Radie faaek THAEE BOLIARY <0y
‘ 3 NINETY-FIVE CENTS
:“—‘ - ¥ .

62-2006

— AT

TRS-80
Assembly-Language

Programming

by
William Barden, Jr.

Radie fhaek
B a Tanpy conpoRraTion campany

FIRST EDITICN
THIRD PRINTING--1980

Copyright © 1979 by Radio Shack, a Tandy Corporation
Company, Fort Worth, Texas 76107. Printed in the United
States of America.

All rights reserved. Reproduction or use, without express
permission, of editorial or pictorial content, in any manner,
is prohibited. No patent liability is assumed with respect to
the use of the information contained herein.

Library of Congress Catalog Card Number: 79-63607

Preface

Why study assembly language programming for the Radio
Shack TRS-807 Why when I was a youngster all we had was
Level I BASIC to work with and we did all right with that!
Well, BASIC, whether it is Level I, Level II, or Dise, is still
just as useful as ever. There are times, though, when the
absolute fastest possible processing is called for. That is one
case where assembly language reigns supreme. Programs run
at assembly-lanpguage speeds are up to 300 times faster than
their BASIC equivalents! Did you ever want to try your hand
at the most elemental type of coding to see if you could con-
struct a program in sgimilar fashion to building electronic cir-
cuits from discrete components? Assembly-language will give
you that challenge. How about your memory requirements?
Do you find that you always require 4K bytes more than you
have in RAM? Assembly language will enable you to run a
program in 4K that requires 24K in BASIC. Did you ever
have an urge to see what is going on in all of those routines
in ROM or TRSDOS? You guessed it—assembly language
again.

The goal of this book is to take 2 TRS-80 user familiar with
some of the concepts of programming in BASIC and intro-
duce him to TRS-80 assembly language. The text does not
absolutely require a Radio Shack Editor/Assembler package,
but it will help. If your system will not support an Editor/
Assembler, then Radio Shack T-BUG can be used to key in
all of the programs in this book without assembling—we've
done that for you. We have designed the book to be highly
Interactive. There are many programs that can be assembled
and loaded, or simply keyed in using T-BUG, and that illus-
trate the techniques of assembly-language programming as
they relate to the TRS-80. We have routines to write data to
the screen, to move patterns at high-speed, to graphically il-
lustrate a bubble sort, and even a routine to play music by
using the cagsetfe output! Of course, you may also use the

book simply as a reference book for assembly-language rou-
tines. The last chapter has a dozen or so “standard” assembly-
language routines that can be used in your own assembly-
language coding.

Section I of this book covers the general concepts of TRS-80
agsembly language. The TRS-80 uses a Z-80 microprocessor,
and the architecture of both the TRS-80 and Z-80 are covered
in Chapter 1. Chapter 2 talks about the instruction set of the
Z-80. There are hundreds of actual instructions, but they can
easily be grouped into a manageable number of types. Chapter
3 discusses the many addressing modes available for instruc-
tions in the Z-80. Assembly-language programming operations
and formats are covered in Chapter 4, while Chapter 5 covers
T-BUG and machine-language programming.

The second section of the book discusses various types of
programming operations and provides many examples of each
type. Chapter 6 shows how data is transferred within the
TRS-80, between memory and central processing unit and
between other parts of the system. Arithmetic and compare
operations are covered in Chapter 7; this chapter describes
how the Z-80 adds and subtracts, along with a description of
different types of number formats. Chapter 8 gives examples
of logieal and bit operations and shifts, some of the most pow-
erful instructions in the Z-80. Chapter 9 describes how as-
sembly-language programs perform string manipulations and
process data in fables. Chapter 10 talks about input/output
operations, one of the most mysterious (unjustifiably so) areas
of computer programming. The last chapter contains the pre-
viously mentioned commen subroutines.

T'wo appendices provide a cross-reference of Z-80 operation
codes and instruction set. Appendix I lists the Z-80 instruetion
gset by function (add, subtract, etc.) while Appendix II pro-
vides a detailed alphabetized listing of all instructions.

If you suspect that assembly-languapge might be for you,
then by all means give it a try. You have nothing to lose but
your GOSUBs (and other BASIC statements). The author
hopes that you have as much fun in sampling the programs
in this book as he did in constructing them.

WILLIAM BARDEN, JR.

To Mearguerite

Contents

Section I, General Concepts

CHAPTER 1

TRS-80 AND 7Z-80 ARCHITECTURE

Funetional Blocks — What Are All These Ones and Zeros -
CPU, Memory, and I/0—The 2Z-80: A Chip Off the Old Bloek

CHAFPTER 2

Z-80 INSTRUCTIONS

The Z.80 Family Tree—How Long Is an Instruction—Wait a
Microsecond—Instruetion Groups—Data Movement—Arithme-
tie, Logical, and Compare - Pecision Making and Jumps —
Stack Operations—=Shifting and Bit Operations—I1/0 Opera-
tions~-A Program of a Thousand Instructions Begins With
the First Bit

CHAPTER 3

Z-B0 ADDRESSING .ottt s iasrrasnrsnress e

Why Not One Addressing Mode—Implied Addressing: No Ad-
dressing at All—Immediate Addressing—Register Addressing
—Register Indireet—Direct Addressing—Relative Addressing
—A Special Type of Call—Indexed Addressing—Bit Address-
ing—Coneclugion and Gonfusion

24

41

CHAPTER 4

ASSEMBLY-LANGUAGE PROGRAMMINGvnvvnsnnsnnnss

Machine-Language Coding--TRS-80 Editor/Assembler—Edit-
ing New Programs—Assembling—FLoading-Assembler For-
mats—More Pseudo-Ops—A Mark II Version of the Store “17
Program—Further Editing and Assembling

CHAPTER 5

T-BUG AND DEBUGGENG . ..t ottt st eran e canrnnnns.

Loading and Using T-BUG—T-BUG Commands—T-BUG Tape
Formats-Standard Format in Following Chapters

Section If. Programming Methods

CHAPTER 6

MovinG DATA 1IN BYTES, WORDS, AND BLOCKS

Byte and Word Moves—Filling or Padding--An Unsophisti-
cated Block Move—An Elegant Block Move-FILIL Subroutine
—MQOQVE Subroutine—Subroutine Format--Stack Operation

CHAPTER 7

ARITHMETIC AND COMPARE OPERATIONS

Number Formats: Absolutely and Positively—Signed Num-
bers—Adding and Subtracting 8-Bit Numbers—Adding and
Subtracting 16-Bit Numbers—A Precision Instrument—Deci-
mal Arithmetic—Compare Operations

CHAPTER 8

LoGrcal. OPERATIONS, BIT OPERATIONS, AND SHIFTS ..., .

ANDs, ORs, and Exclusive ORs—Bit Instructions—Shiftless
Computers—ZRotates—Some Shifting Is Very LogiealArith-
nietic Shifts—Software Multiply and Divide—Input and Cut.
put Conversions

CHAPTER 9

STRINGS AND TABEES . .. vtvr it oo o i

Assembler-Generated Strings — Generalized String Output —
String Input--Block Compares—Table Searches— Unordered
Tables—-Ordered Tables

75

87

108

131

151

CHAPTER 10

I/0 OPERATIONS .« v vriir ive s sne s svn s s sannsmnnnasnns 167

Memory Versus I/0—Keyboard Decoding—Display Program-
ming—Mysteries of the Cassette Revealed—Reai-World Inter-
facing—Discrete Inputs

CHAPTER 11
COMMON SUBROUTINEt inir i itrsrnnsnnsennress 189

FILL Subroutine—MOVE Subroutine—MULADD Subroutine
— MULSUB Subroutine — COMPARE Subroutine — MUL16
Subroutine—DIV16 Subroutine—HEXCV Subroutine—
SEARCH Subroutine—SET, RESET and TEST Subroutines

Section Hi. Appendices

APPENDIX 1
B0 INSTRUCTION SET .ot i e s e e e i aeaenras 205

APPENDIX ¥
Z-80 OPERATION CODE LISTINGS

SECTION |

General Concepis

CHAPTER 1

TRS-80 and Z-80 Architecture

This chapter will discuss the architecture of the TRS-80,
with special consideration to the Z-80 microprocessor con-
tained within the TRS-80. What is a microprocessor? What
is a Z-807 Why do I need to know about it to program in as-
sembly language? Why are we asking so many hypothetical
questions? These and other questions will be answered in this
chapter as we attempt to unravel the mysteries of the archi-
tecture or general functional blocks of the TRS-80 system.
Stay tuned to this text. . . .

Functional Blocks

All computer systems are made up of three rather distinct
parts shown in Figure 1-1. The ¢pu, or central processing wunit,
is the chief controller of the computer system. It fetches and
execliites instructions, does arithmetic cajculations, moves data
between the other parts of the system, and in general, controls
all sequencing and timing of the system. The memory of the
system holds a computer program or programs and various
types of data, The I/0, or input/output devices of the system,
allow a user to talk to the computer system in a manner in
which he is familiar, such as a typewriter-style keyboard or
display of characters on a crt screen.

As a TRS-80 user, you're undoubtedly familiar with these
component parts. You have a nodding aequaintance with RAM
memory from upgrading your system to 16K and perhaps
more than just a casual relationship with an expansion inter-
face and dise. To enable us to do assembly-language program-

1

ming properly, however, we are going to have to get more
familiar with memory and 1/0 and (much to the dismay of
our spouses, who are already computer widows or widowers)
rather intimately involved with the cpu portion of the TRS-80
system. In addition, in later chapters, we're going to leave an
old friend, BASIC, and strike up a relationship with assembly-
language principles,

What Are All These Ones and Zeros?

Up to this point in your programming career, you have
probably used decimal values for such things as constants,

CENTRAL
PROCESSING CHIEF CONTROLLER
UNIT
{CPU}
RAM OR ROM. HOLDS
MEMORY PROGRAMS AND
DATA
INBUTIOUTPUT ALLOWS USER TO
DEVICES COMMUNICATE WITH
U] SYSTEM
TRS-80

Fig. 1-1. Functional blocks of the TRS-80.

12

memory addresses, and POKEs. Assembly-language program-
ming makes extensive use of binery data and hexadecimal
data. Don't let these terms frighten you. They’re really more
simple than decimal data. Binary representation is a8 way of
expressing numeric values using the binary digits of 0 and 1,
rather than the decimal digits of 0 through 9. Binary digits
represent an “on” or “off” condition. A wall switch is either
on or off. An indicator light is either lighted or unlighted. In
similar fashion, the transistors within the cpu portion of the
TRS-80 are either on or off and hold binary values.

Now we kmow that in a decimal number such as 921 the 9
represents 9 hundreds, the 2 represents 2 tens, and the 1 rep-
resents 1 units, as shown in Figure 1-2. In a binary number,

102 POSITION

10¢ POSITION

100 POSITION

Fig. 1-2. Decimal notation.

iXr = |

2X10 20

9% 100 = 900
921

the position of the digits represent powers of fwo rather than
powers of fen. Instead of units, tens, hundreds, and other
powers of ten, a binary number is made up of digits represent-
ing units, two, four, eight, sixteen, and other powers of two, as
shown in Figure 1-3. Since there are only two binary digits,
the digit at each position represents either 0 or 1 times the
power of two for that position,

If the binary number is treated as groups of four binary
digits, the binary number can be converted into a hezadecimal
number. Hexadecimal means nothing more than powers of
sixteen. The groups of four bits represent 0000 through 1111.
Now, 0000 through 1001 correspond to the decimal digits ¢
through 9, and the hexadecimal digits for 0000 through 1001
are similarly designated 0 through 9. This leaves the groups

13

of bits from 1010 through 1111. When the hexadecimal system
was first proposed, one of the more obscure computer scien-
tists proposed that the remaining six groups be designated
actinium, barium, curium, dysprosium, erbium, and fernium.
Cooler heads prevailed, however, and the digits were named
A B C D E and F.

In general we’ll be working with groups of eight binary
digits or gixteen binary digits within the TRS-80. Binary digit
was long ago shortened to bit to prompt shorter lunches in
the computer science cafeteria when researchers started talk-
ing shop. Whenever bit is used, then, it will mean one binary
digit of either a 1 or 0. A group of four bits may be referred

2% OR 512 POSITION
28 OR 256 POSITION
27 OR 128 POSITION
26 OR 64 POSITION
25 QR 32 POSITION
24 OR 16 POSITION
2% OR § POSITION
22 OR 4 POSITION
2! OR 2 POSITION
20 OR 1 POSITION

1X1 = i
ax2 s ¢
0
i

GX4 =
ix8 =
1X16
0X32
0 X 64
14128
1X256
t X512

il
-
&

]
[}

i
]

I
s
*a
o

1

s
ot
@

il
ort
=
~a

Fig. 1-3. Binary notation.

14

to as a hexadecimal digit of 0 through F. When this is done,
the suffix H is added. The symbol EH, therefore, represents
the hexadecimal digit E or the binary digits 1110. A group
of eight bits is commonly called a byte. A byte is made up of
t{;w_zo hexadecimal digits, since there are two groups of four
its.

Don’t be too worried about the use of bits, bytes, and hexa-
decimal digits at this point, We’ll reiterate some of these basic
points as we go along in the text.

CPU, Memory, and I/0

Generally, all elements of the TRS-80 work with binary
data. Each memory location, for example, is made up of
eight bits, and can represent values from 00000000 through
11111111, or zero through 255 decimal. I/0 devices such as
cassette tape or floppy disc communicate with the cpu by
transferring 8-bit bytes and converting between bytes of data
and bit streams. The cpu is similarly a binary digital device,
holding all data or control signals as discrete bits of infor-
mation,

Tet's talk a little bit (no pun intended) about the cpu. As
we mentioned before, the cpu is primarily concerned with
fetching and executing instructions. What are the types of
instructions that the cpu can perform? Obviously, it would
be very difficult to implement an instruction such as “if this
is Friday blink the screen cursor on and off at location 512.”
It would be possible to implement this instruction, but as you
might guess, it would be much more practical to implement a
basic set of general-purpose instructions such as “add two
numbers” or “compare the result with 67.” As a matter of
fact the instruction set of the TRS-80 at this cpu level is
very similar to the instruction set of other microcomputers
and the instruction sets of even very large computers. The in-
struction get of the TRS-80 allows for adding two operands,
subtracting two operands, performing logical operations on
two operands (such as AND or OR), transferring 8 or 16 bits
of data between the epu and memory or I/0 devices, jumping
to another portion of the program (similar to GOTO or IF . ..
THEN), jumping to and returning from subroutines, and
testing and manipulating bits.

Every application, including the Level I and I1 BASIC pro-
grams in ROM, and extending to such applications as high-
speed video games and business payroll is made up of se-
quences of these rudimentary instructions such as adds, com-

15

pares, and jumps. As a matter of fact, every program, even
those written in BASIC, ultimately resolves down fo a se-
quence of these basic epu instructions.

In older computer systems each of the component parts
literally occupied rooms. Toeday, almost the entire logic of fzhe
cpu can be put on a single microprocessor chip about the size
of a postage stamp. The microprocessor chosen for the TRS-80
was the Z-80, originally designed by Zilog, Inc. The Z-80 is
a state-of-the-art (an engineering way of saying “modern”)
microprocessor with a good instruction set. Since the epu por-
tion of a microcomputer is now essentially its mieroprocessor
we'll look in detail at the Z-80 architecture in this chapter, and
at its instruction set in later chapters,

Memory within the TRS-80 system is made up of ROM,
RAM, and dedicated memory addresses. We're all familiar
with RAM memory. That’s the memory that holds our pro-
grams and data, whether they are BASIC programs or SYS-
TEM types (assembly language). The minimum amount of
RAM we can have is 4K, or 4096 bytes, and the maximum
amount we can have is 48K, or 49152 bytes, for a system with
an expansion interface. The term RAM stands for Random-
Access-Memory and simply means a memory that we ean both
read from and write into. ROM memory, on the other hand, is
Read-Only Memory. ROM in the TRS-80 holds the Level I
or Level II BASIC interpreter, and occupies 12288 bytes in
the Level II case. Try as we might, we can’t POKE into the
ROM memory area. Each of the 61,440 locations of ROM and
RAM can hold one byte, or 8 bits, of data. Each of these 61,440
locations is assigned a location number. ROM is assigned loca-
tions 0 through 12287, and RAM is assigned locations 16384
through 65535.

Yes? A question from the back of the room? The gentleman
asks what locations 12288 through 16383 are used for? (These
TRS-80 owners—you can’t put anything over on them . . .}
Locations 12288 through 16383 are not used for memory ad-
dresses in the conventional sense. These are dedicated loca-
tions that the cpu uses to address such things as the line
printer, floppy dise, real-time clock and video screen. It turns
out that the video display is indeed a RAM memory, but the
remaining devices are only decoded as memory locations.
We'll explain further in later chapters. Figure 1-4 shows the
memory mapping for the TRS-80.

It’s important to know that data in memory can be either
an instruetion for the cpu or data, such as a character for dis-
play. I see the same wise guy has his hand up! The cpu doesn’t

16

DECIMAL HEXADECIMAL

ADDRESSES ADDRESSES
6 LEVEL | LEVEL Il OH
4095 BASIC ROM BASIC UFFFH
NI L 1000H
12087 Wi 2FFFH
12288 DEDICATED ADDRESSES 3000H
16383 VIDED DISPLAY MEMORY IFFFH

32767
32768

Fig. 1-4. TRS-80 memory mapping-

know which locations hold data and which hold instructions.
The cpu blindly goes ahead and if a data byte is picked up
instead of an instruetion, it will attempt to execute the data
as an instruction. The result will probably be catastrophic, and
is a program bug (you're certainly familiar with bugs from
your BASIC programs—in assembly language they are even
more prolific). Data and programs are therefore intermixed
in memory at the programmer’s discretion (or indiscretion)
and the program should know how to jump around the data.

17

1/0 devices may be considered in two parts. Firstly, there
is the physieal 1/0 device, such as the cassette recorder, video
display, keyboard, line printer, or floppy disc. Secondly, there
ig the 1/0 device controller. The 1/0 device controller per-
forms an interfacing function between the cpu (microproces-
gor chip) and the I/0 device. The controller matches the high
rate of data transfers from the cpu (hundreds of thousands of
bytes per second) to the I/0 device (50 bytes per second for
Level II tape cassette). The controller may also encode the data
coming from the cpu into special format (video format for
the display, for example) and provide a handsheke function
between the cpu and 1/0 device, (How are you, my name is
Bernie. Do you have the next data byte for me?) The I/0
device itself may be a device adapted to microcomputer use
such as the cassette recorder or video display or one specifi-
cally made for a microcomputer environment, such as the line
printer or floppy disc.

The Z-80: A Chip Off the Old Block

Now that we have an overview of the TRS-80, let’s look at
the internal workings of the Z-80, or at least those parfs that

RESULT OF ARITHMETIC

OR LOGICAL OPERATION]
ARITHMETIC
AND LOGICAL
UNIT (ALUY
- 2 F
T, o TOFROM
REGISTER | REGISTER T T
OPERAND | OPgRaND| MEMORY OPERAND mieMoRy
A F A i)
B C B & GENERAL-PURPOSE
D | E | E REGISTERS
H L | U
E X ;
| 1Y ;
, i % i | SPECIALPURPOSE
! { [REGISTERS
: T !
S . R a1~
DATA TRANSFERS

BETWEEN REGISTERS
Fig. 1-5. Z-80 architectuare.

18

we, as assembly language programmers, will want %o be
aware of. Figure 1-5 shows the cpu register arrangement, the
ALU, or arithmetic and logic unit, and the data paths we
should be concerned about.

In general, all data in the TRS-80 and most data within
the Z-80 is handled in 8-bit, or one-byte segments. The Z-80
is called an “8-bit” mieroprocessor for this reason. The cpu
{Z-80) registers are either 8 bits or 16 bits wide, and most

(nanipulations within the c¢pu are done 8 bits at a time.

There are 14 general-purpose registers within the cpu, des-
ignated A, B, C, D, E, H, and L and the “primed” counter-
parts A’ B, ¢, D, B/, H, and . Many of the arithmeti
other instructions use the A regist‘é’f‘%m%%
operaids, with The other operand coming fToii MEMory o1 ans"
‘GERer TegisterForthis reasonr-the“A> register can b thought
of as the "accumulator Tepisterwhithris o olttoror tet iy
still used Today. In addition to-beifiy Used Separately as 8-bit
régisters,there-are several sets of register “pairs” that form
16-bit registers when the 8-bit registers are used together.
These are B/C, D/E, H/L, B’/C’, I'/’E, and H'/L’. Theregister
pairs are used to perform limited 16-bit arithmetie, such as
adding two 16-bit operands contained in two register pairs, \(

or to specify a memory address.

At any time only one set of the registers, prime or non-
prime, are active. Two Z-80 instructions select the current in—="
active set (prime) to become active and put the currently
active (non-prime) into an inactive state. The instructions,
therefore, are used to switch between the two sets as desired.
A second set does not have to be used, but simply makes more
register storage available if required.

The cpu registers are used to store temporary results, to
hold data being transferred to memory or I/0, and in general
to hold data that is being used for the current portion of the
program that is being executed. Data changes within the cpu
registers very rapidly as the program is being executed (tens
of thousands of times per second) so the cpu registers may
be thought of ag a conveniently used, rapidly accessed, limited
memory within the cpu itself that holds transient data,

In addition to the general-purpose registers within the cpu,
there are special-purpose registers. The first of these is the
PC, or Program Counter. The PC is a 16-bit register that
points to the current memory location holding the instruction
to be executed. We mentioned previously that there were 65536
memory locations that could be used on the TRS-80. A 16-bit
register may hold a range of values from 0000000000000600

19

through 11111111111311111, or decimal 0 through 65536 (hexa-
decimal 0000H through FFFFH). The PC can therefore ad-
dress (point to) any memory location for the current instrue-
tion. Instructions to the cpu are coded into one, two, three, or
four bytes and are generally arranged sequentially in memory,
starting from “low” memory to “high” memory. Figure 1-6
shows a typical sequence of instructions. As each new in-
struction is “fetched” the PC is updated by adding the number
of bytes in the instruction to the contents of the PC. The
result points to the next instruction in sequence. When a
“jump” is executed, the new memory location for the jump is
forced into the PC, and replaces the previous value, so that
the new instruction from a new segment of the program is
accessed. If one eould look at the PC in the TRS-80 as a pro-
gram was running, the PC would be changing hundreds of
thousands of times a second as sequences of instructions were
executed and jumps were made to new sequences.

MEMORY
LOCATION OF PROGRAM COUNTER
INSTRUCTION CONTENTS INSTRUCTION BEFGRE EXECUTION
4A0CH G6H 1DBY 4A00H
4A0TH a0H
4A0ZH B7H 0R A 4A0ZH
4A03H EDH SBC HL,DE 4A03H
4AD4H 52H
4R05H FAH JP M.DONE 4A05H
4A06H OCH
4A07H AAH
4A0BH 04H ING B 4A08H
4A09H G3H P LooP 4A09H
4A0AH 02H
4K0BH 4AH
4AGCH 194 ADD HL.DE 4ADCH

Fig. 1-6. Typical sequence of instructions.

The SP, or Stack Poinier, is another 16-bit register that
addresses memory (Figure 1-7). In this case, however, the
SP addresses a memory stack area. The memory stack area
is simply 2 portion of RAM used by the program as temporary
storage of data and addresses of subroutines during subrou-
tine calls. As the SP is 16 bits, any area of memory could
conceivably be used, as long as it was RAM and not ROM. In
practice, high areas of RAM memory are used, as the stack
builds down from high memory to low memory. In a 16K
RAM system, for example, the stack might start at 32767
(don’t forget about that initial 16384 ROM and dedicated

20

MEMORY

HIGH
ADDRESSES
STACK POINTER
15

0
/ ADDRESS OF "TOP OF STACK"
“T0P OF STACK”

STACK
BUILDS
DOWN

LOW
ADDRESSES

.. A

Fig. 1.7, Memory stack.

memory area) and build downward. Well, it appears that the
programmer in the back wants an explanation of the stack
action. We'll give a brief one here and give a more detailed
one in a fater chapter. The stack is a LIFO stack, which stands
for “last-in-first-out.” A good analogy is a dinner plate stacker
found at some restaurants. The last dinner plate put on the
stack is the first taken off. As more and more plates are put
on the stack, the stack increases in size. If the reader can
visualize data being put on the stack in this fashion, it will
be somewhat similar to Z-80 stack action.

Two additional cpu registers, IX and IY, are used to modify
the address in an instruction. This permits indexing opera-
tions which allow rapid access of data in tables. Indexing op-
erations and the use of IX and I'Y will be discussed in detail
in Chapter 3.

The I and R registers are two registers that the reader
probably will not use in his TRS-80 system. The R register
is continually used by TRS-80 hardware to refresh the dy-
namic RAM memories used in the TRS-80 system. The 8-bit
value in the R register is continually incremented by one to
cycle the register from 0000000 through 1111111 and around

21

again to provide a vefresh count for dynamic memory refresh,
which restores the data in RAM. The 8-bit I register is used
for a mode of interrupts not eurrently implemented in TRS-80
hardware.

There are other cpu registers, of course, but the foregoing
registers are the only ones that are accessibie by an assembly-
language program. The other registers in the Z-80 cpu hoid
the instruetion after it iz fetched, buffer data as it is moved
internally and transferred externally, and perform other ac-
tions required for instruction interpretation, instruction im-
plementation, and system control.

The arithmetic and logic unit is the portion of the cpu
that, as the name implies, performs the addition, subtraction,
ANDing, oRing, exclusive ORing, and shifting of data from two
operands. The result of these operations generally goes fo a
¢pu register, although it may also go to memory in some cases.
A set of flags are set on the results of the arithmetic or logical
operation. For example, it is convenient to know when the
result is zero after a subtract operation. A zero flag is set if
this is the case. There are eight flag bits that are treated to-
gether as a cpu register, even though they are not used in
the same fashion. The flag registers are called F and F'. When
used in register pair operations the A and F or A’ and ¥
registers would be grouped together. The flags will be further
discussed in this section and in chapters dealing with specific
sets of instructions. For the time being Table 1.1 shows the
names and functions of the flags. '

Table 1.1. CPU Flags

Name Funchion

Sign(S} Holds the sign of the result, O if positive, | i negative

Zerao(Z}) Holds the zero status of the resylt | if zero, 0 if non-zero

Half- Molds the half-carry status of the result, 0 if no half-

carry(H) carry, & if half.carry. Not generally accessible by pro-
gram.

Parity/ Holds the parity of the result or the averflow condition.

Cverflow 1f used as parity, P == O if the number of one bits in the

(FAY] result is odd, or P = | if the number s even. If used as
overflow flag, V = 0 if mo everflow or V = | if over-
flow.

Add/sub- Add or subtract condition for decmal instructions. Add

tract(N} = 0, subtract = 1. Not generally accessible by program.

Carry(C} Holds the carry status of the result, 0 if no carry, 1 if carry

22

Data flow between the cpu and remaining TRS-80 system
is shown in Figure 1-5. Almost all data within the system uses
the cpu. As a program is being executed, the instruction bytes
making up the program are continually being fetched from
RAM memory and placed into the cpu instruction decoding
logie. If an instruction is four bytes long, four separate mem-
ory fetches are made to RAM memory, with the PC pointing
to each sequential byte in turn. Once the instruction is de-
coded, additional memory accesses may have to be made to
get the operand to be used in the instruction. The instruction
to add the contents of the A register and location 16400
(4010H) calls for the cpu to not only fetch the instruction,
but to fetch the value found at location 16400 to be added to
the value found in the A register. Similarly, the results of
operations may be sfored back into memory. In addition to
transferring instruction bytes and operand data between it-
self and memory, the cpu also communicates with /0 de-
vices such as the line printer and cassette. The cassette in
Level II BASIC operates at 50 bytes per second. Each byte
on a write (CSAVE) is held in a cpu register and written
to the cassette interface logic one bit at a time. When a print
operation on the system line printer is done (LPRINT). a
byte of status from the line printer is read into a cpu reg-
ister and checked. If the status indicates the line printer is
ready to receive the next byte, the byte representing character
data is transferred from a cpu register to the line printer.
Note that in both the cassette and line printer cases the data
may have been initially contained in a bufer in memory as
a cassette program or print line, but that it is {ransferred
from memory to the epu register and from the epu register
to the I/0 device a byte at a time. Although it is possible to
bypass the cpu and transfer data between the I/0 device and
memory using a Z-80 technique called direct-memory-access,
or DM A, the TR3-80 does not currently use this method and
we will not be deseribing it in this text.

In fhis chapier we've looked at the architecture of the
TRS-80 and especially at the internal architecture of the %-80
microprocessor used in the TRS-80. In the next two chapters
we'll investigate two more topics closely associated with the
Z-80, the Z-80 instruction set, and Z-80 addressing modes.
After that we'll call a halt to theoretical discussions and get
our hands dirty (figuratively, anyway, unless you code with
a leaky pen) in learning how to use the assembler, editor,
and T-BUG.

23

CHAPTER 2

Z-80 Instructions

In this chapter we will discuss the instruction set of the
TRS-80 system. The instruction set of the TRS-80 at the
assembly-language level is really the instruction set of the
Z-80 microprocessor in the TRS-80 as we pointed out in the
last chapter. If you have looked at the numeric list of the in-
struction set in the Radio Shack Editor/Assembler Manual
(26-2002), you may have been one of the recent wave of
frauma victims that have suddenly appeared all over the
country. There are many different combinations of instruc-
tions! (There are well over five hundred, as a matter of fact!)
This chapter, among other things, will attempt to prove that
this magsive, confusing list can be reduced to a tfolerable
number of basic instructions. It will take some effort to learn
about the various instruction types, and a little more effort
to learn about the addressing modes covered in the next chap-
ter, but refuse to be intimidated ! There are hundreds of thou-
sands of assembly-language programmers in the counfry and
there is no reason you cannot be another,

The Z-80 Family Tree

One of the things that we might mention in passing con-
cerns the heritage of the Z-80 microprocessor. At many places
in the discuasion of the instruction set in this book, the reader
may be prompted to say, “Why the devil did they do that?”

24

One of the reasons that there are many different ways of doing
the same thing (say adding two operands) is related to the
predecessor of the Z-80, the 8080A, and its predecessor, the
8008. The 8008 is the grandfather of the Z-80. The 8008 CYEwW
up in the early days of microcomputing, back in the early "70s
(this century). The 8008 was the first microproeessor on a
chip and had an instruction set of 58 instructions. Shortly
after the 8008 was introduced, another microprocessor, the
8080, was developed. The 8080 was a faster, more powerful
microprocessor than the 8008, and had an instruction set of
78 instructions. Recently, a third generation of micropro-
cessor was developed—the Z-80, To compete in the hectic
microprocessor marketplace, the 8080 included the 8008 in-

8080.8008 780
AUN ON 280 INSTRUCTION SET
i -80 INSTRUCT|
3008 PRO- 8080 WILL NOT WORK On
GRAMS RUN INSTRUCTION SET 8080
ON 8080 %
8008 £-80 OR 8080 IN-
INSTRUCTION SET STRUCTIONS WILL NOY
WORK GNfOUS

Fig. 2-1, The Z-80 family tree.

structions in its repertoire, and the Z-80 includes the 8080
instructions in its repertoire. The reason for this downwards
compatibility is that existing programs can be executed on
the newer generations of microprocessors, saving costs on
software development. The situation for the instruction set
of the Z-80 is shown in Figure 2-1. All programs written for
both the 8008 and 8080 can be executed on the Z-80, assuming,
of course, that the limitations of the system are equal (such
ag the same I/0 device addresses, memory layout, and so
forth).

In carrying through the instruction set of the 8008 and 3080,
the Z-80 instruction set duplicates the architecture and gen-
eral approach of its two predecessors, but adds many new in-
structions of its own. If the reader sees many ways of doing
the same thing in future chapters, therefore, it is probably

25

e e g s

related to the father’s approach, or even the grandfather’s.
Which approach is best, the experience of age, or the innova-
tion of youth? As in life, some of each.

' How Long Is an Instruction?

The answer to this, of course, is “long enough to reach the
memory.” Z-80 instructions are, in fact, one to four bytes
long with the average being about two bytes. This means that
in 4096 bytes of memory we can hold about 2000 assembly-
language instructions. This is quite a contrast to BASIC pro-
grams where each BASIC line probably takes up 40 characters
or so. allowing perhaps 100 BASIC lines. (Each assembly-
language instruction, of course, does much less than a BASIC
instruction, but does it much faster.) Many of the older 8080-
type instructions are one byte long, while the newer Z-80 type
instructions are four bytes long. The assembler program aunto-
matically calculates the length of the instruction during the
assembly process, so you do nof need to be concerned with
remembering instruction lengths.

4® TG TRER

iy JF

EBtif

Affaf

T 4hdE

Fig. 2.2. Typical assembly-language listing.

To give the reader some feel for instruction lengths in 2
typical program we will look at a typical assembly-language
listing, shown in Figure 2-2. The listing is the output display
or printed output of the assembler portion of the Editor/
Assembler after the asgembly process.

The first column of the listing represents the location in
RAM where the program is to be stored. The value “4A00,”
for example, indicates that the “LD A,31H" instruction will
be put intoe memory locations 4A00H (18944 decimal) and

4A01H (it is 2 two-byte instruction). The next column is the
machine-language code of the instruction itself. For the “LD

26

A,31H” this amounts to two bytes (16 bits or four hexadecimal
digits). The “3E31"” are the four hexadecimal digits repre-
senting the code. The next column is a line number for the
assembly, which is identical to the BASIC line numbers with
which you are familiar. The remaining columns represent the
assembly-language line for the instruction code: the first col-
umn is a label, the next is the operation code {a shorthand
representation of the instruction), the third is an operand
(in this case 31H (49 decimal). This format will be discussed
in detail in Chapter 4, so do not concern yourself with it at
this point. Do note the second column, however, and observe
how the instruction lengths vary from one to four bytes; each
two hexadecimal digits are one byte.

Wait a Microsecond . . .

Anocther interesting attribute that we should discuss iz in-
struction speed. Generzlly, the longer the instruction, the
longer it iakes. The reason for this is that for each byte
of the instruction one memory acecess must be made. This
amounts to the cpu transferring one byte of instruction data
into an infernal register for decoding. To make one memory
access in the TRS-80 takes about .45 microsecond, or about
14 millionth of a second. Add to this time some additional
overhead for executing the instruction and for obtaining oper-
ands from memory, and we find that TRS-80 instructions
range from 2.8 microseconds to 13 microseconds, with the
average being somewhere around 5 miecroseconds. To contrast
assembly-language code with BASIC coding, consider this
BASIC program

100 FOR 1= 0 TO 255
200 MNEXT |

The short loop above takes approximately 24 second to exe-
cute in BASIC. A corresponding assembly-language program

160 LOOP DEC C DECREMENT COUNT
200 7 ZLOOP AUMP IF NOT ZERO

would take about 2 milliseconds, or two thousandths of a sec-
ond, approximately 350 times as fast! .

The extremely fast speed of assembly-language programs
(when compared to higher-level languages such as BASIC)
makes this type of programming excellent for such applica-
tions as real-fime game simulations, fast business sorts, or

27

any task that might take prohibitive amounts of time with
other methods.

Instruction Groups

Now that we've discussed some of the attributes of in-
gtructions, let’s look at how we might whittle down that setf
of Z-80 instructions from sawmill size into at least a cord of
wood. We'll do this by dividing the instruction set into six
different groups:

Data Movement

Arithmetic, Logical, and Compare
Decision Making and Jumps
Stack Operations

Shifting and Bit Operations

I/0 Operations

Data Movement: Loads, Steres, and Transfers

Much of the time in any program, whether it is BASIC or
assembly language, is spent moving data from one place to
another. In assembly-language programs the cpu registers
are used for very temporary storage while RAM memory is
used for data that may be somewhat less volatile. If one looks
at the TRS-80 system components of cpu, memory, and I/0
devices, one can say that data in the cpu is transient, data in
memory is active for program usage, and data stored on audio
cassette tape or floppy disc is most permanent. In any event,
data is constantly being moved from cpu registers to other
cpt registers, from cpu registers to memory. from memory
to cpu registers, and from one memory area to another mem-
Ory area.

The general term for moving data from memory to a epu
register is “load.” Data is said to be loaded into a cpu register.
Remember, now, that the data we are talking about is operand
data rather than the data associated with the instruction op-
eration itself. The data associated with the instruction itzelf
is automatically brought into the cpu instruction decoding
logic in the eourse of normal program execution as the PC
(program counter) points to each instruction in turn. An
example of this difference would be the instruction “LD B,101”
which loads the value of 101 decimal into the cpu B register.

In many other microprocessors, the action of transferring
data from a cpu register to memory is called a “store.” In the

28

Z-80 microprocessor of the TRS-80, however, the term load
is used to apply not only to transferring data from memory
to a cpu register, but also in transferring data from a cpu
register fo memory. The instruction mnemonic, or shorthand
symbol, for a load operation is “LD.” Any time you see an
“LD” on an assembly listing you know that data is being
moved between cpu registers or between cpu registers and
memory, The instruction

b AB LOAD A WITH B

for example, takes the contents of cpu register B and puts
it into epu regzster A, leaving the B register unchanged. This
last point is an important one: All loads copy data, rather
than {ransferring it. The source of the data remains un-
changed, whether it is in memory or a cpu register.

Another example of a load is the instruction

LD (4234H)A ;STORE A REGISTER INTO LOC 4234H

which takes the contents of the cpu A register and copies it
into RAM memory location 4234H (16948 decimal).

We mentioned in Chapter 1 that the general-purpose cpu
registers were 8 bits wide, but that sometimes they were
grouped as register pairs of 16 bits. To refresh your memory
{no pun intended), the register pairs were combinations of
epu registers B and C, D and E, and H and L. The load in-
structions give us the ability to move data one byte or two
bytes at a time using single registers or register pairs.

When data is moved one byte at a time, the eight bits of
the source operand are copied into the destination register or
memory location. Of course the bits are copied with the same
orientation. LoaDing the H register with 01100001 from the
L register produces 01100001 in the H register, and not an-
other arrangement of bits.

When data is moved two bytes at 2 time, the 16 bits are
copied from one register pair to another, or between a register
pair and two memory locations. Let’s see how this works.
Suppose that in register pair H,I. we have the decimal value
1000. Now if we convert decimal 1000 into binary we have

BT BT BH BIT BIT BIT BT B
7 6 3 4 3 2 1 0

0L O] 0| 6} a0 | 1 I | H MOSTSIGNFCANT

L1 b0y 8P 0] &3 0 L [LEASTSIGNIFICANT)

Fig. 2-3. Register pair data arrangements.

29

0000 0011 1110 1000, after we have added the necessary lead-
ing zeros to make up 16 bits. Figure 2-3 shows how that value
ig arranged in the H and L registers. The upper 8 bits (one
byte) is in H and the lower 8 bits is in L. The same arrange-
ment holds true for B and C and D and E. B and D are always
the upper, or most significant, registers, while C and I are
always the lower or least significant registers.

That’s easy enough to remember if you think of BC, DE,
and HL and remember H(igh) and L(ow). And to answer
that same heckler from the back of the room, yes, this was
the reason for the 8008 designation of “H” and “L.” But what
happens in memory when a register pair is stored? When a
register pair such as H and L are stored by the instruction

LD (4ADAH)HL STORE H AND L INTO 18954

the low or least significant register, in this case L, is stored
in the memory location specified, in this case 4A0AH. The
high, or most significant register, in this case H, is stored in
the next memory location, in this case 4A0BH (18955). This
arrangement of low order byte followed by high order byte
kolds true for all types of dato within ¢ Z-80 assembly-lan-
guage program. As one would expect, data loaded from mem-
ory into a cpu register pair restores the register pair in the
same fashion. Figure 2-4 shows the store described above.

H (HIGH}
L(LOW)
"LD {4ADAH).HL"
4A0AH LOW
4A0BH (HIGH}

Fig. 2-4. Memory arrangement for 16-bit data.

A group of load instructions called the block moves enables
from one to 65536 bytes to be moved in a single instruction,
or in a very few instructions. These load instructions avoid
the overhead of moving data in a long sequence of instructions
and are a powerful feature of the Z-80. The four block moves
will be discussed in detail in Chapter 6.

We won’t attempt to list all of the possible loads in this
section. Many of them are dependent upon the addressing

L

INSTRUCTION IMMEDIATE FIELD

MEDIATE FIELD L
0 REGISTERS (8.1 BITS]
MEMORY STACK
A
REGISTER TO REGISTER | REGISTER 10 REGISTER T0
{8 BITS) MEMORY OR STACK OR
- MERORY T0O STACK TO
™] ¢ REGISTER {8.16 BITS] | REGISTER
{16 BITS)
CURRENT SET OF
CPU REGISTERS {NON- |

PRIME) AND 1X1Y.SP
3)

‘ REGISTER TO
10 OR 16
TO REGISTER (8 BIiTS)

1

#0 DEVICES

Fig. 2-5. Data transfer paths.

mode used in the instruction, which will be covered in Chapter
3. What we will do, however, is to illustrate the ways in which
8- or 16-bit data can be transferred from one part of the sys-
tem to another by the use of LD instructions. Figure 2-5 shows
the paths and indicates the types of instructions available in
the Z-80 to perform the transfers.

Arithmetic, Logical, and Compare

The worst part in understanding this group is the pronun-
ciation of “arithmetic.” Contrary to what you learned in P.S.
49, the adjective is pronounced so that the last two syllables
rhyme with the last two of “charismatic.” Novice program-
mers have been dismissed on the spot for the use of the com-
mon pronunciation! This group includes instructions that add
and subtract two operands, instructions that perform logical
operations of ANDing, ORing, and exclusive CRing, and ecompare
instructions, which are essentially subtracts.

The most common type of arithmetic is the simple ADD in-
struction. Suppose that we have two 8-bit operands (two one-
byte operands) in cpu registers A and B, as shown in Figure
2-6. When the instruction

ADD AB :ADD REGISYER B TO REGISTER A

31

is executed in the program, the contents of register B (the
source register) will be added to the contents of register A
(the destination register) and the result will be put info the
A register with the B register unchanged. All 8-bit arithmetic
and logical instructions operafe in the same fashion; the
result always goes to the A register, and one of the operands
must have originally been in the A register. The instruction

SUB (HL) SSUBTRACT LOCATION 4400H(HL) FROM A

takes the contents of location 4400H, subtracts it from the
contents of the A register, and puts the result into the A reg-
ister, leaving the contents of location 4400H unchanged.
When an arithmetic instruction such as an add or subtract
is executed, the flags are set on the results of the instruction.
If the result of the subtract were zero, for example, the “Z”
flag would be set to a 1; if the result were non-zero, the 7Z flag
would contain a 0. A decision could then be made by a jump-
type instruction later in the program that would test the state
of the zero and other flags. The flags will be further discussed
in the appropriate material for the instruction group. Except
for the two special adds and subtracts that add in the carry
flag, that’s about all there is to the 8-bit arithmetic group. As
with the loads, there are many varieties of addressing modes
that may be used, and these are discussed in the next chapter.
The logical instructions in this group work in similar fash-
ion to the arithmetic instructions. An 8-bit operand from

BEFORE ADD

BIT BIT BIT BIT BT BIT BIT BIY
7 6 5 4 3 2 1 0

ojoprjo]iloedl 1] Al

glojop 1]ty L)@} 8 BRY

AFTER ADD

olirtoio}lt]6]0tl0| AG

pjojefj L]0 1] BEY

Fig. 2-6. Sample ADD operation.

32

memory or another register is used in conjunction with the
contents of the A register. The result is put into the A reg-
ister and appropriate flags are set. The functions that may be
performed are ANDing, ORing, and exelusive ORing. You may
be familiar with these functions from BASIC. When two bits
are ANDed, the result bit is a one only if both operand bits are
a one, When two bits are ored, the result is a one if either
bit or both bits are ones, When two bits are exclusive oRed,
the result bit is a one if and only if one or the other bit is a
one, but not both. For 8-bit operands, each bit position is con-
sidered one at a time, as shown in Figure 2-7. Here again
there are many addressing modes possible.

AND OPERATION

i SO IV IO 1 P 0§ 0} ABREGISTER

fpLtbaloidl |0} 0] 0} AAFTER
OR OPERATION

pprjopoftrjplrjoejoeia

P11 111 i 1 1 0| AAFTER)
EXCLUSIVE OR OPERATION

l P I O prejolA

Gjo 1|t]800 ARTER

Fig. 2-7. Logical operations.

Compare ingtructions are very similar to subtracts. An
operand from memory or another cpu register i3 subtracted
from the contents of the A register., The flags are set as in
the subtract. The resuli, however, does not go to the A register,
buf is discarded. A compare allows testing of an operand by

33

setting the flags without destroying the contents of the A
register, a useful instruction. There is only one compare, the
“OP" instruction, which again has several addressing modes.

In addition to the single compare instruction, there is a
block compare set of instructions that allows an 8-bif com-
pare of one operand to a specified block of memory locations.
This is one of the most powerful features of the Z-80, as it
is much faster than a software routine that does the same
thing, as would have to be implemented in the 8080A. There
are four block compare instructions and these will be dis-
cussed in detail in Chapter 6.

The instructions in the above discussion were 8-bit instruc-
tions; that is, they operated with two 8-bit operands. The A
register was used in these instructions as an accumulator to
hold the results of the operation. The Z-80 also allows a 16-bit
add or subtract operation that uses the HL register pair in
much the same way as the A register is uged in 8-bit opera-
tions. In these adds and subtraects, a 16-bit operand from an-
other register pair is added or subtracted from the contents
of HL, with the result going to HL. The flags are set on the
result of the add or subtract. The Z-80 also allows index reg-
ister IX or IY {two 16-bit registers) to be used as the destina-
tion register in place of HL.

The remaining instructions in this group are the increments
(INC) and decrements (DEC). These instructions are useful
for adding one or subtracting one from the contents of a cpu
register, a cpu register pair, or 2 memory location. Almost
all assembly-language programs are continually incrementing
or decrementing a count used as a loop control, index, or sim-
flar variable, and the INCs and DECs are more efficient than
adding one or subtracting one by an ADD or SUB. Either
single cpu registers, register pairs, or memory locations (8
bits) may be altered by these instructions.

Figure 2-8 illustrates the actions of the arithmetic, logical,
and compare ingtructions and shows which cpu registers are
used for operands and what types of instruetions are available.

Decision Making and Jumps

There are only two ways to alier the path of execution of
a program from BASIC, unconditionally or conditional upon
some resulf, such as a variable being greater than a specified
value, The Z-80 instructions “JP” and “JR” differ ounly in
addressing mode and eause an unconditional jump to a speci-
fied location, exactly identical in concept to a BASIC GOTO,

34

RESULT

T0 A REG
ADDS SUBTRACTS,
COMPARESLOGICAL
8 BITS}
b OTHER REG
A OR MEMORY _
REG| | OFERAND MEMORY +1
INCREMENT
7
INCREMENTS A OF MEMORY
OFSIGLE 1 " i LOCATION
REGISTER +i1L L
iNCREMENTS +1:: B €
OF REGISTER > ;
PAIRS. X.1Y -
)3
Iy
HLIX.IY| OTHER
REG PAIR
A
ADDS SUBTAACTS 3P
3 (16 BITS) OF HL,
IX.1Y AND OTHER

RESULT 7O v
BLIXOR 1Y

Fig. 2-8. Arithmetic, logical, and compare action.

Of course, in assembly-language jumps, a memeory location is
specified, rather than a line number. The instruction below
will jump to Level I or II ROM

P 066DH JUMP 1O ATTENTION

A similar type of jump can be made conditional upon the set-
tings of the cpu flags. The flags, in turn, hold the conditions of
an add, subiract, shift, or other previously executed instruc-
tions. These conditions are the conditions described in Chapter
I—zero {or non-zero) result, positive or negative result, two
types of earry, parity (essentially a count of the number of
“one” bits in the result), and overflow. The conditional jumps
are the only way the program has of testing the results of an
arithmetic or other operation, except for the conditional calls,
which are very similar. Let’s see how they work:

CP 100 ;COMPARE A REGISTER TO 100
iP ZA4ZAAH JUMP TO 17046 IF A = 100

35

The two instructions above cause the assembly-language
program to jump to location 17066 (42AAH) if the contents
of the A register are equal to 100. The CP {(compare) instruc-
tion subtracts 100 from the contents of the A register. The
zero flag is set if the result is zero, that ig, if the A register
holds 100 before the compare. If the A register does not con-
tain 100, a value other than zero will result and the zero flag
will not be set. The jump to 42AAM is made, therefore, only
if the A register contained 100.

The Z-80 instruction set also has a number of instruections
that are equivalent to BASIC GOSUBs. These are the CALL
instruetions. CALLs are used to conditionally go to a subrou-
iine on the settings of the same flags used by jumps, or to
unconditionally transfer control to a subroutine. When the
transfer is made, the cpu remembers where the return point
iz in gimilar fashion to saving the next BASIC line number.
The following instructions CALL a subroutine to calculate
the number of TRS-80 systems (why not?) and to return at
location 4801H

{47FE) CALL 4CCOH ZCALCULATE NUMBER OF SYSTEMS
(48017 ADD 2 APD IN MINE AND URSULA'S

Note that in the above code the first instruction was located
at location 47FEH, and that the next was located at 4TFEH
plus the length of the CALL (8 bytes), or 4801H (we'll get
the reader used to hexadecimal yet!). While there are a few
special jump instructions not mentioned, 99% of all jump and
CALLS will be similar to those shown above.

Of course, as in BASIC, every CALL must have a RETurn.
The Z-80 has two types of returns (that’s correct!) condi-
tional and unconditional. The unconditionai RET always re-
turns to the location following the CALIL, while the condi-
tional RET returns conditionally upon the flag settings. And
that’s about all there is to jumps, CALLs, and returns!

Stack Operations

The stack area of memory was mentioned in the first chap-
ter. Recall that the stack area was used to store data and
addresses on a temporary basis. The first use of the stack by
7-80 instructions has already been mentioned; CALLs auto-
matically save the return address in the stack as the eall is
implemented. Let’s lock again at the last example, the CALL
to location 4CO00H instruction which was located at RAM
memory location 4TFE. When the CALL is made the PC (pro-

36

MEMORY

T T STACK POINTER
FOINTED HERE
EFORE CALL
HEMCRY AND POINTS
ol o .~ HERE AFTER CALL
WH 484
i RAM] 4
A
£TFEH co EXEGUTION OF THIS IN-
CALL 4C00H " G01icTION CAUSES CONTENTS
4TFEH 10H OF PG T0 BE PUT IN STACK
4
300k 4CH PC AT CALL
ASOIH (NEXT INSTRUCTION}<— INSTRUCTION
POINTS HERE
(4801F)

Fig. 2-9. CALL stack action.

gram counter} poinis to location 4801H, the next instruction
{the PC is updated before the instruction is executed). As
the CALL is implemented, the contents of the PC is pushed
into the stack as shown in Figure 2-9. Each time the stack
is used, of course, the SP (stack pointer) register is decre-
mented to point to the next location to be used, or the fop of
stack. Why is the next location called the top of stack, when
it looks like the hottom of stack? It’s all in how one looks at it.
The reader may optionally turn the book upside down to get
a better picture of this action. When the RETurn associated
with the CALL is executed later in the program, the return
address is retrieved from the stack and put info the PC to
effectively cause a jump to the return address as shown in
the figure.

CALLs and RETs cause automatic stack action. The pro-
grammer may, however, temporarily store data in the stack
by executing a PUSH instruction. PUSHes store a register
pair into the stack area as shown in Figure 2-10. The data
may be restored into the same or different register pair by a
POP ingtruction. Of course the data comes off the stack when

37

a POP is executed in the same fashion it went in by the PUSH,
with the most significant byte going to the high-order register
(H, B. D, or the high-order portion of IX or IY) and the low-
order byte poing to the low-order register {L. C, E, or the
low-order portion of IX or IY)}. The following two instrue-
itions PUSH the contents of register pair BC onto the stack,
and then POP the data into register pair HL. This is 2 way
of transferring data between BC and HL, as there is no other
instruction that is able to perform this action.

PUSH BC CONTENTS OF BC TO STACK

POP HL :HL NOW HAS CONTENTS OF BC

In addition to use of the stack by CALLs, RETs, PUSHes,

and POPs, certain other instructions associated with inter-
rupts and the interrupts themselves cause use of the stack.
We will not be illustrating the use of interrupts in any detail,
since they go heyond the scope of most assembly-language
applications.

Shifting and Bit Operations

In the instructions discussed so far, we've covered a lot
of ground, In fact, any computer program we want could be

T T STACK POINTER POINTED
| serare pusi
UELORY AND POINTS
HERE AFTER PUSH
(SOHE- P s
WHERE
It 30H g
RAM)
£5H
PUSH HL EXECUTION OF THIS
(NEXT INSTRUCTION) INSTRUCTION CAUSES
CONTENTS OF HL
10 B PUT i STAGK

Lo |

L
Fig. 2-10. PUSH stack action.

38

written in just those instructions (in fact, any computer pro-
gram could be Implemented in an eight or ten instruction
machine, if it were carefully designed!). The instructions in
this group, however, are niceties that make handling of bits
and fields somewhat easier.

The shift instructions allow a single register to he shifted
right or left. The shifting action can be visualized as pushing
in another bit at the right or left end of a cpu register. As the
cpu register can only hold 8 bits, a bit is ‘““pushed out” from
the other end of the register. When a zero is pushed into the
end and the bit that is pushed out is discarded, the shift is
said to be a “logical” shift, When the bit pushed out is car-
ried around and pushed into the register from the other end,
the shift is said to be a “circular” shift or a “rotate.” The Z-80
has both logical shifts and rotates and also has a type called
an “arithmetic” shift used for working with signed numbers.
All of the shifts can be used with the A register, and some
can be used with other cpu registers and with memory loca-
tions. Figure 2.11 shows some common shifts in the Z-80.

ROTATE SHIFT
765432180 DATA "RECIRCULATES” FROM
___l ;._ ONE END TO THE OTHER.
RIGHT OR LEFT ROTATION
POSSIBLE.
LOGICAL SHIFT
765432180 DATA PUSHED OUT ONE
0—] b—s ENDISLOST ZEROS -
L0ST PUSHED INTQ OTHER END.
RIGHT OR LEFT SHIET
ARITHMETIC SHIFT POSSIBLE.
765432164
__.I }.... SIGN BIT {7) IS RETAINED.
LOST REST OF DATA SHIFTED
RIGHT INCLUDING BIT
7 INTO BIT 6.

Fig. 2-11. Shifts in the Z-80.

Shifts may be used for a variety of reasons in computer
programs including alignment of flelds (subdivisions within
bytes}, multiplication and division, testing of individual bits,
and computation of addresses. We'll say more gbout shifts in
Chapter 8.

Bit operations aliow any bit within a epu register or mem-
ory location to be tested, set to a one, or set to a zero. As
there are eight different bif posifions that can be involved,
many cpu registers, and many different ways of addressing

3%

memory, it’s easy to see why there are so many different bif
instructions listed in the list of all Z-80 instructions, However,
ag with a lot of the instructions, they all resolve down to only
three types, BIT, SET. and RES, which perform the test, set,
and reset functions, These three are also covered in Chapter 8.

1/0 Operations

The last group of instructions we'll discuss here are the
1/0 instructions. There are really only two in the Z-80, IN
and OUT. All the IN does is to transfer one byfe of data into
a cpu register from an external device, such as cassette tape.
The QUT ouiputs one byte of data from a cpu register to an
external device. Although the original register used for these
was the A register, the Z-80 added the use of other cpu reg-
isters as the source (QUT) or destination (IN) for the input/
output operation. Another powerful feature the Z-80 added to
the basic 80B0OA instruction set was the ability to perform a
block input/output where the Z-80 will automatically transfer
a block of data into an input area or output a block of data
from an output area. The input “areas” in this type of opera-
tion are called I/0 buffers or simply “buffers.” More about
input/output operations in Chapter 10.

A Program of a Thousand Locations
Begins With the First Bit

The above homily was found inseribed on the first real dig-
ital computer, Babbage’s Folly of & hundred years ago. It
still holds true today. None of the instructions discussed here
is fthat sophisticated; most are very easy to comprehend. If
vou will believe that and the idea that there are many ways
to write a program that will do a specific {ask, you are pre-
pared to advance into the ranks of assembly-language pro-
grammers. In the next chapter we will look at the last tedious
description of the Z-80 instructions, their addressing modes.
We will then be in a position fto “lay down some code” and
vindicate Babbage,

40

CHAPTER 3

Z-80 Addressing

The last chapter covered the types of instructions that are
available in the Z-80 of the TRS-80. We warned the reader
not to be intimidated by the many different instructions as
they could really be grouped into a much smaller number. In
this chapter we will talk about another factor that makes life
interesting for Z-80 programmers— the wide variety of ad-
dressing modes that are available in the Z-80. Many instruc-
tions have several types of addressing modes, and the choice
must be made of which one fo use to do a certain task, Here
again the reader shouldn’t be frightened by the addressing
modes available, as they are all readily understood.

Why Not One Addressing Mode?

If all instructions performed different functions, but worked
with operands from the same place and operands of the same
number, we could, in fact, have one addressing mode, How-
ever, we know from the last chapter that this is not true. We
can add two operands from two ¢pu registers or one operand
from a cpu register and one from memory. We can add two
register pairs. Obviously the ADD instructions for these cases
must be different, as they specify different locations for the
operands, There are a few other instructions that we did not
mention in Chapter 2 that require no operands. One example ig
SCYF, which sets the carry flag. It would be foolhardy (or at

41

least ill advised) to attempt to make the instruction format
for this type of instruction the same as the instruction format
for an ADD.

To further complicate the addressing situation. we must
consider the grandfather and father of the Z-80, the 8008 and
8080A, and their addressing modes. The 8008 had a very
limited addressing capability. To address an operand in mem-
ory, the HL register pair had to be loaded with the 16-bit value
representing the operand’s location. If a load of the A register
from memory location 20AAH (8362) was to be performed,
the HL register pair was first loaded with 20AAH, and then
a “LD (HL)” instruction was executed to perform the load.
The HL register pair was used in this fashion as a register
pointer to memory for most instructions involving an operand
in memory. The 8080A, however, improved upon this type of
addressing by allowing direct addressing of memory for
certain instructions. With the 8080A, the instruction “LD
A, (20AAH)” could be executed to directly load the A register
with the contents of location 20AAH, without having to first
point to that location with the HL register. Of course the
8080A retained the earlier addressing mode of the B008. The
7-80 further expanded upon the 8008 and 8080A addressing
capability by adding indexed addressing and other addressing
modes, which permitted such operations as “LD A, (IX+123)”
where index register IX points to the start of a table at

20AAH, and the “+123"” refers to the 124th enfry in the table.

“And that, Jimmy, is why we have the various addressing
modes in the Z-80 today.” “Gee, Mr. Computer Science, could
we look at the Z-80 addressing modes in more detail now?”
I thought he’d never ask . . .

Implied Addressing: No Addressing at All

The first of the addressing modes is implied addressing.
This mode is used for simple instruetions that require no oper-
ands, such as the SCF instruction which sets the carry flag.
Other instructions of this type are CCF, Complement Carry
Flag, DI, Disable Interrupts, El, EFnable Imterrupts, HALT,
Halt CPU, and NOP, No Operation, to name a few more. Be-
cause these specify a simple action and no operand, they can
generally be held in an instruction of one byte, as is shown
in Figure 3-1. Every time the cpu encounters the SCF instrue-
tion it will set the carry flag in the epu and fetch no more
bytes: the epu knows the SCF insfruction iz only one byte
long, as it knows the lengths of all other instructions.

42

CARRY
FLAG

ACTION: i —

BIf BT BIT 8T 8T BIT BT BIY

&8 & 4 1 2 [0
0781 I f 1 BYTE 0
8 BITS = | BYTE

SET CARRY FLAG (SCF) = 88110111
[T CONFIGURATION IN ONE BYTE

Fig. 3-1. Implied addressing.

Immediate Addressing

In immediate addressing the operand is contained within
the instruction itself, rather than in a memory location. This
type of addressing is used to load or perform arithmetic or
logical operations with constants. Suppose we want to add 23
to the contents of the A register. One way to do this would
be to have the value of 23 in a memory location and then per-
form the ADD as in

D B.A MOVE A TO B
LB A{2111H) :2T1TH (B465) CONTAINS 23
ADD AB ADD A REG AND B REG

If we had to use many constants throughout the program,
however, the program would be filled with locations that held
constants of various values, and we'd have to recall where
each one was located.

Immediate addressing gets around this problem by allowing
an instruction such as

ADD A23 ADD 23 TO THE A REGISTER

The actual appearance of the “ADD A,28" is shown in Higure
3-2. The first byte of the instruction is the operation code of
the instruction, the code that tells the cpu what the instruction
is and how long it is (the implied type of instructions really
had a one-byte operation code). “Operation 'Code” has been
shortened to “opcode” (those long cafeteria lunches again).
In general, the first byte of an instruction in the Z-80 is the
opcode, but some instructions have two bytes as opeodes. The
second byte of the “ADD A,237 is the {mmediate data value
of 23 decimal or 17H. The data value is in the instruction it-

43

self, rather than in another memory location located far away
from the instruction.

Both 8-bit and 16-bit (one and two byte) immediate in-
structions are available in the Z-80. The one byte immediate
instructions load a register or allow arithmetic or logical op-
erations on the A register. Some samples are

LD HI100 LOAD H REG WITH 100
v} A, OFBH LOAD A REG WITH —5
ADPD A5CH ADD 50H (B0) TO A REGISTER
AND A7 AND POWER THREE BITS

The two byte immediate instructions in the Z-80 are used

to load register pairs with constants. The instruction

LD BC3000 LOCAD BC WITH 3000

loads register pair BC with a constant value of 3000 decimal.
As two bytes are involved in the data, the immediate data
value in the instruction is contained in bytes 2 and 3 of the
instruction, as shown in Figure 3-3. Byte one is the opcode for
a “LD BC” type instruction. Note that the hexadecimal repre-
sentation of 3000, OBB8H, is reordered least significant byte
first in the instruction. As we mentioned earlier, ail 16-bit
data is handled in this manner in the Z-80. If you are doing
assembly-language programming, you will never have to

SAMPLE
acTiox. [O]0j0fo[afalili] A= 3
+00016111 +2&
6

{ofofofiTi|of1io] A=128

OPCODE BYTE
11000110 = C6H

BiT BIT BIY BIY BIT BT BF BIT
T 6 5 4 3 2 it 0

{iLjpefjojojp1 L]0} BYIED

ojofey 0§11}l BYE]L

IMMEDIATE
DATA VALUE
G0010111 = 23y = I7H

BOTH BYTES TAKEN TOGETHER MAKE
UP AN ~ADD A.23" INSTRUCTION

Fig. 3-2. Immediate addressing, 8 bita.

ACTION;
00010 1110111000 = 3000,

'

OPCODE BYTE
000Go00T == 01H

BIT BIT BIT BIT BIW 8T 8T B8IT
T8 5 4 3 2 1 0

0j0jo0a]0)0)ail BYTE &

Lig11 1P+ 101040} BYTEY

LI R (N (N (R Y N I O A IO BYTE 2
MOST SIGNIFICANT
BYTE

(e eTaTe L [O AT A ITIoTal0] = 3000
LEAST SIGNIFICANT
BYIE

THREE BYTES TAKEN TOGETHER MAKE
4P A LD BC.3000" INSTRUCTION

Fig. 3-3. Immediate addressing, 16 bits.

worry ebout putting data in the right order; the assembler
program will do it for you. When the assembier sees the “LD
BC,3000” it will generate a 3-byte instruction, with the data
reversed in the second and third bytes. If you are “patch-
ing"” code in machine instructions, however, or entering in-
structions in machine form (and there are some occasions
when this must be done), you must be aware of this format.

Register Addressing

When a program adds two operands from cpu registers, the
cpu knows that one of the operands (the destination) is in
the A register. The location of the second operand (the source)
must be coded in the instruction, however. Now, we have 14
general-purpose cpu registers, A, B, C, D, E, H, and L and
their primed equivalents. As only one set, the primed or non-
primed, is active at any given time, there are really only seven
registers that may be used in an ADD operation with the A
register. Does it sound reasonable to have a one-byte operation
code, followed by two bytes indicating the code for the cpu
register 7 Not at all. Since in three bits we can express the

45

numbers 0 through 7 (000 through 111 binary). we can in
fact ecode those register names into a three-bit value contained
within the instruction itself. This code is called a field, since
it is smaller than a byte. Its use is shown in the “ADD A,D”
instruction of Figure 3-4 which adds the D register fo the A
register. The register field value of 010 signifies that the D
register will be used in the ADD. Note that the instruetion is
only one byte; that byte includes both opcode information and
the register field information.

SAMPLE
BCTION: [Erei6Ta i1l a=15

[a1i7olelo]alald] n;sa

MOTI{OTO L i[i[1l a =179

BIT BT BIT BT BIT BT BIT BIT
7 6 5 4 3 2 1 0

1fojoelo)ojp0g1 |0 BYIED

THESE BITS DEFINE THIS FIELD DEFINES
THE OPERATION THE D REGISTER

THE EIGHT BITS TAKEN TOGETHER
DEFINE AN "ADB A.D" INSTRUCTION

Fig, 3-4. Register addressing.

In addition to register fields that specify single cpu reg-
isters, certain instructions specify register pairs. There were
originally four register pairs in the 8080A, A and flags, B and
C, D and E, and H and L. Because of this many instructions
will have a two-bit field (not a value judgment) that is used
to specify one of the four original pairs. An example of this
would be the “ADD HL.,BC” instruction which adds register
pair BC to register pair HL. As Figure 3-5 shows, a two-bit
field within the two-byte instruction is used to specify a code
of 00 for register pair BC.

With the expanded instruction set of the Z-80, however,
fields must also specify the additional 16-bit registers of IX
and 1Y, as shown in Figure 3-6, Here the instruction is an
“ADD IY,SP”, in which the contents of the 16-bif SP (stack
pointer} register is added to the IY register.

46

SAMPLE
ACTION: (00000001[60000008] 1Y = 256y

+
[071000000]00000000] SP= 16384

1
{01000601J00006T8T] 1y == 16640,

BIT BIT BIT BIT 8T BIT BIT BT
76 3 4 3 2 1 9

gjo0joloyriafe]l BYTE &

R S | U

THESE BITS
(FIELD) DEFINE THE
BC REGISTER PAIR
THESE BITS
OEFINE THE
OPERATION
THE EIGHT BITS TAKEN
TOGETHER DEFINE AN

~ADD Bl BC~ INSTRUCTION

Fig. 3-8, Register pair addressing.

Once again, the assembly-language programmer need not
be concerned with constructing the instruction with the proper
codes in the fields, but may infrequently need to investigate the
machine-language code spewed out by the assembler.

SAMPLE
ACTION: [00600001]00000000] 1Y = 25

+
[0:00C000]000G0000D] sp= 16384,

¥
(01000081[00000000] 1 = 18640y

BIT BIT 87 BT BT BT BT BIT
6 5 4 3 2 1 o0

i i i 1 tiogid BYTE ¢

6101t L)oot BYTE 1

[
THESE BiTS (FIELD)
DEFINE THE 3P, THE
REMAINING 14 BITS
DEFINE THE OPERATION

THE TWQ BYTES TAKEN TOGETHER
DEFINE AN “ADD [Y. 5P~ INSTRUCTION

Fig, 3-6. Index register addressing.

47

Register Indirect

We mentioned this form of addressing earlier in the chapter.
This was the main method of addressing memory in the 8008,
and it used the HL register to point to the memory location
of the operand. The 8080A added the capability to use BC and
DE as “pointers” for loading the A register and storing the
A register. You may be asking why this method should even
be used in the Z-80. The answer is that many instruction types
do not allow the operands to be addressed directly. While it
is possible to load the A register from a memory location di-
reetly specified in an instruction [such as “LD A, (1234H)"],
it is not possible to add a memory operand directly to the A
register from memory [such as the invalid instruction “ADD
A,(1284H)"]. It is possible, however, to set up the HL reg-
isters as a register pointer and then do an ADD, such as “ADD
A, (HL)” or to set up the HL registers and do a variety of
other things. In general, the only direct way into the cpu reg-
isters is through the A register. It alone is the only register
(with two exceptions that permit the HL register pair to be
loaded or stored) that can be loaded or stored by an instruction
that specifies a direct memory address. Other registers in the
cpu must use register indirect means to load or store data,
or some form of indexing covered below. To show how this
works, consider the following instructions which load the B,
C, and D registers with the contents of memory locations
1000H, 2000H, and 3000H. Two ways of doing this are shown,
one by loading the memory location into the A register, and
then transferring it to the other cpu register, and the second
by using the register indirect method.

(1 LD A(1000H) GET CONTENTS OF 1000H

1D B,A ;TRANSFER TO B
1D A2000H) GET CONTENTS OF 2000H
D CA ;TRANSFER TO C
1D A(3000H) :GET CONTENTS OF 3000H
th DA ;TRANSFER TO D
(2) LD HLI000H SETUP POINTER REGISTER PAIR
LD B.(HL) SLOAD B WiTH CONTENTS OF 10G3H
LD HL2000H ;SETUP POINTER REGISTER PAIR
LB C,{HL} ;LOAD € WITH CONTENTS OF 2000H
LD HL3000H SETUP POINTER REGISTER PAIR
LD DJHL) {LOAD D WITH CONTENTS OF 3000H

The register indirect method of addressing is used for many
different types of imstructions including loads, arithmetic,
logical, and shifts. It is always used with 8-bit (one byte) type
of operations. Because it does not have to specify a memory

18

location, it is usually a one-byte instruction, and really comes
close to being an 1mphed addressmg type. A typical register
indireet instruction is shown in Figure 3-7 which shows a
rotate-type of shift performed on the memory location ad-
dressed by the HL register pair used as the pointer.

SAMPLE
ACTION: BEFORE lolﬁeﬂeoileﬁﬁoﬂﬂﬁil HL = 16641

MEMORY LOCATION
GGHUUEI 16641

AFTER [010000G01]00000001] HL = 16641 {UNCHANGED)

:j MEMORY LOCATION
iopliogl 16641

8T &IT BIT BT BT 8IT BIT BT
6 5 4 3 2 I 0

iyt e 0318081 BYTEQ

10 0p0fp0i1 {1 |0} BYIEL

THE TWO BYTES TAKEN TOGETHER DEFINE
AN "RRC (HL}" TYPE INSTRUCTION WHICH
USES HL TO DEFINE A MEMORY
LOCATION FOR A ROTATE.

Fig. 3-7. Register indirect addressing.

Direct Addressing

Direct addressing is used with two general types of instrue-
tions, loads and jumps. We have been speaking of loading the
A register directly and contrasting it with indirect means.
When a direct instruetion of this type is used, the second and
third bytes of the instruction hold the 16-bit (two byte) mem-
ory address of the memory location to be used. The instrue-
tions “LD A,(4000H)"” and “LD (4000H),A”, which load A
with the contents of location 4000H (16384) and store the
contents of A into location 4000H, respectively, are shown in
Figure 3-8. The two bytes representing the address are re-
versed, with the low order byte first, and the high-order second.

The HL: register pair may also be stored or loaded directly
with this type of addressing. In this case the register pair is
stored in fwo memory locations as two bytes of data are in-

49

SAMPLE MEMORY
acTion: 1000 1*1 LiL] s ocation 40008

I
LD A000H)”
THIS BYTE DEFINES THE OPCODE 3AH

BIT BT BIT BIT BT BIT BT BIT
7T 6 5 4 3 2 b 0

0jo0f1i Ly 1181}t

0
sloje 03 ai 0} 0]8 BYIE L
gl]iloi0y830490 Q BYTE 2

[o]1[ol0]0]6]B 0 0 0 00l 0[6]010] = 4000H = 16384y

BIT BT BT BT BT BIT B B‘;\
7 6 5 4 3 7 1 %

ojo i1y jo0pLyo0 BYTED

BYTED

gjlojojaejojojote BYTE 1

pitioejojojaoie 0 BYTEZ

THIS BYTE DEFINES SAMPLE] MEMORY
THE 0PCODE 32H ACTION: :1 LOCATION 4000
Fig. 3-8. Direct addressing.

volved. As usual, the first (lowest) holds the low-order byte
and the next (highest) holds the high-order byte. The address
used in the instruction itself points to the first byte of memory
to be uged. The instruction “LD HL, (6000H)"” will load reg-
ister L with the eontents of memory location 5000H (20480)
and register H with the contents of location 5001H (20481)
as shown in Figure 8-9. Register pairs BC and DE and 8P, IX,
and 1Y may also be loaded or stored directly.

Direct addressing is also used with CALLs and jump in-
structions. All CALLs are direct addressing {ypes, and all
jumps are direct addressing except for the relative type of
jumps covered latér in this chapter. The format for CALLs
and.JPs is shown in Figure 3-10. The first byte specifies the
opcode for the insfruction and informs the cpu whether the
instruction is condifional or unconditional and whether it is

G0

OPCODE BYTE = 2A8H

BIT BIT BIY BT BIT BIT BT BT
& 5 4 3 2 1 @

oot tofy]oyLyo BYTEQ

byojo0jolo0]0)0]0KBYTEL

gl g1 jofojoan BYTE 2

MS BYTE LS BYTE
toTiJo]1folo]ofotoaolalalolela] = 50004

THESE THREE BYTES TAKEN
TOGETHER DEFINE AN ~LD HL.
(5000H)~ INSTRUCTION

ACTION:

MEMORY LOCATIONT 1
&00gH $1060011 .

MEMORY LOCATION [181801017 {] }
5601 F ’_/'s ' L

Fig. 3-9. Direct addressing involving HL.

a jump or CALL. The second and third bytes are the address
of the jump location or CALL location. This data is not usged
to reference a memory location as with other types of instrue-
tions, but is simply jammed into the program counter to re-
place the “next instruction” address that was automatically
caleulated when the instruction was first accessed. The effec-
tive action is a jump or CALL to the location specified. As
usual, the 16-bit address is in reverse order in the instruction.

76 5 4 1 2 1 0

JUMP OR CALL OPCODE BYTE 0
LEAST SIGNIETCANT BYTE ¢
BYTE OF JUMP ADDRESS
MOST SIGNIFICANT
BYIE OF JUMP ADDRESS BYTE Z
MEMORY y
LOCATION -
4FFBH C3H JP 5000 H INSTRUCTION EXECUTE
4FFCH a0
4FFDH Eii
4FFEH CEH ADD A.3 INSTRUCTION (BYPASS)
4FFFR 03H
5000H ToH ADD A4 INSTRUCTION EXECUTE
5001H oaH |

Fig. 3-10. Jump and CALL format.

51

Relative Addressing

Relative addressing is used only for relalive jump instruc-
tions: no other types of instructions use the relative type of
addressing, including CALLs. The relative jump uses two
bytes to specify the instruction, one byte for the opcode, and
one byte for the memory address. Oh, oh! There’s that kid in
the back of the class again. He's asked a very valid question—
how can one byte specify a memory location when it takes 16
bits or two bytes to specify a memory location value of 0000H
to FEFFH (0 to 65535). It would appear that we can’t jump
to anything other than locations 0 through 255, the values
that ean be held in one byte. Not true! What if we used that
one byte to find the memory location by adding the contents
of the program counter (PC) to the value found in the byte.
The new address or effective address would be the address in
the PC plus the value in the instruction byte. What's in the
PC? Well, we know that the PC points to the next instruction
after the jump. If we add the value in the instruction to the
PC we get a value that points to the next instruetion —128
through the next instruction plus 127, depending upon what
was in the instruction byte displacement. In fact, with this
type of instruction we can jump within a limited range of
256 bytes of the instruction itself. Since most of the jump des-
tinations within a typical program are close to the jump in-
struction, this appears to be a valuable instruction. as it saves
one byte of ingtruction length over a regular JP. Let's see how
this works. Suppose that at location 4300 we have a jump fo
location 4350H. After the “JR 4350H” instruction has been
fetched, the PC points to location 4302H, the next instruction.
If we look at the second byte of the JR instruction, we find
that the assembler has put a 4EH there. Adding the 4EH and
4302H we obtain 4350H, which iz the jump address (effective
address) that is jammed into the PC to cause the jump. This
process 1s shown in Figure 3-11.

The second byte of the JR instruction actually holds an 8-bit
signed value in this ease. Rather than representing a range of
binary values from 0 through 255, the displacement in the
second byte represents a range of —128 through +127. Binary
numbers in this two's complement form will be discussed
further in Chapter 6, but for now just remember that the
displacement may also be negative in a JR. Of course in the
JR, as in other instructions, the programmer does not have
to tediously compute the value to be put into the displacement
byte; the assembler will automatically do it for him. (That's

52

MEMORY ... _~—

LOCATLON
16543210 \ ATER BYTE FETCHRD

{
AZFEN ChH ADD AS 42FFH
42FFH 05H 43004
43004 184 JR 43508 4301H
43014 4EH
4302H 384 LD A{5060H) 4303H
4303H a0H 4304H
43044 50H 43050
4305H §0H ADD AB 4306H
4306H 32H LD (5000H),A 4307H
4307H 00H 4308H
43088 50H 43090
4309H 3AH LD A{5000H) 4308H
430AH 00H / 43084
4308H §0H ! 430CH

0)/

43505#

PROGRAM = 4302H

COUNTER
+ +
DISPLACEMENT = d4EH
EFFECTIVE = 4350H
ADDRESS

Fig. 3-11. Relative jump action.

why we have computers!) Yow’'ll see in the next chapfer that
the instruction referenced may actually be given a name,
much in the same fashion as a BASIC variable name, which
the assembler will use in figuring out what the displacement
should be,

A Special Type of Call

The RST, or Restart instruction, started out in the S080A
as an instruction geared for interrupts to the microprocessor,
special signals to the epu that signal external events such as
typed characters or “line printed.” In the TRS-80, however,
the RST instruction is used for a second purpose, that of a
“short” CALL, to call a subroutine. The RST permits a call
to one of eight memory locations located at either 0000H,
0008H, 0010H, 0018H 0020H, 0028H, 0030H, or 0038H (dec-
imal 0, 8, 16, 24, 32, 40, 48 or 56). As the RST is only one byte

53

long, it saves two bytes over a normal CALL instruction and
is valuable for commonly used subroufines that would be fre-
guently called in a program.

The appearance of an RST is shown in Figure 3-12. There
is a three-bit field that specifies which of the eight locations
is being CALLed as a subroutine. The actual location ad-
dressed is found by multiplying the contents of the 3-bit

BIT BIT BIT BIT BIF BIY BIT BT
7 6 5 4 3 2 1 0

1 FON I SO B O N 8 111 aYTe o

[T

FIELD DEFINING
MEMORY LOCATION

400 = Q00K 7
001 = GO08H
010 = G010H

011 = G018H { MEMORY LOCATION
160 = 00204 | FOR CALL ACTION

101 = 06284
11¢ = 0030
111 = 0038H -

Fig. 3-12. Restart instruction.

field by eight, Naturally, the program does not have to do
this dirty work, but simply specifies an

RST 18H ;CALL ADDITION SUBROUTINE
or similar instruction to generate the instruction.

Indexed Addressing

This is one of the powerful addressing modes added to the
base 80B0A instructions by the Z-80. Indexing allows the as-
sembly-language program to easily access data that is ar-
ranged in contiguous tables. Suppose, for example, that we
have a table of employee data as shown in Figure 3-13. Each
employee record has name, address, marital status, number
of TRS-80 systems owned, and other relevant particulars. It

94

would be nice to have the capability to access data grouped
around a particular employee record in the table. We know
that we could do this by other addressing means, such as
loading the A register directly but this is not an elegant way
to do things, and we would like to consider ourselves sophis-
tieated programmers. Take heart! The Z-80 indexed address-
ing capability affords an elegant solution (or at least a nice
one. .. well, it's pretiy good . . .).

Initially the program loads the value representing the ad-
dress of the table entry into an index register, in this case
IX, although IY could have been used as easily. Now, to access
any data near the record, it’s simply a case of using an in-

EMPLOYEE DATA EMPLOYEE
TABLE RECORD
EMDTAB EMPLOYEE #1 wawe |0
20 BYTES
EMPLOYEE #2
ADDRESS | +20
EMPLOYEE #3 35 BYTES
TELEPHONE | 455
10 BYTES
M{SiTi Z | ND
i
1

OF TRS-805 § + 100 {10157 BYTE)
t

Y

EMPLOYEE #N -

Fig. 3-13. Indexed-addressing table example.

dexed instruction, If the index register had been loaded with
b0O0H., the instruction

0 B{X+T00) GET # OF TRS.805

would load the 101st entry, the number of TRS-80 systems,
into the cpu B register. In other words, the cpu creates an
effective address, similar to the relative jump effective address,
by adding the contents of the index register with a displace-
ment byte from the instruction. In the case above, the instruc-
tion would appear as shown in Figure 3-14. The first two
bytes are opcode and a register field that specifies the register

55

LB B{1X + 100}

QPCODE
7.6 5 4 3 2.1 9
tfifoiif1jo]if/ srmEQ
oliJofojefilijof wmer
oftffijolafj1jojo] mmE2
REGISTER FIELD SIGNED DISPLACEMENT
SPECIFYING B 01100100 = 10050 = 64H
{1 = 5000H
DISPL. _54H
5GG4H = EFFECTIVE ADDRESS —7
BREGISTER o0t
A EMPLOYEE RECORD
so6eH [P

Fig. 3-14. Indexing into table.

to be loaded. The next byte is a signed displacement that is
added to the IX register to form the effective address: in this
case the displacement is 64H as shown. The effective address
caleulated for the access here is BOOOH 4 64H or 5064H, the
memory address of the number of TRE3-80 systems for em-
ployee number one.

Indexing using the 1X or IY registers may be used for a
variety of Z-80 instructions, but, of course, is always used
when the address of a memory operand is used in IX or IY.

~ 27 B|T POSITION
e 26 BIT POSITION
w25 8T POSITION
= 24 BIT POSITION
w23 BIT POSITION
ra 27 BIT POSITION

2V BIT POSITION
= 20 BI7 POSITION

BiT NUMBER

—

MOST LEAST
SIGNIFICANT SIGNIFICANT
BiT BIT
POSITION POSITION

Fig. 3-15. Bit numbering.

56

We will speak more of indexing in Chapter 9, where table and
other data structures are discussed.

Bit Addressing

All of the addressing done in the preceding sections refer-
enced a memory location or ¢pu register byte, The bit address-
ing mode, used in the bit instructions, references a single bit
somewhere in memory or a cpu register. The format of this
addressing mode specifies a bit position from 7 through 0. The
instruction

SET 6,(HL) :SET BIT 6 OF MEMORY BYTE

sets bit 6 of the memory location pointed to by the HL register
pair pointer. Bits in memory, epu registers, or other TRS-80
system components are always numbered as shown in Figure
3-15. The most significant bit (msb) is numbered bit 7, and the
least significant bit (Isb} is numbered bit 0. These numbers
correspond to the power of two represented by the bit position
(bit 7 is 128, 6 is 64, etc.).

This addressing mode is used with the instructions of the
bit instruction group only, the BIT, SET, and RES instruc-
tions. The bit addressing mode allows other addressing modes
to be used in the instruction (as do other instructions, in
faet), so that bit addressing may be used in conjunction with
register indirect, indexed, or register addressing.

Conelusion and Confusion

This concludes the discussion of addressing modes used in
the Z-80. The worst problem in the use of the addressing modes
is not in understanding what they do, but in remembering
which instructions use which addressing modes, I'm afraid
that there is no magical solution to this except reference to
Appendices I and II and experience, The saving grace is that
there are always many ways to code a particular program,
both in terms of which instructions to use and what their
addressing types should be. There is no one correct solution to
any programming problem, and there are very few “bad”
programs either.

In the next chapter we will look into the use of TRS-80
Editor/Assembler and T-Bug packages and assembly-language
and machine-language coding, If you have made it through
these first few chapters, you have an excellent chance of be-
coming a certified TRS-80 assembly-language programmer!

57

CHAPTER 4

Assembly-Language
Programming

Now that you have digested the necessary background in-
formation on the TRS-80 and Z-80 (hope it wasn’t too filling),
we are ready to assemble some assembly-language programs
and run them. There are basically two ways to construct and
implement machine-language programs for the TR3-80. The
first way is by machine-language coding and the second 1s by
assembly-language coding. In the first method, a program is
written out, or coded, on paper and manual methods are used
to eonstruct the proper sequence of instructions for the Z-80;
the program is actually coded in machine language. In the
assemhly-language method, the Editor/Assembler is used to
translate a symbolic form of the instructions into machine-
language, which is then loaded into the TRS-80 by the loader
portion of the Editor/Assembler. Is the Editor/Assembler
really necessary? For all programs over one instruction in
length, the Editor/Assembler is aimost a necessity for ease
in editing, assembling, and loading programs. Machine-lan-
guage can be employed in place of the Editor/Assembler, but
only if the user likes to do tedious and exacting work. The
exception to this is that some machine-language coding will
give the TRS-80 user great insights into the way the Assem-
bler constructs programs. Once he has this insight he then
will probably want to do all of his coding in assembly language.

a8

Machine-Language Coding

To show the reader how machine-language coding is done,
let’s write a program to write a “1” at the center of the video
dispiay. We know from BASIC that the video display has
1024 different character positions, 64 on the first line, 64 on
the next, and 64 on each of the 16 lines making up the screen.
We also might know that each character position has a video
display memory location associated with it, starting at mem-
ory location 3CO0H (15360) and ending at 3FFFH (16383).
If we wish to display a “1” in the exact center of the screen,
or as close as we can get, we would have to store that “1” in
the memory location associated with line 9, 32 characters over.
This will be location 15360 + 8 lines at 64 characters per line
+ 32 characters or 15360 + 512 + 32 = 15904 (3E20H). See
Figure 4-1 for a diagram of the screen and memory asso-
ciated with it.

Now that we know where to store the “1,” how do we store
it? The first thing that comes to mind is a stere instruction.

64 CHARACTERS
HRE £ VIDED
DISPLAY
SCREEN
LINE 16
VIDED
MEMORY HOLDS CHARACTER
ADPRESS FOR

15360 3cooB LIRE 1 CHARACTER 1
15361 3C0EH LINE 1.GHARACTER 2

c |

{ T H

1 1 I

! | l

1 I i

i i |

H | I

H [1

i [1

1 £ -~ d I

1 H -~ —_ |

¥ ¥
16382 JFFEN LINE 16.CHARACTER 63
16383 JFFFH LINE 16,CHARACTER 64

Fig. 4-1. Screen addressing.

a9

We can [oad the “1” into a cpu register and then store it info
location 3E20H. One question that comes to mind is the code
for the “1.” This is a 7-bit ASCII code representing the alpha-
betic characters, numeric values, and special characters as
shown in the Level Il or Editor/Assembler manuals. The code
for a “1" is the value 00110001 or hexadecimal 31H (the 8th
bit is set to a zero}. The following instructions load the A
register with the code for a one and then store it into loca-
tion 3E20H.

b A3H {LOAD A REGISTER WITH "1~
LD {3E20H),A STORE “1* INTQ CENTER OF SCREEN

The first instruction in the above program is an immediate
addressing type load which loads “1” from the immediate
data in the instruction into the A register. The next instruc-
tion stores the A register into location 3E20H. The paren-
theses around the 3EZ20H indicate an address rather than a
data value.

Well, it appears that this program should work. Our next
task is o translate the mnemonics for the instructions info
the actual opcodes, data fields, and addresses that can be input
to the Z-80. We know from our discussion in the last chapter
that the 8-bit immediate instructions have one byte for the
opeode and one byte for the immediate value. If we look in
the Bditor/Assembler manual, we find that the opcode for the
LD A is 00RRR110, where “RRR" represents the register code
for the cpu register to be used. For an A register load, this field
is 111, so we now have 00111110, or 3EH. Let's write the op-
code down opposite the imstruction.

3E 31 1D AJ3IH AOAD A REGISTER WITH "17
1D (3E20H),A STORE “1" INTO CENTER OF SCREEN

We've also written the immediate data value of 31H to be
loaded into the A register. Now let’'s look at the second in-
struction. As this is a direct store, we know that it must con-
tain a two-byte address for 3E20H. In this case the opcode is
one byte long and is a 32H, with no fields. The address of
3E20H is put in reverse order into the second and third bytes
of the instruction and the opeode is put into the first as follows

3E 31 {0 A3IH LOAD A REGISTER WITH "
32 20 AE 1D (3E20H),A STORE 1" INTO CENTER OF SCREEN

About the only thing left in this program is to decide where
in RAM it is to reside. In most programs we must know this
before we start a manual or automatic assembly process, since
many of the jump and CALL addresses are direct addresses

60

that refer to locations within the program. A good ares for all
systems, Level I or II, 4K and larger configurations would
be near the end of the 4K RAM area or 18944 [the RAM
area starts at 16384, and 18944 is 16384 plus 2560 or 18944
(4A00H)]. We will now assign the locations for the two in-
struetions at 4A00H and 4A01H plus two bytes for the length
of the LD A,831H or 4802H.

4A00 3E 31 LD A31H LOAD A REGISTER WITH "17
4A0Z 32 20 3F LD ({3E20H)A STORE "1 INTO CEMTYER OF SCREEN

In the process of hand-assembling the program above, we
have had to do a number of things the Editor/Assembler could
have done much more easily. We had to look up the opcodes for
each of the instructions, insert the proper code for the A regis-
ter in the first instruction, reverse the address and put it into
the second instruction, find the length of the instructions and
properly calculate the locations for each instruction, and find
the code for the “1”. All of these things could have been per-
formed easily by the Editor/Assembler, leaving us free to
concentrate on the logic of the program. In addition, the As-
sembler performs many other functions, such as data error
checking, relative address range checking, checks on the num-
ber of operands, and so forth. For these reasons, we will be
concentrating on use of the Editor/Assembler in the remain-
der of this boeck, although the reader may do his own machine-
[anguage coding from the instructions in the text, if he chooses
toe do so.

The TRS-80 Editor/Assembler

The TRS-80 Editor/Assembler is a program and documen-
tation for 16K Level I or II systems. In the remainder of the
book, we will assume that the reader has access to the Editor/
Assembler and to the Editor/Assembler User Instruction
Manual (#26-2002). The description in this chapter is meant
to supplement the descriptions and operating procedures
found in that manual.

As an example of edit and assembly of a new program, let’s
take the huge two-instruction program we did in machine
language, edit and assemble it, load it, and execute it on the
TRS-80. The two instructions we had originally were in sym-
bolic form, that is we used symbols such as A to represent the
A register code of 111,

i AZ3IH {LOAD A REGISTER WITH 17
LD {3E20H).A ;STORE "1 INTO CENTER OF SCREEM

63

Before we begin editing and assembling, we need a few more
things in this program and every program to put the program
in proper format for the assembler. An “ORG” statement tells
the assembler where the program will reside after it has been
loaded. Without an ORG (ORiGin) the assembler could not
assemble the direct addresses used in some of the instructions.
We'll use the same origin as in our machine-language version,
4A0Q0H, the %, point of 4K RAM.

ORG 4AQ0H START AT LOCATION 4AGOH

R3] AJTH LOAD A REGISTER WITH “1”

LD (3EZ0H),A :STORE "1 INTO CENTER OF SCREEN
ENB 4A00H END-START OF 4AGOH

As the ORG statement does not actually generate a machine
language instruction as do the two LDs, it is called a “pseudo-
operation” or “pseudo-op.” In place of an opcode, pseudo-ops
have mnemonics which tell the assembler what to do for pro-
gram origin, end, and data. The ORG pseudo-op has one op-
erand associated with it, 2 value indicating where the origin
is to be.

Another pseudo-op that is an absolute necessity is the END
pseudo-op. END, of course, tells the assembler that it has
reached the end of the assembly-language program. It may
or may not have an operand. If it does, the operand indicates
the starting point for a program after the load., Here the
starting point is 4A00H, so we have specified this value as an
operand for the END.

Now before we enter this short program, we should really
check over the logic of the program itself. This is called “desk
checking,” and saves reediting and reassembling the program
several times. We may still have to change the program in the
general case, but a good desk check will reduce the number of
times that the program has to be edited and assembled. The
only flaw in the program seems to be at the end. When the
program is loaded and run the first LD will load the “1” into
the A register and the next LD will store the “1"” in A into
location 3E20H, the center of the screen. What instruction is
executed next? The one following the LD (3E20H),A. Since
we have noi specified another instruction after the second,
however, there will be %o third instruction, or if there is, it
will be purely coincidental. This means that after executing
the two instructions in the program, the cpu will go merrily
on its way, attempting to execute what is referred to as gar-
bage. We must terminate the program properly. One way to
terminate the program would be with the addition of a third
instruction that jumps to a known set of code, or a known

62

return pownt for Level T or Level 11 BASIC. We'll add a jump,
but we’ll simply jump {0 the jump itself to create an endless
loop of jumping to the jump to avoid executing meaningless
instructions that would cause unexpected results.

ORG 4AQ0H START AT LOCATION 4AGOH

ip A3TH ACQAD A REGISTER WITH "1

i (3E20H),A STORE “71"INTO CENTER OF SCREEN
LOOP UIP LooP J00P HERE

END 4AGOH ;EMD.START OF 4A00H

We've introduced an important concept here. We did not
have to caleulate the location of the JP instruction ourselves.
We gave the JP instruction a label of “LOO0OP,” and let the
assembler figure out that the “JP LOOP” is equivalent to “JP
4A05H.” The reference to LOOP is a symbolic address.

Editing New Programs

We are now ready to use the Editor/Assembler. Load the
Editor/Assembler using the procedures outlined in the Bditor/
Assembler manual. After a successful load, the program will
display the prompt “*7” on the video, Now type [100,10, fol-
fowed by an ENTERE. This puts the Editor into the /nsert mode
and allows us fo enter a number of lines starting with line
number 100, and incrementing by 10 for each line. Now type
in the five lines. The —» (right arrow) may be used to tab to
the next column, the <« to backspace for error correction, and
the ENTER must be used to indicate the end of each line.
After you've entered the five lines, press BREAK and the
program will return to the “*” prompt. The entire dialogue
is shown in Figure 4-2.

The editing process is now complete. The Edit buffer has
five lines of text duplieating what we have typed in. As a
check on our input we can Print the edit buffer by the com-
mand “*Pz:*”, which will display the entire text buffer of

SPECIFIES "INSERT TEXT

STARTING AT LINE 100
WITH LINE INCREMENTS OF 10
srigo.ig

56100 asG Lacox ISTART AT LOCATIEN kaOGH
o110 I 4,31 11080 » Rreisten wrmh mon] TEXT
a0Lz0 %] (3E204}, 4 (STGRE "1~ INTO CEUTER
coii0 Logp 4F 1507 JLOBP HERE INPUT
Pt D macod JERD-START OF 4A0D
Qoo
s
BREAK KEY

PRESSED HERE

Fig. 4-2. Editing operations.

63

five lines, The editor does not check the text we are inputting,
and will not catch any errors in syntaz or mispellings (even
TRS-80 programmers have been known to make occasional
mistakes).

Assembling

Now we are ready to assemble, Type “*A” for assembly,
and the Assmbler portion of the Editor-Assembler will as-
semble the five lines, displaying the assembled code on the
screen as shown in Figure 4-3. The right-hand section of the
listing is the source code that we have just entered: the left
hand side of the listing is the machine code information that
will be loaded into the TRS-80. The first column shows the
locations for the instructions, starting at location 4A00H, and
incrementing for each instruction, dependent upon instruction
length. The next column shows the actual machine code for
the instruction. This will range from one to four bytes, de-
pendent upon the type of instruction and its addressing modes.
The next column gives the line numbers, starting with line
number 100, as we specified.

EE =i il s START AT LOEATION <R
dER Y Bl 1B AL B REDISTER BITH °8°
W OEHE B it SATOEE *1Y INTO CEHTER
N IEEA BBl OB LGP HEE

ificd 4 £ dnE SE-STERT F 4RER
BEEH T, RS

WP 4

Fig. 4-3. Assembly operations.

Where is the machine language code at this time? It is in
a buffer ready to be written to cassetfe tape or disc. We will
use cassette tape to make it more general for all TRS-80 users.
After preparing the tape, press ENTER and the Assembler
will write out the machine code to cassette. Notice that nothing
has been executed in the program to this point. The actions
go far have been analogous to hand assembling the instructions
and writing down the machine code to be loaded and run. The
cassette tape has been used to write a file of object code repre-
senting the machine code of our short program. There's that
persistent kid from the back again. . . . The object code looks
very similar to the machine code, except that it contains addi-

64

tional data about the origin, file header information (the name
of the cagsetie file—“NONAME” in this case}, and other in-
formation that will help in the loading of the program.

Leading

We've assembled, edited, and now we are ready to load the
object code. After the load, the machine code will be at loca-
tions 4A00H through 4A07H and we can execute the program.
At this point we are done with the Editor/Assembler and can
go back to Level I or IT BASIC. We must now use the SYSTEM
mode to load the object program; the SYSTEM mode is in-
herent in Level II BASIC but must be implemented by loading
a special SYSTEM tape in Level I BASIC (see the Editor/
Assembler manual for directions). The SYSTEM mode is
used to load assembler objeet programs, and to transfer con-
trol to the program after it has been loaded. After the SYS-
TEM prompt of “*?” type in “NONAME" to load the object
file from cassette tape. If a successful load is performed, the
prompt “*7” will again appear, indicating that the program
is now in memory at locations 4A00H through 4A07H. Al
that remains now is to transfer control to the starting address
of the program at 4A00H. We do this by typing in the decimal
equivalent of 4A00H after a slash (*/”) or simpiy by typing
in a slash, as we have indicated the starting address of the
program in the END statement, and this has been saved in the
object program. The result should be a “1" displayed in line 8
at the middle of the screen. Not a very impressive beginning
for a programmer who will revolutionize the field of assembly-
language computing, eh? But by the end of the book. . ..

Assembler Formais

Now that we have successfully assembied our first program,
let us discuss assembly-language formats in a little more de-
tail. As we saw from the listing, the basic format of all as-
sembly lines is an optional label, an opcode or pseudo-op
mnemonic, operands to fit the instruction or pseudo-op, and
optional comments, as shown below.

THERE ADD A{tY+7100) ;THIS IS THERE

The label may be one to six characters, the first of which
must be alphabetic. There are certain reserved words that
cannof be used for labels, such as register names (IX) and
fiags (C). These are listed in the Editor/Assembler manual;

65

just remember to stay away from labels that are the same as
flags or registers, such as HL (they will assemble with an
error indication).

The opcode or pseudo-op must be one of the mnemonies
given in Appendix II or the pseudo-ops given later in this
chapter. These mnemonics follow the standard Zilog Z-80
mnemonies, and are also provided in the description of the
instructions in the Editor/Assembler manual.

The operands are in the third column of an assembly-lan-
guage line. The number of operands to use depends upon the
instruction and addressing type. As we know from Chapters
2 and 3, some instructions have no operands, such as SCF,
and others have one or two, such as “BIT 7,(HL). The oper-
ands may specify data, as in the immediate load

LD HL3IFFFR ;LOAD HL WITH 3FFFH

or addresses, as in the load
1D HL{3FFFH) [LOAD HL WITH CONTENTS OF 3FFFH

Note the difference in data and addresses. Except for jumps
and CALLS addresses are elways enclosed by parentheses, and
data is never enclozed in this fashion. Jump and CALL oper-
ands are addresses not enclosed by parentheses. The formats
for Z-80 instruciions are given in Appendix II and in the in-
struction descriptions of the Editor/Assembler manual. In
place of numeric operands for data or addresses. symbolic
names may also be used. These names must have a correspond-
ing label somewhere else in the program. An example of this is

D A (COUNT) 10OAD COUNT OF COUNTS

LD B {DUKE) LOAD COUNT OF DUKES
Hother code)
COUNT DEFB O JLOCATION HOLDING COUNT OF COUNTS
DUKE DEF8 O LOCATION HOLDING COUNT OF DUKES

Some instructions refer to flags; for example, the condi-
tional jumps that test a flag status for the jump. Cerfain
mnemonics are used for the flag=0 and flag=1. These are “C”
and “NC” for carry flag=1 and carry flag=0, “Z"” for zero
flag==1 and “NZ” for zero flag=0, “PE” for parity even (P/V
flag=1) and “PO” for parity odd (P/V=0), and “M" for
minus (S flag=1) and “P” for positive (S flag=0). These
mnemeonics are reserved for the use of flag references. An
example of an assembler line using a flag reference is

66

ADD A37 ADD A AND 37
I MOMMY GO IF RESULY NEGATIVE
;RESULT POSITIVE HERE

The comments column is also optional. When you are debug-
ging a program some dark and lonely night and wondering
what you did in those ten instructions that have no comments,
think back upon this advice: There are never too many com-
ments. A comment may also be used in a line by itself as in
the following code.

sTHIS 15 A ROUTINE FOR A STAND-UP COMIC
LB AJ{JOKE} :GET JOKE FROM MEMORY
e {LOQ),A :DELIVER

Just as BASIC allows various expressions, combinations of
symbolic variables and constants, so does the assembler allow
limited use of expressions. These are detailed in the Editor/
Asgembler manual. Addition, subtraction, logical AND, and
shifts are allowed. We will only be using addition and subtrac-
tion in this book, and leave the use of the others to your ex-
perimentation. Addition and subtraction are represented by
“+7 and ‘", just as they are in BASIC. As an example of the
use of expressions in assembly language coding, let’s use the
program we've been working with, We stored a “1"” into the
center of the video display, which was really in the center of
the video memory area. We knew that the start of the video
memory was at 3C00H, and that we wanted to store the “1” at
the 512 + 32 character position on the screen. The following
code will perform the store,

STORE AN ASCH OMNE NEAR CENTER OF SCREEN

LD A3IH :ASCH ONE
LD (3CO0H+512+4+32),A ;CLOSE TO CENTER

The same technique could be used for subtracts, or with ex-
pressions consisting of symbolic labels and constants. Note
that in the expression, hexadecimal data was intermixed with
decimal data, Hexadecimal data is always suffixed by an “H”
to mark it as hexadecimal. In addition, hexadecimal data must
have a leading zero, if the hexadecimal value starts with A
through F. The value of A0GOH will confuse the assembler and
result in the assembler trying to find a label of AQQOH, rather
than treating it as data. Decimal values may simply be values
without either leading zeros or suffixes, as shown in the ex-

67

ample. We will use various expressions in the course of the
chapters invelved with programming examples in this book,
s0 you will have 2 chance to see further use of them.

More Pseudo-Ops

When we wrote our first assembly-language program earlier
in this chapter we used two pseudo-ops, the END and ORG
pseudo-ops. The TRS-80 Editor/Assembler has six additional
pseudo-ops, DEFEB, DEFW, DEFM, DEFS, EQU, and DEFL.
They are used to generate byte, word, and string data, to re-
gerve memory, to equate a label, and to set a label,

The DEFB generates one byte of data rather than an in-
gtruction. Suppose that in the program we've been using we
wanted to store the ASCII one in memory ag a constant value,
rather than loading it as an immediate value. The following
code would do exactly that. A 31H, the ASCII 1, would be
stored at location 4A09, When the program was executed, the
instruction at 4A00 would load the confents of “ASCONE”
into the A register.

The DEFB can be used as many times as is necessary. Each
time it appears, one byte of data is generated. The DEFW, on
the other hand, DEFines a Word of data, or two bytes. As we
are frequently working with 16-bit data for addresses or con-
stants to be used with register pairs, the DEFW is handy. The
following code generates both 8- and 16-bit constants by use
of DEFB and DEFW,

(f coursze the 16-bit values generated are in the usual re-
verse order. The most significant byte is last and the least sig-
nificant byte is first.

68

his
g

T
pai i
e

s

FTink

3
Lere)

BEFE
{.E-! 11 EE
E

B -3

The DEFB may also be used to generate a one byte ASCII
value directly. This saves the programmer the trouble of look-
ing up an ASCII equivalent code for character data. Not only
does the assembler do this for one byte, but it also generates
a whole string of characters to be used for messages or other
purposes when a DEFM, or DEFine Message is encountered.
The following code shows how the DEFB is used to generate
one byte ASCII values and how the DEFM is used to generate
a string of characters.

o Bete
I *
iy

v

=
i

s

The resulting characters from DEFM are spread out over
the print lines of the listing, along with the location for each.
This makes it somewhat difficult to read, but it sure does beat
assembling the corresponding messages or one byte ASCII
data manually.

The DEFS pseudo-op is used to reserve Space in the pro-
gram, Many times a section of memory must be set aside to
be used for a buffer, message area, matrix, or other reserved

68

B B 4

10 P ;AP OVER BIFFER
28 BFFER [EFS 260 ; BLFFER FRE
B8 LN L R ; IHITIRLIZE COUBY

i B

area. Although we could use a series of DEFBs or DEFWas to
generate the space by defining zeros or all ones, it is some-
what easier to use the DEFS pseudc-op. The DEFS in the
above code reserves 200 bytes of storage between the JP and
the LD instruction. (It would be very tedious to use 200
DEFBs or 100 DEFWs to do this, although we might do the
same thing by a new ORG.)

The first instruction appears at 4A00H through 4A02H.
Then 200 bytes (C8H) of reserved space are requested by the
DEFS. The next instruction appears at 4A03H plus C8H, or
4ACRBH,

The EQU or EQUate pseudo-op is used to equate a label to a
value. The label can then be usged at any time, without know-
ing the value, If we haven’t exhausted the usefulness of our
first program, let us see how this works in a simple case. The
code below E@Uates the label ASCONE tfo the value of ASCII
one. Any time we wish to load or otherwise handle an ASCII
one after the equate, we can simply use the label ASCONE,
instead of having to remember the value or having to load
the value from a constant toeation in memory.

4500 A0 W 4
i BHIGFECRE EQJ 3 RELIT GE

R b RASBE L0 ASII BE
w8 1% Bt

EE0D TOTRL ERRORS
O B3

Notice that when the ASCI one was referenced it was
treated as an immediate value, rather than an address. The
immediate load resulted in immediate data of one hyte repre-
senting ASCONE, or 31H. The label may be an address as

7%

I
I S THFAT BUFFER
I WLBFFERFOINT O BUFFER

i
Faid

i sl

2

3

£EE0G TRIR ERE(ES

o .
HEFER 4085

well, as in the case of the code above which loads the imme-
diate data value of BUFFER, representing a 16-bit address
value, into the HL register pair, thus causing the contents of
HIL to point to a2 buffer area.

The last pseudo-op is DEFL. DEFL is similar o EQU in
that it sets a label equal to some value or expression. DEFL,
however, can be used many times for the same label., while
EQU may be used for a labei only once in a program. As an
example of this, consider the code below. An ASCII “A" has
been defined by a DEFL as label ASCA with a value of 41H.
In fact, this is an upper case ASCII A. By changing the 6th
bit (bit position B) from 0 to 1, the ASCII upper case A may
be converted to a lower case A. We'll do this in the program
by using DEFL to redefine the value of ASCA as required.

Ao
] H
: s

!

Notice in the above code that ASCA was first recorded by
the assembler as a 41H, but when it was redefined by the sec-
ond DEFL it appears at 61H. (The intervening blank lines
represent other code in the program.)

A Mark II Version of the Store “1” Program

We've discussed a lot of concepts in this chapter. Let’s try
to clarify some of them by writing an expanded version of the
program to write a “1” near the center of the screen, In the
Mark I version we will write out an entire message to line
9 of the screen. From our earlier analysis, we know that the
sereen video starts at address 3CO00H and ends at 3FFF. We
want to start the message at line 9, which is 8*64 characters
from the start of the sereen memory, or 3C00H + 512. To sim-
plify matters we will write out an entire line of 64 characters.
We'll use register pair HL to point to each of the characters
in the message and index register IX to point to the next byte
of the video display memory. As we write out each character,
we'll adjust HL and IX by adding one to point to the next
character and next video memory address. To determine when
we've reached the end of the message, we'll put a zero at the
end and test for zeroc as we transfer each character. Zero
(null) is not a valid ASCII character, so we will know when
we have written 64 characters to the sereen. The program for
this is shown below.

i

L
A

w1

=

Y by
ch P
vl

[kl
el

IDOT oo
7 IC;T Fin

72

snae = s HE
K = LS wr
%D i RN [a

A5 A
S YD

E
MEH P
WA pRE e

9 B

45

VIDED hm

The first statement puts the origin of the program at
4A00H, the location we have been using all along. VIDEO is
equated to 3CO0H, the start of the video display area. The
next two instructions load HL with a 16-bit value representing
the start of the message and load IX with the start of line 9
(BCO0H+512), The instruetion at LOOP loads the next char-
acter from the message. To begin with, this is the first letter
of the message at 4A18H, but the contents of HL will be in-
cremented by one with each storage of a character. The LD
at loop uses register indirect addressing to ivad the memory
location that HI: points to. As each character is loaded, the
instruction CP 0 tests for a zero byte. A zero has been put at
the end of the message to indicate the terminating condition.
Notice that no other ASCII character in MESSGE is zero.
Normally, the JBR Z,DONE will not transfer conirol to loca-
tion DONE because the character will no¢ be zero and the Z
flag will not be set. In every case except the last character the
program “falls through” to the instruction at 4A0CH which

73

stores the character in the location pointed to by the index
register IX. In this case the displacement of the index register
addressing is zero (the last byte) so the effective address is
simply the contents of the index register itself. The next two
instructions add one to the HL (message) pointer and IX
(video) pointer. The jump at 4812H loops back to location
LOOP where the process is repeated for the 64 characters of
MESSCGE. On the 65th character, the byte is zero, the Z flag
is set on the compare, and the jump to DONE is taken. The
instruction at DONE jumps to itself to create an endless loop.

There are many ways that this program could be imple-
mented. Relative jumps could have been used in place of direct
jumps in two places, for example, or the loop may have been
made more efficient by using other types in instructions. How-
ever, as a second program, it is not a bad effort, and employs
quite a few of the things we have been discussing in the last
three chapters.

This program can be edited, assembled, loaded, and exe-
cuted in the same manner as the first we discussed, and the
reader is urged o do so.

Further Editing and Assembling

We have touched on a few basics in regard to editing and
assembling. A complete description of editing modes is cov-
ered in the Editor/Assembler manual, The editing functions
of the Editor/Assembler permit source lines to be deleted or
modified either on a line or character basis and are similar
to the EDIT mode of LEVEL II BASIC. There are additional
capabilities of the assembler that we haven’t discussed, pri-
marily in regard to assembly options such as not producing
object code, listings, waiting on errors, and so forth. We will
attempt to fill in many of these as we give programming ex-
amples in the next chapter, but it would benefit the reader
to review the first portion of the Editor/Assembler manual
and run some practice examples in both the edit and assembly
mode.

In the next chapter we'll cover T-BUG and debugging of
programs. T-BUG is used to debug assembled and loaded as-
sembly-language programs, but may also be used to hand
assemble and load machine-language programs. If the reader
still isn’t convinced of the merits of the Editor/Assembler, if
he has limited memory, or if he simply likes to do machine-
language coding, he will find the chapter very useful.

4

CHAPTER 5

T-BUG and Debugging

In the past chapters we've learned about the architecture
and instruction set of the TRS-80 and something about edit-
ing, assembly, and loading of an assembly-language program.
The actual sequence of events for an assembly-language pro-
gram is identical to BASIC programs. The program is first
defined by some type of specification—what will the program
do and how will the input and output look. The program is
then coded. After a desk check, the program is assembled and
reassembled if there are assembly errors. When an error-free
assembly has been achieved, the resulting program is loaded
and executed. Chances are the program will not run the first
time, and may not run the fifth time. That's where debugging
and a debug package, such as T-BUG comes in.

T-BUG is an assembly-language program that can be used
to debug assembly-language code, or to enter machine-lan-
guage code. T-BUG allows the assembly-language programmer
to print the contents of locations, to modify loeations, to print
the register contents, and to debug small segments of code by
breakpointing. It would be virtually impossible to debug an
assembly-langnage program without some means to do these
things, as each program would have to be completely error
free before execution. There are very few programmers that
have written a moderately large error-free assembly-language
program that ran the first time!l

Loading and Using T-BUG

T-BUG is loaded into Level I by the CLOAD command and
into Level II by the SYSTEM command with a file name of

i

“«TRUG”. After T-BUG has been successfully loaded, a prompt
sign of “#” will be present in the left hand corner of the
display.

Since we will be debugging all of the programs in the re-
mainder of the book using T-BUG, it is important to know
where in RAM T-BUG resides, so that we may avoid that area
of memory in assembling programs. Figure 5-1 shows the
memory mapping when T-BUG is present. Level 11 T-BUG
oceupies 4380H through 4980H, or up fo the first A0OH (2560)
locations of RAM, Level II T-BUG uses an “internal” stack
area starting from 4980H, so that no RAM outside of the first
1024 locations will be used by any T-BUG function. We will
be safe, then, in assembling our programs to run anywhere
in the RAM area above 4A00H. We will use 4A00H as the
starting location for all of our programs, giving us G00H
(1536) bytes of memory for the reader with 4K of RAM (and
who must program in machine language) up to a maximum
of 44K for those readers with larger systems.

-~

ROM, DEBICATED,
VIDED DISPLAY.
ETC.

T-BUG

IFFFH
40004

493%5]
4AD BASIC AREA USED
SFFFH 1536 LOCATIONS ___ FOR PROGRAMS [N THIS BOOK
5000H
ADDITIONAL AREA
AVRILABLE FOR

EXPERIMENTATION

A
el L

TOP OF USER'S
MEMORY

Fig. 5-1. Memory mapping with T-BUG present.

T-BUG Commands

T-BUG has nine commands, all specified by one character,
M. X, R, P, L, B, J, F, and G. Some of the commands have
grguments (data associated with the command) and some

o not.

76

Let’s load T-BUG and examine the commands available.
After a successful load the first 16 columns of the video dis-
play are cleared and the program displays a “#" at the upper
left column of the screen. The format of the M command is
#M aaaa where aaaa is a hexadecimal value {ean’t get away
from hexadecimal, can we!) representing the Memory location
we wish to examine. After the last digit is entered, T-BUG
will display a two digit hexadecimal value representing the
contents of the memory address. Try the M command with
a value of 4A00H. You will get a display of the contents of
4A00.

M 440021

Now hit the ENTER key, and you will find that the next loca-
tion will also be displayed.

M 440021
4A01 FF

This process can be continued to display successive locations
until either memory or you are exhausted. Hitting an “X”
at any time terminates the memory display function and
brings you back to the monitor prompt again.

M 4a00 21
4A01 FF
4402 FF
4A03 FF

#

Entering data in place of ENTER will change the memory
location to the values entered. Two hexadecimal digits must be
entered. Let’s go back to the original (Mark I) version of the
program to write a “1” near the center of the screen. The pro-
gram is shown below.

SHiEH T SSITRT AT LGLATIOY 4fsp
ikt Lp A2 JLEAD A RERISTER HITH *1°
e LB (LA ;SIGRE °4Y THIR CEHTER
Biwiy g EELY LR EE

2080 TOTH. ERARES

o
IEF 45

Starting at location 4A00H, let’s enter the machine code for
that program. The entry will look something like this at the
end.

77

M 4A00 3E
4AD1 EF 31

4A02 FF 32

4AQ3 FF 20

4A04 FF 3B

4AD5 FF €D

4A06 FF 05

4AO7 FF 4A
#

We can now go back and check the locations by the M com-
mand to verify that all data has been entered correctly. This
is really not so much a check on machine malfunction as it is
on operator malfunction.

The J, or Jump, command in T-BUG allows the user to
transfer control to a location for execution. Specifying J aaaa
causes the monitor to jump to location aaaa, where aaaa IS
again a hexadecimal four-digit value. We could at this point
perform a J 4A00 to execute the Mark I version of the pro-
gram. If we do that, however, the program will be “hung up”
in an endless loop to itself at location 4A05. The only way to
get out of the loop in Level I is to reload T-BUG; in Level II
T-BUG may be reentered by a SYSTEM transfer to 4380H
(17280}, but the recovery is still a nuisance.

The B command allows us to execute a program up fo a
point where control is returned to the T-BUG monitor, thus
keeping the debugging from becoming a series of recovery
procedures as it goes off into cloud cuckoo land. The B com-
mand establishes a breakpoini. At the breakpoint location
control is returned to the monitor where locations or registers
may be examined, a new breakpoint may be established a little
further on, and the progress of the program may be checked.

Let us see how the Breakpoint operates. In this simple pro-
gram, suppose that we want to stop at location 4A02 to verify
that 31H did in fact get loaded into the A register. The B
command would be

B 4A02
Now we could execute the jump to 4A00H {o start execution by

3 1 4A00
The instruction at 4A00 would then be executed. After this

instruction the breakpoint would be encountered at 4A02 (an
ingtruction returning control to the T.BUG monitor) and

T-BUG would be reentered, with a display of the # In the
upper left-hand corner.

After the breakpoint, the first order of business is to exe-
cute an F command. Entering an F restores the instruction

78

that was temporarily replaced by the breakpoint. Entering
a breakpoint address causes the monitor to place a CALL in-
struction to the breakpoint-handling routine in T-BUG. Since
the CALL is three bytes long, it replaces the three bytes in
the program at the breakpoint instruction. The three bytes
of the program must be restored before proceeding and the F
accomptlishes this.

Before proceeding the user can now examine memory loca-
tions or cpu registers to see what program actions have oc-
curred. About the only thing that can be verified here is that 31
was indeed loaded into the A register. We can examine the A
registers and all cpu registers by using the T-BUG R com-
mand {Register). The R command causes a display of all epu
registers in the format shown in Figure 5-2. In our case the
display might look like the following.

FFEF FFFF
FFFF FFFF

3142 QOFD
41EP 43EQ

FFFF FFFF
4980 4AQ2

The 31 in the A register position indicates that the A register

was properly loaded.

To continue from this point, another breakpoint must be
put info the program a little further on. In our program the
next breakpoint will be at 4A05 to prevent an endless loop.
Rather than a J command to resume execution, however, a
G (Go) should be used. The G command will cause resumption
of the program at the breakpointed instruction (4402), with

AP RXTIRX XX|1XX]| 8T

WO HEX DIGITS/REGISTER
DE [RX] XA XXPRX| HL

J

AP TXXIXX XX|XX| BC

TWO HEX DIGITS /REGISTER
DE [XX | XX XX1XX} HL
X | XXXX XXX

FOUR HEX DIGITS/REGISTER
SP L XXXX XXXX | FC

Fig. 5-2. T-BUG R command format.

79

all registers properly restored and no ill effects from having
had the breakpoint. If the reader will execute the following
sequence he will see the “1” written out to the center of the
screen, followed by the “#” for the 4A05H breakpoint at
the upper left hand corner of the screen.

#F (o restore the 4A02 area)
FFB4AD5S (to set g new breckpoint}
#G {to resume execution)

What if the user had wanted to change the contents of a
register location before proceeding from a breakpoint. This
is certainly possible, and necessary in debugging. The pro-
cedure 78 somewhat complicated, however, To change the con-
tents of a register, a memory location representing the cur-
rent contents of that register must be changed. The memory
locations representing all of the cpu registers are shown in
Figure 5-3. To change the D register, for example, memory

lEI‘!VEL LEVEL
i
48251 43874 FLAGS' L
4826H 43684 A
48274 43898 G
45284 A3BAH B" .
MB2H 43EBH £ AREA
A82AH -~--- 43BCH i
4825H 43808 L
432CH 438EK LM
482DH JIBEH FLAGS
ABZEH 43C0H A
:gg;: _____ igg;: g won- Fige 5-3. T-BUG register locations.
4831H 43C3H E AREA
4834 43C4H D
4833H 43058 L
43344 43CEH B
4B35H 4307H 14 LOW
4B36H - -~ 43C8H 1X _HIEH
48374 4309H 1Y LOW
4838H 4ICAH 1Y #iGH 15-BIT
4B39H 43CBH SP LOW REGISTERS
483AH 430CH SP HIGH
483BH 43CBH PC 1LOW
ABICH -—--~ 43CER PC HIGH

location 43C4H must be examined by an M command and new
data entered. To change a 16-bit register, two memory loca-
tions must be changed, representing the high-order byte and
the low-order byte of that register, as shown in the figure.
To change the IY register to 4FE3H, for example, memory
location 43CAH must be changed to 4FH, and memory loca-
tion 43C9H must be changed to E3H. After the change in one

B0

or more registers, 2 J (jump) or G (go) command must be
executed to effect the change.

T-BUGG Tape Formats

As we mentioned earlier, debugging assembly-language
programs is a major part of the assembly-language program-
ming process. The object is to find as many bugs as possible
before reassembling the program to reduce the time spent in
editing and reassembling. As each bug is found it may be
corrected in machine language, if the user knows the instrue-
fion formats and addressing modes (see, we told you that it
would help to get a background in the instruction set). Of
course the user can avoid this approach and simply reassemble
the program each time bugs are found.

As a simple example of this patching technique, let’s go
back to the code we've entered for the Mark I version of the
screen outpuf routine. Suppose that we had found that instead
of writing a “1” to the screen, we should have written an
“*” Using T-BUG it is a simple matter to change the 31H in
the second byte of the first instruction to the code for an
asterisk, 2AH.

M 4A01 31 24 (hit X}

Suppose that we had wanted to insert code between two
existing instructions. That is a little more difScult to pateh,
but still possible. If we had wanted to store one “1” in both the
32nd and 31st character positions we could patch in the in-
struction to store in 3E1FH (31st position) by putting a jump
to a patch area at 4A02, jumping out to the patch area, per-
forming the store in 3E1F, performing the store in 3E20H
(destroyed by the jump), and then jumping back to the in-
struction at 4A05. Of course, the patch area should be in an
area of memory unused by our program or by T-BUG. The
patches for this are shown below.

4A00 3E (original LD A3TH}
4A01 31

4402 C3 (patched JP 4800}
4A03 6D

4A04 4B

4A05 C3 {original JP 4A035)
4A06 05

4AQ7 4A

81

4R00 32 (restored store o 3E20H)
4801 20

4B02 3E

4803 32 {new store to 3ETFH)}
4804 1F

4805 3E

4806 C3 {return to progrom)}
4B07 05

4808 4A

Patching to correct errors can be done as often as required
until it reaches the point where the programmer does not
know which areas have been patched and which have not. The
user can quickly determine his own requirements for reas-
gembly of a patched program.

To provide a means to save patched programs, or to pro-
vide 2 means to save any machine-language program, T-BUG
has two additional commands, P for Punch tape, and L for
Load tape. The P command writes any specified area in mem-
ory to cassette tape. The resulting tape format can be read by
T-BUG or by the SYSTEM command in LEVEL IL To save
locations 4A00H through 4B08H, for example, the eommand

¥ 4A00 4808

would be entered for LEVEL I. Level II requires two more
arguments, one for the entry point (start) and one for the
file name (up fo six characters). The level 11 format might be

P 4A00 4B08 4A00 MARK! (EMTER)

After the command is entered, T-BUG writes out the specified
area and includes the entry point and file name for Level 1L
The format used for Level I write is shown in Figure 5-4.

Once the T-BUG cassette tape has been written it may be
loaded at any time by the L command {(or the SYSTEM com-
mand in Level II). The L command has no arguments, and
the tape will start loading after the 1. has been typed. Tape
loading is indicated by the usual asterisk in the lower left
hand corner. Successful loading is indieated by the *#”
prompt; an error in loading the data will result in an “E”
after the load command. The format used for assembly object
output is the same as T-BUG’s, so that T-BUG may be used
to load object tapes produced during assembly.

The above deseribes the T-BUG commands and their typical
use, The reader is urged to experiment with T-BUG as we
will be using it in following chapters for debugging pur-
poses. A reference list of T-BUG commands follows.

82

Format
M aaaa

ENTER (after M)
X (after M. J, B, P)

R

128 BYTES OF
ZERCS
(128}

A

LY

ASH {1

START
ADDRESS (2

ENDING
ABDRESS + 1(2)

L)

DATA
A "CORE
IMAGE™ OF
PROGRAMS
ANDIOR DATA
{VARIABLE)

A

(M) = NUMBER OF BYTES

END

CHECKSUM {1}

A

Fig. 5-4. T-BUG tape format.

Description
Display location aaaa

display next location

Exit operation

Display registers

P
P
L

B
F

G

aaaa bbbhb
(Level I}

aaaa bbbb
ceece NAME
(Level II)

aaaa

J aaaa

Write cassette from aaaa through
bbbb

Write cassette from aaaa through
bbbb with starting address
ecce and file name NAME

Load a T-BUG tape
Set breakpoint

Restore instruction after break-
point

Continue from breakpoint

Jump to location azaa

83

Standard Format in Following Chapters

The program in the following chapters will illustrate the
use of 7Z-80 instructions in accomplishing certain types of
operations. All code will be assembled starting at location
4A00H, so that T-BUG may be used to debug or investigate
the actions of the programs discussed. At the reader’s option,
these programs may be assembled and loaded using T-BUG,
and then debugged, or the machine-language code for the pro-
gram may be entered using T-BUG without assembly. The
RAM area available for patching, buffers, or other use is
located from 4A00H through 4FFF for minimum 4K RAM
systems, or from 4A00H through “top of memory” for larger
systems.

84

SECTION 1t

Programming Methods

CHAPTER 6

Moving Data in Bytes,
Words, and Blocks

This chapter will discuss ways in which to move data from
the cpu to memory, between cpu registers, from memory to
cpu, and from one area of memory to another. At first glance
this might not seem like such an exciting topie, but the ad-
dressing concepts practiced here can be applied to many of
the other instructions covered in later chapters. In addition,
the block move instructions are interesting instructions that
are not found in other 8-bit microprocessors. They are some
of the most powerful features of the Z-80.

Byte and Word Moves

We have already seen examples of loading and storing data
into single or double registers in the Z-80. Eight-bit loads
can be accomplished by immediate loads or by loading oper-
ands from memory. Suppose that we want to load all of the
cpu registers except for the PC (program counter) with 8
bits of data. Remember that there are fourteen general pur-
pose cpu registers, seven in each set of prime and non-prime
registers, and three 16-bit or two-byte registers, the IX, IY,
and SP. We'll ignore the I and B registers as these are not
generally used except for interrupt handling and refresh
operations.

Let's consider the 8-bit general-purpose registers first. We
would like to write a program to load the registers as follows:

87

A register Loaded with 9
B 11
C 12
D 18
E 14
H 15
L 16
A’ 1
B 3
C 4
’ 53
E 6
H T
iy 8

Loading these values into the cpu registers with immediate
values is easy, because all epu registers may be loaded by an
immediate data value, The only trick here is swapping reg-
igter sets, The swap is done by the EX AF,AF’ instruction,
which swaps the two A registers and the flag, and the EXX
instruction which swaps all other registers, The main ques-
tion (raised from the back of the room again, I see) is which
set is which? It is up to the programmer to keep track of
which of the two sets of registers he is using. When the
TRS-80 is powered up the non-prime set is active; perform-
ing one or both of the exchange instructions switches the cpu
to the other set. The primed set is simply the set of registers
that is not currently active, and the program must keep track
of which set is being used, not unlike remembering which of
two book ends you've hidden a ten-dollar bill under. The fol-
lowing program loads all general-purpose ecpu registers with
the indicated values above. Put a breakpoint at END, jump
to START, and then display the registers by an R command
in T-BUG, and you should see a sequence of 00 through 10H
displayed for the general-purpose registers. The IX, 1Y, SP,
and PC will hold meaningless values.

88

oo

- a
[P
L L1

i

it
oy

i
e
.

r
L)

(!
=
31
il
N

Now suppose that we would like to load constants from
memory instead of immediate values. (Don’t ask why, kid,
just do it!) There are two ways to handle this approach, as
we explained in an earlier chapter. One way would be to set
up HL, DE, BC, IX, or IY to point to the constanis to be
loaded and to then load in the values using either register
indirect addressing or indexing. This would work fine if the
data were grouped in a coniiguous area, but would require
setfing up a new value in the pointer register for each load
if the constants were scattered over different locations in
memory. The second approach, which we'll implement in the
following program uses the A register as a pipeline to channel
data from the constants in memory t{o each of the cpu
registers.

89

Storing 8-bit data works in pretty much the same fashion
as loading cpu registers. The general registers can always be
stored by using a register pair as an indirect pointer, but
only the A register can be loaded directly from memory. If
we were to store the contents of the cpu registers back into
the constant locations in memory, the register pair or index
register used as the pointer would have to be set up with the
new location each time a store was performed, as shown in
the program below. The reader may care fo execute this pro-
gram directly after the load program to verify that the
registers have been stored. Zero ELEVEN, TWELVE and
THIRTN after the load breakpoint, put in a new breakpoint
at 4A1EH, and jump to 4A12H to perform the store. (Don't
forget the “F" after each breakpoint to restore the instrue-
tion.}

40

.PS
=]

- s o .
B EiAE LB f

a3

4hiR E Hd

i R {ELEYE). A FRESTRED

ik (3R Ly L HERE 3 B
451 At

e
=
)

TELYE 4RiA

e dvin] Efaty
SHEYT am2

;

Sixteen bits of data are somewhat harder to move around.
Register pairs can be stored direetly to memory, may be stored
in the stack by PUSHes (covered in a later chapter), or may
be transferred by using the HL register pair as a routing
point. Storing the register pairs in memory is not generally
something that is commonly required. Loading 16-bit data
into register pairs can be handled by immediate loads for con-
stants, by direct loading of register pairs, and by routing other
16-bit data through HIL. A common trick in loading fwo single
registers with two separate operands is to perform an immedi-
ate load of a register pair. This only works, of course, when
the two single registers involved happen to be in the same reg-
ister pair. The resulting instruction sequence is much shorter
than 8-bit loads.

9

Transferring data between two register pairs is almost
always done by PUSHing the first register pair and POPping
the second to transfer data from the first into the second. To
load HL with the contents of BC, for example, the instructions

PUSH BC BC TO STACK
POP HL RETRIEVE BC, PUT IN HL

would be performed.

Filling or Padding

All of the foregoing is fairly abstract, even when T-BUG
is being used to verify the results of the code. Get ready for
some spectacular visual effects! Fortunately for us and espec-
ially that reader who keeps nodding off, moving identical data
o fill buffer areas or to initialize tables may be observed on
the display. After all, the display is simply additional memory
dedicated to the 1024 characters or 6144 pivels of a display.

Let’s illustrate two methods of addressing in a routine to
fill data. In this routine, a specified data byte from 0 to 255
(OH-FFH) is written into a memory area from a starting
address to an ending address. The fill function is frequently
used to “zero” portions of memory, to fill tables with -1
(FFH), or to pad character lines with blanks (20H).

The fill character will be in the A register, while the HL
register will be set up with the starting address of the mem-
ory area to be filled. We could specify either an ending address
or the number of bytes to fill. Specifying an ending address
would require that we have a 16-bit address that could be
used to compare the current fill location with the ending ad-
dress. The second approach would use a count in one of the
registers that would be decremented with each filled byte.
When the count reached zero the fill would be over. If a single
register were used, the count could be O through 2b65. If we
wanted to fill more than 255 bytes we would have to use a
register pair, which could specify a fill count of 0 through
65535, which would certainly be adequate for a 64K system!
In the following example of the fill we'll try the second ap-
proach; we’ll put the fill count in a single register. The para-
meters will be in the registers before the fill starts as shown
below.

{A) character o be filled

{HL) = starting address far the fill
{B} = number of characlers to be fiiled from 1 to 256

92

BRIE3 ;TRIS IS R FRORAN TD FILL EEHORY FRM
BH16 ;A STARTIAG ACARESE FOR B SRR OF BES
Bl . (M=bYIE TO B FILLED

BN . (R=RTARTING RETRESS

348 . (BM=REERR OF BYTES

i talit] LU JRIRRT OF PREGRRR
&R BBYRT Wb forer JFILL HETH AATERTZRES
o2 JdexC eelse) . TR STRRT I¥ SCRFEH
o BOBR SBISP 5] L iFILL 25 BYTES
487 77 AR L L HL: A iFILL BYE

#e il 1. i INCREFEHT FUTHTER
a9 By s IEC B ; DECREFENT [12HT
4R 2B B R HZLOGRL G0 IF BT DORE
G IS BB LOOR? R Laor2 JLOP HERE GH DORE
4 fRZSh BD START

2808 TOTAL ERRERS

12 40

LoP 47

STRT 4RED

The first thing that is done in the program is to load A
with the data (asterisk in this case) and to load the HL reg-
ister pair with the starting address of the memory area to be
loaded. To enable us to see the results we're using the start
of the sereen video at 3C00H. The B register is loaded with
the number of bytes to be filled. If we had specified 1 through
255 bytes that number would have been filled with asterisks.
Specifying zero, however, fills 256 bytes, as we shall see be-
fow. LOOPI through the JR NZLOOP1 makes up the main
loop in the program. For each iferation or pass through the
loop one byte of data is filled. Initially the byte at 3C00H is
filled. Each time through the loop, however, the HL register
pair is incremented by one to point to the next memory byte,
and the B register is decremented by one to count down. If the
count in B has not reached zero, the Z flag is not set by the
decrement, and the conditional branch at 4A0AH is taken.
If the count has reached zero, the program falls through and
the loop at LOOP2 is reached. Notice that the jumps here are

93

two-byte relative jumps, If we started with a count of zero,
the count after the decrement of B is 11111111, as you will
see if we subtract a one from eight zeros on paper. Starting
with a count of zero, therefore, causes a fill of 256 bytes.

To run the program, assemble and load using SYSTEM or
T-BUG. If no breakpoint is used, the pregram will fill the
first four lines of the screen with asterisks. The reader may
wish to try other values for the fill by changing the 2AH at
4A01H, or may change the fill area by changing the 3C00H at
4A03H and 4A04.

An Unsophisticated Block Move

QOften it is necessary to move data from one block of mem-
ory to another block of memory. One example of this would
be moving a string of characters that have been input fo the
screen display area, Another example might be inserting data
in a table. The data below the inserted enfry would have fo
be moved down to make room for the new data.

In the next program we'll be implementing some code fo
move one block of memory to another. We'll use register in-
direct addressing to accomplish this feat. Register pair HL
will point to the source block and register pair DE will point
to the destination block. Register pair BC will contain a count
of the number of bytes to be moved. As BC may hold 0 through
65635, any size block up to maximum memory size may he

_ MEMORY _
7 0
HL POINTS HERE —| 5
SOURCE BC CONTAINS THE LENGTH
BLOCK OF THE BLOCK IN BYTES
<
=
ool] 1 @
el B =
mf m| m =<
wi wl w =
=] = =
= E = 2
UE POINTS HERE mm—s{— ¥ 5
¥
DESTINATION
BLOCK
v

Fig. 6-1. An unsephisticated bleck -move.

94

moved. Figure 6-1 shows the manner in which the move will
be done,

We know that using the HL register pair as a pointer will
work with any epu register. Using BC or DE as a pointer is
only useful for loading and storing the A register, however,
so all data to be transferred must go through the A register.

JE 73
e =R F JFOINT 70 4T IF
[2 sBECRERENT (BT
Ik AR FBET HS COET
i EEERGE 1S DRI
M LaOE sl ¥ R
Lanez LR HERD O DOHE

The resulting program is shown. Before the loop, HL is
loaded with 0, the start of the source bieck, and DE is loaded
with 3C00H, the start of the screen area for the destination.
The BC register pair is loaded with the number of bytes to
be transferred, in this case 1000, If the program works the
way we want it to the first 1000 locations from OH through
03ETH will be transferred from the ROM BASIC interpreter
to the screen. What should we see on the screen? In a program

95

such as the BASIC interpreter there is a mix of relatively
random data. Some of the data will coincidentally represent
ASCII characters while some of the data will be actual BASIC
messages, such as “MEMORY SIZE”. Other data will repre-
sent (coincidentally) graphics data of different types. When
we actually run the program, then, we'll largely see random
patterns, but some messages.

The main ioop of the program starts at LOOP1. The first
thing that is done is o load a byte into A using HL as a reg-
ister pointer. The source byte in A is then stored by using DE
as the destination pointer. HL: and DE are then incremented
to point to the next source and destination byte. The count
is then decremented by one. If the count is not zero, the pro-
gram loops back to LOOPI, otherwise the program falls
through to LOOP2. Now let’s look at the way in which we
test for a count of zero. While decrementing a single register
sets the zero flag if the count decrements to zero, decrement-
ing a register pair sets no flags, Why? That's just the way
the instructions work., (Never try to be foo logical with a
given instruction set on any computer.) The BC register pair
is tested for zero by effectively oRing the B and C registers
together. Remember that the A register must be used for an
OR operation, and that the oRr of any two bits produces a one
if either of the bits is a one. If #o bits are a one then the re-
sult is zero in this case, and the zero flag is set. The only time
no bits in either the B or C registers will be ones is when the
count in BC is zero and hence we have our test.

Have you run the program yet? If you do, you'll find an in-
teresting display of some of the secrets of the Radio Shack
interpreter, displayed in living black and white on your
TRS-80 sereen. Try changing the source address, destination
address, and byte count to display different areas of memory.
Be careful not to overwrite the program itself or T-BUG,
however. Keep the destination from pointing toward the
4000H through 4A00H area!

While the above program is perfectly fine for an 8080A
(sniff!), one simply wouldn't want to run such a gaucherie
on a Z-80.

An Elegant Bleck Move

The block move instructions on the Z-80 take the entire
code from 4A09H through 4A11H in the above program and
reduce it to one instruction! This s truly an elegant instrue-
tion. The Z-80 instruction for this is the LDIR instruction.

86

If we recode the program ahove to work with the LDIR, we
come up with the program below.

BBIBR ;7RIS 15 RN ELEGRNT VERGIN OF
8R146 A BLOEK ML

BRLH
dhe k] LI e
R ZIBRE B4R STRRT LD H.8 ; SRR
4 1BRC BMIGH) DE. TR BESTIMATICH
485 BIERET BRIAR n 8L, 15 i 1858 BYTES
e mifELE DR (BB ERE IT!
R AET Bl R Loez ;LEOP FERE AT B
B bt B

R TOTHL ERRGRS
P2 g
LoRi 4pAs
SIRET el

As you can see in the program, the LDIR must have the HL,
DE, and BC register pairs initialized to the source address,
destination address, and byte count, respectively, Then it goes
off looping to itself automatically until the byte count reaches
zero. It would be interesting for the reader to examine the
registers after the LDIR. We would find that HL and DE
point to the last byte transferred plus one and that register
pair BC contains 0.

The LDDR instruction works the same way as the LLDIR
instruction except that the register pairs are set up to the
end of the source block, the end of the destination block, and
the number of bytes to be transferred. Data is transferred
from end to start in the LDDR, as shown in Figure 6-2.

There are two other block move instructions in the Z-80
instruction set, the DI and the LDD, They operate exactly
the same way as the LDIR and the LDDR, except that as each
byte is transferred, the instruction pauses and the next in-
struction is executed. The program must check for the ter-
minating condifion of zero count in the BC register pair. The
LDI instruction code that follows is identical to the operation
of the LDIR, except that the test for BC=0 is done externally
to the LDI,

97

START LD HLO SOURCE

ID DE3CODH DESTINATION

tD BC1000 ;100D BYTES

LoCP LDI ;TRANSFER ONE BYTE
J# PELOOP CONTINUE FF BC NOT 0
One would expect the Z flag to be set when the byte count

in BC is decremented down to zero. This is not the case, how-
ever, in either the LDI or LDD. The parity/overflow flag is
the one that is set after each transfer. When BC has reached
zero, the parity/overflow flag will be reset (PO mnemqnic).
otherwise it will be set {(PE mnemonic). The conditional jump,
therefore, is done on overflow set, or “parity even.”

HEMORY
7 0
SCURCE BC CONTAINS THE LENGTH
BLOCK OF THE BLOCK IN BYTES
HL POINTS HERE ~—»
-
ole =
ez
2 e w
fon] B]
2= 2
]
DESTINATION
BLOCK
DE POINTS HERE -wowevem

— e

Fig. 6-2. Data transfer for an LDDR.

The LDI and LDD are used when the block transfer action
is required, but when there must be intermediate processing
between the transfer of individual bytes. Examples of this
would be a ftransfer of a block of data unti a terminating
character such as line feed or null was reached, or transfer
of data except for lower case characters,

To illustrate this intermediate processing, and to give the
reader a graphic example of how the LDI, LDD, LDIR, and
LDDR transfer data, we have coded the following program.
This program slowly transfers a block to video memory in
forward fashion, and then transfers another block in back-

98

ward fashion. Subroutine SLOWLY is used to slow down the

transfer by a timing loop after each byte.

S0 R GRIL DEALE (P BIEK HES

8 LR R
KB
BE, 1804

S0 Ed44h pEicl JP FOL HaT
E E R [l SRy
4 TR Bmise aP LRt
4 18 BMOB T DL BE
ST PR B0 LD HL 7FFH
e Gl e Lo L1824
SR EME GRMA LOGR? LBD
JF PO BN
fRLL SEEY
; 3 Logr2
g R IEE
7RELEY D A B3
6 Sl L A

s
iy
Py
[I:"‘:\

I

w el
[
Lo
p“l
RA-m

:
o

s
15
HE o
=

S IR . BEHE
A RET
iy 115%

%
! 104 4
Ll a5
S84y 4R
e Ang 4
A Gy
pad g
Rt =)

e

7 SERCE
SDESTIHATION
FFILL SCREER
FEFER THE RYTE
G0 IF R
iDELAY

FCOHTINGE

#PHT TO-LAST SCREEN
KEN BHOCK
F5TIEL 1834 BYTES
iAFER BRCKHARDS
B IF DONE
A

JEINTIRE
JERDLESS Law

+ TIHING ONF
A

P IF MOT DBk

F RETIRY

The first four instructions of this routine are identical to
the code above. If the P/V bit is set. subroutine SLOWLY is

99

called before the next byte is transferred. When the last byte
has been transferred, the P/V bit is reset and the jump is
taken to NXT. At NXT the DE register is decremented fo
point to the last screen location; it held 4000H before the
decrement. The address of the last location in the second 1024
bytes of ROM (7FFH) is put into HL as the first source ad-
dress. At LLOOP2 an LDD is used to transfer the data from
7FFH through 400H to the screen video memory, with the
SLOWLY delay between each byte. Subroutine SLOWLY
simply sets the immediate value 80H (128) into A and then
decrements the count, looping until the count reaches zero.
Register A was used to hold the count as all other regisiers
were dedicated to functions used by the LDI or LDD.

To tie together some of the concepts we have explored in
this chapter, we'll conclude with two general-purpose rou-
tines, FILL. a routine to fill any character in any sized-block
in memory, and MOVE, a routine to move any block in mem-
ory anywhere else,

FILL Subroeutine

The FILL subroutine is modeled after the one discussed
earlier in this chapter. It is CALLed with certain registers
ioaded with perameters to be used for the fill.

(D) = Byte to be filled, any value
(HL) = Start of memory area to be filled
(BC) = Number of bytes to fill

Upon return from the subroutine, the contents of BC are zero,
the fill byte remains in D, and HL points to the last byte filled
plus one. The contents of A have been zeroed.

3 ERGRIN 10 FILL OATR IN HERORY

ERTRY: (Do=0ATH 70 BE FILLED
{(H=5TRRT OF FILL AREA
(RI3=% [F BYTES TOFILL
gl FIL

EEIT: {5
(=0 F Pl
{RCI=4

(Ri=d

100

2
:

Ex HTHEA

HY (LD F5TEE B

¥ K :HIER FOINIER

g K AT [HsT

15 at T HS OF COET
R KL FIL ;UEETRE IF MEE
) RETRE IF MR
E

MOVE Subroutine

The MOVE subroutine uses either an LDIR or an LDDR.
The subroutine automatically checks to see whether the move-
ment should be forward or backward. Ordinarily this is no
problem, but when the source and destination blocks overlap,
the reader can see that there is a conflict if the wrong direc-
tion is used; data will be destroyed before it has been moved
to the new area. On entry into the subroutine, the following
registers are set up.

(H1L,} = Start of source memory area
(DE) = Start of destination memory area
(BC) = Number of bytes to be moved

Upon return from the move, the contents of BC are zero, and
the two other register pairs point to the last locations plus
one.

101

iy o o) =
’ﬁ%... o) [it
Ty Fax o 1 BT
ST #MB = Hait
hatyiy i3
PP g
A re
I L, Byl
T TINTT:
LET A
=3ty
.Is': f“-‘.};‘?.?
~ P
AiN HLHE
e
[AL
. N
3 [E.H
- o ooe
- a
i HL
1 e
B R
l Aty
LR
T
"E]
Ept
rif

Subroutine Format

FILL and MOVE follow the general format that will be
used for subroutines in this book. All of the subroutines are
assembled at 4A00H. To use them in other areas of memory
it is generally mandatory to reassemble them with the proper
ORG. Occasionally some of the subroutines will be relocatable;
the subroutine would have identical machine code no matter
what the origin. For this to be possible, the subroutine could
not have direct addressing instructions such as JPs, CALLs,
direct memory loads and stores, and so forth. In these cases
the machine code could be moved without reassembly.

‘We will start building up a number of general-purpose sub-
routines in these chapters for the reader to use in his own
programs. They'll be presented in the appropriate chapter
and collected together in the last section of the book. FILL
and MOVE are the first two of the lot.

102

Stack Operation

In the sample programs that we have heen using up to this
point we haven't been foo concerned about the stack. The
stack has been in use, however, and at this point it is best to
pay some attention to it before it turns on us some day and
devours some of our programs.

Every time we execute a CALL, RETurn, PUSH, or POP,
we have been storing data into or removing data from the
stack. For the sample programs here, we have been using
the stack found in T-BUG, which is a short section of memory
contained within the T-BUG program area. The stack can be
focated anywhere in RAM memory that we choose, however,
as long as it does not conflict with any of our programs or
data.

To recap what we learned about the stack in a previous
chapter: The stack is an area of memory used to

Store return addresses for CALLs.
Store data when PUSHes are executed.
Store addresses when interrupts are active.

Addresses and data are pushed onto the stack, and the stack
builds downward toward lower-numbered memory when this
is done. A stack pointer register (8P) is adjusted to peint to
the fop of stack, the location that has been used for the last
CALL or PUSH storage, When a PUSH or CALL is per-
formed, two bytes are pushed onto the stack and the SP reg-
ister is decremented by two. When a POP or RETurn is per-
formed, the two bytes are popped from the stack and the 3P
register is incremented by two to point to the next top of
stack.

To see how this works, let us establish our own stack area
and look at some of the stack actions. There is one instruction
that loads the stack pointer with the first top of stack address,
the LD SP,nnnn instruction. We will set aside 100 or so loca-
tions for the stack area starting at loeation 4AFFH, and
building down to 4A9CH. The instruction to initialize this
stack area is

1D SP4BODH NITIALIZE STACK POIMTER

The alert reader has discovered that one more than the ac-
tual top of stack address is used for initialization. The reason
for this is that every PUSH or CALL first decrements the stack
pointer before storing data. At any given time, then, the stack
pointer points to the last byte stored, except for this case
where no data has been stored at all.

103

4BOGH

4AFFH

4AFEH

P SP GRIGINALLY PGINTED HERE

AH } 4AGAH = LOCATION AFTER CALL SRi

4AFDH

4AFCH

fAH \
SP NGW POINTS HERE

When a CALL is executed, the address of the next instrue-
tion is stored in the stack with the most significant byte of
the location stored in (SP)-1 and the least significant byte
stored in (8P)-2. Let us illustrate this with a program. Key
in the following code, set a breakpoint at LOOP, and then
examine the stack area at 4AFFH down. You should see data

Fig. 6-3. Stack area Example 1.

ag shown in Figure 6-3.

HHL

1
]

L,

T
M

]
h

In the sinple case above, the new stack area was used to
store two bytes of the return address 4A and 0A in locations

104

; CCROMETRATION OF STACK

;ml.

O

o
[¥]
=
o
YL
TF

iLOOF RERE FR E'P

18 REE QERER]

4AFFH and 4AFEH, respectively, The stack pointer address
used by T-BUG was saved in HL before the new stack area
was initialized. When the short subroutine (the shortest pos-
sible subroutine) was executed and the RETurn made, the
return address was retrieved from the stack and loaded into
the program counter to cause the return to location 4A0AH.
The LD SP,HL instruction restores the original stack pointer
address used by T-BUG.

Nesting of subroutines can be used to any number of levels,
just az GOSUBs in BASIC can cause nested subroutine action,
As each new subroutine level is CALLed, the stack pointer is
decremented further and further, and the return addresses
are stored in lower and lower addresses in the stack. The pro-
gram that follows shows how this works for four levels of
subroutines. Breakpoint at LOOP, execute the program, and
then examine the stack, starting at 4AFFH. It should corre-
spond to Figure 6-4, and indicates that four separate return
addresses were stored.

165

5P ORIGINALLY POINTED HERE

LOCATION AFTER CALL SRI

} 4A0AH

4A11H = LGCATION AFTER GALL SR2

|

4A15H

LOCATION AFTER CALL 5R3

4BOCH

4AFFH 4AH
AAFEH AR
4AFDH 4AH
4A5CH 113
AAFBH 4AH
4AFAH L5H
4AFH

When PUSHes or POPs are used, two bytes of data are also
stored or retrieved in the stack, but the data represents data
from cpu registers and not return addresses. When data is
PUSHed, the high-order register is stored in (SP)-1 and the
low-order register is stored in (SP)-2, in the same order that
return addresses are stored (Figure 6-5). A third program fol-
lowing illustrates the storage action when CALLs and PUSHes

\SP POINTED HERE IN SR3
BUT WAS RESTORED TO 48G9H
AFTER RETURNS

Fig. 6-4. Stack area Example 2.

are intermixed, as they will be in most programs.

«—SP ORIGINALLY POINYED HERE

HL FROM PUSH

4A0BH = LOCATION AFTER CALL SR1

H

4ALIH = LOCATION AFTER CALL SR2

4BO0H

4AFFH Ll
AAFEH]
4AFDH 4AH
4AFCH 0Bt
SAFBH 4AH
4AFAH 13
4AFaH 4RH
AAFSH 17

106

} 4A1TH = LOCATION AFTER CALL SR3

SP POINTED HERE IN §R3
BUT WAS RESTORED TO- 4BOOH
AFTER RETURNS AND POP

Fig. 6-5. Stack area Example 3.

i =i
AR E
Lo +H
F L
L =R
RET
HEOE3 (THIRD LEVEL
FET
5 FFOETH LR

Once the stack area has been defined by loading, the pro-
grammer need never worry about the stack and can indis-
criminantly perform as many CALLs and PUSHes as he
wishes, with a matching RETurn or POP for each CALL or
PUSH. Generally, 30 or 40 bytes of RAM is large enough for
even the most creative programmers; the number of nested
subroutines is limited to 3 or 4 primarily by the problems in
keeping the program in hand, just as in BASIC,

147

CHAPTER 7

Arithmetic and Compare
)perations

This chapter will discuss the heart of any computer system
-the ability to perform simple and complex arithmetic. In
order to use the arithmetic capabilities of the Z-80, we will
have to look in more detail at how numbers are represented
in the architecture of the Z-80. After that chore, we'll build
some routines to do adds and subtracts, decimal arithmetic,
and other arithmetic-related processing.

Number Formats: Absolutely and Positively!

There are really three different ways to represent numbers
in basic assembly-language routines used in the TES-30,
absolute numbers, signed numbers, and binary-coded decimal.
(Another format, floating-point format, is too complex to de-
seribe in less than several chapters.) However, knowing the
three formats just mentioned will enable the user to do vir-
tually anything he wants in a2 TRS-80 processing routine.

In the previous chapters, we've been discussing numbers
in absolute form, for the most part, although a few signed
numbers have crept in when we discussed indexing and rela-
tive instructions. Absolute numbers are always positive: they
can be looked at as “absolute-valued numbers.” Earlier in
the book we mentioned that in eight bits the binary values
00000000 through 11311111 could be held and that these repre-
sented 0 through 255 decimal. This still holds true (was there
a collective sigh of relief?). Similarly, 16-bit numbers repre-

108

sent values from sixteen zeros to sixteen ones, or decimal
0 through 65535,

We also mentioned that binary numbers represented powers
of two, and drew the parallel of the bit position in binary
numbers representing powers of two, just as the decimal posi-
tion in decimal numbers represents powers of ten. See Figure
T-1.

POWERS OF 2 SiSoomroum
g2d0nan

D Oy e

R RAERR
101181l
0X2=20
X4 =4
1X8=8
0X16 =0
1X32=132
4515‘4""’"
PGWERS OF 10 =
o
&%
45
I[-—~—- 5%l=25
4X10 =40
S

Fig. 7-1. Decimal versus binary numbers.

To convert any binary number to decimal, it is simply a
matter of adding up all of the powers of two represented by
one bits in the bit positions. Converting from decimal to binary
can be done by inspection (what is the largest power of two
that will go into this decimal number, what is the next, and
so forth) or by reference to tables. See Figure 7-2.

We have been working with hexadecimal numbers, which
are really a shorthand way of representing binary numbers
that have been grouped in 4-bit groups. Converting from
hexadecimal to decimal can be done in the same fashion ag
binary; that is, finding the weight of the power of 16 repre-
sented, or by reference to tables, as can conversion of decimal
numbers to hexadecimal. See Figure 7-3.

Absolute numbers in binary (hexadecimal) can be used
to represent memory addresses, counts, or any quantity that
will never be negative. In register indirect addressing we've
used absolute numbers to represent memory locations in the
HEL: and other register pairs. We've also used absolute numbers

109

for counts or to represent the number of bytes to move in a
block move. There are no negative numbers of bytes that must
be moved, at least in this universe.

TO CONVERT FROM
BINARY 70 DECIMAL

1. LIST POWERS OF TWO REPRESENTED
2. ADD TO FIND DECIMAL NUMBER.

g1rooo10

b

i
64 + 4+i =63

10 CONVERT FROM
DECIMAL TO BINARY

i05

64 @9
41 i t!
-3 5 CI101001

IR

T (20

SUBTRACT LARGEST POSSIBLE POWER GF TWO.

PUT A BINARY | IN THE APPROPRIATE BIY POSITION,
CONTINGE UNTIL 0 REMAINS,

FiLL IN REMAINDER OF BIT POSITIGNS WITH ZEROS.

oo RO e

Fig, 7-2. Decimal/binary conversions.

Signed Numbers

The same registers and memory locations that are used
to hold absolute addresses can hold signed numbers. Many
different types of signed formats could be used, but the one
that the Z-80 and TRS-80 uses is the same type that most other
computers use, and it’s called two’s complement notation.

In two's complement notation, the most significant bit of
eight bits or sixteen bits is used to represent the sign of the
number. If the sign bit is a zero, then the remainder of the
number is the same as en absolute number. For example, if
we had the two’s complement number 00001000, then that
number would be an B, the same as the absolute number
00001000, The difference between absolute numbers and posi-
tive two’s ecomplement numbers, is that the most significant
bit is always the sign. and that means that the maximum
positive number that can be held in 8-bit two's complement

119

CONVERTING FROM
BINARY 70 DECIMAL
AND BACK

1. GROUP BINARY # INTO 4-BIT GROUPS.

ks h+d v At
0101 1101 0011 0111 ?g‘éﬁ%
2. GHANGE EACH 4 BIT GROUP INTC 10 CONVERT
A HEXADECIMAL DIGIT 0-8 A FROM HEX
70 BINARY
5 b 3 7
CONVERTING FROM
HEXADECIMAL TO
DECIMAL
L. LIST POWERS OF 16 REPRESENTED.
Rin}
Z2 8
- o — —
H] # H] B
R S
5 D 3 7
2. MULTIPLY BY DIGIT TG FIND DECIMAL.
€ 8 = _
5 b 3 7
Lo
] 7%1 7
X1

3 48
13X 255 = 3328
5% 4095 = 20480

23863

Fig. 7-3. Decimal/hexadecimal conversions.

notation is 01111111, or 127, about half of the maximum in
absolute form (11111111 or 255). In sixteen bits the maximum
positive number is 0111111111111111, or 82767 deeimal.

Now here’s the rub, as the Bard says in Much Ado About the
TRS-80. When the sign bit is a one, the two’s complement
number represented is a negative number, When we see the
two’s complement number 10001000, we know from the sign
bit that the number is negative. The question is, what nega-
tive number is it? The answer is not —8, even though it looks
logical (all things in computers are not logical, in spite of the
digital design). To find the actual negative number repre-
sented, we have to go through a purely rote procedure. It's not
complicated, but it is tedious. In a negative two’s complement
number, to find the number represented, change all the ones to
zeros, change all the zeros to ones, and add one. This process
is demonstrated in Figure 7-4,

il

Why are negative numbers represented this way? To sim-
plify hardware design. Next question . . . I'm afraid that’s the
way it is, TRS-80 programmers. Fortunately for us, the as-
sembler takes care of constructing negative numbers and we
generally don’t have to be too concerned about manipulating
them.

EXAMPLE 1: FIND TWO'S COMPLEMENT OF 10001000

16001060 NUMBER
01110111 CHANGE ALL ONES TO ZERQS
ALL 7EROS TCG GNES
+.1 ADD OKNE
0:111000 THI5 NUMBER NEGATED IS THE
ACTUAL NUMBER. [N THIS CASE
—-120

EXAMPLE 2: FIND TWO'S COMPLEMENT OF 1i116000

11110000 NUMBER

00001111 CHANGE ALL ONES 70 ZEROS
* ALL ZEROS TO ONES
« | ADD ONE

660000 16

EXAMPLE 3. FIND TWO'S COMPLEMENT OF 0311111t

QUII111E SIGN BIT IS + {0} AND NUMBER
IS CORRECT AS IT STANDS {+127)

Fig. 7-4. Two's complement rotation.

If we start applying this process of reconverting negative
numbers, we find that the smallest number in two’s comple-
ment notation is 10000000, or --128, while the largest nega-
tive number is 11111111, oxr —1, for 8-bit values. Similarly,
the range of negative numbers for 16-bit values iz —32768
(16000000000000000) through -1 (11111111111131111). So,
the range of all signed numbers that can be held in 8 bits is
+127 through —128 and in 16 bits +32767 through —32768.

The nice thing about two’s complement notation is that the
7-80 will automatically handle addition and subtraction of
any combination of signs, In the days of double-precision
BASIC variables that can be processed in just about any man-
ner this may raise some reader’s eyebrows, but things in as-
sembly language are at the most basic computational level.
About the only requirement is that the programmer must
know something about the range of numbers he will be hand-
ling. In 8 bits one can get +127 and no more, and in 16 bits

112

the maximum is +32767. If more precision is required, the
program will have to handle longer strings of eight bits in a
multiple-precision scheme.

Let’s see how the assembier handles represenfation of
signed numbers, The program that follows shows a data table
of various types of signed numbers, eight bits (DEFB) and
16 bits (DEFW). Note how the assembler automatically com-
putes the proper two’s complement form, Might we even
suggest the odious task of looking at the arguments, convert-
ing a few numbers yourself, and then checking them against
the assembled value? Like chicken soup, it won’t hurt!

g TRALE OF (SIS
03 @i i 4
& B e 4
R -1
=27 DEFY 0T
DEFH 3278

Note that the 16-bit values are in standard Z-80 represen-
tation, reversed so that the most significant byte is last and
the least significant byte is first,

Adding and Subtracting 8-Bii Numbers

There are several actions that occur when two 8-bif signed
numbers are added in.the Z-80. First, the instruction adds
the two operands and puts the result in the A repister (initi-
ally, as you will recall, one of the operands was in A). In the
eourse of adding the numbers, the carry flag, half carry flag,
overflow flag, zero flag, and sign flag are all affected according
to the results of the add.

113

The zero flag is set if the result is zero, The two instructions

1D A23 LOAD 23 INTO A
ADD A, —23 ADD 23

would result in an A register result of zero and the zero flag
set to a one. The carry flag is set if there is a carry out of bit
position 7 after the add, and the half carry is set if there is a
carry out of bit position 8. These carries are equivalent io
decimal carries during an addition of two decimal numbers.
The carry out of bit position 3 is the “half-carry” and is used
for decimal addition of binary-coded-decimal operands dis-
cussed later on in this chapter. The “carry’” out of the high-
order bit position occurs whenever a carry is generated for
the add, as in the add of 23 and ~23.

00010111 23
carry 11101001 —28 (try the two's complement)
1 00000000 0 (zero result)

The carry flag can be used for adds of multiple bytes, for adds
of bed operands, or for certain types of compares.

The sign flag is really the duplication of the sign bit in
the result after the add. If the result of the add is positive, the
sign flag is reset (0), while if the result is negative, the sign
flag is set (1}. The sign flag can then be used for conditional
jumps such as jump if result positive (JP F,aaaa) or jump if
result negative (JP M,aaaa).

The overflow flag is used during adds and subtraects to de-
tect overflow conditions. Overflow occurs when the result of
the add is too large to fit into an 8-bit signed representation.
Suppose that we are adding +127 and +50. We know that the
maximum positive number that can fit in 8 bits is +127. What
would the result be if we actually performed the add?

01111131 (+127)
00110010 (+ 5O)

10110001 (— 79} result-— wrong!

As the reader can see from the example, the result of —79 is
incorrect. If we had no way to detect the overflow, we might
go merrily on gur way printing a paycheck for an employee of
$1,045,067.66, or an equally catastrophic action. Fortunately,
the Z-80 does set overflow when the result is greater than
4127 or less than —128.

When a subtract instead of an add is used, all of the above
actions apply. The Z-80 performs the subtract just as you

114

would on paper, and then sets the flags according to the re-
sults of the subtract. There are really no fundamental difer-
ences between an add and subtract, as the reader can see if
he considers adding +23% and —15 and then compares it to
subtracting +15 from +23.

To illustrate the settings of the flag bits after an add or
subtract, let's use T-BUG to execute some examples of arith-
metic operations. Load T-BUG and key in the following pro-
gram, Run the following examples by using T-BUG to change
the operands in 4B0OH and 4B01H, breakpoint at location
4A14H and then use the M command to look at the flags and
results in locations 4B02H through 4B05H as shown in Table
7-1. In addition to the examples below the reader is urged to
try his own values. The flags will have to be “decoded” from
an 8-bit value to determine the state of the flags (it is some
work, but you'll be a better programmer for it). The bit posi-
tions of the flag register are shown in Figure 7-5, and in
Table 7-1.

B
LY

Ane

:f FRID
4 B : TRESFER FLEES

FliE

i H FBET RESHLY RLRES
125 N, SR

28 RESTORE

dE R SETRALT

HEH W : TRIEEFER FLAGS
SE N FBET BERAT, FLABS
L (dEEHL R 5T0RE

JF LEF ;LGP HERE FIR BP
J25]

115

FLAG

REGISTER
. 4 3 2 L 0
§112 Hi{-— PV NG
i— CARRY FLAG
ADD/SUBTRACT FLAG
{BCD OPERATHINS)
PARITY/OVERFLOW FLAG
HALF-CARRY FLAG (BCD OPERATIONS)
—— ZERO FLAG
‘— SIGN FLAG ~NOT USED

Fig. 7-5. Flag register bit positions.

Table 7-1. Examples of Add and Subtract Flag Bit

SZ H-PIVNC
746543 2 1O

Tast Casas
Location Contents 1 z 3 4
4B00H BDest Op + 33{21H} —5(FBH} - J0(E2H) 120{7BH}
4B01H Source Op + 64(40H} - JOE2H) — 5(FBH) 100(64H)
4802H Add Flags C100000: 10001001 16001601 10001100
4B03H Add Resylt +97(61H) —35(DDH) —35(DDH) — 24{DCH)
4B04H Sub Flags 10100011 00001010 10110011 00000010
4BOSH: Sub Result —3H(ETH) +25(31%H) —25(E7H) - 20{14H)
FLAGS

Adding and Subiracting 16-Bit Numbers

The Z-80 allows two 16-bit operands to be added, as we
found in a previous chapter. One of the operands must be in
the HL, IX, or IY registers, analogous to the A register in
16-bit arithmetic; the second operand must be in one of the
other register pairs. When an add or subfract is performed
16 bits at a time, the flags are affected in various ways, de-
pending upon which of the 16-bit arithmetic instructions is
being used. When an add is done to the IX register, for ex-
ample, the zero and sign flags are not affected, but when an
“ADC” is done with the HL register, the sign and zero flags
are affected. When In doubt about flag action, consulf the

116

individual flag action listed under the instruection in question
in the Editor/Assembler manual.

The advantage of the 16-bit adds, of course, is that much
larger numbers can be handled, at the expense of addressing
versatility. Since the HL, IX, and IY registers are generally
used as memory printer registers, the 16-bit adds and sub-
tracts using these registers can be used to advantage to cal-
culate memory addresses. As an example of this memory ad-
dress computation capability, let’s use the following program.
This program uses 16-bit adds and subtracts fo calculate
memory addresses for movement of a dot across the video
screen.

G GRERTR THENE A D

Bn 4RE P5TRT
L HLMEERD STRRT FGITH

w1 IEH S IMCRERENT
g iz SHUPEER OF LIES
n
1i
Lk
BED

e
i
D)

2

]

'ﬁ'fn

=

vy
bl

jun]

The program starts by loading HL with the first position
of the dot, the sereen memory plus one-half line. DE is loaded
with 64, representing the number that must be added to move

117

the dot to the middle of the next line. A is loaded with 15, the
number of lines that the dot will move, BC is loaded with a
delay count of 0, representing a delay of 65536 counts when
EC is decremented in the loop. The action of the loop from
LOOP1 through 4A17H is this: The dof is initially set on by
outputting the graphic character 0BFH. This character sets
every one of the six pixels in the character position. Now the
program delays about 14 second by means of a 4 instruction
delay loop. BC has zero at the end of the loop, After the delay
the pixels are turned off by outputting the graphics character
80H. Then the next address is computed by adding the 64 in
DE to HL, the address pointer. The contents of A are decre-
mented by one. If 15 lines have not been reached, the program
ioops back to 1.OOP1.

There are several interesting things in the above program.
Because the assembly-language code is extremely fast, we
had to delay each time a dot (actually six dots) was moved
to a new position. The delay count in BC was initialized to 0,
and decremented by decrementing B back fo 0 again (256
loops) as an inner loop and by decrementing C from 0 back
to 0 as an outer loop. The reader should realize that at 4A13H,
the count in BC is 0, in preparation for the next delay loop.
Another point is that there is no way to decrement BC and
test for zero, as the flags are not affected by a DEC BC, Henee
two decrements are used, each one checking one of the two
registers for zero—a DEC B or DEC C does set the flags after
the decrement.

To illustrate the 16-bif subtract, we'll rewrite the program
above to make a single pixel move from the bottom of the
scereen to the top of the screen. This program will be identical
to the one above except that the starting position will be
3C00H4-992, the 32nd character position in line 16, the incre-
ment in DE will be —64, and the graphics codes will specify
all on or all off for a single pixel (we'll be loocking at the
graphics codes in more detail in a later chapter).

118

=)

U
3
S

=
&

HL), B
1 . i
J HEA D £
ML L
JB LA B0 IF HIT MEE
I R B LB {58l iHLIFF
i B AL S 4 .EFT [F Rr'
e 2D L A “LT’“"" =
4T R BB HE LD $CTIEE
&R IF Bl R L LR HERE

The subtract was performed by the SBC instruction which
subtracted the increment value of 64 from the current video
memor