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Preface

The purpose in writing this book is to introduce you to the signals
available within the Radio Shack TRS-80 computer and to show
you how they can be used to control external devices, under the
control provided by BASIC-language programs. A special design
system has been developed to speed your circuit implementation
and to allow you to perform easily the many experiments that have
been provided. Through the use of a design system, such as the
one described later in this book, you will be able to spend your
time concentrating on the principles involved, rather than trouble-
shooting your circuitry.

As always, in computer systems, input/output (I/O) devices are
useless unless they are controlled by computer program steps, or
software, that have been written specifically to control them. Un-
fortunately, the Level I BASIC that is supplied with the TRS-80
in its minimum configuration does not contain any commands that
allow I/O devices to be controlled by statements in BASIC pro-
grams. The TBUG (Level 1) program could be used to allow the
entry and execution of machine language operation codes in hexa-
decimal format. If you are not familiar with these terms, you can
probably understand why we have chosen to avoid their use in this
book. We will introduce you to these terms, however, but we will
concentrate on the use of BASIC-language programs to control 1/0
devices.

We have chosen to use the Level II BASIC program, with a
minimum of 4K of read/write (R/W) memory available for pro-
gram and data storage. The Level II BASIC has a number of
commands that allow direct communuication with I/O devices,
under program control. We will introduce you to these commands



shortly. These instructions are easily mastered, without the need
for a detailed understanding of the microprocessor chip and the
support circuitry contained in the TRS-80 keyboard module.

First we introduce you to the control signals that are available
for interfacing and then we start to tell you how they are used.
Some of the signals will not be discussed in this book, since they
have been provided for use by standard Radio Shack peripherals,
and their use is not important to most external 1/O devices.

Our next step shows you how the various Level II BASIC in-
structions are used to control the operation of these signals so that
you may actually control the flow of data to and from external I/O
devices and the computer through BASIC program steps. You will
be able to write “low-level” 1/O control programs rather quickly.
This is one of the beauties of a higher-level or more English-like
language, such as BASIC. There are drawbacks to using BASIC
for 1/O control, as we point out later in the text.

We have assumed that you already have a fairly good under-
standing of the commands in Level II BASIC. If you are just start-
ing your programming experience with the TRS-80, we hope that
you will take some time to become familiar with the basic com-
mands such as INPUT, PRINT, IF, GOTO, FOR, etc. We fre-
quently use these and other program statements in our examples
and in the experiments, and we hope that their use will be second-
nature after you have finished reading this book.

The last section of the book starts to combine your interfacing
and software skills to allow you to understand the power of Level 1T
BASIC as it is applied to the control of external 1/O devices. You
will also have an opportunity to construct and test a number of
interesting interface circuits that will be used in the experiments
to reinforce your skills.

We realize that it is often difficult to write a book such as this
so that it addresses all audiences, from the beginner to the ad-
vanced programmer/hardware designer. We have decided to start
someplace near the middle of the spectrum of users. Thus, we have
chosen not to review binary numbers, basic digital logic, circuit
breadboarding, and other topics. A short review of a paragraph or
two will be used, where appropriate, to refresh your knowledge
of these areas, but since they have been covered in a great amount
of detail elsewhere, we direct you to several references, rather than
repeat these subjects here. We will expect that the use of binary
numbers and binary/decimal conversions can be performed by you
with a minimum of difficulty. We have also assumed some famil-
iarity with the SN7400-series transistor-transistor logic (TTL) fam-
ily, including such devices as the SN7475 quad latch, the SN7402
quad two-input NOR package, etc.



If you think that some review might be useful, or if these topics
or areas are new to you, we suggest the following references.

Breadboarding, microcomputers and digital logic:

Introductory Experiments in Digital Electronics and 8080A Micro-
computer Programming and Interfacing (Two volumes, 21550
and 21551).

General microcomputer interfacing and programming:
The 8080A Bughook®: Microcomputer Interfacing and Program-
ming (21447).
Microcomputer software:
8080/8085 Software Design, Book 1 (21541)
8080/ 8085 Software Design, Book 2 (21615).

All of the above books are available from Howard W. Sams & Co.,
Inc., 4300 West 62nd Street, Indianapolis, IN 46206.

The pin configurations for most of the SN 7400-series “chips” are
provided through the courtesy of Texas Instruments. Other diagrams
and pin configuration figures have been provided by other compa-
nies, as noted. The name TRS-80 is a trademark of Radio Shack.

The author thanks Chris and Dave for their proofreading and
helpful comments, and Sara Jane Titus for typing the drafts and the
final manuscript. I dedicate this book to my own two little “bugs,”
Chris and Beth.

Jowaraan A, Trtus

Bugbook is a registered trademark of E & L Instruments, Inc., Derby, CT
06418.
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Z-80 Processor

The Radio Shack TRS-80 computer system uses the Z-80-type of
microprocessor integrated circuit. This “chip” forms the heart or
central processing unit (CPU) of the computer, the place where
the actual mathematical, logical, decision-making, and other oper-
ations take place. The Z-80-type microprocessor chip is manufac-
tured by the Zilog Corporation (Cupertino, CA 95014), the Mostek
Corporation (Carrollton, TX 75006) as their 3880 chip, and by SGS-
Ates (Italy).

The Z-80 chip is an 8-bit processor. Thus, all of the mathematical,
logical, data transfer, input, and output operations operate on eight
binary bits at a time. Each bit, of course, can be either a logic one
or a logic zero. The Z-80 uses an 8-bit data bus to transfer informa-
tion between itself and various memory locations and input/output
(I/O) devices such as a keyboard, printer, etc. In cases where the
value of information exceeds the limit of eight bits, multiples of
8-bit data words are used. Each 8-bit data word is generally re-
ferred to as a byte.

You should realize that the maximum value that can be expressed
with eight bits is 11111111, or 255;¢. If larger values are to be oper-
ated on in an 8-bit computer system, then multibyte operations are
required. Generally, this means that corresponding bytes in two
data words are operated on, followed by the operation being per-
formed on the next corresponding set of bytes in the large data
words. In this way large values, beyond the value of 255, may be
readily processed. It is important to remember, though, that the
TRS-80 CPU can only process and transfer eight bits or one byte
at a time.



The Z-80 uses a single set of eight pins to make connection with
the data bus in the computer. This data bus is used to transfer in-
formation both to and from the computer. This type of a bus is
called bidirectional, since it allows information to flow in two dif-
ferent directions. This is much like a highway that is used to allow
vehicles to drive one way in the morning and to allow vehicles to
travel in the opposite direction in the evening, perhaps to better
accommodate commuter traffic.

The Z-80 generates control signals on the integrated circuit that
are used both internally and externally to supervise and manage the
flow of information on the bus, in one direction at a time. We will
explore the generation and the use of these signals later in this book.

MEMORY

All computer systems have some memory associated with them.
In general, the memory is used to store both a program that will
control the operation of the computer, as well as the information
that is to be processed. In the Z-80-based computer, each memory
location can be used to store eight bits of information, or one byte
of data. Most memories consist of multiples of these one-byte stor-
age locations, generally in multiples of 1024, abbreviated 1K.

The memory locations must be addressed in some way so that
the computer knows exactly where it is to store data or obtain pro-
gram step information. The Z-80 microprocessor chip has 16 address
outputs allowing it to specify any one of 2'¢ or 65,536 memory lo-
cations, each of which can contain one byte. This is often shortened -
to 64K, indicating that 64K bytes of information can be addressed.
In almost all microcomputer memory systems, each memory loca-
tion is uniquely addressed with a 16-bit address.

The address bus lines are labeled AG through Al5, corresponding
to the least-significant bit (LSB) through the most-significant bit
(MSB), respectively. The LSB and MSB can both be either a logic
one or a logic zero, but their position gives the LSB a value of zero
or one and the MSB a value of zero or 32,768,,. Since the Z-80 is an
8-bit processor, the address lines are frequently split into two groups
of eight lines each, A7-A0 and A15-A8. The lines A7-AQ are referred
to as the low or LO address, while the lines A15-A8 are referred to
as the high or HI address. These lines will be explored further when
software instructions are discussed and when interface circuits are
developed. Unlike the data bus, the address bus is unidirectional,
the address information flows in only one direction, from the CPU
to the memory and to external devices.

The pin configuration of the Z-80 is shown in Fig. 1-1. Although
most of the other signals will be meaningless to you, you should be
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Courtesy Mostek Corp.
Fig. 1-1. Z-80 Microprocessor chip pin configuration.

able to identify the eight data bus input/output pins and the 16 ad-
dress output pins.

Since the memory section is being discussed, there are several
different types of memory devices that are used in microcomputer
systems. These are:

Read/Write—Read/Write (R/W) memory is used for the storage
of data that will be changed or updated. The computer must
be able to place the information in a memory location and then
be able to read it back. Programs that will be changed are also
stored in R/W memory, for the same reason. The lowest cost
TRS-80 contains 4096 or 4K of R/W memory.

Read-Only—Read-only memory (ROM) is used when data values
and program steps will not be altered. The BASIC interpreter
program in your TRS-80 system is contained in read-only mem-
ory chips. The Level Il BASIC interpreter is stored in either
12K or 16K of ROM.

There are various sub-classes of these types of memory devices.
The R/W memories may be either static or dynamic. Static memory
chips will maintain the values stored in them until they are changed.
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Dynamic memories require refreshing by external hardware every
few milliseconds or they will “forget” or loose the data stored in
them. The R/W memories in the TRS-80 are dynamic, with the nec-
essary refreshing circuitry contained on the computer printed-circuit
board.

There are many types of read-only memories. The various types
are generally all static, the differences occurring in the means of
storing the 8-bit data values in the memory locations. The two most
important types are mask-programmed and field-programmed. The
mask-programmed devices have data values, program steps, etc.,
stored in them during the various manufacturing steps. They are
generally referred to as ROMs, The field-programmable devices re-
quire some kind of special programming circuitry to store the logic
ones and zeros in the various locations. Some of the field-program-
able ROMs, or PROMs, as they are generally called, can be erased
under high-intensity ultraviolet light. They can then be repro-
grammed. This is very useful when programs are being developed
that will be stored in read-only memory. It does not require the
development of masks and chips, an expensive process, each time
a program bug is found or a change is made.

A few final words are required about semiconductor memory de-
vices. The read/write devices are volatile, since data (your pro-
gram and values) will “evaporate” or disappear when power is re-
moved from the system. The read-only memories, on the other hand,
are considered to be nonvolatile, since they will maintain the data,
or program steps (the Level II BASIC interpreter) when the power
has been removed.

Most memory integrated-circuit packages or chips do not have all
16 of the address lines connected to them. They have only enough
address connections to uniquely address the memory locations
within the individual chip. Thus, a 64-byte chip, small by standards
of today, would only have six address line inputs while a 1024 (1K)
byte memory chip would have 10 address line inputs. Memory chips
such as these have an additional control or chip-enable input that
allows banks or groups of the chips to be selected, one set of ad-
dresses at a time. Various decoding and selecting circuits may be
used, thus allowing a 32K block of memory to be constructed from
64-byte or 1K byte chips, or even combinations of the two. The main
point here is that the memory chips do not require all 16 address
lines to be connected directly to them, although some combination
of all 16 address bits will be used to uniquely select one byte. You
should not be confused when you are confronted with a 1K X 4 bit
memory that only has 10 address inputs and a chip enable input.
This concept will be developed further as you study input/output
data transfers.
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Two additional control signals are generated by the Z-80 and its
support logic. These are READ (RD) and WRITE (WR), which
control the reading of data from the memory into the Z-80 and the
writing of data from the Z-80 to the memory, respectively. In both
cases, the Z-80 has specified a 16-bit address to locate the memory
“cell” that is to be involved in the transfer. In this case, the cell is
an 8-bit word or byte. __

The “bar” over the RD and WR notation indicates that it is a
logic zero level that causes the corresponding operation to take
place. Thus, RD and WR are both logic zero pulses, generated by
the Z-80 system. The Radio Shack notation for these is RD* and
WR*, a nonstandard format that we will not use further. You may
also see the notation MEMR and MEMW for these signals, denot-
ing memory read and write operations.

You may also see the notation RAM wused to incorrectly signify
read/write memory. The acronym RAM stands for random-access
memory. In fact, all of the modern, easy-to-use memory devices
are random access, since one may address one location and then
any other, without having to sequence through all of the locations
between the two addresses.

Pin configurations for typical memory chips have been provided
in Fig, 1-2.
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Fig. 1-2. Pin configurations for 2708 1K X 8-bit PROM and 2111 256 X 4-bit
R/W memory chips.
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For additional information about memory devices, we refer
you to

® Intel Memory Design Handbook, Intel Corporation, Santa
Clara, CA 95051, 1975.

® The 8080A/9080A MOS Microprocessor Handbook, Advanced
Micro Devices, Inc., Sunnyvale, CA 94086, 1977.

® Mostek Memory Products Catalog, Mostek Corporation, Car-
rollton, TX 75006, 1977.

@ Bipolar and CMOS Memory Data Book, Harris Semiconductor
Prod. Div., Melbourne, FL 32901, 1978.

INPUT/OUTPUT (1/O) DEVICES

Most microcomputer-based systems are worthless without some
attached I/0 devices. These devices may be standard peripherals,
such as card readers, printers, displays, etc., or they may be sensors,
controllers, and other devices that most people do not normally
associate with computers. The TRS-80 computer is no exception.
It already has three 1/O devices associated with it; a television dis-
play, a cassette tape recorder, and a keyboard.

Other 1/0 devices can be added to your computer. These devices
may be of your own design or they may be standard, commercially
available devices that are compatible with the TRS-80. These 1/O
devices are much like the individual memory locations that were
discussed in the previous section. They are attached to the data
bus, since data is transferred to them and from them, and they
are also connected to the address bus, although not in exactly the
same way as the memory devices. Just as memory locations are
uniquely addressed, so are the 1/O devices.

Two control signals are provided to synchronize the flow of data
to and from I/O devices. These signals are generated by the logic
circuits that are associated with the Z-80 chip, and they are called
TN and OUT. The IN signal controls_the flow of data from the
1/O devices to the Z-80, while the OUT signal controls the flow
of data from the Z-80 to the I/O devices. As noted previously, the
“bar” over the signal name indicates that the logic zero state causes
the input or output function to take place. The signals are noted
as IN* and OUT* in the Radio Shack manual and you may also
see these two signals noted as I/OR and I/OW_for I/O-read and
1/0O-write, respectively. We prefer the IN and OUT notation and
we will use it throughout this book.

Since we will be concentrating on the use of I/O devices with
the TRS-80, we have left a great deal of the specific discussion to
the remaining sections.
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Review

At this point, you should understand that the Z-80 transfers and
operates on eight bits of data at a time. Complex calculations and
operations often require multiple groups of eight bits or bytes. The
bytes are transferred to and from the Z-80 CPU on an 8-bit data bus.

The Z-80 uses a 16-bit address bus to address individual memory
locations. The 16-bit address bus is broken into a HI and LO ad-
dress bus, of eight bits each. Input/output devices also use the
address bus.

There are four control signals that are used to control the flow
of data to and from the CPU and memory, and to and from I/O
devices. These signals are active in the logic zero state. The signals
and their designations are noted in Table 1-1.

Table 1-1. Control Signals Used for Interfacing

DATA BUS b7-DO An 8-bit bidirectional set of lines for transfer of infor-
mation between the CPU and memory and 1/O devices.

ADDRESS BUS A15-A0 | A 16-bit unidirectional address bus used to address
both memory and /O devices

A15-A8 | Hi address bus, most-significant eight address bits
A7-A0 LO address bus, least-significant eight address bits

CONTROL BUS RD Memory read contro! signal (MEMR or RD™)
WR Memory write control signal (MEMW_or WR*)
iN 1/ O device input control signal (1/OR or IN¥)
out 1/0 device output control signai (iJOW or OUT¥)

NOTES: The ‘‘bar’ notation, i.e., IN, indicates a logic zero is the “active’ state, the state
that causes the corresponding action to take place.

In each case in which a signal is enumerated, the numbers increase as the significance of the
bits increases, i.e., A15 = most-significant address bif (MSB).

SOFTWARE /O CONTROL INSTRUCTIONS
I/O Commands

The TRS-80 computer has a number of instructions that are used
to control I/O devices. For the most part, though, these instructions
are used to control specific I/O devices or to perform specific func-
tions. Without realizing it, you are already familiar with some, if
not all, of these I/0 instructions.

Here are some examples of these I/O control instructions, to re-
fresh your memory.

The INPUT and PRINT commands are probably familiar to you.
The INPUT command causes a BASIC program to stop and wait
for an input from the keyboard. The PRINT command causes an
answer or string of characters to be “printed” on the tv screen.

15



Example 1-1. A Simple /0 Program

10 INPUT "VALUE OF X 1§8"; X
20 PRINT “INPUT VALUE WAS”; X

If you executed the program in Example 1-1, the value associated
with the variable, X, would have to be entered into the computer
before the program passed control to statement 20. These two types
of I/O statements are frequently used to allow an operator to enter
a value and to see a value displayed. There are many variations
of both the INPUT and PRINT commands, but these two exam-
ples serve to illustrate the point; you have already been using
I/0 operations in BASIC-language programs without difficulty.

You may have already discovered that there are also graphic dis-
play 1/O commands in BASIC, too. There are the CLS, SET, and
RESET commands. The CLS command clears the entire screen,
while the SET and RESET commands are used to “turn-on” and
“turn-off” rectangular shapes on the tv screen. The SET and RE-
SET commands require the use of “coordinates” to indicate where
the operation is to take place.

The program in Example 1-2 shows the use of these three in-
structions to generate a random display of “on” and “off” locations
on the screen. Note that a POINT instruction was used to query
the point to determine its current state.

Example 1-2. A Random Pattern Generator using I/0 Commands

10 CLS

20 X = RND (127}

30 Y = RND (47)

40 IF POINT (X.Y) = 0 GOTO 70
50 RESET (X.Y)

60 GOTO 20

70 SET (X.Y)

80 GOTO 20

There are two other commands that you may not have consid-
ered to be 1/O commands. These are the CLOAD and CSAVE
commands that are used to read and store programs on cassette
tapes. Each command causes a preset series of operations to take
place, controlling the cassette recorder. The use of these commands
is fairly obvious, so we will not provide an example.

Other commands are the LPRINT and LLIST operations asso-
ciated with the optional line printer that can be used with the
TRS-80. It is important that you realize that these instructions are
all specific to the TRS-80 computer and its BASIC-language inter-
preter program. These instructions would be meaningless to other
Z-80~based computer systems unless they used the TRS-80 Level II
BASIC program. The instructions are also specific to one 1/O device,
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ie., the CLS instruction has no effect on the cassette recorder, or
any other I/O device. Likewise, the INPUT command controls the
input of values only from the keyboard on the console.

General~Purpose 1/O Commands

There are no general-purpose I/O commands in the Level I
BASIC interpreter. This is the main reason that we have not used
it in this writing. The Level II BASIC interpreter contains four
general-purpose I/O commands, two of which are used with I/O
devices and two of which are used to examine and change the con-
tent of memory locations.

The two 1/O device commands are OUT and INP. They are used
to transfer data to an external device from the computer, and to the
computer from an external device. There is a specific format for
these instructions that must be used if the instructions are to op-
erate properly.

The output instruction, OUT, must specify the address of the
I/O device that is to be involved in the transfer of data and also
the value that is to be transferred to the addressed device. The ac-
tual format for the OUT instructions is, OUT =x,y, where the x value
represents the decimal address of the output device that is to re-
ceive the data value, y. The data, y, must also be a decimal number.
The address and the data value must both be within the range of 0
to 255, inclusive. This means that data values between these limits
may be sent to any of up to 256 output devices. The limit on the
upper value of a number that can be output should be quickly asso-
ciated with the largest number that can be transferred on an 8-bit
data bus, 255. Remember that there are actually 256 values that
can be represented, since zero is a value, too. The limit of 256 out-
put devices (ports) may not be so quickly apparent. We will dis-
cuss this further in a later section.

In the following statement, the value 125 is sent to output port
12; OUT 12, 125. '

The input instruction, INP, is similar to the OUT instruction,
except that no data value is incorporated in the command. We are
interested in determining the value present at the specific input
device, so only the decimal address of the input device is specified;
INP (x), where x is the decimal address of the input device.

It does little good to input a value without doing something with
it, so the input command is always incorporated in a complete state-
ment, rather than being a statement itself. An example of this is
A =1INP(19).

In this case, the variable, A, is assigned the decimal value that
has been input from input device 19. It is important that you re-
member to enclose the address of the device in parentheses.
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Whenever an input command, INP, is used, the value that is in-
put will be between zero and 255, inclusive. Again, this is due to
the limitation of 8-bit data transfers. Input and output devices will
be referred to as ports. Thus an output device will be an output port
and an input device will be an input port. This is standard nomen-
clature used throughout the microcomputer industry.

The input and output commands may have variables specified
within them, rather than specific values for port addresses, and in
the case of the output instruction, data values. Thus, all of the in-
put and output commands shown in Table 1-2 are valid. We have
assumed, of course, that the values for the variables N, M, X, and Q
have been specified somewhere in the program prior to the use
of the instructions shown in Table 1-2.

Table 1-2. Valid INPUT (INP) and OUTPUT (OUT) Command Structures

OoutT 12, 15 INP {15)
OUT N, 120 INP (Q)
our 12, X
outr X, m

Input and output commands in which either the data or address
values exceed 255 result in an error condition, FC {Illegal Func-
tion Call).

We have provided some examples that show the use of the INP
and OUT statements. While the program shown in Example 1-3
can be executed, they will not do anything useful, since you do not
have any external I/O ports connected to your computer, at present.

Example 1-3. Simple 1/0 Programs for INP and OUT Commands

10 INPUT “OUTPUT PORT # ="; P
20 INPUT “VALUE FOR OUTPUT; V
30 OUT PV
40 GOTO 10

10 INPUT “INPUT PORT # ="; |

20 PRINT “VALUE AT PORT ="; INP (1)

30 GOTO 10

There are two I/O ports that are used in the TRS-80 itself. Out-
put port 255 controls the cassette recorder and a video display
function, while input port 255 is used to input data from the cas-
sette to the computer. The program shown in Example 1-4 allows
you to exercise output port 255. You may wish to try this program
on your TRS-80 system.

Example 1-4. A Simple Conirol Program for Port 255
10 INPUT “VALUE”; V

20 OUT 255V
30 FOR | = 1 TO 500: NEXT |
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40 OUT 255, 0
50 FOR i = 1 TO 500: NEXT !
60 GOTO 20

If you use the program in Example 1-4, we suggest that you try
VALUES that are powers of two: 1, 2, 4, 8, etc. This will allow you
to test the effects of different bits. For example, 2., = 00000010, and
81() = 00001000_:

You will notice that the value 8 affects the display of the data,
while the value 4 controls the cassette recorder. The program oper-
ations at lines 30 and 50 provide time delays, so that the action at
the port may be observed. You will be able to hear the small cas-
sette tape control relay “buzz” if you change the time delay in lines
30 and 50 from 500 to 5, using the value 4 at output port 255.

You will see later in this book that the INP and OUT instructions
can be very powerful.

General-Purpose Memory Commands

There are two general-purpose memory commands in Level 11
BASIC that also provide a great deal of flexibility in handling some
programming tasks. These two commands allow the content of a
specific 8-bit memory location to be examined (displayed), and
they also allow a value to be stored in a specific memory location.
The values that may be stored and retrieved from a memory loca-
tion are again limited to 8-bit numbers, so only values between 0
and 255 may be used.

The PEEK command allows you to examine the content of any
of the possible 64K memory locations of the TRS-80. The decimal
address of the location must be specified as a part of the PEEK
instruction. The PEEK instruction is used with other instructions
to form a complete statement:

PRINT PEEK (200) or A = PEEK (5000)

A similar memory-access instruction, POKE, allows a decimal
value to be placed in a specific location. As was the case for the
PEEX instruction, a decimal address must be specified along with
the decimal value that is to be stored:

POKE XY

where x is the decimal address of the location and where y is the
value to be stored. Thus the statement:

POKE 20000, 10

could be used to store the value 10 in location 20,000. The PEEK
command could be used to examine the location to be sure the value
10 was actually stored there:
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PRINT PEEK (20000)

You must be careful when you use the POKE command, since its
careless use may cause information to be stored “on top of” some of
your BASIC-language program steps, wiping out your program.
You cannot POKE values into read-only memory.

Although the Z-80 chip, and the TRS-80, can actually address
64K (65,536) different memory addresses, the PEEK and POKE
commands can not directly address locations that are in the upper
half of the memory, that is, locations between addresses 32,768 and
65,536, inclusive. This does not mean that these locations are in-
accessible, but rather that a different addressing mode must be
used to access them. When the address to be used in the PEEK
or POKE command is greater than 32,767, the following formula
must be used:

ADDRESS == —1*%(DESIRED ADDR - 32767)

The program shown in Example 1-5 illustrates the use of the
PEEK command to display the decimal content of every 256th
memory location. If the address is larger than 32,767, the formula
for the address calculation is used. This limit on the values used
for the address portion of the PEEXK and POKE commands is a
function of the mathematical and addressing capabilities of the
TRS-80 computer.

Example 1-5. Memory Dump Program To Examine Every 256th Memory Location

10 FOR i = 0 TO 65536 STEP 256
15 M = |

20 IF 1 > 32767 THEN GOTO 100
30 PRINT I; ~ ; PEEK (M)

40 NEXT [

50 END

100 M = —1*(1 — 32767)

110 GOTO 30

You should now be able to see how the PEEK and POKE com-
mands may be used to store and retrieve data values in the TRS-80
read/write memory. At this point, you may be concerned that the
INP, OUT, PEEK and POKE commands can transfer only eight bits
(decimal 0-255) of information or data. It is not difficult to see a
limitation in this. We will shortly explore the transfer of large num-
bers and data that require 10 or even 12 bits of resolution.

Software Commands and Interface Circuits

As you are probably aware by now, the INP, OUT, PEEK and
POKE instructions all cause some actions to take place, either at
1/0 devices or at memory locations, as a direct result of the use
of the instruction. Instructions such as A = 1.359 will cause some
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values to be stored in memory, but we do not know what memory
locations the TRS-80 has assigned to the variable “A” and we do
not know how the value 1.359 is stored. The INP, OUT, PEEK and
POKE instructions all cause a definite, known sequence of opera-
tions to take place, transferring data bytes, generating control sig-
nals, and transferring address information on the address-bus lines.
These definite and reproducible actions allow us to use these com-
mands to control I/O devices. We will now explore the actions that
each of these four software commands cause to take place.

The INP and OUT commands operate in a very similar manner.
In each, an address is specified, requiring eight bits of information.
During the execution of either instruction, the address informa-
tion contained within the command is transferred to external de-
vices on the LO address bus, address lines A7-A0. In this way, the
I/O device address is available to all of the circuits and devices
that are connected to these address lines, both memory and 1/0O
devices.

When an OUT instruction is used in a program, the data value
is also output by the Z-80 chip, but on the data-bus lines, D7-DO0.
Once the data bits, and the LO address bits are “stable” or present
on their respective buses in useable form, the Z-80 asserts the OUT
signal on the control bus. This synchronizes the acquisition of the
data by the I/O device that was addressed. Of course, external cir-
cuitry is required to “capture” the data, as well as to identify the
selected 1/O device and synchronize it with the Z-80-based system.
A timing diagram for these signals, as they appear on the Z-80 sys-
temn, in this case the TRS-80, is shown in Fig. 1-3. At this point, we
are only concerned with what the Z-80 does during an OUT com-
mand.

/‘ DATA STABLE

DATA BUS X X p7- DO
ADDRESS BUS X X A7- A0
ouT |

Fig. 1-3. OUT command timing relationships.

When an INP instruction is executed, the data is not contained
in the instruction, but is acquired from an external I/O device.
Only the address is specified. The address is placed on the LO
address-bus lines when the INP instruction is executed. When the
address information is present, the Z-80 generates an IN synchro-
nizing pulse that indicates to the addressed I/O device that it is
to place its data on the eight data-bus lines when IN is a logic zero.
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Additional circuitry is required here, too, to select the I/O device
and to gate its data onto the data bus. In this case, the data flow
from the I/O device to the computer. A typical timing diagram for
an INP command execution is shown in Fig. 1-4.

p—=DATA TQ COMPUTER

DATA BUS T 07-00

W gl

ADDRESS BUS ¢ D¢ AT - A0
Fig. 1-4. INP « d timing relationships.

We will describe shortly some of the circuits that are used for
input and output devices. You have probably realized that while
we have described an I/O port as one that can either receive data
that is output by the microcomputer or transmit data that is input
by the microcomputer, some I/O devices may actually contain a
number of I/O ports. Industrial controllers, data storage devices,
(discs, cassettes), analog converters and other I/O devices may
have a number of input and output ports, since they may require
more than eight bits of information from the computer and they
may also need to transfer more than eight bits of data to the com-
puter. In any case, transfers of data that contain more than eight
bits always involve the transfer of multiple bytes to and from the
individual 8-bit 1/O ports. This is important to remember: data are
always transferred eight bits at a time.

PEEK and POKE Instructions and Interface Circuits

The PEEK and POKE instructions operate in a manner that is
similar to the INP and OUT instructions. The main differences be-
tween these two sets of instructions are the use of different control
or synchronizing signals (RD and WR instead of IN and OUT) and
the use of the entire 16-bit address bus.

Since the PEEK and POKE commands are used to address mem-
ory locations, the entire 16-bit address bus must be used to allow
any of the 64K possible memory locations to be accessed. (Re-
member the address “calculation” formula). Thus, during the exe-
cution of these two commands, the specified address is output on
the 16-bit address bus. When the INP and OUT commands are
executed, only the 1O address portion (eight bits) of the address
bus is used. When the PEEK command is used to determine the
content of a memory location, the memory location is addressed
by the decimal address value contained in the PEEK command.
However, when the PEEK command is executed, the 16-bit binary
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equivalent of the specified decimal address is actually placed on
the address bus by the Z-80. The Z-80 generates. a memory read
signal, RD, once the 16-bit memory address has been specified to
synchronize the actual data transfer process so that the data flow
from the memory to the Z-80 in an orderly fashion.

Likewise, the POKE command specifies an address that is repre-
sented by 16 bits. This instruction also specifies the 8-bit value, in
decimal form, that is to be written into the desired location. When
the POKE command is executed, the 16-bit address is output on
the address bus, along with the 8-bit data value on the data bus.
The Z-80 also generates a memory write pulse, WR, to synchronize
the actual acquisition of the data by the R/W memory chips from
the data bus.

A combined timing diagram for the PEEK and POKE commands
is shown in Fig. 1-5. You should note the similarity between the
timing information in this figure and that in Figs. 1-3 and 1-4.

You must remember that even though not all of the 64K possible
memory locations may be used or available in your computer, a
unique 16-bit address has been assigned to each location. Thus,
you must always specify a unique 16-bit address to point to a spe-
cific address when the PEEK and POKE instructions are used. Like-
wise, while not all 256 possible I/O devices will be connected to
your system, each I/O device must be identified through the use
of a complete 8-bit device address when the INP and OUT in-
structions are used.

Software Commands—Data Transfer and Control

In most cases, the four general-purpose I/O software commands,
INP, OUT, PEEK and POKE, will be used to transfer 8-bit data
values between the I/O devices or memory locations and the Z-80
computer. As we noted previously, some data transfers will require
more than eight bits of information, so multiple bytes are trans-
ferred, one byte at a time.

There are also cases in which the actual value of the data trans-
ferred is meaningless. The bits may be used to represent individual
two-state conditions that are unrelated to the positional values of
the bits. For example, a number of sensors may be connected to the
TRS-80 indicating conditions such as tank empty or full, heater on
or off, valve open or closed, and so on. An INP command could be
used to input the status of these bits, through an 8-bit input port.
Thus, the value read from this input port might be 100, but the
port is sensing eight individual on or off (logic one or logic zero)
states, so the value of 100, is meaningless. The individual binary
bits each represent the state of an individual sensor. In this case:

10010 = 01100100,
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DATA BUS 7 07-D0
"B L

ADDRESS BUS - ¢ Al5- A0
DATA  BUS X X

ADDRESS BUS X X

WR L

Fig. 1-5. PEEK and POKE command timing relationships.

This indicates that three sensors are in the logic one state and five
are in the logic zero state.

The OUT instruction can be used in a similar manner to turn
a device on or to turn a device off, based on the state of individual
bits. You have already seen this, in Example 1-4.

It is important to keep in mind the use of I/O ports. Either data
or control information may be transferred between these 1/O de-
vices and the computer. We will explore this more in later sections
in which actual control circuits are developed. Both the data and
control modes will be used. The actual use of the INP and OUT
instructions are not affected by the mode of operation or the use
to which the information is put. The computer does not care whether
the value 210 is being output or whether the binary bit pattern
11010010 is being output to a control device.

Assembly Language and BASIC

The BASIC language programs that you write on your TRS-80
system bear very little relationship to the actual instructions that
the Z-80 microprocessor chip can actually execute. Each of your
BASIC statements and commands is interpreted by the BASIC inter-
preter resident within the TRS-80 system. A programming manual
for the Z-80 chip, itself, would bear little relationship to the Level IT
BASIC manual. The commands are very different.

The Z-80 chip does not have a PRINT command, so it could not
perform the following operation:

PRINT “THIS IS A TEST”

The BASIC interpreter determines that a PRINT operation is to
take place and it then executes a series of assembly language pro-
gram instructions that actually place the codes for the alphabetical
characters in the display memory to spell-out, “THIS IS A TEST.”
The assembly language steps consist of logic ones and zeros that
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cause the necessary internal and external Z-80 operations to take
place to transfer the message portion of the PRINT command to
the display memory.

While we will not require you to learn and use the Z-80 assembly
language in this book, you should be aware that it is the “base”
computer language that causes the actual operations to take place.

The INP, OUT, PEEK, and POKE commands each cause many,
many assembly language statements to be executed to produce the
overall effect of data transfer. Since these BASIC language instruc-
tions must be interpreted, even when used one right after another,
or in a loop, the interpretation software process can be slow. Two
programs are shown in Example 1-6, an assembly language output
program and a BASIC-language output program. Each accomplishes
the same task, the transfer of a data byte to an output port. The pro-
grams are not particularly useful, but they do allow a simple com-
parison to be made in the speed of execution.

Example 1-6. Comparison of Assembly Language and BASIC Programs
for Data Output

BASIC PROGRAM ASSEMBLY LANGUAGE
10 P=100 MVIA
20 D=255 FF
30 OUT P.D LOOP, OUT
40 GOTO 30 64
Jmp
LOOP

0

Since each program generates a series of pulses on the OUT con-
trol line, the time between the occurrence of these pulses is an indi-
cation of the processing speed of each program. The BASIC pro-
gram can output a data word every 6 milliseconds, while an equiv-
alent assembly language program takes 12 microseconds. In this
example, the assembly language test program is 500 times faster
than the BASIC program. We must admit, though, that many other
factors must be considered when choosing between programming
languages. In fact, assembly language programming is generally
not recommended for the novice.

We will mention assembly language programming very little, con-
centrating on the use of the BASIC language instead. For further
information on Z-80 assembly language programming, we recom-
mend Z-80 Microprocessor Programming and Interfacing and The
Z-80 Microcomputer Handbook (Howard W. Sams & Co., Inc., Indi-
anapolis, IN 46268).

Binary and Decimal Numbering

The TRS-80 computer system acquires, processes and prints deci-
mal (base-10) numbers. This makes it compatible with the number-
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ing used by most people today. It would be difficult for us to readily
understand and convert data values that were printed in a non-
decimal-format. The data and address lines are directly connected
to the Z-80 chip, so they are binary, having only two states, a logic
one or a logic zero. Thus; when we specify an 1/O device address
in an INP or OUT command, we must realize that the address (0-
255) will appear in its binary form on the address bus (00000000-
11111111,). You should be able to make the conversion between
binary and decimal, in either direction.

Likewise, the data values transferred to and from the computer
by INP, OUT, PEEK, and POKE commands are also specified or
acquired as 8-bit binary values, since the data bus is only eight bits
“wide.” This 8-bit data bus is a function of the data processing ca-
pability within the Z-8 chip. It is not a function of the TRS-80.
Thus, we are limited to 8-bit data transfers. Is this a great limita-
tion? Generally not. In spite of it, the TRS-80 can process a great
deal of information, and, as you will see, it is easy to interface to

I/0 devices.
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TRS-80 Interfacing

At this point, you are probably wondering:

© How does the TRS-80 actually transfer information to I/O
devices?

@ How are the 1/O devices actually synchronized to the opera-
tion of the computer?

® How are individual I/O devices selected and identified?

@ How do I/O devices place their data on the data bus and how
do they actually receive it from the data bus?

These are important questions, since the answers to them will
provide the basis for your understanding of microcomputer inter-
facing. We will be answering these questions in this chapter and
we will also provide some experiments that will reinforce the con-
cepts through hands-on experience.

In this chapter, some examples of digital circuits will be pro-
vided. We have assumed that you can “read” and interpret a logic
circuit diagram, and that you are familiar with the more common
SN7400-series transistor-transistor logic (TTL) circuits.

1/O DEVICE ADDRESS DECODING

Before we can discuss the actual transfer of information between
I/O devices and the computer, we must first understand the cir-
cuitry and the signals that are used to identify or address the indi-
vidual 1/O devices. There are many schemes that may be used, and
we will examine several of them. It is impossible to show every
possible scheme for addressing 1/O devices, since modifications
will be made to suit special needs.
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When the TRS-80 computer is programmed to perform a data
transfer using any of the four general-purpose I/O commands
PEEK, POKE, INP or OUT, certain signals are generated by the
Z-80 to synchronize the flow of data. At this point, our main con-
cern is the use of the address-bus lines. These are the lines that
address individual memory locations and they are also used to
address I/O devices.

You should recall that the INP and OUT instructions both con-
tained decimal address information that is used to identify the
addressed 1/0 device. Likewise, the PEEK and POKE instructions
also contained decimal address information that is used to identify
one of the 64K possible memory locations. The PEEK and POKE
instructions have a larger range of addresses that may be specified.
The information in Table 2-1 summarizes the address relationships
between these four instructions.

Table 2-1. Address Relationships for the Four General-Purpose
/0 Commands

Command Address Limits Address Bus Use
INP, OUT 0-255 A7 - AQ
PEEK, POKE 0-65,536* A15-A8 and A7 - AQ

* May require address ‘‘calculation.”

As shown in Table 2-1, the I/O control instructions INP and OUT
only use the LO address bus, A7-A0, for device addressing. This is
reasonable, since these eight address lines would limit the address
to 00000000, to 11111111, or 0: to 25545. Thus, each I/O device
must be capable of recognizing its own I/O address on the LO
address bus. To differentiate between the addressing of I/O de-
vices with the INP and OUT commands, and the addressing of
memory locations by the PEEK and POKE commands, we will
refer to the INP and OUT command addressing as device address-
ing and to the PEEK and POKE command addressing as memory
addressing.

DEVICE ADDRESSING

Each I/0 device that is to be used with the computer must be
able to recognize its own device address. Since the INP and OUT
commands use 8-bit addresses, each I/O device must monitor these
eight address lines, A7-A0, for the occurrence of its address. There
are three basic schemes that may be used by I/O device circuits
to accomplish the monitoring for specific addresses. These are:

@ Gating—detecting a specific combination of logic signals.
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@ Decoding—a more flexible gating scheme in which many ad-
dresses may be detected.

@ Comparing—comparing a preset or known address with the
address-bus signals until a match occurs.

Combinations of these three techniques are possible and there are
probably many variations that are possible. We will describe ex-
amples of each of the three basic decoding schemes.

Using Gates for Address Decoding

In the scheme for decoding device addresses in which individual
gates are used, the address must be known so that the gates can
be properly configured. In this example, we will use the device
address 01111011, or 123;,. Since NAND/AND gates are the predomi-
nant type of gating logic available, we will use these types of cir-
cuits in our logic. To refresh your memory, the pin configurations
for several types of NAND/AND gates are shown in Fig. 2-1, with the

SN7408 SN7410
Vee 1€ 1Y 3¢ 38 3A 3y
wl (| ]l fn] fw] [a] [s
Fig. 2-1. Inverter and various AND/NAND
gate pin configurations.
s 23 la s ef2
1A 1B 2A 28 2¢ 2Y  GND

SN74H11
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generalized truth table for a two-input AND gate and an equivalent
NaND gate shown in Table 2-2. Since inverters such as the SN7404,
are often found in device addressing circuits, a pin configuration
for this chip has been included in Fig. 2-1. The truth tables in Ta-
ble 2-2 also show the function of an inverter.

Table 2-2. Truth Tables for a Two-Input AND Gate, NAND Gate
and an Inverter

AND Gate NAND Gate Inverter
Inputs Output Inputs Output Input Output
A B Q A B Q A Q
00 0 0o 0 1 0 1
o 1 0 0 1 1 1 0
1 0 0 10 i
T 1 1 11 0

In dll cases, the logic one state is the higher voltage (+2.8 to +5
volts) and the logic zero state is the lower voltage (0.0 to 0.8 volt).
The NanD gate devices are available with 2, 3, 4, 8, and 13 inputs,
while the anp gates are available with 2, 3, or 4 inputs.

Since the unique output state, logic one for an anp gate and
logic zero for a NaND gate occurs only when all of the inputs to an
AND or a NAND gate are all logic ones, we will have to configure the
address 01111011, so that it generates eight logic ones at the inputs
to an eight input NAND gate when it is present on address lines A7-
AQ. This simply means that the logic zeros at positions D7 and D2
must be inverted, as shown in Fig. 2-2.

The output of the SN7430 ~nanp gate will be a logic zero only
when all of the inputs are logic one. Thus, only address 01111011,
will cause the NAND gate output to go to a logic zero. If a logic

SN7404
0 A7 DC
i A6
I A5

SN7430
DEVICE ADDRESS

o a2 [>o I

[ Al DEVICE ADDRESS

Fig. 2-2. Gating circuit used to decode address 123.
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one is required by the 1/O device when this address is present,
it is obtained by simply inverting the NanD gate output, as shown.,
The inverters are SN7404 devices. The outputs are labeled DEVICE
ADDRESS and DEVICE ADDRESS, respectively, to indicate the
logic state that is unique, or that will be used to cause the action
to take place at the I/O device.

While this gating scheme is effective in decoding a single ad-
dress, and relatively inexpensive, it is inflexible. A more flexible
scheme is shown in Fig. 2-3. This circuit illustrates the use of a

SN7404
A7 ¢ ~JUMPERS

o

oo

A4 ——T—Do—‘ L SN7430
hau

—

e {Do— |
S R
S

Fig. 2-3. Programmable gating circuit used for device address decoding.

gating scheme in which inverters may be used to invert individual
address bits, as required. The bits may also be used without any
inversion. The eight jumpers allow the device address to be preset,
as illustrated in Fig. 2-4, for address 150, or 10010110,. If the pro-
grammable circuit shown in Fig. 2-3 is used to “detect” the device
address, any one of the 256 possible addresses may be preset. Only
one address may be preset at one time.

The programmable gating circuit provides broad flexibility, but
it can only detect one of 256 possible addresses. This is a limitation,
particularly when a number of I/O devices are located on the same
circuit board; each will require its own gating circuit. We will see
shortly how this limitation can be overcome.

Unfortunately, the gating schemes that we have shown will not
uniquely identify an address of the I/O device. The address bus
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Fig. 2-4. Programmable gating circuit, preset for address 150, or 10010110,

is also used to address memory locations, so there is an excellent
chance that the 8-bit address of the I/O device will be present on
the address bus at other times, not as an I/O device address, but as
the LO address portion of a 16-bit memory address. Thus, the fol-
lowing 16-bit addresses, 00000000 01111011, 10101111 01111011 and
00110100 01111011, would all activate the device address detecting
circuit shown in Fig. 2-2. Obviously, there must be some additional
circuitry that can be used to allow us to have the device address
circuit differentiate between 1/0O device addresses and memory ad-
dresses that are present on the 16-bit address bus.

The information in Table 2-3 shows the relationships between the
INP, OUT, PEEK, and POKE instructions. (Memory transfers that
are performed by a BASIC program, without the use of the PEEK
and POKE commands, are still equivalent to the PEEK and POKE
operations in their generation of address and control signals.)

Table 2-3. Relationship of 1/0 Commands and the Control Signals

Command Data Bus Address Bus Control Signals
WR RD IN OUT
INP /o - Z80 A7 - AD 1 1 ] 1
out /O <« 780 A7 - AO 1 1 1 0
PEEK MEM — Z80 A15-A8 & A7-A0 1 o] 1 1
POKE MEM < Z80 Al15-A8 & A7-A0 0 1 1 1
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As shown, the IN and OUT signals must be used by the 1/O de-
vice address gating circuit to indicate that the address present on
the L.O address bus is an I/O device and not a memory address.
In most cases, the IN or OUT signal is gated with the output of
the 8-input address-detecting NanD gate, as shown in Fig. 2-5.

SN7404
AT JUMPERS

A6

AS

ouT

i
SN7430 QuUT 024
U
DEV. ADDR. 024
[
IN 024

™

A4

A3

A2

Al

L

AC

Fig. 2-5. Using IN and OUT signals to generate device select pulses for 1/O
device synchronization.

Note that a Nor gate and an or gate have been used to combine
the logic-zero OUT and IN signals with the logic-zero output of
the device address detecting gate. By way of review, the truth ta-
bles for an or gate and for a ~or gate are provided in Table 2-4.
Pin configurations for an SN7432 or gate and an SN7402 Nor gate
integrated circuit are shown in Fig. 2-6.

Table 2-4. Truth Tables for a Two-Ilnput NOR Gate and OR Gatfe

NOR Gate OR Gate
Inputs Output Inputs Qutput
A B Q A B Q
0 0 1 0 0 0
0 1 0 ] 1 1
1 0 0 1 0 1
1 1 0 1 1 1
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SN7402 SN7432
Fig. 2-6. Typical NOR and OR gate IC pin configurations.

The gating scheme now has two “qualified” outputs, one gener-
ated through the combination of the IN and the “DEVICE AD-
DRESS” signals, and the other generated through the combination
of the OUT and the “DEVICE ADDRESS” signals. The resulting
pulse from each gate is called a device select pulse, since it can
actually be used to select an input device or an output device. The
only combination of signals that will generate the device select
signals OUT 024 or IN 024 is the proper 8-bit device address, gen-
erated by the address gating, and the proper qualifying function
pulse, OUT or IN, respectively. Since this combination of signals is
generated only when the computer performs an I/O operation, they
indicate that the address on the LO address bus is an I/O device
address. Since memory transfers do not and cannot generate these
pulses, IN and OUT, there is no chance that devices IN 024 or
OUT 024 will be selected, even when the address detecting gate
indicates that address 024 is on the LO address bus, probably indi-
cating the LO portion of a 16-bit memory address.

In all cases, devices will be selected through the use of a device
address and a function pulse to generate a device select signal.

The circuit shown in Fig. 2-5 generates a device select for both
an input device and an output device with the same I/O device
address, address 024. Is this possible? It is, since an input and an
output operation cannot be performed at the same time and, thus,
the IN and OUT pulses cannot be coincident. The same device
address may be used with an input device and an output device.
The devices may, or may not, be related, or even close to one an-
other. Two or more input or output devices are not assigned the
same device address, so that you would not have two devices OUT
27 and OUT 27 in a system. The concepts and circuits developed in
this section are very important and they will be carried forward
to other sections. It is important that you understand the use of
the signals that have been discussed to select devices. We have
not yet discussed what these input and output devices are, or how
they operate, but we shall discuss this shortly.
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Using Decoders

In many cases, it is easier to use decoder circuits in place of the
~nanD-gate address detecting circuits, and, in some cases, in place
of the ~Nor-gate device select circuits, too. Why are decoders so
useful? Perhaps it is best to take a look at several types of decoders
to see what they look like and how they operate. As you examine
the decoder circuits, keep in mind that they are simply collections
of gates that have been “integrated” into an easy-to-use decoder
circuit.

Decoder circuits are generally specified as x-line to y-line decod-
ers, where x represents the number of binary inputs, say four inputs,
and where y represents the number of possible outputs, or the num-
ber of different binary states present on the x input. Thus, for the
four inputs, there would be 16 possible outputs, creating a 4-line
to 16-line decoder or a 4- to 16-line decoder. This is, in fact, a real
circuit, as you will see.

Each of the binary inputs has two states, a logic one and a logic
zero. These inputs are all independent of one another. The outputs
are also binary, in the sense that they have two possible values, but
they are not independent. There will only be one unique output
from the decoder, representing the value or “weight” present at
the binary inputs. In most cases, the unique output state is a logic
zero, with the other outputs in their logic one state.

A typical decoder integrated circuit is the SN74LS139. This inte-
grated circuit actually contains two independent two-line to four-
line decoders, as shown in Fig. 2-7.

The truth table for the SN74LS139 decoder is shown in Table 2-5.

Of course, the truth table applies to both of the decoders within
the SN741.5139 integrated-circuit package, or “chip.” Most decoder
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ENABLE ENABLE 1G | 5
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Yo Y1 Y2 INPUTS Q) 1Y3 3
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2 =
1
—:%D}_m <
151
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Yl vz val D>——2vx
1
T 7 =P
S § ! s SELECT ZA““ D Il {9}
1G @ 1Yl 1¥2 1Y3  GND
ENABLELV——/ \___v.____/ INPUTS ,‘,BE)__DO_HD Y3
SELECT DATA OUTPUTS -
Fig. 2-7. SN74L5139 decoder chip sch ic diagram and pin configuration.
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Table 2-5. Truth Table for an SN741L5139 Decoder

Inputs Outputs
Enable Select
G B A YO Y1 Y2 Y3
H X X H H H H
L L L L H H H
L L H H L H H
L H L H H L H
L H H H H H L
H = high level L == low level X = irrelevant (don’t care)

circuits incorporate an enabling input, so that the decoder may be
turned on or turned off by one logic input. This is the function of
ENABLE or “G” input on each of the decoders in the SN74L.S139.
Note that when the “G” input is a logic one, all of the outputs are
forced into the logic one state, regardless of the states of the A
and B inputs. This allows the decoder to be gated on or off. In the
off state, the power is not removed, but the outputs are all forced
into the logic one state.

Let us now examine a simple, and rather trivial, example of the
use of a two-line to four-line decoder for device address decoding.
We will assume that we only have a few I/O devices, so that the
decoders in the SN741.S139 decoder package can handle our needs.
A typical decoder circuit is shown in Fig. 2-8. In this circuit, only

DECODER
Al B 3 IN X
AQ A 2
| IN' Y
[
l ) Do— oury
.
ouT

Fig. 2-8. Two-line to four-line decoder used for device addressing.

two address bits have been decoded, the rest have been ignored.
Note that the enable input has been grounded so that the outputs
of the decoder operate properly. The added Nor and or gates gen-
erate the actual device select pulses.

The device select signals have been noted as IN X, IN Y, and
OUT Y, since there is no specific address that will actuate each.
Device addresses 00000010, 11110110 and 11111010 will all cause
the IN X device select pulse to be generated, if they are used in
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INP commands, for example A =INP(2), A=1INP(246), or A=
INP(250). This nonabsolute device addressing results because ad-
dress bits A7-A2 have not been used in the decoding scheme. Non-
absolute addressing means that there are several addresses that will
actuate the selected device. The circuit shown in Fig. 2-8 will de-
code four addresses and thus eight individual devices may be se-
lected, four input devices and four output devices. Additional Nor
gates or OR gates are required, though. In a small system, this may
be adequate, although the decoding scheme does not provide a
great deal of flexibility in allowing the addition of new I/O devices,
beyond the eight original ones. Even though this scheme is not very
flexible, let’s take a closer look at it since it will allow us to develop
two other concepts that can be applied to other decoder schemes.

In Fig. 2-8, the enable input, “G,” of the decoder is simply
grounded, to always enable the decoding action. This input can
allow the decoder to be used for absolute decoding. A six-input
NAND gate circuit can be used to supply an enabling signal to the
decoder only when a preset pattern of address bits, on address
lines A7-A2, is present. You have already seen the use of the 8-
input NaND gate address decoding approach, and the decoder/NaNp-
gate circuit shown in Fig. 2-9 is a combination of two address se-
lection techniques.

SN7404
AT {>c
A6
A5

SN7430
A4

A3 Dc :

A2 Dc

+5
+5
6 3
2
Al ——e 1 B | SN7432
AQ e A —_—
° ° ‘—_—_:D———OUT ez
ouT

Fig. 2-9. Decoder and NAND-gate circuit used for for absolute address selection.
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In this example (Fig. 2-9), the decoder is only enabled when the
AT7-A2 address bit pattern is 011100, the decoder being used to then
decode address bits A0 and Al. In this circuit then, the decoder
outputs 0, 1, 2 and 3 correspond to device addresses 112, 113, 114
and 115, respectively (binary 01110000, 01110001, 01110010 and
01110011). Only the OUT 112 device select pulse has been gener-
ated in this example. Again, an OR gate or a NOR gate is required
for each device select signal that is to be generated.

oUT 6 3
A
BUT DEVICE
! SELECTS
A o lb—
TN 6 Y S—
2 b— -
N DEVICE
Al B : SELECTS
A0 A ofb—

Fig. 2-10. Decoder enable inputs used with IN and OUT to generate device select signals.

An alternate approach is to use both of the decoder circuits in
the SN74LS139 “chip,” using the IN and OUT function pulses to
enable the decoders. In this way, the address selection is again
nonabsolute, but the device select gating is performed within the
chip. This is shown in Fig. 2-10. The ~nor and or gates are no longer
required for each device select pulse to be generated.

While this circuit may not be particularly useful, it illustrates
the use of the enable input of the decoder to generate the device
select pulses. The decoder gating or enabling input may be used
for device select pulse generation, or for absolute decoding. In some
cases, it may be used for both.

Larger Decoders

There are additional decoder circuits that will be useful to you
in interfacing your TRS-80 computer to external devices. These de-
coders, depending on the type you choose, may have additional in-
puts, enable lines and outputs. Examples are shown in Fig. 2-11
for the SN74LS138 decoder and in Fig. 2-12 for the SN74154 de-
coder. The SN74155 decoder has also been included (Fig. 2-13)

since it has two sections, but the address inputs, A and B, are com-
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mon to both of the decoder sections. Each section in the SN74155
has separate control or enabling inputs.

A large decoder such as the SN74154 4-line to 16-line decoder
provides broad address decoding flexibility. A single SN74154 de-
coder may be used to nonabsolutely decode 16 addresses, and when
either IN or OUT is used as one of the enable inputs, the SN74154
may be used to directly generate 16 device select pulses, without
the need for additional gating. This is shown in Fig. 2-14.
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(2}
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{12}y

HIY4

3

M
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{7 v?
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> DATA
QUTPUTS

DS

4.7

IS

1
Fig. 2-11. SN7415138 decoder.

A second decoder may be added to the circuit so that absolute
device select pulses are directly generated. A typical example of
this is shown in Fig. 2-15. Either IN or OUT may be used to gate
or enable the lower decoder. The Nor gates have been used to gate
together the address selection from the upper decoder and the ad-
dress selection plus the function pulse from the lower decoder. Thus
the upper decoder for address bits A7-A4 “qualifies” the address
to make the outputs of the Nor gates absolute for addresses 0
through 4. This circuit will work well, but it is not particularly
useful.
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functional block diagram and schematics of inputs and outputs
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o= high leved, L = low level, X = irretevant

Fig. 2-12. SN74154 decoder.

Since each decoder has two enabling inputs, Gl and G2, the
Nor gates shown in Fig. 2-15 may be eliminated by using the sec-
ond enable input on the lower decoder. This enable input is con-
nected as shown in Fig. 2-16. In this circuit, the lower decoder is
only enabled when the upper decoder decodes 0000 on address bits
A7-A4 and when the function pulse IN is present. A second decoder
could also be used for OUT device select signals. Note the use of
inverters to provide positive (logic one) device select pulses in
this case.

Many decoder schemes are possible, and you will have an op-
portunity to explore the use of several in the experiments. The main
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Fig. 2-13. SN74155 decoder.
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Fig. 2-14. SN74154 decoder used to produce 16 nonabselute decoded device
select pulses.
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Fig. 2-15. Two SN74154 decoders used for absolute device address selection.
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Fig. 2-16. Two SN74154 decoders used to eliminate additional device address gating.
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point is that decoders simplify the process of device selection and
gating. Decoders are generally used in situations that require flexi-
bility and the generation of several device address signals in prox-
imity to one another.

Using Comparators

The use of digital comparators for device address detection will
be the last technique discussed. The comparator-based schemes
are relatively straightforward and they are very similar to the
“programmable-gate” scheme shown in Fig. 2-3. Remember that
comparators, too, are simply collections of gates, connected or inte-
grated, to perform a comparison function. The comparator circuits
allow us to preset an address that is constantly compared to the 8-
bit values on the address bus. The comparison is done by gating
circuits in the comparator chips. A typical comparator is the SN7485
four-bit magnitude comparator, shown in Fig. 2-17. Besides the
equal condition, the SN7485 can also detect the greater-than and
less-than conditions, but these are not used in address comparison.
Cavutron: The SN74L85 version of the SN7485 chip is not a pin-
for-pin equivalent. Consult a manufacturer’s data sheet for addi-
tional information.

FUNCTION TABLES

COMPARING CASCADING
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A3,83 | A2,82 | A1,B1 [ AG.BO| A>H8 A<B A=B|A>B A<8 A~E
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vee (Al B2 A2 AT 8t AT BO A3 < B3 X x X X x X L H L
whsulfnseluleys A3=83 (A2>82] X x X X X H L L
} I | 1 ' } J A3 =B3 [A2 < B2 3 X X X X L H L
rQ 3 re] AT 1] ey A3 =B2 [AZ=82 [AT > B} X x X X H L L
A3=83 |Az-82 at<B1| x X X X L H t
o 0 A3~83 {A2-82 |A1=81 [AD>EO] X x X H L L
A B AeS A ASS A-B AcE A3=83 {A2~82 |A1=B1 |A0<BO X x x L H L
W NN ouT our out A3-83 [A2=B2 |A1=81 {a0=80[ W L L H L C
|V i } U 11 A3-B3 |AZ=-82 |AT=81 |AO-BO| L H C L H L
TR sAsHTHe A3=83 [A2=82 |At=81 |A0=BO| L t H L [ H
DEA'A(B A*B ADBAB AB A B, GND “85, 'LS8S, 'S85

FOT cascase ivrurs ouTFuTS A3=83 |Az=82 |Aa1=81 [AD=-80] x X H C L H

A3=83 |A2<62 [At=Bt [AC=80] W H L L L
A3-83 |a2~B2 [A1=81 [A0-80] o L L H H L

Fig. 2-17. SN7585 four-bit magnitude comparator chip.

A typical address-comparison scheme is shown in Fig. 2-18, in
which the comparator has been preset for address 205 or 11001101,.
Like an 8-input gate circuit, this scheme can detect only a single
address, so most comparators are used with decoders for a flexible
decoding scheme, as shown in Fig. 2-19. The unique “equal condi-
tion” output of the SN7485 is a logic one, so it has been inverted
to be compatible with the logic zero requirement of the SN74154
decoder enable input. In this example, the outputs from the SN-
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Fig. 2-18. Two SN7485 comparators used to detect address 205.

74154 decoder are only active when the comparator has detected
a match between bits A7-A4 (0010) end when the OUT pulse is
a logic zero. The decoder again directly generates the absolutely
decoded device select pulses. In this case, the decoder generates
device select pulses only for output devices with addresss of 32
through 47. Another decoder could be added to this circuit so that
input devices could also be selected. If the same comparator circuit
was used to enable a second decoder, the input device select pulses
would also be for devices with addresses 32 through 47. In some
cases, separate circuits for input and output device select pulse gen-
eration may be used.

This completes our discussion of device addressing, function
pulses and device selection. In future examples, we will expect
that you will recognize the notation OUT 123 as a logic zero de-
vice select pulse, generated through the proper combination of
OUT and address 123. The actual gating may be shown, but in
most cases, it will be assumed.

You will probably see other device selection circuits in other
books, schematic diagrams, etc., but they will all function in the
same way, gating an address with a function pulse to select or
control a specific device.
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Fig. 2-19. Comparator and decoder used for device selection.

In some experiments, you will explore the use of the device se-
lect pulses to control devices. In the next chapter, you will learn
how these pulses are used to control the flow of 8-bit data bytes
on the data bus of the Z-80.
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1/O Device Interfacing

Now that we have developed a number of ways of selecting and
identifying I/O devices, the actual construction and configuration
of the 1/O ports becomes very important. In this section, we will
develop some of the actual bus interfacing schemes that will allow
I/O devices to transfer 8-bit bytes to the computer and to receive
bytes transferred to them from the computer. As we found with the
device selecting circuits, there are many circuits for input ports and
output ports. Only a few sample circuits will be provided to illus-
trate the basic interfacing principles.

OUTPUT PORTS

Output ports are the devices that receive data bytes from the
computer, controlled by OUT commands in BASIC-language pro-
grams. You have already seen that there is a definite timing rela-
tionship between data on the data bus, the OUT pulse and the de-
vice address, when an OUT command is executed. This has been
shown in Fig. 1-3. In the TRS-80 computer, the duration of the
OUT pulse is 1300 nanoseconds. If we use the OUT pulse to gate
the data from the data bus to an output device, through the use
of the device select pulse, the data is only presented to the output
port for 1300 nanoseconds. This period is hardly long enough to
allow the data receiving device to perform a meaningful function.
To eliminate this problem, each output port must be equipped with
some sort of circuit that can acquire data from the bus and “hold”
it for as long as needed, or until it is “updated” by another output
data transfer.

The type of circuit that can perform this function is called a
latch, since it can latch the information and hold it until it is up-
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dated, or until the power is turned off. There are many different
types of latch integrated circuits that offer different configurations
of control and data inputs and outputs. Rather than describe all of
the various types of latches, we have chosen to describe three
general-purpose devices, the SN7475, the SN74175, and the SN-
741.5373. The pin configurations and function tables are shown in
Fig. 3-1. While the SN7475 and SN74LS373 are true latch devices,
the SN74175 really contains flip-flops. The SN7475 latch chip con-
tains four latch circuits and the SN74175 contains four flip-flop
circuits, so two SNT475 or two SN74175 chips are required for each
8-bit output port. The 741.S373 contains eight latch circuits, so only
one of these is required to construct an 8-bit output port.

_ ENABLE
a 2Q 20 12 GND 33 3a 40

Wl jw| [l jal ji2] [ni Jwo|l]s
I FUNCTION TABLE
{Each Latch}
[_Q PN I P, INPUTS | OUTPUTS
b Gla @&

= L H i H
H H H [N

{¢] a —
X i | oy Tg
I H = high tevel, L = low leval, X = irrelevant

Qg = the level of Q before the high-to-low transition of G

1 2 3 4 5 § 7 8

L5373, '5373
FUNCTION TABLE
OUTPUT ENABLE
CONTROL G D | outruT
L H H H
L H L L
L L X Qg
H X X Z
contnoL
EUNCTION TABLE
(EACH FLIP-FLOP}
INPUTS QUTPUTS
CLEAR CLOCK D | a @t
[% X X|] L H
H t H| v L
H t L] L H
H L x| e Qg

Fig. 3-1. Pin configurations and function tables for SN7475 (top), SN74L5373 (middle),
and SN74175 (bottom) latch chips.
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Let us briefly describe the operation of these latch circuits, so
that their use becomes apparent. We will use the SN7475 latch chip
as an example. The SN7475 latch circuits can be thought of as “gates
that remember.” This is shown in the function table for the SN7475
latch, shown in Fig. 3-1. In examining this function table, you will
note that when the enable input (G) is a logic one, the data, or
logic level present at the “D” input, is passed through the latch to
the “Q” output. The Q output is the inversion of the Q output.
When the enable input goes from a logic one to a logic zero, the
level present at the D input at this time is “latched” or remembered
by the Q and Q outputs. The timing relationship shown in Fig. 3-2
illustrates these relationships.

o oweur [T Lo
6 wput [ 1 N M L
a outrut 1.1 N l UL

Fig. 3-2. SN7475 latch circuit timing relationships.

As soon as the “G” input goes to the logic one level, the Q out-
put assumes the state of the “D” input even as the levels at the
D input change. The logic levels are passed from the D input to
the Q output when G is a logic one, and the Q output remains at
the level of the D input when G goes to a logic zero. The SN7475
is divided into two sections, each of which can operate indepen-
dently of the other. These two gate inputs may be connected to
make the four latch circuits operate in tandem.

The SN74LS373 operates in the same way as the SN7475, al-
though only one gating or enabling signal is used. In this chip,
only the Q outputs are provided. The Q outputs are not provided.
An additional output control has been provided, but when used
as an output port, this is generally enabled, by grounding (logic
zero) the Output Control pin, pin 1.

The SN74175 chip contains four flip-flops that acquire and hold
data that are present on the positive-going edge of the clock pulse.
The logic levels are only updated at this time. Levels are not “gated”
through the flip-flops on either the logic zero or logic one level of
the clock pulse. A common clear input is also provided, so that the
flip-flops may be “cleared” (Q =0, Q = 1), when this input is taken
to the logic zero state. In most cases, the clear input will be con-
nected to +5 volts {logic one) and will not be used.

Each of these integrated circuits may be used to latch and main-
tain the data put out by the TRS-80 computer during the execution
of an OUT command. It is a simple matter of using an output de-
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Fig. 3-3. Two SN7475 latch chips used to form an output port.
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Fig. 3-4. Two SN74175 latch chips used to form an output port.
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Fig. 3-5. SN7415373 latch chip used to form an output port.

vice select pulse to activate the latch circuit once it has been con-
nected to the data bus. A typical 8-bit output port is shown in
Fig. 3-3. In this circuit, a positive output device select pulse is re-
quired to cause the latch circuits to acquire and hold the data out-
put by the TRS-80.

In Fig. 3-4, two SN74175 latch chips have been used as an out-
put port, with standard lamp monitors used to allow a visual indi-
cation of the data that have been latched. The “1” indication at
the connections to the CLEAR inputs at the output port indicates
that these inputs are connected to +5 volts, or a logic one level.

An SNT4LS373 8-bit or octal latch has been used as an output
port, as shown in Fig. 3-5. Only one integrated circuit is required
for this output port. The Output Control has been grounded to
permanently enable the outputs. Again, an output device select
pulse must be supplied from the device selection logic.

Once an output port has been constructed and once it is prop-
erly connected to a device select pulse source, it can be accessed
under the control of software commands. For example, the com-
mand OUT 110,0 would transfer the value zero to output port 110.
If an output port is properly selected with an OUT 110 pulse, us-
ing one of the types of device selection logic discussed previously,
then the value, zero, would be transferred to it.

The program shown in Example 3-1 may be used to generate
an increasing binary count at output port 5. The count will con-
tinue to sequence {in binary), 254, 255, 0, 1, 2 .... 254, 255, 0,
1, etc. This program will be seen again, in the experiments.

Example 3-1. An 8-Bit Binary Counting Program for Port 5

10 FOR N = 0 TO 255
20 OUT 5N
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30 NEXT N
40 GOTO 10

Output ports are rather easy to construct. Most parallel-in, par-
allel-out logic devices with internal latch capabilities can be used
as latches. Examples of devices that can be used at latches are the
SN74193 programmable binary counter, the SN74LS194A universal
shift register, the SN74198 8-bit shift register, etc.

Most output ports are readily configured with standard inte-
grated circuits. Some newer integrated-circuit devices that are to
be used with microcomputers have the output ports or latches al-
ready built in.

Typical applications for output ports include the following:

Transfer data to a printer

Transfer data to a video display

Control a traffic light

Transfer data to a floppy disk

Actuate switches on a model railroad

Actuate valves and pumps in a chemical process
Control a plotter

Transfer data to a seven-segment display

In some applications, the value of the information is actually
used, while in others, the on or off state of each bit is used. Some
devices such as a printer may use a combination; ports for the
transfer of data and ports for the transfer of on-off control signals.
Displays of many digits of information in seven-segment format
may require the use of many output ports, even though only one
“device” is being controlled.

INPUT PORTS

Input ports are used with I/O devices so that they may transfer
information to the computer in 8-bit bytes. Unlike output ports
that must be able to accept and hold data at a specific time, and
may be continuously connected to the data bus, input ports must
be able to “disconnect” themselves from the bus, when they are
not in use. The input ports must pass logical information, logic
ones and zeros, and they must also be configured so that they do
not interfere with the use of the bus, when they are not selected.

Simple gates cannot be used to gate data onto the data-bus lines,
since, depending on the type of gate chosen, their “unselect” out-
put state will be a logic one or a logic zero. This is shown in Fig. 3-6.
Note that even when none of the gates is selected or enabled, the
outputs of the gates generate different logic levels, as noted by the
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Fig. 3-6. Attempted use of standard gates on a dara bus.

quoted logic levels. These levels compete for the use of the bus,
probably leading to one or more burned-out chips. This should
clearly illustrate why gates alone are not used on data buses.

Special integrated circuits with three-state outputs are available
to simplify the design of input ports. A typical three-state device
is the SN74125 bus buffer, shown in Fig. 3-7. The diagram of the
four devices should look familiar. It is simply a buffer (logic one in,
logic one out, etc.), but with an additional control line, shown con-
nected to one of the angular sides of the buffer symbol. The buffer
will pass logic ones and logic zeros from its input to its output when
it is enabled, but unlike a simple gate, when it is disabled, the out-
put appears to be electrically disconnected from the bus, or other
logic device, to which it is connected. In three-state devices, this
third state is often called the HI-Z or high-impedance state, to note
its disconnected state. The disconnecting/connecting is rapid, gen-
erally taking less than 20 nanoseconds.

Fig. 3-7. SN74125 bus buffer chip
pin configuration.

In the SN74125 circuit, each three-state buffer has its own en-
able input, which must be a logic zero for the data to be passed
from the input to the output. A logic one state on the enable input
forces the output into the high-impedance state. A silimlar inte-
grated circuit, the SN74126, is a pin-for-pin replacement for the
SN74125, except that it is enabled with a logic one and disabled
with a logic zero. These chips are not often found in microcomputer
systems, since more useful devices are available.

For purposes of illustration, a typical bus is shown in Fig. 3-8.
In this circuit four one-bit devices have been attached to the bus.
Only a one-bit bus is shown for clarity, although in an 8-bit bus
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Fig. 3-8. Typical three-state bus for four devices.

system, eight bus lines would be required. When one of the EN-
ABLE lines is placed in the logic zero state, the corresponding data
bit is passed through the buffer and onto the bus. We will assume
that no other devices are connected to the bus. Thus, the truth
table shown in Table 3-1 applies.

Table 3-1. Truth Table for a Four-Device Three-State Bus

Enable
D C B A Bus Content
1 1 1 1 Undetermined (all devices HI-Z)
1 1 1 o] Data A
1 1 0 1 Data B
1 0 1 i Data C
0 1 1 1 Data D
4] [ 0 0 Not Allowed

When none of the buffers has been enabled or connected to the
bus, the bus is not connected to anything except the inputs of the
gates, memories, etc., that are the “receivers” of the data bit, so
the logic value of the bus is unknown. Whenever a logic zero is
applied to one of the buffer enable inputs, the selected buffer passes
its data onto the bus. The condition in which more than one buffer
has been enabled is not allowed, since bus conflicts will arise.

All of the devices that are to be used with the computer system
to transfer information to the CPU must have three-state outputs.
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Thus, even the memory devices must have three-state outputs, as
they in fact do. The computer designer must be sure that the sys-
tem has been designed so that no two input devices are selected
at the same time. If such a multiple selection takes place, improper
operation of the computer occurs.

Input ports that may be used to transfer data to the computer
are readily constructed using standard three-state integrated cir-
cuits. In most cases, eight individual three-state buffers are used,
one per data-bus line. In most cases, too, the enable inputs are all
connected in parallel so that all eight bits are transferred to the
data bus at the same time. In some cases, this common enable con-
nection is provided within the three-state integrated circuits so that
only a single enable pin is used to control all eight bits.

There are many “chips” that may be used to construct input ports,
but only a few of them are general enough to warrant our consider-
ation. The two main three-state integrated circuits that will be used
in our examples are the SN74365 and the SN741.5244. The SN74365
may also be noted as the DM8095 (National Semiconductor Corp.),
which is an exact replacement. The pin configuration for these two
circuits is shown in Fig. 3-9.

= Vi
Vee 28 vy 26 vz 243 w3 2az ave 2A1 cc &2 &A

wl jn| el o] in] |s] [u]l (o] o] [n]_ 8] 15

sk aka i |

c{;(/(/(/ (‘% f‘% r%

WAy IY& A2 2YI YAa3  2vz A& Y1 GAD

Fig. 3-9. SN74365 (DM8095) and SN74L5244 three-state bus driver chip
pin configurations.

You will note quickly that, while the SN741.5244 has eight three-
state buffers on one chip, the SN74365 has only six. If the SN74365
device is to be used to construct an input port, two of the inte-
grated-circuit packages must be used. A typical 8-bit input port
is shown in Fig. 3-10. In this case, only two of the three-state buf-
fers in the lower SN74365 chip have been used. Since the SN74365
chips contain built-in Nor gates that control the enabling of the
three-state buffers, these have been used to combine the IN func-
tion pulse and the device address, 010. If the device select signal,
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Fig. 3-10. Typical input port constructed using SN74365 chips.

IN 010, had already been generated elsewhere, it could be applied
to one of the enable control inputs on both chips, while the others
were grounded. The alternate control scheme is shown in Fig. 3-11.

Using such an input port, data values may be input to the com-

N 00 ] ]

62

(ON BOTH CHIPS)

A

Fig. 3-11. Alternate control scheme for SN74365 three-state chips.

puter through the use of the INP command, as shown in Exam-
ple 3-2.

Example 3-2. Data Input Program for Port 10

10 A = INP (10)
20 PRINT A
30 GOTO 10

In this example, the 8-bit binary value is converted into a deci-
mal number between zero and 255 when it is input by the TRS-80

56



using the INP command at line 10 in the program. It is then printed.
It would have been just as valid to use the following command:

10 PRINT INP (10): GOTO 10.

A similar input port may be constructed by using an SN741.5244
octal (8-bit) buffer. This chip contains two independent sets of four
buffers each, which are independently controlled with two enable
inputs 2G and IG. Since no built-in NOR gate is present on the SN-
741.5244, external device select gating is required. A typical input
port in which an SN74L.S244 chip has been used is shown in Fig.
3-12. Software steps similar to those shown in Example 3-2 would
be used to control the flow of information from this port into the
computer.

SNT74LS244
D7 ——— A Y fp—— D7
INPUT DATA DATA BUS
DO ——] ————— DO
W 6
15 26
SN7432

Fig. 3-12. Input port configured with an SN7415244 chip.

Both the SN74365 and the SN74LS244 have pin-for-pin equiva-
lents that invert the data bits as they are passed through the chips
and onto the data bus. These inverting buffers are the SN74366
(DM8096) and the SN741.5240, respectively. In most cases, the non-
inverting buffers will be the ones used.

In some cases, peripheral devices may generate more than eight
bits of information that must be read by the computer. When more
than eight bits are to be input, the information is divided into
groups of eight bits each. The information is then transferred to
the computer one byte at a time. A 16-bit value would require the
use of two input ports, as would a 9-bit value. When not all eight
bits in an input port are used, the unused bits are often placed in
the logic zero state, or grounded. When not all of the bits have
actually been implemented, as shown in Fig. 3-13, the unused bits
may also be set to a logic zero through the use of appropriate soft-
ware commands. This will be demonstrated in one of the experi-
ments.
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Fig. 3-13. Two-bit input port.
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Since a 16-bit number may represent values between 0 and
65,535, some means must be found for converting the individual
bytes that are input separately into a single value. Thus, the two
values that are each between 0 and 255 must be converted to one
value between 0 and 65,535.

Software steps are generally used to implement bits. A simple
program that will make the necessary conversion for a 16-bit num-
ber is shown in Example 3-3.

Example 3-3. Program for a Two-Byte to One Value Conversion

10 A INP (7)

20 B INP (8)

30 C (B*256) + A
40 PRINT C

50 GOTO 10

]

In this example, input port 7 is used to input the eight least
significant bits, while input port 8 is used to input the most signifi-
cant eight bits. The final value of C is between 0 and 65,535. This
program would work for as few as nine bits, if the unused, most
significant bits are placed in the logic zero state.

Input ports are used to transfer information to the computer.
This information may represent actual decimal values for weight,
temperature, resistance, etc., or the information may be interpreted
as individual binary bits, representing on/off conditions, full/empty
states, etc. Typical uses for input ports would be for the:

Transfer of traffic light control information to the computer

Transfer of data from a digital instrument to the computer

Transfer of status (on-off) bits from a printer to the computer
Thet main requirement for input ports is that their outputs have
three states.

MEMORY-MAPPED 1/0O

When standard device addressing was used to address input and
output ports, 8-bit addresses were “selected” or decoded and com-
bined with either the IN or the OUT function pulse to select the
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Fig. 3-14. Black diagram of memory-mapped input and output port.

proper port. The INP and OUT commands were used to access the
I/0O ports under software control.

There is no reason why an output port, or an input port cannot
be controlled by a combination of the memory control signals MR
or MW and a decoded 16-bit address. Very simply, this would mean
that the PEEK and POKE instructions would be used, instead of
the INP and OUT commands. The same commands that are used
to access the memory are now used to control I/O ports, too. The
mean difference between device addressing and memory addressing
is the use of different function pulses, and the decoding of the en-
tire 16-bit address. Since this is the same process that is used in
memory chips, it is called memory-mapped 1/0.

In the TRS-80 computer, there is little to recommend the use of
memory-mapped I/0 instead of device addressed I/O. In fact, the
latter is probably the simpler. In some computers, such as those
based on the 6502 or 6800 processor chips, memory-mapped I/0 is
the only type of I/O control available. When programming in
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assembly language, there may be situations where memory-mapped
I/O has advantages over device addressed 1/0.

The block diagrams for an input port and an output port that
are controlled as memory-mapped I/O devices is shown in Fig. 3-14.
In any case, output ports are constructed from latches and input
ports are constructed from three-state buffers.
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Flags and Decisions

In almost all the previous examples, we have assumed that there
is little synchronization required between the computer and the
external I/O devices. Thus, output ports have been assumed to al-
ways be ready for more data to be transferred to them. In the case
of input ports, we have assumed that the data values are present,
and ready for transfer to the computer, when the computer reaches
the appropriate INP command in a program. This may not always
be the case. We must often deal with 1/O devices that are slower
than the computer.

1/O DEVICE SYNCHRONIZATION

Since not all I/O devices may be ready for the computer at all
times, a means of synchronizing the computer and the I/O devices
is required. This synchronization generally involves the use of sig-
nals that are called flags. These signals are used to indicate that
various devices are busy or not busy, ready or not ready, convert-
ing or not converting, and so on. Thus, “flags” indicate the status
of devices, and they are often called status flags.

For illustrative purposes, we will assume that we are required
to interface a device to a TRS-80 computer. The device will pro-
vide 8-bit data values to the computer on an irregular basis. In most
cases, such devices also generate a flag signal that indicates that
the device is ready to transfer its information to the computer. Such
a device is shown in Fig. 4-1. Note that a standard three-state input
port has been used to transfer the information to the computer.
The ready flag presents an interesting problem. How is the computer
going to monitor or check the condition of the READY flag, so that
it can determine when a new data value is ready?
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INPUT DEVICE

READY/BUSY |— SYNCHRONIZING FLAG
D7 D7

DATA BUS
3] Do

INPUT PORT/ [— IN 28

Fig. 4-1. Simple input device with synchronizing flag output.

As we stated previously, there is no rule that limits input ports
to the transfer of actual numeric values. The computer has no way
of knowing that the 8-bit value, 01100100,, represents 100, rather
than five devices being off, and three devices being on. Thus, an-
other input port could serve quite well as a way of transferring the
status flag of the input device to the computer. The other seven
bits at this input port may be unused, or they may be used to indi-
cate the status of other external devices. In this way, software steps
may be used to check the status of external devices.

When the state of a flag is checked in a computer program, the
computer may be programmed to wait until a flag has changed to
a particular state before going on with the required action, or it
may be programmed to check the flag periodically, going on about
other tasks in the meantime.

The logical operations that are available in Level II BASIC are
particularly useful in allowing us to check the status of individual
flags, or bits, in an 8-bit byte. In this way, the actual logic zero
or logic one state of flags may be detected, with the computer mak-
ing decisions based on the state of the flag.

LOGICAL OPERATIONS AND FLAGS

Probably the most useful logical operation, where flag detection
is concerned, is the logic anp operation. You should recall that
two bits, A and B, may be “anped” together, as shown in Fig, 4-2.

— T MASK (A)
R N
—FLFUMLLULT DATA (B):D— RESULT
AND GATE

Fig. 4-2. Representation of logical AND operation, using DATA and MASK to
yield RESULT.
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The result indicates that only when both of the bits are logic ones
will the result be a logic one. Another way to think of this is to treat
the “A” bit as a “mask,” and the “B” bit as information or data.
When the mask is a zero, the result is zero. When the mask is a
one, the data is passed through to the result. In this way, selected
bits may be masked, while other bits are “passed through” the mask.

If, for example, we wished to check the state of bit D5 in the
data word, 00111010, a mask of 00100000 could be used. The mask
is anped with the data word, as shown in Fig. 4-3, for several dif-

VALUE 00111010 00011010 11110000 00011111
HASK 00100000 00010000 00100000 00100000
RESULT 00100000 0001 0000 00100000 00000000

Fig. 4-3. Example of AND operation in which eight bits of data are operated on.

ferent data words. In all cases, the logic state of D5 was passed
through to bit D5 in the result. All of the other bits were masked,
or set to zero. In this way, the result was zero, when bit D5 was
a logic zero, and the result was one when bit D5 was a logic one.
This could be used as the basis for decision making steps in a pro-
gram. You must remember to convert the masks to their decimal
equivalent. In this case, the mask would be equal to 32.

FLAG-DETECTING SOFTWARE

Once an interface has been constructed so that the states of the
various flags may be detected, as shown in Fig. 44, software may
be used to make decisions based on the state of the flags. The pro-

ONE- BIT INPUT PORT

INPUT DEVICE \ [——'N 29
READY/BUSY V

D7 DT
D5 D5
Do DO

L———IN 28

Fig. 4-4. Complete interface in which the flag is detected by software.




gram shown in Example 4-1 shows how a logic zero causes the
computer to transfer control to statement 200, while the program
shown in Exampie 4-2 shows how a logic one causes this “jump”
to be performed.

Example 4-1. A Logic Zero Flag Used for Control

310 A = INPQ29)

320 IF (A AND 32) = 0 THEN 200

330 ..... Continue here if flag = logic one
Example 4-2. A Logic One Flag Used for Control

310 A = INP229)

320 IF (A AND 32) > 0 THEN 200

330 ..... Continue here if flag = logic zero

In either case, when the proper flag condition was met, the pro-
gram would probably input the 8-bit data from port 28 and then
wait for the next value to be ready. While this has served as an
illustration, flags are often used by themselves, to indicate the state
of valves, doors, controls, switches, and other devices, that may
not have any data byes associated with them. You will see exam-
ples of this in the experiments at the end of this book.

COMPLEX FLAGS

At this point, you may be asking, if the flag on the input device
(Fig. 4-4) is used to indicate the availability of an 8-bit value, how
does the device know when the computer has input, or accepted,
the value that it made available? In some cases, a signal from the
computer to the I/O device is used to indicate that the flag had
been detected, and that the necessary action had taken place. This
signal “clears” the flag. The flag clearing action may be performed
by a separate signal, or a signal such as the IN 28 pulse may serve
a dual purpose; the enabling of an input port, and the clearing of
the flag. This is shown in a simplified timing diagram, Fig. 4-5.

READY/BUSY FLAG

IN29 PULSE M // 11 N /
IN28 PULSE \j] \ﬂ__

Fig. 4-5. Flag timing diagram.

When the flag is placed in the logic one state, this indicates that
the input device is ready to transfer the 8-bit value to the computer.
The IN 29 pulse represents the transfer of the flag status to the
computer. Based on the state of the flag (logic one), the computer
executed the steps that transferred the data value through the use
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ONE-BIT INPUT PORT

INPUT DEVICE K ,\[—‘ IN 29
READY/BUSY 1>
o7 o7
D5 D5
Do Do
CLEAR FLAG l N 28

Fig. 4-6. Complete flag circuit in which flag is cleared by computer-generated pulse.

of an INP(28) statement. The pulse generated to enable the three-
state input port of the data also cleared the flag.

The second IN 29 pulse again read the status of the flag, but it
was a logic zero, so no data was to be transferred. A schematic
diagram for the complete interface is shown in Fig. 4-6.

Example 4-3. A Simple Flag Testing Program

50 IF (32 AND INP(29)) == 0 THEN 50
60 Q = INP(29)
70 ..., Continue the program here

Typical devices that use flags in this way are keyboards, floppy
disc controllers, analog-to-digital converters, etc.

FLAG CIRCUITS

In some cases, devices may not have the necessary flag circuits
within them for easy flag control, or they may not generate logic
levels such as those associated with switches, valves, etc., where
the logic levels may be present for long periods in-one state. In
these cases, the “flag” may be a very short pulse. In fact, some flag
pulses may be too short to be detected by the computer if the flags
are just connected to an input port.

In cases such as this, it is necessary to design a circuit that will
“capture” the flag pulse so that it may be detected by the computer
sometime later. Even if the computer can test a flag bit every few
milliseconds, it will frequently “miss” short pulses of a few micro-
seconds.

Flip-lop or latch circuits are generally used to “remember” the
presence of flag pulses. Typical flip-flop devices are the SN7474
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D-type flip-flop and the SN7476 J-K flip-flop. We refer you to
Introductory Experiments in Digital Electronics and 8080A Micro-
computer Programming and Interfacing, Book 1, Chapter 11, for
a review of flip-flop devices.

A typical flip-flop flag circuit is shown in Fig. 4-7. In this circuit,
the input device generates a READY pulse that clocks the flip-flop,

INPUT DEVICE INPUT  PORT
D7 D7
p3 DATA BUS
DO DO
READY
IN 20
L. FLAG PULSE -
SNT7474 - IN 25
I—{p ‘ :
1P
oK INPUT PORT

CR

T
o<‘L GLEAR

Fig. 4-7. Flip-flop circuit used for detection of flag pulse or level.

transferring the logic level at the D input to the Q output. The Q
output is detected by the computer through the use of a second
input port, the status of which may be tested, as noted previously.
Once the necessary action has taken place, in this case, the input
of data from input port 20, the flag flip-flop is cleared. A logic zero
pulse, CLEAR, serves this purpose. While the inverted IN 20 pulse
could be used, we have shown a separate CLEAR pulse, so that
the timing may be shown, as in Fig. 4-8.

In this timing diagram, the READY pulse sets the flip-flop, so
that its Q output is a logic one. This is detected when the flag status
information is input from input port 25. The logic one state of the
flag causes the software to perform steps that input the data and
then clear the flag. The separate clear pulse could be generated by
an OUT command, and appropriate circuitr ;, although the use
of the inverted IN 20 signal is probably easier.

66



DEVICE READY I N
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FLAG TEST (IN 25) n N n n i
DATA IN (IN 20) n I

CLEAR f n

Fig. 4-8. Flag flip-flop timing diagram.

In this example, the flag was tested twice while it was in the
logic zero state. Since this indicated that no new data was ready,
no input transfers or flag clears were initiated.

Several experiments at the end of this book concern the use
of flags.

MULTIPLE FLAGS

Many systems have a number of different flags that must be
checked. In some cases, a priority must be established, since some
devices are more important, or require faster attention, than do
others. The priority is easily set in the program, since the order
in which the various bits are tested determines which devices are
“serviced” before others. The program steps shown in Example 4-4
will check the flags in sequence, from bit D7 through bit DO.

Example 4-4. Flag Priority Software Steps

300 A = INP(100)

310 IF (A AND 128) > 0 THEN 1050
320 IF (A AND 64) = 0 THEN 20
330 IF (A AND 32) > 0 THEN 260
340 IF (A AND 16) > 0 THEN 1010

380 IF (A AND 1) = O THEN 805

390 ..... Continue here if no flags are “set”

In this case, some flags were “set” in the logic one state (D7,
D5, and D4), while others were set in the logic zero state (D6
and DO0). This is often dictated by the interface design, or the
action required based on the condition of the flags, that is, whether
action is taken when the flag is in the logic zero or logic one state.
In some cases, action may be required when a device is not-ready.

INTERRUPTS

In some cases, it is necessary for an I/O device to be serviced
as soon as it is ready. It may not be able to wait the many milli-
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seconds that the computer may need to check flags, and make de-
cisions based on them. Almost all computers have a means of being
interrupted, but in the TRS-80, this is complicated by the need to
use assembly-language programs.

Interrupts have been covered elsewhere for 8080-type processors,
and we refer you to The 8800 Bugbook®: Microcomputer Interfac-
ing and Programming (Bugbook® is a registered trademark of E &
L Instruments, Inc., Derby, Connecticut 06418) and Iniroductory
Experiments in Digital Electronics and 8080A Microcomputer Pro-
gramming and Interfacing, Book 2, Howard W. Sams & Co., Inc.,
Indianapolis, IN 46206. For assembly-language software for inter-
rupts, we refer you to 8080/8085 Software Design, Book 2, Howard
W. Sams & Co., Inc,, Indianapolis, IN 46206.
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Breadboarding with the
TRS-80

It has always been our philosophy that computers should be easy
to use, both for program development and for hardware or inter-
face development. Since the necessary computer signals for the
TRS-80 are available at the left rear access cover on the keyboard
console, it was decided to develop some general interface circuits
that could be easily constructed and used. A printed-circuit board
was developed, containing all of the necessary circuitry for inter-
facing purposes. A photograph of this interface is shown in Fig. 5-1.
While this circuitry could have been breadboarded and then used
for experiments, it was felt that this would only provide additional
points at which problems could surface.

BASIC BREADBOARD

The basic breadboard contains a number of useful circuits that
allow interface designs to be easily set up and tested. The basic
sections are Power Supply, Logic Probe, Device and Memory De-
coders, Bus Buffers, and Control Circuitry.

Power Supply

The power-supply section of the breadboard may be operated
in one of two ways. An external +5-volt power supply may be used,
as long as it can supply 1 amp of current, or an external transformer
may be used to supply 12.6 volts (ac) to the on-board power-supply
circuits. In either case, the breadboard power supply is separate
from the TRS-80 computer power supply, and the TRS-80’s power
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Vit

Fig. 5-1. TRS-80 breadboard system.

supply can not be used to supply the power required. A power-
supply schematic is shown in Fig. 5-2.

If the on-board power supply is to be used, the 12.6 VAC trans-
former is connected to pins 1 and 2 on plug number 1 (P1) and the
rectifier diodes, D1-D4, the filter capacitor, Cl, and the voltage regu-
lator, VR, are all installed. We suggest that a small heat sink be
used with the +5-volt regulator. When the breadboard is used in
this manner, +5 volts are available at pin 5, and ground is avail-

+5 IN D>
!
AC IN BB IN4OO! (4}
LM309 jOUT +5V
VR
2 . + +
AC IN B> " GND €3 4 2 C4:t 5% Ccet
Tzaoo‘»f luf | O-duf | O.1vf | Oduf]| T uf
6
GROUND [B>- GND
4
+V IN B> +V
3
-V N B -V

t-oPLUG P-1

Fig. 5-2. Breadboard power-supply circuit schematic.
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able at pin 6, on P1. These connections may be used for external
devices, if required.

If a separate +5-volt power supply is to be used, the power-
supply parts D1-D4, C1, and VR are not needed, and should be
removed, or not installed. The +5-volt and ground connections are
made at pin 5 and 6, respectively, at PL

Since other voltages are often required, such as =12 or =15 volts,
provisions have been made at Pl to connect additional external
power supplies. The positive voltage, +V, and negative voltage, —V,
are connected to pins 4 and 3, respectively, at PL.

All of the voltages are available at the socket at position IC-16.
The available connections are shown in Table 5-1.

Table 5-1. Power Supply Connections for the Power Socket, 1C-16

Pin* Voltage Available
7,10 +5

512 GND

3.14 +V (External)
1.16 —V (External)

* All other pins are unconnected.

Power for the integrated circuits has been derived from the +5-
volt power supply. The connections at IC-16 (socket) provide a
means of easily obtaining power for the experiments.

Logic Probe

The logic-probe circuit, Fig. 5-3, is useful in determining the
logic state of various outputs, and also for detecting pulse activity
at outputs. The logic-probe section of the breadboard contains a
level detector and a pulse-detector circuit. An LM-319 (IC-15)
comparator has been used to detect the logic one and the logic zero
levels, while an SN74L.S123 (IC-14) has been used to detect and
“stretch” pulses. We have used a green LED for the logic zero indi-
cator (D-7), a red LED for the logic one indicator (D-6) and a
yellow LED for the pulse indicator (D-5). The input to the probe
is available at pins 1-4 at IC socket IC-19. These are marked “P.”
All of these inputs are in parallel, and any one may be used. (This
input should be thought of as two low-power Schottky (LS) in-
put loads.)

If you have an external logic probe, the circuitry in this section
may not be required. If you wish, you do not have to construct this
portion of the circuit. In any case, it will be useful to be able to
detect pulses and also to determine the state of pulses, etc. We have
found the logic-probe circuit to be very useful in troubleshooting
breadboarded interface circuits.
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Fig. 5-3. Logic probe circuit schematic.

Device and Memory Decoders

A major portion of the circuitry on the breadboard is devoted to
1/0 device-address decoding, as shown in Fig. 5-4. The decoders
can be operated in either the device mode or the memory mode,
depending on whether device addressing, or memory-mapped ad-
dressing will be used with I/O devices. In device addressing, the
LO address bits (A7-A0) are decoded, while in memory addressing,
all of the address bits (A15-A0) are decoded. The schemes used
in this portion of the breadboard circuit are a combination of de-
coder and comparator address-selection circuits.

In the device-addressing mode, an SN74LS85 4-bit comparator,
(IC-5), is used to compare preset address bits to the address bits
present on the LO address-bus lines, A7-A4. The switch settings
are preset using the dual-in-line switch package at IC-6. The posi-
tions are clearly marked as “7,” “6,” “5,” and “4” at the switch
marked “LO.” Be sure that the open or off switch position is to
the right (logic one position). Pullup resistors at IC-7 provide for
logic one inputs to the SN74LS85 when the switches are open, or
in the logic one position.

When an address match occurs between the preset bits and ad-
dress bits A7-A4, the SN74154 decoder (IC-12) is enabled. Al-
though the SN74154 decoder has the ability to decode address bits
A3-A0 into sixteen unique address outputs, only the first eight have
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been used, more than enough for breadboarding and interface
testing.

Thus, if the address switches for bits 7-4 were set to 1011, the
decoder would decode addresses. 10110000, through 10110111, or
addresses 176 through 183, decimal. The lowest switch at IC-6,
must be “open” or in the “D” position. This places the decoder in
the device addressing mode.

The decoded-address outputs are present at the IC-20 socket.
They are labeled “0,” “1” and so on, through “7.” The entire sec-
tion is called “ADDRESS.” Note that there is a bar over the ad-
dress numbers to indicate that the unique output is a logic zero
pulse. The address notation, zero through seven, is a sequential ad-
dressing that will help you in determining which pins are con-
nected to which of the selected device addresses. In most cases,
these numbers do not correspond to actual device addresses. In the
addressing example cited previously, in which addresses 176 through
183 were decoded, the output labeled “0” would correspond to the
decoded address of 176. Table 5-2 details the decoder outputs that
are available at the address socket, 1C-20.

Table 5-2. Address-Decoder Connections for the Address Socket, 1C-20

Pin (1C.20) Designation SN74154 Output Pin
1,16 0 1
2,15 1 2
3,14 2 3
4,13 3 4
512 4 5
6,11 5 6
710 6 7
8.9 7 8

Connections for address bus lines A3-AQ (unbuffered) are avail-
able on the breadboard at pins 8-3, respectively, on the socket at
1C-19. These may be used in some experiments, but caution is re-
quired, since these are direct connections to the TRS-80 and these
four address-bus signals are not buffered on the breadboard.

This address-decoder circuitry will save you much time and effort,
since you will not have to construct device address decoders when
you wish to implement 1/O ports.

Memory addresses may also be decoded on the breadboard. Two
additional SN74LS85 comparator chips, IC-3 and IC-4, are used
to compare address-bus lines A15-A8 with a preset, 8-bit HI ad-
dress. The address bits are set at the eight-switch dual-in-line pack-
age labeled HI, at IC-2. If memory addressing is to be used, ad-
dresses within the range of 0 to 63,535 may be selected, but you
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should be careful not to select addresses that have been assigned
to the internal TRS-80 memory (ROM or R/W).

The complete 16-bit address must be converted to decimal, so
that it may be used with the PEEK and POKE instructions. Re-
member that addresses greater than 32,767 require the use of the
formula discussed previously;

ADDRESS = ~1*({DESIRED ADDRESS — 32767)

In the memory address or memory-mapped I/O mode, you must
place the lowest switch at IC-6 in the “closed” or in the “M” posi-
tion. This allows the SN74154 decoder to be activated only when
there is a match between address bits A15-A8 and the bits preset
at the HI dip-switch and a similar match between address bits A7-
A4 and the bits preset at the LO dip-switch. Thus, addresses be-
tween XXXXXXXX XXXX0000 and XXXXXXXX XXXX0111 are
accessible, where X =1 or 0. These decoded addresses are present
as logic zero pulses at the “ADDRESS” socket (IC-20). Remember
that only the first eight addresses in a selected 16-address block are
available. Thus, if 10000001, is set for the HI address and 1110 is
set for address bits A7-A4 (LO), addresses 33,248 through 33,256
would generate logic zero pulses at pins 1 through 8 at the “AD-
DRESS” socket, respectively.

If you are changing between memory (16-bit) addressing and
device (8-bit) addressing, you must remember to place the mode
switch in the proper position, “M” or “D.”

Bus Buffers

Two 8216 noninverting bus buffer chips, IC-1 and IC-11, have
been used to buffer the bus, as shown in Fig. 5-5. This means that
the bus is available with a full fan-out of 30 (it can power 30 stan-
dard SN7400-type inputs) and that it is isolated from the TRS-80
data bus. The eight bits on the data bus are available at the socket
at 1C-18.

The information in Table 5-3 shows the connection to the data
bus.

The bus buffers are always enabled, and the normal mode of
operation is for the transfer of data from the TRS-80 to the bread-
board interface. This means that without additional signal use, you
could monitor the bus “activity” by connecting logic probes or
logic monitors to all eight data bus outputs, D7-D0. Output ports
are implemented by simply using the proper control signals (de-
scribed in the next section) to control an 8-bit latch. The eight latch
inputs are connected to D0-D7 at the socket at IC-18.

Input ports, however, must be implemented so that they turn
the bus buffers in the opposite direction to “drive” data into the
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Table 5-3. Data Bus Connections af IC-18

Pin (IC-18) Data Bus Signal
1,16 b7
2,15 D6
3.14 D5
4,13 D4
5,12 D3
6,11 D2
7,10 D1
8,9 DO
IC-{l 8216
5 [
30 DO DO DB
22 DI v[ .
4 13
s b2 12
26 D3 2 el 1C-18 SOCKET
. I L Y}
TS EN : -: '-:? Gy
J_I Ils 1 .5 :IZ gg
= i .4 3| pa DATA BUS
e 8
5 7 o o D&
18 D4 Do DB i 3
[ 8 o o7
26 05 . DI s
s
14 13
24 D6 T o
9 10
20 07 I "
P2 PINS iIC-10 8216
s En C-13
[ 15
= ]-—~-—20<}-'—— INPUT ENABLE

Fig. 5-5. Bus buffer circuit schematic.

TRS-80. Actually there are two bus buffers for each bus line, as
shown in the pin configuration shown in Fig. 5-6 for the 8216 buffer,
The DIEN input determines which set of buffers is enabled, thus di-
recting data to, or from, the TRS-80. All input operations must acti-
vate the proper set of bus buffers so that the TRS-80 receives the
data properly. Special control circuitry has been implemented to
do this for input operations.

Control Circuitry

The control circuitry on the broadboard is rather simple, consist-
ing mainly of buffers to buffer the six useful control signals output

by the TRS-80, IN, RD, OUT, WR, RESET and INTAK. This is
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Fig. 5-6. The 8216 Bus Buffer chip pin configuration.

shown in Fig. 5-7. The interrupt input, INT, has also been buffered,
to protect the computer. Connections to these signals are made at
the socket at IC-17, as noted in Table 5-4.

Table 5-4. Control Signal Connections at 1C-17

Pin (IC-17) Control Signal Direction

1 TNT input

2 Not Used —

3 INTAK Output
4 RD Output
5 ouT Output
[ ‘WR QOutput
7 RESET Output
8 N Output

You may not be familiar with the RESET, INTAK, or INT sig-
nals. We will only be concerned with RESKET at this point, and it
is a logic zero pulse, generated when the TRS-80 is turned on or
when the reset pushbutton is actuated. All of the control signals
are active in the logic zero state, as indicated by the “bar” over
their symbol.
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The control circuitry also generates a signal that switches the
8216 bus buffers into the input mode, so that data may be trans-
ferred into the TRS-80. It would seem to be merely a matter of
turning the bus around whenever an input or memory read opera-
tion took place. If this were implemented, the bus buffers of the
breadboard would be placed in the input mode, even when an in-
put device, or a memory chip was activated within the TRS-80.
This would cause a “bus conflict,” so the bus on the breadboard
must be placed in the input mode only when an input device on
the breadboard itself has been selected.

+5

RI 1000 OHMS

iC-17 SOCKET

|
i

21 INT » 5 1C-9 SN74365 o' | INTERRUPT
5 HD . ¢ | RO
14 INTAR 23 | INTAK
13 WR 2 L4 i*6 WR
12 OUT 14 13 Los OUT
. W o W
2 RESET — 7 | RESET
L
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INP REQ | | 14 1z | 1C-8 { > @)——«»To INPUT
z | o8 = ~— sN74LS20 ENABLE
L

Fig. 5-7. Control circuit schematic.

To handle the input ports properly, the input port device select
signal is used to gate data onto the data bus and also to control
the mode of the 8216 bus buffers. In effect, up to four input port
device select pulses may be “ored” together to place the bread-
board bus buffers in the input mode. You will probably not use
more than four input ports on the breadboard. Thus, these signals
turn the bus buffers around for the input of data only when an
input port device select pulse is generated on the breadboard, and
it is wired by the user to one of the four bus buffer enable inputs.

The “input request” control pulses are required to be logic zero
pulses. They are applied to pins 16, 15, 14, or 13 on the socket at
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Fig. 5-8. Typical input port control signal generation scheme in which input
request signal is generated by each input port.

INPUT PORT

IC-17. These pins are labeled W, X, Y, and Z in the “INP REQ”
section.

Fig. 5-8 shows that these signals for two typical input ports have
already been generated to control the three-state input ports, so it
is only necessary to connect them also to the W and Z pins in the
“INP REQ” signal section of the IC-17 socket (it would have been
just as easy to use the X or Y “INP REQ” inputs). Note that two
input ports have been illustrated.

The actual oring of these control signals is performed by the
SN74LS20, IC-8. The INPUT REQUEST signal that is output by
this four-input NAND gate is further gated with OUT and WR. This

gating provides a safety interlock, so that if your breadboard cir-
cuits have been improperly wired, the bus buffers cannot be placed
in the input mode during output or memory write operations. The
resultant “INPUT REQUEST, BUT NOT OUT OR WR” signal
controls the input/output mode of the two 8216 buffer chips.

Breadboard Construction

The breadboard circuits may be constructed using wire-wrap
techniques, as shown in Fig. 5-9. In this case, the circuits could be
expanded and modified through simple wiring changes, but the
breadboard itself would be somewhat difficult to use.

To aid in interface construction and testing, a printed circuit has
been developed in which all of the necessary circuitry has been
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Fig. 5-10. Printed-circuit version of TRS-80 breadboard.

placed on a single board. The power supply and logic probe cir-
cuits have been incorporated to make the breadboard easy to use.
The breadboard is shown in Fig. 5-10. A large space has been left
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unused on the breadboard so that a solderless breadboard socket
may be mounted directly to the board for easy experimentation.
Typical breadboard sockets are the “SK-10” from E & L Instruments,
Derby, CT 06418, and the “Super Strip” from AP Products, Inc.,
Painesville, OH 44077. A complete parts list for the breadboard
shown in Fig. 5-10 is provided in the Appendix.
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TRS-80 Interface
Experiments

The purpose of the experiments in this section is to provide you
with some hands-on experience in the use of the latched output port
and three-state input port circuits that were developed in the text.
You will find that these experiments use simple SN7400-series de-
vices to transfer data to and from the TRS-80 computer.

INTRODUCTION TO THE EXPERIMENTS

Some breadboarding of circuits will be required, and a complete
list of the parts that will be used is provided at the end of the ex-
periments If you have not had any hands-on experience in bread-
boarding digital circuits, we refer you to the first chapter in Logic
and Memory Experiments Using TTL Integrated Circuits (Howard
W. Sams & Co., Inc., Indianapolis, IN 46206 ). This chapter describes
the basic fundamentals of breadboarding. Some auxiliary functions
will be required in the experiments to both monitor logic states and
to generate them. While we favor the use of the Outboard® modules,
similar functions may be readily implemented. In general, we use
lamp monitors to indicate logic one (on) and logic zero (off),
logic switches to generate logic levels, and debounced pulsers, or
pulser for short, that generate logic levels with clean, noise-free
transitions between logic levels. Some simple schematic drawings
of these types of circuits are provided in the Appendix. In general,
most of the experiments in this book can be done with a few simple
circuits.
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We have provided one experiment that illustrates the use of a
decoder circuit for device addressing. While many decoder schemes
are possible we feel that one experiment should illustrate the basic
principles. If you are interested in other decoder circuits, there are
many different ones described in both The 8080A Bugbook®: Micro-
computer Interfacing and Programming and Introductory Experi
ments in Digital Electronics and 8080A Microcomputer Program-
ming and Interfacing, Book 2 (Howard W. Sams & Co., Inc., In-
dianapolis, IN 46206). In most interface circuits, the decoder scheme
that is used on the breadboard will work quite well.

While this book tackles TRS-80 interfacing at a fairly low level,
additional writing is planned, covering such topics as interrupts,
A/D and D/A converters as well as data processing. The 8-bit
input and output ports should serve you quite well, providing a
means of transferring information to and from the TRS-80 and the
“external world.”

The photograph in Fig. 6-1 shows a typical computer-breadboard
laboratory station that is used in performing the experiments in this
section. A short section of 40-conductor ribbon-cable has been used
to connect the TRS-80 and the breadboard. While cable assemblies
such as this are available from a number of sources, you must be
careful in their use. The cable will have a 40-pin edge connector on
one end and a 40-pin “socket header” on the other. These must both
point in the same direction. Thus, if the cable is placed flat on a
table, the openings for the header and edge connector must both
face in the same direction. This is clearly shown in Fig. 6-2. Other
cable arrangements may cause problems in the computer or in the
breadboard.

Some experiments will build on, or use, the circuits or programs
developed in previous experiments. Please do not turn off your
power to the TRS-80, and do not disconnect circuits unless you are
instructed to do so. There will be reminders at the end of those
experiments in which circuits or programs developed are carried
forward.

If you are an instructor planning to use this book as the basis
for laboratory experiments, you will find that the programs are
readily loaded onto cassettes. In this way, the students spend their
time concentrating on the experiment and not on the debugging
of the programs. If you choose to use cassettes, you should choose
high quality tape, and once the programs have been recorded on
the tape, the “write protect” tab on the back edge of the cassette
should be removed. This will prevent the students from accidentally
recording programs over those already on your tape.

Students may find it valuable to maintain cassettes of their own,
so that their lab solutions or other programs are readily available,
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either for exchange with other students or lab groups, or for refer-
ence during the next lab period.

The experiments in this chapter have been divided into two sec-
tions, although no division, chapter subheading, or other note marks
the sections. The first eleven experiments provide a basic set of
interfacing and programming investigations for readers who are
interested in basic-interfacing concepts. These first experiments
provide a basis for the laboratory portion of a first course in inter-
facing.

Fig. 6-1. TRS-80 computer and breadboard in experimental use position.

The last seven experiments provide additional lab investigations
into more advanced topics, and they also provide projects that may
be used to supplement the basic set of experiments. Of course, the
entire set of eighteen experiments may be done, too.

EXPERIMENT NO. 1
USE OF THE LOGIC PROBE

Purpose

The purpose of this experiment is to show you how the logic
probe circuit on the breadboard may be used to detect logic levels
and pulses.
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Fig. 6-2. Interfacing cable, note connectors oriented on same side of flat cable.

Discussion

We have assumed that you are using the breadboard logic probe,
although other logic-probe circuits will work equally well. The steps
in this experiment are useful in helping you to become familiar with
the breadboard and the signals available.

Step. 1

Your TRS-80 computer should be connected to its video monitor
and power supply and it should also be connected to the breadboard
through the 40-wire flexible cable jumper. This connection has been
described in the introduction to the experiments.

Turn on the power to the computer, video monitor, and bread-
board. The computer should print “MEMORY SIZE?” as it normally
does. If it does not, turn off the power and obtain assistance in
locating the problem.

Step 2

With power applied to the breadboard, connect a jumper wire
between one of the pulser input pins, P, at the PROBE socket, to
one of the +5-volt pins at the power socket. What is the effect on
the logic probe indicators?
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The red LED is on, indicating the presence of the logic one state.

The probe jumper wire should now be moved from the +5-volt
power pin to a ground, G, pin on the power socket. What is ob-
served, once this connection has been made?

The green LED is on, indicating that the probe input is in the
logic zero state. You may have noticed that the pulse detecting
LED (yellow) flashed as this connection was made. This flashing
state indicates that a logic-level change was detected.

Connect the probe input to address line A0 at IC-19. What do
you observe?

All three of the LEDs are on, at different intensities. This is due
to the fact that the Z-80 is executing the assembly language instruc-
tions in the Level II BASIC ROMs, thus changing the values on the
address bus.

Step 3

To test the pulse detecting capability of the logic probe, connect
the probe to the OUT pin at the CONTROL SIGNALS socket.
What is the logic level there?

The output should be a logic one, since no output operations are
being executed by the computer.
Step 4

Enter the following program into your computer and start it. We
have assumed that your computer has been initialized and is ready
to use:

10 OUT 7,255
20 GOTO 10

Remember to type RUN and press the EnTER key to start the pro-
gram. What activity is noted at the logic probe? Why?
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The logic probe indicates the presence of continuous pulses, by the
P LED being constantly lit. The logic-one LED is also on. This in-
dicates that the normal level is a logic one, but that logic-zero pulses
are being detected.

Step 5

Move the logic probe wire to the other six control-signal outputs.
Are any others active®? Why do you expect the observed behavior?

The WR and RD signals are active. These signals are being gen-
erated by the TRS-80 as it executes the short program that you have
entered

Do not be surprised by the fact that the WR line is being pulsed.
Remember, for the Z-80 to execute the BASIC program, it has to
interpret each line or instruction in the program. To do this, the
Z-80 has to execute 10s or 100s of assembly language instructions,
some of which write information into memory for temporary storage.

Step 6 ’
Change the program to

10 A = INP(7)
20 GOTO 10

and start it. Do you expect any change in the pulse activity at the
OUT pin? Would any of the other I/O control signals be active?
Which one?
Since the OUT command is no longer used, the OUT pulse should
no longer be observed. You should be able to use the probe to
detect pulses at the IN signal pin.

In some of the following experiments, the logic probe will be
used to examine outputs and to detect logic states and pulses. This
will be noted by, “ . . . use your probe to examine . . .,” or perhaps

32

by, “. . . use the logic probe to measure . . ., etc.

EXPERIMENT NO. 2
USE OF THE DEVICE ADDRESS DECODER

Purpose

This experiment allows you to explore the use of the device ad-
dress-decoder circuit on the interface printed-circuit board that
will be used in some of the future experiments.
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Discussion

In this experiment, address A7-A0 will be used by the LO address-
decoder section, or device address-decoder section of the bread-
board. The logic probe will be used to detect the pulses and states
generated by this logic. The solderless breadboard and an SN7402
quad NoR gate integrated circuit are required.

Pin Configuration of the Integrated Circuit (Fig. 6-3)

Ve 4Y 48 4A 3v 3B 3A
W L] 2 1 0 ] ]

Fig. 6-3. SN7402 NOR-gate chip )
pin configuration. ,—%‘{

H 2 3 4 s 6 7
v 1A 1B 2y 2A 28 GND

SN7402

Step 1

No circuits should be presently wired on your breadboard. If
any circuits are present, remove them from the solderless bread-
board. In this experiment, the device addressing mode will be
used, so be sure that the bottom switch at the LO address DIP
switch is in the “D” or off position.

Step 2

Place the DIP switches for address bits A7-A4 in the logic zero
position. Can you determine what addresses will cause the SN74154
decoders outputs labeled 0 through 7 to go to a logic zero? You
may wish to examine the schematic in Fig. 5-4.

The decimal addresses 0-7 should generate pulses at the respective
outputs of the decoder.

Step 3

Start the computer. If it is running a program, press the BREAk
key. Use the probe to monitor the eight decoder outputs present at
the ADDRESS socket. Are any of the decoder outputs active (puls-
ing)? Since you are not running a program, is this what you would
expect?
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Most, if not all, of the decoder outputs are active. While the com-
puter is not running a BASIC program that you have entered, it is
executing program steps that monitor the keyboard, etc. Remember
that the decoder decodes only address bits A7-A0, and that it is
always decoding addresses.

Step 4

Wire the circuit shown in Fig. 6-4. Be sure to properly connect
the power pin, pin 14, to +5 volts and the ground pin, pin 7, to
power-supply ground. The outputs of gates A, B, and C are not con-
nected to any circuit at this time.

SN7402 (ALL)

— 4 ! A

N
- 5

o
?w ?m
3
@

1}
13 N
oor——2] ;

Fig. 6-4. Function pulse-generation circuit.

Step 5
Enter the following program into the computer and run it:

10 A = INP(6)
20 GOTO 10

Using the logic probe, monitor the IN pulse (pin 6 or 8), the ad-
dress “6” pin (pin 9 or 11) and the address “7” pin (pin 5). Note
your observation below; noting the state of the LEDs of the logic
probe.

Logic 0 Logic 1 Pulse

4 4 g

Now monitor the logic gate outputs A, B, and C and note any
activity, at those points, as determined with the logic probe, in
the space below:
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Logic 0 Logic 1 Pulse

oy

Is this what you would expect? Can you explain this?

Yes, this is what is expected, since the input (INP) command in the
program specified device “6” as an input device. Thus only output
“B” should be active. No output devices were specified in the pro-
gram,

Step 6

Change the device address in line 10, so that address 15 is selected.
Line 10 should now be 10 A =INP(15). Run the program and test
gate outputs A, B, and C once again. You should observe that none
of these are active. Why?

The address, 15, is not implemented in the circuit. Furthermore, it
is not readily accessible on the breadboard. Of the addresses in the
block 0 through 15, only addresses 0 through 7 may be obtained at
the ADDRESS socket.

Step 7
Change line 10 in the program so that it is now
10 A =INP@®) : B = INP()

Where do you now observe the pulses?

You should find that outputs A and B are active. Output C is not
active, since it is an output port control pulse, and there are no
OUT commands in the program.

Step 8

Add a statement to the program so that output C is activated,
along with outputs A and B. Try it. We added the statement:
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12 0OUT 60

and ran the program. All three outputs were activated. Note that
outputs B and C are active in the logic one state, while output A
is active in the logic zero state. When the probe logic zero LED
and pulse LED are both lit, this indicates that the normal state is
logic zero and a logic one pulse is generated.

Note that even though we only wanted to generate an OUT 006
pulse, a data value still had to be specified in the OUT command.
Of course, there are no latches in the interface that will “capture”
or latch this value.

Step 9

Could you reconfigure the address decoder so that addresses 102
and 103 are generated, rather than addresses 6 and 7? How would
you determine this? Are they valid addresses?

Convert these decimal addresses to their binary equivalents,
01100110 and 01100111, respectively. They are both within the first
eight addresses, when the address “space” is grouped into blocks
of sixteen addresses each (bit A3 =0), so they are accessible.

How would you set address switches A7-A4 to enable the decoder
to decode these addresses? At which ADDRESS outputs would
they be found?

Address bits A6 and A5 would have to be preset to logic ones, while
bits A7 and A4 remain at logic zeros, so that bits A7-A4 represent
0110. The addresses 102 and 103 would be found at ADDRESS
outputs 6 and 7, respectively.

You may test this if you wish, by changing the switch settings,
and changing your program so that addresses 102 and 103 are used.
Once you have tested this, resiore the LO address bits at the DIP
switch to 0000.

Do not remove the circuit from your breadboard at this time.
The program will not be used again, so power may be turned off.

EXPERIMENT NO. 3
USING DEVICE-SELECT PULSES

Purpose

In this experiment, you will observe the use of device-select
pulses to control an external device. Although generally used to
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control the flow of information, the INP and OUT commands may
also be used to generate useful pulses.

Discussion

In this experiment, a simple device will be turned on and off
through the use of device-select pulses. The logic probe will be
used as the “device” and a simple bistable flip-flop will be controlled
by two software-generated pulses.

Pin Configuration of the Integrated Circuit (Fig. 6-5)

2
Vee 4y 48 4a 3y 38 3A Vee CLR 20 2CK 2PR 20 20
“ 13 12 L] L 9 L Lad 13 2 i) w 3 L)

Ll =

o g
> CK
ZL CLRG
CLR
i

f(ﬁ_‘ ﬁ T
ufel Q
PR
| = I

1 z 3 4 5 & 7 1 2 3 4 ] L] 7
¥ 1A 8 2Y 2A 28 GND 1 1D 1CK PR 1@ 10 GND

SN7474
SN74H74
SN74L74
SN74LS74A
SN74874

Fig. 6-5. SN7402 and SN7474 chip pin configurations.

Step 1

The device-select circuit used in Experiment No. 2 is also used
in this experiment. If it has not been wired, wire it as shown in Fig.
6-4.

Step 2

Wire the SN7474 flip-flop as shown in Fig 6-6. The “1” noted
at the “D” input to the SN7474 indicates a logic one (+5 volts) is
applied to this input. Likewise, a “0” would indicate a logic zero, or
ground connection. The Q output from the SN7474 should be the
only connection to the probe. Remember to make the power connec-
tions to the SN7474; pin 14 to +5 volts and pin 7 to ground.

Step 3

In this circuit, the OUT 6 pulse will clock the Q output of the
flip-flop to a logic one, while the IN 7 pulse will clear it to a logic
zero Since a flip-flop is stable in either state, once pulsed by OUT
6, its Q output will remain in the logic one state until power is re-
moved, or until it is cleared to logic zero with an IN 7 pulse.
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Fig. 6-6. Simple flip-flop controller circuit.

Enter the following program into your computer and run it.

10 A = INP(7)

20 OUT 6,0

30 FOR {= 1 TO 300: NEXT !
40 A = INP(7)

50 FOR 1= 1 TO 300: NEXT |
60 GOTO 20

Disregard the logic probe pulse LED. What is the effect on the
logic one and logic zero LEDs?

They flash logic one, logic zero, logic one, etc., in sequence.

Step 4
Alter the time delay routine at line 50 to:
50 FOR =1 TO 1000: NEXT i

When the change has been made, run the program. What is the
effect of the change?

The logic zero LED is on for a longer period. Thus, it is possible to
generate control pulses that are a known period apart, say 1 second.

Step 5

Can you determine the software delay necessary in a FOR . . . :
NEXT statement to generate a l-second period? Modify your
program and test various time delay counts until you closely approxi-
mate 1 second. You might want to try for a 10-second period and
then divide by 10 for a l-second period. What delay did you
come up with?
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We found that a delay statement,
FOR | = 1 TO 375: NEXT I
required about one second to be executed.

Step 6

You can now use the power of BASIC to allow you to tell the
computer how long each LED is to be ON. The following program
may be entered and run. It first asks you for the period of each
LED, in seconds, and then runs the program.

10 A = INP(7)

20 INPUT “RED LED PERIOD ="; Q
30 INPUT “GREEN LED PERIOD ='; R
40 PRINT “TOTAL CYCLE PERIOD 18”; Q + R; “SECONDS"
50 OUT 6,0

60 FORS = 1TO0 Q

70 FOR | = 1 TO 375: NEXT !

80 NEXT S

90 A = INP(7)

100 FOR S = 1 TOR

110 FOR | = 1 TO 375: NEXT |

120 NEXT S

130 GOTO 50

When the program is run, the time delays may be somewhat length-
ened. Why?

The additional software steps (FOR S=1TO Q, FOR S=1TO R
and NEXT S) add time to the overall execution time of the program.
What does this program illustrate?

It illustrates many principles; the use of simple programs and simple
circuits to control external devices. It also illustrates the power of
BASIC to control external devices through relatively simple software
steps. Remember, though, that BASIC is relatively slow.

Even though INP and OUT commands were used, the success of
the flip-flop interface did not depend on the actual transfer of any
information. The flip-flop was controlled, or switched, through the
use of the device-select pulses, alone. This principle is often used
when a control signal or control pulse is required, but no data is
transferred.

The SN7474 flip-flop circuit may be removed. The remaining cir-
cuitry should be retained. The program will not be used again
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EXPERIMENT NO. 4
CONSTRUCTING AN INPUT PORT
Purpose

The purpose of this experiment is to comstruct an input port
using three-state buffer circuits.

Discussion

The simple 8-bit input port that you will construct as a part of
this experiment will provide a means of entering data into the com-
puter. Several additional experiments will use this input port. The
device-select circuit used previously will be used in this experiment.
The SN74365 or DN8095 three-state buffer will be used.

Pin Configuration of the Integrated Circuit

Step 1

The gating circuitry developed in Experiment No. 2 will be used
in this experiment. If this circuit is not present on your solderless
breadboard, refer to Fig. 6-4 and wire it. Your computer and bread-
board power should be off.

Step 2

Wire the 8-bit input port circuit shown in Fig. 6-8. Two SN74365
(DMB8095) three-state integrated circuits are required.

Step 3

Note that in this circuit only one of the two enable inputs on the
SN74365 chip is used. The other enable input has been permanently
connected to ground (logic zero). Thus, the internal Nor gate of
the SN74365 buffer has not been utilized.

6A &Y 5A 5Y 4 AY
“I 131 Ilzl “i I‘lﬂl !l
Fig. 6-7. SN74365, or DM8095 three-state
buffer chip pin configurations.
t 2 3 L ] 6 1 8
4] 1A i1 24 2y 3a ¥ GND

Vee Gz
16 15
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Connect the DEVICE SELECT line to point “A” {pin 1 on the
SN7402), as shown in Fig. 6-4. This is the signal for IN 7.

The notation LOGIC SWITCHES in Fig. 6-8 is used to represent
switches that are used to generate logic one or logic zero states.
Simple jumper wires to ground and +5 volts on a solderless bread-
board may be used. There is additional information in the Appendix
about this type of logical function.

+5 GND
18 Te SN74365
2 3
LoGiC g . 5 - b7
c 8 7
SWITCHES D 14 3
2 i DATA BUS
{0 9
. —
Ry B — Do
2152
45 GND
LOGIC g Ils Ia
c 2 3
SWITCHES 4 5
SN74365
DEVICE SELECT L5
02463

Fig. 6-8. Simple 8-bit input port.

Step 4

Once the input port has been constructed and the device select
pulse provided from the SN7402 nor gate, enter and run the follow-
ing program:

10 PRINT INP(7)
20 GOTO 10

What is displayed on the screen? Does changing the logic switch
settings have any effect on the data value displayed? Is this what
you expect?
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The value 255 is displayed, corresponding to 11111111,. Changing
the logic switches had no effect on the data values that were dis-
played. At first, you might have expected the data values to be
input from the interface as wired, but this was not observed. Why?

The interface circuit was not provided with an input request (INP
REQ) signal that is used to place the two bus buffers in the input
mode.

Step 5

Make a connection between the SN7402 “A” or IN 7, output (pin
1) and the “W” INP REQ pin at the CONTROL SIGNALS socket.
This signal will place the 8216 bus buffers in the input mode.

Now that this connection has been made, restart your program
and change the switch settings. Are the switch settings reflected in
the data? You may wish to test each switch separately.

The switch values are now transferred to the computer and dis-
played as the decimal equivalents of the binary-switch settings

If you would rather see the values in the binary form, the follow-
ing program may be run. It will display the binary values contin-
uously.

10 A = 128

20 B = INP@)

30 FORQ = 1TO 8
40 IF B—A<O THEN GOTO 100
50 PRINT “1;

60 B = B—A

65 A = Al2

70 NEXT Q

75 PRINT

80 GOTO 10

100 PRINT“0";

110 GOTO 65

If you wish to change a switch setting, and then obtain its binary
equivalent, change line 10 to

10 INPUT; R : CLS: A = 128

Now, whenever you wish to display the binary value of the logic
switch setting at the input port, simply depress the ENTER key on
the TRS-80 keyboard Of course, the switch settings are already in

98



binary format, so the correlation between the displayed binary value
and the switch settings should be easy.

Do not remove the input-port circuitry from your breadboard,
and do not destroy the program by turning off the power at this
time.

EXPERIMENT NO. 5
MULTIBYTE INPUT PORTS

Purpose

The purpose of this experiment is to show you how multiple bytes
may be input and processed using the BASIC program.

Discussion

Not all input devices transfer only one 8-bit byte to the TRS-80.
Some I/O devices may require 12 or more bits. In this experiment,
you will simulate two input ports through the use of the input port
constructed in Experiment No. 4. Refer to Experiment No. 4 for
construction details of the input port. We recommend that you work
through Experiment No. 4 before proceeding with this experiment,
if you have not already performed it.

Step 1

If you do not have an input port connected to your TRS-80 com-
puter, we refer you to Experiment No. 4. The circuit developed in
that experiment must be used.

Step 2

In handling multibyte data, the TRS-80 must be programmed so
that the various bytes are ordered from most-significant to least-
significant byte. In this experiment, we shall use byte “M” as the
most-significant byte (MSBY) and “L” as the least-significant byte
(LSBY). Since the TRS-80 will input 8-bit values between zero
and 255, can you suggest an equation that could be used to obtain
the decimal value of a 16-bit word?

Since the MSBY is “offset” by the value of 256, we used the follow-
ing formula:

V = (M*256) + L
where V is the final decimal value of the 16-bit data word.
Step 3

To test this equation, enter the following program into the com-
puter:
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200 INPUT “SET MSBY”; R

210 M = INP(7)

220 INPUT “SET LSBY"; R

230 L = INP()

240 V = (M*256) + L

250 PRINT V

260 GOTO 200
Now run the program (RUN 200). When the computer asks, “SET
MSBY?” set the eight bits for the MSBY of the “16-bit value” on
the eight logic switches and depress enterR. When the computer
asks, “SET LSBY?” set the eight bits for the LSBY of the “16-bit
value” on the switch register and again depress ENTER. The value
of the 16-bit data word, in decimal, should now be displayed on the
screen. Some typical 16-bit binary values that you may wish to use
are found in the following list. Fill in the decimal values for each, as
generated by the TRS-80. You should be able to check these quickly.

MSBY 158Y VALUE
11001010 11000001
11000111 00011101
00000001 10000001
You should observe the values 51905, 50973 and 385.

Step 4

The following program is a combination of the binary output
program, and the two-byte decimal calculation program. It will
allow you to input two 8-bit bytes, display the decimal value, and
the binary value.

*10 A = 32768
*20 FOR S = 1 TO 2
30 FORQ = 1T0O 8
40 IF B—A<0 THEN GOTO 100
50 PRINT “1;
60 B = B—A
65 A = Al2
70 NEXT Q
*75 PRINT “ “; :NEXT §
*80 PRINT: GOTO 200
100 PRINT “0";
110 GOTO 65
200 INPUT “SET MSBY”; R
210 M = INP@)
220 INPUT “SET LSBY”: R
230 L = INP@®)
240 V = (M*256) + L
*250 CLS: PRINT V
*260 B = V: GOTO 10
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If you already have both programs (Experiment No. 4, Step 5 and
Experiment No. 5, Step 3) in the computer, you only need to enter
new lines of instructions at the lines noted with an asterisk (*).

Step 5

Run the new program shown in Step 4 (RUN 200), setting differ-
ent values on the switches for the MSBY and LSBY. The correlation
between your switch settings and the binary outputs should be ob-
vious. You should be able to calculate decimal values from the
binary settings to check the values computed by the TRS-80.

Now that you are able to transfer 16-bit data to the TRS-80, you
should be able to see that the computer could have processed these
values in other ways, using them in other calculations. Although
only a single-byte input port was used, two input ports could have
been used to transfer a 16-bit value to the TRS-80.

The interface will be used in the next experiment, so do not dis-
mantle it. The power may be turned off.

EXPERIMENT NO. 6
INPUT-PORT APPLICATIONS

Purpose

The purpose of this experiment is to show you how the input port
may be used for control applications.

Discussion

In this experiment, the 8-bit input port will be used to trans-
fer information to the computer, but the computer will process the
eight bits of data in a nonnumeric fashion. In this way, the state
of eight external devices will be monitored.

Step 1

If you do not have an input port connected to your TRS-80 com-
puter, we refer you to Experiment No. 4. The input port described
in that experiment will be used in the following steps.

Step 2

In many cases, the computer will be used to process nonnumeric
data that provides information about the status or state of external
devices. In such a way, it is easy to determine when devices are on
or off, valves open or closed, elevators up or down, etc.

Enter the following program into your computer and run it. This
program demonstrates how a value may be used to cause the com-
puter to take a preprogrammed course of action:
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10 INPUT Z: CiS

20 A = INP(7)

30 IF A>127 THEN GOTO 70
40 PRINT “INPUT < = 127"
50 GOTO 10

70 PRINT “INPUT > 127"

80 GOTO 10

Step 3

You must press the ENTER key to cause the computer to execute the
input and comparison steps. Set the switches at the input port to a
value of less than 127 (00000000 to 01111110) and press ENTER.
What happens? Try this with a value of 127 (01111111 to 11111111)
or greater. What happens? What happens to the display when the
value is equal to 127 (01111111)?

You should observe the correct message, indicating the value of the
bits set at the input port. This illustrates how the computer may
make a decision based on the overall value, or individual bit in
some cases, that we are interested in. The binary conversion pro-
gram in Experiment No. 4 allowed you to observe the state of the
bits, as either logic one or logic zero, decisions being made on the
value of each bit position.

Step 4

In this step, the basic binary-display routine will be used, but
rather than the display of ones and zeros, the computer will display
“ON,” for a logic one and “OFF,” for a logic zero state. You should
be able to modify the program from Experiment No. 4 to do this,
just by changing the PRINT statements, but the following listing
is provided for you. Note that the program from Experiment No. 4
has been “moved” or relocated to higher line numbers. Before you
load this program, remember to delete the old program. The NEW
command may be used to do this.

110 INPUT Z: CLS: A = 128

120 B = INP()

130 FORQ = 1 TO 8

140 IF B—A<O THEN GOTO 200

150 PRINT “ON “

160 B = B—A

170 A = A/2

180 NEXT Q

190 GOTO 110

200 PRINT “OFF "

210 GOTO 170

Nate: There are four spaces after ON, and three after OFF. This generates equal spacing.
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Run the program. Remember that the switches should be set, and
then the ENTER key pressed, to perform the “conversion” and display.

You should now observe that the display shows the logic zero
state to be OFF, and the logic one state to be ON. The PRINT
statement could be changed to generate UP and DOWN, OPEN
and CLOSED, or other “binary” messages.

Step 5

While the program in Step 4 has some uses, the display of the
ON and OFF messages in column format may be more_useful. Make
the following changes and additions (*) to your program and run
it. Leave the spaces after ON and OFF in lines 150 and 200, re-
spectively.

*100 R = 20

110 INPUT Z: CLS: A = 128
120 B = INP(7)

130 FORQ = 1 TO 8

140 IF B—A<0 THEN GOTO 200
*150 PRINT@ R, “ON

160 B = B—A

*170 A = Af2 : R = R +64
180 NEXT Q

*190 GOTO 100

*200 PRINT@ R, “OFF

210 GOTO 170

You should now observe that the display of OFF and ON states
is vertical since the PRINT statements have been replaced by
PRINT@ statements.

Thus, the ON and OFF states can be displayed in a number of
ways. You may wish to try several settings of switches to confirm
that the states: are being displayed correctly.

Step 6

The program may be run continuously, simply by removing the
INPUT Z: portion of statement 110. Remove this so that the line
is now 110 CLS: A = 128 and re-run the program. Does this provide
a reasonable display? Why?

Our display flickered, since during each pass through the program,
the CLS command cleared the screen, and the PRINT statements
had to replace ON and OFF states that were displayed. This was
not acceptable.
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Step 7

Could you suggest a means of correcting the display flicker? Note
the use of the PRINT@ statements, rather than PRINT.

By removing the CLS command, a flicker-free display is generated,
the PRINT@ statement leaves the screen alone, but it prints over
the words already there; an “ON” printed over an “ON” is still
“ON.” When ON is printed over OFF, the result will be ONF, un-
less you left a space in the quoted statement in line 150, “ON.”
Remember to clear the screen with a CLS command or the cLEar
key before you run the modified program, or the ON and OFF
display will be superimposed on whatever is left on the screen.

Step 8

The PRINT @ statements could also be used to generate titles for
the eight lines. Several follow, and you may add to or change the
ones provided:

05 CLS

10 PRINT@ 0, “ACID RUMP":

20 PRINT@ 64, “BASE PUMP":

30 PRINT@ 128. “HEATER";

40 PRINT@ 192, “MIXER";

50 PRINT@ 256, “FLUSH CYCLE';

60 PRINT@ 320, “DISHWASHER";

70 PRINT@ 384, “VACUUM";

80 PRINT@ 448, “DRYER";

We suggest that you add these lines to your program if you plan
to go ahead with Experiment No. 7. You should test your program
once these additions have been made.

The hardware and the software used in this experiment will be
used in Experiment No. 7. Do not turn off the power to your inter-
face, or to the TRS-80 computer.

EXPERIMENT NO. 7
INPUT-PORT APPLICATIONS (I

Purpose

The purpose of this experiment is to show you how logical opera-
tions may be performed on data.
Discussion

This experiment will use AND operations. These operations will be
performed on the ON/OFF information to detect various states or
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conditions. These conditions may be used to trigger subsequent
actions by the computer.

Step 1

The program used in this experiment is the same as the one used
in Experiment No. 6. If it has not been completely entered into the
computer, you must enter it and test it. If it has been entered and
tested in the previous experiment, you may wish to check it against
the listing:

05
10
20
30
40
50
60
70
80
100
110
120
130
140
150
160
170
180
190
200
210

CtS

PRINT@ 0, “ACID PUMP";
PRINT@ 64, “BASE PUMP":
PRINT@ 128, “HEATER";
PRINT@ 192, “MIXER";
PRINT@ 256, “FLUSH CYCLE";
PRINT@ 320, “DISHWASHER";
PRINT@ 384, “VACUUM'’;
PRINT@ 448, “DRYER";

R = 20

A = 128

B = INP(7)

FORQ = 1 TO 8

iIF B—A<0 THEN GOTO 200
PRINT@ R, "ON "
B = B—A

A= A/2:R =R + 64
NEXT Q

GOTO 100

PRINT@ R, "OFF “
GOTO 170

When successfully loaded and run, the program should generate
a-display such as that shown in Table 6-1. The various ON and OFF
conditions shown by your computer may be different, depending

on the states of the switches in your interface.

Table 6-1. Control Program Output

ACID PUMP
BASE PUMP
HEATER
MIXER
FLUSH CYCLE
DISHWASHER
VACUUM
DRYER

ON
OFF
ON
ON
ON
ON
OFF
OFF

Step 2

Make a series of notes in the following space about which data
bits, D7, D8, etc., correspond to the individual device labels. You

105



may do this by examining your interface or through examination
of your program.

You should find that the “ACID PUMP” is bit D7 (MSB) and that
the “DRYER” is bit DO (LSB).

Step 3

We now want to modify the program so that it will detect when-
ever any of the appliances, DISHWASHER, DRYER, or VACUUM
are on, and whenever the ACID PUMP and BASE PUMP are both
on. The logical operations will be used, although other solutions
might be used, as well.

Can you suggest a method of making these determinations? We
suggest that you refer to the “Logical Operators” section of Chapter
8 in your Level II BASIC Reference Manual for a review of the
AND and or operations if you are not familiar with them.

The conditions that we wish to detect are shown in Table 6-2.

Table 6-2. Control Conditions to be Detected

b7 D6 D5 D4 D3 D2 DYV Do
1 1 X X X X X X ACID AND BASE PUMPS
BOTH ON

X X X X X 0 0 1

X X X X X 0 1 0

X X X X X 0 1 1

X X X X X 1 0 0 ANY APPLIANCE .ON

X X X X X 1 0 1

X X X X X 1 1 0

X X X X X 1 1 1

X = Don’t care, logic one or zero.

Step 4

The logical aNp operation can be used to mask out the unwanted
bits, D5-D0 for the pump tests and bits D7-D3 for the appliance
tests. Thus, two “masks” must be established, one for the pumps,
and one for the appliances. What would these masks be, in binary
and in decimal?

The mask for the pumps would be 11000000,, or 192, while the mask
for the appliances would be 00000111, or 7. When these masks are

anped with the input value from the switches, the desired bits will
be “filtered” through the mask.
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Step 5

Now that the masks have been established, suggest some soft-
ware steps that could be used to determine the state of the “filtered”
bits. You should think in terms of both a binary and an equivalent
decimal representation of the results of the anp operation.

We have assumed that a variable, C, has also been set to the value
from the input port. If you use the variable, B, in program steps
after the ON/OFF output section of the program, you will find that
it is always zero.

We used either

IF (C AND 7)>0 THEN . . .
or

IF (C AND 7)=0 THEN . . .
to detect the appliances and we used either:

IF {C AND 192)=192 THEN . . .
or
IF (C AND 192)<>192 THEN . . .

to detect both pumps. In one case, the THEN . . . is executed, while
in the other, the next sequential line number is executed, when the
condition has been met.

Step 6

In order to test your program steps, add a series of steps to your
program so that DANGER is printed when both pumps are on
and APPLIANCES when any of the appliances are on. Write your
program steps in the following space and review them before you
attempt to use them.
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Your program steps will probably look like these:

120 B = INP7): C = B
150 GOTO 300

300 IF (C AND 7)=0 THEN 350

310 PRINT@ 576, “APPLIANCES”;

320 IF (C AND 192)<C>>192 THEN 400
330 PRINT@ 640, “DANGER";

340 GOTO 100

350 PRINT@ 576,

360 GOTO 320

400 PRINT@ 640, “ "

410 GOTO 100

Test your program.

You may have forgotten to add steps to your program that would
clear or remove the DANGER and APPLIANCES display, if the
conditions were not met. This is easily forgotten. The statements at
lines 350 and 400 contain enough spaces to print over APPLIANCES
and DANGER, respectively, so that the display is cleared if the
conditions are not met.

The program could have been much more complex, containing
steps to flash on the screen in case of a danger condition, etc. This
experiment should have shown you how flexible the TRS-80 is in
tackling control tasks. The software can handle both mathematical
and logical operations easily.

You may turn off the computer, but do not remove the input-port
interface. It will be used in Experiment No. 9.

EXPERIMENT NO. 8
CONSTRUCTING AN OUTPUT PORT

Purpose

The purpose of the experiment is to have you construct an output
port and ‘nvestigate its use.

Discussion

In this experiment, a simple 8-bit latch circuit will be used to
construct an output port. The output port will be used in this ex-
periment, and in some of the following experiments, in which it
will be necessary to transfer data to external devices. Two SN7475
quad latch integrated circuits will be used.
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Pin Configuration of the Integrated Circuits (Fig. 6-9)

ENABLE

10 20 28 12 GND 3a 3Q 4Q
16 15 L] 3 12 " 10 9
FUNCTION TABLE
I i i {Each Latch)
e ol | o o Hil s ok o INPUTS | OUTPUTS
D G Q a
G G L H L H

H H H L
X L Qg Gy

H = high level, L = low Jevel, X = irrelevant
Qg = the level of Q before the high-ta-fow transition of G

H
8
L5

1 2 3 4 H & 7 8

G 1 2D ENABLE vgc 3D 4D a0
34

Fig. 6-9. SN7475 4-bit latch chip pin configuration.

Step 1

The gating circuit used in Experiment No. 2 will be used in this
experiment. If this circuit is not available on your solderless bread-
board, we suggest that you perform Experiment No. 2 and then this
experiment. The circuit may also be wired and used as is. Refer to
Fig. 6-4 for circuit details.

Step 2

Wire the circuit shown in Fig. 6-10. Two SN7475 latch integrated
circuits are required, along with eight individual lamp monitors.
Do not connect the DEV SEL input at present.

Step 3

Refer to the circuit shown in Fig. 6-4. Try to determine which
of the SN7402 outputs A, B, or C would be used to control the latch
enable inputs. Which would you use? Why?

The A output, IN 7, has already been used and IN 6 would not
work since it is decoded for input ports. The OUT 6 output C would
be the choice to use. It provides a positive pulse required by the
SN7475 latch circuits.

Make a connection between pin 13 on the SN7402 and pin 4 on
one of the SN7475 chips. All of the SN7475 enable inputs, G, should
be connected in parallel, as shown in Fig. 6-10.

Step 4

To test the output port, enter the following program into the
computer:
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2 16
D7 D A
3 e i5 B LAMP
[ i0 c
DATA 7 s 5 MONITORS
BUS
| =
DO 6 SN7475
+5 GND
L1
2 i6
1° Qrs ; LAMP
-1 10 c
7 s 5 MONITORS
-2 ¥
DEV. SEL: Bls SN7475
Fig. 6-10. Simple 8-bit output port schemati
10 A=0
20 OUT 6,A
30 END

Preset the variable A to zero, as shown, and run the program. What
happens to the lamp monitors?

They should all be unlit. Now set A to 255 and again run the pro-
gram. You should observe that all of the LEDs at the lamp monitors
are lit. If these conditions have not been observed, check your inter-
face wiring for errors.

Step 5

The program may be changed so that values may be input from
the keyboard. This new program is

10 INPUT A
20 OUT 6,A
30 GO0 10

You may try many different values, but we suggest that you try
powers of two first, 0, 1, 2, 4, 8, etc., since these will test the in-
dividual LEDs.
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Since an 8-bit output port can only display values between zero
and 255, what happens when you try to output a value that is out-
side this range? Would you expect to see a portion of the value?
Try using 256 in the program. What do you observe?

The computer displays
2FC ERROR IN 20

which is an Illegal Function Call error message. Thus, the computer
will “catch” those attempted transfers in which numbers that are
outside of the permitted range are used. Negative numbers will also
be “caught.”

Step 6

Restart the program and enter a value of 90. You should observe
a display of 01011010 on the lamp monitors. Now try and enter a
value of — 10. When the error is detected, does the display change?

No. Error conditions are detected prior to the attempted use of the
function.

Enter the fractional value 6.001, What is the result displayed
on the LEDs?

We observed that the integer portion of the number was displayed.
You will observe this for all fractional values. You may wish to ex-
periment with some other values, as well.

Step 7

Can you suggest a short program that could be used to increment
a count from zero to 255, and to display it at the output port? Note
your program in the following space and test it. What was observed?

We used the following program:



10 FOR A = 0 TO 255

20 OUT 6.A

30 NEXT A

40 GOTO 10
Remember that you cannot go above the value of 255 for output to
port 6. You may wish to introduce a time delay in your program,
so that the binary counting may be observed at the least-significant
bits; for example,

25 FOR | = 1 TO 100: NEXT |

The output-port circuit will be used in the following experiment,
but the power may be shut off.

EXPERIMENT NO. 9
OUTPUT-PORT AND INPUT-PORT INTERACTIONS

Purpose

The purpose of this experiment is to show how input-port and
output-port commands may be used together in a program.

Discussion

In many cases, if input ports and output ports will be used in in-
terfaces. They will be controlled by commands within the same pro-
gram. In this experiment, you will observe how these I/O ports
may be used.

Step 1

The simple input port (Experiment No. 7) and output port (Ex-
periment No. 8) used previously will also be used in this experiment.
We refer you to Experiment Nos. 2, 3, and 8 for the appropriate
circuit details.

Step 2

Enter the following program into your computer and run it. It is
used to test the 1/O ports.

10 A = INP@)

20 OUT 6.A

30 GOTO 10
As you actuate the logic switches connected to the input port, you
should observe that the corresponding LEDs go on, or off, consistent
with the switch action. If this is not the case, carefully check your
interface.

Step 3
In this step, two values will be entered from the keyboard in
succession and then displayed on the LEDs. At this point, you
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should be able to write a short program to do this. Make an attempt
in the following space.

We used the following program, in which a most-significant byte
and a least-significant byte were simulated:

10 INPUT "MSBY": Z : M INP(7)
20 INPUT “LSBY"; Z : L INP(7)
30 OUT &M

40 INPUT Z

50 OUT 6,L

60 GOTO 10

Step 4

Run your program. You should be able to enter two values into
the computer, and then have them displayed on “request” at the
output port. You may use this program, if you care to do so. Do
you observe the desired action? You will have to actuate the eEnTER
key to have the LSBY displayed.

Step 5

While this short program may be of some use, how could values
larger than 255 be displayed at two output ports? How would the
values be displayed?

The numbers, between zero and 65,535, for a 16-bit display, would
have to be separated into an MSBY and an LSBY. Can you suggest
how this might be done?

The number could be divided by 256 to get the MSBY as the in-
teger portion of the answer:

10923/256 = 42.668
Thus, 42, when converted to binary, would be the MSBY and the
LSBY would be
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10923 — (42*256) = 171
Thus, the 16-bit representation would be
00101010 10101011

A BASIC program would have to be written to perform these
functions. Could you write one?

Step 6
We developed the following program to make the “conversion:”

10 INPUT “VALUE"; V
20 M = V/256

30 L = V~—FIX(M*256
40 OUT 6, M

50 INPUT Z

60 OUT 6, L

70 GOTO 10

The MSBY will be displayed immediately after the value, V, has
been entered. The ENTER key must be depressed to display the LSBY.
Can values greater than 65,535 be entered and converted? Why?

They cannot. Values greater than 65,535, when divided by 256, are
greater than 255, the maximum value that may be used with an
output command.

What happens to the fractional portion of the result, M, when
it is output?

You will probably recall that it is ignored.

EXPERIMENT NO. 10
DATA LOGGING AND DISPLAY

Purpose

The purpose of this experiment is to show you how the input
port and output port may be used to acquire information.
Discussion

In this experiment, a list of 10 values will be acquired from the
input port, and then displayed on the output port LEDs. More
flexible display ideas will also be developed and larger lists acquired.
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Step 1

The simple input port and output port used previously will be
used in this experiment. We refer you to Experiment Nos. 2, 3, and
8 for the appropriate circuit details.

Step 2

In this experiment, you will acquire and display a set of values
that are acquired from the input port. While these may be acquired
with software steps such as:

50 INPUT Z
60 Q@ = INP(7)
70 INPUT Z

80 R = INP(?)
etc.

this takes a great number of steps to acquire a small amount of
information. Can you suggest an alternative?

A list of values can be acquired through the use of a loop. Can you
write a short program that would acquire and display 10 values?

We used the following program, which should look somewhat like
yours. Note the use of an array.

10 DIM AQ10)

20 PRINT "START”

30 FOR I = 1 7O 10
40 INPUT Z

50 A(l) = INP@)

60 NEXT 1|

70  PRINT “DISPLAY"
80 FOR I = 1 TO 10
90 INPUT Z

100 OUT 6,A(

110 NEXT !

120 GOTO 20

In this program, you will have to press ENTER to acquire each value,
and when “DISPLAY” is finally displayed, you will have to press
ENTER to output each 8-bit value. The actuation of the EnNTER key
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is the synchronizing function between the I/O device and the com-
puter.

Step 3

Run either your program, or our program, to acquire 10 values
and to display them. Are the results what you expected?

Yes, the values are stored and then displayed. Eleven values could
be acquired, with a simple software modification, since arrays have
a zeroeth number.

Step 4

A display of the values on the monitor might be more useful, so
devise software steps that could be substituted for the “DISPLAY”
steps. Develop your program in the space provided.

We made the following changes in our program:

90 PRINT A(l)

110 NEXT |

120 GOTO 20
in which step 100 was removed from the program.

Make a similar change in your program. Run your program. Are
the displayed results what you expected?

They should be. All 10 values should be displayed as their decimal
equivalents in a column.
Step 5

The graphic-display mode could also be used to display the
values that have been acquired. We suggest that you attempt to use
the SET command to generate a bar graph for the 10 values. Re-
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member the limits of X and Y for the set command. Note your dis-
play program steps in the following space.

We used the following steps to generate such. a display:

70 CLS
80 FOR | = 1T0 10

85 M = 47

90 N = 48—(A()*47/256)
100 SET (LM)

110 IF M<N THEN 130
120 M = M—1

125 GOTO 100

130 NEXT |

140 END

These steps were added to the program that was previously devel-
oped. Run either our program, or the one that you have developed.
What happens to the display when the program has ended?

The TRS-80 displays
READY
>
If this is objectionable, you may replace statement 140 with

140 GOTO 140

You will have to press BREAX to restart the BASIC interpreter pro-
gram.

Step 6

Additional changes could be made to the program, so that a time
delay was used rather than the INPUT Z statement. This would
mean that points would be acquired at regular intervals.

The SN7402 NOR gate circuit shown in Fig. 6-4 should still be
wired to your computer. If it is, connect the logic probe input to
point “B” at pin 10 on the SN7402. This output, generated by an
INP(6) command will be used as a visual signal for the end of a
time delay. The logic probe should be connected solely to the
SN7402.
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How would you modify the program to use a time delay in place
of the INPUT Z command? How would you modify the program so
that 25 values are obtained, rather than 107 Show your program
steps in the following space.

We modified the following steps:

10 DIM A(25)

30 FOR I = 1 TO 25

40 FOR Q = 1 TO 750: NEXT Q: Q = INP(6)
80 FOR I = 1 70 25

Note that the commands at line 40 generate a time delay, and also
pulse the logic probe, indicating that the next value is to be
acquired.

You have probably noticed that not all of the changes in your
switch settings were shown on the bar graph. Do you know why?

The values of zero to 255 are represented in 47 steps. Each step,
therefore, represents a larger difference in the displayed values
than can be affected by a step from zero to one, for example. The
display has less resolution than the 8-bit input port. The one-part-
in-256 value from the input port is now displayed as one part in
47, Therefore, some resolution is lost in our bar graph.

EXPERIMENT NO. 11
SIMPLE DIGITAL-TO-ANALOG CONVERTER

Purpose

The purpose of this experiment is to show you how a simple 8-bit
digital-to-analog converter (D/A or DAC) can be interfaced to
the TRS-80.
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Discussion

A simple D/A converter, the Signetics NE5018 8-bit converter,
will be interfaced to the TRS-80. Although we have not discussed
D/A converters, they have been covered in Microcomputer-Analog
Converter Software and Hardware Interfacing (Howard W. Sams
& Co., Inc., Indianapolis, IN 46206). We refer you to this book for
additional information about D/A converters. Other topics such as
sample and holds, analog multiplexers and instrumentation ampli-
fiers are also covered in this book.

Pin Configuration of the integrated Circuit (Fig. 6-11)

piGiTAL GND- [T | 22] ANALOG GND
o8O (Lse) [Z ] 21] AMP. COMP.
os1 [37] 20] sum NODE
082 [4| 9] vee +
083 3 | 18] vour
Fig. 6-11. Signetics NE5018 8-bit D/A
9 gnetics. ! / a4 [5 | 77] vee-
converter chip pin configuration.
oss [7 ] 76] pac comp
o8 [ [75] sipoLaR oFFsET R
os7 (Msey [9]- 74] Vagr IN
i€ [i0] 73] VRer OUT
wne [17] 1] vaer ADJ.

Step 1

Two additional power supplies are required in this experiment,
+12 and —12 volts. They will be used to power the D/A converter.
Be sure that these power supplies are available before proceeding.

Wire the circuit shown in Fig. 6-12. The device-select pulse is
obtained from the SN7402 circuit that was wired in Experiment No.
2, Fig. 6-4. The device select is available from point “C,” but it
must be inverted, using an SN7404 or equivalent inverter function.
This is shown in Fig. 6-13.

Step 2

The NE5018 interface will convert values between 0 and 255 to
voltages of between zero and +10 volts. Since the 0- to 10-volt
range has been divided into 256 values, or 255 steps, the voltage
increment available is 39 millivolts per step.

Could you write a program that would increment the count pre-
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Fig. 6-12. Schematic for simple D/ A converter interface, using NE5018 D/A
converter chip.

+5

14 SN7404 Fig. 6-13. Simple device-select
oUT 6 ! 2 BUTE - pulse-inverter circuit.
7

sented to the D/A converter to generate a positive ramp, or a slowly
increasing voltage? Develop your program steps in the space below:

We used the following program:

10 FOR ! = 0 TO 255
20 OUT 6,1

30 NEXT |

40 GOTO 10

A simple voltmeter or volt-chm-milliammeter (vom) may be used
to monitor the voltages. Connect the meter between ground and the
NES5018 VDAC output. Try your program. Does the voltage increase
slowly? What happens when it reaches 10 volts?
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The voltage ramps slowly up to 10 volts. When it reaches this value,
it quickly changes to ground, or zero volts. You should also be able
to develop a program that produces a negative ramp and possibly
even a triangular waveform.

Step 3

Develop a program that will generate a negative ramp, and also a
program that will generate a triangular output.

We used the following programs:

10 FOR | = 255 TO 0 STEP-1
20 OUT 6,1

30 NEXT 1

40 GOTO 10

10 FOR{ = 0 TO 255

20 OUT 6.1

30 NEXT I

40 FOR I = 254 TO 1 STEP-1
50 OUT 6.1

60 NEXT 1

70 GOTO 10

You may wish to try either of these programs, or the ones you
have developed. Why is the “range” in the loop command at state-
ment 40 not 0 TO 255?

If the “range” was 0 TO 255, the values of zero and 255 would be
output twice.

Step 4

Since you know that the voltage of zero to 10 volts corresponds to
steps from zero to 255, can you develop a program that would allow
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you to enter an actual voltage setting from the keyboard and that
would generate this voltage on the meter? Use the following space
for your program.

We developed the following program.

10 INPUT “VOLTAGE"; V
20 | = V*255

30 OUT 6,1

40 GOTO 10

Step 5.

Try your program. Does it generate a voltage from the D/A
converter that closely matches the value that you entered into the
TRS-80? Our program seemed to work well.

Step 6

At this point, you should be able to write a program that allows
you to enter a lower- and an upper-limit for voltages in a triangular
waveform. Develop your program in the space provided.

We used the following program to do this.

10 INPUT “Hi V; H

20 INPUT “LO V"; L

30 H = H*25.5

40 L = L*255

50 FOR! = L TO H

60 OUT 6,

70 NEXT |

80 HA = H—1:1A = L+1
90 FOR | = HA TO LA STEP-1
100 OUT 6,1

110 NEXT |

120 GOTO 50
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Run your program and test it. You should be able to make the
meter needle “swing” between the two voltages that you have preset.
This experiment should clearly illustrate the use of D/A con-
verters, and the power of BASIC in controlling them.
You may disassemble your interface and turn off your computer.

EXPERIMENT NO. 12
DEVICE ADDRESS-DECODER CIRCUITS

Purpose

The purpose of this experiment is to have you learn about the
construction of device address-decoder circuits.

Discussion

In many cases, you may want to develop your own interface cir-
cuits that do not use the breadboard. The device address-decoders
used to identify individual I/O devices must be constructed using
standard SN7400-series integrated circuits. In this experiment, you
will construct two decoder circuits. Since address bits A3-A0 are
the only ones readily available for experimental use, the decoders
that you will construct will be nonabsolutely decoded.

Pin Configuration of the Integrated Circuits (Fig. 6-14)

SELECT DAYTA QUTPUTS

Vee EN?(?LE 2A 28 2Y0 rASRALS 2Y3
[15][u]]n]]

l 4115
G A 1B, I¥0 V1 I Vi, GNO
ENABLE Moy — o
SELECT DATA OUTPUTS
DATA QUTPUTS
/.

vee Yo Y1 Y2 Y3 Y4 Ys Y&

B uijneij:n

[T1]]

Y Y2 Y3 Y4

A Y6
( ] < G2A  G28  G1 Y7

11112
A~ B C ,\GIA Gim Gi, V7 GND
\—V—'—/\——'\/———/OUTFUT

SELECT ENABLE

Fig. 6-14. SN7415138 and SN74LS139 decoder chip pin configurations.
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Fig. 6-15. SN74L5138 decoder schematic and function table.

The schematic diagrams and function tables for both of these
decoders are provided in Figs. 6-15 and 6-16.

Step 1

Wire the circuit shown in Fig. 6-17. The address outputs are
present on the 8-pin socket that also makes the connection with the
logic probe. What addresses would be decoded in this circuit?

"1.5139, 'S139
2 ive 'L.$139, 'S139
m {EACH DECODER/DEMULTIPLEXER}
ENABLE G
nasLe 16 > ] Elivs FUNCTION TABLE
r 1 1v2
12) INPUTS
seeeer | Ao > o A ouTPUTS
0TS § .3 s NABLE | SELECT
D> OATA G B A|Y0YlvY2Y3
Dk ouTLTS H X X|H H H H
L Lt LtlL HHH
{15)
enasie 26 2> z Dn‘—”—'zv‘ L L H|H L HH
L H L|H HLH

22114 D HiH H H L

SELECT D > o)

INPUTS 28(!3) 2Y3 H = high level, L = fow level, X = irreievant
[> © J

Fig. 6-16. SN74L5139 decoder schematic and function table.

Actually, none. The gating inputs must be properly connected to
logic one or logic zero for the decoder to operate properly. How
would you connect these inputs to cause the decoder to operate
properly?
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You should connect G1 to logic one and G2A and G2B to ground.
Step 2

Connect the decoder input Gl to logic one (+5V) and inputs
G2A and G2B to ground. Connect power to your system, and start
the computer. You should now be able to observe the presence of
logic levels on the eight outputs, Y0-Y7. Why are these changing
levels present? What addresses is the decoder selecting?

The pulse, or logic-level activity, is observed as a normal part
of the computer operation. The decoder is decoding addresses
XXXXXXXX XXXXX000 through XXXXXXXX XXXXX111.

Step 3

A NOR gate could be used to combine the function pulses IN or
OUT with the various decoded outputs for device selection. To
select all of the eight output device select signals, eight Nor gates,
or two SN7402 (or equivalent) integrated circuits would be re-
quired. Can you suggest a means of gating the device address and
the function pulse, OUT, right in the SN74LS138 chip?

Either of the G2 inputs could be connected to the OUT signal, in-
stead of being grounded. There are two zero input gating signals.
Could one be used for OUT and the other for TN?

No, since they are never logic zero at the same time, a requirement
for the operation of the SN741.5138.
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Step 4

Remove the connection between the G2A pin (pin 4) and ground
(logic zero) of the SN74L.S138. Connect this pin to the OUT signal
at the CONTROL SIGNALS socket. With the computer now run-
ning, do you observe any pulses at the light outputs of the decoder?

With no program running, but with the TRS-80 in the READY
mode, we did not observe any outputs, other than logic ones, at the
decoder outputs.

Write a short program that will pulse the Y5 output of the de-
coder. What is the address that will activate this output?

We used the following program:

10 OUT 5,0
20 GOTO 10

The address we selected was 5, or 00000101. Would any other ad-
dresses actuate this output? What are they?

There are 32 different addresses that could be used; XXXXX101
where X =1 or 0. Examples are 5, 13, 21, 29, etc., through 253.
Remember, this decoder is not absolutely decoding all of the address
bits.

Step 5

Likewise, the IN pulse could be substituted for the OUT pulse
to generate eight device-select pulses for input devices. Could the
decoder scheme be configured so that address bit A3 could also be
used? How could this be readily accomplished?

Address bit A3 could be used as an additional gating signal, at
either input G1, or at input G2B, depending on whether we want
the decoder active when A3 = logic one, or when A3 = logic zero.

Remove the wire between the decoder Gl input (pin 6) and
the +5-volt supply, or other logic one connection. Now, connect
address bit A3 to pin 6 on the SN741.5138 decoder. What addresses
will now be decoded?
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Addresses XXXX1000 through XXXX1111 will be decoded, or ad-
dresses 8 through 15.

Step 6

Write a short program that will pulse the Y3 output of the de-
coder. What device address have you chosen?

We used the following program:

10 OUT 251,0
20 GOTO 10

and we chose address 251, since in its binary representation, it is
11111011, the equivalent of XXXX1011. Change your program so
that you can test some of the other outputs of the decoder. We used
the following short program:

10 INPUT 1
20 OUT IO
30 GOTO 10

Step 7

Now change your circuit so that the decoder is only functional
when address bit A3 is a logic zero, and when the OUT pulse is
present. Test your changes by running a short program, such as the
one in Step 6, to exercise the various output-port addresses.

You should have the A3 address signal connected to the G2B
input (pin 5), with the decoder pin 6 connected to logic one.

Step 8

If you have a number of SN74LS138 decoders available, how
many device-select pulses can you generate, using circuits such as
those that you have developed so far? You may wish to sketch
some simple circuits, Assume that only address lines A3-A0 are
available.

You should be able to generate 16 output-port device-select
pulses, and 16 input-port device-select pulses, too. This requires the
use of four SN741.5138 decoders. Likewise, two SN74154 or SN74
L.S154 decoders could have been used, as discussed in the text por-
tion of the book.

For absolute decoding, bits A7-A4, on the address bus, would
also have to be decoded in some way to further gate the SN741.5138
decoders. This is shown in Fig, 6-18. In this circuit, device addresses
11110000 through 11111111 have been decoded for both input and
output devices.
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Step 9

Some computer systems do not require a large number of I/O
port device-select pulses. In this type of a situation, the SN74LS139
dual two-line to four-line decoder is quite useful. It is shown in
Figs. 6-14 and 6-17. Since two independent decoders have been
provided, separate input-port and output-port device-select pulses
may be generated.

Step 10

Wire the circuit shown in Fig. 6-19. Using the logic probe, check
all eight outputs. Are any active? Be sure that the computer is on,
but that it is not running a BASIC program. Are these results what
you would expect?

We observed that all of the outputs were in the logic one state.
Since no INP or OUT commands are being executed, this is what we
would expect.

Step 11

Write a short program that would pulse the IN 3 device select
output and the OUT 1 device select output. Confirm the proper
operation of the decoder.

We used the following program:

10 A = INPQ3)
200 QUT 1A
30 GOTO 10

The pulses were observed at pins 7 and 11 on the SN74LS139 chip.
What device addresses will activate this decoder?

+5 GND
Ius L
TN —I 16 3 |t
2 &
Al 3l g TO INPUT
PORTS
A 2 A 0 4 [o]
oUT Blse 3 '2
13 8 ? T TO OUTPUT
TS
3 Y ol POR

Fig. 6-19. SN74LS139 used for I/O port device-select pulse generation.
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The device addresses of XXXXXX00 through XXXXXX11 may be
used with either INP or OUT commands.

Remember, this simple decoder scheme is not absolutely decoded.
It is more difficult to add additional decoders to the circuits that
use the SN74LS139 decoders than it is to add such additional de-
coders to the circuits that use the SN74LS138 decoder.

While these circuits may be useful in some applications, and for
testing interfaces during breadboarding, we recommend the use
of absolute addressing schemes whenever possible.

EXPERIMENT NO. 13
OUTPUT PORTS, BCD, AND BINARY CODES

Purpose

The purpose of this experiment is to explore the use of the
SN74L.S373 octal-latch circuit as an output port.

Discussion

Newer integrated circuits, such as the SN74LS373 octal latch, are
available to simplify the task of output-port construction. In this
experiment, the SN74LS373 will be used, and its three-state output
capability will also be demonstrated.

Pin Configuration of the Integrated Circuit (Fig. 6-20)

ENABLE
vee 8@ 80 M 70 60 6D 0 sa G

IZOH‘ISHIEHWH‘IG 15”14”13 121

LnT R

°h jg“ﬂﬂ“gt o
0OF Of OF
E
6

o0

Y 05 ! 5
11121131415 7(18]i91;|10

OUTPUT 10 10 pol 20 30 30 4D 4Q GND
CONTROL

Fig. 6-20. SN7415373 octal latch chip pin configuration.

Step 1

Wire the circuit shown in Fig. 6-21. An SN7402 or SN74LS02
NOR-gate integrated circuit is also required. At this point, you
should be able to wire the Nor gate without assistance. You may
wish to refer to Fig. 6-5 for the SN7402 pin configuration.
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9 0 g SNT4LS373
BT
SN7402

Fig. 6-21. Using SN74L5373 octal latch chip as output port.

Step 2

Note that the SN74L.8373 octal latch has two control inputs. One
controls the latch, while the other controls the latch outputs. These
outputs may be in either the data state, passing the latched informa-
tion through to the outputs, or they may be in the high-impedance,
or disconnected, third state. This relationship is shown in Table 6-3.

Table 6-3. Control Signal Truth Table for the SN74L$373

Output Control Enable (G) Data Output
L H H H
L H L L
L L X Qo
H X X 4

When the Output Control signal is a logic one, the outputs have
been disabled, or placed in the high-impedance third state (Z).
When the Enable input, G, is a logic one, the information is passed
through the latch, as was the case for the SN7475 latch chips.

You should be able to connect the Output Control input (OC)
on the SN74LS373 chip to ground so that the outputs are enabled
at all times.

Step 3

Once the output port has been wired, test it by writing a short
program that will exercise the various outputs.

We used a program that incremented the lamp monitor display,
and also a program that allowed us to enter a value and then observe
its binary equivalent at the output port. You should not need any
additional assistance to do this.
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Step 4
Load the following program into your computer and run it.

10 FOR ! = 0 TO 255

20 OUT 7.

30 FOR T = 1 TO 300 : NEXT T
40 NEXT 1

50 GOTO 10

What do you observe at the lamp monitors?

You should observe a slowly incrementing binary count.

Now that the display is “counting,” carefully remove the con-
nection between the SN741.S373 Output Control pin (pin 1) and
ground. What happens to the display? When you replace this con-
nection, what is observed on the display?

In our display, all of the lamp monitors became unlit. When the
Output Control was again grounded, the count was observed to be
continuing. The Output Control did not affect the count. The Out-
put Control placed the latch outputs in the high-impedance state.
In our system, this caused the lamp monitors to turn off.

Step 5

In this step, the three-state capability of the SN74L.S373 latch
will be used, so that two latch chips may share a common 8-bit
display.

With the breadboard power disconnected, wire a second SN74-
1.8373 latch circuit in parallel [all inputs wired to the data bus, all
outputs (D7 to D7, D3 to D3) wired together] with the one already
wired. Do not make parallel connections between the Output Con-
trol pins (pin 1) or the Enable inputs (pins 11). Place both of the
Output Enable pins in the logic one state, by connecting them to
+5 volts.

A second Nor gate will be required to control the second latch.
You can wire the nNor gate as shown in Fig. 6-22. This schematic
diagram also shows an optional NOR-gate circuit that may be used to
alternate between the selection of the outputs of one or the other
SN74L.S373 latches. When the ~Nor-gate inputs (pins 3 and 2) are
grounded, output port 6 will have its 8-bit value displayed, while
output port 7 will have its value displayed when the Nor gate pins
3 and 2 are at +5 volts or logic one. If you decide to use the optional
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6
6 4
OUT:DO—— TO PIN (I ON 2nd SN74LS373
>~s~7402
|

3
GND or+5—-—<—{ZDo—- TO PIN | ON 2nd SN74LS373

TO PIN | ON Ist SN74LS373
Fig. 6-22. NOR-gate control circuit.

lower Nor-gate circuit, remember to remove the connections be-
tween +5 volts and pin 1 on each SN741.8373. We recommend the
use of the Nor-gate circuit. This circuit should only be wired to the
SN741.5373s with the power off.

Step 6

At this point, you may wish to test output port 6. If you do so,
remember to enable it, and to disable port 7. They must not be
enabled at the same time. You should be able to test the output port
without further assistance.

You should be able to write a program that will increment a 16-
bit count, displaying the count on the two latch outputs. (You will
have to enable the outputs of the appropriate latch to see the count.)
Write your program and test it.

We used the following program:

1000 For B
1010 FOR C
1020 OUT 7,C
1030 OUT 6,8
1040 NEXT C
1050 NEXT B
1060 GOTO 1000

0 7O 255
0 TO 255

Remember that the OUT commands can only accept values between

zero and 255.

Step 7

In the previous step, the computer counted in binary. One addi-
tional code, frequently used by counters, displays, and digital in-
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struments, is the binary coded decimal or bed code. This code is
binary, too, since it uses ones and zeros, but it encodes decimal
digits, one digit at a time. Thus 9530 becomes 1001 0101 0011 G000
when converted to bed. If you are not familiar with the bed coding,
you may wish to obtain some more information before going
further.

In this step, you will develop a computer program that will con-
vert values between zero and 9999 to their equivalent bed values.
Thus, if the value 5367 was keyed into the TRS-80, you should see
the “53” or 01010011 displayed at output port 6, while the “67” is
displayed at output port 7.

We used the following program to perform the conversions:

10 INPUT “VALUE ="; A

20 IF A < 10000 THEN 30 ELSE 10
30 GOSUB 1000

40 OUT 7,A+C

50 A =B

60 GOSUB 1000

70 OUT 6A+C

80 GOTO 10
1000 B=0:C =0
1010 IF A > 99 THEN 1100
1020 IF A < 10 THEN RETURN
£

1030 € = C+16: A = A—-10
1040 GOTO 1020
1100 A = A—100: B = B+1
1110 GOTO 1010

In the subroutine, the variables are A, B, and C. In this case, the
A represents the decimal value to be converted to bed (the starting
value), B represents the “hundreds,” while C represents the “tens.”
At the end of the subroutine, the A value represents the units.

In some cases, it may be difficult for you to remember that we are
tricking the TRS-80 into generating bed values for us. In most
cases, four seven-segment (or equivalent) displays would be used
for the actual display. In this case, we economized, and used one
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8-bit display, along with the three-state output capability of the
SN741.8373 latch.

If you plan to go on to the next experiment, do not disturb your
circuit, although one output port {port 6) may be removed.

EXPERIMENT NO. 14
OUTPUT-PORTS TRAFFIC-LIGHT CONTROLLER

Purpose

The purpose of this experiment is to show you how the TRS-80
may be used as a controller in a real application.

Discussion

While the control of a traffic light may not seem like a realistic
problem for us to tackle with the computer, it does illustrate the
ability of the computer to make decisions and control external
events.

Step 1

An 8-bit output port will be used in this experiment. If you have
one already constructed, you may use it as long as it can control
some LEDs. If you have completed Experiment No. 13, you may
use Output port 7. Qutput port 6 may be removed.

If you need to construct an output port, we refer you to Experi-
ment No. 13, Figs. 6-20 and 6-21.

Lamp monitors or individual LEDs may be used to simulate the
positions of the traffic light, but only six are required, since the
north-south and east-west lamps would be the same, with a red,
yellow, and green lamp for each. We used colored LEDs and we
adopted the following convention.

BIT LED BIT LED
DO RED ] D3 RED
D1 YELLOW (ELM D4 YELLOW ‘MAIN
D2 GREEN j D5 GREEN j
Step 2

You must now determine the patterns of logic ones and zeros
that are required to turn of the individual LEDs. Since our circuit
could drive the LEDs directly, logic zeros turned the LEDs on in
our “traffic light.” What values are to be output to port 7 to turn
the various lights on and off?
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We found that the following values were needed:

ELM Red 254;, 11111110, MAIN Red  247,, 11110111,
ELM Yellow 235 11111101 MAIN Yellow 239 11101111
ELM Green 251 11111011 MAIN Green 223 11011111

Step 3

To start the traflic-light control, write a program that will flash
the yellow light on Main Street and the red light on Elm Street;
one second on and one second off. Use a general-purpose one-second
delay statement. What is the “on” pattern, and what is the “off”
pattern?

The off pattern is 255, or all logic ones, while the on pattern has
bits D4 and DO both as logic zeros, or 238;5. We used the following

program:

10 OUT 7,255
20 FORT = 1 TO 300 : NEXT 7
30 OUT 7.238
40 FOR T = 1 TO 300 : NEXT T
50 GOTO 10

Step 4
Determine the lamp patterns that will be required for normal

traffic-light operation. What are they? How can they be stored in
the computer?

The patterns are a) red on Elm, green on Main (222), b) red on
Elm, yellow on Main (238), ¢) green on Elm, red on Main (243),
and d) yellow on Elm, red on Main (245). The values could be
stored through the use of DATA statements, subscripted variables,
or just as variables, one per lamp pattern.

Step 5

In the remainder of this experiment, we will assume a “yellow
period” of two seconds. Thus, if Elm Street is on a 10-second period,
the green light will be on for 10 seconds, followed by a 2-second
yellow, before the red signal comes on.
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Write a program that will allow you to sequence through the light
patterns, with a 6-second period on Elm and a 10-second period
on Main Street.

We used the following program:

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

1000
1010
1020
1030

Step 6

M= 10: E = 6
DATA 222, 238, 243,
READ L

QuT 7.1

FOR I = 0 TO M
FOR T = 1 TO 300
NEXT 1

READ L

QuT 7,L

GOSUB 1000

READ L
ouT 7,L
FOR | =
FOR T =
NEXT
READ L
ouT 7L
GOSUB 1000
RESTORE
GOTO 30

0 TO E
1 TO 300

FOR |
FOR T
NEXT 1
RETURN

(I

-
-
[}

-
o]
w N

245

: NEXT T

s NEXT T

: NEXT T

While the program listed in the previous step will operate cor-
rectly, many of the steps are repetitive. Could you suggest a new
program that could be written in a simpler way? How would you
simplify it?
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In the program in Step 5, the only changes are made in each of the
major steps in the program are the light patterns and the time delay.
By using an array of values, one simple loop may be used.

We found that the following program worked well:

10 A(I) = 222: AR} = 238: A@) = 243: A@d) = 245

20 M) = 0: M2) = 2: M@3) = 0: M(4) = 2

30 INPUT “MAIN": M(1)

40 INPUT “ELM”; M(3)

50 FORQ = 17T0 4

60 OUT 7,AQ)

70 FOR | = 0 TO M(Q)

80 FOR T = 1 TO 300 : NEXT T

90 NEXT I

100 NEXT Q

110 GOTO 50

In this new program, the A array stores the light patterns, while the
M array stores the time intervals.

Step 7

So far, the computer has only served as a sequencer, generating
the proper time delays and traffic-light codes. In this step, some
control functions will be added to the traffic-light program.

The traffic on Main Street is usually heavy, so the normal mode
should be green on Main and red on Elm. The program should be
able to detect a single car waiting on Elm Street, so that it may be
given the green light. The Elm Street green sequence should take
place only after 30 seconds of Main Street green have elapsed.

In order to program this, you will probably wish to draw a flow-
chart of the program. The keyboard E and M keys may be used as
the “street sensors” on Elm and Main streets, respectively. You may
wish to shorten the periods so that the program may be tested
quickly.

We used approximately 10-second delay periods with 2-second
“yellow periods.” The program we used is

0 A =0

15 REM RED ON ELM, GREEN ON MAIN

20 OUT 7,222

30 FOR I = 0 TO 10
40 FORT = 0 TO 300 : NEXT T
50 NEXT §

60 A$ = INKEY$

65 REM E KEY PRESSED AFTER 10 SECONDS
70 IF A$ = “E“ THEN 80 ELSE 60

75 REM RED ON ELM, YELLOW ON MAIN
80 OUT 7,238

90 FOR | = 0 70 2
100 FOR T = 0 TO 300 : NEXT T
110 NEXT 1
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115 REM GREEN ON ELM, RED ON MAIN
120 OUT 7,243

130 FORI = 0T0 10

140 FOR T = 0 TO 150

150 B$ = INKEY$

160 IF B$ = ““M" THEN 190

170 NEXT T : NEXT |

180 GOTO 210

190 A = A+1

200 IF A = 5 THEN 210 ELSE 170

205 REM YELLOW ON ELM. RED ON MAIN
210 OUT 7,245
220 FOR | =
230 FOR T =
240 NEXT i
250 GOTO 10

0 2
o] 3

10
TO 300 : NEXT 7

You should note that when the green light is present on Elm Street,
the keyboard key-detecting steps are embedded in the time-delay
steps. Thus, these steps become part of the delay steps. Also, you
may note that even if the E key is actuated once during the initial
30-second delay period, the E key will be sensed at the end of the
delay. Apparently, the BASIC program stores the last pressed key
and uses this in the A$ = INKEYS$ step.

What does the M key do? It aborts the Elm Street green period
if 5 cars are detected on Main Street. Many other routines could be
added, for multiple sensors, advanced turn lanes, pedestrian cross-
walks, etc.

The six LEDs should be removed and the power may be turned
off. An output port will be used in the next experiment, so you
should leave the one used in this experiment intact.

EXPERIMENT NO. 15
LOGIC-DEVICE TESTER

Purpose

The purpose of this experiment is to show you how the com-
puter may be used to test logic devices for proper operation.

Discussion

Most logic “chips” that contain gates may be tested by applying
known logic-level inputs to the gate inputs, and then comparing
the gate output with a truth table for the type of device being
tested. In this experiment, the computer will be used in such a man-
ner. One input port, and one output port are required. Various de-
vices such as SN7400, SN7402, SN7408, etc., may be tested. The test
is a functional test, and not a test for dynamic properties, such as
switching time, propagation, delay, and other parameters.
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Step 1

You will need to construct an input port and an output port. You
should be able to do this without further assistance. Many of the
previous experiments have detailed this. You may wish to use an
SN74LS373 chip as the 8-bit input port. When these ports have
been constructed, go on to the next step.

Step 2

The test configuration for an SN7400 NAND-gate package is
shown in Fig. 6-23. For the pin configurations of other gate circuits
we refer you to Fig. 6-24.

14 SN7400 QUAD 2-INPUT NAND

bo

3

o

DI 2 bo

D2 : [ DI
FROM D3 To
OUTPUT 3 INPUT
PORT D4 PORT

12 D2

7’

D6
D7

D3

)

Fig. 6-23. Schematic of circuit used to test SN7400 NAND-gate chips under
computer control.

Wire the test circuit shown in Fig. 6-23. Remember to connect
the +5-volt and ground-power inputs to both the interface chips
and the integrated circuit being tested.

You should be able to develop the truth tables for various gates,
starting with the nanp gate. For a two-input gate, there are only
four combinations of inputs. How many different combinations
would there be for the four gates in the SN7400 package?

Possibly you said 16 combinations, four for each gate, or 256
combinations, the number possible with eight output lines to the
eight inputs in the package. Actually there are still only four com-
binations, since all gates are tested at the same time. Knowing that
one gate is bad means that the entire package is bad.

140



SN7430 S N7486

Fig. 6-24. Pin configurations of some standard SN7400-series chips that readily
test under computer control.

Step 3

What are the four combinations that will be used at the output
port? You should develop both binary and decimal values.

Our values were:
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00 co 00 00
o1 01 01 01
10 10 10 10
11 11 11 1

I T 1

Since the outputs have been connected to input bits D3-D0, we
would expect the gate outputs to be all zeros or all ones; 0 or 15,
as a result. Since all of the gates are tested at once, the results
should be the same for all gates.

How could the bits input at positions D7-D4 be eliminated from
the test?

These could be set to zero by a logic anp operation with the mask
00001111.

Step 4

Develop a short program that will test the Nanp gate that you
have interfaced. Your program may closely resemble the traffic-
light control program shown in Experiment No. 14, Step 6. The
program does not have to be very complex.

The following program worked quite well in this application:

10 T() = 0: T(2) = 85: T3) = 170: T(4) = 255
20 R(1) = 15: R(2) = 15: R(3) = 15: R@) = 0
30 FOR I = 1 TO 4

40 OUT 7,T(1)

50 IF (15 AND INP(6)) = R(l) THEN 60 ELSE 100
60 NEXT 1

70 CLS: PRINT@ 128, “TEST OK“: END
100 CLS: PRINT@ 128, “FAILURE”: END
Step 5

Since the pin configurations for the SN7400, SN7408, and SN7486
are equivalent, could a generalized test program be developed for
them? How?

Yes, a general-test program would be possible. The user could enter
the device name and the computer would select the truth-table in-
formation to be used. The truth tables are shown in Table 6-4.
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Table 6-4. Truth Tables for the NAND, AND, and EXOR Gates

SN7400 SN7408 SN7486
A B ourt A B our A B our
0 0 1 0 0 0 0 0 ]
0 1 1 0 i 0 0 1 1
1 0 1 1 0 0 1 0 1
1 1 0 i 1 1 1 1 0

You should note that the test patterns are the same, only the
results change.
We used the following program:

10 INPUT “LAST TWO DIGITS"; G

20 IF G == 0 THEN 200

30 IF G = 8 THEN 300

40 IF G == 86 THEN 400

50 PRINT "“TEST NOT AVAILABLE": GOTO 10

60 T(1) = 0: T(2) = 85: 13) = 170: T(4) = 255

70 FOR | = 170 4

80 OuUT 7,1(H

90 IF(15 AND INP(6)) = R(l) THEN 100 ELSE 140
100 NEXT |(

110 CLS: PRINT@ 128, “TEST OK”: END
140 CLS: PRINT@ 128, “FAILURE™: END

200 R(1) = 15: R(2) = 15: R(3) = 15: R(4) = 0

210 GOTO 60

300 R(1) = 0: R(2) == 0: RB) = 0: R@4) = 15
310 GOTO 60

400 R(1) = 0: R(2) = 15: R(3) = 15: R4) = 0
410 GOTO 60

The last two digits requested are the last two digits in the device
number; that is, 00 for SN7400, 08 for SN7408 and 86 for SN7486.
If several SN7400, SN7408 and SN7486 chips are available, you
may wish to test these using the program listed in this step.

Step 6

It should also be possible for the computer to test logic devices
such as counters and flip-flops. If you are familiar with the SN7493
4-bit binary counter, you may wish to try the following steps. If
not, you may wish to read through these steps.

The pin configuration and schematic diagram of the SN7493
counter is provided in Fig. 6-25. In order to test this device, the
counter outputs must be available to the computer, and the com-
puter must be able to clock and reset the counter, independently.
We will not test the counter exhaustively, but we will test the reset
and counting ability.
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Fig. 6-25. SN7493 4-bit counter
pin configuration.

NPUT Rpfy Rol2l NG vge NGO NC
)

SN7493A
SN741.593

Step 7

Wire the SN7493 counter as shown in Fig. 6-26. You will need an
input port and two SN7402 (SN74LS02 or SN74L02) NOR gates,
as well as the SN7493 that is to be tested. (DO NOT USE AN
SN741.93.)

+5
SN7402 s
INPA A }2 po
INPB g S DI
o TO INPUT
RO c D2 PORT
ro b D3

J_Io SNT493

Fig. 6-26. Test circuit schematic used to check SN7493 4-bit counter chips.

Step 8

Write a short test program that will exercise the reset function
and the counting function. Do not try-to write a very complex
program at this time.

We used the following program:

10 OUT 50
20 IF (15 AND INP(6)) > O THEN 1000
30 CLS: PRINT@ 64, “RESET TEST OK"
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40 FOR 1 = 1TO 15
50 QUT 7.0
60 IF (15 AND INP(6)) = ! THEN 70 ELSE 1100
70 NEXT 1
80 PRINT@ 128, “COUNT TEST OK': END
1000 CLS: PRINT@ 64, “RESET FAILURE": END
1100 PRINT@ 128, “COUNT FAILURE", I: END

The program first tests the reset and then the count. If a counting
failure occurs, the count expected is printed in the failure message.

This program again uses the logical aNp operation to mask bits
D7-D4.

Step 9

The program does not test all 16-counter states. The last count,
from 1111 to 0000 is not tested. Could you modify the program so
that this test is made? Try to do so.

We substituted the following new steps in the program:

4 FORI = 1TO 16
and
60 IF (15 AND INP(6)) = (15 AND ) THEN 70 ELSE 1100

The additional aND operation in line 60 masks bits D7-D4 in the
value I, so that the value seems to go from 15 to zero, or 1111 to
0000, as expected for a 4-bit counter.

The input port should be left on your breadboard. The output port
and the program are not required in the following experiments.

EXPERIMENT NO. 16
SIMPLE FLAG CIRCUITS

Purpose

The purpose of this experiment is to demonstrate the construction
and use of simple flag circuits.

Discussion

Flags are signals that are used by the computer so that the com-
puter and I/O device operations are synchronized. Flags are used
to indicate busy/ready, full/empty, on/off, and other combinations
to the computer. Experiment No. 6 illustrated the use of input ports
for nonnumeric information. This experiment will develop this con-
cept further. You will require an input port in this experiment.
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Pin Configurations of the Integrated Circuits (Fig. 6-27)

Fig. 6-27. SN7474 dual D-type flip-flop
chip pin configuration.

] i 1CK 1PR 1WQ 1@ GND
R

Step 1

An input port will be required in this experiment. You should be
able to construct an input port without further instructions. Many
of the past experiments have detailed the construction of these ports,
so you should not require any further assistance. Once an input
port has been constructed, go on to the next step.

Step 2

One of the previous experiments investigated the use of simple
switches as flag inputs. This experiment will explore the use of
flip-flops for flag circuits. An SN7474 flip-flop will be used. Wire
the circuit shown in Fig. 6-28.

A jumper wire should be used between the clear input, pin 1, and
+5 volts, so that the flag may be cleared by a momentary connec-
tion between pin 1 and ground, once the jumper has been removed
from the +5-volt connection. The pulser circuit may be a pair of

+5 GND
i4 7
i —2p Q F——— D0 TO INPUT
PORT
s SN7474
0 oK
PULSER cR
i
JUMPER

+5

Fig. 6-28. Simple flip-fiop—based flag circuit schematic.
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cross-coupled NaND gates, or an equivalent circuit that will gen-
erate “clean” noise-free logic transitions. This is described in the
introduction to the experiments, and the appendix.

Step 3

Once the flag circuit has been wired, enter and run the following
program. It is used to test the flag circuit.

10 CLS

20 IF (1 AND INP(6) = O THEN 30 ELSE 50

30 PRINT@ 200, “0"

40 GOTO 20

50 PRINT@ 200, “1*

60 GOTO 20
When the flag has been cleared (ground the clear pin), the display
should show a zero. When the flag is set (the pulser actuated), the
display should change to a one. When this works properly, go on
to the next step.

Step 4

In this step, the computer will keep track of the number of pulser
actuations that have been sensed by the flag. Note the use of the
AND operation to mask bits D7-D1, leaving only the flag bit, DO for
the decision-making step. You may wish to use an additional pulser
circuit for the flag clearing operation.

Enter the following program and run it:

10 CLS: B = 0 : PRINT@ 200, B

20 IF (1 AND INP(6)) = O THEN 20 ELSE 30
30 B =B+1

40 PRINT@ 200, B

50 GOTO 20

Be sure that the flip-flop has been cleared before you start the pro-
gram. With the program running, actuate the pulser to set the flag
flip-flop. What do you observe? Is this what you expect? We found
that the count started as soon as the push button was pressed, and
that it continued until the flag was cleared. This is not what we
wanted to do. We wanted one count, each time the pulser was
actuated.

Why didn’t this happen the way we expected?

The set state of the flag continued to be detected by the program.
We could not reset it fast enough by hand to stop the counting at
one per pulser actuation.

Step 5

In most computer systems, the computer, or the flag-containing
device clears the flag after it has been detected. To allow your

147



T b g
BUT TO SN7474 PIN

Fig. 6-29. Simple flag-clearing circuit schematic.

computer to do this, add the circuit shown in Fig. 6-29 to your
interface. Be sure that you remove the wire between +5 volts and
pin 1 on the SN7474. This circuit will allow a computer command,
OUT 7,0, to clear the flag.

Now modify your program so that line 30 reads:

30 B = B+1:0UT70

Now run the program. Does the computer increment the count once,
each time that the pulser is depressed?

It should. You may find that the count starts at one. Do you know
why this might happen?

The flag may not have been cleared when the program was
started. It is generally a good idea to clear flags before they are to be
used, otherwise set flags may be detected, just because they were
placed in the set state when the system was started.

In many applications, flags are closely associated with input ports
and output ports so that the computer and I/O devices will know
when information is ready. The popular 8212 or SN74412 multi-
mode buffered-latch chip contains a flag flip-flop, along with latches
and three-state outputs.

EXPERIMENT NO. 17
PROGRAMMABLE INTERFACE CHIPS

Purpose

The purpose of this experiment is to illustrate how general-pur-
pose interface chips may be interfaced to the computer.

Discussion

There are many programmable interface chips that may be inter-
faced to microcomputer systems. The 8255 or 8255A Programmable
Peripheral Interface (PPI) is an example, although there are prob-
ably over two dozen programmable chips available from various
manufacturers. The steps in this experiment will serve as examples
of the use of the 8255 chip For detailed uses of the 8255, we refer
you to a complete book on the chip, in the “Blacksburg Continuing
Education Series,” Microcomputer Interfacing with the 8255 PPI
Chip (Howard W. Sams & Co., Inc., Indianapolis, IN 46206).

Pin Configuration of the Integrated Circuit (Fig. 6-30)
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Fig. 6-30. The 8255 Programmable Peripheral Interface (PPI) ch

and block diagram.
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Step 1

Carefully examine the pin configuration of the 8255 chip pre-
sented in Fig. 6-30. You should note that there are three I/O ports
and data bus connections, plus six control lines.

You will also see that the ports are labeled A, B, and C, and that
port C has been divided into two groups of four lines each, lines
C7-C4 and C3-CO. These are called the “upper” and “lower” por-
tions of port C. These ports are controlled by a status register that
is set by the computer to control the operation of these ports. In
this experiment, only the simple I/O mode, mode zero, will be used.
We refer you to the book previously referenced for additional in-
formation about the other modes of operation of the 8255.

Step 2

Note that unlike previously constructed ports, the 8255 has both
a chip-select input (CS) and two address inputs Al and A0. These
allow the address lines to select internal operations once the chip
has been selected. You should also realize that the IN and OUT
signals are used by the 8255, since RD and WR pins have been
provided.

If you are not using the interface breadboard on which device
addressing has been provided, you should connect address lines
A0 and Al to pins 9 and 8, respectively, using address bits A7-A2
to generate the necessary chip-select (CS) signal.

If you are using the interface breadboard, you will have to make
the A0 and Al connection, but four of the device address-decoder
outputs will have to be gated to provide a “chip select’ signal. This
is shown in Fig. 6-31. Since all input operations require the genera-
tion of an INP REQ signal, additional gating has been provided to
perform this operation, too. The pin configurations for the SN7420
and the SN7402 gates are provided in Fig. 6-32.

Wire the circuit shown in Fig. 6-31. What addresses will gener-
ate a logic zero at the 8255 chip select input? What sequence will
generate a logic zero pulse at the INP REQ “X” output?

13
DECODED

7420
e 3" ,,:\\
DEVICE 0 Dt}————-
ADDRESSES !
2 \ 2 D}s————-» TO 8255 PIN 6
4 (TS)

N 2
'/‘:S 740 —

5]
- TO INP REQ X

Fig. 6-31. Schematic of circuit used to generate chip-select signal for 8255 chip.

Sl ol
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Vce 20 2c NC 28 2A 2
Lod 1 1’4 L 0 9 L]

1 2 3 L] 5 8 7
1A 18 NC c i1 1Y GND

Fig. 6-32. SN7402 and SN7420 gate chip pin configurations.

The chip-select signal will be generated whenever device 7, 6,
5, or 4 is addressed. The input-request signal is generated whenever
the chip is selected for an input operation. Since address bits Al
and AQ are also used, up to four devices within the 8255 chip may
be controlled.

Step 3

The actual operations of the 8255 chip I/O ports are controlled
by an 8-bit word that is sent to the 8255 chip by the computer. The
format is shown in Fig. 6-33. Since we will only use mode zero, bits
D6, D5, and D2 must always be zero. The other bits let us con-
figure the I/0 ports A, B, and C. Bit D7 must be a logic one to allow
the mode information to be used by the 8255.

Using the information shown in Fig. 6-33, what control words
would be required to “program” the 8255 for: a) All ports as input
ports, b) port A as input, ports B and C as output, and c) all ports
as output ports? Give your answers in both binary and decimal:

a)
b)
c)

You should be able to come up with the following values, a)
10011011 or 155, b) 10010000 or 144, and c¢) 10000000 or 129. Note
that port C was not “split” or divided into sets of four lines each.

Step 4

Wire the circuit shown in Fig. 6-34. The chip-select logic circuit
should be already wired on your breadboard. Pay careful attention
to the power pins. They are not where you might expect to find
them. The reset connection may be a jumper to ground.

In the 8255, the I/O port codes are as shown in Table 6-5. The
control register is used to store the mode-control information. In
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CONTROL WORD

D;  Dg | D5 | Dy | D3 { Dy | Dy | Dy

GROuUP B

PORT C {LOWER)
1= INPUT
0=0UTPUT

PORTB
1= INPUT
0=0UTPUT

MODE SELECTION
0=MODE O
1= MODE

GROUP A

PORT C (UPPER}
1= INPUT
0=0UTPUT

PORT A
1=INPUT
0= QUTPUT

MODE SELECTION
00 = MODE 0
01=MODE 1
1X = MODE 2

MODE SET FLAG
1=ACTIVE

Courtesy Intel Corp.
Fig. 6-33. Mode-control format for 8255 PPI chip.

our computer system the addresses are device address 4 through 7,
as also provided in Table 6-5.

Step 5

The control information must be sent to the 8255 chip prior to
its use. The following program illustrates this:
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Table 6-5. The 8255 1/0 Port Addressing Codes

Al A0 Port Device Address
¢} 0 PORT A 4
0 1 PORT B 5
1 0 PORT C 6
1 1 CONTROL 7
+5 Grfn
Ls Iz
D7 27 | b7 pa7 2
06 : D6 / PAG ::
— e Lawr
DATA BUS 3 ps PoRT A o [
D2 32 { pp PA2 -2 MONITORS
DI 3 1py pal |2
Do 331 po Y
w 21R0 PB7 :
BOT 2 IWR 23
o N 2 Loeic
o ° PORT B 21
At Al 20 SWITCHES
€5 £1Ts ::
35| RESET PBO
PC7 PO
JUMPER / X!
12
i3
= PORT ¢ 7 (NOT  USED)
16
15
pco i
8255 PPl CHIP
Fig. 6-34. 1/ O configuration for 8255 chip.
10 OUT 7.128
20 OUT 40
30 END

This program configures all of the ports for output and then trans-
fers the value zero to port A, or device 4 in our system. Once the
chip has been programmed, it does not have to be reprogrammed
unless you reset the chip, remove power or desire to change the I/O
port configuration.

Write a short program that will configure the 8255 for ports A
and C as output ports, with port B as an input port. Increment a
count, and display it at port A.
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We used the following program:

10 OUuT 7,130

20 FOR | = 0 TO 255
30 OUT 41

40 NEXT |

50 GOTO 20

The first step was only executed once, at the start of the program,
so that the 8255 chip was properly configured.

Step 6

Now write a program that will transfer the data from port B to
port A.

We used the following program:

10 OUT 4,INP(5)
20 GOTO 10

We did not require another OUT 7,130 statement, since we did not
wish to reconfigure the I/O ports. Using the 8255 chip in the mode
zero configuration is fairly simple.

Step 7

The last characteristic of the 8255 that we wish to have you ex-
plore is the bit set/reset operation of port C. This operation allows
the individual bits at port C to be independently placed in either
the logic one or logic zero state.

The bit set/reset control word is shown in Fig. 6-35. It can only
be used to operate on port C, and only when this port is in the out-
put mode. Port C can, of course, still be used in the standard out-
put mode.

The bit set/reset control word is output to the control register,
not to port C.

Rewire your 8255 interface so that the lamp monitors are con-
nected to port C, instead of port A. You may wish to use the follow-
ing program to check for the proper operation of port C:

10 OUT 6,INP(5)
20 GOTO 10

If this program failed to operate properly, you may want to re-
initialize the 8255 control register with 130, for example, OUT 7,130.
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CONTROL WORD

Dy {Dg | D5 | Dy | Dy | D, [ D | D,
BIT SET/RESET
X X X 1=8ET
0= RESET
DON'T
CARE
BIT SELECT
011(2]3{4|5/6]7
0/1|0[{110/1{06|1]|By
0[0j111|0[0[1{1]|B,
olojojolil1{1{1]B,

BIT SET/RESET FLAG
0= ACTIVE

Fig. 6-35. Bit-set, bit-reset control word for port C bits in 8255 PPI chip.

Step 8

You should be able to use the information in Table 6-5, so that
any bit at port C can be turned on and off. To demonstrate this,
load and run the following program:

10 OUT 6,255

20 FOR | = 0 TO 15

30 OuT 7,

40 FOR T = 0 TO 100: NEXT T

50 NEXT I

60 GOTO 20

What do you observe? In what ways has port C been used?

The lights go out and then come back on, one at a time. Port C
was loaded with a value in parallel, and then the bit set/reset op-
erations were used. Can you write a program that would turn the
lights on in sequence, rather than off? Try it.

We used the following program. It was more complex than the
previous “off-sequence” program. Remember to start the program

with all of the lights off.
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10 A =1

20 FOR 1 = 170 8

30 OUT 7A: A = A—I

40 FOR T = 0 TO 100: NEXT T

50 OUT7A: A = A+3

60 FOR T = O TO 100: NEXT T

70 NEXT 1

80 GOTO 10

There are many sophisticated programs that could be developed
to control the 8255. In fact, the mode one and mode two operations
are very complex, but they incorporate internal flags, flag checking
and other features that make the 8255 a useful chip.

Our purpose here has been to have you wire and test the 8255
chip in the TRS-80 system. It is not difficult to do, and you should
realize that other chips can be used in a similar manner.

If you plan to do the next experiment, you may wish to use the
8255 chip for the two input ports that are required. The power
should be turned off.

EXPERIMENT NO. 18
INTERFACING AN ANALOG-TO-DIGITAL CONVERTER

Purpose

The purpose of this experiment is to show you how a simple
analog-to-digital converter may be interfaced to your computer.

Discussion

This experiment is meant to introduce you to the use of A/D
converters with a small computer. It is not an exhaustive study of
converters or conversion techniques. Many of these, and related
topics, have been covered in the “Blacksburg Continuing Education
Series” book, Microcomputer-Analog Converter Software and Hard-
ware Interfacing (Howard W. Sams & Co., Inc., Indianapolis, IN
46206). In this experiment, a 10-bit A/D converter will be inter-
faced to the computer.

The Analog Devices AD571 A/D converter has been chosen for
use in this experiment because it is small, easily controlled and
readily used. Two input ports are required. Similar A/D converter
devices may be used.

Step 1

Two 8-bit input ports are required in this experiment. You should
be able to use the schematic diagrams shown in previous experi-
ments. If you have an 8255 chip wired to your computer, you may
wish to use its B and C ports as input ports. One additional power
supply is required, either —12 volts or —15 volts.
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Pin Configuration of the Integrated Circuit (Fig. 6-36)

DIGITAL BLANK
cOMMON CONVERT CONTROL

v v
e 12

16 r_.._ln

ANALOG IN J13 Sk sfmss

I
I

ANALOG -
COMMON |14

0 uT

Sai CURRENT weiy 6
outPuT 1 sam 1
bac b
COMPARATOR
o Lot
A outeuTS
Wi
cLoex
& [ Wit} N 2

BIPOLAR 15

OFFSET —d— o | e - -

CONTROL

I

wwﬁ%ww

ADST1

DATA
AEAGY

— |

TEMPERATURE COMPENSATED AUTO 81ANK
BURIED ZENER REFERENCE CONTAGL
AND DAC CONTROL

8 LSBJ

17

BDATA REAGY
Courtesy Analog Devices, inc.

Fig. 6-36. AD571 10-bit A/D converter chip pin configuration.

Step 2

Wire the A/D converter circuit shown in Fig. 6-37. Be careful
when wiring the —12 (—15)-volt power supply. Improper wiring
may damage the device.

An SN7402 NOR gate is required, so that a conversion-start pulse
may be generated by the computer to tell the A/D converter when
it is to start measuring the voltage present.

If you are using the previously wired 8255 chip for your input
ports, be sure to ground all of the unused port inputs at port B.

Since you will also need a source of voltage to be measured, wire
the potentiometer circuit shown in Fig. 6-38. The maximum V.
should be +10 volts.

Step 3

Connect the potentiometer V. voltage line to the A/D con-
verter ANALOG INPUT pin.

Since the AD571 can perform a complete conversion in 25 micro-
seconds, there seems little to gain by checking the DATA READY
signal. Remember, the BASIC interpreter requires at least a few
milliseconds to execute a single line of your program. Therefore,
once the conversion is started, the AD571 has performed the con-
version before the Z-80 can even begin to interpret the next line in
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+5

-2
T ?
10 12

ANALOG s "
INPUT — 1 InPUT 810 H>——— DO
B9 H——— DI
B8 z D2
E} i B 7 D3 wan
"‘ou*rj)o——_ CONVERT B L2 pa |TO PORT"C" (6)
85 |- D5
B4 : D6
14 B3 D7
A
s GND g2 2 DO
OFFSET i |2 DI>TO PORT "B" (5)
1 ewp  DATA RDY X D7

= AD 571JD

Fig. 6-37. AD571 A/D converter interface circuit schematic.

the BASIC program. If you wish to check the DATA READY sig-
nal, the following step should be used in your program:

XYZ IF (128 AND INP(5) = 1 THEN XYZ ELSE QRS
QRS

In this case, the computer continues to loop through step XYZ
until the flag indicates that the data are ready.

Since the AD571 generates a 10-bit data word, how would you
transfer all 10 bits into the computer? Write a short test program.
Remember, if you are using an 8255 chip, the chip must be reset
and configured for input ports.

We used the following program:

10 OUT 7,155

20 OUT 3.0

40 A INP(5)

50 B INP(6)

60 Q = ((3 AND A)*256) + B
70 PRINT Q

80 GOTO 20

This program initialized the 8255 chip. Line 10 may be left out
of the program if you are using standard input ports. Note the use of
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+12  (+15)

2K (5K)

Fig. 6-38. Schematic of variable-voltage
source with range of 0 to 10 volts.

10 K vV out

the logical AND operation to mask out all except bits D1 and D2 from

input port 5. Since the resulting value really represents bits D9 and

D8 in the 10-bit data word, this value is multiplied by 256 before

it is added to the value from the eight least significant bits.
Actually, lines 40, 50 and 60 could be rewritten as

40 Q = ((3 AND INP(5),*256) + INP(6)

leaving out lines 50 and 60. Line 30 has been left out so that a time
delay could be added.

Step 4

Run the program, and vary the potentiometer. You should see the
printed number change from about zero to 1023, or from 0000000000
to 1111111111 in binary. The displayed value may change by one
or two, but this is an indication of noise in the system, superimposed
on the analog circuitry.

Since the values are very close to the voltages, for example 1023
from the A/D converter for 10 volts, it would not be difficult to
correlate the A/D converters output with an unknown voltage sup-
plied from a temperature sensor, or other device that generated a
voltage in the range of 0 to +10 volts.

Step 5

Write a program that will actually “plot” the voltage values on
the tv screen used with the TRS-80. To simplify your program, use
the bottom of the screen as +10 volts and the top as zero volts. You
should be able to plot 128 points.

We used the following program:
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10 OUT 7.155

20 Ci$

30 FORP = 0 TO 127

40 OUT 3,0

50 Q = {(3 AND INP(5)}*256) -+ [NP(6)
60 D = Qf22

70 SET (P.D)

80 NEXT P

90 GOTO 20

What happens when you run the program and adjust the poten-
tiometer? What happens when 128 data points have been displayed?

The TRS-80 displays the points, moving them on the Y axis as the
voltage is increased or decreased. Whenever a “file” has been dis-
played, the screen is cleared to allow another 128 points to be dis-
played.

Step 6

To see how an A/D converter might be useful, wire the circuit
shown in Fig. 6-39. This is a simple R/C circuit that will charge
the capacitor at a fixed rate. When the jumper is removed from its
ground connection, the voltage across the capacitor will increase.
This increasing voltage may be measured by the TRS-80.

Connect the Vy signal from the R/C network to the ANALOG
INPUT pin on the AD571 A/D converter. Remove the potentiometer

+12

> vV OUuT

JUMPER 100 MFD/16 WVDC

Fig. 6-39. Simple R/C charging circuit.
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connection. Start the program, and just as a new data display se-
quence starts, remove the ground jumper. What do you observe?

We observed a characteristic R/C curve. Remember that zero volts
is at the top of the screen, and +10 volts is at the bottom.

You may wish to experiment with different capacitance values dur-
ing this step. The AD571 has a fairly low input resistance, so in some
cases, it will load down the circuit being tested.

There are many other interesting things that may be measured
(as voltages) with an A/D converter. Examples are pressure, tem-
perature, speed, conductance, etc.
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APPENDIX A

Logic Functions

In the experiments in this book, several logic functions are re-
quired. These functions are noted as lamp monitors, logic switches,
and pulsers. In each case, the equivalent circuits are simple, but
rather than duplicate them in each schematic diagram, block dia-
grams have been used. The following sections describe each of the
functions that are required.

LAMP MONITORS

Lamp monitors are simply light-emitting diodes, or other on-off
indicating devices that are used to indicate the state of a logical
output. We have adopted the convention of logic one being the lit,
or on state, and logic zero being the unlit, or off, state. The two
circuits shown in Fig. A-1 may be used to construct lamp monitors.
The use of red LEDs is recommended, since they are inexpensive
and readily seen. You will require at least eight of the 1nd1v1dual
lamp monitors to do the experiments in this book.

LOGIC SWITCHES

Logic switches are simply switches that have been configured to
provide either the logic one or the logic zero voltages to the TTL-
compatible integrated circuits used in the experiments. A typical
logic switch is shown in Fig. A-2. A single-pole, single-throw toggle
switch or slide switch may be used. At least eight of the logic-
switch circuits will be required in the experiments.
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LED 220
+5

4700
INPUT 2N5134

F GROUND

LED 220

INPUT o————’—{>o"’—k1————ww~—4+5

7404 or 7405

Fig. A-1. Schematics of two simple lamp-monitor circuits that may be used
in experiments.

1000

+5
! Fig. A-2. Schematic of simple logic-switch
J:__/ OUTPUT circuit that may be used to generate logic
0

one or logic zero output.

PULSERS

>

The pulser circuit is used in the experiments to provide “clean’
outputs that are free of the “bounce” that is normally associated
with mechanical switches. Since most switches use spring-like metal
contacts, the contacts will often open and close several times after
the switch has been opened or closed. If such a mechanical switch
is used to provide pulses to a counter, up to 30 or 40 pulses may be
counted, depending on the type of switch used. Since there are many
cases in which a clean logic one to logic zero, or logic zero to logic
one, transition is required, a debounced switch is frequently useful.
Mechanical switches are easily debounced, if they have contacts
of the single-pole, double-throw form. A typical debouncing cir-
cuit is shown in Fig. A-3. In this case, two NaND gates have been
used to form a flip-flop that may be set, or reset, by the switch.
As shown in Fig. A-3, two outputs are available. With the switch in
the position shown, the normal logic states are shown at the outputs
of the two gates. When the switch is moved to the other position,
the outputs of the nanp gates will switch. It is suggested that a
momentary switch be used in the pulser circuits.

Lamp monitors, logic switches, and pulsers are all useful devices
when breadboarding logic circuits. While the circuits shown in
Figs. A-1 through A-3 are simple, you may not wish to build them
yourself. Several companies produce digital breadboarding devices
that incorporate lamp monitors, logic switches, and pulsers, as
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1000

+5
SN7400
Fig. A-3. Schematic for deb d pul | ¢ |
in which “cross-coupled” NAND gate has
been used to eliminate tact b
V o
+5

1000

well as other digital functions. We suggest that you write to the
following companies for information about their digital-electronic
breadboarding systems:

E & L Instruments, Inc.
61 First Street
Derby, CT 06418

AP Products, Inc.
Painesville, OH 44077

PACCOM
14825 NE 40th, Suite 340
Redmond, WA 98025
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APPENDIX B

Parts Required for the
Experiments

4 SN7402 Quad Nor-gate integrated circuit (IC)

2 SN7474 Dual D-type flip-flop IC

2 DM8095 or SN74365 three-state input buffer (2@ per input
port)

2 SN7475 Quad latch IC

1 NE5018 Eight-bit D/A converter IC (Signetics Corporation)

1 SN7404 Hex inverter IC

1 SN74LS139 Decoder IC

1 SN73LS138 Decoder IC

2 SNT4L.S373 Three-state octal latch IC

1 Intel 8255 PPI IC, or equivalent

1 SN7420 Dual four-input NAND gate IC

1 AD571JD Ten-bit three-state A/D Converter IC (Analog De-
vices, Inc.)

1 1 0.01-pf, disc ceramic capacitor

1 4700-ohm, 14-watt resistor

6 220-ohm, ¥4_watt resistors

6 Visible LEDs (2@ red, 2@ green and 2@ yellow)

1 2000- or 5000-ohm, 14-watt resistor (see Experiment No. 18)

1 10K, potentiometer trimmer-type

1 10K, Y4-watt resistor

1 100-uf electrolytic capacitor 16 WVDC

Besides the parts listed, you will need an assortment of SN7400,
SN7408, SN7402, SN7410, SN7486, SN7430, and SN7493 integrated

167



circuits for use in the logic-tester program in Experiment No. 15.
We suggest that you read through this experiment to determine
exactly which circuits you will want to test.

Other useful equipment includes: a =12-volt power supply, for
use with the A/D and D/A converter circuits, hook-up wire, an
extra solderless breadboard, pulsers, lamp monitors, and logic
switches.

Information about the availability of the A/D and D/A converter
may be obtained directly from the respective manufacturers:

Analog Devices, Inc. Signetics Corporation
Route One Industrial Park 811 East Arques Avenue
Norwood, MA 02062 Sunnyvale CA 94086
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APPENDIX C

Z-80 Microprocessor
Technical Data

The following pages contain some technical information pertain-
ing to the Z-80 microprocessor chip. The information has been ab-
stracted from Mostek Microcomputer Z80 Data Book, copyright
1978, Mostek Corporation, Carrollton, TX 75006. For more complete
information, we suggest that you obtain a copy of the complete
312-page manual directly from Mostek (Publication No. 79602).
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3.0 Z80-CPU PIN DESCRIPTION

The Z80-CPU is packaged in an industry standard 40 pin Dual In-Line Package. The 1/0
pins are shown in Figure 3.0-1 and the function of each is described below.

Z80 PIN CONFIGURATION

27 30
. -~ ———8=  Ag
1 31 A,
WRED <o o] _.33.2.._. A,
— 20
svstem ) 1ORQ < ™ As
CONTROL ) RD - rran A4
WR - ‘—36-“’ Ag
.
28 37 A
RFSH  «g—— —-—38——> 7 ADDRESS
- Ag 8uUS
18 39 A
HALT i '—d—> 9
20 o Ay
R 24 1
WAIT =~ ——>] — Ay
cpu . 280 CPU = M2
CONTROLY iNT —_— MK 3880 —— Aqq
. 17
NMT MK 3880-4 — Ata
% = A5
RESET
cPU BUEER 25
BUSRD —— o
BUS 23
CONTROL | BUSAK - “
a——> g
<~ O
& —-——;%-.p d——é—b 02
v BT e D3 DATA
GND g <T> 0, 8US
[—Ee D5
10 O
13 o
py——
FIGURE 3.01
Ag-A1s Tri-state output, active high. Ag-A1g constitute a 16-bit address

170

{Address Bus)

Dg-D7
(Data Bus)

My
{Machine Cycle one)

MREQ
{Memory Request}

bus. The address bus provides the address for memory {(up to 64K
bytes) data exchanges and for 1/O device data exchanges. 1/0
addressing uses the 8 lower address bits to allow the user to
directly select up to 256 input or 256 output ports. Ag is the
least significant address bit. During refresh time, the lower 7 bits
contain a valid refresh address.

Tri-state input/output, active high. Dg-D7 constitute an 8-bit
bidirectional data bus. The data bus is used for data exchanges
with memory and 1/0 devices.

Qutput, active low. W indicates that the current machine cycie
is the OP code fetch cycle of an instruction execution. Note that
during execution of 2-byte op-codes, M7 is generated as each op
code byte is fetched. These two byte op-codes always begin with
CBH, DDH. EDH, or FDH. M also occurs with [ORQ to indicate
an interrupt acknowledge cycle.

Tri-state output, active low. The memory request signal indicates
that the address bus holds a valid address for a memory read or
memory write operation,



IORQ Tri-state output. active low. The IORQ signal indicates that the

{Input/Qutput Request) lower half of the address bus holds a valid 1/O address for a 1/0O
read or write operation. An IORQ signal is also generated with
an M—1 signal when an interrupt is being acknowledged to indicate
that an interrupt response vector can be placed on the data bus.
interrupt Acknowledge operations occur during Mq time while
1/0 operations never occur during My time.

RD Tri-state output, active fow. RD indicates that the CPU wants to

{Memory Read) read data from memory or an 1/0 device. The addressed /0 device
or memory should use this signal to gate data onto the CPU data
bus.

WR Tri-state output, active low. WR indicates that the CPU data bus

{(Memory Write) holds valid data to be stored in the addressed memory or /0O
device.

RFSH Qutput, active low. RFSH indicates that the lower 7 bits of the

{Refresh} address bus contain a refresh address for dynamic memories and

current MREQ signal should be used to do a refresh read to all
dynamic memories. A7 is a logic zero and the upper 8 bits of the
Address Bus contains the | Register.

HALT Qutput, active low. HALT indicates that the CPU has executed a

{Halt state)} HALT software instruction and is awaiting either a non maskable
or a maskable interrupt {with the mask enabled} before operation
can resume. While halted, the CPU executes NOP’'s to maintain
memory refresh activity.

WAIT* Input, active low. WAIT indicates to the Z80-CPU that the add-

(Wait} ressed memory or |/O devices are not ready for a data transfer.
The CPU continues to enter wait states for as long as thus signal 1s
active. This signal allows memory or {/O devices of any speed to
be synchronized to the CPU.

INT fnput, active low. The Interrupt Request signal is generated by

{Interrupt Request} 1/O devices. A request will be honored at the end of the current
instruction if the internal software controlled interrupt enable
flip-flop (IFF) s enabled and if the BUSRQ signal is not active.
When the CPU accepts the interrupt, an acknowledge signal
(1ORQ during M1 time} 1s sent out at the beginning of the next
instruction cycle. The CPU can respond to an interrupt in three
different modes that are described n detail in section 8.

=

Input. negative edge triggered. The non maskable interrupt request
line has a higher priority than INT and is alwavs recognized at the
end of the current instruction, independent of the status of the
interrupt enable flip-flop. NMI automatically forces the Z80-CPU
to restart to location 0066}. The program counter is automati-
cally saved in the external stack so that the user can return to the
program that was interrupted. Note that continuous WAIT cycles
can prevent the current instruction from ending, and that a
BUSRQ will override a NMI.
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RESET Input, active low. RESET forces the program counter to zero and
initializes the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop
2} Set Register | = 004

3} Set Register R = 00

4) Set Interrupt Mode 0

During reset time, the address bus and data bus go to a high
impedance state and all control output signals go to the inactive
state. No refresh occurs.

BUSRQ Input, active fow. The bus request signal is used to request the

{Bus Request) CPU address bus, data bus and tri-state output control signals to
go to a high impedance state so that other devices can control
these buses. When BUSRQ is activated, the CPU will set these
buses to a high impedance state as soon as the current CPU
machine cycle is terminated.

BUSAK* Qutput, active low. Bus acknowledge is used to indicate to the
{Bus Acknowledge} requesting device that the CPU address bus, data bus and tri-

state control bus signals have been set o their high impedance
state and the external device can now control these signals.

Single phase system clock.

*While the 280-CPU is in either a WAIT state or a Bus Acknowledge condition, Dvnamic Memory Refresh
will not oceur,
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4.0 CPU TIMING

The Z80-CPU executes instructions by stepping through a very precise set of a few basic
operations. These include:

Memory read or write
i/0 device read or write

Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic operations
can take from three to six clock periods to compiete or they can be lengthened to syn-
chronize the CPU to the speed of external devices. The basic clock periods are referred to as
T states and the basic operations are referred to as M (for machine) cycles. Figure 4.0-0
illustrates how a typical instruction will be merely a series of specific M and T cycles. Notice
that this instruction consists of three machine cvcles (M1, M2 and M3). The first machine
cvcle of any instruction is a fetch cvcle which is four, five or six T states long {unless
lengthened by the wait signal which will be fully described in the next section}. The fetch
cycle (M1} is used to fetch the OP code of the next instruction to be executed. Subsequent
machine cvcles move data between the CPU and memory or 1/0 devices and they may have
anywhere from three to five T cycles {again they mav be lengthened by wait states to
synchronize the external devices to the CPU)}. The following paragraphs describe the timing
which occurs within any of the basic machine cycles. In section 7, the exact timing for
each instruction is specified.

BASIC CPU TIMING EXAMPLE

T State

T T2 T3 Ta

Machine Cycte

M1
{OP Code Fetch! {Memory Read) {Memory Write}

Instrucion Cycle

FIGURE 4.0-0

All CPU timing can be broken down into a few very simple timing diagrams as shown in
Figure 4.0-1 through 4.0-7. These diagrams show the following basic operations with and
without wait states (wait states are added to synchronize the CPU to slow memory or
1/0 devices).

4.0-1. Instruction OP code fetch {M1 cycle}

4.0-2. Memory data read or write cycles

4.0-3. 1/0 read or write cycles

4.0-4. Bus Request/Acknowledge Cycle

4.0-5. Interrupt Request/Acknowledge Cycle

4.0-6. Non maskable interrupt Request/Acknowledge Cycie
4.0-7. Exit from a HALT instruction
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INSTRUCTION FETCH

Figure 4.0-1 shows the timing during an M1 cvcle (OF code fetch). Notice that the PC is
placed on the address bus at the beginning of the M1 cycle. One half clock time later the
WVIREQ signal goes active. At thws time the addrers to the memory has had time to stabilize
so that the falling edge of TREQ can be used airectly as a chip enable clock to dynamic
memories. The RD line also goes active to indicate that the memory read data should be
enabled onto the CPU data bus. The CPU samples the data from the memory on the data
bus with the rising edge of the clock of state T3 and this same edge is used by the CPU
to turn off the RD and MREQ signals. Thus the data has already been sampled by the CPU
before the RD signal becomes inactive. Clock state T3 and T4 of a fetch cycle are used to
refresh dynamic memories. {The CPU uses this time to decode and execute the fetched
instruction so that no other operation could be performed at this time). During T3 and T4
the lower 7 bits of the address bus contain a memory refresh address and the RFSH signal
becomes active to indicate that a refresh read of all dynamic memories should be accom-
plished, Notice that a RD signal is not generated during refresh time to prevent data from
different memory segments from being gated onto the data bus. The MREQ signal during
refresh time should be used to perform a refresh read of all memory elements, The refresh
signal can not be used by itself since the refresh address is only guaranteed to be stable
during MREQ time.

INSTRUCTION OP CODE FETCH

e 1 Gyl e
Ty T2 T3 Ta 1
<4 \ \ \ \
AQ ~ AlS O I REFRESH ADDR. T

wait [ ™ S L W RS AR DR

Mi ~-\ ] ‘L ______ L
Do — D7 v} —

RESH [ —

FIGURE 4.0-1
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Figure 4.0-1A illustrates how the fetch cycle is delayed if the memory activates the WAIT
tine. During T2 and every subsequent Tw, the CPU samples the WAIT line with the falling
edge of @, If the WAIT line is active at this time, another wait state will be entered during
the following cycle. Using this technique the read cvcle can be lengthened to match the
access time of any type of memory device.




INSTRUCTION OP CODE FETCH WITH WAIT STATES

Mi Cyet,
T T, Tw Tw Ty Ts

i 1\ L J SR [ VRS B W A
AD ~ AT pC J{ REFRESH ADDR.
wRea ] L L /N
I /
00 - D7 i ; ﬁ@}—
wo T | I

L N I WY s i WY i S ol ettt Atuttntat
RFSH I—

FIGURE 4.0-1A

MEMORY READ OR WRITE

Figure 4.0-2 illustrates the timing of memory read or write cycles other than an OP code
fetch (M1 cyclel. These cycles are generally three clock periods long uniess wait states are
requested by the memory via the WATT signal. The MREQ signal and the RD signal are used
the same as in the fetch cycle. In the case of a memory write cycle, the MREQ also becomes
active when the address bus is stable so that it can be used directly as a chip enable for
dynamic memories. The WR line is active when data on the data bus is stable so that it can
be used directly as a R/W pulse to virtually any type of semiconductor memory. Further-
more the WR signal goes inactive one half T state before the address and data bus contents
are changed so that the overlap requirements for virtually any type of semiconductor
memory type will be met.

MEMORY READ OR WRITE CYCLES

[ Memwry Read Cycle et Meimory Write CyCle i

T, T, T, i T, 15
S
S B WD A VY B SR | \ \
AD - AT5 MEMORY ADDR. 1 MEMORY ADDR )

mREG T\ 7 1\ 1
AD T \ /
WR \__—__J T

DATA BUS . { DATA QUT }-—..
(D0-D7) el h T

war L T U T T T T :—:_I_LT—__—““

FIGURE 4.0-2
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Figure 4.0-2A illustrates how a WATT request signal will lengthen any memory read or
write operation. This operation is identical to that previously described for a fetch cycle.
Notice in this figure that a separate read and a separate write cvcle are shown in the same
figure although read and write cvcles can never occur simultaneously.

MEMORY READ OR-WRITE CYCLES WITH WAIT STATES

T T2 Tw Tw | T3 T
| \ \ \ \ \ \
A0 ~ A5 EMORY ADDR. ]
wmREQ | \ I
RD \ I READ
DATA BUS — N CYCLE
(00-D7N LN ey
we \ i WRITE
OATA BU CYCLE
asus | TA OUT e
(o0-D7) onta
LV I 1 VY S O Y AN A A W EO I R

FIGURE 4.0-2A
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INPUT OR OUTPUT CYCLES

Figure 4.0-3 itlustrates an 1/O read or 1/O write operation. Notice that during 1/0 operations
a single wait state is automatically inserted. The reason for this is that during 1/0 operations.
the time from when the TORQ signal goes active untit the CPU must sample the WAIT line
is very short and without this extra state sufficient time does not exist for an /0 port to
decode its address and activate the WAIT line if a wait is required. Also, without this wait
state it is difficult to design MOS 1/O devices that can operate at full CPU speed. During
this wait state time the WAIT request signal is sampled. During a read 1/O operation, the
RD line is used to enable the addressed port onto the data bus just as in the case of a
memory read. For 1/O write operations, the WR line is used as a clock to the /O port, again
with sufficient overlap timing automatically provided so that the rising edge may be used as
a data clock.

Figure 4.0-3A illustrates how additional’ wait states may be added with the WAIT line.
The operation is identical to that previously described.

BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-4 illustrates the timing for a Bus Request/Acknowledge cycie. The BUSRQ
signal is sampled by the CPU with the rising edge of the last clock period of any machine
cycle. If the BUSRQ signal is active, the CPU will set its address, data and tri-state control
signals to the high impedance state with the rising edge of the next clock pulse. At that
time any external device can control the buses to transfer data between memory and 1/C
devices. (This is generally known as Direct Memory Access [DMA] using cvcle stealing).
The maximum time for the CPU to respond to a bus request is the length of a machine
cycle and the external controtler can maintain control of the bus for as many clock cycles
as is desired. Note, however, that if very long DMA cycles are used, and dynamic memories
are being used, the external controlier must also perform the refresh function. This situation
only occurs if very large blocks of data are transferred under DMA control. Also note that
during a bus request cycle, the CPU cannot be interrupted by either a NMT or an INT signal.




INPUT OR OUTPUT CYCLES

Ty T2 Tw' T3 T
pr— \ \ \ [ \ L

A0 ~ A7 1 PORT ADDRESS M

GRa \ /

AD 1 N Read
v

DATA BUS {in} /

A i i v e

wA R ] 1 e
fcvclz

DATA 8US ] ouT

*inserted by Z80 CPU
FIGURE 4.0-3

INPUT OR OUTPUT CYCLES WITH WAIT STATES

T T, T Tw T3
D [ VU B WY B WY e SR ann S s
AQ ~ A7 1 PORY ADDRESS |
107G ]
DATA BUS L:__l’—N" ] AEAD
- at —— j cvCLE
warr AR MO SV Y Y WO
DATA BUS ] ouTt —— }wmw_
o 1 —r— CYCLE
*inserted bv 280 CPl
FIGURE 4.0-3A
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BUS REQUEST/ACKNOWLEDGE CYCLE

s

BUSAQ \ g

Any M Cy Bus Available S13188 wew—————]

Last T State Tx Tx Tx Ty

Sample & Sample

BUSAK \ e —
A0~ A15 )— PRSI SpE—p———— BRSSPI _4

Do~ D7 Y e e _(:
MREQ, AD, [V SOOI R — _(

WH, IORQ, r

RFSH

Floating

FIGURE 4.04

INTERRUPT REQUEST/ ACKNOWLEDGE CYCLE

Figure 4.0-5 iltustrates the timing associated with an interrupt cycle. The interrupt signal
(TNT) is sampled by the CPU with the rising edge of the last clock at the end of any in-
struction. The signal will not be accepted if the internal CPU software controlled interrupt
enable flip-flop is not set or if the BUSRQ signal is active. When the signal is accepted a
special M1 cvcie is generated. During this special M1 cvcle the IORQ signal becomes active
(instead of the normal MREQ) to indicate that the interrupting device can place an 8-bit
vector on the data bus. Notice that two wait states are automatically added to this cvcle.
These states are added so that a ripple priority interrupt scheme can be easily implemented.
The two wait states aliow sufficient time for the ripple signals to stablilize and identify
which /O device must insert the response vector. Refer to section 8.0 for details on how the
interrupt response vector is utilized by the CPU.

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Nt

AQ ~ A1S

MREQ

IORQ

DATA BUS —{ N

WA

RD

Last M Cycle

— M

of Instruction

Last T State T T, To' To' T3
— | W | S | E— | - \ \ o
G W A R N A O E

Mode 0 shown

FIGURE 4.0-5
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Figure 4.0-5A illustrates how additional wait states can be added to the interrupt response
cycle. Again the operation is identical to that previously described.

INTERRUPT REQUEST/ACKNOWLEDGE WITH WAIT STATES

M
T, T2 Ty T, T T4 T,
" A (R U e WY e U JL U R W A U
AD -~ A5 PC X REFRESH ADDR

R A N S vt U A

10RQ L /
DATA BUS ﬂ}
MREQ [ A A
RD
Mode 0 shown
FIGURE 4.0-5A

NON MASKABLE INTERRUPT RESPONSE

Figure 4.0-6 illustrates the request/acknowledge cvcle for the non-maskable interrupt.
A pulse on the NMI input sets an internal NMi latch which is tested bv the CPU at the
end of every instruction. This NM| latch is sampled at the same time as the interrupt line,
but this line has priority over the normal interrupt and it can not be disabled under soft-
ware control. Its usual function is to provide immediate response to important signals
such as an impending power failure. The CPU response to a non maskable interrupt is
similar to a normal memory read operation. The only difference being that the content
of the data bus is ignored while the processor automatically stores the PC in the external
stack and jumps to location 0066H. The service routine for the non maskable interrupt
must begin at this location if this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed the CPU begins executing NOP's until an
interrupt is received (erther a non-maskable or a maskable interrupt while the interrupt
flip flop is enabled). The two interrupt lines are sampled with the rising clock edge during
each T4 state as shown in Figure4.0-7. if a non-maskable interrupt has been received or a
maskable interrupt has been recewed and the interrupt enable flip-flop is set, then the halt
state will be exited on the next rising clock edge. The following cycle will then be an inter-
rupt acknowledge cycle corresponding to the type of interrupt that was received. i both are
received at this time, then the non maskable one will be acknowledged since it was highest
priority. The purpose of executing NOP instructions while in the halt state is to keep the
memory refresh signals active. Each cycle in the halt state is a normal M1 (fetch} cycle
except that the data received from the memory is ignored and a NOP instruction is forced
internally to the CPU. The halt acknowledge signal is active during this time to indicate
that the processor is in the halt state.
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NON MASKABLE INTERRUPT REQUEST OPERATION

Last M Cvcle i M2, M3*
Last T Time T T, Ty Ta Ts
@ ] \ \ \ \ \ (- J
st W I i B sy RSt S
AG~ A5 1 °C 1 REFRESH ||
] \
MREG \ I
) \
RFSH \
*M2 and M3 are stack write operations
FIGURE 4.0-6
HALT EXIT
M1 M1 M1
Ta Th T2 T3 Ta T T2
o o L | — W B W | A VY B
HALT \ g
Wror — I\ _ [T A VN I S PR P
NN
HALT INSTRUCTION
IS RECEIVED
DURING THIS
MEMORY CYCLE
FIGURE 4.0-7
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APPENDIX D

TRS-80 Interface
Breadboard Parts

Parts required for the construction of the TRS-80 Interface Bread-

board:

IC1&7 16-pin resistor network, eight independent 1000-
ohm resistors

IC2&6 8-position DIP switch (on-off)

IC 3,4, &5  SN74LS85 Quad comparator IC (DO NOT SUB-
STITUTE SN74L85)

I1C 8 SN74LS20 Dual four-input NAND gate IC

IC 9 SN74365 or DM8095 three-state buffer

IC 10 & 11 8216 Noninverting bus buffer, Intel or equivalent

IC 12 SN74154 decoder IC

I1C 13 SN7404 inverter IC

1C 14 SN74123 or SN741.S123 dual monostable IC

IC 15 LM3I19N Dual comparator (14-pin package)

IC 186, 17, 18,

& 20 High-quality 16-pin IC sockets, Augat 516-AG-

10D, or equivalent

I1C 19 High-quality 8-pin IC socket, Augat 508-AG-10D,
or equivalent

Dl -D4 1N4001 50 PIV, l-ampere diodes®

D3 Yellow LED

D6 Red LED

D7 Green LED

D8 & D9 1IN4148 or 1N4154, small-signal diodes

Rl & R8 1000-0hm, -watt resistor
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P2

T1
Misc.

220-ohm, 14-watt resistor

47K, Y4 -watt resistor

3900-ohm, ¥;-watt resistor

2200-ohm, Y;-watt resistor

9200-uf, 16 WVDC electrolytic capacitor (axial)®

0.1-uf disc ceramic, 50-volt capacitors

1-uf, 35 WVDC tantalum electrolytic capacitors

3.3 pf, 50 WVDC electrolytic capacitors (axial)

LM309K 5-volt, l-amp voltage regulator®

Molex right-angle 6-pin connector (PN 09-75-1061)
optional

Requires 1@ mating female housing (PN09-50-
7061) and 6@ connector pins (PN 08-50-0106 or
08-50-0108)

4-pin right-angle jumper header, AP Products
923875R, or equivalent

12.6 VAC transformer 1 amp

11 18-pin IC sockets

3 14-pin IC sockets

1 24-pin IC socket

Cable assembly: 40-pin header on one end, with
a 40-pin card edge connector on the other, facing
the same direction

Solderless breadboard socket, SK-10, Superstrip, or
equivalent, 4@ 4-40 x % flat-head mach. screws,
4@ #4 internal-tooth lock washers, 4@ #4
hex nuts.

Heat sink for VR, 2@ 4-40 X 14 mach. screws, 2@
#4 internal-tooth lockwashers, 2@ #4 hex
nuts, mica insulator, thermal grease (optional).

Power cord

The parts marked with “*” are not required if an external +5-volt
power supply will be used to power the system.

A printed-circuit board is available from

Techniques, Inc.
235 Jackson St.
Englewood, NJ 07631

A complete package, containing a case, power supply, etc., is avail-

able from
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APPENDIX E

Printed-Circuit
Board Artwork

This appendix contains artwork that may be used to make a
printed-circuit board of the TRS-80 Interfacing Breadboard. Since
the artwork has been reduced, it must be enlarged before it can
be used. We recommend that you have a print shop make a high-
contrast film negative, or positive, depending on the process that
you will use. The long thick black line in each of the three diagrams
should be enlarged so that it is four (4) inches long. The process-
camera operator should be able to correct the enlarging process so
that the resulting film is the right size for the printed-circuit board.
You may not choose to use the parts overlay, but it has been pro-
vided as a guide to the placement of the various parts.

A completely etched, double-sided printed-circuit board is avail-
able from

Techniques, Inc.

235 Jackson Street
Englewood, NJ 07631
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CONTEOL StONALS

1_"_VDESIGNED BY THE BLACKSBURG GROUP o cormonsn  rocmsrems FEEROR,

Fig. E-4. Component nomenclature overlay superimposed on component-side foil pattern,
may be used as parts placement guide.
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index

A
Absolute decoding, 37-38
Address
bus, 15
decoder, 73

use of, 88-92
decoding, using gates for, 29-34
detecting gate, 34
AD571 converter, 157-158
Analog-to-digital converter, interfac-
ing, 156-161
Assembly Language and BASIC, 24-25

B

“Bar” over, 13
BASIC interpreter program, 11
BCD codes, 130-135
Bidirectional, 10
Binary
and decimal numbering, 25-26
codes, 130-135
Breadboard
basic, 69-81
construction, 79-81
Breadboarding with TRS-80, 69-81
Bus
address, 15
buffers, 75-76
control, 15
data, 15
“Bus conflict,” 78
byte, 9
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[

Central processing wmit (CPU), 9
CLEAR, 66
Codes
bed, 130-135
binary, 130-135
Comparator and decoder used for de-
vice selections, 45
Comparing, 29
Complex flags, 64-65
Control
bus, 15
circuitry, 76-79
Converter, digital-to-analog, 118-123

D

Data
bus, 15
logging and display, 114-118
transfer and control, 23-24
Decimal, and binary numbering, 25-26
Decisions, flags and, 61-68
Decoding, 29
Device
address-decoder circuits, 123-130
addressing, 28-45
and memory decoders, 72-75
interfacing, 1/0, 47-60
-select pulse, 34
using, 92-95
DEVICE ADDRESS, 31
Devices, some 1/0, 22



Digital-to-analog converter, 118-123

E

8255 PPI chip, 149, 150, 152, 153
Experiments

introduction to, 83-85

TRS-80 interfacing, 83-161

F

Field-programmed memory, 12
Flag(s), 61-68
circuits, 65-67, 145-148
-detecting software, 63-64
Function pulse, 34

G
Gate
address detecting, 34
NOR, 34
OR, 34

Gating, 28-29
circuit, programmable, 31-32
General-purpose
1/0 commands, 17-19
memory commands, 19-20

IC-16 (socket), 71
IN signal, 14-15, 76-77
Input/Output
(1/0) devices, 14-15
pins, 11
Input part(s), 18, 52-58
applications, 101-108
constructing, 96-99
multibyte, 99-101
two-bit, 58
INTAK signal, 76-77
Interface chips, programmable, 148-
156
Interfacing
analog-to-digital converter, 156-161
experiments, TRS-80, 83-161
TRS-80, 27-45
Interpretation software, 25
Interrupts, 67-68
Inverter, 29
1/0
commands, 15-17
device
address decoding, 27-28

1/O~cont
device
interfacing, 47-60
synchronization, 61-62
1/OR signal, 14
I/OW signal, 14

L

Lamp monitors, 163-164
Large decoders, 38-43
Latch, 47.52
Least significant bit (LSB), 10
Level II BASIC, 11
Logic
-device tester, 139-145
functions, 163-166
probe, 71-72
use of, 85-88
switches, 163-164
Logical operations and flags, 62-63

M

Mask, 63
Masked-programmed memory, 12
Memory, 10-14

addressing, 28

chips, 12

-mapped 1/0, 58-60
MEMR signal, 13
MEMW signal, 13
Monitors, lamp, 163-164
Most significant bit (MSB), 10
Multibyte input ports, 99-101
Multiple flags, 67

N

Nonabsolute device addressing, 37-38
NOR and Or gates, 34

NOR-gate control circuit, 133
Numbering, binary and decimal, 25-26

(o]

Octal latch, 51

OUT signal, 14-15, 76-77

Output port(s), 18, 47-52, 130-135

constructing, 108-112

OQutput-port and input-port interac-
tions, 112-114

Output-ports  traffic-light
135-139

controller,
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Parts
required for experiments, 167-168
TRS-80 breadboard interface, 181
PEEK
and POKE command timing rela-
tionships, 24
instructions, 19-23
Pins, input/output, 11
POKE instructions, 19-23
Port(s), 18
input, 18
output, 18
Positions, 10
Power supply, 69-71
Printed-circuit board artwork, 183-
187
Probe, logic, 71-72
Processor, Z-80, 9-26
Programmable
gating circuit, 31-32
interface chips, 148-156
Pulsers, 164-165

Q outputs, 49

Random-access memory (RAM), 13
R/C charging circuit, 160

RD*® notations, 13

RD signal, 76-77

Read-Only memory (ROM), 11
READ (RD) control signal, 13
Read/Write (R/W) memory, 11
RESET signal, 76-77

H

SK-10 socket, 81

SN7400 ~anp-gate chips, 140-141
SN7402 gate chip, 151
SN7420 gate chip, 151
SN7454 latch, 48-49
SN7474 flip-flop chip, 146
SN7485 comparator, 44
SN7493 4-bit counter, 144
SN7585 comparator chip, 43
SN74125 bus buffer chip, 53
SN74154 decoder, 40, 41-42
SN74155 decoder, 41

190

SN74175 latch, 48-50
SN74365 chip, 56, 96
(DM8095) three-state bus driver
chip, 55
SN741.5138 decoder, 39, 123-125, 128
SN74LS139, 123-124, 129
SN741.5244 three-state bus
chip, 55, 57
SN74LS373 latch, 48-49, 51, 130-131
Software
commands and interface circuits,
20-22
1/0 control instructions, 15-26
Status flag(s), 61
“Super Strip,” 81
Switches, logic, 163-164
Synchronization, 1I/0 device, 61-62

driver

T
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TO THE READER

This book is one of an expanding series of books that will cover the field of basic
electronics and digital electronics from basic gates and flip-flops through microcomputers
and digital telecommunications. We are attempting to develop a mailing list of individ-
vals who would like to receive information on the series. We would be delighted to
add your name to it if you would fill in the information below and mail this sheet to us.
Thanks.

1. | have the following books:

2. My occupation is: ] student [ teacher, instructor ] hobbyist
1 housewife [ scientist, engineer, doctor, etc. O businessman
[ Other:
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City State
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The Blacksburg Group

According to Business Week magazine (Technology July 6, 1976) large scale integrated circuits
or LS| “chips” are creating a second industrial revolution that will quickly involve us all. The
peed of the devel ts in this area is breathtaking and it becomes more and more difficult to
keep up with the rapid advances that are being made. It is also becoming difficult for newcomers
to “‘get on board.”

It has been our objective, as The Blacksburg Group, to develop timely and effective educational
materials and aids that will permit students, engineers, scientists and others to quickly learn how
to apply new technologies to their particular needs. We are doing this through @ number of
means, textbooks, short courses, and through the development of educational “hardware” or
training aids.

Lo

Qur group members make their home in Blacksburg, found in the Appalachian Mountains of
southwestern Virginia. While we didn’t actively start our group collaboration until the Spring
of 1974, members of our group have been involved in digital electronics, minicomputers and
microcomputers for some time.

Some of our past experiences and on-going efforts include the following:

—The development of the Mark-8 computer, an B008-based device that was featured in Radio-
Electronics magazine in 1974, and generally recognized as the first widely available hobby
computer. We have also designed several 8080-based computers, including the Mini-Micro De-
signer (MWMD-1). More recently we have been working with B085-based computers and the TRS-80.

—The Blacksburg Confinuing Education Series™ covers subjects ranging from basic electrenics
through microcomputers, operational amplifiers, and active filters. Test experiments and examples
have been provided in each book. We are strong believers in the use of detailed experiments and
examples to reinforce basic concepts. This series originally started as our Bugbook series and many
titles are now being translated into Chinese, Jap , German and ltalian.

—We have pioneered the use of small self-contained computers in hands-on courses aimed ot
microcomputer users. The solderless breadboarding modules developed for use in circuit design
and development make it easy for people to set up and test digital circuits and computer inter-
faces. Some of our technical products are marketed by Group Technaology, Ltd., Check, VA 24072,
USA. (703) 651-3153.

—Our short course programs have been presented throughout the world, covering digital elec-
tronics through TRS-80 computer interfacing. Programs are offered through the Blacksburg Group
and the Virginia Tech Extension Division. Each course offers o mix of lectures and hands-on
laboratory sessions. Courses are presented on a regular basis in Blacksburg, and at various times
fo open groups, companies, schools, and other sponsors.

For additional information about course offerings, we encourage you to write or call Dr. Chris
Titus at The Blacksburg Group, Box 242, Blacksburg, VA 24060, (703) $51-9030, or Dr. Linda
Leffer at the Center for Continuing Education, Virginia Tech, Blacksburg, VA 24061, (703) 951.
5241,

Mr. David Larsen is on the faculty of the Department of Chemistry at Virginia Polytechnic Insti-
tute and State University. Dr. Jonathan Titus and Dr. Christopher Titus are with The Blacksburg
Group, Inc., all of Blacksburg, Virginia.



| BOOK 1 _
TRS-80 INTERFACING

The Radio Shack TRS-80 computer provides abundant computer
power at moderate cost, allowing broad versatility. Like many TRS-80
users, you, perhaps, are content to apply your computer to home,
business, or personal uses where standard peripherals, such as key-
board, display, cassette recorder, etc., are appropriate. Or, maybe,
you are like a growing number of others who desire to have their TRS-80
actually control external devices, sense extemnal events, and perhaps,
.even transfer information between the computer and peripheral cir-
cuits of their own design. Ifyou are among the latter group, then TRS-80
Interfacing will infroduce you to the intemally generated signals avail-
able and show you how each can be used under BASIC language
program control. This book is for the reader who has a good under-
standing of commands in Level Il BASIC and would be found midway
between the beginning computer user and the advanced program-
mer/hardwaré designer. '

Dr. Jonathan A. Titus is the president of Tychon, Inc., in
Blacksburg, Virginia Most of his current work involves tech-
nical writing and the application of microcomputers for
data acquisition and control. He has written and co-
authored a number of articles on computers for both pro-
fessional and popular applications.
Jon's first microcomputer experience was with the
X 8008, and his Mark-8 computer was featured as the first
: ' widely available hobby computer. His interests now cen-
ter around the 8080 and 14-bit microcomputers. He has co-instructed courses
with the American C ical Society and now works with the Tychon hardware
and software proPrc)ms.

Dr. Christopher A. Titus is a microcomputer applications
engineer with Tychon, Inc., in Blacksburg, Virginia. He re-
ceived his Ph.D. from Virginia Polytechnic Institute while
working on microcomputer automated chemical instru-
ments. He has coauthored a number of instrumentation
articles and has had papers presented at major engi-
neering and science conferences.

Chris has programmed with the Intel 8008, Intel 8080,
and MOS Technology 6502 Microcomputers. He has writ-
ten editor, assembler, disassembler, and debug software, as well as complete
operating systems for microcomputers. He is also a proficient PDP-8 program-
mer and digital designer.

David G. Larsen is an instructor in the Department of
Chemistry at Virginia Polytechnic Institute & State Univer-
sity,. where he teaches undergraduate and graduate
courses in analog and digital electronics. He is coauthor
of other books in the Blacksburg Continuing Education
Series™ and the monthly columns on microcomputer in-
terfacing. He is a co-instructor of a series of one-to-five-
- day workshops on the digital and microcomputer revolu-
WAL VAN TS tion. taught under the auspices of the Extension Division
of the University, which attract professionals from all parts of the world.

¥ 7

ISBN: 0-672-21633-7



