Fig. 1-4. Using an open-collector buffer as a TTL-to-CMOS interface element.

In the interface shown in Fig. 1-3, you will note that a diode has
been placed across the coil of the relay. Since the diode serves no
purpose when the circuit is powered, you may ask why it has been
included. You must remember that when the power is removed from
a coil, the “collapsing” flux tends to induce an opposite electro-
motive force (emf) in the device, generating a voltage. In most re-
lays, this can be significant. Just place your fingers across the ter-
minals of an operating 6-volt buzzer, and you will feel the high
voltage that is generated in this way. To prevent such high-voltage
spikes from damaging the open-collector driver chip in a relay driv-
ing application, a small-signal diode is provided to shunt the back
emf so that it will not harm the driver circuit. This is good design
practice, and whenever relays are used, such shunts, or protection
diodes, should be used in the interface.

Also, as shown in Fig. 13, incandescent lamps may be driven by
open-collector drivers, although the trend is to use LEDs for front
panel indicators, pilot lamps, etc. If you choose to use an incan-
descent lamp, you should remember that these lamps have a high
inrush current when the filament is cold. These currents can be

14

3

present for tens of milliseconds, and they can often exceed the cur-
rent rating of the driver that is being used to drive the lamp. We
will discuss this more when we talk about driving lamps that re-
quire 117 volts ac line voltage. In general, incandescent lamps re-
quire drivers with high current ratings, so that the inrush currents
can be safely handled.

INSTRUMENT

+5V

3300

INPUT Do) OUTPUT

SN7404 SN7403

Fig. 1-5. A typical input and output on an instrument.

If you are going to be interfacing commercially available elec-
tronic devices and instruments, you will often encounter TTL-
compatible inputs that have pull-up resistors associated with them,
as shown in Fig. 1-5. You will also encounter outputs from instru-
ments that are driven by open-collector devices, as shown in Fig.
1-5. While standard TTL outputs could probably drive the inputs
with pull-up resistors, this is not recommended. In fact, most instru-
ments of this type will be some distance from the computer or in-
terface, so open-collector drivers are the best choice. A typical ex-
ample of this is shown in Fig. 1-6. One of the reasons for using open-
collector drivers is that they can drive long lines with fairly high
currents, making the signals less susceptible to having noise induced
upon them. The open-collector devices are also used to reduce the
effect of the resistance of the wire used as the signal conductor. In
the example provided in Fig. 1-6, each of the open-collector drivers
will be sinking 11 mA when a logic zero is transmitted on each of
the signal lines.

INSTRUMENT
+5V +5V
3300 g 3300

INPUT QUTPUT

SN7405 SN7404 SN7403 SN7404

Fig. 1-6. Interfacing open-collector devices with standard instrument 1/O lines.

15

OPEN-COLLECTOR DECODERS

While open-collector gates are quite useful, there are often cases
in which other open-collector functions are needed. The most com-
mon requirement is for open-collector decoders. In the standard
SN7400 family, there are three decoders that are worth describing:
the SN74145 high-current decimal decoder, the SN74159 four-line-
to-16-line decoder, and the SN74141 high-voltage decimal decoder.

The SN74145 decimal decoder is shown in block diagram form
in Fig. 1-7, along with its pin configuration, or pinout. This decoder

) OQUTPUT O

INPUT A 15

QUTPUT 1

.
a0

13) OUTPUT 2

ol

input g 241 ¢ B outeuT 3

Q

s

QUTPUT 4

|
P

{6) OUTPUT §

11

inpuT ¢ 130

17

QUTPUT 6

191 QUTPUT 7

v VY

Ll

eyt o 12

(10)

5 QUTPUT &

>
I
>

t11}

plelel

OUTPUT 9

{TOP VIEW)

INPUTS OUTPUTS
v, r - N7 rhe
cC A 8 C D 9 8

ISHISH “13 nijw

l—.L“—‘.—L.

BCD-TO-DECIMAL

Y

L7 -8 BN

0123456789

r—UIL
HinjBD a0

OUTPUTS

Fig. 1-7. Block diagram and pin configuration for the SN74145 decoder chip.

16

<

ko

will accept four bits (four lines) of binary information, decoding
the binary value, so that one of the 10 outputs provides a conduct-
ing path to ground. Only 10 outputs have been provided, 0 through
10, so not all of the 16 possible binary input states can be decoded.
Only the binary values 0000 through 1001 are valid binary inputs,
with all other binary input codes causing all of the output transistors
to be turned off, or blanked. This chip is particularly useful for
driving LED or incandescent lamps in displays, since each output
transistor can sink up to 80 mA at a maximum of 15 volts. Thus, the
decoder can also be used to pulse relays and other devices.

+5V
Tns

SN74145

s|e— o
4 5 o
orF——4p e . PATHS TO
i GROUND THROUGH
A2 c e » | OPEN-COLLECTORS
A—0 g N
A0 5], .l N

[

Fig. 1-8. Using an SN74145 decoder to provide short current-sinking pulses for control.

Frequently, there are cases in which high-current pulses must be
generated by the computer, for strobing external instruments and
circuits. Open-collector gates. or inverters could be used along with
a standard device address decoder to provide these pulses, or an
SN74145 decoder could be used instead, to provide both the de-
coding and driving functions on one integrated circuit. The sche-
matic diagram shown in Fig. 1-8 shows how this type of open-
collector decoder may be used to provide short, high-current paths
to ground for use by external devices. Note that this circuit assumes
that the required pull-up, or voltage-sourcing device, is provided
in the interface to which the decoder is connected. The device ad-

17

dress decoding scheme shown in Fig. 1-8 is for nonabsolutely de-
coded addresses, so the high-current pulses may be generated by
several different device address codes.

An additional use for open-collector devices is shown in Fig. 1-9.
Note that the outputs of several open-collector devices have been
connected together, and to a pull-up resistor, as well. While the out-
puts of standard SN7400-series devices cannot be connected to-
gether if they are to work properly, you have seen that open-
collector outputs may be connected in this way. In the decoder
circuit shown in Fig. 1-9, the open-collector devices (inverters and
buffers) have been configured to provide a NaND gate function. The
D input on the SN74145 decoder will only be a logic zero when
the proper combination of logic ones and logic zeros is present at
the six inputs to the buffers and inverters. This is considered a
NAND function, since the logic ones are simply buffered, while the

+ 5V +5V
210009 110009
A7]::>>———m
A6]::>c
A5]:::>c ﬂ:::>o__q
A4]:::>
SN74145
A3 R
Ve e
6f— o
ouT
) ———
CURRENT
D 4 f——> } SINKING
PULSES
A2 C
A1l B
AQ A 0 ——t
A

Fig. 1.9. An absolutely decoded current-sinking pulse generating circuit.

18

logic zeros are inverted to logic ones. The unique state of the NAND
gate occurs when all of the inputs are logic ones. The unique output
of the NanD gate is a logic zero. When the D input of the SN74145
decoder is a logic zero, the decoder is enabled, and the proper open-
collector output from the decoder is turned on, sinking current to
ground. In the interface shown, eight pulses can be generated un-
der software control, through the use of statements such as OUT
152,0. You should recall that when a command such as this is exe-
cuted, the computer outputs the eight-bit binary device address on
the address bus, while generating the OUT pulse for synchroniza-
tion. While the data value, zero in this case, is placed on the data
bus, the decoder circuit does not require it, nor is it used elsewhere
in the computer system.

In this example, we stated that the SN74145 decoder will be en-
abled only when its D input is a logic zero. This is not really the
case, since the decoder will always accept and decode four binary
bits. However, if you ignore the use of the “8” and “9” outputs of
the decoder, you can consider the D input to be an enabling input,
since the decoder can only enable, or turn on, one of the remaining
outputs, “0” through “7,” when the D input is a logic zero.

In the SN74145-based decoder schemes that have been illustrated
in Figs. 1-8 and 1-9, the decoders have been used to generate short
pulses. If you require that the open-collector output be enabled
for a period that exceeds the length of the OUT pulse, a latch would
be required. In this case, a data value would be transmitted to a
latch, which would in turn be wired to an SN74145 decoder. The
outputs of the decoder could be turned on, one at a time, for as
long as the associated binary value was present at the inputs of the
decoder. By using a circuit such as this, it would be possible to
have the computer turn various devices on and off for long periods.
It is important to remember, though, that when a decoder circuit
is used, only one of the devices connected to the outputs of the
decoder may be controlled at any time. If some of the interfaced
devices are to be controlled by the computer, such that their oper-
ation may be independently, and perhaps simultaneously, con-
trolled, then individual outputs must be made available. A simple
latch circuit could be used for this function, provided that open-
collectors are used for each of the outputs. In a configuration such
as this, eight devices may be controlled by an eight-bit latch. Since
the individual bit positions are independent of one another, the
eight devices may be controlled independently. The two different
types of port-controlled open-collector interfaces are shown in
Fig. 1-10.

The SN74159 decoder is a 4-line-to-16-line decoder, as shown
in Fig. 1-11. The integrated circuit is an open-collector replacement

19

for the SN74154 decoder. All of the 16 possible outputs are pro-
vided, .and two enabling inputs are also provided, making the
SN74159 fairly easy to use. While this decoder does not have the

SN7475 SN74145
kK|
P [a8 2] LA I
D2 3 ik 13 C JB—-———»lONE-OF
TEN
6 10 :
b1 s JSELECT
Do 7 g 5], ol
FRREE]
our —2 ;
[EL -
SN7402
SN74373 SN7405 (ALL)
b7 2 2]>0
bs 2 2]>¢
D5 I £ >0
D4 8 9]>o ANY-OF-
18 19 EIGHT
b3]>° SELECT
D2 17 16 >°
b1 14 15]>c
13 12
0 l >o
P G
11 1
B
BUT ;

iz

.;I

SN7402

Fig. 1-10. Two ways fo use latched output ports to control open-collector devices.

high-current and high-voltage capability of the SN74145, it is still
quite useful for controlling interface circuits, such as the one shown
in Fig. 1-6. The SN74159 decoder may be used to generate pulses
in a manner that is similar to that already described for the SN74145
decoder (Figs. 1-8 and 1-9).

20

{TOP VIEW}

INPUTS OUTPUTS

QUTPUTS

Courtesy Texas Instruments, Inc.

Fig. 1-11. Pin configuration for the SN74159 open-collector 4-to-16-line decoder chip.

The SN74159 may also be used when additional memories are
to be added to a small computer system, in which it is desired to
mix blocks of memory chips which may contain different numbers
of memory bytes. For example, there are memory chips that contain
1K (1024), 2K, and 4K bytes of memory. The SN74159 decoder may
be easily used to provide the chip select signals for all of these
different “sized” chips, since its decoded outputs may be connected
together. The decoder scheme in Fig. 1-12 shows a circuit in which
the memory address lines have been used to decode the available
memory addresses, dividing them into 1K blocks. Since a 2K block
would require two chip select signals, and a 4K block would require
four chip select signals, the necessary chip select signals are simply
connected together, instead of being gated together with additional
gate circuits. Of course, a pull-up resistor must be furnished for
each of the three resulting chip-select signals, so that a logic one
is actually generated for each line, when the outputs of the decoder
are inactive. There are many other circuits in which an open-
collector decoder such as the SN74159 may be useful. You should
remember that you cannot simply connect the outputs of a stan-
dard SN7400-series decoder to perform the same function. Only
open-collector gates may be connected to provide these gating
functions.

The last open-collector circuit that is generally useful is the SN-
74141 decimal decoder. This decoder has been fabricated specifi-
cally to drive high-voltage, gas-filled, cold-cathode indicator tubes,
in a one-of-ten configuration. The SN74141 decoder is typically
used in circuits that drive gas-filled displays, whether they are in-
dividual neon indicator lamps, or more complex numeric indicators
such as Nixie® tubes. While these types of readout devices are

21

o+ 5V

SN74159
19
A15 G2 é‘/,10009
A14 18161 L L
o} 100023 210000
i o
20 7] Ko
A13 D 8is > BLOCK C§
21 5 5
A12 C 4 y
)
29 3] TO2K
AN B8 12 > BLOCK 8
A10 iy oM TOK _
l BLOCK C8
¥
TO OTHER
MEMORY CHIPS
A9 TO ALL
MEMORY
AQ CHIPS

Fig. 1-12. Using an open-collector decoder to generate chip select pulses for
blocks of memory.

generally not used in new designs, they are commonly found in
older equipment. The SN74141 is used to drive individual gas-filled
indicators, such as NE-2 and NE-2H neon lamps, or display panels.
Care is required in interfacing high-voltage displays, since it is easy
to connect the high voltages to the wrong points in a breadboarded
circuit, destroying it. Whenever gas-filled indicators are used, a se-
ries, current-limiting resistor must be used, since conducting gas-
filled indicators offer almost no resistance in the circuit.

There are quite a few other types of open-collector circuits in
the SN7400 family of devices, but most of these are seven-segment
decoder driver circuits, used to drive seven-segment LED displays.
Some other gating circuits are also available, but in most cases they
will not be used in interface circuits, such as the ones described
in this chapter.

PERIPHERAL DRIVERS AND TRANSISTOR ARRAYS

In this section, we will describe some of the integrated circuits
that have been developed specifically so that TTL-compatible de-
vices can be used to control relays, LEDs, and incandescent dis-
plays, to mention only a few possible uses. Peripheral driver circuits

22

i,

<

e

are those in which a driver transistor and-a gate have been inte-
grated in a single circuit. There are generally two peripheral driv-
ers per integrated circuit package, and the transistor may, or may
not, be directly connected to the output of the gate. Various con-
figurations of drivers are possible, using NAND, NOR, AND, or OR gates.
Transistor arrays come in many different configurations, using tran-
sistors that have been designed for special purposes. We have lim-
ited our scope so that only those transistor arrays that are generally
used in computer interfacing have been included.

Peripheral Drivers

Peripheral drivers are integrated circuits that include a logic gate,
and a driver transistor. Depending upon the driver chosen, or the
application in which the driver is to be used, the transistor and the
output of the gate may be connected, or they may be unconnected.

DUAL AND FUNCTION DUAL OR FUNCTION
‘ 1Y 1Y
1A O— 1A
18 O— 1B
GND GND
2 A 0— 2A
28 O— 2y 28 2y
SN75451B/461/471/401/411 SN75453B/463/473/403/413
DUAL NAND FUNCTION DUAL NOR FUNCTION
1Y 1Y
1A O— 1A
18 0— 18
GND GND
2 A O 2A
2 B Ol 2B
2Y 2Y
SN75452B/462/472/402/412 SN75454B/464/474/404/ 414

Courtesy Texas Instruments, inc.

Fig. 1-13. Logic diagrams for some typical dual peripheral driver chips.

These chips are probably best represented by the Texas Instrument’s
SN75400 family. Table 1-3 summarizes the current drive capabili-
ties, and voltage limits for these devices. In most cases, the sub-
families contain a selection of NAND, NOR, AND, and OR gates that are
used to control the driver transistor, or output transistor. Typical
examples of dual peripheral driver chips are shown in Fig. 1-13.
The functional diagram and pin configuration for the SN75450B,
SN75460, and SN75470 chips is shown in Fig. 1-14. While these

23

. oot , o kt =N . ¢
N’ 4WP00ZNIN SOWD ‘SOW-d A-GL O A-9
L-EERIAY Z,ﬁ LVEOOZNTN SOWD AG PuD 111 : SaA s | YW 0 AOS A0S
ONILAIANI [N'T LVZ00ZNIN SOW-d A"SZ O} AL
N'T LV L00ZNIN SOW-d ‘SOWD "1la 1L
YON 3N yOPSLNS
40 3N EOVSUNS ua z su gg v 00§ ACE ASE
ANWVN aN ZOVPSINS
NV N LOVGINS
JON d'or VOPSINS| Of PIPSENS
30 d'or EOVGINS| OF E9PGSNS
ANVN | d'Or COPGINS| Of CIVEENS 11a [4 su €8 v 00€ AOE ASE
NV d'or LOVGINS| O L9PSENS
+ANV N'T 09GNS f O9YSSNS
HON d'Or avSPSINS| Or 8rSPSENS
(e d'Or €ESYSINS| Of dESPSSNS
AGNVN d'Or GZYSINS| Of HZSPSSNS a1k 14 su (T v 00e AOT AOE
ANV d'Or GISPSINS| Of 8IGFSSNS
»ONY N'T 90SYSINS I H0SPSSNS
-(e) N IPPSINS 103 [4 su zz YW 0oL AT AOE
¥YON d'OF VEVGINS
(o) d'or €EPGINS
ANVN d'Or ZEPSINS Ua [4 su G Yw 00€ ASL A Sl
ANV d'or LEVSINS
»ANV N‘f OEPSINS
uopoung 004 O D:0 2:5C1 OL D56 — Aynquodwo) Boxpog | sepojg owj) uenn) objjop oBoyjop
s1Boy nduy 104 dwop Aojeq indino dn-yayny oIs-HO
oBojang pup adAj edneq 810ALQ indino jpojdAy | pep o] oy | wowpxow
wWnwpioyg

sdjyy Jeajsq |pIoyd]iod 5O1eS-00FELNS IO BII5]40L5BI0YD *B-] O[qDy

24

2658 O D:04
,Uadm &O —DQ_:O (18 >=UC»W—K0 ﬁD—u@:COU QmOﬂ JOiSISUDJ} —DQ:JO P_:gi
N'T 469VSZNS SOWD ‘SOW-d ASL OF A9
d3HNE | N'TJBSINS SOWD AG PUP 141 SIA su 0gL il 056 A0 Aol
ONILIAANT | N'T bzowsaNs SOW-d AST O AbL
N'T 99FG/NS SOW-d ‘SOWD “11a@ “ILL
AON N 6IYGINS
40 3N BLYSINS SOW “11a ‘L1 S3A su 001 W 006 ASS AOL
aNVN AN LIPSINS
anv AN 9IPSINS
AON IN PIPSINS
¥0 AN EIPSINS 1a su gg W 00§ ASS AOL
aNVN IN ZIPGINS
anvy AN LIV6ZNS
¥ON | d'or eavsns
¥0 d'9f BPGINS SOW ‘1 1L SaA su 001 WW OB ASS AOL
GNUN | d'or zzvsins
anvy | d'or osrsNs
aNvyN | d'or szvsiNS SOW 110 ‘1L S3A su 001 VW 00E ASS AOL
AON | d'or parSINS | O vavSSNS
A0 4'OF EFSINS | OF ELVGENS
aNwN | d'or wasNs | or zwssNs QL su gg YW 00E ASS AOL
aNvy | d'or 1wsiNs | or LvssNs
«ONY N'T OFSINS | OZVSSNS

25

Vce 2A 2Y 2B 2C 2E SUB

Fig. 1-14. Functional diagram
and pinout for SN754508B,
SN75460, and SN75470 pe-
ripheral driver chips.

Courtesy Texas [nstruments, Inc.

chips are pin-for-pin equivalents, the current driving ranges are
different, as noted in Table 1-3.

The dual peripheral drivers in which the output transistor has
been connected to the gate are very similar to the open-collector
devices that have been described previously. The peripheral driv-
ers have the ability to sink higher currents that can be handled by

Fig. 1-15, Using the SN75451B driver chip
to drive two lamps.

SN754618

Courtesy Texas Instruments, Inc.

the open-collector devices, and they can handle higher voltages,
t0o. A typical application of an SN75451B driver is shown in Fig.
1-15, in which two incandescent lamps are driven, independently,
by the same chip. A second application is shown in Fig. 1-16. In
this example, an SN75475 driver is used to control two 48-volt re-
lays. Since this chip contains internal diode clamps, or shunts, ex-
ternal diodes are not required to protect the drive transistor.

26

o,

48.v,
250-mA
RELAY

5V IN

Q) 48 V £ 10%

Fig. 1-16. Using the SN75475 peripheral SN75475
driver to drive two relays.

48V,
STROBE IN 250-mA
SOLENOID

Courtesy Texas Instruments, inc.

There are many cases in which LEDs are not particularly useful
as indicators, such as those in which an indicator is to be visible
from some distance, visible in both high-level and low-level light-
ing conditions, visible from varying angles, and where a variety of
colors is required. Since LEDs cannot answer all of these needs,
incandescent indicators are frequently used. These lamps have
higher current requirements than do LLEDs, and in many cases they
require higher drive voltages, too, generally between 12 and 28
volts. Incandescent lamps have high inrush currents when the fila-
ments are cold, and since these currents can frequently reach ten
times the normal operating current of the lamp, special precautions
are required when driving incandescent lamps with peripheral
driver chips. There are a number of methods that may be used to
reduce the inrush current, and several will be described. The sim-
plest method for reducing the inrush current through a cold fila-
ment is to keep the filament warm. This is conveniently done by
placing a “keep alive” resistor in parallel with the driver circuit,
between the lamp and ground. This is shown in Fig. 1-17. The value
of the resistor is chosen so that the current flowing through the lamp
is about one-tenth of the fully operational current of the lamp. In
the example shown, a 6-volt, 150 mA lamp has been used with a
150-ohm resistor. The value of the resistor was chosen so that the
lamp would be unlit, but with about 40 mA flowing through it.
In most cases, one-half, or one watt keep-alive resistors are used.

A surge limiting resistor may also be used in series with the lamp,
so that the peak current is limited when the lamp is first turned on,
as shown in Fig. 1-18. In this circuit, the SN75450B driver has been
used, and the output of the gate has been directly connected to the
base of the transistor. You must remember that in this type of a
circuit, it is the transistor and the resistor that will be limiting the

27

150 mA
LAMP

fﬁ\\ O +6V

ON
OFF

-
[T

>

§ 1509

Fig. 1-17. Using an SN75451A as a lamp driver, with a keep-alive resistor.

current, and not the resistor alone. It is not difficult to calculate the
limiting current, which is essentially the emitter voltage divided
by the emitter resistance. The emitter voltage is the output voltage
of the gate, less the emitter-base voltage, or 3.3 volts and 0.95 volts,

respectively:

I = Vor — Vg
L RE
_ 235 volts
" 6.8 ohms
=0.345 A, or 345 mA
GE 1815
2000 mA
+5V LAMP
A\
{Ty—o+12v
14 4
7
ANA
6.80

Fig. 1-18. Using an SN75450B driver with current limiting resistor.

28

};H

The transistor saturates at this point, limiting the flow of current to
about 340 mA. Since the filament starts to heat up quickly, the cur-
rent starts to drop back to its normal level, or about 200 mA for the
GE-1851 lamp shown in the circuit. The maximum surge current
must not be allowed to exceed the maximum surge level for the
SN75450B driver, and also, the current must not be limited by the
saturation of the transistor when it is normally in its on state. Thus,
the surge current limit defined by the equation should be higher
than the normal current flowing through the lamp when it is on.

An alternate method of turning on incandescent lamps involves
the use of two driver circuits, one that is used for the normal switch-
ing, and another that is used for the current limiting switching. In
the example shown in Fig. 1-19, a monostable circuit has been con-
figured with a 390-chm resistor and a 500 uF capacitor. When the
input control line of the lamp goes to a logic one, the current lim-
iting circuit starts to conduct current through the lamp. After the
RC network has “timed-out,” the current limiting network is by-
passed by the connection through the other driver directly to
ground. In the circuit shown in Fig. 1-19, the lamp has a “warm-up”
period of about 200 ms, before the second driver makes the direct
connection to ground.

Driving relays is somewhat simpler than driving lamps. As was
noted previously, a diode is generally placed in parallel with the
coil of the relay in relay driver circuits, with the polarity of the
diode the reverse of the current flow. This shunts the back emf
that is generated when the relay is turned off. It is also important
to take other protective measures so that the output transistor is
protected properly, too. When the transistor is turned off, the volt-
age on the collector will tend to increase almost instantaneously,

LAMP

209
2 —@—o +V

fit+

= 500uF

.||]

Fig. 1-19. Using two SN75452A drivers for current control in a lamp-driver circuit.

29

reaching the voltage that is used to drive the coil of the relay. (In
this circuit, the collector of the transistor is connected to the coil,
the emitter is connected to ground, and the base is connected di-
rectly to the output of the gate.) If the collector reaches this volt-
age very quickly, the drive transistor may be destroyed. To reduce
the speed at which the collector voltage increases, after the tran-
sistor has been turned off, a small capacitance is added to the cir-
cuit, between the collector and ground. A typical circuit in which
a capacitor is used is shown in Fig. 1-20. The protective diode can
be removed if the peripheral driver chip contains protective diodes.

dr_-b RELAY
COIL

+V O

IN4148

0.001-0.01uF

1|

Fig. 1-20. A completely protected relay-driver circuit.

SN754518

We noted previously that there are some peripheral drivers in
which the output transistor is not connected to the gate within the
chip. In these drivers, of which the SN75450B is an example (Fig.
1-14), the silicon material upon which the chip has been fabri-
cated—its substrate—is not connected to ground. Thus, the transis-
tor may be used with voltages that are more negative than ground,
by connecting the substrate pin on the integrated circuit package
to the more negative voltage. The unconnected base is useful, too,
since a resistance may be placed between the output of the gate
and the input of the base, so that the current flow through the re-
sistor may be limited. We doubt that these applications will prove
to be very important in normal interfacing tasks, so we have not
provided any specific examples,

There are some other important points that should not be over-
looked in the discussion of peripheral driver circuits. Since relays,
lamps, LEDs, and other devices will frequently have supply volt-
ages that are higher than the +5-volt used in TTL circuits, it is
important that these higher voltages not be applied prior to apply-
ing the TTL supply voltage. If there is a chance, as there always is,
that the higher drive voltages will be present without the -+5-volt
TTL supply, there should be some provision for backing up the pe-
ripheral chips with their own power supply. Probably the simplest

30

}@, "

i

type of back up would involve deriving the logic supply voltage for
the peripheral driver chips from the voltage used to drive the higher
voltage relays, lamps, etc. A simple voltage regulator could be used.
In this way, whenever the drive voltage is applied to the system,
so is the logic supply for the peripheral drivers. Separate TTL chips
could have their own +5-volt power supply.

For additional information about peripheral driver circuits, we
refer you to The Peripheral Driver Data Book (Texas Instruments,
Inc., Dallas, TX 75222), and Linear and Interface Circuits Applica-
tions (Texas Instruments, Inc., Dallas, TX 75222), from which much
of the information in this section was obtained.

Transistor Arrays

There are many different types of transistor arrays that are readily
applied to interfacing tasks in which high-current and high-voltage
peripheral devices must be controlled. Examples of transistor arrays
include the RCA Corporation’s CA3096AE, an integrated circuit in
which there are three npn and three pnp transistors, and more
complex devices such as the Sprague ULN-2800A-series chips that
will be described in more detail, later. The main characteristic of
these transistor arrays is that they are easily interfaced with TTL-
compatible circuits, to provide the capability of driving relays,
LEDs, seven-segment displays, incandescent lamps, and other pe-
ripheral devices. Some of the transistor arrays require a few addi-
tional components to provide the proper input voltages, current
levels, etc. We suggest that you carefully review your interfacing
requirements when you explore the possibility of using transistor
arrays in your designs. There are many applications in which the
transistor drivers are better suited than say, peripheral driver chips,
or open-collector chips. Most transistor arrays do not come with
the NAND, OR, NOR, Or AND gates that are found associated with pe-
ripheral driver chips. However, if these gating functions are not
required on the same chip, then the transistor arrays should be
carefully considered. In fact, there are usually more of them in a
given integrated circuit package than there are comparable periph-
eral driver circuits.

The example illustrated in Fig. 1-21 shows the use of a Sprague
ULN-2803 or -2805 driver to drive eight incandescent lamps. Since
protective diodes have been included on the chip for relay appli-
cations, they have been cleverly used in this circuit for a lamp-test
feature. Whenever the lamp-test switch is closed, current will flow
through all eight diodes, causing each of the lamps to light. Unlit
lamps would indicate burned-out filaments. Many of the drivers in
the ULN-2800A family are presented in Table 1-4. There are dif-
ferent types of devices for use with the different types of logic

31

U LN8035A Y

Fig. 1-21. Circuit diagram showing
the ULN-2803/05A used as a lamp-

driver circuit.

= . LAMP

T OTEST
I

Courtesy Sprague Electric Co.

families; that is, TTL, CMOS, PMOS, and various combinations,
at different operating voltages. The use of a ULN-2813A chip as
a relay driver is shown in Fig. 1-22, Note that the internal protec-
tive diodes have been connected to the +V power supply to shunt
the back emf that is generated whenever a relay is turned off.
An application in which one LED is lit within a matrix of LEDs
is shown in Fig. 1-23. An SN74145 decoder, with open-collector out-
puts, has been used to provide current sinks for the individual rows
of LEDs, and an RCA CA3082 has been used to source the voltage

Table 1-4. Sprague ULN-2800-Famlly Characteristics

Veemax) = 50 V 50 V 95V
Iemax) = 500 mA 600 mA 500 mA
Type Number
General Purpose
e s ULN-2801A ULN-2811A ULN-2821A
14-25 v
e ULN-2802A ULN-2812A ULN-2822A
5V ULN-2803A ULN-2813A ULN-2823A
TTL, CMOS
M ULN-2804A ULN-2814A ULN2824A
CMOS, PMOS
H‘Qh}%‘”p”' ULN-2805A ULN-2815A ULN-2825A

32

e

i

ULN-2813A

Fig. 1-22. Using the ULN-2813A as a relay
driver. Note internal protective diodes.

Courtesy Sprague Electric Co.

10009
COLUMN 10000

AAA o+ 5V
SELECT 10000
(ONE-OF) 10000

CA3082
TRANSISTOR
5 ARRAY

I— suss
+5v 9 7 4 14
LEDS (35 PLACES)

ot A A A A S
A A

A
ROW | ——14lg
SELECT 13 6
(BINARY) | ————C 5
{ 12y

X X X A X
J 1 2] X X A

§

SN74145

Fig. 1-23. Controlling an LED display matrix with a CA3082 driver, and an
SN74145 decoder,

33

for the various columns of LEDs. In this circuit, one LED is selected
by providing a row code to the SN74145 decoder, and a column
drive signal to the CA3082. Note that the column selection is not
decoded. While this may seem like a simple-minded example, the
diode array might be a General Instruments MAN-2A, or equivalent
five-by-seven array of LEDs used for alphanumeric displays. Of
course, a latched output port would be required if a computer were
to control the LED matrix display. Seven-segment displays are
frequently controlled in a similar manner, with current sinks tum-
ing the various segments on and off, and current sources selecting
the individual digits, one by one.

In some interface circuits, currents may be required that exceed
the current rating of the transistors on a transistor array chip. In
cases such as this, external transistors may be used to further boost
the current carrying capability of an interface circuit. The circuit
shown in Fig. 1-24 shows how a 2N4901 transistor may be driven
by one of the transistors in a ULN-2803 array. The 2N4901 has a
maximum collector current of five amperes.

In some electrostatic printers, aluminized paper is used. The
print head, or printing element, passes a high-voltage pulse through
the aluminized surface of the paper, so that the aluminum is vapor-
ized, leaving a visible black dot. Combinations of these dots form
five-by-seven matrices, so that letters, numbers, and special symbols
may be represented, or “printed” on the paper. While you need not
be concerned with exactly how the various rows and columns of
dots are generated in the interface, you will have to design circuits

o+V
ULN-2803 2000
1 18 2009
IN ——————Dc AV . r\/ 2N4901
f—i GND LI RELAY COIL
= ! IN4148

Fig. 1-24. Using an external transistor to boost the current driving ability of a
transistor array.

34

b

+5V

10KQ
22000 390
TO PRINT
TTLIN O A\l HEAD
2N2907
TIP1100R
MJEBO1
—42v
(A) Deveioping — 42V at emitter of TIP110 or MJEBO1.
+5V
2200Q
10K — 42V
TILIN O
8
2N2907 7 10 399 TO PRINT
A VY ——
HEAD
ULN-2003A
s i
—
(B) Developing —42V at pin 8 of ULN-2003A.
+5V 0O —42v
18 9 8
390
17 1 7 10 TO PRINT
TTL IN st v
! WA HEAD
Dsesgr ULN-2003A

(C) Developing —42V at pin 8 of ULN-2003A.

Fig. 1-25. Three print-head driver circuits for an electrostatic printer, showing various
solutions to the high-voltage driving problem.

35

that can deliver —42-volt pulses to the print head upon command
of the interface. This would seem to be a possible application for
a transistor array, or for a peripheral driver chip. Actually, there
are a number of circuits that may be used to solve this problem.
The circuits in Fig. 1-25 illustrate the different ways in which the
electrodes may be controlled so that they will deliver the required
—42-volt pulses to the aluminized paper. Only one of the circuits
is shown, although seven duplicate circuits are required for a seven-
row dot-matrix printer. The Texas Instruments TIP110 and Motor-
ola MJES801 transistors are Darlington pairs. The ULN-2003A is a
Sprague 50-volt, 500 mA driver, while the DS8897 is a National
Semiconductor gas display driver, used in this application to drive
the print-head transistor drivers. Future developments will prob-
ably yield simpler solutions to this particular interfacing problem.

It is important to remember that there is a voltage drop in all of
the peripheral drivers and transistor arrays that have been de-
scribed. Therefore, there will be some heat generated by all of
these devices when they are conducting high currents. Some of the
integrated circuit packages have heat-sink fins substituted for a
few of the unused electrical contact pins. These should be placed
so that they can be easily cooled by passing air, or so that they can
be attached to an efficient heat sink. If the devices get too hot, their
current-carrying capacity must be derated, meaning that they can’t
be expected to carry as much current as is noted in their specifica-
tion sheet. If you decide to use these devices, be sure that they are
efficiently cooled. If the devices get too hot, they will burn out
quickly.

AN ADDRESSABLE DRIVER

There is a particularly useful series of interface circuits that you
may want to use. These devices are called addressable latches or
addressable drivers, since the chips have internal latches, decoders,
and high-power transistor outputs. In the devices manufactured by
Signetics, each of the latches’ outputs has the ability to either sink
or source about 300 mA. Two devices are available, the NE590,
which is the current sinking chip, and the NE591, which is the
current sourcing chip. Both of these addressable latch chips have
eight independently controlled outputs. The latch is addressable,
since each of the eight bits may be independently addressed, and
either set (logic one), or cleared (logic zero). A general block
diagram of the NE590/NE591 is shown in Fig. 1-26, while the pin
configurations for both chips are shown in Fig. 1-27. The NE590 is
contained in a 16-pin package, and the NE591 is contained in an
18-pin package. The main difference between these chips, aside

36

¥

A1 1-0F-8 ICONTROL|
DECODER GATE

{NES31 ONLY)

NESS0

Bt

LATCH

QUTPUT STAGE

NES531

Qq

Courtesy Signetics Corp.
Fig. 1-26. Block diagram of the NE590/591 addressable latch/driver chip.

from the sinking or sourcing of current, is in the use of two addi-
tional pins on the NE3591 for control of the chip-enabling logic, and
for connection to the positive current-sourcing power supply. In

NES90

ao [1] 18] vee s
sy [2 [15] &t "o
Ay [3] 74] CE Ay
o, [5] 2] o, Qg
oz [6] mEs Q,
03 [7] 70] o5 Q2
GND E Ej Q4 Q3

GND

latch/ driver chips.

NES591

elcizicicicizicia

12] o5

7]
5
] a;
73
12]
[11]

1) o,

[10] vs

Courtesy Signetics Corp.
Fig. 1-27. Pin configurations for the Signetics NE590 and NE591 addressable

37

most cases, this supply voltage will be +5 volts, the same voltage
as is used by the logic circuits, but in some situations, it can be a
maximum of +7 volts.

The NE590/NES91 acts like a normal latch circuit, except that
instead of loading an eight-bit word through to the outputs in par-
allel, an individual bit is selected by three address inputs, and the
addressed bit is latched, as either a logic one, or a logic zero. In
this way, each of the eight bits may be turned on, or turned off
without disturbing the other bits. Since only three address bits
are used to address the latch circuit, a separate chip enable (CE)
input has been provided so that the chip may be selected using
the remaining address bits, and a function puise, such as OUT.
Both the NE590 and NE591 have separate clear (CLR) inputs, so
that the eight outputs may be independently cleared at the start
of a control sequence, or when the interface is first turned on.

A typical interface circuit in which the NES90 is used is shown
in Fig. 1-28. In this example, a data bit from the data bus is used
to provide the logic state that is to be latched into the particular
bit that is addressed by address bits A2 through A0. Note that the
remaining low address bits, A7 through A3, and the OUT function

SN7404
507 2 2 1
2
3] SN7404
A7 4 8
AB S
6 o +5V
AS—
Ad 11
A3 —]
ADDRESS 16 NE590
BUS / +5V
i o 712
141sE Pk 2200
10 LED
s 5 e
A2 A2 P
A1 2] a1 aF—
AO a0 B
N ¢ /
DATA 13 4 +5V
DO D 0
BUS 2200

f LED

Fig. 1-28. A typical LED-driving interface for the NE590 (current sink).

38

})

Table 1-3. Quiput Commands for Control of the NE390 (See Fig.1-28)

Transistor ON Command OFF Command
Qo OUT 2481 OUT 248,0
Q1 QUT 249,1 OUT 249.0
Q2 OUT 250,1 QUT 250,0
Q3 QUT 251,1 QUT 251,0
Q4 OUT 252,1 OUT 252,0
Q5 QUT 253,1 QuUT 253.0
Q6 QUT 254,1 QUT 254,0
Q7 QUT 255.1 QUT 255,0

pulse, have been gated together to generate the chip enable pulse
that controls the actual latching process. In this interface circuit,
eight separate device addresses are required, one per bit, while the
least-significant bit in the data word transferred by each output
command determines whether the addressed transistor switch is
on or off. (In the NE590/NES591, logic 1 = transistor on, and logic 0
= transistor off.) In this example, the software instructions shown
in Table 1-5 would be used to control the addressable latch. In each
case, you must remember to provide the proper data word, so that
the corresponding transistor is turned on, or off, as required. Unlike
a conventional latch in which all eight data bits are loaded simul-
taneously, the bits in an addressable latch are loaded one at a time.

Table 1-6. Output Commands for Control of the NE591 (See Fig.1-29)

Transistor OFF Command ON Command
Qo OUT 96,0 QOUT 104,0
Q1 QuUT 97,0 QOUT 105,0
Q2 OuUT 98,0 QUT 106,0
Q3 OUT 99,0 QuUT 107,0
Q4 QUT 100,0 QuUT 108,0
Q5 QuUT 101,0 OuT 109,0
Qb OuUT 102,0 OuUT 110,0
Q7 QuUT 103,0 OuUT 111,0

An alternate interfacing circuit is shown in Fig. 1-29, in which
the NE591 has been used to source current for the displays. In this
example, the data input of the latch is not connected to the data
bus, but to one of the address bits, instead. Now, the state of ad-
dress bit A3 determines whether a logic one, or a logic zero is
latched, controlling the respective output transistor. It is not neces-
sary to provide a specific data bit in the output instruction, since
the output instructions themselves are used to control the latch.
A list of the control software commands for this circuit is shown
in Table 1-6. While the data values specified in this table are all

39

zeros, the actual data value is irrelevant (don’t care), since the
data has no effect upon the latch.

The outputs of the NE590/NE591 chips should be treated as
simple current sinks and current sources. The outputs may be used
to drive lamps, LEDs, relays, displays, and other devices that re-
quire high currents. Since the outputs of the latches may be inde-
pendently controlled, the latch provides an easy means for gener-
ating control pulses that may be used to control external devices,
such as the instrument shown in Fig. 1-5. We have used the NE590
in this way to control one part of the interface circuit for a Diablo
Hytype I printer. Normal TTL devices did not have the current
driving capability, nor did they provide the needed functions in a
single chip.

SN7404
oUT—. >n:2 !
2
3 SN7430
4 8
ar—2 4 3 __}— +5V
. o
A6
a5 12
5 6 11 NE591
4
A >c 18 |10 /y
il oy 7 :;
16| 6 2200
A3 iz LED
A2 4 A2 4 1t
A1 31 A1 38—
A0 21 p0 2 —
15 .le /y
! cs 0 5—@—’\/\/\'—4
2200
9 LED =

Fig. 1-29. An alternate LED-driving interface for the NE591 (current source).

CONTROLLING AC LINE LOADS

There will probably be applications in your computer system,
in which it will be necessary to have the computer control loads
that are powered by 117 volts, alternating current, or what is fre-

40

S

«@%

5

quently called line voltage. The buffers, open-collector chips, and
transistor arrays that have already been described cannot control
high-voltage, high-current ac loads. One simple solution is to have
the computer control buffer chips that in turn control relays, which
further control the power to the loads that require line voltage.
This is certainly an acceptable way to solve the problem, and it
is used in some systems although there are simpler, and more reli-
able ways in which this task can be accomplished. In this section,
we will describe some of the circuits that may be used to allow a
small computer to control 117 V ac.

MAIN TERMINAL 2 (MT2)

GATE
MAIN TERMINAL 1 (MT1)

Fig. 1-30. Schematic representation of a triac switch device.

Simple Solid-State Controliers

Probably the simplest electronic switch that can be used to con-
trol 117 V ac loads is the thyristor, or triac semiconductor device,
shown in Fig. 1-30. There are other semiconductor switches, but
this discussion will be limited to the triac. The triac device has a
gate input that is used to control the flow of current through the
device. The simplest use of the triac is shown in Fig. 1-31. In this
circuit, the triac will not conduct any current when the switch is

Oreere—e——— LOAD

Fig. 1.31. Schematic diagram for a simple 117 VAC l
triac-based electrical switch. A

41

open, but it will conduct current when the switch is closed. For in-
terfacing purposes, it is preferable to have the computer control
the switch so that the current through the load is controlled. An ex-
ample of such a computer-controlled line switch is shown in Fig.
1-32, in which three triac devices have been used. You should be
able to recognize the main triac (T3) that has been used to control
the current through the lamp (load). You should also be able to
see how a second triac (T2) has been used in place of the mechani-
cal switch that was shown in Fig. 1-31. This switching triac is con-
trolled by a third triac (T1). A logic input turns a transistor on and
off, controlling the triac-based switch. The +5-volt supply used in

O +5V O HOT
2000 2W
50009 T3
™ Vx)
22002 T2
T23008* /

117 VAC
T
TTLIN (2N5755 LAMP
A (‘% (LOAD)
TYPICAL
DRIVER
TRANSISTOR
O

NEUTRAL

“RCA PART NO.

Fig. 1-32. Schematic diagram for a logic-controlled triac switch.

this circuit is the logic supply voltage. Since an incandescent lamp
has been used as the load, the additional circuit components have
been added to control the inrush current. We have used this as a
simple example, merely to show how triac devices may be used to
control line loads. A detailed explanation of this circuit is not nec-
essary, since simpler circuits can perform the same switching func-
tion. One thing about this circuit (Fig. 1-32) may bother you. There
are direct electrical connections between the computer and the 117
V ac line voltage. In the circuit shown, there will be no problems
under normal operating conditions, but should a person drop a
screwdriver, or other conductive object into the circuit, it would
be quite possible to make a connection between the circuits of the
computer and the line voltage, destroying the computer. We would
like to have some means of protecting the computer from such a
disaster.

42

R

An optical coupler could be used to isolate the computer circuits
from the line voltage control circuits. Such a device is shown in
cutaway form in Fig. 1-33. An infrared light-emitting diode (IRED)
is placed above an infrared-sensitive photodetector. When the IRED
is conducting, the infrared light is passed through a “light-pipe,” to
the detector. The incident infrared light causes current to flow
through the detector. Of course, when the IRED is off, current
ceases to flow through the detector, or at least it flows at a much
reduced rate. In this way, the input signal that turns the IRED on
and off is isolated from the photodetector, since there is no electri-
cal connection between the IRED and the detector.

DETECTOR

LIGHT PIPE

Courtesy Motaorola Semiconductor Products, Inc.

Fig. 1.33. A cut-away view of an optical coupler chip.

The Motorola Semiconductor group has developed an optical
coupler that is designed to work directly with triacs and logic levels.
This device, the MOC3011, allows the computer to control the
IRED, while the infrared light is detected by the photodetector,
which is used to control the triac. In this way, the computer may
be used to control triac circuits, but without any direct electrical
connections with them. The pin configuration for the MOC3011 is
provided in Fig. 1-34. Two simple control circuits are shown in
Fig. 1-35. These circuits illustrate how the MOC3011 may be used
in triac circuits to control resistive (lamp) and reactive (motor)
loads.

If you plan to use the MOC3011-type circuit in a number of
different interfaces, it would be wise to protect the IRED side of
the optical coupler. This can be done with a simple network of
parts; a diode to protect against reversed polarity connections, and
a transistor to limit the current through the IRED. This protective

43

circuit is shown in Fig. 1-36, which provides a good general-purpose
line control circuit, as well. The 2N6071B triac can handle about
4 amperes at 117 V ac. It is important to keep in mind the voltage
drop across the triac, since this will generate some heat. If you
choose to use this particular circuit, it would be a good idea to use
a heat sink for the 2N6071B package. If you plan to control devices
that require higher line voltages, say 240 V ac, you cannot use the
MOCS3011 alone, since it cannot withstand the higher voltage. How-
ever, you can double-up the MOC3011 devices so that the voltage

ANODE 1 I l 6 MAIN TERMINAL

\ 5 TRIAC DRIVER
CATHODE 2 E ! A7} SUBSTRATE

DO NOT CONNECT

3! 14 MAIN TERMINAL

Courtesy Motorola Semiconductor Products, Inc.

Fig. 1-34. The pin configuration for the MOC3011 optical coupler.

(240 V ac) is equally divided across them. This is shown in Fig.
1-37. Two one-megohm resistors have been used to provide the
voltage divider circuit. The protection network on the inputs to the
optical coupler has been left out, for clarity.

Solid-State Relays

If you are not particularly excited about the prospect of building
a triac-based line switch for each of the line loads that you wish
to control, then pre-packaged solid-state relays are an attractive
alternative. All of the necessary triac, and other solid-state circuits
are molded into a package that simply requires installation in the
load circuit, and some simple connections to the computer interface.
The schematic diagram of a typical solid-state relay is very similar
to that shown in Fig. 1-36. Some typical solid-state relays are shown
in Fig. 1-38. These devices are available in a wide variety of sizes
and shapes, and with various voltage and current levels. Solid-state
relays have their advantages and disadvantages, some of which are
listed in Table 1-7. Most solid-state relays can be used in either
117 V ac, or 220 V ac circuits, and relays with current-carrying

44

[N

MO0C3010
MOC3011

(A) Resistive loads.

MO0C3010
MOC3011

(B) Reactive loads.
Courtesy Motorola Semiconductor Products, inc.

6 1809
e O——AAA————
17
DN A 60Hz
4
L——0
Z
6 1809
F———O—AAA——AAA—
24009
M"rv
DN c1 60Hz
0.1uF A
4
O

Fig. 1.35. Two simple triac controllers for resistive loads and reactive loads.

1500
O

2w y
1N4002

L |

2N3904

1800 24001
I'—-Wv l VWV]
A 4 A k S OuF
2N80718
MoCa01t 117 VAC
> b3
T 470 oK
O

Courtesy Motorola Semiconductor Products, inc.

Fig. 1-36. A general-purpose triac controller with a protected logic input.

1500

3
> o
o
<
o~
9
©
[
. |
Sy A\ f\ e
g <
® $ *
- -
o =1
2 =
- -
"‘VAV AVAVA'

v WA

\g

A 4

MOC3011

MOC3011 ¥ A IK

+5V QO

Courtesy Motorola Semiconductor Products, Inc.
Fig. 1-37. Using MOC3011 optical couplers to control 240 V ac triac switches.

My

Ve

Gz

v

Fig. 1-38. Photograph showing the physical characteristics of various solid-state relays.

capabilities of up to 45 amperes are available. Since most solid-
state relays are optically coupled to the load-controlling triac, there
is substantial voltage isolation between the control and line sides
of the relays. This isolation is often several thousand volts, gener-
ally running between 1500 and 2500 volts on commercially avail-
able models.

Table 1-7. Advantages and Disadvantages of Solid-State Relays

Advantages Disadvantages
Wear-resistant, no moving parts to Require heat sinks, due fo the
wear out. voltage drop in the switching

semiconductor.
Quite, confact cleaning is not Generally, just ac loads can be
required. switched.
Directly compatible with TTL and Different contact arrangements are
other logic families. difficult to obtain, most are

normally open.
Repeatable performance. Can be expensive.

Solid-state relays must be used in interfacing applications with
some care. When these devices are used to control the high voltages
and high currents associated with line loads, it is not always possible
to know where in a 117 V ac, 60 Hz (or 50 Hz) cycle, the load will
be turned on. If the relay happens to be at the peak voltage when it
is turned on, there will be a sudden rush of current through the
solid-state relay. This high current can often exceed the maximum
current rating of the solid-state relay in use. The instantaneously
high current can also cause the solid-state relay circuit to radiate
a great deal of electromagnetic noise, over a wide spectrum of fre-

47

quencies. This noise can be picked up by computer circuits, causing
malfunctions, bad data values, and other problems. These problems
may be substantially reduced by using a technique called zero-
voltage switching. When zero-voltage switching is used in a solid-
state relay, the relay will only start to conduct voltage, when the
alternating voltage applied to it on the load side reaches zero, even
if the controlling side of the relay has been activated somewhere
in the middle of a voltage cycle. The zero-voltage crossing points

AMPLITUDE

LOAD VOLTAGE

_ TIME

ZERO-VOLTAGE-CROSSING POINTS

Fig. 1-39. Zero-voltage crossing points in a 117 V ac waveform(4).

are shown in Fig. 1-39, while the timing relationship between the
on command and the actual turning on of the load is illustrated in
Fig. 1-40, The maximum delay in turning on the solid-state relay
is about 8.3 milliseconds, the period of half a cycle at 60 Hz. In
most applications in which solid-state relays are used, this will be
an insignificant period. Since there is some additional circuitry in
zero-voltage switching solid-state relays, to detect the zero-crossing
point, some current will be drawn through the load by the relay,
even when it is off. This doesn’t generally exceed a few milliam-
peres, however. Actually, most zero-voltage switching solid-state
relays don’t switch at exactly zero volts, but within about one to
five volts of the zero-crossing point.

A

} TURN ON DELAY |\

{0 to 8.33ms at 60Hz) l

Fig. 1-40. Timing relationship between the turn on command, and the actual zero-voltage
switching point(4),

48

AN

S

AR

;a&

LI

A,

L2

By way of an example, consider a control system in which an
incandescent lamp is to be turned on and off by a solid-state relay.
The problem of inrush current has already been discussed, but it
is an important consideration in the selection of solid-state relays.
We will assume that the cold resistance of the filament is 2.4 ohms,
and the on resistance is 24 ohms. This ratio is quite reasonable for
an incandescent bulb. In calculating the worst case conditions, we
will assume that the lamp is turned on when the voltage (117 V ac)
is at its peak. Thus, the instantaneous current through the lamp is
about 70 amperes:

VPEAK

Ippax = Reor,
COLD

_ 12002
T 24
= 70 amperes

If we assume that the switching takes place at 5 volts, which is
very close to the zero-voltage point, then the instantaneous current
is greatly reduced, being about 2 amperes, instead of 70. Most solid-
state relays can operate at high currents for a few cycles, so while
start-up and inrush currents may be high, they can frequently be
tolerated if they are only present for a few cycles. For example, a
solid-state relay that is rated at a maximum current of 10 amperes
can handle a peak current of 50 to 60 amperes for one or two cycles,
30 amperes for 10 cycles, or 15 amperes for 100 cycles.

Since the triac devices will continue to conduct current until the
gate signal is removed, you may be wondering about the use of
zero-voltage switching to turn them off. Actually, the triacs take
care of this themselves, since it is the nature of the triac to continue
to conduct until the voltage across the triac reaches zero volts, even
if the gating signal had been removed elsewhere in the cycle. No
special turn-off circuitry is required.

RELAY PROTECTION

Since solid-state relays are frequently used with inductive loads,
such as motors, or large relays, it is possible for such loads to gen-
erate a back emf when they are turned off. Such emf, or voltage
spikes, may be “detected” by the triac in the solid-state relay, caus-
ing it to turn back on. It is advisable to use a “snubber” circuit
across the load outputs of the solid-state relay, if this appears to
be a problem. The snubber circuit helps to reduce the voltage spikes,
so that the relay will not be re-energized. Typical snubber circuits
are shown in Fig. 1-41. Likewise, glitches or transient high-voltage

49

@]

SSR

1009

LINE SSR

0.05uF

@-

500

T 0.1uF

LINE

G @

Fig. 1-41. Typical snubber circuits for use with solid-state relays.

spikes on the power lines may also cause solid-state relays to
turn on.

Since triacs are used in solid-state relays, they will cause a volt-
age drop in the load circuit, which will generate heat, in direct re-
lation to the current that is being switched by the relay. Unless you
will be using solid-state relays to control fairly low-current devices,
the relays should be provided with heat sinks. A typical relationship
between the temperature of a relay, and its ability to carry current,
is shown in Fig. 1-42. Typically, a 7-ampere solid-state relay can
only be used to switch a 1.5 ampere load, unless heatsinking is
provided (4*,

There are other considerations that must be carefully evaluated
before solid-state relays can be used in an interface. Most relays

® Numbers in parentheses refer to references at the end of the chapter.

5_ s
5 44 !
z | MOUNTED ON
3 § 6 X6 X
«z 4 j HEAT SINK
3%
D‘Lﬁ L/
&, | FREEAIR [
S NO HEAT i
x < SINK [
= i
s 14
{
] ¥ 1 1 L

0° 200 40° 60° 80° 100°C
AMBIENT TEMPERATURE

Fig. 1-42. Load current versus temperature for a solid-state relay{4).

50

PN

%,

%,

s

must have a minimum current passing through them when they are
turned on, and there are upper and lower limits on the voltages that
may be applied to both the control and load sides of the device. In
almost all cases, you will find that solid-state relays are not universal,
and that one relay will not suit all of your needs. If you wish to
apply solid-state relays to interfacing tasks, we suggest that you
take the time to contact some of the manufacturers listed at the end
of the chapter, since they will be able to provide you with specific
information on the various relays that they manufacture. Many of
the manufacturers have written application notes that describe spe-
cific applications, general guidelines, and other useful information.

Before we end our discussion of solid-state relays, and other de-
vices that are used to control what can generally be called nonlogic
devices, there is one other type of protective device that should be
considered. This is the metal-oxide varistor, or MOV. These devices
can be used in a variety of different ways to protect computers,
control circuits, interfaces, power supplies, and other important
parts of a computer system, from high-voltage transients, or spikes.
Rather than describe these devices in great detail, we refer you to
the well-written applications manual, available from General Elec-
tric'®, In this manual, you will find out more about how you can
protect your investment in computer and other electronic equip-
ment.

Oh, yes, we are sure that some of you are wondering about the
bells and whistles mentioned in the title of this chapter. Actually,
electromechanical bells are simply relay-like circuits, but be sure

SOME SOLID-STATE RELAY MANUFACTURERS

Douglas Randall Gould, Inc.
6 Pawcatuck Avenue Controls Division
Pawecatuck, CT 02891 100 Relay Road

EI&S
49 Pleasant Street
Stomeham, MA 02180

Elec-trol, Inc.

26477 N. Golden Valley Rd.

Saugus, CA 91350

Gordos Arkansas, Inc.
1000 N. Second Street
Rogers, AR 72756

Plantsville, CT 06479

Motorola Inc.
Subsystem Products
P. O. Box 29023
Phoenix, AZ 85038

Opto 22
5842 Research Drive
Huntington Beach, CA 92649

Sigma Instruments, Inc.
170 Pearl St.
Braintree, MA 02184

51

‘@;&

to use good diode protective circuits, since the back emf is gener-
ated rather frequently. Solid-state buzzers solve this problem nicely,
and they may be driven by open-collector chips, or peripheral driv-
ers, without a great deal of fuss. Whistles, like fire whistles, are
generally controlled by a 117 V ac motor, which can be controlled
by a solid-state relay, which may be controlled by an open-collector
gate, which may be controlled by a computer, etc.

REFERENCES

1. The Peripheral Driver Data Book, Texas Instruments, Inc., Dallas, TX 75222, %
1977.

2. Linear and Interface Circuits Applications, Texas Instruments, Inc., Dallas,
TX 75222, 1974.

3. Sprague Integrated Circuit Data Book (WR-500), Sprague Electric Co., |,
Worcester, MA 01606, 1978.

4. Designer’s Handbook of Solid-State Relays, Gordos Arkansas, Inc., Rogers,
AR 72756, 1977.

5. Stepper Motor Handbook, North American Philips Controls Corp., Cheshire,
CT 06510.

6. Transient Voltage Suppression Manual, 2nd ed., General Electric Co., Au-
burn, NY 13201, 1978.

..

52

Analog and Digital
Conversions and Data
Processing

It is our purpose in this chapter to introduce you to the ways in
which your TRS-80 computer can both control and measure external
signals that are represented by voltages and currents. You may be
asking yourself, “Why would I be interested in doing this?” When
you consider the many physical measurements that can be made
through the indirect measurement of a voltage or a current, the use-
fulness of these measurements will be quickly apparent. Consider
the measurement of strain, torque, temperature, pressure, incident
light, humidity, and other quantities. Each of these can be converted
to a voltage that can be readily measured by a computer system.
Likewise, there are many cases in which the computer can be used
to generate a voltage, or a current, that can be used to control an
external device. While some of the on/off interface circuits have
already been discussed, there are other situations in which the com-
puter must be able to generate continuously variable voltages, for
the control of servo motors, programmable voltage boosters, func-
tion generators, electrochemical plating baths, and other voltage-
dependent devices. When we talk about using the TRS-80 to actu-
ally measure a varying voltage, we will really be talking about the
use of devices called analog-to-digital converters, and when we de-
scribe those situations in which the TRS-80 will be “generating” a
varying voltage, digital-to-analog converters will be used. There are
special types of control interfaces for each of these devices, and

53

they will be described in this chapter, along with the software that
will be required to properly control them.

OBJECTIVES
At the end of this chapter, you will be able to:

® Describe the function of a digital-to-analog converter.

@ Describe the relationship between the number of input bits to
a digital-to-analog converter, and its resolution.

@ Describe the operation of a simple eight-bit digital-to-analog
converter interface circuit,

@ Use the MC1408 and NE5018, eight-bit digital-to-analog con-
verter integrated circuits.

@ Write software to control digital-to-analog converters.

@ Describe double buffering for digital-to-analog converters.

® Describe the detailed use of digital-to-analog converters in sev-
eral applications.

® Describe the interfacing requirements of analog-to-digital con-
verters.

@ Design analog-to-digital converter interface circuits, using the
AD571 and ICL7109 converter chips.

@ Describe the application of analog-to-digital converters in sev-
eral measurement experiments.

® Describe some simple data processing tasks.

© Develop software to control analog-to-digital converters.

In this chapter, the emphasis will be placed upon the use of digi-
tal-to-analog (D/A) converters, and analog-to-digital (A/D) con-
verters, so the discussion will center upon several of these converter
devices, rather than on an introduction to the many different types
of converters that serve the same purpose. You should be aware,
though, that there are literally hundreds of different types of con-
verter products, many of which are general-purpose in nature, and
some of which have been designed for very specific purposes. As
you read through this chapter, you will be provided with some of
the details of the various types of converters that are available.

Some of the information in this chapter will discuss the process-
ing of information that has been acquired by the computer from an
external source. The topics of averaging, filtering, integrating, etc.,
will be discussed, since it is important to be able to use the infor-
mation once it has been acquired. The internal operation of D/A
and A/D converters has been covered elsewhere, and we refer you
to some of the references at the end of this chapter for some of the
details of how these devices actually work. For the most part, we

54

will be treating these converters as if they are the proverbial “black
boxes” that are well known in engineering circles. Our main con-
cern, and yours, is in the use of these devices, and not what makes
them work the way that they do. Now that we have introduced you
to this new series of topics, let us start our discussion with the sim-
plest type of converter, the digital-to-analog converter.

DIGITAL-TO-ANALOG CONVERTERS

Digital-to-analog converters, frequently noted as DACs, or D/A
converters, are circuits that have digital inputs and a single analog
output. The digital inputs are combinations of logic ones and logic
zeros that form a binary number. In the applications and circuits
described in this book, these inputs will be compatible with the
logic levels that are generated by TTL circuits. Thus, they are TTL-
compatible inputs. The analog output provided by a D/A converter
is a voltage that is continuously variable between an upper and a
lower limit. So that some basic principles can be illustrated, we will
assume that a D/A converter is available with four binary inputs,
and with an analog output that has a range from 0 to +15 volts.
The 16 possible binary inputs range from 0 (0000) to 15 (1111).

Each of the four binary inputs to the converter is weighted, in
much the same way that the bits themselves are weighted. In the
four-bit D/A converter, the four inputs would have weights of one,
two, four, and eight, each being an integer power of two. Since each
bit is weighted differently, each bit will “contribute” a different
amount to the output voltage of the D/A converter. In this case,
the most-significant bit (MSB) has a value of either zero, or eight,
so it can contribute either 0 or 8 volts to the output of the converter.
The least-significant bit (LSB) will also make a contribution to the
total output, this being either 0 or 1 volt. We have assumed that the
D/A converter contains the necessary circuitry to accurately add
these contributed voltages. In this converter, then, the binary bits
have the ability to add either zero, or their particular weight, ex-
pressed in volts; that is, 8 volts, 4 volts, 2 volts, and 1 volt. Any volt-
age between 0 and 15 volts (0, 1,2, 3, ... 13, 14, or 15 volts), can
be generated by the four-bit D/A converter, through the application
of the proper four-bit binary code to the four inputs of the con-
verter. The relationship between the binary inputs, and the voltage
output, is shown in Table 2-1.

While the output of the D/A converter was noted as being “con-
tinuous,” you should note that the output of this four-bit D/A con-
verter is a series of discreet voltages that are easily measured. In
fact, the output of every D/A converter will be discreet voltage
steps, whether the steps are a few millivolts, or 1 volt.

55

Table 2-1. Four-Bit D/A Converter With Voltage Range
From O to 15 Volts

The block diagram for a typical D/A converter is shown in Fig,
2-1. In most commercially available D/A converters, the binary in-
puts control switches that either add, or do not add, to the total
output, a current that is proportional to their weight. It is much
easier to switch currents in these devices, than it is to switch volt-
ages. A precision resistor ladder is used to control the individual

ELECTRONIC RESISTOR LADDER

SWITCHES NETWORK

O— O lout

w-HCcuz -

O FTOV 0 Vour

[o S __ro GND

PRECISION VOLTAGE
\ REFERENCE

Fig. 2-1. Block diagram of a typical D/ A converter.

A,

&

Binary Code Input Output Voliage
D=8 C=4 B=2 A=1 (Volis) L

0 0 0 0 0
0 0 0 1 1

0 0 i 0 2

0 0 1 1 3

0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 i 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

‘w‘%

56

currents, and you may see the notation “R/2R resistor ladder net-
work,” associated with D/A converters.

In computer interfacing, you will probably find little use for D/A
converters with fewer than eight bits. In fact, 10- and 12-bit D/A
converters are quite common in computer systems. As the number
of binary inputs is increased, so is the resolution of the converter.
This simply means that the voltage steps that are output by the
converter, are smaller. Thus, an 8-bit D/A converter would have
a resolution of one-part-in-256, and a 12-bit converter would have
a one-part-in-4096 resolution. You will probably find that most inter-
facing tasks that call for an analog control voltage, are easily han-
dled with 8- or 10-bit D/A converters.

Digital-to-analog converters are very fast, converting the applied
digital value into the corresponding voltage output within a micro-
second. There is no other control required; you simply apply the
binary bits, and the voltage output of the converter changes accord-
ingly. Typically, output ports, or latches, are used in computer inter-
faces to store binary values for use by D/A converters. You should
be familiar with these devices from TRS-80 Interfacing, Book 1
(Howard W. Sams & Co., Inc., Indianapolis, IN 46206).

Before we get started discussing the interfacing of D/A convert-
ers, we need to spend a bit more time discussing the characteristics
of the output of the converter. For the purposes of this discussion,
we will assume that there is an 8-bit D/A converter available, with
its output specified as being within the range of 0 to +10 volts. In
this converter, there are 256 different voltages, each of which con-
sists of contributions from the 8 weighted binary inputs. The MSB
would contribute 5, or 0 volts, while the next to the MSB would
contribute 2.5, or 0 volts, and so on, for each of the 8 bits, as shown
in Table 2-2. If you add all of these 8 weighted voltages, as the
converter would for a binary input of 11111111,, or 255, you would
find that the total is 9.9609375 volts, and not 10 volts, as was speci-
fied. How can this be? Just remember that the MSB contributes one-
half of the full-scale voltage, the next to MSB contributes one-quar-

Table 2-2. Voltage Welghts for an Eight-bit D/A Converter

Bit Position Voltage*

Most-significant bit 5.0000000 = Y2 of full scale
2.5000000 = Y of full scale
1.2500000 = /s of full scale
0.6250000 = /16 of full scale
0.3125000 = /a2 of full scale
0.1562500 = /4 of full scaie
0.0781250 = /12s of full scale

Least-significant bit 0.0390625 = '/ass of full scale

*10-volt full-scale converter

57

ter, and so on. Only an infinite number of bits would be able to have
their corresponding voltages added to reach the 10-volt full-scale
specification. Actually, the 9.9609375-volt full-scale output is close
enough to 10 volts for most interfacing tasks. In fact, the difference
between the maximum output from the D/A converter, and the 10-
volt maximum that was specified, is 0.0390625 volt, the contribution
from the LSB. Ten-bit and 12-bit D/A converters with the same
full-scale range have smaller voltage steps, or greater resolution, so
that they can more closely approximate the 10-volt full-scale volt-
age, as noted in Table 2-3. In this discussion, we have provided all
of the decimal digits for the calculations of the voltages for each
step. In practice, this is not really practical, since most measure-
ments are useful to three significant digits. Thus, the 9.9609375-volt
maximum would really be measured at about 9.96 volts.

Table 2-3. Voltage Resolution of Varlous D/ A Converters

Converter Max Full Scale* Resolution % Resolution
8-Bit 9.9609375 volts 0.0390625 valts 0.39
10-Bit 9.9902344 volts 0.0097656 volts 0.1
12-Bit 9.9975588 volts 0.0024412 volis 0.024

*10-voit full-scale converter

Not all converters have the same full-scale voltage output. Some
converters are available with a variety of outputs, for example *2.5
volts, =5 volts, 0-10 volts and 0-1 volt. Current output D/A con-
verters are also available, having outputs of =1 mA or (-10 mA.
The converters that have both positive and negative output voltages
are called bipolar D/ A converters, while those that have either posi-
tive or negative outputs, are called unipolar D/A converters. There
are applications for both types. If you need a D/A converter that
has a voltage range that is not readily available among the standard
converters offered by manufacturers, you can use operational am-
plifiers (op-amps), to change the range, to add an offset voltage,
to invert the voltage, and perform other “conversion” functions on
the analog output from the converter. Op-amps are also used to
convert the current output by some D/A converters into a voltage.

Just as the converters have different types of outputs, there are
devices that have different types of digital inputs, too. Some of the
commonly available input codes include binary, binary-coded deci-
mal (BCD), and offset binary. In most cases, the binary input
models will be the most useful in computer interfacing applications.
Converters are also available with inputs that are compatible with
the various types of logic families, for example, CMOS, ECL, and
TTL. The wide variety of D/A converters makes them easy to use
in computer interface circuits.

58

L

D/ A Converter Interfacing

As was mentioned previously, most interfaces that use a D/A
converter also have latches between the data bus of the microcom-
puter and the inputs of the converter, since it is necessary to main-
tain the digital input to the converter for as long as the same volt-
age output is required. Without the latch function, the D/A con-
verter could not perform any useful function. A typical D/A con-
verter interface circuit is shown in Fig. 2-2. A control pulse is re-
quired to activate the latch, and in this circuit, the OUT function
pulse has been gated with device address “7,” to provide the needed

+5V GND 0+5V
_
L L i 11:0,1‘,; GAIN ADJ
D7 o0—2] 5 12 14 +2.5V
D6 o——3 4 1 11500 2000 (REF)
D5 o 22 19 10
21 20 9 4 50009
DATA/ D4o—=1 2 6
BUS | D3 o—L1|SN7410018 8] ADS59 3 0 (0-10V)
10
D2 o] - 741
D1 o——2 =
Do 16 17 5 2
3
ouT " 4 I 0.1pF 1
7 — 15V
SN7402

Fig. 2-2. A typical eight-bit D/ A converter interface, using an Analog Device
ADS559 converter,

device select pulse. A typical command that could be used to con-
trol this circuit would be OUT 7,100, which would transfer the 8-
bit binary value 01100100 to the latch, and thus to the eight inputs
of the D/A converter, If a 10-volt full-scale converter is used, an
output of about 3.91 volts would result from the execution of this
command. Since the D/A converter is under the control of the pro-
grammer, various programs can be written to control the voltage
output in many ways. The three programs listed in Examples 2-1,
2-2, and 2-3 show how an increasing voltage ramp, a decreasing
voltage ramp, and a triangular voltage sweep can be generated.
The programs have been written in BASIC, so that they are com-
patible with the TRS-80 computer. Several other programs that may
be used with an 8-bit D/A converter are contained in Experiment
No. 11 in TRS-80 Interfacing, Book 1. You might be interested to
know that the positive ramp program generated a ramp with a

59

Example 2-1. Program for a Positive Voltage Ramp L.

10 FOR =0 TO 255

20 OUT 7.

30 NEXT i

40 GOTO 10 %

period of about 1.5 seconds. An equivalent assembly-language pro-
gram required only six 8-bit bytes of memory, and it was able to
generate a similar ramp with a period of 3.6 milliseconds, or about
400-times faster than was possible with the BASIC program. o,

3 %

Example 2-2. Program for a Negative Voltage Ramp

10 FOR =255 TO O STEP —1
20 OUT 7.1

30 NEXT |

40 GOTO 10

More complex output functions prove the usefulness of BASIC, .
though, since the trigonometric sine function shown in Example 2-4
would be quite difficult to generate with an assembly-language pro-
gram, unless the sine values were already stored in a table in mem-
ory, often called a look-up table. The sine function shown in Ex- @
ample 2-4 computes the sine of angles that are expressed in radians,
rather than in degrees, so a conversion is necessary, so that degrees

Example 2-3. Program for a Triangular Voltage Waveform
10 FOR I=0 TO 255 @,
20 OUT 71
30 NEXT I
40 FOR =255 TO 0 STEP —1
50 OUT 7.1
60 NEXT |
70 GOTO- 10

are converted to radians, This program also illustrates some other
things that must be considered when attempting to use higher-level
languages, such as BASIC, and simple hardware interfaces. You
should recall that the TRS-80 computer can only transfer eight bits
of information to an output device at one time, consisting of values %
between 0 and 255, inclusive. The values for the sines of different ‘

Exxample 2-4. Generating a Sine Voltage Function P

100 FOR 1==0 TO 360 .
110 A= 128+ INT(127*%(SIN(I*0.017453)))

120 OUT 7.A A
130 NEXT |

140 GOTO 100

angles vary between —1 and +1, so how can an 8-bit D/A converter
be used to display a sine function, such as the one generated by the
program listed in Example 2-4?

The full-scale range of the sine values must be converted to the
full-scale range of the D/A converter, and the bipolar sine values
must be converted to unipolar values for use by the D/A converter.
These functions are performed in Example 2-4, at line No. 110.
Note that if the sine of an angle is zero, the resulting value for the
variable, A, is 128, which when transferred to the D/A converter,
will place the output voltage at the middle of the output range.
The sine of the unknown angle is multiplied by 127, so that the
sines of the angles between 0 and 360 degrees will be converted
to values between —127 and +127. When these values are added
to +128, the resulting range of values for A is +1 to +255, values
that are readily output to the output port of the D/A converter.
The INT command is used to generate integer values of the sine, al-
though this command could have been left out of the program,
since the OUT command of the TRS-80 ignores fractional portions
of values that are to be output.

You will find many applications for D/A converters in which
either a particular function (positive ramp) or particular set of data
values (sines of angles) may be required. In most cases, BASIC
programming steps may be used to convert this information so that
it may be output to binary D/A converters for use by a plotter, a
display, or to control an instrument.

Practical D/ A Converter Circuits

Now that you have seen a few of the things that a D/A converter
can do, it is useful to look at a few other D/A circuits. The Motorola
MC1480-8 integrated circuit is an 8-bit D/A converter sub-system
that contains the current switches used in a complete D/A con-
verter. Since this device costs only a few dollars, it has been quite
popular for use in small computer systems. It requires a few exter-
nal components, as well as an output port latch circuit. A typical
circuit in which the MC1408-8 is used is shown in Fig. 2-3. An ex-
ternal operational amplifier has been used in this circuit to provide
the necessary current-to-voltage conversion, so that the circuit will
provide a 10-volt full-scale output. An external reference voltage is
also supplied by the MC1408-8, 2.5 volts in this example, which
flows through a 1250-ohm resistor to provide a known current flow
of 2 mA. This means that the output of the MC1408-8 converter will
be 2 mA at full-scale. A 5000-ohm feedback resistor is used in the
op-amp circuit, to provide the 10-volt full-scale output, computed
using Ohm’s law, I =E/R. An LM318 op-amp, or equivalent, has
been selected for its high performance characteristics. The use of

61

voltage references will be discussed in more detail later, since this
topic is quite important if the particular D/A converter that you
will be using requires a stable, external reference source.

Another typical 8-bit D/A converter interface is shown in Fig.
2-4, in which a Signetics NE5018 D/A converter chip has been used.
In this circuit, additional circuit components have been added, so
that the output of the converter may be adjusted for the maximum
voltage output desired, and so that the offset may be adjusted, too.
The full-scale adjustment allows you to adjust the output of the
circuit, so that its maximum is very close to 10 volts, or 9.96 volts

REFERENCE
+2.50V - 15V
100pF
12500 “]
LATCH 14 3 |16
50000
by 5[ss VREF+ Vee COMP
D6 8 10pF
7 Y
D5 ry 4 1t
D;JSA gg 9 MG1408-8 lo ri>__o-1ov
10 -+ ES
D2
o1 11 L
DO 12} 58 iM318 OR
S9F VRer Voo EQUIVALENT
5 113 T 12 OP-AMP
DEVIGE SELECT 12000 9 ?I

PULSE

Fig. 2-3. A typical eight-bit D/A converter interface, using a Motorola MC1408-8 converter.

for true 8-bit conversions. The offset adjustment allows the output
of the converter to be set at exactly zero for an input of 00000000..
Most converter circuits can be adapted so that they include con-
trols for full-scale and offset adjustments. Some converters may be
configured so that either a bipolar, or a unipolar output is available.
This can be done fairly easily with the NE5018, so that the output
of the converter may be either =5 volts, or 0 to 10 volts.

Two important features have been incorporated into the NE5018.
One of these is the availability of an on-chip voltage reference cir-
cuit. The other is the presence of on-chip latches for the eight data
bits. A simple latch enable (LE) signal is supplied by the computer
to transfer eight bits of information from the data bus to the inter-
nal latches. This does away with the need for an output port circuit,
when the NES5018 is used. It has been our experience that the
NE5018 is a very useful and convenient D/A converter circuit for
general-purpose use. It is available for about $10.00. The NE5018
may be used without the full-scale and offset controls, simply by
removing the four control resistors from the circuit.

62

S

OIN OIN N

L % S Lu NL»

|

rav
AGL— FIVOSTIN4
(o432) 004
BM0ZST AL osiog ot
eF
ASL+
= 142
uaooorﬁh he
B00LY
VLBN naom% 0e
Sd4
AOL-0 8t

rav 43d
1N0O4d3d

NId434
diNOD

Wns

inopa

8LOGIN

R

857

gSi

Er L1

47100

AGL—

6l

AGL+

(=]
-

DO O] iy

1037138 301A30

€d snd
¥a vivd

Fig. 2-4. An eight-bit D/A converter interface using the Signetics NES018, with an

internal latch,

63

Of course, there are many other 8-bit converters available from
a number of different manufacturers. A representative list of some
of these has been included at the end of this chapter, for your
reference.

Higher Resolution Converters

There are situations in which analog control voltages are required,
but with resolutions that are greater than that available from 8-bit
converters. A four-fold increase in resolution is available when 10-
bit D/A converters are used in place of 8-bit converters, but inter-
facing these devices to an 8-bit computer such as the TRS-80, pre-
sents some interesting problems. You will recall that the TRS-80
computer can only transfer 8 bits at a time, and that it is impossible
for it to transfer a 10-bit value to an external device, all 10 bits at
the same time. On the surface, the solution would seem to be trivial,
since an 8-bit latch could be used for eight of the bits, and a 2-bit
latch could be used for the remaining bits. Data transfers could
take place through the use of one OUT command to transfer part
of the data word (eight bits), and another OUT command to trans-
fer the remaining part of the data word (two bits). Of course, two
separate device addresses would be required for the proper control
of the interface. Such an interface is shown in Fig. 2-5. If you at-
tempted to use this circuit, along with the program listed in Ex-

LATCH

OUT 055 | iy .

D7
D6
DS 10-BIT

D4 DIA v
iy 03 LATCH our

D2
D1
Do

OUT 054 l .

Fig. 2-5. Block diagram for a 10-bit D/A converter interfaced to an eight-bit computer,

64

<ge

[

=

Example 2-5. A Positive Ramp Generator Program for a 10-bit
D/A Converter

10 FOR =0 TO 1023
20 M=INT(1/256)

30 L=1~—(256*M)

40 OUT 54,1

50 OUT 55M

60 NEXT 1

70 GOTO 10

ample 2-5, to generate a positive voltage ramp, you would observe
a number of glitches, or errors, in the output voltage. These errors
occur since the complete 10-bit binary value is not applied to the
inputs of the converter at exactly the same time. The BASIC pro-
gram takes several milliseconds to execute each of the program
steps.

To eliminate such errors in the loading of 10-bit values to D/A
converters, a technique called double-buffering is used. A simple
double-buffered D/A converter circuit is shown in Fig. 2-6. The
MC3410 D/A converter chip has been chosen for this example, since
it is very similar to the MC1408-8 device that has been described
already. Note that the least-significant bits have two sets of data
latches between the data bus, and the inputs of the converter, while
the two most-significant bits have only one latch. As was the case
in the 10-bit D/A converter interface circuit shown in Fig. 2-5, two
separate latch control signals have been used, but there is a signifi-
cant difference in the operation of these two interfaces. In the
double-buffered interface, the eight least-significant bits are loaded
into Latch No. 1 when the low-byte strobe (LBS) signal is gener-
ated by the computer. This latch retains the information that has
been transferred to it and presents it to the inputs to Latch No. 2.
Since Latch No. 2 has not been actuated, there is no effect upon
its outputs to the D/A converter. When the two most-significant
bits are transferred to the interface by the activation of the high-
byte strobe (HBS) signal, these bits are loaded into Latch No. 3.
The HBS signal also transfers the information from Latch No. 1
to Latch No. 2, so that the 10-bit data word is presented to the in-
puts of the D/A converter as a complete set of 10 bits. All that was
required in this new interface was an additional 8-bit latch circuit,
controlled by the HBS signal.

With the double-buffered 10-bit D/A converter, an error-free
ramp may be generated, since no glitches will be observed. In the
circuit shown in Fig. 2-5, the glitches are observed during the tran-
sitions from binary inputs of 0011111111 to 0100000000, from
0111111111 to 1000000000, and so on. The reason for the glitches
has been explained; the 10-bits of information are not transferred

65

o
%

A A s . E N R .
3ONIHI4IY
N AGT+
sSgH
5002tS | 50SZh -
gl 2| ot)
o s
50062 (43 za
L ea \ sne
1nop + ot ¥ viva
OLYEOW |6 P
w 9a
50052 5 lQ
w 20N HOLVY L'ON HOLV1
vi 1
AG+ AGL ~ L

€°ON HOLV1

Fig. 2-6. A simple double-buffered 10-bit D/A converter interface,

to the inputs of the converter simultaneously. However, the actual
errors, themselves, may not be quite so obvious. Assuming that the
eight least-significant bits are transferred to the converter first, the
transition from 0011111111 to 0100000000 would actually be from
0011111111 to 0000000000, and then to 0100000000.

A second approach to double-buffering is shown in Fig. 2-7. In
this interface circuit, an Analog Devices AD561, 10-bit converter
has been used. This converter contains an internal voltage refer-
ence, so it is fairly easy to use. In the interface circuit, a second
latch has been used for both the least-significant bits, and for the
most-significant bits, requiring three control lines. Here, the LBS

+5V GND
5 jiz
2 16 6 10
3] 7476 |us 7] 7476 | s +8V -8V
1
= I |
1 4 s |5 AD561
+35V 6ND +35V GND i3 10 i6 AATAA.
12 T son
24 7 24 {7 9 i
2 s 2 5 i it
07 3 4 3 4 10 8 1oeF
D6 T
D5 22 19 22 19 9 6 s 2
2 20 2y 20 8 - 8
v
04] 7a100 |5 10} 7a100 {5 2 A 3 il
b3 10 s 10 9 [4 > ADBOS
b2 15 18 15 16 5 3
D1 2
50000
bo 13 17 i 17 4 1
12 {23 12|23 -!..
54 - v
i

oUT —¢ T]
058 —
OES———D_H_ [

Fig. 2-7. A double-buffered 10-bit D/A converter interface, using Analog Device AD561.

signal loads the LSBs into an 8-bit latch, while the HBS signal loads
the MSBs into a separate latch. The HBS signal does not transfer
the new data word to the inputs of the D/A converter. A separate
control signal, load D/A converter (LDAC), is used to transfer the
separately formed portions of the complete 10-bit word to the con-
verter. In this way, either the MSBs, or the LSBs, may be loaded
into the interface circuit first, without disturbing the other bits.
Only when the LDAC signal has been actuated, will the actual
transfer to the converter take place. This double-buffering scheme
provides a bit more flexibility than the one shown in Fig. 2-6, but
it does require the use of an additional 2-bit latch, and a third
control line. The program listed in Example 2-5 may be used with

67

&

this interface, but an additional command would have to be in-
cluded, so that the LDAC line would be pulsed by the computer:

55 OUT 56,0

Just as 8-bit D/A converters are being constructed with on-chip
latch circuits, 10-bit D/A converters are being constructed with all
of the necessary circuitry for the double-buffering functions. An
example of this type of converter is the Analog Devices AD7522LN,
as shown in Fig. 2-8. You should be able to distinguish the LBS,
HBS, and LDAC signals. This chip costs about $20.00, which is

s

vee DGND Voo VREF AGND

?27 ?ze ?x ?3 ?e *
H 1
2 _OuDTR
5 QAFBY &
10-81T MULTIPLYING D/A CONVERTER 2 _onFe2
S otout
I_oioutz
MSB LS8
2z
DAC REGISTER <4—1——0LDAC
A A AT S & A A & 4 &
spc 02
{—_‘E—m_pm’&sﬁa'%_’—_ [1
25 2817 . }12
HBs O~]"‘ SHIFT REGISTER 8.BIT SHIFT REGISTER MRS OLes
SROC (SERIAL MODE! < {SERIAL MODE)/ 455 OSRI
LATCH LATCH (PARALLEL MODE} <3 58
l {PARALLEL MODE) D
L.“ 'y FE AR A ar | %
10 1 12 |13 14 |15 116 17 {18 |19
o o 00 0 60 0 0 O
D89 DBB DB7 DB6 DBS DB4 DB3 DBZ DB1 DBO
(MsBI (LS8}
(A) Block diagram.
*,
voo [7] 1e 28 [oeno
LoTR [} 2 27 [0 vee
vRer [} 3 26 [smt
REB2] 4 25 {1 HBS
AFB1 [} 5 24 |7 uBS
woutt 1 6 23 [T NC
wout2 [T 7 22 {T] LDAC
agno [T} 8 21 [see (B) Pin configuration.
sro [9 20 {) SC8
msB) pB9 [10 19 {71 pBO (sBY
pes [n 18 1 oet
o87 [12 17 [oe2
oss [13 6] os3
oss [14 15 [oea
Caourtesy Analog Devices, Inc. gg

Fig. 2-8. The schematic diagram and pin configuration for the AD7522LN 10-bit double-
buffered D/ A converter chip.

68

%

25KQ
+ 5V O AMN—0 — 15V

REFEREHCE OFFSET
+15V +5V -5V ADJ
? 3
- 100Ke 3 GAIN
1 |27 3 10KQ l 1 ADJ
Voo Voo REF | - 50000
lout 1 =
;? DB9 LDTR -';’—— N ——0 Vour
T gg? lautaf—t L 741
o6 15[AD7522LN Spe 2015
DATA g: 15 gei M P
4 1108 sc8 {22
BUS \ D3 e 8
D2 18 DB2 AGND m
D1 a1 DGND 28
oo PBO 1bs 1Bs LDAG
%5 124 |22 1
HEs—=l =
LBS =TIl
LDAC eSS

Fig. 2-9. Schematic diagram for a D/A converter interface, using the AD7522 double-
buffered converter chip.

quite reasonable, when you consider that much of the interface
circuitry has been provided on the converter chip. This converter
does require an external reference, and a complete interface circuit
is shown in Fig. 2-9. Both full-scale (gain) and offset control po-
tentiometers have been included in this circuit, as has an op-amp
for voltage output.

Reference Voltages

In many digital-to-analog converter circuits, an external voltage,
or current, reference is required, to provide a reference upon which
the final output of the converter is based. It should go without say-
ing that a converter is only as good as its reference, although this
relationship is frequently overlooked. If you use a voltage reference
that is unstable, or that varies with temperature, supply voltage, or
current, then the output of the D/A converter will vary, too. The
best way to avoid these problems is by using a stable voltage refer-
ence source, There are many reference devices available, with one
of the easiest to use being the Analog Devices AD580. This three-
terminal reference can be operated with supply voltages that are
between 4.5 volts, and 30 volts, to provide a steady 2.5-volt output
(£1%). Since the AD580 is quite inexpensive, it can be used easily
in those D/ A converter circuits that require a 2.5-volt reference. The
ADS580 is shown in Fig. 2-10. You can also make a “poor man’s ref-
erence,” using a standard voltage regulator chip, such as the 78L05
five-volt regulator. This is shown in Fig. 2-11, in a configuration that

69

uses a resistor divider network to obtain the 2.5-volt reference volt-
age. Voltage regulators have a possible error of about =10%, so you
may find that it is advantageous to use a standard reference voltage
supplying chip, rather than a regulator, or you may wish to try
to use a variable voltage regulator device, such as an LMI117-
series, or a 78MGO00-series device. If a voltage regulator is used,

O +4.5V TO +30V

AD580 (BOTTOM VIEW)

+25V = 1%

(TO-52 PACKAGE)

Fig. 2-10. Bottom view of the AD580 + 2.5-volt voltage reference chip.

the voltage output by the D/A converter will only be as accurate
as the voltage reference supplied by the regulator chip. It has been
our experience that voltage regulator reference supplies work well
for general experimental, and student laboratory use, while most
practical applications demand the use of a commercially available
reference chip.

You should also pay careful attention to the power supplies that
are used to power the D/A converters in a computer interface cir-
cuit. These supplies should provide clean, ripple-free voltages that
are well regulated. In fact, it is best if separate power supplies are
used to power the converters and any associated analog circuitry,

70

“

IN ouTt

o 78L05
£7VTO 420V
10000
GND

5000

=y TUUF ey I F O

1 +2.5V
= N 10009

Fig. 2-11. A “poor man’s reference,’” using a 5-volt voltage regulator chip.

since noise that is induced on the supply voltages from relay driv-
ing, lamp driving, etc., will invariably show up superimposed upon
the analog signals that are generated by the D/A converters. It is
also very easy to be careless in the design of interface circuits, since
we tend to forget that ground lines carry substantial amounts of
current. Current differences, and voltage differences on these
ground connections can result in additional noise being added to
the signal of the converter. The best solution to the problem of
grounding is to use separate ground lines for the analog signal
processing portions of your interface circuit, returning this ground
directly to the power supplies of the analog circuit. Of course, a
common ground is required between the power supplies of the
digital circuit and the power supplies of the analog circuit. Such a
connection should be made with heavy gauge wire. When bread-
boarding and testing interface circuits, the analog and digital
ground paths are frequently treated as if they were the same. For
most purposes, this will work without too much difficulty, but this
should not be done when the actual interface is finally built for
its end use.

D/A CONVERTER APPLICATIONS

There are many situations in which a D/A converter may be used
to control a voltage-dependent device, of which servo motors, fre-
quency synthesizers, voltage amplifiers, variable-gain amplifiers,
programmable filters, and crt displays are typical examples. There
are many others that will be obvious as you tackle new interfacing
tasks. Rather than try to cover many different applications, we
will provide a rather simple example that illustrates the power of
D/A converters.

71

HEATH IP-18
POWER SUPPLY

/ LAMP
FROM D/A . .
TRS-80 :> 07O 10V , _ PROGRAM

OuTPUT

.|[}_

Fig. 2-12. Using a D/A converter to control a programmable power supply.

In this example, a simple incandescent lamp is to be cycled
through a number of voltage changes for quality control purposes.
A D/A converter is the obvious choice for generating the different
voltages, but the converter by itself, even with an op-amp, cannot
drive the lamp with enough current to light it. What is really needed
is a high-powered D/A converter. The problem is readily solved
by using a voltage-programmable power supply that will accept an
external voltage, generating the same voltage at its output, but at
higher currents. In this example, a Heath IP-18 power supply was
used, since it has the remote-program feature, along with a 0- to
15-volt output, at a maximum of 500 mA. The output of the D/A
converter was simply connected to the remote programming input
on the rear of the power supply, as shown in Fig. 2-12. The gain
and offset controls of the converter were adjusted so that the volt-
age output by the power supply was equal to the voltage generated
by the various commands in the control program.

A program was written so that the lamp could be cycled between
zero and an upper voltage limit that was entered into the computer
by the test operator. A listing of the control program is shown in
Example 2-6. You might ask, “Why would anyone want to cycle

Example 2-6. Lamp Test Program

10 INPUT “LAMP VOLTAGE":V
20 M=V*255

30 FOR i=0 TO M

40 QUT 6.1

50 FOR T=0 TO 30: NEXT T
60 NEXT |

70 FOR I=M TO 0 STEP —1
80 OUT 6,1

90 FOR T=0 TO 30: NEXT T
100 NEXT |

110 GOTO 20

72

Vb

i
w&,\)

incandescent lamps?” There could be manufacturing situations in
which it is necessary to cycle a new lamp design through 10,000
such cycles before the design could be given its final approval. The
computer can do an excellent job of performing these tests. Instead
of a lamp, other devices could be cycled in a similar manner: elec-
trochemical electrodes, circuits for use in spacecraft, etc. In fact,
you might want to run a device through a number of tests, not
to see whether or not it would fail, but rather to see how it per-
formed after the tests had been performed. If there was some way
in which the intensity of the lamp could be monitored (by the
computer, of course), then a complete lamp testing system could
be built. The computer could also perform the functions of quality
control reporting, generating a report sheet at the end of a day or
shift, showing how the lamps, or other devices, performed during
a given run through the production equipment. If the computer had
the ability to “draw” graphic pictures, as the TRS-80 does, bar
graphs, or histograms, could be generated, showing the number of
failures in each lot that was processed by the computer. We will
talk more about measurements in this chapter, so this should give
you an idea of where you are headed.

Actually, the lamp testing program can be expanded, so that other
tests can be run, too. In the program listings for Example 2-6, you
will note that two statements have been used in the program, at
lines 50 and 90. These commands provide time delays between each
voltage step. These time delays could be lengthened, or removed,
to create other test conditions. With the time delay commands taken
out of the program, the test program took about two seconds to
make the triangular voltage swing from 0 to 6 volts, and then back
to 0. Additional program steps might be added so that an upper
and lower voltage limit could be entered by the operator, along with
the period of the voltage ramp. There are other refinements that
could be added, too.

While a D/A converter may be used to control a device, such
as the programmable power supply, two or more D/A converters
are frequently required for control purposes. One of the most fre-
quent uses of a dual D/A converter system is for the display of data
on an oscilloscope, or on an X versus Y plotter, sometimes just called
an X-Y plotter. Through the use of such instruments, the computer
can be programmed to position an electron beam, or a pen, at a
particular point on the display, and to either cause a point of light
to be seen, or a dot on a piece of paper to be printed. When a
number of such points have been generated by the computer, a
complete picture may be observed, whether it is a graph of the
units sold versus selling price, or a plot of map contours. Since it
is very easy to examine a graphical representation of information,

73

these types of displays are frequently incorporated into small com-
puter systems. We will spend some time describing the use of D/A
converters to control both X-Y plotters and oscilloscopes.

USING D/A CONMNVERTERS FOR GRAPHICS

In general, much of the information that is output to an oscillo-
scope or an X-Y plotter has been acquired from some process that
varied with respect to time. For instance, the temperature of a
greenhouse might be monitored every 15 minutes for 24 hours.
The resulting temperatures could then be displayed, with respect
to the time at which they were measured. In another application,
the price of a stock might be entered into the computer at 3:00 pm
each day, for 30 consecutive days. At the end of the 30-day period,
the price of the stock could be plotted with respect to the dates
on which the prices were observed.

You will note that one quantity is generally plotted against an-
other quantity; in our examples, temperature against time, and
price against time. Most plots involve one quantity that changes at
a known rate, since it is easy to make measurements in this way,
and since the resulting plots and graphs are easy to interpret. In
our examples, we chose time for the continuously changing axis,
with the stock prices and temperatures forming the unknown values
that were plotted. There are probably dozens of other similar ex-
amples that come to mind, in which one quantity is continuously
changing, while the other is being measured.

Digital-to-analog converters are frequently used to control both
X-Y plotters, and oscilloscopes, since both are voltage-dependent
devices. In each case, the voltage applied causes a proportional
movement in either a pen carrier, or an illuminated spot on the
face of the scope. Since the plotter and oscilloscope are both ca-
pable of presenting two-dimensional information, two D/A con-
verters are used, one for the horizontal, or back-and-forth motion,
and one for the vertical, or up-and-down movement. These move-
ments are made on the X and Y axes, respectively. Since each of
the D/A converters can be treated independently, as can any other
1/0 device, it is possible to control one axis, without affecting the
other. Thus, the position of the pen, or electron beam, can be po-
sitioned anywhere in the display area. (We have assumed that the
D/A converters and the display instrument have been adjusted
properly.)

If two 8-bit D/A converters are used to control a plotter, there
are 256 different positions for the pen along each of the two axes,
providing the capability to “address” any one of 65,536 different
points on the display area at which the pen can leave a mark. This

74

A

provides a great deal of flexibility in terms of what you can display
with the plotter. We will spend some time discussing the use of
X-Y displays that are controlled by two D/A converters, since this
type of device provides an ideal way of plotting information for
later use. A block diagram of a typical dual D/A converter inter-
face is shown in Fig. 2-13. Each D/A converter is controlled inde-
pendently of the other. In this example, one of the D/A converters
generates the continuously changing linear voltage ramp that moves
the plotting device from left to right, while the other D/A con-
verter supplies the actual information that is to be plotted. An X-Y

L
A T
DATA_ BUS g = .77} Vour _ '
H (TO Y-AXiS)
oW
ouT—
027
L R
A . .
o —
i 1 & D/A Vour
H
(TO x-AXIS})

ouT:
036

Fig. 2-13. Using two eight-bit D/A converters for X-Y display control.

plotter would only require a single scan in which to plot the values,
while an oscilloscope would require multiple scans, one right after
the other, in order to “refresh” the display on the phosphorescent
screen. It is probably obvious, then, that the interface shown in
Fig. 2-13 is being used to control an oscilloscope display, since the
linear ramp is followed by another linear ramp, and so on, while
the data output is also being repeated.

The transfer of information to the two D/A converters must take
place in a synchronized manner, so that the proper X- and Y-axis
voltages are applied to the device in the proper sequence. The pro-
gram in Example 2-7 provides the steps that transfer the X- and Y-
axis information to the two D/A converters, point by point. Note
that the array of information that would be plotted by this program
must have been generated previously, and the array is limited to
256 eight-bit values. As you look through this program, you may
wonder where the X-axis values are being generated, to form the
increasing values for the display. Since the array subscript is in-
cremented by one each time that a new data value is obtained
from the memory of the computer, this subscript value is also used
as the X-axis value. In this way, the subscript value performs two

75

Example 2-7. A Simple Display Program

200 FOR T=0 TO 255
210 OUT 6,T:0UT 7,A(T)
220 NEXT T

230 GOTO 200

functions: it locates a specific data value in the array, and it locates
the position at which the plotter is supposed to plot the information.

In this example, the program has been written so that when a
display of the data has been completed, another complete display
will start again, so that an oscilloscope may be used to observe the
plotted information. When the program was run, however, it took
the TRS-80 almost three seconds to display the 256 data points.
This means that this type of a BASIC program is fairly limited in
its ability to display information on an oscilloscope.

If a plotter were to be controlled by this program, there would
have to be some means of controlling the up and down motion of
the pen, otherwise the plotter would constantly be drawing lines,
even when the computer repositions the pen to being a plot. Some
time-delay steps would also have to be added to the program so
that the plotter would have enough time to move from point to
point before the pen was dropped onto the paper to leave a mark.
While the beam of an oscilloscope may be able to reposition itself
very quickly, up to one second may be required to allow the plotter
to move to the next data point to be plotted. The pen control inter-
face is rather simple, since most plotters have an external pen-
control signal that may be used to control the position of the pen
carrier. A typical interface is shown in Fig. 2-14. This circuit uses
two output commands for pen control, so that only simple state-
ments in the plotting program are required to control the pen. The

SN7432(BOTH}

- 1
16 3
2

2p al® TTL PEN
__I__— ‘CONTROL

COM
NIG RELAY PEN

fr— CONTROL
NIO
3 8 +12V l
cK S
> 1000
L c] 0.1pF
4 1
_) >
— 5
7

2

SN7474

OuT =9

ni

T!

SN75451B =

Fig. 2-14. Schematic diagram of a plotter pen-control interface circuit.

76

circuit uses a standard flip-flop circuit, in which the OUT 16,0
command moves the pen up, and the OUT 17,0 command moves
the pen down. The pen takes a few milliseconds to change its po-
sition, so time delays for this must be included in the plotting pro-
gram, too. Since some plotters have a TTL-compatible pen-control
input, this has been shown in the pen control interface circuit, along
with the relay contact connections which may be used with those
plotters that have pen-control signals that are not compatible with
TTL levels. A standard peripheral driver circuit has been used to
drive the relay, and a snubber circuit has been included to help
protect the computer interface from responding to any noise in-
duced on the control lines by the operation of the pen-control cir-
cuitry of the plotter. Since it is impossible to know the characteris-
tics of the control circuitry for each plotter, it is possible that one
plotter will have its pen in the up position, when another plotter
will have its pen in the down position, after execution of a pen-up
command, OUT 16,0. This polarity is easily changed, either by
switching the OUT 16,0 and OUT 17,0 commands in the program,
or by switching the connection from the Q to the Q output on the
flip-flop.

A plotter control program is shown in Example 2-8. Additional
software delay statements have been used in this program so that
the plotter will have enough time to move to the next point to be

Example 2-8. A Complete Plot Program

200 OUT 17,0

210 FOR T=0 TO 100:NEXT T
220 OUT 7,0:0UT 6,0:FOR T=0 TO 500:NEXT T
230 FOR J=0 TO 255

240 OUT 6,J:0UT 7,A(%)

250 FOR T=0 TO 100:NEXT T
260 OUT 16,0

270 FOR T=0 TO 50:NEXT T
280 OUT 17,0

290 FOR T==0 TO 50:NEXT T
300 NEXT J

310 END

plotted before the pen is dropped onto the paper. Likewise, the pen
is left on the paper for a definite period, and then lifted for a defi-
nite period, before the plotter moves on to the next point. This pro-
vides enough time so that the pen is not raised or dropped in the
middle of one of the movements of the plotter, which would result
in a smudge or a streak on the paper. Since this is a plotter control
program, only one pass through the program is required. When this
program was tested, it took about 2% minutes to plot all of the
information in a 256-element array.

77

We will provide you with a number of different graphic programs
that may be used with either an X-Y plotter, or with an oscilloscope.
The plotter control functions have been left out, so if you wish to
use these programs, these steps must be added for proper plotter
control. Before we explore the use of some of these other display-
generating programs, we want to provide you with some software
that can be run on the TRS-80, so that an oscilloscope may be used
to display data files. Since the display program that was provided
in Example 2-7 is quite slow for an oscilloscope display, it cannot
be used very well for X-Y displays of information. To speed up the
display process, we must turn to assembly language, the language
that is used to control the internal workings of the Z-80 micro-
processor chip within the TRS-80 computer. A simple program that
will allow you to continuously display a block or array of 256 data
values in X-Y format is required. An assembly-language program
can do this quite well, and fast enough so that an X-Y display on
the oscilloscope appears to be present continuously. We do not
intend to go into great detail about the program and how it works,
but a listing is provided, along with the necessary details of using it.

An Assembly-Language Display Program

The assembly-language program that is discussed here is for use
with an oscilloscope that has X-Y display capability. It will not
work with a plotter, since the TRS-80 is transferring the data to
the D/A converters faster than the servo motors and mechanical
linkages can possibly react to it. There are no pen control com-
mands, and no time delay statements in this program. In fact, the
program requires only 16 bytes of read/write memory, along with
the 256 bytes that are used to store the information that is to be
displayed. A complete assembly-language program is listed in Ex-
ample 2-9, for those readers who are interested in how it works.
The actual operation of the program is very similar to that for the
program provided in Example 2-7.

In order to use the assembly-language program, you must first
reserve a portion of the read/write memory of the TRS-80 for the
program, and also for the 256-byte data storage area. When you
turn on the TRS-80, it asks you, MEMORY SIZE? At this time,
type in 20079, and ENTER. This reserves the upper, or last, 400
read-write memory locations for your use. (Remember, we have
assumed that your computer has 4K of memory.) A BASIC pro-
gram that will load the assembly-language program steps into their
corresponding memory locations is given in Example 2-10. Each
code for an assembly-language step has been placed in the proper
sequence in the DATA statement, and READ and POKE commands
have been used to place these program steps in their proper read/

78

Example 2-9. An Assembly-Language Display Program for the TRS-80

Decimal Address Op-Code Hex Op-Code Decimal Op-Code
20079 START, LXIH 21 33
20080 00 00 0
20081 4F 4F 79
20082 LOOP, MOVAM 7E 126
20083 out D3 211
20084 07 07 7
20085 MOVAL 7D 125
20086 ouT b3 211
20087 06 06 6
20088 INRL 2C 44
20089 JNZ C2 194
20090 LOOP 72 114
20091 0 4E 78
20092 Jmp <3 195
20093 START 6F 111
20094 0 4E 78

write memory locations. Once you have entered the BASIC pro-
gram, you may run it to transfer the information for the assembly-
language program into read/write memory. How can you examine
the read/write memory locations to be sure that these values have
actually been transferred? A simple PEEK command can be used,
for example, PRINT PEEK (20084), should print “7” when it is
executed. You may wish to save the short BASIC-language program
on a cassette tape for later use, since we will be describing the dis-
play of data arrays later in this chapter.

It is easy to run the assembly-language program, once the BASIC
“loader” program has been run. When the computer displays
READY, type in SYSTEM, and the computer should respond with
“*?” Now, type in /20097, the starting address of the program, and
hit ENTER. This will start the execution of the short assembly-
language oscilloscope display program. Since the BREAK key will
be inactive, you can only exit from the display program by actu-
ating the RESET push button that is located near the expansion
connector, inside the case of the TRS-80. If you have properly
loaded the BASIC loader program, executed it, and started the dis-
play program, you should be able to observe that the two D/A con-
verters are causing a somewhat random pattern of points to be dis-

Example 2-10. A BASIC Loader Program for the Display Routine

10 DATA 33,0,79,126,211,7,125,211.6,44,194,114,78,195,111.78
20 FOR I=0TO 15

30 READ A

40 POKE {20079+1),A

50 NEXT |

60 END

79

Example 2-11. A Random Data Generator Program

200 N==20224

205 FOR =0 TO 255
210 A=RND(255)

220 POKE N.A

230 N=N-+1

240 NEXT i

250 END

played on the oscilloscope screen. There may be some distinct
patterns, depending upon what happened to be stored in the read/
write memory locations, when the power was applied to the
TRS-80 computer. Remember, though, that to use this assembly-
language program, a portion of the read/write memory of the
TRS-80 must be protected when the computer is first turned on.
Once you understand the operation of the BASIC loader, and
the use of the assembly-language program, you may wonder how
an array of data may be transferred to read/write memory for
later display. Just as the assembly-language program steps were
transferred through the use of a POKE statement, so too may the
data values. Of course, the data values must be between 0 and 255.
Two BASIC programs have been listed in Examples 2-11 and
2-12. Each will transfer a series of data values to the section of
read/write memory that has been set aside for this purpose. This
is called the display buffer area. The first program, Example 2-11,
generates 256 random data values that will appear to be spread
randomly across the screen of the oscilloscope. The second program,
Example 2-12, is the sine-generating program that was described
previously in Example 2-4. However, the necessary data transfer
steps have been included in the new program. The sine program
will generate 180 sine values, so not all of the points in the display
will be used. They will be displayed, however, since the display
program isn’t very sophisticated, and it can’t tell where the sine
values end, and where the random information starts. The typical
displays generated by these programs are shown in Figs. 2-15 and
2-16. Remember that these BASIC programs simply generate the
data that are displayed by the assembly-language program located
in the protected read/write memory. You must use the SYSTEM

Example 2-12. A Sine Function Generator Program

200 N=20224

205 FOR I=0 TO 360 STEP 2

210 A=128-+INT(127*(SIN(1*0.017453)))
220 POKE N,A

230 N=N-1

240 NEXT |

250 END

80

(S

©
©
-]
L) o -]
[} ° ° °
°
) ® °
® ® °
0000 ° ®
0000060
e °
® [
® [}
®
[
[R-N-N:
° @ ° ® ®
° L]
[o b c0e o
]
° °
[}
® L]
[::]
[
° e ® L4 °
]
[
-] ®
° °
° -]
© 000000 o ©
]] °
L]
@ ° ® .
]
5]) ® L] °
o ©
d o

Fig. 2-15. Random data displayed during a test of the display program.

command to start the display sequence if you wish to try either of
these program examples.

If you are interested in the use of Z-80 assembly language, we
refer you to Z-80 Microprocessor Programuming and Interfacing,
Book 1, Howard W. Sams & Co., Inc., Indianapolis, IN 46206.

Plotter Applications

In many instances, a plot of data points on a blank sheet of paper
is not all that is required of a data processing program. It would
be convenient if the computer could “draw” a set of co-ordinate
scales on the same sheet of paper, so that a reference could be
readily established, and labels and scales easily added. Since the
plotter may be controlled by the two D/A converters, it is fairly
simple to develop a short BASIC program that will draw a box
around the data, using the minimum and maximum values that
may be accepted by the two D/A converters. Such a program is

81

listed in Example 2-13. (Remember that the pen control and time
delay program steps have not been included, for the sake of clarity.)

Not only is a boxed-in plot easy to read, but it lends itself to the
addition of small marks along each axis, dividing each into a given
number of units, so that labeling is easy. The BASIC program that
drew the lines around the plot may be expanded to include steps
that will put these scale marks in their proper places. The program
given in Example 2-14 may be added to the co-ordinate-drawing
program so that you may enter the number of divisions for each
axis, when asked by the computer, “X AXIS DIV?” and “Y AXIS
DIV?” A typical co-ordinate plot with four Y-axis and five X-axis
scale marks is shown in Fig. 2-17. These scale marks are really ap-
proximations, since the output of the D/A converter is in discreet
voltage steps, and the scale marks, and individual voltage steps
may not coincide. Actually, the error is quite small, and probably
wouldn’t be noticed.

e , © o & g © 0 g
e © ® e

A @ 0® e ©° e
0°° @ o

e ° o

° ® e @ e ©
I]
e e o Q
° A e o
o ° 5 ° ° °

Fig. 2-16. A sine-wave function display, Note that some random data remain since the
sine function does not fill the display buffer.

82

Example 2-13. A Co-ordinate Generator Program

10 OUT 7,0:0UT 6,0

20 FOR 1=0 TO 255

30 OUT 6.1

40 NEXT |

50 FOR J=0 TO 255

60 OUT 7,J

70 NEXT J

80 FOR 1=255 TO 0 STEP —1
90 OUT 6.1

100 NEXT |

110 FOR J==255 TO 0 STEP -1
120 OUT 7.4

130 NEXT J

140 END

Since the scale marks are useful, actually completing these lines
so that they extend completely across the plot might be even more
useful in some cases. The program listed in Example 2-15 links the
co-ordinate and scale-drawing programs, and it adds some steps
that allow you to decide whether scale marks or complete grid
lines are to be drawn. We are sure that a more sophisticated ques-
tion could be asked by the computer, allowing the answer to be
YES, or NO, but this is not the object of these programs. We leave
it to you to modify the example programs that we have provided
to meet your needs.

Example 2-14. A Scale Mark Generator Program

140 INPUT “X AXIS DIV*;X
150 INPUT “Y AXIS DIV*Y
160 XA=256/X:XD=XA:YA=256/Y:YD=YA
170 FOR Q=1 TO X—1

180 OUT 6,XA

190 FOR 1=0 TO 15

200 OUT 7,

205 FOR T=0 TO 30:NEXT T
210 NEXT i

220 OUT 7,0

230 XA=XA+XD

240 NEXT Q

250 OUT 6,0

260 FOR Q=1 TO Y—1

270 OUT 7,.YA

280 FOR =0 TO 15

290 OUT 6.1

300 FOR T=0 TO 30:NEXT T
310 NEXT |

320 OUT 6,0

330 YA=YA+YD

340 NEXT Q

350 OUT 7,0

83

> a4y

J

Fig. 2-17. Typical co-ordinates plotted by the TRS-80, by a BASIC control program.

What the question is asking is, “How long should the scale marks
be; should they be short, or should they be as long as the respec-
tive axis?” The answer determines the length of these marks. The
rest of the program remains the same. Modifications could be made
to this program, so that the scale marks could be calculated in loga-
rithmic ratios. In this way, semilog and log-log plots could be gen-
erated, along with the appropriate scale marks or grids.

X-Y Displays and Line Plots

The plotting systems that we have described so far are really Y
versus time, or Y-T displays of information, regardless of the actual
labels that are assigned to each of the axes. In each case, there was
only one point for each value on the X axis. The sine function is a
good example. The computer is generating the sine of an angle, but
since an angle can only have one sine value, the result is a continu-
ous function, or one that only has a single value for each value on
one of the axes. The time axis has been represented by a steadily
increasing value, or voltage, in the case of the D/A converters,
which changed with respect to time. There are occasions, though,
when the data that are to be displayed are not continuous. Just
think back to the program that drew the lines, or box, around the
plotted information. The lines are not a continuous plot, since the
two D/A converters were controlled independently of each other
and each point of the X axis had two or more points associated
with it on the Y axis. In fact, the point at which X equalled zero

84

VR

A

2

Example 2-15. A Complete Co-ordinate Plotting Program

10 QUT 7,0:0UT 6,0

20 FOR 1=0 TO 255

30 OUT 6,

40 NEXT |

50 FOR J=0 TO 255

60 OUT 7,

70 NEXT J

80 FOR 1=255 TO 0 STEP —1
90 OUT 6,1

100 NEXT |

110 FOR J==255 TO 0 STEP —1
120 OUT 7.4

130 NEXT J

140 INPUT “X AXIS DIV;X
150 INPUT “Y AXIS DIVY;Y
152 INPUT “LINES — 0=NO 1=YES";K
154 IF K=0 THEN H=15 ELSE H=255
160 XA=256/X:XD=XA:YA=256]/Y:YD =YA
170 FOR Q=1 TO X—1

180 OUT 6,XA

190 FOR 1=0 TO H
200 OUT 7,

210 NEXT |
220 OUT 7,0
230 XA=XA+XD
240 NEXT Q
250 OUT 6,0
260 FOR Q=1 TO Y~—1
270 OUT 7.YA
280 FOR 1=0 TO H
290 OUT 6,
310 NEXT |
320 OUT 6,0
330 YA=YA+YD
340 NEXT Q
350 QUT 7,0

has 256 different Y-axis values. So, the box is not a continuous func-
tion. There are many other functions that are not continuous. Sup-
pose that you wanted to have the TRS-80 draw a circle, or other
object on the plotter. There would be great difficulty in drawing
it using the Y-T type of display, since the plotter would have to
plot two points for each value along the time, or X, axis. How then,
do you use the computer to generate odd shapes and other dis-
continuous functions? The answer should be readily apparent. Each
of the D/A converters is used independently, and neither is used to
generate a continuously increasing (or decreasing) voltage. In this
way, a true X-Y plotter is configured, so that odd shapes, schematic
drawings, contour maps, and other such drawings are readily cre-
ated. Since each point to be plotted has both an X-axis and a Y-axis

85

coordinate, generating the information to be plotted requires twice
as much storage space as the information to be plotted with a Y-T
program. It is now fairly easy to plot a circle, using the well-known
formula,

X2+ Y2 =R?

When some arrays of information are plotted, some data points
are invariably scattered about the plot, so that it is difficult to see
a definite relationship in the information. All of the plotting that
we have illustrated so far has been point plotting. That is, plotting
by individual points, one after the other. The only exceptions have
been the plots of the lines, or co-ordinates, that surround the plots,
and the scale-mark plots. It would be valuable if the computer
could plot straight lines between the various points, so that their
relationship would be clear. This means that the computer would
be used to “fill-in” the spaces between the two data values that
are next to each other on the plot. You can do this with a straight-
edge and a pencil. For the computer the problem is not difficult,
but it takes a good understanding of the problem before you can
begin to think about the programming that is necessary.

When using the computer to complete a straight line between
two points, the points must be carefully defined. Since the co-ordi-
nate system has been used so far, we will continue to use it to de-
fine the points that are to be connected. When two points are
defined, say 64,65 and 196,197, the co-ordinates tell the computer

Example 2-16. A Best Straight Line Generator Program

10 INPUT “XI":X1
20 INPUT “YI":YI

30 INPUT “XF';XF

40 INPUT "YF';YF

50 IF (XI>XF) AND (YI>YF) THEN 60 ELSE 70
60 A=XI:XI=XF:XF=A:A =YLYl=YF:YF=A
70 OUT 6,XI:0UT 7.Yi

80 DX=XF—XI:DY=YF—YI
90 IF DX<DY GOTO 250
100 $S=DY/DX

110 FOR I=1 TO INT(DX)
120 XI=XI+1:YI=YI+5§
130 OUT 6,X1:0UT 7,Y1

140 NEXT |

150 END

250 S=DX/DY

260 FOR I=1 TO INT(DY)
270 Xl=X1+S:YI=YI+1
280 OUT 6,X1:0UT 7,YI

290 NEXT |

300 END

86

&

e

where the points are, so that it will know where to start the straight
line, and where to end it. Since the slope of the line between the
two points is easily calculated, the “rate of climb” (or rate of de-
scent) for the line drawing is known. The computer program listed
in Example 2-16 will plot the best straight line between two points.
The basic idea is to calculate the slope, and to use this to determine
the increase, or decrease, in one of the outputs of the D/A converter.
Since the straight lines can go in any direction, the program must
be able to handle both positive and negative slopes, as well as start-
ing co-ordinates that are larger than the ending co-ordinates. The
program also determined which of the axes should be used for the
linearly increasing axis, so that the maximum number of points is
used to fill in the gap between the two points of interest. This pro-
gram is useful, since it can be used to superimpose trends, slopes
and other information on top of plots, as well as to connect points
on a plot. You will see another possible use for this type of pro-
gram, when data processing is described in more detail.

USING ANALOG-TO-DIGITAL CONVERTERS

In this section, we will be describing the use of analog-to-digital
converters, also called A/D converters, and ADCs. These devices
give the computer the ability to measure an analog voltage, so that
physical measurements of pressure, temperature, light intensity, and
others may be made available to the computer for processing with
BASIC-language programs. In some cases, it will be easy for you
to sit down in front of your computer and enter various measure-
ments by using the keyboard, while in other cases, it will be easier
to use a sensor, and an analog-to-digital converter that is controlled
by the computer. If you are simply converting a single temperature
measurement from degrees-Fahrenheit to degrees-Celsius (centi-
grade), then it is easy to enter the value into a short BASIC pro-
gram that will perform the conversion. However, if you are trying
to measure the indoor and outdoor temperatures of a building every
10 minutes, over a 24-hour period, it would certainly be nice if a
small computer could do this, without any actions from the oper-
ator. At other times, the measurements that are required will be
acquired at such short time intervals, that it will be impossible to
record the information fast enough by hand. Again, a small com-
puter is ideally suited to quickly acquire such measurements.

Analog-to-digital converters are not difficult to use with small
computer systems. In fact, two specific examples of A/D converter
interfacing to the TRS-80 will be described in this chapter. The
BASIC-language programs that are used to control the converters
will also be discussed in detail.

87

Converter Interfaces

Most analog-to-digital converters operate by comparing an un-
known applied voltage that is to be “converted,” to a known volt-
age, or a series of known voltages. Since A/D converters are speci-
fied as having a particular range of input voltages, and a certain
number of output bits, their resolution, or resolving power, is readily
determined. For example, an A/D converter with a 0 to 10-volt in-
put, and a 10-bit output can resolve any unknown voltage that is
within its input range, into a 10-bit binary word, between 0 and
1023. Therefore, the resolution of the converter is one-part-in-1024,
or 9.76 millivolts. In most cases, you will use A/D converters that
have binary outputs, although other output coding formats are read-
ily available. When A/D converters are used with binary comput-
ers, the models with binary outputs are the best bet, since no code
conversions—in either software or hardware—are required.

A typical A/D converter is shown in block diagram form in Fig.
2-18. Notice that there is an unknown voltage input connection on
the left side of the converter, and there are eight binary outputs
on the right side. Unlike D/A converters, A/D converters require
some additional control lines, one noted as READY/BUSY, and the
other noted as CONVERT. The CONVERT pulse must be sent to

POWER SUPPLIES

/\

o 5 D7
> D6
e [J5
o SIS, A/D CONVERTER b4 DATA
VUNKNOWN i gz
— &

— el B 11]

L

CONVERT

Fig. 2-18. Block diagram of a typical eight-bit A/D converter.

READY/BUSY

R,

vt

b

the converter whenever a conversion is required, since the A/D
converter is not constantly converting unknown voltages into their
binary equivalents. Compared to D/A converters, most A/D con-
verters are rather slow. It can take from 20 microseconds to several
milliseconds for A/D converters to perform a conversion, depend-
ing upon the technique used for the internal conversion process.
Since the computer cannot simply supply a convert pulse and then
read the binary data from the outputs of the converter, some type
of a synchronizing signal must be provided by the converter to in-
dicate that it has completed the conversion process, and that the
binary values present at its outputs are valid. The READY/BUSY
signal provides the synchronizing function. This output is a logic
one when the converter has completed its conversion; that is, when
the outputs are valid, and when a new conversion may be started.
When this signal is a logic zero, the converter is performing the
conversion. These two control signals may have other names, but
their function is the same in all converters.

The interface for a simple A/D converter, such as the one shown
in Fig. 2-18, should be easy to visualize. An input port is required for
the eight bits of data from the converter, a source of the CONVERT
pulse is required, and some means for monitoring the READY/
BUSY signal must be provided. You have already seen that OUT
commands may be used for control purposes, even when data is
not transferred, and an input port may be used so that the com-
puter can periodically test the state of the READY/BUSY status
flag of the A/D converter. A simple A/D converter interface circuit
is provided in Fig. 2-19. A typical program that could be used to
control this interface is shown in Example 2-17. Appropriate steps
have been included in the program, so that the voltage measured
will be displayed as both the decimal value of the 8-bit binary data
word, and also as the actual voltage that has been measured, or
converted. These steps are performed by the BASIC-language pro-
gram, and not by the interface circuitry.

In the control program, the OUT 50 command causes the
CONVERT input of the converter to be pulsed, initiating the con-
version process. Then the computer constantly tests the state of the
READY/BUSY status flag of the A/D converter. Only when the
flag becomes a logic one will the computer proceed to line 170,

Example 2-17. A Control Program for an 8-Bit A/D Converter
(see Fig. 2-19)

150 OUT 5,0

160 IF INP(12) AND 2=0 THEN 160
170 A==INP(10)

180 PRINT A,A*0.03906

190 GOTO 150

89

where the data input step is executed. The logical aAnp operation
is necessary {line 160), since the state of the other bits from input
port 12 must not affect the test process. The logical anping with the
value 00000010 means that only bit D1 will be tested.

There are applications in which resolution of greater than eight
bits is required for the measurement of unknown voltages. Convert-
ers with greater resolutions have more than eight output bits, so the
interfaces for these converters require additional interface compo-
nents, since more than eight bits must be transferred to the com-
puter. In the case of a 10-bit A/D converter, eight of the bits would

POWER SUPPLIES

,/\
T T T]———————!N 10
D7
D6
D5
Vv O AD D4 DZ?A
UNKNOWN
oV CONVERTER gg BUS
L D1
- DO
V4
/
INPUT PORTS
\\
eed
READY/BUSY
i
—(—]—lN 12
CONVERT

Fig. 2-19. A simple eight-bit A/D converter interface circuit.

use an 8-bit input port, while the remaining two bits would be
assigned another 8-bit input port. Some of the remaining bits on
this port could be used to monitor the status flag of the converter.
Such an interface is shown in Fig. 2-20. The CONVERT input and
the status flag output perform the same functions as they did in
the 8-bit converter interface circuit. Since some of the 10 bits will
be input from one port, while the remaining bits are input from
another port, the resulting values must be combined so that the
data values are between 0 and 1023, the range possible with a 10-
bit converter. The software steps shown in Example 2-18 show how
this is done with a scaling factor for the two most-significant bits.

90

R

Example 2-18. A Control Program for a 10-Bit A/D Converter
{see Fig. 2-20)

200 OUT 5,0

210 M=INP{4):iF M AND 64=0 THEN 210
220 M=256*(M AND 3)

230 L=INP(3)

240 PRINT ML, (M+L)*0.00977

250 GOTO 200

The TRS-80 does not know that the two MSBs that are input at
bit positions D1 and DO should have decimal values of 512 and 256,
respectively. The computer treats these bits as if they were input
at the bit positions with values of 2 and 1, respectively, which is
what is expected if you consider these two bits at input port 4,
without considering the rest of the circuitry. To scale these bits
to their actual “positional” values within the 10-bit data word, mul-
tiply them by 256, and then add them to the remaining eight LSBs.
Since the eight LSBs did not undergo any “positional” change when
they were transferred to the TRS-80, their values do not require
any modification. Whenever you are transferring information that
contains more than eight bits, such a conversion process will prob-
ably be required to recombine the information into a meaningful
decimal value that may be processed by the computer.

You will now take a look at two different A/D converters that
operate in different ways. The purpose of these discussions is to
describe the converters in general terms, to provide some applica-
tions, and to allow you to see how the converters are interfaced to
the computer. The operation of each converter will not be described

5

IN3
Do {__——
D8
D7 o7
D6 D8
o— 10-BIT D5 D5
VunknowN A/D CONVERTER D4 D4 DXSI?A
1 D 03 /Bus
- b2 D2
D1 D1
Do / 0o
/
INPUT PORTS
\ e
CONVERT READY/BUSY

Fig. 2-20. A 10-bit A/D converter interface circuit.

91

in much detail. There are many different types of conversion tech-
niques, but the two that are represented by these converters are
the most popular, and the most widely used.

The AD571 10-Bit A/D Converter

The Analog Devices AD571 A/D converter was briefly discussed
in TRS-80 Interfacing, Book 1, since the chip was used in one of
the experiments. This chip uses the successive-approximation con-
version technique which compares the unknown voltage to a preset
series of voltages that are binary fractions of the maximum voltage
that may be measured. Thus, for a converter with an input of 0 to
10 volts, the comparisons would be made with 5 volts, 2.5 volts,
1.25 volts, and so on, for as many bits as there are on the digital
output side of the converter. When an unknown voltage is to be
converted, it is first compared to 5 volts. If the voltage is greater
than 5 volts, the 2.5-volt step is added, and the unknown voltage
is compared to 7.5 volts. If the unknown voltage is still greater than
7.5 volts, the 1.25-volt step is added to the test voltage, and the
unknown voltage is compared to 8.75 volts. We will assume that
the unknown voltage is less than 8.75 volts, but greater than 7.5
volts. In the last test, then, the test voltage was greater than the
unknown voltage, so the 1.25-volt step must be removed, or sub-
tracted from the test voltage. Now, the next smallest fractional test
voltage, 0.625 volts, is added to the 7.5-volt test voltage, and the
test is performed again. In this way, for an 8-bit, successive-approxi-
mation D/A converter, there is one test voltage for each of the eight
bits, and each one is either added, or not added, to the test voltage,
as it attempts to match the unknown voltage. Internal circuits per-
form the voltage addition, bit sequencing and comparing. An in-
ternal D/A converter supplies the various test voltages in the same
weights that were listed in Table 2-2. A typical timing relationship
between the start of a conversion and the test sequences is shown
in Fig. 2-21. The test voltages appear to home in on the unknown
voltage, and no matter what unknown voltage is used (within
range), the successive-approximation A/D converter will perform
one test for each bit position. In most successive-approximation
A/D converters, the conversion process is very fast. The AD571
can perform a conversion in 25 microseconds.

Since the ADS371 is a 10-bit converter, two input ports are re-
quired to service all of its digital outputs, which include the status
flag, called DATA READY. While the AD571 has three-state out-
put lines, there is no way in which these can be controlled in groups
of eight bits, and two bits for direct transfer to the data bus lines
of the TRS-80. Thus, two separate input ports are required. A con-
trol line for the CONVERT control input must also be supplied to

92

AT

the chip. Since the AD571 uses a 10-bit internal D/A converter to
generate the test voltages, a good, stable reference voltage is re-
quired. Luckily, the reference source has been integrated onto the
same chip. The interface circuit for the AD571 is shown in Fig. 2-
22, and the pin configuration for the chip is shown in Fig. 2-23.
The power supply lines of the AD571 converter may be set at dif-
ferent voltages, depending upon the circuit in which the chip is to

L . J

[.

'

X

v s

|

D/A OUTPUT ;

|

TIME !

START U
DONE —

Fig. 2-21. Timing diagram for a successive-approximation A/D converter.

be used. For example, the V+ power supply input (pin 10) may be
varied between +5 volts and +15 volts, so that the outputs of the
chip may be used with either TTL-compatible chips, or CMOS-
compatible chips. Likewise, the V— power supply input (pin 12)
may be connected to either —12 volts, or —15 volts, depending upon
which of the voltages is found in your computer, or in the interface
circuits.

The AD571 may be operated in either the unipolar (0 to 10 volts)
or bipolar (=5 volts) mode through the use of a bipolar offset con-
trol input, pin 15. If this pin is left “open,” or disconnected, then
the bipolar mode is selected. If it is grounded, the chip will oper-
ate in the unipolar mode. This provides a great deal of flexibility
in handling computer interfacing tasks.

Since the ADS371 requires a CONVERT pulse that is 2 micro-
seconds long, a device select pulse—a device address gated with
OUT—cannot be used directly to strobe the CONVERT input, since

93

11 :2 N
SN74365 | 004
2 3
2 5
6 7
12 11
14 13
17
DATARDY pold 15
o 13 D8} o7
D7
Vin 06 D6
P4 = 10 9 D5
= ADS71 12 11
D4 = 3 D4
D3 & : D3
1 convERT gf 1 3 I5 gf
oo 18 2 I3 00
SN7432
2 [0 |14 |16 |16 1 —
3 iN
CE
N SN74365
-1 +5V
sv SN7400

94

Fig. 2-22. Complete interface for the AD571 10-bit A/D converier.

DIGITAL BLANK &
voove COMMON EONVERT CONTROL
12 % r_.___Jn
S 8a¢
ANALOG v {13 ; 9}msa
ANALOG - - u
common |14
- - A
10 817
A CURRENT 10 Bt &
OUTPUT 1] $AR .
oac
|] 5
\ g1
. outPuTS
1 H
'
Jb] % 3
BIPOLAR 2
OFFSET — +—
CONTROL
e
R
wlise
1 ~/
35TATE
AUFFERS
TEMPERATURE COMPENSATED AUTO BLANK
BURIED ZENER REFERENCE CONTROL
AND DAC CONTROL -
Gata READY

Courtesy Analog Devices, Inc.

Fig. 2-23. Pin configuration and block diagram for the AD571 10-bit converter chip.

TO
DATA
BUS

M

e

AR N

i

the OUT pulse of the TRS-80 is only present for 1.3 microseconds.
A cross-coupled NanND gate has been used in this circuit to provide
the proper CONVERT pulse timing. An OUT 5 pulse will cause a
logic one to be placed on the CONVERT input, and it will remain
there until the nanp gate flip-flop circuit is cleared by the DATA
READY signal. In this circuit the start-of-conversion signal will
be present until it is removed once the conversion is underway.

l I e START OF CONVERSION

CONVERT
- J BUSY l READY
DATA RDY

TR NEW DATA
DATA LINES (D0-D9) OLD DATA |F=—=—gzr

Fig. 2-24. Convert pulse and mode timing diagram for the AD571 converter.

The timing diagram for the conversion sequence of the AD571
is shown in Fig. 2-24. A short CONVERT pulse is applied to the
CONVERT input of the AD571 to initiate the conversion sequence.
Even though the “start” pulse of the converter is noted as a logic
zero signal, a positive, or logic one, pulse is required to start the
conversion. The difference comes about because the CONVERT
signal performs two functions. Not only does it start a conversion,
but it also controls the three-state output lines of the converter.
When in the logic one state, the CONVERT input places the three-
state outputs in their high-impedance, or disconnected, state, so
that they are not connected to the input ports. Since the three-state
capability is not being used in the configuration used in this ex-
ample, we are not concerned with this feature. Nevertheless, the
nomenclature of the CONVERT input can be confusing. It is the
negative-going edge of the CONVERT pulse that triggers the start
of the conversion process, and the CONVERT input must remain
in the logic zero state for the conversion to be performed and for
the 10 binary outputs to be active. The DATA READY status flag
output is a logic one during the conversion process (BUSY) and
it is a logic zero when the conversion has been completed, indi-
cating that the 10 output bits may be read by the computer.

One deficiency of the AD571 is that it has a relatively low input
impedance, generally between 3000 and 7000 ohms. Since this can
load a test circuit that is not capable of providing a great deal of
current, about 3.5 mA, to the converter, we suggest the use of a
voltage-follower circuit between the output of the sensor and the

95

input of the converter. A typical voltage follower circuit is shown
in Fig. 2-25. The various pin configurations will depend upon the
op-amp chosen for use in the circuit, A 741-type op-amp, having an
input impedance of about 2 megohms, will serve well in most ap-
plications.

Before a typical application of the AD571 is illustrated, you need
to consider the software used to control this device in a bit more
detail. The program shown in Example 2-18 can be used with the
ADS571, if the converter is used in the unipolar mode. The results
of the program will be displayed as the decimal value of the 10-
bit data word, and also as the voltage measured. What type of

GENERAL-PURPOSE
OP-AMP

Vi O 2

/ Vour

Fig. 2-25. A simple voltage-follower buffer circuit.

program will be used if the converter is to be used in the bipolar
modeP The program would have to decide whether the voltage was
positive or negative, and perhaps perform some complex calcula-
tions. Actually, there isn’t much about the bipolar voltage program
that is very complex, at all. Instead of starting at zero, the converter
starts at —5 volts, so all you have to do is to offset the voltage com-
putation by —5, as shown in Example 2-19,

There is one other software consideration. Since the converter
only requires 25 microseconds to perform the conversion, you can
probably be sure that the conversion has been compieted by the
time that the TRS-80 starts to test the DATA READY flag. It would
be surprising if the data were not ready, since it takes the computer
tens, if not hundreds, of microseconds to interpret each of the
BASIC commands in the program. There probably isn’t any reason
why the flag-checking is required for the proper operation of the
program,. In fact, the program listed in Example 2-19 will run quite
well with line 210 written as,

210 M=INP(4)

Would you want to include the additional flag hardware in your
interface? We would suggest that you do, since sooner or later you
will probably want to tackle some application that requires high-
speed data acquisition and the use of assembly language for pro-
gramming. When you use assembly language, the flag testing steps

26

Example 2-19. A Control Program for the AD571 (Bipolar Mode)

200 QUT 5,0

210 M=INP(4):IF M AND 64=0 THEN 210
220 M=256*(M AND 3)

230 L=INP(3)

240 PRINT ML, (M+1)*0.00977)—5

250 GOTO 200

in the program are quite important. You may also find that the flag
testing steps in the BASIC program provide an additional way of
testing your interface. If the flag is not in the correct state at a
particular time, there may be a problem in the interface that can be
readily identified. Without the availability of the flag, and the ca-
pability to test it under software control, the interface check-out
may take longer, and it may be difficult to locate faults.

An A/D Converter Interface Application

In this application, the 10-bit A/D converter will be used to mea-
sure the voltage across a light-dependent resistor, or photocell. The
photocell is configured as shown in Fig. 2-26, in which the photocell
has been placed in a voltage divider network with a 560K-ohm re-
sistor. The value of the fixed resistor was chosen so that the maxi-
mum voltage from the output of the photocell would be about 10
volts, the maximum that may be used with the AD571 when it is
in the unipolar mode. This means that when no light is illuminating
the photocell, its resistance is about 1.02 megohms.

As the light intensity upon the surface of the photocell increases,
a corresponding decrease in the voltage from the photocell is ob-
served. As with most cadmium sulfide (CdS) photodetectors, the
resistance decreases as the light intensity increases. While the volt-
age may be measured for various light intensities with a meter, a
digital panel meter, or other instrument, we wish to use the com-
puter to assist in these measurements. In this example, we are inter-

+15V

$ 560K

A >Vour

PHOTOCELL

Fig. 2-26. The photocell voltage-divider circuit used in the lamp measurement experiment.

97

l__ PYR.
ﬂ%/*[<

PHOTOCELL

o]

POWER SUPPLY
Fig. 2-27. Lighttube experimental set-up. Lamp positions are at l-inch intervals.

ested in measuring the resistance of the photocell as a function of
its distance from a constantly illuminated source. To test this rela-
tionship, the photocell is mounted in one end of a cardboard tube
that has holes punched in it at l-inch intervals, starting 2 inches
from the photocell. A small 6-volt lamp may be placed in the holes,
one at a time, and the voltage across the photocell measured. A dia-
gram of the experimental equipment is shown in Fig. 2-27. Of
course, the unused holes are covered during the experiment to pre-
vent stray light from entering and throwing off the results.

Now, the lamp may be moved from hole to hole while the com-
puter is used to control the A/D converter, and to temporarily store
the value that has been acquired. In this experiment, the power
supply was adjusted so that the voltage across the photocell was
just about 10 volts when the lamp was placed in the hole farthest
from the photocell. Since the resistance of the photocell decreases
with the addition of more light, the voltage across the photocell
should decrease as the lamp is brought closer to it. A very simple
program was developed so that the voltage at each lamp position
could be measured by the A/D converter. This program is listed
in Example 2-20. The INPUT Q statement is a “dummy” command
that simply allows the computer to stop so that the lamp may be
moved before the next conversion sequence is started. The flag of
the A/D converter is not tested in this program, and the data for
the converter is acquired and processed in a single statement in the
program.

When the program was started, the lamp was placed 7 inches
from the photocell, so that it could be moved closer each time that
the program was rerun through the data acquisition steps, follow-
ing the actuation of the ENTER key. No data is entered for the
dummy variable, Q, but the ENTER key must be depressed, to al-

98

oL

2,

g

iy

Example 2-20. Lamp Data Acquisition Program

10 DIM A(6)

20 FOR I=1TO 6

30 INPUT Q

40 OUT 5,0

50 P==(256*(INP(4) AND 3))+INP(3)
60 A()=P

70 NEXT |

80 FOR I=1 TO 6

90 PRINT i, A(})A(1)*0.00977
100 NEXT |

110 END

low the computer to go past this variable input command. The re-
sults of a typical experiment are listed in Table 2-4. The test was
run several times, but the runs were not reproducible, giving values
between 807 (7.88 volts) and 853 (8.33 volts) for the 7-inch posi-
tion of the lamp. Clearly, something was wrong in the experiment
when these values were acquired.

We found that the TRS-80 is a very “noisy” computer, generating
a great deal of high-frequency electrical noise that is radiated in
all directions, and is easily picked up by power supply leads, bus
cables, and other interconnections in the interfaces. We found no

Table 2-4. Results of a Single Detector-Lamp Test Sequence

Test No. Decimal Value Voltage*
1{7in) 807 7.88
2 773 7.55
3 615 6.00
4 550 537
5 412 4,02
6{2in.) 263 2.57

*Caleulated

suitable way to reduce the noise that was superimposed upon the
voltage from the photocell. The noise was substantial, since it caused
wide variations in the values obtained from the A/D converter. To
remove some of the noise from the signals, a number of tests could
be run, and then average values could be calculated for each of the
lamp positions. Why not let the computer perform all of the data
acquisition and data averaging steps?

The program in Example 2-21 incorporates the averaging steps
so that the final voltage values are actually the average of four
values acquired one after the other for each position of the lamp
along the tube. We have introduced a short time delay into the
program at line 60 that will have the effect of spacing each of the
data points about one quarter of a second apart while they are be-

99

Example 2-21. Lamp Data Acquisition Program, with Averaging

10 DIM A(6)

20 FOR I=1T0O 6

30 S=0:INPUT Q

35 FOR R=1 TO 4

40 OUT 5,0

50 P==(256*(INP(4) AND 3))+INP(3)
55 §=§+P

60 FOR T=0 TO 100:NEXT T:NEXT R
65 A()=S/4

70 NEXT i

80 FOR I=1TO 6

90 PRINT I, A(1),A(1)*0.00977

100 NEXT i

110 END

ing acquired. The averaging technique worked well in the experi-
ment, providing results that were reproducible to within a few per-
cent of each other. Thus, the averaging technique worked well to
reduce the noise that was superimposed upon the signal that was
to be measured. The averaging technique is a valuable one, and we
will discuss it in more detail later. The averaging technique can be
implemented in either hardware, or software. One final note on the
averaging technique. In this case, four samples were averaged, so

the noise was reduced by \/4, or 2, so that it was twice as low as
it would have been in individual measurements.

The experiment still hasn’t been completed, though, since the ac-
tual results of the experiment are to be represented by the resistance
of the photocell versus light intensity, or distance from the photocell
in this case. Now, you need to add some steps to the program so
that the voltage values are converted to resistances. Using Ohm’s
law (I = E/R), you can compare the resistance of the photocell for
each of the voltages across it. If “V” is the voltage across the photo-
cell, then the equation:

560000

B-v) X V = Detector Resistance

may be used to determine the resistances of the photocell. The com-
plete program is shown in Example 2-22. Column headings could
be printed by the program, if they are required. Typical test results
obtained by this program are provided in Table 2-5, and the re-
sults have been plotted in Fig. 2-28, showing a nice relationship
between the distance of the lamp, and the resistance of the photo-
cell. Some of you will probably realize that the plot is not what you
would expect for a standard physics experiment in which it is ob-
served that when a light source’s distance from a “detector” is dou-
bled, the light reaching the detector is quartered. There are several

100

b

Example 2-22. Lamp Data Acquisition and Averaging Program, with
Resistance Calculations

10 DIM A(6)

20 FOR I=1 TO 6

30 S=0:INPUT Q

35 FOR R=1 TO 4

40 OUT 50

50 P=(256*(INP(4) AND 3))+INP(3)
55 §=8+P

60 FOR T=0 TO 100:NEXT T:NEXT R
65 a()=S/4

70 NEXT |

80 FOR I=1 TO 6

85 V=A()*0.00977

90 PRINT 1,V,{(560000/(15—V))*V)
100 NEXT |

110 END

reasons why this standard behavior is not observed in this experi-
ment: (1) we do not know that the detector behaves in this way
(perhaps it has a nonlinear response to light intensities), (2) the
detector may be operating in a region of the visible light spectrum
in which it iso’t very sensitive, and (3) don’t forget that none of
the light leaves the tube, much of it being reflected back on the

Table 2-5. Results of a Detector-Lamp Test Sequence
Using the Averaging Program

Test Voltage Resistance
1 8.7295 779605
2 7.67678 587036
3 6.23082 397900
4 5.26603 302957
5 3.89823 196636
6 2.60615 117755

photocell. The experiment could have been done in a darkened
room, with a photodetector that was well matched to the light
source, but since this would give the usual physics-lab results, it
would take all the fun out of the exercise.

The ICL7109 12-Bit A/D Converter

The second A/D converter that we will discuss is the 12-bit Inter-
sil ICL7109 device. This converter uses the dual-slope conversion
process, so we will spend a short bit of time discussing how it works,
in general terms. The dual-slope conversion technique uses a volt-
age integration process that sums an unknown voltage over a fixed
period of time, called T1. At the end of this period, higher unknown
voltages will have higher sums, while lower unknown voltages will

101

8
@

2
I 6
s}
=
x
i
o
z
<€
l..
(]
D 4
o
o
o
=
1)
wi
l,.
w
Q
° 2
o
I
o

0 + t ¢ t

0 1 2 3 4 5 6 7 8

DISTANCE FROM LAMP TO PHOTOCELL (INCHES)

Fig. 2.28. Plot of resistance versus distance for the averaged photodetector data values.

have lower sums. The actual conversion process takes place when
the integrated value of the applied voltage is reduced at a known
rate. Since it will take longer to decrease a high value of integrated
voltage than it will to decrease a low value, the period required to
cause the integrated voltage to be decreased to zero is a representa-
tion of its value, and thus, the unknown analog voltage. The timing
diagram for the dual-slope conversion process is shown in Fig. 2-29.
The T1 period for two unknown voltages is equal, so that at the
end of this integration period, the higher voltage, A, will have
summed to a higher total voltage than will have voltage B. This is
analogous to water flowing out of two pipes at different rates. After
a fixed period, the water flowing out of the pipe with the higher
flow rate will have filled more of a container than the flow from
the other pipe will have. Once the integration period has ended,
the integrated voltage is discharged at a known rate. Since the rate
is fixed, the slopes of all of the discharge plots will be equal, as
shown in Fig. 2-29. Only the discharge period will change, being
longer for the higher initial unknown voltage input. Thus, the dis-

102

I
i
1
I
|
INTEGRATOR :
i

i

I

1

1

TIiME [T —>fe— T2 —]

Fig. 2-29. Timing diagram for two different voltages converted by the dual-slope
conversion process.

charge period is proportional to the unknown input voltage that is
to be digitized.

All of the functions of integrating, discharging, and measuring
the discharge period are performed by the integrating, or dual-
slope A/D converter. The discharge periods, T2 and T3 (Fig. 2-29)
are generally used internally by the converter, to gate a counter that
accumulates a binary count that is proportional to the voltage. You
do not have to be concerned with this, though, since the converter
manufacturers take care of this. You are probably wondering why
anyone would choose to use a converter that uses such a slow
process. The answer is that the dual-slope A/D converter inte-
grates, or averages, the unknown voltage for later measurement,
rather than measuring it quickly, and directly, as is the case with
a successive-approximation converter. Why is the averaging so im-
portant?

You just read about an application in which voltage averaging
was quite important, since external noise that was added to the
unknown signal contributed significant errors to the measurements.
The averaging was done with four values of the unknown signal,
so that the noise could be averaged out. The voltage integration
technique also averages some noise, since we assume that the noise
will add to the signal as many times as it subtracts from it, as
shown in Fig. 2-30. The noise has been greatly exaggerated in this
figure, so that the actual voltage may be easily seen. The signal is
also shown with some periodic noise, such as 60 Hz noise, since it
may be easier to see how this adds and subtracts from the signal
on a regular basis.

The timing diagram in Fig. 2-31 shows how a dual-slope A/D
converter would integrate this noisy signal. The resulting integrated
value of the noisy signal would be very close to the voltage that

103

T

Fig. 2-30. Timing diagram showing periodic (60 Hz) and random noise superimposed upon
an analog signal.

would have resulted from the integration of the noise-free signal.
Actually, we are most interested in the area under the time-voltage
line, as shown in the shaded portion of Fig. 2-31. Once the inte-
gration period has ended, the discharging is started, and the period
that is required for the integrated voltage to reach zero volts is
measured. This represents the actual, average value of the unknown,
noisy signal. In this example, the averaging took place during the
integration period. In most dual-slope A/D converters, the integra-
tion period is set at an integer multiple of a 60-Hz sine wave period,
so that line-frequency noise is averaged out. Of course, converters
are not perfect, so this is a noise reduction technique, and not all
of the noise is eliminated.

Now, the ICL7109 A/D converter will be considered in detail.
A pin configuration and test circuit diagram is provided in Fig. 2-32.
Only a few inexpensive components are required by the ICL7109
for proper operation. The use of a readily available 3.5795 MHz

EXPECTED

ACTUAL

T

Fig. 2-31. Timing diagram showing the integration of a noisy analog signal, versus what
is expected for a noise-free signal.

104

[

o

e

crystal to generate the timing of the control signals allows the con-
verter to operate at 7.5 conversions per second, so that 60 Hz noise
is rejected during the integration period. If an external clock signal
is supplied, the converter may be set so that it will perform con-
versions at the rate of 30 per second. The ICL7109 contains an on-
chip voltage reference circuit.

On the digital data side of the converter, you will find that there
is a high-order byte, and a low-order byte. The low-order byte con-
tains data bits B1 (D0) through B8 (D7), while the high-order byte
contains the remaining four data bits, B9 (DS8) through B12 (D11),
as well as two additional bits; a polarity bit (POL) and an over-
range bit (OR). These two bits are useful in detecting the sign,
or polarity, of the applied voltage, and also in detecting an error
resulting from the use of too high an unknown voltage at the input
of the converter. These data bits have three-state outputs, and they
are controlled through the use of the low-byte enable (LBEN) and
high-byte enable (HBEN) signals. These two inputs allow the data
of the converter to be transferred to another device without any
additional control or buffering circuitry. Caution must be observed
in the use of these three-state outputs, since they can only power
one TTL load, and they are not capable of driving long buses. We
suggest that this three-state capability not be used unless the com-
puter system in which the ICL7109 is to be used is small, having
only a few devices on the data bus, so that the ICL7109 will oper-
ate properly. The information in Table 2-6 provides brief descrip-
tions for each of the signals of the ICL7109.

TOP VIEW
GND 1 GND A VT 40— +5V
—{ 2 STATUS REF IN- 39 o
HIGH |[13FPOL REF CAP - 38 B 1uF EXTERNAL
ORDER | J40OR REF CAP + 37— HEFERENCE
BYTE] 5 Bi2 REF IN+ 36 ThIT
ouTPUTS | TJ8BM IN HI 35 ——.:.—-’\N\r——omu,: INPUT HIGH
—7B10 INLO 34 O INPUT LOW
L= 8 B9 COMMON 33 |————&—
=9 B8 ICL7109 INT 32 ——c;z——cﬂl 12eF
—410 B7 AZ 31 —-—-l E
LOW |..f11B6 BUF 30 B
ORDER | —{12B5 REF OUT 29 RinT = 20k() 0.2V REF
BYTE] —{13 B4 V- 28— -5V = 200k() 2.0V REF
OUTPUTS | —{14 B3 SEND 27— 1K() > e REF+
—{15 B2 RUN/HOLD 26—
L 16 B1 BUF OSC OUT 25— vt
—{ 17 TEST OSC SEL 24— GND 24k
BYTE [={18 LBEN 0SC OUT 23—
CONTROL — —i 19 HBEN OSC IN 22 D 3.5795 MHz
INPUTS [{20 CE/LOAD MODE 214— TV CRYSTAL

Courtesy Intersii, Inc.

Fig. 2-32. Pin configuration and test circuit for the ICL7109 12-bit dual-slope A/D
converter chip.

105

Table 2-6. ICL7109 Slgnal Description

Pin Symbol Description

1 GND Digital Ground, 0V, Ground return for all digital logic

2 | STATUS Output-High during integrate and deintegrate until
data is latched.
~Low when analog section is in Auto-Zero configuration.

3 | POL Polarity, Three-State Output

4] OR Over-range, Three-State Output

5 | B12 Bit 12 (Most Significant Bit)

6 B11 Bit 11

7 BiO Bit 10

8 | BY Bit ¢

9 B8 Bit 8

10 | 87 Bit7

11 B6 Bit 6 Data Bits, Three-State Output

12 BS Bit 5

13 B4 Bit 4

14 | B3 Bit 3

15 | B2 Bit 2

16 | Bl Bit 1 (Least Significant Bit)

17 | TEST Input High-Normal Operation.

Input Low-Forces all bit outputs high.
Note: This input is used for test purposes only.

18 | LBEN Low Byte Enable-With Mode (Pin 21) low, and CE/LOAD
(Pin 20} low, taking this pin low activates low order
byte outputs B1-B8.
~With Mode (Pin 21) high, this pin serves as a low byte
flag output used in handshake mode.

19 | HBEN High Byte Enable-With Mode (Pin 21) low, and CE/LOAD
(Pin 20) low, taking this pin low activates high order
byte outputs B9-B12, POL, OR.
~With Mode (Pin 21) high, this pin serves as a high byte
flag output used in handshake mode.

20 | CE/LOAD Chip Enable Load-With Mode (Pin 21) low, CE/LOAD
serves as a master output enable. When high, B1-B12,
POL, OR outputs are disabled.
~With Mode (Pin 21) high, this pin serves as a load
strobe used in handshake mode.

21 | MODE Input Low-Direct output mode where CE/LOAD (Pin 20),
HBEN (Pin 19) and LBEN (Pin 18) act as inputs directly
controlling byte outputs.
input Puised High-Causes immediate entry into hand-
shake mode and output of data

106

5

»

é@ "y

w

Table 2-6. continued

21 MODE Input High-Enables CE/LOAD (Pin 20), HBEN (Pin 19),
cont | cont and LBEN (Pin 18) as outputs, handshake mode will be
entered and data output
22 | OSCIN Oscillator Input
23 | OSC OuUT Oscillator Output
24 | OSC SEL Oscillator Select-input high configures OSC IN, OSC
OUT, BUF OSC OUT as RC oscillator-clock wiil be same
phase and duty cycle as BUF OSC OUT.
~input low configures OSC IN, OSC QUT for crystal
oscillator-clock frequency will be 1/58 of frequency at
BUF OSC OUT.
25 | BUF OSC OUT | Buffered Oscillator Output
26 | RUN/HOLD Input High-Conversions continuously performed every
8192 clock pulses.
Input Low-Conversion in progress completed, converter
will stop in Auto-Zero 7 counts before integrate.
27 | SEND Input-Used in handshake mode to indicate ability of
an external device to accept data.
28 |V Analog Negative Supply-Nominally —5V with respect
to GND (Pin 1).
29 | REF OUT Reference Voltage Output-Nominally 2.8V down from
V* (Pin 40).
30 | BUFFER Buffer Amplifier Output
31 | AUTO-ZERO Auto-Zero Node-inside foil of Caz
32 | INTEGRATOR Integrator Output-Outside foil of CiNt
33 [COMMON Analog Common-System is Auto-Zeroed to COMMON
34 | INPUT LO Differential input Low Side
35 | INPUT HI Differential Input High Side
36 | REFIN + Differentiai Reference Input Positive
37 | REF CAP + Reference Capacitor Positive
38 | REF CAP — Reference Capacitor Negative
39 | REFIN — Differential Reference Input Negative
40 | v* Positive Supply Voltage-Nominally +5V with respect
to GND (Pin 1).

The ICL7109 converter can be operated in one of two modes,
a direct mode, or a handshake mode. Only the direct mode will
be important here, since this configures the chip so that it appears
to operate in the same general manner as other A/D converters.
A typical interface for the ICL7109 is shown in Fig. 2-33. The three-
state output capability of the chip has not been used since a long,

107

heavily loaded bus was involved, as is probably the case in most
TRS-80 systems. Four SN74365 (DMB8095) three-state buffers were
used between the outputs of the A/D converter and the data bus
lines of the computer. Two input control signals were used as the
device select pulses to the buffers. Note that the MODE, CE/LOAD,
HBEN and LBEN control signals have all been grounded. A few
changes have been made in the basic circuit shown in Fig. 2-32,
so that the range of the converter will be =5 volts. The integration

+5V
o +5V
40
20KQ
3 IREF IN +
DMB0g5
OR
SN74365
39 REFIN -) . s
STATUS
2 {rer ouT]1 T
1GL 7109
g 2 3
1MQ 3 P - DM8095 2
5 i w B12}2 § 7
Vin 001 1118 14] OR i3
’ SN74365
oo~ ol a0l 12 11
v ao 10 9
0.33uF
31 T 6
j—2Y az |
32
it INT
0.15pF
2 DMB095
RUN/HOLD oR
SN74365
s |2 2 3 b7
” a7l 4 5 o6
MODE
T 5
20| CELGAD
3
18 BEN sl . D5 | DATA
X ss)i2 4 5 e | BUS
19 gal12 5| omsogs |7 0s
HBEN 14 14] OR hs
83 D2
NT74
341 Lo a2)18 121 SN74365]11 o1
o118 10 9 00
r 1 15
) N3
N4

Fig. 2-33. Schematic diagram of an interface for the ICL7109 A/D converter.

108

AN

v

Ve

AR

resistor, Ruwr, has been changed to 200 X ohms, and the reference
voltage divider has been changed from two resistors, to a single
potentiometer. These changes are incorporated into the circuit
shown in Fig. 2-33. While this is a typical interface, you will note
that there is no connection to the chip to start the conversion se-
quence. While the ICL7109 is in the DIRECT mode, there are two
types of conversion sequences that may be used: the continuous
conversion, and the conversion on command modes. Both of these
will be described, since they will be important for various inter-
facing tasks.

ICL7109 Continuous Conversion Mode

When the RUN/HOLD line of the ICL7109 is held at a logic one,
or when it is open (unconnected), the converter will use its inter-
nal logic circuits to sequence through one conversion right after
another. In this way, the 12-bit binary output is always changing,
to reflect the newly digitized voltage. In this mode, the STATUS
output of the chip may be monitored to determine whether the
chip is converting a voltage, or whether it is performing internal
housekeeping tasks, getting it ready for the next conversion se-
quence.

To help you better understand the timing relationships, a timing
diagram has been provided in Fig. 2-34. You should be able to
recognize the integration period, and the discharge, or de-integra-
tion period. The INTERNAL LATCH pulse is generated by the
internal logic circuits of the chip to update the 12-bit data word,
to present the value from the latest conversion. The STATUS out-
put is a logic one during the conversion period, and a logic zero
after the conversion has been completed. The digital data outputs
only change on the negative-going edge of the STATUS signal.
The data can be read at any time, or you can wait until the current
conversion has been completed before reading the data.

If you choose to read the data only after the latest conversion
has been completed; that is, you wish to wait until the STATUS

POLARITY 2£R0 CROSSING

DETECTED~.__ GCCURS
INTEGRATOR ’)\, L ZERD CROSSING |
ouTPUT ' 3 i AN _~ DETECTED H

T — i N 1

e AZ PHASE + PHASE - e PHASE —

mremuas cuoos "L LALLM SULUL, LALLM "UPLALLILE

; i
INTERNAL LATCH | | t]

i
i
; T
STATUS OUTPUT I i1 !

' t : T
e caunt : it 4 4095 COUNTS,
MAX

+ 3 -
HIN. | COUNTS ™
s “\arve zero crossig,

NUMBER OF COUNTS TO ZERO CROSSING/ ANALOG SECTION WiLL
PROPORTIONAL TC Vi
OPORTIO! CONFIGURATION

Courtesy Intersil, Inc.
Fig. 2-34. Timing relationships for the ICL7109 A/D converter.

109

Example 2-23. A Simple Display Update Program for the
ICL7109 Converter

10 IF(128 AND INP(4))=1 THEN 10

20 PRINT ((15 AND INP(4))*256)-+ INP(3)
30 IF(128 AND INP(4))=0 THEN 30

40 GOTO 10

flag output becomes a logic zero again, you could use the program
listed in Example 2-23. In this program, the computer will wait
until the STATUS flag goes from a logic one to a logic zero, before
it inputs and displays the decimal equivalent of the 12-bit binary
value. The program will continue to display the latest conversion
value, going through the program again and again. If you wish to
obtain a single conversion value at some time in a BASIC program,
you could use the program steps listed in Example 2-24. In this se-

Example 2-24. A Single Point Data Acquisition Roufine

200 A==(INP(4) AND 128)
210 IF A>(INP(4) AND 128) THEN 220 ELSE 200
220 Q={(INP(4) AND 15)*256)- INP(3)

quence of program steps, the computer waits for the logic one to
logic zero transition on the STATUS output before it acquires a
single value from the converter. In both of these program examples,
you should note the use of the logical aNp operation to mask-out
unused, and unwanted, bits, both in the STATUS flag testing, and
in the computing of the final data value. '

You could input a 12-bit data value at any time, regardless of
the state of the STATUS signal, to reflect the current value present
at the outputs of the converter, but you would have to be careful
in evaluating the value obtained, since it is possible to transfer the
12-bit value to the computer just as it is being updated by the con-
verter, on the negative-going edge of the STATUS output. To pre-
vent this from happening, the program shown in Example 2-25

Example 2-25. A Continvous Data Acquisition Program, with
Flag Transition Checks

100 A=(INP(4) AND 128)
110 PRINT ((15 AND INP(4))*256)+ INP(3)
120 IF A>(INP(4) AND 128) THEN 100

tests the STATUS flag signal before and after the data has been
acquired. If a logic one to logic zero transition is detected during
the course of the acquisition, indicating that the data has been up-
dated, the new data value is acquired. This program could be re-
written, so that only a single data value is obtained, rather than

110

i

having each new data value acquired and displayed. All of these
programs, Examples 2-23, 2-24, and 2-25 have provided examples of
sequences of instructions that may be used to acquire data from
the ICL7109 when it is in the free-running, or continuous conver-
sion mode. For most applications, this mode is easy to use, but there
is another mode that allows the ICL7109 to only perform a single
conversion, upon command of the computer.

ICL7109 One-Shot Conversion Mode

Although the ICL7109 does not have a CONVERT pulse input,
as such, it does have the capability to perform one conversion at
a time, under the direct control of external interface circuits. In this
conversion on command mode, each of the conversions is “re-
quested,” causing the A/D converter to digitize the unknown volt-
age only once, rather than again and again. The RUN/HOLD in-
put (pin 26) provides the necessary control function to allow the
ICL7109 to operate in the one-shot mode. When the RUN/HOLD
input is a logic one, the converter is placed in the continuous con-
version mode, while a logic zero input will cause the converter to
complete its current conversion, update the data outputs, and then
stop. This allows the converter to be placed in a standby mode,
so that it can be restarted for conversions, as required.

When the conversion on command, or one-shot mode is used, the
RUN/HOLD input is kept in the loglc zero state, being pulsed to
the logic one state when a conversion is requested There is a defi-
nite timing relationship between the RUN/HOLD signal, and the
STATUS output signal, and the availability of the digital data. We
will assume that when the system has been reset, the RUN/HOLD
signal is in the logic zero state. To start a conversion sequence, the
RUN/HOLD input is changed to a logic one, indicating to the con-
verter that it is to start a conversion sequence. There are some in-
ternal logic functions that must take place, so there is a definite
period before the STATUS output goes to a logic one, indicating
that a conversion is in progress. When the STATUS output goes to
a logic zero, this indicates a conversion has been completed, and
that the RUN/HOLD signal should be placed back in the logic zero
state. Likewise, the resulting 12-bit data value should be acquired
by the computer. There are two ways in which the control of the
RUN/HOLD input can be achieved, and we are sure that there
are other variations, too. In both cases, the ICL7109 interface cir-
cuitry shown in Fig. 2-33 is expanded to include the new control
circuits for the one-shot control.

In the first example of one-shot conversion control, a flip-flop is
controlled by a program, to provide the proper logic levels for the
RUN/HOLD input. The interface circuit is shown in Fig. 2-35. An

m

Example 2-26. A Single Conversion Control Program (see Fig. 2-35)

10 OUT 6,0

20 IF(INP(4) AND 128)=0 THEN 20

40 IF(INP(4) AND 128)=1 THEN 40

50 PRINT ((INP(4) AND 15)*256)-+INP(3)
55 OUT 7,0

60 FOR T=0 TO 1000:NEXT T

70 GOTO 10

OUT 6,0 command is used to clear the flip-flop, starting the con-
version, while an OUT 7,0 command is used to set the flop-flop,
changing the logic level applied to the RUN/HOLD input back to
a logic zero. This interface circuitry must be added to that shown
in Fig. 2-33. A control program that may be used to control this
new interface is listed in Example 2-26. Actually, this interface is
quite general, since both the conversion on command and continu-
ous conversion modes may be used. For the continuous conversion
mode, the flip-flop is simply reset with an OUT 6,0 command, plac-
ing the RUN/HOLD input in the logic one state.

A different type of one-shot control interface is shown in Fig. 2-
36. In this circuit, the STATUS signal has been used to clock a flip-
flop, causing it to change the states of its outputs. An OUT 6 pulse
is used to clear the flop-flop, placing the RUN/HOLD signal in the
logic one state, to start a conversion. Once the conversion has been
completed, the logic one to logic zero transition of the STATUS
output clocks the flip-flop, so that the RUN/ HOLD signal becomes
a logic zero again, stopping the conversion séquence, so that an-

SN7432
7 1 3
2
) SN7476
P
4 Q
OUT o——3b ek
160 gH4—» 70 RUN/HOLD
e C
3

Fig. 2-35. Schematic diagram of a control circuit for the ICL7109, for both single and
multiple conversions.

112

Example 2-27. A Single Conversion Control Program (see Fig. 2-36)

200 OUT 6,0

210 IF(128 AND INP(4))=0 THEN 210
220 PRINT ((INP(4) AND 15)*256)-INP(3)
230 FOR T=0 TO 200:NEXT T

240 GOTO 200

other conversion will not take place. Another signal from the flip-
flop is used as a status signal to one of the input ports of the com-
puter, to indicate that a conversion has been completed. In this
configuration, the ICL7109 appears to be used in the more “tradi-
tional” way; that is, a convert pulse is used to start a conversion,
and a flag output indicates when the conversion has been completed.
A typical control program is shown in Example 2-27. This configu-
ration can be used only if you wish to use the one-shot mode, since
it is not very easy to switch back and forth between the continuous
conversion and the conversion on command modes. (Note that in
the circuit shown in Fig. 2-36, when used with the ICL7109 con-
verter circuit shown in Fig. 2-33, the connection from the STATUS
output to the three-state input port is removed, since the STATUS
output of the flip-flop provides this function.)

The sample programs that have been provided for the one-shot
conversion mode are fairly simple, and are easily rewritten, for use
as subroutines, for the acquisition of one or more data values. The
single-conversion method is frequently used when a single value is
to be obtained, and when it is necessary to obtain the most recently
digitized value. The one-shot mode is also useful when assembly-
language programs are going to be used to control the converter.

SN7476
4 15 TO INPUT
e
+5V J a PORT 4, BIT D7
1
STATUS ek

_ TO RUN/HOLD

16|, 5l /

I_T c

ouT ! 2
- 2
6 SN7432

Fig. 2-36. Schematic diagram of a circuit for the ICL7109 that confrols single conversions.

113

Another A/D Converter Interface Application

Now that the 12-bit ICL7109 A/D converter has been interfaced
to the TRS-80 computer, it will be applied to a voltage-measuring
problem. In this case, it is necessary to measure a temperature, a
problem found in many experiments, control systems, solar heater
systems, cooling towers, and so on. There are numerous ways in
which temperatures can be measured; with thermocouples, therm-
istors, temperature-dependent semiconductors, and others, being
frequently used. In recent years, a number of new temperature sen-
sors have become available. The Analog Devices AD590, and the
National Semiconductor 1.M3911, are representative examples. The
ADS590 is a two-terminal temperature transducer, while the LM3911
is a four-terminal device. The AD590 lends itself to use in those
applications that require highly accurate measurements, while the
LM3911 is excellent for general-purpose uses. The LM3911 will be
used in this particular application.

The LM3911 is a temperature sensing device that provides a
voltage output that is directly proportional to the temperature of
the chip. In fact, the output is generally in millivolts-per-degree,
so that the conversion from a voltage to a temperature is fairly
simple. While the LM3911 may be used in many different types of
applications, from use as a thermostat, to use as a simple thermom-
eter, it will be used as a temperature transducer in this application,
so that the ICL7109 A/D converter can measure the voltage that
it generates. The simplest configuration for the LM3911 is shown
in Fig. 2-37, in which the L.M3911 has been used to provide a volt-

+15V
;.m«z
<
B+
} 10 mv/°K
4 e —
+
2
ouTt
LM3911
wE
Jj (DIP PIN ASSIGNMENTS)

Fig. 2-37. Schematic diagram showing the LM3911 sensor used for
temperature measurement.

114

S

&

age output of 10 millivolts for each Kelvin. The Kelvin temperature
scale uses the same units as the Celsius scale, except that the Kelvin
scale starts at absolute zero and reaches 273 K at the freezing point
of water, which is 0°C, or 32°F. [Note the ° symbol is not used with
Kelvins. The SI unit of temperature is the Kelvin, not degree {°)
Kelvin.] Room temperature is about 20°C, or 293 K. The conversion
from the Fahrenheit to the Celsius and Kelvin scales are as follows:

°C = (°F — 32) X (5/9)
K =5/9 (°F — 32) + 273.15

The circuit provided in Fig. 2-37 shows the voltage signal that
corresponds to the temperature, as being the difference between the
voltage at two points in the circuit, neither of which is ground. This
is a situation that has not been encountered before, since all of the
previous measurements have been made with respect to ground
potential. Since the ICL7109 has a differential input capability;
that is, it can measure the difference between two voltages, it might
be possible to use this to our advantage. Unfortunately, the more
positive of the two voltages produced by the LM3911 is about +7
volts, which is outside the range of the differential input for the
ICL7109. Some other means of measuring the signal must be found,
or some other “translation” process must be found so that the tem-
perature voltage can be referenced to ground.

A simple differential input op-amp circuit with a gain of one
(unity gain) can be used to reference the voltage signal to ground.
A typical circuit is shown in Fig. 2-38. A 741 op-amp was used in
this circuit, with =15-volt power supplies. The voltage that repre-
sents the temperature of the LM3911 is now referenced to ground,
and the output is measured at about 3.03 volts, to 303 K, very
close to the actual room temperature. This is the signal that the
ICL7109 is to digitize. A simple test program was developed to
control the converter in the continuous conversion mode. Example

W

-0 AR =

+ O AAA- Ty } Vour

]

i ALL RESISTORS
22KQ

Fig. 2-38. A simple op-amp circuit used to reference a differential signal to ground.

115

Example 2-28. A Simple Voltage Display Program for a 12-Bit
A/D Converter

10 IF (128 AND INP@4))=1 THEN 20
20 A=((INP(4) AND 15)*256)-INP(3)
30 PRINT (A*5)/4096;

40 IF (128 AND INP{4))=0 THEN 40
50 GOTO 10

2-28 shows the program that acquired the data, and displayed the
decimal equivalent of the voltage obtained from the op-amp circuit.
The PRINT command converts the decimal equivalent of the 12-
bit binary output of the converter into a value that ranges between
0 and +5 volts. When the program was first tested, the voltage dis-
played by the TRS-80 did not match the voltage that was being
generated by the op-amp circuit. This didnt mean that the system
wasn’t operating properly, but it was an indication that the scale-
factor, or gain of the A/D converter was not properly adjusted.
To correct the problem, the GAIN potentiometer of ICL.7109 was
simply adjusted until the voltage output by the op-amp, and the
voltage displayed, were equal. Don'’t forget, that in any system, a
certain number of adjustments and test runs will have to be made
before the system can provide meaningful results.

Once the gain adjustment of the A/D converter had been made,
a simple command was added to the test program to cause it to
display the Celsius temperature, along with the measured voltage.
The following line was added to the program in Example 2-28:

35 PRINT USING “# # # .3 —;((A*500)/ 4096)— 273

This converted the voltage to the correct Celsius temperature value.
A semicolon is placed at the end of line 30, in the program, to sup-
press the carriage-return function in the display.

Since the LLM3911 is a semiconductor device, it requires some
power to operate, so its temperature was found to be a degree or
two higher than the actual room temperature. In liquids, or mov-
ing air, this probably wouldn’t be noticed. A complete temperature
display program is listed in Example 2-29. It generates a display
of both Fahrenheit and Celsius temperatures.

Now, the temperature measurement application will be expanded,
so that the computer is used to acquire temperatures over a known
period. The software will be written so that the computer will ac-
quire one temperature value each second, for two minutes, a total
of 120 values. The LM3911 chip will be quickly cooled with a
freezing spray of Freon, typically available as “Freeze Mist,” or a
similar product, used for cooling electronic components. The tem-
perature of the LM3911 will be measured, as it warms up to room
temperature, both in still air, and in moving air, supplied by a small

116

A,

e

Example 2-29. A Complete Temperature Display Program for °C and °F

10 CLS:PRINT@ 215,”CELSIUS":PRINT@ 279,”FAHRENHEIT”
20 IF {128 AND INP(4))=1 THEN 20

30 Q=((15 AND INP(4))*256)+INP(3)

40 Q=INT(Q*500)/4096)—273

50 F=INT(Q*9/5)+32)

60 PRINT@ 200,” “:PRINT@ 200,Q:

70 PRINT@ 264, “:PRINT@ 264,F

80 IF(128 AND INP(4))=0 THEN 80

90 FOR T=0 TO 200:NEXT T

100 GOTO 20

fan. A typical data acquisition program is listed in Example 2-30.
It has some interesting features that we will briefly describe. A time-
delay routine has been placed in the program, so that the tempera-
ture information will be acquired at one-second intervals. Actually,
the delay period was adjusted during several test runs, so that the
values were acquired over the two-minute period. The line printer
feature has been used in this program, so that a copy of the results
can be obtained for future reference. The LPRINT USING com-
mand was used, so that the results of the experiment would be tabu-
lated in neat columns, so that the results would be easy to read.
A display-plot routine has also been added, so that the results can
be readily seen on the video monitor.

As you look through the program listing, you may wonder why
a few additional spaces are printed after each tenth value. Actually,
the printer can’t “print” spaces, it just marks them off, moving the
print head mechanism in the process. Since the carriage-return (re-

Example 2-30. A Temperature Data Acquisition Program

10 DIM A(120)

20 FOR 1=0 TO 119

30 IF {128 AND INP(4)=1 THEN 30
40 Q=((15 AND INP(4))*256)- INP(3)
50 A(l)=INT(Q*500)/ 4096)— 273

60 FOR T=0 TO 335:NEXT T

70 NEXT |

75 Z=0

80 FOR 1=0 TO 119

90 LPRINT USING “+ F## # 4 #7: Ay
95 Z=Z+1:IF Z=10 THEN 400

100 NEXT |

110 INPUT Q

120 CLS

130 FOR 1=0 TO 119

140 SET (1,((46-A(1)/2)

150 NEXT |

160 GOTO 160

400 LPRINT

410 Z=0:GOTO 100

117

Table 2-7. Tomperature Dota for Cooled Sensor at One-Second Intervals
(Read Across Each Row)

—34 —34 —-34 —33 —33 —33 -32 -32 —31 -31
-30 —30 -29 —29 —28 —28 -27 —-27 —26 -26
—-25 —25 —24 —24 —23 —23 —22 —-22 —21 —21
—20 —19 -19 - 18 —18 -17 —-16 -15 —15 —14
-13 —13 -12 -1 -1 -10 -9 -9 -8 -8
-7 -7 -6 -5 -5 -5 —4 —4 -3 -3
-2 -2 =1 -1 =1 +0 +0 +0 +0 +1
+1 +1 +1 +1 +1 +2 +2 +2 +2 +2
+3 +3 +3 +3 +3 +3 +4 +4 +4 +4
+5 +5 +5 +6 +6 +6 +6 +7 +7 +7
+7 +8 +8 +8 +8 +8 +9 +9 +9 +9
+9 +9 +10 +10 +10 +10 +10 +10 +11 +11

turning the print head to the left margin) has been suppressed in
the LPRINT USING “+######7;A(1); command, with the two
semicolons, the command at line 400 causes the printer to mark off
a few spaces, and then to perform a carriage return. There is no
semicolon in this “dummy” command, so its only effect is to cause
a carriage return to be generated, so that the next row of figures
can be typed directly under the one previously printed. The line-
feed function that moves the paper up for the next row is gener-
ated by the line printer, or its interface circuitry, whenever a car-
riage return command is detected.

In this experiment, the 1.M3911 sensor was cooled to about 240 K,
or —33°C with the Freon spray. The chip was allowed to warm up,
and the various temperature values were acquired. Two different
sets of values were obtained, one set when the LM3911 was simply
allowed to warm up on the breadboard, and one when air was
blown over the chip with a small fan, similar to the ones used in
electronic equipment. The data is presented in Tables 2-7 and 2-8,
respectively. Graphs of the temperature changes vs time are pro-
vided in Fig. 2-39. There is a notable increase in the warming rate
of the system in which the fan was used, a good indication that the

Table 2-8. Temperature Data for Cooled Sensor In Fan Alr Path
at One-Second Intervals (Read Across Each Row)

-34 -3 -31 -29 -2 -25 -2 —19 —17 —14
- -9 -6 -4 -2 - +0 41 43 +4
+5 +6 47 +8 49 49 410 +11 +U +12

+13 +13 +14 +14 +15 +15 +15 +16 +16 +16
+17 +17 +17 +17 +17 +18 +18 +18 +18 +18
+18 +18 +19 +19 +19 +19 +19 +19 +19 +19
+19 +19 +20 +20 +20 +20 +20 +20 +20 +20
+20 +20 +20 +20 +20 +20 +21 +21 +21 +21
+21 +21 +21 +21 +21 +21 +21 +21 +21 +21
+21 +21 +21 +21 +22 +22 +22 +22 +22 +22
+22 +22 +22 +22 +22 +22 +22 +22 +22 +22
+22 +22 +23 +23 +23 +23 +23 +23 +23 +23

118

[

30
cood
oo aooooo°°° Qo000
20 0000
10 e T
O @ 0s” "
o oe
200
Z 0 e
< ° °
254 °
Lu L4
o, o .‘
= o
"u;! -10 ° °
—20 . o = FAN
° o o = FREEAIR
o .‘
-30 —*
-4
20 40 60 80 100 120
T IN SECONDS
Fig. 2-39. Plots of temperature versus time for the LM3911 when warmed by still air and
moving air.

fan was doing its job in transporting energy from one place to an-
other, whether it be for cooling, or heating.

This example was not developed as a controlled experiment, but
rather as an example of the type of thing that a small computer
can do quite nicely. The computer could have taken over some
of the other tasks in this experiment, too. For example, the final
plot of temperatures and times might have been generated by the
computer on an X-Y plotter, controlled by two D/A converters. The
computer could have been programmed to start the data acquisi-
tion sequence only when the temperature reached a certain level,
and so on.

There are some final notes on the LM3911 chip. We found that
the pin configurations in the data sheets were sometimes wrong.
The errors seem to have crept into the data sheets, since the metal
can, transistor-like package for this chip has a different pin config-
uration than does the eight-pin mini-DIP. Be careful to check on
this if you have a data sheet for the LM3911. The TLM3911 is speci-

119

fied as being able to operate down to —25°C, yet we were able to
operate it down to below —35°C. We don’t suggest that you do this
on a regular basis, though, if you expect the device to operate in a

reproducible manner.

G

A LIST OF REPRESENTATIVE ANALOG-DIGITAL
CONVERTER MANUFACTURERS

Advanced Micro Devices
901 Thompson Pl
Sunnyvale, CA 94086

Analog Devices, Inc.
P. O. Box 280
Norwood, MA 02062

Analogic Corporation
Audubon Rd.
Wakefield, MA 01880

Beckman Instruments

Adv. Electro-Products Div.

2500 Harbor Blvd.
Fullerton, CA 92634

Burr-Brown
P. O. Box 11400
Tucson, AZ 85734

Data Translation
4 Strathmore Rd. W
Natick, MA 01760

Datel-Intersil
11 Cabot Blvd.
Mansfield, MA 02048

Hybrid Systems Corp.
Crosby Drive
Bedford, MA 01730

Intech/Function Modules
282 Brokaw
Santa Clara, CA 95050

National Semiconductor Corp.
2900 Semiconductor Drive
Santa Clara, CA 95051

Signetics Corporation &
811 E. Arques Avenue
Sunnyvale, CA 94086

Sy

REFERENCES

1. Microcomputer-Analog Converter Software & Hardware Interfacing, How-
ard W, Sams & Co., Inc., Indianapolis, IN 46206, 1978.

2. Analog-Digital Conversion Notes, Analog Devices, Inc., Norwood, MA 02062,

1977.

3. IC Converter Cookbook, Howard W. Sams & Co., Inc., Indianapolis, IN

46206, 1978.

4. Datel-Intersil Engineering Product Handbook, Datel-Intersil, Mansfield, MA

02048, 1979.
5. Data Acquisition Products Catalog, Analog Devices, Inc., Norwood, MA
02062, 1978.
6. Data Acquisition Products Catalog Supplement, Analog Devices, Inc., Nor- A

wood, MA 02062, 1979.

120

Some Practical Data
Processing

In the previous chapter, we discussed the use of analog-to-digital
converters in computer interface circuits, for the measurement of
unknown voltages. While some examples of how the data could be
acquired and processed were provided, important topics such as
sampling rates, noise, filtering, and others, were not discussed in
much detail. These topics are some of the ones that will be de-
scribed in this chapter, so that you will be able to use and analyze
the information that you have acquired from external sources. The
information in this chapter is provided as an introduction, since it
is impossible to cover all of the different types of data processing
tasks that you might find useful. There are a number of excellent
references that devote more detail to the treatment of the subjects
covered here, and we will note them for you. The use of detailed
mathematical formulae has been avoided, as much as possible,
since it seems more important to provide usefeul examples and pro-
grams that can be used right away. Our main emphasis is upon
the development of techniques that you can apply to some specific
data processing tasks.

OBJECTIVES
At the end of this chapter, you will be able to:
@ Describe the considerations involved in determining data sam-
pling rates.

® Calculate data sampling rates for periodic signals.

121

® Define “aliasing effect.”

® Define inflection points.

@ Use a BASIC program to find the inflection points in an array.

® Write a program to scale data values between two defined
limits.

® Use ensemble averaging to reduce noise in arrays of informa-
tion.

@ Describe digital filtering.

@ Use a BASIC program to filter an array of continuous informa-
tion.

@ Describe the method of least-squares fit.

® Use a BASIC program to find the least-squares fit for an array
of information.

@ Define linear correlation coefficient.

DATA SAMPLING

Whenever an A/D converter is used to measure an unknown ana-
log voltage, it is important to have an understanding of the phe-
nomenon that is being measured; that is, how fast is the signal
changing, is it periodic, what are the maximum and minimum volt-
ages that are to be measured? If you are not careful in interpreting
your data, false results can be obtained. The voltage versus time
information provided in Fig. 3-1 shows a slowly varying voltage
that is defined by the three points that were measured by an A/D
converter, connected to an experiment. Before this information
is used in any way, it might prove useful to carefully examine the
unknown voltage signal that is generated by the experiment. An os-
cilloscope will work nicely here. A typical oscilloscope plot of the
voltage signal is shown in Fig. 3-2 for the same experiment. The

VOLTAGE

TIME

Fig. 3-1. Typical voltage versus time measurements made in an experiment.

122

g

VOLTAGE

TIME

Fig. 3-2. Periodic waveform, with superimposed ts, showing the effect
of aliasing.

points shown in Fig. 3-1 are superimposed upon those in Fig. 3-2
to show how they were obtained when the varying voltage signal
was sampled at too-slow a rate. This is called an aliasing effect,
since the measured voltages are really an “alias”™ of the periodic
triangular wave. Now, the question is, “How fast must the samples
be acquired from the A/D converter, so that a true representation
of the signal is obtained?”

Of course, the information could be obtained very quickly, but
the faster that the computer acquires data, the faster it fills up the
available read/write memory. There must be some means of deter-
mining the slowest sampling rate for a given signal. The Nyquist
relationship states that the minimum sampling rate must be fwice
the frequency of maximum frequency component in a signal that
is continuous. Thus, if the maximum frequency component is Fyax,
then the minimum sampling frequency, F,, is given by the simple
relationship:

Fy=2Fuax

It is important to remember that the maximum frequency compo-
nent of the signal determines the sampling rate minimum, and that
in many cases, the maximum frequency of a signal, and its maximum
frequency component will be different. This means that a 20-Hz
signal may be measured by sampling it at 2 minimum of 40 points
per second, as long as the 20-Hz signal does not contain any fre-
quency components that are above 20 Hz. Of course, you can al-
ways sample the 20-Hz signal at faster rates.

Since few small computer users have spectrum analyzers avail-
able, so that frequency components of a signal can be determined,
other techniques must be used to establish the proper sampling

123

O Vour

0.1uF

Fig. 3-3. Circuit for a simple low-pass filter with a cutoff of about 1.5 Hz.

rate for unknown signals. Three general techniques are used: (1)
trial and error is used to obtain the best reconstruction of the un-
known signal; (2) a low-pass filter is used to remove high-frequency
components from the signal; and (3) some attempt is made to re-
late the signal and the measurement rate. In the first case, the tech-
nique is fairly simple, but it may take some time to adjust your
program so that it acquires information at the proper rate. Simple
passive components may be used to construct a filter, as shown in
Fig. 3-3, or operational-amplifier-based filters can be used (see De-
sign of Active Filters, with Experiments, Howard W. Sams & Co.,
Inc., Indianapolis, IN 46206). The sampling rate may also be
roughly related to the function that is to be measured.

Fig. 3-4. A typical peak, showing the two
inflection points, A and B.

TIME

If a peak (or valley) voltage is being measured by the computer,
as shown in Fig. 3-4, you want to be sure that the computer acquires
enough points to accurately characterize the peak. But, where does
the peak start, and where does it stop? In a regular peak, there are
two points that can be useful in helping you to characterize it.
These are the inflection points and they occur on the positive-going
side, and on the negative-going side of the peak. These points indi-
cate where the slope has gone from an increasing slope to a de-
creasing slope. For example, when a car starts down a highway, it
accelerates to reach a maximum speed, but it must stop accelerat-
ing, otherwise it would continue to go faster and faster. The point
at which the acceleration stops, and at which the deceleration starts,
is the inflection point. This is shown in Fig. 3-4, at points A and B.
If you acquire between 10 and 20 points between the inflection

124

points, you will be able to accurately characterize the peak, so that
its position (or time} and height are known with little error. The
computer could be programmed to determine when the inflection
points have been reached, since it can acquire data continuously,
evaluating the slopes of the lines between the consecutive points.
Thus, the computer would acquire a data value and calculate the
slope of the line that would connect this point, and the one that
was acquired previously. The slope is temporarily stored. When the
next data value is obtained, the slope between it and the previ-
ously obtained value is computed, and compared with the slope
that was temporarily stored. If the slope is increasing, the computer
continues with this sequence until a decrease in the slope is de-
tected. The points acquired during the slope determining steps are
simply “discarded,” and not used by the computer. Once the in-
flection point has been reached, the data is acquired.

A simple inflection point-detecting program is listed in Example
3-1. A subroutine starting at line 2000 must be supplied to acquire
single values from an A/D converter. A time delay routine could
be built into the subroutine, so that data points are only acquired

Example 3-1. Program for Determining Inflection Points on a
Continuous Function

1500 GOSUB 2000

1510 Bi=A

1520 GOSUB 2000

1530 B2=A

1540 S1=ABS(B2—B1)

1550 GOSUB 2000

1560 B3=A

1570 $2=ABS(B3-B2)

1580 IF $2-$1>0 THEN B1=B2:B2=B3:GOTO 1540
1590 PRINT“INFLECTION

at regular intervals. The A/D converter control subroutine has not
been shown, for clarity, but many of the programs described in the
previous chapter could be readily adapted for use in the inflection
point program. In this example, we have assumed that the signal
is noise-free, since a noisy signal will cause errors in the determina-
tions of the slope, resulting in the selection of false inflection points.
Just as several points were averaged together in the photocell/lamp
experiment, the same type of averaging may be used here, too.
Instead of simply having the subroutine at line 200 acquire a
single data point for use in the evaluation of the slope of the signal,
the computer could be programmed so that the subroutine at line
200 actually acquired a number of data points, averaging them be-
fore presenting the averaged value for use in the determination
of the slope. In this way, much of the noise could be averaged out.

125

This is called “boxcar” averaging, or window averaging, since a
boxcar-like, or window-like section of the data has been averaged
to provide a single data point. This averaging technique would be
used only during the determination of the inflection point, as a
noise-reducing technique. When the actual data values are to be
obtained across the peak, no averaging is used. For those readers
who are interested in calculus, the inflection point is also the point
at which the second derivative of the function is zero.

A second method involving peak measurement uses the height
and width of a typical peak to determine the sampling rate, rather
than the inflection points. Once a typical, or representative, peak
has been measured, the height of the peak is divided in half, and
perpendicular to and through this point, a horizontal line is drawn.
This line intersects the peak on the positive-going side, and on the
negative-going side. The length of this line between these two inter-
section points is called the peak-width-at-half-height. If 10 to 20
points are acquired across the peak, from one intersection point
to the other, the peak should be fairly well defined. This technique
is fairly subjective, since the height of the peak must be determined,
and it isn’t always possible to accurately determine where the peak
starts, and where it ends.

SCALING

Once an array, or a file of data has been acquired, what can be
done with it? Probably before any complex data processing or data
reducing steps are started, it might be good to examine the infor-
mation obtained, to be sure that it has been acquired properly. A
simple examination of the “raw” data, prior to processing may dis-
close the fact that the experiment was not connected to the com-
puter properly, or that some malfunction took place. As was noted
in Chapter 2, an X-Y, or Y-T display of the information is easy to
come by, using either a plotter or an oscilloscope for the display.
However, when eight-bit D/A converters are used to control plot-
ters or oscilloscopes, it is impossible to have them accept values
that are greater than 255, or less than zero. If a quantity was mea-
sured as changing between 2000 pounds per square inch to 4000
pounds per square inch, eight-bit D/A converters could not be used
to display these values directly. Likewise, values between —30° C
and —50° C couldn’t be displayed either, since they are negative
numbers, and the D/A converters have no provisions to accept
negative binary values.

To display either the pressure, or the temperature information on
the plotter or oscilloscope, the raw data must be scaled, so that it
has a range that is between zero and 255. The first thing that is done

126

with the data is to adjust its “offset” so that the minimum value
corresponds to zero. Then, the remaining values are either multi-
plied by a scaling factor that either expands or contracts the data
values, so that they all fit into the display area, with a resolution
of eight bits. Of course, D/A converters with more resolution could
be used in the computer system, but they will not add much reso-
lution to a simple oscilloscope, or plotter display. Since the original
information has been manipulated to make it “fit” into the display
area, it would be useful to know what the lowest value is, what
the highest value is, and what the scaling factor is, too.

Example 3-2. A Data Scaling Program

900 INPUT “# DATA POINTS”;N
910 DIM A(N)

920 FOR =0 TO N—1

930 INPUT A(l)

940 NEXT i

1000 B=100000

1010 FOR i=0 TO N—1
1020 IF A(<B THEN B=A(l)
1030 NEXT |

1070 C= —100000

1080 FOR 1=0 TO N—1
1090 IF A(N>C THEN C=A(l)
1100 NEXT |

1110 $=255/(C—B)

1120 FOR 1=0 TO N—1
1130 AD=(A(N—B)*S

1140 NEXT |

1150 PRINT “MIN";B,”MAX'"’;C,”SCALE FACTOR";S
1155 FOR 1=0 TO N—1
1160 PRINT I, A(Q)

1170 NEXT |

1180 END

A typical scaling program is provided in Example 3-2. This would
probably be found in part of a general-purpose plotter control pro-
gram, but it is presented here, without these steps. The number of
data values to be scaled can be preset, although when eight-bit
D/A converters are used, the maximum number of points that can
be represented is 256, so the scaling would probably be limited to
a 256-clement array. The data input steps in this program (lines
910-940) may be left out if the data has been acquired and stored
with another program. The minimum, maximum, and scale values
are all printed, so that it is easy to label the axes on the plot. The
program can scale sets of data that have values that are between
100,000 and —100,000, but these limits are easily changed, as re-
quired,

127

AVERAGING i

The use of averaging is quite common in processing data for ;
later evaluation. In the photocell/lamp experiment, several data %,
values were averaged to obtain a single value that represented the
voltage across the photocell. The averaging technique heiped to
eliminate random noise that was superimposed upon the signal
that was being measured. As was noted, this is called boxcar aver-
aging, since a number of successive points were averaged to pro-
vide a single point. The measurements across a peak may also be
averaged using the boxcar method, but this means that the data
sampling rate must be increased, since additional points are re- -
quired for the averaging. If you find that a signal can be defined
by acquiring 15 points, and you wish to average 4 points to pro-
vide each of the 15, then 60 points must be acquired, so that they ;
can be averaged to provide the 15 points of interest. Thus, the data %
acquisition rate must be four times what it would have been if only
the 15 points were required in the first place.

When the data points are to be averaged, there is a choice that

must be made. Are the data points to be averaged after each set
has been acquired, or are the points to be stored for later evalua- “
tion and averaging? The answer depends upon the speed at which
the points are to be acquired, and the amount of memory that is
available for the temporary storage of the information. If the points
are going to be acquired every second or so, then there is probably
time to average them during the acquisition, with time to spare.
If the points are to be acquired every 100 milliseconds, or so, the
data points should probably be stored for later evaluation. You
must carefully evaluate the amount of storage that is required, so
that your computer does not run out of memory during the acqui-
sition of information.

While the boxcar averaging technique is useful, it can present §
some difficulties, since it requires that the computer acquire more :
points than are actually necessary, and it may take excessive
amounts of memory to store the data, or comparatively long peri- -
ods to average each set of points, as new points are acquired. To
eliminate some of these problems, there are two other techniques
that should be considered: ensemble averaging, and digital filtering.

When the ensemble averaging technique is used, successive sets
of information are averaged together to eliminate noise. This means
that the experiment, or test, that is generating the information, must
be repeated, and except for the noise superimposed on the signal, it
must be reproducible. For example, the discharging of a capacitor
through a load, or the current passing through a coil, should both
be reproducible, while the stress forces in a chimney that is being s

il

128

demolished, or the temperatures during a given day, are not repro-
ducible, since they cannot be repeated in exactly the same way.
It is important that you not try to apply ensemble averaging to
the evaluation of information from nonreproducible experiments,
since if you do, erroneous results will be obtained.

To illustrate the ensemble averaging technique, an example will
be useful. Let’s assume that 10 people are taking part in a physical
exercise program to increase their endurance. The experiment takes
place over 30 days, and each day, the people are to do as many
push-ups as they can, noting the results in a table. At the end of
the 30-day period, someone sits down and averages the number of
push-ups done for each day. The end result is an ensemble average
that tabulates the average number of push-ups done for each of
the 30 days. While the results from the different people are cer-
tainly not reproducible, this example illustrates the technique.
Many tests are run, and the values that occur at the same times
in each are averaged, to give an average value for that particular
time. Of course, the variable used as the “base” does not have to be
time, it could just as easily be voltage, current, or some other
quantity.

To illustrate the use of ensemble averaging, a noisy sine-wave
signal will be averaged with a number of similar sine waves, in
which only the noise portion of the signal has varied. Instead of
developing a complex circuit to generate the sine wave, add the
noise to it, and then digitize it, the TRS-80 can be used by itself
to generate the noisy signals through the use of the SIN function
to generate the sine wave, and the use of the random number
(RND) generator to generate the noise. The program used is illus-
trated in Example 3-3. The program initializes an array of 180
points, and then generates a sequence of sine values, such that the
values range between 64 and 192. A random number generation
step is included in the program to generate some random noise.
Another random number generation sequence is used to determine
whether the noise should be added to, or subtracted from, the sine
signal. The signals are all added together in a single array, and then
averaged at the end, by dividing the accumulated value for each
“point” in the sin function by the number of sine waves generated.
In the program listed in Example 3-3, eight sine waves are gener-
ated, with noise, and then averaged, to help remove the noise. The
resulting values are stored in read/write memory for later examina-
tion with an oscilloscope display program (see Example 2-9).

A single sine wave with superimposed noise is shown in Fig. 3-5,
with the ensemble-averaged waveforms for 4, 8, and 16 different
waveforms shown in Figs. 3-6, 3-7, and 3-8, respectively. You should
be able to see that as the number of sine waves that are averaged

129

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
670
680
690

Fig. 3-5. A plot of a TRS-80-generated sine wave, with random noise super-imposed

130

Example 3-3. Sine Wave and Noise Generator Program

DIM A(180)

FOR J=0 TO 180

AlY=0

NEXT J

FOR E=0 TO 7

i=0

FOR =0 TO 360 STEP 2

A= 128 +INT(64*(SIN(1*0.017453)))

B=RND(8)

IF RND(100)>50 THEN A(J)=A({)-+A+B ELSE A()=A(N-+A—B
J=J41 i
NEXT |

NEXT E
N=20224

FOR J=0 TO 180
POKE N.A(J)/8
N=N-+1

NEXT J

END

[

AL .

upon if.

PR L

tag

Fig. 3-6. Ensemble average of four noisy sine waves.

.....

Fig. 3-7. Ensemble average of eight noisy sine waves.

is increased, the noise is decreased. Remember, though, that the re-
duction in noise also means that more experiments or tests must
be performed to provide the raw data that is used in the averaging
process. As noted previously, this technique is only useful if multi-
ple sets of data are available. One final note on the ensemble aver-
aging program shown in Example 3-3. This program takes about
three minutes to process eight noisy sine waves, so if you wish to
run it, remember to be patient. If you are processing arrays of infor-
mation that have been acquired at some other time, the averaging
should not require as much time, since software steps were used

in our program to actually create the sine values, and to add the
noise to the signal.

e,

- CENN

NI

Fig. 3-8. Ensemble average of 16 noisy sine waves.

DIGITAL FILTERING

It is possible to filter noisy signals with special programs that use
a single set of data, acquired from a single experiment or test.
These filtering programs are useful when an experiment can be
performed only once, and when the resulting information contains
some noise that must be reduced. The filtering programs actually

131

average some of the values in the data array, but instead of aver-
aging values from multiple sets of data that were acquired at the
same time, the filtering technique uses data values that were ob-
tained both before and after the point that is to be filtered. In this
way, a single array of information may be processed to reduce noise.
The basic principle involved is that the points closest to the point
to be filtered should also be close in value, while the points some
distance away (five or six points) may have little effect upon the
value of the point to be filtered. Points on each side of the point to
be filtered are used in the averaging process, but as you get farther
and farther away from the point of interest, the outlying points
contribute less to the average. Of course, the points to be filtered in
this way must have been obtained at fixed, uniform intervals from
one another, and the points must be continuous.

Table 3-1. Table of Fliter Coafficlents for an 11.Point Fllter

Data Value Coefficient
n—5 0.074
n—4 0.111
n—3 0.182
n—2 0.333
n—1 0.666
n 1.00
n+1 0.666
n+2 0.333
n+3 0.182
n+4 0.111
n+5 0.074

The filtering technique is often called the moving average tech-
nique, since the set of coefficients “moves” along the raw array of
data, performing an average of several points behind, and ahead
of, the point of interest, to provide a new value for the point being
averaged. In general, the coeflicients that are used in the averaging
process follow a continuous function themselves, generally some sort
of parabolic function. A table of typical coefficients is provided in
Table 3-1 for an 11-point filter.

When point A(I) is being filtered, point A(I-5) is multiplied by
0.074, point A(I-4) is multiplied by 0.111, and so on. The sum of
all the multiplications is divided by the total of the coefficients,
3.732, to generate the filtered value for point A(I). The new point
is stored in a separate array, since you do not want to use fltered
data values in the filtering process when the next sequential point
is operated upon. The main point in filtering the information is to
remove noise, but you must be careful in evaluating your filtering
needs, since the filtering process will alter the data, however slightly.

132

<

900
1000
1001
1002
1010
1020
1030
1050
1060
1070
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180

Example 3-4. Eleven-Point Parabolic Filter Program No. 1

INPUT “ARRAY SIZE";W

DIM C(11):C(1)=074:C(2)==.111:C(3)=.182:C(4) = .333
C(5)=.666:C(6)=1:C(7)=.666:C(8) = .333:C(9)=.182
C(10)=.111:C(11)=.074

DIM QW):X=1

§=0

FOR 1=1TO 11

S$=S5-+(CIH*AX)

X=X+1

NEXT |

LET Q(X—6)=5/3.732

X=X~—10

IF X<wW—9 THEN 1020

PRINT ““FILTER COMPLETED"/

N=20224

FOR J=0 TO W

POKE N,Q())

N=N+1

NEXT J

END

A typical set of raw data values is shown in Fig. 3-9. These values
may be filtered with the simple program shown in Example 3-4
which includes the multiplication coeflicients in an 11-value array.
Unfortunately, this array does not do a particularly good job of
filtering the data, since it does not filter the first five, or the last five
points. If the “parabola” of filtering coefficients is placed at either
end of the array to be filtered, you will see that the central point,
the one that will be filtered, is the sixth from the start of the array,

Fig. 3-9. A plot of typical, raw experimental data acquired from a spectrometer.

20

VOLTAGE IN VOLTS
o

-

RED REGION BLUE REGION

RELATIVE
WAVELENGTHS

133

while the last point to be filtered is the sixth from the last point.
This is shown in diagram form in Fig. 3-10. The first, or the last,
five data points may be quite important, since the computer may
have been triggered to start acquiring data at a particular time,
and we wish to evaluate the data that is acquired from that point on.

The software required to filter all of the points in an array is
more complex than that shown in Example 3-4, since we now require
that portions of the parabolic set of coeflicients be used at the start
and finish of the array, so that all of the points are filtered. Thus,
the first point is filtered by using its value and the values of the
next five consecutive data points, the second point is filtered using
the first data point, its own value, and the values of the next follow-
ing five data points. Once the set of coefficients reached the sixth
data value to filter it, the five points on either side will be used in
the filtering process. A complete filtering program is provided in
Example 3-5. You will see that special steps have been incorporated

LAST POINT FILTERED

FIRST POINT FILTERED

RAW DATA .
'
5 o...' 0w, .,‘:“ : .°° v e o
8 . et e’ 20ae® e *o0°” 1
> °G 0. .. ".
" '°‘\ /.' .c
: . FILTER FUNCTION . E
) ° N °
TIME

Fig. 3-10. A diagram showing the relationship between the experimental data and the
parabolic filter function points.

into the program at lines 3000-3030 and at lines 2160-2210 to re-
structure the coefficient array so that only the points required are
used at the “ends” of the array. If the information presented in
Fig. 3-9 is filtered using this program, the plot shown in Fig. 3-11
represents the filtered data. Of course, you could filter this infor-
mation again and again to improve its appearance, but you must
remember that the filtering process also tends to broaden and flatten
peaks, since it does not provide a perfect solution to the noise prob-
lem, but rather acts to average the noise to provide an average
function. There are some mathematical solutions that allow the
filtering to take place without serious degradation of the data, and
these will be discussed in the next section. In this section, the infor-
mation has been available in an array, and we have not attempted

134

e

e

to filter the data points as they are acquired. This allowed us to use
those points that occurred both before and after the data point that
was averaged. If filtering is to be performed on the stream of data
points as it is generated, as is the case in an R/C filter, or an active
filter, then only unidirectional filtering is possible.

2.0
b ...\‘.
[} K)
5
o
B
z
w 1.0
(O]
<
5
(o]
>
o]
RED REGION BLUE REGION
RELATIVE
WAVELENGTHS

Fig. 3-11. A plot of experimental data (see Fig. 3-9) that has been filtered with a set of
parabolic coefficients.

METHOD OF LEAST SQUARES

The last data processing technique that we will describe in de-
tail is the method of least squares. This method of data analysis
was developed by Carl Friederich Gauss (1777-1855) and applied
to astronomical observations so that the orbits of planets and aster-
oids could be accurately predicted. Briefly stated, the method allows
a set of data values to be used to find the best solution to an equa-
tion that fits the data.

In many experiments, the observed, or measured values do not
always correspond to the theoretical values shown in textbooks and
other references. This is due to noise, as we have already mentioned,
and also to experimental errors. While the measured values are
not all on the expected straight line (we will assume a “straight”
line function here), they may be evaluated using the method of
least squares, or the least squares fit, so that a best straight line
function is obtained from the data that is available. Without going
into the mathematical basis for the method of least squares in de-
tail, the technique serves to minimize the squares of the distances

135

Example 3-5. Eleven-Point Parabolic Filter Program No. 2

2000 INPUT “ARRAY SIZE'";W
2010 DIM C(10):C(0)=.074:C(1)==.111:C(2)=.182:C(3)=.333
2020 C(4)=.666:C(5)= 1:C(6)=.666:C(7) = .333:C(8)=.182
2030 C(9)=.111:C(10)=.074
2040-DIM Q(W):D=6:G=0:E=10
2050 IF G<<6 THEN 3000

2060 F=3.732

2070 $=0

2080 FOR 1==D TO E

2090 $=S5-+(C()*A(X)

2100 X=X+1

2110 NEXT |

2120 QG)=S/F:X=X—10

2130 G=G+1

2140 IF G<W—4 THEN 2050
2150 IF G=W+1 THEN 5000
2160 E=E—1:F=0

2170 FOR (=D TO E

2180 F=F+C(l)

2190 NEXT |

2200 X=G—5

2210 GOTO 2070

3000 F=0:X=0

3010 D=D~1

3020 FOR I=D TO E

3030 F=F+C(l)

3040 NEXT i

3050 GOTO 2070

5000 PRINT “FILTER COMPLETE"
5010 N=20224

5020 FOR J=0 TO W

5030 POKE N, Q)

5040 N=N+1

5050 NEXT J

5060 END

between the actual data points and the best straight line function
that goes through all of the points. The squares of the distances are
used so that simple changes in the distances cannot be traded off
against one another. For example, if two points are a distance of
four units from one another, the least squares position is equally
between them, since the sum of the squares of the distances be-
tween the points and the least squares position is 22 + 22 = 8. If we
choose either point as a first approximation for the least squares
position, the sum of the squares of the distances would be 02 4 42
= 16. Since this is not the minimum sum of the squares of the dis-
tances between the points, this is not the best position for the least
squares function. Obviously, a great deal of trial and error would be
required if it were necessary for us to compute the best straight line
between a set of data points in this way. For straight line functions

136

i

that use the simple relationship, y = mx + b, where m is the slope
of the line, and where b is its intercept point on the y axis (y inter-
cept), a simple equation may be used to operate upon the set of
data to find the best straight line through the set of data. Actually,
the least squares function provides us with the slope of the line,
and its y-intercept. It is up to us to actually draw the line, or to
have the computer draw it for us.

The equation below is used to evaluate the slope of the least
squares fit for a set of X and Y values:

_n-3xy—3x -2y
M= S — (5x)?

In this equation, n represents the number of data points that are
being used in the calculation, and the Greek symbol sigma, 3, means
the sum of, so that 3xy means “the sum of the values obtained by
multiplying the x-axis value by the y-axis value for a particular
point.” Likewise, the y-intercept value may be obtained for the
same set of X and Y values:

b:Ey—m-Ex

n

The solutions to these equations provide an exact set of slope and
intercept values for the best straight line for the function. Now that
two equations have been developed, it is relatively easy to write
a BASIC program for the TRS-80, so that a set of data values may
be processed by the least squares method. Such a program is shown
in Example 3-6. When you use the method of least squares, some
caution must be observed, since it is possible to find a best straight
line through even random data or noise. For example, if you aimed
a shotgun at a piece of graph paper, fired the gun and then plotted

Example 3-6. Least Squares Fit for a Linear Function

10 DIM X(20), Y(20)

20 INPUT “# DET'N =";N

30 P=0:Q=0:R=0:; S=0:W=0

40 PRINT “X THEN Y”

50 FOR | =1 TO N

60 INPUT X(D, Y(I)

70 P=P+X({1):Q=Q+Y(l)

80 R=R-+(X(1)}2):W=W-(YR(1)}2)
90 S=S-+(X()*Y(1))

100 NEXT |

110 NP=(N*$—P*Q):DP=(N*R~P4}2)
130 SL=NP/DP

140 IT=(Q~(SL*P)/N

150 PRINT “SLOPE =",SL:“INTERCEPT =*/,IiT
160 END

137

34 LEAST SQUARES FIT OF DATA POINTS

VOLTS

SECONDS

Fig. 3-12. A plot of data showing the best straight line obtained from a
least-squares calculation.

the points, the method of least squares could provide you with a
best straight line. Does it have any purpose? We doubt it. There
isn’t much of a relationship between a shotgun pellet’s X- and Y-
axis position. The plot shown in Fig. 3-12 shows the relationship
between a set of data points and the least squares fit straight line
that was obtained from the BASIC program shown in Example 3-6.
In this case, the data was obtained from a real experiment, but the
actual values and the coordinates are of no real importance, since
the main purpose of this plot is to show a typical relationship be-
tween real data values and the best straight line.

When applying the method of least squares, it is frequently a
good idea to go a bit further and attempt to correlate the data
values by mathematical means. The linear correlation coefficient, r,
provides a means of relating the X- and Y-axis information in a
linear relationship. The linear correlation coefficient is obtained
from the rather lengthy formula:

B n-3xy —3x - 2y
T Vn 3% = (50)?] - n - Sy2— (Sy)7

You can probably see that portions of the numerator and denomi-
nator in this equation have been calculated during the least squares
analysis of the data points, so a simple statement may be added to
the least squares analysis program in Example 3-6, so that the linear
correlation coefficient may be computed. A complete program is
shown in Example 3-7. Typical relationships are shown in Figs. 3-13
through 3-16. Another useful piece of information is the coefficient
of determination, or 12. Thus, if the linear correlation coefficient is

138

R

20
30
40
50
60
70
80
90
100
110
130
140
150
160
170
180

Example 3-7. Least Squares Fit, with Correlation Calculation
INPUT “# DET'N =';N
P=0:Q=0:R=0: S=0;W==0
PRINT “X THEN Y"

FOR I =1 TO N

INPUT X(1), Y()
P=P+X():Q=Q+Y()
R=R+(X()1121:W =W +(¥(1)}2)
S=8+(X(NH*Y(1)

NEXT i
NP=(N*S—P*Q):DP=(N*R—P{2)
SL=NP/DP

IT=(Q—(SL*P))/N

PRINT “SLOPE =", SL;/INTERCEPT =",IT
R=NP/(SQRDP*(N*W — Q12)))
PRINT “CORRELATION "R

END

0.9, the coefficient of determination is 0.92 =0.81. In other words,

81%

of the variation in the Y-axis variable is due to the variation

in the X-axis. The interpretation of the coefficient of determination

Fig.
points for a high positive correlation.

3-13. Very low scattering of data v

must be done with caution. For example, a store may plot the num-
ber of heads of lettuce sold versus the number of packages of car-
rots sold, obtaining a 90% variation between the two. Does this
mean that if more lettuce is sold next week, that it will follow
that more carrots will be sold, too? Not really, since there are prob-
ably many other variables that enter into the relationship. For ex-

Fig. 3-14. Very fow scattering of data
points for a high negative correlation.

139

ample, carrots and lettuce are located next to each other, the store
ran a special on carrots and lettuce, or there was some other rela-
tionship that didn’t directly involve the actual sales of each vege-
table.

In the previous discussion of the least squares method of deter-
mining the slope and Y-intercept for a best straight line through
data points, we assumed that there was a linear relationship between

Fig. 3-15. Some scattering of points, but a
relationship is established for a moderate
positive correlation.

T

the data values. What happens if the relationship is exponential,
or if it follows a higher order equation, such as agx® + axx® + a:;x +
b = y? In this case, a least squares solution for this equation may
be obtained for a set of data points, but the mathematical solution
requires a great deal more manipulations than were used in the
linear least squares method. In the early 1960s a technique was de-
veloped that provided for relatively easy solutions to the least
squares functions for nonlinear functions. The overall mathematical

- Fig. 3-16. Very high scattering of data
P P ‘Lt points. Probably no correlation, or relation-
) e ship between the two variables.

derivations were presented in a now classical paper, and for those
of you who are interested in pursuing this further, we suggest that
you obtain a copy of the original article, as it appeared in Analyti-
cal Chemistry (3). A complete reference is provided at the end of
this chapter.

The Savitsky-Golay method uses the same type of moving aver-
age technique that was described in this chapter. However, instead
of using a set of rather arbitrarily chosen parabolic coefficients for

140

e

s

Table 3-2. Coefficlents for Least Squares Fit of a Parabolic Function (3)

Coefficients
Points 13-Point 11-Point 9-Point 7-Point 5-Point

) -1

-5 0 -36

—4 9 9 -2}

-3 16 44 14 -2

-2 21 69 39 3 -3

-1 24 84 54 é 12
o] 25 89 59 7 17
1 24 84 54 6 12
2 21 69 39 3 -3
3 16 44 14 -2
4 9 9 —21
5 0 —-36
[} —11

NORM = 143 429 231 21 35

filtering, a set of carefully obtained coefficients is used, with the
resulting data points being the least squares values for the set of
data points processed. The actual coeficient values, and the “di-
visor,” or norm, are provided for the parabolic function, ax? + bx +
¢ =y, as shown in Table 3-2. Values for 5-, 7-, 9-, 11- and 13-point
functions have been provided. These values may be substituted into
the simple filtering program (Example 3-4) to provide the exact
solution to the least squares fit of the points. Of course, the func-
tion must closely approximate the function described by the coeffi-
cients for the solution to be realistic. In most cases, the parabolic
function will work quite nicely for a series of peaks and valleys.

The original Savitsky-Golay article contains many tables of co-
efficients for various functions. Another outgrowth of this is that
there are also tables of coefficients that may be used in the “moving
average” routine to provide derivatives of the data that are being
processed. In this way, a simple “moving average” subroutine may
be used with different arrays of coefficients to obtain various func-
tions. Since most readers will be concerned with enhancing a simple
signal, we will refer you to the original article for additional infor-
mation on the other functions that this technique can provide.

There are other data processing techniques that you may find use-
ful in your TRS-80 computer system, and rather than provide addi-
tional information about statistical analysis and Fourier transforms,
we have provided some references for you. We hope that these ref-
erences will furnish the information that will help you serve other
data processing needs. We have not tried to make this chapter into
a detailed explanation of data processing and data evaluation, but
we hope that the different ideas and techniques that we have devel-
oped will help you.

141

REFERENCES

1. Scientific Analysis of the Pocket Calculator, 20d Ed., Jon M. Smith, John
Wiley and Sons, New York, NY 10016, 1977.

9. Mathematical Methods for Social and Management Scientists, T. Marll Mc-
Donald, Houghton Mifflin Co., Boston, MA 02107, 1974.

3. “Smoothing and Differentiation of Data by Simplified Least Squares Proce-
dures,” A. Savitsky and M. J. E. Golay, Analytical Chemistry, July 1964, p.
1627.

4. Fast Fourier Transforms on Your Home Computer, W. D. Stanley and S. J.
Peterson, Byte Publications, Peterborough, NH 03458, December 1978.

142

GG

b

Sy

Serial Communications
and Remote Control

There are many situations in which a computer can be used to
control devices that are some distance from the central processing
unit. Likewise, there are situations in which it is necessary for the
computer to “measure” signals that originate some distance from
the CPU. In most of the interfaces that have been developed so far,
many computer signals were required by the interface for proper
operation. These signals, and their respective numbers, include the
data bus (8 signals), the address bus (8 or 16 signals), and the
control bus (up to 7 signals), for a total of up to 31 individual sig-
nals. It doesn’t make much sense to try to route all of these signals
to I/O devices that are more than a few feet from the computer. In
this chapter, some of the alternate methods of I/O device control
and data transfer will be discussed.

OBJECTIVES
At the end of this chapter, you will be able to do the following:

@ Describe the bit format of an asynchronous-serial data trans-
mission.

@ Describe the sampling of an asynchronous-serial bit stream that
is required to recover the information in parallel form.

® Describe the hardware and software required to use a USART
chip in the TRS-80 computer system.

® Describe the use of clock signals by the USART chip.

@ Develop software that can be used by USARTs in computer-
to-computer communications.

@ Describe the USART chip, and compare it to the UART chip.

® Design a remote control circuit that uses a UART chip, and
that communicates with a computer through a USART chip.

@ Design an interface that can be used with a UART to control
a remote D/A or A/D converter.

@ Describe the AART chip (MC14469) and how it operates.

© Design an interface circuit that will use the AART chip to con-
trol an A/D converter.

® Write software that will control the AART chip through a
USART chip.

@ Describe the operation of open-collector buses, when used for
party-line communications.

® Use general-purpose assembly-language USART control sub-
routines.

Before we actually start to describe some alternate I/0O tech-
niques, though, let us examine a typical application in which a
TRS-80 computer might be found. This application is the control
of a solar hot-water heater. The computer would be used to mea-
sure temperatures, and to make decisions that would turn pumps
on or off, and perhaps open and close valves, to route the water
through portions of the heater system. In such a system, it is neces-
sary to measure temperatures throughout the system, while also
controlling I/O devices in remote locations. Even if the computer
is located fairly close to the major portion of the system, probably
in a basement, outdoor temperatures must be measured, along with
temperatures at various places on the solar collector. Routing a 23-
conductor cable from the basement to the roof can be quite a job,
costing a great deal of money. If TTL-compatible signals are to be
used, they must be buffered, so that the long lengths of wire can
be driven without difficulty. Perhaps the temperature signal could
be amplified close to the sensor, and then sent to an analog-to-
digital converter that is close to the computer. While this looks
like an attractive alternative, even “clean” amplified signals can
pick up a great deal of noise, as well as being affected by ground
loops that induce additional noise on the signal. The noise can be
reduced with filters, or current level signals may be used, since they
are fairly immune to induced signals, or noise. (Industrial control
systems frequently use pneumatic controls in which pressures and
vacuums are measured, since these “signals” are immune to elec-
trical interference.) Obviously, there must be an alternative to both
the use of multiconductor cable, or an analog signal, to acquire in-
formation from a remote device, and to control a remote I/O device.

144

g

Probably the most attractive, and interesting, alternative, is the
use of serial digital information transfer techniques. In a serial
transmission scheme, individual data bits are transmitted over a
pair of wires, one bit at a time. The receiving device acquires the
data bits, reconstructing them to form a parallel set of data bits.
Thus, the transmitter must perform a parallel-to-serial conversion,
while the receiver must perform a serial-to-parallel conversion. In
this way, many bits of information are easily exchanged between
peripheral devices, and the central processing unit of the computer.
In fact, this is one of the ways in which most teletypewriters and
terminals operate. Obviously, for any meaningful serial transfers
to take place, there must be a well-established standard, or protocol,
that dictates exactly how the individual data bits are to be trans-
mitted, the speed of the transmission, and the format of the infor-
mational portion of the data transmission. There must also be some
means of synchronizing the flow of serial information, so that a
receiving device knows when a new transmission has started. The
important points will be discussed before the actual applications of
serial data transfers are explored.

ASYNCHRONOUS-SERIAL DATA TRANSFERS

The actual serial-to-parallel and parallel-to-serial data conversions
are not at all difficult. Simple shift register circuits can be used to
perform the conversions. However, if shift registers are used, a com-
mon clock signal must be sent to the “receivers,” along with the
serial stream of data bits, so that the serial bits are properly shifted
into the shift register of the receiver. This seems to be defeating
the purpose of using serial data transfers, since another signal must
be used, and transmitted in parallel, along with the data bits. The
clock signal may be affected by noise, too, so bits may be improp-
erly shifted into the shift register of the receiver. It would be very
useful to find a serial data transfer technique in which the parallel
clock information is not required. Such a technique uses the asyn-
chronous-serial method of transferring digital information. When
asynchronous-serial transfers are used, no common clock signal is
required. There must be some means of actually synchronizing an
asynchronous-serial transfer, so that the bits do not become scram-
bled when they are received. The synchronizing information is con-
tained within the asynchronous-serial transmission.

Each asynchronous-serial data transmission contains information
about the start of the “message,” and about the end of the message.
When asynchronous-serial data transfers are used, the common
clock signal is eliminated, but the transmitters and receivers that
are to communicate with each other must be set so that their re-

145

spective frequencies are very close to one another. For example,
information could not be easily transmitted between a transmitter
operating at 250 bits per second, and a receiver operating at 548
bits per second. The bits-per-second frequency notation is an in-
dustry standard that denotes the receiver/transmitter data transfer
rate. Thus, for an asynchronous-serial receiver-transmitter system
to operate properly, the bit rates of the receiver and the transmitter
must be closely aligned. There is a small margin of error, but it is
only a few percent. To reduce errors in asynchronous-serial data
transfer systems, highly accurate crystal-based signal generators are
used to determine the data rates.

Now, the question of how the receiver synchronizes its receipt
of the transmission must be answered. A typical “stream” of data
bits transmitted in an asynchronous-serial format is shown in Fig.
4-1. The important bits are the START BIT, and the two STOP
BITS. The data bits represent an 8-bit data word that has been
transmitted. Actually, most asynchronous-serial data systems may
be used with data words that range from five to eight bits of data.
This will be described later in this chapter. The START bit is used
by the receiving circuitry to alert it to the start of the transmission.
The logic one-to-logic zero transition signals the start of a new set
of bits. Since the clock frequencies of the receiver and transmitter
are fairly close, the receiver waits for one-half of a bit period, and
then samples the serial input. If the logic zero is still detected, the
receiver assumes that it has detected a “real” START bit, as op-
posed to a noise spike that might have been induced upon the sig-
nal line, When a start bit has been verified in this way, the receiver
continues to sample the serial information by waiting a complete
bit period from the middle of the start bit. In this way, each of the
serial bits is sampled close to its midpoint. This reduces the effect
of slight differences in clock frequencies between receiver and trans-
mitter. The two STOP bits signal the receiver that it has reached
the end of the data transmission. The receiver can then indicate
to the receiving device that the data bits have been accepted and
that they are available in a parallel format. A second series of bits

STOP BIT |
STOP BIT2

DATA BIT | (LSB)
TART BIT

DB8 (MSB)

START BIT

N

HHHHHH

TIME —————»

DB6
087
S

Fig. 4-1. Typical asynchronous-serial bit pattern (data bits may be logic 1 or logic 0).

146

tw%

<k

ez

4%"

may then be received, again starting with a logic zero start bit.
In the asynchronous-serial data transmission format, start bits are
always logic zero, and stop bits are always logic one. In the exam-
ple just described, you may be wondering how the receiver distin-
guishes between two logic ones right next together in the data word,
and the two logic ones that are used as the stop bits. This requires
an explanation.

The asynchronous-serial protocol limits the number of data bits
that may be transmitted to either five, six, seven, or eight. Either
one or two stop bits are used in each transmission, along with a
start bit. Some older serial transmission schemes specified 1% stop
bits, but we doubt that you will encounter too many of these de-
vices. The format of the bit stream must be agreed to before the
first transmission, since it would be quite difficult to transfer asyn-
chronous-serial information between a transmitter that was sending
eight bits of information and two stop bits, and a receiver that ex-
pected five bits of information and one stop bit. The data transfer
rates are frequently standardized, too, although other rates can be
used, if required. Transfer rates of 110, 150, 300, 600, 1200, 2400,
4800, and 9600 bits per second are quite common. Higher rates are
also encountered, in a “doubling of rates,” as noted in the sequence
just mentioned. The rate of 110 bits per second (b/sec) is standard
for most mechanical teletypewriters, and for some terminals, too. Of
course, the data bits may be either logic one, or logic zero, and
there are many different codes that are used to transfer the required
information. Just remember that in the asynchronous-serial data
protocol, the least-significant bit (LSB) of information is trans-
mitted immediately after the start bit,

At this point, you may be wondering how much time and effort
are going to have to be expended in wiring-up the transmitter and
receiver circuits that follow the asynchronous-serial protocol. Very
little time, indeed. There are many different types of inexpensive,
commercially available asynchronous-serial integrated circuits that
perform all of the necessary serial/parallel conversions, bit format-
ting, start bit detecting, and so on. These integrated circuits are
called universal asynchronous receiver/transmitters, or UARTs, for
short. The UARTSs are generally found in instruments and devices
that use the asynchronous-serial protocol for the transfer and ex-
change of information, commands, etc, The UARTs preceded the
microprocessors, so the UARTs are not always compatible with
microprocessor, or microcomputer, bus signals. As microcomputers
evolved, serial communications chips evolved along with them, and
now, most microcomputer families include some sort of serial 1/0
chip that supports the asynchronous-serial data format. Some of
these devices also support a synchronous protocol, thus the general

147

name, universal synchronous/asynchronous receiver/transmitter, or
USART, has been applied to these types of devices. Both the UARTSs
and USARTs have been explained in Interfacing and Scientific
Data Communications Experiments, Howard W. Sams & Co., Inc,,
Indianapolis, IN 46206, 1979. We refer you to this book for detailed
descriptions of these chips, and their operation. While we will briefly
describe the operation of the UART and the USART, we will not %
go into great detail about their operation, except as it relates to a :
specific application, or example.

INTERFACING AND USING THE USART

Since the USART has been designed to be compatible with the
8080-type microcomputer, we will desrcibe how it is interfaced to
the TRS-80, a Z-80-based computer. Some simple BASIC-language
control programs will also be discussed, so that serial transmissions
may be easily controlled. The USART is a computer-programmable
device, meaning that the computer will send commands, or instruc-
tions, to the USART chip, so that it can operate in any one of sev-
eral possible modes. In the USART, these computer-programmed
instructions take the place of jumper wires that are generally used
to program the older UART devices, to configure them for various
applications. We will discuss the programming of the USART func-)
tions in this section. %

A block diagram of a USART, in this case, the Intel 8251A, is
shown in Fig. 4-2, along with the pin designations of the 28-pin
chip. Some short descriptions of the signals are also provided. The
block diagram shows the USART as being divided into four main

PIN CONFIGURATION BLOCK DIAGRAM

Thanswr
B R0FFER feTeO
[

TRANSMIT
CONTROL

oata
{4 s
Dy BUFFER

b contRoL
1061c

AESET]
x e TeROY

e TaE
T

o
WAed

o

[LL—
LLLESSE

i

RECEIVE
BUFFER fe™0
5Pt

H0DEM
conTROL

g0 g
]

LI
EHY

n__g
A3 mf

QiE B

28
%
I

&

) I
e ReBDY
necewve |, me -
mreRRat CONTROL
DATABUS foe syrOET

HRR

33
EFY]
£

Tearsrnctrer flaady sy fox char, trom BOBO)

Fig. 4-2. Block diagram and pin configuration for 8251A USART chip (reprinted by per-
mission of Intel Corp., Copyright 1978).

148

sections: the data bus buffer and control section, the receiver sec-
tion, the transmitter section, and the modem control section. The
modem control portion of the USART is not particularly important
in most applications, but it will be described very briefly. The data
bus buffer section provides the buffering of the input signals as well
as the three-state outputs that are necessary for the proper opera-
tion of the data bus. The six control signals, RESET, CLK, C/D,
RD, WR, and CS, provide the necessary signals so that the chip
may be controlled by the computer. The RESET input is a logic
one level, or pulse, that must be sent to the USART to reset it.
This pulse may be sent to the USART at any time, causing it to
be reset. The RESET signal must be activated whenever the chip
is first connected to power. In many of the program examples, a
simple OUT command at the start of the program is used to reset
the USART. The RESET signal of the TRS-80 may be inverted and
used to reset the USART.

The CLX signal is a clock input that is used to synchronize sev-
eral internal functions of the USART. It is not the data rate clock,
although it must be at least 30 times faster than the fastest data bit
rate that will be used with the USART. The RD and WR signals
control the read/write operations within the USART. These signals
may be obtained from the OUT and IN signals generated by the
TRS-80, if device addressing is to be used to control the USART,
or from the RD and WR memory control signals of the TRS-80,
if memory addressing is to be used.

The chip select signal, CS, is very similar to the decoded address
signals that have been used in previous examples, to enable a par-
ticular I/O device. The USART actually contains four 1/O devices,
two of which are output ports, and two of which are input ports,
so two device addresses must be used to generate the chip select
signal. Remember that an input port and an output port may have
the same device address, since their functions are different. Two
different device address signals may be gated together to provide
the chip select signal, but the USART also needs some other way of
determining which of the internal I/O devices the computer wishes
to address, since the chip select signal simply enables the chip, it
does not select individual I/O devices. A second input, C/D is used
by the USART to distinguish between the two addresses. The “C”
represents COMMAND:s, while the “D” represents DATA. Some
signal must be generated by the computer, so that it can switch
the USART between the command and data addresses. This con-
trol input is generally connected to the least significant address bit,
AQ. In this way, two consecutive device (or memory) addresses
may be used to control the USART, for example, addresses 7 and 6,
or 00000111 and 00000110. Here, address line A0 would be con-

149

nected to the C/D input of the USART, while address bits A7
through Al are used to generate the chip select signal. The USART
does not require that the device address be combined with the func-
tion pulses, IN and OUT, since this gatmg takes place within the
USART chip. A typical USART interface is shown in Fig. 4-3. Only
the computer-USART portion of the interface has been shown.

If the TRS-80 interface breadboard is used to interface the
USART, a different circuit must be used, since it is impossible to
decode address bits A7 through Al, without bit A0, To overcome
this problem, address bit AQ is connected to the C/D input of the
USART, and decoded addresses 7 and 6 are gated together to pro-
vide a composite device select, or chip select signal. This gating
will select the USART whenever device address 7 or 6 is generated
by the TRS-80. Remember, when the interface breadboard is used,
an INP REQ signal must be generated to properly control the bus
buffering circuits. The circuit shown in Fig. 4-4 generates the proper
signals for the control of a USART on the interface breadboard. In
Figs. 4-3 and 4-4, the CLK signal has not been provided for the
USART. This will be added later.

T +5V

@

o~

@

By

pata| ©4 1
BUS | D3 D3 gosy
D2 112
D1 281 by
Do 2o
W Bla5
ouT 0w
At TR 1 1 Wa U N1 P
A2 2 .
A3 3>.;“ 3] sN7430 AQ cib
As 5{>c6 4

) 8 JR1 -

13>c12 5 Cs

A5

A6 —”—Do&—————i RESET e 2 2lpeser
9{>Ca 12 /

SN7404 (ALL)

p—

Fig. 4-3. A typical USART interface for 1/O addresses 6 and 7. C icati $i
not shown for clarity.

150

SN7400

DECODED
ADDRESS

o ~if

1) 11 N5 REG
INP REQ
N 3 12

SN7402 SN7400
Fig. 4-4. A USART chip select circuit for the TRS-80 Interface Breadboard.

When the USART is in the data mode (C/D = 0), the 8-bit reg-
ister of the receiver may be examined with an input command, such
as PRINT INP(6), and the 8-bit register of the transmitter may
be loaded with a value that is to be transmitted, OUT 6,154. Before
the transmitter and receiver may be used, however, the USART
must be programmed so that it knows how many bits it is to trans-
mit and receive, how fast it is to transmit and receive information,
and so on. The programming commands are sent to the USART by
the computer when it is in the command mode (C/D=1). Re-
member that there is nothing “magical” about switching between
the command and data modes, since address bit A0 is used to con-
trol the mode, and it is part of the overall address used by the 1/O
command. Thus, I/O ports with address 7 are command ports, while
I/0 ports with address 6 are the data ports for the transmitter and
receiver.

Programming the USART

The first thing that the computer must be programmed to do is
to output a mode control instruction to the USART. The format of
the mode control instruction is shown in Fig. 4-5. The eight bits
in this mode control instruction allow you to set the USART so that
it will transmit the data bits in the format that you desire, or the
format of the receiving device—teletypewriter, terminal, line printer,
etc.

Bits S2 and S1 allow you the choice of either 1, 1%, or 2 stop bits
in the bit stream. The choice of bits $2 = S1 = 0 is invalid. The num-
ber of data bits in the bit stream may also be set, using bits 1.2 and
L1 in the mode control instruction. If fewer than eight data bits
are to be used, the least significant bits are used; for example, a 5-
bit transmission would transmit bits D4 through DO, with bits D7
through D5 being ignored. The baud rate factor may also be se-

151

lected, using bits B2 and Bl. These bits allow you to set the fre-
quency relationship between the bit rate, in bits per second, and
the clock frequency that is used by the receiver and transmitter
sections of the USART. Remember that this clock frequency is
not the same as the CLK frequency that is supplied to the control
section of the USART. Independent clock signals are used by the
transmitter and receiver sections of the USART. Through the se-
lection of the clock control or baud rate factor bits, the data trans-
mission (and reception) rate may be set to be equal to 16-times
slower than, or 64-times slower than the transmitter (and receiver)
clock frequency. Most UART and USART systems use a clock fre-
quency that is 16 times the data transfer rate, so we suggest that
you use the B2 =1, Bl =0 configuration. If B2 = Bl == 0, the syn-
chronous mode of operation is selected, a mode that we are not inter-
ested in. If the 16X baud rate factor is chosen, then for a 2400 b/sec
transmission/reception rate, the clock rates of the transmitter and
receiver would have to be 2400 X 16, or 38,400 Hz. In some places,
you will see the notation “baud” used to represent bits per second.
Actually, the meaning of the term baud is more complex than “the
number of bits transmitted per second,” so we will not interchange
baud and bits-per-second, using the notation b/sec instead.

The mode control instruction also allows you to set the parity
of the data, so that the number of logic ones in the data word is

D; Dg Dy Dy Dy D, D, D,

S, | s, | EP|PEN| L | Ly | B, | B,

BAUD RATE FACTOR
0 1 0 1

) 0 1 1

SIS | x| ext | teaxs

CHARACTER LENGTH
1] 1 0 1

0 0 1 1

5 6 7 8
BITS | BITS | BITS | BITS

PARITY ENABLE
1= ENABLE 0=DISABLE

EVEN PARITY GENERATION/CHECK
1=EVEN 0=00D

NUMBER OF STOP BITS

0 1 0 1

0 0 1 1

7 % 2
INVALID} g7 | giTs | BITS

Fig. 4-5. 8251A Mode Control Instruction formats (reprinted by permission of Intel Corp.,
Copyright 1978).

152

e~

either even, or odd, depending upon the type of parity that you
choose to use. An additional parity bit is placed in the bit stream
between the last data bit, and the stop bit, or bits. You can also
choose to override the parity function by disabling it, in which case,
the parity bit is not placed in the bit stream. If you choose to use
the parity function, remember that it will add an additional bit to
the bit stream, and that the devices that are to receive the trans-
mission must be programmed not only to receive a parity bit, but
the correct type of parity, either even, or odd. The parity function
is used to help in the detection of errors in a transmission of infor-
mation. It is important to remember that the mode control instruc-
tion programs both the transmitter and the receiver for exactly the
same data format. It is not possible to program them separately. If
different formats are required by the receiver and the transmitter,
two USART chips must be used.

After the mode control instruction has been sent to the command
output port of the USART, a second piece of information must be
sent to this same output port. The USART takes care of switching
the two 8-bit values to the proper places within the USART. This
second set of eight bits is called the command instruction, and its
bit assignments are shown in Fig. 4-6. Some of the bits will not be
used at present, but the important bits are TxEN, RxE, and ER.
These bits enable or disable the receiver and the transmitter, and
the ER bit resets all indications of error conditions. Usually, a com-
mand instruction of 00010101, or 21, will be used in TRS-80 appli-
cations that use the USART.

After a command instruction, following a mode control instruc-
tion, has been sent to the USART, a new command instruction may
be sent to it at any time, simply by sending the new command in-
formation to the command output port of the USART. In this way,
it is possible to control the receiver and transmitter functions just
by changing the pattern of the bits in the command instruction. In
general, the mode control instruction is sent to the USART only
once, just after it has been reset by the RESET signal. A logic one
in the IR bit position in the command instruction will “force” the
USART to be reset, allowing the computer to send the USART a
new mode control instruction, so that the USART may be com-
pletely reconfigured. Of course, if the USART is reset, and a new
mode control instruction is sent to it, a new command instruction
must be sent to the USART, too. You cannot read the mode control,
or command information back into the computer to check it, once
it has been loaded into the USART.

Typical software routines that can be used to control the pro-
gramming of a USART are shown in Examples 4-1 and 4-2, In Ex-
ample 4-1, the program initializes the USART for one stop bit, even

153

EH iR | RTS | ER]SBRK| RxE | DTR | TxEN

!‘ TRANSMIT ENABLE
1 = enable

0 = disable

DATA TERMINAL
READY

“high’* will force DTR
output to zero

RECEIVE ENABLE
1 = enable
0 = disable

SEND BREAK
CHARACTER

= forces TxD “low"
0 = normal operation

ERROR RESET
1 = reset all error flags
PE, OE, FE

REQUEST TO SEND_
“high” will force RTS
output 10 zero

INTERNAL RESET
“high” returns 8257 to
Mode Instruction Format

ENTER HUNT MODE
1 = enable search for Sync
Characters

Fig. 4-6. 8251A Command Instruction format (reprinted by permission Intel Corp,,
Copyright 1978).

parity, seven bits of data, and a 16X baud rate factor. The receiver
and transmitter are enabled, and the error conditions (if any) are
reset. Later in the program, the receiver is disabled, or turned off,
by a new command instruction that is sent to the USART. In Ex-
ample 4-2, the USART is initialized for two stop bits, no parity, eight
bits of data, and a 16X baud rate factor. Again, the receiver and
transmitter of the USART are enabled, and any error conditions are
cleared. Later in this program, the USART is reset, and a new mode
control instruction is sent to the USART to reconfigure it for two
stop bits, five data bits, and the same baud rate factor. However,
the transmitter is disabled by the command instruction. You must
remember to initialize the USART with a mode control instruction,

154

Example 4~1. USART Configuration Examplie No. 1

Program Steps Comments
1050 QUT 7,122 Set Mode Control Instruction
1060 OUT 7.21 Set Command Instruction
2075 OUT 7,17 Change Command Instruction

and a command instruction, whenever it is first powered, and prior
to its use for the transfer of data.

Now that the USART has been initialized, how is information ac-
tually transmitted and received, and what are the various error con-
ditions? The USART has an input port that uses the command de-
vice address. When information is input to the computer from this
input port, the status of the USART may be determined from the
various bits, as shown in Fig. 4-7. The three bits of major importance
are TxE, RxRDY, and TxRDY. These bits indicate the state of the
receiver and transmitter. The TxRDY bit indicates that the transmit-
ter is ready to accept a new data word. from the computer, which it
will then transmit. The RxRDY bit indicates that the receiver has
received a new data word, and that it can be read by the computer.
Each of these flags is a logic one when the condition is true. Thus,
a logic one in the TxRDY position indicates that data may be loaded
into the transmitter, while a logic one in the RxRDY bit position
indicates the presence of a new data word. The flag bits are reset
by the transmitter-loading and receiver-reading operations. Of
course, the functions of the transmitter do not disturb the receiver,
and vice versa. Simple transmitter/receiver control subroutines are

Example 4-2. USART Configuration Example No. 2

Program Steps Comments
230 OUT 7, 206 Set Mode Control Instruction
240 OUT 7, 21 Set Command instruction
510 OUT 7,64 Change Command Instruction to generate a
. RESET
565 OUT 7,194 Set a new Mode Control Instruction
570 OUT 7, 20 Set a new Command Instruction

155

Example 4-3. General 1/0 Control Subroutines for the USART

1000 REM USART OUTPUT SUBROUTINE
1010 OUT 6,7X

1020 [F(INP(7) AND 1)=0 THEN 1020
1030 RETURN

1040 REM USART INPUT SUBROUTINE
1050 IF (INP(7) AND 2)=0 THEN 1050
1060 RX=INP(6)

1070 RETURN

provided in Example 4-3. The variable, TX, must be set to the value
that is to be transmitted, and the received value is assigned the
name RX. You should note the use of the flag bits of the USART
in these routines.

The TxE flag indicates that the transmitter has finished its trans-
mission, and that the transmitter has no additional information to
send. Its state should not be used to indicate when the transmitter
is ready to accept the next eight-bit data word for transmission.
The TxE flag is often used when the USART is in the synchronous
mode. The three error flags, FE, OE, and PE, are explained in Fig.

D, Dg Dg Dy Dy D, D, Dy

DSR SYNDET FE OE PE TxE RxRDY | TxRDY

SAME DEFINITIONS AS |/O PINS

PARITY ERROR

The PE flag is set when a parity
error is detected. It s reset by
the ER bit of the Command
Instruction. PE does not inhibit
operation of the 8251,

OVERRUN ERROR

The OE flag s set when the CPU
does not read a character before
the next one becomes available.
it 15 reset by the ER bit of the
Command instruction. OE does
not inhibit operation of the 8251:
however, the previously averrun
character s lost.

FRAMING ERROR (Async only}
The FE flag 15 set when a valid
Stop bit is not detected at the
end of every character. It 15 reset
by the ER bit of the Command
instruction. FE does not inhibit
the operation of the 8251,

Fig. 4-7. The status bits of the USART read from the Command Input port (reprinted by
permission of Intel Corp., Copyright 1978).

156

|

4

R i

4-7, and in Interfacing and Scientific Data Communications Experi-
ments.

Using the USART

Now that the USART can be easily interfaced to the TRS-80, and
now that you understand how the USART can be configured for
various data formats and for different operating modes, the USART
must be connected to external devices. If you refer to Fig. 4-2, you
will see that there are a number of connections to the receiver and
transmitter sections of the USART. These signals provide us with
the means of having the USART communicate with other asynchro-
nous-serial devices. The TxC and RxC inputs are the clock signal
connections. External clock circuits are used to supply the frequency
that is used by the receiver and the transmitter. While each section
has a separate clock input, and can have different data transfer rates,
each clock signal will be divided by the baud rate factor that has
been programmed into the USART. Thus, with a baud rate factor
of 16, a transmitter section operating at 110 b/sec requires a 1760
Hz clock signal, while a receiver operating at 4800 b/sec requires
a clock signal of 76,800 Hz.

The TxD output is a TTL-compatible signal that represents the
serialized bit stream, including the start bit, data bits, parity bit (if
any), and stop bit(s). The RxD is the TTL-compatible input of the
receiver for the serial information.

Each section has some outputs that are equivalent to the flag bits
in the status word. These are the TxRDY, TxE, and RxRDY signals.
The receiver also has another I/O pin, SYNDET, which is used in
the synchronous transfer mode. The modem control section of the
USART has four signals that require some explanation. The most
important of these is the CTS, or clear to send, input. This input
must be a logic zero in order to enable the transmitter section. This
input simply serves as an external transmitter enable input. The
DSR (data set ready), DTR (data terminal ready), and RTS (re-
quest to send), are all useful if you are going to be connecting the
USART to a modem, for communications with a remote computer
or terminal. In most applications, these pins will be unused, al-
though they may be treated as general I/O pins. The DTR and RTS
outputs may be controlled by bits in the command instruction.
Likewise, the DSR input may be used as a 1-bit input port, the
state of which may be detected in the DSR bit of the status word.
Of course, the USART has no way of knowing that you are using
these connections for your own purposes, so they can be used for
whatever you choose, modem control, or otherwise.

A completely interfaced USART is shown in Fig. 4-8. The circuit
shown is one that could be used on the TRS-80 interface bread-

157

+8V
Tzs

19
o7 ‘; 7 %D 2 TRANSMITTER DATA
D6 <105 .
D5 05 RxD REGEIVER DATA
5
DATA BUS Py 17
D3 D3 i) —
D2 2; D2 +
DY ———— D1 9 SN7493 SN7493
oY p— 1Y G
A 11 +8 1 11 +8 1
o 13} == 25
P RxC &2
N D x T T _1
oY ok} _
nruue
ol e cLocK
a0 ——— 12/ DsR

7
T e
)
23
¥

2UjRESET RIS o
INP REQ

Fig. 4-8. A complete USART-10-TRS-80 interface circuit.

]

board. The clock signal is generated by an external circuit, such as
a 555 timer chip, crystal oscillator, or equivalent. A divide-by-64
stage (two SN7493 counters) has been shown generating the lower
frequency that is required by the receiver and transmitter clock in-
puts. The higher frequency clock signal is used for the CLK input,
for internal synchronization processes. In some computers, the tim-
ing clock signal of the microprocessor is used as the CLK input of
the USART, since it is a high frequency signal. Unfortunately, this
signal is not readily available in the TRS-80 computer, so it must
be generated externally, along with the clock signal that is used to
determine the data transfer rates. Of course, the divide-by-64 stage
is somewhat arbitrary, since the CLK input only has to be 30-times
faster than the RxC or TxC input, whichever has the higher fre-
quency.

The Motorola MC14411 bit rate generator chip is an easy-to-use
alternative to more complex clock signal generating schemes. This
24-pin chip uses a standard 1.8432 MHz crystal to generate a basic
frequency from which standard data transmission rates are derived,
on the chip. Two logic inputs provide various output frequency op-
tions for the 16 different signal outputs from the MCl14411. The

158

i

basic crystal frequency of 1.8432 MHz, as well as a 921.6 kHz out-
put, is always available, and may be used as the CLX input to the
USART. The pin configuration and block diagram for the MC14411
are provided in Fig. 4-9, with the connections to the USART shown
in Fig. 4-10. In this circuit, the 921.6 kHz signal has been used at
the CLK input, while the F5 output of the MC14411 has been used
to provide the 38.4 kHz frequency that is used by the USART in
the 16X mode, so that data transfers can take place at 2400 b/sec.
The MC14411 has been preset to the 16X rate select mode. The in-
formation in Table 4-1 shows the various relationships between the
different frequency outputs and the different rate selections. The
F15 and F16 output frequencies of the MC14411 are not changed
by the rate selection inputs.

Once the USART has been interfaced to the TRS-80, it is a good
idea to test the interface with some simple software. One of the
simplest tests is to have the transmitter generate bit streams that
are fed into the receiver portion of the chip. This means that TxD
and RxD are jumpered together, and a simple program is developed
to exercise the USART. A test program is shown in Example 4-4.

Table 4.1, Varlous Frequency Qutputs for the MC14411
Bit Rate Generator Chip

Rate Select Rate
B A

0 0 X1

o] 1 X8
1 o] X16
1 1 X64

Output Output Rates (Hz)

Number X 64 %16 X8 X1
F1 614.4 k 153.6 k 76.8 k 9600
F2 460.8 k 115.2k 57.6 k 7200
F3 307.2 k 76.8 k 38.4 k 4800
F4 230.4 k 57.6 k 28.8 k 3600
F5 153.6 k 38.4 k 19.2 k 2400
F6 115.2 k 28.8 k 14.4 k 1800
F7 76.8 k 19.2 k 9600 1200
F8 38.4 k 9600 4800 600
Fo 19.2 k 4800 2400 300
F10 12.8 k 3200 1600 200
F11 9600 2400 1200 150
Fi2 8613.2 2153.3 1076.6 134.5
F13 7035.5 1758.8 879.4 109.9
Fi4 4800 1200 400 75
Fi5 921.6 k 921.6 k 921.6 k 921.6 k
F16* 1.843M 1.843M 1.843M 1.843M

*F16 is buffered oscillator output.

159

BLOCK DIAGRAM L o1
o 17
02
0 16
Rate Selectp 23 O 3
—0
Rate Selectg 22 O ‘ 15
o
—0 4
X1 Dividers
o5
Crystalj, 210~ X8 Rate
Oscillator o 07
N . Divider |X16] Select
Circuit Loaic los
Crystalg,y 20 O— X64 9 o
014
" —0 13
Reset 100
O 9
Q18
O 19
*Cutputs go to "1’ level upon reset.
PIN ASSIGNMENT
11 ® Vpp [24
2[dr3 RSA[] 23
3 JFs RSg[—] 22
a[JF7 Xtaljn [21
5 (CJFs Xtalgu] 20
6 [dF10 Fi6] 19
7 JFo Fi15 18
8 [IF11 F2 117
9 JrF14 Fal™7 18
10 [JReset Fe[J15
11 [Not Used F12[]14
12 [lvgg F13[]13

VDD = Pin 24
Vgg = Pin 12

F1
F2
F3
Fa
F5
F6
F7
Fg
Fg
F10
F11
F12
F13
F14

F15
F16

Courtesy Motorola Semiconductor Products, Inc.

Fig. 4-9. Block diagram and pin configuration for the MC14411 bit rate generator chip.

160

s

<

+5V

.

21

[ZR 1] o ————
] XTAL 5 TO USART CLK INPUT
1.8432 =5
MHz 20
T 2 yraL F5§ p—————— TO USART RxC AND TxC INPUTS
10000 5y

+ 5V Omme—eAAA——{ B

23

‘?‘[———-A

I2 MC14411

Fig. 4-10. Using the MC14411 bit rate generator chip to generate a clock signal for a
2400 b/sec USART circuit.

This program generates 256 test patterns, 0 through 255, and trans-
mits them to the receiver. Once a pattern has been received it is
compared to the pattern transmitted. Any errors are detected, and
noted, stopping the test. More sophisticated test routines could be
developed, but we found that the program in Example 4-4 worked
quite well. Additionally, program steps could be added to this pro-
gram so that the error flags in the status word could be tested as
well. If an error was detected, the error flags would have to be reset
with a new command instruction. Likewise, you could add program
steps so that you could enter information into the computer so that
in some initial “dialog’™ with the computer, you would be asked
questions like, “# STOP BITS?” The information gathered by the
computer during this question and answer session would then be
put together to “construct” a mode control instruction that would
configure the USART for different modes of operation.

Example 4-4. A USART Test Program

5 OUT 5,0
10 OUT 7,206
20 OUT 7,21
25 FOR i =0 TO 255
30 OUT 6,1
35 PRINT |
40 IF (INP(7) AND 2)=0 THEN 40
50 IF INP(6)=1 THEN 60 ELSE 100
60 IF (INP(7) AND 1)=0 THEN 60
70 NEXT |
80 GOTO 25
100 PRINT “ERROR':l

161

The TxD output of the transmitter and the RxD input of the re-

ceiver are generally not connected directly to long wires for the
exchange of serial information with other UART- or USART-based
systems. Instead, these TTL levels are translated or converted into
either current levels or voltage levels that can be transmitted for
rather long distances without much interference from externally
generated electrical noise. In general, either RS-232C voltage levels
or 20 mA current levels are used. The RS-232C levels are standard,
and they are frequently used by modems, large computers and video
display terminals. The levels used range from =6 volts to =12 volts,
depending upon the application. There are special TTL-to-RS-232C
and RC-232C-to-TTL conversion chips available, and these are de-
scribed more fully in the book previously mentioned, Interfacing
and Scientific Data Communications Experiments. Current loops of

O +5V
§1oon
CURRENT IN (+)
4N35 |4 5 ©
<
A 4 2\ IN4001
2 a
TIL IN O ! Dcz o
CURRENT OUT (—}

SN7405

Fig. 4-11. A TTL-to-current loop transmitter circuit using an optical coupler chip.

either 20 mA flowing, or no current flowing, are frequently used
with small computer systems, since these loops are immune to most
electrical noise, are readily constructed, and are compatible with
most teletypewriters, printers, and other serial devices. A current
transmitter circuit is shown in Fig. 4-11, with a current receiver
shown in Fig. 4-12. A simple resistor may be used in a transmitter/
receiver circuit, along with a voltage source, to provide the 20 mA
of current required, although a more elegant solution is to use a
current regulator circuit, such as the one shown in Fig. 4-13.

In most modern asynchronous-serial communication systems, a
separate loop is provided for the transmitter and the receiver, so
that each is independent of the other. This arrangement is called
a full-duplex circuit, and it is shown in Fig. 4-14. Note that in this
example a separate voltage source and current regulator have been
used for each loop. Of course, the local transmitter communicates

162

S

i

+ 5V

4700
SN7414
CURRENT IN (+)
% 1 4N35
/
e yd 0.01uF
IN40O1 2 \ 4 I (FILTER)
2 4
1% _
CURRENT OUT(—) .

Fig. 4-12. A current loop-to-TTL receiver circuit using an optical coupler chip.

with the remote receiver, while the local receiver accepts informa-
tion from the remote transmitter. If the current conversion circuits
shown in Figs. 4-11 and 4-12 are used in loops such as this, the local

+5V
—() 20mA SINK

1000Q

2N3569

Ny
S

1000Q

N

II'}

Fig. 4-13. A typical 20 mA current regulator/sink circuit.

and remote circuits are electrically isolated, since optical couplers
have been used at both ends of the loop. These commonly avail-
able optical couplers, or opto-isolators, use a light-emitting diode,
and a photodetector to transfer the serial information, without the
need for any common electrical connections between the remote
and local circuits. This removes the possibility of having ground-
loop noise induced upon the serial information, a common problem

163

TxD———> TTL.TO-20mA * , 20mATOTTL |2 RxD
¥ :] =1v
20mA SINK :-f
+ -
RXD ~———] 20mA-TO-TTL , TTLTO-20mA fe——— TxD
+] =
20mASINK =

Fig. 4-14. A full-duplex transmitter/receiver circuit for 20 mA current
loop communications.

in circuits that are some distance apart, but that share a common
ground connection.

In the circuit shown in Fig. 4-14, the remote device could be an
instrument that can interface with standard asynchronous-serial de-
vices, or it could even be another small computer system. There are
many situations in which it is necessary to transfer information be-
tween instruments and computers, and even between one computer
and another. Since a full-duplex asynchronous-serial information ex-
change requires only four wires, this would seem to be an ideal
way in which to implement the necessary interface to allow such
an exchange of information to proceed. Once the USARTs or
UARTSs have been connected at their respective “ends” of the loops,
all that is left is the design of software that can be used to control
the loops.

Computer-Computer Communications

Once the USARTSs have been interfaced to two separate comput-
ers, and the necessary current loops have been wired between them,
it shouldnt be too difficult to see how the two computers could
communicate by using the USARTs for the exchange of asynchro-
nous-serial information. One computer would simply transmit an
8-bit data word to the other computer, using the appropriate soft-
ware steps, while the USART of the receiving computer would re-
ceive the information, using its own software to control the USART.
Of course, the transmitting computer would have to know when
the receiving computer was ready for the next data word, so some
handshaking might be necessary. This handshaking could be very
simple, or it could be quite complex. The simplest case would be

164

one in which the receiving computer transmitted an 8-bit data word
that indicated that it was ready to accept the next transmission.
More complex handshaking could involve the retransmission of the
received data word to the transmitting computer so that its accu-
racy could be checked. Error condition flags could also be checked
before the next transmission could take place. Of course, each
USART must be programmed by its respective computer so that the
number of data bits, parity, stop bits, and data rates are the same.

In the simplest data transfer example that we have outlined, the
computers have been used to exchange 8-bit data words. Of course,
16-bit data words, or even larger data words could be exchanged,
simply by breaking them down into groups of 8-bit bytes. The re-
ceiving computer would have to be properly programmed so that
the series of 8-bit bytes would be reconstructed in the proper order.
Decimal values are readily converted into binary numbers, so that
their transmission should not present difficulty. But how would
you transfer —7.77891E-13 to a remote computer in binary form?
You could probably devise a program that would convert this into
some form of binary notation, but a simpler method is available.
In remote communication systems that use the asynchronous-serial
transmission scheme, a standard code has been adopted to allow
various instruments, computers, and terminals to communicate with
one another. This code assigns 7-bit binary values to alphabetical,
numerical, and symbolic characters, including the lower-case letters,
and punctuation marks. When this American Standard Code for
Information Interchange (ASCII) is used, each symbol in the mes-
sage is assigned its own standard code. For example, the letter “a”
is equivalent to 01100001, while “?” is equivalent to 00111111.
These values are easily exchanged by computers and terminals,
since their meaning has been standardized. In the examples above,
eight bits have been used. In some instances, the most significant
bit is preset to a logic one, or a logic zero, while in others, it is used
as a parity bit.

There are other standard codes, but the ASCII arrangement is
probably the one that is most widely used. A standard ASCII code
chart has been provided in Appendix A, and a similar chart may
be found in the Radio Shack Level II Basic Reference Manual,
supplied with Level II TRS-80 computers.

Now, to transmit the value —7.77891E-13, each character is con-
verted into its ASCII equivalent, and then transmitted. In this way,
12 ASCII values would be transmitted. It is important to note that
the data value is being transmitted as a grouping of symbols that
have nothing whatsoever to do with the actual value that is repre-
sented by the group of characters. Some software is required to
perform the conversion between the numeric value and the series

165

Example 4-5. A Valuesto=-ASCll Conversion Program
500 INPUT “VALUE":A
520 A$=STR$(A)
530 Q=LEN(A$)
540 FOR L=1 TO Q
550 R=ASC(MID$(AS,L.1)
560 TX=R:GOSUB 1010
570 NEXT L
580 END

1010 OUT 6,TX
1020 IF (INP(7) and 1)=0 THEN 1020
1030 RETURN

of ASCII values that are to be transmitted. A typical “conversion”
program is provided in Example 4-5. The numeric value is first
converted into a string representation, and the length of the string
is then determined so that the computer will know how many char-
acters are to be transmitted. The step, R=ASC(MID$(AS$,L,1)),
converts the characters in the A$ string into their ASCII equiva-
lents, one at a time, starting with the first character. Since this pro-
gram step is used in a loop, each pass through the loop converts the
next character into its ASCII equivalent, until all of the conversions
have been performed. The standard output subroutine from Exam-
ple 4-3 may be used to control the USART actual transmission of
the ASCII values from one computer to another.

In Example 4-5, a value that has been entered from the keyboard
is transmitted, although results of calculations could also be trans-
mitted, by using these software steps. In fact, complete arrays of
data values could be transmitted, using a somewhat longer program,
such as the one in Example 4-6, in which a loop has been used to
go through an array. You would have to let the computer know
how long the array is, so that it would know when to stop the con-
version process. In Example 4-6, a 10-element array has been used.

Example 4-6. An Array~to-ASCH Conversion Program

500 FOR I=1 TO 10
520 A$=STR$(A{)

530 Q=LEN(A$)

540 FOR L=1 TO Q
550 R=ASC(MID$(AS$,L,1)
560 TX=R:GOSUB 1010
570 NEXT L

580 NEXT |

590 END

1010 OUT 6,TX

1020 IF (INP(7) AND 1)=0 THEN 1020
1030 RETURN

166

The receiving terminal will print the ASCII characters, as they
are received, one after the other, but there are no provisions in the
program to generate a carriage return, to return the printing mecha-
nism, or cursor, to the left-hand side of the paper or screen, and
there are no steps to advance the device to the next line. These steps
would have to be incorporated into your program. The ASCII code
for the line-feed function is 00001010, or 10,0, while the code for a
carriage return function is 00001101, or 13;0. Depending upon your
application, you might want to place a carriage-return and line-feed
code in the serial stream, right after each complete numeric value,
or after every five or so. If another computer is used to receive this
information, the carriage-return and line-feed functions can prob-
ably be left out of the program, since the computer will ignore them.
However, the receiving computer must be pre-programmed to ac-
cept the ASCII values, and to re-configure them back into the proper
numeric values.

Example 4-7. An ASCH-to-Value Conversion Program

2010 Z§=""

2020 GOSUB 1050

2030 Z$=Z$-+ CHR$(RX)
2040 GOSUB 1050

2050 {F RX<>32 THEN 2030
2060 A = VAL(Z$)

2070 PRINT A

2080 END

1050 IF (INP(7) AND 2)=0 THEN 1050
1060 RX=INP(6)
1070 RETURN

Since another TRS-80 computer might be used as the “other”
computer, a program that will perform the ASCII conversion is pro-
vided in Example 4-7. In this program, the ASCII values are con-
verted into the proper numeric values. Since the TRS-80 uses a
space between characters as a delimiter to separate values from one
another, this character’s ASCII value can be detected, to indicate
that a complete value has been acquired as its ASCII equivalent.
A simple program that can be used to acquire 10 values from an-
other TRS-80 computer, or from some other asynchronous-serial de-
vice, is listed in Example 4-8. In this program, the string, Z$, is used
to accumulate the incoming characters, forming a longer string, as
new characters are added to it. When the ASCII value for the space
character is detected, the string of individual characters is con-
verted into its actual value. Thus, the string 0.0001E4 has the ac-
tual value of 10;0. The standard USART receiver subroutine has
been used in this example to acquire the individual characters.

167

Example 4-8, An ASCli-to-Array Conversion Program

2000 FOR i==1 TO 10

2010 Z$=""

2020 GOSUB 1050

2030 Z$=Z$-+CHR$(RX)
2040 GOSUB 1050

2050 IF RX<>32 THEN 2030
2060 A(l)=VAL(Z$)

2070 PRINT A(D)

2080 NEXT ¢ %
1050 IF (INP(Z) AND 2)=0 THEN 1050

1060 RX=INP(6) ;
1070 RETURN

It is important to remember that it takes the TRS-80 a significant e

amount of time to acquire and process this information, something
that we tend to overlook. This means that while the TRS-80 may
not have any difficulty in handling information that is transmitted
to it from a terminal at a rate of 2400 b/sec, while you are typing
10 characters per second (at most), the TRS-80 probably couldn’t
acquire a steady stream of information sent to it at 2400 b/sec, one
character right after the other. In cases where such high-speed data
transfers are encountered, there are two choices for handling the
information. You can program the TRS-80 in assembly language
so that it can acquire and store the information for later processing,

or you can use the handshaking technique, previously described. 3
If handshaking is to be used, the transmitting computer must be v
programmed to recognize the handshakmg character that the TRS:
80 sends to it, indicating that the receiver is ready for another :
transmission.

e

THE UART

In those applications in which asynchronous-serial communica-
tions are to be used, as opposed to the use of multiconductor cables,
there may not be another computer, or terminal-like device, at the
other “end” of the communication loop. Does this mean that it is
necessary to add another small computer to the system, so that a
USART can be used? In some cases, this may be justified, since
small computer systems can be put together with only a few chips,
but in other cases, an alternative method of implementing asynchro-
nous-serial communications is at hand. The Universal Asynchronous
Receiver/ Transmitter, or UART, that was mentioned previously,
provides the same type of communication function as the USART,
but it does not require a computer to perform the “programming” ;
functions. You should recall that the number of data bits, parity, :

168 ¥

ey

and number of stop bits, was programmed into the USART by the
computer. In the UART, these control functions aré programmed
by applying various combinations of logic levels to external pro-
gramming pins. Likewise, in a UART-based communication system,
the flag outputs, data outputs, etc., are available as individual logic
outputs. The receiver and the transmitter sections are generally sep-
arate, allowing individual access to the data outputs of the receiver,
and to the data inputs of the transmitter. The functional block dia-
gram of a UART is provided in Fig. 4-15. There are many UART
chip manufacturers, but not all of them use a standard nomencla-
ture for the I/O pins. This can lead to some confusion, unless you
remember that the chips are generally pin-for-pin equivalents, and
thus the pins have the same function, even if they are labeled dif-
ferently. A portion of a UART data sheet is provided in Appendix B.

The UART is particularly useful in those applications in which
a computer is not present, but in which asynchronous-serial com-
munication is required. The availability of all of the control and
I/0 signals makes it relatively easy to design circuits that can com-
municate with a computer through a UART-based interface. Of
course, the computer must have an asynchronous-serial I/O port.

@ w
- [
58 42
8 3 &
pa < g »
W [5
@ 3 5 3 DATA INPUTS
> ~ &
E_/\NgE; ® N v oo e MmN~
22558 8 83388573
00000 0 900 00 00 0
39]38137136|35(34 33 132 |31 |30 {29 (28 {27 {26
4 23
crock 022 TRANSMITTER ——i BUFFER REGISTER pesialis
END OF. 24
CHARACTER>C CONTROL L 1 l l]] l I
BUFFER. 22 25 SERIAL
Empry O ———{ TRANSMITTER REGISTER]——0 ourhuT
MASTER 21
RESET

l 20 SERIAL
RECEIVER REGISTER —C wpur

I O IO O
4 RECEIVED
BUFFER REGISTER l—‘*‘——O DATA

cLock O RECEIVER

DATA, g
READY YCr
RESET: CONTROL

DATA.
AVAILABLE>C

L]

ENABLE

i3 |14 [I5 |is 5 6 7 a8 {9 1o |n {12
PiNI +5V
c 0 0 O o 0 O o o O 0 PINZ ~i2V
PE FE OR SWE © & ©® @ T MmN - PIN3 GND

a @ 9 @ a a o o

® & r & & & & &

DATA | OUTPUTS

Fig. 4-15. Functional block diagram and pin configuration of the UART
(Copyright Ham Radio Magazine, 1976).

169

While UART chips can be used with computers, too, USARTs are
found in most of the newer computer systems, since so many of the
functions can be programmed under software control. Before the
UART can be used, however, a brief explanation of its operation
is necessary. In this explanation, you may find it useful to locate
the various functions in Fig. 4-15, relating them to the following
discussion.

The UART is particularly useful in those applications in which
the number of data bits, the number of stop bits, and the parity
(if any) that are used in the serial bit stream. These bits can be
hardwired to either a logic one, or a logic zero, depending upon
the functions required. The bits are called the control word, and
their respective functions are fully described in the data sheet in
Appendix B. A control strobe input is used to load these bits into
the UART chip. This input is generally a logic one. Of course, these
bits program the receiver and transmitter sections with the same
serial format. A data word is presented to the eight transmitter in-
put lines in parallel, and it is loaded into the transmitter by a logic
zero pulse on the data strobe input. Once loaded, the transmitter
starts the bit serialization process, generating the start bit, the data
bits, and so on, until the transmission has been completed. The
buffer-empty output of the transmitter may be used to signal an
external device that the buffer register of the transmitter is empty,
and that the next data word may be loaded. The receiver section
of the UART accepts an asynchronous-serial stream of bits in the
proper format, and provides them in parallel form. The eight paral-
le! outputs of the buffer register of the receiver are three-state, con-
trolled by the received data enable input, which is generally con-
nected to a logic zero so that these outputs are always enabled. A
logic one at the data available output indicates that the receiver
has transferred information to the eight parallel outputs. This flag
is reset by pulsing the data ready reset input with a short logic zero
pulse. This does not clear the data, but only the data available flag.
The three error flags of the receiver, as well as the data available
flag output, are three-state, and controlled by the status word en-
able (SWE) input. This input also controls the buffer empty output
of the transmitter, which is three-state, too.

The receiver and transmitter each require a clock signal that will
be used to generate the serial bit stream timing relationship. In the
UART, the input clocks must be set so that their frequencies are
16-times the required data rate. This baud rate factor is not pro-
grammable, as it was for the USART. The clocks are not common,
so that the receiver and the transmitter may be operated at differ-
ent bit rates. A common reset signal is provided so that the internal
functions may be initialized when the power is first connected to

170

the system. Most of the first-generation UARTs used two power
supplies, +5 and —12 volts. Newer devices only use the +5-volt
supply, and they consume less power. For this reason, we will use
them in our discussion. For a more detailed description of the
UART, we refer you to Appendix B, and also to the book previ-
ously mentioned, Interfacing and Scientific Data Communication
Experimends.

USING THE UART FOR REMOTE CONTROL

In some applications, the UART may be used to transfer infor-
mation between a remote instrument and the computer, using
ASCII, or some other coded format. In other applications it may
be necessary to transfer information to a remote instrument that
is being controlled, and to receive information from the instrument,
to indicate its condition. Such an application for a UART is shown
in Fig. 4-16. In this circuit, the remote UART is being used to
monitor the state of the eight signals that can be either a logic one,
or a logic zero. The eight outputs from the receiver are used in
various ways; four of the binary outputs have been conmnected to
a 4-to-16-line decoder, and four have been used for on/off control.
One of the on/off control lines has been used to generate the data

8 MONITOR INPUTS

T

|33 32{3130}29]28 127 |26

SERIAL QUTPUT
40 ——> TO TRS-80
2 TRANSMITTER 23
CLOCK - i I P
17 2 SERIAL INPUT
- RECEIVER FROM TRS-80
516 |7 [8]9 hojt1[12
B D
| (E: DATA STROBE
16 PULSE : —‘ r
QUTPUTS H 8
w1 E
R
3 ONIOFF
OUTPUTS

Fig. 4-16. Using a UART in a remote-control application.

iv

strobe signal, thus controlling the transmitter section of the UART.
There are many different ways in which the input and output lines
of the UART can be used in remote applications.

If more than eight monitor inputs are required, the inputs may
be expanded by using a multiplexing scheme such as that shown
in Fig. 4-17. Three 3-state buffers control 24 monitor inputs so that
any group of 8 may be selected. The selection is made by the corre-
sponding output of the decoder that was described previously. In
this circuit, additional three-state buffers could be added, so that
many more monitor inputs could be checked at this remote UART.
The local computer would first send a data word to the UART so
that one of the sets of eight monitor inputs would be chosen. While
keeping these bits constant by using logical instructions in a BASIC
program, the data strobe line would be “pulsed” so that the trans-
mitter would send the monitor input information to the computer
over the serial lines that link them. More control outputs could also
be added to the receiver section, by using shift registers or other
latching devices. For example, the circuit shown in Fig. 4-17 could
be used to control a remote 12-bit A/D converter. The 12 data bits

L L

_.E SN74L5244 {——E SN74LS244

SN74LS244
heliaTiZ]3 |5

33132131130 |29{28]27 {26

25
e sssssminmmnnmeneie - SERIAL QUTP
TRANSMITTER 23 T

20
SERIALINPUT

BMOOOMO

SN74154 OR EQUIVALENT

B
N

Fig. 4-17. An expanded remote-control application for the UART, in which 24 bits
may be transmitted.

172

of the converter would be connected to two of the three-state buf-
fers in two groups, one containing the four most-significant bits,
and the other containing the eight least-significant bits. One bit
could be used to monitor the BUSY/READY flag of the A/D con-
verter, while one of the outputs of the decoder could be used to
generate a start pulse that would initiate the conversion process.
The software that would be used to control the remote converter
would be rather simple. The program would send the proper com-
mand word to the UART so that when decoded it would start the
conversion sequence of the A/D converter. The program would then
send the command word that would connect the three-state buffer
to the transmitter inputs of the UART so that the BUSY/READY
flag could be transmitted. By pulsing the least significant bit of the
receiver, the eight bits present at the transmitter would be sent to
the computer so that the status flag could be checked. Once the
conversion had been completed, the computer could send the UART
a sequence of commands to read the two data bytes into the UART
and transmit them to the computer. The additional software re-
quired here is minimal when compared to the ease of interfacing
a remote A/D converter with four wires (we have assumed a full-
duplex current loop).

There are other control methods that could be used in this type
of a remote converter scheme. You might consider using the status
flag of the converter to initiate the first transmission, with the com-
puter controlling all of the others. Thus, once the current conver-
sion has been completed, the A/D converter would signal this by
transmitting the eight least-significant bits to the computer, through
the UART. To do this, you would simply gate the status signal of
the converter and the data strobe pulse provided by the receiver
section of the UART. Of course, the eight outputs of the receiver
would have to be present to select the eight least-significant bits,
prior to the occurrence of the status flag pulse of the converter.

Another possibility involves the use of the data ready, or data
received, flag signal of the receiver, which can be connected to the
data strobe input of the transmitter. The receiver flag could be re-
set by the transmitter buffer register empty signal of the transmitter.
If this type of configuration is used, the transmitter will be pulsed
to transmit a data word after each new character has been received
by the UART. Of course, the transmitted data can be ignored if
you wish to simply change one of the outputs of the receiver. The
control circuit shown in Fig. 4-18 shows how this function could
be set up. The positive edge of the data ready signal triggers a
monostable circuit. This provides a delay, so that the outputs of
the receiver can be used by external logic prior to the transfer of
any information into the buffer register of the transmitter. In the

173

circuit shown in Fig. 4-17, the decoder and three-state circuits re-
quire some time to switch their logic states, depending upon the
outputs of the receiver. The first monostable, shown in Fig. 4-18,
provides this necessary delay period. The second monostable gen-
erates a pulse that loads the buffer register of the transmitter. The
buffer-empty signal of the transmitter in turn clears the data ready
flag of the receiver, completing the sequence. Now, whenever any
information is received by the UART, a transmission will be initi-
ated.

..... e wr 10Ke 0IF jokp

8 S Q
—]2

10
9
[A STROBE Q _]

paTA RDY P

-—«s r—- SN74123
UART L_I

23
DATA STROBE

TRANSMITTER |25
BUFFER EMPTY

AESET DATA j18
AVAILABLE

Fig. 4-18. A UART controller circuit for remote sequencing.of the transmitter.

More and more circuitry can be added to the UART circuits to
perform increasingly more complex functions, but there may be
other ways in which these functions may be implemented, with a
lot less effort. We will explore some of these alternatives.

UARTs AND ANALOG/DIGITAL CONVERTERS

An A/D converter could be connected to a UART, using a circuit
that is similar to the one shown in Fig. 4-17, although this would
require the use of additional chips to sequence the various data bits
through the UART, and to control the A/D converter. A simpler,
remote A/D converter control scheme is readily available, and it
provides a great deal of measurement power in only a few chips.
The Intersil ICL7109 12-bit A/D converter chip that was described
in Chapter 2 may be used in a handshaking mode that is directly
compatible with the control and data lines on a UART. In this mode,
the ICL7109 provides the necessary sequencing signals so that once
a conversion has been completed, both the low-order and high-

174

<o

iy

TOP VIEW

GND 1 GND hd v+ agf——o +5V
—{2sTATUS REF IN- 39 -
HiGH | j3PoOL REF CAP - 38| gy ¢ EXTERNAL
ORDER | J4OR REF CAP + 37 REFERENCE
BYTE —] —}5B12 REF IN+ 36 WG o+
ouTPUTS | —16B11 IN HI 35 —W—’V\/\r——o INPUT HIGH
—~{7 B10 IN LO 34— 1 -0 INPUT LOW
=18 B9 COMMON 33 CISTN A5uF
=988 IcL7109 INT 32— |
ow | 1087 Az 31—
—1 BUF 30 :
ORDER | —12BS REF OUT 29 RinT = 20k(} 0.2V REF
BYTE ~| —{13 B4 v 28b—o-5v = 200k} 2.0V REF
OUTPUTS | -114 B3 SEND 27— 1k} Q=+—— REF+
—115B2 RUN/HOLD 26—
L— 16 B1 BUF OSC OUT 25— vt
—{17 TEST 0OSC SEL 24— GND 24kQ
BYTE [={18 LBEN 0SC OUT 23p——73 _
CONTROL — —4 19 HBEN OSCIN 22 D 3.5795 MHz
INPUTS [—{20 CE/LOAD MODE 21} TV CRYSTAL

Courtesy Intersil, Inc.
Fig. 4-19. Pin configuration and test circuit for the ICL7109 A/D converter.

order bytes are transferred to the UART, and transmitted. A pin
configuration diagram of the ICL7109 is provided in Fig. 4-19, for
your reference.

To put the ICL7109 in the handshake mode, the mode input is
connected to a logic one (45 volts). When in this mode, the low-
byte enable (LBEN), high-byte enable (HBEN), and chip enable/
load (CE/LOAD) all act as control outputs, rather than as control
inputs. Once a conversion has been completed by the converter in
the handshake mode, the high-byte three-state data outputs are en-
abled, and the CE/LOAD output is asserted. The HBEN output is
also asserted, as a byte identification signal. The high-byte data
outputs are then disabled, and the low-byte three-state data out-
puts are enabled, the CE/LOAD, and the LBEN outputs are also
asserted. Since the data outputs are three-state, corresponding bits
in the high byte, and in the low byte are conveniently connected,
so that a single set of eight data bits is provided for the eight inputs
of the transmitter section of the UART. Since the CE/LOAD signal
of the ICL7109 indicates that valid information is present on the
bus, this signal is used to strobe the information of the A/D con-
verter into the buffer register of the transmitter. Since this loading
process can be rather fast, the transmitter buffer empty flag signal
of the UART is connected to the SEND input of the ICL7109. This
provides the handshaking, so that the converter will pause between
loading the high byte and the low byte, so that the UART has a
chance to transfer the high byte from the transmitter buffer register
into the transmitter register itself. If the SEND input is left in the
logic one state, the loading process may be so fast that the UART

175

is not ready to accept the low byte when it is presented by the
ICL7109, causing it to be “lost.”

The actual circuitry involved in this UART-converter scheme is
rather simple, involving only a UART, and an ICL7109 converter
chip, plus the components associated with the analog signal process-
ing of the converter. The UART/converter connections are shown
in Fig. 4-20. Only 11 lines, plus a common ground, are required.
The UART used in this circuit is an IM6403. This is a. low-power
CMOS device that has an on-chip oscillator, for use with an exter-
nal crystal. An external clock signal may also be used with this chip.
In the circuit shown in Fig. 4-20, the clock of the converter is used
by the IM6403, as the transmitter/receiver clock. In the IM6403,
the receiver and transmitter share a common clock signal, so that
they will always operate at the same frequency. The basic UART/
converter scheme provides a UART data rate of 110 b/sec, which
is compatible with most teletypewriters and computer devices. If
the UART is used to transmit to a teletypewriter, you could not ex-
pect the voltage measured by the ICL7109 to be printed as, for
example, +0.97, since the information from the converter is simply
a binary code, and not a series of ASCII characters.

v ag f o sv
-sv—J1vee TRC aof- GND—{ 1 GRD REF I8 39— 0 = ~—GRD
_[J3 gscconmmoL asciuw 25 BUF OSCOUT REFCAP 38f—m o EXTERNAL
GND ~4+-13 GND EPE 39, sv ~J257ATUS REF Cap - 37 5 I REFERENCE
-5¥] & ARD cLst 3’ o REF IN + 36 frvmm om0 «
1. cLs2y - va HBEN IN H1 35 s AN e -
I 152 85 Lo B, WPUT
P135 | N0 o |ae prrge e
—413 PE cRL 3} 89-812POL.OR INT 32 oo
~414 FE 25.33 8, 5 1916 Az 31 —{F53s
—415 OF THRT-2 ¥ -4 81-68 BUF
-sv—7 15 550 TRE 24 |~ - 17 resy REF OUT 29— Rout 20K11 0.2V REF
DRR 18 | -4 18 LBER Vv 2B} SV 200k11 2V REF
eeed 25 RRY OR 19— 21 MODE. RUN/TTOLD 26 [— -5V OR OPEN
SERIAL TBARL 20 CELOAD OSC SEL 24| GO
INPUTH T8RE 22 27 SEND OSC OUY 23 fonmmy
———1425 TRO MR 21 b Gnp osciN22 158 MHz
SEAIAL -_‘___‘_Dcmsru
QUTPUT FOR LOWEST POWER X
ING403 TBAL-TBRE INPUTS SHOULD HAVE 1008

IcL7108
CMOS UART PULLUP RESISTORS TO 5V CMOS A/D CONVERTER

Fig. 4-20. A circuit diagram for a UART-to-ICL7109 A/D converter interface for remote
ing of volt

If the circuit shown in Fig. 4-20 is used for remote data acquisi-
tion, the converter will transmit information through the UART
after each conversion, so it is not necessary to send a signal to the
UART that will be used to start a conversion sequence. While this
may appear to be an asset, it does cause some problems. For exam-
ple, if you were able to look at the stream of bits, you would see
two transmissions close together; a space, two transmissions close
together, another space, two transmissions close together, and so on.
The two close transmissions are the low-byte information, and the
high-byte information, while the space is the period required for
the next conversion to be completed. Unfortunately, the receiving
device cannot “look” at the serial stream of bits in this way, so it
has no way of telling which transmission is the high-byte, and which

176

G

one is the low-byte, or of making sure that data acquired is from
the same conversion. While the converter is continuously convert-
ing and transmitting information, you cannot easily interpret the
information.

The continuous conversion problem can be overcome by control-
ling the state of the RUN/HOLD input line of the ICL7109. You
may recall that this input could be used to initiate single conver-
sions, upon the request of the computer. Even in remote data ac-
quisition applications, the RUN/HOLD line may be controlled by
the computer, simply by connecting it to one of the data outputs
of the UART receiver. Now, a control word may be transmitted to
the UART to control the operation of the ICL7109 A/D converter.
You must remember, though, that the converter will continue to
perform conversions for as long as the RUN/HOLD pin remains
at a logic one. A control program that may be used with a com-
puter-based USART to control a remote UART-based A/D con-
verter is listed in Example 4-9.

There are some other important points that you should be aware
of when examining the listing in Example 4-9. The USART is pro-
grammed in the first few steps. The OUT 5,0 command has been
used in our system to generate a RESET pulse for the USART, and
you should understand how this is done by using a device address,
and the OUT function pulse. The OUT 6.0 command causes eight
logic zero data bits to be transmitted to the UART, clearing the
RUN/HOLD input to the ICL7109, placing the converter in the
hold mode. The Q =INP(6) command reads the contents of the
USART receiver, clearing the RxRDY flag, so that it is in the cleared
state for the first data transmission to the USART. The OUT 6,1
command transmits a logic one to the least-significant bit in the
UART receiver, with logic zeros being sent to all of the other bits.

Example 4-9. A Remote A/D Converter Control! Program

10 OUT 5,0

20 OUT 7,206

30 OUT 7,21

40 OUT 6,0

50 REM CONTROL SEQUENCE

60 Q=INP(6)

65 OUT 6,1

70 1F (INP(Z) AND 2)=0 THEN 70
80 A=INP(5)

90 IF (INP(7) AND 2)=0 THEN 90
100 B=INP(6)

120 OUT 6,0

140 PRINT (A AND 15):PRINT B;
145 V=({(A AND 15)*256)-B)*.0006457:PRINT V
150 GOTO 60

177

This places the ICL7109 in the run mode, so that a conversion is
performed. At the end of the conversion, the converter strobes the
UART in the proper way, transmitting two data bytes through the
UART, to the USART that is interfaced to the computer. In this
program (Example 4-9) the generalized USART I/O subroutines
were not used, since the additional time required to process the
GOSUB and RETURN commands could cause the computer to miss
the second transmission from the remote UART. Two separate sets
of commands are used in the main program to receive the informa-
tion from the UART.

After the two bytes of information have been received, the
RUN/HOLD signal is changed to a logic zero, through a new
transmission from the computer to the UART. This places the con-
verter in the hold mode, so that no further conversions are per-
formed. We strongly suggest that you use the 110 b/sec data trans-
mission rate for communications under the control of BASIC-
language programs, since faster data transfer rates may mean that
assembly-language programming will be required so that the TRS-
80 can keep up with the information that it is to receive.

In this example, the RUN/HOLD line will be asserted, or placed
in the run mode state, for longer than is required for a single con-
version, so additional bytes of information will be transmitted to
the USART, two per conversion. The program does not use these
additional bytes, but they are transmitted to the USART, which
receives them. This is the reason why the RxRDY flag of the USART
had to be cleared prior to the start of a conversion sequence; the
flag would be set to indicate that these data bytes had been re-
ceived by the USART. Since these bytes are not useful, the flag
is cleared so that the software ignores their receipt. To prevent the
multiconversion problem, additional circuitry may be added to the
UART-converter circuit, so that only a single conversion is per-
formed, generating only a single set of data byte transmissions to
the USART. The required additions are diagrammed in Fig. 4-21.
The positive-going edge of the least-significant data byte of the
UART receiver triggers the monostable, clearing the SN7476 flip-
flop. This places the RUN/HOLD input in the logic one state,
starting a conversion. At the end of the conversion, the STATUS
signal clocks the flip-flop, returning the RUN/HOLD input to the
logic zero state, which places the converter back in the hold mode.
At the end of the conversion, the information from the A/D conver-
sion is transferred into the UART, one byte at a time, and trans-
mitted to the USART. No other transmissions, or conversions take
place. The same program listed in Example 4-9 may be used to
control the modified interface, since the LSB of the UART must
be returned to its logic zero state before the conversion-triggering

178

2

<Gt

sequence may be restarted. In this configuration, the LSB of the
UART receiver has been dedicated to controlling the A/D con-
verter, but the other seven bits may be used for any other control
purposes.

There is one other way in which the ICL7109 may be controlled
by the UART. This uses the data ready flag of the UART receiver
to start the conversion sequence, in place of one of the output bits.
The positive-going edge of the data ready flag signal is used to
trigger the monostable that clears the RUN/HOLD signal to the
ICL7109. This new control signal takes the place of the UART

SN7476
45—t
Tk
STATUS
RUN/HOLD
PIN 26 ON
ot ICL 7109
Ap
B I 14
— 2
UART RBRO 1

£A

Fig. 4-21. A single conversion control circuit for the ICL7109, so that it may be controlled
by the least-significant bit of the UART receiver chip.

SN74123

RBRO line that is shown in Fig. 4-21. If only the connection to the
data ready flag signal is made, only one conversion will take place,
since there is no provision for clearing the UART data ready flag.
To clear this flag properly, the Q output from the SN74123 mono-
stable is connected to the data ready reset input of the UART re-
ceiver, pin 18. Now, when a character is received by the UART,
the positive-going edge of the data ready flag triggers the mono-
stable so that a conversion is started. At the same time, the UART
data ready flag is cleared, so that the UART is ready to signal the
receipt of another character. In this example, there is no relation-
ship between the value (code) of the character received, and the
starting of a conversion/data transmission sequence. The receipt
of any character, or code, by the UART receiver, will start the con-
version and information transmission sequence. If this technique is

179

Example 4-10. A UART Control Program for the ICL7109
A/D Converter

10 OUT 5,0

20 OUT 7,206

30 OUT 7.21

40 OUT 6,0

50 FOR T=0 TO 300:NEXT T

60 Q=INP(6)

65 OUT 6,1

70 IF(INP(7) AND 2)=0 THEN 70
80 A=INP(6)

90 IF (INP(7) AND 2)==0 THEN 90
100 B=INP(6)

140 PRINT (A AND 15);:PRINT B;
145 V=(((A AND 15)*256)- B}*.0006457:PRINT V
150 GOTO 60

used, all eight outputs of the UART receiver may be used for con-
trol purposes. A simple control program is shown in Example 4-10.

There are some important differences between the programs in
Examples 4-9 and 4-10. Since the program in Example 4-9 uses the
state of one of the bits of the receiver to trigger a conversion, the
bit must be set to a logic one, and then reset to a logic zero, so that
a positive-going edge is generated properly. In Example 4-10, the
states of the individual bits at the outputs of the receiver are un-
important, since it is the receipt of the transmission that triggers a
new conversion. In Example 4-10, the OUT 6,0 command at line
40 causes the outputs of the UART receiver to be cleared to logic
zero, but it also triggers a conversion sequence. A time delay is
placed in the program to allow for the time that it will take for
the ICL7109 to perform the conversion, and to transmit the infor-
mation to the USART. After the time delay has elapsed, the RxRDY
flag of the USART is cleared. This conversion/transmission sequence
was a “dummy read,” since we were only concerned with the clear-
ing of the UART receiver outputs, and not with the result of an
analog/digital conversion. The RxRDY flag in the USART is cleared,
so that the computer will ignore the receipt of this “dummy” in-
formation by the USART. The main control steps in Example 4-10
contain only one output command, since the data ready flag of the
UART receiver is used to control the conversion. Again, the eight
data bits of the receiver are not used in any way, and they may be
used to control other I/O devices. By way of an example, the pro-
gram shown in Example 4-11 shows how the bits of the UART re-
ceiver may be incremented from 0 to 255, while the A/D converter
is being controlled independently of the data bits.

While this method of controlling the A/D converter does make
all eight data bits of the receiver available for other purposes, it

180

L

Example 4-11. A UARYT Control Program for Independent
Input/Output Functions

10 OUT 5,0

20 OUT 7,206

30 OUT 7.21

40 OUT 6,0

50 FOR T=0 TO 300:NEXT T

55 FOR M=0 TO 255

60 Q=INP(6)

65 OUT 6,M

70 IF(INP(7) AND 2)=0 THEN 70
80 A=INP(6)

90 IF (INP(7) AND 2)=0 THEN 90
100 B=INP(6)

140 PRINT (A AND 15);:PRINT B;
145 V=({(A AND 15)*256)+ B)*.0006457:PRINT V
150 NEXT M

160 GOTO 55

does have a distinct disadvantage, since the receipt of any infor-
mation by the receiver will trigger a conversion sequence. Even if
you simply wanted to update the information output by the receiver,
a conversion would be started by the receipt of the new informa-
tion. This limitation may be overcome without much difficulty, if
you simply remember to do a “dummy” read of the USART re-
ceiver register, prior to the start of a “real” conversion sequence.
The dummy read operation will clear the RxRDY flag of the USART
so that the computer will ignore the information transmitted to the
USART when you simply wanted to update the UART receiver
outputs.

UARTs AND DIGITAL/ ANALOG CONVERTERS

The receiver portion of a UART chip may be used quite effec-
tively to provide eight bits of information to the inputs of an 8-bit
D/A converter, so that an analog voltage may be generated in a
remote place, perhaps to control a servo motor, or other voltage-
dependent device. For example, an 8-bit D/A converter such as the
NES018 can be controlled simply by connecting the eight data in-
puts to the eight data outputs on the receiver side of the USART,
MSB to MSB, and so on. The NE5018 has an internal latch, but it
is not necessary to use it, since the UART receiver outputs are
latched in the receiver buffer register. The NE5018 latch enable
(LE) input must be grounded to disable it. The information pre-
sented to the D/A converter inputs is simply changed by trans-
mitting a new 8-bit data word to the UART receiver. The UART re-
ceiver outputs are not cleared when a new data word is received,
thus if the 8-bit data word, 10101100, is transmitted to the UART,

181

and then followed by another transmission of 10101100, there would
be no change in the UART receiver outputs when the second
10101100 is received. This is an important point, since it means that
the UART could control an 8-bit D/A converter, as well as an
ICL7109 A/D converter.

To control the A/D converter, a new transmission is sent to the
remote UART. The data ready flag of the UART starts the conver-

sion/transmission sequence. To avoid disturbing the eight bits of.

information in the buffer register of the receiver that are being
used by the D/A converter, you simply retransmit the same infor-
mation to the receiver. Thus, the only effect is to pulse the UART
data ready flag output, starting an A/D conversion. Likewise, when
it is necessary to update the information presented to the D/A con-
verter, information from the resulting A/D conversion is simply ig-
nored by the computer.

The control of D/A converters with more than eight bits may
present some problems, since only eight bits may be transmitted to
the UART at one time, and the UART only has eight parallel data
outputs, in any case. The problem of communicating between an
8-bit microcomputer and a 10-bit D/A converter was readily over-
come through the use of a double-buffering circuit, shown in Chap-
ter 2. Through the use of double buffering circuitry, the 8-bit com-
puter was able to transfer eight bits at a time to a 10-bit (or larger)
converter, finally transferring all of the bits to the converter inputs
at the same time, using a second set of latch chips. The computer
was able to transfer eight bits of information on the data bus, as
well as generate the necessary control signals. Unfortunately, the
UART only has eight outputs.

The output bits of the UART may be divided into various groups
so that one group provides the information that is to be used by
the converter latches, while another group provides bits that may
be decoded to provide control functions. The circuit shown in Fig.
4-22 illustrates one way in which a 12-bit parallel transfer may be
implemented. In this case, four bits are used to transfer information
to the three latches, while the remaining four bits are decoded to
provide the control signals that strobe the various latches. The dou-
ble buffering is provided by the final 12-bit latch that is controlled
by the “2” output of the decoder. The “6,” “5” and “4” outputs of
the decoder control three 4-bit latches. This circuit is controlled
by the UART receiver outputs which are in turn controlled by the
serial transmissions from the USART. It is your responsibility to
develop the software to provide the 4-bit “nibbles” in the proper
sequence, while switching the control bits in the proper sequence.
The sample program in Example 4-12 provides the steps that are
necessary to transfer a 12-bit data word, in parallel, to an external

182

g

<

12-BIT PARALLEL OUTPUT

LSB MSB SN7475 (ALL)

e i ke

4

- - 13 2 1
23 6 17
4°<3
sslisliole |,
— 6 5
13
= L
267
SN74154 |
2l o l
2], 518
21 AE
a12
LsB MSB 19 ;
SERIAL IN UART RECEIVER 18 0

Fig. 4-22. A control circuit that allows the UART to output more than eight bits from the
receiver section.

device, probably a D/A converter. The standard USART output
subroutine has been used, and it is assumed that the USART has
been properly initialized. The value of M is the value of the most
significant four bits, divided by 256, while the value of L is the
value of the eight least significant bits, You should be able to “sepa-
rate” a large value into these bytes without difficulty. In this short
program, the unwanted bits have been “masked” with AND instruc-

Example 4=12. A Multibyte UART Transfer Control Program

500 TX=0: GOSUB 1010

510 TX=((M AND 15) OR 80):GOSUB 1010

520 TX=(M AND 15):.GOSUB 1010

530 TX=((L AND 15) OR 64): GOSUB 1010

540 TX=(L AND 15:GOSUB 1010

550 TX=={({(L AND 240)/16) OR 96): GOSUB 1010
560 TX=((L AND 240)/16): GOSUB 1010

570 TX=32: GOSUB 1010:TX==0: GOSUB 1010
580 END

1010 OUT 6,TX

1020 IF (INP(7) AND 1)=0 THEN 1020
1030 RETURN

183

tions to set them to zero, while the individual control bits have been
set to logic one by using OR instructions. Since the SN7475 latch
circuits operate by latching the information present at their inputs
at the negative-going edge of the clock, or latch enable, pulse, the
four bits of data must be stable during this pulse transition. For ex-
ample, the TX=((M AND 15) OR 80 sets the 4-bit word to be
transmitted in the four least significant bits, and then sets the bit
pattern 0101 in the four MSBs. This will enable latch #5, when the
UART receives the composite 8-bit data word, 0101 XXXX, where
the X bits represent the actual four bits of data. The next step,
TX=(M AND 15) removes the control bits, while maintaining the
data bits. This causes the latching to take place at latch #5, when
this new composite data word, 0000 XXXX is received by the UART.
The other two nibbles are handled in a similar manner. The divide-
by-16 operation is used merely to shift the four most significant
bits into the four least significant bit positions. Finally, the TX=32
command sets up the control instruction that will cause the 12-bit
latch circuit to be enabled, while the TX=0 command will cause
the latching action to take place, once these commands are trans-
mitted to the UART, in sequence. Other types of control programs
are possible, but this example clearly shows what is happening.

The nibbles are transferred to the first individual set of 4-bit
latches in any sequence, as long as all of the needed information
has been transmitted prior to the activation of the 12-bit latch.
Some trade-offs are possible here. It would have been fairly easy
to build a similar circuit that uses 6-bit latches, with two of the
UART receiver bits being set aside for control purposes. Other vari-
ations are possible, but the technique is the same, using some bits
for information transfer, and the remaining bits for control. The
four-bit latch example shown in Fig. 4-22 contains other control
outputs that may be used for other purposes, perhaps to transfer
information to latches for seven-segment displays, or other uses.
If this circuit and program are used with the UART that is also
controlling an ICL7109 A/D converter, then each transmission to
the UART will initiate a conversion/transmission sequence. Just re-
member to clear the computer USART RxRDY flag with a dummy
read of the receiver input port, prior to any request for a “real”
conversion. This allows you to ignore the conversions that take place
during transfers to the latches.

MULTIPLE UART SYSTEMS

There are many cases in which a number of UARTs may be re-
quired to communicate between several remote sites, and a central
computer. In general, the UARTs cannot share a “party line,” in

184

p oy

<

which several UARTs have been connected to a single set of lines
for the transmitter, and a single set of lines for the receiver. If this
type of a scheme was used, there would be no way of identifying
which UART was to receive the information placed on the line by
the USART, and there would be no way in which the computer
could identify which UART was transmitting information to it.
Thus, when individual UARTS are used, a separate set of communi-
cation lines for each one is required. This does not mean that there
must be a USART, and associated circuitry, for each of the com-
munication links, since the computer could only communicate with
one UART at a time. There are various switching methods that may
be used to multiplex a single USART among a number of communi-
cation loops. One such circuit is shown in Fig. 4-23. In this circuit,
four-pole single-throw relays are used to connect the particular
loop, A, B, or C, to the conversion circuits that are connected to
the computer USART. Each relay must be driven by a decoder/

+ O 3’1" [
A !
-0 3’(o
i TTL-TO-20mA
|
CURRENT +0 : 7o ;
LOOPSTO B H H FROM
! . USART
RECEIVERS -0 : o -
3 1
1
+O i ; o]
c ' i :
-0— : + ol o
i i i
! H :
i i i
3 : :
+0 o l :
A A
-0 1’!’ o t :
' i | 20mA-TO-TTL
1
CURRENT +o : o : e
LOOPSTO B ; ! ! > TO USART
TRANSMITTERS | -0 " :{‘:' o— -
1
i 3 t
— b]
c oo
- O } : :fr o
! !

g CHANNEL
SELECT
T

Fig. 4-23. Block diagram of typical 20 mA current loop multiplex system.

185

driver circuit, so that the computer can easily control the loop that
it is to be communicating over. Only one 20 mA-to-TTL converter
and one TTL-t0-20 mA converter are used in this circuit, but one
relay, plus driver circuit, is required for each loop. Of course, only
one set of relay contacts may be used at one time.

An alternate multiplexing circuit is shown in Fig. 4-24. Here,
each loop has been provided with a 20 mA-to-TTL or TTL-to-20 mA
converter, as appropriate. The TTL signals to and from the USART
are multiplexed, or switched, between the different loops using

TTLTO-20mA SN7442
+
:1_____]_—1 -
- 2l
312
10 + 12 FROM
REGEIVER -3 O pb—— USART
LOOPS - R DA XD I
+ ouT 12
- AB G 5 13
15114 113
18 2 02
15 3 Dt) DATA
BUS
10 & Do
20 mA-TO-TTL. SN74151
+ :[—'_}—4 o SNT47E
- 3l
2
FROM + 2 5
TRANSMITTER 3 ' TO USART RxD
LOOPS - 4
¥
7
T e
= TICH

Fig. 4-24. Schematic diagram of a multiplexer circuit that multiplexes TTL
s e

3

standard SN7400-series integrated circuits. The SN7442 decoder
works quite well as a one-line-to-eight-line demultiplexer, when the
D input is wired to the transmitter data output, and the decoder
outputs are routed to the various receiving devices. An SN74151
multiplexer is used to feed serial information from one of eight
possible transmitting devices, to the USART serial input. Since the
computer will probably be transmitting and receiving information
from the same UART, the circuit in Fig. 4-24 illustrates how the
multiplexer and demultiplexer circuits may be controlled by the
same output port. To select a channel, the computer simply outputs
the proper channel code to the output port, port 12. Up to eight
individual channels may be selected in this scheme. Larger decoders
and multiplexers could be used to expand the number of communi-
cation channels, almost indefinitely. In the circuits provided in Figs.

186

4-23 and 4-24, the current sources and current regulators have not
been shown, for clarity.

AN ADDRESSABLE UART

The ideal UART-based communication system, for transmission
of information between the TRS-80 computer, and remote instru-
ments or controllers, would consist of a single set of lines (two cur-
rent loops), with a number of UART-based controllers along the
lines. Each UART would have a “name” that it would respond to,
ignoring all other names and commands meant for other UARTs.
In a system such as this, the computer could address individual,
remote stations, causing specific actions to take place, without af-
fecting other stations on the communication loops. Such systems
have been developed, probably the most successful one being the
SERDEX system developed by Analog Devices, Inc., in which
ASCII commands are used to control remote transmitters and re-
ceivers. Unfortunately, these modules were a bit complex to use,
confronting the user with literally dozens of wire-wrap pins that
had to be interconnected with the instrument that was to be con-
trolled. It would not be difficult to design an ASCII-based controller
for a UART, but a simpler solution is at hand, that simplifies the
communication problem, so that a number of UART-like devices
may share a communication channel.

The Motorola MC14469 Addressable Asynchronous Receiver/
Transmitter, or AART, is contained in a 40-pin integrated circuit.
This chip provides many UART-like functions, so that it communi-
cates with computers in asynchronous-serial format, but it does not
contain all of the buffer loading, buffer checking, and error detect-

BLOCK DIAGRAMS
PIN ASSIGNMENTS

Recaive Transmit

erary

1ot yppiien
2oz €038
I0Rmer c1[338
41rjao ca{™ya7
s [Tjat c3fas
§[jaz ca[35
7 a3 cs5[334
5[jae o633
9 "as cs{T132
10]as vap]0
1 ine Sond[7330
1201 so{y29
1 Jip2 s1{ =8
1 io3 s2[T327
15 [o4 53{77]26
16 ios saf 25
17 hos ss[J2a
w02 se{T23
19 [T}Rs s7Ee2
20[fvss TAG[J21

........

Courtesy Motorola Semiconductor Products, inc.
Fig. 4-25. Block diagram and pin configuration of the MC14469 AART chip.

187

ing flag circuits that are used by a regular UART chip. This pro-
vides some additional pins that are used on the AART for various
I/0O and control signals. The MC14469 contains an oscillator, so that
an external crystal may be used to generate the clocking needed
for the timing of the bit rate. The clock frequency is 64-times the
data rate. Thus, a 307.2-kHz crystal will allow the AART to operate
at 4800 b/sec transmission and reception rates. An external clock
signal may be applied to the chip, in place of a crystal. The crystal
connections are shown in the pin configuration given in Fig. 4-25.
If an external clock is to be used, its signal is connected to pin 1,
with pin 2 unconnected. A RESET signal at pin 3 is used to initially
reset the chip, once power has been applied. The AART requires
a +5-volt power supply, and a ground connection.

Using the Addressable UART (MC14469)

The MC14469 is truly an addressable UART, since it can be
wired to recognize a 7-bit address that is sent to it by the computer.
The 7-bit address is actually the seven least-significant bits of a
regular 8-bit transmission, in which the most-significant bit is a
logic one, indicating to the receiving AART that it is address infor-
mation. The received address is compared to a 7-bit address that
has been hardwired to address input pins 4 through 10 on the
AART chip. If the addresses do not match, the AART remains in
the standby mode. If an address match takes place, then the AART
is activated, as signaled by a logic one pulse at the valid address
pulse (VAP) output, pin 31. Once the chip has been activated by
the proper address, several different actions are possible, but we
will continue to explain the operation of the receiver section of the
AART, first.

The address information may be followed by either data, or by
another address. In the serial stream of bits transmitted to the
AART, the most-significant bit is used to differentiate between
commands and addresses. If a valid address (128 through 255, or
10000000, through 11111111.) is followed by a command word
(0 through 127, or 00000000, through 01111111,), the command
bits are transferred to the AART command output pins, 33 through
39. Since the MSB distinguishes address information from com-
mands, only the seven LSBs are output at the command pins. As
was the case for the UART outputs, these outputs are latched. To
indicate that new command bits have been latched at these pins
by the AART, the command strobe (CS) output, pin 32, provides
a short logic one pulse. All transmissions to the AART chip must
contain eight data bits, an even parity bit, and one stop bit.

Before an AART may be used in a communication loop with a
computer-controlled USART chip, the USART must be configured

188

Aﬁ&

for the proper data format, and the proper data transmission/
reception rate. This means that the USART must be configured
with a mode control instruction of 254, and a command instruction
of 21. These commands may be output to the USART chip simply
by typing OUT 7,245 ENTER, and OUT 7,21 ENTER, into the
TRS-80, so that they are immediately executed, to initialize the
USART. These initialization steps could be contained in a program,
but they have been presented in this way to show you that there
are other solutions to the problem of initializing the USART, and
other I/O chips. Of course, the USART must be reset, so that it
can accept a new mode control instruction. Once the USART has
been initialized, transmissions to the AART may be started. The first
thing that must be done is to transmit the correct AART address,
in this case, the address 255 has been chosen. Once the AART has
received and matched the address, additional transmissions may
be sent to the AART to control the command data outputs. The
program listed in Example 4-13 provides an incrementing count
for the seven command data outputs, once the AART has been en-
abled. The AART address is entered from the keyboard, starting

Example 4-13. A Simple AART Control Program

100 INPUT “ID CODE";C
110 TX=C: GOSUB 1010
120 FOR Y=0 TO 127
130 TX=Y: GOSUB 1010
140 NEXT Y

150 GOTO 120

1010 OUT 6, TX
1020 IF (INP(7) AND 1)=0 THEN 1020
1030 RETURN

the program. When the MSB in the serial transmission to the AART
is a logic one, the AART treats the data bits as if they are address
bits. To keep the incrementing count from setting the MSB to a
logic one, the incrementing count has been limited to between 0
and 127, or 00000000 and 01111111, if all eight bits are considered.

Once an address has been received and matched by an AART
chip, it will remain activated, accepting command data, as long as
the MSB is a logic zero. Thus, if several command data bytes are
to be transferred to an AART, it is only necessary to send out the
proper address once, at the start of the transmission. Once an AART
has been activated, it is deactivated, or turned off, by the receipt
of any address information, even if its own address is retransmitted
to it. Thus, to deactivate an AART, you simply transmit an address,
even its own address, on the communication loop.

189

If the AART has been reset, and if the program in Example 4-13
is run, the seven command data outputs on the AART chip will be
incremented. However, if you stop the program with the BREAK
key on the TRS-80, and restart it again (RUN 100), the command
data outputs will not be incremented, even when the correct ad-
dress is supplied. Why is this observed? If the program is stopped
when the AART is selected, and address information is transmitted
to it, even if it is its own address, the AART deactivates itself. If
the proper address is transmitted to it again, after it has been de-
activated, the chip recognizes the address as matching its hard-
wired address, and it resumes incrementing the count. This is a very
important point that you must keep in mind if you choose to use
AART chips. Once they are activated, any address information will
deactivate them,

If you are going to transfer information to the AART command
data outputs, the AART will have to be activated with the proper
address. Even if the computer will only be transmitting information
to the AART every minute or so, it will remain activated until an-
other address is received. In some cases, you may find that it is ad-
vantageous to deactivate the AART between data transfers, rather
than keeping it active, and trying to remember which AART is ac-
tivated, and which ones are not. To deactivate an AART chip, you
can simply: (1) transmit an address to activate another AART, (2)
transmit the AART’s own address, or (3) transmit a dummy address
that does not correspond to any AART in the communication loop.

Now, let us examine the AART transmitter section. This section
consists of 16 data inputs, so that a 16-bit data word may be trans-
mitted by the AART to another asynchronous-serial device, such
as a USART, or UART. Of course, the USART cannot accept a
16-bit serial transmission, so the AART formats the bits into two
standard 8-bit bytes, and it then transmits each byte, along with
the necessary start bit, parity bit, etc. The 16 bits are divided into
an input data byte, pins 11 through 18, and a status byte, pins 22
through 29. These bits may be used for any type of binary informa-
tion, ASCII codes, and so on, depending upon your particular ap-
plication. The bits have been labeled as input data byte and status
byte just so that they can be easily referenced. A transmission se-
quence is started by applying a short logic one pulse applied to
the AART send input, pin 30. The input data byte is transmitted
first, followed by the status byte. Since some time is required for
the transmission of the first byte, the status bits are latched within
the AART, by the send pulse, so that there is no chance for them
to change once the transmission sequence has been started. To pre-
vent many different AARTs from transmitting at the same time, the
AART must be in the active mode for the send pulse to have any

190

}i’f

Lee

Fo -

effect upon the chip. This means that the proper address must be
used to select an AART chip before a transmission sequence is
started. This prevents those AARTs in the standby mode from trans-
mitting information on the communication loop.

Besides starting the transmission sequence, the send pulse also
has another function in an active chip; it deactivates the chip, plac-
ing it in the standby mode. This means that once an AART chip has
been properly addressed, and is active, only a single transmission
of the input data and status bytes may take place. Of course, the
chip may be reactivated simply by retransmitting its address to it
again. You may be wondering how the transmission of information
from the AART to the computer is coordinated with the activation
of the AART chip, itself. There are a number of simple schemes
that may be used to control the transmitter section.

The simplest control scheme is to connect the valid address pulse
output to the send input. Thus, whenever a valid address is received,
the transmission of the input data and status bytes is started. To
transmit the 16 bits of information to the computer, the computer
simply polls the AART, by transmitting the correct address to it.
Unfortunately, this mode does not allow any information to be
transferred to the command data outputs, since once the address is
received and matched, the transmission starts, deactivating the chip.
If you wish to retain this capability, simply connect the command
strobe output to the send input. Now, the transmission sequence
will only be started when a valid address has been received, and
when the command data is updated. Of course, once the transmis-
sion sequence starts, the chip is deactivated. The deactivation of
the chip does not affect the transmission of the 16 bits of informa-
tion. Once started, the entire transmission takes place. It would not
be a good idea to connect the send input to a control signal over
which you have no control. For example, the send input should not
be connected to a limit switch, so that transmissions would only
take place when a certain level of solvent in a vat has been reached.
Since you would not have any control over this signal, transmissions
might take place at some times, deactivating the chip, while no
transmissions would take place at other times, possibly leaving the
chip activated. If the chip was left activated when it was not sup-
posed to be, the next transmission of its address would deactivate
it, as was the case prior to our discussion of the transmitter section.
If the liquid level is to be checked, a better way to test the limit
switch would be to connect its output to one of the input data, or
status bits. Each selection of the AART chip would transmit this
status information to the computer so that it could be checked.

A short program has been provided in Example 4-14, showing
how the remote AART may be controlled to initiate transmissions,

191

Example 4-14. An AART Transmitter Control Program

300 TX=200: GOSUB 1010

305 TX==0: GOSUB 1010

310 TX=255: GOSUB 1010

315 A=INP(6)

320 TX=RND(127); GOSUB 1010
330 IF (INP(Z) AND 2)=0 THEN 330
340 M=INP(6)

350 IF (INP(7) AND 2)==0 THEN 350
360 L=INP(6)

370 PRINT M;:PRINT L

380 FOR T=0 TO 300: NEXT T: GOTO 310

1010 OUT 6,TX
1020 IF (INP(7) AND 1)=0 THEN 1020
1030 RETURN

through the use of the command strobe pulse. Recall that the com-
mand strobe pulse signals the availability of new command infor-
mation. The first steps in the program send a dummy address and
dummy information to the AART, to deactivate it, if it is in the
activated mode. Next, the proper address is sent to the AART to
activate it. An additional step has been included, to clear the
USART RxRDY flag, but this is optional. A random value is com-
puted between the limits 1 and 127, and this is sent to the AART
as command information. The random value is strobed into the
command data latches, generating a command strobe pulse, which
starts the transmission of the input data, and status information to
the computer. The standard USART transmitter subroutine has been
used to control the AART, but the commands that are used to con-
trol the USART receiver are “embedded” right in the program, so
that no time is lost calling and returning from a general-purpose
USART receiver subroutine. At a data rate of 150 b/sec, this scheme
worked quite well. A schematic diagram of the circuit that was
used is provided in Fig. 4-26. Note that an external oscillator was
used, and that the MC14469 transmitter output (TRO) is the in-
verse of what has been seen for UART and USART chips. Thus,
this signal is inverted.

The timing of the send input is a bit critical, so some discussion
of this signal is necessary. After a valid address pulse, and after a
command strobe pulse, the send input is enabled for eight-bit times.
Thus, for a 150 b/sec transmission rate, the send input is enabled,
or active, for about 53 milliseconds after the VAP, or the CS, signal
has been generated. This is one reason why it is recommended that
either the VAP or CS signal be used to strobe the send input. The
send input senses a positive-going edge. The timing relationships
between the VAP and CS signals, and the internal send enable sig-

192

A

v

e

S
‘R}gﬂ

<

+5V
MC14468 AART
40

41a0 100
5fa1 D1 |12
6 13
+5V 10000 7 A2 102 "
O—AN A3 1D3
8| s o4 115 INPUT DATA
91 ns os 18
91 a6 1D6 Fl
1
o7 P2—
ADDRESS = 255,
91co sof2
384 o128
3o s2 }3L
COMMAND 36 26
c3 s3
OUTPUTS STATUS
—351cs sal®
31cs S5 p2
331cs se k28
o 22
| 25 cs 9 FROM USART
1
e e —
SEND Mt
9600 HZ *osci & 1[>02—TORU%ART
CLOCK X
SN7404

F

Fig. 4-26. Schematic diagram of a fest circuit for the MC14469 AART chip.

nal, are shown in Fig. 4-27. Note that the VAP and CS signals are
at least partially coincident with the internal send enable signal.
This allows either the VAP, or the CS signal to be used to pulse
the send input.

If a send signal is coincident with internal send enable signal
during the 8-bit periods shown in Fig. 4-27, the transmission starts
immediately. What happens if a send signal is received either
when the AART is in the standby mode, or between an address for
the AART, and the command word that follows it, when the inter-
nal send enable signal is not active? The send input is always active,
and sensitive to positive-going logic signals, as well as to noise. The
overall effect is this: if the positive-going edge of a send signal is

193

ADDRESS TRANSMISSION COMMAND TRANSMISSION

SERIALINPUT———I[]“H”“ ”””“l”
VALID ADDRESS n
PULSE (VAP)
INTERNAL l I l I
*SEND ENABLE™
CHIP ENABLE ——-—‘———J
COMMAND STROBE j

TIME s

Fig. 4-27. Timing diagram for the VAP and CS pulses, showing the “active’” periods for

the send signal.

detected when the internal send enable signal is inactive, the AART
will “remember” this request to transmit, and the transmission will
be started when the internal send enable signal is again active.
There are several cases in which this might take place:

1. A send signal is detected by the AART when it is in the standby
mode. When the AART is next selected through an address
match, the 16 bits of data will be transmitted. The chip is
then deactivated (standby).

. A send signal is detected by the AART between the receipt
of the address information that selected the chip, and the
command information that is to be sent to it shortly. When the
command information has been received and latched at the
seven outputs, the transmission will be started, and the chip
will be deactivated.

. A send signal is detected some time after a command word
has been received, but while the chip is still active. The trans-
mission will be initiated when the next command word has
been received, and the bits latched. The chip will be deacti-
vated.

. A send signal is detected some time after a command word,
or after an activating address has been received, but the chip
is deactivated by the receipt of a nonmatching address before
a transmission is initiated. The “send request” is saved, and the
next activation of the chip will start the transmission, and the
chip will be deactivated.

We hope that you will see that when the send input is used with
control signals other than VAP and CS, its control can be complex,
and it is not always possible to tell when the send signal was de-
tected by the AART. We strongly suggest that the simple control

=

scheme, in which the VAP or CS signal is used, be used for all ex-
cept the most specialized applications. For example, we don’t think
that you would want to use an end-of-conversion flag in an A/D
converter to pulse the send input. If the conversion took a few
hundred milliseconds, it would not be easy to determine what ac-
tion would have to be initiated at the AART to read the data. In
fact, it may have already been sent to the computer, if the end-of-
conversion flag happened to coincide with the VAP or CS signal!
Rather, we would recommend monitoring the flag, and then acquir-
ing the information from the converter when the conversion process
has been completed.

The use of an A/D converter with the AART is illustrated in
Fig. 4-28. The ICL7109 A/D converter has been chosen again be-
cause of its simplicity and flexibility. In this circuit, the converter
is operated in the free-running mode, with the outputs constantly
enabled. The polarity, overrange, and status flags are also connected
to the AART, so that they may be monitored. The status flag may
be monitored in many ways to indicate that a conversion has been
completed, but since these methods have been described in Chap-
ter 2, we will not review them here. In the present example, the CS
output has been used to trigger the transmission, since there may

+5v FOR ANALOG
o More iCL7109 SIGNAL CONNECTIONS,
4 ao o7 |12 Hstatus
54 a1 106 e NC
+5V 10000 g A2 105 :2 i POL
O A3 1D4 oR
81 s 103 P4 51 g1
31 a5 iz J13 3
L 11 J12 2L 810
1o 818
—co s7|2 91 g RITEE o
— ey 5123 10] g, 5V
FOR —c2 ss 24 1ipg
FUTURE —c3 Y oM -1 P e L
USE N Pt 3128 13] g4
—cs sz j2L 141p3 fmEn P2
—cs 3] L R— 1 P
w N P 1) 5 sl
2os
[] SEND 1
18 FROM USART
T 4 Ri TxD
oser =121 1 2 TO USART
THD o
l SN7404
Fig. 4-28. Using the AART with a 12-bit A/D converter for remot t

195

Example 4-15. An AART/Analog-to-Digital Converter Control Program

300 TX=200: GOSUB 1010

305 TX=0: GOSUB 1010

310 TX=255; GOSUB 1010

310 A=INP(6)

320 TX=RND(127): GOSUB 1010

330 IF (INP(7) AND 2)=0 THEN 330

340 M=INP(6)

350 IF (INP(Z) AND 2)=0 THEN 350

360 L=INP(6)

370 PRINT (M AND 128)/128);:PRINT (M AND 15);:PRINT L
380 FOR T=0 TO 300: NEXT T: GOTO 310

1010 OUT 6,TX
1020 IF (INP(7) AND 1)=0 THEN 1020
1030 RETURN

be additional uses for the seven outputs in the future. A control
program is listed in Example 4-15. This program is very similar to
the one provided in Example 4-14, except that a step has been
added so that the status flag may be displayed, along with the high
byte, and the low byte. If you are interested in the use of the
status signal, we refer you to Example 2-25. The necessary con-
version equation that will display the actual voltage is listed in
Example 4-11.

Party-Line Conirol Systems

One of the reasons why the MC14469 AART device has been
chosen for use in remote interfacing is that a number of these chips
may be connected to the same pairs of transmitter and receiver
communication lines. Each AART may be assigned a different ad-
dress, so that up to 128 different instruments or controllers could
be serviced on a single transmitter/receiver loop. Just as one gate’s
output may be connected to several inputs on other chips, the com-
puter can transmit information to a number of AART chips without
great difficulty. If you choose to use a 20-mA current loop for the
transmission, each optocoupler in the loop will require a minimum
amount of current and voltage. Each of the LEDs will require 20
mA, and each will have a forward (conducting) voltage drop of
about 1.6 to 0.7 volts. Thus, you must be sure that the loop can
handle any additional voltage or current, depending upon whether
you have connected the LEDs to the communication line in paral-
lel, or in series. The series configuration is probably the worst, since
it is like the old Christmas tree lights that were connected in series.
When one bulb burned out, all of the bulbs had to be tested, until
the burned out bulb was found and replaced. Two burned out bulbs
were almost impossible to find. In a parallel scheme, additional

196

g

g,

e

2

current-handling capability may be required at the transmitter.
Of course, we don’t expect that you will be connecting several
dozens of optical coupler LEDs to the transmitter loop. Other trans-
mission schemes may also be used, but most of them require a
common ground signal connection which may induce ground-loop
noise into the communication system.

The loop that allows each AART chip transmitter to communi-
cate with a single receiver presents some problems. For example,
how can all of these outputs be connected to the same line, without
causing some of them to be burned out? If the 20-mA current loop
scheme is used, there are few major difficulties, but not too many
phototransistors can be connected to the same loop. Since current
is flowing in the loop (20 mA) to indicate a logic one, any station
could interrupt the flow to indicate a logic zero. This means that
the photodetectors would have to be connected in series. For three
or four stations, or “drops,” in the line, this shouldnt present too
many difficulties, and a typical loop system is shown in Fig. 4-29.
Of course, the current loop configuration does not require a com-
mon ground, and it isolates the stations, and the computer, from
one another,

Another approach to communicating with a number of stations
involves the use of open-collector drivers. These were discussed
briefly in Chapter 1. The open-collector devices allow the signal
line to “Hoat” at a logic one level, as supplied by a pull-up resistor
at the receiving device. This means that the “normal” condition
for the bus is logic one. To communicate information, the transmit-
ting device pulls the bus down to a logic zero by turning on its open-
collector transistor. The collector is connected to the bus, and it is
pulled down to ground by having current flow through the tran-
sistor. In this way, the transistor appears to be off, or disconnected
from the line, or it appears to be on, providing a logic zero signal
for the line. Many open-collector devices may be connected to the
line, but only one may be conducting at any time. This system also
requires a common ground signal. A typical open-collector system
is shown in Fig. 4-30. Note that coaxial cable has been used, along
with a common ground. For short distances of 10 feet, or so, single
wires may be used, without the need for terminating resistors, al-
through a pull-up resistor is still needed (Fig. 4-31).

When open-collector inverters are used on a bus to transmit the
serial data of the AART, no enabling of the open-collector devices
is required. Since the transmitted serial output (TCO) signal is a
logic zero in its quiescent state, the open-collector output of the
inverter is “off,” or disconnected from the bus.

An alternate approach is to use a balanced line, consisting of a
twisted pair of wires. When such a line is used, standard line-driver,

197

+O)
TRANSMITTER ~

Loor < 4 .
o v :

— DEVICE A K

0 - N s

RECEIVER 7
LoopP -
-0
- R,
N
%
¥
DEVICEB

% .

)

1 v

Ve
v :
DEVICEC
% A
Fig. 4-29. Using a 20 mA current loop r itter/ receiver sch with three stations.

and line-receiver circuits may be used. A typical transmitter/receiver
system is shown in Fig. 4-32. In some applications, shielded, twisted-
pair wires may be useful, to reduce the noise on the lines. Texas In-
struments recommends the use of Belden No. 8227 (shieided), or
Belden No. 8795 (unshielded) wire in these types of applications.
These cables have an impedance of about 100 ohms, so the termina-
tion resistors at each end of the line would be 50 ohms each. These]

STROBE

ARG 598/U

t
LENGTH 100FT | wzsnrana | 5
TTL

INPUT

75

| w2sn7sesig |

Courtesy Texas Instruments, inc.

Fig. 4-30. A simple open-collector line-driver circuit.

198

+56V

SN7405 470Q SN7414

DATA BUS
TRO O 1>c2 ¢ é 1{>02 3>04 DATA

_‘I

o]

(=]
w
S

TRO <>—5DoE

Fig. 4-31. A short open-collector signal line for three AART transmitters.

resistors are used only at the ends of the transmission line. Several
other receivers and transmitters could be connected to this balanced
line for a party-line network. In the USART/AART system, how-
ever, one transmitter feeds many receivers, and many transmitters
feed one receiver, using separate loops. Using the scheme shown
in Fig. 4-32, lines over 1000 feet long are possible. In the transmit-
ter loop of the USART, the INHIBIT and STROBE inputs to the
line-driver and line-receiver circuit may be hard-wired to logic one,
so that they are always enabled.

Ry Ay

! ¥ S
4 Ay b Ry =
SNTST0H OR 110 SN75107A Of 106A
PRt L TWISTED AR 0B A oI
r‘ EQUIVALENT
BALANCED LINE 3
OATA i
DATA
B P a2 ot
2
[IR § SR |
INREIT l
e e e v erd sTROBE
Courtesy Texas Instruments, Inc.
Fig. 4-32. A simple bal d line tr ission system.

The USART receiver loop presents one difficulty. How are the
individual AART transmitter line-driver chips to be enabled in
remote locations? Each line driver may be enabled upon command
from the remote computer, simply by using one of the command
outputs as an enable signal for the line-driver chip. In this way, the
command word that is used to initiate the transmission (CS is con-
nected to send) also supplies the enable signal for the line-driver.
Of course, this bit would have to be reset after the transmission was
completed, to disable the line driver, so that it would not interfere,

199

or conflict with, other transmissions on the loop. If additional trans-
missions are required from the same AART, the line-driver chip
may be left enabled until all of the transmissions have been com-
pleted, or it may be re-enabled, as required. Of course, only one
transmitter may be enabled at any time.

If the command strobe pulse is used to start a transmission, how
can a transmission be blocked when you simply wish to send a
new command data word to the AART to disable the line-driver
chip? Actually, the transmission is started, but the line-driver is
disabled so quickly by the new command data word, that it will
not get through to the transmission line. Thus, the transmission takes
place, but it is not gated through the line-driver circuit. We used
this scheme quite easily with two AART chips, and an open-collector
bus, as shown in Fig. 4-33. The circuit shown in Fig. 4-32 may be
used in the AART-to-USART transmission loop simply by connect-
ing one INHIBIT input to one of the command data outputs. The
other INHIBIT input, and one of the DATA inputs may be hard-
wired to logic one, as may the STROBE input on the line receiver
that is connected to the USART receiver input pin.

I +5V
] Cs 100 D7 50 s7
SEND Al FROM USART
MC14469
CLOCK 0sC 1 TRO
o8 TO USART
ADDRESS 192
SN7403
— cs D0 D7 so .
SEND MC14469
cLOCK 0sC 1 TR0
c6

ADDRESS 255
SN7403

Fig. 4-33. Controlling an open-collector serial bus for multiple MC14462 AART chips.

A multiline control program is listed in Example 4-16. While ran-
dom information is again generated to provide a visual check for
the operation of the command data outputs, output C6 has been
“dedicated” to control the open-collector bus driving chip. To con-
trol the state of the C6 bit, a logical OR operation is used to set the
bit, while a logical AND operation is used to clear the bit. The ran-
dom information is temporarily stored and then used in the various
logical operations so that bit C6 may be cleared and set, as needed.
Note, though, that when the control bit is cleared, the AART ad-
dress must also be output first, to reactivate the chip so that it can
receive the new command information.

200

e

Example 4-16. A Party-Line AART Control Program.
One Bit Used for Bus Control

300 TX=200: GOSUB 1010

305 TX=0: GOSUB 1010

307 INPUT “ID #":N:If N<128 THEN 307

310 TX=N: GOSUB 1010

315 A=INP(6)

320 R=RND(63):TX==(R OR 64): GOSUB 1010

330 IF (INP(Z) AND 2)=0 THEN 330

340 M==1NP(6)

350 IF (INP(7) AND 2)=0 THEN 350

360 L=INP(6)

370 PRINT (M AND 128);:PRINT (M AND 15);:PRINT L
380 TX=N: GOSUB 1010: TX=(R AND 63): GOSUB 1010
390 GOTO 310

1010 OUT 6,TX
1020 IF (INP(7) AND 1)==0 THEN 1020
1030 RETURN

Assembly Language and the USART

There may be times when an assembly-language program to con-
trol the USART is the only answer to communicating with serial
devices at high data rates. Perhaps an ICL7109 converter is set up
to transmit its information through a UART at 4800 b/sec. At this
rate, it is doubtful if the BASIC USART control program would be
able to acquire the two bytes of converter information fast enough
to keep up with the high data rate. To aid you in applications where
this may be the case, we have provided a number of useful assem-
bly-language subroutines in this section. The program listed in com-
pletely assembled hexadecimal form in Example 4-17 is a two-byte
USART receiver subroutine that may be called by a BASIC pro-
gram. The assembly-language program has been written to accept
two bytes of information from the USART, and then store them for
later use, perhaps by some BASIC program. The program uses a
general purpose USART input subroutine, called USART. The
TWOBYT subroutine calls the USART subroutine to obtain a data
byte. When the byte has been received, it is transferred from the
A register of the Z80 to a2 R/W memory location that we have la-
beled, LOCL. In a similar manner, the next byte received from the
USART is transferred to LOC2. These two memory locations may
be accessed through the use of PEEK commands.

Before this assembly-language program may be used, some por-
tion of the R/W memory of the TRS-80 must be set aside for our
use. Thus, when the computer asks, “MEMORY SIZE?” at the start
of operation, you should respond with, “32000.” You may use other
addresses if you have more or less memory, but the addresses in

201

Example 4-17. Assembly-Language Program for Two-Byte USART Inputs

*7DH O0H
7D 00 CD TWOBYT, CALL /CALL THE USART SUBROUTINE
7D 01 32 USART
7D 02 7D 0
7D 03 32 STA /STORE THE RECEIVED VALUE FROM THE
7D 04 64 LOC1 JUSART IN A LOCATION FOR LATER USE
7D 05 7D 0
7D 06 CD CALL JCALL THE USART SUBROUTINE AGAIN FOR
7D 07 32 USART /THE SECOND BYTE
7D 08 7D 0
7D 09 32 STA /STORE IT, TOO
7D 0A 65 LOC2
7D 0B 7D 0
7D 0C C9 RET /RETURN TO “BASIC"
*7DH 32H
[THIS 1S A GENERAL PURPOSE USART INPUT ROUTINE
7D 32 DB USART, IN JTEST THE RECEIVER FLAG
70 33 07 007
7D 34 E6 AN} [MASK 1T
7D 35 02 002
7D 36 CA iz JIF IT 1S ZERO, TEST IT AGAIN
7D 37 32 USART
70 38 7D 0
70 39 DB IN /FLAG IS DETECTED, SO INPUT DATA
7D 3A 06 006
7D 3B C9 RET /RETURN WITH DATA IN THE A REGISTER
*7DH 64H

{THESE ARE THE STORAGE LOCATIONS FOR THE TWO BYTES
7D 64 00 LOCI, 0
7D 65 00 LOCZ, 0

the assembly-language program must be changed, too. Before an
assembly-language program can be called, the low and high address
bytes of the start of the subroutine must be stored in locations 16526
and 16527, respectively.

The BASIC program in Example 4-18 shows how the assembly-
language program may be used. The BASIC program also contains
the necessary steps to transfer the decimal equivalents of the hexa-
decimal instruction codes into their proper locations in memory.
These steps take lines 10 through 120. Except for the commands at
line No. 150 that load the user’s subroutine address into the two
memory locations, and the actual user subroutine call at line No.
180, the program is very similar to other AART control programs
discussed previously. The data bytes are retrieved from R/W mem-
ory by PEEK instructions.

While the USART subroutine in the assembly-language program
is a general-purpose USART input subroutine, this subroutine can-
not be used by itself, being called from a BASIC program to input

202

Rz

a single character from the USART. There are no commands in this
subroutine that allow the data byte, or argument, to be passed back
to the BASIC program, so that it may be used. Instead, the infor-
mation is stored in a read/write memory location, where it can be
accessed with a PEEK command. Two general-purpose assembly-
language USART control programs are provided in Example 4-19.

Example 4-18. Main Control Program. Uses the Assembly-Language
Programs in EXxampie 4-17

10 DATA 205,50,125,50,100,125,205,50,125,50,101,125,201
20 DATA 219,7,230,2,202,50,125,219,6,201
30 N=32000
40 FOR =0 TO 12
50 READ D
60 POKE N-+1,b
70 NEXT |
80 N=32050
90 FOR I=0 TO 9
100 READ D
110 POKE N+ID
120 NEXT |
130 TX=200: GOSUB 1010
140 TX=0: GOSUB 1010
150 POKE 16526,0:POKE 16527,125
155 R=INP(6)
160 TX=255: GOSUB 1010
170 TX=0:GOSUB 1010
180 Z=USR(0)
190 PRINT (PEEK(32100) AND 15);:PRINT PEEK(32101)
200 GOTO 160
1010 OUT 6,TX
1020 IF (INP(7) AND T)=0 THEN 1020
1030 RETURN

These programs may be used at any time for the control of a USART
receiver or transmitter. This doesn’t mean that BASIC cant be used
to control the USART, too. The USART input subroutine, USIN,
performs the same input function as the USART subroutine in Ex-
ample 4-17, except that the resulting value is placed in the “L”
register of the Z-80, and the “H” register is cleared. The final JMP
command transfers control of the program to a portion of the BASIC
interpreter so that the value that was input from the USART is as-
signed the “name” used in the subroutine call, for example, Z, in
the user subroutine call operation, Z =USR(0), assuming this called
the USIN subroutine. The USOUT subroutine operates much like
the BASIC subroutine that performed the same operation. The only
difference is that the value that is to be transmitted may be incorpo-
rated into the user’s subroutine call operation, for example, W =
USR(20). Here, the binary equivalent of decimal twenty would be

203

Example 4-19. General-Purpose Assembly-Language USART
Conirol Programs
/GENERAL PURPOSE USART INPUT SUBROUTINE

*7DH 32H
7D 32 DB USIN, IN /TEST THE FLAG
7D 33 07 007
7D 34 E6 AN {MASK OUT OTHER BITS
7D 35 02 002
7D 36 CA iz JIF NO FLAG, TEST AGAIN
7D 37 32 USIN
7D 38 7D 0
7D 39 DB IN /INPUT DATA BYTE
7D 3A 06 006
7D 3B 6F MOVLA /STORE IT IN REG L
7D 3C 26 MVIH /CLEAR REG H
7D 3D 00 000
7D 3E C3 Jmp /TO RETURN THE ARGUMENT, JUMP TO
7D 3F 9A 9AH /THIS ADDRESS, INSTEAD OF A RETURN
7D 40 OA 0AH

/GENERAL PURPOSE USART OUTLINE SUBROUTINE

7D 41 CD USOUT, CALL JTHIS CALL GETS THE ARGUMENT INTO
7D 42 7F 7FH JTHE H & L REGISTERS FROM “BASIC”
7D 43 0A OAH
7D 44 7D MOVAL JGET THE DATA BYTE
7D 45 D3 ouT JOUTPUT IT
7D 46 06 006
7D 47 DB TEST, N /CHECK THE FLAG
7D 48 07 007
7D 49 E6 ANI /MASK OUT THE OTHER BITS
7D 4A 01 001
7D 4B CA iz /STILL XMTING?, CHECK AGAIN
7D AC 47 TEST
7D 4D 7D 0
7D 4E C9 RET /DONE, SO RETURN

transmitted by the USART. The assembly-language subroutine that
is used to control the USART transmitter must first call a subroutine
that is located within the BASIC interpreter, so that the argument
that is to be transmitted is transferred to the Z-80 H and L registers.
In both cases, when transferring a value to, or from, a subroutine,
the Z-80 H and L registers are used to contain a 16-bit signed num-
ber. Since the USART is an I/O device, and thus limited to values
between 0 and 255, only the 8-bit L register is considered. The H
register may be ignored.

In the transmitter subroutine, once the value in the L register is
copied into the A register, and then into the USART, the subroutine
is simply ended with a return (RET) instruction. These subroutines
are quite useful, and an example of their use is provided in Exam-
ple 4-20. In this program, these subroutines are loaded into R/W
memory and executed in a BASIC program that transmits random

204

<

}&

Example 4.20. A BASIC Program that Uses the Assembly~Language
USART Subroutines

10 DATA 219,7,230,2,202,50,125,219,6,111,38,0,195,154,10
15 DATA 205,127,10,125,211,6,219,7,230,1,202,71,125,201
20 FOR I=0 TO 28

30 READ D

40 POKE 32050+1,D

50 NEXT 1

60 A=INP(6)

70 A=RND(255)

80 POKE 16526,65:POKE 16527,125

90 W=USR(A)

100 POKE 16526,50

110 Z= USR(0)

120 IF Z=A THEN 70 ELSE 200

200 PRINT “ERROR":END

data, and then checks it against what is received by the receiving
side of the USART. If the output of the transmitter and the input
of the receiver are connected, this provides an easy means of testing
the USART. Error is detected when the received value and the
transmitted value are unequal.

If you are concerned about the use of a jump or a call to the
BASIC interpreter in these subroutines, these instructions may be
replaced with equivalent assembly language instructions that will
store a received value in a R/W memory location, or retrieve one
from a R/W memory location. We suggest that you might want to
review your 8080 or Z-80 assembly-language programming before
you get much more involved in assembly-language subroutine calls.

In this chapter, you have been introduced to the use of asynchro-
nous-serial data communications, and the devices that are used to
implement various interfaces and controllers that are compatible
with this mode of communication. Our basic purpose was to show
you how easy it is to use this type of interfacing to link remote
devices and small computers. In fact, many, many devices are
readily interfaced to computers in this way, since the only require-
ment is an asynchronous-serial I/O port at both ends of two pairs
of wires. We have also provided some typical examples of what
you can do with a serial transmitter/receiver loop once it has been
constructed.

205

4,

.

TRS-80 Interrupts

Most modern computers have some form of interrupt input, so
that an external signal may be used to force the computer to jump,
or branch, to some other portion of a program. Unlike the use of
input ports and sensing software steps that are used to determine
the state of external devices and signals, the interrupts are inde-
pendent of the operation of the computer program. In general,
there are no specific steps in a program that are used to sense when
an interrupt has taken place. Hardware associated with the micro-
processor chip, or central processing unit (CPU), forces a specific
sequence of actions to take place, independent of the byte of in-
struction that the computer may be operating upon. Interrupts can
be particularly useful in situations in which it is necessary to im-
mediately alert the computer to some specific condition. Examples
of signals that might be used to generate an interrupt signal are
an A/D converter end-of-conversion flag, a floppy disk data-ready
flag, or perhaps even a heat sensor signal. Each of these signals
could be used by the microcomputer interrupt input to force the
computer to stop what it is doing, and to point it to a new set of
software steps that are related to the device or signal that has gen-
erated the interrupt signal. The A/D converter end-of-conversion
signal might be used to interrupt the computer so that it would
acquire the data that is ready, and then start a new conversion.
Our purpose in this chapter is to introduce you to some of the
various ways in which the TRS-80 interrupts may be used. The Z-
80 central processor has a number of different interrupt modes, and
these will be discussed in some detail. Before you go any further,
though, you should realize that the use of the TRS-80 interrupts
involves assembly-language programming. Our program examples

207

will not be very complex, so a detailed understanding of the Z-80
instruction set will not be required.

The use of interrupts is a complex subject, and we have covered
many of the software and timing considerations elsewhere, in The
8080 Bugbook®: Microcomputer Interfacing and Programming, and
in 8080/8085 Software Design, Book 2, Howard W. Sams & Co.,
Inc., Indianapolis, IN 46206, so there is little reason to cover them
here in the same detail. Interrupts must be used with a great deal
of care, since they can be used to take control away from the BASIC
interpreter, so that assembly-language programs may be executed
to accomplish a specific task. Since assembly-language program-
ming is involved, you may find that your BASIC programs are de-
stroyed through the careless use of interrupts and interrupt sub-
routines. It is our philosophy that only one or two interrupts should
be used with small computers, since similar functions may be imple-
mented in other ways, through sense inputs, flags, and the like.

OBJECTIVES
At the end of this chapter, you will be able to do the following:

@ Describe, in general terms, the operation of a simple interrupt.

Describe the operation of the three interrupt modes of the Z-80.

@ Design an interrupt instruction port circuit, and flip-flop con-
troller.

® Write a simple interrupt control program.

© Show how BASIC programs may be used to preset various
read/write memory locations for use by interrupt service sub-
routines.

® Describe the Z-80 interrupt control instructions.

© Tell why the TRS-80 cannot be used for interrupts, except for
simple Mode 1 interrupts.

@ Describe a simple modification that can be made to the TRS-
80, so that all types of interrupts can be used.

® Describe the use of a priority encoder chip in a priority inter-
rupt system.

@

ELEMENTARY INTERRUPTS

Before we start a discussion of the various types of interrupts of
the TRS-80, we must be sure that the concept of interrupting a pro-
gram is fairly well understood. Let us suppose that you have the

* Bugbook is a registered trademark of E&L Instruments, Inc,, Derby, CT
06418.

208

A

;@%

v

<

L

LS

lawn to mow, and that you are well underway when the telephone
rings, and you have to leave the mower to answer it. This is an
interrupt of your main task, which is mowing the lawn. The phone
call interrupted your job, but you were able to answer the call, and
then return to the lawn mower with little difficulty, picking up
where you were originally interrupted by the ringing phone. Com-
puter interrupts operate in a similar way; a main program is being
executed, when an interrupt occurs. This interrupt signals the com-
puter to stop its current operation, and to transfer its attention to
a new program, subprogram, or subroutine, as indicated by the
interrupting device. After this interrupt service program has been
completed, the computer transfers control back to the main pro-
gram that was being executed when the interrupt was sensed. There
were no signs posted on the lawn that said, “Stop and listen for
phone,” and there are no interrupt “sensing” steps in the main task
program of the computer. The detection of an interrupt signal is
taken care of with hardware, and this is independent of the pro-
gram steps that are being executed.

There are some complex problems associated with interrupts, and
it is important that these be understood prior to the use of inter-
rupts in complex control schemes. Using the lawn-mowing example,
it is fairly easy to describe some of these problems and limitations.

1. When you leave the lawnmower to answer the phone, the
mower must be shut down in an orderly fashion, so that it
won’t “burn” the lawn, waste gas, and interfere with your con-
versation. This is also the case with programs. They must be
shut down in an orderly fashion, so that they may be restarted
once the interrupt servicing sequence has been completed.

2. If you have a number of phone calls to answer during the time
that you have set aside to mow the lawn, you may spend more
time answering the phone, than in mowing the lawn. Your
main task of cutting the grass has been extended by the time
to answer all of the calls, plus the time to mow the grass. You
also have to add in the time that has been used to shut off the
mower and to restart it. The original task has been consider-
ably lengthened by the interrupting phone calls, so that it has
taken much longer to mow the lawn than it should have. One
solution is to “disable” the interrupting device, perhaps by ig-
noring the phone ringing, or by taking the phone off the hook.
The analogy with computer programs should be quickly ap-
parent. Interrupted software tasks take longer than uninter-
rupted ones. There are ways in which the computer interrupt
hardware can be disabled, so that it will ignore any external
interrupt signals. Programs can also become interrupt bound,

209

spending so much time servicing the interrupts, that the com-
puter never gets back to the main task that it originally started.

3. While you are answering the phone, one of your children may
come into the house, crying, interrupting your phone conversa-
tion. This means that a new interrupt has taken place, so that
after soothing the child, you go back to the phone, and then
back to the lawn mower. Interrupts can be interrupted by other
interrupts, and so on, ad nauseam. In fact, there can be cases
in which one device can interrupt the computer while it is
half-way through servicing the first interrupt of that same de-
vice, much like the child who asks for a glass of water, and
when you have started to fill the glass, asks for a sandwich.
This can cause you to become interrupt bound quickly, and it
is quite possible to lose track of exactly what it is that you are
doing. Likewise, computers can become disoriented quickly,
too, when handling too many interrupts.

4. It is necessary in some cases to assign a priority to interrupts,
since there is always the possibility of having two different
interrupts occurring at the same time. For example, while you
are mowing the lawn, a friend may drop over to borrow a rake
at the same time that the phone rings. Which of the interrupts
is serviced first?

These are some of the things that we have discussed in detail,
in the two books cited previously in this chapter. Since assembly-
language programming is used extensively in these examples, we
will not discuss it beyond our simple examples. Interrupts are diffi-
cult to debug, since they can occur at almost any time, and they
generally request interrupt service when you (and the program)
least expect it. We hope that you will treat interrupts with a great
deal of respect, and that you will be careful in your use of them.

Z-80 INTERRUPTS AND TRS-80 INTERRUPTS

The Z-80 microprocessor chip has two interrupt inputs, called
nonmaskable interrupt (NMI) and interrupt (INT). In the TRS-80
computer, the reset push button, located inside the interface hatch
cover, is connected to the NMI input. The BASIC interpreter pro-
gram has been programmed to recognize this input as a reset func-
tion. If you actuate this push button, the computer will respond
with “READY.” This input is not available to the TRS-80 user.
The other interrupt, INT, has not been used in the basic TRS-80
computer, so it is available for experimental use, and it is available
at the interface edge connector. A logic zero pulse on this input
indicates an interrupt request to the Z-80 chip. Unlike the non-

210

it

A

g

maskable interrupt, which is always active, the interrupt input may
be turned on or off, so that the computer may be set to accept inter-
rupts, or to ignore them. The INT input may be used in one of
three possible ways, all of which may be programmed through the
use of the appropriate assembly-language steps. These different
types of interrupts are called Mode 0, Mode 1, and Mode 2. Each
operates in a specific way, as described in the sections that follow.

Mode O Interrupts

This mode is identical to the 8080A and 8085A interrupt response,
so that when the Z-80 is in this mode, any single-byte instruction
may be forced into the computer for execution. Thus, the interrupt-
ing device provides the next instruction for execution by the com-
puter. Of course, this must be an assembly-language instruction.
In general, the single-byte restart instructions will be used with
the Z-80 when it is in this mode, since these instructions are 1-byte

Table 5-1. Restart Instruction and Address Vectors for the BASIC interpreter

Hex Decimal Points
Instruction | Op-code | Op-code to Address Contents Comments
RSTO c7 199 OH 0 Start of BASIC ROM
1H 1
2H 2
RST1 CF 207 8H 8 C3H 195 {Jump to 16384,
9H 9 | O00OH 0
AH 10 40H 64
RST2 b7 215 10H 16 C3H 1951 Jump to 16387
11H 17 03H 3
12H 18 40H 64
RST3 DF 223 18H 24 | C3H 195 Jump to 16390
19H 25 06H 6
1AH 26 40H 64
RST4 E7 231 20H 32 C3H 195] Jump to 16393
21H 33 0o9H 9

22H 34 40H 64

RST5 EF 239 28H 40 C3H 195] Jump to 16396
29H 41 OCH 12

RST6 F7 247 30H 48 C3H 195] Jump to 16399
31H 49 OFH 15
32H 50 40H 64

RST7 FF 255 38H 56 C3H 1951 Jump to 16402
39H 57 12H 18
3AH 58 40H 64

2n

Table 5-2. Vector Addresses and Thelr Contents In R/W Memory

Pointer Address Contenis Comments
4000H 16384 C3H 195 | Jump instruction—Used by BASIC
Q6H 150
1CH 28
4003H 16387 C3H 195 | Jump instruction—Used by BASIC
78H 120
1DH 29
4006H 16390 C3H 195 | Jump instruction—Used by BASIC
- Q0H 144
1CH 28
4009H 16393 C3H 195 | Jump instruction—Used by BASIC
D9H 217
25H 37
400CH 16396 C9H 201 | Return instruction—Available for user’s
— — | jump command
400FH 16399 CoH 201 | Return instruction—Available for user’s
— — | jump command
4012H 16402 FBH 251 | Enable interrupt instruction
CoH 201 | Return instruction
Available for user’s jump command

subroutine call instructions that point to subroutines at specific
points within the Z-80 memory. The locations that may be used in
this mode are already preset with instructions in the TRS-80 BASIC
interpreter read-only memories (ROMs), as shown in Tables 5-1
and 5-2. These addresses are inaccessible to you, since they are
located within a ROM chip. However, there are jump instructions
at each of the vector points, 0, 8, 10, etc., pointing the computer to
a section of read/write memory that may be used to store either a
short interrupt service subroutine, or another jump instruction that
will be used to point to the main interrupt service subroutine. The
use of a restart instruction is detailed in Fig. 5-1. When the Z-80 is
turned on, it is set to the Mode 0 interrupt mode. We will show you
how the restart instructions are “jammed” into the computer, shortly.

Mode 1 Interrupts

When this mode has been selected, no external instructions can
be jammed into the Z-80 when it is interrupted. Instead, the com-
puter is immediately pointed to address 0038H, or 56;0. An inter-
rupt service subroutine may be located here. In the TRS-80, this

212

=

&

"JUMP TO 400CH, OR 16396"

\

YOU CAN'T CHANGE
BASIC THIS JUMP INSTRUCTION

ROM

28H > JUMP INSTRUCTION HERE

N
v

SUBROUTINE CALL
CAUSED BY RSTS

INSTRUCTION
< J/ YOUR JUMP INSTRUCTION HERE
400CH E POINTS TO ACTUAL INTERRUPT
—— SERVICE SUBROUTINE
RIW
MEMORY
YOUR BASIC
PROGRAM
_ -
-/
*START HERE | :
1) INTERRUPT)
TAKES PLACE
2) RSTS
{g‘ﬁ}?ﬁ”ﬁgg”“ YOUR INTERRUPT SERVICE
INTO Z.80 + <« SUBROUTINE IS HERE, IN
-
RET RETURN INSTRUCTION

TRANSFERS CONTROL
BACK TO YOUR BASIC
PROGRAM

Fig. 5-1. Flow diagram for a BASIC program that has been interrupted by a RST5 device.

213

location is within the BASIC interpreter ROM, so it contains a
jump instruction to get the computer into read/write memory. In
fact, the computer goes to the same address that is used by the
Restart 7, or RST7, command, when the Z-80 is in Mode 0. In Mode
1, even though only a single interrupt vector is provided, many de-
vices can be used with the interrupt, since the individual interrupt
could be ORed together, generating an interrupt to the Z-80 when-
ever any one of the devices requests interrupt service. The Mode 1
operations are very simple, flexible, and easy to use.

Mode 2 Interrupts

This mode is the most powerful interrupt response available for
the Z-80. In this mode, an interrupt service subroutine may be lo-
cated at any address in the computer, and called by an interrupt
request signal to the Z-80 chip. When this interrupt mode is to be
used, the programmer must set up a table of the 16-bit starting ad-
dresses for each of the different interrupting devices. This table
may be located anywhere in memory, although it must be located
in read/write memory for it to be useful in the TRS-80 computer.
When an interrupt request is received, the interrupting device fur-
nishes a low address byte to the Z-80. When combined with a high
address byte that has been preset in the Z-80 I register by the pro-
grammer, a 16-bit address is formed. This address points to the
address of the subroutine in the subroutine address table. Assembly-
language steps must be used to preset the Z-80 I register to the
high address of the interrupt subroutine address table. When the
Z-80 is reset, the I register is cleared to zero. Since each address
entry in the address table will take two bytes, one for the high
address byte, and one for the low address byte, the least significant
bit of the low address information supplied by the interrupting de-
vice is preset to zero by the Z-80. Of course, the programmer must
fill the address table with the addresses of the interrupt service sub-
routine prior to the use of this interrupt mode. The first byte in
the table is a low address byte, which is followed by a high ad-
dress byte. Since the addresses in the table may be changed by the
program, as it progresses through a set of operations, a complex,
sophisticated control scheme is possible. An illustration of the use
of the Mode 2 interrupt is shown in Fig. 5-2.

You may be wondering, “How does the computer remember its
place when it is interrupted?” The Z-80 chip has a built-in circuit
that will push, or save, the program counter contents in a section
of read/write memory that is called the stack. It does this auto-
matically, when an interrupt request is received, but only after
it has completed the execution of the assembly-language instruction
that it is operating on. The execution of a return instruction, RET,

214

pE

RW MEMORY

16-BiT POINTER ADDRESS LOW ADDR >
—_— HIGH ADDR
I 1T [(IIIITT o) BT, cwaoon
ADDRESSES HIGH ADDR
t REGISTER INPUT N TABLE LOW ADDR
FROM INTERRUPTING
{PRESET BY THE USER) DEVIGE HIGH ADDR >

!

*Z-80 RECOGNIZES AND ACKNOWLEDGES INTERRUPT

INTERRUPT
SERVICE SUBROUTINE

RETURN TO BASIC PROGRAM

_

Fig. 5-2. Mode 2 interrupt program flow, showing the use of the | register and an
externally supplied low address to point to the address table.

at the end of an interrupt service subroutine causes the computer
to go back to the stack to retrieve the 16-bit value of the program
counter, so that it can execute the next instruction that would have
been executed in the main task program, if no interrupt had taken
place. In this way, the computer keeps track of where it is in a
program, so that it can return. In the same way, the GOSUB com-
mand in BASIC forces the computer to perform a subroutine, and
the RETURN command forces the computer to go back to the
“calling point” in the BASIC program. The stack area that is set
aside by the BASIC interpreter program may be used to store re-
turn addresses for interrupt service subroutines, without difficulty,
so you don’t have to be concerned with exactly where the stack is
located at this point.

INTERRUPT CONTROL HARDWARE

The hardware that is used to control interrupts is fairly easy to
construct. A simple input port is used to provide an 8-bit instruc-
tion, or an 8-bit address, to the Z-80, depending upon the interrupt
mode that is to be used. A three-state input port is used, but instead
of being controlled by a device select pulse, such as IN 78, the inter-
rupt instruction port is controlled by the computer interrupt ac-
knowledge signal, INTAK, which is a short logic zero pulse. Once
an interrupt has been recognized by the TRS-80, it generates the
INTAK signal to indicate to the interrupting device that it has been

215

recognized, and that it is to place its address or instruction byte
on the data bus. This logic zero pulse on the INTAK line is used to
enable the three-state interrupt instruction port, so that the infor-
mation flows onto the data bus, and to the Z-80 chip in an orderly
fashion. In most interfaces, the interrupt requesting device does not
assert the interrupt request signal (INT) directly, using an interrupt
flip-flop instead. The Q output of the flip-flop is used to indicate that
the device is requesting an interrupt. The INTAK signal is used to
clear the flip-flop, so that multiple interrupts do not occur for the
same interrupt request signal. A typical interrupt instruction port,
and interrupt flip-flop, are shown in Fig. 5-3. This interrupt instruc-
tion port may be used when the Z-80 is in either the “0” or “2” in-
terrupt mode. The port should be disabled when Mode 1 operations
are to be used, although the flip-flop may still be used to generate
the interrupt request signal.

44
g SN74LS2
1 __..__...._2. 18 D7
1 4 16 D6
j—© 14 D5
8 12 TO
RST6 [- D4
INSTRUCTION 17 3 03 DATA
OP-CODE 0 BT m BUS
PR D2
DI ’ D1
1 11 g DO
1
INTAK
19
10
SN7474
1 — 2 ‘D Q
INTERRUPT I 3 _ls -
REQUEST {CK Q TOINT
PULSE C
L

Fig. 5-3. Schematic diagram for an interrupt instruction port and control flip-flop.

216

2

8

While the Z-80 microprocessor may be used in any of the three
interrupt modes, the TRS-80 cannot. Apparently, the TRS-80 has
been set up so that all interrupting devices will operate with it in
the Mode 1 configuration. This arises from the way in which the
TRS-80 data bus is controlled. The internal operations of the TRS-80
control the data bus so that it is normally in the output state. The
bus is only turned around for the input state, when a read (memory
or I/O) takes place. Unfortunately, the TRS-80 data bus is not
turned around when the interrupt acknowledge signal is generated.
The TRS-80 can be modified to allow all of the different interrupt
modes to be used with it, simply by using the INTAK signal to
“turn the bus around,” placing it in the input mode so that interrupt
instructions and addresses may be accepted by the computer. Two
possible modifications, both of which are simple, may be made to
the TRS-80. The schematic diagrams for both of these changes are
provided in Figs. 5-4 and 5-5. The simplest modification gates the
INTAK and RD signals together, while removing the TEST signal.
The second modification requires the addition of an AND gate so
that the function of the TEST input may be retained. The TEST
signal is used by direct memory access (DMA) devices, so that they
can “disconnect” the Z-80 microprocessor chip from the various
buses, so that they may be controlled externally. If such DMA de-

+5V

RS58 §
47000

y TEST”

\ JUMPER
M1 ——=0 3 \ , 258
] 14 > INTAK® 6
IORQ ———q) 5
273
K

JUMPER
cuT

/> ZRD*

cuT

_3{>¢_4‘
252
Fig. 5-4. Simple interrupt modification for the TRS-80. (No DMA operations are possible.)

217

JUMPER +5V SN7408 (ADDED)

PIN 14 = +5V
PIN7 = GND
R58
47009 ¢ 3
JUMPER

M1 ——=d

IORQ ——

273

252
Fig. 5-5. Complete interrupt modification for the TRS-80. (DMA operations are possible.)

vices are not going to be used with your TRS-80 system, the sim-
plest modification is recommended.

INTERRUPT CONTROL SOFTWARE

Before the actual interrupt service subroutine steps can be out-
lined, the basic interrupt control instructions should be reviewed.
These are assembly-language instructions, and they cannot be in-
corporated in a BASIC program, except through the use of a call
to a user’s subroutine, written in assembly language. The interrupt
control instructions allow the interrupt to be turned on and off,
allow the interrupt mode to be preset, and allow the program to
be properly controlled at the end of an interrupt service subroutine.
The instructions are summarized in Table 5-3.

The enable interrupt instruction, EI, and the disable interrupt
instruction, DI, are used to turn the Z-80 interrupt on and off. In
this way, the computer response to interrupts during the execution
of a program may be carefully controlled. For example, if the com-
puter system involves interrupting devices, the interrupt will be
turned on almost as soon as the program is started, so that any ex-
ternal interrupts may be serviced. However, if a time-sensitive por-

218

G

Ay,

LI

v

Table 5-3. Assembly-Language Interrupt Control Instructions

Op-Code
Mnemonic Hex Decimal Operation
El FB 251 Enables the Z-80 interrupt so that external
interrupts may be sensed.
DI F3 243 Disables the interrupt, so that future
interrupts will be ignored.
IMO ED 237 Sets Mode O interrupts, so that restart
46 70 instructions can be jammed into the Z-80.
1M1 ED 237 Sets Mode 1 interrupts. Any maskable
56 86 interrupt will cause a subroutine call at
address 38H, or 56.
M2 ED 237
5E 94 Sets the Z-80 for Mode 2 interrupts.
The | register contains the high address
for an address entry in a table that
specifies the starting address of the
interrupt service subroutine. The inter-
rupting device supplies the low address,
with bit DO = 0.
RET () 201 A normal return instruction, for use with
subroutines of all types.
RETI ED 237 Return instruction for use in maskable
4D 77 interrupt subroutines. Used with Z-80
family chips.
RETN ED 237 Return from nonmaskable interrupt sub-
45 69 routine. Not used in TRS-80 systems.

tion of the program is to be executed, the interrupt may be disabled
at the start of this program segment, and then turned on at the end
of it. This protects portions of programs from the effects of inter-
rupts. Whenever an interrupt is serviced, the interrupt is disabled
by the Z-80, so that further interrupts cannot be serviced. If you
wish to have the Z-80 recognize subsequent interrupts, then the
interrupt must be re-enabled, by using another enable interrupt
instruction. This feature allows you to “protect” interrupt service
subroutines, so that they will not be interrupted by other devices.

Before any interrupts can be serviced, the interrupt mode must
be set. The Z-80 uses three instructions to preset the interrupt mode.
These instructions are set interrupt Mode 0, IMO; set interrupt
Mode 1, IM1; and set interrupt Mode 2, IM2. The interrupt mode
may be changed at any time, simply by executing one of these two-
byte instructions. Even though the Z-80 is placed in the “0” mode

219

when the chip is reset, we recommend using the IMO instruction,
since it is impossible to tell what interrupt mode the TRS-80 has
preset in the Z-80, although we suspect that it is Mode 1.

Once the interrupt mode has been set, and the interrupt enabled,
the TRS-80 can accept and process interrupt request signals, calling
interrupt service subroutines that are located in an area that you
have “protected” in read/write memory. Once the interrupt service
subroutine has been completed, an assembly-language return, RET,
instruction is used to cause the Z-80 to retrieve the return address
from the stack area. Prior to the return instruction, you will prob-
ably want to place an enable interrupt instruction in the subroutine,
so that the Z-80 interrupt input is re-enabled. The EI instruction
does not take effect until after the execution of the next instruction.
This means that if an EI instruction is executed just before a RET
instruction, the computer will return to the main program before
another waiting interrupt will be processed.

The Z-80 instruction set contains two special return instructions
that are available for use at the end of interrupt subroutines. These
two instructions, RETN, and RETI, are used at the end of non-
maskable, and regular interrupt service subroutines, respectively.
Since the nonmaskable interrupt is not available for interfacing use
in the TRS-80, the RETN instruction is of no use to us. The RETI
instruction is generally used only when Z-80 family devices are to
be used with the Z-80 chip. The instruction is used to “inform”
these family chips that the end of an interrupt service subroutine
has been reached. Since we will not be discussing any of the special
Z-80 family chips, this instruction will not be used, either. These in-
structions are important if you have any plans to apply the Z-80
chip, itself, to any interfacing tasks, and you should be aware that
they are available, and that they have special functions.

Now that the Z-80 interrupt control instructions have been de-
scribed, it is a fairly simple matter to apply them to a situation
in which an interrupt is to be used with the TRS-80. We will as-
sume that an interrupt instruction port has been interfaced to the
TRS-80, and that the TRS-80 has been appropriately modified
(Figs. 5-4 or 5-5). (If you are using the TRS-80 interface bread-
board, remember to connect the INTAK signal to one of the INP
REQ inputs, too.) The first thing that the program must do is to
set up the particular interrupt mode that is to be used, and then
enable the interrupt. This can be done by using DATA statements,
and POKE-ing the decimal equivalents of the op-codes into mem-
ory, so that they may be executed by a call to a user’s subroutine.
This is shown in Example 5-1. Once the interrupt mode has been
set, and the interrupt enabled, the interrupt may be used. In this
case, we have assumed that Mode 0 interrupts will be used, so two

220

i

R

Example 5-1. A Sample Program To Load the Interrupt Set-Up Information
Into a Protected Section of the TRS-80 Memory

200 POKE 32100,237:POKE 32101,70:POKE 32102,251:POKE 32103,201
220 POKE 16526,100:POKE 16527,125

240 POKE 16399,195:POKE 16400,0:POKE 16401,125

250 Z=USR(0)

other tasks must be performed prior to the actual use of the inter-
rupt. First, the interrupt service subroutine must be loaded into
memory, and second, a jump instruction (three 8-bit bytes) must
be stored in memory, starting at address 400CH, 400FH, or 4012H,
depending upon which restart instruction is used at the interrupt
instruction port, RST5, RST6, or RST7. Once one of the restart
instructions has been chosen, it is a simple matter to find the corre-
sponding vector addresses in Tables 5-1 and 5-2. In the schematic
diagram shown in Fig. 5-3, the RST6 instruction has been preset,
so the proper jump-to-interrupt service subroutine instruction must
be placed in the three consecutive memory addresses, starting at
address 400FH, or 16399,o. Of course, when you started the TR-80,
you had to set aside a portion of the read/write memory for your
assembly-language programs.

Before we go any further, let’s review the steps in using the inter-
rupt. First, an interrupt instruction port had to be constructed, aiong
with a flag flip-flop circuit. Second, the interrupt mode had to be
preset, and the interrupt enabled. Third, the interrupt service sub-
routine had to be stored in read/write memory, in an area that had
been protected. Fourth, the proper restart instruction, assuming
Mode 0, had to be chosen, and the required jump instruction placed
in the vector points in read/write memory, to link the pointer in
the BASIC interpreter ROM with the actual location for the start
of the interrupt service subroutine.

A simple interrupt-based program has been illustrated in Exam-
ple 5-2. While the program has been written in BASIC, there are

Example 5-2. A Simple Interrupt-Based Program

10 DATA 229,33,50,125,52,225,251,201
20 DATA 237,70,251,201

30 FOR =0 TO 7

40 READ D:POKE 32000-+1,D

50 NEXT i

60 FOR I=0 TO 3

70 READ D:POKE 32100+1,D

80 NEXT |

90 POKE 16526,100:POKE 16527,125
100 POKE 16399,195:POKE 16400,0:POKE 16401,125
110 Z==USR(0)

120 PRINT@ 832,PEEK(32050)

130 GOTO 120

221

two assembly-language sections that are loaded into protected read/
write memory at the start of the BASIC program. The interrupt
service subroutine is loaded starting at address 32000 (7D00H), ’
while the interrupt initialization steps are loaded starting at ad-
dress 32100 (7D64H). At line No. 90, the address of the initializa- L
tion subroutine is loaded into two special read/write memory loca-

tions, so that this may be called with the user call instruction. At

line No. 100, the jump instruction and the low and high address

bytes are loaded into the locations that start at address 16399

(400FH), to link the interrupt with the proper interrupt service

subroutine. The last steps in the BASIC program call the subrou-

tine that sets up the interrupt for Mode 0, and enables the interrupt.

Then, the computer simply remains in an endless loop, printing the .
value that is contained in a memory location, at address 32050
(7D32H).

Now, let’s examine exactly what the two assembly-language sub-
routines do. The initialization subroutine, and the interrupt service
subroutines are listed in Example 5-3. The initialization subroutine
sets the interrupt for Mode 0 operation, enables the interrupt, and £
then returns to the BASIC program. The interrupt service subrou-
tine may be required at any time, whenever an interrupt is re- .
quested, and an RST6 instruction is jammed into the Z-80. The sim- R
ple interrupt service subroutine that we have illustrated has only one
purpose; it will increment the contents of a memory location by one,
each time an interrupt is detected. The memory location that the
interrupt service subroutine uses is the same one that is PEEKed
at in the BASIC program, so that the effects of any interrupts may
be observed. The interrupt service subroutine uses the Z-80 inter-
nal H and L registers to temporarily point to the memory location
that is to be incremented. Since the values that are present in the
H and L registers may be important to the BASIC program, they

e

Example 5-3. Assembly-Language Programs for an RST6 Interrupt Device,
and for Interrupt Initialization

7D 00 E5 INTSUB, PUSHH /SAVE REG H & L ON THE STACK r
7D 01 21 LXIH /LOAD THE ADDRESS OF THE LOCN -
7D 02 32 32 /TO BE {INCREMENTED
7D 03 7D 7D /DECIMAL 32050 :
7D 04 34 INRM /INCREMENT IT e
7D 05 El POPH /RESTORE REG H & L FROM STACK
7D 06 FB El /RE-ENABLE INTERRUPT
7D 07 C9 RET /RETURN TO BASIC PROGRAM
7D 64 ED IMO [SET INTERRUPT MODE 0
7D 65 46 46
7D 66 FB El /ENABLE INTERRUPT
70 67 C9 RET /RETURN FROM BASIC SUBROUTINE CALL

222

are stored on the stack with a PUSHH instruction. The H and L
registers are then loaded with the address of the location that is
to have its contents incremented, and the increment operation is
performed. The POPH instruction retrieves the previous values for
the H and L registers, so that as far as the BASIC program is con-
cerned, they were not used, or disturbed in any way. The sub-
routine then enables the interrupt, and returns to the BASIC inter-
preter. The interrupt enabling action does not actually take place
until the computer has returned control back to the program that
was interrupted. Let us make it clear that the interrupt may take
place during one of the many hundreds, or thousands of assembly-
language steps that make up the endless loop of printing and jump-
ing in the BASIC program. When this program is interrupted by
the device shown in Fig. 5-3, you will observe an increasing count
displayed at one point on the video display screen. One count is
added to the number displayed, after each interrupt, up to a maxi-
mum of 255 counts, the maximum for eight binary bits.

The simple BASIC program will be able to print the increasing
value, without any difficulty. A PRINT statement could be used, al-
though the printed values would be rapidly changing, and “flowing”
up the video screen. Just to prove that the interrupts will be serviced
during the execution of the BASIC program, a time delay routine
may be added to the program to slow down the display rate:

125 FOR T=0 TO 1000: NEXT T

Now, when multiple interrupts are serviced, the total accumulated
count will be displayed by the PRINT command. The interrupts
that have caused the count to be incremented have occurred during
the time delay, GOTO and PRINT commands. If the interrupts
were to be generated at a fast enough rate, you would be able to
observe a significant slowing down of the time between the “print-
ing” of the different values, due to the time that the computer would
use to service the many interrupts.

Multiple Mode O Interrupts

Now that a simple interrupting device has been interfaced to
the TRS-80, we will examine the use of two interrupting devices,
operating in Mode 0. To handle a second interrupting device, it is
necessary to decide which one of the remaining vector addresses
will be used to point to the interrupt service subroutine for the new
interrupt device. In this case, the RST7 vector has been chosen,
since it is very easy to switch back and forth between the binary
values for an RST6 (11110111) and an RST7 (11111111) instruction
at the interrupt instruction port. To use the new interrupt, the inter-
rupt service subroutine must be given some task, say, decrementing

223

the number that is incremented by the other interrupt service sub-
routine. In order to decrement the contents of memory location
32050, the same type of interrupt service subroutine is used, except
that (1) the increment instruction must be changed to a decrement
instruction, and (2) the new subroutine must be located in an un-
used section of read/write memory. In this example, the two sub-
routines will be located close together. The new address informa-
tion and the jump instruction must be placed in the proper memory
locations so that the computer is pointed to the decrementing sub-
routine whenever an RST7 interrupt occurs.

A schematic diagram for a simple interrupt controller is shown
in Fig. 5-6. In this control circuit, two separate flip-flops are used
to generate individual interrupt signals, one for the RST6 interrupt
device, and one for the RST7 interrupt device. The individual inter-
rupt request signals are gated together to provide a single interrupt
request line to the Z-80 microprocessor chip INT input. Once an
interrupt has been acknowledged, the three-state interrupt instruc-
tion port transmits its information to the CPU over the data bus
lines. In this case, the RST7 flip-flop determines the state of the
D3 data bit, to generate an RST6, or an RST7 instruction. This cir-
cuit has been kept quite simple by ignoring the possibility that the

SN7408

1—2p a
SN74LS244
AsTe . — — 3oy g 1 2 18 D7
DEVICE -
< 4 4 16 06
T, 4 6 14 05
OUT 58 1 8 12 D4\ 1O DATA
17 3 D3 8US
15 5 b2
13 7 o1
11 9 Do
1
INTAK
19
SN7474
p—1 al®
RST.7 . oK a8
DEVICE o}

)
|13
OUT 59

Fig. 5-6. A Mode O interrupt control circuit for two devices, RST6 and RST7.

224

i

M

iz

A

v

i

two flip-flops might be clocked simultaneously. While this can occur
in real interrupt systems, we will not consider it in this example.
A BASIC program is listed in Example 5-4 which incorporates
steps that load various assembly-language program steps into read/
write memory. This is a new version of the program listed in Ex-
ample 5-2. The main differences are that an additional line of
assembly-language op-codes has been added to this program to
provide the necessary program steps to decrement the count for

Example 5-4. A BASIC Program To Load interrupt Control Programs
for Two Devices

10 DATA 229.33,50,125,52,225,251,201

15 DATA 229,33,50,125,53,225,251,201

20 DATA 237.70,251,201

30 FOR I=0 TO 15

40 READ D:POKE 32000+i.D

50 NEXT i

60 FOR I=0 TO 3

70 READ D:POKE 32100-+1,D

80 NEXT |

90 POKE 16526,100:POKE 16527,125

100 POKE 16399.195:POKE 16400,0:POKE 16401,125
105 POKE 16402,195:POKE 16403,8:POKE 16404,125
110 Z=USR(0)

120 PRINT@ 832,PEEK(32050)

130 GOTO 120

RST7 interrupts. There are also steps that load the proper three-
byte jump instruction into the vector address table, starting at ad-
dress 16402, (see Table 5-2). There are no changes in the steps
that are used to initialize the Z-80 interrupt mode. When this pro-
gram is running, an interrupt from the RST6 device will cause the
displayed count to be incremented, while an interrupt from the
RST7 device will cause the count to be decremented. This example
is rather simple, but it illustrates a number of important things:
how assembly-language program steps may be loaded into the TRS-
80 read/write memory, how two interrupting devices may be han-
dled, and how a short user subroutine may be called to initialize
the Z-80 interrupt mode.

Mode 1 Interrupts

The Z-80 may be configured so that when it responds to an inter-
rupt signal at its INT input, it will always call an interrupt service
subroutine at a fixed address. This interrupt mode is particularly
useful when only a single interrupting device will be used with the
Z-80, since the starting address of the subroutine is already defined
in the Z-80 memory address “space,” starting at address 38H, or 561

225

Only an interrupt request flip-flop is required. In the TRS-80, the
BASIC interpreter ROM contains a jump instruction at address 38H
that points the computer to address 4012H, or 164021,. Another jump
instruction may be placed at that address, to point the computer to
the start of the actual interrupt service subroutine.

If multiple interrupts are required, the Mode 1 interrupt may still
be used. All of the interrupt request flip-flop outputs would be gated
together, to generate a composite interrupt request, as was the case
in the Mode O interrupt example (see Fig. 5-6). In this way, any
of the flip-flops can generate an interrupt request signal. Once the
interrupt service subroutine is started, the Z-80 starts to execute
user-provided assembly-language program steps that test various
bits at an input port, so that it can determine which flip-flop is re-
questing interrupt service. If a bit is detected as being a logic one,
this indicates that the corresponding flip-flop is requesting service,
and this can cause the computer to branch to a portion of the inter-
rupt service subroutine that is set up to service the corresponding
device. This type of polled interrupt action was used extensively
by many early minicomputers, such as Digital Equipment Corpora-
tion’s PDP-8 family.

Even though the program shown in Example 5-4 has been written
so that two interrupting devices can be controlled, it can be easily
modified so that it can control the RST7 interrupt device in Mode 1
operation. Actually, the only change that is necessary is one that
involves the second byte in the interrupt mode control instruction.
This is changed in the DATA statement at line No. 20 from a 70
to an 86 (see Table 5-3). Once this change has been made, the
program may be run as it is. It will only respond to the interrupt
that starts its service subroutine at address 38H, or 56. In this pro-
gram, that is the same as the RST7 interrupt. Thus, whenever the
TRS-80 is interrupted, the value displayed by the BASIC program
will be decremented. Changing the binary bit pattern at the inter-
rupt instruction port has no effect on the Z-80, since in the “1” mode,
only the single interrupt service subroutine is implemented.

It would be quite nice if BASIC instructions could be used to
poll the input port, checking for the interrupting device, and tak-
ing the appropriate actions to service it. The INP, AND, IF, and
THEN commands would be particularly useful. However, once
interrupted, the TRS-80 starts to execute user-supplied assembly-
language program steps, and it does not get back to the BASIC
interpreter until after the interrupt task has been completed. In any
case, the assembly-language program steps are going to be able to
detect the interrupting device much more quickly than could equiv-
alent BASIC-language steps. Since speed of response is probably
the reason that leads to the use of interrupts and assembly-language

226

s

AR

L

vy,

programs, the use of BASIC-language steps to process interrupts is
self-defeating,

Looking at the information in Table 5-2, it appears that only three
of the vector locations are available in the TRS-80 for Mode 0 inter-
rupt vectors. However, if the Mode 1 operation is selected, many
additional interrupts may be added to the TRS-80, as shown in
Fig. 5-7. The interrupt request signals from all of the flip-flops are
gated together, as mentioned previously, and a second signal is
routed to an input port, so that it may be sensed by software com-
mands. There are some important points that should be noted here.
The flip-flops are cleared with individual output commands, as was
the case for Mode 0 interrupts, and assembly-language steps, rather
than BASIC-language steps, would be used to generate these con-
trol pulses that clear the interrupt flip-flops. Each flip-flop would
be cleared, either after it was detected, or after its corresponding
interrupt service subroutine was completed.

There is a definite priority assigned to the interrupting devices,
since there is a definite order in which the individual flag bits will
be detected. Suppose that two interrupts occur at the same time.
As the computer sequences through the individual flag bits, testing

SN7474

[R— al2
JL 3 i 3
—ck afe o 5 .
c TOTNT
1
T1
I SN74H11
SNLS244
I —
FR— Q o1
] 5 14 o2
13 12 03 | TODATA
3 B8US
L 04
—ck & 15§ 5 DS
S 13 7 o
1
INTERRUPT o
REQUEST
PULSES
1 ——iD a
TNGa7

e
o] g
§ g
a8

o
E
4

Fig. 5-7. Schematic diagram of an interrupt control circuit for three Mode 1 polled
interrupt devices,

227

each, say from bit D7 to bit DO, bit D5 will be tested before bits
D4, D3, D2, D1, and DO, and so on. This establishes the priority,
so that if bits D5 and D3 are the two simultaneous interrupt flag
bits, the device that corresponds to flag bit D5 will be serviced
before the device that corresponds to bit D3. If you are using only
a few simple interrupts, and if the interrupting devices can “wait”
while others are serviced, then the Z-80 Mode 1 type of interrupt
is quite useful, and easy to implement.

Mode 2 Interrupts

The Mode 2 interrupt is very similar to the Mode 0 interrupt,
except that the Mode 0 interrupt is limited to the use of eight re-
start instructions that call interrupt service subroutines at specific
locations within the computer memory. In the TRS-80, only three
of these locations are “free” for the user’s own interrupt schemes.
When the Z-80 is used in Mode 2, an almost unlimited number of
interrupting devices may be accommodated, and their service sub-
routines may be located almost anywhere in memory. To illustrate
the use of this type of interrupt, the basic interrupt programs that
have been used previously are used again as interrupt service sub-
routines that will be controlled by Mode 2 interrupts. The BASIC
control program is illustrated in Example 5-5. Some simple changes
have been made so that the display will not display the incremented
or decremented value, but rather the ASCII character which corre-
sponds to the 8-bit value. The four assembly-language steps that
were loaded in previous examples to initialize the Z-80 interrupt
mode and then enable the interrupt, have been expanded so that
the Z-80 I register may be loaded. This requires an additional four
bytes to load the I register with the value 7DH, or 125. This is the
high address byte of the address that will be used to locate the
starting address of the interrupt service subroutine in a table of

Example 5-5. A BASIC Control Program for Two Mode 2 Interrupts

10 DATA 229.33,0,62.52,225,251,201
20 DATA 229.33,0,62,53,225,251,201
30 DATA 62,125,237,71,237,94,251,201
40 FOR 1=0 TO 15

50 READ D:POKE 32000+I1.D

60 NEXT 1

70 FOR 1=0 TO 7: READ D:POKE 32100+1,D
90 NEXT |

100 POKE 16526.100:POKE 16527,125
110 POKE 32050,0:POKE 35051,125
120 POKR 32052,8:POKE 32053,125
130 Z=USR(0}

140 CLS

150 GOTO 150

228

3

P

Ay,

<

i

such addresses (see Fig. 5-2). The low address is supplied by the
interrupting device, with bit DO being preset to a logic zero. In this
example, the starting addresses of the two interrupt service sub-
routines are placed in the address table, which starts at address
32050,0. The low address byte is located at this specific address,
with the high address byte located at address 32051,, and so on for
any other addresses stored in the table.

Now, let us see what happens when the Z-80 is interrupted by
an external device, when the Z-80 is ready for Mode 2 interrupts.
When the interrupt is sensed, the Z-80 completes the execution of
the present assembly-language operation, and pushes a return ad-
dress onto the stack. It then acknowledges the interrupt, and accepts
eight bits of information from the interrupt instruction port. When
Mode 2 interrupts are used, however, this byte that is transferred
to the Z-80 is actually a low address byte, and not an actual instruc-
tion. The Z-80 “combines” the low address that has been provided
by the interrupting device, with the high address stored in the in-
ternal I register, to generate a 16-bit address pointer. This address
points to entries in the address table, and the addresses in the table
are the ones that actually define the start of the individual interrupt
service subroutines. In Example 5-5, there are only two address en-
tries in the table, one for the subroutine at address 7DO0H, or
3200040, and one for the subroutine at address 7DOSH, or 32008,.
These are the starting addresses of the “incrementing” and “decre-
menting” subroutines used in previous examples. Since the address
for the start of the incrementing subroutine is located in the table,
starting at address 7D32H, the I register must be pre-programmed
with the value 7DH, or 125;,. The initialization steps in the BASIC
program provide for this initialization. The interrupting device pro-
vides the low address byte, 32H, or 00110010,. To access the decre-
menting subroutine, the interrupting device supplies a low address
byte of 34H, or 00110100,. We refer you to Fig. 5-2, for a schematic
diagram of the operation of a Mode 2 interrupt. While this mode
is quite powerful, and easy to use, it does require the use of the
Z-80 I register, and also the use of an address table, for the starting
addresses of the interrupt service subroutines. Our initial experi-
ments suggest that the Radio-Shack BASIC interpreter program for
the TRS-80 does not use the I register, but there is no way to be
sure that it will not be modified by some portion of the interpreter
that we have not used, or by other available programs.

PRIORITY INTERRUPTS

The use of multiple interrupts for Mode 1 interrupt operation has
already been discussed. This type of multiple interrupt scheme is

229

fairly simple, since each of the possible interrupting devices is
checked by the same interrupt service subroutine, to determine
which devices require servicing. Simultaneous interrupts may oc-
cur, but each device must wait its turn, to be checked, and serviced,
if necessary. When the Z-80 is used with either Mode 0 or Mode 2
interrupts, multiple interrupt systems are more complex, since each
interrupting device must supply either an op-code for an instruc-
tion, or the low address btye for an address table entry. The ex-
ternal interrupt-controlling circuits must have some way in which
to arbitrate between interrupting devices, so that only one device
at a time is serviced by an interrupt service subroutine. It is fortu-
nate that a priority encoder chip is available to perform most of
these arbitrating functions. The SN74148 chip is illustrated in a
pin configuration diagram, Fig. 5-8. A truth table for this chip is
also provided in Fig. 5-8. This chip can be thought of as working
in a manner that is the reverse of a decoder chip such as the SN7442.
Whenever one of the eight inputs to the SN74148 chip is grounded,
the corresponding binary code is provided at the three outputs.
The codes are inverted, so that if the “7” input is grounded, the 3-

OUTPUTS TNPUTS
vVee ‘EO GS 3 F] 1

By jugn

lilll%‘
B J

OUTPUT
AO

3 2

4 A0

(A) Pin configuration,

g 7
INPUTS OUTPUTS
INPUTS OUTPUTS
E1{0 1 2 3 4 5 6 7]|A2 A1 AD|GS EO
H{X X X X X X X X|H H H|H H
L|H H H H H H H H[H H H|H L
L|x X x X X x X tle v cjL H
LiXx X X X X X L HfIL L H|L H
LlXx X X x x t H HlL H L]L H (B) Truth table.
L|{X X X X L H H H|L H H|IL H
LiXx X X L H H H H|H L L{L H
L|X X L H H H H H|H L H|L H
Li{X & H H H H H HIH H L]t H
LijL H H H H H H H|H H H|L H
Courtesy Texas Instruments, Inc.
Fig. 5-8. Pin configuration and truth table for SN74148 priority encoder chip.
230

A

(R

LR

bit binary output is 000. In this circuit, it is possible to have a num-
ber of inputs grounded at the same time, so the chip must decide
which binary code it is to output at pins A0, Al, and A2. Thus,
the chip decides upon the priority, so that when more than one
of the eight inputs are grounded, only one specific code is output
by the chip. Thus, if the “7” and “3” inputs are both grounded,
only the code that corresponds to the “7” will be output. The exact
behavior of the SN74148 is described by the information in the
truth table. The GS output is a logic zero whenever any of the in-
puts is grounded.

The SN74148 priority encoder chip may be used in a multiple
interrupt system to provide the necessary encoding of the address
or op-code information that is required by the Z-80 for Mode 0 and
Mode 2 interrupts. A simple interrupt circuit is shown in Fig. 5-9.
In this example, the Z-80 is used for Mode 0 interrupts, so that the
interrupt instruction port will furnish the Z-80 with the various op-
codes for the restart instructions. Some of the bits at the interrupt
instruction port have been hard-wired to logic one, since these bits
remain constant in the op-codes for restart instructions, The SN-
74148 priority encoder chip has been used to furnish the “changing”
bits in the instruction, so that the op-codes for RSTO (11000111)
through RST7 (11111111) may be easily generated, one at a time.
Since the TRS-80 uses all of the vector addresses, except for those
that correspond to restart instructions, RST5, RST6, and RST7, only
those three op-codes should be generated. Thus, the nonallowed
inputs to the SN74148 chip have been permanently hard-wired to

O +5V
S 10000
3
SNT4148 SN74LS244
10000
+5V O A 4y L2 :: o7
3 _—1 D6
2], Az 3 6 :; -
U Al S 1: 3 D4 | TO DATA
L 13] 3 AQ D3 BUS
Fup-FLops {7 2 — > 02
TO OTHER g . 11 s L 13 7 o1
10}, = L 1] 9 oo
El [}
}———— INTAK
ls 19
1 2l Q
TOINT
JL s cK ale
INTERRUPT c

REQUEST 2
PULSE
GUT 267
Fig. 5-9. A three-input priority interrupt controller circuit, for devices RST7 (shown), RST6,
and RST5.

231

logic one. The three remaining inputs, “2,” “1,” and “0,” may be used.
Remember, that since the SN74148 generates inverter binary out-
puts, the respective outputs for these three inputs are 101, 110,
and 111. This means that if the “0” input is grounded, the op-code
for the RST7 instruction (11111111) will be present at the inputs
to the interrupt instruction port. In this circuit, the “2” input has
the highest priority, causing a vector to address 28H, or 40y The
vector addresses, and their respective priorities are listed in Ta-

ble 5-4.

Table 5-4. Priorlty Interrupt Vector Addresses (Fig. 5-9)

Address
Actlive Code Restart
Input Generated instruction Hex Decimal
0 AR RST7 0 0
1 110 RSTé 8 8
2 101 RST5 10 16
3 100 RST4* 18 24
4 o1l RST3* 20 32
5 010 RST2* 28 40
6 001 RST1* 30 48
7 000 RSTO* 38 56

*Not available for use with the TRS-80.

When this circuit is used, the priority encoder GS output is used
as the interrupt signal that is sent to the Z-80. It will be a logic
zero, as long as there is an interrupting device that is waiting to
be serviced. In Fig. 5-8, an interrupt flip-flop has been shown. When
this flip-flop receives an interrupt request from its corresponding
device, its Q output becomes a logic zero, causing the SN74148 to
assert the GS output, and also causing it to output 111 to the inter-
rupt instruction port. Once the interrupt service subroutine has ser-
viced this device, several assembly-language program steps are used
to generate an OUT 207 pulse that clears the interrupt flip-flop.
Each of the other interrupt inputs to the SN74148 chip would also
use flip-flops in a similar configuration, except that different output
control signals would be used to clear them.

Let us suppose that two interrupting devices request an interrupt
at the same time, using the circuit shown in Fig. 5-8. One is the “0”
interrupting device, and the other is the “2” interrupting device.
Since the “2” input of the SN74148 chip has a higher priority than
the “1” or “0” input, the encoder outputs the binary code 101 (re-
member that this is the inverse of the value for the input, which
would be 010). This output is combined with the logic one bits at
the interrupt instruction port to generate an RSTS instruction, which
is read into the computer by the INTAK signal. To service this

232

G

i

N

interrupt, the computer vectors to the proper interrupt service sub-
routine and completes its tasks. One of the first things that the in-
terrupt service subroutine does is to clear the interrupt flip-flop
associated with this interrupt. At the end of the subroutine, the
interrupt is re-enabled with an EI instruction, and the computer
returns to the main BASIC interpreter program. Since another inter-
rupt is waiting, the computer immediately recognizes the “0” in-
terrupt, vectoring to the proper address for the RST7 instruction.
Again, one of the first tasks in this interrupt service subroutine is
to clear the interrupt flip-flop, in this case, with an OUT 207 pulse.
At the end of this interrupt service subroutine, the interrupt is re-
enabled, but no other interrupts are awaiting service, so the BASIC
interpreter again takes control of the computer.

This same type of a priority encoder scheme may be used in the
Z-80 Mode 2 interrupt operations. The SN74148 priority encoder
simply furnishes bits D1, D2, and D3 to the interrupt instruction
port, while the other bits are wired to represent the low address
of the interrupt address table, located in the computer read/write
memory. Bit DO is not used, being preset to a logic zero, by the
Z-80 during the Mode 2 interrupts.

There are other multiple interrupt schemes that may be used
with the Z-80, in either Mode 0, or Mode 2 operation. Some of
these schemes are more complex than the example that we have
provided, while others are less complex. Our main purpose here has
been to introduce you to the idea of using a number of interrupts
at the same time. As we noted at the start of this chapter, there are

good reasons for avoiding multiple interrupts, if that is at all pos-
sible.

INTERRUPT APPLICATIONS

It is difficult to discuss specific interrupt applications, without
going into a great deal of assembly-language programming, so ex-
amples will be described in general terms so that you will better
understand the possible uses of interrupts in a TRS-80 computer
system. A high-speed printer application, and a USART applica-
tion will be described.

In the first interrupt application, a small high-speed electrostatic
printer is interfaced to the computer. The printer can print three
21-character lines in about 1 second, including time for the carriage
returns and line feeds. Once the printer has been started, the print-
head moves across the entire width of the paper, regardless of
whether new characters have been provided to the interface. The
printer interface circuit provides a flag signal to the computer to
indicate that the printer is ready for the next character. This signal

233

allows the computer to provide each new character as the printer
is ready for it. If a new character is not provided to the printer
when it is ready, it will continue to print the previous character,
until the new character has been supplied. Thus, the computer must
act quickly to service the printer requests for new characters. It is
impossible to control this printer by using a Level II BASIC pro-
gram. The BASIC program just can’t keep up with the high-speed
data requirements of the printer. A printed line that should be
printed as ABCDEFGHIJKLMNOPQ, turns out as AAAAAAABBB-
BBBBCCCCCCC, instead. The solution to the problem is to use the
printer “ready” flag as an interrupt to the TRS-80. The simplest in-
terface/software scheme would use a single Mode 1 interrupt, and
a single interrupt service subroutine.

The interrupt service subroutine would obtain the next ASCII
character from a “protected” area of read/write memory, and out-
put it to the printer. The system would also clear the interrupt flag,
re-enable the Z-80 interrupt, and return to the BASIC program.
Another solution might involve an assembly-language subroutine
that would control all of the printer functions. Of course, the ASCII
values would have to be set up in a short file, or array, in read/write
memory, so that they would be available to both the interrupt ser-
vice subroutine, and to the BASIC program that would actually
generate the information that must be printed. In this example, the
printer operated at a rate that was faster than that which could be
managed by a BASIC program. Thus, the interrupt provided an
alternate method of controlling the printer.

In the previous chapter, a great deal of time was spent discussing
the USART chip, and how it is interfaced to, and used with, the
TRS-80 computer. There may be times when the USART receiver
is operated at such a high data rate that it will receive characters
faster than they can be input and processed by a BASIC-language
program. This means that a BASIC-language control program would
lose a number of characters. Luckily, the USART receiver ready
(RxRDY) flag is provided as an output pin, as well as a bit that can
be checked with software. The RxRDY signal may be used to inter-
rupt the TRS-80, indicating that a new piece of information has
been received. An assembly-language input routine could be used
to service the USART interrupt, storing the information, clearing
the flag, re-enabling the interrupt, and so on. At fairly high data
transfer rates it is doubtful whether the TRS-80 BASIC interpreter
could keep up with a steady stream of information transmitted to
the USART chip.

It is only fair to say that there are other solutions to these two
interfacing problems, as presented by the printer and USART.
While software solutions have been described here, hardware solu-

234

G

2

g

G

;& Ty

tions are also possible. In fact, the TRS-80 could be interfaced to
the printer through a small buffer memory that would be used to
contain a complete line of ASCII characters. The memory could
then “dump” them to the printer as they were required, completely
independent of the computer. Likewise, a small buffer memory
could be used between the USART and the TRS-80, but this would
be more complex, since the USART must be controlled by a com-
puter (unless you want to add a lot of additional hardware). In this
case, a slave processor might be considered, simply to control the
USART. (See 8085A Cookbook, Howard W. Sams & Co., Inc,
Indianapolis, IN 46206.) The main point is that there are frequently
a number of possible solutions to hardware and software problems.
By having a good understanding of each area, you increase your
skills at solving computer interfacing problems.

235

S

Y

APPENDIX A

American Standard Code
for Information Interchange

(ASCII) Code Chart

237

LEAST SIGNIFICANT BITS
000 | 001 | 010 | O11 100 | 101 110 | 111
00000 NUL | SOH | sTX | ETX | EOT | ENQ | ACK | BEL | CONTROL
00001 BS HT LF \%3 FF CR SO St FUNC-
00010 DLE | DCI | DC2 | DC3 | DC4 | NAK | SYN | ETB | TIONS
00011 CAN|EM | SUB | ESC | FS GS RS us
00100 SP i " # $ % & ”
00101 () * s R ! . /
MOST 00110]] 2 3 4 5 6 7
SIGNIF- | 60111 8 9 : : < = > ?
ICANT [og1000 | @ (A (B lc |Dp |E |F |G
BITS o001 | H |1 J |k v [m [N |oO
01010 P Q R S T u v w
oont | X |y |z (I N D] t -
01100 ! a b c d e ¢ g
01101 h i i k I m n o
01110 p q r] £ v v w
01111 x y z { : } ~ DEL
Control Character Functlons
NUL = Null DLE = Data Link Escape

SOH= Start of Heading

STX = Start of Text
ETX = End of Text

ENQ= Enquiry

ACK= Acknowledge

DC1 = Device Control 1
DC2 = Device Control 2
DC3 = Device Control 3
EOT = End of Transmission DC4 = Device Control 4 (Stop)
NAK = Negative Acknowledge
SYN = Synchronous Idle
ETB = End of Transmission Block

BEL = Bell (ring)

BS = Backspace
Horizontal Tabulation
Line Feed

VT = Vertical Tabulation
FF = Form Feed

CR = Carrlage Return

SO = Shift Out

$1 = Shift in

238

CAN = Cancel
EM = End of Medlum
SUB == Substitute

ESC = Escape

FS = File Separator
GS = Group Separator
RS = Record Separator
US = Unit Separator
DEL = Delete

wenm

APPENDIX B

IM6402[/IM6403 Universal
Asynchronous Receiver
Transmitter (UART) Data Sheet*

* Reprinted by permission of Intersil, Inc.

239

FEATURES
© Low Powsr — Less Than 10mW Typ. at 2MHz

© Operation Up to 4MHz Clock — IM8402A
© Programmable Word Length, Stop Bits and Parity
@ Automatic Data Formatting and Status Generation

© Compatible with Industry Standard UART's —
IM6402

@ On-Chip Oscillator with External Crystal —
1M6403

@ Operating Voitage —
-~ IM6402-1/03-1: 4-7V
- IM6402A/03A: 4-11V
— IM6402/03: 47V

IM6402/1ME6403

Universal Asynchronous

Receiver Transmitter
(UART)

GENERAL DESCRIPTION

The IM6402 and IMB403 are CMOS/LSI UARTs for
interfacing computers of microprocessors to asynchronous
serai data channels. The receiver converts senal start, data,
parity and stop bits 1o parallel data verifving proper code
transmission, parity, and stop bits. The transmitter converts
parallel data into serial form and automatically adds start,
parity, and stop bits.

Thae data word fength can be 5, 6, 7 or 8 bits. Parity mavbe odd
or even. Paritv checking and generation can be inhibited. The
stop bits may be one or two {or one and one-half when
transmutting 5 bit codel. Serial data format s shown in
Figure 7.

The IM6402 and IM6403 can be used in a wide range of

i i di printers, penp! and
remote data acquisition systems. CMOS/LSI| technology
permits operating clock frequencies up to 4. 0MH2z (250K Baud)
an tmprovement of 1010 1 over previous PMOS UART designs.
Power requirements, by comparison, are reduced from
6§70mW to 10mW. Status logic increases flexibility and
simplifies the user interface.

The IME402 differs from the IM6403 onpins 2. 17,19, 22, and
40 as shown i1 Figure 5. The IM6403 utilizes pin 2 as a crystal
divide contral and pins 17 and 40 for an mexpensive crystal
oscillator. TBREmpty and DReady are always active. All other
input and output functiens of the IM6402 and IM6403 are
identical.

PIN CONFIGURATION

yaniz s

T RE | DWIGE CONTROL

v | anc e At cLock weuT
w | e xiag w0

Son Tatie 1

ORDERING INFORMATION

ORDER CODE | ING402-1/03-1 | IMBA0ZA/03A 1HB402/03

PLASTIC PKG__ | IM5402- 1/03-1IPL | IMB402/03-AIPL | IMGAO2/03IPL

CERAMIC PKG | IMB402-1/03-HDL | IME402/03-AIDL -

MILITARY TEMP. | IMBA02-1/83- 1MDL | IM6402/03-AMDL -

MILITARY TEMP. | IMB4G2-1/03-1 1MB402/03-AMOL/ -
WITH 8838 MDL/8838 8838

PACKAGE DIMENSIONS

7540151 830) e
*] gm0 I
oa
o
aso g
0060115241 0360 ooz 9012 @081 TYe
6820183} osn*** {‘7’:’" 3001 R 8

i

T

ey orwieosa k3 .

sarmiTm 0oiioen Tvr ore MM e

ve 520 10508 iz
40 PiN PLASTIC DUAL INLINE PACKAGE (PLI

2070 153308 NOTE DiMENSIONT
MAX H PARENTHES!S
ARE METRIC

Y o ¥
] man 0%
o, 1103081

s
T =y 4
o
s s
e uﬂﬂ%ﬁ?@!
J‘\HTMH?‘WJ?‘{W = W
[N DU Tv.g’ A SRR

005011270 9013 10487) diois G1
Qg 1084 0007 100U B0 WIS ML

40 PIN CERAMIC DUAL.IN-LINE PACKAGE (DL}

INTERSIL, INC., 10710 N. TANTAU AVE., CUPERTINO, CA 95014

Printed in U.S.A,

240

(408) 996-5000 TWX: 810-338-0171

(LHWN) J03uwsusl] JOoAjOI0Y SNCUCIYIUASY jBSIOAIUN COPIRII/ SOV

1877/80W0

Ve

Sz

;@6

e

AR W

IM6402/1M6403

Ver .~ W
-« —d 2 23— ErE

b

« (]
5

s

7

.

9

1)

"

7 ToA4
5]

" b

%

6

w

B -TORL
®

*DIFFERS BEVWEEN IMGAGT AND IMSAGL

FIGURE 1. Pin Configuration

1M6403 FUNCTIONAL PIN DEFINITION

PIN SYMBOL DESCRIPTION

1 Vee Positive Power Supply

2 | IMB402-N/C No Connsction

IME403.Control} Divide Controt
High: 24 {16) Divider
Low: 211 (2048} Divider

3 GND Ground

4 RRD A high leval on RECEIVER REGISTER
DISABLE forces the receiver holding
register outputs ABR1-RBAB toa highim-
pedance state.

5 RBRE The contents of the RECEIVER BUFFER
REGISTER appear on these thrae-state
outputs. Word formats lsss than 8 char-
acters are right justified to RBRY.

8 RBR7 Ses Pin 5 — RBRB

7 RBRE See Pin 5 — RBAS

8 RBAS See Pin 5 - RBRS

] RBR4 See Pin 5 — RBAS8

10 RBA3 See Pin 5 — RBAS

11 RBA2 See Pin 5 — RBRS

12 RBR1 See Pin 5 — RBRB

13 PE A high level on PARITY ERROR indicates
that the received parity does not match
parity programmed by contro! bits. The
outpu! is active until paritv matches on a
succeeding character. When parity is
nhibited, this output is low,

INTERSIL

IM6403 FUNCTIONAL. PIN DEFINITION
{Continued}

PiN

SYMBOL

DESCRIPTION

20

21

22

23

24

25

FE

OE

S$FD

IM6402-RAC
IMB403-XTAL
or EXT CLK IN

BRR

DR

RRI

MR

TBRE

TBRL

TRO

A high level on FRAMING ERROR indi-
cates the first stop bit was invalid. FE will
stay active until the next valid character’s
stop bit is recaived.

A high level on OVERRUN ERROR indi-
catas the dats received flag was not
clsared before the 185t character was
transferred to the receiver buffer ragister.
The Error 15 reset at the next character’s
stop bit if DAR has bean performed {i.e.,
DRR: active low},

A high level on STATUS FLAGS DISABLE
forces the outputs PE, FE, OE, OR, TBRE
1o a high impedance state. See Figure 4
and Figure 5.

The RECEIVER REGISTER CLOCK is 16X
the receiver data rate,

A low ievel on DATA RECEIVED RESET
clears the data received output {DR), to a
low level.

A highlevel on DATA RECEIVED indicates
a charactes has been received and trans-
ferred 0 the recewer buffer register.

Serial data on RECEIVER REGISTER
INPUT is clocked into the receiver
register.

A high level on MASTER RESET (MR}
clears PE, FE, OE, DR, TRE and sets TBRE,
TRO high. Less than 18 clocks after MA
goes low. TRE returns high. MR does not
clear tha recaivar butfer register, and is
raquired after power-up.

A high lavel on TRANSMITTER BUFFER
REGISTER EMPTY indicates the trans-
mitter buffer register has transferred its
data 1o the transmitter register and is
ready for new data.

A Jow level on TRANSMITTER BUFFER
REGISTER LOAD transfers data from in-
puts TBRI-TBR8 into the transmitter
buffar register. A low to high transition
on TBRL requests data transfer to the
transmitter register. If the transmitter
register is busy, transfer 1s automatically
deiayed so that the two characters ara
transmitted end to end. See Figure 2.

A high lavel on TRANSMITTER REGISTER
EMPTY indicates compleled transmission
of 8 character including stop bits,

Character data, start data and stop bits
appear serially at the TRANSMITTER
REGISTER QUTPUT.

241

IM6402/IMB403 INTERSIL
1M6403 FUNCTIONAL PIN DEFINITION IM6403 FUNCTIONAL PIN DEFINITION
{Continued) (Continued)
PiN | svymBOL DESCRIPTION PIN | symBoL DESCRIPTION
26 T8R1 Character dota is loaded into the TRANS- 35 34 A high level on PARITY INHIBIT inhibits
MITTER BUFFER REGISTER via inputs parity generation, parity checking and
TBRY-TBRB. For character formats less forces PE output fow.
than B-bits, the TBR8, 7. and 6 Inputs are
'gnored corresponding to the program- 38 sas® A high level on STOP BIT SELECT selects
med word length. 1.5 stop bits for o 5 character formatand 2
stop bits for other iengths.
27 TBR2 See Pin 26 — TBR1
37 CLs2* Thase inputs program the CHARACTER
28 TBR3 See Pin 26 — TBAR1 LENGTH SELECTED. (CLS1 low CLS2law
5-bits}{CLST high CLS2 low 6-bits} (CLS1
23 T8R4 See Pin 26 — TBRY ‘r:;‘h%'fﬁ';““" 7-bits} (CLS? high CLS2
30 TBRS See Pin 26 — TBR1 28 st Sos Fin 37 — CLS2
3 TBRE Sea Pin 26 — T8R1 39 ePE Whan Pl is low, a high fevel on EVEN -
PARITY ENABLE generates and checks
32 TBR? Soo Pin 26 — TBR1 even pariy. ‘A tow tova selocts odd pority.
33 T8R8 Ses Pin 26 — TER1
40 |IM8402-TRC | The THANSMITTER REGISTER CLOCK ia
34 AL A high ievel on CONTROL REGISTER IMB403-XTAL | 16X the transmit data rate.
LOAD loads the control register. See or GND
Figure 3.
“See Table 2 (Control Word Function)
TABLE 2. Control Word Function
CONTROL WORD
Eia3 57 i TPE 558 DATA BITS | PARITY BIT | STOP BIT(S)
[v L [L 3 00D 1
L t L i H 8 0DD 15
L L L H L 5 EVEN 1
L L & H H 3 EVEN 15
[L H X i 5 DISABLED 1
L i H X H 5 DISABLED 1.5
L H L L i 6 oDD 1
L H L L H 8 QDD 2
L H L H i -] EVEN 1
L H i H H [EVEN 2
L H H X L [} DISABLED 1
L H H X H] DISABLED 2
H L L L L 7 oD 1
H i i L H 7 oDD 2
H L L H Y 7 EVEN 1
H 8 i H H 7 EVEN 2
H L H X i 7 DISABLED 1
H L H X H 7 DISABLED 2
H H i L i 8 oDD 1
H H L L H 8 opp 2
H H L H i 8 EVEN 1
H H i H H 8 EVEN 2
H H H X L 8 DISABLED 1
H H H X H 8 DISABLED 2
X = Don't Care

242

i

é,

iIM6402/iM6403
IM6402A/IM6403A

ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Industrial IM6402A1/03A}
Military IM6402AM/03AM

Storage Temperature .

-40°C 10 +85°C
-65°C to +125°C
-658°C 10 1650°C

INTERSIL

NOTE: Stresses above those listed under “Absolute Maximum
Ratings” mav cause parmanent device failure. These are
stress ratings only and functional operation of the devices at
these or any other conditions above those indicated in the

N sections of 1s notimplied. Exposure
Operating Voltage ... 40V 1.0V to absolute rating itions far pariods
Supply VOItBge iivtiiiiiiiii i +12.0v may cause device failures.

Voitage On Any input or Cutput Pin .. -0.3V to V¢ +0.3V
D.C. CHARACTERISTICS
TEST CONDITIONS: Vce = 4V to 11V, Ta = Industrial or Mititary
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
1 Vin Input Voltage High 70% Voo v
2 f Vi input Voltags Low W% Voo v
3 {uL Input Leakagel 11 GND<VINSVEee -1.0 1.0 A
4 | vou Output Voltage High IgH = OmA Vee-0.01 v
5 fvgr Output Voltage Low 1oL = OmA GND+0.01 v
6 ligy Qutput Leaksge GND<VouTt<Vee -1.0 1.0 uA
7 {ieg Power Supply Current Standby ViN=GND or Veo 5.0 500 [y
8 ilce Power Supply Current IMG40ZA Dynamic ¢ = 4MHz 9.0 mA
9 |icc Powar Supply Current IM6403A Dynamic {CRYSTAL#3.58MHz 13.0 mA
10 | Cin tnput Capacitancel 1] 7.0 8.0 oF
11 | co Output Capacitancel 11 8.0 100 pF
NOTE: 1. Except IMG403 XTAL mput pins (i.e. pins 17 and 40).
A.C. CHARACTERISTICS
TEST CONDITIONS: Voo = 10V * 5%, Cu = §0pF, Ta = Industrial or Military
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
11t Clock Froquency IMB402A D.C. 6.0 4.0 MHz
2 | fcrysTaL| Crvstal Fraquency IMB403A 8.0 8.0 MMz
3§ tow Pulsa Widths CRL, ORR, TBRL 100 40 ns
4§ mp Pulse Width MR Soe Timing Diagrams 400 200 as
5 | tps input Data Setup Tima {Figures 2,3.4) 40 [} ns
6 | tou Input Data Hold Time 30 30 a5
7 itgNn Output Enable Time 40 70 ng
TIMING DIAGRAMS
CLSY, CLS2, 585, P1, EPE SFD OR RAD
) 4 ¥
TBR? - TBAS VALID DATA x X VALID DATA (\ .
R
R Vi Vo sTATUS OB VALID
TBAL Vi | Vi Vi RBRAY . RERA DATA
- ton
I fos ou o
- Trey e

FIGURE 2. Dats Input Cycle

FIGURE 3. Control Reglster Load Cycle

FIGURE 4. Status Flag Enable Time
or Data Oufput Ensble Time

243

IMi6402/1M6403

e

.

INTERSIL 2

g
1M6402-1/1M6403-1
ABSOLUTE MAXIMUM RATINGS
Operating Temperature NOTE: Stresses above those listed under “Absolute Maximum
industrial IM8402-11703-11 -40°C 10 +85°C Ratings”" may cause permanent device failure. Thesa are
Military IM6402-1M/03-1M . -55°C to +125°C stress ratings anly and functionat operation of the davices at
Storage Temperature .659C 10+150°C these or any plher 'catv»dmun‘s.abova Vthosa m?‘";;md in the
Operating Voltage 4.0V t0 7.0V isnotimplied.
P 9 °) g to absolute rating itions for peoriods
Supply Voltage +8.0V may cause device failures.
Voltage On Any Input or Qutput Pin .. -0.3V to Vee +0.3V
D.C. CHARACTERISTICS
TEST CONDITIONS: Vcc = 5.0 £ 10%, Ta = Industrial or Military
[
SYMEBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
Plvig input Voltage High Vee-2.0 v
2 jvi input Voltage Low 08 v
3 I Taput Leakagel 11 GND<V NSV -1.0 1.0 HA
4 | VoH Qutput Voltage High 1gH=-0.2mA 24 v
R Gutput Voltage Low loL = 20mA 045 v %
& |loL Output Leakage GND<VouT<Vee -1.0 1.0 A
7 fice Power Suppiy Currant Standby ViN=GND or Voo 1.0 100 BA
8 {igc Power Supply Current IMG402 Dynamic to = IMHz 1.9 mA
9 lice Power Supply Current IMB403 Dynamic 1CRYSTAL?3.58MHz 55 mA N
10 | Cin Inpyt C] 7.0 8.0 pF
1 fcg Output Capacitancel 1] 8.0 100 pF -

NOTE: 1. Except IM6403 XTAL input pins {i.e. pins 17 and 40).
A.C. CHARACTERISTICS

TEST CONDITIONS: Vco = 5.0V £ 10%, Cu = 50pF, Ta = industrial or Military

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
i fc Clock Frequency IME402 D.C. 3.0 20 MHz
2 | fcrysTAL| Crvstal Frequency IM§403 40 158 MHz
3 pw Pulse Widths CRL, ORR, TBRL 150 BG ns
4 MR Pulse Width MR See Timing Diagrams 400 200 ns
5 DS Input Data Setup Time (Figures 2,3.4) 50 20 ns
6 |1pn nput Data Hold Time 80 40 ns
7 jten Gutput Enabls Time 80 160 ns
LA RECEIVER REGISTER e[€ Ve AEGIaTER
xvau 03 Zoazt)
PINSD TRANSMITTER REGISTER PIN 4O z {oveen
R e — YRANSUTTTER REGISTER
18X CLOCK 16X CLOCH,
owine
PiNZ DIVIDE CONTROL PINZ Iwnmm
NI e WG L » DIVIDE BY 2048
= DIVIDE BY 18
) on PN |
v
PINZZ BUFFEAS ARE 3.STATE iz
TBRE WHEN SFD = HIGH TeRE <
[PN T8 :
$# ~—1} EFD] N
. - »

FIGURE 5. Functional Dlfference Betwaen IM840R2 and 1M6403 UART (8403 has On-Chip 4/11 Stage Divider)

The IM6403 differs from the IM8402 on three Inputs (RRC,
TRC, pin 2} 8s shown m Figure 5. Two outputs (TBRE, DR) are
not three-state as on the IMB402, but are aiwavs active. The
on-chip divider and oscillator allow an inexpensive crystal to
be used as a timing source rather than additional circuitry such

244

as baud rate generators. For examplo, a color TV crystsl at
3.579545MHz results in & baud rate of 109.2Hz for an easy
tolstype interface (Figure 11). A 9800 baud imerface may be
implemsnted using a 2.4576MHz crystai with the divider setto
divide by 16.

IM6402/iM6403
IM6402/IM6403

ABSOLUTE MAXIMUM RATINGS
Operating Tomperature

IMB402/03ol -40°C 1o +85°C
Storage Temparature .. -88°C to 150°C

INTERSIL

NOTE: Stresses above those listed under “Absolute Maximum
Ratings™ may cause permanent device failure. These are
stress raungs only and functional operation of the devices at

Operating Voltage . e ADVIOTOV these or any'mher ,c':{\:ﬁxion_s_above Ilsh::‘e":‘nc::::ted 0 the
Supply Voltage ooeia.l. e, HBOV 10 absolute rating ors for exends periods
Voltage On Any Input or OQutput Pin ., -0.3V to V¢c +0.3V may cause device failures.
D.C. CHARACTERISTICS
TEST CONDITIONS: Vce = 5.0 + 10%, Ta = -40°C to +85°C
SYMBOL PARAMETER CONDITIONS MIN TYP Max UNITS
T ViR nput Voltage High Veo2.0 v
2 |vie Input Voltage Low 0.8 v
3 fy input Leakagel1} GNDSVINSVeE -5.0 5.0 4A
4 jvou Qutput Voltage High IoH = -0.2mA 24 v
5 |voL Output Volitage Low 1oL=1.6mA 0.45 v
6 oL Quiput Leakage GND<VouT<Vee 5.0 5.0 A
7 {iee Pawer Supply Current Standby VinN=GND or Voo 1.0 800 Py
8 |icc Power Supplv Current IM§402 Dynamic f = 500 KHz 1.2 mAa
g |ice Power Supply Current IM6403 Dynamic feRYSTAL=2.46MHz 37 mA
10 |Cin tnput Capacrtancel 7{ 7.0 8.0 pF
11 |Co Output Capacitancel 11 8.0 100 pF
NOTE: 1. Excopt IMB403 XTAL mput pins {i.e. pins 17 and 40).
A.C. CHARACTERISTICS
TEST CONDITIONS: Vgc = 5.0V £ 10%, CL = 50pF, Ta = -40°C to +85°C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
1 ic Clock Fraquency IME402 0.C. 30 1.0 MHz
2 | fcaystaL] Crvstat Frequancy IMG403 4.0 246 MHz
3 |ty Pulse Widths CRL, DRR, TBRL 225 50 ns
4 {wr Puise Width MR See Timing Diagrams 600 200 ns
s lipg Input Data Setup Time (Figures 23,4} 75 20 ax
6 |tpy Input Data Hold Time 30 %0 ns
7 | ten Output Enable Time 80 190 a5
meLL T T T e T
o TERE = 1 |
THAL —}-+f TransmiTTER LOGIE !
TIMING e tRanswiTTERREGISTER | [staAT | |
AND
e T conTRoL i : : MULTIPLEXER L 1 :
| [l_——-_——l.l TRO
L i
: I, f R L
RECEIVER { MULTIPLEXER } START i
i TIMING T | |
AR L] coﬁ#gm. !
i STOP 1
« 0B L0GIC I
b |
s¢0 —4

® Thwess cutouts are thres siate {IMSA0Z] or atways activa (1M6403)

FIGURE 8. 1M6402/03 Functlonal Block Disgram

245

IMe402/1i6403
TRANSMITTER OPERATION

The transmitter section accepis parallel data. formats it and
ransmits it mn serial form (Figure 7} on the TROutput
terounal.

58 DATA BITS
START BIT, 1
T

M T T =

“IF ENABLED

1.1 42 OR 2 STOP BITS
1 0 1

AR

PARITY

FIGURE 7. Serist Dato Furmat

Transmitter timing is shown in Figure 8. @ Data:sloadedinto
the transmitter buffer register from the mputs TBR1 through
TBRS by a logic low on the TBRLoad input. Valid data must be
present atleast tpg prior to and ty,, following the rising edge of
TBAL. If words less than 8 bits are used, oniy the least
significant bits are used. The character ts right justified into
the least significant bit, TBR1. ® The rising edge of TBRL
clears TBREmptv. O to 1 clock cycles later data is transferred to
the transmitter registar and TREmpty s clesred and
transmussion starts. TBREmpty is reset to a logic high. Qutput
data 15 clocked by TRClock. The clock rate is 16 times the data
rate. © A second pulse on TBRLoad loads data into the
transmitter buffer register. Data transfer to the transmitter
register (s delaved until transmission of the current character

INTERSIL

BEGINNING OF FIAST STOP BIT~ > [*—7 1/2 CLOCK CYCLES

am_l] DATA 1
ABAY-8,0€, PE
o U
oR A
FE (
o l—mtioex
cvoLe

FIGURE 9. Recelver Timing (Not to Scalo)

START BIT DETECTION

The receiver uses a 16X clock for timing (see Figure 10.) The
start bit @ could have occurred as much as one clock cycla
befors it was detected, as indicated by the shaded portion. The
center of the start bit is defined as clock count 7%. If the
receiver clock 1s 8 symmetricaf square wave, the center of the
start bit will be located within +1/2 clock cvele, +1/32 bit or
+3.125%. The receiver begins searching for the next startbitat
the center of the first stop bit.

is © Data is £ to the —gglr"z?cf
register and of that begins. aRumeuT EAQ START START OIF
i be————7 170L0CK cchEs—oi
§ B 1/2 CLOCK CYCLES
FIGURE 10. Start Bt Timing
TBRE w
el 0 70 1CLOCKS —a{_le—crLock
TRE TYPICAL APPLICATION
which are inherently parallel in
RO U DATA | nature often require an asynchronous serial interfacs. This
N o or function can be performed easily with the IM6402/03 UARY.
A 8 ¢ Figure 11 shows how the IM8403 can be interfaced to an
STOP BIT

FIGURE 8. Transmittor Timing (Not to Scale)

RECEIVER OPERATION

Data is received in sarial form at the Rl input, When no data s
being received, Ri input must ramain high. The data 1s clocked
through the RRClock. The clock rate is 16 times the data
rate, Recewver timing is shown in Figure 9.

@ A low level on DRReset clears the DReady line. ® During
the first stop bitdata is transferred from the receiver register to
the RBReg:ster. If the word is less than 8 bits, the unused most
significant bits will be a logic low. The outputcharacter is right
justified to the least significant bit RBR1. A logic high on
OError indicates overruns. An overrun occurs when DReady
has not been cleared before the present character was
transfered to the RBRegister. Alogic high on PError indicates a
parity error. © 1/2 clock cycie latar DReady is set 1o a logic
high and FError is evaluated. A logic high on FError indicates
an invalid stop bit was receved. The receiver will not begin
searching for the next start bit until a stop bit 15 received.

246

IMB100 microcomputer system with the aid of an IM6101
Progl interface Elt {PIE). The PIE interprets
input/Cutput transfer {I0OT) mstructions from the processor
and generatss read and write puisas to the UART. The SENSE
fines an the PIE are aiso employed to allow the processor to
detect UART status. in particular, the processor must know
when the Receive Buffer Register has accumulated a
character (DR activa), and when the Transmit Buffer Register
can accept another character to be transmitted.

In this the to be or

will be eight bits long {CLS 1 and 2: both HIGH}and transmitted
with no parity (PLHIGH) and two stop bits (SBS:HIGH). Since
these contro!l bits will not be changed during operstion,
Control Register Load {CRL) can be tied high. Remamber, since
the IM8402/03 is a CMOS device, ali unused inputs shouldbe
comemitted.

The baud rate at which the transmitter and receiver will
operate s determined by the external crystat and DIVIDE
CONTROL pin on the IM6403. The internat divider can be setto
reduce the crystal frequency by either 16 (PIN 2:HIGH) or 2048
(PIN 2:LOW) times. The frequancy out of the miternal divider

G

e

iM6402/1M6403

should be 16 umaes ths desired baud rate. To generate 110
baud, this exam;ﬁle will use a 3.579545MHz color TV crystal
and DIVIDE CONTROL set low. The IM6402 may use different
receive (RRCI and transmit (TRC) clock rates, but requires an
external clock generator.

To assure consistent and correct operation, the IM6402/03
must be reset after power-up. The Master Reset (MR) pin 1s
active high, and could be driven reliably from a Schmitt trigger
mvanter and R-C delay. In this example. the IM6100 is reset
through still another inverter. The Schmitt trigger between the
processor and R-C network 1s needed to assure that a stow
rising capacitor voltage doas notre-trigger RESET. A long reset
pulse after power-up {~100ms) is required by the processor to
assure that the board crystal has suffi time
to start,

The IM6402 supports the processor’s bi-directional data bus
quite easily by tying the TBR and RBR buses together. A read
command from the processor will enable the RECEIVER
BUFFER REGISTER onto the bus by using the RECEIVER
REGISTER DISABLE (RRD) pin. A write command from the
processor clocks data from the bus into the TRANSMITTER
BUFFER REGISTER using TBAL. Figure 11 shows a NAND gate

INTERSIL

driving TBRL from the WRITE2 pint on the PIE. This gate s used
1o generate a rising edge to TBARL at the point where data 1
stable on the bus. and to hold TBRL high until the UART
actually transfers the data to it's internal buffer. If TBRL were
allowed to return low before TBRE went high. the intended
output data would be overwritten, since the TBR s a
transparent latch,

Although not shown in this exampie, the error flags (PE, FE,
OE} could be read by the processor using the other READ line
from the PIE. Since an IM6403 is used. TBRE and DR are not
affected by the STATUS FLAGS DISABLE pin. Thus, the three
error flags can be tied to the data bus and gated by connecting
SFD to READ,.

If parity1s notinhibited. a panity error will cause the PEpintogo
high until the next valid character is recetved.

A framing error s generated when an expected stop bitis not
received. FE will stay high after the error until the next
complete character’s stop bit 1s received.

The overrun error flag 1s set if a recewved character 15
transferred to the RECEIVER BUFFER REGISTER when the
previcus character has not been read. The OE pin will stay high
until the next receved stop bit after a DRR 15 performed.

25MHz

‘4_ AN

RESEY
OXg-DXyy 5
12 8 8
TXa 0%y astosasmr| TR RBA MR
1M81001 =
MICROFROCESSOR &3 jxrar
(MB10t
PIE MBeg3
e bl uaRt TRO
INTGNT INTGNTY - BRR 20mA OA RS-232
LX LXMAR
s LEVEL SHIFTERS
DEVSEL. READ 1 RO
xtc x¥c SENSE 1 or
s WAHEZ ——————FD,_. FERL A1
=1 2 SENSEZ TBRE
SKPART READ 2 oo sFo
o

== feusi cusa pr cay eee sas
m 5y

FIGURE 11. 110 Baud Serini interface for IM&100 System

10710 N. Tantau Ave., Cupertino, CA 95014 (408} 996-5000 TWX 910-338-0171

Intersil cannot assume responsibitity for use of any circuitey described other than circuitry entirely embodied in an Intersil product. No other crscust
patent licenses are implied, Intersil reserves the right 10 change the circustry and specifications without notice at any tme,

11-78/00C

247

Locea

feceec

index

A

Absolute zero, 115
Ac line loads, controlling, 40-49
AD571, 10-bit A/D converter, 92-97
A/D
converter, AD571 10-bit, 92-97
ICL7109 12-bit, 101-109
interface application, 97-101,
114-120
Addressable
driver, 36-40
latch-driver circuits, 10
UART, 187-205
Aliasing effect, 123
Aluminized paper, 34
American Code for Information Inter-
change (ASCII), 165
Analog
/digital converters and UARTS,
174-181
-to-digital converters, using, 87-119
voltage, 122
Applications
D/A converter, 71-73
interrupt, 233-235
plotter, 81-84
Arrays, transistor, 22-36
Assembly language, 78
and USART, 201-205
display program, 78-81
program, 60
Asynchronous-serial data transfers,
145-148
Averaging, 54, 128-131
boxcar, 126

Averaging—cont
ensemble, 128
window, 126

BASIC loader program, 79
Baud rate factor, 151
Best straight line generator program,
86

Binary

-coded decimal, 58

notation, 165
Bipolar D/A converters, 58
Bit(s)

serialization, 170

stop, 165

stream, serialized, 157
Blanked, 17
Boxcar averaging, 126
Boxed-in plot, 82
Breadboarded circuit, 22
Break, 79
Buffer register, 170
Buffered, 18
Buses, three-state, 12
Bytes, memory, 21

C

Cadmium sulfide photodetectors, 97
Carriage return, 118
Celsius, 115
Chip
enable, 175
-enabling logic, 37
-select signals, 21

249

Circuits
open-collector, 10-15
practical D/A converter, 61-64
Coefficient, linear correlation, 138
Collector, committed, 11
Command
input, 151
mode, 151
strobe, 188
pulse, 192
Committed collector, 11
Communication(s)
computer-computer, 164-168
loop, 168
Computer-computer communications,
164-168
Continuous
conversion, 109
mode, ICL7109, 109-111
data acquisition program, 110
Control
program, 89
systems, party-line, 196-201
Controllers, simple solid-state, 41-44
Controlling ac line loads, 40-49
Conversion
continuous, 109
dual-slope, 101
mode, ICL7109 continuous,
109-111
one-shot, 111-113
free-running, 111
on command, 109
successive approximation, 92
Convert pulse input, 111
Converter(s)
AD35T1 10-bit A/D, 92-97
applications, D/A, 71-73
circuits, practical D/A, 61-64
digital-to-analog, 55-71
higher resolution, 64-69
ICL7109 12-bit A/D, 101-109
interface(s), 88-91
application, A/D, 97-101, 114-
120
interfacing, D/A, 59-61
UART:s and analog/digital, 174-181
digital/analog, 181-184
using analog-to-digital, 87-119
Co-ordinate
generator program, 83
plotting program, 85
Couplers, optical, 10, 43, 163
Current
inrush, 14

250

Current—cont
sink, 12
-sourcing power supply, 37
surge, 10

D

D/A converter
applications, 71-73
bipolar, 58
circuits, practical, 61-64
mterfacing, 59-61
unipolar, 58
Data
acquisition, 99
averaging, 99
mode, 151
raw, 126
ready flag, 179
sampling, 122-126
scaling program, 127
transfers, asynchronous-serial,
145-148
Decoder
driver, seven-segment, 22
high-current decimal, 16
open-collector, 16-22
Decoding, memory expansion, 10
Decimal decoder, high-current, 16
Decrementing, 223
Delimiter, 167
Demultiplexer, 186
Device, temperature sensing, 114
Digital
/analog converters and UARTS,
181-184
filtering, 131-135
-to-analog converters, 55-71
Direct
memory access, 217
mode, 107, 109
Discharge plots, 102
Display(s)
area, 127
incandescent, 22
plot routine, 117
plotter, 127
program, 76, 79
assembly-language, 78-81
update program, 110
x-y, 84-87
Double
-bar, 11
buffering, 54, 182
Driver(s)
addressable, 36-40

3,

Yy

Driver(s)—cont
circuits, 10
open-collector, 197
peripheral, 22-36
Dual-slope conversion, 101

E

Elementary interrupts, 208-210
Enabled, 19

Encoder, priority, 230
Ensemble averaging, 128
Enter, 78

Error flags, 161

F

Fahrenheit, 115
False inflection points, 125
Filter, low-pass, 124
Filtering, digital, 131-135
Flag(s)

data ready, 179

error, 161

testing, 110
Flip-flop, 77
Free-running conversion mode, 111
Full-duplex circuit, 162

G

Gates, open-collector, 9

Glitches, 49

Graphics, using D/A converters,
74-87

Ground-loop noise, 164

H

H register, 204
Handshake mode, 107
Handshaking, 164
Hard-wired, 199
Hardware, interrupt control, 215-217
Heatsinking, 50
High
-byte enable, 105, 175
strobe, 65
-current circuits, 10
decimal decoder, 16
Higher resolution converters, 64-69
Histograms, 73

ICL7109
continuous conversion mode,
109-111
one-shot conversion mode, 111-113
12-bit A/D converter, 101-109

Incandescent displays, 22
Incremented, 224
Inflection points, 124, 125
Inhibit, 200

Input

command, 151
convert pulse, 111

Inrush current, 14
Instruction

jump, 212
port, interrupt, 215

Integrated voltage, 104
Intercept point, 137
Interface(s)

application, A/D converter, 97-101,
114-120
converter, 88-91

Interfacing

D/A converter, 59-61
USART, 148-168

Internal latch pulse, 109
Interrupt(s)

applications, 233-235
bound, 209
control hardware, 215-217
software, 218-229
elementary, 208-210
instruction port, 215
mode 0, 211-212
1,212-214, 225-228
2, 214-215, 228-229
multiple mode 0, 223-225
nonmaskable, 210
priority, 229-233
sensing, 209
service program, 209
TRS-80, 210-215
Z-80, 210-215

Inverters, open-collector, 197

J

Jump instruction, 212

K

Keep alive resistor, 27
Kelvin, 115

L

L register, 204
Ladder, resistor, 56
Lamp

data acquisition program, 99
-driver circuits, 10
test program, 72

Language, assembly, 78

251

Latch(es), 57

chips, 182

circuit, 38

-driver circuits, addressable, 10

pulse, internal, 109
Least

-significant bits, 65

squares, method, 135-141
Line

-driver circuit, 197

loads, controlling, ac, 40-49

plots, x-y, 84-87

-receiver circuit, 198
Linear correlation coefficient, 138
Loader program, BASIC, 79
Loads, controlling, ac line, 40-49
Logic, chip-enabling, 37
Loop, communication, 168
Low

-byte enable, 105, 175

strobe, 65

-current devices, 9

-pass filter, 124

-voltage devices, 9

M

Memory
bytes, 21
expansion decoding, 10
read/write, 78
size, 78, 201
Metal-oxide varistor, 51
Method of least squares, 135-141
Mode
0 interrupts, 211-212, 223-225
1 interrupts, 212-214, 225-228
2 interrupts, 214-215, 228-229
one-shot conversion, 111-113
command, 151
data, 151
direct, 107, 109
free-running conversion, 111
handshake, 107
ICL7109 continuous conversion,
109-111
Modem, 157
Monitor, video, 117
Most-significant bits, 65, 67
Moving average, 141
Multiple
mode 0 interrupts, 223-225
UART systems, 184-186

N
Nand gate function, 18

252

Negative voltage ramp, 60
Noise, 99

ground-loop, 164
Nonmaskable interrupt, 210

(o]

Offset, 127
binary, 58
On-chip latch circuits, 68
One-shot conversion mode, ICL7109,
111-113
Op-amps, 58
Open-collector
circuits, 10-15
decoders, 16-22 .
drivers, 197 .
gates, 9
inverters, 197 :
Optical coupler, 43 =
Opto-isolators, 163
Output
ports, 57
pulled-up, 11
status, 109

s

Parabola, 133
Parabolic filter program, 133
Parity, 152
bit, 153
Party-line control systems, 196-201
Peek, 79
Peripheral drivers, 22-36
Photocell, 97
Photodetectors, cadmium sulfide, 97

Pinout, 16
Plot(s)
boxed-in, 82 -
program, 77 L
x-y line, 84-87
Plotter
applications, 81-84
display, 127
Point(s)

detecting program, inflection, 125
inflection, 124

Poke, 78

Port, interrupt instruction, 215

Positive voltage ramp, 60

Power supply, current-sourcing, 37

Practical D/A converter circuits,

61-64

Print %
-head transistor drivers, 36 E
peek, 79

Priority, 227
encoder, 230
interrupts, 229-233
Program
assembly-language display, 78-81
BASIC loader, 79
best straight line generator, 86
continuous data acquisition, 110
control, 89
co-ordinate generator, 83
plotting, 85
data, scaling, 127
display, 76, 79
update, 110
inflection point-detecting, 125
interrupt service, 209
lamp data acquisition, 99
test, 72
parabolic filter, 133
plot, 77
random data generator, 80
scale drawing, 83
mark generator, 83
sine function generator, 80
single conversion control, 112
temperature data acquisition, 117
display, 117
Programming USART, 151-156
Protection, relay, 49-51
Pulled-up output, 11
Pulse
input, convert, 111
internal latch, 109
Push, 214

R

Random data generator program, 80
Raw data, 126
Read, 78
/write memory, 78
Ready, 79, 210
Reference voltages, 69-71
Register, buffer, 170
Relay(s)
protection, 49-51
solid-state, 44-49
Remote control, using UART for,
171-174
Resistor
keep alive, 27
ladder, 56
surge limiting, 27
Resolution, 57
Return, 215

S
Sampling, data, 122-126
Scale
-drawing programs, 83
marks, 84
Scaling, 126-127
factor, 127

Semiconductors, temperature-
dependent, 114
Sensing
device, temperature, 114
interrupt, 209
Serialization, bit, 170
Serialized bit stream, 157
Service program, interrupt, 209
Seven-segment decoder driver, 22
Signals, chip-select, 21
Simple solid-state controllers, 41-44
Sine
function generator program, 80
voltage function, 60
Single-conversion method, 113
Sink current, 12
Slope, 125, 137
Snubber circuit, 49
Software, 164
interrupt control, 218-229
Solid-state
controllers, simple, 41-44
relays, 44-49
Spectrum, visible light, 101
Squares, method of least, 135-141
Stack, 214
Status output, 109
Stop bits, 165
Stream, serialized bit, 157
Strobe, 170
command, 188
Subprogram, 208
Subroutines, 113
Successive-approximation conversion,
92
Superimposed noise, 129
Surge
currents, 10
limiting resistor, 27
Switch, triac-based, 42
Switching, zero-voltage, 48
System, 79

Temperature
data acquisition program, 117
-dependent semiconductors, 114

253

Temperature—cont
display program, 117
sensing device, 114
transducer, two-terminal, 114
Ten-bit A/D converter, AD571, 92-97
Testing, flag, 110
Thermistors, 114
Thermocouples, 114
Three-state buses, 12
Thyristor, 41
Timed-out, 29
Transducer, two-terminal temperature,
i14
Transfers, asynchronous-serial data,
145-148
Transistor
arrays, 22-36
drivers, print-head, 36
Triac, 41
-based switch, 42
TRS-80 interrupts, 210-215
Twelve-bit A/D converter, ICL7109,
101-109
Two-terminal temperature transducer,

114

u

UART(s), 168-171
addressable, 187-205
and analog/digital converters,
174-181
digital/analog converters,
181-184
systems, multiple, 184-186
using addressable, 188-196
for remote control, 171-174
Unipolar D/A converters, 58
Unity gain, 115
USART
and assembly language, 201-205
interfacing, 148-168

254

USART—cont
programming, 151-156
using, 157-164

Using
addressable UART, 188-196
analog-to-digital converters, 87-119
D/A converters for graphics, 74-87
UART for remote control, 171-174
USART, 157-164

v !
Vector
address table, 225 B
points, 212 -

Video monitor, 117
Visible light spectrum, 101
Voltage =%
analog, 122
function, sine, 60
integrated, 104
ramp, negative, 60
positive, 60
reference, 69-71

w
Window averaging, 126

X
X-Y
displays, 84-87 .
line plots, 84-87 E
plotters, 74 ‘

AN

Y-intercept, 137

4
Z-80 interrupts, 210-215
Zero
-crossing point, 48
voltage switching, 48

READER SERVICE CARD

To better serve you, the reader, please take a moment to fill out
this card, or a copy of it, for us. Not only will you be kept up to date
on the Blacksburg Series books, but as an extra bonus, we will
randomly select five cards every month, from all of the cards sent to
us during the previous month. The names that are drawn will win, .
absolutely free, a book from the Blacksburg Continuing Education L
Series. Therefore, make sure to indicate your choice in the space
provided below. For a complete listing of all the books to choose
from, refer to the inside front cover of this book. Please, one card
per person. Give everyone a chance.

In order to find out who has won a book in yourarea, call(703)
953-1861 anytime during the night or weekend. When you do call,
an answering machine will let you know the monthly winners. Too
good to be true? Just give us a call. Good luck.

e

If I win, please send me a copy of:

T understand that this book will be sent to me absolutely free, if my
card is selected.

G

For our information, how about telling us a little about
yourself. We are interested in your occupation, how and where you
normally purchase books and the books that you would like to see .
in the Blacksburg Series. We are also interested in finding authors 2 Y
for the series, so if you have a book idea, write to The Blacksburg
Group, Inc., P.O. Box 242, Blacksburg, VA 24060 and ask for an
Author Packet. We are also interested in TRS-80, APPLE, OSI
and PET BASIC programs.

My occupation is
I buy books through/from
Would you buy books through the mail?
I'd like to see a book about
Name
Address
City

State Zip

The Blacksburg Group

According to Business Week magazine (Technology July 6, 1976) large scale integrated circuits
or LSl “chips’” ore creating a second industrial revolution that will quickly invelve us all. The
speed of the developments in this area is breathtaking and it becomes more and more difficult to
keep up with the ropid advances that are being made. It is also becoming difficult for newcomers
to “get on board.”

It has been our objective, as The Blacksburg Group, to develop timely and effective educational
materials thot will permit students, engineers, scientists, technicians and others to quickly learn
how to use new technologies and electronic techniques. We continue to do this through several
means, textbooks, short courses, seminars and through the development of special electronic de-

vices and training aids.

Our group members make their home in Blacksburg, found in the Appalachian Mountains of
southwestern Virginia. While we didn’t actively start our group collaboration until the Spring
of 1974, members of our group have been involved in digital electronics, minicomputers and
microcomputers for some time.

Some of our past experiences and on-going efforts include the following:

~The design and development of what is considered to be the first popular hobbyist computer.
The Mark-B was featured in Radio-Electronics magazine in 1974. We have also designed several
8080-based computers, including the MMD-1 system. Our most recent computer is an 8085-based

computer for educational use, and for use in small controllers.

—The Blacksburg Continuing Education Series™ covers subjects ranging from basic electronics
through microcomputers, operational amplifiers, and active filters. Test experiments and examples
have been provided in each book. We are strong believers in the use of detailed experiments and
examples to reinforce basic concepts. This series originally started as our Bugbook series and many
titles are now being translated into Chinese, Japanese, German and Italian.

-We have pioneered the use of small, self-contained computers in hands-on courses for micro-
computer users. Many of our designs have evolved into commercial products that are marketed
by E&L Instruments and PACCOM, and are available from Group Technology, Ltd., Check, VA
24072.

-Qur short courses and seminar programs have been presented throughout the world. Programs
are offered by The Blacksburg Group, and by the Virginia Polytechnic Institute Extension Divi-
sion. Each series of courses provides hands-on experience with real computers and electronic
devices. Courses and seminars are provided on a regular basis, and are also provided for groups,
companies and schools ot o site of their choosing. We are strong believers in practical labora-
tory exercises, so much time is spent working with electronic equipment, computers and circuits.

Additional information may be obtained from Dr. Chris Titus, the Blacksburg Group, Inc. (703)
951.9030 or from Dr. Linda Leffel, Virginia Tech Continuing Education Center (703) 961.5241,

Our group members are Mr. David G. Larsen, who is on the faculty of the Department of Chem-
istry ot Virginia Tech, and Drs. Jon Titus and Chris Titus who work full-time with The Blacksburg
Group, all of Blacksburg, VA.

BOOK 2

TRS-80 INTERFACING

This book will htroducevoufomdmmcedlnmhqtecn
niques that will allow you to do real things with your Radio Shack TRS-80
computer. You will find that these techniques can be applied to com-
puter applications in your home, research laboratory, or school
laboralory. You will learn how the computer can be used to drive high-
cument and high-vollage loads, o generate voltage and cument sig-
nals, and fo measure unknown voltages and cuments. Since many
computers are being used to control devices that are localed some
dislance from the central processing unit, the author has included o
chapter on serial communication ond remote conirol. Remote con-
trol circuits are provided that allow you o control Universal Asyn-
chronous Receiver/Transmifter (UART) chips, analog-to-digital con-
verters, digitoHo-analog converters, and other devices that can be
:'%col;dmnmamlfodmwwcmmmmouwndw
m it

Dr. Jonathan A. Titus 5 the president of Tychon, Inc. in
Blocksburg. Virginio. Most of his current work involves tech-
nical writing ond the application of microcomputers for
data ocquisition and control He has written and co-
authored o number of articles on computers for both pro-
fessional and popular applications.

Jon's first microcomputer expenence wos with the
8008. and his Mark-8 computer was featured as the first
widely ovailoble hoblby computer His interests now cen-
ter around the B080 ond 14-bit microcomputers. He has co-instructed courses
with the Amencan Chemical Society and now works with the Tychon hardware
ond soffware programs.

Dr. Christopher A, Titus is o microcomputer applications
engineer with Tychon, Inc., in Blacksburg. Virginia. He re-
ceived his PhD from Virginia Polytechnic Institute while
working on microcomputer automated chemical instry-
ments He has coouthored a number of instrumentation
artickes and has had papers presented of maor engi-
and science conferences

-Chris has progrommed with the intel 8008, intel 8080,
and MOS Technology 6502 Microcomputers. He has writ-
ten editor, assembiler. disassembiler. and debug sofftware, as well as complete
oparating systems for microcomputers. He is also a proficient PDP-8 program-
mer and digital designer.

. David G. Larsen is an instructor in the Department of
N Chamistry at Virginia Polytechnic Institute & State Univer-
sity. where he feaches undergroduate ond graduate
coursas in analog and digital tronics. He is coauthor
of other books in the Blacksburg Continuing Education
Seres™ and the monthly columns on microcomputer in
tedacing. He is a co-instructor of a senes of one-to-five-

wc:&hopg on the digital and microcomputer revolu
tlon tought under the ouspices of the Extension Division
of the UMfersl'w which aftroct profassionals from all ports of the world

$11.95/21738 ISBN: 0-672-21739-2

