¥ n ¥ .IH.- u- e E i .‘i ﬂl.l b
R e e o] e ——_ = -
I T T i)

GRAPHICS
For the Model |
=|gl® I\/Iodel I

DAVID A KATER
SUSAN JTHOMAS

For the Model |
and Model |l

David A. Kater
Susan J. Thomas

BYTE Books, 70 Main Street, Peterborough, New Hampshire 03458

B = SRR S R ST sowen w

it

Copyright © 1982 BYTE Put;liéations, Inc., a subsidiary of McGraw-Hill, Inc. All
rights reserved. No part of this book may be translated or reproduced in any form
without the prior written consent of BYTE Publications, Inc.

TRS-80 and Micro Movie are registered trademarks of the Tandy Corporation. Level
I BASIC is a registered trademark of Microsoft, Inc.

The authors of the programs provided with this book have carefully reviewed them to
insure their performance in accordance with the specifications described in the book.
Neither the authors nor BYTE Publications, Inc., however, makes any warranties
concerning the programs and assumes no responsibility or liability of any kind for
errors in the programs or for the consequences of any such errors. The programs are
the sole property of the authors and have been registered with the United States
Copyright Office.

Library of Congress Cataloging in Publication Data

Kater, David A.
TRS-80 graphics for the Model I and Model I11.

Includes index.

1. TRS-80 (Computer)}—Programming.
2. Computer graphics. I. Thomas, Susan J. II. Title. III. Title: T.R.S.-80 graphics
for the Model 1 and Model I11. ‘

QA76.8.T18K37 001.55°3 81-21671
ISBN 0-07-033303-3 AACR2
Edited by Bruce Roberts.

Cover and Book Design
by Ellen Klempner

Cover illustration generated
on computer by Glenn Entis

Production Editing by Tom McMillan.
Tllustrations by Jack Wittry.

Typesetting and Production by
LeWay Composing Service,
Fort Worth, Texas.

Printed and Bound by
Kingsport Press,

« Kingsport, Tennessee.

To:
Richard L. Kater
whose aspirations
and dreams
inspired this book.

iii

iv

About the Authors

David A. Kater is a former college math instructor who was sidetracked from that
career by his growing addiction to computers. In 1978, he cofounded the Computer
Institute of San Diego and began a consulting business. His work with computers
grew to the point that in 1980 he resigned from full-time teaching to devote all his
energies to writing and consulting in the computer field.

Susan J. Thomas was a Finance student at San Diego State University when she first
became interested in microcomputers. Her work on TRS-80 Graphics furthered this
interest and led her to include in her studies a Computer Science major.

ACKNOWLEDGEMENTS

There are many whose encouragement and support made it possible to continue a
labor of love that was over a year in the writing. We thank you all. We are especially
indebted to many who reviewed portions of the early manuscript and whose
comments and suggestions were immensely helpful:

Professor James W. Allen, Grossmont College Computer Science and computer
entrepreneur, San Diego, CA.

Professor John Donald, San Diego State University Math Science, San Diego, CA.
Thomas Kasper, hardware hacker par excellence, San Diego, CA.

Richard L. Kater, Engineer, Lockheed California Co., father, and all around good
guy, Woodland Hills, CA.

Colonel Ed Laidlaw, machine language zany, Chula Vista, CA.

Dr. David A. Lien, renowned author and publisher, Compusoft, Inc., San Diego,
CA.

Professor David Lunsford, Grossmont College Mathematics and Computers, El
Cajon, CA.

Special thanks go to David A. Thomas and Mike Hunter, whose persistent typing
fingers found and corrected many a program error, and to David F. Thomas for his
generous support.

Finally, thanks to the microcomputing community. We are proud to be a part of this
fledgling industry in which enthusiasm and innovation continue to run rampant.

TRS-80

TS

For the Model |
and Model i

Table of Contents

ix

Contents

Preface
1. Goals and assumptions of thisbook
2. How touse thisbook...............
3. Scope and limitations
- Basic Tools PART I

1: Introduction

1. A first look at graphics
2. Sample graphic applications
3. Using this book with a computer

2: Basic Graphics on the TRS-80

1. The TRS-80 video display
2. Print coordinate system oo,
3. Plot coordinates,

3: Programming Techniques with SET and RESET

1. Loopingvvii
2. Subroutines i
3. Simple animation.o ol

4: Using Strings

1. ASClHcodeot e
2. Useofstrings...............iiiiiiiiinne...
3. Building strings with concatenation
4. Controlling screen position

5: PEEK, POKE, and Other Oddities
1. Memory-mapped video
2. PEEK and POKE at pressure points.
3. String packingooviiir i
4. OUT statement.ottt

6: Machine Language Graphics and Sound

1. Using Machine Language with BASIC
2. Some graphicroutines.,
3. Machine Language sound routines

X Table of Contents

7: Special Graphics Considerations

1. Speed comparisonsi it i e 105

2. String organization N MEmMOTYcovirernienn.. 107

3. Input. . 110
Applications PART II

8: Geometric Shapes and Function Plots

1. nes. oo e 119
2. Cartesian coordinate system vs. the TRS-80 126
3. Polar coordinates it e 132

9: Statistics

1. Frequency distributions i 139
2. Linear regression and correlation 144
3. Normal Curvest 150

10: Computer Assisted Instruction

1. CAL OVEIVIEW. . ..ottt et 155
2. Screen formatting. e 160
3. Grabbing their attention.ot n.. 164

11: Visual Aids

1. Introduction to visual aids.............. 171
2. Standard format e 171
3. Sample programs 175
4. More graphsand charts. 183
12: Games and Animation
1. GaIIES . oottt i e e e 189
2. Saving the SCreen.ot i i e 190
3. Moving targets.o s 192
4, More on animationo it e 196
13: Figure Animation
1. Meet Critter . ..o v e e et e e e 203
2. Building the body parts.ot 205
3. The animationot e e e 212
14: The Art of Graphics
1. Patterns and designsttt 219
2. ONE-LINER : Anewartform............. ..., 229
3. Circular graphicso i i 233
4, PICtUrES. . ..o e e e 246

Table of Contents

Xi

e S e S T 0 0 P S S e e

Other Vistas PART III

15: Turbo-Charged Graphics

1. Graphics software — commercial. 257

2. Graphics software — do-it-yourself 259

3. Graphics hardware 265
Appendices PART IV
Appendix A

Radio Shack video display worksheet 271
Appendix B

Graphic Characters i 272
Appendix C

Special Characters.o e 273
Appendix D

Useful Memory Locationso 275
Appendix E

Screen Dump Patch 277
Appendix F

Chapter Checkpoints.ot 278
Indexo 285

reface

Preface

Xiii

Preface

1 Goals and Assumptions of this Book

TRS-80 Graphics for the Model I and Model ITI was created to explain how to
control graphics on the TRS-80 in simple, everyday language. We hope that by
working through examples with us, and by seeing graphic techniques spring to life on
your own video display, you will be inspired to take the plunge and to incorporate
graphics into your own programs. We also hope that you will find the reading easy
and the content informative, challenging, and entertaining.

We have assumed that you are familiar with the mechanisms of the TRS-80, and that
you have dabbled in BASIC just enough to know that you want to learn more. The
first few chapters of the book review each of the statements and functions — the basic
tools — we use throughout the book. If you are a serious programmer, these chapters
will serve as a quick pitstop on your way to the fast lane.

You can benefit from this book even if you are still standing knee-deep in packing
foam from your new TRS-80, wondering what the difference between PRINT and
INPUT is. Just set a nice, leisurely pace, and do a lot of experimenting on your own.
Your computer will be happy to tell you what it will and will not accept.

2 How to Use this Book

Every book ought to have a “‘How To Use This Book’’ section, even though no one
may read it. The section should include useful information such as:

@ which sections of the book can be skipped without loss of continuity (for
those in a hurry or with specific interests)

@ how the reader can derive the most benefit from the book

@ what special quirks we authors use — notational conventions for example.

Organization of the Book

Part 1 (Chapters 1 - 7) is a tutorial on general programming techniques and
emphasizes those used to generate or support graphics. Chapter 1 defines graphics,
gives sample applications, and then covers editing and topics related to using this
book with a computer. Those familiar with the TRS-80 may need only to scan through
Chapter 1. For the rest of us, the editing section is a must. Chapters 2 through 5 are the
heart of the book. In these chapters, we develop most of the techniques used
throughout the book. Read Chapters 2 through S sequentially. Advanced readers can
breeze through Chapters 2 and 3, then slow down for a closer look in Chapters 4 and
5. Chapters 6 and 7 contain some advanced techniques and observations that can be
bypassed without loss of continuity if you so choose.

Part 2 (Chapters 8 — 14) explores the use of the techniques covered in Part 1 in a
variety of applications. These applications chapters are, for the most part,
independent of each other and can be covered in any order. Explore the subjects that
interest you most. Feel free to go a little ape over the various applications!

Xiv

Preface

Part 3 (Chapter 15) looks at some of the hardware and software additions that can be
used to enhance your graphic creations. This final chapter is independent of the rest of
the book, and may be studied at any time.

Finally, there are also appendices in which you will find several useful summaries and
tables.

How Do I Use Thee? Let Me Count The Ways

This book is not a standard text! You will learn from it only by doing, watching, and
pondering. Like a good aged wine, the text should be savored. Let your patient little
computer teach you, step by step. By typing and running our carefully chosen
programming examples, you can see the results of every technique presented. Then,
ponder, ponder, and ponder some more. Review the program to make sure you
understand what makes it tick. The comments included after program RUNs will
often helpin this review with a line-by-line analysis of the program. So, if you are
puzzled by a particular program, keep reading. Help may be justa few lines away.

You will get the most out of this book by typing in the examples, and then studying
them until they reveal all of their secrets to you. After you have made all the
recommended modifications to a particular program, go back and experiment with
changes of your own. Save your creations on disk or tape for later use.

Notational Conventions Used in This Book

This symbol, usually to be found at the end of important computer programs, is a
reminder to you to SAVE the program. You can store it either on cassette or on disk,
depending on your system. This way, you’ll be able to call up the program later.

As you can see by our title, this book covers graphics for both the Model I and the
Model II1. But (there’s always a ‘but””), there will be differences between the two. In
the margin you will sometimes see one of these little critters. (Look familiar?) This is
our way of indicating a special note for one of the machines.

In TRS-80 Graphics, anything you type into the computer will appear in
DOT-MATRIX TYPEFACE LIKE THIS. The computer messages and output
will also be in dot matrix. This includes all statements, functions, listings, variables,
commands, and maybe even the kitchen sink. Exceptions: line numbers within the
text portion and certain other oddities.

49 CLS: PRINTE P, A3 : GOTO 3¢

To save your eyes (and ours), we’ve liberally interspersed spaces within the program
listings. But to save your typing fingers and the amount of memory you will need (not
you— your computer!), you may omit all those spaces except, of course, those inside
quotation marks. For example, the line above could be typed in merely as:

49 CLS:PRINTEP.A::GOTO30

Preface

XV

i S O R ST L e D53

Optional Program Cassette/Diskette

For your convenience, an optional cassette or diskette is available with recordings of
several of the larger programs. We hope that this will both minimize the amount of
typing you do, and, more importantly, eliminate any problems that might slow your
progress. The programs are labeled in the book with an asterisk (*) as shown below:

*19 REM - ASTERISK INDICATES PROGRAM AVAILABLE
20 REM - ON CASSETTE OR DISKETTE

See the last page of the book for purchase information.

3 Scope And Limitations

Languages And Operating Systems
*‘Does anyone speak COBOL here? How about PASCAL?”’

*‘Sorry. You took a wrong turn somewhere. Try down the hall, second door on
the left.”’

The TRS-80 was born speaking BASIC, and so BASIC is the language we shall use.
Except for a few instances in Chapters 6 and 7 all the examples in this book are written
in BASIC.

But, which BASIC are we talking about? Disk, Level I, Model I11? For the most part,
it doesn’t matter. The differences will surface only occasionally throughout the book.
Where necessary, you will be given specific instructions for your computer. Model
III BASIC has a few extra features that will not work on the Model I; these will be
treated as we proceed.

Hardware Requirements

The minimal system necessary is a TRS-80 with Level Il or Model IIl BASIC. You
could limp along with Level I, but it is not recommended. For al the examples, 16 K
(16,384 characters) of available random-access memory (RAM) is adequate. Most of
the programs will run on TRS-80 work-alike systems, but watch out for different
PEEK and POKE locations. If you have a disk system, remember that Disk BASIC
occupies about 12 K, so you should have at least 32 K of RAM. You will also need
some kind of storage medium. Storing programs on disk, cassette, or stringy floppy
can save you plenty of retyping if your system suddenly freezes up or if a curious
passerby accidently knocks out the plug.

2 Introduction

Introduction

3

R R N

Introduction
1 A First Look at Graphics

By Way of Webster

Nearly every dictionary offers several definitions for the word ‘‘graphic.”” The
meaning most closely related to the central theme of this book is:

GRAPHIC — of or relating to the pictorial arts.

Pictures. That’s what this book is all about. Pictures that describe, inspire, and
stimulate. Pictures that will enhance your computer programs. Pictures that can be
used for serious applications or for pure delight and entertainment.

Every art form is defined and limited by the medium it uses. Pictures painted on a
canvas do not have the same effect as those done on egg shells, walls, or bodies. Oils,
pastels, and watercolors give very different results. For each work of art, the artist
chooses the materials that will best express the ideas in mind. We particularly
appreciate those artists whose creations transcend the norm for a given medium.

Soitis with our graphic creations. We will limit our canvas to the video screen, our
brush to the BASIC language, and our paint to the TRS-80 character set. Our
challenge is to develop new and inspiring images using this well-defined set of tools.

The ultimate goal of this book is to expose you to a variety of techniques so that you
will be able to create and manipulate your own graphic images. Along the way, we
will pause to investigate other aspects of the BASIC language such as string storage
and keyboard input. An understanding of these subjects will enable you to better use
the graphic capability of the TRS-80.

The Canvas and Paint

We have at our disposal the full range of keyboard characters and a screen that
supports 1,024 character positions. For drawing purposes, we have access to tiny
rectangular pixels, or graphic blocks. These pixels measure about 1/16 inch wide by
1/8 inch high. With 6,144 of them on the screen, we are afforded a fair degree of
flexibility in our displays.

Can we situate individual dots anywhere we want? No, the graphic blocks are the
smallest unit we have access to without addition to or modification of the existing
hardware. In fact, this turns out to be something of a blessing. Each graphic block is
made of 12 dots; this adds up to 73,728 dots on the screen. Do you have an idea of the
enormous programming effort it would require to individually control all those dots
(not to mention a tremendous drain of memory.)? BASIC would have to be redesigned,
and we would lose several of the features the TRS-80 now enjoys. Furthermore, the
speed needed to create and animate large figures dot-by-dot would force us to

4

Introduction

abandon BASIC and use machine language. With graphic blocks, we have both a
powerful BASIC and the ability to easily create the graphics for a wide range of
applications.

2 Sample Graphic Applications

Graphics can be used in a broad array of computer program applications.Here are
some examples.

 SOURCE:

5

Introduction

6

Introduction

e

_ Y,

Figure1.1 Examples of graphic applications: a) business, b) games, c) statistics,d) design,
e) mathematics.

3 Using This Book With A Computer

Typos

By typing and running BASIC programs yourself, you can actually see graphic
techniques demonstrated on the TRS-80 screen and thus fully explore the ideas in this
book. Although this approach gives tremendous ‘‘hands-on’’ experience, it does
require a lot of typing and editing. Tiny typing errors can make a useless mess out of
the most carefully conceived programs. To eliminate any possible frustration, type
carefully and then double-check your typing in every program before you run it. Keep
a special lookout for semicolons at the end of PR INT lines. We have made every
effort to keep the programs error-free. Take your time and enjoy.

Working With BASIC

A short review of some of the features of BASIC may help before we jump in with
both feet. (Those familiar with BASIC may want to skim over this section.) Turn on
the computer and bring up BASIC.

Here is a sample program:

NEW

19 CLS: P=3Z0: 0=649

2¢ PRINTE@P, "SAMPLE PROGRAM"

49 PRINTEG ., "PRESS <BREAK:> TO STOPRP®
3¢ GOTO 5S¢

Let’s enter this program, taking advantage of the AUT O function in TRS-80 BASIC.
Type

NEW (ENTER
AUTO (ENTER

From this point on, the computer will generate line numbers for you. Type in each
line followed by the key. Feel free to use 7 as an abbreviation for PRINT.
Notice that line 30 is missing. Just press to bypass that line. When you get to
line 60, press to stop the automatic line numbering. Now type RUN. Press
to stop the program, then type LIST.

The AUT O function will be a big time-saver as your fingers travel over the keys and
through this book. Another example of the AUT O functionis AUTO 1@@ » 3. This
generates line numbers starting at 100 in increments of 5.

TRS-80BASIC also features an ‘ ‘immediate mode.”’ Most BASIC statements can be
typed in without line numbers, and they will execute immediately. Try

PRINT P:0.Asyoucansee, P and Q retain their values even after the program
stops. They will change back to zero, however, if the program is modified in any
way. As another example of the immediate mode, type CLS: P=34@: Q=B537:
GOTO 2@ and you are right back in the program again. Press the key to
stop.

Editing

Because you will frequently need to modify program lines, it is important that you
have a good working knowledge of the editing features of Radio Shack BASIC. If you
are not familiar with these features, you should carefully study Chapter 9 of the
BASIC Reference Manual before you continue in this book. It will be well worth your
time, even if you intend to write BASIC programs only occasionally. Work through
the examples in the manual, then practice editing with the sample programs presented
here.

Here is a list of the special function keys:

EDIT — Enteredit mode

A — C(ancel any changes and restart
n C — Change ncharacters
n D — Delete n characters
E — Savechanges and exit edit mode
H — Hackand insert
I — Insert
n K ¢ — Searchand kill
L. — Listtheline
Q — Cancel changes and exit edit mode
n S ¢ — Search fornthoccurrenceof ¢
X — Extendthe line
n (&) -— Backspacenspaces
n — Display the next n characters
Escape insert mode

)
==
L]
-1
-
m|
=
=10
m
=)
||

Exit edit mode

Introduction

8

Introduction

Note that several of the keys in the list are preceded by an ‘n’; some are followed by a
‘c’. ‘c’ represents any single character. ‘n’ represents an optional number. For
example, in using ‘n S ¢,” 45D would mean search for the fourth occurrence of the
character D; and.5 D would mean search for the first occurrence of the character D.
(The number ‘n’ is assumed to be one if it is omitted.)

EXAMPLE 1

Type in the following one line program. Don’t forget to press the (ENTER) key after the
line.

NEW
19 PRINT "A="A : GOSUB 90: PRINT: GOTOD 190

Let’schangeitto
10 PRINT "A="3j TAB(B)A : GOSUB 90: GOTO 10

Try the following editing sequence. Remember, don’t press (ENTER) while you are
editing.

You type Screen shows What
happened
EDIT 10(ENTER 10 _ Enter edit
mode
2D 16 IPR! Oops!HitD
whenwe
should have
hit
A 190 . Cancelthe
change
25A 10 PRINT "A="_ Search for
second A
I 10 PRINT "A="_ Enterinsert
mode
i TAB(8) 1@ PRINT "A="3 TAB(8). Insert data
19 PRINT "A="35 TAB(B). Exitinsert
mode
SP 190 PRINT "A="3iTAB(B)A
:GOSUB 99 - SearchforaP
6D i0 .., GOSUB 90:IPRINT:z!. Deleteb
characters
L 19 ., GOSUB 9@:!PRINT:!
GOTO 1@ Listrestofline
10 .
L 19 PRINT "A="3i TAB(B)YA : GOSUB 9@:
GOTO 10 Listagainto
10 . check
ENTER P Exit editmode

Now type L I8T. Your line should appear as

19 PRINT "A="3j TAB(B8)A : GOSUB 9¢: GOTO 10

Introduction 9
R L N T T R ST

EXAMPLE 2

Type in the following BASIC program. Use the AUT O function if you choose. Press
ENTER) after each line.

NEW

1¢ FOR I=1 TO 127
2@ BET(IZ20)

30 SET(IZ25)

49 NEXT I

Let’s assume that we want to modify the program to
16 FOR I=1 TO 19

20 SET(I40):8ET(B,I)

48 NEXT 1

One approach would be as follows (press (ENTER) only when shown below):

You type Screen shows What happened

EDIT 1@ (ENTER 10 - Enter edit mode for
line10

82 i8¢ FOR I=1 TO 1. Searchforthe 2

HO 10 FOR I=1 TO 10 Hackandinsert @

ENTER 19 FOR I=1 TO 10 Exit edit mode

30 Delete line 30

EDIT 2@ (ENTER 280 - Enter edit mode for
line 20

82 20 SET(I . Searchforthe 2

c4 20 SET(I.4. Changeittoa 4

it 20 SETA(I 40 - Gotothe end of the
line and insert

sSET(B,I) 20 SET(I,40):85ET(B,I). Entertherestofthe
line

ENTER 20 BET(I40):8ET(G,I) Exiteditmode

Now type L. IS8T to check your work. It looks like a lot of effort the first time through,
but once you have used these techniques a few times, you’ll wonder how you
managed without them.

You are now cleared for take off.

10 Basic Graphics on the TRS-80

Basic Graphics on the TRS-80 11

Basic Graphics on the TRS-80
1 The TRS-80 Video Display

The Screen

Our fun will now continue with a look at the video display of the TRS-80. The screen
consists of 16 rows and 64 columns, or a total of 1024 positions. The first row is
numbered from 0 to 63. Row two is numbered from 64 to 127. The numbers continue
in sequence to the last row, which is numbered from 960 to 1023, See figure 2.1.

[631

o 127

128 191

192 288

266 s

@
2
3
2

]

Figure2.1 The TRS-80 videodisplay

If all 1024 print locations are used for printing characters, what about spaces between
lines? Well, the people at Tandy cleverly included some blank space within the
characters. Each keyboard symbol is located in the upper two-thirds of the character;
the lower third is blank to allow for space between lines.

12 Basic Graphics on the TRS-80

=]
—
[SY
w
-
[
L
~

CX) 000] 000) [} 000 X
] e ® @ o o o °) o [}))
© 2]] @ - -] [} @] -} L]
[LYY} ° ® LY-X) @000 [-]
© oo Y [X NN -] [[}] ©
0 ° el o eo) ® o) [) -] -]
LYY))) e) e) XX) oe

() [© oo 600 EX)
LY XX o o)]) ® [
© e o [] L] -] °
@ o L] © © (-] o
) e ©oo0e o oo))

64 [} -1 o [} e °) e e
))]) 000 eeo oe

128

Figure2.2 Dot matrix characters.

The Cast of Characters

Let’s take a closer look at a typical character. Somewhere deep within the electronic
maze of the TRS-80 is the character generator, a section of memory that remembers
the exact dot pattern that comprises each symbol displayed on the video screen. As an
example, figure 2.3 shows how the letter A is stored in the Model I. The Model 111

) character generator is quite different.

Figure2.3 Dot configuration for Model I character *A.’

Notice that all the blank space around the actual symbol A is a part of the character.
When A is printed, the entire print position is replaced by the new character. There is
no way to combine two characters in the same position with the TRS-80.

Basic Graphics on the TRS-80

13

2 Print Coordinate System

Printing Strings

One programming technique that is fundamental to graphic applications is the use of
stringsin PR I N T statements. A string is a collection of any printable keyboard
characters and is enclosed in quotes. Several strings, separated by commas or
semicolons, can be included in one PR I NT statement. Crank up your TRS-80 and
load BASIC so we can take it for a whirl. In immediate mode, type

LET A%="THIS IS MY TRG-8@"
PRINT A%, “"FROM "3 "TANDY"

Thestring "THIS IS8 MY TRS-80@" isstoredinthe string variable A%, then
printed in the second line. The string " FROM * is printed at the next available tab
stop since it follows a comma. Tab stops are located in columns 0, 16, 32, and 48.
The string " TANDY " is printed directly after " FROM " since the two are separated
by a semicolon.

Each string variable can contain up to 255 characters. Of course, with only 64
characters per line on the screen, a string of 255 characters long would cover nearly
four full lines.

Type

NEW

3 CLEAR 1000

12 PRINT STRING$(235:"1") 3
RUN

The 8 TR ING#% function repeats a single character up to 255 times. Unfortunately,
that is one short of four full lines. To fill four full lines, edit line 10 to

10 PRINT STRINGH(253.,"1")3§ "1"3

To fill the entire screen, we simply need to print a few more strings. Add
20 PRINT STRING®(255,"2")§ »2v
30 PRINT STRINGH(255,"3")§ =3
4@ PRINT STRINGH(Z55.,"4")s "4"
5@ GOTO S50

RUN

as e aan

Before you start patting yourself on the back, count the rows of 1s. What happened to
the fourth row? Well, every time something is printed in position 1023 (bottom
right-hand corner), the screen has a bad habit of scrolling (everything is shifted up one
line, leaving the bottom line blank). Press to stop the program and to display
the ready prompt. Change line 40 to

40 PRINT STRING$(233."4") 3

and RUN it again. This time, no scrolling. All four rows of 1s stay on the screen, but
we lost the last 4. How can we add that 4 without losing the top line? We’ll have to
use some old-fashioned trickery on this one. Press (BREAK) to stop the program, and
enter

14

Basic Graphics on the TRS-80

45 PODKE 16383, 52
RUN

That did the trick, but how does it work? Printing at screen position 1023 causes the
entire screen to scroll, but poking something there eliminates the scroll. 52 is the
TRS-80’s code for the printed 4, and 1 5383 isthe POKE statement’s way of
referring to position 1023. (We will investigate PEEK and POKE instructions
thoroughly in Chapter 5.)

Don’t forget to press (BREAK) to stop the program.

TAB

Using the TAB function, we can print a character or string of characters anywhere on
aline. The format for the TAB functionis PRINT TAB(EXPRESSION).
The expression must equal a number from O to 255 or an error occurs. The TAB
function counts from the beginning of the current line to the position specified by the
value of the expression. Type, in immediate mode

PRINT "@012343"5F TAB(1@) "COLUMN TEN"

Thestring " COLUMN TEN" is printed in the column numbered 10. It does not skip
10spacesafter "@12345" . Type

NEW

1¢ FOR I=@ TO S

2@ PRINT TAB(I) "=
3@ NEXT I

RUN

Add a semicolon to the end of line 20:
20 PRINT TAB(I) "%"j§

and RUN itagain. The trailing semicolon keeps the cursor on the same line. We will
use trailing semicolons throughout this book, so stay on the alert for them. Note that
no punctuation is necessary after the TAB.

What will happen if the value of the expressionina TAB function exceeds 637 That
depends on the particular computer you have. Type

NEMW

10 FOR I=0 TO 255

20 PRINT "™1" TAB(I) "2¢
30 NEXT 1

RUN

The Model I with the old ROM chip won’t tab past 63. It treats TAB (B®) asif it
were TAB (80 ~B4) . The Model III and the Model I with the new ROM chip will
tabupto 127. Thisnew chip treats TAB (8@) as TAB (8@), but treats
TAB(Z00) asifitwere TRB(200-128).

TAB has several interesting features. For instance, it has its own built-in integer
function. Thatis, TAB (6. 8) works justlike TAB (B) ; it simply drops any
decimal fraction. You can also use several TABs inasingle PR INT statement. Try

Basic Graphics on the TRS-80

15

PRINT TAB(280) "Ze" TAB(3@) "38"
PRESTO! Now try
PRINT TAB(2¢) “Z@" TAB(1@) "ie"

What happened? The TAB function simply refused to backspace. If the program calls
fora TAB to a position that the cursor has already passed, the computer will ignore
the TAB and continue printing from the current cursor position.

Using TAB With Other Functions

We can do alot of graphics by combining the TAB function with other built-in
functions. Enter

NEW

16 1=¢

20 I=1+,25

30 H=Z#GIN(I)

49 PRINT TAB(24 + 12%¥) "WARREN INTERFACE®"
5¢ GOTO 20

RUN

Use the key to stop. Lines 10, 20, and 50 create a loop that increases the value
of I by .25 during each pass. Line 30 stores a value in ¥ that could range from —2 to
+2. Theexpression 24 + 12%Xinline 40 willrange from24 — 24 = Oto

24 + 24 = 48, Thestring "WARREN INTERFACE" isprinted at the calculated
TAB location. The 5 I N function determines the shape of the curve.

You might want to use your name in place of Warren’s. Go ahead and use the handy
editing features of your TRS-80 to make the change. (You might as well learn them
now. See Chapter 9 of your BASIC Reference Manual.) If your name happens to be
Martha Monitor, the edit sequence is as follows (don’t press unless directed):

EDIT 4@ (ENTER
SWHMARTHA MONITOR" (ENTER

Let’s change a line or two while our creative juices are flowing. Change line 30 to
30 X=8IN(I)+COS(2%1)
The edit sequence is

EDIT 3¢ (ENTER
S22DX+COS(Z+ 1) (ENTER

Add line 45:
45 PRINT TAB(18-15#%¥) "ROBBIN SHIFTLOCK"

Now RUN the program, using BREAK) to stop. The image is not very symmetrical
because the two names cross. We can fix that by changing lines 40 and 45 to

49 PRINT TAB(18 +9#*X) "M"j§
43 PRINT TAB(45-9%X) "R"

16

Basic Graphics on the TRS-80

(Note the trailing-semicolon in line 40.)

And RUN. Much better. We could even imitate the ever-popular biorhythm by the
following (don’t use lines 30, 50, 70, or 90 if your typing fingers are sore):

NEW

10 I=0

20 I=I+.2

3@ PRINT "#"j3

4@ PRINT TAB(11+1@%#SIN(I)) "pP"j

S0 PRINT TAB(Z1)"%"j

B@ PRINT TAB(31+1@#85IN(1,3%I)) "E"3
790 PRINT TAB(41) "%"j

B® PRINT TAB(SZ+10%85IN(1.,1%I)) "M"3
890 PRINT TAB(BZ) "x"

190 GOTO 20

RUN

We can also combine the TAB with RND and certain string functions. Type and RUN

NEW

12 FOR I=0 TO RND(B)

20 PRINT TAB(1O0#I+RND(1@))BTRINGH(RND(3) , "#")j
30 NEXT I

490 PRINT

50 GOTO 10

RUN

The RND function in line 10 chooses a random integer from 1 to 6. Line 20 prints
groups of up to three asterisks at various TAB positions across a single line. The
number of groups printed is determined in line 10. Line 40 moves the cursor down to
the nextline, and line 50 starts the process again.

For a crazy display using the CHR % function, change line 20 to

20 PRINT TAB(L1@#I+RND(10)) STRINGH(RND(3)
CHR$(RND(191))) 3
RUN

The CHR % function replaces the asterisks with a random American Standard Code for
Information Interchange (ASCII) character. Some of these characters are control
codes that do strange things to the video display. (We will cover all the codes in detail
inChapter4.)

More Uses Of TAB

The uses of the TAB function do not stop with games and art. The example below
illustrates a business application. The program graphically determines break-even
points on projected costs and revenue.

NEW

12 PRINT "REVENUE"3F TAB(9) "COST"
20 FOR X=0 TO 1Z2

30 C = INT(.3%(X-3) [Z2+3)

Basic Graphics on the TRS-80 17

4@ R = INTOIS#X#EXP(-X/3))
5@ PRINT " "3§ Ri TAB(D)CS
60 K = 22,3 +
70 L = 22,5 + C

80 IF C<R THEN 110

99 PRINT TAB(K) "R"3§ TAB(L) "CF
1909 GOTO 120

110 PRINT TAB(L) “C"3i TAB(RK) "R"
120 NEXT X

RUN

=

(In line 30, [means exponentiate.)

REVENUE COST
.

Figure 2.4 Cost/revenue breakeven points.

The cost and revenue are calculated by the functions in lines 30 and 40. The C and R
will be printed in an order determined by line 80. This line and the two PRINT
staternents at 90 and 110 solve the crossover problem we experienced earlier with
Warren Interface and Robbin Shiftlock.

PRINT @ Statement

Suppose you want to lay out atitle page for a short report but you still don’t have the
slightest idea of how to go aboutit. Let’s print out the sample display shown in figure
2.5. ‘

18

Basic Graphics on the TRS-80

TITLE COMMENTS PAGE

OF e

TAB>| i8] E) £ W 53 £ £ ¥ £l Y = Y £23 5 £01 B63 3) D 2) XY EFT EF) EX R R ER B () (R R B B G D D) R R Y e e) o e

R i

AT xof]
+ 21] i

)
'
]
3
T
5
B
7
]
]

i i waliclr e 1551 255
I Ey -
[} } I 7T

[

e
i
e
17
[0

46 1023

] L
L ! i LU LU L LU Ll :
2]3fas] 1oj1i {12181 pis 7 s e faof21 feafasioniastan 27 s [29 o[[azfaafaalss[ss aria 39 so] s faz|aa[aafes ee a7 a0 45150 Aj51s 150

Figure2.5 Title page layout.

We strongly recommend that you carefully lay out graphic displays on a video display
worksheet before writing any program. Laying out a display by first using pencil and
eraser could save you hours of using trial and error later to touch up poor displays on
the screen. You may find it desirable to make a copy of the video display worksheet
on a sheet of acetate similar to those used with overhead projectors. Try your local
copy center. You can write on acetate with overhead pens and erase with a cloth. This
way, you can easily trace pictures done by others or create your own without wearing
out your eraser. See Chapter 11 for programming hints on how to center each line
without having to count spaces. You will find a worksheet at the back of the BASIC
manual, and copies are available from Radio Shack at a nominal charge.

The entire title page could be created using one PR INT statement per line and a few
TABs as needed. But the real power of presenting graphic screen displays of any kind
comes from the ability to print information directly to any of the 1024 positions on the
screen. The PR I NTE@ statement (read print ar) gives us this capability. The format of
the PR INT@ statement is PR I NT @ position, item list. The position must be an
algebraic expression equal to an integer from 0 to 1023. Remember, each position on
the video screen is assigned a number from 0 to 1023.

The itemn list may include variables, constants, and expressions. Here are two
examples:

PRINTE 400, K& (20) s RND(5-2)
PRINTE Gd%(lL-1), "HERE WE ARE AT LINE"jF L

To calculate a particular PR INT 8 location, use the video display worksheet (figure
2.5). Add the PR I NT @ number at the beginning of the desired row to the column
number at the top of the sheet. For example, the first line to be printed in figure 2.5 is

Basic Graphics on the TRS-80 19

in the third row, which starts at position 128. The first character of that line is in
column number 14. Thus, the required PR INT@ locationis 128 + 14 = 142. So
we use

NEW
3 CLS
190 PRINTE 147, "HOW A TRS5-80 USE-IMPROVEMENT PROGRAM"

The rest should be easy now.

20 PRINTE 204, "WOULD SAVE MOMEY AND INCREASE
EFFICIENCY"

39 PRINTE 2789, "FOR SOFTWARE, INC.®

49 PRINTE 474, "PREPARED FOR®

5¢ PRINTE 531, "MS, R.N, RITTER., PRESIDENT"

@ PRINTE® GB4: "BY HENRY TEACHER"

70 PRINTE 724, "ASSISTANT VICE PRESIDENT®

80 PRINTE 856 "JANUARY 23,1086"

8¢ GOTAO 90

RUN

If you don’t want to wear out your calculator working with PR INT@ locations, you
canrefer to Appendix A.

Playing with PRINT@

Let’s take a closer look at the PR I NT @ statement. Enter

NEW

10 CLS

Z0 S%="+"

B¢ PRINTE 480, 547
RUN

Don’tlaugh at the funny line numbering! We will get to the missing lines soon
enough. This program will print an asterisk somewhere near the middle of the screen.
To print #s all over the screen, we can place the PR INT @ statement in a loop and
randomly change the position of the asterisk. Add these lines:

30 FOR I=1 70 300
40 R=RND(1023)
8@ NEXT I

and change line60to PRINTE R+ S% 3 and RUN. Notbad if you like your %s in
bunches. To simulate one # moving at random around the screen, we need to erase

each * after it is printed. Add

80 PRINTE R, " "3

and RUN the program. Why, you can hardly see those little critters! We need to add a
time delay before erasing each #. So change line 30 to

30 FOR I=1 TO 3@

20

Basic Graphics on the TRS-80

and add

78 FOR J=1 TO 100 : NEXT .J

Note that the colon allows us to have two statements on the same line. At this point,
type L. I 8T to make sure your listing looks like this:

10 CLS

Z0 Be="#"

30 FOR I=1 TO 30

40 R=RND(1@23)

B0 PRINTE R: S%3

72 FOR J=1 TOD 100 : NEXT J
80 PRINTE Ry " "3

90 NEXT I

RUN the program. Yes, that’s much better. Line 70 creates the time delay, and
changing line 30 saves us from waiting forever for the program to finish.

Trouble In River City

Now change line 20 to

=20 S5%="THIS IS MY TRS-B@"
RUN

Running this version of the program illustrates several problems that any would-be
creator of screen animation must face. Notice thatonly T, the first letter of the string
5%, is erased. We can erase the entire string by changing line 80 to

B2 PRINTE R STRINGH(LEN(S%), " ")}

This line will print one blank for every character in the string 5%. Another problem is
that any string printed near the end of a line will appear on two separate lines. Not
only does this look bad, but it also causes an automatic screen scroll when it occurs in
the bottom line. The scrolling of the screen causes the print line to move up one row so
thatit is no longer in position R. Line 80 then has no effect. RUN the program several
times until you see a line that is not erased. The correction for this is fairly simple: By
screening the values of R, we can print only those strings that have starting and ending
positions on the same line. Add

50 IF INT(R/G4) <> INT((R+LEN(S5$)+1)/64) THEN 40
RUN

Line 50 guarantees that the starting position, R, and the ending position,
R+LEN (8%, of each string printed will be on the same line. The + 1 protects print
position 1023,

Your final listing should look like this:

19 CLS

=0 S¢="THIS I8 MY TRS5-Bg"
3¢ FOR I=1 TO 3@

49 R=RND(1223)

Basic Graphics on the TRS-80 21

S5¢ IF INT(R/B4) <> INT((R+LEN(S%$)+1)/64) THEN 40
B@ PRINTE R, 5%3

79 FOR J=1 TO 100 : NEXT J

80 PRINTE Ry STRINGH(LEN(S$) " "}i

90 NEXT I

The PR I NT@ staternent is an extremely powerful tool in generating graphics. By no
means have we exhausted its potential in these few examples.

3 Plot Coordinates

New Numbering Scheme

Now that you are expert at printing characters to any of the 1024 print positions on the
screen, let’s consider a finer partitioning of the screen. Each of the screen locations
canbe divided into six rectangular graphic blocks. These blocks are arranged in three
rows and two columns as shown in figure 2.6.

PRINT CHARACTER GRAPHIC BLOCKS
@ @
] ®
ROW 1
-]
=] @
@
ROW 2
] @
(-] (]
ROW 3
C C
¢ 0
L L
U u
M M
N N
1 2

Figure2.6 A print character versus graphic blocks.

This gives us 6 times 1024, or 6144 locations for our plotting purposes. We can create
some exciting pictures using these blocks.

To light up an arbitrary graphic block on the screen, you have to ignore the old
numbering scheme of O through 1023, and think of the screen as 16 times 3 or 48
rows, and 64 times 2, or 128 columns of graphic blocks. The 48 rows are numbered 0
through 47 and the 128 columns are numbered 0 through 127 as shown in figure 2.7.

22 Basic Graphics on the TRS-80

TAB+

PRINT

ATy

[
— gt

64

Nidxlwinl= O

TITLE PRO MER COMMENT!

PAGE oF
AR i8] T ERR EEY T 03 £ £ £E0 £ AL £2) ERY 2% 5 P S Y e e R Y e XY N) S B D L S) L) e R I Gt O R B R R e i B s e e)
T 1T
S i i L
) i i 1) i) i i
)
ef1
E
E)
i
3
3
B
0
[}
192 fi§
i
17
286 [}
i
i
120 fid
i
it
Fym
B
inf
a4s f12]
s12fas]
14
s7¢ [2a]
840 [11]
u
[
EEm
38 Jas)
i i
I i
51 3%
D (N
02 n::{ i3] 48
| [

m 2
pam 1] 93y
] &

) i
942 [44] i8] 3023
@ o

i : ; A & 7 EHnnE
GLEEsT wehis [1afiafie oo [u6 [s fec[an|aafasad as]ea fas a6 29 |ac 1 3210 a8 6 [37 30 38 [4S[41 [V3 [aT[eA[ES 1ok o7 [sa1u8 [scias [oafessaea o [sTIslEs b AL 12 33]

Figure2.7 New numbering scheme

Each block is located by both its horizontal distance (0 — 127) and its vertical
distance (0 — 47) from the upper-left corner. To locate the block at (40,20), start at

(0,0) and move 40 to the right and 20 down.

Figure 2.8 The block at (40,20).

Basic Graphics on the TRS-80

23

Remember, the first number is the horizontal component, the second number, the
vertical.

SET and RESET

Youcan control individual graphic blocks withthe SET and RESET statements. The
SET statement lights up a graphic block, and the RESE T statement erases it. The
format for these statements is

SET(X,Y)
RESET (X ¥)

where X is the horizontal component and Y the vertical.

The new numbering scheme may seem strange at first, but it is much easier to use in
graphing functions than the PR I NT @ scheme. Using immediate mode (i.e., no line
numbers), type in

NEW
SET(40,28)
RESET(40+20)

The SET statement lights block (40,20); the RESET statement erases that same
block. (It works now, but watch out when the screen starts to scroll!) To light up the
four corners of the screen, type

CLS
SET(@.:47)
SET(127+47)
SET(127.:0)
SET(2,0)

What happened to the R in READY (print position0)? SET (@ @) litup a graphic
block in the upper left-hand corner of print position 0, right on top of the R. What do
you think would happen if we SE T arectangle in the ‘‘dead space’” of print position 0
below the R 7 Can we use rectangles for underlining purposes? See figure 2.9.

0 1
e § o
] e
0
® =)
® j
1 PRINT POSITION
@ ®
o ——
2
SET (0,2)

Figure2.9 Underlining?

24 Basic Graphics on the TRS-80

Try

CLS
SET(0.:2)

No luck? This exercise points out a subtle but important fact of TRS-80 graphics.
Lighting up a single graphic block affects the entire print position in which it is
located. When youtype BET (@ » 2) , the TRS-80 displays in print position 0 a
character that looks like figure 2.10:

Figure2.10 A graphic character.

This character replaces the R that was there before it. Remember, only one character
per print position on the screen. For your reference, the 64 graphic characters are
listed in Appendix B.

Testing, Testing

Let’s look at one last example as areview. How does the computer interpret a
SET (4 4+3) instruction? As shown in figure 2.11, the computer acts on the
instruction as a request to print a graphic character in print position 66.

SET (4, 3) ACTUALLY CAUSES
THE GRAPHIC CHARACTER

—
=3
—
___.__m_._..__
w
>

TO BE PRINTED IN PRINT
Figure2.11 A SET(4,3) instruction. POSITION 66

Basic Graphics on the TRS-80

25

The SET/RESET numbering scheme is only for the convenience of us humans.
Fortunately, as long as we are careful not to overlap characters, we can think of the
screen as having two completely separate numbering systems—one for graphic
blocks, and one for characters.

No Arguments, Please

The SET and RESET statements both require two arguments, X and Y. The word
“‘argument’’ is used quite a bit in mathematics in reference to functions. It simply
means the values on which a function acts. For example, in the equation

Y = SIN(X), the argument of the SIN function is X. The function bases its
calculations on the value of X.

Before we can use any function to its fullest capacity, we must have a clear
understanding of what kind of information it can digest. We found out earlier, for
example, that the TAB function can handle any expression having a value between 0
and 255, but no values outside this range are allowed. The X and Y arguments for the
SETand RESET functions have their limitations as well. The first argument (we will
use X to be consistent with standard algebraic notation) must be between 0 and 127.
The second argument, ¥, has to be between 0 and 47. If you use values outside these
ranges, youare asking foran ‘ ILLEGAL FUNCTION CALL’

(’?FC ERROR’ innondisk BASIC). Try itif you like. Type, in immediate mode,

SET(-12:3)

The arguments of the SE T and RE SET functions can include variables and
expressions as well as numbers. If this were not so, drawing a single horizontal line of
rectangles across the screen would require that some lucky soul type in a whopping
128 SET statements:

10 SET(@20)
2@ SET(1,20)
30 SET(Z2:20)
1270 SET(126:2@)
1280 SET(127.:20)

26

Basic Graphics on the TRS-80

(127,20}
A

Figure2.12 Our first horizontal line.

Not for me, thank you! It’s much easier to use the variable X in the first argument and
asimple FOR/NEXT loop to do the same thing

NEW

3 CLS

19 FOR X=0 TO0 127
20 SET(X+20)

30 NEXT X

RUN

The arguments can also be replaced by functions. Type

NEW

18 CLS

2¢ SET(RND(12B)-1 s RND(4B)-1)
30 GOTO Z@

RUN

The first random number function in line 20 generates a number from 1 to 128. One is
then subtracted to give us a number in the range from 0 to 127—exactly the right
range for the horizontal argument of the SE T statement. A number between 0 and 47
is generated for the vertical argument, and the point is thus plotted. Line 30 sends
control back to the SE T statement, where another point is created. If you wait long
enough, the entire screen will fill up with rectangles. Press when you are
ready to move on.

The SET and RESET functions have a built-in integer function that ignores decimal
fractions. Forinstance, SET (3.8 +2) givesyouthe sameresultas SET{ 3 +2).
To see how this works, type inand RUN the following:

Basic Graphics on the TRS-80

27

NEMW

19 CLS

20 FOR X=0 TO 127
30 SET(Xy.1%X)

49 NEXT X

50 GOTO S0

RUN

The first ten values of the vertical component (0.1, 0.2, . . ., 0.9) are truncated to 0,
the next ten values are truncated to 1, and so on. So, we get horizontal bars in rows
0,1,...,12. Give the computer and yourself a (BREAK).

POINT

Another statement that uses the same numbering scheme as the SET and RESET
statementsis POINT (3 »%). The X and Y arguments have the same limitations and
use asthose of SET and RESET. The PDINT (X) statement tests whether the
graphics block atlocation (3 +Y) islitornot. If (X »¥) islit, POINT isequal to
-1LIE GXs Y) isnotlit, POTNT is equal to 0. At first glance, these two numbers seem
a bit arbitrary, but they do have a very special meaning in Radio Shack BASIC. The
IF statement interprets any expression with a value of 0 as false, and any other value
as true. Therefore, the -1 works inan I F statement as a true and the 0 works as a false.
To convince yourself of this, type

NEW

19 INPUT X

20 IF X PRINT "TRUE®" : GOTO 10
3@ PRINT “FALSE"

4¢ GOTO 1@

RUN

Enter several different values for X, and use (BREAK to stop. Zero should be the only
false value. To see how the PO INT statement can be used, type

NEW

19 CLS

20 PRINTE 462 CHR$(RND(B4)+127)3

32 IF POINT(Z24,21) THEN G

4¢ PRINTE 479, "UPPER LEFT BLOCK IS NOT LIT®
50 GOTO 70

60 PRINTE 47¢, "UPPER LEFT BLOCK IS LIT "
79 INPUT "PRESS <ENTER» TO CONTINUE": A%

80 GOTO 10

RUN

28

Basic Graphics on the TRS-80

Figure2.13 Probing withthe POINT function.

A random graphic character is printed at location 460, and the PO INT statement is
used to test the upper left-hand corner of that position. Ifitis lit, the POINT function
is true and the IF statement sends us to line 60. If it is notlit, control falls through to
line 40. The process will be repeated until you press (BREAK).

Don’t despair. This staternent does have other, more exciting uses. POINT can be
used to test the collision moment of two moving objects in arcade games, for
example. Also, it can be used to reverse any portion of a graphics display to black on
white. You will see these applications in later chapters.

30 Programming Techniques Wwith SET and RESET

Programming Techniques with SET and RESET 31

Programming Techniques With
SET and RESET

1 Looping

This chapter will cover some general programming techniques as-well as the SE T and
REBET statements.

IF, GOTO

Your TRS-80 is just about the best thing that has happened to repetitive procedures.
Many graphic applications require some kind of repetition. Even drawing a straight
line across the screen is done by systematically lighting up a series of graphic blocks,
one by one. The repetition is accomplished in a computer program by executing the
same instructions repeatedly in a loop. There are several ways loops can be created in
aprogram. One option is to branch back to a previously executed instruction with an
IF statement. From BASIC, type

NEW

10 CLS

20 INPUT A4

30 PRINT A%

4@ IF A%< :"STOP" THEN 2¢
RUN

When you see the 7, type in a short string of characters and press the (ENTER) key. If
the string of characters you type does not equal STOP, control passes to line 20. The
I'F statement will continue to loop back to line 20 until you type STOP (ENTER).

Another option is to create your loop witha GO T O statement. Just be careful in your
use of GOTOs. They are easy to use, but they often lead to trouble in the form of
hard-to-read programs or infinite loops. Change line 40 in the above program to

49 GOTO 30
LIST

and RUN. Good grief! What have we done? Don’t panic—simply press the (PANIC),
that is, the key. Whew! Disaster averted. Pressing the key causes the
program to stop running, while leaving the program still in memory. Now type LIS T
to verify that the program is alive and well. In fact, it is so alive and well that you can
have it continue execution by typing CONT or CONT INUE. Press again.
Two other ways of stopping an infinite loop are to hit the reset button and to turn off
the power. Both of these options may cause you to lose your program from memory
so they should be used only as a last resort.

32 Programming Techniques with SET and RESET

FOR/NEXT Loops

If you know in advance exactly how many times you want your loop to repeat, use a
FOR/NEXT loop. The F OR statement allows you to control the number of times the
loop will repeat; the NEXT statement is used as the last instruction in the loop. The
NEXT statement sends the program back to the F OR statement where the decision is
made to either continue the loop or not. To see this in action, type

NEW

18 CLS

20 FOR I=1 70 10
30 PRINT TAB(I) I
49 NEXT 1

and RUN.

All the logic for the loop is handled by the F OR and NEX T statements. The FOR
statement causes the variable I to start at 1 and to increase by ones until it reaches 10.
The NE X T statement causes an automatic jump back to the F OR statement. Line 30 is
executed ten times as the value of the variable I changes from 1 to 10.

Setting The Stage

To further illustrate the use of FOR/NE X T loops and infinite loops, let’s draw a
border around the edge of the screen using graphics blocks.

\

Figure3.1 A screenborder.

This is easily done using four FOR/NEX T loops, one for each line. Change lines 20
and 30 to

20 FOR I=0 7O 127
30 BET(I.d)

and RUN. This loop draws a straight line across the top of the screen. As the variable
I varies from 0to 127, the SE T statement in line 30 lights up locations (0,0), (1,0),
(2,0), ..., (127,0). (Remember, the first numberin a SE T statement selects the
horizontal position and the second number selects the vertical position of the graphic
block.)

But what about the READY prompt that ruined our nice display? The little rascal
appears every time a BASIC program finishes execution-—quite a nuisance when we
are trying to create a work of art. Aneasy way to neutralize the prompt is to fool the
computer into thinking that it has not finished simply by giving it more work to do.
Add

989 GOTO 999
RUN

This line keeps the computer running in circles at line 999 while we sit back and
admire our creation. To stop the program, press the (BREAK) key. Infinite loops do
come in handy after all.

Type L IST to verify that your program looks like this:

19 CLS

20 FOR I=0 TO 127
30 SET(I.@)

4@ NEXT I

888 GOTO 998

Now enter

o8 FOR I=0 TO 127
B SET(I:47)
70 NEXT I

and RUN. This will draw the top and bottom lines of the screen border. To finish the
border, press (BREAK) and add

B® FOR I=0 TO 47

9@ SET(@,1) (Leftside)
100 NEXT I

119 FOR I=0¢ TO 47

1290 SET(127,1) (Right side)
132 NEXT 1

RUN it just to be sure everything is typed in correctly. When you are ready to regain
control of your computer, press the (BREAK) key.

Programming Techniques with SET and RESET

33

34

Programming Techniques with SET and RESET

A Different Approach

On your way to becoming a graphics whiz, you will notice that there are usually
several ways of getting identical results on the screen. As your programming
expertise increases, you will strive to create faster and more concise programs. Let’s
see if we can condense this last program a bit, just for practice.

First of all, notice that the variable I goes from 0to 127 in both of the first two loops.
Our first improvement will be to combine them into one loop where we will plot two
points foreach value of I. Type DELETE 5#@-70 and add

35 SET(I+47)

RUN this version of the program. Presto! The top and bottom rows are now drawn at
the same time. The same improvement can be made with the second pair of loops.
Delete lines 110 through 130, then add

83 SET(127,1)
and RUN. Your new listing should look like this:

19 CLS

20 FOR I=0 TO 127
30 SET(I0)

38 SET(I +47)

4¢ NEXT 1

80 FOR I=0 TO 47
99 SET(@2:1)

95 BET(127,1)

100 NEXT I

888 GOTO 9989

Is this the ultimate in drawing a screen border? Well, not quite. First, we can use
multiple statement lines to compress the coding a bit. For example, lines 30 and 35
can be combined. Change line 30 to

30 SET(I:0) : SET(I47)

The same thing can be done with lines 90 and 95. Change line 90 to
99 SET(@2.:I) : SET(127.,1)

and delete lines 35 and 95.

Second, we can actually draw the entire screen border with one FOR/NEXT loop in
which I varies from 0 to 127. During the first part of the loop while I isin the range
of 0to 47, we will use all four SE T statements. But once I passes 47, we will use
only the first two SE T statements since the screen is wider than it is tall. This
selective use of I canbe achieved with an IF statement separating the two pairs of
SET statements. Change line 40 to

49 1IF I1>47 THEN 100

and delete line 80 to get

10 CLS

20 FOR I=0 TO 127

30 SET(I0) = SET(I A7)
a9 IF 1:>47 THEN 100

890 SET(@,I) : SET(127.,I)
100 NEXT I

899 GOTO 998

Go ahead and RUN it to see how the lines are drawn. There may be better ways to
draw a screen border, but this version is certainly a lot cleaner than the original
13-line monstrosity!

Random Patterns

Infinite loops can be used to create never-ending graphic patterns. In order to
continually vary the pattern, we can use the built-in random number function, RND.

Type

NEW
190 PRINT RND(G) 3
20 GOTO 1@

and RUN. Press the key when you’ve had enough. The RND function acts on
the argument & and generates a random integer from 1 to 6. The random number
function will act on any positive integer in the same manner. Note that if the argument
is zero, it gives arandom decimal from 0 to 1, but we won’t be needing that as often.
We can use the RND function in graphics to choose the horizontal and vertical
coordinates ina SE T statement. Type

NEW

1¢ CLS

20 H=RND(28)
30 K=RND(1@)
G@ SET(HR)
19090 GOTO 20
RUN

Random numbers are chosen in lines 20 and 30 and stored in the variables Hand K.
Then line 60 lights up a rectangle at location (H s K) . Line 100 causes the process to
repeat. The arguments in lines 20 and 30 determine the size of the rectangle created by
this program.

Although it may not be obvious on the screen, the first row and column of the screen

are not being used since the RND function starts at 1. The point (0,0) is the base from
which the points in the rectangle are plotted. Then, each point is plotted by moving H
units to the right and K units down from (0,0).

Programming Techniques with SET and RESET

35

36 Programming Techniques with SET and RESET

(0,0}

(] ROW 0 NOT USED

w

(6,3)

omuc -0 © ZJCTroon

Figure 3.2 Positioning adot.

Notice that we could create duplicate copies of the rectangle by placing the SET
staternent in a loop. Change line 60 to

60 SET(X+H»K)
and add
49 FOR ¥=0 TO 100 STEP 25

80 NEXT X
RUN

Let it run until you see the pattern. Line 40 sets up the points (0,0, (25,0), (50,0),
(75,0), and (100,0) as the base points from which five rectangles are created. On
every pass through the loop, a point is plotted in each rectangle; this point is in the
same relative position in each rectangle.

(0,0} (25,0) (50,0)

Figure 3.3 Cloning.

We could cover the entire screen with duplicates of our original rectangle by adding a
loop for the vertical direction. Change line 60 to

B0 SET(X+H,Y+R)

Programming Techniques with SET and RESET 37
o e G e T R R R e

and add

5@ FOR Y=0 TO 36 STEP 12
80 NEXT Y

RUN

Line 60 causes each rectangle to be drawn by starting from a base point of (X,Y) and
then moving horizontally H units and vertically K units.

(x,v} H

K

I(X+H,Y#K)

Figure3.4 Atypical rectangle.

Eventually, the rectangles will become solidly filled in. To keep the display in a state
of constant change, every time we light a rectangle, we will erase the one to its right

by typing

70 RESET(X+H+1,Y+K)
RUN

Let it run a while to verify that the rectangles don’t fill in. Your final listing should be
as follows:

19 CLS

20 H=RND(Z@®)

30 K=RND(10)

49 FOR X=0 TO 10@ STEP 25
30 FOR Y=0 TO 36 STEP 12
6@ SET(X+Hs¥+K)

7% RESET(X+H+1,Y¥+K)

8@ NEXT Y

892 NMEXT X

109 GOTO Z@

38 Programming Techniques with SET and RESET

Figure3.5 Randomrectangles.

READ/DATA

Now for alittle fun. Let’s exercise our creative talents by drawing our first picture.
We’ll use another looping technique that features the READ and DAT A statements to
control the placement of points on the screen. The picture we are going to produce is
shownin figure 3.6. Be advised again that it is best to start the design on a video

display worksheet.
THTLE e PROGRAMMER COMMENTS. PAGE OF
Tise i [eafn el L e sl e i e [el Dt s ha b e s o LT o laaTes JeaJaa[aaTas [wolas a3 [Sa[sa [8a 33 sa s eo [Jaz
oxint
¥ sl " ke hE ; A
[} 3 o *H 3 fl
0
° 111 116
2
)

N o
i
[

I 1 m
v
]]

192 {15 7 10238
1] |
17 | ¥ E)

238 i3] 1 1}
i E1ime
] TH E]

320 {34]]
aH i I
i} is

a1 T 447
2 11 111 20]

T £l
1) s
(0
i
1T 13878
111]
7
T ens
Bl
1T £
{ ML
12
i3
| 15
Jas]
[35]
[37] as1
it
£

312 18 43} ars.

0 T T] |
T o

ass [4| vsy
44 H &

15 } Il [1 [0 il

980 Jus 1] 11 1 I3§] 1 1] e
oI 1l @)

Y 11 1]
il |
{elv 23] a3 [s 7] 13 [e|u Bapuuins s Tl isfeshaifaafaafaslashae e s asaofas a2 % @ jaja) 2 Jaalas [sofirfusislsefsasa]s 81}2]

Figure3.6 Designofthedragon.

Programming Techniques with SET and RESET

39

R R R DS SR ITIS

Once the ‘‘masterpiece’’ is on paper, we have to then develop a strategy for
reproducing it on the screen in the most painless fashion. The approach will vary, of
course, with the kind of picture you attempt to produce. Figure 3.6 can readily be
drawn using a collection of horizontal lines of varying lengths. Only three numbers
are needed to position a horizontal line segment on the TRS-80 screen: its starting and
its ending column numbers and its vertical position. For example, to draw a line from
X=5t0X=10inrow Y =20, we could use the following program:

NEW

i@ CLS

20 READ X1, K2y Y
30 FOR X=X1 TO XZ

2 1 SET(X»¥) @ NEXT X
50 DATA 3, 10 20

18

20

21

Figure3.7 Drawing with DATA 5,10,20.

Enter and RUN this program. Line 20 reads the numbers 5, 10, and 20 into the
variables X1, X2, and Y. Line 30 is a complete loop that draws the line. Using this
approach, we can scatter horizontal lines anywhere on the screen. Now add

49 GOTO 20
B¢ DATA S50,125.,42,80,80,30,22,61,16

and RUN. Don’t worry aboutthe OUT OF DATA error yet. Notice the single dot
generated by 8@ 8@ »3@. You can add your own numbers, but be careful not to go
backwards(e.g., 4@ + 2@ » 2@). See Chapter 8 for ways to do that.

Clean Exit

Well, we could paint just about any picture possible using our beloved rectangles and
this little routine if we supplied enough data, but there has to be a smoother way to exit
the program. OUT OF DATA IN LINE 2@ justdoesn’tdo thetrick. So, we
are forced either to countlines ortouse ON ERROR GOTO . Make these changes:

19 CLS: ON ERROR GOTD 80
80 GOTO 90

40 Programming Techniques with SET and RESET

The program listing should be the following:

19 CLS: ON ERROR GOTO 80

20 READ X194 XZ» Y

30 FOR X=X1 TO X2 ¢ SET(X,»Y) : NEXT X
49 GOTO 20

S50 DATA 5 10, 20

B® DATA 50,125,42,80.,80,30,22:81,16
89 GOTO 9@

RUN it. An error occurs in line 20 when there is no more data to read. The error trap
set in line 10 directs the computer to line 90. Line 90 causes the computer to get stuck
in an infinite loop—we could either sit back and admire the display or hit the
key. Another way to make a clean getaway is to count the number of lines to be
drawn, but counting tends to be difficult and a bother if your data is constantly
changing. We will opt forthe ON ERROR GOTO approach.

Now for the acid test. Below are the data lines needed to draw the top part of figure
3.6. Delete

50
60

and enter

1219 DATA B3:66:2

102¢ DATA B0:65:3

18030 DATA S6:67 4

1040 DATA 55,555 357162:3 1847045

1950 DATA 23,31:+6,55+55+6+3B:61 +6,644+69,6
1060 DATA 2132747467 1+7 84,857

19070 DATA 16.,33:8,46:69,8,83,91.:8

1080 DATA 10.,34,9,60,71:+9:+81:101,9

RUN

Looks good so far, butdon’t go away. We are going to improve the program in the
next section.

2 Subroutines

Computer programs have a nasty habit of growing in unexpected ways and then
becoming very unmanageable. Who cares about a few extra lines and repetitious
coding in a program? You do! Whenever a procedure is to be repeated several times,
it should be written once and set aside as a subroutine, a very useful tool that we will
now explore.

Subroutines can help us to cut down significantly on the amount of data required to
draw the dragon. Notice in figure 3.6 (in the preceding section) that most of the rows
in the picture require several horizontal lines. Row 6, for example, uses four line
segments:

234+3146 551556 58:614+06 64469406

Programming Techniques with SET and RESET 41

T . PAGE OF e

TABeIGTT CIEXN ioh [1z[ulilis il il [l faafafalzelzs prfiafesfao i [ad o i e orp Jasfie e Jaa[uTaalss Rafalaalas sefus[sz[s [salseTsa s Tsalsa [ec e [a]
P Ll 2 L

A xe i i
2 ol d d il i] 1 31 g

i8] 1023

i =
i ; | il R
2f3]afs] [iofi fizfusfais fi6 [i7hae 15 fro[aafeafasfasfaseefar s 2shaohas [aafasfais s s s ad[si ez [aafalisfus i anfasfsafa [sassfsfes se s fiafhojectatfeaes

Figure3.8 Rowsix data.

The 6 must be repeated for each segment even though it is used for all four of them.
This redundancy can be eliminated if we instruct the computer to print all line
segments in the same row unless instructed differently. An I F statement and a short
subroutine will do the trick. Change line 20 to

20 READ X1 : IF X149 GOSUB 1900 : GOTO 20 ELSE READ X2
and add

5 ¥Y¥=2

100 REM

119 Y=¥+1: RETURN
LIST

Don’t RUN it yet. Your listing through line 110 should look like this:

I

10 CLS: ON ERROR GOTO 9@

Z@ READ X1 : IF X1<@ (GOSUB 100 : GOTO Z@ ELSE READ X2
30 FOR H=X1 TO K2 : SET(X:¥) : NEXT X

a9 GOTO 20

¢ GOTO 90

10¢ REM

110 Y=Y+1: RETURN

This routine will allow us to delete all the row numbers in the data and to replace them
with a single negative number at the end of each data line. Now make these changes:

42 Programming Techniques with SET and RESET

1019 DATA B3:664+-1

1020 DATA B@:65,-1

1030 DATA S56:67 -1

1040 DATA B5,535:37624+64:70 -1

1050 DATA 23:+31,+55,55,58+61.:64:689,-1
1069 DATA 21,324+47:67:84+85+-1

1070 DATA 16:33,46+69:83,:91 -1

1080 DATA 10,34,604+71+81,101,-1

and RUN the program. The I F statement in line 20 branches to the subroutine every
time a negative number is read into X 1 . One is added to the row number and we are
returned to line 20 to read in the next data value. The rest of the data is included here in
case your computer can’t live another day without having its very own dragon!

* 1090 DATA 3+36:+350,68,:80,117-1
1120 DATA 9:38:87:689:789,126+-1
1110 DATA 13:39,56:+71+78:121 -1
1120 DATA 144+414+55:684+76,116+-1
1130 DATA 14,424+54466+74,113,-1
1140 DATA 12:43,534687 172111 4-1
1150 DATA 10:45,:32,644+69:112,-1
116¢ DATA 34+125,:-1
1170 DATA 12,1151
1180 DATA 14,44,484+64:67:,1124+-1
11990 DATA 14:42:46,65,69,1@89,-1
1200 DATA 14,40,45466:71:1108,-1
1218 DATA 12.:39,44468,73+118,-1
1220 DATA 73844367 :74:+107+-1
1230 DATA 17:37+424686+76,1@1 -1
1240 DATA 22337 +42,+72:79,89,-1
1250 DATA 22,36,414+72+81,102,-1
1260 DATA 20,3640 ,72+83:189,-1
1270 DATA 14,35:404+784+85:100,-1
1280 DATA 25,:35:,40,78,87,98:118,121 -1
1290 DATA 31:34,40:85,90,95,118,125,-1
1300 DATA 32:34,404+85,92,97,1139126+-1
1319 DATA 32,33:40,88,95,101,113+120,-1
1320 DATA 32,:32,40:924+113:118,-1
1330 DATA 41,92,110,118,-1
1340 DATA 37:92,110:117 -1
1350 DATA 35,93,11@,116,-1
1360 DATA 33,:,73+8B2:99,105,:116+-1
1370 DATA 32,38,:54,72,88,89,105,114,-1
1380 DATA 32:37:61:67:90,100:104:114,:-1
13990 DATA 32,36+62:67:892,113,-1
1408 DATA 32,35,63:69:94,111,-1
1419 DATA 31,:35,B854+72+86:1@9,-1
1429 DATA 22:41,+55,78:89:106,-1
1430 DATA 19,22,29,33:39,44,52,55963:69:,764+79~1
144@ DATA 25,30,:59:684 -1
1450 DATA 23:25,:58,:59

Programming Techniques with SET and RESET 43

L

Figure3.9 Thedragon.

3 Simple Animation

How Is It Done?

Animation is the art of creating the illusion of motion with our graphic displays. How
is it done? Simple, really. All we have to do is continuously change our display so that
the eye perceives it as motion. Animated cartoons are created with a series of frames,
each one differing only slightly from the next. When these frames are shown in rapid
succession, our eyes ‘‘see’’ movement.

The key word here is rapid. Television uses about 60 frames per second, so our eyes
are accustomed to that kind of speed. Unfortunately, working with an interpretive
language like BASIC, we do not always have access to that kind of speed. You’ll
notice that most of the good arcade programs are written in machine language. The
problem with BASIC is that every program line has to be translated into machine
language every time it is executed by the computer. Although the translation is fast
enough for most applications, it greatly limits the type of animation we can produce
using BASIC.

If we are fortunate enough to be working with an application in which only a small
portion of the screen has to be animated at any given time, speed is no problem. Take
the case of moving asingle graphic dot around the screen. Type

NEHW

190 ¥=0

20 CLS

30 FOR X=1 TO 126

49 SET(X»Y) ¢ RESET(X-1:Y)
S0 NEXT X

RUN

44 Programming Techniques with SET and RESET

0 1 2 3 4
r
UNLIGHT o || !
LJd
LIGHT 2
ra
UNLIGHT 1 Vo
L
LIGHT 3
rm
UNLIGHT 2 .
Ld

Figure 3.10 A movingdot.

The motion is due tothe RESE T statement. Every time a new rectangle is lit, the one
toits left is erased. The motion seems fairly continuous; it will certainly pass for a
bouncing ball in a ping-pong game. But what would happen if we tried to move a
larger object across the screen? Change the following lines:

30 FOR %=1 TO 4@ : FOR ¥=1 TO 10
SO NEXT Y ¢ NEXT X

and RUN. Here we are trying to move a vertical bar sideways, but the motion appears
jerky at best. To get a feel for the way the size of the bar can affect the continuity of
motion, try

19 INPUT "N="3§ N
30 FOR X=1 TO 40 : FOR ¥Y=1 TO N
60 GOTO 10

RUN it and try different values for N, especially numbers between 1 and 10. The
lessonin this exercise is that SET and RESET are of limited use when we try to
animate large objects, but that they work quite well for smaller ones. Large objects
can be effectively animated, even in BASIC—you will see more on this later. For
now, let’s see what we cando with SET and RESET.

First, we will take a single point and move it randomly around the screen. Type

NEW

190 X=64 : Y=24 : CLS

20 H=RND(3)-2 : K=RND(3)-Z

100 RESET(X»Y) & K=X+H ¢ Y=Y+K : SET(X,Y) : GODTO 20
RUN

Programming Techniques with SET and RESET 45
e S T e i e e T S i i o i i o

Line 10 clears the screen and establishes the starting point at (64,24). The
RND (3) -2 inline 20 selectsa — 1,0, or 1 for H and K, which are then added to X
and Y to determine the position of the next point.

(x40, Y~1)
{X~1, Y-1} (X+1, Y~1)
(x-1, Y+0) {x, v) (X+1, Y+0)
{X-1,Y41) (X+1, Y4+1)
(X +0,Y+1)

Figure3.11 Random motion.

Inline 100, the old point is erased, the new position calculated, and the new point
plotted. Of course, without some kind of control, the point will eventually run off the
screen, but that will be rectified shortly.

Keyboard Control With INKEY$

The INPUT statement is not adequate for real-time keyboard control of motion.
Every time an INPUT isexecuted, the screen display freezes in anticipation of
operator input. In addition, the program cannot continue until the key is
pressed. Fortunately, to sidestep these drawbacks, the TRS-80 is equipped with an
INKEY$ function. The INKE Y % function continually strobes the keyboard. When
akey is depressed, the ASCII value of that key is stored inthe INKE'Y % buffer.
Because this buffer is only one byte long, each time a new key is depressed, its ASCII
value replaces the one previously stored in the buffer. So we can test the buffer for the
ASCII value of the last key to be depressed. All of this can happen without disturbing
the screen display.

One other quirk of this function is that each time we test the buffer location, it is
emptied. It will stay empty until another key is hit. Let’s add this function to our
program so that you can control the motion of the dot with the four arrow keys.

Add

20 REM
3¢ I$=INKEY% : IF I%="" THEN 8@
80 REM

butdon’t RUN it yet! The first part of line 30 tests the INKE Y % buffer (which also
clears it) and stores the value in the string variable I . If the buffer was blank, then
no key has been depressed since our last test and we jump to line 80. If an arrow key
has been depressed, we’ll have to adjust H and K to direct the dot in the proper
direction. This is done by adding

46 Programming Techniques with SET and RESET

49 IF ASC(I4%$)=8 H=-1: K=@: GOTO 8¢

50 IF ABC(I%)=9 H=1: K=@: GOTO 8¢

B0 IF ABC(I$)=10 H=0: K=1: GOTO 8¢

70 IF I$="[" H=0: K=-1 (PressCe)for " [")
RUN

Press the arrow keys to change the direction of the moving dot. You are controlling
the animation! The animation will continue until the dot runs off the edge of the
screen. If the keyispressed, ASC (I %) willequal 8. Hand K are given values
inline 40 so that the SE T statement in line 100 will produce motion to the left.
Motion in three other directions is achieved in a similar fashion. Notice that diagonal
movement could be produced by introducing four new keys and by adjusting Hand K.
(We left this out to make the program a little easier and faster.)

Patrolling The Borders

A few refinements and we’ll have ourselves a real game program. First, we will
eliminate the RESE T in line 100 so that the dot leaves a trail. Second, we’lladd a
screen border. Type

10 X=64 : ¥=24 : CLS : GOSUB 110

100 X=X+H ¢ Y=Y¥Y+K @ BET(X,¥) : GOTO 2¢
11@ FOR J=0 TO 127: SET(J+3) ¢ BET(J+47)
120 IF J+48B SET(@+J) : BET(127,J)

130 NEXT J : RETURN

RUN

Yes, the border is supposed to look strange. Now, we will add arule to the game: No
crashing into the border or any part of your tail. The program can enforce this rule
with

8@ IF H=0 AND K=0 SET(X,¥): GOTOD 3@

99 IF POINT(X+H.:Y+K) PRINTE 880, "YOU LOSE
BUSTER!"35: GOTO 140

14¢ GOTO 14@

The PO INT function is acompanion to the SET and RESET statements. It checks
the location specified by the two arguments to see if it is lit or not. If that location s lit,
the POINT function is TRUE. Conversely, if it is not, the PO INT function is
FALSE. In our program, if the next location is already lit, we are about to crash into a
wall or a portion of the tail, so we’d lose. We have line 80 to protect us from losing
before any keys are depressed when H and K are still zero.

If the object of the game is to go as long as we can without bumping into something,
then it might help to insert some kind of timer. Add

10 X=64 : ¥=24 : CLS : GOSUB 110 : T=0
20 T=T+1 ¢ PRINTE 28, "TIME:" INT(T/1@)]3
9@ IF POINT(X+H.Y+K) PRINTE 982, "YOU LOSE!
TIME:z" INT{(T/1@)53:
GOTO 140
RUN

Programming Techniques with SET and RESET

47

i 18s
..l.“ﬁi..i.”"..n..m.lm
“n.ml._..!.“.l...““

| "'"1 Bl | =

i t “ ¥
Illllllllllll‘m' LUSE " TiME: 18 mnnmnumnm

\

Figure3.12 A gamedisplay.

Your final listing should look like this:

*10 X=64 : Y=24 : CLS : GOSUB 110 : T=¢
20 T=T+1 : PRINTE 28, "TIME:" INT(T/12)3

30 I$=INKEY% : IF I%="" THEN 8¢

49 IF ASC(I%)=8 H=-1: K=0: GOTO 80
50 IF ASC(I%)=0 H=1: K=0: GOTO 80
6@ IF ABC(I%)=190 H=0: K=1: GOTOD B0
70 IF I%="L[" H=@: K=-1

80 IF H=0@ AND K=0 SET (X:¥): GOTO 30

90 IF POINT(X+H,¥+K) PRINTE 880, "YOU LOSE!

TIME:" INT(T/1@)i: GOTO 149
180 K=X+H

120 IF J<48 SET(@,J) : BET(127,J)
130 NEXT J @ RETURN
149 GOTO 140

Many refinements could be made to beef up the game somewhat:

® vary the size of the border

@ include diagonal motion

@ place random obstacles on the screen

@ add control keys and a moving dot for another player

Y=Y+K 1 BET(X.,Y) : GOTO Z@
119 FOR J=0 TO 127: SET(J:3) ¢ SET(J,47)

@ create boxes with varying point values that randomly appear and disappear (first

player to the box gets the points or penalty)

If you have small children, you could make the game fairly kid-proof by adding

5 ON ERROR GOTO 1350
150 RUN

48 Programming Techniques with SET and RESET

Get busy. Modifying programs can be a valuable learning aid as well as pure and
simple fun.

Warp Factor 3

Let’s look at another example of how lighting up rectangles can give a feeling of
animation. For this example, imagine yourself sitting at the helm of the Enterprise as
you zip past the stars at warp 3. You guessed it: We are going to create a viewport
complete with moving stars (you will have to supply the Romulans and Klingons).
Man your stations!

First we will set the stage for the animation by designating variables, clearing the
screen, and drawing and labeling the viewscreen. Type

NEW

19 DEFINT A-Z ¢ CLS

20 FOR I=20 TO 107 : SET(I18®) : SET(I+37) ¢ NEXT I
30 FOR I=1¢ TO 37 : SET(20,I) : SET(107.,I) : NEXT I
49 PRINTE B854, "ENTERPRISE VIEWSCREEN"

and RUN. Line 10, of course, defines all variables to be integers. Now what we would
like to do is to choose a dot randomly located near the center of the screen and move it
away from the center. By using (64,24) as the center, we can create a point near the
center by adding

70 A=33+RND(21)
8@ Y=19+RND(9)
100 SET(X»Y)

Line 70 gives us a horizontal range from 54 to 74 and line 80 gives a vertical range
from 20 to 28. RUN it a few times to be sure that the point created is reasonably close
to the center of the screen. (You may wish to modify the ranges later to suit your
taste.) Now to add the motion. Change the last part of the listing to

30 RESET(X»Y)

B@® IF X+H>20 AND X+H<187 AND Y+K:18 AND Y+K<{37
GOTO 890

70 R=093+RND(21) : H=X-B4 : IF H=0 THEN 7@

B0 Y=19+RND(8) : K=Y-24 : GOTO 100

9@ H=X+H 2 Y=Y+K

10@ SET(X,Y)

119 GOTO 5@

Use the editor if necessary, and RUN it. Because the computer initializes X and ¥ to
zero, line 50 erases (0,0) and line 60 is ignored. Lines 70 and 80 choose values for the
point (X,Y) and calculate H and K which will be the horizontal and vertical distances
the dot will move. The GO TO in line 80 sends control to 100 where the first point is
lit. The GOTD inline 110 then sends control to line 50 where the same point s
immediately erased. You might think this is a bit strange, but it has to be done to
simulate motion. Now you must quickly calculate the next position for the dot and
light it. Line 60 first checks to see if the new position will still be inside the viewport.
If not, control goes to line 70 where a new point is generated. If it is, we hop to line 90
to calculate the next position and then SE T the point in line 100. As long as the point
stays within the viewport, the sequence of

Programming Techniques with SET and RESET 49

Calculate — 90 X=X+H 1 Y=Y+K
SET — 100 SET(X,Y)
and RESET — RESET(XY)

continues. Otherwise, we start over again with a new point.

So far, so good. Unfortunately, there is often more than one star visible on the
Enterprise viewscreen. To make our display a bit more realistic, we’ll have toadd a
few more stars. Nothing could be easier. All we have to do is create a loop from line
50 to line 100, and add subscripts to the variables X, ¥, H, and K. To keep the motion
fairly smooth, we will settle for three moving stars. Edit the program to

*1@9 DEFINT A-Z : CLS

20 FOR I=20 TO 107 : SET(I,10) : SET(L:37) : NEXT I

39 FOR I=10 TO 37 : SET(20,I) : SET(1071) : NEXT I

49 PRINTE8S54, "ENTERPRISE VIEWSCREEN"®

S0 FOR I=1 TO 3 : RESET(X(I),»¥Y(I))

B@ IF X(ID+H(I):>20 AND X(I)+H(I)«<107 AND
¥Y(I)+K(I)»1@ AND Y(I)+K(I)<{37 GOTO 9@

70 X(I)=53+RND(21) : H{(D)=X(I)-B4 : IF H(I)=0 THEN 70

BO Y(I)=19+RND(9) : K(I)=Y(I)-24 : GOTO 100

99 X(I)=X(I)+H(I): Y(I)=¥{(I)+K(I)

100 SET(RA(I) »Y(I)) 1 NEXT I

110 GOTO 50

RUN it and may the force be with you. (Oops. Spock informs me that the Admiral has
adesk job waiting for anyone caught using Star Wars lingo on this vessel!)

Figure 3.13 Moving stars.

50 Using Strings

Using Strings 51

Using Strings

1 ASCIICode

In this chapter, we will investigate several ways of creating graphics through the use
of strings of characters and codes. Because we are going to push your knowledge of
BASIC to the limit (or at least give it a gentle shove), we need first to lay the
groundwork.

There comes a time in the lives of all BASIC programmers when they realize that lots
of mysterious symbols that cannot be displayed by pressing a key on the keyboard are
hiding somewhere inside the computer. They know, for example, that there are
graphics characters running around in the character generator, but there are no
graphics keys. How do you get those symbols to display on the screen or a printer
withoutkeys? Let’s see. . .

Printable Symbols

Every displayable symbol is assigned a number according to the American Standard
Code for Information Interchange (ASCII). There are 128 codes used ranging from 0
to 127 decimal. The numbers from 32 to 127 represent printable symbols.

RUN ASCII PRINTING CODES . D = DECIMAL

D CHRS$(D) D CHR$(D) D CHR$(D)
32 64 @ 96 '
33 ! 65 A 97 a
34 " 66 B 98 b
35 # 67 C 99 c
36 $ 68 D 100 d
37 % 69 E 101 e
38 & 70 F 102 f
39 ! 71 G 103 g
40 (72 H 104 h
41) 73 | 105 i
42 * 74 J 106 i
43 + 75 K 107 k
44 , 76 L 108 |
45 — 77 M 109 m
46 . 78 N 110 n
47 / 79 0 111]
48 0 80 P 112 p
49 1 81 Q 113 q
50 2 82 R 114 r
51 3 83 S 115]
52 4 84 T 116 t
53 5 85 U 117 u
54 6 86 \) 118 v
55 7 87 W 119 w
56 8 88 X 120 X
57 9 89 Y 121 y
58 : 90 Z 122 z
59 ; 91 - or| 123 {
60 < 92 = or/ 124 |
61 = 93 qor} 126 }
62 > 94 por 126 ~
63 ? 95 —_ 127 +

M M

O O

D D

E E

i

Figure4.1 Standard ASCII symbols.

52

Using Strings

Most of these symbols can be displayed by pressing a key on the keyboard, with only
afew exceptions. Try pressing the left arrow key to display a left arrow. No luck. This
key causes the cursor to back up and erase a previously typed character. So how do we
get the left arrow symbol to print on the screen? This is where the ASCII chart comes
inhandy. Any of the symbols shown in the chart (with the exception of lowercase
symbols if your machine doesn’t have lowercase capability) can be displayed on the
screenby typing PRINT CHR$ (N), where N is the ASCII number of the symbol
you wish to display. To display the left arrow character (right bracket on the Model
M) type PRINT CHR% (93). Even the standard keyboard characters can be
displayed this way. Type

PRINT "BUTTER" : PRINT CHR%(BO)CHR$(B3)CHR$(82)
"KA\.III

Can you tell them apart?

If you find yourself wondering what code number is generated by pressing a particular
key, use

NEW

10 A$=INKEY$: IF A$="" THEN 1@
20 PRINT ASC(A%)

30 GOTO 10

RUN

Press some of the special keys such as (CLEAR), (ENTER), and the arrow keys, with and
without the (SHIFT) key.

Control Codes

ASCII numbers 0 through 31 are used as control codes. They control activities such
as moving the cursor around the screen, erasing parts of the screen, and converting to
double-width characters.

Dec. Hex. Control Code

8 08 |Backspace anderase

9 09 |Tab(0,8,16,24,...)

10 OA | Move cursor to start of
nextline and eraseline

13 0D | Move cursor to start of next
line and erase line

14 OE | Cursoron

15 OF | Cursor off

21 15 | Swap space compression/
special characters

22 16 | Swap special/alternate characters

23 17 | Double-size characters

24 18 | Backspace without
erasing

25 19 | Advance cursor

*Modet Il only

Using Strings 53

Dec. Hex. Control Code
26 1A | Move cursor down
27 1B | Move cursor up
28 1C | Move cursor to upper left corner
29 1D | Cursorto startof line
30 1E | Erasetoendofline
31 1F | Eraseto end of display

Figure4.2 Control codes.

Control codes can also be implemented in BASIC with the CHR % function. Type

NEW
1@ PRINT "PRESS ANY KEY TO ERABE THIS LINE"3
20 A%=INKEYS$

3@ IF A$="" THEN Z¢
4@ PRINT CHR$(29) CHR$(3®)
RUN

Control code 28 moves the cursor to the beginning of the line, and code 3@ erases the
line. These two codes can be lots of fun. Try this on an unsuspecting friend:

NEW

5 CLS : PRINT CHR%(23)

1¢ FOR J=1 TO 3

20 READ X$: PRINT X433

30 FOR I=1 TO 100 : NEXT I
49 PRINT CHR#%$(29) CHR$(3@)3
3@ NEXT J

B¢ RESTORE: GOTO 10

7¢ DATA I, LOVE:. YOU

RUN

Line 5 clears the screen. CHR % (23) sets the screen in double-width mode, a dandy
trick to remember. A word is read and printed in line 20; line 30 pauses while we
admire the word. Line 40 erases the word and line 50 sends us back for the next word.
When all three words are read, line 60 restores the DA T A pointer and starts the whole
process again.

Moving The Cursor

Codes 24 through 27 are very useful in creating graphics. These codes move the
cursor one position in any direction. Type:

NEW

19 CLS: PRINT

2@ PRINT "1"3

30 PRINT CHR$(27)"2"3

4@ PRINT CHR$(2B)"3"3

50 PRINT CHR$(Z2B)CHR$(Z4)CHR$(24) 4"

54

Using Strings

LINE 20
O
2 |
LINE 30
T
2 ||
LINE 40
1 3 |
2
LINE 50 | 1 3]
4 | T

Figure4.3 Cursor motion codes.

CODE ACTION

27 4
26 t
24 -

As each character is printed, the cursor automatically moves right. You can then use
control codes to move the cursor to the position in which the next character is to be
printed. Code 27 moves the cursor up, 26 moves it down, and 24 moves itto the

left.

Special Foreign Characters

The Model I11 also has a hidden set of characters from foreign alphabets.

-
e
o

20

22

=

24 25

%

27

28

29

Figure4.4 Modellil foreign character set.

x

3

Using Strings 55

Itis accessed via the P OKE statement. To see the foreign character set, enter

NEW

10 CLS: FOR I=0 TO 31

20 POKE 153G0+2Z#I1,1: NEXT I
3¢ GOTO 3@

RUN

(You may want to explore this set of characters after we discuss the POKE statement
inChapter5.)

Graphic Codes

The TRS-80 features its own extension of the ASCII code, namely, the decimal
numbers from 128 to 255. The first sixty-four of these numbers identify the TRS-80
graphic character set.

HEX 80 88 8C 8D 8E 8F

IO ERRRANARREAR

DECIMAL 128 129 130 181 132 133 134 138 136 137 138 139 140 141 142 143

HEX

B
e
=T
== [
] o
=
o
B
=k
™
==
=" |
=
™
|

DECIMAL 144 145 146 147 148 149 150 151 152 163 154 155 156 157 158 159

HEX AB AC AD AE AF

EAAA RGN0 NN

DECIMAL 160 161 162 163 164 165 166 167 168 169 170 m 172 178 174 178

HEX B0 81 82 83 B4 85 86 87 BA 8B BC BD 8E 8F

DECIMAL 176 177 178 179 180 181 182 183 184 185 186 187 188 189 130 191

Figure4.5 Graphic characters.

To display all of them on the screen type

NEW

19 CLS : FOR C=128 T0O 191

20 IF C=8#INT(C/8) PRINT

30 PRINT CHR&(C)35 C" "3 (two spaces)
50 NEXT C

6o GOTO GO

56

Using Strings

and RUN. Notbad! The ASCII numbers are converted into symbols by the CHR $
function in line 30. If you want to display the keyboard characters as well, change the
128inline 10to 32. Then add

49 IF C=127 INPUT A%

and RUN. Line 40 will cause the program to pause; so press the key to
continue. Remember that unless you have the lowercase modification, all symbols
will be displayed as uppercase. If you do have the lowercase mod, it has to be
activated by using on the Model I1I, or by loading a SYSTEM tape or
from DOS by typing L CDVR on the Model I. £

Now you can create your own graphic figures. Just refer to figure 4.5. Try this:
PRINT CHR$(1GB)CHR$(179)CHR$(133)
or

NEW

19 CLS

29 PRINT CHR%$(1B9)CHR$(144)
30 PRINT CHR$(181)CHR$(1353)
49 PRINT CHR$(129)

RUN

Let’s assume that we have a figure already drawn on a video display worksheet, and
that we are ready to translate it to character codes. If the ASCII chart is available, we
can determine the codes by searching the chart for each character.

Figure4.6 A sample figure.

Figure 4.6 consists of three characters.

Using Strings 57

Figure4.7 The graphic characters.

Look on the ASCII chart to find the matching figures. You should find codes 166,
179, and 153. In the event that the ASCII chart is not readily accessible, you can
calculate the codes by remembering the following pattern:

1 2
4 8
16 | 32

Figure4.8 The pattern for calculating graphic codes.

Each of the six positions of a graphic character is assigned a number. For any graphic
character, the code is the sum of the numbers associated with the blocks to be lit plus
128. For example, the first graphic character in figure 4.7 uses blocks 2,4, and 32. Its
codeis 128 + 2 + 4 + 32, whichequals 166. The second one is

128 + 1 4+ 2 +16 + 32,0r179, and the thirdis 128 + 1 + 8 + 16, 0r 153.
See if you can determine the codes for this figure:

58

Using Strings

Figure4.9 A quizfigure.

Notice that it might be easier to subtract from 191 for nearly solid characters. The
codes are as follows:

191 — 8 = 183
128 + 4 + 8 = 140
191 — 4 = 187

Space Compression Codes

The rest of the codes, 192 through 255, are space compression codes. These enable us
to print from O to 63 spaces with a single character. Try ‘

NEW

1¢ FOR I=192 TO 200

20 PRINT I3 "ONE" CHR#{(I) *TWO" I-192
30 NEXT

RUN

The CHR $ function prints blank spaces between the words *ONE " and " TWO".
The number of blanksisI — 192.

It’s easy to calculate the space compression code needed to print a desired number of
blank spaces. Justadd 192 to the desired number of blanks. Suppose you want to flash
amessage ‘YOU WIN ! attheend ofagame. The message is nine characters
long. Toblank itout, weneedacodeof 9 + 192 = 201. Type

NEW

1¢ CLS

20 PRINTE 490 CHR$(Z01)
30 FOR I=1 TO 2@ : NEXT
4@ PRINTE 490, "YOU WIN!®
30 FOR I=1 TO 28 : NEX

6e GOTO 2¢

RUN

Of course, you could let the computer calculate the code needed for you. Type

NEW
190 CLS

Using Strings 59
e L 0 A T s s T B T P 0t

20 INPUT "ENTER YOUR NAME"3 A%

30 WE="Y0OU WIN "

49 PRINTE 4@, "111IL “W&i A * tirpge
30 PRINTE 406, CHR%(192 + 8 + LEN(A%$)) 3
60 FOR I=1 TO 49 : NEXT I

70 PRINTE 426 W%3 A%3

8@ GOTO 50

RUN

Line 50 calculates just the right number of blank spaces. It adds 8 for W% as well as
enough for A%. The trailing semicolons in lines 50 and 70 ensure that the exclamation
marks remain.

Model I Trickery
Time out for a special word to Model III users.

The Model III has two more special character sets we can display with CHR . They
share the same ASCII numbers as the space compression codes: 192 through 255.
Now, how canthat be? A 192 either represents a space compression code or it
doesn’t. Make up your mind! Well, the trick is that only one of the three sets of
characters is active at a given time. When the machine is ‘ ‘booted up’’ (computerese
for switched on), the space compression codes are the active set, just like the Model 1.
Using ASCII codes 192 through 255 gives us space compression characters. To see
what a mess these codes can make on the screen, type

NEW

190 CLS: PRINT CHR$(23)
Z0 FOR I=192 TO 285
30 PRINT I35 CHR%$(I)3
49 NEXT I

RUN

But try this one on for size:

PRINT CHR#$(21)
RUN

Wow! Look at all those nifty characters! Greek letters, faces, a rocket—something for
nearly everyone. The CHR ¢ (23) inline 10 set the screen to double width so that
you can get a good look at them. CHR % (21) is the code that activated this set and
retired the space compression codes. So, how do we get the space compression codes
back?Use CHR$ (21) again:

PRINT CHR$(21)
RUN

CHR$ (21) switches back and forth between the two sets. Where does the third
character set fit into all this? It has been waiting patiently in the dugout all this time. It
can be sentin as a pinch hitter for the special character set. Type

PRINT CHR#%(22)

60 Using Strings

Now our special character set is inactive, and the new set is about to take the field.
Enter

PRINT CHR&(Z21)
RUN

Surprise—Japanese Kana characters! Now what would happen if we tried this:

PRINT CHR$(22)
RUN

Back to the original special character set. So, CHR % (22) alternates between the
special character set and Kana characters. CHR % (21) alternates between the space
compression codes and the currently active special character set. Whew, we’ve
finally got that straightened out! Try playing around with these. Maybe you’ll
understand it better than we do.

ASCII numbers 192 — 255 are used throughout the book as space compression
codes. If you are having trouble with a program, check to make sure that the special
character sets are not active.

2 Use Of Strings

One of the most dynamic graphic techniques is the use of string variables. A string
variable is formed by appending a % to a numeric variable name. Examples are A%
and 54 %. Each variable can hold up to 255 (not 256 !) characters. Look at the
following example:

1 2 3 a 3
12345678901234567800123456788012345678801234567890123456789
ST$="000000000000THIS ‘JARIABLE CAN HOLD UP TOQOQQO"QQQOOQO
OQOOQQQOOOOQOOOTND HUNDRED FIFT‘(“"FI"V,E CHARACTERSOOOOOOOO*OQ

0000000000000000000000000!!QNDHO!!0000'0000000000000000‘00'

verrrrr e+ THAT'S ALMOST 4 LINES OF INFORMATION. ev v v e

1]
L BN B I I I L B B

Once the information is stored in the variable, it can be recalled withthe PRINT or
PRINTE statement. PRINT ST$% displays the information on the screen. Some
useful functions and statements associated with string use are:

CLEAR
DEFSTR
STRINGS
CHR%

+ (concatenation)
MID%

LEFTS%
RIGHTS%

LEN

Using Strings 61
e e e e i e R R e

LEFT$

One of the first tricks to learn as a BASIC programmer is to use the LEF T % function
to look at the first character of a string. Look at the following way of soliciting a
yes/no response:

19 PRINT "MAIN PROGRAM"

+
+

+

3¢90 PRINT "END OF MAIN PROGRAM"

51¢ INPUT "WOULDYOULIKETOTRY AGAIN"3 A%
S20 IF A%="YES" GOTO 190

330 IF A$="NO" END

540 PRINT "USE YES OR NO ONLY" : GOTO 510
RUN

The program responds to ¥ ES or NO, but what would happen if you felt like
answering withasimple Y or Noreven NOT TODAY s PAL?One way to allow
much more flexibility is to compare the first character of the response with Y and N as
in

18 PRINT "MAIN PROGRAM®

+

+

309 PRINT "END OF MAIN PROGRAM"

51¢ INPUT "WOULD YOU LIKE TO TRY AGAIN"; A%

D20 IF LEFT$(A%,1)="Y" GOTO 10

330 IF LEFT$(A%$,1)<x"N" PRINT "USE Y OR N" : GOTO 510
340 END

Any input that starts with ¥ will start the program again. Conversely, any input that
starts with N will stop it.

MID$, LEN

A function that allows us to pick a group of characters right out of the middle of a
string is M ID %. It can be used to add a bit of variety when displaying text. Try

NEM

5 CLS

12 READ A%

20 IF A$="END" END

30 FOR I=1 TO LEN(A%)

49 PRINT MIDH(A% 1 41)3

30 FOR T=1 TO 4@: NEXT T

6@ NEXT I : PRINT

70 GOTO 1@

80 DATA "THIS IS5 LINE ONE OF THE SCROLLING DEMO."
90 DATA "IT IS5 JUST AS EASY TO USE DATA STATEMENTS"
100 DATA "AS PRINT STATEMENTS.,"

110 DATA END

RUN

62

Using Strings

Each string of data is read into A% . The M I D% function in line 40 selects one
character from position I in the string A% . Each character is printed until the end of
the string is reached. The L EN function in line 30 returns the length of the string A%.
Line 50 provides the desired delay between characters.

CHRS, STRING$

Two of the functions that receive heavy-duty use in graphics are CHR % and
8TRING$%. Recall thatthe CHR % function allows us to display any of the 255
character codes available on the TRS-80 with PRINT CHR$ (N), where N is the
number of the code we desire. The function S TR I NG# will repeat any one of these
codes up to 255 times. Try

CLEAR 255: PRINT STRING$(255,191)

(We will getto CL.EAR shortly). These two functions can be combined with the

PR INTE statement in a variety of applications. A good example of their utility can
be demonstrated in printing oversized numbers and letters. First, design the
characters on the video display worksheet.

Figure4.10 Anoversized eight.

The number 8 shown here uses 18 graphic characters arranged in three rows and six
columns. Each row can be printed using character codes and strings of character
codes. The entire figure can be printed almost anywhere on the screen. The position is
specified with the PR INT® statement. Type

NEW
19 CL.8: INPUT P
20 PRINTE P,
CHR$ (1B2)CHR$(158)STRING$ (2,131)CHR$(138)CHR$(180)
3¢ PRINTE P+B4
CHR$(12B)CHR$(179)STRING$(2,140)CHR$(166)CHR$(145)
4¢ PRINTE P+1Z28,
CHR$ (130)CHR$(173)STRING$(2,17B)CHR$ (184)CHR$ (135)
RUN

Using Strings 63
L A B T G 35 s i 0 o L Q0 o S i e e 3

Type in any number between 0 and 889. The upper left corner of the 8 will be printed
there while the rest will be printed on successive lines.

For another demonstration of the power of STR ING$ and PRINT@ type

NEW

10 CLEAR 200

20 R=RND(1589)+32: A$=8TRING$(B4R)

3¢ IF RND(2)x1 THEN FOR X=0 TO 1023 STEP B4 ELSE
FOR X=89B@ T0O ¢ STEP -B4

40 PRINTE X A%

30 NEXT X: GOTO 20

RUN

Line 10 reserves room in memory for string handling, whereas line 20 chooses a
random character from the ASCII chart. The first 32 codes are skipped because they
are control codes. A% is set equal to a string of 64 of this character, enough to fill up
one row. The RMD function in line 30 determines whether the printing will start at the
top or the bottom of the screen. Line 40 does the actual printing of A%. The
FOR/NEXT loop marches us up or down the screen until the GOT O in line 50 starts
the entire process again.

Clear

Before you can make extensive use of strings in a BASIC program, memory must be
reserved. BASIC automatically reserves 50 characters as a scratch-pad for use in
working with strings. If 50 characters are not enough, you willgetan OUT 0OF
STRING SPACE error message. Change line 10 in the previous program to

1@ CLEAR S50and RUNIit. Yes,sir! Gotto CLEAR enough string space.

How does one determine the size of the string work space necessary for a given
program? Sorry, no easy answers here, but we will tackle the problem in Chapter 7.
For now, your best bet is to CL.EAR plenty of room for string use, especially if you
are doing alot of string manipulation (e.g., sorting, concatenating).

DEFSTR

One more note on string use before we charge into concatenation. If you get tired of
typing a dollar sign on the end of every string variable, the DEF S TR statement will
come in handy. DEF 8 TR can change the type of any variable or range of variables to
string variables. For example, type

DEFSTR A
Al="1 AM A STRING VARIABLE"
PRINT Al

LookMa,no $onA1l. The DEF 5 TR statement defines any variable starting with A
as a string variable. Of course, this doesn’t work if the variable is followed by a
numeric type declaration (!, #,or %). Try DEFSTR A%, It gives us a syntax error.
Who would want an integer precision numeric string anyway!

64

Using Strings

You can also define a range of variables to be strings. Type

DEFBTR T-Z
U="STRING"
PRINT U

From now on, all variables starting with a letter from *“T"’ to *‘Z’” are string variables
unless a type declaration is added.

3 Building Strings With Concatenation

The real power of string graphics is about to be unveiled, so take good notes. Much of
that power derives from the simple fact that strings may be joined (concatenated) with
aplus sign. Try typing this:

NEW

1@ CLEAR 1000 : DEFSTR A-Z
20 A="STRING"

30 C=CHR%(183)+A+CHR$(187)
49 PRINT C

RUN

Three strings—CHR% (183),A,and CHR$(187) —are concatenated in line 30
and the new string created is stored in the string variable C. That’s only the first step.
The building process can be repeated by changing line 30 to

30 C=C+CHR$(183)+A+CHR$(187)
and adding

S¢ INPUT I: GOTO 3@
RUN

Press whenever you see the question mark. Each time line 30 is executed,
eight characters are added to the end of string C. The string C will continue to expand
until the string space allocated in line 10 is used up, or until the limit on the length of a
string variable is exceeded. Considering that up to 255 character codes (nearly a
quarter of the screen) can be stored in one string variable, there is quite a lot of power
here.

How To Build Your Own

Techniques for building strings are as numerous and varied as BASIC programmers
themselves, so they cannot all be presented here. We will show enough examples,
however, to give you an idea of the variety of approaches you can take in building
your own strings.

A real natural for this sort of thing is to store the information in DAT A statements and
read itinto strings. Type

Using Strings 65

NEW

19 DEFSTR 85: READ N

20 FOR I=1 TO N

30 READ A: S=5+CHR$(A)

49 NEXT 1

30 READ 81: PRINT 5,51

6@ DATA 12,174,156,1814141,174+159,175,157,174,159,
191,132

79 DATA TRAIN

RUN

Figure4.11 Onthe track with strings.

The character codes are stored in line 60 and are added to string 5 in line 30.

Moving The Cursor

After you have explored all the exciting (?) possibilities of one-line graphics, you
graduate to multiple-line figures. This requires moving the cursor from line to line.
We have seen this done with the PR INT @ statement, but that won’t help us much
while we’re building strings. Control codes to the rescue. Remember early in this
chapter how we used the ASCII character codes 24-27 to move the cursor? Well, by
combining these codes with graphic codes, it is possible to store a many-lined figure
in a single string variable. Type

NEMW

19 DEFSTR A @ CLS

2@ A=CHR$(149)+CHR$(Z6)+CHR$(24)
30 FOR I=1 TO 3 : A=A+A : NEX
39 PRINT A

RUN

66

Using Strings

Line 30 links together several versions of the original string A. When the string is
printed in line 50, the codes Z G and Z 4 move the cursor down and to the left each
time the graphic code 1 49 is printed. This positions the cursor so that the next
graphic code printed will be directly below the previous one. Thus, we have a vertical
line stored in one string.

|

26

24

26

24

26

24

Figure4.12 The making of a vertical line.

Once a graphic string is built, it can be printed almost anywhere on the screen (but
watch out for the borders). Change line 50 to

5@ PRINTE LA
and add
4¢ INPUT L: CLS

60 GOTO 49
RUN

As you can see, the cursor motion codes are very useful in building strings. Use them!

Go With The Flow

If the figure to be drawn is a bit more horizontal, we can use the natural flow to the
right to aid us in the drawing. Notice that the space compression codes instead of
multiple backspaces are used in the following example. Try

Using Strings 67

N R

NEW

10 CLEAR 300 : DEFSTR A : FOR I=1 TO 31

20 READ B : A=A+CHR#%(B): NEXT I

30 INPUT "ENTER SCREEN POSITION (0-1923)"3 P

49 CLS : PRINTE P, A : GOTO 30

5@ DATA 1B0+156,140,172,1444,184,140+140,180,247
6@ DATA 191,195,130,185+170,149,246

79 DATA 130,137,164,144,194,176+143 4,131 +243

80 DATA 199,130,137,131,249

RUN

Lines 10 and 20 build a single string, A, out of the numbers in the DA T A statements.
Lines 30 and 40 input the desired screen position and print the figure. The data greater
than 191 are space compression codes; they greatly reduce the number of characters
required to print this heart. Save this program-——we will use it later in this chapter.

ENTER SCREEN POSITION (0-1023)7

\.

Figure4.13 Aheart.

Using The BASIC Editor

Another way to add cursor motion to your strings is to use the editing features of
BASIC. Type

NEW

12 CLS

20 As="123 4"

30 PRINTE 400+ A%
49 GOTO 49

(Two blank spaces in line 20.) RUN itjust to be sure there is nothing up our sleeves.

68

Using Strings

Your output should look like this: 123 4. We are about to use a devious ploy so
that the string A'$ prints like this:

41
32

To do this, we will have to insert control codes between the numbers in line 20 using
the built-in BASIC editor. When we are finished, the line should be stored in memory
as

li+2+<34=4

Figure4.14 Embedded cursor control codes.

The arrows indicate cursor motion codes. The codes could be added in the following
manner:

20 As="1"+CHR${(ZB)+CHRS(Z4)+" L+ v

but, hang on to your hats, there is an easier way. These three control codes can be
entered directly from the keyboard. It will jumble up the listing a bit, but it will
require fewer CHR $.

Detour For Model I Owners

Before we get into the editing, however, we’ll have to take a special detour for Model
Towners with the old ROM chip. In Chapter 2, we found that the new and old ROM
chips handled the T AB statement differently. Another difference is the way in which
CHR$ (26), the cursor down character, is generated from the keyboard. Those of
you with the old chip can use and (&) keys. Those with the new ROM or
Model IIT use VA

In the editing to follow, old ROM folks will have to ignore the (Z). When the
instructions call for a SHIFT) (&) (Z), use (SHIFD) (=) instead.

Back Again

Ontoediting. The line we are about to edit is
20 A%$="123 4"

Follow the instructions very carefully. If you make a mistake, retype line 20 and start
again. Don’t try to patch up a partially edited line. Press (ENTER) only at the end of the
editing session. Entereditmode withEDIT 2@ (ENTER). Type

821 ‘

SHIFD (=)Z GHIFD(Y) GHIFD(=)
531

Using Strings 69

SHIFD(é) SHIFD(&) SHIFT
S(SPACEBAR)2C

SHIFD)(=) SHIFD(@)

ENTER

Note that the role of the SHIFT) (=) depends on the mode. It terminates input in the
insert mode, butitacts like CHR$ (27) in the change mode. Now RUN the
program. Your output should look like this:

41
32

Type

CLEAR
LIST

to see how line 20 has changed. It should appearas 2@ A%$=4". Where did all those
numbers go? Believe it ornot, they are there. To see them, type EDIT 20 and
S-L-O-W-L-Y space through the line watching how the cursor moves. If you miss it
the first time, press (while you’re still in the editing mode) and try, try again.

Substrings

Another technique used in building graphic strings is assigning useful graphic codes
to variables. These variables can then be used to build large graphic strings. As an
example, enter

NEW

1¢ CLEAR 1@@ : DEFSTR A-Z: CLS

20 A=CHR$(178): B=CHR$(16®)

3@ C=CHR$(175)+A+CHR$(159)

49 D=CHR4$(183)+A

30 K=B+STRING$(3,+176)+D+D+CHR$(191)+B+CHR$(2B)+STRING$(10,24)
B2 HK=K+CHR$(138)+C+BTRING$(Z2,143)+C+CHR$(131)

70 PRINT X

RUN

70

Using Strings

Figure4.15 On the road with substrings.

Notice how codes 26 and 2 4 are used at the end of line 50 to create a two-line figure.

Intermediate Variables And String Arrays

Another idea for building several large but similar figures is to store similar portions
of the figures in intermediate variables. The final figures can first be created from the
intermediate variables, then stored in string arrays for easy access. This technique is
particularly useful in printing oversized numbers in that many of the digits share
common features.

We will start by creating a set of ten figures each three characters high by five wide.

Figure4.16 Largedigits.

Using Strings 71

Our goal will be to store the digits in the string array N$ (@) -N% (9) . This way,
they can easily be recalled by number. Next, we must identify substrings that are
common to several figures. The figures are designed so that there is quite a bit of
duplication.

Figure4.17 Anexploded view of the large digits.

Start with

NEW

19 CLEAR 30®: DEFSTR A-Z : DEFINT J:K
20 CLS

30 M=CHR%(Z2B)+STRING$(4,24)

Line 30 will take care of the cursor motion necessary to keep the three rows of each
figure lined up. The character codes used by several of the figures are

40 X=CHR#%(128): Y=CHR$(131): Z=CHR$(181)
The intermediate strings necessary are

SO0 A=XAY+X+HN 1 BeX+X+X4+Y 1 CeX+Z+M+¥

BO D=X+X+X+Z : E=Y+Y+Y+Z 1 F=Z+Y+Y+7
I=

70 G=Z+X+X+Z 1 H=Z+Y+¥+Y Y+Y+Y+Y

See figure 4.18.

72

Using Strings

T
A] F

1723

[T

m
I -
I A I |
=

Figure4.18 Intermediate strings.

Merging these substrings into the final figures will be a breeze now that the hard work
is done. The substrings must be separated by the cursor motion string, M. Add

240
250
260
27@
280
250
300
310
320
330

N(@)=F+M+G+M+I
N(1)=C+M+C+M+A
N(2)=E+M+H+M+]
N(3)=E+M+E+M+1]
N(4)=G+M+E+M+B
N(S)=H+M+E+M+I
N(B)=H+M+F+M+1
N(7)=E+M+D+M+B
N(B)=F+M+F+M+1
N(9)=F+M+E+M+1I

You now have a set of large digits that can be called by number as needed. And
because they are stored as strings, they can be printed nearly anywhere on the screen
with PR INT@. The applications for oversized numbers are virtually endless;
displaying a digital clock, math drills and games are justa few.

A very simple example of how to use these numbers is the following:

*340
350
360
370
380
RUN

FOR J=@¢ TO 900 STEP 19Z
FOR K=@ TO 55 STEP 5
PRINTE (J+K)s N(RND(1@)-1)3
NEXT K 2 NEXT J

GOTD 340

Using Strings 73
2 e o 7 e i T P L T A A e o s 1 G s e e S 0

4 Controlling Screen Position

Fluttering Heart

Once graphic figures are stored in string variables, duplicating and moving them
around is acinch with the PR I N T@ statement. Reload the heart program (figure
4.13), and delete lines 30 and 40. The remaining program loads the entire heart into
the string variable A. By varying the position at which the heart is printed, we can
duplicate it all over the screen. Add

10¢ PRINTE RND{1223), A%
130 GOTO 100
RUN

Sure gets crowded in a hurry, eh? Add

119 CLS
RUN

to get a fresh screen each time. Whoa, Nelly! That’s a bit fast! To slow it down, add

112 FOR I=1 TO 20: NEXT
129 CLS5: FOR I=1 TO 2@: NEX
RUN

Controlled Animation

Now for the animation that all you game freaks have been waiting for. Actually most
of the work (storing the figures in strings) is already done, but we need to exercise
more control over the motion. The random fluttering of the heart is too sporadic for
most applications.

One clever way to move a figure slowly across the screen is to buffer the edges of
your figure with blank spaces. Printing the figure in an adjacent position will cause it
to erase the previous character. Try

NEW

16 CLS: FOR I=1 TO 22

20 READ N : A$=A%+CHR$(N)

30 NEXT I

49 FOR P=¢ TO S50

50 PRINTE P, A%

6@ REM

7@ NEXT P

8¢ DATA 128,160,158,163,143,+167,180,128,160,182,246
8¢ DATA 176,178,189,176,179,184,191,184,191,135,128
RUN

74 Using Strings

Figure4.19 Asnail.

Whata cutie! Lines 10 through 30 build the string A% from the data statements; lines
40 through 70 move the snail from print position 0 to 50. If your snails seem to be
slower than ours, add

G2 FOR I=1 TO B@: NEXT I
RUN

There, that will slow it down. To make it move backwards use

4¢ FOR P=3@ TO @ STEP -1
RUN

Getting Fancy

What happens if we just let our snail friend traipse on into the edge of the screen? Try
it:

49 FOR P=9 TO B2
RUN

Poor thing. Fragmented at such an early age. (Escargots Provengal, anyone?)

But, with alittle advance planning in the way the string is constructed, we can at
least give our snail a graceful exit off the screen. If the figure is stored in the string
column-by-column instead of the easier row-by-row format, we can use substring
functions to print only part of the snail as it creeps toward the end of aline. In order
to do this, we will need cursor motion strings so that the snail can be printed
column-by-column. Add ‘

5 CLEAR 180: D$=CHR$(Z24)+CHR$(26): U$=CHR$(27)

Using Strings 75

D % will move the cursor down with the necessary backspace, and U$ will move it
up.

Figure4.20 String reorganization.

The DAT A will have to be reorganized to match:

B9 DATA 128,144,128,176,160,+178,158,189,1683,176,143+179
8¢ DATA 167+,184.,180,181,128,184,160,181,182,135,128,128

The cursor motion strings can be inserted as the graphic codes are read in:

1¢ CLS: FOR I=1 TO 42
20 READ Ny M: A%=A%+CHR$(N)+D&+CHRS (M) +U%$

We still have to chop off the right part of the figure as it approaches the right side of
the screen. Do so with

30 IF P:3Z PRINTE P, LEFT®(A%.:(G4-P)xd)3 ELSE
PRINTE P+ A%3
RUN

This line prints only the left portion of the figure as it nears the edge of the screen.
Yes, yes—it is a lot of work, but that is the sacrifice one must make in order to be
creative. So, happy snails to you, and, smooth snailing.

76 PEEK, POKE, and Other Oddities

PEEK, POKE, and Other Oddities

77

PEEK, POKE, And Other
Oddities

1 Memeory-Mapped Video

PEEK/POKE

So far, we have looked at several methods of creating graphics on the screen,
including SET/RESET, PRINT, and PR INTE. Another one for our collection is
PEEK/POKE.

The PEEK and POKE instructions enable us to examine and modify the contents of
memory locations without leaving BASIC. PEEK, as the name implies, is like a
sneak window into the inner workings of the TRS-80. It allows us to look at the
contents of any memory location, including the read-only memory (ROM) area. The
ROM portion of memory is where the BASIC language and operating system are
stored. With the POKE instruction, we can alter any of the random-access memory
locations from 15360 (3C00 HEX) to the end of memory. Using PEEK and POKE,
we can write machine language programs, modify the screen display, monitor the use
of peripherals, change the contents of variables.. . . . in short, we can really gum up
the works if we set our minds to it! The amazing thing about PEEK and POKE is that
they enable us to do all these things from BASIC.

The Memory Map

So, what does modifying memory locations have to do with graphics? Everything!

The memory of the TRS-80 is used for many purposes, as indicated in figure 5.1. The
1024 characters displayed on the screen are stored in memory locations

15360 — 16383 (3C00 — 3FFF HEX). Location 15360 corresponds to print
position 0, and location 16383 to 1023. Any changes to this area of memory are
immediately reflected on the screen as well. Let’s see how this works. Enter

NEW

19 CLS = PRINT "A"
3@ N=PEEK(1353G6#)
4@ PRINT N:CHR$(N)
RUN

The PRINT statementin line 10 prints an A in print position 0, which automatically
places the ASCII code for A, 65 (41 HEX), in memory location 15360. Of course, it is
stored in memory in binary form. The PEEK instruction in line 30 reads this value,
converts it to decimal, and stores it in the variable N. The CHR % function is used to
convert the code back to the original symbol. (Note that lower case mods will give
different results.)

78

PEEK, POKE, and Other Oddities

DECIMAL HEX
0 0000
ROM
12287 3000
12288 3001
RESERVED
MEMORY
14335 37FF
14336 3800
KEYBOARD
MEMORY
15359 3BFF
15360 3600 ——”
3601 ———f
3¢02
VIDEO
MEMORY
3FFD S
3FFE
16383 3FEF
16384 | prcic 4000
WORK
17128 | AREA 428
17129 4269
BASIC
PROGRAM
VARIABLE
STORAGE
FREE
MEMORY
STACK
STRING
SPACE
RESERVED
MEMORY
(FOR USR)

Figure5.1 A memory-mapped video display.

To change the A to a B, we can poke the ASCII code for B, 66, into location 15360
(top left corner of the screen). Add

20 POKE 15360 GB
RUN

Line 30 then reads the 66 from location 15360, and line 40 prints it.

HWARNING!!! CARELESS POKING MAY BEHAZARDOUS TO YOUR
PROGRAM’S HEALTH! Don’t poke any locations except the screen section of
memory unless you know what you are doing. The chances of hurting your computer
are slim, but it is easy to lose a program.

PEEK, POKE, and Other Oddities 79

To poke a character into any of the 1024 screen locations, use 15360 plus the
PR INT® number of the desired location. We can simulate a
PRINTE 4¢@, "#" statementwith

CLS: POKE 1336e+d4p0., 42

(The 42 is the ASCII code for #.)

POKE vs. PRINT

Although POKE can be used to display many of the same characters asthe PRINT
statement, it reacts quite differently to some of the ASCII codes. The next program
will enable you to experiment with poking different ASCI codes to the screen. The
P OKE statement controls the screen position.

NEW

1e¢ CLS: 6=1536¢

20 FOR I=129 TO 181
30 PRINT CHR&(Z8)3
4¢ INPUT N

5¢ POKE S+Is N

6@ NEXT 1

RUN

Type in numbers from 0 to 255, and this program will poke them into consecutive
screen locations. Note that the control and space compression codes do not function in
the same manner as when they are displayed with the PR I NT statement. Also, Model
Iowners who have not activated the lower case modification will find a lot of
duplication. Codes 0 through 31 act like 64 through 95, and codes 96 through 127
behave like 32 through 63.

Animation

In the previous chapter, we discussed using string functions to control animation. The
POKE statement can be used as an alternative, but it is more awkward to use when
large amounts of data have to be moved quickly. Recall the original snail program in
Chapter 4. The snail was stored in A%, then printed in a loop:

FOR P=@ TO 50
PRINTE P» A%
NEXT P

One could accomplish the same thing with the P OK E statement. (Don’t type this.)

10 DEFINT X: CLS

20 FOR X=135360 TO 15410

30 POKE X 32 : POKE X+1, 164

40 PORE X+2, 178 : POKE X+3, 178
39 POKE X+d4, 176 POKE X+3, 141
6@ POKE X+B, 14¢ POKE X+G4, 32
70 POKE X+8%, 138 : POKE X+66, 131
80 POKE X+687, 131 : POKE X+868, 139
90 NEX

ipe GOTO 100

80

PEEK, POKE, and Other Qddities

The POKE statement gets the same job done, but for larger figures, the speed of
animation would be slower. Consequently, POKE is best suited to a supporting role
in animation.

Graphic Subroutines — Large Numbers Revisited

Where speed is not crucial, POKE can be used in subroutines to create large figures
without using up string space. The large number program could easily be written with
POKE instructions. As an example, the subroutine to print an eight would be like this:

NEMW

i@ * MAIN PROGRAM

20 CLS: I=153840

3¢ GOSUB 1800

49 ‘ CONTINUE

53¢ GOTO S50

1800 POKE I, 16@: POKE I+1, 15B: PDKE I+2, 131:
POKE I+3, 131: POKE I+4,s 139: POKE I+5, 180

1810 POKE I+B4, 128: POKE I+B5. 179: POKE I+BG6.,» 14@
POKE I+G67 140: POKE I+B68, 1B66: POKE I+B8, 145

1820 POKE I+128, 13@: POKE I+128, 173: POKE I+130:
176 POKE I+131, 176: PDKE I+132, 184: POKE
I+133, 135

1830 RETURN

RUN

Using strings to print this figure uses less code. The main advantage of using POKE is
that it does not use up string space.

Cursor Movement

Itis easy to overlook the fact that the POKE statement has no effect on the cursor
position. The cursor stays at the last position printed (not poked!) regardless of where
we poke characters on the screen. As aresult, we have to specify each position to be
poked. Compare the above routine with a version using PRINT:

180¢ PRINTE I,
181@¢ PRINTE

CHR& (1G0)CHR$(138)CHR$(131) 4.4,
I+64+ CHR$(1ZB)CHR$(179)CHRS(14@) 4.4

+

Each time a character is printed, the cursor moves to the right, ready to print the next
character.

Sometimes, this feature of the P OK E statement can be advantageous. It means that
we can make updates to the screen without changing the location of the cursor. The
following short routine demonstrates this feature of POKE:

NEW

10 CLS

20 PRINTE 400 "WHERE ARE
30 POKE 13360+396@ s 42

You "3

PEEK, POKE, and Other Oddities 81

49 PRINT "CURSORT"
RUN

The POKE in line 30 doesn’t disrupt the continuity of printing in lines 20 and 40.

2 PEEK And POKE At Pressure Points

So far in this chapter, we have seen the POK E statement come up short when used as
an alternative to the PR I NT @ statement and string animation techniques. As
frustrating as it may seem, it is good to know the limitations as well as the strengths of
the tools at our disposal. We are now going to explore some of the unique aspects of
POKE and its companion statement, PEEK.

These statements allow BASIC programmers to probe and change almost any portion
of memory at will. If used with care, they can give us access to places in memory that
control important functions. You have already seen how we can control the video
display portion of memory. In this section, we will explore other locations used to
control graphics.

Double-Width Characters

The memory areas in figure 5.1 labeled RESERVED contain several tables and status
indicators used by BASIC. The Model I uses these areas somewhat differently from
the Model ITI. For example, location 16445 indicates the width of the characters on
the screen for the Model 1, whereas location 16912 does this as well as several other
things for the Model I1I. When the computer is first turned on, characters are normal
width and location 16445 contains a 0; location 16912 contains a40. To check this,

type

NEW
PRINT PEEK(1B443) Modell
PRINT PEEK(16912) Model IlI

See, we wouldn’tkid you! Now try this:

PRINT CHR#(Z3)
PRINT PEEK(1G6445) Modell
PRINT PEEK(1B91Z) Model 111

The entire screen goes into double-width mode when CHR % (23) is printed, and the
values at these locations change. Returning to normal width can be achieved by
pressing the key or by typing CL S. Unfortunately, both of these methods
clear the screen as well as change to normal character width. There may be times
when you want to change character width without clearing the screen. As you may
have guessed, we can return to normal character width without clearing the screen by
poking the original values in these locations. Enter

PRINT CHR#%(Z3)
PRINT "HKXKX"

82

PEEK, POKE, and Other Oddities

Everything on the screen is in double width. Now try

POKE 16445+ @
PORKE 16912, 4@

Model I
Model IIT

Hooray! Back to normal character width. Notice that everything that was printed
while the screen was in double-width mode is printed in every other character
position. In a similar fashion we could use

POKE 16445, 8
POKE 16912, 44

Model I
Model I1I

to go to double width instead of PRINT CHR$ (23). Now to flex our new muscles
ina BASIC program. Enter

NEW

19 CLS : J=1

20 PRINTE 4080+ "TERMS -$850"
30 FOR I=1 TO 200 : NEXT

49 J=-J

5@ POKE 16443 8 Modell
3@ POKE 168812, 44 Model IlII
7@ GOTO 3¢

RUN

So, what happened to the double-width mode we were promised in line 50? Press

to find out. Surprise! It was in double-width mode all the time, just too
embarrassed to admit it. For some reason, this poking works in immediate mode, but
notin a program. Hang on, there is a way to remedy the situation. Change line 50 to

50 POKE 16445y B : 0OUT 255 8 Model I
30 POKE 16912, 44: 0UT 236, 4 Model 111
RUN

Amazing! Now we will alternate between the two modes. Change to

59 IF J<@ POKE 16445, 8 : DOUT 255, 8 Model 1
6@ IF J:@ POKE 16443, @ : 0OUT 255, 2 Model 1
50 IF J<@ POKE 16912, 44: QUT 236, 4 Model 111
6@ IF J:¢ POKE 16912, 40: 0OUT 236, @ Model 111
RUN

That’s more like it. For most applications, CHR % (23) is the easiest way to enter
double-width character mode, and CL.§ is the easiest way to return to normal width.
When you don’t want the screen cleared, use the appropriate POKE-OUT
combination in place of CL.S.

INPUT With PEEK

So far, we have seen two ways of entering information into a program from the
keyboard: INPUT and INKEY $. The INPUT statement is the bread-and-butter
method of input, and INKEY $ is best suited to situations where real-time interaction
is needed. A third method of input involves using the PEEK statement to test the
keyboard section of memory. This section of memory is closely tied to the keyboard,

PEEK, POKE, and Other Oddities 83

much like the video section of memory and the video display. Using PEEK in this
way is similar to using I NKE Y %, but there are some important differences. If you
just can’t wait to get a complete rundown on this method, skip to the last part of
Chapter 7. The rest of us will settle for a simple example at this point. Enter the
following:

NEW

14 CLS: L=153G60

20 G=L

79 POKE L., 181

9¢ POKE G+ 32: GOTO 29
RUN

No PEEKs yet! These lines just set up the flashing **cursor’” we are going to move
with PEEK. Line 10 clears the screen and sets the POKE location to the start of
screen memory. Line 20 sets up G as asecond POKE location. Line 70 puts a solid
graphic character in location L , and line 90 replaces it with a blank space to simulate a
flashing cursor.

We are going to move the **cursor’’ by means of the four arrow keys. The keyboard
memory cell that we will use to test for the arrow keys is 14420. Itreacts to the

keyboard as follows:
KEY DEPRESSED CONTENTS OF 14420
no key depressed 0
up arrow 8
down arrow 16
left arrow 32
right arrow 64

To move the cursor, we need to peek at location 14420 to see which key is depressed
and change L accordingly. Change as follows:

20 R=PEEK(14422): G=L
B@ IF R=64 L=L+1: IF L»16383 L=1B383
RUN

Depress the (B) key. As long as you hold down that key, the cursor moves to the
right. Release it, and the motion stops. Try that with INKEY $! Motion is created in
Jine 60 by adding one to L. as long as the right arrow is depressed. The end of line 60
protects us from straying to other parts of memory and destroying the program.
Motion in the other three directions can be added with

30 IF R=8 L=L-G64: IF L<15360 L=L+B4
49 IF R=16 L=L+B4: IF L»1B6383 L=L-64
5¢ IF R=32 L=L-1: IF L«<133B@ L=15360

Check these lines carefully before you RUN the whole thing. The listing should be
this:

19 CLS: L=133G9¢

20 R=PEEK(14420): G=L

3@ IF R=8 L=L-84: IF L<153G60 L=L+64
49 IF R=18 L=L+64: IF L»18383 L=L-G4
5@ IF R=32 L=L-1: IF L<133B60 L=13360

84 PEEK, POKE, and Other Oddities
e R B R T i

69 IF R=B4 L=L+1: IF L>1B38B3 L=16383
70 POKE L 1891
90 POKE G, 32: GOTO 20

Why Change A Good Thing?

Only the arrow keys and the key should have any effect on the program at this
point. With a few modifications, we can have the cursor leave a trail of any keyboard
character as it moves. Change lines 10,70, and 90 and add 80 so that the program
looks like this:

1@ CLS: L=15360: POKE 18537, 32

20 R=PEEK(14420): G=L

30 IF R=8 L=L-Bd: IF L<13536@ L=L+B4

49 IF R=16 L=L+B4: IF L>16383 L=L-G4

30 IF R=32 L=L-1: IF L<{1336@® L=153G6@

B® IF R=B4 L=L+1: IF L>16383 L=18383

79 POKE Ly 181: I=PEEK(1B537)

8@ IF I<*B AND I<*8 AND I<>1® AND I<»91 B=1
9¢ POKE G, B: GOTO 290

RUN

Press akey, any key, then use the arrow keys to duplicate that character around the
screen. To erase, use the (SPACEBAR). The quiz for the day is to figure out why this
works!

For Thrill Seekers Only

For some real excitement, delete the second 1F statement in line 40 (save the
program before you do this; you are about to lose it!). RUN the program, and be sure
to use the (@) key. We told you to be careful where you are poking! Now you've
done it! That I F test protected the rest of memory from our merciless flashing cursor.
You will have to reset the whole works if you want to use it again.

Controlling Strings

As you have seen, strings are quite a versatile tool to the graphic programmer. We
have stuffed them with alphanumeric characters, graphic characters, control codes,
and space compression codes. Could there possibly be anything that we have
overlooked? Yes and no. No, there is nothing new to putinto strings. Yes, there are
new ways to put items in a string and lots of applications that no one has even thought
of yet. One string-packing technique we have not yet covered is finding the location
of a string in memory and poking in the values we want. Then we can use strings to
hold look-up tables, machine language programs, and so forth.

The TRS-80 operating system keeps a three-byte index to each string variable used in
a BASIC program. One byte holds the length of the string, and the other two bytes
contain the memory location of the string itself.

PEEK, POKE, and Other Oddities 85

BYTE 1: LENGTH
INDEX BYTE2: LOCA-
BYTE3: TION

BYTE ?:
BYTE ?:
BYTE ?:
STRING BYTE ?7:
BYTE ?:
BYTE ?:
BYTE ?:
BYTE ?:

nwH4HzZzm-HAzZ200

Figure5.2 The string variable three-byte index.

The variable pointer function, Y AR P TR, allows us to find the location of the index of
any variable. To see how it works, type

NEW
12 CLEAR : A$="STRING"
20 Y=UARPTR(A%) : PRINT WV

The number printed is the location of the first byte of the index to A$, not the starting
location of A% itself. We have to examine bytes two and three of the index to find out
where A% is hiding. Add

3¢ LE=PEEK (W)

49 LSB=PEER(VU+1)

50 MSB=PEEK (U+Z)

B® PRINT LEs LSB.» MGB
RUN

The length of A% is six. Inlines 40 and 50, L 5B and MSB are used to store the least
significant byte and most significant byte of the location of A% . If the PEEK
instruction displayed numbers in hexadecimal, we could simply place them side by
side—MSB L SB—to getthe location of A% in HEX. Forexample, if LEB=85H
and MSB =28H, then the location of A% would be 2805H. Working in decimal, the
location is calculated by multiplying MSB by 256 and adding the resultto LSB. Add

7¢% L=LSB+MSB*Z356
80 PRINT L

LIST

RUN

Now all we have to do is to peek into our memory starting at location L to see what is
stored in A%. Enter

890 FOR I=L TO L+LE-1
109 PRINT CHR$(PEEK(I))
119 NEXT I

RUN

Isn’t that terrific?

86 PEEK, POKE, and Other Oddities

You should be aware of a couple of pitfalls in using the VAR P TR function. Strings
stored in the string pool space tend to move around a lot, so you should always use
YARPTR to check their position before examining the contents. Also, note that the
PEEK instruction works on addresses up to 32767. If the string variable is at a higher
numbered location, use PEEK (desired addressed — 65536).

3 String Packing

Dummy Strings

Now that we know how to locate string variables in memory, we canlook at another
way to fill them up with graphic codes. Keeping in mind that we don’t want the strings
to wander around in memory, we will start by setting up a dummy string. We'll need
to be careful to keep the value unchanged. Enter

NEW
1¢ DEFSTR A : CLS

20 A="rrae"
(Use 5 colons or any other character in line 20.)

We are going to find out where A is located, then poke graphic characters into the
string, thus replacing the five colons. The location is easy. Add

30 L=PEEK(VARPTR(A)+1) + ZS5G*#PEEK(VARPTR(A)Y+Z)

Line 30 calculates the location of A using bytes two and three of the index to A. It is
just acompact version of lines 20 through 70 in the previous program.

Now we will set up aloop to ask for graphic character codes (128 through 191), then
poke them into location L.. Add

49 FOR I=1 TO LEN(A)

59 INPUT "GRAPHIC CODE"§ N
69 POKE L+I-1: N

79 PRINTE 480, A

80 NEXT I

RUN

Answer the five prompts with the numbers
141 149 149 191 149

You have just created your first Boeing 747. Not bad, but can it fly in formation?
Enter

CLS: FOR P=2 TO 900 STEP G68: PRINTE P, A: NEXT

This method of poking graphic characters in strings can be used to create larger
diagrams. Simply redo line 20 using the desired number of dummy characters. As
long as we don’tuse a LLE T statement to reassign different values to A, we can poke
away atitall day.

PEEK, POKE, and Other Oddities 87

Graphics Editor

Packing strings with graphic codes is so useful that several companies market
programs to aid in entering characters into strings. Here is a simplified version. It is
designed to be appended to the end of any program, either by typing it in or by
merging it with the host program on adisk system. It will allow us to enter codes into
several strings of our host program, provided that we have entered the appropriate
number of durnmy characters in the original strings. Type

*NEW

Q@Y N&="": CLS: INPUT "ENTER VARIABLE NAME"i X$

6019 INPUT "ENTER SCREEN POSITION"S PO

Ced2¢ P=PEEK(1G6548)+2506%PEERK(16548)

BRO3@ N=PEER{(P)+23G#PEEK(P+1): IF PEEK(P+4)=ABC(X%$)
GOTO Ge@se '

60340 1IF PEERK(N)+2S5G#PEEK(N+1)=0 PRINT "UARIABLE
NOT IN PROGRAM": GOTO B2@1© ELSE P=N:

GOTO Geo3l30

BOB50 N1=INT((P+7)/236) : POKE UVARPTR(N$)+1,
P+7-256#N1: POKE VARPTR(N$)+2, N1:POKE
UARPTR(NS) + N-P-7

6969 CLS: FOR I=P+4 TO N-Z: PRINT CHR$(PEEK(I))}3
: NEXT I

B@o7¢ FOR I=P+4 TO N-2: PRINTE Z200@, "DECIMAL:"3 :
K=PEEK(I)

BROB8O PRINTE 288, Xj TAB(Z2)"CHARACTER: "§i : IF
Kx31 AND X<192 PRINT CHR$(X): ELSE PRINT
"CONTROL™ 4

69099 IF 1-P-B:0 PRINTE POy LEFT$(N&,I-P-6)3

BR10@ X$="": PRINTE 234, "NEW"3F : INPUT X

BR110 IF X$"" THEN B@130 ELSE IF ASC(X$)=91 AND
I:P+4 I=I-1 1+ GOTO GOB7Q

BA1Z0 X=VAL(X$): IF X=0 END ELSE IF X<@ OR Xx*233
PRINTE 33, "ERROR": GOTO G@v8@ ELSE POKE I, X

652130 NEXT

There are several techniques of interest in this program. First, lines 60020 through
60040 direct the search for the variable name by following the line number pointers
embedded in the BASIC program. Second, N#% is a dummy variable used to display
the contents of the variable being edited. Line 60050 recreates the index to N $ so that
it points to the variable entered in line 60000. The use of a dummy variable allows the
graphics editor to modify several different program lines.

Let’s use the editor to store figure 5.3 in a string variable.

88 PEEK, POKE, and Other Oddities
e

1

1

) SN UV U U RO SO U O
1 -
NN IS N WU OO AN AN I |

Figure5.3 Brighteyes.

We have to add a dummy string with enough characters to contain the figure. Enter
10 A$="1234567889012345678901234567"

Using the editor, we can poke graphic and space compression codesinto A%$. Type
RUN G@@®®. Answer the prompt with A. The program will search line-by-line for
a line starting with A. When the A is located, the program asks where it should display
the figure. Use 410 fornow. We can then edit the line character-by-character. The
editing features are the following:

ENTER Skip to next character
@ Backspace through line

@ End editing before end of line
1<=NUMBER< =283 Change character to this code

Control codes and space compression codes are displayed as CONTROL. Use the
(@) to correct mistakes, and (@) to quit before the end of the line.

As soon as the variable A islocated, the editor will display the line at the top of the
screen and give you the opportunity to change the line character-by-character. Do not
change the first few characters. Press until the first 1 is displayed. Then type
these numbers, each followed by (ENTER):

128 128 151 176 176 176 176 171 248
184 191 137 170 149 134 191 189 248
1389 143 191 181 191 191 143 135 128

Most are graphic codes, but 249 and Z 48 represent space compression codes. Now
type LIST 1@.Onthe Model III, the figure will be listed as entered. On the Model
I, it will be amess! When Model I BASIC lists any line, it interprets all codes greater
than 127 as BASICkey words. Don’t worry, A% will still print a nice graphics figure
as long as you don’t try to edit the line or save it on disk with the & option. To show off
the figure, add

29 CLS: P=480

390 IF RND(2)=1 Pl=1 ELSE Pil=-1
49 FOR I=1 TO RND(ZQ)

50 P=P+P1 : PRINTEB P A%

B9 NEXT 1

79 GOTO 3@

RUN

The editor can be used to create several graphic strings in one program. Use
RUN B@@0@ toaccess the editor.

PEEK, POKE, and Other Oddities 89

4 OUT Statement

The OUT statement is used to send information to any one of 256 ports available on
the TRS-80, numbered 0 through 255. Unfortunately, the only port used on the Model
1is port 255, the cassette recorder. (If you are interested in taking advantage of the
other ports, see Controlling the World, by David A. Lien, Compusoft Publishing,
Inc.) On the Model 111, we can use any of the ports.

Youhave already seen one use of the DUT statement in this chapter. Remember, it
got us back to normal character width when combined with the correct POKE
statement. The OU T statement can also be used to create some crazy graphics effects.
Enter the following program, and let loose your imagination:

NEW
10 CLS: INPUT IyJd
20 FOR L=1 TO 40

30 0UT 236 1 (ModelI,use OUT 233, I)
49 FOR X=1 TO 8: NEXT X

53¢ 0UT 236, J (Modell,use OUT 2334 J)
6@ NEXT L: GOTO 10

RUN

Enter the following pairs of numbers:

Model 1 Model III
8.0 Changes character width 4,8 4.4
440 Wow! Sound, such asitis 240 0.2
4,43 Listen closely for this one 22 B2
815 Sound and wavy display 6.0

You’ll find these fairly typical of other combinations, but don’t let me stop you from
experimenting. Listen for the OUT statement in the next chapter.

90 Machine Language Graphics and Sound
R e sy

Machine Language Graphics and Sound 91

Machine Language Graphics
And Sound

1 Using Machine Language With BASIC

Why Machine Language?

We were just getting used to BASIC, so why throw this at us now? Because BASIC is
aslow language, and animated graphics depend on speed. We spent all that time
learning about building strings so that we could squeeze every last bit of speed out of
BASIC. Unfortunately, there are going to be times when BASIC just can’t perform,
especially when machine language programs can run hundreds of times faster than
BASIC programs.

Do we have to learn machine language? Of course not. We could probably spend
years developing applications using the techniques we have developed to this point
and never even miss machine language. If it turns out that speed is important but
machine language is not our cup of tea, we can run out and buy one of those programs
that compiles BASIC programs into machine code. In any event, feel free to skip this
chapter without any loss of continuity. It will be waiting for you if you ever decide to
make the leap. For those of us who are going to press on, we’ll have to decide just how
to approach this topic. Should we investigate assembly language or should we confine
the discussion to how machine language routines can be used in conjunction with
BASIC? The latter approach seems to be the easiest way to get our feet wet. Do we
hear any nays? Good. The ayes have it.

Where Do We Put The Darned Thing?

We have several options. We can store our machine language routines in high
memory by reserving space for them when we enter BASIC. We can store them in
low memory and relocate the BASIC program to make room for them. For small
routines, we can even store them right in the midst of the BASIC program itself.
That’sright! In fact, you have already seen the technique. Simply poke them into
string variables. Now why didn’t we think of that? The string variable approach is the
one we will use in this chapter. If you write your own machine language programs
using this approach, they must be relocatable.

A Sample Program

Letus begin by poking a small 12-byte routine into a string variable. This will also be
agood review of the VAR P TR function. Enter

NEW
20 M$="SCREENSCROLL"
30 V=UARPTR (M%)

92 Machine Language Graphics and Sound

4¢ LS=PEEK(V+1): MS=PEEK(Y+Z)

50 L=LS + 25G#*MB

60

70 FOR I=0 TO 11

80 READ N

99 POKE L+I» N

100 NEXT I

110 DATA 33,191,83,17,255,83+1,182,3,237,184,2¢1

In this program, M is the dummy string where the routine will be stored. V is the
location of the three-byte index that points to the location of M% while L. is the
location of the first character, S, in M$. Lines 70-100 read the machine language
program from the DA T A statement and poke it into M$ starting at location L. RUN
the program, then L I ST it. If everything went according to plan, line 20 should be a
real mess. It looks like this on the Model I:

20 M$="ITUSING?ISATVARPTRMKS$CLEARINKEY$"

Itis even worse on the Model I11. Don’t worry. Inits efforts to list line 20, BASIC
interprets some of these numbers as normal parts of a BASIC program. The Model 1
interprets them as codes for keywords, and the Model III prints them as normal ASCII
characters, including the graphic characters. But it works. Boy, did we pull a fast
one!

USR

Once the machine language program is written and stored in memory, executing it
from BASIC is a breeze. First, tell the machine where the routine is located in
memory. Second, execute it.

Whenever we are operating without a disk, we must poke the starting location of the
routine into memory cells 16526 and 16527. Remember that the location of a string
variable is stored in bytes two and three of its index. We have to transfer the least
significant byte of the index to 16526 and the most significant byte to 16527:

POKE 168526+ LB : POKE 16527, MB

Disk users must use the DEFUSR statement DEFUSR =1.. Now, we don’tknow if
you have adisk, but your computer does. Why don’t you ask it? Type

IF PEEK(16386)=201 PRINT "0OF COURSE NOT,

SILLY" ELSE
PRINT "SURE DOV

Clever little beast. Location 16396 contains a 201 on power up only on a nondisk
system. So we can take care of either case by adding

B9 IF PEEK(1B396)=291 POKE 16526, LS : POKE 18527
M8 ELSE DEFUBR=L

Now the machine knows where to find the routine.

Machine Language Graphics and Sound 93
B R R R R S e

Next, we have to execute the machine language program. All machine language
programs are executed from BASIC with the USR function. Enter

130 X=USR(1)

The USR function allows us to pass information to and from the machine language
routine. The 1 is passed to the machine language program, and the variable X will
contain any information passed back to the BASIC program. Neither of these is used
by the routine currently stored in M%. We simply want to execute the program. Before
we RUN it, add

120 PRINTE B4, "HEYs IT WORKED!"
149 GOTO 14

Then type CL.8 : RUN. What happened? When the LISR function is called, the
machine language routine is executed. This particular program causes the entire
screen to scroll downward one line. Each line is copied to the line below it. The copy
sequence is: line 15 copiedto 16, 1410 15, 13to 14, . . ., and finally line 1 copied to
line 2. So there are two copies of line 1 after the routine executes. To see it execute
several times, change line 130 to:

130 FOR I=1 TO 1B: X=USBR(1l): NEXT I
Thentype

LIST
RUN

The screen scroils downward 16 times, and the top line is replicated down the screen.
For an interesting effect, add

1490 PRINTE 9G60.: LIST
RUN

The duplication of the top line can be used to clear the screen from the top down.
Enter

10 CLEAR 100
120 PRINTE @, STRING$(B4,32) 1
RUN

In fact, it can be used to move anything down the screen. Change these lines:
149 GOTO 140

120 CLS : PRINTE ©, STRING${(B4,191) 1

RUN

See if you can dream up your own applications for this routine.

Entering The Data
Take another look at line 110:

119 DATA 33:+191,+634+17:+235,63+1,192,3+237,+184,201

94

Machine Language Graphics and Sound

It’s a safe bet that most machine language programs don’t start out as a string of
decimal numbers. In fact, you will usually find them listed in hexadecimal form. The

above routine originally looked like this:

HEX CODE MNEMONICS
21BF3F LD HL »3FBF
11FF3F LD DE,3FFF
piCoe3 LD BC,03C0
EDBB LDDR
cg RET

There has to be an easy way to translate programs from hex into decimal. One tried
and true method is to get out your *“T.1. Programmer’’ calculator and convert the

numbers one at a time:
HEX DECIMAL
21 33
BF 191
3F 63
eto., et

Another method if you have Disk BASIC is to use hex notation—&H21 for 21H, for
example—but there is a much easier way if you are willing to type a few extra lines

into your program. Why not enter the data in hex form and let the computer do the
translation for you?

Add these lines to the current program:

*1@ CLEAR 1@@: DEFSTR &
7% I=1: READ S: IF S="END" GOTOD 120
g¢ GOSUB 1@®: IF Si<x" " THEN N=D#16: I=I+1:
GOSUB 1¢0@: N=N+D: POKE L+ Nz L=L+1
99 I=I+1: IF I< LEN{(S) THEN B¢ ELSE 70
100 S1=MID%(S,I,+1): D=ASC(S1)-48+7%(51>"9"): RETURN
110 DATA Z21BF3F 11FF3F 21C0P@3 EDB8 CY
115 DATA END

RUN it to be sure it works the same. You'll notice that it takes a little longer poking
the values into the string, but that’s a small price to pay for the added convenience.
Besides, the USR routine works just as fast.

Lines 70 through 100 read data in hex form, convert it to decimal, and poke it into the
dummy string. The hex bytes in the DA TA statements can be separated by commas or
spaces, and grouped as you see fit. END must be on a separate DA TA line or
separated by a comma.

Retype line 20 to read as follows:

20 M$="SCREENSCROLL"

The final listing of the screen scroll program should look like this:

1 CLEAR 100: DEFSTR §
20 M$="SCREENSCROLL"

Machine Language Graphics and Sound 95

30 V=UARPTR (M%)

49 LS=PEEK(VU+1): MS=PEEK(Y+2)

S5¢ L=L8 + 256+MS

6@ IF PEEK(1G639B6)=201 POKE 16526, LS : POKE 18527,
MS ELSE DEFUSR=L

7@ I=1: READ S: 1F S="END" GOTO 1Z¢

B9 GOSUB 10@: IF S1<x" " THEN N=D#16: I=I+1:
GOSUB 100: N=N+D: POKE L N: L=L+1

8@ I=I+1: IF I< LEN(S) THEN B@® ELSE 790

100 51=MID%$(5+I,1): D=A8C(51)-48+7%(81:"9")s RETURN

110 DATA Z1BF3F 11FF3F QIiC@03 EDB8 C9

115 DATA END

120 CLS : PRINTE @, STRINGH(B4,181);

130 FOR I=1 TO 168: X=USR{1): NEXT I

1490 GOTO 149

Save this program as HEXENTRY on cassette or disk, as we are going to use it in the
next section.

Creating Your Own

No, this is not going to be a crash course in Z-80 machine language. We are about to
run through another example so that you can appreciate the hex entry routine and be
apprised of certain problems in using strings to store machine language programs.

Picture yourself in your easy chair thumbing through your favorite Z-80 magazine.
On page 3, there is amachine language routine that you have been losing sleep over
for several weeks. So, you naturally load in our HEXENTRY program (did you save
it?) and prepare to enter the routine from the magazine.

To make the program a little more general, change line 120 to

129 INPUT "PRESS <ENTER:> FORUSR ROUTINE": I%

The hex routine is listed in the magazine as

Z1DF3D XI H:3DDF
3699 LD (HL) 99
Co RET

So you quickly go to work on lines 20 and 110. Let’s see, there are six bytes to enter:
21 DF3D 3699 C9. So, line 20 should be

20 M$="123456"
And thanks to lines 70 through 100, we can enter line 110 as
119 DATA Z1DF3D 36899 C9

See how easy that is! Because we don’t know what this routine will do yet, try it with a
CLS first:

130 CLS: XK=USR(1)
RUN

96

Machine Language Graphics and Sound

Well, what did you expect? A fireworks display from six bytes of machine code? At
least it worked and was easy to enter.

Passing Values

One useful feature of the USR function is that it allows us to send one integer variable
to the machine language routine and bring one back. In the current setup, we are
sending a 1 in line 130 and storing the returned value in X. Unfortunately, the
machine language routine isn’t taking advantage of either feature. In order to receive
the 1, the machine language routine mustexecutea CALL @A7F (€ D 7F @a).
The 1 will then show up in the HL register. In order to send a value back to the BASIC
program, the machine language routine must store the value in the HL register pair
andexecutea JP @A9A(C3 9A @A)inplace of the normal return (£ 9).

Let’s send a screen location to the machine language program so that we can control
where the graphic character is printed. Type

i1¢ DATA CD7F@A 3689 C8

120 INPUT "ENTER A SCREEN LOCATION 15360-16320"3 N
130 CLS: X=USR(N)

143 GOTO 12¢@

RUN

Enter as many values in the indicated range as you like. To pass a value to the BASIC
program, make these changes:

20 M$="12345678"

110 DATA CD7F0A 3699 CIYACA
135 PRINTEN-15298, X3

RUN

Line 135 prints the value received in X. Your listing should now be as follows:

i® CLEAR 100: DEFSTR 8

20 M$="12345678" (amess)

3¢ V=UARPTR(M$)

4¢ LS=PEEK(Y+1): MB=PEEK(V+2Z)

S¢ L=L8 + 256#MSE

B0 IF PEEK(16396)=201 POKE 1G652Z6+L.5 : POKE 163527
MS ELSE DEFUSR=L

70 I=1: READ S: IF S="END" GOTOD 120

g0 GOSUB 1@@: IF Si<>" " THEN N=D#1B: I=I+1:
GOSUB 10@: N=N+D: POKE L, Nz L=L+1

99 I=I+1:IF I< LEN(S) THEN 8@ ELSE 70

100 S1=MID$(S+I,1): D=ASC(S1)-48+7#(81>"9"): RETURN

11¢ DATA CD7F@A 3699 C3AJAA

115 DATA END

120 PRINT: INPUT "ENTER SCREEN LOCATION
L13360-16320"5 N

130 CLS8: X=USR{N)

135 PRINTE N-13288, Xi

149 GOTO 1Z¢@

Machine Language Graphics and Sound 97

Caveat Emptor

Storing machine language routines in strings has its drawbacks. Listings can be very
untidy, and we must avoid using @ in our machine code. BASIC uses zeros to mark
the end of a program line. If we poke a zero right in the middle of a string, BASIC will
interpret everything to the right of the zero as a separate program line with its own line
number. Once a zero value has been poked into the string, the program will not run
correctly a second time; a fresh version of the program must be loaded.

Of course, there is a fairly neat solution to this problem. Use the STR ING$ function
to define our dummy string:

20 M$=8STRING$(30,0)
(Room for 30 bytes.)

Defining M%$ with the TR I NG % function forces the string to be stored in the string
pool area, not in the midst of the BASIC program. This will not only clean up the
listing, but also allows us to throw anything into the string. (Well, almost anything.)

Are you ready for the bad news ? We must take a few precautions in using this
method.

First, we must clear sufficient string pool space for the string. A good rule of thumb is
to use twice as many bytes as are necessary for the string.

Second, be aware that strings stored in the string pool space do not always stay put.
The string pool area is periodically reorganized as variables are reassigned. (For a
better understanding of how this is done, see Chapter 7.) To protect against losing a
USR routine, always recalculate the location of the dummy string variable just before
using the USR command. It can be very embarrassing to attempt to run a machine
language program that has moved on to greener pastures!

Third, note that the string pool space is in high memory. If you are using a 32 K or
48 K system, your dummy strings will be stored way above the 32767 limit of the
PEEK and PORKE statements. If you intend to use this method with a large system,
you must change line 50 to

50 L= LE§ + 256#MS : IF L»32767 L=L-B5536
In fact, the only program changes necessary to use the string pool space on the current

program are the ones mentioned for lines 20 and 50. Try it. And, this would be
another good time to save the program.

2 Some Graphic Routines

Graphic Character Reverse

The scope of this book does not permit a complete investigation of machine language
graphic techniques; however, there are a few routines that may prove particularly
useful. One is a complete screen whiteout. Another is a routine that reverses all
graphic characters on the screen (i.e., resets all lit blocks and sets all unlit blocks).

98 Machine Language Graphics and Sound

Here is one written by the one and only James Garon and modified by your authors:*
LABEL HEX MNEMONICS COMMENTS

21FF3F LD HL3FFF LOAD HL WITH END OF SCREEN
o63C L.D 8,30 USED LATER TO SEE IF DONE

START 7k LD Ay(HL) GET NEXT BYTE FROM SCREEN
FEBD CP B¢ IS IT A GRAPHIC BYTEY
3808 JR C JUMP IF NOT TO NEXT
FECO CP Ce SPACE COMPRESSION CODEY
3004 JR NC JUMP IF 50 TO NEXT
2F CPL REVERSE CHARACTER
cede ADD 4@ RESTORE GRAPHIC BIT
77 LD (HL)+A SEND CHARACTER TO SCREEN
NEXT 2B DEC HL POINT TO NEXT LOCATION
7C LD AsH PREPARE FOR END TEST
Bg CP B STILL ON THE SCREENTY
30EE JR NC IF 80 BACK TO START
cag RET RETURN TO BABIC

This routine requires a dummy string of 24 bytes. It alters ASCII codes between 127
and 192 only, so it does not harm text or special character sets. To see what it can do,
enter the routine in the DA T A lines, then change the following lines:

120 CLS: FOR I=1 TO 100:
PRINTE RND(1023), CHR$(31+RND(Z24))5: NEXT
130 PRINTE 960, "PRESS ANY KEY TO REVERSE GRAPHICS"S
140 I$=INKEY$: IF Is{:"" X=USR(1)
150 GOTO 148

Delete line 135 and RUN

Onthe Model 11, type PRINT CHR$ (21) inimmediate mode to activate the
special character set.

ROM Routines

One way to ease into programming in machine language is to use routines that are
already stored in the read-only memory. Keep in mind that this approach can be very
unrewarding if you move your program to a machine with anewer ROM in which the
location of your favorite ROM routine is different. That problem aside, ROM
routines can greatly shorten your code and cut down on programming time. The rest
of the routines discussed in this section will be of this type. To use them, you will
need to know three things: where they are located, what input they require, and what
they do.

Display Character

At location 0033H, there is aroutine that will send the byte stored in register A to the
current cursor position. You can manipulate the cursor position by changing locations
4020H and 4021H. We will use this routine to white out the screen. The CL S in line

*Reprinted with permission of Softside Publishing, © 1980

Machine Language Graphics and Sound

99

m

130 will position the cursor for us at the top left corner of the screen. The program
listing is as follows:

3EBF LD A, BFH
CD3300 CALL ©0033H
18F9 JR. -6

3EBF loads the A register withBFH (191 — solid graphics character).
CD3 308 calls the display routine.
1 8F 9 jumps back to the first line

The call to @93 3H increments the cursor position, so that the entire screen will be
covered. Unfortunately, this routine gets us into an infinite loop, so we must find a
way to exit the USR routine.

Keyboard Control

Fortunately, we canadd atype of I NKE Y $ functionbyacallto ®35BH. Ifa key is
depressed, its value will be stored in the A register. If no key is depressed, the A
register will contain a zero. The new code needed is this:

CDsB@3 CALL ©@35BH
FEQQ CP OH
Ce RETNZ
18F3 JRO-13

The first line calls the INKE Y $ routine. F E@ @ compares the value returned to the A
register with zero. If akey has been pressed, control is returned to the BASIC
program. Otherwise, the program jumps back to the beginning. The changes needed
are these:

DELETE 130-15@

112 DATA 3EBF CD3300 CDSB@3 FEQ® CO 18F3
120 X=USR(1)

RUN

Press the (SPACEBAR) to exit the US R routine.

Time Delay

We now have a smooth exit from the routine, but the interference on the screen is
disturbing, isn’tit. We canclean it up with a short time delay. This routine is located
at 60H and requires only that you store a loop counter in the B C register pair. The
necessary changes are these:

p1o0e1 LD BC,0100H
CDGooe CALL Q@GoOH
18ED JR-19

Change line 110to
11¢ DATA 3EBF CD3300 010001 CDGOR® CDSBO3 FEQQ

€@ 18ED
RUN

Now we are getting somewhere!

100

Machine Language Graphics and Sound

Random Numbers

Randomizing is often a welcome addition to break up any monotony in the display.
We can choose a random character by replacing 3EBF with

21A000 LD HL, @@AQH
cpccid CALL 14CCH
CD7F@0A CALL @ATFH
7D LD A L

CGZ0 ADD Z@H

and by changing 1 BED to 1 8E 3. The random number routine works by placing an
integer value in the A register, followed by callsto 14CCHand @2A7FH. A random
number from one to the value in A will be placed in locations 41 21Hand 41 22H as
well as in the HL register pair. We will use the routine to place arandom number from
1t0 160 in HL . By transferring the value in L to A and then adding 32, we change the
range to 33 through 192. This keeps control codes from disturbing the display.
Change line 110 to

110 DATA 21AQ0® CDCCi4 CD7F@A 7D CBZ0 CD3300 010001
CDGR@O CDSBO3 FEQ® CO 18ES3
RUN

(Don’t forget to change the last byte.)

That’s all for ROM routines.

3 Machine Language Sound Routines

Hang on to your seats! We are about to enter the realm of bust-your-eardrums sound
to augment your graphic displays. What’s our rationale? First, sound can greatly
enhance the impact of your programs (and that, after all, is what this book is all
about), and second, sound routines are no more difficult to implement than other
machine routines; the same techniques can be employed.

The Connection

The sound is sent out the cassette port through the AUX plug of the cassette cable.
The easiest way to hear the sound is to plug this cable into a small amplifier. Radio
Shack’s catalog #277-1008 would be a good bet, and it should cost only about $15.
Just plug it in, turn up the volume, and get on with the programming.

If you don’t want to make that investment, you can prepare your cassette for CSAVE,
and record sound on tape. Rewind the tape and remove the earplug to listen to the
sound. To hear the sound as it is being recorded, replace the earphone plug with the
earphone that came with the recorder. Don’t place the earplug in your ear—the sound
can be quite loud! If you don’t necessarily want to record your melodious creations,
you’ll have to fool the recorder into thinking that it has a cassette in it. Remove the
cassette and depress the cassette sensor before you press and RECORD). You
will find the sensor at the left rear of the cassette areain a CTR-41 recorder.

Machine Language Graphics and Sound 101
“

Music Maestro

Yes, yes, this chapter is on machine language, but we will start out by generating
sound from BASIC. Sound is generated by sending alternating positive and negative
voltages to a speaker. The speaker cone then vibrates according to the frequency of
the change between the two voltages. The faster the change, the higher the note; the
slower the oscillation, the lower the note will sound.

Positive and negative voltages are sent with the DU T command. Prepare your
amplifier or cassette and enter the following:

NEW

18 DEFINT A-Z
49 0UT 255, 1
5@ 0UT 255, 2
60 GOTO 40
RUN

Yipee—noise! Press (BREAK) to stop it. Controlling the duration of the tone is simple.
Add

20 INPUT D
30 FOR I=1 TO D
G0 NEXT I

70 GOTO 20

LIST

RUN

To control the length of the tone, enter numbers from zero to whatever you can
tolerate. The pitch is controlled by changing the oscillation between the two QUT
statements. Enter

NEW

10 DEFINT A-Z
20 0UT 255 1
490 0UT 255, 2
3¢ GOTO 20
RUN

and remember that tone. Now add

380 REM
RUN

Line 30 slows down the switching between positive and negative voltages, hence a
lower tone. Why don’t we make line 30 into a timing loop to control the pitch? Add

30 FOR T=1TOl: NEXT T
RUN

My goodness! That’s too low. And the larger the loop, the lower the tone would be.
So, how do we raise the pitch in BASIC? Try

3 0UTEZ5S, 1: DUTES5, 2: GOTO S
RUN

Still sounds like a baritone. Afraid that’s about as fast as BASIC can pedal.

102

Machine Language Graphics and Sound

Machine Language To Save The Day

Fortunately, speed is the forté of machine language. With it, we can place a timing
delay after each OUT command and still generate a tone so high in pitch that your ear
may not even hear it.

Here is a short annotated routine that generates a single tone. The frequency and
duration are determined by the argument of the USR function in BASIC. Look at the
comments. You’ll find that the approach is quite similar to that used in BASIC.

HEX MNEMONICS COMMENTS
CD 7F 0A CALL @A7FH LOAD THE USR ARGUMENT INTO THE
HL. REGISTER: DURATION IN H AND
FREQUENCY IN L

ce 24 5LA H DOUBLE THE DURATION

43 LD BsL 1.0AD FREQUENCY INTO REGISTER B

3E @1 LD A1l PREPARE FOR OUT 2551 COMMAND

D3 FF OuUT FFH»A SEND 1 TO CASBSETTE PORT

ie¢ FE D.JUNZ TIMING LOOP: DECREMENTS B
REGISTER TO ZERO

43 L.D B»L LOAD FREQUENCY INTO REGISTER B

3B 82 LD A»Z PREPARE FOR QUT 255.,2 COMMAND

D3 FF OuUT FFH»A SEND 2 TO CASSETTE PORT

1¢ FE DJUNZ TIMING LOOP: DECREMENTS B
REGISTER TO ZEROD

28 DEC H H=H-1

20 EF JRNZ -17D IF H<»@ JUMP BACK TO THIRD LINE
(LD BL)

co RET RETURN TO BASIC

Don’t get too hung up on deciphering the machine code. Load the HEXENTRY
program from the first section of this chapter (here’s hoping you saved it earlier), and
make sure that there is string space for 23 bytes in line 20. Enter the sound routine in
the DATA line.

A single tone is generated each time a USR function is executed. The desired
frequency and duration are sent to the routine via the argument of the USR function.
Because we can send only one number to the routine, we can let BASIC combine the
two numbers in such a way that the machine language routine can unravel them again.
It sounds difficult, but it is actually very easy. Add

120 INPUT "ENTER FREQUENCY :DURATION"3 F, D
130 X=USR(F+256#D)

149 GOTO 120

RUN

The range on the frequency is 0 to 255. One gives the highest pitch, 255 gives a low
pitch, and 0 acts like 256 to give the lowest pitch. The range on the duration is

0 to 127. A very short note is obtained from 1, and 127 gives along note. Finally, 0
acts like a 128. (You should note that lower notes have a longer duration.) Don’t
exceed the range limitations unless you want unpredictable results.

Note that the system clock causes fuzzy tones. Disk users can correct this by changing
the end of line 60 to

ELSE DEFUSR = L ¢ CMD"T"

Machine Language Graphics and Sound 103

Our First Song

Be thinking of a good melody while the orchestra tunes:

3 RANDOM
120 X=USR(RND(Z33)+256%RND(127)): GOTO 120
RUN

OK, here’s a good one. Type

*12¢90 ON ERROR GOTO 220

130 READ F : IF F<@ GOSUB 16¢ : GOTO 130

14¢ READ D

15¢ X=USR(F+256%*D): GOTO 130

160 FOR I=1 TO -F: NEXT I: RETURN

170 DATA 111+80,111,80,120:80,120,80,128+120+128
80,111 +40

180 DATA 120,40,111+88,111,80,120,80,120,80,128,
120420

190 DATA 111,40,128,40,94,80:84,80,100:80,100,80,
11168

200 DATA 100,402,111 460:128,40,140+604+150,60,150,
6@ +170,33

210 DATA 17¢,55,190.:80,190,80

220 GOTO 220

RUN

The data alternate between frequency and duration. Use negative numbers for a rest.
Make up your own data if you like. If you really get hooked on this, there are many
hardware/software products on the market that give your TRS-80 several
simultaneous voices. Enjoy!

104 Special Graphics Considerations

— | | wATER
ol PASTELS| | COlDRS

Z/Z@ﬁ;/;éwmf//
/

(.

// WITTRY
—} ,

Special Graphics Considerations 105

Special Graphics Considerations
1 Speed Comparisons

Different Graphic Techniques

Choosing the right graphic technique can be a bit frustrating. Each of the techniques
has both advantages and drawbacks. Before you dive into any graphics project,
carefully consider the speed required to give the desired effect. Interactive
arcade-type games, for example, often require nearly simultaneous animation,
keyboard input, and sound output. The speed required is rarely feasible in BASIC;
hence the need for machine language. Clever use of string packing and PRINT@ can
often be used as an alternative when the action is a little less frantic. POKE can be
used effectively in certain situations. And, of course, nothing beats SET and RESET
for plain old convenience in plotting functions, even if they are slow!

A good means of comparing the relative speeds of the different techniques is to set
them hard at work on a nice time-consuming task like painting the screen white. Let’s
see how the SE T staternent fares on this one:

NEW

1¢ CLS: CLEAR 26@: DEFSTR S

20 INPUT "PRESS <ENTER> WHEN READY"3 8§

30 FORY=QTO47: FORX=0TO127: SET(X,¥): NMEXT: NEXT
49 GOTO d@

RUN

Whew! About 40 seconds. That’s quite a few nanoseconds! Maybe POKE will be a
little faster. Change 30 to

30 FORX=1953G6@TO01638B3: POKEX ., 191: NEXT
RUN

Six seconds. Better, but still exasperatingly slow for some folks. How about
PRINTE?Change

30 B5=8TRING$(255,191):
PRINT §i 83 S3 567 STRING%$(3,191)3: POKE 168383, 191
RUN

(Remember, can’t PR I NT the last screen position.) One second. Notbad at all. And,
if you think that was fast, sink your fingers into this one:

NE K

1¢ IF PEEK(16386)=201 THEN L=1G52Z6 ELSE DEFUSR=3275B6
20 POKE L 244: POKE L+1, 127

30 CLS: POKE 16561+ 243: POKE 1B5GZ, 127

490 FOR X=32756 TO 32767: READ N: POKE ¥+ N: NEX

106

Special Graphics Considerations

50 DATA BZ,59,33,255,63,54,191,43,188,32,250,201
5@ INPUT "PRESS <ENTER> WHEN READY"3F I%

7@ K=USR(®)

8¢ GOTO B0

RUN

They just don’t make them much faster than that!

Racing Stripes In Program Design?

The particular graphics technique we choose is not the only factor in the speed of our
graphic displays. The overall design and implementation of the program can have
considerable impact, too. Realize that BASIC is an interpretive language. That s, it
not only has to decode each instruction into a series of equivalent machine language
instructions, but it also has to search for line numbers and variables and convert all
decimal constants and line numbers to binary. Obviously, the less work we give it to
do, the faster our programs will execute.

Squeezing the last ounce of speed out of a BASIC program does not always require a
total rewrite. Programs typically spend most of their time executing only a small
portion of the code. These high-use areas of the program should be streamlined by
removing remarks and by using both short variable names and multiple statement
lines. Those of you who appreciate well-documented code may cringe at these
changes. But where speed is a primary consideration, remarks and single statement
lines become unaffordable luxuries.

Defining Variable Types

TRS-80 BASIC uses a wide range of variable types. The variable type can be
specified by suffixing the variable name with one of these symbols: $, %, !, #. Or,
the type can be defined at the beginning of the program with DEF ST R,DEFINT,
DEFSNG, or DEFDBL. The latter approach will increase program speed by
reducing the amount of information BASIC has to read. The most important speed
consideration with regard to variable types is that BASIC handles integer variables
much more efficiently than the default variable type (single precision). Use integer
variables to increase execution speed.

Eliminate Constants

Another way to cut down on execution time is to replace often-used constants by
variables. It may sound odd, but each constant encountered has to be converted to
binary every time BASIC reads that line. If the constant is replaced by a variable, it
only has to be converted one time. The larger the constant, the greater the savings.
Try these examples:

5 A=123436
ig FOR I=1 TO 2000 1 FDOR 1=1 TO Zo00
20 X=123456+1234506 20 H=A+A
30 NEXT 30 NEX

Special Graphics Considerations

107

oo e e T e e]

The Upside-Down Approach

Frequent hopping around to various parts of the program can also be a big
time-waster. When speed is important, eliminate jumps to short subroutines. We may
have to retype the subroutine a few times, but that is the price we pay for greater
speed. Join the statements of the routine together on one line, separating the
statements by colons. If the jump to the subroutine is conditional (e.g.,

IF X>@ GOSUB Z000),thenthe jump canbe eliminated by placing the routine
at the end of the IF statement. For example:

IF X>@ PRINT Z2-16%T: T=T-1: SET(@:@)

Routines that are impractical to duplicate are not a total loss. The placing of these
routines near the beginning of the program can be a big time-saver. Each time BASIC
encountersa GOT O ora GOSUB, itstarts searching for the line number from the
beginning of the program. It has to translate each line number to binary and compare
it to the desired number. Placing often-used routines near the beginning of the
program means not only less searching, but also smaller line numbers and therefore,
less decoding.

So, how do we organize a program to take advantage of this fact? Start the program
off with a jump to high line numbers where all the program initializing will take place.
Then jump down to the intermediate line numbers for the main body of the program.
Finally, keep all the often-used subroutines near the beginning of the program. Sound
crazy? Maybe, butit’s just another way to defeat the speed demon without using a
BASIC compiler or machine language.

2 String Organization In Memory

One of the pitfalls of heavy use of strings and arrays is unexpected time delays. A
program may be chugging along smoothly, then suddenly freeze for a minute or two
for no apparent reason. The culprit is likely to be variable reorganization in memory.
Try this sample program:

NEW

10 DIM M%(5000)

20 PRINT "INTRODUCING SLOMW GRAPHICS®
30 A%$=CHR%(1G6G6)

49 B$=CHR&(179)

50 C%=CHR%(153)

6@ PRINT TAB(1Z2) A% STRINGH(11.B%$) C4
RUN

Should it take that long to create A%, B%, and C%7? Not in our book. RUN it again and
notice the delay after line 20 is printed.

The problem boils down to the order in which BASIC variable types are located in
memory. All nonsubscripted variables are stored before arrays. In the above
program, 15,000 memory cells (3 for each string) are reserved for the string array M$.
When the three strings A%, B#$, and C#% are subsequently defined, the entire M$ array
is shifted upwards to make room for the smaller strings. This causes the inordinate
delay. To correct the problem, either move lines 30 through 50 before line 10, or add

108 Special Graphics Considerations

5 A$=Illl: B$=IIII: C$=Illl
RUN

Merely mentioning the simple strings before the D I M statement is enough to solve the
problem. Once space is reserved for the unsubscripted variables, there is no need to
move M%$.

One Down, One To Go

Unfortunately, subscripted variables are only part of the problem. A major irritation
for graphics users is the automatic reorganization of the string pool space. This is a
special section of memory set aside for string manipulation. Each time a variable that
has been stored in the string area is assigned a new value, a complete new copy of it is
stored in the free space area, regardless of the relative sizes of the new and old
versions. The memory previously used by that variable becomes an unusable hole in
the string storage area. When all the free string space is used up, the holes are
recombined to form free space at the bottom of the string storage area, and the
variables are shuttled to the top. If there are many holes, the pause during this
reorganization can be very lengthy.

A Closer Look

Let’s take a closer peek into what causes a string to be stored in the string area in the
first place. We can use the function F RE to find out. This function tells us how much
of the string pool space is available at any time. It also causes a string area
reorganization. Type

NEW

19 CLEAR 20

199 PRINT "FREE STRING SPACE="FRE(A%)
RUN

No surprises here. We haven’t assigned any values to strings, so all 20 memory cells
reserved for string use in line 10 should be available. A$ is a dummy string. We
would get the same result if B $ were used. Add now

20 A$="BTRING"
RUN

Hold on there! Where is the string A $ hiding if it is not in the string pool space?
Variables assigned to literal strings as in line 20 are not stored in the string space. The
variable pointer points right to the BASIC program. The string pool space is used only
when work must be done to create the string. Try

20 A$="STRING%": GODSUB 100
30 As=LEFT$(A%.,7): GOSUB 100
49 B$=A%: GOSUB 100

50 B$="SURPRISE": GOSUB 109
6@ LIST

70 END

110 RETURN

RUN

Special Graphics Considerations

109

Let’s take it line by line. Line 20 uses no string pool space because the assignment
was made with a literal string. In line 30, a string function LEF T % is used, causing
the resultant string to be stored in string pool area. Line 40 uses seven more string
pool locations since A% was located in the pool space already. Line 50 again uses a
literal string (no string manipulation functions). Now, B # is stored in the program,
thus opening up the pool space previously occupied by B $.

Are you ready for the quiz? Put on those thinking caps! What would happen if we
changed

6P As=B%: GOSUB 100

Sure enough—since the contents of B $ are stored in the program, there is no need to
use string pool space for the newest version of A%. So, all the string pool memory is
freed.

What can we conclude from this exercise? Probably that the string pool space is used
to store variables created by string manipulation functions. This includes LLEF T $,
RIGHT%$,MID%, concatenation (+), and STRING#%. So, you can keep strings out
of this area by avoiding string functions.

Making Doughnut Holes

Strings are stored in the string pool space from the top down. The following program
would store both strings in the string pool space:

10 A%="8GTR"+"ING"
20 B%=A%

And would look like this:

v JSTRINGSTRING
B¢ At

The concatenation in line 10 causes A% to be stored in the string area. If
30 B$=A%
were added, the string space would look like this:

+ +BTRINGSTRINGSTRING
B$ HOLE A%

The designers of the TRS-80 ROM decided that when strings in the pool space are
reassigned, a complete new copy would be made, leaving an unused hole in the string
area. This increases the speed of string use since new variables can be deposited in the
first unused spot at the bottom of the string area without moving a lot of strings
around. Unfortunately, these holes use up a lot of string space. When the operating
system runs out of room for new strings, an automatic reorganization takes place. All
the holes are moved to the bottom of the string area, and the variables are
concatenated at the top. Because this reorganization is very time-consuming, we
can’t afford to have it take place during a dynamic graphics display.

110 Special Graphics Considerations

What can we do to avoid this delay? That depends on your system. If it has plenty of
memory, an easy way to avoid the reorganization delay is to clear as much room as
possible for the string pool. If you don’t have much extra memory to play with, try

1) using numeric variables instead of strings when possible.

2) storingstrings withthe LET or READ statements.

3) minimizing the use of concatenation and substring functions such as
LEFT$,MID$,and RIGHT%.

4) using space compression codes when storing blank spaces.

3 Input

Fundamental to the implementation of graphics on the video screen is user control of
the action. A whole new level of appreciation is added when the user can interact with
the program. Beginning programmers are usually introduced tothe INFUT
statement as the means of telling the computer what they want. INPUT allows a
prompting message, displays a question mark on the screen, and accepts numerical or
string information from the keyboard as long as the input is terminated with the

key. The last feature is where the utility of the INPUT statement comes up
short. INPUT notonly forces a 7 on the screen, but it also locks the program in a
loop waiting for user input. Everything on the screen freezes until is pressed.
Ducks aren’t supposed to stand still at the penny arcade. For real-time action,

INPUT is putout.

Here Comes INKEY$

INKEY % is a string function that enables us to receive information from the keyboard
without requiring the use of the key. Using INKEY %, we can make virtually
any key perform special functions. We can use the arrow keys to move a figure
around the screen, or the to activate a laser cannon.

How does it work? Location 16537 is a one-byte buffer that stores the ASCII value of
any key thatis depressed. The value stays in the buffer until another key is depressed
oruntil the INKEY % function is used. When another key is depressed, its value
replaces the one previously stored there. So the buffer stores only the value of the
most recently pressed key. When the I NKE ¥ $ function is invoked, the value stored
in the buffer is transferred to the I NKE Y % function, and the buffer is emptied. The
INKE Y% function can then be evaluated, printed, or stored in another string
variable. Here is an example of its use:

NEW

10 A$=INKEY®

20 IF A%="" GOTO 1@ ELSE PRINT "WE GOT ONE:
MAI"sy A%, ASC(A%)

30 GOTO 1@

RUN

The buffer starts out empty. As long as no key is depressed, the program goes back to
recheck the buffer. When akey is depressed, its character value is stored in A% and
printed. Note that if the key is an action key, printing A% causes that action to occur.

Special Graphics Considerations

111

Try some of the control keys. You should find that they generate these values:

KEY NO SHIFT SHIFT
@ 8 24
@ 9 25
10 26
91 27

BREAK 1 1
CLEAR 31 31

ENTER 13 13
Flashing Cursor

Using INKEY %, we can choose any character we want for our cursor and also have it
flash. This is very useful in a business or an educational setting where attention must
be directed to different locations on the screen. We must first find the current location
of the cursor. Try

NEW

100 CLEAR 200: CLS5: PRINTE 400, "ENTER:"j
110 P=PEEK(1G41B)+256#PEEK(16417) : L=P
RUN

PRINT L

L is used as the current cursor location, and P is the starting position of the input. For
the moment, they are the same. The number printed should be in the range 15360 to
16383. For a little more convenience, let’s put it in the range O through 1023. Use

11¢ P=PEEK{(1641B)+236#(PEEK(16417)-60) = L=P

RUN
PRINT L

Now we print the cursor with a pause (use any character you want):

120 PRINTE Ly CHR$(143)F : FOR I=1 TO 1@: NEXT
Test forakey:

130 I$=INKEY$% : IF I%$<>"" THEN 1G@

Printa blank if no key has been pressed yet:

149 PRINTE@ L+ " "§ @ FOR I=1 TO 10: NEX

Give them another chance:

150 I4$=INKEY$: IF I$="" GOTO 12@

160 PRINTE L I%

RUN

Model III owners can turn on a blinking cursor with POKE 16412 »@. The blink
can be turned off by poking a non-zero number to 16412. In addition, the cursor

character can be changed by poking the ASCII number of the desired character to
16419.

112 Special Graphics Considerations

Multicharacter INKEY$

If more than one character is to be entered, we can store it in string A% with

1680 I=ASC(I%)

170 IF I=13 THEN 210

190 A%=A%+14% : PRINTE P, A%
200 L=L+1: GOTO 120

210 PRINTE P+G4ds A%

RUN

In fact, we could even limit the number of characters acceptable in A% by changing
line 200 to

200 IF LEN(A%)<10 L=L+1: GOTO 120
RUN

Or, make the limit a variable that can be changed at different points in the program.

The numbering of this program segment starts with 100 to emphasize that it is best
used as a subroutine. Call it whenever you want a flashing cursor and greater control
of the input. And, speaking of greater control. . . .

Error Trapping

Another advantage that I NKE ¥ % has over INPUT is the ability to protect against
certain operator errors. A very easy way to do this is to add

180 IF I«<32 GOTO 120
RUN

This line protects against any unwanted linefeeds, screen clears, and so on. Of
course, we can handle each code individually if we choose. Forexample, let’s give
our operator the ability to erase mistakes with the left arrow key:

160 I=ASC(I%): IF I=8B AND LEN(A%)>® A%=LEFT$ (A%
s LEN(A$) -1): PRINTE P, A$+CHR$(30): L=L-1
RUN

Press the (&) to erase the previous character and press (ENTER) to terminate input.
Voila.

A Better Mousetrap

The I NKEY % function has one major flaw: There is no way to repeat a key entry
simply by holding the key down. Once akey is depressed, it must be released then
pressed again for the I NKE Y % buffer to sense it. Try holding down the (&) in the
current program to erase two or three characters at a time. Any luck? What good is a
great computer like the TRS-80 if it doesn’t have the smarts to repeat a key until it is
released! All we have to do is roll up our sleeves and dig a little deeper into the
forbidden zone of the reserved RAM area to find what we are looking for.

Special Graphics Considerations 113

Change line 160 to

160 I=ASC(I%$): IF PEEK(14400)=32 AND LEN(A%):0
AS=LEFTH(A%, LEN(A%)~1): PRINTE P, A$+CHR&(30):
L=L-1: GOTO 1G¢

RUN

Enter several characters, then hold down the left arrow and watch it repeat! How
sweet it is. By the way, this would be a good time to save the input program.

How It Works

If you have an ounce of curiosity in you, you’ll want to know how this works and how
to apply it to your own programs. Each time akey on the keyboard is pressed, it
changes the contents of a fixed memory location. Location 14400, for example,
contains a zero when no key is depressed. The value changes to 32 when the () is
pressed, and stays that way until the key is released.

In fact, every one of the 52 keys on the entire keyboard is linked to a specific memory
cell somewhat like the video display. There is one major difference: Whereas each
video display memory cell corresponds to one screen position, keyboard memory
cells may correspond to several of the 52 keys. Keyboard memory extends from
14336 (3800H) to 15359 (3BFFH); however, eight of these locations contain all the
information we will need. These eight locations and their corresponding keys are
shownin figure 7.1.

Value 1 2 4 8 16 32 64 128
Address

14337 @ A B C D E F G
14338 H I J K L M N 0]
14340 P Q R S T U \Y W
14344 X Y z

14352 0 1 2 3 4 5 6 7
14368 8 9 * +; <, =- | >, ?/
14400 ENTER | CLEAR | BREAK SPACE
14464 SHIFT

Figure7.1 Keyboard memory.

114

Special Graphics Considerations

Eachrow of the table represents one of the eight memory locations. The keys that
affect each memory location are listed across the row, and the values corresponding to
the keys are listed at the top of the table. Each time a key is pressed, its ‘‘value’’ is
added to the current contents of the appropriate memory location. To see how this
works, enter

NER

10 CLS

20 PRINTE 480,
RUN

PEEK(14337): GOTO 20

Refer to the firstrow in figure 7.1. When no keys are pressed, location 14337
contains a zero. Press the (@). As long as you hold it down, memory cell 14337
contains a one. Release the key, and it returns to zero. Now for some scientific
experiments. Simultaneously press the and (€) keys. Whatdo you get? Yup,

4 + 8 = 12. When more than one key is pressed, you get the sum of the values
corresponding to the depressed keys. If all the keys in the first row of the chart were
simultaneously depressed, 14337 would show a 255. Go ahead and try it; no one is
looking.

The numbers at the top of the chart were not randomly chosen. Each one is a power of
2, and represents one bit in the value stored at a given location. When you press a key,
it sets a bit in the appropriate memory location. Thus, every combination of keys has a
unique numeric representation.

Play Ball

Moving a ball around the screen under operator control is now almost child’s play.
First, we have to position the ball (have it your way—the graphic block) and
interrogate location 14400. Enter

NEW

10 CLS: DEFINT A-Z

30 Y¥=22: X=G64

40 SET(XsY): U=PEEK(14400)
30 RESET(X¥): IF V=0 THEN 40

Next, we have to take the desired action when an arrow is pressed:

60 IF U AND 8 ¥Y¥=¥-1
70 IF Y AND 16 ¥=Y+1
B@ IF ¥ AND 32 X=X-1
90 IF UV AND G4 X=X+1
1900 GOTO 40

RUN

The arrow keys will move the dot in any of four directions. In fact, the AND operator
used in lines 60 through 90 allows diagonal movement if two or more keys are
pressed. And, of course, we have the sought-after repeat feature.

Special Graphics Considerations 115

A few more changes, and we might soon be on the mound in Dodger stadium facing
Henry Aaron. Change

20 PRINTE 510 CHR$(191) CHR$(181)3
30 ¥=22: X=1

100 IF X<12B THEN 40

RUN

(Line 20 is home plate.) Try out all the combinations. Show ’em your curveball,
fastball, screwball, changeup, yes, even your yoyo-ball.

Now use this idea for your own applications. If the repeat feature is a bit too fast, slow
itdown with

85 IF Y=PEEK(14420) FOR K=1 TO 20: NEXT K

This statement checks to see if the value in 14400 has changed since the last loop. If it
hasn’t, a short delay is added.

Watch Out For Button Pushers

There are times during the execution of a computer program that keyboard
interruption from the operator is particularly undesirable. This is especially true
during disk access. One way to protect your programs is to totally disable the
keyboard. That’s right. With a simple POK E, you can render the operator virtually
helpless. (Don’t remind him or her about the ON/OFF switch!) Save the current
program, and type

NEW
19 POKE 18396, 165 (For Model I11)
16405 @ (For Level II)
23886, @ (For TRSDOS 2.3)
23461, @ (For NEWDOS +)
cmp"B" »"0OFF" (For Model III TRSDOS)
20 FOR I=1 TO 100Q: PRINT Ii:
30 POKE 18386, 201 (For Model I1I)
16405, 1 (For Level II)
23886, 1 (For TRSDOS 2.3)
23461, 1 (For NEWDOS +)
CMD®B" »"ON" (For Model I TRSDOS)
49 FOR I=1 TO 1@@0: PRINT Ii:
RUN

POKE 18495 ;@ disables the entire keyboard, including the key. Try
breaking the program during its first countto 1000. POKE 16405 + 1 reenables the
keyboard during the second loop. This method can be dangerous if the program
somehow gets waylaid before reaching the second POKE . Change line 20 to

20 INPUT A
RUN

Oops! Just lost the program. Even the reset button can’t save us now. The only way
out is to reboot BASIC. The same thing could happen with unanticipated I/O errors,
syntax errors, and so forth. If you disable the key, be sure to trap for errors
withthe ON ERROR GOTO statement.

116

Special Graphics Considerations

An Alternative — For Level II Users Only

If your computer is without disk, there is a safer way to disable the (BREAK) key
without the risk of losing anything.

Enter

10 POKE 1B396: 1B5
20 INPUT A%

30 GOTO 20

RUN

The keyboard is totally accessible, except for the (BREAK) key. So, how do you get out
of this infinite loop? Easy. Use (SHIFT) (BREAK). And, if you want to reinstate the
normal functioning of the (BREAK) key, change line 10 to

19 POKE 16386, 201
RUN

If you want to totally disable the BREAK) key, use POKE 16386,23

Off The Wall

While we are in the neighborhood, the keyboard section of memory can be used to
generate some interesting graphic patterns. Try

NEW

1¢ FOR I=14336 T0 14464
20 PRINT CHR$(PEER(I));
30 NEXT I: GOTO 1@

RUN

Press any combination of keys. Don’t be bashful. It may be months until all the
possibilities can be cataloged.

NOLLVYJINddV

Geometric Shapes and Function Plots 119

Geometric Shapes And Function
Plots

1 Lines

Mathematicians are going to love this chapter. We will cover topics that terrorize
high-school students across the land every day. But don’t fret if you are not among the
chosen few who daydream about rational functions and conic sections. Your TRS-80
will teach you everything you always wanted to know about graphics but were afraid
to ask. Experiment and persevere.

Straight Lines

The easiest lines we can draw on the TRS-80 screen are horizontal and vertical ones.
They can be drawn with SE T statements and FOR /NEXT loops. Let’s review one
way of drawing a horizontal line across the middle of the screen. We need to pick a
particular row, let’s say row 24, and light up graphic blocks in each column (0 - 127)
inthatrow. The SET statement necessary is SET (X »24) , where ¥ ranges from 0
to 127:

18 FOR X=0 T0 127
20 SET(X24)
3@ NEXRT X

A vertical line could be drawn just as easily by selecting a column, say 50, and using

190 FOR Y=0 TO 47
20 SET(30.,Y)
30 NEXT V¥

Screen Border

A typical application is to draw a border around the screen. This requires four lines
and could be done using four loops; however, we managed to do it with only one loop
in Chapter 3. Here is a modified version of that program:

1@ CLS

20 FOR X=0 TO 127

30 SET(X0): SET(X.:47)

49 IF X448 SET(D:X): SET(127X)
30 NEXT X

6@ GOTO GO

EIGHT

120 Geometric Shapes and Function Plots

Is there a faster way to draw this screen border? But of course! Use PRINT or POKE
instead of SET. Touse the PR INT statement, we need to consider that each of the
four lines is composed of different graphic characters:

Figure8.1 Borderline and corner

characters.

i d

As you can see, the four corners are made of different characters as well. We'll need
to calculate the ASCII value of each of these characters. Recall the value of each of

the six graphic blocks:
1 2
4 8
16 32

Figure8.2 Graphic code pattern.

Geometric Shapes and Function Plots 121
B B N S NN AT R

To create the graphic character for the upper left corner, we will light up the blocks
with values 1,2, 4, and 16. The ASCII value of this characteris 128 + 1 + 2 + 4 +
16 = 151. The other values are calculated in a similar fashion.

Now we can type in the program. First, the top row:

NEW
18 CLS: CLEAR 200
20 PRINTE @, CHR$(151)S8TRING$(GB2,131)CHRE(171) 3

Next, the sides:

30 FOR I=1 TO 14
49 PRINTE I*#G4, CHR$(149)CHR$(254)CHR$(170) 3
S0 NEXT 1

Finally, the bottom row:

B@ PRINTE 960, CHR$(1B1)5TRING$(B2/,176)CHR$(186);
70 GOTO 7@

OK, RUN this to see what kind of speed difference there is. Oh my! Caught by the old
screen scroll trick again. The problem appears to be in line 60, right? Remember,
every time we PRINT tolocation 1023, we can expect retaliation from the machine.
We’ll have toresort to the P OK E statement again. Change line 60 to

B¢ PRINTE 969, CHR$(1B1)STRING$(B2+178) 3
POKE 16383, 186
RUN

You should notice a definite increase in speed over our original attempt using the
SET statement. Why? The SE T statement lights only one graphics block at a time,
butthe PR INT statement lights two blocks at a time while plotting the rows, and
three at a time while plotting the columns. Wasn’t it worth the extra headache?

Picky, Picky, Picky

Inline 40, CHR % (254) was used to position the cursor at the right edge of the
screen. It also prints 62 spaces in the middle of the screen, obliterating anything in its
path. To test this, add

15 PRINTE 416, "1"
RUN

If you wish to preserve the screen, change line 40 to

40 PRINTE I%*64, CHR$(149)3%: PRINTE I#B4+63s CHR&(170)3
RUN

This version uses a second PR I NT@ statement to move the cursor to the right edge of
the screen.

122 Geometric Shapes and Function Plots

Not-So-Straight Lines

Lines that are not strictly horizontal or vertical deserve special attention on a
computer. After all, rectangles are poor excuses for dots. These lines are bound to
appear awkward due to the low resolution, but they can still be used effectively for
many applications. Recall that horizontal and vertical lines can be drawn with the
SE T statement by holding one of the arguments constant and by varying the other
argument (e.g., (SET (24 +Y)). In orderto draw ‘‘crooked’’ lines, we must
simultaneously change both arguments of the SE T statement at the same time. Enter

NEMW

10 CLS

20 FOR X=0 T0 3¢
30 BET(X»X)

49 NEXT X

RUN

The line is drawn by moving down one position for every move to the right. By
changing the relative rates at which the arguments vary, we can change the angle of
the line. The easiest way to do this is to choose one of the arguments in line 30 and
multiply it by a constant. Type and RUN

NEW

10 CLS

69 FOR X=0 TO 127
B0 SET(XiX*,2)

8@ NEXT X

You can experiment with drawing different lines by modifying the program above to
read several different constants from a DA T A statement. Modify the current program
to read

19 CLS

20 READ K

30 IF RK<® THEN 150

60 FOR X=0 TO 127

70 IF X#K>47 THEN 100
B0 SET(X »RA%¥K)

99 NEXT

i90@ GOTO 20

1590 GOTO 15@

160 DATA 013 1+ 2+ +S5y 8y 1+ 5y 10 30, -1
RUN

Change the data statement to anything your heart desires as long as the last entry is
negative. Note that line 70 protects us from an illegal function call. This program
creates the display shown in figure 8.3.

Geometric Shapes and Function Plots 123

Figure8.3 Crooked lines.

Values of K from Oto 1 produce continuous lines. Values of K greater than one give
rather sparse results. One way to improve the looks of the lines is to introduce a
second loop that draws the line vertically. (Another way to handle this problem will
be shown later.) Modify the above program to

12 CLS

28 READ K

30 IF K<@® THEN 150

49 IF K<=1 GOSUB G@ ELSE GOSUB 110
o@ GOTO 20

6@ FOR X=0 TO 127

79 IF X¥K:=47 THEN 100

80 SET(X»X{*K)

9@ NEXT

100 RETURN

1190 FOR Y=0 TO 47

120 SET(Y/K YY)

130 NEXT

149 RETURN

15¢ GOTO 150

169 DATA 004 2+ 8y 1y 29 5y 78y -1

and RUN. Line 40 tests the slope of the line, and sends the program to the appropriate
subroutine. Try a few different numbers in the DATA line.

Connect The Dots

There is one glaring limitation in the above program: All the lines start at X =0,

Y =0. A more versatile program would allow us to specify any two points on the
screen, and it would draw a line connecting the points for us. You say this is too much
to ask for? My dear (soon-to-be) computer addict! We are dealing with a machine that

124 Geometric Shapes and Function Plots

is the culmination of thousands of years of technological development. We simply
have to point it in the right direction! The only two things we will have to teach our
quick-learning friend are

1) the formula for the slope (M) of a line connecfing two points (X1,Y1) and
(X2,Y2):

M= (Y2 - YD/(X2 — X1)

2} the formula for the equation of a line given a point (X1,Y1) and a slope M:

Y = M¥X — X1) + Y1
To get the ball rolling, we will input the two points (X1 +¥ 1) and (X2,Y2):

NEW

10 INPUT "FIRST POINT"3§ X1.Y1
20 INPUT "SECOND POINT"3 XZ,YZ
30 CLS

Then calculate the slope:
79 M = (Y2 - Y1)/(X2 - X1)

We can now plot the line by letting X vary between X 1 and X2, and calculating Y by
the above formula. Add

1906 FOR X = X1 TO X2

110 SET(X:M#¥(X-X1) + ¥1)
120 NEXT X

130 GOTOD 130

RUN

Does it work? Sure it does, but it won’t draw lines fromright to left, and steep lines
are very sketchy. Earlier, we used two loops to cope with the problem of steep lines.
Another way to handle the same problem is to add a § TE P increment to line 100 and
change it as the slope of the line changes. For more or less level lines,a STEP of 1 is
fine, but for steep lines, a S TE P of 1/M will give nice continuous lines. Change line
100to

190 FOR X = X1 TO X2 STEP &

and add

B® IF ABS(M):»1 8=ABS(1/M) ELSE =1

We also need to account for lines drawn from right to left with

99 IF X1»X2 LET 8= -§

Now we’re ready to try out our point connecting program. Go ahead. Take it for a
spin. Works fine, doesn’tit? Well, it does unless you ask it to draw a vertical line. For

some reason, the computer refuses to divide by zero in line 70. We can easily fix that
by adding a separate loop to draw vertical lines when X1 = X2:

Geometric Shapes and Function Plots 125

Lot e e e)

49 IF K2<:X1 THEN 7@
3@ IF Y1:¥Y2 THEN 8=-1 ELSE S=1
6@ FOR Y=Y1 TUO YZ BSTEP S: SET(X1,Y¥): NEXT ¥: GOTO 130

That’s better. The final listing should look like this:

19 INPUT "FIRST POINTY3 X1,¥1

20 INPUT "SECOND POINT"3§ X2,¥2

30 CLS

49 IF X24:X1 THEN 70

5@ IF ¥1:Y2 THEN S=-1 ELSE S=1

B2 FOR Y=Y1 TO Y2 STEP S: SET(X1,¥): NEXT ¥: GOTOD 130
79 M o= (Y2 - Y1)/(XH2 -~ H1)

8@ IF ABS(M):1 8=ABS(1/M) ELSE 5=1
80 IF X1i:X2 LET 8= -8

100 FOR X = X1 TO X2 STEP §

119 SET(XsM*(X-X1) + Y1)

120 NEXT X

130 GOTO 130

Save the program for future use.

Polygons

The routine that we have created will be an invaluable aid in drawing polygons in that
polygons are made by connecting straight line segments end-to-end. Of course we
will have to make some modifications, but you should expect that by now! The
program must be able to draw lines from point to point around the edge of the
polygon. We’ll need to create a loop that reads points and draws lines until some end
condition is met. For convenience, we will read the endpoints from DATA
statements. Also, it would be nice if we had to mention each endpoint only once. The
noted changes are

10 CLS: ON ERROR GOTOD 140

20 READ KZ2,YZ2

30 Kl=XZ2: Y1=Y2: READ X2,¥2 : IF X2{0 THEN 20
130 GOTO 3@

1490 GOTO 140

130 DATA By 27y 2@ 274+ 134 21 By 274-14+ @

Line 10, of course, both clears the screen and causes it to freeze by sending us to line
140 when there is no more data to read. Line 20 reads the starting point of a new
figure. The heart of the modification is line 30. Because we would like to draw
several connecting lines, line 30 makes the old endpoint of our figure into the starting
point of a new line segment. Then it reads in the new endpoint and checks to see if it is
valid. If so, the line is drawn and line 130 sends us back to line 30 where a new point is
read and another line drawn. This continues until a negative value is read in for the X
coordinate, at which point line 30 sends us to line 20 to start a new figure. Data line
150 will cause three line segments to be drawn:

X1 X2
6,27) to (20,27)
(20,27) to (13,21)

(13,21) o (6,27)

126 Geometric Shapes and Function Plots
B A B S e i B e

In short, we’ve got a triangle. The -1 will allow us to create more figures with
additional data.

Figure8.4 Three-dimensional polygons.

As an exercise, you might try adding the data set below. Better yet, make up your
own!

150 DATA 18.:38:6,44+28+28,18:38,59,38,28:28,38,:44,
S@,389-1,0,38,4446,44 41,0

16@ DATA 98,:29,98+23:80,:32,62,23,62,:29,80,20,98,29,
80,38

170 DATA B2:28,:62:23+80,14,98,:23:-1,¢+80:14,80:20.
-1y0

180 DATA B2,32:80:38,-1:0

199 DATA 13:6+26:6:354+0,22:0,13+6,13+23:41,23:41,15

200 DATA 50:8:50,17+414323,-140

219 DATA 35:0,35,9,50,9:414+15,26+15:35+8,-1:0

220 DATA 264626 +,15+-140

2 Cartesian Coordinate System vs. The TRS-80

X,Y Axes

When we are plotting figures on a two-dimensional surface, it is convenient to have a
way to refer to each point. Thanks to a famous mathematician named Descartes, we
have one: the Cartesian coordinate system. This system makes use of two
perpendicular lines as shown in figure 8.5.

Geometric Shapes and Function Plots 127

15

14

13

t2

+1
ORIGIN

©, 0 1 -1

-2
-3
-4
-5

Figure 8.5 The Cartesian coordinate system.

Once the lines (called axes) have been introduced to the plane, each point is
referenced by its distance from the two axes. The displacement is calculated in both
the horizontal and vertical directions. The point shown in figure 8.6 is named (3,4)
because it is 3 units in the positive horizontal direction from the origin, and 4 units in
the positive vertical direction from the origin. The two numbers 3 and 4 are called
coordinates, and since the axes are typically labeled with X and Y as shown, we will
refer to the first number as the X coordinate and the second number as the Y
coordinate. So much for the math lesson. On to graphics.

(3,4)

[
L L

ORIGIN

Figure8.6 Thepoint(3.4).

128 Geometric Shapes and Function Plots

Cartesian Coordinate System

To draw the Cartesian coordinate system on the TRS-80, we will need two straight
lines labeled with number scales. The number scales will have to be flexible in that
the range of the X and Y values to be displayed on the screen will vary from graph to
graph. For example, we may need to display arange of Y values from — 20 to +20 in
order to clearly understand some graphs, while others can be readily displayed in a
range of —4 to +4. A reasonable approach that would allow for this variation would
be to create a single set of axes and tick marks, and let our number scales change with
the application.

The axes could easily be drawn with the SE T statement, but we have chosen to

PR INT the axes in the example below to make sure you don’tdoze off! See if you
can figure out how strings are used to create the axes and tick marks. Keep in mind
that there is no perfect way to write a program. Don’t be afraid to try it a new way. If
the machine snickers a bit at your attempts, remember that you control the ON/OFF
button.

Enter this program

NEW

19 CLS: CLEAR 200

2¢ DEFSTR A

49 A=CHR$(140) + CHR%(141) + CHR$(140)
30 PRINTE 448,53

60 FOR X=1 TO 12

70 PRINT A+STRING&(Z,140) 3

80 NEXT X: PRINT Aj

99 PRINTE 31,3

100 FOR I=1 TO 15

1190 PRINT CHR$(157) + CHR$(24) + CHR$(Z6)3
120 NEXT I

130 GOTO 130

RUN

Numbering scales should be added to the axes as needed. As an example, add

*30 FOR P=0 TO 14 : PRINTE Z8B+P%B4,s 7-Pi & NEXT P
130 PRINTE 512, "-B) -4 -3 -2 ~1"3
149 PRINTE 3548, "1 2 3 4 5 B" 3
150 GOTO 15@

This results in figure 8.7.

Geometric Shapes and Function Plots 129

k,.

Figure8.7 A coordinate system.

Plotting Points

Allright, so we have a beautiful pairdf axes. The question now is how can we plot
points on this newly labeled screen? Certainly SE T (2 »3) willnot plot the point
(2,3). We will have to delve briefly in to the never-never land of mathematics for the
answer.

Once we have assigned a coordinate system to the screen, each point (actually, each
graphics block) acquires two names. One is its name in terms of our coordinate
system,; the other is the TRS-80 SE T coordinates. For example, the coordinate point
(0,0) has SET coordinates (62,22). It would be convenient if we could refer to the
point as (0,0) and let the computer do the work of translating it to the proper SET
coordinates. This translation is done with a pair of simple equations. For the point
(0,0), we can use the equations

Xl =X+ 62

Yl=Y+ 22

where X = 0and Y = 0, and X1 and Y1 are the numbers to
be used inthe SE T statement.

SET(X+G62 ,¥+22) will translate (0,0) into SET(BZ +22) as desired. Would
this system of equations plot the point (2,3) in the appropriate spot? Nope, not even
close. See figure 8.7. With X = 2andY = 3, wewouldget SET (B4 +25) . The
B4 is not nearly large enough, and the 25 should be much smaller. Don’t worry
though. We just left out a few minor details. Notice that every labeled unit on the X
axis is actually ten graphic blocks. So, to move from X = Oto X = 2, we must move
2 times 10, or 20 blocks to the right of X = 0. A more accurate equation for our
translation in the X direction is

Kl = 1@#X + G2

130 Geometric Shapes and Function Plots

This will yield X1 = 82 when X = 2. Hurrah! Are you ready to guess the translation
forthe Y coordinates? Well?. . . . OK Here are three hints:

1) ThecenterisatY = 22.

2) There are three graphics blocks per Y tick mark (so far you should have
Yi = 3xY + Z22).

3) (This s the hard one:) Our Y labels increase in the opposite direction from
the TRS-80 row numbers.

Now you got it!
Y1 = -3%Y + 22

The negative sign, of course, flips the Y axis right-side-up. One of the frustrating
things about the way our favorite little computer was designed is the vertical
numbering scheme used for the SET, RESET, and PO INT statements. Zero is at the
top of the screen while 47 is at the bottom. This is great for many applications, but not
for plotting functions. Every high-school algebra student knows that the numbers
should get larger as you go up the Y axis. This upside-down numbering means that
any function plotted on the TRS-80 would be upside down without the negative sign
in the above equation.

So, what can we do with these equations? Suppose we want to plot a point (1, —4).
Simply add

180 X=1: ¥Y=-4

178 X1 = 10%X + B2
180 Y1 =-3#Y + 22
190 SET(X1Y1)

200 GOTO 200

RUN

to the coordinate program. RUN it a few times with different X and ¥ values in line
150. Then try

150 X=2,09: ¥Y=1

Hmmmmmm. You’ve spotted a problem. X = 2.09is closer to 2.1 than 2.0, but the
SET statement plots it as 2.0. We might be tempted to ignore such a slight
discrepancy, but this round-off error will give us somewhat erratic-looking functions
if we don’t fix it. We’ll have to add .5 to each of the SE T arguments so that each point
will be plotted at the closest graphic location. This can be done by changing lines 170

and 180to

170 X1 = 10#¥ +BZ.5
180 Y1 = -3%Y + 22.5
RUN

Graphing Functions

Armed with the appropriate set of translation equations and our updated coordinate
program, we can graph almost any function on the TRS-80 screen. Functions are
usually giveninthe form Y = f(X), where f(X) stands for some expression involving
X. Typical examplesare Y = SIN(X)and Y = 3X-2. We can graph functions like

Geometric Shapes and Function Plots 131

‘ v

these by letting X vary between — 6 and + 6 and calculating Y for each new value of
X. This can be done most easilyina FOR /NEXT loop:

*130 FOR X = -B TO 6

160 ¥ = 3*X -2

170 X1 = 10#*X + B2.5

180 Y1 = -3%Y + 22,95

190 IF Y1>47 OR Y1<® THEN 21i@
200 SET(X1¥Y1)

210 NEXT ¥

220 GDTO 220

RUN

Line 160 contains the function and line 190 keeps us from plotting off the screen. To
make the plot a bit more continuous, you can take advantage of the optional STE P
parameter in line 150. Change it to

15¢ FOR X =-6 TO 6 STEP .1
RUN

Isn’tthat better? Now, changeline 160to Y = 1%} and try several different
STEP increments. Asyou can see, small 5 TE P values are required to maintain a
continuous graph for steep functions like Y = 1@}, butthis causes a great
reduction in plotting speed. It’s the old trade-off between speed and accuracy. You
will have to choose a § T E P value that is comfortable for you.

Ready For Take-Off

Now your TRS-80 is almost ready to amaze and dazzle you with some of its awesome
power. First we will set the S TE P increment in line 150 to .05 so that the machine
doesn’t blind you with its lightning speed (also, in case we run across any steep
functions). Enter any real function that you want in line 160 to see how really clever
your machine can be. Here are some functions to play with. Feel free to change the
STEP increment as you see fit.

Y = G*SIN(Y
Y = 3%SIN(X) + 3%COS(2¥X)
Y = ABS(1/4%X)

Y o= 2eX - 7

Y = -5

¥ o= X#X - 4

Vo= SXEX + 4

Y o= 1/2%X{L3 - d%¥
Y o= LOG(X) X = .01 TO 6)

132

Geometric Shapes and Function Plots

T T

6 -3 -4 -3 -7 -1 i I8 05 8 S
-2 - -5
-3

Vel 8x-4

Ye1/28X[3-48X

- Gt T O~

4 5 -4 -3 -2 -1-l
-2
-3
-4
-3
-4
-7

Y=34EIN(X)+38C06(28X) YeLOB(X}) Xe,01TO4BTEP. 0§
7
[
7 3
[4
3 3
4
3 T
2 B R 2 A A A £ A F 1 'l A
i

RIS BT B S S B 1t %2 3 & 3 &

6 -3
-4
-5
-4
-1

130 FOR Xs~4TDSBTEP. 003
Y=ABS (1/48X) 160 Yo {(28X-3)/(X-2))

Figure8.8 Sample functions.

3 Polar Coordinates

The Cartesian rectangular coordinate system is great for plotting all kinds of graphs,
but it has an Achilles’ heel—circular objects. Sure, you can plot circles, ellipses,
cardiods, and such with rectangular coordinates, but their equations are much easier
to work with if you use polar coordinates.

A Circle

We’ll take a look at plotting a circle using rectangular coordinates before we go polar.
First, you would take the equation of a circle:

X2 + Y? = R?

Geometric Shapes and Function Plots 133

“

and solveitforY:
Y = xzVR - X?

Then plot both positive and negative values of Y as X moves across the diameter of
the circle.

Figure8.9 A rectangular coordinate circle.

Here is a short program that will get the job done:

NEW

1¢ CLS : R=4.,95

20 FOR X=-R TO R STEP .1

3¢ Y = SQR(R*R - X#X) (above formula)
4@ SET(B4+7%#X 124+3%Y)

o0 SET(B4+7%#X ,24-3%Y)

6@ NEXT X

7¢ GOTO 7@

RUN

The radius R is defined in line 10. The F OR statement in line 20 causes X to range
from - R to R. The 8 TEP increment determines both the speed with which the figure
is drawn and the degree of detail. A small number will take longer and give more
detail. On the other hand, alarge number gives less detail, but greater speed. Line 30
calculates the positive value of ¥ based on the current value of X. Lines 40 and 50 plot
the positive and negative values. Location (64 » 24) isused as the center of the
circle, and 7 and 3 are used to adjust for the aspect ratio of the graphics blocks. (You
wouldn’t want our circle to look like an egg, now would you?)

A Polar Approach

What is a polar coordinate? It is a different way of labeling points in the plane. With
rectangular coordinates, a point is identified by its veritical and horizontal
displacement from the X and Y axes. With polar coordinates, a point is identified by
its direct distance from the origin and the angle it makes with the positive X axis.

134 Geometric Shapes and Function Plots

(DIS TANCE, ANGLE)

DISTANCE

X AXiS

N

Figure 8.10 Polar coordinates.

If this is getting too technical, hang in there. You can still use the following examples.
To plot circular functions, we increment the angle from 0 to 360 degrees Oto2w
radians) and let the radius vary as a function of the angle.

{0y, A4p)
Dy
p (01, A1)
A1 X AXIS

Figure8.11 Radius (distance) as a function of the angle.

The SE T statement only understands X and Y coordinates, but the computer can take
care of the translation using the formulas

RADIUS # COS(ANGLE)
RADIUS # SIN(ANGLE)

X
Y

Once we teach the computer these formulas, we can write functions in polar terms and
pretty much forget about rectangular coordinates. The equation for acircle in polar

Geometric Shapes and Function Plots 135
“

termsis R = C where C is a constant. Whew, couldn’t be much easier. Try this one
on for size:

NEW

190 CLS

20 FOR A=0@ TO 30 STEP .02

30 R=4.3

49 SET(BA+7#R*¥COS(A) » 24+3%¥R*SIN(A))
30 NEXT A

60 GOTO GO

RUN

R is set to a constant in line 30 to create a circle. The angle A is determined in line 20.
One complete 360-degree revolution around the circle is 6.28 (2) radians, but it
usually takes several passes to draw a well-defined picture. Again, the STEP
increment should be adjusted to give the desired balance between speed and detail. If
you like your circles drawn in a counterclockwise direction, change the second + sign
inline40to -.

Note that only one SE T statement is needed when plotting with polar coordinates.
We used two SE T statements when plotting with rectangular coordinates.

Getting Dizzy

The real advantage of polar coordinates is the ease with which other circular figures
can be drawn. Other circular figures are drawn by varying the radius with the angle.
Change

19 CLS: ON ERROR GOTO B0
30 R=A

RUN

A tighter spiral pattern can be generated by

30 R=A%,3 Spiral of Archimedes

Subtle changes to line 30 can give surprising results. Try your favorite functions.
Here are some suggestions:

30 ReEXP(A/6)
30 R=48{1-COS(A))

136 Geometric Shapes and Function Plots

30 ReZ8(1-COB(28A))

30 R=68COS(38A/2)

30 Re28(2-C0B(28A))

30 R=B/ (A+1) {:

30 R=BSSIN(2%A)

e

-"umnnumn'“‘.

20 FOR A=0TO308TEP,025
30 Ref
30 Re40C0B(2081H(AY)

20 FOR A=0TO3OSTEP.025
30 Reps.3 30 Re=60COBIEINIS0A))

Geometric Shapes and Function Plots

137

ez of
=,

30 R=28(1-CO5(38A))

30 R=68C08(A)42

30 R=ASCOB(A) SBIN(A)

Figure8.12 Polar functions.

R=A#COS(AY*SINC(A)"
R=8#SIN(3%A)
R=B#COS(2%#5IN(A))
R=G#COS(SIN(G*A))
R=7#COS(4%#SIN(Z#A))
R=8B#COS(A)*COS(Z2%A)
R=4#(1-C0O8(A))
R=G*CO8(A)+2
R=EXP(A/G)
R=8/(A+1)
R=B#COS(2%A/3)
R=6#COS(3*A/2)

30 R=70C05(43810(28A))

Rose leaf

Cardioid

Logarithmic spiral
Hyperbolic spiral

Wouldn’thigh resolution be nice here? Sigh.

Statistics

138

Statistics

139

o TR]

Statistics

Statistics is a study that cuts across many disciplines. Basically, itis used as a tool to
help us manage data. There are two main branches of statistics: One, descriptive
statistics, endeavors to describe data, whereas the other, inferential statistics,
attempts to draw inferences from the data. One guideline of descriptive statistics is
that graphic display of information is often more useful in making decisions than long
lists or tables of numbers. That’s where the computer comes in. We can easily create
programs that will transform dull data into readily understood graphs.

1 Frequency Distributions

Histograms

The histogram is a type of bar graph in which the vertical axis represents frequency
and the horizontal axis represents the data being measured. The data items are
grouped into intervals and plotted as in figure 9.1.

0.125¢

0.100+
5. 0075
o
=
u poswermrrmmmenmy
2
(=4
&
w 00501

0.025-

125 145 165 185 205

Figure9.1 A histogram.

In order for a histogram to be of any value, the boundaries between intervals must be
labeled. Because this requires more room on the screen than we can readily afford, we
will not pursue the histogram here. However, Radio Shack puts out a statistics
package that will automatically create labels for you.

140 Statistics

Bar Graphs
If there are only a few discrete data items, they can be plotted with a bar graph as in
figure 9.2.
100}

90

80 I

701

60]

sof-]

401

30

201

10}-

1980 1981 1982 1983 1984

Figure9.2 A vertical bar graph.

Designing Our Own Bar Graph

Any time we create our own software, design decisions have to be made. The
standard trade-offs include speed vs. memory use and flexibility vs. simplicity. What
we choose will depend entirely on our needs and the limitations of the system we are
working with. For the graph we are about to create, we will

1) use afixed number of labels on the vertical axis. This will reduce our
flexibility but greatly simplify the program.

2) use no labels on the horizontal axis. This will allow for a much greater range
of data items — up to 50. If you want to add labels for a particular application, it
iseasy todo so.

3) enterdata from the keyboard. Each column will be drawn as it is entered. A
more sophisticated program would allow options of loading and saving data

from tape or diskette.

4) employ minimal error checking. This will keep the program short enough to
type in and give you something to do for homework.

With these considerations in mind, a sketch of the desired output is the next thing.

Statistics 141

25 q

225 -
20 B

17.5 1

15 B

125 -

75 1

25 1

ENTER DATA?

Figure9.3 A sketchofabar graph.

0.K., now a quick flowchart.

START

HOUSEKEEPING

£999999
RECOMMEND
MULTIPLE OF 10

INPUT MAXIMUM
VERTICAL
NUMBER

lr’gPUT NUMBER
DATA ITEMS

150

DRAW

AXES

INPUT DATA

AND
DRAW BARS

STOP

Figure9.4 A flowchart for bar graphs.

Bring It To Life

The housekeeping is easy:

NEW
10 CLEAR 10@: CLS

142

Statistics

Now, the input:

20 INPUT "ENTER MAXIMUM VERTICAL AXIS VALUE"F M
3¢ INPUT "ENTER NUMBER OF DATA ITEMS FOR HORIZONTAL
AXIS"§ N

The maximum value allowed for the vertical axis is 999999. The horizontal axis may
have up to 50 entries. Add the vertical axis:

49 CLS: L=M

30 FOR I=181 TO 767 STEP G4

B0 PRINTE I, L§ TAB(11)"-"5 CHR$(148)
70 L=L-M/10: NEXT 1

B0 PRINTE B8B32Z, 035 TAB(1IZ)CHR$(141)5
RUN

Line 50 creates a loop that controls the position of the items printed in line 60. The
values assumed by I are on the right edge of the screen. Because numbers are printed
with aleading space, this will ensure that each number is justified on the left of the
screen. Line 60 prints a number, tick mark, and part of the vertical axis. Line 70
calculates the numbers on the vertical axis. L. starts at the maximum value, M, and
decreases by M/ 1 @ on each pass of the loop.

And the horizontal axis is almost too easy:

8¢ PRINTE 845, STRING$(30.,140)

RUN it to make sure we haven’t strayed too far from figure 9.3.
The input is probably the worst part:

100 FORD=¢ TO N-1

110 PRINTE 920, "ENTER DATA"3 CHR%$(30)

120 PRINTE 931,35: INPUT X: IF X«<=M THEN 140

138 PRINTE 931 CHR$(30): PRINTE 83Bs X "TOO
LARGE": GOTD 120

142 REM

178 NEXTD

RUN

Lines 100 and 170 drive the loop that inputs the N data numbers. Line 110 prints the
prompt message, and CHR % (30) clears the dataentry line. Line 120 takes care of
the input, and line 130 gives an error message if the data exceeds the limit of the
vertical axis. Several PR I NT @s are needed to reposition the cursor after each use of
CHR$ (30). The plotting is done in the same loop as the input:

140 FOR Y=0 TO INT(X/M*30+.3)
150 FORZ=0 TO INT(100/N)-2

160 SET(INT(100/N)%D+Z2+26.:40-Y)
170 NEXT Z: NEXT Y: NEXT D

180 GOTOD 180

RUN

Notice that will repeat the height of the previous bar.

Statistics 143

The ¥ loop calculates the height of each bar. The Z loop calculates the width of each
bar. RUN it a few times, keeping an eye out for where it could be improved.

The final listing should be as follows:

*1¢ CLEAR 100: CLS

20 INPUT "ENTER MAXIMUM UVERTICAL AXIS VALUE"I M

39 INPUT "ENTER NUMBER OF DATA ITEMS FOR
HORIZONTAL AXIS"S N

49 CLS: L=M

50 FOR I=181 TO 767 STEP G4

B2 PRINTE I, L3 TAB(11)"-"3§ CHR$(149)

70 L=L-M/10: NEXT I

80 PRINTE 832, 03 TAB(12) CHR$(141)}

90 PRINTE 845, STRING$(5@.,140)

100 FOR D=0 TO N-1

1190 PRINTE 920, "ENTER DATA"3i CHR%$(30)

120 PRINTE 931.,3%: INPUT X: IF X<{=M THEN 140

130 PRINTE 931, CHR%(30): PRINTE 838, X"T00
LARGE": GOTOD 1Z@

1490 FOR Y=0 TO INT(X/M*30+,5)

130 FOR Z=0 TO INT(108/N)-2

169 SET(INT(1Q0/N)*D+Z+2640-Y)

170 NEXT Z: NEXT Y: NEXT D

180 GOTO 180

ENTER DATA 218

.l »

Figure9.5 ABARGRAPH display.

Save this beastly BARGRAPH program, as it will be used in section 3 of this chapter.
Keep in mind that this is a bare-bones program. Many improvements could be made.
(See Chapter 11 for a description of elements of a good graph.)

144

Statistics

For a change of pace, let’s try a different background color. Change

DELETE 99

B2 PRINTE I, L3 TAB(11)"-"STRING$(S50,191)
BO PRINTE B32y @3 TAB(12)STRING$(50,179)
160 RESET(INT(100/N)#D+Z+25:4@-Y)

RUN

\- 2

Figure9.6 ABARGRAPH reverseimage.

2 Linear Regression And Correlation

Another area of statistics looks at relations between pairs of variables to see if there is
apossibility of a cause-and-effect relationship. As an example, let’s look at a recent
random sampling of ten TRS-80 users by the PHONY SURVEY CORPORATION
(please, a little willing suspension of disbelief!):

WEEKLY CONTACT HOURS

WITH TRS-80 HAPPINESS RATING (10 MAX)
25 8
3 3
20 1 (An Apple owner?)
15 4
40 11
8 5
12 6
22 9
0 0 (ouch)
35 9

Statistics 145

We are going to develop a program that will graphically display these pairs of
numbers on a scatter diagram. We will place contact hours on the horizontal axis and
happiness rating on the vertical axis as shown in figure 9.7

]
10}
-]
L]
o 8 °
=
b=
<
[+
@ 6 .
w
z °
[- N
o
<
E N ®
°
2t
o
e 1 i |] 13 L) i
5 10 15 20 25 30 35 40

WEEKLY CONTACT HOURS WITH TRS-80

Figure9.7 A sketch of ascatter diagram.

The input approach on this program will differ a bit from the concept in the previous
one. The earlier program asked for the maximum values to be entered, then plotted
data as it was entered. It assumed that minimums on both axes were zero. This
program, however, will take the approach of storing all data entered in an array and
will create the number scales using maximum and minimum values from the arrays.

Housekeeping comes first:

NEW
10 CLS: DIM X(10), Y(10)
20 XN=10000: YN=10Q000: XM=0: YM=0

This program uses two BASIC statements available only in Disk BASIC:

LINE INPUTand INSTRING. LINE INPUT acceptsstring input with
commas and quotation marks. INSTR I NG searches through a string for a specific
substring. Nondisk users will be given a different version by and by — be patient.
Add the data entry section:

30 PRINT "ENTER DATA PAIRS SEPARATED BY COMMAS"

a0 I=1I+1
50 LINE INPUT "DATA PAIR:"i A$: A=INSTR(A%:" ")
6@ N=I-1: IF A%$="" GOTO 180

7¢ IF A=@¢ PRINT "USE COMMA": GOTO S50
80 X(I)=VAL(LEFT®(A%A))

120 Y(I)=VAL(MID$ (A% 1A+1))

170 GOTO 409

This loop exits to line 180 from line 60. It stores the X valuesin the array X (1) and
the Y valuesin Y (I). The number of data pairs is recorded in N.

146

Statistics

If you are employing a nondisk system, use the same lines 30, 40, and 170. But
replace lines 50 through 120 with

20 PRINT "USE NEGATIVE FIRST VALUE WHEN FINISHED®
B@ INPUT "DATA PAIR": X(I), Y(I)
70 N=I-1: IF X(I)<{@ THEN 18¢

Now, we are all together. To calculate the minimum and maximum values of each
variable, add

100 IF X(I)>»XM THEN X
110 IF XCID4XN THEN X
140 IF YA(I)>¥YM THEN YM=Y(I)
130 IF Y(I)<YN THEN YN=Y(I)

AV S

The four variables XM, XN, ¥M, and YN can be used to create scales for the diagram:

*180@ CLS: PRINTE 128,%:

18¢ FOR I=1 TO 11: PRINT USING "#usa#s,u"]
YM-(YM-YN)/10%#(I-1) 3

200 PRINT * ~"5 CHR$(149): NEXT I

210 PRINTE 844, CHR$(131)3

220 PRINTE 845, STRING$(58,131)

230 PRINTE 8508,;

249 FOR I=0 TO B: PRINT USING "#smuus, s
ANFI /B (XM-XNY3: NEXT I

230 FOR X=34 TO 118 STEP 14: SBET(X»4@):NEXT X

38e¢ GOTO 380

If it seems like a lot of code, you're right; itis. And there is more on the way. We are
doing a lot of things with this program.

RUN this program. Enter a few pairs of numbers separated by commas on each line.
When you are through, press to activate the drawing of the axes. Nondisk
users should enter a negative first number to terminate input. The numbers on the
horizontal axis should range from the highest X value to the lowest. The numbers on
the vertical axis should do the same for the \/ values. Plotting the data points is only a
matter of adding one line:

260 FOR I=1 TO N:
BET(34+84% (X(I)-XN)/ (XM-XN) »
THOYM-YCI) Y/ OYM-YNY#3@) 2 NEXT I
RUN

. Enter data pairs using your own data or the weekly contact hours shown above.

Correlation

The two variables are said to be correlated if these dots form arough straight line. The
closer the approximation of a straight line, the higher the correlation. A scatter
diagram can help us quickly determine if there is a possible linear relationship
between two variables. Naturally, there is a mathematical way to determine the same
thing. Itis called the ‘‘correlation coefficient.”” We can have our program calculate
this number each time a new data pair is added. Add

Statistics 147

G0 KE=XE+X(I):r XQ=XO+X(I)*X(I)

130 YS=¥5+Y(I): YQ=YQ+Y(I)*Y¥(I)

16@ XY=XY+X(I)#¥(I)

270 R1=XY-KG#¥YG/N : RE=XO-XE#XS/N : R3=YQ-¥YS*¥G/N
280 REZ=80QR(R2) : R3=8QR(R3)

2890 PRINTE 980, "CORRELATION COEFFICIENT: "3

30¢ PRINT USING "#,u#u###"35 R1/R2/R33

RUN

1.0
9.9
8.8
1.7
b6
3.3
4.4
3.3
2.2
i1
0.0

0.0 67 133 20,0 26,7 33,3 40,0
CORRELATION: COEFFICIENT: 0.804-6‘

Figure9.8 A scatter diagram for happiness rating.

Sums are accumulated as the data is being entered in lines 90, 130, and 160.
Intermediate values are calculated in lines 270 and 280. Finally, the correlation
coefficient, R, is printed in line 300.

RUN this with the weekly contact hours so that we can see what kind of correlation
there might be in the data. If R is close to positive or negative 1, then there is a high
correlation. Conversely, if it is close to 0, there is no correlation.

We knew all along that a dedicated TRS-80 user is a happy one. Buta word of caution
isin order: a high correlation between two variables doesn’t prove that they neces-
sarily affect one another. For example, there is probably a very high correlation
between the annual production of bananas in Brazil and alcohol sales in the U.S.
Every year our sales just keep going up. But somehow, it is hard to believe that
shutting down the banana plantations will have much of an effect on alcohol sales,
right?

Line of Best Fit

For variables that are highly correlated and for which there is a high probability of
causation, it is useful to find the line that most closely fits the data for purposes of

148

Statistics

predictions or estimates. Let’s suppose that we run a software house, Al’s Plumbing
and Programs, with ten employees. (A rich uncle left us his plumbing business.) We
are continually bombarded by job-hunters who make all kinds of wild claims. What to
do? Simple. We have all the current employees write a simple program, and compare
the time it took them to do so with their current weekly lines of code produced. Here
are the results of the test:

TEST (MINUTES) WEEKLY LINES OF CODE
45 2010
33 1828
169 75 (a goof-off)
48 2700
29 3684
30 3400

Now add the data to our program. See figure 9.9.

36840 -
33231
2962.2 -F
26013

-~ 22404

1879.5

15186
1157.7
196.8
435.9
75.0 _
29.0 5.3 157 9.0 1223 Us.7
- CORRELATION COEFFICI 8603

k.

Figure 9.9 A scatter diagram for lines of code.

As you may have guessed, the correlation is rather strong. With a few modifications
to the program, we can have the computer calculate and plot the line of best fit. Add

310 RM=(XY*N-YE#XG)/ (XO*N-XS5%*X8)
320 RB=(YS*¥XO-XY*¥XG)/ (HO#N-HE*X5)

For you statistics aficionados, R M is the slope of the regression line, and BB is the ¥
intercept. The equation of the line of best fitis¥ = RM % X + RB.Keep
typing:

330 FOR XT=XN TO XM STEP (XM-XN)/100
349 V=7+(¥M- (RM*XT+RB))/ (YM-Y¥YN) %30
350 IF Y:37 OR Y<7 THEN 370

Statistics 149

360 SET(34+84% (XT-XN)/ (XM-XN) »¥Y)
370 NEXT KT
RUN

R UN this program with the test data. The output should look like figure 9.10.

3684.0
s
29622

2%01,3 -
22404
1879.5
1518.6
1T,
796.8:
435.9
75.0 5 = 0
. mspussmany B———]
S 29.00 52,3 75,7 99.0 1223 145.7 169.00 |
* CORRELATION COEFFICIENT:- -,8603 b

ol

&

Figure9.10 The line of best fit.

Now, when a prospective employee walks into our office, we give them the aptitude
test. By comparing the results to the line of best fit, we have a reasonable estimate of

their productivity. Save this program before we move on. The final listing should be
this:

*19 CLS: DIM X(1d), Y(1@)
20 KN=10000: YN=10000: XM=0: YM=0
3¢ PRINT "ENTER DATA PAIRS SEPARATED BY COMMAS"

49 I=1+1
3@ LINE INPUT "DATA PAIR:"3§ A$: A=INSTR(A$:"+")
B® N=I-1: IF A%="" GOTO 180¢

70 IF A=¢ PRINT "USE COMMA": GOTO 3@
80 X(I)=VAL(LEFT$(A%:A))

90 HG=X8+X(I): XO=XQ+X(I)*X(I)
100 IF X(I)>XM THEN XM=X(I)

118 IF X(I)<XN THEN XN=X(I)

120 Y(I)=VAL(MID$ (A% A+1))

130 YS=YS+Y¥(I): YO=YQ+Y(I)*Y{(I)
1490 IF Y(I)>¥YM THEN ¥YM=Y(I)

150 IF Y(ID<YN THEN ¥N=Y(I)

160 XY=XY+X(I)*¥Y(I)

170 GOTO 4@

18¢ CLS5: PRINTE1Z28,i:

150

Statistics

190

200
210
220
230
240

250
260

270
280
290
300
310
320
330
340
350
360
370
380

FOR I=1 TO 11: PRINT USING "s##sass,sn";
YM-(YM-YND) /1@%(I~1)3

PRINT ™ -"3 CHR$(149): NEXT I

PRINT® 844, CHR$(131)3

PRINTE 845, STRING$(S50,131)

PRINTE 908,3

FOR I=0 TO G: PRINT USING "s#suu,#"j XN+I/bB#
(XM-XN)§i: NEXT I

FOR X=34 TO 118 STEP 14d: SET(Xd@): NEXT X
FOR I=1 TO N:

SET(34+84% (X (I)=XN)/ (XM-XN)» 7+{YM-Y (D)) /(M-
YN)Y#30): NEXKT I

Ri=XY-XG*YS/N : R2=XO-XS#XE5/N : R3=YQ-YS#¥S5/N
R2=8OR(RZ) : R3I=6QR(R3)

PRINT® 980, "CORRELATION COEFFICIENT: "3
PRINT USING "#,##w#"§ R1/RZ/R33
RM=(XY*#N-YS#XE) / (HQ*N-X5%XG)
RB=(YB#XO-XY*#XB)/ (XQ*¥N-XG*XE)

FOR XT=XN TO XM STEP (XM-XN)/100

Y=7+(YM- (RM¥XT+RB))/ (YM-YN) %30

IF Y¥>37 OR ¥<7 THEN 370

SET(34+84% (XT-XN)/ (XM-XN) »Y)

NEXT XT

GOTO 380

3 Normal Curves

As we said in the introduction to this chapter, inferential statistics is the science of
drawing inferences from data. Often, we find that survey results follow a standard
bell-shaped pattern.

! 1 ! I H

Figure9.11 A normalcurve.

This pattern is called the ‘‘normal curve.”” Using properties of the normal curve and
surprisingly small samples statisticians can make very good predictions about
populations.

Having a computer at our disposal, we can easily generate a bell-shaped curve by
experimenting with the RND function. Our favorite computer is going to simulate
rolling three 11-sided dice for us.

Statistics 151
Lo e e e e e

Eachroll of the dice will give us a number from 3 to 33. By subtracting 3 from the
result, the range changes to 0 to 30. As with normal six-sided dice, the probability of
getting a very high or a very low sum is much less than the probability of getting a
number near the middle, say 15. This occurs because there is only one way to geta 0
(1 + 1+ 1 - 3),butmanydifferentwaystogetal5S(l + 6 + 11 — 3,
14+7+10~-3,1+8+9—-3,...11 + 6 + 1 — 3). Agraphofthese
probabilities gives a bell-shaped curve.

150 (1331
140 |~
130 -
120
110 ~
100 ~
S0 -
80 -
70
60
50 k-
40 -

30 -

20

10 II
|||
2 4 6

0

III“I..
2 24 26 28

8 10 12 14 16 18 20 2 30

SUM OF DICE MINUS 3

Figure9.12 Probabilities for three 11-sided dice.

The computer can generate an approximation of this curve by repeated experimen-
tation. The more repetitions, the closer the generated graph will match the probabil-
ities in figure 9.12.

Rather than create a program from scratch, we can modify the BARGRAPH program
you saved (you did, didn’t you?) earlier in this chapter to do the job for us. Some lines
need to be modified:

10 CLS: CLEAR 1@@: DIM R(30): N=3@

20 RIR)=R(R)+1: IF M<R(R) THEN M=R(R)

30 GOSUB 4@: GOTO 15

40 CLS: L=M: PRINTE 30, Si "TRIALS"}

100 FOR D=0 TO N

110 (Delete)

120 PRINTE 9Z0,35: X=R(D): IF X{=M THEN 140
180 RETURN

152 Statistics

We need to add a few new lines:

15 FOR T=1 TO 200: R=RND(11)+RND(11)+RND(11)-3

25 8=8+1: PRINTE@ 30, Sz NEXT T

95 FOR I=0 TO 3@ STEP 5: SET(2B+3%I.,41): PRINTE
998+1.,5#1 1 NEXT I

RUN

Line 10 reserves room for 31 variables, R(0) through R(30), to count the frequencies
of the different values assigned to R. Lines 15 through 25 make up a loop in which
200 random numbers are calculated and tabulated. The calculation of the random
numbers is done in line 15. Three is subtracted from the sum of the three RND
functions to change the effective range of R from 3 — 33to 0 — 30. The appropriate
variable is incremented by 1 in line 20, and the maximum frequency is updated if
necessary. In line 25, the total number of trials is stored in 8 and printed.

The rest of the BARGRAPH program has been turned into a subroutine from lines 40
to 180. These lines plot the frequencies stored in R(). Line 30 calls that routine and
returns control to line 15, where the process continues.

This program will run indefinitely, pausing every 200 calculations to display the
currentresults. You can control the frequency of the pauses by changing the limits on
T inline 15. You may also want to try changing the RND functions in line 15. But be
sure to change the values in line 10 accordingly.

Your final listing should look like this one:

*1@9 CL8: CLEAR 1@@: DIM R{30): N=3¢

15 FOR T=1 TO 200: R=RND(11)+RND(11)+RND(11)-3
20 R(R)=R(R)+1: IF MIR(R) THEN M=R(R)

25 8=5+1: PRINTE 30, S5: NEXT T

390 GOSUB 49: GOTO 15

49 CLS: L=M: PRINTE 30, 535 "TRIALB":

50 FOR I=181 TOD 767 STEP G4

60 PRINTE I, L3 TAB(11)"-"35 CHR%(149)

70 L=L-M/10: NEXT I

80 PRINTE B3Z, 037 TAB(1Z)CHR$(141)3

8@ PRINTE B45, STRING$(50.:14@)

95 FOR I=0 TO 30 STEP 5: BET(26+3#I,41): PRINTE

998+1.5%I,1: NEXTI
100 FOR D=0 TO N
120 PRINTE 9Z2@,3: X=R(D): IF X<=M THEN 140
13¢ PRINTE 931, CHR%(30): PRINTE 838B. X "TOO
LARGE": GOTO 120

1490 FOR Y=0 TO INT(X/M#*30+.,3)
150 FOR Z=0 TO INT(100/N)-Z2
160 SET(INT(1@@/N)#D+Z+26.,40-Y)
170 NEXT Z: NEXT Yz NEXT D
180 RETURN

Computer Assisted Instruction 155

Computer Assisted Instruction

1 CAIOverview

Computer assisted instruction is, without a doubt, the greatest thing to happen to
education since Socrates. Computers aren’t going to totally replace all the traditional
methods of education, but they are going to make quite an impression. The computer
has several advantages that ensure its place in education of the future, namely:

@ Computers do not get tired.
@ Programs are easily modified to accommodate new information or teaching styles.

@ Computer programs are interactive, so they can allow individuals to proceed at
their own pace and to cover material selectively.

@ Computers can generate animated displays on their own video screen as well as
control motion pictures and diagrams stored on video disks and cassettes.

If you are a teacher and are worrying about your classroom job being taken over by a
computer, don’t. Education is usually the last segment of society to wake up to
technological advances. It will be a long time before the traditional classroom setting
is an anachronism. Besides, there are always students who learn much more quickly
from a warm human being than from a collection of integrated silicon wafers.

In this chapter, we will consider a menu-driven approach to presenting educational
software. In developing this material, we will include some general graphic display
considerations.

Motivation

How can graphics be used in education? The most obvious answer is in diagrams and
illustrations. Mind you, our crude black and white graphics cannot compete with
color photographs in a flashy textbook, but then photographs do not suddenly spring
to life, either. With the techniques we have developed, we can animate words,
diagrams—almost anything on the screen. This is a very effective attention-getter and
makes up for a whole stack of color glossies. Motion is especially important in
stimulating younger students who might have a shorter attention span.

Consider the problem of motivating students to learn a concept like mathematical
functions. There are several possible approaches at our fingertips. Mr. White gives
his students a list of functions to evaluate for homework. Ms. Jones explains that
functions are just like a machine. You put something in one end, and a finished
product comes out the other end. She shows them a computer program with an
unknown function machine that scoops up the values they enter and spews forth the
results.

156 Computer Assisted Instruction

,.-.._........................_.............}

Computer Assisted Instruction 157

158 Computer Assisted Instruction

v | 'm—'-':::}

Computer Assisted Instruction

159

—

4

\.

Figure10.1 A function machine.

The students have to guess what function the machine is using. Her program is
interactive and animated; she has the students in the palm of her hand. You lose, Mr.

White.

Drill and Practice

Graphics are often used in drill-and-practice software. Programs that teach music
note recognition, for example, can benefit from graphic display of the notes.

L] R lllllnlll—lmlllll-llmq-ll—ilmlllﬂ-l
Iﬂl‘

TESESC

mERanNAE V -lh-:i'. ;:u-ul-nllnlilnlmalnm

WHaT T3 THE HASEVORLTHE LRRT NRITE PR

Figure10.2 Note recognition.

160 Computer Assisted Instruction

Another classic example of graphics use is provided by programs that develop shape
recognition.

= 5 Y

Ry

uls b

Figure10.3 Shape recognition.

2 Screen Formatting

Menu

A favorite technique used in the designing of educational programs is the offering of a
menu.

-}

OEND

1 HOUSEKEEP NG
2 SOUND

3 DOUBLE SIZE

4 FLAGHING WORDS
5 NORE?.

Figure10.4 A simple menu.

Computer Assisted Instruction 161

“

The user can choose an option by pressing a single key. If the program is tutorial in
nature, a menu approach permits immediate access to any portion of the lessons. We
will develop a sample program to illustrate this approach. Qur first step will be
formatting the menu. Enter

NEMW

10 CLEAR 1000

B9 N=3: FOR I=0 TO N: READ A%(I): NEXT I
100 CLS

110 R=5: C=24

120 FOR I=0 7O N

130 PRINTE BA*(R+I)+C, I35 A%$(I)

140 NEXT I

220 DATA ENDs HOUSEKEEPING, SOUND

230 DATA "DOUBLE SIZE": "FLASHING WORDS", MORE®T
RUN

N, R, and C determine the number of menu items, the starting row, and the starting
column of the menu list. If you need to update the menu later, edit the DA TA lines and
change the values of R and C to suit your tastes.

Title

No menu is complete without a title, so let’s give it one. Change
100 CLS: A%$=N$: GOSUB 240
and add

90 N$="PROPER PROGRAMMING PRIMER"

210 END

240 L=LEN(A%$): P=8B6-L/2

280 PRINTE@ P, A%5 : PRINTE 256s3: RETURN
RUN

The routine at 240 centers the contents of A% inrow 2. Because that was so easy, let’s
give the title a nifty little border. Add

230 FOR I=0 TO 2: PRINTE P-G7+B4d#*I,

CHR$(191)CHR$(192+L+4) 7 CHR%(191)35: NEXT
260 PRINTE P-66s STRING$(L+4,131)
270 PRINTE P+BZ, STRING$(L+4,176)
RUN

"
k)
w
3

Now the routine will not only center but also frame the title.

162 Computer Assisted Instruction

PROPER PROGRAMMING PRIMER

0 END

1 HOUSEKEEPING
2 SOUND

3 DOUBLE SIIE

4 FLASHING WORDS
5 NORE?

P R — ' -

Figure10.5 A menu title with a frame.

Input

With the menu drawn and ready for use, we have to deterrine how to make a
selection. The input is sometimes done in a subroutine, but we willinclude it in the
main body of the program. A typical approach is touse the INPUT function, but as
shown in Chapter 7, I NK E Y % gives us much more control and versatility. So, add

150 PRINTE 9190 "ENTER SELECTION:"3

169 I$=INKEY$: K=VAL(I$): IF I$=%9" GOTO 210
170 IF I%$="" OR K<1 OR K:N THEN 1G®

180 PRINT I%

200 GOTO 1900

RUN

This bit of code will accept only numbers from 0 to N and of course the key.
You may want to disable the key as shown in Chapter 7. Protecting your
program from wandering fingers is a good idea, especially when the computer will be
used by younger students. (Sometimes it is a good idea for older ones, too!)

Computer Assisted Instruction

163

PROPER: PROGRAMNING PRINER

0 END

1 HOUSEKEEPING
2- SOUND

3 DOUBLE SIZE

4 FLASHING. WORDS
o NORE?

ENTER: GELECTION:

Figure10.6 A complete menu.

Housekeeping

So far, the menu won’t take us anywhere. We need toadd an ON GOSUB statement
to direct us to various portions of the program. Add

19¢ ON K GOSUB 500, GO0
900 CLS: A$=A%(1): R=2:
34¢ RETURN

600 CLS: A%$=A%(2): R=2:
660 RETURN

RUN

GOSUB 240

GOSuUB 24¢

Line 190 directs us to line 500 if K is 1 and to 600if K is 2, but the titles disappear
before we can read them. We need to add a routine that will pause before returning to
the menu. Add

289¢ PRINTE 82¢, "PRESS ENTER"3i: INPUT X: RETURN

and change

RETURN
RETURN

549 GOSUB 290@:
660 GOSUB 290:
RUN

And now, we will create one more useful routine, a time delay:

309 FOR I=1 TO T: NEXT I RETURN

510 PRINT "CREATE USBEFUL ROUTINES THAT CAN BE USED
BY EACH MODULE"

S20 INPUT "SAMPLE TIME DELAY. ENTER A NUMBER"3: T

330 GOSUB 3@@: PRINT"WE ARE BACK®

LIST

RUN

164 Computer Assisted Instruction

The size of T controls the time of the delay. Try both large and small numbers.
The listing at this point should be:

*1@ CLEAR 100@

BO N=S5: FOR I=0Q TO N: READ A%$(I): NEXT I
9¢ N$="PROPER PROGRAMMING PRIMER"

100 CLS: A$=N$: GOSUB 240

119 R=5: C=24

120 FOR I=0 TO N

130 PRINTE G4#(R+I)M+C,s I35 A%(I)

149 NEXT 1

150 PRINTE 910, "ENTER SELECTION:"3

160 I$=IMKEY$: K=VAL(I$): IF I%$="0" GOTO Z10
170 IF I%="" OR K<1 OR K>N THEN 1G@

180 PRINT I%

199 ON K GOSUB S00, GO2

200 GOTO 100

210 END
220 DATA END: HOUSEKEEPING: SOUND
230 DATA "DOUBLE SIZE", "FLASHING WORDS", MORE?

249 L=LEN(A%): P=96-L/Z

250 FOR I=0 TO 2: PRINTE P-B7+G4%1,
CHR$(191)CHR$(192+1L+4) 5 CHR$(191) 35z NEXT

2B® PRINTE P-GGs SBTRINGH(L+4,131)3

270 PRINTB P+B2s STRINGH(L+4,176)3

280 PRINT@ P, A%$3 : PRINTE 256,35 : RETURN

290 PRINTE 920, "PRESS ENTER"§ ¢ INPUT X: RETURN

300 FOR I=1 TO T: NEXT I : RETURN

S0 CLS: A$=A%(1): R=2: GOSUB 240

510 PRINT "CREATE USEFUL ROUTINES THAT CAN BE
USED BY EACH MODULE"

520 INPUT “SAMPLE TIME DELAY. ENTER A NUMBER"; T

530 GDSUB 300: PRINT "WE ARE BACK"

540 GOSUB 290: RETURN

B0 CLS: A$=A%(2): R=2: GOBUB 240

86¢ GOSUB 280: RETURN

3 Grabbing Their Attention

One of the most important uses of graphics in an educational environment is getting
people’s attention. Let’s face it: Books put people to sleep (hey, wake up out there!).
Classroom instructors are well known for their contribution to the rest periods of
America’s student population. It would be a shame if computer programs fell into the
same rut. The television generation has come to expect dazzling special effects; this
creates quite a challenge for programmers and educators.

Sound

Several attention-getting techniques are worth considering. Sound is always a good
way to drive a point home, so we will start there. Connect an amplifier to your
cassette AUX plug, and add

Computer Assisted Instruction

165

20 M&=8TRING$(Z24,1): U=UARPTR (M%)

30 LE8=PEEK(U+1): ME=PEEK(U+2)

49 L=L5+256%#MS: IF L»32767 L=L-BS536

30 FOR I=L 7O L+20: READ X: POKE I, X: NEXT I

B2 DATA 200:+127,10:,69,824+14+211,255,16+254,88462,2,
2Z114+235+16,254,37,32,239,201

70 IF PEEK(1G6396)=201 POKE 18526, LS: POKE 16527,

MS ELSE DEFUSR@=L

CAUTION! Because we are dealing with PEEK and P OK E instructions, it would be
a good idea to save this program before it is run.

RUN it to work out any bugs. Lines 20 through 70 place a sound routine in memory.
We can access it with the USR function. Add

310 FOR I=1 TO 8: X=USR(2000): NEXT: RETURN
61¢ PRINT "SAMPLE SOUNDS:*

BZ2@ INPUT "1"3§ X: GOSUB 31¢

RUN

Choose menu option 2, then press (ENTER) to hear the sound. The USR function is
placed in a subroutinue at line 310 so that it can be called from other portions of the
program. There’s more:

*320 FOR I=1 TO B: X=UBR(Z@Q): X=USBR(3@): NEXT: RETURN

330 FOR I=20 TO 10 STEP-2: X=USR(I): NEXT: RETURN
3490 FOR I=1 TO 3: X=USR(5B6): NEXT

350 X=USR(76): X=UBR(BB): X=USR(B4): RETURN

630 INPUT"2"3F X: GOSUB 320

G40 INPUT"3"3 ¥X: GOSUB 330

630 INPUT"4"3 X: GOSUB 34

RUN

These routines can be used in other portions of the program.

Large Characters

Normal-width characters are not adequate for all applications. Obviously,
double-width characters are much easier to read. The following changes will prepare
a double-width screen for us. Change

190 ON K GOSUB S00, GOQ, 700
and add

700 CLS: PRINTCHR$(Z3)TAB(1@)A%(3)
710 PRINT STRING$(32.,42)

790 GOSUB 289¢: GOSUB 340: RETURN
RUN

Note the 32-character limit on the screen. Say, isn’t it time for your weekly quiz? Add

720 PRINT "QUIZ TIME": PRINT
730 PRINT "DOUBLE SIZED CHARACTERS:"
749 PRINT "1 ARE EASIER TO READ®

166 Computer Assisted Instruction

T e e R e B R NI

750 PRINT "2 GIVE ME A HEADACHE"
760 INPUT "ANSWER"§ X

770 IF X<»1 GOSUB 320: GOTO 700
780 GOSUB 33¢

RUN

Sound routines are used to reinforce the appropriate response. If the sound associated
with an incorrect response is obnoxious enough, it will encourage a higher proportion
of correct answers. But it may discourage use of the program, so, have a heart!

Bright Lights

Here is another technique that uses some of our subroutines:

*19¢ ON K GOSUB S00., GO0, 700, BOO

B@Q CLS: As=A$(4): GOSUB 240

819 PRINT "DRAW ATTENTION TO IMPORTANT WORDS OR
PHRASES WITH"

820 PRINT "A LITTLE FLASHY RAZILE DAZILE:"

830 FOR J=1 TO 1@0: PRINTE 329, " "y

840 GOSUB 319: PRINTE 329, "FLAGH"I

850 T=2¢: GOSUB 300: NEXT J

BEY GOSUB 290: RETURN

RUN

FLASHING WORDS

DRAW ATTENTION TO INPORTANT WORDS OR PHRASES WITH
A LITILE FLASHY RAZILE DAZILEr

PRESS ENTER? _

\F

Figure 10.7 Flashing words submenu.

Computer Assisted Instruction 167

D A S TR

The final listing is (take a deep breath here, folks):

1¢ CLEAR 1000

20 M&=STRING$(2d4,1): U=UARPTR(MS$)

30 LS=PEEK(V+1): MS=PEEK(V+2)

49 L=L8+256%M8: IF L>32767 L=L-B5536

30 FOR I=L TO L+20: READ X: POKE I+ X: NEXT I

B0 DATA 205:127110,69,B2+1:211:2554+16:254,B9:62+2

211,255 16+254,37,32,239,201

70 IF PEEK(16396)=2¢1 POKE 18526, LS: POKE 1B527)
MS ELSE DEFUSRO=L

B0 N=3: FOR I=0@ TO N: READ A$(I): NEXT I

99 N$="PROPER PROGRAMMING PRIMER"

100 CLS: A$=N$: GOSUB 24¢

110 R=5: C=24

120 FOR I=0 TO N

130 PRINTE G4#(R+I)+C, I35 AH(I)

140 NEXT 1

150 PRINTE 910, "ENTER SELECTION:"3

160 I$=INKEY$: K=VAL(I%$): IF I$="@" GOTO 210

170 IF I4$="" OR K<1 OR K:N THEN 160

180 PRINT I%

1990 ON K GOSUB S00, GoQ. 700 800

200 GOTO 10@

210 END
22¢ DATA ENDs HOUSEKEEPING, SOUND
23@¢ DATA "DOUBLE SIZE": "FLASHING WORDS", MORE?

249 L=LEN(A%): P=96-L/2
23¢9 FOR I=0 TO 2: PRINTE P-B7+B4%I,
CHR$(191)CHR$ (192+L+4) 7 CHR$(191)5: NEXT
ZB6¢ PRINTE P-GBB,» STRING$(L+4,131);
27¢ PRINTE P+B2, STRING$(L+4,176)3
280 PRINTE P, A%3 : PRINT® 256+35: RETURN
290 PRINTE 920, "PRESS5 ENTER"§: INPUT X: RETURN
30Q FOR I=1 TO T: NEXT I : RETURN
310 FOR I=1 TO 8: X=USR(2008): NEXT: RETURN
320 FOR I=1 TO B: X=USR(20): X=USR(3Q): NEXT: RETURN
33¢ FOR I=20 TO 1@ STEP-2: X=USR(I): NEXT: RETURN
340 FOR I=1 TO 3: X=USR(SE): NEX
330 K=UBR(76): X=UBR(BB): X=USR(B84): RETURN
500 CLS: A%=A%$(1): R=2Z: GOSUB 2490
519 PRINT "CREATE USEFUL ROUTINES THAT CAN BE USED
BY EACH MODULE"
320 INPUT "SAMPLE TIME DELAY. ENTER A NUMBER"; T
339 GOSUB 300: PRINT "WE ARE BACK"
540 GOSUB 290: RETURN
600 CLS: A%=A%(2): R=2: GOSUB 24¢
B1¢ PRINT "SAMPLE S0OUNDS:"
G20 INPUT "1"3§ X: GOSUB 31i¢

B30 INPUT "2"3§ X: GOSUB 320
649 INPUT "3"3§ X: GOSUB 330
B3@ INPUT "4"3§ X: GUSUB 340

662 GOSUB 290: RETURN

70¢ CLB: PRINT CHR$(Z23)TAB(12)A%$(3)
712 PRINT STRING$(3Z,42)

720 PRINT "QUIZ TIME": PRINT

168

Computer Assisted Instruction

730
740
750
760
7790
780
790
800
810

gZe
830
840
850
860

PRINT "DOUBLE SIZED CHARACTERS:"

PRINT "1 ARE EASIER TO READ"

PRINT "2 GIVE ME A HEADACHE"

INPUT "ANBMWER"3§ X

IF ¥<{>1 GOSUB 320: GOTOD 700

GDOsUB 33¢

GOSUB 290: GOSUB 340: RETURN

CLS: A%$=A%(4): GOBUB 2490

PRINT "DRAW ATTENTION TO IMPORTANT WORDS OR
PHRASES WITH"

PRINT "A LITTLE FLASHY RAZZLE DAZZLE:"
FOR J=1 TO 10: PRINTE 328, " "
GOSUB 3190: PRINTE 329, "FLABH"S

T=20: GOSUB 300: NEXT J

GOSUB 290: RETURN

170 Visual Aids

Visual Aids 171

Visual Aids

1 Introduction To Visual Aids

Itis often difficult to make meaningful decisions based on large groups of numbers.
Graphs and charts can be used to show relationships that might otherwise go
unnoticed. In this chapter, we will look at several different ways of displaying
numerical information with charts and diagrams, including several types of graphs,
pie charts, and pictograms. All of these can be implemented on the TRS-80 with the
techniques discussed in previous chapters.

The types of graphs covered in this chapter can be applied to many areas: advertising,
management, sports, you name it. We will present sample programs to create some
examples, and show diagrams of others.

2 Standard Format

Elements Of A Typical Graph

The title should be concise and interesting, and it should clearly indicate the content
and scope of the chart. By convention, it is centered at the top. The following lines
position a sample title:

10 CLS: CLEAR 100

7¢ A% = "BYTE AND NYBBLE SALES: 198¢ - 1887
80 PRINT TAB((B3-LEN(A%))/2)F A%}
RUN

The source should be included both to give validity to the data and to respect the rights
of the originator of the information. The source is usually located in the bottom left
corner of the display. Add

90 PRINTE B9B., "SOURCE: BYTE AND NYBBLE SOFTWARE"S
489 GOTO 489
RUN

A border can be added if desired:

20 FOR I=1 T0O 15: PRINT CHR%(1891)CHR$(254)CHR%(191) i
NEXT

30 PRINTE 1, STRING®(B2,131) 1

40 PRINTE 129, STRING$(GZ2,140) %

50 PRINTE 960 CHR$(191)STRINGH(BZ +178) 3

60 PORE 16383, 191: PRINTE B5.,3

RUN

ELEVEN

172

Visual Aids

Because of the space compression code used in line 20, this sample border must be
printed before going ahead with the title and source. If all the trailing semicolons are
in place, the screen should look like figure 11.1.

BYTE AND NYBBLE SALES: 1980 - 1987 :

| SOURCE: BYTE AND NYBBLE SOFTARE

Figure11.1 Elements of a typical graph.

A legend is used when clarification is necessary. It consists of a sample of the
characters used in the diagram, followed by a definition of each character. Usually, it
is placed in the bottom right corner, but it can be placed anywhere, as long as it does
not interfere with the rest of the diagram. The PR I NT @ statement can be used to
position the legend. Figure 11.2 shows sample legends.

Visual Aids 173

BYTE 'AND NYBBLE SALES: 1980 - 1967

LEGEND
Wh - ITEM A

SQURCE: BYTE AND NYBBLE SOF TWARE

BYTE AND NYBBLE SALES: (980 - 1987

LEGEND
X - 17EM-A
$ - ITER B
g+ - ITEN C

SOURCE: - BYTE AND NYBBLE SOFTWARE

\

Figure 11.2 Samplelegends.

Choosing The Right Form

One of the first steps in graphically presenting data is to decide on the type of diagram
that will best express the significant features of the data. Polygonal charts best
represent changes in quantities over time. Bar graphs and pictograms could be used to
depict changes over time as well as quantities at a fixed point in time. Histograms are
employed to display frequencies for grouped data. To compare quantities pie charts
serve well. Both maps and pie charts are usually restricted to a single time period.
Figure 11.3 shows examples of some of these typical visual aids.

Visual Aids

174

sprejensia oAy, € 1 9andy

NOSAT0d

A Ak AR Mk AR AR AR AR A
, T LT L LT R |
R o

ek A b kA

| AR U0 THS aa an A AR AR AR o
b o bR Al Al Ak Al Ak :

Ak AR A
Motk Ak A At A Ak |

- NY480131d

) 31d

Hdbya Hve

Visual Aids 175
[

3 Sample Programs

Pie Charts

Pie charts show parts of a whole. They describe a single point in time rather than
changes over time. For this reason, they are not well suited for projections. It is
important that the title include the point in time that the pie chartrepresents. The
major parts of a pie chart are:

1) acircle divided into parts

2) labels to identify parts (optional raw data can be printed near the label for
precision)

3) percentages for quick, easy comparisons

We will add a pie chart to our screen border:

100 FOR A=0 TO 7 STEP .02

110 SET(B3+34.5*%C0OS(A)» 2B+13*5IN(A))
120 NEXT A: X2=B3: YZ2=26

RUN

Lines 100 through 120 draw the circle. With the help of the line drawing program
developed in Chapter 8, we can divide the pie as needed. We will include the program
as a subroutine using (63,26) for (X2 ¥2). Add

500 IF X1<>XZ2 THEN 3530

310 IF Y14<Y2 THEN S8=1 ELSE S=-1

320 FOR Y=Y1 TO Y2 STEP 8: SBET(X1.,Y): NEXTY: RETURN
530 M=(Y2-Y1)/{X2-K1)

340 IF ABS(M):>1 8=ABS(1/M) ELSE 8&=1

500 IF X1>X2 THEN §=-8

5690 FOR X=X1 TO X2 STEP 5

S70 SET(H:M*¥(H{-X1)+Y1)

380 NEXT X: RETURN

To use this routine, the program must supply the points (X1 +¥ 1) onthe circle. Try
*13@ READ Xi.Y¥Y1l : IF X1=0 THEN 488

149 GOSUB S@@: GOTO 130

150 DATA 63:11:88,15,28+26+75:+38,0,0

RUN

This program draws figure 11.4

176 Visual Aids

BYTE AND NYBBLE SALES: 1980 - 1987

L]— J,"\)
—
~ Y

1

I' J
: - =
SOURCE: - BYTE-AND NYBBLE SOFTWARE

\ Moanuarnsssusus

Figure11.4 A piechart.

The next figure will help in estimating the points on the circumference. The
coordinates are given for 10 percent divisions of the circle.

(63,12)

(42,14);;“ (83,14)
(30,21)7f' 7(95,21)
(30,30)'° (95,30)

142,37) (83,37)

(63,40)

Figure11.5 A pie chart with 10% divisions.

Visual Aids 177

Labels

Labels are generally located outside the circle and percentages inside. Labels should
be short (preferably only one or two words) and should accurately describe the portion
that they represent. By using the video display sheet you can easily add the

labels and percentages as needed.

BYTE AND NYBBLE SALES: 1980 - 1987

iTER

e rind
SOURCE: - BYTE AND NYBBLE SOFTNARE

G

Figure11.6 A pie chart with labels.

Polygonal Chart

Most of us have seen the sales chart hanging in the manager’s office:

SALES FOR 1981
THOUSANDS

BOLLARS
501
4s}-
40
5|
30
25}
20}
15}

10}

i L 1 1 i 1 J

I L . 1 i
JAN FEB MAR APR MAY JUN JUuL AUG SEP OCT NOV DEC

Figure11.7 A saleschart.

L ¢
178

Visual Aids

80

701

50 -

40

30

20+

10

\//\//_—\/ 98l

This type of chart emphasizes the rate of change over a period of time. We already
have the line drawing routine necessary in the current program, but we will need to
add some axes. Make these changes and additions

*30
90

PRINTE 9G6@ .,
PRINTE 9G6Z.
SO0FTWARE"
READ M1+ Nz L=M1:
FOR I=1 TO 10: PRINTE 129+G4#I1., 3

PRINT USING "##s#,.#"§5 MI-M1/10%(I-1)3
PRINT " -"5 CHR$(1489)35: NEXT I

PRINTE 837+ i TAB(11)CHR$(141)3

PRINTE B44, STRINGH(50,140) 3

FOR I=26 TO 126 STEP N1: SET(I41): NEXT I
FOR I=0 TO 7: PRINTE 9@G+I%*N1i/2, 19BO+I3:
NEXT 1

DATA S0+ 8

CHR$(1891) 3

"SOURCE: BYTE AND NYBBLE

100
110
120
130
149
150
160
170

Ni=INT(1@@/N+.5)

440
RUN

Lines 110 through 150 come with a few modifications from the bar graph program in

Chapter 9. M1 is the maximum value for the vertical axis, and N is number of
endpoints to be plotted. Line 440 supplies the data for M1 and N.

Scaling

At this point, we should mention that proper scaling of the axes is crucial for the
accurate representation of the data. Changes in the number scales can be misleading if
they are not handled carefully. For example, eliminating a section of an axis can
drastically alter the overall impression of a graph.

99

87

951
341
93
92+
91

90 -

L L L 1
JAN FEB MAR APR

Figure 11.8 a) Easy Riderstock.

1
MAY

1
JUN

o] ! i | I i 1) J

i !] i]
Jui AUG SEP ocT JAN FEB MAR APR MAY JUN JUL AUG SEP ocT

b) Rough "n Ready stock.

Visual Aids

179

Notice how volatile the Rough 'n Ready stock is compared to the Easy Rider stock?
Same data, same axes, just a slight change in the scaling. The viewer should be
warned of this kind of alteration by abreak in the axis.

o 1 i i i] | L 1 | i
JAN FEB MAR APR MAY JUN JUL AUG SEP ocT

Figure 11.9 Break in the axis—Rough 'n Ready stock.

Another problem is that changes in the scaling of the axes can drastically change the
appearance of the graph.

(50, 60)

100 sor
sol- 45k
a0k
so
2ok 35
ol 30}
25|
501~ (50, 50)
w0k 201}
30} 15f
20k 10F {10, 10}
1o 710, 100 5r
0 1 1 L L 3 i I i i J o i 1
5 10 15 20 25 30 35 o 45 50 10 20

Figure 11.10 Elastic labels.

100

180 Visual Aids

When you are constructing a graph, these factors should be given careful
consideration, We will use a vertical scale ranging from zero to M1 in order to
minimize this kind of distortion.

Back To The Polygon

To add the polygon, we need to feed the heights of each vertex to the line drawing
routine. Add

400 READ YO

410 FOR X2=2B+N1 TO 126 STEP N1
420 K1=X2-Nil: ¥=¥0: READ YO
430 GOSUB 500: NEXT X2

450 DATA B8:3:17,124+33,25,37:48

Lines 400 through 430 read the heights of each point from line 450. The X coordinate
is determined by line 410. The subroutine at 500 will plot our polygon once it is
modified to work with our new axes. Change 500 to

SO0 Y1=38-INT(Y/M1%30): YZ=39-INT(YO/ML1*30):
IF XK1<>X2 THEN 330
RUN

The data are in lines 440 and 450. If you wish to enter your own data, use up to 50
numbers in line 450, and adjust line 440 accordingly.

You might want to save this program now. The listing should be as follows:

*1¢ CLS: CLEAR 100

20 FOR I=1 TO 13: PRINT
CHR&(191)CHRS (Z254)CHR$(181) i: NEXT

30 PRINTE 1, STRING$(BZ,131)3

4@ PRINTE 129, STRING$(GZ.,14@)3

30 PRINTE 96@¢.:, CHR$(1891)3

60 POKE 163B83: 191: PRINTE B33

70 A%="BYTE AND NYBBLE S5ALES: 1980 - 1887"

8@ PRINT TAB((G3-LEN(A%))/2)3 A%

890 PRINTE 962, "SOURCE: BYTE AND NYBBLE
SOFTHARE" 5

100 READ M1, Nz L=Ml: NI=INT(10®/N+.35)

110 FOR I=1 TO 10: PRINTE 129+G4%I .3

120 PRINT USING "#sas,#"§ MI-MI/10#(1I-1)3

130 PRINT * -"5 CHR$(149)3: NEXT I

140 PRINTE B37: 035 TAB(11)CHR$(141)3

150 PRINTE B44, STRING$(30,140) 3

160 FOR I=268 TO 126 STEP N1: SET(I,d1): NEXT I

170 FOR I=0 TO 7: PRINTE 9@G+I#N1/2, 1980+I1%:
NEXT I

400 READ YO

419 FOR X2=26+N1 TO 126 STEP N1

420 X1=X2-Nil: Y=Y@: READ Y0

430 GOSUB S500: NEXT X2

449 DATA 5@ 8

450 DATA B:3,17+12333,25,37.48

Visual Aids 181

489 GOTO 488

SO0 Y1=39-INT(Y/M1%30): Y2=39-INT(YOA/M1%30):
IF X1<xXZ2 THEN 330

310 IF Y1<¥2 THEN 8=1 ELSE §=-1

520 FOR Y=Y1 TO Y2 STEP 8: SET(X1,Y¥): NEXT Y: RETURN

330 M={YZ-Y1)/{(XKE-X1)

340 IF ABS(M):1 S=ABS(1/M) ELSE §=1

350 IF X1ixX2 THEN 8=-5

360 FOR X=X1 TO X2 STEP §

370 BET(X »M#(K-K1)+¥1)

580 NEKXKT X: RETURN

ALES FOR BYTE AND NYBBLE - 1980 - 1987

1982 I 184
RYTE: AND NYBBLE SOFTHARE

Figure11.11 A polygonal chart of sales over time.

Time vs. Quantity Bar Graphs

Time vs. quantity bar graphs are extremely useful tools for future planning. They can
show historical performance and indieate trends for the future. Either a horizontal or
vertical format is possible.

182 Visual Aids

B VERTICAL BAR GRAPH

g - HORTZONTAL BAR GRAPH : ‘

\

Figure11.12 Bar graph formats.

The horizontal format is much easier both to use and to label when a printer is
involved. On the other hand, most people prefer the visual impact of the vertical
format. Itis alittle harder to work with for us programmers, but that’s our job.

We can modify the current program to create a vertical time vs. quantity bar graph.
Change

100 READ M1+ N: L=Mi: NI=INT(12@/N)

160 FOR I=25 TO 126 STEP Ni: SET(I:d1): NEXT I
1790 FOR I=9¢ TO 7: PRINTE 9@9+I*N1i/2, 188@+I35: NEXT I,

These changes adjust the horizontal scale to accommodate the vertical bars. Now add

Visual Aids 183
o R S e i LT e T e]

*@® FOR D=0 TO N-1 : READ X

419 FOR Y=0 TO INT(X/M1%#30+,5)

420 FOR Z=0 TO NI1-2 : SBET(NI*#D+Z+26,40-Y)
430 NEXT Z: NEXT Y: NEXT D

RUN

SALED PR BYIEURNL WGHEELE 1540 - §5E7

SOURCE:

\

Figure11.13 A bar graph of sales over time.

It works with the same set of data as the polygonal graph. The main difference is that
the polygonal graph emphasizes the rate of change over time whereas a bar graph
points up absolute differences.

4 More Graphs And Charts

With a bit of perseverence and creativity, almost any kind of chart or diagram can be
displayed on the TRS-80. Here are some exarmples.

Multiple Graphs On One Chart

We can differentiate between two or more graphs on the same chart by using different
characters for each graph.

184 Visual Aids

197 XEXXEEIREe 4444 Do 7 LEGEND
: Y- ITER A
1978 PUAXXXXXISRIS Q44444444 - t - ITEN B
- gro ATEN C

1979 EXXXXRRAERE 4444444

1980 RXXXTREBERRLRR+444bettittst

1981 EXXXXXXXXXXXSSRILTRLLAG 4444444
: 10 20 30
SOURCE:

fhin
mmm_‘mm_l_'_'ml-l-l.—.-l

B g i 3 <

SRR RERE RN
\ 'l'l 'l.lll'l"lll'l‘ll!.l

B

\ .

Figure11.14 Multiple graphs.

Visual Aids 185
[e e R S S s e e SRR EEREE

Pictograms

Aninteresting variation on the bar graph can be achieved by using figures instead of
bars. Alegend is required to define the value associated with each figure. Properly
designed, even partial figures can be used, as shownin figure 11.15

UNITED STATES: POPULATION:-{1800-1960)

‘ : ' : 'ca,ooo,ooo PEOPLE

it
LAt T
LTI

o

.

Figure11.15 A pictogram.

The special character set of the Model I1I greatly extends the utility of this type of
graph.

186 Visual Aids

e e R T P s S s]

Maps

Maps can be used to describe a surprising array of information, even with the low
resolution graphics of the TRS-80. A simple map showing the locations of
distributorships is much more impressive than a list of words. Maps can be a
rewarding way to keep track of an expanding business.

SUFTSTU“F BISTRIBUTORS: LGCMIONS IN 1981

\.

Figure 11.16 A map of the United States.

Visual Aids 187

“

Volume

This one can be tricky, but don’t let that stop you!

1978 1_979 1980 1981
SOURCE: - :

\,

Figure 11.17 A three-dimensional graph.

188 Games and Animation

_A
=
/ ‘
WTRY “

Games and Animation 189

Games And Animation

1 Games

Have you ever wondered why microcomputing is so popular? What makes people buy
these overgrown calculators? Ask any microcomputer fiend, and you’ll hear reasons
such as word processing for business, tax preparation, payroll and accounts
receivable, home budget, Okay, that all sounds fair enough, but what do they do
on their computers at 2 A M.? Chances are most of them would be perched,
glassy-eyed and nervous on the edge of their chairs—fighting off yet another
squadron of aliens.

Yes, the secretis out. One of the best things about computers is that they allow us to
take a few minutes (who are we kidding—a few hours!) out of our day to become
Captain of the Enterprise, climb Mount Everest, rule our own kingdom, participate in
the Olympics, seek vast treasures, play pinball, or test our strategy in chess. Your
TRS-80 and your imagination can lead you through an incredible variety of
experiences. Don’t get the wrong idea. There are people who occasionally squeeze in
some work on these machines, but the fact is, computers are just plain fun!

Game programs have proliferated faster than any other kind of software. We certainly
won’t be able to cover the vast array of graphic applications in one chapter, but we can
look at a sampling of some of the graphic techniques available to the game
programmer.

Long-Lasting Flavor

Probably the most difficult challenge for a game designer is to prevent eventual user
boredom. Even the best games lose their hypnotic effects after a time. Once an
adventure is solved, what do we do with the darned thing? Once we have gunned
down 50,000 asterisks, what do we chase next—percent signs? What is the secret to
writing games with *‘staying power’’?

Games should be challenging, for starters. Not so hard that they overwhelm the
novice, but difficult enough to provide a constant challenge to players as they
improve their skills. Active participation is also a key requirement. People like to
interact with the computer and be a part of the scene. Finally, if a game can also
stimulate our imagination, it provides even more of an escape from our daily routine.

One feature that many games lack is sensory (especially audio and visual)
stimulation. Creative graphics and sound can charge the imagination, thereby
immeasurably improving even mediocre computer games. Games that use dynamic
graphic displays, animation, and sound are not likely to make an early trip to the
*‘disk-carded’’ pile of programs.

TWELVE

190 Games and Animation

2 Saving The Screen

There are nearly as many different playing surfaces as there are games—sandy
sidewalks, new-mown greens, checkered tabletops. For computer games, creating a
new way of looking at an old idea adds a special charm. One way to protect those
displays is to store them in string arrays. If something goes wrong, you can give the
player the option of redrawing the board.

Let’s create a game board. Enter

NEW

19 CLS: CLEAR 3090@: RANDOM: DIM S$(1B6)
20 W$=8TRING$(3:181)

30 Pis="(@)": P2%=" "

49 FOR P=27B8 TO GG@® STEP 128

50 FOR I=9 TO0 3

B® PRINTE® P+G%Is W$i: PRINTE P+G7+G*I, W$;
78 NEXT I: NEXT P

8¢ GOSUB 18@: PRINTE P, Pl%i

8¢ GOSUB 180: PRINTE P, PZ%3

100 GOTO 100

180 P=209+3%RND(B)+B4*RND(B): RETURN
RUN

F ' k)

Figure12.1 A game board.

The board is printed two rows at a time in line 60. Subroutine 180 positions the pieces
randomly on the board. Now we have something to save. The subroutine that will
save the screen in the string array 5% is the following:

Games and Animation 191

1000 X$="": U=UARPTR(X$): POKE VY, G4
10190 FOR I=0 TO 1S: J=INT(I/4)

1020 POKE U+1, G4#I1-256%J: POKE VY+2, Bo+J
1030 8$(I+1)=X$: NEXT I

104¢ RETURN

It works by locating the three-byte index of the dummy variable X $. The string length
of X% is set by poking 64 into the first byte of the index. (Sneaky!) Then it pokes the
starting location of each row of the screen (15360, 15424, 15488, . . .) into bytes two
and three of the index. This forces the location of X% to be that row of the screen,
which is then transferred to the string array ($%) inline 1030. The loop continues
until each row is stored in §%. To see the routine in action, add

*100 PRINTE B32:43

11¢ INPUT "PRESS <ENTER:> TO SAVE SCREEN"} ¥

129 GOSUB 1ep@: CLS

139 INPUT "PRESS <ENTER> TO BRING IT BACK"}i X

149 PRINTE@ @.,5: FOR I=1 TO 15

130 PRINT S$(I)3: NEXT I

169 PRINT LEFT#(8%(16)63)3: POKE 18383,
ABC(RIGHT$(8%(16) +1))

179 PRINT CHR%(15)3: GOTO B@

RUN

Press and the screen will be saved in 5% . When the screen clears, press
again to see the screen restored. Two pieces are added each time the screen is
saved. Notice thata POKE to location 16383 is used in line 160 to stop the automatic
screen scroll. CHR$ (15) isused in line 170 to turn off the cursor.

Il*||"|:" imﬁ!!'m . ;

 mom
o
mom_m
Sl |
W W m
momowom

| BRESS (ENTER) 70 SAVE THE SCREEN? |

\

Figure12.2 A game board with a screen-save option.

This technique of saving the screen can avoid a lot of frustration when something
unexpectedly creates chaos in the screen display. Once the screen is saved, it can be
easily recalled as needed. Save this routine now.

192

Games and Animation

3 Moving Targets

Plenty of games now available on the market involve shooting at moving targets. In
some of these, the projectile moves at an agonizingly slow pace, making it difficult to
judge when to fire. The following program uses character strings as an alternative to
8ET and RESET for faster action.

Sitting Ducks

We are going to create an arcade-type game to illustrate several of the techniques
shown in earlier chapters. In this program, there will be targets moving across the top
of the screen and a gun at the bottom of the screen. As the program develops, be aware
of the following: how the targets are moved, how the ‘‘laserray’’ is animated, how
impact is determined, how the targets are erased, and how program design affects
speed.

Let’s start by creating two strings S and T that will contain the targets. Enter

NEW

129 CLEAR Z2@@0: DEFINT A-R: DEFSTR 8-Z: CLS: A=30

149 FOR I=1 TO 20: 5=5+CHR$(132)+STRING${(RND(13)
$32) 1 NEXT

180 W=CHR$(166)+CHR$(178)+CHR$(153)

198 FOR I=1 TO 10: T=T+W+STRING$(B+RND(12)+32):
NEXT I

200 L=LEN(T): G=LEN(S)

230 PRINTE @ S: PRINT T

RUN

The strings S and T are composed of graphic characters separated by a random
number of blank spaces. W is a temporary string variable used to build T. The lengths
of strings S and T are stored in variables Gand L.

(g

Figure12.3 Target strings.

Games and Animation 193

“

Let’s set the targets in motion. Add

1 GOTO 129

2 S=RIGHT$(5,G-1)+LEFT$(S,1)

3 T=RIGHT$(TsL~3)+LEFT$(T3)

4 PRINTE 448, LEFT$(5,64): PRINT@ B4+ LEFT$(T:G4)
5 RETURN

49 REM

11¢ GOsuUB 2: GOTOD 4o

230 GOTO 4@

RUN

b
/
|

|

Yl [[|
L]
G i e

Figure12.4 Moving targets by string manipulation.

Line 2 takes the first character in string § and moves it to the end of the string. Each
time subroutine 2 is called, the targets move one place to the left. Motion for string T
is similar, except that the targets are moved three spaces to the left each time the
motion routine is called. This technique gives us, in effect, two endless loops.
Although the strings can be as long as 255 characters, only the leftmost 64 are
displayed in line 4.

The subroutine is positioned at the beginning of the program. This reduces the search
time for the routine each time it is used, thus increasing the speed of the animation.

Silver Bullets

To deal with such menacing targets, we’ll surely need a potent weapon. How about a
laser cannon? Add

150 FOR I=1 TO 11: READ N: Z=Z+CHR$(N): NEXT I
1GO DATA 18441354130 :27:,24,244160,180,26+173,144
170 PRINTE 99¢, 23

RUN

We’ll also need some way to fire the cannon and a flashy laser ray that will leap out
and disintegrate the targets:

3@ IF PEEK(14409)<>128 GOSUB 2: GOTO 40

9¢ PRINTE BG4, X3: FOR I=8G64 TO 32 STEP-G4:
PRINTE I." "§: NEXT I

210 U=CHR${(149)+CHR$(27)+CHR&(24)

194

Games and Animation

220 FOR I=1 TO 14d: X=X+U: NEXT: GOTO 49
230 GOTO 230
RUN

Figure12.5 Alasercannon.

Remember PEEK input from Chapter 57 Line 50 tests location 14400 to see if the

is depressed. Ifitis, location 14400 contains a 128, and control passes to
line 90 where we get a satisfying laser blast. You can even hold down the
for fast and furious continuous firing.

The laser ray is stored in string ¥ in line 220. A simple PR INT @ inline 90 quickly
displays the ray. The rest of line 90 erases the ray from the bottom up, producing the
illusion of motion.

Asimpressive as it is, the laser doesn’t do much good if it has no effect on the targets.
Obviously, once contact is made, something has to happen to the target. If we were
working in machine language, we could afford the luxury of exploding targets on
impact. With a slower language like BASIC, we will settle for simple erasing the
targets from the string.

Here is our plan of attack. First, we have to test for impact. Add, butdon’t RUN this:

79 GOSUB Z2: H=@: IF POINT(B4:4) OR POINT(B4,:3)
H=1: P=0

8¢ IF POINT(B4.:22) H=1: P=1

1969 IF H=1 THEN 12

H is used to determine if a hit is made and is initialized to zero in line 70. Then several
points along the path of the laser beain are tested to see if they are about to be zapped.
If there is a target in the way, H is changed to 1. P is used to determine which target
was hit. When the hit is in the top row, P is setto 0. Otherwise, P is setto 1. If there
are two targets in the laser’s path, the lower target loses.

Games and Animation

195

If there is a hit, we have to test P, then erase the appropriate target. Add

190 IF P=1 B=B+20: S=LEFT$(S5:30)+V+RIGHT$(5:+G-34)
20 IF P=0 B=B+25: T=LEFT$(T,28)+Y+RIGHT$(T,L-38)
130 VU=STRINGH(4,32): Y=STRINGH(1€0:32)

RUN

Press (SPACEBAR) to fire the laser and watch those targets disappear. Yipee! The string
containing the unlucky target is modified by replacing the target with a string of
spaces. B is used to keep track of the player’s score.

Now for a few finishing touches. We’ll print the score each time it changes, keep
track of the number of shots, and stop the game after 30 shots. Add

30 PRINTE 896G, "SCORE:"Bjs: GOSUB 2

4¢ PRINTE 896G, "SCORE:"Bi: IF A=0 PRINTE G@d,
"GAME OVER": GOTO 230

BO® A=A-1: PRINTE 85680, "SHOTS:"i A}

RUN

If you want to add even more frustration to this game, change line 100 to

10@ IF H=1 THEN 1@ ELSE B=B-10
RUN

This addition deducts 10 points for every miss. Of course, you can vary the point
structure by changing the values added to B in lines 10 and 20. With the current setup,
a perfect game would net 650 points. Good luck!

Figure12.6 A game in motion.

If you find you just can’t stop fiddling with this program, try adding USR commands
to generate sound when the laser is fired and when contact is made.

196 Games and Animation

Final listing:

*1 GOTO 120

2 8=RIGHT$(S,G-1)+LEFT%(5,1)

3 T=RIGHT$(TsL-3)+LEFTH(T 39

4 PRINTE 448+ LEFT$(5,B84): PRINTE B4, LEFT$(T,64)

3 RETURN

19 IF P=1 B=B+20: S=LEFT$(5,30)+V+RIGHT$(5,G-34)

20 IF P=0 B=B+25: T=LEFT$(T:28)+Y+RIGHT$(T L-38)

30 PRINTE 896, "SCORE:"Bi: GOSUB 2

49 PRINTE 896, "SCORE:"Bj: IF A=0 PRINTE G@4,
"GAME OVER": GOTOD 239

5P IF PEEK(14400)< 128 GOSUB 2: GOTOD 4@

B0 A=A-1: PRINTE 9GO0, "SHOTS:"§ A3

7¢ GOSUB 2: H=0: IF PDINT(B4,4) OR POINT(G4,3)
H=1: P=0

B0 IF POINT(G4,22) H=1: P=1

99 PRINTE BB4, ¥35: FOR I=8G64 70O 32 STEP-G4:
PRINT@ T4 " "5 NEXT I

10® IF H=1 THEN 10 ELSE B=B-10

i1¢ GOSUB Z: GOTO 49

120 CLEAR Z000: DEFINT A-R: DEFSTR S5-Z: CLB: A=30

130 VU=STRING$(4,32): Y=5TRING$(10,3Z2)

1490 FOR I=1 TO 20: S=5+CHR&{13Z2)+BTRING$(RND(13)
132) 2 NEXT

150 FOR I=1 TO 11: READ N: Z=Z+CHR&(N): NEXT I

160 DATA 184+135,130,2724,24,160,180:26+173,144

170 PRINTE 9908, I3

180 W=CHR$(1GB)+CHR$(179)+CHR$(153)

190 FOR I=1 TO 1@: T=T+W+STRINGH(B+RND(12)32):
NEXT I

200 L=LEN(T): G=LEN(S)

210 U=CHR$(149)+CHR$(27)+CHR%(24)

220 FOR I=1 TO 14: X=X+U: NEXT: GOTOD 40

239 GOTO 23¢

Better save this now.

4 More On Animation

Border Crossing

We have seen several examples of string variables used to produce graphics and
animation. When figures stored in strings are moved around the screen, the edge of
the screen can sometimes be a problem. An error can result if we are not careful. One
solution is to erase portions of the figure as it leaves the screen as we did with the snail
in Chapter 4. A variation on this theme is to turn the figure around and send it back in
the opposite direction. The following program demonstrates one way to do this. Enter

Games and Animation 197

NEMW

1¢ CLL8 2 CLEAR 200 : DEFSTR Y, Z

20 Y=CHR$(128)+8TRING$(8,172)+CHR$(143)+CHR$(L43)+CHR$(128)
30 Z=CHR&(128)+CHR$(143)+CHR$(143)+STRING$(8,172)+CHR$(128)

These first three lines set the stage for the program. Take a look at the strings Y and Z
with

RUN
PRINT ¥ Z

READY
SPRINT Y, 1

bl

\

Figure12.7 The contents of strings Y and Z.

We are going to move this creature across the screen from left to right. When it
reaches the right border, we want it to make a smooth about-face and come back from
right to left. Motion near the center of the screen is easy, but it will require some fancy
footwork at the edges. Add

50 L=LEN(Y): FOR P=0 TO 63

60 IF P+L>»B3 PRINTE P+R*128, LEFT$(Y B4-P)j§ :
PRINTE R#128B+128-(L-G4+P)y LEFT$(Z,L-B4+P}) 3
ELSE PRINTE P+R%128, ¥ : FOR I=1 TO 2: NEXT I

70 NEXT P

RUN

Games and Animation

198

-pouonbas sovj-inoqy §°Z1 24ndiyg

..)

Games and Animation

199

Line 60 controls the turn-around. As the creature moves across the screen, the EL.SE
section of line 60 prints the entire string Y . When the creature gets close to the right
edge, the program displays the left portion of string Y as it goes off the screen, and the
left portion of Z as it emerges onto the screen. When the turn is completed, £ is
printed as it moves from right to left. The delay loop at the end of line 60 compensates
for the time-consuming string manipulation as the figure is turned around.

The right-to-left motion is done in a similar fashion:

B0 FOR P=128-L TO 84-L STEP -1

90 IF P<G4 PRINTE R#128+128, RIGHT$(Y:G4-P)j :
PRINTE R#128+64 RIGHT$(Z,L-64+P)35 ELSE PRINTE
P+R#12B,2 ¢ FOR I=1 TO 2: NEXT I

100 NEXT P

RUN

Now we can have the little beast scurry down the entire screen by adding

40 FOR R=0 TO &
110 NEXT R
RUN

Remember that in using this method with larger string-packed figures, the way in
which the string is constructed can be very important. (See the snail program in
Chapter4.)

Figure Animation

The secret to animating larger figures lies in storing different versions of each portion
of the figure in separate string variables, then displaying them in sequence to produce
animation. The previous program used a single string to depict motion in a given
direction. The next example shows what can be done with two strings that are
alternately displayed to give the illusion of motion. Enter

NEMW

190 CLS: CLEAR Z00

20 DEFSTR A: DEFINT B-Z

30 ALl=5TRING$(12,128)+CHR$(26)+8TRING$(12:24)
+CHR$ (143)+CHR$ (173)+CHR$ (15B) +STRING$(7,148)
+OHRS(172)+CHR$(156)

40 AZ=5TRING$(Z,128)+CHR%(168)+CHR$(158)+CHR&(131)
+CHR$(175)+CHR$ (148)+CHR$ (26) +STRINGS$ (7 +24)
+CHR$ (1A3)+CHR$(173) +CHRE (18O +CHR$ (129)
+CHR$ (128)+CHR$ (132 +CHR$(175) +CHR$ (136)
+5TRING$ (44 ,128)

To look at the strings you just created, type

RUN
PRINT A1l AZ

200 Games and Animation

READY
SPRINT Al A2

Figure12.,9 StringsAlandA2.

Each figure is two characters high, although the top row of A1 is filled with blanks.
To see the strings in action add

38 FOR P=115 TO B35 STEP -4

6@ PRINTEG Py Al: FOR I=1 TO 200: NEXT
70 PRINTE P, AZ: FOR I=1 TO 200: NEXT
8@ NEXT P

899 GOTOD 9@

RUN

\.

Figure12.10 Aninchworm in motion.

Games and Animation 201
m

String A1 is printed at P, followed by A2. This brings the back legs forward in
preparation for the next step. P is then decremented by four so that the nexttime A1 is
printed, the rear legs are in the same position, but the front legs have moved forward.
In short, we have simulated the motion of an inchworm. The approximation is very
rough as we used only two versions of the figure, but the eye tends to fill in the
missing steps.

In the next chapter, we will extend the notion of storing several versions of the same
figure in different strings.

202 Figure Animation

Figure Animation 203

Figure Animation

The market is becoming flooded with amind-boggling array of games that have
animated graphics and sound. Some of the graphics written in BASIC will make you
nod off, but a few are quite ingenious. Leading the pack of graphic artists using
BASIC is Leo Christopherson, with entries like Android Nim, Snakeggs, and
Dancing Demon. These programs are written in BASIC, but pack both strings and
remark lines with graphic characters and machine language routines. The result is
pure delight. We can gain some insight into the magic of his creations by doing a little
creating of our own.

1 Meet Critter

Shoo everyone else out of the room so that you can concentrate, and keep this book
well hidden so they can’t see what you’re up to. In a few hours, you can surprise them
with a mean and ferocious animated critter. See figure 13.1.

Figure 13.1 Critter.

Actually, it looks rather docile doesn’t it? We’ll leave it to you to add fangs and
menacing eyes after we are all finished.

Where Do We Put Him?

Our first programming consideration should be what we want Critter to do? Do we
want it to fly around the screen or just stand in one place and twitch? How about
metamorphosing into a unicorn? The answer will determine our techniques for
storing, displaying, and animating the figure. To keep the animation manageable,
we’ll have it do everyday things such as wiggle its toes and antennae, move its eyes,
and maybe even grace us with a grin. No flying allowed. For the constant updating

THIRTEEN

204 Figure Animation

this will require, our best bet is to store each row of Critter in a separate string
variable. See figure 13.2.

T-TOP OF ANTENNAE

A - ANTENNAE

=

H~HEAD

E-EYES

M-~-MOUTH

F-FEET

Figure 13.2 String variables used to store Critter:

There is no real advantage in storing the entire figure in one string unless it is to move
around the screen. Once it is printed, we’ll need to change only one or tworows at a
time to simulate movement.

Let’s have alook now at how the animation is to be done. We are going to store
complete new versions of each section of the body, and when we want something to
move, we'll print them over the current version. For starters, figure 13.3 shows
several different versions of the antennae.

[[

i i

") T2} T3) T(4)

Figure 13.3 The antennae.

If the antennac tops are stored inmemoryas T(1), T(2),T(3),and T (4), they
can easily be printed by number. For example, we could use the following to print a
random sequence of antennae movements:

18 PRINTE 410, T(RND(4)) 3
20 GOTO 10

Figure Animation 205

On To The Program!

Let’s cut out this kid’s stuff and get down to some serious programming. Start with
some housekeeping:

NEMW
19 7
" INITIALIZE VARIABLES
2¢ CLB: CLEAR 2000
3¢ DEFSTR A-Z: DEFINT I+ Ny» P
40 DIM T(S) s ACZ) s H(Z2)Y sy E(7)y ML3) s F(Z)

Line 10 labels this section of the program. You can use the down arrow to create the
spacing shown. Lines 20 and 30 are straightforward. Line 40 reserves room for the
string arrays necessary to store different versions of the figure. The variables
represent the various portions of the figure:

T---top of the antennae
A-——antennae

H—head
E—eyes

M-—mouth
F—feet

Although storing the entire critter in a single two-dimension string array would
require less typing, it would use more memory and be harder to follow.

2 Building The Body Parts

Read Routine

The graphic characters can be read in as data. Therefore, we’llneed a READ routine.
Add

999 STOP
1000
* SUBROUTINES
1019 #%% READ DATA #x#
1020 X=""
1030 READ N
1049 IF N:>127 X=X+CHR$(N): GOTO 1830
1050 IF N>® READ N1l: X=X+8TRING&(N,N1): GOTO 1¢390
1060 PRINTE 10@@, X: PRINT
1070 RETURN

and some sample DA T A such as this:

2e00 '
" DATA

7

2010 ‘ TOP ANTENNAE

206

Figure Animation

2020 DATA 2070

2030 DATA 24+176+144,2014+2,176,144,0

2040 DATA 130,173,1444+201,184,135,128,0

2050 DATA 128,168B,151,200,130,189,128,128,0

2060 ' ANTENNAE

2070 DATA 142,131,139,180,194+2,176,+144,1284+160,
158,131,139,132,0

2080 DATA 2,128,139,180,1944+24,176,144,128,160,158,
1294+2,128,40

Line 999 protects the program from accidentally running into the READ routine. The
READ routine builds a figure from each data line and stores it in X. Line 1020 starts X
out as a blank string. Line 1030 reads the first number into M. If N is greater than 127,
it represents a graphic character, so it is added to the end of X, and we go back to line
1030 to read the next number. If N is greater than zero, but less than 128, the next
number isread into N1, and a string of N repeats of character N1 are added to X. This
repeat feature can significantly reduce the amount of data needed. Control is sent back
to 1030 to read the next number. The routine continues reading the data line until a
zero (or negative number) is read. Control slips through to line 1060, which prints the
figure now stored in X . This line is included so that you can visually check the figures
to make sure your data is correct. You can delete it later.

When the program returns from the RE AD routine, a one-line figure is stored in the
string variable . We must transfer the figure from X to the appropriate variable. Add

¢ FOR I=1 TO d: GOSUB 100@: T(I)=X: NEXT I
B0 FOR I=1 TO 2Z: GOSUB 1000: A(I)=X: NEXT I

Lines 50 and 60 send the program to the READ routine and store ¥ when the
subroutine returns. At this point, you can R UN the program to check the figures
stored in T and A against figure 13.3.

Draw The Figure

We don’t have the entire figure stored in memory yet, but let’s print out what we do
have. Add

‘" DRAWFIGURE
2190 CLS
220 P=G00
230 GOSUB 1080
1080 ' #x+ DRAKW ROUTINE *#+#
1080 PRINTE P-131, T(1)}i
110¢ PRINTE P-B7, A(1)3
111@¢ PRINTE PsH(1)3
1120 PRINTE P+GB4, E(1)3
1130 PRINTE P+128, M(1)3
1148 PRINTE P+182, F(1)3
115@¢ RETURN
RUN

Drawing the figure is done in a subroutine to make modifications easier. Lines 210
through 230 clear the screen, choose the position for the figure, and call the

Figure Animation 207

subrotitine. The subroutine prints portions of the figure above and below position P.
Succeeding positions below P start in the same column (differing by 64); the antennae
are indented a bit.

P-131

P+64
P+128

P+192

Figure13.4 PRINT@ positions for Critter.

Twitching Antennae

Before we fill in the rest of the figure, we will look at how the animation process can
be randomized. We can move the antennae by printing a randomly chosen version of
T atposition P-131, delaying briefly, then replacing it with another version. Add

500
’ ANIMATE FIGURE
519 REM
53¢ I=RND(4): PRINTE P-131, T(I)}
549 IF I=1 PRINTE P-G7: A(1)5 ELSE PRINT@
P-B7s A(Z)5
550 GOTO GGO
G660 N=GO0: GOSUB 1170: GOTO S51@
11686 ' #%% TIME DELAY #*%
117¢ FOR I1=1 TO N: NEXT Ii: RETURN
RUN

Lines 500 through 999 are reserved for animation routines. Each routine will be sent
to 660 when it is finished. Line 660 controls the time delay and sends the program

back to line 510 for more animation. For the antennae, line 530 chooses a random
antennae top, and line 540 selects the appropriate bottom portion. See figure 13.5.

T(1) T(2) T(3) T

IRRRA w ﬁ |

MIMEM :m:[w::m ::m::w::m I:m:fm: | l

A(D) A{2) A(2) A(2)

o —
-1
= —1
S - -

Figure13.5 Antennae combinations.

208

Figure Animation

Head

Versions of the head will be read just like the antennae. H (1) will be used most of
the time:

70 FOR I=1 TO 2: GOSUB 1000: H(I)=X: NEXT I
2090 ' HEAD

2100 DATA 130.,189,159,175,+191,143+189,151,+0
211¢ DATA 130:189,4,191,189:151,40

RUN

Eyes

See figure 13.6 for the different versions of the eyes. In order to limit the amount of
data necessary to implement all these versions of one body section, we will use a
slightly different technique of reading in the data. We can take advantage of the
similarities of all the different versions by storing these characters in temporary
variables. This will be done for the left and right ends of the eye sections:

80 GOSUB 1000: EL=X
90 GOSUB 1000: ER=X
2130 DATA 18B6,191,2,191,144,0

Now the eyes can be created by concatenating these ends to the center portions read
from the data:

180 FOR I=1 TO 7: GOSUB 1000: E(I)=EL+X+ER: NEXT I
2120 ' EYES

2140 DATA 136:170:191,+136+170,0

2150 DATA 132,170,191 ,1324+170+0

2169 DATA 128,174,181,128+174,0

2170 DATA 130:1704+181,130:170 .0

2180 DATA 160:170+191:160:170,0

2190 DATA 155:187,181,155,187.40

2200 DATA 5,191.,0

RUN

Aren’t you glad we cut down on the data? Check your figures against figure 13.6
using the (SHIFT keys to pause the display.

We are not going to use all the eye versions for random eye movement. Those that will
be used will have to do a bit of time sharing with the antennae:

320 ON RND(4) GOTO 530 566, 560 570
569 PRINTE P+Bd4, E(RND(S))§ : GOTO GG@
570 REM

RUN

Line 520 choses which sections of the figure will be changed. Line 530 s the antenna
and 560 the eyes; 570 will be the feet.

E(1)

E(2)

E{3)

E(4)
IIII I III I lIII
E(5}

E(6}

E(7)

Figure13.6 Eyes.

Mouth-To-Mouth

The mouth will be created in much the same fashion as the eyes, but we will add
animation later.

110 GOSUB 100@: ML=X : GOSUB 1000: MR=X

170 FOR I=1 TO 5: GOSUB 1000: M(I)=ML+X+MR: NEXT I
22190 ' MOUTH

2220 DATA 175:0:13340

2230 DATA 7:181,0

2240 DATA 3+191,173,3,181,0

2259 DATA 2,191,159,143,3,181,0

2260 DATA 191,151,139,143,131,2,191,40

2270 DATA 176,1474+139,143+131,177,+186+0

RUN

Putting Your Best Foot Forward

Last and least, we add the feet:

13¢ GOSUB 1000: FM=X
140 F(1)=CHR$(1688)+FM+CHR$ (184)+CHR$(128)

Figure Animation

209

210 Figure Animation

180 F(2)=CHR$(17B)+FM+CHR$ (176)+CHR$(144)
37¢ PRINTE P+19Z, F(RND(Z))3 : GOTO BGO
2280 ‘ FEET

2290 DATA 178,187,191,171,181,179,0

RUN

The middle portion of the feet are stored in F M, and we succumb to a brute force
method of adding the toes to the two versions.

Catch Your Breath
At this point your listing should look like this:

*1e
fo#¥% INITIALIZE VARIABLES ##+%
29 CLSB: CLEAR 2000
30 DEFSTR A-Z : DEFINT I, N, P
4@ DIM T(3) s A(2)y H(2)y E(7)y MIB) s F(2)
3¢ FOR I=1 TO 4: GOSUB 1000: T(I)=X: NEXT I
B@ FOR I=1 TO 2: GOSUB 1000: A(I)=X: NEXT I
7¢ FOR I=1 TO 2: GOSUB 1000: H(I)=X: NEXT I
80 GOSUB 100@: EL=X
90 GOSUB 1080: ER=X
100 FOR I=1 TO 7: GOSUB 1000 : E(I)=EL+X+ER:
NEXT 1
11¢ GOSUB 1000: ML=X : GOSUB 1000: MR=X
120 FOR I=1 TO 5: GOSUB 1000: M(I)=ML+X+MR: NEXT I
130 GOSUB 1@60: FM=X
140 F(1)=CHR$(16B)+FM+CHR$ (184)+CHR$(128)
130 F(2)=CHR%(178)+FM+CHR$ (176)+CHR&(144)
200
* DRAMW FIGURE
219 CLS
220 P=G600
230 GOSuUB 1080
See
’ ANIMATE FIGURE
510 REM
520 ON RND(4) GOTD S30, 560, 568, 570
330 I=RND(4): PRINTE P-131, T(I)§
34¢ IF I=1 PRINTEB P-B7: A(1)§ ELSE PRINTE P-G7,
ACZ)
330 GOTO BGGO
360 PRINTE P+G64, E(RND(S))3§ : GOTD GGO
579 PRINTE P+192, F(RND(Z)}5 ¢ GOTO GGO
B6@ N=G@#: GOSUB 1179: GOTO 510
8999 STOP
1800 -
/ SBUBROUTINES
1010 ' ##% READ DATA #*##
1020 X=""

Figure Animation 211

1030 READ N

1040 IF N»127 X=X+CHR&(N): GOTO 1030

1050 IF N>® READ Ni: X=X+STRINGH(NN1): GOTO 1030

1060 PRINTE 1000, X: PRINT

1070 RETURN

1080 / *%¥% DRAW FIGURE #**%

1090 PRINTE P-131, T(1)3

1190 PRINTE P-B87, A(1)3

1110 PRINTE Py H(1)3

1120 PRINTE P+B4, E(1)3

1130 PRINTE P+128, M(1)]3

1140 PRINTE P+192, F(1)3

1130 RETURN

1160 ' #%% TIME DELAY #¥*¥

117¢ FOR Il1=1 TO N: NEXT Il: RETURN

2000
‘" DATA

2010 ‘ TOP ANTENNAE

2020 DATA 20740

2030 DATA 2,176,144,201,2+176+144,¢0

2040 DATA 1301731444201 ,184,135,128,0

2050 DATA 128,168,151 ,200,130,189,+128,128,0

2060 ' ANTENNAE

2079 DATA 1424+1314+139,:180,194,2,176,144,128,160,158
131,139 1320

2080 DATA 2,128,+139,180,194,2,176+144,+128,162:158
1294+2,128,0

209¢ ‘ HEAD

2100 DATA 130,188,159,175,191,143,189,+151,:0

2110 DATA 130,189,4,191,189,151.:0

2120 ‘' EYES

2130 DATA 186+191,0:+191 1440

2140 DATA 1361704191 4136+170+0

2150 DATA 1324+170,191,132,17¢,0

2160 DATA 128,174,191 ,128,174,0

2170 DATA 130,170,191 ,130,170,0

2180 DATA 160:+170,191,160+170:0

2190 DATA 155,187,191 ,155+187:0

2200 DATA 5,+191,0

2210 ' MOUTH

2220 DATA 1750413340

2230 DATA 7.,191,0

2240 DATA 3:+1891,175:+3,181,0

2250 DATA 2+191,159,143+3,191:0

2260 DATA 191+151,139,143,131:+2+1891,40

2270 DATA 176,147 +139,143,1314+177 1860

2280 ' FEET

2290 DATA 178,187,191 :+171,191,179,0

212 Figure Animation

3 The Animation

Younow have a figure that can be animated in a variety of ways. At this pointin the
program development, you can have great fun dreaming up new ways to amaze your
friends. Most of the things we could do to Critter are more involved than simply
changing one portion of the figure. Making Critter smile or blink would require a
controlled sequence of events, with timing delays after each change to give the
desired effect. A blink, for example, would require the sequence shown in figure
13.7.

CHANGES: H{2} E(8) E17) E(6) £(1) H{1)

Figure 13.7 Blink sequence.

You have already typed in the data necessary to make him smile and blink, but before
we add in the controlling statements, it is time to set some priorities in the animation
process. The simple eye, feet, and antennae movements will occur most often, and
special sequences will occur less frequently.

(10} (1}
10:1
(1} (2} (1} 1} (1} (1)
LINE LINE LINE LINE LINE LINE
530 560 570 580 670 730

ANTENNA EYE FEET ZAP SMiILE BLINK

Figure 13.8 Animation priorities.

The program will be written to take the left branch shown in figure 13.8 ten times as
often as the right branch. The branches can be weighted by means of the RND
function. Add

Figure Animation 213
o e e i L e S s S i S e i i s)

510 IF RND(11)>1 THEN 3520

513 ON RND(3) GODTO 580, B70, 730
580’ ZAP

B6@ N=20: GOSUB 1170: GOTO 510
67¢ ' SMILE

720 GOTO S1@

730 © BLINK

830 GOTO 510

You could RUN this, but nothing much would happen. We have just set up the
structure necessary to implement the flow illustrated in figure 13.8. You may include
as many or few sequences as you desire. They may be added in any order.

Blink

We will start with this one since the sequence has been displayed in figure 13.7. Add

*749 N=40: GOSBUB 1170

759 I=1: GOSUB 76@: GOTO 77@
760 PRINTE P+B4, E{(I)5: GOSUB 1170: RETURN
77¢% PRINTE P,H(2)3i: GOSUB 11790
780 I=6: GOSUB 760

780 I=7: GOBUB 760

8¢9 GOSUB 1170

81¢ I=6: GOSUB 760

820 I=1: GOSUB 760

830 PRINTE PsH(1)3: GOTO S1@
RUN

Line 740 sets the pace for the entire routine. Line 760 is a one-line subroutine that
prints an eye followed by a short delay. Line 800 adds an extra pause when the eye is
closed (E (7)). The rest of the lines either print the appropriate head or call
subroutine 760 to print the next eye.

Say ““Cheese!”’

A smile is easier to implement, because there is only one row to tamper with, and the
different versions of the mouth are used sequentially. Add

B8O IZ=RND(4)+1

G99 FOR I=1 TO I2: PRINTE P+128, M(I)i: N=30:
GOSUB 1170: NEXT I

700 N=BO : GOSUB 1170 : N=30

710 FOR I=I2 TO 1 STEP -1: PRINTE P+12B8, M(I)i:
GOSUB 1170: NEXT I

RUN

Line 680 chooses how wide the smile will be: from M (2) toM (3). The sequence is
printed in line 690, each version followed by a short delay, of course. Line 700 holds
the smile for a bit. Line 710 prints the same sequence as 690 in reverse order.

214

Figure Animation

\

Figure13.9 A smile.

Zap

See if you can figure out how this one works. You’ll find some interesting string
manipulation. '

5890 Z=STRING$(8,128+RND(3))

BP® PRINTE P-B7: A(2)3

619 FOR I=2 TO 4: PRINTE P-131, T(I)3i: N=100:
GOSUB 117@: NEXT I

G629 FOR IJ=1 TO 2

B30 FOR I=0 TO B: PRINTE@P-128, LEFT$(Z,I)STRINGS
(B-1:32)35: NEXT I

649 FOR I=8 TO @ STEP -1: PRINTE P-128, STRING$(I,32)
RIGHT${(Z,8-1)3§: NEXT I

B5® NEXT IJ: PRINTE@ P-128, STRING$(8:32)3: GOTO BGDd

RUN

If You Think Rabbits Multiply. . . - h

You probably wondered why we used PR INT@P rather than PRINTRGE2 3.
Because of that extra effort, we can print Critter anywhere on the screen with just a
few modifications. In fact, we can print several copies of him: '

229 P(1)=135: P(2)=600: P(3)=1790 _

230 FOR I=1 TO 3: P=P(I): GOSUB 108@: NEXT I
510 P=P(RND(3)): IF RND(11)>1 GOTO 520

RUN

N

Figure Animation 215

\ .l

Figure13.10 Copies of Critter.

(Good grief, they’re gaining on us!) Positions are stored in the numeric array P. The
three original figures are printed in line 230. The additionof P=P (RND(3)) to
line 510 causes a random critter to be chosen for updating.

Here is the current listing. See if by experimenting you can add your own sequences,
or some sound effects. Keep Critter alive!

*10 o
f ##% INITIALIZE VARIABLES ##%
20 CLS: CLEAR Z000
39 DEFSTR A-Z : DEFINT I, N, P
49 DIM T{3)s A(2) s, H(2)y E(7) s M(S)y F(2)
50 FOR I=1 TO 4: GOSUB 1000: T(I)=X: NEXT I
60 FOR I=1 TO Z: GOSUB 1000: A(I)=X: NEXT I
7¢ FOR I=1 TO 2: GOSUB 1000: H(I)=X: NEXT I
80 GOSUB 10@0: EL=X
8¢ GDSUB 1000: ER=X
100 FOR I=1 TO 7: GOSUB 1000 : E(I)=EL+X+ER: NEXT I
110 GOBUB 1000: ML=X : GOSUB 10@00: MR=X
120 FOR I=1 TO 5: GOSUB 1000: M(I)=ML+X+MR: NEXT I
130 GOSUB 11008: FM=X
140 F(1)=CHR$(168)+FM+CHR$(184)+CHR$(128)
150 F(2)=CHR$(1768)+FM+CHR$(176)+(144)
200
* DRAW FIGURE

- 219 CLS
220 P(1)=135: P(2)=600: P(3)=170
230 FOR I=1 TOD 3: P=P(I): GOSUB 108@: NEXT I
300

’ ANIMATE FIGURE

I

216

Figure Animation

510
515
SZ0
330
540

550
560
370
380
390
600
610

620
630

640

630
66O
670
680
690

700
710

720
730
740
730
760
770
780
790
8O0
810
820
830
999
1000

1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

P=P(RND(3)): IF RND(11)>1 THEN 5Z¢
ON RND(3) GOTO 580 870,730

ON RND(4) GOTO 53¢, SG@, 560 370
I=RND(4): PRINTE P-131, T(I)}

IF I=1 PRINTR P-B7:+ A(1)35 ELSE PRINTE P-G7,
ACZ)

GDTO GGO

PRINTE P+B4: E(RND(3))3 :GOTO BGO

PRINTE P+182: F(RND(Z))3§ : GOTOD GGO

 ZAP

Z=8TRING$(B,1Z8+RND(3))

PRINTE P-GB7s+ A(2)3

FOR I=2 TO 4: PRINTE P-131, T(I)i: N=100:

GOSUB 1170: NEXT I

FOR IJd=1 TO 2

FOR I=0 TO 8: PRINTE P-1Z8;
LEFT$(ZsI1)8TRING$(B-1,32) 352 NEXT I

FOR I=8 TO @ STEP -1:PRINTE P-1Z285TRING$(I+32)
RIGHT$(Z8-1)35: NEAKT I

NEXT IJ: PRINTE P-128, STRING®(8,32)5: GOTO GG
N=2@: GOSUB 1170: GOTO 310

’ BMILE

I2=RND(d) +1

FOR I=1 TO I2: PRINTE P+128, M(I)j: N=30:

GOSUB 117@: NEXT I

N=G@ : GDSUB 117¢ : N=30

FOR I=I2Z TO 1 STEP -1: PRINTE® P+128, M(I)3§:
GOSUB 1170: NEXT I

GOTOD 510

* BLINK

N=40: GOSUB 117@

i=1: GOSUB 7B80: GOTOD 77¢

PRINTE P+G4, E(I)5: GOSUB 1170: RETURN
PRINTE P,y H(2)5: GOSUB 1170

I=6: GOSUB 760

I=7: GOSUB 7G¢

GosuB 1170

I1=6: GOBUB 7G@

I=1: GOSUB 7G®

PRINTEB P, H(1)5: GOTO 3510

STOP

4

’ SUBROUTINES

 #xx READ DATA #%%

X:ll]

READ N

IF N»>127 X=X+CHR$(N): GOTO 1030
IF N=0 READ Nls X=X+STRING$(N:N1): GOTO 1630
PRINTE 1000, X: PRINT

RETURN

* #¥% DRAW FIGURE %%

PRINTE P-131, T(1)3

PRINTEB P-B7» A(1)3

PRINTE P»s» H(1)3

PRINTE P+G4, E(1)]3

Figure Animation

217

1130
1140
1150
1160
1170
2000

2010
2020
2030
2049
2050
2060
2070

2080

2090
2100
2119
2120
2130
2140
2150
2169
2170
2180
2190
2200
2210
2220
2230
2249
22590
2260
2270
2280
2290

PRINTE P+128, M(1)
PRINTE P+192, F(1)
RETURN

f x%% TIME DELAY %#%

FOR Il1=1 TO Nz NEXT Il: RETURN

/

* DATA

* TOP ANTENNAE

DATA 2070

DATA 2,176,144,201,2+176+144,40

DATA 130,173,144,201,:184,135,128,+0
DATA 128,168,151 ,200,130,1898,128,128+0
’ ANTENNAE

DATA 142+131,139,180,194,2,176+144,128+160
158+131,139,132,40

DATA 2+128,139,180+194,2,176,144,128,160,158,
129,2,128,40

* HEAD

DATA 130,189,159,175,191,+143,188,151,0
DATA 132,189,4,191,188,151,0

' EYES

DATA 18G6G.,191,0,191,144,0

DATA 13G,170+1914136,+1704+0

DATA 132,170,181 1324+1704+0

DATA 128,174,191 ,128,17440

DATA 130:170+191,+130,17040

DATA 162,170,191 4+160,170,40

DATA 155:1874+191,185,187,0

DATA 5,191,490

* MOUTH

DATA 175,0,133:0

DATA 7,191.0

DATA 3+191,175,3,191,0

DATA 29191,159,143,3,191+0

DATA 191,151+139:,143,131,2,191,0

DATA 176+147,+139,143,1314+177,186+0

* FEET

DATA 178:187,191,171,191,179,40

.
k]
.
k]

218 The Art of Graphics

The Art of Graphics 219

The Art Of Graphics

'The TRS-80 is subtly appealing to those with an artistic bent. With its limited
resolution graphics, the TRS-80 presents an enjoyable challenge to the artist. In
addition, the computer can aid artistic endeavors in at least two ways. First, it can use
loops and the built-in random number function to generate an infinite variety of
patterns and designs, the topic of this chapter. By manipulating variables and
parameters, the programmer can control the tone of these works. Second, the
computer can act as a tool to aid in sketching a picture on the screen. SKETCH
programs will be discussed in Chapter 15.

1 Patterns And Designs

We will start off with computer-generated confusion, and work toward controlled
panic. Our first program does nothing more than fill the screen with dots positioned at
random. Enter

NEW
10 CLS: DEFINT I, J

20 FOR J=1 TO S50

30 X=RND(127): Y=RND(47)

90 SET(XY)

120 NEXT J

130 I%=INKEY$: IF I$="" THEN 130 ELSE 10
RUN

&
Figure14.1 Randomdots.

FOURTEEN

220 The Art of Graphics

Bigdeal, you say? Okay, we understand that this wasn’t the biggest thrill in your life,
but be patient. We are onto something good here.

The only noteworthy item in this program is line 130. When the J loop is completed,
the display freezes so that you can admire it. Then press (or any key for
that matter) to clear the screen and restart the program. Next we alter the range of X
and Y by changing line 30 to

30 X=RND(GB4): Y=RND{(Z4)
RUN

L ,)

Figure 14.2 Theupper-left quadrant.

This limits the printing to the upper left quarter of the screen. It still doesn’t give us
anything to write home about, but it does pave the way for our next move, namely
replicating the upper left corner in the other three-fourths of the screen. In fact, we are
going to reflect a mirror-image of this portion of the screen into the other three
quadrants. Change line 90 to

90 SET(XsY): SET(127-X»Y)
and add

100 SET(X:47-Y): BET(127-X»d7-Y)
RUN

The Art of Graphics 221

Figure14.3 Reflections.

The entire screen is filled with dots as in the first example, but there is a much greater
symmetry. Now we are making headway.

Snowflakes

Atthis point, we are ready to graduate from dots to lines. The lines will be drawn by
starting from each randomly chosen point, choosing increments H and K in the
horizontal and vertical directions, then adding these increments to X and Y in a loop
15 times. Add

40 H=Z2#RND(@)~-1: K=Z*RND(@)-1
3¢ FOR I=1 TO 15

B@ X=X+H: Y=Y+K

70 IF X:G64 OR Y>24 THEN 120
B2 IF X<@ OR Y<{0 THEN 120

1190 NEXT I

RUN

222

The Art of Graphics

Figure14.4 Line segments.

Hand K are setto decimal numbers between -1 and + 1. If they are both close to zero,
the line will be very short even though the loop is repeated 15 times. The symmetry of
this design should jump out and bite you. The current listing is this:

1@ CLS: DEFINT I.J

20 FOR J=1 7O 3¢

30 X=RND(B4): Y=RND(Zd)

40 H=2%RND(@)-1: K=2%¥RND(®)-1

59 FOR I=1 TO 15

B@ K=X+H: Y=Y+K

70 IF X>64 OR Y»24 THEN 120

B0 IF X<@ OR ¥Y<@ THEN 1282

90 SET(X,Y): BET(127-XHY)

100 SET(X:47-Y¥): SET(127-X+47-Y)
11@ NEXT I

129 NEXT J

130 I$=INKEY$: IF I%="" THEN 130 ELSE 10

In this program, the starting points for each line are chosen in the upper left corner of
the screen. If we change this to a toroid or doughnut-shaped region as shown in figure
14.5, our random lines will fashion a sort of four-sided snowflake.

The Art of Graphics

223

\—(64 24)

)

Figure14.5 Torus.

Change lines 70 and 80 to

70 Z=(X-B4)# (X-BA)+4%(Y-24)#(Y¥-24)
80 IF Z<80 OR Z>220Q THEN 120
RUN

i

Figure14.6 A snowflake.

224

The Art of Graphics

Line 70is the formula for a circle centered at (64,24). To increase the speed of the
program, multiplication rather than exponentiation is used. The 4 was smuggledin to
adjust for the aspect ratio of the graphic blocks. Z is the square of the radius. Line 80
provides the two circles shown in figure 14.5 by limiting the range of the radius. Go
ahead and RUN it several times. This version might be a good one to save.

With two easy changes, we can give these *‘snowflakes’’ a slightly different look.
Try adding

115 GOTO 4¢
RUN

This change causes the lines to form a long chain. Each new line starts with the end of
the previous line until one of the circular borders is reached. Then anew random
chain is started. Unfortunately, it gets crowded awfully fast.

Figure 14.7 A crowded snowflake.

Change

20 FOR J=1 TO 20
RUN

That’s better. In fact, we can even loosen things up a bit more by retracting the
boundaries to their previous positions:

70 IF X»B4 OR Y»>24 THEN 120
80 IF X<9¢ OR Y<{0@ THEN 12¢
RUN

The Art of Graphics 225

Figure 14.8 Retracted boundaries.

Inkblot

Now, for areal humdinger! Delete lines 20, 70, 110, and 115 and make these
changes:

*10 CLS: DEFINT A-Z: K=l
30 X=0: Y=RND(24)

49 IF RND(2)=1 K=-K

50 IF RND(4)=1 X=X+1

GO Y=Y+K

80 IF Y<@ OR Y:>47 Y=Y-K
120 IF X<{127 THEN 49
RUN

The Art of Graphics 227
“

Isn’tthat delightful? We’ll wait while you RUN this several times. Notice that some
of the patterns share a vague resemblance to the famous Rorschach inkblot designs.

The IF inline 120 creates a loop from 40 to 120. X starts at zero and saunters toward
127, occasionally being incremented in line 50. In the meantime, K is used to
randomly add or subtract 1 from Y, so that the light blocks wander up and down the
screen as they move from left to right. Here is the listing:

10 CLS: DEFINT A-Z: K=1

30 X=0: Y=RND(24)

49 IF RND(2)=1 K=-K

30 IF RND(4)=1 X=X+1

6@ Y=Y+K

80 IF Y<{® OR Y>47 ¥Y=Y-K

99 SET(X»¥Y): SET(127-X,Y)

100 SET(X47-Y): SET(127-X,47-Y)

120 IF X<{127 THEN 49

130 I$=INKEY$: IF I$="" THEN 130 ELSE 10

Save this one before things get more complicated.

The Humans Take Over

So far, the sequence of programs has progressed from totally random dots to a very
structured movement. It’s high time that the operator gained a little control over the
action. Change the following lines:

19 CLS: DEFINT A-Z

30 P=PEEK(14400)

40 I=P AND 896: J=P AND 24

S0 H=8GN((I-B3)*I): K=8GN((J-15)%1)
B0 IF X+H<Q® OR X+H>127 THEN 3¢

B0 SET(X¥): X=H+H: Y=Y+K

120 GOTO 30

And add

*20 X=0: Y=0

7@ IF Y+K<{@ OR Y+K>47 THEN 3¢
185 IF P=1 I$=INKEY$: GOTO 130
110 RESET(XsY)

RUN

228 The Art of Graphics

-
-
o o)
~ -]

Figure 14.10 Operator control.

The Art of Graphics 229
“

To operate this program, use the arrow keys to effect horizontal, vertical, and
diagonal movement. Keep your eye on the flashing cursor. It starts in the upper left
corner, but it may travel anywhere on the screen. When you are done with your
creation, press (ENTER). The cursor will stop flashing so that you can admire your
work. Then, any key will clear the screen and start the program again. Voila! You are
inthe driver’s seat.

This programuses PEEK input in line 30. Lines 40 and 50 show a compact way to
determine which of the arrow keys has been pressed. The SGN function is used in line
50to determine an incrementof —1,0,0r +1forXandY. P AND 96 isstored in
I inline 40. The AND is used to mask out everything except 32 and 64 which
represent the (4 and (®) respectively. If I is zero, neither the left nor the right arrow
keys were pressed, so H becomes zero. If I is 64, H willbe + 1, and if I is32, H will
be — 1. K is calculated similarly. P AND 24 isstoredin J. The AND tests for 8 and
16, which are returned by the (®) and(®). Then K is determinedtobe — 1,0, 0r + 1.

Here is the final listing:

10 CLS: DEFINT A-Z

20 XK=0: Y=0

30 P=PEEK(1440@)

42 I=P AND 96: J=P AND 24

S0 H=8GN((I-B3)*I): K=SGN((J-15)%J)
60 IF X+H{@® DR X+H>127 THEN 30

7¢ IF Y+K<@ OR Y+K>47 THEN 30

B0 BET(XsY): X=X+H: ¥Y=Y+K

90 BET(Xs¥Y): SET(127-%,Y)

100 SET(X47-Y): SET(1Z27-X147-Y)
103 IF P=1 I$=INKEY$: GOTO 130

1190 RESET(X+¥)

120 GOTO 30

130 I$=INKEY$: IF I$="" THEN 13@ ELSE 1@

You may wish to save the program now.

2 One-Liner : A New Art Form

The personal computer phenomenon has bred a new form of graphic art, the so called
“‘one-liner.”’ The idea s to write a self-contained program that creates a continuously
changing graphics display using only one program line. Surprising things can be done
in one line of computer code.

The one-liners are listed with spaces only for readability. Do not type any blank
spaces when entering these programs.

Old Paint
Type

NEW

*@ DEFINTA-Z: CLS: FOR I=0T014: X=127+RND(G4):
M=X-128: Q=INT(M/1B): B=-15%0: A=INT(X/4): A=X-A*A:
¥Y=10#AR+X+B: FOR J=1 TO B2: P=B4%I+J: PRINTE P,

230 The Art of Graphics

CHR$(})3: PRINTE 1@23-Ps CHR$(Y)i: NEXT: NEXT: RUN
RUN :

A

ettt mtammnanmnmmn
AAAARAAAAARAAAAARAAAARAAAAAAAAAN

MAAMAIA SIS TS TS IS AT S TAVA TSI A T AT S T A DAY
HUEMHHE Y Y

LI L LI L L L L L L DR LI LN

L

Figure 14.11 Old paint.

= SETMal

This one ingeniously paints the screen with graphics blocks moving from top and
bottom toward the middle. The top-to-bottom symmetry is obtained by flipping the
random graphics character stored in X upside-down and storingitin Y.

Figure 14.12 Graphics character flip. '

The Art of Graphics 231

Flashy

The next one-liner includes a machine language program. It generates rapidly
changing screens full of graphic blocks. You may have to edit the line in order to
squeeze the whole thing into memory. It was written fora 16 K Level Il system by
Patrick Boyle, and was published in the December, 1980 issue of Softside
Magazine*:

9 CLEAR 22: A$=8STRING$(22,32): J=UARPTR(A%$):
I=PEEK(J+1)+256% PEEK(J+2): FOR K=I TO I+21: READ
Z: POKE K» Z: NEXT: POKE 16526, PEEK(J+1): POKE
18327+ PEEK(J+2): FOR ¥=1 TO 2Z: POKE I+1Q0, RND
(B3)+128: L=USR(®): X=1: NEXT: DATA 33:+0:60,17+1
B0 +14+255:,3+54,0,2371176+6:5,33+0:0:43,1244+181,201

For48 K disk systems, subtract 65536 from I, and use DEF USR as shown below:

® CLEAR 2231 A$=8TRING$(22,32): J=VARPTR(A%):
I=PEERK(J+1)+236% PEEK(J+2).65536: FOR K=I TO

I+21: READ Z:POKE K Z: NEXT: DEFUSR=I: FOR ¥=1 TO
21 POKEI+10,» RND(G3)+128: L=USR(D): X=1: NEXT: DATA
33046017160 +1 325513493440 4237+176+6:+5:3340:+0
43,124,181 ,201

.WH-‘M'-'H'-'-'.'M".'n'-'M'n’u'M'n'.’H-‘HH'n'q'M".'-‘n’n":'.'M'.'nWM'HJ
M‘n’n‘u‘-’1’.':':'-'.‘-‘-’{.':'-‘1‘.'M'n':'J-'J'n'n'h'u'-’n‘w’-'n‘g':‘:‘.‘uWHHHHM’n'H’H
NI PO ERRIN LD PROONIIIR IO R O I EO O E O IR
"u‘ut'-'-‘M‘H-’-‘u'M'I'M'M‘HH'M'M'n‘Hu':‘«'n'u'n'J'JM‘:’?Hn'HHHM'
QLLLLON IR LRI LRI RN BER 00
M‘-‘HHM')‘-‘-'I'M'.W-'M'M'.’H.‘HH.'HM‘:'M'n'-‘i'-'u'.WHM’M'u'
]

AONEINNINNNININNIIN NI IR I B
FI SIS ISR SRR SR RII S ARN SRR s AR S D AR RRFTERERS AT
SORIEPOSRIEENI DRI RIDSRRIIRNE T BaR TR pa s DI ARTTRIIRSERL!
PSRRI RRRRI SRR B R TN AR TRRRRE IR IR AR
SNSRI RERAFERIRE S T RS R AR RRIARERFSN)

OISR RO R R O QAN R B0 I,

I‘I'l'lll'l.l.lll'l.l.lil.l'l'llﬂ.l.lll' I.l'l. I'I'l'l.l.lll‘l.l.l.l.l.l.l'l'l.l.l'l.lll.I.I.I.I'I.I.l'l. I‘I.I.I"II.I.‘b

NN AN L L O E N R IR R
L4 I I';'I'Iw;.lil‘ll'l'llllllll'ﬂl III. f 'HJJJHJHHI mw I mw*“u"‘

\ i

Figure 14.13 Flashy.

Spokes

In the following one-liner, we use a good portion of the line to define the strings
necessary for cursor movement. This program chooses a random character, then
prints strings of this character radiating from a central point like spokes of a wheel:

*Reprinted by permission of Softside Publications

232 The Art of Graphics

B T T A S R e s e S S e

NEMW

*@ DEFSTRP-Z: R=CHR$(24): S=CHR%(25): T=CHR$(26):
U=CHR$(27): P(1)=T: P(2)=T+R: P(3)=T+R+R:
P(4)=R+R+R: P(S5)=U+R+R: P(B)=U+R: P(7)=U: P(B)=85:
CLS: FOR I=0 TO 10: N=RND(1G@)+31: Z=CHR$(N):
L=4#%N: A=RND(3)+1: FOR J=1 TO B: PRINTE L: §: FOR
K=1 TO A: PRINT Z+P(J)i: NEXT: NEXT: NEXT: RUN

RUN

IRy
My
LAN A
[y
144

TR]

LT T

. ll&l' .

L Wena

R Ly
‘lll*:l"l'l

sesqtl
P TR

F

RE SRR
666 ==
666 tts
666 .8t 8

Figure 14.14 Spokes.

More Inkblots

This one-liner gives results similar to the earlier inkblot program, butituses PRINT
instead of SET. As each random character is printed, its mirror-image is printed
using the same flip technique as in the first one-liner we saw. In addition, if the string
of characters is able to make one complete pass without going off the screen, the last
loop of the program does a top-to-bottom flip of each graphic character just for fun.

*@ CLS: P=448B:

#B4: IF P<{1 OR

FOR I=1 TO B@: P=P+1+(RND(3)-2)

P>1922 RUN ELSE X=127+RND(G4):

M=X-128: Q=INT(M/16): B=-15%0: A=INT(X/4): A=X-{
#A: Y=15%A+X+B: PRINTE P, CHR$(X)i: PRINTE 10Z3-
P» CHR$(Y)i: NEXT I: FOR P=153G6¢ TO 16383: IF PEEK

(P)2>12BPOKE P

RUN
RUN

3189-PEEK(P): NEXT: RUN ELSE NEXT:

i ﬁ'rrﬂ
o) c"“ :
L T P

b,
vt

.r.ll
Yy

&

Figure14.15 More inkblots.

3 Circular Graphics

In Chapter 8, we looked at various polar functions. We will now take a closer look at
rose-leaved curves and spirals.

A Rose By Any Other Name

Rose-leaved curves can be generated by varying the radius of our figure with the sine
(S IN)orcosine (COS) of the angle. Specifically, we will use the statement

S50 R=G#*SIN(C*A)

where R is the radius and A is the angle. The G is tossed in to make the figure larger on
the screen, and C is a constant that determines the number of petals on the rose. Enter
this program:

NEMW

10 C=5

30 CLS

490 FOR A = 0 TO 6.28 STEP .03
30 R=G*SIN(C*A)

B0 K=R#7%COS5(R)+B4.5

70 Y=R#3%*SIN(A)I+24.3

BO SET(XsY): NEXT

100 GOTO 100

RUN

The Art of Graphics

233

234 The Art of Graphics

VA

Figure14.16 A five-petalrose.

Considering the current value of C, it’s not surprising that we ended up with five
petals. Change line 10 to

10 C=6
RUN

\d

Figure14.17 A twelve-petal rose (C=6).

The Art of Graphics 235

It turns out that with even numbers, we get twice as many petals as the value of C.
Test different values of C by adding

10 DEFINT C» Xy ¥

20 INPUT "ENTER CONSTANT"S§ C
30 CLS: PRINTE @, C3

100 GOTO 20

RUN

9 ENTER CONSTANT 7

236

The Art of Graphics

Figure 14.18 Sample valuesof C.

270 ENTER CONSTANT?

LTI P
1

" s " 1 '
o
.-'l‘l "oy ’u .:l‘ .
I’ l. l..llt“"‘. '. 5
. 0 b
e 1.:. "
'

The Art of Graphics 237

Notice that as the values become greater, the petals become less distinguishable, but
several interesting patterns emerge for larger numbers. To simplify our examination
of the different patterns, let’s add

90 FOR I=1 TO 3000: NEXT: C=C+1

and change line 100 to

100 IF INKEY$=" " GOTO Z¢@ ELSE 30
RUN

Figure14.19 Automatic transmission.

Input any value for C. Atthe completion of each figure, line 90 causes a short pause
and adds 1 to C. Then line 100 sends control back to 30 where the next figure is

238

The Art of Graphics

automatically drawn. If you wish to change the constant C, press (SPACEBAR). Upon
completion of the current figure, you will be prompted for the next value of C. Here is
the final listing of this program:

1@
20
30
49
50
60
70

DEFINT €y X Y

INPUT "ENTER CONSTANT"3 C
CLS: PRINTE 0. Ci

FOR A = @ TO B6.28 BTEP .03
R=B*¥SIN(C*A)
H=R#*7*COS(AY+B4.5
Y=R*#3*S5IN(A)Y+24.5

80 SBET(X:¥): NEXT: CsC+1
89 FOR I=1 TO 3@@®: NEXT
1¢¢ IF INKEY$=" " GOTO 20 ELSE 3@

You may wish to tinker with various functions in line 50. Some suggestions:

50 R=1+B*SIN(C*A)
=

)

L} I'II ‘ .l .'.L"‘.':l.lll 'lll|.' , .

."I ‘ i l;.'...'.’ "

The Art of Graphics 239

ot e
o ﬂ!ulvl il :

\ .

Figure14.20 R = 1 + G#5IN(C*A).

S0 R=3-3*¥5IN(C*A)

240 The Art of Graphics

i ')

Figure14.21 R = 3-3%*SIN(C*A).

Spirals

‘We now turn our attention to spirals. Spirals are generated when the radius is a
constant times the angle.

The Art of Graphics 241

RADIUS = CONSTANT X ANGLE

Figure14.22 Spiral.

Enter this new program:

NEMW

id D=6

30 CLS: X1=64: Y1=24

49 PRINT D "DEGREES": E=D/57.28B: SET(B4:24)
60 FOR A=0 TO 200 STEP E

70 X=A*COS(A)+B4.5: Y=A*SIN(A)*,d43+24.3

80 IF X<@ OR X>127 OR Y<@ OR Y>47 THEN 210
90 SET(X,¥): GOTO Z20¢

200 NEXT A

210 FOR I=1 TO 3000: NEXT

220 GOTO 22¢

RUN

Figure14.23 Aspiral with D = B,

242

The Art of Graphics

Line 10-sets the angle of rotation between points to six degrees. Changing this angle
can make a big difference in the shape of the spiral. Change

190 CLS: INPUT "ANGLE BETWEEN POINTS IN DEGREES"3F D
229 IF INKEY$=" " THEN 10 ELSE D=D+1: GOTO 3¢
RUN

Try different values for D. As in the rose program, press (SPACEBAR) when you wish to
change the next value of D. Save the program.

SRS earat it :
L : ’ ""nl'nlu l':l'...lll‘l

/35 DEGREES -

73.3 DEGREES
POINTS

92 DEGREES

b?' . ' b;

Figure 14.24 More spirals.

Linear Spirals?

Once you have exhausted the possibilities with the current program, we’ll add a
surprising twist. Change

99 IF S$="P" SET(X:Y): GOTO 200
and add

*Z0 INPUT "POINTS (P) OR LINES (L)"§ 5%

S0 IF §¢%="P" THEN PRINT "POINTS8" ELSE PRINT "LINES"
100 IF X1<>X THEN 13@

1190 IF Y1<Y THEN S5=1 ELBE 8§=-1
120 FOR Z=Y1 TO Y STEP 8: SET(X1:Z): NEXT Z: GOTO 200

The Art of Graphics

243

244 The Art of Graphics
Lo B A T g T T RS

132 M=(Y-Y1)/(X-X1)

14¢ IF ABS(M)>»1 5=ABS(1/M) ELSE §=1
130 IF X1»X THEN 8=-8

160 FOR Z=X1 TO X STEP B

170 SET(Z /M#{Z-¥1)+Y1)

180 NEXT Z

199 X1=X: Yi=Y

RUN

This is another version of our often used routine. Now, lucky you, you have the
option of drawing lines or points. The lines give some very interesting designs.

22 DEGREES

87 DEGREES
LINES:

61 DEGREES
POINTS.

170.% DEGREES -
POINTS

& »)

Figure 14,25 Spirals with points and lines.

Once you have responded to line 20, there is no need to use P or L unless you wish to
change modes. Pressing (ENTER) at that point of the program will leave you in the
previous mode. Here is the final listing:

10 CLS: INPUT "ANGLE BETWEEN POINTS IN DEGREES"j§ D
20 INPUT "POINTS (P) OR LINES (L)"j S%

30 CLS: X1=B4: Y1=24

49 PRINT D “"DEGREES": E=D/57.29578: SET(B4,24)

50 IF S$="P" THEN PRINT "POINTS" ELSE PRINT "LINESG"
69 FOR A=0 TO 20® STEP E

70 X=A*COS(A)+B4.5: Y=A*.,43+24.,5

80 IF X<0 OR X»>127 OR Y<0® OR Y>47 THEN 210

990 IF S$="P" SET(X:Y): GOTO 200

The Art of Graphics

245

246

The Art of Graphics

100 IF X1i<>X THEN 130,

119 IF Y1<Y THEN 8=1 ELSE G=-1

120 FOR Z=Y1 TOD ¥ STEP S: SET(X1:,Z): NEXT Z:
GOTO z@0

130 M=(Y-Y1)/(X-X1)

140 IF ABS(M)>1 S5=ABB(1/M) ELSE B=1

150 IF X1>X THEN §=-5

160 FOR Z=X1 TO X STEP 8

170 SET(Z sM¥(Z-X1)+Y1)

180 NEXT Z

190 Xi=X: Y1=Y

200 NEXT A
210 FOR I=1 TD 3000: NEXT
220 IF INKEY$=" " THEN 10 ELSE D=D+1: GOTO 30

4 Pictures

We now turn to the challenge of using graphic characters to paint a picture on the
TRS-80 video display. The first step is usually to design a picture on a video display
sheet. Then there are basically two ways to transfer it to the screen. One: write a
BASIC program to print characters; or two: use a graphics sketch program. A sketch
program is developed in Chapter 15, so we will concentrate on a do-it-yourself
approach here.

There are many ways to attack this problem in BASIC, depending on the features of
the particular picture. We could use SE T statements if the picture can be described by
amathematical function. We could build strings of multi-line characters if there were
enough duplication to warrant it. If speed were important, we could pack strings. We
could even adopt the use of the mirror-image principles used in the first part of this
chapter if the picture had enough symmetry.

The Blindfolded Approach

Let’s make no assumptions about the picture as we approach this program. Because
we can’t count on the picture for any help, the most logical approach is simply to print
characters one at a time from PR I NT position 0 to position 1023; however, there are
a few refinements we can make to this basic idea. The CHR $ function takes up too
much room to use lines such as

PRINT CHR%(YCHR$(JCHR%(JCHR$(JCHR$() ...

Can you imagine typing 1024 CHR $s? Clearly a better way is to store the numbers in
DATA statements and read them in a loop. Start the program with

NEW

70 CLS : ON ERROR GOTO 11¢ : PRINT

80 READ A : IF AX127 PRINT CHR$(A)S : GOTO B@
110 X$=INKEY$®: IFX$=""110

Well, that stroke of genius just saved us 1023 CHR $s. Line 80 reads a number, then
prints it if it represents a graphic character or space compression code. (Model 111
users may wish to use a special character set.) The ON ERROR GOT0 inline 70
will give the program a smooth exit when there is no more data to read.

The Art of Graphics 247
Lo]

Certainly we will also want to take advantage of any strings of identical consecutive
characters such as

DATA 128,128B,128,128,128,+128,128+128,128,128
No problem. We just code them as

DATA 10, 128

and add

80 IF A>@ READ B: PRINT STRING${(A,B)§ : GOTO BO

Line 90 will use any value of A between 1 and 127 as a repetition factor to be used
with the next character read.

Also, we could use a way to sneak in a fast carriage return if the line we are currently
printing doesn’t reach all the way to the right edge of the screen. No need to print
those blank spaces. We will use a code of zero in the DA T A lines for that purpose.
Add

180¢ IF A=@ PRINT : PRINT TAB(9):i : GOTO B0

We now have a program that eliminates any unnecessary repetition without making
too many assumptions about the specific picture. That is, except forthe TAB {9) in
line 100. (We were hoping you wouldn’t notice it!) The picture we are about to
construct doesn’t use the first nine columns of the screen. Speaking of the picture,
let’s add some data and see if this program really does what it is supposed to do.
Remember our coding scheme:

128 - 191 are graphic character codes
1 - 127 arerepetition factors followed by a graphic code
0 is used to add a carriage return

Soadd

130 / LINE 1

149 DATA 21,128,136,172+,188,2+144,+,24+128,160+176,
188,132:+4,128,3,176+144,0

150 ‘ LINE 2

160 DATA 3,128+176:4,188,180,130,175,188,146,190,
191,189,191

170 DATA 16@,190,2,+191,188+190+2,181,185,2+191:3
143,175,183

180 DATA 131:177:3+176,144,40

199 / LINE 3

200 DATA 2,128,190,191,139,39181,132,131+140,187
191,2,1434+1358

219 DATA 2,131:+163,129,176,184,2,188,190,143,131
128:176.:184

220 DATA 132:2,128,131,175,191,189,2,188+2:+176:0

RUN

248

The Art of Graphics

_

Figure 14,26 The first three DATA lines.

Hold everything! Jumpin’ junipers—that’s a lot of data for only three lines of the
screen. Looks like it’s a good thing we used those shortcuts before. Remember, it
takes 1024 characters to fill the screen. Add a few more lines, then we will try
something fancy.

*230 7 LINE 4

249 DATA 2,128,175,181,128,135:139,175,183,152
129:4,1284+176

2390 DATA 1490,131.,128,146+140,145,172,181,151,184,
190,191 4+135

260 DATA 177+188:191,129,128,186:5,191 2,143,191+
180+176+144 49

270 ' LINE 5

280 DATA 3,1284+13@,137+176,152,134+129,+5,128,134
3+128,130,136

290 DATA 131:128,178,5,191,190,2,191,135+160,188
2+19192414342

300 DATA 140:,2,188,158,143,3+188,143,2,131.0

310 /' LINE B

320 DATA 3,128+176,190,129,180,3,176,132,128+154
3+128,168,3

330 DATA 176,144,128,+136+190:3+191,188,190,183
188:2,191:+5,143

340 DATA 2,191,188,187,191,141,1434+191,:2,188+156:0

350 ‘ LINE 7

360 DATA 128,156+143+153,1914+1444128+,130:,163+135
128,130.,3

370 DATA 128,160,143:24+131,177,176:188

380 DATA 181,183,179,2,188,140,188+187,191,3+140
131:4,179,187"

390 DATA 191,188:,178,131,140,176,187,191,188,1808,
1760

RUN

Figure14.27 Beadyeyes.

There are more data lines, but you probably get the general idea. We will list the rest
later if you really want to enter them. (Of course, you will find the complete program
recorded on the optional cassette/diskette made for this book.)

Screen Reverse

Fornow, let’s turn our attention to a concern brought about by the translation of our
picture from the video display sheet to the screen. Any original sketch on the display
sheet will be a dark color against a light background, but the screen is just the
opposite. Therefore, a picture that looks like a winner on paper may look all too much
like a photographic negative on the screen. This is in fact what happened to our
current picture.

Ah, but we just happen to have a cure handy. We are going to use a machine language
routine for an instant screen reverse. Hang on to your chair. Add

10 CLEAR 300: M$=5TRING$(25,32)
20 V=YARPTR(M%$): LS=PEEK(U+1): MS=PEEK(U+2):
D=LS+256%M5: IF D»32767 THEN D=D-B5536

30 IF PEEK(16396)=201 POKE 16526, LS: PDKE 16527, MS

ELSE DEFUSR@=D
40 FOR I=0 TO 24: READ A: POKE D+Is A: NEXT 1
S50 DATA 33:0:60+126,254:32,32,4,62,191,24,5,47+246,
128,203,183
60 DATA 119,35:62,64,188,32,235,201

CHECK THE DATA CAREFULLY BEFORE YOU GO ON!

The Art of Graphics

249

250 The Art of Graphics

Good job. Lines 50 and 60 contain the codes for the machine language program that is
poked into M% in high memory. Now add

120 X=USR(®): GOTO 11¢
RUN

\ .

Figure 14.28 Beady eyesreversed.

After the picture is complete, press any key (except (BREAK), silly!) toreverse the
screen. Press it again, and the screen reverts to its original form. Isn’t that fun!

Figure 14.29 shows the completed figure in both normal and reverse modes.

&

Figure 14.29 Lions. a)reversed. b)normal.

Here is the final listing with the rest of the DATA lines:

*10
20

30

49
3

6o
70
80

CLEAR 300: M$=STRING$(25,32)

U=UARPTR(M%$): LS=PEEK(V+1): MS=PEER(U+2):
D=LS+25G6#M8: IF D>32767 THEN D=D-G65536

IF PEERK(168396)=201 POKE 16526, LS: POKE 1BS527.,
M8 ELSE DEFUSR®=D

FOR I=0 TO 24: READ A: POKE D+I+ Az NEXT I
DATA 33:04+604+126254432,32+4+624+191,244+5,47,
2464+128,203,183

DATA 119:35,62,64,188,32,235,201

CLS : ON ERROR GOTO 110 = PRINT

READ A : IF Ax127 PRINT CHR#$(A)3F : GOTO 8@

The Art of Graphics

251

252 The Art of Graphics

90 IF AX® READ B: PRINT STRING#(A,B)S : GOTO B0

160 IF A=0 PRINT : PRINT TAB(8)§ : GOTO 80

1190 X$=INKEY%$: IF X$=""11¢

129 X=USR(Q): GOTO 11i@

130 / LINE 1

140 DATA 21 ,1284+136,172,188,2+1444+24+128+160,176
188,132:4,128+3,176,144,0

150 7 LINE 2

160 DATA 3:+128:176,4,188,180,130.,175,188,146,190
191,189,191

17@¢ DATA 1G6@0,190,2,191,188,19¢,2,191,185,2,191,3,
143,175,183

180 DATA 1311773176144 ,0

199 * LINE 3

200 DATA 2+,128.,190,191,139,3,191,132:131,140,187
191+2,143,135

219 DATA 2,+131,163+129:176,184,2,188,190,+143,131
128,176,184

220 DATA 132:2,128,131,175,191,188,2,188+2,176+90

230 ’ LINE 4

240 DATA 2,128,175+181,128,135,138,175,183,182,
129441285176

250 DATA 149,131 ,129,146,140,145,172,191 151,184,
190,181,135

260 DATA 177.:188,+191,129,128,186:5,191,2,143,191,
188,176 144,40

27¢ ' LINE 5

280 DATA 3+128,130,137,176,152,134,129,5,128,134
3+128,130,136

290 DATA 131,128,178+5,191,196,2,191,135,160,188
2:181:2:143,2

308 DATA 140.,2,188+158,143:3,188,143:2,131,0

310 ‘ LINE 6

320 DATA 3,1284+176,190+1294,160:3+176,132+128:154,
3:128,168,3

330 DATA 17G6,144,128+136,196,3,191,188,190,183,
188+2,191,5,143

34¢ DATA 2+191,188:187,181,141,143,191,2,188,156,:0

35¢ ¢ LINE 7

360 DATA 128,1536+143,153,191,:144,128+130,163+135
128,130,3

370 DATA 128,160,143,2+131,1774+176,188

380 DATA 191,183,+179,2+188,140,188,187+191:3,140,
131+4,178,187

390 DATA 191,188,178,131,140,176:187,191,188+18a
17640

400 ' LINE 8

410 DATA 16@,138,151,190,191,189,144,140,141+131»
4:128:1364+177

420 DATA 128,188,2+1891 +143,2,178,159,3:143,3+191»
2+143,131,3

430 DATA 179+184,4,1884+179,159,191,144,136:3:140,
1724+2:179,1891

449 DATA @

439 ¢ LINE 9

The Art of Graphics 253
“

460 DATA 162,158,154,183,191,135,10,128,131,175:3,
191,143

470 DATA 172,1914+241435191+18245191,:3,179:147:2
140,172,176 6

480 DATA 179,141,44,179,159:3,188,191,0

499 ¢ LINE 10

o090 DATA 181,139,184,163,149+132+147 4143341891,
159,143,129 4144

510 DATA 13B:12B8+186,191+24+179,175,191 143,191
188,142,175

320 DATA 2,191 ,140+176+179+291314+163:3:179:175,
14041724176 4+131

330 DATA 140,178+131,163,179.:188,178+131,19140

5490 ¢ LINE 11

550 DATA 133,1844+161,190,189+161+17B4+177+176:154,
241764178

S60 DATA 1768178 +152,172:147424143,191,2,179,:14@,
178,131,189

370 DATA 172,1284165,136,1404+180,+2,179,137:18@
130,139,175,188

580 DATA 178,130,143,188,176+137,140:166,175,191,
2+188,0

39¢ / LINE 12

GO0 DATA 128:3,149+154,171+18B04+8,128,130,190,155,
143,175,188

610 DATA 147,15394+189,146,1404+1744+130,189:180,130,
149,188,180

BZ20 DATA 128,141+178,139,189,180,+146,139,175,144,
130,191,175

639 DATA 130,180,137 ,:155,2,191 0

649 ' LINE 13

650 DATA 2:1284+175,142,1764+133,+1891,143,191,143,
191,1354+173,2,41549

B60 DATA 191,129,182,171+130,191,149,191,130:+175,
138,148,175

B70 DATA 1B2,175,189,168,144,191,128,180,138,189,
146,139,191

GB0 DATA 188,144,131 ,189,1354170,176,139,176+179,
147 4+191,0

690 / LINE 14

700 DATA 4,:128,151,190,148,168,175,128,157,144,
138,146,149,191

719 DATA 13B,163+1544+176+1434+154,191,149,128,149,
189,128,171

720 DATA 189,155,191 ,169,:183,136,+191,128,191,149,
128,175,2,191

730 DATA 144,139,188,128,170+1814+164:139,:2,191,0

7490 ' LINE 13

750 DATA 4:128,130,139,1884+2,170,184+137,146+140,
154,191,138

769 DATA 181,149,190,168+183,4182,166:165,168,169,
191+149:170,25191,186,173,191,189,135,176,2,
191,128

770 DATA 170,2,+191,189:1444+1494170,180,191,189,
187,186,191

254 The Art of Graphics
B L e e Ry

The Data Deluge

It just doesn’t seem fair that we proud TRS-80 owners should have to endure such a
tedious process to create our phenomenal works of art. After all, the computer is very
good at repetitive procedures. Can’t it do some of the dirty work? There should be
another way, and sure enough, there is.

You may have seen advertisements for sketch programs. These programs work
somewhat like the Etch-a-Sketch toy you may have played with as a youngster. Also,
many magazine articles list sketch programs. The various sketch programs differ
considerably in the way pictures are drawn as well as in what one can do with the
finished display. (More on that in the next chapter.) The point is, these programs can
considerably reduce the amount of work necessary to design and implement graphic
screen displays. Figure 14.30 shows a picture done on a sketch program. It was
completed in much less time than it took to create the lion, character-by-character.

\

Figure 14.30 Albert.

You will find Chapter 15 chock-full of time-saving devices.

SVASIN H3H.1.0

Turbo-Charged Graphics 257

Turbo-Charged Graphics

Many people have the notion that computers ought to do as much as possible for us so
that our time will be freed up to play a lot of tennis. There’s no doubt that computers
have greatly extended our capabilities, but it often requires more effort to use the
computer than to do the same task manually. We all look forward to the day when
applications software and languages reach the point where simple English commands
will replace programming as we know it. Some day, we may be able to say to our
household computer *“Teresa, draw me an animated picture of a dragon flying over a
castle,”” and she will create a unique masterpiece. Well, software has not yet
developed to that point. But Teresa can, if properly fed, take the drudgery out of some
of the more monotonous chores such as creating graphic strings that can be included
in programs.

This chapter gives examples of software and hardware that can simplify our
programming efforts as well as alter the graphic capabilities of the computer. Keep in
mind that we have a fast-moving industry, and that there are more and more
enhancements appearing each day. Your favorite program or attachment may not be
covered here; perhaps the examples shown, however, will stimulate you to look for
something that will appeal to you.

1 Graphics Software — Commercial

Our first stop will be commercially available programs, designed to make the existing
graphics of the TRS-80 easier to use. Some of them give us greater speed. The wide
variety of sketch programs available now allows us to create graphics on the screen
that can be dumped to a printer, saved on disk for later recall, stored in memory for
animation, or poked into strings for use in other programs. Other programs give us
more powerful graphics statements to eliminate some of the tedium. Here are some
examples.

Level III BASIC

Level I BASIC is written by Microsoft for the purpose of extending the capabilities
of Level IIBASIC. It is not the BASIC that comes with a Model I1I computer; that is
Model III BASIC. Level Il does things like eliminate keyboard bounce, furnish user
definable abbreviations for BASIC key words or useful strings, provide additional
graphic commands, and add many Disk BASIC features to a Level Il machine.

Of particular interest to readers of this book are the statements that simplify the use of
graphics. A L. I NE statement lets you draw either a line or a rectangle between any
two points on the screen. Both can be drawn with either characters or graphics blocks.
Rectangles can be drawn filled or empty. Allin all, L I NE is quite a useful statement.
And, it is fast! For example,

LINE (@,0)-(127,47), SET: BF

258

Turbo-Charged Graphics

will white out the screeninaflash. (@ »®) and (127 +47) represent two corner
points on the screen. SE T indicates the use of graphics blocks to draw the line. B tells
the computer to draw a box, not aline. F commands it to fill in the box with graphics
blocks.

The GET®@ and PUT @ statements move any rectangular portion of the screen to and
from memory. The information is stored in an array . Both commands can be used
with either PRINT or PLOT coordinates. GE T @ transfers graphics from the screen
to memory, whereas P U T @ returns the graphics to the screen with several options
including reversed format, AND, OR, or X OR with the current screen.

Speed Up Programs

Several programs that can increase the speed of BASIC programs are worth looking
into. Some work by reorganizing the code: deleting remarks, concatenating lines,
using integer variables, etc. Some are compilers able to convert a BASIC program to
machirne language. By executing the machine language version of the program, the
repetitive interpretation of each line is eliminated and execution speed is
tremendously increased.

Once you start to rely on a compiler, be aware that you will have to learn a slightly
different dialect of BASIC to use most of the compiler programs. Some compilers do
not recognize all the statements found in Radio Shack BASIC. On the other hand,
they may recognize additional statements not found in Radio Shack BASIC.

Speed up programs can be a tremendous boon to those who prefer to program strictly
in BASIC. One can take advantage of the convenience of SET and RES ET
statements without a significant loss of speed. For animation fans, the increase in
speed can greatly improve the efficacy of animation in BASIC.

Micro Movie

Micro Movie, a sketch program with an eye toward animation, is one of the early
pieces of software designed to utilize TRS-80 graphics. Considering its early entry
into the market, it is quite good. Itis very easy to use, and allows both graphics and
text on the screen. Animation is done by modifying the current frame. Press
to save the current screen as a frame in memory. The program is designed so that only
the changes are saved from frame to frame, making the most of available memory.
The commands are simple and the short instruction manual is sufficient to get you
started.

Micro Movie’s fatal flaw is that the only way to save its graphic creationsis on
cassette. Because Micro Movie is written in machine language, it would take a bit of
work to modify it so that graphics could be saved on disk. That leads us to our next
example of graphics software.. . .

Electra Sketch

This one is disk-based, and is quite a humdinger! Electra Sketch is written in BASIC
with machine language routines embedded in the code, making it modifiable to an
extent. Frames are saved on disk and can be recalled by number for viewing and
editing. Creating and editing frames is relatively easy with the arrow keys. Several

Turbo-Charged Graphics 259
“

command keys allow the user to clear the screen, white out the screen, enter text,
draw lines between two points, fill in portions of the screen with any background
character, and print a frame on a line printer.

Graphics are printed as periods on the printer, but there is a way to patch it. For the
early Epson MX-80s, make the following changes:

1) Inthe program ESK, line 100, about 40 numbers into the DA T A line change
127+62,42+79t0127 1883279, This adds 32 to all graphic
codes so that they will reproduce accurately on the MX-80.

2) Inthe program ESKM, add CHR % (15 to line 280. This will print
graphics in condensed mode thus reproducing the graphics on the screen
more accurately.

Animation is achieved with a separate program that compiles frames into a
continuous movie. The program compiles only the changes from one frame to another
in order to conserve memory. There is even a provision for adding animation
sequences to BASIC programs. Although it is a bitinvolved, it can be done.

2 Graphics Software — Do-It-Yourself

Of course, there are always those who would prefer to write their own sketch
programs and modify them as their needs change. For you talented folks, we have
created UL TRASKE TCH, a combination sketcher and graphics coder that will store
your creations in a string array. It is written in BASIC so that you can modify it to your
heart’s content.

Graphics Sketch And Coder

UL TRASKE T H features both a draw and a text mode so that graphics and text can
be mixed on the same screen. Both modes support wraparound (when the cursor goes
off the edge of the screen, it wraps around to the opposite edge), thus making it easier
to move the cursor quickly around the screen. Each mode has a different cursor
positioned independently. The program starts out in graphics mode with the menu of
available commands displayed at the bottom of the screen. To sketch, use the arrow
keys to leave a trail of lit graphic blocks. To erase, use with any of the arrow
keys. The arrow keys may be used in combination for diagonal movement; they
automatically repeat as long as they are held down.

Here is the core of the program, without TE X T mode at this point:

*¥10 ¢ ULTRASKETCH

2@ CLEAR 1900@: DEFINT A-Y: DEFSTR Ry Z: P
L=P: U=162585: C=191 : (LS

30 MU=0: Z85=8TRING$(B4,32): DIM R{14): ‘GOSUB 1001

49 GOSUB 390

30 D=PEEK(P)

B0 N=PEEK(14400): M=PEEK(1446G4): S=PEEK(1434@)

7@ H=X: K=Y: F=POINT(M:K): IF N AND 128 MU=1-My

80 'IF 8=4 GOSBUB S51¢: GOSUB 39¢: GOTO GO

153G@:

260

Turbo-Charged Graphics

99 IF 5=128 CLS: FOR I=1 TO 4: PRINT
STRING$ (224 ,191)5: NEXT: GOSUB 38@: GOTO GO

100 'IF 5=16 GOTO 260

1190 'IF S=1 GOSUB 42Z¢: GOSUB 390: GOTO G@

120 IF N=2 CLS: X=0: Y=0: GOSUB 380¢: GOT0 GO

130 IF N AND 8 Y=Y-1: IF ¥=-1 Y=41

140 IF N AND 1B Y=Y+1: IFY=d2 V=0

15@ IF N AND 32 X=X-1: IF X=-1 X=127

160 IF N AND B4 X=X+1: IF X=128 X=0

170 RESET(HK): FOR I=1 TO 4: NEXT I: SET(HK)
1B@ IF M=1 SET(H,K): FOR I=1 TO 2: NEXT I:

RESET(HsK): GOTO =230
180 IF MU=1 THEN 210
200 IF N=¢ OR N=128 THEN 22¢ ELSE 230
210 PRINTE 101G, " “5: FOR I=1 TO 12: NEXTI:
PRINTE 1016, "MOVE"S
220 IF F=-1 SET(H)K) ELSE RESET(H:K)
230 PRINTE 8960, STRING$(B,32)3
249 PRINTE 96@s, Hs Ki
259 GOTO GO
380 INSTRUCTIONS
39¢ PRINTE BO9G, "«<W> WHITE ZCLEAR*> CLS
STTEXT SENTER > DRAMW ZR» RESTORE" S
409 PRINTE 969, "<P> PACK (ARROWS: ALONE=SET
SHIFT=RESET SPACE=MOVE)"}
41@ RETURN
RUN

As you move the graphics cursor around the screen, the coordinates are displayed in
the lower left corner to aid in transferring pictures from video display sheets to the
screen.

There is also a MOVE mode so you can move the cursor around the screen without
disturbing your creations. Press the to enter this mode. The word MOVE
will flash in the lower right corner as long as you are in this mode. The arrow keys will
now shuttle the cursor around without affecting graphics, although it will destroy text,
so be careful. You canerase while in MOV E mode using the key, but you
cannot SE T any light blocks. To exit MOVE mode, press again and verify
that the word MOWVE stops flashing.

You can doodle on either a white or a black background. Use the (CLEAR) key to clear
the screen, and to white out the screen. The instructions will remain intact at the
bottom of the screen.

Let’s add the TE X T mode. Change line 100 to
180 IF 8=16 GOTO 260
and add

260 7 TEX

270 Z=INRKEYS$%

2B8@ D=PEEK(P): PDKE P, C:FOR I=1 TO 1@z NEXT I

289¢ Z=INKEY$: IF Z=""POKE P, 32: FOR I=1 TO 10:
NEXT: POKE P, D: GOTO 28@

30@ B=ASC(I)

Turbo-Charged Graphics

261

310 PORKE Py D: IF B=13 THEN 50

320 IF B=8 P=P-1: IF P<L THEN P=L+63

33@ IF B=8 P=pP+1: IF P:U THEN P=U-B3

340 IF B=10® P=P+B4: IF P>U THEN P=P-B9G

350 IF B=891 P=P-64: IF P<{L THEN P=P+B9G

360 IF B>31 AND B<91 POKE P, B: P=P+1: IF P>U THEN
P=U-B3

37¢ GOTO =280

RUN

Press toenter the TEX T mode. The text cursor is the size of a full text character.
Move it with the arrow keys. You'll notice that it doesn’t have automatic repeat, but it
can pass right through both text and graphics without affecting either. Position the
cursor, then type in the desired text. Press to return to the DR AW mode. The
text cursor will remain where you leave it until you reenter TE X T mode.

Detailed editing can be a chore with any sketch program, and this one is no exception.
You may find it easiest to make all deletions from the MOYE mode in order to
eliminate any stray graphics blocks. Then go back to normal draw mode. Note that
the SET and RESET functions affect the current location as you move away from it.
To make changes, position the cursor on the desired point, then use an arrow key to

deposit a lit block, or use (SHIFT) (&) to erase.

Once the picture is completed, what can we do with it? The program has no provision
to dump the screen to a printer, but it can be done with JKL (NEWDOS) or
(®) () onthe Model I11. Use (@) to pause the screen. Some programs

like Electra Sketch allow the screen to be saved to disk; UL TRASKETCH opts for
poking it into a string array——one variable for each row. This array can then be saved
and used in other programs. First we need to enter the strings. Change line 30 (i.e.,
delete the ‘ toward the end of the line) to

30 MU=0: ZE5=8TRING$(B4:32): DIM R(14): GOSUB 1001
and add

1000 ' 64 ASTERISKS PER STRING

1001 ROL) =" R4 H AR R FHRRAF SR FRRFRRHER R R R FER R R RHEER
LR L EE R EELEEEEREEEEEEX L LT X B

1002 ROZ2) =" HFHH R R R R RFFREEREHFER R EHH R RERHEH
EE R EEEELE S L LT EEE EEEEEEEES R

1003 RIJ) =" HA%FH R R R FFRFRFRFH R ERFRFRE R R AR EA R RS
LR R R EREE L EELEEEEEEEEESE T I

1004 ROA) =" RERERFH R R R R FRAFFHE R R RFFFXFRFEA X REREH
LR EETEEEREEEEEEELEEEEEEE R

1000 ROS)="HERRXRFRRR AR FRRERRRRFFRREREIFEE R AR ®EH
LR LSRR ESTERELEEEETE T EEEEEE L R

1006 ROB) =" HEHF IR R FRFFR X R AR HFRRRRREFEE X R %R H ¥ %
EEE R EE L ERE LT AL EEEEEEEEEEEE R

1QO7 RO7I="H%RBHERERRREHEIEHH R R H R R R E R EH R R %%
LR R R LR R E LR EEEE LR LT EEELEEE R

1008 ROB)= " HE R R AR U R X R R ERHHFRR R R R FRERRRRR R R AR R RS
LR EEE SR EEEEEEEE L L EEE LR T R

1009 RO = " HHHH 5 H 83593 5855533353596 3303 3 9 3 % 5 3% % %
FREREEFFFFRERREERRERRRRREHY
1010 ROLD) =" H#HFRH AR A RFFEERAS AR LA FRRRFRERRE R RS R R HF

EEE AT EEEE LS AL EETEEEEETEEE R

262

Turbo-Charged Graphics

1011 ROLID =" HFFFFHEFFRRFFERHHEHRE R RE R ERHE HRHR
BB RFRFRERERREREFFRAER SRR

1012 RO1Z) =" HFFFRERRERREERF R RRFRRRFERFREH R R RN
HRFREFRFFFRRRFRFFERERRRFEREY

1013 ROID) =" H R HFHFRFRAFRFRFRRRFHRRE IR R XRRF R R RN
HRRFFRERFEHFREFRRRNRERFRER"

1@14 ROLA)Y =" #3538 % % %595 53883363 5 5 360 63 3 5 333036 3 3 36 3 30 3 3 3 e 3
YRR REEEERFERFRFRERRRRREERE"

1815 RETURN

The graphics displayed on the screen can be poked into the string array R after you
enter the following string = packing routine. Change line 110 to

11@ IF S8=1 GOSUB 420: GOSUB 39¢: GOTO GO
and add

42@ * PACK SBTRING ARRAY R

430 FOR I=1 TO 14: PRINTE 960 STRINGH(B3,32)3

449 PRINTE 8984, "PACKING LINE"I:

450 U=PEEK(VARPTR(R(I))}+1)+Z56*PEEK(VARPTR(R(I)}+2)
469 FOR J=1 TO G4

47¢ POKE W+.J-1, PEEK(1328
480 NEXT J: PRINTE 896, Z
49¢ NEXT I: PRINTE B9B, Z
S@0 RETURN

S+ J+B64%1)
835: PRINTE B9B,» R(I)i
53

And while we are at it, it would be nice to be able to retrieve the graphics from the
string back to the screen so that it can be edited. So change line 80 to

Bg IF 5=4 GOSUB 510: GOSUB 380: GOTO GO

and add

519 ‘' RESTORE SCREEN

520 PRINTE B9G, ZSi

530 FOR I=1 TO 14

540 PRINTE 918, "RESTORING LINE"I:
S50 PRINTE G4#(I-1)s R(I)}

560 NEXT I

57¢ RETURN

RUN

Draw something, then press (P). The first 14 lines of the screen will be poked into the
string array R. As each line is packed, it will be displayed at the bottom of the screen.
To verify that it worked, press to clear the screen, then press (R) to restore the
graphics to the screen. Once the strings have been packed, they can be printed as
shown in line 550. The packed strings can be saved on disk or left in memory to be
used in another program. Just delete lines 10 through 570 and 1015 (save the program
first!), then use them as you see fit.

Suggested Mods

It seems that all computerists have their own ideas about what a program should be
able to do for them. Here are several modifications you may wish to consider:

Turbo-Charged Graphics 263

“

@ Use the full screen for graphics. Delete the instructions or display them first,
then erase them.

@ Insertan L PR INT option if you have a suitable graphics printer,

® Save the graphics as a disk file from the program for recall by name or
number.

® Modify string pack routine to store only portions of the screen so that shorter
strings could be used.

Final Listing

*18 / ULTRASKETCH

20 CLEAR 100@0: DEFINT A-VY:
L=P: U=1B255: C=191: CLS
MU=0: Z8=BTRING$(B4,32):
GOsuB 390

D=PEEK (P)

N=PEEK(1440®): M=PEEK(144B4):

DEFSTR R+ Z: P=13360:
30
49
S0

Go

DIM R(14): GOSUB 1001

S=PEER (14349)

79
80
a9¢

100
1ie
120
130
14@
150
160
17@
18a

190
200
21i@

220
230
240
250
260
270
280
290

300
310
320
330
340

=it R=Y: F=POINT(H,K):

IF N AND 1EB MY=1.MY

IF §=4 GOSUB 510:
IF 8=128 CLS: FOR
NEXT: GOSUB 390:
IF 8=16 GOTO 280
IF 8=1 GOSUB 420:
IF N=2 CLS:
IF N AND B ¥=Y¥-11
IF N AND 186
IF N AND 32
IF N AND G4
RESET(H:K): F
IF M=1 BET(H,
GOTO 2302
IF MU=1 THEN 210
IF N=0 OR
PRINTE 1016, "
"MOVE" 3
IF F=~1 SET(HK)
PRINTE 9G@ .
PRINTE 860,
GOTO GO
fOTEXT
£=INKEY%
D=PEEK(P):
Z=INREY®:
D: GOTO 280
B=ASC(Z)
POKE Py D: IF B=1
IF B=B P=P-1:
IF B=9 P=P+1:
IF B=10® P=P+G4:

VS
n-= a t

Hi

VEYals

N=128 THEN

POKE P,
IFZ=""POKE P,

GOSUB 390:
I=1 T0O 4:

GOTO Ge

GOSUB 390:
Y =0:

GOSUB
IF Y=-1

IF
IF ¥

"is

FOR

GOTO G

PRINT STRING®(Z224,191) 5

GOTO B¢
380: GOTO GO

V=41

IF X=-1 X=127

EXT I: SET(HK)
22 NEXT I: RESBET(H:K):

220 ELSE 230
I=1 TO 12:

NEXT I

ELSE RESET(H:K)

STRING$(B:32) 3
K3

C: FOR

32

3 THEN 5@

I=1 TO 10:

NEXT 1

FOR I=1 TO 1@: NEXT:

IF P<L. THEN P=L+B3
IF P:U THEN P=U-B3
IF P*U THEN P=P-B8986

PRINTE 101G,

POKE P

264

Turbo-Charged Graphics

350
360

370
38¢
390

4ae@

a1@
420
430
449
450
ae6e
470
489
49¢
S00
510
520
530
sS40
530
560
37@
1000
1001

1002

1003

io04

1005

1006

1007

1008

1009

i210

1011

1012

1013

1014

10135

IF B=81 P=P-64: IF P{L THEN P=P+BYG
IF B»31 AND B<81 POKE Ps B: P=P+1: IF P>l THEN
P=U-63

GDTOD 280

£ INSTRUCTIONS

PRINTE BEBs "<W> WHITE “CLEAR> CLSB

“<T» TEX {ENTER» DRAW <R> RESTORE"?
PRINTE 969, "<P>» PACLK (ARROWS: ALONE=BET
SHIFT=RESET SPACE=MOVE)}" S

RETURN

* PACK STRING ARRAY R

FOR I=1 TO 14: PRINTE 8960, STRING%$(B3,32) 3

PRINTE 984, "PACKING LINE"I:

U=PEEK (VARPTR(R(IN) +1)+258#PEERK (VARPTR(R(I)) +2)

FOR J=1 TO B4

POKE W+J-1y PEEK(1528953+J+64%1)

NEXT J: PRINTE 886 Z25%: PRINTEB8G6: R(I)S

NEXT I: PRINTE B9G, 253

RETURN

/ RESTORE SCREEN

PRINTE 896+ Z5%

FOR I=1 TO 14

PRINTE 918, "RESTORING LINE"Is

PRINTE B4#(I-1)R(I) S

NEXT I

RETURN
' B4 ASTERISKS PER STRING

ROTI=" RERRHFRERFRERERFFRRERRARHRE R H R AR RF
FREERFEFERRRFERFFFH AR HRER

G AR LT TEE IS TE L LT EEELELELE L EE L ESTEE L]
HRFERFFREFEFRRRRRFRXRRRHER

RO =T 3335 3 33 33 3 30 3 3 0 30 303 30 36 30 0 R 0
R ERFRREERRRRRRRFERFRFRER

ROADY =™ 3333 39 3390 9 30 9 3000 3 36 %36 3 36 30 30 30 30 3630 30 30 30 06 3 33 S 6 0 3
FREERFERFRFRRERFRER AR FERR

ROS)=" RFERFRFRERRERERRRERFRERRHERFERE R RE R
FEFERFEEERFRRRFRRRRRERFEER"

ROBY =" B RHEEHE R0 H R EH A H R R
FRRBERE R RRRRRERRRFERRFRRR"

ROUT7)=" RRHFHFEEFFREEFRRFRRAFFRHEHRE R R RN HH R
FEREFFEFERFRRAERRRERE R SRR

ROB Y =" 3334 5 3% 5 3 3 3 3 3 3% 3 3 30 30 3 3 36 9 30 36 36 36 96 36 36 36 36 3 3 0 0 30 3
FHEFRRERE R ERERFRRE XA R R SRR

ROD)Y=" H¥EREEHRRREHEERHAERF R R RE R E R H S
FRESEERRE RS SRR ERRRERRFE R

ROL1O) =" HEFREREHFFREREFRRFRRFRRRRA AR ERERERRER TR HF
FH R FHRHBRERE R HFEFFRER

ROLT) S"™ 335335 36 0 8 30 30 3 30 3 365 3636 3 36 30 36 3600 36 3 30 90 36 30 6 3030 00 6 5 3¢
FREERERFEREREHER R R SRR ERERT

ROIZ)I=" HEERRFRFERERERRRRF R RERRHERERHRHER R RS
FHFFFFHRFRRERRRRRRHARREHRE

RO1TY=" RERHERERFERFRRFRERR R AR R ERRRER R R R RS
HREHFFFRREFRERFFFFR SRR FRER

ROLAY =" SR EHFEFHEHFEREFHRRHHHERHEHE R HHRER R RS
FRRHRFRFERREERERERRFHEHRERT

RETURN

265

Turbo-Charged Graphics

22122121127117127171 17 111211171171 1121127117177 1777577717711 17171171 1011717111751 1727 1212212212123122121 12122122232232332033030030
272777¢1701771718177171213320008488BH88HS$83321117177727s+n4ss+4s 40007007 +034008747751171112712122232222322322323320330330300221722
1272112112111721121233BN100080080000THNNSS03II 40472130274 (+!1 11-/7~17 4 (+847747%27427+7721771771+11721121221211222323320330300227%771
2I11711721117122098008008R00NS 313 (({7 (/ /1271 ({I13B03T+41/ /- =u/ oo’ 2 (1 (s {ants44+04478177177 1011721 121121221222323330330221%7472
21212212112120808080880T828+ 1174/ ~wns o m’ et 78 (1471247 VL8 E /oo m /ol el 17 (((84384770777 171 1711711121 22132232332033030021 11972
21212212224818080080X87847 1~ ==~/ =74 77/ (17481 T0038I84 14 mmm’ =/ /ot /vl s 72 (1 (347770727271 7177171172112222233303303031 1047471
112122108H608008808B371 -7~/ "~ 7=777 7/ 2/ 1aIP4DIBHITO247 /=777 77 ‘=/onriomusas | Lassasa74 1171771717711 121221322323030033277 407471
121133470000000080827(--" 7 <« < /¢ /4 S/ (44]3QRETIE 7 S SOOI mnt L 1172214 (242707 17177171 172212123233203303227 17878377
23238100000BCQRTTQSIL /- 77 7 17 40 1 L L0 LOIINGH((ont Ol L Al (87 0--==¢ 174402811774 ($431722721 121770 1 1132232332177+ 45 {338
NRHOQBSO0B2RIXXRYAIZ7 (-7~ s T el LS e (54 88T (7720 (17 4 (4212212000 ((34721 332321787 34044347
40000000000800038747 -~ [S L S (7138318 1148042822 (/=1 (7133221 ((247113322787 404 (4 ({847
fenen000R008RX8807 41~~~ e 0 0 2 ==t ({4721 228HAT 38/ 1 (208885 (87324 1 -~ 1 1471332277 1077811 12121 48048+ (4 (4347
f008006080808800027(--""" - ORI ((4401 12220308HUES8 10821 88NT 4210281 -~/ 1710333222721 1211187343343 (+4(322]
LELLELE LR £1 T TP RO 4 77==2a]177444 {4 44633]234488488801075108892308831(- 1 ({712400312171777++4{+ (40 44+ {+4{843]
QB0026000X00Q0X0XAB7(t~mn’’’ SV 17 4 S 2L (470847 Ve =2{ 122 IISRARNO02777 10BRHBHEBBO27 (+233230B0327 117744+ (({ 14{ (#4420 (4342327
G200a0000000RA0BREN20(- -~/ =/~ "~ (R QP7T4RTRR N et S0 (47877484477 TISHASBBSBI327 11200880031 11074 (+{ (# (40 {+{ 14 (44 {4347
-----n-uanaonnow..~_‘;ss---\--\--;\-nx_uwu«+u--uA_-|-\--\-x-\--.-__\A.+uu~uu.aoooeauuunuuuo«.m.ouunwuwo¢a*uu*uo¢uA.A.+¢+a¢.w
0000000000000080000001+((717 -1/71/7 10/l g IPT{(S7147 = =1 /1 mmw’ o/ o/ 1123 {41712203232303003 6 $SHONNBB033222776 478377 11 44(14 (40437
G0U0000000000808008XINI27074++ (#4 (4 ((+11 (1420 (4ol ({4017 o/’ 1 1 (+4711223023330338 34 SONOBNNNNO3I2217 1987471713V (#143(7s
§8000000000000000808000N03312171771877+2+(+2330%27308NER8221((/-7 -~=~77/(1(++711333400604$0$$SOBONBNOINNBS$322177+0s 47438 ({(1((14(47s
G080000000000000000000001TINS83002321211277716022135500800N0827+4111-(7/ (1434717323804 8480400$008HOHNBUANABSSII2IT7 47440 (+{1{114((+1424
@80000800000000000000000000802NNB080303302333680003040XQXUNBBI7s1+(1¢+4547172324048888SNBBNBBNENNENENITERES8032717 48440 (44+1((1+{(4(+82
80000000800000000000000000000800000084885844000NH0800T000TNS212+702]172213334048SHHENHNEHRNONNOANNAATEDENBAS0I7 107248 ((+((+) (+(+{(B+s
0603000000000000000000000080000080000 T T0RNARNTITANDRRINNGI327 1113230300080 HNARSRHENNENNNGIBNERTOXBEG0S0032271740+ (+((+(++{+4{2447
£8000000000600000000000000000000000000080000000000201T8NN$00333300048¢00HRNNETTRTRRI0NENERNENNIZORRTNEOS0032371743((+((+{++14((2487
£00000000000000000000000000000008000000005000000000080L1NSB$088SHONENCERITIIOLIICIOIRTIATACIALNNTICOACTANGE0002272171158+ (+((2444(+4472
a----o.--o‘---u-n--ansana-------nnn-.--oannmz-z--N-muunnmmnmnu.uuununauuun-nn-muuzamaoonwuuu-u~vu«+aA*+~ua”¢*.u»
800000000000000800800000000000008000800000000RDR0U000RONEE0C0011ET00E0RR0000000000]
@onaea0e0n080E00B0NN0B0000RRNAR00B00RERNARNNNNNB0N0EDABGADREDNDOBE00EDEEHRDRERER
£60080000008000000000000000000000000000050000000000000000000008000000R00080008008)
0860000602020080000000000000000000008 ag §apauosnganosanesasaonsenne
€e0eaRA600000000200R000080000000000UE00
SHBNBAO06000R80R00E0E00000000RARS00O000S ihounsanodonaaononenteonenBo0BoG
03$3¢H802000000888000000800000 gapoonnoe gotengocnonaetenasec0natRaenn
2033034610000000000000000008000000000000000000000000 gebgeaonneanng
33332333¢s6008000000000 goapotsnoanen fo0go0nun0BesunRB00RRRDGERN00R00
2222322323008H800000000800000800000000 ignaaoeantoasnan fanteanoctonanng
2212112122122203%8801080 L1 E R LB BEER LT goade
22322212211112122122203088H4108 gaagougons Jheapaaaononsotosnntnneny
I2LI212171771112111711121232030448HN10CA0C0000CIPUIRLRCRTCORIQINYANABEEONLDRRNAS
121227217177171171771711722121232322323023323220333233203040080403400408880080008
212212171777+177177¢7751271711721121121211211212212112223233233303003¢$sHe00a0008)
II212111377377274874788 7222272174777 1+17+1771711717717121221322323020034 4800080
7271171887 +38470 42487+ xnssessbnnsont7se7+ax47981877077+172171172113223200001080080000008060000000000005000008893003033030030004$68N8
212212711877 ¢73 484084244544+ {+4 (34 (+{ (4 (++ (4 (o443 (+2+2x424274773]112123204810000080008 §#90801830323233233203303040388N
ououummuNMNVAN««”*n+*»¢..+«+A*AA+A+¢A+*A~AA+~++A¢*A*++»+~»+“u*u»«~VH~u-muuu..mgzeumnaunea-uenmnzzomzz==o¢unu-u--u-uu°oucoouomz
3303033322211727237432 42448448 (3348440445 (244844844447771277¢11711121232333000808$8NUT00B8080TINGS00408430323233233232303003000608KN

ing the
There are several printers around that support

tead of the

Most screen dump capabilities of the operating systems

than lugg

ier

¥, Maybe with alittle friendly

loteas
ics®

1C1mages on paper ins

1ceisa

laces—in leaps and bounds. Itis an exciting area to

is going p

?

tout of your work to the others at the off

computer around. First the good news

or prin
lable for the Model I and III do not support graph

avai

watch. The cost of letter quality print and high resolution graphics capability has

dropped steadily in this highly competitive market.
This book has emphasized graphics for the TRS-80 screen, but showing off a picture

3 Graphics Hardware

Printer technology

the TRS-80 graphics character set. This means we can use statements like
LPRINT CHR$(175) toproduceour graph

screen. Now the bad news

Printer
persuasion

-80 patch

E for MX

1X

Figure15.1 A printer photograph.
*NEWDOS users should refer to Append

266

Turbo-Charged Graphics

Before dot matrix printers made high resolution graphics readily available, people
and computers alike went to incredible lengths to use the variable densities of
standard text characters to recreate drawings and photographs. Figure 15.1is an
example of a photograph reproduced by an analog-to-digital scanner, special
software, and a letter quality printer.™®

Amazing! Without all this special equipment and software, character graphics are
quite limiting. For that matter, TRS-80 graphics are limiting when compared to high
resolution dot graphics. Let’s take a comparative look at three different versions of
your ordinary garden variety of mushroom recreated with character graphics, block
graphics, and then dot graphics.

wnnn
uununusuny
[ERe2oie e RRE2RRE80R0¢E
1285223223822 R0 E20 82222 228482}
[2REERERREIRRLERR2RLRERERERIIRREPERLIERELH]
[ERREE R iRt s assssatiansstaststiesisassitesttieizitesti

mununuuan " 1" [E2R2ERE8328252
Hunn mu " 1" 0y agunaun
Hun " ' 1 1324 wmn
14 munnnun 1 L) £ s 1
i e ou) ! 1 1Hun 1"
nun jRittem 3 m nun
pEFsie bR bbb EE S] IsRangIani
1 1
1 H
! H
1]
H]
' L
! !
! '
! 1
' H
1

Figure 15.2 Printer character graphics.

Figure 15.2 illustrates an attempt using a single character throughout the entire figure.
Barely recognizable.

-

Figure 15.3 Printer block graphics.

*Reprinted by permission of BYTE Publications.

Turbo-Charged Graphics 267
R N R e ey

Figure 15.3 is done with TRS-80 block graphics. A BASIC program was used to read
character codes from DA T A statements and transfer them to the printer. An
alternative method is to use both a sketch program to create the image on the screen (if
it fits) and a screen dump to send it to the printer.

Then there are those printers that allow the user to control the firing of each pin.

S

Figure15.4 High resolution mushroom.

Wow! High resolution sure can make a difference. Here is another example:

Figure 15.5 High resolution printer graphics.

268

Turbo-Charged Graphics

Before you get too excited over these last two pictures, keep in mind that there is a
heavy price to pay for the privilege of “‘hires.’” No, it is not expensive—just very
time-consuming to position each dot. The volume of data required to produce a high
resolution image is considerable, not to mention the time required to assemble the
data. It took easily ten times as long to create the high resolution version of the
mushroom as the TRS-80 graphics block version, even with the aid of a specialized
graphics program.

These problems aside, printers are indeed one way of extending the graphics
capability of your TRS-80. There are also plotters that can do amazing things with
colors. Radio Shack offers a line of plotters (some with color) and a digitizer to take
full advantage of their graphic capability.

Light Pen

The light pen is a fairly inexpensive device that may be of some use in creating
graphic displays. The pen is equipped with a light-sensing device at its tip. When
pointed at the screen, it can determine whether a particular location is lit or not.
Unfortunately, the pen can’t tell which location it is pointing at; it is up to the software
to determine this. The program must examine each screen location by flashing a light
block on and off until the pen registers a change in reading. Checking the entire screen
is too time-consuming for BASIC; the number of points to check must be somehow
limited or machine language software should be used.

One advantage of light pens is that young children may find it easier to use than a
keyboard. You may decide that itis too cumbersome and inaccurate to be used in
sketch programs. Test-ride one before you plunk down your money.

Look Before You Leap

Again, the programs and peripherals mentioned in this chapter are only samples of
what is available. Read the ads in your favorite magazines. Examine the reviews.
Become well-educated before you select your hardware and software.

271

Appendix A

PAGE___OF

i

!
=
{
1

PROGRAMMER

£
&

T
T
=
{

t
rod

-
2

=
,' "f A
=
T
i

A

=
&
b

R0 SN SN PN NG 5 U1 VN S SO SR BV SO S S NS SESS SRR SO0 S [JOUS N SR S

AN

3
BERCEREEDRRERCBEREDERE

= |

1
=
1
:
1.

i

t

1

t

I

I

I

{

===

Radio Shack Video Display Worksheet
!

TITLE

Appendix

Appendix B

272

Graphic Characters

Appendix

061 28t

L/A8 ¥91

6ST 319 051 329

evl 0E1 62l

941 VWID3Q

091 IYwid3a

1 WRIJ3AC

821 1Ywid3a

08 X3H

Appendix C

Special Characters

Special Characters (0-31, 192-255)

- MT£'
' |

192 193 194 195 196 197 198 199

207

Appendix C

273

Appendix C

274

215

214

213

212

211

210

209

208

223

222

221

220

219

218

217

216

23

230

229

228

227

226

225

224

239

238

237

236

235

234

233

232

246

245

244

243

242

241

240

255

254

253

252

251

250

249

248

Appendix D 275

Appendix D

Useful Memory Locations

Model I
DEC HEX
51 0033 Call address of display character routine
96 0060 Call address of time delay routine
293 0125 Model 1/ Modellll PEEK location
Equals 73 if Model 111
Does not equal 73 if Model 1
859 035B Call address of INKEY % routine
2687 OA7F Call location to receive number from BASIC
routine
2714 0A9A Jump location to pass value back to BASIC
program
5324 14CC Call address of random routine
14336 3800 Start of keyboard memory locations
15359 3BFF End of keyboard memory locations
15360 3C00 Start of video screen memory locations
16383 3FFF End of video screen memory.
16396 400C Disk status location equals 201 if no disk available
16416 4020 Two byte-cursor address
16417 4021
16445 403D Screen width status
16526 408E Two byte address of USR routine
16527 408F
16537 4099 INKEY % buffer location
16548 40A4 Two byteindex to first line of BASIC program.
16549 40AS5
16561 40B1 MEM SIZE (Top of protected RAM)

16562 40B2

276 Appendix D

Model ITX
51 0033 Call address of display character routine
293 0125 ModelI/Model Il PEEK location
Equals 73 if Model 111
Does not equal 73 if Model 1
859 035B Call address of INKEY % routine
2687 OA7F Call location toreceive number from BASIC
routine
2714 0A9A Jump location to pass value back to BASIC
program
5324 14CC Call address of random routine
14312 37E8 Printer status
Bit7=0 means ‘‘notbusy’’
14336 3800 Start of keyboard memory locations
15359 3BFF End of keyboard memory locations
15360 3C00 Start of video screen memory locations
16383 3FFF End of video screen memory
16396 400C Disk status location equals 201 if no disk
available
16416 4020 Two byte cursor address
16417 4021
16526 408E Two byte address of USR routine
16527 408F
16537 4099 INKEY % buffer location
16548 40A4 Two byte index to first line of BASIC program.
16549 40A5
16912 4210 Status indicator for many functions
including special character sets and clock.
16916 4214 Videodisplay screen scroll protection.

Protect up to top 8 lines from scrolling
with codes0-7.

Appendix E

277

Appendix E

Screen Dump Patch

Atthis writing, few of the standard operating systems for the Model [and Model 111
computers allow an exact duplication of the screen if it includes graphics. The
Newdos (version 1.0 and earlier) JKL sequence and Model I11 =

screen dumps replace any ASCII codes greater than 127 with a single character like an
*#77or **.”’. No one seems to have anticipated the widespread availability of printers
with built-in TRS-80 graphics. Well, these printers are here, and where does that
leave us graphics bufts?

To further complicate the issue, some of these printers may require the addition of 32
to each of the graphics codes (unless you want to sacrifice the other features of the
printer). What to do?
Below is a sample patch for Model I Newdos, assuming the printer requires 32 added
to the graphics code. First make a backup of the Newdos operating system. Never
modify the master! Boot the backup disk in drive O (without a write protect tab) and
use SUPERZAP to examine:

NEWDOS 80, version 1.0 NEWDOS +

Track O, sector 7 Track 0, sector 6

Starting at byte B8 (7F for Newdos +), find
023E2ECD
Change this using the MOD function to
02C620CD
Press (ENTER) when you are done. Now, reboot the system. Enter BASIC and type
LPRINT CHR$(13)
This puts the printer in condensed character mode so that the graphics characters will
have nearly the same aspect ratio as those on the screen. Create some graphics on the
screen, then press (D(H(D). Voila! You now have an extremely potent screen
dump.

Test out this new diskette before implementing the change elsewhere.

What About Me?

Users with different operating systems may be able to make similar changes. A key
sequence of codes to search for would be the following:

278 Appendix F

FE 80 Compare byte in A register to 128 decimal
3802 Jump relative on acarry +2
3E2E Load register A with the code for a period (.)

Change 3E 2E to
C620 Add + 32 to the contents of register A

Happy screen dumps!

Appendix F

Chapter Checkpoints

Chapter 1

1. AUTO
A. Generates line numbers AU T Omatically.
B. Isused by Machine language drivers.
C. Restarts the computer.
D. Causes AUT Omatic screen scrolling.

2. Editing a program line is
A. A waste of time.
B. Done with the arrow keys.
C. Doneby entering the ED I T mode.
D. Done by retyping the program line.

3. Pressthe____ keytostop a program.

4. Whichof the following editing sequences changes OCCURANCE to
OCCURRENCE?

sRiR cE

sAcRcE

sRiR dAiE

sAdiRE

cSawy

3. True or False: The contents of a variable can be printed in immediate mode
after a program has been run.

Chapter 2

1. TrueorFalse: We can simulate a * ‘not equal’’ symbol (#) on the TRS-80
screen by printing " =" and " / " in the same print position.

Appendix F 279

Can be set so you can indent parts of your program while typing it in.
Is used to total a column of numbers.

Has more calories than Coke.

Can be used to position characters on a print line.

Cnwy>

3. Usethe___ statement to print information directly to any of
the 1024 screen locations.

4. Print position 1023 (bottom right) of the screen
A. Isreserved for graphics.
B. Causes an automatic screen scroll when printed.
C. Cannot contain any character.

5. Graphicblock (120,4)isnearthe corner of the video
screen.

Upper left.

Upperright.

Lower left.

Lowerright.

onw>

6. Asingle graphic block is lit with
A. POINT.
B. SET.
C. CLS.

Chapter 3

1. Infinite loops
A. Canruin a computer.
B. Arecreated only by amateurs.
C. Can protect graphic displays from the READY prompt.
D. Should not be used in BASIC programs.

2. RND(B)
A. Renumbers the program starting at line six.
B. Creates six random numbers.
C. Creates asingle random integer from one to six.
D. Stands for ‘‘Really Nice Display’’ to the sixth degree.

3. ATRS-80 graphics block isunlit withthe ____________ statement.

4. Asubroutine is
A. Anunderwater adventure game.
B. Averyshort program.
C. A useless programming technique.
D. A program segmentcalled by a main program.

5.Use— forreal-timekeyboard input.
Chapter 4
1. Match each character type with the appropriate code range:
1. CONTROL CODES A. 128-191

2. KEYBOARD CHARACTERS B. 32-127
3. GRAPHIC CHARACTERS c. 031

280

Appendix F

4. SPACE COMPRESSION CODES D. 192-255

2. How many characters can be stored in a string variable?

3. Theline PRINT MID$("PROGRAM" +5:3) willdisplay
A. OGRAM
B. RAM
C. 7SN ERROR

4. The purpose of the CL EAR statement is to
A. Clear the screen.
B. Delete the program.
C. Reserve memory for string handling.

5. The process of joining strings is called

6. True or False: ASCII code numbers 24-27 can be used to build a multi-line
figure into a single string.

Chapter 5

1. POKE 16383,32 will
A. Cause an automatic screenscroll.
B. Aggravate any self-respecting computer.
C. Display ablank space in print position 1023.
D. Move the cursor to print position 1023.

2. TrueorFalse: POKE is ideal for animating large figures.

3. . can be used as an alternate form of input to INPUT and
INKEY$.

4. What function is used to locate the index of a string variable?

5. Dummy strings are
A. Used by beginning programmers only.
B. Used for string packing.
C. Notrecommended; a bad programming technique.

Chapter 6

1. Machine language routines can be stored in

. Highuser memory.

Low user memory.

Ina BASIC program.

. All of the above.

A standard-sized Samsonite carry-all suitcase.

mU0wp

2. Disk users must inform the BASIC program of the location of a machine
language routine with the statement.

3. Machine language programs are executed from a BASIC program via the
statement.

4. What string function can be used as an alternate way to create dummy
strings?

Appendix F 281

Chapter 7

1. Toincrease execution speed use
INTEGER variables.
SINGLE precision variables.
DOUBLE precision variables.
The accelerator pedal.

vcawy

2. Automatic string pool reorganization can be a nuisance unless we
A. CLEAR lots of string space.
B. Concatenate wherever possible.
C. Use FRE during graphics animation.
D. Reorganize our car pool as well.

3. Holes in the string area are
A. Caused by amagnetic field in part of memory.
B. Consolidated during string reorganization.
C. Easily mended with a thread and needle.
D. Created by space compression codes.

4. INKEY % isbest suited for
A. Real-time input.
B. Easy simulation of repeat key.
C. Easy location of the cursor.

Chapter 8

1. Adiagonalline can be drawn with SET (X + ¥) statement by varying
A. Xonly.
B. Y only.
C. Neither X nor Y.
D. Xand ¥ simultaneously.

2. Translation equations enable us to

Read machine language programs.

Translate from Cartesian coordinates to TRS-80 coordinates.
Move string variables.

Control the weather.

oo

3. Graphing functions is most easily done with
A. PLOT.
B. PRINTE.
C. SET

4. Polar coordinates are most useful
A. Forplotting circular figures.
B. Inthe Arctic and Antarctic regions.
C. For graphic animation.
D. Inhigh resolution graphics.

Chapter 9

1. Bar graphs are used to plot data items.

2. BTRING$ (59 +140) is used to print the axis of
the bar graph.

282

Appendix F

3. True or False: Correlation is a statistic designed to increase banana
production in Brazil.

4. The normal curve program generates a bell-shaped curve because the
probability of getting a high or low sum is
A. Lessthan getting a sum near the middle.
B. Equal to getting a sum near the middle.
C. Greater than getting a sum near the middle.

5. The function allows us to generate a normal curve
by experiment.

Chapter 10

1. One benefit of animated graphics in education is increased student

2. A program is often used in educational software.

3. Whichis the least effective attention getter?
Sound.

Time Delay.

Flashing words.

A Darth Vader costume and mask.

TOo®>

Chapter 11

1. Elements of a typical graph include the source, legend, border, and

2. Piecharts are generally used to express
A. Changes over time.
B. Relationships at a fixed point in time.
C. Circular functions.
D. Projections.

3. Eliminating a portion of the vertical scale

Will have little effect on the graph.
Isrecommended for polygonal graphs.
Should be indicated by a break in the axis.
Causes more problems than program bugs.

SOw>

4. Time vs. quantity graphs show performance and
indicate trends for the future.

5. Pictograms
A. Are anew service offered by the Post Office.
B. Arebar graphs done with miniature figures.
C. Eliminate the need foralegend.

Chapter 12

1. Saving the screen to a string array
A. Isdone by poking a screen location to bytes two and three of a string
variable index.
B. Requires the SAVE instruction.

Appendix F 283

e T S

C. Improves player concentration.

2. The target moving routine in the sitting duck program is placed at the
beginning of the program
A. Sothat we won’t forget where it is.
B. Toreduce search time and therefore speed up the action.
C. Toimprove program readability.

3. Thelaserray is ‘‘erased”’
A. By adeflector shield.
B. By clearing the screen.
C. From the top down.
D. By printing blank spaces.

4. The target program tests for impact by
A. Using POINT.
B. Peeking at the screen memory.
C. Testing the target strings.

5. Storing different versions of a figure in separate string variables
A. Isahard habit to break.
B. Can’tbe done effectively with block graphics.
C. Isalmostasfastasusing SET and RESET.
D. Isauseful technique for animating large figures.

Chapter 13

1. Critter was stored in several string variables
A. Foreasy access to specific body sections.
B. Sothat arrays wouldn’t be neglected.
C. Because the figure wouldn’t fit in a single string variable.

2. The smile sequence is a good example of
A. The importance of proper oral hygiene.
B. Userinteraction.
C. Menu-driven program design.
D. The advantage of using string arrays for each portion of the body.

Chapter 14

1. The purpose of the line
130 I%$=INKEY$:IF I$="" THEN 13¢ ELSE 10
in the pattern and design program is
A. Toinput the direction of motion.
B. Atiming delay.
C. Tofreeze the screen until akey is pressed.

2. Inthe inkblot program, SET (X s¥) and SET(127-%»Y) lightup two
points in the same

3. One liners
A. Illustrate the ultimate in proper program design and documentation.
B. Are very popular in singles bars.
C. Are not useful learning tools by their very nature.

4. Whichis not a useful technique in painting pictures with BASIC?

284 Appendix F

A. Reading graphic codes from DA T A lines.

B. Usingrepetition factors to reduce the amount of data.

C. Usinga carriage return code for short lines.

D. Usingthe PO INT function to prevent overlaying graphics

characters.

5. A routine is useful to correct the ‘‘photographic
negative’’ effect of transferring a figure from video display sheet to the
screen.

Chapter 15

1. Graphics utility programs
A. Are used only by lazy programmers.
B. Can greatly enhance our programming effectiveness.
C. Alldo pretty much the same thing.
D. Have been shown to cause cancer in laboratory animals.

2. ULTRASKETCH allows us to mix graphicsand . onthe
screen.

3. Printers
A. Areagood way of expanding our graphics capability.
B. Are getting to be too expensive.
C. Cannotreproduce TRS-80 block graphics.

Answers To Chapter Checkpoints

Chapter 1: 1) A 2) C 3) 4H D 5) True
Chapter2: 1) False 2) D 3) PRINTE 4) B 5 B 6) B
Chapter3: 1) C 2) C 3) RESET 4H D 5) INKEY%
Chapter 4: 1) 1-C,2-B, 3-A,4-D 2) 225 3)B 4) C

5) CONCATENATION 6) True
Chapter 5: 1) C 2) False 3) PEEK 4y VARPTR 5) B
Chapter6: 1) D 2) DEFUSR 3) USR 4) STRING%
Chapter7: 1) A 2y A 3) B 4) A
Chapter8: 1) D 2) B 3 C 4) A
Chapter9: 1) discrete 2) horizontal 3) False 4) A 5) RND
Chapter 10: 1) motivation 2) MENU 3) B
Chapter 11: 1) title 2) B 3 C 4) historical 5) B
Chapter 12: 1) A 2) B 3)D 4) A 5D
Chapter13: 1) A 2) D
Chapter 14: 1) C 2) row 3)B 4 D 5) screenreverse
Chapter 15: 1) B 2) text 3 A

Index

285

INDEX

ABS, 124, 131, 175, 244
AND, 46, 114, 229
Animation, 19, 20, 43-49, 73-75, 79,
83, 91, 192-201, 203
Applications:
art, design, 219
business, 16, 171
education, 155
games, 46, 114, 189-196
math, 119, 155
statistics, 139
Argument, 25, 35
Arrays, 70, 107, 145, 190, 203
ASC, 46, 51, 94, 110, 112, 191
ASCII (see Characters and Codes)
AUTO, 7

BASIC keywords, 88, 92
Borders:
avoiding, 20, 46, 66, 74, 131, 196
drawing, 32, 46, 119, 161, 171
<BREAK > processing, 7, 13, 31, 115

Characters:
ASCII, 16, 51, 92
dot matrix, 12
double-width, 59, 81, 165
foreign characters, 54
graphics, 24, 51, 55, 62, 97, 120
Japanese Kana, 60
printing, 11, 23
scrolling, 61
space compression, 58, 172
special, 59, 98
CHRS, 16, 52, 62, 246
<CLEAR>, 81
CLEAR, 13, 63
CLS, 7, 81
Codes:
ASCII, 45, 51, 77, 120
control, 16, 52, 63, 68
graphic, 55, 120
space compression, 58, 66, 172
Comma, 13
Concatenation (see Strings)
CONT, 31
COs, 15, 130, 175, 233
CRITTER, 203
CURSOR, 52, 65, 80, 83, 111, 191

Data conversion, Hex to decimal, 94
Definition statements:
DEFINT, 48, 71, 106, 114, 192,
199, 205
DEFSTR, 63, 71, 106, 192, 197,
205
DEFUSR, 92, 165
Disk, 92, 145
Double width (see Characters)
DRAGON, 42

Editing, 7-9, 15, 67

EDIT, 7-9, 15

Error codes and messages, 25, 39, 63
EXP, 17

Exponentiation, 17

FOR/NEXT loops, 26, 32, 36, 119,
131
FRE, 108
Functions:
arithmetic, 15
plotting, 23, 130-137
string, 16, 60

GOSUB/RETURN, 41, 94, 151, 161,
175, 205

GOTO, 31

Graphics:
blocks (pixels), 3, 21
character vs. blocks, 21
editor, 87
sketch program, 258

Graphs:
bar, 140-143, 173, 181
Cartesian coordinate system, 128
circular, 132-134, 233
elements of, 171
functions, 130
histogram, 139
linear regression (see Graphs,

scatter diagrams)

maps, 186
multiple, 183
pictograms, 174, 185
pie charts, 175
polygonal, 174, 177
scatter diagrams, 145-149
volume, 187

HEXENTRY, 95, 102

[F—THEN-—(ELSE), 28, 31, 94, 107
Immediate mode, 7, 23, 98

INKEYS, 45, 82, 110, 237

INPUT, 45, 82

Input, 31, 45, 82, 99, 110, 145, 162
INT, 20, 180

Integer function, 14, 26

LEFTS, 61, 109
Left bracket (see Exponentiation)
LEN, 13
LET, 13
Lines:
centering, 18, 161, 171
drawing, 25, 31, 33, 39, 65, 119
length, 13
multiple statement, 20, 34
LION, 251
Lower case, 52, 56, 79

286

Index

Machine language (see also USR), 43,
91

Menu, 160

MIDS, 61, 109

Model I/Model 111 differences, xiv, 12,

14, 52, 54, 59, 68, 81, 88, 92, 98,
111, 115, 185

ON ERROR GOTO, 39, 47, 115, 125,
135

ON GOSUB, 163

One-liners, 229

OuT, 82, 89, 101

Plot coordinates, 20

PEEK, 77, 81, 92, 111, 165, 194, 229

POINT, 27, 46, 194

POKE, 14, 55, 77, 92, 111, 115, 165

PRINT, shorthand, 7

PRINT@, 17, 19, 63, 105, 111, 142,
207

PRINT USING, 147, 178

Printer, 265, 277

Random-access memory (RAM), xv,
112

READ/DATA routines, 38, 53, 64,
122, 125, 180, 193, 205, 247

RESET, 23, 44, 46

RIGHTS, 109, 195, 199

RND, 16, 26, 35, 45, 48, 63, 73, 150,
204, 212

Read-only memory (ROM), 77, 98

Screen (see Video display)
Scrolling (see Video display and
Characters)
Semicolon, 6, 13, 16, 59, 172
SET, 23, 31, 105, 119, 121, 128
SGN, 229
SIN, 15, 130, 134, 175, 233
Sound, 89, 100, 164
SQR, 133, 147
STEP, 131, 175, 190, 200, 233, 241
Strings:
arrays, 70, 107, 190, 204
building, 64, 192
comparisons, 60
concatenation, 64, 71, 109, 192,
206
dummy, 86, 92, 97
functions, 16, 60, 61, 108
index, 84, 92, 191
length, 13, 60, 64, 112
packing, 84, 91, 96, 262
printing, 13
storage space, 63, 79, 84, 97, 107
variables, 13, 60, 64, 107, 204
STRINGS, 13, 20, 62, 97, 108, 142,
171, 190
Subroutines, 40, 80, 107, 152, 162, 193

Tabbing, 13-15

TAB, 14, 25, 171

Time delay, 19, 73, 99, 163, 207
Timer, 46

ULTRASKETCH, 259
Underlining, 23

USING (see PRINT USING)
USR, 92, 95, 102, 165

VAL, 145 .
VARPTR, 85, 91, 191, 231, 249, 262
Video display:

clearing, 81

description, 3, 11, 21

dump to printer, 264, 277

memory-mapped, 77

reverse, 97, 144, 249

saving, 190

scrolling, 13, 20, 93, 121, 191

title, 161, 171

whiteout, 105, 258

worksheet, 18, 62, 246

287

SPECIAL PROGRAM OFFER

The authors have made 35 of the major programs in this book available on
cassette/diskette. All programs marked with asterisks are included, along
with a few surprises.

The programs have been thoroughly tested to run the FIRST TIME, with-
out a hitch. Completed instructions for loading and running the programs
are included.

Make check or money order for $14.95 (California residents add 6% sales
tax) payable to David A. Kater and Susan J. Thomas.

Please indicate cassette or diskette, and mail to:

€€ EDUKATER,

MICROCOMPUTER AUTHOR/CONSULTANT

P.O. Box 1868
La Mesa, CA 92041

Your fingers will thank you for it!

Money ordc zashier’s checks shipped next day. Allow two to three
weeks for | checks.

$12.95

T g ——

b, 4

-
.
e

Jacket Desagn by Eileu\ﬁtle\mpner

TRS-80

GRAPHICS

For the Model |
and Model il

From basic displays and business charts to animated
figures and high-resolution printer graphics, this com-

. prehenswe new guide explains how to put your design

onto the video display screen of a Radio Shack TRS-80
microcomputer.

The authors begin by introducing you to the basic tools

- of computer graphics, including the capabilities of the

video screen, keyboard and character control, graphics
prng{ammlng techniques, machine language, and more.
Then the real fun begins as the authors consider the
mynad applications of graphics techniques. You’'ll learn
how to create displays ranging from business charts,
statistical graphs, and mathematical function plots to
dragons and lions, animated inchworms and snails, laser
cannons, intriguingly beautiful artistic designs, and a
unique animated figure called Critter. Complete program
listings and suggestions for modifications accompany
each of the more than one hundred graphic displays.

-Besides providing guidance to those interested in
specific graphic applications, this book is also an
excellent introduction to programming in general. With it,
the novice programmer can gain valuable experience in
developing BASIC and machine language programs.

TRS-80 Graphics for the Model | and Model Ill is
written in a witty, readable style and complemented by
helpful reference appendices and an abundance of
detailed illustrations. Authors David Kater and Susan
Thomas have produced a book that is both a thorough
guide and an invaluable reference for anyone interested in
the graphic capabilities of computers.

"-.

o
I \\ T NR) -
. N\ :

_‘|'| “Ta=r ¥ "
o s y
! TR e .

P

ISBN O-07-033303-3

