$16.95

" RENTICE-HALL SERIES PERSONAL COMPUTINE

obert T. Grauer, PhD

University of Miami, F‘l‘bri“(”la: “"

PRENTICE-HALL, INC., ENGLEWOOD CLIFFS, NEW JERSEY 07632 ‘

Library of Congress Cataloging in Publication Data
Graueyr, Robert T,
TRS-80 COBOL.

(Prentice-Hall series in personal computing)

Includes index.

1. TRS-80 (Computer)—Programming. 2. Basic
(Computer program language) 1. Title. II. Series.
QA76.8.T18G7 1983 001.64°24 82-16638
ISBN 0-13-931212-9
ISBN 0-13-931204-8 (pbk.)

Editorial /Production Supervision

and Interior Design: Lynn S. Frankel
Cover Design: Photo Plus Art
Manufacturing Buyer: Gordon Osbourne

© 1983 by Tandy Corporation, Fort Worth, Texas 76102

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in the United States of America

10 9 876 5 43 21

ISBN 0-13-931212-9 {CASE?}
ISBN 0-13-931204-8 {PAPER}Z}

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brazil, Ltda., Rio de Janeiro
Prentice-Hall Canada, Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

To my family
Marion, Benjy, and Jessica
with whom I share much more
than a home computer

The following information is reprinted from COBOL Edition, 1965, published by the
Conference on Data Systems Languages (CODASYL), and printed by the U.S. Govern-
ment Printing Office:

Any organization interested in reproducing the COBOL report and specifications in
whole or part, using ideas taken from this report as the basis for an instructional manual
or for any other purpose, is free to do so. However, all such organizations are requested
to reproduce this section as part of the introduction to the document. Those using a short
passage, as in a book review, are requested to mention “COBOL” in acknowledgment of
the source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the COBOL
Committee as to the accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or by the committee, in con-
nection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries con-
cerning the procedures for proposing changes should be directed to the Executive Com-
mittee of the Conference on Data Systems Languages.

The authors and copyright holders of the copyrighted material used herein

FLOWMATIC (Trade mark of the Sperry Rand Corporation), Programming for the
Univac (R) I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry
Rand Corporation; IBM Commercial Translator Form No. F28-8013, copyrighted
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-
Honeywell.

have specifically authorized the use of this material in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL speci-
fications in programming manuals of similar publications.

CHAPTER
1

CHAPTER
2

' CONTENTS

PREFACE Xt

INTRODUCTION 1

Overview 2

The First Problem 2
COBOL: A First Look 2
Elements of COBOL 4
Summary 8

True/False &8

Exercises 9

FILE PROCESSING 11

Overview 12

Vocabulary 12

Employee Selection Problem 12
Flowcharts ® Pseudocode © Test Data ® Implementation
in COBOL

Summary 19

True/False 19

Exercises 20

vi

CHAPTER
3

CHAPTER
4

CHAPTER
5

Contents

TRS-80 COBOL

Overview 24

COBOL Versus Machine Language 24

The TRS-80 Operating System 26

Compilation on the TRS-80 26
Compiler Ouiput

Execution on the TRS-80 30

Obtaining Hard Copy 30

DIR and KILL Commands 30

The Source Program Editor — CEDIT 31
A Sample Session

Creating a COBOL Program 34

Creating a Data File 34

Summary 35

True/False 36

Exercises 36

Projects 38

THE COBOL LANGUAGE

Overview 42

COBOL Notation 42
Identification Division 43
Environment Division 44
Data Division 44

Picture Clause @ Level Numbers e File Section e
Working-Storage Section e Value Clause

Procedure Division 48

23

41

ADD e SUBTRACT e MULTIPLY e DIVIDE ¢ COMPUTE © READ

WRITE e OPEN e CLOSE ¢ MOVE e Editing Numeric Data

IF e PERFORM e STOP RUN
Summary 59
True/False 64
Exercises 64
Projects 66

DEBUGGING

Overview 70

Errors in Compilation 70
A Second Example

Errors in Execution 85

Summary 86

True/False 88

Exercises 89

69

CHAPTER
6

CHAPTER
7

Contents vii

ADVANCED FEATURES 97

Overview 98

IF 98
Compound Tests ® Condition Name Tests (88-Level
Entries) ® Nested IF's

PERFORM 102

DISPLAY 104

ACCEPT 104

READ INTO 105

WRITE FROM 106

ROUNDED and SIZE ERROR Options 106

Duplicate Data Names 107
Qualification € CORRESPONDING

INSPECT 109

Tables 109
The OCCURS Clause ® Processing a Table ¢ REDEFINES
Clause ® Table Lookups)

Summary 114

True/False 119

Exercises 120

Projects 122

PROGRAMMING STYLE 125

Overview 126

Coding Standards 126

Choose Meaningful Names 127
Avoid Commas 128

Use Appropriate Comments 128
Eliminate 77-Level Entries 129

Space Attractively 129

Indent 130

Avoid Constants 131

Avoid Literals 132

Keep It Simple 133

Perform Paragraphs, not Sections 134
Restrict Subscripts to a Single Use 134
Use 88-Level Entries 135

Structured Programming 136

The Completed Program 138
Summary 143

True/False 143

Projects 143

viii

CHAPTER
8

CHAPTER
9

CHAPTER
10

Contents

CONTROL BREAKS

Overview 146
Editing 146
Signed Numbers
Control Breaks 148
One-Level Control Breaks 149
Two-Level Control Breaks 154
Summary 159
True/False 160
Exercises 160
Projects 164

SUBPROGRAMS AND THE COPY STATEMENT

Overview 168

COPY Statement 168
Subprograms 169

A Complete Example 171
Summary 176

True/False 177

Exercises 178

Projects 182

TABLE PROCESSING

Overview 184

The OCCURS Clause 184

Table Lookups — A Review 186
Initializing Tables Dynamically 187
The SET Statement 188

A Complete Example 189
Two-Level Tables 196

PERFORM/VARYING ® A Complete Example

Three-Level Tables 202
PERFORM/VARYING

Summary 204

True/False 205

Exercises 205

Projects 211

145

167

183

CHAPTER
11

CHAPTER
12

APPENDIX
A

APPENDIX
B

APPENDIX
C

APPENDIX
D

Contents ix

SEQUENTIAL FILE MAINTENANCE 213

Overview 214
Concepts of File Maintenance 214
Murphy’s Law 215
Requirements of the Maintenance Program 215
Pseudocode 217
Hierarchy Charts 218
Top Down Development 219
A Stubs Program ® The Completed Program
Summary 229
True/False 230
Exercises 231

NONSEQUENTIAL FILE MAINTENANCE 235

Overview 236

Diskette Organization 236

Indexed Files 236

COBOL Requirements for Indexed Files 238
DECLARATIVES 240

Creating an Indexed File 242

Printing an Indexed File 242

Logical Requirements of the Maintenance Program 242
Updating an Indexed File 245

Summary 249

True/False 249

Exercises 250

ANSWERS TO TRUE/FALSE AND EXERCISES 255
RESERVED WORD LIST 275
TRS-80 COBOL SYNTAX 281
GLOSSARY 297

INDEX 303

PREFACE

COBOL is a higher level language, which in theory ought to make it machine
independent. In practice, however, COBOL contains an Environment Divi-
sion which makes it, to a limited extent, machine dependent. The problem
is further compounded by various implementations of the ANS standard.
Many vendors have included their own extensions, while others have failed
to implement portions of the standard. In short, a competent COBOL pro-
grammer has to know specifics of the implementation on his or her machine.

Even if COBOL were truly compatible from one machine to the next,
operating systems are totally different. It is one thing to write a sequential
update in COBOL; it is quite another to create and access the data files
which the program requires. Text editors also vary greatly, and the COBOL
programmer must be knowledgeable in this area as well.

TRS-80 COBOL is written specifically for the Radio Shack Model II
and III computers. The author believes that knowledge of COBOL, in and of
itself, does not necessarily yield a complete programmer. Included, there-
fore, are specifics of the TRS-80 COBOL implementation, characteristics of
the operating system (TRSDOS), and instruction on its text editor (CEDIT).

At the same time, TRS-80 COBOL is a substantial COBOL text cover-
ing all elements of the language, as implemented on the TRS-80 machines.
The author adheres to sound programming practices, and uses structured
programming exclusively. Pseudocode and hierarchy charts are emphasized,
while the traditional flowchart is de-emphasized.

The author employs a “learn by doing” approach which stresses early
access to the machine as well as constant exposure to complete COBOL pro-
grams. Every COBOL chapter contains at least one program to tie together
the major points in that chapter.

xi

xii

Preface

Chapter 1 is a rapid introduction to COBOL, and the reader is exposed
to a complete program almost immediately. The intent is not to master the
myriad syntactical rules associated with the language, but rather to gain a
conceptual understanding of what programming is all about. The chapter
develops the fundamental concept that every computer program consists
of three phases — input, processing, and output.

Chapter 2 develops concepts of file processing. A COBOL program is
written to read an incoming file, select various records, and prepare a re-
port. Associated topics include the use of flowcharts and/or pseudocode and
the preparation of test data.

Chapter 3 deals exclusively with the TRS-80. It covers the COBOL text
editor (CEDIT), elementary commands of the TRSDOS operating system,
and use of the COBOL compile (RSCOBOL), and runtime (RUNCOBOL)
modules. The chapter also discusses file name conventions, differentiating
between source, object, and data files.

Chapter 4 returns to COBOL. It introduces the COBOL notation, then
uses the material to explain a basic COBOL subset. The Data Division is
covered in some depth, with emphasis on the File and Working-Storage sec-
tions, and group versus elementary items. The chapter ends with another
complete program.

Chapter 5 debugs both compilation and execution errors. The program
of Chapter 4 is rewritten to illustrate common compilation errors, and re-
written a second time to depict typical execution errors.

Chapter 6 introduces some advanced elements of the language. These
include compound tests, condition names, nesting in an IF statement, as well
as several formats of the PERFORM verb. The chapter presents basics of
table processing, including the OCCURS and REDEFINES clauses, and rudi-
ments of a sequential “table lookup”.

Chapter 7 discusses programming style, through a series of guidelines
designed to make a COBOL program easy to follow. The chapter stresses
that a well-written program must not only work, but in addition be easily
read and maintained by someone other than the original author. The chapter
formally defines “‘structured programming”, although every program from
Chapter 1 on has been structured.

Chapter 8 introduces the concept of control breaks, one of the most
frequent data processing applications. Two programs are developed for single
and double control breaks, respectively. Each is accompanied with pseudo-
code and a hierarchy chart. The chapter also completes an earlier presen-
tation of editing, including use of signed numbers and incorporates this
material into the illustrative programs.

Chapter 9 covers subprograms and the COPY statement, both powerful
COBOL techniques. Specifics of the TRS-80 implementation are shown in
the programs at the chapter’s end.

Chapter 10 is a comprehensive treatment of table processing. The mate-
rial on table lookups is reviewed from Chapter 6, then extended to cover
variable-length tables, indexing, and the SET statement. Various techniques
for table lookups and initialization are contrasted in a complete program.
Two-level tables are covered in depth through a discussion of PERFORM/
VARYING/AFTER, multiple OCCURS clauses, and a second program. The
concepts are then extended to three-level tables.

Chapter 11 focuses on sequential file maintenance. It develops basic
vocabulary; e.g., fixed versus variable-length records, blocked versus un-
blocked records, and so on. The emphasis, however, is on development of a
nontrivial maintenance program, entirely through the structured method-

ACKNOWLEDG-
MENTS

SUPPORTING
PRODUCTS

OF THE TANDY
CORPORATION

Preface xiii

ology. Coverage includes top down development and testing, use of program
stubs, pseudocode, and hierarchy charts.

Chapter 12 parallels Chapter 11, except for nonsequential maintenance.
It presents concepts of indexed file organization and the associated COBOL
elements. It then develops a nonsequential maintenance program with re-
quirements similar to the one in Chapter 11.

Exercises are present at the end of each chapter. Of particular interest
are the debugging problems at the ends of Chapters 8 through 12. Solutions
to all exercises are included in Appendix A, but no peeking until you have
made an honest attempt at achieving your own solution. In addition, most
chapters have one or more programming projects, which must be attempted
if the reader is to master the material.

The author gratefully acknowledges permission from the Tandy Corporation
to reprint copyrighted material. He is also appreciative of the help provided
by several employees of the Tandy Corporation: Mr. Dave Carpenter, Mr.
Bill Gattis, Ms. Barbara Kemp, Ms. Karen McGee, and Mr. Dennis Tanner.

At Prentice-Hall, the author wishes to thank his editor, Bernard Good-
win, for making this book possible. He expresses special thanks to Lynn
Frankel, production editor, who brings a new meaning to the word “dedi-
cation.” Herb Daehnke is to be commended for the artwork, as are proof-
readers Mark Paris and Jackie Clark for their contribution to the quality of
the book. Last, and certainly not least, thanks to Edith Butler and Sheila
Grossman who patiently typed and retyped the manuscript.

In addition to the Model II and/or Model III computer, and the associated
COBOL compilers, the reader may wish to purchase a COBOL instructional
diskette that contains a copy of every program in the book, and/or COBOL
class notes for use at a Radio Shack Computer Center. (See product numbers
26-2702 and 26-2706 for the Model III. Check 26-2723 and 26-2724 for
the Model II.)

ROBERT T. GRAUER

OVERVIEW

THE FIRST
PROBLEM

COBOL: A
FIRST LOOK

This book is about computer programming. In particular, it is about the
TRS-80 computer and COBOL, a widely used programming language. Pro-
gramming involves the translation of a precise means of problem solution
into a form the computer can understand. Programming is necessary because,
despite reports to the contrary, computers cannot think for themselves.
Instead they do exactly what they have been instructed to do, and these in-
structions take the form of a computer program. The advantage of the com-
puter stems from its speed and accuracy. It does not do anything that a
human being could not do, if he or she were given sufficient time.

All computer applications consist of three phases: input, processing,
and output. Information enters the computer, it is processed (i.e., calcula-
tions are performed) and the results are communicated to the user. Input can
come from the TRS-80 keyboard, a diskette, a tape cassette, or any of a
variety of other devices. Processing encompasses the logic to solve a problem,
but in actuality all a computer does is add, subtract, multiply, divide, or
compare. All logic stems from these basic operations, and the power of the
computer comes from its ability to alter a sequence of operations based on
the results of a comparison. Output can take several forms. It may consist of
a computer printout, or it may be payroll checks, computer letters, mailing
labels, etc.

We shall begin our study of computer programming by posing a simple
problem for solution on the TRS-80. We move quickly into COBOL and ex-
amine a complete program. The reader may observe that this rapid entrance
into COBOL is somewhat different from the approach followed by most
books, but the author believes in learning by doing. There is nothing very
mysterious about COBOL programming, so let’s get started.

Let us pose a very simple problem; calculate the average of three test grades.
In order to obtain the solution, the three grades must be added together and
the sum divided by three.

If this problem is to be solved on a computer, one must provide for the
three phases of any computer application: input, processing, and output.
One has to enter the test grades into the computer, which in turn processes
the data to obtain an average, and finally the computer has to display the
calculated results.

Every COBOL program contains four divisions, which appear in specified
order. These are:

IDENTIFICATION This division contains the program

DIVISION and author’s name. It can also con-
tain other identifying information,
such as date written, installation
name, and so on.

ENVIRONMENT This portion mentions the com-
DIVISION puter on which the program is to be
compiled and executed (usually one
and the same). It also specifies the
input/output devices to be used
by the program.

Introduction 3

DATA DIVISION This division describes the location
of incoming and outgoing data. It
can, for example, describe particular
columns where output information
is to appear in a report.

PROCEDURE This division contains the program

DIVISION logic, that is, the instructions the
computer is to execute in solving
the problem.

With this briefest of introductions, consider Figure 1.1, which is a com-
plete program to obtain the average test score. The syntactical rules for

iCOBOL sequence numbers that are referenced in the text material

[000 1 0o TDENT IF TCATION DIVISION.

POO110 | PROGRAM-ID. AVERAGE.
QU017 | AUTHOR. ROBERT GRAUER.
QB 130
PR 140 [ENVIRONMENT DIVIGION. . -
POVISO | CONFIGURATION SECTION. |~ Environment Division
POB1 60 | SOURCE-COMPUTER. TRS-8@.
PO@170 |OBJECT-COMPUTER. TRS-E0.
000180
000190 [DATA DIVISION.

D0 |WORK TNG-BTORAGE SECTION.

| __— ldentification Division

3

7 T-1 FIC 99%. Data Division
77 : P16 999,

77 PIC 999,

77 TOTAL-SCORE PIC 999,

77 AVERAGE FIC 599,

FROCEDURE DIVISION.
THE-ROSS.

BBA3B9 PE RI'URM DH F’Rl)ﬁ:.‘ BHRG .

POB310 FERFORM WRITE--OQUTFUT.

[radrada e STOP RUN. Paragraph names
BRB33R

BBD34@ |GET--INPUT.

PUTE YOUR AVERAGE"

SE.

BRAB35e DIGPLAY "THE COMPUTER WILL C¢
DRA36HG POSITION 1@ LINE 1 ;

alal R wd)

BOa3sl DISPLAY "ENTER GRADE ON 1" POSITION & LINE 4.
ABR39a ACCEPT TEST—1.

ral vyl

aBBa 1@ DISFLAY "ENTER GRADE TEST 2" PFOSITION & LINE 8.
ralF 3 RSl V] ACCERT TEST-Z.

BoBa30

B4 4@ DISFLAY "ENTER TEGT 3" POSITION & LINE 1Z.
ralralri %1% ACCEPRPT TEST~3

DaB4 LB

PB4 70 [DO-PROCESS ING.

DRR4EH ADD TEST-1 TEAT-Z TEST-3 GIVING TOTAL--SCORE.

PBR49Q DIVIDE TOTaK~8CORE RY 3 GIVING AVERAGE.

vl syl

WZHZ]JH?’J IWRT TE-~-OUTRPUT.

DIGPLAY "YOUR AVERAGE GRADE ON 3 TESTS = " LINE 16 AVERAGE.

IF AVERAGE = 89
DISBPLAY "CONGRATULATIONS - YOU ARE AN A STUDENT" REVERSE.

IF AVERAGE < 70
Q00580 DISPLAY "YOU SHOULD STUDY HARDER" REVERSE.

FIGURE 1.1 The first COBOL program

ELEMENTS
OF COBOL

Chapter 1

COBOL are very precise, and you are certainly not expected to remember
them now. However, the author believes that immediate exposure to a com-
puter program is extremely beneficial in terms of stripping away the mystical
aura that too often surrounds programming.

Consider the Procedure Division of Figure 1.1, which contains the pro-
gram’s logic and consequently is the most important part of any COBOL
program. The Procedure Division of Figure 1.1 begins on line 270. It is di-
vided into four paragraphs, THE-BOSS, GET-INPUT, DO-PROCESSING, and
WRITE-OUTPUT, beginning on lines 280, 340, 470, and 510, respectively.

The relationship of these paragraphs to each other is best explained by
referring to the hierarchy chart of Figure 1.2. A hierarchy chart for a pro-
gram is very much like an organization chart for a company. It shows which
paragraph in a program is the ‘““president” and which paragraphs are subordi-
nates. As can be seen from Figure 1.2, GET-INPUT, DO-PROCESSING, and
WRITE-OUTPUT are all subordinate to the paragraph, THE-BOSS.

THE-BOSS

l

GET-INPUT DO-PROCESSING WRITE-OUTPUT

FIGURE 1.2 Hierarchy chart for the first COBOL program

Statements 290, 300, and 310 in Figure 1.1 are all PERFORM state-
ments. The PERFORM verb in COBOL transfers control to the designated
paragraph, which does its job, and on completion returns control to the
statement following the original PERFORM. Look carefully at THE-BOSS
paragraph, beginning in line 280. The first thing it does is invoke a subordi-
nate, GET-INPUT, to obtain the test grades. Next, it calls a second subor-
dinate, DO-PROCESSING, to compute the average, and finally a third
subordinate to WRITE-OUTPUT. When the job of the last paragraph is com-
pleted, control returns to line 320, which stops the run and terminates the
program.

Now that we have an appreciation for the overall workings of the pro-
gram, let us consider the subordinate paragraphs. To carry the company
organization analogy a bit further, one might say we are looking at the “job
descriptions’ of GET-INPUT, DO-PROCESSING, and WRITE-OUTPUT.

The GET-INPUT paragraph consists entirely of DISPLAY and ACCEPT
statements. The former prints a message on the terminal, e.g., “ENTER
GRADE ON TEST 1” (in line 380); the latter waits for the user to comply
and stores the result in the computer’s memory.

The DO-PROCESSING paragraph adds the input obtained by its col-
league, GET-INPUT, and stores the result as TOTAL-SCORE (line 480). It
then divides TOTAL-SCORE by 3 and obtains AVERAGE in line 490.

WRITE-OUTPUT displays the average in line 520. This paragraph also
employs two IF statements in lines 540 and 570, which display additional
messages, depending on the calculated results.

Although the reader is certainly not yet expected to be able to write a
COBOL program, he or she may be able to intuitively follow simple pro-
grams like Figure 1.1. This section begins a formal discussion of COBOL so
that one will eventually be able to write an entire program.

Introduction 5

COBOL is comprised of six language elements: reserved words, pro-
grammer-supplied names, literals, symbols, level numbers, and pictures.
Every COBOL statement contains at least one reserved word, which gives
the entire statement its meaning. Reserved words have special significance
and are used in a rigidly prescribed manner. They must be spelled correctly
or else COBOL will not recognize them. The list of reserved words varies
from computer to computer, and the TRS-80 list is given in Appendix B.
The beginner is urged to refer frequently to this appendix for two reasons:
(1) to ensure the proper spelling of reserved words used in his or her pro-
gram, and (2) to avoid the inadvertent use of reserved words as programmer-
supplied names.

The programmer supplies his own names for files, paragraphs, and data
names. A paragraph name is a tag to which the program refers, for example,
GET-INPUT or DO-PROCESSING in Figure 1.1. Data names are the ele-
ments on which instructions operate, for example, TEST-1 and AVERAGE
in Figure 1.1. A programmer chooses his own names within the following
rules:

1. A programmer-supplied name can contain the letters A to Z, the
digits 0 to 9, and the hyphen (-). No other characters are permitted,
not even blanks.

2. Data names must contain at least one letter. Paragraph names may
be all numeric.

3. A programmer-supplied name cannot begin or end with a hyphen.
4. Reserved words may not be used as programmer-supplied names.
5. Programmer-supplied names must be 30 characters or less.

The following examples should clarify the rules associated with pro-
grammer-supplied names:

Programmer-Supplied Name Explanation

SUM-OF-X Valid.

SUM OF X Invalid: contains blanks.

SUM-OF-X- Invalid: ends with a hyphen.

SUM-OF-ALL-THE-XS Valid.

SUM-OF-ALL-THE-XS-IN-ENTIRE-PROGRAM Invalid: more than 30 characters.

GROSS-PAY-IN-$ Invalid: contains character other than
letter, number, or hyphen.

12345 Valid as paragraph name, but invalid as

a data name.

A literal is an exact value or constant. It may be numeric, that is, a
number, or non-numeric, that is, enclosed in quotes. Literals appear through-
out a program, for example in lines 570 and 580 of Figure 1.1:

IF AVERAGE < 70
DISPLAY "YOU SHOULD STUDY HARDER".

In line 570 the numeric literal 70 is compared to the programmer-
defined name AVERAGE. In the next statement, the non-numeric literal,
YOU SHOULD STUDY HARDER, is displayed on the terminal.

Non-numeric literals are contained in quotes and may be up to 120
characters in length. Anything, including blanks, numbers, or reserved words,

Chapter 1

may appear in the quotes and be part of the literal. Numeric literals can be
up to 18 digits and may begin with a leading (left-most) plus or minus sign.
The latter may contain a decimal point, but cannot end on a decimal point.
Examples are shown:

Literal Explanation
123.4 Valid numeric literal.
“123.4" Valid non-numeric literal.
"“IDENTIFICATION DIVISION" Valid non-numeric literal.
123. Invalid numeric literal: cannot end on a

decimal point.
123— Invalid numeric literal: the minus sign
must be in the left-most position.

Symbols are of three types, punctuation, arithmetic, and conditional,
and are contained in Table 1.1.

TABLE 1.1
COBOL SYMBOLS

Category Symbol

Punctuation . Denotes end of COBOL entry
, Delineates clauses
Delineates clauses
Sets off non-numeric literals
Encloses subscripts or expressions
Addition
Subtraction
Multiplication
Division

e

+ Z

Arithmetic

* 1

~

Conditional Equal to
Less than

Greater than

VvV A I

The use of conditional and arithmetic symbols is described in detail
later in the text, beginning in Chapter 4. Commas and semicolons are used to
improve the readability of a program, and their omission (or inclusion) does
not constitute an error. Periods, on the other hand, should be used after a
sentence, and their omission could cause difficulty.

The period also has special significance with respect to certain COBOL
verbs, for example, the IF statement. Simply stated, the period terminates
the effect of the verb. Consider the difference between:

Example 1
IF TITLE = “PROGRAMMER" no period
ADD 1 TO NUMBER-OF-PROGRAMMERS
MOVE CARD-NAME TO OUTPUT-AREA.
Example 2

IF TITLE = “PROGRAMMER"’ extra period
ADD 1 TO NUMBER-OF-PROGRAMMERS.
MOVE CARD-NAME TO OUTPUT-AREA.

Introduction 7

The two examples contain almost identical COBOL except for the extra
period in example 2. (They are, however, indented differently to highlight
the difference in action caused by the extra period.) When an IF condition
is satisfied, all action between the IF and the period is taken. Hence, in ex-
ample 1, both the ADD and MOVE will be executed if TITLE = “PRO-
GRAMMER”’. However, in example 2, only the ADD will be executed if
TITLE = “PROGRAMMER”’, and the MOVE will be executed regardless of
the TITLE. Much more is said about the IF in Chapter 4.

Level numbers are used in defining data names. We shall learn in Chap-
ter 2 that level numbers may go from 01 to 49, and can also include the spe-
cial number 77. (Only the latter appears in Figure 1.1.)

Pictures are used in the Data Division to describe the nature of incom-
ing or outgoing data. A picture of 9’s means the entry is numeric, a picture
of A’s implies the entry is alphabetic, and a picture of X’s means the entry is
alphanumeric and can contain letters, numbers, and special characters. Note,
however, that alphabetic pictures are seldom used; that is, even names can
contain apostrophes or hyphens, which are alphanumeric rather than alpha-
betic in nature. Lines 210 through 250 of Figure 1.1 illustrate the use of the
PICTURE clause. (The reserved word PICTURE can be abbreviated as PIC.)

Level numbers and pictures are discussed more fully in Chapter 4,
under the Data Division. The reader may review Figure 1.1 and identify
the various COBOL elements. As a final aid, consider Figure 1.3, which of-
fers further intuitive explanation of the program.

000100 Header for IDENTIFICATION DIVISION.
000110 Names the program as AVERAGE.

000120 Identifies the author as Robert Grauer.
000140 Header for ENVIRONMENT DIVISION.
000150 Beginning of CONFIGURATION SECTION.

000160 Identifies TRS-80 as SOURCE-COMPUTER,
the machine on which the program will com-
pile. (Chapter 3 describes the compilation
concept in detail.)

000170 Identifies TRS-80 as OBJECT-COMPUTER,
the machine on which the program will
execute.

000190 Header for DATA DIVISION.

000200 Identifies the WORKING-STORAGE
SECTION.

000210-000250 Defines programmer-supplied data names
which will be used in the program. Note that
all five data names are 77-level entries, and
further that each is a three position numeric
field.

000270 Header for PROCEDURE DIVISION.
000280 Signals the first, and controlling, paragraph in
the PROCEDURE DIVISION.

FIGURE 1.3 Line by line explanation of Figure 1.1

SUMMARY

Chapter 1

000290-00310 PERFORM statements which transfer control
to lower level paragraphs for input, processing,
and output, respectively.

000320 STOP RUN statement terminates program
execution.
000340 GET-INPUT signals the beginning of the para-
graph which obtains input. (Notice how lines
350 through 450 are indented under the para-
graph name of line 340.)
000350-000450 DISPLAY and ACCEPT statements which
prompt the user for input and receive same.
The DISPL.AY statements also contain specific
line and position references where the dis-
played material is to appear.
000470-000490 The DO-PROCESSING paragraph which cal-
culates the average of three test grades.
000510-000580 The WRITE-OUTPUT paragraph which dis-
plays the calculated result on the terminal.

FIGURE 1.3 Continued

This chapter presented a rapid introduction into COBOL. The reader was
shown a completed program and given only a brief intuitive explanation.
Nevertheless, the reader may have gained a basic understanding of computer
programming and the fundamental concept that all applications consist of
input, processing, and output.

Every COBOL program contains four divisions: |dentification, Environ-
ment, Data, and Procedure, in that order. The latter contains a program’s
logic and is most important. A hierarchy chart, analogous to a company's
organization chart, is useful in explaining the relationship among paragraphs
in the Procedure Division.

The COBOL language is comprised of six elements. These are: reserved
words, programmer-supplied names, literals, symbols, level numbers, and
pictures. The chapter contained a formal introduction to COBOL, covering
syntactical rules for these elements.

TRUE/FALSE

A COBOL program can run on a variety of computers.

The divisions of a COBOL program may appear in any order.

Non-numeric literals may not contain numbers.

Numeric literals may contain letters.

The picture clause indicates the type of data; e.g., numeric or alphanumeric.
The ACCEPT statement waits for a user response,

. The DISPLAY statement prints a message on the CRT.

. A data name cannot contain any characters other than a letter or a number.
. The period has no effect on an IF statement.

Reserved words may be used as data names.

OP PP o o

fary

Introduction 9

EXERCISES

1. With respect to the COBOL program of Figure 1.1,

(a) Identify five reserved words.

(b) Identify five programmer-supplied names.
(c) Identify three non-numeric literals.

(d) Identify three numeric literals.

(e) Identify two conditional symbols.

(f) Identify one level number.

(g) Identify one picture clause.

(h) Identify five Procedure Division verbs.

2. Modify Figure 1.1 so that:

(a) The message, “YOU SHOULD STUDY HARDER”, will appear only if the average
is less than 60.

(b) The message, “CONGRATULATIONS —YOU ARE AN A STUDENT?”, will never
appear.

(c) The average is based on four grades instead of three.

3. Classify the following entries as being valid or invalid literals. For each valid entry, in-
dicate if it is numeric or non-numeric; for each invalid entry, indicate the reason why
it is invalid.

(a) 567

(b) 567.

(c) -567

(d) +567

(e) FIVE-SIX-SEVEN
(f) ""567."

(g) “FIVE SIX SEVEN"
(h) "-567"

(i) s67-

(i) sB67+

(k) 567+

4. Indicate whether the following entries are valid as data names. If any entry is invalid,
state the reasons.

(a) NUMBER-OF-TIMES

(b) DATE

(c) 12345

(d) ONE TWO THREE

(e) IDENTIFICATION-DIVISION
(f) IDENTIFICATION

(g) HOURS-

(h) GROSS-PAY-IN-DOLLARS
(i) GROSS-PAY-IN-$

12

OVERVIEW

VOCABULARY

EMPLOYEE
SELECTION
PROBLEM

The COBOL program of Chapter 1 dealt with /imited 1/0 (Input/Qutput).
The person executing the program had to input values for three test grades
through the keyboard, while the output was displayed on the CRT. This
approach, using low speed 1/0 devices, is suitable in situations with small
amounts of data, but unacceptable in commercial environments with large
volumes of data.

This chapter discusses how to process substantial quantities of data. It
begins with definition of basic terms: field, record, and file. 1t develops the
logic necessary for file processing and presents both flowcharts and pseudo-
code. Finally, it contains a complete COBOL program encompassing this
logic, and discusses the COBOL elements required for file processing. These
include the SELECT, FD, OPEN, CLOSE, READ, and WRITE statements.

A record is a set of facts about a logical entity. An employee record, for ex-
ample, might contain the employee’s name, title, salary, and date of birth.
A student record could contain the student’s name, address, grade point
average, year in school, and major. Each fact, e.g., name, title, salary, and
date of birth is known as a field. Each employee record, therefore, has four
fields, and each student record has five (name, address, grade point average,
year in school, and major).

A file is a set of records. In a company of 1,000 employees, there
would be 1,000 employee records (each with four fields) but only one em-
ployee file which contains all 1,000 records. With this as background, con-
sider a simple example of file processing.

Let us assume that we are to process a file of employee records and print the
name and salary of any individual who is both a programmer and less than
30 years old. Let us further assume that the employee file contains sufficient
data to solve the problem (i.e., each employee record has four fields: name,
age, job title, and salary). Our program is to examine the first record and
determine if the employee is qualified, then check the second record, and so
on until all records have been processed. In other words, we are to develop a
program that adheres to the following logic:

1. Read an employee record and stop when all records have been read.

2. If the employee whose record was just read is not a programmer, go
back to step 1.

3. If the employee whose record was just read is 30 or over, go back to
step 1.

4. Print relevant information for any employee reaching this point.

5. Go back to step 1.

Flowcharts

The first step in writing a program is to develop the logic the program will
follow. The result of this effort can be a flowchart, which is nothing more
than a pictorial representation of the logic inherent in a computer program.
A flowchart to determine the programmers under 30 is shown in Fig-
ure 2.1. The flowchart contains blocks with different shapes, where the
shape implies the nature of the process. In particular, elipses indicate the logi-

HOUSEKEEPING
2

READ FIRST
RECORD

Decision to write information
for qualified employees only

READ NEXT
RECORD
10

AND UNDER 30

1 »{ 9)t

| _/

{ WRITE
INFORMATION

| 8

| X

|

| |FALsE EMPLOYEE TRUE

| IS A PROGRAMMER

!

l

L

END
OF FILEWAS FALSE
REACHED

o e _!

_\' Processing loop indicating that instructions
will be executed many times

FIGURE 2.1 Flowchart to select programmers under 30

cal beginning or end of the entire flowchart, diamond-shaped boxes indicate
a decision, parallelograms denote input/output operations, and rectangles de-
note straightforward processing. (All shapes conform to American National
Standards Institute (ANSI) conventions and are used universally.)

The logic in Figure 2.1 should prove easily understandable, but Table
2.1 may provide additional insight. There is, however, one complication, the
presence of two read blocks (blocks 3 and 10) and the ‘“end of file”’ test in
block 5. The necessity for these blocks is mandated by the nature of the
read instruction. The function of a read is to obtain a record, but there will
always be a point when a read is attempted and no record is found; that is,
all the records have already been read. Since one does not know in advance
how many records a file contains, the read instruction must also signal the
“end-of-file”’ condition. Thus, if a file contains two records, it is actually

13

14

TABLE 2.1
BLOCK BY BLOCK EXPLANATION OF FLOWCHART IN FIGURE 2.1

Block Number Type Explanation

1 Terminal Every flowchart contains a START block to indicate
where program flow begins

2 Processing As a rule, most programs require some initial processing
known as housekeeping. Writing a page heading at the
start of a report is a good example.

3 1/0 Reads the first record only. Note that, if the file is empty,
execution of block 5 will cause the program to fall
through without entering blocks 7 to 10 inclusive. The
presence of this initial read is often bothersome to stu-
dents when they first confront it. Its presence, however,
is mandated by the nature of the read instruction and
is further explained in the section on sample data.

4 Connector Serves as an entry point into the loop which processes
employee records.

5 Decision Tests whether the end-of-file condition has been reached.
1f so, control goes to block 6, if not, control goes to
block 7.

6 Terminal Signals the end of processing.

7 Decision Tests whether the employee currently being processed is a

programmer and under 30. If so, control passes to
block 8. If not, control passes to block 9.

8 1/0 Writes information on any employee reaching this point.
9 Connector Terminates the decision making process.
10 1/0 Reads the next record, after which the connector in

block 4 is reentered, and the end-of-file condition

is tested in block 5. Note that when the end of fiie

is sensed in block 10, control passes to blocks 4, 5, and
6, consecutively.

read three times (once for each record, and once to indicate that all records
have been read). In similar fashion, a file containing N records is read N+1
times.

With this in mind, consider Figure 2.1 and assume there are only two
records in the file, A and B. Record A is read by block 3. The end of file has
not been reached, so blocks 7 through 9 are executed for record A. Record
B is read in block 10. Again, the end of file has not been reached, so blocks 7
through 9 are executed for record B. When block 10 is executed a second
time, the end of file is reached. Hence, the next execution of block 5 falls
through to STOP. In summary, three reads have been executed; two records
were processed, and the third read registered the end of file.

Pseudocode

The purpose of a flowchart is to convey the logic of a computer program in
an easily understood form. An alternative technique, which has gained popu-
larity in recent years, is pseudocode (also known as structured English). This
method uses English statements in the form of instructions similar to those
of a computer language, to describe logic. Pseudocode, however, is not
bound by the formal syntactical rules followed by all programming languages.
Nor is it bound by rules for indentation, which is done strictly at the discre-
tion of the person using it. An example of pseudocode to describe the pro-
grammer problem is shown in Figure 2.2. As can be seen, pseudocode is

Housekeeping
Initial read
—~DO while data remains
IF employee is a programmer and under 30
Write name on report
ELSE
Do nothing
ENDIF
Read next record
=-ENDDO
STOP

FIGURE 2.2 Pseudocode to select programmers under 30

considerably more succinct than a flowchart and just as easy to follow. Con-
sequently, it is the distinct preference of this author.

Test Data

Figure 2.3 contains sample data for the flowchart of Figure 2.1. Consider
what happens when these data are run through the flowchart.

Rejected due to age
ANAL Y ST

ZARRBR
15300]

FROGRAM 15EHBH
PROGRAMP 1¢ 3]
ER jralv) Selected record
sen]
BENJAMIN LE * 1205
DICK PERSN] STy P R 17088
[MARION MILGROM JF. Lapbe |

Rejected because of title

FIGURE 2.3 Test data

The START and HOUSEKEEPING blocks are entered with no great
effect. The first record, John Doe, is read by block 3. The end of file is not
reached, so control passes to block 7, the test for a programmer under 30.
Since John Doe is an analyst, rather than a programmer, control flows to the
connector in block 9. The second record, Peggy Wilcox, is read in block 10.
The end of file test is not met in block 5, so control passes again to the test
in block 7. Ms. Wilcox is a programmer but is over 30, so control goes again
to the connector in block 9, and finally to the read in block 10. John Smith
is read in, and passes the programmer and age tests to reach the WRITE
block (8). At this point, John Smith’s name is written to a report, and the
process continues.

Assume that the flowchart of Figure 2.1 was translated into a computer
program, that the program was executed for the data shown in Figure 2.3,
and that the report of Figure 2.4 resulted. The reader should carefully ex-
amine the input data and determine why various records did or did not ap-
pear in the resulting report.

Note in particular the absence of Dick Persnickety from Figure 2.4. At
first glance it appears that an error has been made. This employee is a pro-
grammer and only 28 years old. Why then was the record omitted? Look
carefully at how programmer is spelled; one “m” as opposed to two “m’’s
for the selected records. A human being knows that either spelling is accept-
able, but the computer follows instructions to the letter. Apparently, it was

15

16

Spelled exactly as it appears in program of Figure 2.5

I__E_).f*—;_LFﬁ] REFORT FOR PROGRAMMERS UNDER 3@
JOHN BMTTH =4 15000
SHEILA LEVINE 29 17200
BTANLEY STEAMER 2 37030
BENJAMIN LEE ié 12066

_\/
FIGURE 2.4 Printed report

not programmed to recognize the alternate spelling, and hence Persnickety
was rejected.

The word ‘“‘salary” is misspelled in the report of Figure 2.4. This is also
indicative of the fact that computers execute programs without regard to
their correctness. If a programmer misspells a word, and subsequently directs
the computer to write that word, it will be written incorrectly. Mistakes of
this kind, however, tend to be less severe than logic errors, and programmers
are justifiably more concerned with logic rather than spelling. Users, on the
other hand, will be concerned with spelling, choice of verbiage, formatting,
and the like.

Implementation in COBOL

Now that we have developed the logic necessary for file processing, we can
implement the flowchart of Figure 2.1 in COBOL. The resulting program is
shown in Figure 2.5. The reader may already understand most of this pro-
gram from the material in Chapter 1. Nevertheless, we discuss those state-
ments in Figure 2.5 which pertain to file processing, and consequently did
not appear in the first chapter. The discussion will again aim at conceptual
understanding rather than detailed memorization. (Fear not, however; in
Chapter 4 we provide a formal discussion of all COBOL elements covered to
date.)

Line 190 of Figure 2.5 introduces the INPUT-OUTPUT SECTION of
the Environment Division, which is required for file processing. Every file
used in the program is first defined in a SELECT statement. Note well the
presence of two SELECT statements, indicating two files. The first refer-
ences EMPLOYEE-FILE, which contains the test data of Figure 2.3. The
second, perhaps unexpected, file is PRINT-FILE and contains the report
of Figure 2.4. The SELECT statement ties programmer-chosen file names,
e.g., EMPLOYEE-FILE and PRINT-FILE, to TRS-80 system names, e.g.,
FIRSTTRY/DAT and FIRSTTRY/TXT, which exist on a diskette. (More on
this in Chapter 3.)

Any file mentioned in a SELECT statement is further defined in an
FD (file description) appearing in the FILE SECTION of the Data Division.
The FD for EMPLOYEE-FILE extends from lines 280 through 310. It in-
dicates standard labels, meaning the file information is in the usual TRS-80
format. It states that the record length is 80 characters (note well that the
picture clauses sum to 80) and finally that the record name is EMPLOYEE-
RECORD. Observe also that the record length for PRINT-FILE is 132
characters, the normal length for a printer.

aaal ey
aaal1e
(Lt 1 B
ARna1sn
@aa14a
BaR1sG
BB 1 H0
BRa17e
oRra18a
alrdrap gy
ralrlredral}
aenz1®
rafriln]
1nln]
Bagz

34
40
50
&0
7@

aRaEen
QpR300
ARD316
BAR3ZZA
PRA3ZY
BRA340
DRa3se
2RB360
BeR37EH
AER38a
alaly R
G400
anesa1e
ralraln R}
BRe430
BBO44O
ABRD45G
BRn4LB
BoO47a
BEA48B0
[rafrluEasn}
alnlrlsytin
PBRE1G
[adrln el
2oa53a
BS540
BRB550
[ralrili e]
PRO570
[ulrlnlsg=ia}
BEB5950
Bansan
nan610
BBOLEH
BRRLH3R
2aR&40
GBADLSE
BOB66R
@arasL7o
BRB6R0
BLaLIB
DBa7en
DRA7 18

ban73e
@mm/qm

U@@7dD
Ganavyn
mwmemm
Lt R

[DENTLIFICATION DIVISION.
FROGRAM--ID. FIRSTTRY.

AUTHOR. MARTON MILGROM.
ENVIROMMENT DIVISION. Required for file processing
CONFIGURATION SECTION.
SOURCE-COMPUTER.
ORJECT-~COMPUTER.

Filename also specified in FD, OPEN,

LINFUT=OUTFUT SECTION.] and CLOSE statements

FILE~CONTROL.
SELECT [EMPLOYEE-FILE]
ASSTGEN TO INPUT "FIRSTTRY/DAT".
SELECT PRINT-FILE
ASEIGN TO PRINT "FIRSTTRY/TXT".

A RSSOl FD is required for every file

FILE SECTION. /////
J

280 [FD EMPLOYEE-FILE

LABEL RECORDS ARE STANDARD
RECORD CONTAINGS 80 CHARACTERS

DATA RECORD 1§ EMPLOYEE-RECORD. EMP-NAME is in positions 1-20
B1 EMPLOYEE-RECORD.

[@5% EMF-NAME FIC X{(Z0).]

@5 EMP-TITLE PIC X(1@).

|25 EMP--AGE PIL 99, |

0% FILLER PIC XX.

05 EMP-SALARY FIC 9(5). EMP-AGE is in positions 31 and 32

05 : PIC X{41).

FD PRINMT-FILE
LABEL RECORDS ARE Z71ANDARD

[RECORD CONTAINS 137 CHARACTERS PICTURE clauses sum to 132
DATA RECORD IS FRINMT-LINE.

@1 PRINT-LLINE.

@S PRINT-NAME FIC XC25).
B35 FILLER PIC XX.

@5 PRINT--AGE FIC 99.

@3 FILLER PIC X(3).
2% PRINT-SALARY PIC 9(5).
@3 FILLER PIC X{(95).
WORKING-STORAGE SECTION.
77 WE-DATA-REMAINS-SWITCH PIC X(3) VALUE SPACES.

Files are opened before processing

Salary is misspelled

MHVF . ORT FOR PRUGRAMMFR’ UNDER 3@" TO PRINT-LIMNE.
WRITE PRINT- lINL

AFTER ADVANCING = LINES.
READ EMPLOYEE--FILEF

AT END MOVE “"NO" TO WS-DATA-REMAINGS~SWITCH.
FERFORM FROC S RE CORDS

UNTIL WS-DATA-REMAINS-SWITCH = "NO",
CLOBE EMPLOY TMJWF\\\

PRINT-FILE. Files are closed prior to termination
STOF RUM.

Initial read

Executed only when IF is satisfied

ROGRAMMER" AND EMP-AGE < 3@

ES TO PRIMT-LLINE

EMP~NAME TO PRINT-NAME

T EMP--AGE TO PRINT-AGE
EMP-SALARY TO PRINT-S5ALARY

2 FRINT-LINE

AFTER ADVAMCING & LLINES

PROCESS--RECORDS.
[F H"IP TI(L... E

D/Smgle period terminates |F statement

READ EMPLOYEE~FILE
AT END MOVE "MO" TO WS-DATA-REMAING- SWITIH.

Reads every record but the first

FIGURE 2.5 File processing program

17

IDENTIFICATION DIVISION.
PROGRAM-ID. 8 character name.
AUTHOR. your name.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION. SELECT statements are related
SOURCE-COMPUTER. TRS-80. to TRS-80 data files and are
OBJECT-COMPUTER. TRS-80. further explained in Chapter 3.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT STUDENT-FILE ASSIGNTO
SELECT PRINT-FILE ASSIGNTO

DATA DIVISION.
FILE SECTION.
FD STUDENT-FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 80 CHARACTERS
DATA RECORD IS STUDENT-RECORD.
01 STUDENT-RECORD.
05 etc.

FD PRINT-FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 132 CHARACTERS
DATA RECORD IS PRINT-LINE.

01 PRINT-LINE.
05 etc.

WORKING-STORAGE SECTION.

77 EOF-SWITCH PIC XXX VALUE SPACES.

Initial {priming) READ
PROCEDURE DIVISION. which is executed once.
MAINLINE.
OPEN INPUT STUDENT-FILE OUTPUJPRINT-FILE.
READ STUDENT-FILE
AT END MOVE “NO” TO EOF-SWITCH.

PERFORM PROCESS-RECORDS
UNTIL EOF-SWITCH = ""NO"".

CLOSE STUDENT-FILE, PRINT-FILE.
STOP RUN.

PROCESS-RECORDS.

your logic here Last statement of performed
routine is a second READ.

READ STUDENT-FILE
AT END MOVE “NO" TO EOF-SWITCH.

FIGURE 2.6 Skeletal COBOL outline for file processing

SUMMARY

Chapter 2 19

The Procedure Division opens each file (lines 570 and 580) prior to
actual processing. Lines 590 through 620 collectively write the heading line
of Figure 2.4. The WRITE statement itself references PRINT-LINE, which
is the record name defined in the FD for PRINT-FILE in line 430.

Lines 630 and 640 correspond to the “initial read’’ of block 3 in the
flowchart of Figure 2.1. The READ of line 630 references EMPLOYEE-
FILE, which appeared previously in SELECT, FD, and OPEN statements.

The PERFORM statement includes an UNTIL clause, which executes
the paragraph PROCESS-RECORDS an indeterminate number of times
until the value of WS-DATA-REMAINS-SWITCH = “NO”. The last state-
ment of the paragraph PROCESS-RECORDS is another READ (block 10 in
the flowchart) which accesses the next employee record in the file. If, how-
ever, the “end of file” is reached, then the AT END clause sets the value of
WS-DATA-REMAINS-SWITCH to “NO”, which terminates the PERFORM
and returns control to the statement under the PERFORM. Both files are
closed in lines 670-680, and processing terminates.

This chapter made the critical transition from programs containing limited
input/output to business applications with large volumes of data. It began by
defining the terms field, record, and file, and developed the logic necessary
for elementary file processing. Flowcharts and pseudocode were presented
as alternative means of expressing logic.

The essence of the material is in the relationship of Figures 2.1, 2.3,
and 2.4. The first contained a flowchart for the “Employee Selection Prob-
lem", the second contained test data, and the third the resulting report. It is
critical that the reader be able to relate the output of Figure 2.4 to the input
of Figure 2.3.

Figure 2.5 contained the COBOL program to implement the logic of
the flowchart. Attention was focused on the file processing aspects of

COBOL; specifically, the SELECT, FD, OPEN, CLOSE, READ, and WRITE
statements of Figure 2.5. The reader should also be able to tie the program
of Figure 2.5 to the flowchart which preceded it. Finally, Figure 2.6 con-
tains a skeletal outline of a COBOL program for file processing, which
should prove useful as you begin to write your own programs.

TRUE/FALSE

. Afile is a set of records.

. Arecord is a set of files.

. The computer is a perfect speller and automatically corrects spelling errors.

A field contains one or more records.

. Pseudocode must be written according to precise syntactical rules.

. Pseudocode serves the same function as a flowchart.

. A COBOL program often contains two distinct read statements.

The read statement typically contains an AT END clause.

. A file name may not appear in more than two statements in the same program.
Every program must have a file section.

S © 0D U W

ey

Chapter 2

EXERCISES

1. Given the following data as input:

Years of

Name Location Service Salary
J. Anderson Boston 4 $40,000
V. Barbarino New York 12 24,000
A. Horshack N.Y., N.Y. 8 26,000
G. Kotter Los Angeles 7 29,000
F. Unger Chicago 9 18,000
0. Madison Boston 7 34,000
V. Albright N.Y. 11 26,000
M. Welby New York 3 42,000

(a) What problems, if any, do you see in constructing a flowchart, and an eventual
program, to determine the employees from New York with at least four years of
service?

(b) Develop a flowchart and corresponding pseudocode to select employees with the
qualifications from part (a). (Use Figures 2.1 and 2.2 as a guide.)

(c) Run the data through your flowchart. Which employees qualify? Which fail the
service test? Which fail the location test?

(d) Could you modify your flowchart to include only employees 30 years or older?
Why or why not?

2. National Widgets is seeking a plant manager in Columbus, Ohio. It is looking to pro-
mote an individual from within the corporation, rather than hire from outside. The
selected employee must have previous manufacturing experience and at least five years
service with the company. Your programming manager has drawn a flowchart of this
problem that will print the name of any qualified individual, as well as the number of
qualified individuals. Unfortunately, he left it on his dining room table at home, and
his two-year old daughter, Jessica, got to it first with a pair of scissors. Fortunately,
he was able to gather the pieces (Figure 2.7) before Jessica could do further damage.
Rearrange the pieces into a correct flowchart.

START

READ FIRST
RECORD

HOUSEKEEPING

ADD 1 TO
P READ NEXT NUMBER OF
$T0 RECORD QUALIFIED
EMPLOYEES

WRITE NAME
OF QUALIFIED
EMPLOYEE

May be used more
than once

WRITE NUMBER
OF QUALIFIED
EMPLOYEES

SERVICE

>5 YEARS OF FILE WAS

REACHED

FIGURE 2.7 Scrambled flowchart

File Processing 21

3. Figure 2.8 represents a COBOL program to process a file of student records and print
the names of selected students. The selected students are to have at least 110 credits
and also a major in engineering. As can be seen, various portions of the COBOL pro-
gram have been blanked out. Restore the missing information so the program will run
as intended.

QAG1eE IDENTIFICATION DIVISION.
PRA1 1@ PROGRAM-ID. STUDENT.
QDA21L=D AUTHOR. MARION MILGROM.

BeE130 !
PPO140 ENVIRONMENT DIVISION.
GO 156 |
PPe160 SOURCE~COMPUTER. TRS-8@.
PBE17E OBJECT~COMPUTER, TRS-B0.
INPUT=OUTPUT SECTION. 2
FILE-CONTROL .
SELECT|

ASSIGN TO INPUT "STUDENT/DAT".
SELECT PRINT-FILE
ABSTGN TO PRIMT "STUDENT/TXT".

@ DATA DIVISION. 3
0 FD STUDENT-FIIE 4
LABEL RECORDS ARE ST
RO300 RECORD CONTAINS CHARACTERS
Ll ey DATA RECORD I8 STUDENT-RECGORD.
; STUDENT-RECORD.
B5 S5TU-NAME PIC X(z@).
B5 S8TU~-MAJOR PIC X{(1@).
#% STU-CREDITS FI1C 9(3).
P55 FILLER PIC X(47).
PRINT-FILE

LABEL RECORDS ARE STANDARD

RECORD CONTAINS 132 CHARACTERS

DATA RECORD I& PRINT-LINE.

PRIMT-LINE.

@% FILLER PIC X(8).

@5 PRINT-NAME PIC X(25).
@5 FILLER FIC X(99).

WORKING-STORAGE SECTION.
WS-DATA-REMATINS-S5WITCH PIC X(3) VALUE SPACES.
Buna49n 8
PR@500 PROCEDURE DIVISION
BRGS1G SELECT-ENGINEE G-SENIORS.
Q@520 QOPEN STUDENT-FILE
. OUTPUT PRINT-FILE.
MOVE SPACES TO PRINT-LIME.
READ STUDENT-FILE
AT END MOVE "NO" TO WS-DATA-REMAINS-SWITCH.
FERFORM FROCESS-RECORDS

PAB5 4D
BRBE7e

PRES 8 UNTIL. WS-DATA-REMAINS-SWITCH = "NO',
DEEsYH | STUDENT~FILE

aROLR0 PRINT-FILE.

PEBL1E S5TOP RUN.

AORLI0 10

OS50 | b

DRRLLE TF STU-MAJOR = "ENGINEERING" AND STU-CREDITS > 109
PANLSH MOVE SPACES TO PRINT-LINE

PBOLLD MOVE STU-NAME TO FRINT-~NAME

A00s 7D WRITE PRINT-LINE 1

DRDLHED AFTER ADVANCING 2 L

PERLIH 12
noR7 00 READ [

PRO7 1@ AT END MOVE "NO* TO |]

FIGURE 2.8 Fill in the blanks

TRS-80 COBOL

COBOL VERSUS

24

OVERVIEW Chapters 1 and 2 presented rudiments of the COBOL language and pro-

MACHINE
LANGUAGE

gramming logic. Attention was concentrated on COBOL as it applied to all
computers, with no specific mention of the TRS-80. This chapter focuses on
the TRS-80 Models Il and Ill, with emphasis on the associated COBOL
requirements.

We begin with a discussion of machine versus problem oriented lan-
guages with emphasis on the distinction between compiling and executing a
program. The reader learns how to invoke the TRS-80 COBOL compiler,
and to execute the generated object module.

The COBOL Source Program Editor, CEDIT, is introduced as the means
of creating and modifying COBOL programs. All modes of CEDIT (insert,
command, and edit) are covered, and the reader should become competent
in its use. The PRINT utility program is presented to list the results of both
compilation and execution. The concept of an operating system is intro-
duced, and various TRSDOS (the TRS-80 Operating System) utilities and
commands are highlighted. These include: FORMS, KILL, and DIR.

The chapter examines compiler output of the COBOL program, FIRST-
TRY, which was introduced in Chapter 2. Attention is drawn to the various
compiler options, e.g., a cross reference listing, as well as the COBOL re-
guirements for entering information in specific columns.

It should be emphasized that this chapter deals with specifics of the
TRS-80, and consequently is required reading for experienced COBOL pro-
grammers not familiar with this computer. The chapter presents a wealth of
material associated with the TRS-80 operating system, but at an introduc-
tory level. The reader may also refer to the following manuals for greater
coverage:

TRS-80 Model I {I1]) Disk Operating System Reference Manual
TRS-80 Model 1 (111) COBOL Language Manual
TRS-80 Model 11 (I11) COBOL User’s Guide

Every computer has its own unique machine language tied to specific loca-
tions in its memory. Human beings, however, think in terms of problems and
use quantities with mnemonic significance, e.g., HOURS, RATE, PAY, etc.
We might say that a person thinks in a problem oriented or higher level lan-
guage while in actuality the computer functions in a machine oriented or
lower level language. The two are related through a compiler, which is a
computer program that translates a problem (or source) language into a
machine (or object) language. COBOL is an example of a problem oriented
language for business systems. The COBOL compiler is itself a machine
language program written in the language of the machine on which it is
executed.

The wide availability of COBOL compilers provides tremendous flexi-
bility for individual programs. A COBOL program written for the TRS-80
can also execute on an IBM, Univac, Honeywell, NCR, or any other machine
which has a COBOL compiler. The output from each compiler is different.
The TRS-80 compiler produces a TRS-80 machine language program, a Uni-
vac compiler produces Univac language, etc. However, this does not concern
the COBOL programmer. All he or she need know, and indeed care about,
is COBOL: the compiler does the rest.

Consider a simple COBOL statement, MULTIPLY HOURS BY RATE

TRS-80 COBOL 25

GIVING PAY. This takes HOURS, multiplies it by RATE, and puts the
result into PAY. The values of HOURS and RATE are unchanged as a result
of this instruction. For this instruction to execute, the compiler has to assign
locations in its memory to HOURS, RATE, and PAY. It will multiply
HOURS by RATE in a work area (known as an accumulator or register) and
put the result into PAY.

Assume that the compiler decides to store HOURS, RATE, and PAY in
locations 1000, 2000, and 3000, respectively. It then generates a sequence of
three machine instructions to accomplish the intended multiplication:

LOAD 1000
MULTIPLY 2000
STORE 3000

The first instruction, LOAD 1000, brings the contents of location 1000
(HOURS) into the accumulator. The next instruction multiplies the contents
of the accumulator by the contents of location 2000 (RATE). The result re-
mains in the accumulator. Finally, the STORE instruction puts the contents
of the accumulator into location 3000 (PAY). (Note that these instructions
are typical of compilers in general and vary from computer to computer.)

Table 3.1 illustrates the results of three machine language instructions.
It assumes values of 40 and 5 for HOURS and RATE, respectively. It shows
the contents of locations 1000, 2000, 3000, and the accumulator before and
after each of the three machine language instructions are executed. Prior to
the LOAD instruction, the contents of both locations 3000 and the accumu-
lator are immaterial. After the LOAD has been executed, the contents of
location 1000 have been brought into the accumulator. After the MULTI-
PLY, the contents of the accumulator are 200, and after the STORE, the
contents of location 3000 are also 200. Note that the initial contents of
locations 1000 and 2000 are unchanged throughout.

TABLE 3.1
MACHINE INSTRUCTIONS TO MULTIPLY HOURS BY RATE

Memory Contents

Before After
1000 2000 3000 1000 2000 3000
Instruction (HOURS) (RATE) (PAY) ACCUM | (HOURS) (RATE) (PAY) ACCUM
LOAD 1000 40 5 ? ? 40 5 ? 40
MULTIPLY 2000 40 5 ? 40 40 5 ? 200
STORE 3000 40 5 ? 200 40 5 200 200

A single COBOL statement invariably expands to one or more machine
language statements after compilation. This phenomenon is known as instruc-
tion explosion and is a distinguishing characteristic of compiler languages.
Compare the three machine language statements to the single COBOL state-
ment. Obviously, the latter is shorter, but it is also easier to write, since the
COBOL programmer need not remember which memory locations contain
the data. In the early days of the computer age, there were no compilers, and
all programs were written in machine language. Then someone had a remark-
ably simple yet powerful idea: Why not let the computer remember where
the data are kept? The compiler concept was born, and things have never
been the same since.

The remainder of the book deals exclusively with COBOL, rather than
machine language. Indeed, there is no need for a competent COBOL pro-

26

THE TRS-80
OPERATING
SYSTEM

COMPILATION
ON THE TRS-80

Chapter 3

grammer to even know machine language, provided one is aware of the criti-
cal role of the compiler. The programmer must, however, be knowledgeable
about the computer’s operating system.

An operating system is a set of machine language programs supplied by the
manufacturer, which provide for the efficient operation of the computer. An
operating system may include the COBOL compiler (remember a compiler
is merely a computer program), compilers for other programming languages,
and some general purpose programs known as utilities. The TRS-80 operat-
ing system is known as TRSDOS. Communication between the programmer
and the operating system is accomplished through various commands, which
are explained in this chapter. The operating system signals it is ready to ac-
cept a command with the message TRSDOS READY.

Many of the instructions to the operating system require the user to
specify a file which may in turn be either a COBOL program, an operating
system program, or simply a data file. The following conventions have been
established with respect to file names:

1. A file is completely specified by a file name of up to eight charac-
ters, and a three letter extension, e.g., PAYROLL/CBL. (The exten-
sion, however, may sometimes be omitted, as when compiling or
executing a program.)

2. Certain extensions have predetermined meanings, specifically:

CBL — applies to a COBOL source program and is input to the
compiler

COB — denotes a COBOL object (machine language) program and
is output from the compiler

LST — signifies a compiler listing which is also produced by the
compiler

3. The same file name often appears with different extensions, eg.,
PAYROLL/CBL and PAYROLL/COB.

Given this introduction to TRSDOS, we discuss how to utilize the
TRS-80 operating system, how to compile programs, and how to execute the
generated object programs.

TRSDOS signals it is ready to receive a command by the message, TRSDOS
READY. Whenever this message appears, the COBOL compiler can be in-
voked by the command:

RSCOBOL filename options

where:

filename is the name of a COBOL source
program and is assumed to have the
extension CBL, e.g., FIRSTTRY/CBL.

options allow the user to control compiler
output by invoking (or suppressing)
various features. A partial set of
compiler options is listed in Table
3.2. Multiple options must be
separated by a space.

TABLE 3.2
SELECTED COMPILER OPTIONS

L — Indicates that the compiler listing is to be written to a disk file with the same name as the
COBOL source file, but with an extension of LST; e.g., FIRSTTRY/LST. The default is not to
generate a listing.

O — Indicates that the output of the compiler, i.e., the object module is to be written to a disk file
with the same name as the COBOL source file, but with an extension of COB; e.g., FIRSTTRY/
COB. The default is to generate an object module. Specification of O=N will suppress the object
file.

P — Indicates that the listing is to be printed. The default is not to print the listing. (Note, however,
that one can print the listing at a later time through the PRINT utility program, which is ex-
plained in a subsequent section.)

T — Indicates the listing is to be displayed on the console. (The user can temporarily halt the listing
by hitting the HOLD Key. HOLD must be hit a second time when the blinking cursor appears
for the listing to resume.) The default is not to display the listing on the CRT.

X — Produces a cross-reference (alphabetical) listing of Data and Procedure Division names, indicating
where each name is defined and referenced. Specification of this option requires that L, P, or T
also be specified. The default is not to print a cross reference.

See COBOL User’s Guide for additional information.

Consider the command, RSCOBOL FIRSTTRY L X T, to compile the
source program FIRSTTRY/CBL. In addition, it will produce a cross-
reference listing (X option), direct output to the terminal (T option), and
put the compiler output into a disk file, FIRSTTRY/LST (L option). An ob-
ject module, FIRSTTRY/COB is produced by default.

Compiler Output

Figure 3.1 is the compiler output which was produced by the command
RSCOBOL FIRSTTRY L X T. Each page of output has identical heading
information: date and time of compilation, compiler options, and file
name as it appears on disk. (Note well that the heading’s source file and
PROGRAM-ID paragraph have the same entry, FIRSTTRY. This is the
author’s convention, rather than a system requirement, and simplifies keep-
ing track of the many files on a diskette.)

The COBOL program is listed in its entirety. Observe that each state-
ment has both a compiler line number, as well as a six-digit sequence num-
ber. (We learn later in the chapter that the sequence number is actually part
of the COBOL statement and referenced by a text editor, CEDIT.)

Observe also that Procedure Division statements have an additional entry
between the line and sequence numbers. These entries represent the address
at which the generated machine language instructions for the COBOL state-
ment begin. These addresses will prove useful in indicating where execution
terminates.

The third page of compiler output in Figure 8.1 describes entries in the
Data Division. Notice how elementary items are indented under their respec-
tive group item. (These terms are clarified in Chapter 4.) Note further how
the length of every field is calculated.

The fourth page of output is a cross-reference listing, which has all pro-
grammer defined names in alphabetical order. The first number following the
data name is the compiler statement where the item was defined. All subse-
quent numbers indicate where the data name is referenced or altered, e.g.,
PRINT-SALARY is defined in line 40 and altered in line 67. (Note that
0067 is enclosed in asterisks.) EMP-NAME, however, is merely referenced in
line 65 as there are no asterisks around 0065.

27

File name as it appears in directory

DEBUG

110
L1 1]0]

>DOBC
0010
0014

Fé& AL

PR 1LY
BaRn1 e
@wm]
BOR1 30
Q0140
BOR150
PRR1 60
POD1 7O
aRa18e
PRR1 T
PR 0

OBV
PEA3RD

aun3i1e

E{]
BBB34@
BRa35n
B3 6E
ABBni7e
DOB3IBG
apa3TnH
BOD4Ba
auG410
BOD420
Ban43n
aaa44@
BRB4SE
DRD46D
BRa470
DOa480
BRB4TH
ralrale bl
aaan 16
alnlylapedil
@aBas 30
BaN540
BAB550
alalnisyayl
BER570
lalnlnlsyzin]
200590
BaRsdn
BR0610

afaltafayedn)
Cc

R o) o Compiler options
IDENTIFICATION DIVISTION.

PROGRAM--ID. FIRSTTRY.

AUTHOR. MARITOM MILGROM,

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
g TRE~-8@.
TRE-8E.

DEOL CRMCOROL 1. 3B 4/18/81 11.39.0% PAGE 1
TRY] Column 8 [OFTION LIGT: L X T]
////i;/CMUmn12
g P Pk s s e raeas e a s e In. ..

Filename and extension of EMPLOYEE-FILE

INFUT-0OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPLOYEE-FILE
ABSIGN TO INPUT ["FIRSTTRY/DAT".|
SELECT PRINT-FILE
ABSIGN TO PRINT

as it appears in directory

"FIRBTTRY/TXT".

DATA DIVISION.

@ FILE SECTION.

FD EMPLOYEE-FILE
LABEL RECORDS ARE STANDARD
RECORD CONTAINS 8@ CHARACTERS
DATA RECORD IS EMPLOYEE-RECORD.
@1 EMPLOYEE-RECORD.
@5 EMF-NAME FIC X(z@.
B3 EMP-TITLE PIC X(1@).
0% EMP-AGE PIC 99.
B5 FILLER PIC XX.
@5 EMP-SALARY PIC 95).
@5 FILLER PIC X<(41).
FD o PRINT-FTILLE
LABEL RECORDS ARE STANDARD
RECORD CONTAINS 132 CHARACTERS
DATA RECORD I8 PRINT-LINE.
@1 PRINT-LINE.
@5 PRINT--MAME FIC X(25).
@5 FILLER PIC XX.
@3 PRINT-AGE PIC 99.
@5 FILLER PIC X{3).
@E PRINT-SALARY PIC 9{5).
@5 FILLER PIC X(95).
WORKING~-STORAGE SECTION.
77 WS~DATA-REMAINS-SWITCH PIC X(3) VALUE

PROCEDURE DIVISION.
SELECT-PROGRAMMERS,
OPEN INPUT EMPLOYEE-FILE
OUTPUT PRINT-FILE.
MOVE SPACES TO PRINT-LINE.
MOVE "SALRY REPORT FOR PROGRAMMERS UNDER 38" TO

WRITE PRINT-LINE
AFTER ADVANCING 2

OBOL sequence numbers are in columns 1-6

LINES.

Compiler statement number

SPACES.
PRINT-LINE.

TRE-88 Model
SOURCE FILE: FIRSTTRY

LINE

54
55
5&
57
SE
59

28

DERUG

*0B1E

]t es=]

POz

Ir

P&E/LN

BOBL3A
DER64D
adrdritotet]
BRRLLHD
alalulwgl
200680

CoRoL.

(RM/COROL. 1.3R) 4718781 11.39.805

A and B margins OFTION LIST: L X T
G Paiaanaaa. P e e ma A s e s e n s s s A nn e
READ EMPLOYEE-FILE

AT END MOVE "NO" TO WS—-DATA-REMAINS-SWITCH.
PERFORM FROCESS-RECORDE
UNTIL WS-DATA-REMAINS-SWITCH
CLOSE EMPLOYEE-FILE
PRINT-FILE.

PNOY

FIGURE 3.1 Compiler output

Compilation page number

cennenennneae IDuun.

50 STOP RUN.
&1 Hexadecimal address
b ROCEGS-RE CORDS.
63 IF EMP~TITLE = "PROGRAMMER" AND EMP-AGE + 30
b4 BOQ7 30 MOVE SPACES TO PRINT~LINE
65 00a7 40 MOVE EMP-NAME TO PRINT-NAME
b6 POB750 MOVE EMP—-AGE TO PRINT-AGE
&7 @760 MOVE EMP-SALARY TO PRINT-SALARY
b8 POB7 7o WRITE PRINT-LINE
&% PER730 AFTER ADVANCING 2 LINES.
7@ noR7e
71 »0B66 BOOERD READ EMPLOYEE-FILE
7 PODS10 AT _END MOVE "NO" TO WS-DATA~REMAINS-GWITCH.
[73 772274 END PROGRAM. %x% END OF FILE %%%
Last line is inserted by compiler.
TRS-80 Model 11 CORBOL [(RM/COBOL 1. 38| la/1g/81] [11.39.05] PaGE 3

SOURCE FILE: FIRBTTRY

ADDRESE SI7E DEBUG ORDER

@
Ryl g GRF
+@R0a 2B ANS
@14 18 ANG
*PA1E 2 NBY
gl e 5 NGU

@
@54 13% GRF
0BS54 23 ANS
OR&F NS
=074 NSU
DOER ANG

READ OMLY BYTE SIZE =

READ/WRITE BYTE S1ZE =

OVERLAY SEGMENT BYTE SIZE =

TOTAL BYTE SIFE =

@ ERRORS

B WARNINGES

sss=

@

COBOL release

PRINT-SALARY is 5 characters

OPTIONN IST::/ L X T

TYFE MAM -Date and time of compilation
FILE EMPLOYEE-FII.E
GROUP EMFLOYEE~RECORD
ALPHAMUMERIC EMP~-NaME
AL PHARNUMERI C EMP-TITLE
NUMERIC UNSIGNED EMP~-AGE
NUMERIC UNSIGNED EMF--S6LARY
FILE PRINT-FILE
GROUR FRINT~LINE
ALPHANUMERIC PRINT-MNAME
NUMERIC UNSIGNED FRINT-AGE
NUMERIC UNS[GNED PRINT-SALARY
ALFPHANUMERI C WE-DATA~REMAING-SWITCH
Elementary items are indented under group item
158
FB1SA
L]
e

|~ Compilation results

TRS-80 Model 11 COROL
SOURCE FILE: FIRSTTRY,

CROSS REFERENCE
TEMPLOYEE-FILE

EMPLOYEE- RE CORD
EMP-AGE

EMP-NAME is defined in line 24, and referenced in line 65
{RM/ COROL.

1.38) 4718781 11.39.85 PAGE
OPTION LIST: L X 7T

JADECL/ ®DEST

/aR19/s BB4a aa54 Base @71

QAREL3 BRéab

[EMP-NAME

BO&E |

EMP-SALARY
EMP-TITLE
PRINT-AC
PRINT~FILE
PRINT-LLINE
FRINT-NAME
PRINT--SALARY
PROCESS--RECORDS
SELECT-PROGRAMMERS

| _WS-DATA~REMAINS-SWITCH

Data names appear alphabetically

B67
DO6S
ADbLH
/BB14s /0B317 QD4T QRS9
/BR35/ *PR5O* *QDS51% *QO5%
/O03G/ *RRLES*
(7 0040/ [+0067 ¥

Bbz/

¥ ¥PQE4* #DDLEB*

JRR4G4, #BQS5% QLT «xRBRTEx
PRINT-SALARY is altered in statement 67

PRINT-SALARY is defined in statement 40
FIGURE 3.1 Continued

29

30

EXECUTION
ON THE TRS-80

OBTAINING
HARD COPY

DIR AND KILL
COMMANDS

Once compilation has been successfully completed, the programmer may at-
tempt to execute the compiled program. This is accomplished by entering
RUNCOBOL, followed by the filename; e.g., RUNCOBOL FIRSTTRY.

The relationship between compilation and execution is shown by Fig-
ure 3.2. Realize that two distinct programs are executed. In step 1, the com-
piler accepts FIRSTTRY/CBL as input and produces both a compiler listing
FIRSTTRY/LST, and a machine language program, FIRSTTRY/COB as out-
put. The latter program in turn is executed in step 2. It accepts FIRSTTRY/
DAT (a data file as input) and produces the report FIRSTTRY/TXT as
output.

STEP 1 FIRSTTRY
FIRS LAY RSCOBOL > ST
(Compilation) \—/
FIRSTTRY
/COB
N~—
STEP 2
RSTTRY
FIRSTTRY RUNCOBOL 2 Fl /T-)T(T
/DAT (Execution) \—/

FIGURE 3.2 Compiling and executinga COBOL program

The CRT is the primary output device of the TRS-80. It is ideal in many in-
stances, but does not produce a permanent copy of the output. Very often it
is necessary to obtain printed reports (hard copy) in lieu of, or in addition
to, the terminal output. This is accomplished through the PRINT utility
program.

Note, however, that the FORMS command must be issued before using
PRINT. The FORMS utility is invoked simply by typing FORMS, and the
utility will prompt the user to align paper prior to actual printing. Once
FORMS has been executed successfully, the programmer can obtain hard
copy of any file, by the command, PRINT filename/extension; for example,
PRINT FIRSTTRY/LST.

Any diskette is apt to contain many files, some of which we want to keep
permanently and some of which are of temporary value. The command DIR
lists every file on a diskette with its date of creation. Enter the command,
DIR, and observe what happens. If more files exist than can be seen on a
single screen, hit the HOLD key to stop the display. (HOLD must be hit a
second time for the directory to continue.)

Very often, we will observe the presence of several files with the same
name, but different extensions; e g.:

FIRSTTRY/CBL. — the COBOL source program
FIRSTTRY/COB - the object module
FIRSTTRY/LST — compiler listing

FIRSTTRY/TXT — output produced by executing the program FIRSTTRY/COB

THE SOURCE
PROGRAM
EDITOR — CEDIT

TRS-80 COBOL 31

FIRSTTRY/COB and FIRSTTRY/LST resulted from compilation of
the COBOL source program, FIRSTTRY/CBL. FIRSTTRY/TXT is the out-
put file produced by execution of the object program, FIRSTTRY/COB.
(Check the SELECT statement of line 240 in Figure 3.1.) FIRSTTRY/CBL,
and possibly FIRSTTRY/COB, are likely to be of permanent value, whereas
the other files are not needed after printing. They may be deleted from the
diskette through the KILL command, for example:

KILL FIRSTTRY/LST

The system will prompt with a message DELETE FIRSTTRY/LST
(Y/N)?, verifying that we want to eliminate the file. Note well that once a
file is deleted, it is gone forever. (The PURGE command will attempt to
delete every file on a diskette, and will prompt the user accordingly. It is
quite useful, especially after a long session on the machine.)

All COBOL programs are created and modified through the program editor,
CEDIT. CEDIT is a powerful tool and typical of editors on other computers.
It is included on the COBOL diskette and is entered simply by typing CEDIT
(after the message TRSDOS READY appears).

When called, the CEDIT program will announce itself, then end with a
prompting character, > asking the user to input a command. Essentially,
there are three modes of operation in CEDIT. These are:

INSERT To create a COBOL program and/or
to enter additional lines in an exist-
ing program. This mode is entered
by typing I after the prompt char-
acter (>).

COMMAND Enables the user to employ a vari-
ety of commands which include
the ability to: delete an existing
line or lines (D), find a particular
character string (F'), print one or
more lines in the program (P), write
a permanent copy of the program
(W), replace an existing line (R),
and enter the Insert (I) or Edit (E)
modes.

EDIT Allows complex editing of a single
line as opposed to the command
mode which looks at many lines
within the program. The Edit Mode
has several subcommands, which
among other things, allow one to
insert, replace, or delete characters
within a single line.

Table 3.3 summarizes the Command Mode and is followed by a sample
session, illustrating these commands. It must be emphasized, however, that
this discussion is only an introduction to CEDIT. The reader is referred to
the TRS-80 Model II (III) COBOL User’s Guide for complete coverage.

32

TABLE 3.3
SUMMARY OF CEDIT COMMAND MODE

A — Automatic renumbering to avoid line collisions in the | or R commands.

B — Displays the first (beginning) line on the Model |, but the bottom (last) line on the Model 11/
(This is one of the few differences between Model Il and 111 editing commands).

C — Unconditional replacement (change) of one character string with another.

C/OLD/NEW/ (Replaces the first occurrence of OLD with NEW)
C/OLD/NEW/3 (Replaces the next three occurrences of OLD with NEW)
c/oLb// (Replaces the next occurrence of OLD with nothing; i.e., it effec-

tively deletes OLD from the line)
D — Deletes a line or lines.

D 100 (Deletes line 100)
D 100:200 (Deletes lines 100 through 200)
D 5:* (Deletes line 5 through end of program)
E — Enters Edit Mode.
F — Finds a character string. Upon completion, the current line is set to the line of the last find.
F/STRING/ (Finds the first occurrence of STRING)
F/STRING/* (Finds all occurrences of STRING)
| — Enters the Insert Mode (to Escape, press either ESC or Break Keys).
1100,1 (Begins inserting at line 100 with increments of 1)
L. — Loads a CBL Source File
L PAYROLL (Brings in the file PAYROLL/CBL as a work file)
N — Renumbers lines in the text.
N 100, 20 (Renumbers all lines beginning at line 100 in increments of 20)
P — Prints the specified line or lines (if LINE-RANGE is omitted, the next 20 lines are printed).
P 500 (Prints line 500)
P 100:200 (Prints lines 100 to 200)
P 200:* (Prints line 200 to end of program)
P (Prints the next 20 lines)

Q — Quits CEDIT and returns to TRSDOS.

R — Replaces specified line and continues in Insert Mode (to exit Insert Mode, hit either ESC or
Break Keys).

R 100 (Prompts user to replace line 100)
S — Accepts a TRSDOS command and returns to CEDIT.
SDIR (Displays directory of a diskette)

T — Displays the top line of a file (Model |11 only)
W — Writes current text (workfile) as a permanent file with extension CBL.
W PAYROLL (Writes the file PAYROL.L/CBL to the diskette)

X — Conditional replacement of one character string by another, i.e., change will not be made until
user responds to prompt.

X/OLD/NEW/ (Conditionally changes the next occurrence of OLD to NEW)
X/OLLD/NEW/3 (Conditionally changes the next three occurrences of OLD to NEW)
X/OLD// (Conditionally removes the next occurrence of OLD)

A Sample Session

Figure 3.3 represents an initial (and rather poor) attempt at creating the
pledge of allegiance. The many errors in Figure 3.3 are corrected in the ses-
sion of Figure 3.4.

The editor is entered from the operating system through the CEDIT
command. (All user responses are underlined; the system messages are not.)
Next, the PLEDGE file is loaded into memory through the L command. Cor-
rections may be entered in any order, and we begin by deleting line 110. The
C (Change) command unconditionally changes the first occurrence of
“AREMICA” to “AMERICA” and indicates the line in which the correction
is made.

Line numbers

Line duplicated MiSSpe"ing

RlupRaly T PLEDGE ALLEGIANCE TO/THE FLAG OF

AREMICAR aND To

@QL13 | THE UMITED STATES OF

GEALEE [THE UNITED STATES OF AREMICHs AND TO

@BELAA (THEREPURL IC FOR WHLICH T STANDE. ONE

Pala@ LIBERTY AND JUSTICE FOR AlL.

Space missing Line missing-nation
under God,

FIGURE 3.3 Pledge of Allegiance (with errors)

We attempt to insert a space between “THE” and “REPUBLIC” with
the X (conditional change) command, which finds the first occurrence of
“THE” in line 120. Since this is not the desired change, we cancel it and
rephrase the X command to change “THER” to “THE R”. This time it goes
through as intended. This is an excellent example to illustrate the advantage
of the conditional (X) over the unconditional (C) change command. The user

TRSDOS Message

Invokes CEDIT

Diesi¥in
Ered it Va2l

OF AMERLCAY AND TO

UNTTED ETATES OF AMERI DA AND TO
User responses are underlined

LT FOR WHICH 3T SBTANDEs ONE

X command produces

THE REPUBLTC FOR WHICH 11 STANDSs ong @ prompt before
change is made

n R G0 IMDIVIETELE. WiTH

Mo Fooomn B
B (i]
ML

AT Line:

P

DER | BE 1 Pl

ALLEGLIANCE To THE FLAG OF

TANCE TO THE FLAG OF

GRALAS THE UNTT SOF AMERL DT
BamI e THE REFUBLIC F WHICH X7 Se ONE
I] UNDER G0ODs [Za WETH

AT L5 MAT TON

R 1
»:D’//Exit from CEDIT

R& READY

FIGURE 3.4 Sample session

33

34

CREATING A
COBOL PROGRAM

CREATING
A DATAFILE

Chapter 3

is well advised to proceed with caution when substituting one character
string for another.

The I (Insert) command is executed to add line 135, with the system re-
sponding NO ROOM BETWEEN LINES after the insertion. Recall that the
default increment is 10, and hence no additional lines can be inserted before
line 140. The problem can be circumvented by specifying a smaller incre-
ment, e.g., 1 135, 1 or by the A (automatic renumbering) command.

The B (Beginning) command returns to the first line in the file and dis-
plays same to the user. (Note well that on the Model III, B denotes bottom
rather than beginning. The T command prints the top line.) The N (Renum-
ber) command renumbers all lines from 100, in increments of 5. The P
(Print) command displays the file, W writes a new file to the disk, and Q
(Quit) ends the session, returning control to the operating system.

It is suggested that the reader use the Source Program Editor and at-
tempt to recreate the session of Figure 3.4. Enter CEDIT after the message
TRSDOS READY appears. Create the file of Figure 3.3 through the INSERT
command, I 100. Then follow Figure 3.4 exactly as it appears in the text.

A COBOL program is created by using CEDIT. It is critical, however, that
various COBOL entries go in predetermined columns, as indicated by Table
3.4. CEDIT is quite helpful in insuring that the proper columns are used.

The insert mode automatically creates COBOL sequence numbers in
columns 1 through 6, and positions the cursor in column 7. The TAB key
spaces to column 8 (the A margin). Pressing TAB a second time positions
the cursor to column 12 (the B margin). Every additional TAB will space
four columns;i.e., to column 16, 20, 24, etc.

TABLE 3.4
COLUMN REQUIREMENTS FOR COBOL CODING

Columns Description
1-6 COBOL sequence numbers which are automatically created by CEDIT,
7 Used to indicate comments and for continuation of non-numeric literals. A comment

may appear anywhere in a COBOL program and is indicated by an * in column 7.
Comments appear on the source listing, but are otherwise ignored by the compiler.
Their use is encouraged to facilitate program documentation. Column 7 is also used to
indicate continuation of non-numeric literals, and to control pagination of a source list-
ing as explained in Chapter 7.
8-11 Known as the A margin. Division headers, section headers, paragraph names, FDs, 01s,

and 77-level entries all begin in the A margin.

12-72 Known as the B margin. All remaining entries begin in or past column 12. COBOL per-
mits considerable flexibility here, but individual installations have their own require-
ments. (See guidelines in-Chapter 7.)

73-80 Program identification. A second optional field that is ignored by the compiler. Different
installations have different standards, but the author suggests you omit these columns.

Unfortunately, CEDIT cannot be used to create a data file. The reader may
wish to review Chapter 2 and/or Figure 3.2, with regard to the relationship
between a program and the data on which it operates.

Figure 3.5 is the COBOL program which created the file, FIRSTTRY/
DAT, the input to the program of Figure 3.1. The logic in Figure 3.5 is
straightforward and should pose no problem in understanding. Realize that
the file FIRSTTRY/DAT exists only after Figure 3.5 has been compiled and

TRE-80 Model

11 COROL (RM/COEOL 1.3E) 4/18/81 11.48.53 PAGE 1

[GOURCE FILE:

FIRSTDAT]

OPFTION LIST: T L=1

L TNE

[alis cBENCEN s S P R SO

[
=

DEBEUG PG/LN

BVO1A0 IDENTIFICATION DIVISION,
POB110 [PROGRAM-ID. FIRSTDAT.}——

Aea B

Filename on diskette and PROGRAM-ID match

PO1:2@ AUTHOR. R GRAUER. for convenience in identifying programs
[alelipiedl

220140 ENVIRONMENT DIVISION

Compiler statement number

PeA158 CONFIGURATIOQ CTION.
BOURCE=£OMPUTER. TRG-8@.
S TECT-COMPUTER. TRGE-80.

——CEDIT line number

FOT=0UTPUT
FILE-CONTROL,
SELECT EMPLOYEE-FILE

[ASBIGN TO OUTPUT "FIRSTTRY/DAT".|

SECTION.

POA:40 DATA DIVISION. Output of this program is input to program in Figure 3.1
DOOE50 FILE SECTION.
PRB=260 FD EMPLOYEE--FILE

ralrafri g} LABEL RECORDS ARE STANDARD

B0a:280 RECORD CONTAINS 8@ CHARACTERS

alnlnpedd] DATA RECORD I8 EMF-~RECORD.

PE03B0 @1 EMP-RECORD PIC X(8@).
@nov310

22323 PROCEDURE DIVISION.
*00De ABO3BG MAINLINE.

»PO0R VO340 OPEN OUTPUT EMPLOYEE-FILE.
*QBBs QBA35S0 MOVE SPACES TO EMP-RECORD.
: PAA360 MOVE "JOHN DOE ANALYST 35 23000" TO EMP-RECORD.
- bBB370 WRITE EMP~RECORD.
22B380 MOVE "PEGGY WILCOX PROGRAMMERZL 19000" TO EMP-RECORD.
- DBa3ye WRITE EMP-RECORD.
A DBR40R MOVE " JOHN SMITH PROGRAMMERZ4 150@0" TO EMP-RECORD.
ZE 0DOB410 WRITE EMF-RECORD.
BA4Z0D MOVE "SHETLA LEVINE PROGRAMMERZ? 19@0080" TO EMP-RECORD.
3E 000430 WRITE EMF-RECORD.
2R0440 MOVE "MARSHAL CRAWFORD MANAGER 33 28B@QB" TO EMP-RECORD.
. DRB4ASD WRITE EMP-RECORD.
DRQ4HD MOVE “STANLEY STEAMER] PROGRAMMERZZ 39@00" TO EMP-RECORD.

E QRO4T7R WRITE

EMP-~-RECORD.

BR0480 MOVE "BENJAMIN LEE PROGRAMMERZS 12000" TO EMP-RECORD.
: OBR4TD WRYTE EMP-RECORD.
BOB500 y "DICK PERSNICKETY PROGRAMER 28 190@00" TO EMP~RECORD.
VE 0pas1e f . EMP--RECORD.
aBA5:20 OVE "MARION MILGROM JR. PROG 24 1000@" TO EMP-RECORD.
= BBO530 RITE EMP-RECORD.
AR5 40 CLOSE EMPLOYEE-FILE.

SUMMARY

AuBs5e
200560
ZZZZ%/

STOF RUN.
END PROGRAM. *#% END OF FILE *%#
Employee records as they will appear in data file

FIGURE 3.5 Program to create data file

executed. Further, any changes to the data file require that the program of
Figure 3.5 be modified, recompiled, and re-executed.

Figure 3.5 contains two sets of statement numbers. The left-most col-
umn contains the compiler statement number which need not be the same as
the CEDIT line number; e.g., compiler statement 10 corresponds to CEDIT
line 190. Note well that all CEDIT references must be to the CEDIT line
number.

This is one of the longest, but most important, chapters in the entire book.
It dealt with the TRS-80 rather than COBOL, because knowledge of the
language, in and of itself, is insufficient to enable one to function as a pro-

35

36

Chapter 3

grammer. It is also necessary to know specifics of the machine that one is
using to obtain working programs.

The chapter opened with the definition of a compiler, and by con-
trasting machine and higher level languages. Specifics of compiling and exe-
cuting a COBOL program were covered. The TRS-80 Disk Operating System,
TRSDOS, was introduced as was the COBOL Source Program Editor, CEDIT.
The procedure for creating a COBOL program was presented, with attention
to COBOL coding requirements in specific columns. A distinction was drawn
between a COBOL program and the data on which it operates.

TRUE/FALSE

RSCOBOL and RUNCOBOL are equivalent commands.

CBL is the extension for a source program.

. A cross-reference listing is always provided with a COBOL compile.
. The command X/PRT/PRINT/ always changes PRT to PRINT.

The command C/PRT/PRINT/10 changes PRT to PRINT in line 10.
The command RSCOBOL PAYROLL L produces the files PAYROLL/COB and
PAYROLL/LST.

The command P 100:300 prints 20 lines.

Statement numbers can never be changed.

A COBOL program is required to create a data file.

The utility COBOLPRT is used to print a COBOL listing.

T o b

o

ISES

EXERCISES

1. Indicate the starting column (or columns) for each of the following:

(a) Division headers

(b) Comments

(c) Paragraph names

(d) Statements in the Procedure Division, except paragraph names
(e) WORKING-STORAGE SECTION
(f) 77-level entries

(g) 01-level entries

(h) 05-level entries

(i) PICTURE clauses

(j) OPEN statement

(k) WRITE statement

(1) SOURCE-COMPUTER

(m) SELECT statement

2. Match each item with its proper description

e (1) A margin
(2) B margin

—— (3) Comment
——— (4) IDENTIFICATION DIVISION
——— (5) PROCEDURE DIVISION

(6) Hyphen

(7) Non-numeric literal

(8) Reserved word

(9) Compiler
(10) Literal

(a) Denoted by an asterisk in column 7
(b) First line in any COBOL program
(c) Often appears in data names

(d) Columns 12 through 72

TRS-80 COBOL 37

(e) Contains the logic of a program

(f) Limited to 120 characters and enclosed in quotes

(g) Where division, section, and paragraph headers begin

(h) Translates problem oriented language to machine oriented language
(i) Preassigned meaning

(j) A constant; may be numeric or non-numetric

3. Given the following sequence of machine language instructions,

LOAD 500
MULTIPLY 600
STORE 700

complete the following table of memory contents:

Memory Contents

Before After
Instruction 500 600 700 ACC 500 600 700 ACC
LOAD 500 10 20 ? ? ? ? ? ?
MULTIPLY 600 ? ? ? ? ? ? ? ?
STORE 700 ? ? ? ? ? ? ? ?

4. Assume that our hypothetical computer also has a machine language ADD instruction
in addition to the LOAD, MULTIPLY, and STORE instructions described in the text.
Specifically, “ADD X’ will add the contents of location X to the contents of the ac-
cumulator and leave the sum in the accumulator. Show the series of machine language
instructions which would probably be generated for the COBOL instruction “ADD A,
B, C GIVING D”. Assume A, B, C, and D are in locations 100, 200, 300, and 400,
respectively.

5. Indicate the CEDIT instructions which are necessary to modify the program of Figure
3.5. Specifically:

(a) Delete Marshal Crawford.
(b) Insert David Brown, a programmer earning $18,000, and 26 years old.
(¢) Change Marion Milgrom’s age to 33 from 24.

6. Figure 3.6 contains an initial attempt at creating the Preamble to the United States
Constitution. Indicate the necessary CEDIT instructions to correct all errors.

Duplicate lines

People missing Space missing

0R1oe WE=s THE OF THE

URITTEDSTATESE IN ORDER TO

Wrong word
PAA11@ HORM A MORE PERFECT [OMION ESTABLISH JUSTICE. INSURE
QU 2@ DOMESTIC TRANGUILITYs PROVIDE FOR THE COMMON DEFEMNSE .

@AA1EL DOMESTIC TRANGQUILITY. PROVIDE FOR THE COMMON DEFENSE,

Qu13a PROMOTE THE GEMERAL WELFARE: AND SECURE THE BLEEEINGS

A@14@ OF LIRERTY TO OURBELVES aAND OUR POSTERITY: DO ORDAIN
PUISR AND ESTABL

L l

Last line missing-should be "“of America”

REiH THIS CONSTITUTION FOR THE [UNITEDSTATES

Extra space

Space missing

FIGURE 3.6 Preamble text

38

Chapter 3

PROJECTS

1. Develop aflowchart (or pseudocode) and a corresponding COBOL program for the
EAST-WEST telephone company (serving 400 residents on an unknown island in the mid-
Pacific). The object of the program is to process a customer file and indicate the payment
due from each resident. (Residents come into the telephone office and pay their bill in
person.) If column 42 of an incoming record contains an X, it means the customer is re-

tired and pays only $2.00. All others pay $5.00. Incoming records are in the following
format:

Field Columns Picture
LAST-NAME 1-15 X(15)
FIRST-NAME 16-30 X(15)
POST-OFFICE-BOX 31-34 9(4)
TELEPHONE-NUMBER 36-40 9(5)
RETIRED-INDICATOR 42 X

The printed output should contain all five fields from the input record in columns 2 to
16, 18 to 32, 41 to 44, 56 to 60, and 65, respectively. In addition, it should print the
amount due in columns 70 to 74. In order to test your program, it will be necessary to
create a separate data file; use the following test data:

MERKLE RICHARD 013500025
OBRIEN ROBERT 0625 00321
MERKLE OLIVE 0330 00250 X
BLAKELY BRIAN 0279 00639
KESSEL SILVIA 0217 00433
SLY CAREY 0934 00372
KARVAZY KAREN 0666 00218 X
CRAWFORD STACY 0555 00319 X
CRAWFORD AMY 0567 00417

2. Develop pseudocode (or a flowchart) and a corresponding COBOL program for
the Inter-City Piano Company. The program is to process a file of customers and produce
a list of people eligible for a discount on buying a piano. Individuals with more than 15
lessons that have not already purchased a piano are eligible and should appear on the out-
put. Individuals with 15 or fewer lessons or individuals who have already purchased a
piano are not eligible. The format of the input records is as follows:

Field Columns Picture
LAST-NAME 1-15 X(15)
FIRST-NAME 16-25 X{10)
ADDRESS 26-50 X(25)
CITY 51-75 X(25)
NUMBER-OF-LESSONS 76-78 9(3)
PURCHASE-INDICATOR* 80 X

*Note: Y means already purchased.
N means not purchased.

The output print positions are 2 to 16, 18 to 27, 29 to 53, 55 to 79, 81 to 83, and 86 for
the six incoming fields. No additional data need appear in the output, but remember only
those customers eligible for a discount are to appear. Use the following test data and
create a separate data file:

TRS-80 COBOL

CRAWFORD
KARVAZY
MORSE
PLUMETREE
SLY
POWERS
BLAKELY
BROWN
TARTLETON

SHERRY
KAREN
KENNETH
MICHELE
MATTHEW
NANCY
KRISTEN
JENNIFER
KIMBERLY

15004 GOOD MEADOW CT.
P.0.BOX 1013

11800 SILENT VALLEY LN.

14717 PEBBLE HILL RD.
15001 GOOD MEADOW CT.
525 ORCHARD WAY
15005 ORCHARD WAY

11 HEATHER DRIVE

BOX 395

GAITHERSBURG
GAITHERSBURG
GAITHERSBURG
GAITHERSBURG
GAITHERSBURG
SILVER SPRINGS
SILVER SPRINGS
COLORADO SPRINGS
NORTH LAPLATA

39

011N
017Y
014 N
027 N
019N
024 Y
008 Y
021N
004 N

OVERVIEW This chapter begins a formal treatment of COBOL by considering in order

COBOL NOTATION

42

each of the four divisions. Emphasis, however, is on the Data and Procedure
Divisions, which form the bulk of any COBOL. program.

The material on the ldentification and Environment Divisions is brief,
but sufficient for elementary programs. Coverage of the Data Division begins
with level numbers and picture clauses, and progresses to the File and
Working-Storage Sections. The discussion on the Procedure Division includes
verbs for 1/0 (OPEN, CLOSE, READ, and WRITE), for performing arithmetic
(ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE), for implement-
ing decisions and looping (IF and PERFORM), for transferring and editing
data (MOVE), and finally for terminating a program (STOP RUN).

This unit contains a wealth of material. However, in keeping with the
philosophy of the author (quick entry into actual programming), many of the
discussions are kept brief. This chapter contains only necessary information
for expanding on the programs of Chapters 1 and 2. Lengthy discussions are
distinctly avoided. We could, for example, have devoted several pages to the
IF and PERFORM verbs alone. We opted not to, in favor of encouraging
quicker entry into actual programming.

We conclude with a complete COBOL program incorporating the major
points of information. The program and associated discussion are extremely
important. Accordingly, we suggest that as you read a section, skip over to
the program and see how the material is applied. Again, do not be dismayed
if you fail to remember everything on a first reading; rather, regard this
unit as reference material to which you will continually return. Remember,
the major portion of your learning will take place as you write your own
programs.

COBOL is an English-like language in that there are a number of different
but equally acceptable ways to say the same thing. Accordingly, a standard
notation is used to concisely describe permissible COBOL formats. The nota-
tion takes a while to get used to, but once learned it permits the reader to
quickly understand the syntax of any COBOL statement. The notation has
six rules:

1. COBOL reserved words appear in uppercase (capital) letters.

2. Reserved words that are required are underlined; optional reserved
words are not underlined.

Lowercase words denote programmer-supplied information.
Brackets ([]) indicate optional information.
Braces ({ }) indicate that one of the enclosed items must be chosen.

Three periods (. . .) mean that the last syntactical unit can be repeated
an arbitrary number of times.

ook w

As illustration, variations in the IF statement are conveniently expressed
through this notation. Consider:

IF

1S [NOT] LESS THAN

‘identifier—1} [IS[NOT]GHEATER THAN]{identifier-Z]
IS [NOT] EQUAL TO

literal-1 literal-2

IDENTIFICATION
DIVISION

The COBOL Language 43

Notice that the word IF is underlined and in uppercase letters; thus IF
is a required reserved word. The first set of braces means that either a literal
or identifier must appear; both are in lowercase letters, indicating that they
are programmer supplied. The next set of braces forces a choice among one
of three relationships: greater than, less than, or equal to. In each case, IS
appears in capital letters but is not underlined; hence its use is optional.
Brackets denote NOT as an optional entry. THAN is an optional reserved
word, which may be added to improve legibility. Finally, a choice must be
made between literal-2 or identifier-2.

Returning to the programmer selection problem of Chapter 2, in which
we compared EMPLOYEE-TITLE to the literal ‘“programmer’’, all the fol-
lowing are acceptable:

IF EMPLOYEE-TITLE IS EQUAL TO “PROGRAMMER” . ..
IF EMPLOYEE-TITLE EQUAL “PROGRAMMER" . ..
IF “PROGRAMMER" IS EQUAL TO EMPLOYEE-TITLE ...

This notation will be used throughout the chapter, and indeed through-
out the book, to explain various COBOL elements.

The Identification Division is the first of the four divisions in a COBOL pro-
gram. Its function is to provide identifying information about the program,
such as author, date written, security, and the like. The division consists of
a division header and up to five paragraphs, as shown:

IDENTIFICATION DIVISION.,

PROGRAM-ID. program name,
[AUTHOR. comment-entry .}
[INSTALLATION. comment-entry.]
[DATE-WRITTEN. comment-entry.]
[SECURITY. comment-entry.]

Only the division header and PROGRAM-ID paragraph are required.
(Note how brackets enclose the other paragraphs as per the COBOL nota-
tion.) Hence, the remaining paragraphs are optional and contain documen-
tation about the program. (The DATE-COMPILED paragraph, which is
supported on other compilers, is not available under TRS-80 COBOL.) A
completed Identification Division is shown:

IDENTIFICATION DIVISION.
PROGRAM-ID. TUITION.

AUTHOR. ROBERT GRAUER.
INSTALLATION. TANDY CORPORATION.
DATE-WRITTEN. SEPTEMBER 1, 1983.
SECURITY. TOP SECRET.

Coding for the ldentification Division follows the general rules de-
scribed in Chapter 3. The division header and paragraph names begin in the
A margin. All other entries begin in or past column 12 (B margin).

ENVIRONMENT The Environment Division serves two functions:

DIVISION

DATA DIVISION

44

1. It identifies the computer to be used for compiling and executing
the program (usually one and the same). This is done in the Config-
uration Section.

2. It relates programmer chosen filenames to data files on a diskette.
This is done in the Input-Output Section.

The nature of these functions makes the Environment Division heavily
dependent on the computer on which one is working. Thus, the Environ-
ment Division for a COBOL program on the TRS-80 is significantly different
from that of a program for another computer.

The Configuration Section has the format:

CONFIGURATION SECTION.
SOURCE-COMPUTER. TRS-80.
OBJECT-COMPUTER. TRS-80.

The section header and paragraph names begin in the A margin. The
computer-name entries begin in or past column 12.

The Input-Qutput Section relates the files known to the COBOL pro-
gram to the data files. Each file in a COBOL program has its own SELECT
and ASSIGN clauses, which appear in the File-Control paragraph of the
Input-Output Section of the Environment Division. The format of the AS-
SIGN clause is machine dependent, with the following entries typical for the
TRS-80:

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT EMPLOYEE-FILE ASSIGN TO INPUT “PAYROLL/DAT".
SELECT PRINT-FILE ASSIGN TO PRINT “"PAYROLL/TXT".

EMPLOYEE-FILE is a programmer chosen file name and will ap-
pear elsewhere in the program (e.g., in FD, OPEN, CLOSE, and READ
statements). It is designated as an input file, and exists on a diskette as
PAYROLL/DAT. In similar fashion, PRINT-FILE is also a programmer
chosen file name for a print (output) file which will exist on a diskette as
PAYROLL/TXT.

The Data Division describes all data names in a program as to: the number of
characters, the type (for example, numeric or alphabetic), and, finally, the
relationship among data items. This description of data is accomplished
through the picture clause and level numbers.

Picture Clause

All data names are described according to size and class. Size specifies the
number of characters in a field. Class denotes the type of field. For the
present, we restrict type to alphabetic, numeric, or alphanumeric denoted
by A, 9, or X, respectively. The size of a field is indicated by the number
of times the A, 9, or X is repeated. Thus a data name with a picture of
AAAA or A(4) is a four-position alphabetic field. In similar fashion, 999 and

The COBOL Language 45

X(5) denote a three-position numeric field and five-position alphanumeric
field, respectively.

Level Numbers

Data items in COBOL are classified as either elementary or group items. A
group item is one that can be further divided, whereas an elementary item
cannot be further divided. Elementary items always have a picture clause,
whereas group items never have a picture clause.

Level numbers are used to describe the hierarchy between group and
elementary items. A level number of 01 indicates an entire record, whereas
levels 02 through 49 are used for portions of a record.

Level numbers and picture clauses are best described by example. Con-
sider the Data Division statements of Figure 4.1.

01 EMPLOYEE-RECORD.
05 EMPLOYEE-NAME.

10 LAST-NAME PICTURE IS X{15).
10 FIRST-NAME PICTURE IS X(9).
10 MIDDLE-INITIAL PICTURE IS X.
05 EMPLOYEE-TITLE PICTURE IS X(10).
05 DATE-OF-BIRTH.
10 BIRTH-MONTH PICTURE 1S 99.
10 BIRTH-YEAR PICTURE IS 99.
05 PRESENT-SALARY PICTURE IS 9(5).
05 FILLER PICTURE IS X{(4).
05 FORMER-SALARY PICTURE 1S 99999.

FIGURE 4.1 Data Division code for level numbers and PICTURE clause

EMPLOYEE-NAME is considered a group item since it is divided into
three fields: LAST-NAME, FIRST-NAME, and MIDDLE-INITIAL. LAST-
NAME, FIRST-NAME, and MIDDLE-INITIAL are elementary items since
they are not further divided. EMPLOYEE-TITLE is an elementary item.
DATE-OF-BIRTH is a group item divided into two elementary items, BIRTH-
MONTH and BIRTH-YEAR. PRESENT-SALARY and FORMER-SALARY
are both elementary items.

In Figure 4.1, EMPLOYEE-RECORD has a level number of 01.
EMPLOYEE-NAME is a subfield of EMPLOYEE-RECORD, and hence it
has a higher level number (05). LAST-NAME, FIRST-NAME, and MIDDLE-
INITIAL are subfields of EMPLOYEE-NAME, and all have the level number
10. EMPLOYEE-TITLE, DATE-OF-BIRTH, PRESENT-SALARY, and
FORMER-SALARY are also subfields of EMPLOYEE-RECORD and have
the same level number as EMPLOYEE-NAME (05). DATE-OF-BIRTH in
turn is subdivided into two elementary items, each with level number 10.
Realize that elementary items have a numerically higher level number than
the group item to which they belong.

Each elementary item must have a picture clause to describe the data it
contains. LAST-NAME has PICTURE IS X(15), denoting a 15-position al-
phanumeric field. However, there is no picture entry for EMPLOYEE-NAME
since that is a group item. Parentheses in a picture entry denote repetition;
thus, the entries of 9(5) and 99999 for PRESENT-SALARY and FORMER-
SALARY both depict five-position numeric fields. Finally, note the FILLER

46

Chapter 4

entry of PICTURE IS X(4). FILLER denotes a field with no useful informa-
tion, that is, data that are not referenced in this program.

Considerable flexibility is permitted with level numbers and picture
clauses. Any level number from 02 through 49 is permitted in describing sub-
fields as long as the basic rules are followed. Thus, 04 and 08 could be used
in lieu of 05 and 10. Next, the picture clause itself can assume any one of
four forms, PICTURE IS, PICTURE, PIC IS, or PIC. Finally, parentheses
may be used to signal repetition of a picture type; A(3) is equivalent to
AAA. Figure 4.2 is an alternate way of coding Figure 4.1, with emphasis on
this flexibility.

01 EMPLOYEE-RECORD.
04 EMPLOYEE-NAME.

08 LAST-NAME PIC X{15).

08 FIRST-NAME PIC X(9).

08 MIDDLE-INITIAL PIC X.
04 EMPLOYEE-TITLE PIC X(10).
04 DATE-OF-BIRTH.

08 BIRTH-MONTH PIC 9(2).
08 BIRTH-YEAR PIC 9(2).
04 PRESENT-SALARY PIC 99999.
04 FILLER PIC XXXX.
04 FORMER-SALARY PIC 99999.

FIGURE 4.2 Data Division code for level numbers and PICTURE clauses/l|
File Section

The File Section is typically the first section in the Data Division. It de-
scribes every file mentioned in a SELECT statement in the Environment
Division. (If, however, there are no input/output files as in the program of
Chapter 1, there is no need for the File Section.)

The File Section contains both file description (FD) and record de-
scription entries (that is, level numbers and picture clauses). We have already
discussed the latter. An abbreviated format for the file description (FD)
entry is as follows:

FD file-name

RECORDS AHE} {OIVIITTED }

LABEL {RECORD IS STANDARD

[RECORD CONTAINS integer-1 CHARACTERS]

{DATA RECORD IS data-name-~1]

The FD provides information about the physical characteristics of a
file. The RECORD CONTAINS clause specifies the number of characters per
record and should equal the sum of the picture clauses in the record descrip-
tion. The LABEL RECORDS clause indicates whether or not labels (i.e., pre-
defined identifying information) exist for the file in question.

Working-Storage Section
The Working-Storage Section is used for storing intermediate results and/or

constants needed by the program. It defines data names used by the program
that are not defined elsewhere; i.e., in the File Section. Working-Storage

The COBOL Language 47

typically contains two types of entries. The first is for independent, ele-
mentary items; that is, those data names that have no hierarchical relation-
ship to one another. These entries are assigned level number 77 and precede
all other entries in Working-Storage. Group items beginning with level 01
are the second type of entry appearing in Working-Storage. Group items fol-
low 77-level entries and use level numbers as discussed earlier. An example
of a Working-Storage Section appears in Figure 4.3, which introduces the
VALUE clause.

WORKING-STORAGE SECTION.
77 WS-DATA-REMAINS-SWITCH PIC X(3) VALUE SPACES.

01 HEADING-LINE,

05 FILLER PIC X(8) VALUE SPACES.

05 FILLER PIC X(4) VALUE “NAME".

05 FILLER PIC X(9) VALUE SPACES.

05 FILLER PIC X{4) VALUE "RATE".

05 FILLER PIC X{4) VALUE SPACES.

05 FILLER PiC X(9) VALUE “REG HOURS"”.
056 FILLER PIC X{(4) VALUE SPACES.

05 FILLER PIC X(9) VALUE “0/T HOURS".
05 FILLER PIC X{4) VALUE SPACES.

05 FILLER PIC X(7) VALUE “REG PAY".
05 FILLER PIC X(4) VALUE SPACES.

05 FILLER PIC X(7) VALUE “0/T PAY".

05 FILLER PIC X(4) VALUE SPACES.

05 FILLER PIC X(9) VALUE "“GROSS PAY".
05 FILLER PIC X(46) VALUE SPACES.

01 COMPANY-TOTALS.

05 CO-REG-PAY PIC 9(6) VALUE ZEROS.
05 CO-OVERTIME-PAY PIC 9(6) VALUE ZEROS.
05 CO-GROSS-PAY PIC 9(6) VALUE ZEROS.

FIGURE 4.3 Working-Storage section

Value Clause

The VALUE clause is a convenient way of initializing a data name. It has the
general form:

VALUE IS literal

Literals are of three types, numeric (for example, 30) non-numeric
(“NAME”), and figurative constants (ZERO). Numeric and non-numeric
literals were discussed in Chapter 2 as basic COBOL elements. Figurative
constants are COBOL reserved words with preassigned values. Two of these,
ZERO (equivalent forms are ZEROS and ZEROES) and SPACE (also
SPACES), appear in Figure 4.3.

The Working-Storage Section of Figure 4.3 is extracted from the pro-
gram at the end of the chapter. The exact nature of the various entries in
Figure 4.3 will be better understood at that time.

PROCEDURE
DIVISION

The Procedure Division is the portion of a COBOL program that contains its
logic; it is the part of the program that “actually does something.”” Coverage
begins with the arithmetic verbs (ADD, SUBTRACT, MULTIPLY, DIVIDE,
and COMPUTE). We look at the READ, WRITE, OPEN, and CLOSE verbs
for use in I/O operations. We study the MOVE verb, which transfers data
from one area of memory to another. We learn basic forms of the IF and
PERFORM statements and cover STOP RUN, to terminate execution. All of
these verbs have a variety of options. This chapter, however, uses only the
more elementary formats and defers additional coverage to later chapters.

ADD
The ADD verb has two basic formats:

identifier-1}{ identifier-
aoof

R 2] ... TO identifier-n
literal-2 —

literal-1
and

b { identifier-1 }{identiﬁer-?} [identifier~-3

. .] .. GIVING identifier-n
literal-1 literal-2 literal-3 T

Note that one or several identifiers (literals) may precede identifier-n.
Regardless of which format is chosen, i.e., GIVING or TO, only the value
of identifier-n is changed. In the “TO’’ option, the values of identifier-1,
identifier-2, etc., are added to the initial contents of identifier-n. In the
“GIVING”’ option, the sum does not include the initial value of identifier-n.
Simply stated, the ‘“TO’’ option includes the initial value of identifier-n in
the final sum, while the “GIVING’’ option ignores the initial value. Exam-
ples 4.1 and 4.2 illustrate both formats.

Example 4.1

ADDABTOC.

Before execution: A] 5 | B] 10 ; C 20

After execution: A ‘ 5 | B L10 1 c 35

In Example 4.1 the initial values of A, B, and C are 5, 10, and 20, re-
spectively. After execution the values are 5, 10, and 35. The instruction took
the initial value of A (5), added the initial value of B (10), added the initial
value of C (20), and put the sum (35) back into C.

Example 4.2

ADD A B GIVING C.

Before execution: A | 5 1[B ‘ 10 E C f 20 E

After execution: A LS I B I 10 I C]15 [

In Example 4.2 the initial value of A (5) is added to the initial value of
B (10), and the sum (15) replaces the initial value of C.

TABLE 4.1
THE ADD INSTRUCTION

Data name A B C

Value before execution 5 10 30

Value after execution of

ADD ATOC. 5 10 35
ADDABTOC. 5 10 45
ADD A 18 B GIVING C. 5 10 33
ADDA18BTOC. 5 10 63
ADD 1TO C. 5 10 31

Table 4.1 contains additional examples of the ADD instruction. In each
instance, the instruction is assumed to operate on the initial values of A, B
and C (5, 10, and 30, respectively). Note that only the value of C changes.

2

SUBTRACT

The SUBTRACT verb also has two formats:

identifier-1) ['identifier-2
SUBTRACT{ }[... FROM identifier-m

literal-1 literal-2 I

identifier-1) ["identifier-2 identifier-m R "
SUBTRACT 4 | F { . } GIVING identifier-n
T \iteral-1 literal-2 - literal-m D

In the first format, the initial value of identifier-m is replaced by the
result of the subtraction. In the second format, the initial value of either
identifier-m or literal-m is unchanged as the result is stored in identifier-n.
Regardless of which option is used, the value of only one data name is
changed. Consider examples 4.3 and 4.4.

Example 4.3

SUBTRACT A FROM B.

Before execution: A B 15
After execution: A B 10

In Example 4.3 the SUBTRACT verb causes the value of A (5) to be
subtracted from the initial value of B (15) and the result (10) to be stored
in B. Only the value of B was changed.

Example 4.4

SUBTRACT A FROM B GIVING C.

Before execution: A 5 B 15 C

Afterexecution: A | 5 | B [16 | ¢ [10]

In the “FROM . .. GIVING” format of Example 4.4 the value of A (5)
is subtracted from the value of B (15), and the result (10) is placed in C. The

49

50

TABLE 4.2
THE SUBTRACT INSTRUCTION

Data name A B C D
Value before execution 5 10 30 100

Value after execution of

SUBTRACT A FROM C. 5 10 25 100
SUBTRACT A B FROMC. 5 10 15 100
SUBTRACT A B FROM C GIVING D. 5 10 30 15
SUBTRACT 10 FROM C. 5 10 20 100

values of A and B are unchanged, and the initial value of C (100) is replaced
by 10. Table 4.2 contains additional examples. In each example, the instruc-
tion is assumed to operate on the initial contents of A, B, and C.

MULTIPLY

The MULTIPLY format is shown below:
MULTIPLY {identifier—1} —{identifier-z

. } [GIVING identifier-3}]
literal-1 ———

literal-2

The use of GIVING is optional. If it is used, then the result of the
multiplication is stored in identifier-3. If GIVING is omitted, then the result
is stored in identifier-2. Either way, the value of only one data name is
changed. Consider Examples 4.5 and 4.6.

Example 4.5

MULTIPLY A BY B.

Before execution: A 10 20

9 4
:

w

After execution: A 1 200

Example 4.6

MULTIPLY A BY B GIVING C,

Before execution: A [10 ‘ B { 20 [C l 345 I

Afterexecution: A | 10 | B [20 | ¢ [200 |

Table 4.3 contains additional examples of the MULTIPLY verb.
DIVIDE
The DIVIDE verb has two formats:

identifier-1

DIVIDE {
— Uiteral-1

} INTO identifier-2

DIVIDE {identifier-1}{INTO}{identifier—Z

} GIVING identifier-3
literal-1 BY —_—

literal-2

TABLE 4.3
THE MULTIPLY INSTRUCTION

Data name A B C

Value before execution 5 10 30

Value after execution of

MULTIPLY B BY A GIVING C. 5 10 50
MULTIPLY A BY B GIVING C. 5 10 50
MULTIPLY A BY B. 5 50 30
MULTIPLY B BY A. 50 10 30
MULTIPLY A BY 3 GIVING C. 5 10 15

In the first format the quotient replaces the initial value of identifier-2.
In the second format, the quotient replaces the initial value of identifier-3.
In either case, the value of only one data name is changed. Consider Ex-
amples 4.7 and 4.8.

Example 4.7
DIVIDE A INTO B.
Before execution: A B 50
After execution: A B
Example 4.8

DIVIDE A INTO B GIVING C.

Before execution: A 10 B l 50 I C 1 13 ‘
After execution: A 10 B | 50 | C [5 l

In Example 4.7 the initial value of B (50) is divided by the value of A
(10), and the quotient (5) replaces the initial value of B. In Example 4.8,
which uses the “GIVING” option, the quotient goes into C and the values
of A and B are unaffected.

Table 4.4 contains additional examples of the DIVIDE verb.

TABLE 4.4
THE DIVIDE INSTRUCTION
Data name A B C
Value before execution 5 10 30

Value after execution of

DIVIDE 2 INTO B. 5 5 30
DIVIDE 2 INTO B GIVING C. 5 10 5
DIVIDE B BY 5 GIVING A. 2 10 30
DIVIDE B INTO C. 5 10 3
DIVIDE A INTO B GIVING C. 5 10 2

51

52

Chapter 4
COMPUTE

Any operation which can be done in an ADD, SUBTRACT, MULTIPLY, or
DIVIDE statement may also be done using the COMPUTE instruction. In
addition, the COMPUTE statement can combine different arithmetic opera-
tions in the same statement. For example, consider the following algebraic
statement: X = 2(A + B)/C. A and B are first added together, the sum is
multiplied by 2, and the product is divided by C. The single algebraic state-
ment requires three COBOL arithmetic statements as shown. (Note that the
true value of X is not obtained until after the last statement is executed.)

ADD A B GIVING X,
MULTIPLY 2 BY X.
DIVIDE CINTO X.

The previous statements can be combined into a single COMPUTE with
obvious benefits:

COMPUTE X = 2 * (A + B) / C.
The general format of the COMPUTE statement is

COMPUTE identifier-1 = expression
Expressions are formed according to the following rules:

1. The symbols +, -, *, and / denote addition, subtraction, multiplica-
tion, and division, respectively. (Note well that exponentiation is
not supported under TRS-80 COBOL.)

2. An expression consists of data names, literals, arithmetic symbols,
and parentheses. Spaces must precede and follow arithmetic symbols.

3. Parentheses are used to clarify and in some cases alter the sequence
of operations within a COMPUTE. Anything contained within the
parentheses must also be a valid expression. The left parenthesis is
preceded by aspace, and the right parenthesis is followed by a space.

The COMPUTE statement calculates the value on the right side of the
equal sign and stores it in the data name to the left of the equal sign. Ex-
pressions are evaluated as follows:

1. Anything contained in parentheses is evaluated first as a separate

expression.
TABLE 4.5
THE COMPUTE INSTRUCTION
Data name A B C Comments
Value before execution 2 3 10 Initial values

Value after execution of
COMPUTE C = A + B. 2 3 5 Simple addition
COMPUTEC=A+B * 2. 2 3 8 Multiplication done
before addition
COMPUTE C= (A +B) * 2, 2 3 10 Parentheses evaluated first

The COBOL Language 53

2. Within the expression multiplication or division is done before ad-
dition or subtraction.

3. If rule 2 results in a tie, e.g., both addition and subtraction are pres-
ent, then evaluation proceeds from left to right.

Table 4.5 contains examples to illustrate the formation and evaluation
of expressions in a COMPUTE statement.

Table 4.6 should further clarify evaluation of the COBOL COMPUTE.
This table contains several algebraic expressions and the corresponding COM-
PUTE statements to accomplish the intended logic. Note that parentheses
are often required in the COMPUTE which are not present in the algebraic
counterpart. Parentheses may also be optionally used to clarify the intent of
a COMPUTE statement; however, their use in Table 4.6 is mandatory in all
instances.

TABLE 4.6
THE COMPUTE INSTRUCTION CONTINUED

Algebraic Expression COBOL COMPUTE
x =a+hb COMPUTE X = A + B.
a+hb
X = COMPUTE X = (A + B) / 2.
2
{a + blc
x = COMPUTEX = (A + B) * C / 2.
2
a+hb
Xx = COMPUTE X = (A + B) / {2 * C).
2c

READ
The format for the READ verb is:

READ file-name [AT END imperative-statement]
As an example, consider:

READ EMPLOYEE-FILE
AT END MOVE “NO" TO WS-DATA-REMAINS-SWITCH.

This statement causes a record to be read into memory. If, however, the
end of file condition is reached (there are no more records), control passes to
the statement following AT END, which moves “NO”’ to the data name WS-
DATA-REMAINS-SWITCH.

WRITE
An abbreviated format of the WRITE verb is:

integer LINES}
PAGE

AFTER
} ADVANCING {

WRITE record-
record-name [{ BEFORE

The WRITE statement transfers data from main storage to an output
device. The ADVANCING option controls line spacing on a printer; if

54

Chapter 4

omitted, single spacing occurs. If AFTER ADVANCING 3 LINES is used,
the printer triple spaces (skips two lines and writes on the third). Output can
be directed to a new page by specifying AFTER ADVANCING PAGE. The
BEFORE option causes the line to be written first, after which the specified
number of lines are skipped.

Note that the WRITE statement contains a record name, whereas the
READ statement contains a file name. The record name in the WRITE will
appear as an 01 entry in the File Section of the Data Division. The file name
under which it is defined will appear in SELECT, FD, OPEN, and CLOSE
statements.

OPEN

Every file in a COBOL program must be opened before it can be accessed.
The OPEN verb causes the operating system to initiate action to make a file
available for processing.

The format of the OPEN is:

INPUT
OPEN file-name-1 [file-name-2 ...}
QUTPUT

Notice that one must specify the type of file in an OPEN statement. IN-
PUT is used for a file that contains data, whereas OUTPUT is used for a file
produced by a program; e.g., a printed report.

Two files may be opened in the same statement. For example,

OPEN INPUT EMPLOYEE-FILE
OUTPUT PRINT-FILE.
CLOSE

All files must be closed before processing terminates. The format of the
CLOSE is simply:

CLOSE file-name-1 [file-name-2] ...
Several files may be closed in the same statement. The type of file
(INPUT or OUTPUT) is not specified. An example of a CLOSE statement

follows:

CLOSE EMPLOYEE-FILE PRINT-FILE.

MOVE

The MOVE statement transfers data from one storage location to another.
The format is:

} TO identifier-2

identifier-1
MOVE {

literal

Consider the examples:

The COBOL Language 55

MOVE 10000 TO STARTING-SALARY.
MOVE "“SALARY REPORT FOR PROGRAMMERS UNDER 30" TO PRINT-LINE.
MOVE EMP-NAME TO PRINT-NAME.

The first example moves a numeric literal, 10000, to the data name
STARTING-SALARY. The second moves a nonnumeric literal to PRINT-
LINE. The third example transfers data from an input area to an output
area for subsequent printing.

The figurative constants, ZEROS and SPACES, are frequently used in a
MOVE, as shown:

MOVE SPACES TO PRINT-LINE.
MOVE ZEROS TO TOTAL-SALARIES.

The first statement moves spaces (blanks) to the data name PRINT-
LINE. (Failure to clear a print-line in this fashion would result in the print-
ing of any ‘‘garbage” that happened to be in these positions.) The second
statement moves a numeric zero to TOTAL-SALARIES.

Although the MOVE statement appears rather elementary, care must be
taken in its use. Certain moves, for example, are not permitted. One may not
move a numeric field to an alphabetic field or vice versa. The MOVE state-
ment may, however, contain fields of different lengths, e.g., a field with pic-
ture 9(3) moved to a field with picture 9(4) or a picture of X(6) moved to a
picture of X(5), and so on.

Two additional rules are required, therefore, to clarify the action of the
move:

1. Data moved from an alphanumeric area to an alphanumeric area
are moved one character at a time from left to right. If the receiving
field is larger than the sending field, it is padded on the right with
blanks; if the receiving field is smaller than the sending field, the
rightmost characters are truncated.

2. A numeric field moved to a numeric field is always aligned according
to the decimal point. If the receiving field is smaller than the sending
field, the h<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>