

TRS-80 Pocket BASIC Handbook

by
Witliam Barden, Jr.

Radio Shack
A Tandy Corporation

Second Edition
Second Printing-1985

Copyright® 1982 by Radio Shack, Division
of Tandy Corporation, Fort Worth, Texas
76102. Printed in the United States of
America.

All rights reserved. Reproduction or use,
without express permission, of editorial or
pictorial content, in any manner, is prohib-
ited. No patent liability is assumed with
respect to the use of the information con-
tained herein.

Preface

This book is designed to be a quick reference
guide to the BASIC languages used on the Radio
Shack computer systems. It covers the TRS-80
Model |, Model Il, Model 12, Model I1l, Model 4and
4P, Color Computer, MC-10, and Model 100. It
won't replace the BASIC manuals that come with
those systems, but it will help to jog your memory
about the types of BASIC commands that are
available, the format of the commands, the opera-
tion of the commands, and the commands that are
related.

The commands described here include all
BASIC symbols, such as / for divide, all BASIC
“commands’ such as PRINT, and all BASIC “func-
tions” such as ATN. We'll use the generic term
“command” to mean any of these three items. The
term “statement” will be used to describe any use
of the commands in a single step, such as
A=SIN(B/C) or POKE 16523,(RR/67). The term
“line” will mean a single statement or multiple
statements with the same line number.

There are 317 commands in this reference book,
one per page. They are organized in alphabetical
order. The Contents section on the next few pages
lists all commands and indicates for which systems
they are used. The systems are:

e Model I, Level | BASIC
Model |, Level 11 BASIC
Model |, Disk BASIC
Model 1I/Model 12 BASIC
Model IilI, Level | BASIC
Model ill, Level 1l

(Model 4, 4P in 1l mode)

Model lil, Disk BASIC

(Model 4, 4P in Ill mode)

Model 4, Model 4P Disk BASIC
Color Computer, basic BASIC
Color Computer, Extended BASIC
Color Computer, Disk BASIC
MC-10 BASIC

Model 100 BASIC

Model 100, Disk BASIC

We'll keep this order in the SYSTEM description
on each page.

Each command format is described under
“FORMAT” In those cases where the command is
normally used in a program, we've included “line#”
under the format. In those cases where the com-
mand is normally used in the command mode,
we've left out the “line#” In some cases the com-
mand is used in either the command mode or pro-
gram execution, and we've indicated both by two
or more format statements, one with “line#” and
one without.

Inthose cases where acommand requires paren-
theses, double quotes, or other characters, we've
included them in the FORMAT. Dots indicate that
the command may be embedded in other com-
mands and probably won't stand by itself, as in the
case of functions.

Model 4 and 4P users note that BASIC requires a
space after most BASIC keywords. If you see a
“Syntax error” on the screen, there’'s a good
chance you've forgotten aspace afteracommand.

The EXAMPLES show one or more actual exam-
ples of the use of the command. Descriptive text is
sometimes included in lower case in the right-hand
portion of the examples.

The DESCRIPTION section contains avery brief
explanation of the command. Any peculiarities for
specific systems are also described here.

RELATED COMMANDS lists any commands
that may help in understanding the action of the
command in question.

To Babbage for starting the whole thing!

COMMAND

‘(single quote)
()

*(AND)
.
+(OR)

L]

/

<
<=
<>

>

>:

ABS
AND
ASC
ATN
AUDIO
AUTO
BACKUP
BEEP
CALL(100)
CALL(4)
CDBL
CHAIN
CHR$
CINT
CIRCLE

Contents
O =
< =~ Q @
<5 @ a
=328, 388
So3.53293888e33
[~ o -9 Q
3357 228% 36550383
- 22 S ESO00ESEE
.000.000....00
00000000000000
.000.000....00
00000000000000
.00..000....00

.00. .00.00. ..
..00..00.00. ..
00000000000 .00
00000000000000O0
000000000000CO00O0
oO...0.
0000000000O0OO0OO0O
o...0.
00000000000000
0000000000000C0O0
.000.000....00
00000000000000
00000000000000
00000000000000
0000000600000000
00000000000000
00000000000000
00000000000000
00000000000000
00000000000000
00000000000000
.000.000000000
.000.000000000
.000.000.00.00

.......... o. ..
............ oo
............ o0
....... o......
000.000. oo
....... 0.
.000.000000000
.000.000....00
......... co0. ..

COMMAND

CLEAR
CLEAR(4)
CLOAD
CLOAD#-
CLOAD*
CLOAD?
CLOAD?#-
CLOADM
CLOSE
CLOSE(100)
CLS
cMDGiA”
CMD“B”
CMD“C”
CMD“D"(1)
CMD“D"(1i1)
EMDE"
CMD“'"
CMD"“J”
CMD“L”
CMD“O”
CMDHPH
CMD“R”
CMD“SH
CMD“T”
CMD“X”
CMD“Z"
COLOR
COM
COMMON
CONT
COPY
cos
CSAVE
CSAVE#-
CSAVE*
CSAVEM
CSNG
CSRLIN
CVD

Contents
o
< I3]
< < 2 [«
TexQ 5
= =-=3faty 8%
— - <"'.__
SSfa558,200233
2 . e
""“'QP_'_.'.:Q_UUUU.g.g
L SEZETESSO00EZEE

....... o.
000.000.000000O0
oo0.
........... 0.
oo oO0. o0
0O
........ 000000
..00..00..0. ..
............ o0
00000000000000
...... o.
...... o.
...... o.
P
...... o.......
...... o.......
...... o.......
...... o.......
...... o.
...... o.
...... o.
. 0. T«
. 0. N+
. 0. SO0 L
...... o.
...... o.......
......... 00 . ..
............ 00
....... o.
0000000000OOOOCO
.......... 0.

.000.000.00000
000.000.000000

00
........... o. .
......... 00.00

000.000 oo
............ o0

COMMAND

cvi
CVN

cvs

D

DATA
DATE$
DAY$

DEF FN
DEFDBL
DEFINT
DEFSNG
DEFSTR
DEFUSR
DEL
DELETE
DIM

DIR
DRAW
DRIVE
DSKI$
DSKI$(100)
DSKINI
DSKO$
DSKO$(100)
E

EDIT
EDIT(100)
Edit Mode A

Contents

S = %
i% g o
_ -=%zga. 8g
P PEEEES S
4407 - Y0000 00
T EEZIEZTSFO0O0EER
o0 cO0......
.......... (o]
. .00 .00 .,
.000.000....00
00000000000000
.0...0....00
............ oo
00 .00.00 ..
000.000 ..00
000.000O0 ..00
000.000 ..00
000.000. . .00
o0 00 .00.
......... oo .

Edit Mode Backspace: ooo0 o000 oo

Edit Mode C
Edit Mode D
Edit Mode E
Edit Mode ENTER
Edit Mode ESC
Edit Mode H
Edit Mode |
Edit Mode K
Edit Mode L
Edit Mode Q
Edit Mode S

COMMAND

Edit Mode SHIFT,

up arrow

Edit Mode
Space-Bar

Edit Mode X

END

EOF

EOF(100)

EQV

ERASE

ERL

ERR

ERR$

ERROR

EXEC

EXP

FIELD

FILES

FILES(100)

FIX

FOR...TO...STEP

FRE

FREE
GET(disk)
GET/(graphics)
GOSsUB
GOTO

HEX$

HIMEM
IF...THEN

IF...THEN...ELSE

IMP

INKEY$

INP

INPUT
INPUT...;
INPUT#(100)
INPUT#(disk)
INPUT#(non-disk)
INPUT#-1
INPUT#-2
INPUT$(100)

Contents

, LVL 11 (4, 4P)
, Disk (4, 4P)
4P, Disk

CC, Ext BASIC

CC, Disk

CC, BASIC
MC-10

Model 100

4

Model 100, Disk

.000.000.00. ..
.000.000.00. ..
00000000000000
.00. .00. .0. .

... 0. . 0 .00
.. 0. R ¢
.000.000 oo
.000.000 0o
... 0. Lo L
.000.000. .. oo
........ 0000

.000.000.00.00
00000000000000

.000.000....00
.......... o. ..
. 00. .00 -0
......... o0

00000000000000
00000000000000O0
.0...0.00.

00000000000000
.000.000000.00

«...0...0....00
.000.000000000
.00..000....00

00000000000000O0
00000000000000

............ [o¢]
. oo .00 .0 ...
0. . . .00 d sl
.00 00.000

00
e e e e e e e o0

COMMAND

INPUTS(disk)
INPUT$(keyboard)
INSTR

INT

IPL

JOYSTK
KEY(define)

KEY (interrupt)
KILL

KILL(100)
LCOPY
LEFT$

LEN

LET

LFILES
LINE
LINE(100)
LINE INPUT
LINE INPUT#
LINE INPUT#(100)
LIST

LLIST
LOAD
LOAD(100)
LOADM
LOADM(100)
Loc

LOF

LOG

LPOS
LPRINT
LPRINT USING
LSET
MAXFILES
MAXRAM
MDM

MEM

MENU
MERGE
MERGE(100)

Contents

%E 0 ki

<< z a
.0 .
_Esﬁﬁmﬁ 8§

-= dJL4F0CR 2T
2% .53532 odnl3%3s
S529300e . L go
007 o000 0Q 00
LS EEEESO0O0EZE
o) o.

] o (s J¢)

..00..00.00.00
00000000000000

............ oo
........ 000 N
............ oo
............ oo

oo .00 o} ..
............ o0
............ [ee]

.000.000000000O0
.000.000000000
00000600000000

............. o
......... [+ Je] -
............ (o ¢]

oo 00.00.00
. oo .00. o P
............ oo

00000000000000
.0000000000000

.00..00..0. ..
............ oo
.......... o. ..
............ oo

o 00 . o . 0

(o] .00. o o
000.000.00000O0
....... (o] .00
0000O0O0O0 000
.000.000....00

.00..00.
............ oo
............ oo
............ o0
000000000000 . .
............ [e o]

o0 .00 o ..
............ (el ¢]

COMMAND

MID$
MID$=
MKD$
MKI$
MKNS$
MKS$
MOD
MOTOR
NAME(100)
NAME(4)

NAME(renumber)

NEW
NEXT
NOT
OCT$
ON COM

ON ERROR GOTO

ON...GOsuB
ON..GOTO

ON KEY GOSUB
ON MDM GOSUB
ON TIME$ GOSUB

OPEN
OPEN(100)
OPTION BASE
OR

ouT

PAINT
PCLEAR
PCLS
PCOPY
PEEK

PLAY
PMODE
POINT
POKE

POS

POWER
PPOINT
PRESET

Contents

S 3
<% 2 [
. -=%igo. 88
SSi.33580388253
338722°2%66060383
~wwZZEESFO00EEE
000.000000000
oo 00.00.00
[+] oo.
00. .00.
.......... 0.
0o0..00.
0...0....00
........ 000.00
............ oo
....... o.
...... o.

00000000000000
00000000000000
-.000.000000000

-.000.000....00
00000000000000
00000000000000

............ oo
............ oo
............ o0
00. .00 o. ..
............ 00
....... o.
.000.000000000
.00..000....00
......... oo
......... 00 .
......... 00 .
......... 00 .
o0 OOOOOOOOO
......... 00 .
......... 00

000.000. OOOO..
.00..000000000
.000.000.00.00

COMMAND

PRESET(100)

PRINT

PRINT (R,C)

PRINT#/PRINT#
USING(100)

PRINT#/PRINT
USING(disk)

PRINT#(non-disk)

PRINT#-1
PRINT#-2(CC)
PRINT#-2(1)
PRINT USING
PRINT AT
PRINT @
PSET
PSET(100)
PUT(disk)
PUT(graphics)
RANDOM
READ

REM
RENAME(CC)
RENUM
RESET
RESTORE
RESUME
RETURN
RIGHT$

RND
RND(100)
ROW

RSET

RUN
RUN(100)
RUN“PROG”
RUNM(100)
SAVE
SAVE(100)
SAVEM
SAVEM(100)
SCREEN
SCREEN(100)

Contents

%E 13 §

<< @ o

_éxgg og
= ‘=:§‘2—'§ ee
-= R x 2 T
LB S A B WOETS
338722250060 88
TTLEEEESO00EER
............ 00
0000000000000 O0

00 . L.l e e

.000.000.
00000000000000
00000000000000

00...0.00. ..
000.000.0000..
000000000000O00O0
.000.000....00
00000000000000
.000.000000000
000000000000 .

.. 0. o......
.00 . OO
OOOOOOOOOOOOOO
............ 00
oo .00 0. ..
............ (e o]
o0 .00 o .
............ oo
.......... o. ..
............ oo
......... oo ..
............ oo

COMMAND

SET

SGN

SIN

SKIPF
SOUND
SOUND(100)
SPACE$

SPC

SQR

STOP

STR$
STRINGS$
SWAP
SYSTEM(I/111)
SYSTEM(I1,12,4)
TAB

TAN

TIME$
TIME$(100)
TIMER
TROFF
TRON
UNLOAD
USR

USRn

VAL

VARPTR
VERIFY

WAIT

WHILE ... WEND
WIDTH
WRITE
WRITE#
WRITE#(4)
XOR

Up arrowor A
\

Contents

, LVL 11l (4, 4P)
, Disk (4, 4P)

4P, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

McC-10
Model 100, Disk

Model 100

000.000.0000. .
-.000.000000000
.000.000000000
........ 0000 . .

.OOO 000 000O0O
00000000000000
.000.000000000
.000.000000.00

.00..00.......
00000000000000

.000.000.00000
.00.000....00

.000.000000000
.000.000.00000

.......... o .
....... o......
....... o.
............. o
....... 0. .0. .
....... 0. .0.
....... o.
. 0. -0....00
OOOOOOOO 00000
. .0...0....00

SPECIAL KEYS FOR BASIC

ERROR CODES

COMMON ASCIil CHARACTERS USED IN BASIC
BINARY/DECIMAL/HE?(ADECIMAL

CONVERSIONS

SYSTEM

I, VLI

I LVL it e
I, Disk °
1, 12 °
I, L

H1, LVL 1L (4, 4P) e
I, Disk (4, 4P) o
4, 4P, Disk e
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °

Model 100, Disk o

FORMAT
line#...variable name! .

EXAMPLES
lagg [A1=123:

DESCRIPTION

The suffix “ 1" is used to define single-precision
variables. The default variable type is single
precision, but the " 1" suffix can be used to define
a variable within a range used on a DEFDEL,
DEFIMNT, or DEFSTR. Single-precision variables
hold 7 decimal digits of precision in memory and
display 6 decimal digits. Single-precision variables
take up four bytes of RAM storage for each variable.

RELATED COMMANDS
DEFDBL, DEFINT, DEFSNG, DEFSTR

SYSTEM

I, LVL I

I, LVLH

1, Disk

i, 12

IH, VL1

1N, LVL 1N (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

®© © © ® 60 © ® 06 00 @ o

FORMAT
line#..."string literal’ .

EXAMPLES
1908 [RE=*THIS IS5 A STRIMG™®

DESCRIPTION

Double quotes are used to enclose string “literals”.
String literals are the actual text of the string. They
are stored in the BASILC program line itself,
although they may be used to create new strings
that are stored in the string storage area. String
literafs may generally be used any time that a string
variable can be used, such as in FRINT
statements, string comparisons, or other string
processing. Always enclose the string literal with
double quotes; failure to do so may cause errors in
program renumbering or other program processing.

RELATED COMMANDS
None

SYSTEM

I, LVLI

I, LVLH °

1, Disk °

i, 12 °

1, LVL 1

11, LVL Il (4, 4P) e

111, Disk (4, 4P) e

4, 4P, Disk °

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °

Model 100, Disk o
FORMAT

line#...variable nameft . . .
EXAMPLES

1000 AR=1234567890. 1234567
1p1e Z7$#=99999993333
DESCRIPTION

The suffix "#" is used to define double-precision
variables. The default variable type is single
precision. Other numeric variable types must be
defined by the %, #, D, or $ suffixes, or by
DEFIMT, DEFDBL, or DEFSTR. The "#" suffix
can be used to define a double-precision variable
within a range used on a DEF INT, DEFDBL, or
DEFSTR. Double-precision variables hold 17
decimal digits of precision in memory and display
16 decimal digits (14 digits in Model 100).
Double-precision variables take up eight bytes of
RAM storage for each variable. Double-precision
variables should be used in place of single-precision
variables where extreme accuracy is desired and
when the number of double-precision variables will
not be prohibitively large (as would be the case in a
large array).

RELATED COMMANDS
DEFDEL , DEFINT, DEFSNG, DEFSTR

SYSTEM SYSTEM

I, LVL I ° I, VLI
I, LWL I ® I, VLI e
I, Disk ° I, Disk °
I, 12 ° i, 12
Hi, VLI ° i, il
[11, LVL 111 (4, 4P) o {1, LVL 11 (4, 4P) o
[H, Disk (4, 4P) e [Il, Disk (4, 4P) o
4, 4P, Disk ° 4, 4P, Disk °
CC, BASIC ° CC, BASIC
CC, Ext BASIC ° CC, Ext BASIC
CC, Disk ° CC, Disk
MC-10 ° MC-10
Model 100 o Model 100 °
Model 100, Disk e R Model 100, Disk e
FORMAT
line#...variable name%. . . /FO:;MA‘Tb/
%
EXAMPLES ine#...variable name . . .
1000 AF=* *TELEPHONE #°° EXAMPLES
101e ZZ2F=STRIMNGS (100, “«%** ") 1000 AZ=-12345
DESCRIPTION 16010 72%=99339
The suffix "$" is used to define string variables.
String variables generally hold ASCII character data, DESCRIPTION
although they may hold other non-ASCII data as The suffix "%" is used to define integer variables.
well. String variables may be from 0 to 255 The default variable type is single precision, but the
characters long, where each character corresponds "%" suffix can be used to define an integer variable
to one byte in RAM. The names of string variables explicitly or within a range used on a DEFDBL ,
follow the same rules for numeric variable names. DEFSNG, or BEFSTR. Integer variables hold
The first character must be alphabetic. (Model 1/111 values from -32768 through +32767. No fractions
Level I allows only A$ and BS$.) The suffix "s" are allowed. Integer variables take up two bytes of
denotes the variable as a string variable; the same RAM storage for each variable, making them one of
name may be used for a numeric and string the most efficient ways to store data, when the data
variable, except that the suffix will be different. AA$ ‘ is in the limited range of values.
and AA are a string variable and numeric variable,
respectively. The suffix "$” may be used to define a RELATED COMMANDS
string variable within a range of other variables DEFDBL, DEFINT, DEFSNG, DEFSTR
defined by a DEFDEL ., DEFSNG, of DEFINT.
RELATED COMMANDS

DEFDBL, DEFINT, DEFSNG, DEFSTR

¥

i

SYSTEM

I, VLI

I, LV

1, Disk °
I, 12 °
1, VL

{, LVL 111 (4, 4P)
11, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC e
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line#...&Hdddd...

EXAMPLES

1010 FOR I=&H800@ TO &HBG®3 set up loop
1010 PRINT PEEK (I} display contents
1020 NEXT I continue

DESCRIPTION

The prefix "&H" is a special code that indicates
“hexadecimal digits following” Hexadecimal notation
is used in place of decimal or binary notation for

7-80 instruction codes, data relating to machine-

language operation, and system addresses. The &H

prefix may be followed by 1 to 4 hexadecimal digits.

Each hexadecimal digit is 0 through 9 or A through
F and represents a power of 16. The maximum
hexadecimal value that can be defined in TRS-80
systems is &HFFFF, representing binary
1111111111111111, or decimal 65,535.

RELATED COMMANDS
None

SYSTEM

I, L1

L

1, Disk ®

I, 12 °

i, WL

111, LVL 1I (4, 4P)

I, Disk (4, 4P) o

4, 4P, Disk °

CC, BASIC

CC, Ext BASIC °

CC, Disk °
MC-10 J
Model 100 i

Model 100, Disk

FORMAT
line#...2.0dddddd...

EXAMPLES

1o0le FOR I=&0le0ee TO 20100003 setup
loop

1020 PRINT PEEK(I) print contents

103236 NEXT T loop

DESCRIPTION

The prefix “&0" is a special code that indicates
“octal digits following” Octal notation is sometimes
(rarely) used in place of decimal or binary notation
for Z-80 instruction codes, data relating to machine-
language operation, and system addresses. The &0
prefix may be followed by 1 to 6 octal digits. Each
octal digit is 0 through 7 and represents a power of
8. The maximum octal value that can be defined in
TRS-80 systems is &0177777, equivalent to binary
1111111111111111, or decimal 65535. The prefix
"2 is equivalent to "&0" and may be used in its
place.

RELATED COMMANDS
None

SYSTEM

I, VLI

I, VLIl

I, Disk

I, 12

I, L1

11, LVL 11 (4, 4P)
I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

® © 0 060 06 Q0 © © © ©

FORMAT

line# ' remark text
line# ..." remark text...

EXAMPLES
1e0@ *THIS IS A REMARK LINE
1010 A=B "AND 50 15 THIS FORTION

DESCRIPTION

The single quote replaces the colon (), REM
commands. In effect, it is a shorthand way of
creating a new REM statement, either at the
beginning of a line of in the middle of a line. Using
the single quote creates “pretty” listings that may
be much more readable. The single quote may be
placed anywhere in the line.

RELATED COMMANDS
REM

SYSTEM

I, LWL

I, wen

I, Disk

I, 12

I, el

I, LVL 111 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
mcC-10

Model 100
Model 100, Disk

FORMAT
line# ...(...)...

EXAMPLES
1000 A=B~ (C+D)

DESCRIPTION

Parentheses are used to denote the order of
operations in expressions. In the example above, the
result should be B/(C+D); if the parentheses were
not included the operation would become B/C,
followed by the addition of D. BASIC always
evaluates the expressions inside parentheses before
evaluating the rest of the expression. Parentheses
may be “nested’, that is, there may be many levels
of parentheses, one within another. BASIC always
works from the innermost parentheses out in
evaluating parentheses.

RELATED COMMANDS
None

SYSTEM

WL
L

I, Disk

i, 12

i, L |

I, LVL 111 (4, 4P)
IHl, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT
ling#..= . . .

EXAMPLES

1000 C=3.14159%D find circumference
1010 C=SQR(A*A+B*B] find length of
hypotenuse

DESCRIPTION

The special character "*" is reserved as a BASIC
operator signifying multiplication, except for the
Model I/1il Level |, where it is also a logical "AND"
operator. It should not be used in variable names or
in any other context other than within text strings
enclosed by quotes. "*" may be used any number
of times within a BASIC statement as long as it is
not immediately followed by another operator.

RELATED COMMANDS
#(AND)

e,

SYSTEM

I, VLt °
I, WWLH

I, Disk

I, 12

i, LI °
i, LVL 11l (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line#...(expression) * (expression)...

EXAMPLES

1000 IF (A<2) * (B>5) THEN PRINT
“*HELP!””

1018 IF A * 3=3 THEN GOTO 8000

DESCRIPTION

In the Model I/111 Level I, “*" is an abbreviation for
the AND function in addition to representing a
multiplication operator. AND is used as a relational
operator and for bit manipulation. In the first use,
AND compares two constants, variables, or
expressions. If both expressions are true, then the
AND function is true, In the example above,
(AK2) * (B>5) is true only if variable A is

less than 2 AND variable B is greater than 5. The
THEN action would only be taken if both
expressions were true (expression 1 AND expression
2). In the bit manipulation case, AND is used to
logically AND integer variable bits, considered to be
binary numbers. An AND of binary values produces
a 1 for each bit position only if both operands have
a 1 bit in that bit position. An AND of the two
binary values 10100000 and 11001111 would
produce a result of 10000000. The AND in this
application can be used to test bits, mask out fields,
and perform other bit-wise operations.

RELATED COMMANDS *, *+(OR]

SYSTEM

I, LVL I

L L

I, Disk

11, 12

i, L1

1i, LVL IHI (4, 4P)
Il, Disk (4, 4P)
4, 4P, Disk

GG, BASIC

GC, Ext BASIC
CC, Disk
MC-10

Model 100

Mode! 100, Disk

FORMAT
line#...expression+expression...

EXAMPLES

1006 C=1.5+32+M+M find total
DESCRIPTION

The special character "+" is reserved as the sign of
a constant or a BASIC operator signifying addition
or string concatenation. (It is also used in the Model
17111 Level 1 to specify a logical "0R".) It should not
be used in variable names or in any other context
other than within text strings enclosed by quotes.
"+" may be used any number of times within a
BASIC statement as long as it is not immediately
followed by another operator. When used as an
arithmetic operator, it has the same effect as the
usual “plus” sign - it adds two quantities, which
may be any mixture of constants, variables, or
expressions. When used as a string concatenation
operator (not a Model |71l Level | function), it joins
two strings. The result string is made up of the first
string appended by the second string. |f A$="NOW
IS THE TIMED" and B$="FOR ALL GOOD
PROGRAMMERS..! then C$=A$+B$ would set C$
equal to "NOW IS THE TIME FOR ALL GOOD
PROGRAMMERS..” When used as a sign, it must be
immediately followed by numeric data.

RELATED COMMANDS *(0R)

SYSTEM

I VLI .
oL

I. Disk

I, 12

Hi, VL | o
HE LVL 11 (4, 4P)
I, Disk (4, 4P)

4, 4P, Disk

CC. BASIC

CC. Ext BASIC

CC. Disk

MC-10

Model 100
Model 100, Disk

FORMAT

line#...(expression) + (expression)...

EXAMPLES

1000 IF (A<Z) + [B>S5] THEN PRINT
fCHELRI®®

1010 A=A + 3 set bit 3

DESCRIPTION

fn the Model I/11l Level |, “+" is an abbreviation for
the OR function along with representing an addition
operator. OR is used as a relational operator and for
bit manipulation. In the first use, OR compares two
constants, variables, or expressions. If either
expression is true, then the OR function is true. In
the example above, (A<<2} + (B>5) s true if
variable A is less than 2 OR variable B is greater
than 5. The THEN action would only be taken if
either expressions was true (expression 1+
expression 2). In the bit manipulation case, OR is
used to logically OR integer variable bits, considered
to be binary numbers. An OR of binary values
produces a 1 for each bit position if either operand
has a 1 bit in that bit position. An OR of the two
binary values 10100000 and 11001111 would
produce a result of 11101111. The OR in this
application can be used to test bits, set individual
bits, and perform other bit-wise operations.

RELATED COMMANDS
#(ANDY, +

SYSTEM

I, WLt

I, L

1, Disk

1, 12

H, L

11, LVL 11 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

© © © © © © @ 6 © & 06 ©6 0 O

Mode! 100, Disk

FORMAT

line#. .FRIMT iteml,item2,...
line#..LFRINT iteml,item2,...

EXAMPLES
1000 FRINT A,
1910 PRINT * “MUMBER IS

IS 77 ;M
DESCRIPTION

In addition to separating items in DATA lists and
acting as a delimiter in certain EASIC commands,
the comma has a special use in PRIMT statements.
Itis used in PRIMT and LPRINT statements to
mean “tab to the next print zone" Both the video
display and line printer lines are divided into “print
zones”, which are similar to predefined typewriter
tabs. When a comma is encountered after a PRINT
item, the EASIC interpreter will tab to the start of
the next print zone. This allows for easy
columnization of displayed and printed data items.
The print zones are predefined and dependent upon
the system used.

RELATED COMMANDS

§

TN, UNERT

SYSTEM

[LI

I VLN

I, Disk

i, 12

I, WL

[, LVL i1 (4, 4P)
11l Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line#...expression - expression...

EXAMPLES
1606 L=L-1-N find adjusted length

DESCRIPTION

The special character "-" is reserved as a EASILC
operator signifying subtraction or for negating
values. It should not be used in variable names or
in any other context other than within text strings
enclosed by quotes. When used as an arithmetic
operator, "-" may be used any number of times
within a EARSIC statement as long as it is not
immediately followed by another operator. Its
meaning is identical to the normal use of the
subtract sign. When used to negate quantities, it
must be immediately followed by a numerical
constant, as in

1oee DATAH -5,-67.89,+45,+1

RELATED COMMANDS
None

SYSTEM

I, Lt

I, L °
I, Disk °
", 12 °
1, il

11, LVL 111 (4, 4P) @
1I, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e
FORMAT

used in Edit mode
EXAMPLES
EDIT.
DESCRIPTION

The period is used in Edit mode to mean “the
current line”’ The command EDIT. will result in an
Edit of the current line number. If line 406 was
LISTed just prior to the EDIT., for example,
EDIT. will invoke an edit of line 406 .

RELATED COMMANDS
None

SYSTEM

|, VLI

L

I, Disk

", 12

i, LVL |

1L, LVL 111 (4, 4P)
1l Disk (4, 4P)
4, 4P, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
McC-10

© © © 0 @ 0 © 0 © © © © 0 ©

Model 100

Model 100, Disk

FORMAT

line#...expression-~expression...

EXAMPLES
1009 R=2#0-3.14153 find radians
191e TO=5UmM-1@@ find average score

DESCRIPTION

The special character " is reserved as a BASIC
operator signifying division. It should not be used in
variable names or in any other context other than
within text strings enclosed by quotes. “~" may be
used any number of times within a BASIC
statement as long as it is not immediately followed

by another operator.
RELATED COMMANDS

None

SYSTEM

I, LWL

I, LVL I

1, Disk

i, 12

I, VL1

1, LVL 111 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

.

Model 100, Disk

FORMAT

line# ..z..z..

EXAMPLES
1000 A=C*2 : B=C*E4 : C$=A% *A
MULTIPLE-STATEMENT LINE

DESCRIPTION

The colon is used to create multiple-statement lines.
A multiple-statement line, just as the name implies,
has two or more separate statement groupings, with
a common line number, as in the above example. All
statements in the line will be executed in sequence,
just as if they were separate lines. GOTOs or
GOSUBs to the middle of the line, however, are not
possible. When statements are appended to
IF...THEN or IF...THEN...ELSE
statements, the appended statements will not be
executed unless the THEN or ELSE condition is
satisfied. 1000 IF A=1 THEN B=0 : C=2 and
1@1® IF A<>1 THEN B=1 ELSE B=0 : C=2
will set C equal to 2 only if A=1 (both cases).

RELATED COMMANDS

¢

None i

SYSTEM

I, LVLI

L VLN

I, Disk

i, 12

i, Wi

IH, LVL Il (4, 4P)
I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT
line#..FRINT itemlitem2;...
line#..LPRIMT iteml;item2,...

EXAMPLES

1@0@ PRINT A;

1@1e PRIMT **MUMEER IS ° M, * “HEXT
I3 "7

DESCRIPTION

In addition to acting as a delimiter in certain
ERSIC commands, the semicolon has a special use
in PRIMT statements. It is used in FRIMT and
LPRINT statements to mean “do not space” Both
the video display and line printer lines are divided
into “print zones', which are similar to typewriter
tabs. When a comma is encountered after a FRIMT
item, the BASIC interpreter will tab to the start of
the next print zone. Using a semicolon, however,
inhibits this tabbing and positions the video display
cursor or the line printer print head over the next
character position. This allows data items to be
displayed or printed directly after related text or
data items as in “FRIMT **NUMBER IS

** -1, " which would print

MUMBER IS 123.58

RELATED COMMANDS

SYSTEM

I VLI
I LVL I

I, Disk

i, 12

Hi, L1

HI, LVL i (4, 4P)
I1I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

oeon.ooooooon.

Model 100, Disk

FORMAT

line#...expression<<expression...

EXAMPLES

1800 IF (M-2)<N THEN GOTO 2600
1010 IF 22<23 THEN 22=2Z+5 ELSE
22=2Z-1

1920 IF LEFT$S(A$,1)1<**M”* THEN
PRINT “¢FIRST HALF®®

DESCRIPTION

The < character is used either as a relational
operator or as a string operator in BASIC. A
relational operator compares two arithmetic
quantities. When used as a relational operator, "<"
stands for “less than" and is used to test one
quantity against another, as in "IF A<23". In this
use, <is used in the IF ... THEN or
IF...THEN. . .ELSE commands. When used as
a string operator, < is used to test two strings
against each other. Strings are compared on a
character by character basis, with each character
representing a “weight” determined by its ASCI|
value. ASCII values roughly follow alphabetic
sequence. An “A” is “less than" a “B" in this
context. The <is again used in the IF...THEN
and IF ... THEN...ELSE commands for string
comparisons as in "IF A$<* “CALIF” ", which
tests string A3 for “less than” string “CALIF".

RELATED COMMANDS <=<>=>>=

SYSTEM

I, VLI

I L

I, Disk

1, 12

i, Lt

11, LVL 1 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk
FORMAT '
line#...expression<l=expression...

EXAMPLES

1000 IF (M-2)<=N THEN GOTO 2000
101@ IF 22<=23 THEN 22=22+5 ELSE
22=22~1

1020 IF LEFT$(A%,1)<<F°*M”* THEN
PRINT *“FIRST HALF®”

DESCRIPTION A

The <= characters are used either as a relational
operator or as a string operator in BASIC. A
relational operator compares two arithmetic .
quantities. When used as a relational operator "<=
stands for “less than or equal to” and is used to
test one quantity against another, as in “IF
A<=23" In this use, <= is used in the
IF...THEN or IF...THEN...ELSE
commands. When used as a string operator, <= is
used to test two strings against each other. Strings
are compared on a character by character basis,
with each character representing a “weight
determined by its ASCII value. AS(’J’II. vgllues rougnly
follow alphabetic sequence. An “A” is “less than” a
“B" in this context. The <= is again used in the
IF...THEN and IF...THEN.. ._EL‘.‘SE
commands for string comparisons as in “IF
A$<=*¢*+CALIF > " which tests string AS$ for “less
than or equal to" string “CALIF"

RELATED COMMANDS <.<>,=,>,>=

@ © © 6 © © ©6 © ©® 0 06 0 © O

SYSTEM

1, Ll

el

I, Disk

I, 12

1, VL |

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk
MC-10

Model 100
Model 100, Disk

2 © © © 9 0 © © 0 © 0 © O ©

FORMAT
linett...expression<<>expression...

EXAMPLES

leee IF (M-2)<>N THEN GOTO 2006
1810 IF 22<>23 THEN ZZ=2Z+5 ELSE
22=22-1

1020 IF LEFT$(A%$,1)<>*M** THEN
PRINT ““NOT M**

DESCRIPTION

The <> characters are used either as a relational
operator or as a string operator in BASIC. A
relational operator compares two arithmetic
quantities. When used as a relational operator
“<>" stands for “not equal to” and is used to test
one quantity against another, as in “IF A<>23".
In this use, <> is used in the IF ... THEN or
IF...THEN...ELSE commands. When used as
a string operator, <>> is used to test two strings
against each other. Strings are compared on a
character by character basis, with each character
representing a “weight” determined by its ASCII
value. ASCII values roughly follow alphabetic
sequence. An “A” is “less than” a “B" in this
context. The <> is again used in the
IF...THEN and IF...THEN.._.ELSE
commands for string comparisons as in “IF
A “CALIF * " which tests string A$ for
‘not equal to” string “CALIF"

RELATED COMMANDS <,<=,=,>,>=

SYSTEM

I LvL

I, LvL 1l

1, Disk

I, 12

I, VLI

11, LVL 1 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT

line# variable=expression
line#...expression=expression...
line#...string=string...

EXAMPLES

10606 PI=3.14155

1018 IF N=[{23-1M) THEN N=0

1028 IF A%$=B% THEMN PRINT

“EFQUNDT?

DESCRIPTION .

The equals sign "=" is used to equate a variable to
a quantity, as a relational operator, or as a string
operator. When used as to equate a variable to a
quantity, it separates the variable from a constant, a
second variable, or an expression, and sets the
variable on the left-hand side to the value of the
argument on the right-hand side. When used as an
arithmetic relational operator, it compares one .,
expression with another, as in “IF [¥~-2)=1024"
It is used in this context with the IF . . . THEMN and
IF ... THEN. . .ELSE commands. When used as
a string operator, it compares two strings with one
another, as in “IF A$=B$+C%" or “IF
A$=**FALSE® " It is also used in the
IF...THEN or IF...THEN...ELSE
commands as a string operator.

RELATED COMMANDS
None

SYSTEM

I, VLI

L

I, Disk

1, 12

I, Ll

IH, LVL HiT (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT

line#...expression>expression...

EXAMPLES

1000 IF X>101 THEN GOTO 1050
1010 IF Z22>23 THEN 22=22+5 ELSE
22=22-1

1020 IF LEFT$(A$,1)>““CA”” THEN
STOP

DESCRIPTION

The > character is used either as a relational
operator or as a string operator in BASIC. A
relational operator compares two arithmetic
quantities. When used as a relational operator ">"
stands for “greater than" and is used to test one
quantity against another, as in "IF R>23". In this
use, > is used in the IF . .. THEN or
IF...THEN...ELSE commands. When used as
a string operator, > is used to test two strings
against each other. Strings are compared on a
character by character basis, with each character
representing a “weight” determined by its ASCII
value. ASCH values roughly follow alphabetic
sequence. A “Z" is “greater than" a “W" in this
context. The > is again used in the IF...THEN
and IF...THEN...ELSE commands for string
comparisons as in "IF A$>**“CALIF**", which
tests string A$ for “greater than" string "CALIF".

RELATED COMMANDS <<=<>7=>=

SYSTEM

I, LVL |

I, VLt

1, Disk

I, 12

1, LWL

I, LVL 11 (4, 4P)
IH, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC. Disk
MC-10

Model 100
Model 100, Disk
FORMAT

line#...expression>=expression...

EXAMPLES

1009 IF X>=101 THEN GOTO 1850

1019 IF 22>=23 THEN 22=22+5 ELSE
22=22-1

1020 IF LEFT$(A%$,1)1>=**CAR"" THEN
STOP

DESCRIPTION

The >= characters are used either as a relational
operator or as a string operator in BASIC. A
relational operator compares two arithmetic
quantities. When used as a relational operator
“>=" stands for “greater than or equal to” and is
used to test one quantity against another, as in “IF
A>=23". In this use, >= is used in the
IF...THEN or IF...THEN...ELSE)
commands. When used as a string operator, >= is
used to test two strings against each other. Strings
are compared on a character by character basis,
with each character representing a “weight”
determined by its ASCII value. ASCII values roughly
follow alphabetic sequence. A “Z" is “greater than™
a “W" in this context. The >= is again used in the
IF...THEN and IF...THEN...ELSE
commands for string comparisons as in “IF
A$>=**CALIF ", which tests string A$ for
“greater than or equal to” string “CALIF"

RELATED COMMANDS <.<=,<>,=,>

© ©6 © © @ © © © ¢ © © 6 © O

SYSTEM

I, LVL

LOLVL I

I, Disk

1, 12

i, WL

HI, LVL 1§ (4, 4P)
11l Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT
line#...AES(expression)...

EXAMPLES

1008 REM FIND X DISTANCE
101@ XD=ABS (X1*X2)

DESCRIPTION

ABS returns the absolute value of a constant,
variable, or expression. It is a function that may be
used anywhere within a BASIC statement.
ABS (X)=X for X equal to or greater than 0.
ABS (X)=-X for X less than 0. In other words, the
result of the ABS is always positive.

RELATED COMMANDS
None

SYSTEM

1, VL
L

1, Disk

1, 12

Hi, VL

11, LVL tH (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT

line#...(expression) AND (expression)...

EXAMPLES

1000 IF (A<Z2] AND (B>S) THEN PRINT
fEHELPETT

10160 IF (A AND 3=3) THEN GOTO 2000
DESCRIPTION

FIMD is used as a relational operator and for bit
manipulation. In the first use, AND compares two
constants, variables, or expressions. If both
expressions are true, then the AND function is true.
In the example above, (A<<2) AND (B>5) is true
only if variable A is less than 2 AND variable B is
greater than 5. The THEHN action would only be
taken if both expressions were true (expression 1
AMD expression 2). In the bit manipulation case,
AMD is used to logically AMD integer variable bits,
considered to be binary numbers. An ARD of binary
values produces a 1 for each bit position only if
both operands have a 1 bit in that bit position. An
AMD of the two binary values 10100000 and
11001111 would produce a result of 10000000. The
AMD in this application can be used to test bits,
mask out fields, and perform other bit-wise
operations.

RELATED COMMANDS

NOT, OR

SYSTEM

I, LVL I
[R 4
|, Disk A
I, 12 o
1, L i

I, LVL 11 (4, 4P) o
I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

® © 6 0 ¢ © © O

Model 100, Disk

FORMAT
line#...ASC(string)...

EXAMPLES

100® R=ASC (A% get first character of A$ in
numeric

1ele B=ASC**MOW IS THE TIME®*) get
“N" in numeric

DESCRIPTION

RSC finds the ASCH code of the first letter of the
specified string. In other words it takes the string
argument, strips off the first character, and returns

it as a numeric value, rather than a string character.

It is a partial “convert to numeric” as in ¥AL. In
the second example above, A= would take the
string “NOW IS THE TIME', strip off the “N" and
return the “N” as a decimal 78, the ASCII code for
"N ASLC can be used for alphabetizing and other
string processing. ASC performs the inverse of the
CHR3$ function.

RELATED COMMANDS
CHRS, STR$, VAL

i
¥

SYSTEM

I, VL

I, L e

I, Disk °

I, 12 °

i, VLI

I, LVL 111 (4, 4P) e

I1l, Disk (4, 4P) o

4, 4P, Disk °

CC, BASIC

CC, Ext BASIC °

CC, Disk °
MC-10

Model 100 °

Model 100, Disk e
FORMAT
line#...ATH(expression)...
EXAMPLES

1000 PRINT ATH(%57 .23578 print angle
DESCRIPTION

FTH finds the arctangent of the argument. The
arctangent is the angle in radians of the argument,
assumed to be a tangent value. The expression may
be a constant, variable, or expression. The result of
£ TH is in radians. To find the result in degrees,
multiply by 180/pi, or 57.29578. ATH is the
inverse of the Tl function, which finds the
tangent of an angle in radians.

RELATED COMMANDS
THiM

SYSTEM

I, VLI

I LVL I

I. Disk

I, 12

i, L i

111, LVL 111 (4, 4P)
ill, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10
Model 100

Model 100, Disk

FORMAT

ALIOTO O

line# AILDICO DK
FUDIO OFF

line# AUDIO OFF

EXAMPLES

19@@ /UDIO W turn on TV speaker
‘ AUCIO OFF turn off TV speaker

DESCRIPTION

AUOTO O routes the cassette output to the TV
speaker. The TV speaker can now be used to
monitor CLOADs and CLOADMS of cassette files.
This can be helpful in positioning the tape and
verifying that cassette data is valid. AUDTIO OFF
turns off the audio routing.

RELATED COMMANDS
None

SYSTEM

I, LVL I

Il °
1, Disk °
I, 12 °
1, el

11, LVL Il (4, 4P) e
ill, Disk (4, 4P) e
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT

BT
HUTO line#
FITO line# increment

EXAMPLES

SUTO Lo, 2 number lines 10@, 162, 104,etc.

DESCRIPTION

FUT invokes the automatic line numbering mode
of BASIC. The BASIC interpreter will
automatically display a line number, starting with
the line# start specified in the ALITO command, and
will increment the line numbers by the increment
number specified in ALITO. AUTO is used primarily
in creating new programs; the user fills out the
remainder of the BASTIC line, terminates it with
EMTER, and then continues with the next ALITCO
line number. The line# and increment are optional.
If the increment is not specified, the default
increment is 10. If neither the line number nor
increment are specified, the starting line number is
10. |AUTO is not related to TRSDOS AUTD.

RELATED COMMANDS
None

SYSTEM

I, VL1

Ll

1, Disk

I, 12

1, L

HI, LVL 111 (4, 4P)
HI, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT

BACKUP ©
BRCIKUP source drive TO destination drive

EXAMPLES

BACKUP @
BACKUP @ TO 1

DESCRIPTION

BACKUP is a Color Computer Disk BASIC
command that duplicates the contents of one
diskette on a second diskette. The backup is an
exact copy of the original disk. If a single drive
system is used, the “BACKUP @ form of the
command is used; the Backup program will prompt
you to switch diskettes at the proper times. If you
have two or more disk drives, either the BACKUP @
or two-drive version of the command may be used.
The backup is made from the diskette in the
“source drive” to the diskette in the “destination
drive”

RELATED COMMANDS
None

SYSTEM

I, LVL 1

I, Ll

I, Disk

I, 12

i, il

II, LVL 111 (4, 4P)
I1l, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100 °
Model 100, Disk e

FORMAT

BEER
line# BEEP

EXAMPLES
1006 BEEP output warning tone

DESCRIPTION

BEEF is used to output a tone for about one-half
second. The tone can be used to signal the system
operator or system user of an error condition or
some action to be taken. You could use EEEF to
indicate that the user has entered an invalid
character during entry of numeric data, for example.

RELATED COMMANDS
SOURD

SYSTEM

I, VLI

I, LV il

I, Disk

I, 12

1, i

1, LVL HI (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e

FORMAT
line# CALL address, expressionl, expression2

EXAMPLES
1000 CALL ceeen, vI, v call
machine-language

DESCRIPTION

CALL is a function that allows a BRSIC program
to call any number of machine-language
subroutines. One subroutine is called for each
CAHLL command. The machine-language subroutine
must have been previously loaded into memory. The
subroutine location is defined by the address
parameter in the subroutine call. The expressionl
parameter is a constant, variable, or expression that
can be resolved down to a vaiue of 0 through 255.
It is put into the A register for subroutine use. The
expression2 parameter is a constant, variable, or
expression that can be resolved into a value of
-32768 through 65535. It is put into the HL register
for subroutine use. The machine-language
subroutine will normally return back to the
statement following the CALL.

RELATED COMMANDS
YARPTR

SYSTEM

I, LvL 1

I, LVL U

I, Disk

1, 12

i, el

11, LVL 1l (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk e
CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Madel 100, Disk

FORMAT

line# CALL address '
line# CALL address(parameter list)
EXAMPLES

lo@n CALL EHDOO®

call machine-language

2060 CALL ZHDGBS | A

pass three parameters

DESCRIPTION

CALL is a function that allows a BRSIC program
to call any number of machine-language
subroutines. One subroutine is called for each
CALL command. The machine-language subroutine
must have been previously loaded into memory. The
subroutine location is defined by the address
parameter in the subroutine call. The parameter list
is optional and may be from one to three
parameters. The parameters are put into the HL, DE,
and BC registers. The values put into the three
registers are pointers to the parameters and not the
actual values of the parameters themselves. A return
is normally automatically made by the subroutine to
the statement following the CALL.

RELATED COMMANDS
USER, VARPTR

SYSTEM
LI

I, LVL 1 °
I Disk °
H, 12 o
Il LVL i

I, LVL 1l (4, 4P) ©
IIl, Disk (4, 4P) o

4, 4P, Disk °

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 e

Model 100, Disk e
FORMAT
line#...CDEL(expression)...
EXAMPLES

1000 PRINT CDBL (I%~J%) print double
DESCRIPTION

CDBL forces processing in double precision, even
though some of the variables involved may be
integer or single-precision operands. CDBL is used

whenever the result is required to be of double-

precision accuracy (17 decimal digits of
significance, 14 on the Model 100). Of course, if the
processing done up to a particular point has been
extensive, and only in single precision, CDBL
cannot retrieve the lost digits of significance! In the
example above CDBL (1%/J%) is accurate because
both 1% and J% are integer variables and have lost
no significance in processing. Performing a
CDBL(A/B) will in many cases be accurate only to

single-precision accuracy as A and B are single-

precision variables.

RELATED COMMANDS
CINT, CSNG :

i

SYSTEM

I, VL1

I, Lve i

1, Disk

I, 12

1, et

I, LVL I (4, 4P)
1, Disk (4, 4P)
4, 4P, Disk °
CC, BASIC

CC. Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT

line# CHATIM “filename”

line#t CHATIHM “filename” line#

line# CHAIM “filename” line# ALL

line# CHATIH “filename” line#,ALL ,DELETE
line#-line#t

line# CHATH MERGE “filename”, . . .
EXAMPLES

1000 CHARIW “*NE<TFR®*, 100 execute
METFR at line 100

2000 CHAIM MERGE * *ME=PTR™ " execute
HE=TFPR and merge

DESCRIPTION

CHAIM is used to load a second ERSIC program
from disk and to execute it from the original program.
The second program may contain other CHRIH
commands to execute other programs and so on. The
basic CHA I simply loads a new program and
executes from the beginning. Use COMMIM to retain
variables. The CHATH with line number executes the
new program from the given line number. The CHATH
with ALL option retains variables in the original
program as the new program is executed. The
DELETE option deletes a given range of lines in the
original program so that the new program is merged.
The CHAIM MERGE command overlays original lines
with new lines similar to MERGE command action.

RELATED COMMANDS
COMMON, MEREE

SYSTEM

I, VLI

I, L °
1, Disk °
I, 12 e
I, L |

11, LVL 111 (4, 4P)
I, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Disk
MC-10

[
L]
(]
]
CC, Ext BASIC ©
]
L]
-]
L]

Model 100

Model 100, Disk

FORMAT
line#...CHR B(expression)...

EXAMPLES

10060 PRINT **ESCARPE
SEQUEMCE® ” ;CHR$ (27) sCHRE[191)

DESCRIPTION

The CHR$ function converts one numeric value to a
one-character string. The one-character string can
then be appended to other strings or used as a
single-character string. CHR$ allows a way of
specifying non-ASCI! characters from the keyboard.
Certain line printers expect to see numeric codes
which have no keyboard equivalent; CHR$ permits
embedding these codes in a string sent to the line
printer. CHR$ can also be used to construct strings
used for graphics purposes. CHR% performs the
inverse of the ASC function.

RELATED COMMANDS
ASC, STRS, VAL

SYSTEM
lLvL

I, LVL I ®

1, Disk °

i, 12 °

11, L

HI, LVL 1Nl (4, 4P) e

111, Disk (4, 4P) o

4, 4P, Disk °

CC, BASIC

CC, Ext BASIC

CC, Disk J
MC-10 7
Model 100 o

Model 100, Disk o

FORMAT
line#...CTHT (expression)...

EXAMPLES
1000 A=CIMTIEH 1=CIMT{CHYT convert and
multiply

DESCRIPTION

ZIMT forces processing to be done in integer
mode. The constant, variable, or expression is
converted to an integer by the CIMT function.
Integer values are held in two bytes and may range
from -32768 to +32767. The CINT converts the
argument to an integer variable by using only the
integer portion of the argument. If the argument
were 3456.777, for example, the result of CIMT
would be 3456. CIMT is used anytime that a
variable or expression can be converted to integer
to speed up processing.

RELATED COMMANDS
COBEL, CSHE

SYSTEM

I, Ll

e

I, Disk

I, 12

HI, VLI

HI, LVL IH (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT

line# CIRCLE(xy)r circle

line# CIRCLE(xy)r.c circle with color
line# CIRCLE(xy)r.chw ellipse

line# CIRCLE(xy)r.chw,startend arc

EXAMPLES ‘
1006 CIRCLE({129,9€),48 radius 40 circle
1010 CIRCLE (200,100 ,20,4,1,0,.25
red arc

DESCRIPTION

CIRCLE is used to draw a circle, ellipse, or arc at
any point on the current graphics screen. The x and
y parameters specify the center point for the circle,
ellipse, or arc. The ranges of x and y are 0 through
255 and 0 through 191, respectively. The r
parameter is the radius of the circle or 1/2 the
width of the ellipse. The ¢ parameter is the color
code (1 through 8) for the figure, The hw parameter
is the height/width ratio for the figure. A circle has
hw=1, ellipses hw ratios from O through large_
values. The “start” and “end” parameters define the
start and end points of the arc. Any value from 0
(three o'clock) through 1 (clockwise back to three
o'clock) may be used to define the start and end
points. Commas may be used in place of the c, hw,
start, and end parameters. Defaults are
c=foreground, hw=1, start=0, and end=1.
RELATED COMMANDS

None g

SYSTEM

I, LVL I

I, LVL U °
I, Disk °
I, 12 °
1, LvL i

11, LVL i1 (4, 4P) o
111, Disk (4, 4P) e
4, 4P, Disk

CC, BASIC °
CC, ExtBASIC o
CC, Disk °
MC-10 °
Modei 100 o
Model 100, Disk o
FORMAT

CLERR N (Model LiL1I, MC-10, Model 100)
CLERR NM (Color Computer, Model 100)

line# CLEAR N or CLERR NM

EXAMPLES

loee CLERR 1000 clear 1000 bytes for strings
1016 CLEAR 1@ ,1500@ clear 100 bytes for
strings, protect memory

DESCRIPTION

CLERAF clears all variables to 0 and sets aside a
specified number of bytes of RAM for a “string
storage area” This string storage area is used
exclusively as a working storage area for string
processing. Enough bytes should be set aside to
handle the maximum number of characters in string
variables during program execution. This is usually a
trial and error computation. If too few characters
are set aside, either an “out of string space” error
will occur, or some time will be lost while the
ERSIC interpreter “cleans up” the string storage
area to make room for new strings. In the Color
Computer and Model 100, a second parameter
protects all RAM from a given address up to “top of
RAM"; this area is normally used for storage of
machine-language programs or buffers. Top of RAM
in the Model 100 is called MAXRAM.

RELATED COMMANDS
FRE, MAXRAM[168), HIMEM(100]

SYSTEM

I, VLI

I, LWL It

1, Disk

I, 12

1, WL

11, LVL i1l (4, 4P)
I1l, Disk (4, 4P)
4, 4P, Disk ®
CC, BASIC

CC, Ext BASIC
CC, Disk

Mc-10

Modet 100

Model 100, Disk

FORMAT
CLEAR N
CLEAR N.M
CLEAR NMP

EXAMPLES

CLERR 1000 clear 100 bytes for strings
CLEAR 100 ,16000,200 clear 100 bytes for
strings, protect memory, use 200 bytes for stack

DESCRIPTION

CLEAR clears all variables to 0 and sets aside a
specified number of bytes of RAM for a “string
storage area”. This string storage area is used
exclusively as a working storage area for string
processing. Enough bytes should be set aside to
handle the maximum number of characters in string
variables during program execution. If too few
characters are set aside, either an “out of string
space”” error will occur, or some time will be lost
while the ERSIC interpreter “cleans up” the string
storage area to make room for new strings. A second
parameter protects all RAM from a given address to
“top of RAM”; this area is normally used for storage
of machine-language programs or buffers. A third
parameter sets aside space for the stack.

RELATED COMMANDS
FRE

SYSTEM

I, VLI e
I, LWL H °
I, Disk ®
i, 12

H, et °

11, LVL 11l (4, 4P) @
IHl, Disk (4, 4P) e
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
CLOAD “file name”
CLOAD

EXAMPLES
CLOAD ““RATTAIL>’

DESCRIPTION

CLOAD is used to load a BASIC program file from
cassette. The file name, if used, must be in quotes.
If no file name is specified in the CL.OAD
command, the next BASIC file from cassette will
be loaded. If a file name is specified, the cassette
tape will be searched for that specific file name. File
names are one character long in the Model | and Hi
and up to six characters long in the Color Computer.
As BASIC searches for the proper file, it will
display all files encountered on the video display.
When the next or named file is found, it is assumed
to be a BASIC file, and will replace any current
BASIC program in RAM. In addition to initializing
the BASIC program area, a CLOAD also resets all
variables to 0 and initializes other BASIC program
parameters. For systems with two cassettes, see
CLOADH-. Model 1@@: CLOAD “file name”,
R loads and runs a program.

RELATED COMMANDS
CLOADH-, CLOAD?, CSAVE

© 6 © 06 0 @

SYSTEM

I, L !

Lo °
|, Disk °
i, 12

Hi, LVL !

11, LVL i1l (4, 4P)
i1, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT

CLOARDH -1, “file name”
CLOADH -2, “file name”

EXAMPLES
CLOADH-1, “ “RATTAIL""

DESCRIPTION

CLOADY - is used to load a BASIC program file
from cassette when two cassettes are used in the
system. The file name, if used, must be in quotes. If
no file name is specified in the CLORDH -
command, the next BASIC file from cassette will
be loaded. If a file name is specified, the cassette
tape will be searched for that specific file name. File
names are one character long in the Model I. When
the next or named file is found, it is assumed to be
a BASIC file, and will replace any current BASIC
program in RAM. In addition to initializing the
BASIC program area, a CLORDH - also resets all
variables to 0 and initializes other BASIC program
parameters.

RELATED COMMANDS
CLOAD?H-, CSAVEHE

SYSTEM

I, VLI

I, LVLH

I, Disk

I, 12

Hi, LVL I

1, LVL 11l (4, 4P)
I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10 °
Model 100
Model 100, Disk

FORMAT
CLORD# array
CLOAD= array name, “file name”

EXAMPLES
CLOAD* A, **PROGL’
DESCRIPTION

CLOARD* is used to load a BASIC program and
numeric array data from cassette tape. It operates
identically to CLOAD except that in addition to
loading a previously saved BASIC program,
CLOAD* also loads a previously saved numeric
array. The file name is optional. If a file name is not
used, the next BASILC file will be loaded. If a file
name is specified, the cassette tape will be searched
for the specified file name. The BASIC program
and array data must have been saved on cassette
by a CSAVE#* command. The array used in the
load must be defined by a DI statement or by
implicit use of an array element. The array used
may be larger than cassette data but not smaller.

RELATED COMMANDS
CLOAD, CSAVE®, DIM

T TR R

/ R T

SYSTEM

I, L1

I, LVL I °
1, Disk e
1, 12

1, L1

1, LVL I (4, 4P)e
HI, Disk (4, 4P) o
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 ®
Model 100, Disk e
FORMAT
CLORD? “file name”
CLORD
EXAMPLES
CLOARD? “*RATTRIL""
DESCRIPTION

CLOAD? is used to compare a program on cassette
with the BASIC program in RAM. It is normally
used directly after a CSAVE operation to compare
the BASIC file just saved with the contents of
RAM. This ensures that the BASIC program will not
be destroyed before a valid copy has been saved on
cassette. The “file-name” is optional. If no file name
is specified, then the next file on cassette will be
compared with the BRSIC program in RAM. If a
file name is specified, the BASIC interpreter will
search cassette until the specified file is found. If
the file on tape is not identical with the contents of
RAM, a “BAD" message will be displayed and
another CSAVE operation must be done. The
BASIC program in RAM is not altered during the
comparison process. If the system used has two
cassettes, see CLOARD?H.

RELATED COMMANDS
CLOAD. CLOAD?H-, ;’zsava

SYSTEM

I, LVL1

I, LVL I o
1, Disk e
I, 12

HI, LVL I

11, LVL NI (4, 4P)
Il, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Mode! 100

Mode! 100, Disk
FORMAT
CLOARD?# -1, “file name”
CLORD?H -2, “file name"”
EXAMPLES

CLOAD?H-2, “*RATTRIL""

DESCRIPTION

CLOAD?H - is used to compare a program on
cassette with the BASIC program in RAM for those
systems that have more than one cassette. it is
normally used directly after a CSAVE$ - operation
to compare the BASIC file just saved with the
contents of RAM. This ensures that the BASIC
program will not be destroyed before a valid copy
has been saved on cassette. The “file-name” is
optional. If no file name is specified, then the next
file on cassette will be compared with the BASIC
program in RAM. If a file name is specified, the
BASIC interpreter will search cassette until the
specified file is found. If the file on tape is not
identical with the contents of RAM, a “BAD"
message will be displayed and another CSAVEY -
operation must be done. The BASIC program in
RAM is not altered during the comparison process.
The #-1 command will compare from cassette 1
and the CLORD ?#-2 command will compare from
cassette 2.

RELATED COMMANDS CLOADH -, CSAVEH-

SYSTEM

I, VL1

(A]

1, Disk

I, 12

1, WLl

HI, LVL 1 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT

CLORDM

CLOADM “filename”

CLOADM “filename’ offset (Color Computer)

EXAMPLES

CLORDM **GRAFHC™ " load file “GRAPHC”
into RAM

DESCRIPTION

CLOADM is used to load a machine-language file
from cassette tape. The cassette tape file may have
been generated by an Editor/Assembler or be in a
format compatible with the CLORDM function. When
CLOADM is used alone, the next file on cassette is
assumed to be a machine-language file and is
loaded into RAM. When the “CLORDM filename™ "
format is used, the CLOADM routine will search for
the specified file name on cassette. When it finds
the file, it will be loaded into RAM as a machine-
language file.

Color Computer: When the “CLOADM filename’,
offset” format is used, the named machine-
language file will be loaded into RAM at the normal
locations specified in the file plus the offset value.
The offset value may be any value except those that
cause the load address to be in “non-existent” RAM.
RELATED COMMANDS
EXEC

3

SYSTEM

I, VLI

I, VLl

|, Disk °
I, 12 °
I, LVL |

I, LVL 111 (4, 4P)
I, Disk (4, 4P) e
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# TLOSE buf#l bufd2 .. .bufén

EXAMPLES

100G CLOSE 1.3 close files for buffers
land 3

DESCRIPTION

CLOSE “closes’ a disk file or files. A disk file is
normally first OPEred for reading or writing. The
OPEN command causes BASIC to find the file
name in the directory and to establish the disk
location of the file, type of file, and other
parameters. OFEHM also allocates a RAM “buffer” to
be used with the file. The RAM buffer is the memory
area used for reading or writing disk sectors. Buffers
are allocated by number, and the TIFEH associates
a specified file name with the buffer number. After
the records of the file have been read or written, a
CLOSE “flushes” any remaining data in a buffer for
a write and properly terminates file operations for
the designated buffer or buffers. The “buf#"
parameters specify the buffer numbers, and hence,
the files to be closed. One or more buffer numbers
may be specified.

RELATED COMMANDS

OPER

SYSTEM

I, LVL I

Lo

I, Disk

i, 12

Hi, VLI

HI, LVL HI (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 e
Model 100, Disk

B
¥

FORMAT
CLOSE
CLOSE file number list
line# CLOSE
line# CLLOSE file number list
EXAMPLES
CLOSE close all open files
1 CLOSE close all open files
2 CLOSE 3,4 close file numbers 3,4
DESCRIPTION
CLIOSE “closes” a RAM, CAS, COM, LCD, LPT, MDM,
or disk file. The file is normally first OFEHMed for
reading or writing. The OFER command establishes
the file name and other parameters. OFEH also may
allocate a file buffer for the file. The file buffer is
assigned a number for use with the file. After the
records of the file have been read or written, a
CLOSE “flushes” any remaining data in the buffer
for a write and properly terminates file operations
for the designated buffer or file number. If a
CLOSE is used without a file number all currently
OPEnRed files are closed.
RELATED COMMANDS
OPEM

i

SYSTEM

I, LVL I

I, LVL 1l

1, Disk

I, 12

I, L

11, LVL 111 (4, 4P)
I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

© © © © ¢ © O &8 6 0 O © @ ©

Model 100, Disk

FORMAT
line# CLS
line# CLS ¢ Color Computer

EXAMPLES

1800 CLS clears video display
2009 CLS 3 clears display to blue (Color
Computer)

DESCRIPTION

Model I/11/1H, 12, 4, Model 100: CLS clears the
entire video display screen by outputting blanks to
each of the screen character positions. Note that
this is an ASCII 32, an alphabetic blank, rather than
a graphics character. The screen cursor is then
positioned in the upper left-hand corner of the
screen.

Color Computer, MC-10: CLS clears the entire
screen to a specified color, c. The ¢ parameter is a
color code of O through 8 (black, green, yellow,
blue, red, buff, cyan, magenta, orange).

RELATED COMMANDS
None

SYSTEM

L LVLI

Lo

I, Disk

I, 12

1, LVL |

11, LVL I1I (4, 4P)
Ill, Disk (4, 4P) o
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT
CMD L F:I L)

EXAMPLES
CMD* A"

DESCRIPTION

The CMD* “A> > command allows you to return to
TRSDOS from BASIC. Typing in “CMD* <A *" at
any time when in the command mode of BRSIC
causes a return to TRSDOS.

>CMD* “A””
OPERATION ABORTED
TRSDOS READY

RELATED COMMANDS
None

SYSTEM

I, LVL

v

I, Disk

I, 12

HI, LVL

i, LVL 111 (4, 4P)
[, Disk (4, 4P) o
4, AP, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

MOt BT

FORMAT
Equh GB! ”i EDF\]S .
CMD* B 7, < *OFF "

EXAMPLES

CHMD“B*", ““0ON” " enables the BREAK key
operation

CMD*<B* ", *0OFF ** disables the BREAK key
operation

DESCRIPTION

CMD*“B** is used to enable or disable the BREAK
key. The BREAK key is normally used to stop
execution of a BASIC program. When the BREAK
key is disabled with a CMD**B°>, * “0OFF * °, the
BREAK key will be ignored except during cassette,
printer, or serial input/output. CMD* *B" * can be
used to “lock out” the BREAK key to prevent
erroneous stops of critical BASIC programs. The
double quotes around ON and OFF are necessary.
The BREAK key will be enabled upon a return to
TRSDOS.

RELATED COMMANDS
None

SYSTEM

I, VLI

e

I, Disk

I, 12

L L

1L, LVL1II (4, 4P)
I, Disk (4, 4P) o
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
CHD* 2"
CHD**C° " F
CHDEsC" "%

EXAMPLES

CHD=*C°°, 5 compress program by deleting
spaces

DESCRIPTION

CHD**C" " is a command to “compress” a
program by deleting remarks and/or spaces.
EASIC program remarks take up about one byte in
RAM for every REM character. They are most useful
during program debugging and may be deleted after
a final version of the program has been reached.
Spaces help readability, but also take up one byte
of RAM for every space. If the CMD* =" " format
is used, text from both REMs (and ' type remarks)
and spaces are deleted from the BASIC. If the
other formats are used either remarks or spaces are
deleted. All spaces except those inside string literals
will be deleted. String literals (such as A$="STRING
LITERAL") must have double quotes at both
beginning and end for the command to function
properly.

RELATED COMMANDS

None

SYSTEM

I, LVL I

I, LVL It

1, Disk e
I, 12

1, el

11, LVL HI (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
CHD® D"

EXAMPLES
CHOe=0°* load DEEUS from disk

DESCRIPTION

CHO® <0 " loads the DEELG program from disk.
DEELUS may be entered by pressing the BREAK key
at any time after CEELUS has been loaded. DEELIG
is used to examine memory, execute machine-
language programs, and perform other non-BRSIC
tasks. BRSIC program text and variables will be
lost after transfer of control to DEELIG.

RELATED COMMANDS
None

SYSTEM

I, VLY

el

I, Disk

I, 12

I, VLI

HI, LVL 111 (4, 4P)
111, Disk (4, 4P) o
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10 |
Model 100 v
Model 100, Disk :

FORMAT
CHMoc*0=d”

EXAMPLES
CHMD**0z1"" display directory of drive 1

DESCRIPTION

CHDE <07 " is a BASIC command similar to the
TRSDOS DIR command. It allows the user to
display a diskette directory from inside BASIC
without transferring to TRSDOS. The “d"” parameter
is the drive number, 0 through 3. Only unprotected,
visible files will be displayed.

RELATED COMMANDS
None

SYSTEM

I, Ll

ILvL il

I, Disk

I, 12

1y, L

11, LVL 11 (4, 4P)
111, Disk (4, 4P) e
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
CMD - & E L]

EXAMPLES
CMDe*E"” display last TRSDOS error

DESCRIPTION

CMO* “E* * displays the last TRSDOS error from
within BASIC. It is a way of getting further
information about the type of TRSDOS error that
occurred, rather than a “blanket” statement. If, for
example, BASIC returned a

“0ISK I-0 ERROR”, entering CMD*® “E” > would
expand on this by displaying the last TRSDOS error
message of “DISK DRIVE NOT IN SYSTEM".
This message would not have been displayed during
BASIC program execution.

RELATED COMMANDS
None

SYSTEM

I, VLI

I,

I, Disk

I, 12

I, LI

I, LVL Il (4, 4P)
11, Disk (4, 4P) o
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10
Model 100
Model 100, Disk

FORMAT

CMD*e <1, “command”
line# CMD*®*1"°",“command”

EXAMPLES

1000 AF=**DIR""
1010 CMD* I ", A% exit to TRSDOS
and do dir

DESCRIPTION

CMD* #1177 returns control to TRSDOS from
BASIC and passes a command. The command is
executed as the first TRSDOS action.

RELATED COMMANDS
None

SYSTEM

I, L

L

|, Disk

i, 12

1, L

111, LVL Hi (4, 4P)
I, Disk (4, 4P) o
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT

line# CMD* ©J°*,“mm/dd/yy’, string

line# CHMD* *.0°* “yy/ddd’ string

EXAMPLES

1000 CMDe*J* ", 12-65-81,A% convert date
DESCRIPTION

CMD**J" " converts a given date to “day-of-the-
year" format or converts the day of the year to
mm/dd/yy format. The “dd” or “ddd” parameter is
the day. The “mm” and “yy" parameters are month
and year, respectively. This command is used to
convert the mm/dd/yy format to ddd format or the
yy/ddd format to mm/dd/yy format. The result of
CHMD*=J*° is the format opposite to the one
specified after the CMD=<.J° ", The result is held in
the specified string. CIMD* *J " * is handy for
converting to and from “Julian” format {yy,mmm)
where the day of the year is 1 through 366. Julian
format facilitates processing of elapsed time. The
minus sign prior to the yy/ddd is required. The
command CHMD**J"", **12-05-81° " A$
produces A$="339". The command

CHMD**J"" **-81-300" " A$ produces
A$="10/27/81".

RELATED COMMANDS

None

SYSTEM

I, VLI

I,

I, Disk

I, 12

1, VLI

11, LVL NI (4, 4P)
I, Disk (4, 4P) o
4, 4P, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT
CHD* L. ", “filename”
CHDe “L° *,string

EXAMPLES
1000 CHMD* L™ %, * “ASSEMP:1"" load
machine language

DESCRIPTION

CHMDe =L ** loads in a machine-language file
created by the TRSDOS DuUIMP command or Disk
Editor/Assembler. The machine-language file would
normally contain code to be interfaced to BRSIC
through the DEFUSRn and USRn commands. The
machine-language code cannot overlay the RAM
area protected by the MEMORY SIZE? prompt. If
the filename format is used, the filename must be
enclosed by quotes; if the string format is used,
quotes are not required. CHMD* “L " *, A% will load
in the file named in A$, assumed to be a machine-
language file.

RELATED COMMANDS
DEFUSRn, USRn g

SYSTEM

I, VL

I i

I, Disk

", 12

H, VL1

1, LVL 111 (4, 4P)
1, Disk (4, 4P) o
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT

line# CMD* =0 *,integer variable,string array(start)
EXAMPLES

1008 Zh=100

191@ CMD**0° ", 2%, A% [20 sort array
DESCRIPTION

CMD*<0" " sorts a one-dimensional string array
from a specified starting element number through a
specified length. The sort will sequence the array
entries so that they are ordered in “ascending
sequence” based upon their ASCH codes and other
vatues. Normal string array entries will contain ASCII
representation of string variables. If the entries of
the string array contain non-ASCll characters, such
as control codes or graphics characters, the sort will
be on the basis of their numerical values from 0
through 256. The “string array(start)" parameter
defines the starting element of the string array. This
may be the first element (0) or any element of the
array. The integer variable parameter defines the
number of elements from this start element. The
sort will be performed on the array elements from
the start through the start+n-1. The array element
strings may be of mixed lengths.

RELATED COMMANDS
None

SYSTEM

LI

L

1, Disk

I, 12

I, Lt

i, LVL 1l (4, 4P)
Ill, Disk (4, 4P) e
4, 4P, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
MC-10

Model 100

Mode! 100, Disk
FORMAT
line#f CMD* *P* * string

EXAMPLES

1080 CMD““P* ", A% get printer status

DESCRIPTION

CMD*““P”” reads in the system printer status. The
printer status is returned as a string variable, the
string parameter. This command is used to test the
ready condition of the system line printer before
using an LPRINT or other command. The line
printer may not be ready because it is “off-line” or
because of an error condition such as being out of
paper. Printer status can be tested by converting
the string result to numeric by the VAL command,
and ANDing with 240 to obtain the most significant
4 bits of the status. Generally, if the result of the
VAL conversion and AMDing is not 48 (binary
0011XXXX), the printer is not ready, although this
depends upon the printer type in your system.
Sample code is

1000 CMD* “P”*, A%

1010 A=VAL(A$) AND 240

102@ IF A<>48 THEN PRINT **PRINTER
NOT READY "

RELATED COMMANDS

None

SYSTEM

I, LVL I

I, LVL U

I, Disk ®
1, 12

i, Lt

11, LVL 111 (4, 4P)
1, Disk (4, 4P) o
4, AP, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
CMos*R""

EXAMPLES
CHMD* =R * turns on the real-time clock

DESCRIPTION

CHMD® “R™* is used to turn on the real-time clock
from EASIC. The system real-time clock displays
the 24-hour time at the upper right-hand corner of
the screen. The time can be set by the TRSDOS
TIME command. When the real-time clock is on,
the time will be updated in fractions of a second
and displayed in seconds. The real-time clock is
always running except during cassette or disk '
input/output; CMD* *R”* simply enables the time
display during all EASIC activity. The display can
be disabled by the MO = T* " command.

RELATED COMMANDS
CHMD**T*°, TIME (TRSDOS)

SYSTEM SYSTEM

[, VL1 1, LI

i, L 1 L

1, Disk ° I, Disk °

1, 12 H, 12

1, VLI 1, Ll

111, LVL 111 (4, 4P) 11, LVL I (4, 4P)

111, Disk (4, 4P) o I, Disk (4, 4P) e

4, 4P, Disk 4, 4P, Disk

CC, BASIC CC, BASIC

CC, Ext BASIC CC, Ext BASIC

CC, Disk CC, Disk

MC-10 MC-10

Model 100 v T i Model 100

Model 100, Disk Model 100, Disk

FORMAT FORMAT

CMD**S5°° CMD**T°°

EXAMPLES ' EXAMPLES

CMD**5°* return to TRSDOS CMD*“T** disables the real-time clock display

DESCRIPTION { DESCRIPTION

CMD*“S”* is used to return to TRSDOS from Disk | CHMO=*T* turns off the system real-time clock

BASIC. Executing CMD* =S * will exit Disk from the command mode of BASIC. The real-time

BASIC and reload TRSDOS. clock updates the time in fractions of a second and
displays the 24-hour time in. seconds in the upper

RELATED COMMANDS right-hand corner of the screen. It is always

None running, except during cassette or disk

input/output; using CMD* *T** simply disables the
screen display.

RELATED COMMANDS
CHMD®*R"*, TIME (TRSDOS)

SYSTEM

I, WL

I, LVL H

I, Disk

I, 12

", VLt

11, LVL 111 (4, 4P)
Ill, Disk (4, 4P) o
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT

line# CHMD* *¥* * reserved wd
line# CMD* *%**,“string”

EXAMPLES
1009 CMD**x* ", PRINT find all FRINTS

DESCRIPTION

CMD* “%** will search the current EASIC
program in RAM for either a reserved word such as
PRINT or GOTL, or for a given string literal such
as “EMPLOYEE #" The line numbers of all
occurrences of the reserved word or string literal
will then be listed on the display. CMD* “%” * can
be used as a general search routine to facilitate
changes in a BASIC program. A search for
PRINT, for example, could easily be done and the
FRIMTS could then be changed to LPRIMTS. The
reserved word must not be in quotes; a string literal
must be enclosed in quotes.

RELATED COMMANDS

None

SYSTEM

I, VLI

I, LVL I

1, Disk

1, 12

1N, LVL I

IH, LVL 1il (4, 4P)
IH, Disk (4, 4P) o
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
CP]DL GZ! S’ iiDN‘! kl
CMD*¢Z" %, ¢ “OFF"°

EXAMPLES
CMD*®*Z?°, “*0ON"° turn on printer output

DESCRIPTION

CMD¢“Z* " is used to enable or disable
simultaneous display and printer output. When
CMDe*Z77, ““0ON* " is given, all output going to
the display is also sent to the system line printer.
The printer must be in a “ready” condition. Due to
differences in character interpretation, display
output sent to the line printer may cause
unpredictable results, but in general, any text data
sent to the screen will be properly printed on the
system line printer. The printer output is disabled
by CMD**Z* ", « *0OFF > *. This command can be
used to provide a hard copy of BASIC program
output which normally would be displayed.

RELATED COMMANDS

None

SYSTEM

I, LVL I

1, LVL I

1, Disk

1, 12

H, L i

111, LVL 1 (4, 4P)
111, Disk (4, 4P)

4, AP, Disk

CC, BASIC

CC, Ext BASIC e
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# COLOR foreground, background

EXAMPLES
1606 COLOR 2,3 select yellow on blue

DESCRIPTION

COLOR is used to select the foreground and
background colors in either the text or graphics
modes. The background is the field upon which
figures can be drawn; the foreground is the color
used to draw the figures. The color codes used are
the standard Color Computer codes of 0 through 8 -
black, green, yellow, blue, red, buff, cyan, magenta,
and orange, respectively. The color codes used in
the command must be valid colors in the current
mode. The current mode depends upon the current
SCREEN command in force (text or graphics) and
the graphics mode (PMODE). The background may
be selected to be the same color as the “border”
color, in which case there will be no border around
the screen.

RELATED COMMANDS
PMODE, SCREEN

SYSTEM

I, LWL

I, LVL I

I, Disk

il, 12

I, el

11, LVL 1§l (4, 4P)
I, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk o
FORMAT

line# COM OM
line# COM DOFF
line# COM STOP

EXAMPLES
10@@ COM ON enable communications interrupt

DESCRIPTION

The communications interrupt is used to interrupt a
BASIC program so that immediate action is taken
to save a character received from the RS-232-C port
of the system. If this action were not taken
immediately, the character would be lost. The ON
COM G0SUB command is first used to define a
“processing” subroutine for the interrupt. Normalty
this subroutine would read in the character from the
car file and process or save if and then return to
the interrupted program. The O command allows
the communications interrupt to be enabled or
disabled by a COM OW or COM DFF — there are
times when the interrupt should be acted upon and
other times when it should be ignored. The COM
STOP “remembers” the interrupt but allows the
program to ignore it until the next COM ON, at
which point the interrupt subroutine is immediately
called.

RELATED COMMANDS
ON COM, OPEN

SYSTEM SYSTEM

I, VL1 [, VLI °

I, LVL I I, LVL It ®

I, Disk I, Disk .

i, 12 I, 12 °

HI, VL1 11, LVL | °

I, LVL I (4, 4P) 11, LVL Il (4, 4P) e

111, Disk (4, 4P) 111, Disk (4, 4P) o

4, 4P, Disk ° 4, 4P, Disk °

CC, BASIC cC, BASIC .

CC, Ext BASIC CC, Ext BASIC °

CC, Disk CC, Disk .

MC-10 : { MC-10 J

Model 100 : : Model 100 .

Model 100, Disk - g Model 100, Disk e

FORMAT . FORMAT

line# COMMON variable list CONT

EXAMPLES

160e COMMON AZ,B2,PT(] make common EXAMPLES

DESCRIPTION COMT (continue after stop)

COMMON is used to establish a common area for

variables so that several BASIC programs can use DESCRIPTION

the same variables. The BRSIC programs are COMT is an abbreviation for “continue’ Continue is
loaded at different times by the CHAIN program. used after a STOP command has been executed.
As the programs are loaded they may “overlay” The STOP causes a temporary program halt,
prior programs, but variables defined as COMMON valuable for examination of variables or

variables will be maintained with their names and “breakpointing” during debugging. CONMT is used
current values. In this way, variables may be after the STOP to continue the program from the
“passed” from program to program as they are point at which the STOP occurred. Al variables will
CHA Ihed. The variable list of COMMON may have be intact when the CONT is executed. COMT is
one or more variable names. No variable name may used in the command mode after a STOP or
appear in more than one COMMON statement. The BRERAI has taken place.

variable names may reference any variable types. If

an array is to be common to two or more programs, RELATED COMMANDS

use parentheses to indicate the array, as shown in STOP

the example above.

RELATED COMMANDS
CHAIN

SYSTEM SYSTEM

I VL 1, VLI

I LVL I [, L °

i, Disk I, Disk .

i, 12 i, 12 °

i, LI Hi, WLt

11, LVL 111 (4, 4P) 11, LVL 11 (4, 4P) ®

11, Disk (4, 4P) tH, Disk (4, 4P) o

4, 4P, Disk 4, 4P, Disk °

CC. BASIC CC, BASIC

CC, Ext BASIC CC, Ext BASIC o

CC, Disk ° CC, Disk °

MC-10 MC-10 .

Model 100 Model 100 °

Model 100, Disk b / Model 100, Disk o

FORMAT FORMAT

COPY “filenamel” TO “filename2” line#...COS(expression)...

EXAMPLES EXAMPLES

COPY **TRANSFIL-BAS:®"" TOD 1900 FI=CDS[><+3._’!.41_5‘3/2) sets variable A

““TRANSFIL- BAS:1"" equal to cosine of X*pi/2 (in radians) '
2000 ND=COS(X*.01745329] sets variable

DESCRIPTION ND equal to cosine of X (in degrees)

COPY is a Color Computer Disk BASIC command.

It copies a complete file from one diskette to DESC_RIPNON . .

another diskette under the same or different file COsS finds the cosine of a given constant, variable,

name, or copies a file to the same diskette under a or expression. The quantity is assumed to be:in]

different name. COPY is used to backup a single radians (180/pi degrees). COS is a “function” an

file, or to duplicate a file on the same or different may be used anywhere within a BASIC statement

diskettes. The file defined by “filenamel” is copied as long as the argument is enclosed within

as “filename2". Each filename must have an parentheses. Multiply by .01745329 to convert

extension. The extension follows the main file name degrees to radians. Standard trigonometric rules

and is a three-character designator preceded by a apply in regard to the sign of the result.

slash character. The drive number is optional and is

used only when the copy will be done between two RELATED COMMANDS

different disk drives. None

RELATED COMMANDS
None

SYSTEM

1, WLl e
[, LWL N e
I, Disk e
1, 12

1, LVL | e
i, LVL 1L (4, 4P) o
111, Disk (4, 4P) "o
4, 4P, Disk

CC, BASIC e
CC, Ext BASIC °
CC, Disk °
MC-10 °
Model 100 °
Model 100, Disk e
FORMAT
CSAVE “file name”
CSAVE

CSAVE “file name”, A (Model 100)
EXAMPLES
CSAVE “*RATTAIL™"
DESCRIPTION

The CSAWE command is used to save the current
BASIC program in RAM on cassette tape. The tape
must be positioned beyond the leader. Note the
position of the tape by the tape counter for restart.
If a “file name” is specified, the contents of RAM
will be written out as a file called “file name’’ If no
file name is specified, the name “MOMAME" will be
used. (A file name must be used for the Model 100.)
Legitimate file names for the Model 1/11l are single
character names. Legitimate names for other

computers are generally 1 to 6 characters. CLORD?

(most systems) may be used to verify that the file
was written properly. A subsequent CLOAD will
reload the BRSTIC program and “overlay” any
current BEASIC program in RAM. See CSAWVEH-
for systems with more than one cassette.

Model 100: The A option saves the file in ASCII
format.

RELATED COMMANDS
CLOAD?, CSAVER- *

SYSTEM

1, VLI

I, VL °
1, Disk °
i, 12

11, LVL |

11, LVL 11 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT

CSAVER -1, “file name”
CSAVER -2, “file name”

EXAMPLES
CSAVEHR-, “ “RATTAIL®"

DESCRIPTION

The CSAVEHR- command is used to save the
current BASIC program in RAM on cassette tape
on those systems that have more than one cassette.
The tape must be positioned beyond the leader.
Note the position of the tape by the tape counter for
restart, If a “file name” is specified, the contents of
RAM will be written out as a file called “file name'.
If no file name is specified, the name “NONAME"
will be used. Legitimate file names for the Model |
are single character names. CLOAD 7# - may be
used to verify that the file was written properly. A
subsequent CLOADH - will reload the BASIC
program and “overlay” any current BASIC
program in RAM.

RELATED COMMANDS
CLOADH -, CLOAD?H-

SYSTEM

I LVL 1

I VLTI

I, Disk

I, 12

1, Ll

11, LVL HII (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10 °
Model 100

Model 100, Disk

FORMAT
CSAVE® array name
CSAVE® array name, “file name”

EXAMPLES

CSAVE® [/, “*PROGL®" save array A
and program

DESCRIPTION

CSAVE# saves the current BASIC program in
memory in similar fashion to ZSAVE but also saves
a specified numeric array. The program and array
data is loaded with a CLOAD* command. The tape
must be positioned beyond the leader. Note the
position of the tape counter for restart. File name is
optional. If file name is not specified, the file will be
written without a name and must be read in using a
CLOAD# without a file name. The array name must
have been previously defined by a CiIt1 command
or by use of an array element in the program.
Legitimate file names are 1 to 10 characters.

RELATED COMMANDS
CLOAD*, DIM, CSAVE

£
i

SYSTEM

I, LVL |

e

I, Disk

i, 12

1, L

11, LVL 1L (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk .
MC-10

Model 100
Model 100, Disk

FORMAT
CSAVEN “filename’'startaddr,endaddr.execaddr

EXAMPLES
CSAYEM **SORTPR™ 7 AH3000, 2H3FFF,

DESCRIPTION

CEAVEN is used to save a machine-language
program in RAM as a cassette file. The “filename”
parameter is a standard cassette file name.
CSAVER can be used to save any binary data in
RAM whether it is a machine-language program,
data, or both. The startaddr parameter specifies the
starting address of the data to be saved. The
endaddr parameter specifies the end of the data.
The execaddr specifies the address of the start of
the program, if applicable, or to a dummy
parameter. The resulting file is stored as a binary
file and can be loaded by the CLOADM command.
The execaddr is optional on the Model 100.

RELATED COMMANDS
CLOADM,E<ED

SYSTEM SYSTEM

I, VLI I LVLI

I, VLIt o LoLVL I

1, Disk ° I, Disk

I, 12 ° I, 12

1, VLt 1, VL

I, LVL 111 (4, 4P) e I, LVL 11 (4, 4P)

II, Disk (4, 4P) o 111, Disk (4, 4P)

4, 4P, Disk o 4, 4P, Disk

CC, BASIC CC, BASIC

CC, Ext BASIC CC, Ext BASIC

CC, Disk CC, Disk

MC-10 MC-10

Model 100 LI & ; Model 100 °

Model 100, Disk Model 100, Disk o ° '
FORMAT

FORMAT . - '

.) line#. .CSRLIN...

line#...CSNG(expression)...
EXAMPLES

EXAMPLES P e Thm. N
1008 IF CSFELIM=4 THEM CLS

1000 PRINT CSNG(STH*NMH) convert to sp

and print DESCRIPTION
CSRLIH i ine on which the

DESCRIPTION ZSRLIH finds the current screen line o

. . . cursor is located and returns the line number. Lines
CSNG converts a constant, variable, or expression are numbered 0 (topmost) through 7 (bottommost)

to single precision. Single-precision numbers can for the Icd display or O through 23 for the crt or TV
hold up to 7 decimal digits and occupy four bytes display in a disk system.

of storage. CSNG is used whenever it is convenient

to convert from integer precision or double precision RELATED COMMANDS
to single precision. POS. SCREEM

RELATED COMMANDS
COBL, CINT

SYSTEM

I, LVL I

I, LVL I

I, Disk °
I, 12 °
I, WL

11, LVL [11 (4, 4P)
1il, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Mode! 100

Model 100, Disk
FORMAT

line#...C\D(string)...

EXAMPLES
100® AR=CVD(BAL$) convert BALS to
numeric

DESCRIPTION

CVD is used to convert a string variable to a
double-precision variable. CvD is normally used to
retrieve a data value from a random-file buffer. The
typical sequence in retrieving data from a random-
file buffer is to define the fields in a random-access
buffer with FIELD, to read in the disk file (see
GET), and then to retrieve data with CvD, CVI, or
CvS. CVD is the inverse of MKD$, which is
normally used to store double-precision data in the
random-file buffer in character string form. The
CvD function converts a field from the buffer to
numeric form. The field is assumed to contain an 8-
character string created by MKD%. An error or
invalid results would normally occur for a field size
other than 8 characters. CD can also operate on a
string variable other than a FIELD variable. In this
case the variable should have been created by
MKD® .

RELATED COMMANDS
FIELD, MKD$

SYSTEM

I, LVL 1

I, LVLII

1, Disk °
I, 12 °
1, Wi

111, LVL 111 (4, 4P)
111, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line#...CW I(string)...

EXAMPLES
1900 A%=CVI(EMPS)] convert EMP$ to
numeric

DESCRIPTION

I is used to convert a string variable to an
integer variable. CVI is normally used to retrieve a
data value from a random-file buffer. The typical
sequence in retrieving data from a random-file
buffer is to define the fields in a random-access
buffer with F IELD, to read in the disk file (see
GET), and then to retrieve data with CvD, CVI, or
CVI. CVI is the inverse of MIKI%, which is
normally used to store integer data in the random-
file buffer in character string form. The CV1I
function converts a field from the buffer to numeric
form. The field is assumed to contain a 2-character
string created by MIKI$. An error or invalid results
would normally occur for a field size other than 2
characters. CVI can also operate on a string
variable other than a FIELD variable. In this case
the variable should have been created by MKI%.

RELATED COMMANDS
FIELD, MKI$

SYSTEM

I, VL

I, e

1, Disk

1, 12

1, LVL I

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line#...C\N(string)...

EXAMPLES
1006 A=CYN[ZIP%)
numeric

DESCRIPTION

CVN is used to convert a string variable to a
numeric variable. CVN is normally used to retrieve
a data value from a direct-file buffer. The typical
sequence in retrieving data from a direct-file buffer
is to define the fields in direct-file buffer with
FIELD, to read in the disk file (see GET), and then
to retrieve data with CYN. CWN is the inverse of
MIKNE, which is normally used to store numeric
data in the direct-file buffer in character string
form. The CVN function converts a field from the
buffer to numeric form. The field is assumed to
contain a 5-character string created by MIKN$. An
error or invalid results would normally occur for a
field size other than 5 characters. CVN can also
operate on a string variable other than a FIELD
variable. In this case the variable should have been
created by MKNS$.

RELATED COMMANDS
FIELD, MKNS$

convert ZIP%$ to

SYSTEM

I, LVL I

I, LVL I

1, Disk °
i, 12 e
I, VLI

I, LVL Ul (4, 4P)
I, Disk (4, 4P) o
4, 4P, Disk e
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Mode! 100

Model 100, Disk
FORMAT

line#...C\S(string)...
EXAMPLES

1000 A=CVS(ZIP%)
numeric

DESCRIPTION

CvS is used to convert a string variable to a
double-precision variable. CVS is normally used to
retrieve a data value from a random-file buffer. The
typical sequence in retrieving data from a random-
file buffer is to define the fields in a random-access
buffer with FIELD, to read in the disk file (see
BET), and then to retrieve data with CvD, CVI, or
CVYI. CvS is the inverse of MKS$, which is
normally used to store single-precision data in the
random-file buffer in character string form. The
CVS function converts a field from the buffer to
numeric form. The field is assumed to contain a 4-
character string created by MIKS%. An error or
invalid results would normally occur for a field size
other than 4 characters. CVS can also operate on a
string variable other than a FIELD variable. In this
case the variable should have been created by
MKSS$.

RELATED COMMANDS
FIELD, MKS$

convert ZIP%$ to

SYSTEM
(AN

I, L .
1, Disk °
I, 12 °
I, VL

HI, LVL 11 (4, 4P)
Ill, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Mode! 100 ®
Model 100, Disk o
FORMAT
line#...x.xxxx0iyy...
EXAMPLES

loge AR=3.141526535689793230+3
lale Z28=1_760-5

DESCRIPTION

D is used to denote double-precision numbers with
scientific notation. The format of such a number
consists of a fraction or mixed number, a 0", and
a power of ten. The power of 10 may be positive
(plus sign or no leading sign) or negative (negative
sign). The fraction or mixed number may consist of
up to 17 decimal digits (14 in the Model 100). The
decimal point may be located anywhere within the
number. The decimal point is optional. The variable
associated with the double-precision number must
have a “#" type suffix, or be defined in a DEFDBL
range {i.e. it must be a double-precision variable).

RELATED COMMANDS
#, DEFDBEL

Lot

5]

SYSTEM

1, LVL |

I, e

I, Disk

i, 12

1M1, LVL |

11, LVL I (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line# DATA jtem 1, item 2, item 3,
item 4, ... item N

EXAMPLES

1000 DATA 5.2, 2, -3, 5, -1 defines a list
of 6 numeric items

2000 DATA ORANGE , FEACH, PEAR defines a
list of three string items’

3000 DATA 5,PLUM,-2,7.58,6,FPEAR,
~5,-10.2 defines a mixed list

DESCRIPTION

DATA is used to define a list of numeric or string
values to be used in the program. More than one
DATH statement results in one large list. Values can
be read by using the READ command. RESTORE
is used to “reset the pointer” to the beginning of
the list. The following statements read 1, -2.5, and
PEFAR into variables A, B, and A$:

109® DATA 1,-2.5,PEAR establishes list
1910 READ A,B,A$ reads values

1026 RESTORE resets pointer

Double quotes must enclose a string value if the
string has leading blanks, commas, or colons.
RELATED COMMANDS

REARD, RESTORE

® © © © © © 8 © 6 0 © © © O

SYSTEM

I, LVL I

I, LVL 11

1, Disk

I, 12 e
i, LVL T

111, LVL 1 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk e
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk o

FORMAT

line# ..DATES. ..

EXAMPLES

1000 PRINMT “*TODAY'S DATE I5°7;
DATES

DESCRIPTION

DATES returns the current date and information
about the date as a text string. When TRSDOS is
started up, the operator enters the current date.
DATES returns this information in EASIC. The
format of the DATES string for the Model Il is
WWWMMMDDYYYYJJJXXY where WWW is the day of
the week, MMM is the month, DD is the numbered
day of the month, YYYY is the year, J1J is the Julian
day {numbered day of the year), XX is the
numbered month of the year, and Y is the
numbered day of the week. A typical string refurned
by DATES is: WedDec301981364122. Weeks start
with Monday, the Oth day; all other parameters
count from 1. The format of the DATE string for
the Models 100 and 4 is MM/DD/YY.

RELATED COMMANDS
None

SYSTEM

I, LVLI

I, LWL

I, Disk

i, 12

i, VLI

I, LVL 11l (4, 4P)
I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °

Model 100, Disk e

FORMAT
DAY$=...
linek... DAYS

EXAMPLES
19@@ PRINT **TODAY IS °°;DAYS

DESCRIPTION

When the system is first started up, you can enter
the current day of the week in direct mode by
entering DA'Y$= followed by a three letter day of
the week — Mon, Tue, Wed, Thu, Fri, Sat, or Sun.
Thereafter, the system will maintain the day of the
week and you can use the DAY'$ function to
automatically produce the current day of the week
for reports or other functions. The string returned in
using DAY$ will be a three-character string as on
entry.

RELATED COMMANDS
DATES

SYSTEM

I, VLI

I, LVL I

I, Disk e
I, 12 °
1, LVL |

I, LVL 1L (4, 4P)
I, Disk (4, 4P) -«
4, 4P, Disk o
CC, BASIC

CC, Ext BASIC °
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# DEF FNname(argl,arg2,...argn)=formula

EXAMPLES

100@ DEF FNZ(A,B)=SQR(A*A+B*B)
DESCRIPTION

DEF FN is used to define a function. A function is
a predefined operation that can be “invoked” by
using the characters “FN" followed by the function
name. Functions are useful if the same basic
operation is repeated many times within a BRSIC
program. In the above example, suppose that the
operation SQR([A*A+B*B) were to be repeated at
100 different places in a BASIC program. Defining
it as DEF FNZ would permit code such as

“2000 PRINT FNZ(191,50)"; the "FNZ"
would execute the function called

“7" and perform SQR(101*%101+50%50). The

name parameter may be any variable name; any
variable type suffix may be used, such as A%, Al, or
A$. The arg parameters define the arguments to be
used in the function; they are “dummies” in the
DEF FN command and serve only as “place
markers” for definition of the procedure. The
dummies do not affect variable values. Only one
argument may be used in the Color Computer.

RELATED COMMANDS
None

SYSTEM

I, LVL I

I, LVL Il °
1, Disk °
11, 12 o
1, WLl

Il, LVL 1l (4, 4P)
I, Disk (4, 4P) e
4, 4P, Disk e
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 LI
Model 100, Disk e
FORMAT

line## DEFDEL letter
line# DEFDBL letter range

EXAMPLES
1000 DEFDBL A-B
3000 DEFDBL I-K

DESCRIPTION

DEFDEBL defines all variables within the specified
letter range as double-precision numeric variables
(17 decimal digits of precision stored, 16 displayed
in most systems). Variables with type suffixes of “%"
“I'" 8§ or “E') however, are not affected. The letter
range defines a range of letters for the beginning
letter of the variable. A letter range of I-K, for
example, would include |, J, and K. After definition
of this letter range by a DEFDBL., all variables
beginning with I, J, or K would automatically be
assumed to be double-precision variables, except for
those with type suffixes. DEFDEL is a convenient
way to define a range of variables as double-
precision variables without having to define each
variable separately with the # type suffix. DEFDBL
would normally be used at the beginning of a
BASIC program.

RELATED COMMANDS
',4,%,%,DEF INT, DEFSNG, DEFSTR, E

SYSTEM

1, LWL

I, LVl o
1, Disk ®
1, 12 °
I, WLl

1L, LVL Il (4, 4P)
111, Disk (4, 4P) e
4, 4P, Disk o
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk
FORMAT

line# DEF INT letter
line# DEF INT letter range

EXAMPLES

1500 DEFINT A-B

306 DEFINT I-K

DESCRIPTION

DEF INT defines all variables within the specified
letter range as integer variables {capable of holding
-32768 to +32767). Variables with type suffixes of
gt v up g or “E' however, are not affected.
The letter range defines a range of letters for the
beginning letter of the variable. A letter range of I-K,
for example, would include |, J, and K. After
definition of this letter range by a DEF INT, all
variables beginning with |, J, or K would
automatically be assumed to be integer variables,
except for those with type suffixes. DEF IMNT is a
convenient way to define a range of variables as
integer variables without having to define each
variable separately with the % type suffix. DEF IMT
would normally be used at the beginning of a
BASIC program.

RELATED COMMANDS

' o#,%,%,0, DEFDBL, DEFSNG,

DEFSTR, E

i
3

SYSTEM

I, VL

I, L ®
l. Disk)
I, 12 ®
I, VL

I, LVL1IE (4, 4P) e
111, Disk (4, 4P) e
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk o
FORMAT

line# DEFSNG letter

line# DEF SN letter range

EXAMPLES

160® DEFSNG A-B

3000 DEFSHNG I-K

DESCRIPTION

DEFSWG defines all variables within the specified
letter range as single-precision variables (7 decimal
digits of precision stored, 6 displayed). Variables
with type suffixes of “%", “#') “D’, or “$"/ however,
are not affected. The letter range defines a range of
letters for the beginning letter of the variable. A
letter range of I-K, for example, would include I, J,
and K. After definition of this letter range by a
DEF SN, all variables beginning with |, J, or K
would automatically be assumed to be single-
precision variables, except for those with type
suffixes. Single-precision variables are the “default”
mode for BASIC variables, and DEFSNG would
not have to be used except to redefine variables
that were previously assigned to other variable types.
RELATED COMMANDS

Y, #, %, %, D, DEFDBL, DEFINT,
DEFSTR, E

SYSTEM

I, LVL |

I, e °
I, Disk °
I, 12 ®
11, LVL i

11, LVL IHL (4, 4P) e
I, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e
FORMAT

line# DEFSTR letter
line# DEFSTR letter range

EXAMPLES

1009 DEFSTR A-B

I DEFSTR I-IK

DESCRIPTION

DEFSTR defines all variables within the specified

letter range as string variables. Variables with type
suffixes of “%" 1" “#! “D" or “E', however, are not
affected. The letter range defines a range of letters
for the beginning letter of the variable. A letter

range of |-K, for example, would include |, J, and K.

After definition of this letter range by a DEFSTR,
all variables beginning with [, J, or K would
automatically be assumed to be string variables,
except for those with type suffixes. DEFSTR is a
convenient way to define a range of variables as
string variables without having to define each
variable separately with the § type suffix. DEFSTR
would normally be used at the beginning of a
BASIC program.

RELATED COMMANDS

1o#, %, &, O, DEFINT, DEFDBEL,
DEFSHG, E

SYSTEM

I, LVLI

I, LVL I

I, Disk °
", 12 °
1, et

11, LVL I (4, 4P)
I1l, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# DEFUSRn=address

EXAMPLES

1000 DEFUSR3=2HB000 define subroutine for
Model |

DESCRIPTION

DEFUSR is used to define the location of a
machine-language subroutine. The subroutine
consists of machine language for the system in use.
The n parameter in the DEFUSR command may be
any number from 0 through 9; this allows up to 10
machine-language subroutines to be defined for
interface to BASIC programs. The address value on
the right-hand side of the DEFUSR command is the
starting point for the machine-language code. The
machine-language subroutine may consist of any
number of instructions. The subroutine is called by
the USRn call, in which n matches the n of the
DEFUSR. USR3, for example, would match the
DEFUSR3 definition.

RELATED COMMANDS
USRn

SYSTEM

I, LVLI

I, LVL i

I, Disk

I, 12

i, Ll

L, LVLIH (4, 4P)
HI, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, ExtBASIC o
CC, Disk °
MC-10

Model 100

Mode! 100, Disk

FORMAT

DEL -

DEL line#-line#

CEL lineft~

DEL -line#

line# DEL line#-line#

EXAMPLES

DEL 1@@- delete lines 1@ through end
DESCRIPTION

DEL deletes a range of ERSIC lines from RAM.
The BASIC interpreter “repacks” the BEASIC
program to utilize the deleted area. If the “DEL-"
format is used, the entire program is deleted from
memory. If the “line#-line#” format is used, all lines
including the start and end lines are deleted. If the
“line#" format is used, all fines from the beginning
of the program through the specified end number
are deleted. If the “line#-" format is used, all lines
from the specified start number through the end of
the program are deleted. CELETE may be used to
delete lines from the command mode for program
editing purposes, or to delete program lines
“dynamically” to release portions of BASIC
programs that are no longer needed to create room
for variables.

RELATED COMMANDS
None

SYSTEM

I, LVL I

I, LVL I °
1, Disk e
I, 12 °
Hi, WL

I, LVL 11 (4, 4P) e
1l, Disk (4, 4P)
4, 4P, Disk o
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk
FORMAT

DELETE line#-line# (in command mode)
DELETE line#

DELETE -line#

line# DELETE line#-line#

EXAMPLES
DELETE 10@- delete lines 10@ through end
DESCRIPTION

DELETE deletes a range of BASIC lines from
RAM. The BASIC interpreter “repacks” the BASIC
program to utilize the deleted area. If the “line#-
line#" format is used, all lines including the start
and end lines are deleted. If the “-line#” format is
used, all lines from the beginning of the program
through the specified end line number are deleted.
If the “line#" format is used, the specified line
number is deleted. DELETE may be used to delete
fines from the command mode for program editing
purposes, or to delete program lines “dynamically”
to release portions of BASIC programs that are no
longer needed to create more room for variables.

RELATED COMMANDS

None

SYSTEM

I, VLI

LV °
I, Disk °
I, 12 o
Hi, L1

1L, VL1 (4, 4P) o
il Disk (4, 4P)
4, 4P, Disk
CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Mode! 100, Disk

® ® © © © 6 6 ©

FORMAT

line# DIM name(diml)

line# DIM name(diml,dim2)

line# DIM name(diml,dim2....dimk)

EXAMPLES

1660 DIM A% (10,401 11 by 41 int array
DESCRIPTION

DIM is used to allocate space for a EASIC array.
The name parameter names an integer, single
precision, double precision, or string array {(numeric
or string in the Color Computer and MC-10). The
name must adhere to the name conventions for the
variable type involved. The dimensions are one less
than the number of elements for each dimension of
the array. The D'IM statement only names and
allocates the array; it does not initialize it to any
value, although the elements are zeroed on power
up automatically. Elements within the array are
accessed by using the element number with the
array name. The first element of a two-dimensional
array might be A(0,0), the second A(0,1), and so
forth. The last element in the array has the element
numbers defined in the DIM statement. Each array
element requires the same memory that a variable
of the same type would require.

RELATED COMMANDS
None

SYSTEM

I, VL

Lo

I, Disk

i, 12

I, LVL |

1, LVL 11 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
OIR
O IRdrive#

EXAMPLES
ODIRG
DESCRIPTION
DIR displays the disk directory of the disk drive
number specified. If the drive number is not used,
OIR will display the directory of the current disk
drive (last specified by DR IWE) or drive 0, the
default drive number if DRIWE has not been used.
The directory will be displayed with the file name,
extension of the file (B8RS, BIM, DATA, or other
user- or system-specified extension), file type
(0=EASIC data file, 1=EASIC data file,
2=machine-language file, 3=editor source file), file
format (A=ASCII, B=hinary), and file length
in granules (2304 bytes). A typical display line
might be:

ACCTS CATR 1 B S
indicating file ACCTS-DATH, a BRSIC data file in
binary that is 5 granules or 11520 bytes long.

RELATED COMMANDS
None

SYSTEM

1, LVL I

LLVL I

I, Disk

I, 12

Hi, LVL |

I, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# DRAW “string”

EXAMPLES
1000 DRAW *“BM128,96:;M@,0;M255,2"°"

DESCRIPTION

The DRAW command is used to draw a series of
connected line segments in various lengths and
directions. The line segments may be drawn in 8
directions in any length. The “string” parameter
specifies a string of DRAW subcommands, each
defined by a single text character. To draw a line of
n pixels up, 45 degrees, right, 135 degrees, down,
215 degrees, left, or 325 degrees, use the text
StrlngS “Uﬂ;", ”En;”, “Rn;”, an;n' lan;ll,
“Gn;",“Ln;", or “Gn;", where n is the number of
pixels. To move to any x,y coordinate, use the text
string “Mx,y;"” where x and y are 0-255 and 0-191,
respectively. Precede x and y with “+" or “" for
moves relative to the current position. Use “B" after
the M or “B;" at any time for a “blank” line. Use
“N" before the motion command for a “no update”
of the position. Use “Cn;" to change color. Use
“Ax;" for rotates of 0, 90, 180, or 270 degrees
(x=0,1,2,3). Scale the draw by “Sx;" where x equals
a scale factor of 1 through 62. Execute a substring
by “X(string);".

RELATED COMMANDS

None ;

SYSTEM

I VL

Lo

I, Disk

1, 12

1L, LVL

11, LVL 1 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk e
MC-10

Model 100

Model 100, Disk

FORMAT
DRIVE drive#

EXAMPLES
DRIVE 1

DESCRIPTION

DRIVE is a Color Computer Disk EASIC command.
It is only used on systems with more than one drive
to change the “default” disk drive number. The
default drive number is used when the drive
number is not specified in a filename (the standard
filename format is name/extension:drive number).

RELATED COMMANDS
None

SYSTEM

I, VLI

1, LVL I

I, Disk

I, 12

I, VL I

111, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# DSIKKI% drive# track,sector,string var 1,string
var 2

EXAMPLES
1068 DSKIT ©,12,.3.A%,6% drive Otrack 12,
sector 3

DESCRIPTION

D5k 1% is a Color Computer Disk EASIC command
that permits direct access of a specified physical
location on disk. It is used to process special files
created by the system user or to process disk
contents without using disk “file manage' The
drive# parameter specifies the drive, the track
parameter one of the diskette tracks (0 through 34),
the sector number one of the sectors within the
track (0 through 17). The two string variables
receive the 256 bytes of data from the track, sector.
String variable 1 receives the first 128 bytes from
the sector, while string variable 2 receives the
second 128 bytes. Data from the disk may or may
not represent valid ASCII characters, depending
upon the data output to the disk.

RELATED COMMANDS
DSKO$

SYSTEM

I, LVL I

I,

I, Disk

H, 12

I, LVL 1

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10 ;
Model 100 &
Model 100, Disk o

FORMAT
line#... D3I 1% (drive# track#,sector#t switch)

EXAMPLES
1000 AF=DSKIF(©,7,5,1 read half of sector

DESCRIPTION

DSKI% is a Model 100 BASIC command that
permits direct access of a specified physical location
on the disk. It is used to process special files
created by the system user or to process disk
contents without using disk “file manage”. The
drive# parameter specifies either drive 0 or 1. The
track parameter is 0 through 34. The sector
parameter is a sector number on the track of 0
through 17. The “switch” is either 0 or 1. If 0, the
first 128 bytes of the sector are returned, usually to
a string variable as in the example above. If the
switch is 1, the second 128 bytes of the sector are
returned. Data from the disk may or may not
represent valid ASCH characters, depending upon
the data output to disk.

RELATED COMMANDS
DSKO$

SYSTEM

I, LVL I
I, LVLII

I, Disk

I, 12

1, L

HI, LVL HII (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk o
MC-10

Model 100
Model 100, Disk ;.

FORMAT
DSIKINIdrive#

EXAMPLES
DSKINI®

DESCRIPTION

DSIKINI is a Color Computer Disk BASIC

command that “formats” a diskette in the specified
drive number. The formatting process prepares the
diskette for receiving data files and is a necessary
process before doing any BASIC disk operations.

RELATED COMMANDS
None

SYSTEM

I, VLI

I, VL

I, Disk

I, 12

1, LVE L

HH, LVL 1Ii (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC., Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# DSK0O% drive# track,sector,string 1,string 2

EXAMPLES
1000 DSK0F ©,12,3,A%,EB% drive Otrack 12,
sector 3

DESCRIPTION

DSIK0% is a Color Computer Disk EASIC command
that permits direct access of a specified physical
location on disk. It is used to create special files
defined by the system user. The drive# parameter
specifies the drive, the track parameter one of the
diskette tracks (0 through 34), the sector number
one of the sectors within the track (0 through 17).
The two string variables define the 256 bytes of
data to be output to the track, and sector. String
variable 1 defines the first 128 bytes for the sector,
while string variable 2 defines the second 128
bytes. Literal strings may be used in either case.
Data in the variables may or may not represent
valid ASCII characters, depending upon the data to
be output. D5KI% is normally used to input the
disk data output by DSIKDE .

RELATED COMMANDS
DSKI%

SYSTEM

1, LvLI

I LVL I

1, Disk

I, 12

1, VLl

11, LVL 11 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk o

FORMAT

line# ..0S1K0%

drive# track#, sector#, switch,expression
EXAMPLES

1006 AF=DSKOE 0,7,51,A8 write half of sector
DESCRIPTION

0=k 0% is a Model 100 EASIC command that
permits direct access of a specified physical location
on the disk. It is used to process special files
created by the system user or to process disk
contents without using disk “file manage”. The
drive# parameter specifies either drive 0 or 1. The
track parameter is 0 through 34. The sector
parameter is a sector number on the track of 0
through 17. The “switch” is either 0 or 1. If 0, the
first 128 bytes of the sector are to be written. If the
switch is 1, the second 128 bytes of the sector are
to be written. The “expression” is a string variable
or constant that contains the data to be written on
half of the disk. The number of characters in the
string may be less than 128 characters; in this case
the disk data is “padded out” to the right with 0
(null) codes. Writing to one half of the sector does
not affect the remaining half. Data written does not
have to be valid ASCHl characters.

RELATED COMMANDS
DSk I+

g

SYSTEM

I, VLI
I, L °
I, Disk ®
i, 12 e
Hl, Ll

H1, LVL HI (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT

line#... x XxxxEyy

EXAMPLES
1000 A=1.1112E-5
1919 ZZ1=3.567E+34

DESCRIPTION

E is used to denote scientific notation for single-
precision numbers. The format consists of a fraction
or mixed number, followed by an E, followed by a
power of ten. The power of ten may be positive
{plus sign or no sign) or negative (minus sign). The
fraction or mixed number may be any number of
decimal digits up to 7, with the decimal point
located anywhere within the digits. The decimal
point is optional. The variable associated with the E
format must be a single-precision variable. This is
the default condition for EAS I variables and no
“I" suffix is necessary unless the variable name falls
in a DEFDBL or DEFSTR range.

RELATED COMMANDS
I, DEFSNG

SYSTEM

I, LVL 1

Lo °
I, Disk e
I, 12 e
1, Lve

11, LVL 111 (4, 4P) e
IH, Disk (4, 4P)
4, 4P, Disk ®
CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk
FORMAT

EDIT line# (in command mode)
EDIT. (except Color Computer)

EXAMPLES

EDIT 1000 edit line # 1000

EDIT. edit last line entered, altered, or in
error

DESCRIPTION

EDIT is a command mode command that invokes
the BASIC interpreter Edit mode. The edit mode is
used to modify BASIC program lines by adding,
deleting, or modifying characters to the line. Any
existing line number may be specified in the EDIT
command. After the EDIT command has been
given, the BASIC interpreter will display the line
number and will position the cursor to the first
character of the line. Subsequent Edit mode
commands will allow editing of the line. To get out
of the Edit mode, press ENTER. The

“EDIT.” format displays the last line entered,
altered, or in which an error occurred. Entering the
Edit mode automatically clears all variables. If
BASIC encounters a syntax error during program
execution, it automatically enters the Edit mode for
the erroneous line. Entering “Q" will allow you to
Quit the Edit mode and examine variables and
program conditions.

RELATED COMMANDS Edit Mode Subcommands

SYSTEM

I, VL1

I, i

1, Disk

I, 12

M, Ll

11, LVL HI (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk o

FORMAT

EDIT

EDTIT line#-line#t
EDIT -line#
EDIT line#-
EQIT.

EXAMPLES
EDIT 100-150 edit lines 100-150
DESCRIPTION

Using an EDIT command from EASIC enters the
text editor. While in the text editor, all normal text
editing functions can be performed. Pressing the F8
function key returns to BRSIC. EDIT alone can
be used to edit the entire ERSIC program. If only
a portion of the program is to be edited, however,
the other EDIT formats may be used. EDIT with a
period allows and edit of the line last edited,
entered, or listed (the “current” line). EC'IT with a
range of lines allows an edit of a group of lines. A
dash before or after a single line number indicates
“all lines up to” or “all lines after”.

RELATED COMMANDS
None

SYSTEM

1, Lt

I, VLI o

1, Disk o

1, 12 °

1, WLl

11, LVL I1I (4, 4P) @

111, Disk (4, 4P) o

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10
Model 100 i
Model 100, Disk
FORMAT

Edit Mode: A keypress
EXAMPLES

1066 FOR I=1 TR J- (pressing A cancels
changes and restarts the Edit)

DESCRIPTION

The Edit mode is entered by the EDIT line#
command. The A subcommand is used to cancel all
changes to the line that have been made and to
restart the Edit at the beginning of the line. The A
subcommand differs from the Q subcommand in
that the Q subcommand cancels changes and Quits
the Edit mode, while the A subcommand cancels
changes but keeps the Edit mode in force. In the
example above, the result would have been

loee FOR I=J TR J
loge -

The line can now be reedited with the proper
changes.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, LVL I

I, LVL I ®
1, Disk °
I, 12 °
IH, VL

1, LVL 1 (4, 4P) e
Il, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC °
CC, Disk °
MC-10

Model 100

Model 100, Disk
FORMAT

Edit Mode: Backspace keypress (backspace is left
arrow)
Edit Mode: nBackspace keypress

EXAMPLES

1000 FOR I=1 TO - (pressing 5 and
Backspace backspaces to the left 5 characters on
the line)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To backspace
the cursor to the left one character position, press
Backspace (left arrow). To backspace to the left
more than one character position, enter a number of
1 through n and press Backspace. In the example
above, 5 was entered, followed by Backspace; this
positioned the cursor 5 character positions to the
left. The 5 characters previously displayed were
unaltered but erased from the display. Backspace
can be used to space back along the line until the
proper place is found to insert, delete, or modify
characters by the other Edit Mode subcommands.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, VL

I, VLI °
I, Disk °
i, 12 °
1, Ll

I, LVL 11 (4, 4P)
I, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC o
CC, Disk e
MC-10

Model 100

Model 100, Disk
FORMAT

Edit Mode: C keypress

Edit Mode: nC keypress

EXAMPLES

106@ FOR I=1 TO - (pressing 5 and C begins
change operation for next 5 characters)
DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. The C
subcommand is used to change 1 or more
characters to new characters. To change the current
character at the cursor position, press C followed by
the new character. To change n additional
characters, enter a number of 1 through n and
press C. Then type the characters to replace the
number specified. In the example above, 5 was
entered, followed by C. If (K-5) was then entered,
the new line up to that point would read

109 FOR I=1 TO (K-5])-
The number of characters for the change must be
exactly equal to the number replaced.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, VLI

I, LWL °
I, Disk °
I, 12 e
I, VL |

11, LVL I (4, 4P)
I, Disk (4, 4P) e
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk
FORMAT

Edit Mode: D keypress
Edit Mode: nD keypress

EXAMPLES

1066 FOR I=1 TO - (pressing 5 and D deletes
next 5 characters)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. The D
subcommand is used to delete 1 or more
characters. To delete the current character at the
cursor position, press D. The character deleted will
be displayed bracketed by exclamation points or
back slashes (Model 4). To change n additional
characters, enter a number of 1 through n and
press D. The characters deleted will be displayed
bracketed by exclamation points or back slashes
(Model 4). In the example above, 5 was entered,
followed by D. The display would show:

1000 FOR I=1 TO 1(K-5)!-
The characters (K-5) would have been deleted from
the line.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM SYSTEM

WLl

ILLt I LVL Il .

I VL I . I Disk o

I, Disk ° i, 12 o

“i levu ’ T

NI, LVL 111 (4, 4P) o o

11l, Disk (4, 4P) e 4, 4P, Disk’ °

4, 4P, Disk ° CC, BASIC

CC, BASIC CC, Ext BASIC o

CC, Ext BASIC ° CC. Disk °

CC, Disk e MC-10

Model 100 Model 190, bi

Model 100, Disk Modet 100, Disk

FORMAT ‘ FORMAT

Edit Mode: E keypress Edit Mode: ENTER keypress

EXAMPLES | EXAMPLES

1009 FOR I=1 TO J-5 STEP - (press E) ! 1000 FOR I=1 TO J-5 STEF - (press
ENTER,

DESCRIPTION |)

The Edit mode is entered by the EDIT line# DESCRIPTION

command. Pressing the E key while in the Edit
Mode records all changes made while in Edit mode
and returns to the BASIC interpreter command
mode. E is not active while in any Insert mode such
as |, X, or H. E is logically equivalent to pressing
ENTER.

RELATED COMMANDS
Edit Mode Subcommands

The Edit mode is entered by the EDIT line#
command. Pressing the ENTER key while in the
EDIT mode records all changes made while in Edit
mode and returns to the BRSIC interpreter
command mode.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, VLI

I, L

I, Disk

", 12 °
I, LVL 1

I, LVL UI1 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT
Edit Mode: ESC keypress

EXAMPLES

100@ FOR I=1 TO - (pressing ESC resets the
Insert mode)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. Text may be
inserted by the I, X, or H subcommands. While in
the edit portion of these subcommands, characters
are entered until the ESC key is pressed. The Insert
submode is then ended. ESC should be pressed at
any time to “reset” the current Edit mode to a
known condition.

RELATED COMMANDS
Edit Mode Subcommands I, H, X

SYSTEM

I, LVLI

I, LvL i °
I, Disk °
i, 12 °
(i, WLt

HE, LVL H (4, 4P) e
Il Disk (4, 4P) o
4, 4P, Disk e
CC. BASIC

CC, Ext BASIC °
CC, Disk °
MC-10

Model 100

Model 100, Disk
FORMAT

Edit Mode: H keypress
EXAMPLES

1000 FOR I=- (pressing H deletes remainder of
line and invokes the Insert mode)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To delete the
remainder of the line from the current cursor
position, press H. This “Hacks off” the remainder of
the line and invokes the Insert mode. In the
example above, pressing H and then entering “2 T0
K-6" would have resulted in the following line:

leee FOR I=2 TO K-&-

At this point the Insert mode would still be in force
and additional characters could be added to the end
of the line. To terminate the Insert mode, press
SHIFT, up arrow together, or press ENTER. ENTER
enters the current changes and returns to the
command mode, while SHIFT, up arrow terminates
the Insert mode but keeps the Edit mode active.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, VLI

[, LVL I °
I, Disk °
i, 12 °
1, i

i, LVL III (4, 4P) @
111, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Mode! 100

Model 100, Disk
FORMAT

Edit Mode: | keypress
EXAMPLES

1000 FOR I=1 TQ - (pressing I enters Insert
submode)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To insert
characters at any point press I. All characters
entered from that point until the SHIFT, up arrow
keys were pressed simultaneously would be entered
into the line. In the example above, if the original
line was “100® FOR I=1 TO 190", entering |
followed by “J-" and then SHIFT, up arrow would
result in a line consisting of:

10@@ FOR I=1 TO J-

The SHIFT, up arrow would not terminate the Edit of
the line; the cursor would be positioned after the
last character inserted and the remainder of the line
would not be visible. Pressing the ENTER key will
also terminate the Insert.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, VL

I, LVL I °
I, Disk e
0, 12 ®
I, LVL I

11, LVL Il (4, 4P) e
11, Disk (4, 4P) e
4, 4P, Disk °
CC, BASIC

CC, ExtBASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk
FORMAT

Edit Mode: Kc keypress
Edit Mode: nKc keypress

EXAMPLES

1000 - (pressing 2, K, and : searches for the
second occurrence of the character " and kills all
characters to that point)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. The K subcommand is used to search for
the first or “nth" occurrence of a single character
and to delete all characters preceding the search
character from the current cursor position. To
search for the first occurrence of a character, press
K followed by the search character. The cursor will
move to the right until positioned over the character
and delete all characters from the cursor position to
that point. The deleted text will be displayed
bracketed by exclamation points. The search
character will not be displayed. To search for the
nth occurrence of a character, enter a number from
1 to n, enter a K, and enter the search character.
The cursor will be positioned over the nth
occurrence of the character with a similar delete
action.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, VL

I, L e
1, Disk o
I, 12 °
i, VLl

1Y, LVL 111 (4, 4P) e
IH, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC
CC, Disk e
MC-10

Model 100

Model 100, Disk
FORMAT

Edit Mode: L keypress
EXAMPLES

160@ FOR I=- (pressing L displays remainder of
line)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To display the
remainder of the line, press L. The remainder of the
line will be displayed and a new line will be started
with the cursor positioned on the first character of
the new line. In the example above, the result would
have been

1900 FOR I=1 to J-5 STEP 3

1000 -

The Edit Mode L subcommand lets you see the
remainder of the line without having to space along
the line. The L subcommand is not active while in
an insert mode such as |, X, or H.

RELATED COMMANDS
Edit Mode Subcomma:nds

SYSTEM

I, VL1

I, L i °
I, Disk °
H, 12 °
I, LI

I, LVL 1l (4, 4P) e
Itl, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC °
CC, Disk °
MC-10

Model 100

Model 100, Disk
FORMAT

Edit Mode: Q keypress
EXAMPLES

leee FOR I=1 TA d- (pressing Q cancels
changes and Quits the Edit)

DESCRIPTION

The Edit mode is entered by the EDIT line#
command. The Q subcommand is used to cancel all
changes to the line that have been made and to
Quit the Edit. The Q subcommand differs from the: A
subcommand in that the Q subcommand cancels
changes and Quits the Edit mode, while the A
subcommand cancels changes but keeps the Edit
mode in force. In the example above, the result
would have been

1008 FOR I=J TA J
{EASIC command mode)

The Q subcommand is used when changes have
been erroneously made to a BASIC program line.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, LVL |

I, LVL 1l °
I, Disk .
1, 12 .
i, VL

1, LVL 111 (4, 4P) o
I, Disk (4, 4P) e
4, 4P, Disk o
CC, BASIC

CC, Ext BASIC
CC, Disk .
MC-10

Mode! 100

Mode! 100, Disk
FORMAT

Edit Mode: Sc keypress
Edit Mode: nSc keypress

EXAMPLES
100@ - (pressing 2, C, and 0 searches for the
second occurrence of the letter 0)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. The S
subcommand is used to search for the first or ““nth”
occurrence of a single character. To search for the
first occurrence of a character, press S followed by
the search character. The cursor will move to the
right until positioned over the character. The
character will not be displayed. To search for the
nth occurrence of a character, enter a number from
1 to n, enter an S, and enter the search character.
The cursor will be positioned over the nth
occurrence of ther character. The line up until the
nth occurrence will be displayed. If the character is
not found in the search, the entire line will be
displayed with the cursor positioned at the end.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, VLI

Lo °
1, Disk °
I, 12 °
H, LI

1, LVL 111 (4, 4P) e
11, Disk (4, 4P) e
4, 4P, Disk e
CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
Edit Mode: SHIFT, up arrow

EXAMPLES

106@ FOR I=1 T0 - (pressing SHIFT, up arrow
resets the Insert mode)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. Text may be
inserted by the I, X, or H subcommands. While in
the edit portion of these subcommands, characters
are entered until the SHIFT, up arrow keys are
pressed simultaneously. The Insert submode is then
ended. SHIFT, up arrow should be entered at any
time to “reset” the current Edit mode to a known
condition.

RELATED COMMANDS
Edit Mode Subcommands |, H, X

SYSTEM

I, LVL I

I, LI °
1, Disk ®
i, 12 ®
NI

HI, LVL Il (4, 4P) o
111, Disk (4, 4P) o
4, AP, Disk °
CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk
FORMAT

Edit Mode: Space-Bar press
Edit Mode: nSpace-Bar press

EXAMPLES

100@ FOR I=1 TO - (pressing 5 and space bar
displays and spaces 5 additional characters on the
line)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To display an
additional character, press Space-Bar. To display n
additional characters, enter a number of 1 through
n and press Space-Bar. in the example above, 5
was entered, followed by Space-Bar; this displayed 5
additional characters on the line and positioned the
cursor after the 5 additional characters. Space-Bar
can be used to space along the line until the proper
place is found to insert, delete, or modify characters
by the other Edit Mode subcommands.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, VLI

I o
1, Disk °
I, 12 o
I, LVL |

HI, LVL 111 (4, 4P) e
111, Disk (4, 4P) o
4, 4P, Disk o
CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk
FORMAT

Edit Mode: X press
EXAMPLES

10@® - (pressing X displays remainder of line
and invokes the Insert mode)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To display an
additional character, press Space-Bar. To display the
remainder of the line and position the cursor to the
end of the line in the Insert mode, press X. In the
example above, pressing X would have displayed
1806 FOR I=1 TO J-5 STEP 3-

At this point the Insert mode would be in force and
additional characters could be added to the end of
the line. The X command is an “Extend Line”
command and is used for that purpose. To terminate
the Insert mode, press SHIFT up arrow together, or
press ENTER. ENTER enters the current changes
and returns to the command mode, while SHIFT up
arrow terminates the Insert mode but keeps the Edit
mode active.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, LVL |

I, L

I, Disk

I, 12

1, Ll

i, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

o © © 6 6 9 6 @ 9 0 6 0 © O

FORMAT
line# END

EXAMPLES

1000 END stops execution and returns to the
command mode

DESCRIPTION

END determines an end point of the BASIC
program. When encountered by the BASIC
interpreter, END causes the interpreter to stop
program execution and return to the command
mode. There may be any number of ENDs in the
BASIC program. It does not define the physical
end of the program, but is only relevant during
program execution.

RELATED COMMANDS
None

SYSTEM

I, WL I
L

I, Disk o
i, 12 .
i, L |

I, LVL 111 (4, 4P)
I, Disk (4, 4P) "o
4, 4P, Disk o
CC, BASIC

CC, Ext BASIC

CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line#...EOF (buf#)...

EXAMPLES
1000 IF EOF (1) THEM CLOSE(1):G0TO
2000

DESCRIPTION

EQF is a Disk BASIC function that indicates
whether the “end-of-file” of a disk file has been
reached. It is normally used during a disk read
operation to test for the read of the last data from
the file. Two types of reads might be done. In one
type, the user knows exactly how many records are
in a disk file and reads that exact number. In the
second type, the user tests for EOF to determine
when all of the data has been read. In the EOF
case, a 0 is returned when more data remains in
the file, and a -1 is returned when all data has been
read and an EOF condition exists. The EOF is used
in this context as a “logical” function which
specifies a true/false condition.

RELATED COMMANDS
None

SYSTEM

1, LvL 1

I, LVL It

I, Disk

1, 12

1, VL 1

0, LVL HI (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT
line# ...EQF (file number)...

EXAMPLES

166@ IF EOF (3) THEN CLOSE 3:
GOTO 3008

DESCRIPTION

EOF is a BASIC function that indicates whether
the “end-of-file” of a RAM, CAS, COM, or disk file
has been reached. It is normally used during a read
operation to test for the read of the last data from
the file. Two types of reads are commonly done. In
one type the user knows exactly how many records
are in a file and reads that exact number. In the
second type, the user tests for EOF to determine
when all of the data has been read. In the EOF
case a 0 is returned when more data remains in the
file, and a -1 is returned when all data has been
read and an EOF condition exists. The EOF is used
in this context as a “logical” function, which
specifies a true/false condition.

RELATED COMMANDS
None

SYSTEM

I, VLI

I, VL i

I, Disk

I, 12 °
I, LVL I

1, LVL 1 (4, 4P)
11, Disk (4, 4P)

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e

FORMAT
line# ...expressionEQvexpression...

EXAMPLES
1000 C=A EQV B

DESCRIPTION

EQV is a logical or bit manipulation operator that
processes two operands in similar fashion to the
more common AND or OR. EQY compares both
operands (constants, variables, or expressions on a
bit by bit basis. For each bit position, the result bit
is a 1 when both bits are the same. @ IMP ©=1;
® IMP 1=0; 1 IMP ©=@; and 1 IMP 1=1.
EQV is the inverse of the x0OR function. The
expressions are converted to 16-bit integers and
then compared on a bit basis. If A is binary
01010000 and B is 00111111, above, then C is
10010000.

RELATED COMMANDS
*x0R

SYSTEM

i, LVLI

I, LWL

I, Disk

I, 12 °
i, i

1, LVL i (4, 4P)
11, Disk (4, 4P)

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line# ERASE arrayl,arrray2 array3

EXAMPLES

1808 ERASE XX,A%,A%
arrays

DESCRIPTION

ERASE is used to “de-allocate” one or more arrays.
When ERASE is executed, the specified arrays are
removed from RAM space, and the area allocated |
for the arrays is released to the free memory area. |
ERASE is the opposite of DIM. Arrays deleted in
an ERASE may be redimensioned. ERASE removes
the entire array and cannot be used to remove one
or a few entries of the array.

RELATED COMMANDS
DIM

erase three

SYSTEM

I, LVL I

I, LWL I °
I, Disk °
I, 12 °
I, LvL |

1, LVL IHI (4, 4P) e
I1l, Disk (4, 4P) o
4, AP, Disk ®
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk o
FORMAT
line#..ERL . . .
EXAMPLES

1000 IF ERL=200@ THEN STOP stop if invalid
read in line 2000

DESCRIPTION

ERL is a special error-processing function which
returns the line number in which an error occurred.
The ERL is normally used within an error-
processing routine defined by the line number in an
ON ERROR GOTO command. When any error
occurs and the user error-handling mode is in force,
the error-processing routine takes suitable actions
for the error, such as displaying the type of error,
line number, and corrective action. The ERL allows
the error-processing routine to determine the line
number and therefore further information about the
manner of error and action to take. If a program
error has occurred since power up, ERL returns the
line number of the last error. If an error occurred in
the command mode {such as entering LLLIST),
65535 is returned as the ERL argument to signify
that no line number was involved.

RELATED COMMANDS
ERR,ERROR, ON ERROR BOTO, RESUME

SYSTEM

I, VLl

1, VLI e
1, Disk e
1, 12 °
I, VL i

HI, LVL 1l (4, 4P) e
I, Disk (4, 4P)
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e
FORMAT
line#..ERR. . .
EXAMPLES

1000 IF ERR-2+1=4 THEN STOP stop if out
of data

DESCRIPTION

ERR is a special error-processing function which
returns the error code for the error that just
occurred. ERR is normally used within an error-
processing routine defined by the line number in an
ON ERROR GOTO command. When any error
occurs and the user error-handling mode is in force,
the error-processing routine takes suitable actions
for the error, such as displaying the type of error,
line number, and corrective action. The ERR allows
the error-processing routine to determine the type of
error and therefore define the manner of error and
action to take. The expression ERR-2+1 is used to
find the true error code for the Models | and Il

RELATED COMMANDS
ERL, ERROR, ON ERROR GOTO, RESUME

SYSTEM

I, VLI

Loen

1, Disk

I, 12 °
i, VL

11, LVL 111 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk e
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line# ..ERR%...

EXAMPLES
1000 PRINT **ERROR: *’;ERR$

DESCRIPTION

ERR% returns a text string containing the number
and description of the TRSDOS error related to the
latest BAS I disk error. BRSIC normally displays
a “DISK I-0" error indication. ERR% is a way of
further defining the error in TRSDOS. ERRE% would
normally be used in ERSIC error-handling routines
to notify the user of errors and to determine some
corrective action. If no TRSDOS error occurred,
ERR$ returns a null string.

RELATED COMMANDS
ON ERROR GOTO

SYSTEM

I, LVL I

1L °
I, Disk °
1, 12 °
1, Lt

{1, LVL 111 (4, 4P) o
111, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC. Disk

MC-10

Model 100 °
Model 100, Disk e
FORMAT

line# ERROR code
EXAMPLES
10600 ERROR 4 simulate out of data error
DESCRIPTION

ERROR is used to simulate an error condition.
ERROR is primarily used to test a user error-
processing routine. The error-processing routine is
established by an ON ERROR GOTO command
with appropriate error handing code.

RELATED COMMANDS
ON ERROR GOTD

SYSTEM

I, LWLt

L

I, Disk

I, 12

HE VL

11, LVL 111 (4, 4P)
I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC °
CC, Ext BASIC o
o
()

CC, Disk
Mc-10
Model 100

Model 100, Disk

FORMAT

EXEC
EXEC address

EXAMPLES

EXEC execute last loaded machine-language
program

DESCRIPTION

EXEC causes a transfer to the last CLOADM
address or to the specified address value. EXEC is
used primarily after a CLOADM command to
transfer control to the machine-language file,
assumed to be a major program {one not generally
interfacing to BASIC via the USR command).
EXEC may also be used in the “EXEC address”
format to transfer control to any machine-language
code at any time while in the command mode. The
address parameter specifies the starting address for
execution.

RELATED COMMANDS
CLOADM

SYSTEM

I, LVL !
I, LVL 11
I, Disk
I, 12
H, LVL i

111, LVL 11 (4, 4P) o

111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
Mc-10

Model 100
Model 100, Disk

FORMAT

line#...EXP(expression)...

EXAMPLES

1000 A=EXP([X])

DESCRIPTION

ExP is the inverse of the LOG function. It returns
the natural exponential of X, or e (2.718...) to the X
power. Natural logarithms and exponentials are used
in a variety of mathematical and scientific

applications.

RELATED COMMANDS

LOG

L]
®

—

SYSTEM

I, LVL I

L VLI

I, Disk °
I, 12 e
1, el

11, LVL Ui (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk °
MC-10

Mode! 100

Model 100, Disk

FORMAT
line# FIELD bufén AS namel,n AS name2...n AS
namen

EXAMPLES
1000 FIELD 1,20 AS LNAMES,20 AS
FNAMES, 40 AS ADDRS

DESCRIPTION

FIELD is used to define fields of specified length
within a random-file buffer. Fields are subdivisions
of a record. Each field has a name specified in the
field statement. The field name may be used in
LSET, RSET or other commands to easily store or
retrieve character data from the record without
having to specify the relative location of the data in
numeric form. It would be much more convenient to
reference “FNAME" for “first name” than the 20th
through 39th characters in a record, for example.
The buf# parameter defines the buffer number to be
used when referencing data. The buffer number is
associated with a file by the OPEN command. The n
parameters define the length of the field in
characters. The name parameters define a field
string variable name. (DUMMY% can be used to
“space over" characters.) The total number of
characters used for the fields must equal the record
length defined in the OPEN.

RELATED COMMANDS
LSET, RSET

SYSTEM

I, VLI

L

I, Disk

I, 12

I, VL

11, LVL 111 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk e
MC-10

Model 100

Model 100, Disk

FORMAT

FILES number of bufs buffer size
line# FILES number of bufs,buffer size

EXAMPLES
FILES 3,256 reserve 3 bufs of 256 bytes

DESCRIPTION

FILES specifies how many disk buffers to reserve
in memory and how large the buffers should be. The
buffer size parameter is optional; if not used, a
buffer size of 256 bytes is used. Disk BRSIC uses
buffers to assemble records on output to disk and to
read in sectors of the disk on input. Sectors are 256
bytes long, and this is the normal length for RAM
buffers. If FILES is never specified, two buffers of
256 bytes are assumed.

RELATED COMMANDS
None

SYSTEM
I, VLI

1l, LVL HI (4, 4P)
I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
FILES

line# FILES
EXAMPLES
FILES

DESCRIPTION

FILES is normally used in the command mode to
display all files currently stored in RAM on the lcd
screen. You may continue in BASIC at any time by
entering a new BEASIC command.

RELATED COMMANDS
None

SYSTEM

, Ll

L °
1, Disk .
i, 12 °
i, el

i, LVL 1L (4, 4P) e
Il Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC °
CC, Disk .
MC-10

Model 100 °
Model 100, Disk e
FORMAT
lined...F 1% (expression)...
EXAMPLES

1606 REM FIND INTEGER F‘DE!TIDN OF *
191@ IN=FIx (%) putinteger portion in IH

DESCRIPTION

FIx finds the integer portion of a constant,
variable, or expression. Unlike IIT, it finds the true
integer portion of a negative argument. The integer
portions of +1.12, +100.45, 0, -5.567, and -999.999
are 1, 100, 0, -5, and -999, respectively. The
argument must be within parentheses. The argument
does not have to be an integes value (-32768 to
+32767).

RELATED COMMANDS
INT

SYSTEM

I, LVLi

I, L

1, Disk

I, 12

HI, VLI

H1, LVL 11 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC. Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT

line# FOR variable=expression TO expression
STEP expression

EXAMPLES

1000 FOR I=0 TO 1@ loop 101 times

2090 FOR I=? TO 100 STEP 2 loop 47 times
3099 FOR I=101 TO ® STEP -2 loop 51
times

DESCRIPTION

The FOR...TO...STEP commands, together
with NEXT, set up and execute a program loop. The
“variable” is executed from the starting value given
in the expression 1 TO an ending value given in
expression 2. The two start and end values may be
constants, variables, or expressions. If no STEP size
is given, the variable is incremented by one each
time the loop is repeated, until the variable equals
the end value. If a STEP size is given, the variable
increments by the STEP size each time through the
loop. The start and end values may be positive or
negative. If the start is less than the end value, a
STEP of a negative value is mandatory. A NEXT
command later in the program defines the end of
the loop and transfers control back to the
FOR...TO...STEP statement for the next
iteratio(? of the loop. Any number of loops may be
“nested”

RELATED COMMANDS NEXT

® 600606060000 60¢6000

SYSTEM

I, LVL |

I, LvL i °
I, Disk °
I, 12 °
Hi, LVL I

I, LVL 1il (4, 4P)
Ill, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 e
Model 100, Disk e
FORMAT
FRE(string)
line#...FRE(string)...
EXAMPLES
1000 PRINT FRE[(AS]
DESCRIPTION

FRE returns the amount of free string storage space
available in bytes. In finding the amount of string
storage, the BASIC interpreter “cleans up” the
string storage area near the top of RAM to create
the maximum free string space. The string storage
area size was first specified in a CLEAR statement.
If no CLEAR statement was encountered, 50 bytes
of string storage space is automatically saved. The
“string” parameter within parentheses is a
“dummy” argument; the string variable specified
has no significance. FRE is usually entered from
the command mode, although it can be used within
a BASIC program as a check on free string space.
If the argument in FRE is numeric, FRE returns
the total amount of free memory.

Models 4 and 100: FRE (number) returns the
amount of free memory space.

RELATED COMMANDS
CLERR

SYSTEM

I, WL

I, e

I, Disk

1", 12

HI, VL

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# ..FREE(drive#)...

EXAMPLES
PRINT FREE(1)

DESCRIPTION

FREE is a Color Computer Disk BASIC command
that returns the number of free granules on the
diskette for the specified disk drive. A granule is the
minimum unit of disk drive space allocated by the
BASIC “file manage™ handler and is equal to 5
sectors, or 2304 bytes. FREE is used either in the
command mode or embedded in a program to find
thedspace remaining on a diskette for user programs
or data.

RELATED COMMANDS
None

SYSTEM

I, VLI

L

I, Disk °
il, 12 °
1, Ll

HE, LVL 1T (4, 4P)
Ill, Disk (4,4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT

line# GET buf#
line# GET buff rect

EXAMPLES
1000 GET 3,100 get 1@0th record

DESCRIPTION

GET is used to read a random-access file record
from disk. A random-access file allows records to be
read or written on a random basis (not in
sequence). The GET permits either the next record
in sequence or any record number of the file to be
read into the buffer associated with the file. Prior to
the GET, an OPEN with the “R” option must have
been executed. The OPEN defines the filename and
buffer associated with the file. The

“GET buf#” form of GET reads in the current
record, the number whose number is one higher
than the last access. If no record has been read,
this is the first record of the file. The second form
of GET reads in the specified record defined by
“rec#’

RELATED COMMANDS
PUT ’

SYSTEM

1, VLI

1, LVL I

I, Disk

I, 12

I, LVL 1

HI, LVL LI (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk o
MC-10

Model 100

Model 100, Disk

FORMAT

line# GET(x1,yl1)-(x2y2),array name,g
EXAMPLES

1000 GET (©,0)-(50,50),AA,6 save
area in array AA

DESCRIPTION

The GET command is used in conjunction with the
PUT command. GET stores any rectangular area on
a graphics screen in a two-dimensional array. The
PUT later retrieves the graphics data from the array
and displays it in any other area of the graphics
screen. GET~PUT can be used to save portions of
a graphics screen or to create animation effects. The
x1,y1 coordinates define one corner of the rectangle
to be stored in the array; The x2,y2 define the
opposing corner. The x1,x2 and y1,y2 values are in
“high-resolution” graphics coordinates of 0-255 and
0-191, respectively. The “array name" is the name
of a two-dimensional array previously defined by a
DIM statement. In general, the array size must be
equal to the dimensions of the graphics area to be
stored, although certain space-saving tricks may be
used. The g option is “G"; if used, full graphic detail
is saved in the array.

RELATED COMMANDS

PUT

SYSTEM

I, LVL I

I, LWL

I, Disk

i, 12

I, LVL I

11, LVL It (4, 4P)
ill, Disk (4, 4P)
4, 4P, Disk

CC. BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

@ © 6 @ @ © 6 © © 0 0 9 © O

FORMAT

line# GOSUB line#
EXAMPLES
180® REM DO SEARCH SUBROUTINE'
1616 GOSUR 12000

10260 REM RETURN HERE AFTER
SUBROUTINE

DESCRIPTION

GOSUB is used to “call” a subroutine. A subroutine
is any set of BRSIC statements that is used
repeatedly. Making the statements a subroutine in
one spot rather than repeating the code when
required saves RAM space. The GOSUE causes the
BASIC interpreter to branch to the line number
specified after the GOSUB. Unlike the GOTO, the
GOSUB action saves the return point after the
GOSUE. After the subroutine has been executed,
the last statement of the subroutine, a RETURRN,
returns control to the statement after the GOSUB.
In the example above, the subroutine at line
12000 would be executed; it could consist of from
one to many statements. The last statement,
however, is a RETURN, which causes a return to
line number 122@. Subroutines may be “nested” in
many levels. One subroutine may call another by a
G0SUB, which may call yet another, etc.

RELATED COMMANDS
ON...GOSUB, RETURN

SYSTEM

I, LvL

I, LVL (I

I, Disk

I, 12

H, vt

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Mode! 100

® © © € © 8 ®© ® © © © © @ ©

Model 100, Disk

FORMAT

line# GOTO line#
B0TO line#

EXAMPLES

10606 BOTO 2600 transfers control to line #
2006
GOTO 2066 continues at line 20606

DESCRIPTION

GOTO is used in BASIC programs to transfer
control from one statement to another. It is the
normal way of “unconditionally branching” in the
program. Any number of GOTOs may be used in a
program. When a GOTO is executed, no record of
where the GOTO occurred is kept by the BASIC
interpreter, unlike a GOSUB. When a GOTO is used
in the command mode, the BASIC program
continues from the specified line number with all
variables and BEASIC parameters intact. The GOTD
in this use may be used in lieu of a COMT
(continue) to restart the program at any point.

RELATED COMMANDS
CONT, GOSUB

SYSTEM

1, VLI

Lt

I, Disk

I, 12 °
Hi, LVL I

Hi, LVL 111 (4, 4P)
I, Disk (4, 4P)

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line#...HE % %(expression)...

EXAMPLES
1000 PRINT HEX$(A] find hex value of A

DESCRIPTION

HE X% is a special function that will convert a
constant, variable, or expression to a string that

represents the hexadecimal value of the argument.

HEX$ (1060, for example, will be converted to
the string “3E8". Hexadecimal notation is used
primarily for machine-language operations in
specifying addresses, instruction codes, and data
values.

RELATED COMMANDS
&H

SYSTEM

I LVL

[

1, Disk

1, 12

M, Ll

HI, LVL 111 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC. Disk

MC-10

Model 100 °
Model 100, Disk o

FORMAT
~HIMEM

EXAMPLES
FRIMT HIMEM print top of memory address

DESCRIPTION

The HIMEM function returns the address of the top
of memory. This value is normally equal to the value
of MAXREAM, the maximum memory address for
your system — its dependent upon the amount of
RAM memory you have in your system. If CLEAR is
used to protect a portion of high memory, then
HIFEM is set to the CLERF value. HIFEM is the
highest memory location which EASIC and other
programs may use.

RELATED COMMANDS
CLERR, HMAXRAM

SYSTEM

I LVL

I, wen

I, Disk

I, 12

i, LVL

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
mC-10

Model 100

o © ¢ ® © 2 0 ® 9 @ © © © @

Model 100, Disk

FORMAT
line# IF true/false expression THEN action

EXAMPLES
1000 IF A<25 THEN A=25 test A
1010 IF (A=3 OR B=6) THEN GOTO 4000

DESCRIPTION

The IF...THEN command is used to test a
true/false condition and to take some action if the
result is true. If the result is not true, the next
statement in sequence is executed. The true/false
expression may contain any relational operators,
such as test for equality (A=B), sense (A<CB), string
comparisons (A$<CB$), and others. Constants,
variables, or expressions may be used in the
true/false expression in any mixture. The action to
be taken if the true/false expression is true may be
any one statement action, such as “THEN PRINT
A", or “THEN A=(3.66%1-2)". The THEN is
not necessary in the case of a transfer to a lineff
such as “THEN GOTO 3@8@" If multiple
staternents are on a single line after the THEN, all
statements after the THEN will be executed if the
true/false expression is true. The line

“1000 IF A<2 THEN A=1:B=23:PRINT C"
will result in A set equal to 1, B set equal to 23 and
C being printed if A is less than 2.

RELATED COMMANDS
IF...THEN...ELSE

SYSTEM

I, VL

I VL it °
I, Disk °
1, 12 °
L, WL |

11, LVL Il (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100 °
Model 100, Disk o

FORMAT
line# IF true/false expression THEN action ELSE
action

EXAMPLES

1000 IF A<<Z THEN A=A+4 ELSE A=A+5
1010 IF B=(I+37) THEN C=5 ELSE IF
B=(I+38) THEN C=&

DESCRIPTION

The IF...THEN...ELSE command is used to
test a true/false expression and to take the THEN
action if the statement is true and the ELSE action
if the statement is false. The true/false expression
may use any relational operators as in “IF A=2",
“IF A2 "IF A$<B3$' If the true/false
expression is true, the THEN action is taken and
the EL.SE action disregarded. The THEN action
may be a single statement action of any type. If the
true/false expression is false, the EL.SE action is
taken and the THEN action disregarded. The THEN
action may be any single statement action. A line
number may be used without a BOTO following the
THEN or ELSE. “Nested” IF...THEN...ELSE
commands may be used as shown in the example
above. If multiple statements follow the ELSE, then
ali actions up to the end of the line are taken in the
false condition.

RELATED COMMANDS

IF...THEN

SYSTEM

I, LVL |

I, LVL 1

I, Disk

I, 12 °
I, L

HI, LVL NI (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °

Model 100, Disk o

FORMAT
line# ...expressionIMPexpression...

EXAMPLES
1080 C=A IMP B

DESCRIPTION

IMP is a logical or bit manipulation operator that
processes two operands in similar fashion to the
more common AND or OR. IMP compares both
operands on a bit by bit basis. For each bit position,
the result bit is a 1 unless the bit of the first
operand is a 1 and the bit of the second operand is
a0.@ IMP ©=1; @ IMP 1=1; 1 IMP 0=0;:
and 1 IMP 1=1. The expressions are converted to
16-bit integers and then compared on a bit basis. If
A'is binary 01010000 and B is 00111111, above,
then Cis 10111111.

RELATED COMMANDS
None

SYSTEM

I, vt
Lo °
I, Disk

I, 12

1, il

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Mode! 100, Disk

FORMAT
line#... THNKEYS . . .

EXAMPLES
1080 IF INKEY$< >** *7 THEW BOTO
2000 go if key press

DESCRIPTION

INKEY% is a special string function that allows you
to read the keyboard at “real-time” rates. If no key
is being pressed on the keyboard, INIKE'# is set
equal to a “null” string of zero length, defined by
“'|f a key is being pressed, IMKEYH is set equal
to the current key press on the keyboard for a brief
period. If the key is not released, IMKEYS is
shortly set equal to a “null" string. If one key is
being depressed and a second is pushed, IMKE'‘%
is set equal to the second key (for a brief period).
Successive pushes of the same key result in short
bursts where INIKEY% is set equal to the key
character interspersed with longer periods where
IHNKES$="" IMKEY% can be used in a loop to
test for key presses at real-time rates. The following
code builds up a string of keypushes:

100@ BF=INKEYS

191@ IF B%=** °* THEW GOTO l@e@ ELSE
A%=A%$+E$: GOTO 1000

RELATED COMMANDS

None

® ®

SYSTEM

I, LVL I

I, Ll °
1, Disk °
H, 12

i, WLt

HI, LVL 111 (4, 4P) e
HI, Disk (4, 4P) o
4, 4P, Disk °
CC. BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e

FORMAT
line# IvF(port)

EXAMPLES
1000 A=INF| 2557 read cassette on Model 17111

DESCRIPTION

ItF inputs a one-byte value from a system
input/output port. Systems using the Z-80 and 8080
microprocessors use input/output ports for certain
system devices such as cassette and RS-232-C
operations. The TWF is a BASIC command that will
enable the user to directly read these 170 ports. The
port parameter is an address value of 0 through
255 that defines the port address. It must be within
parentheses. THF returns a one-byte (8-bit) value
representing input data on the specified port
address.

RELATED COMMANDS
adT

SYSTEM

I, VLI

I, LVL 1

1, Disk

1, 12

I, LvL !

ill, LVL 111 (4, 4P)
N1, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line# INPUT item list

EXAMPLES

1060 INPUT A%$,EN,AG input
name,number,age

DESCRIPTION

IMPUT is used to enter data from the keyboard.
Data is entered as a list of items. For each item in
the data list, INPUT accepts a numeric or string
variable. Entries may be entered one at a time from
the keyboard or all entries may be entered with
each individual item separated by commas. The type
of entry must match the data item type - numeric
items cannot include text. If an invalid item type is
entered, a “REDD"” message is output. BRSIC
prompts the user by a “?” when INPUT is
expected. If more than one item is in the INPUT
list and not all entries have been entered when the
ENTER key is pushed, BASIC indicates that more
items are expected by “??' Entering more items
than there are in the list causes an “7EXTRA
IGNORED"” message.

RELATED COMMANDS
None

® 0 2 06 6 © © © © O O 0 © O

SYSTEM

I, VLI

I, LVL I

1, Disk

I, 12

1, L i

11, LVL I (4, 4P)
11l, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Mode! 100, Disk

FORMAT
line# INPUT “text”;item list

EXAMPLES

1606 INPUT * “ENTER

NAME ,# ,AGE" " ;A%$,EN,AG input
name,number,age

DESCRIPTION

INPUT... is identical to the normal INPUT
statement except that a message is displayed before
the INPUT. The text of the message is enclosed by
double quotes and separated from the item list by a
semicolon. INPUT is used to enter data from the
keyboard. Data is entered as a list of items. For
each item in the data list, INPUT accepts a
numeric or string variable. Entries may be entered
one at a time from the keyboard or all entries may
be entered with each individual item separated by
commas. The type of entry must match the data
item type - numeric items cannot include text. If an
invalid item type is entered, a “REDQ" message is
output. BASIC prompts the user when INPUT is
executed by a “?" If more than one item is in the
INPUT list and not all entries have been entered
when the ENTER key is pushed, BASIC indicates
that more items are expected by “??" Entering more
items than there are in the list causes an “?EXTRA
IGMNORED" message.

RELATED COMMANDS None

SYSTEM

I, VLI

I, LVL I

I, Disk

I, 12

1, VL

11, LVL 1l (4, 4P)

I, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10 <
Model 100 e .
Model 100, Disk e %

FORMAT

line# TMFPUTH file number,item list
EXAMPLES

loes INPUTH 3,A.BE,C% input from COM
DESCRIPTION

IMPUTH is used to input a list of items from a
RAM, CAS, COM, MDM, or disk file. It is similar to
the keyboard IMFUT statement except that the
data items are read from the device file. Normally
the items have been output to the device file with a
FRIMTH statement. The item list must follow the
same sequence as the items in the device file; if two
numeric items are followed by one string item, for
example, then the three variables read must be
numeric, numeric, string. Data in device files is
written as a succession of ASCII characters. The
IMPUTH reads in the characters, detects the
terminators between data items, and converts each
item to the proper type for the item list. The file
number in the TMPUTH statement must match the
file number used in the OFER statement for the
device file.

RELATED COMMANDS
OPEN, PRINTH

SYSTEM

I, LVLI

I, L

1, Disk °

i, 12 e

1, VL

11, LVL 11l (4, 4P)

111, Disk (4, 4P) o

4, 4P, Disk °

CC, BASIC

CC, Ext BASIC

CC, Disk °

MC-10

Model 100

Model 100, Disk

FORMAT

line# INPUTH bufd,item list
EXAMPLES

10900 INPUTHI,A,B,C3 input from disk file
DESCRIPTION

INPUTH is used to input a list of items from a
sequential file on disk. It is similar to the keyboard
INPUT statement except that the data items are
read from a disk file. The disk file must have been
previously OPERed; the OPEN associates the buf#
parameter with a sequential disk file. Normally the
data items have been output to the disk file with a
PRINTH statement. The item list must follow the
same sequence as the items in the disk file; if two
numeric items are followed by one string item, then
the three variables read must be numeric, numeric,
string. Data in sequential files is written onto disk as
a succession of ASCII characters. Even numeric data
is output as a string of characters. The INPUTH
reads in the character data, detects the terminators
between data items, and converts each item to the
proper type for the item list. Blanks and the ENTER
character generally serve as terminators between
numeric data items, while commas separate string
variables.

RELATED COMMANDS
PRINTH

SYSTEM

I LVL I o
T

I, Disk

i, 12

Hi, LVL |

11, LVL 111 (4, 4P)
{11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC. Ext BASIC
CC, Disk

MC-10

Model 100
Model 100, Disk

FORMAT
line# INPUTH,item list

EXAMPLES

1000 INPUTH,.R,B,CS input from cassette
DESCRIPTION

INPUTH is used to input a list of items from a
cassette file. It is similar to the keyboard INPUT
statement except that the data items are read from
a cassette file. Normally the data items have been
output to the cassette file with a PRINTH
statement. The item list must follow the same
sequence as the items in the cassette file; if two
numeric items are followed by one string item, then
the three variables read must be numeric, numeric,
string. Data in cassette files is written as a
succession of ASCII characters. Even numeric data
is output as a string of characters. The INPUTH
reads in the character data, detects the terminators
between data items, and converts each item to the
proper type for the item list. Blanks and the ENTER
character generally serve as terminators between
numeric data items, while commas separate string
variables.

RELATED COMMANDS
FRINTH

SYSTEM

1L

I, LVL It o
I, Disk °
1, 12

ul, it

11, LVL 111 (4, 4P) @
11, Disk (4, 4P) o
4, 4P, Disk

CC. BASIC o
CC, Ext BASIC e
CC, Disk o
MC-10

Model 100

Model 100, Disk
FORMAT
line# INPUTH- 1,item list
EXAMPLES

1000 INPUTE-1,A,B,C% input

from cassette

DESCRIPTION

INPUTH-1 is used to<input a list of items from a
cassette file. It is similar to the keyboard INPUT
statement except that the data items are read from
a cassette file. Normally the data items have been
output to the cassette file with a PRINTH-1
statement. The item list must follow the same
sequence as the items in the cassette file; if two
numeric items are followed by one string item, then
the three variables read must be numeric, numeric,
string. Data in cassette files is written as a
succession of ASCH characters. Even numeric data
is output as a string of characters. The INPUTH#-1
reads in the character data, detects the terminators
between data items, and converts each item to the
proper type for the item list. Blanks and the ENTER
character generally serve as terminators between
numeric data items, while commas separate string
variables.

RELATED COMMANDS
PRINTH-1

SYSTEM

I, LVL I

I VL °
I, Disk °
I, 12

1, L

I, LVL 111 (4, 4P)
I, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT

line# INPUTH- 2 item list

EXAMPLES

looe INPUTH-2,A,B.C% input from cassette
DESCRIPTION

INPUTH-2 is used to input a list of items from a
cassette file. It is identical to TNPUTH -1 except
that the cassette file is on the second cassette drive.
It is similar to the keyboard INFUT statement
except that the data items are read from a cassette
file. Normally the data items have been output to
the cassette file with a PRINTH- statement. The
item list must follow the same sequence as the
items in the cassette file; if two numeric items are
followed by one string item, then the three variables
read must be numeric, numeric, string. Data in
cassette files is written as a succession of ASClI
characters. Even numeric data is output as a string
of characters. The INPUTH-1 reads in the
character data, detects the terminators between
data items, and converts each item to the proper
type for the item list. Blanks and the ENTER
character generally serve as terminators between
numeric data items, while commas separate string
variables.

RELATED COMMANDS
PRINTH-1,PRINTH-2

SYSTEM

I, LVL 1

1, LVL 11

I, Disk

il, 12

Hi, VL

I, LVL 111 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC. BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line# TWMFUT% (length,file number)

EXAMPLES

1000 INFUTS (20,3 read 20 characters
DESCRIPTION

INPUTH is used to read a specified number of
characters from a RAM, CAS, COM, MDM, or disk
file. It is similar to the keyboard LIME IWPUT
command except that the input string is terminated
by a number of characters rather than the ENTER
key. The length parameter is a value from 1 through
255. The file number is the file number associated
with the device file and established in the OFEH
command for that device file. When THFUTS is
executed, EASIC will wait until the specified
number of characters have been read from the
device file and will then return all characters as a
string. All characters will be returned, including
those that would normally be delimiters, such as
commas. 106a AF=INFUTS (28,37, for
example, would specify that A% would be set equal
to the next 20 characters read from the device file
associated with file number 3 and that the next line
would not be executed until those 20 characters
were input.

RELATED COMMANDS
LINE INPUT, OPEM

SYSTEM

I, LVL I

I, LVL 1

I, Disk

I, 12 °
1, VLt

11, LVL I (4, 4P)
I, Disk (4, 4P)

4, 4P, Disk ®
CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line# ... IMPUT%(length,buf#)...

EXAMPLES

1000 AF=INPUTE(10, 31 input 10 characters
from disk

DESCRIPTION

IHFUTH is a function that specifies the number of
characters that will be read from a sequential disk
file. It is somewhat similar to LIHE IMFUTH
except that the input string is terminated by a
number of characters rather than the ENTER key.
The length parameter is a value from 1 through
255. The buf# is the number of the sequential file
input buffer specified in the OFE! statement
associated with the file name. When IHMFUTS is
executed, BASIC will wait until the specified
number of characters are read from the disk file
and then return all characters as a string. All
characters read will be returned, including those
that would normally be delimiters, such as commas.
1006 AF=TIHFUTE(10,3, for example, would
specify that A$ would be set equal to the next 10
characters input from the disk file associated with
buffer 3 and that the next line would not be
executed until those 10 characters were input.

RELATED COMMANDS
LIME IMFUTH

SYSTEM

I, LVLI
Lwen

1, Disk

1, 12

HI, VL1

11, LVL 1I (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line# IMPUTH,item list

EXAMPLES

1800 IMPUTH,A,B,.CS input from cassette
DESCRIPTION

INFUTH is used to input a list of items from a
cassette file. It is similar to the keyboard IMPUT
statement except that the data items are read from
a cassette file. Normally the data items have been
output to the cassette file with a FRINTH
statement. The item list must follow the same
sequence as the items in the cassette file; if two
numeric items are followed by one string item, then
the three variables read must be numeric, numeric,
string. Data in cassette files is written as a
succession of ASCH characters. Even numeric data
is output as a string of characters. The THFUTH
reads in the character data, detects the terminators
between data items, and converts each item to the
proper type for the item list. Blanks and the ENTER
character generally serve as terminators between
numeric data items, while commas separate string
variables.

RELATED COMMANDS
FRINTH

SYSTEM

I Ll

I,

I, Disk °
I, 12 °
1L LWL |

11, LVL 111 (4, 4P)

111, Disk (4, 4P)
4, 4P, Disk
CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

]

Model 100
Model 100, Disk

FORMAT
line#... INSTR(stringl,string2)
line#... INSTR(position,stringl,string2)

EXAMPLES

1000 A=INSTR(A$, ““1SS° ") look for “ISS”
in A$

DESCRIPTION

INSTR is a function that searches for a substring
within a larger string. The stringl and string2
parameters are string literals or variables. {String
literals will be enclosed in quotes; string variables
will have the “$" suffix or DEFSTR definition.) If
the first format is used, INSTR will search for
string2 in stringl. If string2 is found within string1,
the starting position of the first occurrence of
string2 will be returned. If string2 is not found
within string1, O will be returned. Positions of
strings are numbered from 1 through the length of
the string in characters. If the second format is
used, the “position” parameter is a constant,
variable, or expression that specifies the starting
position for the search. In the example above, if
A$="MISSISSIPPI', INSTR would set A to 2. The
second occurrence of ISS would have to be found
by specifying a position greater than 2.
RELATED COMMANDS

None

SYSTEM

I, VL1

1, LVL I

1, Disk

il, 12

i, Ll

I, LVL I (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line#... TNT(expression)...

EXAMPLES

100@ REM PDKE ADDRESS

1901® POKE I+1,INT{AD~25&]: POKE
I.AD-[INT{AD-256]%256)
DESCRIPTION

INT returns the integer portion of a positive
number and the next highest integer for a negative
number. The argument may be a constant, variable,
or expression and must be within parentheses. For
arguments of +1.12, +999.45, 0, -1.11, and -234.56,
INT returns +1, +999, 0, -2, and -235, respectively.
INT'is commonly used to find the two bytes of a
16-bit address for POKES of addresses as in the
example above, or for rounding operations, as in
19896 FIND X ROUNDED TO 2 DEC PLACES
1010 XR=INT{X*100+.5) /100

INT should be used to find the integer portion of
positive numbers only; F I should be used when
both positive and negative numbers are involved.
The argument in INT may be any size.

RELATED COMMANDS
FIX

SYSTEM

I, VL i

L VLl

I, Disk

I, 12

I, L

I, LVL LIl (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC. Disk

MC-10

Model 100 °
Model 100, Disk e

FORMAT
IFL “filename”

EXAMPLES
IFL **STARTE.EA"®

DESCRIPTION

IFL defines an “initial program load” file to be
executed when the system is turned on. The
program must be resident in RAM, the IPL with the
filename executed, and the system turned off to
initiate the TPL. command. Every time the system
power switch is turned on thereafter the designated
program will start. IFL is used whenever most use
of the system is for a single program; it's a
convenience command that saves having to enter
ERSIC, load the program, and execute.

RELATED COMMANDS
None

SYSTEM

I, LVL |

Lo

I, Disk

I, 12

I, el

1, LVL 111 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC °
CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line#...JOYSTK(MN)...

EXAMPLES

1660 A=JOYSTK(3)] gety coordinate of
joystick 2

DESCRIPTION_

JOYSTIK is a special function that reads the
joystick value. (The optional joysticks must be
connected to the joystick plugs on the back of the
Color Computer.) The n parameter defines the
position parameter to be read. Each of the two
joysticks will return an “x" coordinate and a "y"
coordinate. Arguments of n=0 and n=1 read the x
and y coordinates from the left joystick,
respectively. Arguments of 2 and 3 read the x and y
coordinates from the right joystick. The value
returned for any of the 4 positions is 0 through 63.
The up and left positions are 0 and the down and
right positions are 63. Intermediate positions are
proportional, for example, the center position of a
joystick is 32,32. JOYSTIC(©) must first be
returned before JOYSTI (1) -JOYSTK(3) can
be read.

RELATED COMMANDS
None

SYSTEM

I, LVL I

LWL

I, Disk

", 12

I, LVL

I, LVL 1li (4, 4P)
IlI, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e

FORMAT

KEY N, string
line# KEY M,string
KEY LIST
EXAMPLES
KEY 4, **?DAY$" *+CHRE(13 display day
DESCRIPTION

This IKE*Y command allows the eight Function Keys
to be set equal to a string of characters. Pressing a
Function Key defined in this fashion will then be
equal to entering the characters from the keyboard.
In the example above, pressing Function Key 4 at
any time after the Function Key definition will result
in automatic generation of the string * * PRINT
DARY$" " with a carriage return on the end — in
this case the result will be a display of the string,
followed by the date. All eight Function Keys can be
defined in this manner and any key can be
redefined at any time. 1 is a digit from 1 to 8 that
defines the number of the Function Key. The string
parameter may be any string expression of 1 to 15
characters. To redefine the Function Keys to their
original (default) values perform a CALL

23164 ,0,23366: CALL 27795, Entering
KEY LIST will display the current Function Key
definitions on the screen.

RELATED COMMANDS None

SYSTEM

I, VL1

I, VL il

I, Disk

1, 12

1, VLI

1E, LVL 111 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

Model 100, Disk e
FORMAT

line# WKEY (M) ON
line# KEY (N OFF

ling# KEY (N} STOP

EXAMPLES

100@ KEY(4] OM enable Function Key 4
interrupt

DESCRIPTION

The Function Key interrupts are used to interrupt a
BASIC program so that immediate action is taken
when specific Function Keys are pressed. The ON
KEY G0SUB command is first used to define a
“processing” subroutine for the interrupt. Normally
this subroutine would perform some processing
function related to the Function Key and then return
to the interrupted program. The KE'Y command
allows the communications interrupt to be enabled
or disabled by a IKE* (M1 OR or IKEY [M]
OFF—there are times when the interrupt should be
acted upon and other times, when it should be
ignored. The KE* (M| STOF “remembers” the
interrupt but allows the program to ignore it until
the next [<E%' [k, at which point the interrupt
subroutine is immediately called. Each of the
commands includes a ¥E% number from 1 to 8 to
indicate which of the Function Keys is involved.
RELATED COMMANDS

0w KEY GOSUB

SYSTEM

LWLl

LowLn

1, Disk e
I, 12 o
i, LVL |

IH, LVL 111 (4, 4P)
11, Disk (4, 4P) o
4, 4P, Disk o

CC, BASIC

CC, Ext BASIC

CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT

KILL “filename”
line# KILL “filename”

EXAMPLES

KILL *“ACCOUNTS-BAS:z1* kill accounts
payable

DESCRIPTION

IKILL deletes a file on disk. It is identical to the
TRSDOS KILL command except that it may be
performed inside BASIC in the command or
execution modes. (Always CLOSE an open file
before executing a KILL; if this is not done, the
d:s}(contents may be destroyed.) The “filename” is
a filespec for a BASIC program stored on disk; it
conforms to the general requirements for filespecs -
name, extension, password, and drive number. If no
drive number is specified, IKILL will delete the file
from the first disk that contains the filename. (The
order for the search is drive 0, 1, 2, and 3)

RELATED COMMANDS
None

SYSTEM

I, LVL I

Lo

I, Disk

I, 12

I, L

lil, LVL 11l (4, 4P)
[ll, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e

FORMAT
[KILL “filename”

EXAMPLES
KILL **1:ACCTS.BA""

DESCRIPTION

[ILL deletes a RAM or disk file. The “filename” is
the name of the file to be killed, including extension
(the portion after the period). If the extension is not
included, the file will not be found in RAM or on
disk and will not be deleted. If a disk file is to be
deleted, the filename must include a drive number
{0: or 1:) with colon before the name of the file.

RELATED COMMANDS

None

SYSTEM

I, LVL 1

I, LVL 1

1, Disk

I, 12

11, LVL |

1H, LVL 111 (4, 4P)
11, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Mode! 100 °
Model 100, Disk o

FORMAT
LCoPY

EXAMPLES
LCOPY print screen

DESCRIPTION

LCOPY is used to “dump” the screen to the system
printer. The printer must be in a “ready” condition.
Any text data will be properly printed on the system
printer in a 40 character per line by 8 line per
screen format. Graphics data will be ignored and
will not be printed. The LCOPY command is useful
for obtaining a “hardcopy” listing of screen text
data.

RELATED COMMANDS
None

SYSTEM

1, LVL I
Lo °
I, Disk °
I, 12 °
i, LWL

1, LVL 11 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
MC-10

Model 100

© ® 0 6 © © © © ©

Model 100, Disk

FORMAT
line#...LEF T¥(string,n)...

EXAMPLES

100w AF=LEFT$(B%,4) get the first 4
characters of B

1916 C$=LEFTH(BE%,1) get the first |
characters of B§

o260 DE=LEFTS(B%, (I+2)) get the first I+2
characters of B§

DESCRIPTION

LEFT$ finds the last n characters of a given string.

The n parameter may be 0 to 255. The “string”
parameter is a previously defined string. If
B$="HEROINE’ for example, A%=LEFTS(B%, 4)
will set A$="HERO" If n is greater than the length of
the specified string, LEF T$ will return the entire
string. AF=LEFT$(B%,201, for example, returns
A$="HEROINE" The n argument may be a constant,
variable, or expression. LEFT$ may be used to
process “substrings” where a large string is made
up of a number of substrings concatenated
together for ease of handling.

RELATED COMMANDS
MIDE, RIGHTS

SYSTEM

(A
I, LVLl ®
I, Disk °
i, 12 e
I, Ll

11, LVL Il (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

® © ¢ © 9 © © © O

FORMAT
line#..._EN(string)

EXAMPLES

1000 LA=LEN(A%] find # of characters in A$
1@10 LB=LEN(B% find # of characters in B§

DESCRIPTION

LEN finds the length in characters of a specified
string. The length is the actual number of characters
in the string, not counting string pointers. The
“string” variable must be a valid string variable and
may be a string expression such as A$+B$ or
STRINGH(S, *“*°*). LEN produces a numeric
variable of 0 to 255 which can be used in string
processing. IF A$="THE ONLY ISM FOR ME IS
COMPUTERISM?, then LEN[A%)=34.

RELATED COMMANDS

None

SYSTEM SYSTEM

1, LVL I ° I, LVL I
LI o I VLI
I, Disk ° I, Disk
I, 12 ° I, 12
I, L1 o i, VL1
I, LVL I (4, 4P) @ NI, LVL 11 (4, 4P)
I, Disk (4, 4P) e I1I, Disk (4, 4P)
4, 4P, Disk ° 4, 4P, Disk
CC, BASIC ° CC, BASIC
CC, Ext BASIC ° CC, Ext BASIC
CC, Disk ° CC, Disk
MC-10 ° MC-10
Model 100 ° Model 100
Model 100, Disk o Model 100, Disk o
FORMAT
FORMAT ;
.) . LFILES drive#
line# LET variable=expression
EXAMPLES
EXAMPLE$ — LFILES 1
1000 LET A=1.2345E-10: LET
B=3.14159 DESCRIPTION
LFILES displays the names of all files on the
DES.CRIPT’QN . L specified drive#. Each file is displayed with the
LET is used primarily for compatibility with older amount of disk space it uses, and a total available
versions of BASTC. LET was used on older disk space is displayed at the end. The format of
BRSILS prior to setting a vanqtﬂe equal to a value the listing of file names is coded for the type of file
or expression. On all TRS-80 BASICs, LET is — the file name of six characters is followed by a
optional and the variable may be set without the seventh character which is coded as follows:
LET, asin “*" is a machine language file, “." is a BASIC

100G B2 D=ACE 1 3. Bam 141 program file, a blank is an ASCIl EASIC program
1000 A=1.2345E-10: B=3.14153 file. The next three characters are the file extension.

RELATED COMMANDS ‘ An LFILES listing of ACCTSF.BA, for example,
shows a EASIC, non-ASCII file with extension .BA.

RELATED COMMANDS
None

None

SYSTEM

I, LVL I

I, LVL I

I, Disk

I, 12

I, LVL

11, LVL 111 (4, 4P)
i1l Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# LINE(x1,y1)-(x2y2)PSET

line# LINE(xLyl)-(x2y2),PRESET

line# LINE(xLyl)-(x2y2),PSET,B

line# LINE(xLyl)}(x2y2)PRESET,B

line# LINE(x1,yl)-(x2y2),PSET,BF

line# LINE(x1,y1)-(x2y2),PRESET ,BF
EXAMPLES

1000 LINE (23,23)-)

(1l08,100) ,PSET draw line

1010 LINE (200,158)-

(220,170) ,PRESET,BF erase filled-in box
DESCRIPTION

L INE is used to draw a line, box (rectangle), or
filled-in box on the current graphics page. The x1,y1
and x2,y2 parameters specify two points on the
graphics screen. The values used for x1 and x2 are
0 through 255. The values used for y1 and y2 are 0
through 191. The x and y ranges are for the highest
resolution graphics mode. The ..,PSET form draws a
line in the current foreground color between x1,y1
and x2,y2; the ..,PRESET form draws the line in
the current background color. The ..,PSET, B and
.,PRESET, B forms draw the outline of a box in
the current foreground and background color,
respectively. The .,PSET,BF and .,PRESET, BF
forms fill in the box with the current foreground or
background color.

RELATED COMMANDS None

SYSTEM

I, LVL I

I, L i

I, Disk

I, 12

Hl, L

HI, LVL i (4, 4P)
11, Disk (4, 4P)

, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100 o ¢
Model 100, Disk e

FORMAT

line# LINE(xLyl)-(x2,y2)

line# L INE(xlyl)-(x2,y2),switch
line# L IME(xIyl)-(x2,y2),switch,B
line# |LINE(xlyl)-(x2y2),switch,BF

EXAMPLES

1600 LINE(®,8- (239,63 draw diagonal
line

loee LIME(®,0)-(239,631,1,BF draw
filled-in box

DESCRIPTION

LIME is used to draw a line, box (rectangle), or
filled-in box on the lcd screen. The x1,y1 and x2,y2
parameters specify two points on the lcd screen.
The values used for x1 and x2 can be 0 through
239. The values used for y1 and y2 can be 0
through 63. The basic line form draws a line from
point x1,y1 to point x2,y2. The next form with
“switch” option, sets the points if the switch value
is odd and resets the points if the switch values are
even. LINE[@,8)-(LIME(239,63 ,1 for
example, sets the points of the line. The & option
draws or erases a box outline, using the two points
as opposite corners of the box. The BF option draws
a filled-in box. Both the B and EF forms require
that a switch value be used.

RELATED COMMANDS

None

SYSTEM

I, LVL I
I, LVL T
I, Disk °
I, 12 °
1, LVL |

11, LVL 11 (4, 4P)
IIl, Disk (4, 4P)
4, 4P, Disk °
CC, BASIC
CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT

line# |_LINE INPUT string variable
line# LINE INPUT “text"string variable

EXAMPLES

1600 LINE INPUT **ENTER STREET,
CITY, STATE" " ;AD%

DESCRIPTION
LINE INPUT inputs a line of text entered from

the keyboard. The input is terminated by an ENTER.

All keyboard characters are entered as legitimate
characters. LINE INPUT is unlike INPUT in that
commas and other delimiters are treated as normal
text characters and included as part of the result
string. The “text” parameter is optional. If included,
the text message is displayed just prior to the input
operation. The resulting string variable includes all
characters not including the ENTER character. In
the example above, a valid input might result in
ég§,=“250 N.S. MEMORY LANE, COMPUTER CITy,

RELATED COMMANDS
None

SYSTEM

I, VLI

L

I, Disk °
1, 12 °
I, LVL |

11, LVL I (4, 4P)
IH, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk o
MC-10

Model 100

Model 100, Disk

FORMAT
line# L.INE IMPUTHbuf# string variable

EXAMPLES

1006 LINE INPUTHZ,AD% input line
from disk

DESCRIPTION

LINE INPUTH inputs a line of text from a disk
file. LINE INPUTH is unlike INFPUTH in that
commas and other delimiters are treated as normal
text characters and not as data items. The line is
input from the disk file up to an ENTER character
{not preceded by down arrow), the end of file, or
the 255th data character. The resulting string
variable includes all characters not including the
ENTER character. The buf#f parameter is the disk
buffer associated with the file by a prior OPEN
statement. LIME INPUTH can be used to input
BRSIC program lines when the program has been
saved in ASCIH format, or for other applications
involving line-oriented text files.

RELATED COMMANDS
LINE INPUT

SYSTEM

LoLvLi

Lowen

1, Disk

1, 12

i, el

11, LVL HI (4, 4P)
11, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e

/s
%

FORMAT
line# LIME IMFPUTHfile number, string variable

EXAMPLES

lee@ LIME IMPUTHI., AT

DESCRIPTION

LIME INFLTH inputs a line of text from a RAM,
CAS, COM, MDM, or disk file. LIME IMFUTH is
unlike TMPUTH in that commas and other
delimiters are treated as normal text characters and
not as data items. LIME IMFUT is the logical
equivalent of LIME IMPUT from the keyboard, but
is used with any device file that can be read. The
line is input from a system device file, the end of
the file, or the 255th data character. The file
number must be the file number originally used in
the OFEH statement when the device file was first
OFEMed. The string variable is the name of the
string variable that will receive the input data.
LIME IWFUT can be used to input EASIC
program lines when the program has been saved in
ASCII format, or for other applications involving line-
oriented text files.

RELATED COMMANDS
LINE INPUT

SYSTEM

I, LVL

I, LVL I

|, Disk

I, 12

1, WL

1, LVL 1 (4, 4P)
I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Mode! 100, Disk

FORMAT
LIST

LIST nnn-mmm
LIST -mmm
LIST nnn-
line#f LIST

EXAMPLES

LIST 160-993 lists all statements from 100
through 993

LIST -9000 lists all statements from beginning
through 3066

LIdST 100- lists all statements from 10 through
en

DESCRIPTION

LIST is normally used in the command mode to
list the current BASIC program in RAM to the
video display. Listing will occur as rapidly as the
BARSIC interpreter can display the BASIC
statements, and the display will “scroll”” as
successive statements are displayed. The program
will be listed as a succession of BASIC statements
in ASCII format. The display can be temporarily
stopped at any time by pressing “SHIFT, @";
pressing any key will restart the listing. LIST used
in the “nnn-mmm’} “-mmm" or “nnn-" formats will
list from a beginning line through an ending line.
RELATED COMMANDS

LLIST

© & 5 0 0 0 Q@ 9 00 © 060 °

SYSTEM

I, LVL I

1, LvL i

I, Disk

I, 12

N, Lt

I, LVL 111 (4, 4P)
IH, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

® 0 0o @ © © @ @ © © © © ©

Model 100, Disk

FORMAT

LLIST

LLIST nann-mmm

LLIST -mmm

LLIST nnn-

line# LLIST

EXAMPLES

19066 REM LLIST PROGRAM TO LINE
FRIMTER

3000 LLIS

LLIST 1e®-399 lists all statements from 10
through 933

LLIST -30ew lists all statements from beginning
through 20o¢
LLIST 10~ lists all statements from 10&
through end

DESCRIPTION

LLIST is normally used in the command mode to
list the current EASIC program in RAM to the
system line printer. LLIST is logically equivalent
to LIST, used for displaying the program on the
video display. Only BRSIC statements will be
listed; no variables or other program parameters will
be displayed. The program will be listed as a
succession of BRSIC statements in ASCH format.
LLIST used in the “nnn-mmm’, “-mmm" or “nnn-'
formats will list from a beginning line through an
ending line. LLIST alone lists the entire program.
RELATED COMMANDS LIsT

SYSTEM

[, VLI

I, VLI

I, Disk °
I, 12 °
I, VL i

11, LVL 161 (4, 4P)
111, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk .
MC-10

Model 100

Model 100, Disk

FORMAT

LOARD “filename”

LOAD “filename’R

line# LOAD “filename”
line# LOAD “filename’R

EXAMPLES
LOARD “*ACCOUNTS-BAS:1"" load accounts
payable

DESCRIPTION

LOAD loads a BASIC program from disk. If LOAD
is used without the R option, LORD will clear all
variables, close all open files and return to the
EfSIC command mode. If LOAD is used with the
“R" option, LOAD will clear all variables, will not
close open files, and will load and execute the
BASIC program from its first line. LOAD in either
form may be used in a BASIC statement during
BASIC program execution. The “filename” is a
filespec for a BASIC program stored on disk; it
conforms to the general requirements for filespecs -
name, extension, password, and drive number.
LOAD may be used in BASIC programs to “chain”
programs, allowing one program to call another in a
chain of “overlays”

RELATED COMMANDS
RUN

SYSTEM

I, Ll

I, VL i1

I, Disk

", 12

11, Lt

11, LVL 1 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e

FORMAT

LOAD “devicefilename”
LORD “device:configuration”
Loan “device: .. "R

EXAMPLES
LOAD * *FAM:SORTLT LR load and run
DESCRIPTION

LOAD loads a BASIC program from RAM, CAS,
COM, MDM, or disk. The “device” parameter is one
of the four mnemonics or a disk drive number. The
“filename” parameter is used for RAM, CAS and disk
and is the filename under which the file was first
saved. If the device is RAM or disk, an optional .BA
or .CO extension can be used as part of the
filename. A LOAD from CAS is logically equivalent
to the CLORD command. If the filename is omitted
from a CAS load, the first file found will be loaded.
If the device is COM or MDM, a five-character string
is used in lieu of a filename. This string sets up the
communications parameters. The R (Run) option
loads the program and then immediately starts
program execution. Using the F option also leaves
data files open.

RELATED COMMANDS

SAYE ., CLORD

SYSTEM

I, LVL |

I, LWL i

I, Disk

I, 12

1, VLI

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
LOADMfilename”
LOADM "filename’offset

EXAMPLES
LOADM * “GRAPHC®* load file “GRAPHC”
into RAM

DESCRIPTION

LOADM is a Color Computer Disk BASIC command
used to load a machine-language file from disk. The
disk file must have been created by the SAVEM
command. If the filename is specified without an
extension, BASIC assumes that the extension is
“/BIN"; this is the normal default extension for the
SAVEM command. If the file is a machine-language
program, an EXEC can be performed after the
LOADM to execute the program; BASIC will start
execution at the execution address specified in the
file. If an optional offset is included, the offset
constant will be added to the normal file load
address, and the program or data will be
“relocated” to the resulting RAM addresses. If the
normal load address was &H3000 to &H30FF and
the offset was &H500, for example, the data would
be loaded into RAM locations &H3500 to &H35FF.
Specifying an offset bias will not properly relocate
machine-language code.

RELATED COMMANDS

EXEC, SAVEM

SYSTEM

I, LVL I

IR

I, Disk

I, 12

NI LWL

11, LVL 11 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °

Model 100, Disk o
FORMAT

LOsDr “filename”
LOADr “CAS:filename”
LD “drive#:filename”

EXAMPLES

LOADM * *MLPE® " load machine-language
program

DESCRIPTION

LOADM loads a machine-language program from
RAM, CAS, or disk. The file must have been
previously written out to one of these devices with
the CSAWEM command. The command loads in the
program to the same place in memory in which it
originally resided. The first form of the command
assumes the file is in RAM and loads “filename”
from RAM with the automatic extension .CO. The
LomRDM “CAS:filename” form is logically equivalent
to CLOADM. The disk file form loads the machine-
language file from disk. The start, end, and entry
point addresses are listed on the screen during

the load.

RELATED COMMANDS
CSAVEM, CLOADM

SYSTEM

[

L

I, Disk

I, 12

I, Ll

1, LVL 1N (4, 4P)
lll, Disk (4, 4P)
4, 4P, Disk

CC. BASIC

CC, Ext BASIC
CC. Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line#...LOC(buf#)...

EXAMPLES

loed TF LOC{31=5 THEM S=1 test for fifth
record

DESCRIPTION

L is used to find the number of the current
record in a file. The buf# parameter specifies the
buffer number or Model 100 file number associated
with the file. An OFER must have been performed
for the buffer (file) involved. As records are read in
from the file by GET {or THMFUTH for sequential
files), EASIC maintains the current record number
of the file and returns this number when L is
executed. LOC is used to detect a specific record
number as records are read in from disk, or in any
processing that is “record dependent’!

RELATED COMMANDS
LOF, OFEH

SYSTEM

I LI

I

I, Disk °
I, 12 °
11, VL

11, LVL 111 (4, 4P)
111, Disk (4, 4P) e
4, 4P, Disk °
GC, BASIC

CC, Ext BASIC

CC, Disk °
MC-10

Model 100

Model 100, Disk o

FORMAT
line#t..._LOF (buf#)...

EXAMPLES

1066 FOR 1 70 LOF[3) loop through n
records

DESCRIPTION

LOF is used to find the number of the last record
in a file. The buf# parameter specifies the buffer
number or Model 100 file number associated with
the file. An OFEM must have been performed for
the buffer (file) involved. Once the TOFEH is done,
EASIC knows the number of records contained in
the file and returns this number when LOF is
executed. The LOF can be used to set up a
processing loop for the records in the file. LOF is
used as an alternative to detecting the last record
number by ECF or knowing the number of records
in the file beforehand.

RELATED COMMANDS
EQF, OFEHR

SYSTEM

I, LVL I

I, LVL i °
I, Disk °
I, 12 °
I, VLl

11, LVL 11 (4, 4P) o
11, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC °
CC, Disk °
MC-10 °
Model 100 °
Model 100, Disk
FORMAT
line#...L0G(expression)...
EXAMPLES

1606 DE=10%(LOG[P2-PL)-LOG(L1@]] find
decibels

DESCRIPTION

LG finds the natural logarithm of a constant,
variable, or expression, the logarithm to the base e,
or 2.718..To find the logarithm of the argument to
another base, use the formula log of X to base b=log
of X to base e/log of X to base b, as in the example
above. Natural logarithms are commonly used in
mathematical and scientific applications.

RELATED COMMANDS
ExP

SYSTEM

I, Vel

I, VL

I, Disk

I, 12

Hi, LVL I

11, LVL 111 (4, 4P)
11, Disk (4, 4P)

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 J
Model 100, Disk e

FORMAT
line# . .. LPOS(N)

EXAMPLES
1000 IF LPOS(@)>23 THEN LPRINT

DESCRIPTION

LLPOS is used to test the current printer character
position. The LFOS function returns the current
logical position of the system printer “print head".
This is the character position on the paper over
which the print head would appear if the characters
were being printed out as they appeared in the
program. However, because the printer waits for the
end of the line before printing and for other
reasons, such as buffering, this “logical” position
may not be the same as the “physical” position. The
H value is a “dummy” value which can be any
numeric value. LFGS is logically equivalent to POS
except that it is used with the printer and not the
screen.

RELATED COMMANDS
POS

SYSTEM

I, VL

Lo

I, Disk

I, 12

I LVL

11, LVL 1 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

® © © © 9 © ©

CC, Ext BASIC

CC, Disk

MC-10 e
Model 100 °

Model 100, Disk e

FORMAT
line# LLPRINT item list

EXAMPLES

1600 LPRINT ““THIS IS THE

RESULT * "3RS, *N="" ;N

DESCRIPTION

LPRINT is used to print a list of items on the
system line printer. LFRINT is the line printer
equivalent of the PRIMT command. The items may
be string literals (text), string variables, or numeric
variables. Commas may be used between the items
to tab to the next print zone, or semicolons may be
used to avoid spaces between items (see “," and
). There may be any number of items in the list,
compatible with the maximum BARSIC line length.
Positive numbers are printed with a leading and
trailing blank. Negative numbers are printed with a
minus sign and trailing blank. Strings are printed
with no leading or trailing blanks. If the last item in
the item list is terminated by a semicolon, the next
PRINT starts from where the current PRINT left
off. There are certain codes unique to various line
printers which control line feeds, expanded printing,
and special functions. These may be embedded in
the item list by use of CHR$ or STRINGS.

RELATED COMMANDS
ﬁi,!!’ ii;!ﬂ’pRINT

SYSTEM

I, LVL 1
I, LVL It
I, Disk o
I, 12
1, VLI
1, LVLIH (4, 4P) e
1ll, Disk (4,4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk /
MC-10 <
Model 100 e %M——é =
Model 100, Disk

FORMAT

line# LPRINT USING stringitem list
EXAMPLES)
1000 AF=* < #=$HHH. i DOLLARS" " define
string .

1010 LPRINT USING A$: TOTAL print check
DESCRIPTION .
LPRIMT USING is used for printing special
formats on the system line printer, primarily dollar
amounts and accounting values. The string
parameter is a literal or variable string that defines
the format to be used in the printing. The item list
is a list of numeric or string variables that define
the items to be printed. If there is more than one
item, all items will be printed in the format defined
by the string. The string uses “field specifiers” to
define certain formats. A “#" specifies a digit
position. A “." is a decimal point position and is
printed in the position specified. A “" is printed in
the position specified. Asterisks (*) fill unused
positions left of the decimal with asterisks. “$$" or
“*x¢" indicate a floating dollar sign, printed before
the number. The string “**$### ###.## DOLLARS”
used with variable A=96654.678 generates
*$96,654.68 DOLLARS. Other specifiers include up
arrows, plus sign, minus sign, %spaces%, and
exclamation point.

RELATED COMMANDS
PRINT USING

SYSTEM

I, VLI

1, LVL 1l

I, Disk °
I, 12 °
1, WLt

HE, LVL 11 (8, 4P)
11, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line# LSET field name=string

EXAMPLES
1000 LSET NME=A$ store addressee name

DESCRIPTION

LSET is used to place character data into a
random-file buffer. The normal sequence of
operations establishing a random-file buffer is as
follows: Define the fields of the buffer by a FIELD
statement. The FIELD establishes the field names
in the buffer. The RSET and LSET are then used
to store character data in the fields of the buffer.
The FIELD statement establishes the size for each
buffer field. If the data to be stored by LSET is not
as great as this field size, “filler spaces” would be
filled on the right. If the field NM$ was 20
characters, the name “SPIRO SMITH” would be
stored as “SPIRQ SMITH " If data to be
stored by LSET is greater than the field size,
characters are truncated on the right. The data
“SPIRO AGOUPOPOPODOUPOLIS” would be stored as
“SPIRO AGOUPOPOPODOUP"

RELATED COMMANDS
FIELD, RSET

SYSTEM

i, LVL I

I, LvL 1l

I, Disk

", 12

I, VL

Hi, LVL 1H (4, 4P)
11, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 U
Mode! 100, Disk o

FORMAT
.. MAXFILES
line#. . .MAXFILES. ..

EXAMPLES

FRIMNT MAXFILES
100@ MASFILES=3

DESCRIPTION

This variable contains the maximum number of files
that can be open at any time. The default (initial)
number is one file. MAXF ILES must be changed
before more than one file is used. If, for example, you
require three files open at one time, one for input,
one for output, and one for “sorting”, then

MAF ITLES=3 should be used early in the program.
The MAFILES variable can be utilized just as any
other variable — you can display the number or use
it in comparisions. The number of files refers to all
files in the system, regardless of device type.

RELATED COMMANDS
CFER

SYSTEM

|, VL1

[, LVL I

I, Disk

i, 12

I, LVL

1L, LVL 11t (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e

FORMAT

- MAREAM
line# . . . 1AXRAM
EXAMPLES

CLEAR 500 MRxEAM

DESCRIPTION

This value is normally equal to the value of the
maximum memory address for your system — it's
dependent upon the amount of RAM memory you
have in your system. MAxRAM cannot be redefined,
but you can read it like any other variable.

RELATED COMMANDS
CLEAR, MAXRAM

SYSTEM

I, LVL

LLVL I

I, Disk

11, 12

HE L

HI, LVL 11 (4, 4P)
11, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC. Disk

MC-10

Model 100 ®
Model 100, Disk e

FORMAT

line# ¥ICIM (4

line# 1D OFF

line# MO STOP

EXAMPLES

1@ee MOM Ox enable communications interrupt
DESCRIPTION

The communications interrupt is used to interrupt a
'HSIC program so that immediate action is taken to
save a character received from the modem of the
system. If this action were not taken immediately, the
character would be lost. The 0K MO Z0SUE
command is first used to define a “processing”
subroutine for the interrupt. Normally this subroutine
would read in the character from the Mg file and
process or save it and then return to the interrupted
program. The 1D command allows the
communications interrupt to be enabled or disabled
by a DM 0K or MOM DFF — there are times when

the interrupt should be acted upon and other times

when it should be ignored. The MOM STOP

“remembers” the interrupt but allows the program to
ignore it until the next MOM (4, at which point the

interrupt subroutine is immediately called.

RELATED COMMANDS

O MDF, OFEM

SYSTEM

I, L

[

1, Disk

I, 12

i, VL

IH, LVL Il (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

® 0 0 © @ © © © © © 0 O

FORMAT
line#. .MEM. ..

EXAMPLES
FRIMT MEM
10060 FRIMT MEM display memory left

DESCRIPTION

MEHM is a special system function that computes the
amount of RAM memory currently available. The
BEASIC interpreter finds the amount of memory
used for BASIC programs, variables, arrays,
strings, stack, and reserved memory in upper RAM,
subtracts it from the maximum RAM initially
available and reports the result for the MEM
function. This MEr value changes “dynamically” as
new variables are added, string variables are
computed, and so forth. 11E11 may be used from the
command mode to find the size of a BRSIC
program indirectly (MEM before loading minus MEM
after loading) or in a ERSIC program to compare
the memory currently available with memory
required.

RELATED COMMANDS
FRE(Model 4)

SYSTEM

I, LVL I
I, LVvL 1l

1, Disk

i, 12

1, LVL

111, LVL HI (4, 4P)
1, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 e
Model 100, Disk o

FORMAT
MERL

line# MEML
EXAMPLES
1086 MEMLU

DESCRIPTION

MERL causes a return to the main menu and is
typically used at the end of a BASIC program. It
can be used in lieu of ERD when there is nothing
further than can be done in BRSIC.

RELATED COMMANDS
ErD

SYSTEM

I, VLI

I, LWL H

1, Disk °
I, 12 °
I, LWLt

11, LVL Il (4, 4P)
11, Disk (4,4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC. Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
MERGE “filename”
MERGE “filename’R (Color Computer)

EXAMPLES
MERGE **ACCOUNTS-BAS:1"" merge
accounts payable

DESCRIPTION

MERGE loads a BASIC program from disk and
appends it to the BASIC program in RAM. The
program specified in the MERGE command must be
in ASCII format. (It must have been SAVEd with the
“A" option.) The “filename" is a filespec for a
BASIC program stored on disk; it conforms to the
general requirements for filespecs - name,
extension, drive number, and password. In general,
the numbering of the program lines to be MERGEd
from disk and the program in RAM must be
mutually exclusive. If the line numbers are different,
the resulting program will be made up of the line
numbers from both programs in sequence. If any
line numbers are the same, the lines from the disk
program will replace the lines of the program in
RAM. The “R" option for the Color Computer runs
the program after the merge.

RELATED COMMANDS
LOAD, SAVE

SYSTEM

I, WLt

I, L

I, Disk

I, 12

", el

11, LVL 111 (4, 4P)
I, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC. Ext BASIC

CC, Disk

MC-10

Model 100 e
Model 100, Disk e

FORMAT

MERGE “device:filename”

MERGE “device:configuration”

EXAMPLES

MERGE **FAM:SECFILE®"

DESCRIPTION

MERGE loads a EASIC program from RAM, CAS,
COM, MDM, or disk and appends it to the BASIC
program in RAM. The program specified in the
MERGE command must be in ASCII format (the “A”
option in a SAYE). The “device” parameter is one
of the four mnemonics or a disk drive number. The
“filename” parameter is used for RAM, CAS, or disk
and is the same as the name under which the file
was originally saved. EASIC assumes an extension
of .DO for RAM or disk files. If a device is not
specified, BASIC assumes a RAM file. If the device
is CAS and no filename is specified, the first file
found on cassette will be loaded. Hf the device is
COM or MDM, a “configuration” string defines the
communications parameters. In general, the
numbering of program lines to be MERGEd from the
device file and the RAM file must be mutually
exclusive to avoid overwriting of the BASIC
program lines in RAM.

RELATED COMMANDS

SAYVE

SYSTEM

I, LV
e e
I, Disk ®
I, 12 °
1, e

1, LVL 11l (4, 4P) e
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT

line#...ID%(string,p,n)...

EXAMPLES

1000 AF=MIDE(BS,5,2) set A$ equal to the
5th and 6th characters of B§

1010 CHE=MIDE(EF,1,5] set CF equal to
LEFTH(E®.5]

DESCRIPTION

MIDE returns a “substring” within a larger string.
The “string” parameter is the larger string to be
used. The p parameter is the beginning position of
the substring and may be 1 through 255. The n
parameter is the length of the substring to be
created and may be 1 through 255. This command
takes the specified portion from the middle of the
larger string and creates a new string. Suppose we
have the string "MISSISSIPPI" for AS. Setting
EBE=MIDE(AE, L. 4), BF=MIDE (AT, 2, 4],
EF=MIDF(AT, 3,41, and BE=MIDF[AT,.5,4)
produces B$ of “MISS’, “ISSI" “SSIS'; and “IPPI",
respectively. If n is larger than the remaining
portion of the string, the entire remainder of the
string is returned. MID% is useful for processing
substrings located within larger strings for ease of
handling.

RELATED COMMANDS

LEFT%, RIGHT®

SYSTEM

I LL 1

1 LVL 11

I, Disk o
I, 12 o
i, VL

11, LVL 111 (4, 4P)
I, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC. Ext BASIC o
CC, Disk .
MC-10

Model 100 °
Model 100, Disk °
FORMAT

line# MID%(string,p,n)=replacement string...

EXAMPLES

100@ MIDE(A%,Y,5)=**9I3555° " change
to new ZIP

DESCRIPTION

MID$ normally returns a substring within a larger
string. MI1D%= uses MID% to find the substring and
replace it with a given string or portion of a given
string. The substring and replacement strings are
normally the same length. The string parameter is a
string variable containing the substring. The p
parameter is the beginning position of the substring
and may be 1 through 255. The n parameter is the
length of the substring. If A$ in the above example
was “COMPUTER CITY, CA 92692" and V was 19,
then the substring would be “92692" The MID%
function replaces the substring with the given string
if found. In this example, the new string would be
“COMPUTER CITY, CA 93555", if the replacement
string is greater than the length n, only n characters
of the replacement string will be used. If the
replacement string in the above example was
“93(;555-1234”, only the first 5 characters would be
used.

RELATED COMMANDS
MID®

SYSTEM

I, LVL I

I, en

1, Disk °
I, 12 ®
I, LWL

11, LVL 111 (4, 4P)
i1, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line#...mD%(double-precision variable)...

EXAMPLES
1060 AF=MKDS (A1 convert A# to string

DESCRIPTION

MIKD$ is used to convert a double-precision
numeric variable to a “string-type"” variable. MIKD#
is normally used to fill a random-access buffer with
data values (see LSET, RSET). The typical
sequence in filling a random-access buffer is to
define the fields in a random-access buffer with
FIELD, to convert numeric variables using MKD%
MIKI%, and MIKS$, to store the result with LSET
and RSET and other commands, and to write out
the buffer to disk. The MiKD% function converts a
given double-precision variable to an 8-byte string.
The 8 bytes of the string are the double-precision
encoding of the numeric data and do not represent
ASCII characters. They are simply a convenience in
storing the data in the random-access buffer. The
VD reconverts the data to numeric form on a
subsequent read. The MiKD$ command can also be
used to convert to a normal string variable, which is
unrelated to a random buffer field name. In this
case also, the string variable will be 8 bytes long.

RELATED COMMANDS
CvD, CVI, CvS, FIELD, MKI%, MKSS$,
LSET, RSET

SYSTEM

L VL

I, LVL I

i, Disk °
", 12 °
I, L

11, LVL Nl (4, 4P)
II, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line#...M1< 1 %(integer variable)...

EXAMPLES
1000 A$=MKIE (A% convert A% to string
DESCRIPTION

M<I% is used to convert an integer numeric
variable to a “string-type"” variable. MIKI% is
normally used to fill a random-access buffer with
data values (see LSET, RSET). The typical
sequence in filling a random-access buffer is to
define the fields in a random-access buffer with
FIELD, to convert numeric variables using Mi<D,
Mi<1%, and MKS%, to store the result with LSET
and RSET and other commands, and to write out
the buffer to disk. The MI<I% function converts a
given integer variable to a 2-byte string. The 2 bytes
of the string are the integer encoding of the
numeric data and do not represent ASCII characters.
They are simply a convenience in storing the data in
the random-access buffer. The CwI reconverts the
data to numeric form on a subsequent read. The
Mi<1$ command can also be used to convert to a
normal string variable, which is unrelated to a
random buffer field name. In this case also the
string variable will be 2 bytes long and be made up
of the numeric data of the integer variable.

RELATED COMMANDS
CVD, CVI, CVS, FIELD, MKDE, MKSE,
LSET, RSET

SYSTEM

I, VLI

I, LVL I

1, Disk

I, 12

1, VLI

11, LVL 1 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk °
MC-10

Model 100

Mode! 100, Disk

FORMAT
line#...MI<ME(variable)...

EXAMPLES '

1000 AS=MIKNS (A convert A to string
DESCRIPTION

MIKHE is used to convert a numeric variable to a
“string-type” variable. Mi<$ is normally used to fill
a direct-access buffer with data values (see LSET,
RSET). The typical sequence in filling a direct-
access buffer is to define the fields in a direct-
access buffer with FIELD, to convert numeric
variables using Mi<$, to store the result with
LSET and RSET and other commands, and to
write out the buffer to disk. The Mi<M# function
converts a given variable to a 5-byte string. The 5
bytes of the string are the binary encoding of the
numeric data and do not represent ASCI characters.
They are simply a convenience in storing the data in
the direct-access buffer. The [ZwM reconverts the
data to numeric form on a subsequent read. The
MiKNE command can also be used to convert to a
normal string variable, which is unrelated to a
buffer field name. In this case also, the string
variable will be 5 bytes long and be made up of the
numeric data of the numeric variable.

RELATED COMMANDS
CVN, FIELD, RSET, LSET

SYSTEM

I, LVL |

I, LVL i

I, Disk °
I, 12 °
11, VL

11, LVL 1 (4, 4P)
Il, Disk (4, 4P) o
4, 4P, Disk .
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT

line#...1I<S%(single-precision variable)...
EXAMPLES

1e0@ AF=MKSE(A) convert A to string
DESCRIPTION

1<% is used to convert a single-precision numeric
variable to a “string-type"” variable. MIK5% is
normally used to fill a random-access buffer with
data values (see LSET, RSET). The typical
sequence in filling a random-access buffer is to
define the fields in a random-access buffer with
FIELD, to convert numeric variables using Mi<D%,
MIKI%, and MKS$, to store the result with LSET
and RSET and other commands, and to write out
the buffer to disk. The MI<S% function converts a
given single-precision variable to an 4-byte string.
The 4 bytes of the string are the double-precision
encoding of the numeric data and do not represent
ASCH characters. They are simply a convenience in
storing the data in the random-access buffer. The
CvS reconverts the data to numeric form on a
subsequent read. The Mi<S% command can also be
used to convert to a normal string variable, which is
unrelated to a random buffer field name. In this
case also the string variable will be 4 bytes long.
RELATED COMMANDS

CvD, CVI, CVS, FIELD, MKD®, MKIE,
LSET, RSET

SYSTEM

I, LVL I

I, LVL It

I, Disk

1, 12 °
1, VL1

1, LVL 11 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk ®
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10 ’
Model 100 o T
Model 100, Disk e e

FORMAT
line# ...expression MOD expression...

EXAMPLES
1660 C=A MOD B

DESCRIPTION

MOD is a numeric operator that performs a
“modulus” arithmetic operation on two operands
and returns a result. The two operands involved
(constants, variables, or expressions) are converted
to two-integer operands. A modulus operation
divides the first operand by the second operand and
finds the remainder. The remainder is then returned
as the result of the modulus operation. If the first
operand is 100, and the second is 44, the result of
166 MOD 44 is the remainder of 100/44, or 12.
Modulus arithmetic is useful in such processing as
finding the “12-" or “24-hour clock” times (elapsed
hours MOD 12 or 24).

RELATED COMMANDS
None

SYSTEM

I, LVL i

I, LVL T

I, Disk

I, 12

1, LVL |

Hl, LVL 111 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC ®
CC, Ext BASIC o
CC, Disk °
MC-10

Model 100 °
Model 100, Disk e

FORMAT

MOTOR ON

line# MOTOR ON
MOTOR OFF
line# MOTOR OFF

EXAMPLES

1000 MOTOR ON
3000 MOTOR OFF

DESCRIPTION

MOTOR ON turns on the cassette motor by
activating the cassette “remote” output. The motor
will remain on until a MOTOR OFF command is
executed. MOTOR ON can be used to automatically
control the cassette motor for positioning or other
uses from within a BASIC program. (The motor is
automatically turned on, however, by the CLO&D
and CLOADM commands.) MOTOR OFF deactivates
the remote output and turns the cassette motor OFF.

RELATED COMMANDS
CLOAD, CLOADM

SYSTEM

I, VL1

I, LVL I

1, Disk

I, 12

1, LvL i

11, LVL 1li (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 e
Model 100, Disk e

FORMAT
HEME “oldfile” &3 ¢

EXAMPLES

newfile”

MEAME ¢ SFROGL™ T AS *SFROGZT

DESCRIPTION

MEME changes the name of a RAM or disk file. The
“oldfile” and “newfile” must be valid file names.
The “oldfile” name must exist and the “newﬁle’f
name cannot already exist. Both filenames require
extensions. If the files are disk files, then the
filename must be in the disk drive format of drive
number and colon, followed by the filename.

RELATED COMMANDS
None

SYSTEM

I, VLI

L

I, Disk

I, 12

1, LI

111, LVL HI1 (4, 4P)
i1, Disk (4, 4P)
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
HEME “oldfile” @5 “newfile”

EXAMPLES
MAME ©*PROGL®® AS ©*PROGZ7C

DESCRIPTION

MAME changes the name of a disk file. The “oldfile”
and “newfile" must be valid file names. The
“oldfile" must contain an extension if one is being
used in the filename. The “newfile” may be any
valid file name but must not have a password or
drive specification.

RELATED COMMANDS
None

SYSTEM

I, L

Lo

I, Disk

1, 12

1, VL

11, LVL 11 (4, 4P)
I, Disk (4, 4P) o
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
mC-10

Model 100

Model 100, Disk

FORMAT
NAME newline,startline,increment

EXAMPLES
NAME 106,306 ,5 from line L@@ with start of
300, increment of 5

DESCRIPTION

MAME renumbers the current BASIC program in
RAM. All line numbers in the program will be
changed to a new range of numbers, starting with a
given number, and with a given increment. This
includes not only statement line numbers at the
beginning of BASIC lines, but line numbers
referenced by GOTOs, GOSUES, THEMS,
OM...BOTOs, and OR. . . BOSUES. The newline
parameter is the starting line number of the
program after renumbering. The startline parameter
is the first line number of the current program from
which renumbering is to occur. The increment
parameter is the increment to be used between new
line numbers. All parameters are optional. Defaults
are 10 for “newline’ 10 for “increment’; and the
entire program for “startline’’ Commas can be used
for missing parameters, or NAME can be used by
itself without parameters to renumber the entire
program with new line numbers from 10 in
increments of 10.

RELATED COMMANDS
None

SYSTEM

L L

I, LWL H

I, Disk

I, 12

Hi, VLI

1, LVL 1M1 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT

HMEW
line# MEW

EXAMPLES
ME L erase old BASIC program

DESCRIPTION

ME I clears any current BASIC program in RAM,
resets all variables to 0, and generally reinitializes
all BASIC parameters. It does not affect non-
BASIC data, such as reserved memory areas for
machine-language programs. MELW should be used to
“erase” the current EASIC program in memory in
preparation for entering a new program from the
keyboard. NEL does not have to be used prior to
loading in a new BASIC program from disk or
cassette. MEI would not normally be used in a
BASIC program statement, as it produces
catastrophic results and destroys the program.

RELATED COMMANDS
None

SYSTEM

i, LVL 1

I, L

1, Disk

I, 12

1, L

I, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT

line# NEXT variable

line# NEXT

EXAMPLES

1006 FOR I=1 TO 10 loop 100 times

1910 PRINT I print variable

1820 NEXT I loop

DESCRIPTION

The NEXT command is used together with
FOR...TO...NEXT to set up and execute a
program loop. The FOR. .. TO...NEXT statement
defines the start, end, and increment values for a
variable “counter” used to determine the number of
passes through the loop. Any number of statements
may be placed between the FOR...TO...STEP
and NEXT statements. The variable in NEXT is
optional. Any number of FOR...TO...STEP
loops may be “nested’! In this case, the innermost
NEXT must always use the variable associated with
the innermost FOR. . . TO. . .NEXT statement.
The NEXT statement increments the loop variable
by the STEP size, and if the variable has not
exceeded the end value, control is returned back to
the FOR. . .TO...STEP statement. The loop may
be broken with a GOTO or similar transfer at any
time. The variable controlling the loop may also be
altered in statements other than the NEXT.
RELATED COMMANDS
FOR...TO...STEP

® 0 ©© 060 & 0000 9 © O

SYSTEM

I, VL
L °
I, Disk °
I, 12 °
I, L

11, LVL 111 (4, 4P) o
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC. Disk
mcC-10

Model 100

Model 100, Disk

FORMAT
line#...NO T (expression)...

EXAMPLES
1066 IF NOT (A<B) THEM PRINT
‘EHELP!”
1010 A=NOT(B-17 two's complement

DESCRIPTION

MOT is used as a relational operator and for bit
manipulation. In the first use, NOT tests a constant,
variable, or expression. If the expression is false,
then the MOT function is true. In the example
above, NOT (A<B) is true if variable A is greater or
equal to variable B. The THEHN action would not be
taken if A was less than B. In the bit manipulation
case, MOT is used to perform a one's complement
on an integer variable or end product of an
expression. A one’s complement operates on binary
values. It “inverts” each bit, changing a one to a
zero and a zero to a one. The MOT in this
application can be used to invert bits and perform
other bit-wise operations.

RELATED COMMANDS
AND, OR

SYSTEM

I, VLI

Ln

I, Disk

n, 12 °
I, e

1L, LVL 111 (4, 4P)
I, Disk (4, 4P)

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC
CC, Disk
Mc-10

Model 100

Model 100, Disk

FORMAT
line#...OCT $(expression)...

EXAMPLES
1@0@ PRINT OCT$(A) find octal value of A

DESCRIPTION

OCTs$isa special function that will convert a
constant, variable, or expression to a string that
represents the octal value of the argument.

OCT$ (1800), for example, will be converted to
the strmg “1750 Octal notation is used primarily
for machmg-language operations in specifying
addresses, instruction codes, and data values.

RELATED COMMANDS
&0

SYSTEM

I, LVL I

[T

I, Disk

i, 12

I, L1

11, LVL HI (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10]
Model 100 ° ¢
Model 100, Disk o ¢

FORMAT '
line# 0l COM GOSUE line#

AMPLES
Ec)zz(nfuz-s OF COM GOSUE SO06 setup com
interrupt

RIPTION '

?f\%scgmmunicatiorxs interrupt is used to interrupt a
Ef= 10 program so that immediate action 1S taken
to save a character received from the RS-232-C port
of the system. If this action were not taken
immediately, the character would be lost. The K4
CoM GOSUE command is first used to define a
“processing” subroutine for the interrupt. This
command is normally used once, at the beginning of
the program. Normally the subroutine defme_dwat '
line# would read in the character from the COi file
and process or save it and then return to the
interrupted program. The COIM command allows the
communications interrupt to be enabled or disabled
by a COp Ob or GO OFF — there are times
when the interrupt should be acted upon an_d o_th.er
times when it should be ignored. The COM STOF
“remembers” the interrupt but allows the program
to ignore it until the next COM Ok, at which point
the interrupt subroutine is immediately called.

RELATED COMMANDS

Cop, OFER

SYSTEM

I, L

Lo °
1, Disk °
1, 12 °
i, VL

HI, LVL 111 (4, 4P) o
INl, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e

FORMAT

line## OM ERROR GOTO line#

line# ON ERROR B0TO @

EXAMPLES

108 ON ERRDR GOTO 1066 define error-
processing routine

DESCRIPTION

ON ERROR GOTO is used to define the line
number of a user error-processing routine. Oh
ERROR GOTO should be defined early in the
program before errors can occur. After O ERROR
BOTO is executed with a valid fine number, the
user error-processing mode is in force, and all
errors that occur will cause a transfer to the line
number of the error-processing routine. The user
error-processing routine can be disabled by
executing an ON ERROR GOTO @ command.
Disabling user error-processing will return to the
BRSIC interpreter’s normal error action. The error-
processing routine normally contains code that will
detect the type of error (see ERR) and the line in
which the error occurred (see ERL), in addition to
code to report the error to the user and recommend
corrective action. In some cases, the normal ERSIC
error action will be reinstated (see RESUME).
RELATED COMMANDS

ERL, ERR, ERROR, RESUME

SYSTEM

I, LVt 1

I, LVL 1l

I, Disk

11, 12

1, Wil

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC. BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT

line# M expression GOSIE line# 1, line#
2..line# n

EXAMPLES

1 0K A GOSUE

1©, 400, SO0 does a BOSUE to

©® © 0 © © © 6 © 56 © © © 0 ©

if AX=2...

oo if (B-5)=1,
DESCRIPTION

This is a “computed GOSIUE" The quantity before
the ZOSUE may be a constant (trivial), variable, or
expression. The integer portion of the quantity is
found. If this is 1, 2, 3, etc., the first, second, third,
etc. line number is found and a GOSUE to the line
number performed. If the integer portion is 0, or
greater than the number of line numbers, the next
statement in sequence is executed. If the integer
portion is negative or greater than 255, an error
occurs. The computed S0SUE allows “branching
out” to a number of subroutines based on a single
variable:

1awa REM BRAMCH QUT OR MEMU
SELECTION 1-5

] Ok W GOSUE

2000, 2000, 4000 , SO0
1926 REM MOT 1-5 HERE OF RETURN POIMT
RELATED COMMANDS so0suB, oM. . E0TO

SYSTEM

I, VLI

I VL

I, Disk

I, 12

I, VL

11, LVL I (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC. Ext BASIC
CC. Disk

MC-10

Model 100

Model 100, Disk
FORMAT
line# ON expression GOTO line# 1, line#
2,..line# n

EXAMPLES

1609 ON AX GOTOD 160,200,300,400,500
does a GOTO to 19@ if AX=1, 200 if AX=2,...
2000 ON (B-5) GOTO

1000, 2000 , 3008, 234 does a GOTO to 1006
if (B-5)=1, 2000 if (B-5)=2,...

DESCRIPTION

This is a “computed GOTO". The quantity before
the GOSUB may be a constant (trivial), variable, or
expression. The integer portion of the quantity is
found. If this is 1, 2, 3, etc., the first, second, third,
etc. line number is found and a GOTD to the line
number performed. If the integer portion is 0, or
greater than the number of line numbers, the next
statement in sequence is executed. If the integer
portion is negative or greater than 255, an error
occurs. Normally the quantity would be a single
variable or expression. The computed GOTO allows
“branching out” to a number of lines based on a
single variable, such as a menu selection:

100@ REM BRANCH OUT ON MENU

SELECTION 1-5

1018 ON N BOTO

1009 ,2000, 3000, 4000 , 5000

1020 REM NOT 1-5 HERE

RELATED COMMANDS GOTO, ON...GOSUB

SYSTEM

I, VLl

I, VLl

I, Disk

11, 12

i, il

1, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100 °

Model 100, Disk e

FORMAT
line# O KEY GOSUE line# 1, line# 2,..line# n

EXAMPLES
1 f

BRE | ZORE 360
DESCRIPTION
The eight Function Keys may be programmed for
interrupts. After such programming, pressing a
Function Key will result in an immediate break to
the EASIC program being executed and a transfer
of control to a interrupt processing subroutine. The
interrupt processing subroutine will contain code to
perform any special function required. One example
might be display of the current time. After the
interrupt subroutine is done, control is returned
back to the BRS T program at the interrupt point.
The oW IKEY BOSUE command defines the
Function Key interrupt subroutines. From one to
eight BASIC line numbers are used after the

D, ..., E000

command, corresponding to the eight Function Keys.

Not all Function Keys must be defined. If a Function
Key has no corresponding interrupt, then a comma
is used in place of a line, or there is no line
number. The IKE% command is used to enable or
disable interrupts.

RELATED COMMANDS
KEY

SYSTEM

I, LVL I

I, L n

I, Disk

I, 12

11, LVL |

11, LVL 11l (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC. Disk

MC-10

Mode! 100 °
Model 100, Disk e

FORMAT

line# 14 MO GOSLE line#

EXAMPLES

1Eea Op 1Mor GOSUE SO0 setup modem
interrupt

DESCRIPTION

The modem interrupt is used to interrupt a EASIC
program so that immediate action is taken to save a
character received from the modem of the system.
If this action were not taken immediately, the
character would be lost. The Tt MOM EOSUE
command is first used to define a “processing”
subroutine for the interrupt. This command is
normally used once, at the beginning of the
program. Normally the subroutine quickly processes
the character or saves it and then returns to the
interrupted program. The MOt command allows the
communications interrupt to be enabled or disabled
by a FOM 0K or MOM OFF — there are times
when the interrupt should be acted upon and other
times when it should be ignored. The rDr STOF
“remembers” the interrupt but allows the program
to ignore it until the next MOM O, at which point
the interrupt subroutine is immediately called.

RELATED COMMANDS
MOM, OPER

SYSTEM

1, VLI

I, LVL I

1, Disk

I, 12

1, Ll

HI, LVL [(4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100 °

Model 100, Disk o J

FORMAT .
line# Or TIMES..G0SUE line#

EXAMPLES
1000 0N TIME$=**23:53:537 7 GOSUE
5000

DESCRIPTION

If the current time is entered into the system via a
TIME® command, then the system will keep track
of the current time continually. The 0K TIME®
GOSUE command provides for a system “interrupt”
at a designated time. When such an interrupt
occurs, the current EASIC will be interrupted and
a special interrupt processing subroutine will be
entered. The interrupt processing subroutine is
defined by the user and may perform any action
desired. The O TIMEF E0SUE command defines
the time of the interrupt and specifies the line
number of the interrupt processing subroutine. The
TIME® command enables or disables the TIME®
interrupt. The TIMES time string in the O
TIME® S0SUEB must be in the standard

S eHHzMM:S5 * format and contain eight
characters in 24-hour format.

RELATED COMMANDS
TIMES

SYSTEM

I, LI

oL

I, Disk °
1, 12 °
1, Ll

11, LVL Il (4, 4P)
111, Disk (4, 4P) e
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk °
MC-10

Model 100
Model 100, Disk

FORMAT
line# OPEN mode,buf# filename
line# OPEN mode,buf# filename,rec-length

EXAMPLES
leee OPEM “*0°° 1, **PAYABLE:1""
open payables file

DESCRIPTION

DPEN causes BRSIC to initiate, extend, or locate a
disk file, to establish a RAM buffer for disk
operations, and to establish a record length. The
mode parameter is a one-character string that
establishes the basic operation. “I" specifies
sequential input starting at the first record. “0"
specifies sequential output starting at the first
record. If the filename does not exist, a new file is
created. “E” (not used in the Color Computer.)
appends output to the end of an existing file {or
creates a new file). “R” (“D" in the Color Computer
for “direct-access” file) specifies random
input/output of a file. If mode is a constant, it must
be enclosed in quotes. The buf# parameter is a
numeric value specifying the buffer number. The
filename parameter is a standard file specification. A
constant must be enclosed in quotes. The rec-length
parameter is optional for the “R" mode. If not used,
256 bytes is used for the length.

RELATED COMMANDS
CLOSE

SYSTEM

1 LLI

I, VL i

I, Disk

", 12

1, Ll

11, LVL 11 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line# OFEN “device:filename” FOR mode A5 file#
line# OREN “COM:configuration” FOR mode AS file#
Ifine: OPEM “MDM:configuration” FOR mode AS

ile

line# CPEM “LCD:” FOR QUPLIT &S file#

line# OFPEN “LPT:” FOR QUTPUT AS file#
EXAMPLES

10600 OPEN **RAM:RECEY.EBA’ " FOR
QUTPUT RS 1

2009 OFEM **LPT:"” FOR QUTPUT AS 3
DESCRIPTION

OPEN causes ERSIC to initiate or extend a device
file. The devices are RAM, CAS, COM, LCD, LPT, MDM,
or CRT (disk system only). Device files may be read
from or written to in the case of RAM, CAS, COM,
MDM, or disk. LCD, LPT, and CRT files can only be
written to. Disk filenames must be preceded by a drive
(0: or 1). “Mode” is DUTPUT for a write,

THPUT for a read, or APPEMD for a write to the end
of an existing file. The “file#" parameter is a number
starting from 1 that relates a file with a file buffer. The
file # is used for many other EASIC commands
involving reading from or writing to the file. “Filename”
is used for RAM or CAS files to identify the file within
RAM or on cassette. The “configuration” string defines
communications parameters.

RELATED COMMANDS
INPUTH, PRINTH, LINE INPUTH,
INPUTS, PRINTH USING

© 0 0608 006008 60

SYSTEM

I, VL1

LLvL

I, Disk

", 12

HI, LVL I

11, LVL [(4, 4P)
111, Disk (4, 4P)

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk {

FORMAT
line# OFPTION BASE W

EXAMPLES
OFTION BRSE 1 set lowest sub to 1

DESCRIPTION

OPTION BASE sets the lowest value that an array
can have to N, either 0 or 1. You should use the
OFTIOM BASE command before any arrays are
used. Often you'd like to use only elements in arrays
numbered from 1 on for clarity, disregarding the Oth
element. In these cases, OFTIONM EASE @ should
be used to eliminate the Oth element in all arrays.
The default value is OFTIOM BASE @, which is in
force even if the OFTION EARSE command is

not used.

RELATED COMMANDS
LIm

SYSTEM

I, LVL I

I, VL 1

I, Disk

I, 12

I, LVL I

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line#...(expression) OR (expression)...

EXAMPLES

1000 IF (A<2) OR (B>5) THEN PRINT
fCHELPER?

1010 A=A OR 8 set bit 3

DESCRIPTION

DR is used as a relational operator and for bit
manipulation. In the first use, OR compares two
constants, variables, or expressions. If either
expression is true, then the OR function is true. In
the example above, (A<2) AND (B>5) is true if
variable A is less than 2 OR variable B is greater
than 5. The THEN action would only be taken if
either expression was true (expression 1 OR
expression 2). In the bit manipulation case, OR is
used to logically OR integer variable bits, considered
to be binary numbers. An OR of binary values
produces a 1 for each bit position if either operand
has a 1 bit in that bit position. An OR of the two
binary values 10100000 and 11001111 would
produce a result of 11101111. The OR in this
application can be used to test bits, set individual
bits, and perform other bit-wise operations.

RELATED COMMANDS
AND, NOT

SYSTEM

I, VLI

I, L n °

I, Disk o
I, 12

I, LVL 1

HI, LVL 11 (4, 4P) o
11, Disk (4, 4P) e

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 o
Model 100, Disk
FORMAT

line# QT portvalue
EXAMPLES

10 OUT 2585,2 turn Model I cassette on

1 OUT 255,1 turn Model | cassette off
1o30 GO0TO oo loop

DESCRIPTION

OUT is a command that outputs a one-byte value to
a system 1/0 port. Systems that use Z-80 or 8080
microprocessors use 1/0 ports for certain system
devices such as cassette or RS-232-C. The QUT
enables a EASIC program to directly output data
to these 1/0 ports. The port parameter is an address
value of 0 through 255 that defines the 1/0
address. The value parameter is a one-byte value of
0 through 255 that represents the data to be output
to the 170 port.

RELATED COMMANDS
THP

SYSTEM

I, LWL

1, LWL I

|, Disk

11, 12

M, L

11, LVL 111 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# PAINT(Xy).C,D

EXAMPLES
1000 PAINT (120,100),3,4 paint with
blue until red

DESCRIPTION

The PAINT command colors an area on a graphics
screen. The x,y coordinate defines a starting point
for the paint. The x,y coordinates are in “high-
resolution” coordinates of 0-255 and 0-191. The ¢
and b parameters are standard color code of 1
through 8 (green, yellow, blue, red, buff, cyan,
magenta, and orange). The ¢ parameter defines the
color for the paint; the b parameter defines the
“boundary” color. The painting will “spread out”
from the starting point until the specified boundary
color is encountered . If the boundary color is not
found, or if it does not completely contain the
PATINMT area, the PAINT operation will continue
over the entire screen (or until a proper boundary
condition).

RELATED COMMANDS
None

SYSTEM

I, VLI

L

I, Disk

I, 12

", L

HI, LVL 111 (4, 4P)
H1, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk e
MC-10

Model 100

Model 100, Disk

FORMAT
line# PCLERR n

EXAMPLES
line# PCLERR B clear 8 graphics pages

DESCRIPTION

PCLERR reserves n number of graphics pages. The
graphics pages are separate from the text screen in
the Color Computer. Each graphics page is 1536
bytes long, and up to 8 pages may be used for
display of graphics data. Depending upon the
PMODE in force, anywhere from 1 to 4 pages may
be on display at any time; the remaining pages are
used as storage for additional graphics data. The
starting page number may be changed by the
PMODE command. If PCLEAR is never executed,
the default number of graphics pages reserved is 4.
PCLEAR does not clear the graphics pages (see
PCLS).

RELATED COMMANDS
PCLS, PMODE, SCREEN

SYSTEM

I, LVL I

I, L

1, Disk

i, 12

1, WLl

11, LVL LIl (4, 4P)
11, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC @
CC, Disk °
MC-10

Mode! 100

Mode! 100, Disk

FORMAT
line# PCLS color

EXAMPLES
100® PCLS & clear the screen to orange

DESCRIPTION

PrLs is the Extended Color BRSIC equivalent of
the CLS command. it clears the current graphics
screen with the specified color. Valid colors are 1
through 8, representing green, yellow, blue, red,
buff, cyan, magenta, and orange, respectively. The
color specified must be in the color set currently
selected. If the color selected is not in the current
color set, the screen will be cleared to a
“corresponding” color in the current color set.
PCLS & while in color set 0, for example, will clear
the graphics display to red if in a four-color mode.
PCLS & while in color set 0 and a two-color mode
will clear the graphics screen to black. The graphics
screen does not have to be on display for the PCLS
to take effect. As the graphics pages are separate
from the text screen, they can be cleared
independently.

RELATED COMMANDS
SCREEN

SYSTEM

f, LVL |

I, VL

1, Disk

1, 12

1, i

11, LVL 111 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Mode! 100, Disk

FORMAT
line# PCOPY nTOm

EXAMPLES
1000 PCOPY 1 TO B

DESCRIPTION

PCOPY is used to copy the contents of one graphic
page to another graphics page. There are 8 graphics
pages in Extended Color BASIC in the Color
Compute{, numbered 1 through 8. Any page may be
copied to another page for purposes of initialization
or temporary storage. PCOPY copies only the 1536
bytes of one page (n) to another (m). If the graphics
mpde in force uses more than one page for graphics
display, then more than one PCOP' may have to
be done to display all of the graphics data. The
“source” page, the page to be copied, remains
unaltered after the copy.

RELATED COMMANDS
PMODE

SYSTEM

I, VLI
I L e
I, Disk °
1, 12

1, WL

11, LVL 111 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC. BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

¢ © © 0 © © © @ ©

Model 100, Disk

FORMAT
line#...PEE < (expression)..

EXAMPLES

1606 FOR I=31000 TO J1000+14 set up
loop A

1016 FRINT PEEK(I) print byte

1@2@ NEXT I continue

DESCRIPTION

PEEI< is a function that allows you to look at a byte
of memory in ROM, RAM, or “memory-mapped” 1/0
device. It returns the contents of a single memory
location whose address is specified by a constant,
variable, or expression within parentheses after the
FEEI. As all memory locations in the TRS-80
systems contain 8 bits or one byte of data, the
contents will be a value from 0 through 255. PEEK
can be used in conjunction with PQOIKE to process
bytes of memory for combining BASIC programs
with machine-language programs. PEEI< can also be
used to examine certain 1/0 devices whose
addresses simulate memory locations.

RELATED COMMANDS
POKE

SYSTEM

I, VLI

Lo

I, Disk

I, 12

1, Ll

Hi, LVL 111 (4, 4P)
I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, ExtBASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# FLAY string

EXAMPLES
1006 PLAY **Ci;0:;E;F:G63A3B:C°" play
scale

DESCRIPTION

FLAY plays a string of musical notes with control of
frequency, note length, tempo, volume, and pauses.
The “string” argument is a string constant or
variable that defines the FLA operations. The
general format is a series of “subcommands”
separated by semicolons. The letters from A through
G specify note value subcommands. A suffix of “+",
“#" indicates a sharp, and “-" indicates a flat. (A#
is A sharp.) N1 through N12 also indicate note
values. O followed by 1 through 5 indicate the
octave. L followed by 1 through 255 indicates the
note length (1 is a whole note, 2 a half note, 4 a
quarter note, etc.) T followed by 1 through 255 is
tempo, slow to fast. V followed by 1 through 31 is
volume, low to high. P followed by 1 through 255 is
pause length. Substrings may be executed by X
followed by substring to be executed.

RELATED COMMANDS
None

SYSTEM

I, VL I

I, e

I, Disk

I, 12

1, it

111, LVL 1l (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, ExtBASIC e
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# FIMODE mode,start-page

EXAMPLES
1Pee PMODE 3,1 select PMODE 3, start-page 1

DESCRIPTION

FMOCE is used to select the graphics resolution
and starting graphics page number in Extended
Color Basic. The mode parameter selects one of 5
modes, numbered 0 through 4. The resolution of the
graphics screen increases with the mode number.
Mode 0 is a two-color 128 by 96 mode, mode 1 is a
four-color 128 by 96 mode, mode 2 is a two-color
128 by 192 mode, mode 3 is a four-color 128 by
192 mode, and mode 4 is a two-color 256 by 192
mode. The color set displayed depends upon the
SCREEM command. Two-color modes display black
on green (set 0) or black on buff (set 1). Four-color
modes display green, yellow, blue, red (set 0) or
buff, cyan, magenta, orange (set 1). The start-page
may be any graphics page from 1 to 8. The FMOCE
command does not cause a display of the graphicg
page; SCREEN sets either a text display or graphics
data.

RELATED COMMANDS
SCREEH

SYSTEM

I, VLI °
I, VLI ®
I, Disk °
I, 12

1, Ll °
HI, LVL HI (4, 4P)
11, Disk (4, 4P) o
4, 4P, Disk

CC, BASIC .
CC, Ext BASIC e
CC, Disk e
MC-10 °
Model 100

Model 100, Disk
FORMAT

line# POINT(XY)
EXAMPLES
101le A=POINT{E3,31] read contents of pixel
DESCRIPTION

Model I/1ll: FOTIMT is used to test one graphics
“pixel” There are 6144 pixels, divided up as 128
horizontal elements by 48 vertical elements. The
FOINT command tests one of these pixels for “on”
or “off” status. Each of the 6144 pixels can be
uniquely tested. The x coordinate specifies the
horizontal position of 0-127. The y coordinate
specifies the vertical position of 0-47. If the point is
“on’l POTMT returns a -1. If the point is “off”
POINT returns a 0.

Color Computer and MC-10: POINT is used to test
one graphics “pixel” for “off” or “on" There are
2048 pixels, divided up into 64 horizontal elements
by 32 vertical elements. The x coordinate specifies
the horizontal position of 0-63. The y coordinate
specifies the vertical position of 0-31. If the point is
“off) a 0 is returned. If “on” in the graphics mode,
the color code of 1 through 8 (green, yellow, blue,
red, buff, cyan, magenta, orange) is returned. If in
the character mode, a -1 is returned.

RELATED COMMANDS
CLS, RESET, SET

SYSTEM

I, VL1
I, Ll °
1, Disk °
I, 12

1, LWL

111, LVL U1 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line#...FOIKE expression,value...

EXAMPLES
10060 FOR 1=31000 TO 31000+14 set up

© 0 ©6 © @ © © 6 O

POKE TI,® clear bytes
1026 MEXT T continue

DESCRIPTION

POKE is a function that allows you to store data in
memory locations in RAM, or “memory-mapped” 1/0
devices. A value of 0 through 255 is stored in the
memory location specified by a constant, variable,
or expression. As all memory locations in the TRS-80
systems contain 8 bits or a byte of data, values
greater than 255 are not valid. POKE can be used
in conjunction with PEEK to process bytes of
memory for combining BASIC programs with
machine-language programs. POKE can also be
used to output to certain 1/0 devices whose
addresses simulate memory locations.

RELATED COMMANDS
FEEK

|

SYSTEM

I, LVL 1

I, LVL 1l °
I, Disk °
fl, 12 °
HI, LVL I

HI, LVL III (4, 4P)
1, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

L]

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

(]

FORMAT
line#...FOS(dummy)...

EXAMPLES
1000 PRINT Vi TAE(FOS(O1+31 insert 3
spaces

DESCRIPTION

P03 is a function that returns the current cursor
position of the video display, from Q through 63
(Model 1/111), O though 79 (Model I, 12, Model 4}, 0
through 31 (Color Computer), or 0-39 (Model 100).
POS may be used for columnization or word-
processing applications.

RELATED COMMANDS
None

SYSTEM

I, L1

I, VLI

1, Disk

I, 12

m, et

HI, LVL It (4, 4P)
111, Disk (4, 4P)

4, AP, Disk

CC. BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 o
Model 100, Disk e

FORMAT
POMEFR OFF
line# POWER OFF ,RESUME
FOWER COMT
FOWER expression
EXAMPLES
1@ POWER 26 set automatic power down
DESCRIPTION
POWER controls the automatic power down feature
of the system. The system draws least power when
it is in the off condition and an automatic power
down feature preserves battery life. The default
value for the automatic power down is 10 minutes;
if left unattended for this period, the system will
turn itself off. This period can be changed by the
FrWER command with a numeric value. Each count
of the numeric value is 1/10 minute. A FOWER 2@,
for example, changes the power down period to
20/10ths of a minute or two minutes. A FOMWER
COMT disables the automatic power down feature of
the system — the system will never shut itself off
after this command. The FOMER DFF command
turns off the power immediately. The FOMER
OFF ,RPESUME option of this command causes the
system to resume execution at the next statement
when the power is again turned on.
EELATED COMMANDS

one

SYSTEM

I, LVL 1

I, LVL Il

1, Disk

1, 12

HI, LVLI

11, LVL I (4, 4P)
11, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC e
CC, Disk °
MC-10 ;
Model 100 0
Model 100, Disk :

FORMAT
line# PPOINT(Xy)

EXAMPLES
1660 PPOINT (128,36 test middle element

DESCRIPTION

PPOINT is used to test one graphic element on the
current graphics page. The “x” and “y" parameters
define the horizontal and vertical element numbers,
respectively. The x value can range from 0 through
255; the y value can range from 0 through 191. The
coordinates specify an element in the highest
graphics resolution of 256 by 192 elements. The
actual area tested depends upon the current
PMODE resolution for graphics. The element will be
tested even if the current display is of the text
page. PPOINT returns the color code for the
graphics element defined by x and y. Color codes
are 1 through 8 defining colors of green, yellow,
blue, red, buff, cyan, magenta, and orange.

RELATED COMMANDS
PRESET, PSET

SYSTEM

I, VL1
1, VL

!, Disk

1, 12

", el

1, LVL 111 (4, 4P)

11, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC o j’
CC, Disk L
MC-10 i~
Model 100 v
Model 100, Disk

FORMAT
line# PRESET (x,y)

EXAMPLES
190@ PRESET (129,96) reset middle dot

DESCRIPTION

PRESET is used to reset one graphic element on
the current graphics page. The x and y parameters
define the horizontal and vertical element numbers,
respectively. The x value can range from 0 through
255; the y value can range from 0 through 191. The
coordinates specify an element in the highest
graphics resolution of 256 by 192 elements. The
actual area reset depends upon the current PMODE
resolution set for graphics. The element will be reset
regardless of the display of the current page. The
color used for the reset action is the current
background color. If SCREEN has specified the text
page, no action will be seen, but the PRESET
action has occurred. “PRESET" is also used in the
LINE command, where it means “draw the line or
box in current background color’, effectively
“resetting” the line.

RELATED COMMANDS
LINE, PSET

SYSTEM

I, VL1
I, VLl

I, Disk

12

1, LV

HI, LVL 1T (4, 4P)
1, Disk (4, 4P)
4, 4P, Disk

CC. BASIC

CC, Ext BASIC
CC, Disk
MC-10
Model 100 o i
Model 100, Disk o

FORMAT
line# FRESET (x,y)

EXAMPLES
1006 PRESET (120,321 reset middle pixel

DESCRIPTION

FRESET is used to reset one pixel on the screen.
The x and y parameters define the horizontal and
vertical element numbers, respectively. The x value
can range from 0 through 239; the y value can
range from 0 through 63. PRESET can be used at
any time, even though text characters also occupy
the screen. Figures are drawn by a succession of
properly oriented pixels set by PSET and reset by
FRESET commands.

RELATED COMMANDS
FSET

SYSTEM

I, VLI

I, LVL 1

I, Disk

I, 12

IH, LVL I

11, LVL HI (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

® © o & © 06 0 0 0 0 O O 0 O

Model 100, Disk

FORMAT
line# PRINT item list

EXAMPLES

1006 PRINT ¢ “THIS IS THE

RESULT ®*?;RS, “*N="":N

DESCRIPTION

PRINT is used to display a list of items on the
video display. The items are generally printed on
one line or a portion of one line. The items may be
string literals (text), string variables, or numeric
variables. Commas may be used between the items
to tab to the next print zone, or semicolons may be
used to avoid spaces between items (see ", and
). The example above prints one line of “THIS
IS THE RESULT XXX N= XXX') where XXX
represents the value of variables RS and N. There
may be any number of items in the list, compatible
with the maximum BASIC line length. Positive
numbers are printed with a leading and trailing
blank. Negative numbers are printed with a minus
sign and trailing blank. Strings are printed with no
leading or trailing blanks. If the last item in the item
list is terminated by a semicolon, the next PRINT
Ist?trtsﬁfrom the point at which the current PRINT
eft off.

RELATED COMMANDS

£ Y Gk
" L] ’

SYSTEM

I, VLI

IoLvL il

I, Disk

1, 12

11, Lt

111, LVL 111 (4, 4P)
{11, Disk (4, 4P)
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line# FRIMTE (R, 1.item list

EXAMPLES
loee PRIMTE (12,327, **SCREERN
CEMTER™®

DESCRIPTION

FRIMT® (R.,C7 performs an identical function to
PRIMTE — it displays the values of variables or
strings at a specified location on the screen. In this
command, however, the location on the screen is
given in row, column coordinates. The R parameter
is a value from 0 through 23 and defines a row or
screen line. The C parameter is a value from 0
through 79 and defines a character position within
the row. The remainder of the statement is an item
list identical to the FRIMT command. Numeric
variables, string variables, or literal values may be
specified in the list. Commas between items result in
tabs to the next print position. Semicolons between
items avoid spaces between items.

RELATED COMMANDS
FRINT

SYSTEM

1, VL1

I, LVL I

1, Disk

1, 12

1, i

11, LVL 11 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10 i{ A
Model 100 ° i S
Model 100, Disk o

FORMAT

line# FRIMTH file#, item list
line# PRIMTH file#, USIHG “string”item list

EXAMPLES
1060 PRINTHI,A.B,C,0F output values

DESCRIPTION

PRIMNTH performs a write to the file associated
with the “file#"" parameter. The file must have been
previously OPEMed. The OFENM command specifies
a buffer number for the device file and this buffer
number is used in the FRIMTH command.
FRIMTH is similar to the display output of FRINT,
except that the items go to a device file. The items
may be any number of numeric or string variables.
All items are transformed into character strings and
written to the device file. If commas are used to
separate the items, spaces for tabs will be written. If
semicolons are used, no spaces will be written. The
USIMG option outputs the list in the format
specified by the USTHS string. The format is
identical to that used in PRINT USING.

RELATED COMMANDS
PRINT USING, PRINT

SYSTEM

I, LVL I

I, LVL 11

1, Disk °
I, 12 °
I, VL

1, LVL 111 (4, 4P)
I, Disk (4, 4P) "o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT

line# FPRINTHbUK item list

line# PRINTH buf#,USING stringitem list
EXAMPLES

1000 PRINTHI,A:E:CT output to file
DESCRIPTION

PRINTH performs a write to a sequential disk file.
The file must have been previously OFEed. The
OPER command specifies a buffer for the file name,
and this buffer number is used in the PRINTH
command. FRIMTH outputs a list of items to the
buffer (file). The items may be any number of
numeric or string variables. All items are
transformed into character strings and written to the
disk buffer. The PRIMTH output to the file is
similar to the display output of PRINMT. If commas
are used to separate the items, spaces for tabs will
be written. If semicolons are used, no spaces will be
used between items. String variables should use
CHR$ (34 to bracket the variables with double
quotes if the string variables contain delimiters such
as commas or semicolons; otherwise string variables
can be used in the list as required. The USING
option outputs the list in the format specified by the
USINGS string. The format is identical to that used
in PRINT USING.

RELATED COMMANDS

PRIMT USING

SYSTEM

I, VLI °
I, LVL 1l

I, Disk

I, 12

I, LVL |

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line# PRINTH,item list

EXAMPLES
1000 PRINTH,A,B,CH, © < *x#x

DESCRIPTION

PRIMNTH outputs the specified item list fo cassette
tape. The cassette tape must have been positioned
to the proper point for file output. PRINTH is
similar to the PRINT display statement. It outputs
character strings to the cassette after converting
numeric variables. Any number of items may be
used in the item list in any combination of
constants, numeric variables, string literals, or string
variables. Each item must be separated by a
delimiter of a comma or semicolon. The maximum
length of characters output to tape must not exceed
248; this is a function of the number and lengths of
items in the list. ltems output to a cassette file can
be read in by the INPUTH command; input must
be in the same sequence as output.

RELATED COMMANDS
INPUTH,PRINT

SYSTEM

I, LVLI

I, LVL I °

I, Disk ®

I, 12

I, LVL I

I, LVL Il (4, 4P) o

i1, Disk (4, 4P) "o

4, 4P, Disk

CC, BASIC °

CC, Ext BASIC ®

CC, Disk °

MC-10

Model 100

Model 100, Disk

FORMAT

line# PRINTH-1,item list
EXAMPLES

1009 PRINTH-1,A,B,C%, « “x#xx7"
DESCRIPTION

PRINTH-1 outputs the specified item list to
cassette tape. The cassette tape must have been
positioned to the proper point for file output.
PRINTH-1 is similar to the PRINT display
statement. It outputs character strings to the
cassette after converting numeric variables. Any
number of items may be used in the item list in any
combination of constants, numeric variables, string
literals, or string variables. Each item must be
separated by a delimiter of a comma or semicolon.
The maximum length of characters output to tape
must not exceed 248; this is a function of the
number and lengths of items in the list. ltems
output to a cassette file can be read in by the
INPUTH-1 command; input must be in the same
sequence as output.

RELATED COMMANDS
INPUTH-1,PRINT

SYSTEM

I, L

I LVL

1, Disk

1, 12

i, el

HI, LVL 1T (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC. BASIC °
CC, Ext BASIC o
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# PRINTH-Z, item list

EXAMPLES

1606 PRINTH-2, *“THIZ IS THE
RESULT™ " ;RS, ““N="":HM

DESCRIPTION

PRIMTH-2 is used to print a list of items on the
system line printer. PRINTH-2 is the line printer
equivalent of the video display FRINT command.
The items may be string literals (text), string
variables, or numeric variables. Commas may be
used between the items to tab to the next print
zone, or semicolons may be used to avoid spaces
between items (see “," and “;"). There may be any
number of items in the list, compatible with the
maximum BRSIC line length. Positive numbers are
printed with a leading and trailing blank. Negative
numbers are printed with a minus sign and trailing
blank. Strings are printed with no leading or trailing
blanks. If the last item in the item list is terminated
by a semicolon, the next PRINT starts from the
last PRINT position. There are certain codes
unique to various line printers which control line
feeds, expanded printing, and special functions.
These may be embedded in the item list by use of
CHRS or STRINGS.

RELATED COMMANDS
“!’,’ 55;55’F|RII\JT

SYSTEM

I, Ll

Lowen °
I, Disk °
H, 12

1, WL

1, LVL 111 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100
Model 100, Disk

FORMAT
line# PRINTH-2,item list

EXAMPLES
1000 PRINTH-2,A,B,C%, « ¢xxxx">

DESCRIPTION

PRINTH-2 is identical to PRINTH-1 except that
it is used for the second cassette of the system.
PRINTH-2 outputs the specified item list to
cassette tape. The cassette tape must have been
positioned to the proper point for file output.
PRINTH-2 is similar to the PRINT display
statement. It outputs character strings to the
cassette after converting numeric variables. Any
number of items may be used in the item list in any
combination of constants, numeric variables, string
literals, or string variables. Each item must be
separated by a delimiter of a comma or semicolon.
The maximum length of characters output to tape
must not exceed 248; this is a function of the
number and lengths of items in the list. Items
output to a cassette file can be read in by the
INPUTH-2 command; input must be in the same
sequence as output.

RELATED COMMANDS
INPUTH-2,PRINT

SYSTEM

I, VLI

L °

I, Disk 4

I, 12 N

HI, LVl

1L, LVL Il (4, 4P) @

I, Disk (4, 4P) o

4, 4P, Disk °

CC, BASIC °

CC, Ext BASIC o
o
L]
®
o

CC, Disk
McC-10

Model 100
Model 100, Disk

FORMAT

line# PRINT @position,item list

EXAMPLES

1000 PRIMT @128, **THIS IS THE
RESULT "7 sRS,*“H=""3H

DESCRIPTION

PRIMT @ is used to display a list of items on the
video display at a specified starting location. The
items may be string literals (text), string variables,
or numeric variables. Commas may be used between
the items to tab to the next print zone, or
semicolons may be used to avoid spaces between
items (see “," and *;"). The Model | and I have
1024 print positions; each line starts with a multiple
of 64. The Models II, 12, and 4 have 1920 print
positions; each line starts with a multiple of 80. The
Color Computer and MC-10 have 512 print positions;
each line starts with a multiple of 32. The Model
100 has 320 print positions; each line starts with a
multiple of 40. Print positions are numbered starting
from 0. There may be any number of items in the
list, compatible with the maximum EASIC line
length. Positive numbers are printed with a leading
and trailing blank. Negative numbers are printed
with a minus sign and trailing blank. Strings are
printed with no leading or trailing blanks.

RELATED COMMANDS “<.’’. **;’7, FRINT

SYSTEM

I, VLI ®
e

I, Disk

11, 12

1, Wi e
I, LVL 11t (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC. BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line# PRINT AT position,item list

EXAMPLES
1000 PRINT AT 128, “*THIS IS THE
RESULT * 73RS, ““N=""3;N

DESCRIPTION

PRINT AT is used to display a list of items on the
video display at a specified starting location. The
items are generally printed on one line or a portion
of one line. The items may be string literals (text),
string variables, or numeric variables. Commas may
be used between the items to tab to the next print
zone, or semicolons may be used to avoid spaces
between items (see “," and *;"). In the example
above, the message is printed beginning at print
position 128. The Model | has 1024 print positions;
each line starts with a multiple of 64. There may be
any number of items in the list, compatible with the
maximum BASIC line length. Positive numbers are
printed with a leading and trailing blank. Negative
numbers are printed with a minus sign and trailing
blank. Strings are printed with no leading or trailing
blanks. If the last item in the item list is terminated
by a semicolon, the next PRINT starts from the
point at which the current PRINT left off.

RELATED COMMANDS
E,’! 6&.7’ PPITJT

SYSTEM

I LVLI

I, VL1 °
I, Disk °
I, 12 .
HI, VLI

fil, LVL Ili (4, 4P) e
[, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC o
CC, Disk °
MC-10

Model 100 o

Model 100, Disk o

FORMAT

line#t PRIMT USING string: item list
EXAMPLES

100e AF=* =254 148 . 88 DOLLARS® * define
string

1010 PRIMT USIHG A%; TOTAL print check
DESCRIPTION

FRIMT USIMG is used for displaying special
formats, primarily dollar amounts and accounting
values. The string parameter is a literal or variable
string that defines the format to be used in the
display. The item list is a list of numeric or string
variables that define the items to be printed. If
there is more than one item, all items will be
printed in the format defined by the string. The
string uses “field specifiers” to define certain
formats. A “#" specifies a digit position. A “." is a
decimal point position and is printed in the position
specified. A “,”" is printed in the position specified.
Asterisks (*} fill unused positions left of the decimal
with asterisks. “$$" or “**$" indicate a floating
dollar sign, printed before the number. The string
URESHIE LA DOLLARS” used with variable
A=96654.678 generates *$96,654.68 COLLARS.
Other specifiers include up arrows, plus sign, minus
sign, %spaces%, and exclamation point.

RELATED COMMANDS LFRINT USIHE

SYSTEM

I, VL

I, LVL 1

I, Disk

I, 12

I, LVL I

11, LVL HI (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC °
CC, Disk °
MC-10

Model 100
Model 100, Disk

FORMAT

line# PSET (xy.c)

line# FSET (xy)

EXAMPLES

1000 PSET (129,396,531 set middle dot to
blue

DESCRIPTION

FSET is used to set one graphic element on the
current graphics page. The x and y parameters
define the horizontal and vertical element numbers,
respectively. The x value can range from 0 through
255; the y value can range from 0 through 191. The
coordinates specify an element in the highest
graphics resolution of 256 by 192 elements. The
actual area set depends upon the current PHODE
resolution set for graphics. The color parameter, c,
may be any valid color number of 1 through 8
(green, yellow, blue, red, buff, cyan, magenta, and
orange). Again, valid color codes depend upon the
FIMODE mode. The ¢ parameter is optional; if ¢ is
omitted, the current foreground color is used. If
SCREEM has specified a text page, no action will
be seen, but the PSET action has occurred.
“PSET” is also used in the LLTMHE command, where
it means “draw the line or box in current
foreground color”

RELATED COMMANDS
LINE, PRESET

SYSTEM

I, LVL I

I, LVL 1

I, Disk

I, 12

mn, it

H1, LVL 11 (4, 4P)
I, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk o

FORMAT
line# FSET (x.y)

EXAMPLES
1060 FSET (120,32 set middle pixel

DESCRIPTION

FSET is used to set one pixel on the screen. The x
and y parameters define the horizontal and vertical
element numbers, respectively. The x value can
range from 0 through 239; the y value can range
from 0 through 63. FSET can be used at any time,
even though text characters also occupy the screen.
Figures are drawn by a succession of properly
oriented pixels set by FSET and reset by FRESET
commands.

RELATED COMMANDS
FRESET

SYSTEM

I, WL

I, LVL 11

I, Disk °
I, 12 ®
I, LvL i

11, LVL 111 (4, 4P)
[Hl, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# PUT buf#
line# PUT buf# rec#

EXAMPLES

1666 PUT 3,100 output 100th record
DESCRIPTION

PUT is used to output a random-access fife record
to disk. A random-access file allows records to be
read or written on a random basis (not in
sequence). The PUT outputs the contents of the
current record as the next record in sequence or as
the specified record number of the random file. The
“current record” is the entire buffer contents if the
record length defined by the OPEN was 256, or a
portion of the buffer if the record length was less
than 256. Prior to the PUT, an OPEN with the “R"
option must have been executed. The OPEN defines
the filename and buffer associated with the file, and
the file length. The PUT buf# form of PUT outputs
the current record in the buffer as a record whose
number is one higher than the last access. If no
record has been written, this becomes the first
record of the file. The second form of PUT writes
the current record as the specified record number
defined by “rec#"

RELATED COMMANDS
GET

SYSTEM

I, VLI

I, LVL H

I, Disk

1, 12

1, Wi

111, LVL 111 (4, 4P)
IHl, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC °
CC, Disk e
MC-10

Model 100

Model 100, Disk

FORMAT
line## PUT(x1,y1)-(x2,y2)array name,action
EXAMPLES
1000 PUT
(205,141)- (255,191 ,AR,PSET
DESCRIPTION
GET stores any rectangular area on a graphics
screen in a two-dimensional array. A PUT later
retrieves the graphics data from the array and
displays it in any other area of the graphics screen.
GET~PUT can be used to save portions of a
graphics screen or to create animation effects. The
x1,y1 coordinates define one corner of the screen
area for the PUT operation; The x2,y2 coordinates
define the opposing corner. The x1,x2 and y1,y2
values are in “high-resolution” graphics coordinates
of 0-255 and 0-191, respectively. The “array name”
is the name of a two-dimensional array previously
filled by a GET statement. In general, the PUT area
must be equal to the dimensions of the GET area.
The “action” option is PSET, PRESET, AND,
OR, or NOT. If a “G” option was used in the GET,
then an action item must be used in the PUT.
PSET transfer the data in the same way, PRESET
inverts the colors, and AMD, OR, and NOT can be
SS?d to perform logical operations on the graphics
ata.

RELATED COMMANDS GET

SYSTEM

I, VL1

I, LV °
I, Disk e
1, 12 °
1, LWL

I, LVL HI (4, 4P) e
I1l, Disk (4, 4P) e
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line# RANMDOM

EXAMPLES

100@ RANDOM “reseeds” the random number
generator for RND

1o1@ PRIMT RND(10@): G0TO 1016 print
list of random numbers from 1 to 100

DESCRIPTION

FAMNDOM initializes the random number generator
for the RHD function. The RO function is used to
generate pseudo-random numbers from 0 to N.
Pseudo-random numbers are “repeatable” numbers,
that is, the same sequence of numbers is repeated
from the same starting number. If RAMDOM is never
used, the same sequence of numbers will be
generated on system power up or restart. The
sequence will be quite long, but RAMDOM ensures
that a true random starting point is used for an
unpredictable sequence of numbers.

RELATED COMMANDS
RO

SYSTEM

I, LVL

I, LVL 1l

I, Disk

", 12

I, VL1

I, LVL [II (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT
line# READ variable 1, variable 2, variable
3,...variable N

EXAMPLES

1000 READ A,E, XY reads three numeric values
1010 READ 2%, XxX% reads two integer values
10620 RERD R%,B% reads two strings

DESCRIPTION

READ reads a value or values from a DATA list.
The variables in the REARD are set to the next
values in the DATA list. The variable types in the
DATA list must correspond to the variable types in
the READ statement. Variable types in the RERD
statement may be intermixed as long as they appear
that way in the DATA list. The following statements
read 5, 13, ORANGE into variables X, Y, and XY$,
and then read -37, 2, and BANANA into variables A,
B, and B$.

108@ DATA 5,13,0RANGE, -37, 2, BANAMNA
establishes list

101@ READ x,%,XY$ reads first three values
1020 READ A,B,B% reads next three values

RELATED COMMANDS
DATA, RESTORE

SYSTEM

I, VLI

L LVLH

I, Disk

I, 12

1, el

11, LVL 111 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

® ©6 0 6 06 2 © 0 © © © 6 © O

FORMAT
line# REM

EXAMPLES

1eee REM THIS FPROGRAM SEGMENT IS A
SORT

1@le REM IT SORTS TWO-D ARRAY 22

DESCRIPTION

REM is an abbreviation for “remark’. The REM
command may be followed by descriptive text
defining the program statements. REMarks “text"” is
not executed, but does take up EASIC program
space. As many RENMs as required may be used.
Delete the REM statements in the final program
version to save program space and increase
program execution speed.

RELATED COMMANDS

SYSTEM

I, VL |

I, LVL I

1, Disk

i, 12

H, VLI

11, LVL 111 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk ®
MC-10

Model 100

Model 100, Disk

FORMAT
RENAME “old file” TO “new file”

EXAMPLES
RENAME **ACCTS/PAY:@*” TO
“*ACCTS/REC:@”"

DESCRIPTION

REMAME is a Color Computer Disk BASIC
command that changes the name of a file. The “old
file" and “new file" parameters are valid file names;
both require extensions. File names are in the
name/extension:drive# format. The drive# is
optional. REMAME is normally used to rename a file
on the same disk.

RELATED COMMANDS
None

SYSTEM

I, LvL I

I, LvL il

I, Disk °
1, 12 °
N, LVL o

11, LVL 11T (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC o
CC, Disk ®
MC-10

Model 100

Model 100, Disk

FORMAT

RENUM newline,startline,increment (all arguments
optional)

EXAMPLES

RENUM 100,300,5 from line 100 with start of
300, increment of 5

DESCRIPTION

RENUM renumbers the current BASIC program in
RAM. Ali line numbers in the program will be
changed to a new range of numbers, starting with a
given number, and with a given increment. This
includes not only statement line numbers at the
beginning of BASIC lines, but line numbers
referenced by GOTOs, GOSUES, THENS,
ON...GOTOs, and ON. . .GOSUES. The newline
parameter is the starting line number of the
program after renumbering. The startline parameter
is the first line number of the current program from
which renumbering is to occur. The increment
parameter is the increment to be used between new
line numbers. All parameters are optional. Defaults
are 10 for newline, 10 for increment, and the entire
program for startline. Commas can be used for
missing parameters, or REMUM can be used alone.

RELATED COMMANDS
None

SYSTEM

I, LVL °
I, LVL il °
I, Disk e
I, 12

1, LVL | °

L, LVL 111 (4, 4P) @
I1l, Disk (4, 4P) o

4, 4P, Disk

CC, BASIC °
CC, Ext BASIC o
CC, Disk °
MC-10 °
Model 100

Model 100, Disk
FORMAT

line# RESET(X.y)
EXAMPLES
19le RESET(@, @) reset upper left-hand pixel
DESCRIPTION

Model I/1ll: RESET is used to reset one graphics
“pixel” to black. There are 6144 pixels, divided up
as 128 horizontal elements by 48 vertical elements.
The FESET command resets one of these pixels to
“off! Each of the 6144 pixels can be uniquely
RESET. The x coordinate specifies the horizontal
position of 0-127. The y coordinate specifies the
vertical position of 0-47.

Color Computer, MC-10: RESET is used to reset one
graphics “pixel” There are 2048 pixels, divided up
into 64 horizontal elements by 32 vertical elements.
The x coordinate specifies the horizontal position of
0-63. The y coordinate specifies the vertical position
of 0-31. The reset turns off the pixel to a black
color.

RELATED COMMANDS
CLS, POINT, SET

SYSTEM

I VL
Lwen

I, Disk

I, 12

Hi, Ll

1, LVL HII (4, 4P)
I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

® © 9 © 0 & 60 006 OO © O

FORMAT
line# RESTORE

EXAMPLES

18@® RESTORE resets the pointer to the DRTA
list

DESCRIPTION

RESTORE resets the internal DATA list pointer to
the beginning of the DATA list. All DATA
statements scattered throughout a BRSIC program
(or appearing consecutively) create one contiguous
list of DATF values. RESTORE resets the internal
DATA list pointer to the first entry in the list so that
the next READ results in a read of that entry. The
following statements read 5, -27.5, and 3 into
variables A, B, C and then into variables D, E, and F.

1006 DATA 5,-27.5,3,5.2,13 establishes
list

191@ READ FA.B.,C read first three values
1026 RESTORE resets pointer

103G READ D,E.F reads first three values

RELATED COMMANDS CATA,RERD

SYSTEM

1, VL

I, e .
I, Disk °®
H, 12 °
H, i

I, LVL 111 (4, 4P) e
11, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC. Ext BASIC

CC, Disk

MC-10

Model 100 ®
Model 100, Disk e
FORMAT

line#t RESUME

line# RESUME @
line# RESUME line#
line# RESUME MEXT

EXAMPLES

1008 RESUME MEXT resume after error
DESCRIPTION

FESUME is the last executed statement of a user
error-processing routine. A user error-processing
routine is defined by a Or ERFOR 30TO
command. The error-processing is entered every
time an error occurs so that the program may
investigate the type of error. RESUIME is used after
investigation of the type of error, line number,
messages, and corrective action, if any. RESUME
without a line number or with a line number of 0
causes the BASIC interpreter to return to the line
in which the error occurred. This mode would be
used after the normal ERSIC error action was
reinstated by an 0K ERROR GOTOD &, RESUME
with a line number causes a branch to the specified
line number; it is a way of taking further action
related to the occurrence of the error. RESUME
HE=T causes a continuation of the program after
the line in which the error occurred.

RELATED COMMANDS
EFL, ERR, ERROR, ON ERROR BOTO

SYSTEM

I, LVL |

I, LVL T

I, Disk

1, 12

I, VLI

11, LVL 11 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC. Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT
line# RETURN
EXAMPLES

1000 GOSUE 12600 calls subroutine at 12006
1@1@ (return point) return point from 12636

1200@ (subroutine: from 1 to many statements)
12098 RETURN returns to statement after
GOsuB

DESCRIPTION

RETURN defines the last statement in a subroutine.
A subroutine is a set of 1 to many statements that
perform a specific function. Rather than writing the
statements many times in a program, the subroutine
is used once for the function, saving RAM space.
The subroutine is called by a GOSUB. The RETURMN
statement of a subroutine returns control to the
statement immediately following the GOSUE. No line
number is required for the RETURN as the BASIC
interpreter automatically records the line number
after the GOSUB.

RELATED COMMANDS
GOSUB, ON...GOSUB

SYSTEM

1, LVL I
L

I, Disk

11, 12

1, LVL |

1H, LVL 11 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line#..RIGHT $(string,n)

EXAMPLES

10060 AF=RIGHTH (B, 4] get the last 4
characters of B$

1010 CH=RIGHTS(B%,5) get the last §
characters of B§

DESCRIPTION

RIGHT# finds the last n characters of a given
string. The n parameter may be 0 to 255. The string
parameter is a previously defined string. If
B$="HEROINE" for example, AF=RIGHTH(E% .4
will set A$="OINE" If n is greater than the length of
the specified string, RIGHT#$ will return the entire
string. A$=RIGHTH(E%,207, for example,
returns A$="HEROINE" The n argument may be a
constant, variable, or expression. RIGHTS may be
used to process “substrings” where a large string is
made up of a number of substrings concatenated
together for ease of handling.

RELATED COMMANDS
LEFT$, MID%

SYSTEM

I, LVL I

I L

1, Disk

I, 12

I, LVL |

I, LVL 11T (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line#..RND (@] . ..
line#...RND(integer)...

EXAMPLES
1006 A=RND(10 generates a random number
from 1 to 10
19019 IF A=l THEW PRINT **STARSHIF
MALFUNCTION® * simulates a chance condition 1
out of 10 times
DESCRIPTION
RHND is a function that generates a pseudo-random
number. If the RND(@7 form is used, the number
is between 0 and less than 1. Typical numbers
might be .6789..., .2344..., and 1.2222.... If the
RMD(M) form is used, where N is not 0, then R
generates a number from 1 to N. If N were 1000,
for example, the number generated would range
from 1 to 1000 and might typically be 23, 999, 456,
2, 45, etc. Pseudo-random numbers are
“repeatable’; that is, they produce the same
sequence of numbers from a given starting number.
A starting number of 23 might always produce the
sequence 23, 456, 888, for example. Over a long
period, the numbers in the range tend to be evenly
gistgbuted; there will be an equal number of 1s, 2s,
s, 4s, etc.

RELATED COMMANDS
RANDOM

® 06 06 06 6 00 6 © 0 O

SYSTEM

I LVL I
I, LVL I

I, Disk

I, 12

I, VL |

HI, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °

Model 100, Disk

FORMAT

ling#. .FHD (@] ...
line#t..FMD(1.
EXAMPLES
1aee A=RMDT L)
DESCRIPTION
RO ois a function that generates a pseudo-random
number between 0 and 1. Typical random numbers
generated are .59521943994623 and

.7165976517722823. Pseudo-random numbers are
“repeatable”, that is, they produce the same

generate a random number

sequence of numbers from a given starting number.

QOver a long period, the numbers in the range tend
to be equally distributed. To convert the fractional
number produced by FHI(1, multiply by a
constant, Loa@#RMO(17, for example, produces
numbers between 0 and 1000. To generate integer
numbers between 0 and another value, use the
IMT function; IHT [Lo@@#RMIN 1], for
example, produces non-fractional values between 0
and 1000. The RHO[@ case repeats the last
pseudo-random number generated.

RELATED COMMANDS

None

SYSTEM

I, LVL I

I, LvL il

I, Disk

1, 12 e
1, LvL 1

HI, LVL 1 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line# ... ROW(dummy)...

EXAMPLES
1060 F=ROK)

DESCRIPTION

R finds the current row on which the cursor is
located and returns the row number. Rows on the
Models 12 and 4 are numbered from 0 through 23.
The “dummy" parameter is any value enclosed in
parentheses; it has no effect on the function. Rl
is used along with PO to define the cursor position
for word processing and other applications.

RELATED COMMANDS
Fo=

SYSTEM

I, VLI

I

I, Disk °
I, 12 °
i, VL |

11, LVL 111 (4, 4P)
IIl, Disk (4, 4P) o
4, 4P, Disk ®
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line# RSET field name=string

EXAMPLES
1000 RSET NM$=A%
name

DESCRIPTION

RSET is used to place character data into a
random-file buffer. The normal sequence of
operations establishing a random-file buffer is as
follows: Define the fields of the buffer by a FIELD
statement. The FIELD establishes the field names
in the buffer. The RSET and LSET are then used
to store character data in the fields of the buffer.
The FIELD statement establishes the size for each
buffer field. If the data to be stored by RSET is not
as great as this field size, “filler spaces” would be
filled on the left. If the field NM$ was 20
characters, the name “SPIRO SMITH" would be
stored as “SPIRO SMITH' If data to be stored by
RSET is greater than the field size, characters are
truncated on the right. The data

“SPIRO AGOUPOPOPODOUPOLIS" would be stored as
“SPIRO AGOUPOPOPODOUP”

RELATED COMMANDS
FIELD, LSET

store addressee

SYSTEM

I, VLI

I, LvL

|, Disk

", 12

I, LI

I, LVL 11 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
RUN

RUN line#
line# RUN

EXAMPLES

RUN in command mode starts BASIC program
from beginning

RUN 1®@® in command mode starts program from
line 1066

1@0@ RUN in program restarts program from
beginning

DESCRIPTION

RUN clears all variables and resets other BASIC
program parameters. RUN in the command mode
starts the current BASIC program from the
beginning. The RUN /ine# form in the command
mode starts the program from a specified line
number. Note that all variables are cleared before
the start occurs. The RUN form within a program
restarts the program from the beginning (or a
specified line #); it may be used to restart the
program on completion of a game or other
continuous task.

RELATED COMMANDS 50TO

SYSTEM

I, LVL 1

L v il

I, Disk

I, 12

HI, LVL T

HI, LVL HI (4, 4P)
HI, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk o

FORMAT

RUM “device:filename”
RUM “device:configuration”
UM “device...”,R

EXAMPLES
RUM “*RAM:SORTL" "R

DESCRIPTION

RUM loads a BASIC program from RAM, CAS, COM,
MDM, or disk and then immediately executes it. The
“device” parameter is one of the four mnemonics or
a disk drive number. The “filename” parameter is
used for RAM, CAS and disk and is the filename
under which the file was first saved. If the device is
RAM or disk, an optional .BA or .CO extension can
be used as part of the filename. A disk file name
must include a drive # and colon (0: or 1:) before
the filename. If the filename is omitted from a CAS
load, the first file found will be loaded. If the device
is COM or MDM, a “configuration” string is used in
lieu of a fliename. This string sets up the
communications parameters.

RELATED COMMANDS
LORD

load and run

SYSTEM

I, VLI

I, LVL 11

I, Disk °
I, 12 °
HI, LVL I

I, LVL 111 (4, 4P)
111, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT

R “filename”

FUM “filename’R

line# RUM “filename”

line# RUMN “filename’R
EXAMPLES

FUH **RCCOUMTS-BRS:1° R
files open

DESCRIPTION

RLUM loads and executes a BRSIC program from
disk. Variables are not cleared as is the case with
LOAD. If BUR s used without the R option, RLIN
will close all open files, load the specified program,
and execute it. If RLIM is used with the “R" option,
FLIM will will not close open files, and will load and
execute the EASIC program. RUR in either form
may be used in a BASIC statement during BRSIC
program execution. The “filename" is a filespec for
a BASIC program stored on disk; it conforms to
the general requirements for filespecs - name,
extension, password, and drive number. RUM may
be used in EASIC programs to “chain” programs,
allowing one program to call another in a chain of
“overlays’’ One program may utilize file variables
from another program when RLIM is used instead of
LOAD.

RELATED COMMANDS

LOAD

load, keep

;
|
1
|

SYSTEM

I, LVL 1

I, LVL 1l

|, Disk

i, 12

I, LVL i

HI, LVL 1l (4, 4P)
11, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk o

FORMAT

SAVE “device:filename”
SEWE “device:configuration”
SAVE “device...”A

EXAMPLES
SAWVE **RAM:SORTL™ " A save in ASCII
DESCRIPTION

SHVE saves a BRSIC program to RAM, CAS, COM,
MDM, or disk. The “device” parameter is one of the
four mnemonics or a disk drive number. The
“filename” parameter is used for RAM, CAS and disk
and is the filename under which the file is to be
saved. If the device is RAM or disk, an optional .BA
or .CO extension can be used as part of the
filename. A disk filename must be preceded by a
drive number (0: or 1:). A SAYE to CAS is logically
equivalent to the CSAWE command. If the device is
COM or MDM, a “configuration” string is used in
lieu of a filename. This string sets up the
communications parameters. The A option saves the
program in ASCII format, necessary for a following
MERGE. A SAYE “*LPT:" " is identical to
LLIST. A “*SAVE **LCD=z"" is identical to
LIST.

RELATED COMMANDS

LOAD, CSAVE ., MERGE

SYSTEM

I, LVL |

I LvL i

I, Disk

I, 12

1, i)
I, LVL 111 (4, 4P)
HI, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
SAVEM “filenamestartaddr,endaddr,execaddr

EXAMPLES
SAVER FCSORTRRE® * EHI000, EHIFFF
ZHI@0A

DESCRIPTION

SAYEM is a Color Computer Disk EASIC command
generally used to save a machine-language program
in RAM as a disk file. The “filename” parameter is a
standard Disk EASIC file name in the
name/extension.drive# format. The extension and
drive # are optional. If no extension is given,
EASIC will use the extension “BIN If no drive# is
given, the standard CRIWE default will be used.
SAWER can be used to save any binary data in
RAM whether it is a machine-language program,
data, or both. The startaddr parameter specifies the
starting address of the data to be saved. The
endaddr parameter specifies the end of the data.
The execaddr specifies the address of the start of
the program, if applicable. The resulting file is
stored as a binary file and can be loaded and
executed by the LLOADM and E<EC commands.

RELATED COMMANDS
ExEC, LOARDM

SYSTEM

I, VLI

I, vl

1, Disk

1, 12

1, VL

11, LVL 111 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC. Disk

MC-10

Model 100 °
Model 100, Disk o

FORMAT

SAVEM “filename” startaddr, endaddr,execaddr
SAWEN “CAS:filename” startaddr, endaddr,execaddr
SHWEM “drivetfilename” startaddr,
endaddr,execaddr

EXAMPLES
SAVEM *MLPRT®, 50
save ml program

DESCRIPTION

SAVENM saves a machine-language program to RAM,
cassette, or disk. The file can then be loaded by a
LLOADM command. The command saves the memory
block from “startaddr” through “endaddr” with
starting address “execaddr”. The “execaddr”
parameter is optional; if not given “startaddr” will
be used as the entry address. The first form of the
command writes the program to RAM and includes
the extension CO. The SAVEM “CAS:filename” form
is logically equivalent to CSAWEM. The disk file
form saves the machine-language file to disk (drive#
is 0: or 1:).

RELATED COMMANDS
LOADH, CSAVEM

SYSTEM

I, LVL I

I LVL I

I, Disk

I, 12

HI, VLI

11, LVL Il (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk ®
MC-10

Model 100

Model 100, Disk

FORMAT
line# SCREER type color set

EXAMPLES
1006 SCREEM @, 1 set text, color set 1

DESCRIPTION

SCREERN is used to set the type of display, graphics
or text, and to select one of the two color sets
available in the Color Computer. The type parameter
is either a 0 for a text screen, or a 1 for graphics
screen. If a text screen is selected, the text screen
starting at focation $400 is displayed. This is the
“normal” text display mode used to display
alphanumeric data. If the graphics mode is selected,
the current graphics page is displayed in the
current graphics resolution. The current graphics
resolution and page are determined by the FMODE
command. The “color set” parameter selects one of
two color sets. In the text mode, color set 0 is black
on green and color set 1 is red on orange. In the
graphics mode, the colors depend upon the color
set and resolution. (See FMODE.)

RELATED COMMANDS
FMODE

SYSTEM

I, LWL 1

I, LVL 1

1, Disk

I, 12

I, Ll

11, LVL 1 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk o

FORMAT

SCREEM @,® or SCREER 1,0
SCREEN ©,1 or SCREEM 1,1
line# SCREERM KM

EXAMPLES
1666 SCREEM @,0

DESCRIPTION s

SCREERM command enables or disables the
lﬂﬁctign Key line on the bottom of the screen.
When the SCREEN &, 1 com_mand_ is executed, the
bottom line can be used for displaying test and
graphics produced by FRINT and other pommands,
and will “scroll” together with the seven lines ’
preceding. If SCREEM @,1 1S neve_rvexecuteq or i
SCREEM ©,@ is executed after a SCREEN @, 1,
the bottom line will not be ava[lable for s_crolhng
and only the top seven lines will scroll. Disk
BASIC: SCREEN 1,001 1.1 enables the crt
display and controls the Function Key line.

RELATED COMMANDS
FRIMT

scroll with all 8 lines

SYSTEM

I, LVL i .
I, LVL 1 °
I, Disk °
I, 12

I, i1 °

1, LVL 111 (4, 4P) o
11, Disk (4, 4P) o
4, 4P, Disk
cC. BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT

line# SET(x,y) Model I/ill

line# SET(xy.c) Color Computer

EXAMPLES

100@ SET(RMD(127) ,RHMD(477 set random
point 1/11]

101@ SET(RMO[E3) ,RHD| 31 1.3 set
random point to blue (CC)

DESCRIPTION

Model I/11l: SET is used to set one graphics “pixel”
to white. There are 6144 pixels, divided up as 128
horizontal elements by 48 vertical elements. Each of
the 6144 pixels can be uniquely SET. The x
coordinate specifies the horizontal position of 0-127.
The y specifies the vertical position of 0-47.

Color Computer, MC-10: SET is used to set one
graphics “pixel” to a specified color, ¢. There are
2048 pixels, divided up into 64 horizontal elements
by 32 vertical elements. The x coordinate specifies
the horizontal position of 0-63. The y coordinate
specifies the vertical position of 0-31. The ¢
parameter is a color code of 0 through 8 (black,
green, yellow, blue, red, buff, cyan, magenta,
orange).

RELATED COMMANDS
CLS, PFOINT, FESET

SYSTEM

I, VL

I, e °
I, Disk o
I, 12 °
I, LVL

11, LVL 11} (4, 4P) @
i1, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Disk
MC-10

L]
L]
e
CC, Ext BASIC o
e
L]
Mode! 100 e

L]

Model 100, Disk

FORMAT
line#...S5M(expression)...

EXAMPLES

100@ IF SEM(x)=8 GOTO 2000 ELSE IF
SEH{ ==L G0TO 3000 ELSE GOTO 400
goto 206a if X=0, 300a If X positive, or 4a@@ if
X negative

DESCRIPTION

S5H is a sign function. It finds the sense of a
constant, variable, or expression. The argument
must be enclosed within parentheses. If the
argument is negative, S returns a -1; if the
argument is 0, SGH returns a 0; if the argument is
positive, SGH returns a +1. SiEM is a convenient
replacement for code such as:

1000 IF X<@ THEN A=-1
1010 IF X=@ THEN A=0
1020 IF X>0 THEN A=+1

RELATED COMMANDS

None

SYSTEM

I, VLI
I, L o
|, Disk °
I, 12 e
i, Ll

11, LVL HI (4, 4P)
111, Disk (4, 4P)
4, 4p, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT

line#... 5 TH(expression)...

EXAMPLES

100@ C=5IN[Z+3.14159-2) sets variable C
equal to sine of X+pi/2 (in radians)
2000 MD=STIM{®*.01745329] sets variable

ND equal to sine of X (in degrees)
DESCRIPTION

SIM finds the sine of a given constant, variable, or
expression. The guantity is assumed to be in radians
(180/pi degrees). SIK is a “function” and may be
used anywhere within a BASILC statement as long
as the argument is enclosed within parentheses.
Multiply by .01745329 to convert degrees to
radians. Standard trigonometric rules apply in
regard to the sign of the result.

RELATED COMMANDS

None

SYSTEM

I, LVL I

1, Lve

|, Disk

I, 12

I, LVL |

11, LVL [l (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

e o 0 o

Model 100, Disk

FORMAT

SIKIPF
SKIPF “filename”

EXAMPLES
SKIPF ¢ “MYPROG™”

DESCRIPTION

SIKIPF is used to skip over an indicated file on
cassette. Executing SICIPF with a filename will
cause BASIC to search for the file name and
position the tape after the end of file. It is therefore
positioned to read the next file after “filename”.
Executing Sl IPF without a filename will cause
EASIC to skip the next file on cassette and
position the tape after the end of the file, ready to
read the next file.

RELATED COMMANDS
None

skip over MYPROG

SYSTEM

I, LVL I

I, v

I, Disk

I, 12

1, LI

HE, LVL 1 (4, 4P)
I, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line# SCOUND freq,duration

EXAMPLES

leea FOR I=1 TO 255 set frequency loop
] " SOUND 1,2 output tone

1@2e MEXT I loop

DESCRIPTION

SOUMD outputs a tone to the TV speaker. The
frequency of the tone is specified by a “freq” count
of 1 to 255. Middle C corresponds roughly to a
count of 89. The remaining counts range roughly
over four octaves; the lower the count, the lower the
note. The frequency count is “linear”; a count of
1/2 the value of another count is 1/2 the
frequency. The duration value of 1 through 255
determines the duration of the tone. Each count is
roughly 1/16th of a second, making the range of
durations 1/16th second to 16 seconds. S0OURD
can be used to output warning tones or to play
musical notes in songs or games.

RELATED COMMANDS
PLAY

SYSTEM

I, VLI

I, L

I, Disk

11, 12

1, LVL |

H1, LVL 11l (4, 4P)
1l1, Disk (4, 4P)

4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 ®
Model 100, Disk e

FORMAT

SOUND OX

SOUWD OFF

line# SOUND freq, duration
EXAMPLES

100@ FOR I=1 TO 255 set frequency loop
1010 S0UMD 1,2 output tone

1620 MEXT I loop

DESCRIPTION

S0OURD outputs a tone to the speaker. The
frequency of the tone is specified by a “freq” count
of 0 to 16383. The counts range over approximately
five octaves; the greater the count, the lower the
pitch. The frequency count is “linear”; a count of
twice the value of another count is half the
frequency. The duration value of 0 through 255
determines the duration of the tone. Each 50 counts
is equal to about five seconds. S0OUMND can be used
to play musical notes in songs or games or as
warning tones. SOUND 0K and SOUMD OFF is a
special command that enables or disables the beep
on cassette loading or data communications. The
beep is enabled unless a SOUND OFF is used.
RELATED COMMANDS

None

SYSTEM

I VL
I VLIl -
I, Disk

I, 12 .
, et

11, LVL 111 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk .
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 o
Model 100, Disk o ¢

FORMAT
line# ...SPACE $(expression)...

EXAMPLES
1000 AF=* “HAME" "+SPACES| 23]
+ CCADDRESS””

DESCRIPTION

SPACES returns a string of spaces. It is logically
equivalent to STRIMGE(" ",n), where n is the
number of characters to return. The constant,
variable, or expression for SFECES must be a
numeric value from 0 through 255. Spaces (blanks)
are commonly used in FRIMT or LPRIMTing
reports and other text processing. SPACES
provides a convenient way of generating spaces.

RELATED COMMANDS
STRINGS

SYSTEM

I, WLl

I, WLl

I, Disk

I, 12 e
Hi, VL1

11, LVL 111 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk .

CC, BASIC
CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT
line# ..SPC(expression)..

EXAMPLES
10@@ PRINT **MAME®® SPCIZ3)
**ADDRESS"”

DESCRIPTION

SFEC prints a line of blanks or spaces. P does
not use string space. The expression parameter
must be a numeric value from 0 through 255. The
left parentheses must immediately follow the SPC
characters. SPC is similar to SPACEF and can be
used with PRINT, LPRIMT, and FRIMTH to
generate spaces or blanks whenever required.

RELATED COMMANDS
SFACES

SYSTEM

I, VLI
LoLvel °
I, Disk °
I, 12 °
I, LVL |

HI, LVL 1 (4, 4P) @
Ili. Disk (4, 4P) o
4,'4p, Disk N
CC, BASIC

CC, Ext BASIC
CC, Disk

Model 100

-]
@
MC-10 °
L]
Model 100, Disk o

FORMAT
line#...S0QR(expression)...

EXAMPLES

1000 C=SOR(A*A + B=E) find length of
triangle side

DESCRIPTION

SOR is the square root function. It returns the
square root of a constant, variable, or expression
argument. It can be used anywhere within a
EASIC statement as long as the argument is
enclosed in parentheses. It is faster than finding the
1/2 power of an argument and should be used in
place of this method.

RELATED COMMANDS
None

SYSTEM

I, VLI

I wen

1, Disk

", 12

HI, VLI

HI, LVL 111 (4, 4P)
IN, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

© © 0 0606 0 0 060 0 0 0 ¢ O

FORMAT
line# =TOR

EXAMPLES
1066 REM STOP HERE TO LOOK AT
WARIABLE I
1010 STOP

DESCRIPTION

STOF is used to temporarily stop BERSIC program
execution. The program may be restarted at the
=TOF point by the COMT (continue) command.
=TOF is normally used during program debugging
so that intermediate results may be investigated. It
is also used as a “breakpoint” to determine if a
certain portion of the program is executed.
Execution of STOF produces a “BREAK AT [IM]
XXXXX" message, where XXXXX is the line number.
After the stop occurs, variables may be examined by
the PRINT or other commands; all intermediate
results are left intact.

RELATED COMMANDS
CONT

SYSTEM

I, VLI
VL °
I, Disk ®
1, 12 °
1L LVL

11, LVL 11l (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Mode! 100
Model 100, Disk

FORMAT
line#...STR%(expression)...

EXAMPLES

100@ AF=STRS(X convert X to a string

2000 PRINT STR$(X print X as a string
DESCRIPTION

STR$ converts a numeric constant, variable, or
expression to a string. The argument must be within
parentheses. In the example above, if X is equal to
-34.678, it is converted to the seven-byte ASCII
character string of A$="-34.678". If X is equal to
34.678, it is converted to the seven byte ASCII
string of A$=" 34.678" with a leading blank for the
missing sign. STR$ is used for certain printing or
string concatenation functions. The converted value
does not have a trailing blank on printing as a
numeric value would. Leading zeroes in the numeric
value are ignored. A byte is always allocated for the
sign and a minus sign or blank is used. An ASCH
decimal point is generated in the proper place. The
number of fractional characters is somewhat
unpredictable and depends upon the value of the
expression; trailing zeroes are not generated.

RELATED COMMANDS
None

SYSTEM

VL

I, LVL It °
1, Disk °
1, 12 °
1, L1

1, LVL 11 (4, 4P) e
11, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC °
CC, Ext BASIC o
CC, Disk °
MC-10

Model 100 °
Model 100, Disk o
FORMAT

line# STRINGS$(n, “char”)
line# STRINGS(n,value)

EXAMPLES

1009 AF=STRINGE (100, ‘A") create
A$="AAAAAA..A"

1010 BF=STRINGS(50@,23) create
B$=CHR$(23+CHR$(23)...+CHR$(23)

DESCRIPTION

STRINGS is used to create a 1 to 255 character
string made up of the same character. The n
parameter is the number of characters in the string,
from 0 to 255. It may also be a variable or
expression' that resolves to 0 to 255. The “char”
parameter is a single ASCII character that defines
the characters in the string. Alternatively, a value of
0 to 255 may be used in place of “char” In the
fatter case, the equivalent string will be made up of
n characters of that value (equivalent to

CHR$ (value)*CHR$(value)+...). STRINGS is used
to create strings made up of the same character for
screen graphics use, borders, filling dummy data, or
other uses.

RELATED COMMANDS
None

SYSTEM

I VLI

Lol

|, Disk

I, 12 °
I, VLI

11, LVL 11 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk °

CC, BASIC
CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT
line# SWAF variablel,variable2

EXAMPLES
1006 SWAF A,.B swap variables

DESCRIPTION

SWAF swaps the values of two variables. The
variables must have been previously defined (had
values assigned to them). Either or both of the
variables may be array variables. The variable types
of both variables must be the same. SIJAP can be
used in place of code such as “1080 C=A: A=E:
B=C".

RELATED COMMANDS
None

SYSTEM

1, LVL I

LoLVL °
I, Disk e
I, 12

I, LVL |

I, LVL Il (4, 4P)
111, Disk (4, 4P) e
4, 4P, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
SYSTEM

EXAMPLES
SYSTEM enter system mode

DESCRIPTION '
SYSTEM puts BASIC into the System mode. This
is a mode in which machine-language files can be
loaded from cassette tape. After SYSTEM Is
executed, the BASIC interpreter will respond with
the prompt 2. To load a machine-language
program from cassette, position the cassette, and
type in the cassette file name, followed by ENTER.
BASTIC will now load the cassette file, flashing
asterisks as it does so. After the load, another *?
prompt will be displayed. Another machine-language
program can now be loaded or control transferred to
the machine-language program. In the latter case,
type a slash (/) followed by the decimal address for
execution, followed by ENTER. If no address is
entered after the slash, control will be transferred to
the starting address of the file from cassette. (You
do not have to know the starting address for a
typical cassette load.)

RELATED COMMANDS
None

SYSTEM

1, LVL I

1, LVL I

I, Disk

I, 12 °
i, LVL 1

I, LVL 11 (4, 4P)
I, Disk (4, 4P)

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT

SYSTEM

S%STEM “command”
EXAMPLES

SYSTEM return to TRSDOS

DESCRIPTION

S'Y'STEN causes an exit from BEASIC and a return
to TRSDOS. If there is no command, the operation is
complete. If there is a TRSDOS command, the
command is executed and a return made back to
BASIC. The command must be enclosed in quotes,
unless it is a string expression. If the command
involves loading and executing a TRSDOS utility
program that involves high memory and

“overlay” of BASIC, return will not be made to
BRSIC. SYSTEM allows a BRSIC program to
execute a TRSDOS command within the program
and then return back to the program. 1oea
SYSTEM **DIR" ", for example, would exit
BASIC, boot TRSDOS, perform a directory listing,
and then return to the next statement after the
SYSTEM command.

RELATED COMMANDS
None

SYSTEM

I, VLI

I, LVL I

I, Disk

I, 12

I, LWL

HI, LVL HI (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT

line#... TEE(expression)...

EXAMPLES

100@ PRIMT TAE[Z5) * *BALANCE QFF1°°
DESCRIPTION

TAE is a special function used with FRIMT or
LFRIMNT to “tab over” to a given tab position. The
“expression” in TAE must be between 0 and 255.
it may be a constant, variable, or expression. The
value defines the tab position. When used with
PRIMT, the cursor is moved to the right to this tab
position, and any remaining print items are printed
from that point. Valid tab positions for the Model
I/1It are 0 to 63, for the Models I, 12, and 4 are 0
to 79, for the Color Computer are 0 to 31, and for
the Model 100 are 0 to 39. Values above these will
be “modulo” 64, 80, 32, or 40, respectively. When
used with LPRTINT, the line printer outputs the
number of spaces required to effect the tab. THE
cannot move the cursor or line printer print position
to the left. If the tab point has already been
reached or exceeded, the TAE is ignored.

RELATED COMMANDS
LPRINT, PRIMT

SYSTEM

I VLI

L LVL I o
I Disk o
, 12 o
I, LVL |

I, LVL 1] (4, 4P) e
I}, Disk (4, 4P) o
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100
Model 100, Disk

FORMAT
line#... Tet(expression)...

EXAMPLES

1000 ASTAM(W+3. 141592 sets variable A
equal to tangent of Y+pi/2 (in radians)

© © © 0 @

2000 MD=TAHN[=¥ . @1745329 sets variable
ND equal to tangent of X (in degrees)
DESCRIPTION

TFM ﬁnds.the tangent of a given constant, variable
or expression. The quantity is assumed to be in '
radians (180/pi degrees). TAM is a “function” and
may be used anywhere within a ERSIC statement
as long as the argument is enclosed within
parentheses. Multiply by .01745329 to convert
degregs to radians. Standard trigonometric rules
apply in regard to the sign of the result.

RELATED COMMANDS
ATH

SYSTEM

I, VLI

I, LVL I

1, Disk e
I, 12 °
", Ll

I, LVL LI (4, 4P) @
I1l, Disk (4, 4P) o
4, 4P, Disk e
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk o
FORMAT

line# ..TIME%...
EXAMPLES
1000 FRIMT **TIME IS "*;TIMES
DESCRIPTION

TIMES returns the current time as a text string.
When TRSDOS is started up, the operator may ente_zr
the current time. TIME® returns this information in
A5 12, The format of the Model Il and 12 TIMES
string is HH.MM.SS where HH is the hours, MM is
the minutes, and SS is the seconds. The format of
the Model I/11l TIME® string is DD/MM/YY
HH:MM:SS, where the date is also included..The
format of the Models 4 and 100 TIME% string
is HH:MM:SS.

RELATED COMMANDS

None

SYSTEM

I, VLI
L

I, Disk

I, 12

i, L |

I, LVL 111 (4, 4P)
il Disk (4, 4P)

4, 4P, Disk

CC. BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 .
Model 100, Disk o

FORMAT

line# TIMES 0
line# TIME$ OFF
line# TIMES STOR

EXAMPLES
1000 TIMES O

DESCRIPTION

OM TIMEF GOSUE defines an interrupt to the
system for a specific time of day. The interrupt will
occur and the interrupt processing subroutine will
be entered provided that a TIME® 04 command
has been executed sometime before the time of day
occurs. TIME$ OFF “disables” the time of day
interrupt so that even if the time of day occurs at
the time defined in the OM TIMES GOSUR
statement, the interrupt will be ignored. The TIME®
STOP “remembers” the interrupt but allows the
program to ignore it until the next TIME® OM, at
which point the interrupt subroutine is immediately
entered.

RELATED COMMANDS
DM TIME$ GOSUE

enableT IME$ interrupt

SYSTEM SYSTEM

I, VLI I, VLI

I, VL i I, LvL Il °
1, Disk I, Disk °
If, 12 1, 12 °
1, Wl T, VLt

11, LVL 11 (4, 4P) I, LVL 11 (4, 4P) e
111, Disk (4, 4P) Itl, Disk (4, 4P) e
4, 4P, Disk 4, 4P, Disk ®
CC, BASIC CC, BASIC

CC, Ext BASIC ° CC, Ext BASIC °
CC, Disk ° CC, Disk e
MC-10 MC-10

Model 100 ’ Model 100

Model 100, Disk g — Model 100, Disk
FORMAT

ling#..TIMER... FORMAT

line# TIMER=value | TROFF
EXAMPLES ! line# TROFF
1060 TIMER=E® set timer to 12:01

1010 PRIMT IMT(TIMER<E®) print elapsed EXAMPLES
time in seconds : TROFF turn trace off in command mode

DESCRIPTION | DESCRIPTION

TIMER is used to control a built-in “real-time TROFF turns off the Trace function previously

clock” in the Color Computer. The real-time clock !)
increments by one every 1/60th of a second. It Ejl:erfgi?t off %Yt.a TF?.fltJN command. TROFF is the
COUHtS from 0 through 65,535, at WhiCh pomt |t conatition after EIF'I-:IIL. haS been Inltlallzed.

“recycles” back to 0 and begins the counting ? RELATED COMMANDS
sequence over again. TIMER can be set to any -

value by the TIMER=value command; the value TRON
represents the starting time in 60ths of a second.
After TIMER is set, “reading” TIMER will
represent the elapsed time in 60ths of a second,
modulo 60. The maximum elapsed time for TIMER
is 65,535/60, or about 1092 seconds (18.2
minutes), however, TIMER can be used to control
variables that represent any elapsed time by
maintaining more precision.

RELATED COMMANDS
None

SYSTEM

I, LVL I

I, LVL I °

I, Disk °

1, 12 °

1, LVL T

HI, LVL 111 (4, 4P) e

Il, Disk (4,4P) o

4, 4P, Disk e

CC, BASIC

CC, Ext BASIC o

CC, Disk °
MC-10 i
Model 100
Model 100, Disk
FORMAT

TROM

line# TRON
EXAMPLES

100@ TRON turn line trace on
30ee TROFF turn line trace off

DESCRIPTION

TROWM turns on the BASIC line Trace function. The
Trace function executes the program as in normal
execution but displays each line number as it is
executed within brackets. This trace is useful in
following the program flow during program
debugging. The SHIFT and @ keys can be pressed
simultaneously at any time to stop the display for
scrutiny. Pressing any key will restart program
execution. Normal display data generated by
FRINT or other commands will be interspersed
with the Trace line numbers.

RELATED COMMANDS
TROFF

SYSTEM

I, LLi

I L

I, Disk

I, 12

i, VL1

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk o
MC-10

Model 100

Model 100, Disk

FORMAT

JHLOAD
UHLOAD drive#

EXAMPLES
URLOAD L close all open files

DESCRIPTION

IUMLOAC is a Color Computer Disk ERSIC
command that is a “blanket” CLOSE. It closes all
open files for the specified disk drive number. If no
disk drive number is specified, UHLOAD closes all
open files in the default disk drive (the one
specified in the last DRIVE command, or drive 0 if
no DRIWE command was ever executed). LIMLOAD
is primarily used when switching diskettes. The
UMLOAD properly closes all open files. Failure to
properly CLOSE a disk file may result in loss of all
or a portion of the file data on the old or new
diskette.

RELATED COMMANDS
None

SYSTEM

1, VL1

I, VLIt .

I, Disk °

I, 12 °

I, WLl

11, LVL 111 (4, 4P) @

11, Disk (4, 4P) o

4, 4P, Disk

CC, BASIC °

CC, Ext BASIC °

CC, Disk °

MC-10

Model 100

Model 100, Disk

FORMAT

line#...\ JSR(expression)...

EXAMPLES .
1000 A=USR(B) call machine-language routine
DESCRIPTION

USR is a function that allows a BASIC program to
call a machine-language subroutine. The machine-
language subroutine must have been previously
loaded into memory and its starting location defined
by a special sequence. In the Model I/11l this
sequence is to POKE the least significant byte of
the start address into location 16526 and the most
significant byte of the address into location 16527.
In the Color Computer the starting address is
POKEM into locations 275 (msb) and 276 (Isb).
Thereafter, a USR call will cause the BRSIC
interpreter to transfer control to the code at the
machine-language subroutine. The machine-language
subroutine will normally return back to the
statement following USR. The expression parameter
is a constant, variable, or expression that can be
resolved down to an integer number. The 16-bit
value is passed to the machine-language subroutine
under certain conditions. The machine-language
subroutine may also return a 16-bit integer value.

RELATED COMMANDS
USRn

SYSTEM

I, LVL I

I, VLIt

I, Disk °

I, 12 °

i, e

11, LVL I (4, 4P)

11, Disk (4, 4P) e

4, 4P, Disk o

CC, BASIC

CC, Ext BASIC o

CC, Disk e

MC-10

Model 100

Model 100, Disk
FORMAT
line#...USRn(expression)...
EXAMPLES

10600 A=USR3(B] call machine-language
routine
DESCRIPTION

LUSRn is a function that allows a EASIC program
to call up to 10 machine-language subroutines. The
machine-language subroutine must have been
previously loaded into memory and its starting
location defined by a DEFUSREN. The n parameter
in the USRn command matches the n parameter in
the DEFUSR command. DEFUSRE, for example,
calls the machine-language subroutine defined by
DEFUSRS. A USRn call will cause the BASIC
interpreter to transfer control to the code at the
machine-language subroutine. The machine-language
subroutine will normally return back to the
statement following the USR. The expression
parameter is a constant, variable, or expression that
can be resolved down to an integer number. The
16-bit value is passed to the machine-language
subroutine under certain conditions. The machine-
Iar;guage subroutine may also return a 16-bit integer
value.

RELATED COMMANDS
DEFUSR

SYSTEM

I, VLI

I, LVL 1

I, Disk

il, 12

I, LWL

11, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Model 100

Model 100, Disk

FORMAT

line#...\'riL(string)...

EXAMPLES

1088 A=VAL (PAYABLES) convert to numeric
DESCRIPTION

The WAL function converts a string, assumed to be
a string representing a number, to a numeric value.
Typical strings that could be used with WAL are
“123.56" “000100" and “999.9E-34" Often, strings
that primarily contain numeric data may be
represented in string form for input and output
operations. WAL provides a way to convert these
strings to numeric form for efficient processing.
vAL follows these rules in conversion: If the string
contains no numeric characters or is null, VAL
returns a 0. If the string contains all numeric
characters, VAL converts the string to an integer if
possible, or to a single-precision number, or to a
double-precision number. {f the string contains a
decimal point, AL converts the string to a single-or
double-precision number. (The Color Computer has
only one numeric data type.) VAL ignores
alphabetic characters that do not have significance
or which it cannot interpret. VAL performs the
inverse of the STR$ function.

RELATED COMMANDS
ASC, CHRE, STRE

SYSTEM

I, VLI

I, Ln °

I, Disk °

I, 12 °

I, VL

I, LVL 1 (4, 4P) e

I1l, Disk (4, 4P) e

4, 4P, Disk °

CC, BASIC

CC, Ext BASIC °

CC, Disk °

MC-10 o

Model 100 °

Model 100, Disk o

FORMAT

line#...\'\FRF TR(variable name)...
EXAMPLES

10600 B=VARFTR(A%T| get location of A$
DESCRIPTION

WARPTR is a function that finds the address of any
EASIC variable. It is primarily used for
“parameter” passing to machine-language
subroutines called by the USF or JSREn commands.
If the variable in question is a string variable,
WARPTR returns the location of a string parameter
block. The first byte of the parameter block is the
string length, and the second and third (third and
fourth in Color Computer) are the location of the
string. If the variable is a numeric variable,
WARPTR returns either the location (Models 1/111)
or a pointer to the value (Color Computer or MC-10).
WARPTRE will also return the location of arrays.
Model 4 only: When used with a buffer number, the
address of the buffer is returned.

RELATED COMMANDS
None

SYSTEM

I, VLI

I, LWL

I, Disk

I, 12

1, LVL !

i, LVL 111 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
VERIFY ON
VERIFY OFF

EXAMPLES
WERIFY Oi

DESCRIPTION

YERIF' is a Color Computer Disk BASIC
command that turns 0t or OFF disk record
verification. Records are written out to disk from the
disk buffer specified in the COFEN command; a
buffer represents one sector’s worth of data. When
YERIFY is CIF, the sector just written is read in to
a second buffer and compared with the original
data. When WERTIFY is OFF, this compare is not
done. The verification process is a safeguard against
disk 1/0 errors, but does increase the “overhead”
for disk writes. Invalid data will normally be
detected on a read, but verification provides
detection during the write operation.

RELATED COMMANDS
None

verify disk writes

SYSTEM

I, VLI

I, LVL 1

I, Disk

I, 12

H, L

11, LVL 111 (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT

line# WATIT port,integerl
line# |\HIT portintegerl,integer2

EXAMPLES
1009 WAIT 62, &HF, 2HS test external device
DESCRIPTION

WAIT is used to test the status of an external
signal that comes in to one of the 256 input/output
ports on the system. Some of these ports are
dedicated to system input/output functions that
take place internally in the system. Other ports may
be used for external input/output device
“controllers”. WAIT will perform a similar action to
the IMP function, reading in the value form the
specified port address. It will then exclusive OF the
8-hit value read in with integer2 (or 0 if integer2 is
not specified) and then A the result with
integerl. If the result is zero, the LIHTT is again
executed. If the result is non-zero, the next
statement after the WATT will be executed.
Effectively, FI T will test from one to eight
input/output lines for either a zero or one.

RELATED COMMANDS
None

SYSTEM

I, LVL I

I, LvL i

I, Disk

I, 12

1, LWL

H1, LVL K (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT

line# WHILE expression
[

o

WERD

EXAMPLES

10608 WHILE A<<l®

1016 PRINT Az A=ATL

1626 WEND

DESCRIPTION

WMHILE is used in conjunction with a following
WEMD command. Taken together, the BASIC
statements from WHILE through WEMD constitute a
loop commonly used in more “structured” code.
This loop is executed continually as long as the
condition specified after the WHILE in “expression”
is met. Typically, relational expressions such as
A<2, B>(*3.14159, and 1<<1000 are used for the
WHILE condition, but logical expressions can also

be used; the logical expression is either true (non-

zero) or false {zero). As in other EASIC loops, the
WHILE~WMEND loops can be nested to any level.
WHILE-WEMD loops can also be interspersed and
nested with other types of loops, such as
FOR...TO/MEXT.

RELATED COMMANDS None

SYSTEM

I LVL

1, LVL I

1, Disk

1, 12

1, L

1, LVL 11 (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100 p—
Model 100, Disk e

FORMAT
WIDTH 4@
WIDTH S@
EXAMPLES
WIDTH 4@

DESCRIPTION

WIDTH sets the width of the crt or television
screen to either 40 or 80 characters. This width will
remain in force in all other system programs as well.
Use SCREEM to display on the crt.

RELATED COMMANDS
SCREEN

Y

|
I
i
g
i

e

SYSTEM

I, VLI

I, LWL H

1, Disk

", 12

I, LVL I

111, LVL 111 (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk o
CC, BASIC

CC, Ext BASIC

C% %isk °
MC-1

Model 100 :;w-i"”
Model 100, Disk

FORMAT
line# WRITE item list

EXAMPLES
100@ WRITE ALE.C,D print values

DESCRIPTION

WRITE is similar to PRINT; it displays a series of
items. The “item list” in WRITE can be any
variable type normally used in FRIMT statements.
However, WRITE automatically inserts commas
between items as they are displayed and places
quotation marks around strings that are displayed.
Positive values are displayed without leading blanks,
unlike PRINT. WRITE is useful for displaying
lists of values without extensive “formatting” in
FRIMT statements.

RELATED COMMANDS
FRIMT

SYSTEM

1, LVL |

I, LVL I

1, Disk

I, 12

i, WL

HE, LVL L (4, 4P)
111, Disk (4, 4P)

4, 4P, Disk ®
CC, BASIC

CC, Ext BASIC

CC, Disk °
MC-10

Model 100

Model 100, Disk

FORMAT
line# WRITE#DufH,item list

EXAMPLES
10060 WRITERZ,A:B:CH output to file

DESCRIPTION

WRITEYH performs a write to a sequential disk file.
The file must have been previously QFEed. The
OFEM command specifies a buffer for the filename,
and this buffer number is used in the WRITEH
command. FTITEH outputs a list of items to the
buffer (to the file). The items may be any number of
numeric or string variables. All items are
transformed into character strings and written to the
disk buffer. The WRITEH output to the file is
similar to the display output of FRIMT and the disk
operation of FRIMNTH. However, WRITEH
compresses data items by eliminating spaces. It
should be used in preference to the FRIMNTH.
String variables should use CHR$ [34 to bracket
the variables with double quotes if the string
variables contain delimiters such as commas or
semicolons; otherwise string variables can be used
in the list as required.

RELATED COMMANDS

None

SYSTEM

I, LVL I

I, LVL I

I, Disk

I, 12

I, VL

I, LVL 1l (4, 4P)
11, Disk (4, 4P)
4, 4P, Disk °
CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line# WRITEH buffer,item list

EXAMPLES
leep WRITERZ, A,B,C, D% output list

DESCRIPTION

WRITEH is similar to PRIMTH; it writes a series of
data items in the “item list” to the disk file
associated with a buffer number. The buffer number
is the same as the one used in the initial JFEN
statement for the disk file. Like WRITE for display,
commas are automatically inserted between data
items, string data is automatically bracketed by
quotation marks, and positive numerical values have
no leading blanks. FEITEH is a more space
efficient command to use for disk file data than
PRINTH.

RELATED COMMANDS
FRINTH,WRITE

SYSTEM

I, LWL |
I, LVLH
I, Disk
I, 12 ®
I, L |

HE, LVL 1T (4, 4P)
111, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

MC-10

Model 100

Model 100, Disk

FORMAT
line#...(expression) xR (expression)...

EXAMPLES
1000 IF ([(A<29) XOR [B>5)) THEW C=1

DESCRIPTION

xR is used as a relational operator and for bit
manipulation. In the first use, %0OR compares two
constants, variables, or expressions. If either
expression is true, but not both are true, then the
%0R function is true. In the example above, the
expression is true if variable A is less than 2 OF
variable B is greater than 5. The THEM action
would be taken if either expression, but not both
was true (expression 1 xOR expression 2). In the
bit manipulation case, x0F is used to logically x0OR
integer variable bits, considered to be binary
numbers. An xR of binary values produces a 1 for
each bit position if either operand but not both has
a 1 bit in that bit position. An x0OF of the two
binary values 10100000 and 11001111 would
produce a result of 01101111, The X0 in this
application can be used to test bits, set individual
bits, and perform other bit-wise operations.

RELATED COMMANDS
AND, NOT

SYSTEM

I, i

L

I, Disk

11, 12

1, Ll

111, LVL 111 (4, 4P)
Il, Disk (4, 4P)
4, 4P, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk
MC-10

Mode! 100

Model 100, Disk

FORMAT
line# ...1(expression)...

EXAMPLES
1e@e T=(1+t

DESCRIPTION

Up arrow is used to represent exponentiation,
raising a number to a power. The power may be a
constant, variable, or expression. Fractional powers
are permitted. In some systems the up arrow prints
as a left bracket. The Model Il up arrow is SHIFT,6.
The Model 4 up arrow is a caret A produced by
pressing CLERR followed by * =5 * . The Model
100 up arrow is also a caret.

RELATED COMMANDS
None

find amount over ‘' years

SYSTEM

I, VLI

I, LvL

1, Disk

I, 12 °
I, LVL I

111, LVL 111 (4, 4P)
I, Disk (4, 4P)

4, 4P, Disk °
CC, BASIC

CC, Ext BASIC

CC, Disk

MC-10

Model 100 °
Model 100, Disk e

FORMAT
line# ...expression \ expression...

EXAMPLES
Loee C=A\E

DESCRIPTION

Reverse slash (CTRL,9 on the Model Il, 12; CLEAR,
/ on the Model 4; and SRFH, - on the Model
100) is a numeric operator that performs an
“integer division" on two operands and returns a
result. The two expressions involved are converted
to two integer operands. An integer division
operation divides the first operand by the second
operand and finds the quotient. Any fractional part
of the quotient is ignored and the integer portion is
then returned as the result of the operation. If the
first operand is 100, and the second is 44, the
result of 100 \\44 is the integer portion of
100/44, or 2. This integer division is similar to the
IHT function except that the two operands here
must be in the range of -32768 through +32767.

RELATED COMMANDS
IMT

Special Keys for BASIC

Key Description Key Description
o x ‘ a_ x
;;% 3 a ‘\ <% 2 a
_=¥308 . 8¢ -=%3ga, gg
—=_ Da¥8<R2.TT ~=_, Qo¥0<R8_ T
S’s‘igizag“‘.“‘.“.'r%% ;'s‘.ﬂgaaag;‘”_“‘."‘.'r%%
235C=2==2888822 20522898882
i O--=--=-- List current line | SHIFT, left -o0o0-0ocoo0oco0o0--- Delete line, return
| S 0-=--=--- Edit current line ! arrow
BACKSPACE - --0-------- oo Backspace SHIFT, right -00--00------- Set 32-character
BREAK 00000000000000 Stops, sets arrow mode
command mode SHIFT, up List first program
CLEAR ------- oooo--- Clear screen arrow line
CLEAR 000-000-~-=~~--~ Clear and reset 64 space bar oooooooooo0000 Blank
char mede TAB Space to next tab
CTRL J B R« I Line feed UPp AW 0 - --0-=~==~=~~= Halt display during
without end execution
CTRL O B < I Toggle display up arrow Scroll up during
function list
CTRL R B I Retype current line
CTRL U ¢ I Restart current
line
down arrow - - - - - - 0--=-=-=--- Scroll down
during list
down arrow -0o--000------ Line feed
without end
ENTER 0ooo000000000000 Terminates input
HOLD B R Halt display during
execution
FI.LENTER ---0---------- Enter Edit mode for
immediate line
leftarrow ooooooooocoooo Backspace and
delete character
REPEAT R I Repeat a
single key
rightarrow -oo--o0o-000--- Space to next tab
SHIFT, ® -00--0000000- - Halt display during
execution
PAUSE - ----------- oo Halt display during
execution
SHIFT,.O - ------- oooo-- Toggle reverse or
lower case
SHIFT, down - - - - - - O-==mm=-= List last program
arrow line

Error Codes
Configuration

a =

% 3 3

$iof o3
= ——xggi 22
2%.5582398233
:E:555888‘2)§§ Mnem.
1111 1 ****11 NF
222222 * 2 2 SN
333333~ 33 RG
444444****44 0D
555555 ****55 FC
666666 ****>66 0V
7771171771 ****11 OM
g§88888***>>88 U
99999 ****99 BS
101010101010 * * * * 1010 0D
ITRIE R R) A § O I Y
121212121212 * * > * 1212 1D
131313131313 * * * * 1313 M
141414141414 * * * * 1414 08
151515151515 * * * * 1515 LS
161616161616 * * * * 1616 ST
171717171717 = 1717 CN
- 18- -18- - -~ - - UF
181819181819 - - - - 1919 NR
191920191920 - - - - 2020 BRW
02021202021 - - - - 2121 UE
naA2NnN2 - - - -222 M0
222 -22-***--- D

Description

NEXT without
FOR
Syntax error
RETURN
without
GOSUB
Out of DATA
lilegal funetion
call
Overflow
Out of memory
Undefined line
Subscript out
of range
Redimensioned
array
Division by 0
lilegal direct
Type mismatch
Out of string
space
String too long
String too
complex
Can't continue
Undefined user
function
No RESUME
RESUME
without error
Unprintable
error
Missing
operand
Bad file data

Error Codes
Configuration

Sg o i
< < 7] [=]
=<23 g8
=, Cos2zE_°F°
5E9335G 55083
~—===SE=ZZ00O0= == Mnem Description
- -2--2-- -~ - - BO Bufier overflow
8- -2-------- L3 Disk BASIC
only
~~~~~ 2%----- - FOR without
NEXT
————— 29- - - - - - WHILE without
WEND
————— - ----- WEND without
WHILE
- 5050 -515 - - *- -~ F0 Field overflow
- 5151 -5251 - - - - 5050 IE Internal error
- 5252 -5352 - - - - 5151 BN Bad file
number
- 5353 - 5483 - - - - 56252 FF File not found
- 5454 - 5554 - - - - - - BM Bad file mode
-~ -5 - -55 - * * -5353 A0 File already
open
——————————— 58 CF File not open
- 5756 - 5867 - - - - - - 10 Disk 1/0 error
——————————— 57 FL Undefined error
- =Bl - - - - - - - - - FE Undefined Mod
Il BASIC
- -88- - - - - - - - - UE Undefined error
——————————— 59 AT Bad allocation
table
——————————— 60 DN Bad drive
number
——————————— 61 TS Bad Track/
Sector
- 6159 - 6261 - - * - - 63 DF Disk full
- 6260 - 6362 - - - - 5454 EF Input past end
- 6361 - 6463 - - - - - - RN Bad record
number
- -0 - - -=-=- - - - - NM Undefined Mod

1l BASIC



Error Codes Error Codes
Configuration Configuration
E: = E -
e _ % < =~ [§] ]
< & é o £ ¥ Z’ a
= oo X2 - JTx ddae 2oz 2
sEs335040°33 . 2E®33805508%
ZZ==E=ZZ00O0CS=5 Mnem Description ! ~=EEZO00O0E=Z Mnem Description
S MM Mode mismatch - - - - - - - - Too-- 3B Setto
B UE  Undefined error non-fielded
-64- - 6564 - - - - 5555 Bad filename String
6665 - 6766 * * * - 5655 DS Diret @000 - = = = = = = - N Verification
statement error
infile = = & = = = = - - - - WP Write protected
- -B6- - - - - - - - - FL Undefined Mod
11 BASIC
-6/ - -6867 - - - - - - Too many files |
-68--69--- - - - - Disk write
protected |
-6 - -70-- - - - - - File access !
denied !
_____ 5 - - * - - - AE File already
exists
________ * - - - BR Bad record
number
______ *rr o - - DN Device number
error
________ * - - - R 1/0 past end of
record
________ e - - M Bad file mode
________ * - - - FN Bad file name
________ * - - - F8 Bad file
structure
_______ * . - - IE Input past end
of file

______ *rr x 1818 10 1/0 error
- - NE Can't find disk

file
_______ ** _ - - NO File not open
_______ * - - - - 0B Out of huffer

space




Commeon ASCII Characters Used in BASIC

CHAR DEC

space 32
! 33

+ = “goLe ™ T
I w
- <

'
'S
<]

OO NON BN - O~
133
4]

ZrXCTIETMMOOTBPEVV AT
[*2]
o

HEX

CHAR

N<XS<C—HODOTOZ

N‘<X§<C”M“Q‘OOJB_T"“‘3‘©"’® Qo T

127



Decimal/Binary/Octal/ DEC BIN OCT HEX
Hexadecimal Conversions 43 00101011 053 2B
44 00101100 054 2C
DEC BIN OCT HEX 45 00101101 055 2D
0 00000000 000 OO0 46 00101110 056 2E
1 00000001 001 01 47 00101111 057 2F
2 00000010 002 02 48 00110000 060 30
3 0000001t 003 03 49 00110001 061 31
4 00000100 004 04 50 00110010 062 32
5 00000101 005 05 51 00110011 063 33
6 00000110 006 (6 52 00110100 064 34
7 00000111 007 Q7 53 00110101 065 35
8 00001000 010 08 54 00110110 066 36
9 00001001 011 09 55 00110111 067 37
10 00001010 012 OA 56 00111000 070 38
11 00001011 013 OB 57 00111001 071 39
12 00001100 014 OC 58 00111010 072 3A
13 00001101 015 OD 59 00111011 073 3B
14 00001110 016 OE 60 00111100 074 3C
15 00001111 017 OF 61 00111101 075 3D
16 00010000 020 10 62 00111110 076 3E
17 00010001 021 11 63 00111111 077 3F
18 00010010 022 12 64 01000000 100 40
19 00010011 023 13 65 01000001 101 41
20 00010100 024 14 66 01000010 102 42
21 00010101 025 15 67 01000011 103 43
22 00010110 026 16 68 01000100 104 44
23 00010111 027 17 69 01000101 105 45
24 00011000 030 18 70 01000110 106 46
25 00011001 031 19 71 01000111 107 47
26 00011010 032 1A 72 01001000 110 48
27 00011011 033 1B 73 01001001 111 49
28 00011100 034 1C 74 01001010 112 4A
290 00011101 035 1D 75 01001011 113 4B
30 00011110 036 1E 76 01001100 114 4C
31 00011111 037 1F 77 01001101 115 4D
32 00100000 040 20 78 01001110 116 4E
33 00100001 041 21 79 01001111 117  4F
34 00100010 042 22 80 01010000 120 50
35 00100011 043 23 81 01010001 121 51
36 00100100 044 24 82 01010010 122 52
37 00100101 045 25 83 01010011 123 53
38 00100110 046 26 84 01010100 124 54
39 00100111 047 27 85 01010101 125 55
40 00101000 050 28 86 01010110 126 56
41 00101001 051 29 87 01010111 127 57
42 00101010 052 2A 88 01011000 130 58




DEC BIN OCT HEX DEC BIN OCT HEX
89 01011001 131 59 135 10000111 207 87
90 01011010 132 5A 136 10001000 210 88
91 01011011 133 5B 137 10001001 211 89
92 01011100 134 5C I 138 10001010 212 8A
93 01011101 135 58D 139 10001011 213 8B
94 01011110 136 5E 140 10001100 214 8C
95 01011111 137 5F 141 10001101 215 8D
96 01100000 140 60 142 10001110 216 8E
97 01100001 141 61 143 10001111 217 8F
98 01100010 142 62 144 10010000 220 90
99 01100011 143 63 145 10010001 221 91

100 01100100 144 64 146 10010010 222 Q2
101 01100101 145 65 147 10010011 223 93
102 01100110 146 66 148 10010100 224 94
103 01100111 147 67 149 10010101 225 95
104 01101000 150 68 150 10010110 226 96
105 01101001 151 69 151 10010111 227 97
106 01101010 152 6A 152 10011000 230 98
107 01101011 153 6B 153 10011001 231 99
108 01101100 154 6C 154 10011010 232 9A
109 01101101 155 6D 155 10011011 233 9B
110 01101110 156 6E 156 10011100 234 9C
111 01101111 157  6F 157 10011101 235 9D
112 01110000 160 70 158 10011110 236 9E
113 01110001 161 71 159 10011111 237 OF
114 01110010 162 72 160 10100000 240 AQ
115 01110011 163 73 161 10100001 241 A1
116 01110100 164 74 162 10100010 242 A2
117 01110101 165 75 163 10100011 243 A3
118 01110110 166 76 164 10100100 244 A4
119 01110111 167 77 165 10100101 245 A5
120 01111000 170 78 166 10100110 246 A6
121 01111001 171 79 167 10100111 247 A7
122 01111010 172 7A 168 10101000 250 A8
123 01111011 173 7B 169 10101001 251 A9
124 01111100 174 7C 170 10101010 252 AA
125 01111101 175 7D 171 10101011 253 AB
126 01111110 176 7E 172 10101100 254 AC
127 o1111111 177 7F 173 10101101 255 AD
i 128 10000000 200 80 174 10101110 256 AE
- 129 10000001 201 81 175 10101111 257 AF
130 10000010 202 82 176 10110000 260 BO
131 10000011 203 83 177 10110001 261 Bt
132 10000100 204 84 178 10110010 262 B2
133 10000101 205 85 179 10110011 263 B3
134 10000110 206 86 180 10110100 264 B4




DEC

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

BIN

10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111
11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010

OCT HEX

265 B5
266 B6
267 BY7
270 B8
271 B9
272 BA
273 BB
274 BC
275 BD
276 BE
277 BF
300 CoO
301 Ct
302 C2
303 C3
304 C4
305 C5
306 C6
307 C7
310 C8
311 C9
312 CA
313 CB
314 CC
315 CD
316 CE
317 CF
320 DO
321 D1
322 D2
323 D3
324 D4
325 D5
326 D6
327 D7
330 D8
331 D9
332 DA
333 DB
334 DC
335 DD
336 DE
337 DF
340 EO
341 E1
342 E2

DEC

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

BIN

11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

oCcT

343
344
345
346
347
350
351
352
363
354
355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
375
376
377



	_0322071431_001.pdf
	_0322071435_001.pdf
	_0322071443_001.pdf
	_0322071448_001.pdf
	_0322071453_001.pdf
	_0322071459_001.pdf
	_0322071504_001.pdf
	_0322071509_001.pdf
	_0322071516_001.pdf
	_0322071521_001.pdf
	_0322071530_001.pdf
	_0322071538_001.pdf
	_0322071546_001.pdf
	_0322071552_001.pdf
	_0322071601_001.pdf
	_0322071609_001.pdf
	_0322071617_001.pdf
	_0322071622_001.pdf
	_0322071628_001.pdf
	_0322071638_001.pdf
	_0322071644_001.pdf
	_0322071651_001.pdf
	_0322071659_001.pdf
	_0322071706_001.pdf
	_0322071714_001.pdf
	_0322071721_001.pdf
	_0322071728_001.pdf
	_0322071733_001.pdf
	_0322071739_001.pdf
	_0322071744_001.pdf
	_0322071750_001.pdf
	_0322071756_001.pdf
	_0322071802_001.pdf
	_0322071807_001.pdf
	_0322071813_001.pdf
	_0322071818_001.pdf
	_0322071825_001.pdf
	_0322071831_001.pdf
	_0322071836_001.pdf
	_0322071840_001.pdf
	_0322071848_001.pdf
	_0322071853_001.pdf
	_0322071859_001.pdf
	_0322071905_001.pdf
	_0322071911_001.pdf
	_0322071915_001.pdf
	_0322071920_001.pdf
	_0322071926_001.pdf
	_0322071931_001.pdf
	_0322071936_001.pdf
	_0322071940_001.pdf
	_0322071944_001.pdf
	_0322071949_001.pdf
	_0322071955_001.pdf
	_0322072002_001.pdf
	_0322072006_001.pdf
	_0322072011_001.pdf
	_0322072014_001.pdf
	_0322072019_001.pdf
	_0322072024_001.pdf
	_0322072030_001.pdf
	_0322072035_001.pdf
	_0322072040_001.pdf
	_0322072044_001.pdf
	_0322072049_001.pdf
	_0322072053_001.pdf
	_0322072058_001.pdf
	_0322072104_001.pdf
	_0322072110_001.pdf
	_0322072114_001.pdf
	_0322072120_001.pdf
	_0322072125_001.pdf
	_0322072129_001.pdf
	_0322072134_001.pdf
	_0322072140_001.pdf
	_0322072143_001.pdf
	_0322072148_001.pdf
	_0322072153_001.pdf
	_0322072159_001.pdf
	_0322072205_001.pdf
	_0322072210_001.pdf
	_0322072214_001.pdf
	_0322072218_001.pdf
	_0322072233_001.pdf
	_0322072238_001.pdf
	_0322072242_001.pdf
	_0322072247_001.pdf
	_0322072251_001.pdf
	_0322072256_001.pdf
	_0322072301_001.pdf
	_0322072305_001.pdf
	_0322072310_001.pdf
	_0322072315_001.pdf
	_0322072319_001.pdf
	_0322072325_001.pdf
	_0322072330_001.pdf
	_0322072336_001.pdf
	_0322072342_001.pdf
	_0322072346_001.pdf
	_0322072352_001.pdf
	_0322072357_001.pdf
	_0322072402_001.pdf
	_0322072408_001.pdf
	_0322072413_001.pdf
	_0322072417_001.pdf
	_0322072424_001.pdf
	_0322072429_001.pdf
	_0322072434_001.pdf
	_0322072439_001.pdf
	_0322072444_001.pdf
	_0322072450_001.pdf
	_0322072457_001.pdf
	_0322072502_001.pdf
	_0322072507_001.pdf
	_0322072512_001.pdf
	_0322072522_001.pdf
	_0322072527_001.pdf
	_0322072533_001.pdf
	_0322072540_001.pdf
	_0322072546_001.pdf
	_0322072553_001.pdf
	_0322072602_001.pdf
	_0322072608_001.pdf
	_0322072614_001.pdf
	_0322072621_001.pdf
	_0322072627_001.pdf
	_0322072635_001.pdf
	_0322072642_001.pdf
	_0322072648_001.pdf
	_0322072654_001.pdf
	_0322072658_001.pdf
	_0322072703_001.pdf
	_0322072707_001.pdf
	_0322072711_001.pdf
	_0322072717_001.pdf
	_0322072721_001.pdf
	_0322072725_001.pdf
	_0322072730_001.pdf
	_0322072734_001.pdf
	_0322072743_001.pdf
	_0322072748_001.pdf
	_0322072753_001.pdf
	_0322072758_001.pdf
	_0322072804_001.pdf
	_0322072809_001.pdf
	_0322072816_001.pdf
	_0322072823_001.pdf
	_0322072831_001.pdf
	_0322072839_001.pdf
	_0322072847_001.pdf
	_0322072855_001.pdf
	_0322072905_001.pdf
	_0322072911_001.pdf
	_0322072917_001.pdf
	_0322072924_001.pdf
	_0322072930_001.pdf
	_0322072936_001.pdf
	_0322072942_001.pdf
	_0322072952_001.pdf
	_0322072959_001.pdf
	_0322073009_001.pdf
	_0322073017_001.pdf
	_0322073022_001.pdf
	_0322073028_001.pdf
	_0322073036_001.pdf
	_0322073043_001.pdf
	_0322073050_001.pdf
	_0322073057_001.pdf
	_0322073104_001.pdf
	_0322073110_001.pdf
	_0322073115_001.pdf

