TRS-80 INFORMATION SERIES — VOLUME I

ERIES

S

R MY

-80. DISK
A

H.C. Penningiton
& OTHE

T

TRS-80 DISK AND OTHER HYSTERIES
e e e "
TR5-86 INFORMATION SERIES VOLUME 1

BY H.C. PENNINGTON
Iilustrations by the Author

Copyright (c) 1979 by Harvard C. Pennington

FIRST EDITION
FIRST PRINTING - NOVEMBER 1979
SECOND PRINTING - JANUARY 1980

All rights reserved. Reproduction or use, without express
permission, of editorial or pictorial content, in any

manner, is prohibited. No patent liability is assumed with
respect to the use of the information contained herein. While
every precaution has been taken in the preparation of this
book, the publisher and the author assume no responsibility
for errors or omissions. Neither is any liability assumed
for damages resulting from the use of the information
contained herein,

PUBLISHED BY:

INTERNATIONAL JEWELRY GUILD, INC.
IJG COMPUTER SERVICES

569 N. Mountain Ave.

Upland, California 91768 U.S.A.

ISBN # 0-936200-00-6 \\mark of
W %
9 2
2 g
2 =
%O- 62‘ TH
%

Radio Shack and TRS-80 are the ¢ Jewe\‘*\
registered trademarks of the
TANDY Corporation

CONTENTS

PREE‘f'\-CL‘I‘ & & & 5 8 8 B & & § 5 8 8 S 8 B S S S S F S S S S S S S S s EESas e

INTRCDUCTION tesscessscssscscssnasannasn caa
HEXADECIMAL - BINARY = DECIMAL cmececaas
READING & USING SUPERZAP 2.0 ceccccccsscccncssnns
"SUPERZAP" FUNCTIONS ..csscccacscsnccaananasnas
"SUPERZAP" COMMANDS ..ccceececesccccansacacas
SPECIAL COHHAINDS ...cccceee cececccccscasnansne
SPECIAL SYMBOLS «ssssssesasancsassnsaasasaccns
"SUPERZAP" DISPLAY FORIHAT ..cecees sssssssasaa
BARMPLES o suoiete evasesenn sverese sipraieys s s alioiaie eierais oo
SUPERZAP 3.0 .cvvvcsscsncasasasanaesocassanes
OTHER UTILITIES .scsevvesssssacsnnsssaasascnasssnsass
ROHM=2D ...ttt iineeenceaccocaccacacanasnannnns
MONITOR: 3 siuesasan e D S
DEBUG .ecsvevoscnsacnnncans ceccsascscssessaan
DIRCHECK .cetecccccscccscsnssanacsaassnnnsssas
LHOFFSET 4+ sieeeveecscncsccccasaasanans wae wa e
OPERATING SYSTEMS .ccceecccccccccccassnacsssasssoes
'11RSDOS 201 % F 5 B B S S S S S S S S S S S S S A A A S S ESsERE S sses
TREDOS 2.2 awsen vumssmsss wwxn csecscessssssenans

VIOS 3.0 sccceccccacscsssonsscsaccanaaaaacans
NEWDOS 2.1 .seccsccncccccanacacsancsncscsssncsne
FUTURE DEVELOPHMENTS cceasesessnasoscsssnnccsasns

DISK ORGANIZATION ,...ceesseesnscsssssssasssssssacs
THE DIRECTORY ..ivvcccececccncscncnansnnsoscssssnnans
THE 'GAT! SECTOR cavwwes svwn wewe vwes e wees

THE "HIT" BECTOR. o uwewws samn e sens somem s

THE. "FPDE/PRDE"! EECTORE wvmewmmons sonmn simams s
DECODING THE DIRECTORY ENTRIES ...cceassn. "o
DECODING THE EXTENTS ccssccassascsscssaanssaas
PASSWORDS & OTHER TRIVIA ..cececcecccsssccsssnssas .
DATA RECOVERY PROCEDURES & TECHNIQUESie0eeuns
THE "SHELL GAME' ON DISK weessswss iesseanss s
USING "SUPERZAP" ON SINGLE DRIVE SYSTEM
BUILDING A BUFFER TRACK .ceuesesins sanesesessns
FILES — STRUCTURES & TYPES B
ASCII '"BASIC' PROGRAM FILES ceevescocosancnnss
BINARY 'BASIC' PROGRAM FILES .cceevocnsssosnse
EDITOR/ASSEMBLER SOURCE FILES ccceccscocsacccs
OBJECT CODE FILES sscesssscsssscssssesssassss
SYETEM: FILES i ssevevues swan saees snee saeesiae
ELECTRIC PENCIL FILES ceescccosscccsccccassas
MACRO=8U PILEE .esvvwwns wnmes “sessssssesssans

DATA. RECOVERY .o nvese sasseness as s wonss smns sessssns
RECOVERING 'HASH' CODES svsseecascaacsns
RECOVERING A 'KILLED' FILE cececscscaacccs
RECOVERING 'DISK WON'T READ/BOOT'
RECOVERING 'CLOBBERED' DIRECTORY c.vass.
RECOVERING 'UNREADABLE"' DIRECTORY 4eusccsccss

ii

RECOVERING 'ELECTRICALLY' DAMAGED DISK
RECOVERING A PHYSICALLY DAMAGED DISK
RECOVERING 'BAD PARITY' ERROR ceeecvscsansons
RECOVERING A DIRECT STATEMENT IN FILE
ASCII 'BASIC"'" PROGRAM FILE scsccssscsscscsancs
BINARY 'BASIC' PROGRAM FILE ..ccciceccacsnsss
RECOVERING DATA FILES ceeecsscecncsssaacnnnas

ASCIT FILESe
RANDOI‘] FILES LI)

" EEEEEE I A R IR R L R

8 8 % 8 = 8 8 & % 8 & 88 688 EFE RS

RECOVERING 'ELECTRIC PENCIL' ERRORScecancee

'DOS ERROR 22' ...

& 8 8 & 8 8 B 8 8 8 8 S NS S FE SRR S S =S

'LOST' FILE ON DISK c.cccsssesssssnsscnsnannes
lLOSTI FILE IN M.E[‘iORY a ® 2 a8 8 s 8 8 s s s sESEENsESS
RECOVERING 'FILE AREA FULL' ERROR ...cccecesee
ELECTRIC PENCIL GOODIES «cceerversnsacscacenn
CORRECTING THE GAT & HIT SECTORS tseveccccccccacas

SOME THINGS YOU CAN DO

® B 8 ® B & 8 & % = & 8 B S &8 &6 s assEs s

MAKING ELECTRIC PENCIL FILES IN 'BASIC'
LOADING 'BASIC'/ASCII FILES INTO PEKCIL
MAKING 'PENCIL' FILES INTO 'BASIC' FILES
CONVERTING 'DATA TYPES' IN RANDOM FILES

CONVERTING DATA IN

ASCII FILES eeaeececscanans

MAKING 'BASIC' PROGRAKS 'UNLISTABLE"' seeccesn
ADDING COI’LP‘IMJDS TO " SUPERZAP" - ® m m @ 8 & 4 8 8 8 4 a8 @

APPENDIX A
GLOSSARY +cceveses

@ @ ® 8 8 & 8 8 5 8 W S SRS AN TS

LEVEL II lBASICI I]-IOKEqu & s & ® =5 & % %W 8w & & @& & 4888w
TRSDOS 2. 2 DIRECTORY HEX DUi’iP PR R R RN I B
NEW DOS 2.1 DIRECTORY HEX DUHMP eeeacescesasas

VT0S 3.9 DIRECTORY

APPENDIX B

HEX DUI"IP I BRI O B T I I I I B

DISK DRIVE MAINTENANCE ceeeseccsscsssssasoanses

SUGGESTED READING

® 8 8 % 8 ® S F R 4 4 B E SR s s

MURPHY'S LAW & OTHER COROLLARIES ..ccveeccses

ORDERING NEW DOS &

SUPERZAP TN I R I B B

"SEARCH" PROGRAM DOCUMENTATION ..ceeecvcccsncses

DISK MAP (TRS DOS 2

HMAP INDEX

02) ® ® 8 8 8 8 8 B S B S SR EEE S eSS

DIRECTORY MAP (TRACK 11 — ALL SYSTEMS) eeaeess
GAT SECTOR MAP (TRACK 11, SECTOR M) cececcesces
GRANULE ALLOCATION MAP ..cecccccsssccnccccncnse
HIT SECTOR MAP (TRACK 11, SECTOR 1) cecacaccae
FPDE/FXDE SECTOR KAP (TRACK 11, SECTOR 8-9)...

DIRECTORY ENTRY MAP

8 B F 8 ®P B PR S eSS S S S ST S eSS

14

72
74
75
75
77
77
7€
81
81
82
83
84
g4
86
88

88
89
89
9p
9b
906

16
11
16
2

U s W=

35
37
49
41
42
44
45

PREFACE

1'11 never forget how I first met Harvard C. Pennington, the author of
" 'RS-86 DISK AND OTHER MYSTERIES". I was attending a meeting of our
local TRS-80 users' group when I happened to glance over at one of our
Radio Shack managers. He appeared to be short of breath., On further
examination I saw that, in fact, he was being garrotea by a disk cable
assembly. The garroter, I found out later, was Harv,

Harv has since taken less drastic measures in attempting to £ind
the answers to some of the perplexing problems that appear in TRSDOS
and other Radio Shack and ncon-Radio Shack Utility and applications
software. He has gone from violence to investigative writing. The
results of his research are presented here in "TRS-80 DISK AND OTHER
HYSTERIES".

Is this a worthwhile book? To use one of Harv's expressions, "Hell
yes!"™ (You'll find other salty expressions herein, but they just liven
up the book.) But sericusly, TRS-80 users, this is not only a
worthwnile book but a great book. 1It's great for two reasons: It
presents information on TRS-80 disk organization and file management
that can be found nowhere else! Secondly, it is available when you
need it = now!

The book discusses how disks are organized, how space is allocated,
how files are located on disk, and the tools that one may use to look
at disk riles and directories. Not only does it provide a general
discussion of these topics, however, but it also gives clear
information how to FIX disk problems such as lost files, Electric
Penicil bugs and other snafus.

This is a clearly presented book packed with good disk information.
My advice to you 1is to get it, wuse it, and do not approach Mr.
Pennington wnile carrying a disk cable assembly.

William Barden Jr.

iis

INTRODUCT ION

]

1 have been programming for a very short time and having applied
myself to the task, it seems I have acquired some Kknowledge that
others would like me to share with them.

No doubt you have been told that you cannot do certain things with the

TRS-88 —--—- like 'BOOT' a 'BASIC PROGRAM' because you need 'BASIC' to
load a program --- or that you cannot lock out the break key without
messing up the I-O routines =--- or that you cannot defeat the 'LIST'

and 'LLIST' commands. You have been told wrong. All of these things
can be done! I have been able to do all of the above with little or
no trouble, The ONLY limitation you have is your own imagination.

Of course, there is no fool-proof way of protecting anything
because some determined soul will puzzle out the most obscure and
hidden method and reveal it to the world ... just as I'm doing here.

The following is a result of endless hours of gazing at the CRT,
countless disk dumps, and many hours of cross checking., Now that you
have developed a certain amount of respect for my efforts, as a result
of reading the above, we will proceed.

...0h, yes. This couldn't have been done without an incredible
program called "SUPERZAP". It is a product of APPARAT Inc., of Denver
Colorado. You may purchase a copy of this program with the NEW DOS
operating system from your local software dealer, Ordering
information is in the appendix at the end of this tome. You will find
that "SUPERZAP" is indispensable if you are going to take the voyage
to the bottom of the disgk.

The following people have contributed, in one way or another, to my
somewhat limited store of knowledge or to the completion of this book.
I would like to have them stand and take a bow:

Bill Barden Jim Farvour Ron Markle

Jim Lauletta Cudn Michael Shrayer
Dick Schubert Stu Nims Dennis Fagan
Bob Thorpe

To the above: Thank you from the bottom of my CPU.

SOME KIND WORDS ON THE TRS-80

On the whole the TRS5-80 is a pretty neat machine. 1In fact, I love my
TRS-80. Just a few short years ago, a computer with the power and
capability of the TRS-80 would have cost several hundreds of thousands
of dollars, required an air conditioned room of considerable
proportions and a staff to operate it. Certainly, the TANDY
Corporation deserves all the credit possible for the development,
production and distribution of this magic machine. TANDY Corporation,
1 SALUTE YOU!

SOME NOT SO KIND WORDS

B ———SSINTTE

Like all large corporations, the TANDY Corporation, seems to have
continued success in spite of itself. The initial success of the
TRS-80 was, I suspect, beyond the wildest dreams of anybody at Tandy.
Since there was no way to measure their success against a similar
product, at a similar price and with similar distribution, who is to
say how successful they really were. It is my contention that they
were only about fifty to sixty percent as successful as they could
have been!

1

Very quickly, as a result, an attitude of "don't-tell-us,

we'll-tell-you" developed. The general quality of follow-on support,
development and sctftware was abysmal. Information about the workings
orf the system was (and is) a carefully and jealously dguarded secret.
It's as 1f "WE", the users, "couldn't possibly know a damn thing or
figure it out" and only the High Priests of Fort Worth, when they deem
it propitious, will tell us what we need to know,
So, if I tend to excoriate (a fancy word meaning, "give 'em hell") the
TaNDY Corporaticn (Radic Shack), it is only because I would like to
gee them turn around their damn superior attitude and realize that the
thousands of you out there are doing more than you are being given
credit for and should be listened to. Instead of 'THEM' telling you;
'YOU' tell them,

A case in point 1s the APPARAT Corporation. Here are two gquys in
Denver, without the resources or the staff, working at other
enaeavours, and they have single-handedly revised, corrected and
enhanced the operating system (TRSDOS 2.1) over one year ago! They
got it into release with almost no bugs! When they did f£ind bugs, they
adnitted it and sent out corrections immediately. They provided the
user with the tools to 'get into the disk' ("SUPERZAP") and make the
tixes. You will shortly receive word on a new Radio Shack break
through — TREDOS 2.3! Tell me, does this mean there are bugs in 2.2
or does this mean theaet there were some things in 2.2 that were (to use
the words of Radio Shack) '...not fully implemented'?

It 1s my experience that when you find it difficult (if not
impossible) to admit that you have made a mistake, you should try to
cover it up with what Gecrge Orwell might term "CRAPSPEAK".

ABOUT THIS BOCK
—
Just by reading this book, one might get the impression that the only
thing the TRS-80 1s good for is to fix errors that are created on the
machine! Not true! Not a single day goes by that I do not use my
TRS-80 for some useful and productive purpose. Occasional errors are
just a small part of the day to day experience. It is only when you
cannot fix those errors that they begin to dominate the 'computer
experience',

It 1is my wish that you will, as a result of this book, be able to
make your TRS-86 one hundred percent productive and enjoyable.

This book was written, composed, directed, choreographed, and produced
on a TRS-8§ with 48K RAM, upper/lower case modificatio NEWDOS
operating system, four MICROCOMPUTER TECHNOLOGY INC. drives,
Spinterm Printer and the 'ELECTRIC PENCIL' word processor

To Kip and Trista
Knowledge is a commodity that can be exchanged for time.

l.6 IS IT A NUMBER OR A LETTER

e T S A SV

Most of the numbers we will be using, in our journey through the disk,
are HEXADECIMAL numbers. The following is a brief outline of the
HEXADECIMAL numbering system. If you are totally unfamiliar with
'"HEX' numbers, I would suggest you get a copy of William Barden's "How
to Program Microcomputers". Chapter two will make you an expert. In
the meantime the following will acquaint you with the HEXADECIHMAL
numbering system.

The computer does all of its thinking in BINARY numbers. Since we
human beings don't 'naturally' think in BINARY numbers the computer
does a number on the numbers and presents the information we need in
DECIMAL numbers., However, DECIMAL numbers are too long when we need
to fit large numbers onto the video display - especially if we need to
put a lot of them on the screen at one time. Also the computer can
convert BINARY to HEXADECIMAL very easily and quickly.

HEXADECIMAL is usually shortened to 'HEX' and sometimes to 'H'. There
are other methods used to indicate that the numbers being used are
'"HEX' and we'll get to that later.

1.1 BINARY

You have ten fingers and those that study such matters tell us that
for this reason we just 'naturally' think in tens. To represent each
finger we have a symbol. The symbols we use are:

figure 1.1

THE TEN DECIMAL SYMBOLS

The computer, on the other hand, has only two 'fingers' ('ON' and
'OFF') and therefore naturally thinks 1in +twos and only needs two
symbols to represent the numbers. The symbols used by the computer
are:

figure 1.2

THE TWO BINARY SYMBOLS

g Jd

In order to represent ALL of the numbers, we use a system that puts a
VALUE on WHERE the number symbols are in relation to each other.

figure 1.3

«syOUu have 1p
fingers

W L. the
computer only
has two 'fingers' ...

When we humans get to the symbol '9' we have to start using our number
symbols over again. We move the 'l' one place to the left and start
cver with the '¢' symbol on the right. When we move the '1' to the
left, we also assign a different value to it DEPENDING ON HOW MANY
PLACES TO THE LEFT WE MOVE IT.

figure 1.4

T I T (]

)
)
)
)
)

L O O 1 O 1A

From the above figure, you can visualize the relationship between
decimal numbers and the values they represent. A peculiarity of
humans is that we never think of 'ZERO' as a number. Actually 'ZERO®
is the FIRST number and should always be thought of in that manner;
i.e., start counting with 'ZERO' as your first number. If vyou count
the fingers on your hand, starting with 'ZERO', you will only get to
nine before you run out of fingers to count. THIS IS THE WAY THE
COMPUTER COUNTS. It ALWAYS starts with zero!

Now we are ready to investigate the computer's method of 'counting.
The computer only has two fingers —- 'ON' and 'OFF' -- simply

described, this is due to the fact that a digital device, such as a
computer, can only detect one of two conditions, 'OW' or 'OFF'. If
you will remember from the above discussion, a human starts using the
symbols over after '9' and has 1¢ symbols to work with. The computer
starts using the symbols over again after 'l'. In other words, when
the computer gets to 'l' he runs out of number symbols and starts over
by moving the 'l' one place to the 1left and starts over with the
'ZERO' symbol on the right

figure 1.5

BINARY NUMBER TALLEY DECIMAL NUMBER

(W
¢ Jm
(
(W
(i
(

(w
(
(
(

(

ip10
1661
10006
LE]
119
161
100
11
10

1

]

16

{

| | [I (B |
W wmonwnnnonn

M e e e e Rt N s N N N
DM WeE UL 0W

Let's take a closer look at that BINARY number '1¢16'. First of all,
it has four 'places'. (Count the digits, there are four of themn.)
Bach ‘'place' represents a "times two" multiplication. We'll convert
this BINARY number '191¢', to DECIMAL by multiplying each 'place' by
it's 'place value' and adding the results.

figure 1.6

BINARY DECIMAL

number
number
number
numnber

(L I (I |

+

g (DECIMAL)

I1f we add the results of our multiplications (6 + 2 + 6 + 8 = 10) we
will have converted our BINARY number (BASE 2) to a DECIMAL number
(BASE 18).

1.2 HEXADECIMAL

Now we'll tackle HEXADECIMAL (BASE 16). The computer needs a method

of representing large numbers in a small space, BINARY is easy to
convert to HEXADECIMAL (for the computer, at least). The HEXADECIMAL
system uses 16 symbols to represent the 16 numbers and then, just like
BINARY and DECIMAL numbers, we move the 'l' one place to the left and
start using the number symbols over again.

The following are the HEXADECIMAL numbers with their DECIMAL
eguivelents:

(Cigqure 1.7

DECIMAL i DECIMAL

8

9

16
11
12
13
14
15

~ Ul W=
A T T T T R TR 1
=1 U W R =
HEmOOw > v
1 T T (T O

It was decided (by whom, I don't Kknow) to use letters for the
additional HEXADECIMAL symbols, since letters and numbers are already
on the keyboard. As a result, we get numbers that look like this: "'1A"
or 'FF', You will find that using HEXADECIMAL numbers is not as
inconvenient as you might suspect. After a couple of days they become
very familiar indeed.

Here is an instant replay of the above figures in HEXADECIMAL, BINARY
and DECIMAL. This time I have shortened it up a bit because the
numbers from '@' to '9' are the same in HEXADECIMAL as in DECIMAL.

figure 1.8
TALLY DECIMAL BINARY

= (JHLAH LT ST JHT)
(W)
(U 1o o 3t 1)
(ey)
(3 o)
(e)
(w)

32
26

166060
110616
16101
10000

1111
1610
161

16
15
16

5

LI T | A T
| | | I [

As you can see, we run out of number symbols after we get to 'F' and
just as 1in every other numbering system, we start over by moving the
'l', one place to the 1left and placing the zero in the ‘'units'
position,

50 when you see 10 (HEX) or 10 (BINARY) or 16 (DECIMAL) you know I am

talking about 3 different VALUES of 'one-zero'.

There is one more thing I would like to tell you about that will come
in nandy as you progress through this book. From time te¢ time you
will need to convert a binary 'bit record' into it's HEX value. This
is easier than you might think. Consider the following:

FF (HEX) = 11111111 (BINARY)

It looks complicated dosen't it? Well, it's not. It 1is the essence
of simplicity. The way to solve any problem is to break it down into
manageable chunks, This problem is no different. First we'll take the
BINARY number, which, in this case is 8 bits or one byte, and break 1t
up into what is termed, in the trade, as a 'NYBBLE'., A 'NYBBLE' is 4
bits. Let's break the above example into 'NYBBLE's:

FF (HEX) = 1111 1111

Now 1if you will get your lightning-quick=bear-trap-mind into remember
mode, you will recall the 'place values' for the BINARY numbers. If
you don't recall, then I'll review it for you.

figure 1.9

gth place = 128 1st place =1
7th place = 64 2nd place = 2
oth place = 32 3rd place = 4
5th place = 16 4th place = €

I 1 I 1 1 1

I1f we take each group of four bits (NYBBLE), we can easily tigure out
the HEX value, since we can eacily remember the HEX nunbers from 'G'
to 'F'. Adding up the BINARY numbers on the right we arrive at the
following:

= s
BB B B
e
nmnouon
= N s €0

+

15 (DECIHMAL) = (EEX)
Do it again for the left side then combine the two HEX values and
you've got it!

Let's do it again with a different BINARY number, just to make sure.
Suppose we need the HEX value for the Binary Value '"6@E1P1161'. Here
are our NYBBLES: 0@l¢ and 1161,

LEFT SIDE RIGHT SIDE
8 X 8 =40 8 X1 =28
4 X 6 =06 4 X1 =4
2 X 1= 2 2 X0 =20
1 X8 =0 -+ 1 X1=1H+
2 (DECIMAL) 13 (DECIMAL)
2 (DECIMAL) = 2 (RHEX) 13 (DECIMAL) = D (HEX)

LEFT SIDE + RIGHT SIDE = 2D (HEX)

There, isn't that simple? with very little practice you should be
able to convert BRINARY to HEX and vice-versa with very little trouble,

THE BAD DREAM

E HAS
110
;ﬁgﬁkEquwN.

......
............

2.0 READING & USING "SUPERZAP"

e P S e ———

"SUPERZAP" is unigue in several ways. First it has its own disk I/O
routines and does not require that a DOS be in drive zero to perform
miracles, Second, it will read ANYTHING that is readable, regardless
of its 'PROTECT' status, Third, it will recover almost every
imaginable type of error condition.

In addition, it has a 'BACKUP' routine that will make umpty-ump
tries when it encounters an incorrect or electrically damaged sector
before it gives up. Then, it allows you to try agdain as many times as
you want!

Wait! There's more... it will copy disk sectors, relocate disk
sectors, allow modification of any byte or combination of bytes on the
disk or in memory, move data from one disk sector to another and
'2ERO' disk sectors.

Now that you have a preview of what it can do, lets review the
functions and commands of "SUPERZAP" sO you can start using it today.

2.1 SUPERZAP FUNCTIONS

figure 1
APPARAT SUPERZAP 2.0

INPUT ONE OF THE FOLLOWING INSTRUCTIOCNS
'DD' OR NULL - DISPLAY DISK SECTOR
'PD' - PRINT DISK SECTORS
'DM' - DISPLAY MAIN MEMORY
'"PM' - PRINT MAIN MEMORY
'VERIFY DISK SECTORS'

'ZERO DISK SECTORS'
'COPY DISK SECTORS®
'DISK BACKUP'

'"COPY DISK DATA'
5

"SUPERZAP" menu display

We'll take each menu function in order. I would recommend that you
get in front of the computer, 'RUN' "SUPERZAP" and try out each
function and command as it is explained. This way you will become
familiar with the operation of "SUPERZAP" that much quicker,

FrFkhkkhkdhkhkhhhhdhhhhkhhhhhkhhhhkkkxk NOTE *#%%%*dkkkdkkdhdkkrdkhhkhhhhbdk

* % * %
** ENTER ALL MENU FUNCTIONS WITHOUT QUOTES OR APOSTROPHES **
* % * %

KEEKFIIAIKKX AT I AR AR RIA R KRR ARk RA A), hhdddhrxhdddhddhddhorhdhhhhhdhhhnk

'DD' or 'NULL' - DISPLAY DISK SECTOR. You will use this function
more than any other. You will be constantly looking at the sectors to
verify or change something. 'NULL' in this case means press <ENTER>.
Since this function is used so much Cliff (the author of "SUPERZAP")
decided it would be nice to eliminate the constant typing of 'DD'.
(Thank vou, Cliff.) After you enter <ENTER> or 'DD' the computer
will respond with the prompts in figure 2.2.

figure 2.2

RELATIVE DISK # (6 - 3)?
TRACK # (HEX) (& - 22)
SECTOR # (@ - 9)7?

Answer 'RELATIVE DISK #' with the drive number you wish to work
with, TRACK # you will notice, only allows you to answer with a number
between zero and twenty-two. (Zero to twenty-seven if you are using a
46 track version,) YOU WILL HAVE TO CONVERT ALL DECIMAL NUMBERS TO
HEXADECIMAL NUMBERS! SECTOR # is easy. There are 1@ sectors numbered
zero to nine. Pick a drive, track, and sector and go look at it. When
you are tired of locking, press 'X' and the menu will magically
reappear. There are more things we can do while in this function, but
we'll come back to that later

'"PD' =~ PRINT DISK SECTORS. This function is almost (I say, almost)
exactly the same as the 'DD' function except that the sector(s) will
be printed on your line printer and you may not modify anything. This
ftunction will ask you for one additional parameter: SECTOR COUNT.
Enter the number of sectors you want printed out, hit <ENTER> and
stand back.

kkkhkkkhkkhhkkkhkkihkkkk NOTE *#****%xxdkkkdkkhdhdhrsk

* % *%
*% ENTER 'SECTOR COUNT' IN DECIMAL! xik
* & *%

ER R R R T

This function beats the Radio Shack 'DISKDUMP/BAS' program all to
smash. It will dump a '"PROTECTED' file without any of that 'FILE
ACCESS DENIED' business. If you suddenly decide you want to halt the
printing function, HOLD DOWN THE 'H' KEY UNTIL THE PRINTER STOPS.

'DM' - DISPLAY MAIN MEMORY. This does for RAM exactly what 'DD' does
for the disk. The prompt will ask for the RAM address (in HEX)
instead of the 'DISK', 'TRACK' and 'SECTOR'. Later on, when we discuss
the many command features of 'DD', they will apply to this function
also, Pressing 'X' will return you to the menu.

10

R E R IR E R E LR RN WARNING EEEE R LT TR L AR LT R RS L N RS £ X RS
* % * &
% MODIFICATIONS (USING 'MODnn'), MADE TO MAIN MEMORY,6 **
% ARE COMPLETE AS SOON AS THE MODIFICATION APPEARS * &
% (ON THE SCREEN. Unlike modifying the disk, you do *¥

** not have the opportunity to cancel the change. ke
* % * %

KEEEKAKKRI KA KKK A KRR AKRKA AR K AKAFK AF XA IF XX AARLAXRXAARFI TN AR AN AR

'PM' - PRINT MAIN MEMORY. This function duplicates the 'PD'
function, only it works on RAM or ROM. Holding down the 'H' key will
terminate the function just as with 'BD'.

'"VERIFY DISK SECTORS'. This function will locate sectors that are
write protected, sectors with parity errors, and sectors with physical
damage,

You may select a '"PAUSE' option to halt the verification process
each time a 'READ PROTECTED' sector is encountered. This will allow
you to note those sectors for special attention later on.

It is especially useful in discovering where a specifically bad
sector or sectors are on a 'flaky' disk when you need to recover
'lost' data. This function requires a sector count in decimal.

'ZERO DISK SECTORS'. From time to time, you will need to zero an
entire sector or group of sectors, This would be a very tedious task
indeed if you had to do it a byte at a time which, by the way is
possible but certainly not desirable. If the sector you are zeroing
is 'READ PROTECTED', vyou will be asked if you want that sector to
remain 'READ PROTECTED'. A reply of '¥Y' or 'N' (YES or NO) will
determine the 'READ PROTECT' status of the =zeroed sector. This
function requires a sector count in decimal.

'COPY DISK SECTORS'. With this beauty, you can copy a single sector
or group of sectors from one location to another or from disk to disk.
When we have to reconstruct a file that the DOS has strewn all over
the disk, you'll kiss the very envelope "SUPERZAP" came 1in, What
would ordinarily have been a bitch to recover will be so easy, you
will want to amaze your friends and neighbors with your wizardry.

Normally this function copies the sectors in ASCENDING track and
sector order. However, if the lowest destination sector is within the
range of the source sectors, the function will copy in DESCENDING
order., This will occur automatically and the routine will compute the
highest track and sector of each range BEFORE starting the copy.

This permits you to copy a group of sectors TO a location that
starts WITHIN the group of sectors you are copying FROM.

The 'READ PROTECT' status of the destination sectors remains
unchanged by the 'COPY SECTORS' function. This function requires a
sector count in DECIHMAL.

"DISK BACKUP'. Amazing! Simply amazing. This function simply backs
up the disk. BUT WHAT A BACKUP! The routine is a sector-by-sector

11

backup and is S-L-C-W, But it is sure. It retrieves the sectors that
are not readable by regular "COPY' or 'BACKUP' routines. It will make
a dozen or so tries to read a 'bad' sectecr and will give you an error
nessage similar to figure 2.3 if it cannot accomplish its 'READ'.

figure 2.3

SECTOR READ ERROR

DRIVE 1 , TRACK @5 , SECTOR @

SYSTEM ERROR CODE 64

PARITY ERROR

REPLY 'R' FOR RETRY, 'S' FOR SKIP ERROR SECTOR,
OR 'X' TO CANCEL FUNCTICN?

Now you have several choices; (1) press 'X' and forget the whole
thing, (2) press 'S' and 'SKIP' the bad sector (and come back to it
later - but don't forget to make notes so you'll remember which sector
or sectors were bad) or (3) press 'R' and re—enter the 'BACKUP'
routinre and try again. Many times the 'R' command will be effective
and the BACKUP routine will successfully read the bad sector on the
second or third try.

A 'READ' after every 'WRITE' is performed to verify that an
accurate data transfer has taken place.

khkkkkkxhhkkkkhhhkhkkkhhkkk CAUTION #F*FFdxFrdhhhdhhhhhhhdhhhhhhhhhk

You must 'BACKUP' to a diskette that has been PREVIOUSLY

FORMATTED. The 'SOURCE' diskette and the 'DESTINATION'

diskette MAY NOT EE THE SAME - in other words, this func-
tion requires TWO DRIVES! The 'DESTINATION' diskette is

not tested for name or contents - if it is possible to

'"WRITE' to that diskette, ALL DATA ON THE 'DESTINATION'

DISKETTE WILL BE WRITTEN OVER WITH THE DATA FROM THE

'SOURCE' diskette!
L A T R T T T L e g P g

'COPY DISK DATA'. This is similar to 'COPY DISK SECTORS' except that
the function copiles BYTES. Up to as many as 65,536 bytes at one time
and as few as one byte, Here is another super function for recovering
'lost' data.

The same rules apply to the ASCENDING and DESCENDING
track/sector/byte order of the 'COPY DISK DATA' function as the 'COPY
DISK SECTORS ' function.

The '"READ PROTECT' status of the destination sectors/bytes remains
unchanged, /A BYTE COUNT IS REQUIRED IN HEX!

12

2.2 SUPERZAP COMMANDS
s
When "SUPERZAP" is in the 'DISPLAY DISK SECTORS' or 'DISPLAY MAIN
MEMORY' function, the program is constantly monitoring the input Kkeys
looking for one of the following commands:

*X'" - Terminate the primary function.

'R' - Repeat display of the same sector or memory block.

'J' - Restart the same primary function.

"K' - ('DD' only) Same as 'J' except reinitializes the
track and sector to be displayed on the same disk
drive,

'H' - ('PD' and 'PM' only) Terminates PRINT functicn,

'+' or ';' - scroll forward one sector or memory block.
'=!' or '-' - Scroll backward one sector or memory block.

2.3 SPECIAL COMMANDS

The following commands only work in 'DISPLAY DISK SECTORS' and
'DISPLAY MAIN MEMORY'. They are used chiefly for MODIFYING the memory
or disk a byte at a time. The commands are:

'MODnn' - Modify the byte in the currently displayed
sector where "'nn' is a hexadecimal number
representing the relative byte to
be medified.

(See EXAMPLE 1 below for use of this
command.)

<ENTER> - AFTER modifying a byte or group of bytes
<ENTER> causes the modification to be
be written to the disk.

<SPACE BAR> - Current digit is not changed and modifi-
cation position is advanced 1 digit.
'RIGHT ARROW' - Same as <SPACE BAR>
'LEFT ARROW' - Current digit is not changed and modifi-

cation position is retarded 1 digit,

{SHIFT>'RIGHT ARROW'- Modification position is advanced 4 digits.

{SHIFT>'LEFT ARROW' Modification position is retarded 4 digits.

'UP ARROW' - Modification position is retarded 1 line.
'DOWN ARROW' - Modification position is advanced 1 line.
'scopy*t - ('"DD' only) Move the displayed sector to a

disk location to be specified.

43

2.4 SPECIAL SYMBOLS

During the modification of a byte of memory or disk some special
symbols appear to mark the location of the line and byte you are
working on,

These symbols are 'K', '+', '=', '*' agnd '/', The 'M' will mark the
line and will appear BETWEEN the first column of six digits on the
left of the screen, and the first column of 4 hex digits representing
the sector's contents (see fiqure 2.1 1line '1146@¢"').

The '+', '-', '*', and '/' will appear NEXT to the group of four
digits IN WHICH THE MODIFICATION WILL TAKE PLACE. The '+' symbol
indicates that the first digit is the digit which will be modified,
The '-' indicates the second modification digit, the '#*' the third and
the '/' the fourth. With these symbol indicators, you will be able to
tell which digit you will modify next.

2.5 SUPERZAP DISPLAY FORMAT

Before we can move on and actually demonstrate with some examples,
you must first understand the display format of "SUPERZAP". Figure
2.4 1s a typical sector display. The six digits on the far left side
of figure 2.4, contains the following parameters (from left to right):

Position 1 ——=--- The disk drive used.
Positions 2 & 3 - The track being read.
Position 4 —-———- The relative sector within the track.

Positions 5 & 6 - The relative byte count within the sector.

At the bottom of the sector, in the first group of digits, there is
an extra digit in the seventh position. This '6' is APPARAT'S way of
telling you that you are reading a 'READ' protected sector with the
"SUPERZAP" program,

To the right of these six digits is a block of 32 digits in groups
of 4. Each PAIR of digits represents a SINGLE BYTE. To the right of
this 1is the ASCII representation of each byte. The 'dots' signify a
space or 'unprintable' character. What's an ‘'unprintable' character?
Just that. 1It's a valid ASCII character but there is no symbol that
represents that character., The TRS-80 uses some of these characters
for graphics symbols or space compression codes but they are not ASCII
standard characters. Besides, if those positions were filled up with
a bunch of 'garbage' characters, it would make the display that much
harder to read.

A 'dot' «can also represent a 'space'. There is a fine distinction
between a 'space' and an 'unprintable' character. In BASIC program
files, the 'unprintable' characters are 'next line pointers', 'EOR'
markers, line numbers, and BASIC tokens. (More on 'tokens' later.).
SOMETIMES there will be a HEX value in one of these and it will cause
a character to be printed in the display. It will appear as if
'garbage' has crept into your program but don't despair; all is well.
A 'space', on the other hand, is represented by the HEX character

20", This is one case where nothing is something so look for it and
don't be confused by it.

14

figure 2.4

|-—----Drive
Track
Sector
Relative Byte

Hexadecimal display ASCII display of
of sector contents. gector contents.

< —
L] < ~

1114Pp¢ 5FGU G@O0O GO53 5953 3020 262¢ 2653 59538¥86....5

111419 EB29 216E 0OF@06 @G22 FFFF FFFF FFFF FFFF .)!,..." 4

111426 Q000 0000 U006 GUEO 0PPP PUCE EPPD O000 eeeesessnasanaas
111430 GOU0 0000 U006 GO0 CP06 BU0D BDOD GOBE +.cssassssssscas
111440 MPOOC+0000 0000 D000 D000 CORO CGUBB OBO0 «.eeeveeeesoanas
111450 GUGE CO0E GOOG 0000 00D QOOE G000 G000 «eeeeeecaneenaas
111460 @00¢ 0006 D600 GODE CO0Q PUGE CEUE BLEO0 «esisvessaosnnes
1114709 0000 0000 000 OEPE CEOE DRG0 G000 G000 «.ueeeaeseasssass
111480 000G 0000 0000 (G000 000C DOBE U00E G000 +...ceeecenenans
111490 GGOO GOG0 COGO0 DOOO 0BPP VOO0 QOO0 U000 «oveereeveroanns
1114A0 O000 0000 0000 0GOE GUOO OPO0 DOO0 BOO0 «.cseveerascornn
1114Bg 0000 G0G0 0000 06C0 FOP0 0000 G006 GODEcceceeennnnns
1114C0 QOU0C LU0E D000 V000 PREE QOOE D000 QOO0 «.vesereaeecssas
1114Df OEQ0 GOEQ V00D PU0E CGUOP PERE GORO0 COG0 +.essissearanssne
1114E0 COP0 QGO0 QOO0 0606 (PO PO00 DOU0 D000 ...ceveeevcnnnns
1114F06 GGEP LOUE 0000 CBOY 0PPE WOUD QUOE UOBOG ..cceerveercssnns

Typical "SUPERZAP" display of a SECTOR as it will appear on your
video display. This particular sector is an example of a
DIRECTORY SECTOR (Track 11, Sector 4).

2.6,1 EXAMPLE 1: '"MODnn'

To modify a byte or bytes in a particular sector, first select YoDA
or '<ENTER>' from the "SUPERZAP" menu. hnswer the parameter
guestions with the drive, track and sector gpecifications of your
choice., When the sector is displayed on the video monitor, TYPE:
MOD42

khkkkkhkhhhkkdhhhkddhdkdkdxxd NOTE hkkkhkkhhhhkAXkhkhkrAhirdd4
* % * &

* % NOTHING WILL APPEAR ON THE DISPLAY OR s
h GIVE ANY INDICATION THAT ANYTHING IS %.H
* & HAPPENING UNTIL YOU HAVE ENTERED THE *k

* % ENTIRE COMMAND. A
* % * %

Ak FA KA A A AT A I A AT A A A AR AN, AhFARRAR AR AR AR A ATk hk A hhdd %

Magically, an 'li' will appear on the fifth line from the top and
between the first six colums on the left and the first group of four
digits on the right. 1In front of the second group of four digits on
the right the '+' sign will also appear. (See figure 2.4)

18

We are now ready to MODIFY the display. You may enter any valid
hexadecimal digit by simply typing the digit. Each time you press a
valid key, the digit will be changed and the symbol in front of the
group of four digits you are working on will be changed. These
symbols give you an indication of where vyou are during the
moditication process,

If you wish to skip over a digit, press the <SPACE BAR> or the
'"RIGHT ARROW', The symbol indicator will change and each time you
input four mcdifications or spaces, the '+' symbol will reposition in
front of the next group of four digits.

When you have completed your modifications, hit <ENTER> and the
moedifications will be written to the disk. When the 'WRITE' is
conplete, you will get the prompt in figure 2.5.

figure 2.5

HODIFICATIONS COMPLETE.
REPLY <ENTER> TO CONTINUE?

Upon pressing <ENRTER>, the secter will again be 'READ' from the
disk and displayed on the screen for your inspecticn. You may now
visually verify that the changes have been made. You may modify any
sector any number of tines.

Now, Dby pressing the '+' (<SHIFT> is not necessary) you will
scroll forward to the next sector and pressing the '-' key will scroll
packward one sector.

Pressiny 'R' will cause the primary function to be repeated. In this
case it 1is 'DISPLAY DISK SECTORS'. Pressing 'R' causes the last
sector specified to be read and displayed.

Pressing 'K' will allow you to specify another TRACK and SECTOR on
the same drive and remain in the 'DD' function without having to go
back to the menu,

Pressing 'J' is the same as "K' except you may also re-specify the
arive number as well as the track and sector without going back to the
menu.

Pressing 'X' or entering 'X', DURING ANY PARAMETER SPECIFICATION,
will return you to the menu,

Pressing 'Q' will cancel the 'MOD' function WITHOUT CHANGING THE
DISK CONTENTS.

Now that you have been through these functions and commands, make a
backup disk of your DOS and try out some of the things we've been
over.,

Ahkhkhkdkdhdhdhdkdddddhdhions WARNING **%*kkkhhkdhhhhhhihhik
* %k * %

** ALWAYS PRACTICE OR ATTEMPT DATA RECOVERY **
** ON A BACKUP VERSION OF THE TROUBLE DISK. **
** FAILURE TO DO SO CAN COST YOU VALUABLE **

* * DATA. * %k
* k * &

LR R R EE R R R R R R R L o o o P v R A v A S A Y

16

2.6.2 EXAMPLE 2: 'SCOPY'

'SCOPY' permits you to duplicate an entire sector to another
location on the same disk or to another location on a different drive
WHILE IN THE 'DD' MODE!

Suppose, for a moment, that you have attempted to read a sector
that has bad parity and you get the 'BUFFER MAY CONTAIN ALL OR SOME OF
SECTOR'S DATA' error message. Upon investigation, you determine that
some of the bytes in the sector that are displayed are correct and you
would 1like to preserve them so that they can be used to 'reconstruct'
the damaged sector. TYPE: SCOPY. NOTHING WILL APPEAR ON THE SCREEN
UNTIL THE ENTIRE COMMAND HAS BEEN ENTERED. You will, after typing
'SCOPY', get a prompt similar to figure 2.6.

figure 2.6

DRIVE 1 , TRACK 12 , SECTOR 9
IS TO BE COPIED TO

RELATIVE DISK # (@

TRACK # (HEX) (6 - 2

SECTOR # (B8 - 9)7?

After answering disk number, track number and sector number, the
destination location will be checked, by the program, to make sure
that the place you want to copy to is OK.

If the destination is 'flaky', you'll get another error message as
to the cause of the condition. If the destination checks out, the
'"WRITE' will be completed. You will then be prompted to hit <ENTER>
to view the transferred sector at the new location.

When vyou attempt to do a recovery of a file or portions of a disk,
it is a good idea to set up some 'BUFFER SECTORS'. This 'buffer' is
simply a temporary storage place to put things while you're out there
mucking around on the disk, You will also need to keep track of where
you have put various sectors so that during the reconstruction you
will not get mixed up. Another good practice is to reconstruct the
file to yet another ‘'buffer area'. When the reconstruction is
complete THEN transfer the reconstructed file or sectors to the
original location.

2.6.3 EXAMPLE 3: 'COPY DISK DATA'
e —— = —

This function allows you to move blocks of data in the same manner
that you move sectors. We can copy a single byte or group of bytes
from one location to another.

Suppose we need to move a 32 byte directory entry from one sector
to a different sector and position it at a different relative byte.

The following examples, with BEFORE and AFTER 'pictures', will
illustrate the prompts and results:

17

figure 2.7

611400 5SFPP 0VPO VB53 5953 3020 2028 2653 5953SYSO....SYS
bl1416G EB29 210FE @F00G G622 FFFF FFFF FFFF FFFF v)leeeeeeannans
11420 Q000 GOO0 0000 GUG0 G000 0000 O000 GOB0 «.eeeeeennneennan
11430 0000 0000 0600 GO0 V000 Q000 G000 BBO0 «.eeeeeennnanns
011448 DUPDY VOVE POVE COOE 0000 CO00 OBO0 PO00 w.eeeeeosasascas
011450 00VY VOO0 0000 0000 OO00 0000 0000 D000 veeeeeeeocsoncns
W1l460 0QUOP DLOC VEOO GO0C D000 O0D0 0000 G000 «.ueeeeeneeaannan
V11470 0000 VUPE VOLO VOO0 0000 0000 G000 G000 «..eeeeeeanaaane
611480 10600 0627 0G4L4 4F53 4AE4LF 5445 5358 434C ...'.DOSNOTESPCL
611496 9642 9642 0400 VG20 FFFF FFFF FFFF FFFF eBeBuveeessconns
Pl14A0 QUOO VOOO POBU VOO0 G000 Q00D 0000 Q000 «eeeeeenaeannann
U114BE 0000 0000 V000 VOGO VOO0 GOBO GOBE O8O0 v.eeeeeevnoaaaas
D114C0O (00O GOOO VOUOE CUGO VOO0 G000 OC00 D000 veeeoeesesaneens
0114DE 0000 €EOO 0OOC OO0 0000 UOCE G000 0000 oeeeeeeeceannnns
Gll4EG 0000 0000 0000 G000 OODG GO0O O0O0 G000 v.weeseeanneeens
0114F06 0000 PEOQ GOBO VOOO 0GOO OBOC OGP0 D000 v.eeeeeenceanees

SOURCE SECTOR (Track 11, sector 4)
This 1s the sector that contains the data, beginning at relative
byte 86 (HEX) tbat we wish to copy. We want to copy the 32 bytes
beginning at relative byte 8¢ (HEX) to another sector.

The 'E5's contained in the example are for purposes of illustration
only. An actual directory sector would contain zeros. (Figures 2.8
and 2.11)

figure 2.8

8613061 ESES ES5E5 ESE5 ES5ES5 ES5ES5 ES5D5 ESE5 ES5E5 .cecescssssscces
#9131 ESES ES5ES5 ES5E5 ESE5 ES5E5 ES5E5 ESE5 ESE5 coeceaacacancses
POe1320 ES5E5 ESES ES5BS5 ESDS ES5ES ES5E5 ESES ES5ES iseviavesseesssis
PO1330 ESE5 E5E5 ES5E5 ES5E5 ES5E5 ES5E5 ESE5 ES5E5 wveeeccccccccces
091340 ESE5 ES5ES5 ES5ES5 E5E5 ES5E5 ESE5 ES5E5 ES5E5 uveeecoccoceess
01356 ESE5 ES5E5 ES5E5 ES5ES5 ES5SE5 ES5E5 ES5ES5 E5E5 +vveveececccoeeens
991360 ESE5 ESE5 ES5E5 ES5ES5 ESE5 ES5ES5 ES5E5 ES5E5 vveeeeececcccess
01376 ESE5 E5E5 ES5ES ESE5 ES5ES5 ES5ES5 ES5ES5 ES5E5 cveevosccscseess
01380 ESE5 ES5E5 ES5E5 ES5E5 ES5E5 ES5E5 ESE5 ES5ED .vvsecccerscnses
881399 ESE5 ES5E5 E5ES5 ES5E5 ES5E5 ESES5 ESE5 ES5E5 ceetcevcocssaess
@@13A0 ESE5 E5E5 ES5E5 ES5E5 ESE5 ESES ESE5 ES5E5 uuveeeceoseeens
0913B9 ESES5 ES5E5 ESE5 ES5E5 ESES5 ES5E5 ES5E5 ES5E5 4ueeesececeeeess
Wl13CP ESES5 ESE5 ESES5 ES5E5 ESE5 ES5ES5 ES5ES5 E5E5 4veeeecccescases
@913DY ESE5 ES5E5 ES5ES ES5ES5 ES5E5 E4E5 ESE5 ESE5 wueeeeeceeeoeess
G@13EQ ESE5 ES5E5 E5E5 ES5E5 ESES5 ESE5 ES5ES5 ESE5 vvueeeeesooeensn.
WP13FP6 ESE5 ES5ES ESE5 E4E5 ESES5 ES5E5 ESES5 ES5ED veeeeoeeesssssss

DESTINATION SECTOR (BEFORE) (Track 1, sector 3)

This is the sector we wish to copy the data TO, beginning at relative
byte 'E@' and continuing for the next 32 bytes.

18

Figure 2.9 1s the "SUPERZAP" menu and the function input.

figure 2.9

INPUT ONE OF THE FOLLOWING INSTRUCTIONS
'DD' OR NULL - DISPLAY DISK SECTOR
"PD' - PRINT MAIN MEMORY
'DM' = DISPLAY MAIN MEMORY
'"PM' - PRINT MAIN HMEMORY
'"VERLFY DISK SECTORS'
'"2ERO DISK SECTORS'
'COPY DISK SECTORS'
'"DISK BACKUP'
'"COPY DISK DATA'

? COPY DISK DATA <ENTER>

The next prompt will request that the SOURCE, DESTINATION and BYTE
counts be input. They will appear as in figure 2.10.

figure 2.10

PROVIDE SOURCE BASE INFORMATION

RELATIVE DISK # (@ - 3)2 0

TRACK # (HEX) {8 - 22)2 11

SECTOR # (0 - 9)2 4

RELATIVE BYTE # IN SECTOR (HEX, @GO-FF)? 80

PROVIDE DESTINATION BASE INFORMATION
RELATIVE DISK # (6 - 3)? 0

TRACK # (HEX) (0 - 22)2 1

SECTOR # (B - 9)2 3

RELATIVE BYTE # IN SECTOR (HEX, @@-FF)? EO
BYTE COUNT (HEX)? 20

Once the above parameters have been entered to COpy the bytes from one
location to another, we'll get the results shown in figure 2.11.
Don't forget... THE BYTE COUNT IS IN HEXADECIMAL!

19

(figure 2.11

PG13VH ESE5 ES5E5 ESES ESES5 ES5E5 ESES ES5ES5 ESE5 sesesesscsssssss
91316 ES5ES5 E5E5 ES5ES5 ES5ES5 ESE5 ES5E5 ES5E5 ESES

@@1l32p ESE5 EBE5 ES5ES ES5ES ESE5S ESES5 ESEDB E5E5 .scaccssiscssscne
09133060 ESE5 E5E5 ES5ES5 ES5E5 ES5E5 ES5E5 ESE5 ES5E5 saesececvteccsoces
bP1340 ESES5 ES5ES5 ES5E5 ESES5 ES5ES5 ESES5 ES5D5 ES5ES5 tiieeececccoasnss
BP1350 ESE5 ESE5 ES5E5 ES5E5 ESES5 ESES EBES EBEB ..sccsecearcessne
GG1360 ESE5 ES5E5 ESES5 ES5ES5 ES5DS5 ESES ES5E5 ES5E5 seveveescososass
PP137¢ ESES5 ES5ES ES5E5 ESES5 ES5E5 ESE5 ES5ES ES5E5 ceseceescccccens
WPl38W ESE5 ES5E5 E5D5 ES5E5 E5E5 ESE5 ES5E5 ESES

061390 ESE5 ES5E5 ESES5 ES5E5 ESE5 ESES5 ESES EBE5 eceeevreccsscoccnse
PPl3Ap ESE5 ESE5 ESES ESES ESE5 ES5E5 ESE5 ES5E5 ceseecccsccscsss
P013BY ESE5 ES5E5 E5E5 ES5ES5 ES5ES5 ES5ES5 ES5E5 ESES

BOl3Ch ESE5 ES5E5 ES5E5 ES5ES5 E5ES5 ES5E5 ES5E5 ESES

PO13D0 ESES ESES ESEL ESES ESES ESES ESES EBES sawewewmesswwesns
POL3E0 1006 0G27 9644 AF53 AE4F 5445 5350 434C ...'.DOSNOTESPCL
POL3FD 9642 9642 04QP ©W20 FFFF FFFF FFFF FFFF .B.B....cccaosn.

DESTINATION SECTOR (AFTER) (Track 1, sector 3)

As you can see, the data is now in another sector and starts at a
different relative byte.

Z.7 SUPERZAP 3.0

About the time you think you have the 'last word' or the best of
something, someone comnes along and improves it. Yes, indeed,
"SUPERZAP" has been improved (or enhanced). The MENU of "SUPERZAP" 3.0
now bhas an added function: 'DFS' - DISPLAY FIELD'S SECTORS.

This will allow you to access a file WITHOUT KNOWING THE RELATIVE
SECTOR NUMBER OF THE FILE OR ITS EXTENTS! It functions like 'DD'
except you just specify a 'FILENAME' (with a password if passwords are
required on that particular file) and the RELATIVE SECTORS OF THE FILE
are displayed rather than the RELATIVE SECTORS OF THE DISK.

To invoke the function, type: DFS <ENTER>

The prompt will ask for the FILESPEC. Be sure to include the
password if the file has one. The next prompt will ask for the
relative sector (HEX) within the file. Remember the FIRST relative
sector is SECTOR '0'!

The display format for 'DFS' is slightly different and will appear
as in figure 2.12. 'DFS' uses standard BASIC mode 'RANDOM' I/O.

20

figure 2.12

'F' Indicates that 'DFS' is the function being used,
Relative sector displayed.,

Relative byte

FOOPBP FFF4 6832 BB93 3A20 4953 ...2..2.MAIN/DIS
FOP@Ply AR2P 4D45 4D4F 5259 4D4F K.MEMORY.DULP/FO
FAP@20 4449 4659 20652 4F55 2¢56 DIFY.ROUTINE...V
F6OP3¢ 4552 5349 4F4E 2032 GP8D ERSION.2.0cee...
FOBEAG 2831 3034 3030 V029 C93A .10400.) ..eASa.t
FOPB56 208F 2041 24D5 2222 A28 . AS M"Y 41bBsw
FOOGO60G 203A 9520 4258 D5SF6 9200 izesBXantBS)zawe
FOpPO7e6 4E69 CBUE BF20 4258 D220 NesesesBXoooldBaan
FA@@8Y 4258 D6D5 3537 206CA CE34 BX..57...BX.BX.4
FOPO9® 383A 2092 BE72 69FA P536 B awan swDieub
FOPOAEG 3520 D220 4258 D6D5 58D5 5...BX..70...BX.
FGPE@BY 4258 CE35 353A 2692 EEDE PReF5 T unwsngpeBie
FOPOCO® CE42 583A 2092 QOAF 2B2D BXfseessceant t®
FOQ@DE 2R22 2A2R 242A 2420 ACA5 **%%k** YARTABLE
FOPOED 2041 4C4C 4F43 4154 4849 (ALLOCATION.INHI
FOBPOFE 4249 5445 44060 D569 3129 BITED:<wss:D2%{1)

Tne other enhancements are in the MODIFICATION mode. The new command
ig:
'zThn' (ZERO BYTES from the current modification lccation

to 'nn'where 'nn' is a HEX number not exceeding 'FF'.

This command functions like 'MODnn' in that NOTHING WILL APPEAR ON THE
DISPLAY UNTIL 'ZT' 1S ENTERED. Upon entering the 'ZT' portion of the
conmand, 'ZT' will appear in column 7 and as you enter your HEX value,
the value will also appear in column 7. Figure 2.13 will 1illustrate
'zT' command display.

(fEigure 2.13

FOGLUEGRZ FFF4 3A20 4D41 494E ans2es beMAIN/DIS
FOGB1OT 4B2G 5259 2@44 554D K .MEMORY .DUMP/MO
FOP@208 4449 4F55 5449 4E45 DIFY.ROUTINE...V
FOPO30F 4552 2032 2E30 0000 ERSION.2 .00 uewse
FOPO46G 20631 BB29 69956 PE4AL X .10400.)...AS8..:
FPOU50 208F 2222 20GCA 2631 as sBS YN L S 150y
FOOO60 203A D5F6 2841 2429 o2 iaBRe s LBS) 54 i
FOPO78 M4EGS 4258 20D4+D534 NessssBXosull8eva
FOGO8OG 4258 20CA 2042 58D5 BXuw57 e BXBX.d
FOO090 383A 69FA Q@8F 2042 82 svaeveve s Baey B
FOQOAG 3520 D6eD5 3730 20CA v Bl Dwie D
FOUOBO 4258 2092 0@P8HP 692C BX.55%ceeeersBX.
FOOOCO CE42 @BAF 695E @193 BX2ieaeeraat E*
FOOOUDE 24A2A 2A20 5641 5249 *k¥kk%k%% YVARIABLE
FOGOED 2041 4154 494F AE20 .ALLOCATION,INHI
FOQOOFO 4249 D569 9091 4432 BITED.....D2% (1)

21

In the above figure, you will observe that the 'MOD' symbol is at
relative byte '7A' and that 'ZT', in column 7 ig set for 'ZT8F'. This
will ZERO ALL BYTES (from the 'MODnn' symbol) TO RELATIVE BYTE '8F' as
in rigure 2.14.

figure 2.14

FLUbbWZ FFF4 4953 ...2..3.MAIN/DIS
FUOpleT 4B20 4D4F K.MEMORY.DUMP/MO
FOopu208 4449 2(56 DIFY.ROUTINE...V
FbbU3WF 4552 0@8D ERSION.2.04uusae
Foug4n 2031 C93A .10400.)...AS..:
FUpb50 208F A28 . ..AS.""ii.)500.
Fopgep 203A 9208 .:..BX..(A$)z...
FUpO76 H4E6S 0800 NeviosBXiuissoae
Fuoppsp @oog BROD . coas sasn vesenae
FOUpoe +383A D336 Bivise e oeBXisb
Fowonay 3520 S58D5 5.4eBX.e70.:s.BX.
FUpoBYw 4258 S8D5 BX.55% s sy BXs
FUGOCO CE42 2A2A BXz..ceccent K®
FUUoDE 2A2A 4C45 ****x%%% VARIABLE
FUOoED 2041 4849 .ALLOCATION.INHI
FUDUFG 4249 3129 BITED. e ++D2% (1)

-

i don't know about you, but I think that's pretty slick. ©Now I don't
have to type in all those zeros to clean up a directory!

Suppose you accidentally enter the wrong number and wish to cancel
the 'ZT' command? Easy. Just hit any invalid key, like a 'P' or a
'$' =-- any one will do, and the display will respond with:

figure 2.15

FUPQUwozZ FFF4 4D41 4894E «ee2..2:.MAIN/DIS
FOUW10T 4B20 2044 554D K.MEMORY.DUMP/MO
Fobpo2uB 4449 5449 4EA4S DIFY.ROUTINE...V
FUPU3PF 4552 2E30 0608 ERSION.2.0.:.4500
FOpg4e 2031 6956 0p41 .10460.)...A5..:
FUpo50 208F 20CA 2631 swaBPe " NawadB5B8 4
Foppen 2083A 2841 2429 «2..BX..(AS):...
FGO@7¢ M4AE69 20D4+D534 NesswaBEuewdBeus
Fopo8w 4258 2042 58D5 BX..57...BX.BX.4
FOGUW99 383A PO8BF 2042 B2 sivanosvsBReeb
FOpBAD 35240 3736 2¢CA SeseBR5 78, ..BX,
FUUOBOC 4258 wEgy 692C BX.55:.....,.BX.
FUBOCOH CE42 695E 0193 eBXZisssenaat ¥
FOVWODPE 2@2A 5641 5249 Akkk&kkd VARIABLE
FOOOEBC 2041 494F 4E20 +ALLOCATION.INHI
FOOOFOK 4249 900Gl 4432 BITED.....D2% (1)

Look carefully in column 7 of figure 2.15 and you will notice that
'"CHECK' now appears in the last five lines of column 7. The program
will not allow you to make any more entries or modifications until the
'CHECK' error status is cleared. Now, type: <SHIFT> *. The entire
coumand will be cleared and you can now start over.

22

23

'"CHECK' was the next thing I was going to tell you about but I
jumped the gun a little. "CHECK' also works on 'KODnn' as well and
will tell you when you have tried to input an invalid character.

"SUPERZAP" 3.0 also permits you to read up to 8@ tracks! So, when
drives with a bunch of tracks become available, all you little
zappers, out there, will be able to "zZAP" anything with any track
configuration, The program also has provisions for Dbacking up large
track configurations to smaller track configurations.

| THIDK You SHOULD CHANGE
THE PROMPTS [N THAT PILOGRAM ~

Uov Know pUR USERS' PRENT
AS SOPRISTICATED PS WVE MNRE!

3.9 OTHER UTILITIES

Pre i e s M)

Gesides "SUPERZAP", there are other utilities that may come in handy
or that you may use instead of "SUPERZAP". Of all the utilities, that
I know or, there are none that compare with "SUPERZAP" for e¢ase of
operation or versatility in the recovery process. The other utilities
1 am rererring to are:

RSEH-2D (Small systems Software)
HONIYOR 3 (ACS)

DEBUG (Radic Shack)

DIRCHECK (Apparat)

LHMOFFSET (Apparat)

Since many will ask, "Can I use this really neat program I bought from
the HICRO-SUPER-80-SOFT-TRON Company in Elephant Breath, Ohio, to do
the same thing so I don't have to buy 'SUPERZAP'?" The answer 1is,
"Beats me lieutenant, I'm not the regular crew-chief." T will review
each proyram that I have any knowledge of and explain how the program
FIGHT be used in the data recovery process IF it can be used.

3.1 "RSH-2ZD"

T —

'RSM-2D' is a product of Small Systems Soitware. It is well written
and bug free. The documentation is not excellent but by comparison it
is a cut above most.

RSH-2D 1s one of a family of machine language monitor programs for
the TR5-8U and is based on wicely used S-1806 monitor programs, The
'2D' version allows you to 'read' and 'write' disk sectors directly.
It incorporates a speclal printer routine that outputs to the TRS-232
printer interface, also sold by Small Systems Software, as well as the
standara parallel printer port.

The two commands added to tne disk version, are 'L' (LOAD) and 'S’
(SAVE). 'L' will load specified sectors into a specified block of
memory and 'S' will write a specified block of memory to specified
sectors on the disk.

In wusing RSIH-2D for data recovery, you will find it adequate but
cumbersome, This 1s due to the fact that you must always be working
between disk AND memory. In addition, you will not have the advantage
of a formatted display that shows you the ASCII as well as the BEX, in
a sector by sector presentation. You may view the sectors in ASCII or
HEX, but not both at the same time. You must also remember where the
sector Dboundries are in memory, in order to perform 'read's and
'write's to disk.

The sortware is reliable and you will not experience difficulty in
its use except for the inconvenience of having to do some extra
bookkeeping on sector boundry locations and interpretation between the
HEX and ASCII display formats.

3.2 "MONITOR 3"

X O S

This 1s also a well written monitor program, but it does not have
adequate disk I/O to be of any value in the data recovery process on
the disk. I bhave seen a "MONITOR 4' advertised by the same people
that reads and writes to disk. I do not know if it has provisions
that will allow you to repair the disk.

24

3.3 "DEBUG"

[=T e)

This is the standard Radie Shack mcnitor program that is included on
every TRSDOS operating system disk. It is one of the Shack's better
pieces of software and deserves mention, as such, but has no disk 1I/0
capability and therefore has no application in the actual recovery
process. It may be used however, after recovering a machine language
load module to check and debug the module, after it is loaded into
memory.

3.4 "DIRCHECK"

L R e AT L]

This 1is a utility program included in Apparat's NEW DOS+ package. It
is an invaluable tool for checking the directory for errors. In
addition it prints (to the video or line printer) an alphabetized
listing of the directory entries, the 'END OF FILE' (ECF), in
'SECTOR/BYTE' format, the number of 'EXTENTS' for each file and the
total number of sectors allocated (instead of ‘'GRANULES') to that
file, Figure 3.2 1is an example of the output of 'DIRCHECK' as it
would look with errors in the directory sectors. Figure 3.1 1is an
explanation of that output.

figure 3.1

PROGRAM OF FILE
= 4 SECTORS (DECIMAL)
142nd RELATIVE BYTE
SYSTEM FILE BYTE IN LAST SECTOR
INVISIBLE FILE (DECIMAL)
PROTECTION LEVEL

NUMBER OF 'EXTENTS'
IN 'FPDE/FXDE'

SYS1/SYS EOF 1 EXTS 5 SECTORS

TOTAL NUMBER OF
SECTORS ASSIGNED
TO THE FILE.

kkkk NQOTE #**%%

See chapters 6 and 18 for a full explanation of 'FPDE/FXDE',
"PROTECTION LEVEL', etc.

In the next figure (3.2) there is a number beside each file name.
This number is the 'DEC' (Directory Entry Code) for that file name. A
complete explanation of the 'DEC' is contained in chapter 6. Also see
figure 6.13 for details on decoding the 'DEC',

25

figure 3,2)—
KEWDOS+ 67/15/79
64 BAD "HIT" SECTOR BYTE
BASIC/CHD 84 PRIMARY ENTRY HAS BAD CODE IN "HIT" SECTOR
k@ *%*x%% GRANULE FREE, BUT ASSIGNED TO FILE(S)
GO BOOT/SYS
1E *%%** GRANULE LOCKED OUT, BUT FREE

1F *k%%* GRANULE LOCKED OUT, BUT FREE

20 ***** GRANULE FREE, BUT ASSIGNED TO FILE(S)
§4 BASIC/CHD

36 *%*%% GRANULE ALLOCATED BUT NOT ASSIGNED TO ANY FILE
37 *¥%%k%%* GRANULE ALLOCATED BUT NOT ASSIGNED TO ANY FILE
U5 *kkk% GRANULE ALLCCATEDR, BUT ASSIGNED TO MULTIPLE FILES

83 SUPERZAP/PCL
C7 DISKORG/PCL

BASIC/CHD T EOF = 6/231 2 EXTS 1¢ SECTORS
BOOT/SYS SIP=6 EOF = 18/119 2 EXTS 5 SECTORS

COPY/CHD IP=6 EOF = 4/253 1 EXTS 5 SECTORS

DIR/SYS SIP=5 EOF = 1L/0 1 EXTS 10 SECTORS
DIRCHECK/CHD EOF = 12/136 3 EXTS 15 SECTORS
DISKORG/PCL EQOR 18/211 2 EXTS 2@ SECTORS
FORMAT/CHD IP=6 EOF = 14/8 1 EXTS 15 SECTORS
SYS@/SYS S1P=7 EOF = 12/93 1 EXTS 15 SECTORS
SYS11/8¥YS QIP=7 EOF = 4/142 1 EXTS 5 SECTORS

8YS12/8YS SIP=7 EOF = 4/236 1 EXTS 5 SECTORS

SYS13/SYS SIP=7 ECF = 3/9 1 EXTS 5 SECTORS

SYS2/8YS SIP=7 EOF = 4/52 1 EXTS 5 SECTORS

SYS3/5Ys SIP=7 EQCF = 4/76 1 EXTS 5 SECTORS

SYS4/8YS SI1p=7 EOF = 4/186 1 EXTS 5 SECTORS

SYS5/SYS SIP=7 EOF = 4/203 1 EXTS 5 SECTORS

8YS6/SYS SIP=7 EOF = 13/33 1 EXTS 5 SECTORS

SUPERZAP EOF = 21/38 4 EXTS 25 SECTORS
43 FREE GRAKULES 4] LOCKED-OUT GRANULES

NEWDOS DIRECTORY CHECK & LIST COMPLETED

It aoesn't take a Radio Shack store manager to figure out that this
recap or the directory's 'GAT' and 'HIT' errors is an extremely
valuable tool in detecting existing errors in the directory.
'DIRCHECK' should be run on every disk in your library, from time
to time, Jjust to make sure some 'fatal' error isn't lurking and just
wailting to clobber some really important data.
When an error exists in the 'BOOT/SYS' or if the directory track

26

has become NON-READ PROTECTED, or a 'PARITY' error exists in
'BOOT/SYS' or in any directory sector, 'DIRCHECK' will terminate with
the following message:

FUNCTION TERMINATED DUE TO ERRCR

You will still be able to read all of the sectors with "SUPERZAP".
You must correct these defects before you will be able to run
'"DIRCHECK'. The recovery procedures are described in chapter 10.

The following are the errors that are detected and printed by
'DIRCHECK' and what they mean.

3.4.1 BAD "HIT" SECTOR BYTE

T R T L T R— . LN U e . PR TS U T

A '"HASH' code exists in the 'HIT' sector when there should be none.
The number, at the far left, represents the RELATIVE byte address of
the bad code in the 'HIT' sector. Replace the offending code with
'gP'. The number beside the program name 1is +the 'DEC' for that
program. See figure 6.13 for details on decoding the 'DEC'.

3.4.2 PRIMARY ENTRY HAS BAD CODE IN "HIT" SECTOR

e e e e s T 5 o L R o LY T ST R ra—

A '"HASH' code exists in the 'HIT' sector that is the WRONG code for
the corresponding 'FPDE/FXDE' entry. The number, at the far left,
represents the RELATIVE byte address of the incorrect code in the
'"HIT' sector. Replace the '"HASH' code with the correct 'HASH' code.

3.4.3 GRANULE FREE BUT ASSIGNED TO FILE(S)

T T F Y S T T S 1 R s T T S s |

A 'GRANULE' has been allocated and there 1is no file using that
granule, The number at the far left is the relative 'GRANULE' number
in the GRANULE ALLOCATION TABLE. Replace the offending code with the
proper code for that CRANULE. The number beside the program name 1s
the 'DEC' for that program. See figure 6.13 for details on decoding
the 'DEC'.

3.4.4 GRANULE ALLOCATED BUT ASSIGNED TO MULTIPLE FILES

e L T e Y S 7 S e e Y TS P e S—

More than one file is using the same 5 sectors (GRANULE) to store it's
data. The last 'SAVE' or 'PUT' will have written to those (five
sectors and WRITTEN OVER the previous contents.

Determine which file was the LAST to use that granule. 'COPY' that
file to another disk, then 'KILL' it on the original digk. 'LOAD' the
remaining file, clean up the now garbled code, and 'SAVE' (or 'PUT')
it back to that or another disk. Clean up any remaining 'GAT' errors
by "ZAP"ing the 'GAT' table.

The number on the far left is the RELATIVE GRANULE in the 'GAT'
TABLE. The number beside each file name is the 'DEC' of that file's
entry in the directory sectors, The number beside the program name 1is
tge :DEc: for that program. See figure 6.13 for details on decoding
the 'DEC'.

3.4.5 GRANULE ALLOCATED BUT NOT ASSIGNED TO ANY FILE

A_"GRANULE' is not being used by any file. "ZAP" the
offending"GRANULE with the correct code. The number to the far left is

27

the RELATIVE GRAKULE in the 'GAT' table. The number beside the
program name 1is the 'DEC' for that program. See figure 6.13 for
detailes on decoding the 'DEC'.

Jiwdab GRANULE LOCKED OUT, BUT FREE

e e e L]

A GRANULE has been LOCKEB-OUT and may not be used by the system. "ZAP"
the otfending byte in the LOCK-OUT TABLE. The number to the far left
1s the relative GRANULE in the LOCK-QUT TABLE.

3.5 "LHOFFSET"
e v S S |
The real purpose of this program is to allow you to load and execute
programs that 'normally' c¢annot be loaded with the DOS resident in
RAHM.

'LMOFFSET' first tells you where the program loads and entry point.
Figure 3.4 is the prompt and output sequence of 'LMOFFSET'.

figure 3.4
APPARAT LOAD LODULE OFFSET PROGRAM, VERSION 1.1
SOQURCE FRCM DISK OR TAPE? REPLY "D" OR "T"? D
S0URCE FILESPEC?BASIC/CMD
MODULE LOADS TO 4DPP-6431

MODULE CVERLAPS DOS RAM (400G-51FF)

MODULE LOAD WILL OVERLAP "CMD" PROGRAM AREA (5200-6FFF)
ENTRY POINT = 5BAD

NEW LOAD BASE ADDRESS (EEX)?

This program will tell you ABOUT the file; it will NOT tell you where
it is on the disk or anything about the disk. It will assist vyou in
locating a machine language program IN MEMORY so that it may be
modified or corrections made to it prior to writing it back to disk.

It will also help in making a disassembly from the disk since you
need to know the load address of the module before disassembling.

khkhkxkkk* CAUTION *** CAUTION **% CAUTION **%kkkkxk

* % * %
* % WHEN USING 'LMOFFSET' IN THIS HANNER, *x
k% DO WNOT COMPLETE PROGRAM ORERATION —- *%
k% If you complete the program's opera- *
* % tion LMOFFSET will attach an 'APPEND- k&
* & AGE' to the program file causing it *%
*% to load in a place other than its k%
* % intended address!l!! * &
* % * K

ERE R AR AR KA R AR R A AR AR AR A AR AR A I A AT AT F A dh ke ke rokkh®

If you are using NEW DOS, "J-K-L" the video display to your line
printer (or make notes if you don't have a printer).

28

4.9 OPERATING SYSTEMS

L e

This will be a brief review of the varicus operating systems that are
available as of this writing., I will not dwell too long on the pros
and cons of each and you must remember that the following is an
OPINION, mine.

4.1 "TRSDOS 2.1"

L L e —

Except for the few unfortunate souls that started with 2.0 this is the
operating system that most of us developed our first, genuine
love~hate relationship with, For all practical purposes, due to the
short life of 2.9, this was the 'FIRST' operating system generally
available for the TRS-80.

2.1 has many problems. Of course, Radio Shack never came out and
admitted, in plain English, (at least to me - did they tell you?) that
the problems existed. TRSDOS 2.1 1is adequate for most trivial
programming requirements and a few serious applications IF you are
prepared to tolerate an occasional lost tile. If you contemplate any
real serious applications I would not recommend that TRSDOS 2.1 be
used, under any circumstances.

Data recovery on TRSDOS 2.1 generated disks is normal and routine
ftor formatted data disks and system disks.

4.2 "TRSDOS 2.2"

Lo e s]

TRSDOS 2.2 is a huge improvement over 2.1. HMost of the errors are
corrected. However, it will still create errors. Most o©f the
complaints I have about the system are that they still have not given
the user any of the utility that is available with NEW DOS.

As far as data recovery goes, there is one major point. When you
'KILL' a file with 2.2, it %ZEROS THE ENTIRE DIRECTORY ENTRY. There is
not a single clue as to what was there or where 1t was! Since Radio
Shack has no wutility for looking at the disk, I presume 1t was to
prevent all you "SUPERZAPPERS" out there from finding out too much!
However, if you need to recover something, this makes it not
impossible but a genuine bitch because you have to go 'mucking around
on the disk' looking for the file,

For this reason alone, I would not use this system on a sericus
application where I MIGHT have to recover 'KILL'ed data.

Data recovery on TRSDOS 2.2 generated disks is normal and routirne
on formatted disks and system disks except for the above described
'RILL'ed files.

4.3 *VTOS 3J.8"

R — S P

This is Randy Cook's version of 2.2 with quite a few bells and
whistles. Cook is the author of Radio Shack's 2.1 and, I have reason
to suspect, most of 2.2. This system has some nice features but is,
in my opinion, VERY AGGRAVATING to use because of its 'BACKUP'
protection feature, In the version that I used for evaluation, some
of the commands did not work entirely as advertised. I'm sure that
this will be corrected in a later release. On the whole, the system
is good and the concepts are excellent., I have not used it enough, at
this time, to have detected any errors, if it has any.

29

It you find it necessary to recover data or files that have been
'SAVE'a to a VT0S 3.0 system disk, you will not be pleased with the
fecovery grocedures

This 1s due to the fact that as a function of the VTOS 3.0
protection features, you will NOT BE ABLE TO RECOVER THE DATA TO
ANOTHER DISK AND THEN 'RUN' THAT DISK!

In spite of all the nice features in this system, it is for this
reason that I would not recommend its use with applications of other
than, a trivial nature, Data recovery on VTOS 3.0 system disks is
VERY DIFFICULT. You must first format a disk and then use the
"SUPERZAP" 'BACKUP' function to transfer the information to the
'working disk', YOU WILL NOT BE ABLE TO 'BACKUP' TRACK @, SECTOR 4.
You must 'SKIP' this sector when "SUPERZAP" tries to 'read' it from
the 'SOURCE' disk. Then, when you have finished recovering the file,
you must 'COPY' it back to a 'system disk' MADE FROM THE MASTER VTOS
3.0 YOU RECEIVED FROM MRS. COQK'S SON, RANDY.

VIOS 3.6 WILL NOT' FUNCTICN UNLESS TRACK ¥, SECTOR 4 IS
UNFORHATTED! (At least that's the way it appears.) This is how Randy
Cook is able to protect his software from pirating. It is a great idea
but 1t makes it extremely aggravating to use. For a new user who is
trying to use an applications package transferred to this system, who
is not familiar with computers, nor does he want to be —— he just
wants to 'press a button and have the damn thing run his application
—-=- this system will not find much favor at all.

4.4 "NEW DOS 2.1"

L o S——

It works! The current release has no known bugs and will do
everything Radio Shack says cannot be done. It corrects every KNOWN
error in TRSDOS 2.1. All in all, there are over 280 additions,
corrections, and enhancements to TRSDOS. Many of the 'improvements'
in TRSDOS 2.2 are poor 'implementations' of NEWDOS 2.1. (That's an
opinion, and I cannot verify it, but from the looks of things, I'd
give better than even odds that it's true.)

NEWDOS 2.1 1is oriented to the programmer as well as the user.
Included in the NEW DOS+ package, are utilities such as "SUPERZAP",
'DIRCHECK', 'LMOFFSET' and others. These utilities are especially
designed to assist the user and are very necessary 1if you need to
recover data.

Data recovery on NEWDOS 2.1 generated disks is normal and routine
tor formatted data disks and system disks.

4.5 FUTURE OPERATING SYSTEMS.

B S T ——— .

The crystal ball business is tough. I have no reliable data on what

Radio Shack's or Randy Cook's plans are for improved or new ocperating

systems. 1 suspect that Radio Shack has had its attention diverted

somewhat by trying to get out the new MODEL II unit and that the new

unit will occupy much of their development time in the software area.
They will probably develop, at some future time, an operating

system for the TRS-80 that emulates their larger machine.

30

This is only a guess, but I'll give odds, because they will want to
use the HODEL II for internal development of all software. As a
result they will have to devise ways of raking some of the MCDEL I1
features (whatever they are) available to the TRS-80 user., This will
naturally lead to a system for the TRS-80 that emulates MODEL II.

Randy Cook is evidently no longer associatea with RS and his
company, Virtual Technology, Inc., will probably cevelop additional
software for the TRS-88. It's my guess that VTOS 3.0 will go through
several development stages that will range frow corrections to
improvements and finally enhancenents. Cook is obvicusly Very
familiar with the TkS-8¢ and I would hazard a guess (AGAIK??) that he
will continue +to write software for the machine if only because he
knows it so well.

I am very much in touch with Apparat so I co know some of the plans
for their future TRS-80 developments. At this time NEW DOS 1s
available in 35 and 40 track versions. A 77 track version of HEWDOS
2.1 will soon be forthcoming. This will be compatible with the
Micropolis 77 track drives. My information ic that these drives and
the operating system will be available from APPARAY dealers in the
early Fall of '79 if not sooner.

A 'SUPERDOS' is in work which will blow your sccks off. I have hiad
the opportunity to see some OL 1ts extended capabilities, especially
in the file handling area, that will in my estimaticn, make the TRS-86
a viable business tool. It will also, so I'm told, be able to
'mix-and-match' disk drive units of 35, 40 and 77 tracks, ON THE SARE
MODEL. Without going into a lot of detail, I'll Jjust say that
'SUPERDOS' will be one light year ahead of anything you have seen so
far =-- BAR NONE!

kxxkx ZARNING ***%%% [{ARNING **%%% WARNING ***** WARNING ****

* % * %
*% AS OF THIS WRITING (9/1/79) A NEW BUG HAS BEEN DIS- full
**%* COVERED IN TRSDOS 2.2! (YES, THOSE WONDERFUL FOLKS *&
% JN FORT WORTE KNOW ABOUT IT - WHAT DID YOU EXPECT? i
* % * %*
% TN ADDITION THERE IS A 2.3 VERSION OF TRSDOS ARD IT %%
** TS BEING KEPT SECRET BY THE CRACK FORT WORTE SOFT- *k
*% WARE DEVELOPMENT TEAM. (I HAVE THIS FRCM A VERY RE- *x
** LIABLE SOURCE!) * %
ol BEWARE ol
** WHEN FILES ARE OPENED ON 2 SEPARATE DRIVES, WHILE IN *&
** BASIC AND ANY ONE FILE IS "CLOSED" THEN THE SPEC- xR
** JFIED 'CLOSE FILE' MAY BE 'KILLED'!!l!! ALL SUBESE- e
% QUENT 'CLOSES' ARE HANDLED CORRECTLY. THIS IS AN ®%
*: INTERMITTENT BUG AND MAY NOT FUNCTION EVERY TIME. *E
* * %

kkkkk WARNING ****** [ARNING ***** WARNING ***** WARNING ****

.... NEW DOS, Anyone?

31

S.0 DISK ORGANIZATION
e e e Ry

In the TRS-DOS DISK OPERATING SYSTEM 2.1 HMANUAL we are told that we
have 67 GRAKRULES of free space on a formatted disk and somewhat less
on a disk with a DOS., Here is a breakdown of the entire disk:

Tracks
TRSE DOS. 2l e avwiene vaems ewsens siwsscnin D0
NEW DOS 2.2 ceesscossssscscnnssas 35 Or 40
VTOS 3‘. ® & 8 & § % 8 8 & & 2 8 8 8 8 0 80 8N N 35
SUPERDOS 1.0 tceueecsosacsnsasassas 18 to 80
NOTE:With SUPERDOS 1.0 you may
mix and match disk drive units
with different track configur-
ations.
Secltors per LLACK .wsswms smwms cuws sismwn doD
Sectors per Disketfte seeeeserensvesaess 350 (35 track)
400 (4@ track)
776 (77 track)
seCtorS per 'GRANULE:. L I L R I D D A 5
Bytes pPEer SeCLOL sassvacssssssssscsasss 256
Usable Bytes per Sector (TRSDOS 2.1) .. 255
(TRSDOS 2.2) .. 256
(NEWDOS 2.1) .. 255
(VTos 3.0) 256
(SUPERDOS 1.0) 256
Bytes per Disk sveies daes dases sees saess 89600 (35 krack)
102,400 (40 track)
197,120 (77 track)
Usable Bytes per DisSk eesesesceeceesess 85,410 (35 track)
Usable Sectors for Data Storagee..... 335 (35 track)
GRANULES pelt DisSK wes sewwsewws swmaewess eeee 10 33 LEECK)
Usable GRANULES per Formated Disk 67 (35 track)

A little simple math will verify the above figures, Each track, of
which there are 35, has 16 sectors of 256 bytes per sector. That
calculetes out to 350 sectors per disk and 35¢ times 256 equals 89,600
byteg ©f storage.

The 'BOOT' and 'DIRECTORY' take 15 sectors of disk space. BOOT is
physically located on track @ and occupies sectors @ through 4.
DIRECTORY is located on track 11(HEX) <17 decimal> and occupies
sectors § through 9.

TRS-DOS system programs use a large chunk ¢f storage and leaves us
with only 58,880 bytes of storage space on a disgsk with TRS-DOS. Radio
Shack (in its infinite wisdom) decided to make it impossgible to 'KILL'
systemr files. (Corrected in TRSDOS 2.2.) As a result, the BASIC
language programmer 1is cursed with what the manual nonchalantly
describes as ",..unexpected entry into DEBUG." In a few paragraphs
you'll know now to remove the passwords and 'KILL' that damn (DE) BUG.
Of ccurse, 1f you are using NEW DOS+, you do not have this problem.
Not only will you no longer have 'unexpected entry' after you 'KILL'
DEBUG but, you'll have more disk space!

32

Back to business... Throughout this monograph, I will refer to the
'relative byte'. Imagine that the disk is composed of 350 blocks laid
end to end. (See figure 5,1)

Every 16 blocks is a 'track'. Each block consists of 256 smaller
blocks 16 across and 16 deep. The smaller blocks are the bytes, The
first byte in the upper left hand corner is called the zeroth relative
byte.,

Counting across to the 16th byte-block gets us to the upper right
hand corner of our 16 by 16 byte sector block and to the 15th RELATIVE
BYTE. RELATIVE BYTE 16 begins on the first block of the second row
down, and the 31st RELATIVE byte is the last block of the second row,
This nonsense continues until we get to the lower right hand corner of
our sector and we are at the 255th RELATIVE byte.

To compound the matter even further, each byte 'block' is made of 8
smaller 'blocks'. These 'blocks' are the BITS. Each bit can store
only one of two values. A 'l' or a '6'. I won't go into bits here and
suggest Bardens' book for a very thorough discussion on the subject of
bits and binary arithmetic.

figure 5.1

VISUALIZING SECTORS AS 350
BLOCKS LAYED END TO END.

S
e ==z
.7 oG BUIES=1SECTOR
g £ S gEcToRS=1 GRarMULE
7 {o secrors =1 TRACK
D GrAnyLE S =1TRAK
SETE.'PCKS =1 DSk
380 SECTORS = DISK,

SECTOR 15
'BYTE BLOCKS' .

BLOCKS'.

33

Imagine that every 1¢ of the big sector blocks is a TRACK. Each track
is numnbered from ZERO to twenty-two (HEX). Some of these tracks are
'dedicated' to particular SYSTEM PROGRAMS. Figure 5.2 is a 'DISK MAP'
of the tracks and the space 'dedicated' to certain programs. All
programs with the filename extension of '/SYS' are programs of this
nature. 'FORMAT/CHMD', BASIC/CHMD, 'BACKUP/CMD' are certainly important
TO the system but it is not necessary for them to be in any particular
place on the disk.

Actually there are only a few areas on the disk that MUST CONTAIN
SPECIFIC OBJECT CODE MATERIAL. These are 'BOOT/SYS', 'sysg/sys' and
"DIR/SYS', 'BOOT' must always be located on Track ¢, beginning at
sector zero. 'SYSP/SYS' must be located on track '#', sector 5 and
'DIR/SYS' must be located on Track 11 (HEX) beginning at sector zero,

The directory may be moved (it's a hassle) to another location. It
MUST &lso be read protected. If the directory is moved, 'SAVE' has a
pitch of a time trying to figure out where to put the directory
information since it expects the directory to be on track 11 (HEX).
Eventually it will find it and deposit its data in the right places.
This can be speeded up a bit by changing relative byte '02'(HEX), in
the 'BOOT' (track '6', sector '0') to the HEX value of the track vyou
have moved the directory to.

The '"BOOT' is not actually a program but rather a machine language
'"TABLE* that is automatically loaded on power-up or reset =—---
sometimes referred to as 'IPL'. (Initial Program Load. 'IPL' 1is
computer jargon for, "Push the button, Hilda!™)

Figure 5.2 is a "MAP' of a typical 'SYSTEM DISK' (TRS-DOS 2.1). You
will notice that the system programs are grouped together. It is not
absolutely necessary that this always be the case. In fact it is
possible to put the SYSTEM programs anywhere except for 'BOOT/SYS',
'5YS6/SYS' and '"DIR/SYS'. NEWDOS requires that 'sySl3/svYs', when it is
resident on the diskette, to be specifically located also.

Otner programs such as FORMAT/CMD and BASIC/CMD may not be in the
same location on your disk, especially if you have 'COPY'ed these
programs trom another disk.

Disk allocation is handled in groups of 5 sectors at a time. (More
on this in chapter 6.) For this reason every program or file is
allocated disk space in 5 sector chunks called "GRANULES".

TRS-DOS 2.1 and 2.2 assign a MINIMUM of two GRANULES at a time.
That is why you run out of disk space so quickly when you have a bunch
of small files or programs., NEW DOS assigns only one GRANULE at a
time.

You can test this by saving a one line BASIC program to disk.
Before you save the program run "SUPERZAP" and look at the 'GAT®
sector's GRANULE allocation., 'SAVE' the program then 1look at the
'GAT' sector - again. Chapter 6 will explain the meaning of the 'GAT'
sector so you will be able to interpret the results,

34

TRS DOS 2.1 DISK MAP (35 TRACK)

TRACK GRANULE :<{=======~ TRACK CONTENTS —==——=——n >
NUMBER NUMBER SECTORS @ - 4 SECTORS 5 - S
HEX/DECIMAL (HEX) : {(=—=—GRANULE---=>: {~——=GRANULE-——~>:

L PO Y . R S0 S = A G R P s o e o sl

¢ - 0 6 & 1 :<=—-=BOOT/SYS--->:<-=--=SYSH/SYS——=>:
1 - 1 2 & 3 :K———-5YS0/SYS-—->:<~-—-SYS0/SYS—~->:
2 - 2 4 & 5 :<——FORMAT/CMD--->:<-—FORHAT/CHD——=>:
3 - 3 6 & 7 :<——FORMAT/CMD--->:<=--BACKUP/CMD-—~>:
4 - 4 8 & 9 :<==BACKUP/CMD--->:<-=BACKUP/CMD-~=>:
5 - 5 A & B i{——---FREE------ >ic=mm—m FREE-——-—- >3
6 - 6 C&D :l=—m==- FREE-=—=~- >:<==——==FREE-————- >
7 - 1 E & F :<=—=—= FREE======> 1 <{=====FREE~——==~ >
8 - 8 1¢ & 11 :{-—---FREE------ >i<—m——m FREE-~~-—~ >
9 - 9 12 & 13 :<————- FREE-—-———- >id————m FREE-—-—-- >
A - 10 14 & 15 :<=—=== FREE===—=~ >:<{=====FREE-=———~ >3
B - 11 16 & 17 :<——=—-- FREE-—~—--- >:<{=====FREE-~—~-- >
c - 12 18 & 19 :<-———- FREE--—--~ >i————= FREE-——--~ >
D - 13 1A & 1B :<=—=-= FREE======>:{====~FREE-~——=~ >
E - 14 1C & 1D :<===—- FREE-==-=~~ >:{====~FREE-——--~ >t
F - 15 1E & 1F :<-—--- FREE--—--- >:<====~FREE-———~- >
16 - 16 20 & 21 :<-—--8YS81/SYS--->:<-~-—=5YS2/5YS-—->:
11 - 17 22 & 23 :<{===-DIR/SYS-—-->:<{——=-DIR/SYS-——=>:
12 - 18 24 & 25 :<-—--5YS3/SYS--->:<{————=SYS54/SYS===>:
13 - 19 26 & 27 :<-—--8YS5/8YS--->:{———-5YS6/SYS—~—->t
14 - 20 28 & 29 :<{=——--SYS6/8YS--->:<{~——-5YS56/SYS-—->:
15 = 21 2A & 2B :<---BASIC/CMD--->:<~—-BASIC/CHD=-=->:
16 - 22 2C & 2D :<---BASIC/CMD--->:<{-—~BASIC/CHMD--->:
17 - 23 2E & 2F :{———-- FREE----—~ >i<=—m—m FREE-——--- >3
18 - 24 30 & 31 :<——--—- FREE-- ===~ >:<{===~~FREE-————~ >
19 - 25 32 & 33 :<——--- FREE--—~-~ >:<{=—===FREE-———~~ >z
1A - 26 34 & 35 i<———-—- FREE======>1{~==== FREE-————~ >
1B - 27 36 & 37 :<{-----FREE-—--—- >idmm——m FREE-~———=>:
1c - 28 38 & 39 :<——--- FREE-=~--~-- P FREE-—~-=- :
1D - 29 3A & 3B 1{-—-=—- FREE--———- {i1d=m——m FREE-———-=>:
1E - 36 3C & 3D :<————- FREE-———-~ >i————m FREE-——--- >3
1F - 31 3E & 3F :{~----FREE------ >l FREE--—--—- >3
20 -~ 32 46 & 41 i<-—--- FREE-=-—-—=-~ >1dmmmmm FREE==~—~~- >
21 = 33 42 & 43 :<——--- FREE-=—~==>1{~==—= FREE-————~ >3
22 - 34 44 & 45 <—---- FREE-~-===>:{~=——~ FREE-————->

35

6.6 ''HE DIRECTORY
e

The key to finding anything on the disk is the directory. Even the
operating system can't find anything without the directory. HNow that
we have a basic understanding of how the disk is organized, we'll take
a very close look at the directory. I'll explain what each byte means,
what 1t does, and how to use it to f£ind things just as the operating
system does,

The directory 1s located on track 17 (11 HEX). It is composed of 10
Sectors or 256 bytes per sector. This gives the directory 2,560 bytes
in which to store data. Thnere are no unused bytes in the directory.
Figure 6.3 is a '"MAP' of the DIRECTORY.

Ihe minimum space allocated £for storing any type of file, is one
"GRANULE". (No, Virginia, I do not know where the word "GRANULE" came
Lrom., Perhaps it describes the size brain of the person who thought
0tf inventing another 'computer jargon' term.) At any rate, the
cver—all scheme for representing free space is as follows:

5 sectors = 1 granule 2 granules = 1 track
Wnen you do a '"FREE', GRANULES are shortened to 'GRANS' --- it will

lcok like figure 6.1.

figure 6.1
DRIVE © -- TRSDOS 11/27/78 41 files 42 GRANS

DRIVE 1 -~ ‘TRSDOS p1/91/79 33 files 6 GRANS

With that out of the way let's dive into the directory. (Appendix A
contains a 'DIRECTORY TRACK DUMP' of TRSDOS, NEWDOS, and VTOS. made by
using the 'pPD' - '"PRINT DISK SECTORS' function of "SUPERZAP").

We will discuss each sector and then each entry in each sector.

"GAT SECTOR" - SECTOR b

GAT SECTOR* fj_gure 6.2

611666 FFFC FCFC FCFC FCFF FEFE FCFD FCFC FCFC vuveecevacnnoasna
#11916 FCFF FCFC FFFC FEFD FCFD FDFC FCFC FEFC seccioascsoncnns
011920 FCFC FCFF FFFF FFFF FFFF FFFF FFPF PFFF vvoccccacccancane
011930 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF tveveccoccaccess
011040 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FPFFF vuveecacssccnssss
011056 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 4ereeeeeecaeesas
011060 FCFC FCFC FCFC FCFC FCFC FCFC FCFC FCFC veeeecconncannns
011078 FCFC FCFC FCFC FCFC FCFC FCFC FCFC FCFC vuvesscaancascess
611086 FCFC FCFF FFFF FFFF FFFF FFFF FFFF FFFF vreereaacncnaaeass

911690 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF vvveeccacenceess
8119A6 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FPFFF tvveecesecascsss
0110B8 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ceceeccccacacesa
@110C@ FFFF FFFF FFFF FFFF FFFF FF21 0000 E642!...B
W110DW 5452 5344 4F53 2020 3034 2F30 312F 3739 NOTES...04/81/79
Pl10E0 @DUD FFFF FFFF FFFF FFFF FFFF FFFF FFFF ceencsansa

W1lPFP6 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF R R

36

I ——EE——— 1 QUL € 6 . je—

DIRECTORY TRACK HMAP

SECTOR

NAME & NUMBER

TRACK 17 (11 HEX)

SECTOR
CONTENTS

T T P Y S L et 3]

GAT
(Granulie
Allocation
Table

HIT

FPDE/FXDE

FPDE/FXDE

FPDE/FXDE

FPDE/FXDE

FPDE/FXDE

FPDE/FXDE

FPDE/FXDE

FPDE/FXDE

37

Unassigned granules
Assigned granules
Lockea-out granules
Haster disk passwora.
Disk name & date
'AUTQ' command file

Program hame 'hash code'
'DEC' of 'FPDE-FXDE'

(=2}

The
actual
direct-
tory
entries
are
located
in these
eight
sectors.,.

Type of file entry
(FPDE - FXDE)

File type

Entry status

Space availability
status

'"EQOF!

Logical record

length (NOT USED BY BASIC)

File name

File name extension

Update password

Access password

Number of sectors
assigned to file

File extents

Track location

Sector location in
track

Number of contiguous
sectors in extent

Entry type (FPDE -
FXDE)

These numbers corres-—
pond to the vertical
columns beginning at
relative byte '00 -
¢F'. See 'HIT MAP'
figure 6.8.

"GAT" stands for GRANULE ALLOCATION TABLE. This sector contains all
of the information the DOS needs to allocate space for files. It also
is the sector that notes *'lockout' on tracks.

Figure 6.6 is a 'MAP' of the "GAT" sector with an explanation of
the various GAT areas.

You will notice in figure 6.2 that the first 35 bytes contain
'FF's, 'FC's and 'FE's. These first 35 bytes represent the 35 tracks.
An 'FF' in one of these bytes means that the track is full. An rpE!
means the first 5 sectors are available and an 'FD' means the last 5
sectors are available. Also see figureé6.4, below,

At relative Dbyte '68' (figure 6.2) you will notice a replay of the
Lirst 3 lines of this sector. This 1is where 'TRACK LOCKED OUT'
inforimation 1s maintained. Beginning at relative byte '60"' you will
see 35 'FC's., This means that all 35 tracks are available to the
system, If there 1is an 'FF' in one of these 35 bytes AND a
corresponding 'FF' 1n the above set of 35 bytes, a track has been
"LOCKED-0UT".

At relative byte 'CB' and for the next 3 bytes, there is a '21
GOPO'. What ever these codes are they are not used by the system.

Relative bytes CE and CF are the 'hash code' for the master disk
password,

The next line (beginning at relative byte 'DB'), contains the disk
name and the backup date.

Bytes 'EB' to '"EF' and 'F@' to 'FF' are the 'command file' for the
'AUTO' function. These 32 bytes will contain the name of any program,
and/or command that has been defined as 'AUTO' while in D0OS. If byte
'BE@' contains a 'OD' (carriage return) then the 'AUTOQO' function will
not execute,

figure 6.4

BINARY MEANING

11111111 g 1st & 2nd granules allocated,
(sectors ¢ -~ 9)
11111119 2nd granule allocated

(sectors 5 - 9)
11111181 lst granule allocated

(sectors g - 4)
111111090 lst & 2nd granules free

(sectors @ - 9)

"HIT SECTOR" - SECTOR 1

=——
"HIT" stands for HASH INDEX TABLE. This sector contains a 'HASH CODE'
that relates to each stored FILE NAME. The location of the hash code
also tells the DOS where the file information is on the directory.

Figure 6.5 is a dump of a 'HIT' sector and fiqure 6.8 is a MAP of the
*HIT' sector.

38

There is a one byte hash code for each program cor file stored. The
position as well as the code is 1mportunt

A hash code is a number that is derived by some scheme of assigning
each letter & numerical value. Then, dcpendlng on each letters
position, they are multiplied by some numnber and the result oOf each
multiplication is added then divided and rounded. Eventually a code
number results which is a 'HASH' of the original entry.

There are literally millions of schemes for hashing and the hash
code could be any number of bytes long depending on who is using it
and ror wnat,

In this particular case the HASH code is 1 byte. There will be more
on 'HASH CODES' in the data recovery chapter.

f
HIT S&CT@R%Elcuhe 6.5
ORI SR B, B W) B
Blllew A22C 2E2F 2C2D 2323 GO00 PORE GEOE BUBE .,/ 1% eeisssass
¥111190 0p0O0 0000 0O00 GOO0 CGOUE 0000 CUOE OBPHO (..eeefeneeeaans
911120 2800 000G BOUAT 2676 0000 CE00 U000 BOOE oaaeeesas R
B11136G VEEO 0O00 VOGE BEOP DOUE LOBE COUL BEUEG csseiaescssssnvae
B1114¢G F200 8900 V0O CEOC VUV CUOE QOWE BUOE ..ceisceassassns
911150 WOO0 Q000 GOO0 Q000 GOP0 CEOE LEOD BOOC «..ceeeeens s e
G1llew POEG 5600 GOUCS POGE QUOE G00E CODC CO0U weievansoennnnons
@11170 OGO Q000 GERE G000 GOUOD CLUE BODED CO00 eeeievsssansesees
G1118¢ 7900 ADUE UW32 QU0C COOC CGCOO 0BO00 0000 .U.i.eeeeeieeenn. i
¥11190 0000 V000 GOPO 0000 DUOC GO0 G000 BUD0 eeseseenacoseans
911140 FH1D GFYE GGOD GEBT7 6ELE DOPE BU0E GRO0 eeeeF2iiiensrons

lllBO 00O PO 0000 PO0E GRR6 LOOE LOVE BOBD0uaeaens e
P111CP VP67 LOOE OO0 0OUE VOO0 000D COBU GOLO cascne
9111DP VGO0 COUD P00V PPOE LU0 BHOY GUOE QOO0 eveao.. ceceenns
§111EQ0 A3DB 0000 COOH OBEE Cb0P 0VUEOY GODBU BOOD 4eveecnrerannnas
@lllFﬂG ﬁwﬂﬁ @ﬁﬁﬁ %Gﬂ@ B?QG poBU GOOE GOBE GOBO caseads

-) 8)

(78 .0)
At the bottom of the 'HIT' MAP there are columns numbered 1 through
8. BEach of these eight VERTICAL columng represent the eight sectcors
available for storing file names and each even numbered row across is
the relative byte the entry starts on in its sector.
For instance, 1in figure 6.5 there is a hash code at relative byte
'TA2', (The hash code I'm referring to is '8F')
The 'FPDE' or FILE ENTRY is in VERTICAL Column 3. This means that the
file that corresponds to this hash code is in the third sector ARTER
THE ‘HIT' SECTOR, which is relative sectoer 4. (Also see the DIRECTORY
TRACK MAP figure 6.3.)
Also notice that the hash code 'A2' is in vertical column 1 and at
relative byte '¢@'. This 'points' or corresponds to the first sector
after the 'HIT' sector (relative sector 2) and relative byte '00'"' in
that sector. This is the hash for 'BOOT/SYS'. Next to 'A2' 1is the
hash code '2C' and this points to the second sector after the 'HIT'
sector and @&lso points to relative byte '00', This is the hash for
'DIR/SYS'.
Also notice that there are two "2C's on that 1line. One 1is for
'DIR/SYS' and the other is for 'SYS2/SYS' and the only conclusion is
that the hash codes need not be unique but must be derived £from the

pProgram name and be in the correct corresponding byte which points to
the 'FPDE' entry in that sector,

t.' clvims 1 '1

39

—— T SEC‘J’FORﬁ figure 6 .6—
'GAT' SECTOR MAP (TRACK 11, SECTOR @) 35 TRACK DOS

7 L 2 3 4 5 6 7 8 9 A B c D E F

GG GRANULE ALLOCATION TABLE

60 TRACK LOCK OUT TABLE

76

17

bu DISK NAME AND DATE

] 'AUTO" COHMAND FILE

49

The

ever have a system that uses this many tracks.

Bo

16

20

30

49

41

following
is also extended to include the GRANULES to track 8@ if you

'GRANULE ALLOCATION MAP'

'GRANULE ALLOCATION MAP'

3 4 S 6

LEGEND
1] <-- Track (DECIMAL)
0l <—= Track (HEX)
go] <-- lst GRANULE (HEX)
1] <-- 2nd GRANULE (HEX)

(In this track)

7

8 9

figure 6.7

GRANULE ALLOCATION CODE

FF = 1st & 2nd
GRANULES allocated

FC = 1st & 2nd
GRANULES free

FD = lst GRANULE
allocated

FE = 2nd GRANULE
allocated

is a detail of figure 6.6. It

should

figure 6.8) ———
'"HIT' SECTOR MAP (TRACK 11, SECTOR 1)

7] L 2 3 4 5 6 7 8 9 A B C D. E E
ENTRIES STARTING AT
RELATIVE BYTE 060 -

6o

21 ENTRIES STARTING AT
EELATIVE BYTE 26 -

4 ENTRIES STARTING AT
FEELATIVE BYTE 4G -

o ENTRIES STARTING AT
RELATIVE BYTE 60 -

15171 ENTRIES STARTING AT
EELATIVE BYTE 806

Al ENTRIES STARTING AT
EELATIVE BYTE AQ0 -

C@ ENTRIES STARTING AT
RELATIVE BYTE C@ -

EW ENTRIES STARTING AT
RELATIVE BYTE E@

Fi

4 8§ -4—— These numbers are the
first elght vertlcal columns of this map and they represent the 8

sectors used for dCtUdl dlrectory entrles Also see fiqgure 6 3

p———

st e B s e e s e i

42

'FPDE/FXDE SECTORS
SECTORS 2 - 9

'FPDE' stands for FILE PRIMARY DIRECTORY ENTRY and 'FXDE' is defined
as 'FILE EXTENSION DIRECTORY ENTRY.' These sectors are the actual
directory. (Also see figure 6.10, FPDE/FXDE SECTOR FAP.)

The program name, attributes, passwords, size (in sectors) 'END OF
FILE', and physical location on the disk are stored here,

figure 6.9

611400 gePo VE53 5953 s o0t eSYSPeeesSYS
B11419 210E QF60@ PPEF &) Vsswa® sawn wwwe
011420 0poe B0 Goog

011439 0eoY 0600 0000 eevscccesacsnsnne
¥11440 fB9A 0645 4D44EDTASM..CHMD
011450 9642 2000 i R < O - R —
01l469 QOB7 ©@54 2020 ¢oeeeTRS2320000e
011479 9642 9300 FFFF .BeBicecssacccsne
011480 ppBY 06O PBBY ..iccciscsanssa
0114990 pO0D GEOD PO08 woin sows saameaae
0114A0 pED9 @E54 2020 .oee-TRIBTRAP...
811489 9642 21068 FFFF BiBluoo"ifewswes
0114C0@ pope 0OBG BODD ceeeesvsecnsanaa
911409 pope 06RO BOBD wown wioweenoon s
#114E9 pooe voew D000 veeeesosccnascss
U114F06 PROE bBOE 0000 .ccccececcccnnnns

In addition to the 'FPDE' the 'FXDE's are also stored here. When
there 1is not enough room to store all the information DOS needs about
a file, it creates a 32 byte extension to the original 32 byte 'FPDE'.

Perhaps this would also be a good time to define a 'FILE'. A BASIC
program stored with a 'SAVE' is a ‘'file'. A machine language or
assembler program stored by using 'DUMP', 'TAPEDISK' or 'EDTASM' is a
file. Data stored by using the 'OPEN' statement in BASIC is a file.
In fact, anything that gets put onto the disk, with a name, is a file.
(Is there any more confusion about 'files'? Good.)

Each directory sector, beginning at relative sector 2, may contain
up to eight file names. Each of these file "ENTRIES" occupies 32
bytes. The first entry of each of these eight sectecrs is reserved for
SYSTEM FILES.

You will note that each entry starts at one of the following
RELATIVE bytes. (Also see figure 6.10.):

e, 29, 49, 60, 88, AG, CO, and EO.
Now let's examine a directory entry in detail. We will take the

first thirty-two byte 'FPDE' entry of sector 2 and take it apart.
(Figure 6.11.)

43

wo

10

4

56

60

76

86

S@

Al

BY

Ccg

Do

EQ

Fo

(figure 6.1 () pe——————

"FPDE' - 'FXDE' SECTOR MAP (TRACK 11, SECTORS 2 - 9)

g 1 2 3 &4 5 6 7 8 9 A

CIRECTORY ENTRY ONE
b5 o] U7 68 0SS GA

B C D E F

gBy GCJ ODJ OE} OF

DIRECTORY ENTRY THREE
45 46

53] 54} 55 56 58 59 5A

DIRECTORY ENTRY FOUR
63 64 65 66] 67 68 69] €A

5B

6CJ 6DJ] 6E} 6F

76l 711 721 73 74 778 78l 79] 72

7] 7¢l 7o 713

DIRECTORY ENTRY FIVE

B6)] B7] B8J B9] BA

DIRECTORY ENTRY SEVEN
Cog CLY C2) C3§ C4f C5p Cc6 C7] C8] C9] ca

BBy BCj BDJ| BEQJ BF

CBj CCj CDj CEf CF

DOy D1j D2§ D3] b4 D5 D6j D7) D8] D9 DA

DIRECTORY ENTRY EIGHT

DBy DC} DD DEJ DF

44

figure 6.11
'FPDE' DIRECTORY ENTRY

o1, 1 3 X 3 1 - (BYTE 9 - BIT RECORD)
o 111 = PROTECTION LEVEL
1 = INVISIBLE FILE @ = VISIBLE FILE
ASSIGNED TO FILE; HAS NON-ZERO HASH CODE
1 = ASSIGNED TO FILE

¢ = AVAILABLE FOR REASSIGNMENT
I NOT USED

1l = SYSTEM FILE ©® = NON SYSTEM FILE
1l = FXDE @ = FPDE

NOT USED (BYTES 1 & 2)*

RELATIVE POSITION
OF THE LAST BYTE
IN THE 'EOF'
SECTOR. (BYTE 3)

LOGICAL RECORD LENGTH (@ - 255)
(BYTE 4) NOT USED BY SYSTEM
Y

FILE NAME FILE NAME
(BYTES 5-C) EXTENSION
I BYTES D-F)

- Fa I EY
Cd

Cd ~

06 06 00 00 00 06 00 00 OV VP 6O 00 00 60 00 00
00 00 00 D0 0P V0 00 00 00 00 Bﬁ 00 00 60 00 00

EXTENT 1 EKTENT 3 EXTENT 5
(BYTES (BYTES (BYTES
16=17) 1A-1B) 1E-1F)

EXTENT 2 EXTENT 4
(BYTES (BYTES
18-19) 1C-1D)
'"EOF' RELATIVE SECTOR (BYTES 14 & 15)
ACCESS PASSWORD (BYTES 12 & 13)

UPDATE PASSWORD (BYTES 10 & 11)

* NOTE: BYTE 1 is used by an 'FXDE' entry as a 'DEC' pointing to the
original 'FPDE' entry.

Now we'll take each item in order. Notice that in figure 6.11,

each byte is named with its hexadecimal number,

45

'FPDE' BYTE 0

FILE TYPE - ©SYS/NON-S5YS FILE - ATTRIBUTES - ASSIGNMENT STATUS
-PROTECTION LEVEL. The first byte is a bit record. The right most 5
bits (6 = 4) are considered separately and the left most 3 bits (5 -

7) are considered as one unit, Figure 6.12 illustrates the methed for
counting bits.

figure 6.12

¢————one byte —m—
1 1

1 1 i 1 1 1
Bit seven—l L—Bit Zero
Bit six.._l Bit one

Bit five Bit two
Bit four N | Bit three

(The following is a review of the material in figure 6.11)

Bit 7 ... 1 = FXDE @ = FPDE
if this bit is 'OFF' (Therefore a '8') then this
entry is a 'PRIMARY' entry. If it is a 'l' then
the entry is an '"EXTENSION' of another entry loca-
tion somewhere in the directory. There will be no
hash code corresponding to an "FXDE' entry.

Bit 6 ... 1= The entry is a 'SYSTEM' file. A typical system
file would be 'SYS3/SYS' and for that file this
bit would be a one.

Bit 5 ... Not used.

Bit 4 ... Assigned to a file and has a non-zero hash code.

This directory space is available for
reassignment.

1
]
Bit: 3 wee d INVISIBLE FILE @ = VISIBLE FILE An example

of an INVISIBLE FILE is "BASIC/CMD' on every TRS-DOS
2.1 or 2.2.

Bit 2-1-0 ... These 3 bits are to be intrepreted as a unit;
i.e., 111 binary = 7 decimal

BINARY DECIMAL PROTECTION LEVEL

111 = 7 = No access

116 = 6 = Execute only

191 = 5 = Read/execute

168 = 4 = Write/read/execute

11 = 3 = NOT USED

ple = 2 = Rename/write/read/execute

ggl = 1 = Kill/rename/write/read/execute
oeg =] = No restrictions

46

'FPDE' BYTES 1 & 2

If the entry is an 'FPDE' entry then these are not wused and always
contain zeros. If the entry ig an 'FXDE' then BYTE 'l' is the 'DEC'
pointing BACK to the 'FPDE'. Byte 'Z' is never used and always
contains 'p@°‘,

'"FPDE"'" BYTE 3

END OF FILE (ECF) BYTE. This byte is the relative byte position of
the 1last byte (of the file) in the last relative sector of the file.
If you had a file that was 4 sectors long and this byte was a '13°
then your file would end AT relative byte 13 (HEX) in sector 4.

'FPDE' BYTE 4

LOGICAL RECORD LENGTH. This neat idea is not used by the system!
Evidently it's another good idea that was not 'implemented'. I suspect
that it was to be used by the random file statements to make computing
logical record lengths easier. In any case, this byte should be P!
but you can use it for anything you want seeing as how it isn't useaq.

'FPDE' BYTES 5 - C

FILE NAME. These eight bytes are the file name. The '/' is not
stored. You may change or swap file names using "SUPERZAP" but be
sure and change the hash code,

'FPDE' BYTES D - T

FILE NAME EXTENSION. Here is where the '/BAS' and other file name
extensions are stored. These nay be "ZAP"ped also. The extensiocon isg
used in computing the hash code for 'HIT' sector so you will need to
put in a proper hash code if you change the extension.

'"FPDE' BYTES 10 & 1l

UPDATE PASSWORD. Finally, the passwords. (Calm down, I'll explain
how to unlock the passwords in a couple of chapters.) The UPDATE
PASSWORD is a two byte hash code of the password you specify when you
use the DOS command 'ATTRIR'. (See "TRS-DOS & DISK BASIC Reference
Manual® section 4 page 12 for a complete (if obscure) explanation of
'ATTRIB')

'FPDE' BYTES 12 & 13

ACCESS PASSWORD. This is also a two byte hash code. This password 1is
created when you specify a filespec thus:

SAVE"RSSALES/PSN.DUHMB
In this case the material to the right of the '.' will be hashed and
inserted into bytes 12 and 13. You may also change, delete and
specify the ACCESS password with the DOS command 'ATTRIB'.

47

'FPDE' BYTES 14 & 15

b T e]
END OF FILE (EOF) RELATIVE SECTOR. This is a tricky one. The concept
1s simple and straightforward; these bytes contain a count of the
number (in HEX, of course) of sectors in the file., There are however,
Lwo sets of rules governing the use of these bytes:

DUMB RULE # 1 - If the 'EOF' byte contains '66' (in this case '86'=256
DEC) then this byte will contain the actual RELATIVE sector count.

bUMB RULE # 2 - If the 'EOF' byte containg any value OTHER THAN '00'
then this byte will contain the RELATIVE sector count plus one!

Let's see how that works again. Suppose we have a short file that
is EXACTLY 256 bytes long and we save it to disk. Now that will fit
into one sector of storage and all of the file will be contained in
relative sector § of the file. In this case 'FPDE' BYTES 14 & 15 will
contain '6l', Now that makes sense! In all of the other 'counts' we
make, we start counting with zero (I'll admit that it's kind of hard
to get used to at first, but it IS a logical concept) and here we have
@ tile stored in the 'zeroeth' sector and we have '01' stored in the
relative sector count of the 'FFDE'.

Now let's take a little longer file - say, one about €660 bytes
long. This file will require a little over 2 sectors of space. This
rmeans that the file will end in the second relative sector. (Counting
from zero that's: €, 1, 2.) In other words it takes 2 sectors to save
it but, wusing our 'normal' count method the file will be in RELATIVE
sector 2. NOW - using DUMB RULE # 2 - an '63' will be stored in the
EQF SECTOR BYTE! (RELATIVE SECTOR COUNT = 2. EOF SECTOR BYTE = 2 +
1)

Jeez! youd've thought they could at least be consistent, Oh well,
you HMUST realize that the folks that thought this up are the same
wonderful folks that brought you the 4@¢ name / 7 hour sort / MAIL
LIST program and the 'monthly' newsletter that was published 5 times
in two years,

Hold it! We're not through vyet. We have one more thing to get
Straight and that's REALLY large files. Let's do a little more
‘supposing'. Suppose you had a data file that occupied AN ENTIRE
DISK. That would be 335 sectors. The largest number we can fit into
a byte is 'FF' (HEX) and that equals 255 (DECIMAL). Now, even a Radio
Shack store manager can figure out that we need more than one byte to
store a gigantic number like 335,
Here, finally, is an example of such an 'EOF' sector byte:

335 (DECIHAL) = @14F (HEX)
EOF sector byte = 4F¢gl

It's fairly obvious that the numbers are simply 'back-to-front' and
all you have to do is put the 'gl1' in front of the '4F' and you have
it! Convert the number back to decimal and you'll know the number of
sectors in this file.

48

'PPDE' BYTES 1l6-17, 18-19, la-1B, 1C-1D, 1lE-1F

e T —— e — o T) P Nt |
EXTENT 1, EXTENT 2, EXTENT 3, EXTENT 4, EXTENT 5. The EXTENTS contain
the TRACK, GRANULE off-set, number of CONTIGUOUS granules (in the
extent) and when necessary, the 'FXDE' pointer.

By now your lightning-quick-bear-trap-mind should be working at
peak efficiency so I expect that you'll have no trouble understanding
the EXTENTs.

So far, we have all the information on a file we need to determine
its name, length, and so on, but we still don't know exactly WHERE it
is on the disk. This informaticn is recorded in the EXTENT elements.

Consider the following EXTENT: 6718

The first byte of an EXTENT is the TRACK number in hexadecimal. In
this example TRACK = 07 =

The second byte is a bit record, The right most 5 bits are the
NUMBER OF CONTIGUOUS GRANULES ASSIGNED TO THIS EXTENT LESS ONE! The
left most 3 bits is the OFF SET OF THE START OF THE FILE, FROM THE
DESIGNATED TRACK, SECTOR ZERO, TO THE START OF THE FILE IN GRANULES
(1=1 GRANULE 0=0 GRANULES).

Here is the bit record for the second byte of the above EXTENT
example:

BINARY HEX
e ¢ o 1 1 6 6 B8 = 18

l-.........llﬂﬂﬂ = 18 (HEX) There are 17 contiguous

granules (HEX) stored in this EXTENTS'
file area beginning at track 7.

99 = @ (HEX) The first sector of this
file EXTENT is at sector zero.

Here is another typical EXTENT we can decode: 1A29

TRACK = 1A (THAT'S EASY!)

BINARY HEX
o 9 1 ¢ 1 6 0 1 29

[1601 = 9 (HEX) There are @8

contiguous granules in this file's EXTENT.

@@l = 1 (HEX) The granule off set from

the beginning of this EXTENT is one,

i.e., the file's EXTENT starts at RELATIVE
sector 5.

From this we may surmise the following:
(1) The track is easy; just read it.
(2) If the second byte of the EXTENT is 19 or less
then the file begins at SECTOR 0.
If the second byte of the EXTENT is 20 or greater
then the file begins at SECTOR 5.

49

'FPDE' END OF EXTENTS.

All this 1is just fine, you say, but what in the dirty hell are all
those 'FFFF's at the end of the EXTENTS? Just that, my fine feathered
friend, the END OF THE EXTENTS. 'FFFF' means that there are no more
EXTENTS. If you add to your file, and DOS cannot continue to add to
an existing disk file area, then it will find some open (FREE) space,
using the GAT table and then put the file in the newly allocated
granules and construct a new EXTENT.

A file may have up to FIVE extents in a 'FPDE' and that brings us
to....

'"FXDE' ENTRIES
S
The mysterious 'FXDE' is about to be unmasked. If an 'FXDE' exists,
you will see, IN EXTENT 5, of the 'FPDE', 'FE' followed by the 'DEC®
of the 'FXDE'. Figure 6.14 is a typical example of a 'DEC' pointing
to an 'FXDE', Whats a "DEC', you ask? Pay attention because there
will be a test on this tomorrow.

'DEC' is defined as: DIRECTORY ENTRY CODE. The example in figure
6.13 will turther your understanding so please press on ...

figure 6.13
32 byte 'FPDE' entry showing a 'DEC' ('pointer') to the 'FXDE'
entry.

B115CO0 1000 OO2B 0044 4953 4BAF 5247 2050 434C ...+.DISKORG.PCL
0194D@ 9642 9642 4200 2023 9124 9500 9701 FEAD .B.BB..#.5.....@

These 2 bytes in EXTENT BJ

'point' to the 'FXDE'.

FE (HEX) SIGNIFIES THAT THE NEXT BYTE IS THE 'DEC' TO
AN 'FXDE'

490 (HEX) = @l000000 (BINARY)

1 @ @ @ © v (BINARY)

]
—E 0ow P06 (HEX) + 2 = 2. This is

the relative directory sector
the 'FXDE' in located in,

Not used.

2 (HEX) This is the relative
32 byte directory entry in
that sector. REMEMBER TO
START COUNTING FROM ZERO!
(i.e., "6 -1 - 2m)

50

Next, let's look at the actual 'FXDE' entry in relative sector 2. See
figure 6.14 below,

(figure 6.14

11200 SEGP 0PO@ 6042 AFAF 5420 2020 2053 swen «BO0T iw4 «+ 8¥D
$1121¢ EB29 210E 0508 6BWE FFFF FFFF FFFF o) esesecceccens
911220 0000 0000 0000 QVOO POOO 0UOC OCODO S e
011230 0000 0PGY CO0OP COPE POUED VOO0 0000 cesecececsanccces
311240 906C7 (G006 QUOR 0DOG VUOUWE 000D 0UOY crecsesssssensase
§lL1250 0000 PP0UE OVEP V821 FFFF FFFF FFFF PR
911260 0000 0Q00 0000 VOO0 G000 0000 GUOO OC Vaee e sies ey aate
11270 GOO@ GOPY DOO0 GOVP Q000 VOO0 GOOD creesceresscccane
$11280 0OEO COGE COOD GVUOD VDOD DOVUE BOOO Jf seeesssscscsaans
011290 0000 COOD COPO COOD 0000 DOOO VGOUO ceccssscsssseenn
Pl12A0 POOD VOOD VODD POOD VOOD DOVO VOOD O sesesceccscncsse
@l12B0 QUOD GOOP POPO VUPO VPDO 0000 VOOU J0 eeececacssacancs
P112C0 00O0 CPOO G000 0000 GOOD GHOD BUOD cessssssascssans
@l12D@ 0000 0000 G000 GOOO OO00 0000 G000 CEBD eccececncaanaans
0112E0 0OOD 0000 YODO VOOEO GO0Y CEOO COOC ¢ eccescccvsanaanca
P112F06 0PPO PEO0 0000 PUOD VOOE VLOE BELE U ceassesesesasann

DIRECTORY SECTOR with 'FXDE' at relative byte '40°'.

The first byte of the 'FXDE' is decoded in exactly the same manner as
an 'FPDE'. The 'C7', at relative byte '41' is the 'DEC' that points
BACK to the 'FPDE'.

It has been suggested by Fenwyler T. Murphy, a nephew of TEE HMurphy,
that this may also be a seed value for generating a random e€rror
during a 'WRITE' operation that will invoke the TRS-DOS hidden
command, 'DESDSK' (DESTRCOY DISK).

Aw c'mon now, did you think I was sericus?
With the above information vyou should be able to find any file

anywhere on any disk as long as you have a directory to work from. We
will discuss recovery methods in a later chapter, now take a break.

51

7.9 PASSWORDS AND OTHER TRIVIA

Lverybody mekes a big deal out of PASSWORDS. I'll admit that I too, at
one time, was baffled by the password scheme but within days after
getting my copy of "SUPERZAP" all of my disks were without passwords,

If you have read chapter 6.0 you Kknow where the passwords are.
First we'll tackle the MASTER DISRK PASSWCRD.

MASTER DISK PASSWCORD

e s v |
The "HASH' code for the HMASTER DISK PASSWORD is stored in the 'GAT'
sector at relative byte 'CD' and 'CF'., In figqgure 6.2 the 'HASH' for
the master disk password is: 'E@42'. The MASTER DISK PASSWORD is used
by the DOS statement 'PROT :d (LOCR)', where 'd' 1s a drive
specification,

When this command is entered, the MASTER DISK PASSWORD 1is
transferred to ALL user files in the UPDATE and ACCESS PASSWORD bytes.
The system files remain as before. (See TRSDOS & DISK BASIC Reference
Hanual, Section 4, Page 21.)

Conversely '(UNLOCK)' reverses the 'LOCK' process and removes all
the passwords that 'LOCK' applied and inserts '9642' into the password
bytes.

'9642' is the passworG, "........" (eight blank spaces), which 1is
ignored by the system - in other words, "........" ('9642') 1is
equivalent to no password at alll The password, "PASSWORD", has the
hash code of 'E@42°'.

We will assume that you have a disk and EVERYTHING is locked out.
System files, user files; the whole enchilada. We don't know the
miaster password or we forgot it. At any rate we need access to those
files.

(1) with "SUPERZAP" read a disk with a known password,
(2) HMake a note of the passwora,.
(3) Remove the known password disk and insert the
offending disk.
(4) Select 'DD' from the "SUPERZAP" menu
(5) Display track 11, sector 6.
(6) Using 'MODCE' modify bytes 'CE' and 'CF' to
the known password obtained from the 'goeod!
aisk.
(7) Hit break & go to D0OS. *(See NOTE, below.)
(8) Invoke the '"PROT' function.
(9) Go back to BASIC and '"RUN' "SUPERZAP" and verify
that the passwords are changed.
(16) Take a break, you did good,

* NOTE - If you are using NEWDOS, simply type: CMD"PRCT :d (UNLOCK).
When the function is completed you will return to BASIC automatically.
Then type: CONT <ENTER> Then press: R "SUPERZAP" will continue where
it left off without a glitch. VER-R-R-Y fast and handy.

52

UPDATE & ACCESS PASSWORDS

e e o e el B L e |
This is more or less the same routine except that you will medify each
password individually. Using the information in chapter 6 locate the
proper bytes for the passwords in the 'FPDE' sectcrs. (Figure 6.8,
BYTES 19 & 11 and 12 & 13.) Now, insert '9642' into the UPDATE and
ACCESS PASSWORD bytes with the 'MODnn' command in the 'DD' function.
You're all done,

Quite a number of people have asked what the algorithm for
generating the password is., I don't know and don't care. All I know
is that "9642' = " " and is, in effect, no password at all. You
may ‘'remove' all passwords from ALL files inclucing SYSTEM FILES by
this method,

OTHER TRIVIA - PROTECT STATUS
L L Y e R By
If you will remember our discussion in Chapter 6.0 of the directory
entries, you will recall that the first byte of ecach and every 'FPDE'
(Figure 6.8, byte @) contains ALL the 'PROTECT STATUS' information. If
you want to remove the 'PROTECT STATUS', change whatever that first
byte is, to: 1@ (HEX).

It you want to add 'PROTECT STATUS', with "SUPERZAP", then
construct a binary number, from the information in chapter 6 figure
6.8, convert it to hex and "ZAP" it into that first Dbyte. Therel
You're all done again.

MORE TRIVIA - A 'MASTER PASSWORD'
I P e e S Y e 1 [P .
Legend has it that the following 'PASSWORD's will work on any TREDOS
2.1 'SYSTEM' file:
NV3 6
F3GUHM

I have not tested this but I have it on good authority, that these
passwords work.

53

8.6 DATA RECOVERY PROCEDURES & TECHNIQUES
e I

Your success at data recovery will depend upon your planning ability
more than anything else. Whether or not you will successfully recover
& file or data will usually depend upon whether or not you have fully
thought out just HOW you are going to go about your task, not how well
"SUPERZAP" works or whatever utility you decide to use. That brings us
t'o L B]

8.1 THE SHELL GAME

S S ¥

Have you ever watched a carnival pitch man work the pea-in-the-shell
game? At first it looks simple. There are three shells or dixie cups
with the open end down, He places a 'pea' or small white ball under
cne of the cups., "Now watch closely", he says, and proceeds to switch
the cups around in a deliberate manner. "Keep your eye on the shell
with the pea", he continues., After half-a-dozen switches, he stops

and asks which shell has the pea under it. You have watched him
closely and point to one of the shells., He'll ask you if you are
sure., You say, "Yes, that's the one!" He ©picks 1t up and sure

enough, there it is, MNow that you feel confident about spotting the
pea, you do it again only this time with a little side bet.

Guess what? This time the guy moves the shells so fast you can
hardly tell which ones he's moving and when he's finally through with
the switches, you have no idea where the pea is. You lose the bet.
Convinced that it's really not so tough, you try again and lose again.
This will go on wuntil you get smart or run out of money for side
bets.

Data recovery 1s 1like the shell game. Now you see it, now you
don't, If you're watching a real pro, he'll say, "There it is. We'll
move it to this track, move up the data 18 bytes, transfer it to here,
open it up one sector there, insert this sector here, and copy it back
to there," ZAP-BANG! Right before your very eyes, it is fixed. It
looks so easy that you decide there's nothing to it. Wrong!
Remember, that guy 1is a pro; you're going to need a little practice
before you launch.

The following steps will help you to "keep the 'pea' in sight", so
to speak.

1. Determine the cause of the problem.

2. Determine the location of the file on the disk.
Note the location of the FILE EXTENTS.

3. Set up a BUFFER TRACK so you'll have an area to
save things to.

4. Look at each sector - determine which sector or
sectors are the problem sectors, MAKE NOTES!

5. WRITE DOWN your plan, for recovering the data,
in CHECK LIST form.

6. Double check your plan.

7. Format and have standing by, an extra disk so
you'll ALWAYS have something to copy to if you
find you need extra room.

8. Always work from a BACKUP of the disk or file you
are trying to recover.

9. Always check the directory and verify that you
are working on the correct disk,

1. NEVER assume anything, (ASS-U-ME; makes an ASS out
of U and ME) always CHECK IT OUT FIRST!

54

11. As you execute each step on your data recovery
CHECR LIST, mark it off -- always know where you
are and what you are going to do next.

12. Double check your results before copying anything
back to its original location.

13. When recovering a data file, make a MAP of the
sector to aid in identifying which bytes are what
data type.

14. Drink 1liguids, take aspirin.and get plenty
of rest.

8.2 USING "SUPERZAP" ON A SINGLE DRIVE SYSTEHM,.
e

"SUPERZAP" has its own disk I/O routines and therefore coes not need
to have a 'SYSTEM DISK' in drive '0°'. After "SUPERZAP" loads and
executes, you may remove the system disk and put any disk in drive
'g'. If you need to transfer sectors from one cisk to another, you
can do it with the 'SCOPY' command of the 'LD' function.

First read the sector you want to trensfer. Then, when the sector
is displayed, type 'SCOPY'. vihen you are prompted to enter the
DESTINATION of the 'SCOPY' sector, remove the original disk, from the
drive, and substitute your DESTINATION DISK. Finish answering the
prompt and the sector will be 'SCOPY'ed to the new disk. Tt 48
possible to copy an entire disk this way although it would involve TG0
disk swaps for a 35 track disk!

You will find that you only need to copy porticns of a file to a new
disk, 1n most cases.

Another technique, is to 'BACKUP' the entire digk and kill
everything on the 'BACKUP' c¢isk BUT the file you wish to recover.
This will give you plenty of rcom for 'BUFFER TRACKS'.

8.3 BUILDING A 'BUFFER TRACK'
=
There's nothing to it. Look on the 'GAT' sector and find an unused
track or tracks or GRANULE. take a note of which tracks or GRANULES
are not being used. When you need a place to put something, use those
places.

When you are finished using the 'buffer track' you don't even need
to remove the material you put there since when the system uses that
area it will sinply write over it. See, nothing to 1it.

55

5.0 FILES - STRUCTURES & TYPES

P OO -4 N S N 5 e o ST,

Tnere are a number of different types of files that may be stored to
the disk. Each kind hae its own type of 'FORMAT' or 'STRUCTURE'.
Being able to recognize a file type, just by locking at the display of
the HEX dump, will come with time and a little practice. The following
discussion will help you to identify each type of file and understand
its structure.

9.1 GENERAL
1 —
You cannot tell a file's formet by looking in the directory, with one
exception: SYSTEM FILES. System files have a special place as well
as an 'ATTRIBUTE'. The first two 'FPDE' entry locations, on every
directory entry sector, are reserved for SYSTEM FILES. Other than
that you will bave to know in advance or tell, just by looking, what
the file type is,

All file types are written to the disk in 'blocks' of 256 bytes at
& time. When there is not enough file material to f£ill a complete
'block' or sector, the loader finds material from memory (I don't know
wnat the rules are for locating this material) and uses it to pad the
sector. For this reason you will not 'see' the end of your files
because the last sector will always c¢ontain data out to the 'FF'
byte,

5.2 ASCII BDASIC PROGRAI: FPILES

e T s e et s S PR

We'll start off by 1looking at our old friend, "SUPERZAP". I have
chosen this program because it's one most of you will have and you can
experiment on, as I go through each type of file.

An ASCII file, as you can see, appears just as you entered it, as a
program, on the display. There are no special loader codes or bytes
to speak of. The first byte of an ASCII BASIC program file must be a
line number. FEach line is terminated with a carriage return (@D HEX).
This is how BASIC 'knows' when to start a new line,

At relative byte 'EC', in the pelow example, is a carriage return,
Try "ZAP"ing a '20' (space) into that byte a&nd see what happens when
you try to 'KRUN' the file, Next try changing the line numbers. The
HEXADECIKAL ASCII codes for numbers are:

6 = 36 (HEX) 5 = 35 (HEX)
1 = 31 (HEX) 6 = 36 (HEX)
2 = 32 (HEX) 7 = 37 (HEX)
3 = 33 (HEX) 8 = 38 (HEX)
4 = 34 (HEX) 9 = 36 (EEX)

The "END OF FILE', of an ASCII file is noted in the directory entry
for that file. There is no 'EOF' marker in the actual file. You will
also notice that the last sector of the file is full of data down to
relative byte 'FF'. This is because 'writes', to the disk, are ALWAYS
256 bytes at a time; NO MATTER WHAT TYPE OF FILE IS BEING WRITTEN.

With wvery little experimentation you will become familiar with the
ASCII BASIC program file.

56

figure 9.1

ASCII coded
line number

ASCII code for
'space' (HEX)

First character of the program text,

'EOR'" marker ('0D' HEX)

Y
FOOOB0 2052 454D 3A20 . 4953 50 .REM:.MAIN/DIS
FOO010 4D45 4D4AF 5259 4D4F K.MEMORY.DUMP/MO
FOO0O20 4659 2052 4F55 5449 4Wi5 2B20 2056 DIFY.ROUTINE...V
FOQO30 5349 4FAE 2032 2E30 P03 —3@3% 2047 ERSION.2.0.100.G
FOO040 4F20 3130 3430 3060 3I35-3820 4124 O0TO.10400.150.A%
FGOOB50 4E4B 4559 243A 2049 4620 4124 3D22 =INREYS:.IF.AS="
FOO060 5448 454E 2031 3530 3A20 2@45 4C53 ",THEN.150:..ELS
FO0070 4258 3D41 5343 2841 2429 3A20 5245 E.BX=ASC(AS):.RE
FOGB80 524E |PH3Z=38#38 2049 4620 4258 203E TURN.200.IF.BX.>
FOO090 3820 414E 4420 4258 3C3D 3537 2054 =48.AND.BX<=57.T
FOOOAD 4E20 4258 3D42 582D 3438 3A20 5245 HEN.BX=BX-48:.RE
FOOOBO 524E |pH32=353% 2049 4620 4258 3E3D TURN.250.IF.BX>=
FROOCH 2041 4E44 2042 583C 3D37 3020 5448 65.AND.BX<=70.TH
FOOODY 2042 583D 4258 2D35 353A 2052 4554 EN,BX=BX-55:.RET
FODOED 4EAD| 333F=W20 4258 3D2D [PP33==353F URN.300.BX=-.350
FOGOFO 5345 3A52 4554 5552 4E3A 5W54 4F50 .LSE:RETURN:STOP

(a185"38 L gur M ST

lNl= '"END OF RECORD' (EOR)
=== LINE NUMBER

9.2 BINARY BASIC PROGRAM FILES

P |

This one is a little tougher to read because line numbers are stored
in compressed binary format and the BASIC program statements are in
'TOKEN' form. The BASIC statement 'SAVE' automatically stores your
program to the diskette in compressed binary format.

Figure 9.2 is the first se~tor of "SUPERZAP", as stored in
compressed binary format. Compare chis sector to figure 9.1. The
first thing you will notice is that more program material has been
stored in the sector. Compressed binary files are very efficient, in
terms of space, and should be used whenever possible,.

The first byte of EVERY BASIC FILE in compressed binary format, 1is
'FF'. If this 1is any other wvalue vyou will get the old 'DIRECT
STATEMENT IN FILE' displayed on your video, trick, Next I should
explain how BASIC 'knows' where the lines are. When the program is in
memory the very first part of each line is a 'pointer' to the next

57

line, This ‘'pointer' is stored along with the rest of the program
material during the 'SAVE' operation. At the end of every line and
preceding each pointer for the next line is an 'END OF RECORD' marker.
Each BASIC line is a 'record'. The 'EOR' is a hexadecimal '6¢'.

In the above example I have highlighted the 'EOR', the 'pointer'
and the the line numbers. The pointer is not too important. You may
make it anything you want but you MUST have something in those bytes.
The 'EOR' however, is critical., IT MUST BE '@@'.

Try changing the 'EOR' to 'FF' --- the program will 'LOAD' but
you'll get gibberish at the end of the 1line preceding the changed
'ECR' and the next line will be included in the preceding line because
there was no way for BASIC to know where the line numbers belonged.

figure 9.2

'FF' denotes BASIC
program file.

'68F4' is the 'pointer'
to the next program
line number in RAM,

'3200' is the first line
nunber of the program - and
is in LSB - MSB order, i,e.,
to be read as 'g@32' (HEX) =
'5¢' (DECIMAL).

| . | ‘

FOOOBO FFPA 6832 6893 3A20 4DA1 494E 2F44 4953 ...2..:.MAIN/DIS
F@OQl0 AB20 4D45 4D4F 5259 2044 554D 502F 4DAF K.MEMORY.DUMP/MO
FOPO26 4449 4659 2052 4F55 5449 4E45 2E20 2056 DIFY.ROUTINE...V
FOBO36 4552 5349 4F4E 2032 2E30 |WABP 6964—BHBD ERSION.2.0......
FOOB40 2031 3634 3030 02976996 @@#4l 24D5 C93A .10400.)...AS..:
FOvG59 208F 2641 24D5 2222 20CA 2631 3530 3A20 ...AS$.""...150:.
FOOU6O 20@3A 9520 4258 D5F6 2841 2429 3220 9200 .:..BX..(AS):...
FO0070 4B69 TBEE 8F20 4258 20D4 D534 3820 D220 N.....BX...48...
FOp080 4258 D6D5 3537 20CA 2042 58D5 4258 CE34 BX..57...BX.BX.4
FOOO90 383A 2092 WW7Z69FA—=FFEF 2042 58D4 D536 8:v.veeees.BX..6
FUOOAG 3520 D22@ 4258 D6D5 373¢ 20CA 2642 58D5 5...BX..70...BX.
FOOPBO 4258 CE35 353A 20692 @B 652C—0F42 58D5 BX.55:.....,.BX.
FOOOCO CE42 5837 2092 PUAE HG5E-—0393 3A20 2822 .BX:.u.eee..: k%
FOO@DO 2A2A 2A2A 2A2A 2A20 5641 5249 4142 4C45 **%**x*x* VARIABLE
FUUOED 2041 4CAC AF43 4154 494F 4E20 A94E 4849 .ALLOCATION.INHI
FOQOFO 4249 5445 4400l D569 =9BFF 4432 2528 3129 BITED.....D2% (1)

M= 'END OF RECORD' (EOR)
777%#= POINTER
=—=—= LINE NUMBER

58

Next try changing a 'pointer' to 'FF'. HA! Loaded OK, didn't 11
BASIC will take care of this little chore all by itself, even if it's
wrong. When the program is 'SAVE'ed back to disk, the pointers will be
corrected!

Here's the bottom 1line - when vyou are "ZAP"ing in a new line
number, insert the codes as follows:

'¢@ FFFF LLMM®* - where 'LL' is the LEAST SIGNIFICANT
BYTE and 'MM' is the MOST SIGNIFICANT BYTE of the line number you are
"ZAP"ing into the sector. "ZAP" the other three bytes as they

appear, i.e., '068 FFFF'.

You can experiment by changing these bytes on a copy of "SUPERZAP".
Then 'RUN' the changed "SUPERZAP" and by using the 'DIM' (DISPLAY
MEMORY) function, 1look at what you have wrought right there in RAM.
BASIC will load your program at '6B6C', (HEX) so answer "SUPERZAP"'S
prompt, for memory location as '6BOG'(HEX).

9.3 'EDITOR ASSEMBLER' SOURCE FILES
T N P L e) +

To my knowledge, the Apparat 'EDITOR ASSEMBLER' is the only version of
the Radio Shack 'EDITOR ASSEMBLER' that writes to a disk file. If
there are other versions, they might write the source file differently
or use different conventions. In any case, our discussion, here, will
concern only the Apparat enhanced 'EDITOR ASSEMBLER'. Figure 9.3 is a
typical 'EDITOR ASSEMBLER' SOURCE file.

'"EDITOR ASSEMBLER' files are basically ordinary, garden variety,
ASCIT files. ~There are some slight differences, however., The first 7
bytes constitute a 'header record'. The £first byte (BYTE 'g') is
always 'D3'. The next 6 bytes are the first six characters of the
program name. (I don't know why or what purpose it serves,)

The line numbers are in ASCII format except that 128 (DECIMAL) has
been added to the usual ASCII value. For instance an ASCII 'zero' 1is
'3p' (HEX) which is equal to 48 (DECIMAL). 48 + 128 = 176 (DECIMAL) =
'BG' (HEX). In figure 9.3, the line number of the first line of
source code is '@@16@°*. You will notice that beginning at relative
byte 7, the code reads:

'By BUBL BOBO'. Simply lop off the 'B's and you have '00100°.

Tt would be a very simple matter to read this file into a BASIC
program with the 'INPUT' statement and convert the line numbers back
to standard ASCII code, for display, edit the lines and write it back
to another file with the 'PRINT #' statement.

The 'EOR' is a carriage return ('@D' HEX), Jjust as it is 1in a
standard ASCII BASIC program file. I suspect that the reason for
using the 'B' codes for line numbers is so the file could not be
accidentally read into BASIC.

There is an 'EOF' marker at the end of the file. If you note the
'"EOF' byte, in the 'FPDE', you will find that the 'EOF' marker, in the
file, is one byte less. The 'EOF' marker is '1lA' (HEX) and will be
preceded by a carriage return.

59

figure 9.3
'L3' denotes that this
is an 'EDITCGR ASSEMBLER'
SOURCE file.

First six characters of
the program file name.

I.ine number - ASCII code
plus 128 (decimal)

First character of
source text.

'EOR' ('6D' HEX)

169560 7 JAPARBO. +ss244+.0R
169519 y G.PABOMH.......B
169526 EGIN.EQU.Sccaves
1059536 ..LD,HL, START...
1095406 «-...LD.(4016H),
109556 HL..oesess LD, HL,
1095606 STRING. «seees.lD
109570] . (BUFFER) yHLeosw
109586 eeeeJP,402DHecew
199590 oo « START . BQU.. 5«
1095A0 soeses PUSHeHLs s«
189580 v o e oeliDeHLi,; (BUFF
1095CH ER) ¢eesse-.LD.A,
10¢95D0 (HL)% s eueesCPaW
1095E6 AHeeaveaeedPeZ,S
1095F@ TOCKeecueesesINC,

5.4 '"OBJECT CODE' FILES

e e e e]

This one is easy to recognize because it never mekes sense, The ASCII
display portion (the 16 characters on the far right) is secemingly &
mish-mash of blanks and random symbols, That's because it's a
mish-mash of unprintable characters and randon symbols. (WOw! What a
lucid explanation!)

I won't attempt to explain the workings of machine language code. I
would suggest that you get Bill Barden's latest effort for Radio
Shack; "PRS-80 ASSEMBLY-LANGUAGE PROGRAMMING". I Kknow that I have
already recommended this book once but what the hell, you didn't rush
right out and buy it then, so I thought I'd give it another plug -- it
is a good book.

This example is a short (100+ BYTES) machine language printer
driver. All machine language object files start with '0l1' which is
also the code for 'load the following bytes for the following number
of bytes', at the following address, followed by the actual code.

60

If you will bark back (you any gocod at harking?) to the first
paragraph of this chapter, you mey remember that I pointed out that
the machine will only load a maximum of 256 byteg at a time. Thisg is
also true of OBJECT files. When the machine has lcaded 256 bytes it
has to go back, look for another '61' &and get the next 256 bytes.

figure 2.4
Loader code '"¥l1' = LOAD at
the following address

Number of bytes to be loaded. (7B)

Destination address of the object code
in LSB - HSB crder. (E8FD = FDES)

Actual object code
begins here,

Transfer address irn
LSB-IMSB order,

\

Y v
204060 HANB EBFD 110F $G21 ESFD 1922 -
20461¢ @AGE GEF3 79FE ¢D28 @3FE 20D8
204@2@ ©937 F5F5 2161 FCCD 2162 2133
204030 20FB F11F F536 1321 DGFC 1813
204040 2802 18DB 3E@A 18D7 182ZF C680
204050 21062 @606 2133 WB2B 7CB5 Z2GFB
2046060 0OCB 4A28 @B21 BGFC CD21 P21B
20407¢ FlF1 FEGD 28C6 B728 C5Cl ELF1
204680 FDB5 BY20 534B 4950 3109 5G4F
204690 ©909 3B46 4958 2054 4845 2053
2@46A6 ©DBO BAB6 B7BY 2009 5GAF 5020 cangs e OBty
2040B@ ©93B 4745 5420 5052 494E 5420 .;GET. PRINT.CHAR
2640C0 4143 5445 520D BUB4 B6B9 B@20 0943 50609 ACTER........CP.
2046DG 4352 0969 3B43 4152 5241 4745 2052 4554 CR..;CARRAGE.RET
204GE® 5552 4E3F (DBG B4B7 BLlEO 2009 4A52 HO5A URNZ........JR.Z
2040F@ 2CAE 554C 4C53 6909 3B59 4553 2C20 444F ,NULLS..;YES,.DO

. miGhee . s VE@
aac.cn-(a.cccaca
o Tawnd wamls I3 adas
PRI - 119 U - .
{ P mewsud emibie sys
!.ou!3o+0-cd¢cc3

w ot Kim L mimd wowmin wm

coneflea(ecaaanne

e es« SKIP1.POP.AF
-.;FIX.THE.STACK

'LOADER CODEL'

ADDRESS TO LOAD AT
NUMBER COF BYTES TO LOAD.
TRANSFER ADDRESS

Sometimes, the 1loader instruction <calls for the load to be fewer
than 256 bytes, (remember ...256 is representeda by 'Q@' (HEX)) 1in
which <case the number following the address will be 'FF' or smaller.
In the above example, the code is not long enough to call for 256
bytes.

If you look closely, you will see that at relative bytes '7F' and
'80"' there are the HEXADECIMAL numbers 'E8FD'. This translates to
'FDES'

61

and you might recognize these numbers as that first load address that
begins at relative byte '62'. In this example, the 'TRANSFER ADDRESS'
15 the same as the first lcad address. In another program it could be
in another place, depending on where the author of the program decided
to begin execution.

There is no "ECF' marker. The 'EOF' is noted in the 'FPDE' and the
last two bytes of the file is ALWAYS the 'TRANSFER ADDRESS'. There
are more 'loader codes' and are covered in the next section.

9.5 SYSTEM FILES

e

system files are just like the 'OBJECT' described in 9.4 with a couple
of additions. A system file can be identified from the 'FPDE' by the
bit record of the first byte of the 'FPDE'. (BYTE '@', BIT 'l' = 1).
Other than that there should be no difference between a *SYSTEM FILE"
and any other CBJECY file.

Note, that I said, "Shouldn't be." Well, the Radio Shack system
tiles (originally written by R. COOK) and the VTOS 3.8 system files
(written by R. COOK) are different, Figure 9.5 is one of those files.
If you poke around, on a NEWDOS disk, you will find that the system
Liles, added by Apparat, are just ordinary object files.

figure 9.5

CGOE500 1FAS = I
LEWYS510 2043 oM 0T LaCuby *o%
bgO524¢ 5@¢52 .*.% PROPRIETARY
BEO530 202A « PROGRAM. *.*,COP
LBes549 6329 YRIGHT.(.) «1978.
Luus56 2052 o Xt JBY RANDOLP
LeBs6H 202A B COOR, oo™ o ™o WCA
Lees7E 2C20 EROLLTON, .TEXAS.
BGH586 2052 .*¥.* ALL.RIGHTS.
BPB590 692A RESERVED, ¥ % % %
VEB5AB 2043 eN.O.ToeI.CoEa*. %
ﬁﬂﬂSBﬂ A24B o*.tuo@o-KooD..-
GOB5CH BB44 BuaDds swaDisa DB
WoBY5DL 4537 e oeK@..7E7E7ETE7
BOOSED 1700 E7ETE7EeasConnne
UUosSFo Ve@2 A S

The first thing you will notice about these handsome devils is that
they all start with '0#566°'. Here are the loader codes that I know of
—-— there could be more,

g1
o & £3 to 1F

Load the following object code.

Do not load the following 'n' bytes.

where 'n' = a one byte value of the

number of bytes to skip.

The following 2 bytes contains the transfer
address. See relative bytes '7D' & '7E' in fig-
ure 9.4

B202

50, to translate:
'9566 '= skip the following 6 bytes,
'1FA9'= skip the following 'A9' bytes.
(169 DECIMAL)

62

If you will count the 169 (DECIMAL) bytes, you will find that you are
at relative byte 'B2'. The very next byte is a code to actually 1load
code, (HOORAY!) It is: 'Gl 980C 4¢' and is the instruction to load the
next 8 bytes at '40@C'. Following those 6 bytes we come to another
load instruction: '@l @B2D 4¢°', i.e., load the next 11 bytes at
'492D".

Right here you should be saying to yourself, "WAIT JUST A DAIMN
MINUTE!" RIGHT! The load instruction said to locad & bytes but there
were only 6 bytes before we encountered the next load instruction. 1In
the instruction following that, the load instruction said to load 11
bytes ('6B' HEX) but there were only 9 bytes to the next loader code!

You're right on the ball. The count INCLUDES the two address
bytes!

If you 'KILL' a system f£ile, and then decide to re-copy the system
file back onto the diskette the 'FPDE' must be in the same position in
the directory as on the original DOS! The disk space, assigned to the
file, must be accounted £for IN THE FIRST EXTENT ELEMENT! No other
extent elements may be used! This does not apply to 'SYS6/SYES', it may
be anywhere, Also, the actual location of the system program may be
anywhere on the disk except those as noted in 9.6, belcw.

9.6 'BEOT/SYS' - 'DIR/SYS' - SYS@/S¥YS
e S e e R S|

'BOOT/SYS' and 'DIR/SYS' are 'SYSTEM FILES' but do not contain code
that may be executed, 'BOOT/SYS' is a '"TABLE' that is loaded when LEVEL
IT BASIC determines that there is a disk drive system attached to the
expansion interface, 'DIR/SYS®' 1is the directeory and is never
executed. They occupy space on the disk, as system Liles (as they
are), but do not contain code that may be executed. 'SYS@/SYs'
however, 1s executable code and must be lccated beginning at TRACK
t@gt; SECTOR '5%',

9.7 'ELECTRIC PENCIL' FILES.

L=l e e s e

This one is so easy. It is a straight, plain vanilla, ASCII file,
with a carriage return at the end of every record, and an 'EOF' marker
at the end of the tile. The 'EOF!' marker is 'B#' (BHEX) and is located
at relative byte '45", in this example, That's all there 1is to it.
Figure 9,6 is a short 'PENCIL' file.

figure 9.6

FEOOOE 2B21 khhkhdhdhhrhddk
Fooply 2026 «seeTHIS.IS.AN.
FOpB20 454C ELECTRIC.PENCIL.
Fpop30 4649 FILE, ®*k%k %k kk k%
FOAOAO 2A2A REBR wrew S ReTs
FOp@58 ESES Heeie @iRIEe EiCeTRTeIE RS
Fapoe® ESES secsssssasssasca
Fo@B70 ES5ES e
FABEB8Y ESES ctesssrsessseces
FA@P@9® ESES sssssssssessssas
F@porg ESES seasacasssganana
FOpBBE ESES P L S g
FAQPBCH ESES
F@P@DE ESES
FAGOE® ESES
F@@@F@ ESES sesasesesesessne

= F 8 " 8 0 8 %8885 En 8D

5.8 MACRO-8W FILES
e
Just when I thought I was finished with the file formats I realized
that there was one more, HMicrosoft's MACRO-8¢ text editor files. This
is a line oriented text editecr and is not too popular with the TRS-80
crowd but it ain't all that bad either. It has some interesting
features (another way of saying, "it's CK, but I prefer to use
something else) but is difficult to use and the documentation is not
exactly self teaching.

Figure 9.7 1is a typical sector of a file created by the MACRO-80
text editor.

figure 9.7

Febubo B1lBU BGEY 4245 4351BEGIN...EQ
FOEB1w 2026 2020 3438 B2Bp U.....48060.....
Fope20 20208 2020 20206 2020ORG...
FOBU3W 4245 4749 AEGD 2020 . .BEGIN: isiemeas
Fobway 202€ 2020 4C44 484C ...esslDeu....HL
FOpEs50@ 4139 4448 ¢DBY 220 #BAIDH. savwvoosn s
FOBbu6E 2020 204C 4420 4646 . ..oelDogeess (PP
FOooau7e 292C 484C @DBY 2H28 FE) pHlw swvs swns s
FOUBEw 2020 2045 4E44 4547END.....BEG
Fogocg 6DU0 PBUL VYWD RN THewwss coes s
FOPOAD bebb bUPE COOG OO0 voesnecsscosccas
FUOGBG LOUL 0UEUe BOOQ UBPP soceenscsnsacsons
FOOUCH buee cuwbe vooe BUUE 5 s eems oo Sk &
FOWODE PBOL LEBE b6WE BEoe reevessnes
FOOOED bbbp v0Be CeEe BROD wyvevvsvessaneas
FOBUFE bUEE 0ceo veeg OO s vovin www awee s

There are only a rew minor differences between this file structure and
ASCITI tiles, Apparat modified EDITOR/ASSEMBLER files and 'ELECTRIC
PENCIL' tiles. Like SCII files and 'ELECTRIC PENCIL' files, each
record is terminated with a carriage return ('GD' HEX). Like an
'"ELECTRIC PENCIL' file, the end of the file contains a zero. This
text editor, unlike the Apparat version of 'EDITOR ASSEMBLER', DOES
NOT WRITE 'FILLER HMATERIAL' T0 THE SECTOR - IT WRITES ZEROS FOR
FILLER,

This makes the INACRO-8¢ files compatible with 'ELECTRIC PENCIL'.
After a MACRO-80 file is loaded into 'PENCIL', it must be mnodified
somewvhat in order to print on your line printer. After loading a
MACRO-80 file into 'ELECTRIC PENCIL', you will notice that the
MACRO-86 line numbers appear on the screen as TRS-80 graphics.

Now here 1s some real wizard stuff - with the 'DOWN ARROW', move
the cursor past the text. As the cursor passes each group of
graphics, the graphics are changed to numbers! How about that!

Following each number there will be a small 'RIGHT ARROW'. (ASCII
code number: '89' HEX) This arrow is NOT one of the normal 'ELECTRIC
PENCIL' codes and must be removed to print the file on the line
printer while in 'ELECTRIC PENCIL'.

64

Once the ‘'right arrow' is removed, however, you cannot relocad the
file into the MACRO-80 text editor without MACRO-8f putting on another
set of line numbers. You are better off to remove all line numbers in
the pencil file and let MACRO-80U re-append a new set,

You will notice that there is no '"HEADER RECORD' on MACRO-8¢ iiles,
as there are on Apparat generated 'EDITOR ASSEMBLER' files. BMACRC-8E
will load any kind of an ASCII file, and will attach its own line
numbers during the load process. The file may be written back to disk
from MACRO-86, using the 'SWITCH' option, which will delete any line
numbers it has attached. This means that you could make 'ELECTRIC
PENCIL' tiles from MACRO-86 directly, if you had the need.

65

1.6 DATA RECOVERY

e N T e e e ey

If you are like most people, you are reading this first instead of
last. It you are, I can only say, "Good Luck."

You really need to get a good understanding of the disk and the
directory before you try these things. Now, no matter how painful, go
pback and read the first eight chapters.

Now that you've read the first eight chapters (Jeez, that was
fast!) we will proceed ..

10.1 RECOVERING A 'EASH' CODE FOR TEE 'HIT' SECTOR
“
Since we do not know the algorithm for the 'HASH CODE' we will have to
revert to devicus means to obtain it, There are two ways:
(1) 'SAVE' a one line program, while in BASIC
using the 'FILENAME' of the program whose
'"HASH' you wish to obtain ONTO A SEPARATE
DISK. Example:
1 REM THIS IS A TEST
SAVE"<FILENAME/EXT>"

The recason for & separate disk is so that the DOS won't accidentally
write cver the file name 'FPDE' you are trying to recover! Of course,
if you have copied the sector to a 'BUFFER TRACK' there is no
problern,
(2) "OPEN' a file in command mode, from BASIC,
using the 'FILENAME' of the program whose
'HASE' you wish oi obtain. Example:
OPEN"O",1,"<FILENAME/EXT>" {ENTER>

Once you have 'created the file', use "SUPERZAP" to go look at the
'HASH' (don't forget to write it down), then 'KILL' the file, Now you
have the 'HASH CODE' ifor the file you wish to recover.

lb.2 RECOVERING A "KILLED FILE'
. Tl PV ————Try
Wnen you 'KILL' a file the following three things happen:
(1) The 'HASH' code is removed from the 'HIT' sector.
(2) The 'GAT TABLE' is revised to reflect the now
available granules,
(3) Byte € in the 'FPDE' (and 'FXDE', if it exists)
is changed to "g@'"'
Everything else remains as it was. The file is still out on the disk,
and the entries in the 'FPDE/FXDE' remain unchanged except for byte
€.

Frrkkkkkkk WARNING *** WARNING *** WARNING **%%xkxx*

* % * %
* % ON TRSDOS 2.2 ALL TRACES OF THE DIREC- k%
* % TORY ENTRIES IN THE 'FPDE/FXDE' ARE * %
* % ZEROED OUT WHEN A FILE IS 'KILL'ED 1!! * %
* % &

khkhkitdhkhx WARNING **=* WARNING ##% WARNING **%%%x%%%x

66

As you can observe in my casual note above, Radio Shack's Software
Development (2?) Group, has, once again, in its infinite wisdom (I
wonder if they talk to the Ayatollah?), has done & really neat thing
for the wusers. I suppose this is to protect them from having one of
their "super-neat" programs, like the 7 hour / 40¢ name / MAILLIST /
sort, slipped out, recovered, and unscrupulously used by a demented
inmate of the Peoria Institute <for the Rehabilitation of the
Non-Mentally Deranged and former residents of Burbank.

You can still recover 'KILL'ed files on TRSDOS 2.2 but you will have
to search around until you find all of the sectors, then reconstruct
an 'FPDE' in the directory.

19.2.1 Here are the steps for
recovering a 'KILL'ed file:
Y e — 5

(1) Obtain the 'HASH' code of the '"FILENAME' of the
program. See 10.1 above.

(2) "ZAP" the hash code into the proper place in the
'HIT' sector.

(3) "ZAP" byte © of the 'FPDE/FXDE' with a '18°"

18.2.2 If it is a '"BASIC PROGRAM'
(BINARY or ASCII format) file
then:

(1) "LOAD' the file into BASIC

(2) 'SAVE!' the file using the 'FILENAME' it was
recovered under, This will correct the 'GAT'
allocation,

(3) Run a 'DIRCHECK' to determine if any 'GAT' or
'"HIT' errors remain,

LSS RS RS SR EEE RS NOTE #%%%kkkkddhddAX AL fdk

* % * %
nk FILES WILL LOAD AND EXECUTE PROPERLY %k
R WITH 'GAT' ERRORS -- BEWARE OF 'SAVE' ok
* % OPERATIONS WHEN 'GAT' ERRORS EXIST! A
* % **

LESESEEEEEE RS SRS S SRR L o R R T)

19.2.3 If it is an "ASCII', '"BINARY'
(RANDOM) data or an ASSEMBLY
LANGUAGE program or data file
then:

e e ——

(1) Run 'DIRCHECK' and obtain a listing of the 'GAT'
and/or 'HIT' errors that exist.

(2) Using the 'GAT MAP' (figure 6.6) correct 'GAT'
errors by "ZAP"ing the 'GAT' table.

(3) Repeat (1) until all "GAT'/'HIT' errors are
corrected.

67

1.3 RECOVERING A FILE/DISK THAT WON'T 'BOOT' OR READ

THE DIRECTORY.
h
'‘inls one can be a bitch, to say the least, There are no short cuts
save one, and that one dictates that you have a 'BACKUP' copy of the
disk with a directory that is partially correct. This will give some
clues as to the track locations of the varicus file 'EXTENTS'. Other
than that, it's time for that wonderful programmers' pastime, "SEARCH
THE DISK"!

Be sure to take plenty of notes if you have to search the disk
Sector by sector; ir you don't, you won't remember which sectors you
Searched and tried and which ones you didn't.

I see that BRill Barden has a guestion. Yes, Bill? How does the
directory come to be 'EATEN' 1in the first place? Hrmmm, good
guestion. There are dozens of reasons and the principal ones are:

(1) You tried to 'KILL' an open file. (DIRECTORY
CLOBBERED)

(2) You turned on the disk drive with the disk
in the drive, (USUALLY TRACK @, SECTOR ¢ BUT
COULD BE THE DIRBCTORY)

(3) You turned your CPU/INTERFACE on, with the disk
in the drive. (WHEREVER THE DISK HEAD WAS
LOCATED AT THE TIME)

(4) You attempted to 'SAVE' or write to the last
sector of a nearly full diskette (TRSDOS 2.1 &
2,2) - (It should work but doesn't) (DIRECTORY
GONE AND USUALLY CONTAINS 'GARBAGE')

(5) DOS got confused during a 'CLOSE' operation and
de—-allocated a few GRANULES. After several 'SAVES'
and 'CLOSE'es it became further confused; didn't
Guite know where to put something for a 'SAVE',
'"PUT' or 'CLOSE' so it deposited some of its
burden all over the directory making it unread-
able, (DIRECTORY USUALLY CONTAINS PROGRAM
HATERIAL)

(6) Your CPU or Expansion Interface has bad memory
and/or the file control block has bad data prior
to or during a 'CLOSE'. (DIRECTORY CONTAINS
GARBAGE)

(7) Faulty logic card in the disk dive unit. (DIR-
ECTORY CONTAINS GARBAGE)

(8) Disk head out of alignment on a drive unit.
(DIRECTORY HAS PARITY ERRORS, SECTOR NOT FOUND
ERRORS)

(9) Someone in Fort Worth dosen't like you. (NOTHING
IS RIGHY)

(10) EBveryone likes you, your system works perfectly
but you don't want to be left out of all
this fun,

68

10.3.1 The following steps are ror

recovering a totally 'eaten'

or '"clobbered' directory.
e e R e . S e |
You can usually spot this one right away Dbecause the directory
contains ‘'garbage' or program material. You will f£ind that you will
nave no trouble reading the directory with "SUPERZAP", but the disk
won't function at all.

(1) Locate the file EXTENTS; where they start; where
they end; and the exact number of sectors in the
file.

) 'FORMAT' a 'working disk'

3) Create a file FPDE on the working disk, with the

'SAVE' or 'CPEN' technicue. (See 10.06 above)

(4) Transfer the sectors that you previously loc-
ated trom the clobberec disk to the working
disk INTO ONE EUGE FILE EXTENT IF POSSIBLE.

This will make f£ixing the directory easier
because you need make only one EXTENT ir the
'FPDE"',

(5) "ZAP" the EXTENT of the 'FPDE' tc point to the

reconstructed file.

(6) "2AP" the EOF SECTOR BYTES (BYTES 14 & 15) with
the sector count +1l.

(7) "2AP" the ECF BYTE (BYTE 3) with the relative
byte number of the last byte in the EOF sector,
If you cannot identify the ECF byte, then make
a '"SWAG' (Scientific Wild-Ass Guess). If it's
wrong you can always change it.

(8) If its a 'BASIC PROGRAN' tile, 'LOAD' it and cee¢
how much of it loads. You should be able to tell
how successful you were just by locking at &
'LIST' of the program. If some of it is gar=-
bage note the last 'good' line of the program
and RUN "SUPERZAP" again and take another crack
at eliminating the bad portions by moving up
or relocating other ¢good sectors to substitute
into the bad sectors.

(9) 1If some porticns of a sector are 'bad' then
use 'COPY DISK DATA' to move good data over bad,

(16) If the recovered material is other than a 'BASIC
PROGRAM' file, then you will have to verify data
by reading it in via 'LINEINPUT' or 'FIELD®
statements.

(11) You may attempt to verify ASSEMBLER LANGUAGE
files by using APPARAT'S DISASSEMBLER., If they
make sense to you in the disassembled state
(Which requires an intimate knowledge of
assembler code) then the file is probably OK.

If not, you will have to execute the file and
attempt to locate problems via 'DEBUG'.
(I wonder if Muhammad Ali knows about DEBUG?)

69

lv.3.2 Recovering a file/disk with an

unreadable directory.
7 e E L - LY N i T P S50 YY) -
Tnis one 1is fairly easy but I should describe one of the fine points
that exists here. You may find that the disk won't 'BOOT' (if it's a
system disk) or that you can't get a 'DIR' tc work but you can still
read all the sectors with "SUPERZAP", then you have an 'UNREADAELE'
alrectory. It is 'UNREADABLE' by the system; NOT by "SUPERZAP"! Here
are just a few of reasons why a directory is 'unreadable'.

(L) It isn't the directory at all - the *BOOT!
sector is 'clobbered',

(2) One or more of the directory sectors has a
PARITY error,

(3) READ protect status has somehow been removed
from one or more of the directory sectors.

Berore going into outer space to £fix the problem first try using
"SUPERZAP"'S 'BACKUP' function. HMany times this will 'fix' the disk
without further adieu, If that shot in the dark fails, try the
following:

To repair the problem you must correctly identify it, Using
"SUPERZAP"'S 'DD' function:

(1) Check the directory sectors for parity errors,
They will automatically be detected when you
try to read a sector with bad parity., If, after
& bad parity read, the sector loocks OK, 'SCOPY!
it back to THE SAME SECTOR YOU READ IT FROM. This
will automatically repair the bad parity!

(2) Check the sectors for 'KEAD' protect status.
There will be a '6" on the last line of the
"SUPERZAP" display on the left side in column 7.
IF THIS '6" IS NOT THERE 'READ' PROTECT STATUS
HAS BEEN REMOVED AND HMUST BE REPLACED!

(a) Copy the gector to a "BUFFER SECTOR'.

(b) Copy ANY GOOD DIRECTORY SECTOR TC THE
SECTOR WITH BAD STATUS. This will re-
establish 'READ' protect status.

(¢) Copy the sector in the 'BUFFER SECTOR'
back to its original sector using the
'"COPY DISK DATA' function. *** NOTE:
Only copy 255 bytes ('FE' (HEX)) back
to the original sector! This will pre-
serve the 'READ' protect status.

(e) Manually "ZAP" the 256th byte back into
place,

(3) If after checking the directory, all is in
order, and you determine that it HUST be the
'BOOT' sector (Track 6, Sector 6); simply copy
a good track @, sector @ from another disk.

10

16.4 RECOVERING AN ELECTRICALLY DAMAGED DISK

The disk 1is OK, you can detect no physical problems, but some trecks
or sectors will not load., It might have become that way by getting
'zapped' with static, or you performed & 'WRITE' operation on & disk
that was not centered in the drive. Also most of the reasons given for
a 'clobbered' directory, in 1¢.3, could apply nere. In addition, there
are some other less obvious reasons which I shall call to your
attention.

(1) Beware of magnetic paperclip holders! These
things are common items around offices ena
they will make a meal out of your disks.

(2z) HMagnetized paper clips that have been in mag-
netic paperclip holders. Don't ever let any-
ohe use paperclips on digks! Besides, it's bad
for diskettes even if the paper clips are not
magnetized,

(3) A disk placed under & telephone is a likely
candidate for the feormat farm. It can be
wiped out when the phone rings.

(4) A disk placed next to an electric pencil sharp-
ener or any cther type of device with an
electic motor or transformer can be erased.

An uncentered disk is a common problem. Shugart, Pertec, and
Wangco disk drives have this problemn., It 1e due to the short
centering cone, and abrupt lead-taper of the centering cone, It can

be partially alleviated by NOT CLOSING THE DOOR TC THE DISK DRIVE
UNTIL THE MOTOR GOES ON! However, for you TRSDOS 2.1 and 2.2 users
this will result in the famous old 'SILENT DEATE' routine if you den't
get the door closed before the DO0OS accesses the designated drive.
APPARAT NEW DOS and VT0OS 3.0 will wait until you get the door clesed.
VP0S 3.0 is o little more fussy but <SHIFT> 'BRERK' will cause it to
try again,

Now for the recovery. Usually you need to recover the disk Dbecause
you need to back it up and a sector is bad in the middle of a
particular program or file. (What else?)

(1) Use "SUPERZAP" to verify the sectors.

(2) Note the bad sectors.

(3) Format a disk and make a "SUPERZAP" BACKUP.

(4) 'SKIP' any bad sectors that won't respond
to a '"REENTRY'.

(5) Using 'DD' look at the sector BEFORE and AFTER
the bad sectors —- maybe they don't contain any-
thing important anyway, in which case you can
forget them.

(6) If you're not sure that the bad sectors are being
used by some file, check the 'GAT' sector and
determine if the track/sector is allocated.

If you want to find out which file it's allocated
to, without plowing through the directory, simp-
ly de-allocate the track with "SUPERZAP" and run
'"DIRCHECK' —--- It will tell you which file it
was allocated to.

(7) Attempt to LOAD the program or tile that was in
the damaged portion of the disk.

(8) Follow steps outlined in 16.3.1 (8), (9), and
(10)

T1

1.5 RECOVERING A PHYSICALLY DAMAGED DISK

I L . Y A - T P Sl

This unrcortunate circumstance can occur in many unpredictable ways.
You could have accidentally scratched the disk while using it for a
shoe hern or a pipe cleaner. It could have been carelessly handled by
a store clerk who thought it was a Master Charge Card and ran it
through his little machine., A friend who had just dropped by to visit
after & taco eating contest picked it up with thumb and ferefinger
expertly placed on the nead access slot,

In any case, this agyravation ies handled in exactly the same way as
described 1in 16 .4.

CAUTION - [MMAKE SURE THE FOREIGN HATERIAL THAT IS ON THE DISK IS
SUFFICENTLY ATTACHED SO AS NOT 90 CONTAMINATE THE DISK 'READ/WRITE'
HEAD. If vyou determine that the disk surface has been contaminated
with a tforeigyn substance such as finger prints, coffee, hand lotion
etc.,, here 1is one semi-drastic measure you may take that I have used
successfully on one c¢r two occasions:

(1) CAREFULLY slit the back of the disk jacket
and remcve the disk., DO NOT TOUCH THE DISK
SURFACE! EANDLE BY EDGES AND CENTER CNLY!

(2) CAREFULLY wash the disk in warm soapy water
using vour WET AND SOAPY fingers to GENTLY
STROKE (DO NOT RUB) the disk.,

(3) THROUGEHLY rinse the disk in warm water,

(4) If scap and water did not do the job, add
alcohol to the water and try again.

(5) Repeat # 3.

(6) Place the disk on a sheet of NEWSPAPER.
WARNING - PAPER TOWELS LEAVE LINT!

Lay another sheet on top. Press gently.
Repeat until the disk is dry.

(7) Under no circumstances rub the disk!

(6) When the disk is dry, CAREFULLY reinsert it
into A NEW JACKET - DO NOT TOUCH THE MEDIA!
(Here is a good use for those diskettes that
weren't any good and you couldn't bring yourself
to throw away.)

(9) BACKUP WHE DISK IMMEDIATELY!

1.6 RECOVERING A "BAD PARITY' ERRCR

L _____ s Lstlls e ________t.=]

Bad parity can be the result of one bit being incorrect or as bad as
every bit EXCEPT one. Sometimes the sector is good and the parity is
incorrect!

Ift you notice that one drive has more parity errors than another
then look to the drive as the cause. You may also £find that the
sectors are OK and that you only get errors during 'READ' operations.
Once again, look to the drive unit for the fault.

(1) Using the "SUPERZAP" 'VERIFY DISK SECTORS',
determine which sectors are bad., If there
are only a few of them then

(2) Use the 'DD'" function to read the sector.

If everything looks OK and you cannot de-
tect an error, then type: 'MODEO' then press
<ENTER>. This will simply write the sector
back to the disk WITH CORRECT PARITY. DO
NOT ACTUALLY 'MODIFY' ANYTHING!

12

It the problem cannot be corrected by the above method then:

(1) Attempt a "SUPERZAP" 'BACKUP'. Use the 'R’
(RE-ENTRY) command when the routine encount-
ers a sector with 'BAD PARITY'., If you are
unable to copy the sector then make a note
of the unreadable sector(s) and 'SKIP' those
unreadable sectors.

(2) Determine if the 'BAD PARITY' sectors are act-
ually used by a file. There is no use 1in re-
covering a sector not used by anything.

Once you have made a "SUPERZAP" 'BACKUP',

onto a formatted digskette, all the sectors are
good and the disk will 'BACKUP' via normal
methods.

(3) If the 'BAD PARITY' sector(s) are used by a file
then there are two procedures we can use to
recover the file.

METHOD 1

(a) Attempt to read the sector with the 'DD'
function. If the read is ftairly successful,
'SCOPY' the displayed sector to a 'BUFFER TRACK'
or '"BUFFER SECTOR'.

(b) Continue to attempt reads with 'DD' and copy
partially read sectors to the 'BUFFER' with
'SCOPY"' until you are satisfied that you can-
not get any more good bytes from the sector.

(c) Using the '"PD' function, make a hard copy
of the 'BUFFER' sectors. With this as a
guide ...

(d) Painfully construct the sector byte-by-byte,
using the 'MODnn' function, te yet another
‘empty' 'BUFFER' sector. Ocr, if the
'SCOPY'ied sectors have large chunks of usable
material, then use one of these sectors for
reconstruction., You may also use 'COPY DISK
DATA' for moving bytes from one sector to
another.

(e) When the sector is reconstructed, copy it back
to its original track/sector address.

METHOD 2

(a) Find an earlier version of the clobberec sec-—
tor and copy those bytes to the bad sector,

(b) If the earlier version is incowuplete and you
simply need to recover MOST of the file, then
move the sectors below the offending sector up
and change the 'FPDE' pointer in the directory
to reflect the current Sector count and the ECF
BYTE.

73

1¢.7 RECOVERING A 'DIRECT STATEMEMT IN FILE' ERROR
e~ 2 S e T 17 s S . S

I must contess that the first hundred times I encountered this error
it nearly drove me crazy. (Nearly?) Before I got the TRS-88, I had
never laid hands on a computer in my life and the cryptic messages
LrOnl this magic machine, without explanaticns, were conpletely
baffling.

What made 1t doubly worse 1is the fact that neither the LEVEL II
wanual or the disk manual gave the slightest clue as to what a 'DIRECT
STATEMENT 1IN FILE' was or how it got there,

This little cutie may occur in one of two ways. It 1is wusually the
result oif a very minor 'bug' in LEVEL 2 BASIC. It happens when you
'SAVE' a program that nas a statement line that 1s longer than 249
bytes.

How can that happen? Easy. It happens when you 'EDIT' a long line
and 1nsert wore characters than the disk operating system can handle,
Normally the system checks line lengths and will not allow you to make
a4 linre too long. In the 'EDIT' mode however, the checking does not
runcticn guite correctly.

The other condition is very similar to the 'EDIT' condition, in
that you 'SAVED' a file WITH THE ASCIlI OPTION, and it had statement
lines that were 1longer than 246 bytes WHEN THE BASIC TOKENS WERE
EXPANDED TC THEIR FULL ENGLISH EQUIVALENT!

In the TRS-8¢0 LEVEL II manual, Appendix A, page 16 it clearly
states:

Pro¢gram Line Length: Up to 255 characters.

Actually BASIC will only '"LOAD' 240 characters of program material at
4 time! An assembly language 'OBJECT CODE MODULE' will load 256
characters of program material., A random file record or an ASCII data
record, on the other hand, will load up to 255 characters with TRSDOS
2.1 and NEWDOS 2.1 and 256 characters with TRSDOS 2.2. SUPERDOS will
load up to 4,695 characters with certain types of files and 256
characters with random files.

For a BASIC program, each statement line must have a line number,
The condition that exists with a 'DIRECT STATEMENT IN FILE' is that
the computer loaded a line with a line number and 24¢ characters and
there were some characters 1left over. These are the 'DIRECT
STATEMENTS' that are in the file. Since they don't have line numbers,
BASIC dosen't know what to do with them!

What does that have to do with the ASCII mode? Well, Level 2 BASIC

actually uses 'TOKENS' to store program statements in memory. For
instance, when you type 'PRINT' the machine does not store the actual
characters that you typed or that it is displaying on the video, It

is actually storing a '?' in memory. This '?' takes only one byte to
store., the word 'PRINT' would take 5 bytes to store. (See Appendix A
ftor a complete listing of the LEVEL II 'BASIC TOKENS')

When you are writing a program, the system keeps track of how many
characters each '"TOKEN' would take if it were completely spelled out.
This would NORMALLY prevent you from getting a direct statement in
file when you 'SAVE' a program file with the ASCII optiocn. 1In the
'"EDIT' mode, LEVEL 2 will allow you to insert a few extra characters
-== just enough to put you over the legal limit. There you have it,
friends and neighbors =--- the Secret oi the Shifting Whispering
Sands.

Now, what to do about it. Actually this is a fairly easy condition to

rix, All we need to do 1s insert a line number in front of the
offending 'DIRECT STATEMENT' that's in the file. We'll do the easy
one first,

74

19.7.1 ASCII file with direct statement error.
T B .]

(1) Determine the last line number that 'LOAD'ed.

(2) Determine the last characters that 'LOAD'ed.
(Use '"LIST' to determine (1) and (2).)

(3) Locate the file on the disk, using the previous-
ly described methods in 10.6.

(4) Scan the sectors of the file until the sector
with the error is found. This will be easy with
an ASCII file because everything, including line
numbers, are in readable form,.

(5) Now, "ZAP" a line number anywhere in the offend-
ing line that is LARGER than the preceding line
number and SHALLER than the next line number.
You will lose a few characters of your program,
(A small price to pay.)

19.7.2 A "BINARY' file with 'DIRECT STATEMENT' error.

e e < e A T T L R

This one isn't really so tough - it's just that the file display is a
littie harder to read, All of the line numbers are in hexadecimal
notation and the statements are in token form. You should be able to
recognize portions of the program however, from the variable
statements, string statements and remarks.

A 'BINARY' file, with a direct statement error is a very rare
occurance. It has happened to me only a few times in a year. I do
not know how I was able to generate the error and 1 have not been able
to duplicate the error on purpose but have had it happen accidentally
several times. Because I was not able to duplicate the error on
purpose, the following examples are contrived, but the recovery is a
valid one ... I know THAT for a fact as a result of having had to
recover a couple of binary files with a direct statement in file
error.

Figure 10.1 is an example of a BASIC program file stored in 'BINARY'
format, You will recognize the code as the first part of your
"SUPERZAP 2.0" program so you will be able to experiment along with
me, as we try out these various technigues. Figure 1¢.3 1is a listing
of the first part of "SUPERZAP", with and without the simulated
'errors', so you may compare the actual 'BASIC CODE' with what 1is
stored on the diskette,

ftigure 10.1

P1APOP FFF4 2F44 4953 ...2..:.MAIN/DIS
V1A01H 4B20 502F 4D4F K.MEMORY.DUMP/MO
B1AQ20 4449 2E20 2656 DIFY.ROUTINE...V
UlA030 4552 6964 0@P8D ERSION.2.06......
UlAp4p 2031 24D5 C93A .10400.)...AS..:
B1AG50 208F 3530 3A20 ...AS$.""...150:.
P1AG60 203A 3A20 9206 .:..BX..(AS$):...
P1AQ7® 4E69 3820 D22¢ N.....BX...48...
P1AD8D 4258 4258 CE34 BX..57...BX.BX.4

01A090 383A 58D4 D536 8:.........BX..6
glAOAG 3520 2942 58D5 5...BX..70...BX.
P1APBY 4258 @142 58D5 BX.55:.4¢.0.7.BX.
B1APCO CE42 3A20 2A2A .BXiesissssst**
G1AQDO 2A2A 4142 4C45 ***x%%%%x YVARIABLE
P1ABEG 2041 494E 4849 ,ALLOCATION,INHI
VI1AGFO 4249 2528 3129 BITED.....D2%(1)

In the above figure, relative byte '3D' and '3F' are typical line
numbers. The contents of these two bytes are '64' and '68'. To read
them you must REVERSE THEIR ORDER s0 that they read as 'G@6' and '64'.
If you have done your homework and didn't chew guri in class, you know
that ¢@64 (HEX) is equal to 166 (DECIMAL).

Our simulated 'DIRECT STATEMENT' error is the code beginning at
relative byte 'Cé' and continues for the next 5 bytes. Actually I have
'rigged' this error but you may verify that the changes are wvalid by
"ZAP"ing the error onto a backup copy of "SUPERZAP® and 'LOAD'ing it
——— THIS WILL LOAD; AN ACTUAL 'DIRECT STATEMENT IN FILE' ERROR WILL
LOAD ONLY UP T0 THE POINT WHERE THE ERROR EXISTS! Now, "ZAP" in the
correction and 'LOAD' it again.

The exact error is '953A 923A 94'. 1In actual practice you will not
know the exact error or precisely where it occurs. All that you will
know 1is that the program won't 'LOAD' beyond & particular PLACE in a
line number. That is your clue as to where to '"fix' the damn thing.

Since the exact place that we want to "ZAP" in a new line number is
relatively unimportant, I'll pick relative byte 'Cl' and start making
the changes there, We need a line number larger than 3¢@ and less
than the next line number (which happens to be 400); I think 356 is a
good <choice, Note that 350 (DECIMAL) is equal to G15E (HEX). In
keeping with the general scheme of things we must reverse the order of
the HEX numbers so they read: 'S5E@Ll'. 1In addition, we need to insert
the codes that BASIC needs to properly load each line.

The codes are in the 3 bytes preceding every line number and always
start with '68'. Since we need to just get the file loaded so we can
correct it, simply 'borrow' a code from another line number ('6G86 69'
is the code from line 30@) and you have everything you need to
coumplete the operation.

SHAZAM! We start "ZAP"ing relative byte 'Cl' with the focllowing:
'00 8069 5EU1'. Figure 16.2 is how the sector will look after the new
line number is inserted.

figure 16.2

GLAGBY eee2..2 MAIN/DIS
GlA@le K.MEMORY .DUMP/MO
B1AQ20 DIFY.ROUTINE...V
GlA@3H ERSION.2.0u0.eu...
GlAQGAQ o10400.) sochBaat
B1lAQG5P v sBAS "My uw 150
V1AG60 e s BRe (AS) o v
V1AGT O NeiswaBXossldBeau
PD1A080 BX..57...BX.BX.4
01A090 B8iiiveeaeeaBX..6
PD1ADAD 5...BX..70...BX.
UW1AOBG BXbhz ouies is.BX,
G1AQCH BX G saan st s k%
@1AGDO **kkkkk* VARIABLE
G1AGEQ LALLOCATION.INHI
G1AQFO BITED.....D2% (1)

76

Load the file, correct the Jline we just «created, and the line
preceding it,. How 'SAVE' it back to the digk and everything will be
correct. With that cemplete you are ready to run. (Next case!l)

fiqure 16.3

NORMAL "SUPERZAP" LISTING

56 REM: MAIN/DISK MENORY DUMP/MODIFY ROUTINE. VERSION 2.0
19y GOTO 10460

150 AS=INKEYS: IF AS="" THEN 150: ELSE BX=ASC(AS): RETURHK
2900 IF BX >=48 AND BX<=57 THEN BX=BX-4&: RETURN

25@ IF BX>=65 AND BX<=70 THEN BX=BX-55: RETURHN

368 BX=-BX: RETURN

350 REM: *#%#%%%%%%% YARTABLE ALLOCATION IMEIBITED

490 D2% (1) =VARPTR(D2% (5)): DEFUSR2 = VARPTR(D2% (€))

450 X=USR2(@): RETURN

506G ' *F***%kkkk%*%%* END OF VARIABLE ALLOCATION INEIBIT

550 GOSUB 156: GOTO 2006

"SUPERZAP" LISTING WITH SINMULATED ERRCR CORRECTED
Notice that line 35§ now contains 'GARBAGE' but file will lcad CK,
T
56 REM: MAIN/DISK MEMORY DUMP/MODIFY RCOUTINE. VERSION 2.0
106 GCTO 16464
150 AS=INKEYS: IF AS$="" THEN 15@: ELSE BX=ASC(AS): RETURN
200 1IF BX >=48 AND BX<=57 THEN BX=BX-48: RETURN
250 IF BX>=65 AND BX<=7¢ THEN BX=BX-55: RETURN
368 BX=-
350 LSE:RETURN:STOPREM: **#&*kkkd%* YARTABLE ALLOCATION IMEIBIT
400 D2% (1) =VARPTR(D2%(5)): DEFUSRZ = VARPTR(D2%(G))
450 X=USR2(6G): RETURN
5@ ' #xkkkkkwkkk END OF VARIABLE ALLOCATION IMEFIRIT
550 GCSUBR 15p: GOTC 200

16.8 RECOVERING DATA FILES

W T W N P ¥ e Y

There are no special things to know about data files that make them
more or less difficult to recover than any other type of file. There
are two formats for data: (1) ASCII, (2) compressed binary. The
'FPDE' and 'FXDE' of data files are identical to any other file type
S0 1I you have mastered locating files from the directory entries, you
will not have trouble in this department either.

16.8.1 'ASCII' DATA FILES

] O s . R W A FEETE

ASCII data files are the easiest to read. Everything 1s 'readable'
and will display with the 'DD' function of "SUPERZAP".

Figure 1l@.4 is a typical sector of an ASCII FILE.

77

figure 10.4

SCESUE 2020 100600 savie snws
3UES1Q 2043 2074N-76 ,GEM...C
3BES520 2057 ORPORATION,222.W
3UES3 0 4C4F ILSHIRE,.BLVD, ,LO
3UES5 40 464F S.ANGELES,CALIFC
3UE550 5259 RNIA, 90017, HARRY
3LES6E 2W26 o H. DEORB.: vaws s
30E5706 2644 A.F.G.A,.HANK.D
3GE580 2020 ..PONBAF..C.G...
30E59¢ 4544 A.F.G.A,RESERVED
3BESAD 4B26 ,I.DIDN'T.THINK,
36E5BH 2¢54 YOU.WOULD.FIND.T
3UESCY 38206 HIS,.FRANK,.2.0.
3UE5DY 2E20 ,06/01/79%c0eces
3BESEW ESES HePoserioscoonsa
3BESFE ESED wis wwvee vawi siacws e

You will notice that each successive data item of an ASCII file is
separated by a ',' and is represented in the HEX portion of the
display as a HEXADECIMAL 12C'. The 'EOP' byte of an ASCII file is
represented by an 'empty data item', i.,e., two commas with nothing in
between (Relative bytes 'E7' and 'E8').

To repair data all you must do is “"ZAP" the necessary bytes with the
ASCITI values that represent the data you wish to change. For
instance, suppose you want to change the 'l@g@GO' in the first line of
the above display to '2069'. The numeral 'l' is ASCII CODE '31‘
(HEX) . Change the '31"' at relative byte '61' to '32'. Right before
your amazed eyes the '1@4¢"' will become a '2006'.

I would like to caution you Stanley Rifkin fans that Stanley didn't
do so well in the 'getaway' department, so if you have visions of
doctoring-up a database on a payroll program, forget it.

1¢.8.2 'RANDOM' DATA FILES

“

Random data files are a little more trouble to alter., However, an
enterprising soul such as yourself will find it not too difficult,
The mere fact that you've read this far is commentary on your
tenacity.

The following (figure 10.5) 1is a sector from a randon file. You
will notice that there are no 'delimiters' in the file, such as commas
or carriage returns. Each 'aata item' is butted together. The
Separate data items are separated, in your program, with the 'FIELD'
statement,

The nuneric data, such as 'INTEGER', 'SINGLE PRECISION', and
'DOUBLE PRECISION' numbers are represented in compressed binary
format. To effectively work on the data in a 'RANDOM' file, first
make a 'MAP' of your data as it will be on each sector. Use one of
the 'MAP's in chapter 6 as a quide, Once you have data mapped out, it
1s a simple matter to modify each data item.

78

(figure 10.5

FPl700 4143 4745 PEACHPIT.GINGER.
FE1719 3539 4E20 1150 .TENNYSON. #2
FE1720 2020 5543 b uueaeeeaMB.UCIT
F@1738 peeg 2020 ceee=eosleeeaaas
FG1749 2020 2020 on BeiiE B S W
F@1750 2020 2020 S FARS SRS G e
F@1760 POBo HEO8 2029 s sesBiwsaless s
F@1779 2020 2020 . - |
F@1780 4543 3131 OLECAT.RUTH.1166
FG1790 4B49 2023 j 1.KIOWA.AVE. .#4.
FO17A0 2020 4344 ceeaesses/ UCDC,
F@17B0 PO2D 2020 .e.=

F@l7Co 2020 2028

FP17D@ 2020 2020 T
FO17EQ 0020 0GE20 v vl 5 wek
FO17F@ 2020 2029 BB s wtai snve B ¥

1f you study the above figure closely, you will find that there are
two identical sub-record layouts on this sector. Now hark back to your
Radio Shack Disk Manual, and you will find in the rather obscurely
described sections on 'random I/O' that records may not span sectors
and that there is something about a 'PHYSICAL RECORD' and a 'LOGICAL
RECORD'. A sector, such as the one above, is a 'PHYSICAL RECORD'.
Each sub-record in that 'PHYSICAL RECORD', such as the two above, are
'"LOGICAL RECORDS'.

There is one slight difference in the way various disk operating
systems configure random files, TRSDOS 2.1 and NEW DOS 2.1 only
permit 255 byte random file records. DO NOT CHANGE RELATIVE BYTE 'FF'
ON DATA RECORDS THAT ARE ACCESSED WITH THESE OPERATING SYSTEMS.

TRSDOS 2.2, VTOS 3.8 and Apparat's new SUPER DOS 1.8, all permit
the use of 256 byte records. SUPER DOS will even permit records as
large as 4695 bytes in a sgingle record! (I'm not supposed to talk
about that yet, but 'I figured that you needed the information.
Besides, I would like to drive the Radio Shack software development
people crazy wondering how they did THAT!)

Let's take a closer lcok at figure 160.5 before we go to the next
chapter. The first 46 bytes contain a name and street address. (But
I thought you said numerical data was represented in HEX format?) I
aid. I did. But it may also be represented in ASCII fashion IF you
fielded your input as a string without converting it to one of the
numerical data types.

The next 4 bytes represent a 'SINGLE PRECISION' <zip code. The
zipcode, for this first sub-record is '96266'. To add confusion to the
obscure, 90266 (DECIMAL) is equal to '@G1l669A' (BEX). On the file
however, it is represented as '0@04D3091' (HEX)! ©Now I ask you, "Does
that make sense?" Yes, as a matter of fact it does.

79

You must first understand how numbers are represented internally, to
nake complete sense out of the various data types, BASIC's number
crunching routines require that the sign, exponent and floating point
representation of the number be stored as well as the actual number.
This will be the subject of another book (Working Title: BASIC
COMMENTED, LISTED AND NARRATED.) .

In the meantime a&all you really need to know is what your numbers
look like. Here is a way to decode HEXADECIMAL representation of the
various data types from BASIC itself. Enter the following program in
BASIC and run it,

' SET VALUE OF 'A'
CONVERT TO STRING

108 A = S0266
116 AS = MKIS(A)

REPRESENTATION
120 PRINT AS i LOOK AT AS
136 PRINT LEN(AS) :' LOOK AT LENGTH OF AS$
1ldg FOR X = 1 TQ LEN(AS) :! SET LOOQOP
156 PRINT ASC(MIDS(AS,X,1l):" LOOK AT DECIMAL VALUES
OF AS
160 NEXT ! LOOP
<RUN>
PROGRAM
DISPLAY MEANING OF DISPLAY
M¢ ¢—=————— Display representation of AS
4 ¢————— Length of AS
] ¢ 1st ASCII character = 00 (HEX)
77 €¢————— Znd ASCII character = 4D (HEX)
48 ¢———— 3rd ASCII character = 30 (HEX)
145 €—————— 4th ASCII character = 91 (HEX)

To see how other data types are represented substitute '"MKIS' with one
of the following:

MKI§$ -- Converts INTEGER to string representation.
MKS$ =- Converts SINGLE PRECISION to string representatiocn.
MEKDS$ -- Converts DOUBLE PRECISION to string representation,

By reviewing the LEVEL II manual and the DISK manual you may learn
more about data types.

Now, assuming that you have tried the BASIC program, to better
understand how your various data types are represented and have made a
map of the random data file you wish to "ZAP", you're ready to go to
work. Good luck.

16.9 RECOVERING A LOST TENNIS BALL

e R S T i Sy VoI T I
Look under the Volkswagen or in the neighbors' ivy.

80

1l1.9 RECOVERING 'ELECTRIC PENCIL' ERRORS

Ee sl e

Without Michael Shrayer's ELECTRIC PENCIL, this book would not have
been possible, I have used every feature of the program and if the
TR5-88 were used for nothing else except word processing, this program
would justify the entire hardware cost., Unfortunately, the 'PENCIL'
does a few peculiar things ... some of them are the Ffault of the
program and others are a result of the operator.

Since 'PENCIL' is so widely used, I thought it would be a good idea
to address some of the data recovery techniques that may be used on
ELECTRIC PENCIL. Needless to say, this chapter (as well as the
others) is the result of having had to recover more than one or two
occasional errors.

11.1 RECOVERING 'ELECTRIC PENCIL DOS ERROR 22°'
e e T T ——

I don't Kknow where 'ELECTRIC PENCIL' gets its error codes but when
"PENCIL' gives you 'DOS ERROR 22' it is NOT error '22', The book says
DOS ERROR 22 is a '"HIT' sector error. (Michael, please pay attention.
There is going to be a test on this tomorrow!)

The error in this case is a wrong sector count in the 'FPDE' (BYTES
l4 and 15), or the 'EOF' byte (BYTE 3) is wrong. Whatever the wvalues
in these bytes are, change them by ADDING at least '1l' to either cr
both of these values. You may make these bytes ANYTHING you want as
long as they they are greater than the values they should be! For
instance, figure 1l1.1 1is an example of an ELECTRIC PENCIL file
directory entry with a 'DOS ERROR 22' error,

figure 11.1

RELATIVE BYTE 3

111340 1000 0074 0845 5252 3232 20620 2050 434CERR22...PCL
111350 9642 9642 9900 2401 FFFF FFFF FFFF FFFF .BuB.oeSeveeccenn

RELATIVE BYTES 14 & 15

The most likely thing that is wrong with the file is that BYTES 14 &
15 are incorrect. Since there is also the possibility that BYTE '3
may also be incorrect, "ZAP" both locations, Then, locad the file into
'"PENCIL' and 'SAVE' it. 1If you go back and look at it, you will find
that it will have corrected itself and the proper values will have
been inserted into the offending bytes. Figure 11.2 is an example of
the "ZAP"s necessary to correct the "DOS ERROR 22',

81

figure 11.2

Be sure and make this value LARGER than your file actually
is. 'FF' is 255 DECIMAL, and will cover most situations.

111348 1600 OBFF @645 5252 3232 2026 2656 434CERR22...PCL
111356 9642 9642 FFG6@ 2401 FFFF FFFF FFFF FFFF .B.B..Sueccceen.

"ZAP" this with "FF' too.

il1.2 'LOST' ELECTRIC PENCIL ON DISK

('"OVEER WRITTEN' FILE)
“
There are two reasons for this unfortunate circumstance:

UNFCRTUNATE REASON #l: You were working on this file only a couple of
days ago. Everything was working smoothly, and when you were through
enterirg your text, you saved the file to the disk. You removed the
disks from the drives, shut everything down and went home (or to
another room) and watched an exciting rerun of I LOVE LUCY before
dinner.

Several days (or hours) later you went back to the computer toc use
that file. You bring up your 'ELECTRIC PENCIL' program and lcad the
tile. What??!!! It's GONE! There are only 3 carriage returns on the
screen! After the blood returns to your brain, and you finally begin
to believe your eyes, reason returns to your fogged brain; you decide
you must have saved it on another disk.

Forty-seven disks later you give up and say to yourself,
"...dammit, I KNOW I saved that file. I wonder what could have
happened to it? It mwmust have been eaten-up by the machine or
something," Thus, you conclude that there are nmysteries that are
beyond human understanding and consult the TV Guide to see what time
MOrk & Hindy come on,

The truth of the matter is that nobody ate nothin'. Everything
worked exactly like it was supposed to, you screwed up. In vour dazed
and confused state, after typing for 6 hours, you 'SAVE'ed yvour file
WITE THE CURSOR AT THE END INSTEAD OF AT THE BEGINNING OF THE FILE!

UNFORTUNATE REASON # 2: You accidentally 'KILL'ed the file by using
the wrong file name. I don't know why you did it but it sometimes
does happen.

RECOVERING UNFORTUNATE REASON # 2, refer to 9.2, "RECOVERING A KILLED

FILE". To recover UNFORTUNATE REASON # 1 simply follow the procedures
below. (See Chapter 9.7 for details on 'ELECTRIC PENCIL' files.)

l. Find the "EOF' BYTE in the file.

82

2. Change the 'EOF' byte to any valid
ASCII character ('26' or 'gD' works nicely)
3. "ZAP" the directory 'EOF' byte with
an 'FF'" ('FPDE' BYTE 3).
4. "ZAP" the sector count bytes ('FPDE'
BYTES' 14 & 15) with a HEX value larger
than the actual sector count - 'FF' will
work here also, in most cases.

Since the o0ld 'EOF' marker is still in the file you won't have to
worry about where it is or where to put it. Just go to ‘'PENCIL' and
load the file. If you get a 'DOS ERROR 22' you didn't make the sector
count byte large enough.,

11.3 RECOVERING A '"LOST' ELECTRIC PENCIL FILE IN MEMORY

T e Y S L. T I Y P N U £ T e Y S e L,)

I know this has nothing to do with the disk, but before you can
recover something on disk, you have to get 1t there. I have had
occasions when 'PENCIL' does 1its outer space trick and have had
desperate need to know how to get it back so I could get it onto the
disk in the first place!

Here 15 the picture:

You are inputting text into 'PENCIL' and all of a sudden the
machine 'BOOT's or you have put in a particularly long line; Yyou hit
<ENTER>; the screen goes 'funny' and suddenly funny little characters
appear on the screen. It might be described as what Android Nim would
look like after swallowing a hand grenade.

Here 1is your recovery procedure:

l. Stop cursing. You cannot be heard in
Fort Worth or by Shrayer.

2. Type: <CONTRCL> 'O' and get into DOS.

3. Type: DEBUG <ENTER>

4, Hit the 'BREAK' key. You will now enter
'DEBUG'.

5. Type: G5C61 <SPACE> or <ENTER>

6. THERE IT IS! IT'S BACK!

7. Immediately save your file to the disk.
DO NOT HIT 'BREAK' TO EXIT THE SUB-
COMMAND TABLE or you will re-enter debug.

8. Hit 'RIGHT ARROW' to exit the SUB-
COMIMAND TABLE.

9. If the screen 'went funny' before you
'lost' your file, enter the search and
replace function. (<COMMAND> 'V').

11. Replace the line you were working on
before it 'went funny', with something
shorter, If you don't remember what you
were working on, exit "PENCIL' and fix
the file with "SUPERZAP" by putting carriage
returns or spaces ('6D' or '28') in the line
that is 'too long'.

83

11.4 RECOVERING DISK FILE WON'T LOAD

('FILE AREA FULL' ERROR.)
e . R e M .
This isn't an 'error', in the true sense of the word. What has
happened 1% that you typed a large file into memory. You saved the
Cext to disk. At some later time, you couldn't load the file because
every time you tried, you yot the message: 'FILE AREA FULL'.

"PENCIL' will allow you to 'SAVE' a file that is larger than you
can 'LOAD'. (Now isn't THAT nice, Ollie?) Yes indeed, just one more
little thing to make life interesting. All is not lost. In fact none
of it 1s lost. All we have to o is break up the file into smaller
segments and it will load just fine.

Create an 'FPDE' by saving a one word ‘dummy' file while in
'PENCIL'. Use a file name that you would normally use anyway since
there is no reason to 'SAVE' it again with another nane.

Now, g¢go to the last few sectors of the file that won't load and
Copy those sectors to the EXTENT FILE AREA pointed to by the 'dumnmy'
Lile name. "ZAP" the 'dummy' file 'FPDE' BYTE 3 and BYTE 14 with 'FFY,
just like we did in recovering a 'DOS ERROR 22'. Now that portion of
the file will load. "LOAD' it and 'SAVE' it back and everything will
take care of itself.

Next we have to fix the original file so it won't try to load the
whole thing. Go back to that first sector that we moved to the
'duamy' file... (AH-HA! You forgot which one it was and you didn't
take notes, did you? See how i1mportant taking notes can be?)
.-."2ZAP" a 'UO' anywhere in the sector and that will take care of that
portion of the file. Now both segments of the file will 'LOAD' and
you're on your way again.

11.5 ELECTRIC PENCIL GOODIES

R —— L . S —5 5

Fere are a couple of things that might make your day brighter, Ffor
what it's worth.

To make 'ELECTRIC PENCIL' compatible with NEWDOS 2.1 all we have to do
is change 3 bytes in relative sector § of 'PENCIL' to 'GO 00 0g'.
Find relative sector @ then, at or near relative byte "AE', you will
see the following code:

F332 9B46 C36F
"ZAP" this so it reads:

F300 G@0¢ C36F

Another thing you might like to do is speed-up 'PENCIL's cursor - a
simple one byte change. In relative sector 1§ (HEX) on or about
relative byte '7B' you will see the following code:

60y 1OUFE 1116
"ZAP" this so it reads:

664 1QFE 1116

My —cursor is set at '560'. The '"@0' that is in there now, is a value
of 256 - this is as SLOW as it can possibly go. A 1little
experimentation will tell vyou what value to put into this byte. A
word of caution ... '50' really makes that thing zip along.

84

In addition to all the before mentioned 'goodies' you can do with the
'PENCIL', here are a few more.

WRITE BASIC PROGRAMS IN '"PENCIL'. Wouldn't it be neat to be able to
write programs in BASIC and have the editing features of ‘'PENCIL'?
It's not only possible but I do it all the time. 1In the appendix
there is a BASIC program called 'SEARCH'. It was written in 'PENCIL',
and documentea in 'PENCIL'.

There is no secret, all you have to do is just do it. No tricks, no
special things to do, just write the prograw like you wouid normaily
do, only use 'ELECTRIC PENCIL' to write the progran. When finished,
write the text to disk; exit 'PENCIL', go to BASIC, and 'LOAD' and
'RUN'. There are only two things to watch rfor, (1) Your filcname
will have '/PCL'" on the end of it and (2), ONLY PUT CARRIAGE RETURNS
AT THE END OF A STATEMENT LINE. Now go do it and see how easy it is,.

LOAD A PROGRAM WRITTEN IN BASIC INTO PERCIL FOR EDITING. Have you
ever wished you could change all those '"PRINT's to 'LPRINT's 1in one
swell foop? Not hard at all, once you have your BASIC prcgram loaded
into "PENCIL' for editing. Here is all you do. (1) Make sure there
are no lines longer than 3¢ characters without spaces. If you pack
(cram) your statements together, open 'em up here and there. (2) Save
the program in ASCII mode with a filename that includes '/PCL' for a
file name extension. After it's saved, "ZAP" 'Gf' into the last byte
of the program file. There it is. You are ready to load it into
'"PENCIL".

WRITE AN ASSEMBLER, OR FCRTRAN PROGRAN IN PENCIL. If you have
'"MACRO-8¢' all you have to do is write your program in 'PENCIL' with
or without line numbers., 'SAVE' the text file as-per-usual then exit
'"PENCIL', run MACRO-80 ('EDIT') and load the 'ELECTRIC PENCIL' tfile
using 'Mac8@' commands. 'Mac80' will append the line numbers and will
give you the option of saving the scurce with or without the line
numbers., Assemble or conpile and away you do.

85

12.v CORRECTING THE 'GAT' AND 'HIT' SECTORS

e S T s T D

'"GAT' errors can be particularly disastrous. TRS-DOS 2.1 will
occaslonally de-alleocate GRANULES. For those of you who are
technically minded, I will quote from the APPARAT documentation,
describing the cause of this disaster:

'CLOSE' in 'SYS3/SYS' causes & major system disaster when it releases
an 'FXDE' by not preserving the contents of the CPU register DE, which
contains a count of +1, of the sectors yet to be freed, when freeing a
no longer needed 'FXDE',

This error is compounded by the branch at "4ED9' by not implicitly
ending deallocation of GRANULES, when the file is known to have no
more GRANULES assigned.,

These errors cause all 'write'able main nemory for 3€00 - 42XX
(HEX) to be set equal to 'FF', where 'XX' is the relative position
within the sector of the last byte of the 'FPDE! pointed to by the
last 'FXDE' that was released.

The corresponding sector in the directory is also filled with 'FP'
to that relative point. As that continues, the 'GAT DIRECTORY SECTOR'
is modified to free up GRANULES at random in tracks 'G@' through 'FF',
with most tracks below 8¢ hex.

It this continues to go undetected, this will cause GRANULES
previously allocated to other files, to be allocated again in
subsequent file allocations! This includes reallocation of "BOOT/SYS!
and 'DIR/SYS' GRANULES, eventually clobbering them.

Now, it that's not bad enough, read on. Files whose 'FPDE'
preceded the destroyed 'FPDE', in the 'DIRECTORY ENTRY SECTOR' will
disappear from the system and if a file's 'FXDE' was so destroyed, you
Will have horrendous trouble and should be considered lucky if TRS-DOS
even detects an error!

Almost as bad, CPU register 'HL' is not decremented to the 2nd byte
orf the next lower EXTENT nor is it protected by the directory sector
write call at '4rF@8'. This causes the two bytes (whatever they are,
at the time) at "41FF' and '"4200' toc be used as the next lower EXTENT
tor the file, causing a somewhat random deallocation of GRANULES,
usually in the range of tracks '0G@' to 'l@' hex.

And still more! If a new 'FXDE' is allocated to the file and then
1f the diskette is found to be full, 'SYS3/SYS' malfunctions (at some
future time) when 'CLOSE' +tries to free the space assigned to that
'FXDE'. It assumes there is some 'FREE' space when there is none!

You will have to pardon me while I do a little preaching. Would
you, 1if you were an international distributor of 'quality software',
sell and distribute software with KNOWN disastrous errors and not tell
your users? Would you cover up your errors by simply not telling your
users that the errors existed and that IF they had a problem, it was
most likely the fault of the hardware? I wouldn't do that, I don't
think you would either. (The lawyers who looked at this manuscript
for libelous statements wouldn't do that.) Good grief, WHO would do
that?

It's damn difficult to write and release bug-free software and
there are excellent software packages that contain bugs but the
authors are burning the midnight o0il to correct them and warn their
users... while solutions are being sought. Now, WHO would turn-out

86

software and not admit that there is something wrong? (Sure Dbeats
hell out me, lieutenant, I'm not the regular crew-chief.)

Why are we are treated like mushrooms (kept in the dark and fed
B.S.!) and told that certain aspects of certailn programs were not

"...fully implemented"?
Enough of this grousing.... continue reading this saga...

If this 'GAT' sector problem is detected soon enough, very little
damage will occur. The above described 'bug' (this one is so big, it
could be used in a Japanese horror movie suitable for showing on
Channel 13 at 3 A.M.) will also explain how files get into other
files. With the deallocated GRANULES, the DCS thinks that it is OK to
store something to a GRANULE already being used for another file.
Then when you attempt to 'LOAD' or 'RUN' what you think 1is file 'A'
you get 'B' instead.

12.1 THE 'GAT' FIX

(1) Using the 'DIRCHECK' utility of NEW DOS+
list the directory and note any errors that
may have accumulated in the 'GAT' and 'HIT'
sectors. See section 3.1 for details on
'DIRCHECK".

(2) If you do not have NEW DOS+ you will have to
go through each 'FPDE/FXDE' entry in the dir-
ectory sectors, note the EXTENT addresses and
GRANULE counts and then compare these to each
GRANULE track by track. (Sorry, there isn't a
faster way that I know of.)

(3) "ZAP" each offending GRANULE with the correct
allocation. (Alsc see figure 6.7 for alloca-
tion codes.)

kkkkkkk** CAUTION *%* CAUTION **% CAUTION ¥*%%%%%x%

* & * %
ok Be sure to 'KILL' extraneous files using **
k% the same 'GAT' sectors as 'good' files. *¥
* & Failure to do sc will cause additional *%
% errors to occur. Tx
* % * %

R R R R R RS A ST A A S RS RS EE RS R SRR R R Rk

12.2 THE 'HIT' FIX

Basically, this is the same procedure as above. How to read
"DIRCHECK's error list, regarding the 'HIT' sector is also discussed
in 3.1, above, Finding bad '"HIT' sector bytes is a little easier

than finding bad 'GAT' bytes,.

There should be as many 'HASH' codes (non-zero bytes) in the 'HIT'
sector as there are active files, Every file that displays with 'DIR'
AND LOADS or is accessible with an 'OPEN' statement has a valid 'HASH'
code., Failure to do ONE of these things is an indication that you are
about to have or are having problems with the disk.

How to obtain the correct 'HASH CODE', for a file name, is covered
in 10.1 above,

87

13.8 SOME THINGS YOU CAN DO

3 e i 7 O P M”

It always helps to have someone point out some new directions — open
Up our imaginaticn, so to speak. What I'm attempting to do in this
Chapter 1is give you some ideas that will hopefully cause you to have
some more ideas on your own, The limitations you will encounter on the
conputer are almost entirely of your own making. Adopt the philosophy
that "there is a way" and sooner or leter, you'll find it.

13.1 CONSTRUCTING 'ELECTRIC PENCIL' FILES IN BASIC.
1 Y o S——
This 1is so easy you'll wonder why it never occured to you before., It
was only after looking at 'PENCIL' files, with "SUPERZAP" that it
dawned on me that these files were almost ordinary ASCII files. With a
little experimentation and the use of "SUPERZAP", I was able to figure
out everything I needed to know. Try this experiment.

LOAD BASIC and enter the following program:

1¢6 CLEAR: CLS clear the stack; clear the screen

116 OPEN"O",1,"TESTONE/PCL" set—up filename with 'PENCIL' extension
120 A$="THIS IS A TEST initialize "AS$' with text

WHICH WILL BUILD A
PENCIL FILE IN BASIC"

136 PRINT #1, AS write 'A$' tc the file

146 PRINT #1, CHRS$S(6) insert the 'EOF' marker for
'"ELECTRIC PENCIL' ('0QQ"° HEX)

156 CLOSE close the file

<RUN> run the program

Of course, this program 1is very simple and I realize that it could
have been written in a much more sophisticated style but it is very
easy to 'see' how it functions. Now load "PENCIL" and load
'"TESTONE".

13.2 'LOAD'ING A BASIC PROGRAIM OR ASCII DATA

FILE INTO 'ELECTRIC PENCIL'
R e ——
You will only have difficulty in doing this, if you have 'packed' your
EASIC program or data file, i.e., eliminated all spaces between words,
statements, and characters.

One of the really neat things about using 'PENCIL' with a BASIC
file as text, is the global search and replace. You can replace every
single 'PRINT' with an 'LPRINT' in less than a couple of seconds! You
can also use it to make translations from one dialect of BASIC to
another. Using 'PENCIL' enter the text for a BASIC program out of a
magazine, Don't try to make all of the statement conversions. At the
end of the magazine version, enter the subroutines that replace the
non-'RUN'able statements. Now 'SEARCH AND REPLACE' these statements
with a 'GOSUB' to your subroutine. In a few minutes you can make a
translation that would normally take hours or even days!

'PENCIL' MUST have at least one space every 30 or so characters for
its video display mangagement routine. Now that you know what can go
wrong, let's give it a whirl.

88

Enter the above program just as it is typed; but when you 'SAVE' it,
use this or a similar name:

SAVE"FILETEST/PCL" ,A

Remember, 'ELECTRIC PENCIL' only loads files with the 'filename
extension' of '/PCL'. The ',A' at the end of the 'SAVE' statement,
will cause the program to be 'SAVE'ed in ASCII format,

Now, with "SUPERZAP", locate the end of the "FILETEST/PCL" file and
"ZAP" the last carriage return ('0D' HEX) with a '06'. Execute
'PENCIL' and load 'FILETEST'.

Another way to do the same thing, if you are using NEW DOS, is to use
the 'OPEN"E"' function. After you have 'SAVE'ed the program, type
'NEW' and enter and run the following:

196 OPEN"E",1,"FILETEST/PCL"
20® PRINT #1, CHRS(@)+" ”
360 CLOSE

<RUN>

This will open the file at the end and write the 'EOF' marker for
'ELECTRIC PENCIL'., The blanks between quotes will guarantee that the
file will load into 'PENCIL' and not give vyou that 'DOS ERROR 22'
crap. You may do nearly the same thing with TRSDOS except you will
have to read the file and write it to another file, then when you get
to the end of the original file, write the 'EQOF' marker to the hew
file. Actually, you should save yourself a 1lot of grief and
aggravation, get NEWDOS and be done with it!

The above techniques can be used with data files as well as program
files.

13.3 MAKING 'PENCIL' FILES INTO BASIC FILES.

T e e 7 S Y . P e T T T S T N P S S0, o2 PG o

Actually you don't have to do anything except enter your program into
'PENCIL'. Save it to disk, and run it. Don't forget to use the
'/PCL' file name extension when calling your program from BASIC.

A 'PENCIL' file is an ASCII file. It will load into BASIC just like
any other BASIC file 'SAVE'ed with the ASCII option. You nmust
remember that if you 'SAVE' the file back, while in BASIC, that the
'"EOF' marker for 'PENCIL' will not be there and the file will no
longer load into 'PENCIL'. Also see 13.2 above.

13.4 CONVERTING 'DATA TYPES' IN RANDOM FILES
m
In chapter 9.8.2 we discussed a method of repairing data files. There
1s also a short BASIC program in that chapter, that converts 'random
numerical data' into its ASCII equivalent.

To convert a data type, all that is necessary is to have the proper

information in the right place AND to re-code your ‘FIELD’
statements.

Suppose that you had a double precision number beginning at say,
relative byte AT, Your lightning—quick-bear-trap-mind will

immediately recall that a double precision number is eight bytes
long,

89

Your problem, Mr. Phelps, is to convert that to a single precision
number field. First obtain the single precigion string contents,
using the BASIC program in 9.8.2. Convert the DECIMAL values to HEX.
"ZAP" the four HEX values into the appropriate sector, beginning at
relative byte 'A7'., "ZAP" '2020 2020' into the remaining (and now
unused) frour bytes (or anything that is appropriate for your file).,

Next change the field statement so that only 4 bytes are fielded
for the new single precision number and 4 bytes for the unused 4 bytes
(or whatever you have converted those 4 bytes to.)

The lest thing 1is to change the '"MKDS' statement and the 'CVD!
statements to '"KKSS$' and 'CVS'. Now go!

13.5 CONVERTING DATA IN ASCII FILES
T e S S S R T

Run "SUPERZAP" and using the 'MODnn' function, type in whatever you
want. Be sure to use cormas for delimiters or you will get a few more
Characters than you bargained for into the wrong string. That's it.

13.6 MAKING BASIC PROGRAIS 'UNLISTABLE®
*

There is no such thing as total protection. This will make a program
'unlistable' as long as the wuser never reads this book or figures
things out for himself,

Save a DASIC program thet contains a dummy string like this:

DU$=“********************i‘*****"

Using "SUPERZAP", find that string in the program, as stored on the
aisk. The HEX code for '*' is '2A', "2AP" those '2A's with '1228
1212 1212 1212' etc. Now load and 1list the program. 'LLIST' the
program. Lots cof paper, huh?

It you will consult Appendix C/1 of the LEVEL 1I manual you will
find the 31 (DECIMAL) ASCII control codes. Try placing different codes
into the string and see what happens when you try to 'LLIST' or 'LIST'
the program.

13.7 ADDING COHMANDS 10O SUPERZAP

e P e — Tt

"SUPERZAP"™ 1is a very well written BASIC program and is easy to make
modifications to. 1 myself, have a constant need to run 'DIRCHECK®
while I'm still in "SUPERZAP" - especially if I'm making corrections
to the 'GAT' or 'HIT' sectors. Of course you can type: <BREAK>,
'CMD"DIRCHECK', answer the prompts and then when the program is
through and returns you to BASIC (IF vyou're using NEWDOS), type,
'CONT', 'X' and then re-enter "SUPERZAP" where you left off,

Ily particular version of "SUPERZAP" has had 'UP-ARROW' added as one
of the commands that functions while in 'DD' mode that automatically
runs 'DIRCHECK'. Load "SUPERZAP" and enter the program lines below.
Try it out by wusing the 'DD' function. While in 'DD' and when a
sector is being displayed, hit 'UP-ARROW', MAGIC!

When 'DIRCHECK' is all through, you are returned to the exact place
you've left ofEf.

90

(SUPERZAP 2.0)
2210 IF A$="A" THEN 66000

60000 CLS: PRINTE@345,"DIRCHECK"
69910 CMD"DIRCHECK" :A$="R":GOTO 2210

If you like the change, 'SAVE' the program back to disk. If you think
of any commands you would like to add, use the same technique as I
have used and add your own special commands.

13.8 READING THE 'DIRECTORY' FROM BASIC
e —— T S S L Rl 5

If you have NEWDOS try opening a file with the file name: DIR/SYS, and
read the first record into a random buffer fielded as follows: FIELD
1, 255 AS A%

You will get an error message on the 'GET' statement but try
printing out your string anyway. What? you say it worked? My word,
amazing isn't it. Simply trap the error, so your program does not
‘crash' and continue along your way. With this little trick you can
have your BASIC program read your disk directories.

H
FINISHED
| N cOFND
| NOwW,
: b}w OPERATING

DN THERGHT
LoskES LIKE

.‘\Q’_\}N\a.*ﬁ\w

L

\
i

'1.\

91

APPENDIX A

APPENDIX A

I GLOSSARY

S e — TR,

ACCESS The operation oif seeking, reading or writing data on a stor-
age unit (in this case, the diskette).

ACCESS TIME The time that elapses between any instruction being
given to access some data and that data becoming available for usec.

ACTIVE RECORDS TABLE (ART) A table of binary values in which the
relative position of a single value determines the status of a record
with the same relative position; i.e., the Nth binary number
determines the status of the lith record. EXAMPLE: If the 8th binary
number in the table 1is a zero, then the 8th record is inactive.
Conversely, if the 8&th binary number in the table is a one, then the
8th record is active.

ADDRESS An identification (number, name, or lebel) for a location in
which data is stored.

ALGORITHM A computational procedure.

ALPHANUMERIC (CHARACTERS) A generic term for numeric digits, alpha-
betic characters, punctuation characters and special characters.

ALPHANUMERIC STRING A group of characters which may include digits,
alphabetic characters, punctuation characters and special characters,
and may include spaces. (NOTE: a space 1is a 'character' to the
computer, as it must generate a code for spaces as well as symbols.,)

ASCII Abbreviation for American Standard Code for Informaticn
Interchange, Pronounced: Ass-KEY, Usually refers to a standard
method of encoding 1letter, numeral, symbol and special function
characters, as used by the computer industry.

ASSEMBLY LANGUAGE A machine level language for programming, such as
Radio Shack's "EDITOR/ASSEMBLER"™ which uses %-86 processor rmnemonics
and automatically 'assembles' machine readable code from the
mnemonics.

BASE A quantity of characters for use 1in each of the digital
positions of a numbering system.

BASE 2 The 'BINARY' numbering system consisting of more than one
symbol, representing a sum, 1in which the individual quantity
represented by each figure 1is based on a multiple of 2.

BASE 10 The 'DECIMAL' numbering system — consisting of more than one
symbol, representing a sum, 1in which the individual quantity
represented by each symbol is based on a multiple of 18.

BASE 16 The 'HEXADECIMAL' numbering system - consisting of more than
one symbol representing a sum, in which the individual quantity
represented by each symbol is based on a multiple of 16.

APPENDIX A
BINARY See 'BASE 2'
BIT A single 'BINARY' aigit whose value is 'zero' or 'one'.

BOOLEAN A form of algebra applied to binary numbers which is
similar in form to ordinary algebra. It is especially useful for
logical analysis of binary numbers as used in computers.

'BOOT' -~ BOOTSTRAP A machine language program file that is put onto
every diskette by the 'FORMAT' routine. This routing is invoked when
reset or power-on occurs, It automatically 1loads the necessary
programs (SYS@/SYS) to cause the computer to respond to the DOS
commands; 1i.e., the machine is 'BOOTSTRAPPED' or 'EQOTED' into
Operation,

BUFFER A small area of memory used for the temporary storage of
data to be processed.

BUFFER TRACK A track on a diskette used for the temporary storage of
data or program material during a recovery process.

BUG A softwdare fault that results in the malfunction of a program.
May also refer to hardware malfunctions.

BYTE Eight 'BITS'. A 'BYTE' may represent any numerical value
between 'y' and '255°',

CLOBBERED A slang term referring to the non-operation of software,
hardware, computer device, or storage media (such as disk) usually as
the result of a program or hardware error.

COMMAND FILE A file consisting of a list of commmands, to be executed
in sequence,

CONTIGUOUS Adjacent or adjoining.

CONTROL CODE In programming, instructions which determine conditional
jumps are often referred to as control instructions and the time
Sequence of execution of instructions is called the flow of control,

CRC ERROR Cyclic Redundancy Check. A means of checking for errors by
using redundant informaticn used primarily to check disk I/0 on the
TR5-806.

DATA BASE A collection of interrelated data stored together with
controlled redundancy to serve one or nore applications. The data are
stored so that they are independent of programs which use the data. A
common and controlled approach is used in adding new data and in
modifying and retrieving existing data within a data base. A system
is said to contain a collection of data-based information if they are
disjoint in structure.

APPENDIX A

DATA BASE MANAGEMENT SYSTEH The collecticn of scoftware required for
using a data base,.

DATA ELEMENT Synonymous with 'DAT2Z ITEM' or 'FIELD'

DATA 1TYPE The form in which data is stored; i.e., integer, single
precision, double precigsion, ‘'alphanumeric' <character strings or
'strings’'.

DEC Initials for Directory Entry Code.
DECIMAL See 'BASE 16'.

DIRECT ACCESS Retrieval or storage of data by a reference to its
location on a disk, rather than relative to the previously retrievec
or stored data.

DIRECT STATEMENT (IN FILE) A program statement that exists in the
disk file that is not assigned a line number.

DIRECTORY A table giving the relationships between items of data.
Sometimes a table or an index giving the addresses of data.

DISPLACEMENT A specified number of sectors, at the top or beginning
of the file, in which the 'bookkeeping' and file parameters are storec
for later use by the various program modules,

DISTRIBUTED FREE SPACE Space left empty at intervals in a data lay-
out to permit the possible insertion of new data.

DOUBLE PRECISION A positive or negative numeric value, 16 digits in
length, not including a decimal point (EXAMPLE: £9999899899999.29).

DUMP To transfer all or part of the c¢ontents of one section of
computer memory or disk into another secticen, or to some other
computer device.

DYNAMIC STORAGE ALLOCATION The allocation of storage space by a pro-
cedure based on the instantaneous or actual demand for storage space
by that procedure, rather than allocating storage space to a
procedure based on its anticipated or predicted demand.

EATEN (DIRECTORY/DISK) Slang term. See 'CLOEBRERED'.

EMBEDDED POINTERS Pointers in the data records rather than in a di-
rectory.

ENTITY Something about which data is recorded.

EOF Initials for "END OF FILE'. It is common practice to say that
the EQOF is record number nn or that the EOF is byte 15 of sector 12.
Hence, it 1is a convenient term to use in ue$cr1b1ng the location of
the last record or last byte in a file.

APPENDIX A
EXTENT A contiguous area of data storage.

FILE A collection of related records treated as a unit; The word
file 1is wused in the general sense to mean any collection of
informaticnal items similar to one another in purpose, form and
content.

FILE PARAMETERS The data that describes or defines the structure of
the file.

FILESPEC A file specification and may include the 'FILE NAME', 'FILE
NAME EXTENSION', 'PASSWORD', and 'DISK DRIVE' specification.

FIELD See 'DATA LITEM'.
FLAKY Elang term -Alludes to less than acceptable performance.

FILE AREA Tpe physical location of the file, on the disk, or in
MEMory.

'FPDE' 1nitials for File Primary Directory Entry; a file's entry and
file area pointers in the disk directory.

'FXDE' 1nitials for File Extended Directory Entry; a file's entry and
file area pointers, in the case of an overflow in the 'FPDE'.

GAT 1Initials for Granule Allocation Table; A table from which
available file areas are assigned to file entries.

GRANULE Unit of 5 sectors. On the TRS-8@ disk operating system, a
'granule' is the basic unit of disk storage allocation. The diskette
'DIRECTORY"' iile keeps track of free and assigned disk space in terms
of 'granules',

HASH CODE A code number generated and used as a direct addressing
technique in which the key is converted to a pseudo-random number from
which the required address is derived.

HEADER RECORD A record containing common, constant or identifying
information for a group of records which follow.

HEXADECIMAL See 'BASE 16'

HIT Initials for Hash Index Table; an addressing technique in which a
disk file is referenced by a code number in a table, and the position
of that code in the table relates to the file entry in the directory.

INDEX A table used to determine the location of a record.

INDIRECT ADDRESSING any method of specifying or locating a storage
location whereby the key (of itself or through calculation) does not
represent an address., For example, locating an address through
indices,

APPENDIX A

INSTRING (INSTRING SEARCH) Refers to the capability of locating a
substring of characters that may exist in another character string. An
example would be: Substring = "THE" String = "NOW IS THE TIME". An

INSTRING routine would locate the substring and return its starting
position within that string. 1In this example, it would return a value
of eight.

INTEGER A natural or whole number. In the TRS-80, integer values may
‘not exceed the range of +32767 to -32768.

INVERTED FILE A file structure which permits fast spontaneous
searching for previous unspecified information., Independent lists or
indices are maintained in records' keys which are accessible according
to the values of specific fields,

INVERTED LIST A list organized by a secondary Key —-- not a primary
key.

IPL Initials for Initial Program Loader; a program usually executed
upon pressing of the 'RESET' button.

KEY A data item used to identify or locate a record or other data
grouping.

LABEL A set of symbols used to identify or describe an item, record,
message or file. Occasionally, it may be the same as the address in
storage,

LEAST SIGNIFICANT BYTE The significant byte contributing the smallest
quantity to the value of a numeral.

LIST An ordered set of data items. A 'chain'.

LOAD MODULE A program developed for loading into storage and being
executed when control is passed to the program.

LOCK-0OUT (TRACKS) Unusable tracks, on the disk, that are not
accessible because of damage or by user option.

LOGICAL An adjective describing the form of data organization,
hardware or system that is perceived by an application program,
programmer, or user; it may be different than the real (PHYSICAL)
form.

LOGICAL DATA-BASE DESCRIPTION A schema. A description of the
overall data-base structure, as perceived for the users, which is
employed by the data base management software.

LOGICAL FILE A file as perceived by an application program; it may
be in a completely different form from that in which it is stored on
the storage units.

APPENDIX A

LOGICAL CPERATOR A mathematical symbol that represents a
nathematical process to be performed on an associated operand. Such
operators are 'AND', 'OR', 'NOT', 'AND NOT' and 'OR NOT'.

LOGICAL RECORD A record or data item as perceived by an application
progyream; it may be in a completely different form from that in which
it 1s stored on the storage units.

LSB See LEAST SIGNIFICANT BYTE.
MACHINE LAHGUAGE Direct machine readable code.

HAINYBHNALICE OF A FILE (1) ©The addition, deletion, changing or
updating of records in the database. (2) Pericdic reorganization of
a rille to better accommocdate items that have been added.

HONITOR A program that may supervise the operation of another progranm
for operation or debuyging or other purposes.

HOSY SIGNIFICANT BYTE The sicgrificant byte contributing the greatest
guantlity to the value of a numeral.

M5B See HCST SIGIFICANT BYTE.

HULTIPLE-KEY RETRIEVAL Retrieval which reqguires searches of data
based on tne values of several key fields (some or all of which are
secondary keysg).

NULL An absence of information as contrasted with zero or blank for
the presence of no information.

NYBBLE The rour right most or left most binary digits of a byte.

ON-LINE An on-line system is one in which the input data enter the
computer directly <from their point of origin, and/or output data are
transmitted directly to where they are used. The intermediate stages
such as writing tape, loading disks or off-line printing are avoided.

ON-LINE STORAGE sStorage devices and especially the storage media
which they contain under the direct control of a computing system, not
ofr-line or in a volume library.

OPEN RECORDS TABLE (ORT) A table of binary values in which the
relative position of a single value determines the status of a record
with the same relative position; i.e., the Nth binary number
determines the status of the Nth record. EXAMPLE: If the 8th binary
numper in the table is a zero, then the 8th record is open,
Conversely, 1f the 8th binary number in the table is a one, then the
8th record is on file,

OPERATING SYSTEM Software which enables a computer to supervise its
own operations, automatically calling in programs, routines, language
and data as needed for continuous throughput of different types of
jobs.

APPENDIX A

PARITY Parity relates to the maintenance of a sameness of level or
count, i.e., keeping the same number of binary ones in a computer word
and thus be able to perform a check based on an even or odd number for
all words under examination.

PHYSICAL An adjective, contrasted with logical, which refers to the
form in which data or systems exist in reality. Data ig often
converted by software from the form in which it is physically stored
to a form in which a user or programmer perceives it.

PHYSICAL DATA BASE A data base in the form in which it is stored on
the storage media, including pointers or other means of
interconnecting it. Multiple logical data bases may be derived from
one or more physical data bases,

PHYSICAL RECORD A collection of bits that are physically recorded on
the storage medium and which are read or written by one machine
input/output instruction.

POINTER The address or a record (or other data groupings) contained
in another record so that a program may access tge former record when
it has retrieved the latter record. The address can be absolute,
relative or symbolic, hence, the pointer is referred to as absolute,
relative or symbolic.

PRIMARY ENTRY The main entry made to the directory. Also see 'FPDE'.

RANDOM ACCESS To obtain data directly from any storage location
regardless of its position, with respect to the previously referenced
information. Also called 'DIRECT ACCESS'.

RANDOM ACCESS STORAGE A storage technique in which the time required
to obtain information is independent of the 1location of the
information most recently obtained.

READ To accept or copy information or data from input devices or a
memory register; i.e., to read out, to read in.

RECORD A group of related fields of information treated as a unit by
an application program,

RELATIONAL OPERATOR A mathematical symbol that represents a
mathematical process to perform a comparison describing the
relationsnip between two values (< less than....> greater than... =
equal.... <> not equal... and combinations thereof (see TRS-88 LEVEL
II manual, Section 1, Page 5). On the TRS-80, relational comparisons
may be made on string values as well as numerical values.

RELATIVE (as pertains to position) An address or ©position that 1is
refterenced to a point of origin; i.e. X+28 is a specific positon, 20
pPlaces from the reference point, If the reference point was at 56,
then the absolute position would be at 78 (50+20=70). Also, 50 (since
it is the starting reference point) is at relative position @.

SCHEMA A map of the overall loygical structure of a database.

APPENDIX A

SEARCH To examine a series of items for any that have a desired
property or properties.

SECONDARY INDEX An index composed of secondary keys rather than
primary keys,

SECT'OR The smallest addressable portion of storage on a diskette (a
unit of 256 bytes on a TRS-80 diskette).

SEEK To position the access mechanism of a direct-access storage
device at a specified location,

SEQUENTIAL ACCESS Access in which records must be read serially or
sequentially one after the other; i.e., ASCII files, tape.

SINGLE PRECLSION A positive or negative numerical value of 6 digits
in length, not including a decimal point (EXAMPLE: 99999.9).

SORT To arrange a file or data in a sequence by a specified key (may
be alpnabetic or numeric and in descending or ascending order).

SOURCE CODE The text £from which code that may be executed is
derived.
SYSTEM FILE A program used by the operating system to manage the

executing proygram and/or the computer's resources,
SUB-STRINGS SUB-STRING SEARCH See INSTRING

TABLE A collection of data suitable for quick reference, each item
being uniguely identified either by a label or its relative position.

TALLY To add or subtract a digit from a quantity.

TOKEN A one byte code representing a larger word consisting of 2 or
more characters.

TRACK The circular recording surface traversed by a read/write head
on the disk. On the TRS-80 a track contains 18 sectors (2 granules).

TRANSACTION An input record applied to an established file. The
input record describes some "event" that will either cause a new file
record to be generated, an existing record to be changed or an
existing record to be deleted.

TRANSPARENT Complexities that are hidden from the programmers or
users (made transparent to them) by the software.

VECTOR A line representing the properties of magnitude and
direction. Since such a 'line' «can be described in mathematical

terms, a mathematical description (expressed in numbers, of course) of
a given 'direction' and 'magnitude' is referred to as a "vector".

APPENDIX A
VERIFY To check a data transfer or transcrigtion.

WORKING STORAGE A portion of storage, usually computer main memory,
reserved for the temporary results of operations.

WRITE To record informaticn on a storage device.

7ZAP To change a byte or bytes of data in memcry or on diskette by
using a software utility program.

ZEROETH %eroeth is to 'g' as first is to '"1'; in computer terms the
first position of anything is usually described as the 'zeroeth' and
the next position is the '"first" and so on.

APPENDIX A

II LEVEL II 'BASIC TOKENS'

_

Frogram statements, in LEVEL II and DISK BASIC are not stored in
lemory as they are typed and viewed on the video display. For
instance 'PRINT' is stored as the single byte character: "?",. The
following is a list of LEVEL II TOKENS in the following format:

'"BASIC' KEYWORD

“

HEX-DECIMAL

60-128 END AA-17@ KILL D4-212 >
81-129 FOR AB-171 LSET D5-213 =
82-130 RESET AC-172 RSET D6—-214 <
83-131 SET AD-173 SAVE D7=215 8GN
84-132 CLS AE-174 SYSTEM D8-216 INT
85-133 CMD AF=175 LPRINT D9-217 ABS
86=-134 RANDOI B8-176 DEF DA-218 FRE
87-135 NEXT B1-177 POKE DB-219 INP
8§6-136 DATA B2-178 PRINT DC-228 POS
89-137 INPUT B3-179 CONT DD-221 SQR
BA=-136 DIM B4-188 LIST DE-222 RND
8B-139 READ B5-181 LLIST DF=-223 LOG
BC-14G LET B6-182 DELETE EW-224 EXP
8D-141 GOTO B7-183 AUTO El-225 COCs
8E-142 RUN B8-184 CLEAR E2-226 SIN
8F-143 1IF B9-185 CLOAD E3-227 TAN
99-144 RESTORE BA=-186 CSAVE £E4-228 ATN
91-145 GOSUB BB-187 NEW E5=229 PEEK
92-146 RETURN BC-188 TAB E6-236 CVI
93 147 REM BD-182 TO EV-231 CVS
94~148 STOP BE-190 FN E8-232 CVD
95-149 ELSE BF-=191 USING E9-233 EOF
96-150 TRON Cp=192 VARPTR EA-234 LOC
97-151 TROFF Cl1-193 USR EB-235 LOF
98-152 DEFSTR C2-194 ERL EC-236 MKIS
99-153 DEFINT C3-195 ERR ED-237 MKSS$S
9A=154 DEFSNG C4-196 STRINGS EE-238 MKD$
9B-155 DEFDBL C5=197 1INSTR EF-239 CINT
9C-156 LINE C6-198 POINT FB-240 CSNG
9D=157 BDIT C7-199 TIMES F1-241 CDBL
9E-158 ERROR C8-200 HMEM F2=-242 FIX
9F=159 RESUME C9-201 INKEYS F3-243 LEN
Ap=-1608 oOUT CA=-2002 THEN F4-244 STRS
Al-161 ON CB-2#3 NOT F5-245 VAL
A2-162 OPEN CC-204 STEP Fe-246 ASC
A3-163 FIELD CD=-265 + F7-247 CHRS
Ad-164 GET CE-286 - F8-248 LEFTS
A5-165 PUT CF-207 * F9-249 RIGHTS
A6-166 CLOSE Fp-208 / FA-25¢ HMIDS$
AT7-167 LOAD D1-2p9 (UP ARROW) FB-251 *%*
A8-168 MERGE D2-216 AND FC-252 **
A9=16S% NAME ** D3=-211 OR FD=253 **
FE-254 **
** = NOT USED BY SYSTEM FF-255 ISA **

AZ
28
F2
20
C5
2B

11

APPENDIX A TRS DOS 2.2 DIRECTORY

e GAT SECT QR e————— 1 GO e AL,] e—

31168¢ FFFF FFFF FFFC FCFC FCFC FCFC PEFF FFFF cvivevecenranenes

311¢1l¢ FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF sssass
311920 FCFC FCFF FFFF FFFF FFFF FFFF FFFF FFFF0cciiienne
31193¢ FFFF FFFF FFFF FFFF FFFF FFFEF FFFF FFFF oo iiiiiannns
311046 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFPFPo 0iiiiianens
31195¢ FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ...00000ea.n cees

311960 FCFC FCFC FCFC PFPCFC FCFC FCFC FCFC FCFC .sovevecevrccnnan
31176 FCFC FCFC FCFC FCFC FCFC FCFC FCFC FCFC cvoeececncsccnss

311686 FCFC FCFF FFFF FFFF FFFF FFFF FFFF FFFFc0ccccaen
311090 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF sovennrveeenceens
3110A6 FFFF FFFF FFFF FFFF FFFE FFFF FFFF FFFF soceieeantnnscnss
3116B6 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ssans
3116C¥ FFFF FFFF FFFF FFFF FFFF FF21 0000 E0421...B

311000 5452 5344 4F53 2620 3635 2F32 312F 3739 TRSDOS..05/21/79
3116E6 6DED FFFF FFFF FFFF PP FEI'FP FFPFEF FFFEF seccecsccsncaans
3110F@p6 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ..icccccceccaenn

Relative sector @, track 11
35 track TRSDOS 2.2
Master disk password 'HASH' code = EG42

T SECTOR s i U e Al , 2 —
311109 A22C 2E2F 2C2D 2A2B 0000 0000 G000 0000 .,e/r—* teeoeenas

311110 Q000 0WUE0 0000 G000 GOROG Q000 G0DE BODE &..eecenannacann
311120 2800 0000 0000 U000 O000 GOOQ COBO D606 (.eeeeaece. cecces

311130 0000 00UY0 CO00 0000 0000 0000 D000 0000 c.ceacecccsanans
311146 F2C5 BB74 GG6C GO0 GOLO GO0 U000 BOUP cieecesccsscsons
311150 0000 0600 0000 0000 VOLO O0O0 GO0 0060 veveveaccacansne .a
311160 ©00P GOE3 FU69 0000 06000 0G000 0000 DOPE cceeeeeaccnanaans
311176 0000 G000 GOGE V00O DOOO0 060D DOOD BOPY .c.ceeeessasaasnas
311180 0000 0000 0000 O0CU0 OO0 COOG OBBC BOOPeceeccanaans
3111909 0000 0UEO U000 0000 D000 0000 DP00 CO00 eeeeeaccnscsaacas
3111A0 ©0OPO VOOY 0O8E DUOO CUDY C0O0P CPP0 G000 eeescesacasnnans
3111B@ 0GQ06 D00G0 0000 0000 CGOO0G 000D 0006 0P .eeeeeeacenaanns
3111C0O 00PP 0000 GO7C 4BU0 G000 0000 C0O0 OO0BP «ceeeeKaooeooans
3111D0 0000 0000 0000 PUOD VOO0 BOPE 0000 DOUD sesvesacsncaanns
3111E0 ©U00 G000 BUOD C0ODD DO0Y DOPO PU0D QBP0 .c.ceeeccccasanas
3111F06 0000 00G0 G006 0000 G000 OOO0 OB00 PPDD «eeeeeneeeaaanas

Relative sgector 1, track 11

BOOT/SYS 2F = SYS1/SYS 6C = BASICR/CMD

SYS6/SYS 74 = TEST1/CMD 69 = GETDISK/BAS

FORMAT/CMD E3 = TEST2/BAS 80 = DISKDUMP/BAS

DIR/SYS 2C = SYS2/SYS 7C = GETTAPE/BAS

BACKUP/CMD FG = BASIC/CMD 2A = SYS4/SYS

SYS@/SYS 2D = SYS3/SY¥S 4B = TAPEDISK/CMD
2B = SYS5/SY¥YS

APPENDIX A

TRS DOS 2,2 DIRECTORY

(' PDE/FXDE SECTOR 1)y 1 glUre Al .3 —

3112006
311210
311229
311238
3112490
311250
311260
311279
311280
311290
3112R0
3112B¢
311zCB
3112D¢
3112E9
3112Fu6

S5EBG
oBTF
5F90
EB29
1E00
S82F
poeGo
poBY
beee
Coue
vope
Weww
BEaaG
peaw
PoowY
boue

wooo
1FB2
Beou
210E
woovo
9642
poew
gaue
Baoo
veee
WoLo
GeoLo
beeo
1030337
Woee
BEOo

Relative sector 2
I T T o 2]

BOOT/SYS
SYS6/SYS
FORMAT/CMD

nown

TRACK
TRACK
TRACK

PB42 4FAF
05006 GOOY
PB53 5953
PFUB 1322
go46 4F52
Grog o202
PUow VLo
Yovw voeow
boBL GGOO
poLo POOG
pope vooy
peoe 0600
Goo0 voee
0eoe GGOY
poow Voo
BOoBY vBoo

5420
FFFF
3620
FFFF
4D41
FFFF
Gooo
vBeBo
0oeo
boop
woBY
cooy
wepe
0oeo
woeo
Bove

g0, SECTOR ¥
13, SECTOR 5
62, SECTOR @

20206
gege
2020
FFFF
5420
FFFF
Beoe6
vEeae
geoo
goog
Gage
0eeo
0oee
peee
Bo06
Ge6aa

2053
0oee
2853
FFFF
2043
FEPF
go9a6
RaGo
Eeoo
pEoe
vaoo
peee
poeo
0008
peoo
Beae

5953BOOT....SYS
OO0 oeasessnsssessess
5953SYS6....5YS
EPRE o) Yaoon % s ag
4p44FORMAT..CMD
FEPEE of «Bas swin nas ae
11 S ——
BOBE o smouon womses smon e
BP0 eeeesscesassnnane
BBBE &5 s s esdte i
BOBD wsawas iwss ks ie
BOEBE nsmes swms sewn s
BOOE ww inae awun aaes o
BEBB ws wwws wwwa ssewmte
PBBBE wis wwes encas wms o .
1

e PPDE/FXDE SECTOR 2 e i UL e Al , 4 e—

311300
311310
311324
311330
311340
311350
311360
311376
311380
311390
3113A0
3113B0
3113C9
3113D¢
3113E0
3113F06

50609
A71D
boBY
VeLe
1EG0
ACAS8
voue
poew
beoo
pBEa
booo
poEY
powe
weve
voBo
boRG

WeEe
FYES
vwoau
poue
weew
9642
Yooo
beow
vope
vewBY
Booo6
peee
BEdY
poPo
veeo
geao

Relative sector 3

. e S o e

DIR/SYS
BACKUP/CMD

non

U044 4952
UAGEO 1161
PEOD 6BO06
0pos BOOo
PB42 4143
UFpEo ©322
boow GOLO
PoBE VLG
page vwoBe
POPY VOOO
Boo0 Gooo
booe 00oo
poan DEvO
poorR voes
poog 6o0e
bovY OBLO

TRACK 11, SECTOR @
TRACK @3, SECTOR 5

20620
FFFF
Boop
Beogo
4B55
FFFF
gooo
vooy
Goog
bvong
Gooo
voge
GoBo
bopo
0oea
buuo

2020
0ooe
poan
ooae
5020
FFFF
0one
0eBY
Gooo
Beoy
Go00
Bege
ooeo
weeo
0ooo
eag

2053
0eoe
nega
0eee
2043
FFFF
pooe
0eow
0ooe
pooo6
0eoe
0poo
0ouo
goee
oo
0006

5953DIR.....SYS

@ggg ® ® & &8 % & & & 80 8 8 8 88
ﬁ@@g L IR BB B B B I I O O I
ﬁg@ LI B R] L)

4D44BACKUP..CHMD
FFFF n.l-B.o."l..onnao

GGQG ® ® ® 8 8 s - e s 8 8a
g@ﬁ ® & & B S S8 E S S e EE
BABE & vaensen cesnescs

POBB .euccasacaasaasna
OGP0 eeeececscccccnne
OBD0 secasssocsssscns
BOBE . vicin nmmmnmenomen
PBOB eeeeecovccccccces
D000 cocececcnccnsanas
0000 ssassssassnonnins

12

APPENDIX A TRS DOS 2.2 DIRECTORY

s FPDE/FXDE SECTOR 3 ——— U re Al,S —

311400 S5F00 0000 @053 5953 3020 20206 2053 5953SYSH....SYS
311410 EB29 210E OF0P 6822 FFFF FFFF FFFF FFFF .)!....Meuennnne
311420 0000 0000 G000 0000 COO0 B000 G000 BU0D eeveeeeeonesanns
311439 0000 Q0600 0000 0000 0000 0000 0000 0000 veweessenenaasas
3114406 0000 V000 0000 VOO0 QOO0 G000 BOOD GOGBveeeeeenenn..
311450 GOOO 0000 GOOO 0GO0 GEO0 G000 O00C G000 +.veweeeneensonns
311460 0000 0600 G000 OOOE COPD 0000 0000 G000 vewuesweeenennnnn
311470 00060 0000 0000 0000 0000 0000 G000 G000 veewesennennnns

311480 0000 0000 0000 0000 0000 G000 BOEO G000eco... oo
3114990 0000 0000 GB00 G000 OGOE O000 GO0 D000 veeeeeeerennnnos
3114A0 0000 GOGO G000 G000 0000 G000 0000 BOPC veweweoeoneennns
3114B@ 0000 0000 0000 0000 G000 GBB0 0000 BOO0ueeeeen.. .o

3114C0 0000 D000 0000 0000 0GO0 BO0D 0000 G000 v.ueeeeereeeenes
3114D0 0000 0000 0000 0000 0000 0000 U000 G000 veeeeeeraoennenn

3114E0 0000 Q000 0000 0000 0000 Q000 G000 G000 «eeeeeennnnnnn..
3114F06 0000 0000 0000 0000 0000 0000 CGUOD G000 v.veuuuuunn. cras

Relative sector 4

L e T B

SYSB/SYS = TRACK @0, SECTOR 5

_FPDE;/E‘XDE SECTOR 4~figure Al . y———

311560 5F00 0000 0053 5953 3120 2020 2053 5953 8¥5]1 .5:.8¥8
311510 EB29 210E 0500 1000 FFFF FFFF FFFF FFFF) !uiueeeeeeenans
311520 0000 0600 GOO0 OOO0 0000 0000 OOOE COO0U veeeeeenooacaans

311530 0000 0000 G000 0000 0000 G000 G000 U000 «eeeeeeeennnnnann
311540 10006 0000 0054 4553 5431 2020 2043 4D44 TEST1..,.CMD

311550 9642 9642 P6@0@ 1501 FFFF FFFF FFFF FFFF vBuBuveoeccooees
311560 1000 06697 6654 4553 5432 2020 2042 4153TEST2...BAS
3115760 9642 9642 3960 9C26 1603 1DEY FFFF FFFF .B.B9% .8ccv.....
311580 0000 0000 OP00 Q00U VOO0 O000 0000 D080 ..veeeeeeeeeoees
311590 0000 0000 0000 000 G000 GO0 G000 0000 veeeeeaonconsnns
3115A0 0000 0000 G000 G000 0000 G000 G000 0000 +.veeeeeennnnne.
3115B0 (000 0000 0000 0000 G000 0000 DOB0 GODD ...veeeoeeeoenns
3115C0 0P00 0600 0000 PG00 0000 GO0 GGB0 GO0 «.veereeennnoeens
3115D0 0000 06000 0000 0000 0000 Q000 U000 D000 veueeeeeeocoenns
3115E0 0000 0000 @000 0000 0000 0000 0000 0000 +.veeeeennnnnnns
3115F06 0000 0000 0000 0000 G000 0000 GO0 G000 ..oveeneoeennens

Relative sector 5

m

S5YS1/SYS = TRACK 16, SECTOR @
TEST1/CMD = TRACK 15, SECTOR @
TEST2/BAS = TRACK @C, SECTOR 5

13

APPENDIX A

TRS DOS 2.2 DIRECTORY

s ' PDE/FXDE SECTOR 5_(figure Al ./ —

311600
311610
311620
311630
311640
311650
211660
31167¢
311680
311699
3116A0
2116BEG
31le6cCu
3116DG
3116E0
3116FU6

S5Fge
EB29
Veeo
booe
0eooY
pove
1EG@
782F
0opo
bope
baeo
poop
wooe
boew
boeo
agegoRv}

goad
219E
PBEG
beeo
beue
veue6
booe
9642
ppooE
Beee6
poeee
0oue
peoe
Boa6
bove
Cooe

Relative sector 6

e L

SYS2/8Y8
BASIC/CHMD

TRACK 14,
TRACK 19,

Bes53
P506
bERE
bueg
poee
15308000
B4z
1490
LegE
Gy
bovw
LB
cooe
Cuowe
pLeo
Gope

5953
1620
booe
Boge
BoouL
WowE
4153
1963
EoLp
ROGE
boee
peeo
boow
geoo
geoe
6eoe

3220
FFEF
booe
boug
pooo
BO0o
4943
FFFF
nowvo
BEve
0Gue
Voo
boopo
boBo
Wooo
YY)

SECTOR 5
SECTOR ¢

2020
FFFF
Rooo
peae
1514 30]
0ooo
2020
FFFF
vwoooe
Voo
goge
pope
bwouo
0eRo
Boaa
Wooe

2053
FFFF
gooo
wono
aeog
oaa
2043
FFFF
wopo
Gean
gope
goue
peoo
poeo
peowe
pupo

5953 s eeBiS2 e nwaBTD
FEEF)l.idisia cerraaas
gﬁgg @ B P E SRR
P00 .ooveccssccocnna
BBBE .woweummsaase vas
GOBD oownvswnwesrvise
4D44BASIC...CMD
PEPF ./ eBassis poinswmen
BOO0D ,ecevveverecovena
BBBE 'vuvs ives saans v
gﬁﬂﬂ L O B O D B B B B
POBY ssas vacase onin vaee
BOBO wvinn vwmm snnn s s
Gﬁﬂ LI R I B R B B B R)
OPP0 ..cicavvnnsssnse
UPPE iciiicieisas voms

e |'PDE/FXDE SECTOR 60— qUre Al ,8 e—

511769
31171¢@
311720
311730
311746
311750
311760
3117749
311788
311750
311740
3117B@
3117Co
3117Dy
3117E6
3117F06

S5Fpe
EBZ29
3 1080]
Beon
1EQ0@
TE2F
1600
9642
BEEo
bopoe
1000
9642
1¢96
9642
0oow
0000

Ueue
216E
Ueow
poLa
boepw
9642
0ugs
9642
bopL
vovo
UBCF
9642
BOAE
9642
BeBe
vape

Relative sector 7

e e —

S¥YS3/8YS
BASICR/CHD
GETDISK/BAS
DISKDUMP/BAS
GETTAPE/BAS

i nuu

TRACK
TRACK
TRACK
TRACK
TRACK

GB53
B56GE
CoGo
vegg
po42
1760
BeG47
Giua
boww
pooG
bosa
W30
BE47
G560
LOoH
WeoY

12, SECTOR
16, SECTOR
1B, SECTOR

5953
1206
Ccoee
Goow
4153
1D24
4554
1B01
pogo
bpee
4953
1829
4554
1cel
pEoY
pego

18, SECTOR
1C, SECTOR

3320
FFFF
boge
BoEe
4943
FFFF
4449
FFFF
I R0R0RY
cogg
4B44
FFFF
5441
FFFF
0006
0poE

2DU= 0

2026
FFFF
peeo
eepo
5220
FFFF
5348B
FFPFF
goyNy)
0ee6
554D
FFFF
5645
FFFF
0oeY
BOOo

2653
FFFF
boae
koo
2643
EFEP
2042
FFFF
0oBo
uea6
5642
FFFF
2042
FFFF
0aoe
paae

2953 s e BY830n v DYS
EEPE o 1 wawwn swew sswvs
Qggﬁ L B L O O B I I R)
BUBY wows semn saons s 6
4D44BASICR..CMD
EEFE of oBoawnBnen cwms o
4153GETDISK.BAS
EEPE wB:Bai senmysniné
BROY s e sunewaaiie
BORD ww wwun sues vaws o
4153DISKDUMPBAS
FEFE BeBus swwe saws e
4153GETTAPE.BAS
FFFF .BueBecoesacssananse
UPBE G uanmn sees Lies i

gﬂﬁ LR B BB O B B I A I N Y

14

APPENDIX A TRS DOS 2.2 DIRECTORY

= 'PDE/FXDE SECTOR 7) £ gUre Al . —

3118640 5F00 0000 0053 5953 3420 2026 2853 5953 SYS4....58YS
311810 EB29 210E 0500 1220 FFFF FFFF FFFF FFFF o) leuieceosscesns
3118290 U900 PVO0 GDVO D000 DPOD 000U Q0UD BPPP +eeeessasssnsnsns
311830 0000 0V6O 0600 0000 06LD GORE DBEO BOOL ..c.ieeeeennnnan
311840 0000 0000 000 0000 C0C0 0000 Q000 OGO00 veeieerearsnnaas
311850 0000 0000 000G 2000 0000 Q000 0000 D000 ceesversnvossssns
311860 Q000 VOVO 0000 POOE 0000 DOPD BOOP GP00 ..ueeeeinnannans
311876 0000 000D 0GOG 000GV PBEE COBO BBOO G000 +ueeeeeienrennnas
311880 0000 0000 0000 0000 0000 0000 0000 0000 veeeeeeeronncnns
311890 0000 0000 0000 CO00 0000 0000 UOO0 OOPF «eevivssnsorsses
3118A0 0000 0000 GOGO O0VB COBO V000 BPPG BOBO «..eeeewewenaans
3118B0 0000 0000 0000 AOOD COPD BOR0 OPOD BOO0 vueeweeeoroonsos
3118C0 1000 GOU0 0054 4150 4544 4953 4B43 4D44 ,,...TAPEDISKCID
3118D0 9642 9642 0200 1800 FFFF FFFF FFFF FFFF .B.Bu:eveviaaans
3118E0 0000 0000 0000 0000 OOPE D000 G000 OB000 +..eveeeenesases
3118F06 0000 0000 0000 COCO 0000 0000 0000 0000 «.veeeveassanans

Relative sector 8
L /<7 W 7

SYS4/SYS
TAPEDISK/CMD

TRACK 12, SECTOR 5
TRACK 18, SECTOR 6

nu

‘E‘PDE/E‘XDE SECTOR BWfigure Al .10 y—————

311960 5SF@0 0000 @H53 5953 3520 20620 2653 5953 .

31191¢G EB29 210E 0500 1300 FFFF FFFF FFFF FFFF o) !eceescssonscse
311920 Q000 POOP OPOD 0000 0000 POD0 B000 G600 ...ceeeeveeannns
311930 0000 0000 0000 G000 D600 0000 0000 G000 «.eeeeaeosnceans
311940 0000 0000 0000 D000 0000 0000 0000 0000 veveeeveavconanse
311950 0000 0000 0000 D000 DOOD 0000 0000 G000 «.veeeweancennns
3119606 0000 0000 0000 COO0 0000 OOP0 BOBO G000 ...veeesoscsnaes
311970 0000 0000 0000 0000 $000 OO00 D000 U000 ueeeeecasssnnsss
311980 0000 00600 G000 0000 U000 0000 0000 0000 «uueeecoreaaaaas
311990 ©Y0Y POPYD DOOD PPVY VOGO VOOE VBOBO 0OOO ceenssaaas
3119A0 D000 G000 OGOO 0000 COO0 D000 BO00 OGP0 v.eeeeeeanencana
3119B0 (000 0000 0000 0000 O000 D000 0000 0000 e.eeeecaavaacass
3119CP0 0000 0000 OPOV 0000 Q000 G000 G000 D000 ..eeieececancana
3119D0 0ORY V000 G000 V000 G000 GO0 BOBO DUOD ..eeeeenwenennnna
3119E0 0000 0000 0000 0000 0000 0000 0000 G000 weeeeewennennons
3119F06 0000 0000 0000 0000 0000 0000 0000 0000 e.eeeeeasacoonns

o0eSY55,.44.5¥5

— gy

Relative sector 9
W

SYS5/S8YS = TRACK 13, SECTOR 0

15

AZ
28
F2
80
oF
2C
2B

67

APPENDIX A

NEW

DOS 2.1 DIRECTORY

AT S T R | figure A2 . 1 —

311600
31106106
311620
311630
311040
311050
311060
3110670
311080
311090
3110A6
3116B0O
3110CH
3110D0
311050
3110F0G6

FFFF
FFFF
FFFY
FFFF
FFFF
FFFF
FCFC
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
4E45
BDYD
2020

FFFF
FFIF
FFFC
FFFF
FFFF
FFFF
FCFC
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
5744
2026
2020

FFFF
FFFF
FCFC
FFFF
FFFF
FFFF
FCFC
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
4F53
2020
2020

FFFF
FFEE
FCFC
FFFF
FFFF
EEER
FCFC
FCFC
FCFC
FFFF
FEER
FFFF
FFFF
3430
20218
2020

Relative sector 6, track 11
4@ track NEW DOS+
llaster disk password 'HASH' code
e o e B 37 TR

FFFF
FDFF
FFFF
FFFF
FFFF
FFEF
FCFC
FCFC
FFFF
FFFF
PEEFE
FEFE
FFFF
3034
2620
2020

FFFF
FFFF
FFFE
FFFF
FFFF
FFFF
FCFC
FCFC
FFFF
FFFF
FFFF
FFFE
FFr21
2F33
2020
2020

FEFD
FFFF
FEFFF
FFFF
FFFF
FFEFF
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
pooo
312p
2020
2020

= E@42

FPEFD ueewssse swen svne
FFFF cieseertncnsnnns
.
FFFF ...cvc00-. seeees
FFEFF cveveesrencncnns
E‘FFF S 5 8 8 8 B 8 8 88 e
E‘CFC LI O L I L L I I I
ECEC wwweinie ressasanss
FEEE oo e ceseseens
FFFF seseessvesnvssas
FFFF .cccetecececnnas
FFFF ciieeeanscccnnne
EP42 ..eveeecoeslecsB
3739 NEWDOS4004/31/79
2820 s vews s
2020 ,.es0ccessssnnss

“ HIT SECTOR)“ figure A2 ,2—

311100
31111e¢
311129
3111390
3111406
311150
311160
31117¢
311180
31119¢
3111A0
3111B0
3111cCo
3111D0
3111E0
3111Fde

A22C
ooow
2800
Boge
F200
VoY
pooo
veaY
8055
pooo
Foo0
By
6F67
pegn
poon
0ooo

2E2F
0oeo
woea
0oo0
6eoe
woeo
bovo
vooe
OOEE
vovo
Dooo
vooe
pooa
0000
Be79
0oow

2C2D
0eo6
BOAT
poee
peee
wooo
B500
peoe
6o66
peoo
4632
0oBY
0oee
0ooe
VoY
0oBY

2A2B
0peo
2676
weoe
pevo
pooo
0opo
peoe
peoe
6eve
0689
RNy
6ooe
0epe
pooe
goow

Relative sector 1, track 11
P T e B, T P |

LU L I 1 A

BOOT/SYS
SYS6/SYS
FORMAT/CHMD
DISKDUMP/CMD
BASIC/CMD
DIR/SYS
LEVEL1/CMD
COPY/CMD

28
2F
EE
79
2C
05
46

mwuwunnn

beoPo
peae
poae
bope
poBo
Geee
popo
boBo
ROBe
poBe
0ooo
peeo
pepo
Boae
bepo
poee

SYSse/SYs
SYS1/S¥S
DIRCHECK/CHMD
SUPERZAP
SYS2/SYS
SUPERZAP/COM

DISASSEM/CMD

BeBY
paao
gaan
Voo
Popo
pooo
peaad
poeo
vopo
Booe
beue
voop
paEBe
Vevo
BEEo
Voo

vooo
0ooe
Gooo
wooo
eoo
booo
boow
Booo
vooo
0ooo
LoOo
0a0e
0ooo
geoo
Peoo
0eoe

89
2D
A7
32
2A
26
2B
A6

0060 .,./,~*+t...cunnn
DOBO ooeeecocsnsoncns
PO0O {(eeeee&esannonss
ggﬁ LR I I B L B O B L A
OOBD cvsisnsnvinenos .
POPD oeccossssssssses
ﬁﬂﬂﬁ LI I I DL I I O B L B L L L
BO0D ocecencnsosacnse
POBB Ussssvesovesses
ggﬁﬂ ® 8 & & B 8 B 8 BT R EE RN
BOBG o.oiF2iiiieiicas
POOR caevaves iaes ieei
BORY sun sewmevens swais
BOOY s swvvwes wiwy v
BODD wisw cwemenwns evss
RODBY. w-vin v mmminommninmm

EDTASH/ CHD
SYS3/SYS
SYS11/SYS
LMOFFSET/CHMD
SYS4/8YS
SYS12/8YS
SYS5/8YS
5YS13/8YS

mon

I u

16

APPENDIX A NEW DOS 2.1 DIRECTORY

s FPDE/FXDE SECTOR 11— L qUT e A, ye—

3112900 SEOU G060 0B42 4F4F 5420 2028 2053 5953 +....BOOT....5YS
311210 6@7F 1FB2 05060 0000 FPFFF (000 BOP0 OBDE ...eeeeaaaceaana
311226 5FG0 0621 00653 5953 3620 20620 2653 5953 ...!.S¥S6....5YS
311230 EB29 2106E GE@@ 1322 FFFF FFFF FFFF FFFF o) !ccae aoane e
311240 1EVY 0008 0046 4F52 4D41 5420 2043 4D44FORMHAT..CMD
311256 8130 9642 (GFGO 0202 FFFF FFFF FFFF FFFF .0.B.ceeaiuennnnn
311260 (OU0 GGOC 0000 0O0C VGO0 C000 OOO0 BOO0 .eweeeeernensens
311279 0000 0000 Q000 G000 0000 CGOO0 UODD G000 weseeensononsens
311280 1000 GOF2 0044 4953 4B44 554D 50842 4153DISKDUHMPBAS
311290 9642 9642 0OAGG OBO1l FFFF FFFF FFFF FFFF .BuB.ucesvesnnas
3112A0 1E0Q 0077 0042 4153 4943 2020 2043 4D44BASIC,...CHMD
3112B0 8130 9642 1400 ©322 992@ FFFF FFFF FFFF .0.B.se"ecacasns
3112C6 16006 GGSD GLO4AC 5631 4453 4B53 4C43 4D44LVIDSKSLCHMD
3112D0 9642 9642 0300 UF0@ FFFF FFFF FFFF FFFF BeBeveeeasesvns
3112E0 QU000 000G 0000 0000 0000 CUPO DOOD BUPP «eevsvaocsarosns
3112F06 GODG VOUG GOOD G000 CUUE LDOU DOPD PUPE eeevasscnssaanas

-

Relative sector 2
T e T T O e,

BOOT/SYS = TRACK 6, SECTOR 0

SYS6/SYS = TRACK 13, SECTOR 5

FORMAT/CMD = TRACK 62, SECTOR 8

DISKDUMP/BAS = TRACK 0B, SECTOR §

BASIC/CMD = TRACK 03, SECTOR 5 (EXTENT 1)
TRACK £9, SECTOR 5 (EXTENT 2)

‘FPDE/FX]}E SECTOR 2) eessssssssssssssssssssssss((| GUre AZ, 4

311308 5D0C GO0O ©G44 4952 2020 28628 20653 5953DIR.....S8YS
311319 A71D F9ES5 0AGG 1101 FFFF 0000 0000 G000 +ucevecooasonsos
311320 000¢ 0000 0000 0000 UOOP Q000 D000 0000 «oiessssensssens
311339 000U 00VY DOUBE DPLE LPPEY U0PE COUP BPP0ccceeeennnns
311340 GOOC GOOC 0000 PGOE COBD COOE QOO0 BOO0 +..eeeeseoennans
311350 G000 0000 0000 U000 CODD 0000 G000 0000 weeeeeessasnanse
311360 Q000 Q00C 0000 00EP VPBE DOOE D000 PODD +.eeessssssaanas
311370@ VOOL POBO LOBO VOBE VDL DUYB VOO0 OODEcccieeiennnne
311380 100¢ 0@O0 0GAC 4556 454C 3120 2043 4D44LEVELLl..CHD

311396 964z 9642 1300 0521 (960 UAPGG FFFF FFFF .B.B...!...... .o
3113A0 Q00C 0000 COPY CDGO V000 VDOD POVW D000 ...ceveescsnocns
3113BY GO00 0000 COGPO 00E0 CPRD CDOD BO00 0000cceae.. W W

3113C0 1EOC OOFD 0043 4F50 5920 2020 2043 4D44COPY....CMD
3113D06 8130 9642 (0506 0620 FFFF FFFF FFFF FFFF .0.Becscscssvrns
3113E0 000U 0000 GOBE POVO C0EE BLOD G000 D000 +.cieeeeernonnas
3113F06 0000 000G VOO0 D000 COBE GOOE G000 00060000eeeenaas

Relative sector 3
T T R T T P L R e T B e) R e A P i e e i L S R P U R Sy ;.

DIR/SYS = TRACK 11, SECTOR

LEVEL1/CMD = TRACK #5, SECTOR 5 (EXTENT 1)
TRACK 09, SECTOR @ (EXTENT 2)
TRACK @A, SECTOR @ (EXTENT 3)

COPY/CMD = TRACK 96, SECTOR 5

17

APPENDIX A NEW DOS 2.1 DIRECTORY

= ' PDE/FXDE SECTOR 33—] GULC A2 .5 e—

311490 5S5FGE 605D V@53 5953 3620 2620 20653 5953SYS@....SYS
3114160 EB2S 210E 0DG@ 0022 FFFF FFFF FFFF FFFF .)!..ee"vecencee
311420 D000 0060 0000 0000 G000 GOD0 G000 G000 oeevsessnsssnnns
311430 0PGY VEUE VYODU VOOU VOO0 G000 DOUE G000ccoceenennnn
311440 0000 0000 DOP0 G000 0000 OGO0 GOO0 OO0 ..ceeveeevrencnnas
311450 0C000 POOD DOUUD VOOY 0000 0000 0000 0000 .
311460 0000 0EVLE VODY V00O VOOO QD000 D000 Q000 .
311470 00ULG GOYY 00V0O VGOD V000 GOOO OGO0 GOBOccvceeneenn
311480 0000 0000 0000 0000 GOO0 G000 D000 0000 ..veeeeennnons ..

L NI I R B B B B B A)

L I I I B

311490 0000 VUOD LOOU VOO0 COUD OO0 0000 QVOD
3114A0 POU0 VUOO 00VP DVGE U0OVO C6GO0 VOO0 GOOQ
3114B6 0000 GOCO 000D G600 OUO0 0000 GOO0 GO00 ...oeveeeeencens
3114C6 (EC00 OO0 UEOP 0PEO0 0000 U000 D000 G000 veweeesonsonsens
3114D0 (U000 0006 0000 0000 0000 D000 U000 0000 voveeeevnnsnneas
3114E0 0000 EUUD 0DOBO VOO0 D0U00 V0DO GOBE GBO0 ...eeveeeeeeeenn
3114F06 06L0 VOED DEOD COOC 0000 G000 GOOC G000 +veeeeseencneonn

8 B S S S S E RS

LR T B B Y

Relative sector 4
m

5YS@B/8YS = TRACK €@, SECTOR 5

= 'PDE/FXDE SECTOR 4 p—] QU YE A2 .G ye—

311566 SF@OP ©PBE @G53 5953 3120 20626 2653 5953S¥YSl....S¥S
311516 EB29 210E 0580 16068 FFFF FFFF FFFF FFFF .)!.ceecccosccns
311520 0000 0000 0000 0000 G000 U000 GOOO 0000 +eeeeeeecencnnes
311530 Q000 0060 QYO0 0000 0000 0000 OO0 GOOG .«.oveweeeenneann
311540 (OO0 0POE 0VO0 BP0 GOD0 GOOGO 000 GOOG +.veeweeneaoncas
311550 (0060 G000 G000 0000 0000 OO00 G000 0000 ...cevesenncenes
311560 0000 0000 G000 0000 D000 D000 GOOG P60 ...vverennnennnn
31157¢ 0060 0000 0P0E DO00 D000 G000 G000 0000 +..veeeseeaoenas
311580 1000 GOEC G044 4952 4348 4543 4B43 4D44DIRCHECKCHMD
311590 9642 9642 (DO UDOO OE20 G500 FFFF FFFF B.Buueeesoooees
2115A0 G000 0000 0000 0BOQ 0000 0000 0000 G000veveonennees
3115B0 G000 G000 BPUE VP00 CGU0 0000 G000 G000 v.eeeeeeennonees
3115C0 0000 000D 0000 PGED G000 G000 0000 0000 «.veveernvencass
3115D06 0GO00 GOGE 0000 0000 0000 G000 U000 0000 «veeeeeennenoonn
3115E0 1606 0@6A G053 5558 4552 5A41 5020 2020SUPERZAP...
3115F06 9642 9642 3600 1965 1F20 2323 FFFF FFFF .BuB6ueveveefonss

Relative sector 5

m

SYS1/8YS = TRACK 10, SECTOR 0

DIRCHECK/CMD = TRACK @D, SECTOR 0 (EXTENT 1)
TRACK OE, SECTOR 5 (EXTENT 2)
TRACK ©5, SECTOR § (EXTENT 3)

SUPERZAP = TRACK 19, SECTOR § (EXTENT 1)
TRACK 1F, SECTOR 5 (EXTENT 2)
TRACK 26, SECTOR 5 (EXTENT 3)

APPENDIX A NEW DOS 2.1 DIRECTORY

s 'PDE/FXDE SECTOR 5 e £ UL C A2,] j—

311600
311610
311620
311630
3116490
311650
311660
311676
311680
311699
3116A0
3116B0
3116CO
311l6DW
3116E0
3116FG6

5FG0 0034
EB29 210E
0pee 0oOG
0000 6L00
Voow voLo
pogy vove
1606 0GBD
9642 9642
0ego vogo
pope vo6e
10606 6686
9642 9642
poovo 066Go
puvY Boeo
gogo 06GO
Booo VOGO

Relative sector 6

SYS2/SYS

SUPERZAP/COM

DISASSEM/CUD =

TRACK
TRACK
TRACK
TRACK
TRACK

053 5953
w500 1020
poRG DOOG
pogo ROOO
voee Cooe
pope 0060
BB53 5558
1AG0 1523
Goen GO0y
Guoe 6ooe
0g44 4953
1400 0763
0000 600E
ppoL VEEG
bopo 0606
0000 poow

16, SECTOR
15, SECTOR
gaA, SECTOR
15, SECTOR
87, SECTOR

3220
FFFF
pope
gpoe
5303040/
pepo
4552
PA20
0ooe
veee
4153
FFFF
0eoo
Goue
BGa6
goep

202¢
FFFF
Leee
Leeo
ppoe
peee
5A41
1560
Goue
Goee
5345
FFFF
pooe
veee
PoBo
poeo

2653
FFFF
geae
BOEEG
0eee
geee
5043
FFFF
0oopo
goou
4D43
EFER
peead
Bodo
pBEE
Vo6

5
5 (EXTENT 1)
5 (EXTENT 2)
@ (EXTENT 3)
4]

5953
FEEF
3 Y
Be06
wogo
Coog
44D
FFFF
Geee
geoe
4D4 4
FFFF
Boue
Loue
BEEo
peoo

-QQQ-SYsztuaasYS

I) 1.0 L I I I I B B B B
& % & & % 5 @ @ & & & 4 4 8 @S
- % 8 4 8 % 4 8 e 8 a8 a s a
- % e T8 T E R TR

- % 8 8 0 8 88 88T

@ % 8 8 W SU -F’E:RZE&PCO[I.
BB s eFes sen s .

e+ s« . DISASSENMCHD
qBoB..c, ccccc . o

8 & & & 4 4 B SR E AR

e FPDE/FXDE SECTOR 6) | GUr e A2, —

311700
311719
311720
311736
311740
3LLT5P
311760
311770
311780
311750
3117A0
311780
3117Co
3117D0
3117E0
2117F06

5F@0 00AC
EB29 210E
5F0@ GBEC
EB29 210E
BEoo 6ooe
voaoy 0oee
BOOL bVBe
0gey 6o00
open 00og
ooop Voo
lp00 BGEG
9642 9642
Voo VBOD
pogo 0606
0oe0 0V6Y
OO0 0660

Relative sector 7
A R P T B T sy Py L P I = TS S

SYS3/SYS
SYS11/SY¥S

LMOFFSET/CMD

19

i

TRACK

TRACK
TRACK

fhn

g@53 5953
0566 1200
@@53 5953
p500 2000
0oeeE 0000
geee 6BEO
povE B6Ho6
0oPe 0O0R
ppee 0po0
ppee vEOE
PBac 4DAF
6700 1721
peoe vooo
Voge boBY
pooe 0000
G080 0pRe

12, SECTOR

28, SECTOR
17, SECTOR

3320
FFFF
3131
FFFF
0eeo
Pooo
BEB@
Peoo
poeae
Beao
4646
FFFF
peae
BeGa
0000
boag

)

7]
5

2028
FFFF
2020
FFFF
0oew
PoPL
Voo
poeo
veae
R0 goY)
5345
FFFF
pooo
geeo
peoo
pooG

2053
FFFF
2653
FFFF
Woreo
PoBoY
Voo
gooo
Geon
voog
5443
FFFF
Goog
vwegg
ooow
Go0a

5953
FFFF
5953
FFFF
Go0o
poee
Geuo
geoo
wege
oo
4D4 4
FFFF
ey
BoBo
pogoe
0e0g

-ooL-SYS3.o-oSYS
o]!oocco ------ .
..IIGSYSll.I.SYS
o)!tottootoooooo

EEE N R I L A R

® ® 8 b 8RR e

s ++..LMOFFSETCHD
.B.B.I.!..“I..I

® 8 F 5 F F BB F
L R I I T O R B A)
LI B L I BN L L

5 5 &S S S8R

APPENDIX A NEW DOS 2.1 DIRECTORY

e 'PDE/FXDE SECTOR T ———— i GUre A2 ,O ——

311886 O5F00 OUBA @053 5953 3420 2628 2653 5953SYS4....SYS
3118‘1& EBZQ zlﬁE ﬁSﬁﬁ lzzﬁ FFFF FFFF FFFF FE‘E‘E‘ ') !...'.'l”."'
311820 5F00 @O0A4 0053 5953 3132 2020 2653 59535¥sl1l2,..SYS

311830 EB29 218E 0500 2220 FFFF FFPF FFFF FFFP .) l.sWeesncsnes
311840 0000 CGOCO CUOD COPE VEOU GPOD G000 0000 ...iieeesevcenes
311850 000U C000 COU0 QOO0 GO0 0000 GU0G0 G000 voveerenonas cves

311860 0U0O Q000 0000 €000 CO0C COOD PO00 G000 +oveewseascsocsans
31187¢Y 0OVG LOOG OP00 000U 0000 000D BOO0 0000cceeenaceans
311880 00G0 000G 0000 0000 OGOCC VOO0 GOBO G000 ..eeeevsssnrncas
311890 0OUO 0000 GOCE Q000 CO00E CO00 O000 U000 eeeessscassonnsns
3118!‘& Gﬂﬁg gﬂﬁﬁ ﬁﬁﬂﬁ ﬁgﬁﬁ QGBB g@gg gggg gﬁgg ® 4 % 8 & & & & 4 8 8 8 8 oA
311¢BU G000 GOOO COOE COVO GORD CDOU LOUD D000ceieennnnnn
3118CU0 GOO0 LOBE COOE COOEC COBD OGPE GOGO 0000 v.eeieeroensosans
3118D0 @000 C000 G000 G000 Q000 VOOE GODD G000 vuieseessosssnses
3118ED 0000 GUOG U000 Q600 0OUD CPO0 QOO0 POBO0 ...cceeevecssasas
3118Fb6 GUVD OGOE VOBD CPDE PBEE CODE COBD BOBO ...cveeereenanns

Relative sector 8
L e R N T L T T e S T O R %

5YS4,/8YS
SYS12/8YS

TRACK 12, SECTOR 5
TRACK 22, SECTOR 5

||

—FPDE/FXDE SECTQOR 8_(figure A2 .10 je—

311990 5F6H POCB BB53 5953 3520 2620 2653 5953S¥S5....5YS
311910 EB29 216E 05060 1300 FFFF FFFF FFFF FFFF .)!...ce0enn e
311920 5F06 0009 0653 5953 3133 2620 2653 5953S¥YS13...SYS
311930 EB29 216E 6400 0C20 FFFF FFFF FFFF FFFF .)l.cccecccscsen
311940 00L0 COCOD 000G DGO0 0000 6000 G000 BOBD +.veeeeesnnnnnons
311950 GEO0 000 0000 0000 0000 0000 0000 0000 ...iveeesccsasons
311960 Q000 VGOG LOGE COVD COD0 POPE GPOY BO000 ...veeeesnasanns
311970 0DOOV GOOQ CODO GO0 D000 CUBOD VOO0 D000 ...cceceeeenccens
311986 00P0 DOGO GOUE COEPD G000 COPO POO0 G000 +W.veeveeennannan
3119906 DOOY COVO 0000 G000 O00C 0000 O0P00 0000 W.vieevecosennss
3119A6 1600 GU9A 6045 4454 4153 4D20 2043 4pD44 ..., .EDTASM..CMD
3119B0 9642 9642 2000 1C06 FFFF FFFF FFFF FFFF .BuBuiveessooacas
3119CE 0000 DOBO OO0 0000 0000 CPO0 0000 P00 @.ieeveenesnaans .
3119D0 0000 Q0006 V000 VOBY CO00 OOP0 G000 G000 oueeeeeneocecsans
3119E0 0000 0000 0000 U000 0000 0000 0000 G000 ..veeesnsnsnonns
3119F06 0000 D000 C000 V00D GUOE G000 BOOB BO00 «eeeeeeeeonannns

Relative sector 9
S R R T T e L o Y R A A 7 V|

SYS5/SYS = TRACK 13, SECTOR @
SYS13/s¥Ys = TRACK @C, SECTOR 5
EDTASM/CHMD = TRACK 1C, SECTOR @

20

APPENDIX A VTOS 3.0 DIRECTORY

e CAT SECTOR ssssssssssssssssesssssssssssssssssssms 1 GULe A3,] ——s—

A2
28
F2
TE
DA
C4

29
G5
D@
Al

21

L | ({1 1 O A

3116468 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFFc000evveen

311¢1¢ FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ...ceveccernnnne
311926 FFFF FDFF FFFF FFFF FFFF FFFF FFFF FFFF civcceccanccanas
311636 FFFF FFFF FFFF FFFF FFFPF FFFF FFFF FFPF (..t ciaicnnnnas
3114640 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFFviiiennaes .

311650 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFFevcverenecns
31106@ FCFC FCFC FCFC FCFC FCFC FCFC FCFC FCFC t.vevrvrocsrsnnas
311978 FCFC FCPC FCFC PCFC FCPC FCFC FCPC FCFC .ivaessses vaon s
311480 FCFC FCFF FFFF FFFF FFFF FFFF FFFF FFFFccieeeennes
311690 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ..ceeeevcacnvone
3116A0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF cccoveeosnssvrsonre
3110B8 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFFcccvecevess
311¢4C@ FFFF FFFF FFFF FFFF FFFF FF30 060600 E042000+.9...B
3110D@ 5654 4F53 3A33 2E30 3038 2F30 322F 3739 VTOS:3.008/02/79
3110E0 4348 4149 4E20 494E 4954 0D20 20620 2020 CHAIN.INIT......
3110F06 2020 20820 2020 2020 2020 2020 202¢ 20620 ...eceeevescsoes

Relative sector 0, track 11
35 track VT0OS 3.0
Master disk password "HASH' code = E@42

m— 1 1T S T () fj_gure AJ , 2 pe———

3111090 A2C4 2E2ZF 2C2D 2A2B PU0P 6600 G000 6600 .../ ,~*+........
311119 Q008 0B0C 06RO PEO0 VOO0 VOOO OO0 GO0Gcoveeveenons
311120 2829 2627 0000 0000 0000 0000 G000 0000 ()&'..eeeeeeasans
311130 0000 PB00 0000 VD0 POUD O0O0 P00 D000 ..oveervnvsanans
311140 F2C5 E105 6A40 6C2A 0000 UOVO 0GOOY GOOO@Q.%........
311150 0000 0GP0 0600 0POE VOO0 C000 G000 O000eoeeveenocnss
311160 7ED® G@F3 BDCE S5EO9D 0000 0000 0000 0000 v.vvvervcronsnne
311170 0000 0000 0Q00 G000 0000 0000 0000 G000cocvveevenns
311180 000P GACB Q000 00RO PEOQ VEOEC 0000 BBOC ...veereercnnnns
311190 0000 0600 G000 GEUD 0000 G000 0000 0000 ...coceevesvannns
3111A0 VOAl Q000 0000 BU24 Q000 0000 GOOG BOO0voeefivunvens
3111BD 00BO0 0000 DPBE VOO0 DOE0 G000 G006 0000coveveresons
3111C0 DAUO 0000 PO0P D000 DOOEC 0000 0000 G000 «.veeeieonnnnans
3111D0 0000 0000 GOR0 QOO0 VOO0 COU0 0000 G000 +..eeeessosnsnss

3111E0 0000 0000 00P0D 6COP VPPE VOOD VYLD HOOD i
3111F06 0000 VOVE VGEY GU0D 0060 GOOO 0000 G066 ceerennan

Relative sector 1, track 11
e O R T . R i T O, 2 L T I G S SNt MRV

BOOT/SYS 2E = SYS@/SYS 2D = SYS3/SYS
SYS6/SYS 26 = SYS8/SYS 49 = RS232/DVR
FORMAT/ CHD El = PATCH/CMD CE = BASIC/DOC
VTCOMM/CMD 2F = SYS1/SYS 2A = SYS4/SYS
BASIC/KSM 27 = S¥S9/SYS 6C = KSM/DVR
DIR/SYS ¥5 = DOLC/DVR 5E = PENCIL/FIX
SYS7/SYS F3 = VTOS/EPT 6C = INIT/JCL
BACKUP/CMD CB = FEATURES/DOC 2B = SYSh/SYS
COMMAND,/DOC 2C = 5YS52/8YS 2A = KSR/CMD
NEWUSER/KSM 6A = PR/DVR 9D = GENERAL/DOC
BD = VTOS/KSM 24 = UTILITY/DOC

APPELN J

da A

-

J

N

DIRECTORY

_(E‘PDE/FXDE SECTOR]_ﬁfigure A3, 3 y——

311200
3112190
311228
311239
311246
3112590
311260
311278
311286
3112990
3112A0
3112B0O
3li2ce
3112D9
311284
3112F06

Relative

SEGE BROO
6U7F 1FB2
5F6E pbobu
EB29 210E
LEDD 60O
ZASF 9642
lEYE BobYE
2A5F 9642
bOBE 0GOR
booe vope

Hooe BeBeE

Uope 6066
1006 B6O7A
9642 9642
BOUe BEoe
bEBO GOBE

sector 2

WOsc2 AF4F
B500 POO0
¥P53 5953
1E0G 1325
W@46 4rs52
UFGE 0202
BU56 5443
bAGD ©BO1
boog BE00
bobe vBoY

PeLE BOOE

Luee B600
gua2 4153
ploe ©9vw
Pobe BODE
CEoL 6EOG

5420
FFFF
3620
FFFF
4D41
FFFF
AF4D
FFFF
Bowe
BEae
BEO6
boopo
4943
FFFF
bepe
beae

2020
vuog
2620
FFFF
5420
FFFF
4D26
FFFF
Boae
OO
0oos
Beoo
2020
FFFF
booG
powpo

2053
aooo
2053
FFFF
2043
FFFF
2043
FFFF
poae
Gooe
gooc
Gogg
204B
FFFF
Vooe
goge

5953
Gaap
5953
FFFF

4D4 4

FFFF *

4D44
FFFF
voag
booo
vooo
bopa
534D
FFFF
oope
bogg

cn--aBOOT..a.SYS
ce...S5YS6....5YS
t)!'.l.%l.......
tccchoRﬂATabCMD
..BO.....II-.-.
v--.oVTCOMM..CMD
*OUB...‘.DII....

LI I I I I I R R I]

toaeeBASIC.--KSM
OBOB-vooooo-oooo

B R —

BOOT/SYS
SYS6/SYS
FORMAT/ CHD
VT'COLili/CHD
BAGSIC/KSi

TRACK
TRACK
TRACK
TRACK
TRACK

6a,
13,
02,
08,
vs,

SECTOR
SECTOR
SECTOR
SECTOR
SECTOR

[o N B I ol

s FPDE/FXDE SECTOR 2)-----------(figure A3 . 4 ——

311300
311310
311320
311330
311340
311356
311360
311378
311380
311394
3113A¢
3113B6
3113C0
3113D¢
3113E0
3113Fd6

5DGE GLOY
AT1D 9642
SFE0 ©UeUe
EB29 2106E
1E00 000E
2A5F 9642
1v9y OUDF
9642 9642
Bouwe 0000
0pge Logw
lbpo BEU8BS8
9642 9642
boew vooR
booe PEP6
PUBE LBOO
bope 0voe

Relative sector 3

-----.------------------------------

DIR/SYS
SYS7/8¥S
BACKUP/CMD
COMMAND/DOC

NEWUSER/KSH

TRACK 1
TRACK 1
TRACK @

BE44 4952
VAGE 1101
W53 5953
6566 1620
G4z 4143
WFPG ©322
UG43 4F4D

37

0O OUAB3

Vooe vooo
guue ouuo
BO4LE 4557
0500 ©o20
PoP0 BOOY
VovL Voow
bouw 006
0000 CGUoo

1,
6,
3,

TRACK 0A,

TRACK @D,
TRACK 1A,

TRACK 0

9,

SECTOR
SECTOR
SECTOR
SECTOR
SECTOR
SECTOR
SECTOR

[SAR SR = BN G

2620
FFFF
3720
FFFF
4B55
FFFF
4D41
wD24
Geag
Boea
5553
FFFF
vooos
Gpoo
wEoge
vooe

2020
Logg
20206
FFFF
5028
FFFF
4E4L4
1A01
opoe
Boow
4552
FFFF
0ooo
vooo
poGY
waga

2@53
Bope
2653
FFFF
2043
FFFF
2044
FFFF
pego
be66
204B
FFFF
bpoo
beee
Gogg
uegg

(EXTENT 1)
(EXTENT 2)
(EXTENT 3)

5953
paao
5853
FFFF
4D4 4
FFFF

4F43 -

FFFF
popo
BEae
534D
FFFF
Beae
Bego
Gooe
wooo

«veesDIR.....5Y8
s nBeee aee vEae
swi s DTS ve w s SYB
-)looooaocoooa-t
««...BACKUP. .CMD
¥ aBae o Vwmnmnins o
e« e« COMMAND,DOC
.BnB?nnooSd-cc-o

eess NEWUSER.KSHM
.B.B.......-----

® & & 2 8 0 88 s 0 s m s

22

APPENDIX A VTOS 3.0 DIRECTORY

s ' PDE/FXDE SECTOR 3 —] UL e A3 .5 ee——

311400 5SFO0 0000 ©@53 5953 3620 2020 2653 5953 S5YSB...«3Y5
311416 EB29 210E @F00 0622 FFFF FFFF FFFF FFFF) leeeeeencnnns
311420 5F@Q @008 BE53 5953 3820 2020 2053 5953 ¢...eSYSBeeesSYS
311430 EB29 210E (¢560 1700 FFFF FFFF FFFF FFFF .)!..ccccacee. —
311440 1EQP 0000 0050 4154 4348 2020 2043 4D44PATCH...CHMD
311450 2AS5SF 9642 U500 @500 FFFF FFFF FFFF FFFF *,.B.ceeacescscs
311460 0000 V000U Q000 Q000 ODO0 OGO0 O00Y D000 .eeeeccaascsnssne
311470 0000 00R0 PPE0 Q000 0000 0000 OO06 BOEE .+.eeececeasnes i
311480 (P00 (P00 POOO Q000 0000 GO00 G000 O000 ceeesansnrnsenss
311490 0000 QPOP VOBVP 0000 DGOD D000 D000 U000 v.ceecacssssacas
3114A0 QP00 00QP GOO0D G000 0000 GOOO O0BO G0B0 .&.cccecacconnnses
3114B¢ 0000 Q000 GO00 V000 Q000 O000 O0PE0 Q000 &.ieeececcaccenes
3114C0H 0D0O0P 0000 Q000 DOOU 0000 CO000 0000 O000 eececcssssannnses
3114DF (REP POGO QGOD D000 0600 C6DE POO0 OU0PP cesescssssssaanas
3114E0 0000 Q000 0GO000 OC0O Q000 OO0 GOEE Q000 ..eceaaa i B
3114F06 Q009 0000 0000 Q000 C000 G000 C000 PO0P eeeeeansnssesesns

Relative sector 4

SYS@/SYs = TRACK #@, SECTOR 5
SYS8/5YS = TRACK 17, SECTOR @
PATCH/CMD = TRACK 05, SECTOR @

== FPDE/FXDE SECTOR L ——————— | UY e A3 . 6 ——

3115008 5F00 0000 0053 5953 3120 2820 2653 5953SYSl....SYS
311510 EB29 210E 6500 1060 FFFF FFFF FFFF FFFF .)!iceeevtcasnns
311520 S5F00 0000 0053 5953 3920 2020 2653 5953S5YS89....5Y5
31153@ EB29 210E @500 1729 FFFF FFFF FFFF FFFF .)lecececccncaes
311540 1400 00006 0044 AF4C 4320 2020 2044 5652DOLC....DVR
311550 2ASF 9642 6500 0520 FFFF FFFF FFFF FFFF *..B......ccacu.
311560 1000 0022 0056 544F 5320 2020 2045 5054 ...".VTOS....EPT
311570 9642 9642 QEQO 1BOl 1F20 FFFF FFFF FFFF .BuBacesseeasens
311580 1000 OOFC 0046 4541 5455 5245 5344 4F43 FEATURESDOC
311590 9642 9642 OBOO @PCO2 FFFF FFFF FFFF FFFF .B.B......cooen.n
3115A0 0000 0000 0000 0000 0000 PPOP VP00 D000 ..iveveocnnnasas
3115B0¢ 0000 0000 0000 0000 0000 0000 0000 O000 «vveevecsnannnas

3115C0 0000 0000 0000 DVPO BPPDY DPOD VPOD POO0cce0eeesan
3115D0 0000 0000 0000 0000 0000 0000 D000 G000cveveeananns
3115E0 0000 0000 0000 0000 0000 000D 000D 0000 csescssense
3115F06 0GO000 0000 0000 PU0CD VDPD VOPE D000 D000cceeee cese e

Relative sector 5

SYS1/SYS = TRACK 18, SECTOR 0

SYS9/SYS = TRACK 17, SECTOR 5

DOLC/DVR = TRACK @5, SECTOR 5

VTOS/EPT = TRACK 1B, SECTOR @ (EXTENT 1)
TRACK 1F, SECTOR 5 (EXTENT 5)

FEATURES/DOC = TRACK BC, SECTOR 8

23

APPENDIX A

VI0OS 3.0 DIRECTORY

e ' PDE/FXDE SECTOR 5~figure A3 .7 —

311600 5SFBB 6EGBO
31161¢ EB29 210E
311626 ©0UE ©VOD
311630 wuUe0 ©OVY
311646 1460 0060
311650 2AS5F 9642
311660 1600 @8BD
311670 9642 9642
311680 GOO6G QO0G
311690 0000 VPOE
3116A0 00PO GEUE
3116B0 0PP6 VBOO
3116CO 0BVG 600Q
3116D0Y 0000 0000
3116EY 0000 0BEE
3116FuU6 00BE VUOEO

Relative sector 6

bBs53
B500
3
booe
Bo56
U560
we56
p1E6
6ooe
veee
BEYY
poawe
poGo
wooe
voge
63030

5953
1020
boep
Bega
5220
geoo
544F
1560
PEoo
Paee
Bpow
booo
poRo
pova
BEee
boB@

3220
FFFF
wogo
Booo
2020
FFFF
53209
FFFF
Pouo
pope
woue
Baao
0ooD
wopo
peea
Vada

2020
FFFF
peoo
Gooo
2020
FFFF
2020
FFFF
0Poo
0ooo
DG
R 103Y]
0ooY
pooo
oow
Vooo

2053
FFFF
Looo
woeo
2044
FFFF
204B
FFFF
gopo
pogg
ER YY)
0eeo
gogg
oopo
GoRa
LoBo

5953
FFFF
pope
0e6e
5652

FFFF *

534D
FFFF
0ooo
voovo
Goeo
0000
0eow
voew
Booo
0ooo

QOQQISYSZC.DDSYS

-}!-...0....-...

eeesePRecsea.DVR
eeBicssssscccee
«evs..VT0S5....KSH
«B.Bieeersacecnne

LR N B O O O R B IR O B I

“

SYS2/8YS = TRACK 18, SECTOR 5
PR/DVR = TRACK 06, SECTOR ¢
VTOS/KSH = TRACK 19, SECTOR 0§

= FPDE/FXDE SECTOR Gﬁfigure A3, § pe—

3117006 5Frg@ 0600
311710 EB29 210E
311720 0000 0000
311730 0000 0000
311740 1400 0000
3117586 2ASF 9642
311760 1000 PUE4
311776 9642 9642
311780 Q000 0000
311796 000G 0000
3117A0 0000 0000
3117B0 G000 0000
3117Co0 0000 0000
3117D0 06000 0000
3117E0 0000 G000
3117FU6 0000 G000

Relative sector 7

pe53
P508
poee
0oog
Bes52
B5640
0e42
aCcon
oo
Vove
pooy
pooG
Voo
0oow
Dopo
poog

5953
1200
0pee
beee
5332
0620
4153
2002
oueo
0oeo
0oee
0eoa
wovo
Goog
0ooe
0ooo

3320
FFFF
0ooe
pooo
3332
FFFF
4943
FFFF
vaa6
pooe
po0o
peoo
weoe
poaa
opoo
Ge0o

2020
FFFF
poCe
Voo
2020
FFFF
2620
FFFF
bepo
Boaa
peo0e
poeae
booe
poae
0eee
GoEa6

2053
FFLFF
BoGo
paae
2044
FFFF
2044
FFFF
RN
booo
beooe
peoe
pove
0eo0
0eoe
Peoo

5953
FFFF
uooo
0oBo
5652
FFFF
4F43
FFFF
poopo
veoe
veoe
pooe
veoo
vopo
Lovo
peBe

..""SYS?’.‘
o)-lu.-

® ® WP

««8¥S5

LI R

...'.R8232‘..DVR
*.oBoooott-v-O.l
. l.llBASIC...DOC
.B.B-...OOOOIQ..

LR B O O I R I I I I I]

LI I O I A
L R R)
L I I R R I A B R R Y
L R I I
LRI A)
® %80 2 s s

LI B BB B B B B B O A I I

h

SYS3/8YS = TRACK 12, SECTOR @
R§8232/DVR = TRACK @6, SECTOR 5
BASIC/DOC = TRACK 2@, SECTOR 0

24

APPENDIX A VTOS 3.6

DIRECTORY

qFPDE/FXDE SECT1'OR 7#1{19{1]:0 A3 . 9 ——

311800
311816
3118290
311830
311840
311856
311860
311879
311880
311890
3118A0
3118BY
3118Cy¢
3118D6H
3118E0
3118FU6

5Fp@
EB29
ooee
poBw
1460
2A5F
1600
9642
weao
BoBw
pove
VoooY
bevo
oo
1006
9642

gooe
210E
ORoNoRY
oeo
oo
9642
GETF
9642
poue
oo
VoBo
wooe
boGy
0oee
Gaan
9642

Relative sector 8§
“

SYS4/SYS
KSHM/DVR
PENCIL/FIX
INIT/JCL

pe53
B500
Guoe
cope
B0G4B
0506
B@s6
voGy
Boae
peew
vooe
Beoe
boge
GO0e
V49
vw200

5953
12206
booe
Geoo
534D
G7¢0
454E
1&01
boow
eeow
woow
voow
booRe
0oee
4E4S
1526

TRACK 12, SECTOR

TRACK
TRACK
TRACK

w7,
18'
19,

SECTOR
SECTOR
SECTOR

3420
FFFF
BE0G
0epL
2020
FFFF
4349
FFFF
35330
peoo
pooe
Boee
poaEe
Geoe
5428
FFFF

Lo w

2020
FEFE
pooe
beooe
2026
FFFF
4C20
FFFF
BBOE
bpoe
aoee
5378
Beoo
Loeo
2020
FFFF

2653
FFFF
bepe
popo
2044
FFFF
2046
FFFF
Lopo
BOEG
0peoe
BOE6
BEoo
geEeo
204A
FFFF

5953
FFFF
Goge
Geeo
5652
FFFF
4958
FEFF
BEEE
LOGE
Cooy
BOBG
6oO0
Leeo
434C
FFFF

«sesSYS4,,,..8Y8

.)l-c.llo.o..otl
L) 'KSIEO LI B] ODV}?\
*oiBltooooolliin
eeee. PENCIL, .FIX
oBcBoaaaooo-aocq

-

-

@ & 8 & & 4 & @ @ " 4 @ ow 4 s s
-

-

ead INIT....JCL

.B.Bo-locoooovl!

= ' PDE/FXDE SECTOR QJ_Eigure A3 .10 e—

311900
311919
3119240
311939
311940
311958
311966
311970
311980
311990
3119A¢
3119806
3115Co
3119D8
3119E0
3119F06

SFE@
EB29
BBBe
peoe
1EQG
2A5F
10066
9642
Boga
poae
10060
9642
0oee
a6
0oeo
0Go0

Booo
210K
BBGG
0eve
Pooe
95642
0el4
9642
0000
opee
pB51
9642
pogoe
Bo6o
pooo
a6

Relative sector 9
m

SYS5/SYS
KSR/CMD
GENERAL/DOC
UTILITY/DOC

25

nmn

TRACK
TRACK
TRACK
TRACK

PB53
D500
Bege
oo
Wo4E
U506
pe47
v8o e
veoe
VBB
0B55
2200
Voo
Boue
Bea6
weoe

13,
07 4
21,
1¢c,

5953
1360
beBo
BHOG
5352
P720
454E
2121
voge
BEao
5449
1Co6
Wowvo
booo
0o
pago

SECTOR
SECTOR
SECTOR
SECTOR

3526
FFFF
poGo
gopgo
2020
FFFF
4552
FFFF
Bovo
BeEE
4C49
FFFF
371030
0oBo
Boao
poRo

==

20206
FFFF
coop
vpog
2020
FFFF
414C
FFFF
vowe
pooo
5459
FFFF
Bwooo
pooo
g0
pooe

2653
FFFF
(X 57540
boBo
2643
FFFF
2044
FFFF
Bpoo
ono
2044
FFFF
Booo
Booo
0oaa
oeno

5393
FFFF
go0a
beoe
4D44

FFFF *

4F43
FFFF
Boae
gooe
4F43
FFFF
BaGe
ppoo
0o0g
beog

.....SYSS.-.-SYB

-)!......-..I...
we.v.KSR.....ClD
.IB.IQ-........
v e«+.GENERAL.DOC
BuBuulleweennn.s

L B O I I B N I

¢+« Q.UTILITY.DOC

bB-B“l.....a.n--

LRI I I I B I I
LR B BT BN B B B B A B B
& & B & & & 3 4 0 0 e s e e

LR B L R I A)

APPENDIX B

APPENDIX B

This originally appeared in the OCTUG newsletter. OCTUG is the
"Orange County TRS-86 Users' Group". It is one c¢f the finer TRS-80
clubs and its newsletter is an outstanding publication. For
membership information write:

CCTUG
2531 E. CONFONWEALTH AVE.
FULLERTON, CA 92631

SERVICING THE TRS-86 DISK DRIVE

(Shugart SA400)

By Don Necker

e e P T i W 1|

Unless you're prepared to work on the unit in a relatively clean area,
free from dirt and 1lint, it would be best to leave the unit alone.
The tools you will need for this "light meintenance" are a Phillips
and standard screwdriver, a small wrench for number four and six hex
nuts, a can of Freon spray cleaner (must state on can: SAFE FOR ALL
PLASTICS), a small amount of isopropyl (rubbing) alcohol, a couple of
lint free wipers and a little silicone light lubricant (such as Garcia
Reel-lube). If there is an apparent power supply overheating problem
you will need a small (approximately 46 watt) soldering iron and
solder and a dab of heat sink grease.

Remove the outside cover by removing the four Phillips screws. Then,
by removing the three screws which attach the Shugart drive assembly
to the rear and bottom frames, the drive assembly may be slid forward
out of engagement with the 34 pin connector. This facilitates
disconnecting the 4 pin power plug. The drive assembly 1is now free
from the frame and power supply.

In handling the drive avoid contaminating the belts and pulleys with
body o0ils from your fingers. By removing the two small screws in the
drive's large circuit board and disconnecting the two connectors, the
board may be removed, exposing the disk drive mechanism.

Examine the drive mechanism for evidence of dirt, 1lint or other
foreign material. The read/write head assembly may be slid fore and
aft out of the drive cam detent with slight finger pressure to check
for binding. Freon spray should be used to wash out any foreign
matter throughout the mechanism. The read/write head, £felt pressure
pad and the LED and sensor faces should be wiped clean with alcohol on
a wiper. Be careful not to apply pressure to these items which would
knock them out of alignment.

The use of metal objects is not recommended since they may scratch
the critical surfaces. A slight film of lubricant should be applied
to the two round head-slider guides and at a couple of spots along the
cam drive grooves, The two drive belts and pulleys should be wiped
clean using freon and wipers. A dab of lubricant in each of the front
door latch grooves completes the servicing of the drive.

If you have been having operating problems which occur after the
unit has been on for a while, it may be a heat dissipation problem in
the power supply. If so, check the two three-terminal regulator ICs

APPENDIX B

wiich are fastened to the inside of the rear frame. The IC metal
surtaces should be tight against the frame. A mica insulator with
neat sink grease ON BOTH SIDES, should be visible between the ICs and
the frame.

Some units have been found with number four nylon screws which
nave pbeen stripped. These number four screws should be replaced with
Nuncer six button head nylon screws (Number six metal nuts may be used
1f installed on the inside surface).

After the o0ld screws are removed, re-install the mica insulator
wlth added heat sink grease on both sides. Reform the IC leads to
rosition the IC against the frame. Install the new Screws making sure
you don't strip the threads. Resolder the IC leads where they enter
the board. It may be necessary to remove the board from the frame if
your soldering iron ig too large or your hand is not steady enough,.

The disassewbly procedure is reversed to reassemble the unit. All
connectors have locking features to assure proper alignment and
orientaticn,

BEATS M2/

VERY TIME
AT FONRM TV
SET SAYS,

eMENT IN
.‘S;:’féa; HE KICKS

LL OUT oF
1|l-‘}‘{EJ:«.E- elelc Xy

APPENDIX B

SUGGESTED READING

O ———— R T -

I don't know of another book on data recovery, 1f one existed, 1'd
certainly recommend it, However, there are a great number cf
excellent publications currently on the market about computers 1in
general. If you would like to become better at what you do and den't
want to spend time re-inventing the wheel, try learning from these
authors, I have found their books instructional, easy to read, and a
cut above average. So why watch another re-run of the 'Flintstones’
when you can read a good book?

'"HOW TO PROGRAM MICROCOMPUTERS'
Author: William Barden, Jr.
Publisher: Howard W. Sams & CO.

TRS-8§ ASSEMBLY LANGUAGE PRCGRAMMING
Author: William Barden, Jr.
Publisher: Radio Shack

COMPUTER ARCHITECTURE
Author: Caxton C. Foster
Publisher: Van Nostrand Reinhold Company

INTRODUCTION TO COMPUTER PROGRAMMING
with the BASIC Language

Author: Harvey M. Deitel

Publisher: Prentice-Hall, Inc,

THE BASIC HANDBOOK

An Encyclopedia of the BASIC Computer Language
Author: David A. Lien

Publisher: Compusoft Publishing

LEARNING LEVEL II

Learning TRS-80 Level II BASIC
COMPUSQFT LEARNING SERIES
Author: David A. Lien
Publisher: Compusoft Publishing

MAKING SYSTEMS WORK

The psychology of Business Systems
Author: William C. Ramsgard
Publisher: John Wiley & Sons

APPENDIX B

[tZURPEY AND HIE DAMNED LAW: Whatever can go wrong, will.
“
ihe trouble with a cliche is that it's true. In the interest of
increasing your knowledge of computers I feel it ny duty to expose you
to the Truths of the "way Things Really Are"™. Since the legendary
Hurphy is no longer with us, a victim of his own laws, (Mr. Murphy
owned and operated a hand grenade repair business). I have had to rely
on Fenwyler T. Hurphy, his nephew and executor of the Murphy estate as
a source for the following material., (Fenwyler Murphy is also the
airector of the Hurphy MHemorial Foundation For The Study of Known
Phienonmena.,)

In the interest of preserving space I have listed only those laws
wihlch apply most directly to computers and programming.

CORCLLARIES:

S o AN

GUTTERSON'S LAWS:

aAny programming project that begins well, ends badly.
Aby programining project that begins badly, ends worse.

KLIENERUNNER'S COROCLLARIES:
I1 a programming task looks easy, it's tough.
If a progyramming task looks tough, it's damn well impossible.

MUNGBRICGHT'S LAWS:

Any given progrem, when running, is obsolete.

Any given program costs more and takes longer.

If a program is useful, it will have to be changed,

If a proyram is useless, it will have to be documented.

Any dgiven program will expand to £ill all available memory.

The valiue of a progyram is inversely proporticnal to the weight of
its output.

Program complexity grows until it exceeds the capability of the
programmer who must maintain it,

Not until & program is in release for six months will the most
harmful error be discovered.

Machine independent code, isn't.

Adding manpower tc & late software project makes it later.

The effort required to correct software prokblems increases
geometrically with time.

FARVOUR'S LAW:
There is always one more bug.

BRUNK'S LAW:
If a listing has a beginning it has an end.

ZEPPLEMIER'S COROLLARY:
The last 4 pages of a critical listing will be lost.

PENNINGTON'S OBSERVATION:

The probability that a given program will perform to expectations
is inversely proportional to the programmers' confidence in his
ability to do the job.,

APPENDIX B

ORDERING INFORMATION

S T i e LT

If your favorite software dealer does not stock NEWDOS+ with SUPERZAP,
the following APPARAT NEW DOS Distributors will be more than happy
(grateful, in fact) to fill his order, instantly.

Apparat Inc.

731¢ East Princeton
Denver, Colorado 80237
(383) 758-7275

IJG Computer Services

569 N. Mountain Ave - Suite B
Upland, California 91786 U.S.A.
(714) 982-7829

Miller Microcomputer Services
61 Lake Shore Road

Natick, Massachusetts 91760
(617) 653-6136

If you would like additional copies of this book they may be purchased
through your local book seller, software dealer, oOr direct from IJG,
Apparat or Miller, listed above.

NOTICE

C—

This book is the beginning of a series of publications specifically
for the TRS-88, currently in progress. The following titles are
planned for publication in late 1980.

VOLUME II TRS-86 INFORMATION SERIES
BASIC LISTED AND COMMENTED.

VOLUME III TRS-8¢ INFORMATION SERIES
'DOS'" LISTED AND COMMENTED

VOLUME IV TRS-88 INFORMATION SERIES
GUIDE TO HARDWARE EXPANSION AND MODIFICATION

APPENDIX B

"SEARCH 1.@"

—— e e e SR e e e e —

'SEARCH' is a BASIC language program that will search a disk file for
any byte combination up to 255 bytes. The user is prompted to enter
the file specification and line printer option.

It will return the relative sector and the starting byte (in
decimal), in which a match was found to the display and/or the line
printer.

The 1input requires a 2 character hexadecimal input for each search
vaiue. After each 2 character input is '"ENTER'ed, the input is echoed
to the display. Each input is checked for validity. If the input is
incorrect, an error message will be flashed on the screen and the user
will be prompted to re-enter a valid hexadecimal number.

The disk I/O0 is '"RANDOM' mode. To conclude the input routine enter
"END' and the search mode is initiated. If the line printer was not
specified, the routire will pause after the display is filled and will
prompt the wuser to hold the 'ENTER' key. The screen will be cleared
of previously listed matches, and will <continue until the routine
conipletes its task or another screen is filled.

Upon completion of the program, " ,,,ALL DONE" is displayed on the
video monitor. 'ENTER' must be pressed to continue for another
'RUN'.

CAUTION: Due to the limitation of varicus disk operating systems, ONLY
THE FIRST 255 BYTES OF EACH SECTOR ARE SEARCHED. Byte 256 of any
sector 1s not searched! 'SEARCH' does not span sectors in the search
mode. Each sector is searched individually. If the search value(s)
are located between loader codes and load addresses the search will
not recognize the value, being searched for with the embedded codes.

LIST OF VARIABLE NAMES USED AND FUNCTIONS
L T e e r .l

A$ - Sector buffer

BS = Sector buffer comparison string - makes system
compatable with SUPERDOS 1.0

C$ - Instring position counter

CK$ - Comparison string for 'INSTRING' routine.
CV$ - Hexadecimal characters

DR$ - Drive specification

FS$ — File specification

I$ - Hexadecimal input value

II$S - 'Echo' string

IK$ - Inkey string

L = Instring position of 'search value'
LP - line print switch

LP$ - line printer input to set switch

N - Hex conversion routine variable

N1 - Hex conversion routine variable

PZ - Display print position

SC$ - Contains search value(s)

T(1)- Hex conversion routine variable
T(2)- Hex conversion routine variable
X - Record number in 'GET'

X1 = Loop counter

X2 =~ Loop counter

0

APPENDIX B

1ﬂﬁ REM R R R AR AR R A A AR A A AR R A A A A A AN F A A A A A A A A A A I A ARAAALNS
250 REM K SEARCH ¢68/30/79 * %
200 REM % BY H.C. PENNINGTON * %
25@ REM R e e L e e S il i T Sl B e T e s e s ol e
366 REM *k 'SEARCH' WILL FIND ANY HEX STRING IN **
350 REM * ok A DISK FILE. INPUTS ARE 2 CHARACT- *%*
400 REH * % ER HEX NUMBERS. 'END' TERMINATES *%
450 REM * % THE INPUT MCDE AND INITIATES THE * %
500 REM * %k SEARCH. *x
55@ REM RS SRS LS RS RS EE SRS RS EEE EEE LT TR I S S S
600 REM

650 REM R T TR T TR R
700 REM INITIALIZE AND FILE SPECIFICATION IKPUT
‘75@ REM A A AT T T AT TR A AR AR AR A A A AR A A AR AR I A AT F TR dr o dorod %%
800 CLS:

CLEAR 1000:

CVs$="@1234567T89ABCDEF"
850 PRINT@1S92,:
INPUT" ENTER FILE SPEC: ";FSS
99@ DR$="9":
INPUT" ENTER DRIVE (@ - 3): "; DRS
950 IF VAL(DRS$)<8 OR VAL(DRS)>3 THEN GOTO 8060
160G INPUT"DO YOU WISHE OUTPUT TO LINE PRINTER (Y - W)";LPS
165¢ IF LEFTS (LPS$,1)="Y" THEN LP=1
1108 FSS$S=FSS$+":"+DRS
1150 CLS:PRINT@192,
"INPUT ALL VALUES AS 2 CHARACTER HEXADKCIMAL NUMBERS."
1200 PRINT
"ENTER EACH 2 CHARACTER INPUT. WHEN FINISHED ENTEK 'END'"

1256 PRINT"EXAMPLE 'G61' = 1 'ga' = A"

136® PRINTQ@ 384, STRINGS(63,140)

1356 REM

1400 REM Fxdddrkrrrhhrhhhh ks h ke h Ak kAR AR AR AR I A A A Fhhhh &k
1450 REM INPUT HEXADECIMAL VALUES

1506 REM AND TEST INPUT FOR CORRECT ENTRY

1559 REM RS R RS L R R T T R TR R R TR

1660 PRINT@512,;:
INPUT IS:
IF I$="END" THEN GOTO 2350:' 512
1650 IF LEN(IS) > 2 OR LEN(IS) < 2 THEN GOTO 3250
1798 T(1)=INSTR(CVS,LEFTS$ (IS$,1)):
IF T(1)=8 THEN GOTO 3250
1750 T(2)=INSTR(CVS,RIGHTS (IS$,1)):
IF T(2)=@ THEN GOTO 3250
1800 TIS=IIS+" "+1IS:
PRINT@ 640,IIS:
PRINT@ 512,STRINGS(63,32):
PRINT@ 448, ;

1856
1500
1958
2006
2050

2100

2150

2200
2250

2300
2350
2360
2370
2400

2459

Z501
2556

2600

2650

2700

2750

2800
2850
2900
2950

3000
3010

3020

APPENDIX B

B
};;Ei'fi P B e e o e o S N T S S T I RO T TR TR (Y S S A P
REM CONVERT INPUT TO0 CHARACTER SEARCH STRING
REM KR I A A A A A A A A AR AR AT A AT R A RAA AR AARARAA AN R AR A hhd %
X = 1:

CK$ = LEFTS$(IS,1)

N = INSTR(CV$,CKS):

N=H-1

IF X=1 THEN N1 = ¥ * 16:

X=X+1:

CK$ = RIGHTS(IS,1):

GOTO 2166

N = N+l

SC$ = S5CS + CHRS(N):

GOTO 160U

E%}ii L SRS SRR SR EEEEEEE T EE R R R 0 0 T T Tt A A o 3
REM SEARCH ROUTINE

REM AFkhkh kb hk kb vk h kA AR A AR AR AR R AR AR R AR R KRR
X=1:

CLS:

PRINTE@ @,"SEARCHING RELATIVE SECTOR: § ";FSS;:
Pz=128

IF LP=1 THEN LPRINT

"SEARCHING FILE: ";FSS$:LPRINT"SEARCH VALUE: ";IIS:
LPRINT STRINGS(50,"="):

LPRINT" "

OPEN"R",1,FSS

FIELDl, 255 AS AS:

Bszli "

GET 1,X:

C=1:

PRINT@27,X;

L=INSTR(C,AS$,SCS) :

IF P%>=960 AND LP=@ THEN

GOSUB 396G@:

PRINT@ 64,STRINGS(40,32);:

PzZ=128

ELSE IF PZ >=960 THEN P2=128

IF L>0 THEN C=C+L+1:

PRINT@ PZ,

" MATCH = RELATIVE SECTOR"; X-1;TAB(36)"BYTE ="; L;"
P%Z=PZ + 64

IF L>@ AND LP=1 THEN LPRINT

"MATCH = RELATIVE SECTOR ";X-1;TAB(31)"BYTE ="; L
IF AS$=B$ OR AS$=STRINGS$(255,0) THEN 3000

IF L>@ AND C<255 GOTO 2650

BS=AS

C=1:

X=X+1:

GOTO 2600

PRINT@67, ".... ALL DONE ";:

IKS=INKEYS:

IF IKS$="" 'THEN 3010

RUN

-

.

30560
3169
3150
3200
3256

3300
3356
34060
3450

3586
3556

3666
3700
3750
2800
3850
3900
3950
4000
4050

4100
4150
4200
4250

4360
4359
4400

APPENDIX B

REM
REM RXAXAkA XX XXX KX I XXX K AR KA AR I KR AR AR XAAR KRN ARRAARA
REM INPUT ERROR ROUTINE

REM AEAKAKARAAAAF A A A A A dddhdhadbddhbhhrbhhidhihrhhhik

FOR X1= 1 TO 9:
PRINT@UW, =

PRINT:PRINT :PRINT:PRINT
PRINT@ 27@, "YOU HAVE ENTERED AN INCORRECT VALUE."
PRINT TAB(24)"PLEASE DO AGAIN.";
FOR X2= 1 TO 88 :NEXT

PRINT@ 270 ,STRINGS(36,32):
PRINT ;

FOR X2= 1 TO 50:NEXT

NEXT X1:

PRINT @512,STRINGS$(63,32):
PRINT@ 512,;

GOTO 1660

REHM

REM #H%xxdkkdkrxkdhhAh AR AR AR A AR AR ARk h bk bk hh ok
REM PAUSE & FLASH MESSAGE ROUTINE

REM A ddkdhh ko hk kA A Ak A AR A A kAR KRR A AR AR Xk hkkdek %

IKS=INKEYS:

PRINT@ 64,"HOLD ENTER TO CONTINUE";
FOR X1 = 1 TO 50
IK$=INKEYS$:

IF IKS$="" THEN NEXT X1

IF IKS=CHRS (13) THEN 44¢0
PRINT@ 64, STRINGS(25,32)
FOR X1 = 1 TO 50
IKS=INKEYS:

IF IKS$="" THEN NEXT X1

IF IKS$=CHRS(13) THEN 4460
GOTO 3950

FOR X1 =1 TO 13:

PRINT:

NEXT X1:

RETURN

650
760
750
860

APPENDIX B

LR R R R R R R R R T

INITIALIZE AND FILE SPECIFICATION INPUT
AEAXKAKXAKRARAKRA A AT A FT T I XA FAA XXX AXA KA AR XARAA A AR AR AKX
Clear the screen
Clear string space
Initialize CV$ with alphanumeric characters
Set print position
Input file specification
et drive specification default value
Input drive specification
Test input
Input output mode (line printer or display only)
Test input
Concatenate file specification
Clear the screen
Print instruction message to screen
Continue message
Continue message
continue message
Print graphics line to screen

KERRKKERAKAAAARK A A A KA A I A KA AT A A b xhhdhhhhdhhnix

INPUT HEXADECIMAL VALUES
AND TEST INPUT FOR CORRECT ENTRY
KERKKAAKRRAAKAKAAKRAAA A A A A A I A A A A AT AT F XA Axdhhkhik

Set screen print position
Input hexadecimal value
Test for end of input
Test input for valid length
Get decimal value of left side of IS
Test for valid input
Get decimal value of right side of IS
Test for valid input
Concatenate 'echo' string
Set screen print position of 'echo' string & print
Clear previous input from display
Set print position for next user input

1@

1850
1906
1950
2000
2059
2100

2150

2200
2250

2300
2350
2360

2370
24040

2450

2500
2550

2600

2650

2700

2750
2800
2850

29900
2950

3000
3010
3029

12

APPENDIX B

Ak A A A AR A A AR A A I AR A KA A AT I AR AT F I A AR AR R AAA

CONVERT INPUT TO CHARACTER SEARCH STRING
S S S LSS S S SRS S SR RS SR EE SRR LS RS EEEEEEEEE SR
Set instring counter
Set CKS to first search character
Search hex character string for position of CKS$
Get correct hexadecimal multiplier
If first pass then get left side hex value
Increment instring counter
Set CK$ to second search character
Do it again
Add decimal values
Concatenate search string
Get next user input

R AR R REEE SRR LRSS RS TSR TR E ST R

SEARCH ROUTINE
khhkkhkhkhkhkhkhkhkhkhkkhk bk hkdkkdddddddrdrdxhdrddrihorvdmrhhs

Set record number to 1
Clear the screen
Print message to display
Set display print position
Check line print switch
Print header message on line printer
Continue messadge
Continue message
Open file
Field sector buffer
Set comparison string to null
Get sector
Set 'start instring search' position counter
Print current sector being searched to screen
Search sector for match
Check print position and re-set if necessary
If screen full & line printer switch not set

then go to '"pause' routine
Set screen print position
Re~setl screen print position if screen full
If match found then increment instring position counter
Set screen print position
Print message
Increment screen print position
If line printer switch set

then line print message
Check for end of file - if end conclude program
Is instring search finished? - do again if not finished
Set 'EOF' comparison string
Re-set instring search counter to 1
Increment record number
Do again
Print "ALL DONE" message
Inkey routine to lock-out reinitialization of program
Check IK$ for input
'RUN' program again

APPENDIX B

3850

3160 R R Rl R T
3156 INPUT ERROR ROUTINE

3266 R R R S T T L)

3250 sSet loop for 'flashing' error message
Set print position for message
Clear previocus message

336p Print message

335¢ Continue message

3498 Delay loop

3450 Clear message from screen

3500 Set delay loop for 'flash' off
3554 Loop

Clear message from display

Set print position for user input
3600 Return to input routine

3700

3756 R TR T T T R R g g e
3800 PAUSE & FLASH MESSAGE ROUTINE

3850 e o e e e

3906 Set Inkey string
38586 Print message
4pPPB Set delay loop
4050 Set Inkey string
Test for input
419Y If input is carriage return then go to clear screen
4150 Clear message from screen
4266 Delay loop
4250 Set Inkey string
Test Inkey string
436k If input is carriage return then go to clear screen
435p Flash messayge again
4400 ©Set loop to clear screen
print nulls to screen
do again
return to calling routine

	Front Cover
	Table of Contents
	Preface
	Introduction
	1.0 Hexadecimal, Binary, Decimals
	2.0 Reading & Using Superzap
	3.0 Other Utilities
	4.0 Operating Systems
	5.0 Disk Organization
	6.0 The Directory
	7.0 Passwords and Other Trivia
	8.0 Data Recovery Procedures and Techniques
	9.0 Files - Structures and Types
	10.0 Data Recovery
	11.0 Recovering Electric Pencil Errors
	12.0 Correcting the 'GAT' and 'HIT' Records
	13.0 Some Things You Can Do
	Appendix A
	Glossary
	Level II Basic Tokens

	Appendix B
	Back Cover

