 gey

R

.

Jr

iam Barden.

Assembly Language

Subroutines

W

broutines

SE SU

to-u

U-
QOUI’

A collection of

QS

for

RS-8

$18.95 A SPECTRUM BOOK

].! o
HEE E R TS EE BN BB

et 27

B -
o,

g WILLIAM BARDEN, JR.

+ TRS-80

' ASSEMBLY
s LANGUAGE
' SUBROUTINES

iy
Z =
=
a
I

Library of Congress Cataloging in Publication Data

Barden, William T.
TRS-80 assembly language subroutines.

(A Spectrum Book)

1. TR5-80 (Computer)—Programming. 2. Assembler
language (Computer program language} 1. Title,
QA76.8.T188373 001.64°2 82-383
ISBN 0-13-931188-2 (phk.) AACR2

This Spectrum Book is available to businesses and organizations
at a special discount when ordered in large quantities. For
information, contact Prentice-Hall, Inc., General Publishing
Division, Special Sales, Englewood Cliffs, N.). 07632.

0-13-931148-¢2

@© 1982 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632
A SPECTRUM BOOK

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

10 9 8 7 6 5 4 3 2
Printed in the United States of America

Editorial production supervision by Frank Moorman
Cover design by Ira Shapiro
Manufacturing buyers: Cathie Lenard and Barbara A. Frick

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL CANADA, INC., Toronto

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

Contents

Preface, v

I TRS-80 ASSEMBLY-LANGUAGE PROGRAMMING
TECHNIQUES

1 A Brief Look at TRS-80 Assembly-Language Programming, 3

2 Using Assembly Language on the TRS-80, 13

I I TRS-80 ASSEMBLY LANGUAGE SUBROUTINES
ABXBIN: ASCIl BINARY TO BINARY CONVERSION, 31 -
ADEBCD: ASCII DECIMAL TO BCD CONVERSION, 34
ADXBIN: ASCIl DECIMAL TO BINARY CONVERSION, 37
AHXBIN: ASCIl HEXADECIMAL TO BINARY CONVERSION, 40
AOXBIN: ASCI] OCTAL TO BINARY CONVERSION, 43
BCADDN: MULTIPLE-PRECISION BCD ADD, 45

BCDXAD: BCD TO ASCil DECIMAL CONVERSION, 49
BCSUBT: MULTIPLE-PRECISION BCD SUBTRACT, 52
BXBINY: BINARY TO ASCII BINARY CONVERSION, 55
BXDECL: BINARY TO ASCll DECIMAL CONVERSION, 59
BXHEXD: BINARY TO ASCH HEXADECIMAL CONVERSION, 62
BXOCTL: BINARY TO ASCIl OCTAL CONVERSION, 65
CHKSUM: CHECKSUM MEMORY, 68

CLEARS: CLEAR SCREEN, 71

CSCLNE: CLEAR SCREEN LINES, 72

CSTRNG: STRING COMPARE, 74

DELBLK: DELETE BLOCK, 78

DRBOXS: DRAW BOX, 81

DRHLNE: DRAW HORIZONTAL LINE, 85

DRVLNE: DRAW VERTICAL LINE, 87

DSEGHT: DIVIDE 16 BY 8, 89

DSSIXT: DIVIDE 16 8Y 16, 92

EXCLOR: EXCLUSIVE OR, 95

FILLME: FILL MEMORY, 96

FKBTST: FAST KEYBOARD TEST, 99

FSETGR: FAST GRAPHICS SET/RESET, 100

INBLCK: INSERT BLOCK, 104

METEST: MEMORY TEST, 108

MLEBYE: FAST 8 BY 8 MULTIPLY, 112

MLSBYS: SIXTEEN BY SIXTEEN MULTIPLY, 114

MOVEBL: MOVE BLOCK, 117

MPADDN: MULTIPLE-PRECISION ADD, 120

MPSUBT: MULTIPLE-PRECISION SUBTRACT, 124

MSLEFT: MULTIPLE SHIFT LEFT, 127

MSRGHT: MULTIPLE SHIFT RIGHT, 129

MUNOTE: MUSICAL NOTE, 131

MVDIAG: MOVING DOT DIAGONAL, 136

MVHORZ: MOVING DOT HORIZONTAL, 139

MVVERT: MOVING DOT VERTICAL, 142

NECDRYV: NEC SPINWRITER DRIVER, 145

PRANDM: PSEUDO-RANDOM NUMBER GENERATOR, 147
RANDOM: RANDOM NUMBER GENERATOR, 149
RCRECD: READ CASSETTE RECORD, 151

RDCOMS: READ RS-232-C SWITCHES, 155

READDS: READ DISK SECTOR, 158

RESTDS: RESTORE DISK, 162

RKNOWT: READ KEYBOARD WITH NO WAIT, 164
RKWAIT: READ KEYBOARD AND WAIT, 168

SCDOWN: SCROLL SCREEN DOWN, 171

SCUSCR: SCROLL SCREEN UP, 173

SDASCI: SCREEN DUMP TO PRINTER IN ASCIl, 175
SDGRAP: SCREEN DUMP TO PRINTER IN GRAPHICS, 177
SETCOM: SET RS-232-C INTERFACE, 181

SOIARR: SEARCH ONE-DIMENSIONAL INTEGER ARRAY, 184
SPCAST: SERIAL PRINTER FROM CASSETTE, 188

SQROOT: SQUARE ROOT, 191

SROARR: SORT ONE-DIMENSIONAL INTEGER ARRAY, 193
SSNCHR: SEARCH STRING FOR N CHARACTERS, 196
SSOCHR: SEARCH STRING FOR ONE CHARACTER, 200
SSTCHR: SEARCH STRING FOR TWO CHARACTERS, 203
SXCASS: WRITE/READ SCREEN CONTENTS TO CASSETTE, 206
TIMEDL: TIME DELAY, 208

TONOUT: TONE ROUTINE, 210

WCRECD: WRITE RECORD TO CASSETTE, 213

WRDSEC: WRITE DISK SECTOR, 216

I l I APPENDICES
Appendix 1:
Z-80 Instruction Set, 223

Appendix 2:
Decimal/Hexadecimal Conversion, 231

I

Preface

Radio Shack TRS-80 Model 1, 11, and lll assembly language is a powerful way
to program. Assembly-language programs may run as much as 300 times faster
than their BASIC counterparts, turning a boring BASIC game into a high-
speed video chase or a day-long sort into minutes. Unfortunately, assembly lan-
guage is also difficult to learn and, once learned, a tedious language in which
to program.

What is the solution in using assembly language on the Radio Shack com-
puters? This book offers one solution—precanned, debugged, and documented
assembly-language subroutines for the TRS-80 computers, In it, you'll find sub-
routines that will speed up your graphics by a factor of 300, subroutines that
enable you to perform high-speed sorts, general-purpose subroutines that will
allow you to do number base conversions and square roots, and special utility
subroutines, such as subroutines to “‘dump’’ the video screen to cassette or to
read a disk sector.

There are 65 of these assembly-language subroutines. The subroutines may be
easily interfaced to BASIC programs—they are specifically geared to BASIC
interfacing, as a matter of fact. Each subroutine is relocatable; the assembly-
language code is such that the subroutine may be placed anywhere in memory
without reassembling the subroutine. To make this task very easy, we've in-
cluded the equivalent decimal code after the listing of each subroutine. It's
simply a matter of taking the dozen, or two dozen, or three dozen decimal
values and embedding them in BASIC programs as DATA statement values or
strings. From that point on, the subroutine exists as part of the BASIC program.

Of course, you may not want to always use the subroutines in BASIC programs.
You may want to CALL them in your own assembly-language code. We've also
made it easy for you to do this. Each set of code can be called as a separate
assembly-language module. You may want to reassemble and modify the code,
but, if not, the code is usable as it stands, and it is completely relocatable.

Although the subroutines are slanted toward the TRS-80 Model 1 and I, many
of them can also be used on the TRS-80 Model I1; all three computers, of course,
use the Z-80 microprocessor.

The first chapter of this book, ““A Brief Look at TRS-80 Assembly-Language
Programming,” contains introductory material on Z-80 assembiy-language pro-
gramming, to make you familiar with some of the technigues. It's not abso-
lutely necessary that you read this chapter. The next chapter, ’Using Assembly
Language on the TRS-80,” shows you how assembly language may be used in
either a BASIC or stand-alone environment. This chapter is not an absolute
requirement, either, but you may want to study it further when you start using
the subroutines and embedding them in BASIC programs or running them as
separate entities.

The bulk of the book consists of 65 separate assembly-language subroutines.
Each subroutine consists of a description, the subroutine listing, and equivalent
decimal values for the ““machine code’” of the subroutine.

The description gives a brief idea of what the subroutine accomplishes and
shows the input and output parameters that are used to pass information back
and forth between the subroutine and the calling program.

The description also includes a complete explanation of the algorithm used in
the subroutine—how the subroutine accomplishes the function in Z-80 code.

Another element in the description is a sample call to the subroutine using
actual input and output values. The sample calls use a “TRS-80 Assembly-
Language Subroutines Exerciser” program, TALSEX for short. TALSEX is a
Model I/11l Disk BASIC program that was used to exercise the subroutines; it is
fully described in Chapter 2 and is used in the descriptions to conveniently
show the action of each subroutine.

Notes pertaining to the use of the subroutine are also included in the descrip-
tion along with a “‘checksum’” value that can be used to verify that you have
entered the program data correctly.

The assembly-language listing is the actual listing from the Z-80 assembler. It
shows every instruction used in the subroutine and also is heavily ‘‘com-

mented.”” Because of this, the listing may be used in self-study on assembly-
tanguage programming and techniques.

The last portion of each subroutine is a complete set of decimal values to be
used for inclusion in a BASIC program in DATA statements or the like. We've
done the conversion from hexadecimal to BASIC for you, to minimize operator
error. These values, when added together by the CHKSUM subroutine, should
correspond to the Checksum value in the description, giving you a way to
check the validity of the data in your program.

An appendix on Z-80 instructions and a second on decimal/hexadecimal con-
version complete the book.

We hope that you'll find these subroutines useful in BASIC, in assembly-
language programs, and in self-study of Z-80 assembly language on the
TRS-80s.

To John Foster and ““ASHEE”

R TRS-80 ASSEMBLY-
1 LANGUAGE

3 PROGRAMMING

g TECHNIQUES

A Brief Look at TRS-80
Assembly-Language
Programming

The Z-80 Microprocessor

In this chapter we'll discuss some rudimentary assembly-language concepts. It
isn’t necessary that you understand everything in this chapter, or even that you
read the chapter to use the subroutines in this book. If you choose to do so,
however, you'll get a belter idea of how assembly language is done.

The Z-80 microprocessor is used in the TRS-80 Model I, 11, and Il microcom-
puters. It is a third-generation microprocessor that is truly a “computer on a
chip.” When we speak about TRS-80 assembly-language programming we're
really discussing the built-in instruction set of the Z-80 microprocessor.

Unlike BASIC statement execution, the Z-80 performs instructions at the most
rudimentary level. Typical instructions would add two 8-bit numbers, subtract
two 8-bit numbers, load a CPU register with the contents of a memory location,
or store a CPU register into a memory location.

Z-80 Registers

All assembly-language programs are built up of a set of Z-80 instructions in
sequence, which are executed by the Z-80. These instructions are held in mem-
ory in binary and may be one to four bytes long. The binary values for the
instructions are called machine language, because this is the form that the Z-80
computing machine recognizes,

Before we look at some of the Z-80 instructions, let's take a further look at the
Z-80 architecture. Figure 1-1 shows the internal registers available to the ma-
chine-language or assembly-language programmer. We won't show some of
the other registers involved in internal microprocessor operations, such as
memory access or timing.

8 BITS
i -
B~
B
c ~
D ~ >
£ A
H =
GENERAL W, ONLY ONE SET,
PURPOSE 1 ; CAN BE ACTIVE
REGISTERS AN AT ONE TIME
P4
B ~ -—‘
c # :
[
D >
E &
H™
L
X INDEX REGISTER
Y INDEX REGISTER
PC PROGRAM COUNTER
SP STACK POINTER
I | R INTERRUPT, REFRESH
REGISTERS
16 BITS

) DENOTES REGISTER PAIRS
FIGURE 1-1 Z-80 registers for use in assembly language.
The Z-80 registers are fast-access memory locations located in the Z-80. The A,

B, C, D, E, H, and L registers are general-purpose 8-bit registers in the Z-80.
They are used to hold temporary results and for processing.

The A register is the main accumulator register. It holds one operand for adds,
subtracts, and other arithmetic operations while the other operand may come

from memory or another register. The other registers are used as auxiliary regis-
ters, with the exception of H and L.

H and L, along with B and C and D and F, can be grouped together as register
pairs of 16 bits. When this is done, the registers act as three 16-bit wide registers
called ML, BC, and DE. The HL register pair {often called the HL register) is a
kind of 16-bit accumulator similar to the A register. It can be used for 16-bit
adds, subtracts, and other operations.

The IX and 1Y registers are 16-bit registers that can be used as index registers, or
pointers to memory locations. We'll discuss these a little [ater on, when we talk
about 7Z-80 addressing modes.

The PC, or program counter, register is the main control register not only in the
Z-80 microprocessor, but in the whole TR5-80 system. It controls execution of
all programs, assembly-language or BASIC. After all, BASIC is simply an assem-
bly-language program that operates on a series of higher-level statements. The
PC is 16 bits wide and points to the first byte of the next instruction in memory to
be executed. As an assembly-language program executes, the PC is constantly
being updated by one to point to the next byte of the instruction or is loaded
with a jump address to enable a jump to a new location in memory.

The SP, or stack pointer, register, is a 16-bit register that points to the stack area.
The stack area is a special section of RAM memary that is set aside to hold
return addresses from CALL instructions, temporary results, or interrupt loca-
tions. This stack area, typically only one hundred bytes long, builds downward
as the stack is used. Every time an assembly-language CALL instruction (similar
to a BASIC GOSUB) is executed, the return address from the PC register is
pushed onto the stack. A subsequent RET{urn) instruction pops the stack and
reloads the PC with the return address.

The R and | registers can be largely ignored by the programmer. (The R register
is used in one subroutine in this book.) The I register is used for a special
interrupt mode in other Z-80 systems, and R is used for refresh of the dynamic
memories in the TRS-80 systems.

We've given a thumbnail sketch of all of the Z-80 registers except one, the F
register. The F register is a collection of the eight flags shown in figure 1-2.
These flags are set by the action of assembly-language instructions. The Z flag,
for example, stands for Z{ero) flag. The Zero flag is set whenever the result of
certain adds, subtracts, or other types of arithmetic operations is zero. The
other flags are set for similar conditions. The flags are used in conditional jump
instructions to alter the flow of an assembly-language program. The program
could jump to a new set of codes if the result of an add was a negative number,
for example. The A and F registers are treated together as one 16-bit register
pair for storage in the stack and other operations.

The seven general-purpose registers and the flags register are duplicated in the
Z-80. The second set, called the prime set, is available as additional register
storage. One or the other set may be selected by two instructions.

Z-80 Instructions

FIGURE 1-2 F registers. — PARITY (P)/OVERFLOW (V) FLAG.
RECORDS “ODD/EVENESS"” OR
OVERFLOW CONDITIONS
SIGN FLAG. SET IF ADD SUBT 3 DS
RESULT IS NEGATIVE, ADD/SUBTBRAA?:? T\JLSEE.EECOR

RESET IF RESULT
1S ZERO OR POSITIVE.

METIC AND OTHER
OPERATIONS

CARRY FLAG. HOLDS
r “CARRY"” FROM ARITH-

S z X H X P/ N c

X=NOT USED

* =NOT GENERALLY ACCESSIBLE
TO PROGRAMMER

ZERO FLAG, SET
IF RESULT OF
OPERATION 1S ZEROQ.

HALF CARRY FLAG. —
HOLDS CARRY FROM
BIT 3.7

The instruction repertoire of the Z-80 contains well over 700 unique instruc-
tions. Fortunately, many of these instructions can be grouped together, and the
actual number of similar groups is much easier to manage.

Loads generally load the contents of an 8-bit memory location, CPU register, or
immediate value in the instruction itself into a CPU register. A second class of
loads store the contents of an 8-bit CPU register into memory. Loads may also
be done on 16-bits of data in a register pair, loading or storing two bytes of data.
There are a great number of load-type instructions in the Z-80. A foad instruc-
tion in the Z-80 is denoted by an “'LD,” and you will see many, many loads in
every program. A load is really just a way of transferring data.

Arithmetic instructions add or subtract 8 bits of data with the A register, or 16
bits of data with the HL, IX, or 1Y registers. These are simply adds and subtracts
of binary numbers, sometimes with the state of the Carry flag (a one or a zero)
being added into the result. Adds and subtracts are denoted by ADD, ADC,

SUB, or SBC. A special type of subtract, the compare (CP), compares two 8-bit
values.

A number of instructions related to arithmetic instructions allow adding (INCre-

menting) or subtracting (DECrementing) one count from the contents of a CPU
register or memory location.

Logical instructions perform ANDs, ORs, or exclusive ORs on operands in the
A register. The ANDs and ORs are identical to BASIC ANDs and ORs, except
that they operate with 8 bits of data, while the XOR is similar to an OR except
that two one bits produce a zero bit in the result.

Shift instructions shift data in any of the 8-bit CPU registers one. bit position
right or left. There are several different types of shifts, including the rotate,
which rotates the data out of the register and into the other end, the logical

Z-80 Addressing Modes

shift, which shifts data out with zeroes filling vacated bit positions, and the
arithmetic shift, which sign extends the value in the register. Mnemonics for
shifts are RLCA, RLA, RRCA, RRA, RLC, RL, RRC, RR, SLA, SRA, SRL, RLD, and
RRD.

jumps, CALLs, and return instructions handle alterations of the program path
similar to BASIC GOTOs, IF . .. THEN, GOSUBs, and RETURNSs. There are
two types of jumps, conditional and unconditional. Unconditional jumps al-
ways jump to a new location, while a conditional jump jumps if the condition, -
such as Zero Flag=1, is present. CALLs are identical to BASIC GOSUBs. They
call an assembly-language subroutine and save the return point in the program
stack. A RET(urn) retrieves the return address from the stack and returns to the
instruction after the CALL. CALLs and RETurns may also be conditional or
unconditional. Jumps are denoted by JP or JR, CALLs by CALL, and RETumns by
RET.

A special type of jump is used in conjunction with a loop count in the B
register. The DJNZ instruction {Decrement and Jump if Not Zero) decrements
the count in B by one and then jumps back to the beginning of a loop if the
count is not zero.

Bit manipulation instructions aliow operations on a bit level. Data in a CPU
register or in memory can be referenced by the bit address, 7 through 0, and the
applicable bit can be set, reset, or tested. Bit manipulation instructions are
denoted by SET, RES, or BIT.

“Black’” instructions allow operations on many bytes of data in a block. Blocks
of data may be searched (CPI, CPD, CPIR, CPDR) or moved (LDI, LDD, LDIR,
LDDR) using these instructions.

Input/output instructions handle operations between CPU registers and an ex-
ternal input/output device, such as cassette tape. The TRS-80s allow both
“memory-mapped’” and “¥O mapped”’ input/output. This means that an
input/output device may look either like another memory location (memory
mapped) or as a special device addressed through an input/output port. When
the system I/O ports are used, input is normally done with an IN instruction and
output with an OUT instruction.

Stack instructions allow data in CPU register pairs; including the AF register
pair, to be temporarily stored in the system stack. PUSH pushes a single register
pair to the stack and POP retrieves the data into the original register pair or
another.

We haven’t mentioned all of the Z-80 instructions, but the above list would
encompass most of the instructions used in common Z-80 assembly-language
code. Special instructions are sometimes described in the documentation on
the subroutines, and there’s always reference material in Zilog or Radio Shack
publications that describe the Z-80 instructions in great detail.

There are a number of different ways to access data with the Z-80 instruction
set. These are called addressing modes.

One type of addressing mode allows operations between CPU registers. You
can see that it's convenient to add two numbers located in two CPU registers,
for example. A complete instruction using this type of addressing mode might
be “ADD A,B,” which adds the contents of the B register to the contents of the
Alccumutator) register and puts the result into the A register. Another sample of
this type of instruction is “INC DE,” which adds one to the contents of the DE
register pair and puts the result back into the DE register pair.

Register addressing is normally used for arithmetic and logical instructions,
shifts, and load instructions.

Load and store instructions must transfer data between CPU registers and mem-
ory. One addressing mode that implements this in load-type instructions is the
direct addressing mode. This mode allows a CPU register to be loaded or stored
directly to a RAM memory address specified in the instruction. A “LD
A,(3CO0H),”" for example, would load the contents of the first video display
memory location into the A register. Similarly, a “LD (3FFFH),A” would store
the contents of A into the last location of the video display memory. Not only 8
bits of data can be transferred. Sixteen-bit operations are possible with instruc-
tions such as LD (3CO0H), HL,” which stores the contents of the HL register
pair into video memory locations 3C00H (L) and 3COTH (H).

Direct addressing is also used in some types of jump and CALL instructions. In
this case the address specified in the instruction is the address to which the
instruction will jump or which the instruction will call. The instruction “CALL
212H,"" for example, CALLs the ROM subroutine located at memory location
212H. The 212H is a part of the instruction as a direct address.

The immediate addressing mode is used to load a data value into either an 8-bit
CPU register or into a 16-bit register pair. The data value is usually a constant
value when loaded into the 8-bit register, but is often an address value when
loaded into a 16-bit register pair. The term “immediate’’ means that the data is
present as part of the instruction itseli. The advantage to this mode is that of
speed and convenience. The immediate mode is faster than accessing a data
value from a memory location and one does not have to keep track of a large
number of constants in memory. The following code loads the value of 41H
(ASCH “A”) into the A register, and the address 3CO0H into the HL register pair:

LD A41H Jload “A' into A
LD HL,3C00H ;load start video memory to HL

Notice that when immediate addressing is used, the data is not surrounded by
parentheses, as it is in direct addressing, where the data represents a memory
address, The exception to this is in the jump or CALL instructions where the
memory address for the jump or CALL does not have parentheses.

Anacther type of memory reference addressing mode uses a register pair as a
pointer to a location in memory. The most commonly used pointer is the HL
register pair. In this type of addressing, the HL, BC, or DE register is preloaded
(by another instruction) with the address of the memory location to be used in

the ““register indirect’ instruction. An example of this would be the two instruc-
tions

LD HL,3C0O0H ;load video memory start
LD {HL),A ;store into video start

The first instruction loads the memory address of 3CO0H (the first byte of the
video memory) into the HL register pair. The next instruction stores the con-
tents of the A register by a “‘register indirect’” store, using the memory address
in the HL register pair.

Another type of addressing mode that is similar in concept to that of using the
register pairs as pointers is the indexed addressing mode. In this mode, the IX or
IY index register is used as a pointer to a memory location. The index register
by itself, however, does not represent the complete address of the memory
location. The effective address, the one used in the instruction, is formed by
adding the contents of the 1Y or X index register together with a displacement
address in the indexed instruction. The displacement is a “‘signed’” binary value
of 8 bits that may be a positive or negative quantity. The effective address,
therefore, is larger or smaller than the address in the index register. The indexed
addressing mode is commonly used where the index register points to the
beginning or end of a table or list of data; the displacement in the instruction
can then be used to reference memory locations close to the address in the
index register.

Suppose, for example, we had a table of data at memory location 8000H. The
following code would load 8000H + 5 into the A register, and 8000H + 10
into the B register:

LD 1Y,8000H ; load index register with 8000H
LD ALY4+5) : load 8005H contents into A
LD B,(iY+10) ; load 800AH contents into B

One important addressing mode for our purposes is the relative addressing
made. In this made, the memory address is not present in the instruction, as it
was for the jump or CALL, but is relative to the location of the instruction itself.
A displacement value in the instruction is used by the CPU, along with the
contents of the program counter, to figure out the effective address for the
jump. For example, if we looked in the machine-language code for a *’DJNZ”
instruction, we would not see a two-byte memory address, but a one-byte
displacement value. If the jump in the DJNZ was to be made back to ocation
8000H, and the DJNZ was at location 800AH, the displacement value would be
OF4H, a negative OCH or twelve (the program counter points to two more than
the start of the DJNZ instruction).

Relative addressing is important for our purposes because it makes relocatable
code possible—assembly-language code that can be moved around anywhere
in memory and still execute properly. The key to relocatability is to avoid direct
addresses within instructions, and relative jumps such as DJNZ and JRs are
used to advantage.

Bit addressing is another type of addressing mode. This mode is used only for
the bit-processing instructions. The bit position within a byte is referenced in
this mode, along with one of the other addressing modes we’ve mentioned

above. To set bit6 in the memory location pointed to by the HL register pair, for
example, we'd have

BIT 6,(HL) ; set bit 6 in memory location

Bit positions in 8-bit bytes are numbered from left to right, bit 7 through bit 0.
Bit positions in 16-bit ““words’” are numbered from left to right also, bit 15

through bit 0. The bit position number represents the power of two associated
with the bit.

There are no hard and fast rules about which addressing type to use. Many
times the choice is dictated by the instruction—not all addressing types are
permitted with every instruction.

Machine Code and Assembly Language

We talked briefly about machine code, but haven't really made a distinction
between machine and assembly code. The difference can be seen quite easily
by reference to a typical listing in this book.

Figure 1-3 shows a short listing for CHKSUM. The listing is divided into several
parts. Starting from the left, we have the memory locations, in hexadecimal, for
which the subroutine was assembled. The value for each line shows where the
instruction on the line will reside: The code always starts at location 7FO0OH. In
the case of subroutines in this book, these locations are meaningless, as the
code can be used not only at locations 7FOOH, but 8000H, 888FH, 9013H, or
any place in memory the user cares to put them. (More on that in Chapter 2.)

The next column is the actual machine code for the instruction in hexadecimal.
Two hexadecimal digits (0 through 9, A through F) make up one byte, so you
can see that the machine code is from two to six hexadecimal characters or one
to three bytes long. The maximum length of an instruction is four bytes, or eight
hexadecimal digits. Note that the memory location for the instruction in the
first column reflects the size of the previous instruction. If an instruction is three

bytes long and is located at 7FOBH, for example, the next memory location
will be three bytes greater, or 7FOEH.

The third column shows the editing line number for the instruction. The editing
line numbers are used only during the editing process and are never used
during program loading or execution.

The fourth, fifth, sixth, and seventh columns represent the assembly-language
code for the instructions. Sometimes this portion is called the “source image,”’
because this is the portion that appears in the source file that is assembled.

The fifth column is the mnemonic for the instruction operation code, or op-
code. We've been using mnemonics all along, They are just a shorthand way of
writing down the instruction in convenient and recognizable form. The opera-

tion code describes the primary function of the instruction, as, for example, an
“ADD.,”

10

FIGURE 1-3 Partial CHKSUM listing, SOURCE IMAGE

AN

7F0@ 2160 ORG 7FQaH @522
QDT LD 5553 H TR NI NI I J K236 0 I I 3360696 96 0260 25
Q@120 ;% CHECKSUM MEMORY. CHECKSUMS A BLOCK OF MEMORY. *
BA13A] 3% INPUT: HL=>PARAMETER BLOCK *
A1 48| 5% FARAM+@: +1=8TARTING ADDRESS OF BLOCK *
PALSA| s+ PARAM+Zy +3=8# OF BYTES IN BLOCK *
DB16D) 1= QUTPUT tHL=ADDITIVE CHECKSUM *
DDLT7@] 3000 H I B W AT T ARSI NI 0336363636 36 36 2606 60696 0
AD186]

TFBR|Fs 2190 |CHKSUM | [PUSH AF $SAVE REGISTERS

TFB1([C5 ral g [PUSH BRC

TF@z|IDS baz1d PUSH DE

TF@3ibDES [ra] 2 et v PUSH IX

7FR5|(CD7F@3A pEz23a Call fATFH s*%%GQET PB LOC™ N#e%

7F@aB||ES BBz40 PUSH ML STRANSFER HL TO IX

7F@9||DDE1 Qaz50 POP IX

7FOB ||DD&HERZ n2zsd LD by {IX+2) sGET # OF BYTES

7FQOE ([DD&&6A3 ar7e LD Ha ¢ IX+3)

7F11([DD5EQG Qz80 ..D Es {IX+@) ;GET STARTING ADDRESS

7F14||DD56@1 Qaz7d LI De (IX+1)

TF17 (D5 20300 PUSH DE 5TRANSFER TO IX

7F1g8|[DbDEX Bea31d FOP IX

7F1A[|@12100 8320 LD BCs1 sDECREMENT VALUE

7F1D(|AF 2330 XOR A 3CLEAR CHECKSUM

7F1E||DDB6RA DB34@[[CHKA1Y | |ADD A (T X+ ; CHECKSUM

7FZ1||DDZ3 AR350 INC iX iBUMP ADDRESS PNTR

7TFZ3)IB7 20360 OR Y ;s CLLEAR CARRY

TF24|[ED42 QR37a SBC HLsBC sDECREMENT COUNT

TF26||120F & oa380 JR MNZsCHRKAL1D GO IF NOT DONE

TFZ8(|&F 2390 LD LA SMOVE CHECKSUM TO HL

TFZ7 || 26002 PB4 LD H+@

7FZB|DDEL DR41@ POP X SRESTORE REGISTERS

TFZDID1 [alns L] POP DE

7FZE||C1 RR2430 POP 2C

TF2F|F 1 Q@440 POP AF

7F30||C37A0A BL45@ JP QATAH ;¥ RETURN STATUS*#x

7FI3|ECT D460 RET SNON—-BASIC RETURN

ultlnir} B470 END

QEdeE, TOT ERRORS \

OP CODE OPERANDS COMMENTS
MEMORY MACHINE EDITING INSTRUCTION
LOCATIONS CODE LINE # LABEL

The sixth column is the operands column. The column is used to show which
operands will take part in the instruction. The instruction at CHK010, for exam-
ple, ADDs the location pointed to by the 1X index register plus a displacement
of 0 to the contents of the A register. The formats for the operands are relatively
fixed and can be found in other reference materials for Z-80 assembly lan-

guage.

The fourth column is the fabel of the instruction. This is an optional column,
but really delineates the difference between machine language and symbolic
assembly language. The label is used by the assembler program in lieu of a
memory address. The instruction at 7F26H in figure 1-3, for example, refers not
to a jump address at 7F1EH, but to a fabel of “CHK010.” The assembler trans-
lated the label reference to the proper address in the instruction, in this case, a
relative displacement.

11

The last column on the listing is the comments column. This column contains
descriptive text about the use of the instruction. Note that we've indented the
comments column to show foops. Each level of loops is indented two spaces,
and there may be as many as three levels of loops. Also in the comments
column, we’ve marked certain instructions with asterisks. These represent in-
structions which may be ignored under “stand-alone’ conditions when the
subroutine is not used with BASIC. This is explained fully in Chapter 2.

Additional Z-80 Assembly-Language Materials

As the title of this chapter indicated, we've briefly discussed Z-80 assembly
language. If you would like a more in-depth discussion of instruction formats,
addressing modes, and assembly-language techniques, we suggest you obtairi
the reference manual for the Zilog Z-80 microprocessor, or refer to the instruc-
tion manual for the Radio Shack Editor/Assembler, which reproduces much of
the same material. The author's Radio Shack book, “TRS-80 Assembly-
Language Programming,” is also a good place to start.

In the next chapter we'll discuss some of the general techniques of using as-

sembly language, and specific details about the use of the subroutines in this
book.

12

Using Assembly
Language on the TRS-80s

In this chapter we’ll look at some of the techniques involved in using assembly
language on the TRS-80 Models |, 11, and ill, especially in regard to interfacing
the machine-language representation of assembly-language code with BASIC
programs.

Using the Model | and Ill Assemblers

There are a rumber of editor/assemblers for the Model | and Il computers, and
they are very similar. All are modifications of the basic Radio Shack cassette-
based Editor/Assembler. The following description of the assembly process will
use the Radio Shack Editor/Assembler as a point of reference; material on disk
files will refer to the various modifications available for the Radio Shack Editor/
Assembler to enable it to read and write source and object files on-disk.

This material is offered in case you wish to assemble some of the subroutines in

13

the book and modify them for your own use; let's stress once again that you
can use the subroutines in the book without ever touching an assembler.

Editing the Source File

The first step in assembly is to edit the source file. Let's use another short
subroutine as an example. The SQROOT subroutine is shown in figure 2-1. To
start the edit, the assembler is loaded from cassette or disk. The SYSTEM com-

mand is used to load from cassette. Loading from disk simply involves entering
“EDTASM” followed by ENTER.

ORG 7FQdH s@azz
ARttt SR a SRS R R S 2 s S 2 S LT R E T A g gy
i* SQUARE ROOT. CALCULATES INTEGER PORTION OF SQUARE *
% ROOT OF A GIVEN NUMBER. : *
R INPUT: HL=NUMBER *
i QUTPUTsHL=INTEGER PORTION OF SGUARE RT OF NUMBER »
R RS R S e I L T R S I R S I T R ey

SQROOT PUSH Bc $SAVE REGISTERS
PUSH DE
CALL DA7FH RAEGET NUMBER#**%
LD By @OFFH SINITIALIZE RESULT
LD DEs -1 $FIRST ODD SUBTRAHEND
SAR@1I@ INC B $ INCREMENT RESULT COUNT
ADD Hi.+ DE sSUBTRACT ODD NUMBER
DEC DE $FIND NEXT ODD NUMBER
DEC DE
JR C+GQRO10 s CONTINUE IF NOT MINUS
LD L:B $GET RESULT
LD Hy & TNOW TN HL
pap DE $RESTORE REGISTERS
PoOP BC
JP AATAH % RETURN ARGUMENT % %%
RET . INON-BASIC HETURN

FIGURE 2-1 Sample Source file for edit.

The “I' command is used to enter a new file. The “I'' command is the insert
command, and is normally used to insert lines hetween existing lines in an edit
file. In this case, however, there are no existing lines and the “/I"’ command
starts a new set of lines with the starting number 100 and line increment of 10.

The “source image’’ text of the subroutine can now be entered. Each line is
typed in its entirety and an ENTER is used to terminate a line. The first several
lines look like this:

#]

00100 ORG 7FOOH ;0522

00110 SRRk e o ok ok o ok o ok sk oot ok ok e e ok s b e st o e e oo e ok ok ok ke ol sk ok oo s sk sk

00120 7+ SQUARE ROOT. CALCULATES

The left arrow key can be used to backspace to correct errors in entry. Other
editing features are very similar to the BASIC line editor—such things as “/L" for
line, “S" for search, and so forth. After the entire text has been entered, the
BREAK is pressed. This terminates the insert mode and displays the greater than
prompt.

14

The source text is now in memory. The source text can be written out to cas-
sette by the command ““W SQROOT.” This command produces a source file
with the name SQROOT. A subsequent ‘L SQROOT" enables the source file
to be read in from cassette as a text file.

The source text can be written out to disk as a source file by the command
“WD SQROOT/SRC” ("W D=SQROOT/SRC” in some versions). If this is
done, the text will be transferred to disk as a source file and can be read in for
further editing at any time by a “LD SQROOT/SRC” (LD=SQROOT/SRC).

After the source file has been created on disk or cassette, it can be reloaded as
a check on its validity, or you can simply work with the text in memory.

Assembling the Source File

To assemble the SQROOQT subroutine, type “A/NO/WENS” followed by
ENTER. The source file will now assemble and the listing will be displayed on
the screen, If there are any errors in the text, the Editor/Assembler will stop and
any key may be pressed to restart the assembly. At the end of the listing you’ll
see a message that looks like this:

00000 TOTAL ERRORS,

indicating that there were no assembly errors. The /X" entries were “‘switch
options’”” calling for “No Object,”” “Wait on Error,”” and “‘No Symbol Table
Listing.”

What has been produced up to this point? The machine code was generated,
but it was simply part of the listing that was rapidly displayed on the screen. All
we've done to this point was to assemble and display the listing on the screen
to check for errors. If everything is all right, we can proceed. Otherwise, the
errors in the source file can be corrected, another assembly dene, and the
process repeated until we get a “clean” assembly. Many errors will relate to
instruction format, and these can be corrected by reference to the Radio Shack
Editor/Assembler manual. There are also slight quirks in some of the assembler
versions—such things as “(IY + 0} not assembling and “(IY)"" assembling prop-
erly. We can’t detail all of these here. It's a shame they exist; try to work around
them!

When we have a clean assembly, we can create an object file and save it on
disk. The object file is really a machine-language version of the program, with a
““header’” for the disk file and other data pertinent to the load. Most of the
content on the disk file will be the actual machine-language code that you see
on the listing. To create the object file, assemble without the *‘No Object”
switch, which is the default mode of the assembly. You may also assemble to
line printer, while you're at it:

*A/LP/NS

The Editor/Assembler version may ask for a *“destination’’ (disk or tape) and for
a file name before the assembly. As we've used SQROOT/SRC for the source

15

Using the Model Il Assembler

file, we might use SQROOT/OBJ for object. The assembly will proceed as
before, except that the object file will be written to cassette or disk,

Loading the Object File

At this point we have both the source file and object file on cassette or disk. The
source file is saved for possible modification. The object file can now be
loaded and executed. To load the object file from cassette, the SYSTEM mode is
used once again to load the file named at assembly time.

To load the object file from disk, we must first get back to the Disk Operating
System, and then use the LOAD command:

*B

DOS READY

LOAD SQROOT/GB
DOS READY

The object file is located by the LOAD command but it is not executed., It is just
as well, as we were not set up properly to execute the SQROOT program.
Where is SQROOT loaded? The ORG command establishes the starting point
for the program, which in all cases in this book is 7FOOH. The ORG command
can be modified to make the load point compatible with your system; just put
in a new argument in place of 7FOOH. If you want a square root subroutine at
OFO00H in a 48K Model |, for example, reassemble with “ORG OFO00H."’ It may
also be necessary to protect the memory area in which the object program was
loaded by responding with one less than the ORG point when BASIC asks the
question “MEMORY SIZE?"’.

Now that we have the program loaded, what do we do with it? We'll answer
that question in the last part of the chapter in which we’ll show YOU an easier

way to work with the subroutines in this book when they are interfaced to
BASIC.

The edit, assembly, and load process is similar for the Model 11, The Model I,
however, uses the Radio Shack Disk Assembler, which is a more sophisticated
editor/assembler. There is also a version of the Radio Shack Disk Assembler
available for the Model | and II. Use of this assembler is beyond the scope of
this book. The author’s Radio Shack book “More TRS-80 Assembly-Language
Programming,”” goes into some detail on the Disk Assembler,

Keying In the Object Code Directly

The assembly process can be bypassed completely by working with the object
code alone and T-BUG (Radio Shack’s Debug package for cassette-based Sys-
tems) or DEBUG (Radio Shack’s Disk Debug Package). A DEBUG utility is also
present on the Model Il system. The result can be saved on cassette or as a disk
“core image” file. Let's see how this can be done by using the DEBUG program
on a disk-based system,

16

The modify memory command M in DEBUG can be used to enter the data
one byte at a time. The format of the M command is “MHHHH space,” where
HHHH is the hexadecimal address for the start of the memory area. Choose
any memory area that is nonconflicting with TRSDQOS or BASIC and in which
you'd like the subroutine to reside. Now go to the listing and key in each byte
in hexadecimal, iollowing each byte with a space, and the last byte with an
ENTER. The process is shown in figure 2-2, where a portion of SQROOT has
been keyed into the memory area starting at 9000H.

FIGURE 2-2 Keying in object code using DEBUG.

AF = SE BS mmmel-w—
BC = @A 5% =» B7 TR 5% @9 21 SE B9 ES CD 55 99 1B 1A 4F 8 21
DE = 91 B4 => 1A 40 45 4D 4F 52 59 20 53 4% A 45 00 52 41 44
HL = BB S4 =2 91 91 5B 1B @R 1A 98 18 O3 15 20 29 OB 7S Bi 20
AF = FF FF SZ1H1PHC ~
BC'= 51 98 => C4 OF 51 19 DE C1 ©3 ED SB 60 40 13 €S AF ED 52
DE'= 82 92 =i~
ML's S B2 = 06 B2 FF CB 83 F7 18 32 E7 28 32 01 C7 43 94 F7
IM o= 4B 15 => @1 3C 4% 20 30 40 4B 45 07 58 B4 I1 IE 20 49 4F
IV = 08 08 = F3 AF C3 74 @6 (D 96 48 03 O 49 Ei E3 CI 5F 26
EF = a1l CR 52 G4 03 4R DD B3 15 48 FF FF 18 43 3F 3F 4C 60
FCo= 28 68 BE 79 B1 2@ FE 09 31 @@ BE 3F EC 37 30 FE @2 D2
aupe =» [0S DN Ch TF OA BE| 2O 72 65 TH 65 61 T4 65 64 28
D006~ SELE =r TS BE T4 6D ECAZE TT S5 2B &7 65 74 20 61 20 22
fo-FF BG2B =: £3 &0 65 81 6E|2D 20 &1 73 7R 65 £D €2 eh 79 28
\\9@3@ =% 2@ 40 61 6E FH|E0 €3 72 TZ EF T2 T3 20 77 63 6L
SIX BYTES KEYED IN

NEXT BYTE FOR 9@@6H AT 900@H-9005H

The machine code values shown on the listings do not have to be modified
unless the subroutine will not be used in conjunction with BASIC. In this case,
substitute the 00H code {a “NOP” instruction) for each byte of the starred
instructions. The hexadecimal machine code is relocatable and can be used
anywhere in memory.

After the data has been keyed in, perform a *'G66" to reboot TRSDOS and
dump the memory area by a "DUMP’~ command as follows:

DUMP (START= X'5555" ,END = X"EEEE")

where $5SS is the starting address in hexadecimal and EEEE is the ending ad-
dress in hexadecimal.

The memory image will now be written out as a “core image module” with
the file extension */CIM.”" It can be loaded by the TRSDOS LOAD command in
the same fashion as the assembly object file.

Using Assembly Language with Model [and il BASIC

There are two general approaches to using assembly-language code with
BASIC. The first of these uses two modules, an object code module and a
BASIC program module loaded at separate times. The second method embeds
the machine-language code in BASIC statements which then become part of
the BASIC program.

17

The “Two-Module” Approach

Let’s look at the “two module” approach first. In this approach, the object
program from assembly or debug dump is loaded first with TRSDOS. Then the
BASIC interpreter is loaded and the memory area in which the object program
was loaded is protected with the “MEMORY SIZE? "/ response. Now the BASIC
program can call the assembly-language subroutine at will.

How the BASIC program calls the machine code is slightly different between
Level Il BASIC and Disk BASIC. Level Il requires that the address of the machine
code be put into locations 16526 and 16527. All addresses in the Z-80 are
stored, least significant byte followed by most significant byte; so a typical
sequence to establish the call address for Level Il BASIC might be as follows for
a machine-language program at 7FQ0H:

100 POKE 16526,0 ‘least significant byte
110 POKE 16527,127 ‘most significant byte

In Disk BASIC on the Model | or IlI, the call address is established in simpler
fashion. The address of the machine-language subroutine is assigned a number
from 0 to 9. A DEFUSR statement is then used to establish the address:

100 DEFUSRO= &H7F)0

where &H is the prefix for hexadecimal.

Once the address is established, the machine-language subroutine can be
called by a BASIC USR statement of the form A= USRM)} for Level Il or
A= USRn(M) for Disk BASIC. The n in the Disk BASIC version stands for the id
number from O through 9. The M is an integer argument that can be automati-
cally passed to the machine-language subroutine. The A is an integer argument
that is passed back from the machine-language subroutine. Either or both of
these arguments can be “dummies’ if no arguments need to be passed.

To see how the complete sequence works, let’s call the SQROOT subroutine.
Assume that it has been loaded at 7FOOH and BASIC has protected memory by
a "MEMORY SIZE? 32511.” We see from the listing that the SQROOT subrou-
tine takes a 16-bit number and computes the integer square root, passing the
argument back in HL. The following code would set up the call address in Leve!
Il BASIC, make the call, and return the result for printing:

100 POKE 16526,0 "least significant byte

110 POKE 16527,127 ‘'most significant byte

120 INPUT X% ‘input square

130 Y= USR(X%) ‘call machine lang SQROOT
140 PRINT X%,Y ‘print square, root

- The sequence for Disk BASIC would be similar:

100 DEFUSRO= &H7F0O0 ‘address
110 INPUT W% "input square

18

! ' ¢ v .
- . H N . . 5 | \ i .

120 Z=USRO(W %) ‘call machine lang SQROOT
130 PRINT Wo%,7Z ‘print square, root

In both cases, the argument passed to the SQROOT subroutine was the integer
variable in the USR call. The argument passed back was the variable equated to
the USR call.

In some subroutines, no arguments are required, or only one argument is
needed. In these cases either a dummy argument, such as 0, may be used, or a
variable that is not used elsewhere may be used. The SCDOWN subroutine, for
example, scrolls the screen down one line and requires no input or output
arguments, The call (assuming that the address has been set up) would be:

200 A= USRO(D) ‘scroll screen down

and the A variable would be ignored,

Embedding Machine Language in BASIC

The second method for interfacing BASIC and assembly language is to embed

the machine-language code in BASIC. There are a number of methods for
doing this.

Taking the example of the SQROOT subroutine, let's look at one method that
uses DATA values. The decimal values for the machine-language code of
SQROOT is placed into a DATA statement:

100 DATA 197,213,205,127,10,6,255,17,255,255 4,25,27
110 DATA 27,56,250,104,38,0,209,193,195,154,10,201

The DATA values are then moved to a known area of memory on the first pass
through the BASIC code. Let’s use 7FOOH again:

120 FOR 1=0 TO 24 loop

130 READ A ‘read DATA value
140 POKE 15212+ 1A ‘store value

150 NEXT | ‘loop 25 times

After the loop is done, the DATA values have been moved to the 7FO0H area,
and the machine-language code can be called in the usual fashion after setting
up the address in 16526,16527 or with a DEFUSRn statement. This procedure
will work with all of the subroutines in this book.

Is there a way to avoid using a predefined area, a way to make the procedure
more automatic? Yes, with qualifications. Machine-language code can be em-
bedded in strings, arrays, and even BASIC statements, but there may be some
problems with this method. Again taking the SQROOT subroutine as an exam-
ple, let's construct a string of machine-language values and then call the string.
We can set up the string by:

100 A$=CHR$(197)+ CHR$(213)+ CHR$(205). . . . + CHR%(201)

19

One statement can be used if the number of characters in the line does not ex-
ceed the maximum line length of 255 characters. If there is not enough room in

one line, two strings can be established and the two can then be concatenated
into a third.

Where is the machine-language code in this case? It's somewhere in the string
variable region at the top of memory. We can find out where it is by using the
VARPTR function. The VARPTR function will return the location of the string
parameter block. The string parameter block holds the length of the string and
the string address as shown in figure 2-3, We can then put the string address
into locations 16526, 16527 or use it in a DEFUSRnN statement. A sample call of
SQROOT using this technique is shown here:

100 A$=CHRS$(197)+ CHR$(213)4+ CHR$Q05)+ . . . + CHR$(201)
110 B=VARPTR(A$) ‘get string parameter block location

120 POKE 16526,PEEK(B+ 1)

130 POKE 16527, PEEK(B+ 2)

140 A= USR(M)

where M is the square and A is the square root returned.

For Disk BASIC, the sequence would be similar:

100 A$=CHR$(197)+ CHR$13)+ CHR${205)+ . . . + CHR$(201)
110 B=VARPTR(AS%)

120 C=PEEK(B+ 1)+ PEEK(B+ 2)#256
130 IF C>32767 THEN C=C—65536
140 DEFUSRO=C
150 A= USRO(M)

B=VARPTR {A$)

B POINTSTO . . .
+4 LENGTH OF STRING
+1 STRING ADDRESS
+2 LSB, MSB FORMAT

STRING ADDRESS
POINTS TO . . .

“STRING EXAMPLE”
FIGURE 2-3 String parameter block format.

The IF . .. THEN statement is necessary because of a quirk of BASIC. it does
not handle addresses well as integer arguments, and the subterfuge above is

necessary to “‘fool” the interpreter into thinking that the 16-bit memory address
is a signed integer value,

20

Passing Multiple Arguments

Now, there’s one strong bit of advice that we must give. If you use the above
method, be aware that everything in BASIC moves! Any time that BASIC en-
counters a new variable, a new array, or computes a new string, variables are
readjusted. Periodically, string variables are “‘cleaned up,” and this is done at
unpredictable times. Therefore, when using the VARPTR to find the address of
a string, do so only directly before the USR call, and make certain that no new
variables are introduced in the call.

There are other methods similar to the above for embedding machine language
in BASIC code. They all rely on using VARPTR to find the location of a string or
array. The string could be a dummy string in a program statement, for example,
The string

100 A$="THIS IS A DUMMY STRING!!! "

has 25 characters and can accommodate the 25 bytes of the SQROOT subrou-
tine. Another advantage of this approach is that in this case the string is at a
fixed location in memory—as long as the program statements do not change
(no edits allowed). The machine-language values can be picked up from DATA
statements and stored in the dummy string, and a VARPTR could then be used
to find the dummy string location.

Ancther method is to establish a large array by a statement similar to DIM
AA(100). DATA values can now be stored in the array and a VARPTR done with
the first element of the array to find the start of the contiguous area for the array.
(Don't try this on string arrays!)

100 B=VARPTR(AA0)}

Here again, do not introduce any new variables after finding the VARPTR ad-
dress or the address will be incorrect. (New variables are placed before the
array areas and the array areas are moved down!)

In the subroutines that follow we will assume that they are located in 7FO0H. If
you wish to use one of the methods described above to embed the machine-
language code in your programs, that is perfectly feasible as long as you follow
the rules. However, be careful of variables that move and things that go bump in
the RAM|

In many of the subroutines in this book, it's necessary to pass more than one
argument to the subroutine and back from the subroutine, Take the MOVEBL,
or Move Block, subroutine. MOVEBL moves a block of memory from one area
of memory to another area of memory. Three parameters are involved—the
address of the existing block (the “‘source’’ address), the address of the “‘desti-
nation,” and the number of bytes to move. All are 16-bit values.

The USR calling sequence allows only one 16-bit value to be passed. How do
we pass three 16-bit addresses? The way we have established as a standard for
the subroutines in this book is to pass the address of a “parameter block.” The

21

parameter block holds the necessary parameters in a predefined order. The
parameter block may be anywhere in memory, either at a fixed location or in a
string or array, As an example, assume that the MOVEBL subroutine is located
at FFO6H. The parameter block could be six bytes before, starting at OFO00H,
and we'd have this Disk BASIC calling sequence:

100 DEFUSRO= &HFQ06 'address of subroutine

110 POKE 61440—65536,0 ‘source address= 8000H
120 POKE 67441 —65536,128

130 POKE 61442 —65536,0 ‘destination address=9000H
140 POKE 61443 —65536,144

150 POKE 61444—65536,0 256 bytes

160 POKE 61445—65536,1

170 A= USR0{61440—65536) ‘'move block

In this BASIC code, we first defined the address of the subroutine as 0F006H by
the DEFUSRO. Next we POKEed the source address into OF000H and OFO01H,
least significant byte followed by most significant byte (0,128 becomes
1284256+ 0=8000H). Then we POKEed the destination address into OF002H
and OF003H (0,144 becomes 1444256+ 0=9000H). Next, we POKEed the num-
ber of bytes into OF004H and OFO05H (0,1 becomes 1#256+ 0=256). Finally, we
called the subroutine by the USRO call with the input argument equal to the
start of the parameter block at 61440 (OFQ00H). Note that we had to use the trick
of subtracting 65,536 from the addresses in order to use the POKE and USR
statement with BASIC integer values.

Alternatively, you could put the arguments in a dummy CHRS$ string or dummy
string and use YARPTR to find the string address, or you could put the argu-
ments in an array and use VARPTR to find the first element of the array. (Just
follow the rules, and make certain that no new variables are introduced after
the VARPTR finds the address!}

Using Assembly Language on the Model I

The general approach for the Model Il is virtually identical to that used on the
Models | and Ill. The calling sequence uses the DEFUSRn and USRn formats of
Model I/l Disk BASIC. The major difference is in the Model II's approach to

passing arguments to the machine-language subroutine and back to the BASIC
program.

Two system subroutines, FRCINT and MAKINT, are used in place of the ma-
chine-language code in place of ROM subroutines at 0A7FH and 0A9AH. If you
are using these subroutines on a Model 1l together with a BASIC program, you
may reassemble with the calling sequence given in the Model 1} BASIC refer-
ence manual. The two calling sequences would be substituted in place of the
“starred”” ““CALL OA7FH" or /JP DA9AH.” If you are not using a BASIC pro-
gram, then many of the subroutines in this book may be used *'stand alone’” by
replacing the starred instruction bytes with zeroes (NOPs).

22

How to Use the Subroutines in This Book

Now we come to the most important part of these two chapters—how do we
use the subroutines in this book?

To use any of the 65 subroutines, follow this procedure:

1. Read the description of the subroutine. See if it can be used on your system.
Note what parameters are involved and how large (8 or 16 bits) each one is.

2. If the subroutine is to be used without BASIC and called from your own
assembly-language code (including Model Il code), reassemble the subroutine
to create your own source file, or create a machine-language core image mod-
ule using T-BUG or BASIC. Put a 00H byte in every instruction byte that is
marked with asterisks. This NOPs the calls to BASIC ROM routines that pass
parameters. (On reassemblies, [eave out these instructions.)

3. If the subroutine is to be embedded in BASIC, put the decimal values into
DATA statements, and write the BASIC code to move the subroutine to a fixed
area or variable area as outlined above.

4. Call the subroutine from BASIC or your own assembly-language code with
the proper number of arguments. The subroutine may require no arguments, in
which case dummy arguments would be used in BASIC. The subroutine may
require one input argument, in which case the USRn call would specify a single
integer argument. The subroutine may require one output argument, in which
case the USRn call would specify a dummy input argument with a valid output
argument. The subroutine may require multiple arguments, in which case the
USRn call would specify the address of the parameter block containing the argu-
ments. In assembly-language calls, the arguments are also held in a parameter
block pointed to by the HL register pair.

Here are some additional rules:

1. For assembly-language calls only: HL contains the single argument on
input, the single output argument, or the address of the parameter block.

2. For assembly-language calls only: Most subroutines save all registers. The
ones that do not are clearly denoted.

3. For assembly-language calls only: The stack pointer is assumed initialized
before the call.

4, All subroutines have relocatable code.

5. All listings have been assembled at 7FOOH. The ORG point must be
changed if you are reassembling at a specific area for a “two module” load. If
you are using only the machine code, ‘it is correct as it stands.

6. Certain assemblers have minor bugs in instruction formats; instructions
may not assemble properly. The assembler used in these subroutines corrects
some of the assembly errors. If your assembler does not assemble the source
code as listed, your assembler may be flawed!

7. Error checking in these subroutines is minimal. In other words, it may be
easy to blow up the system with improper arguments. This was done to keep
the subroutines short. Checks should be made for proper arguments before
calling the subroutine.

23

TALSEX: TRS-80 Assembly-Language
Subroutines Exerciser Program

8. Every effort was made to keep the subroutines relocatable. Some of the

resulting code may not be good programming practice in nonrelocatable code.
So be it.

9. We have purposely stayed away from ROM subroutine calls because of the
possibility of ROM changes. Those ROM calls that are used are clearly marked.
10. Tables have generally been avoided because of relocatability problems
resulting in linear code. Here again, this may not be code to emulate in non-
relocatable environments.

11. Nested subroutines within the subroutines have been avoided because
of relocatability problems resulting in linear code. Again, this was done for
relocatability.

12, Names of subroutines and labels are nonconflicting. You may assemble
all subroutines together en masse without fear of duplicate labels on assembly.

13. All loops are indented in the comments column. Each level of loop is
indented two spaces. Block moves and compares are essentially loops and are
indented.

Figure 2-4 shows the complete listing of TALSEX. It is a Model Il Disk BASIC
program that we have used to exercise (and hopefully exorcise) all of the sub-
routines in this book. You will probably not want to use TALSEX, but we’ll
describe how it works in case some of the code is helpful in your BASIC inter-
facing. All of the sample calls for the subroutines are the output of one test
case of TALSEX.

TALSEX first asks for the name of the subroutine. The name is then displayed on
the screen and printed on the system printer. Next, TALSEX asks for the value to
be put into HL. If no argument is required, ENTER may be pressed, otherwise
the argument value is entered.

Next, the parameter block location is entered. This may be any area in free
memory. If multiple arguments are being used in the subroutine, the HL value
corresponds to the parameter block location. The values to be put into the pa-
rameter block are then input in the form N,V. (N is0, 1, or 2.) If N is 1, the
following value V will be 8 bits long. If N is 2, the following value V will be 16
bits long. An input of 0,0 terminates the input.

Next, TALSEX asks for a memory block location. If the subroutine uses a mem-
ory block, this value is input, otherwise ENTER is pressed. Values are then
entered into the memory block as required. The memory block may be any-
where in free memory. A 0,0 input terminates the operation. A second memory
block location may then be input, and values stored in this block.

Now, TALSEX asks for a location at which the assembly-language subroutine
should be located. TALSEX assumes that the subroutine is currently in memory
at 7F00H (from a LOAD operation in DOS). When this value is input, TALSEX

moves the subroutine from the 7FO0H area to the specified memory area to test
relocatability.

24

1000
1085
1219
1215
1017
1020
1030
1040
1050
1055
1860
1870
10e@
1285
189@
1120
1208
1230
1235
1249
1250
1268
1270
1280
1285
1290
1300
1310
1320
1330
1342
1350
1360
1370
1380
1390
1395
1420
1410
1412
1415
1417
1418
1420
1430
1440
1468
1480
1485
1490
1500
1585
1510
1520

The subroutine is then called with HL containing the specified value, and the
parameter block and two memory blocks containing the specified data.

On return, the input and output values for HL, the parameter block, and the
memory blocks are displayed and printed.

FIGURE 2-4 TALSEX listing.

CL8: FRINT "TRS-8@ ASSEMBELY LANGUAGE SUBROUTINES EXERCISER"
DIM 10(49)

PRINT:PRINT:LPRINTEILPRINT

H.=708D@: FE=700BB: Mi=70000: Mz=70000: ZI=0

FOR 1I=@ TO 491 JO(I)=—1: NEXT 1

AF="NAME OF SUBROUTINE": PRINT As:: LPRINT A $3:"7 "
INPUT A%: LPRINT A%

Ag="HL VALUE": PRINT A%:: LPRINT A®3"7? ":

As=""1 TNPUT A$: LPRINT A%

IF As="" GOTO 1870

HL=VAL (A%): IF HL>32767 THEN HL=HL-&4553&
AF="PARAMETER BLOCK LOCATION": PRINT A%3i: LPRINT A%;"7 “3
Ag=""2 INPUT As: LPRINT A%

IF As="" GOTO 1220

PB=VAL {A%): IF PR>32747 THEN PR=PB-A5%3&
A$="PARAMETER BLOCK VALUES?": PRINT A%: LPRINT A%
ZA=HL 1 GOSUE 100600

AF="MEMORY BLOCK 1 LOCATION®: FRINT A%3! LPRINT A$;"7 “;
Ag=""0 INPUT A%: LPRINT A%

IF Ags="" GOTO 1320

ML=VALCAS) 1 IF M1>32767 THEN M1=M1-&5534

AT="MEMORY BLOCK 1 VALUES?": PRINT A%: LPRINT AS
ZA=M1: GOSUR 100032

A%="MEMORY BLOCK 2 LOCATION": PRINT A$3: LPRINT A%:"7 =3
AR="" 1 INPUT A%: LLPRINT A$

IF As="" GOYO 132D

MiZ=VAlL{AS)Y: IF M2:32767 THEN M2=M:2-65536

AB="MEMORY BLOCK 2 VALUES?": PRINT A$: LPRINT A#$
Za=MIr GOSUB 10020

AR="MOVE SUBROUTINE TO'"3: PRINT Ak: LPRINT A$3"7 *3
INPUT A%z LPRINT A%

SL=VAL (A$): IF SL>32767 THEN SL=8L—&5536

FOR I=32512 TO 33767

POKE(SL+T-32512)y PEER{1)

NEXT 1

DEFUSR2=5L.

H1=USRO(HL)

IF SL.<B THEN SL=8L+45534&

A$="0UBROUTINE EXEGUTED AT ": PRINT A%:i8L: LPRINT At:1S5L
A= INPUT ! OUTPUT:" 3 PRINT A$¢ LPRINT A%
I1=@

IF HL=720002 GOTO 1528

IF HL<B THEN HL=HL+&3536

IF H1<8 THEM H1=H1+&6553&

Af="HL="1 PRINT AsiHLsyA%iHI: LPRINT A%sHL,AssH1

IF FB=700B0 GOTO 1480

Ag="PARAM" 3 ZA=FPR

GOBUR 1200

IF M1=70000 GOTO 1520

As="MEMBEL": ZA=MI1

GOSUE 1zZ000

IF Mz=70000@0 GOTO 1520

Aps MEMBZ" 1 Za=M2

GOBUE 1200

GOTO 1010

12000 °SUBROUTINE TO INPUT, LIST: PRINT: AND STORE VALUES

1808685

TENTER WITH ZA=MEMORY BLOCK START

25

12908
16010
13920
10038
1204@
12a5¢
10055
12060
10070
12008
12010
12020
12036
12040
12845
1208508
12050
12070
1209¢

What to Do if You Have Trouble

Source Programs on Disk

IN=Z#A

PRINT"+"sZN-ZA5 sLPRINT "+"3ZN-ZA3tINPUT ZLrZV: LPRINT ZL37V
IF Zi=@ GOTO 10046@

POKE INs ZV--INT(ZV/Z56) %254 I0{Z1)=ZV-INT(ZV/358) %254

IF Zi=3 THEN POKE ZN+1s INT(ZV/254): I0(ZI+13=INT(ZV/254)
EN=TN+ZL.: ZI=Z1+ZL

GOTO 108210
TO0CZT)=—12 ZI=ZT1+1
RETURN

TSUBROUTINE TO QUTPUT VALUES FROM PARAMETER BLOCK
TOR MEMORY BLOCK

TENTER WITH A%=TITLEs ZA=BLOCK START: ZI=I0() INDEX
IN=@

2B8=10(21): IF ZIB=-1 GOTO 1Z2@90

IF IN<1@ THEN ZN$=STR$(IN)}+" " ELSE ZN$=STR$(ZN)
PRINT A$3"+"1IN®3ZBsA$:"+" 5N PEEK{ ZA+ZN)

LPRINT A$;"+"35ZN$5ZRBeAS3"+" 1 ZN$3 PEEK(ZA+ZIN)
IN=IN+1: ZI=7Z1+1: GOTOQ 12048

ZI=711I+1: RETURN

Every effort has been made to thoroughly check out and debug the subroutines
in this book. If you find errors, follow this procedure:

1. If you are not using the subroutines exactly as listed, please thoroughly
check out your modifications. We simply can’t be responsible for your changes—
there’s too much chance for error. We will be responsible, however, for use of the
subroutine exactly as listed in the hook,

2. Verify that the subroutine checksums to the proper value as shown in the
description. To do this, use the CHKSUM subroutine in the book, and check-
sum the subroutine in question from start to end address. The checksum must
compare to that given in the book. if it does not, you have entered the data
incorrectly.

3. Verify that the calling sequence and parameter values are proper. List the
parameters directly before the call and see that they are within the limits im-
posed by the subroutine. If they are not, the subroutine may indeed not wark
properly or may cause the system to crash. We can't be responsible for these
cases,

4. If you have done all of the above and feel there is still an error in the sub-
routine, then fill out the following reporting form and send it to the author at:

P.O. Box 3568
Mission Viejo, CA 92692

Your time and troubie are appreciated and the problem will be corrected for the
next edition of this book.

A set of diskettes containing all source programs is available from the author.

For information, please send a self-addressed, stamped envelope to the above
address.

26

TR5-80 Assembly-Language Subroutines
Error Reporting Form

1. Subroutine name:

2. | am using the identical code as shown in the book: Yes No

3. | have checksummed the data: Yes No

4. Location of subroutine in memory:

3. | 'am using the subroutine embedded in BASIC: Yes No

6. | am using the subroutine as a stand-alone program (not embedded in
BASIC}): Yes No

7. System: Model I Model Il Model Il

8. Operating system:

9. Assembler (if applicable):

10. Input parameters:

11. Output parameters:

27

12. Complete description of error (please attach BASIC listing, assembly list-
ing, or any other data you find pertinent):

13. Name:

14. Address;

Thanks for your time and trouble!

Mail to: William Barden Jr., P.O. Box 3568, Mission Viejo, CA 92692

28

TRS-80 ASSEMBLY-
LANGUAGE
SUBROUTINES

ABXBIN: ASCIl BINARY TO BINARY CONVERSION

System Configuration
Model [, Model Ill, Model |l Stand Alone.

Description

ABXBIN converts a string of ASCI! characters representing ones and zeroes to a
16-bit binary number. Each character in the string is assumed to be either an
ASCII one (30H) or an ASCII zero (31H). The string may be from zero to 16 bytes
long, but is terminated with a byte of all zeroes.

Input/Output Parameters
On input, the HL register pair contains a pointer to the string of characters.

On output, HL contains the binary number of O through 65,535.

31

INPUT OUTPUT
H , L H N L
T
POINTER TO MEMI+D | ——> | mesuLT. p-6ssas]
‘ :
MEM 140 MEM1+8]
+1 +1
+ Asan + +
+2 STRING +2
O 1 +
+3 AND “17 +3
1 1 : 4 UNcHAaNGED 4+
+4 +4
+5 +5
+6 I +6
LAST 9 LAST | UNCHANGED

Algorithm
A result of 0000000000000000 is first cleared in the 1X register.

Each character is read from the string, moving from left to right. The character is
first tested for a null, which marks the end of the string. If a null is found, the
conversion is over.

If the character is not a null, it is assumed to be either an ASCIl zero (30H) or
one (31H). A value of 30H is subtracted from the character to yield a binary
value of 00000000 or 00000001. This value is then added to the result in I1X,
Effectively, this merges the current O or 1 bit into the least significant bit posi-
tion of the [X register. As the IX register is added to itself to cause a ““shift left”’
one bit position at the start of each iteration of the loop, successive 0 and 1 bits
move toward the left of the result. The value in IX at the end of the string
represents the converted binary value.

Note that the shift is done after the test for null; this ensures that the last binary
0 or 1 remains in the least significant bit of 1X.

if the ASCII string was 30H, 31H, 31H, 30H, 31H, 00H, the result in IX would be
0000000000001 101.

Sample Calling Sequence

NAME OF SUBROUTINE? ABRXBIN

HL. VALUE? 4@00@

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION? 4020
MEMORY BLOGK 1 VALUES?

+ B 1 49

+1 1 49

+ 2 1 49

+ 3 1 48 111@11 IN ASCIH

+ 4 1 49

+ 5 1 49

+ & 1 @ TERMINATOR -

32

7Foea

7Fa0
7F01
7Fez
7FQ4
TEa7
7Fae
7FaD
TFOE
TFaF
TF11
/F13
7F15
Fié
7F18
TF1e
7F1R
TF1D
7FIE
7Fzi
TFal
TFEZ
TF25
onon

F5

D5
DDES
CD7F0@A
DDZ12626
1600
7E

B7
Z2B0A
DDZ%
D&a3b
BF
bnig
23
18F2
DRES
El
DDEL
D1

Fi
CITADA
ce

2ui10a
PR119
8120
20130
PR140
pal1se
00140
re1783
bB18@
201992
Ll
paz1@
oReze
pnez3o
oBz4b
aazs@
Baz6R
naz7a
BazBa
2AzF8
20320
rE31@
on3zd
D330
Baa34e
aBase
BA3LE
PB370
aelsn
BRI
Ra4an
A4 13
Ba4za

2008 TOTal. ERRORE

+7 B B

MEMQRY BLOCK 2 LOCATION?

MOVE SUBROUTINE TO? 38000
SUBRROQUTINE EXECUTED AT 38000

INPUT: QUTPUT :

HL.= 42000 HL= 5% RESULT

MEMBRI+ B 49 MEMEL+ @ 4%

MEMB1+ 1 49 MEMB1+ 1 4%

MEMBL1+ 2 49 MEMEL+ & 49

MEMEL+ 3 4B MEMB I+ 3 48 UNCHANGED
MEMB1+ 4 4% MEMB1+ 4 49

MEMBI+ 5 49 MEMBI+ 5 49

&6 b

MEMB I+ ' MEMB] +

NAME OF SURROUTINE?

Notes

1. If the string of ASCII characters is longer than 16 bytes, ABXBIN will return
a result that represents the last 16 characters of the string.

2. If any character in the string is not a 30H or 3TH, ABXBIN will return an
invalid result; no check is made of the validity of the ASCH! characters.

Program Listing

ORG 7F@ADH @52z
R R S I I R R R I Y R R 22T
s% AGCII BINARY TO BINARY CONVERSION. CONVERTS A STRING «

3% OF AS(11 CHARACTERS REPRESENTING ZEROES AND ONES TCO #
;% BINARY. *
3% INPUT: Hi.=> STRING OF CHARACTERSs TERMINATED BY *
3% NULL CHARACTER. *
EE 3 QUTRUT :HL=RBINARY NUMBER FROM @ - &5535 *
33 e R X I I X RN
ABRXBIN PUSH AF s5AVE REGISTERS

PUSH DE

PUSH IX

CALL BATFH s¥%%GET STRING LOGC Nk

LD IX.8 iCLEAR RESULT REGISTER

L.D Ds@ SFOR LLOOF
ABXB1I0 LD A (ML) $GET NEXT ASCII CHAR

OR A STEST FOR NULL (END)

JR s ABXQZD sGO IF END

ann IX+1X sBHIFT LEFT ONE

SUR 36H s CONVERT ASCII TO @ OR 3}

LD E= A sNOW IN E

ADD 1XsDE sMERGE WITH PREVIGUS

INC HL. FPOINT TO NEXT CHARACTER

JR ARXa1RA LOOF *TIL END
ABRXB2R PUSH IX s TRANSFER RESULT

PO HE. $RESULT MoW IN HL

POP IX SRESTORE REGISTERS

POP DE

POP aF

JP AATAH s %% X RETURN ARGUMENT %% %

RET sNON-BASIC RETURN

EEND

33

ABXBIN DECIMAL VALUES

43y 213y 221 229+ 2059 127s 10 2371 335 0,
@y 22y Dy 126y 183 4@y 1By 221y &1 214

48y 90y 2215 25 39 24 242y 221y 229, 208,
221s ZZ25y 209y 241, 195s 154y 1@, 201

CHKSUM= &Z

ADEBCD: ASCIl DECIMAL TO BCD CONVERSION

Systern Configuration

Model I, Model lil, Model 1! Stand Alone.

Description

ADEBCD converts a string of ASCIl characters representing ones and zeroes to
a string of bed digits. Each character in the ASCI| string is assumed to be either
a valid ASCII character in the range of 0 (30H) through 9 (39H). The ASClIl string
may be from zero to any number of bytes long, but is terminated with a byte of
all zeroes. The result string of bed digits consists of two bed digits per byte, with
a terminator of a “nibble’’ of ones.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the ASCII string in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes of the parameter block contain the address of the
result string in the same format.

On output, the parameter block and ASCII string are unchanged. The result
string contains a bed digit in one nibble (4 bits) for each byte in the ASCII string
and a final nibble of ones.

INPUT QUTPUT
HooL oL
T T
L POINTER TC; PARAM-+0 I _ L UNCH?NGED]
PARAM-+ POINTER TO PARAM-+
+ ASCI STRING + + UNCHANGED
+1 (MEM 1+8) +1
+2 POINTER TO +2
+ RESULT STRING 1 UNCHANGED -+
+3 (MEMZ-+3) i +3

34

MEM1+@ MEM 1+

+1 AL
+ ASCII -+ + T

+2 STRING +2
+ T + UNCHANGED -

3 —_—> =

+4 +4
4 4 4 4

+5 +6

+8 +6
+ powd ;: e

LAST] LAST]

MEM2+02 MEM2+-¢
4+ + 4 -+
+1 +1
+ RESERVED —+ + BCD +
+2 FOR +2 RESULT
-+ RESULT -+ T STRING T+
+3 STRING > +3
+4 +4
+5 +5
+6 +6
+ - bt -t
LAST 1111 BO8E | for xxxx1111)

Algorithm

The ADEBCD subroutine performs one conversion for each ASCIl digit. The
ASCII string address and result string addresses are first picked up from the
parameter block and put into DE and HL, respectively.

The next ASCII character s then picked up from the ASCIl string. A test is made
for all zeroes. If the character is all zeroes a jump is made to ADEQ20.

A value of 30H is subtracted from the ASCII character to convert it to a bed
value of O through 9. An RLD is then done to rotate the least significant four bits
of A into the result nibble. The ASCIl address in DE is then incremented by one,
and the next ASCII character is picked up, converted, and stored. The ASCII
string pointer is again incremented to point to the next byte. The result pointer
in HL is then incremented to point to the next bed byte. A loop is then made
back to ADEO10.

The final action is to store all ones at the next bed nibble position by either an
RRD or RLD, depending upon the current bed digit position.

The RRD instruction shifts the least significant four bits of the A register and the
memory location pointed to by HL in a four-bit bed shift to the right. The RLD
shifts left four bits in similar fashion,

If the ASCII string was 34H, 35H, 36H, 37H, 35H, 00H, the result in the bed
string would be 45H, 67H, 5FH.

35

7TFaB

Sample Calling Sequence

NAME OF BUBROUTINE? ADERCD

HL. VALUE? 49000

FARAMETER BLOCK LOCATION? 49000
PARAMETER BLOCK VALUES?

+
+
“+

@ I 47777 POINTS TO ASCI STRING
£ 2 48838 POINTS TO RESULT STRING
4 @ o

MEMORY BLOCK 1 LOCATION? 47777
MEMORY BLOGCK 1 VALUES?

+

+++33++++

mm

@ 1 497

1 i 57

= 1 5@ 192 1IN ASCH

3 1 2 |

4 @& ¥ TERMINATOR

= MORY BLOCK 2 LOCATION? 48888
MORY BLOCK = VALUES?

@ 1 2

1 1 @ F CLEAR RESULT FOR EXAMPLE
2 @ @

MOVE SUBROUTINE TO7 45555
SUBROUTINE EXECUTED AT 45555

INPUT 3 OUTPUT:
HL= 42200 HL= 4DDO

PARAM+ @ 141 PARAM+: © 16417

PARAM+ 1 186 PARAM+ 1 186

PARAM+ 2 248 PARAM+ 2 248

PARAM+ 3 190 PARAM+ 3 198

MEMB1+ @ 49 MEMBL+ B gy | UNCHANGED
MEMEL+ 1 &7 MEMEL+ 1 57

MEMBI+ 3 5@ MEMEI+ T 5

MEMB1+ 3 D MEMEI+ 3 @

MEMBZ+ @ 0 MEMBZ+ @ 25)
MEMBEZ+ 1 B MEMBZ+ 1 47]'WZFH 8CD 192

NAME OF SUBROUTINE?

Notes

1.

An invalid result will occur if the ASCI string contains invalid ASCI| deci-

mal digits.

2,

The terminator of ail ones in the result string will be in the left-hand nibble

of the result string byte (with garbage in the right-hand byte) for an even num-
ber of bed digits, and in the right-hand nibble of the result string byte (preceded
by the last bed digit) for an odd number of bed digits.

Program Listing

i BRI ORG 7FBBH ;@522
BALIE 5 HEHEEI KKK MK KKK NIRRT KNI ARG 696 569696 0 KB
BB12B 3% ASCII DECIMAL TO BCD CONVERSION. CONVERTS A STRING *
DD13@ s# OF ABCII CHARACTERS REPRESENTING DECIMAL DIGITH TO *
AB14Q 3% TO BINARY~CODED-DECIMAL. i *
22158 s+ INPUT: HL=> PARAMETER BLOCK L *
BR16@ % PARAM+Ds +1=|LOCATION OF STRING OF CHAhS: *
PB170 5% TERMINATED BY NULL. CHARACTER *
281i8d % PARAM+2y +3=LOCATION OF RESULT STRING *
aR17@ ;% OQUTPUT:RESULT STRING HOLDS STRING OF BCD DIGITSc *
ulridedr: [t I TERMINATED BY A NIBBLE OF ONES. ﬂ *
pRAz1G R e R LR S X L S R T B R T TR R R R R e A S NvE R
Dazza

36

TFRG
7F@a1
TFBZ
7FQ3
7F@5
7Fa8
7Fa7
TFoBe
7YFOE
7F11
7F 14
TF17
7F18

TF19 .

7F1B
7F1C
7F1E
7F20
7FZZ
TFZ4
7F 25
7F 26
7F27
7F29
TEZA
TFEC
7FZE
7F30
7F3z
7F33
TF 34
7F36
7F38
7F39
7F3A
7F 3B
o0

uln]rlnln]

i3
23
1BE1
DDE1
El
D1
Fi
c?

B30
aoz4d
nlnledaly)
[l et Y1)
paz7me
pRzed
@227
300
Bpo31@
Pe3z@
oR330
20342
Bd350
Pa3sd
Bai7e
oa3c0
20320
oa400
QD410
DA4ZD
20438
2044@
20450
2a46@
bo47d
2480
PB4FB
il %)
pes10
p@sza
PB530
00540
pe350
Q0562
pas7eR
2v580
aas57a

TOTAL ERRORS

ADERCD

ADED1@

ADEQZ@

ADEB3@

ADED4Q

ADEECD

4% 2
Z2E%. 2
2214 1
24y 22
B1 bis
19 35

CHKEUM=

RLD
INC
INC

POP
POP
POP
POP
RET
END

AF

DE

HL.

IX
BATFH
ML

IX

Es (IX+D)
Ds (IX+1)
Ly (EX+2)
Hs {IX+3)
Ay (DE)

A

NZ» ADEQZ@
A

ADE@4D
J0H

DE
Ay (DED

A
NZs ADED3D
A

ADED4A
3BH

DE
HL
ADEDLD
IX
HL
DE
AF

DECIMAL VALUES

13-
21
@2, 39
y 214,
237

L

@

229

Fhy

2ELs
Da Z21a
2ée 183,
48y 237
111s 24+ B

225 221

ADXBIN: ASCIl DECIMAL TO BINARY CONVERSION

System Configuration

Model 1, Model ill, Model Il Stand Alone.

Description

229,
86s
B,

111

127
el

&1

48

225y 22Dy

$BAVE REGISTERS

5#x%GET STRING LOCT N*x#
sTRANSFER TO IX

iPUT BOURCE PNTR IN DE

FPUT DEST PNTR IN HL
$GET NEXT CHARACTER
$TEST FOR NULL (END)
$G0 IF NOT END
$ZERO TO -1
$8TORE TERMINATOR
560 TO RETURN
$ CONVERT TO @9
$STORE IN BUFFER
IPOINT TO NEXT CHARACTER
$GET NEXT CHARACTER
1 TEST FOR NULL (END?
GO IF NOT END
FZERG TO —1
iSTORE TERMINATOR
$G0 TO RETURN
$ CONVERT TO 8-9
$8TORE IN BUFFER
SPOINT TO MNEXT CHARACTER
ILOC™N FOR NXT 2 BCD DGTS
sLOOP *TIL END

SRESTORE REGISTERS

$RETURN TO CALLING PROG

1@0s 239 221
11@s 2

2375 183,

246 183y 32

B3Ts 111y

209 241, 21

ADXBIN converts a string of ASCIl characters representing decimal digits to a
16-bit hinary number. Each character in the string is assumed to be ASCII O

37

through ASCII 9 (30H through 39H). The string may be from zero to 5 bytes
long, but is terminated with a byte of all zerces. The value represented by the
string may be as large as 65,535. This conversion is an “‘unsigned’’ conversion
producing a result of 0 through 65,535.

Input/Output Parameters

On input, the HL register pair contains a pointer to the string of characters.

On output, HL contains the binary number of 0 through 65,535.

INFUT OUTPUT
HooL oL
T
| POINTER TO MEM1+0 | ——> | RESULT, p-65535]
1 1

MEM1+8 STHIgléi”OF MEM 1+
HEXADECIMAL 1 UNCHANGED |
+ CHAFI.?CTEHS 1 + i

LAST g ; LAST UNCHANGED

Algorithm

A result of 0000000000000000 is first cleared in the IX register.

Each character is read from the string, moving from left to right. The character is
first tested for a null, which marks the end of the string. If a null is found, the
conversion is over,

If the character is not a null, it is assumed to be a valid ASCII decimal digit of
30H through 39H. A value of 30H is subtracted from the character to vield a
binary value of 00000000 through 00001001, This value is then added to the
resuft in [X,

Prior to the add, the partial result in the IX register is multiplied by ten. This
moved the partial result over one decimal digit position to the left. The value in
IX at the end of the string represents the converted binary value.

Note that the multiplication is done after the test for null; this ensures that the

last value of O through 9 remains in the least significant decimal digit position
of IX.

The multiply is done by a “shift and add’’ technique of three adds to shift three
bits {(multiply by eight) plus one add of the “times two’ shift for a “times ten”’

result.

If the ASCII string is 34H, 35H, 30H, 3TH, 31H, 00H, the result in IX would be
1010111111010011.

38

7Fog

7FRO
7F@1
TF@Z
TF@4
7Fev
7Fae
7Fac
7F@D
7FBF
7F11

F5

D5

DDES
CD7FBA
DDz 1000a
7E

B?

2815
ppz%?
DDES

Sample Calling Sequence

NAME ©OF SUBROUTINE? ADXBIN
HL. VALUE? 40000

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION? 40000
MEMORY BLOCK 1 VALUES?Y

+ B8 1 49

+ 1 1 5@

+ 2 1 51 12345IN AsCII
+ 3 1 52

+ 4 1 53

+ 5 1 @ TERMINATOR

+ & B @

MEMORY BLOCK 2 LOCATIONY
MOVE SUBROUTINE TO?7 37000
SUBROUTINE EXECUTED AT 37020

INPUT: OUTPUT:

HL= 40000 HL= 12345 RESULT
MEMB1+ @ 49 MEMBI+ @ 49

MEMBi+ 1 5@ MEMB1+ 1 5@

MEMBi+ 2 51 MEMB1+ 2 51

MEMBI+ 3 52 MEMBi+ 3 52| UNCHANGED
MEMB1+ 4 53 MEMB1+ 4 53

MEMB1+ 5 @ MEMBI+ 5 B

NAME OF SUBROUTINE?

Notes

1. If the string of ASCII characters is longer than 5 bytes, or if the value repre-
sented is greater than 65,535, ADXBIN will return an invalid result.

2. If one or more characters in the string are not valid ASCIl decimal digits of
30H through 39H, ADXBIN will return an invalid result; no check is made of
the validity of the ASCH characters.

Program Listing

oe108 ORG 7Fe@H 10522

PRLLE &R0 0 6NN NI IR RN IR IR NN R RN
BB170 t% ASCII DECIMAL TO BINARY CONVERSION. CONVERTS A STRING*
20130 ;% OF ASCIT CHARACTERS REPRESENTING DECIMAL DIGITS TO
PP140 s# BINARY.

Pe1L5e s« INPUT: HL=3> STRING OF CHARACTERS: TERMINATED BY
PO160 5» NULL CHARACTER.

2178 % OUTPUT :HL=BINARY NUMBER FROM @ - 63333

QO LED 5% EHHIH KA I T T 16 I I I NI NI N RN

P E R

@a17a s
PBZzed ADXBIN PUSH AF $1SAVE REGISTERS
aoz1a PUSH DE
.y PUSH X
apz3e CALL BA7TFH s###GET STRING LOC® N#*x
@0z42 LD IX:@ sCLEAR RESBULT REGISTER
PRZ58 ADX@18 LD A (HL) $GET NEXT CHARACTER
2az68 OR A $TEST FOR NULL (END)
a0z7a JR Z2ADXAZD $G0 IF END
eezha ADD IXs IX sRESULT TIMES TWO
PAz7a PUSH IX $SAVE RESULT

39

7F13 DDZ9
7F15 DDz9
7F17 Dt
7F18 DD19
7FiA D&3QA
7F1C 5F

7FiD 1600
7F1F DD19

7F21 23
7F2Z2 18E7
7F24 DDES
7F26 EL
TJFZ7 DDE1
7F2% D1
7FZA F1
7FZB C39A0A
7FZE C%
oo

RR3DA
Pa31e
28320
83338
20342
RrR35e

Aeasn
20372

ee3ze
29370
eB420
20410
20420
aa430
PR4L4D
R4S
BR4ED
aBs470

PARPR TOTAL ERRORS

ADD IXsIX YREBULLT TIMES FOUR
ADD IXs IX FRESULT TIMES EIGHT
POP bE 3GET REGULT TIMES TWO
ADD IXsDE SRESULT TIMES TEN
suR 32H sCONVERT TO @ ~ 9
LD E»A sNOW IN E
LD D:@ iNOW IN DE
ADD IXsDE SMERGE WITH PREVIOUS
INGC HL PPOINT TO NEXT CHARACTER
JR ADX@10 sLOOP "TIL END

ADXQZ@ PUSH IX s TRANSFER RESULT
ROP HL. $RESULT NOW IN HL
POP IX sRESTORE REGISTERS
pop DE
POP AF
JpP BATAH s#%#RETURN ARGUMENT ®#%
RET $NON-BASIC RETURN
END

ADXEIN DECIMAL VALUES

245y Z13s Z21s 2295 205 127y 10y 2719 33. B
As 126+ 1B3: 40y 21y 221y 41y 2312 279y 2214
412 2219 415 ZBFy 2Z1s %0 Z14. 48s 54 22
@y 221y 25+ 35, 24y 2Ly FZ1y 229y 2Ty 271,
223y 209 241 1999 154 1B, 01

CHKSUM= 211

AHXBIN: ASCIl HEXADECIMAL TO BINARY CONVERSION

System Configuration

Model 1, Model 111, Model 1l Stand Alone.

Description

AHXBIN converts a string of ASCIl characters representing hexadecimal digits
to a 16-bit binary number. Each character in the string is assumed to be either in
the range of ASCII 0 through 7 (30H through 37H) or ASCII A through F (41H
through 46H). The string may be from zero to 4 bytes long, but is terminated
with a byte of all zeroes.

Input/Output Parameters
On input, the HL register pair contains a pointer o the string of characters.
INPUT QUTPUT
H L Ho L
} 1
POINTER TO MEM 10 —l — L RESULT, -65535
T T

MEM1+0 STRING MEM 1+¢1
1] or T T +
1 oiomal 4 | UNCHANGED |
+2 | CHARACTERS 43
+ l T + 4
LAST o LAST | UNCHANGED
40

On output, HL contains the binary number of 0 through 65,535.

Algorithm
A result of 0000000000000000 is first cleared in the 1X register.

Each character is read from the string, moving from left to right. The character is
first tested for a null, which marks the end of the string. If a null is found, the
conversion is over.

If the character is not a null, it is assumed to be in the proper range for hexadec-
imal digits. A value of 30H is subtracted from the character to yield a value of
0 through 9 or 17 through 22. This value is then tested for the second set of
values of 17 through 22 by subtracting 10. If the original value was 0 through 9,
the result of this subtract will be negative, and the original value of 0 through 9
is used. If the result was positive, the value is now 7 through 12, and is changed
to the proper hex value by adding 3, to produce 10 through 15. This value is
then added to the result in IX. Effectively, this merges the four hits of the current
value into the four least significant bit positions of the IX register.

As the IX register is added to itsell four times to cause a “‘shift left’” four bit
positions at the start of each iteration of the loop, successive hex digits move
toward the left of the result. The value in 1X at the end of the string represents
the converted binary value.

Note that the shifts are done after the test for null; this ensures that the last octal
digit remains in the least significant four bits of 1X.

If the ASCII string was 41H, 45H, 31H, and 00H, the result in IX would be
0000101011100001, or hex QAET.

Sample Calling Sequence

NAME OF SUBROUTINE? AHXEBIN

HL VALUE? 50000

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION? 32000
MEMCORY BLOCK 1 VALUES?

+ @A 1 70

+ 1 1 4% | riagin ASCl
+ 2 1 65

+ 3 1 57

+ 4 1 @ TERMINATOR
+ 5 7

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO7 40000
SUBRCUTINE EXECUTED AT 40000

INPUT§ CUTPUT:

HL= 5PRen HL= &186&5 RESULT = FIAQH
MEMBLI+ O 70 MEMBI+ @ 70

MEMBE1+ 1 49 MEMBI+ 1 4%

MEMBI+ 2 &5 MEME1+ 2 &5 [UNCHANGED
MEMBI+ 3 %7 MEMBi+ 3 57

MEMB1+ 4 @ MEMBI+ 4 @

NAME OF SUBROUTINE?

41

7rea

7F DR
7FB1
7FRz
TFB4
7FR7
7FOR
7F@D
7FBE
7F@BF
7F11
7F13
7F15
7F17
7F19
TFIE
7F1C
7F 1E
7FZ0
7F2z
7F24
7F 25

F"‘-.l
ire

TFzA
THRC
TF2D
7F2F
7F3@
7F31
T34
2000

F5
05
DDES
CD7F@A
DD: 1 DReR
1600
7E

B?
2819
DDZY
D=9
nhzy
DD29
D63W
5F
DDA
CB7F
7003
Cco03
SF
DD19

B
B3
DDES
El
DDE1
D1

Fi1
C3I9ADA
c9

a0i0a
2110
PA1=a
23130
ea140
20150
20160
PR176
o186
an17a
o2zeo
Baz1e
gl
2230
Baz40
aez50
] bed o
PR270
apz8n
PRz5@
o300
PR310
ee3ze
330
PB34@
ee3s5e
QAa3se
0370
oN388
aa37a
D40

88428
Pa436
02440
PA450
20460
Bo470
PB482
Q490
28520

B3 TOTAL ERRORS

Notes

1. If the string of ASCII characters is longer than 4 bytes, AHXBIN will return a
result that represents the last 4 characters of the string.

2. If any character in the string is not in the proper range, AHXBIN will return
an invalid result; no check is made of the validity of the ASCII characters.

Program Listing

ORG

7FeH

@52z

AR R A R Rl a2 S st S 2 R Ll R T X R g N BRIV

$% ABCIT HEXADECIMAL. TO BINARY CONVERSION.

CONVERTE A

i®# STRING OF ASCII CHARACTERS REPRESENTING HEXADECIMAL
% DIGITS TO BINARY.

5 INPUT: HL=X*

L 3

NULL CHARACTER.

3% QUTPUT tHL=BINARY NUMBER FROM @ - &3535
R S R L R e L T Y eI

AHXEIN

PUSH AF 1SAVE REGISTERS
PUSH DE
PUSH IX
CALL BA7FH $###GET STRING LOCT N®#xx
LD IX.0 iCLEAR RESULT REGISTER
LD D8 $FOR LOQP
AHX818 LD A (HLD $GET NEXT CHARACTER
OR A sTEST FOR NULL (END)
JR ZyAHXBZO 160 IF END
ADD IXeaIX BHIFT LEFT 4 BITS
ADD IXs1X
ADD IXaIX
ADD IXsIX
sue 38K sCONVERT TO B—~9 OR 1i-154
LD EvA SNOW IN E
5uU8 aAaH SBUBTRACT FOR A —- F
BIT T1A s TEST RESULT
JR NZ s AHXZ15 G0 IF @8 - 9
ADD As3 sCONVERT TO A - F
LD ExA INCW IN E
AHXA15 ADD IXsDE fMERGE WITH FREVIOUS
jHC HL SPOINT TO NEXT CHARACTER
AHXO1D sLOOP *"TIL END
AHX@20 PUSH IX $ TRANSFER RESULT
FOF Hi.
POP IX sRESTORE REGISTERS
POP DE
pop AF
JP BAZAH i xx%#RETURN ARGUMENT ###%
RET SNON-BASIC RETURN
END

AHXBIN DECIMAL VALUES

*
*
*
STRING OF CHARACTERS: TERMINATED RY *
*
*
*

245: 2135 221y 2295 205, 1@ ZZ1. 33. 0,
@y 22y By 126y 183 4@, 35, 41y 2214

419 224s A1y 21y 41 Z14. Fhy Fl4s 10y
2@3y 1272 325 3s 198, 3 F21ls Z5. 35,

249 2271 221,
154y 10y ZzZ01L

CHKSUM= 197

42

229

ey

221s 225 2R

2415 195,

AOXBIN: ASCIl OCTAL TO BINARY CONVERSION

System Configuration

Model 1, Model I, Model 1l Stand Alone.

Description

AOXBIN converts a string of ASCII characters representing octal digits to a
16-bit binary number. Each character in the string is assumed to be in the range
of ASCI10 through 7 (30H through 37H). The string may be from zero to 6 bytes
long, but is terminated with a byte of all zeroes.

Input/Qutput Parameters
On input, the HL register pair contains a pointer to the string of characters.

On output, HL contains the binary number of 0 through 65,535.

INPUT UTPUT

H L H L

L POINTERT(% MEM 149 —I — L RESULT,;;a-essas]
Ll

MEM 1+ MEM1+9
v | smne T "

of 4 4 1

2] 5L + *2 | UNCHANGED |
13 CHARACTERS @ +3
+4 +4

£ E3 E3 E3

LAST g LAST UNCHANGED
Algorithm

A result of 0000000000000000 is first cleared in the IX register.

Each character is read from the string, moving from left to right. The character is
first tested for a null, which marks the end of the string. if a null is found, the
conversion is over,

If the character is not a null, it is assumed to be in the proper range for octal
digits. A value of 30H is subtracted from the character to yield a value of 0
through 7. This value is then added to the result in IX. Effectively, this merges
the three bits of the current value into the three least significant bit positions of
the IX register.

As the IX register is added to itself three times to cause a “shift left” three bit
positions at the start of each iteration of the loop, successive octal digits move
toward the left of the result. The value in I1X at the end of the string represents
the converted binary value.

43

7Fee

7Fa@ F5
7F@rl D5
7F@Z DDES
7FP4 CD7FBA

Note that the shifts are done after the test for null; this ensures that the last octal
digit remains in the least significant three bits of 1X,

if the ASCI string was 33H, 37H, 35H, and 00H, the result in IX would be

O

5

000000011111101, or octal 375.

ample Calling Sequence

NAME OF SUBROUTINE? AOXBINMN
HL VALUE? 40000

P

ARAMETER BLOCK L.QCATION?

MEMORY BLOCK 1| LOCATION? 40000
MEMORY BLOCK 1 VALUES?

+

+ 4+ + 4

M

2 1 4%

1 1 38|

£ 1 51

2 1 52 123457 IN ASCII
4 1 53

5 1 35

4 1 @ TERMINATOR

7 8 @

EMORY BLOCK 2 LOCATION?

MOVE SUBROUTINE TO7 37002
SUBROUTINE EXECUTED AT 37000
INPUT ¢ OUTPUT:

HL= 40008 HL.= 42799 RESULT
MEMBLI+ @ 49 MEMB1+ @ 49
MEMRI+ I 5@ MEMB1+ 1 50
MEMB1+ 2 51 MEMB1+ 2 51
MEMB1+ 3 5% MEMBI+ 3 352 - UNCHANGED
MEMBLI+ 4 53 MEMB1+ 4 353
MEMBI1+ 5 55 MEMEt+ 5 55
MEMBI+ & @ MEMEBLI+ & @

NAME OF BURROUTINE?

Notes

1.

If the string of ASCII characters is longer than 6 bytes, or if the octal value

represented is greater than 177777, AOXBIN will return an invalid result,

2. If any character in the string is not in the proper range, AOXBIN will return
an invalid result; no check is made of the validity of the ASCIl characters.

Program Listing

R0 ORG TFBaH @52

AL L@ 5 R0 3 5 3 ST 339636 3636 396 30962636 96 96 3016 3696 96 96 36 306 396 369636 36 4636 96 3636 960 96 3 36

212 3+ ASCIY OCTAL TO BINARY CONVERSION. CONVERTS A STRING *

BR1i3D :» OF ASCII CHARACTERS REPRESENTING OCTAL DIGITS TO BI—- *

AR140 ;¥ NARY. *

DAL5a s« INPUT: HL=> STRING OF CHARACTERS:y TERMIMNATED RY *

tRien e NULL CHARACTER. *

A017a 5% OUTPUT :HL=BINARY NUMBER FROM @ - &£5535 *

DRIBH T HREHRERFEEEEEEERERELRERRERERR R R BB NN N0 N XE N NN

ae1vre

RAZRd AOXEIN PUSH AF $5AVE REGISTERB_

paz1@ PUSH DE

7] el v FPUSH TX

PRz23d CALL DATFH FuR¥GET STRING LOC® Mexx
44

7FQ7
7F@B
7FeD
7FOE
7FOF
7F11
7F13
7F15
7F17
7F19
7F1A
7F1C
7F1D
7F1F
7F
7F 22
7F24
7F 25
7E 26
TF29
000

DDz1000D QBZ40

1408

Q0258
BRz6D
20278
et 1]
8o=va
oe30a
pe310
Po3z0
Pe330
aR340
AR350
enlsLe
PB3780
BB3BO
aa379
Bp4ne
20419
20420
Q439
20448

Ardnd TOTAL. ERRORS

LD X0 sCLEAR RESULT REGISTER
LD .9 sFOR LOOP
AGX@A1la LD A (HL) sGET NEXT CHARACTER
QR I3 sTEST FOR NULL (END)
JR I+ AQXAZA sG0 IF END
ADD IXs1IX sSHIFT LEFT 3 BITS
ADD IXs1X
ADD IXsIX
SUR 32H s CONVERT TO @-7
LD Es+& oW IN E
ADXA1S5 ADD I1XsDE SMERGE WITH PREVIOUS
INC Hi. sPOINT TO NEXT CHARACTER
JR AOXQ 1A sLOOP *TIL END
AOX@2A PUSH IX sTRANSFER RESULT
POP HL.
PoP IX sRESTORE REGISTERS
FOP DE
POP AF
JP DAFAH s % u*RETURN ARGUMENT **%
RET TNON-BASIC RETURN
END

AOXBIN DECIMAL VALUES

4% Z13s 21y 29y 20Y5s 127 1B 221 33 B4

By 22y B 124y 183y 4@ 14y ZZ1s 4ls 2219

19 221y 41 2149 48s 99s 221s 25Ha 354 24,

238y 21y 22F0 225y 221y 225, 2092 241y 195y 154,
18s 201

CHREUM= 74

BCADDN; MULTIPLE-PRECISION BCD ADD

System Configuration

Model 1, Model 111, Model |l Stand Alone.

Description

BCADDN adds a "source” string of bed digits to a “’destination”” string of bed
digits and puts the result of the add into the destination string. Each of the two
strings is assumed to be the same length. The [ength must be an even number of
bed digits, but may be any number from 2 through 254.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the destination string in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes of the parameler block contain the address of the
source string in the same format. The next byte of the parameter block-contains

the number of bed digits in the two operands. This must be an even number {an
integral number of bytes),

45

On output, the parameter block and source string are unchanged. The destina-
tion string contains the result of the bed add.

INPUT OUTPUT
H L H L

1

i
T T
L POINTER TO PARAM-+@f | —— | UNCHANGED
J
T

i

PARAM® | bomnteRTO | PARAMIS | Unchansen
EM1+@
i M +1
+2 +2
1 POINTER go 14 + UNCHANGED
+3 : +3
+4 EXBND% I?g +4 UNCHANGED
MEM 1+ MEM1+0
+1 o +
4 BCD + T RESULY T
+2 OPEI?AND +2 {op1+op2}
- =+ <4 -+
+3 > =
+4 +4
+5 +5
+6 +6
— A A A
MEM2+8 MEM2 -+
+1 +1
+ BCD T T T
+2 OPERAND +2
+ 2 4 4 +
+3 ﬁ +3 UNCHANGED
4+ o4 -+ -
+4 +4
+6 +e

Algorithm

The BCADDN subroutine performs one add for each two bed digits. The desti-
nation string address and source string address are first picked up from the
parameter block and put into DE and HL, respectively. The number of bytes in
the add is then picked up and put into the BC register pair. This number is
divided by two to obtain the total number of bytes involved. This number
minus one is then added to the source and destination pointers so that they
point to the least significant bytes of the source and destination strings. The
number of bytes is then put into the B register for loop control.

The next two bed destination digits are then picked up from the destination
string (DE register pointer). An ADC is made of the two source string digits (HL
register pointer). The result is adjusted for a bed add by a DAA instruction, and
the result stored in the destination string.

46

The source and destination string pointers are then decremented by cne to
point to the next most significant two bed digits of each operand. The B register
count is then decremented by a DJNZ, and a loop back to BCAQ10 is made for
the next add.

The carry is cleared before the first bed add, but successive adds add in the
carry from the preceding bed add.

[f the destination operand was 00H, 45H, 67H, 1TH and the source operand
was 00H, 75H, 77H, 33H, then the number of bed digits must be 8. The result in
the destination operand would be 01H, 21H, 44H, 44H. Note that the result
may be one bed digit longer than the original number of bed digits.

Sample Calling Sequence

NAME OF SUBROUTINE? BCADDN

HL VALUE? 4000P

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ B 2 45000

+ & 2 5hode

+ 4 1 & 6BCDDIGITS

+5 0 o

MEMORY BLOCK 1 LOCATION? 45000
MEMORY BLOCK 1 VALUES?

+9 1 18

+ 1 1 52z | 123456 N BCD

+2 1 86

+3 2 @0

MEMORY BLOCK Z LOCATION? S@000
MEMORY BLOCH 2 VALUES?

+@ 1 119

+ 1 1 5 7709547 IN BCD

+2 171

+3 8 @

MOVE SUBROUTINE T0O7? 37060
SUBROUTINE EXECUTED AT 37000

INPUT: QUTPUT 2

HL= 42009 HL= 40000)

PARAM+ @ 200 PARAM+ @ 200

PARAM+ 1 175 PARAM+ 1 175

PARAM+ 2 8O PARAM+ 2 8@ [UNCHANGED
PARAM+ 3 195 PARAM+ 3 195

PARAM+ 4 & PARAM+ 4 & |

MEMBi+ @ 1B MEMB1+ B 137

MEMB1+ 1 52 MEMB1+ | &4 |- 894003 RESULT IN BCD
MEMBI+ Z Bé MEMBI+ 2 3]

MEMB2+ @ 119 MEMB2+ @ 119

MEMBZ+ 1 5 MEMBZ+ 1 S | UNCHANGED
MEMB2+ = 71 MEMB2+ 2 71 |

NAME OF SUBROUTINE?

Notes

1. Aninvalid result will occur if the source or destination strings do not con-
tain valid bed digits.

2. The destination string is a fixed length. Leading zero bed digits must pre-
cede the operands to handle the result, which may be one bed digit larger than
either of the operands.

47

3. This is an “unsigned”” bed add. Both operands are assumed to be positive

bcd numbers.

Program Listing

ORG

7FBRH 30522

3 RN I AT NI ACAE AT I IE BT I JE I I

% MULTIPLE-PRECISION BCD ADD.

ADDS TWO MULTIPLE-PRE-

7F2a eeioe

20118

22120

20130

DA142

aaise

2140

an170

baigpe

eni19e

ralregrlg
7FP@ F5 pez1e
7F81 C5 22220
7FB2 D5 evz38
7F@3 ES 20z4@
7F@4 DDES 2@z5p
7F@A46 CD7FDA PRZLQ
7FR9 ES evz7a
7F@A DDE1 vazse
7FAC DD5EDD 20292
7FAF DD5&601 Ra320
7F12 DD&EBZ Q8318
7F15 DD&6AZ PR320
7F 18 DD4EQ4 20330
7FiB CB39 BB340
7F1D Bs0i 20350
7F1iF 0B 20353
7F20 0% RR37e
7F21 EB 2B3sn
7F22 a9 2370
7FZ3 EB 0400
TF24 41 2410
TF23 B4 20420
TFZ6 B7 20430
7F27 1A BB440
7F28 BE RB45@
TF29 27 BB46B
7FzA 12 ees7e
7F2B zB 2460
7Fz2C 1R @470
7F2D 10F8 aasae
7FZF DDE1 2e510
7F31 E1 80520
7F3z D1 P2530
7F33 C1 22540
7F34 F1 22550
7F35 C9 Ba5460
efr.lra LV eas7e

22008 TOTAL ERRORS

3% CISTON BCD OPERANDS.

ANY LENGTH

R
I *
HE
3*
g%

INPUT: HL=3

PARAMETER BLQCK

PARAM+@, +1=ADDRESS OF OPERAND 1|

PARAM+2y +3=ADDRESS OF OPERAND 2

FARAM+4=EVEN # OF BCD DIGITS, B-254
OUTPUT:OPERAND 1 LOCATION HOLDS REBULT

*
*
*
*
*
*
*

F NI A NI IS I IS NI I I IE I I I I3 I A T O

BCADDN PUSH

AF $SAVE REGISTERS
PUSH BC
PUSH DE
PUSH HL
PUSH IX
CalL BA7TFH sREEGET PB LOC Nx#x
PUSH HL s TRANSFER TO IX
POP IX
LD Es (IX+0) $GET 0P 1 LOC’N
LD Da(IX+1)
L.D L (IX+2) $GET OP 2 LOC™N
LD Hy (IX+3)
LD Ca{IX+4) SGET # OF BYTES
SRL ¢ IN/Z
LD B8 iNOW IN BC
DEC BC $4H-1
ADD HLsBC SPOINT TO LAST OPZz
EX DEsHL sSWAP DE AND HL
ADD HLsRC $POINT TO LAST OFP1
EX DEsHL $SWAP BACK
LD EsC 3#—1 BACK TO B
INC B FORIGINAL NUMBER
OR A 1CLEAR CARRY FOR FIRST ADD
BCABI® LD As {DE) 3GET OPERAND 1 BYTE
ADC A (HL? 5ADD OPERAND 2
DAA sDECIMAL ADJUST
LD (DE)sA $8TORE RESULT
DEC HL $POINT TO NEXT QP2
DEC DE sPOINT TO NEXT OP1
DJNZ BCAD1D SLOQOP FOR N BYTES
PoP ix REGTORE REGISTERS
Pop HL
POP DE
POP BcC
POF AF
RET SRETURN TO CALLING PROG
END

ECADDN DECIMAL VALUES

245,

197y 213s 229 221, 2295 20%. 127y 10 229,
221y 235. Z21y T4y @ TE1s 8B&y 1y ZT1s 110s
2y ZE1y 102y 34 221y 7By 41 B3y 975 &y
@ 11y Py 235y F» 235 &% 4 183, 26y
142, 39y 1By 43, 27y 16y 248y 221y 239y 205,)
Z0%s 193, 241, 201
CHKSUM= 115
48

BCDXAD: BCD TO ASCII DECIMAL CONVERSION

System Configuration

Model |, Model Ill, Model Il Stand Alone.

Description

BCDXAD converts a string of bed digits to a string of ASCIl characters. Each
“nibble’”” of four bits in the bed string is assumed to be a valid bed character of
binary value 0 through 9. The bed string may be from zero to any number of
bytes long, but is terminated with a nibble of all ones. The result string of ASCII
digits will represent ASCII decimal digits of 30H through 39H, with a terminator
of a byte of zeroes.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the bed string in stand-
ard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes of the parameter block contain the address of the
result string in the same format.

On output, the parameter block is unchanged. The bed string is destroyed. The
result string contains an ASCI| decimal digit for each bed digit in the bed string
and a final byte of zeroes.

INPUT QUTPUT
HooL Ho ot
T T
POINTER TO PARAM+0 I — | UNCHANGED
T T
PARAM-+@ POINTER TO PARAM-+@
1+ BCDSTRING + <+ UNCHANGED
+1 (MEM 1+0) +1
+2 POINTER TO +2
4 RESULT STRING + 4 uUNCHANGED +
+3 (MEM2+) i +3
MEM 1-+8 MEM 1+
+1 +1
+ BCD T + T
+2 STRING +2
il 1 1 1
43 : 43 DESTROYED
+4 +4
—— -t e -
+5 +5
+6 | 1 +6 | |
LAST | 1111 | 200G | tor xaxx1111) LAST

49

MEM2-+¢ MEM2+3
+1 +1
+ RESERVED + RESULT ¢
+2 FOR +2 STRING
4+ RESULT + +4
+3 STRING :j i3
+4 +4
+6 +5
+6 | +6 §
LAST)
Algorithm

The BCDXAD subroutine performs one conversion for each bed digit. The bed
string address and result string address are first picked up from the parameter
block and put into HL and DE, respectively.

The next bed digit is then picked up from the bed string by an RLD instruction,
A test is made for alt ones. If the digit is all ones, a jump is made to BCD0O20.

A value of 30H is added to the bcd digit to convert it to an ASCI digit of 30H
through 39H. This digit is then stored in the result string. The ASCII result string
address in DF is then incremented by one, and the next bed digit is picked up,
tested, converted, and stored. The ASCH string pointer is again incremented to
point to the next byte. The bed pointer in HL is then incremented to point to the
next two bed digits. A loop is then made back to BCDO10.

The final action at BCDO020 is to store a null (zeroes) at the next ASCII character
position.

The RLD instruction shifts the least significant four bits of the A register and the
memory location pointed to by HL in a four-bit bed shift to the left.

If the bed string was 45H, 67H, 5FH, the result in the ASCII string would be
34H, 35H, 36H, 37H, 35H, 00H.

Sample Calling Sequence

NAME. OF SUBROUTINE? RCDXAD

HL VALUE? 41300

PARAMETER BLOCK LOCATION? 41000
PARAMETER BLOCK VALUES?

+ @ 2 44D@0 POINTS TO BCD STRING

+ 2 2 430@@ POINTSTO RESULT STRING
+4 @ @

MEMORY BLOCK 1 LOCATION? 44002
MEMORY BLOCK 1 VALUEG?

e 1 143 ~ 912 IN BCD PLUS TERMINATOR OF ALL ONES
+ 1 1 47 |

+2 0 0
MEMORY BLOCK Z LOCATION? 45000
MEMORY BLOCK 2 VALUES?

+@ 1 255
+1 1 255

+ 2 | 555 [INITIALIZE RESULT FOR EXAMPLE
+3 1 255

+4 0 @

30

7FBd

F3

D3

ES
DDES
CD7FBA
ES
DDE1
DD3E®Z
DD56B3
DD&ED@
DD&&AL
AF
ED&F
FE@OF
2812
Ca30
12

13

AF
ED&F
FEQF
2887
CLIP
12

13

23
18E7

20100
Ba11d
PD1z0
ae139
20148
ae15e
il Yl
bB170
20180
Q9190
oazeo
pez1@
2020
eaz32
20242
aozs50
DOz260
2ez7e
o@zanr
20270
ea3oe
BpR310
ea3zo
BRZ3B
B340
2\3s50
DR34B
2e37e
en3s0
20390
20400
PB410
Da4za
@430
@440
ae45@
460
PR470
20482

MOVE SURBROUTINE TO? 47000
SURROUTINE EXECUTED AT 47000

INPUT : QUTRUT:

HL= 41080 HL= 41000
PARAM+ B 224 PARAM+ @ 224
PARAM+ 1 171 FARAM+ 1 171
PARAM+ 2 208 PARAM+ 2 203
PARAM+ 3 175 PARAM+ 3 175
MEMBLI+ @& 145 MEMBL+ @ @
MEMB1+ 1 47 MEMBI+ 1 @B
MEMBZ+ B 233 MEMBZ+ B 57
MEMBE+ 1 255 MEMEZ+ 1 4%
MEMBZ+ 2 255 MEMBZ+ 2 5O
MEMBZ+ 3 2535 MEMBZ+ 3

MAME OF SURBROUTINE?

Notes

912 IN ASCII

@ TERMINATOR

1. An invalid result will occur if the bed string contains invalid bed digits.

2, The bed string will be destroyed in the processing.

Program Listing

ORG 7F@aH

;@322

R oSttt s s b s s s P IS ARSI LSS L L]

;# BCD TO ASCII DECIMAL CONVERSION. CONVERTS A STRING *
5% OF BCD DIGITS TO A STRING OF ASCII CHARACTERS. *
R INPUT: HL=> PARAMETER BLOCK *
RS PARAM+@.+1=LOCATION OF STRING OF BCD DGTS, *
R TERMINATED BY A NIBBLE OF ALL ONES. *
LR PARAM+2, +I=L.OCATION OF RESULT STRING *
§* QUTPUTHRESULT STRING HOLDS STRING OF ASCII CHARS. =
H TERMINATED BY A NULL. *
5 AR R RN IR T IR H IR0 3636 363033036 36 96 36 96 90 9636 90 56 30 309090 9696 96 36 36
BCDXAD PUSH AE iSAVE REGISTERS

PUSH DE

PUSH HL

PUSH ixX

Call BAT7FH #xxGET STRING LOC*N*x#*

PUSH HL ; TRANSFER TO IX

POP IX

LD Er (IX+2) IFUT DEST PNTR IN DE

LD Ds (IX+3)

LD Ls (IX+@) $PUT SOURCE PNTR IN HL

LD Hs (IX+1)
BECDB1@ XOR A sCLEAR A

RLD sGET BCD DIGIT

CcP AFH $TEST FOR ONES (END)

JR Z.BCDAZR 160 IF END

ADD As 30H 5CONVERT TO B~9 ASCII

LD (DE)s A ;STORE ABCII CHAR

INC DE $POINT TG NEXT CHARACTER

XOR A iCLEAR A

RLD yGET BCD DIGIT

cP @FH $TEST FOR ONES (END)

JR I, BCDRZ0O G0 IF END

ADD Ay 30H 5 CONVERT To @-9

LD (DE)a4 $STORE ASCII CHAR

INC DE sPOINT TO NEXT CHARACTER

INC Hi. sLOC'N FOR NXT 2 BCD DGTS

JR BCDO1D sLOGP *TIL END
51

7F38 AF 224790 BCIAZE XOR A

TF31 12 easeo .D (DE}»A
7F3z DDE1 eas1@ PGP IX
7F34 El BAas 2B POP HL.
7F35 DI PA538 POP DE
7F36 F1 o540 POP AF
7F37 C9 22550 RET

2020 BP560 END

DAOOD TOTAL ERRORS

BCDXAD DECIMAL VALUES

sNULL
IGTORE NULL AS TERMINATOR
$RESTORE REGISTERS

SRETURN TO CALLING PROG

245 213y 22Fs 221s 229 205 1275 1Bs 2E9s 01
220y 221y R4y 29 ZEls 8b&s 3e 2210 1Ry (@

221, 10Es s 175s 237 111y 2545 1%5s 40s 1B
198y 48y 18y 19y 17%y 237 11lly 254 152 4@,

7y 198s 48. 1Bs 195 35 245 231s 175 1Bs

E21s 2EHs 235y 209y T4l 201
CHRSGUM= 72

BCSUBT: MULTIPLE-PRECISION BCD SUBTRACT

System Configuration

Madel |, Model I, Model Il Stand Alone.

Description

BCSUBT subtracts a “/source" string of bed digits from a ““destination”” string of

bed digits and puts the result of

the subtract into the destination string. Each of

the two strings is assumed to be the same length. The length must be an even

number of bed digits, but may

Input/QOutput Parameters

be any number from 2 through 254.

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter bloc

k contain the address of the destination string in

standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes of the parameter block contain the address of the
source string in the same format. The next byte of the parameter block contains

the number of bed digits in the t
integral number of bytes}.

INPUT

H L

}

wo operands. This must be an even number (an

POINTER T(.':J PARAM+
T

PARAM+? | poINTERTO |
1 MEM 140
*2 | POINTERTO |
3 MEM2-+
EVEN # OF
+4 BCD DIGITS

52

oUTPUT
HooL
}
| — L UNCHANGED]
+
PARAM-+2
4 UNcHANGED -t
+1
+2 ’
{4 uUnCHANGED -+
i +3
+4 | UNCHANGED

MEM 149 MEM1+8
+1 +
4 1 1 1
+2 BCD +2 RESULT
1l oPerano | 4 oploepz 4
+3 1 —>
4 _’_ . e
+4 +4
-r - - -
+5 +5
+8 +6
MEM2+0 MEM2+8
+1 +
T BCD i T T
*2 | operanp | 2 | 1
43 2 j +3 | UNCHANGED
4 -4 =<4 Fe
+4 +4
+5 +5
+8 +6

On output, the parameter block and source string are unchanged. The destina-
tion string contains the result of the bed subtract,

Algorithm

The BCSUBT subroutine performs one subtract for each two bed digits. The
destination string address and source string address are first picked up from
the parameter block and put into DE and HL, respectively. The number of bytes
in the subtract is then picked up and put into the BC register pair. This number
is divided by two to obtain the total number of bytes involved. This number
minus one is then added to the source and destination pointers so that they
point to the least significant bytes of the source and destination strings. The
number of bytes is then put into the B register for loop control.

The next two bed destination digits are then picked up from the destination
string (DE register pointer). An ADC is made of the two source string digits (HL
register pointer). The result is adjusted for a bed subtract by a DAA instruction,
and the result stored in the destination string.

The source and destination string pointers are then decremented by one to
point to the next most significant two bed digits of each operand. The B register
count is then decremented by a DJNZ, and a loop back to BCS010 is made for
the next subtract,

The carry is cleared before the first bed subtract, but successive subtracts sub-
tract in the carry from the preceding becd subtract.

If the destination operand was 00H, 45H, 67H, 1TH and the source c;perand
was 00H, 75H, 77H, 33H, then the number of bed digits must be 8. The result in
the destination operand would be 99H, 69H, 89H, 78H.

53

Sample Calling Sequence

NAME OF SUBROUTINE? BCSUBRT

HL VALUE? 50002

PARAMETER BLOCK LOCATION? S0000
PARAMETER BLOCK VALUES?

+ @ 2 52000

+ 2 2 54000

+4 1 4 4 BCD DIGITS

+5 @ B

MEMORY BLOCK I LOCATION? 52008
MEMORY BLOCK 1 VALUES?

£2 1149 o aco

+ 2 @ B

MEMORY BLOCK 2 LOCATION? 54000
MEMORY BLGOCK 2 YALUES?

+

+? i :gﬂ-msweco

+ ¥ @ @8

MOVE SUBROUTINE TO? 45008
SUBRROUTINE EXECUTED AT 45200

INPUT: QUTRUT #
HL= Sape0 HL= SDOaD
PARAM+ @ 32 PARAM+ B 32 7
PARAM+ 1| 283 PARAM+ : 203
ARAM+ pt PARAM+ 2 24@ - UNCHANGED
FaRaMT 5 298 PARAM+ 3 z?g
PARAM+ 4 4 PARAM+ 4 4 |
MEMEBiI+ @ 149 MEMBI+ @ |
MEMB1+ 1 112 MEMBi+ 1 335 | '8/ RESULTINBCD
MEMBZ+ @ 147 MEMBZ+ @ 147
MEMBZ+ 1 131 MEMBa2+ 1 131 [YNCHANGED

NAME OF SUBROUTINE?

Notes

1. An invalid result will occur if the source or destination strings do not con-
tain valid bed digits.

2. This is an “unsigned’’ subtract. Both operands are assumed to be positive
bcd numbers.

Program Listing

7Fod 20100 ORgG TFeRH s@322
DAL 1O 533353333 3090320365630 36309 303606 96 36 3696 3 336 36 36 963636 36 36336 6 9696 96969696 9696 96 36 9696 96 36 96 96

BA12@ s* MULTIPLE-PRECISION BCD BUBTRACT. SUBTRACTS TWO MUL- %
P0130 % PLE-PRECISION BCD OPERANDS: ANY LENGTH. *
PR140 i INPUT: HL=*> PARAMETER BLOCK *
201580 s5x PARAM+B. +1=ADDRESS OF OPERAND 1 *
PA16R % PARAM+2y +3=ADDRESS OF OPERAND 2 *
BB17@ % PARAM+4=EVEN # OF BCD DIGITS: B-254 *

*

00180 # QUTPUT::OPERAND 1 LOCATION HOLDS RESULT
BOL1FE 7 1IN NN I 3050303036360 0T 00 360300616440 3033369636 36

Pozen
7Fal FS 22210 BCSURT PUSH AF 35AVE REGISTERS
7FBl C5 20229 PUSH BC
7F92 D5 Q0238 PUSH DE
TFB3 EB 20240 PUSH HL
7F@4 DDES RBz50 PUSH IX
54

7FR6
7F@9
7FBA
7F@C
7FOF
7F12
7F15
7F18
7F1B
7F1iD
7FIF
7F 20
7F21
7F22
7F23
7F24
7F25
7F26
7F27
7F28
7F29
7F2A
7F28
7F2C
7F2D
7F2F
7F31
7F3z2
7F33
7F34
7F35
P00

CD7F@A
ES
DDE1
DDSEQQ
DD5601
DD&EBRZ
DD&6A3
DD4ED4S
Ce39
A6

PezsR
2az7a
faazoe
20272
203020
20312
Rpe3ze
P332
aa342
22350
20340
Qea3va
an3en
28390
22400
Re410
aasz20
2v430
28440
20450
AR460
20470
Pe4B0
PRe470
Ll Jara]
eeiie
P052a
B@s530
Bas40
eesso
RPaSs0
570

2P2eB TOTAL ERRORS

CALL @A7FH $#**GET PR LOC> Naxx
PUSH HL sTRANSFER TO 1IX
POP IX
LD Es (I1X+@) $GET OP 1 LOC'N
LD Ds (IX+1)
LD Ls (IX+2) SGET OP 2 LOC’N
LD Hr (IX+3)
LD Cy (1X+4) 3GET # OF BYTES
SRL c SN/Z
LD Br0 INOW IN BC
DEC BC 1H-1
ADD HL s B $POINT TO LAST OFZ
EX DE s HL. 1SWAP DE AND HL
ADD HL:BC sPOINT TO LAST 0P1
EX DEs HL :SWAP BACK
LD B C s#-1 BACK TO B
INC B $ORIGINAL NUMBER
OR A :CLEAR CARRY FOR FIRST ADD

BCS@1@ LD A (DE) $GET OPERAND 1 BYTE
58C A (HL) 3SUB OPERAND Z
DAA sDECIMAL ADJUST
LD (DE)>s A sSTORE RESULT
DEC HL $POINT TO NEXT OPZ
DEC DE sPOINT TO NEXT OP1
DIJNZ BCSD10@ tLOOP FOR N BYTES
PGP IX sRESTORE REGISTERS
POP HL
POP DE
POP BC
POP AF
RET $RETURN TO CALLING PROG
END

BCSUBT DECIMAL VALUES

243+ 197s Z213s 229. 221y 229 2055 127 10s 279
221 225 221y P4y Dy 221y 8&y 1y 221+ 11@s

23 Z219 1@2s 39 2219 781 4y ZO3x 57e be

@: 11y P9 2355 Ty 235 459 41 183y Ths

158s 39y 1By 43y 27y 16y 248y ZZ1s 232%, 229,
2809 193, 241+ 201

CHKSUM= 131

BXBINY: BINARY TO ASCil BINARY CONVERSION

System Configuration

Model, I, Model Ill, Model 1l Stand Alone.

Description

BXBINY converts a 16-bit binary number to a string of ASCII binary digits. Each
character in the string will be either an ASCII one (30H) or an ASCII zero (31H).
The result string will be 16 bytes long, and is terminated with a byte of all
zeroes. The user must specify a buffer area of 17 bytes to hold the result string.

55

Input/Qutput Parameters

On input, the HL register pair contains a pointer to a parameter block for
BXBINY. The first two bytes of the parameter block contain the 16-bit binary
value to be converted, in standard Z-80 16-bit representation, least significant
byte followed by most significant byte. The next two bytes of the parameter
block contain the buffer address for the 17-byte buffer that will hold the result.

On output, the buffer has been filled with the resulting string of ASCIl ones and
zeroes, terminated by a null. The parameter block contents remain unchanged.

INPUT QUTPUT.
H L H L

T T
| romen TO PARAM 14 | — | UNCHANGED
T

PARAM+S | 16-BIT VALUE PARAM--@
4+ foBe 4 4 UNCHANGED -+
+1 CONVERTED +1
+2 BUFFER +2
i ADDREss 4+ + UNCHANGED -
+3 (MEM 1) :> +3
MEM 140 MEM1+@
+1 +1] T
+2 +2 | T
—— —— —— 16 ——
43 @ +3 ASCII
+ + + CHARAC- <+
+4 +4 TERS
45 RESERVED +5 1
1 FOR 1 1 1
+6 RESULT ‘6
+7 +7 | I
+8 +8
+9 +9
16 +16
1 1 1 1
11 +11
+12 12
+13 —> 1
+14 +14
1 1 1 4
+15 +1B
+16 1 +16 @
Algorithm

BXBINY goes through 16 iterations to convert each of the bits in the input value
to an ASCII 30H or 31H (zero or one). The value to be converted is put into
register pair HL from the parameter block. For each iteration, HL is shifted left

56

one bit position. The carry is set if the bit shifted out is a one, or reset if the bit
shifted out is a zero.

The carry is tested and either a 30H (0) or 31H (1) is stored in the next buffer
position. A pointer to the buffer is picked up from the parameter block and
maintained in the DE register pair; it is incremented by one as each result byte
is stored. The buffer is filled from low-order memory address to high-order
memory address, corresponding to the processing of the bits from HL.

If the binary value to be converted was 0000000000001101, the buffer would
contain 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 31 H,
31H, 30H, 31H, O0H on return,

Sample Calling Sequence

NAME OF SUBROUTINE? BXBINY

HL VALUE? 42000

PARAMETER BLOCK LOCATION? 400800

PARAMETER BILOCK VALUES?

+ @ 2 434800 VALUE TO BE CONVERTED = 18161¢1010100000
+ 2z 2 50008

+ 4 @0 B

MEMORY BLOCK I LOCATION? 32000

MEMORY BLOCK 1 VALUES?
4 -

MR RN R
SHAa88

~INITIALIZE BUFFER FOR EXAMPLE

R
It
=

a
@
@
2

55 |

[
E-
8= kRN

+ 17 2

MEMORY BLOCK Z LOCATION?

MOVE SUBROUTINE TO? 37200
SUBROUTINE EXECUTED AT 37000

INPUT s OUTPUT &

AL 43000 AL= 40000 _

FARAM+ @ 160 PARAM+ © 160

PARAM+ I 178 PARAM+ 1 {70

PARAM+ 2 8@ PARAM+ 2 pgp | JNCHANGED
PARAM+ 3 195 PARAM+ 3 195

MEMBI+ @ @ MEMB1+ @ 49]

MEMBi+ § @ MEMB1+ 1 48

MEMB1+ 2 MEMB1+ 2 49

MEMB1+ 3 @ MEMB1+ I 48

MEME1+ 4 @ MEMBI+ 4 49

MEMBi+ 5 MEMR1+ 5 48

MEMB1+ & © MEMB1+ & 49

:E:gi: ; g :E:Ei: g 23 - RESULT OF 1918181818108300 IN ASCII
MEMBI+ 9 @ MEMB1+ 9 48

MEMB1+ 10 @ MEMB1+ 10 49

MEMB1+ 11 @ MEMBI+ 11 48

MEMB1+ 17 © MEMB1+ 12 48

MEMB1+ 13 MEMB1+ 13 48

MEMBL1+ 14 B MEMBi+ 14 48

MEMB1+ 15 @ MEMB1+ 15 48 |

MEMB1+ 16 255 MEMB1+ 16 @ TERMINATOR

NAME OF SUBROUTINE?

57

7Fed

7F 00
7F@1
7Fez
7F03
7F04
7F06
7+ 09
7FRA
7F@c
7FOF
TF1Z

TF15
7F18
TF1A
7F1cC
7F1D
7F1F
7F20
7F21

IE22

7F23
7F26
7Fz8
7F29
TF24
7FzB
7F2C
e2ea

F5

€5

ps

ES3
DDES
CD7F@A
ES
DDE1
DD&ERB
DD&6@1
DD5SEB®Z2
DD54603
2510
3E30
29
3Joai
3C

12

13
APF&
12
DDE1
El
D1
Gl
Fi
ce

Notes

1.
2.

Program Listing

egi1ee
poi11@
oai1ze
RAa130
PB140
2150
221468
o178
22180
baive
20200
pazie
oRz2e
DA238
Rez40
apz50
2ezs0
ap278
erzeo
0298
va3en
pe31a
ea3zp

2R338
00340
v@350
20360
2370
20380
20370
20400
88218
20430
8440
20450
008440
2R470
20480
2R470
20500

0PB02 TOTAL ERRORS

ORG

No invalid result may occur.

7FaeH

Leading ASCIl zeroes may be present in the result.

iR522

H **

i# BINARY TO ASCII BINARY CONVERSION.
i* BINARY VALUE TO A STRING OF ASCII ONES AND ZEROES

i%# TERMINATED BY A NULL.
HL=> PARAMETER BLOCK
PARAM+@s +1=14~BIT VALUE
PARAM+Zy +3=RUFFER ADDRESS

5% INPUT:
HE 3
R 3

§ % QUTPUT:BUFFER FILLED WITH 14 ASCII ONES AND ZER-
TERMINATED BY NULL

T

QES,

CONVERTS A 16-BIT #

* ok K Kk ok kK

H **

BXBINY PUSH
PUSH
PUSH
PUSH
PUSH
CALL,
PUSH
POP
LD
LD
LD

LD
L.D
BxB@1a LD
ADD
JR
INC
BXB®2@ LD
INC

IR
LD
POP
POP
POP
POP
POP
RET
END

AF

ac

DE

HL.

IX
BATFH
HL.

Ix
La(IX+B)
He (IX+1)
Es (IX+2)
Ds{IX+3)
Bsl1é

A+ 30H
HL s HL

NC.BXBBZ@

A

(DE)s A
DE

EXBEIQ
(BE)s A

BEXBINY DECIMAL VALUES

245
221
23 221
1s &40,
225,

197,

225,

18-
207+

CHKSUM= 34

58

213,
221,
8bs 3s &s

194
1934

229y 221y
1180 By
1éy &2
2446,
21

L1&s
24 4

221,

229,

48,

175

Z@5
102,

414
18,

$SAVE REGISTERS

j#%%QET PE LOC?N&®x

sTRANSFER TO IX

FPUT VALUE INTG HL
iPUT BUFFER ADD IN DE

316 ITERATIONS
3ABCIT ZERO

$8HIFT VALUE LEFT 1 BIT

sG0 IF ZERO BIT
FASCII ONE NOW IN A
STORE ONE OR ZEROQ
sPOINT TO NEXT SLOT
*TIl. END

L OOP
s ZERO

$ETOCRE NULL

$RESTORE REGISTERS

5RETURN TO CALLING PROG

127

s 2214
48,
221,

1@,
Pay

22T

225

BXDECL: BINARY TO ASCIl DECIMAL CONVERSION

System Configuration

Model |, Model HH, Model 1l Stand Alone.

Description

BXDECL converts a 16-bit binary number to a string of ASCIi decimal digits.
Each character in the string will be in the range of ASCIi 0 through 9 (30H
through 39H). The result string will be 5 bytes long, and is terminated with a
byte of all zeroes. The user must specify a buffer area of 6 bytes to hold the
result string. The conversion is an ““unsigned’” conversion of the 16-bit value.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block for
BXDECL. The first two bytes of the parameter block contain the 16-bit binary
value to be converted, in standard Z-80 16-bit representation, least significant
byte followed by most significant byte. The next two bytes of the parameter
block contain the buffer address for the 6-byte buffer that will hold the result.

On output, the buffer has been filled with the resulting string of ASCII charac-
ters, terminated by a null. The parameter block contents remain unchanged.

INPUT QUTPUT
WL HooL
t {
| POINTER TO PARAM19] = [UNCHANGED
1 1
PARAM+8 | 16.BIT VALUE PARAM 4
+ ToBE 1 1 UNCHANGED 4
+1 CONVERTED +1
+2 BUFFER +2
4+ ADDRESS 4 4 UNCHANGED +
+3 {MEM 1-+2) : +3

MEM 1-+9 MEM 1+

e 4 - -
+1 +1 ASCI

+ RESERVED 1 1 CHARACTERS -
+2 FOR +2

+ RESULT | 4 4
+3 é +3
+4 +4
+5 +5 @

Algorithm

BXDECL goes through 5 iterations to convert the input values. The value to be
converted is put into register pair HL from the parameter block. For each itera-

39

tion, a power of ten is subtracted from the contents of HL, starting with the
largest power of ten that can be held in the 16-bit input value, 10000. Subse-
quent powers subtracted are 1000, 100, 10, and 1.

The first operation subtracts 10,000 as many times as possible from the original
value. For each subtract, a count is incremented. If the original value were
34,567, for example, the first operation would subtract 10,000 from 34,567 four
times. On the fourth time, the result would “‘go negative”” indicating that no
additional subtracts of the power could be done,

The count minus one is then added to 30H to yield the proper ASCII digit of 30H
through 39H. This ASCII digit is then stored in the buffer. This operation is
repeated for the five powers of ten involved.

BXDECL uses a subroutine called SUBPWR. SUBPWR is called to perform the
subtracts. SUBPWR is entered with BC containing the negated power of ten to
be subtracted and the current “‘residue’’ of the value to be converted in HL. A
count of —1 is initially put into A. This count is incremented for each subtract.
As each subtract is done, a test is made of the result. If it is negative, an add is
done to restore the last result in HL., A value of 30H is then added to the value of
A and the result is stored in the buffer. The pointer to the buffer is then incre-
mented by one,

SUBPWR returns to the code in BXDECL by testing the current power of ten, It
returns to one of five points at BXD0O10 through BXD050. This structure is nec-
essary to avoid use of CALL instructions, which are not relocatable.

The buffer is filled from low-order memory address to high-order memory ad-
dress, corresponding to the processing of the powers of ten,

If the binary value to be converted was 1010111111010011, the buffer would
contain 34H, 35H, 30H, 31H, 31H, 00H on return.

Sample Calling Sequence

NAME OF SUBROUTINE? BXDECL

HL VALUE? 40000

PARAMETER BLOCK LGCATION? 40000
PARAMETER BLOCK VALUES?

+ @ 2 12345 VALUE TOBE CONVERTED
+ 2 2 S0k

+ 4 @ @

MEMORY BLOCK 1 LOCATION? SO00D
MEMORY BLOCK 1 VALYUES?

+ @ 2 0

+z2 2 @0 INITIALIZE BUFFER FOR EXAMPLE
+ 4 1 @

+5 1 255

+ & 2 0@

MEMORY BLOCK 2 LOCATION?

MOVE SUBROUTINE TO7 45000

SUBROUTINE EXECUTED AT 458006

INPUT 2 QUTRUT :

Hi.= 4@00a ML= 4Q000

PARAM+ @ 57 PARAM+ @ 57 i
mgg:: é ;g iﬁggﬂ: é gg RESUL.T OF 12345 IN ASCII
PARAM+ 3 195 PARAM+ 3 195

7Foa

7F0D
7F@1
7F0Z
7F@3
7F B4
7F@6
7F@9
7F0A
7F@C
7FOF
7F12
7F15
7F18
7F1B
7F1D
7F20
7F2z
7F25
7F27
7F2A
7FZC
7F2F
7F31
7F3z
7F33
7F35
7F36
7F37
7F38
7F39
7F3A
7F3C
7F3D
7F3E
7F 40

F3

€3

D5

E5
DDES
CD7FDA
ES
DDE1
DD4ERD
DD&4B1
PEDSE@Z
DD54683
@iFeDs
181D
@118FC
1818 .
BI9CFF
1813
BIF&LFF
180E
RIFFFF
1809
AF

MEMEI+ @ @ MEMBi+ @ 49

MEMEI+ 1 @ MEMB1+ 1 50

MEMB1+ 2 D MEMBL1+ 2 51 L ynNCHANGED
MEMBI+ 3 @ MEMBI+ 3 52

MEMBI+ 4 @ MEMBI+ 4 53

MEMBI+ 5 255 MEMEI+ 5 @

NAME (F SUBROUTINE?

N

1.

2,

otes

Leading ASCII zeroes may be present in the result,
No invalid result may occur.

Program Listing

0210
00110
0120
0130
PB140
0P150
201460
20170
20180
20159
20200
o0z10
00z20
20230
PDZ40
20250
20260
0270
20280
20299
00300
22310
2032@
20330
PB34@
20350
20360
eB370
o380
2e390
20400
20410
PB4 20
BB430
BR44D
P0450
PR46D
00470
00480
00490
Vo520
205102
PR520
BO530
PR54@
0550
PO5 42

61

ORG 7FO@H @522
R R T e T L L]

;% BINARY TO ASCII DECIMAL CONVERSION. CONVERTS A 146-BIT#
s% BINARY VALUE TO A STRING OF ASCII DECIMAL DIGITS TER-#

1% MINATED BY A NULL. *
1% INPUT: HL=> PARAMETER BLOCK *
I PARAM+Bs+1=146 BIT VALUE *
R PARAM+2y +3=BUFFER ADDRESS *
L OUTPUT:BUFFER FILLED WITH 5 ASCII DIGITS: TERM- *
3 INATED BY NULL *

B i s AL PRSI E LR TS RE Y I R R g gy

BXDECL PUSH AF iSAVE REGISBTERS

PUSH BC

PUSH DE

PUSH HL

PUSH IX

CALL BA7FH $#4XGET PB LOCTN#xx

PUSH HL s TRANSFER TO IX

POP 1X

LD Ly CIX+D) tPUT VALUE INTO HL

LD Hy (IX+1)

LD Er (1X+2) iPUT BUFFER ADD IN DE

LD Da (IX+3)

LD BC: -10000 510 TO THE FOURTH

JR SUBPWR sFIND FIRST DIGIT
BXDD1@ LD BC» ~1000 11@ TO THE THIRD

JR SUBPWR tFIND SECOND DIGIT
BXDRZ® LD BCy~120 110 TO THE SECOND

JR SUBPUWR $FIND THIRD DIGIT
BXDO3® LD BCy~10 110 TO THE FIRST

JR SUBPWR tFIND FOURTH DIGIT
BXD@40 LD BCy-1 319 TO THE ZEROTH

JR SUBPWR sFIND LAST DIGIT
BXDB5® XOR A 3 ZERO

LD (DE}s+A $STORE NULL

POP IX i RESTORE REGISTERS

POF HL

POP DE

POP BC

POP AF

RET $RETURN TO CALLING PROG
SUBPWR LD As OFFH i-1 TO A
SUB@1@ INC A $BUMP DIGIT COUNT -

ADD HLs BC sSUBTRACT PWR OF TEN

JR Cs SUBD1D 360 _IF NOT NEGATIVE

OR A i CLEAR CARRY

7F41
7F43
7F45
7F46
TF47
7F48
7F4A
7TF4C
TF4E
7F5@
7F52
7F54
7FS6
7F58
2000

ED4AZ
C530
12

13

79

FEF@
28D1
FEiIB
28Dz
FETC
28D3
FEF&
28D4
i8D7

z@s570 SBEC HLsBC
20580 ADD As 30H
0590 LD (DE) 1A
eescRR INC DE

20610 LD A C
00620 cp OFOH
0B&30 JR ZsBXDO10
PRLH4D cp 18H
20650 JR Z+»BXDO20
BBHLD cP FCH
0670 JR 7+BXDO30
DBLBR cP OF 6H
P0LTB JR 7sBXDR4D
PO70@ JR EXDRSE
0710 END

aoDod TOTAL ERRORS

BXDECL DECIMAL VALUES

245, 197y 213,
221y 22T 221
2y 221y BbHy 3a

229y 221s 229

Li@y @y 221y 102
1e 2482 214+ 244

24y 252 24« 24s 1. 156 25959

24by 2959 24
18+ 221y 2250

19y 1219 254,
254. 156y 40

CHREUM= 193

145 12 2554 255,
22%s 209« 193, 241,
&0 P9 Dby I5E

183y 237y L&

240, 4By Z0%s 2549
11y 254y Z4éy 4D,

BXHEXD: BINARY TO ASCIl HEXADECIMAL CONVERSION

System Configuration

Model I, Madel Ill, Model il Stand Alone.

Description

3RESTORE LAST RESULT
$CONVERT TO ABCLI
:8TORE IN BUFFER
sPOINT TO NEXT SLOT
SGET LLSB OF PWR
iTEST FOR 10000
;G0 IF 10000

STEST FOR -1000

G0 IF -1800

STEST FOR 100

GG IF ~108

STEST FOR ~318

G0 IF ~1@

TMUST BE ~1

127 18y 229,
22l by

1

175,

62s 255,
16,

48 210y

249 215

BXHEXD converts a 16-bit binary number to a string of ASCIl hexadecimal
digits. Each character in the string will be in the range of ASCII0 through 9 (30H
through 37H) or ASCII A through F (41H through 46H). The result string will be
4 bytes long, and is terminated with a byte of all zeroes. The user must specify a

buffer area of 5 bytes to hold the result string.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block for
BXHEXD. The first two bytes of the parameter block contain the 16-bit binary
value to be converted, in standard Z-80 16-bit representation, least significant
byte followed by most significant byte. The next two bytes of the parameter
block contain the buffer address for the 5-byte buffer that will hold the result.

62

On output, the buffer has been filled with the resulting string of ASCIl charac-
ters, terminated by a null. The parameter block contents remain unchanged.

INPUT OUTPUT
HooL Ho oL
1 1
POINTER TC? PARAM-+G] — [UNCH?NGED J
PARAM-+g 16-BIT VALUE PARAM-+E
+ TO BE + 4+ UNCHANGED +
+1 CONVERTED +1
+2 BUFFER +2
+ ADDRESS + 1 UNCHANGED -
+3 {MEM 148) i +3
MEM1+0 MEM1+8
“al T T ASCII T
1 reserven | *1 1 cHARACTERS
FOR
*2] gesut | 2] l 1
+3 —>
+4 +4 g
Algorithm

BXHEXD goes through 4 iterations to convert each of the bits in the input value
to an ASCII 30H through 39H (zero through nine) or 41 H through 46H (A through
F). The value to be converted is put into register pair HL from the parameter
block. For each iteration, HL is shifted four bit positions with the four bits from
the shift going into the four least significant bits of the A register.

A test is then made of the value in A. If it is in the range O through 9, a “‘bias’”
value of 30H is set aside. If it is in the range of 10 through 15, a bias value of
37H is saved. The bias value is then added to the contents of A, converting the
three bits to an ASCIH octal digit of 30H through 39H or 41H through 46H. The
ASCII character is then stored in the user buffer. A pointer to the buffer is picked
up from the parameter block and maintained in the DE register pair; it is incre-
mented by one as each result byte is stored. The buffer is filled from low-order
memory address to high-order memory address, corresponding to the process-
ing of the bits from HL.

If the binary value to be converted was 1111000000111101, the buffer would
contain 45H, 30H, 33H, 44H, 00H on return.

Sample Calling Sequence

NAME OF SUBROUTINE? BXHEXD

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 40022
PARAMETER BLOCK VALUEDR?

+ @ 2 44660 VALUETOBECONVERTED

63

+ 2 2 50020

+4 B @

MEMORY BLQCK { LOCATION? S@@800
MEMORY BLOCK 1 VALUES?

+ B 2 @

+ 2 2 @ INITJALIZE BUFFER FOR EXAMPLE
+ 4 1 255}

+5 @ 0

MEMORY BLOCK 2 LOCATION?
MOVE SUBRCUTINE TO? 37777
SUBROUTINE EXECUTED AT 37777

INPUT: QUTPUT:

HL= 40000 HL= 40000

PARAM+ @ 52 PARAM+ @ 52

PARAM+ 1 18 PARAM+ 1 18

PARAM+ 2 8@ PARAM+ z gp | UNCHANGED
PARAM+ 3 195 PARAM+ 3 195

MEMB1+ @ @ MEMBI+ @ 49

MEMEI+ 1 @ MEMBI+ 1 5@

MEMB1+ 2 a MEMB1+ 2 51 RESULT OF 1234 IN ASCH
MEMB1+ 3 D MEMBI+ 3 5z

MEMB1+ 4 259 MEMB1+ 4 @ TERMINATOR

NAME OF SUBROUTINE?

Notes

1. Leading ASCIl zeroes may be present in the result,
2. No invalid result may occur.

Program Listing

7Fee paioa ORG 7FeeH @322
ag11@ TR AR RTINS I IR I IIEI A BTN NI IR
BR1Z@ sx BINARY TO ASCII HEXADECIMAL CONVERSION. CONVERTS A

*

D138 3+ 14-BIT BINARY VALUE TO A STRING OF ASCII HEX DIGITS =
P214@ ;x TERMINATED BY A NULL. *
QA150 s« INPUT: HL=> PARAMETER BLOCK *
2160 PARAM+@s +1=14-BIT VALUE *
api7e s PARAM+Z, +3=RUFFER ADDRESS *
ao18a i« OUTPUT :BUFFER FILLED WITH FOUR ASCII HEX DIGITSs »
20190 5% TERMINATED BY NULL *
nazer FREEEEREEER LI I H I IR RN KN RN R TN KW
Baz1a@ ;

YFOR FS DOIz@ RXHEXD PUSH AF i8AVE REGISTERS

7F@1 C5 RB@z30 PUSH RC

JFBZ DS Daz48 PUSH DE

TFR3 ES eBz5e PUSH HL.

7F@a4 DDES DBzH0 PUSH IX

7FB6 CD7F@A A7 CALL. BATFH FRAXGET PB LOCT Ne*®

Fa% ES 2Rrae PUSH HL

7F@A DDE1L A0278 POP IX

7FAC DD6EQR nazee LD La{IX+B) sPUT VALUE INTO HL

YF@F DD&6&DL a9 4] LD Hy (IX+2)

7F1Z DDSE@Z ea3zo LD Ex (IX+2) PPUT BUFFER ADD IN DE

JF15 DD5603 0332 LD Ds (IX+3)

7 1B BaR4 340 t.D By &4 SITERATION COUNT

TF1A AF 223580 BXHA1@ XOR A SZERO A

Wik I9 0a360 ADD HL s HL ISHIFT OUT BIT LEFT

TF1C 17 NA37a RLA SBHIFT INTO A

1D 29 aa3ae ADD HL.s ML

TF1E 17 on3e Rl.A

7F1F Z9 22400 ADD Hi_ s HL.

64

TF2Q 17 D412 RLA

TE21 =9 0420 ADD HL s HL.
TFz2 17 BR4 33 Ri-A

TFE3 FS ap44B PUSH AF
724 BE3D D458 LD Cs 3@H
YF26 DODA DR4 4G sUB i@
TF2B CRYF @470 BIT 71A
TFLA ez ba4sn JR MNZ s BEXHBZB
7F2C QEX7 82479 LD Ca37H
TFZE F1 NRS00 BXHOZA POP AF
7F:ZF Bi ens1d ADD AsC
TF3Q 12 rR5:a LD (DE) A
7F31 132 @aa530 INC DE
TF3z 10ES D540 DJINZ PXHB1G®
TF34 AF 2550 XOR A

TF35 12 20548 LD (DE) A
7F36 DDEL aes7@ POP IX
TF38 El oese0 POP HL.
7F3? D1 PAs7A@ pop DE
7F3A C1 pRLOB PoP BC
TF3B F1 aas10 POP AF
TF3C L9 204620 RET

anaa ags3d END

2eeRa TOTAL ERRORS

BXHEXD DECIMAL VALUES

248 197 213+ 229y Z21x 2
221 225, 221s 119y B, 221
Ly Z21. Bbs 33 &y 49 1759
23 410 23 41. Z3s 2454
283y 127y 32y 2y 14, 55, 2
16y 230@s 175« 18: 221 229
201
CHKSUM= 231

BXOCTL: BINARY TO ASCIl OCTAL CONVERSION

System Configuration

1SAVE 4 RITS
$ASCIT ZERO
sTEST FOR @ — 9
5TEST SIGN
160 IF @-9
sADJUSTMENT FOR A ~ F
$RESTORE ORIGINAL EITS
sADD IN ASCII BIAS
iSTORE CHARACTER
$POINT TO NEXT SLOT
sLOOP *TIL 4

3 ZEROQ

s5TORE NULL

$RESTORE REGISTERS

$RETURN TO CALLING PROG

29y 205
s 102y 1.
415 23y 419
4y 48y 214
419 129y 18,
v 2259 209,

127
221y

18,
P4y

EET

1@,
19,

193y 241,

Model |, Model !ll, Model Il Stand Alone.

Description

BXOCTL converts a 16-hit binary nu
character in the string will be in the
37H). The result string will be 6 byte

mber to a string of ASCII octal digits. Each
range of ASCI1 0 through 7 (30H through
s long, and is terminated with a byte of all

zeroes. The user must specify a buffer area of 7 bytes to hold the result string.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block for

BXOCTL. The first two bytes of the

parameter block contain the 16-bit binary

value to be converted, in standard Z-80 16-bit representation, least significant
byte followed by most significant byte. The next two bytes of the parameter

block contain the buffer address for

the 7-byte buffer that will hold the result.

On output, the buffer has been filled with the resulting string of ASCII charac-
ters, terminated by a null. The parameter block contents remain unchanged.

INPUT QUTPUT
Ho L Ho L
L) T
POINTER TO PARAW-9 | — | UNCHANGED |
PARAM-Z 16BIT PARAM-+5
T WL+ 4 UNCHANGED +
+1 +1
+2 POINTER +2
{+ TOBUFFER 4+ + UNCHANGED
+3 {MEM 1+4) _ _7\) +3
MEM 1+ MEM1-+8
“ +1 RESULT
+ RESERVED 1 + IN +
+2 FOR +2 ASCII
4 ResulT 4+ 1 1
+3 :j +3
+4 +4 | T
+5 15]
+6 +6 T
+7 +7 g
Algorithm

BXOCTL goes through 6 iterations to convert each of the bits in the input value
to an ASCII 30H through 37H (zero through seven). The value to be converted is
put into register pair HL from the parameter block. For each iteration except the
first, HL is shifted three bit positions with the three bits from the shift going into
the three least significant bits of the A register. (The first iteration performs only
one shift to handle the leading octal digit of 0 or 1.)

A value of 30H is then added to the contents of A. This converts the three bits to
an ASCII octal digit of 30H through 37H. The ASCII character is then stored in
the user buffer. A pointer to the buffer is picked up from the parameter block
and maintained in the DE register pair; it is incremented by one as each result
byte is stored. The buffer is filled from low-order memory address to high-order
memory address, corresponding to the processing of the bits from HL.

If the binary value to be converted was 1000000000001101, the buffer would
contain 31H, 30H, 30H, 30H, 31H, 35H, 00H on return.

Sample Calling Sequence

NAME OF SUBROUTINE? BXOCTL
HL VALUE? 420000
PARAMETER BLOCK LOCATION? 40000

66

7FRG

7Foa
7Fa1
7Fez
7Fa3
7Fo4
TFas
7Fa%
TFAA

PARAMETER BLOCK VALUES?

+
+
+

@ 2z 12345 VALUETOBE CONVERTED = (030¢71 OCTAL
2 2 45000
4 a °

MEMCGRY BLOCK 1 LOCATION? 45008
MEMORY BLOCK 1 VALUES?

-+

TR
NrUbWLN-E

+

1 235

255

255

259 LINITIALIZE BUFFER FOR EXAMPLE
=253

255

235

@

[o

MEMORY BLOCK & LOCATION?
MOVE SUBROUTINE TO? 37777
SUBROUTINE EXECUTED AT 37777

INPUT OUTPUT:
HL= 42000 HL= 40RO
PARAM+ B 57 PARAM+ @ 57
PAORAM+ 1 48 PARAM+ 1 48
PARAM+ 2 200 PARAM+ = 200
PARAM+ 3 175 PARAM+ 3 175
MEMB1+ B =255 MEMBLI+ @ 48
MEMBi+ 1 255 MEMBL+ it Si
el b b
mgmgi: 3 Z;g mgmg;: ‘37 zg RESULT = @30@71 IN ASCII
MEMBI+ 4 25% MEMBI+ 4 55
MEMB1+ 5 255 MEMBI1I+ 5 49
MEMBl+ & 255 MEMRI+ & @ TERMINATOR

NAME OF SUBROUTINE?

Notes

1.
2.
3.

a

Leading ASCIl zeroes may be present in the result.
No invalid result may occur.

The most significant ASCII character will always be either a zero (30H) or
one (31H) since 16 bits is not an integer multiple of 3 bits.

Program Listing

20100 ORG 7F@eH @522
DAL 1O 5 RN I I 936 4 W92 060 I 96 I I I IE JE NI I 66 I
20120 3% BINARY TO ASCII OCTAL CONVERSICN. CONVERTS A 14-BIT =
PO130 s+ BINARY WALUE TO A STRING OF ASCII OCTAL DIGITS TERM- *
231480 :1x INATED BY A NULL. *
PA15@ 3= INPUT: HL=> PARAMETER BLOCK *
PO160 5% PARAM+@s+1=16-BIT VALUE *
20170 s+ PARAM+24+ +3=BUFFER ADDRESS *
218D % QUTPUT*BUFFER FILLED WITH SIX ASCII OCTAL DIG- *
2B19@ 5% ITS TERMINATED BY NULL *
(e RS TR E ST E AR E R TR XY Y I Y ST R I IR)
20210 3

F5 22228 BXOCTL PUSH AF $SAVE REGISTERS

C5 28230 PUSH BC

b5 BB248 PUSH DE

E3 2250 PUSH HL

DDES RB260 PUSH IX)

CD7FQA QBz70 CALL BA7FH s ¥EXGET PR |LOC™Ne*x

ES (e r, et =] PUSH HL.

DDEL Bazon POP IX

67

7Fec
7FOF
7F12
7F15
7F18
TF1A
7F1B
7F1D
7FIE
7F1F
7F20e
7F21
F22
7FZ3
7F24
7F2&6
TF27
7F28
7F29
7F2B
7F2C
TF2D
7F2F
7F30
7F31
TF32
7F33
ralrIr.1r

DD&LEDB
DD&s@1
DD3ERZ
DD3&6B3
dods

2B300 LD
20310 LD
v@3ze LD
20330 LD
@a340 LD
2350 XOR
B350 JR
QA370 BX0O1® XOR
ea3se ADD
2a270 RLA
PD4DB ADD
o410 RLA
BB420 PXOBZB® ADD
20430 RLA
82440 LD
2045@ ADD
22440 LD
20470 INC
20480 DJNZ
RA470 XOR
oas0e LD
Bas1e POP
2052@ pop
@530 POP
2a542 POP
pras55a POP
28568 RET
20372 END

oeeRd TOTAL ERRORS

La{IX+2)
Hy (IX+1)
Es{IX+2)
Dy (IX+3)
Bséd

A
BEX00z9
A

HL s HL.

HL s HL
Hi_ s HL

C»30H
A C
{DE)sA
DE
BXOR1@
A

(DE}s A

BXOCTL DECIMAL VALUES

248 1975 213, 239y 221, D20,
221 22%s 221y 110y @y 221

e 2214 Bhy 3s by

by 175y

41y 23y 41y 23y 41y 230 14

1%y 16y 2429 1794
241y 201

CHKSUM= 1@

CHKSUM: CHECKSUM MEMORY

System Configuration

18s 221,

2y

$PUT VALUE INTO HL
iPUT BUFFER ADD IN DE

$ITERATION COUNT

$ZERO A

sFOR FIRST DIGIT
$ZERC A
IBHIFT OUT BIT LEFT
$SHIFT INTO A

$ASCII ZEROQ
SADD IN ASCII BIAS
iSTORE CHARACTER
3POINT TO NEXT SLOT
3LOOP *TIL &

s ZERC

$STORE NULL

*RESTORE REGISTERS

$RETURN TO CALLING PROG

Z@5y 127y 10y 2329
» 102,

Sy

s 48y

225,

Model |, Model IIl, Model Il Stand Alone.

Description

e 231y 94,
1754

129, 18,
EE%e ZO9s 193

CHKSUM checksums a block of memory for verification of data. The checksum
performed is a simple additive 8-bit checksum.

Input/Gutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block define the starting address for the block of
memory to be checksummed in standard Z-80 address format, least significant

68

1

byte followed by most significant byte. The next two bytes of the parameter
block contain the number of bytes in the block to be checksummed.

On output, HL contains the checksum of the block of memory.

INPUT OUTPUT
oL HoL
T
r POINTER TO PARAM-+0 l —_— [o CHECKSUM
]
PARAM-% POINTER TO PARAM-+@
- STARTOF o 4 UNCHANGED +
+1 | BLOCK {(MEM1+8) +1
42 +2
+ ﬁfgfggfs g 4 UNCHANGED =+
3 —>

MEM1+@ MEM1+8
—— —— i ——

+1 +1
4 BYTES 1 4 4

+2 TQ BE +2

i CHECKSUMMED

+3 > +3 UNCHANGED

+4 +4
+5 +5
4 —+ . 4
+6 1 ’I_ +6 |)
Algorithm

The CHKSUM subroutine first picks up the number of bytes in the block and
puts it into the HL register pair. Next, the starting address is put into the IX
register. The A register is cleared for the checksum,

The loop at CHKO10Q adds in each byte from the memoy block. The count in HL
is decremented by a subtract of one in BC, and the pointer in 1X is adjusted to
point to the next memory byte.

Sample Calling Sequence

MAME OF SUBROUTINE? CHRKSUM

HL ValUE? 43008

PARAMETER BLOCK LGCATION? 43200
PARAMETER BILOCK VALUES?

+ @ 2 43Q00@ STARTOF BLOCK
+ 2 2 8 8 BYTES IN BLOCK
+ 4 @ @

MEMORY BLOCK 1 LOCATION? 45000
MEMORY BLOCK 1 VALUES?

+ @ 1 1

+ 1 1 2

+ 2 1 4

+ 3 1 B

+ 4 1 14 | SAMPLEDATA)
+ 5 1 3z

+ & 1 &4

+7 1 128 |

+ 8 B @

69

7Foo

7rFoo
7F@1
7Faz
7FO3
7F@5
7Fes
7Fa%
7F@R
7FRE
JF11
TF14
7F17
7F18
7E1A
7F1D
7F1E
7F21
7F23
7E24
7F2é6
TF28
7Fz9
7F2B
7F2D
7FZE
7F2F

F5

c3

D5
DDES
CD7FBA
ES
DDE1
DD&EBZ
DD&6B3
DD5EQB
DD5s@1
D3
DPDE 1
ie100
AF
DDeLad
DDZz3
B7
ED42
20F&
&F
2608
DDE1

o102
20110
a@1ze
Qo131
PRt 4@
22158
20160
eai17a
20180
17
bazees
Pozie
aazze
bezse
o242
P25
Q0260
0az7e
20z89
erz0
Q2300
20318
ra3za
PO330
BR340
22350
203460
ap37e
BeiIso
BB370
QD420
av410
Pa42@
20432
av440

MEMCRY BLOCK 2 LGCATION?
MOVE SUBROUTINE TO? 446000
SUBROUTINE EXECUTED AT 46D00

INPUT:

HL= 43000
PARAM+ @ 200
PARAM+ 1 175
PARAM+ 2 8
PARAM+ 3 @
MEMBI+ @ |
MEMEL1+ 1 2
MEMB1+ 2 4
MEMBiI+ 3 B
MEMBL1+ 4 14
MEMBR1+ 5 32
MEMB1+ & &4
MEMBI+ 7 128

CUTPUT s
HL= 255
PARAM+
PARAM+
PARAM+
PARAM+
MEMB 1+
MEMB1+
MEMB1+
MEME 1+
MEMB1+
MEME. 1 +
MEMB1+
MEMB1 +

NP RLNERBWR=S

NAME OF SUBROUTINE?

Notes

200
175

CHECKSUM=1+2+4...+128

[~ UNCHANGED

1. The CHKSUM subroutine is used to compute the checksum for all subrou-

tines in this book.

Program

Listing

ORG

7Fo2H

10522

H ****‘**

;% CHECKSUM MEMORY,

H
3
3%
I

B ***

CHKSUM

CHK@10

70

CHECKSUMS A BLOCK OF MEMORY.

INPUT: HL=>PARAMETER BLOCK

PARAM+@: +1=5TARTING ADDRESS OF BLOCK
PARAM+2, +3=# OF BYTES IN BLOCK

OUTPUT :HL=ADDITIVE CHECKSUM

PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
PUSH
POP
LD
XOR
ADD
INC
OR
SBC
JR
LD
LD
POP
POP
POP
POP

s CIX+2)
Hs (IX+3)
Ey (IX+8)
Dy (IX+1)
DE

IX

BCy1

A

Ay (IX+0)
IX

A

HL.BC
NZs CHKA1@
Lsa

H @

IX

DE

BC

AF

$SAVE REGISTERS

PRERGET PB LOC Ne®x
i TRANSFER HL TO IX

SGET # OF BYTES

iGET BTARTING ADDRESS

sTRANSFER TO IX

sDECREMENT VALUE
i CLEAR CHECKSUM
3 CHECKSUM
$BUMP ADDRESS PNTR
iCLEAR CARRY
sDECREMENT COUNT
GO IF NOT DONE
IMOVE CHECKSUM TO HL

IRESTORE REGISTERS

*
*
*
*
*
*

7F32 C37A0A
7F33 C9

pARA

245G JP PATAH ;x%#%RETURN STATUS®,*%
PA460 RET i NON-BASIC RETURN
BB470 END

PO0@d TOTAL ERRORS

CLEARS: CLEAR SCREEN

CHKSUM DECIMAL VALUES

245y 197y 213, 281 229y 205, 127y 10y 229y Z21
225 2210 11@y I+ 221 122y 39 221y F4r B»

221 Boy 1s 213 221« 225y 1y 1y s 175

221 1342 @ 221y 359y 1B3y 237y &by 320 244
111y 38y By 221y 225, 209y 1932 241 195+ 154,
i@, 221

CHKSUM= 243

System Configuration

Model |, Model IIL.

Description

CLEARS clears the video screen or outputs a given character to fill the screen.
For a clear screen, the character is normally a blank {20H), or a graphics “all
off” character (O80H).

Input/Output Parameters

On input, the HL register pair contains the character to be used in the fill, (The
L register contains the 8-bit character while the H register contains zero.) On
output, the screen has been cleared or filled.

INPUT QUTPYUT
H L H L

o AL cHar | — | I

T
UNCH’IRNGED —I
t

Algorithm

The CLEARS subroutine is similar to a *fill memory” subroutine except that the
memory to fill is defined as 3CO0H through 3FFFH.

The start of video display memory, 3C00H, is put into HL and the character for
the fill is transferred to B. The loop at CLEO10 fills a byte at a time. For each fill,
the video display memory pointer is incremented by one and the contents of
the H register are tested. If H holds 40H, the last screen location has been filled.

71

7Foe

7Fee
7F@al
7Fez
TFa3
7FQs
7Faz
7FBA
7rep
7Fac
7F@ab
7FaF
7F11
TF1z
7F13
7F14
2000

F5
€5
ES
CD7FBA
45
21003¢C
70

Sample Calling Sequence

NAME OF SUBROUTINE? CLEARS

HL VALUE? &5 CLEAR CHARACTER OF “A’
PARAMETER BLOCK LOCATION?

MEMORY BLOCK 1 LOCATION?

MOVE SUBRROUTINE TO?7 37000
SUBROGUTINE EXECUTED AT 37000
TNPUT & GUTPUT:

HL= &5 HL= &5 UNCHANGED

NAME OF SUBRCUTINE?

Notes

1.

The CLEARS subroutine clears the screen in approximately 21 millisec-

onds.

Program lListing

20132
2R1:@
ad1ze
22130
aR140
23158
152
20170
raige
@170
oazee
2R218
20zze
oez3e
2z40
PRz50
a0z560
BBz270
P80
rezee
2382
oR31@
20322
Qe330

028PR TOTAL ERRORS

ORG 7Fo@H ;0528
T I AN IS NI NI T I6 I 2029636 530 96 9606 I 029696096 36
s* CLEAR SCREEN. CLEARS THE SCREEN OR FILLS THE SCREEN

% WITH ANY GIVEN CHARACTER. *
i INPUT: HL=CHARACTER FOR CLEARsNORMALLY Z@H OR 80H »
(X QUTPUT : NONE *
FHA RN I IIEN I NI AT TN I IR IR TN T K IR BTN
CLEARS PUSMH AF s5AVE REGISTERS

PUSH BC

PUSH HL

CALL QATFH $##¥GET CLEAR CHAR*®»

LD Bsb $ TRANSFER TO B

LD HL + 3CH0H :BTART OF SCREEN ADDRESS
CLERI@ LD (HL)Y»B sFILL SCREEN BYTE

INC HL FBUMP SCREEN POINTER

LD AsH iGET M5 PYTE OF POINTER

CP 4@H $TEST FOR END+1

JR NZs CLER1@ iCONTINUE IF NOT END

PGP HL iRESTORE REGISTERS

POP BC

POP AF

RET SRETURN TO CALLING PROGRAM

END

CLEARS DECIMAL VALUES

243y 197 229+ 2059 127y 10s &9 335 Dy 6D«
112y 35s 1244 254+ &by 32e 249y 299, 193y 41
T} |

CHRSUM= 89

CSCLNE: CLEAR SCREEN LINES

System Configuration

Model 1, Model III

72

Description

CSCLNE clears from one to 16 screen lines with blank (20H) characters. The
lines cleared may be any set of contiguous lines on the screen, starting with any
given line.

Input/Qutput Parameters

On input, the H register contains the start line number, from 0 through 15, and
the L register contains the end line number, from 0 through 15. On output, the
designated screen lines have been cleared and HL is unchanged.

INPUT OUTPUT
H L H L
STARTLINE | END LINE '
s DLNE | — | UNCHANGED
1

Algorithm

The CSCLNE subroutine first finds the total number of lines involved in the
clear. The start line number is subtracted from the end line number, and this
value is incremented by one. Next, this line count is multiplied by 64 to find the
total number of video display memory bytes to be cleared (CSC010;.

The starting video memory location is then found by muitiplying the starting
line number by 64 (CSC020) and adding this value to the screen start location of
3CO0H.

The loop at CSCO30 stores a blank character in the screen locations involved.
HL contains the pointer to screen memory, which is incremented each time
through the loop, and DE contains the number of screen bytes to be filled. The
count in DF is tested for zero by the “load and OR’’ operation.

Sample Calling Sequence

NAME OF SUBROUTINE? CSCLNE

HL VYALUE? 18@ STARTLINE=7,ENDLINE=8
PARAMETER BLOCK L.QCATION?

MEMORY BLOCK 1 LLOCATION?

MOVE SUBROUTINE TO?7 535080
SURROUTINE EXECUTED AT 55008
INPUT: QUTPUT

HL= 1800 Hi.= 1B@@ UNCHANGED

NAME OF SUBROQUTINE?

Notes

1. Use the CLEARS subroutine to clear the entire screen.

2. No check is made on the validity of the line numbers in HL. If the wrong
values are used, the system may crash. :

3. The end line number must be greater or equal to the start line number.
4. Use an 80H in location 7F23H for a “‘graphics’” clear.

73

7Foo

7F 00
7FB1
7F@Z
7F03
7F 04
7F@7
7FO8
7F@9
7F0A
7FOR
7F0C
7FRE
7F1@
7511
7E13
7F14
7F15
7F16
7F17
7F19
7F 1B
7F1C
7F1E
7F21
7F22
7F24
7F25
TF26
7F27
7F28
7F2A
7F2B
7F2C
7F2D
7F2E
P00

F5
]
D5
ES
CD7FRA
ES
7D
94

12FD

FProgram Listing

89100 ORG
20110

Q0120 s+ CLEAR SCREEN LINE.
20130 3% START
oa14@ i+ I
2a15a ;

20160

ver7a s

2218@ CSCLNE PUSH
20170 PUSH
00208 PUSH
[v210 PUSH
eozzo CALL
20230 PUSH
apz4a LD
70250 sus
BazoR INC
20270 LD
PazBa LD
pazes LD
PB3B@2 C5C@1I@ ADD
ap319 DJINZ
203ze PUSH
89330 pop
Ba340 PopP
0350 LD
Q0350 LD
Qe370 LD
80388 Cs5CPz@ ADD
28370 DJNZ
20400 LD
@941@ ADD
00420 CSCO30 LD
0a430 INC
DR440 DEC
PR450 LD
20440 OR
@470 JR
20480 FOP
20470 POP
pesee POP
22510 Pop
Besze RET
20532 END

2RO22 TOTAL ERRORS

CSTRNG: STRING COMPARE

7Fo0H

LINE THROUGH & GIVEN EN
NPUT: HL=START L.INE(H)s E

AF

BC

DE

HL
BATFH
HL.

Arl

H

A

Ly&
H:@
Bsb
HL.s HL
C85CM0
ML

DE

HL

LsH
H:@
Beb
Hi.s HL
C5CR2a
BCy 3C0OOH
HL:BC
(HL)s™
Hl.

DE

AsD

E
NZC5CD30
HL

DE

BC

AF

CSCLNE DECIMAL VALUES

2453r 1975 2135 229 205, 1275 1@,
6Q: 111: 3By D &4s b3 41y 1Hs 253,
2@y 225y 108. 38y D. &y by 41, 14,
1y @y 6@y T3 542 329 35. 27, 157
32y Z4Bs Z25s 209: 193, 241y 201
CHKSUM= 138

System Configuration

@522

$SAVE REGISTERS

PHERGET LINE NOS***

s BAVE

sEND LINE NUMBER
sEND-START

STOTAL NUMBER CF LINES

sTOTAL TO L
$NOW IN HL

sITERATION COUNT

iTRANSFER # CHARACTERS

i# LINES * &4=# CHARS

31.00P

"TIL DONE

sNOW IN DE
SORIGINAL LINE #5
ISTART LINE #
SNOW IN HL
$ITERATION COUNT

$FIND DISPLACEMENT

sLOOR

*TIL DONE

iSTART OF SCREEN

$FIND START MEMORY LOC'N

SRETURN TO CALLING PROG

Model I, Model I, Model Il Stand Alone.

74

:STORE BLANK

iBUMP SCREEN POINTER
sDECREMENT COUNT

STEST COUNT

60 IF DE NE ZERO
tRESTORE REGISTERS

TET

229,
253

179

125,

148,

BRI IR KNI T I IE AT I NI T T 96 5636
CLEARS THE SCREEN FROM A GIVEN
D LINE.

ND LINE(L) @-15
* OUTPUT:8CREEN LINES CLEARED WITH BLANKS

*

*

*
*

*

Description

CSTRNG compares two strings and tests for equality, string 1 < string 2 and
string 1 > string 2. By “’string,” we mean two blocks of memory that may or
may not be of equal length containing byte-oriented data. This includes not
only the BASIC definition of character strings, but other types of data as weil,
such as two strings of binary data. The comparison is an “unsigned” compari-
son where bytes in the range 080H through OFFH are considered larger than
zero.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block holds the number of bytes in string 1. The next two
bytes contain the address of string 1 in standard Z-80 address format, least
significant byte followed by most significant byte. The next byte in the parame-
ter block holds the number of bytes in string 2. The next two bytes are the
address of string 2 in Z-80 address format. The next byte of the parameter block
{PARAM+ 6} is reserved for the result of the comparison.

On output, PARAM+6 holds a zero if the strings are equal, a minus number if
string 1 < string 2, or a positive number if string 1 > string 2. For two strings of
unequal length where the longer string holds the shorter string as a ““substring,”
the result in PARAM+ 6 is negative if string 1 is shorter, or positive if string 2 is
shorter.

INPUT OUTPUT
oL Ho L
T
POINTER TQ PARAM+E | === | UNCHANGED
T T
PARAM-+2 [# BYTES STRING 1 PARAM+B | UNCHANGED
+1 ADDRESS +1
1 oEstRNG 1 + 1 uncHanep +
+2 (MEM 1+8) +2
+3 |4 BYTES STRING 2 @ +3 | UNCHANGED
+4 ADDRESS +4
4 OFSTRING2 o 4 unceaneep +
+5 (MEM2-+-2) +5
6 RESERVED ¢ |RESULT: 9=8AME.[
FOR RESULT 1=1>2, —1=1<2
MEM1+8 MEM1+@
+1 +
1 1 1 1
+2 STRING +2 i
1 ! 1 il ik
+3 é +3 | UNCHANGED
—~+ -+ - -+
+4 +4
+5 +5
+6 +6

75

MEM2+8 MEM2-+5

+1 +1

+2 STRING +2

+3 j +3 | UNCHANGED

+4 +4

+5 +5

+8 | 1 +6 | 1
Algorithm

The CSTRNG subroutine first compares the lengths of string 1 and string 2. It
puts the smallest length value into the B register (CST010) and the comparison
result of string 1 length—string 2 length in the C register.

Next, the address of string 2 is put into the 1Y register and the address of string 1
into the HL register.

The code at CST020 is the comparison loop. A subtract of each consecutive
byte of the strings is done. Two conditions result from the subtract, If the sub-
tracts are zero for the total number of bytes of the shorter string, the size com-
parison in C is put into the result. If this size comparison was zero, the strings
are of equal length and are identical. If the size comparison was not zero, the
comparison value reflects the ““substring”” condition detailed above.

If any subtract is not zero, the strings are unequal, and a jump to CST040 puts
the sense of the comparison in the result.

Sample Calling Sequence

NAME OF SUBRQUTINE? CSTRNG

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 402000
PARAMETER BLOCK VALUES?

+ B 1 3 3BYTESIN STRING 1

+ 1 2 45000 STRING 1 ADDRESS

+ 3 1 5 BEBYTES IN STRING 2

+ 4 T 4H4LDOB STRING 2 ADDRESS

+ 46 1 D

+7 @0 @

MEMORY BLOCK 1 LOCATION? 4502@
MEMORY BLOCK 1 VALUES?

+ @ i 1

+ 1 1 2553 |-5TRING1

+ 2 1 3

+ 3 B @

MEMORY BLOCK 2 LOCATION? 46PB0
MEMORY RLOCK 2 VALUER?

+ @ 1 1 7

+ 1 1 254

+ 2 L 3 FSTRING 2

+ 3 1 4

+ 4 105 |

+ 53 0 0

MOVE BUBROUTINE TO7 38000
SUBROUTINE EXECUTED AT 36P0G

INPUT: QUTPUT:
HL= 42800 HL= 40222
76

7FR8

7FoB
7F@1
7TFB2
7FB3
7FB5
7F@a7
7FaA
7FRe
7F@eD
7F10
7Fiz
7F15
7F18
7F1a
7F1C
7F1F
7F21
TF23
TFZ5
7E28
7FzB
TF2¢C
7F2E

FPARAM+
FARAM+
PARAM+
FARMAMF
FARAM+
PARAM+
PARANM+
MEMB 1+
MEME1+
MEMBE1+
MEME2+
MEMBZ+
MEMBZ+
MEMBZ+
MEMBZ+

Wi G = SN PLIS S

T
=

208
175
b

176

179

PARAM+ @ 3

PARAM+ 1 20@

PARAM+ 2 175

PARAM+ 3 5 - UNCHANGED
PARAM+* & 176

PARAM+ 5 179

PARAM+ & 1 RESULT: STRING 1>STRING 2
MEMBI+ B 1 7

MEMB1+ 1 255

MEMBL+ T 3

MEMBZ+ @ 1

MEMBZ+ 1 254 [UNCHANGED
MEMBZ+ Z 3

MEMBZ+ 3 4

MEMB2+ 4 5 |

NAME OF SUBROUTINEY

Notes

1. The maximum number of bytes in either string may be 256, represented by
0 in the # of bytes parameter.

2. Qutput is a signed number at PARAM+ 6.

Program Listing

Ba100

GRG

7FabH $0520

BR1 10 5 %0993 030330030 30033603 36 9600 300006 3 96 06 H 06 000 0 B RN
PR1Z® 5% STRING COMPARE. COMPARES TWO STRINGS.

Q0130 3%
BA148 3x
PA15@ 5%
BR15D %
PA170 %
PO1IBB 5%
Ae198 ;*
oD@ s*

INPUTS

OUTPUT =

HL=» PARAMETER BLOGCK

PARAM+B=# BYTES OF STRING 1
PARAM+1s +2=ADDRESS OF STRING 1
PARAM+3=% BYTES OF S5TRING Z
PARAM+4: +5=ADDRESS OF STRING 2
PARAM+4=RESERVED FOR RESULT
PARAM+6=@ IF STRINGS EGUAL, - IF

STRINGLI<STRINGZ, + IF BTRING1>STRINGZ

* &k & ok k ok k ok Xk

DAZ 1D 5 99333 IJE I 000 6B B JE B FE 96 A 3 33 I 00D N R

n 17 e
PR238 CSTRNG
28240

aezs5e

rlr.

20274

282

oezya

e300

pa3ie

20320

ee33e

ee34R

22358

22360

8370

PB380

28378

Qa4P@ CS5TOGS
20410 C5TO10
20420

pR43B

08440

20450

77

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
PGP
LD
LD
LD
CP
JR
JR
L.D
LD
JR
LD
LD
LD
PUEH
POP
LD

AF s5AVE REGISTERS

8¢

HL

IX

v

@ATFH 1#%%¥GET PB ADDRESS*%¥

ML STRANSFER TO IX

IX

By (IX+8) # OF 1

@ ISTRINGI=STRING Z FLAG
Ay (IX+0) sGET # BYTES OF STRING 1
{IX+3) s# OF 1-#% OF 2

2:CSTR1A ;G0 IF STRINGS EQUAL LEN
C» CSTOGS 160 IF # DOF 1<# OF 2

By (IX+3) SGET SMALLER #

Ca1 sSTRING 1>8TRING 2
CaT@a1a

Cy=1 sSTRING 1<STRING 2 CASE
Le(IX+4)} sGET ADDRESS OF STRING 2
Hy (IX+5)

HL. sTRANSFER TO 1Y

1Y

Ly¢(IX+1) $GET ADDRESS OF STRING 1

7F31
7F34
TF35
7F38
7TF3A
7F3B
773D
7F3F
7F4@
TFaz2
TF44
TF46
7F48
TF4AR
7F4D
7F4F
7F30
7F51
7F52
o2on

DD&&DZ
7E
FDY&20
2008
23
FD23
10F5
79
1806
3EQ1
3002
3EFF
DD7706
FDE1

DELBLK: DELETE BLOCK

20460
20478
2v480
o249
8e500
Bes10
Q0520
22530
Pe540
BB550
205460
BB578
ees80
20598
PRLBo
20610
804208
ges3e
a2640
Bas50

C8Toz@ b

Cs8TB42 LD

CSTR5@0 LD

POP
POP
RET
END

CETRNG DECIMAL V

245 197, 229,
22Ty 221y 2Z5a
By 221 198 3
3y 14y 1y 24y 2
S2Z21s 102 54 22
182y 29 124y 25
35y 16, 245. 1Z
&2y 235y 221, 1
193y 241, 281

CHKBUM= 53

System Configuration

Hy (IX+2)
A (HL)
({I1Y+@)

NZ s CEBTR40
M.

1Y

csTaz20
AL
CeTASH
Asl

NCy CSTRSE
Av—1
(IX+A)9A
1y

IX

ML

BC

AF

ALUES

2219 229,

253,

221y 70y By 14y
4@y 11s S&y 7

v 14y 255,

Fe 2%31 2254

3y 150y @y
e 245 by

19y &» 253w

2l

Jy

fGET STRING 1 BYTE
i COMPARE
3G0 IF NOT EQUAL
fBUMP STRING 1 POINTER
SBUMP STRING 2 POINTER
SLOOP IF EGUAL

FGET SIZE COMPARISON

$STRING 1:>STRING 2
G0 IF OK

$8TRING 1<STRING 2
$STORE IN RESULT
tRESTORE REGISTERS

$RETURN TO CALLING PROGRAM

S8Fy Z0%s 127+ 10
By 221 1269

221y 70,

110y 4,

221

1]

b 1

225,

Model I, Model 1ll, Model 1l Stand Alone.

Description

11@s 1+« 221
35 253

485 2.

221y 2ESs 2259

DELBLK deletes a block in the middle of a larger biock of memory. The block is
deleted by moving up all bytes after the deletion block as shown below. This
subroutine could be used for deleting a block of text, for example, and moving
the remaining text into the deleted block. Both the “larger block’ and “‘dele-
tion block’” may be any size up to the limits of memory,

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the larger block in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes are the address of the deletion block in Z-80 address

78

format. The next two bytes of the parameter block (PARAM+4,+ 5) contain the
number of bytes in the larger block; the next two bytes contain the number of
bytes in the deletion block. Both are in standard Z-80 format.

On output, the contents of the parameter block remain unchanged. The dele-
tion block has been deleted by a move of the remaining bytes of the larger
hlock into the deletion area.

INPUT ouTPUT

H L H L

1 l

T T
POINTER TQ PARAM- | =— | UNCHANGED |

PARAM+S | START ADDRESS PARAM-H0
1" oF LARGER 1 uncHancep
+1 | BLOCK (MEM1+8) +1
+2 | START ADDRESS +2
4 OF DELETE 4 + UNCHANGED -
+3 BLOCK i +3
+4 | # OF BYTES +4
1 CTINLARGER + 4 uncHanged +
+5 BLOCK 46
+6 | # OF BYTES +6
1 TINDELETE + 4 uncuanceD +
+7 BLOCK +7
MEM14D | MEM1+8
+1 1
42 LARGER | 12
1l Block) N
+3 : +3 LARGER
+ + + BLOCK
= WITH T
1 1 + oeete |
X X BLOCK
F | DELETED |
START — + 1
ADDRESS —,. |~ 4
e i { "
DELETE K o
BLOCK z 4 4
—— —— —— ——
I T LAST-1
: LAST
LAST-1
LAST
Algorithm

The DELBLK subroutine performs the deletion by doing a block move of the
remaining bytes of the larger block into the deletion area. At the LDIR, HL
contains the address of the location directly after the deletion block, DE con-
tains the address of the deletion block, and BC contains the number of bytes
remaining in the larger block after the deletion block.

79

The destination location (DE) is simply the deletion block address. This is saved
for the LDIR in the stack. The source location (HL) is found by adding the
deletion block address and the size of the deletion block. This is then pushed
into the stack for LDIR use. The number to move is found by subtracting the
source location (HL) from the last location of the larger block plus one.

Sample Calling Sequence

NAME OF SUBRCUTINE? DELPRLK
HL ValLUE? 490020
PARAMETER BLOCK LOCATION? 49000

PARAMETER BLOCK VALUEG?

+ @ 2 45023 START OF LARGER BLOCK

+ E 2 45003 START OF DELETION BLOCK
+ 4 2 1B 10 BYTES IN LARGER BLOCK
+ 4 F 3 3 BYTES IN DELETION BLOCK
+ 8B @2 2

MEMORY BLOCK 1 LOCATION? 45080
MEMORY BLOCK 1 VALUESY?

+ 1 D 7
1

-
-

3
Q}ADELEHONBLOCK - LARGER BLOCK

+ ok oo 4+
R IR S W U VL]
ol ol Sl

LTSN W

+ 12 2 @

MEMORY BLOCK & LOCATIONY

MOVE SUBROUTINE TOQ? 37777
SUBROUTINE EXECUTED AT 37777

INPUT: QUTPUT:

HL= 4Pp0o HL= 42000

PARAM+ @ 200 PARAM+ @ 200

PARAMT 1 175 PARAM+ 1 175

PARAM+ 2 283 PARAM+ 2 2B3

PARAM+ 3 175 PARAM+ 3 175

PARAM+ 4 10 PARAM+ 4 1@

PARAM+ 5 @ PARAM+ 5

PARAM+ 6 3 PARAM+ & 3

PARAM+ 7 @ PARAM+ 7 @

MEMBlI+ B B MEMB1+ @ @

MEMBEI+ 1 1 MEMB1+ 1 1

MEMBI+ 2 2 MEMB1+ 2 2

MEME1+ 3 3 MEMB1+ 3 & [NEWBLOCK
MEMB1+ 4 4 MEMB1+ 4 7

MEMBI+ 5 5 MEMEI+ 5 8

MEME1+ & & MEMBI+ & 9 |

MEMB1+ 7 7 MEMB1+ 7 7]

MEMBI+ 8 8 MEMR1+ B8 8 - GARBAGE BYTES
MEMBE1+ § @ MEMB1+ 9 @ |

NAME OF SUBROUTINE?

Notes

1. The maximum number of bytes in either block may be 65,535.

2, There will be a number of “‘garbage’”” bytes at the end of the larger block
after the move.

80

7Foe

Program Listing

20100 ORG 7FORH sR52z
DAL L@ 5 M IEIIE NI I I IEIEE AT IEIEIEIE I IEHEIEIE I I IEIE 3 T 69360
2012@ s+ DELETE BLOCK. DELETES PLOCK IN MIDDLE OF LARGER BLOCK#*
ap138 s« INPUT: HL=> PARAMETER BLOCK *
uat4e s« PARAM+@, +1=START ADDRESS OF LARGER BLOCK *
@215e 5+ PARAM+Z4 +3=BTART ADDRESS OF DELETE BLOCK *®
od162 3% PARAM+4,y +5=# OF BYTES IN LARGER BLOCK *
aa17g s« FPARAM+é&, +7=%# OF BYTES IN DELETE BLOCK *
PB180 ;* QUTFUT:DELETE RLOCK DELETED BY MGOVING UP REMAIN- +*
aa19o s« DER OF LARGER BLOCK *
BAZDB 5 XIS ETEIE NI I IIE I 069656 I
avz1@

7Feae C5 @@zZ8 DELBLK PUSH BC sSAVE REGISTERS

7FB1 D5 e230 PUSH DE

7F@:z ES paz40 PUSH Hi.

7783 DDES 2as5e PUGH IX

7F@B5 CD7F0@A aRzs0 CALL. RATFH ;%##GET PR ADDRESS*%%

7F@B ES BA279 PUSH HL $TRANSFER TO IX

7FB7 DDE1 2azae POP IX

7FOB DD&LEGZ apz278 LD L {IX+2) $PUT DELETE BLK ADD IN ML

7FBE DPD&&B3 e300 LD Hy (IX+3)

7F11 ES 20310 PUSH HL sDESTINATION FOR LDIR

7F12 DD4ER& eazzae L.D Cr (IX+8) $PUT SI1ZE OF DEL BLK IN BC

7F15 DD4687 22330 LD By (IX+7)

7F18 2% P340 ADD HLs+BC $FIND SQURCE LOC°N

7F19 ES aa3se PUSH HL $SAVE FOR LDIR

7F1A DD&E@D 2340 LD Ls (IX+0) $PUT START INTO HL

7F1D Dh6&6D1 eB370 LD Hy (IX+1)

7F2@ DD4EDR4 Beisn LD Cy (IX+4) $GET SIZE OF LARGE BLOCK

7TFZ23 DD4GR5 Q0398 LD Bs (IX+3)

7F26 @9 20400 ADD HLsBC SLAST LOC'N + ONE

7F27 D1 @410 POP DE SGET SOURCE LCOCATION

TFzB BY 00420 OR A sCLEAR CARRY

TFZ29 EDSZ 2B438 SBC HL s DE sFIND # TO MOVE

7FZB ES Pa440 PUSH HL $TRANSFER TO RC

7F2C C1 PB450 POP Bc

7FZD Et Q@450 POP HL 3GET DESTINATION

7FZE ER ons7@ EX DE-HL iSWAP DE AND HL

7F2F EDE® 20480 LDIR iMOVE 'EM

7F31 DDE1L 8B40 POP IX sRESTORE REGISTERS

7F33 El oasea POP HL.

7F34 Di 20510 POP DE

7F35 C1 20520 POP BC

7F36 €9 20332 RET $RETURN TO CALLING PROG

000 2a54Q END

BBBRB TOTAL ERRORS

DELELK DECIMAL VALUES

197, 213y 229, 221+ 229y 2059y 127, 10y 229, 231y
223y 221, 1180y Zv 221y 1022 39 229y 221y 78

Gy 221y 78y Ty Py ZEFy 221 119y Dy 2T

102+ 19 221y 7B 4y 221y 7@s S5y 9y 209«

183y 237, B2y 22%y 193y 225 235 2375 1769 221,
225« 225y 209y 193y 201

CHREUM= 1Bé&
DRBOXS: DRAW BOX

System Configuration
Maodel 1, Model Il

81

Description

DRBOXS draws a rectangle on the video display. The rectangle may start at any
screen position and may be any size as long as it does not overrun the screen
boundaries. The rectangle is drawn on a character position basis.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the upper left-hand corner character posi-
tion (x) from O to 63, The next byte of the parameter block contains the upper
left-hand corner line position (y) from 0 to 15. The next byte of the parameter
block contains the width of the rectangle in character positions, 2 to 63. The
next byte of the parameter block contains the height of the rectangle in charac-
ter positions, 2 to 16,

On output, the contents of the parameter block remain unchanged. The box
has been drawn on the screen.

INPUT QUTPUT

oot Ho L
POINTER TO PARAMS | ——> | UNCHANGED

. .

PARAM-+g | UPPER LFT X PARAM+J | UNCHANGED
+1 | UPPERLFTY +1 | UNCHANGED
+2 | wiDTHINCP +2 | UNCHANGED
+3 | HEIGHT INCP ﬁ +3 | UNCHANGED

Algorithm

The DRBOXS subroutine contains two smaller subroutines called DRBWH and
DRBWY. DRBWH draws a horizontal line, while DRBWV draws a vertical line.
Both are not in the standard subroutine form because CALLs to the subroutine
would not be relocatable.

DRBWH is entered from DRBOXS with HL containing the memory location
that represents the leftmost character position for the horizontal line to be
drawn, with B containing the width in character positions, and with C contain-
ing a flag for the return point.

DRBWYV is entered from DRBOXS with HL containing the memory location
that represents the topmost character position for the vertical line to be drawn,
with B containing the height in character positions, and with C containing a
flag for the return point.

In DRBOXS proper, there are four steps to draw the box. A call is made to
DRBWH to draw the top line, a call is made to DRBWYV to draw the right-hand
line, a call is made to DRBWYV to draw the left-hand line, and finally, a call is
made to DRBWH to draw the bottom line.

First, the starting line position (y) is picked up and multiplied by 64 {DRBO10).
The result is added to the character position (x} and to the start of the screen

82

location (3CO0H). This result is the memory location representing the corner
point. [t is saved in the stack.

A call is then made to DRBWH to draw the top line. The return is made to
DRBO20.

HL now points to one location greater than the end of the line. HL is decre-
mented and a call is made to DRBWV to draw the right-hand side. The return is
made to DRBO30.

The original corner location is now picked up from the stack, and a call is made
to DRBWYV to draw the left-hand line. The return is made to DRBO4O.

HL now points to one line greater than the bottom of the line. HL is decre-
mented, and a call is made to DRBWH to draw the bottom line. The return is
made to DRBO50.

Sample Calling Sequence

NAME OF SUBROUTINE? DRBOXS

HL VALUE? 40000

FARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ @ 1 32

41 1 8 UPPER LEFT X, ¥ =32,8

+ 3 1 12 WIDTH=12

+ 3 1 4 HEIGHT =4

+ 4 D @

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO? 33888
SUBROUTINE EXECUTED AT 38888

INPUT & QUTPUT ¢
HL= "4 @oda Hi= 40002
PARAM+ @ 32 PARAM+ B 32
PARAM+ 1 & PARAM+ 1 @

E
PARAM+ 2 12 PARAM+ 2 1z | UNCHANGED
PARAM+ 3 4 PARAM+ 3 4
Notes

1. If the parameters cause the rectangle to exceed screen limits, the system
may be ““bombed.”

2. The top and bottom lines are wider than the side lines in the rectangle.

Program Listing

7Foa ad1aa GRG 7FoaH P52z

QDI LQ 5 50030 3TN I I IEIEIE NI T 0 9P 06 06 I I 006 2606 96006 26 0
PA12@8 3% DRAW BROX. DRAWS BOX OF GIVEN WIDTH AND HEIGHT AT *
PB13@ % SPECIFIED LOCATICN. *
BR140 3 INPUT: HL=> PARAMETER BLOCK *
201580 5% PARAM+B=UFPER LEFT CORNER CHAR POS (X} *
Pa1oD s* PARAM+1=UPPER LEFT CORNER LINE # (Y) *
QR17@ 5% PARAM+2Z=WIDTH IN CHARACTER ROSITIONS *
o180 x PARAM+3=HEIGHT IN CHARACTER POSITIONS_ *

*

01780 1« QUTPUT :BOX DRAWN ON SCREEN
DRZO0 5 3593 23 23 03616 36 360 6 I eI N d B T BT I 292636 I 9P 3D 9 3
ezZ16 5

83

raeo

cs
D5

ES
DDES
CD7F DA
ES
DDE1
DD&E®1
2600
BB
29
10FD
DD4EDD
2600
29
P1PB3C
27

ES
DD446B2
AERQD
1B81C
2B
DD44&23
1821
E1
DD4&6@3
RER1
i81%9
B7
EDS2
DD4&OZ
1804
DDE1
El

D1

C1

ce
J6BF
2
19rFe
CB41
28DB
1BEF
114000
3&BF
19
10FR
CB41
ZBD3
18D%

oezze
22230
p2z40
anz25a
!azsLD
ez7e
bezeoa
aazoa
2300
ar3ie
a232a
aa338
Paz4@
@8a35a
20340

aa37o
oe320
2378

a2400
@410
20422
80430
28440
2450
2440
aa470
20420
B490
k2a500
aus510
17 e
20538
2as40
2a550
@540
20570
@580
ees90
ralr Xt
805610
BpRaLZB
232530
PAL4D
aas5a
22660
aRs7H
2B4s&BA
225670
pa7R0
Bo71ie
a7z

DREOXS

DRER10

DREDZO

DREO3Q

DRE@40

DRE@S@

DRBWH

DREWY
DREWV 1

PUSH
PUSH
PUSH
PUSH
Cal.L
PUSH

POP
POP
RET
LD
INC
DJINZ
BIT
JR
JR
LD
LD
ADD
DJINZ
BIT
JR
JR
END

BC
DE
Hi.
IX

BA7FH
HL

IX
Le(IX+1)
H+ @

Bi&
HL » HL
DREQ1®
Ce (IX+D)
B.@&
HL.B(C
BCy 3CBOH
HLs &C
HL.

Bs (IX+2)
Ci0
DREWH
HL.

Bs (IX+3)
DREBWY
HL

B {IX+3)
€1
DREWY

A

HL+»DE

By (IX+2)
DRBWH

IX

HL

DE

e

(HL.) s OBFH
ML

DREWH

@ L

7s DRE@Z0
DRERASA
DE» 40H
(HE.) s @BFH
Hi 1 DE
DREWV1

B:C
Z s DREQ3Q

DREQ4Q

EAVE REGISTERS

F¥4#GET PB LOC” N®*x
$TRANSFER TO IX

FGET Y IN LINES

FNOW IN HL

3ITERATION COUNT
sFIND LINE DISPLACEMENT
iLINE # * &4

$GET CHAR POSITION

TNGW IN BC

sFIND DISPL FROM START

$START OF SCREEN

SFIND ACTUAL MEMORY LOC'N
$S5AVE LOC’N

SGET WIDTH IN CHAR POSNS
sFLAG FOR RETURN

iDRAW TGP LINE

sPOINT TO END OF LINE
iGET HEIGHT IN CHAR POSNS
sDRAW RIGHT SIDE

$GET UPPER LEFT CORNER LOC
5GET HEIGHT IN CHAR POSNS
sFLAG FOR RETURN

sDRAW LEFT SIDE

sCLEAR CARRY

$POINT TC END OF LINE
$GET WIDTH IN CHAR POSNS
sDRAW BOTTOM LINE
$RESTORE REGISTERS

$RETURN TO CALLING PROG
$SET CHAR POSN TO ALL ON
SHORIZ INCREMENT
SLOOP *TIL LINE DONE

iTEST FLAG

sRTN POINT 1

sRTN POINT 2

$ INCREMENT FOR VERTICAL LN
$SET CHAR POSN TO ALL ON
SPOINT TO NEXT POSITIOM
SLOOP *TIL LLINE DONE

STEST FLAG
SRTN POINT 1

SRTN POINT 2

2RBOR TOTAL ERRORS

DRBOXE DECIMAL VALUES

197 213 2292 221 229y 205y 1275 10
22%s 22%s 110« 1y 38Bs By by by 41y 16
253 221 78s @y &y By 95 13 @s 4B

e 229 221 70 2+ 14« Bs 24+ 289 43,
Z2%y 70y 3y 44 33Fe 2B 2219 TOs 34 14,

1s 24+ 25, 1832 237+ B2« 221 7@y 2y 249

by F21. 229 225 Z@Fy 193y 201y 544 191y 35,
16 251+ Z@3y 65y 4@ 219s 24y 239 17 &b
Ay 54y 191y 25y 1&y 251y 203 &5 405 Zils

24

L

229,

CHKSUM= 12B

84

DRHLNE: DRAW HORIZONTAL LINE

Configuration

Madel |, Model III.

Description

DRHLNE draws a horizontal line on the screen. The line may be any length and
may start on any character position of any screen line.

Input/Quiput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the starting x character position of the
line, from 0 to 63. The leftmost character position of the line must be specified.
The next byte of the parameter block contains the starting line number y of the
line, from O to 15. The next byte of the parameter block contains the number of
character positions in the line length. This will be a maximum of 64 for a line
that starts at the left edge of the screen.

On output, the parameter block contents are unchanged. The horizontal line
has been drawn,

INPUT OUTPUT
Ho L oL
POINTERTO PaRAM-g | ——=> | UNCHANGED |
} .
PARAM--F X, §-83 pARAM+9 [UNCHANGED
+1 Y, ¢—15 +1 UNCHANGED
+2 LENGTH . +2 | UNcHANGED

—

Algorithm

The DRHLNE subroutine performs the move by computing the starting address
of the line in video display memory and by controlling the operation with the
count of the number of character positions involved.

First, the line number value is picked up from the parameter block. This is
multiplied by 64 to find the number of bytes (displacement) from the start of
video display memory. This value is added to 3CO0H to find the actual video
memory address for the line start. This value is added to the character position
of the start from the parameter block to find the starting position in video
display memory.

A byte of OBFH is stored for each character position in the line. The current
video display memory position in HL is then incremented to find the next
location of the line. A count of the number of character positions involved is
then decremented and a jump is made to DRHO20 if the count is not zero.

85

7Foe

7F0R
7F01
7FQz
7F04
7FQ7
7708
7FRA
7F@D
7FOF
7F11
7F1Z
7F14
7F17
7F19
7F1A
7F1D
7F1E
7Fz1
TFE3

CH

ES
DDEZ
CD7F@A
E3
DDE1L
DD&ED]
2600
2504
29
10FD
DD4EG®
BL22
a9
a1203c
87
DD4&B2
36HBF
=3

zeied
28112
en1ze
20130
D140

pa15e
22160
Pa17a
eaisa
20190
el
PRz18
eez2o
20230
aazan
aezsa
PDz260
az7a
nezZae
pR220
aBI0e
oB310
an3ze
330
20342
an3sa
20368
nez7e
an3sn
eelen

Sample Calling Sequence

NAME OF SUBROUTINE? DRHLNE

HL VALUE? 50000

PARAMETER BLOCK LODCATION? SQ290
PARAMETER BLOCK VALUES?

+ 1 0 .

+ 1 1 is}x,vla, 15
+ 2 1 44 LENGTH=64
+3 0 02

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7 45200
SUBRGUTINE EXECUTED AT 45000

INPUT: QUTPUT:
HL= 5BB&a0 HL.= 5800
PARAM+ @ @ PARAM+ @ D

PARAM+ 1 15

PARAM+ 1 153 |FUNCHANGED
FARAM+ 2 b4

PARAM+ 2 &4

NAME OF SUBROMUTINE?

Notes

1. The program may ““bomb’’ the system if the length of travel goes beyond
video display memory boundaries.

2. The program may ““bomb’’ the system if the x and v coordinates are im-
properly specified,
3. Change location 7F22H to draw a narrower line,

Program Listing

CGRG 7F @M @522
5 IR T I T I I I I IEIEIE I I AN I I I I IR R

i% DRAW HORIZONTAL LINE. DRAWS A HORIZONTAL LINE FROM *
% GIVEN LINE (Y)s CHARACTER POSITION (X). *
;E INPUT: HL=> PARAMETER BLOCK *
R PARAM+D=CHAR POSITION (X)»y @ ~ &3 *
] FARAM+1=0LINE NUMBER {Y)» @-15 *
5% PARAM+Z=_ENGTH OF LINE IN CHAR FOSITIONS *
§ % OUTPUT:LINE DRAWN *
$ NI NI TIN5 U I 6T T B T A I B I NI
DRHLNE PUBH ec $5AVE REGISTERS

PUSH HL

PUSH IX

CALL BATFH saxAGET PB LOCTN#x»

PUSH HL. 3TRANSFER TO I1X

RPOP IX

LD La(IX+1) $GET LINE NUMBER

LD H, @ SNOW IN HL

LD B & s ITERATION COUNT
DRHB1® ADD HL s HL. SMULTIPLY LINE # * 64

DINZ DRHR1B FLOOP TILL DONE

LD Cs (1X+@) $GET CHAR POB'N (X)

LD BsB iNOW IN BC

ADD HLsBC sDISPILACEMENT FROM START

LD BC, 3COGH $START OF SCREEN

ADD Hl.sBC sFIND ACTUAL START LOC’N

LD By (IX+2) SGET NUMBER OF CHAR POS’NS
DRHAZ® LD (HL) - BBFH sALlL. ON FOR CHAR POSITION

INC HIL. sBUMP POINTER

86

7F24 1QFB AB420 DJINZ DRHAZ® sLOOP °TIL DONE

7FZ& DDE1 PB41@ POP IX $RESTORE REGISTERS

7FZ8 E1 BP4z0 POP HL

729 (1 D430 PGP BEC

TFZA €9 00449 RET $RETURN TO CALLING PROG
apaa 2r450 END

20P@@ TOTAL ERRCRS

DRHLNE DECIMAL VALUES

197y 229y 221y 229y 2B5. 127y 10+ 229y 221y 229,
£21s 11@s 14 38s Dy b3 &y 41s 165 53,

221 7By Bs by @ 9y 1 D HBy T

231, 7@y v 5S4y 191 35y 1h4y 251y 221y 275,

283y 193, 21

CHKSUM= 1@

DRVLNE: DRAW VERTICAL LINE

Configuration

Model I, Model III.

Description

DRVLNE draws a vertical line on the screen. The line may be any length and
may start on any character position of any screen line.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the starting x character position of the
line, from 0 to 63. The topmost character position of the line must be specified,
The next byte of the parameter block contains the starting line number y of the
line, from 0 to 15. The next byte of the parameter block contains the number of
character positions in the line length. This will be a maximum of 16 for a line
that starts at the top of the screen.

On output, the parameter block contents are unchanged. The vertical line has

been drawn.
P INPUT QUTPUT
HooL HooL
T
POINTER Tc:) PARAM-+ —] e [UNCHANGED]
T T
FARAM-+@ X, §-63 PARAM+3 UNCHANGED
+1 Y, @-15 +1 UNCHANGED
+2 LENGTH +2 UNCHANGED
87

7F 0@

Algorithm

The DRVLNE subroutine performs the move by computing the starting address
of the line in video display memory and by controlling the operation with the
count of the number of character positions involved.

First, the line number value is picked up from the parameter block. This is
multiplied by 64 to find the number of bytes (displacement) from the start of
video display memory. This value is added to a character position of the start
from the parameter block to find the displacement from the start of video dis-
play memory. This value is added to 3CO0H to find the actual video memory
address for the line start.

A byte of 0BFH is stored for each character position in the [ine. The current
video display memory position in HL is then incremented by 40H to find the
next location of the line. A count of the number of character positions involved
is then decremented and a jump is made to DRV020 if the count is not zero.

Sample Calling Sequence

NAME OF SUBROUTINE? DRVLNE
HL. VALUE? 52000

PFARAMETER BLOCK LOCATION? S2200
PARAMETER BLOCK VALUES?

+ 8 1 B8 =

1818 Lavens

+ 2 1 5
+ 32 2 0
MEMORY BL.OCK 1 LOCATION?

MOVE SUBRQUTINE TO7 40100
SUBROUTINE EXECUTED AT 421020

LENGTH =5

INPUT: QUTPUT =

HiL= 50020 HL= 50000

PARAM+ @ 8 PARAM+ O B

PARAM+ 1 @ PARAM+ 1 9 - UNCHANGED
PARAM+ 2 5 FARAM+ 2 5

NAME OF SUBROUTINE?

Notes

1. The program may “bomb’’ the system if the length of travel goes beyond
video display memory boundaries.

2. The program may “bomb” the system if the x and y coordinates are im-
properly specified.

Program Listing

fR108 ORG 7FoaH ;@522
YRR S L TS B TR T LR R A R R T O I i g R

00120 3% DRAW VERTICAL LINE. DRAWS A VERTICAL LINE FROM *
DA130 5% GIVEN LINE (Y)s CHARACTER POSITION (X). %
PO140 ;% INPUT: HL=> PARAMETER BLOCK *
20158 s5» PARAM+B=CHAR POSITION (X)» B —~ &3 *
20168 i+ PARAM+1=LINE NUMBER (Y)» @-15 - *
8178 s* PARAM+2Z=LENGTH OF LINE IN CHAR POSITIONS *

*

o180 3+ OUTPUT:LINE DRAWN

T An178 3 FEIEIE I I TN U 2 B T U T U T T 0 3N I K

2aze s

88

B2z10 DRVLNE PUSH

JFad C5

7F31 DS 29220
7F@z ES a3
7F@A3 DDE3 tez4@
7F@5 CDh7F@aA 20258
7F@8 E5 Qoza0
JF@9 DDEL asz7e
7FOE DD&LEAL]t g =ird
7TFBE 2400 opzFe
7F10 0604 Q300
7Fiz 29 epazie
7F13 10FD aa3ze
7F15 DD4EDD Be330
7F18 asL0@ @a348
7Fia @9 AB350
7F1R @182083C 23360
TFiE Q% BB37e
7F1F DD46@2 20380
TF22 114009 ag3ve
7F25 34BF 20402
TF27 1% eR410
7Fz8 10FeE BR42@
TFZA DDE1L 20430
7FzC E 20440
7FZD Di 20450
TFZE C) P44
TFRF C7 aaas7o
rjnining 20480

edeed TOTAL ERRORS

DRVE1@

DRVB:8

PUSH
FUSH
PUSH
CALL
PUSH
POP
LD
L.D
LD
ADD
DJINZ
LD
LD
ADD
LB
ADD
LD
LD
LD
ADD
DWNZ
POP
POP
PGP
POP
RET
END

IX
BATFH
Hi.

IX
Le{IX+1)
H=0

Bsd

Hl..» Hl.
DRVA1O
Ca (IX+@)
B:0
HL s BC
By 3CQ0H
HL BC

By (IX+2)
DE s 48H
{HL) + BBFH
HL » DE
DRV@zZE®
IX

HL

DE

BC

35AVE REGISTERS

s¥E#GET PB LOCTN#®%*
s TRANSFER TO IX

$GET LINE NUMBER

SNOW IN HL

$ITERATION COUNT
SMULTIPLY LINE # % &4
iLOOP TILL DONE

sGET CHAR POS'N (X))

sNOW IN BC

sDISPLACEMENT FROM START

$START OF SCREEN

sFIND ACTUAL START LOC'N

$GET NUMBER OF CHAR POSNS

sLINE DISPLACEMENT
$ALL ON FOR CHAR POSITION
$FIND NEXT POSITION
FLOGP "TIL DONE

sRESTORE REGISTERS

SRETURN TO CALLING PROG

DSEGHT: DIVIDE 16 BY 8

DRVLNE DECIMAL VALUES

197y 213y Z29y 221y 229y 285y 127y 1@y Z299 2249
2259 221y 1180« 1» 3By @2 & 65 41s 16»

253s 221. 7By By by Dy P 1« Bs 6H0s

Qe S22V TQs 29 17+ L4 By B4, 11 25

Lde 251, 221 225. 225 209 193s 281

CHKSUM= 247

System Configuration

Madel |, Model 1ll, Model Il Stand Alone.

Description

DSEGHT divides a 16-bit binary number by an 8-bit binary number. The divide
is an “unsigned” divide, where both numbers are considered to be ahsolute
numbers without sign. Both the quotient and remainder are returned.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the 16-bit dividend. The next byte of
the parameter block contains an 8-bit divisor. The next two bytes of the param-

eter block are reserved for the 16-bit quotient, The next byte is reserved for the
8-bit remainder.

89

On output, PARA+ 3, + 4 hold the 16-bit quotient and PARA+ 5 holds the 8-bit
remainder. The contents of the rest of the parameter block remain unchanged.

INPUT ouTPYT
HooL HooL
1 T
L POINTER TC:) PARAM-+2 | = [UNCH?NGED]
PARAM @ 16.BIT PARAM-+@
T obwvbens T + UNCHANGED
+1 +1
+2 | 8-BIT DIVISOR +2 UNCHANGED
+3 RESERVED : +3 16-BIT
+ FOR + T
+4 QUOTIENT +4 QUOTIENT
+6 | RES. FOR REMAIN. +5 | 8-BIT REMAINDER
Algorithm

The DSEGHT subroutine performs the divide by a “restoring’’ type of bit-by-bit
binary divide. The dividend is put into the HL register pair. The divisor is put
into the C register. The A register is cleared. For each of 16 iterations in the
divide, the HL register pair is shifted left one bit position into the A register. A
subtract of the divisor (C) from the “residue” in A is then done. If the resuit is
positive, a one bit is put into the least significant bit of HL. If the result is
negative, a zero bit is put into the least significant bit of HL, and the previous
value in A is restored by an add,

Quotient bits fill up the HL register from the right as the residue is shifted out
into the A register toward the left. At the end of 16 iterations, the HL register
pair contains the 16 quotient bits and the A register contains an 8-bit remainder.

The code at DSEO10 is the main loop in DSEGHT which shifts HL left by an
“ADD HLHL" and “ADC A,A.” The Isb of HL is preset with a quotient bit of
one, and the subtract of C from A is done. If the result is positive, a loop to
DSEO10 is done for the next iteration. If the result is negative, C is added back to
A, and the Isb of HL is reset. The B register holds the iteration count.

Sample Calling Sequence

NAME OF SUBROUTINE? DSEGHT

ML VALUE? 42200

PARAMETER BLOCK LOCATION? 42208
PARAMETER BLOCK VALUES?

+ @ 2 L0008 DIVIDEND
+ 2 1 111 DIVISCR
+ 3 2 @

+ 5 1 @

+ & B @

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TOY 43008
SUBROUTINE EXECUTED AT 43000

INPUT: QUTPUT:
ML= 42200 HL= 42208
90

7+28

7FeR
7F01
7FQz
7FO3
7F0S
7F28
7F @9
7FOB
7FOD
7F10
7F13
7F16
7F17
7F18
7F19
7F1A

7E1B

7F1E
TF1F
TRzl
7F24
7F27
TF24
7F2C
7FZD
7FZE
7FZ2F
oo

F3

5

ES
DDES
CD7FRA
E5
DDE1
2610
DDaERZ
DD&ERD
DD&&AT
AF

29

8F

z2C

2

ez
2D
1@8F&
DD75&3
DD74@4
DD7705
DDE)
Ei

c1

F1

ce

PR100
poLic
oeize
PR13G
epism
PR150
aaiea
ee173
aa18a
PB190
Doz0n
Qaz1d
eaezz@a
aBz30
eez40
anzsa
raz60
Daz7a
frlnpelzir]
raz70
"3
0310
ae3zd
PR33A
ba342
AR350
O340
2370
BBz
28390

88498

oR420
23432
eB44p
22450
284460
Ra470
22480
22499
28502
20510
29528

P0002 TOTAL ERRORS

PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
‘PARAM+

a 96 PARAM+ @
1 =34 PARAM+ 1
2 111 PARAM+ 2
3 @& PARAM+ 3
4 B PARAM+ 4
5 @ PARAM+ 5

NAME OF SUBROUTINE?

Notes

V-
234
111

:}UNCHANGED

ga j}QUOﬂENT=540

40

REMAINDER = 60

1. Maximum dividend is 65,535. Maximum divisor is 255. The maximum
quotient will be 65,535 and the maximum remainder will be 255,

2. Division by 0 causes an invalid result of OFFFFH.

Program Listing

ORG

7FPBH

@522

3 **

i# DIVIDE 14 BY 8. DIVIDES A 14-BIT UNSIGNED NUMBER BY
i% AN B--BIT UNSIGNED NUMBER TO GIVE A GUOTIENT AND RE-~ #
3* MAINDER. *
ER] INPUT: HL=> PARAMETER BLOCK *
3 PARAM+@, +1=14-BIT DIVIDEND *
$x PARAM+2=8-BIT DIVISOR *
R PARAM+3s +4=RESERVED FOR QUOTIENT *
ER) PARAM+3=RESERVED FOR REMAINDER *
§* OUTPUT : PARAM+3s +4 HOLDS 16-BIT QUOTIENT *®
LR PARAM+S HOLDS 8-BIT REMAINDER *

Lk AT S R RS TR R R X R A g SR R s L BT L ST 3T R

DSEGHT

DSE@1Q

DSE@Z0

91

PUSH
PLUSH
PUSH
PUSH
CALL.
PUSH
FPOP
LD
LD
LD
LD
XOR
ADD
ADC
INC
suUB

ABo

DEC
DJINZ
LD
LD
LD
POP
POP
POP
POP
RET
END

AF

BC

HL.

X
PA7FH
HL

IX

Brid

Cr (IX4+Z)
Le (IX+@)
Hs (IX+1)
A

Hi. s HL
Ar

L

C
R?&DSE@JB

L
DSER1@
(IX+3) 5L
(IX+4) 4 H
(IX+5)5A
IX

HL.

BC

AF

15AVE REGISTERS

i*xxGET PE LOC N¥x»
5TRANSFER TO IX

SITERATION COQUNT
sLOAD DIVISOR
SPUT DIVIDEND IN HL

sCLEAR EXTENSION REG
$SHIFT HL LEFT 1 BIT
iSHIFT A LEFT W/CARRY
3SET @ BIT 7O 1
$BUBTRACT D’SOR FROM D’END
EEES+5REUBTRACT WENT

PRESET & RIT
SLOOP FOR 16 ITERATIONS
$BTORE GQUOTIENT

:STORE REMAINDER
tRESBTORE REGISTERS

SRETURN TO CALLING PROG

DSSIXT: DIVIDE 16 BY 16

DSEGHT DECIMAL WVALUES

245 197 229 221y 229 205, 127+ 10s 2299 221+
228y by lhy 221 78y 2s 221+ 110. Bs 221,

102y 1y 1759 4ls 143s 44 145y 48y 24 12T

453 16y Zb4éby Z21y 1179 30 221s 11bs 49 221

119, Sis 221 225 225« 193y 241y 201

CHKSUM= 83

System Configuration

Model |, Model 1lI, Model 1l Stand Alone.

Description

DSSIXT divides a 16-bit binary number by a 16-bit binary number. The divide is
an “unsigned’” divide, where both nummbers are considered to be absolute
numbers without sign. Both the quotient and remainder are returned.

Input/Qutput Parameters

On input, the HL register pair contains a pointer to a parameter block, The first
two bytes of the parameter block contain the 16-bit dividend. The next two
bytes of the parameter block contain a 16-bit divisor. The next two bytes of the
parameter block are reserved for the 16-bit quotient. The next two bytes are
reserved for the 16-bit remainder.

On output, PARA+4, +5 hold the 16-bit quotient and PARA+6, -+ 7 holds the
8-bit remainder. The contents of the rest of the parameter block remain un-
changed.

INPUT QUTPUT
H L Ho L
]
[POINTER TO PARAM +] = L UNCH{ANGED
' f
PARAM<0 16.8IT PARAM-+g
T + UNCHANGED
Iy DIVIDEND "
+2 +2
16.8IT
T T + UNCHANGED
‘3 DIVISOR ﬁ +3
] ReSENEe | +4 16-BIT
+5 QUOTIENT +5 QUOTIENT
el R L +8 16-BIT
+7 REMAINDER +7 REMAINDER -
92

Algorithm

The DSEGHT subroutine performs the divide by a “'restoring’’ type of bit-by-bit
binary divide. The dividend is put into the DE register pair. The divisor is put
into the BC register pair. The HL register is cleared. For each of 16 iterations in
the divide, the DE register pair is shifted left one bit position into the HL register
pair. A subtract of the divisor {BC) from the “‘residue’ in HL is then done. If the
result is positive, a one bit is put into the least significant bit of DE. If the result
is negative, a zero bit is put into the least significant bit of DE, and the previous
value in HL is restored by an add.

Quotient bits fill up the DE register from the right as the residue is shifted out
into the HL register pair toward the left, At the end of 16 iterations, the DE

register pair contains the 16 quotient bits and the HL register contains a 16-bit
remainder.

The code at DS5020 is the main loop in DSSIXT which shifts DE left by an
exchange of DE and HL, an “ADD HL,HL,” and an exchange back. HL is
shifted by an “ADC HL,HL,”” merging any carry from DE. The Isb of DE is preset
with a quotient bit of one, and the subtract of BC from HL is done. If the result is
positive, a loop is made back to DSS020 for the next iteration. If the result is
negative, BC is added back to HL, and the Isb of DE is reset. The A register
holds the iteration count,

Sample Calling Sequence

NAME OF SURROUTINE? DSSIXT

HL VALUE? 45008

FARAMETER BLOCK LOCATION? 45000
FPARAMETER BLOCK VALUES?

+ £ 10280 DIVIDEND

B 2
+ 2 2 999 DIVISOR
+ 4 I @
1+ 4 2 0
418 B2 @

MUMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 50000
SURROUTINE EXECUTED AT 50000

INPUT OUTPUT :

HL= 45000 HL= 45000

PARAM+ B 16 PARAM+ B 16

PARAM+ 1 39 PARAM+ 1 39

PARAM+ 2 231 PARAM+ = =31 [UNCHANGED
PARAM+ 3 3 PARAM+ 3 3

PARAM+ 4 D PARAM+ 4 1D)
PARAM+ 5 D PARAM+ 5 @ }QUOTlENT-10
PARAM+ & @ PARAM+ & 1@

PARAM+ 7 @ PARAM+ 7 B]—REMAWDER=a

NAME OF SUBROUTINE?

Notes

1. Maximum dividend is 65,535. Maximum divisor is 65,535. The maximum
quotient will be 65,535 and the maximum remainder will be 65,535.

2. Division by 0 causes an invalid result of OFFFFH.

93

Program Listing

7F00 Q2102 QORG 7FDaH $@522
DDOL LD 3 WA AR KA T T JEI AN NI I 1690696 02T 2662 NI
P@12@ s+ DIVIDE 14 BY 16. DIVIDES A 146-BPIT UNSIGNED NUMBER BY
22130 $* A 16~-BIT UNSIGNED NUMBER TO GIVE A QUOTIENT AND RE- #
22140 s MAINDER. *
2150 3 INPUT: HL=> PARAMETER BLOCK *
20160 % PARAM+@y +1=16-BIT DIVIDEND *
QL1780 3% PARAM+2, +3=16~BIT DIVISOR *
aR1BR 1« PARAM+4 3 +5=RESERVED FOR QUOTIENT *
190 % PARAM+&s +7=RESERVED FOR REMAINDER *
20280 = OUTPUT : PARAM+ 41 +5 HOLDS 14-BIT QUOTIENT *
o210 5% FARAM+&.+7 HOLDS 16-BIT REMAINDER *
20z20 3 FEFEIE I 3 I IE I I TE T I I I I TG IEIE I IE I I I IS I 960 06 0 S0 I
Boz30

TFOR F5 20240 DSSIXT PUSH AF $SAVE REGISTERS

7F@1 C5 0250 PUSH ac

7F@z DS DR2460 PUSH DE

7F@B3 ES 20278 PUSH HL.

7F@4 DDES [l ezt PUSH IX

TF@A& CD7F@BA 2ez70 CALL AATFH 5#%2GET PB LOC ™ Nux*#

7F@9 ES ee3oe PUSH HL. $TRANSFER TO 1X

7F@aA DDE1 22310 POP IX

7FBC DDSEOR 20320 LD Es (IX+0) $PUT DIVIDEND INTO DE

7FOF DDS&B1 2338 LD De(IX+1)

7F12 DD4EDZ R340 I.D Ca(IX+2) $PUT DIVISOR INTC BC

7F13 DD4&AT B350 LD Ba (IX+3)

7F18 210000 0350 LD HL. @ $ZERC HL

7F1B 3E10 2378 D Arié sITERATION COUNT

7F1D ER AB380 DSS@z@d EX DE s HL. sDE TO HL

7F1E 29 0370 ADD HL s HL SSHIFT LEFT

7F1F ER 20400 EX DEsHL 5DE BACK

TFE2@ EDAA PR410 ADC Hi s HL $SHIFT LEFT PLUS CARRY

7EZ2 13 20420 INC DE sS8ET @ BIT TO 1

7F23 B7 PR432 OR A sCLEAR CARRY

7F24 ED4Z 28448 SBC HLsBC iSUB DIVISOR FROM DIVIDEND

TFz26 3002 [E5a) JR NC. DES830 5G0 IF SUBTRACT OK

TE28 18 20460 DEC DE SRESET @ BIT

7TF29 @9 2478 ADD HLsBC s RESTORE

7F2A 3D 20480 DSSO3® DEC A sDECREMENT ITERATION CNT

TF2R 20F0 20470 JR NZ.:DSS5820 sLOCP FOR 14 ITERATIONS

7F2D DD7304 20528 LD (IX+4)4E 3STORE QUOTIENT

7F3@ DD72@5 B0510 LD {IX+5)sD

7F33 DD7586 aa5ze LD (IX+&)sL $STORE REMAINDER

TF3&6 DD74D7 28530 LD (IX+7)eH

7F3% DDE1 28548 POP IX $RESETORE REGISTERS

7F3B E1 AB550 PCOP HL

7F3C D1 BR540 POP DE

TF3D Ci 2570 POP BC

7F3E F1 Bass0 POP AF

TF3F (9 2057@ RET SRETURN TC CALLING PROG

oo0d 20500 END

20820 TOTAL ERRORS

DSESIXT DECIMAL YALUES

249 197y 213y 229 221. 229 ZBSs 127: 10y 229,
221+ 225, 221y 94, @+ 221y BE&y Ly 221y T8

25 221 70 3+ 335 B3 B 62 16s 2359

41y 235 237 106 19 183 237y bbby 48s 2

27 9 b1y 32 2405 221y 115y 4y Z21s 114

59 2219 1175 G2 231y L1lbs Ty 2Z1+ 2295+ ZZ5s

ZB9s 193y 241, 281

CHKSUM= 149

94

EXCLOR: EXCLUSIVE OR

System Configuration

Model |, Model I1l, Model 11 Stand Alone.

Description

EXCLOR performs an exclusive OR on two 8-bit operands.

Input/Output Parameters

On input, the H register contains operand number one and the L register con-
tains operand number two. On output, L contains the 8-bit result.

INPUT OUTPUT

H L H oL
OPERAND 1] 0PERAND2| — | 6 RESULT J

Algorithm

The EXCLOR subroutine performs the exclusive OR by the XOR instruction and
returns the result in the L register with H set to zero.

Sample Calling Sequence

NAME OF SUBROUTINE? EXCLOR

HL VALUE? 13141 H=51=00110011;L=85= 31010101

PARAMETER BLOCK LOCATION?

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO?7 41111

SUBROUTINE EXECUTED AT 41111

INPUT: QUTPUT:

HL= 13141 Hi.= 1@2 RESULT: @0110011 XOR @1010101 = 31100119

NAME OF SUBRRGCUTINE?
Notes

1. BASIC contains no exclusive OR command.

Program Listing

7Faa 22100 ORG 7FABH @522
DA 1D 5495965900 595363036 3 303656 363 3 3363 30 3696 96 96 96 36 63636 6 B J6 069636 3636 96 96 3 96 96 96 96 3 3 363 06 96 B 3¢
am12@ 3% EXCLUSIVE OR. PERFORMS EXCLUSIVE OR OF TWO EIGHT-BIT #
Q3130 3x OPERANDS. *
PRI4D 3% INFPUT: HL=OPERAND 1 (H)s OPERAND 2 (L) *
AR5 3 x* QUTPUTiHL=0PERAND 1t XOR OPERAND Z *
DRAT1ED 5 %% %KX HH 31X 03K H R AW W I I TR 3 RN X
MA17@

7FaB F5 pR1BR EXCLOR PUSH AF $SAVE REGISTERS

7F@1 CD7FQA an19a CaLL AATFH $%%GET OPERANDS*¥*%

95

FILLME: FILL MEMORY

7Fa4 70 el ra L LD
YFB5 AD aazie XOR
TF@& &F 7z el] L.D
7F@7 2600 BBz30 LD
7F@% F1 DRz40 POP
TFAA C374A04A RBAZ5E JP
7F@ob Co 0azAB RET
ulninin) aaz7o END

2R0RAR TOTAL ERRORS

EXCLOR DECIMAL VALUES

T4y 205 127 19 124y 173y 111

195+ 154, 1@y 201

CHKSUM= 42

System Configuration

AsH

Lsh
H: @
AF
RATAH

Model I, Model Ill, Model Il Stand Alone.

Description

$OPERAND 1

FOPERAND 1 XOR OPERAND 2

SRESULT NOW IN L

sNOW IN HL

fRESTORE REGISTER

P ERRETURN ARGUMENT % %%
FNON-BASIC RETURN

dB8: @ 241,

bl

FILLME fills a block of memaory with a given 8-bit value. Up to 65,535 bytes of

memory can be filled.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the fill value to be used. The next two
bytes of the parameter block define the starting address for the block of memory
to be filled in standard Z-80 address format, least significant byte followed by
most significant byte. The next two bytes of the parameter block contain the
number of bytes in the block to be filled.

On output, the block of memory has been filled; the parameter block remains

unchanged.

INPUT

H L

T
L POINTER Tq PARAM-+-@
T

PARAM+@ | FILL CHARACTER
1 1 PoINTER
" TO MEM 146
3 gevresTo |
» FILL

96

i

PARAM+@ UNCHANGED
+1
1 UNCHANGED
+2
+3
+ UNCHANGED -+
+4)

QUTPUT
H L

T
| — UNCHANGED
]

MEM 1+0 MEM 1+
+1 +1 AREA
T T T FILLED T
+2 AREA +2 WITH
T TO BE + T FILLCHAR- 7T
+3 FILLED +3 ACTER
+4 +4
+5 5
4 4 + 4
) | o] |
Algorithm

The FILLME subroutine first picks up the number of bytes in the block and puts
it into the BC register pair. Next, the starting address is put into the HL register
pair. The A register is then loaded with the fill character.

The loop at FILO10 fills each byte in the memory block. The count in BC is
decremented and the pointer in HL is adjusted to point to the next memory
byte.

Sample Calling Sequence

NMAME OF SUBROUTINE? FILLME

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 40202
PARAMETER BLOCK VALUES?

+ @ 1 &5 “A" FILL CHARACTER
+ 1 2 52088@ AREATOFILL

+ 3 2 5 # OF BYTES

+5 @ @

MEMORY RLOCK 1 LOCATION? 50000
MEMORY BLOCK 1 VALUES?

+ 8 2 0
+ 2 2 @
+4 2 B INITIALIZE FiLL AREA FOR EXAMPLE
+ 46 2 @
+ 8 0 0

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO07 38000
SUBROUTINE EXECUTED AT 38000

INPUT: OUTPUT:

HL= 40000 HL= 400200
PARAM+ @ &3 FARAM+ @ &5
FaRAM+ 1 B@ PARAM+ 1 B0
PARAM+ 2 195 PARAM+ & 193
PARAM+ 3 5 PARAM+ 2 5
PARAM+ 4 @ PARAM+ 4
MEMBiI+ @ B MEMEI+ @ &5
MEMR1+ 1 @ MEMEI+ T &5
MEMBI+ 2 0 MEMBi+ 2 &5 LFIVE“A”S FILLED
MEMBLI+ 3 8 MEMBi+ 3 A5
MEMBI+ 4 @ MEMBi+ 4 &5
MEMBI+ 5 @ MEMBI+ 5 @
MEMBI+ & 8 MEMB1+ & @
MEMB1+ 7 @ MEMBI+ 7 D

NAME OF SUBROUTINE?

97

7Foa

7F 00
7F Q1
7F@z
7F@3
7F04
7F 86
7FO9
7F@A
7FRC
7FOF
7F12
7F15
7F18
7F1B
7F1C
7F1D
7F1E
7FIF
7F20
7F21
7F2z
7F24
7F26
7F27
7FZ8
7F29
7FzA
BBEA

F5

Co

D5

E5
DDES
CD7FoA
E3S
DDE1
DD4&B4
DD4EB3
DbhéseBZ2
DD&EDL
DD7EBA
77

23

ag

57

78

B1

7h
ZaF7
DDE1
El

Di

1

Fi

ce

Notes

1.

video display.

Program Listing

eeien
20110
P10
22130
28140
2150
20150
ea17e
o186
20199
P0z00
an210
0azz0
aRz23a
20249
vezse
22260
eez7a
P0ze0
anz99
eeazee
ena3ie
2B3z0
20330
02340
20350
203460
A37a
20380
20350
ans00
@412
20420
00430
o440
Q450
Q0460
aa470
@480
22470

ho2P2 TOTAL ERRORS

ORG

i* FILL. MEMORY.

s*» VALUE.
3%
T
2 3

-
?

HE
ER]

INPUT: HL=>

7FaaH

@520
ER AR R R b S R Sk SR L S e e e e S T S S T T T Y S R R A

FILLS A BLOCK OF MEMORY WITH A GIVEN

PARAMETER BLOCK

PARAM+@=FILL CHARACTER
PARAM+1s+2=FILLL STARTING ADDRESS
PARAM+3y +4=# OF BYTES TO FILL:
@=45536

-

1 TO 65535,

OUTPUT:BLOCK FILLED WITH GIVEN CHARACTER

The FILLME subroutine can be used to “zero” memory or to initialize the

* k & k k k K *k

-','***************'!-**

FILLME PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
LD
LD
INC
DEC
LD
LD
OR
LD
JR
POP
POP
POP
POP
POP
RET
END

FliLeie

AF

BC

DE

HL

IX
AA7FH
HL.

ix

By (IX+4)
Cy (IX4+3)
Hs (IX+2)
Le (IX+1?)
As (IX+D)
(HL)sA
HL.

BC

DsA

AP

C

ArD
NZIsFIL@l@
IX

HL.

DE

BC

AF

FILLME DECIMAL VALUES

yBAVE REGISTERS

s#*%GET PB LOCTN##¥

$TRANSFER HL TO

IX

SPUT # OF BYTES IN BC

sPUT BETART IN HL

sPUT FILL CHARACTER IN A

$RETURN TO CALLING PROG

sFILL BYTE

sBUMP POINTER TO NEXT

s DECREMENT
$SAVE A
;TEST BC

JRESTORE A

COUNT

5G0. IF DONE
sRESTORE REGISTERS

245 197 213« 229 221s Z29s 205: 127 10. 229,
221e 225. 221 7@ 4 221y 78y 3y 2214 102

2y Zels 110« 1. 223y 126: B 1192 35y 11

87 1209 177+ 122y 32+ 247y 2219 235y 2254 ZAF.
193y 241, ZB1

CHKSUM= 17
9%

FKBTST: FAST KEYBOARD TEST

System Configuration

Model |, Model llI.

Description

FKBTST is a “fast” keyboard test that tests for any key press and for five special
kevboard keys, CLEAR, UP ARROW, DOWN ARROW, LEFT ARROW, and
RIGHT ARROW. FKBTST returns a zero if no key is being pressed, a negative
value if one of the special keys is being pressed, or a positive value if another
key is being pressed. It can be used for games control or any other application
where fast keyboard scanning is required.

Input/Output Parameters

No input parameters are required. On output, HL is returned with a zero for no
keypress, —1 for CLEAR, — 2 for UP ARROW, — 3 for DOWN ARROW, — 4 for
LEFT ARROW, and —5 for RIGHT ARROW, or + 1 through + 127 for other key
combinations.

INPUT OUTPUT
H | L H | L
| NONE | — | KEY CODE OR 8
T T

Algorithm

The row address for the special keys is 3840H. This row is first read by an “LD
A,(3840H).” The contents of A are then compared with the column bit configu-
ration for the special keys (2, 8, 16, 32, and 64), and if there is a match the
corresponding negative code is returned in HL. If there is no match, a “LD
HL,(387FH)Y" is done. This reads all column bits into L. M is then cleared. If
there was no key press, HL will now be set to zero.

Sample Calling Sequence

NAME OF SUBROUTINE? FKETST

HL VALUE? @

PARAMETER BLOCK LOCATION?
MEMORY 8LOCK 1 LOCATION?

MOVE SUBROUTINE TO7 45000
SURROUTINE EXECUTED AT 435000

INPUT: OUTFUT =
HL= @ HL= &5533 -3=DOWN ARROW

NaME OF SUBROUTINE?

Notes

1. Detection of a special key will take about 60 microseconds, average time.

2. FKBTST may be used to detect multiple key presses, such as “JKi’* or
123.

3. The SHIFT key is not tested.

Program Listing

7+ o8

eRiee ORG 7FeaH ;@522
DDLLD 5 HRIW IR K TN HIN KT IEIE T IR I T 3T T A6
82128 :# FAST KEYBOARD TEST. TESTS FOR ANY KEYPRESS AND FOR *
@138 s+ FIVE SPECIAL KEYS. *
oB143 3% INPUT: NONE *
@158 s« QUTPUT:HL.=@ FOR NO KEY PRESS:—-1 FOR CLEARs-2 FOR *
001560 5+ UF ARROWs —3 FOR DOWN ARROW: -4 FOR LEFT *
2017@ s+ ARROWy AND -3 FOR RIGHT ARROWs 1-127 FOR *
218D 5= OTHER KEY COMBIMATIONS. *
aiog ; **I—*******
adzee

7FeR F5 BBZ1Q FKBTST PUSH AF $SAVE REGISTER

7FB1 21FFFF aezze LD HLs~1 s CLLEAR CODE

7FB4 3A4038 epz30 LD A (3B840H) $READ ROW

7F@7 FEBZ2 2az4d cP 2 sCLEAR?

7F@9 2819 Pez5e JR ZyFKBEQ1@ 360 IF YES

7FBB 2B Poz260 DEC HL $UP ARROW CODE

7F@C FEes eR:z72 CP = $UP ARROW?

7FRE 2814 vazsa JR ZyFKEO1D GO IF YES

7Fi@ Ze 20270 DEC HL. $DOWN ARROW CODE

7F11 FE1@ Pa3da CP 14 sDOWN ARROW?

7F13 Z80F an31e JR Z»FREBLI@ 560 IF YES

7F15 2B Q0320 DEC HL ftLEFT ARROW CODE

7Fi& FEZ@ Q0330 cP 3z SLEFT ARROW?

7F18 280a Pa340 JR I yFKEQ@1Q 160 IF YES

7FiA 2B 2350 DEC HL. SRIGHT ARROW CODE

7FiB FE4Q 2R3LE CP b4 SRIGHT ARROW?

7F1D zB@5 ve37e JR Z:FrREd1@ 560 IF YES

TFIF 2A7F38 20380 LD HL.» (3B7FH) $READ ALL COLUMNS

7F2z 2600 Ual R LD He@ SRESULT IN HL

TF24 F1 20480 FKED1D POP AF $RESTORE REGISTER

7F25 C37A0A 410 JP QAFAH i¥*#XRETURN ARGUMENT %%

7F28 C9 BO42D RET $NON-BASIC RETURN

0200 Q430 END

22P2@ TOTAL ERRORS

FKETST DECIMAL VALUES

24354 33, 255. 2595, 58s &4y Sby 2541 T 4D
w43 Z04y B 4@y 28 433 254y ldéy 40
15+ 435 284. 329 404 1@y 431 2944 645 480
9y 42y 1279 H6r 3By O 241y 199y 154y 10
Fi
CHRSUM= 29

FSETGR: FAST GRAPHICS SET/RESET

System Configuration

Model I, Model ll.

100

Description

FSETGR is a subroutine that sets or resets a given screen pixel. It is designed to
perform screen actions rapidly and uses a table lookup structure to avoid the
time-consuming processing present in other graphics subroutines. Any of the
6144 graphics pixels, arranged in 128 columns by 64 rows, may be set or reset.
Previous to using FSETGR, the screen area to be utilized must have been
cleared with graphics characters (80H).

InputtQutput Parameters

On input, the HL register pair contains a peinter to a parameter block. The first
two bytes of the parameter block are the starting address of the FSETGR subrou-
tine, in standard Z-80 address format, least significant byte followed by most
significant byte. The next byte of the parameter block is the x coordinate, 0 to
127. The next byte of the parameter block is the y coordinate, 0 to 47. The next
byte of the parameter block is a set/reset flag. This byte is O if the pixel is to be
set, or O if the pixel is to be reset.

On output, the pixel is set or reset, and the parameter block remains un-
changed,

INPUT QUTPUT
HooL Ho L
POINTERTQ PARAMHS | ——> | UNCHANGED]
} ;
PARAM+@ START PARAM-+@
aT AD'I:DSREETSGSROF -+ LT UNCHANGED +
+2 X, B-127 +2 UNCHANGED
+3 Y, 347 i +3 UNCHANGED
+4 [@=SET, 1=RESET +4 UNCHANGED

Algorithm

The FSETGR subroutine uses a table of 48 entries to implement fast graphics.
Each entry in the table corresponds to one of the 48 rows of graphics and gives
the actual memory address that contains the pixel and the mask to be used in
processing the pixel. The first twelve bits of an entry represent the memory
address when four zeroes are added to the twelve bits. The fifth entry of 3C44H,
for example, represents 3C40H, the start of the fifth graphics row in memary.
The last four bits represent the graphics mask to be used in processing, as we’ll
explain.

FSETGR first gets the y value from the parameter block. This y value is multi-
plied by 2 and added to the base address of FSETGR and TABLEA displace-
ment; the result points to the TABLEA entry. The entry address is put into HL and
IY. Next, the four least significant bits of HL are reset to mask out the graphics
mask. HL now points to the start of the line containing the graphics byte.

Next, the x address is picked up from the parameter block. The x address is
divided by two and added to the HL register, The HL register now points to the
actual byte in memory containing the pixel to be processed.

101

7Faa

7F 00
7FB1
ez
7F@3
-
7FR6
7F@8
7FOB

F5

cH

D5

ES
DDES
FDE'
CD7FBRA
ES

20100
0114

Next, the A register is loaded with the least significant byte from the TABLEA
table. This contains the graphics mask. The mask value is ANDed with 1FH to
get only the mask. If X is even, the mask is left unchanged, as it represents the
left-hand bit; if X is odd, the mask is shifted left for the right-hand bit.

The byte containing the pixel is now loaded into B. If a set is to be done, the
mask in A is ORed with B and the result stored to set the pixel. If a reset is to

be done, the complement of the mask in A is ANDed with B and the result
stored to reset the pixel.

Sample Calling Sequence

NAME OF SUBROUTINE? FSETGR

HL - VALUE? 48000

FARAMETER BLOCK LOCATION? 40000
FARAMETER BL.OCK VALUES?

+ @ 2 37088 START OF FSETGR

P
+ 2 1 64
= 64,24
3 1 o4 X,Y = 64,2
+ 4 1 @ SET
+ 53 0 0

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7 37800
SUBROUTINE EXECUTED AT 37000

INPUT: OUTPUT:

HL= 40880 HL= 40900

PARAM+ @ 1364 PARAM+ B 134

FARAM+ | 144 PARAM+ 1 144

PARAM+ 2 b4 PARAM+ 2 A4 UNCHANGED
PARAM+ 3 24 PARAM+ 3 24

PARAM+ 4 B PARAM+ 4 @

NAME OF SURROUTINE?
Notes

1. This subroutine can set/reset about 4000 points per second.

Program Listing

ORG 7FBOH A5z
B e R s T L 1 T pavprgrgegegnggn

AA1Z@ 3% FAST GRAPHICS SET/RESET. SETS/RESETS A GIVEN PIXEL. =*
02130 5= INPUT :HL=> PARAMETER BLOCK *
QD142 3% PARAM+Q, +1=5TART ADDRESS OF FSETGR *
B@H15@ 3= PARAM+Z=Xy» B TO 127 *
BA160 5% PARAM+3=Ys @ TO 47 *
2173 3 PARAM+4=0ET/RESET FLAG. O@=SETs 1=RESET *
00168 1% QUTPUTIPIXEL SET OR RESET *
LR I e 1 L L L T raopppprvpvggvgey
pRzee s
P21 FSETGR PUSH AF sSAVE REGISTERS
aazz PUSH ec
alreelyj PUSH DE
paz4@ PUEH HL.
aRzse PUSH IX
PBzsl PUSH 1Y
Aaz7a CALL. RAATFH) s¥AGET PR LOC"Nx#*#%
ARZB0 PUSH Hi. STRANSFER TO IX

102

7FRC
7FRE
7Fie
TF13
YF15
7F18
1R
TF1C
YFIF
TFZB
fFZ1
TFE3
TFZé
7FZ8
F2%
TFZC
TFZF
TF3L
TF33
7F34
737
TFE%
TF3D
TF3F
TF41
TF42Z
7F 44
7F48
¥F49
TF&hH
7F4C
7F4D
7TF4E
7F5@
Fia=V
TF53
TH54
7F55
THS&
ans7
7t 57

7F59
7FSE
765D
7FSF
7F&1
TF&3
7F65
7F&7
7F69
TF &R
7F&D
7F&F
7F71
7F73
7F75
7F77
779
7F 7R
7F7D
7E7F
7F 81
7FE3
7F8S
7Fe7
7Fg9
7F8R
7F8D

DDE1
16680
PDSE®3
CR23
DD&EDA
DD&&BT
1g
@157
o7

ES

FDE 1
FL/7ED@
E&HER
&F
FDas@:
DNSEZ
16602
CB3B
17
FD7EDQR
E&IF
DDCRAZ44
ZBox
CR27
4é
DRCERA 4L
=804

arac
A430C
1B83C
413C
H43C
5@03C
813¢
a43C¢
R3c
C13¢
C43C
DB3C
i3
A43D
IA3D
413D
443D
S@3D
2130
843D
FazD
G130
C43D
Dazn
i 3E
B43E
183
413E

Ly Mgt
QA3
bazio
LR el
Da32a
pa34e
pasnhe
BB3LHG
oa37e
@360

PR3TA
BR40O

2a41d
ae42@
DR4 30
BR440
450
PA44LA
oR478
Baaas
aaaee
2as52a
reasia
AB5z0
o538
AR5 48
pa550
aE5s60
pas7e
Dassn
pRs7e@
radralabalt
apns1d
AD&H2D
oR&sle
BRs4@
204650
BRLsD
eas7e

PRLEd
QB4L5D

PO7ER
0710
0720
pR730
Q0740
a750
BA760
aa77e
oa730
PA7I0
(e 1=t
oRa1 G
VeRZ0
OREID
Ba340
anasn
POB&0
ona7e
oREee
angon
20700
opvi@
DA% z0
RIIH
V074@
A0950
0560

FSEQAZR

FSEA3Q
FSED4D

TABLEA

103

FOF
LD
LD
GLa
LD
LD
ADD
L.
ADI}
PUSH

FOF
D

AND
LD
LI
LD
LD
SRL
ADD
LD
AN}
BIT
JR
SLA
L.D
BIT
JR
CPL
AND
JR
OR
LD
POP
POP
FOpP
POR
POF
POP
RET

BEFW

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEF W
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

iXx

Dath

Es {IX43)
E

Ly {FX+E)
Hy {IX+1)
Hi. s DE

BCs TARLEA
ML« BC

HL

1Y
Ay (1Y+D)
PEDH

LsA

Hs (TY+1)
Ea (IX+2)
D@

E

HL.» DE

Ar CIY+D)
1FH

B (IX+2)
7, FSEQZD
A

Br (HL)
Bs (IX+4)
73 FSEQZ0

B
FOED4D

B
(HL) s A
1Y

Ix

HL.

DE

EC

AF

ScoBRiT"
3CADH+4
3CADH+16
3CA@H+1
3C4BH+4
IC4DH+16
3CBOM+1
ICB8OH+4
3CBOH+14A
JCCAH+1
JCCRH+4
3CCAH+14
ADG0H+1
JDBAH+4
IDBoH+16
3D40H+1
3D4BH+4
SD4@H+16
3D8aH+1
3DBAH+4
JDgaH+16
ADCAaH+]
IDCBH+4
3DCAH+14
JEDOH+1
JE@@H+4
JEQRH+14
3E4@H+)

SZERD D

iY TO DE

%Y FOR TABLE LOOKUP
5GET BASE ADDRESS

SADD ZxY

$TABLE DIGPLACEMENT
tPOINT TO TABLE START
$TRANSFER TO IY

SGET LINE START
iMASK OUT MASHK!
LS BYTE NOW IN L

sOET X

sNOW IN DE

INGW X/2

FPOINT TO GRAPHICS BYTE
sGET BIT

FGET MASK ValLUE

sTEST LSB OF X FOR ODD/EVEN

36O IF LEFT

TRIGHT COLUMN

$GET GRAPHICS BYTE
$TEST SET/RESET
;G0 IF SET

s INVERT MABK
$RESET BIT

3 CONTINUE

$SET BIT

5STORE GRAPHICS BYTE
;RESTORE REGISTERS

PRETURN TO CALLING PROG
sDISP OF TABLE FROM START

INBLCK: INSERT BLOCK

JFRF 443E age7e DEFW SE4QH+4

7EF1 HRA3E a0 DEFW SE4QH+156
TF93 B13E raFR DEFW JEBAM+1

TFIS 843E alaon DEFW SEBOH+4

TF97 9B3E Ridid DEFW SEGRH+14
TFF9 C13E Q1829 DEFW JECOH+1

PR C43E R1@38 DEFW SECAH+4

7FD DB3E 1240 DEFW SECBH+14
7FSF @A13F 1058 DEFW 3FR@H+1

TFAL D4AT3F 10468 DEFW SFA@H+4

TFAZ 183F Qiave DEFW IFADH+1 4
TFAD 413F 1080 DEFW JF4@H+1

TFAT 443F B1072 DEFW IF4@H+4

TFAY S503F @110a DEFW JF4BH+1 5
7FAR BI3F a1ii@ DEFUW JFBRH+1

7FAD B43F Q11222 DEFIW FERH+4

7FAF 9B3F 2113e DEFW 3FBRH+14
7FR1 C13F 21140 DEFW SFCAH+1

7R3 C43F Rr1is5e DEFW 3F COMH+4

7FES DA3F @G11460 DEFW SFCOH+15
615150 a117e END

VOBed TOTAL ERRORS

FSETGR DECIMAL VALUES

245y 197s 2134 229 221 229y 293y 229 20%: 137,
10y 22%9: 221s 259y 22y By 221y 94y 3y 203,

353 221y 110s @y 221 1029 15 5,5 1, 87,

@y Gy 229y ZB3s IT5 253, 126y O 238y 224

111s 2539 102y 1y 221y 94, 2y 22« Bs O3

539y 25y 253y 126 @5 230y 31 281y 203,
@ 4@ 2y ZB3+ 399 70, 221y 203, 49 70,
4@y 4a 475 16Bs 24y 1y 1T7Hy 119, 2853y 225,
221y 225y 225y 209 193, 241y 201 1s 4B 4+
60: 16y 60 65y 4By 68: 4Dy 8Dy L@ 129,

6By 132y 60, 144, &By 1935 &0, 194 6B =P8,
Qs 19 6la 40 &1y 16y &1y 65, bis 6B

b1y 8B &61s 129 &1s 1335 b1, 1444 &1 193,
Gls 196y bl ZBBs 412 13 b2 4, S 1éby

b2 6Dy bZr 6Bs 6Zy BRI AT, 129y b2y 1324
62y 144y 625 193y &2y 196+ &3 208y 62y 1y
63y 4y 63. 143 &3y A5y &3, 6By 63y B

63 129y 63y 1324 A3y 144, 630 173y A3y 1Fé,
&3y ZPBs 63

—~
g |

CHKSUM= &9

System Configuration

Model I, Model lll, Model [i Stand Alone.

Description

INBLCK inserts a block in the middle of a larger block of memory. The block is
inserted by moving down all bytes after the insertion point, as shown below.
This subroutine could be used for inserting a block of text, for example, and
moving the remaining text below the inserted block. Both the “larger block”
and “insert block”” may be any size, up to the limits of memaory.

104

Input/Output Parameters

l On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the larger block in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes are the address of the insertion block in Z-80 address
format. The next two bytes are the address of the insertion point in Z-80 address
format. The next two bytes of the parameter block contain the number of bytes

. in the larger block; the next two bytes contain the number of bytes in the
deletion block. Both are in standard Z-80 format.

l On output, the contents of the parameter block remain unchanged. The inser-
tion block has been inserted by a move of the insertion block into the insertion
point,

. INPUT QUTPUT

HooL Ho L
T
. r POINTER To'L PARAM+ l > l UNCHANGED —]
T T
PARAM -+ POINTER TO PARAM-+@
-+ LARGE BLOCK -+ L UNCHANGED -+
+1 | START (MEM1+8) +1
+2 POINTER TO +2
-+ INSERT BLOCK -+ 4 UNCHANGED +
. +3 (MEM2-+0) j +3
+4 INSERT +4
1 ADDRESS IN + UNCHANGED —+
+5 | LARGE BLOCK 45
+6 # BYTES +6
4 IN + + UNCHANGED -+
+7 LARGE BLOCK +7
+8 # BYTES +8
4 IN - T+ UNCHANGED -+
l +9 | INSERT BLOCK +9
. MEM 1+ MEM 1+@
] T T apeer 7T
- “|LARGE" 4 4 BLOCK 4+
+2 BLOCK WITH
i 1 pomE
l 2 1 é 1 iNserTED |
+4
4 4 v -
ot I -l
K
+6 1 1 / LoCh /
-, e
. MEM2+g MEM2+9
+1 +1
+ INSERT < 4 i
+2 BLOCK +2
. +3 é +3 UNCHANGED
+4 +a
+8 +5

| . e

105

Algorithm

The INBLCK subroutine performs the insertion by “opening up” space in the
larger block for the bytes of the insertion black and then moving the insertion
block into the space created.

Space is created by doing a block move downward of the area in the farger
block from the insertion point to the end. This must be an LDDR to avoid

replication of data. The LDDR is followed by an LDIR to insert the insertion
block.

The LDDR must be set up with HL containing the address of the last byte of the
larger block, DE containing the address of the last byte of the larger block plus
the number of bytes in the insertion block, and BC containing the number of
bytes in the larger block from the insertion pointon. The HL address is found by
adding the start of the larger block plus the number of bytes in the larger block
minus one. This is saved in the stack for the LDDR. The BC count is found by
subtracting the insert address from the end address and adding one. This is also
saved for the LDDR. The DE address is found by adding the number of bytes in
the insertion block to the end address. The move is then dene by an LDDR,

The LDIR for the insert is then done after setting up DE with the address of the

insertion point, HL with the address of the insertion block, and BC with the
number of bytes of the insertion block.

Sample Calling Sequence

NAME OF SUBROUTINE? INBLCK

HL. VALUE? 42000

PARAMETER BL.OCK LOCATION? 42009
PARAMETER BLOCK VALUES?

+ @ 2 5@@P@ LARGEBLOCKSTART

+ 2 2 55088 INSERT BLOCK START

+ 4 2 S00@2 INSERTPOINT

+ &6 205 5 BYTES IN LARGE BLOCK
+8 2 3 3 BYTES IN INSERT BLOCK
+ 18 @ 2

MEMORY BLOCK 1 LOCATION? 50000
MEMORY BLOCK 1 VALUES?

+2 1 @

+ 1 i 1

+2 1 2 LARGE BLOCK

+3 1 3 FINITIALIZE LARGE BLOCK FOR EXAMPLE
+ 4 1 4

+5 1 5

+ 6 1 6

+ 7 1 7 _

+ 8 1 @

+9 0 9

MEMORY BLOCK 2 LOCATION? S508@
MEMORY BLOCK 2 VALUES?

+@ 1 2857

+ 1 1 54 LINSERTBLOCK

+ 2 1 zszj_

+ 3 @0 0

MOVE SUBROUTINE TO7 37000
SUBROUTINE EXECUTED AT 37000

INPUT: OUTRUT ¢
HL= 40000 HL= 40000
106

7ree

7Fon
7FB1
JFoxz
7F@3
7V R4
TF@&
7F@e
7EBA
7F@ac
7FOF
1z
7F15
Fie
7F19
7Fia

F5

£5

D5

ES
DDES
CD7FBA
ES
DDE1L
DDAERA

DD&66DY
DD4EDS

DD44&A7
av
2B
ES

PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEME1+
MEMB 1+
MEME1+
MEMB14+
MEMB 1+
MEMB1+
MEME 1+
MEMB1+
MEMBZ+
MEMBZ+
MEME 2+

NeSQ@QNrRLAUNNAS00NDUWSUN=D

BE&
195
216
214
8z

s-qom.pum--sausuz
L8]

R B2 B2
Ln Lrin
(R

PARAM«+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
MEME 1+
MEME 14+
MEMB1+
MEME 1 +
MEMB1+
MEME 1+
MEMBL+
MEMB1+
MEMB1+
MEME =+
MEMBZ+
MEMB.2+

NMe@aNPFUPLUN=H DN APLUN=E

NAME OF SUBROUTINE?

Notes

254
253

— UNCHANGED

-ORIGINAL DATA

INSERTED DATA | 8 BYTES

4 OF NEW BLOCK

FORIGINAL DATA

- UNCHANGED INSERT BLOCK

1. The maximum number of bytes in either block may be 65,535.

2. The term “’farger block” is somewhat misleading. The larger block may be
smaller than the insertion block!

3. The insertion point must be within the larger block.

Program Listing

dbi1e2

ORG

TFOAH

RS20

BRLLE 5 %603 16 963 I 06165903 309006 I 6 3006 366 96 60 63636 96 JE 626966 3636 96 36 96 9696 3600 069 O 06 K 3 X

BR1Z@ 3+ INSERT BLOCK.

PR130 s+
BRI4B 3%
PAL3Q 5w
Q160 3
av178 5%
pRIBe =
D170 %
pRazoe =

INSERTS BLOCK
INPUT: HL=:PARAMETER BLOCK

PARAM+@y +1=5TART ADDRESS OF LARGER PLOCK
PARAM+2Z: +3=5TART ADDRESS OF INSERT BLOCK
FARAM+4, +3=TNSERT ADDRESS IN LARGER BLOCK
PARAM+As +7=# OF BYTES IN LARGER BLOCK
PARAM+Es +9=# OF BYTES IN INSERT BLOCK
OUTPUT s INSERT BLOCK INSERTED IN LARGER BLOCK AND
FOLLOWING BYTES MOVED DOWN

IN MIDDLE OF LARGER BLOCK®

* ok ok % A& A kK

DBZLEA 55303 H I 30BN 6 216 S IE I I3 36 0060 A 2 3326 5 6 I

pazzR 3
BPRZ38 INBLCK
Baz4@

ARz5a

BRz&0

aaz7e

PazEn

Ll rrargr)

PE3Ba

ealin

pB3zn
aa33e

Ba343
ea350
2A36LG
DR378

107

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD

LD
LD

LD
ADD
DEC
PUSH

AF
2T

DE

HL

IX
BATFH
HL

IX

Le (TX+B)

Hy (IX+1)
Cs (IX+6)

Bs {IX+7}
HL«BC
H..

HL.

;s 5AVE REGISTERS

FHERGET PE ADDRESD*%x
sTRANSFER TO IX

$START OF LARGE PLOCK
t# OF BYTES IN LARGE BIK
$END OF LARGE BPLK+1

3 GAVE

7F1R
7F1E
7F21
F22

k28
7F26

7F27
TFZA
7F2D
TFZE
7hF
7F30
7F3z
7F35
7F38
7F3R
7F3E
7F41
TF44
TF46
TF48
7F 49
7F4A
TF4B
7F4C
BOO0

DD4EQ4
DD4&DS
B7
ED42
Y

ES
DD&EDE
DD&ADY
19

EB

(98]
EDEB
DDSER4
DDS54685
DD&EBZ
DD&LA3
DIMERS
DD44LAT
EDBR
DDE1
El

D1

Cl

F1

ce

20380
pazed

A4
041D

8Bas8

Q44D
aB45a
AB4460
BR470
DA4BY
D490
Q0500
g5 in
20520
2530
Q540
BO550
RRS LA
aps7e
28588
2a59p
BRLRD
@uas1e
QB&HzZRA
02430
PRL4B

oneAd TOTAL ERRORS

METEST: MEMORY TEST

LD Cr (IX+4) : INSERT ADDRES!

LD Ba (IX+5)

OR A s CLEAR CARRY

BEC HLsBC TFIND # TO MOVE

AHE B $SOURCE ADDRESS

PUSH ML ISAVE # TO MOVE

LD Ly (1X+8) 34 OF BYTES IN INSERT BLK
LD Hs (1X+9)

ADD HL » DE tFIND DESTINATION

EX DEsHL iPUT IN PROPER REGISTERS
FOP BC sRESTORE #

LDDR $MOVE BYTES

LD Es (I1X+4) $ INGERT ADDRESS

LD Dr (IX+5)

LD Ly (IX+2) $SOURCE ADDRESS

LD Hs (IX+3)

LD Cs (IX+8) s# OF BYTES TO MOVE

LD By { IX+%)

LDIR $MOVE INSERT PLK TO INS PT
POP IX sRESTORE REGISTERS

POP HL.

POP DE

POP BC

POP AF

RET iRETURN TO CALLING FROG
END

INBLCK DECIMAL VALUES

2454 197,
2215 225,

bs 221y 7@

221y 7@ Sy 183. 237, 209y Z29y 221
118 By 221y 10Z2: 99 25y 193y 237y 184,
221y T4y 45 2219 Bhe Gy 11@y 24 221,
182, 35 221. 782 By 221, s 2375 1764
221y 2254 225 209 193, 2Bl
CHKSUM= #&é&

2130 229y 22l
221s 118y By
71 Gy 43,

192y 1y 221 78,
221y 78y 4,

285y 127 10y 229,

System Configuration

Model I, Model I, Model Il Stand Alone.

Description

This subroutine tests a given biock of memory by a “PUSH/POP” method. One
pass is made through the test with each byte of the block being tested twice,
except for the starting and ending addresses of the block, which are tested only
once, Pseudo-random data is used to test all locations.

The memory test is considered successful if pseudo-random data-can be writ-
ten into every location and then retrieved successfully. If data is retrieved and it
is not identical to the pattern stored, the test immediately returns with an error

108

flag set, a record of the failing location, the proper test pattern, and the errone-
ous result,

METEST should be called repetitively to exercise and test memory; the more
iterations performed, the greater the confidence that memory is working.

Input/Output Parameters

On input, the HL register pair points to a parameter block on entry to METEST,
The first two bytes of the parameter block contain the starting address of the
block to be tested. The next two bytes contain the ending address of the block.

The ending address must be at least one location greater than the starting ad-
dress.

The next four bytes are reserved for the test results.

The last two bytes contain a “seed’” value for the memory test data. This seed
value must be nonzero.

On output, PARAM+ 4, +5 contain the address of the failing location or the
address of the failing location minus one if the test failed at any point. It con-
tains a zero if the test was a success. PARAMA+6, +7 and PARAM+8, +9
contain additional failure parameters.

INPUT GUTPUT
Ho L Ho L
T T
r POINTER TQ PARAM+3] —_— | UNCHANGED
T T
PARAM-+@ STARTING PARAM-+@

4+ ADDRESS + 1 UNCHANGED <+
+1 OF BLOCK T
12 ENDING +2

1 ADDRESS 4 + uncHanGep
43 OF BLOCK ﬁ +3
+4 RESERVED +4 @=SUCCESS-

+ FOR SUCCESS —+ 4+ FUL FAILNG
+5 FLAG +5 | ADDRESS IF NOT
+6 Ly +6 “|5" VALUE

—— FO b ” - —, ——
+7 RESULT +7 ON FAILURE
+8 S +8 | “SHOULD BE"

4 G 4 ‘valeon <+
+9 VAL +9 FAILURE

The byte of PARAM+6 is the byte at the location equal to the failing address;
the byte at PARAM+7 is the byte at a location one less than the failing address.
Here’s an example: If the failing word location is 20H, 80H (location 8020H)
and PARAM+6, +7 contain a 63H, 32H with PARAM-+ 8, +9 containing 67H,
32H, then the failing location is bit 2 of 8021H, If the failing word location is
8020H, PARAM+6, +7 contains a 66H, 32H and PARAMA8, +9 contains

109

67H, 33H then the failing location is bit 0 of 8020H. It is possible, of course, for
both bytes to fail in the test.

A typical memory test first stores all zeroes into memory and then reads back
the locations expecting to find all zeroes. It then stores all ones and reads back
the data expecting all ones. At this point random data is usually stored and read
back. METEST bypasses the first two tests of zeroes and ones.

More comprehensive memory tests are geared to the physical implementation
of the type of memory. Various memory types have “worst case’” test patterns.
The dyrnamic memory used in the TRS-80s typically fails when adjacent loca-
tions are accessed. This test is an attempt to rapidly access adjacent locations
by using stack instructions. Each PUSH or POP accesses two adjacent loca-
tions, Pseudo-random (repeatable) data is used for the test.

The pseudo-random data is generated from the last value in PARAM+8, +9.
This value is multiplied by an odd power of 5, 125. The result is used as a test
pattern for the two-byte PUSH and as the basis for the next generation of ran-
dom data. The starting “’seed’” value can be maintained in later tests or varied
to generate a new set of pseudo-random numbers.

Sample Calling Sequence

NAME OF BUBROUTINE? METEST

HL VALUE? 40200

FARAMETER BLOCK LOCATION? 49000
PARAMETER BLOCK VALUES?

+ B 2 42008 START ADDRESS
+ & 2 48002 END ADDRESS
+ 4 2@

+ 6 20

+ B Z 1234 SEEDVALUE

+ 186 @ @

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7 37302
SUBROUTINE EXECUTED AT 37800

INPUT QUTPUT:
HL= 4D20® HL= 4@220 _

PARAM+ B 16 PARAM+ B 16

PARAM+ 1 164 PARAM* 1 164 | NCHANGED

PARAM+ T 128 PARAM+ 2 128

PARAM+ 3 187 PARAM+ 3 187

PARAM+ &4 D PARAM+ 4 @]

FARAM+* 5 @ PARAM+ 5 @ | SUCCESSFLAG

PARAM+ & B PARAM+ & B2 || ror g vaLuE
FARAM+ 7 @ PARAM+ 7 238 |

PARAM+ B 218 PARAM+ 8 B2 y .
PARAM+ 9 4 PARAM+ 9 z3g | UAST "SHOULDBE"VALUE

NAME OF SUBROUTINE?

Notes

1. Make certain ending location is at least one more than starting location.

2. Odd seed values generate a string of odd test values, even-seed values
generate even test values.

110

7FaR

7F00
7F@1
7FB2
7F03
7FR4
7F06
7F B8
7F@e
7FOC
7FRE
7FBF
7F12
7F15
7F19
7F 1B
7F1E
7F 21
TF24
TF27
7F2A
7FZD
7F2E
7F31
TF34
7F35
7F36
7F39
7F3C
7F3D
7F3E
7E4D
7F41
Uil
7F44
7F45
TF47
7F48
TF4A
7F4B
TF4D
7FS@
7F53
7F54
7F35
7F56
7FS8
7F59
7FSC

FDz12009
FD3%?
DD&ERD
DD&6@1
DD7504
DD74@5
DD&ERS
DD66B5
23
DD7584
DD74@5

B7
ED5Z
87
EDSZ
B7
ED5Z
DR7508
DD740%

19
DD7584
pD7407

Program Listing

Boi1o@

ORG

TFoeH

@520

DBL LD 798903 K93 K 0TI 6T I 696 36 306 09696 96 96 06 06 9696 696 96 96 9696 300 06 06 6 X
20120 % MEMORY TEST. TESTS A BLOCK OF

BR130 3%
Q0140 3+
PR150 ;3%
D168 s*
BB170 3=
ba1Bd s*
20170 %
pazee 3x
A2z18 5=
PRzz@ 3*

INPUT:

QUTPUT : PARAM+45 +5=0 IF TEST SUCCESSFUL»sy FAILING

LOCATION IF TEST NOT SUCCESSFUL
PARAM+&, +7=TWO BYTES FROM MEMORY - "JIg*
PARAM+8s +7=TEST PATTERN - "S/p*®

HL=> PARAMETER BLOCK

PARAM+Ds +1=8TARTING

PARAM+Zy +3=ENDING ADDRESS OF BLOCK

PARAM+45 +5 RESERVED
PARAM+ &y +7=RESERVED
PARAM+81 +9=NON~ZERC

MEMORY.
ADDRESS OF BLOCK
FOR BUCCEES FLAG

FOR "IS" RESULT
"SEED" VALUE

* % k ok Kk %k ok ok %k Kk kK

BAZTZD 5 3K H T A1 F 3 J I I I 9699696 9E 363696396 3696 26 96 96 96696 69669696 36 30 3 2460 0

PRI4D 5
BB25@ METEST
02260
Baz7e
20280
22278
20302
ee31.
Baz3zd
BR33n
2e34@
2350
PaA360
aa370
P@380
2390
bR40d2
D410
Q42D
ABA30 METE10
PA440
2450
@446
BR47a
2R48E
BR490
|as0e
o510
aB320
ve530
BB540@
BO558 METAZ®
20560
Bes78a
aps58E
Bas%e
QpsBe
PRsLID
PRL20
ebs3d
20640
BRLsd
206460
eas7e
205682
agsse
20700
20710
pa7ze

111

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
caLl
PUSH
POP
DI
LD
LD
LD
ADD
LD
LD
LD
LD
LD
LD

PUSH

Ca (IX+2)
By {IX+3)
IY.0
I¥+5P

Ly (IX4B)
Hy {IX+1)
(IX+4) 40
(IX+5)sH
Ly {IX+4)
Hy (TX+5)
ML
(IX+4) L
(IX+5)sH
ML

SPsHL

Ly { IX+8)
Hy (IX+9)
EsL

DvH

By 7
HL s HL

A
NZyMETRZB
A

HL.» DE

A

HL » DE

A

HL s DE
(IX+B)sL
(IX+T)sH
HIi.

DE

&

HL s DE
HL s DE
(IX+5H) sl
(IX+7)sH

sSAVE REGISTERS

5Ha#GET PR LOC!N*%%
s TRANSFER TO IX

sDISABLE INT FOR STACK
sEND ADDRESS TO BC

3ZERO 1Y FOR ADD 5P
sTRANSFER CURNT SP TO IY
sOET START

FINITIALIZE CURRENT
i CURRENT ADDRESS TGO HL

sBUMP CURRENT ADDRESS
s CURNT FOR FAILING LOC

3187 STACK ACTION AT -1
$SET 5P FOR TEST
sGET SEED

sPUT IN HL AND DE

FLOOP COUNT FOR BHIFT
SGEED®Z

sDECREMENT LOOP COUNT
37 TIMES=TIMES 128

'TIMES 127
iTIMES 126

sTIMES 125
sSTORE NEW SEED

ACTUAL TEST HERE
$PUSH AND RETRIEVE
s CLEAR CARRY

sTEST FOR EQUAL
SREGTORE " 1IG*
iSAVE IN "IS"

7F5F 2@1iz2 2a730 JR NZsMETR32 3G0O IF NOT EQUAL

7F&1 DDOED4 20742 LD Ls{IX+4) iGET CURRENT LOCATION
7F&4 DDASAS pa758 LD Hy (IX+5)

TF&7 B7 Da758 OR A s CLEAR CARRY

7F&8 ED42 o776 5eC HLsBC s TEST FOR END

TFoA ZOEB 2a7se JR NZ:METB1R sLOOP FOR NXT 78T OF 2
7F&C AF 20790 XOR A $TEST SUCCESSFUL HERE
7F6D DD77@4 rlri=dn) LD (IX+4)1A $SET SUCCESSFUL. FLAG
7F70 Db770@5 oRs12 LD (IX+5)+A

TE73 FDF9 0B8:0 META3I® LD SPs1Y RESTORE SP

7F75 FDE1 ocae3@ PQP Iy fRESTORE REGISTERS
7F?7 DDE1L 20842 FOP IX

7E79 E1 2a850 PoOP HL

7F7A D1 20860 POP DE

7E7E €1 baa7e FOP BC

YF7C F1 ulnisal] POP AF

7F7D C9 aosva RET 3RETURN TO CALLING PROG
sl le] 20700 END

PDBRO TOTAL ERRORS

METEST DECIMAL VALUES

245y 1979 2134 229y 221 ZIFs Z53s 29 205, 127
1@y 229, 221y 225, 243y 221 78y 29 2215 7@«
Jr 253, 33 B By 293y S7s Z21s 110 O

221y 102 1s ZZ21s 117y 49 221y 11dy Sy 221y
11@s 4y 2210 1BZy S5s 35» 2214 1179 &3 221,
116, Sy 335y 2495 Z21s 110y 8. 221y 102y 94
731 B4 A2y Ta 41y 619 33y 292y 1835 237

82y 183. 237y B2y 183, 237y 82s 221y 117y 8,
221s 116y 9 229y 209 1B3s 237+ B2y 25 27014
1179 6¢ 221s 116Gs 7y 32y 1By 221+ 11@y 4+
221, 10%y 59 1B3y 237y bbs 32r 1BT7r 175 2514
119y 4. 2219 119, 5. 253y 249y 253y 2259, 271,
225y 225y ZO9s 193, 241, 201

CHRSUM= 351

MLEBYE: FAST 8 BY 8 MULTIPLY

System Configuration

Model 1, Model 11I, Model It Stand Alone.

Description

MLEBYE multiplies an 8-bit binary number by an 8-hit binary number to give a
16-bit product. The multiply is a “fast” multiply that operates twice as fast as

conventional multiplies. The multiply is an “unsigned”’ multiply, where both
operands are treated as 8-bit absolute numbers.

Input/Output Parameters

On input, the H register contains the 8-bit multiplier and the L register contains
the 8-bit multiplicand. On output, HL contains the 16-bit product.

112

7FaR

702
7Fel
7FB4
7Fa3
7Fa7
7Fa8
7Fag
TFae
7Fac

or160
00110
20120
20130
0140
0150
20140
BB170
00180
20150
20200
pOz10
00220
BOZIB
0024@
20250

INFUT QUTPUT
H L H L

¥

MULTIPLIER |MULTIPLICAND ’
JLTIPL e ——> | PRODUCT p-65.025]
T

Algorithm

The MLEBYE subroutine performs the multiply by a bit-by-bit multiply in eight
steps. To reduce overhead, “straight-line”” coding rather than a loop structure is
used,

The multiplicand is put into BC and the multiplier into H. The L register is
cleared. The HL register is used to shift out multiplier bits from the left end into
the carry and to hold the partial product in the L register end. The HL register is
shifted left eight times. For each shiit, a multipler bit from H is tested. If it is a
one bit, the multiplicand in C is added to HL by an “ADD HL, BC”; if it is a
zero, nothing is done. The next shift moves the partial product in L toward the
left. At the end of the eight steps, the entire multiplier has been shifted out of H,
and HL holds the 16-bit product. '

Sample Calling Sequence

NAME OF SURROUTINE? MLEBYE

HL. VALUE? 653535 MULTIPLIER = 255, MULTIPLICAND = 255
FARAMETER BLOCK LOCATION?

MEMORY BLOGCK 1 LOCATION?

MOVE BUBROUTINE TO?7 558000

SUBROUTINE EXECUTED AT S5000

INPUT: OUTPUT:

Hi.= &35335 ML= &5025 RESULT =255 x 255

NAME OF SUBROUTINE?

Notes

1. Maximum multiplier is 255. Maximum multiplicand is 255. The maximum
product will be 65,535.

Program listing

ORG 7FRaH RS20
5 AN A I I AN RN K NN T I KT I I 6T 36T I HE I 96960606
i# FAST 8 BIT BY 8 BIT MULTIPLY TO YIELD 146 BIT PRODUCT.#*
5% INPUT: HL=MULTIPLIER IN Hs MULTIPLICAND IN L *
L QUTPUT:HL=14~BIT PRODUCTs B-65535 *
LR R 2 R S E T s s 2 e E IR Y R Y
MLEBYE PUSH BC 3SAVE REGISTER

caLL QATFH FEKRGET HL**x

LD CsL SMULTIPLICAND TO C

LD Bs@ sNOW IN BC

LD LsB $@ TO L

ADD HL = HL $SHIFT MULTIPLIERs PRODUCT

JR NCsMLE®1O 360 IF MULTIPLIER BIT=0

ADD HL.BC $ADD MULTIPLICAND
MLE®1@ ADD HL ML
113

7FeD
TFAF
7F1@
7F11
7F13
TFi4
7F15
TF17
7F1i8
7F19
7F1B
7F1C
TF1D
7F1F
TF20
7F21
TFZ3
TFz4
7F25
7FZ7
7F28
TF29
7F2C
0208

Ra260
2a27e
ea260
202790
BB30@
PO312
eB320
28330
20340
20358
B350
ea37a
p23ge
20352
PR400
20412
B4z
20430
20440
20452
246D
22470
20480
22490

20000 TOTAL ERRORS

MLE@20

MLERI3D

MLE®4Q

MLEB50

MLE@&D

MLEG72

MLEASH

JR
ADD
ADD
JR
ADD
ADD

ADD
ADD
JR

ADD
ADD
JR

ADD
ADD

ADD
ADD

ADD
POP

RET
END

NC'MLE@Z2D
HL 1 BC

MLy HL

NCy MLEB3@
HLsBC
HL s ML
NCyMLER4@
HL« B

HL.» Hi.

NCy MLERBS®
HLy BC
Hi s HL
NCsML.EQSD
R+ BC

HLs HL
NCsMLEBR7B
HLBC
HL. s HL.

NC» ML_EDBD
HL.s BC

BC

aA%AH

MLEBEYE DECIMAL VALUES

197y 205,

1s
414
1»

P 41,
4Bs 1»
Py 41,

193+ 195,

CHRSUM= 223

MLSBYS: SIXTEEN BY SIXTEEN MULTIPLY

$RESTORE REGISTER
5*%xRETURN ARGUMENT #%%
sNON-BASIC RETURN

127 1By 774 by Qs 1045 41,
48y 1y Ty 41y 48y 149 9y

Py 41y 484 19 Ty 419 4T
48y 13 F3 411 485 11 Py
154, 1bs 201

System Configuration

Madel |, Model IIl, Model Il Stand Alone.

Description

MLSBYS multiplies a 16-bit binary number by a 16-bit binary number. The
multiply is an ““unsigned’” multiply, where both numbers are considered to be
absolute numbers without sign. A 32-bit product is returned.

InputiQutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the 16-bit multiplicand. The next two
bytes of the parameter block contain a 16-bit multiplier, Both are-in Z-80 16-bit
format. The next four bytes of the parameter block are reserved for the 32-bit

quotient.

114

48,

On output, PARAM+ 3 to PARAM+ 6 hold the 32-bit product, arranged in next
ms, ms, Is, next |s format. The contents of the remainder of the parameter
block remain unchanged.

INPUT OuTPUT
HooL WL
T
L PDINTEFIT(% PARAM+0 | — | UNCHANGED]
! T
PARAM -8 PARAM
1l 1681 | 1 1
+1 | MuLTIPLICAND o UNCHANGED
+2 2
16-BIT
T T <+ UNCHANGED 4
+3 MULTIPLIER i s
+4 +4
i RESERVED 5 32BIT
T T T PRODUCT T
+6 RESULT 6
1 1 1 i
+7 7
Algorithm

The MLSBYS subroutine performs the multiply by a “*bit-by-bit”" multiply in 16
iterations. The multiplier bits are tested from left to right. For each one bit in the
multiplier, the multiplicand is added to a ““partial product.” The partial product
is shifted left with each iteration. At the end of 16 iterations, all mutltiplier bits
have been tested, and the partial product contains the true 32-bit product of the
multiply.

The multiplicand is first put into BC, and the multiplier in DE. The A register is
initialized with the iteration count of 16. The HL register is cleared to 0. The DE

and HL registers will contain the partial product and will be shifted toward the
left.

The code at MLS010 is the 16-iteration loop of MLSBYS. For each iteration, DE,
HL is shifted one bit left. As it is shifted, the multiplier bit from DF goes into the
carry. If the carry is set (multiplier bit is a one), the multiplicand in BC is added
to the partial product. If the carry is reset {(multiplier bit is a zero), no add is
done. At the end of 16 iterations DE, HL contains the 32-bit product.

Sample Calling Sequence

NAME OF SUBROUTINE? MLSBYS
HL vaLUE? 38888
PARAMETER BLOCK LOCATION? 38888
PARAMETER BLOCK VALUES?
]

+ 2 659535 MULTIPLICAND

+ 2 2 65535 MULTIPLIER

+ 4 2 @

+ & Z @ FINITIALIZE RESULT FOR EXAMPLE
+ 8 2 2

MEMORY BLOCK 1 LOCATICN?
MOVE SUBROUTINE TO7 40000
SUBROUTINE EXECUTED AT 42200

INPUT: OUTPUT:
HL = 38888 HL= 38888
115

7FDa

7F 2R
7F@1
7F@B2
7F 03
7FB4
7F@6
7FBY
7FRA
7F@BC
7FBF
7F12
7F15
7F18
7F1A
7F1D
7F1E
7F1F
7F21
TF22
7F24
7F25
7FZ7
7F28
7F29
7FZB
7F2E
7F31
7F34
7F37
7F39
7F3A
7F3e
7F3C
7F3D
P20

22129
ga11e
otz
B@130
22140
22159
D160
20172
o182
rR170
oRzoe
8B:1a
anzzo
Aezia
o242
225
20268
Poz70
2az8a
Baz7a
Q0300
2310
Pa3ze
20330
20340
a235@
283460
aa37a
20380
2370
22428
20410
2R42D
20430
20440
AR4A5G
00460
PR47e
2e480
DR4T3
oS e
2g510
Qas52e
AA530
@540

22200 TOTAL ERRORS

PARAM+ -

PARAM+
PARAM+
PARAM+
PARAM+
FPARAM+
PARAM+
PARAM+

233

255
255

253

~NpeWeL &

S8

PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+

NP~ &

HAME OF SUBROUTINEY?

Notes

£33
255
255
255 |
254)
=55

FUNCHANGED

254, 255, 1, @ = 255, 254, 0,

1=4,284, 836, 226

1. Maximum multiplier is 65,535. Maximum multiplicand is 65,535.
2, Note that the product is in 1,0,3,2 order.

Program

Listing

GRG

7FPOH

@522

3R I T I T IN I IAE AT TR IH I I I 36 0 9 P I
¥ BIXTEEN BY SIXTEEN MULTIPLY TO YIELD 32-BIT PRODUCT.
INPUT: HL=> PARAMETER BLOCK

R
¥
5
§ %
bR 3

MLSBEYS

MLSD1G

MLEDZ2

116

PARAM+2y +3=MULTIPLIER

*
*
PARAM+@y +1=MULTIPLICAND *
*
PARAM+4;+54+4y +7=RESERVED FOR PRODUCT *

*

OUTPUT t PARA+4y+5s +hy +7 HOLD 32-BIT PRODUCT
§ ST I KIS T AT I I NHIIIIIENH HHHRHH R AN

PUSH
PUSH
PUSH
PUSH
PUSH
CAlL.L.
PUSH

IX

Co {IX+D)
By (IX+1)
Ey{IX+2)
Dy (IX+T)
YRY-

HL+@
HL s HL.

DEy HL
HL s HL.
DEyHL
NC:MLSDZ
HlLsBC
NCsMLSDZD
DE

A
MZsMLSEB10
(IX+4)E
(IX+5)4D
(IX+b)al.
{IX+7)sH

$5AVE REGIBTERS

3 R%GET PB LOC” N**x#*
sTRANSFER TO IX

$PUT MULTIPLICAND IN BC
sPUT MULTIPLIER IN DE

sITERATION COUNT

5ZERO PARTIAL PRODUCT
iSHIFT PARTIAL PROD LEFT
SGET M5 16 BITS
$8HIFT PART PROD PLUS C
'RESTORE UPPER 16 BITS
$GO IF MULTIPLIER RIT=@
$ADD IN MULTPLICAND
G0 IF NO CARRY
$BUMP UPPER 16 BITS
$DECREMENT ITERATION CNT
5LOOP FOR 146 ITERATIONS

3GTORE PRODUCT

sREGTORE REGISTERS

$RETURN TO CALLING PROG

MOVEBL: MOVE BLOCK

MLSBYS DECIMAL VALUES

2459 197+ 213 229 221y 229 209 127 18y 229
221y 2282 2Z21s 7By By 221 7@y 1 221 94,

Zs 2211 Béy 3. b2 ths 33« By By 41

235y 237+ 106y 2351 481 4y T2 481 15 199

61y 32y 2429 221 1154 49 221e 1145 T2 221s

117 &y 2219 1163 7y 221y 2252 225y 209y 173,
2441y 201

CHKSUM= 2@1

System Configuration

Maodel 1, Model 11, Model Il Stand Alone.

Description

MOVBLK moves a block of memory to another block of memory. The blocks
may be overlapping; a check is made for the proper direction of the move to
prevent replication of data if the block move is made in the wrong direction.
Any number of bytes up to the limit of memory may be moved.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the source block in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes are the address of the destination block in Z-80 ad-
dress format. The next two bytes of the parameter block contain the number of
bytes to move in Z-80 format,

On output, the parameter block contents remain unchanged. The source block
has been moved to the destination block area.

INPUT QUTPUT
HoL HoL
T T
FOINTERTO PARAM+g | === | UNCHANGED |
T T
PARAM-+0 SOURCE PARAM-+3
1 ADDRESs + 1 uncHangep
+1 (MEM 1+ +1
+2 | DESTINATION +2
+ ADDRESS 1+ UNCHANGED -+
+3 (MEM2+4) i +3
+4 # OF +4
+ BYTES 4 UNCHANGED <+
+5 TO MOVE +5
117

MEM 1+ MEM1+¢
+1 +1
T SOURCE + + +
+2 BYTES +2
+ + + UNCHANGED +
+3 —_— =
+a +4
+5 +5
+6 +6
MEM2+8 MEM2-+8
+1 +1
T aren T T T
21 FOR 1 21 sguRce |
+3 | DESTINATION i +2
4 BYTES | 1 4
+4 +4
+5 +5
+6 +6
Algorithm

The main concern in MOVEBL is to test for either a “beginning to end” move
or an “end to beginning”’ move. The wrong choice will replicate data in the
block when the source and destination areas are overlapping. A test for overlap
is not done, since it is simpler to choose either an LDIR or LDDR based on the
relationship of the starting addresses.

The source address is put into HL, the destination address into DE, and the
number of bytes into BC. A comparison is then done by subtracting the destina-
tion address from the source address. If the result is positive, the source address
is less than the destination and an LDIR will perform the move with no conflict.
If the result is negative, an LDDR must be done. In this case the source and
destination addresses are recomputed so that they point to the end of the blocks
for the LDDR.

Sample Calling Sequence

NAME OF SUBROUTINE? MOVERL

HL VALUE? 45009

PARAMETER BLOCK LOCATION? 45008
PARAMETER BLOCK VALUES?

+ @ 2 50@P@ SOURCE ADDRESS

+ ¥ 2 D5P921 DESTINATION ADDRESS

+ 4 2) B BYTES

+ &6 D B

MEMORY BLOCK I LOCATION? S0008
MEMORY BLOCK 1t VALUES?

+ @2 1 @

+1 1 1

+ 2 1 2

+ 3 1 3 INITIALIZE SOURCE FOR EXAMPLE
+ 4 1 4

+ 53 1 3

+ &6 1 4

+7 @ 9

118

7F 28

7F0Q
7F@1
7Foz
7FQ3
7F@5
7F08
7FQ9
7FOB
7FOE
7F11
7F14
7FL7
7F1A
7F1D
7F1E

TFIF
7E21

cs

DS

ES
DDES
CD7FBA
ES
DDE
DD&EDD
DD&&D 1
DDSERZ
DD5603
DD4ED4
DD46@5
ES

B7

EDS2
cevce

7F23 El

7F24
7F26
7F28
7F2A
7F2R
7F2C
7F2D
7F2E

2004
EDE®
ises
2B
a9
EB
a9
EB

zoioa
o118
eeizp
Pe13e
PA142
2B150
D160
P17
20180
o120
nezep
"7, eg i}
e
2230
20z40
Paz50
opzen
sezve
D280
by
2n300
29318
oD320
PR332
QR348
Ra350
203460

an37e
2380

20370
ae40e
20410
2420
A0430
86440
o452
204460

MEMORY BLOCK 2 LOCATION?

MOVE SUBROUTINE TO?7 37777

SUBROUTINE EXECUTED AT 37777

INPUT:
HL= 45000
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
FARAM+
MEMB1+
MEMB I+
MEMB1+
MEME1+
MEMB1+
MEMER1+
MEMB1+

rRELN~EBUSLN=E

QUTPUT 2

Hi.= 43000

8a PARAM+
195 PARAM+

a8
H

i SRR U =3

1 PARAM+
5 PARAM+
PARAM+
PARAM+
MEMB1 +
MEMB§ +
MEMB1+
MEMB1 +
MEMB1+
MEMB1+
MEMB1+

NAME OF SUBROUTINE?

Notes

[AN~ TR A o]

ea
195
81
195

PN~ RW

i

- UNCHANGED

FDESTINATION

1. The number of bytes moved may be 1 to 65,536 (0 is 65,536).

Program Listing

ORG

7Fa0H

50612

HETETE XTSI LSS LSS ST L L ALl e el e e gkt kg

7% MOVE BLOCK.
5# DESTINATION AREA.

MOVES BLOCK OF DATA FROM SOURCE AREA TO
AREAS MAY BE OVERLAPPING.

3% INPUT: HL=> PARAMETER BLOCK

e
5%
¥

MOVEBL PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
LD
LD
PUSH
OR

SBC
BIT
POP

JR
LDIR
JR
MOV@AZa DEC
ADD
EX
ADD
EX

119

PARAM+Zs+3=DESTINATION ADDRESS
PARAM+4,+5=# OF BYTES TO MOVE

j % QUTPUT :BL.OCK MOVED
YT IS N Y R e e A R L A e S R A s

Bc

DE

HL

IX
PATFH
HL.

IX

Ly (IX+0)
He (IX+1)
Es {IX+2)
Dy (IX+3)
Cr{IX+4)
Bs {IX+5)
HL

A

HL.+ DE
7+H
HL

NZ,MOVRZR

MOVR3G
BC
HLsBC
DE:HL
ML s BC
DE s HL

*
*

*

PARAM+@+ +1=50URCE ADDRESS *
*

*

*

$8AVE REGISTERS

###GET PR LOCTN&*x
sTRANSFER TO IX

$PUT SOURCE ADDRESS IN HL
$PUT DESTINATION ADD IN DE

$PUT BYTE COUNT IN BC

$SAVE SOURCE ADDRESS

;CLEAR CARRY

s COMPARE SOQURCE TO DEST ADDR
$TEST SIGN

$REETORE SOURCE ADDRESS

GO IF LDDR REQUIRED
$MOVE BLOCK

560 TO CLEANUP

i# OF BYTES-1

$POINT TO NEW SOURCE

$GET DESTINATION

sPOINT TO NEW DESTINATION

§RESTORE

TF2F
7F3@
7R3z
TF34
7F35
7F3&
TF37
faoad

a3
EDEB
DPE1
El
D1
C1
ce

20472
2480
28499
0a520
Bd510
20520
20530
RA542

Pe2BD TOTAL ERRORS

INC BC s# BYTES
LDDR sMOVE BLOCK
MOVa3a POP IX SRESTORE REGISTERS
POP HL
FOP DE
PoP BC
RET SRETURN TO CALLING PROGRAM
END

MOVERL DECIMAL VALUES

197+ 2135 2292 221s 229 205, 127y 1By 239y 231y
223 221y 110s B: 2215 102 19 221 Q45 2.

2Z21s Bbs 31 Z2s 7By 4y ZZ1y TR 5y 229

183y 237: BZs 203« 1245 225 32y 44 237+ 174y
Z2ay By 11s Ty 2352 9y 238y 3y FATy 184

221y 2252 225, 289y 193 201

CHKSUM= 12

MPADDN: MULTIPLE-PRECISION ADD

System Configuration

Meodel I, Model 1, Model [l Stand Alone.

Description

MPADDN adds a “source” string of bytes to a “destination’ string of bytes and
puts the result of the add into the destination string. Each of the two strings is a
multiple-precision binary number. Fach of the two strings is assumed to be the

same length. The length of each string may be any number from 1 through 255 or
0, which is 256 bytes.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the destination string in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes of the parameter block contain the address of the

source string in the same format. The next byte of the parameter block contains
the number of bytes in the two operands.

On output, the parameter block and source string are unchanged. The destina-
tion string contains the result of the multiple-precision add.

INPUT ouTPUT
H L H L

4 1
1 T
POINTER qu PARAM-+0 | _— | UNCH?NGED‘]

120

PARAM-+{ PARAM-+3
ADDRESS
+ + + UNCHANGED -
. OF MEM 1+ iy
+2 +2
ADDRESS
4 + + UNCHANGED -
13 OF MEM2+0 j 43
+4 # OF BYTES +4 UNCHANGED
MEM 1+ MEM 1+
+1 T T
T oOPERAND T T RESULT T
+2 1 ONE +2 OF
BYTES T T ADD T
+3 i +3 BYTES
+4 14| T
+5 +6 | 1
+6 16 | T
MEM2-+@ MEM2+@
+1 T T
1 OPERAND ol L
12 TWO +2
+ BYTES 1 UNCHANGED +
+3 @ +3
+4 +a | T
4 4 4
+5 +5
+6 T T
L +6 A A
Algorithm

The MPADDN subroutine performs one add for each byte in the operands. The
destination string address and source string address are first picked up from
the parameter block and put into DE and HL, respectively. The number of bytes
in the add is then picked up and put into the BC register pair. This number
minus one is then added to the source and destination pointers so that they
point to the least significant bytes of the source and destination strings. The
number of bytes is then put into the B register for loop control.

The next destination byte is then picked up from the destination string (DE
register pointer). An ADC is made of the two source string digits (HL register
pointer). The result is then stored in the destination string.

The source and destination string pointers are then decremented by one to
point to the next most significant two bytes of each operand. The B register
count is then decremented by a DINZ, and a loop back to MPAO10 is made for
the next add.

The carry is cleared before the first add, but successive adds add in the carry
from the preceding operation. If the destination operand was 00H, F5H, 6EH,
11H and the source operand was 00H, FFH, 77H, 33H, then the number of

14

operand bytes must be 4. The result in the destination operand would be 01H,
F4H, E5H, 44H. Note that the result may be one bit larger than the original
number of bits in the operands.

Sample Calling Sequence

NAME OF SUBROUTINE? MPADDN

HL VALUE? 40002

PARAMETER BLOCK LOCATIONT? 40000
FARAMETER BLOCK VALUES?

+ @ 2 42080 POINTS TO DESTINATION

+ 22 44000 POINTS TO SOURCE

+ 4 205 5 BYTES

+ 46 B 0

MEMORY BLOCK 1 LOCATION? 42002
MEMORY BLOCK 1 VALUES?

+ @ 1 255

+ 1 1 255

+ 2 1 255 DESTINATION = FFFFFFFEFFH
+ 3 1 254

+ 4 1 255

+3 @ 0

MEMORY BLOCK 2 LOCATION? 44DQ8
MEMORY BLOCK 2 VALUES?

+ @0 1 B

+ 1 i @

+ 2 1 1 SOURCE = 0000010901H
+ 3 1 @

+ 4 1 1

+5 0 @

MOVE SUBROUTINE TO7 38000
SUBROUTINE EXECUTED AT 3Ep0D

INPUT: OUTPUT:
HL= 40900 HiL= 40DDD

PARAM+ @ 14 PARAM+ @ 16

PARAM+ 1 144 FARAM+: 1 164

PARAM+ 2 224 PARAM+ 3 234 |

PARAM+ 3 171 PARAM+ 3 171 | UNCHANGED

PARAM+ 4 5 PARAM+ 4 5

FARAM+ 5 @ PARAM+ 5 @

MEMBL+ @ 255 MEMBI+ @ B]

MEMBI+ 1 255 MEMBI+ 1 §

MEMB1+ 2 255 MEMBL+ Z @ - RESULT = GO0Q@800F FRoH
MEMB1+ 3 2584 MEMEl1+ 3 %55

MEMBLl+ 4 255 MEMEL+ 4 @ |

MEMBEZ+ B @ MEMBZ+ @ D T

MEMBZ+ 1 @ MEMBE+ 1 @

MEMEZ+ 2 1 MEMBZ+ 2 1 - UNCHANGED

MEMBZ+ 3 @ MEMBZ+ 3 @

MEMB2+ 4 1 MEMBZ+ 4 1]

NAME OF SUBROUTINE?

Notes

1. The destination string is fixed length. Leading zero bytes must precede the
operands to handle the result, which may be one bit larger than either of the
operands.

2. This may be either a “’signed” or “unsigned”” add. If a two’s complement
number is used, then the sign must be “sign extended” to the more significant
bits of the operands.

122

7F o0

7F2D
7FB1
7FDZ
7F 03
7FR4
7F@6
7F09
7F@A
7+2C

7Far
7Fiz

7F15
7F18
7F1B
7F1D
7F1E
7F1F
7F20
7FZ21

7F22
7Fz3
7F24
7FZ5
7F26
TFZ7
7Fz8
7F29
7F2A
7F2C
7FZE
7F2F
7F30
7+31

7F32
P00

F5

€5

D53

ES
DDES
CD7F2A
ES
DDE]L
DD3EO@

DD5&A1
DD&ER:

DD&4&A3
DD4ED4
2408
ee
ag
EE
a9
EE
41
24
E7
iA
B8E
iz
2B
ig
19Fg
DDE1
El
D1
Ci
Fi
ce

0120
Ba110
P21z
20130
DA142
20150
D162
en17a
821806
20120
20200
28212
00220
aDz30
2240
2@z50
D240
20z7@
rlr gz
20270

PR30
an31d

22320
20330
Q0340
oe35e
28360
20370
aa360
PR35
20400
o410
er420
22430
2440
BB450
ae460
eB470
20480
2420
eosoe
eas510
22520
PA530
20548
pess5e

28 TOTAL ERRORS

Program lListing

ORG

TFDRH 18322

F NN S D 3 P 3 3B I B P e I I I BT I 0 336 6T I

i# MULTIPLE-PRECIBION ADD. ADDS TWO MULTIPLE-PRECISION

;% OPERANDS,
R INPUT:
ER
T#
5%

¥ OUTPUT :OPERAND 1 LCCATION HOLDS RESULT

ANY LENGTH.

HL.=> PARAMETER BLOCK

PARAM+@s +1=ADDRESS OF OPERAND 1
PARAM+2, +3=ADDRESS OF OPERAND 2
PARAM+a=# OF BYTES @-25&

* ok k ok k Kk %k

5 ORI AN NI W WIS IS I U S I I 63U I I I I I 6 I IE WA

MPADDN PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
L.D

LD
LD

MPAQI® LD

AF $SAVE REGISTERS

BC

DE

HL

IX

BATFH sHeRGET PR LOC™ N#xx
HL §TRANSFER TO IX

IX

£, (IX+0) SGET OP 1 LOC'N

Do (IX+1)

L {IX+2) $GET OF 2 LOC’N

Hs €IX+32

Ca(IX+4) iGET # OF BYTES

B2 SNOW IN BC

Bc ii-1

HL+BC $POINT TO LAST OP2
DEsHL 8WAP DE AND HL
HL.BC sPOINT TO LAST GP1
DE.HL 1SWAP BACK

By s#-1 BACK TO B

B FORIGINAL NUMBER

A sCLEAR CARRY FOR FIRST ADD
A (DE?} $GET OPERAND 1 RYTE
Ay (HL) $ADD OPERAND 2
(DE)»A i5TORE RESULT

HL sPOINT TO NEXT OPZ
DE $POINT TO NEXT OP1
MPAR1D sLOOP FOR N BYTES
IX $RESTORE REGISTERS
HL

DE

BC

AF

MPADDN DECIMAL WVALUES

245y 197y 2134 229 2214

221y ZZ3s 221y T4y M

2y 2210 10%s

Fr 2309 Do
43y 272 16
201

CHKSUM= 73

123

3. 221+ 7B
239y 65y 4y
24%y 221y 2025,

$RETURN TO CALLING PROG

205 127s 1@y 229y

1+ 221y 1104
By 11

142y 1B

209 1934y 2414

MPSUBT: MULTIPLE-PRECISION SUBTRACT

System Configuration

Model |, Model 111, Model Il Stand Alone.

Description

MPSUBT subtracts a “‘source’ string of bytes from a “‘destination”” string of
bytes and puts the result of the subtract into the destination string. Each of the
two strings is a multiple-precision binary number. Each of the two strings is
assumed to be the same length. The length of each string may be any number
from 1 through 255 or 0, which is 256 bytes.

Input/Qutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the destination string in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes of the parameter block contain the address of the
source string in the same format. The next byte of the parameter block contains
the number of bytes in the two operands.

On output, the parameter block and source string are unchanged. The destina-
tion string contains the result of the multiple-precision subtract.

INPUT QUTPUT
HooL AL
T
POINTER TO PARAM+8 | ——=> | UNCHANGED |
T T
PARAM+ PARAM-+G
1l Aopbmess | + UNCHANGED 4
" OF MEM1+¢ +1
+2 +2
ADDRESS
+ + + UNCHANGED -
+3 OF MEM2+8 j 43
+4 # BYTES +4 | UNCHANGED
MEM 1+ MEM 14+
+1 +1
1 operanD 1 RESULT T
+2 ONE +2 QF
+ BYtes + ; + suB +
+4 +4 I
+5 +8
+6 +8

124

MEM2+9 MEM2+9
- -+ —+ -4
+1 +
T OPERAND T T T
+2 TWO +2
+ BYTES —+ T UNCHANGED T
43 —> -
+ + 4 +
+4 +4
1 4 4 1
+6 +8
+6 1 1 +6 A -L
Algorithm

The MPSUBT subroutine perforims one subtract for each byte in the operands.
The destination string address and source string address are first picked up
from the parameter block and put into DE and HL, respectively. The number of
bytes in the subtract is then picked up and put into the BC register pair, This
number minus one is then added to the source and destination pointers so that
they point to the least significant bytes of the source and destination strings.
The number of bytes is then put into the B register for loop contrel,

The next destination byte is then picked up from the destination string (DE
register pointer}. An SBC is made of the two source string digits (HL register
pointer), The result is then stored in the destination string.

The source and destination string pointers are then decremented by one to
point to the next most significant two bytes of each operand. The B register

count is then decremented by a DJNZ, and a loop back to MPSO10 is made for
the next subtract.

The carry is cleared before the first subtract, but successive subtracts subtract
the carry from the preceding operation. If the destination operand was Q0H,
F5H, 6EH, 1TH and the source operand was 00H, FFH, 77H, 33H, then the
number of operand bytes must be 4. The result in the destination operand
would be FFH, F5H, E6H, DEH. The result may be one bit larger than the
original number of bits in the operands or may be a negative number.,

Sample Calling Sequence

N&ME OF SUBROUTINE? MPSUBT

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 40000
PARAMETER BL.OCK VALUES?

+ @ 2 42002

+ 2 2 44000

+ 4 2 5 #OFBYTES

+ 65 @ @

MEMORY BLOCK 1 LOCATION? 42000
MEMORY BLOCK 1 VALUES?

+ @ 1 @

+1 1 @

+ % 1 @ r DESTINATION = geagagoeH
+ 3 1 @

+ 4 1 @

+3 8 @

125

7Fee

7Feo
7F@O1
7F@z
7FRA3
7Fes
7FBs
7F@7?
7F @A
7Fac

F3

€3

D3

ES
PDES
CD7F@aA
E5
DDE1
DDSEQQ@

MEMORY
MEMORY
-+

+ 4+ 4+

WA R g
o R e e

+

MOVE SUBROUTINE TO? 380920

BLOCK 2 LOCATION? 44P00

BLOCK

S~8888

2 VALUES?

SOURCE = @@Q0eaa1H

SUBROUTINE EXECUTED AT 2B00O

A1 éa
FARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
MEMB 1+
MEMBE I +
MEMB 1+
MEMB1 +
MEME 1 +
MEMBZ+
MEMBZ+
MEMB.Z+
MEMB Z+
MEMBZ+

5%

2 1é
1 1464
2 224
3 171
4 5

5 @

? a

1 D

2 0

4 @

4 @

6 @

1 @
@

3 @

4 1

OUTPUT &

HL= 42000

FARAM+
PARAM+
PARAM+
PARAM+
FARAM+
PARAM~+
MEMB 1+
MEMB 1+
MEMB1+
MEME 1+
MEMB1+
MEMEZ+
MEMB2+
MEMBEZ+
MEMBZ2+
MEMEZ+

AN, B LN QU PLRN-S

NAME OF SUBROUTINE?

Notes

16
164
224
171
]

(1}
255
255
255
255
255

UNCHANGED

RESULT = FFFFFFFFH

SOURCE UNCHANGED

Lol -~ NN

1. The destination string is a fixed length. Leading zero bytes must precede
the operands to handle the result, which may be one bit larger than either of the

operands

2. This may be either a “signed”” or “unsigned” subtract. If a two's comple-

ment number is used, then the sign must be “sign extended’” to the more
significant bits of the operands.

Program Listing

o108

ORG

7FoRH

;@522

BALL1O 53RN IS I I I I I 2903063029696 22 N

P2120 :* MULTIPLE~PRECISION SUBTRACT.
@R130 s# PRECISION OPERANDS:

B@150 s
Q2159 i+
02160
02170 3%
20180 3=

20208
20218 MPSUBT
oazz0

Baz3e

20240

20:238

2268

2az78

erzse0

fezve

126

INPUT: HL=> PARAMETER BLOCK

PARAM+@, +1=ADDRESS OF OPERAND 1
PARAM+2+ +3=ADDRESS OF OPERAND 2
PARAM+4=# OF BYTES P-25&
QUTPUT:OPERAND i LOCATION HOLDS RESULT
26190 F IR I T AN BTG EIE P UM A P SN 3 3 K

PUSH
PLISH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD

AF

Es{I1X+8)

$5AVE REGISTERS

s#%RGET PR LOCT Nex#

s TRANSFER TO

SGET OP 1 LOG’N

IX

SUBTRACTS TWO MULTIPLE- %
ANY LENGTH.

#*

* ok ok kK

7F@F DD54@1 3300 LD Dy {IX+1)

7F12 DDSERZ ee3ie LD L {IX+2) 1GET OP 2 LOC'N

7F15 DD&AB3 0322 LD Hs {IX+3)

7F 1B DD4ER4 28330 Lp Cs (I1X+4) sGET # OF BYTES

TF18 D680 R340 LD B0 sNOW IN 8¢

7Fib OB 2a350 DEC Bc HE L |

TFIE @9 203468 ADD HL.BC $POINT TO LAST OPZ
7F1F EB oa37a EX DE s HL iSWAP DE AND HL

TRz 89 D388 ADD HL.BC $POINT TO LABT 0PI
7F21 EB 22372 EX DE s HL sSWAP BACK

TF22 41 20408 LD B.C i#~1 BACK TO B

7F23 @4 20410 INC B FORIGINAL NUMBER

TFi4 BY 20429 OR) sCLEAR CARRY FOR FIRST SuB
7F25 1A 2@430 MP5218 LD A {DE) sGET OPERAND 1 BYTE
7F26 FE Q0442 88C A {HL) $8UB OPERAND X

TF27 12 Pa450 LD (DE)s A $STORE RESULT

7F28 2B Ba4&6d DEC HL. SPOINT TO NEXT QP2
7Fz9 1B an470 DEC DE SPOINT TO NEXT OF1
7FZA 10F7 02480 DJNZ MESALB iLOOP FOR N BYTES
7F2C DDEL B4R POP IX TRESTORE REGISTERS
7FZE E1 2B500 PoOp HL

7+2F Dt oe510 POpP DE

7F3@ C1 20528 POP g2a

7F31 Fi P@53n POP AF

FF3z C9 pas40 RET $RETURN TO CALLING PROG
rlsfr]r) Ba556 END

20028 TOTAL ERRORS

MPSUBT DECIMAL VALUES

245y 197y 213, 229 221 Z2%y 205 127 10, E29s
221y 279y 221s 4y By ZE1e Bb&y 149 ZZ1y 118

Ty 2Els 1@Zs Xy 221y T8y 4 6y @B 1is

9, 235, 9y 235, &3+ 4» 1834 Z6: 158, 18,

43, 27y 1bs 249y 221y 225 225y 2092 193s 261
201

CHKSUM= B9

MSLEFT: MULTIPLE SHIFT LEFT

System Configuration

Model [, Model ll, Model Il Stand Alone.

Description

MSLEFT shifts a given 16-bit value left a specified number of bit positions. The
shift performed is a ““logical’’ shift where zeroes fill vacated bit positions on the
right.

Input/Qutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the number to be shifted in standard
7-80 16-bit format, least significant byte followed by most significant byte. The
next byte of the parameter block contains the number of shifts to be performed,
from 1 to 15.

. 127

7Foa

On output, the value in the first two bytes of the parameter block has been
shifted the appropriate number of times. The count in the third byte of the
parameter block remains unchanged.

INPUT QUTPUT
H . L H L
T T
L POINTEFIT(? PARAM+9 | — [UNCH?NGED]
PARAMAA | 16BIT VALUE PARAM+E | guireD
T0 BE T T RESULT
+1 SHIFTED +1
+2 # OF SHIFTS +2 UNCHANGED

—

Algorithm

The MSLEFT subroutine performs the shift by placing the number to be shifted
in HL and the count in the B register. HL is added to itself a number of times
corresponding fo the count in the B register to effect the shift.

Sample Calling Sequence

NAME OF SUBROUTINE? MSLEFT

HL VALUE? 42000

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ @ 2 1 VALUETOBESHIFTED - BRoRARO0BGRAGED T
+ & 1 8B BSHIFTS

+ 3 @ @a

MEMORY BLOCK 1 LGCATION?

MOVE SUBROUTINE TO? S@@00

SUBROUTINE EXECUTED AT S000Q

INPUT: QUTPUT

HL= 40000 ML= 42000

PARAM+ @ 1 PARAM+ @ @)

PARAM: 1 B PARAMs 1§ } RESULT = 0000006 106000000
PARAM+ 2 B PARAM+ 2 8 UNCHANGED

NAME OF SUBROUTINE?

Notes

1. If 0 is specified as a shift count, 256 shifts will. be done, resulting in all
zeroces in the result.

2. If 16 to 255 shifts are specified, the result will be all zerces.

3. Note that the value to be shifted is Is bytes, ms byte.

Program Listing

(g Rrln) ORG 7FaBH N o
ABi116 5 eI A I I T IEIE I I I I T K A I KN KKK

212@ 3¥ MULTIPLE SHIFT LEFT. SHIFTS THE GIVEN 1&4-BIT VALUE *
PB13@ 5% A SPECIFIED NUMBER OF SHIFTS IN LOGICAL FASHION ¥
2B140 3% INFUT: HL=>PARAMETER BLOCK *
Aa150 = PARAM+D. +1=VALUE TO BE SHIFTED *
Q160 3% PARAM+Z=NUMBER OF SHIFTS #
ABL73 3% QUTPUT: PARAM+Ds +1=8SHIFTED VALUE *
QRALED 5492982535 33K R IR KT IHIACH I TE 6K H AN
128

aB1L9e s
7FBR C5 Pozaa MSLEFT PUSH BC 3GAVE REGISTERS
7F@1 ES 8210 PUSH HL
7F@2 DDES pazza PUSH IX
7FB4 CDT7FRA A0232 CALL RAAa7FH s#xxGET PB LOCY Nxx*
7F@7 ES 2Bz40 PUGH HL. STRANSFER TO IX
7FB8 DDE1 aRz5wB pap IX
@A DDSEOR aezoR LD Ls (IX+0) iGET LSB OF VALUE
TFBD DRELAL ARz7@ LD Hs (IX+1) 3GET MSE OF VALUE
7F10 DD4&BS s eg sl LD B (IX+2) SO6ET # OF SHIFTS
JF13 29 PBz9@ MSL@1® ADD HL.» HE.. sLEFT GHIFT MG BYTE
7Fi14 10OFD agzen DJINZ MEl.@1o sLOOP *TIL DONE
7F14 DD7500 BA310 M5L030 LD CIX+@) i $STORE SHIFTED RESULT
7F1% DD7401 aa3ze LD (IX+1)sH
7F1C DPEL @@330 MsSLB4B POP X SRESTORE REGISTERS
7F1E EI Q0348 PoP HL.
7F1F C1 R3S POP Bc
7FZB C9 2350 RET SRETURN TO CALLING PROG
220 @370 END

QuR2E TOTAL ERRORS

MSRGHT: MULTIPLE SHIFT RIGHT

MSLEFT DECIMAL VALUES

197y 229, 221, 229 205 127 1@y 229y Z21s 225,
221y 110y By 221y 1Q2y 19 2ZZ1s 70s 29 41

1y 233y 221y 117, @ 2215 1169 19 2219 225
225, 173, 201

CHKBUM= 28

System Configuration

Model 1, Model ill, Model it Stand Alone.

Description

MSRGHT shifts a given 16-bit value right a specified number of bit positions,
The shift performed is a "logical” shift where zeroes fill vacated bit positions
on the left.

InputiOutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the number to be shifted in standard
7-80 16-bit format, least significant byte followed by most significant byte. The
next byte of the parameter block contains the number of shifts to be performed,
from 1 to 15.

On output, the value in the first two bytes of the parameter block has been
shifted the appropriate number of times. The count in the third byte of the
parameter block remains unchanged.

INPUT OUTPUT
HooL oL
T
POINTER Tc:) PARAM-+J J — L UNCHANGED —|

T 1

129

7FD0

7Fan C5
TFO1 ES
7F@3: DDES
7F@4 CD7FDA

MEM1+d | 16.8IT VALUE | MEM1+E |
+1 SHIFTED +1 RESULT
+2 | # OF SHIFTS +2 | UNCHANGED

Algorithm

The MSRGHT subroutine performs the shift by placing the number to be shifted
in HL and the count in the B register. HL is shifted right by first shifting H with
an SRL. This shifts H one bit position, with the carry being set by the Isb of H. L
is then shifted right by an RR, which shifts L to itself and places the previous
value of the carry into the msb of L. This shift sequence is done a number of

times corresponding to the count in the B register.

Sample Calling Sequence

NAME OF SUBROUTINE? MSRGH
5000 REHT

HL VALUE?

PARAMETER BLOCK LOCATION? Soo00
PARAMETER BLOCK VALUES?

+ B 2 32748

+ & 1 15
+3 0 a

VALUE TO BE SHIFTED = 1003000060000000
15 SHIFTS

MEMORY BLOCK 1 [LOCATION?
MOVE SUBROUTINE TO7 44444
SUBROUTINE EXECUTED AT 44444

INPUT:
HL= 50000
PARAM+ @ @
FARAM+ 1 128
PARAM+ 2 15

OUTPUT:

HL= 50080

PARAM+ @ 1

PARAM+ 1]—nesuuwu@ammmwm

PARAM+ 2 15 UNCHANGED

NAME OF SUBROUTINE?

Notes

1. 1 O is specified as a shift count, 256 shifts will be done, resulting in all
zeroes in the result.

2. If 16 to 255 shifts are specified, the result will be all ZEeroes.

Program Listing

pp12B ORG

7FBaH 10522

PB11e P S T R T T R S SV
PA1Z@ 3% MULTIPLE SHIFT RIGHT. SHIFTS THE GIVEN 146-BIT VALUE

*

@PR130 s* A SPECIFIED NUMBER OF SHIFTS IN LOGICAL FASHION *
20148 s« INPUT: HL=>PARAMETER BLOCK *
20150 i» PARAM+Q, +1=VALUE TO BE SHIFTED *
DA14E 3% PARAM+3=NUMBER OF SHIFTS *
BRi7e 3« OQUTPUT : PARAM+@s +1=SHIFTED VALUE *
R S R A R T L T L L L L L gy
PA1%68
DAz MSRGHT PUSH BC :SAVE REGISTERS
ANzid PUSH Hi.
obzza PUSH IX
aAz36 CALL BA7TFH i%xkGET PR LOC’> Nxxx»

130

7FB7 ED daza4a PUGH HL $ TRANSFER TO IX

JFA8 DREL Baz5a pop IX

7F@A DD&ERRD onzse LD L ¢1X+0) sGET LSE OF VALUE

7EBD DD4&&6AL paz7a LD Hs {IX+1) sGET M5B OF VALUE

TFI@ DD46AZ rlrbedsing LD Es (1X+2) GET # OF SHIFTS

7F13 CB3C Baz9D MESRBIB SR H $RIGHT SHIFT MG BYTE
15 CE1D aa3aa RR L. $RIGHT SHIFT LS BYTE
TEL7 10FA a03:d DJINZ MGRAL12 $LOOFP "TIL DONE

TE1G DD75G8 aR3za MSRBE® LD CIX+@) s L. ;STORE SHIFTED REGULT
7FIC DRD74@1 as3ie LD (IX+13sH

YI'iF DDE1 R340 MERB4ED POP Ix SRESTORE REGISTERS
7F21 El BAR35e POP HL.

Rz ¢ BR3sH FOR go

TF23 9 PR37A RET SRETURN TO CALLING PROG
alrdrdg aRane END

Q0RaA TOTAL ERRORS

MERGHT DECIMAL VALUES

197, 229, 221 229. 2B5.
F21s 110, @y 221y 102 1o
Hfy 203s 29. 16 250s 221
1 Z2ls 220y 220y 193: 201

127+ 1@ 229+ 221y 225
Fale 7By Ze 203s
117 &y 2Z21. 11&s

CHKSUM= ZZ3

MUNOTE: MUSICAL NOTE ROUTINE

System Configuration

Moadel 1, Madel LlI.

Description

MUNOTE outputs a musical note through the cassette port. The cassette jack
output may be connected to a small, inexpensive amplifier for music, audio
sound effects, or warning tones. The tone ranges over seven octaves starting
with A three octaves below middle A and ending with G#, three octaves
above middle G#. The duration of the tone may be specified by the user in
1/16th second increments. Pitches and durations are approximate!

Input/Qutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of MUNOTE in standard
Z-80 address format, least significant byte followed by maost significant byte,
This address may be easily picked up from the USR call if MUNQTE is called
from BASIC or from the assembly-language CALL address. It is necessary so that
the code in MUNOTE is completely relocatable. The next byte of the parameter
block contains the note value of 0 through 83. This note value corresponds to
musical notes as shown in the table below. The next byte of the parameter
block specifies the duration of the note in 1/16th second increments. A value of
3, for example, would be 3/16ths second.

131

On output, the contents of the parameter block remain unchanged and the note
has been played.
INPUT OUTPUT

H L HlL

| POINTERTL';)PARAM+¢ | = | UNCHANGED |
1

PARAM-+@ LOCATION | PARAM--0
T OF T 1 UNCHANGED +
+1 | MUNOTE 1
NOTE VALUE
+2 #-83 +2 | UNCHANGED
DURATION TN
+3 | 1716 NOTES é +3 | UNCHANGED

Table of values for musical notes.

VAL NOTE FREQUENCY TABLE VALUES .
& A 27.5 122+ 5 1, @

1 A# 29.1352 43y 5 1ty @

2 B 30.8477 225, 4 1, @

3 C 32.7032 154y & 2, 0 .
4 Cé# 34.6478 88. 4 2y @

5 D 36.7081 Zhr 4 2 B

6 D# 38.8909 223, 3 2, @

7 E 41,2035 167+ 3 2 @

8 F 43,6535 114, 3 2 @ '
9 F# 4&. 2493 655 3 2y D

12 G 48. 9995 18 3 3y @

11 G# 51.9133 230, 2 3, @

12 A 55 188, 2 3, 0 II
13 a# 58. 2785 1484 7 2 @

14 B 61.7355 111, 2 3 0

15 ¢ 65, 40464 Ths 2 4, @

16 C# 69.2957 43, 2 4, @ .
17 D 73. 4143 12y 3 4y @

18 D# 77.7818 238y 1 4y @

19 E 82.407 1@, 1 S, @

20 F B7.3071 1B4, 1 5, @

Z1 Fé# 2. 4987 159, 1 5: @

22 G 97,999 136y 1 6y @

23 G# 103, 826 1145 1 &r D

24 A 11 93, 1 &1 @ ‘II
25 A# 116.541 73y 1 7, @

Z6 B 123. 471 54y 1 7, @

27 ¢ 130.813 37,y 1 B @

28 C# 138.592 20y 1 g, 0

Z9 D 146,813 5, 1 s B l
32 D# 155,544 T4ty B 9y @

31 E 164.814 732, @ 18, @

3z F 174,614 219, B 18, @

33 F# 184,997 206y @ 11, l
34 G 193, 998 195, @ 12, @

35 G# 207, 453 184, @ 12y @

36 A 220 173, @ 13, @

37 A% 233.082 183, @ 14 @

3B/ B 244,942 154, @ 15+ @ l
39 261,636 145, @ 16y B

48 Cc# 277.183 137, @ 17, @

41 D 293, 665 1295 B i8s @

42 D# 311.128 122, @ 19, @

43 E 329. 428 115, @ 205 @

44 F 349,229 198, @ 2ty @

4% F# 369,995 102, @ 23, 0

46 G 391.994 Py B T4y @ .
47 G# 415.306 21, @ %y D
132 .

48 A 443,001 86y @ 27 0
49 A# 46H6.165 81, @ 29 @
5@ B 493,884 Thy B 30, 8
51 [523,252 72+ D 32 B
fn) CH 554,367 &7y @ 34 @
53 D 587.331 b4e B 34 O
54 D# L22. 256 &, O 38s @
55 E &59.257 54, B 415 @
56 F A28, 458 53, @ 431 @
57 F# 737.971 50, 2 465y B
58 £} 783.993 47y @ 48, @
59 G# 830.612 444 B 51y @
[2Y%) A 880, 903 47 @ 55, @
%1 Hl Q32,33 39 B 58+ @
&2 2 F87.769 37+ @ bly B
63 C 1844.51 35, @ &5y B
1) CH# 1108.73 334 @ 69 @
&5 D 1174.66 31 @ 73: 8
&b D# 1244.51 29, @ 77, A
&7 E 1318.51 27, 8 B2y @
&8 F 1396.92 29y @ B7, @
&5 F# 1479.98 24 @ 9z @
70 G 1367.99 22y @ 97y @
71 G 1461.22 21, @ 103y @
7z A 1760.01 20, B 110+ @
73 Ak 18&4. 66 18+ @ 114 B
74 B 1975.54 17 @ 123, @
75 C 2893. 01 14 @ 130, @
74 C# R2L7.47 15, @ 138« @
77 D 2349.33 14+ @ 146y @
78 D# 2489.03 13, @ 155, @
79 E 2637.083 12« P 164, O
8@ F 2793.84 12 @ 174, @
a1 F# 2999.97 11+ B 184, B
82 & 3135.98 182, @ 195: @
83 G# J322. 43 9 B 207 D
Algorithm

Operation of MUNOTE is very similar to TONOUT. MUNOTE, however, picks
up a frequency count and duration count from the MUNTB table, This table is
referenced to the note value in the parameter block. The note value of 0
through 83 is multiplied by 4, added to the starting address of MUNOTE from
the parameter block, and then added to the displacement of the table, MUNTB,
to point to the table entry. The frequency count and duration count from
MUNTB are then picked up and put into DE and BC, respectively. The duration
count is multiplied by the number of 16ths specified in the parameter block,
and the final duration count is put into I1X. From this point on, the code is
almost identical to the TONOUT code.,

MUNOTE uses two loops. The outer loop (from MUNO010) produces the num-
ber of cycles equal to the duration count. The inner loop is made up of two
parts. The MUNOQ20 portion outputs an “on’’ pulse from the cassette output.
The MUNO30 portion turns off the cassette port for the same period of time.
Both portions use the frequency count from the DE register for a timing loop
count.

The MUNO10 loop puts the DE frequency count into HL and turns on the
cassette (OUT OFFH,A). The count in HL is then decremented by one in the
MUNO20 timing loop. At the end of the loop, the count is again put into HL

133

7F2a

7FoB
7F@al
TFaz
7FA3
TFQ4
TF@s
7Fas
7TFRR
7Fac
TFRE
7F11

F5

C5

b5

E3
DDES
FDES
CD7F@aA
ES
DDEL
DD&EBZ
2600

from DE, the cassette is turned off, and the count is decremented by one in the
MUNO30 timing loop. After this loop, the duration, or cycle, count in IX is
decremented by one and if it is not negative, a jump is made back to MUNOT0
for the next cycle.

Sample Calling Sequence

NAME OF SURROUTINE? MUNOTE

HL VALUE? 40000

FARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ @0 I 37Q0@ START OF MUNOTE

+ 2 1 & FIFTH OCTAVE, A
+ 3 1 Z2 1/8TH SECOND
+ 4 B @

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO?7 37000
SUBROUTINE EXECUTED AT 37000

INPUT = QUTPUT

HL= 42200 HL= 42000
PARAM+ @ 134 PARAM+ @ 134
PARAM+ 1 144 PARAM+ 1 144
PARAM+ 2 &@ PARAM+ = 4@
FPARAM+ 3 2 PARAM+ 3 2

NAME OF SUBROUTINE?

Notes

1. The table values are for a standard TRS-80' Model i clock frequency. They
must be recomputed for clock speed upgrades or adjusted for a Model IIL.

Multiply the frequency values by 1.143 and divide the duration values by 1.143
for a Model 111,

2. Lower octave durations and higher octave frequencies are approximate.

Program Listing

22128 ORG 7FoBH iB522
BOL LG 3 %00 SN NNII A IIIIIEIEI RN I I3 32

@@1=@ s* MUSICAL NOTE ROUTINE. OUTPUTS MUSICAL NOTE THROUGH *
B0130 % CASSETTE PORT. *
Q0140 5% INPUT: HL=:> PARAMETER BLOCK *
BR1538 3= PARAM+Q, +1=LOCATION OF MUNOTE *
001560 5% PARAM+2Z=NOTE VALUEs @ THROUGH B3 *
QaL7D % PARAM+3=DURATION IN 1/16TH NOTES *

*

22180 = QUTPUT tNOTE OUTPUT TO CASSETTE PORT
DBLTD 5985 ISR IETEA I I I 06 T3 33606 2K
paznl

221D MUNGTE PUSBH AF $15AVE REGISTERS
2222 PUSH BC
29230 PUSH DE
o240 PUSH HL
v lrapegalr) PUSH Ix
f0z&d PUSH Iy
Baz7e CALL @ATFH 3#%%GET PR LOC’ N&xx
2Rz PUSH HL. iTRANSFER TO IX.
gazIa FOP IX
20322 L.D Ly (IX+2) SGET NOTE VALUE
paszie LD Hs @ FNOW IN HL

134

7F13 29 o3z ADD Hi.s HL s INDEX*Z
TF14 =29 PB330 ADD HL. s HL $ INDEX %4
7Fi15 DDSEQG 0343 LD Es (IX+@) $PUT MUNOTE BASE IN BC
7F18 DD5&01 80350 LD Dy (IX+1)
7E1E 19 2R3se ADD HL.» DE sBASE PLUS INDEX
7FiC 115FD@ Ba37e LD DE» MUNTE sTABLE DISPLACEMENT
JFIF 19 Pe38a@ ADD HL s DE SPOINT TO ENTRY
7FZB ES 20393 PUSH HL. $TRANSFER ENTRY LOC To IY
7Fa1 FDEL PR420 POP Iy
7Fz23 FDSERQ 2410 LD Es (IY+B) $PUT FREG COUNT IN DE
7F2& FD5&BL Q4z@ LD Da(IY+1)
727 FD4EGZ 20430 LD Ca(IY+E) $PUT DUR COUNT IN BC
7Fz2C FD46@3 20443 LD By (IY+3)
TF2F 210000 eB459 LD HL: @ SINITIALIZE DURATION
7F32 DD7ED3 224460 LD Ay (IX+3) $GET DURATION IN 1/1&THS
7F35 @9 Q470 MUNBES ADD HL+EC s CHANGE TO SBPEC DURATION
7F3&6 3D BR48A DEC A sDECREMENT 1/156THS CNT
VF37 20FC B@4s0 JR NZ s MUNDDS 3LOOP TIL DONE
7F37 ES f2502 MUNDBE PUSH HL $TRANSFER NEW CNT TO IX
7F34A DDE1 D310 POP IX
7F3C @Q1FFFF a5z LD BCy—1 sFOR TIGHT LOOP
TF3F &R 08532 MUN@I@ LD L>E $PUT FREG COUNT IN HL 4
TF4@ &2 Bas4@ LD Hy D 54
7F41 3EGL ba550 LD Al iMAXIMUM POSITIVE 7
7F43 D3FF P54 ouUT (AFFH) 2 A SOUTPUT 11
7F45 B89 578 MUNRZB ADD HLsBC $COUNT-1 11
7F46 DA4STF Ba580 JP Co MUNBZA $LOOP FOR 1/2 CYCLE 7/12
7F497 6B aas9e LD LaE $tPUT FREG COUNT IN HL 4
TF4A b2 Basa@ LD HaD $4
TF4ap 3EDZ eas1l LD A SMAXIMUM NEGATIVE 7
7F4D D3FF B2L20 ouT (BFFH)1 A SOQUTPUT 1t
7F4F @% 2RA30 MUNB3® ADD HL:BC s COUNT-1 11
TS50 38FD 20540 JR C» MUNDTZO sLOOP FOR 172 CYCLE 7/12
7F52z DDA% 2458 ADD IXsBC $DECREMENT DUR COUNT 15
7F34 38E9 AR&6E JR CrMUNB1@ SLOOP IF NOT DONE 7/12
7F546 FDE1L pa&s&7d FOP 1y JRESTORE REGISTERS
7F58 DDE1 BR&na FOP IXx
7F3A EX P06 POP HL

- 7F58B D1 2700 POP DE
7F5C Ci pR71i@ FOP RC
7F3D F1 BPR720 POP AF
7F5E €9 aav7ie RET SRETURN TG CALLING PROG
AA5F Ba74@ MUNTE Eau F~MUNOTE

2750 ; MUSICAL NOTE TABLE. ENTRY+@»+1 IS FREGUENCY COUNT.
P0746@ 5 ENTRY+Zy+3 I8 DURATION COUNT FOR 1/1&6THS.

paEa zaz7a END

ARG TOTAL ERRORS

MUNOTE DECIMAL VALUES

245y 1972 213s 229 Z2Y. Z2%. 233 229y 205 127
1By 229y 221y 225y 221y 11@y 24 389 B 41

41 2214 Q45 Dy 221 Bbe 1y 284 17. 959,

@y 25, 229, 293, 225, 253: 9432 By 253y Bé&.

1s 253y 78y 29 253« 70e 32 33+ @5 @Ay

2aly 126y 39 99 bl 3 292y ZR29 221y 225

1s 255 25%y 107+ 98s 62y 19 Z1ls Z5%y s

218s 692 127y 1@74 9By &2y Za 211y 2952 P

Dby 9539 Z21s P SOy 233+ F593y 229 221y 235
A2% 209, 173, 241, 201

CHREUM= z=5

135

MVDIAG: MOVING DOT DIAGONAL

System Configuration

Maodel 1, Model 1II.

Description

MVDIAG moves a ““dot’’ along a diagonal line with a varying time delay. This
effect can be used for games or other applications. The dot may move along the
diagonal from “bottom’’ to “top” of the screen, or from ““top”’ to “bottom.”

The amount of time that the dot remains in any position can be adjusted under
program control.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the starting x character position of the dot,
from O to 63. The next byte of the parameter block contains the starting line
number y of the dot, from 0 to 15. The next byte of the parameter block con-
tains the number of character positions of travel. This will be a maximum of 16
for a diagonal that starts 16 character positions or greater from the side of the
screen. The next byte of the parameter block contains the time delay value
from 1 to 255 or 0 (256). One is a minimum time delay, while 255 and 0 (256)
are maximum time delays. The next byte of the parameter block contains the

direction of travel—0 is up to the right, 1 is up to the left, 2 is down to the right,
and 3 is down to the left,

On output, the parameter block contents are unchanged. The dot has moved
over the specified diagonal.

INPUT QUTPUT
H L H L

| PoTen T(?i PARAMIS | —> | UNCHANGED B

PARAM-+g STARTING X PARAM--g UNCHANGED
+1 STARTING ¥ +1 UNCHANGED
LENGTH OF
+2 TRAVEL +2 UNCHANGED
+3 TIME DELAY é +3 UNCHANGED
+4 DIRECTION +4 UNCHANGED
Algorithm

The MVDIAG subroutine performs the move by computing the starting address
of the dot in video display memory, by computing the “increment” to add to
the address to obtain the next dot position, and by controlling the move with a
count of the number of character positions involved.

First, the line number value is picked up from the parameter block. This is
multiplied by 64 to find the number of bytes (displacement) from the start of

136

video display memory. This value is added to 3CO0H to find the actual video
memory address for the line start. This value is added to the character position
of the start from the parameter block to find the starting position in video
display memory.

Next, a test is made of the direction of travel. Based on the direction, an incre-
ment value of —41H (up to left), —3FH (up to right), 3FH (down to left), or 41H
(down to right) is found. This represents the number to be added to the last
video display memory location to find the next video display memory location
for the dot.

The code at MVDQ20 is the main loop of the subroutine. A byte of OBFH is
stored to the current video display memory position. A time delay is then done
by decrementing the count value in the C register. After the delay, a byte of 80H
is stored to “‘erase’’ the last dot.

The increment value is then added to the current video display memory posi-
tion to find the next location of the dot. A count of the number of character
positions involved is then decremented, and a jump is made to MVD020 if the
count is not zero.

Sample Calling Sequence

NAME OF SUBROUTINE? MVDIAG

HL VALUE? 43333

PARAMETER PLOCK LOCATION? 43333
AARAMETER BL.OCK VALUESG?

+ B 1 B XxX=8

+ 1 i 15 Y =15

+ 2 1 1& LENGTH =16 (END X, Y = 24, @)
+3 1 B MAXIMUM DELAY

+ 4 1@ UP TO RIGHT

+ 5 @8 0

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7 36384
SURRODUTINE EXECUTED AY IBBBE

INPUT: OUTPUT:

Hl.= 43333 HL= 43333

PARAM+ @ PARAM+ B B

FARAM+ 1T 15 PARAM+ 1 15

PARAM+ & 16 PARAM+ 2 164 FUNCHANGED
PARAM+ 3 @ PARAM+ 3 B

PaRam+ 4 @ PaRAM+ 4 @

NAME OF BUBROUTINE?

Notes

1. The program may “bomb’’ the system if the length of travel goes beyond
video display memory boundaries or if x or y are incorrect values. Maximum
length is 16.

2. Add additional time wasting instructions as required.

3. Delete time wasting instructions as required. Substituting NOPs (zeroes)
will shorten the delay.

4. Speed at maximum delay is about 85 character positions per second.

137

Program Listing .
7F00 »0100 ORG 7FOBH @52z
mml 1m H **
PO1ZB 3% MOVING DOT DIAGONAL. MOVES DOT ALONG DIAGONAL LINE
P0130 5% WITH VARYING TIME DELAY * l
PB14B ;% INPUT: HL=> PARAMETER BLOCK *
P0158 ;x PARAM+D=STARTING CHAR POS'N (X) x
POLLD 3% PARAM+1=GTARTING LINE # (Y) *
POL7 3% PARAM+2=LENGTH OF TRAVEL IN CHAR POSNS *
PO1BA 1 PARAM+3=TIME DELAYs 1=MIN 285 /B=MAX *
20192 ;% PARAM+4=0 1S UP TO RIGHTs 1 1S UP TO LEFT &
00200 ;* 2 1S DOWN TO RIGHTs 3 IS DOWN TO
20210 3% LEFT * '
@@ZZ@ s* OUTPUT:DOT MOVES ALONG DIAGONAL L INE *
0023{2] ;*************‘!"*‘**'*****'ﬂ'*********************************
P0Z4D
7F00 F5 BOZ50 MVDIAG PUSH AF :SAVE REGISTERS l
7F01 C5 00240 PUSH BC
7792 D5 e2z70 PUSH DE
7F@3 ES 20280 PUSH HL
7F@4 DDES POZ90 PUSH 1X .
7F06 FDES P30 PUSH 1y
7F@8 CD7FRA BA310 CALL BA7FH s #%GET PB LOC’ N#%%
7FOR ES 00320 PUSH HL s TRANSFER TO 1X
7F®C DDE1 PR30 FOP IX
7FOE D&B6 D034 LD By6 sITERATION COUNT
7F10 DDSEDI D@35 LD Ly (IX+1) 1GET LINE #
7F13 2600 DO360 LD Hs @ SNOW IN HL
715 29 60370 MYDRI@ ADD HL v HL SLINE# * 64
7F16 1DED 20350 DINZ MVDBLG $LOOP "TIL DONE
7F18 D1003C ©0390 LD BCy 3C00H tSTART OF SCREEN
7F1B @9 00420 ADD HLsBC sFIND LOC OF LINE START
7F1C DD4EDD BO41D LD Cs (IX+D) sGET CHAR POSN (X)
7FIF 0600 20420 LD By @ INOW IN BC l
7FZ1 @9 P43 ADD HL s B SFIND ACTUAL LOCN
7FZ2 DD460Z D0440 LD By (IX+2) SGET LENGTH OF TRAVEL
7F25 DD4EQ4 DO4SS LD Cy (TX+4) $GET DIRECTION CODE -
7F28 CBA4Y P40 BIT 1sC $TEST DIRECTION l
7FZA 11BFFF D470 LD DEs ~41H : INCREMENT FOR NEXT DOT
77D 2803 o480 IR ZyMVD@15 sGO IF UP
7FZF 113F00 D0459 LD DE » 3FH s INCREMENT FOR DOWN
7F32 CB41 20509 MVDD1S BIT B> ¢ sTEST RIGHT/LEFT .
7F34 2003 20510 JR NZ s MVDBZD $GO IF LEFT
7F36 13 005720 ING DE TRIGHT
7F37 13 20530 INC DE
7F38 36BF @054@ MVDEZ® LD (HL) » DBEH $BET CHAR POS TO ALL ON
7F3A DD4ED3 QB55B LD Cs (1X+3) $GET DELAY COUNT
7F3D @D @0560 MVDE3® DEC ¢ sDECREMENT COUNT
7F3E FDZADDER 2570 LD IYs (@) SWASTE TIME
7F42 FD2A0000 00580 LD 1Y (@)
7F46 FDZADDRD D059 LD 1Y (@) l
7F4A FDZADOOD DD6DD LD 1Yy (@)
7F4E 2QED 20610 JR NZsMVDO30 1DELAY LOOP
750 3680 PR62D LD (HL) » BOH SRESET CHAR POS
7F52 19 20630 ADD HL s DE sPOINT TO NEXT POSITION l
7F53 1@E3 20640 DIJNZ MVD@Z@ ;LOOP FOR LENGTH OF LINE
7F55 FDEL P04L5@ POP 1Y
7F57 DDE1L 20660 POP X sRESTORE REGISTERS
7F59 E1 B067@ POP HL I
7FSA D1 0068 POP DE
7FSB C1 PR69D POP BC
7FSC F1 28700 POP AF)
7F5D €9 PO710 RET TRETURN TO CALLING FROG
0000 2720 END
@ROBD TOTAL ERRORS

138

MVDIAG DECIMAL VALUES

L4550 197s 213y 229y Z21s ZZ2F9 253y 229y 205,
1@y 22%s 221 2259y & &0 231 110+ 1. 33s

@s 41 1hs 253y 1y D 685 P2 Z21e 7B»

@y by By P9 EELs 7@y Iy 221y 784 4y

203y 73y 172 191 285y 40y 39 174 &3 O,
203y 63y 32y 2y 19y 19 545 191 221 THE,

B 13y 253 42 @y By 253y 429 B Ds

253y &2y B @y 2531 42y B B 325 237

34y 128y 259 1&s 227 2533 229y 221y 225 225,
20%y 1935 241, z2D1

127,

CHREUM= 175

MVHORZ: MOVING DOT HORIZONTAL

System Configuration

Model |, Model I11.

Description

MVHORZ moves a “dot”” along a horizontal line with a varying time delay.
This effect can be used for games or other applications. The dot may move
along the horizontal line from right to left, or from left to right, on the screen.
The amount of time that the dot remains in any position can be adjusted under
program control.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the starting x character position of the dot,
from O to 63. The next byte of the parameter block contains the starting line
number y of the dot, from 0 to 15. The next byte of the parameter block con-
tains the number of character positions of travel. This will be a maximum of 64
for horizontal travel that starts at a right or left edge of the screen. The next byte
of the parameter block contains the time delay value from 1 to 255 or 0 (256).
One is a minimum time delay, while 255 and 0 {256) are maximum time delays.

On output, the parameter block contents are unchanged. The dot has moved
over the specified horizontal line.

INPUT OUTPUT
H L H L
+ }
POINTER Tcl} PARAM-+d I ﬁ [UNCHAI\NGED —l
T T
PARAM+@ STARTING X PARAM+2 UNCHANGED
+1 STARTING Y +1 UNCHANGED
7 LENGTH
+2 (~64TO+64] +2 UNCHANGED
TIME DELAY
+3 COUNT é +3 UNCHANGED
139

Algorithm

The MVHORZ subroutine performs the move by computing the starting ad-
dress of the dot in video display memory, by finding the direction of travel, and

by controlling the move with a count of the number of character positions
involved.

First, the line number value is picked up from the parameter block. This is
multiplied by 64 to find the number of bytes (displacement) from the start of
video display memory. This value is added to 3C00H to find the actual video
memory address for the line start. This value is added to the character position
of the start from the parameter block to find the starting position in video
display memory.

Next, a test is made of the direction of travel. Based on the direction, a “move
right’” code segment (MVHO040) or a “move left” code segment (MVHO20) is
entered. Both segments are very similar, except that the “move right” incre-

ments the next character position pointer, while the “move left” decrements
the next character position pointer.

In each code segment, a byte of 0BFH is stored to the current video display
memory position. A time delay is then done by decrementing the count value
in the C register. After the delay, a byte of 80H is stored to “erase’’ the last dot.

The current video display memory position in HL is then incremented or decre-
mented to find the next location of the dot. The count of the number of charac-

ter positions involved is then decremented, and a jump is made to MVHO20 or
MVHO40 if the count is not zero.

Sample Calling Seqence

NAME OF BUBROUTINE? MVHORZ

HL. VALUE? 48000

PARAMETER BL.OCK LOCATION? 4QQ0@
FARAMETER BLOCK VALUES?

+ 9 1 B xX=8

+1 1 8 Y=8

+ 2 1 64 LENGTH =64 (END X, Y = 64, 8), RIGHT
+ 3 1 @ MAXIMUM DELAY

+4 B 0

MEMORY BLOCK 1 LOCATION?
MOVE SURRCUTINE TO7 37200
SUBROUTINE EXECUTED AT 37000

INPUT = QUTPUT:

HiL= 40000 HL= 4Bboao
PARAM+ @ @ PARAM+ O @
PARAM+ 1 & PARAM+ 1 &
PARAM+ 2 &4 PARAM+ 2 &4
PARAM+ 3 B PARAM+ 3 B

NAME OF SUBROUTINE?

Notes

1. The program may “bomb’ the system if the length of travel goes beyond
video display memory boundaries. Maximum length is —64 or +64.

140

0

7F 00
7FaL
7F@z
7F@3
K85
7FR7
7F2A
7FOR
7F@D
TFOF
7F1z
7F14
7F15
7FL7
7F 1A
7F 1B
TFIE
7F2@
7F21
TFI4
7F26
7F28
TF2G
7F 2R
7FC
7FZE
7F31
7R3z
7F36
7F3A
7F3E
TE4%
7F 44
TF4é
TF47
TF49
7E4R
7F4D
7FS@
7F51
7F55

F5

Ca

E£5

DDES
FDES
CD7F3A
ES

DDE1
BL2s
DD&E@ L
L4

=9

10FD
D1aa3c
ag
Dh4EBBA
60D

as
DD4LAE
CR78
=823

78

ED44

47

346BF
DD4E®3
ap
FDzARBOD
FDzARBBE
FDzABBDD
FDZARRDA
ZBED
34680

ZB

18E3
181D
A&BF
DD4EDS3
an
FDZABRR0
FDZABQDA

BP1Do
20110
oarzd
0013
a2140
PB15a
D21468
aa17a
pOiBd
aa17e
20200
oRnz1@
D@z
0230
Aaz4@
anzsa
PB26H0
naz7e
rulr ettt
aazed
@H300
pB310
030
Ba33a
R340
ap35a
BA3LD
an3va
NR380
QA37H
D400
dn410
0420
nB43R
DB440
20450
DR46D
Ga47a
QA48
aa47a
Lasoa
aes1@
2A520
PB530
PB54@
pes50
BA568
ba57a@
z@580
rariagedn
2as00
PR&H10
haszad
BBs30

2. The program may “baomb’ the system if the x and y coordinates are im-

properly specified.

3. Use additional time-wasting instructions as required.

4. Delete time-wasting instructions as required. NOPs (all zeroes} may be

substituted to shorten delay times.

5. Speed at maximum delay is about 85 character positions per second.

Program Listing

aRG 7FRaH R L e
e R A 2 RS S LTRSS I LI LIS E R EE R R R L E R I R R T s
% MOVING DOT HORIZONTAL. MOVES DOT ALONG HORIZONTAL *
i LINE WITH VARYING TIME DELAY. *
3% INPUT: HL=»> PARAMETER BLOCK *
;* FARAM+@=STARTING CHAR POS'N (X} *
1¥ PARAM+I=ETARTING LINE # (Y) *
% PARAM+2=LENGTH OF TRAVEL IN CHAR POSNS *
3% + I8 TO RIGHT. — IS TO LEFT *
HE] PARAM+3=TIME DELAY> 1=MIN Z%55/@=MAX *
R QUTPUT :DOT MOVES ALLONG LLINE *
e B OE 26303 36 I K I Fe e B S I e I I F A W B DN NI N N W
MVWHORZ PUSH AF 58AVE REGISTERS

PUSH BC

PUGH HL..

PUSH ix

PUSH 1Y

caL.l. RATFH 5%%%XGQET PE LOCT N##%

PUSH HL. s TRANSFER TO IX

POP IX

LD Pasb SITERATION COUNT

1.0 Ly {IX+1) SGET LINE #

LD a1 @ SNOW IN HL
MVYH@1@ ADD Hi_s HL. SLINE# * &4

DJIMZ MVHRL R SLOOP "TIL DONE

LD 20y 3CaaH 18TART OF SCREEN

ADD Hl.y BC SFIND L.OC OF LINE START

1.0 Cy (IX+8) 5GET CHAR POSBN (X))

LD BEsQ sNOW IN BC

ADD Hi B SFIND ACTUAL LOCTN

LD By (TX+2) sGET LENGTH OF TRAVEL

BIT TR $TEST SIGN

JR Ly MVHBAD sG0 IF RIGHT

LD X 2= SLLEFT

NEG SFIND ABRBOLUTE VALUE

LD Bad FRACK TO B FOR DJNZ
MYHRAZA LD {HL)Y« DEFH SSET CHAR POS TO ALL ON

L.D Ce (IX+3) $GET DELAY COUNT
MVHRZD DEC C SDECREMENT COUNT

LD Ivs (@) TWASTE TIME

L.D IYe () '

LD IYs{@®)

LD IYs (@)

JR NZsMVHB3RA sDELAY LOOP

LD (HL.Y » BBH SRESET CHAR POS

DEC Hi. SPOINT TO NEXT POSN

DJINZ MVHAZA SLOOFP FOR LENGTH OF LINE

JR MVHOZ@ $G0 TO CLEAN UP
MVYHB4R LD (HL)Y s QBFH $SET CHAR POS TO ALL ON

LD Ca (IX+3) SGET DELAY COUNT .
MVHRSD DEC C sDECREMENT COUNT

LI IYy {@) SWABTE TIME

L1} IYs (@} :
141

7F3? FDZADDOD BR540
7F3D FDzAQPRR BR&ASD
7F&61 ZBED 0as6460
7F43 3680 b2s70
TF&S 23 20480
7F&b6 1DE3 oBs70
7F&8 FDEIL Ra72a
7F6A DDE1 oB710
TF6C E1L 2B7z0
7F&D Ci en73o
TF&E F1 De740
TF&F C% eevsa
rifrefre] pa7s0

MVHB?R

IYa (@
IYs:<@)

NZ s MVYHDSQ
{(HL.) . BAH
HL.

MVHR4D

;DELAY LOOP
TRESET CHAR POS
sPOINT TO NEXT POSN
SLOOP FOR LENGTH OF LINE
sRESTORE REGISTERS

$RETURN To CALLING PROG

bOBR@ TOTAL ERRORS

MVVERT: MOVING DOT VERTICAL

MVHORZ DECIMAL VALUES

245, 197 229y 221 229, 253y 229y 2055 137 10
E29y 221 225 by &y 221 1105 1s 38y @

41y 16 2530 10 By 4B 94 221, 78y D

Gr By Ty 2219 702 29 ZOB3y 120 40y 35,

128, 237y &8s 71y 54. 1915 Z%1y 78y 3, 13,

233 42y @y @y 253y 42y @y By 253y 42

By By 253y 425 Dy @y 3Zs 237« %545 178,

43 160 227y 24y 299 544 191y 221, 78y 3

13, 203y 42y Oy D5 2635 429 @y D 253,

42y @y By 253y 42y Be Dy 322 237y 54,

128y 353 16y 227 2535 235, 221y 2759, 275y 193
241 201

CHKBUM= 1464

System Configuration

Maodel 1, Model 1.

Description

MVVERT moves a “dot” along a vertical line with a varying time delay. This
effect can be used for games or other applications. The dot may move along the
vertical line from top to bottomn, or from bottom to top, on the screen. The
amount of time that the dot remains in any position can be adjusted under
program control.

Input/Qutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the starting x character position of the dot,
from 0 to 63. The next byte of the parameter block contains the starting line
number y of the dot, from 0 to 15. The next byte of the parameter block con-
tains the number of character positions of travel. This will be a maximum of 16
for vertical travel that starts at the top or bottom of the screen. The next byte of
the parameter block contains the time delay value from 1 to 255 or 0 (256). One
is @ minimum time delay, while 255 and 0 (256) are maximum time delays.

142

On output, the parameter block contents are unchanged. The dot has moved
over the specified vertical line.

INPUT QUTPUT
Ho oL H o L
1 T
l POINTER TQ PARAM- l — I UNCHANGED
F i 1
PARAM+0 STARTING X PARAM+@ UNCHANGED
+1 STARTING Y +1 UNCHANGED
LENGTH
+2 (—16TO+16) +2 UNCHANGED
TIME DELAY
+3 COUNT : +3 UNCHANGED

Algorithm

The MVVERT subroutine performs the move by computing the starting address
of the dot in video display memory, by finding the direction of travel, and by

controlling the move with a count of the number of character positions in-
volved.

First, the line number value is picked up from the parameter block. This is
multiplied by 64 to find the number of bytes (displacement) from the start of
video display memory. This value is added to 3CO0H to find the actual video
memory address for the line start. This value is added to the character position

of the start from the parameter block to find the starting position in video
display memory.

Next, a test is made of the direction of travel. Based on the direction, an incre-
ment value of 40H (down) or —40H {(up) is stored in DE.

The code at MVV020 is the main loop of the subroutine. A byte of OBFH is
stored to the current video display memory position. A time delay is then done
by decrementing the count value in the C register. After the delay, a byte of 80H
is stored to “'erase’” the last dot.

The current video display memory position in HL is then incremented or decre-
mented by the increment value in DE to find the next location of the dot. The
count of the number of character positions involved is then decremented, and a
jump is made to MVV020.

Sample Calling Sequence

MAME OF GUBROUTINE? MVVERT

HL VALUE? 40008

PARAMETER BLOCK LOCATION? 40000
PARAMETER BRLOCK VALUES?

+ @ 1 3z X =32

+ 1 1 0@ Y=¢

+ 2 1 240 LENGTH = 16, DOWN
+ 3 1 @ MAXIMUM DELAY
+ 4 B @

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO?7 39000
SUBROUTINE EXECUTED AT 39000
INPUT QUTPUT =

143

7o

7F 00
7FO1
7F0z
7703
TFB4
7FB&
7F28
7FOR
7FecC
7FOE
7F10
7F13
7F15
7F16
7F18
7F1B
7FIC
7F1F
7F21
7Fz2
7FZS
7EZ7
TF2A
7F2C
7FED
7FF

18FD
A1@d3C
B2
DD4EQ&
84600
2y
DD46D:
ce78
11CAFF
2807

HL= 40000 HL= 40000
PARAM+ @ 32 PARAM+ @ 32

PARAM+ 2 FARAM+ 1 @

PARAM+: 2 4@ PARAM+ = z4p | DVCHANGED
PARAM+ 3 B PARAM+ 3 B

NAME OF BUBROUTINE?

Notes

1.

The program may “bomb’’ the system if the length of travel goes beyond

video display memory boundaries.

2. The program may “'bomb’ the system if the x and vy coordinates are im-

properly specified.

3. Use additional time-wasting instructions as required.

4.

Delete time-wasting instructions as required. NOPs (all zeroes) may be

substituted to shorten delay times.

5.

Speed at maximum delay is about 85 character positions per second.

Program Listing

bo12d QRG 7FABH 152
UL L@ 533053 I I KN IEIE I T T 0 KT8 2 T2 R
00128 3% MOVING DOT VERTICAL. MOVES DOT ALONG VERTICAL LINE *
213D 5% WITH VARYING TIME DELAY *
PD142 3% INPUT: HL=> PARAMETER BLOCK *
R150 3= PARAM+B=STARTING CHAR POS'N (X) *
BR160 5% FARAM+1=8TARTING LINE # (Y) *
BRA17D 5+ PARAM+2= ENGTH OF TRAVEL IN CHAR POSNS *
ea1ae i« + 15 UPs - IS DOWN *
20193 5% PARAM+3=TIME DELAY: 1=MIN 255/B=MaX *
oRzBl = OUTFUT :DOT MOVES ALONG VERTICAL LINE *
DRI 3 H RTINS I NN 263K IE T SRR KK RN NE
BR=za
22238 MVVERT PUSH AF 5SAVE REGISTERS
PBz4@ PUSH B
BB:250 PUSH DE
] g 10| PUSH i
oBz70 FUSH IX
a8z80 PUSH Iy
Baz?d CALL BATFH i%%XGET PR LOC N#*x
0a30a PUSH HL. i TRANSFER TO IX
go31@ FOP IX
an3ze 1.D By FITERATION COUNT
PA3E3G LD Lo (IX+3) SGET LINE #
22340 LD Hs @ SNOW IM HL
aB3s0 MVVBLlB ADD HLs HL, sLINE# = &4
BE3H0 DJNZ MWRaLR FLOOP *TIL DONE
be37R LD BCy 3CHBAH ;GTART OF SCREEN
a8 ADD HE s BC SFIND 1.0C OF LINE START
oB37D LD Co (IX+0) FGET CHAR POSN {(X)
22423 LD Bs@ SNOW IN BC
Das10 ADD HLsBC sFIND ACTUAL LOC'N
Bo42D LD By (IX+2} SGET LENGTH OF TRAVEL
22430 BIT 7B STEST SIGN
BA440 LD DE» —~4@8H § INCREMENT FOR NEXT DOT
BR450 JR MYz 560 IF WP -
PR44H@ LD s B FDOWN
AR47 R NEG $FIND ARSOLUTE VALUE
02480 LI By A JBACK TO B FOR DJNZ

144

7F3B
7F33
7F35
7F38
TEI9
7F3D
7F41
TF 45
TF4%9
TF4EB
7F4D
7F4E
7F5@
7FE2
7F54
7+35
TH54
TF57
7Fs8
oo

114020
36BF
DD4E@3
@an
FDz2ARBDG
FDZADAR0
FDzABBOGB
FDZADBDGB
ZBED
3680

19

10ES3
FDE1
DDE1

baasn
Banea
oa510
o528
oS30
0R54@
aes5@
Ba5-@
pas7ea
20580
PRs9e
rln Yl
BB&10
zs2d
PB63D
Pas4@
BB45SD
204560
ARas7e
PRsBE

20900 TOTAL ERRORS

LD DE» 40H $ INCREMENT FOR DOQWN
MYVRZB LD (HL) » QEFH 5SET CHAR FOS TO ALL ON
LD Cy {IX+3) $GET DELAY COUNT
MYVB3® DEC c :DECREMENT COUNT
LD IYs (@) SWASTE TIME
L.D IYs (@)
LD I¥Ys (@)
LD 1Y, (@)
JR NZ s MVYVB3D sDELAY LOOP
LD (HL)+ 80H $RESET CHAR POS
ADD HL s DE sPOINT TO NEXT POSITION
DJINZ MYV @20 5LOOP FOR LENGTH OF LINE
POP 1Y sRESTORE REGISTERS
POP X
PQP HL
POP DE
POR BC
POR AF
RET SRETURN TOQ CALLING PROG
END

MVYVERT DECIMAL VALUES

245y 197y Z13s 22Fe 221 253y 229 2054 127
1@s 229y 221y 225: by & 119, 1y 38y

Bs 41y 16y 253y 1s Bs 605 221s 784

B 6 @y Py 221y 7@y 2y Z03s 1205 17,

192y Z559, 4@ 74 120y 237 Tis 174 H45

By 5S4 1F1s 221y 78+ 3» 253y AZs B

By 2535 429 Bs De 253y 432, @y 253

42y @y By 32+ 2373 D4+ 128 1y 227

253y 225 221y 2254 225, 193 241s ZzZB1
CHKBUM= 81

NECDRV: NEC SPINWRITER DRIVER

System Configuration

Model L.

Description

NECDRV is a printer driver for the serial NEC Spinwriter Printer or similar type
of serial printer. Previous to use, the SETCOM subroutine must have been run
to initialize the RS5-232-C interface to the proper baud rate and other serial
parameters. The NECDRV subroutine outputs a single character to the serial
printer with automatic line feed. The wiring configuration for the Spinwriter
cabling is shown in the figure below.

Input/Output Parameters

On input, the L register contains the character to be printed. On output the

character has been printed and all registers are unchanged.

145

720

INPUT QUTPUT
H L H L

| P CHARACTER | —=> | UNCHJ:ANGED |

Algorithm

The NECDRYV subroutine first gets the status from the RS-232-C controller
holding register. If the transmitter holding register is not empty, the previous
character has not been sent. If it is empty, the Clear to Send (CTS) line is
checked. If there is a CTS, the character in HL is output. A test for a carriage
return is then done. If the character is a carriage return, a line feed character is
sent by a jump back to NECD10.

Sample Calling Sequence

NAME COF SUBROUTINE? NECDRY

HL VALUE? &5 ~A”

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE 707 37000
SUBROUTINE EXECUTED AT 37008
INPUT: QUTPUT #

L= &5 HL= &5

NAME OF SUBROUTINE?

Notes

1. See the SETCOM subroutine for comments about setting up the RS5-232-C
interface.

2. Baud rates of 110 to 1200 may be used.

Program Listing

RS2 239—c NEC CABLE
CABLE
D
TD 2 RD 2
RD 3 3
1.
5
L —
]
20
SGND
SGND ——— |7 7 SGND
cT§ ————— 5 19 REVERSE
CHANNEL
NEC spinwriter connections.
BR1iaa ORG TFOBH 10522

peiid :**ﬁ*********
02128 ;% NEC SPINWRITER DRIVER. ROUTINE FOR USING NEC SPIN- *

@213 ;% WRITER WITH SERIAL OUTPUT. *
@140 3% INPUT: HL=CHARACTER TO BE PRINTED *
gaisa s« OUTPUT : CHARACTER PRINTED ON SPINWRITER *

DD LEQD 555 R AT KK I T T JH T HAN I T 66 TP 36
vai17@

146

7+2@ F5 @218@ NECDRY PUGH AF $8AVE REGISTER

7FB1 CH7F@A BR17@ CALL DATFH 1%*%GET CHARACTER® %+
7F@4 3AEADD PR NECRI® LD A (BEAH) SGET 8TATUS

7F@7 CB77 Baz1ad BIT b A sTEST XMTR HOLDING REG
TFaY Z8F9 oazz0 JR IHNECRLD G0 IF NOT EMPTY
7F@e DEES AAZ3a IN As {BEBH) $GET CLEAR TO SEND
7F3D CR7F B4 BIT Ty h STEST

TF@F =Z8F3 00259 JR ZyNECA12 $GO IF NOT CTH
7F11 7D i pedat Lb Al sPUT CHARACTER IM A
7F1Z D3ER ABz7@ ouT (OEBH) 1 A ;OUTPUT CHARACTER
7F14 FE@D PazEG CP @DH iTEST FOR CR

7Fi6 2004 RazFa JR NZNECA?O 10 IF NOT CR

7F18 JEBA pR30n LD Ay BAH ;LINE FEED

7F1A 18E8 be3ie JH NECRL@ FOUTPUT LF

7F1C Fi PB3ZD NEC@YB POP AF s RESTORE REGISTER
7F1iD C% QB33 RET

baLE B340 END

BBROD TOTAL ERRORS

NECDRV DECIMAL VALUES

245, @SBy 127 1@ 58 234, & 203 119 43
249, 219y 232y 203 127+ 4B« 2432 125y 211, 235,
2854y 13 32y 9 HZe 1@y T4 232 241 201

CHRBUM= 1@2

PRANDM: PSEUDO-RANDOM NUMBER GENERATOR

System Configuration

Model 1, Model lll, Model i Stand Alone.

Description

This subroutine returns a pseudo-random number in 32 bits. A pseudo-random
number differs from a random number in that it is repeatable. If the same
“seed’” value is used, the same sequence of numbers as previously generated
will be repeated. At the same time, the sequence of numbers will appear to be
randomly distributed and can be utilized as random numbers for games, simu-
lations, and modeling.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The four
bytes of the parameter block contain the seed, or starting value, of the pseudo-
random number sequence. The seed value may not be zero,

On output, the four bytes of the parameter block contain the next pseudo-
random number in sequence.

INPUT OUTPUT
Ho L Ho oL
1 1
POINTER TO: PARAM+0 l — L UNCHANGED]

. 147

7Fow

PARAMAS | g msBITs | PARAM+E | 18 E‘ﬁ BITS
OF SEED W
+1 +1 VALUE
+2 +2 16 LS BITS
T S O .
+3 +3 VALUE
Algorithm

A pseudo-random number sequence with a relatively long cycle time can be
generated by multiplying a 32-bit value by an odd power of 5. In this case, the
third power of five is used to multiply the seed value by 125.

The 32-bit seed is picked up from the parameter block and put into DE, HL. DE,
HL is now added to itself three times in the PRAO10 loop to multiply the original
seed by 128. Next, the original seed value is put into BC. BC is then subtracted
from DE, HL three times to produce a result that is the original number times
125. This value is then stored back into the parameter block to be used as the
new seed.

Sample Calling Sequence

NAME OF SUBROUTINE? FRANDM

HL VALUE? 40806

FARAMETER BLOCK LOCATION? 50800
PARAMETER RLOCK YALUES?

:@ = 1}SEED=0001G@01H
+4 0 B

MEMORY BLOCK i LOCATION?
MOVE SUBROUTINE TO7? 37000
SUBROUTINE EXECUTED AT 37200

INPUT OUTPUT :
HL= 42000 HL= 4D0DE@
PARAM+ @ 1 PARAM+ @ 125
PARAM+ 1 D FARAM+ 1 D
NE LUE =
PARAM+ 2 1 PARAM+ = 125 [0\ VALUE=007D0070H
PARAM+ X PARAM+ 3 D

NAME OF SUBROUTINE?

Notes

1. Initialize the seed value at the beginning of the sequence with a nonzero
value. Thereafter, simply call PRANDM with the previous pseudo-random
number in the parameter block.

2. Aninitial seed of an odd number generates all odd numbers, an initial seed
of an even number, even numbers. You may use only the most significant n bits
of the 32 bits to obtain odd and even numbers.

Program Listing

2100 ORG 7FORH @522

QAL 1D 5 HKERE RIS IEIEIEIE I I BT 2 30000 20
0@128 % PSEUDO-RANDOM NUMBER ROUTINE. GENERATES A PSEUDO- *
@@130 s* RANDOM (REPEATABLE) NUMBER.) *
A01458 5* INPUT: HL=> PARAMETER BLOCK *
BR130 i+ PARAM+D, +1=16 MS BITS OF SEED *
2RA160 5% PARAM+Zy+3=16 LS BITS OF SEED *
o@17@ 3% GUTPUT : PARAM+D: +1=16 MS BITS OF NEW VALUE *
oR188 s+ PARAM+2y+3=14 LE BITS OF NEW VALUE *®
DAIPD 5 FARAE RIS TR TSI NN ST TN I I60 3630696006036 63696 969696 9696 6

148

oRzBe
7FRR F5 BRL1iP PRANDM FUSH AF $GAVE REGISTERS
7FB1 €5 1t gl PUSH BC
7H@e D5 B=z30 PUSH DE
7FB3 ES Baz40 PUSH HL
7t @4 DDES P50 PUSH IX
7F@4 CD7FDA eazal CALL @ATFH i %%%GET PAR BL ADDR*##
7F@% ES Paz7m PUEH HL $TRANSFER TO IX
7FBA DDE1L i lredcl) POP IX
7FAC DDSED@ Ly LD E» (IX+01) sDE HOLDS M5 SEED
7FBF DD54B1 Dea38e LD Dy (IX+1)
7F12 DD&ERZ 02310 LD Ly (IX+2) $HL HOLDS LS SEED
7F15 DD6&6A3 PR3z LD Hs (IX+3)
7F18 Qsa7]l D B,7 sFOR OGP COUNT
7F1A 29 V@340 PRAG1IO® ADD Hi.s HL s2 TIMES LS 16 BITS
7F1B ER 2R350 EX DEsHL IME NOW TN HL
7F1C ED&A Ba3s0 ADC HL s HL 52 TIME M5 16 BITS
7FiE ER 37 EX DE s HL
7F1F 1BF% 22384 DJINZ PRAGLG 37 TIMES=TIMES 128
7F21 3E@3 Pa37a LD A3 $COUNT FOR SUBTRACT
7F&3 DD4E@Z PR420 PRADZD LD Co {IX+2) 3GET LS 16 BITS OF SEED
7FZ4 DD4&B3 ea41@ LD By (IX+3)
7F29 B7 02420 OR A $RESET CARRY
7F2A ED4Z aa43a SBC ML BC sSUBTRACT
7F2C EB D440 EX DE s HL ;EWAP
7F2D DD4EQD ae450 LD Cs (1X+A) $GET M5 16 BRITS OF SEED
JF30 DD4&6B1 aR460 LD By (IX+1)
7F33 ED4Z B470 SBC HL.EC sSUBTRACT
7F33 EB @480 EX DE»HL ;SWAP BACK
7F36 3D 2B490 DEC A 33 TIMES=5EED#*125
7E37 20EA 22509 JR NZ s PRADZO GO IF NOT 3
7F3%9 DD73D@ BR510 LD (IX+B)4E $STORE NEW VALUE
7F3C DD7z@1 P05z LD (IX+1)sD
TF3F DD758z RS 3D LD (IX+Z)aL
TF42 DD7483 Q0540 LD (IX+3)sH
7F45 DDE1L Bes550 PCP iX SRESTORE REGISTERS
TF47 EL 2a54@ POP HL
7F48 D1 pB57@ pae DE
TF49 C1 28580 POP BC
7F4A F1 BB570 PQp AF
7F4B C? 20520 RET sRETURN
ulnle] 0Rs10 END

22020 TOTAL ERRORS

PRANDM DECIMAL VALUES

245 197s 2132 229 2215 229 ZB5s 127y 10s 229
221y 225 221 P4y By 2214 84y 1y 221y 110,

2y 221 182y 39 by Ty 414 235, 2372 106

2352 16+ 24Fs bHZ4 T4 221y 78y 2 221 70

3s 1B3s 237y &by 235y 2215 78s By TZ1s T

1» 2379 bbby 2359 &1y 32y 234y 221¢ 115 @

221y 114y 19 221s 1179 25 221y 116y 3y 2219

2259 225y 209 193y 241, 201

CHKSUM= 229

RANDOM: RANDOM NUMBER GENERATOR

System Configuration

Model |, Model 1ll, Medel !l Stand Alone.
149

Description

This subroutine returns a true random number of 0 through 127, provided cer-
tain conditions are met. If the subroutine is called at unpredictable intervals the
number returned will be truly random. An example of this would be a CALL to
RANDOM after a keypress from the TRS-80 keyboard, If RANDOM is called
repetitively to generate 100 ‘random’’ numbers, however, the numbers gener-
ated will not be random. It's very possible in this case that the number of
microprocessor cycles between each CALL will be fixed, and that the resulting
numbers will simply differ by a fixed amount.

RANDOM generates random numbers by using the count in the R register. As R
is used for refresh and is continually counting from 0 through 127, the event
that causes the CALL to random must be ““asynchronous™ compared to the Z-80
timing and must occur over relatively long periods of time (hundreths of sec-
onds). RANDOM is simply a means to use the asynchronous event to conven-
iently generate a number from 0 through 127.

Input/Qutput Parameters

There are no input parameters to RANDOM.

On output, RANDOM returns the count in the R register in HL. H will be 0 and
L will be a value of O through 127.

INPUT OUTPUT
H L H L
T
NB!NE _] : I 14 #8127

Algorithm

Obtaining the count from the R register can be compared to spinning a wheel
that has 128 divisions numbered 0 through 127. The wheel is stopped at ran-
dom times to vield a true random number.

R is incremented from 0 through 127 to provide a refresh address for the TRS-80
dynamic RAM. An increment occurs each ‘““fetch” cycle of an instruction,
which is either once or twice per instruction (some instructions have two fetch
or M1 cycles). If a typical instruction takes 5 microseconds, R counts 200,000
times per second, making the time between external events such as keypresses
sufficiently large to generate true random numbers.

Sample Calling Sequence

NAME OF SUBROUTINE? RANDOM

HL. VALUE? @

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO?7 38600
SUBROUTINE EXECUTED AT 380222
INPUT: QUTPUT :

HL= @ HL= 1é& RANDOM #

NAME OF SUBROUTINE?

150

Notes

1. To get a number in a range other than 0-127, subtract the range required
from the value in HL until the number is less than the range required, If the
number returned is 99, for example, and the number required is 0-9, then
subtracting 10 until the result is less than 10 produces 9, a number in the range
required.

Program listing

7Fee 00102 ORG 7FaBH 10520
DD1 1D 5619 A IE T IS NI I A6 T I I I AN I I 16961606 2 696 16060696 99 2 3
221280 s« RANDOM NUMBER GENERATOR. GENERATES A TRUE RANDOM NUM-+
PA13@ 3+ BER PROVIDED CALLED AT ASYMCHRONGUS TIMES! *
PB140 3= INPUT: NONE *
PB1SB 3+ QUTPUT : RANDOM NUMBER 0-127 IN HL *
BR16D FHFHHRERRRFRRNIS NSNS NI NI RN R KRR FERI NN NR
22172 3

7F@@ F5 P2182 RANDOM FUSH aF 1SAVE REGISTER

7FB@1 ED3F ap17a LD AR $GET @-127 FROM R

TF@3 &F rulrgrilr] LD l.rA $NOW IN L

TFR4 2600 a0z12 1.D H.@ $NOW IN HL

7F@s6 F1 ppzze pop AF FRESTORE REGISTER

7F@7 C37A0A 0233 JP BATAH $%x%kXRETURN WITH ARG*x#*

7FRA C9 0Rz40 RET iNON-PASIC RETURN

2000 apz50e END

PO TOTAL ERRORS

RANDOM DECIMAL VALUES

243y 237y 95 1311y 38. @ Z41s 195 15445 10,
201

CHKSUM= 247

RCRECD: READ CASSETTE RECORD

System Configuration

Model 1, Madel Il

Description

RCRECD reads a previously written record from cassette to memory. The
WCRECD subroutine must have been used to generate the cassette record. The
record may be any number of bytes, from 1 to the limits of memory. The record
is prefixed by a four-byte header that holds the starting address and number of
bytes in the remainder of the record. The record is terminated by a checksum
byte that is the additive checksum of all bytes in the record. Data in the record
may represent any type of data the user desires; the record is read in as a “‘core
image.”’

151

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block are the starting address of the data to be read
in, in standard Z-80 address format, least significant byte followed by most
significant byte. If the starting address of the cassette record header is to be
used, this parameter is 0. The next two bytes of the parameter block are re-
served for the number of bytes value from the record header. The next byte is
reserved for the checksum from the record header.

On output, the contents of the parameter block is unchanged and the record
has been read from cassette. PARAM+ 2,4 3 contain the starting address of the
data from tape, if this address was to be used. PARAM+ 4 contains the check-
sum for the read operation. If this value is a zero, the tape data has been read
correctly; otherwise, an invalid read of one or more cassette bytes has oc-
curred.

INPUT ouTPUT
H L H L

]
T T
L POINTER TC{) PARAM-+0 — | UNCH?NGED]

PARAM-+@ | STARTING ADD PARAM+8 | STARTING ADD
+ ORGIF T + ORADDRESS +
+1 | USE TAPE ADD +1 FROM TAPE
+2 RESERVED +2 4# OF
+ FOR# 1 + BYTESFROM +
+3 OF BYTES : +3 TAPE
va RESERVED 4 @ IF GOOD
FOR CHECKSUM CHECKSUM
Algorithm

The RCRECD subroutine uses Level Il or Level 1ll ROM subroutines to perform
the write. First, a CALL is made to 212H to select cassette 0. Next, a call is made
to 296H to bypass the leader and sync byte on the cassette.

The four-byte header is next read from the cassette record. The number of bytes
from the cassette record is saved in the parameter block. The starting address
from the cassette record is saved if the starting address was zero. At this time
also, the B register contains the checksum of the first four cassette bytes.

The value from PARAM+0, +1 (original starting address or starting address
from cassette) is picked up at RCR020. The code from RCR030 on is a loop to
read a cassette byte by a CALL to 235H, store the byte in memory via the HL
pointer, increment the pointer and decrement the byte count, and checksum
each byte. When DE has been decremented down to zero, the read of the body
of the cassette record is done, and a final read is performed to pick up the
checksum byte from the cassette.

The checksum value in B is subtracted from the cassette checksum, and the

result stored in the parameter block. The two should be equal, resulting in a
difference of zero. Finally, a CALL to 1F8H is done to deselect the cassette.

152

Sample Calling Sequence

MAME OF SUBROUTINE? RCRECD

HL. VALUE? 40002

PARAMETER BLOCK LOCATION? 40000
PARAMETER BL.OCK VALUES?

+ @ @ @ USE TAPE ADDRESS

j f f @ JJNHWAUZEFOREXAMPLE
_—

+5 O @

MEMORY BLOCK 1 LOCATION?

MOVE SURROUTINE TO7 37000
SUBROUTINE EXECUTED AT 37000

INPUT: OUTPUT :

HL= 40000 HL= 40000

PARAM+ @ @ PARAM+ @ O

" ADDRESS FROM TAPE (3C8H
PARAM+ 1 @ FARAM+ 1 &@ }_ (3C00H)
PARAM+ = @ PARAM+ @

FARAM+ 3 @ PARAM+ 3 4 }4024BYTES

PARAM+ 4 @ PARAM+ 4 @ CHECKSUM OK

NAME OF SUBROUTINE?

Notes

1. This subroutine uses cassette O only.
2. For 500 baud tape operations, each 1000 bytes will take about 20 seconds.
3. This subroutine does not save registers.

Program Listing

7F00 201020 ORG 7F@0oH @520
QB11D 3533833192062 H 2363202 36T T I 96636909 J6 6369696 3 0696 96 96 36 36 03660696 96 3 96 06
001:@ 3% READ RECORD FROM CASSETTE. READS RECORD PREVIOUSLY *
283138 % WRITTEN BY WCRECD ROUTINE. *
PD140 5% INPUT: HL=> PARAMETER BLOCK *
20150 3% PARAM+@s+1=5TRTNG ADDR OR @ IF TAPE ADDRS %
00160 3% FARAM+25 +3=RESERVED FOR NUMBER OF RYTES *
23170 3% PARAM+4=RESERVED FOR CHECKSUM *
22180 * QUTPUT : PARAM+@: +1=8TARTING ADDRESSs ORIG OR TAPE #
20190 = PARAM+2++3=# OF BYTES FROM TAPE RECORD *
DOz0B ;* PARAM+4=CHECKSUM. @ IF VALIDs ELSE NON-ZER #*
DOZ1D 33993 Hde W e I T I I IEIE I IE I I I 2696 I TN 006 26
2220

7FoB F3 20z3Bd RCRECD DI iDIGABLE INTERRUPTS

7F@1 AF QB240 XOR A 5ZERO A

7Faz CDi1z0z Bezso CALL. 21zH sSELECT CASSETTE @

7F@5 CD?6B2 Vo268 CALL 296H sBYPASS LEADER

7F@8 CD7F@A noz72 CALL BA7FH *%%GET PB LOC? Nw#*x

7F@B ES 20280 PUSH HL 3 TRANSFER TO IX

7FBC DDE1 20290 POP IX

7FBE DDES 20300 PUSH IX 5 SAVE

7F1@ CD350z o312 CALL 238H 1GET START LSB

7F13 6F 20320 LD LsA 3 SAVE

7F14 E5 20330 PUSH HL

7F15 CD350z2 22340 CALL 235H SGET START MSB

7F18 Et e35e POP HL. $RESTORE LSB

7F19 &7 20360 L.D Hy A sMERGE M5B

7Fi1A E5 20370 PUSH HL

7F1B CD3502 V0380 CALL 235H SGET # LSB

7F1E 5F 82370 L.D EvA $8AVE

7F1F D5 o402 PUSH DE

153

7F20
7F23
7F24
7FZ5
7Fz26
7F28
7F29
7F2A
7FzB
7FzC
7FZD
7F30
7F33
7F36
7F37
7F39
7F3C
7F3F
TF4z
7F45
7F47
7F48
7F 49
7F4A
7F4D
7F4E
7F4F
7F50
7F51
7F52
7F53
7F54
7F55
7F56
7F57
7F59
7F5A
7F5D
7F5E
7F 60
7F61
7F64
7F67
0000

DD730z
DD7203
DD7EQ0
B7
2086
DD7500
DD7401
DD4LEDD
DD&6621
DDES
C5

D5

E5
CD3502
El

o410
20420
23430
20440
22450
Ba460
o470
V2480
22470
225060
V510
2520
20530
20540
2550
Q2560
Bo570
20580
22590
02500
0610
20620
Bas30
22640
2650
DR660
PR&70
20680
20670
o700
Pa710
o0720
2730
20740
2750
aa740
pe770
o780
o790
o800
o810
20820
20830
20840

PoRR2 TOTAL ERRORS

RCRBZz0

RCRO3@

RCRECD DECIMAL

243
229
122,
221

229y

119,

175,
10y 229,
205,
95y 213,
131,
3y 221
1162 1,
197,
128,

126,

205%s 539

205,

CHRKSUM=

154

2485 1,4

185

205,
221

53
205

132,

221
213,
71.

229y
33 27

AsD

AsE

AsH

Al

BsA
(IX+2)4E
{(IX+3)sD
As (IX+0)
A

NZs RCROZ0
(IX+@) sl
(IX+1)sH
Ls (IX+@)
Hs (IX+1)

BC
(HL)s A
As B

Bs+A

HL.

DE

AsD

E

NZ s RCRD30D
BC

235H

BC

IX

B
(IX+4)sA
1F8H

VALUES

18y 24 2054
225y 221
225y 103,
53 Iy
1335 71

209y
183, 32,
113, @,
205,

221,

2 205,

2059 539 2y
205y 335 2
235y

115 24

229

221

102 1,
225,
32y 238,

221

122,

225

sGET # MSE
5RESTORE #

$RESTORE STARTING ADDRESS
$POINTER TO PAR BLOCK
SINITIALIZE CHECKSUM

$SAVE CHECKSUM
sGAVE # OF BYTES

$GET STARTING ADDRESS
STEST FOR @

G0 IF USE ADDRESS IN PB
3STORE TAPE ADDRESS

SGET STARTING ADDRESS

5SAVE POINTER
sSAVE CHECKSUM
$SAVE ENDING ADDRESS
$8AVE CURRENT LOCATION
SREAD NEXT BYTE
SRESTORE POINTER
SRESTORE ENDING LOC’N
$RESTORE CHECKSUM
sSTORE BYTE
3ADD IN CHECKSUM
$SAVE CHECKSUM
sBUMP POINTER
sDECREMENT # OF BYTES
5TEST FOR @

G0 IF NOT LAST BYTE
$5AVE CHECKSUM
$READ CHECKSUM BYTE
SRESTORE CHECKSUM
SRESTORE POINTER
STEST CHECKSUM
ISTORE FLAG
sDESELECT
$RETURN TO CALLING PROG

187
111,

2EH

114,

221
221
117+ Qs
221
209 193,
197,
119y 4,

RDCOMS: READ RS-232-C SWITCHES

System Configuration

Model I.

Description

RDCOMS reads the configuration of switches on the RS-232-C controller
board. The configuration of the switches is analyzed and put into separate
parameters. RDCOMS may be used to verify that the switches are set correctly
without having to reopen the RS-232-C access and reset the switches.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
six bytes of the parameter block are reserved for the results of the read. The
fast two bytes of the parameter block (PARAM+6,+7) hold the address of
RDCOMS in standard Z-80 address format, least significant byte followed by
most significant byte. This address can be obtained from the USR call address
in BASIC or in the assembly-language CALL address.

On output, the first two bytes of the parameter block contain the baud rate for
which the RS-232-C interface is set, 110, 150, 300, 600, 1200, 2400, 4800, or
9600. The next byte is set to a zero if parity is enabled, or to a one if parity is
disabled. The next byte of the parameter block is set to a zero if one stop bit is
used, or to a one if two stop bits are used. The next byte contains the number of
bits in the RS-232-C transfer; O is 5 bits, 1 is 7 bits, 2 is 6 bits, or 3 is 8 bits. The
next byte contains a zero if odd parity is used, or a one if even parity is used.

INPUT OUTPUT
H) L H ! L
$ T
POINTER TO PARAM+# I —_— f UNCHANGED
t 1
PARAM-+0 PARAM-+J
4+ RESERVED T AT T
+1 +1
+2 RESERVED +2 $=PE, 1=PD
@—1 STOP BIT
+3 RESERVED j +3 | 1=2sTOPBITS |
B=5BITS, 1=7 BIT
+4 RESERVED +4 [2—6BITS,3=8 BITS
%—0DD PAR
+5 RESERVED +5 1=EVEN PAR
+6 ADDRESS +6
1 P 1 4 UNCHANGED +
+7 RDCOMS +7

155

Algorithm

The SETCOM subroutine reads the switches and strips and aligns the fields into
the proper format for the parameter block.

First the switches are read by an “IN A/E9H).” Next, the parity type is
obtained by a rotate left and an AND of 1 and stored in the parameter block.
The switch byte is then rotated again two bits and an AND of 3 picks up the
number of bits, which is stored in the parameter block. The switch byte is then
rotated left and an AND of 1 picks up the number of stop bits, which is stored in
the parameter block. The switch byte is then rotated left and an AND of 1 picks
up the parity enable/disable bit, which is stored in the parameter block. The
switch byte is then rotated left three times. An AND of 7 obtains the baud rate
index.

The baud rate index is put into HL and an ADD of HL to itself is done to
multiply the index by two. The result is added to the location of RDCOMS and
to the displacement of TABBD. HL now points to the TABBD entry, which is the
baud rate corresponding to the switch code. This code is picked up from the
table and stored in the parameter block.

Sample Calling Sequence

NAME OF SUBROUTINE? RDCOMS

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 40000
PARAMETER PLOCK VALUES?

+2 2 0

+2 = B INITIALIZE FOR EXAMPLE
+4 2 0

+ & 2 37898 START OF RDCOMS

+8 0 0

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7? 37890
SUBROUTINE EXECUTED AT 378%2

INPUT: OUTPUT:
HL= 40000 HL= 40000
PARAM+ @ @ PARAM+ @ 176]J2003AUD
PARAM+ 1 B PARAM+ 1 4
PARAM+ 2 @ PARAM+ 2 @ PE
PARAM+ 3 @ PARAM+ 3 1 TWO STOP BITS
PARAM+ 4 @ PARAM+ 4 2 SIXBIT LENGTH
PARAM+ 5 B PARAM+ 5 1 _ EVENPARITY
PARAM+ 6 2 PARAM+ & 2

N NGE
PARAM+ 7 148 PARAM+ 7 148]_U CHANGED

NAME OF SUBROUTINE?

Notes

1. Note transposed order of number of bits.

156

Program Listing
l 7F 0D 00100 ORG 7FDOH 10522
0110 (EIX T TEEILTETILTLIELLELLILTEILILL L EI LTS L L EL R LT TR FEETELEF T T LT FRF LY
P0120 3% READ RS-237-C SWITCHES. READS THE RS-232—-C BOARD *
. Q013@ ;% SWITCHES. *
00140 3% INPUT: HL=> PARAMETER BLOCK *
20150 3% PARAM+@ ~ PARAM+5: SEE OUTPUT *
20160 3% PARAM+63+7t ADDRESS OF RDCOMS *
08170 3% OUTPUT tHL=> PARAMETER BLOCK *
00180 3 PARAM+Ds +1=BAUD RATE - 110 15@s 300s 600: *
00190 ;% 120, 2400, 4800y 9600 *
00Z0D ;% PARAM+Z=B=PARITY ENABLEDs 1=PARITY DISAB
00210 3% PARAM+3=0=0ONE STOP BITs 1=TWO STOP BITS *
00220 3 PARAM+4=0=5 BITSs 1=7 BITSs 2=& BITSs 3=8
POZ30 3% BITS *
P0Z4D 3% PARAM+5=@=0DD PARITYs 1=EVEN *
. Bmz’sm IR Z 3L ELE LTI ELIELILSLILIEEIIAILLIILTILTILT TSI LTLIILLTILT SRS L XT3
P0Z6@ 3
7F00 F5 PBZ7® RDCOMS PUSH AF sSAVE REGISTERS
7FR1 CS 00280 PUSH BC
7F@Z DS 00290 PUSH DE
. 7F@3 ES 00300 PUSH HL.
7F@4 DDES 00310 PUSH IX
7FD6 CD7FDA 00320 CALL DA7FH s#%%GET PB LOC’ N¥*
7F@9 ES 02330 PUSH HL sTRANSFER TO IX
. 7F0A DDE1 P340 POP IX
7FDC DBE9 00350 IN As (DESH) $READ SWITCHES
7FOE 47 PO360 LD By A $SAVE IN B
7FOF CEOD 00370 RL.C B 1AL IGN
7F11 78 20380 LD AsB
7F12 E6D1 20390 AND 1 $GET PARITY TYPE
7F14 DD7705 Q0400 LD (IX+5) A s STORE
7F17 CROD 00410 RLC B sALIGN
7F19 CEOD 00420 RL.C B
7F1E 78 00430 LD AsE
7F1C E4D3 00440 AND 3 $GET # OF BITS
7v1E DD7704 Q0450 LD (IX+4) 5 A $STORE
7F21 CROB 00460 RLC B sALIGN
l 7F23 78 00470 LD AE.
7Fz4 E6D1 20480 AND 1 $GET # OF STOP BITS
7F26 DD7703 Q0490 LD (IX+3) A s STORE
7F29 CEOO 20500 RLC B sALIGN
I 7FZR 78 208510 LD AvE
7F2C E6D1 00520 AND 1 $GET PARITY ENAB/DIS
7FZE DD770Z @0530 LD (IX+2) 5 A s STORE
7F31 CROD 00542 RLC B sALIGN
l 7F33 CEOD 00550 RLC B
7F35 CROO 00560 RLC B
7F37 78 00570 LD AsE
7F38 E6D7 00580 AND 7 $GET BAUD INDEX
7F3A &F POS50 LD LsA sBAUD INDEX NOW IN L
7F3B 2600 PR600 LD Hs @ SNOW IN HL
7F3D 29 00610 ADD HL s HL. s INDEX %2
7F3E DDSE@6 00620 LD Es (IX+6) $LOCATION OF RDCOMS
7F41 DD5627 00630 LD Ds (IX+7)
. 7F44 19 00640 ADD HLs DE s INDEX PLUS BASE ADDRESS
7F45 115900 Q0650 LD DE s TARED $BAUD RATE TABLE
7F48 19 00660 ADD HL » DE s INDEX + BASE + TABLE DIS
7F49 7E PB670 LD As (HL) $GET TABLE ENTRY
l 7F4A DD7700 Q@680 LD (I1X+@) 3 A $STORE
7F4D 23 20650 INC HL sPOINT TO NEXT BYTE
7F4E 7E 00700 LD Ay (HL) $GET NEXT BYTE
' 7F4F DD7701 00710 LD (IX+1) 1A s STORE
l 157
v

7F52
7+54
7F55
7F56
7F37
7F58
2059
7F59
7F3B
7F3D
7F5F
7F61
7F63
7F&65
7F67
200

DDE1
El
D1
Ci
Fi
ca

6EDD
600
2C01
5802
B224
6009
o1z
805

02720
Ba730
0743
752
D760
Be770
2780
o792
20800
22810
20820
BuB3a
22840
o850
20860
es7e

20008 TOTAL ERRORS

TABED

POP
POP
POP
POP
POP
RET
EQU
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
END

IX
HL
DE
BC
AF

£—RDCOMS

1102
150
300
608
1200
2400
4800
2600

RDCOMS DECIMAL VALUES

243,

221,
221,

221,

197y
229
119,
119

213
219
54
b4y

22D

233y

203
203,

B
D,

221

71y
2B3s
120,

229

203, @

205,

sRESTORE REGISTERS

$RETURN TO CALLING PROG
sBAUD RATE TABLE

127, 18

229

128

238 1

@
2304

120y

230s 3s

1

221

119,

READDS: READ DISK SECTOR

3s 203s B
@, 283+ @

120, 230s 1+ 221 119y 2
203y @y 120s 238+ 7y 111
Bs 41s 221 944 by 221y Bbs 7y 25,
89y @y 2Dy 1269 2219 119+ B 35
119y 1+ 221 2254 225+ 209+ 193,
@y 15@2 Dy 44y 149 88y 239 176y 4
Qs 1932y 18y 128, 37

203,
38,
17
126y
241,
Pby

221

201y 110

CHRSUM= 122

System Configuration

Model 1.

Description

READDS reads one sector from a specified disk drive into a 256-byte user
buffer. The user must know where a particular file is and what sectors are in-

volved to utilize this subroutine; it is not a general-purpose “file manage’
subroutine.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the disk drive number, 0 to 3, corresponding
to disk drives 1 through 4. The next byte of the parameter block contains the
track number, 0 through N. (The standard TRS-80 uses disk drives with 35 tracks;
other drives are available for 40 tracks.) The next byte is the sector number, 0
through N (0 through 9 will be the most common range). The next two bytes are
the user buffer area for the read in standard Z-80 address format, least signifi-

158

cant byte followed by most significant byte. The next byte contains a zero if a
wait is to occur until the disk drive motor is brought up to speed; the byte
contains a 1 if the motor is running (disk operation has just been completed)
and no wait is necessary. The next byte (PARAM+ 6) is reserved for the status of
the disk read on output.

On output, all parameters remain unchanged except for PARAM+6, which
contains the status of the read. Status is O for a successful read, or nonzero if an
error occurred during any portion of the read. If an error did not occur, the
specified disk sector has been read into the buffer area.

INPUT OUTPUT
H L H L

1
T T
L POINTER TO PARAM+0 1 — | UNCHANGED 1
i
T 1

PARAM-+0 DRIVE # 0-3 PARAM-+0 UNCHANGED
+1 TRACK # +1 UNCHANGED
+2 SECTOR # +2 UNCHANGED
+3 BUFFER i +3 |
+ ADDRESS + 4 UNCHANGED +
+4 (MEM1+0) +4
F=WAIT 1=NO
+5 A +5 UNCHANGED
?—NO ERROR
+6 RESERVED +6 | G ERRON
MEM 140 MEM 1+
+1 +1
T T T 2s6BYTES T
+2 RESERVED +2 OF
+ FOR + + SECTOR T
+3 READ j +3 FROM
+ DATA -+ + DISK +
+4 +4
4 4 1 4
+5 L +5 ‘
+6 +6
Algorithm

The disk drive number in L is first converted to the proper select configuration
at REAO10. The select byte is then output to disk memory-mapped address
37EOH to select one of the disk drives.

The wait bit is then examined. If this bit is a zero, the loop at REAO15 counts HL
through 65,536 counts to wait until the disk drive motor is up to speed before
continuing. '

The disk status is then examined (REA020). If the disk is not busy, the track
number is loaded into the disk controller track register (37EFH) and a seek
command is given (37ECH) to cause the controller to “‘seek’” the track for the
operation. A series of time-wasting instructions is then done.

The code at REA030 gets the disk status after completion of the seek and-ANDs it
with a “proper result’” mask. If the status is normal, the read continues, other-
wise an ‘‘abnormal’”’ completion is done to REAQ90.

159

The sector address from the parameter block is next output to the controller
sector register (37EEH). Two time-wasting instructions are then done.

A read command is then isued to the disk controller command register
(37ECH). Further time-wasting instructions are done.

The loop at REAO40 performs the actual read of the disk sector. A total of 256
separate reads is done. HL contains the disk address of 37ECH, DE contains a
pointer to the buffer address, and BC contains the data register address of the
disk controller. For each of the 256 reads, status is checked. If bit O is set, all 256
bytes have been read. If bit 1 of the status is set, the disk controller is still busy
and a loop back to REA040 is done. If bit 1 of the status is not set the next byte is
read, stored in memory, and the memory buffer pointer incremented.

At the automatic (by the controller) termination of the read, status is again read,
and an AND of 1CH is done to check for the proper completion bits. The status
is stored back into the parameter block.

Sample Calling Sequence

NAME OF SUBROUTINE? READDS

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 40000
PARAMETER PLOCK VALUES?

+ @2 1 @ DRIVE @
+ 1 1 17 TRACK 17
+ = 1 @ SECTOR @
+ 3 & 45000 BUFFER
+5 1 @ WAIT

+ 6 1 @

+7 B0 @

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE T0O7?7 38000
SUBROUTINE EXECUTED AT 38000

INPUT: OUTPUT :

HL= 40000 HL= 40000

PARAM+ @ @ PARAM+ @ @

PARAM+ 1 17 PARAM+ 1 17

PARAM+ 2 B PARAM+ 2 @ UNCHANGED
FARAM+ 3 200 PARAM+ 3 200

PARAM+ 4 175 PARAM+ 4 175

PARAM+ 5 @ PARAM+ 5 B

PARAM+ & @ PARAM+ 6 @ STATUS=OK

NAME OF SUBROUTINE?

Notes

1. Always perform an RESTDS operation before doing initial disk /O to reset
the disk controller.

160

. Program Listing
7F BB 20100 ORG 7F@B@H 30522
D1 1D 35355053 3269936 KK 36 61636 I I T3 36 I 2636 6 I I T I I N IR
PB1=0 :* READ DISK SECTOR. READS SPECIFIED TRACKs SECTOR INTO *
. 20130 3% MEMORY BUFFER. *
BD140 3% INPUT: HL=> PARAMETER BLOCK *
2AL50 3% PARAM+@=DRIVE #, @ — 3 *
P16 3% PARAM+1=TRACK #s @ — N *
. QaL7@ 5% PARAM+Z2=5ECTOR #s @ — N *
2B1BA 3% PARAM+3s +4=RUFFER ADDRESS *
20190 3% PARAM+5=0=WAIT AFTER SELECTs 1=NO WAIT *
QBB 3 * PARAM+&=RESERVED FOR STATUS *
. B@Bz1@ 3% OQUTPUT:TRACKs SECTOR READ INTO BUFFER *
PBzzd % PARAM+&£=5TATUSs B=0Ks 1=BAD *
BOZTD 3 %5636 5 K22 23696 3636365 I 09 T T30 3630336 3K KT T3 NN
POz40 3
7FR@ F5 pB25@ READDS PUSH AF 3SAVE REGISTERS
7F@a1 CH D260 PUSH BC
7Faz DS QBz72 PUSH DE
7F@a3 ES 2Rz80 PUSH HL
7F@4 DDES a1 e FUSH IX
l 7F@é6 CD7FBA 20300 CAlL- @ATFH sx#%¥GET PB LOCTN#*x*%*
7F@9 ES 203102 FUSH HL s TRANSFER TO IX
7F@A DDE1 28320 ROP IX
7F@C DD7ERG o330 LD As (IX+@) sGET DRIVE #
l TFBF 3C aa342 INC A s INCREMENT BY ONE
7F10 47 B350 LD Eisd sPUT IN B FOR CONVERT
7F11 3E80 Gios60 L.D Ay BAH s MASK
7F13 @7 PR370 REABLIG RLCA sALIGN FOR SELECT
7F14 10FD RB3IBG DJINZ READLD s CONVERT TO ADDRESS
7F146 3ZEB37 B0370 L.D (A7EBH) s A sSELECT DRIVE
7F19 DD7E®5 22400 L.D Ay (IX+5) 3GET WAIT/NO WAIT
TF1C B7 0410 OR A sTEST
7F1D 2008 DB420 JR NZ»s REARZO 5GO IF NO WAIT
7F1IF 212000 D@a430 L.D Hl.s @ sWATIT COUNT
7FE22 ZB P0440 READ1IS DEC HL. sDELAY LOOP 6
7FZ3 7D D450 L.D Al sTEST DONE 4
7F24 B4 D460 OR H 54
. 7F25 Z0FR RB47a JR NZ s REABLS sLOOP UNTIL HL=B 7/12
TFZ7 3AEC37 20480 REAGZO LD Ay (37ECH) sGET STATUS
TF2A CB47 Q490 BIT Qs A sTEST BUSY
TFEC ZOF9 20500 JR NZy REABZQ@ sLOOR IF BUSY
I 7FZE DD7E®1 51\ L.D A (IX+1) 3GET TRACK NUMBER
7F31 3ZEF37 a05:0 LD (37EFH) s A sOUTPUT TRACK #
7F34 (5 00530 PUSH BC sWASTE TIME
735 C1 20540 s POP BC
. 7F36 3E17 550 LD As17H sGEEK COMMAND
7F38 3ZEC37 AR560 1.D (37ECH) s A sOUTPRUT
7F3B €5 BB570 PUSH BC sWASTE TIME
7F3C C1 0580 POP BC
7F3D €5 Q590 FUGH BC
7FE3E C1 BRs00 POP BC
7F3F 3AEC37 PD461ie READ3G LD A (B7ECH? sGET STATUS
TF42 CR47 DR6HZD BIT RN sTEST BUSY
TF44 ZOF9 L3230 JR NZ+ REAR3QA sLOOP IF BUSY
. TF446 E698 DR640 AND 28H sTEST FOR NORMAL COMPL
7F48 z2@2C BRs650 JR NZ: REARYG 560 IF ABNORMAL
7F4A DD7EDZ DRLELD L.D As (IX+2) sGET SECTOR #
74D B2EE37 QBs6780 LD (I7EEH) s A sOUTPUT
. 758 CH PR6B0 PUSH BC sWASTE TIME
7F51 C1 BR690 POP BC
7F52 Z1EC37 2700 1D HiL.y 37ECH sDISK ADDRESS
. 7F55 DD5EG3 ae710 LD Es (IX+3) sPUT BUFFER ADDRESS IN DE
l 161

7F58 DD56Q4 Q0720 L.D Ds (IX+4)

7FS5P 3EBC PR730 LD AsBCH sREAD COMMAND

7FSD 77 0740 LD (HL)Y 1A $OUTPUT

7FSE C5 BR750 PUSH BC sWASTE TIME

7F5F C1 PO760 POP BC

TF60 €5 o770 PUSH BC

7F&1 C1 o0780 POP BC

7F6Z BIEF37 00750 LD BCs 37EFH sDATA REG ADDRESS

7F65 7E 0OB0B READ4D LD Ay (HL) SGET STATUS

7F66 OF Pos10 RRCA sALIGN

7F67 3008 00820 JR NC1 REABS® $1GO IF DONE .
7F69 OF 20830 RRCA sALIGN

7F6A 30F9 00840 JR NCy READ4D $G0 IF NOT DR@

7F6C DA P850 LD As (BC) 3GET BYTE

7F&D 12 20860 LD (DE)sA $STORE IN MEMORY l
7F&E 13 oes70 INC DE s INCREMENT MEMORY PNTR
7F&6F 18F4 20880 JR READ4D 5LOOP TIL DONE

7F71 3AEC37 Q@892 REABS® LD As (37ECH) sGET STATUS

7F74 E&1C 20900 AND 1CH $CHECK FOR PROPER STATUS
7F76 DD77864 @B@9Y1@ READYD LD (IX+6) 5 A 3STORE STATUS

7F79 DDE1 o920 POP IX $RESTORE REGISTERS

7F7B Ef PR93@ POP HL.

7F7C D1 20940 POP DE

7F7D C1 20950 POP BC

7E7E F1 B960 POP AF ‘
TE7F C9 20970 RET SRETURN TO CALLING PROG

g POYBR END

VAPOR TOTAL. ERRORS

READDS DECIMAL VALUES

245 1975 213,
21y 2359 221
16y 253y 50,
8y 335 B8s 0
2363 55y ZB3s
239y 55, 197,
193y 197y 193,
238y 152 32
1975 193y 33,
4y 62y 148y
55. 126y 15,
19y 24y 244,

b ZZ1e 225,

CHREUM= 12

S29s 221
126+ @4
L2224y 55,
435 125,
71s 32,
193y 62
58s 236
44y 221
236 B5,
119y 197,
48, B
58,

225,

229y 205,
6By 71y 62y
221y 1265 55 183s 32,
18@s 32y 251y 58.
249 221y 1264 1
F3y 5@ Z3b6s 554
S%s Z@O3s 715 32y
126 2y 5@y 238,
221s T4 3y 221
193y 197 1935 1
15 48s 249, 10s. 18,
2361 55y 230y 28y 221
209y 1935 241, 201

127+ 18y 229,
128s 7,

5@
1974
249
55,
8bs
239,

119,

RESTDS: RESTORE DISK

System Configuration
Model I.

Description

RESTDS performs a restore operation on disk drive 1 through 4. The disk drive
head is moved over track 0. RESTDS is an “‘initialization” procedure for
READDS and WRDSEC to reset the disk to a known configuration.

Input/Output Parameters

On input, the L register contains the drive number of the disk drive to be used, 0
through 3 (corresponding to drives 1 through 4). The H register is set to 0 if a

162

7Foe

7F 00
7F@1
7FOz
7F@5
7F 06

F5
C5
CD7FBA
7D
3C

“‘wait after select” is to be done, or to a 1 if “‘no wait” is to occur. The wait is
used if no current disk operation is taking place and the disk drive motor is not
spinning.

On output, the disk head is restored over track 0. If the operation is successful,
HL is returned with a zero result. If a disk error has occurred, HL is returned
with a nonzero result.

INPUT ouTPUT
H L H L

}

Lok | orve o3 | — [¢=0K,¢Z¢=ERROR J
T

Algorithm

The disk drive number in L is first converted to the proper select configuration
at RESO10. The select byte is then output to disk memory-mapped address
37EOH to select one of the disk drives.

The wait bit is then examined. If this bit is a zero, the loop at RESO15 counts HL
through 65,536 counts to wait until the disk drive motor is up to speed before
continuing.

The disk status is then examined (RES020). If the disk is not busy, a restore
command (3) is sent to the disk controller command register at address 37ECH.
A series of time-wasting instructions is then done.

The code at RESO30 gets the disk status after completion of the restore, ANDs it
with a “‘proper result’” mask, and returns the status in HL.

Sample Calling Sequence

NAME OF SUBROUTINE? RESTDS

HL. VALUE? @ WAIT,DRIVE®
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO7 38000
SUBROUTINE EXECUTED AT 38000
INPUT = OUTPUT =

HL= @ HL= @ STATUS=0K

NAME OF SUBROUTINE?

Program Listing

20100

ORG

7FO0H

;@522

DOL 1D 3995536 3636 2369 3633636 3 326 36 2 3 36 96 36 363636 36 T 96 3696969636 96 96 26 36 36 6 96369696 3 336 36 3 3 3 2 2

P01z@ 3% RESTORE DISK. PERFORMS A RESTORE OPERATION ON DISK. *
20130 5% INPUT: H=0 IF WAIT AFTER SELECTs 1 IF NO WAIT *
22140 3% L=DRIVE NUMBERs @ - 3 *
@150 3% OUTPUT:HL=0 FOR OK» <@ FOR ERROR *
DD 1ED 3 %% 533K K533 3656593636336 0969696 6060636 263650606 26909 06636 396 36 MR KN
Pa17a s
22180 RESTDS PUGBH AF $SAVE REGISTERS
Bo190 PUSH BC
boz0B CALL QA7FH ;%% #GET DRIVE #x%x
20210 LD AsL 5PUT IN A
Boz:0 INC A s INCREMENT BY ONE

163

TFQ7
7F@8
7F2A
7F@ee
7F@D
7F1@
7F11
7F1z
7Fl4

7F17 .

7F18
7F19
7F1A
7F1C
7F1F
7F21
7FZ3
7Fz5
7F28
7F29
7FZ2A
7FZB
7F2C
7FZF

7F31

7F33
7F35
7F36
7F38
7F39
7F3A
7F3D
2000

47
JEBD

18FD
32E@37

B7
2008
210000

B2:230
20240
20250
20260
Qo270
P0=802
2az7a
22300
22310
0320
20330
B340
22350
22368
@370
20380
B30
20400
V0410
20428
00430
22440
Y450
22460
o470
22480
20490
22500
20510
oe5:0
20530
20540
B@550

20BOB TOTAL ERRORS

RESD10

RES@15

RES@2@

RESB30

LD

RL.CA
DJINZ

L.D
OR
JR

DEC

LD
OR

BIT

Bsa
Ay BOH

RESO102
(37EQH) s A
AsH

A

NZ s RESD20
HL-@

HL

AlL

H
NZsRESQ15
As (37ECH)
BsA

NZ s RESDZ20
A3
(37ECH) s A
BC

BC

BC

BC

Ay (37ECH)
@A

NZs REGO302
98H

LyA

RESTDS DECIMAL VALUES

245,
7

55, 203,

197,
249,

10, 201

CHKSUM= 197

RKNOWT: READ KEYBOARD WITH NO WAIT

System Configuration

197,
16 253,
334 2y Os
T1s
193,
230,

205y

43y

197,
152,

Model 1, Model lil.

Description

127+ 10,

5@y 2249 55

32

180, 32,

249y b2y 3y
193, 58, 236
111, 38, B

125,
124,

71y b2y

SNOW IN B
$MASK FOR CONVERSION
s CONVERT TO ADDRESS
sLOOP *TIL DONE
SELECT DRIVE
SGET WAIT/NO WAIT
STEST
50 IF NO WAIT
SWAIT COUNT
sDELAY LOOP &
sTEST DONE 4
54
3LOOP UNTIL HL=@ 7/12
$GET &TATUS
sTEST BUSY
5G0O IF BUSY
SRESTORE COMMAND
sOUTPUT TO DISK
SWASTE TIME

5GET STATUS
3TEST BUSY
360 IF BUSY
sTEST 8TATUS
SNOW IN A
SNOW IN HL
SRESTORE REGISTERS

3*%%RETURN STATUS*%#*
SNON-BASIC RETURN

128,
32+ B

58s 36
2365 55,
203s 71y 32y
241,

195y 154,

RKNOWT reads the keyboard and returns immediately after scanning all keys
to determine if a keypress has occurred. if a keypress has occurred, the subrou-
tine returns with the key code; if no keypress has occurred, the subroutine
returns with 0. The key position is converted to a code from a user-specified
table of codes. Normally, these codes would be the ASCII codes for the keys on

164

ROW &

the keyboard, but the user may substitute his own codes for special key func-
tions. Both upper- and lower-case keys are translated, and all keys are read
including BREAK, CLEAR, up arrow, down arrow, right arrow, and left arrow.

Input/Output Parameters

On input, the HL register pair contains the address of RKNOWT. This address is
the same as the USR location in BASIC or the address in the assembly-language
call. It is used to make all of the code in RKNOWT relocatable.

On output, HL contains the keycode if a key was pressed, or 0 if no key was
detected.

INPUT ouTPUT
Ho L HooL
T
| Apomess oF RkNOWT | — | P CURACTER |
T

Algorithm

The basic problem in RKNOWT is to detect if a key is being pressed, and if it
is, to convert its row—column coordinates into an index to a table to obtain the
key code.

The table is at RKNTAB. RKNTAB is a 120-byte table that contains all the trans-
lation codes for the keys. The row arrangement is determined by the electrical
connections to the keys, shown below. The first 56 bytes of the table represent
keys with no SHIFT. There is a ““gap’’ of 8 unused bytes to simplify coding, and
then 56 additional bytes that represent keys with a SHIFT.

Keyboard layout and codes.

8IT RKNOWT/RKWAIT
HEXADECIMAL TABLE VALUES
¢ 1 2 3 a4 5 6 7 FOR STANDARD ASCI!
@ A B c D E F G (40,41,42,43,44,45,46,47
H | J K L M N o} 48,49,4A,4B,4C,4D,4E 4F
P Q R s T u v w 50,51,52,53,54,55,56,57
&
X Y z I 58,59,5A.0,0.6.0.0
| ., # s % & ; 2
g 1 ’ . ¥ 5 6 7 30.31,32,33,34,35,36,37
(; N I R I IR I 38,39,3A,38,2C,2D,2E.2F
8 9 . ; , -) /
ENTER|CLEAR|BREAK| 1 ' - —~ |sPACH 0D,2F,01,5B,5C5D,5E,20
SHIFT (GAP) 00000008

20,61,62,63,64,65,66,67
68,69,6A,68B,6C,6D,6E,6F
70,71,72,73,74,75,76,77
78,79,7A.8.8.8.8.9

20,21,22,23,24,25,26,27
28,29,2A,2B,3C,3D,3E,3F
0D,2F,01,58,5C,5D,5E,20

SHIFT

165

The loop at RKNO30 scans the seven rows of the keyboard and looks for a
keypress in a row. The address of row 0 is 3801H, and this is initially put
into HL. If no key is found in row 0, the L portion of the address is shifted left to
produce an address in HL of 3802H. This process is repeated for the additional
rows until all seven rows have been scanned, as evidenced by a one bit in bit 7

of L. If no key has been found (A register is a zero), a return with HL equal to
zero is made at RKN090.

If any row is nonzero when read, RKNO40 is entered. At this point, the row
address of 3801H, 3802H, 3804H, etc., is in HL; the code at RKNO50 converts

this row address to a row number 0 to 7 times 8. This *“index’’ of0, 8, 16, 24, 32,
40, or 48 is saved.

The A register contains the column bits for the row. One column bit (or more
for multiple key presses) is a one. The code at RKNO70 converts the column bit
into a column number of 7 to 0. This column number is then added to ROW=8.

Next, the SHIFT key is read by /LD A,(3880H).” The shift key bit is aligned and
merged with COL+ ROW38 to produce an index of SHIFT#64+ ROW*8+ COL.
This index is then added to the start of RKNOWT and the displacement of the
code table, RKNTAB, to point to a location within the table corresponding
to the key pressed. The code just prior to RKN0O90 accesses the code table to
pick up the proper code for the key that has been pressed. If multiple keys in

the same row have been pressed, the rightmost key is detected and the others
ignored.

Sample Calling Sequence

NAME OF SUBROUTINE? RRKNOWT

HL. VALLUE? 34783 ADDRESS OF RKNOWT
PARAMETER ELOCK LOCATION?

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO? 36788
SUBROUTINE EXECUTED AT 34788
INPUT: QUTPUT =

HL= 36788 HiL= @ NO KEY PRESSED

NAME OF SUBROUTINE?

Notes

1. The eight bytes between lower and upper case may contain any values.
2. The calling program must “time out” keyboard debounce.

Program Listing

7F20 P0100 ORG 7F00H @522

@D11D 55359966310 NI RIE I I IEIEIE N6 I 006069606 909696 069696 ¢
208120 3:x READ KEYROARD NO WAIT. READS KEYROARD AND RETURNS *
PA13@ s* WITH NO WAIT. *
20140 ;= INPUT: HL=> ADDRESS OF RKWAIT A *
20150 5% OUTPUT :HL=CHARACTER READ OR @ IF NO KEY PRESSED *
u U BRI L L L R SR LR LS T2 L L I I R R Y Y Y
va170 s

166

7F 00
7F@1
7F02
7F D4
7F@7
7F@8
7F@A
7F@D
7FQE
7F@OF
7F11
7F13
7F15
7F17
7F1A
7F1C
7F1D
7F1E
7Fz

7F22
7F24
7F26
7F28
7F29
7FZB
7F2D
7FZE
7F2F
7F32
7F33
7F 34
7F35
7F36
7F38
7 3A
7F3D
7F 3F
7F42
7F 44
7F46
7F47
7F48
7F 4R
0B4C
0008
oees
000s
2008
0008
2008
0008
008
2008
0008
0008
2008
P08
2008
2008
2000

F5

C5
DDES
CD7FRA
ES
DDE1
212138
7E

B7
2008
CR25
CB7D
28F6
210000
1828

4F
0600
DDOY
014CO0
DD@9
DD&EQ®
2600
DDE 1
c1

Fi
C39A0A
co

22180
22190
20200
20210
2oz20
20230
Baz40
20250
00260
20278
20280
20z70
20300
0310
22320
20330
0340
82350
20360
20370
20380
20370
204020
20410
BR420
20430
20440
BB450
20460
o470
20480
28490
20500
Q2510
28520
pes53e
2540
20550
20560
aas570
82580
oos59a
o600
612
20620
205630
0640
pBs65a
20660
Pa670
204680
20690
on700
2a71e
00720
Ba730
0740
aa750
Ba760
aa770

20020 TOTAL ERRORS

RKNOWT

RKNOZO
RKNO32

RKNQ4@

RKN@5@

RKN@6B
RKNO7@

RKN@7@

RKNTAR

ADD

POP
POP
POP

RET

EqU

DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
END

AF

BC

X

DATFH

HL.

IX

HL+ 3801H
As (HL)

A

NZ s RKNO4O
L

7L

Z s RKNQ30
HL:@
RKN@S@2
CsA

A

L.

Cs RKNQ5LA
A8
RKN@52

B+ OFFH

B

C

NCs RKNO7@
Al B

CrA

As (3880H)

AsC

CiA

B0

IXsBC

BCy RKNTAR
IXsBC

L (IX+@)
H @

IX

E—-RRNOWT

DUWMONVDTVOOWVON D

RKNOWT DECIMAL VALUES

245,
33,
125,

167

197, 221

1y 56

229y 205,
1265 183, 32,
48y 2h4by

33s By B

$SAVE REGISTERS

s *#%%GET BASE ADDRESS#*¥*%
sTRANSFER TO IX

$ADDRESS OF FIRST ROW
$GET NEXT ROW
$TEST FOR KEY
3G0O IF KEY PRESS
$GET NEXT ROW ADDRESS
sTEST FOR LAST ADDR
5G0O IF NOT LAST
5@ FOR NO KEY
360 TO RETURN
$SAVE COLUMN BITS
s CLEAR COUNT
$SHIFT OUT ROW ADDRESS
360 IF ONE BIT FOUND
s ROW*8
sLOOP TIL DONE
SINITIALIZE COUNT
SFIND COLUMN BIT
sSHIFT OUT COLUMNS
SLOOP *TIL FOUND
s ROWx8+COL
SNOW IN C
5GET SHIFT BIT
sNOW IN BIT 7
SNOW IN BIT 6
sSHIFT#64+ROW%8+COL
sINDEX TO C
iNOW IN BC
SBASE PLUS INDEX
sTRANSLATION TABLE
5RASE+INDEX+DISPL
sGET CHARACTER
SNOW IN HL
sRESTORE REGISTERS

5% %x*RETURN WITH ARGUMENT*%%
sNON-BASIC RETURN

s TRANSLATION TABLE

$NO SHIFT ROW @

ur w8 wn ur

NOT USED
SHIFT ROW

U LUN~E UGN~

MR NN NE uB NT uR NE UE VS ul

10, 229y 2219 2250
203, 37, 203,

4@s 79 173

203y 615 563 4y 198y 8y 24y 248y by 755,
4s 203y 575 485 251s 128+ 79y 58y 178, 5b9y
15 15s 129 79y &y By 221y 9y 13 7

Dy 221 Ty 221y 1105 0s 38y By 231s 225,
193y 2415 199, 154, 108y 201

CHKBUM= 29

RKWAIT: READ KEYBOARD AND WAIT

System Configuration

Model I, Model IlI.

Description

RKWAIT reads the keyboard and returns after a key has been pressed. The key
position is converted to a code from a user-specified table of codes. Normally,
these codes would be the ASCIl codes for the keys on the keyboard, but the
user may substitute his own codes for special key functions. Both upper- and
lower-case keys are translated, and all keys are read including BREAK, CLEAR,
up arrow, down arrow, right arrow, and left arrow.

Input/Output Parameters

On input, the HL register pair contains the address of RKWAIT. This address is

the same as the USR location in BASIC or the address in the assembly-language
call. It is used to make all the code in RKWAIT relocatable.

On output, HL contains the keycode.

INPUT OUTPUT
H L

H L
L
T
[ADDRESS OF RKWAIT —I : L ') CH%%/BCETER
T

Algorithm

The basic problem in RKWAIT is to detect if a key is being pressed and if it is,

to convert its row column coordinates into an index to a table to obtain the key
code.

The table is at RKWTAB. RKWTAB is a 120-byte table that contains all the
translation codes for the keys. The row arrangement is determined, by the elec-
trical connections to the keys, shown below. The first 56 bytes of the table
represent keys with no SHIFT. There is a ““gap”’ of 8 unused bytes to simplify
coding, and then 56 additional bytes that represent keys with a SHIFT.

168

ROW @

BIT RKNOWT/RKWAIT
HEXADECIMAL TABLE VALUES

o] 1 2 3 4 5 6 7 FOR STANDARD ASCII

@ A B C D E F G (40,41,42,43,44,45,46,47

H | J K L M N 0 48,49,4A,48B,4C,4D,4E,4F

P Q R s T U \ w 50,51,52,53,54,55,56,57

E
X Y z I 58,59,5A,0,0,0.06.0
! " # $ % & 2

@ 1) 5 2 5 6 . 30.31,32,33.34,36,36,37

() * + < = > ?

8 9 : ; '] . y 38,39,3A,3B,2C,2D,2E,2F
ENTER|CLEAR|BREAK| 1 ! - - |sPAcE 0D,2F,01,56B,5C,5D,5E,20
SHIFT (GAP) 0.8.80.008.080
Keyboard layout and codes. 20.61.62.63,64.65,66.67

68,69,6A,6B,6C,6D,6E,6F
70,71,72,73,74,75,76,77
78.,79,7A.8.0.6.0.9

20,21,22,23,24,25,26,27
28,29,2A,2B,3C,3D,3E,3F
0D,2F,01,5B,5C,5D,5E,20

SHIFT

The loop at RKWO030 scans the seven rows of the keyboard and looks for a
keypress in a row. The address of row 0 is 3801H, and this is initially put
into HL. If no key is found in row 0, the L portion of the address is shifted left to
produce an address in HL of 3802H. This process is repeated for the additional
rows until all seven rows have been scanned, as evidenced by a one bit in bit 7
of L. If no key has been found after seven rows, a loop is made back to RKW020
to repeat the scan.

If any row is nonzero when read, RKNO40 is entered. At this point, the row
address of 3801H, 3802H, 3804H, etc., is in HL; the code at RKWO050 converts
this row address to a row number of 0 to 7 times 8. This ““index”’ of 0, 8, 16, 24,
32, 40, or 48 is saved.

The A register contains the column bits for the row. One (or more for multiple
key presses) is a one. The code at RKNO70 converts the column bit into a
column number of 7 to 0. This column number is then added to ROW=8.

Next, the SHIFT key is read by “LD A,(3880H).” The shift key bit is aligned and
merged with COL+ ROW=8 to produce an index of SHIFT*64+ ROW=8+ COL.

At this point a ““debounce delay”’ of 50 milliseconds is performed. This ensures
that the key is not reread if RKWAIT is reentered immediately by the calling
program.

The index is then added to the start of RKWAIT and the displacement of the
code table, RKWTAB, to point to a location within the table corresponding to
the key pressed. The code just prior to RKW090 accesses the code table to pick
up the proper code for the key that has been pressed. If multiple keys in the
same row have been pressed, the rightmost key is detected and the others
ignored.

169

7Foe

7Foe
7FO1
7FBz
7F@4
7F@7

7F@8
7F @A
7F@D
7FOE
7F@OF
7F11
7F13
7F15
7F17
7F19
7F1A
7F 1R
7F1D
7F iF
7F21
723
7FZ5
7Fz6
7F28
7FzA
7F2B
7F2C
7F2ZF
7F 30
7F31
7F3z
7F35

F5

Cc5
DDES
CD7F@A
ES

DDE1
210138
7E

B7
2008
CRZ5
CB7D
28F6
18F 1
4F

AF
CE3D
3804
c408
18F8

PEFF
@4

Ce39
JOFB

80
4F
3A8038

aF
@F

81
21100F
@1FFFF

Sample Calling Sequence

NAME OF SUBROUTINE? RKWAIT

HL. VaALUE? 38000 ADDRESS OF RKWAIT
FeRAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?

MOVE SUBRROUTINE TO07 38000
SUBROUTINE EXECUTED AT 38000
INPUT = QUTPUT s

HL= 38000 HL= &3 “A" KEY,NO SHIFT

NAME OF SUBROUTINE?

Notes

1. The eight bytes between lower and upper case may contain any values.

2. The debounce delay may be adjusted as required. A 50 millisecond delay
is about 20 characters per second or 240 words per minute. Change locations

7F33H and 7F34H to alter the debounce delay.

Program Listing

D100

ORG

7FoeH

@522

20110 ; **

PB120 s* READ KEYBOARD AND WAIT. READS KEYBOARD AND WAITS *
D@13 3% UNTIL KEY PRESS. *
20140 3» INPUT: HL=> ADDRESS OF RKWAIT *
D150 ;5% QUTPUT :HL=CHARACTER READ *
001602 R bR A RS S S S R A S IR L TR T T TR LT R R R S v
20170 s
20188 RKWAIT PUSH AF 3S5AVE REGISTERS
20190 PUSH BC
Dozo0 PUSH IX
0az10 CALL BA7FH i #%%xQET BASE ADDRESS**#%
2ozz0 PUSH HL $TRANSFER TO IX
Qo230 POP IX
20242 RKWOZO LD HL.» 3B8@1H $ADDRESS OF FIRST ROW
20250 RKWB3® LD As (HL) SGET NEXT ROW
2Rz60 OR A $TEST FOR KEY
oaz70 JR NZ» RKWO42 360 IF KEY PRESS
2Dz80 SLA L $GET NEXT ROW ADDRESS
20270 BIT 7sl STEST FOR LAST ADDR
ea3oe JR Z RKWa3e 360 IF NOT LAST
PA310 JR RKWRZ0 sLAST-LOOP *TIL. KEY
00320 RKWO4® LD CsA $SAVE COLUMN BITS
20330 XOR A s CLEAR COUNT
P340 RKWA5@ SRL L. $BHIFT OUT ROW ADDRESS
20350 JR Cs RKWBSOD 5GO IF ONE BIT FOUND
20360 ADD As B $ROW*B
20370 JR RKWOS® $LOOP TIL DONE
20380 RKWAL® LD Bs OFFH $INITIALIZE COUNT
BB390 RKWA7Q INC B SFIND COLUMN BIT
20400 SRL C SSHIFT OUT COLUMNS
20410 JR NCs RKW@70 sLOOP "TIL FOUND
2842 ADD As B $ROW*B+COL.
20430 L.D Csh $NOW IN C
20440 LD As (3880H) SGET SHIFT BIT
20450 RRCA sNOW IN BIT 7
804460 RRCA SNOW IN RIT &)
22470 ADD AsC SOHIFT*64+ROWXB8+COL.
20480 LD HL.» 3854 SDELAY COUNT (50 MS)
20490 LD BCy—-1 sDECREMENT VALUE

170

7F38 B9 2052@ RKWOR® ADD HLsRC
7F39 38FD o510 JR Cs RKW2Be
7FE3E 4F 20520 LD CsA
7F3C 8600 20538 LD B0
7F3E DD@% a5 42 ADD IXsBC
7F40 015200 an556 - L.D BCs RKWTAB
7F43 DDO9 0560 ADD IXsBC
7F45 DD&4EDD PA57@ LD L (IX+3)
7F48 2600 2e580 LD Hs @
7F4A DDE1 00590 POP IX

7F4C Ci1 20600 POP BC

7F4D F1 o610 POP AF

7F4E C32A0A QBs6e JP @AFAH
7F51 C9 20630 RET

o252 20648 RKWTAER EQU $~RKWAIT
Uil 20650 DEFS a8

euas 20660 DEFS 8

2008 @0670 DEFS a8

"2y 1] PR680 DEFS 8

o008 20690 DEFS 8

poes 20700 DEFS =]

eaas Be7io DEFS 8

2208 oo7z0 DEFS 8

@oog B0730 DEFS a

oaes 742 DEFS 8

2008 pa7s50 DEFS g8

L] Q7602 DEFS 8

oe0s D770 DEFS 8

2008 o780 DEFS g8

alrl% =] 0770 DEFS a8

alan] 20800 END

20028 TOTAL ERRORS

RRWAIT DECIMAL VALUES

2454 197 221s 2299 2054
33y 1y S5éy 126y 1835 32,

sDELAY FOR BOUNCE 11
sLOOP "TIL HL NEG 7/12
$INDEX TO C
iNOW IN BC
sBASE PLUS INDEX
s TRANSLATION TABLE

sBASE+INDEX+DISPL
5GET CHARACTER
SNOW IN HL

SRESTORE REGISTERS

s%%xRETURN WITH ARGUMENT *##%
sNON-BASIC RETURN

s TRANSLATION TARLE

$NO SHIFT ROW @

NOT USEDR
SHIFT ROW

NE VB UR YE N NI UR NS NE GE wR YR uR W

CAPDLL-E o L P

127y 1@y 2292 221 225

8y 203s 37, 203,

125s 40s 246+ 24 2415 799 179y 2032 &1 Sbs
4y 198y 8By Z4y 248+ 6y 255y 4y 203y 57y
48, 251s 128s 795 58y 132By S6s 155 159 129,

33s 165 155 1+ 255 255,
by Bs 221 949 1y BZy @

110y @s 38y Bs 2215 225,
1@, 201

CHKGUM= 69

SCDOWN: SCROLL SCREEN DOWN

System Configuration

Model I, Model IlI.

Description

P+ Shy 253y 79

221 Ty 221

193 241y 195y 154,

SCDOWN scrolls the video display down one line. Scrolling down causes lines
1 through 15 to be moved up into line positions 0 through 14. Scrolling can be
used in displaying text or data that cannot be displayed in the 1024 bytes of one

video screen.

171

When scrolling down, line 15 is blanked in preparation for displaying the next
line “below’’ the screen.

Input/Output Parameters

There are no input or output parameters. A call to SCDOWN simply causes a
scroll down of one line, with a return to the calling program immediately fol-

lowing.
INPUT OUTPUT
HooL Ho L
1 T
L NONE 1 - L UNCHANGED *I
Algorithm

Scrolling is easily and efficiently handled by use of the Z-80 “‘block move’
instructions. The LDIR moves a block of data from one area of memory to
another, transferring the data ‘‘beginning to end”” (lower-valued memory loca-
tions to higher-valued memory locations) of each block, one byte at a time.

The LDIR automatically transfers video memory bytes to locations 64 bytes

“down’” in memory. A total of 960 bytes are transferred as the first line ““disap-
pears.”’

After the transfer, the last line has been moved up to the second to last line, but
still remains on the bottom of the screen. This line is “blanked’’ by a fill of 64
bytes of blank characters at SCD010.

Sample Calling Sequence

NAME OF SUBROUTINE? SCDOWN
HL VALUE?

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO? 366646
SUBROUTINE EXECUTED AT 36466
INPUT: OUTPUT:

NAME OF SUBROUTINE?

Program Listing

7FO0 20100 ORG 7FOeH 50522
BOL 1D 5996 916 T 11 I 9636906963006 63630696 360626 36 969696 96 3696 26969098 9646 36 0636 36 I 696 96 96 96 96 9696 636
00120 5% SCROLL SCREEN DOWN. SCROLLS SCREEN DOWN ONE LINE. *
BO130 5% INPUT: NONE *
PB140 3% OQUTPUT:SCREEN SCROLLED DOWN *
22150 3 I I I I IEIE I I I I I I I IE 166 60696 9626 26
160

7F08 FS5 PR2170 SCDOWN PUSH AF $SAVE REGISTERS

7F@1 €5 20180 PUSH BC

7F@z D5 02190 PUSH DE

7F@3 ES P0z00 PUSH HL

7F@Q4 214@3C 0210 L.D HL + 3C40H $SOURCE

172

7F@7 11803C POz LD DE» 3COOH SDESTINATION

7FBA @01Co03 20z30 LD BCs 2460 s# OF BYTES

7FBD EDB@ 2az40 LDIR s8CROLL

7F@F 21CO3F 20z50 LD HL s 3FCBH sLINE TO BE BLANKED
7F1Z2 3EZO@ 20260 LD Ay’ 7 sLOAD BLANK CHARACTER
7F14 @640 oRz78 LD Bs 64 364 CHARACTERS ON LINE
TF16 77 @A0z80 SCDO1® LD (HL)+A $STORE BLANK IN LINE
7F17 23 2az92 INC HL sBUMP POINTER

7F18 1@FC 22300 DJINZ SCDA1d sLOOP IF NOT DONE
7FiA Ei 22312 POP HL sRESTORE REGISTERS
7F1B D1 BA3z20 POP DE

7F1C C1 PR330 POP BC

7F1D F1 AB340 POP AF

7F1E C? 28350 RET 5 RETURN

oo 2B368 END

eaene TOTAL ERRORS

SCDOWN DECIMAL VALUES

245s 197y 213s 229y 339 b4y 6B 17 Dy 60
1s 192y 39 237s 176s 33s 1929 439 &2y 32y
63 b4y 1199 39, 16 ZHZ2y 225y 209 193y 2414
201

CHRSUM= 86&

SCUSCR: SCROLL SCREEN UP

System Configuration

Model |, Model Il1.

Description

SCUSCR scrolls the video display up one line. Scrolling up causes lines 0O
through 14 to be moved down into line positions 1 through 15. Scrolling can be
used in displaying text or data that cannot be displayed in the 1024 bytes of one
video screen.

When scrolling up, line 0 is blanked in preparation for displaying the next line
“above’ the screen.

Input/Output Parameters

There are no input or output parameters. A call to SCUSCR simply causes
a scroll up of one line, with a return to the calling program immediately fol-

lowing.
INPUT QUTPUT
HooL Ho L
T
NOINE —I r— L UNCHANGED J
T 1
. 173

7F00

7F00
7F@1
7F02
7F@3
7F @4
7F@7
7F0A
7F@D
7FOF
7F12
7F14
7F16
7F17
7F18
7F1A
7F1B
7F1C
7F1D
7F1E
2000

ES
21803F
11Ca3F
@1coe3
EDES
210@3C
3E20
Q640
77

23
12FC
E1

D1

C1

Fi1

ce

Algorithm

Scrolling is easily and efficiently handled by use of the Z-80 “‘block move”
instructions. The LDDR moves a block of data from one area of memory to
another, transferring the data “‘end to beginning’’ (higher-valued memory loca-
tions to lower-valued memory locations) of each block, one byte at a time.

The LDDR automatically transfers video memory bytes to locations 64 bytes

“up” in memory. A total of 960 bytes are transferred as the last line “disap-
pears.”’

After the transfer, the first line has been moved down to the second line, but
still remains on the top of the screen. This line is “’blanked”’ by a fill of 64 bytes
of blank characters at SCU010.

Sample Calling Sequence

NAME OF SUBROUTINE? SCUSCR
HL VALUE?

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 41111
SUBROUTINE EXECUTED AT 41111
INPUT: QUTPUT:

NAME OF SUBROUTINE?

Program Listing

20100 ORG 7FB0H @522

201 10 7**
P012@ s* SCROLL SCREEN UP. SCROLLS SCREEN UP ONE LINE. *
02130 % INPUT: NONE *
P2140 3% OUTPUT:SCREEN SCROLLED UP *

DBISD 59936162 J I IEIE I I IE 96 I6 I 9696 0696369 2060606
oR160 s

Q0170 SCUSCR PUSH AF sSAVE REGISTERS

22180 PUSH BC

02190 PUSH DE

o200 PUSH HL

0oz10 LD HL s 3F80H 3 SOURCE

200220 LD DEs 3F COH sDESTINATION

20z30 LD BCs 940 i# OF BYTES

20z40 LDDR $SCROLL

280z50 LD HL s 3CO0H SLINE TO BE BLANKED
20260 LD A 7 iLOAD BLANK CHARACTER
az70 LD B 64 564 CHARACTERS ON LINE
29288 sSCuBie LD (HL)» A $STORE BLANK IN LINE
2oz7e INC HL. sBUMP POINTER

22306 DJINZ Scudie 5LOOP IF NOT DONE
o310 POP HL. SRESTORE REGISTERS
00320 PGP DE

00330 POP BcC

02340 POP AF

20352 RET SRETURN

20360 END

20008 TOTAL ERRORS

174

SCUSCR DECIMAL VALUES

2459 197+ 213s 229y 33y 1285 635 17 192y 63y
1s 192 3y 237y 184y, 33y @y 60y 62y 32

bs b4s 119s 35 1bsy 252 225 20%9s 1930 241,
201

CHKSUM= 161

SDASCI: SCREEN DUMP TO PRINTER IN ASCII

Configuration

Model |, Model llI.

Description

SDASCI dumps the contents of the video display to the system line printer.
SDASCI may be called at any time to record the contents of the screen. ASCII
characters are printed as they appear on the screen. Graphics characters are
printed as a period. The system line printer must be able to print 64 character
positions across. The screen is printed as 16 lines of 64 characters.

Input/Output Parameters

There are no input parameters. The screen contents are printed and a return to
the calling program is done.

INPUT OUTPUT
HooL oL
T T
[NoNe 1 > L UNCHANGED

Algorithm

The HL register pair holds the current screen location starting from 3CO0H, the
screen start. The B register is used to hold the number of characters per line, 64.
It is decremented down to zero so that a carriage return at the end of line can
be made to the system line printer.

There are two loops. The main loop starts at SDA005. The inner loop handles
each screen line and starts at SDA0O10. For each new line, the line character
count of 64 is placed into the B register at SDA0OS.

In the SDAO10 loop, a character is loaded into A from the next character posi-
tion. Bit 7 of the character is tested. If this bit is a one, a period is substituted for
the graphics character. If the character is not a graphics character (SDA020), a
20H is subtracted from the character and bit 7 is tested. If bit 7 is set, the value
of the character is less than 20H, and 40H is added to compensate for the lower
case option. The character is then saved in the stack while a status check is
made of the line printer.

175

The code at SDA050 checks line printer status. When the line printer is ready,
the character is popped from the stack and printed. The HL pointer is then
incremented by one, and the line character count in B decremented. If B is

zero, a carriage return is output to the line printer for the end of the line by a
jump back to SDA040.

SDAOD60 tests for a condition of —1 in the B register. If this is true, a carriage
return has just been output, and a test is made for HL=4000H, which marks the
end of the dump. If H is not equal to 40H, a jump is made back to SDAOO5 to
output the next line. If there is not a — 1 in B at SDA060, the current line is still

being processed and a jump is made back to SDAO10 for the next character in
the line.

Sample Calling Sequence

NAME OF SUBROUTINE? SDASCI

HL VALUE?

PARAMETER BLOCK LOCATION?

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO?7 42000

TRE-BO ASSEMBLY LANGUAGE SUBROUTINES EXERCISER

NAME OF SUBROUTINE? SDASCI
HL. VALUE?

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBRROQUTINE TO

7 400D 16 SCREEN LINES

SUBROUTINE EXECUTED AT 40020
INPUT: QUTPUT :

NAME OF SUBROUTINE?

Notes

1. If this subroutine is used for the Model I, make the following change in
the listing: Substitute “OUT (OF8H),A”" for ““LD (37E8H),A"". Replace the corre-
sponding decimal values of “50, 232, 55" with decimal values of “211, 248,0".

Program Listing

722 20100 ORG 7FoeH ;@520
DB 1D 55K KA I I I I IEEIE I EIE T I TEIEIE W I I I I I I I
B212@ ;% SCREEN DUMP TO PRINTER. CAUSES CONTENTS OF SCREEN TO *
28132 3% BE DUMPED TO THE SYSTEM LINE PRINTER. GRAPHICS ARE *

00140 s* PRINTED AS A PERIOD. *
20150 5% INPUT: NONE i *
20160 OUTPUT:SCREEN CONTENTS PRINTED *
BALT7Q 50K K KNI N I I I I IEIE NI I T39I 196 I I 696
ev188 s

176

7F o0
7F @1
7F0z
7F03
7F D&
7F@8
7F@9
7FOB
7F@D
7FOF
7H11
7F13
7F15
7F17
7F19
7F1B
7F1C
7F1F
7Fz1
7FZ3
7FZ

7F26
7F29
7FZA
7FZE
7FzC
7FZD
7F2F
7F31
7F33
7F35
7F37
7H 38
7F39
7F 3B
7F3D
7F3E
7F3F
7F40
2000

FS
5

ES
21003C
0640
7E
CB7F
2804
3EZE
1804
D620
CB7F
2802
C640
Co6z0
F5
3AEB37
E6FD
FE30
20F7
F1
32EB37
23

25

78

B7
2004
3E0D
1BEB
FEFF
2@p1
B

7C
FE4D
28C9
E1

c1

F1

o

20190
00200
20210
20220
20230
PO240
20250
20260
20270
20280
20250
20300
20310
20320
20330
20340
20350
20360
20370
20380
20390
20400
20410
20420
20430
00440
20450
20460
20470
20480
20450
20500
20510
20520
20530
00540
20550
20560
20570
00580

20028 TOTAL ERRORS

SDASCI PUSH AF

PUSH BC

PUSH HL

LD HL s 3CO2H
SDAG®S LD By &4
SDA@1@ LD As (HL)

BIT 714

JR Z:SDARZ0

LD As7.o

JR SDAD4D
SDAQZ® SUB Z@H

BIT 714

JR Z»SDAD30

ADD Ay 4BH
SDA@3@ ADD As ZBH
SDAG4® PUSH AF
SDA@5@ LD As (37EBH)

AND 2F@H

CP 30H

JR NZ,SDADS®

POP AF

LD (37EBH) 5 A

INC HL

DEC B

LD AsE

OR A

JR NZ» SDABSD

LD As13

JR SDAR4D
SDAGGD CP OFFH

JR NZ,SDAR1®

DEC HL

LD AsH

cP 40H

JR NZ s SDARDS

POP HL

POP BC

POP AF

RET

END

SDASCI DECIMAL VALUES

2455 1975 229y 335 B 6B
127y 4@y 43 &2y 4by 24y
127+ 4By 2+ 198y &4s 198, 3
53s 230y 240y 25449 48y 332,
55, 355 Sy 120y 1835 37,
232 2 235y 32y 209

201 193 Z41s 201

CHKBUM= 163

SDGRAP: SCREEN DUMP TO PRINTER IN GRAPHICS

Configuration
Model |, Model .

Description

$SAVE REGISTERS

$SCREEN START ADDRESS
3# OF CHARACTERS/L.INE
SGET NEXT SCREEN BYTE

sTEST FOR GRAPHICS
G0 IF GRAPHICS BYTE

$PERIOD FOR GRAPHICS
$G0 TO PRINT
sTEST FOR CONTROL
s CONTROL IF SET
36O IF NOT LT Z@H
$ADJUST FOR CONTROL
$RESTORE FOR SUR
$SAVE CHARACTER
SGET PRINTER STATUS
$MASK OUT UNUSED BITS
sTEST STATUS
5GO IF BUSY
:RESTORE CHARACTER
$PRINT CHARACTER
sBUMP SCREEN POINTER
sDECREMENT CHAR CNT
SGET COUNT
sTEST
3GO IF NOT @
SEND OF LINE
$OUTPUT CR
$TEST FOR —1
$STILL IN LINE
sADJUST FOR FALSE INC
s JUST PRINTED CR
$AT END OF SCREEN?
3GO IF NO
$RESTORE REGISTERS

$RETURN TO CALLING PROG

bhy 126y B3
El4s 32y 203
2455 58s 233,
2472 241y 5@ 23y
by 135 Zhy

124y 254y bH4s 32

SDGRAP dumps the contents of the video display to the system line printer.
SDGRAP may be called at any time to record the contents of the screen. Graph-

177

ics characters are printed as they appear on the screen by an ““O.”” ASCII char-
acters are not printed. The system line printer must be able to print 128 charac-
ter positions across. The screen is printed as 48 rows of 128 pixels.

Input/Output Parameters

There are no input parameters. The screen contents are printed and a return to
the calling program is done.

INPUT OUTPUT
oL Ho L
| NONE] = | UNCHANGED H
T T

Algorithm

The SDGRAP subroutine uses an internal print subroutine at SDG050. This
subroutine first tests the current character position contents in the A register for
graphics. If the current contents are nongraphics (ASCII), a blank character is
used for the print; if the current contents are graphics, an “O" is used for the
print. The blank or “O’ is then saved in the stack.

Next in the print subroutine, a test is made for printer status. The code at
SDGO060 loops until the printer is not busy. When the printer is ready, the blank
or O character is output. The print subroutine then adjusts a “‘bit mask’’ in
the B register. This mask represents the current bit position in the character
position being tested. Each graphics character has six bit positions, bits 5
through 0. The bit mask is shifted left one bit to mask the next bit position.
Finally, the print subroutine tests for the return point. There are three return
points. If bits 0, 2, or 4 have just been printed, a return is made to SDG030. If
bits 1, 3, or 5 have just been printed, a return is made to SDG035. If neither of
these conditions is present (B equals zero), a carriage return has just been
printed and a return is made to SDG040. The normal subroutine structure is not
used so that all code in SDGRAP can be relocatable.

The main code in SDGRAP uses three loops. The outermost loop (SDGO10)
handles character positions, in sets of three graphics rows. The next innermost
-loop handles the three rows within each character position. The innermost
loop handles each row of graphics bits.

Each set of three rows (one line) starts off with the mask bit in B set for pixel 0.
The character is picked up via the pointer in HL. SDG050 is called to output the
first pixel. The B mask is now set to pixel 1. SDGO050 is again called for pixel 1.
Next, (SDG035), the line pointer in HL, is bumped, and the bit mask is shifted
back to the right two bit positions. For the first row, B would now hold 1. Now a
test is made of HL. If HL is not at the end of line, the next character is picked up
and pixels 0 and 1 printed. If HL is at the end of line, a carriage return is
printed by a call to SDG050, and the bit mask in B is shifted left two bit po-
sitions. If the first row had just been printed, B would now contain a 4. HL is
now adjusted to point back to the beginning of the line by adding — 64. If the

next row is still within a character position, a loop back to SDGO12 prints the
next row.

178

If the next row starts a new line, the pointer in HL is bumped by 64 to point to
the next line of three rows. A test is made for HL=4000H, signifying that all
rows have been printed. If this is not the case, a jump is made back to SDG010
to print the next set of three rows.

Sample Calling Sequence

NAME OF SUBROUTINE? SDGRAP
HL VALUE?

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE T0?7 38888

I~ 48 SCREEN ROWS

SUBROUTINE EXECUTED AT 38888
INPUT: OQUTPUT:

NAME OF SUBROUTINE?

179

Notes

1. ASCII characters on the screen are ignored, but will not cause erroneous
results.

2. The dimensions of the printout on many printers will be 12.8 inches hori-
zontal by 8 inches vertical, which will be approximately the ““aspect ratio”’ of
the screen.

3. If this subroutine is used for the Model 11, make the following change in
the listing: Substitute “OUT (OF8H),A” for “LD (37E8H),A.”" Replace the corre-
sponding decimal values of *“50, 232, 55" with decimal values of 211 ,248,0.”

Program Listing

7F00 o100 ORG 7F@oH 50520
D1 1@ 59699306936 I T A6 T 6T I I I I I I I I T IEIIE I I I TN IR K
PB1z2 ;% GRAPHICS DUMP TO PRINTER. CAUSES CONTENTS OF SCREEN
@0130 s* TO BE DUMPED TO SYSTEM LINE PRINTER AS 128 BY 48 MAT-*

20148 s* RIX OF 08. TEXT IS IGNORED. *
20150 3% INPUT: NONE *
20168 3= OQUTPUT:SCREEN CONTENTS PRINTED *
DOLTD 53969936346 I3 I 2T I 36 606 626 96 336960606 36 906 36 I T T 0606 T 6 36 36 06 6 306 296
22188 ;

7F@B F5 20198 SDGRAP PUSH AF s5AVE REGISTERS

7F@1 C5 20200 PUSH BC

7F@2 D5 2ozie PUSH DE

7F@3 ES 20220 PUSH HL

7F@4 21003C 20z3e LD Hi.+ 3C20H $START OF SCREEN

TFa7 0601 2Bz248 SDGAIA LD Bs1 SMASK BIT FOR UPPER LEFT

7FB? C5 20258 SDG@1Z PUSH BC $SAVE MASK

7FBA C1 20268 SDGEALS POP BC 5GET MASK

7Foe 7E PR:70 SDGOZO® LD As (HL) $GET CHARACTER

7F@C 182E e2280 JR SDGO52 sQUTPUT LFT SIDE BIT

7FBE 7E 20z90 SDGB3® LD As (HL) SGET CHARACTER

7F@F 18z 20300 JR SDGA50 sOUTPUT RIGHT SIDE BIT

7F11 23 2312 SDGB35 INC HL sBUMP LINE POINTER

7F12 CB38 20328 SRL B sADJUST BACK MASK

7v14 CB3B P332 SRL B

7F146 C5 20340 PUSH BC 5SAVE MASK

7F17 7D 20350 LD Asl $6ET CHAR POS ADDR

7F18 E63F 203560 AND 3FH $TEST FOR 64TH CHAR

7F1A ZBEE 22370 JR NZ,8DGR15 560 IF NOT END OF LINE

7F1C 47 20380 LD BsA 38 TO B

7F1D 3E@D 22392 LD As 13 s CARRIAGE RETURN

7F1F 1826 20400 JR SDGA54 sPRINT

7Fz1 C1 PR41@ SDhGR4B POP BC SRESTORE BIT MASK

7F22 CR2O 00420 SLA B SNEXT LINE MABK

7Fz4 CBZO 20430 SLA B

7F26 11COFF 20440 LD DEs—-64 3FOR RTN TO LINE START

7Fz2% 19 20450 ADD HL.» DE SRESET TO LINE START

7F2A CE70 20460 BIT 6B sTEST FOR THREE LINES

7FzC z8DB 2047a JR Z,5DG@1: ;60 IF NOT THREE

TFZE 114000 20480 LD DE» b4 sFOR NEXT SCREEN LINE

7F31 19 20490 ADD HL.s DE sPOINT TO NEXT SCREEN LINE

7F32 7C 20500 LD AsH sGET M5 BYTE OF ADDRESS

7F33 FE40 20510 CP 40H sTEST FOR END OF SCREEN

7F35 20D@ 0520 JR NZ.5DGO10 G0 IF NOT END

7F37 Ed 20532 POP HL SRESTORE REGISTERS

7F38 D1 00540 POP DE

7F3% C1 28550 POP BC

7F3A F1 20560 POP AF

7F3B C9 22570 RET SRETURN TO CALLING PROGRAM

20588 3 PRINT SUBROUTINE

180

7F3C CB7F 20592 SDG@5® BIT 7:A $TEST FOR NON-GRAPHICS
7F3E 2801 004500 JR Z+5SDGO52 3GO IF NON-GRAPHICS
7F40 AD 00610 AND B $GET GRAPHICS BIT

7F41 3E20 00620 SDG@52 LD Ar? ? s BLANK

7F43 2802 20630 JR Z+5DG054 360 IF BIT RESET

7F45 3E4F 00640 LD A0’ ;BIT SET

7F47 FS PO650 SDG@S54 PUSH AF ;SAVE CHARACTER

7F48 3AEB37 0066@ SDGOLD LD As (37EBH) 3GET PRINTER STATUS
7F4B E&6FQ A0s70 AND 2FOH $MASK OUT INACTIVE BITS
7F4D FE30 20480 cP 30H $TEST FOR STATUS

7F4F ZOF7 POLSD JR NZ: SDGO&O sLOOP IF RUSY

7F51 F1 00700 POP AF sRESTORE CHARACTER
7FS2 32EB37 00710 LD (37EBH) A ;OUTPUT CHARACTER
7F55 CBZ0 20720 SLA B sADJUST BIT MASK

757 78 PO730 LD AsE $GET BIT MASK

7F58 E6AA 00740 AND @AAH sTEST FOR RETURN

7FSA Z0BZ 20750 JR NZ s SDGB30 $RETURN FOR RIGHT SI1DE
7FSC 78 20760 LD AsB $GET BIT MASK

7FSD EbS4 00770 AND 54H sTEST FOR RETURN

7F5F 20RO 00780 JR NZ» SDGRA35 sRETURN FOR NEXT ROW
7F61 18BE 20790 JR SDGO4D $RETURN FOR LINE

2000 20800 END

@8 TOTAL ERRORS

SDGRAP DECIMAL VALUES

245 197y 213 229y 33y B 6By &5 13 1974

193, 126y 245 465 126y 24y 439 35, 2035 Sb9
203s 56y 1974 125 230y 635 32y 238. T1s b2
13, 24, 3By 193, 203y 32y 2035 32y 17s 192
235. 25y 203y 112y 48y 219 175 &by Bs 25

124, 254y 64y 32y 208y 225, 209y 193 241y 201,
2@3s 1279 4By 1y 160y 63y 32y 4By s &2

79y 245y 58, 232y 55y 230y Z4@y 254y 48y 32y
247 241 5@ 232y 55y 203 32y 1205 230y 170
32y 178. 120y 230 84y 32y 1763 245 190

CHKBUM= &4

SETCOM: SET RS-232-C INTERFACE

System Configuration

Model I.

Description

SETCOM programs the RS-232-C controller in lieu of setting the switches on the

RS-232-C controller board. (SETCOM must be run before the NECDRV program
can be used.)

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block are the baud rate for which the RS-232-C
interface is to be set, 110, 150, 300, 600, 1200, 2400, 4800, or 9600. The next byte
is set to a zero if parity is to be enabled, or to a one if parity is to be disabled.

181

The next byte of the parameter block is set to a zero if one stop bit is to be used,
or to a one if two stop bits are to be used. The next byte contains the number of
bits in the RS-232-C transfer; 0 is 5 bits, 1 is 7 bits, 2 is 6 bits, or 3 is 8 bits. The
next byte contains a zero if odd parity is to be used, or a one if even parity is
to be used.

On output, the parameter block remains unchanged, and the RS-232-C inter-
face is initialized.

INPUT OUTPUT
H L H L

1 i

| POINTER TO PARAM g | = | UNCHANGED |
T T

PARAM+0 PARAM--0
T BAUD T 1+ UNCHANGED +
1 RATE o
+2 @=PE 1=PD +2 UNCHANGED
@=1 STOP BIT
+3 1=2 STOP BITS : +3 UNCHANGED
P=5BITS, 1=7 BITS
+4 |2-6BITS 3-8 BITS +4 UNCHANGED
@=0DD PAR
+5 1=EVEN PAR +5 UNCHANGED
Algorithm

The SETCOM subroutine reads the parameters, merges, and aligns them into
the proper format for the RS-232-C controller, and writes them out to the con-
troller.

First, the controller is reset by an “OUT (OE8H),A.”” Next, the parity type is
picked up into A and shifted to yield 00000P00. Next, the number of bits is
merged, and shifted to yield OO0OOPNNO. Next, the number of stop bits
is merged and shifted to yield 000OPNNSO. Next, the parity enable/disable bit is
merged and shifted to yield PNNSP000. Next, the BRK and RTS bits are set and
the PNNSP101 configuration is output to port address OEAH.

The next portion of code converts the baud rate to the proper RS-232-C code.
To keep the code relocatable, ““linear” code (not table lookup) is used. The
least significant byte of the baud rate is picked up and compared to the Is byte
of 110, 150, 300, etc. The proper code is then output to port address OE9H.

Sample Calling Sequence

NAME OF SUBROUTINE? SETCOM

HL. VALUE? 40000

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ @B & 1200 1200 BAUD

+ 2 1 1 PD

+3 1 2 ONE STOP BIT
+ 4 1 1 SEVEN BITS
+5 1 @ ODD PARITY
+ 465 @0 @

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO07 39000

182

SUBROUTINE EXECUTED AT 39000

INPUT: QUTPUT :

HL.= 40002 HL.= 40000

PARAM+ @ 176 PARAM+ @ 176

PARAM+ 1 4 PARAM+ 1 4

PARAM+ = 1 PARAM+ 2 1

PARAM+ 3 @ PARAM+ 3 O UNCHANGED
PARAM+ 4 1§ PARAM+ 4 1

PARAM+ 5 B PARAM+ 5 @

NAME OF SUBROUTINE?

Notes

1. No check is made on proper parameters in the parameter block.

2. The OR prior to OEAH output may be modified as required to set a differ-
ent configuration of BRK, DTR, RTS.

3. Note transposed order of number of bits.

Program Listing

7Fo0 P10 ORG 7FBoH ;@522
D@1 1D 5553333022336 F I 36T T30 360 06063696936 96 06 00960696 36 36 066963696 96 96
OB1:=0 3* SET RS-232-C. PROGRAMS THE RS-232-C CONTROLLER. *
B2130 ;% INPUT: HL=> PARAMETER BLOCK *
BD14B 5% PARAM+@s +1=RBAUD RATE -~ 110, 150, 300, 400, *
2B150 3% 1200+ 24005 4800, 9600 *
PB160 3% PARAM+2=0=PARITY ENABLEDs 1=PARITY DISAR *
20170 % PARAM+3=0=0NE STOP BIT: 1=TWO STOP BRITS *
22180 s* PARAM+4=0=5 BITSs 1=7 BITSs 2=6 BITS, 3=8 *
20190 5% BITS *
POZPD 3% PARAM+53=0=0DD PARITYs 1=EVEN *
20210 s+ OUTPUT:RE-232-C CONTROLLER INITIALIZED *
DAZZO 3% %3312 5303 K K I3 6963 36063636 3636 36 06 36369636 6 36 363696 3096 960696 90 96 0636 06 0696 3606 2 36
Boz30

7FB@ F5 Boz4@ SETCOM PUSH AF $S5AVE REGISTERS

7FB1 ES P25 PUSH HL.

7F@Z DDES 28260 PUSH IX

7FB4 CD7FBA Bez70 CALL BA7FH s #¥*GET PB LOC” N¥**

7FB7 E3 20z80 PUSH HL $TRANSFER TO IX

7F@8 DDE1 B2z90 POP IX

7FBA D3EB 22300 ouT (PEBH) s A $RESET RS-232-C

7F@C DD7E@5 0310 LD As (IX4+5) sPARITY

7FoF @7 BB320 RLCA 3ALIGN

7F1@ @7 20330 RLCA

7F11 DDB6B4 2340 OR (IX+4) iMERGE # BITS

7F14 @7 B350 RL.CA 5ALIGN

7F15 DDR6B3 BP360 OR (IX+3) i# OF STOP BITS

7F18 @7 20370 RL.CA SALIGN

7F19 DDB&BZ 22380 OR (IX+2) sPARITY ENAB/DIS

7F1C @7 203950 RLCA SALIGN

7F1D @7 o420 RL.CA

7FiE @7 20410 RL.CA

7F1iF F605 o420 OR 5 sSET BRKs RTS

7F21 D3EA 28430 ouT (BEAH) s A sOQUTPUT

7F<3 DD7EDO 0440 LD A (IX+0) sGET LSEB OF PAUD RATE

7F26 FE&E 02450 CP 110 31107

7F2B 2004 PB460 JR NZ,SET01Q 5GO IF NO

7F2A 3E22 o470 LD As 22 5118 CODE

7FzC 1832 20480 JR SETOBO 360 TO SET

7F2E FE%6 20490 SETO1@ CP 150 31587

7F30 2004 2506 JR NZsSETOZ0O GO IF NO

183

7F32
7F34
7F36
7F38
7F3A
7F3C
7F3E
7F 40
7F42
7F 44
7F 46
7F48
7F4A
7F4C
7F4E
7F50
7FS2
7F54
7F56
7F58
7FSA
7F5C
7FSE
TF6B
7F63
7F65
TF66
7F&7
lull)

22000

3E44
iBzA
FEZC
2004
3ES5
1822
FES8
20084
3Eb6
1814
FER®@
2004
3E77
1812
FE6B
2004
3EAA
180A
FEC@
2004
3ECC
igaz
3EEE
3ZE9B0
DDE1
E1l
Fi
ce

22510 .D As 44H 5150 CODE
20520 JR SET280 36O TO SET
22530 SETAZ@ CP 44 33007

Bo5 40 JR NZsSETB3@ 560 IF NO
2@550 L.D Ay 55H 3308 CODE
PO56B JR SETOED 5GO TO SET
2573 SETB3B CP 88 56007
Bo580 JR NZ:5ETO40 360 IF NO
22590 LD As 66H 3600 CODE
20600 JR SETRBO 560 TO SET
22610 SETR4 CP 176 3512007
PR62D JR NZsSET@5@ 560 IF NO
0630 LD Ay 77H 71200 CODE
BR640 JR SETOBO 5GO TO SET
Be650 SETASA CP 96 3240087
BRLHLD JR NZ s SETBOE 560 IF NO
BB673 LD As 2AAH 52400 CODE
2680 JR SETOB0 360 TO SET
PB698 SETALB CP 192 148007
32700 JR NZSETO70 560 IF NO
@B710 LD As@CCH 54800 CODE
a07:20 JR SETO8 36O TO SET
22730 SETO7O0 LD As DEEH 39608 CODE
PR740 SETARBO LD (DEFH)» A SOUTPUT TO BRG
Qo750 POP IX

207560 FOP HL.

2a77A POR AF

Za780 RET

o770 END

SRESTORE REGISTERS

SRETURN TO CALLING PROG

TOTAL ERRORS

SETCOM DECIMAL VALUES

245y D39y Z21s 2299 2% 127 10s 229, 231
211ls 232y 2219 126y 5y 7s 7s 221y 1BZy 4y
7y 221s 182y 3y 75 221s 182y 2y T 7

71 246s Sy Z11e 2345 221 1261 By 2549 110
32y 49 62y 343 24y S50y IS4y 1908y 32 4o

62y 68y 24y 42y 254y 445 323 44 6Ty 85,

244 345 254, BBy 33: 4y 62 102y 245 Db
254y 176y 32y 4y 62y 1195 244 18y 2545 96,
32y 4 b2 17@s 24y 109 2544 192y 3Ty 4y
62y 204y 245 2y 62y 238y 50 233y By 221
229. 225 241 20D

CHRSUM= 1864

SOIARR: SEARCH ONE-DIMENSIONAL INTEGER ARRAY

System Configuration

Model |, Model 1ll, Model 11 Stand Alone.

Description

SOIARR searches a BASIC or other one-dimensional integer array for a given
16-bit search key. The array may be any size within memory limits. The array is
assumed to be made up of 16-bit entries. SOIARR returns the address of the
entry matching the search key, or a —1 if no entry matches the search key.

184

el
alal 3 8

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the 16-bit address of the array, ar-
ranged in standard Z-80 address format, least significant byte followed by most
significant byte. The next two bytes of the array contain the number of entries
in the array. (Note that this value is one-half the number of bytes in the array!)

The next two bytes contain the 16-bit search key. The arrangement of the
search key may correspond to the arrangement of data in the array. If the array
is a BASIC array, the data in the search key will be least significant byte fol-
lowed by most significant byte; if the array is made up of two ASCII characters
arranged first and second, then the search key should have the same arrange-
ment. The last two bytes are reserved for the result of the search.

On output, PARAM+6, +7 holds the address of the entry corresponding to the
search key, or —1 if no entry has been found.

INPUT OUTPUT

H L H L

4 1

T T

L POINTER TQ PARAM+0 } —_— [UNCHANGED |
1
T T

PARAM-+0 ADDRESS PARAM-+@
4+ OF ARRAY -+ + UNCHANGED -
+1 (MEM 1+9) +1
+2 +2
SIZE OF
+ + + UNCHANGED -+
+3 ARRAY :> +3
+4 16BIT +4
+ SEARCH + + UNCHANGED
+5 KEY +5
+6 RESERVED +6 POINTER TO
+ FOR + -+ FOUND ENTRY +
+7 RESULT +7 OR —1
MEM1+0 MEM 1+
+ ENTRYS -+ + T
+1 +1
+2 +2
+ ENTRY1 4 + +
s :> 3 UNCHANGED
+4 +4
+ ENTRY2 + T T
+5 +5
+6 +6
Algorithm

The SOIARR scans the array one entry (two bytes) at a time from beginning to

end, looking for the search key. The number of entries is put into BC, the

starting address of the array into 1Y, and the search key in DE. HL is used as a
working register for the compare of the entries to the key.

185

The loop at SOI010 performs the scan. The next entry is put into HL. The search
key in DE is then subtracted from HL. If the result is zero, the current address in
1Y is returned in HL. If the result is nonzero, no match occurred, and the code at
SOI020 increments IY by two to point to the next entry, and then decrements
the count of entries in BC. A test is then made of BC; if it is zero, all entries have
been tested and a ‘“‘not found”’ return is made. If there are additional entries to
be tested, a loop back to SOI010 is done.

Sample Calling Sequence

NAME OF SUBROUTINE? SOIARR

HL. VALUE? 40000

FARAMETER BLOCK LOCATION? 402000
PARAMETER BLOCK VALUES?

+ @ 2 45000 ADDRESSOF ARRAY

+ 2 2 5 5 ENTRIES (10 BYTES)

+ 4 2 1234 SEARCH KEY

+ 6 20

+8 @0 @

MEMORY BLOCK 1 LOCATION? 45000
MEMORY BLOCK 1 VALUES?

+ @B 2 2345

+ 2w 3456

+ 4 2 15678 +5ENTRY ARRAY (TABLE)
+ & & 6789

+ 8 2 1234

+ 12 0 @

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO?7 38000
SUBROUTINE EXECUTED AT 38000

INPUT : OUTPUT
HL= 40000 HL= 40000 _

PARAM+ @ 200 PARAM+ @ 200

FARAM+ 1 175 PARAM+ 1 175

PARAM+ 2 5 PARAM+ 2 5

FARAM+ 3 @ PARAM+ 3 @ | UNCHANGED
PARAM+ 4 210 PARAM+ 4 210

‘ARAM+ § 4 PARAM+ 5 4

PARAM+ 6 @ PARAM+ & 208

FARAM+ 7 B PARAM+ 7 175 | FOUNDAT 45008
MEMB1+ @ 41 MEME1+ @ 41

MEMB1+ 1 9 MEMB1+ 1 9

MEMBL+ 2 128 MEMBi+ 3 138

MEME1+ 3 13 MEMRi+ 3 13

MEMBL+ 4 46 MEMB1+ 4 46

MEMELI+ 5 2o MEMB1+ 5 52X [TUNCHANGED
MEMB1+ & 133 MEMBi+ & 133

MEMBi+ 7 26 MEMB1+ 7

MEMB1+ 8 210 MEMBl+ 8 210

MEMB1+ 9 4 MEME1+ 9 4 |

NAME OF SUBROUTINE?

Notes

1. “Array” in this case corresponds to a table of two-byte entries.

186

Program Listing

7F00 00100 ORG 7F08H ;@522
BOLLD 5 K0 NN IEIETENE I I3 I 306 96T 366 606 006 T K IR K
2212@ ;% SEARCH ONE-D INTEGER ARRAY. SEARCHES INTEGER ARRAY

*

003130 s* FOR SPECIFIED SEARCH KEY. *
20140 3% INPUT: HL=> PARAMETER BLOCK *
BB150 3+ PARAM+@s +1=ADDRESS OF ARRAY *
22160 3% PARAM+2, +3=81ZE OF ARRAY *
20178 % PARAM+4, +5=14-BIT SEARCH KEY *
D180 3* PARAM+6&» +7=RESERVED FOR RESULT OF SEARCH *
BO190 3% OUTPUT : PARAM+65 +7 HOLDS ADDRESS IF KEY FOUND OR *
o0zeB * -1 OTHERWISE *
DOZ1@ 589309392 I I I I I TE I A I3 I I T T I 3636 9636963696 6366166 36 96 36 696
B2z 5

7Fe0 F5 28:30 SOIARR PUSH AF 5SAVE REGISTERS

7FB1 €5 @az40 PUSH BC

7FQZ D5 eaz50 PUSH DE

7F@3 ES 20260 PUSH HL

7F@4 DDES Boz70 PUSH IX

7F@6 FDES poz80 PUSH Iy

7FD8 CD7FDA 20290 CALL AA7FH s¥%GET PR LOC™ N*xx

7F@E ES 23300 PUSH HL. s TRANSFER TO IX

7F@C DDE1 o310 POP IX

7F@E DD4EQZ 20320 LD Co (IX+2) $PUT SIZE IN BC

7F11 DD46@3 o336 LD By (IX+3)

7F14 DD&EBD 22340 L.D Ls (IX+@) sPUT ADDRESS IN HL

7F17 DD&601 B350 LD Hy (IX+1)

7F1A DDSE®4 D360 LD Es (IX+4) 5PUT REY IN DE

7FiD DD56@5 20370 LD Ds (IX+5)

7FZ20 ES 20380 PUSH HL $ARRAY ADDRESS TO 1Y

7F21 FDE1 22390 POP 1Y

7F23 FD&GEDRO 20400 S0I01@ LD Ls (IY+@) sGET NEXT ARRAY ENTRY

7F2b6 FD6LOL 20410 LD Hs (IY+1)

7F29 B7 PR42D OR A 5 CLEAR CARRY

7FzA ED5Z 22430 SBC HL s DE 5TEST FOR EQUALITY

7F2C 2005 20440 JR NZ, 501020 $G0O IF NOT FOUND

7FZE FDES @45@ PUSH Iy $TRANSFER 1Y TO HL

7F30 El 20460 POP HL

7F31 180C 0470 JR S01030 360 TO RETURN

7F33 FD23 22480 S0IVZ@ INC Iy 3 INCREMENT ARRAY LOC’N

7F35 FDz3 2047902 INC 1Y

7F37 @B 22500 DEC BC sDECREMENT COUNT

7F38 79 20510 LD AsC sTEST COUNT

7F39 BO PA520@ OR B

7F3A ZOE7 28530 JR NZ,»801010 $LOOP IF COUNT NOT @

7F3C Z21FFFF QD540 LD HLs -1 $°NOT FOUND® FLAG

7H3F DD7506 2B55@ SsO1e3@ LD (IX+6)sL $STORE LOC’N OR NOT FOUND

7F42 DD7407 20560 LD (IX+7)sH

7F45 FDE1 2570 POP 1Y $RESTORE REGISTERS

7F47 DDE1 oa580 POP IX

7F49 E1 20590 POP HL

7F4A D1t 20600 POpP DE

7F4B Ct PR610 POP BC

7F4C F1 20620 POP AF

7F4D C9 20430 RET SRETURN TO CALLING PROG

0200 205640 END

2200Q TOTAL ERRORS

SOIARR DECIMAL VALUES

245y 197y 2135 229« 221 229« 253y 229. 2055 1275
1@y 229y 2219 2259 2219 789 2y 221y 7@s 3y

187

221 110 Os 2219 1029 19 Z21s 945 4y 231
86y S5y 229y 253y 225 253y 110y @y 253y 103
1s 183y 237, 82y 32y 531 2535 229¢ 252 44
12+ 253y 35y 2532 35 119 121y 1765 32y 2314
33s Z55s 255 2215 117y &3 221 11bs 7s 253y
225y 221y 225, Z225s Z09y 193y 241y 201

CHKSUM= 17

SPCAST: SERIAL PRINTER FROM CASSETTE

System Configuration

Model |, Model IIl.

Description

SPCAST uses the cassette output port to implement output to a serial printer.
Additional external “’hardware’” is required to convert the cassette voltage lev-

els to levels compatible with serial printers. A character at a time is output with
a baud rate of 110, 300, 600, or 1200.

The format for output is one start bit, seven or eight data bits, and one stop bit
with no parity. If the character to be output is a seven-bit ASCII character, the
most significant bit should be set to zero, and the result will be seven data bits
with two stop bits. If the character to be output is an eight-bit character, the
result will be eight data bits with one stop bit.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of SPCAST, in standard
Z-80 address format. The next byte contains a baud rate code of 0, 1, 2, or 3,
corresponding to 110, 300, 600, or 1200 baud. The next byte contains the char-
acter to be output.

On output, the character has been transmitted. The parameter block remains
unchanged.

INPUT ' OUTPUT
H L H L

} 4

T T
[POINTER TO PARAM+0 J — L UNCHANGED 1
T

1

PARAM+@ ADDRESS PARAM+8
+ OF + + UNCHANGED -+
+1 SPCAST +1
#=110, 1=300,
+2 | 2600, 3-1200 +2 UNCHANGED
+3 CHARACTER i +3 UNCHANGED

188

Algorithm

SPCAST must take the given character and “‘strip off”” the eight bits, translating
each into a serial bit, which is sent out to the serial printer through the cassette
port. The timing for each “’bit time”’ is determined by the specified baud rate.

SPCAST first outputs a cassette off code by outputting a 2 to port OFFH. Next,
the baud rate code is obtained from the second byte of the parameter block.
The code is multiplied by two and added to the start address of SPCAST and the
table displacement. The result now points to a timing value in BAUDTB which
represents the “’bit time”” for the given baud rate. This two-byte value is picked
up and put into DE.

The cassette port is now turned on by outputting a 1 to OFFH. This is the ‘‘start”’
bit. The count in DE is put into HL and the delay loop at SPC0O10 delays for one
bit time.

The code at SPCO15 is the main output loop of SPCAST. It loops eight times. For
each loop, a bit from the character in C is shifted out into the carry. If the bit is
a0, a2 level is output to port OFFH; if the bitis a 1, a 1 level is output to port
OFFH. The second-level loop at SPCO30 delays one bit time by decrementing
the delay count in HL. If eight iterations have not been performed, another bit is
transmitted.

The loop at SPC040 outputs a ‘‘stop’’ bit and delays for one bit time to terminate
the transmission of the character.

Sample Calling Sequence

NAME OF SUBROUTINE? SPCAST

HL. VALUE? 39000

PARAMETER BLOCK LOCATION? 39000
PARAMETER BLOCK VALUES?

+ @ 2 37008 ADDRESSOF SPCAST
+ 2 1 1 BAUD RATE = 300

+ 3 1 65 “A" TO BE OUTPUT

+ 4 0 @

MEMORY BLOCK 1 LOCATION?

MOVE SUBRROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000

INPUT: OUTPUT
HL= 39000 HL= 39000

PARAM+ @ 136 PARAM+ @ 136

PARAM+ 1 144 PARAM+ 1 144

PARAM+ 2 i PARAM+ = 1 UNCHANGED
PARAM+ 3 &5 PARAM+ 3 &5

NAME. OF SUBROUTINE?

Notes

1. External electronics must convert the cassette signal levels to RS-232-C
compatible levels. The output signal level for a logic 0 is approximately O volts.

189

7F 00

7F 00
7F@1
7FOZ
7F03
7F B4
7FB6
7F09
7F0A
7Fac
7FOE
7F10
7F13
7F15
7F16
7F19
7F1C
7F1D
7FZ0
7Fz1
7Fz2
7F=3
7F24
7Fzs
7F26
7F 2B
7F2A
7FZR
7FzC
7F 2D
7FZF
7F3z
7F34

7F35
7F36

7F38
7F3A
7F3C
7F3E
7F 4@
7F41
7F4Z
7F43
7F45
7F47
7F48
7F49

F5

Cc5

D5

ES
DDES
CD7F@A
ES
DDE1
3EQ1
D3FF
DD&EGZ
2600
=9
DD3EQ®
DD56@1
19
115900
19

5E

23

56

D5

E1l
3@
D3FF
2B

7C

B35
ZOFBR
DD4E@3
D628
D3

El
3EQZ
CBE39
3082
JE@1
D3FF
ZB

7C

BS
Z0FB
1QED
D5

E1
3E@1

bvi1oa
o110
Bo120
00130
B2140
22150
6160
a17a
20180
20170
2200
aBz10
oBz:0
DO230
22240
22250
QD60
DOz70
D280
o0z90
20300
20310
Ba3z0
Ba330
Ba34a
20350
2R36D
Bo370
oe380
22370
22420
0410
PR420
20430
DR44@
20450
B2460
0470
224860
2490
PR502
an51@
DB5z0
wa530

22540
20550

BR546@
20570
B2580
2590
20600
2610
DR&Z2A
PB63D
PR64D
B2650
20660
20670

The output signal level for a logic 1 is approximately 0.85 volts. Corresponding
RS-232-C signal levels are +3 volts or more for a logic 0 and —3 volts or less

for a logic 1.

2. Multiply the BAUDTB values by 1.143 for a Model III.

Program Listing

ORG 7FadH

@522

H **

;% SERIAL PRINTER FROM CASSETTE.

OUTPUTS A CHARACTER TO *

5% A SERIAL PRINTER USING THE CPU CASSETTE PORT *
5% INPUT :HL=> PARAMETER BLOCK *
5% PARAM+@,+1=ADDRESS OF SPCAST *
5% PARAM+2=RAUD RATE CODE @=110s 1i=30@., *
th 2=60@y 3=1200 *
5% PARAM+3=CHARACTER TO BE OQUTPUT *
HE QUTPUT : CHARACTER OQUTPUT TO PRINTER *
FRa i R R R SR R S8 FE R L R T LS 2 L TR EE TR RO vV

SPCAST PUSH AF

PUSH BC

PUSH DE

PUSH HL

PUSH IX

CALL DATFH

PUSH HL.

POP IX

LD Ax i

ouT (OFFH)» A

LD Loy CIX+Z)

LD Hy @

ADD HL s HL.

LD Ey (I1X+@)

LD Dy (IX+1)

ADD HL» DE

LD DE s BAUDTE

ADD HL» DE

LD Es (HL)

INC HL

LD Dy (HL)

PUSH DE

POF HL.

LD Ay

ouT (OFFH) s A
SPCO1@ DEC HL.

LD AsH

OR L

JR NZ,SPCO1@

LD Cr (IX+3)

LD Bs B
SPCO15 PUSH DE

POP HL.

LD Ay

SRL C

JR NC» SPCOZ0

LD Ay i
SPCOZ@® OUT (BFFH) + A
SPC@30 DEC HL

LD Ay H

OR L

JR NZy SPCO30

DJINZ 5PCO15

PUSH DE

POP HL

LD Ayl
190

5SAVE REGISTERS

3 #%*GET PBE LOCT N#**x*
STRANSFER TO IX

sCASSETTE ON CODE
sGPACING

PGET RATE CODE

FNOW IN HL

sCODE*Z

SADDRESS OF THIS CODE

s START+CODE

iTABLE DISPLACEMENT
SPOINT TO TIMING COUNT
SGET MS BYTE

SPOINT TO NEXT RYTE
sGET LS BYTE

SCOUNT TO HL

s CASSETTE OFF CODE
STURN OFF CASSETTE FOR GPF
SDECREMENT COUNT 6
STEST COUNT 4
STEST FOR ZERO 4
56O IF NOT BIT TIME 7/1%
$GET CHARACTER
SITERATION COUNT
s TRANSFER COUNT TO HL

sCASSETTE OFF CODE

sOHIFT OUT RIT

5GO IF ZERO

sCABSETTE ON CODE

SOUTPUT TO CASSETTE
sDECREMENT COUNT
STEST COUNT

560 IF NOT DONE
3G0 IF MORE BITS
$TRANSFER COUNT TO HL

sCASSETTE ON CODE

7F4B
7F4D
7F4E
7F4F
7F50
7F52
7F54
7F55
7F56
7F57
7F58
2059
7F59
7FsB
7FSD
7F5F
2000

&CR2
E300
7200
3700

D680
20670
20700
6710
be7z

00730
2o74@
20750
BB760
Qa770
2a7ed
a79@
o800
20810
Ltz e}
20830
o840

2000@ TOTAL ERRORS

SQROOT: SQUARE ROOT

SPCAST DECIMAL

2454
221

@y 41,

839y
211

by By
1

by
237

32

=51y

5PCR40

BAUDTE

197+ 213,

QouUT
DEC

OR
JR
POP
POP
PGP
POP
POP
RET
EQU
DEFW
DEFW
DEFW
DEFW
END

2385s 629 1y

213y

213,

2 227y @

CHREUM= 15

Fhy
Py

S)
@y 25y
#2555 434
225
211. 255

2l

114,

L2225

@

System Configuration

Model 1, Model 1ll, Model 1l Stand Alone.

Description

VALUES

B2

Qs
35,
124,
&

(BFFH) s A
HL

AsH

L
NZ:SPCD40

$-GPCAST
b2l

227

114

57

221e 229
F1ls 2555 221,
221s Bbs 1
Bby 2134 2325,
181y 32y 251,
2y 203, 574
1244 181,
1y 2114 255,
225 209, 193,
57+ @&

1,
2
2518 14
124y 181
241y 2015 108,

SOUTPUT TO CASSETTE
sDECREMENT COUNT
$TEST COUNT

GO IF CNT NOT ZERO
SRESTORE REGISTERS

5 RETURN

sEAUD COUNT TABLE
5110

5300

3600

51200

127 1@ 229,

2y 38,

174

2

78s 3y

SQROOT calculates the integer square root of a given 16-bit number. For ex-
ample, if the number is 30,000, the subroutine will return 54 as the square root

in place of 54.77.

Input/Output Parameters

On input, HL contains the ‘square,” the number whose square root is to be

found.

On output, HL contains the integer portion of the square root.

INPUT OUTPUT
H L H L

| NUMBER,T¢—65535 | — | INTEGER sauaRe Root |
1 T

191

Algorithm

The SQROOT subroutine performs the square root operation by using the
widely-known fact that the square root of any number is equal to the number of
odd integers contained in the square. The square of 17, for example, contains
T+ 3+ 5+ 7 = 16. The total number of odd integers is 4, and this is the inte-
ger square root contained in 17,

The B register is initialized with a count of —1; B will count the number of odd
integers in the square. DE is initialized with — 1; DE will hold the negated value
of the next odd integer——1, —3, —5, and so forth.

The loop at SQRO10 successively subtracts an odd integer from the original
number by the “ADD HL,DE.”” The count of odd numbers in B is incremented
with every subtract. The loop is terminated when the “residue”” goes negative

and the carry flag is reset after the add. At that point, the count of odd numbers
is returned in HL.

Sample Calling Sequence

NAME OF SUBRROUTINE? SQROOT

HL VALUE? 45535 SQUARE ROOT 1S 255.99. ..

PARAMETER BPLOCK LOCATION?

MEMORY BLOCK 1 LOCATIONT?

MOVE SUBROUTINE TO? 55000

SUBROUTINE EXECUTED AT 55000

INPUT: QUTPUT:

HL= 65535 HL= =35 INTEGER VALUE OF SQUARE ROOT

NAME OF SUBROUTINE?

Notes

1. The square may be ‘‘scaled-up’’ to achieve more precision. For example, if
the square root of a number less than 100 is to be found, multiply the number
by 256. The square root will then represent 16 times the actual square root.
For example, 99 times 256 = 25344. The square root returned by the subrou-
tine will be 159. This represents 159/16 or 9 and 15/16 or 9.9375, much closer to
the actual square root of 9.949.

2. The square input in HL is an ““unsigned” number. The maximum square
can be 65,535.

Program Listing

7F @ 20100 ORG 7F@eH 0522
R A Y
@01Z2@ ;% SQUARE ROOT. CALCULATES INTEGER PORTION OF SGQUARE *
00132 3% ROOT OF A GIVEN NUMRER. *
00140 3+ INPUT: HL=NUMBER *

28150 s+ OUTPUTsHL=INTEGER PORTION OF SQUARE RT OF NUMBER %
DOIOB 55K KKK RN TIIN TN KA TN I T I IETI IR

2217@ 3 -
7F@@ CS 20182 SEROOT PUSH BC $SAVE REGISTERS
7F@1 D5 oo19a PUSH DE
7F@B2 CD7F@A 20200 CALL @A7FH FHERGET NUMBER*%»

192

7F@5 Q&FF 0210 LD BsBFFH SINITIALIZE RESULT

7F@7 11FFFF o2z LD DEs—1 $FIRET ODD SUBTRAHEND
7FaA @4 BOz230 SORAL1O INC B s INCREMENT RESULT COUNT
7F@e 19 PB240 ADD HL s DE sSUBRTRACT ODD NUMBER
7F@AC 1B aaz50 DEC DE sFIND NEXT ODD NUMBER
7F@D 1B 2060 DEC DE

7FBE 38FA 20:70 JR Cr»S5QRO10 $CONTINUE IF NOT MINUS
7F 10 68 toz8@ LD LsB $GET RESULT

7F11 2600 20290 LD H:»@ $NOW IN HL

7¢13 D1 20300 POP DE $RESTORE REGISTERS

7F14 C1 a2310 POP BC

7+15 C39A0A oazze JP BATAH s #*¥RETURN ARGUMENT % %%
7F18 €9 20330 RET SNON-BASIC RETURN

(e 20342 END

20000 TOTAL ERRORS

SQROOT DECIMAL VALUES

197s 213s 2055 127+ 10 & 2553 1735 2555 255,
Gy 25 279 Z7s 56 250y 104y 38y By 209,
193+ 195y 154, 1@y 201

CHRKSUM= 217

SROARR: SORT ONE-DIMENSIONAL INTEGER ARRAY

System Configuration

Model I, Model 1Il, Model [l Stand Alone.

Description

SROARR sorts a BASIC or other one-dimensional integer array. The array may
be any size within memory limits. The array is assumed to be made up of 16-bit
entries. SROARR arranges the entries in the array in ascending order based on
their binary weight on a sixteen bit “unsigned’” basis. In this scheme an entry of
8000H will be after an entry of 7FFFH. A ““bubble sort”" is used which requires
no additional memory buffer other than the array itself.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the 16-bit address of the array, ar-
ranged in standard Z-80 address format, least significant byte followed by most
significant byte. The next two bytes of the array contain the number of entries
in the array. (Note that this value is one-half the number of bytes in the array!)

On output, the array has been sorted in memory. The parameter block remains
unchanged.

INPUT QUTPUT
oL HoL
1 T
POINTER TQ PARAM+S | —— | UNCHANGED |
i
T 1

193

PARAM-+-@ POINTER TO PARAM-+@
4 ARRAY 1 + UNCHANGED +

+1 (MEM1+0) 1

+2 +2
T+ SEXF 4 + UNCHANGED +

+3 —> =«

MEM 10 MEM1+0
+ ENTRYQ + +
+1 +1
+2 +2 SORTED
+ enmv1 T ARmay T
+3 j +3
+4 +4
+ EnTRY2 { + 4
+5 +5
+6 +6 L
Algorithm

The SROARR sorts the entries by a bubble sort. This sort scans the array from
bottom to top, moving one entry at a time. Each entry is compared to the next
entry. If the top entry is a higher value than the next entry, the two entries are
swapped, otherwise the entries are left unchanged. The next entry is then com-
pared in the same fashion until all entries in the array have been examined. At
the end of the scan, a “swap” flag is examined. If a swap occurred, another
pass is made through the array. If no swap occurred, the array is sorted. A
number of passes through the array may have to be made to sort the entries.

There are two loops in SROARR. The innermost loop controls the scan from top
to bottom for every pass and starts at SRO010. The outermost loop handles the
next pass after a complete scan through the array and starts at SRO005.

The innermost loop at SRO010 loads HL with the entry pointed to by 1Y and
loads DE with the next entry. A subtract is done to compare the two. If the HL
entry is ““heavier” than the DE entry, a swap is made by storing HL and DE and
a “swap” flag in IX is set. If the HL entry is the same or “lighter,” no swap
occurs. The IY pointer is then incremented to point to the next entry, the count
of entries in BC is decremented, and a test is made of BC. If there are more
entries, a jump is made to SROO10 for the next entry comparison.

If BC is zero, all entries have been compared for this pass. 1X contains the
“swap”’ flag, and it is tested for nonzero, indicating a swap. If it is nonzero, a
jump is made back to SRO005 to start over at the first entry and to reset the

“swap” flag. The sort is over when a complete pass is made without the
“swap”’ flag being set.

Sample Calling Sequence

NAME OF SUBROUTINE? SROARR
HL. VALUE? 4poon
FARAMETER BLOCK LOCATION? 40000

194

FPARAMETER BLOCK VALUES?

+ B 2 45800 LOCATION OF ARRAY
+ 2 2 5 5 ENTRIES

+4 B 0

MEMORY BLOCK 1 LOCATION? 45000
MEMORY RILOCK 1 VALUES?

+ B & 789@

+ 22 4789

+ 4 2 5678 [INITIALIZE VALUES FOR EXAMPLE
+ & 2 45467

+ 8 2 3454

+ 18 @ 0

MEMORY BLOCK I LOCATION?
MOVE SUBROUTINE TO? 37777
SUBROUTINE EXECUTED AT 37777

INPUT: OUTPUT:
HL= 40000 HL= 40000

PARAM+ @ PO PARAM+ @ 0@

PARAM+ 1 175 PARAM+ 1 175

PARAM+ 2 5 PARAM+ Z 5 UNCHANGED
PARAM+ 3 0 PARAM+ 3 @

MEMEL+ @ 210 MEMBi+ @ 1281

MEME1+ 1 30 MEME1+ 1 13

MEMB1+ 2 133 MEMBi+ 2 215

MEMBI+ 3 26 MEMEL+ 3 17

MEMB1+ 4 46 MEMB1+ 4 46

MEMBL+ 5 2T MEMB1+ 5 2z | RESORTED
MEMEI+ & 215 MEMBi+ 6 133

MEME1+ 7 17 MEMEL+ 7 26

MEMB1+ 8 138 MEMBi+ 8 210

MEMB1+ 9 13 MEMB1+ § 30 |

NAME OF SUBROUTINE?

Notes

1. The bubble sort is not particularly speedy, but requires minimal memory.
2. The number of entries must be two or greater.

Program Listing

7F20 22100 ORG 7F00H ;@522

DOL LD 55 KKK N NI NI TETE I I T I T I I6T6 T T 3696 26 69 09I 0
PB12@ ;% SORT ONE-D INTEGER ARRAY. SORTS INTEGER ARRAY INTO *
P@13@ ;% ASCENDING ORDER. *
PR140 3% INFUT: HL=xPARAMETER BLOCK *
Q2150 5% PARAM+@s +1=ADDRESS OF ARRAY *
2R16@ 5% PARAM+Z2s +3=81ZE OF ARRAY *
Q170 3+ OUTPUT:ARRAY SORTED IN ASCENDING ORDER *
DDIEED 53358533 K I3 9656 96969696 9896 969693626 969696369696 96 696
22170 s

700 F5 22200 SROARR PUSH AF $SAVE REGISTERS

7F@1 C5 bez10 PUSH BC

7F@z D5 B2z20 PUSH DE

7F@3 ES5 V2230 PUSH HL.

7F@4 DDES B2:40 PUSH IX

7F@6 FDES D050 PUSH Iy

7F@8 CD7F@A DBz60 CaLL BA7FH 3 *%¥GET PB LOC’ N¥kx*

7FQE ES5 aBz70 PUSH HL. s TRANSFER TO IX

7F@C DDE1 20280 POF IX

7FOE DD4E@Z PRZ9@ SROBOS LD Cy (IX+2) sPUT SIZE IN BC

7F11 DD46@3 e300 LD By (IX+3)

7F14 @B 28310 DEC BC $8IZE —- 1 FOR SORT

195

7F15 DD&ER@ a3z LD L (IX+@) sPUT ADDRESS IN HL
7F18 DD&&LBL 20330 LD Hs (IX+1)

7F1B ES VB340 PUGH HL 5COPY INTO IY

7F1C FDE1L 20350 POP Iy

7F1E DDES BR360 PUSH IX sSAVE IX

7FZ0 DD21000@ 20370 L.D IX.0 56ET "NO CHANGE® FLAG
7Fz24 FDOED 22382 SRODIG LD Ly (IY+@) $PUT CUR ENTRY INTO HL
7FZ7 FD6601 20372 L.D Hs (IY+1)

7F2A FDSEBZ 22400 LD Es (IY+2) sPUT NEXT ENTRY IN DE
7FZD FD56@3 20410 .D Ds (IY+3)

7F30 B7 PR4:0 OR A sCLEAR CARRY

7F31 ED3Z 20430 SBC HL» DE s COMPARE PAIR

7F33 3811 D440 JR Cy SRODZD 560 IF CUR<NEXT
7F35 280F 20450 JR Zs SRODZD 5GO IF EQUAL

7F37 19 o460 ADD HL s DE $RESTORE VALUE

7F38 DD23 BR470 INC IX sSET SWAP FLAG

7F3A FD7300 20480 LD (IY+B)sE $BWAP PAIR

7F3D FD7201 28470 LD (IY+1)sD

7F40 FD750% 20500 LD (IY+Z)al

7F43 FD7403 20510 LD (IY+3)sH

7F46 FD23 B@528 SRORZG INC 1Y $POINT TO NEXT ENTRY
7F48 FDZ23 21530 INC Iy

7F4A BB @540 DEC BC sDECREMENT COUNT
7F4B 78 20550 L.D AR sTEST COUNT

7F4C BY 20560 OR C

7F4D ZO@D5 aes70 JR NZ:SR0D1@ 3G0 IF NOT END

7F4F DDES 23580 PUSH IX sFLAG TO HL

7F51 E1 20590 POP HL

7F52 ED4Z L2l SBC HLsBC sTEST FLAG

7F54 DDE1 20610 POP IX SRESTORE IX

7F56 Z0B6 22620 JR NZ s SROQD5 360 IF SWAP OCCURED
7F58 FDE1 063D PGP Ing sRESTORE REGISTERS

7F5A DDE1 PA640 POP IX

7F5C El 065 POP HL

7F5D D1 20660 POP DE

7F5E C1 20670 POP BC

7F3F F1 20680 POP AF

7FeB C9 20690 RET

kL] 2700 END

20088 TOTAL ERRORS

SROARR DECIMAL VALUES

2454 1971 2134 229y 2535 229 2Z0%s 137,
1@y 229y 2219 78y 2y 221y 7Bs 3,

11, 221. 118s @y 221, 102y 135 2295 2535 225,

221y 2295 221y 33y @y By 253 110y @9 253,

10Zs 1s 2535 P4, 2 253y Bby 35 183, 237,

82y 563 17y 40s 15y 25y 221y 35y 2535 115,

@y 253s 114y 135 253y 117 29 2535 11&s 3s

233y 35y Z53y 355 11y 1209 1771 32y 213y 271,
209y 2E8s 2375 bbs 221y 225, 32 1By 2535 005,
221 225, 225 209+ 1935 241, 201

CHKBUM= 4%

SSNCHR: SEARCH STRING FOR N CHARACTERS

System Configuration

Model 1, Model 111, Model Il Stand Alone.

196

Description

SSNCHR searches a string of any length for a ‘““substring”” of any length. A
“found”" or "'not found”" address of the substring is returned. The strings may
contain any combinations of data—ASClI, binary, or other combinations.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the starting address of the string to be
searched in standard Z-80 address format, least significant byte followed by
most significant byte. The next two bytes of the parameter block contain the
number of bytes in the string to be searched. The next two bytes of the parame-
ter block contain the starting address of the “’key’’ string, the string for which
the search is to be made. The next two bytes in the parameter block contain the
number of bytes in the key string. The next two bytes are reserved for the result.

On output, PARAM+7,+ 8 contain the result of the search. All other bytes in
the parameter block are unchanged. The result is a — 1 if the search key has not
been found in the string to be searched. If the search key has been found, the
result is the actual address of the first occurrence of the search key in the string
to be searched.

INPUT ouTPUT
Ho oL H L
T
POINTERTO PARAMYS | —— | UNCHANGED
T L)
PARAM+0 | START ADDRESS PARAM-+9
~OF STRING TO BE 4+ UNCHANGED <
+1 |SRCHED (MEM 1+8) +1
+2 # BYTES IN +2
4+ STRANGTO + 1 UNCHANGED +
+3 BE SRCHED j +3
+4 STARTING +4
+ ADDRESS OF + 4+ UNncHanGeD +
+6 KEY STRING +5
+6 | # BYTES IN KEY +6 UNCHANGED
*7 | ReseRveD | +7 | ADDRessIF |
+8 FOR RESULT 48 1 FOUND OR —1
MEM 1+0 MEM 140
+1 +1 i
T smNG + T +
+2 TO BE +2
1 SEARCHED + 1 UNCHANGED +
+3 :3 +3
E o - -4 -+~
+4 +4
4 + 4 4
+5 +5
+6 +6 T

197

MEM2-+¢ MEM2+¢2)4
+1 +1
T KEY T T T
+2 STRING +2
+ + + UNCHANGED +
3 —> =
4 4 + 4
+4 +4
+5 +5
4 -4 - -+
+6 +6
A ~ A A
Algorithm

The SSNCHR subroutine performs the search in two steps. First, a ““CPIR’" block
search is made for the first character. If the first character is not found, the
search has been unsuccessful. If the first character is found, a further compari-
son is done for the other characters in the search string.

The registers are first set up for the CPIR. The string start address of the string to
be searched is put into the HL register pair. The number of bytes in the string to
be searched is put into BC. The first character of the search string is put into the
A register. (Also at this point, the search string start is put into DE.) The CPIR
search is done at SSN060.

If the Z flag is not set after the CPIR, the first character of the string has not been
found and the code at SSNO8O puts a — 1 into the result. If the Z flag is set, the
first character of the string has been found.

The code at SSNO70 compares the remaining bytes to see if the key string
matches. In this loop, HL points to the locations of the string to be searched,
while 1Y points to the locations in the key string. B contains the count of the
number of characters in the key string. If any characters do not compare, a
return back to the CPIR is done with HL pointing to the next byte after the byte
that was found. If all characters compare, the address of the first character in
the string to be searched is put into the result.

Sample Calling Sequence

NAME OF SUBROUTINE? SSNCHR

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 42000
PARAMETER BLOCK VALUES?

+ @ 2 43000 STARTOF STRING TO BE SEARCHED
2 2 6 6 BYTES IN STRING TO BE SEARCHED

+ 4 2 46000 STARTOF KEY STRING

+ 6 1 3 3BYTES IN KEY STRING

+7 & @

+ 9 @ 0

MEMORY BLOCK 1 LOCATION? 45000

MEMORY BLOCK 1 VALUES?

+ @2 1 0

+ 1 1 1

+ 2 1 2

. - 103 STRING TO BE SEARCHED

+ 4 1 4

+5 1 5

+6 0 0

MEMORY BLOCK Z LOCATION? 44000

198

MEMORY BLOCK 2 VALUES?
+ @0 1 3

+ 1 i /+}KEY STRING

+2 15

+3 0 @

MOVE SUBROUTINE TO7?7 28000

SUBROUTINE EXECUTED AT 38000

INPUT: OUTPUT :

HL= 4DO00D HL= 4RD0@

PARAM+ @ 200 PARAM+ @ 2007

PARAM+ 1 175 FARAM+ 1 175

PARAM+ 2 & PARAM+ 2 &

PARAM+ 3 D PARAM+ 3 B - UNCHANGED
PARAM+ 4 176 PARAM+ 4 176

PaRaM+ 5 179 PARAM+ 5 179

PARAM+ & 3 PARAM+ & 3

PARAM+ 7 @ PARAM+ 7 @3

PARAM+ B8 O PARAM+ 8 175 | T OUNDAT 45003
MEMBi+ O @ MEMP1+ @ @]

MEMB1+ 1 1 MEMB1+ 1 1

MEMBI+ = = MEME1+ = 2

MEMB1+ 3 3 MEMB1+ 3 3

MEMBI+ 4 4 MEMB1+ 4 4 L UNCHANGED
MEMBI+ 5 5 MEMBI+ 5 5

MEMBZ+ @ 3 MEMBZ+ B 3

MEMBZ+ 1 4 MEMBZ+ 1 4

MEMBZ+ = 5 MEMBZ+ 2 5 |

NAME OF SUBROUTINE?

Notes

1. The key string may be one byte.

2. The key string may not contain a larger number of bytes than the string to
be searched.

Program Listing

7F00 20100 ORG 7FOBH
BO110 595K KT I I I T I I I 696 96 36 9606 269696 96 39666063 0 20 62636 36 06
@0128 3% SEARCH STRING FOR N CHARACTERS. SEARCHES STRING FOR *
2130 ¥ A SUBSTRING. *
20140 5% INPUT: HL=> PARAMETER BLOCK *
20150 3* PARA> +0, +1=8TARTING ADDRESS OF STRING TO *
P0160 3% BE SEARCHED *
0178 3+« PARAM+Zy +3=# BYTES IN STRING TO BE SRCHED =*
20180 3% PARAM+4+ +5=5TARTING ADDRESS OF KEY STRING *
o190 % PARAM+&6=# OF BYTES IN KEY *
N0z00 3% PARAM+7: +B=RESERVED FOR RESULT *
oaz1o % OUTPUT : PARAM+75 +8=ADDRESS OF SUBSTRING IF FOUND *
ROzZ@ 3% OR —1 IF NOT FOUND *
DDZID 5533922232 e H I I T I3 T 0636 36363 I 636 96 063636 696 36 96636 3606 96 60690 3 066 396 066 36
oBz40 3

7FB@ F5 20258 SSNCHR PUSH AF $8AVE REGISTERS

7F@1 C5 boz6@ PUSH BC

7FBZ D5 2oz70 PUSH DE

7F@3 ES5 20:60 PUSH HL.

7F@4 DDES 22278 PUSH IX

7FB6 FDES AV300 PUSH 1Y

7F@8 CD7FQA 20310 CALL BATFH s#%¥GET PB LOC® N**#*

7F@B E5 00320 PUSH HL s TRANSFER TO IX

7F@C DDE1 o330 POP IX

7FBE DD&EQDS 20340 LD Ly (IX+@) sPUT STRING START IN HL

199

7F11 DD66B1 Ba350 LD Hs (IX+1)

7F14 DD4EQZ 20360 L.D Co (IX+2) 5PUT # OF BYTES IN BC
7F17 DD46@3 BR370 L.D Bs (IX+3)

7F1A DD3EQ4 20380 L.D Es (IX+4) ;PUT 88 IN DE

7F 1D DD5&@5 20390 LD Dy {IX4+5)

7Fz2@ D5 20420 PUSH DE 5 TRANSFER TO IY

7Fz1 FDE1 o410 POP Iy

7F&3 FD7EQO@ 20420 SSNO6D LD A (IY+D) SGET FIRST CHAR OF 88
7Fz6 EDRI1 @430 CPIR $SEARCH FOR 18T CHAR
7F28 20:z1 BB440 JR NZ ., S5NO80 560 IF FIRST CHAR NOT FND
7F2A DD46D6 22450 LD B (IX+4) 5GET # OF BYTES IN 88
7FzD @5 BA4LD DEC B sDECREMENT FOR FIRST
7FZE 2813 22470 JR Zs GSNO7 2 5ONE BYTE KEY CASE

7F30 ES n248@ PUSH HL 58AVE LOC’N OF FIRST
7F31 FDES 0490 PUSH 1Y sSAVE 18T CHAR OF 88
7F33 FD23 Q@500 INC Iy sPOINT TO SECOND OF 88
7F35 7E P@5102 SSNB7@ LD As (HL) sGET NEXT BYTE

7F36 FDBEGD oB520 cP (1Y) ;s COMPARE

7F39 zoek 2253@ JR NZs55NB75 360 IF NO MATCH

TF3R 23 22540 INC HL. sBUMP STRING PNTR
7F3C FDz3 22550 INC 1y SBUMP 55 PNTR

7F3E 10F5 2560 DJINZ S5ND70 5G0O IF MORE

7F4@ FDE1L PO570 POP Iy sGET 18T CHAR POB OF S8
7F42 El 28580 POP HL. SRESTORE LOC’N OF FIRST+1
7F43 ZB PR590 SSN@7: DEC HL. sADJUST FOR CPIR

7F44 1808 Ll JR SENBID 5G0 FOR CLEANUP

7F46 FDEL B2s61@ SSNB75 FOP Ing SRESET

7F48 E1 2B6:20 POP HL. SRESTORE CUR LOC’N

7F49 18D8 22630 JR SSNBLD s CONTINUE CPIR

7F4B Z1FFFF 0640 S5NO8@ LD HLs—1 $NOT FOUND FLAG

7F4E DD75@7 BR650 SSNOY2 LD (IX+7) s $STORE LOC’N OR "NOT FND’
7F31 DD74@8 00660 LD (IX+B)sH

7F54 FDE1 205670 POP 1y SRESTORE REGISTERS

7FS4 DDE1 29680 POP IX

7F38 E1 20690 POP HL

7F59 Di oa70a POP DE

7F5A C1 20710 POP BC

7F58 F1 22720 POP AF

7F5C C9 20732 RET SRETURN TO CALLING PROG
2000 PB740 END

QDoRa TOTAL ERRORS

S6NCHR DECIMAL VALUES

245y 197y 213s 229, 2I21s 229y 2535 229y 2055 1327,
10y 229, 221, 225+ 221y 110 @y 221y 102y 1

2218 783 29 221y 7@y 3s 2213 943 4y 221

86y 5y 213y 253s 225y 253y 12éy By 237y 177

32y 33s 2214 7@y b3 55 4Dy 19y 2295 253,

229y 253y 35y 126y 253y 190s @ 32y 119 35,

253s 35s lés 2455 253y 22%¢ 225 435 T4y 8

253y 225+ 225 24y 216 333 259 2959y 251y 117
7y 221 1165 8s 253y 225, 2Z21s 2259 229y 209,
193, 241, 201

CHKSUM= 198

SSOCHR: SEARCH STRING FOR ONE CHARACTER

System Configuration

Model I, Model Ill, Model Il Stand Alone.

200

Description

SSOCHR searches a string of any length for a given byte. A “found’’ or “‘not
found”” address of the character is returned. The string and byte may contain
any combinations of data—ASClIl, binary, or other combinations.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the starting address of the string to be
searched in standard Z-80 address format, least significant byte followed by
most significant byte. The next two bytes of the parameter block contain the
number of bytes in the string to be searched. The next bytes of the parameter
block contain the “’key’” byte, the byte for which the search is to be made. The
next two bytes are reserved for the result.

On output, PARAM+5,+ 6 contain the result of the search. All other bytes in
the parameter block are unchanged. The result is a — 1 if the search byte has
not been found in the string to be searched. If the search byte has been found,
the result is the actual address of the first occurrence of the search byte in the
string to be searched.

INPUT OUTPUT
HooL Ho L
T T
POINTER TO PARAM-+0] > [UNCHANGED
T T
PARAM+-@ PARAM+g
T ofmesSs T + UNCHANGED =
+1 +1
+2 +2
+ FEOES + + UNCHANGED +
3 —> =
+4 SRCH CHAR +4 | UNCHANGED
+5 RESERVED +5 ADDRESS OF
T FOR + + FOUND CHAR +
+6 RESULT +6 OR —1
MEM1+0 MEM 1+
] STRING | o 1
+2 OF +2
4 CHARACTERS | 1 uncHanGgep |
+3 —_—> #
. 4 ~+ ~+
+4 +4
~4 4+ “4 -+
+5 +5
+6 +6 Ji
Algorithm

The SSOCHR subroutine performs the search by a ““CPIR” block search for the
first character.

201

7F 00

The registers are first set up for the CPIR. The string start address of the string to
be searched is put into the HL register pair. The number of bytes in the string to
be searched are put into BC. The search byte is put into the A register. The CPIR
search is then done.

If the Z flag is not set after the CPIR, the key byte has not been found and the
code at SSO010 puts a — 1 into the result. If the Z flag is set, the key byte has
been found.

Sample Calling Sequence

NAME OF SUBROUTINE? SSOCHR

HL VALUE? 50000

PARAMETER BLOCK LOCATION? S2000
PARAMETER PLOCK VALUES?

4

FE+++ T+ 4+

+

mm
VMPLIMN=S ZIIVNDIEG

Lo R SN Y

<
2
<

ORY

bt e s

@

40008
3 ADDRESS OF STRING TO BE SEARCHED
66 5 BYTES
@ SEARCH CHARACTER
2
BLOCK 1 LOCATION? 40000
BLOCK 1 VALUES?
&7
&8
2; STRING TO BE SEARCHED

&0
2

MEMORY BLOCK = LOCATION?
MOVE SUBROUTINE TO? 52000
SUBROUTINE EXECUTED AT 5z000

INPUT: OUTPUT
HL= 50000 HL= 50000

PARAM+ @ &4 PARAM+ @ &4

PARAM+ 1 156 PARAM+ 1 154

PARAM+ Z 5 PARAM+ 2 5 ~UNCHANGED
PARAM+ 3 @ PARAM+ 3 @

PARAM+ 4 66 PARAM+ 4 &6

FARAM+ 5 @ PARAM+ 5 &6]

PARAM+ &6 @ PARAM+ & 154 | FOUND AT 40002
MEMB1+ @ 67 MEMB1+ B 67]

MEMB1+ 1 &8 MEMB1+ 1 &8

MEMB1+ 2 66 MEMB1+ Z &6 UNCHANGED
MEMB1+ 3 65 MEMB1+ 3 65

MEMB1+ 4 60 MEMBI+ 4 6@ |

NAME OF SUBROUTINE?

Program Listing

2100
20110
120
22130
20142
02150
22160
@170
o182
20190
22z00
22210
o0zz0

ORG 7F0@H ;@522

§ 363036 I I TEIE I I I I I I JE I I 36 I I I I I I T I I F I I U 6 I I I I T2

$% ONE-CHARACTER STRING SEARCH.

% GIVEN CHARACTER.

7%
5%
3 *
3%
;¥
HE
3%

INPUT: HL=}> PARAMETER BLOCK
PARAM+@, +1=ADDRESS OF STRING TO BE SRCHED
PARAM+Z: +3=# OF RYTES
PARAM+4=SEARCH CHARACTER
PARAM+5s +6=RESERVED FOR RESULT
OUTPUT:PARAM+Ss+6 SET TO —1 IF NOT FQUND OR ADD-
RESS OF CHARACTER IF FOUND

SEARCHES STRING FOR ONE #

*

* ok %k Xk %k x %k

§ I6 I J T I I 6 I I I I I IE I I I I I I I 26 I I I I AT 29 I I I KN

=
?

202

7FB0 F5 20230 SSOCHR PUSH AF 3SAVE REGISTERS

7F31 C5 20240 PUGSH BC

7F@z E5 D50 PUSH HL

7F@3 DDES BB260 PUSH IX

7F@5 CD7F@A o0z70 CALL RA7FH ;X %AGET PE LOC® N*%*x
7F@8 ES aoz280 PUSH HL sTRANSFER TO IX

7F@9 DDE1 pozv2 POP IX

7F@E DD&EDO A0300 LD Ls (IX+@) sPUT STRING ADDRESS IN HL
7FBE DD&4BY 2e310 LD Hs (IX+1)

7F11 DD4EBZ Pa3z20 LD Ce (IX4+2) sPUT # BYTES IN BC

7F 14 DD46@3 20330 LD Ba (IX+3)

7F17 DD7E®4 AB340 LD As (IX+4) sPUT SEARCH KEY IN A
7F1A EDBRI1 ae3s50 CPIR $SEARCH

7F1C 2003 B340 JR NZ, 550010 5G0O IF NOT FOUND

7F1E ZB 6a370 DEC HL sFOUNDs ADJUST POINTER
7F1F 18083 20380 JR 550020 3GO TO STORE RESULT
7F21 ZIFFFF ee39a 550810 LD HLs—1 sFLAG FOR NOT FOUND
7FZ24 DD7505 PR400 SS0DZ@ LD (IX+5)aL 5STORE RESULT

;Eﬁz BBE?Bb 882&8 bBP £§X+6),H sRESTORE REGISTERS
7FzC El 2432 POP HL.

7FZD €1 28440 PGP BC

7FZE F1 20450 POpP AF

TF2F C9? 0460 RET sRETURN TO CALLING PROG
ritral i) 20470 END

22000 TOTAL ERRORS

850CHR DECIMAL VALUES

197 229y 221s 229y 205 127+ 10s 229, 231,
221y 110 Dy 2219 102y 1s 221y 78+ 2

7@s Bs 221s 1265 4y 2375 1775 325 3
245 3+ 33y 255. 255y 221y 1179 959 2219
11bs by 221y 2254 225y 1935 241y 201

CHRSUM= 137

SSTCHR: SEARCH STRING FOR TWO CHARACTERS

System Configuration

Model 1, Model 11l, Model! 1l Stand Alone.

Description

SSTCHR searches a string of any length for a ““substring”’ of two bytes. A
“found”” or ““not found’’ address of the substring is returned. The strings may
contain any combinations of data—ASCII, binary, or other combinations.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the starting address of the string to be
searched in standard Z-80 address format, least significant byte followed by
most significant byte. The next two bytes of the parameter block contain the
number of bytes in the string to be searched. The next two bytes of the parameter
block contain the ““key” string, the string for which the search is to be made.
The next two bytes are reserved for the result.

203

On output, PARAM+6,+7 contain the result of the search. All other bytes in
the parameter block are unchanged. The result is a — 1 if the search key has not
been found in the string to be searched. If the search key has been found, the
result is the actual address of the first occurrence of the search key in the string
to be searched.

INPUT OUTPUT
HooL H o L
L T
POINTER TO PARAM+0 | > | UNCHANGED
I3
T T
PARAM+@ | ADDRESS OF PARAM-+-0@
1 sTrRINGTOBE | 1 UNcHANGED 4
o SEARCHED 1
(MEM 1+8)
+2 +2
+ B#w#rT%Fs + 4 UNCHANGED -+
+3 : +3
+4 +4
] SEARCH] 1 1
+5 | CHARACTERS 5 UNCHANGED
+6 +6 | ADDRESS OF
RESERVED | 1 1
+7 | FORRESULT 47 | FOURD STRING
MEM 1+8 MEM1+¢
+1 +1
+ STRING 1 4 +
+2 TO +2
-4 BE -+ . -+
+3 SEARCHED i +3 | UNCHANGED
+4 +4
+5 +5
+6 | L +6 | L
Algorithm

The SSTCHR subroutine performs the search in two steps. First, a ““CPIR’" block
search is made for the first character. If the first character is not found, the
search has been unsuccessful. If the first character is found, a further compari-
son is done for the second character in the search string.

The registers are first set up for the CPIR. The string start address of the string to
be searched is put into the HL register pair. The number of bytes in the string to
be searched is put into BC. The first character of the search string is put into the
A register. The CPIR search is then done.

If the Z flag is not set after the CPIR, the first character of the string has not been
found and the code at SST020 puts a — 1 into the result. If the Z flag is set, the
first character of the string has been found.

The code following the CPIR compares the remaining byte to see if the key
string matches. In this loop, HL points to the location of the second byte in the
string to be searched, while 1X points to the parameter block location. If the
second character does not compare; a return back to the CPIR is.done with HL
pointing to the next byte after the byte that was found. If the second character
compares, the address of the first character in the string to be searched is put
into the result.

204

Sample Calling Sequence

NAME OF SUBROUTINE? SSTCHR

HL VALUE? 42222

PARAMETER BLOCK LOCATION? 42222
PARAMETER BLOCK VALUES?

+ @ 2 45555 START OF STRING TQ BE SEARCHED
2 2 7 7 BYTES IN STRING TO BE SEARCHED
4 1 49
EARCH CHA TER
5 1 48 SEA RAC S
bH 20
8 0 2

FMORY BLOCK 1 LOCATION? 45555
EMORY BPLOCK 1 VALUES?

48 INITIALIZE STRING TO BE SEARCHED
FOR EXAMPLE

R - R

N DGR S
(5 bt pmd pot pet et b et
E
0

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO7?7 38000
SURROUTINE EXECUTED AT 38000

INPUT: OUTPUT :

HL= 423227 HL= 422727

PARAM+ @ 243 PARAM+ @ 3243 |

PARAM+ 1 177 PARAM+ 1 177

PARAM+ = 7 PARAM+ = 7

PARAM+ 3 D PARAM+ 3 @ UNCHANGED

PARAM+ 4 49 PARAM+ 4 49

PARAM+ 5 48 FARAM+ 5 48

PARAM+ _6 7] PARAM+ & 247 :I-FOUND AT 45559
7 @ PARAM+ 7 177
@ 45 MEMEL+ @ 45]

3 -1 44 MEMBi+ 1 464

MEMB1+ 2 47 MEMR1+ 2 47

MEME1+ 3 48 MEMB1+ 3 48 - UNCHANGED

MEMR1+ 4 49 MEMB1+ 4 49

MEMB1+ 5 48 MEMBi+ 5 48

MEMB1+ & 47 MEMB1+ & 47 |

NAME OF SUBROUTINE?

Notes

1. If asearch is to be made for an address, the order of the search key should
be least significant byte followed by most significant byte. If the search is for
character data, the order of the search key should be first character, second
character. In other words, arrange the bytes the way they would occur in the
string to be searched.

Program Listing

7Foa 0126 ORG 7FBOH @522
DOL LD 53330 H AN TN I TN T I I T T 03 T T TE 0 0T
20128 % TWO-CHARACTER STRING SEARCH. SEARCHES STRING FOR TWO *
20138 s* GIVEN CHARACTERS. *
02140 5% INPUT: HL= PARAMETER BLOCK
o158 5% PARAM+@y +1=ADDRESS OF STRING TO BE SRCHED
D160 3% PARAM+2s +3=# OF BYTES
2170 3% PARAM+4, +5=8EARCH CHARACTERS
02186 3% PARAM+6: +7=RESERVED FOR RESULT
22150 ;= OUTPUT : PARAM+&9+7 SET TO ~1 IF NOT FOUND OR ADD-
o0:z20 ;= RESE OF CHARACTERS IF FOUND
DBZLD 5 AR N NI I He TN T I T T T T 6T 306363069636 96636966 36 30 26 360636 36 9636 6 36

* %k %k %k %k %k %k

205

PARAM+
Il MEMB 1+
MEME 1+

oRz20
7FB0 F5 22238 SSTCHR PUSH AF $SAVE REGISTERS
7F@1 €5 20240 PUSH BC
7FB:2 ES 20z5e PUSH HL
7F@3 DDES BOz60 PUSH IX
7FD5 CD7F@A 2oz7e CALL DA7FH 5#%%GET PE LOC’ N#xsx
7F28 ES o080 PUSH HL. s TRANSFER TO IX
7F@9 DDE1 o906 POP IX
7F@E DD&EGD BR300 L.D Ly (IX+0) 5PUT STRING ADDRESS IN HL
7F@E DD66@1 o310 LD Hs (IX+1)
7F11 DD4E®@Z 223z0 LD Cy (IX+2) 3PUT # BYTES IN BC
7F14 DD46B3 PR330 LD B (IX+3)
7F17 DD7EQ@4 P0348 SSTOLO® LD As (IX+4) sPUT SEARCH KEY IN A
7FiA EDBE1 20352 CPIR s SEARCH
7F1C 208D 20360 JR NZ, 557020 3G0 IF NOT FOUND
7FiE 78 o372 LD AR sTEST FOR END
7F1F B1 28380 OR C
7F2@ B0 22390 JR 75 55TB:0 G0 IF AT END OF STRING
7F22 DD7E®5 22400 LD Ay (IX+5) $GET SECOND CHAR OF KEY
TF25 BE 22410 (o (HL) s COMPARE TO NEXT BYTE
TF26 ZBEF Bo4zo JR NZ: 557010 sCONTINUE IF NO MATCH
7FZ8 ZB 22430 DEC HL sADJUST PACK TO START
7F29 1803 BB440 JR 8557030 3GO TO STORE RESULT
7F2B Z1FFFF 23450 SSTOZO LD HLs—1 sFLAG FOR NOT FOUND
7FZE DD7506 BR460 SSTO3O LD (IX+6) 9l 3STORE RESULT
7F31 DD74@7 2470 LD (IX+7)sH
7F34 DDE1 22480 POP IX SRESTORE REGISTERS
7F36 E1 BR4F0 POP HL.
7F37 C1 20500 POP BcC
7F38 Fi 28510 POP AF
7F39 C9 285:0 RET SRETURN To CALLING PROG
ulnlrdr] P53 END

20020 TOTAL ERRORS

SSTCHR DECIMAL. VALUES

2435 197y 229y 221 229y 205y 127y 10s FE9s 7321,
225 221y 11@s By 221y 10Ze 1. 27 78y 2

2219 7@y 3y 221 1269 45 2379 1775 3Fs 13

12@y 177+ 4@y 9y 221y 126y Sy 190 32y 239,

43s 24+ 3y 335 255y 259 2219 117+ b3 731,

116y 75 2219 225 225 193+ Z41s 201
CHKSUM= 28

SXCASS: WRITE/READ SCREEN CONTENTS TO CASSETTE

System Configuration

Model |, Model 111,

Description

SXCASS writes the video display as a cassette record or reads in a previously
written record to the display. All screen characters and graphics are written to
the cassette and the subsequent read will restore the entire screen as it ap-
peared before the write.

206

7F00

Input/Output Parameters

On input, the HL register pair contains a zero for a write or a one for a read. On
output, the screen has been written as a single cassette record, or the next
cassette record has been read to the screen.

INPUT OUTPUT
Ho L HooL
T T
| o-wmme = 1=ReD | —=> | UNCHANGED
T ¥

Algorithm

If a screen write is to be performed, the code at SXC010 is executed. This uses
the ROM subroutine to write leader (287H) of zeroes and a sync byte. The loop
at SXCO10 calls the ROM “‘write cassette byte’” subroutine to write the video
display memory contents from location 3C00H through 3FFFH. HL contains the
pointer to video display memory. The write is done until the H register contains
40H, signifying that the last screen byte has been written. No checksum or
other header data is put on the cassette record.

If a read screen is to be performed, the code at SXC025 is executed. ROM
subroutine 296H is called to bypass the leader of the next cassette record. The
loop at SXCO030 calls the ROM “‘read cassette byte’’ subroutine to read in the
bytes of the next cassette record into video memory locations 3COOH through
3FFFH. HL is used as a memory pointer. The read is done until the H register
contains 40H, signifying that the last screen byte has been read.

Sample Calling Sequence

NAME OF SUBROUTINE? SXCASS

HL. VALUE? @ WRITE

FARAMETER ELOCK LOCATION?
MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO7 37777
SUBROUTINE EXECUTED AT 37777
INPUT: QUTPUT :

HL = HL= 0

NAME OF SUBROUTINE?

Notes

1. The read or write operation takes approximately 25 seconds.
2. This subroutine does not save registers.

Program Listing

eoiee ORG 7F @R 30520

208110 ,**
00120 3* WRITE/READ SCREEN CONTENTS TO CASSETTE.

Q0130 ;5% INPUT: HL=@ FOR WRITE SCREENs 1 FOR READ - *
0B140 3% OUTPUT: SCREEN/CASSETTE ACTIONS *
DDLED 5 9699633636 356 36 3 36 396 36 96 3696 36 36 36 36 96 36 36 3636 2 2 36 3 9696 36 96 96 96 2 6 36 96 e 36 696 36 36 6 9696 9696 36 3¢

22160 3

207

7F@0 F3 20170 SXCASS DI

7FB1 AF 2180 XOR A

7F@z CD1iz0z 00190 Cal.l. 212H

7FB5 CD7F@A 0:00 CALL BA7FH

7F@8 CR45 oazie BIT @it

7FBA 2014 2ozz JR NZ+SXCO25
20230 3 WRITE HERE

7F@C CDB71z R0z240 CALL 287H

7FQF Z21803C P0z50 LD HL s 3C20H

7F12 E5 DRz6@ SXCO1@ PUSH HL

7F13 7E o270 LD As (HL)

7F14 CD&4BZE 2080 CALIL 264H

7F17 El sl POP HL

7F18 23 20300 INC HL

7F19 7¢C 20316 L.D AsH

7F1A FE4@ 20320 CcP 40@H

7FI1C Z0F 4 22330 JR NZs8XCO1@

7F1E 1812 20340 JR SXCo42
20352 : READ HERE

7FZ2@ CD968zZ PA360 SXCBZS5 CALL Z296H

7F23 210@3C an376 LD HL « 3CO0H

7F26 E5 20382 SXCO3Q PUSH HL

7HE7 CD35@z o390 CALL <233H

7Fzh El P0400 PGP HL.

TEER 77 20410 LD (HL) s A

TFzC 23 20420 INC HL.

7F2D 7C aB430 LD AsH

7FZE FE40 Da440 cp 4QH

7R3 ZOF 4 aR45@ JR NZ,S5XCo30

7F32 CDF8021 Q468 SXCO4B CALL 1F8H

7F35 C9 20470 RET

raln 1] 20480 END

20Re TOTAL ERRORS

sDISABLE INTERRUPTS
5ZERO A

SSELECT CASSETTE @
3%XGET FUNCTION#**%
3TEST FUNCTION

3G0O IF READ CASSETTE

sWRITE LEADER

5START OF SCREEN
$SGAVE CURRENT LLOCATION
1GET NEXT BYTE
$WRITE TO CASSETTE
sREGTORE POINTER
sBUMP POINTER
sGET POINTER MSE
STEST FOR SCREEN END+1
sLOOP IF NOT END

5 CLEANUP

sBYPASS LEADER
$START OF SCREEN
$8AVE CURRENT LOCATION
sREAD NEXT BYTE
$RESTORE POINTER
SSTORE BYTE
sBUMP POINTER
SGET POINTER MSE
sTEST FOR SCREEN END+1
sLOOP IF NOT END
sDESELECT
fRETURN TO CALLING PROG

TIMEDL: TIME DELAY

5XCASS DECIMAL VALUES

2435 1759 2055 18, 2y 205 127 1Qs 2035 69
32y 20y 205, 135y 2y 335 By 60 229y 176
Z2@3s 18@s =5 225 3% 134y 2944 &by 3Ty Thiy
24y 18, 2035 1502 2y 33y By 6@ 229y D5
33 I 228 1195 38s 1245 2944 b4y 3Ty Thib,
205, 248 1+ 201

CHREUM= 229

System Configuration

Model I, Model 1lI, Model 11 Stand Alone.

Description

TIMEDL delays a specified amount of time, from 1 millisecond to 65,536 milli-
seconds, before returning to the user calling program.

Input/Output Parameters

On input, the HL register pair contains the number of milliseconds to delay,
from 1 to 65,536. A value of zero is treated as 65,536. TIMEDL returns after the
specified delay.

208

INPUT ouTPUT
H L H L
T 1
l DELAY COUFIIT 65,635 q : l UNCH{-\NGED
T T

Algorithm

The 1 millisecond time delay loop is the heart of TIMEDL. It consists of one
instruction, the DJNZ at TIM020. This instruction takes 13 cycles when the loop
is made or 8 cycles when B is decremented to zero. With a given count in B,
therefore, the time delay is:

Delay (cycles) = (CNT—1)%13 + 8

A cycle in the Model | with a standard clock takes 0.56375 microseconds. The
delay in microseconds is therefore:

Delay (microseconds) = (CNT—1)%7.32875 + 4.51
To get a time delay of 1000 microseconds (1 millisecond):

1000 = (CNT—1)%7.32875 + 4.51;
CNT= 134.83

The outer loop of TIMEDL controls the number of 1 millisecond inner loops.
The outer loop has some overhead associated with it, so the count in B for the
DINZ is made 134 even. The actual time delay for a given value in HL, HLCNT,
is now:

Delay (cycles) = HLCNT*(7 4+ (133%13+8) +15 +12)
Delay (microseconds) = HLCNT#998.40

This is about a 0.1% error on the low side, or about a millisecond for a one-
second delay.

Sample Calling Sequence

NAME OF SUBROUTINE? TIMEDL

HL VALUE? @ MAXIMUM DELAY = 65.535 SECONDS
FARAMETER BLOCK LOCATION?

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO? 50000

SUBROUTINE EXECUTED AT 50000

INPUT: OQUTPUT :

HL.= @ HL= @

NAME OF SUBRROUTINE?

Notes

1. Adjust the immediate value loaded into B for clock modified TRS-80s.
2. Use an immediate value of 153 for Model llis. ’

3. Use an immediate value of 151 for Model lls for delays of .5 to 32768
milliseconds in units of 1/2 millisecond.

209

Program Listing

7Fo0 20100 ORG 7FBeH @520
DB LD 595K K0T NAAIEIEII NI IETEIETEIEIE NI I IEI00E06 6
@012@ s TIME DELAY. DELAYS 1 TO &5:536 MILLISECONDS. *
20138 ; INPUT: HL=TIME DELAY COUNT:s 1 TO 65535. 0=465536 *
Bo140 3 OUTPUT:RETURN AFTER DELAY *
OAIDD 541N IACIEI NI KKK I I 66696 0606060606 069696099696 2696
22160 3

7Fe@ C5 00170 TIMEDL PUSH BC $SAVE REGISTERS

7F@1 D5 22180 PUSH DE

7F@2 ES oa17e PUSH HL

7F@3 CD7FBA e0z00 caLL @AT7FH s*¥%GET TD COUNT**%

7FB6 110100 eezio LD DEs 1 sDECREMENT

7FQ9 Q686 20220 TIMB1@ LD Bs 134 $INNER LOOP COUNT 7

7FOB 10FE 20230 TIMRZ® DJINZ TIMBZ@ SLOOP FOR 1 MS 8/13

7F@AD EDSZ2 a0z40 SBC HL s DE $DECREMENT TD COUNT 15

7FQF ZOF8 20250 JR NZ:TIMO1Q $GO IF NOT OVER 7/12

7F11 E1l Paz40 PoP HL $RESTORE REGISTERS

7F12 D1 20270 POP DE

7F13 €1 20280 POP BC

7F14 C9 20z90 RET $RETURN TO CALLING PROG

2000 00300 END

QReRd TOTAL ERRORS

TIMEDL DECIMAL VALUES

1979 213s 229y 205y 127 1@s 175 15 @y by
134y 16y 254y 237y 82y 33y 248, 229y 209 193,
201

CHKSUM= 28

TONOUT: TONE ROUTINE

System Configuration

Model I, Model IlI.

Description

TONOUT outputs a tone through the cassette port. The cassette jack output
may be connected to a small, inexpensive amplifier for audio sound effects or
warning tones. The tone ranges from approximately O cycles per second (hertz)
to 14,200 cycles per second. The duration of the tone may be specified by the
user.

TONOUT is not a musical tone generator (see MUNOTE), but is a general-
purpose tone generator to produce tones over a wide range and duration.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain a frequency count for the subroutine.
The frequency count may be 1 to 65,535. A frequency count of 0 is regarded as

210

65,536. The frequency decreases as the frequency count increases. A frequency
count of 1 is approximately 14,200 hertz, while a frequency count of 256 is
approximately 150 hertz. The exact frequency is given by

Frequency = 1,000,000 / (25.9xCOUNT + 44.53)

The next two bytes of the parameter block contain a duration count of 1 to
65,535. A duration count of 0 is regarded as 65,536. The greater the duration
count, the greater will be the duration of the tone. Each duration count pro-
duces one ‘“cycle’ of the tone plus one additional cycle. A tone of 400 hertz,
for example, is 1/400 or 2.5 milliseconds per cycle, and a duration count of 100
would cause the 400 hertz tone to be generated for 100%2.5 milliseconds or 1/4
second. The higher the frequency, the smaller the cycle time, and the duration
count should be adjusted to compensate for this. Two consecutive 400 hertz
and 800 hertz tones of 1/4-second duration, for example, should have duration
counts of 100 and 50, respectively. Maximum duration for a 1000 hertz tone is
65.5 seconds.

INPUT OUTPUT
H . L H } L
+ T
| POINTER TO PARAM+0 | — | UNCHANGED |
PARAM-+# PARAM+0
1 FREQUENCY | 1 UNCHANGED
o +1
+2 +2
1 ousamon | 1 UNCHANGED +
3 _— =
Algorithm

TONOUT uses two loops. The outer loop (from TON010) produces the number
of cycles equal to the duration count. The inner loop is made up of two parts.
The TONO20 portion outputs an “‘on” pulse from the cassette output. The
TONO30 portion turns off the cassette port for the same period of time. Both
portions use the frequency count from the parameter block for a timing loop
count.

The frequency count is first put into DE and the duration count into IX. The
TONO10 loop puts the DE frequency count into HL and turns on the cassette
(OUT OFFH,A). The count in HL is then decremented by one in the TON020
timing loop. At the end of the loop, the count is again put into HL from DE, the
cassette is turned off, and the count is decremented by one in the TONO30
timing loop. After this loop, the duration, or cycle, count in IX is decremented
by one and if not negative, a jump is made back to TONOT10 for the next cycle.

Sample Calling Sequence

NAME OF SUBROUTINE? TONOUT

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 402000
PARAMETER BLOCK VALUES?

211

7F0@

7F@D
7F@a1
7F22
7F@3
7F @4
7F@6
7F@9
7F@A
7F@acC
7FOF
7F12
7F13
7F16
7F19
7F1A
7F1B
7F1iD
7F20
7F21
7Fz2
TF24
7F26
7F27
7F2A
7F 2B
7F2C
7FZE
7F3@

DAZ&T7F
6B

b2
3EGZ
DIFF
a9

Lo
s
<

o

+ + +
S0

37
12006
a

FREQUENCY COUNT OF ABOUT 1000 HZ
DURATION OF ABOUT 16 SECONDS

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7?7 37000
SUBROUTINE EXECUTED AT 370006

INPUT:

HL= 40000
PARAM+ @& 37
PARAM+ 1 @
PARAM+ = 164

PARAM+ 3 39

OUTPUT #

HL= 42000

PARAM+ @ 37

PARAM+ 1 @ | \eyaNGED
PARAM+ = 16

PARAM+ 3 39

NAME OF SUBROUTINE?

Notes

1. Cassette port electronics limits the tone output to 100 through 6000 hertz

or so.

2. The frequency equation above is for a standard TRS-80 Model I clock fre-

quency.

Program Listing

22100

ORG

7FBBH

;@522

20110 3 LR AR 2R R IETT I TS LT T L TR TR E R R R RN R R RV I VRV GV Ry

00128 s3* TONE ROUTINE.

20140 ;=
22150 5%
PO16D 5%
28170 ;%

INPUT: HL=>

OUTPUTS A TONE THROUGH THE CASSETTE
@B13@ 3+ PORT OF SPECIFIED FREQUENCY AND DURATION.
PARAMETER BLOCK
PARAM+@s + 1=FREQUENCY COUNT

PARAM+Zs +3=DURATION COUNT

OUTPUT:TONE ON CASSETTE PORT

* koK ok & K

PRi8D 3 F6F KA NI I I T I A I IE I I I 26 I I I I I U963

2170 3
Q2200 TONOUT
oz10

20:2:0

ooz30

22240

20250

BBz6D

o270

2280

20290

20300

oe31@

bo3ze

Ba330

PA34@

20350

B340

20370 TOND1O
22380

20372

22400

20410 TONDZOD
@420

20430

00440

20450

oR46>

0@3470 TONG3Q

212

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
L.D
DEC
L.D
LD
DEC
PUSH
POP
LD
LD
LD
LD
ouT
ADD
JP
LD
LD
LD
ouT
ADD

Es (IX+@)
Ds (IX+1)
DE

Co (IX+2)
Bs (IX+3)
BC

BC

IX

BCs—1
LsE

HsD

Asl
(BFFH) s A
HL.sBC

Cr TON@ZD
LsE

HsD

A2
(RFFH)Ys A
HLsBC

$BAVE REGISTERS

%X XGET PE LOC” N*%%
STRANSFER TO IX

5PUT FRE® COUNT IN DE

$ADJUST FOR LOOP
sPUT DUR COUNT IN BC

sADJUST FOR LOOP
$TRANSFER TO IX

$FOR TIGHT LOOP

sPUT FRE® COUNT IN HL. 4
34
FMAXIMUM POSITIVE 7
sOUTPUT 11

sCOUNT-1 11

iLP FOR 1/2 CYC 7/12
5PUT FRE® COUNT IN HL 4
34 A
SMAXIMUM NEGATIVE 7
5QUTPUT 14

5 COUNT-1 11

7F31 38FD 20480 JR Cs TOND3Q sLP FOR 1/2 CYC 7/12
7F33 DDA9 a047@ ADD IXs8C $DECREMENT DUR COUNT 15
7F35 DAZOT7F 22500 JP CsTONG1@ sLOOP IF NOT DONE 7/12
7F38 DDE1 20510 POP IX $RESTORE REGISTERS

7F3A E1 0520 POP HL

7F3B D1 Bas530 PGP DE

7F3C C1 20548 POP BC

7F3D F1 08558 POP AF

7F3E C9 R2560 RET SRETURN TO CALLING PROG
o000 2a5706 END

22200 TOTAL ERRORS

TONOUT DECIMAL VALUES

2455 197+ 213 229y 2Z1s 229, Z05s 1279 109 229
221y 2259 221y 4y @y 221y 8B&s 1y 279 221,

78s 25 221y 70s 35 11s 1979 221y 225 14

2559 2353 107s 98y 625 1y 211y 255y 9y 218,

38s 1275 107 98s b2 2y Z1ls 255 9y Sébs

253y 221y @5 2189 32y 1279 221y 225y 225 209,
193, 241, 201

CHRBUM= 102

WCRECD: WRITE RECORD TO CASSETTE

System Configuration

Model 1, Model IlI.

Description

WCRECD writes a variable-length record from memory to cassette. The record
may be any number of bytes, from 1 to the limits of memory. The record is
prefixed by a four-byte header that holds the starting address and number of
bytes in the remainder of the record. The record is terminated by a checksum
byte that is the additive checksum of all bytes in the record. Data in memory
may represent any type of data the user desires; the record is written out as a
““core image."”

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block are the starting address of the data to be
written out, in standard Z-80 address format, least significant byte followed by
most significant byte. The next two bytes of the parameter block are the num-
ber of bytes to be written in the record, 1 to 65,535. A value of O is treated as
65,536 bytes.

On output, the contents of the parameter block are unchanged and the
record has been written to cassette.

213

INPUT QUTPUT

H L H L

" 1
T
[POINTER Tq PARAM+g : L UNCH/IKNGED
}
T T

PARAM-+0 STARTING PARAM-+@
+ BUFFER 4+ + UNCHANGED -
+1 ADDRESS +1
+2 # OF BYTES +2
+ TO BE + 1 UNCHANGED -+
+3 WRITTEN j +3
Algorithm

The WCRECD subroutine uses Level Il or Level Ill ROM subroutines to perform
the write. First, a CALL is made to 212H to select cassette 0. Next, a call is made
to 287H to write 256 zeroes and a sync byte as leader for the cassette record.

The four-byte header is written out in the WCRO005 loop. This header is taken
from the parameter block and consists of the two address bytes and the two
byles containing the number of bytes in the record. Each byte is written by a
CALL to 264H. A checksum in B is cleared before the operation; after the
four-byte write, it contains the partial checksum for the four bytes.

The starting address for the data and the number of bytes is next put into HL
and DE, respectively. The loop at WCRO10 writes out all of the bytes in the
memory block by CALLS to 264H. For each CALL, the current value of the byte
is added to the B checksum subtotal, the pointer to memory in HL is bumped
by one, and the count in DE is decremented by one. When DE reaches zero,
the checksum in B is output as the last byte and the cassette is deselected by a
CALL to 1F8H.

Sample Calling Sequence

NAME OF SUBROUTINE? WCRECD

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ B 2 15340 BUFFER

+ 22 10z4 1024 BYTES

+ 4 B @

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO7 38000
SUBROUTINE EXECUTED AT 38000

INPUT OUTPUT 2

HL= 40000 HL= 4P000

PARAM+ @ @ PARAM+ @ @

PARAM+ 1 608 PARAM+ 1 60

PARAM+ = @ PARAM+ = @ [UNCHANGED
PARAM+ 3 4 PARAM+ 3 4

NAME OF SUBROUTINE?

Notes

1. This subroutine uses cassette 0 only.

2. For 500 baud tape operations, each 1000 bytes will take about 20 seconds.
3. This subroutine does not save registers.

214

7FoB

7Foe
7F@1
7Faz
7F@5
7F@8
7F@B
7FacC
7F@F
7F10@
7F11
712
7F13
7F14
7F15
7F16
7F19
7F1A
7F1B
7F1C
7F1E
7Fz0
7F21
7F24
7F27
TF2A
7F2D
7FZE
7F2F
7F30
7F31
7F34
7F35
7F36
7F37
7F38
7F392

7F3A 2

7F38
7F3C
7E3D
7F3E
7F40
7F41
7F44
7F47
0000

F3
AF
chizez
cD8702
CD7F@A
ES
016004

Ché402
El

C1

23
10F1
DDE1
41
DD&EO®
DD6621
DD5EQZ

o0120
20110
0120
20130
00140
20150
00160
00170
20180
00190
20200
00210
20220
20230
20240
00250
00260
20270
20280
20290
20300
20310
20320
28330
20340
20350
P0360
20370
20380
20390
20400
20410
00420
20430
20440
00450
00460
20470
20480
20490
20500
00510
20520
20530
22540
20550
20560
20570
20580
20550
20600
20610
00620
20630
20640
08650

Program Listing

ORG 7FB0H 0520
§ F63696 3363 2 I 36 3 2 3696 W I 96 I H K I IE I I I I I W I I I I A I I I I I I I I I W I W NN
3% WRITE RECORD TO CASSETTE. WRITES A VARIABLE-LENGTH *
s# RECORD TO CASSETTE FROM A GIVEN BUFFER. *
$% INPUT: HL=> PARAMETER BLOCK *
5% PARAM+@:s +1=8TARTING BUFFER ADDRESS *
3% PARAM+2s +3=NUMBER OF BYTES TO BE WRITTEN *
3% OUTPUT:RECORD WRITTEN TO CASSETTE *
§ 02636 36360 0636 36 I I I K3 I 66T 6T I IEH I I I I I I I 1636 I
WCRECD DI sDISABLE INTERRUPTS

XOR A 3ZERO A

CALL 212H $SELECT CASSETTE @

CALL 287H sWRITE LLEADER

CALL @A7FH ;%%¥GET PAR BL ADDR#*#*#%

PUSH HL iSAVE

LD BCy» 1024+02 54 TOBs @ TO C
WCROBS LD As (HL) $GET HEADER BYTE

PUSH AF sSAVE BYTE

ADD AsC s CHECKSUM

LD CsA $SAVE CHECKSUM

POP AF sRESTORE ORIG BYTE

PUSH BC $SAVE COUNTs CHECKSUM

PUSH HL $SAVE POINTER

CALL 264H sWRITE BYTE TO CASSETTE

POP HL. sRESTORE POINTER

popP BC $GET COUNTs CHECKSUM

INC HL. sBUMP POINTER

DJINZ WCRBGS sLOOP FOR 4 HEADER RYTES

POP IX sCOMPLETE TRANSFER TO IX

LD BsC 5 CHECKSUM

L.D Ls (IX+@) $GET STARTING ADDRESS

LD Hs (IX+1)

LD Es (IX+2) sGET # BYTES

LD Dy {(IX+3)
WCRA1G® PUSH BC 3SAVE CHECKSUM

PUSH DE sSAVE # OF BYTES

PUSH HL. $SAVE CURENT LOCATION

LD Ay (HL) $GET NEXT BYTE

CALL 2&64H sWRITE TO CASSETTE

POP HL $RESTORE POINTER

POP DE $RESTORE # OF BYTES

POP BC 3GET CHECKSUM

LD As (HL) sBYTE JUST OQUTPUT

ADD AsE s COMPUTE CHECKSUM

LD BsA 3 SAVE

INC HL sBUMP POINTER

DEC DE sDECREMENT # BYTES

LD AsD sTEST FOR ZERO

OR E

JR NZsWCRO10 5LOOP IF NOT END

LD AsB $GET CHECKSUM

CALL 264H sOUTPUT AS LAST BYTE

CALL 1F8H sDESELECT

RET $RETURN TO CALLING PROG

END

WCRECD DECIMAL VALUES

2435 175, 205s 18y 29 205y 135 20 205s 127,

1@y 229y 19 B 4y 126 245y 129+ 79 241

197 229y 2052 100y 25 2254 1939 355 163 241,

221, 225y 655 2219 110y 221y 102y 14 221,
215

WRDSEC: WRITE DISK SECTOR

P4y 2y 221y Bbs 3y 197, 213y 229, 126 205,
100, 2y 225, 209s 193y 126, 128, 71s 35y 27,
122s 179y 32y 237y 1205 Z05s 1005 2, 2055 248,
1y 201

CHKSUM= 139

System Configuration

Model 1.

Description

WRDSEC writes one sector from a specified buffer area to a specified disk
drive. The user must know where a particular file is to be and what sectors are

involved to utilize this subroutine. It is not a general-purpose ‘‘file manage”’
subroutine.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the disk drive number, 0 to 3, correspond-
ing to disk drives 1 through 4. The next byte of the parameter block contains the
track number, O through N. (Standard TRS-80s use disk drives with 35 tracks;
other drives are available for 40 tracks.) The next byte is the sector number, 0
through N (0 through 9 will be the most common range). The next two bytes are
the user buffer area for the write ir standard Z-80 address format, least signifi-
cant byte followed by most significant byte. The next byte contains a zero if a
wait is to occur until the disk drive motor is brought up to speed; the byte
contains a 1 if the motor is running (disk operation has just been completed)

and no wait is necessary. The next byte (PARAM+ 6) is reserved for the status of
the disk write on output.

On output, all parameters remain unchanged except for PARAM+6, which
contains the status of the write. Status is O for a successful write, or nonzero if

an error occurred during any portion of the write. If an error did not occur, the
contents of the buffer has been written to the sector.

INPUT OUTPUT

H L H L

1
T H
L POINTER T(? PARAM+0 l — UNCH?NGED *I

PARAM+Q DRIVE # 0-3 PARAM+@ UNCHANGED
+1 TRACK # +1 UNCHANGED
+2 SECTOR # +2 UNCHANGED
+3 BUFFER é +3

<+ ADDRESS —+ <+ UNCHANGED <+
+4 (MEM 1+0) +4
B=WAIT 1=NO
+5 WAIT +5 UNCHANGED
@=NO ERROR
+6 RESERVED +6 ~B—ERROR
216

MEM1+8 MEM 146
+1
BY
=3 AL 1 w2 | 1
+3 | pata 1 i +3 | UNCHANGED |
» WRITTEN 4
-+ -+ -+ -+
+5 +5
1 1 1 4
+6 1 +6 | 1
Algorithm

The disk drive number in L is first converted to the proper select configuration
at WRDO010. The select byte is then output to disk memory-mapped address
37EOH to select one of the disk drives.

The wait bit is then examined. If this bit is a zero, the loop at WRDO15 counts
HL through 65,536 counts to wait until the disk drive motor is up to speed
before continuing.

The disk status is then examined (WRD020). If the disk is not busy, the track
number is loaded into the disk controller track register (37EFH) and a seek
command is given (37ECH) to cause the controller to ‘“seek’’ the track for the
operation. A series of time-wasting instructions is then done.

The code at WRDO30 gets the disk status after completion of the seek and
AND:s it with a “proper result’” mask. If the status is normal, the write contin-
ues, otherwise an ‘‘abnormal’”” completion is done to WRDQ90.

The sector address from the parameter block is next output to the controller
sector register (37EEH). Two time-wasting instructions are then done.

A write command is then issued to the disk controller command register
(37ECH). Further time-wasting instructions are done.

The loop at WRD040 performs the actual write of the disk sector. A total of 256
separate writes is done, one for each byte. HL contains the disk address of
37ECH, DE contains a pointer to the buffer address, and BC contains the data
register address of the disk controller. For each of the 256 reads, status is
checked. If bit 0 is set, all 256 bytes have been written. If bit 1 of the status is
set, the disk controller is still busy and a loop back to WRD040 is done. If bit 1
of the status is not set the next byte is read from memory, written to the disk,
and the memory buffer pointer incremented.

At the automatic (by the controller) termination of the write, status is again
read, and an AND of 7 is done to check for the proper completion bits. The
status is stored back into the parameter block.

Sample Calling Sequence

NaME OF SUBROUTINE? WRDSEC

HL VALUE? 430008

FARAM R BLOCK LOCATION? 40000
FaRaMETER BLOCK VALUES?

+ @ 1@ DRIVE @

+ 1 1 2 TRACK 2¢

217

+ 2 1 5 SECTOR 5
+ 3 £ 45000 BUFFER
+ 5 1 @ WAIT

+ 6 1 @

+ 7 @ @

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7 38000
SUBROUTINE EXECUTED AT 38000

7F 0B

7F 00
7F@1
7FRz
7F03
7F 04
706
7F@9
7F@A
7F@ac
7FOF
7F10
7F11
7F13
7TF14
7F16
7F19
7F1C
7F1D
7F1F
7Fz2
7Fz3
7F24

1@FD
3ZE@37
DD7E®S
B7
2008
210000
2B

7D

B4

20100
20110
20120
2130
20140
orise
R2162
23170
2180
20199
22200
ooz10
o220
20230
20248
20250
D026
oez70
20280
20290
2R300
20312
20320
20330
B0340
o350
22360
22370
22380
20370
bB40D
2B410
o420
82430
0440
20450

INPUT: OUTPUT :

HL= 40000 HL= 40000

PARAM+ @ @ PARAM+ @

PARAM+ 1 2@ PARAM+ 1 @

PARAM+ = PARAM+ 7 5

PARAM+ 3 200 PARAM+ 3 200 UNCHANGED
PARAMY 4 175 PARAM+ 4 175

FARAM+ 5 @ PARAM+ 5 D

PARAM+ & @ PARAM+ & @ —]-STATUS OK

NAME OF SUBROUTINE?

Notes

1. Always perform an RESTDS operation before initial disk I/O to initialize the
disk controller.

Program Listing

ORG

7F@eH

;@522

H **

i* WRITE DISK SECTOR.

3% TRACK,

3%
HE
3 *
3 *
3 *
3
L 3
7 *

INPUT:

WRDSEC PUSH

WRDD10

WRDB15

218

PUSH
PUSH
PUSH
PUSH
call
PUSH
POP

WRITES BUFFER INTO SPECIFIED

SECTOR OF DISK.

HL=> PARAMETER BLOCK

PARAM+D=DRIVE #, @ - 3

PARAM+1=TRACK #s @ - N

PARAM+2=5ECTOR #» @ —~ N

PARAM+3, +4=BUFFER ADDRESS
PARAM+5=0=WAIT AFTER SELECTs 1=NO WAIT
PARAM+6=8TATUSs 8=0K, 1=BAD
QUTPUT:BUFFER WRITTEN TO TRACKs SECTOR

3EMAM IR IK IR IR I I T I6 I I6 3030696 96369626 6 96 3696036 996 966 2

As (IX+0)

A
ByA
Ay BOH

WRD@10
(37EQH) s A
As (IX+5)

A

NZ» WRDDZ@

HL:@
HL
Ayl
H

$SAVE REGISTERS

s#%RGET PBE LOC” N#%%
$TRANSFER TO IX

SGET DRIVE #
s INCREMENT BY ONE
sPUT IN B FOR CONVERT
sMASK
5ALIGN FOR SELECT
5 CONVERT TO ADDRESS
$SELECT DRIVE
5GET WAIT/NO WAIT
5TEST
5GO IF NO WAIT
SWAIT COUNT
sDELAY LOOP & -
sTEST DONE 4
54

* ok ok ok ok ok ok ok ok Xk

TF25 ZOFER D460 JR NZs WRDO1S $LOOP UNTIL HL=0 7/12
. TF27 3AEC37 PB478 WRDBZ@ LD Ay (37ECH) - 5GET STATUS
TF2A CB47 20480 BIT BsA sTEST BUSY
TF2C Z20F9 20490 JR NZ» WRDOZO sLOOP IF BUSY
7FZE DD7E@1 B2500 LD As (IX+1) 5GET TRACK NUMBER
TF31 32EF37 Q0510 LD (37EFH) s A 5OUTPUT TRACK #
. TF34 C5 DB5 2@ PUSH Bc SWASTE TIME
7F35 C1 20530 POP BC
TF36 3E17 20540 LD As17H $SEEK COMMAND
7F38 3:2eC37 a0550 LD (37ECH) A sOUTPUT
. 7F3B C5 Q0568 PUSH BC 3WASTE TIME
7F3C C1 22570 POP BC
7F3D €5 2580 PUSH BC
7F3E C1 2596 POP BC
. YF3F 3AEC37 22600 WRDB3G LD As (37ECH) sGET STATUS
TF42 CR47 24610 BIT BrA sTEST BUSY
TF44 ZOFQ nasLza JR NZ s WRDB32 sLOOP IF BUSY
7F44 E698 630 AND F8H $TEST FOR NORMAL. COMPL
7F48 z2@zC PR&4D JR NZ s WRDOZ0 560 IF ABNORMAL
7F4A DD7EQZ PRs650 LD As (IX+2) 5GET SECTOR #
7F4D 3ZEE37 8660 LD (37EEH) ¢+ A sOUTPUT
7F5@ C5 20670 PUSH BC sWASTE TIME
7F51 Ci PR680 POP BC)
7F32 Z1EC37 A04L70 L.D HL+ 37ECH 5DISK ADDRESS
7F55 DDSE®@3 D700 LD Es (IX+3) s PUT BUFFER ADDRESS IN DE
7F58 DD5604 Qo712 ..D Dy (IX+4)
7F5B 3EAC Qo720 L.D As @ACH sWRITE COMMAND
. 7F5D 77 L2730 L.D (HL) v A sOUTPUT
7F5E €5 23740 PUSH BC SWASTE TIME
7F5F Ci1 LB750 POP BC
7F6B C5 bR760 PUSH BC
. 7F61 C1 P0770 POP BC
TF6Z BIEF37 Q0780 LD BCs37EFH $DATA REG ADDRESS
7F&65 7E PR7983 WRDR4G LD As (HL) $GET STATUS
7F66 OF 20820 RRCA sALIGN
7F6T7 3008 o810 JR NCs WRDA5@ 5G0 IF DONE
7F&69 @F ralraf =il RRCA AL TGN
7F&6A 30F9 20830 JR NCs» WRDO4D 3G0 IF NOT DRa
7F&6C 1A LPB40 LD Ar (DE) $GET BYTE
. 7F&D Bz far85a0 () (BC)sA 5OUTPUT TO DISK
7F6E 13 Q860D INC DE $ INCREMENT MEMORY PNTR
7F&F 18F4 a870 JR WRDQ4@ sLOOP TIL DONE
7F71 3AEC37 00880 WRD@5A LD Ao (37ECH) 3GET STATUS
TF74 E6@7 a0890 AND 7 sCHECK FOR PROPER STATUS
. 7F76 DD7706 0908 WRD29® LD (IX+&)s A s8&TORE STATUS
7F79 DDE1 209210 POP IX $RESTORE REGISTERS
7F7E E1 B@9:z0 POP HL.
7F7C D1 20930 POP DE
. 7F7D Ci1 P40 POP EC
7F7E F1 Ba95@ POP AF
7FE7F €9 20960 RET SRETURN TO CALLING PROG
a0 Q0970 END
. 2BARB TOTAL ERRORS
. WRDSEC DECIMAL VALUES
248y 1975 213y 229 2215 229 20%s 1279 105 229,
2219 225y 2219 126s By 6@y 715 629 138y 7
16 253y 50y 224 55¢ 221y 1269 S5s 1835 32
8 335 @y Qs 125, 188y 32, 251+ 58,
236y 555 203s 712 32 249 221 1265 1+ 504
2399 559 197y 193y &2y 23y 5@y 236 55y 197
193s 1975 193s 58s Z236s 5%y Z03s 71s 322 249,
2308y 192y 32y 4449 221y 1265 2+ 50 238y 59,
l 219

197, 193y 335 236s 55y 221y 94 35 I3l Béhe
49 b2y 172y 119y 197s 193y 197y 1935 15 239,
359 126 155 48. Bs 15: 4By 249, 2bs T

19y 24y 2444 58y 236y 555 230y 7y 221y 119
by Z2Y1s Z25s 225y 209 193 2415 201

CHK8UM= 23

220

APPENDICES

APPENDIX 1
Z-80 Instruction Set

The following is a brief explanation of the Z-80 instructions used in the TRS-80
subroutines. Refer to Zilog or Radio Shack documentation for more detailed
descriptions.

ADC

This instruction adds one byte plus the current contents of the Carry flag to the
contents of the A register when used in the format “ADD A,B"’; the byte may be
in another CPU register, an immediate value, or from memory. The instruction
adds two bytes from a register pair plus the current contents of the Carry flag to
the contents of HL, IX, or IY, when used in the format “/ADD HL,DE."” Flags are
affected.

ADD

This instruction adds one byte to the contents of the A register when used in the
format “ADD A,B”’; the byte may be in another CPU register, an immediate

223

value, or from memory. The instruction adds two bytes from a register pair, 1X,
or IY to the contents of HL, IX, or 1Y, when used in the format “ADD HL,DE.”
Flags are affected.

AND

This instruction logically ANDs one byte and the contents of the A register. The
byte may be in a CPU register, an immediate value, or from memory. Typical
format is “AND B,” which ANDs the B and A registers. Flags are affected.

BIT

This instruction tests the bit of a CPU register or memory location. “/BIT 7,B"”
tests bit 7 of the B register, while “BIT 0, (HL)"’ tests bit 0 of the memory

location pointed to by the HL register pair. The state of the bit goes into the
Carry flag.

CALL

This instruction calls a subroutine by pushing the return address into the stack.
In the format "“CALL 0212H"" it is an unconditional call. In the format “CALL
NZ,0212H" it is a conditional call. The conditions may be on the state of the
Zero, Carry, Sign flag, or other flags. No flags affected.

CCF

This instruction complements the Carry flag; a set is changed to reset and vice
versa.

CcpP

This instruction compares two bytes, one in the A register, and one from an-
other CPU register or memory. The result does not replace the contents of A, but
only sets the flags on the result of the compare. Typical format is “/CP (HL),”
which compares A with the contents of the memory location pointed to by the
HL register pair. Flags are affected.

CPD

This instruction performs one step of an “end to beginning”’ block compare,

using A as the comparison key, HL as the pointer, and BC as the number of
bytes. Flags are affected.

CPDR

This instruction performs an “end to beginning”’ block compare, using A as

the comparison key, HL as the pointer, and BC as the number of bytes. Flags
are affected.

224

cpi

This instruction performs one step of a “beginning to end” block compare,

using A as the comparison key, HL as the pointer, and BC as the number of
bytes. Flags are affected.

CPIR

This instruction performs a ““beginning to end’’ block compare, using A as the

comparison key, HL as the pointer, and BC as the number of bytes. Flags are
affected.

CPL

This instruction complements the contents of A; all ones are changed to zeroes,
and all zeroes to ones. Most flags are unaffected.

DAA

This instruction adjusts the result in the A register so that it is a ““decimal’’ or
bed result. Flags are affected.

DEC

This instruction decrements the contents of a CPU register by one, when used
in the format ““DEC E.” When used in the format “DEC HL,” it decrements the
contents of a register pair by one. When used in the format “DEC (HL)"”" or
“DEC (IX+5)"" it decrements the contents of a memory location by one. Flags
are affected only in the 8-bit case.

DI

This instruction disables interrupts.

DINZ

This instruction decrements the contents of the B register and then jumps if the
result is not zero. It is relocatable. Typical format is *’DJNZ 9000H.”" Flags are
unaffected.

El

This instruction enables interrupts.

EX

This instruction swaps the contents of EX and HL when it is used in “/EX DE,HL"”’
or points to the “‘primed set’’ of the A register and flags when it is used in “EX
AF,AF"” or exchanges the first two bytes in the stack with HL, IX, or IY when
used in ““EX (SP),HL”” format. Flags are unaffected.

225

EXX

This instruction switches to the primed set of BC, DE, and HL. Flags are unaf-
fected.

IN

This is the input instruction. It inputs a value from an input/output device into
the A register when in the form “IN A,(OFFH).” Flags are affected.

INC

This instruction increments the contents of a CPU register by one, when used in
the format “INC E.” When used in the format “INC HL,” it increments the
contents of a register pair by one. When used in the format “INC (HL)"" or “INC
(IX+5)"" it increments the contents of a memory location by one. Flags are
affected in 8-bit case only.

JP

This is the jump instruction. In the format “JP 9000H"" or “JP (HL),” it is an
unconditional jump. In the format “JP NZ,9000H,"" it is a conditional jump. The
condition may be on the Zero flag (Z, NZ), Carry flag (C, NC), Sign flag (M, P),
or other flags. Flags are unaffected.

JR

This is the jump “relative’” instruction. It is identical in function to the “/JP"’
instruction except that it is relocatable. Typical format is “JR 9000H’’ for an

unconditional jump or “JR NZ,9000H" for a conditional jump. Flags are unaf-
fected.

LD

This is the load instruction. It transfers data between CPU registers or between
CPU registers and memory. When it is used to transfer data between two CPU
registers, 8 bits will be transferred, and the format will be similar to “LD A,B”
where B is the “‘source’” and A is the destination. When it is used to transfer
from a CPU register to memory, the format will be similar to “LD (3CO0OH),A"
or LD (HL),A”; the former transfers 8 bits from A to memory location 3CO0H,
the later transfers 8 bits from A to the memory location pointed to by HL. The

format for 8 bit transfers from memory to a register will be reversed, as in “LD
A,3CO0H)" and “LD A,(HL).”

LD can also be used to transfer 16 bits of data between a register pair and
memory. The format will be similar to ““/LD HL,(3C00H),”” which transfers the
contents of location 3CO0H and 3CO1H to the L and H registers, respectively.

To transfer data between memory and a register pair, the format is reversed as
in ‘LD (3CO0H),HL.”

226

LD can also be used to transfer immediate data into a register or register pair, as
in “LD A,45H,"” which loads A with 45H, or */.D HL,3C00H’’" which loads HL
with the value 3COOH. Flags are unaffected.

LDD

This instruction performs one step of an ‘“end to beginning’ block move, using
HL as the “source pointer,”” DE as the “destination pointer,”” and BC as the byte
count. Flags are affected.

LDDR

This instuction performs one step of an “‘end to beginning’’ block move, using
HL as the “source pointer,”” DE as the ‘“destination pointer,’” and BC as the byte
count. Flags are affected.

LDI

This instruction performs one step of a “‘beginning to end”” block move, using
HL as the “’source pointer,”” DE as the ““destination pointer,”” and BC as the byte
count. Flags are affected.

LDIR

This instruction performs a ‘’beginning to end” block move, using HL as the
“source pointer,”” DE as the “‘destination pointer,”” and BC as the byte count.
Flags are affected.

NEG

This instruction takes the two’s complement of the A register. It ‘‘negates’’ the
contents of A. Flags are affected.

NOP

This instruction is a “‘no operation”” performing no function. Flags are unaf-
fected.

OR

This instruction logically ORs one byte and the contents of the A register. The
byte may be in a CPU register, an immediate value, or from memory. Typical
format is “OR B,”” which ORs the B and A registers. Flags are affected.

ouT

This is the output instruction. It outputs a byte from the A register to an
input/output device when in the form “OUT (0FFH),A.” Flags are unaffected.

227

POP

This instruction POPs a two-byte value from the stack and puts it into a register
pair. “POP DE” loads the D and E registers with the next two bytes from the
stack and adjusts the SP register by two. Flags are unaffected unless AF

POPped.
PUSH

This instruction pushes a register pair, 1X, or 1Y onto the stack. “PUSH BC”
pushes the contents of B and C onto the stack and adjusts the SP register by
two. Flags are unaffected.

RES

This instruction resets a bit in a CPU register or memory location. “'RES 5,A"”
resets bit 5 of the A register to 0, while ‘“RES 2,(HL)"’ resets bit 2 of the memory
location pointed to by the HL register pair. Flags are unaffected.

RET

This instruction returns from a subroutine by popping the return address from
the stack. If the format is “/RET,”” it is an unconditional return; if the format is

“RET NZ,”” the return is conditional upon the Zero, Carry, Sign, or other flags.
Flags are unaffected.

RL

This instruction rotates the contents of a CPU register and carry (nine bits) left
one bit position. Typical format is “RL D" which rotates the D register and
carry. Flags are affected.

RLA

This instruction rotates the A register and carry (nine bits) one bit position left.
Flags are affected.

RLC

This instruction rotates the contents of a CPU register one bit position left.
Typical format is “RLC E,”” which rotates the E register. Flags are affected.
RLCA

This instruction rotates the A register one bit position left. Flags are affected.

RLD

This instruction rotates the memory location pointed to by HL -and the least

significant four bits of the A register four bits left. It is a “’bcd shift.”” Flags are
affected.

228

-/

RR

This instruction rotates the contents of a CPU register and carry (nine bits) one
bit position right. Typical format is “RR B’* which rotates the B register and
carry. Flags are affected.

RRA

This instruction rotates the A register and carry (nine bits) one bit position right.
Flags are affected.

RRC

This instruction rotates the contents of a CPU register one bit position right.
Typical format is “RRC H,” which rotates the H register. Flags are affected.

RRCA

This instruction rotates the A register one bit position right. Flags are affected.

RRD

This instruction rotates the memory location pointed to by HL and the least
significant four bits of the A register four bits right. It is a “bcd shift.” Flags are
affected.

SBC

This instruction subtracts one byte minus the current contents of the Carry flag
from the contents of the A register when used in the format “SBC A,B”’; the byte
may be in another CPU register, an immediate value, or from memory. The
instruction subtracts two bytes from a register pair minus the current contents of
the Carry flag from the contents of HL, 1X, or 1Y, when used in the format *‘SBC
HL,DE.” Flags are affected.

SCF

This instruction sets the Carry flag.

SET

This instruction sets a bit in a CPU register or memory location. ‘/SET 5,C"" sets
bit 5 of the C register, while ““SET 0,(HL)”’ sets bit O of the memory location
pointed to by the HL register pair. Flags are unaffected.

SLA

This instruction logically shifts a CPU register one bit position left. Typical
format is ““SLA H,” which shifts the H register. Flags are affected.

229

SRA

This instruction arithmetically shifts a CPU register one bit position right. Typi-
cal format is “SRA A,”” which shifts the A register. Flags are affected.

SRL

This instruction logically shifts a CPU register one bit position right. Typical
format is ““SRL L,” which shifts the L register. Flags are affected.

SuB

This instruction subtracts one byte from the contents of the A register when
used in the format “SUB A,B"; the byte may be in another CPU register, an
immediate value, or from memory. The instruction subtracts two bytes from a
register pair, 1X, or 1Y from the contents of HL, IX, or IY, when used in the
format ““‘SUB HL,DE.” Flags are affected.

XOR

This instruction logically exclusive ORs one byte and the contents of the A
register. The byte may be in a CPU register, an immediate value, or from mem-
ory. Typical format is “XOR B,” which XORs the B and A registers. Flags are
affected.

230

-

APPENDIX II
Decimal/Hexadecimal
Conversion

NONDUSLIE -8

232

109

110
i1t
11z
113
114
115
116
117
118
119
120
121
12

124
123
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

176

177
178
179
180
181
182
183
184
185
186
187
188
189
170
191

PERSONAL COMPUTERS

William Barden, Jr

Assembly Longuoge
Subroutines

Here is a hands-on approach to programming that explains how any TRS-80
computer user can increase productivity and reduce the tediousness of
programming by using assembly-language subroutines.

TRS-80 ASSEMBLY LANGUAGE SUBROUTINES uses the speed and
compactness of assembly-language programming and gives you fully
debugged, ready-to-run subroutines, including:

* a subroutine that converts binary numbers in memory to decimal characters
+ a subroutine that generates high-speed clearing of a screen block « a
subroutine that outputs music through the cassette port in seven octaves

* a subroutine that generates pseudo-random numbers for simulation or
modeling « a subroutine that generates high-speed string searches

Each of the 65 fully documented subroutines includes:

+ a complete description of what the subroutine does * the input/output
parameters required to use the subroutine « the algorithm for the subroutine
+ a sample calling sequence * notes on special uses or features * a decimal
listing « a “check” on the validity of the data.

PRENTICE-HALL, Inc., Englewood Cliffs, New Jersey 07632

ISBN 0-13-931188-2

