THE TRS-80
GRAPHICS
BOOK

Dennis FE Tanner

THE TRS-80 GRAPHICS BOOK

THE TRS-80 GRAPHICS BOOK

Dennis F. Tanner

[EBE] vAN NOSTRAND REINHOLD COMPANY

THE TRS-80 GRAPHICS BOOK

Copyright © 1984 by Dennis F. Tanner

Library of Congress Catalog Card Number: 84-7524
ISBN: 0-442-28300-8
ISBN: 0-442-28299-0 pbk.

All rights reserved. No part of this work covered by the copyright hereon
may be reproduced or used in any form or by any means--graphic, electronic,
or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems—-without permission of the author.

Manufactured in the United States of America

Published by Van Nostrand Reinhold Company Inc.
135 West 50th Street
New York, New York 10020

Van Nostrand Reinhold Company Limited
Molly Millars Lane
Wokingham, Berkshire RG1l 2PY, England

Van Nostrand Reinhold
480 Latrobe Street
Melbourne, Victoria 3000, Australia

Macmillan of Canada

Division of Gage Publishing Limited
164 Commander Boulevard

Agincourt, Ontario MI1S 3C7..Canada

15-14 13 12 11 1098 76 54 3 21
Library of Congress Cataloging in Publication Data
Tanner, Dennis F.

The TRS-80 graphics book.

Includes index.

1. Computer graphies. 2. TRS-80 (Computer)--Program-
ming. I. Title, II. Title: T.R.S.-80 graphics book.
T385.T36 1984 001.64'43 84-7524

ISBN 0-442-28300-8
ISBN 0-442-28299~0 (pbk.)

Preface

In business, educational and personal software, the addition of
graphics to a computer program can make a significant difference in
the attractiveness and user-friendliness of a program. For this reason,
programming graphics can be quite rewarding.

But it can also be difficult. Determining which pixel to set and
which character to print to create a graphic may take hours. Therein
lies the graphics programmer's dilemna: spending too much time, or
foregoing nicer graphic displays.

The TRS-80 Graphics Book is directed at the graphics programmer.
It gives a thorough introduction to graphics programming in BASIC with
many carefully explained sample programs. It covers several different
techniques, each with its advantages and disadvantages. Then the book
introduces the programmer to assembly language graphics programming,
showing the programmer how to use machine language programs even
without special Editor/Assembler software.

To help the graphics programmer resolve his dilemna, The TRS-80
Graphics Book contains tools. Some of its sample programs include a
keyboard input routine, screen editors, graphics file storage programs,
animation routines, and more.

For the novice or for the advanced graphics programmer, The
TRS-80 Graphics Book provides clear information to assist in making
TRS-80 programs come alive with computer graphics.

Acknowledgements

I want to acknowledge the following people for their encouragement
during the preparation of this book:

My family (Mom, Bob, Jean, Allan, and Dwight) for their continued
interest in the project.

The members of Brentwood Bible Church for their encouragement in
this work and (more importantly) in His work.

Most of all, my sweet wife Nicole who spent much of our first year

marriage listening to the "tap, tap, tap" of the keyboard and the
whirring of the disk drives.

Dmra | Qamner

of

vii

Preface/v

Contents

Acknowledgments/vii

Chapter 1.

Chapter 2.

Chapter 3.

Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.
Chapter 9.
Chapter 10.
Appendix 1.
Appendix 2.
Appendix 3.

Index/233

Introduction to TRS-80 Graphics Techniques:
SET/RESET/POINT GRAPHICS/1

Introduction to TRS-80 Graphics Techniques:
PRINT GRAPHICS/23

Introduction to TRS-80 Graphics Techniques:
POKE GRAPHICS AND THE VIDEO MEMORY /47

First Applications: Business and Education/69

Printer Graphics/91

Using the Variable Pointer to Create Graphics/112

Using DEBUG Under TRSDOS to Pack String Graphics/134
Introduction to Assembly Language Graphics Programming/158
More Graphics in Assembly Language/178

Assembly Language File Handling in Graphics Programming/202
Video Display Worksheet /227

Text Characters and Codes/228

Graphic Characters/232

ix

THE TRS-80 GRAPHICS BOOK

Chapter 1.
Introduction to
TRS-80 Graphics Techniques:
SET/RESET/POINT GRAPHICS

OBJECTIVES:

At the end of this chapter, the reader will be able to perform the

A.

following tasks:

Write and execute a functional example of SET/RESET/POINT
graphics, using the proper BASIC syntax and appropriate numbers
for X and Y coordinates.

Write the upper and lower limits of the horizontal and vertical
coordinates of the SET/RESET/POINT statement.

Using the SET and RESET instructions, write a program that draws
a horizontal line on the screen, then erases it.

Using the SET instruction, write a program that draws a vertical
line on the screen.

Using the SET instruction, write a program that draws a diagonal
line on the screen.

Using the SET instruction, write a program that draws a circle on
the screen.

Using the POINT instruction, write a program that determines and
displays whether a certain set of graphic points on the screen is
SET or RESET.

INTRODUCTION

The simplest and most direct way to program graphics on the

TRS-80 ModelI and Model I is with the SET/ RESET/POINT
instructions. These instructions work on an X,Y coordinate system similar
to that used for drawing graphs on graph paper. Do you remember the
graphs back in Algebra I that looked like this?

. (-4,5) Y-axis

-5-4-3-2-1 01 2 3 45

. (""5 3—2) -2

Figure 1-1

Figure 1-1 shows two axes (that's the plural of axis, not of axe).

You remember that an axis is a line, right? The horizontal axis is called

2 The TRS-80 Graphics Book

the "X-axis" and the vertical axis is called the "Y-axis." This pair of
perpendicular axes forms a graph that is appropriately called an "X,Y
coordinate system" or a "Cartesian coordinate system." Point (0,0), the
center point of the graph, is called the "origin."

Each point on the graph is assigned a pair of coordinates (numbers)
that label it as a unique point. The X coordinate comes first, then the Y
coordinate. To find the point (-4,5) on the graph, you start at the origin,
travel -4 (that is, & units to the left) on the X-axis. Then you travel 5
(that is 5 units up) on the Y-axis. Check the positions of the other
labeled points in Figure 1-1 to be sure you understand the X,Y coordinate
system of labeling points.

So how does this relate to SET/RESET graphics? These graphics
also work on an X,Y coordinate system. Imagine your TRS-80 video
display as a set of points that begin at the upper left corner of the
screen with the point (0,0) and goes to the lower right with the point
(127,47). What you are imagining is the exact layout of the TRS-80
screen.

The Video Display Worksheet in Appendix 1 shows the general
layout of a TRS-80 Model I or Model III screen for graphics. The numbers
closest to the grid show the X and Y coordinates. You may notice three
differences between this layout and the Cartesian coordinate system
shown above:

L. Only zero and the positive numbers are shown on this
layout.

2. The Origin (that's point (0,0), remember?) is in the upper
left corner instead of the center of the graph.

3. The X-axis still has the larger numbers to the right, but the

Y-axis on this layout is the opposite of the Cartesian coordinate system.
It has the small numbers at the top of the screen and the larger numbers
at the bottom.

Take a moment to look at the TRS-80 screen. Think about the
upper left corner as point (0,0), the upper right corner as point (127,0),
the lower left corner as point (0,47), and the lower right as point
(127,47).

SETTING POINTS
We will now look at some examples of the SET/RESET/POINT
instruction. If you are using a TRS-80 Model I or Model III with disk
drives, first type

B ASICENTER

to get into Disk BASIC. If your TRS-80 does not have disk drives, you
may just begin entering the program.

Introduction: SET/RESET/POINT Graphics 3

Let's first look at the SET instruction. To SET (light up) the point
in the upper left corner of the screen, type in these instructions:

C L S ENTER
SET(0,0)ENTER

Since you are typing instructions without line numbers, you are in
the "Immediate Mode" and your instructions are executed immediately.
The first instruction clears the screen, and the second turns on the point.

The program in Listing 1-A SETs all four corners of the screen.
When you type it in, be sure to press ENTER at the end of each line.

10 CLS
20 SET (0,0)

30 SET (127,0)
40 SET (0,47)
50 SET (127,47)
60 GOTO60

Listing 1-A

Photo 1-A

4 The TRS-80 Graphics Book

Type RUN and press the ENTER key to run this program. Lines 20
through 50 SET the upper left, upper right, lower left, and lower right
corners respectively. Line 60 creates an endless loop that supresses the
"Ready" prompt. (Try the program without line 60, and you'll see why this
is necessary.) To escape this endless loop, press the BREAK key.

To summarize, the general format of the SET instruction is

SET (x,y)

where x is a number between 0 and 127 inclusive, and y is a number
between 0 and 47 inclusive.

SETTING LINES

To SET a line, just put the SET instruction in a FOR-NEXT loop, as
in Listing 1-B.

10 CLS

20 FOR J=0 TO 127
30 SET (J,30)

40 NEXT 3J

Listing 1-B

(When entering this program, remember to press ENTER and the end
of each line, and to type RUN and press ENTER to see the program run.)

This program sets every point in a line from (0,30) to (127,30). The
result is a horizontal line at vertical position 30, about two thirds of the
way down the screen. Why isn't another endless loop such as "50 GOTO
50" needed in this example?

How about a vertical line? Can you think of which elements in this
program would have to change? First, the loop in line 20 would go to only
47 instead of 127. Second, the SET statement in line 30 would have the Y
coordinate as the looping variable instead of the X coordinate. Thus, the
program listing would look like this:

10 CLS
20 FOR J=0 TO 47
30 SET (30,7)

40 NEXT J

50 GOTO 50

Listing 1-C

This time we have inserted an endless loop at line 50 to inhibit the
"Ready" prompt. When you press the BREAK key, you'll see why!

We've gone from SETting one point to SETting a line -- from zero

Introduction: SET/RESET/POINT Graphics 5

Photo 1-B

Photo 1-C

6 The TRS-80 Graphics Book

dimensions to one dimension? How about proceeding to two dimensions?

To fill in an area with the SET instruction, we repeat a vertical
line 128 times from left to right until the entire screen is full. Listing
1-D SETs a vertical line each time the loop in lines 30 to 50 is executed.
The "J" loop causes lines 30 to 50 to be repeated 128 times, once for
each of the horizontal positions. Can you revise the program to SET
horizontal lines instead of vertical lines?

10 CLS

20 FOR J=0 TO 127
30 FOR K=0 TO 47
40 SET (J,K)

50 NEXT K

60 NEXT J

70 GOTO 70

Listing 1-D

Photo 1-D

Remember that you can press the BREAK key to escape from the
loop in line 70.

Introduction: SET/RESET/POINT Graphics 7

RESETTING POINTS AND LINES

SETting points light them up or turns them on. In a similar way,
RESETting points turns them off,

If you can turn a point on and turn it off, you can make if blink,
right? This is demonstrated in the program in listing I-E. You may notice
that this program is identical to that in Listing 1-C except for one line.
Line 35 contains the RESET instruction which turns the point off. Before
you enter and run this program, can you figure out what it will do?

10 CLS

20 FOR J=0 TO 47
30 SET (30,0)

35 RESET (30,7)
40 NEXT J

50 GOTO 50

Listing 1-E

Since the program in Listing 1-C draws a vertical line from the top
of the screen to the bottom, the program in Listing 1-E turns on the same
points with the SET instruction and then turns them off with the RESET
in line 35. If this program executes too quickly for you to see it very
well, you can add this line:

32 FOR I=1 TO 20: NEXT I
and change line 50 to this:
50 GOTO 20

Line 32 adds a delay loop to slow the program down, and line 50
makes lines 20 through 40 repeat.

Would you like to add use some randomness with these SET and
RESET instructions? BASIC has an instruction spelled RND that selects
random numbers. We can use it to SET and RESET points randomly on the
screen, The program in Listing 1-F chooses a random X and Y value (in
lines 20 and 30) and SETs the point in line 40. Line 50 causes a delay,
and line 60 RESETs the point. Line 70 returns the program to line 20 to
do it again.

10 CLS
20 X = RND(127)

30 Y = RND(47)

40 SET (X,Y)

50 FOR I=1 TO 50: NEXT I

8 The TRS-80 Graphics Book

60 RESET (X,Y)
70 GOTO 20

Listing 1-F

The program can be made to RESET about half the points and leave
the other half SET by changing line 60 to read as follows:

60 IF RND(2) = 1 THEN RESET (X,Y)

If RND(2) returns 1, the point will be RESET. If it returns 2, the
program will continue to line 70 without RESETting the point.

To summarize, the general format of the RESET instruction is

RESET (x,y)

where x is a number between 0 and 127 inclusive, and y is a
number between 0 and 47 inclusive.

SETTING DIAGONAL LINES

So far we have created horizontal and vertical lines by changing
either the X or the Y value in the SET instruction. Diagonal lines can be
created on your TRS-80 microcomputer by changing the X and Y values
simultaneously in the SET (X,Y) instruction.

10 CLS

20 FOR J=0 TO 47
30 X=]

4 Y=]

50 SET (X,Y)
60 NEXT J

70 GOTO70

Listing 1-G

The program in Listing 1-G SETs each point along a line from (0,0)
to (47,47). The X and the Y values are incremented simultaneously.

10 ON ERROR GOTO 170

20 CLS

30 INPUT "START POINT (X,Y)"; SX, SY

40 INPUT "UP OR DOWN"; UD$

50 IF UDS <> "UP" AND UDS$ <> "DOWN" THEN 40
60 IF UDS = "UP" THEN IC = -1 ELSE IC = 1
70 INPUT "HOW MANY POINTS"; NP

80 INPUT "INCREMENT Y FOR EACH X"; 1Y
90 IC = IC * 1Y

100 FOR J =0 TONP -1

110 X =SX +17

Introduction: SET/RESET/POINT Graphics 9

120 Y =SY + J *IC
130 SET (X,Y)

140 NEXTJ

150 IS = INKEYS

160 IS = INKEYS: IF IS = ™ THEN 160 ELSE 20
170 PRINT @ 960, "ERROR";

180 RESUME NEXT

Listing 1-H

START POINT (X,Y)? 8,40

UP OR DOWN? UP

HOW MANY POINTS? 88 ‘
INCREMENT ¥ FOR EACH X? .25

Photo 1-H

The program in Listing 1-H is a more general program that allows
the user to INPUT the following information at the keyboard:

Information Variable
Starting point (X) SX
Starting point (Y) SY
Up/down variable uDn$
Number of points NP

Increment of Y for each X 1Y

10

The TRS-80 Graphics Book

Other variables used are as follows:

Information Variable
Increment (1 or -1) IC
Looping variable J

X value X

Y value Y
Inkey$ variable IS

This program lets you see the effect of various angles on the lines

in the TRS-80 low-resolution graphics.

For those who are interested, here is a line-by-line description of

the functions of this program:

Line Description

10
20
30
40
50
60

70
80

90
100

110
120

130
140
150

160

170

Sets up an error-trapping routine. If a point is out of range, the
program will jump to line 170.

Clears the screen.

Accepts the starting point from the keyboard (5X,SY).

Accepts UP or DOWN from the keyboard (UDS).

If UDS is not "UP" or "DOWN," the program jumps back to line 40
for more keyboard input.

If the user typed "UP," the variable IC (increment) is set at -1.
Otherwise it is set at 1. This value is used in lines 90 and 120 to
determine the Y coordinate.

Accepts the number of points to be plotted from the keyboard (NP).
Accepts the value to use in computing the increment of Y for each
X step at the keyboard (IY). This value is used in line 90. If the
value is 1, the Y will be incremented 1 for every X across. If the
value is 2, Y will be incremented 2 for every X across, resulting in
a sharper slope. If the value is .5, the slope is more gradual. This
value, along with IC, determines the slope in line 90.

The new IC value is computed using the previous IC value and IY.
Begins a FOR-NEXT loop using the variable J. The loop is executed
NP times, starting with 0 and going to NP-1.

The X value is computed as the start value plus the loop value.
The Y value is computed as the start value plus the loop value
times the increment value.

The point is SET.

This line ends the FOR-NEXT loop.

INKEYS catches keystrokes. This INKEYS catches any key presses
that might have been made during the drawing of the line.

This second INKEYS catches intentional keystrokes. If no key was
pressed (and therefore 1$="") the program loops on line 160. If a
key was pressed, the program goes back to line 20.

This begins the error-trapping routine. The work "ERROR" is
printed in the bottom left corner. The semicolon after the second
quotation mark supresses the linefeed and prevents the screen from

180

Introduction: SET/RESET/POINT Graphics 11

scrolling.
After "ERROR" is printed, the program RESUMEs at the line
following the error.

By playing with this program, you can see the effect of different

slopes is on the low-resolution line.

The following changes can be made to the program to see a random

display of lines on the screen using the SET instruction. Use these new
lines to replace the corresponding lines in Listing 1-H:

10 ONERROR GOTO 190

30 SX = RND (50): SY = RND (47)

40 IF RND (2) = 1 THEN UD$ = "UP"
ELSE UDS$ = "DOWN"

(DELETE LINE 50)

70 NP = RND (127 - SY)

80 IY = RND (0) * 2

95 FOR K =1TO 2

130 IF K = I THEN SET (X,Y) ELSE RESET (X,Y)

145 NEXT K

150 GOTO 20

190 J = NP - 1: RESUME NEXT

A subroutine similar to this can be used within a program to draw

lines of varying slope and length.

Listing 1-I contains a another program that draws lines. This one

uses both endpoints instead of one endpoint and the slope. Can you figure
out how this program SETs lines given the endpoints?

10 CLS

20 INPUT "START (X,Y)"; SX,SY

30 INPUT " END (X,Y)"; EX,EY

40 LE = SQR ((EX-SX) 2 + (EY-SY) 2)

50 IF LE = 0 THEN PRINT "LENGTH IS ZERO":
GOTO 110

60 FOR J = 0 TO LE

70 X = SX + (EX-SX) * J/LE

80 Y = SY + (EY-SY) * J/LE

90 SET (X,Y)

100 NEXT J

110 IS = INKEYS

120 1S = INKEYS: IF IS = "™ THEN 120

130 GOTO 10

Listing 1-I

Note that this program first computes the length of the line, then

SETs a point for each number up to that length.

12 The TRS-80 Graphics Book

This program could also be made in to a subroutine that would SET
lines for given endpoints within a program.

Photo 1-I

SETTING CIRCLES

The TRS-80 Model I and Model Il have built-in geometric functions
which facilitate the creation of graphic circles. If you consider the
triangle in Figure 1-2, you can see that the cosine function represents
the ratio of the adjacent side (side AC) to the hypotenuse (side AB). The
sine function is the ratio of the opposite side (side BC) to the
hypotenuse. Using these ratios, we can set up a formula for determining
the location of any point on the circle, given its angle.

. B

Figure 1-2

Introduction: SET/RESET/POINT Graphics 13

Cosine (Angle BAC) = Adjacent / Hypotenuse
= Side AC / Side AB

Sine (Angle BAC) = Opposite / Hypotenuse =
= Side BC / Side AB

In any triangle on the circle with radius AB, the horizontal (X)
coordinate is computed using the cosine function, and the vertical (Y) is
computed using the sine function.

That's enough theory for a while. Listing 1-J shows a program that
draws a circle with the SET instruction, using the geometric functions as
described.

10 CLS

20 FOR AN = 0 TO 6.3 STEP .02
30 X =64 + COS (AN) * 40
40 Y = 24 + SIN (AN) * 18

50 SET (X,Y)

60 NEXT AN

70 GOTO 70

Listing 1-J

Here are the variables used in the program:

Variable Meaning

AN The angle in radians
X The X coordinate

Y The Y coordinate

And here is a line-by-line description of the program:

Line Description

10 Clear the screen

20 Begins a loop that creates the circle. The loop is up to 6.3
(approximately 2 X Pi), which is the number of radians in a circle.
The value of AN is the current angle of the circle. The STEP value
is .02 to draw the circle with a large number of increments. (If no
step value were given, there would be only seven points in the
circle!)

30 X is computed. 64 is about half of 127 (the largest X coordinate) so
the circle will be centered horizontally. The cosine of the angle is
multiplied by 40 so the radius will be approximately 40 graphic
units.

40 Y is computed. 24 is about half of 47 (the largest Y coordinate) so
the circle will be centered vertically. The sine of the angle is
multiplied by 18. This value is smaller than the 40 used in line 30
to compensate for the graphic point being taller than it is wide.

14

50
60
70

The TRS-80 Graphics Book

The point is SET.
The loop is closed.
This keeps the "Ready" prompt from appearing until the BREAK

key is pressed.

The preceding description contains ideas that will be used in the

following programs, so it would be good to digest it before proceeding.

Photo 1-J

Listing 1-K shows a general circle- and ellipse-drawing program. It

allows the user to choose the center (defined by BEGINNING X and
BEGINNING Y) and the radius. A complete explanation is left to the
reader.

10 ON ERROR GOTO 160

20 CLS

30 INPUT "RADIUS"; RA

40 INPUT "BEGINNING X"; X1

50 INPUT "BEGINNING Y"; Y1

60 INPUT "STEP"; ST

70 INPUT "X:Y RATIO"; RT

80 FOR AN = 0 TO 6.3 STEP ST
90 X = X1 + COS (AN) * RA

Introduction: SET/RESET/POINT Graphics

100 Y = Y1 + SIN (AN) * RA * RT

110 SET (X,Y)

120 NEXT AN

130 PRINT "DONE";

140 1$ = INKEYS

150 1$ = INKEYS: IF I$ = " THEN 150 ELSE 10
160 RESUME NEXT

Listing 1-K

RADIUS? 25
BEGINNING ¥? 98
- BEGINNING ¥? 24
- STEP? .82

 %:Y RATIO? .35

TONE

Photo 1-K

For a little fun, the program in Listing l-L draws a random but
pleasing pattern of concentric circles. The program occasionally clears
the screen so it won't become too cluttered.

10 ON ERROR GOTO 150
20 CLS

30 RA = RND (60)

40 X1 = 64

50 Y1 = 24
60 ST = .6 /| RA
70 RT = .5

15

16 The TRS-80 Graphics Book

80 FOR AN = 0 TO 6.3 STEP ST

90 X = X1 + COS (AN) * RA

100 Y = Y1 + SIN (AN) * RA * RT
110 SET (X,Y)

120 NEXT AN

130 IF RND (30) = 1 THEN CLS

140 GOTO 30

150 RESUME NEXT

Listing 1-L

Photo 1-L

THE POINT INSTRUCTION

The POINT instruction determines whether a graphics point is SET
or not. It can be used in BASIC programs to tell what graphics are on the

screen. The POINT instruction returns the value 0 if the graphics point is
not SET and -1 if the point is SET.

Listing 1-M shows a program that demonstrates the POINT
instruction,

Introduction: SET/RESET/POINT Graphics 17

10 CLS

20 FOR X =1TO 4

30 SET (X, 30)

40 NEXT X

50 FOR X =1 TO 8

60 PRINT "POINT (" X ",30) =" POINT (X, 30)
70 NEXT X

80 GOTO &0

Listing 1-M

Lines 20 through 40 SET a short line of points. Lines 50 to 70 use
the POINT instruction to determine and display whether each point is
SET. For the first point, the display will read,

POINT (1 ,30) = -1

This means the first point is SET. For the last point, the display
will read,

POINT (8 ,30) = O
This means the last point is not SET.

Another way to use the value returned by the POINT instruction is
as a true or false value. The program in Listing 1-N shows how to do this.

10 CLS

20 FOR X = 1 TO &4

30 SET (X, 30)

40 NEXT X

50 FOR X = 1 TO 8

60 PRINT "POINT (" X ",30) IS ";:
IF POINT (X, 30) THEN PRINT "SET"
ELSE PRINT "NOT SET"

70 NEXT X

80 GOTO 80

Listing 1-N

Again, lines 20 to 40 SET the graphics points in the line. The loop
in lines 50 to 70 determine whether each of the first eight points is SET.
Since the first four points are SET, their POINT value is true and will be
reported as "SET." The POINT value returned for the last four points is
false, so they will be reported as "NOT SET" when the program runs.

How can this POINT instruction be used in a graphics program? The
program in Listing 1-O shows an example.

5 ON ERROR GOTO 100

10 CLS

20 FOR X = 0 TO 127: SET (X, 0): SET.(X, 47):
NEXT X

30 FOR Y = 0 TO 47: SET (0, Y): SET (127, Y):
NEXT Y

18 The TRS-80 Graphics Book

40 X = RND (127): Y = RND (47)

50 XA = RND (3) - 2: YA = RND (3) - 2
60 X = X + XA: Y = Y + YA

70 IF POINT (X, Y) THEN 50

80 SET (X, Y)

90 GOTO 60

100 RESUME 40

Listing 1-O

Photo 1-O

Here's a list of variables used in this program:

Variable Meaning

X The X coordinate in SET and POINT statements
Y The Y coordinate in SET and POINT statements
XA Number by which the X coordinate is incremented

YA Number by which the Y coordinate is incremented

Introduction: SET/RESET/POINT Graphics 19

And here are the routines used in Listing 1-O:

Lines Description

5 Sets up error-trapping routine (in case a set of (X,Y) values is
beyond those that can be used in a SET or POINT instruction)

10 Clears the screen

20 Draws the horizontal border lines

30 Draws the vertical border lines

40 Chooses random start values for X and Y

50 Chooses random value for XA and YA. The values will be either -1,
0, or l. .

60 The current X value is incremented by XA, and and the current Y
value is incremented by YA. This causes the line to "move" in a
direction determined by the XA and YA values.

70 Here's the POINT instruction. If the graphics point that is about to
be SET is ALREADY set, a different increment (and therefore a
different direction) is chosen. The effect is that each time the line
intersects an existing line, there is a good chance it will change
direction. This creates an attractive visual effect.

80 The next graphics point is SET.

90 The program loops back for the next point on the line.

100 This is the error-trapping routine. Whenever the X or Y value in
the POINT instruction for the next location is beyond the
acceptable limits, the program jumps to this line which in turn
returns the program to line 40 for another random start point.

Chapter Summary

The screen is divided into graphics points numbered from 0 to 127 going
from left to right, and from 0 to 47 going from top to bottom.

The SET instruction is used to "turn on" a graphics point on the screen.
Its syntax is SET (x,y) where x is a number between 0 and 127, and
y is a number between 0 and 47.

The RESET instruction is used to "turn off" a graphics point on the
screen. Its syntax is RESET (x,y) where x is a number between 0
and 127, and y is a number between 0 and 47.

Horizontal and vertical lines can be drawn on the screen using the SET
instruction in a FOR-NEXT loop which changes either the x or y
element in the instruction.

Diagonal lines can be drawn on the screen using the SET instruction in a
FOR-NEXT loop which changes both the x and the y element in the
instruction.

Circles can be drawn on the screen using the SET instruction in a
FOR-NEXT loop and the sine and cosine functions.

20

The TRS-80 Graphics Book

The POINT instruction determines whether a certain graphics point is SET

or RESET. Its syntax is POINT (x,y) where x is a number between 0
and 127 and y is a number between 0 and 47.

Meeting the Chapter Objectives

Here are the chapter objectives for your review. Can you meet all

the objectives?

A.

Write and execute a functional example of SET/RESET/POINT
graphics, using the proper BASIC syntax and appropriate numbers
for X and Y coordinates.

Write the upper and lower limits of the horizontal and vertical
coordinates of the SET/RESET/POINT statement.

Using the SET and RESET instructions, write a program that draws
a horizontal line on the screen, then erases it.

Using the SET instruction, write a program that draws a vertical
line on the screen.

Using the SET instruction, write a program that draws a diagonal
line on the screen.

Using the SET instruction, write a program that draws a circle on
the screen.

Using the POINT instruction, write a program that determines and
displays whether a certain set of graphic points on the screen is
SET or RESET.

More Programming Practice

Using the SET instruction, write a program that draws your name
on the screen.

Write a program that asks the user for three points, then draws a
triangle with those points as corners.

Write a program that randomly SETs a line on the screen, then
RESETs it in the opposite direction. (Hint: Use a FOR-NEXT-STEP
loop.)

Write a program that draws a face on the screen using circles for
the eyes, nose, mouth, and the outline of the face.

Write a program that draws random circles on the screen. An
error-trapping routine should be used to prevent errors when a
circle would go beyond the screen. When the circles intersect, the
point of intersection should be RESET instead of SET.

Introduction: SET/RESET/POINT Graphics 21
Chapter Cheékup

What are the X- and Y-coordinates of the upper right corner of the
screen?

What does each line of the following program do?
10 CLS

20 FOR J = 0 TO 47

30 SET (J,127)

40 NEXT J

50 GOTO 50

In narrative form, write out the method you would use to draw dark
circles on a white screen.

How many gréphics points are on the TRS-80 screen?

When SETTING a horizontal line, which element of the SET
instruction varies, the X or the Y?

This is the program in Listing 1-E:

10 CLS

20 FOR J=0 TO 47
30 SET (30,7)

35 RESET (30,7)
40 NEXT J

50 GOTO 50

How would you change it to move the dot horizontally instead of
vertically?

What value does the POINT instruction returns:
a) If the graphics point is SET?

b) If it is RESET?

¢) If the location contains a text character?

This program sets a horizontal line:

10 CLS

20 FOR X = 0 TO 127
30 SET (X,0)

40 NEXT X

50 GOTO 50

a) How would you change it to fill the entire screen with horizonal
lines?

b) Write and RUN the program. How long does the program take to
fill the screen?

22

9.

10.

The TRS-80 Graphics Book

Write a line-by-line description of how program 1-I SETs graphic
lines on the screen.

Run the following program:

10 CLS

20 FOR X=0 TO 10
30 FOR Y=0 TO 10
40 SET (X,Y)

50 NEXT Y

60 NEXT X

70 PRINT "A"

80 GOTO 80

(a) How many pixels (graphic dots) does the letter "A" displace?
(b) How many pixels vertically?

(c) How many pixels horizontally?

(d) Since there are 128 graphics positions across the screen, how
many text positions are there across?

(e) Since there are 48 graphics positions down the screen, how
many text positions are there down?

Chapter 2.
Introduction to
TRS-80 Graphics Techniques:
PRINT GRAPHICS

OBJECTIVES:

At the end of this chapter, the reader will be able to perform the
following tasks:

A. Write a program that draws a square using the PRINT instruction
with an "¥",

B. Write a program that PRINTs a box on the TRS-80 screen using
PRINT @ and graphics characters.

C. Write a program that PRINTs a box on the TRS-80 screen by
assigning graphics characters to a string variable and PRINTing the
variable.

D. Write a program using the STRINGS function that fills one line on
the TRS-80 screen with a row of graphics characters.

E. Write a program that draws a heart on the screen by assigning
graphics characters to a string variable and PRINTing the variable.
Use Character 26 and a STRINGS of Character 8 to go to the next
line of the screen.

INTRODUCTION

With SET/RESET/POINT graphics, the programmer can turn on, turn
off, and determine the status of any of the pixels on the 128 by 48 grid
on the TRS-80 screen. Using PRINT graphics, the programmer can place
any of the regular text characters as well as any of the graphics
characters anywhere in the 1024 "PRINT AT" screen positions. This
chapter introduces PRINT positions, graphics characters, and graphics
strings.

PRINTING WITH REGULAR TEXT CHARACTERS

Return for a moment to Appendix l. This Video Display Worksheet
shows the X- and Y-coordinates used on the TRS-80 display with the
numbers closest to the grid on the page. The Worksheet also shows the
PRINT AT positions in larger boxes on the left and right sides of the
grid. Note that the grid contains 1024 positions, numbered left to right
and top to bottom with 0 at the top left and 1023 at the bottom right.
These positions can be used with PRINT instructions to define the
location of PRINTing on the TRS-80 screen.

Try this program.

16 CLS
20 PRINT "THIS IS A TRS-80 COMPUTER."

Listing 2-A

23

24 The TRS-80 Graphics Book

This program clears the screen and prints the message in the upper
left corner, position 0. The program in Listing 2-B is similar, but this
time the position of printing is defined using the PRINT @ (read "print
at") instruction in line 20.

10 CLS
20 PRINT @ 140, "THIS IS A TRS-80 COMPUTER."

Listing 2-B

Using regular text characters and the PRINT @ instruction, we can
create pictures on the display screen. Listing 2-C shows the program that
creates the screen shown in Photo 2-I. The "PRINT @" in lines 20 to 160
cause the graphic to begin at the 20th position in from the left of the
screen. Note that the left quotation mark in each line is lined up with the
others to make the program easier to type and to read. Some characters
in this program were chosen because they look like the part of the person
they portray. Others, like the "SHOE" in line 160, spell out the word that
corresponds with a part of the picture.

10 CLS

20 PRINT @ 20, " QEEQ"

30 PRINT @ 84, " @QEQEEEEEEE"
40 PRINT @ 148, " @ 0 0 @@"
50 PRINT @ 212, " C L 3"
60 PRINT @ 276, " (===z==)"
70 PRINT @ 340, " cccemmeeen- n
80 PRINT @ 404, ™ === L= =t

90 PRINT @ 468, " ("
100 PRINT @ 532," ! P
110 PRINT @ 596," | ! Poae
120 PRINT @ 660," WwWw Www
130 PRINT @ 724,"] Pl In
140 PRINT @ 788," (ol "
150 PRINT @ 852," I
160 PRINT @ 916," SHOEIII IIISHOE"
170 GOTO 170

Listing 2-C

Introduction: PRINT Graphics 25

. oeeceeeece
w00 e

o

Photo 2-C
Here is another example:
10 CLS
20 PRINT " LEAVES™"
30 PRINT " LEAVESLEAVES"
40 PRINT " LEAVESLEAVESLEAVESLEAVES"
50 PRINT " LEAVESLEAVES BIRD LEAVES"
60 PRINT " LEAVESLEAVESLEAVESLEAVESLEAVES™"
70 PRINT " LEAVESLEAVESLEAVESLEAVESLEA"
80 PRINT " LEAVESLEAVESLEAVESLEAVES"
90 PRINT " LEAVESLEAVES"
100 PRINT" TRUNK™
110 PRINT" TRUNK™"
120 PRINT" TRUNK"
130 PRINT" TRUNK™"
140 PRINT™" ROOTSROOTS "
150 GOTO 150

Listing 2-D

26 The TRS-80 Graphics Book

Photo 2-D

This program uses regular PRINT instructions rather than PRINT @.
Each PRINT statement begins on a new line, so the spacing inside the
quotation marks determines the positions on the display screen.

PRINTING GRAPHIC CHARACTERS

Besides the regular text characters, your TRS-80 Model I or Model
IIT has a set of graphic characters. These characters have numbers that
correspond with them, just like the regular text characters do. To PRINT
the character that corresponds to a certain number, you may use the
CHRS function. Listing 2-E shows a program that prints a capital "A" in
the middle of the screen.

10 CLS
20 PRINT @ 544, CHRS(65)

Listing 2-E

The number 65 refers to the letter "A" on your TRS-80. Appendix 2
shows all the text characters and their corresponding numbers.

The graphics characters have numbers from 128 to 191, Try the
program again, only this time type line 20 as shown in Listing 2-F.

Introduction: PRINT Graphics 27

10 CLS
20 PRINT @ 544, CHRS(191)

Listing 2-F

When you RUN this program, you will see the graphics character
corresponding with the number 191 in the center of the screen.

Do you want to see all the graphics characters? The program in
Listing 2-G shows all of them.

10 CLS
20 FOR J=128 TO 191

30 PRINT J; CHRS(D);
40 IF RIGHTS (STRS$(J),1) = "7" THEN PRINT: PRINT

50 NEXT J
60 GOTO 60

Listing 2-G

128 1297 139 %131 %132, 133 1 134 # 135 P 136 4 137
138 11399140 w 141k 1420 143 W 144 145 1146 3 47

1484 143 1SB|'151r152..153}154}155’156,157"

158 [Rk ' 168 . 161 '. 152 : 163 '. 164 | 1651 166 { 1678

168 p 169 § Lre | 17t 1 172 y 173 ‘ 174 4 175 | 176‘-«1?? :
178 - 17 ' 18@ i 181 l 182 ‘ 183 I 184 J 185 i 186 J 187 §

188 i 189 . 198 ' 191 '

Photo 2-G

28

Line

The TRS-80 Graphics Book

Here is a line-by-line description of this program:

Description

10
20

30

40

50
60

Clears the screen

Begins a loop from 128 to 191, the numbers that correspond to the
graphics characters

Prints the current loop number, and the character that corresponds
to it. Semicolons are used to prevent printing from going to the
next line, thus packing more characters on each line of the screen.
Checks to be see of the current loop number has "7" as its right
digit. If it does, the program executes two PRINTs, one to move to
the beginning of the next line, and the other to add a line before
PRINTing more characters. Thus, after each ten characters, a blank
line is printed. The number "7" was chosen because 137 is the tenth
number when counting from 128,

Ends the FOR-NEXT loop

Creates an endless loop to freeze what is PRINTed on the screen.
You can press BREAK to escape this loop.

These characters are also shown in Appendix 3.

Since we can PRINT at any position on the screen with PRINT @,

and since we can PRINT any graphics character, we can begin to draw
some pictures on the screen. Listing 2-H shows a program that prints
graphics characters at certain points on the screen, to form a box.

10 CLS

20 PRINT @ 479, CHRS(170);
30 PRINT @ 480, CHRS(131);
40 PRINT @ 481, CHRS(131);
50 PRINT @ 482, CHRS(149);
60 PRINT @ 543, CHRS(130);
70 PRINT @ 544, CHRS(131);
80 PRINT @ 545, CHRS(131);
90 PRINT @ 546, CHRS(129);
100 GOTO 100

Listing 2-H

Each line of this program PRINTs one graphics character at one

screen position. You can see which graphics character corresponds to
each character number used in this program by checking Appendix 3.

Did you notice how fast that box came on the screen when you ran

the program in Listing 2-H? As a rule, PRINT graphics execute more
quickly than SET/RESET/ POINT graphics.

Introduction: PRINT Graphics 29

Photo 2-H

Large, complex pictures can be drawn by PRINTing graphics
characters on the screen. The program in Listing 2-I shows and example

of a complex picture. A line-by-line description of the program follows
the listing.

10
20
30
40
50
60

CLS

READ A,B

IF A= -1 THEN 1000

PRINT @ A, CHRS(B);

GOTO 20

DATA 87,136, 88,180, 152,170, 212,176

70
80
90

DATA
DATA
DATA

213,176, 214,176,
217,179, 218,189,
221,176, 222,176,

215,176, 216,178
219,176, 220,176
223,176, 224,176

100 DATA 225,176, 226,176,
110 DATA 229,176, 230,176,
120 DATA 233,144, 274,160,
130 DATA 281,156, 282,140,
140 DATA 295,160, 296,158,
150 DATA 337,184, 338,135,
160 DATA 347,159, 348,129,
170 DATA 362,139, 363,180,

227,176, 228,176
231,176, 232,176
175,158, 176,129
283,156, 284,148
297,173, 298,144
345,181, 346,176
358,184, 359,135
399,160, 400,190

30

Line

The TRS-80 Graphics Book

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
999

401,177, 402,176,
405,176, 406,176,
409,176, 410,176,
413,176, 414,176,
417,176, 418,176,
121,190, 422,177,
425,176, 426,176,
429,170, 463,170,
492,170, 493,149,
536,156, 537,140,
552,168, 553,140,
557,149, 591,170,
601,131, 602,131,
618,170, 620,170,
656,141, 657,140,
660,140, 661,140,
664,140, 665,140,
668,140, 669,140,
672,140, 673,140,
676,140, 677,140,
680,142, 681,140,
634,142, 685,133,
785,140, 786,172,
790,140, 797,148,
796,168, 797,140,
801,156, 802,140,
848,149, 850,170,
854,176, 859,149,
858,176, 859,149,
862,179, 863,149,
867,179, 868,145
-1, -1

1000 GOTO 1000

Listing 2-I

Description

403,176,
407,176,
411,176,
415,176,
419,176, 420,176
423,176, 424,176
427,178, 428,189
464,149, 485,191
527,170, 528,149
538,172, 549,191
554,172, 556,170
592,149, 600,131
613, 191 616,170
621,149, 655,138
658,140, 659,140
662,140, 663,140
666,140, 667,140
670,140, 671,140
674,140, 675,140
678,140, 679,140
682,142, 683,140
720,148, 784,157
788,168, 789,140
792,168, 795,148
798,140, 799,132
803,140, 804,148
852,170, 853,176
856,170, 857,176
860,162, 861,179
865,183, 866,179

404,176
408,176
412,176
416,176

10
20

Clears the screen

Reads the first number in the DATA statements (87) into the
variable A and the second number (136) into the variable B.
Checks to see if the "-1" has been read into the variable A. Since
"-1" is the last datum in the list (see line 999), this checks for the
end of the data list.

PRINTs the character with the value read into the variable B, at
the screen position with the value read into the variable A.

Loops back to line 20 to read more data.

The data. The first item in every pair of numbers is

the print location (to be read into the variable A), and the second
item is the character code for that location (to be read into the
variable B).

The data pair "-1,-1" which tells line 30 that this is the last line of

30

40
50

60 to
480

999

Introduction: PRINT Graphics 31

data. Two data items are needed here.
1000 A continuous loop which prevents the screen from scrolling.

Photo 2-1

"But," you must be thinking, "that is a lot of work and a lot of
programming just to draw a little house." You are right, of course. We
will soon examine some techniques you can use to reduce the amount of
work and program space it takes to program fast graphics.

BUILDING GRAPHICS IN STRING VARIABLES

If you plan to use a certain graphic on the screen several times,
either simultaneously or at different times, you may want to build a
string variable containing the graphic.

Before working with graphics characters in string variables, let's
work a bit with text characters. The program in Listing 2-J builds the
string variable BS containing characters 89, 69, and 83. It then prints the
string.

10 CLS
20 BS=CHRS$(89)+CHRS$(69)+CHRS(83)
30 PRINT BS .

Listing 2-J

32 The TRS-80 Graphics Book

There is an easier way to do this, as you probably realize. Listing
2-K shows a program with the same result.

10 CLS
20 BS="YES"
30 PRINT B$

Listing 2-K

So what is the advantage of the program in Listing 2-J? If you are
using text characters (as these programs do), there may be no advantage
at all. But when you are using graphics characters, you cannot type them
in at the keyboard! So you must use other means of storing them in string
variables. Building them with the CHRS function is a good way. Listing
2-L shows a program which builds the string variable AS.

10 CLS

20 AS=CHRS$(183)+CHRS(187)+CHRS(179)+CHRS(187)+
CHRS(179)+CHRS(149)

30 PRINT AS

Listing 2-L

Photo 2-L

Introduction: PRINT Graphics 33

This program prints AS, which contains graphics characters that

form a box. The program in Listing 2-M below uses the same characters
to form a column of boxes. A line-by-line description follows the program.

Line

10 CLS

20 AS=CHRS$(183)+CHR$(187)+CHR$(179)+CHRS(187)+
CHRS$(179)+CHRS$(149)

25 FOR J= 0 TO 14

30 PRINT @ J*64, AS;

35 NEXT J

40 GOTO 40

Listing 2-M

Photo 2-M

Description

10
20

25
30

Clears the screen.

Builds the string variable AS as characters 183, 187, 179, 187, 179,
and 149,

Begins the FOR-NEXT loop from 0 to 14, with J as the looping
variable.

PRINTs the string in AS. Each time through the loop, the value of
J is increased by one, so the PRINT position changes by 64. This

34 The TRS-80 Graphics Book

moves the character down exactly one line (64 spaces) on the
screen.

35 Ends the FOR-NEXT loop.

40 Loops back to line 40 until the BREAK key is pressed.

If you change line 30 to read as follows, the screen position will be
incremented by 68, so the figure will appear one line down and four
characters over each time. This creates a diagonal row of boxes.

30 PRINT @ J*68, AS;

Try a few other numbers to multiply with J in line 30. You will like
the effects. When you consider the time it would take to draw these same
figures with the SET instruction, you can see the advantage of PRINTIng
these graphics.

USING CONTROL CODES IN GRAPHIC STRINGS

The box created in the above programs was six graphics characters
wide and one character tall. What if the graphic you want is more than
one character tall? You can use control characters to create graphics
strings that cover more than one line on the screen.

The program in Listing 2-N builds a string variable containing
character 26. This character causes the graphics that follow it to be
displayed on the next row down on the screen from the previous
characters. Run the program, and you'll see what effect this has on the
display.

10 CLS

20 C$=CHRS$(191)+CHRS$(26)+CHRS$(191)+CHR $(26)+
CHRS$(191)

30 PRINT C$

Listing 2-N

Instead of displaying the graphic characters like this:
char char char
they are displayed like this:
char

char
char

Character 26 causes the each character to appear on the next line

down. But what if you want the characters to appear directly under each

other? Then you must add character 8, the backspace character. Change
the program to look like this:

Introduction: PRINT Graphics 35

10 CLS

20 CS=CHRS(191)+CHRS(26)+CHR$(8)+CHR$(191)+
CHR$(26)+CHRS(8)+CHRS(191)

30 PRINT C$

Listing 2-O
Before the second and third times that character 191 is displayed,

the string displays a character 26 (move down) and a character 8 (move
back). The graphic characters appear to be in a vertical row.

Photo 2-N

Let's use these control characters along with the graphic
characters to build a happy face.

10 CLS

20 AS=CHR$(151)+CHR$(135)+CHR$(179)+CHR$(139)+CHRS(171)+
CHR$(26)+CHR$(8)+CHR $(8)+CHR $(8)+CHR $(8)+CHR $(8)
+CHRS(181)+CHRS$(180)+CHR $(188)+CHR $(184)+CHR$(186)

30 PRINT @ 350, A$

40 GOTO 40

Listing 2-P

36 The TRS-80 Graphics Book

Photo 2-O

Photo 2-P

Introduction: PRINT Graphics 37

This program uses one character 26 to move down a line, then five
of character 8 to move back five spaces. This lines up the beginning of
the graphics on the second line with the graphics on the first line.

To be a bit more creative, try the program in Listing 2-Q. (So you
won't have to retype them, lines 10 and 20 have not been changed from
the program above.)

10 CLS

20 AS=CHRS(151)+CHRS(135)+CHRS(179)+CHR $(139)+CHR $(171)+
CHR $(26)+CHR $(8)+CHR $(8)+CHR $(8)+CHR $(8)+CHR $(8)+
CHRS$(181)+CHRS$(180)+CHR$(188)+CHR $(184)+CHR $(186)

30 PRINT @ RND (900), AS;

40 FOR J=1 TO 150: NEXT J

50 CLS

60 GOTO 30

Listing 2-Q
Here's a line-by-line description:

Line Description

10 Clears the screen.

20 Builds the string variable B$ using graphics characters and the
control characters 26 and 8.

30 Chooses a random number up to 900, and uses that number as the
location to PRINT the face on the screen.

40 Pauses long enough for people to see the happy face.

50 Clears the screen again.

60 Returns to line 30 to PRINT the face again. You can press the
BREAK key to escape this loop.

USING THE STRINGS FUNCTION
TO BUILD GRAPHIC STRINGS

The CHRS function allows you to add one character at to time to a
string variable. In a similar way, the STRINGS function lets you add many
chararacters at a time. Before examining the STRINGS function with
graphic characters, let's use it with text characters.

10 CLS

20 PRINT STRINGS(20,"A")
30 BS = STRINGS$(30,66)
40 PRINT @ 320, BS;

50 GOTO 50

Listing 2-R

Can you predict the outcome of this program? RUN the program to
see if your predictions were correct.

38 The TRS-80 Graphics Book

The program in Listing 2-R demonstrates five facts about the
STRINGS function:

1) The first number in the parentheses tells how many characters will
be used. This can be from 1 to 255,

2) If the second element in the parenthesés is a character in quotation
marks, a STRINGS of that character is created (as in line 20).

3) If the second elemeat in the parentheses is a number without

quotation marks, a STRINGS of the character corresponding to that
number is created (see line 30).

4) A STRINGS of characters can be printed directly, as in line 20.

5) A STRINGS of characters can be assigned to a string variable (as in
line 30) and PRINTed later (as in line 40).

- AAAARAAARARARAARARAR

4 Vit

IBBEBBBEUBRBBOBBEAEANERERREEE

Photo 2-R

Using the STRINGS function with graphic characters works the
same way. The only restriction is that the second element in the
parentheses must be a number, since you can't type the graphics

characters at the keyboard. Listing 2-S shows the same program with
graphics characters instead.

10 CLS
20 PRINT STRINGS$(20,191)

Introduction: PRINT Graphics 39 |

30 BS = STRINGS(30,176)
40 PRINT @ 320, BS;

50 GOTO 50

Listing 2-S

Here is a line-by-line description:

Line Description

10 Clears the screen.

20 Prints a STRINGS of 20 characters, each having code 191.

30 Assigns a STRINGS of 30 characters, each having code 176, to the
string variable B$

40 Prints the string stored in variable B$ at screen location 320.

50 Loops back to line 50 to hold the display.

Photo 2-S

A PROBLEM SOLVED
WITH THE STRINGS FUNCTION

One of the author's favorite graphics problems is, "What is the
fastest way to fill the TRS-80 display with solid graphics characters in

40 The TRS-80 Graphics Book

BASIC?" The STRINGS function can help us solve that problem.

Return for a moment to the program in Listing 1-D in Chapter 1.
This program fills the screen by SETting every pixel on the screen. But it
is a painfully slow way to "clear the screen" with SET instead of RESET
characters.

What if we PRINTed a character 191 (all white) character in every
position of the screen? Listing 2-T shows a simple program that does
that. It runs considerably faster than the program in Listing 1-D using the
SET instruction. But there is one problem: after the character is PRINTed
in the last position, the screen scrolls up one line.

10 CLS
20 FOR J=0 TO 1023

30 PRINT @ J, CHRS(191);
40 NEXT J

50 GOTO 50

Listing 2-T

It seems like a difficult problem: no matter what character is
PRINTed in the last position on the screen, the screen will scroll. Listing
2-U presents a solution. Line 50 in this listing fills in the last character.
Chapter 3 contains a complete explanation of how and why this works.

10 CLS

20 FOR J=0 TO 1022

30 PRINT @ J, CHRS$(191);
40 NEXT J

50 POKE 16383, 191

60 GOTO 60

Listing 2-U

This program uses the CHRS$ function to PRINT a single character.
How can we PRINT a STRINGS? Listing 2-V shows the use of the
STRINGS function to speed up the process. Since the program PRINTs a
STRINGS of 32 characters in one instruction, it is faster yet.

10 CLS
20 AS = STRINGS$(32,191)
30 FOR J=0 TO 31

40 PRINT @ J*32, AS;
50 NEXT J

60 GOTO 60

Listing 2-V

This program does what we want, but it PRINTS to the last screen
position, so it causes a scroll. Let's make the program a little faster yet

Introduction: PRINT Graphics 4l

before we fix the scrolling problem. Listing 2-W shows a program that
builds a STRINGS of 64 characters instead of 32 characters. This should
be faster.

10 CLS

20 AS = STRINGS (64,191)
30 FOR J=0 TO 15

40 PRINT @ J*64, AS;

50 NEXT J

60 GOTO 60

Listing 2-W

When you RUN the program in progam in Listing 2-W above,
another problem arises: an "Out of String Space" error. Let's take time
out here for an explanation.

BASIC has two kinds of variables: numeric variables and string
variables. The value for each numeric variable is stored in a special
format in the memory of the computer, so the computer "knows" how
much memory space to set aside for each numeric variable. But string
variables can be as long as the programmer wants to make them, so the
programmer must tell the computer how much space to set aside to store
the strings. BASIC automatically sets aside enough space for 50
characters (bytes) of strings. If you want to use more than that, you must
tell it to clear room for more characters. The CLEAR instruction tells
the computer to set aside string space, and the number that follows it
tells how many characters to allow room for. Line 5 in Listing 2-X
CLEARs enough string space for 64 characters, so the STRINGS in line 20
doesn't cause the "Out of String Space" error.

5 CLEAR 64

10 CLS

20 AS = STRINGS (64, 191)
30 FOR J=0 TO 15

40 PRINT @ J*64, AS;

50 NEXT J

60 GOTO 60

Listing 2-X

That solves the string space problem, but not the scrolling problem.
Can you think of a way to avoid this scrolling? Listing 2-Y shows one
solution. To avoid PRINTing to the last position, line 30 loops only 15
times, from 0 to 14. Line 54 PRINTs the bottom row of the screen, less
the last character. And line 56 takes care of that last character. A
line-by-line description follows the listing.

5 CLEAR 127
10 CLS
20 AS = STRINGS (64,191)

42 The TRS-80 Graphics Book

30 FOR J=0 TO 14

40 PRINT @ J*64, AS;

50 NEXT J

54 PRINT @ 960, STRINGS (63,191)
56 POKE 16383, 191

60 GOTO 60

Listing 2-Y

Line Description

5 Clears 127 bytes of string space.

10 Clears the screen.

20 Assigns a STRINGS of 64 characters having code 191 to the string
variable AS ,

30 Begins a loop from 0 to 14 looping on the variable J

40 PRINTs the STRINGS each time through the loop. The first time
through will be at position 0 (or 0%64). Another string will be
printed after each 64 characters, or exactly one line down. The
last one will be at position 896 (or 14¥64), the beginning of the
next-to-last line on the screen.

50 Ends loop J.

54 PRINTs a STRINGS of 63 characters having code 191 at 960, the
beginning of the last line on the screen.

56 Creates the last character on the screen (more next chapter).

60 Loops continuously to inhibit the "Ready" prompt until the BREAK
key is pressed.

MORE ON USING THE STRING$ FUNCTION

One more use of the STRINGS is with control characters. For
example, instead of using the CHRS function to add a character 8 each
time we "back up" one space, we can use a STRINGS of character 8.
Listing 2-Z shows a program using a STRINGS of character 8 as well as
STRINGSs of other characters.

10 CLS

20 CLEAR 200

30 AS = CHRS(160) + CHRS(134) + CHRS(131) +
CHRS(137) + STRINGS(3,144) + CHRS(152) +
STRINGS(2,131) + CHRS(164) + CHRS(26) +
STRINGS(11,8) + CHRS$(170) + STRINGS$(2,32) +
CHRS(137) + CHRS(146) + CHRS(171) + CHRS(131) +
CHRS(152) + CHRS(129) + CHRS(32) + CHRS(170)

40 AS = AS + CHRS(26) + STRINGS(11,8) + CHR$(130)
+ CHRS(139) + CHRS(172) + CHRS(176) + CHRS(184)
+ CHRS(142) + CHRS(172) + CHRS(176) + CHRS(184)
+ CHRS(142) + CHRS$(131)

50 PRINT AS;

60 PRINT @ 340, AS;

Listing 2-Z

Introduction: PRINT Graphics 43

Photo 2-Z

This program starts building a STRINGS is line 30 and finishes it in
line 40. Notice the "STRINGS(11,8)" in line 30 which moves the cursor
back eleven spaces.

Do you wonder if the author spent untold hours drawing graphic
characters out on a paper to design the graphics shown in some of these
graphics programs? In the next chapter you will see some of the software
tools you can use to make similar complex graphics with relative ease.

Chapter Summary

The TRS-80 screen has 1024 screen positions numbered from left to right
and top to bottom. These are sometimes called the "PRINT AT"
positions. They begin with 0 in the upper left corner and end with
1023 in the lower right corner.

Programs can PRINT at any of these locations using the "PRINT AT"
instruction in this format: PRINT @ a,b where a is a screen position
from 0 to 1023 and b is a character number between 1 and 255.

44 The TRS-80 Graphics Book

Simple graphics can be created by PRINTing regular text characters on
the screen using the PRINT @ instruction.

Pictures using graphic characters can be PRINTed on the screen using the
CHRS function with the PRINT @ instruction.

The codes for graphic characters range from 128 to 191.

READ and DATA instructions can be used to print many graphic
characters in many different positions with only one PRINT @
instruction.

Graphic characters can be assigned to string variables so they can be
printed quickly and/or repeatedly. (Example: BS = CHRS$(189) +
CHRS$(188))

Control codes can be used to control the relative positions of characters
within a string. Character 26 moves the position down one
character, and character 8 moves the position left one character.

The STRINGS function can be used with text, graphic, and control
characters to reduce the number of program instructions needed to
build and print a graphic string.

The STRINGS function uses string space in a BASIC program, and
sometimes more string space must be cleared using a CLEAR
instruction.

Meeting the Chapter Objectives

Here are the chapter objectives for your review. Can you meet all
the objectives?

A. Write a program that draws a square using the PRINT instruction
with an "¥",

B. Write a program that prints a box on the TRS-80 screen using
PRINT @ and graphics characters.

C. Write a program that prints a box on the TRS-80 screen by
assigning graphics characters to a string variable and printing the
variable.

D. Write a program using the STRINGS function that fills one line on
the TRS-80 screen with a row of graphics characters.

E. Write a program that draws a heart on the screen by assigning
graphics characters to a string variable and printing the variable.
Use Character 26 and a STRINGS of Character 8 to go to the next
line of the screen.

More Programming Practice

1. Write a program that draws a horse on the screen using PRINT @
instructions and regular text characters.

Introduction: PRINT Graphics 45

Write a program that draws a flower on the screen using the PRINT
@ instruction with graphic characters.

Build a string variable that forms the shape of each of your
initials. PRINT the variables on the screen so your initials are
displayed simultaneously.

Write a program that assigns graphics characters and control codes
26 and 8 to a string variable, so that three characters are printed
on the screen in a vertical column.

Since there are 64 graphics characters and 1024 screen positions,
you can fill the screen by PRINTing 1024/64 or 16 each of the
graphics characters. Write a program that PRINTs STRINGSs of 16
each of the graphics characters, beginning with 128 and going to
191, on the screen at once. These characters should fill the screen.
Prevent the screen from scrolling.

When you type PRINT MEM, the computer prints the number of
bytes (characters) of memory available for BASIC programming.
Does CLEARIng string space change the amount of memory
available for programming? Write a program that tests the amount
of memory available before and after CLEARing 500 bytes of
memory.

Chapter Checkup

Listing 2-F contains a two-line program. Why isn't a line like this:
30 GOTO 30
needed in the program?

Listing 2-H contains the following program:

10 CLS

20 PRINT @ 479, CHRS$(170);
30 PRINT @ 480, CHRS(131);
40 PRINT @ 481, CHRS(131);
50 PRINT @ 482, CHRS(149);
60 PRINT @ 543, CHRS(130);
70 PRINT @ 544, CHRS(131);
80 PRINT @ 545, CHRS(131);
90 PRINT @ 546, CHRS$(129);
100 GOTO 100

Lines 20 to 50 can be combined into one line like this:
20 PRINT @ 479, CHRS$(170);CHRS$(131);
CHRS$(131);CHRS$(149);
a) What are two advantages of the change?
b) Lines 60 to 90 can be combined in a similar way. Write the new
line 60 that contains this change.

46

10.

The TRS-80 Graphics Book

Line 999 of Listing 2-1 contains these two data items: "-1,~1." Why
are two items needed here instead of just one?

Line 30 of Listing 2-Q uses RND(900) to choose the screen location
for PRINTing the graphic. The screen locations go up to 1023. Why
do you think RND(900) was selected instead of RND(1023)?

Line 5 of Listing 2-X CLEARs 64 bytes of string space, but Line 5
of Listing 2-Y CLEARs 127 bytes. Why were these extra bytes of
string space needed?

The programs in Listings 1-D and 2-Y both {ill the screen
completely with graphics. Using the second hand or second counter
on a watch, time each of these programs as it runs. Divide the
longer time by the shorter time. How many times as fast is the
PRINT version compared to the SET version?

What do you predict as the outcome of the following program? Run
the program to see if your prediction proved correct.

10 CLS

20 A$ = STRINGS(5,191) + CHR$(26) + STRINGS(5,32) + CHR$(26) +
STRINGS$(5,191)

30 PRINT A$

When turn on the TRS-80 Model I or Model III to begin
programming in BASIC, how many bytes of string space are
available?

If you type PRINT FRE(" "), the TRS-80 will print the number of
free bytes of string space. When you first turn on your TRS-80,
check the number of free bytes of string space. Run a program that
CLEARs more bytes. Check it again. Then type NEW and press
ENTER. Does removing the program from memory with the NEW
instruction change the amount of string space CLEARed?

What is the result of the following program? Explain what
happened.

10 CLS

20 PRINT STRINGS(5,"176")

Chapter 3.
Introduction to
TRS-80 Graphics Techniques:
POKE Graphics and the Video Memory

OBJECTIVES:

At the end of this chapter, the reader will be able to perform the
following tasks:

>

Write the locations of the beginning and end of the video memory
on the TRS-80 Model I, Model III and Model 4.

Write an example (in proper format) of a POKE instruction which
places a graphics character on the display.

Write a program that draws a vertical line on the display, using
POKE graphics.

Write an example of a simple program with an INKEYS instruction
that POKEs values corresponding to keystrokes, to the video RAM.
Write a program that PEEKs each position of the video RAM and
displays each value.

. Write a program that hides a string of characters in the
odd-numbered locations of the video memory while a RUN
instruction is executed.

v 0P

moom o

INTRODUCTION

Thus far we have examined two ways to produce graphics on a
TRS-80 Model I, Model IIl, or Model &4 screen: SETting points and
PRINTing graphics characters. The third and final major way to
accomplish graphics programming is by using the POKE instruction.

The POKE instruction is aptly named: it places or "pokes" a certain
value into a specified memory location. The TRS-80 microcomputers, like
all microcomputers, have memory in which to store information. The
POKE instruction simply lets the programmer access this memory directly.
For example, this instruction:

POKE 25020, 54

P

places the value 54 into memory location 25020.

What makes this information useful to the graphics programmer is
that part of the TRS-80 memory determines what is displayed on the
TRS-80 screen. This part of memory is commonly called "video memory"
or "video RAM." By POKEing values to the video memory, we can control
what appears on the computer's screen.

The video memory resides in locations 15360 to 16383 inclusive.
The video memory values correspond to the screen locations in much the
same way as the PRINT @ locations. Location 15360 is in the upper left
corner, and value 16383 is in the lower right. The location on the screen
of any particular video memory location can be determined by adding

47

48 The TRS-80 Graphics Book

15360 to the PRINT @ location.
POKEING VALUES INTO THE VIDEO MEMORY

Consider the program in Listing 3-A. This program POKEs the value
191 into memory location 16000. Since 16000 is between 15360 and 16383,
it is in the video memory. When you run this program, character 191
appears at PRINT @ location 640. The number 640 can be found by
subtracting 16000 - 15360.

10 CLS
20 POKE 16000, 191

Listing 3-A

The program in Listing 3-B places the value 191 in the lowest and
highest locations of the video memory. Where do you think these
characters will appear on the screen?

10 CLS

20 POKE 15360, 191

30 POKE 16383, 191

40 PRINT @ 128, "They are in two corners."

Listing 3-B

What would happen if we POKEd the value 191 into ALL the
locations in the video RAM? Before you look at Listing 3-C, can you
think of the most efficient way to program this multiple POKE?

10 CLS
20 FOR J=15360 TO 16383
30 POKE 7, 191

40 NEXT J

50 GOTO 50

Listing 3-C

The FOR-NEXT loop in lines 20 to 40 POKE the value 191 into
every memory location between 15360 and 16383. This fills every screen
location with character 191. This program shows another way to "clear
the screen" with all "SET" characters, as was discussed in Chapter 2.

Do you recall the unexplained POKE instruction in those
screen-filling programs in Chapter 2? It was the special POKE that

allowed us to fill that last location of the screen without causing the
screen to scroll. The programs contained the following instructions

POKE 16383, 191

Does this instruction make sense to you now?

Introduction: POKE Graphics and the Video Memory 49

DRAWING LINES

Drawing lines with the POKE instruction has limitations similar to
those of the PRINT @ instruction. Single pixels cannot easily be turned on
or off, as they can in the SET/RESET instruction. But within that
restriction, lines can be drawn anywhere on the screen.

To draw a line, we may first choose a graphics character to use to
build the line. Then we may decide where on the screen we want the line,
which will determine which video memory locations we use to display it.

To draw a line on the top row of the screen, we may decide to use
character 140, which "turns on" the two pixels in the vertical middle of
the character (see Appendix 3). To determine the memory locations, we
may begin with the PRINT @ locations, which are 0 to 63 on the top row
of the screen (see Appendix 1). By adding 15360 to each of these
numbers, we arrive at 15360 and 15423 as our beginning and ending loop
values. So our program will look like this:

10 CLS

20 FOR J = 15360 TO 15423
30 POKE 37, 140

40 NEXTJ

Listing 3-E

When you run this program, you will notice that BASIC's "Ready"
prompt overwrites the line that was drawn. This is because the program
has POKEd the values to the video memory and thus has not changed the
current PRINT location since clearing the screen in line 10. So the
"Ready" prompt appears at the current PRINT location, which is still the
top left corner of the screen.

We could avoid this by changing the PRINT location before ending
the program, like this:

50 PRINT @ 320, "
Or we could end the program with an endless loop, like this:
50 GOTO 50

Drawing vertical lines is similar. Instead of POKEing the value of
the graphics character into adjacent memory locations in a horizontal
row, we POKE them into adjacent locations in a vertical row.

Listing 3-F shows an example. This time the character used is 149,
which "turns on" the pixels on the left half of the graphics character.
The loop starts again at 15360, the top left corner of the screen. But this
time it ends at 16320, which corresponds to PRINT @ location 960, the

50 The TRS-80 Graphics Book

lower left corner of the screen. The loop STEPs by 64, which means that
every 64th memory location will be POKEd with character 149. Since
there are 64 characters per line, the effect is to display each character
below the previous one, thus drawing the vertical line. Line 50 is added
to inhibit the "Ready" prompt until the BREAK key is pressed.

10 CLS
20 FOR J = 15360 TO 16320 STEP 64
30 POKE J, 149

40 NEXT J

50 GOTO 50

Listing 3-F

Photo 3-E

MORE COMPLEX PATTERNS

The program in Listing 2-1 showed a picture of a house that was
drawn by PRINTing various characters at various screen locations. The
program looked like this:

10 CLS
20 READ A,B

Introduction: POKE Graphics and the Video Memory 51

30 IF A= -1 THEN 1000
40 PRINT @ A, CHRS(B);
50 GOTO 20

(Lots of DATA statements)

999 DATA -1, -1
1000 GOTO 1000

Listing 3-D

The PRINT @ instruction in line 30 PRINTs the characters at the
specified locations. Can you change line 30 to use a POKE instruction
instead of the PRINT @? Can the same DATA values be used? The values
to be displayed (contained in the variable B) would not change. But how
would the memory location compare to the PRINT @ location?

Of course! We must add 15360 to the PRINT @ location to find the
proper POKE location. So the new line 30 would read as follows:

30 POKE A+15360, B

This entire house picture can be created without SETting a single
point or PRINTing a even one graphics character!

THE NEED FOR A BETTER KEYBOARD INPUT ROUTINE

We are going to take a close look at a specialized program that
uses the video memory and controls what kinds of characters can be
typed in at the keyboard. But first let's look at the reason such a routine
is needed.

The program in Listing 3-E shows an example of keyboard input.

10 CLS

20 INPUT "WHAT IS YOUR NAME"; N$

30 INPUT "WHAT IS THE FIRST NUMBER";N1
40 INPUT "WHAT IS THE SECOND NUMBER'";N2
50 PRINT N$ "," NI "+" N2 "=" N1+N2

Listing 3-E

Here is a line-by-line description of the program:

Line Description
10 Clears the screen.
20 Displays the question on the screen, accepts a keyboard response,

52

30
40

50

The TRS-80 Graphics Book

and assigns the keyboard input to the string variable NS.

Displays the question on the screen, accepts a keyboard response,
and assigns the keyboard input to the numeric variable N1.

Displays the question on the screen, accepts a keyboard response,
and assigns the keyboard input to the numeric variable N2.

Displays the name (N$), a comma, the first number (N1), a plus sign,
the second number (N2), an equals sign, and the sum of the first
number and the second number (N1 + N2).

Keyboard input in this program in accomplished with the INPUT

instruction. This instruction is the easiest and most direct way to accept
keyboard input.

But it has these limitations:

The program cannot control how long a keyboard response will be.
For example, an mailing list program might list names in columns
and allow twelve spaces for each name. If the name is more than
twelve characters long, the name must be chopped off or the
format of the columns will be disrupted. Controlling the length of
the input would eliminate this problem.

The programmer cannot control which keystrokes are accepted. If a
numeric variable is used in the INPUT statement (as in lines 30 and
40 in Listing 3-E), typing something that begins with a letter will
produce a "Redo" error message, again possibly messing up the
format of the screen. This could be avoided if the keyboard input
could be limited to numbers only.

If the CLEAR key is pressed during the keyboard input, the entire
screen in cleared. That could really destroy an attractive screen.

These limitations demonstrate the need for another way to accept

keyboard input.

A BETTER KEYBOARD INPUT ROUTINE

Listing 3-F shows the beginning of a better keyboard input routine.

(We will add to this program little by little, so the line numbers are not
all there yet.) The line-by-line descriptions detail the unique features of
this routine.

20 LO = PEEK(l6416) + PEEK(16417) * 256
40 1S = INKEYS
100 1§ = INKEYS
110 IF 1$="" THEN
GOTO 100
140 1 = ASC(S)
190 POKE LO,I
210 LO = LO + 1
230 GOTO 100

Listing 3-F

Introduction: POKE Graphics and the Video Memory 53

Line Description

20 The value "PEEK(16416) + PEEK(16417) * 256" defines the current
cursor location in the video memory. For example, when the screen
is cleared with a "CLS" instruction, the value returned would be
15360, the top left position of the video memory. No matter what
was last PRINTed to the screen, this value specifies the location
where the next printing would occur by default. This value is
assigned to the variable LO, which will contain the current screen
location throughout this routine.

40 The keyboard is scanned. If a key has been pressed since the last
INPUT or INKEYS instruction, it will be stored in the the variable
IS. This first INKEYS instruction picks up any previous, unintended
keystrokes.

100 This INKEYS instruction also scans the keyboard, and any keystroke
pressed is stored in the variable 13, the new value replacing any
previous value in IS. For example, if the user presses the "A" key,
I$ contains "A"; but if no key is pressed, I$ contains " (null).

110 If no key is pressed and IS therefore contains null, the program
loops back to line 100 to scan for another character. The program
will loop back and forth between lines 100 and 110 until a key is
pressed. At
that point, the program proceeds to line 140.

140 The number assigned to the string IS (its ASCII value) is stored in
the numeric variable I. (Appendix 2 contains a list of all the ASCII
characters used in the TRS-80 Model I, IIl, and 4.) For example, if
the "A" key is pressed, the variable I would contain 65, the ASCII
value of "A."

190 The ASCII value of the keyboard input is POKEd into the current
cursor location. This displays the character corresponding with the
depressed key at the current cursor location. In other words, what
you pressed is what you see.

210 The variable containing the current location (LO) is incremented, so
the next character will be POKEd into the next position on the
screen.

230 The program returns to line 100 to wait for the next
keystroke.

The total effect of this routine is described in line 190: the
character corresponding to each key you press appears on the screen.

When you first run this program, it looks like nothing is happening.
But when you press a key, you will see the effect. The position of the
last letter displayed tells where the next position is. Wouldn't it be nice
to have a cursor show where the next screen position would be?

CREATING A BLINKING CURSOR
AND STORING THE KEYSTROKES PRESSED

Listing 3-G shows lines that can be added to the previous routine
to create a blinking cursor. (Lines marked with an asterisk appeared in

54

The TRS-80 Graphics Book

the original routine, but have been changed.)

60 CU = 32

70 CU = 168 - CU
80 POKE LO, CU

90 FOR J =1 TO 20

* 110 IF IS = " THEN

NEXT J:
GOTO 70
120 J = 20
130 NEXT J
220 CU = 32

* 230 GOTO 70

Line

Listing 3-G
Here is a line-by-line description of these added lines:

Description

60

70

80
90

110

120

130

220

The variable CU contains the value of the cursor character to be
POKEd onto the screen. In other words, the character
corresponding to the value of CU is shown as the current cursor
character. The value starts as 32, a space.

This is a tricky one. The value of CU is subtracted from 168, and
that new value is assigned to CU. CU begins as 32, then is
immediately assigned 168-32, or 136. Since CU is the cursor
character, a new cursor character is assigned by this statement.
The program loops back to this line repeatedly from lines 110 and
230. The second time this line is executed, CU is assigned a value
of 168-136, or 32. Thus the effect of this line is to cause the
cursor character to alternate between 32 (a space) and 136 (a
graphics character). This creates the blinking cursor.

The current value of the cursor character is POKEd into the
current cursor location. This causes the cursor character to appear
on the screen.

This line begins a loop with J as the looping variable.

If IS is null, no key has been pressed. When this happens, the
"NEXT J" loops back to line 90 for another keyboard scan (line
100). After the FOR-NEXT loop is finished, this line returns to line
70 to switch the cursor character. So the loop beginning in line 90
controls the wait before the cursor character is switched.

If a keystroke is received, the program goes to this line. J is set at
20 so the FOR-NEXT loop can be ended in line 130.

The FOR-NEXT loop is ended. The previous step and this one
demonstrate a good programming practice: terminate each
FOR-NEXT loop completely before proceeding with the program.
The cursor character variable (CU) is assigned a value of 32. When
the program returns to line 70, this will be subtracted from 168 to
yield a value of 136. This line causes the graphics character to
appear as an almost constant cursor as long as the user types

Introduction: POKE Graphics and the Video Memory 55

continuously, then blink when the user pauses.
230 Program control is returned to line 70 for another keystroke.

For this routine to be useful, it must somehow keep track of which
keys were pressed. Listing 3-H shows how this is accomplished.

50 S$ — m
200 SS = S$ + IS

Listing 3-H

Line Description

50 SS is the string variable that will store the keys pressed. At the
beginning of the routine, S$ is set to " or null.

200 Immediately after the value of the key pressed is POKEd to the
screen, the character corresponding to the key pressed (I$) is added
to S$, building the string.

So far our routine shows a blinking cursor, displays the character
of each key pressed to the screen, and builds a string of the keys
pressed. To see the value of the string being built,

A) Run the program.
B) Press the BREAK key to stop the program.
@) Type PRINT AS <ENTER> to display the value of AS.

ENABLING THE LEFT ARROW

What happens when you press the left arrow key to erase the last
character you typed? In the routine above, the number corresponding to
the left arrow (8) is POKEd into the video memory with the rest of the
characters. The code in Listing 3-I makes it erase the last character
instead.

150 IF I = 8 AND S$ <> " THEN
POKE LO, 32:

LO = LO - I:
S$ = LEFTS (S$, LEN (S$)-1):
GOTO 70

Listing 3-1

This line first checks to see if the back arrow is pressed (I = 8) and
other keys have already been pressed (S$ <> "). If these two conditions
are met, the following steps are executed:

A) 32 (a space) is POKEd into the current cursor location. This assures
that the other cursor character (136) is not left behind.

B) The current cursor location (LO) is decremented by 1. This moves
the location one character to the left.

()] The right-most character of S$ is deleted.

56

D)

The TRS-80 Graphics Book

The routine returns to line 70 for another character. This prevents
the lines beginning at 190 from being executed, and thus prevents
the 8 from being POKEd to the screen.

MAKING THE ROUTINE A SUBROUTINE

This routine is becoming quite lengthy, so you would not want to

include it in your program each time you needed to accept input from the
keyboard. So that it will have to be included only once, we can make it
into a subroutine to be called as needed. Listing 3-J changes our routine
into a subroutine.

Line

10 GOTO 500
160 IF I = 13 THEN
POKE LO, 32:
PRINT:
RETURN
500 CLS: PRINT "What is your name? ";
540 GOSUB 20

Listing 3-J

Description

10

160

500

540

The program "jumps around" the input subroutine to the main
program. Keeping the subroutine near the beginning of the program
helps it respond to keystrokes more quickly.

After accepting a keystroke, storing its ASCII value, and checking

to be sure it isn't a backspace, the subroutine checks for the

ENTER key (character 13). This key is used to terminate the

keyboard input, so it ends the subroutine. When character 13 is

detected, the subroutine does the following:

A) POKEs 32 (a space) into the current cursor location to be
sure no trailing cursor character is left behind.

B) Executes one PRINT statement. Since the routine POKEs to
the video memory rather than PRINTing to the screen, the
print location has not changed since the subroutine began.
This PRINT statement moves the new print location to the
next line on the screen, and thus guards against printing
over the characters accepted in the subroutine.

C) RETURNs from the subroutine to the main program.

This line begins the main body of the program. It clears the screen,

then prints a question. Notice that the question has a question

mark. An INPUT statement automatically displays a question mark
after each question, but our subroutine doesn't. Aiso, notice that
the semicolon after the question causes the answer to be displayed
on the same line as the question.

This line calls the subroutine. In this program, "GOSUB 20" is

approximately equivalent to "INPUT S5."

Introduction: POKE Graphics and the Video Memory 57

CHECKING THE INPUT

One of the limitations of the INPUT statement was that the length
of the string and the specific characters accepted could not be
controlled. Statements to control these are the next additions to our
subroutine.

The lines in Listing 3-K add the capability of checking the length
of the string being built while awaiting more keystrokes.

30 L1 =LO

180 IF LO - L1 = LE THEN
GOTO 70

530 LE = 12

Listing 3-K

Line Description

30 The numeric variable L1 stores the initial cursor location. In this
line, which appears near the beginning of the subroutine, L1 is
assigned its value.

180 LE is the maximum length of the string to be accepted (see line
530). If the current location (LO) minus the beginning location (L1)
equals the maximum length of the string (LE), the string is as long
as is allowed. The program loops back to line 70 for another
keystroke rather than continuing to build the string.

530 This line is located in the main program and precedes the call to
the subroutine. By assigning the value of LE, the main program
specifies the maximum length of the string to be built in the
subroutine.

The last addition to our subroutine checks which characters are
being pressed.

170 IF I<KLV OR I>HV THEN

GOTO 70
510 LV = 32
520 HV = 90
Listing 3-L

Line Description

170 The numeric variable LV contains the lowest ASCII value which will
be accepted in the subroutine, and HV contains the highest value. If
the variable I contains a value less than the low value or greater
than the high value, the program loops back to line 70 to await
another keystroke.

510 This line and the next are in the main body of the program and
precedes the call to the subroutine. In it the low value is set at 32,
the ASCII value for a space.

58

520

The TRS-80 Graphics Book

The high value is set at 90, the value for a "Z." Characters greater
than "Z," including all lower-case letters, will not be accepted.
FINISHING THE MAIN PROGRAM

Now that our keyboard input subroutine is complete, we can change

the main body of the program to make full use of the subroutine.

550 N$ = S$

560 PRINT "What is the first number? ";
570 LV = 48

580 HV = 57

590 LE = 3

600 GOSUB 20

610 N1 = VAL (S9)

620 PRINT "What is the second number? ";
630 GOSUB 20

640 N2 = VAL (S$)

650 PRINT NS$; ","s N1 "+"; N2; "="; N1+N2

Listing 3-M
Line Description
550 The value of S$ (which is currently the person's name) is assigned

560

570
580
590
600
610
620
630

640
650

to the variable NS. Since S$ is assigned a new value every time the
routine is called, its value must be used or transferred to another
variable before the subroutine is called again.

This line PRINTs the question on the screen. Since the question
ends with a semicolon, the line feed is suppressed and the current
cursor position remains on the same line of the display.

The lowest ASCII value of keystrokes accepted is set at 48, which
corresponds to a "0."

The highest ASCII value of keystrokes accepted is set at 57, which
corresponds to a "9."

The maximum length of the string to be accepted is set at 3.

The keyboard input subroutine is called.

The value of S$, the string variable assigned in the subroutine, is
assigned to the variable NI.

The second question is PRINTed.

The subroutine is called again. Notice that since the variables LV,
HV, and LE were not assigned new values, they retain their values
from the previous call of the subroutine.

The value of S$ is assigned to the variable N2.

The person's name, the first number, the second number, and the
sum of the two numbers are PRINTed on the screen with
appropriate punctuation.

Introduction: POKE Graphics and the Video Memory

So the whole program should look like this:
10 GOTO 500
20 LO = PEEK(16416) + PEEK(16417) * 256
30 L1 = LO
40 I$ = INKEYS
50 S$ - m
60 CU = 32
70 CU = 168 - CU
80 POKE LO, CU
90 FOR J =1 TO 20
100 1$ = INKEYS
110 IF I$ = "™ THEN
NEXT 3J:
GOTO 70
120 J = 20
130 NEXT 7
140 T = ASC(IS)
I50 IF I = 8 AND S$ <> "™ THEN
POKE LO, 32:
LO=LO - 1:
S$ = LEFTS (S$, LEN (SS)-1):
GOTO 70
160 IF 1 = 13 THEN
POKE LO, 32:
PRINT:
RETURN
170 IF IKLV OR I>HV THEN GOTO 70
180 IF LO - L1 = LE THEN GOTO 70
190 POKE LO,I
200 S$ =S$ + IS
210 LO=LO + |-
220 CU = 32
230 GOTO 70
500 CLS: PRINT "What is your name? '";
510 LV = 32

I n

520 HV = 90
530 LE = 12
540 GOSUB 20
550 NS = S$

560 PRINT "What is the first number? ";
570 LV = 48

580 HV = 57

590 LE = 3

600 GOSUB 20

610 N1 = VAL (SS)

620 PRINT "What is the second number? ";
630 GOSUB 20

640 N2 = VAL (SS)

650 PRINT NS$; ","; N1; "+"; N2; "="; N1+N2

Listing 3-N

59

60 The TRS-80 Graphics Book

What is your name? DENNIS
What 15 the first number? 14 ,
Khat is the second number? 233 :

Photo 3-N

Lines 20 to 230 can be used as a subroutine in any program. In
fact, they can be compressed into 3 lines, as follows:

10 LO = PEEK (16416) + PEEK (16417) * 256:

Ll = LO:

IS = INKEYS:
S$ = .

CU = 32

20 CU = 168 - CU:
POKE LO, CU:
FOR J = 1 TO 20:
I$ = INKEYS:
IF IS = "™ THEN
NEXT J: GOTO 20 ELSE
J = 20:
NEXT 3J:
I = ASC (1%9):
IF I =28 AND S$ <> "™ THEN
POKE LO, 32:
LO = LO - I:
S$ = LEFTS (S$, LEN (SS) -1):
GOTO 20 '

Introduction: POKE Graphics and the Video Memory 61

30 IF I = 13 THEN

POKE LO, 32:
PRINT:
RETURN ELSE

IFI <LV ORTID>HV THEN
GOTO 20 ELSE

IF LO - L1 = LE THEN
GOTO 20 ELSE

POKE LO, I:

S$ = S$ + I$:

LO = LO + It

CU = 32:

GOTO 20

Listing 3-O

In using this program, all the spaces may be deleted, except those
between "LE" and "THEN" shown in bold letters in line 30. The TRS-80
processor may interpret "LETHEN" as "LET HEN," which will produce a
syntax error in this line.

So this subroutine uses the video memory and the INKEY$
instruction to improve the control the programmer has over keyboard
input.

READING GRAPHICS FROM THE VIDEO MEMORY

We have seen some complex pictures drawn on our TRS-80 display.
The author did not spend hours calculating the graphics characters and
locations for these pictures. Rather, he invested his time in writing a
program that would do the hard work for him.

The program has three main parts: a drawing section, an
error-trapping routine, and a screen-reading program. This program
combines SET/RESET graphics (used to create the picture) with the use
of the video memory to read the graphics from the screen.

First let's look at the drawing section.

20 CLS
30 IS = INKEYS
40 PRINT 960, X; Y;
50 IS = INKEYS: IF 1§ = "™ THEN 50
60 IF IS = CHRS (9) THEN
X =X + l:
SET (X,Y):
GOTO 40 '**x CHRS (9) = RIGHT ARROW ***
70 IF 1S = CHRS (8) THEN
X =X -1t
SET (X,Y):
GOTO 40 '**x CHRS (8) = LEFT ARROW **%

62 The TRS-80 Graphics Book

80 IF IS = CHRS (91) THEN

Y = Y - 1:

SET (X,Y):

GOTO 40 '**x CHRS (91) = UP ARROW *%x
90 IF 1§ = CHRS (10) THEN

Y=Y + I

SET (X,Y):

GOTO 40 '*** CHRS (10) = DOWN ARROW *¥x
100 IF 1§ = CHRS (32) THEN

RESET (X,Y):

GOTO 40 "s*¥ CHRS (32) = SPACE *¥*
120 GOTO 40

Listing 3-P

Photo 3-P

Remarks have been added to this listing to minimize the extra
explanation needed. When one of the arrow keys is pressed, the program
SETs a pixel. When the space bar is pressed, the program RESETs the
pixel. The current values of X and Y are PRINTed at location 960.

Listing 3-Q shows the error-trapping routine. When an error occurs,
the program jumps to line 130 to PRINT a message, pause, PRINT spaces

Introduction: POKE Graphics and the Video Memory 63

over the message, and RESUME at the program line after the error line.

10 ON ERROR GOTO 130

130 PRINT @ 960, "ERROR...";
140 FOR K = 1 TO 400: NEXT K
150 PRINT @ 960, " "5

160 RESUME NEXT

Listing 3-Q

The remainder of the program (Listing 3-R) reads the video ram to
determine which graphics characters are at which location. If the program
finds a regular space (character 32) or a graphics space produced by a
RESET instruction (character 128), it goes to the next location.
Otherwise, it PRINTs the location and the value contained at that
location. It awaits a keystroke before proceeding to allow the user time
to write down the numbers.

110 IF I$ = "Y" OR I$ = "y" THEN
GOTO 170
170 FOR J = 15360 TO 16383
180 IF PEEK (J) = 32 OR PEEK (J) = 128
THEN NEXT J: END
190 PRINT @ 960, J; PEEK (J);
200 I$ = INKEYS$: IF I$ = "™ THEN 200
210 PRINT @ 960, "LOOKING.....";
220 NEXT J

Listing 3-R

To use this program, press the arrow keys to draw. To move
without drawing, press the arrow key, then the space bar for each step.
When you are ready to read your graphic from the screen, press the "Y"
key. As you write down the numbers, press any key (except BREAK!) to
go to the next set of numbers.

As you can see in this program, even when you use SET/RESET (or
PRINT) graphics, they can be read directly from the video memory.

STORING NUMBERS IN THE VIDEO MEMORY

A certain feature of the video memory makes is useful in storing
numbers.

When a BASIC program is first RUN, all the variables are
CLEARed; that is, all the numeric variables are set to 0 and all the
string variables are set to null. Sometimes a programmer wants to execute
a RUN in one line of a program but to retain the value of one variable
(perhaps a counter or a person's name). The value of a variable may be
stored secretly in the video memory while this happens.

64

The TRS-80 Graphics Book

The program in Listing 3-S shows that the value of AS is not

retained when the RUN instruction is executed in line 150. Each time the
program starts again, the value of A$ is null.

10 CLS

20 PRINT CHRS$(23);

30 CLEAR 500

80 PRINT "NOW AS$="; AS

90 INPUT "NEW VALUE FOR A$"; AS
100 IF AS = ™ THEN 90

150 RUN 30
Listing 3-S

Line Description

10 Clears the screen.

20 Sets the screen in the 32 characters/line mode, rather than the
regular 64 characters/line mode.

30 CLEARs 500 bytes of memory for string space.

80 PRINTs "NOW AS=" and the value of A

90 Accepts the new value for AS at the keyboard.

100 Returns to line 90 if AS is null.

150 RUNs the program again starting at line 30 so the screen will not

be cleared.

When the display is in the 32 characters/line mode, only the

characters in the even-numbered video memory locations are displayed.
When we POKE values into the odd-numbered locations in video memory,
they are not displayed in this mode. And RUNning the program again will
not affect their values unless the screen is cleared or otherwise changed.
The lines in Listing 3-T show how this can be done for our small program.

(Note:

Line

40 GOTO 80

50 FOR J = 1 TO PEEK (15361)

60 AS = AS + CHRS (PEEK (15361 + 2 * J))

70 NEXT J

110 POKE 15361, LEN (AS)

120 FOR J = 1 TO LEN (AS)

130 POKE 15361 + 2 * J, ASC (MIDS (AS, J, 1)
140 NEXT J

150 RUN 50

Listing 3-T

Since lines 110 to 140 execute before lines 50 to 70, lines 110 to
140 will be described first.)

Description

20

The first time the program is run, the program jumps around the
routine in lines 50 to 70. (These lines read values from the screen,
and the first time the program is run there are no values to be

110

120

130

140

50

60

70

Introduction: POKE Graphics and the Video Memory 65

read.)

After the string AS is accepted from the keyboard, the length of
the string is POKEd into the first odd position of the video
memory. Since the screen is in the 32 characters/line mode, this
and the POKEs to video memory in lines 120 to 140 are not
displayed on the screen.

A loop is started with J as the looping variable. The loop goes to
the number which represents the length of the string AS.

In the loop, the ASCII numeric representation of each character in
the string AS is POKEd into successive odd video memory locations.
The value 15361 + 2 * J increases by 2 each time J is incremented
by 1, so only the odd locations are used. Location 15361 contains
the number that tells how many ASCII values are being POKEd into
memory, and they are POKEd in to the odd locations that
immediately follow 15361 in memory.

The loop ends.

Lines 50 to 70 execute each time the program is run, except the
very first time. Line 50 begins a loop using J as the looping
variable. It will go to PEEK(15361) which will contain the length of
the string A$ that was POKEd in line 100.

The string AS is reconstructed. Each value POKEd in by lines 120
to 140 is PEEKed out by this loop. Notice that the value 15361 + 2
* J is the same as on line 130.

The loop ends and the program proceeds to line 80.

VALUE FOR A$? GRAPHICS
A$=GRAPHICS TN
VALUE FOR A$? TRS-80
A$=TRS-80 . .
VALUE FOR A$? COMPUTER
A$=COMPUTER ’
VALUE FOR As$?

Photo 3-T

66 The TRS-80 Graphics Book

After you RUN this program, you may want to see the characters
that are hidden by this routine. You can see them by following the
following steps:

1) Type RUN <ENTER> to run the program.

2) Type in a word or a name and press <ENTER>.

3) When the program asks "NEW VALUE FOR AS$?" again, press
the <BREAK> key.

4) Type PRINT CHRS(28) and press <ENTER> to return the
screen to the 64 characters/line mode. At this point, the characters the
program POKEd into the odd video memory locations are visible.

5) You may type PRINT CHRS$(23) and press <ENTER> again to
hide the characters again.

Chapter Summary

The POKE instruction places a value into a memory location. Its format is
POKE n, m where n is a memory location and m is a value between
0 and 255.

The memory locations 15360 to 16383 are the video memory (sometimes
called "video RAM"). The values in these locations determine what
is displayed on the screen of the TRS-80 microcomputer.

Horizontal lines can be drawn on the screen by POKEing graphic
character values (between 128 and 191) to the video memory in
adjacent memory locations. Vertical lines can be drawn by POKEing
the values into locations at intervals of 64.

Complex pictures may be drawn with POKE instructions the same way
they are with PRINT instructions. The values for the locations and
the character values can be READ from DATA statements.

To improve control over keyboard input, a programmer may use an
INKEYS routine that POKEs characters into the video memory.

After a design has been drawn on the screen, the values can be PEEKed
from the video memory to determine how to redraw the design.

In the 32 characters/line mode, characters corresponding to only the
even-numbered video memory locations are displayed. Values POKEd
into the odd-numbered locations of the video memory are retained

~r

while a CLEAR or RUN is executied.

Introduction: POKE Graphics and the Video Memory 67

Meeting the Chapter Objectives

‘Here are the chapter objectives for you review. Can you meet all

the objectives?

A.
B.
C.
D.

.

E
F.

Write the locations of the beginning and end of the video memory
on the TRS-80 Model I, Model III, and Model 4.

Write an example (in proper format) of a POKE instruction which
places a graphics character on the display.

Write a program that draws a vertical line on the display, using
POKE graphics.

Write an example of a simple program with an INKEYS instruction
that POKEs values corresponding to keystrokes, to the video RAM.
Write a program that PEEKs each position of the video RAM and
displays each value.

Write a program that hides a string of characters in the
odd-numbered locations of the video memory while a RUN
instruction is executed.

More Programming Practice

Using the POKE instruction, write a program that draws your
initials on the screen.

Write a routine that uses the video memory and the INKEYS
instruction to accept keyboard input in the 32 characters/line
mode.

Write a routine that allows the user to draw a design in the top
left corner of the screen. The routine should read and display the
locations and values of the characters used in the design.

Write a program that hides the value of a number in the video
memory in the 32 characters/line mode. (Hint: Use the VAL and
STRS instructions to convert between numeric and string values.)

Write a program that prompts the user for a memory location and a

value, then POKEs the value into the location. Without scrolling, it
should repeat this until the BREAK key is pressed.

Chapter Checkup

In the program in Listing 3-G, how could the speed of the blink of
the cursor character be slowed down to half as fast?

How does the line in Listing 3-I delete the right-most character
from the string being built?

68

5.

10.

The TRS-80 Graphics Book

In the program in Listing 3-N, why does S$ have to be set to null in
line 507

The section of the drawing program in Listing 3-Q traps errors.
What kind of error is most likely to occur while the program is
running?

The program in Listings 3-P, 3-Q, and 3-R displays the values of
the video memory on the video screen. How would you change the
program to make it print out the values-on a line printer? (Consider
whether the program would still have to pause between each value.)

What memory location determines what is displayed on the third
line down on the screen, the fourth position in from the left?

What are the two values that can be POKEd into a video memory
location to erase any characters that appear on the screen at that
location?

What happens when you try to POKE a negative value into a video
memory location?

How many characters can be "hidden" in the video memory in the
32 characters/line mode?

"PRINT @" locations range from 0 to 1023, and corresponding video
memory locations range from 15360 to 16383. If you type PRINT @
1024, "Dennis" at your TRS-80 microcomputer, an error returns. But
no error is returned if you type POKE 16384, 65. Why should the
programmer be very careful about POKEing to locations beyond the
video memory?

Chapter 4.
First Applications:
Business and Education

OBJECTIVES:

At the end of this chapter, the reader will be able write a program with
the following characteristics:

A. It PRINTs a string of graphic characters around the heading for an
attractive title screen.

B. It calls an INKEYS keyboard input routine for all keyboard input.

C. The program contains a main section that calls the other sections
as subroutines. These subroutines should have only one entry (from
the main section) and one exit (a RETURN). An exception is the
keyboard input routine which is called as needed throughout the
program.

D. The program READs numbers from DATA statements to build
graphic shapes for a circle, a square, a rectangle, a triangle, and
an oval.

E. The program displays one of the shapes (randomly chosen), asks the
name of the shape, accepts an answer, and displays another shape.
A total of twenty questions are asked.

F. The program keeps score and makes a bar graph to show how many
of each shape the user identified correctly.

INTRODUCTION

Chapters 1, 2, and 3 discussed specific techniques of creating
graphics on a TRS-80 Model I, Ill, or 4 screen. These methods are
probably used in ninety percent or more of the TRS-80 BASIC programs
written today. In this chapter you will find several applications programs
that use these techniques. All the major components and many minor
points of these programs are explained.

To gain the most from these sample programs, you should take the
time to key them in at your TRS-80 keyboard. Look for the routines that
have been discussed in the previous chapters and the variations of these
routines. After you are comfortable with what each component of each
program does, you may want to alter each program yourself. This is one
of the best ways to prove to yourself that you really understand the
techniques used.

THE STRUCTURE OF THE PROGRAMS

The programs presented in this chapter have several common
features:

1) Each program has a main section which calls many

subroutines. This structure makes if easy to organize, write, understand,
and maintain the programs.

69

e m— et

70 The TRS-80 Graphics Book

2) Each program begins with the keyboard input routine (in
compressed form) from Chapter 3. Putting this routine before the main
section of the program makes the keyboard input routine execute more
quickly. This routine is called by the other subroutines whenever keyboard
input is required.

3) Each of the subroutines is documented with the same label
it is given when it is "called" from the main section of the program.

4) Each subroutine has only one entry and one exit. The main
section of the program is the only part of the program that calls the
subroutines, and the only exit is with a "RETURN" statement. (The only
exception to this rule is the keyboard input routine, which is called as
needed.)

Pay special attention to these features as you work with these
sample programs.

PROGRAM 1: AN X,Y GRAPHING PROGRAM

The first program uses PRINT and POKE graphics to accept data at
the keyboard and plot it on the screen. Lines 15 to 55 contain the main
section of the program.

5 GOTO 15: 'X,Y Graphing Program by Dennis Tanner
10 !
Lines 11 to 13 are the keyboard input routine from chapter 3

11 LO = PEEK(16416)+PEEK(16417)¥256: L1=LO: I$=INKEYS$: S$=""":
CU=32
12 CU=168-CU: POKE LO,CU: FOR JJ=1 TO 20: I$=INKEYS: IF 1$=""
THEN NEXTJJ: GOTO 12
ELSE JJ=20: NEXTJJ: I=ASC(I$):IF 1=8 AND SS<>™
THEN POKE LO,32: LO=LO-1: S$=LEFTS$(S$,LEN(S$)-1): GOTO 12
13 IF 1=13 AND S$<>'"' THEN POKE LO,32: PRINT: RETURN
ELSE IF IKLV OR IDHV THEN 12
ELSE IF LO-L1=LE THEN 12 ELSE POKE LO,I: S$=55+I$: LO=LO+1:
CU=32: GOTOI12
14
Main section of the program

15 CLEAR 200: DIM NU(10,10): 'INITIALIZE VARIABLES

20 GOSUB 100 'PRINT HEADING

25 GOSUB 200 'ACCEPT PARAMETERS AT KEYBOARD

30 GOSUB 300 'ACCEPT THE DATA AT THE KEYBOARD

35 GOSUB 400 'CLEAR SCREEN AND PRINT X AXIS AND NUMBERS
40 GOSUB 500 'PRINT Y AXIS AND NUMBERS

45 GOSUB 600 'PLOT THE NUMBERS

50 GOSUB 700 'AWAIT KEY PRESS

55 GOTO 15

99!

100
110

120
199 !

200
210

220
299 '

300
310
320
330

340

350
360
370
380
390
399!

400
410
420
430
440
499!

500
510
520
530
540
599 7

First Applications: Business and Education 71

Print Heading

CLS: PRINT@16,STRINGS$(32,140):
PRINT @ 86, "X,Y Graphing Program"
PRINT@148,"Written by Dennis Tanner":
PRINT@208,STRINGS(32,140)

RETURN

Accept Parameters at Keyboard

PRINT@341,"X Interval? (1 - 10): " CHRS(30);: LE=2: LV=47: HV=58:
GOSUB 11: XI=VAL(SS): IF XI<1 OR XI>10 THEN 200
PRINT@405,"Y Interval? (1 - 10): " CHRS(30);: LE=2: LV=47: HV=58:
GOSUB 11: YI=VAL(SS): IF YI<I OR YI>10 THEN 210

RETURN

Accept Data at Keyboard

PRINT@972,"Type in numbers to graph, or 999 to end.";
FOR CO=1 TO 100
PRINT@538,"Number";CO
PRINT@602,"X: " CHRS$(30);: LE=3: GOSUB 11: X1=VAL(S$):
IF X1=999 THEN EN=CO-1: CO=100: NEXT CO: RETURN
ELSE IF X1>10*XI THEN 330
PRINT@666,"Y: " CHRS$(30);: GOSUBI1: Y1=VAL(SS):
IF Y1=999 THEN EN=CO-1: CO=100: NEXT CO: RETURN
ELSE IF Y1>10*¥YI THEN 340
PRINT@666,CHR$(30);
NUCINT(X1/XD,INT(Y1/YD) = NUONT(X1/XD),INT(Y1/YD)+1
NEXT CO
EN=100
RETURN

Clear Screen and Print X Axis and Numbers

CLS: FOR J=0TO10

PRINT@968+J%5,J* XI;
NEXT J
PRINT@904,STRINGS(55,140);
RETURN

Print Y Axis and Numbers

FOR J=0TO10
PRINT@832-J*64,J*YI;
POKE 16198-3*64,191
NEXT J

RETURN

Plot the Numbers

72 The TRS-80 Graphics Book

600 FOR J=0TOI0

610 FOR K=0TOIl0

620 IF NU(J,K) <> 0 THEN PRINT@8&40+J*5-K*64, NU(J,K);
630 NEXT K

640 NEXT J

650 RETURN

699 '

Await Key Press

700 PRINT@20,"Press any key to begin again.";: IS=INKEY$S
710 IS=INKEYS: IF 1$="" THEN 710
720 RETURN

Listing 4-A

. Written by Dennis Tanner,

L Gmeall ot e
el

- MNunber 1
e

Tupe in numbers to araph, or 9

Photo 4-A-1
Here is a section-by-section description of the first program:

Line 5 causes the program to "jump around" the keyboard input
subroutine,

Lines 11 to 13 contain the keyboard input subroutine discussed in
Chapter 3.

First Applications: Business and Education 73

Lines 15 to 55 contain the main section of the program. The overall
logic of the program is shown in this section. Each of the subroutines is
called in turn, and line 55 causes the program to begin again.

Notice that the initialization in line 15 is not a subroutine. The
reason is, a CLEAR statement clears all theé variables and the outstanding
subroutine RETURN locations. So a CLEAR statement in a subroutine

would cause a "Return without Gosub" error when the program tried to
RETURN.

Press any key to beain again. -

e

1

8

8

8

g

4‘
-3

5

1

8

Photo 4-A-2

Lines 100 to 120 clear the screen and PRINT the heading. The
STRINGS function is used in lines 100 and 110 to create the graphics
around the heading.

Lines 200 to 220 PRINT questions and then accept responses using
the keyboard input subroutine. The length used (LE) is 2. The low value
(LV) and high value (HV) are 47 and 58 respectively, meaning that only
numbers are accepted. The X interval value is assigned to XI, and the Y
interval value is assigned to YI. If either value is less than 1 or greater
than 10, it is rejected.

74 The TRS-80 Graphics Book

Lines 300 to 370 accept the data at the keyboard. This routine
builds the array NU(x,y), where x is the X value of the pair, and y is the
Y value. The array serves as a counter, so if there were 3 numbers in the
position X=5 Y=7, then NU(5,7) would equal 3.

CO is the counter, so up to 100 X,Y pairs are accepted. EN is the
number of pairs returned at the end of the routine. If the user types 999
for the item 4, there are CO - 1 or 3 of the X,Y pairs (lines 330 and
340). If the user puts in 100 pairs, EN is 100 (line 380).

If the X coordinate is greater than 10 times its interval (XI), or the
Y coordinate is greater than 10 times its interval (YI), then the number is
not accepted.

PRINTing CHRS$(30) with a semicolon clears to the end of the
current line. This character is PRINTed immediately preceding each call
to the keyboard input routine. So if a value is not accepted for either X
or Y, that value is cleared from the screen before another is accepted.

Since there are at most 10 intervals, the program keeps track of
only 10 Y values per X value, and of only 10 X values. So if the X
interval is 5 and the Y interval is 10, the values (20,20), (21,22), (23,20),
(24,27), (23,26), and (22,28) would all be counted as (20,20), or (4x5,
2x10). Thus NU(%4,2) would equal 6. Line 360 in the program puts each
value in its proper location in the array.

Lines 400 to 440 PRINT the X axis and the numbers under it. In the
J loop, 968+J*5 is the location (incremented by 5 each time). J*XI gives
each value in the loop, incremented by the X interval.

Lines 500 to 540 POKE the Y axis into the video memory and
PRINT the values beside it.

Lines 600 to 650 PRINT the values of the NU(x,y) array on the
screen in the J loop. The horizontal position (in intervals of 5) is
determined by adding J*5 to 840. The vertical position is determined by
subtracting K*64 from the 840 + J*5.

Lines 700 to 720 PRINT a message at the bottom of the screen and
wait for a keypress before RETURNing.

Because this program PRINTs the values of the array at the proper
location, the screen presents a visual numeric display. The next program

presents a more graphic display of a single-dimensioned array.

PROGRAM 2: A BAR GRAPH PROGRAM

This program shares many lines with the previous program. You may
use the program in Listing 4-A, except for the lines marked with an

First Applications: Business and Education 75

asterisk. Do not key in the asterisks as part of your program!

5%
10

11

12

13

14!

15%
20
25
30
35
40
45
50
55
99!

100*
110
120
199 '
200
210
220

299 '

300
310
320*%

GOTO 15: 'Bar Graph Program by Dennis Tanner
'
Lines 11 to 13 are the keyboard input routine from Chapter 3

LO = PEEK(16416)+PEEK(16417)¥256: L1=LO: I$=INKEY$: S$=""
CU=32

CU=168-CU: POKE LO,CU: FOR JJ=1 TO 20: I$=INKEYS:

IF 1$="" THEN NEXTJJ: GOTO 12

ELSE JJ=20: NEXTJJ: I=ASC(I$):IF 1=8 AND S$<>™

THEN POKE LO,32: LO=LO-1: S$=LEFT$(S$,LEN(S$)-1): GOTO 12
IF =13 AND S$<>™ THEN POKE LO,32: PRINT: RETURN

ELSE IF IKLV OR I>HV THEN 12

ELSE IF LO-L1=LE THEN 12 ELSE POKE LO,I: $$=5$+I$: LO=LO+1:
CU=32: GOTOI2

Main section of the program

CLEAR 200: DIM NU(10): 'INITIALIZE VARIABLES

GOSUB 100 'PRINT HEADING

GOSUB 200 'ACCEPT PARAMETERS AT KEYBOARD

GOSUB 300 'ACCEPT THE DATA AT THE KEYBOARD

GOSUB 400 '"CLEAR SCREEN AND PRINT X AXIS AND NUMBERS
GOSUB 500 'PRINT Y AXIS AND NUMBERS

GOSUB 600 'PLOT THE NUMBERS

GOSUB 700 'AWAIT KEY PRESS

GOTO 15

Print Heading

CLS: PRINT@16,STRINGS(32,140):PRINT @ 87,
"Bar Graph Program"

PRINT@148,"Written by Dennis Tanner":
PRINT@208,STRING$(32,140)

RETURN

Accept Parameters at Keyboard

PRINT@341,"X Interval? (1 - 10): " CHRS$(30);: LE=2: LV=47: HV=58:
GOSUB 11: XI=VAL(SS): IF XI<1 OR XI>10 THEN 200
PRINT@405,"Y Interval? (1 - 10): " CHRS$(30);: LE=2: LV=47: HV=58:
GOSUB 11: YI=VAL(SS): IF YI<1 OR YI>10 THEN 210

RETURN

Accept Data at Keyboard
PRINT@972,"Type in numbers to graph, or 999 to end.";

FOR CO=1 TO 100
PRINT@538,"Number";

76 The TRS-80 Graphics Book

330* PRINT@602,CO": " CHR$(30);: LE=3: GOSUB 11:
X1=VAL(SS):
IF X1=999 THEN EN=CO-1: CO=100: NEXT CO: RETURN
ELSE IF X1>10*XI THEN 330

360%* NU(INT(X1/XI)) = NU(INT(X1/XD)+1
370 NEXT CO

380 EN=100

390 RETURN

399!

Clear Screen and Print X Axis and Numbers

400* CLS: FOR J=1TOI10

B10% PRINT@967+7%5,J%XI;
420 NEXT J

430 PRINT@904,STRINGS(55,140);
440 RETURN

499

Print Y Axis and Numbers

500 FOR J=1TOI0

510 PRINT@832-J%64,J*YI;
520 POKE 16198-J*64,191
530 NEXT J

540 RETURN

599 '

Plot the Numbers

600* FOR J=1TOIlO0

610% IF NU(J) > YI¥10 THEN NU(J) = YI*10

620% NY=INT(NU(J)/YD): IF NU(J)=0 THEN NEXTJ: RETURN
630% FOR K=1 TO NY

640% POKE 15360 + 840 + J*5 - K*64, 191

650 NEXT K: NEXT J
660 RETURN
699 '

Await Key Press

700 PRINT@20,"Press any key to begin again."s: IS=INKEYS
710 IS=INKEYS: IF 1$="" THEN 710
720 RETURN

Listing 4-B

Do wrers ~anm coan ~

1130]uu LQll oy ~
program in Listing 4-A. Le
differences.

ot ma fram the
Hivo FAANG b LR RN

that contain

-
-

Line 5 has the same function as before but a different label.

Lines 15 to 55 are almost identical to the program in Listing 4-A.
The array NU(x) is dimensioned as a single-dimension array in this program

First Applications: Business and Education 77

because we are specifying only the Y values, not both the X and Y
values.

Lines 100 to 120 simply print different information in the heading.

Lines 300 to 370 are accepting single numbers, not pairs of
numbers.

Lines 400 to 450 and Lines 500 to 540 plot the numbers from 1 to
10 instead of from 0 to 10.

Lines 600 to 650 contain significant differences from the previous
program. In this program, for each of the 10 intervals, the variable NY is
computed as the number to plotted as the frequency of Y. As seen in line
610, if the number is zero, no plotting occurs.

The K loop (lines 620 to 640) goes from 1 to the newly-computed Y
fregency (NY). It POKEs that many graphic characters 191 into the
proper screen position. Since the right number of characters is POKEd
into position, each bar is the right height.

Three sections of the program have not changed, and the logic of

the program has not changed at all. The modular format keeps the
program easy to understand.

-~ Press any key to begin again .-

o«

4
9
8 .
&
5
4
3
2
1

Photo 4-B

78 The TRS-80 Graphics Book

PROGRAM 3: A FANCIER BAR GRAPH PROGRAM

This program is an enhanced version of the program in Listing 4-B.
The "Plot the Numbers" routine routine has changed to allow more
accurate plotting of large numbers. It still contains the code to POKE in
the values (lines 600 to 630 of Listing 4-C). But it also contains code to
use the SET instruction to produce more accurate graphs when the
interval is greater than l.

For this program, just delete lines 600 to 660 of Listing 4-B. Then
insert these lines:

600 IF YI>1 THEN 635 ELSE FOR J=1 TO 10

605 IF NU(J)> YI*10 THEN NU(J= YI*10

610 NY= INT(NU(J)/YI): IF NU(J)=0 THEN NEXTJ: RETURN
615 FOR K = 1 TO NY

620 POKE 15360 + 840 + J*5 - K*64, 191

625 NEXT K: NEXT J

630 RETURN

635 FOR J=1 TO 10: IF NU(J)=0 THEN NEXTJ:RETURN
640 IF NU(J) > YI*10 THEN NU(J)= YI*10

645 NY = INTUNU(T)/YI)*3)

650 FOR K = 1 TO NY

655 SET (17 + 10%J, 40-K): SET (18 + 10*J, 40-K)
660 NEXT K: NEXT J

665 RETURN

Listing 4-C

This time we use the SET instruction in line 655 to create the
graphics. The Y height is computed in line 645. The Y counter NU(J) is
divided by the interval to give the number of blocks to plot. Then it is
divided by 3 since each character-sized block has 3 vertical pixel
positions. This number NY is used as the counter in the K loop that SETs
the graphics points.

The first three programs have shown possible business applications
of TRS-80 graphics. The remaining two programs demonstrate educational
uses of graphics.

PROGRAM #4: GRAPH-READING PRACTICE

This program uses the same basic structure as the last two
programs, but it generates its own data and asks the user about the

graph.
5 GOTO 15: 'Graph Reading Program by Dennis Tanner
10 !
Lines 11 to 13 are the keyboard input routine from Chapter 3

11 LO = PEEK(16416)+PEEK(16417)¥256: L1=LO: I$S=INKEY$: S$="":

12

13

14

15
20
25
30
35
40
45
50
55
60
65

70
75
80
&5
99 !

100
110

120
130
140
150
199

200
210
220
299

300

First Applications: Business and Education 79

CU=32
CU=168-CU: POKE LO,CU: FOR JJ=1 TO 20: I$=INKEYS:
IF I$="" THEN NEXTJJ: GOTO 12

ELSE JJ=20: NEXTJJ: I=ASC(S):

IF I=8 AND S$<>"™ THEN POKE LO,32: LO=LO-I:
S$=LEFTS$(S$,LEN(SS)-1): GOTO 12

IF I=13 AND S$<>"" THEN POKE LO,32: PRINT: RETURN
ELSE IF IKLV OR I>HV THEN 12

ELSE IF LO-L1=LE THEN 12 ELSE

POKE LO,I: S$=S$+I$: LO=LO+1: CU=32: GOTOI2

Main section of the program

CLEAR 200: DIM NU(10): 'INITIALIZE VARIABLES
GOSUB 100 'PRINT HEADING
GOSUB 200 'SET PARAMETERS FOR PROGRAM
GOSUB 300 'GENERATE RANDOM DATA
GOSUB 400 'CLEAR SCREEN AND PRINT X AXIS AND NUMBERS
GOSUB 500 'PRINT Y AXIS AND NUMBERS
GOSUB 600 'PLOT THE NUMBERS
FOR QU =1 TO 5
GOSUB 700 'GENERATE AND DISPLAY QUESTION
GOSUB 800 'ACCEPT RESPONSE AT KEYBOARD
IF RE <> AN THEN GOSUB 900: GOTO 60
'IF INCORRECT, THEN DISPLAY ERROR MESSAGE
AND ACCEPT ANOTHER RESPONSE
GOSUB 1000 'POSITIVE REINFORCEMENT MESSAGE
NEXT QU
GOSUB 1100 'DISPLAY REPORT AND AWAIT KEYPRESS
GOTO 15

Print Heading

CLS: PRINT @ 16, STRINGS(32,140): PRINT @ 85,
"Graph Testing Program"

PRINT @ 148, "Written by Dennis Tanner":
PRINT @ 208, STRINGS(32,140)

PRINT @ 979, "Press <ENTER> to continue";
IS=INKEYS$

IS=INKEYS: IF I$ <> CHR$(13) THEN 140
RETURN

Set Parameters for Program

X1 =10: Yl = 10
XI=1:YI =1
RETURN

Generate Random Data

FOR J =1 TO 10

30

310
320
330
399

400
410
420
430
440
450
499

500
510
520
530
540
550
599

600
610

620
630
640
650
699

700
710

720
799

800
810

aAn

820
899

900
910

920
930

The TRS-80 Graphics Book

NU(J) = RND (10)
NEXT J
RETURN

Clear Screen and Print X Axis and Numbers

CLS: FOR J =1 TO 10

PRINT @ 967 + J * 5, J * XI;
NEXT J
PRINT @ 904, STRINGS(55,140)
PRINT @ 960, "Day > > >
RETURN

Print Y Axis and Numbers

FOR J=1TO 10
PRINT @ 832 - J * 64, J * YI;
POKE 16198 - J * 64, 191
NEXT J
PRINT @ 128, "Candy Bars';
RETURN

Plot the Numbers

FOR J =1 TO 10
NY = INT(NU(J)/YD: IF NU(J)=0
THEN NEXT J: RETURN
FOR K = 1 TO NY
POKE 15360 + 840 + J * 5 - K * 64, 191
NEXT K: NEXT J
RETURN

Generate and Display Question

DA = RND (10): AN = NU(DA): Rl = 1

PRINT @ 10, "How many candy bars were eaten on day" DA "? ";
CHR $(30);

RETURN

Accept Response at Keyboard

LE = 2: LV = 48: HV = 57: GOSUB 11
RE =
RETURN
Display Error Message
IF RE < AN THEN
PRINT @ 85, "Sorry," RE "is too low.";s GOTO 920
PRINT @ 85, "Sorry,” RE "is too high.";
PRINT @ 50 + LEN(STRS$(DA)), CHRS(30);
RI =0

First Applications: Business and Education 81

940 RETURN
999 !
Positive Reinforcement Message

1000 PRINT @ 64, CHRS(30);
1010 PRINT @ 86, "Yes," AN "is correct.";
1020 FOR K = | TO 500: NEXT K
1030 PRINT @ 64, CHRS$(30);
1040 IF R1 = 1 THEN
NR = NR + 1

1050 RETURN
1099 !

Display Report and Await Keypress

1100 PRINT @ 0, CHRS$(30); PRINT @ 64, CHRS(30) ;
1110 PRINT @ 3, "On this graph, you got" NR

"out of 5 right on the first try.";
1120 PRINT @ 80, "Press <ENTER> for another graph.";
1130 I$=INKEYS
1140 I$=INKEYS: IF I$ <> CHRS$(13) THEN 1140
1150 RETURN

Listing 4-D

Here is a section-by-section description of this educational
program:

Line 5 "jumps" around the keyboard input routine to the main
section of the program.

Lines 11 to 14 are the keyboard input routine from Chapter 3.

Lines 15 to 85 contain the main section of the program. All the
subroutines below are called from this main section. Lines 50 to 75 hold a
FOR-NEXT loop for the questions asked by the program. Line 65 checks
the correctness of the response and branches back to line 60 until the
response is right. This branching within the main section eliminates the
need for jumping directly from subroutine to subroutine in the sections
below.

Lines 100 to 160 print the heading much as before.

Lines 200 to 220 set the parameters for the graph. In the previous
two programs, these values were accepted as data at the keyboard, but
this program sets them the same for every graph drawn.

Lines 300 to 330 generates random data for the graph. This data
was accepted at the keyboard in the previous programs, but here it is
randomly generated to test the user's understanding of graphs.

Lines 400 to 450 clear the screen and print the X axis as before.
This time the X axis is labelled as "Day > > >" for the test.

82 The TRS-80 Graphics Book

Lines 500 to 550 print the Y axis and numbers with the additional
"Candy Bars" label.

Lines 600 to 650 plot the values as a bar graph exactly as before.

Lines 700 to 720 choose a day (DA) and ask how many candy bars
were eaten on that day. The variable R1 (which has a value of 1 if the
user gets the problem correct on the first try and a value of 0 if not) is
initialized for each problem with a value of I.

Photo 4-D

Lines 800 to 820 call the keyboard input routine and store the
user's response in variable RE.

Lines 900 to 940 print appropriate messages for user responses less
than or more than ihe correct answer. The variablé Rl is set at 0 since

the user did not get the answer right on the first try.

Lines 1000 to 1050 print a reinforcement message and then pause.
The variable NR (number right) is incremented if the user got the problem
right on the first try (if R1=1).

Lines 1100 to 1150 display a report of the number correct, and

First Applications: Business and Education 83

await a keypress.

PROGRAM 4 is another example of changing the program slightly
to perform another task.

PROGRAM 5:
ADDITION DRILL WITH LARGE CHARACTERS

The final sample program in this chapter uses large characters
stored in a string array to present addition problems to students.

5 GOTO 20 ' Large number addition drill
10 !
Lines 11 to 13 are the keyboard input routine from Chapter 3

11 LO = PEEK(16416)+PEEK(16417)¥256: L1=LO: IS=INKEYS: S$=""
CU=32
12 CU=168-CU: POKE LO,CU: FOR JJ=1 TO 20: I$S=INKEYS:
IF 1$="" THEN NEXTJJ: GOTO 12
ELSE JJ=20: NEXTJJ: 1=ASC(S$):
F 1=8 AND S$<>"™ THEN POKE LO,32: LO=LO-I:
S$S=LEFTS$(S$,LEN(S$)-1): GOTO 12
13 IF I=13 AND S$<>"" THEN POKE LO,32: PRINT: RETURN
ELSE IF IKLV OR I>HV THEN 12
ELSE IF LO-L1=LE THEN 12
ELSE POKE LO,I: S$=S$+I$: LO=LO+1: CU=32: GOTOI12
14
Main body of the program
20 CLEAR 1000: GOSUB 100 'INITIALIZE VARIABLES AND BUILD
CHARACTERS
25 GOSUB 200 'PRINT HEADING
30 GOSUB 300 'ACCEPT NUMBER OF PROBLEMS AND MAXIMUM
ADDEND SIZE
35 FOR PR =1 TO NP 'LOOP FOR PROBLEMS

40 GOSUB 400 'GENERATE PROBLEM
45 GOSUB 500 'DISPLAY PROBLEM
50 GOSUB 600 'ACCEPT ANSWER

55 IF RE <> AN THEN

GOSUB 700: GOTO 50 'I[F THE ANSWER ISN'T RIGHT,

PRINT MESSAGE AND TRY AGAIN

60 GOSUB 800 'PRINT REINFORCEMENT MESSAGE
FOR CORRECT ANSWER

65 NEXT PR 'END OF LOOP FOR PROBLEMS

70 GOSUB 900 'DISPLAY REPORT

75 GOSUB 1000 'AWAIT KEYPRESS

80 END

99 !

Initialize Variables and Build Characters

100 DEFINT A-Z: DIM NUS(10)
105 CLS: PRINT @ 980, "< < < Please wait > > >"

84 The TRS-80 Graphics Book

110 FOR NU =0 TO 10

115 FOR RO =1 TO 3

120 FOR PO =1TO 5

125 READ A: NUS(NU) = NUS(NU) + CHRS(A)
130 NEXT PO

135 NUS(NU) = NUS(NU) + CHRS$(26) + STRINGS(5,8)
140 NEXT RO

145 NEXT NU

150 RETURN

155

This data (read in line 125) is used to create
the large numbers and the plus sign
160 DATA 184,159,143,175,180,
191, 32, 32, 32,191,
139,189,188,190,135
161 DATA 32,181,191, 32, 32,
32, 32,191, 32, 32,
32,188,191,188, 32
162 DATA 160,190,143,191,148,
32,160,190,135, 32,
168,191,189,188,148
163 DATA 168,159,143,191,180,
32,136,174,191,145,
139,189,188,191,135
l64 DATA 191,149, 32,191,149,
191,189,188,191,189,
32, 32, 32,191,149
165 DATA 191,159,143,143,143,
143,143,143,191,180,
139,189,188,191,135
166 DATA 184,159,143,143,132,
191,159,143,175,180,
139,189,188,190,135
167 DATA 138,143,143,175,191,
32, 32, 32,190,151,
32, 32,170,191, 32
168 DATA 190,151,131,171,189,
190,159,143,175,189,
139,189,188,190,135
169 DATA 184,159,143,175,180,
139,189,188,190,191,
172,180,184,190,135
170
' The next iine has data for the *+" sign.

171 DATA 32, 32,188, 32, 32,
188,188,191,188,188,
32, 32,191, 32, 32
199 !
Print Heading

200
210
220
230
299!

300

310
320

330
340
399!

400
410
499 '

500
510
520
530
540

550
560
570
580

590
599 !

600
610
620
699 '

700

710
720
730
740
750

First Applications: Business and Education 85

CLS: PRINT @ 20, STRINGS$(24,140)
PRINT @ 152, "Addition Problems"
PRINT @ 276, STRINGS(24,140)
RETURN

Accept Number of Problems and
Maximum Addend Size

PRINT @ 464, "How many problems? (1 - 10): "; CHRS(30);: LV=48:
HV=57: LE=2: GOSUB 10

NP = VAL(SS): IF NP > 10 OR NP = 0 THEN 300

PRINT @ 593, "Maximum addend (1 - 999): "; CHRS$(30);: LE=3:
GOSUB 10

MX = VAL(SS): IF MX = 0 THEN 320

RETURN

Generate Problem

Al = RND (MX): A2 = RND (MX)
RETURN

Display Problem

AS(1) = RIGHTS(STRS$(A1),LEN(STRS(A1))-1)
AS(2) = RIGHTS(STRS(A2),LEN(STRS(A2))-1)
R1=1:CLS:FOR J=1TO?2
FOR K = 1 TO LEN(AS(I))
PRINT @ 102 - 10*(LEN(AS(D)) + 10%K +
256%(J-1), NUS(VAL(MIDS(AS(D),K,1)));
NEXT K
NEXT J
PRINT @ 358 - 10¥LEN(AS$(2)), NUS(10);
PRINT @ 612 - 10¥*LEN(AS(2)),
STRINGS(10%(LEN(AS(2))+1),140);
RETURN

Accept Answer

PRINT @ 770, "Your answer: ";CHRS$(31);: LE = 4: GOSUB 10
RE = VAL(SS): AN = Al + A2
RETURN

If answer is not right, use this routine

R1 = 0: IF RE < AN THEN PRINT @ 896,
"Sorry. Your answer is too low.";: GOTO 720
PRINT @ 896, "Sorry. Your answer is too high.";
PRINT @ 960, "Press <ENTER> to try again.";
IS=INKEYS:

IS=INKEYS: IF I$<>CHRS(13) THEN 740

RETURN

36
799 !

800
810
320
830

840
850
860
870
830
890
899 !

900

905
910
915

920
925
930
935
940

945
950
955
960
965
970

975
980
985
999 !

1000
1010
1020
1030

The TRS-80 Graphics Book

Print Reinforcement Message for Correct Answer

PRINT @ 768, CHRS(31);
ANS = RIGHTS(STRS(AN),LEN(STRS(AN))-1)
FOR K = | TO LEN(ANS)
PRINT @ 742 - 10*LEN(AN) + 10*K,
NUS(VAL(MIDS(ANS,K,1));
NEXT K
IF Rl =1 THEN NR = NR + 1
PRINT @ 976, "Right. Press <ENTER> to continue.";
IS=INKEYS
IS=INKEYS: IF I1$<>CHRS$(13) THEN 880
RETURN

Display report

CLS: PRINT @ 23, "Addition Problems";:
PRINT @ 197, "Problems tried:";
NP$ = RIGHTS(STRS(NP),LEN(STRS(NP))-1)
FOR K = 1 TO LEN(NPS)
PRINT @ 180 - 10*LEN(NPS) + 10*K,
NUS(VAL(MIDS(NPS,K,1)));
NEXT K
PRINT @ 453, "Problems correct:";
NRS = RIGHTS(STRS(NR),LEN(STRS(NR))-1)
FOR K = | TO LEN(NRS)
PRINT @ 436 - 10¥LEN(N4S) + 10*K,
NUS(VAL(MIDS(NRS,K,1)));
NEXT K
PC = INT ((NR*100/NP)+.5)
PC$ = RIGHTS(STRS$(PC),LEN(STRS(PC))-1)
PRINT @ 709, "Percent correct:";
FOR K = 1 TO LEN(PCS)
PRINT @ 962 - 10*LEN(PCS) + 10 * K,
NUS(VAL(MIDS(PCS,K,));
NEXT K
PRINT @ 977, "Press <ENTER> to end program.';
RETURN

Await Keypress
IS=INKEY$S
IS=INKEYS

CLS

RETURN

Listing 4-E

First Applications: Business and Education 87

Right Press (ENTER) to contirue.

Photo 4-E

Here is a section-by-section description of the addition program:
Line 5 skips around the keyboard input routine.

Lines 11 to 13 are the same keyboard input routine we used before,
at the beginning of the program to assure rapid execution.

Lines 20 to 80 contain the main section of the program. Notice the
FOR-NEXT loop in lines 35 to 65 which contains all the branching for
correct and incorrect responses.

Lines 100 to 150 initialize the variables and build the graphics
blocks which make up the large character set. First the "Please wait"
message appears so the user will know the program is executing even
though nothing happens on the screen. The three nested loops build the
number (the NU loop), the row (the RO loop), and the position with in the
row (the PO loop). The PO loop reads successive numbers from the DATA
statements in lines 160 to 171 and assigns characters with those values to
the proper string variable in the NUS$() array. Line 160 has the data for
the "0" character, line 161 for the "1" character, and so on. The data for
the plus sign is in line 171. (These large characters were created using
the program in Listings 3-P, 3-Q, and 3-R. The author drew the

83 The TRS-80 Graphics Book

characters with the arrow keys and let the computer do the work of
figuring which characters were needed. Like the ad says, computers
should work and people should think!)

Lines 200 to 230 print the heading on the first screen.

Lines 300 to 340 use the keyboard input routine in lines 11 to 13 to
accept the number of problems and the maximum size of the addend (the
numbers to be added).

Lines 400 and 410 generate the problem using the maximum number
(accepted in the previous subroutine) as the upper limit.

Lines 500 to 590 display the problem one character at at time on
the screen. Let's analyze this section more thoroughly.

Lines 500 and 510 create a string version of the numeric variables
generated as the addends of the problems. The STRS function adds
a leading space to the numeral, so the RIGHTS function is used to
"peel" the leading space off the string.

Line 520 initializes R1 (the "right the first time" variable) to I. It
then clears the screen and begins the loop which will print the two
addends on the screen (the J loop).

Line 530 starts the loop for printing the individual addends (the K
loop). The loop goes from 1 to the length of the string which
contains the addend.

Line 540 PRINTs the graphics blocks that form the numerals. The
position for each character is determined by a formula which
includes the length of the addend string (LEN(AS$(J))), the position
within the string (K) and which addend it is (J). The block printed
is derived from the specific character within the addend string
(MIDS(AS(2),K,1)), the value of that character, and finally the block
within the NUS() array that corresponds with that value.

Lines 550 and 560 close up the K and J loops.
Line 570 prints the plus sign (NUS(10)).
Line 580 prints the line drawn under the problem.

Line 590 returns from the subroutine to the main section of the
program.

Lines 600 to 620 accept the user's answer and assign it to the
variable RE. Line 610 also computes the correct answer and assigns it to
AN.

Lines 700 to 750 set R1 (the "right the first time" variable) to O,

First Applications: Business and Education 89

since this routine is only accessed if the user misses the answer. An
appropriate error message is displayed, and the routine waits for the user
to press the ENTER key (returned as character 13).

Lines 800 to 890 PRINT the correct answer (in big characters) and
a reinforcement response when the user gets the answer correct. The
routine used to PRINT the large characters is very similar to the one is
lines 500 to 560. Line 850 increments the NR (number right) variable if
R1 (the "right the first time" variable) is still 1. Lines 860 through 880
PRINT a message and await a press of the ENTER key.

Lines 900 to 985 display the report of the number worked, the
number correct, and the percent correct. Each of these values is printed
using the large block letters. The percent is rounded up if the decimal is
.5 or greater, and rounded down if the decimal is less than .5 in line 950.

Lines 1000 to 1030 await a keypress before program ends.
Chapter Summary

Chapters 1, 2, and 3 discussed methods of creating graphics on the
TRS-80 screen using SET/RESET/POINT graphics, using PRINT graphics,
and POKEing to the video memory. The five programs in this chapter
present useful applications of these graphics methods. To learn more from
these applications programs, key them into a TRS-80 Model I, III, or 4 and
try your own variations of the techniques shown.

Meeting the Chapter Objectives

For this chapter, the objectives are stated in the form of
specifications of a program for the user to write. Can you now write a
program that meets these specifications?

A. It PRINTs a string of graphic characters around the heading for a
more attractive title screen.

B. It calls an INKEYS keyboard input routine for all keyboard input.

C. The program contains a main section that calls the other sections
as subroutines. These subroutines should have only one entry (from
the main section) and one exit (a RETURN). An exception is the
keyboard input routine which is called as needed throughout the
program,

D. The program READs numbers from DATA statements to build
graphic shapes for a circle, a square, a rectangle, a triangle, and
an oval.

E. The program displays one of the shapes (randomly chosen), asks the
name of the shape, accepts an answer, and displays another shape.
A total of twenty questions are asked.

F. The program keeps score and makes a bar graph to show how many
of each shape the user identified correctly.

90

10.

The TRS-80 Graphics Book

More Programming Practice

Write a program that asks the user to type a name, then prints the
name on the screen with large block letters.

Write an keyboard input routine that accepts consecutive
characters in a vertical column instead of the usual horizontal row.
Write a program that gives random math problems with addends
from | to 9, displays the numerals in large characters, and displays
graphics blocks for counting beside the numbers. For example,
numeral 2 would have two graphics blocks beside it.

Write a bar graph program that displays horizontal bars instead of
vertical bars.

Write a program that generates a random number, displays the
number, displays that random number of small graphic triangles,
then begins again with another random.number.

Chapter Checkup

How does the modular programming format make programs easier to
maintain?

In line 330 of Listing 4-A, the keyboard input routine is called
(GOSUB 11) without first setting the high value and low value for
acceptable keystrokes. Why was this not necessary in this line?

In the "Clear Screen and Print X Axis and Numbers" routine (lines
400-440) in Listing 4-A, which line of the program actually draws
the graphic line for the X axis?

In the program in Listing 4-A, what number is printed if the value
of NU(J,K) is 0 in line 6207

In the program in Listing 4-C, what is the purpose of line 6407
In Listing 4-C, why are there two SET instructions in line 6557

In the program in Listing 4-D, why are the "greater than" symbols
used after "Day" in line 4407

What purpose does line 920 in Listing 4-D serve?

Lines 110 to 145 build the graphics blocks for the large numbers
used in Listing 4-E. What part does line 135 play in this building
process?

Line 330 of Listing 4-E checks to be sure the value returned for

the maximum addend is not zero. Why is there no need to check
that the value is not greater than 9997

Chapter 5
Printer Graphics

OBJECTIVES:

At the end of this chapter, the reader will be able to perform the
following tasks:

A. Write a program that prints a simple picture on a printer, using a
series of LPRINT instructions. The data for this picture will be
literal information stored in text strings.

B. Write a program that draws a sine wave on a printer. The TAB
function used with mathematical calculations will be used to
determine the print locations.

C. Write a program that draws a graph on the printer. The data
determining the LPRINT locations in this program will be stored in
a numeric array.

D. Write a program that prints one large graphic letter or number on a
printer. String arrays will store the data for this program.
E. Write a subroutine that prints all the text characters (but not the

graphics characters) from the TRS-80 screen to the keyboard. The
text characters on the screen will determine the graphics in this
program,

F. Write a program that reads the graphics from a portion of the
screen and prints them on a printer. The graphics characters on the
screen will determine what's printed in this program.

INTRODUCTION

The video display screen is the output device usually used for the
display of graphics. But another useful device for displaying graphics is
the printer.

The BASIC instructions for displaying text characters on a printer
are almost identical to those used for displaying text characters on the
video screen. The major difference is that an LPRINT instruction is used
instead of PRINT. So the program in Listing 2-D which prints a tree with
leaves and roots and a trunk works fine on a printer if the PRINTs are
changed to LPRINTs as follows:

10 CLS

20 LPRINT" LEAVES"

30 LPRINT" LEAVESLEAVES"

40 LPRINT" LEAVESLEAVESLEAVESLEAVES"

50 LPRINT" LEAVESLEAVES BIRD LEAVES"
60 LPRINT" LEAVESLEAVESLEAVESLEAVESLEAVES"
70 LPRINT" LEAVESLEAVESLEAVESLEAVESLEA"

80 LPRINT" LEAVESLEAVESLEAVESLEAVES"
90 LPRINT" LEAVESLEAVES"

100 LPRINT" TRUNK"

110 LPRINT" TRUNK"

120 LPRINT" TRUNK"

130 LPRINT" TRUNK"

91

92 The TRS-80 Graphics Book

140 LPRINT" ROOTSROOTS
150 GOTO 150

Listing 5-A

Line 10 and line 150 could be omitted from this program without
affecting the graphics printout.

Programs (like the program in Listing 2-C) which print text
graphics on the screen using the PRINT @ instruction must be modified
further for output to the printer. Since LPRINT @ is not supported by the
TRS-80 print functions, the programmer must use LPRINT TAB or a
similar instructions when transferring these programs to the printer.

The program above stored the data determining what was LPRINTed
in literal text strings (strings that are to be LPRINTed just as they
appear). In this chapter we will also use mathematical calculations,
numeric arrays, string arrays, the text on the screen, and the graphics on
the screen to determine what will be LPRINTed.

The programs and techniques mentioned in this chapter work on all
standard 80- or 132-column line printers unless otherwise noted. The word
"printer" is used throughout this chapter to refer to these standard
printers.

CONTROLLING THE PRINTER:
A SINE WAVE PROGRAM

On the printer, as on the video display, the position of the
character printed is as important as the character itself. The program in
Listing 5-B shows an example of the use of mathematical calculations
with the TAB instruction in controlling the LPRINT position.

10 'Sine wave printer program

20 CLS

30 PRINT @ 76, "Press <ENTER> when the printer is
ready."

40 IS = INKEYS

50 I$ = INKEYS: IF I$ <> CHRS(13) THEN 50
60 CLS

70 PRINT @ 211, "Now printing sine wave..."
80 FOR J=1 TO 7.5 STEP .15

90 LPRINT TAB(40 + 35 * SIN(J)); "*"
100 PRINT 40 + 35 * SIN(J);
110 NEXT J

Listing 5-B

Printout 5-B

Printer Graphics

94 The TRS-80 Graphics Book
Here is a line-by-line analysis of the program:
Line Description
10 Remarks.
20 Clears the screen.
30 PRINTs message on video display.
40 Catches any prior keystrokes with INKEY.
50 Accepts a keystroke (INKEYS) and checks to see if it is character

13 (the ENTER key). If not, the line is repeated until ENTER is
pressed.

(Lines 30 to 50 make sure the printer is ready before the printing begins.)

60
70

80

90

100

110

Clears the screen again. °

PRINTs a message on the video display telling that the LPRINTing
on the printer is beginning.

Begins a FOR-NEXT loop. Since BASIC's sine function works with
radians (rather than degrees), 2 x PI is the interval needed for one
complete cycle. 2 x PI is about 6.3. This loop uses 7.5 to include
one cycle plus a little more,

Since the sine function cycles between -1 and 1, the calculation for
the amount of the TAB starts at 40 (the center point of an
80-column printer). The sine of the number is multiplied by 35 and
that product is added to 4#0. The smallest result would 40+35%(-1) or
5, and the largest would be 40+35%1, or 75. This keeps the TAB
number within the printer's range of 1 to 80. An asterisk is
LPRINTed at the proper TAB position.

The value calculated in line 90 is displayed for the user to examine
as the asterisk is LPRINTed.

The FOR-NEXT loop is ended.

In the program above, a mathematical function is used to calculate

the position of the character. The program that follows uses data entered
at the keyboard and stored in a numeric array to determine the positions
of the characters.

A BAR GRAPH PROGRAM
FOR THE PRINTER

The program in Listing 5-C accepts data at the keyboard and

graphs it, as do some of our previous programs. But this time, the graph
is LPRINTed on the printer instead of the video display. In this program,
note that the data are stored in a numeric array and "peeled off" as the
printout progresses.

]

-

10

GOTO 15:' Pr

-

Lines 11 to 13 are the INKEYS routine from Chapter 3.

11
12

LO=PEEK(16416)+PEEK(16417)*256:L1=LO:I$=INKE Y$:55="":CU=32
CU=168-CU:POKELO,CU:FORJJ=1TO20:I$=INKE Y$:
IFIS=""THENNEXTJJ:GOTO12ELSEJJ=20:NEXTJJ:

I=ASC(I$):IF1=8 ANDSS<>"'THENPOKELO,32: LO=LO-1:

Printer Graphics 95

S$=LEFT$(S$,LEN(SS)-1):GOTO12

13 IF1=13ANDS$<>"™THENPOKELO,32:PRINT:RETURN
ELSEIFIKLV ORI>HV THENI12ELSEIFLO-L1=LE THENI2
ELSEPOKELQ,I:S$=S$+1$:L0=L0+1:CU=32:GOTO12

14 '

Main body of the program

15 CLEAR 200: DIM NU(10):' INITIALIZE VARIABLES
20 GOSUB 100 'PRINT HEADING
25 GOSUB 200 'ACCEPT PARAMETERS AT KEYBOARD
30 GOSUB 300 'ACCEPT DATA AND GRAPH TITLE AT KEYBOARD
35 GOSUB 400 'CHECK PRINTER AND LPRINT TITLE
40 GOSUB 500 'LPRINT Y AXIS AND LABELS AND DATA
45 GOSUB 600 'LPRINT X AXIS AND LABELS
50 GOSUB 700 'AWAIT KEYPRESS
55 GOTO 15
99 !
Print Heading

100 CLS: PRINT@16,STRINGS(32,140): PRINT @ 83,
"Printing Bar Graph Program"

110 PRINT @ 148, "Written by Dennis Tanner":
PRINT @ 208, STRINGS(32,140)

120 RETURN

199
Accept Parameters at Keyboard

200 PRINT @ 341, "X Interval? (1 - 10):" CHR$(30);: LE=2: LV=47:
HV=58: GOSUB 11: XI=VAL(SS): IF XI<l OR XI>10 THEN 200

210 PRINT @ 405, "Y Interval? (1 - 10):" CHRS$(30);: GOSUB 11:
YI=VAL(SS): IF YI<lI OR YI>10 THEN 210

220 RETURN

299 !
Accept the Data at Keyboard

300 PRINT @ 972, "Type in numbers to graph, or 999 to end.";
310 FOR CO=1 TO 100
320 PRINT @ 538, "Number";
330 PRINT @ 602, CO ": " CHRS$(30);: LE=3: GOSUB 11: X1=VAL(SS):
IF X1=999 THEN EN=CO-1: CO=100: NEXT CO: GOTO 360
ELSE IF X1>10*XI THEN 330
340 NU(INT(X1/XI)) = NU(INT(X1/XD) + 1
350 NEXT CO: EN=100
360 PRINT @ 536, CHRS$(31); "Title for graph: ": LE=63: LV=32: HV=127
370 GOSUB 11: TI$S=S$: RETURN
399 !
LPRINT Title

400 CLS: PRINT @ 76, "Press <ENTER> when the printer is ready.";
410 IS=INKEYS
420 IS=INKEYS: IF I$<>CHRS(13) THEN 420

96

430
440
499

500
510
520
530
540
550

560
570
580
599

600
610
620
630
640
650
699

700
710
720
730

The TRS-80 Graphics Book

LPRINT TAB(40-LEN(TIS)/2); TIS
RETURN
'

LPRINT Y Axis and Labels, and Data

LPRINT " ": PRINT @ 132, "Printing line ";
FOR Y = 10 TO 1 STEP -1
PRINT Y;
LPRINT TAB(5); YI*Y; TAB(10); "";
FOR X =0 TO 10
IF NU(X) >= Y*YI

THEN LPRINT " *ny
ELSE LPRINT " "s
NEXT X: LPRINT " ": LPRINT " "
NEXT Y

RETURN
!
LPRINT X Axis and Labels
LPRINT TAB(9); STRINGS$(69,"-"): LPRINT "
FOR J=0 TO 10
LPRINT TAB(15+6%J); J*XI;
NEXT J
LPRINT " "
RETURN
1
Await Keypress
PRINT @ 980, "Press any key to begin again.";
IS=INKEYS
I$=INKEYS: IF I$="" THEN 710
RETURN
Listing 5-C
Line 5 "jumps" around the keyboard input routine.
Lines 10 to 13 contain the keyboard input routine from Chapter 3.

Lines 15 to 55 constitute the main body of the program. Note that

there is no branching in the main body of the program, so there is only
one execution path in the program.

Lines 100 to 120 print the heading. The STRINGS function is used

to display graphics around the printed heading.

Lines 200 to 220 accept the X and Y intervals with values between

1 and 10. These values are stored in the variables XI and YI respectively,
and are used in later calculations.

Lines 300 to 370 accept the values to be graphed at the keyboard.

Printer Graphics 97

Sample Printout for Program in Listing 5-C

10 !

9 ! *

g8 1 *

7 1 *

6 ! * *

5 ! * * * *

y ! * * * * * *

3 ! * * * * * * * *

2 ! ¥* * * * * * * * * * *
1 ! * * * * * * * * * ¥* *

Printout 5-C

Line 340 does the actual counting of the points by incrementing the
proper element of the NU() array. To determine which element to
increment, the accepted number X1 is divided by the X increment XI,
thus putting X1 on the proper scale.

Lines 400 to 440 give the user a chance to get the printer ready,
and print the title on the printer.

Lines 500 to 580 do the actual LPRINTing. This section is
important and complex enough to warrant a line-by-line anaylsis.

Line Description

500 LPRINTs one linefeed (" "), then PRINTs the message on the video.

510 Begins a loop on the Y variable. Since the printer starts at the top,
the program must start at the top of the numbers. It therefore goes
from 10 to 1 by steps of -I.

520 The Y value is PRINTed on the video display so the user can easily

98 The TRS-80 Graphics Book
keep track of which line is being LPRINTed.

530 Each time through the Y loop produces one horizontal line on the
printer. So this line LPRINTs the first TAB, the Y coordinate (YT *
Y), another TAB, and an exclamation mark which serves as a
boundary.

540 The X loop goes from 0 to 10 on each’line of the printout.

550 If the counter NU(X) for the current X value is as large as or
larger than the current Y value, the program LPRINTs an asterisk.
Otherwise, it LPRINTs a space. Both the asterisk and the space are
padded with extra spaces to spread them out over the X axis.

560 The X loop ends. One linefeed (" ") goes to a new line, and the
next one skips an extra line.

570 The Y loop ends.

580 The subroutine ends.

Lines 600 to 650 LPRINT a STRINGS of hyphens and print the X
coordinates.

Lines 700 to 720 await a keypress before the program begins again.

As the loop in lines 500 to 580 shows, an unique characteristic of

printer graphics is that often more calculations must be done because all
printing is done from the top down, with no provision for going back.

PRINTING BANNERS WITH THE PRINTER

One of the more useful and entertaining uses of printer graphics is

printing large-lettered banners. The program in Listing 5-D does just that.
In this program, each capital letter has a string of characters as an
element in a string array that describes it. Each letter is defined in a 5 x
7 matrix as like this:

! 7 114 121 P28 IX 35 X!
e 13 1200 127 1xom ox
U5 U2 U 1e 1 26 1x 33 x
U 0 is 1 25 1x 32 Xt
X 3 x1 10 1 17 1 26 X3l X!
X 2 xt 9 1 16 1 23 IX30 x!

Figure 5-1

Printer Graphics 99

Notice that the matrix is seven characters high and five characters
across. The numbers go from bottom to top, and from left to right.

Several of the numbered cells (the 1, 2, and 3 for example) in the
matrix have X's in them. If you look carefully at these X's, you'll see
that they form the shape of a capital J. The data string in Listing 5-D
(line 118) that describes the capital J is as follows:

118 S$(10) = "11100001000000100000010000001111111" *J

The first three characters in the string are 1's, and the
corresponding positions in the matrix (1, 2, and 3) have X's. The next four
characters in S$(10) are 0's, and the corresponding positions in the matrix
(4, 5, 6, and 7) contain no X's. The eighth character in the string is a 1,
and position eight in the matrix contains an X. In this manner, the entire
matrix containing the "J" is described by the string S$(10).

Each letter of the alphabet and several punctuation marks have
corresponding strings in the S$() array in Listing 5-D.

With that in mind, type in the program. A section-by-section
description follows the listing.

5 'GOTO 15 'Banner Printout Program by Dennis Tanner
10 !
Lines 11 to 13 contain the keyboard input routine
from Chapter 3.

11 LO=PEEK(16416)+PEEK(16417)*256:L1=LO:I$=INKE Y$:5$="":CU=32

12 CU=168-CU:POKELO,CU:FORJJ=1TO20:1$=INKE Y$:
IFIS=""THENNEXTJJ:GOTO12ELSEJJ=20:NEXTJJ:
I=ASC(I$):IFI=8 ANDS$<>"THENPOKELO,32:LO=LO-1:
S$=LEFT$(S$,LEN(S$)-1):GOTO12

13 IFI=13ANDSS<>"™THENPOKELO,32:PRINT:RETURN
ELSEIFIKLV ORI>HV THENI12ELSEIFLO-L1=LE THENI2
ELSEPOKELO,1:5$=S$+1$:LO=L0+1:CU=32:GOTO12

14 '

Main body of the program

15 CLEAR 500: DIM S$(63), YN(35) 'DIMENSION VARIABLES
20 GOSUB 100 'ASSIGN VALUES TO STRING VARIABLES
25 GOSUB 200 'PRINT HEADING
30 GOSUB 300 'INPUT MESSAGE AT KEYBOARD
35 GOSUB 400 'PRINT BANNER ON PRINTER
40 GOTO 25
99 !
Assign Values to String Variables

100 S$(1)="11111000001010000100100010101111100" 'A
102 S$(2)="11111111001001100100110010010110110" 'B
104 S$(3)="11111111000001100000110000011100011" 'C

100

106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156
158
160
162
199

200
210
220
230
240
299

300
310
320
330
340
399
400

405
410

The TRS-80 Graphics Book

S$(4)="11111111000001100000110000010111110" 'D
S$(5)="11111111001001100100110010011000001" 'E
S$(6)="11111110001001000100100010010000001" 'F
S$(7)="11111111000001100000110010011111001" 'G
S$(8)="11111110001000000100000010001111111" 'H
$$(9)="00000001000001111111110000010000000" '

S$(10)="11100001000000100000010000001111111"
S$(11)="11111110001000001010001000101000001"
S$(12)="11111111000000100000010000001000000"
S$(13)="11111110000010000010000000101111111"
S$(14)="11111110000010000010000010001111111"
S$(15)="11111111000001100000110000011111111"
S$(16)="11111110001001000100100010010000110"
S$(17)="11111111000001101000111111110100000"
S$(18)="11111110001001001100101010011000110"
S$(19)="01001101001001100100110010010110010"
S$(20)="00000010000001111111100000010000001"
S$(21)="11111111000000100000010000001111111"
$$(22)="00011110110000100000001100000001111"
$$(23)="00111111100000001100011000000011111"
S$(24)="11000110010100000100000101001100011"
S$(25)="0000011000010011110000000100000001 1"
S$(26)="1100001101000110010011000101100001 1"
$$(32)="00000000000000000000000000000000000"

S$(33)="00000000000000101111100000000000000" '!

S$(34)="00000000000011000000000000110000000"
SS(44)="00000001000000010000000000000000000"
S$(46)="00000000000000100000000000000000000"
RETURN

!

Print Heading

CLS

PRINT @ 20, STRINGS(23,140)

PRINT @ 148, "Banner Printout Program"
PRINT @ 276, STRINGS(23,131)

RETURN

1

Accept Message at Keyboard

PRINT @ 448, "Message to be printed:"
PRINT

LE=63: LV=32: HV=90: GOSUB 11
MES$=S$

RETURN

i

Print Banner on Printer
PRINT @ 980, "< < < Please Wait > > >';

L=LEN(MES)
FOR N=1 TO L

'J
'K
'L
'M
'N
'O
'P
'Q
'R
'S
'"T
'U
'V
'W
'X
'Y
'z
'SPACE
"

'"QUOTES
'COMMA
'PERIOD

Printer Graphics 101

415 Q= ASC(MIDS(MES,N,1)):
IF Q> 64
THEN Q = Q - 64
420 FOR I=1 TO 35: YN(I)= VAL(MIDS(S$(Q),I,1)): NEXT I
425 LPRINT TAB(10);
430 FOR I=1 TO 5
435 FOR M=1 TO 2
440 FOR J=1 TO 7
445 IF YN(I-1)*7+J) = 1
THEN LPRINT "XXXXXXX";
ELSE LPRINT " "
450 NEXT 3J
455 IF M=1
THEN LPRINT " ": LPRINT TAB(10);
460 NEXT M
465 LPRINT " ": LPRINT TAB(10);
470 NEXT I
475 LPRINT" ": LPRINT" ": LPRINT" ": LPRINT TAB(10);
480 NEXT N
485 RETURN
Listing 5-D
Line 5 causes the program to "jump" around the keyboard input
routine.

Lines 11 to 13 contain the keyboard input routine from Chapter 3.

Lines 15 to 40 comprise the main body of the program. Notice that

the S$() and YN(Q) arrays are dimensioned in line 15.

Lines 100 to 162 assign the character-describing strings to the

string variables in the S$() array.

Lines 200 to 240 print the heading with some graphics.

Lines 300 to 340 accept at the keyboard the message to be

displayed.

Lines 400 to 485 LPRINT the banner on the printer. Here are some

notes on this subroutine:

“+
-+

<+

The L loop starts at 1 and goes to the length of the message.

Q contains the ASCII value of the current character in the message
if the value is less than 65, and the ASCII value - 64 otherwise.
The looping variables I and J are used in line 445 to determine
whether to LPRINT X's or spaces. Since each letter is printed on
its right side, the letters are printed bottom to top, and left to
right under the control of these loops.

So far we have seen that the information that determines what will

102

The TRS-80 Graphics Book

9,.0,.0,.0.0.9.0.0,.0.9.9,.0,9.0.6.6.9.0.0.9.9.6.0.0.999$.6.9.09.90.099.9.999999099.009
$.9.9.0.0,0.0.0.9.9.0.0.9,0.0.0.9.9.6.9.0.0.9.¢.9.9.9.$$0.096000.9900000000090

9.0.9.9.0,0,.0.0.9.0.9.0,9.0.0.0.9.9.0.9.$.0.0.9.6.9.9.9$ 9000 60.0900660.0.0.06 00,
$.9:0.9.0.0,.0.6.6.0.9,0.9.0,.0.0.9.0.0.9.0.0.0.9.9.9.0.609.9.906090.0060000.006609

XRXXXXX XXOKXX
XXXXXXX XXXXXXX
XXXXXXX XXXXXXX
XXXXXXX XXXXXXX
XXXXXXX XXKXXX
XXXXXXX XXXXXX

$:9.0,.0.9.0,:0.9.0.0.9.9.0.0.0.0.0.0.0.0.0.0.9.9.0.0.6.9.0.6.0.0.60.000.0.600.6 006009
$.9,9.0.0.0,.0.9.9,.9.0.0,0,0.9.0.0.6.9.6.9.6.9.9.9.0.6.9.0.00.0.60.60.0.060.0.66.0.060.0

$,0.9.0.0.0.0.0.0.0900.0.00000.000000 6000006000 0000060 000009
9,9,0,0.0.0.:0,.0,0.0.0.0.9,0,0.0.0.0.0.9.9.0.6 0.0 0.0,0.0.0.9.00.¢0.0.6.0.000.¢.0.0.0.00¢

XXXXXXX XXXXXXX XXXXXXX
XXX X0OXXX XXX
4.4.0.9.444 XXX PO00.4.0.0.4
XXX XXXXXXX XXXXXXX
XXXXXXX XXXXXXX 9,99, 0,0,0.
XXXXXX XXXXXXX XXXXXXX
XXXXXXX XXXXXXX
XXXXXXX XXX

Printout 5-D

Printer Graphics 103

be LPRINTed can be stored as text strings in program lines (Listing 5-A),
can be calculated with a mathematical function (Listing 5-B), and can be
stored in a numeric array (Listing 5-C) or a string array (Listing 5-D).
The next two programs determine what to print by reading information
directly from the TRS-80 screen.

A SCREEN-PRINTING SUBROUTINE:
TEXT INFORMATION ONLY

Sometimes the user wants to "dump" all the information from the
video display to the printer. An easy way to do this from the keyboard
(on a Model III, or in the Model IIl mode of the Model 4) is to hold the
shift and down-arrow keys and press the "*" key. All the text on the
screen will then print to the printer (unless the program running has its
own keyboard driver program, which few do).

Listing 5-E shows a subroutine that can be used to accomplish a
similar function dynamically, as the program is running. This subroutine
can be attached onto the end of other programs and "called" to provide
this screen-print capability.

10000 ' SCREEN PRINTING SUBROUTINE
(Letters and numbers; no graphics)
10010 FOR RO=0 TO 15
10020 FOR PO=0 TO 63
10030 CP = PEEK(15360 + RO*64 + PO)
10040 IF CP>31 AND CP<123
THEN LPRINT CHRS$(CP);
ELSE LPRINT " '
10050 NEXT PO: LPRINT "
10060 NEXT RO
10070 RETURN

Listing 5-E

LIST 10010-10060

10010 FOR RO=0 TO 15

10020 FOR PO=0 TO 63

10030 CP=PEEK(15360 + RO*64 +PO)

10040 IF CP>31 AND CP<123
THEN LPRINT CHRS$(CP);
ELSE LPRINT " ";

10050 NEXT PO: LPRINT " "

10060 NEXT RO

READY

>RUN

Screen Printout 5-E

104 The TRS-80 Graphics Book

The RO loop counts the horizontal rows on the screen, and the PO
loop tracks the position within the row. Line 10030 PEEKs the value of
the video memory and assigns it to CP. If it is within the acceptable
range, line 10040 LPRINTs the character.

A SCREEN PRINTING PROGRAM:
PRINTING GRAPHICS FROM THE SCREEN

Have you ever wanted to draw a picture and see it printed out with
the printer? This program allows you to do that and more.

Since the video screen is an easily manipulated means of drawing,
it is used in this program for designing the picture. A screen editor
allows the user to see the image as it is being created. Then the user is
given the unusual option of printing the image upright or on its side. Then
the printer LPRINTs the picture.

5 GOTO 14 'Screen Printing Program
(Graphics Characters)
10
Lines 11 to 13 are the INKEYS routine from Chapter 3.
(The extra PRINT statement in line 13 has been removed.)

11 LO=PEEK(16416)+PEEK(16417)¥256:L1=LO:1$=INKEY$:55="":CU=32
12 CU=168-CU:POKELO,CU:FORJJ=1TO20:I1$=INKEYS$:
IFI$=""THENNEXTJJ:GOTOI12ELSEJJ=20:NEXTJJ:
I=ASC(I$):IF1=8 ANDSS$<>"THENPOKELO,32: LO=LO-1:
S$=LEFT$(SS,LEN(S$)-1):GOTO12
13 IFI=13ANDS$<>"THENPOKELQ,32:RETURN
ELSEIFIKLV ORI>HV THEN12ELSEIFLO-L1=LE THEN12
, ELSEPOKELOQ,I:5$=58+1$:LO=L0+1:CU=32:GOTO12
14 CLS!

Main body of program

15 CLEAR 200: DEFINT A-Z: 'INITIALIZE VARIABLES

20 GOSUB 100 'CREATE GRAPHIC ON SCREEN

25 GOSUB 200 'ACCEPT PARAMETERS FOR PRINTING

30 GOSUB 300 'READ GRAPHICS FROM SCREEN

35 IF PW$ = "U"

THEN GOSUB 400: GOTO 45 'IF UPRIGHT PRINTING

IS CHOSEN, DO SUB. 400
THEN START OVER

40 GOSUDB 500 'OTHERWISE, PRINT SCREEN SIDEWAYS
45 GOTO 15 'START OVER
99 '

Create Graphic on Screen

100 ON ERROR GOTO 160
105 I$ = INKEYS
110 PRINT @ 960, X; Y; CHRS(30);

115
120

125

130

135

140

145

150

155
160
165
170
175
199

200
210

220

230
240
250
260
270
280
290
299

IS = INKEYS: IF I$ = " THEN 115
IF IS = CHRS(31) THEN

CLS:

GOTOL110 'CLEAR KEY
IF I$ = CHRS(9) THEN

X=X+1:

SET(X,Y):

GOTO 110 'RIGHT ARROW KEY
IF 1S = CHRS(8) THEN

X=X-1:

SET(X,Y):

GOTO 110 'LEFT ARROW KEY
IF IS = CHRS$(91) THEN

Y=Y-1:

SET(X,Y):

GOTO 110 'UP ARROW KEY
IF I$ = CHRS$(10) THEN

Y=Y+1:

SET(X,Y):

GOTO 110 'DOWN ARROW KEY
IF IS=CHRS$(32) THEN

RESET(X,Y):

GOTO 110 'SPACE BAR

IF 1$="Y" OR I$="y" THEN
ON ERROR GOTO 0:
RETURN

GOTO 110

PRINT @ 960, "ERROR...";

FOR K=1 TO 400: NEXT K

PRINT @ 960, " "

RESUME NEXT

!

Accept Parameters for Printing

Printer Graphics

PRINT @ 960, "Print (U)pright or (S)ideways? "; CHRS$(30);

LE=1: LV=65: HV=90: GOSUB 11:
IF S$<>"U™ AND S$<>"S" THEN 200
PWS = S$:
IF PW$="U"
THEN PRINT @ 960, "Upright. ";
ELSE PRINT @ 960, "Sideways. ";

PRINT @ 970, "Maximum X pixel? "; CHRS(30);
LE=3:LV=48:HV=57:GOSUB 11: XM=VAL(SS): IF XM > 127 THEN 230

PRINT @ 970, CHRS$(30); "Max. X="; XM;

PRINT @ 985, "Maximum Y pixel? "; CHRS$(30);
GOSUB 11: YM=VAL(SS): IF YM>44 THEN 260

PRINT @ 985, CHRS$(30); "Max. Y="; YM;
RETURN
1

Read Graphics from Screen

105

106

300
310
320
330
340
350
360
370
399

400
410
420
430

440
450
460
499

500
510
520
530

540
550
560

The TRS-80 Graphics Book

PRINT @ 1001, "<<Please wait>>";
DIM Z(XM,YM)
FOR X=0 TO XM

FOR Y=0 TO YM

Z(X,Y) = POINT(X,Y)

NEXT Y
NEXT X
RETURN
1

Print Graphic Upright

PRINT @ 1001, "Printing..cee...";
FOR Y=0 TO YM
FOR X=0 TO XM
IF Z(X,Y) = -1
THEN LPRINT "X";
ELSE LPRINT ' '
NEXT X: LPRINT " "
NEXT Y
RETURN
1

Print Screen Sideways
PRINT @ 1001, "Printingeciecse.";
FOR X=0 TO XM
FOR Y=YM TO 0 STEP -1
IF Z(X,Y) = -1
THEN LPRINT "X";
ELSE LPRINT " ";
NEXT Y: LPRINT " "
NEXT X
RETURN

Listing 5-F

The programming techniques in this program are straightforward.

Here are some notes:

+

The screen is cleared (line 14) only the first time the program is
run. When the program LPRINTs the graphics and starts over, it
loops back to line 15 without clearing the screen.

Only the first 15 lines of the screen are read from the screen for
LPRINTing. The user should be careful not to include the bottom
iine of the screen in the picture.

The parameters are accepted on the bottom line of the screen after
the graphics are created. The user must pay attention to the
maximum X and Y values reached during the creation process so
they can be typed in below the picture.

The Z() array is dimensioned immediately before the screen is read.

Printer Graphics 107

E
%

X X
X X
X X
X X
X X
X X
X XXXXXX X
X X X X
X X X X
X X X X
XXXXXXXXXX XXXXXXXXXXX

Printout 5-F

The dimensions are set to the maximum X and Y values the user
has selected.

With this program, you can create graphics on the screen, print
them out, edit them if desired, and print them out again. The only
limitation of this program is your graphics and screen-editing ability!

USING GRAPHICS CHARACTERS ON PRINTERS

Several line printers allow the use of graphics characters on the
printers themselves. For example the Radio Shack Line Printer VI allows
printing of any part of a four-pixel block (as opposed to the screen,
which uses a six-pixel block). This printer also allows the printing of a
triangular shape with four different orientations.

Since there are many different kinds of printers with different
codes and techniques for graphics programming, this section will look at
the Line Printer VI as an example, then address general techniques for
graphics programming on printers with special graphics capabilities.

Some printers have special characters that control the size of the
characters printed. On the Line Printer VI, for example, LPRINTing a
character 31 changes the printer to the double-size mode. LPRINTing
character 30 changes back to regular sized characters.

The instruction
LPRINT CHR$(27); CHRS$(14)

switches to condensed characters, and

108 The TRS-80 Graphics Book

LPRINT CHRS$(27); CHRS(15)
switches back to normal characters.

Another set of software "switches" controls the vertical line
spacing on the printer. For example, .

LPRINT CHR$(27); CHR$(28)

causes the printer to LPRINT 12 lines per inch.
LPRINT CHR$(27); CHR$(56)

changes to 8 lines per inch, and

LPRINT CHR$(27); CHRS(54)

changes to 6 lines per inch.

These control characters function with a Radio Shack Line Printer
VI, but other printers may have different codes for accomplishing the
same things. Information on the codes your printer uses is found in the
printer owner's manual.

Here are general guidelines for using these printers:

1 Since your printer starts at the top of the page and prints to the
bottom, you will have to do all the calculations for the top line
before you begin printing. (This is different from the screen, on
which you can display information and graphics anywhere at any
time. Some printers also have this capability: see your owner's
manual.)

t
2) If you want your printout to be continuous (rather than with some
blank space between the lines, as text is printed), you may have to
LPRINT some control codes to set the vertical spacing.

3) Some printers overheat if the graphics mode is used continuously,
so be sure the check your owner's manual for recommendations on
the amount of load your printer head can withstand.

4) If you are writing programs to distribute to others, check the

printer codes of various printers, and specify in the documentation
which you supply with your program; which printers the graphics

2ol S0 3

will work with.

Printer Graphics 109

Chapter Summary

The LPRINT instruction prints text characters on a printer the same way
the PRINT instruction displays text characters on the video screen.

Instructions such as TAB, the comma, and the semicolon which can be
used with PRINT to control forward movement of the cursor
position on the video display, can also be used to control
positioning of text on a printer with LPRINT.

Instructions such as PRINT @, POKE (for the video display), and
SET/RESET/POINT, which can be used with PRINT control position
of text and graphics anywhere on the screen, cannot be used with
the printer.

Simple pictures may be created on the printer using LPRINT with text in
quotation marks.

Graphics may be created on the printer using LPRINT TAB with numbers
mathematically calculated or otherwise generated or stored.

If calculations or computations must be done to determine placement of
characters on the screen (such as in our bar graph program), this
processing must be finished before LPRINTing begins.

Information in a string array can be used to determine information to
LPRINT (as in our graphics program). The MIDS$() function is used in
this case to analyze the strings.

Text characters can be read directly from the video memory to facilitate
duplicating all or part of the text screen to the printer.

Graphics characters can be read from the screen using the POINT
instruction. This can facilitate duplication of all or part of a
graphics screen on the printer using text characters.

Some line printers permit special graphics printing using special codes or
other instructions. You should check your printer owner's manual
for the specifics of these instructions.

Meeting the Chapter Objectives

Here are the chapter objectives for your review. Can you meet all
the objectives?

A. Write a program that prints a simple picture on a printer, using a
series of LPRINT instructions. The data for this picture will be
literal information stored in text strings.

B. Write a program that draws a sine wave on a printer. The TAB
function used with mathematical calculations will be used to
determine the print locations.

110

The TRS-80 Graphics Book

Write a program that draws a graph on the printer. The data
determining the LPRINT locations in this program will be stored in
a numeric array.

Write a program that prints one large graphic letter or number on a
printer. String arrays will store the data for this program.

Write a subroutine that prints all the text characters (but not the
graphics characters) from the TRS-80 screen to the keyboard. The
text characters on the screen will determine the graphics in this
program.

Write a program that reads the graphics from a portion of the
screen and prints them on a printer. The graphics characters on the
screen will determine what's printed in this program.

More Programming Practice

Using simple LPRINT instructions, write a program that prints a
likeness of a TRS-80 microcomputer on the printer.

Write a program that reads a math function (such as X=Y*Y) from
a program line and prints a graph of the function using the TAB
instruction.

Write a program that READs DATA statements, and using the data
gathered, LPRINTs a graph with a child's age on the X axis, and
the child's height on the Y axis.

Design a matrix that describes the numerals from 0 to 9, and write
a program that LPRINTs specified numbers on the printer.

Write a program that uses the POINT instruction to read every
graphics point on the screen and send it to a printer.
Chapter Checkup

In the program in Listing 5-A, why can lines 10 (CLS) and 150
(GOTO 150) be omitted without affecting the printout?

What changes would you make to the program in Listing 5-C to
print a centered graph on a 132 column printer?

In what format are the numbers in line 520 of Listing 5-C PRINTed
on the screen?

In the program in Listing 5-C, how is the LPRINT location of the
title of the graph determined?

In the program in Listing 5-D, what function does the M loop in
lines 435 and 460 perform?

In the program in Listing 5-E, show the calculations and values

10.

Printer Graphics 111

used in lines 10010 to 10030 to determine the minimum and
maximum values of the video memory.

In the program in Listing 5-E, what happens when the program
reads a screen character that is not a text character?

In the program in Listing 5-F, why has the PRINT instruction been
taken out of line 137

In the program in Listing 5-F, what are the major differences
between the subroutine beginning in line 400 and the one beginning
in line 5007

In the program in Listing 5-F, what is the advantage of not
clearing the screen each time the program loops back to start over
(see lines 14, 15 and 45)?

Chapter 6.
Using the Variable Pointer
To Create Graphics

OBJECTIVES:

At the end of this chapter, the reader will be able to perform the
following tasks:

Write the description of the VARPTR instruction (as used with
string variables).

For the VARPTR of a string variable, tell what is defined by each
of the three bytes starting at the VARPTR location.

Given the three bytes starting at the VARPTR location, determine
the memory location of the characters of the string variable.

Write a program that allows the user to view and edit the contents
of the memory locations containing the characters of a string
stored in a variable.

o o>

&

INTRODUCTION

Most of the BASIC instructions that allow manipulation of graphics
on the TRS-80 microcomputers are direct graphics instructions: SET,
RESET, POINT, PRINT, and LPRINT. Some others let you manipulate
video memory directly: POKE and PEEK. The instruction we will examine
in this chapter shows us where certain information about string variables
is stored in memory. This information can be accessed for graphics design
or other purposes.

THE VARPTR INSTRUCTION

The BASIC instruction VARPTR (pronounced "Variable Pointer")
allows the user to determine where the raw data assigned to a variable is
stored in the computer's memory. Thus, the VARPTR points to the
variable.

Each kind of variable (integer, single-precision, double-precision,
string, and array) has a VARPTR with a unique format. We will limit the
discussion in this chapter to VARPTRs of string variables, the kind that
store graphics.

First let's build a program that allows us to manipulate the
characters in string variables using the VARPTR instruction.

10 CLS
20 AS= "THIS IS THE TEST!"
30 PRINT "AS="; AS

40 VA= VARPTR(AS)

Listing 6-A

Lines 10 to 30 are straightforward. Line 40 shows us the VARPTR
instruction in its correct format. VARPTR is used in this program as a

function of A$, in the same format as LEN(AS). The number representing

112

Using the Variable Pointer 113

the VARPTR of AS is assigned to the numeric variable VA.

10 CLS
20 AS= "THIS IS THE TEST!I"
30 PRINT "AS= "; AS
40 VA= VARPTR(AS):
IF VA>2 15
THEN VA= VA-2 16
50 PRINT "THE VARIABLE POINTER OF A$ IS" VA

Listing 6-B

The PEEK instruction (which will appear later in the program) can
access only numbers between -32768 and 32767. The statements added to
line 40 check for the value of VA. If this value is greater than 2 15 (or
32768), it cannot be accessed by the PEEK instruction, so it must be
changed to its corresponding negative number. This is accomplished by
subtracting 2 16 (or 65536) from the number.

If VA is initially 35000 (which is greater than 32768), it will be
changed to 35000-65536, or -30536. To POKE to or PEEK from location
35000, we must use the number -30536 instead. Line 40 checks the size of
VA and adjusts it if needed.

Line 50 PRINTs the value of the variable VA, the appropriately
adjusted variable pointer.

10 CLS
20 AS= "THIS IS THE TEST!"
30 PRINT "A$="; AS
40 VA= VARPTR(AS):

IF VA>2 15

THEN VA= VA-2 16

50 PRINT "THE VARIABLE POINTER OF A$ IS" VA
60 VO= PEEK(VA)
70 PRINT "PEEK(VARIABLE POINTER)=" V0
80 PRINT "THE LENGTH OF AS$=" V0

Listing 6-C

The VARPTR instruction returns our number VA, which we use as
the address of a memory location. If we PEEK the value stored in that
memory location, we find a number representing the length of the string
variable AS. Aha! Now we're getting somewhere.

The memory location pointed to by the VARPTR contains the length of
the string stored in the string variable.

10 CLS
20 AS= "THIS IS THE TESTI"
30 PRINT "AS= "; AS

114 The TRS-80 Graphics Book

40 VA= VARPTR(AS):
IF VA>2 15
THEN VA= VA-2 |6

50 PRINT "THE VARIABLE POINTER OF AS$ IS" VA
60 V0= PEEK(VA)
70 PRINT "PEEK(VARIABLE POINTER)=" VO
80 PRINT "THE LENGTH OF AS=" VO
90 Vi= PEEK(VA+1)
100 PRINT "PEEK(VARIABLE POINTER+1)=" V1
110 V2= PEEK(VA+2)
120 PRINT "PEEK(VARIABLE POINTER+2)=" V2
130 SL= VI + V2%*256
140 PRINT "THE VARIABLE CHARACTERS ARE

STORED AT"
150 PRINT V1 "+" V2 "*" 256 "=" SL

Listing 6-D

MG IS THETESTE
VARIABLE POINTER OF AS$ IS 288532 :
WL ART A

Photo 6-C

Let's take moment to look at a chart outlining this information before
getting into a full explanation.

Using the Variable Pointer 115

VO is the VARPTR of AS.

Vo V1 V2
Length Least Most
of AS Significant Significant
Byte of Byte of
Storage Storage
Location Location
Figure 6-1

JINTER OF A$ IS 28746
POINTER!= 17

X
Al |

mom g

ARACTERS ARE STORED AT
12 # 255 = 28299

Photo 6-D

V0, VI, and V2 represent three adjacent memory locations. As we
have already seen, VO contains the length of the string. The numbers in
VI and V2 can be used together to determine the location of the string
data itself. Look back at line 130. In this calculation the number in V2 is
multiplied by 256, so it is called the Most Significant Byte. The number in
V1 is used without multiplying, so it is called the Least Significant Byte.
The formula

VI + V2¥256

116 The TRS-80 Graphics Book

gives us the address of the memory location we are looking for. This
value is assigned to the variable SL and is the storage location of the
beginning of the data contained in the variable.

The two memory locations immediately following the variable pointer
location contain numbers that point to the raw data contained in
the string variable.

160 INPUT"READY TO VIEW CHARACTERS"; J$
170 CLS
180 FOR J=0 TO Vo0-1
190 PRINT "PEEK(" SL+J ")=" PEEK(SL+J)
n-" CHRS(PEEK(SL+J))
200 NEXT J

Listing 6-E

1S IS THE TEST!
PIAELE POINTER OF A$ 15 28857
, POINTER:= {7
FA$ =17

POINTER+1:= 139
\TER+2i= 118

Photo 6-E-1

This next secton of the program displays the contents of the string.

Line Description
160 Holds previous display until <ENTER> is pressed.

170
180

190

200

Using the Variable Pointer 117

Clears the screen.
Starts the J FOR-NEXT loop. Since VO contains the length of the
string, a loop from | to VO would count up to the length of the
string. Similarly, a loop from 0 to V0-1 also counts up to the length
of the string. This latter form is preferable since we will add the J
value to the beginning memory location, and we want to start by
adding 0.
This line PRINTs

- the word "PEEK("

- the memory location address SL+J

- the characters ")="

- the number stored at address SL+1J

- the equals sign

- the character represented by the number

stored in the address SL+J]

If our address is 31000 and it contains the value 65, this line will
PRINT

PEEK(31000)= 65 = A.
As this is repeated through the loop, the user will see the contents
of the entire string pointed to by the VARPTR.
The J loop ends.

.

-
-
=l
-
(]
ok,
-
3
-

=

Photo 6-E-2

118 The TRS-80 Graphics Book

So now we have displayed the memory locations and their contents
of the contents of the string. This is something entirely new. When we
worked with string variables before, we were concerned about their
contents but not the memory locations that contained them.

The next section of the program allows the user to edit the
characters in the string by changing the values stored in the memory
locations containing the string.

210 INPUT "READY TO EDIT CHARACTERS"; J$
220 CLS
230 INPUT "START WITH WHICH CHARACTER"; SC
240 FOR J= SC-1 TO V0-1
250 CLS: PRINT "CHARACTER" J+1
260 PRINT "PEEK(" SL+J ")=" PEEK(SL+J)
" CHR$(PEEK(SL+J))
270 INPUT "NEW CHARACTER"; NC
280 POKE SL+J, NC
290 NEXT J
300 LIST 20

Listing 6-F

Photo 6-F

Using the Variable Pointer 119

Let's examine each line of this section of the program.

Holds previous display until <ENTER> is pressed.

Accepts at the keyboard the character to use to start editing. The
user would type "1" to start with the first character, "2" to start
with the next character, etc,

This starts the loop. Once again, 1 is subtracted from the value the
user types in. So if the user types "I" the start with the first
character, 0 will be added to the value, which is the desired

The screen is cleared and the current value of the looping variable
J is printed, offset by one to restore it to the user's perspective of

This line PRINTs the same information that line 190 above PRINTSs.
The user types in the value of the new character desired for that
memory location. For example, if the character "A" is desired, the
user types in the ASCII value "65". If a graphics character is
desired, the user types in a value between 128 and 191.

The value the user types in in POKEd to the memory location
which has the address equal to the beginning storage location plus
the looping variable.

Line Description
210
220 Clears the screen.
230
240
effect.
250
the value.
260
270
280
290 The loop ends.
300

This is a strange line. It lists line 20 of the program. When you run
the program, you will see that not only has the value assigned to
the variable changed, but also the program line assigning the value
to the variable has also changed.

When a string value is assigned to a string variable, POKEing values into

the location of the string changes not only the value of the string
variable, but also the program line containing the string variable.
This is true unless the value of the variable has been changed in
subsequent program lines.

Another way to say this is, the VARPTR points to the area of

memory containing the actual program lines where the value of the string
variable is assigned.

PRINTING THE GRAPHICS ON THE SCREEN

The program in Listing 6-F let the user change the characters in

the string stored in a string variable. The next program lets the user do
the same thing with access to any character, in any order, and with the
graphic always displayed on the screen.

10 CLS
20 A$="THIS IS THE TEST!"
30 VA= VARPTR(AS):

IF VA > 2 15

THEN VA = VA - 2 16

120 The TRS-80 Graphics Book

40 VO = PEEK(VA)

50 V1 = PEEK(VA+1)
60 V2 = PEEK(VA+2)
70 SL = V1 + V2%256

80 CLS: PRINT@0, "LENGTH IS "V0; CHRS(30)

90 PRINT@#448, "A$="

100 PRINT @ 512, AS;

110 PRINT @ 64, "WHICH CHARACTER"; CHRS$(30);
120 INPUT CP

130 IF CP > VO THEN 110

140 PRINT "CHARACTER" CP "=" PEEK(SL+CP-1)
150 INPUT "NEW VALUE"; NV

160 POKE SL+CP-1, NV

170 GOTO 80

Listing 6-G

| WHICH CHARRCTER 8
- CHARACTER 8 =32
 NEW WALUE? 191

Photo 6-G-1

Lines 10 to 70 assign the value of the string variable AS$ (line 20),
its VARPTR (line 30), the length of the string (line 40), the variables
containing the numbers used to compute the storage location of the
string's data (lines 50 and 60), and the storage location (line 70).

Line

Using the Variable Pointer 121

LENSTH IS 17
RHICH CHARACTER? -

A=
THIS IS'THE TEST!

Photo 6-G-2

Let's look at the remainder of the program line by line.

Description

&0
90
100

110

120

130

Clears the screen. PRINTs the length of the variable (V0) and
character 30, which clears the remainder of the line on the display.
PRINTs AS$= at location 448 (on the left side of the screen, near
the vertical center).

PRINTs the value of the string AS on the next line down on the
screen.

PRINTs at location 64 (near the top of the screen), the question
WHICH CHARACTER and character 30, which clears the remainder
of the line.

This INPUT instruction adds the question mark to the "WHICH
CHARACTER" question and accepts the user's choice of character
at the keyboard. Again,the user would type "1'" to choose the first
character in the string, "2" to choose the second character, and so
on.

Prevents the program from using a user-input number beyond the
length of the string. (Since line 160 POKEs a value into the
location represented by that number, it is important that the
location be checked. POKEing around into the wrong part of

122 The TRS-80 Graphics Book

memory can have disastrous results.)

140 So the user can be sure the desired memory location is being
accessed, the number stored in the memory location is displayed.

150 The user types in the new value (between 0 and 255). This number
typed is the number which will be POKEd into the memory location
in line 160.

160 The new value specified in POKEd into the memory location
specified. This changes the value of the string as it is stored in
memory. :

170 The program returns for another memory location.

Note that each time the program loops back from line 170 to line
80, the screen is cleared (line 80) and the new value of the string
variable is PRINTed (line 100). The user can always see the current value
of the variable, and can thus see the effects of the changes made at the
keyboard.

This is a short program, but its results are rather dramatic. By
changing among text characters (32-127), graphics characters (128-191),
and control characters (8, 9, 10, 13, 24-31), the effects of each character
on the string can be seen.

REAL-TIME ON-SCREEN EDITING

The two previous programs let the user control what characters a
string contained, by typing in the numbers corresponding to the desired
characters. In the next program, the VARPTR instruction is then used to
determine the location of a string variable in memory. Next the user
draws with a screen editor, creating a design right on the screen with the
arrow keys. Finally, the program transfers character values from the
video memory to the string variable.

5 GOTO 15 ' String-Packing Program
10
Lines 11 to 13 are the INKEYS routine from Chapter 3 (with the extra
PRINT taken out of line 13),

11 LO=PEEK(16416)+PEEK(16417)¥256:L1=LO:I$=INKEY$:
$§="":CU=32

12 CU:168—CU:POKELO,CU:FORJJ=1TOZO:I$=INKEY$:
IFIS=""THENNEXTJJ:GOTOI12 ELSEJJ=20:NEXTJJ:
I=ASC($):IF1=8 ANDSS<>"THENPOKELQ,32: LO=LO-1:
S$=LEFTS(S$,LEN(S$)-1):GOTO12

13 IFI=13ANDSS<>"THENPOKELQ,32:RETURN ELSE
IFIKLY ORI>DHV THEN12 ELSEIFLO-L1=LE THENI12
ELSEPOKELO,I:5$=58+1$:L0=L0+1:CU=32:GOTO12

14 '

Main Body of Program

15 CLEAR 200:GOSUB100 'INITIALIZE VARIABLES
20 GOSUB200 'CREATE GRAPHIC ON SCREEN

25
30

35
99

100
110

120
199

200
205
210
215
220
225

230

235

240

245

250

255
260
265
270
275
299

300
310

Using the Variable Pointer 123

GOSUB300 'GET PARAMETERS FOR PRINTING

GOSUB400 'READ GRAPHICS FROM SCREEN
AND POKE INTO VARIABLE

GOTOI15

!

Initialize Variables
DEFINT A-Z
A$="
"
spaces)'
RETURN
1]

Create Graphic on Screen

CLS: ON ERROR GOTO 260
PRINT @0, AS;: IS=INKEYS
PRINT @960, X; Y; CHRS(30);
IS=INKEYS: IF I1$="" THEN 215
IF 1$=CHRS(31) THEN CLS: GOTO 210
IF I$=CHRS(9)
THEN X=X4+1:
SET (X,Y):
GOTO 210
IF I$=CHRS(8)
THEN X=X-1:
SET (X,Y):
GOTO 210
IF 1$=CHRS$(91)
THEN Y=Y-1:
SET (X,Y):
GOTO 210
IF 1$=CHRS(10)
THEN Y=Y+1:
SET (X,Y):
GOTO 210
IF 1$=CHRS(32)
THEN RESET(X,Y):
GOTO 210
IF Is:"Y" OR I$:"y"
THEN ON ERROR GOTO 0:
RETURN
GOTO 215
PRINT @ 960, "ERROR...";
FOR K=1 TO 400: NEXT K
PRINT @ 960, " ",
RESUME NEXT
]

Get Parameters for Printing

PRINT @ 960, "LEN(AS)=" LEN(AS);
PRINT @ 975, "Maximum X pixel? "; CHRS$(30);

(That's 128

124 The TRS-80 Graphics Book

320 LE=3: LV=48: HV=57: GOSUB 11l: XM=VAL(SS):
IF XM>127 THEN 310
330 PRINT @ 975, CHR$(30); "Max. X="; XM;
340 PRINT @ 990, "Maximum Y pixel? "; CHRS(30);
350 GOSUB 11: YM=VAL(SS): IF YM>44 THEN 340
360 PRINT @ 990, CHRS(30); "Max. Y="; YM;
370 RETURN
399 !
Read Graphics from Screen and POKE inta Variable

400 PRINT @ 1005, "<<Please Wait>>";
405 XC = INTA(XM+2)/2)
410 YC = INT((YM+3)/3)
415 COUNT = YC*XC + (YC-1)*XC + YC-1
420 IF COUNT > LEN(AS)

THEN PRINT @ 1005, "String Too Long"s:

PRINT @ 768, " ";:
END

425 VA=VARPTR(AS): IF VA>2 15 THEN VA=VA-2 16
430 V1=PEEK(VA+1): V2=PEEK(VA+2): SL=V1+V2¥256
435 IF SL > 2 15 THEN SL=SL-2 16
440 ST=SL
445 SL=SL-1
450 FOR Y=0 TO YC-1
455 FOR X=0 TO XC-1
460 SL=SL+!
465 POKE SL, PEEK(15360 + X + Y*64)
470 NEXT X
475 SL=SL+1: IF SL-ST >= COUNT THEN POKE SL,32:

GOTO 510
480 POKE SL, 26
485 FOR Z = 0 TO XC-1

490 SL=SL+1
495 POKE SL,8
500 NEXT Z

505 NEXT Y

510 SL=SL+1: IF SL-ST >= LEN(AS) THEN 525
515 POKE SL,32

520 GOTO 510

525 RETURN

Listing 6-H

To use this program, draw your picture with the arrow keys.
Pressing the space bar erases the pixel at the current position. As you
draw, the current values for X and Y are displayed in the lower left
corner of the screen. Keep track of the greatest X value and the
greatest Y value you use,

When you have finished your drawing, press the "Y" key (for "Yes").
The program will prompt you to key in your maximum X value and Y

Using the Variable Pointer 125

Photo 6-H-1

value, so use the ones you were keeping track of as you drew the picture.
The "Please Wait" prompt will appear as the computes the number of
characters needed to store your graphic. If your graphic requires more
characters than there are in the string, the message "String Too Long"
appears on the screen,

If the string will fit, the program reads the video memory and
POKESs the appropriate values into the locations where the string data is
stored in memory. For the remaining memory locations in the string, it
POKEs a 32 (space), thus padding the remainder of the string with spaces.
This eliminates any leftover characters that may remain from the previous
graphic.

Let's examine each section of this program.

Line 5 contains the program title and jumps around the
keyboard-input routine in lines 11 to 13.

Lines 15 to 35 contain the main body of the program. Notice that it
is a linear program, with no jumping around in the main body of the
program except that line 35 goes back to line 15 when the program

126 The TRS-80 Graphics Book

JLIST 110

o ﬁ‘zn.

Photo 6-H-2

finishes reading the screen and POKEing it to the variable.

Lines 100 to 120 initialize the variable. All the variables are
defined as integers (for faster program execution) in line 100. AS is
assigned its initial value of 128 spaces in line 110. The data to be read
later from the screen will be POKEd into these 128 spaces in the
program.

Lines 200 to 275 check the keyboard with the INKEYS instruction
in line 215. If an arrow, the clear key, the space bar, or the "Y" or "y"
key is pressed, the program responds appropriately.

Lines 300 to 370 ask the user for the maximum X and Y dimensions.
The kéyboard input is used for the keyboard responses. (ii an INPUT
instruction were used, pressing ENTER would cause the screen to scroll.)
The values are checked to be sure they will fit on the portion of the
screen allotted to the graphics, which includes all but the last character
line of the screen. If the user puts in values that do not include all the
graphic drawn, only the portion of the graphic bordered by the values
given will be included in the string being built.

i e e u—

Using the Variable Pointer 127

Lines 400 to 525 include the most complex part of this routine. A

line-by-line description is appropriate here.

Line

Description

400

405

410

415

420

425
430
435
440

445

450

455

460

PRINTs <<Please Wait>> message on the bottom line of the screen.
Notice the semicolon after the material to be PRINTed. This
semicolon suppress the linefeed after the PRINT, and thus prevents
scrolling.
Calculates the number of character spaces on the X axis needed
for the graphic, based on the number of pixels the user has
specified as "X maximum.,"
Calculates the number of character spaces on the Y axis needed
for the graphic, based on the number of pixels the user has
specified as "Y maximum."
Calculates the total count of character spaces needed for the
entire graphic. The calculation includes:

* YC*XC, the X count times the Y count;

* (YC-1)*XC, since every Y row but the last requires a row

of BACKSPACE characters (character 8); and

* YC-I, since every Y row but the last requires an extra

linefeed character (character 26).
If the number of characters needed to store the string is greater
than the length of the string, the program returns a message and
ends. If this were not checked and the program POKEd as many
characters as the graphic required, regardless of the length of the
string variable in the program, numbers might be POKEd into
memory beyond the end of the string. This could be disastrous,
since it would POKE characters into the code of the program and
surely scramble it to an unexecutable state.
Assigns the variable pointer of AS to the variable VA. Checks for
values beyond the PEEKing range and adjusts if needed.
Calculates the location of the raw data in memory using the
VARPTR values.
Once again, if the value is beyond the PEEKing range, it is
adjusted.
SL is the string location of the raw data in memory. Since SL will
be incremented and used as a counter, the variable ST is assigned
to SL's starting value for later reference.
SL is incremented each time the loop that follows is run, including
the first time. So SL is decremented by in line 445 so it will
contain its starting value when it is incremented the first time (line
460).
The Y loop starts at 0, counting up to YC-1 (one less than the
number of characters needed on the Y axis, since it started at
zero).
The X loop starts at 0, counting up to XC-1 (one less than the
number of characters needed on the X axis, since it started at
zero),
SL, the current location in the string data, is incremented. This
incremented number is used in line 465 as the memory location that
the value from the video memory is POKEd into.

128 The TRS-80 Graphics Book

465 The next location in the video memory is calculated using the X
and Y coordinates, and the character stored in that part of the
video memory is POKEd into the string variable at location SL.

470 The X loop at the end of each horizontal line is closed up.

475 The SL variable is incremented again. If it is beyond the count
required to contain the entire graphic, the program goes to the
finish-up loop.

480 The linefeed character (26) is POKEd into the next character
position at the end of the line, so the next character will begin on
the following line on the screen.

485 At the end of each horizontal line, after character 26 effectively
causes the cursor to go down one line, the Z loop begins. This loop
(lines 485 to 500) is as long as the horizontal line (XC), and it
POKEs character 8 (the BACKSPACE character) into each
succeeding space. The effect is to backspace to the beginning of
the next line on the video screen before starting the next row of
characters.

490 The string location variable SL is incremented for this
BACKSPACE loop.

495 The BACKSPACE character (8) is POKEd into the memory location.

500 The Z loop is closed up.

505 The Y loop is closed up, marking the end of the vertical lines
required for the graphic.

510 A loop starts that will fill the rest of the variable with character
32 (SPACE). In this line, the string location variable is
incremented. If it has reached the length of the string variable in
memory (AS), this entire subroutine is done.

520 The SPACE character is POKEd into SL.

525 Here the subroutine ends.

USING THE SCREEN-EDITOR
TO CREATE AN ARRAY OF GRAPHIC STRINGS

If you are using a TRS-80 Model IlIl or Model 4, you can easily
create an entire string array of graphics you create with this screen
editor. (Model I users are not so fortunate: the following technique does
not work on Model I's.)

Perhaps you want to create a group of graphic numerals to display
large numbers on the screen. You may recall the program in chapter &
that generated math problems and displayed them in large letters on the
screen. To produce each large number, we used DATA statements that
contained the numbers corresponding to each graphics character used in
building the number.

Let's look at an alternate method using the program in Listing 6-H.
Assume we want to use the string array NS() to contain the ten digits,
with N$(0) as 0, NS$(1) as I, etc. The first step is to dimension our array.
(Even though the default array size is 10, it is good practice to dimension
it anyway. This makes it easier to change in case we want to add more
elements to the array later.) We might use this line:

Using the Variable Pointer 129

102 DIM N$(©9)

Next we run the program and create our first large graphic
character, the large number zero. After the string is drawn on the
screen, press the "Y" key to begin building the string variable. In a few
seconds the screen will return to its original status, with the X and Y
counters back at 0,0. When this happens, press the <BREAK> key.

Line 110 will contain the graphic, and it will look something like
this:

110 AS="
(That's 128 spaces)'

(Your graphic should appear immediately after the first quotation
mark.)

To edit the line, type

EDIT 110 <ENTER>

We will change A$ to N$(0). First, delete the A by typing
D

Insert the N$(0) by typing

INS(0)

Get out of the insert submode by holding

<SHIFT>-<UP ARROW>

(that is, hold the shift, and press the up-arrow key).

Hold the space bar down until the cursor is just past the last
character in your graphic. If there are more blank spaces in the string,

type
H " <SHIFT>-<UP ARROW>
Get out of the edit mode by pressing
<ENTER>

At this point, line 110 should look something like this:

130 The TRS-80 Graphics Book

110 N$(0)="
(That's 128 spaces)'
(with the graphic after the first quotation mark).

Line 110 now assigns your graphic of the zero to N$(0). The next
step is to add a new line which assigns the spaces to AS, and repeat the
process.

To add the new line, type
111 AS="
(That's 128 spaces)'

Repeat the process from the beginning, drawing the numeral 1 this
time. Each time you finish, BREAK out of the drawing program, edit the
line to change the variable name and chop off the end of the string, and
add a new line that assigns 128 spaces to AS.

After all the graphics have been assigned, you may delete all the
program lines except the string variable assignment statements, and write
the rest of your program around them.

What are the advantages of using these packed variable assignment
statements over READing numbers in DATA statements?

1) This program executes quickly. Quite a few string variables can
be assigned in a second or so, whereas it took several seconds to assign
eleven variables using the READ - DATA instructions.

2) The graphics take less program space. Each character on the
screen created using this last method takes about 2 bytes of memory (1
for the character and one for the BACKSPACE under it). Each character
on the screen took at least 4 characters using the READ - DATA method
(three digits and a comma), and the extra programming to READ the
DATA was required.

Many professional programmers use this methods for fast,
space-efficient graphics in BASIC.

Chapter Summary

The VARPTR instruction, when used with a string variable, returns a
value that points to the variable's location in memory.

The number stored at the VARPTR location is the length of the string
pointed to.

'

The next two numbers are the least significant byte and the most

Using the Variable Pointer 131

significant byte of the location where the string's data is stored.

The PEEK instruction can be used to determine the characters stored in
the string.

The POKE instruction can be used to change the characters stored in the
string.

By adding special control characters such as 8 (backspace) and 26
(linefeed), the graphics can be made to cover more than one line on
the screen.

When string variable assignments are changed this way, the changes
appear in the listing of the program, on the line where the string
was originally assigned its value.

On the TRS-80 Model IIl and Model 4, the characters appear in the
program listing just as they appear on the screen when the program
is run. These graphics can be edited in BASIC's edit mode.

On the Model I, the characters appear as graphics when the program is
run, but as reserved words when the program is listed. These
graphics cannot be edited in BASIC's edit mode.

Meeting the Chapter Objectives

Here are the chapter objectives for your review. Can you meet all
the objectives?

A. Write the description of the VARPTR instruction (as used with
string variables).

B. For the VARPTR of a string variable, tell what is defined by each
of the three bytes starting at the VARPTR location.

C. Given the three bytes starting at the VARPTR location, determine
the memory location of the characters of the string variable.

D Write a program that allows the user to view and edit the contents
of the memory locations containing the characters of a string
stored in a variable.

More Programming Practice

1. Write a program that contains an assignment statement that assigns
a value to a string variable. It should then use the VARPTR
instruction to determine the location of the string in memory. For
each character in the string, it should then PRINT the ASCII value
of the character and the character itself. The program should print
this information horizontally, four characters per horizontal line.

2. Write a program that generates 15 random numbers between 128
and 191, then POKEs the value into the location of string data in

132

The TRS-80 Graphics Book

memory. It should print that string, pause, and generate another
string.

Write a program that prompts the user for the length of a string
and a graphics character number (128 to 191). It should then use
the VARPTR instruction to locate a string variable's location in
memory and POKE the appropriate characters into that area to
create a vertical line of characters on the screen (with character
26 and character 8 between each adjacent pair). The line should be
of the specified length and contain the specified character.

Write a program that prompts the user for a width, a length, and a
graphics character number (128 to 191). It should then POKE the
character value into the string storage area to create a string with
the specified length and width, appearing to consist entirely of the
specified character.

Using characters created by the program in Listing 6-H, write a
program that PRINTs your name on the video screen.

Chapter Checkup

(For questions | to 3, assume the VARPTR of BS is 31005.)

1.

Write a BASIC program line that PRINTs the length of the string
BS, without using the LEN instruction.

Write a BASIC program line that PRINTs the location of the first
character of data in the string BS.

Write a BASIC program line that PRINTs the first character of the
data in the string BS.

In line 30 of the program in Listing 6-G, why compare the value of
VA to 2 157 If VA is greater than 2 15, why subtract 2 167

In the program in Listing 6-H, why does the PRINT instruction on
line 210 include character 307

In the program in Listing 6-H, why does line 320 check the value of
XM to be sure it is less than 1277

In the program in Listing 6-H, why does line 420 contain a PRINT @
768, 7 ¥ aiter the error message?

In the process of creating an array of string variables using the
program in Listing 6-H, a new statement assigning spaces to AS is
needed for each new graphic. Why is it necessary to use AS in
these new lines, rather than some other string variable?

What is one way in which the VARPTR instruction is different from

10.

Using the Variable Pointer 133

any other BASIC instruction we have considered so far?

What is the maximum length of a string variable in an assignment
statement in BASIC? (If you are not sure, see how long the longest
one you can type in is.)

Chapter 7.
Using DEBUG under TRSDOS
To Pack String Graphics

OBJECTIVES:

At the end of this chapter, the reader will be able to perform the
following tasks:

A. Write the steps to be followed to view a program on disk in ASCII
format using DEBUG under TRSDOS.

B. Use DEBUG to modify a program so that it assigns a string of
character 191's (solid graphics characters) to a string variable.

C. Use DEBUG to modify a program so that it assigns the characters
needed to form a rectangle 8 pixels wide and 9 pixels high to a
string variable.

D. Use DEBUG to modify a program with a PRINT instruction, so that
the program PRINTs a string of character 140.

E. Use DEBUG to combine adjacent lines of a BASIC program.

F. Use DEBUG to change the line numbers of a program to 0, thereby
making the program difficult to alter.

INTRODUCTION

In the last chapter we looked at the VARPTR instruction which
allows you to examine and alter the values in the memory locations which
contain the data in string variables. By POKEing values for graphics
characters directly into these locations, you changed the assignment
statements within the programs to contain graphics data. This chapter
discusses another technique for accomplishing the same thing and more by
changing the program as it resides on a diskette.

Note: The techniques in this chapter work only with disk-equipped
the TRS-80 Model III and the Model 4 (under Model III TRSDOS). They do
not work on non-disk TRS-80 computers or under Model I TRSDOS.

EXAMINING THE PROGRAM UNDER DEBUG

To change a string variable assignment statement in a BASIC
program so that it contains graphics characters, we must first examine

the program under the TRSDOS utility DEBUG. Here are the steps to
follow in this process, as well as an example program:

1. In Disk BASIC, write a program containing an instruction which
assigns a value to a string variable. For example:

10 AS=" " ']10 spaces
20 PRINT "AS$=" AS
30 PRINT "LEN(AS$)=" LEN(AS)

Listing 7-A

134

Using DEBUG to Pack String Graphics 135

The assignment statement in this program is line 10 which assigns
ten spaces to the string variable AS.

MIST

18 As=" " 718 spaces
28 PRINT "A$=" A$

38 PRINT "LEN(A$)=" LEN(AS)
READY

IRUN

A§=

LEN(AS:= 18

Photo 7-A-1

2. SAVE the program on the diskette in the ASCII format. A bit of
explanation is in order here.

When BASIC stores a program in the computer's memory or on a
disk, it doesn't save every character you typed. Instead, it compresses the
BASIC program by using special numbers called "tokens" in place of the
reserved words. (Reserved words are the BASIC words that you use for
programming: PRINT, IF, THEN, GOTO, etc.)

If you tell the computer to SAVE the program in the ASCII format,
it SAVEs the program character by character as you typed it in. Since we
are going to look at the program on the disk, we will SAVE it that way
for easier viewing. To save the program in the ASCII format, type

SAVE "DEMO",A

and press ENTER. The A tells the computer to use the ASCII
format.

136 The TRS-80 Graphics Book

3. Leave BASIC and go back to the operating system. To do this,
type

CMD llS"
and press ENTER.

4. Get into DEBUG and look at the file. DEBUG is a TRSDOS
function that allows us to look directly at the computer's memory and
disk files. To get into DEBUG, when the TRSDOS Ready prompt appears,
type

DEBUG

and press ENTER. Next the screen will show a lot of numbers and letters
which represent part of the computer's memory. Type

F

and the Filespec: prompt will appear. Type in the filename you used to
save the program. In this example, we will type

DEMO
and press ENTER. Another screen of numbers and letters will appear, this
time representing the first portion of the file whose name we entered.

This screen has three main parts:

+ The column of numbers on the left side of the screen tell us the
drive number and record number of the part of the file we are examining.

+ The letters and numbers in the middle eight columns are the
hexadecimal representations of the file contents (more on this shortly).

+ The letters and numbers on the right side of the screen are the
ASCII representation of the file., This part shows the program as we typed
it in.

Before proceeding, let's look at how these last two groups of
numbers relate to each other. The first row of hex (that's short for
hexadecimal) numbers reads

3130 2041 243D 2220 2020 2020 2020 2020
The first row of the the ASCII characters reads

10 AS="

followed by nine spaces.

The first two characters in the hex numbers (31) stand for the first

Using DEBUG to Pack String Graphics 137

188189 3138 2841 243D 2220 2020 2028 2020 2020 19 As=" ,
18211@: 2022 2027 3130 2873 7861 6365 738D 3230 " ‘1@ seaces z2
189129: 2839 3249 4E34 2022 4124 3022 2041 248D PRINT “As=" &g
182138: 3338 28709 T249 4ET4 2022 4045 4E28 4124 32 PRINT ,
182142: 2330 2228 4047 4E28 4124 298D

182132: 6073 2028 7367 6520 T@81 676T 7328 3131 ls, see cages
188162: 3222 T4EF 2031 3131 2£22 @RED 8282 2 to 1117 B

Ay

Rn3d

033 3632 2000 28%8 2000 2059 CF3
2233 7706 8120 2087 2038 0058

3: (E53 5404 1520 434F SS4E 5420 CA28 B126 19T |
- 5340 2033 3234 8020 3531 308 7777 £801 SL,32°b 512.ua
1681F8: 2020 B120 534C 220 3235 808C 7TES £120 % L, 26w

Photo 7-A-2

of the ASCII characters (1). The next two characters in the hex numbers
(30) stand for the next ASCII character (0). Each pair of hex characters
stands for the corresponding ASCII character (see Appendices 2 and 3).

The first row of hex characters ends with nine sets of the
character pair "20". These stand for the nine spaces at the end of the
ASCII side. These spaces (and the one on the next row) are the
characters we will change to graphics characters.

2. Modify the contents of the data assigned to the string variable.
To get into the modify mode, press

M

A cursor block will appear over the first character of the hexadecimal
numbers in the middle columns of the screen. You can use the arrow keys
to move the cursor block anywhere within the hexadecimal numbers.

Move the cursor to a position over the 2 in the first 20 in the
group of nine 20's.

138 The TRS-80 Graphics Book

BFBFBFBFBFBFBFBFBFBF

and notice that the characters shown as "20" are changed to "BF". Also,
the spaces shown on the ASCII portion on the right side have been
changed to periods. (Only regular text characters are shown on the ASCII
side; each of the others is represented by a period.) The cursor still
appears on the screen to tell you that the characters have been changed
on the display but not yet on the diskette.

i 4ED8 4104 3

6574 6163
7328 3431

Photo 7-A-3

After making changes in the modify mode, we may press ENTER to
record the changes on disk or BREAK to cancel the changes typed in.

Press ENTER to record to the disk file the changes you have made.

£
6. Return ic BASIC

memory. Here are the steps:
+ First press BREAK to return to the "Filespec:" prompt.

+ Press BREAK one more time to get to the "TRSDOS Ready"
prompt.

Using DEBUG to Pack String Graphics 139

+ Type
BASIC <ENTER>
to load Disk BASIC back in.

+In response to the "Memory Size?" and "Number of Files?"
prompts, press <ENTER>.

+Load in the altered program from disk by typing
LOAD "DEMO" <ENTER>.

+LIST out the program to see the changes. The program you see
contains a string of character 191 (hex BF) in the assignment statement

in line 10.

RUN the program to confirm that the string of graphic characters
is assigned to AS.

WIST

18 ﬁ$="M“ ‘18 spaces
28 PRINT "r$=" R

38 PRINT "LEN(A$I=" LEN(AS)
READY '

Photo 7-A-4

140 The TRS-80 Graphics Book

Using DEBUG Compared to Using the VARPTR

As you can see from the example, using DEBUG to pack string
variables achieves the same results as using the VARPTR (as discussed in
Chapter 6). For the programmer, here are some advantages of using
DEBUG:

A. No special programming has to be added to the program when
using DEBUG. When we used VARPTR, a special subroutine had to be
added to the program to access the variables in memory. For some
programs and some programmers, this may speed up the string-packing
process considerably.

B. In DEBUG, you can always see the ASCII and hex values of the
parts of the program being changed, so you are less likely to accidentally
change the wrong part of the program.

C. DEBUG can be used to change strings in PRINT instructions as
well as in assignment statements, as will be seen later in this chapter.

Here are some disadvantages of using DEBUG:

A. Only TRS-80 Model III and Model 4 disk-equipped computers can
use DEBUG to alter strings. For non-disk users, this is a distinct
disadvantage of DEBUG.

B. Changes made with DEBUG are made right on the disk, and
changes made with VARPTR are made in the computer's memory. This
makes changes performed with DEBUG more permanent, possibly making
mistakes more serious.

C. Using the VARPTR, numbers typed in by the user may be either
decimal or hex, depending on the BASIC program written. All numbers
typed in under DEBUG must be in hex.

D. BASIC programs can be written to allow the user to see the
string at all times. In DEBUG you cannot see any graphics characters on
the screen.

ON WITH THE SHOW

Let's look at another example of the use of DEBUG to pack string
variables.

Go back into DEBUG from "TRSDOS Ready" and look at the file
DEMO once more. You should see the line of "BF" strings you typed in
earlier. Position the cursor over the first "BF" string and type

BF BF BF 1A 08 08 08 BF BF BF

(Don't type in the spaces -- those are for ease of reading.)

Using DEBUG to Pack String Graphics 141

The "BF" characters are the same graphics characters used before.
"IA" in hex is the same as decimal 26, the move-down-one-line character.
The "08" is our friend the backspace. So this string contains the
following:

+ 3 graphics characters;

+ 1 linefeed to go to the next line;
+ 3 backspace characters; and

+ 3 more graphics characters.

The result is two sets of three graphics characters, one atop the
other. When you go back to BASIC and look at the program, you will see
the graphic in the first line has changed as described. In this example we
see that control characters can be added using DEBUG to create graphics
covering more than one line on the screen.

CREATING MORE COMPLEX GRAPHICS

We can create elaborate graphics on the video display and PEEK
the characters used to create them from the video screen using the
program in Listings 3-P, 3-Q, and 3-R. This program allows you to use the
arrow keys to create the graphic. Then it PEEKs the value of each
location in the video memory and PRINTs the locations and values of
those that contain graphics. If you did Exercise 5 in the Chapter Checkup
for Chapter 3, you have a version that LPRINTs these values on a printer
instead of the video.

The author used this program to draw a diagonal line from the
upper left corner of the display, approximately ten pixels long toward the
lower right corner. While RUNning the screen-PEEKing routine, the
program LPRINTed these values:

15360 137 15361 144 (row 1 on the screen)
15425 130 15426 164 (row 2 on the screen)
15491 137 15492 144 (row 3 on the screen)
15556 130 15557 132 (row 4 on the screen)
Figure 7-1

Positioned on the screen, these locations appear like this:

15360 15361
15425 15426
15491 15492
15556 15557

Figure 7-2
As we can see from these characters' positions, control characters

will be needed in the string we will build to position the graphics
characters correctly.

142 The TRS-80 Graphics Book

Next let's look at the values to be typed into the string. Since our
program prints out the values in decimal and DEBUG requires hex values,
we need a way to convert from decimal to hex. Computers should work
and people should work, so use the following program to do the
conversion:

10 INPUT "DECIMAL NUMBER"; D

20 M = INT(D/16): L = D-M*16

30 IF M<I10
THEN M$ = RIGHTS(STRS(M),1)
ELSE MS = CHRS$(M+55)

40 IF L<10
THEN L$ = RIGHTS(STRS(L),1)
ELSE LS = CHRS(L+55)

50 LPRINT D "=" MS;LS

60 GOTO 10

Listing 7-B

(If you don't have a printer, use PRINT instead of LPRINT in line
50.)

Using this program, you type in decimal numbers and it LPRINTs
the hexadecimal equivalents. RUN this program and type in the values
PEEKed from the video memory (see Figure 7-1). The result is as follows:

137=89 144=90 130=82 164=Ak
137=89 144=90 130=82 132=84
Figure 7-3

Now we know the relative positions of the locations (from Figure
7-2) and the hex values to type in (from Figure 7-3). We are ready to use
DEBUG and put them into a program.

We have not calculated how many characters will be needed to
build this string, so this program has some extras at the end of the string
in line 10, just in case.

10 BS=" " 120 spaces

20 PRINT BS

30 PRINT LEN(BS)

Listing 7-C

Save it under the filename "DEMOI!" by typing
SAVE "DEMOI1'",A

and pressing ENTER. |

Using DEBUG to Pack String Graphics 143

Now return to TRSDOS, go into DEBUG, and examine the file
"DEMO1".

The first two rows of characters show the ASCII representation of
part of the program like this:

3130 2042 243D 2220 2020 2020 2020 2020
2020 2020 2020 2020 2020 2022 2027 3230

followed by the ASCII representation.

2. 3132 2842 243] 2220 2020 2020 2828 2028 19 Bs="
| 2829 2829 2029 2020 2020 2022 2027 3239 :
2: 2873 7@61 6365 738D 3230 2058 5249 4£54 spaces
248D 3339 2058 $249 4E54 2040 434E Bs
2423 BD24 2900 0009 2864 6574 6169 (B
2023 T35 6520 7@61 67T T
T45F 2831 3131 222 @8
3 BF32 28RD 2240 3843

3R39 44

0 b g
3G e

4005 5340 (D34 3A28 GF28

D520 434F ST4E 5428 (A
233 323A 8029 3531 3888 7777
129 5340 2020 3236 298¢ 77

Photo 7-C-1
Press
M
to get into the modify mode. Position the cursor over the first 20 (space)
after the 22 (quotation mark) and type in the values for the first two

characters from Figure 7-3:

89 90

14y The TRS-80 Graphics Book

52 9;45‘4 spaces.za PPINT' .
4¢ 4“'4E BS 30 PPIHT LE?Q :

' 93531 3008 7777 EBRL
2920 B128 534C 2029 3236 P@8C 77ES @129 °

Photo 7-C-2

Photo 7-C-3

Using DEBUG to Pack String Graphics 145

By referring to the positional chart in Figure 7-2, we see that the
third position (15425) is directly under the second position (15361). To
position the third character directly under the second one, we need to
add characters to move down one position and back one position. type

1A 08
Type the next two characters:

82 A4

Referring again to Figure 7-2, we see the fifth position (15491) is
down one and right one from the fourth position. Just one downward
movement is needed, so type

1A
Type the next two characters:
82 84

Referring one last time to Figure 7-2, we see that the seventh
position (15556) is directly under the sixth (15492). So type these
characters to position it:

IA 08
Now type the last two characters:
82 84

Press ENTER to record the changes to the disk, then press BREAK
two times to return the TRSDOS Ready.

Go back into BASIC and load DEMO1 back in. Now when you run it,
you will see the diagonal line just as it was originally drawn on the
screen.

Further, you can edit line 10 of the program in BASIC's edit mode
to remove the extra spaces from the end of the graphic string. (This
makes the storage of the string more compact, and it may prevent
problems with adjacent PRINTing of the string.)

146 The TRS-80 Graphics Book

Using DEBUG to Modify PRINT Instructions

As mentioned above in the advantages of using DEBUG over using
the VARPTR instruction, you can modify a string of characters following
a PRINT instruction in a BASIC program. This allows you to PRINT
graphics characters efficiently without specifying their ASCII values in

the program. To see how much memory this technique can save, let's look
at an example.

To PRINT a string of graphics characters in an up-and-down form,
we might use this sequence of characters: 141, 142, 131, 141, 142, 131,

141, 142, 131, 141, 142, 131, 141, 142, Putting these characters with a
PRINT instruction, we have:

10 PRINT CHRS$(141)+CHRS(142)+CHRS(131)+
CHRS$(141)+CHRS$(142)+CHRS(131)+
CHRS(141)+CHRS(142)+CHRS(131)+
CHRS$(141)+CHRS(142)+CHRS(131)+
CHRS(142)

Listing 7-D

) +CHR$C131) +CHRS (141) +CHR

Photo 7-D

Using DEBUG to Pack String Graphics 147

RUN this program to see that it displays the desired characters. On
the author's Model IIlI, the amount of memory left was 38096 bytes after
CLEARIng 50 bytes.

How can this be made more efficient? We can change this program
to PRINT a string in quotation marks, then alter the program using
DEBUG. Since the program in Listing 7-D contains fourteen graphics
characters, let's use a program that PRINTs fourteen spaces, to begin
with, Type in this program:

10 PRINT " "

Listing 7-E

SAVE it in the ASCII format by typing:

SAVE "DEMO3",A <ENTER>

When you go into DEBUG and examine the file, you will find that
the first two rows look like this:

3130 2050 5249 4ES54 2022 2020 2020 2020 10 PRINT "

2020 2020 2020 2020 220D FFFF FFFF FFFF Mt

Figure 7-4

Go into the modify mode and position the cursor over the beginning
of the second 20 (the one following the 22). Type in the hex values of the
characters used in Listing 7-D as follows:

8D 8E 83 8D 8FE 83 8D 8E 83 8D 8E 83
38D 8E 83 8D 8E

The graphic representation of these characters appears on the right
side of the screen as you type them in. Record these changes on the disk
file, return to BASIC, and load in DEMO3 again.

When you LIST the program, you will see that the graphics
characters are indeed contained within the quotation marks following the
PRINT instruction. RUN the program and you will see the same display as
the program in Listing 7-D.

CLEAR 50 bytes of memory and PRINT the amount of memory left.
On the author's Model IlI, 38177 bytes of memory remained. That
represents a savings of 81 bytes over the program in Listing 7-D. Another

148 The TRS-80 Graphics Book

memory savings results because the original program uses string space to
build the string of displayed characters, but this altered version uses no
string space.

USING DEBUG TO COMBINE PROGRAM LINES

DEBUG's file-modifying capability has other useful applications for
the BASIC programmer. One of these is combining two or more program
lines into one line.

Why would you want to do this? Sometimes programs become too
big to run properly in the computer's memory. The you must then
"squeeze" the program to reduce the amount of memory it requires. Since
each line number takes up five bytes of memory, combining lines can save
quite a bit of memory.

0 e
One way to combine two adjacent lines in a program is simply to

add the contents of one BASIC line to the previous line. But this method
can be quite slow if you have very many lines to combine. Also, you are
prone to errors whenever lines must be retyped. DEBUG provides us a way
to combine BASIC lines without retyping.

To demonstrate this technique, start with this program:
10 FOR J=128 TO 191

20 PRINT "CHARACTER";
30 PRINT 3J;

40 PRINT "=";

50 PRINT CHRS(J);
60 PRINT " ",

70 NEXT J

Listing 7-D

RUN the program to be sure you have typed it in correctly. (It
should PRINT all characters from 128 to 191 on the screen.) We are going
to check the amount of memory this program occupies. Before we do,
let's CLEAR 50 bytes of string space. By doing this each time we check
the amount of memory left, we are assured that the amount of string
space will not affect the memory check. Type:

CLEAR 50
Then io check ihe amount of memory, iype:
PRINT MEM

On the author's 48K disk TRS-80 Model III, this returned 38115
bytes of remaining memory.

Here are the steps we must take to combine these program lines

Using DEBUG to Pack String Graphics 149

into one lines

1. SAVE the program in the ASCII format. We will use the name
DEMO2. Type:

SAVE "DEMO2",A <ENTER>

2. Go into DEBUG and examine the file. Type:

CMD"S" <ENTER>

DEBUG <ENTER>

F

DEMO2 <ENTER>

The file will now be displayed in hex and ASCII format. The first

few lines look like this:

3130 2046 4F52 204A 3D31 3238 2054 4F20 10 FOR J=128 TO
3139 310D 3230 2050 5249 4E54 2243 4841 191.20 PRINT"CHA
5241 4354 4552 223B 0D33 3020 5052 494E RACTER";.30 PRIN

The characters shown in bold letters are 0D. Each stands for a
carriage return (character 13, or OD hex) that was pressed at the end of
a program line.

3. Change each carriage return and line number that follows it to
character 32 (20 hex), the SPACE character. Use the arrow keys to
position the cursor block over the first 0D, which follows the 31 in the
second row. Type:

20

To replace the line number characters 3230, type:

2020

Replace the next 0D and line numbers (3330) with the space
character (20) also.

The first lines of the screen should now show this:

3130 2046 4F52 204A 3D31 3238 2054 4F20 10 FOR J=128 TO
3139 3120 2020 2050 5249 4E54 2243 4841 191 PRINT"CHA
5241 4354 4552 223B 2020 2020 5052 494E RACTER"; PRIN

150 The TRS-80 Graphics Book

The ASCII representation of the lines on the right side of the
screen has also been changed, with spaces replacing the both periods that
represented the carriage returns and the line numbers.

Continue through the file, changing the carriage returns and
following line numbers to spaces. Be sure to leave the first line number
as 10 so the program can be loaded back into BASIC!

When you have finished, record these changes to the disk file by
pressing:

<ENTER>

4. Go to BASIC, load the program back in, and examine it. To
return to the "TRSDOS Ready" prompt, press:

<BREAK> <BREAK>
Load in BASIC by typing:
BASIC <ENTER>

Respond to the "How many files?" and "Memory size?" questions by
pressing:

<ENTER> <ENTER>

LOAD in DEMO2 by typing:

LOAD "DEMO2" <ENTER>

LIST the program. As shown in Listing 7-E, the whole program has
been combined into one program line. RUN the program. You should get a

"Syntax Error in 10" message since all the instructions in the program
have been run together without any colons between them.

10 FOR J=128 TO 191 PRINT"CHARACTER"; PRINT J;
PRINT "="; PRINT CHRS$(J); PRINT"", NEXTJ

Listing 7-E
To correct the syntax error, edit the line. Insert a colon after each
complete instruction, and delete the spaces before the next instruction.

After you make these changes, line 10 should look like this:

10 FOR J=128 TO 191:PRINT"CHARACTER"; PRINT J3:PRINT "=";:PRINT
CHRS$(2);:PRINT" ":NEXTJ

Listing 7-F

Using DEBUG to Pack String Graphics 151

RUNning this program shows that it has no syntax errors, and that
it performs the same function as the seven lines in Listing 7-D. To see
how much memory we have saved by combining these lines, type:

CLEAR 50 <ENTER>
PRINT MEM <ENTER>

The author's Model IIl showed 38121 remaining bytes. This
represents a savings of 38139 - 38115, or 24 bytes. This may not seem
like much savings for that involved process, but sometimes 24 bytes can
be significant. The author has spent dozens of hours looking for "a few
more" bytes to allow a program to run in 16K!

Using DEBUG to Protect Program Code

Another interesting application of DEBUG's file modifying powers is
to protect the lines of a BASIC program so they cannot easily be EDITed.
We will do this by changing most of the line numbers to Q!

Let's use this as our sample program:
(See the note following the listing before typing it in.)

10 FOR J=1 TO 10

20 IF INT (3/2) = 3/2
THEN GOSUB 99
ELSE GOSUB 199

30 NEXT J

40 END

99 REM

100 PRINT J "IS EVEN"

110 RETURN

199 REM

200 PRINT J "IS ODD"

210 RETURN

Listing 7-G

(Note: Type this program in exactly as it appears in the listing,
including the spaces. In line 20, before the THEN and before the ELSE,
press the down-arrow key and then insert six spaces.)

Since we are working on a protection technique, let's consider how
it will work to protect this program. The usual way to alter a BASIC
program is to edit the lines. To edit line 200, for example, we would type
EDIT 200. But if all the line numbers were 0, only the first line 0 could
be edited.

A problem arises when the program contains a branch to a program
line. If all the line numbers were 0, the only way to branch would be

152 The TRS-80 Graphics Book

GOTO 0, and that would just branch to the first program line.

The solution to this problem is to change only those lines which are
not branched to. And if all the lines that are branched to contain only
REMarks, no important lines can be edited!

Our plan, then, is to SAVE the program onto a disk, go into
DEBUG, and change the appropriate line numbers in the program to 0. If
the flle is saved in the ASCII format (as our previous programs have
been), BASIC will reinterpret it into BASIC's "tokens" when it is read
back from the disk. When we go into DEBUG and change the program
numbers to zero, only one line 0 will be retained in the program!

If the file is saved in BASIC's compressed format, it is not
reinterpreted as it is read in, and the line numbers in memory are left the
same as they were on the dlSk Because of this, we will save the program

T~

in BASIC's regular compressed format.

After you have typed in the program, save the program in the
compressed format by typing:

SAVE "DEMO4"

Then go into DEBUG and examine the disk file called DEMO4. The
first nine lines look like this:

FF8C 6A0A 0081 204A D531 20BD 2031 3000
BB6A 1400 8F20 D828 4ADO 3229 20D5 204A . (J3.2) .3
D032 0A20 2020 2020 20CA 2091 2039 390A . . . 99.
2020 2020 2020 3A95 2091 2031 3939 00C3 t.e . 199..
6A1lE 0087 204A 00C9 6A28 0080 OOCF 6A63 j... J..j(....jc
0093 O00El 6A64 00B2 204A 2022 4953 2045jd.. J "IS E
5645 4FE22 O0E7 6A6E 0092 O0ED 6AC7 0093 VEN"..jn....j...
00OFE 6AC8 00B2 204A 2022 4953 204F 4444 ..j... J "1S ODD
2200 046B D200 9200 0000 0000 0000 0000 "..K.eowvooooson

j... 3.1 . 10.

D) e @

Figure 7-5

Now THAT doesn't look much like a BASIC program! But to BASIC,
that is exactly how our BASIC program looks. We need to change the line
numbers, so we will concentrate on how to find them in this display.

The first six bytes can be ignored for our purposes. The next
bytes are 0A 00. These represent the line number 10. To arrive at
convert each pair of characters to decimal.

~r
OV

f
this,

0A (hex) = 10 (decimal)
00 (hex) = 0 (decimal)

Using DEBUG to Pack String Graphics 153

FFE7 SE@A 9981 204A D531 288D 2031 3020 [@n ' J
1488 3728 D828 4ADA 3229 2805 204A T B
332 BA20 2828 2829 280A 2891 2839 3984 L2
2828 3A95 2091 2831 3939 0213
T 284 9809 SE23 @B8R BACF £ES3 n. .
BAB2 204A 2822 4353

o Bt

3 w0 PO AT

2
28
2
!
2

O

' 2229 2229 2809 2099 9098 2
2222 2899 2922 2920 £AAQ AAGA

DD G O
DD X

Photo 7-G

Multiply the second decimal number by 256 and add it to the first
number.

(0 x 256) + 10 = 10.

So that represents the line number 10. Since the program in Listing
7-G has no branches to line 10, we can change this line number to 0. Go
into the modify mode of DEBUG and change the 0A to 00.

Now that we know how the line numbers are displayed, we can look
for the next one more easily. Line 20 is next, and 20 decimal is
equivalent to 14 hex. Therefore, we need to look for an occurrence of
"1400". It appears in the second line, in the second set of characters.
Since there are no branches to line 20, we can change this line number to
line 0. In the modify mode, change the 14 to 00.

In the same manner, change all the line numbers except 99 and 199
(which are branched to) to 0. They are as follows:

154

BASIC Line

The TRS-80 Graphics Book

Display Line

30 5

40
100
110
200
210

thiss

FF8C
BB6A
D032

e Yale Xa'

LU LV

6A00
0093
5645
00FE
2200

W00 NN

Figure 7-6

After you have made these

6A00
0000
0A20

AN

LU LU

0087
00El
4E22
6A00
046B

0081
8F 20
2020

“~nnn
LU Ly

204A
6A00
00E7
00B2
0000

204A
D828
2020

2RO

D531
4ADO
20CA

NG 1
PA VAN §

6A00
204A
0092
2022
0000

2T I

00C9
00B2
6A00
204A
9200

Figure 7-7

Find
1EGO
2800
6400
6E00
C8&00
D200

Change To
0000

0000
0000
0000
0000
0000

changes, your display should look like

20BD
3229
2091

SN2
LU A

0080
2022
00ED
4953
0000

2031
20D5
2039

3939
00CF
4953
6AC7
204F

0000

3000

204A .
390A .

nnNnr2
LV RV A N

6A63
2045
0093
bagy
0000

e J.1 . 10.
joe. W(3.2) .03
2. . . 99.

i, . 199..
jeee Jevjennadijc
ievije.. JMISE

VEN" . jeunnnjons

cej... 3 ™IS ODD

L .

Press ENTER to store your changes to the disk file. Then return to
BASIC and load DEMO# back in. Did you think it would look like it does?

0 FOR J=1 TO 10

0 IF INT (3/2) = J/2
THEN GOSUB 99
ELSE GOSUB 199

0 NEXT J

0 END

99 REM

0 PRINT J "IS EVEN"

0 RETURN

199 REM

0 PRINT J "IS ODD"

0 RETURN

Listing 7-H

Now you can edit lines 99, 199, and the first line 0, but the rest
cannot be edited unless the line numbers are changed back. Try it!

Using DEBUG to Pack String Graphics 155

Chapter Summary

The techniques used in this chapter work on disk-equipped TRS-80 Model
[II's and 4's under Model IIl TRSDOS 1.3 (the current version).

The steps to changing a string variable assignment statement so that it
assigns graphics to the variable follow:

1. In Disk BASIC, write a program containing an instruction which assigns
a value to a string variable.

2. SAVE the program on the diskette in the ASCII format.

3. Leave BASIC and go back to the operating system.

4. Get into DEBUG and look at the file.

5. Modify the contents of the data assigned to the string variable.

6. Return to BASIC and load the program back into the computer's
memory.

Control characters may be added to the graphics string built under
DEBUG. to create more complex graphics.

Using a similar technique, you can use DEBUG to change a string of text
characters following a PRINT instruction to a string of graphics
characters. This can lead to a significant savings of memory space
needed to store the program.

DEBUG can be used for other purposes besides graphics:

Using DEBUG to modify a program file saved in the ASCII format, you can
replace line numbers with spaces to combine BASIC program lines.
This, too, can lead to a significant memory savings.

A degree of protection from program changes can be reached by
modifying a file saved in BASIC's compressed format by changing
line numbers in the program to 0.

Meeting the Chapter Objectives

Here are the chapter objectives for your review. Can you meet all
the objectives?

A. Write the steps to be followed to view a program on disk in ASCII
format using DEBUG under TRSDOS.

B. Use DEBUG to modify a program so that it assigns a string of
character 191's (solid graphics characters) to a string variable.

C. Use DEBUG to modify a program so that it assigns the characters

156

3.

The TRS-80 Graphics Book

needed to form a rectangle 8 pixels wide and 9 pixels high to a
string variable.

Use DEBUG to modify a program with a PRINT instruction, so that
the program PRINTs a string of character 140.

Use DEBUG to combine adjacent lines of a BASIC program.

Use DEBUG to change the line numbers of a program to 0, thereby
making the program difficult to alter.

More Programming Practice

Using DEBUG to modify a program file on disk, write a program
that contains a PRINT instruction which PRINTs your first name in
graphics characters.

Using DEBUG to modify a program file on disk, write a program
that assigns a graphic to a string variable and PRINTs it. The
graphic should PRINT as a vertical line 2 pixels wide and 20 pivels

long.

Using DEBUG to modify a program file on disk, write a program
that PRINTs a graphic shaped like a rectangle with the word "Box"
in text characters spelled out inside the box.

Write a program containing several lines, each with a PRINT
instruction. Using DEBUG, combine the lines into one line, and
replace the PRINT instructions with semicolons (except the first
PRINT). This should result in one program line with one PRINT
instruction,

Using DEBUG to modify a program stored in the compressed format,
change all lines of the program (except the lines that are branched
to) to line 10.

Chapter Checkup

Type in the BASIC program in Listing 7-G. Save it in ASCII format
under one filename, and save it in compressed format under another
filename. How many bytes are used to store it under each format?

What percent savings over the ASCII format does the compressed
format represent in this example?

Write the hex equivalents of these decimal numbers:
A. 128 B. 132 C. i64 D. i9i.

Which of these are characteristics of BASIC program files saved

under the ASCII format, and which are charactistics of files saved
under the compressed format?

A) A four-character code represents the program line number.
B) Reserved words are spelled out.

10.

Using DEBUG to Pack String Graphics 157

C) The end of each line contains a "carriage return" character
(character 13 decimal).

D) Longer reserved words require more memory.

E) The program is stored in the computer's memory in this format.

Considering the way line numbers are stored in the compressed
format, what is the biggest line number you can use in BASIC?
V'hat is the smallest line number you can use?

Consider this program:

10 FOR K=128 TO 191
20 PRINT K,

30 PRINT CHRS(K),
40 NEXT K

Knowing what you do about BASIC's reinterpretation of BASIC
lines under certain circumstances, what would probably happen if
you went into DEBUG and changed line number 20 to 30 and line
number 30 to line 20:

A) if the program is saved on disk using the ASCII format; and
B) if the program is saved on disk using the compressed format?

Consider a program that would PRINT three packed strings, each 63
bytes long. The first string would PRINT a line with the top row of
pixels set, the second string would PRINT a line with the middle
row of pixels set, and the third line would PRINT a line with the
bottom row of pixels set. Which character numbers would you use
to pack into these strings? Write the decimal numbers and their hex
equivalents.

It is possible for a program to PRINT a string of characters that
goes beyond the last character on the video display. For example,

PRINT @ 1020, "XXXXXXXXXX"
What happens in this situation?

In your mind, what are the two most important advantages of using
DEBUG under TRSDOS to pack graphics into BASIC programs? What
are the two most important disadvantages?

Character 191 is a graphics character, character 8 is the
backspace, and character 32 is a space. What would appear on the
screen if you packed a PRINT instruction with a string of the
following characters?

191 191 191 191 8 8 8 8 32 32 32 32.

Chapter 8.
Introduction to
Assembly Language Graphics Programming

OBJECTIVES:

At the end of this chapter, the reader will be able to perform the
following tasks:

A. Define assembly language and its relationship to machine language.

B. Convert a decimal number to hexadecimal form.

C. Convert a hexadecimal number to decimal form.

D. Describe the uses in a Z-80 assembly language program of the
following instructions: ORG, LD, INC, CP, JR, RET, END, and
LDIR.

E. Given a listing of a assembled assembly language program, write a

BASIC program that POKEs the assembly language program into
memory and calls from BASIC.

Introduction

All programs presented so far in this book have been written in the
programming language called BASIC. This is the high-level language found
in most microcomputers, including the TRS-80 Model 1, III, and 4. It is an
easy-to-use language that many programmers learn before learning any
other languages.

BASIC is called an "interpretive" language because every BASIC
instruction is interpreted into machine language as the BASIC program is
run. BASIC itself is a program that interprets your BASIC program into
the Z-80 processor's "native" language, machine language.

Machine language programs are usually written in a sort of
language called "assembly language." Assembly language is a rather
cryptic language which has such seemingly simple instructions such as
LOAD, INCREMENT, COMPARE, JUMP, AND RETURN. Each of these
instructions does a small job, but together they can accomplish powerful
programming tasks that simply cannot be done in BASIC.

The programmer usually writes or edits the assembly language
program with a software tool called an "Editor." Unlike BASIC programs,
assembly language programs cannot be RUN (executed) as they are
written. Rather, the assembly language program written with the Editor
must be assembled into the native machine language. An Assembler
program is the software tool used for assembling them into machine

Working in assembly language to write machine language programs
has its advantages and disadvantages compared with writing BASIC
programs. On the plus side, programs that run in machine language
invariably execute MUCH faster than programs written in BASIC. We shall
soon see examples of this. Another advangage of machine language
programs is that they give the programmer much more power to control

158

Introduction to Assembly Language Graphics Programming 159

the inner workings of the computer.

A disadvantage of working in assembly language is that it is usually
more difficult than programming in BASIC. Loading, moving, incrementing,
comparing, jumping, and returning are a bit more abstract than PRINTSs,
GOTOs, LETs, IF - THENs, and ENDs. Another disadvantage for first-time
assembly language programmers, is that programming in assembly language
usually requires the use of the special Editor - Assembler software, which
must be purchased separately.

Before getting too far into the descriptions of assembly language
and machine language, let's look at a sample program written in assembly
language. (The author intends in this section to give the reader an
overview of assembly, not an in-depth study. Therefore, explanations
about assembly language itself will be brief, except when they pertain
specifically to graphics programming.)

00100 ; SAMPLE PROGRAM
00110 ; IN ASSEMBLY LANGUAGE

00120 ;
00130 ORG 48000D sSTART POINT IN MEMORY
00140 START: LD HL,16000D ;LOAD HL W/ VIDRAM LOC.
00150 LD (HL), 191D ;LOAD VIDRAM W/ 191
00160 RET ;RETURN
00170 END START ;END PROGRAM

Listing 8-A

Listing &-A shows the program as it would be written by the Editor
program. Here are some things to notice about this listing:

+ The numbers at the left side are the line numbers, similar in
function to BASIC's line numbers. Most Editor programs have automatic
line numbering, so having the numbers increment by 10 is very easy.

+ The comments (parts of the line the program won't execute) are
preceded by semicolons (";"). Lines 100, 110, and 120 are strictly comment
lines. The rest of the program lines have comments at the right side,
following the assembly code.

+ The assembly language instructions follow the line numbers. These
instructions are interpreted by the assembler.

Let's take a brief look at each instruction and what it does.

ORG 48000D tells the computer to start ("originate") the program
at memory location 48000. The assembler will assemble and store the
program so the code for the line immediately following this line, is stored
at the specified memory location.

160 The TRS-80 Graphics Book

LD HL,16000D tells the computer to load the register called HL
with the number 16000. (More on registers later.)

LD (HL), 191D tells the computer to load the memory location
pointed to by HL (in this case, 16000) with the number 191. The
parentheses around HL specify the memory location pointed to by HL,
rather than the register HL itself. We could accomplish the same function
as this line in BASIC by typing POKE 16000,191.

RET tells the computer to go back to whatever routine called it,
much as RETURN ends a subroutine in BASIC. Generally, each assembly
language program ends with a RET instruction.

END START tells the computer that this is the end of the program,
and it tells it to begin the execution of the program at the line labelled
"START."

The effect of this entire program, then, is the same as POKE
16000, 191 in BASIC. Since 16000 is within the video memory, executing
this program causes character 191 to appear on the screen.

After the programmer finishes writing and editing the assembly
language program, the Assembler is called to assemble (interpret and put
together) this program into the TRS-80's native language, Z-80 code. To
say this anothe way, the source code (written with the Editor) is
assembled into the object code (the Z-80 code). Listing 8-B shows the
object code for this program as it appears to the left of the source code
when the program is assembled.

BB80 00130 ORG 48000D

BB80 21803E 00140 START: LD HL,16000D

BB&3 36BF 00150 LD (HL), 191D

BB85 C9 00160 RET

B880 00170 END START
Listing 8-B

The first column of characters (starting with BB80) stand for the
memory locations in which the object code will be stored when this
program is loaded into memory as a machine language program. The next
column (starting with 21803E) shows the actual object code, the values
that will be loaded into those memory locations to be executed. Both
kinds of numbers are shown in their hexadecimal representations.

After the program is assembled, it is stored on a tape or diskette.
It can be loaded in later and executed as a machine language program.

To summarize, the main steps in writing and executing an assembly
language program are to write the program with the Editor, assemble it
with the Assembler, store it onto a disk or tape, load the program back
in, and execute it.

Introduction to Assembly Language Graphics Programming 161

Decimal and Hexadecimal Numbers

You may have noticed that the source code of the program above
contained the numbers 48000D, 16000D, and 191D. The "D" after each
number stands for "decimal." The Assembler automatically converted each
number into its hexadecimal (or "hex") equivalent. 48000D became BBS0
(see first memory location shown). 16000D became 3E80 (although it is
shown in reverse order, as these numbers always are in the Editor
Assembler and in memory). 191D became BF in hex.

Before we progress any further in our look at assembly language,
let's look at how to convert back and forth between decimal and hex
numbers.

Decimal numbers are the numbers we use every day. They are base
10 numbers. Since we have ten fingers, our number system is based on 10.
From right to left, the numbers in a Base 10 number stand for the 1's,
10's, 100's, 1000's, etc. Each time the place value is multiplied by ten to
get the next one.

The Base 10 system has ten different numerals, 0 through 9. When
counting, each time you get to 9, you go on to 0 and add one to the next
column to the left.

The hexadecimal number system is based on the number 16. It has
sixteen "numerals," 0 to 9 and A to F. Instead of the place values of 1,
10, 10x10, 10x10x10, etc., the hex system has I, 16, léxleé, l6xléxle,
etc. Here is a chart showing the decimal and hex numbers with the same
actual value:

Decimal Hex Decimal Hex
1 1 17 11
2 2 18 12
3 3 19 13
4 4 20 14
5 5 21 15
6 6 22 16
7 7 23 17
8 8 24 18
9 9 25 19

10 A 26 1A
11 B 27 1B
12 C 28 1C
13 D 29 1D
14 E 30 1E
15 F 31 1F
16 10 32 20

Figure 8-1

162 The TRS-80 Graphics Book

Looking at these kinds of numbers in another way, let's compare
the same string of digits as a hex and a decimal number to see the
difference. The most common notation to specify decimal and hex numbers
is a D and a H, respectively, as shown in Figure 8-2.

13579D =
1 x 10x10x10x10
3 x 10x10x10
5 x 10x10
7 x 10
9x 1

+ + + +

13579H =

]l x l6xlé6xléxle
3 x lé6xléxle

5 x lé6xlé
7 x
9 x

+ + + +

16
1

1 x 65536
3 x 4096
5 x 256
7 x
9 x

+ + + +

16
1

63536+12288+1280+112+9 = 79225D
Figure 8-2

The steps shown in Figure 8-2 can be used to convert any hex
number to a decimal number. Converting a decimal number to a hex
number requires reversing the process. Figure 8-3 shows the steps taken
to convert 60000D to a hex number. After determining the largest power
of 16 that is smaller than the decimal number, a series of divisions and
multiplications, and subtractions is done. The largest power of 16 less
than 60000D is 16x16x16 (which is 4096).

60000 / 4096 = 14.6484 2656 | 256 = 10.375
4096x 4= 57344 256x10=2560
60000 - 57344 = 2656 2656 - 2560 = 96
9 / 16 = ¢ 0/1=0
16x6=96 1x0=0
96 - 96 =0 0-0=0

Using each main quotient, our digits in the hex number will be:

141060

Introduction to Assembly Language Graphics Programming 163

Converted to hex numbers, that's
E A 60,
So 60000D = EA60H.

When programming in assembly language, the programmer may
specify either decimal numbers followed by a "D" or hex numbers followed
by an "H" in the source code. The object code which the assembler
generates will always contain the numbers in hex form.

A Word About Registers

The Z-80 microprocessor, the heart of the TRS-80 microcomputer,
uses several registers to manipulate numbers. Registers can be thought of
like memory locations, but they cannot be addressed like memory
locations with POKEs and PEEKs. These eight-bit registers can be
manipulated only in machine language, and they are what we use to
manipulate the contents of other memory locations.

The Z-80 processor has the following pairs of registers: AF, BC,
DE, HL, AF', BC', DE', HL', IX, IY, the stack pointer, and the program
counter. The ones used most by beginning programmers are AF, BC, DE,
and HL. The program in Listing 8-A uses the HL register to store the
video memory location into which the number 191D (or BFH) is loaded.
The registers that can be used for the most data manipulations are the A
register (the accumulator) and the HL register.

The F register (the counterpart of the A register) is the flag
register. Its eight bits are used as flags, and they are automatically set
(loaded with the number 1) or reset (loaded with a zero) according to the
result of certain operations.

You will see the use of these registers in the sample programs that
follow.

A Second Example: Filling the Screen

Here is a program which fills the screen with a character 191.

100 ;*********************************

110 ; Screen Fill Program
120 By Dennis Tanner
130 ;*********************************

140

-e

164

BF68
BF68
BFé6B
BFe6C
BB6D
BF6F
BF70
BF72
BF68

The TRS-80 Graphics Book

150
21FF3B 160
23 170
7C 180
FE40 190
C8 200
36BF 210
18F7 220

230
Listing 8-C

v

98189

Logeiie

START:
LOOP:

0R5

ORG
LD
INC
LD
CP
RET
LD
JR
END

430800
—HEA5358E

AL

‘4‘BH' "

49000D ;START POINT IN MEMORY
HL,15359D ;BEFORE BEG. OF VIDRAM

HL sNEXT SCREEN POSITION
A,H sMOST SIG. BYTE VIDRAM
40H sBEYOND VIDRAM?

Z ;sIF YES, RETURN
(HL),191D ELSE 191 TO VIDRAM
LOOP ;GO BACK TO "LOOP"

START sEND PROGRAM

SR
SCREEN FILL PROSRAN ¥

. PFFOPEBESD
NEXT SCREEN P
- ;MOST-S16. BY

- GBEYORD &

Photo 8-C

Here is a line-by-line description of this short program:

Line Descripiion

100 to 140
Comment lines
Tells the assembler to assemble the program so that the first bytes
of the program will load into memory location 49000D (that's

150

160

BF68F).

Labelled START, this instruction loads the number 15359D (3BFFH)
into the HL register. The video memory starts at the next memory

170

180

190

200

210

220

230

Introduction to Assembly Language Graphics Programming 165

location (15360D or 3CO00H). When HL is incremented in the next
instruction, HL will contain the address of the beginning of video
memory.

This line (labelled LOOP) increments (adds 1 to) the HL register
pair. The effect is to point to the next location in the video
memory.

This line loads the value in H to register A (the accumulator). Since
HL first contains hex 3C00, the first two characters (3C) are
contained in H. So the first time this is executed, 3C is loaded into
the accumulator.,

The CP instruction COMPARES the number on the program line
following the instruction to the value stored in A. Now A contains
3CH, and it is compared with 40H.

This instruction tells the processor to RETurn if the Zero flag is
set; that is, if the COMPARE instruction immediately above found
an exact match. So when the first two characters of the video
memory address stored in HL are 40, the program executes a
RETurn. You may recall that the video memory runs from 15360D
to 16383D, or 3CO0H to 3FFFH. When you add one to 3FFFH, you
get 4000H. So when the HL counter gets past the video memory,
the program returns to whatever called it.

If the program didn't return, it continues to this line. This line
loads a character 191D (BFH) to the location pointed to by the HL
pointer. Remember that the parentheses around HL mean that the
instruction will act not on HL itself, but rather on the address
pointed to by HL. This is the instruction in this program that puts
the character on the screen.

This instruction causes program control to go back to the address
labelled LOOP, completing the program loop.

The assembler will stop assembling here.

Listing 8-D shows a BASIC program that does the same thing as

the assembly language program in Listing 8-C.

10 'SLOW SCREEN FILLING PROGRAM
20 FOR J=15360 TO 16383

30 POKE 37, 191

40 NEXT J

Listing 8-D

If you are working on a disk computer without the benefit of an

Editor Assembler, you can still see the relative speed of the machine
language program by POKEing the machine language program into memory
and executing it. The following BASIC program shows you how.

10 'BASIC Screen Filler with machine language.
Protect memory at 4#8000D

20 CLEAR 500: GOTO 110

30 FOR J=0 TO LEN(A$)/2-1

40 TES$= MIDS(AS,I%2+1,2)

166 The TRS-80 Graphics Book

Photo 8-D

50 MSB= ASC(LEFT$(TES,1)): MSB=MSB-48:
IF MSB>9 THEN MSB= MSB-7

60 LSB= ASC(RIGHTS(TES,1)): LSB=LSB-48:
IF LSB>9 THEN LSB= LSB-7

70 NU= MSB*16+LSB

80 POKE BG+J, NU

90 NEXT J

100 RETURN

110 AS= "21FF3B237CFE40C836BF18F7"

130 DEFUSR1= BG
140 GOSUB 30
150 X=USR 1(0)

160 FOR J=1 TO 200:NEXTJ:CLS
170 FOR J=1 TO 200: NEXTJ: GOTO150

Listing 8-E

Lines 30 to 100 of this classy little program let you easily put a

wide variety of assembly language programs into memory and run them,
all from BASIC.

Introduction to Assembly Language Graphics Programming 167

Line 10 reminds the user to protect memory at 48000 before
running this program. Here's why this must be done. When run a program
in BASIC, you usually don't care where in memory the program is stored.
You need to know only what variables store what values. But in this
program, the values which constitute the machine language are to be
POKEd into a certain part of memory. If this part of memory is not
protected before the program is run, BASIC might put variables, tables,
or the BASIC program in the same memory area where the machine
language program is POKEd, resulting in a nonfunctional program. So by
protecting memory, you assure that BASIC will not infringe on the
machine language program.

There are two common ways to protect memory at 48000: 1) type
48000 in response to the "Memory size?" question, or 2) enter Disk BASIC
from TRSDOS in this format:

BASIC -M:48000 ENTER

Notice that line 20 of the program in Listing 8-E "jumps around"
the subroutine to line 110. Lines 110, 120, and 130 are executed before
the subroutine is called in line 140. Let's take a look at these lines to
see what information must be passed to this subroutine.

Line 110 assigns a string of characters to the variable AS. The
characters assigned to A$ in this line represent the hexadecimal
representation of the object code shown in Listing 8-C. Look back to
Listing 8-C, and you will see these same characters between the memory
locations and the line numbers in the listing.

Line 120 assigns the memory location where the program will begin
in memory to the variable BG.

Line 130 assigns the first USR call to BG (in this case, 49000D),
the location where the machine language program execution will begin.

The subroutine is then called. It reads the string defined as AS$ and
analyzes it to determine the value of the hex numbers it contains. It then
POKEs those values into the appropriate memory locations, starting at
BG. Then the subroutine returns. When the BASIC program calls the
machine language program with the USR call in line 150, control is
transferred to the machine language program. It executes, filling the
screen, then RETurns, transferring control back to the BASIC program.

If you have a disk TRS-80 Model III or Model 4, you should run this
program. Be sure you understand what variables must be assigned before
the BASIC subroutine is called. This same subroutine will appear in each
remaining chapter in this book as an easy way to execute machine
language from BASIC.

To demonstrate the speed of machine language, compare the time it
takes to run the BASIC screen-filling program (Listing 8-D) to the time it

168 The TRS-80 Graphics Book

takes to run the machine language version (Listing 8-E). On the author's
Model III, the BASIC routine took about 6 seconds, whereas the machine
language version could execute at least 75 times in that same amount of
time, with a CLS before each execution!

Moving Information Within the Computer

Sometimes a programmer wants to move information from one part
of memory to another. Perhaps a block of characters makes up a person's
name, and the programmer needs to move it from a volatile memory
location (such as the video memory) to a relatively protected area (such
as very high memory). Or the programmer may need to move a group of
graphics characters in high memory to video memory. A simple BASIC
program like that in Listing 8-F would do the job.

10 'Slow memory mover

20 CLS

30 INPUT"MOVE FROM'";MF
40 INPUT"MOVE TO";MT

50 INPUT"HOW MANY";HM

60 FORJ=0 TO HM-1

70 POKE MT+J, PEEK(MF +J)
80 NEXT J

Listing 8-F

If you run this program and ask it to move data FROM 1000 (part
of the computer's ROM) TO 15360 (the video memory) with a quantity of
1024 bytes, it will move data from the ROM onto the screen. It does take
a while, though.

In machine language we can do this much faster. Z-80 assembly
language has an instruction called LDIR which is one of the author's
favorites. It moves data from one area of memory to another very
quickly. Let's take a look at how the LDIR instruction might be used.

100 ;LDIR Sample PROGRAM
110 ;By Dennis Tanner

120
BB80 130 ORG 48000D sMEMORY START POINT
BB80 210000 140 START:LD HL,0000 ;MOVE FROM LOCATION 0
BB&3 11003C 150 LD DE,3C00H ;MOVE TO 15360D
BB86 010004 160 LD BC,400H ;COUNTER = 1024D
BB89 EDBO 170 LDIR :MOVE IT!
BB8B C9 180 RET ;RETURN :
BB80 190 END START ;END OF PROGRAM
Listing 8-G

The source code of the program (that which was typed in with the
Editor) contains both decimal numbers (48000D) and hex numbers (3CO0H

—— s masnes

Introduction to Assembly Language Graphics Programming 169

and 400H). The columns from left to right again represent memory
locations, object code, line numbers, labels, source code (two columns),
and comments.

, ~’*.ri‘a!oana005ma -I-‘f ‘B%QB-I-PUG
~EIRASRHSHr BRR-UOPRERNS 1 40

LR
.

- e Gl

{3ndZe am)lﬂr N
. 11 Ba:

io Shack Model

Photo 8-G

Here is a detailed description of the program.

Line Description

100 Comments

110 Comments

120 Comments

130 Tells the assembler to assemble this program so that the first part
of if will be stored at memory location 48000D (BB80OH).

140 Loads the HL register pair with the value 0. For the LDIR
instruction, the HL pair always stores the "move from" location.

150 Loads the DE register pair with the value 3CO0H (15360D), the
begmmng of the video memory. For the LDIR instruction, the DE
pair always stores the "move to" location.

160 Loads the BC register pair with 400H (1024D), the number of
characters on the video screen. For the LDIR instruction, the BC
pair always stores the "counter" number.

170 Here is the LDIR instruction. It performs the following steps:

A) Moves the character or value stored in the location pointed
to by HL (0) to the location pointed to by DE (15360D).
B) Decrements (subtracts 1 from) BC, the counter.

170 The TRS-80 Graphics Book

C) 1f BC is not 0, go back to A.
D) If BC is 0, go to next Z-80 instruction.
180 Returns to whatever program called it.
190 Ends the program and tells the assembler to set the program
execution point at the location labelled "START" (BB&0).

Very quickly, these instructions move the contents of the beginning
of ROM (from memory location 0 to location 1023) to the video memory,
thus displaying them.

This is a good demonstration program, but it is admittedly of little
practical value because of its single function. If a program allowed the
user to select the "move from" and "move to" locations and the "how
many" counter, it would be of much greater utility. The program in
Listing 8-H does just that.

100 -

110 ; Flexible LDIR program

120 ;
BB80 130 ORG 48000D sMEMORY START POINT
BB80 2100BC 140 START:LD HL,0BCOOH ;MSB OF "MOVE TO"
BB83 56 150 LD D,(HL) ;sLOAD D WITH MSB
BB84 2101BC 160 LD HL,0BCOIH ;LSB OF "MOVE TO"
BB87 5E 170 LD E,(HL) ;sLOAD E WITH LSB
BB88 2102BC 180 LD HL,0BCO02H ;MSB OF COUNTER
BB8B 46 190 LD B,(HL) ;sLOAD B WITH MSB
BB8C 2103BC 200 LD HL,0BCO3H ;LSB OF COUNTER
BB8F 4E 210 LD C,(HL) ;LOAD C WITH LSB
BB90 3A04BC 220 LD A,(0OBCO4H) ;MSB OF "MOVE FROM"
BB93 67 230 LD HA ;sLOAD H WITH MSB
BB94 3A05BC 240 LD A,(0OBCO5H) ;LSB OF "MOVE FROM"
BB97 6F 250 LD L,A ;sLOAD A WITH LSB
BB98 EDBO 260 LDIR sMOVE IT!
BB9A C9 270 RET sRETURN
BB80 280 END START sEND OF PROGRAM

Listing 8-H

This program "PEEKs" the values for "move to", "how many," and
"move from" out of specific memory locations. (The author arbitrarily
chose BCOOH and BCOIH for "move to,” BC02H and BCO3H for "how
many," and BCO4H and BCO5H for "move from.") Here is how this program
works:

+ Lines 140 to 210 load the number representing the memory
location holding each part of the number into the HL register pair. then
Then the number pointed to by HL (and thus contained in the memory
location) is loaded into the appropriate register.

+ Lines 220 to 250 load the number pointed to by the "move from"
locations to the A register, then to the appropriate H or L register.

Introduction to Assembly Language Graphics Programming 171

+ Line 260 contains the LDIR which executes the move.

So the numbers stored in memory locations BCOOH to BCO5H
determine the "move from," "move to," and "how many" locations.

The next obvious question is how to get the numbers we want into
those locations. Since BASIC can call this machine language routine, let's
use a BASIC program as a means of sending the machine language
program the appropriate values. The program in Listing 8-I shows how.

10 'LDIR/BAS Flexible LDIR BASIC program
Protect memory at 48000
20 CLEARS500: GOTO160
30 FOR J=0 TO LEN(A$)/2 -1
40 TES$ = MIDS(AS,3%2+1,2)
50 MSB = ASC(LEFTS(TES,1)): MSB=MSB-48:
IF MSB>9 THEN MSB=MSB-7
60 LSB = ASC(RIGHTS(TES,1)): LSB=LSB-48:
IF LSB>9 THEN LSB=LSB-7
70 NU = MSB*16+LSB
80 POKE BG+J, NU
90 NEXT J
100 RETURN
110 POKE &HBCO00, INT(MT/256):
POKE &HBCO1, MT-INT(MT/256)*256
120 POKE&HBC02, INT(HM/256):
POKE&HBC03, HM-INT(HM/256)*256
130 POKE&HBCO04, INT(MF/256):
POKE&HBCO05, MF-INT(MF/256)*256
140 X = USR1(0)
150 RETURN
160 A$="2100BC562101BC5E2102BC462103BC4E3A04BC673A05BC6F
EDBOC9"
170 BG = 48000-2[16
180 DEFUSR1! = BG
190 GOSUB 30
200 MF = 5600: MT = 15360: HM = 1024: GOSUB 110
210 GOTO 210
220 END

Listing 8-1

This program calls the machine language program that appears in
Listing 8-H. Its format is similar to that of Listing 8-E. It contains a
BASIC subroutine which uses the variables MT (move to), MF (move from)
and HM (how many). This subroutine then calls the machine language
program, then RETURNs. Here is an analysis of the program:

172

The TRS-80 Graphics Book

Line Description

10 to 100

Same as that of Listing 8-I. This routine analyzes AS (which
contains the machine language routine in string form) and POKEs it
into memory beginning at the location specified by BG.

110 to 130

140

150
160

170

180

190

200

210

This is the beginning of the subroiitine that is called to execute the
machine language program. These lines analyze the variables MT,
HM, and MF, and POKE their values into the appropriate memory
locations to be read by the machine language routine. Since
machine language programs can deal with numbers only up to 255
(eight-bit numbers), the larger numbers in MT, HM, and MF must be
broken down into smaller numbers. These lines find the most
significant byte and least significant byte which are then POKEd
into memory.

The user call in this line executes the LDIR machine language
program that was POKEd into memory in lines 30 to 90.

RETURNSs from the subroutine.

Line 20 jumps to this line. It assigns the ASCII form of the object
code to the variable AS. (See the second column of Listing 8-H.)
BG is assigned the value of the memory location where the machine
language program will begin. 2 16 (65536) is subtracted from the
memory location value (48000) because POKEs can be used only on
numbers between -32768 and 32767.

The first user call (USR1) is defined at the same location, BG. This
means that when the routine is called (line 140), program control
will transfer to that location,

After AS and BG are assigned their values, this line calls the
subroutine which POKEs the machine code program into memory.
The MF (move from) value is set at 5600, an area of the ROM
memory. The MT (move to) value is set at 15360, the beginning of
the video memory. The HM (how many) value is set at 1024, the
number of characters on the video display. Then the line calls the
subroutine which in turn calls the machine language program.

This line loops back to itself until the BREAK key is pressed,
holding the video display.

The area of the ROM memory displayed by this program shows the

reserved words and two-character error messages as they are stored in
the ROM. Would you like to see the rest of the computer's memory? Just
make these changes to the program in Listing 8-I:

200 MF=0: MT=15370: HM=1014
210 CLS: PRINT @ 0, MF;: GOSURB 110: IS=INKEVYS
220 I$=INKEYS: IF IS=CHRS(10)

THEN IF MF<1014 THEN 220

ELSE MF=MF-1014: GOTO 210

Introduction to Assembly Language Graphics Programming 173

230 IF 1$=CHRS$(91)
THEN IF MF>64522 THEN 220
ELSE MF=MF+1014: GOTO210
240 GOTO 220

Listing 8-J

An explanation of this program is left to the reader. (See the
Chapter Checkup.)

A View Inside the Computer

As the previous program shows, this LDIR command can be helpful
in making parts of memory "visible" to the user by moving them to the
video memory. The speed with which it makes the move gives this
technique special application for the video memory.

Your TRS-80 microcomputer performs many functions you don't see
as a BASIC programmer. One of these is the storage of strings. Do you
remember the CLEAR instruction which sets aside a certain number of
bytes of memory for BASIC to handle its strings? Have you ever wondered
how and where those strings are stored?

The strings are stored just below the top of the memory usable by
BASIC. If no memory is protected, the strings are stored near the top of
memory. If memory is protected at 48000D, for example, the strings are
stored just below that. By using the LDIR fast move routine to move the
values from that area to the video memory, we can see what happens in
that string storage space.

10 'VISSORT/BAS

By Dennis Tanner

PROTECT MEMORY AT 48000
20 CLS: CLEAR62: GOTO160
30 FOR J=0 TO LEN(AS)/2-1
40 TES = MIDS(AS,J*2+1,2)
50 MSB = ASC(LEFTS(TES,1)): MSB=MSB-48:

IF MSB>9 THEN MSB= MSB-7
60 LSB = ASC(RIGHTS(TES,1)): LSB=LSB-48:
IF LSB>9 THEN LSB= LSB-7

70 NU = MSB*16+LSB
80 POKE BG+J, NU
90 NEXT J
100 RETURN
110 POKE &HBCO00, INT(MT/256): POKE &HBCO01, MT -INT(MT/256) *256
120 POKE &HBCO02, INT(HM/256): POKE &HBCO03, HM -INT(HM/256) *256
130 POKE &HBCO4, INT(MF/256): POKE &HBC05, MF -INT(MF/256) *256
140 X = USR1(0)
150 RETURN
160 AS$="2100BC562101BC5E2102BC462103BC4E3A04BC673A05BC6F
EDBOC9" 'LDIR/CMD

174 The TRS-80 Graphics Book

170 BG = 48000 - 2[16
180 DEFUSR1I = BG
190 GOSUB 30
200 PRINT @ 128, "The string space is shown above."
210 PRINT@320,"Strings to be sorted:"
220 FOR J=1 TO 10
230 AS(J) = STRINGS(RND(5),J+64)
240 PRINT AS(D); " s
250 NEXT 7
260 FOR Z=1 TO 9
270 FOR Y=Z+1 TO 10
280 GOSUB370
290 IF AS(Z) < AS(Y)
THEN B$=AS(Z): AS(Z)=AS(Y): AS(Y)=BS
300 NEXT Y
310 NEXT Z

22N DDIMNT A §7£ 1t
REAVES WSS S B S (Y

330 FOR J=1 TO 10
340 PRINT AS(D); " s
350 NEXT J

Listing 8-K

Lines 20 through 190 are the same as the corresponding lines in
Listing 8-1. Thus the same LDIR machine language routine is available.
Let's look a little more closely at lines 200 to 370.

Lines 200 to 250 assign a string of random length and having ASCII
value 65 to 74, to the AS(array. This would require 50 bytes of string
space at most, and 62 bytes have been cleared (see line 20).

Lines 260 to 310 sort the strings. This is a bubble sort, an
inefficient but easy-to-understand sort. Notice that once per loop,
subroutine 370 is called.

Lines 320 to 360 display the sorted strings and end the program.

Line 370 is the subroutine called from line 270. It assigns 47937 to
the "Move From" variable, 15360 to the "Move To" variable, and 60 to
the "How Many" variable before calling the LDIR subroutine beginning in
line 110. 47937 is just below 48000, the top of memory available to
BASIC.

This is a fascinating program to watch. The strings assigned in line
230 are displayed first in the string space area (which is echoed at the
top of the screen). As more strings are compared, assigned, and
reassigned, BASIC gives them another part of the string space. When the
string space appears to be full, BASIC pauses momentarily to move all the
currently assigned strings to the top of memory, thus freeing up a little
more string space. All this manipulation is visible during the execution of
this program.

Introduction to Assembly Language Graphics Programming 175

[DDDDCCBBLCBBARBBCCBBARBBARCCIDDIDCCBBARD DD DDEEEFF GOHHHRT IS

THE STRING SPACE IS SHOWN ABOV

BE SORTED:
JID EEE FF 65 HHHH 1 JJJ

FF EEE DDDDD CC BB A

Photo 8-K

Chapter Summary

This chapter begins the study of machine language, the "native language"
of the Z-80 processor, the heart of the TRS-80 Models I, I1I, and 4.

Programmers use an Editor to write programs in assembly language. Then
they use an Assembler to convert these programs to machine
language.

The following assembly language instructions were covered in this
chapter:

ORG tells the assembler where the program is to start in memory.

LD loads a number from one memory location or register to
another.

RET returns from the current routine to whatever called the
routine (whether it was called from TRSDOS, BASIC, or another
assembly language routine.

END ends the program and tells the assembler what point in the

176

The TRS-80 Graphics Book

program will be the first to execute.

INC increments (adds one) to whatever register or register pair
follows the instruction.

CP compares the value in the A register to the value that follows
the instruction.

JR "jumps" to the label or location that follows the instruction.

LDIR does the following repeatedly until BC=0:
-loads the value from the location pointed to by HL to the
location pointed to by DE;
-increments (adds one to) DE;
~-increments HL;
-decrements (subtracts one from) BC.

A machine language routine can be executed from within a BASIC

program by protecting a certain area of memory, POKEing the
object code into the protected memory, defining the USR call at
the correct location, and calling the machine language routine with
a USR call.

Meeting the Chapter Objectives

Here are the chapter objectives for your review. Can you meet all

the objectives?

A‘

oOw

m

Define assembly language and its relationship to machine language.
Convert a decimal number to hexadecimal form.

Convert a hexadecimal number to decimal form.

Describe the uses in a Z-80 assembly language program of the
following instructions: ORG, LD, INC, CP, JR, RET, END, and
LDIR.

Given a listing of a assembled assembly language program, write a
BASIC program that POKEs the assembly language program into
memory and calls from BASIC.

More Programming Practice
Activities | to 4 require the use of an Editor Assembler.

Write an assembly language program that loads the reverse question
mark (character 252) into video memory location 15488.

Write a BASIC program that calls the machine language routine
produced in exercise 1 above.

Write an assembly language program that moves the first 1024
bytes to an area in memory starting with 55000D. Then move it
from the area starting with 55000D to the video memory.

10.

Introduction to Assembly Language Graphics Programming 177

Write a program that examines each area of the video memory. If
the program finds a character 32D (a space), it should load a
character 191 into that location.

Using the BASIC program with the LDIR machine language
subroutine presented in this chapter, write a program that asks the
user for the move from, move to, and how many values. The
program should then move the memory as specified.

Chapter Checkup

What is the relationship between assembly language and machine
language programs?

Why are comments more important in assembly language programs
than they are in BASIC programs?

What is source code in an assembly language program? What is its
relationship to object code?

What is the hexadecimal value of 150D? What is the decimal value
of FFAOH?

Which register is called the accumulator? Which register contains
the flags?

What is the difference between the result of LD HL,191 and
LD (HL),1917?

The partial program listing in Listing 8-J has an INKEYS routine
that checks for CHR$(10) and CHR$(91). Which keys return those
ASCII values?

In Listing 8-J, which variable is incremented to change the part of
memory viewed?

The description of line 370 in Listing 8-K refers to location 48000
as "the top of memory available to BASIC." Why is the memory
above 48000 unavailable to BASIC in this program?

To you as a programmer, what is the most important advantage of
assembly language programming compared to BASIC programming?
What is the most important disadvantage of assembly language
programming?

Chapter 9.
More Graphics in Assembly Langauge
OBJECTIVES:

At the end of this chapter, the reader will be able to perform the
following tasks:

A. Write an explanation of how an assembly language program that
moves the screen sideways works.

B. Write an explanation of how an assembly language program that
creates an alternate-character design on the screen works.

C. Write an explanation of how an assembly language program that
splits the screen works.

D. Write an explanation of how an assembly language program that
reverses the screen works.

E. Write an comparison between the BASIC SET instruction and the
assembly language SET instruction.

F. Write an explanation of how an assembly language prograim ihat

draws horizontal lines works.

INTRODUCTION

Chapter 8 provided an introduction to assembly language and
machine language, as well as assembly language programs that fill the
screen with characters and move values from one memory location to
another very quickly. This chapter goes into more depth with assembly
language, showing how to scroll part or all of the characters on the
screen sideways, how to create a screen design, how to reverse all the
graphic characters on the screen, and how to draw horizontal lines in
assembly language.

SCROLLING THE SCREEN SIDEWAYS

We all have seen the characters on a computer screen scroll.
Scrolling is simply moving all or part of the characters on the screen in
one direction, and then off that side of the screen. When a BASIC
program is too big to be displayed on the screen all at once, LISTing the

program will cause it to scroll off the top of the screen. This kind of

scrolling can be done with graphics characters as well as text. Listing
9-A shows an example of vertical scrolling of graphics.

10 CLS

20 FOR J=1 TO 200

30 PRINT @ RND(1023), CHRS(128+RND(63));
40 NEXT J

50 FOR J=1 TO 16

60 PRINT @ 1023, " "

70 NEXTJ

Listing 9-A

178

More Graphics in Assembly Language 179

This program clears the screen, puts random graphics characters on
the screen, and scrolls them off the top. The technique used in this
vertical scroll is simply PRINTing a series of spaces on the last line. Each
space PRINTed causes the screen to scroll one time.

Scrolling sideways is trickier. PRINTing on the screen in BASIC
never causes this to happen. Therefore, to make the screen scroll
sideways, we must write a new routine. To move all 1023 characters on
the screen even one space over in a very short time would be impossible
in BASIC, because BASIC is too slow. So we must call machine language
to the rescue!

Sideways scrolling seems like a simple task in concept: moving data
from one memory location to another is exactly what the LDIR instruction
does. Let's consider how this might work.

You may recall the flexible LDIR program written in BASIC (Listing
8-1). By plugging in appropriate numbers we can do a sideways scroll of
the screen with this program. Use these as the last four lines of the
program:

200 MF = 15361: MT = 15360: HM = 1023
210 FOR I=1 TO 64

220 GOSUB 110

230 NEXT I

Listing 9-B

This program is easy to understand if you think of it as follows.
The program moves a block of 1023 characters from a block starting with
15361 to a block starting with 15360. In other words, the whole block is
moved one character to the left. Lines 210 to 230 repeat this block move
64 times, so the whole screen scrolls left.

This program has two problems. First, it is still slower than desired.
Second, and perhaps more noticeably, this program wraps around from the
left side of the screen to the right side. The character that was the first
character of the second row becomes the last character of the first row.
The effect is not one of scrolling off the left side of the screen, but
rather of wrapping around.

The first problem can be partially solved quite easily. The
subroutine beginning at line 110 (see Listing 8-I) calculates the values to
POKE for the machine language routine each time it is called. Since
these values are always the same (MF=15361, MT=15360, HM=1023), we
can call the machine language routine directly the last 63 times without
recalculating the POKE numbers.

180

C350
C351
C354
C356
C359
C35A
C35C
C35E
C35F
C360
C363
C365
C366
C369
C36C
C36D
C36F
C371
C373
C374
C376
C379
C37B
C37E
C381
C3384
C386
C387
C388
C350

The TRS-80 Graphics Book

205 GOSUB 110
210 FOR I=1 TO 63
220 X=USR1(0)
230 NEXT I

Listing 9-C

This improves the speed. But it does not eliminate the wrap-around
problem. The desired effect is for the right side of the screen to remain
blank as the characters scroll off the left side. This could be
accomplished by POKEing a blank space to the first character of each
row before each move. The block move would then move the blank
character to the right side of the screen. But 15 or 16 POKEs before
each move would slow down the routine too much. Let's consider an
assembly language alternative.

00
2188C3
3600
2188C3
7E
FE40
2829
3C

77
CDh65C3
18F1
00
014000
21003C
7C
FE40
2805
3620
09
18F6
21FF3F
3620
11003C
21013C
01FFO03
EDBO
C9

c9
0000

i0

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

Listing 9-D

START:

LOOPI:

MOVE:

DONE:
COUNT

LD

ADD
IR
LD
LD
LD
LD
LD
LDIR
RET
RET
DEFW
END

HL,COUNT
(HL),00
HL,COUNT
A,(HL)
64D
Z,DONE

A

(HL),A
START
LOOPO

BC,64D
HL,15360D
A,H

40H
Z,MOVE
(HL),20H
HL,BC
LOOPI
HL,16383D
(HL),20H
DE,15360D
HL,15361D
BC,1023D

0000D
BEGIN

sSTART POINT IN MEM
;sNO OPERATION: LABEL
sCOUNT TO HL

sMAKE COUNT 00
sCOUNT TO HL

sCOUNT VALUE TO A
;sCOUNT = 647

sIF YES, TO "DONE"
sNEXT COUNT

sSTORE IN "COUNT"
sBLANK & MOVE LOOP
sBACK TO LOOPO TIL 64
;sNO OPERATION: LABEL
sINC FOR VIDRAM ROWS
sBEG VIDRAM TO HL
;sMSB OF VIDRAM TO A
;sPAST VIDRAM?

sIF YES, EXIT

sSPACE TO VIDRAM
sNEXT ROW OF VIDRAM
stAGAIN

sLAST CHAR OF VIDRAM
s$SPACE TO LAST CHAR
sBEG. OF VIDRAM

sDE+1

sCHARS IN VIDRAM
sMOVE THEM!

sRETURN TO LINE 130
sRETURN FROM ROUTINE
sSTORAGE: "COUNT"

More Graphics in Assembly Language 181

The program begins at 50000D, as specified by the ORG instruction
in line 20. The rest of this assembly language program can be broken into
parts with three functions: the counter, the blank line, and the move.

Lines 30 to 130 make up a counter which counts to 64, the number
of characters in the horizontal line. This routine calls START (see line
120) 64 times. Here is a close look at how the counter works,

Line Description

30 No operation. This line is used as a placeholder for the label. Other
code can be inserted between the label (line 30) and the first
instruction (line 40) if needed, without altering the label. For the
most efficiency, the NOP would be removed in a final program,

40 Sets HL to point at the section of memory labelled COUNT. This
memory is set aside in line 310.

50 Loads the memory pointed to by HL (which is COUNT) with 00. This
initializes the counter at zero.

60 The first line of the loop labelled LOOPO. Each time through, the
HL register pair is set to COUNT.

70 Loads the value pointed to by HL (which is COUNT) into register A.

80 Compares the value in A (which is still COUNT) with 64D.

90 If the value in A is 64 (and thus the "Z" flag is set), the program
jumps to DONE, which returns to whatever called this program.

100 Increments A, which contains the counter.

110 Loads the incremented value back to COUNT.

120 Calls the START routine. The progam makes this call 64 times.

130 Jumps back to LOOPO for another time through the loop.

The START routine which line 120 calls consists of lines 140 to
290. This routine can be broken into two smaller routines.

Lines 140 to 220 place a vertical line of spaces on the leftmost
column on the display. This makes possible the "scrolling off" effect,
since the characters in the column of Spaces are moved to the rightmost
column of the screen, making it blank.

Line Description

140 A no operation label like line 30.

150 The value 64D is loaded into register pair BC. This will later be
added to the current screen value to move down 64 positions, to
form a vertical column.

160 HL is loaded with 15360D, the first character of the video memory.

170 This instruction loads the most significant byte of the HL pair to
A.

180 This value is compared to 40H, the most significant byte of the
first memory location past the video memory.

190 If the value is 40 (which would occur when the HL value exceeded
the values in the video memory), the program jumps to MOVE.

200 Otherwise, a character 20H (or 32D, a space) is loaded to that
position of the video memory. This forms the line.

210 HL = HL + 64. This moves to the next line of the display.

182

220

The TRS-80 Graphics Book

The program loops back to LOOPI for another pass.

The final section of the program does the actual move.

Line Description

230
240

250
260
270
280
290
300
310

320

Loads the position of the last byte of the screen to HL.

Loads a space to the last position of the screen. This is so the last
character of the screen will not leave a trailing character when
the block move is made. If this position contained a visible
character, that character would be repeated across the bottom row
of the display.

DE, the "move to" register pair for LDIR, is set at the beginning of
the video memory.

HL, the "move from" register pair for LDIR, is set at the next byte
so the block move will move everything over one position.

BC, the "how many" register pair for LDIR, is set at 1023, the
number of bytes on the screen minus one.

The block is moved.

The START routine RETurns to line 130.

The final RETurn. This is jumped to from line 90.

The label COUNT is defined as a "word," or a four-byte number.
The value assigned is 00.

Here the program ends. The assembler is told to assemble the
program to execute starting at the BEGIN label.

If you have an Editor - Assembler, you may key in this assembly

language program and execute it. If you prefer to run this program from
BASIC, the same loading and running routine used before will do fine.
(Remember to protect memory at #8000.)

10 '"MOVESCRN/BAS (Protect memory at 48000)
20 CLEARS500: GOTO!10
30 FOR J=0 TO LEN(AS)/2-1

40

TES = MID$(AS,3%2+1,2)

50 MSB = ASC(LEFTS(TES,1)): MSB = MSB-48:
IF MSB>9 THEN MSB = MSB-7

60 LSB = ASC(RIGHTS(TES,1)): LSB = LSB-48:
IF LSB>9 THEN LSB = LSB-7

70 NU = MSB*16+LSB

80 POKE BG+J, NU

90 NEXT J

100 RETURN

110

A$="002188C336002188C37EFE#4028293C77CD65C318F 100

ARAATAAA T AT LAAONEAZANNON IO A1 T2 272N 1 1NN2 7

01400021003C7CrE4028055020UT 1or62iri 3 504V 1 VUi

21013C01FF03EDB0OC9C90000" 'SCRNMOVE/CMD

120
130
140
150

BG = 50000-2 16
DEFUSR1 = 50000-2 16
GOSUB 30

FOR J=1 TO 100

——— g ———

More Graphics in Assembly Language 183

160 POKE 15360+RND(1023), 127 +RND(64)
170 NEXT J
180 X = USR1(0)

Listing 9-E
The hex form of the object code appears on line 110. This program

loads the machine language program into memory at 50000, puts some
graphics on the screen, and executes the machine language move program.

at "EFE4BZB§Q3CT?C£ 3
21F fmezia CplB130e4F]

Photo 9-E-1

184 The TRS-80 Graphics Book

Photo 9-E-2

Photo 9-E-3

0060
028D
C738
C738
C739
C73C
C73E
C740
C743
C746
C749
C74C
C74F
C752
C754
C756
C759
C75C
C75F
C762
C765
C767
C768
C769
C76A
C76C
C76E
C76F
C771
C774
C777
C779
C738

More Graphics in Assembly Language

A MOVING DESIGN

185

The next program demonstrates the use if the IX register to create
a moving design on the screen. The IX and 1Y registers are the only
registers that can load with an offset, as seen in line 410 of the program.
This program shows how to call ROM routines as a shortcut to
programming. It also demonstrates the use of the PUSH and POP
instructions.

00
21FE3B
16BF
IE&C
CD67C7
010080
CDh6000
CDh&D02
C279C7
21FE3B
168C
1EBF
CDh67C7
010080
CD6000
CD8DO02
C279C7
18D1
23

23

7C
FE40
280B
E5
DDE1]
DD7200
DD7301
18EE
c9

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

Listing 9-F

;Design Maker by Dennis Tanner

.
’

DELAY EQU
KBBRK EQU

ORG
START: NOP

LD
LD
LD

CALL

LD

CALL
CALL

Jp
LD
LD
LD

CALL

LD

CALL
CALL

Jp
JR

LOOPI: INC
INC

LD
CpP
JR

PUSH
POP

LD
LD
JR
DONE:

RET
END

0060H
028DH
51000D

HL,15358D
D,191D

E, 140D
LOOP1
BC,8000H
DELAY
KBBRK
NZ,DONE
HL,15358D
D, 140D
E,191D
LOOPI1
BC,8000H
DELAY
KBBRK
NZ,DONE
START
HL

HL

AH

40H
Z,DONE
HL

X

(1X),D
(IX+D,E
LOOP1

START

;ROM ROUTINE AT 0060H
s ROM ROUTINE AT 028DH
sSTART POINT IN MEM
;NO OPERATION: LABEL
sHL=VIDRAM-2

sFIRST GRAPHIC CHAR
;sSECOND GRAPHIC CHAR
;CALL GRAPHIC ROUTINE
;VALUE FOR DELAY
;sWAIT A WHILE

;CHECK BREAK KEY

;JF PRESSED, TO DONE
sHL=VIDRAM-2

sFIRST GRAPHIC CHAR
;SECOND GRAPHIC CHAR
;sCALL GRAPHIC ROUTINE
sVALUE FOR DELAY
sWAIT A WHILE

;CHECK BREAK KEY

;IF PRESSED, TO DONE
;sONE MORE TIME!

sNEXT SCREEN POSITION
sNEXT SCREEN POSITION
;sTO COMPARE MSB
;sBEYOND VIDRAM?

;sIF YES, TO DONE

;TO TRANSFER FROM HL
sTO IX

;D VALUE TO VIDRAM

;E VALUE TO NEXT POS
;sONE MORE TIME
sRETURN

sEND PROGRAM

186 The TRS-80 Graphics Book

Lines 120 and 130 define the labels "DELAY" AND "KBBRK" as
locations 0060H and 028DH respectively. These locations are in the ROM,
the part of memory that is always there. The TRS-80 Model I, 1II, and 4
ROM has certain locations that can be called to perform certain
functions. (See the TRS-80 Operation and BASIC Langauge Reference
Manual for a complete list.)

The DELAY routine simply delays for a specified interval. The
programmer specifies the interval by loading the BC register pair. In this
case, BC is loaded with 8000H before the CALL to DELAY is made.
8000H tells the routine to delay for about one-half second.

The KBBRK routine scans the keyboard one time and looks for the
BREAK key. If the BREAK key is held down as the scan is made, the
routine returns a NZ (nonzero) flag. Thus lines 230 and 310 jump to the
"DONE" address if the BREAK key is pressed (JP NZ,DONE).

This program might be broken into two functional parts, a calling,
delaying, and looping section (lines 150 to 320) and a graphics loading
section (lines 330 to 420). Let's take a close look at these sections. First,
the looping section.

Line Description

150 No operation. This location is used only as a label.

160 The beginning location of the video memory ("VIDRAM") minus two
is loaded into HL. This initializes the HL pair which will be
incremented two at a time in lines 330 and 340.

170 Loads one graphics character value into register D.

180 Loads a second graphics character value into register E. These
values in D and E will be loaded into the video memory in lines 400
and 410.

190 Calls the routine that puts the graphics on the screen, using the
LOOP! label. This routine starts on line 330.

200 Loads 8000H into BC. This sets the length of the delay at about
one-half second when the DELAY routine is called in the next line.

210 The DELAY routine is called.

220 The KBBRK routine checks whether the user is holding down the
RRE AK lav,

[Y T A

230 If the BREAK key is being held down, and the Z flag is in the "NZ"
state, the routine jumps to the DONE label (line 430).

Lines 240 to 310 repeat the steps that appear in lines 160 to 230,
except the D and E values are switched. The result is that the pattern
appears to reverse.

Line 320 jumps back to the START label (line 150) to repeat both
kinds of patterns.

Thus, the first part of the program repeatedly loads registers with
certain values, calls the graphics routine, delays, checks the BREAK key,
and repeats the process with the graphics characters exchanged.

Mg m

T Te——

More Graphics in Assembly Language 187

The second part of the program (lines 330 to 420) puts the graphics
design on the screen.

Line Description

330 Increments HL. Since HL points to the current video memory
location, this line points HL to the next video memory location.

340 Same as 330. The video memory pointer is thus incremented by 2.

350 To determine whether the video memory pointer has reached the
end of the video memory, the most significant byte (MSB) of the
pointer is loaded into A.

360 This byte is compared with 40H, the MSB of the area just beyond
the video memory.

370 If the value is beyond the video memory, the program jumps to the
label "DONE" which RETurn to the routine that called it (see lines
190 and 270 above).

380 In this program, the characters are loaded into the video memory
locations pointed to by register IX and IX+1. The program therefore
must transfer the value in HL (the video memory pointer) to IX.
Since no LD IX,HL instruction exists in the Z-80 instruction set,
the HL value is PUSHed onto the stack. (See next line.)

390 The video memory value just PUSHed onto the stack, is POPped off
the stack and loaded into the IX register, completing the transfer
of the value from HL to IX.

400 Now the memory location pointed to by IX is loaded with the value
in the D register, making one graphics character appear on the
display.

410 The next location (IX+1) is loaded with the other graphics
character value, the one in the E register. This makes the other
character appear on the display.

420 The program jumps back to the "LOOPI1" label for the next memory
location.

In this program, the IX register pair was chosen to demonstrate a
special capability of this register pair: indexed addressing. The IX and 1Y
register pairs are the only ones which permit addressing with an offset,
like LD (IX+1),E as is used in this program.

The total effect of this program is to display a screen which shifts
back and forth between two character patterns, pausing and checking the
BREAK key after each display.

SPLITTING THE SCREEN

We have seen a left-scrolling program and a design-making program
so far in this chapter. The next program shows how to split the screen,
moving the left side of the screen to the left and the right side to the
right.

188

CB20

CB20 CD27CB
CB23 CD4BCB
CB26 C9
CB27 2185CB
CB2A 36E0
CB2C 23
CB2D 363B
CB2F 3A86CB
CB32 67
CB33 3A85CBH
CB36 6F
CB37 014000
CB3A 09

Tl >N X By Fanl
LS 5) 5 Sy A)

CB3C FE4#0
CB3E C8
CB3F 3620
CB41 7D
CB42 3285CB
CB45 7C
CB#46 3286CB
CB49 18E4
CB4B 2183CB
CB4E 3621
CB50 2133CB
CB53 7E
CB54 3D
CB55 77
CB56 FEO00
CB58 C8
CB59 CD5ECB
CB5C 18F2
CB5E 21FF3B
CBé61 010100
CB64 09
CB65 7C
CB66 FE4#0
CB68 C8
CB69 E>5
CB6A DI
CbBéBb 09
CB6C 012000
CB6F EDBO
CB71 Ol1EO00Q
CB74 09
CB75 E5
CB76 DI
CB77 28

100 ;Screen splitter SPLIT/CMD

110

120

130 START:
140

150

160 MIDLN:
170

180

190

200 LNLPI:
210

220

230

240

250

2LN0
L0V

270
280
290
300
310
320
330
340 ,
350 SPLIT:
360
370 SPLOP:
380
390
400
410
420
430
440
450 SPLPO:
460 SPLPI:
470
480
490
500
510
520
230
540
550
560
570
580
590
600

The TRS-80 Graphics Book

ORG
CALL
CALL
RET
LD
LD
INC
LD
LD
LD
LD
LD
LD
ADD
LD
CpP
RET
LD
LD
LD
LD
LD
JR
LD
LD
LD
LD
DEC
LD
CP
RET
CALL
JR
LD
LD
ADD
LD
CP
RET
PUSH
POP
ADD
LD
LDIR
LD
ADD
PUSH
POP
DEC

52000D
MIDLN
SPLIT

HL,LINECT
(HL),0EQH
HL
(HL),3BH

A,(LINECT+1)

H,A
A,(LINECT)
L,A
BC,64D
HL,BC

A LY
gl

40H
z

(HL),20H
A,L
(LINECT),A
A,H

(LINECT+1),A

LNLP!I
HL,SPCT
(HL),33D
HL,SPCT
A,(HL)
A
(HL),A

0

v4
SPLPO
SPLOP
HL,15359D
BC,ID
HL,BC
A,H

40H

y4

HL

DE
HL,BC

BC,32D

BC,30D
HL,BC
HL

DE

HL

;START POINT IN MEM
sMAKE LINE IN MIDDLE
sSPLIT SCREEN
sRETURN TO CALLER
sLOAD LINE COUNTER
;LOAD W/LSB VR-32
sNEXT POS (LINECT)
;sLOAD W/MSB VR-32
sLOAD LINE COUNTER
sMSB OF LINECT TO H
sLOAD LINE COUNTER
sLSB OF LINECT TO L
sTO INC HL

sNEXT VIDRAM LINE

AN A WIS OF VR

PEF T i S LV SR S R

sPAST VIDRAM?

JIF YES, RETURN
;SPACE INTO MIDDLE
sLSB OF LINECT
:PUT BACK TO LINECT
:MSB OF LINECT
:PUT BACK TO LINECT
;FOR NEXT LINE
sMOVE CTR TO HL
;SET CTR AT 33
:LOAD CTR INTO HL
;COUNTER TO A
sCTR=CTR-1

;PUT CTR BACK
;DONE W/COUNTER?
;IF YES, RETURN
;SPLIT ONE SPACE
;GO ONCE MORE
;sVIDRAM-1

:TO ADD | TO HL
sHL=HL+1

sMSB OF HL VIDRAM
;BEYOND VIDRAM?
:IF YES, RETURN
:;TO LOAD TO DE
sHL TO DE

s;HL=HL+1 FOR LDIR
:COUNTER FOR HL
:MOVE 'EM LEFT!
;TO ADD TO HL
sHL=HL+30 (EOL)

sTO LOAD INTO DE
;HL TO DE

sHL=DE-1 AT EOL

More Graphics in Assembly Language 189

CB78 012000 610 LD BC,32D ;COUNTER FOR LDDR
CB7B EDB8 620 LDDR ;sMOVE 'EM RIGHT!
CB7D 012100 630 LD BC,33D ;TO ADD TO HL
CB80 09 640 ADD HL,BC sADD 33: TO NEXT LINE
CB81 18DE 650 JR SPLP1 sAGAIN
CB&3 0000 660 SPCT DEFW 0000H ;CTR FOR MOVE
CB8&5 0000 670 LINECT DEFW 0000H ;CTR FOR LINES
CB20 680 END START ;sEND PROGRAM

Listing 9-G

This program has three main parts:
Lines 130 to 150 call the other two main routines and RETurn.
Lines 160 to 340 draw a line down the center of the screen.

Lines 350 to 650 repeat 33 times a routine which moves the left
half of the screen left one character, and the right half of the screen
right one character.

Rather than look at a line-by-line description, let's look at some of
the new techniques used in this program.

o A four-byte "word" is defined as the line counter, and another is
defined as the split counter (lines 660 and 670). All four bytes of the
LINECT "word" are used, so both LINECT and LINECT+! are used when
storing and retrieving its value. Only the first two bytes of the SPCT
"word" are used, and they are addressed directly as SPCT.

0 Just as a line was drawn down the left side of the screen before
the LDIR in the program in Listing 9-D, this program draws a line down
the middle of the screen before doing its block moves. If this were not
done, both the left and the right block moves would leave trailing
characters.

o The left half of the screen is moved with an LDIR instruction
(line 550). The right half of the screen is moved with a LDDR instruction.
This LDDR instruction works the same as the LDIR except the DE and HL
register pairs are decremented instead of being incremented. Just as the
left side of the screen is moved with the left-to-right (incrementing)
action of the LDIR instruction, the right side of the screen is moved with
the right-to-left (decrementing) action of the LDDR instruction.

The last two programs (the design-maker and the screen splitter)
can be loaded into memory via the following BASIC program. Notice that
the design program loads into memory beginning at 51000, and the screen
splitter loads in beginning at 52000. (Remember to protect memory at
48000 when running this program.)

190 The TRS-80 Graphics Book

10 'DESIGN/BAS Combining the design program and the screen splitter
20 CLEAR 500: GOTO 110

30 FOR J=0 TO LEN(AS)/2-1

40 TES = MIDS(AS,J%2+1,2)

50 MSB = ASC(LEFTS$(TES,1)): MSB = MSB - 48:
IF MSB>9 THEN MSB = MSB - 7
60 LSB = ASC(RIGHTS(TES,1)): LSB = LSB - 48:

IF LSB>9 THEN LSB = LSB -7

70 NU = MSB*16+LSB

80 POKE BG+J, NU

90 NEXT J

100 RETURN

110 A$="0021FE3B16BF IE8CCD67C7010080CD6000CD8D02C279C
721FE3B168C1EBFCD67C7010080CD6000CD8D02C279C718D1
23237CFE40280BE 5DDE1DD7200DD730118EEC9" ' DESIGN/CMD

120 BG = 51000 - 2 16

12N NDTETICED
L2V .l UJL\‘}. = BG

140 GOSUB 30

150 AS="CD27CBCD4BCBC92185CB36E023363B3A86CB673A85CB
6F014000097CFE40C836207D3285CB7C3286CB18E42183CB36
212183CB7E3D77FE00C8CD5SECB18F221FF3B010100097CFE4
0CS8E5D109012000EDB0OL 1E0009E5D12B012000EDB801210009
18DE00000000" 'SPLIT/CMD

160 BG = 52000 - 2 16

170 DEFUSR2 = BG

180 GOSUB 30

190 CMD"B" "OFF"

200 X = USR1 (0)

210 CMD"B","ON"

220 X = USR2 (0)

230 FOR J=1 TO 50

240 18 = INKEYS

250 IF I$<>™ THEN END

260 NEXTJ

270 GOTO190

Listing 9-H

This program uses the same subroutine to POKE the machine
language programs into memory. Line 110 contains the hex version of the
object code for the design program, and line 150 contains the code for
the screen splitter. USR call 1 points to the design program, and USR call
2 points to the splitter.

After the call to the BASIC subroutine that POKEs the values into
memory (line 180), the BREAK key is locked out. Since the machine
language design program loops continually until the BREAK key is
pressed, the user must press that key to return from the design program.
Of course, pressing BREAK exits from a BASIC program, so the key was
locked out to permit returning from the machine language program
without stopping the BASIC program. The BREAK key is enabled after

More Graphics in Assembly Language 191

the design program executes, in line 210.

USR call 2 (line 220) causes the characters on the display to scroll
to the sides, giving the appearance of splitting the screen. Lines 230 to
260 add a way of exiting the program since the BREAK key is disabled
during the execution of the machine language programs, as well as
between lines 190 and 210.

Photo 9-G-1

The TRS-80 Graphics Book

192

-]
=
o=
L
=8
en
)
B
=

Photo 9-G-2

S oo £E 6D B ED IR 0 SN OB R BN @Gm e

L 2 ch ER D 6D GO 65 66 @ oD EB G 0B 6B 88
D B S D 5D U9 6D GD 65 &) B 6B @B (R & &R
S on 5p D CF 05 6P 0B & 60 6 R (R (D BB @
RO ch e 8 G o G @ G 0D e
- e O 05 OB 6 o) 6 6 B (D 8 &

I
L w, i
4

Photo 9-G-3

More Graphics in Assembly Language 193

REVERSING THE GRAPHICS CHARACTERS ON THE SCREEN

The next sample program alters rather than moves the characters
on the screen. It checks each character on the screen to be sure it is a
graphics character. If it is, the program subtracts the value of the
current character from a certain number and loads that back into the
video memory. Each graphics character is reversed. If a screen position
starts out with only the upper left corner "lit", it will end up with every
position except the upper left corner lit.

100 ; Reverse Program

110 ;
CF00 120 ORG 53000D sSTART POINT IN MEM
CF00 00 130 START: NOP ;NO OPERATION: LABEL
CF09 2IFF3B 140 LD HL,15359D ;VIDRAM - 1|
CF0C 23 150 LOOPI: INC HL sNEXT VIDRAM POS
CFOD 7C 160 LD AH ;sMSB OF LOC
CFQE FE40 170 Ccp 40H sBEYOND VIDRAM?
CF10 280D 180 IR Z,DONE ;sIF YES, TO "DONE"
CF12 7E 190 LD A,(HL) ;SCRN CONTENTS TO A
CF13 FE7F 200 CP 127D ;<1277 NONGRAPHIC?
CF15 38F5 210 IR C,LOOP1 IF YES, NEXT POS
CF17 7E 220 LOOP2: LD A,(HL) ;SCRN CONTENTS TO A
CF18 47 230 LD B,A ;SCRN CONTENTS TO B
CF19 3E3F 240 LD A,63D ;SUBTRACTER TO A
CF1B 90 250 SUB A ;SUBTRACT SCRN VALUE
CF1C 77 260 LD (HL),A ;CHAR BACK TO SCREEN
CF1D I8ED 270 JR LOOP] ;ONE MORE TIME!
CFI1F C9 280 DONE: RET sRETURN TO CALLER
CF08 290 END START ;END PROGRAM

Listing 9-I

Lines 100 to 140 label the program with a comment, set the point
in memory where the program will be assembled, and initialize HL at
15359D, the location immediately before the beginning of video memory.
HL in incremented each time through the loop, so it must start out one
less than the desired beginning location.

Lines 150 to 180 increment HL, which contains the current video
memory location. They then check to see if HL is past the end of the
video memory. If it is, the machine language program will RETurn to the
calling program.

Lines 190 to 210 check to see if the character in the current video
memory position is 127 or less, and is thus a text character. If it is, the
program skips the reversing process and loops back for another character.

Lines 220 to 240 load the value of the current screen location to
B, and load 63 to A. 63 is used because it is the two-byte equivalent to
319. (319 - 256 = 63.) 319 is the number from which any graphics

194 The TRS-80 Graphics Book

character can be subtracted to arrive at that character's reverse
character. The clearest example of this is 319 - 191 = 128 (191 is the
character with all bits "turned on," and 128 has all bits "turned off."

Lines 250 to 270 subtract B from A, load the resultant character
back into the video memory, and loop back for the next screen position.

Lines 280 to 290 RETurn to the calling program, and end the
program.

This program reverses any character with a value of 128 or
greater. What if the character is a text space, character 32D? The
program will not reverse the text space, so text on the screen fooks
normal (spaces included). But that means that if you want to clear the
screen, do graphics, and then reverse the screen, you must clear the
screen with a graphics space (character 128) for the program to reverse

ihe spaces.
DRAWING LINES IN ASSEMBLY LANGUAGE

In Chapter 1 we saw how to draw lines in BASIC with the SET
instruction. Assembly language uses the same word SET for its instruction
that changes one bit in one memory location, but its format and usage is
different.

Assembly language's SET instruction changes any bit in any
available memory location, not just the video memory. This gives the
programmer a lot of flexibility when manipulating numbers and other data.
For this graphics program, we will restrict the use of the SET instruction
to locations within the video memory.

To SET a point on the video display in assembly language, be sure
BIT 7 of the location is SET and BIT 6 is not SET. (That assures it will
be between 128 and 191.) Then SET the appropriate bits, using 0 for the
top left, 1 for the top right, 2 for the middle left, 3 for the middle right,
4 for the bottom left, and 5 for the bottome right. Lines 430 to 560
execute the SET instructions in this routine.

100 ; H

110 ; Horizontal Line Drawer by Dennis Tanner

120 3
D2F0 130 ORG 54000D sSTART POINT IN MEM
D2F0 0C 140 START: NOP ;NO OPERATION -- LABEL
DZFi 2i57D3 150 LD HL,54103D ;LENGTH OF LINE
D2F4 7E 160 LD A,(HL) ;LENGTH INTO A
D2F5 57 170 LD D,A ;sLENGTH INTO D
D2F6 2154D3 180 LD HL,54100D ;LSB OF LOC
D2F9 7E 190 LD A,(HL) sINTO A
D2FA 4F 200 LD C,A ;INTO C
D2FB 2155D3 210 LD HL,54101D ;MSB OF LOC

D2FE 7E 220 LD A,(HL) sINTO A

More Graphics in Assembly Language 195

D2FF 47 230 LD B,A ;INTO B
D300 60 240 LD H,B sMSB OF LOC TO H

D301 69 250 LD L,C ;LSB OF LOC TO L

D302 3E00 260 LD A0 sTO USE AS LEN CTR
D304 5F 270 LD E,A ;STORE LEN

D305 60 280 LOOPA: LD H,B ;sMSB OF POS

D306 69 290 LD L,C ;LSB OF POS

D307 CB7E 300 BIT 7,(HL) sGRAPHICS CHAR?

D309 2003 310 JR NZ,LOOP! ;IF YES, TO LOOPI
D30B 3ES0 320 LD A,I28D ;IF TEXT, LD W/SPACE
D30D 77 330 LD (HL),A ;TO SCREEN

D30E 2156D3 340 LOOPI: LD HL,54102D ;l, 2, OR 3

D311 7E 350 LD A,(HL) ;CHAR TYPE TO A

D312 F301 360 cP 1 ;TOP ROW?

D314 2809 370 JR Z,TOP sIF YES, TO TOP

D316 FE02 380 CP 2 sMIDDLE ROW?

D318 2810 390 JR Z,MIDDLE ;IF YES, TO MIDDLE
D31A FEO3 100 CP 3 ;BOTTOM ROW?

D31C 2817 410 JR Z,BOTTM ;IF YES, TO BOTTOM
D31E C9 420 RET ;OTHERWISE, RETURN
D31F CD4BD3 430 TOP: CALL GTPOS sPUT POS IN HL

D322 CBFE 440 SET 7,(HL) ;TO MAKE GRAPHICS CHR
D324 CBC6 450 SET 0,(HL) sUPPER LEFT PIXEL
D326 CBCE 460 SET 1,(HL) ;UPPER RT PIXEL

D328 1814 470 JR LOOPB ;PAST MID & BOTTOM
D32A CD4BD3 480 MIDDLE: CALL GTPOS ;PUT POS IN HL

D32D CBFE 490 SET 7,(HL) ;TO MAKE GRAPHICS CHR
D32F CBD6 500 SET 2,(HL) ;SECOND ROW LT PIXEL
D331 CBDE 510 SET 3,(HL) ;SECOND ROW RT PIXEL
D333 1809 520 JR LOOPB ;PAST MID & BOTTOM
D335 CD4BD3 530 BOTTM: CALL GTPOS ;PUT POS IN HL

D338 CBFE 540 SET 7,(HL) ;TO MAKE GRAPHICS CHR
D33A CBE6 550 SET 4,(HL) ;BOTTOM LT PIXEL
D33C CBEE 560 SET 5,(HL) ;BOTTOM RT PIXEL
D33E 7B 570 LOOPB: LD A,E sGET LEN BACK

D33F 3C 580 INC A sINCRE LEN COUNTER
D340 5F 590 LD E,A ;PUT LEN BACK TO E
D341 23 600 INC HL ;INCRE SCREEN POS
D342 44 610 LD B,H ;STORE POSITION MSB
D343 4D 620 LD C,L ; & LSB

D344 F5 630 PUSH AF ;SAVE FLAGS

D345 BA 640 CP D ;A = DESIRED LEN?

D346 2806 650 JR Z,DONE ;IF YES, RETURN

D348 FI 660 POP AF ;RESTORE FLAGS

D349 18BA 670 JR LOOPA: ;OTHERWISE AGAIN
D34B 60 680 GTPOS: LD H,B ;sMSB OF POS

D34C 69 690 LD L,C ;LSB OF POS

D34D C9 700 RET sRET FROM GTPOS

196 The TRS-80 Graphics Book

D34E Fl 710 DONE POP AF sRESTORE FLAGS
D34F C9 720 RET sRETURN FROM PROGRM
D2F0 730 END START sEND LISTING

Listing 9-J

This assembly language program is designed to be called by a
BASIC program. Before calling the machine language program, the BASIC
program POKEs values into certain memory locations. These values are
read from the same memory locations by the machine language program.
The memory locations included and the significance of the values in those
locations are as follows:

Location Function

54100 Least significant byte of line start location (video memory)
54101 Most significant byte of line start location

54102 Pixel flag (1 for top, 2 for middle; 3 for bottom)

54103 Length of desired line

The main body of this program can be broken down into six parts:

Lines 140 to 270 read the values from the various memory locations
and store them in registers. Remember that these values were to have
been POKEd into these locations by the BASIC program before the
machine language program is called. Lines 260 and 270 set the "current
length of line" counter (register E) at 0.

Lines 280 to 330 use the BIT instruction to check whether bit 7 of
the current video memory character is set. If it is set, the character is
128 or above and the program proceeds. If it is not set, the character is
a text character (or at least a character smaller than 128). In this case,
lines 320 and 330 load a character 128 into the position. This assures that
as the other bits are set, the resulting character will be a graphics
character.

Lines 340 to 420 load the value that tells which pixel will be set
(1 = top, 2 = middle, 3 = bottom) and branches to the routines below
accordingly.

Lines 430 to 560 are the routines which actually set the pixels on
the video screen. Each routine in this section (TOP, MIDDLE, BOTTM)
calls the routine GETPOS which loads the current screen position into
HL. Each routine then sets the appropriate bits for that section of the
line, then jumps to LOCPB. '

Lines 570 to 670 contains LOOPB. These lines compare the value
stored in E (the current length of the line) to the value in D (the desired
length of the line) to determine whether the line is long enough yet. If it
is, the program returns. If not, it returns to line 280 (LOOPA). If the line
is long enough, the program exits to line 710 (DONE).

More Graphics in Assembly Language 197

Lines 680 to 700 load the current position into HL so the bits of it
can be set (see lines 430 to 560).

The program thus executes START; LOOPA; LOOPI; one of TOP,
MIDDLE, OR BOTTM; LOOPB; and back to LOOPA, until line is the
desired length.

The BASIC program in Listing 9-K incorporates the machine
language program above. (Remember to protect memory at 48000 when
running this program.)

10 'LINE/BAS By Dennis Tanner
20 CLEAR 500: GOTO 110
30 FOR J=0 TO LEN(AS)/2-1
40 TES$ = MIDS(AS,I%2+1,2)
50 MSB = ASC(LEFTS(TES,1)): MSB = MSB-48:
IF MSB>9 THEN MSB = MSB-7
60 LSB = ASC(RIGHTS(TES,1)): LSB = LSB-48:
IF LSB>9 THEN LSB = LSB-7
70 NU = MSB*16+LSB
80 POKE BG+J, NU
90 NEXT J
100 RETURN
110 AS="002157D37E572154D37E4F2155D37E4760693E005E6069C
B7E20033E80772156D37EFE012809FE 0228 10FE032817C9CD4B
D3CBFECBC6CBCE 1814CD4BD3CBFECBD6CBDE1809CD4BD 3
CBFECBE6CBEE7B3C5F23444DF 5BA2806F 118BA6069C9F 1 CO"
120 'THAT WAS THE LINE DRAWING ROUTINE
130 BG = 54000 - 2 16: GOSUB30: DEFUSR1 = 54000 - 2 16
140 POKE 54100 - 2 16, &H00 'LSB OF VIDEO MEM POSITION
150 POKE 54101 - 2 16, &H3C 'MSB OF VIDEO MEM POSITION
160 POKE 54102 - 2 16, 2 '"MIDDLE PIXELS IN CHARACTER
170 POKE 54103 - 2 16, 60 'LENGTH OF LINE
180 CLS: X = USR1(0): PRINT @ 128, "

Listing 9-K

Once again, the hex version of the object code is assigned to AS
(line 110) and the subroutine beginning in line 30 POKEs it into memory.
The USR address is assigned (line 130), and the beginning point, pixel
specification, and length are POKEd into the proper positions (lines 140
to 170). In line 180 the screen is cleared, and the USR routine is called
to draw the line.

The program in Listing 9-L includes the line drawing routine, the
reverse routine, and a routine that clears the screen with a graphics
space (character 128).

198 The TRS-80 Graphics Book

10 'LINE/BAS By Dennis Tanner (Protect memory at 48000)
20 CLEAR 500: GOTO 110
30 FOR J=0 TO LEN(AS)/2-1
40 TES = MIDS$(AS,7%2+1,2)
50 MSB = ASC(LEFT$(TES,1)): MSB = MSB-48:
IF MSB>9 THEN MSB = MSB-7
60 LSB = ASC(RIGHTS(TES,1)): LSB = LSB-48:
IF LSB>9 THEN LSB = LSB-7
70 NU = MSB*16+LSB
80 POKE BG+J, NU
90 NEXT J
100 RETURN
110 AS="002157D37E572154D37E4F2155D37E4760693E005F6069C
B7E20033E80772156D37EFE012809FE0228 10FE032817C9CD4B
D3CBFECBC6CBCE1814CD4BD3CBFECBD6CBDE1809CD4BD3
CBFECBE6CBEE7B3C5F23444DF 5BA2806F118BA6069COF 1C9"

1N Y AT WA C TLIE T TR ', 1y
120 'THAT WAS THE LINE DRAWING RCUTIRNE

130 BG = 54000 - 2 16: GOSUB30: DEFUSR1 = 54000 - 2 16

140 AS = "0021FF3B237CFE40280D7EFE7F38F57E473E3F907718EDCI"
'THAT WAS THE REVERSE ROUTINE

150 BG = 53000-2 16: GOSUB30: DEFUSR2 = 53000-2[16

160 AS = "21FF3B237CFE40C8368018F 7"
'THIS IS THE CLS ROUTINE WITH A GRAPHIC BLANK (80H)

170 BG = 49000 - 2 16: GOSUB30: DEFUSR3 = 49000-2 16

180 X = 5+RND(3): Y = 15+RND(8): Z = 5+RND(10)

190 X1 = USR3(0)

200 FOR J=0 TO 3

210 FOR K=0 TO 3

220 POKE 54101 - 2 16, &H3C+J

230 FOR L=1 TO 3

240 POKE 54100 - 2 16, K*64 + SIN((I*16+K*4+L)/X) * Y + 28

250 POKE 54103 - 2 16, Z

260 POKE 54102 - 2 16, L

270 ~ X1 = USR1(0)

280 NEXT L

290 NEXT K

300 NEXT J

310 FOR ZX =1 TO 11

320 X1 = USR2(0)

330 FOR Zz=1 TO 50: NEXT ZZ

340 NEXT ZX

350 GOTO 180

Listing 9-L

This program loads the three programs into the high memory, then
clears the screen with a graphics space (line 190). It then begins a loop
which draws horizontal lines on the screen. In this loop (lines 200 to 300),
J represents the most significant byte of the screen position, K

More Graphics in Assembly Language 199

Photo 9-L-1

Photo 9-L-2

200 The TRS-80 Graphics Book

represents the least significant of the screen position, and L represents
the pixel row to be set (1, 2, or 3). This loop draws a line in each of the
pixel rows on the screen, with the drawing done by the USR call (line
270).

After the lines are drawn, the screen is reversed and then reversed
back to its original several times (lines 310 to 340).

Chapter Summary

The video display of the TRS-80 Model I, III, or 4 can be scrolled left in
machine language by repeatedly drawing a blank line down the left
side of the screen, then performing a block move to the left on the
entire screen contents.

A design can be created by loading the video memory with specified
graphics characters in & pattern.

The screen can be split and moved to the sides horizontally by drawing a
blank line down the center, then performing block moves on the
left and right sides of each screen line.

The graphics characters can be reversed by subtracting the value of each
graphics character on the screen from a certain number, then
loading the difference back into the video memory.

Lines can be drawn on the screen using the assembly language SET
instruction.

Meeting the Chapter Objectives

Here are the objectives for your review. Can you meet all the
objectives?

. Write an explanation of how an assembly language program that
moves the screen sideways works.

Write an explanation of how an assembly language program that
creates an alternate-character design on the screen works.
Write an explanation of how an assembly language program that
splits the screen works.

Write an explanation of how an assembly language program that
reverses the screen works.

Write an comparison between the BASIC SET instruction and the
assembly language SET instruction.

Write an explanation of how an assembly language program that
draws horizontal lines works.

°

T m Y 0w >

-

More Programming Practice

L. Write an assembly language program that scrolls only characters on
the top half of the screen to the left.

10.

More Graphics in Assembly Language 201

Write an assembly language program that makes a design with
characters 141D and 189D.

Write an assembly language program that splits the screen more
slowly. (Hint: use the DELAY ROM call.)

Write an assembly language routine that reverses the screen, then
reverses it back to its original state.

Using the machine language line-drawing routine in a BASIC
program, write a program that SETs every pixel on the video
display.

Chapter Checkup

How does the left-scroll program in Listing 9-D solve the problem
of the left-most row wrapping around to the right side during the
block move?

What instruction in Listing 9-D moves the block of characters that
scrolls the screen to the left?

Examine the program in Listing 9-E. What appears on the screen
when lines 150 to 170 are executing?

What ROM routines are called by the program in Listing 9-F? What
do they do? What assembly language instruction is used to call the
routines?

In the program in Listing 9-G, which RETurn in fact returns from
this whole program to whatever called it?

In the program in Listing 9-H, what must the user do to exit the
BASIC program?

Consider the program in Listing 9-1. What character would be the
reverse of graphics character 145?

What is the syntax of the SET instruction in BASIC? In assembly
language?

What does the assembly language BIT instruction do?
In the BASIC program in Listing 9-L, why was it necessary to clear

the screen with a graphics space (character 128) before drawing
the lines?

Chapter 10
Assembly Language File Handling
In Graphics Progamming

OBJECTIVES:

At the end of this chapter, the reader will be able to perform the
following tasks:

A. Write an explanation of why a programmer would want to use file
handling to program graphics.
B. Write an explanation of the function, location, and conditions under

which each of the following DOS calls are used: OPEN, POSN,
READ, WRITE, and CLOSE.

C. Write a description of and the function of the Device Control Block
(DCB).

D. Write an explanation of how a program can read data from the
video memory into a data file.

E. Write an explanation of how a program can read data from a data

file inio the video memory.
INTRODUCTION

Chapters 9 and 10 discussed how to present graphics on the TRS-80
video display and how to manipulate them. This chapter shows how to use
data files in assembly language for storage and later retrieval of graphics
and text data to and from disk data files.

An obvious question is, "Why do you need to use disk data files to
create screen graphics?" When an elaborate graphic is to be displayed on
the screen, it may have a lot of variety on the screen. Many different
graphics characters may be used to create a picture or other design.
Unless there is a definite pattern to the graphic, programming must be in
BASIC or in complex machine language routines which are beyond the
scope of this text.

Each screen has 1024 characters on it, so it may take 1 K of
memory to store it (unless the screens are generated). If the program had
several screens, it could take several K of memory to store the graphics.

And creating rapidly-changing screens (to effect limited animation) may
hecome very difficult.

By storing a screen directly onto a disk file, the programmer
eliminates the necessity of storing all the data for that screen in the
program itself. And the same routines may be used to create, store, and
display a wide variety of graphics screens.

The programs presented in this chapter allow the user to do the

following:
1. Create a graphics screen with a screen editor
2. Save it at a specified point within a data file.
3. Recall the same graphics screen from the data file later.
4, Load several of these screens into the memory of the

computer at once, and display them in rapid succession

202

Assembly Language File Handling in Graphics Programming 203

without accessing the disk.

This process has several obvious advantages:

1. It allows the user to easily design the screens.

2. It allows the user to design similar screens which may be
used'in succession to create simple animation.

3. It avoids the use of data statements and other numeric

representation of the graphics data.

It also has some disadvantages:

1. It is rather memory intensive. Each screen in memory
requires | K of memory.

2. The animation is limited to the screens that can be stored in
memory.

3. The initial load of the data from disk takes some time.

4, THIS PROGRAM REQUIRES A 48K OR 64K TRS-80 MODEL

Il OR MODEL 4. The program requires Mode! III TRSDOS
1.3 (the current version of TRSDOS).

ABOUT ASSEMBLY LANGUAGE FILE HANDLING

To this point, we have not discussed disk file handling. File
handling in BASIC offers some of the same capabilities as file handling in
machine language, but not nearly as much speed. When retrieving data
from the disk to be displayed as graphics on the screen, the speed can
become very important.

The file handling mentioned in this chapter will be done using
Radio Shack's Disk Operating System, TRSDOS. A copy of the TRSDOS
operating system comes with every disk TRS-80 computer when it is
purchased. TRSDOS lets the assembly language programmer open disk files
and read and write to them with relative ease.

TRSDOS has several routines in memory called DOS calls. These
routines may be called from BASIC or machine language to perform
certain tasks. The DOS calls used in the programs in this chapter use the
DOS calls which manipulate data files. Many of these routines require the
programmer to set aside an area of memory called a "Device Control
Block" (DCB). Before the file is opened, the programmer places the
filename of the file to be opened into the DCB. While the file is open,
TRSDOS uses the DCB to store other information (which the programmer
does not need to worry about). When the program closes the file, TRSDOS
automatically puts the filename back into the DCB.

DOS CALLS USED IN THIS PROGRAM
OPEN. This routine (located at 4424H) opens a file which already

exists on the disk. The programmer must put the file specification in the
DCB before the file is opened. Here is what the programmer must set

204 The TRS-80 Graphics Book

before calling OPEN:
HL must point to a 256 byte area called the "buffer." This area
must not be altered by the program while the file is open.
DE must point to the DCB.
B must contain the logical record length (LRL). For the progams in
this chapter, the LRL will be 256, specified by using the
number 0.

NOTE: The pointers and other file-handling manipulators in this chapter
are based on an LRL of 256, the most commonly used LRL. When
any other LRL is used, these pointers must be set up in a slightly
different way. See your Disk System Owner's Manual for details.

POSN. This routine (located at 4442H) positions the disk read-write
head at a specified point in the open file. Here is what the programmer
must set before calling POSN:

DE must point to the DCB.

BC must contain the desired logical record number.

READ. This routine (located at 4436) reads the data from the
current record into the buffer specified when the file was OPENed. After
the record is read, the record number pointer is automatically
incremented to be ready to read the next record. Here is what the
programmer must set before calling READ:

DE must point to the DCB.

WRITE. This routine (located at 4439H) transfers the information
from the buffer (specified when the file was opened) to the current
record on the disk. After the write, the current record number is
automatically incremented. Here is what the programmer must set up
before calling WRITE:

DE must point to the DCB.

CLOSE. This routine (located at #428H) closes the file. This must
be done after file processing is done so the buffer will be emptied to the
file and the directory entry will be updated. Here is what the programmer
must set up before calling CLOSE:

DE must point to the DCB.

ABOUT THE PROGRAM

This chapter contains one long assembly language program and two

BASIC programs that call it. The assembly language program has two main
narts:

Lines 130 to 480 write the contents of the screen (the video
memory) directly to the disk file as specified by the calling BASIC
program.

Lines 490 to 840 read the contents of the disk file specified by the
calling BASIC program and move them directly to the screen.

D6D8
DéD8
Dé6DB
DeDC
béeDD
D6DE
D6DF
D6E2
D6E4
D6E7
D6ES8
D6E9
D6EB
D6EC
D6EF
Dé6F2
Dé6F4
D6F>5
Dé6F7
Dé6FA
D6FB
Dé6FC
D6FD
D6FF
D701
D702
D705
D706
D709
D70A
D70D
D710
D712
D713
D716
D718
D71B
D71C
D71F
D720
D721
D722
D723
D726
D728
D72B
D72C
D72D

Assembly Language File Handling in Graphics Programming 205

CD7F0A
E5

23

54

5D
21CODA
0600
CD2444
Cl

BA
0600
4F
CD4244
215ED7
363B
23

3600
215ED7
7E

3C

77
FE40
2817
D5
3A5ED7
67
3A5FD7
6F
11CODA
010001
EDBO
Dl
CD3944
18DF
CD2844
C9
CD7F0A
E5

23

54

5D
21CODA
0600
CD2444
Cl

0A
0600

100
110
120
130 START:
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300 WRLOOP:
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470 CLOS:
480
490
500
510
520
530
540
550
560
570
580
590

;FILE TO SCREEN PROGRAM
;By Dennis Tanner

ORG 55000D
CALL GETARG

PUSH HL ;STORE PTR FOR REC#
INC HL sPT HL TO FILENAME

LD D,H ;POINTING TO DCB

LD E,L ;POINTING TO DCB

LD HL,BUFFER ;SET BUFFER

LD B,00H sLRL

CALL OPEN ;OPEN FILE

POP BC ;GET REC #

LD A,(BC) sREC # INTO A

LD B,00H ;ZERO MSB OF REC #
LD C,A SREC # INTO C

CALL POSN ;POSITION HEAD

LD HL,PS ;PS (RAM POS) TO HL
LD (HL),3BH ;MSB OF VIDRAM TO PS-1
INC HL ;TO STORE LSB

LD (HL),00H ;LSB OF VIDRAM TO PS+l
LD HL,PS ;COUNTER TO HL

LD A,(HL) sMSB TO A

INC A ;A=A+l; PS=PS+256

LD (HL),A ;BACK TO PS

CP 4OH ;BEYOND VIDRAM?

JR Z,CLOS ;IF SO, TO CLOS

PUSH
LD
LD
LD
LD
LD
LD
LDIR
POP

DE

A,(PS) ;sCOUNTER TO A

H,A ;sMSB OF CURNT VR TO H
A,(PS+1) ;LSB OF COUNTER

L,A ;LSB OF CURNT VR TO L

DE,BUFFER ;TO BUFFER

BC,100H ;COUNTER
sMOVE

DE

CALL WRITE sFIRST 1/4 VID TO DISK

JR WRLOOP ;ONE MORE TIME

CALL CLOSE ;CLOSE FILE

RET sBYE!

CALLGETARG ;GET REC# & FILENAME
PUSH HL ;STORE PTR FOR REC#
INC HL ;PT HL TO FILENAME
LD DH sPOINT DE TO FILENAME
LD E,L

LD HL,BUFFER ;SET BUFFER

LD B,00H ;LRL

CALL OPEN OPEN FILE

POP BC sGET REC#

LD A,(BC) sREC# INTO A

LD

B,00H sLRL

206 The TRS-80 Graphics Book

D72F 4F 600 LD C,A sREC# INTO C

D730 CD4244 610 CALL POSN ;POSITION HEAD

D733 215ED7 620 LD HL,PS ;PS (RAM POS) TO HL
D736 363B 630 LD (HL),3BH ;MSB OF VIDRAM -1
D738 23 640 INC HL ;TO STORE LSB

D739 3600 650 LD (HL),00H ;LSB OF VIDRAM TO PS+l
D73B 215ED7 660 RELOOP: LD HL,PS ;POS COUNTER TO HL
D73E 7E 670 LD A,(HL) ;MSB TO A

D73F 3C 680 INC A sA=A+l; PS=PS+256

D740 77 690 LD (HL),A sBACK TO PS

D741 FE40 700 CP 4OH ;BEYOND VIDRAM?
D743 28D3 710 JR Z,CLOS ;IF SO, TO CLOS

D745 CD3644 720 CALLREAD s1ST 1/4 VID FROM DISK
D748 D5 730 PUSH DE

D749 3A5ED7 740 LD A,(PS) ;COUNTER TO A

D74C 67 750 LD HA sMSB OF CURNT VR TO H
D74D 3AS5FD7 760 LD A(PS:1) ;LSR OF COUNTER

D750 6F 770 LD LA ;LSB OF CURNT VR TO L
D751 ES5 780 PUSH HL ;SAVE VIDRAM

D752 DI 790 POP DE ;GET VIDRAM

D753 21CODA 800 LD HL,BUFFER ;FROM BUFFER

D756 010001 810 LD BC,I00H ;COUNTER

D759 EDBO 820 LDIR sMOVE

D75B DI 830 POP DE

D75C 18DD 840 JR RELOOP ;BACK TO READ LOOP
0A7F 850 GETARG EQU OA7FH

124 860 OPEN EQU &4424H

4428 870 CLOSE EQU 4428H

Y, 880 POSN EQU &4442H

4436 890 READ EQU 4436H

4439 900 WRITE ~ EQU 4439H

DACO 910 BUFFER EQU 56000D

D75E 920 PS DEF W 0000H

D6DB 930 END START

Listing 10-A

The BASIC program that calls the machine language program in
Listing 10-A sets up a 33-character string that contains the followings

1) A one-byte character representing the first record number of the
desired picture in the file. Each file can contain up to- 255 pictures. This
character tells which record in the file to address for the desired picture.
if the program is addressing the fourth record in the flle, the first

character in the string in the BASIC program will be CHRS(4).

2) The file specification. This would be the filename, extension,
password (if applicable), and drive specification.

3) Spaces to fill out the rest of the 33 characters.

Assembly Language File Handling in Graphics Programming 207

The BASIC program then assigns that 33-character string to a
string variable and retrieves the VARPTR (variable pointer) of the
string. In the first BASIC program, for example, the 33-character string is
named C$. V is the VARPTR of CS. When the machine language program
is called, this format is used:

X=USRI(V) or X=USR2(V).

The USR call can be addressed in this format to pass a value from
the BASIC program to the machine language program. The value we are
passing is the number that points to the 33-character string in memory.
This string will contain the DCB (device control block) described above.

When a value is passed from a BASIC program to a machine
language program, the machine language must take a special step before
doing anything else. It must call the ROM routine called "GETARG" at
location 0A7FH. This routine retrieves the value that was passed from the
BASIC program in the USR call and places it in HL. The program in
Listing 10-A defines the GETARG label in line 850 and calls it first
thing, in line 130.

At that point, HL contains the pointer to the 33-character string.
Line 140 PUSHes HL onto the stack to store the record number of the
desired picture for later use. Line 150 INCrements HL, and then HL points
to the 32-character area containing the file specification and spaces. In
other words, HL points to the DCB.

Here is a line-by-line description of the rest of the first routine:

Line Description

160 This line and line 170 load the address pointing to the DCB from
HL to DE where it will be stored. Remember that the DE must
point to the DCB before the OPEN routine is called.

170 Described above.

180 Line 910 defines BUFFER as a pointer to the address 56000D. This
will be a pointer to the 256-byte block of memory required for
opening the file. Line 180 points HL to the buffer, as must be done
before OPEN can be called.

190 B now contains 0, the logical record length (LRL). Remember that
to specify an LRL of 256, B must be loaded with ‘0.

200 Opens the file.

210 Retrieves the pointer to the record number of the desired picture
and stores it in BC.

220 Gets the record number into A, for later transfer to C.

230 Loads zero into B. This assures that BC will contain only the value
contained in C.

240 Loads the record number into C. Now BC contains the record
number.

250 Since BC contains the record number and DE still points to the
DCB (see lines 160 and 170), the program is ready to call the POSN
DOS call to position the disk drive head to the right record. This

208

260
270

280
290

300

310
320

330
340

350

360
370
380
390
400

410
420

430
440

450

460

470
180

The TRS-80 Graphics Book

line calls POSN.

Loads HL with the PS (screen position) pointer, as defined in line
880.

Loads 3BH into the first two bytes of PS.

Increments HL to point to the next two bytes of PS.

Loads the last two bytes of PS with 0. Now PS contains 3BOOH
which is 256 bytes before the beginning of video memory (3CO0H).
When the MSB (first two bytes) of PS is incremented in line 320,
PS will point to 3COOH.

This line begins the WRLOOP which reads the video memory and
stores it on the disk file. The screen has 1024 bytes, and each
record has 256 bytes, so it takes exactly & records to hold one
screenful. This line loads the current screen position (PS, initially
3B00H as mentioned above) into HL.

The MSB of PS is loaded into A.

A is incremented. Since this is the MSB of PS, PS will be increased
by 100H (256D) when this value is loaded back to PS in the next
line.

A is loaded back into the MSB of PS.

A is compared with 40H, the MSB of the position past the video
memory.

If the compare returns zero, and A is therefore 40H, the program
jumps down to CLOS (line 470) to close the file and return to the
BASIC program.

The value in DE, which now points to the DCB, is PUSHed onto the
stack for later use.

The next few lines set up the LDIR move of the graphics from the
video memory to the buffer. The MSB of PS (the screen position) is
loaded into A.

The MSB of PS is loaded into H.

The LSB of PS is loaded into A.

The LSB of PS is loaded into L. This finishes setting up the "move
from" area (part of the video memory) by loading it into HL.

DE is loaded with the BUFFER pointer. This is the "move to" area.
BC is loaded with 100H (which is 256D) as the counter of the LDIR
coming up.

The data is moved from the video memory to the buffer.

The top number from the stack is POPped to DE. Now DE once
again points to the DCB.

Since DE points to the DCB, the WRITE routine can be called. This
line calls the WRITE routine.

The routine jumps back to WRLOOP for the next record.

This line (labelled CLOS) calls the CLOSE routine to close the file.

Returns to the BASIC program,

Thus the first routine reads data from the video memory and

transfers it to the buffer in 256 byte segments. The disk routines then
move the data from the buffer to the record of the file. Since the WRITE
routine automatically moves the record pointer to the next record after
the write, it is set up for the next area of the video memory.

Assembly Language File Handling in Graphics Programming 209

The second major part of this program does just the reverse. It
reads each record into the buffer and transfers the data from the buffer
directly to the video memory. The details of the routine are similar to
the details of the first routine, and they are left to the reader.

THE BASIC PROGRAM THAT CALLS THIS ROUTINE

Since this program is specifically written to be called by a BASIC
program, we must write a BASIC program to call it. The program in
Listing 10-B does just that.

10 '"Program to interface with machine language file-handling
routines. Protect memory at 48000D.

20 CLEAR 500: GOTO 110

30 FOR J=0 TO LEN(A$)/2-1

40 TES = MIDS(AS,J%2+1,2)

50 MSB=ASC(LEFTS(TES,1)): MSB=MSB-48:
IF MSB>9 THEN MSB=MSB-7

60 LSB=ASC(RIGHTS(TES,1)): LSB=LSB-48:
IF LSB>9 THEN LSB=LSB-7

70 NU = MSB*16+LSB

80 POKE BG+J, NU

90 NEXT J

100 RETURN

110 A$S="CD7FO0AE523545D21CODA0600CD2444C10A06004FCD424
4215ED7363B233600215ED77E3C77FE402817D53A5ED7673A5
FD76F11CODAOIO001EDBOD1CD394418DFCD2844C9"
'Screen-to-disk routine

120 BG = &HD6D8: GOSUB30: DEFUSR1 = BG

130 AS="CD7FO0AE523545D21CODA0600CD2444C10A06004FCD424
4215ED7363B233600215ED77E3C77FE4028D3CD3644D53A5ED
7673A5FD76FE5D121CODAQOIO00IEDBOD118DD0O00O"
'Disk-to-screen routine

140 BG = &HD71C: GOSUB30: DEFUSR2 = BG

150 INPUT "1=VID TO DISK 2=DISK TO VID"; A

160 INPUT "FILENAME"; CS$: D$=CS$:
INPUT "PICTURE#"; B: B=(B-1)*4:
CS$ = CHRS(B) + C$ + CHRS(13) + STRINGS (31-LEN(CS), 32)

170 V = VARPTR(CS): V = PEEK(V+1) + PEEK(V+2) * 256:
IF V>(2[15) THEN V=V~(2 16)

180 IF A=2 THEN GOSUB240: X=USR2(V): GOT0220

190 CLS: PRINT "OPENING FILE...": OPEN"R",1,D$: CLOSE:
XX=RND(64)+128: FOR J=15360 TO 16383: POKE J,XX: NEXT J

200 PRINT@O, "STARTING W/RECORD#" B;

210 X = USRI(V)

220 IS = INKEYS

230 1§ = INKEYS: IF 1$="" THEN 230 ELSE CLS: GOTO 150

210 The TRS-80 Graphics Book

240 ONERRORGOTO 260

250 OPEN"I",1,D$: CLOSE: GOTO 270

260 PRINT "FILE DOESN'T EXIST": ONERRORGOTOO0: END
270 ONERRORGOTO 0: RETURN

Listing 10-B

Lines 30 to 100 of this program contain the routine to decode the
hex versions of the machine language programs and POKE them into
memory.

Lines 110 to 140 contain the hex data for the two parts of the
program in Listing 10-A. They call the POKEing subroutine and define the
USR calls to be used.

Line 150 presents a one-line menu. The program lets you choose to
load the information from the screen to the disk, or load the information
from the disk to the screen.

Line 160 accepts the filename (C$) and picture number (B). It
calculates the record number to be specified according to the picture
number. It then reassigns C$ with the record number (CHRS$(B)), the
filename (C$), a carriage return to terminate the filename (CHRS$(13)),
and a string of spaces to pad the DCB.

Line 170 finds the variable pointer of the string, and from the
VARPR finds the location of the string data in memory. The number
pointing to that data is reassigned to V.

Line 180 executes the "Disk to vid" instructions if the user has
chosen option 2. It checks for the existence of the file (GOSUB 240). 1f
the file exists, it calls the "Disk-to-screen' program (USR2(V)). By
specifying V in the USR call, the program passes the pointepress.

Line 190 is executed if the user has chosen option 1. It opens the
file and closes it first thing, since the machine language OPEN routine
works only on files that already exist. It then chooses a graphics
character and puts it in every position of the screen.

Line 200 displays a message telling which record of the file will be
the first one used for this picture. This helps when pulling the picture out
of the file to be sure the proper picture was accessed.

Line 210 calls the machine language program that reads the data

pOLe- 53] = a PG e e 2 .

from the screen and writes it to the file.
Lines 210 to 230 await a keypress and then return to the options.
Lines 240 to 270 contain the error-trapping routine that makes sure

the file exists if it is to be read by the machine language program.
OPENing a file for input ("I') will return an error message when the file

Assembly Language File Handling in Graphics Programming 211

does not exist on the disk. ?question: In the to be read by the machine
language program. OPENing a file for input ("I') will return an error
message when the file does not exist on the disk. ?question: In the
program in Listing 10-B, what will happen in lines 240 to 270 if the file
does not exist?

This program can be used on any file with a logical record length
of 256. If you have a data file from another program, you may use option
2 to move its contents to the display for a good look at them.

Although this BASIC program shows the capabilities of the machine
language subroutine, it does not allow the user to create his or her own
graphic screens and to save them on the disk. The program that follows
does that and more.

SAVING AND RETRIEVING SCREENS OF YOUR OWN DESIGN

The BASIC program that follows culminates this book by offering
many of the features and using many of the concepts from different
sections of the book. It has these features:

+ A screen editor allows you to create unique screens. Besides the
regular SET/RESET instructions found in our previous screen editors, this
one draws lines and circles, clears the screen with a graphics character
(191), moves the cursor to a specified area, and allows alphanumeric input
at the keyboard.

+ The screen can be saved at any time. If you desire, the screen
can be recalled, edited and saved again under the same or a different
filename and position in the file. This permits you to make screens with
most of the positions the same, but a few differences. Such screens can
be animated as described next.

+ You may specify up to eight pictures to loaded into memory.
These are loaded into adjacent sections of high memory one after
another. They are then brought back down to the video memory one at a
time with slight pauses, but quickly enough to appear to be animated.

As mentioned in the introduction to this chapter, this process is
rather memory intensive, but it can be used to create some dramatic
graphic effects.

1 ' COMBINED PROGRAM FOR CHAPTER 10 By Dennis Tanner
Protect memory at 48000D,

5 GOTO 20

6 LO = PEEK(16416) + PEEK(16417) * 256: L1 = LO: I$ = INKEYS:
S$ = "™: CU = 32

7 CU = 168 - CU: POKE LO, CU: FOR J1 =1 TO 20: I$ = INKEYS:
IF I$ = "™ THEN NEXT JJ: GOTO7
ELSE JJ = 20: NEXTJJ: I = ASC(S):
IFI =8 AND S$ <> "™ THEN POKE LO, 32: LO = LO - It

212

The TRS-80 Graphics Book

S$ = LEFTS(SS,LEN(SS)-1): GOTO7

8 IF I = 13 AND S§ <> "™ THEN POKE LO, 32: RETURN

ELSE IFI <LV OR I > HV THEN 7
ELSE IF LO - L1 = LE THEN 7
ELSE POKE LO, I: S§ = S§ +1$: LO = LO + 1: CU = 32: GOTO7

20
MAIN BODY OF PROGRAM
30 CLEAR 500 'INITIALIZE VARIABLES
40 GOSUB 200 'PRESENT TITLE SCREEN
50 GOSUB 500 'LOAD IN MACHINE LANGUAGE
PROGRAMS
60 GOSUB 800 'PRESENT OPTION LIST
70 ON CH GOTO 80, 90, 100 'BRANCH ACCORDING TO CHOICE
80 GOSUB 900 'CREATE A NEW FILE
85 GOTO 60
90 GOSUB 1000 'EDIT AN EXISTING FILE
100 GOSUB 1500 'WIEW THE SCREENS
200!
Print Title Screen
210 CLS
220 PRINT@ 88, STRINGS(16,140)
230 PRINT@ 152, "Graphics Program"
240 PRINT@ 216, STRINGS(16,140)
250 PRINT@ 980, "< < < Please Wait > > >";
260 RETURN
299 END
300!
POKE Machine Code to Memory
310 FOR J=0 TO LEN(AS$)/2-1
320 TES = MIDS(AS,J%2+1,2)
330 MSB = ASC(LEFTS(TES,)): MSB = MSB - 48:
IF MSB > 9 THEN MSB = MSB -7
340 LSB = ASC(RIGHTS(TES,1)): LSB = LSB - 48:
IF LSB > 9 THEN LSB = LSB -7
350 NU = MSB * 16 + LSB
360 POKE BG +J, NU: POKE 15423, 74 - PEEK(15423)
370 NEXT J
380 RETURN
400 '
Routine That Moves Screens with LDIR
410 POKE &HBCO00, INT(MT/256): POKE &HBCO0I, MT-INT(MT/256)*256
420 POKE &HBCO02, INT(HM/256): POKE &HBCO03, HM-INT(HM/256)*256
430 POKE &HBCO04, INT(MF/256): POKE &HBCO05, MF-INT(MF/256)*256
440 X = USR1(0)
450 RETURN
500 °

Machine Language Programs to be POKEd into Memory

510

520
530
540
550
560
570
580
590

600
610
620
630

640
650
660
670

630
690
700
710

720
730

740
750

760
770

780
790
800

Assembly Language File Handling in Graphics Programming 213

AS="2100BC562101BC5E2102BC462103BC4E3A04BC673A05B
C6FEDBOC9" 'LDIR PROGRAM

BG = 48000 - 2 16

DEFUSR! = BG

GOSUB 310

AS="2]FF3B237CFE40C836BF 18F7" 'SCREEN FILL

BG = 49000 - 2 16

DEFUSR2 = 49000 - 2 16

GOSUB 310

AS$="002188C336002188C37EFE4028293C77CD65C318F 100014
00021003C7CFE#40280536200918F621FF3F362011003C21013C
OIFFO03EDBOC9C90000" 'MOVE SCREEN

BG = 50000 - 2 16

DEFUSR3 = 50000 - 2 16

GOSUB 310

AS="0021FE3B l6BF IE8CCD67C7010080CD6000CD8D02C279C
721FE3B168CIEBFCD67C7010080CD6000CD8D02C279C718D1
23237CFE40280BE5DDE1DD7200DD730118EEC9" 'DESIGN

BG = 51000 - 2 16

DEFUSR%4 = BG

GOSUB 310

AS$="CD27CBCD4BCBC92185CB36E023363B3A86CB673A85CB
6F014000097CFE40C836207D3285CB7C3286CB18E42183CB 36
212183CB7E3D77FEQ00C8CDSECB 18F221FF3B010100097CFE4
O0C8E5D109012000EDBOO11E0009E 5D 12B012000EDB801210009
18DE00000000" 'SPLIT

BG = 52000 - 2 16

DEFUSRS5 = BG

GOSUB 310

AS$="002157D37E572154D37E4F2155D37E4760693E005F6069C
B7E20033E80772156D37EFEQ012809FE 0228 10FE032817C9CD4B
D3CBFECBC6CBCE1814CD4BD3CBFECBD6CBDE1809CD4BD 3
CBFECBE6CBEE7B3C5F23444DF 5BA2806F 1 18BA6069CIF 1C9"
'LINE DRAWER ‘

BG = 54000 - 2 16: GOSUB310: DEFUSR6 = 54000 - 2 16

AS$="0021FF3B237CFE40280D7EFE7F38F 57E473E3F907718EDCY"
'REVERSE ROUTINE

BG = 53000 - 2 16: GOSUB 310: DEFUSR7 = 53000 - 2 16

AS="CD7F0AE 523545D21CODA0600CD2444C10A06004FCD424
4215ED7363B233600215ED77E3C77FE402817D53A5ED7673A5
FD76F11CODAOIO00IEDBODICD394418DFCD2844C9" 'WRITE FILE

BG = &HDé6D8: GOSUB 310: DEFUSRS = BG

AS="CD7F0AE523545D21CODA0600CD2444C10A06004F CD424
4215ED7363B233600215ED77E3C77FE4028D3CD3644D53A5ED
7673A5FD76FE5D121CODAOLOO0IEDBOD118DD0000" 'READ FILE

BG = &HD71C: GOSUB 310: DEFUSR9 = BG

RETURN

1

Present Option List

214

810
320
330
840
850
860
870
900

910
920
930
940
950

The TRS-80 Graphics Book

CLS: PRINT@ 343,CHRS(31); "1 Create a file"
PRINT@ 407, "2 Edit a file"

PRINT@ 471, "3 View screens"

PRINT@ 599, "Enter selection: '

LV=49: HV=51: LE=1: GOSUB®6

CH = VAL(SS)

RETURN

Create a New File

PRINT@ 727, "Filename of new file? ";

LV=47: HV=90: LE=10: GOSUB 6: F$=S$

ON ERROR GOTO 960

OPEN"I",1,F$: CLOSE

PRINT @791, "The file already exists.";s FOR KK=1TO300: NEXTKK:
GOTO 970

960 OPEN"R",1,FS: CLOSE: RESUME 970
970 ONERRORGOTOO0: RETURN
1000’

Edit an Existing File

1010

PRINT@ 727, CHRS$(31);"Filename? "; CHRS(31);

1020 LV=48: HV=92: LE=10: GOSUB6: FS$=S$

1030 OPEN"R",1,F$: CLOSE

1040 PRINT@ 791, "Screen number? "; CHRS(31);

1050 LV=48: HV=57: LE=2: GOSUB 6: SN = VAL(SS): IF SN>20 THEN 1040
1060 PRINT@ 855, "Load existing screen? "; CHR$(30);

1061

LV=65: HV=90: LE=1: GOSUB®6: YN$=S$:
IF YNS <> "N" AND YNS <> "Y" THEN 1060

1062 IF YNS <> "Y" THEN 1095

ELSE PRINT@919, "Save under what name? "; CHR$(30);

1064 LV=48: HV=92: LE=10: GOSUB6: NF$=S$

1066 PRINT@ 983, "Screen number? "; CHRS(30);

1068 LV=48: HV=57: LE=2: GOSUB&: NN=VAL(S$): IF NN > 20 THEN 1066
1080 C$=FS: DS=CS$: B=SN: B=(B-1)*4:

C$=CHRS(B)+CS$+CHR$(13)+STRINGS(31-LEN(CS),32):
V=VARPTR(CS): V=PEEK(V+1)+PEEK(V+2)¥256:
IF V>(2 15) THEN V = VA2 16)

1090 X = USR9(V): GOTO 1100
1095 NF$=FS$: NN=SN: CLS
1100 ONERRORGOTO 1310
1120 IS=INKEYS: X=0: Y=0

1130

PRINT@ 960, X; Y; CHRS(30);

1140 1S=INKEYS: IF 1S="" THEN POKE 14383 74-PEEK(16383): GOTO [140

1150
1160

gs e

IF 1$=CHR$(9) THEN X=X+1: SET(X,Y): GOTO1130
IF 1$=CHRS$(8) THEN X=X-1: SET(X,Y): GOTO1130

1170 IF I1$=CHRS$(91) THEN Y=Y-1: SET(X,Y): GOTO1130
1180 IF I$=CHRS$(10) THEN Y=Y+1: SET(X,Y): GOTO!1130

1190
1200

IF IS=CHRS(32) THEN RESET(X,Y): GOTO1130
IF I1S="Y" OR I$="y" THEN PRINT@960, CHRS$(30);: GOTO 1350

1210 IF I$="C" OR I$="c" THEN PRINT@975, "Radius? ";: LV=48: HV=57:

1220

1230
1240

1250

1260
1270
1280

1300
1310
1320
1330
1340
1350

1360

1380
1390
1400
1410
1420
1430
1440
1500

1510
1520
1530
1540
1550
1560
1570

1580
1600

Assembly Language File Handling in Graphics Programming 215

LE=2: GOSUB6: RA=VAL(SS):
FOR AN=0 TO 6.3 STEP .02:
X1 = X+COS(AN)*RA: Y1 = Y+SIN(AN)*RA%,55: SET(X1,Y1):

NEXT AN:

PRINT@ 960, CHRS$(30);: GOTO 1130
IF I$ = "M" OR I$="m" THEN PRINT@ 975, CHR$(30);

"Move to: X7 ";: LV=48: HV=57: LE=3: GOSUB6: XM=VAL(SS):
PRINT@ 998, "Y? ";: LE=2: GOSUB6: YM=VAL(SS): X=XM: Y=YM:
PRINT@ 960,CHRS$(30);: GOTO 1130
IF 1$=CHRS(31) THEN CLS: GOTO1130
IF IS<OML!Y AND IS<O"" THEN 1260

ELSE PRINT@ 975, "Other endpoint: X? ";: LV=47: HV=58: LE=3:
GOSUB6: EX=VAL(S$): PRINT@ 1000, "Y? ";: LE=2: GOSUBG:
EY=VAL(SS): SX=X: SY=Y: LE=SQOR({EX-SX) 2 «(EY-SY) 2)
FOR J=0 TO LE: X=SX+(EX-SX)*J/LE: Y=SY+(EY-SY)*J/LE:
SET(X,Y): NEXTJ: X=INT(X): Y=INT(Y): GOTO1130
IF 1$="R" OR I$="r" THEN X1=USR7(0): GOTO!1130
IF I$="F" OR I$="f" THEN X1=USR2(0): GOTO1130
IF IS="A" OR I$="a" THEN PRINT@ 960,CHR$(30);:

PRINT@ INT((Y)/3)*64+INT(X/2),"s: LV=32: HV=90: LE=64: GOSUB6:
X = (LO-15360-INT((LO-15360)/64)*64)*2:

Y = INT((LO-15360)/64)*3+1: GOTO 1130
GOTO 1130
PRINT@ 960, "ERROR...";
FOR K=1 TO 400: NEXT K
PRINT@ 960, " "
RESUME NEXT
C$=NFS$: DS=CS$: B=NN: B=(B-1)*4:

CS = CHRS(B) +C$ +CHRS$(13)+ STRINGS(31-LEN(CS),32)
V = VARPTR(CS): V = PEEK(V+1) + PEEK(V+2) * 256:

IF V>(2 15) THEN V=V-(2 16)
X = USR8(V)
PRINT@ 960, NFS$; " PICTURE #"; NNj: IS=INKEYS
IS=INKEYS: IF I$="" THEN 1400 ELSE CLS: GOTO 60
ONERRORGOTO 1430
OPEN"I",1,D$: CLOSE: GOTO 1440
PRINT "FILE DOESN'T EXIST": ONERRORGOTOO0: END
ONERRORGOTO 0: RETURN
t

View the Screens

CLS: PRINT@ #400,"View how many screens? "; CHRS$(31);
LV=47: HV=58: LE=1: GOSUB6: NS=VAL(SS$): IF NS>8 THEN 1510
FOR J=1 TO NS

PRINT@ 400+J*64,"Filename? ";

LV=47: HV=90: LE=10: GOSUB6: F$(J)=S$

PRINT@ 425+J*%64,"Screen #7? "; CHRS$(30);

LV=48: HV=57: LE=2: GOSUB6: SN(J)=VAL(SS):

IF SN(J)>20 THEN 1560

NEXT J

FOR J=1 TO NS

216 The TRS-80 Graphics Book

1610 C$=F$(3): B=SN(J): B=(B-1)*4:
CS$ = CHRS(B) + C$ + CHRS(13) + STRINGS(31-LEN(CS$),32):
V=VARPTR(CS): V = PEEK(V+1) + PEEK(V+2) * 256:
IF V>2 15 THEN V=V-2 16
1620 X=USR9(V): MF=15360: MT=55400+3J%1100: HM=1024: GOSUB410
1630 NEXT J
1700 FOR J=1 TO NS
1720 MF=55400+J%1100: MT=15360: HM=1024: GOSUB#10
1730 FOR KK=1 TO 10: NEXT KK
1740 NEXT J
1800 J=RND(3): ON J GOSUB 1810,1820,1830: CLS: GOTO 1700
1810 X1=USR3(0): RETURN
1820 X1=USR5(0): RETURN
1830 FOR K=1 TO 5: X1=USR7(0): FORKK=1TO50: NEXTKK: NEXTK:
RETURN
Listing 10-C
When you run this program, the first screen will contain the title.
It will remain for a minute or so while all the machine language routines
are POKEd into memory with the routine in lines 300 to 380. A blinking
asterisk has been added to line 360 so you will know that the program is
indeed executing during the pause.

To use this program, first decide upon the filename you want to use
for saving your graphics. (This file can contain several screen files, and
you can edit them with relative ease.) If the file does not yet exist on
the diskette, first initialize the file by choosing option 1, "Create a file."
Any file that is to be used with must program must either 1) already exist
on the diskette, or 2) be initialized using option 1 of the program.

To edit a file, choose option 2. The program will then prompt you
for a filename and screen number within the file. It will ask if you are
loading an existing screen, and if you are, it will ask you which filename
and screen number to save it back out under after it is re-edited. (If you
want to save it back to the same filename and screen number, specify the
same filename and screen number when asked.)

The graphics screen will appear, and you can begin editing it. The
X- and Y-coordinates appear on the bottom line of the display. You can
use the arrow keys and the space bar as before. The blinking asterisk
tells you that the program is awaiting an instruction from you.

While the asterisk is biinking, you have severai other options, too.

+ You may press the F key to fill the entire graphics area with character
191, the completely filled graphics block.

+ You may press the R key to reverse all the graphics characters on the
screen. For reasons detailed later, it is a good idea to press F and
then R to clear the screen at the beginning of each graphics
screen.

Assembly Language File Handling in Graphics Programming 217

1 Create a file
2 Edit a file
3. View screens

Enter selection: 4

Photo 10-C-1

Other endeoint: %7 @ 7 2%

Photo 10-C-2

218 The TRS-80 Graphics Book

Photo 10-C-3

+ You may press the C key to draw a circle. The current cursor location
will be used as the center of the circle. You will be prompted for
the radius of the circle, and it will be drawn.

+ You may press the L key to draw a line. The current cursor location
will be one end of the line, and the program will prompt you for
the other endpoint.

+ You may press the M key to move the cursor without drawing any lines
or points. The program will prompt you to specify the new point.

+ You may press the A key to type letters and numbers at the keyboard
and have them appear on the screen. To return to the graphics
editor, press ENTER.

For effective animation, you may want part of the screen to move
and part of it to remain. To accomplish this, use the procedure shown in
this example.

EXAMPLE USE OF THE PROGRAM

Choose a picture idea and a filename. For example, you may choose
to draw a flower that "grows'" on the screen. This flower will have seven
different stages. The flower's filename will be F.

After you have typed in this program, save it on the diskette. RUN
the program and choose option 1, "Create a file." In response to the
"Filename of new file?" question, type F.

Assembly Language File Handling in Graphics Programming 219

The option list will return to screen. Choose option 2, "Edit a file."
The "Filename?" prompt will reappear. Type F. To the "Screen number?"
prompt, type 1. To the "Load existing screen?" question, type N.

The screen editor will now appear with the asterisk blinking in the
lower right corner and the "0 0" coordinates showing on the bottom line
of the display. Type F the fill the screen and R to reverse the graphics
from the screen. The reason for this is, later reversing of the screen will
be effective after using this options, because the screen will be filled
with a graphics space (character 128) rather than the regular space.

You may move the cursor to the center of the screen using the M
instruction. You may use the arrow keys or the L instruction to draw the
stem and leaves of the flower. You may want to use the C instruction to
draw the blossom.

When the graphics has been completed, press Y to save the screen
as screen | of the file called F.

To create the next screen, choose option 2 again. To the
"Filename?" prompt, type F again. To the "Screen number?" prompt, type
1. To the "Load existing screen?" prompt, type Y. To the "Save under
what name?" prompt, type F. To the "Screen number?" prompt, type 2.

The first screen you created will be displayed on the screen again,
and you may edit it. You will probably want to change some parts of the
graphic and leave some of the it the same. When you have finished, press
Y, and your new graphic will be saved as screen 2 of the file F.

By repeating process from screen 2 to screen 3, screen 3 to screen
4, etc, you can create a set of screens which can be used for animation.

To view the screens, choose option 3, "View screens." It will ask
you "View how many screens?" If you have created 7 successive graphic
screens that shows the growth of a flower, type 7. For the number of
screens that you have specified, the "Filename?" and "Screen #?" prompts
will appear. In the sequence you want them to appear, type in the
filenames and screen numbers you specified when the screens were
created.

After you press enter for the last screen number, the program will
load the screen files in one at a time. Each screen full of graphics will
be sent to an area in high memory for later recall. After all the screens
are loaded into memory, the program starts displaying them one by one, in
sequence, fast enough so they appear animated. Since they are already
loaded into memory, they can be displayed very quickly.

The details of the programming techniques are again left to the
reader.

220 The TRS-80 Graphics Book

Photo 10-C-4

Photo 10-C-5

Assembly Language File Handling in Graphics Programming 221

FLONVER

Photo 10-C-7

222 The TRS-80 Graphics Book

CONCLUSION

This program shows many techniques of graphics and file
manipulation that are useful for graphics programming. Beyond that, it is
a useful tool that can be used to create attractive screens for animated
displays.

SUMMARY

Storing all the data for a screen on a disk file allows the user to access
enough graphics for the screen quickly without storing it in the
program itself.

If several of these screenfuls of data are loaded into memory at once,
they can be moved to the video memory very quickly in sequence to
create animation.

The following disk operating system (DOS) calls can be made to facilitate
disk file manipulation in assembly language:

OPEN opens the file.

POSN positions the disk drive head at the proper file record.
READ transfers one record from the file into the buffer.
WRITE transfers one record from the buffer to the file.
CLOSE closes the file.

Meeting the Chapter Objectives

Here are the chapter objectives for your review. Can you meet all
the objectives?

A. Write an explanation of why a programmer would want to use file
handling to program graphics.
B. Write an explanation of the function, location, and conditions under

which each of the following DOS calls are used: OPEN, POSN,
READ, WRITE, and CLOSE.
C. Write a description of and the function of the Device Control Block

(DCB).

D. Write an explanation of how a program can read data from the
video memory into a data file.

E. Write an explanation of how a program can read data from a data

file into the video memory.
1. Write a BASIC program which calls the machine language program
in Listing 10-A and allows the user to "page" forward and

backwards through an existing disk file.

2. Change the assembly language program in Listing 10-A so it reads
only one record at a time from the disk file and displays it in the

10.

Assembly Language File Handling in Graphics Programming 223

top quarter of the video display.

Change the assembly language program in Listing 10-A so the
entire memory of the computer is saved to a disk file.

Write an assembly language program which works independently
(without being called by a BASIC program) to open a file called
"DATA," read the first record into the buffer, move the data from
the buffer to the screen, and close the file.

Write an assembly language program which accomplishes the same
things as the program mentioned in item 4, and also has its DCB
and buffer in the video memory.

Chapter Checkup

What conditions must exist before the OPEN DOS call can be made?
The CLOSE call?

What conditions must exist before the POSN DOS call can be made?

What conditions must exist before the READ DOS call can be
made? The WRITE call?

What does the GETARG ROM call do?

In the program in Listing 10-A, which program line moves the data
which has been read from the disk into the buffer, to the screen?

In the program in Listing 10-A, which program lines check to see if
whether enough of the data from the disk file has been displayed
on the screen?

In the second half of the program in Listing 10-A, which lines load
the correct number in BC before the POSN call is made?

In the program in Listing 10-C, line 1280 contains the following
instruction: PRINT@ INT((Y)/3)*64+INT(X/2),";. What is the
function of this instruction?

Part of this program moves data from different areas of memory to
the video memory to create animation. Which lines of the program

in Listing 10-C contain the loop which specifies the proper memory
location variables for these block moves?

What do lines 1800 to 1830 in the program in Listing 10-C do?

Appendices

Appendix 1: Video Display Worksheet/227
Appendix 2: Text Characters and Codes/228

Appendix 3: Graphic Characters: 232

(Reproduced with permission from TRS-80 Model III Operation

and Basic Reference Manual, Catalog No. 26-2111. o© 1980,
Tandy Corporation)

225

Radie fhaek

TRS-80 Video Display Worksheet
PAGE__OF __

TITLE

PROGRAMMER

~
3
&

- oy B

@
&

oy

n 3"
g H

47

Y

ONAENONAEEOEREECEENNCEERNC ENERCEERREIANER

I

T TRV TR TTT TTTER

CLLELLIsT J b F ol JET ISl P TRl TETT[FTTTTT]

e AR

DEREEIREEELEEEE0

HIEIIHEMINE

B 5 2 I O O D O R

:
i R s A T S
a Sila afspa

i

] o @ Wi o)
= pes [
“ : ““ - n“ R

=2

s
sls[alelels]s]e]ala]s]a]ale]u]s

&
3

2
&

TRS-80 MODEL 1l

In the following table, we summarize the keyboard and video display control

characters.
Code Video Display
Dec. Hex.|Keyboardt PRINT CHRS$ (code)
00 No effect
01 No effect
SHIFD B (M)
2 02 ® No effect
3 03 ® © No effect
4 04 ® @ No effect
5 05 ® E) No effect
6 06 (SHIFD (® (F) No effect
7 07 ® @® No effect
8 08 |& Backspace and erase
CHGHEORED
9 09 |® Tab (0, 8, 16, 24, . . .)
® @D
10 0A |® Move cursor to start of
® D nextline and erase line
11 0B |GHIFD) (O No effect
12 0C No effect
13 oD Move cursor to start of next
O line and erase line
14 OE @ Cursoron
15 OF ® (o) Cursor off
16 10 ® (P) No effect
17 11 (@ No effect
18 12 ®m No effect
19 13 ®® No effect
20 14 ® No effect
21 15 ® @ Swap space compression/
special characters
22 16 ® QD Swap special/alternate characters
23 17 D) Double-size characters
24 18) Backspace without
(SHIFD B 0O erasing
25 19) Advance cursor
26 1A ®D Move cursor down
27 1B 0] Viove cursor up
28 1C ® O Move cursor to upper left corner
29 1D |SHIFD ® (9) Erase line and start over
30 iE [GHry @ (U Eiase io end of line
31 1F Erase to end of display
SHIFD @ @

1 Some of these keyboard characters can only be input using the INKEY$ function.

228

APPENDIX
e

Code Video Display
Key-

Dec. | Hex. |board PRINT CHRS$ (code) | POKE vidram, code
32 20 (SPACEBAR) | I]
33 21 ! ! !
34 22 i ! "
35 23 # # #
36 24 $ $ $
37 25 % % %
38 26 & & &
39 27 ' ' '
40 28 (((
41 29)))
42 2A * * *
43 2B + + +
44 2C , , ,
45 2D - - -
46 2E .

47 2F / / /
48 30 0 0 0
49 31 1 1 1
50 32 2 2 2
51 33 3 3 3
52 34 4 4 4
53 35 5 5 5
54 36 6 6 6
55 37 7 7 7
56 38 8 8 8
57 39 9 9 9
58 3A :

59 3B ; ; :
60 3C < < <
61 3D = = =
62 3E > > >
63 3F ? ? ?
64 40 @ @ @
65 41 A A A
66 42 B B B
67 43 C C C
68 44 D D D

229

. TRS-80 MODEL Il

Code Video Display
Key-

Dec. | Hex. board PRINT CHRS$ (code) POKE vidram, code
69 45 E E E
70 46 F F F
71 47 G G G
72 48 H H H
73 49 1 | |
74 4A J J J
75 4B K K K
76 4C L L L
77 4D M M M
78 4E N N N
79 AR 0] 0 0
80 50 P P P
81 51 Q Q Q
82 52 R R R
83 53 S S S
84 54 T T T
85 55 U U U
86 56 Vv Vv \'
87 57 W W w
88 58 X X X
89 59 Y Y Y
90 5A Z Z Z
91 5B) [[
92 5C N\ \
93 5D] 1
94 5E A A
95 5F — e
96 60 SHIFT > h
97 61 A a a
98 62 B b b
99 63 C c c

100 64 D d d
101 65 E e e
102 66 F f f
103 67 G g aQ
104 68 H h h
105 69 | i i

230

APPENDIX

Code Video Display
Key-

Dec. | Hex.| board PRINT CHR$ (code) POKE vidram, code
106 B6A J i j
107 6B K k k
108 6C L | [
109 6D M m m
110 6E N n n
111 6F 0 0 0
112 70 P p p
113 71 Q q q
114 72 R r r
115 73 S s S
116 74 T t t
117 75 U u u
118 76 \ v v
119 77 W W w
120 78 X X X
121 79 Y y y
122 7A Z z z
123 7B { {
124 7C] i
125 7D } }
126 7E ~ ~
127 7F + +
128 80 | Codes 128-191 output graphics characters. See the graphic

display table in this Appendix.
192 CO | Codes 192-255 output either space
: compression codes or special characters when
: used with PRINT CHRS$ (code).
255 FF | They always output special characters
when used with POKE vidram, code.
See the special character table in this Appendix.

231

o 16l

i ‘g8t

861

68

181

el

col

iy

B

80 MODEL il

881

08t

(443

voL

81

6.1

¥4

TRS

Graphics Characters (Codes 128-191)

232

Index

ASCII format for SAVEing BASIC programs, 135
assembly language

defined, 158-159

drawing lines using, 194-200

file handling using, 202-219

LDIR instruction, 168-173

reversing graphics characters using, 193-194
registers, 163

running from BASIC programs, 165-168
scrolling the display sideways using, 178-185
splitting the display using, 187-191

banners, printing on printer, 98-103

bar graph programs

using printer, 94-98
using video display, 94-98

BREAK key, 4
circles, SETting using BASIC, 12-16
control codes for printing

using BASIC, 34-37
using DEBUG, 140-145

DEBUG under TRSDOS

combining BASIC program lines, 148-151
control characters, 140-145

modifying PRINT instructions, 146-148
protecting BASIC program code, 151-154
string packing, 134-139

ellipse, SETting, 14-15

educational programs

addition with large characters, 83-89
graph-reading program, 78-83

error trapping in BASIC, 62-63
file handling for graphics in assembly language, 202-219

graphic characters on printer, 107-108

233

graphing program, 70-74

hexadecimal numbers, 161-163

keyboard input routine using BASIC, 51-61

LDIR instruction in assembly language, 168-173
lines, &4

assembly language, 194-200

POKEing in BASIC, 49-50

RESETting in BASIC, 7

SETting in BASIC, 4, 8-11

LPRINT instruction in BASIC, 9!

machine language defined, 158-159 (see also assembly language)
POINT instruction in BASIC, i, i6-i9

POKE instruction in BASIC, 42, 47

POKEing lines in BASIC, 49-50

PRINT instruction in BASIC, 23

PRINTing text characters, 23-26

PRINTing graphic characters, 26-31

program structure in BASIC, 69-70

registers in assembly language programming, 163
RESET instruction in BASIC, 1, 7-8

RESETting lines, 7

reversing graphics characters in assembly language, 193-194
RND function in BASIC, 7, 8, 11

screen printing ("screen dump") in BASIC

graphics only, 104-107
text only, 103-104

scrolling the display sideways in assembly language, 178-185
SET instruction in BASIC, 1-3

SETting lines in BASIC, 4, 8-11

234

SETting circles in BASIC, 12-16

SIN instruction in BASIC (sine), 92

splitting the display in assembly language, 187-191
string-packing programs

using BASIC, 122-128, 128-130
using DEBUG, 134

string space in BASIC

discussed, 173
displayed, 173-174

string variables in BASIC, PRINTing, 31-34

STRINGS function in BASIC, 37-39, 42-43
trigonometric functions in BASIC, 12-13

VARPTR instruction in BASIC ("variable pointer"), 113
video display worksheet, 2 (see also Appendix 1)

video memory, 47-51

reading graphics from, 61-63
storing number in, 63-66

X,Y coordinates, 2

235

In business, educational, and personal software, the addition of graphics can make a signij-
ficant difference in the attractiveness and user-friendliness of your programs. But pro-
gramming graphics can be very difficult. Determining which pixel to set and which char-
acter to pri‘nt to create a graphic may take hours.

Now Dennis F. Tanner solves these and other graphics programming problems for you —
whether you are an advanced programmer or novice. Covering models |, |11, and 4, The
TRS-80 Graphics Book shows you how to make your programs come alive with graphics.
And, you can do it without spending too much time or foregoing the nicer graphic dis-
plays. 5

Many carefully explained sample programs give you a solid background in graphics pro-
gramming. You will find find thorough coverage of several different programming tech-
niques and the advantages and disadvantages of each. P
Tanner details how to create graphics with SET/RESET/POINT programming. He tells
you how to use ‘PRINT" as a graphics instruction with regular and graphics characters.
The ‘POKE’ instruction and its graphic uses with the video memory of the computer are
clearly explained. You will also find out everything you need to know about assembly
language programming and its application to graphics programming.

This timely guide puts an arsenal of new techniques at your fingertips. You will discover’
easy-to-follow instructions on how to handle: : :

® compressed graphics using VARPTR ® screen manipulation and movement
INSTRUCTION and DEBUG under ® screen designs
TRSDOS : ® screen reverses

@ graphics using block moves ® line drawings

® screen-to-printer graphics ® simple animation

You will gain useful information on file handling in assembly language and its applicaiion
to graphics programming. Included is a program with a screen editor that allows you
to save files for later retrieval.

The TRS-80 Graphics Book provides you with'practice programming challenges that hélp
you put vital data right to work. It also gives you a means of checking your progress, and
numerous utility programs that make graphic programming easier. Let it be your key to
better, easier computer graphics.

About the Author

Dennis F. Tanner is Director of F_‘ducational Product Development, Tandy, Radio Shack.
He lives and works in Fort Worth, Texas.

VAN NOSTRAND REINHOLD COMPANY
135 West 50th Street, New York, N.Y. 10020

ISBN 0O-yye2-28295-0

