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Preface

The Radio Shack TRS-80® Model I microcomputer is a truly
remarkable machine that offers high-level computing power far
beyond its affordable, low-level price. Since its introduction in the
fall of 1977, more than 300,000 of these “personal” computers have
been sold, making the TRS-80 the “world’s most popular computer.”

This book is written for the TRS-80 Model I user who is interested
in writing short assembly-language programs, but is not necessarily
interested in learning assembly-language programming. The goal
of this book is to show you how to use assembly-language program-
ming, not how to become an assembly-language programmer. In-
stead of stressing the academics of theory, flowcharting, and
the tedious writing of routines that someone has already written,
this book emphasizes the use of the existing Level IT BASIC ROM
subroutines. Why struggle with writing your own subroutines when
you can use the existing ROM subroutines by simply calling them?
You put the operands in the proper registers and memory locations,
call the appropriate ROM subroutine, and the Level II BASIC ROMs
do the rest. Your assembly-language programming task is simpli-
fied to little more than moving the operands into the proper loca-
tions and retrieving the results.

To use the information presented in this book, you must either
have, or have access to, a Model T TRS-80 with Level II BASIC
and 16K RAM and a copy of T-BUG. You do not need to know
anything about assembly-language programming, but it is assumed
that you have an understanding of how to program in BASIC. Al-
though this book is written primarily for the TRS-80 user who has
no experience in assembly-language programming, it contains in-
formation of interest to both the novice and advanced programmer.



In eight chapters, you are shown how to plan, write, and “hand-
assemble” short assembly-language programs directly in memory
using the machine-language monitor T-BUG and the Level II
BASIC ROM subroutines. Chapter 1 discusses some of the reasons
for using assembly language, such as its speed, efficient use of
memory, and special-purpose applications. Chapter 2 discusses the
“heart” of the TRS-80, the Z-80 microprocessor and its instruction
set. Chapter 3 covers the Radio Shack machine-language monitor
T-BUG, its commands and their uses, with numerous examples. In
Chapter 4, you are introduced to the memory map of the TRS-80
and the Level II BASIC ROMs. Chapter 5 discusses the use of ROM
subroutines to perform data formatting, moving, and conversion. The
use of ROM subroutines to perform arithmetic and mathematic
functions are discussed in Chapter 6. Chapter 7 covers the cassette,
printer, and port I/Os. You are shown how to write your own read/
write programs using ROM subroutines, how to send the contents
of the video display to the printer, and how to use the Z-80’s 1/O
ports. Chapter 8 brings everything together with a discussion of
program planning and coding, and covers the use of jump-relative
instructions to write relocatable programs as well as the actual re-
location of programs in memory. Also discussed are some of the
problem-areas that you are likely to encounter, such as the use
of the stack, what to do when there arent enough registers, real-
time timing considerations, and linking assembly-language programs
with BASIC programs.

This book was written with the aid of a TRS-80 Model I com-
puter equipped with Level II BASIC and 16K RAM, a Centronics
730 printer with Radio Shack Printer Interface Cable (26-1411),
an Exatron Stringy Floppy and Duncan Pittman’s Type Right Secre-
tary word-processing program.

I would like to acknowledge the many people whose assistance
has helped to make this book possible. First, I would like to thank
Dr. Christopher Titus, my editor, for his patience and guidance
through the course of bringing this book from an outline to a
reality. I must also thank Jill Montney and Ken Mroczek for their
photography work used in Chapter 1, Richard Richardson for his
permission to use JKL LPRINT, and Mostek’s Jim Gaspard for his
help in obtaining permission to excerpt the Z-80 instruction set
tables used in Chapter 2. And, finally, I want to thank my family,
Cathy my wife, Paul my son, and Connie and Renée my daughters,
for their patience through it all. And, yes, Renée, there really is
a Daddy.

Earces L. McCauL



@ TRS-80, Level II BASIC, and T-BUG are trademarks of Radio
Shack, Tandy Corporation, Fort Worth, TX 76102.
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CHAPTER 1

Why Assembly Language?

INTRODUCTION

All computer programming languages can be divided into three
general classifications: high-level, assembly-level, and machine-
level. Machine-level programming involves the coding of programs
and data in the computer’s native language—ONEs and ZEROs.
Assembly-language programming utilizes symbolic codes to repre-
sent the actual coding of programs, mnemonics replace computer
instructions and labels replace addresses and data variables. High-
level programming incorporates “English-like” words and phrases
using precisely defined structures and syntax. Fig. 1-1 shows a
computer-language tree that illustrates the overall relationship of
the three general classifications of computer programming languages.

Each of the three general classifications offers a distinct combina-
tion of advantages and disadvantages. High-level languages are easy
to learn and use, are generally compatible between different com-
puters, and relieve the programmer of the need for knowledge about
the computer’s processor or its instructions. At the same time, they
are less efficient in terms of memory utilization and speed of exe-
cution, and are rather inflexible due to their “standardizations.”
Assembly-level languages offer a compromise between the “isola-
tion” of high-level languages and the “intimate complexity” of ma-
chine-level languages. However, they are machine dependent and
require a knowledge of the processor’s instruction codes. Machine-
level languages execute fastest, are the most memory-efficient, and
offer the most flexibility. They are also the most difficult to learn
and complex to use, and require a thorough knowledge of both the
processor’s operation and its instruction codes.



The specific requirements of the task to be programmed will
determine which level of programming language the programmer
actually uses, but generally high-level languages are better suited
to applications requiring computer-to-computer compatibility and
ease of debugging and modification, while assembly- or machine-
level languages are used when efficient use of memory and maximum
speed of execution are important.

Ly
&
PASCAL
= MFORTH% c 71
71 70 =N =
-
\‘ 67
PL/l;
VG
BASIG HIGH-LEVEL
3 FORTH A
@ 63 ALGOL
COBOL
\N/ 9
FORTRAN
57 J
MACRO
SYMBOLIC  CONDITIONAL ASSEMBLY-LEVEL
/LASSEMBLY \
HEXADECIMAL/OCTAL MACHINE-LEVEL
BINARY

Fig. 1-1. Computer language tree.

MACHINE LANGUAGE

Because digital computers work only with ONEs and ZEROs,
machine language is the most direct and efficient method of pro-
gramming a computer, but it is also the most difficult and error-
prone method of programming. Program instructions and data are
entered as numbers, usually binary (0-1), although some computers
are designed to accept octal (0-7), or hexadecimal (0-F). The
program sequence must be translated into the proper combination
of computer processor instruction codes by the programmer. This
requires that the programmer possess a thorough knowledge not
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only of the computer’s hardware and processor, but also of the pro-
cessor’s instruction codes. With some processors having more than
700 individual instructions (Z-80), this method of programming be-
comes tedious and time-consuming for all but the shortest of pro-
grams.

Fig. 1-2 shows three typical microcomputers, the Altair 8800, the
Heath HS, and the KIM-1, which are, respectively, programmed in
binary, octal, and hexadecimal machine language. Note the “front-
panel” switches on the Altair 8800 that are used to enter either a
ONE or ZERO into each bit of each byte of a program. Special “key-
pads” enable the direct entry of octal and hexadecimal numbers
which special electronic circuits must then convert into the binary
numbers actually used by the processor. The TRS-80 has no such
provision for direct entry of either binary, octal, or hexadecimal in-
formation and thus cannot be programmed directly in machine lan-
guage. It can, however, be programmed in assembly language, the
next step up from machine language.

ASSEMBLY LANGUAGE

With assembly language, programming is accomplished using
symbolic codes rather than ONEs and ZEROs as with machine
language. These symbolic codes consist of memory-assisting com-
binations of letters and abbreviations, called mnemonics, which
represent the processor’s instructions, and descriptive names, called
labels, which suggest the use of data variables and memory ad-
dresses. Computers cannot directly “understand” the mnemonics
and the instructions or data that they represent—they must be trans-
lated, or assembled, into binary coding before they can be run. The
symbolic coding written by the programmer is called source code,
and the assembled binary coding is called the object code. Only ob-
ject code is understood and used by the computer’s processor—com-
puters work only with ONEs and ZEROs, not symbols.

Mnemonics

Mnemonics are a combination of letters and abbreviations that
help the programmer to understand and remember the Pprocessor’s
instruction codes. Mnemonics simplify and condense the cumber-
some binary of machine language into descriptive operation codes,
or op-codes, and operands which are much easier for the program-
mer to use and read once written in program form. For example,
the Z-80 machine language instruction, 11001110, becomes ADC A.n
in assembly language, where ADC A is the mnemonic and n is the
operand representing a one-byte variable. The mnemonic ADC A n
stands for: ADd with Carry to Accumulator the byte n, which is

11



=7 ALTAIR S800 comp

(A) Altair 8800 microcomputer programmed in binary.

(B) Heath H8 microcomputer programmed in octal. (Courtesy Heath Co.)

(C) KIM-1 microcomputer programmed in hexadecimal.

Fig. 1-2. Typical microcomputers.
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certainly more meaningful and much easier to use and remember
than the binary number 11001110.

Labels

Labels are programmer-assigned names, such as ITEMI1 or
SUMB, which replace the actual numerical values of addresses or
data variables. The use of labels relieves the programmer of having
to keep track of addresses or the actual numerical value of data
and constants, especially when using the “stack.” Instead, special
routines within the assembler program perform these address and
value-assignment tasks for the programmer. The use of labels for

Labels
BEGIN CALL DELAY ;KEYBD DEBOUNCE
LD HL,3C00 ;CRT ADDRESS
1ST N CALL GETNUM ;GET 1ST NUMBER
EX AF,AF’ SWAP AF
. Lb AN ;ASCH -
/ 4 r
Mnemonics b HL.A ;DISPLAY IT
INC HL ;NEXT CRT ADDR
2ND N CALL GETNUM ;GET 2ND NUMBER
LD B,A ;STORE IN B-REG
EX AF,AF ;SWAP AF BACK
ADD ADD A,B ;ADD THEM
LD B,A ;STORE SUM IN B
Fig. 1-3. Assembly language ics and label:

addresses and data is shown in Fig. 1-3. Labels are only an aid
for the programmer, they do not occur in the object code after being
assembled. They are only used as reference points to aid the pro-
grammer during writing of the source code, and are “removed” dur-
ing the assembly of the program.

Op-Codes

Operation codes, shortened to op-codes, are numeric representa-
tions of the symbolic mnemonics and labels, and are usually given
in either octal or hexadecimal. Op-codes and operands may be
generated in either of two ways: by the computer itself during the
process of “assembling” the source code into object code, or manually
by the programmer translating each instruction with the aid of a
table that cross-references op-codes and machine language codes.
Once the op-codes and operands have been generated, they may
be used as-is and manually entered as machine code using a master
control program called a monitor. This method of programming is
referred to as “hand-assembly” and is the method described and
discussed in this book. The list of op-codes and operands, whether
manually or computer generated, is essentially an octal or hexa-

13



Machine Language Assembly Language

(Object Code) (Source Code)
Addr Op-Code Label Mnemonic/Operand  Remarks
5000 CD 00 70 BEGIN CALL DELAY ;KEYBD DEBOUNCE
5003 21 00 3C LD HL,3C00 ;CRT ADDRESS
5006 CD 00 60 1ST N CALL  GETNUM ;GET 1ST NUMBER
5009 08 EX AF,AF SWAP AF
500A 3E 2B LD A+ SASCH "+
500C 77 LD (HL),A ;DISPLAY IT
500D 23 INC HL ;NEXT CRT ADDR
500E CD 00 60 2ND N CALL GETNUM ;GET 2ND NUMBER
5011 47 LD B,A ;STORE IN B-REG
5012 08 EX AF,AF ;SSWAP AF BACK
5013 80 ADD ADD AB ;ADD THEM
5014 47 LD B,A ;STORE SUM IN B

Fig. 1-4. Sampl bly-language program showing mnemonics,

op-codes and operands.

decimal version of the binary object code. Appendix B provides a
hexadecimal listing of the Z-80 op-codes. Fig. 1-4 is an example
of a program object listing and illustrates the use of a mnemonic,
op-code, and operand. The use of REMARKS is optional, but greatly
enhances program readability and understanding by providing a
rationale for each operation.

Compatibility

Unlike high-level languages, assembly-language programs are
not usually capable of being run on computers having different
processors. Thus, while a BASIC program written on a Z-80-based
computer, such as the TRS-80, can usually be run on any other

Microprocessor Response
780 LD A,n—Move immediate data byte n into accumulator.
6502 ROL —Rotate Left through the Carry bit.
6800 WAI  —Wait for Interrupt/implied.

Figure 1-5. Three popular microprocessors response to the binary number 11001110.

computer regardless of its processor, a Z-80 assembly-language pro-
gram will only work on another Z-80-based computer. This occurs
because different processors respond differently to the same binary
number. Fig. 1-5 illustrates how three popular microprocessors
(the Z-80, 6502, and 6800) respond to the same binary number,
11001110. What this means is that each microprocessor has its own
assembly- and machine-level languages! Knowing how to program
the Z-80 does not necessarily guarantee an ability to program either

14



a 6502 or 6800 microprocessor. The one exception is the 8080/Z-80
family of microprocessors where the 8080 instructions are a subset
of the Z-80 instructions. Programs written on the 8080 will generally
run on a Z-80, but not necessarily the other way around.

ASSEMBLY LANGUAGE BENEFITS

Why program the TRS-80 in assembly language, when such ex-
cellent high-level languages as Level II BASIC, FORTRAN,
COBOL, and Pascal are so readily available? The answer is simply
that assembly language offers a unique combination of advantages
that the high-level languages cannot match. Specifically:

® Low cost of implementation.

@ Direct microprocessor control.

© Maximum program execution speed.

© Minimum program memory requirement.
@ Special-purpose programs and routines.

Assembly language offers the opportunity to go beyond BASIC
and try something new without the need for additional hardware
or peripherals. It allows the Z-80 within the TRS-80 to be pro-
grammed in its native code, and provides access to, and direct
control over, the microprocessor’s operation, its registers and input/
output ports, and the contents of memory. It is fast, typically 100~
300 times faster than an equivalent program written in BASIC.
This is an important factor when you are processing data as it oc-
curs, called real-time processing, or when sorting large arrays. It
is also very thrifty with memory, typically using less than one-fifth
the memory required for an equivalent BASIC program. Also as-
sembly language enables the programmer to create special-purpose
programs and routines suited specifically to the programmer’s needs.
Best of all is the fact that learning to program the TRS-80 in
assembly language is not as difficult as it might seem. Rather than
learn to write programs and routines that someone has already writ-
ten (and probably written better), this book instead stresses the
immediate use of the existing Level II ROM subroutines. Emphasis
is placed upon learning how to move data to and from the memory
addresses and microprocessor registers used by the ROM sub-
routines. Appendix D lists some of the Level II BASIC ROM sub-
routines and their addresses. Look them over at this time as they
will greatly simplify programming in assembly language.

Low Cost of implementation

Assembly language is very inexpensive to implement. With the
TRS-80, the use of high-level languages beyond the resident Level
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IT BASIC requires at least one mini-disk (which means the Ex-
pansion Interface, too) and additional memory, usually a minimum
of 32K of user read/write (RAM) memory, before actual program-
ming may be done. But, with assembly language, all that is required
is a monitor, such as T-BUG, and programming may commence im-
mediately. There is nothing else, except possibly this book, to buy.

No additional memory is needed with assembly language because
4K of user memory programmed in assembly language is equivalent
to about 20-24K of BASIC! This makes the typical 16K TRS-80
capable of almost 80-96K worth of equivalent BASIC programming
when it is programmed in assembly language.

The only real expense with assembly language is the price of
the monitor program which can cost anywhere from $10 to over
$100, depending upon the options incorporated. All the “bells” and
“whistles” on the fancier monitors are useful only IF they are
actually utilized, otherwise, they simply occupy memory. Those
monitor functions that are truly necessary are:

® Inspect and change memory contents.
® Display register contents.

@ Set/remove breakpoints.

@ Jump to start address.

@ Save assembly programs.

Anything beyond these five functions is extra. Everything can be
accomplished using just these five functions, although many other
useful functions are available. The T-BUG monitor and its functions
will be covered more fully in Chapter 3.

Direct Microprocessor Contreol

Assembly language enables direct communication with the Z-80
microprocessor in the TRS-80. This direct communication provides
control over exactly what the microprocessor does and when it is
done. With a high-level language, the programmer seldom thinks
about what the microprocessor does because the language takes
care of everything. The programmer communicates to the high-level
language and it in turn tells the microprocessor what to do. When
a program is entered, special routines within the language’s inter-
preter or compiler determine which combination of microprocessor
instructions should be used to perform the program. The high-level
language “isolates” the programmer from the control of what the
microprocessor actually does.

With assembly language, however, the programmer must plan
and direct each and every operation the microprocessor performs.
Why? Simply, because assembly language IS microprocessor opera-
tion. Thus, writing a program in assembly language consists of se-
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BASIC Assembly Language

10 IF A=B THEN GOTO 200 5000 7E LD A/(HL)
5003 23 INC HL
5004 BE CP (HL)

5007 C2 C8 00 JP NZ,00C8H

Figure 1-6. BASIC IF-THEN conditional branch vs. assembly language equivalent.

lecting from the microprocessor’s instructions that sequence of op-
codes which, when executed, will (hopefully) produce the intended
results. To do this, the programmer must know something about both
how and why the computer’s microprocessor works.

Fig. 1-6 compares a simple BASIC IF-THEN conditional branch
statement with its assembly-language counterpart. In the BASIC
program, the programmer simply enters the line number and then
the statement, and the BASIC’s interpreter takes care of the rest. In
the assembly language version, the programmer must define exactly
what the microprocessor is to do each step of the way. The BASIC
statement performed a single multipurpose operation: IF (condi-
tion) THEN (execution). The assembly-language routine accom-
plishes the same result using four separate, specific Z-80 instructions:

@ I.D A (HL)—A load instruction which tells the microprocessor
to put the variable found at memory location (HL) into the
“accumulator,” or A register.

® INC HL—An increment instruction which tells the microproces-
sor to go to the next memory location (HL+1) where the sec-
ond variable is to be found.

@ CP (HL)-a compare instruction which tells the microprocessor
to see if the first and second variable are the same.

@ JP NZ nn—A jump instruction which directs the microprocessor
to loop back to the compare instructions at address “nn” if the
first variable is NOT the same as the second variable.

Only four instructions and two variable addresses, for a total of
10 bytes of memory, are required with the assembly-language rou-
tine. In contrast, the BASIC statement needs 13 bytes just for the
line number and the IF-THEN statement, plus 725 bytes for the
actual ROM subroutine, for a total of 738 bytes. That’s about a
60-to-1 better memory utilization for the assembly-language routine.
Also, by changing just one instruction (JP NZ,nn), the conditions of
not-equal (#), greater-than (>), or less-than (<) could have just
as easily been tested.

Using the block-move capabilities of the Z-80 makes it possible
to move data, or programs, from memory locations where conflicts
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occur to free memory. No such feature exists in BASIC. Why move
data or programs? Sometimes there is no other alternative, such as
when the T-BUG resides in the same portion of memory as the many
available special-purpose “utility” routines. Obviously, one must
be moved, and this can be easily accomplished using a short as-
sembly-language routine. Block moves will be discussed later in
greater detail.

Maximum Program Execution Speed

Assembly-language programs typically execute between 100 and
300 times faster than their BASIC counterparts. Freed of the task
of having to “interpret” each line and statement before executing
its purpose, the Z-80 assembly-language program can zip along
at close to clock speed, which for the Model T TRS-80 is approxi-
mately 1.77 MHz.

Fig. 1-7 compares a simple BASIC FOR-NEXT loop with an
assembly-language equivalent. Note the use of an integer counter
(I%) in the BASIC statement to help reduce execution time. The
PRINT**” statement executes only once to indicate when the loop
is done, and contributes very little to the overall timing.

The BASIC loop takes about 38.7 seconds to complete 32,767
loops (remember, the loop started from 0, not 1). If the total time
is divided by the number of loops, the time required to complete a
single loop can be approximated, about 1.18 milliseconds in this case.

The assembly-language counterpart executes the same 32,767
loops too fast to be clocked using a stopwatch. However, some idea
of the time required for each loop may be roughly determined as
follows:

® One clock cycle at 1.77 MHz lasts (.565 microsecond.

® A typical Z-80 instruction requires 7 clock cycles.

® Multiplying the 7 clock cycles-per-instruction times the time
of 0.565 microsecond-per-clock cycle yields an average in-
struction time of about 4 microseconds.

BASIC Assembly Language

10 FOR 1% =0 TO 32766:NEXT:PRINT"*" 5000 11 FF 7F LD DE,7FFFH

. 5003 1B DEC DE
5004 7B LD AE
5005 B2 OR D

5006 C2 03 50 JP NZ,5003H
5009 21 00 3C LD HL,3CO0H
500C 3E 2A LD A,2AH
500E 77 LD (HL),A

Fig. 1-7. BASIC FOR-NEXT loop vs. assembly language equivalent.
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Thus, the assembly language routine takes only about 260 milli-
seconds to execute the same 32,767 loops. That is 150 times faster
than the equivalent BASIC program. Stated another way, the BASIC
program will execute only 2096 statements in roughly the same
time that an assembly language routine will execute 314,400 in-
structions.

Because of its speed, assembly language is sometimes the only
alternative, such as real-time processing of data, performing lengthy
iterations or repeated operations, and sorting large arrays of data.
A rule-of-thumb for determining when to use assembly language is,
“If money can’t buy it, use assembly- or machine-level language.”
Loosely translated, this means that when time or extra memory
beyond what’s available is needed, the only alternative is to utilize
either assembly- or machine language. Why? Because money cannot
buy time, nor can it buy 2097 bytes of memory for a 2096 byte
memory computer.

Minimum Program Memory Requirement

Assembly language is very frugal with memory, typically using
less than one-fifth as much as an equivalent BASIC program. Re-
turning to the comparisons shown in Figs. 1-6 and 1-7, it can be
determined using the “’ MEM” command before and after entering
each BASIC line number and statement, that the BASIC IF-THEN
example needed 13 bytes of memory for the line number and state-
ment alone, and the BASIC FOR-NEXT statement needed 23 bytes.
However, when the lengths of the BASIC ROM subroutines are
included, which are respectively 725 and 44 bytes, the total mem-
ory requirement becomes 738 bytes for the IF-THEN statement and
67 bytes for the FOR-NEXT statement. Compared to the assembly
language requirements of only 10 and 15 bytes, respectively, it be-
comes quite clear that assembly language requires much less mem-
ory than BASIC.

The actual length of an assembly-language program depends
largely upon the skill of the programmer. Generally speaking, the
more familiar the programmer is with the particular microprocessor
in use and its instruction set, the “tighter” the programs are. This
results from the programmer being aware of the “tricks” and idio-
syncrasies of the microprocessor which can be made to work “for”
as well as against the programmer.

Special-Purpose Programs and Routines

Assembly language allows the programmer to write programs
and routines to answer specialized needs and applications. After
loading such programs into a “protected” section of memory, they
can execute as though they were an original feature of the resident
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programming language. Examples of specialized routines are Radio
Shack’s Keyboard Debounce program and the Operating Systems
used with mass-storage devices such as Exatron’s Stringy-Floppy
and JPC’s Poor Man’s Floppy. Once loaded, these operating systems
appear invisible to normal BASIC programs and function without
further attention from the programmer; their operation is automatic.

Another method of using specialized assembly-language programs
and routines is to embed them within BASIC programs and have
them execute only upon demand, using the USR(X) command in
BASIC. The Level IT BASIC even permits the “passing” of a 2-byte
signed integer variable between the BASIC program and the
assembly-language routine. Although this technique will be covered
later, you might also wish to read over pages 8/8 through 8/12 of
the Radio Shack Level II BASIC Reference Manual, 2nd Edition.

An excellent example of a special-purpose assembly-language
program is the “JKL” LPRINT program, found in Robert Richard-
son’s Disassembled Handbook for TRS-80, Volume 2.2 This program
provides, in just 70 bytes, the ability to print out the content of the
video display to a line-printer, initiated by the simultaneous pressing
of the J, K, and L keys. The assembly-language program resides
quietly in memory until called into action by pressing the “JKL”
keys and then returns to dormancy when done. This program will be
discussed again later.

Can YOU think of some special program or routine that you'd
like to have? Of course you can, and before you finish this book,
you will be able to write it yourself.

REFERENCES

1. Radio Shack Level II Basic Reference Manual, 2nd Edition, 1979, pp. 8/8-
8/12.

2. Richardson, Robert, Disassembled Handbook for TRS-80, Volume 2, pp. 113-
114.
REVIEW QUESTIONS

1. What are the three general classifications of computer programming lan-
guages?

2. Machine-level programming involves the coding of programs and data in
’s and ’s.

3. Assembly-level programming utilizes -codes to represent
actual coding of programs.

4. High-level programming incorporates -like words and
phrases using precisely defined structure and syntax.
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10.

11

12.

13

14

15.

. The purpose of an “assembler” is to translate

. In assembly-language programming, replace computer

instructions, and ____________ replace addresses and data variables.

. The most “efficient” method of programming is:

A. Computer-wise:
B. Programmer-wise:

. In assembly language, the programmer writes the program using mnemonics

and labels; the program is also called

— . __-code written
by the programmer into -code understood by the computer.

. Numeric codes which represent the microprocessor’s actual instructions are

called

How are mnemonics and labels related to op-codes and operands?

Explain why it is said that assembly language IS microprocessor operation.

Typically, BASIC programming uses single operations,
while assembly language uses multiple instructions.
The typical Z-80 instruction executes in about clock
cycles.

For the TRS-80, a typical Z-80 instruction executes in about D

microseconds.

Name the two criteria which make machine- or assembly-level program-
ming a “must.”
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CHAPTER 2

The Z-80 Microprocessor

In the first chapter, we discussed a few of the reasons for using
assembly language on the TRS-80. In this chapter, we will discuss
the device that makes it all possible, the Z-80 microprocessor. This
device is the single most important piece of microcircuitry in the
TRS-80 because it is the central processing unit (CPU) or “heart”
of the computer. Without it, the TRS-80 could not function, and
probably would not even exist. It is the device that controls every-
thing that the TRS-80 does. For this reason, and because our goal is
to do assembly-language programming using object code directly, it
is important that we understand both how and why the Z-80 func-
tions. An understanding of the registers and flags contained in the
Z-80 provides insight into how it works and an understanding of
its instructions explains why it does what it does.

These following aspects of the Z-80 microprocessor will be dis-
cussed:

@ General Description.

® 8080/Z-80 Family of Microprocessors.
® The Z-80 Registers.

® The Z-80 Flags.

© The Z-80 Instruction Set.

The purpose of this chapter is to provide a functional overview and
description of the Z-80 microprocessor.
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GENERAL DESCRIPTION

The Z-80 is an 8-bit, general purpose, digital microprocessor de-
signed by Zilog, Inc., as an enhancement of the popular 8080 micro-
processor. The Z-80 is fabricated on a single, large-scale integrated
(LSI) chip using NMOS technology, and is housed in a 40 pin
DIP (Dual Inline Package). The pinout of the Z-80 is shown in
Fig. 2-1. The Z-80 has 16 address pins (AO through A1l5), eight
data pins (DO through D7), along with a number of other pins that
are used to indicate what the Z-80 is doing, or are used by the Z-80
to control external devices.

Thus, the Z-80 has three buses: an 8-bit data bus that carries data
to and from the Z-80; a 16-bit address bus that is used to address
memory and peripherals; and a control bus consisting of 13 signals
that the Z-80 uses to direct and coordinate all operations. Since all
of the address pins can assume either a logic one or logic zero state,
there are 2%, or 65536 different memory locations that the Z-80
can address. During the execution of I/O instructions, up to 256
input devices, and 256 output devices, can be addressed. Of these
512 possible peripherals, one, pori 255, is contained within the
TRS-80, and is used to control the cassette and a portion of the video
display logic.

The address bus is also used when the Z-80 refreshes dynamic
read/write memory (RAM ). Thus, the Z-80 can be used with either
static or dynamic memory, and virtually no external logic is re-
quired for dynamic memories to be refreshed. The CPU-generated
refresh is completely transparent to the user. The refresh address
is only on the address bus for a short period of time, after an instruc-
tion op-code is read from memory.

Because of the sophistication of the Z-80, it operates from a single
+35-volt power supply, and needs only an externally generated, non-
TTL compatible clock for operation. All of the other inputs and
outputs of the CPU chip are TTL compatible. The address, data,
and control buses can also be put into a high-impedance, or “third
state,” enabling other devices to share access to these buses. Gen-
erally, high speed, direct memory access (DMA) devices use the
buses in this manner.

As a result of its 8080-based origin, the Z-80 can execute all 78
instructions that the 8030 can execute, along with 80 new instruc-
tions. Thus, the Z-80 has a total of 158 different instruction types.
If all possible permutations of the instructions are considered, the
Z-80 actually has over 700 individual instructions, making it one of
the most powerful microprocessors around. Included on the chips
are two interrupts to provide external devices with access to the
CPU even though it may be busy executing instructions.
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8080/Z-80 FAMILY

The Zilog Z-80 is a third-generation microprocessor, being the
descendant of the Intel 8080 (second generation) and the earlier
Intel 8008 (first generation). Because of this “family” background,
the Z-80 exhibits certain traits that the programmer should know
about.

When the Z-80 was designed, its instruction set purposely in-
cluded all 78 of the earlier 8080 instructions to ensure software
compatibility with existing 8080 programs. However, the 80 new
Z-80 instructions prohibit Z-80 software from being compatible with
the 8080. This successive incorporating of instruction sets culminates
with 8080 software being upward compatible with Z-80 software,
but not the other way around. Software compatibility within the
8080/Z-80 “family” is illustrated in Fig. 2-2.

The 8080 is not very sophisticated by today’s standards, however
the experience and knowledge gained from its use paved the way
for the success of the Z-80. It is interesting to note that rather than
design a “better” 8-bit Z-80, the electronics industry turned instead
to 16-bit CPUs, a silent commentary on the power of the Z-80. The
Z-80 microprocessor is truly a remarkable device. In fact, a complete
microcomputer system is formed when the Z-80 microprocessor is
interfaced with I/O devices and memory.

THE Z-80 REGISTERS

The Z-80 has more than twice as many internal registers as the
8080, 22 vs 10! What are registers? They are temporary storage
locations built into the microprocessor chip; some are accessible
to the programmer, others are not. They enable the Z-80 to perform
some operations much faster than some other processors, because
less time is required to access a value in a register than to access
a value stored in memory. Each register is one-byte (8-bits) wide,
the same as read/write memory (RAM) and read-only memory
(ROM). The Z-80 is referred to as a “register-oriented” CPU in con-
trast to such CPUs as the 6502 and 6800 which are “memory-
oriented.”

In addition to the 10 registers that the 8080 has—the program
counter (PC), stack pointer (SP), accumulator (A), status or “fag”
register (F), and six general-purpose registers (B, C, D, E, H,
and L)—the Z-80 has a second, alternate bank of 8-bit general-
purpose registers and four special-purpose registers. The 8080 and
Z-80 registers are depicted in Fig. 2-3.

Two of the four new special-purpose Z-80 registers are 16-bits
wide (the Index registers, IX and IY) and two are 8-bits wide, the
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Interrupt Vector (I) and Memory Refresh (R) registers. Neither the
I register nor the R register is general-purpose, their use being re-
served by the CPU.

The 16 general-purpose registers and 6 special-purpose registers
of the Z-80 are shown in Fig. 2-4. Note that the A and F registers
are treated separately.

Arithmetic Logic Unit

The arithmetic logic unit (ALU) is the most important register
in the Z-80, because this is where the arithmetic and logic opera-
tions are actually performed on data. The specific operation or test
performed within the ALU is determined by the instructions (op-
code) supplied by the programmer. Although the ALU is only an
8-bit (one-byte) register, it requires fwo 8-bit values. The first
value always comes from the accumulator, or A register, and the
second value or operand comes either from one of the internal
general-purpose registers (A-E, H, or L), or from an external
memory location. The result of an arithmetic or logic operation is
stored in the A register, overwriting or destroying the original con-
tents. While the ALU is not directly accessible to the programmer,
its operations are implicitly controlled through the programmer’s
selection of program instructions.

Because the ALU is an 8-bit register, it can only operate on 8-bit
words. However, special instructions and programming techniques
enable the Z-80 to handle 16-bit data words simply as two contigu-
ous 8-bit bytes.
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STACK POINTER SP
PROGRAM COUNTER PC

Fig. 2-4. Z-80 general-purpose and special-purpose registers.
(Courtesy Mostek Corp.)

Working Registers

The Z-80 has two identical banks of 8-bit working registers, con-
sisting of the “working” or operational registers (A, F, B, C, D, E,
H, and L) and the internal memory or complement registers (A’, F’,
B, C, D, E’, H’, and L’). Only the working or noncomplement reg-
isters are under the programmer’s control, but the contents of the
two banks can be “swapped” using the exchange registers (EX) and
exchange all registers (EXX) instructions.

Although the programmer can only directly control eight registers,
the ability to exchange register contents between the two banks of
registers effectively doubles the number of usable registers to 16.
However, only the working registers are “active” or functional, the
complement bank simply acts as internal memory.

Of the eight working registers, only seven are directly usable by
the programmer, the F register is always used by the ALU. The pur-
pose of the F register is to report the result or “status” of an ALU
operation. The seven remaining general-purpose registers (A, B, C,
D, E, H, and L) are directly available to the programmer through
the instruction set of the Z-80. Six of these 8-bit registers can also be
“paired” to produce an equivalent, single, 16-bit (fwo-byte) register:
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® B register + C register = 16-bit, BC register pair.
@ D register + E register = 16-bit, DE register pair.
@ H register + L register = 16-bit, HL register pair.

When paired, these registers can be used for double-precision arith-
metic or as pointers to memory locations. When used as pointers, the
name of the register pair is enclosed in parentheses, for example,
(HL), indicating that the CPU is “to use the contents” of the mem-
ory location “pointed to” or addressed by register pair HL.

In the first 8-bit microprocessor, the 8008, only the HL register
pair could be used in this manner, which accounts for their H and
L names. The H register held the high-byte of the memory address
and the L register held the low-byte of the memory address. This
method of specifying a memory address is called indirect addressing
and is denoted by the use of the parentheses.

Special-Purpose Registers

Four 16-bit and two 8-bit registers comprise the special-purpose
registers in the Z-80. The four 16-bit registers are strictly address reg-
isters, because they always contain memory addresses. The two 8-bit
registers are reserved for CPU use and are not normally used by the
programmer. The six Z-80 special-purpose registers are the program
counter (PC), stack pointer (SP), index (IX and IY), interrupt vec-
tor (I), and memory refresh (R).

The program counter (PC) is a 16-bit register controlled by the
CPU (and some instructions) and always contains the address of
the next instruction the CPU is supposed to execute. When the CPU
executes a “fetch,” or “get-instruction” operation, the contents of the
PC register are placed on the address bus, causing the contents of
the selected memory location to be read back into the CPU over
the data bus. This register is not directly available to the program-
mer and cannot perform arithmetic or logic operations or be used to
temporarily store data. Its job is to point to, or address, the next in-
struction to be executed. During certain operations, notably jumps,
branches, calls, and interrupts, the contents of the PC register are
automatically “saved” in the stack area of memory. Execution of
these instructions also causes the PC register to be “loaded” with a
new address.

The stack pointer (SP) is a 16-bit register used by the CPU to
address the last entry in the stack area (or, simply the stack), which
is in read/write memory. The stack is a specific portion of read/write
memory designated by the programmer for use by the CPU for tem-
porary storage of data and register contents. Because of the way the
SP was designed, the last item in the stack will be first item out of
the stack (LIFO). and the stack grows downward (the SP is decre-

29



mented) as new items are added to it. Conversely, the stack grows
upward (the SP is incremented) as items are removed from it.

The index registers (IX and 1Y) are 16-bit registers used by the
programmer to hold a “base” address to which an “offset,” or dis-
placement value is automatically added to create an indexed, in-
direct memory address. This method of specifying an address for
the CPU is called indexed addressing and enables the Z-80 to access
any word stored anywhere in memory. By using one index register
as a “source” pointer and the other index register as a “destination”
pointer, blocks of data can be easily moved between memory loca-
tions. These registers can also be utilized by the programmer for
temporary 16-bit storage when not otherwise used.

The interrupt vector (I) register is an 8-bit register used by the
CPU during interrupts to store the high-byte of an indirect address,
also called a vector. The low-byte of the address is supplied by the
device generating the interrupt. Up to 128 devices may be referenced
in this manner. Only 128 devices can be addressed because the least-
significant bit (Isb) of the low-byte must be zero. The I register is
not a general-purpose register, but it can be loaded with a value, and
the value stored in the I register can be read into the A register, or
accumulator.

The memory refresh (R) register is an 8-bit register which the
CPU continually increments from 00000000 through 11111111 to
provide the refresh address required by the dynamic read/write
memory chips used in the TRS-80. The BASIC interpreter uses the
contents of the R register to “reseed” the RANDOM number gener-
ator.

The Z-80 Flags

Another important register in the Z-80 is the status or “flag” reg-
ister (F'). While the ALU actually performs the arithmetic and logic
operations, it is the F register that indicates the results of those op-
erations. This register enables the Z-80 to make decisions, using the
conditional instructions.

Six of the eight bits in the F register are set or reset depending
upon the results of the many different arithmetic and logic opera-
tions performed in the ALU upon data. The flags in the F register
are shown in Fig. 2-5. Because the condition or state of the flags af-
fects so many of the Z-80 instructions, they deserve further attention.

D7 DO

N 7 H PV N C Fig. 2-5. The F register flags.

@ MEANS FLAG IS INDETERMINATE
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The carry (C) flag indicates the generation of an overflow or
“carry” or an underflow or “borrow” during arithmetic and logic op-
erations. Arithmetic operations cause this bit to be either set (1) or
reset (0) depending upon the result in the ALU. Logical operations
(AND, OR, and exclusive-OR) cause this bit to be reset or “zeroed.”
Those instructions that affect the C flag are listed in Appendix C.
This flag may be tested (1P or 0?) and conditioned (set to logical
one or reset to logical zero) by the programmer using the bit ma-
nipulation instructions that the Z-80 has.

The negative (N) flag is used by the CPU during binary-coded
decimal (BCD) operations to indicate addition (N =0) or sub-
traction (N = 1). This flag cannot be tested with decision-making
instructions, nor can it be directly set or reset.

The parity/overflow (P/V) flag is a dual-function flag. During
arithmetic operations, this flag indicates an “accidental” sign change
resulting when two numbers that have the same sign are added or
subtracted using two’s complement arithmetic. During most other
arithmetic and logic operations, the P/V flag indicates the “odd” or
“even” count (parity) of the bits in the result. The P/V flag is a
logic one (P = 1) when there is an odd number of bits (1, 3, 5, or 7)
in the result, and the flag is a logic zero (P =0) when the number
of bits is even (2, 4, 6, or 8). This bit may be tested and can be con-
ditioned by the programmer.

The half-carry (H) flag indicates a carry or borrow between the
low-order (D0-D3) nibble (4-bits) and the high-order (D4-D7)
nibble in the ALU during BCD arithmetic operations. The H flag
is a logic one (H = 1) if a carry or borrow occurs, and is a logic zero
(H = 0) when no carry or borrow occurs. Like the negative (N) flag,
this flag cannot be tested, set, or reset.

The zero (Z) flag indicates whether or not the result of an arith-
metic or logic operation is zero, or whether a “match” between the
contents of two registers has occurred. Note that the Z flag is set to
a logic one (Z = 1) when the result is zero or when a match occurs,
and is reset to a logic zero (Z = 0) when a nonzero result, or differ-
ence, occurs. The state of the Z flag is also used to indicate the state
of a bit (set = 1 and reset = 0) during the bit manipulation opera-
tions. This flag is probably the most important flag available to the
programmer. It can be tested by the decision-making instructions.

The sign (S) flag indicates the value of the most-significant bit
(msb) of an arithmetic or logical result. If the sign flag is a logic
zero (S = 0), it indicates a positive number, if the sign flag is a logic
one (S = 1), it indicates a negative number. The S flag may be tested
by the decision-making instructions and can be conditioned by the
programmer.

The state of four of the flags in the F register (C, Z, S, and P/V)
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can be tested by the Z-80, using decision-making instructions such
as call on carry (CALL C) or jump if nonzero (JP NZ). However,
only one flag at a time can be tested with these instructions. Some
instructions have no effect on the state of the flags, others have spe-
cific effects, and still others have an indeterminate or random effect.
The effect each Z-80 instruction has upon the individual flags is given
in Appendix C.

THE Z-80 INSTRUCTION SET

The Z-80 instruction set consists of 158 different instruction types,
the 78 instructions from the 8080, plus 80 new instructions. However,
individually, there are over 700 different instructions that are actu-
ally available. We will discuss only the most important and most
often used instructions, although Appendix B lists the complete Z-80
instruction set.

Included in the 80 new instructions are instructions for 4, 8, and
16 bit operations; indexed and relative addressing; bit manipulation
and checking; and memory-to-memory block transfer and search.
The 158 instruction types are grouped together as follows:

® 8-bit Load.

® 16-bit Load.

® Exchange, Block Transfer, and Search.
@ 8-bit Arithmetic and Logic.

@ 16-bit Arithmetic.

@ General-Purpose Arithmetic and CPU Control,
@ Shift and Rotate.

@ Bit Manipulation.

® Jump.

® Call and Return.

@ Input and Output.

Z-80 Terminology

Before discussing the individual instructions, a short review of the
conventions (rules) and terminology used with the Z-80 instructions,
along with its addressing modes, is in order. Some rules are based
on the 8080, others are unique to the Z-80, thus some rules will be
familiar to you and others will be new.

The terminology used with the Z-80 instructions is based upon
the actual function performed, and so is generally self-explanatory.
The terminology used with the Z-80 instruction set is summarized in
Chart 2-1.

Due to the convention established by Intel with the 8080, all two-
byte words are stored with the last-significant byte (LSB) preced-
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Chart 2-1. Z-80 Conventions and Terminology

b = BIT value of any 8-bit register or memory address.
cc = CONDITION CODE of the flags:

NZ = nonzero Z = zero
NC = noncarry C = carry
PO = parity odd/no overflow PE = parity even [overflow
P = positive sign (+) M = (minus) negative sign (—)

d = DISPLACEMENT, an 8-bit signed two’s complement number used with
indexed addressing.
EXTENSION, an 8-bit signed two’s complement number used with
relative jumps.
Call LOCATION in Page Zero; 8 special locations at decimal addresses 0, 8,
16, 24, 32, 40, 48, and 56.
NUMBER, any 8-bit binary number.
NUMBER, any 16-bit binary number.
REGISTER, any 8-bit general-purpose register (A, B, C, D, E, H, or L).
Use the CONTENTS OF as a “pointer” to memory location or 1/O
port number.
msb = Most-significant BIT.

Isb = Least-significant BIT.
MSB = Most-significant BYTE.

LSB = Least-significant BYTE.

@
I

,_
I

[

ing the most-significant byte (MSB). For example, the instruction
jump to address 1A19H (JP nn) is stored as C3 19 1A in memory
(JP nn = C3H). The H after a number means that the number is
hexadecimal.

ADDRESSING MODES

The Z-80 provides 10 different addressing modes, or methods, of
addressing a memory location, some of which can also be used to
address registers. Each mode has its own special use and application,
but some are more useful than others. Some are one-byte instruc-
tions, while others may consist of two, three, or four bytes. Which in-
struction to use, and when to use it, depends upon the programmer’s
knowledge of the different addressing modes available and the task
to be performed.

The 10 Z-80 addressing modes available to the programmer in-
clude implied addressing, which is also called implicit or “no-ad-
dress” addressing. If this type of addressing is used, the instruction
specifies the operation to be performed as well as the operand or
operator. Some one-byte instructions related to CPU control (NOP,
HALT, etc.), and some two-byte (LD SP,IY etc.) instructions, use
this addressing mode.

Register addressing, also called register-to-register addressing, is
found in one-byte instructions that specify the operation (op-code)
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and both the destination- and source-operands within the instruction.
The operands are specified by three-bit fields (D0-D2 = source reg-
ister, REG,; D3-D5 = destination register, REG,).

(binary) REG = 000 = B register T
001 = C register op
010 = D register
011 = E register
100 = H register
101 =L register
111 = A register

REG, REG,

Example: LD A,B ..meaning, load the A register with a copy of
the content of the B register. The content of the B register remains
unchanged.

Register indirect addressing is similar to register addressing, ex-
cept one of the operands is used as a pointer to the memory location
where the actual operand resides (or is to reside ). The second oper-
and is a register. The pointer register is denoted with the use of
parentheses, for example, (BC). Either the source or the destina-
tion operand may be addressed using register indirect addressing.
However, both operands cannot use register indirect addressing,
thus LD (BC),(HL) is not a valid instruction.

Example: LD A,(BC) ...mean- T y
ing, load the A register with a 0P
copy of the content of the mem-
ory location pointed to or addressed by the BC register pair.

REG, (REGy)

Example: LD (BC),A ..mean-
ing, load the memory location

op

(REGgq)

REG,

pointed to by the BC register
pair with a copy of the content of the A register.

Immediate addressing is often used in two-byte instructions where
the operation and destination operand are contained in the first byte
and an 8-bit literal, or “constant,” is contained in the second or im-
mediate byte. In effect, the instruction tells the CPU to, “use the

following data. . ..” . T — T
Example: LD A,3FH ..mean- op REG op

ing, load the A register with the ]

8-bit immediate data, 3FH. 8-BIT DATA

Immediate extended addressing is similar to immediate address-
ing, except 16-bit literals or data words are used, and is used to load
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16-bit values into one of the register pairs (BC, DE, or HL), the
stack pointer (SP), or one of the index registers (IX and IY).
1 i I I I

Example: LD BC,ABCDH ... op REGy op
meaning, load the 16-bit imme-
diate data, ABCDH, into the BC (LSB)
register pair. Remember, with | —16-BIT DATA
16 bits (two bytes) of informa- (MSB)
tion, the LSB precedes the MSB.

Extended addressing is sometimes called direct addressing. The
first one or two bytes contain the operation code and define one op-
erand while the remaining two bytes are used as a 16-bit pointer to
the memory location(s) where the second operand resides. Both 8-
bit and 16-bit values can be accessed using direct addressing.

Example: LD A,(nn) ..which loads an 8-bit data value from the
memory address pointed to by the address nn. And, LD (nn), A,
which loads the content of the A register into the memory address
pointed to by the address nn.

Example: LD BC,(nn) ..meaning, load the BC register pair with
a copy of the contents of memory location nn and nn+1, where the
value at nn is loaded into the C register, and the value at nn+1 is
loaded into the B register.

16-BIT:

1 1 ¥ ¥ 1 1 1

SBIT: OP-CODE
1 I I ! I 1 T i I I ) T
OP-CODE OP | REG op
(LSB) (LSB)
—16-BIT ADDRESS——————  |—16-BIT ADDRESS

(MSB) (MSB)

Indexed addressing is similar to register indirect addressing except
a signed 8-bit displacement, or “extension,” is used to select any
memory location between IX+127 and IX—128 (either the IX or IY
register may be used). A negative displacement is formed using two’s
complement math and is denoted as e~2.

Example: IX+7FH = IX+127 T T
IX+7EH = I1X+4-126 0pP-CODE

OP-CODE
IX+01H =1IX+1
IX+00H =1IX DISPLACEMENT
IX+FFH=1X-1
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IX+81H =1X-127
IX+80H =1IX-128

Relative addressing is only used with jump relative instructions.
Relative addressing permits us to reference, or jump to, memory lo-
cations ahead or behind the current location, locations “relative” to
the current location addressed by the program counter (PC). The
displacement ahead or behind the PC address is determined in the
same manner as displacements for indexed addressing using two’s
complement values. With this addressing mode, jumps of between 2
and 129 memory locations forward, and 1 to 126 memory locations
backward, are possible. Thus, the minimum forward jump is 2 and
the minimum backward jump is 1. This addressing mode permits
relocatable code to be written, that is, code or programs that oper-
ate anywhere in memory without regard to absolute addresses.

Example: 5000H JR NZ,64H ... LI

meaning, program execution will 0P-CODE
jump ahead 100;, memory loca-
tions, to address 5064H, and pro- DISPLACEMENT

ceed if the result of the last math-
ematical or logic operation is nonzero (NZ).

Modified page zero is used with one-byte instructions that are nor-
mally associated with interrupts. However, these instructions can
also be used as dedicated CALL instructions to the eight memory
locations: 0000H, 0008H, 0010H, 0018H, 0020H, 0028H, 0030H, or
0038H. A three-bit field (D3-D5) within the instruction determines
which address is used:

(binary ) RST = 000 = 0000H =0 T
001 =0008H =8 1|1 RST 111
010=0010H =16
011=0018H =24
100=0020H =32
101 =0028H =40
110=0030H =48
111 =0038H =56

Page Zero is 28 or the first 256 8-bit memory locations.

Bit addressing is used in conjunction with other addressing modes
to test (1P or 0?), set (1) or reset (0) any bit in an 8-bit operand.
A three-bit field (D3-D5) within the instruction determines which
bit is affected:

(binary ) DO = XXXXXXX1 = 000
D1 =XXXXXX1X = 001
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D2 = XXXXX1XX = 010 L LA
D3 = XXXX1XXX = 011 OP-CODE

D4 = XXX1XXXX = 100 ' L T
D5 = XX1XXXXX = 101 op BIT OP/REG

D6 = X1XXXXXX =110
D7 = IXXXXXXX =111

These instructions are also called bit manipulation instructions.

Typically, the programmer seldom worries about which address-
ing mode to use (except the relative addressing mode) and simply
uses the instruction(s) that suit the particular task at hand. This is
the approach taken in this book. But, the programmer must be aware
that the different addressing modes are available. This same ap-
proach will be used when discussing the many different Z-80 in-
structions.

THE 8-BIT LOAD (LD) INSTRUCTIONS

The Z-80 provides 111 different 8-bit Load (LD) instructions (Fig.
2-6). Approximately half of these instructions move data from one
CPU register to another. The remaining load instructions load 8-bit
immediate data into CPU registers or memory locations, store the
contents of CPU registers into memory locations, or simply transfer

SOURCE
IMPLIED REGISTER REG INI INDEXED | ABDR.| MME.
1 DIRECT X
1 R A [ < o € H L wu | o) | oE) Juxealuy s tm) | n
. oo | Fo 3
a || w|7e|m|r9]|salss]sc|{m|re|anl1af | € [ 3]
57 SF d d n
. oD | FD 06
8 47 | 40 | 41| 42 | 43| 44 | 45 | 46 45 46
. d d n
oo | FD oF
c 4F | 48] 49 | 4aA | 4B | 4C | 4D | 4E ;E :E n
. oo | Fo 16
REGISTER | D 57 | 50| 51| 62 | 63 | 64 | 65 | 56 56 56 n
d d A
oo | fo 1E
E 6F | 58 | 59 | BA | 68 | 5C | 6D | BE :E 35 n
ob | Fo 26
H 67 | 60| 61| 62| 63| 84| 65 ] 66 & :a "
§ oD | FO 2E
L 6F | 68| 69 | 6A | 6B | 6C | 6D | 6E :E :e "
DESTINATION (HL) 77 | 7201 71| 7221 73| 78| 75 36
. ‘ n
REG
Npirect | B¢ 02
(DE) 12
oo [ oo | oo| oo oof oo oo 4
HX+d) ” 70 7 77 73 74 75 M
NOEXED 4 d 4 4 d d d o
fD | FO | FO | FO | FO | FD | FD 54
1v+a) ” 0 | n 7| 3| o 75 3
d 4 ¢ d ) ¢ d 2
EXT. ADDR | (nn} ﬁz
n
' €0
a7
IMPLIED
A €0
aF

Fig. 2-6. The 8-bit load instructions. (Courtesy Mostek Corp.)
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the contents of the I and R registers into the A register and vice
versa.

THE 16-BIT (LD) INSTRUCTIONS

The Z-80 has 33 16-bit Load instructions, which are summarized
in Fig. 2-7. Six immediate extended instructions permit any register
pair, BC, DE, HL, SP, IX, or 1Y, to be loaded directly with 16-bit
data. Six extended addressing instructions enable indirect loading of
any register pair from any two consecutive memory locations. Six
register indirect instructions allow the content of two consecutive
memory locations addressed by the stack pointer (SP) to be loaded
into any register pair. Six extended instructions transfer the contents
of any register pair into two consecutive memory locations. The re-
maining instructions either PUSH or POP the register pairs AF, BC,
DE, HL, or the index registers IX or 1Y, respectively, on to or off of
the stack.

EXCHANGE, BLOCK TRANSFER, AND SEARCH INSTRUCTIONS

The Z-80 provides six exchange instructions along with four block
transfer and four block search instructions. The exchange instruc-
tions (Fig. 2-8) let us swap the contents of the AF and AF” registers
using the exchange registers (EX) instruction, or swap the contents

SOURCE

IMM. | EXT. | REG.
REGISTER EXT. | ADDR.| INDIR.

AF B8C DE HL Sp X 1y nn {an) (sP)

AF

BC

DE

HL
DESTINATION

IMAN~-Ommy

SP oD FD 78
F9 F9 n
n
DD DD
X 21 2A DD
n n E1
n n
FD FD
Y il 2A FD
n n E1
n n
ED DD FD
EXT, 73 22 22
ADDR. {nn} g : n
PUSH o | REG. [ (sP) Do FD
INSTRUCTIONS' IND. ES ES

NOTE: The Push & Pop Instructions adjust
the SP after every execution
POP INSTRUCTIONS

Fig. 2-7. The 16-bit load instructions. (Courfesy Mostek Corp.)
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Fig. 2-8. Exchange instructions.

(Courtesy Mostek Corp.)

IMPLIED ADDRESSING
aF [Bc DE'& ML | HL | 1x Iy
AF 08
8C,
DE
imPLIED] & be
HL
DE
REG, (sP) DD FD
INDIR, E3 €3

of the working and complement registers (B, C, D, E, H, and L and
B, C, D, E’, H’, and L") using the exchange all registers (EXX)
instruction. Also, the content of the HL, IX, or IY registers may be
stored in any memory location pointed to by the SP register, and the

DE register pair may be swapped with the HL register pair.

The four block transfer instructions ( Fig. 2-9), LDI, LDIR, LDD,
and LDDR, enable blocks (1 to 64K bytes) of data to be moved any-
where in memory. Before using these instructions in a program, the

programmer must:

® Load BC register pair with the number of bytes to be trans-

ferred.

DESTINATION ||nDiR.

SOURCE
REG.
INDIR.
(HL)
ED ‘LDI’ — Load (DE )= (HL)
AD Inc HL & DE, Dec BC
ED ‘LDIR,” — Load (DE)=s—(HL)
BO inc HL & DE, Dec BC, Repeat until BC=0
REG. (DE)
ED ‘LDD’ — Load (DE)<a—(HL)
A8 Dec HL & DE, Dec BC
ED ‘LDDR’ - Load {DE}<=——(HL)
88 Dec HL & DE, Dec BC, RepeatuntilBC=0

Reg HL points to source

Reg DE points to destination

Reg BC isbyte counter

Fig. 2-9. Block transfer instructions. (Courfesy Mostek Corp.)
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® Load HL register pair with the starting address of the source
block.

® Load DE register pair with the starting address of the destina-
tion block.

The Load and Increment (L.DI) and Load and Decrement (LDD)
instructions perform, respectively, block start-to-block end and block
end-to-block start transfers. The LDI instruction increments the HL
and DE register pairs and decrements the BC register pair. The LDD
instruction decrements the HL and DE register pairs and decre-
ments the BC register pair. These are “semi-automatic” instructions
because only a single byte is moved each time the instruction is exe-
cuted, and a separate instruction is needed to test the P/V flag to
see if the entire block has been moved. When register pair BC is
zero, the entire block will have been moved, so the P/V flag will
be reset.

SEARCH
LOCATION
REG.
INDIR.
(HL)
ED ‘CPI
Al inc HL, Dec BC
ED ‘CPIR’, Inc HL, Dec BC Fig. 2-10. Block search instructions.
B1 repeat until BC = 0 or find match (Courtesy Mostek Corp.)
ED P .
A9 'CPD’ Dec HL & BC
ED ‘CPDR’ Dec HL & BC
B9 Repeat until BC = 0 or find match

HL points to location in memory
to be compared with accumulator
contents

BC is byte counter

The LDIR and LDDR instructions perform the same functions,
but are “automatic” in operation, requiring no separate flag test in-
struction. Data bytes are moved until the content of the BC register
pair reaches zero.

The four block search instructions (Fig. 2-10), CPI, CPIR, CPD,
and CPDR, operate in the same fashion as the block transfer instruc-
tions, except that the content of each memory location is compared
to a user-supplied, 8-bit value stored in the A register. As with the
block transfer instructions, the CPI and CPD instructions require
a separate flag test instruction to determine when the entire block
has been searched. The CPIR and CPDR instructions are automatic,
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with execution continuing until one of two conditions is met: (1)
register pair BC is decremented to zero, or (2) a comparison or
“match” occurs between the content of the A register and a mem-
ory location,

8-BIT ARITHMETIC AND LOGIC INSTRUCTIONS

The Z-80 has 108 arithmetic and logic instructions (Fig. 2-11),
including addition, subtraction, comparison, increment/decrement,
and the logical operations, AND, OR, and XOR. Note that arith-
metic and logic operations (except the increment, decrement, and

.

compare ) automatically use the A register as the destination register.

SOURCE
REG.
REGISTER ADDRESSING INDIR.| INDEXED |IMMED)
A B c D E H L (HL) | (1X+d) | (1Y+d) | n
Job |FD
*ADD’ {86 86
d d
: {op FD
ADD w CARRY || 8E
‘ADC’ , d
FD
SUBTRACT 9
‘SUB’ d
: FD
SUB w CARRY 9€E
*SBC’ d
FD
‘AND’ A6
d
FD
‘XOR’ AE
d
FD
‘OR’ 86
d
FD
COMPARE BE
‘cP d
FD
INCREMENT 34
‘INC’ d
FD
DECREMENT 35
‘DEC’ d

Fig. 2-11. The 8-bit arithmetic and logic instructions. (Courtesy Mostek Corp.)

16-BIT ARITHMETIC INSTRUCTIONS

There are 32 instructions in the 16-bit arithmetic group, 12 reg-
ister pair-to-register pair additions (ADD), four register pair-to-
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SOURCE

BC DE HL sp I1X 1y

HL
‘ADD’ X DD DD DD DD
09 19 39 29
Iy FD FD FD FD
09 19 39 29

DESTINATION

ADD WITH CARRY AND | HL ED ED ED ED
SET FLAGS ‘ADC’ 4A 5A 6A 7A

SUB WITH CARRY AND HL
SET FLAGS  'SBC’

INCREMENT  “INC. DD FD
23 23
DECREMENT ‘DEC’ DD FD
28 28

Fig. 2-12. The 16-bit arithmetic instructions. (Courtesy Mostek Corp.)

register pair add-with-carry (ADC), four register pair-to-register
pair subtract-with-carry (borrow) (SBC), and six increment (INC)
and six decrement (DEC) instructions. Note that no 16-bit logic
operations exist. The 16-bit arithmetic instructions are summarized
in Fig. 2-12.

GENERAL-PURPOSE ARITHMETIC AND
CPU CONTROL INSTRUCTIONS

The Z-80 has five general-purpose operations affecting the A and
F registers, and seven miscellaneous CPU control operations. Note
the difference between the complement accumulator (CPL) and ne-
gate accumulator (NEG) instructions:

@ CPL . . . performs one’s complement upon the contents of the
accumulator (turns each 1 into 0 and each 0 intoa 1).

® NEG . . . performs two’s complement upon the contents of the
accumulator (turns each 1 into 0 and each 0 into a 1, and adds
1 to the least-significant bit ).

The general-purpose AF instructions are shown in Fig. 2-13.

The seven Z-80 miscellaneous CPU control instructions (Fig. 2-
14) consist of two CPU control instructions, NOP and HALT, and
five interrupt instructions: disable interrupt (DI), enable interrupt
(EI), set interrupt mode 0 (IM 0), set interrupt mode 1 (IM 1),

42



Fig. 2-13. General-purpose AF instructions.

(Courtesy Mostek Corp.)

Decimal Adjust Ace, ‘DAA’

Complement Acc, ‘CPL’

Negate Acc, ‘NEG’
(2’s complement)

Complement Carry Flag, 'CCF*

Set Carry Flag, 'SCF*

‘NOP 00
HALT' 76
DISABLE INT D) | F3
Fig. 2-14. Miscellaneous CPU
control instructions, ENABLE INT(Et)’ | FB
(Courtesy Mostek Corp.)
T MODE
SET INY MODE 0 E0 | gosoamonE
MODE
SETINTMOPET | 0 | cALLTO LOCATION 0038,
SET INT MODE 2 ED | INDIRECT CALL USING REGISTER
™2 SE | IANDB8BITS FROM INTERRUPTING
DEVICE AS A POINTER,
Source and Desunation
A e [ D E H L {HLY HIEX + dIFIY + &) A
DO | FD
mic | e | ca | o | cB | c8 | ce | CB|cB | 5| Co ALCA
1 02 0. 0 d
07 [ 00 | o o & | %
DD | FD
Rac' ] ¢ | e8| c8 | c8 | c8 | c8 | c8 [ cB | cB | c8 ARCA
ofF | o8 | 09 | oa | o8 [ oc | oo | o€ | ¢ d
OE OE
0D FO
‘AL ca | o8 f ce | ce | c8 | caf calca|ce |cB RLA
14 1 1 d
W7 10 11 12 13 5 6 %6 %
D F
rvee | | o | co| cs | ca | ce | c8| 8| cs ol & ARA
1 1A 1 1 1 1 d d
oF ¥ 8 19 e de
ROTATE o0 | FD
OR sta | ca | e8| 8| ce| c8 | c8| ce| ce | C8 | co
SHIFT 27 20 Fil 22 23 24 25 26 d d
6 | 2
B0 | Fo
sra| c8 | c8 | c8 | ca | ce | c8 | c8| c8 | B | cB
2 | 8] 22| 2a] 28 [ 2c | | 26 | g d
26| 2
DD £D
sAL | ce | c8 | ce [ c8 | c8 | 8| c8 | c8 | CB | ch
3F 38 39 3A 38 3C 30 3E d d
3 | 3
. ED
‘ALD oF
: 3
‘RRD! 67

Fig. 2-15. Rotate and shift instructions. (Courtesy Mostek Corp.)



and set interrupt mode 2 (IM 2). Note the specific applications of
the three different set interrupt mode instructions. Also, because of
the way the TRS-80 was designed, the HALT instruction is no
longer functional. Instead of simply suspending CPU execution, it
now causes a complete system reset.

ROTATE AND SHIFT INSTRUCTIONS

These instructions (Fig. 2-15) provide the programmer with the
ability to shift or rotate 8-bit values in registers or memory. The
ability to move bits between adjacent positions within a register of

oY | by by ROTATE
LEFT CIRCULAR

oY ROTATE
RIGHT CIRCULAR

ROTATE
o LEFT

ROTATE
oY RIGHT

oY e SHIFT
LEFT ARITHMETIC

CY - SHIFT
RIGHT ARITHMETIC

SHIFT
o RIGHT LOGICAL

0 [ ¥
} ) } ROTATE DIGIT
bybg brby | byby [(L) ROTATEL

ACC % | 4 I

ROTATE DIGIT
(H) RIGHT

ACC 1 ]

Fig. 2-16. Shifts and rotates.



REG,

REGISTER ADDRESSING INDIR.| INDEXED
A ] c D E H L (HL) | (1x+d) | (1Y+a)
8T
DD FD
[ c | c8 | c8 cB c8 cB cs | cs s cs
1 4 5 | 4
47 4 | 4 42 3 4 4 6 4 %
DD Fi
1 c8 | cB | CB cB cB | c8 c8 | c8 s 8
aF a8
48 49 4 ac D | 4E 9 %
DD D
2 c8 ce | cB cB c8 | CB B | cB ¢ &
2 55
57 50 51 5 53 54 56 g &
3 ca cB cB cB c8 cB c8 cB 850 (F:g
TEST SF 58 59 5A 58 §C sD | SE 9 g
‘BIT DD FD
4 ce { cB | cB cB c8 | c8 cs | ce ce c8
7 1 5 66 d
[3 60 6 62 63 | 64 [ 4 N
DD | FD

5 cs cB cB c8 cB c8 c8 cB ca CB

6 |68 |60 |ca | 68 | 6c | 60 | of d
g | 8
7o
6 |8 |ca|ce |c8 | co|[ce || ce |2F ¢
77 70 n 72 7 74 75 76

3 % | %

£
7 |8 |ce |ce |c8 | ce|cs | ca|ce |20 |ER

7 |8 |79 | a|lm ||| x|& |8
% | %

E
o | 8 |ce |ca |cs |cs8|ce | ce|oce §3 dcg

8

o7 |80 [ & | & |8 |oes & | 4 |4
v | c8 | ce|ce |8 | ce|ce |ca|ce |20|ED

6 |8 |8 |8a | s |6 |60 | 66 | & | g
e | 8
FD
2 (8 |ce |ce [ce |cs8|ce | cB|cn gg ¢

1

o |w o | @ | o e | s | | g |g
3 |8 |ca|c8 |ca|cea|ca|co|co| 2 |ED

RESET o | 88 |9 | oA |8 [95c |0 | st | & | §
BIT % | G
MES | 4 | ca | cs |ce |ce |ce|cam || o ce |22 |FB

a0 | A1 | A2 | A3 | A | as | a6 | & | §
a7 | Ao 3 5 i | g
5 | o [ cs | e8| cs |ce|ca | ce|oca | B0 |82

AF | A8 | A9 | Aa | aB | ac | AD | A | & | §
Ae | Ae
o0 | fD

6 cB CB cB c8 ca CcB cs cB cB CcB

87 | 8o | B1 82 83 4 | 85 | B8 | d d
8 86| B6
F
7 | c8 [ce|ce {cs |ca|ce | co|oce |29 EB
BF | B8 [ B9 [ BA [ BB | BC | BD | BE | 4 d
BE BE
DD | FD
0 ce [ ca | cB | cB e | c | |ca|CB | cB
o || 3 | cs jcs | s | g s
D0 | FD
1 c8 | c8 | c8 | cB | c8 | cB |cB |ce | CB | cB
CF c8 9 CA cB cc co CE g d
Ce | Ce
DD | FD
2 c8 | cB | c8 gs c8 | c8 | ca | cs ¢ | ¢
o7 | po | D1 2 | 03 o4 fos jos | d | d
DD | FO
3 c8 | c8 [ cB | c8 | c8 | cB | cB | ce | CB | cB
SET oF | b8 | p9 | oA | o8 | bc | oo | DE | d d
BIT DE | DE
et D | FD
SET | 4 | 8| B s |csfce|ce)c || Ce
€ | e0 | E1 | E2 E3 | Ea | €5 | €6 d | &
©D | fD
5 cB | c8 | c8 | cs c8 | cB | ca | ca cs | c8
EF €8 E9 EA EB EC ED €E d d
EE | EE
OD | FD
6 c8 | c8 | c8 [ c8 | c8 [ c8 | ce | cB ¢ | cs
F7 | F0o | F1 | F2 F3 | Fa | F5 | Fe d | %
FD
7 ce | 8 | ca|ce | cm|cs | |ca | 2| E]
FE | F8 | Fa | Fa | F8 | Fc | Fo | Fe | d | d

Fig. 2-17. Bit manipulation instructions. (Courfesy Mostek Corp.)




memory location is a very powerful tool for the programmer. Most
notably, the instructions enable multiplication and division to be
performed, respectively, as simply successive shift-left and add or
successive shift-right and subtract operations. Fig. 2-16 illustrates
the results of various rotate and shift operations. Note that a shift
is an “open-ended” movement of bits, either right or left, while a
rotate is “closed” with all bits being preserved. Two instructions,
RLD and RRD, are used during BCD operations to shift the con-
tents of a memory location pointed to by the HL register pair, as
shown in Fig. 2-16.

BIT MANIPULATION INSTRUCTIONS

Although there are only nine instruction types in this group (Fig.
2-17), there are actually 240 individual instructions available to the
programmer. Any bit within any CPU register or memory location
can be tested, set, or reset. The Z flag indicates the status of the bit.
The bit being tested is a logic one when the Z flag is set (Z=1),
and is a logic zero when the Z flag is reset (Z =0).

JUMP INSTRUCTIONS

The Z-80 has eight conditional, four conditional relative, and five
unconditional jump instructions. During execution, the new address

CONDITION
UN- NON NON |PARITY |[PARITY | SIGN SIGN REG
COND. | CARRY| CARRY| ZERO Z2ERO |EVEN 00D NEG POS B20
c3 |pa oz |calcalean e |[Fa]ex
JUMP  UP” IMMED. nn n n n noodin B L B noen o
EXT. L R no|ln lan |n |n n ol

JUMP  JR’ RELATIVE | PC+e 18 38 30 28 20
e2 e2 e2 e2 e2

JUMP  “JP* {HL)

E9

JUMP P’ REG. {x) oD
INDIR, EQ

JUMP 9P’ {y) FD

E9

NOTE--CERTAIN
FLAGS HAVE MORE
THAN ONE PURPOSE.

Fig. 2-18. Jump instructions. (Courtesy Mostek Corp.)
loaded into the PC register destroys the original PC contents. Fig.
2-18 summarizes the jump instructions as well as the flags that are
tested by the conditional jump instructions.
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CALL AND RETURN INSTRUCTIONS

The Z-80 has 20 call and return instructions (Fig. 2-19), of which
eight are conditional calls, eight are conditional returns, and four
are unconditional instructions. In contrast to the jump instructions,
which load the PC register without first “saving” the current contents
of the PC register, the call and return instructions use the stack to
store the original contents of the PC. During the execution of a call

CONDITION
UN- NON NON [PARITY |PARITY | SIGN SIGN REG
COND. | CARRY| CARRY| ZERO ZERO |EVEN oDo NEG POS B#0
. < -

cD DC | D4 cc | ca EC E4 [ FC Fa

‘CALL’ IMMED, nn n n n ‘n " n n. n n.
EXT. 0 nooln n. 0o n " n n

DECREMENT B,
JUMP IF NON | RELATIVE | PCre 10
ZERO 'DINZ’ e2
RETURN REGISTER | (SP) 1 o8 | po | | ea | Fo
‘RET’ INDIR. (spep} €2 | D8 | DO | CB | Co | EB E0: ‘8~ 0
RETURN FROM | REG. sy | Ep
INT ‘RETF INDIR. | (sP+1)] 4D
RETURN FROM
NON MASKABLE | REG. ti’;i ol
INT ‘RETN' INDIR. 45

NOTE--CERTAIN
FLAGS HAVE MORE
THAN ONE PURPOSE.

Fig. 2-19. Call and return instructions. (Courtesy Mosiek Corp.)

instruction, the PC contents are pushed onto the stack before the
new address specified by the instruction is loaded into the PC. Upon
execution of a return (RET) instruction, the original PC contents
are popped off of the stack and are loaded back into the PC. These
instructions provide the ability to access and use subroutines, includ-
ing the Level II BASIC ROM subroutines, and then return to our
own program upon completion.

INPUT AND OUTPUT (i/O) INSTRUCTIONS

In addition to being able to move 8-bit data values between any
of the 512 possible I/O ports and any CPU register (Fig. 2-20), there
are eight block input/output instructions that operate on data in
the same fashion as the block-and-search transfer-and-search instruc-
tions. Their use enables the programmer to either input (load) or
output (store) a block of data through any I/O port (the TRS-80
cassette and video display use output port 255 and input port 255).
Notice that the C register is used as the pointer when using register
indirect port addressing during both input and output operations.
Only the A register is addressable via immediate, indirect addressing.
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PORT ADDRESS
IMMED.| REG.
INDIR,
n [(]
A ED
78
B ED
40
R
f; c ED
48
INPUT “IN' 3
o | o ED
R 50
s
s £ ED
1 58
INPUT N
DESTINATION 6 [, P
60
L ED
68
“INI’ ~ INPUT & ED
Inc HL, Dec B A2
“INIR’- INP, Inc HL, ED
Dec B, REPEAT IF B#0 B2
:‘:&R (HL) BLOCK INPUT
MMANDS
“IND'— INPUT & ED cof
Dec HL, Dec B AA
“INDR’~ INPUT, Dec HL, ED
Dec B, REPEAT IF B#0 BA
SOURCE
REG.
REGISTER IND.
A B [ D E H L {HL}
IMMED, n D3
n
ouT’
REG. | () | ED | €D | ED €D | ED | ED | ED
IND. 79 41 49 51 59 81 69
‘QUTH — OUTPUT REG, | (C) ED
Inc HL, Dec b IND. A3
‘OTIR" — OUTPUT, IncHL, | REG. | (C) ED
Dec B, REPEAT {F B#0 IND. 83
'OUTD” - OUTPUT REG. (cy ED
Dec HL & B iND. AB
‘OTDR’ — QUTPUT, Dec HL | REG. | (O) ED
& B, REPEAT IF B#0 IND. 68
SR

PORT
DESTINATION
ADDRESS

BLOCK
QUTPUT
COMMANDS

Fig. 2-20. Input and ouiput {1/ O) instructions. (Courfesy Mostek Corp.)
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REVIEW QUESTIONS

. The single most important piece of microcircuitry in a microcomputer is?
. The Zilog Z-80 is what kind of microprocessor?

. Memory chips that require periodic “refresh” are?

. What constitutes a microcomputer?

. What are the Z-80’s three buses?

How many I/0 ports can the Z-80 address?
How many interrupts does the Z-80 provide?

Which are the working general-purpose registers in the Z-80?

. The Z-80 has a 16-bit address bus. How many memory locations can be

addressed?

What register is always associated with the ALU?

What is the purpose of the F register?

What does the use of parentheses indicate, for example, (HL)?
What addressing mode is indicated by the parentheses?

A zero (Z) flag that is set has what value?

What are the flags used for?

In the instruction LD B,C, which is the source and which is the destination
register?

How is the two-byte data value, 1A19H, actually stored in memory?
How are indexed and relative addressing modes related?
What is the op-code for a 16-bit exclusive-OR instruction?

With reference to the PC register, what is the difference between a jump
and a call instruction?
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CHAPTER 3

Getting Acquainted
With T-Bug

In this chapter we will discuss the Radio Shack T-BUG monitor
and how it is used to create object code programs in memory. You
will be introduced to T-BUG’s commands and their use and will
learn how to examine and change the contents of the Z-80’s registers.
You will also become familiar with assembly-language programming
using the Z-80 instruction set discussed in Chapter 2.

T-BUG VERSUS AN EDITOR/ASSEMBLER

From the previous discussions, you saw that assembly language
and machine language are very closely related. In fact, assembly
language may be thought of as machine language made easy, with
mnemonics and labels replacing op-codes and operands (see Table
3-1). However, the programmer still must possess a knowledge of
the microprocessor’s internal organization, the registers, status flags,
and interrupts. In addition to learning the mnemonics representing
each of the microprocessor’s instructions, the programmer also needs
to know the actual op-codes. This is because programs are typically
written in assembly language using menmonics, but are debugged or
“checked” using a monitor, such as T-BUG, which only works with
machine language or op-codes.

So, why use T-BUG instead of an editor/assembler? The answer
is simply that it is less costly, simpler, faster, and more effective to
use a monitor, especially when writing short (under 100 lines) pro-
grams. About the only operation that cannot be done using T-BUG
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is the generation of a source code program. To do this, you would
need an editor/assembler.

The Cost of Programs

From an economic viewpoint, using a monitor such as T-BUG to
implement assembly-language programs makes good sense for sev-
eral reasons. First, a monitor is needed in most cases to “debug” the
final object code. Second, having a monitor eliminates the need to
have both an editor/assembler and a monitor. The editor/assembler
costs twice as much as the T-BUG monitor, so you save money.
Finally, a monitor is usually faster when writing short programs, and
time costs money, too.

Table 3-1. Machine Language Versus Assembly Language

Machine Language

(Object Code) Assembly Language (Source Code)
6000 CD 49 00 GETNUM CALL GETCHR ;GET 1ST DIGIT
6003 CA 00 69 Jz GETNUM ;LOOP TiL DIGIT
6006 FE OD cp ODH ;1S IT CR?
6008 CA 14 60 JzZ POP ;IF CR GO POP
600B 77 LD (HL),A ;MOVE IT TO CRT
600C 23 INC HL ;NEXT CRT POS.
600D D6 30 SUB  30H ;ASCIE TO HEX

With few exceptions, notably Microsoft’s Editor-Assembler+Plus,
most editor/assemblers do not include “debugging” capabilities.
These tasks are performed by monitors, such as T-BUG. The prin-
cipal function of a monitor is to provide access to, and control over,
the computer’s microprocessor and memory. The purpose of an edi-
tor/assembler, however, is to create source- and object-code pro-
grams. So, unless the editor/assembler that is used has built-in “de-
bug” capabilities, you will also need a monitor to help you locate
and correct the inevitable “bugs” that occur in programs.

Since an editor/assembler will not be used, programs will be writ-
ten out and will then be assembled by hand, using tables of Z-80 op-
codes. The T-BUG program will then be used to enter the op-codes
into memory, and then debug it. Thus, through the use of a tech-
nique called hand assembly, we are able to use mnemonics and labels
as well as op-codes and operands. This technique, when used in con-
junction with the Level II BASIC ROM subroutines, forms the basis
of the “shortcut” assembly-language programming described in this
book.
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Hand Assembly

Hand assembly consists of little more than the addition of two
steps to the “normal” assembly-language programming procedures:
(1) the programmer translates mnemonics and labels to op-codes
and hexadecimal addresses, and (2) the programmer manually de-
termines the addresses used by the program. These tasks are han-
dled quite easily using mnemonic-to-op-code and decimal-to-hexa-
decimal conversion tables, such as those provided in Appendices B
and E, respectively.

Programs are written in the same format used by an editor/assem-
bler, except addresses are not entered at this time, and a new column
is added, as shown in Fig. 3-1. After the program has been written,
the programmer goes back over it and translates each mnemonic and
label or operand into its corresponding hexadecimal equivalent. This
value is entered into the OP-CODE column. When a reference is
made to a particular line in the program, it is assigned an appropri-
ate label. Starting at the first address used by the program, the pro-
grammer counts the number of bytes per op-code and operand(s)
and assigns addresses accordingly. As each label is encountered, the
hexadecimal equivalent of its address is entered in the appropriate
OP-CODE column position. The program is now ready to be stored
in memory, using T-BUG. At this point, only the addresses and op-
codes are needed to enter the object code version of the program
into memory. The program with mnemonics, labels, and added RE-
MARKS becomes your documentation. The REMARKS provide in-
formation about what each instruction does.

Programs written using an editor/assembler must generally be re-
assembled each time a change or correction is made. Suppose, that
once the object version of a program is loaded into memory, it is
executed and a “bug” is found in the program. What operations have
to be performed. in order to correct this bug? If an editor/assembler
is being used, the editor/assembler would have to be reloaded into

Assembly Source Code

(Hex) New Label Mnemonic/Operand  Remarks

cD 00 70 BEGIN CALL DELAY ;KEYBD DEBOUNCE
21 00 3C LD HL,3C00 ;CRT ADDRESS

CD 00 60 1ST N CALL GETNUM ;GET 1ST NUMBER
08 EX AF,AF SWAP AF

3E 2B LD A+ SASCHE 4

77 LD (HL),A ;DISPLAY IT

Fig. 3-1. New column (HEX) used in hand-assembly.
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memory, the source program would have to be reloaded into mem-
ory, and then the program would have to be edited. Once the pro-
gram is edited, the new source program is saved on tape and then
it is assembled. Once the program is assembled, the monitor can be
used to execute and locate any additional bugs. As you can see, a
lot of time is used up loading and storing information from/to tapes.

Using the hand assembly technique, instructions can be added,
deleted or changed, using a pencil and eraser. Once this is done,
the program is reassembled, by hand, and the op-codes for the new
instructions are added. Many of the memory addresses coniained in
the program may have to be changed.

As you can see, for short programs, it takes less time to change the
program by hand than it does to load a number of cassette tapes
into the microcomputer. On the other hand, for large programs, it
makes more sense to use an editor/assembler, since it is less prone
to make errors, and it is easier for the computer to translate hundreds
or thousands of mnemonics to op-codes, than for us to do it.

Ease of Use

Monitors typically have fewer commands than do the editor/as-
semblers, and T-BUG is no exception, with only seven commands to
remember. Although not as flexible or versatile as the Radio Shack
Editor|/ Assembler, T-BUG is nevertheless a very powerful pro-
gramming tool. With these seven commands and only 1535 bytes of
memory used to store them, T-BUG provides the programmer with
the ability to:

® Create and modify object-code programs directly in memory.

@ Debug object-code programs.

® Inspect and change the contents of memory and CPU registers.

® Save and load object-code (SYSTEM) programs to and from
cassette.

@ Execute object-code programs created by T-BUG or an editor/
assembler.

NOTE: In Radio Shack terminology, a machine-language program
is called a SYSTEM program. Both names refer to an object-code
program.

These seven commands enable the programmer to examine the
contents of any memory location, including those in ROM, and to
change the contents of read/write (RAM) memory or the Z-80’s
registers. They also permit the setting of “breakpoints” for debug-
ging programs as they are executed and the saving of object-code
programs on cassette as SYSTEM programs. T-BUG is also easy to
load, simple to understand, and simple to use.
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T-BUG—AnR Effective Programming Tool

But, is T-BUG effective? Can it really be used to implement assem-
bly-language programs without using an editor/assembler? The an-
swer is a positive, but qualified, YES.

T-BUG can be used to create an object program directly in mem-
ory, debug the program, and execute or save the final results. But, it
cannot convert mnemonics and labels into op-codes and operands.
These tasks are performed by the programmer, using the “hand as-
sembly” technique. With the exception of creating and assembling
source code, a monitor such as T-BUG can be used to do assembly-
language programming; it is just a little more work for the program-
mer, that’s all.

Thus, the basic tradeoff is saving some money by not buying the
editor-assembler versus letting the TRS-80 assemble the programs,
and make fewer errors.

T-BUG

T-BUG is a machine-language monitor and debug program that
provides the programmer with the ability to directly inspect and
change the contents of the Z-80’s registers and read/write (RAM)
memory. T-BUG is loaded into low memory using the SYSTEM
command and occupies only 1535 bytes of memory (memory loca-
tions 4380H through 497FH), stack included. Unlike Level II
BASIC, which was written in 8080 assembly language, T-BUG was
written in Z-80 assembly language. The significance of this will be
explained later.

LOADING T-BUG

T-BUG loads into the TRS-80 from cassette just like any other
SYSTEM program. The steps that are required to load T-BUG are
summarized in Table 3-2. T-BUG occupies memory locations 4380H
through 497FH. The stack pointer (SP) is preset to 4980H, but can
be relocated if necessary. With T-BUG loaded in memory, there are
13,949 bytes of memory available for the user (locations 4982H
through 7FFFH (16K)).

Why is T-BUG loaded into low memory instead of high memory
as most other utility programs are? Because, by residing in low mem-
ory, T-BUG “frees” the remaining memory locations for user pro-
grams and permits programs to be written where they will be used.
This is a very definite “plus” when a relocator routine or program
is not available. One of the disadvantages of having T-BUG in low
memory is that you normally cannot have both T-BUG and a BASIC
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Table 3-2. Loading T-BUG Into Memory

Step 1.] Insert T-BUG cassette (Level II side up) in recorder; rewind if necessary.
Step 2. | Adjust volume control as necessary and depress PLAY.

Step 3. | Enter SYSTEM.

Step 4. | Enter T-BUG . . . the cassette will begin loading into the computer. Two
asterisks (**) will appear in the upper-right-hand corner of the display; the
right asterisk should blink on and off. The appearance of a “C* indicates a
checksum error, so try loading again with a slightly different volume setting.
A “‘good” load is indicated by the simultaneous stopping of the cassette
recorder and the appearance of the TRS-80’s SYSTEM prompt *? (loading
time about 15 seconds).

Step 5.| Press the slash (/) key and then ENTER key . . . T-BUG will respond by clear-
ing the first 16 columns of the display and displaying its prompt (#) in the
upper-left-hand corner of the video display.

program in memory at the same time. Later, we will see how this
can be done.

T-BUG COMMANDS

T-BUG has seven commands. These seven commands with their
format and function are listed in Table 3-3.

In addition to the seven commands, T-BUG has two operators,
the ENTER key, which is used after the memory command is en-
tered, and the X key, which is used after the memory, jump, break-
point, or punch commands. The ENTER key causes the currently
displayed memory address to be incremented by one (nnnn+ 1)
and the content of memory at this new address is displayed below
the first address.

Table 3-3. A Command Summary of T-BUG

Command Format Function

M, MEMORY # M nnnn Display/change contents of
memory location nnnn.

J, JUMP # J nonn Jump to memory location nnnn
and execute.

B, BREAKPOINT | # B nnnn Set breakpoint at address nnnn.

F, FIX #F Restore instruction displaced by
breakpoint.

G, GO # G Continue execution after break-
point and fix.

R, REGISTER #R Display contents of CPU
registers.

P, PUNCH # P aaaa bbbb ccecc XXXXXX | Write to cassette contents of
memory locations from aaaa to
bbbb with a starting address
of ccee and file name XXXXXX.
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Pressing the X key (EXIT) while executing the instructions for
the M, J, B, or P commands causes an immediate termination of
that command and an “exit” back to T-BUG’s command mode, indi-
cated by the reappearance of the # prompt. This prompt (#) is
only displayed when in the command mode.

Now let’s examine each individual command and its function.

The MEMORY Command

The MEMORY command (#M nnnn) is executed by pressing the
M key followed by the four-digit hexadecimal address (nnnn) of
the memory location to be inspected or changed. For example, en-
tering M 5000 produces the following:

# M 5000 FF

What happened as you pressed the last zero of the memory address?
T-BUG immediately responded with the contents (in hexadecimal)
of that address, which in this case was FF. Pressing the ENTER key
causes the display to increment to the next memory address (NOTE:
(ENTER) means press the ENTER key):

# M 5000 FF (ENTER)
5001 FF

To change the contents of memory location 5001 from FFH to
00H, simply type the new characters, 00, instead of pressing the
ENTER key:

# M 5000 FF (ENTER)
5001 FF 00
5002 FF

T-BUG automatically increments and displays the next higher mem-
ory address after the second character is typed. This feature becomes
quite handy when entering lengthy programs and is similar to the
AUTO (line-numbering) statement in Level II BASIC.

But, what happened to the T-BUG prompt # after the address
5000 was entered? The T-BUG prompt appears only when in the
command mode, and typing M causes T-BUG to execute the instruc-
tions for the MEMORY command. Thus, the prompt is not dis-
played. How do we get back into the command mode? Simple, press
the X key (EXIT):

# M 5000 FF (ENTER)
5001 FF 00

5002 FF (X)

#
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You do not have to press the ENTER key after pressing the X key.
Did you notice that the character X did not appear on the display?
Only the T-BUG prompt # appeared, signalling our return to the
command mode.

The REGISTER Command

The REGISTER command (#R) is executed by pressing the R
key while in the command mode. T-BUG responds by displaying the
current content of the Z-80’s 20 internal registers as follows:

AlF’ B'C’

DI El HIL-’

AF BC

DE HL
IX(MSB,LSB)  1Y(MSB,LSB)
SP(MSB,LSB)  PC(MSB,LSB)

What T-BUG displays is the hexadecimal representation of the con-
tent of each register at the instant the R key was pressed. The dis-
play does not indicate which register is which, so you should either
commit the above format to memory, or copy it on a 3X5 card.
Press the R key. Your display should look something like this:

# FFFF FFFF
FFFF FFFF
0042 00FD
41E9 43A0
FFFF FFFF
4980 FFFF

A display of other than all Fs in any of the complement registers in-
dicates “garbage” and is not important at this time. Typing NEW
prior to loading T-BUG generally eliminates this occurrence.

Let’s examine what T-BUG has displayed. The A register is the
accumulator and contains all zeros (00). The F register is the status
or “flag” register and contains 42. Unfortunately, 42 by itself doesn’t
mean much. To be useful, it must be expressed in binary so that the
status of each bit can be determined. This can be easily accom-
plished by breaking the hexadecimal byte into two parts; a high
nibble (4 bits), which in this case is 4, and a low nibble of 2. Now,
simply express these as binary numbers:

42H = 4 2 = 0100 0010

This can be done, because each character in a hexadecimal number
represents four bits. Now, going back to Chapter 2, these binary bits
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BIT: 7 6 5 4 3 2 1 0
PV | N C
« - .
° . °
. . o » CARRY FLAG
. .
M ¢ « NEGATIVE (ADD/SUBTRACT) FLAG
.
.

* PARITY/OVERFLOW FLAG

6o ec00000ev0000 T

© HALF-CARRY (BCD ARITHMETIC) FLAG

oocescsessssercses| N

* ZERO FLAG

e escn0e0ssecssevssese

» SIGN (+ OR —) FLAG

Fig. 3-2. Z-80 flag register format.

can be compared to the Z-80’s Flag Register (Fig. 3-2). Thus, the
ZERO and NEGATIVE flags are set. The structure of the flag word
should also be written on the 3X5 “register” card.

Getting back to the other registers, the B register contains zeros
(00), and the C register contains FD. The DE register pair contains
41E9H, which is the address of the TRS-80’s Keyboard Input Buffer
Area in RAM memory (a “reserved” area in the Radio Shack Mem-
ory Map). The HL register pair contains 43A0H, the starting address
(also called auto-start address) of T-BUG. This is the hexadecimal
equivalent of the decimal number, 17312, which is entered after the
slash (/) when executing T-BUG from BASIC using the SYSTEM
command. The SP register contains 4980H, the address noted earlier
as the user stack, which is established by T-BUG.

Once we know what is in each register, how do we change the
contents of each one? To do this, T-BUG’s Register Save Area (mem-
ory locations 4825H through 483CH) must be discussed. T-BUG
uses this area to “save” the contents of the CPU registers while it
is performing one of its operations or commands. The Z-80’s inter-
nal registers are loaded with this information prior to executing a
user program when either a JUMP or GO command is executed.
The individual addresses for each register are summarized in Ta-
ble 3-4. Where two addresses are given, as with the index registers
(IX and 1Y), stack pointer (SP), and program counter (PC), the
first address is for the most-significant byte (MSB) and the second
address is for the least-significant byte (LSB). T-BUG always dis-
plays the MSB on the left and LSB on the right for these 4 registers,
making it easier for us to read.

Now, press the M key to execute the MEMORY command and
then enter the address of the A register, 482E:
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Table 3-4. Register Save Area/Memory Assignments

A’(4826H) F'(4825H) B'(4828H) C'(4817H)
D’(482AH) E’'(4829H) H'(482CH) L’(482BH)
A(482EH) F(482DH) B(4830H) C(482FH)
D(4832H) E(4831H) H(4834H) L(4833H)
IX(4836H,4835H) 1Y(4838H,4837H)
SP(483AH,4839H) PC(483CH,483BH)

# M 482 00

Typing FF changes the content of memory location 482E from 00
to FF:

# M 482E 00 FF
482F FD

Note that T-BUG automatically incremented the memory address
to the next higher memory address, 482FH, which in this case is the
memory location used to store the content of the C register. Pressing
the X key returns control to T-BUG’s command mode, and pressing
the R key lets us see what we’ve done:

# FFFF FFFF
FFFF  FFFF

FF42 00FD
41E9 43A0

FFFF  FFFF
4980 FFFF

As you can see, the value for AF has been changed from 0042 to
FF42. Remember, however, that the value FF is not actually trans-
ferred into the Z-80’s accumulator until either a JUMP or GO com-
mand is executed. For now, change the A register back to zeros:

# M 482E 00
482F FD

The JUMP Command

The JUMP command (#] nnnn) is executed by pressing the ] key
and then typing the four digit hexadecimal destination address
(nnnn). For example, typing a destination address of 1A19H pro-
duces an interesting result:

# 1 1A19
READY
>9
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This is the re-entry point for Level IT BASIC! Remember, BASIC’s
prompt is a right arrow followed by an underline (>__). Typically,
unless a “debounce” routine is in use, the 9 from the destination ad-
dress also appears on the display. Simply erase it by pressing the
back arrow (<) key.

How do we get back to T-BUG? Type SYSTEM and press EN-
TER, then type /17312 and press ENTER. The slash tells the com-
puter to execute the program at the decimal address following the
slash. The decimal number 17312 is the starting address of T-BUG
(43A0H). If no address is entered, and ENTER is pressed instead,
the computer defaults to the address stored in the HL register pair:

SYSTEM (ENTER)
*? /17312 (ENTER)

If the jump had been made to address 0000H instead of 1A19H, a
complete restart would have occurred, resulting in the MEMORY
SIZE? message appearing. When that occurs, it is fairly certain that
what was in memory has been “lost.”

The BREAKPOINT Command

The BREAKPOINT command (# B nnnn) is executed by pressing
the B key followed by the four digit hexadecimal address of a pro-
gram instruction! It is used in conjunction with the FIX and GO
commands to perform “debugging” of machine-language programs.

Failure to set a breakpoint at the address of a program instruc-
tion produces erratic results! So, always set the BREAKPOINT at
the beginning of an instruction.

When the BREAKPOINT command is executed, T-BUG replaces
three program bytes (starting at nnnn) with a call instruction. Since
a call instruction is three bytes long, these bytes are moved from
memory, starting at address nnnn, to the stack. The call instruction
op-code is followed by the low- and high-address bytes, 80 and 43.
The address nnnn is then stored in the Register Save Area, in the two
memory locations used to store the PC. '

NOTE: Only ONE BREAKPOINT may be implemented at any one
time, because the FIX command will work only upon the last
BREAKPOINT entered.

The FIX Command

The FIX command (#F) is used only after a BREAKPOINT has
been executed, otherwise a portion of your program will be de-
stroyed. It “restores” the original three bytes of the program that are
stored in the stack to the program, beginning at the address held in
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the PC register. This is the reason a FIX must be used only after a
BREAKPOINT has been set. If the FIX command is entered with-
out there first being a BREAKPOINT, whatever is currently on the
stack will be written into your program at the address pointed to
by the PC register, destroying three bytes in your program.

The GO Command

The GO command (#G) is executed by pressing the G key and
should only be used after a BREAKPOINT has been set in your
program. It instructs T-BUG to begin program execution at the ad-
dress stored in the PC register—the BREAKPOINT address—after
a FIX has restored the program’s original program instructions. Like
the FIX command, GO must be used only after a BREAKPOINT.

Now, let’s see what actually happens when the BREAKPOINT,
FIX, and GO commands are used. Enter the short program listed in
Example 3-1 using the MEMORY command.

Example 3-1. A Short Demonstration Program.

MNEMONIC/
ADDR OP-CODE LABEL OPERAND REMARKS
5000 11 FF FF LD DE,FFFF ;LOAD DE WITH FFFF
5003 1D LOOP1 DEC E ;ONE LESS E
5004 C2 03 50 Jp NZ,LOOP1 ;DONE?
5007 15 DEC D ;ONE LESS D
5008 C2 03 50 JP NZ,LOOP1 ;DONE?
5008 CD C9 01 CLS CALL CLS ;CLEAR SCREEN
500E C3 A0 43 END JP 43A0 ;RTN TO T-BUG

Once the program is loaded, exit the MEMORY command by
pressing the X key and enter the BREAKPOINT command by press-
ing the B key. Because of the restriction of setting a breakpoint only
on an instruction (op-code), the first address that can be used is
5003H, where the DEC E instruction is stored. So, enter that ad-
dress:

# B 5003
#

Notice that nothing visible happens; however, if we use the MEM-
ORY command and inspect the program, we will find that T-BUG
has replaced three program bytes:

# M 5003 CD (ENTER)
5004 80 (ENTER)

5005 43 (ENTER)

5006 50 (X)

#
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T-BUG has replaced the 1D C2 03 values with CD 80 43, the ad-
dress of the stack pointer (remember LSB first, MSB second ). Where
did the original instructions go? Let’s look at the content of memory
locations 484FH-4851H in the stack area:

# M 484F 1D (ENTER)
4850 C2 (ENTER)

4851 03 (ENTER)

4852 FD (X)

So, when T-BUG executes a BREAKPOINT command, it auto-
matically places the program instruction (nnnn) and the next two
bytes (nnnn + 1 and nnnn + 2) on the stack for temporary storage,
and replaces them with a call instruction (CD) and a two byte ad-
dress (80 43) pointing to the stack area.

If a FIX command is executed at this time to remove the “break-
point,” problems will occur, because the PC register no longer holds
the address of the breakpoint! What should be done? The answer
is: put the BREAKPOINT address back into the PC register. This is
accomplished by referring back to the Register Save Area memory
addresses and by determining which contain the PC register bytes.
There, we find: PC(483C,483B) . . . where address 483BH is the
least-significant byte and 483CH is the most-significant byte. Using
the MEMORY command, load the PC register with the address of
the BREAKPOINT, 5003:

# M 4838 00 03
483C 50 (X)
#

Where was the PC register pointing before we changed its contents?
That’s right! It pointed to 5000H, the starting address of our pro-
gram, and not to the BREAKPOIN'T address, 5003H. Since the MSB
is 50 in both addresses, it does not have to be changed.

Now, press the F key to execute a FIX to remove the breakpoint,
and then jump to the beginning of the program:

# F
# J 5000
#

Did the display “erase” after a moment’s hesitation? Good, that’s
what it is supposed to do. If we inspect the program now we will
find it exactly as we wrote it:

# M 5000 11 (ENTER)

5001 FF (ENTER)
5002 FF (ENTER)
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5003 1D (ENTER)
5004 C2 (ENTER)
5005 03 (ENTER)

5010 43 (X)

The PC register must be reset only if its contents have been
changed. When in doubt, check the contents of memory locations
483B-483C—the PC register—using the REGISTER command. Nor-
mally, this procedure is only necessary when either MEMORY or
JUMP commands have been executed prior to using the FIX com-
mand. These commands cause the PC register contents to be altered,
so the BREAKPOINT address is lost.

When the 0 key is pressed the last time in the command J 5000,
why does the computer seem to wait for a second, before clearing
the screen? Well, let’s examine the program and determine what it
does. The first 11 bytes are a “delay” loop, which causes the slight
delay before the display is erased. The next three bytes are a call
to the Level IT BASIC’s CLEAR SCREEN (CLS) subroutine, and
the last three bytes are an unconditional JUMP back to the starting
address of T-BUG.

We now have a machine language version of the BASIC CLS
command, CALL 01C9H. Instead of having to jump back into
BASIC and press the CLEAR key, we simply place the following
six byte program in memory and JUMP to it when we wish to “clear”
the video display:

# M TJFFA CD
7FFB C9
7FFC 01
7FFD  C3
7FFE  AO
JFFF 43

Once the screen is cleared, the Z-80 jumps back to the beginning of
T-BUG.

The PUNCH Command

The PUNCH command (#P aaaa bbbb cccc xxxxxx) is T-BUG’s
answer to Level II BASIC’s CSAVE statement. It permits object code
programs to be “saved” on cassette for later use. Unlike BASIC, how-
ever, the PUNCH command allows file names of up to six characters
(BASIC uses only the first character).

With the PUNCH command, programs DO NOT have to be com-
plete or functional to be saved. T-BUG simply “copies” the contents
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of all memory locations between the beginning address, aaaa, and
the ending address, bbbb, out to the cassette, similar to core image-
or memory-dump. Both programs and data can be “saved” using this
command; T-BUG doesn’t know the difference.

The autostart address, cccc, is used to specify the address of the
first instruction in the program to be executed. If the first instruc-
tion is actually the first byte in the program, then aaaa and cccc will
be the same. Why have a “starting” address different than the be-
ginning of the program? Sometimes, programmers like to put all the
temporary storage memory locations and subroutines at the begin-
ning of a program (low memory) and the main program at the end.
Other programmers like the lowest memory address used by the pro-
gram to be the starting address of the program, with subroutine and
temporary storage locations in high memory. With T-BUG, the
former is the case. The instructions at 4380H are not the instructions
for the “main program” but are the instructions that are executed
when a breakpoint is “hit” and the Z-80 calls the “subroutine” at
4380H.

To “save” our simple program on cassette, simply collect the nec-
essary information:

@ Beginning address, aaaa: 5000
@ Ending address, bbbb: 5010
@ Autostart address, cccc: 5000
® File name, xxxxxx: SAMPLE

and set up the cassette recorder to RECORD. Then execute the
PUNCH command as follows:

# P 5000 5010 5000 SAMPLE

NOTE: If fewer than six characters are used for the file name, the
ENTER key must be pressed to initiate the PUNCH command,
otherwise execution automatically begins when the sixth character
is pressed.

The recorder will start and run until the program is completely
“saved” onto the cassette. The PUNCH command may be terminated
at anytime using the X key—except when entering the file name!
Here, the BREAK key must be pressed instead. This occurs because
X is a valid file name character and cannot be differentiated from
the X in an EXIT command.

One of the first rules of programming is “always make a back-up
copy” and this rule is just as valid for assembly-language program-
ming. Hence, we must know how to make a “back-up” copy of object
code programs. T-BUG is an object code (machine language) pro-
gram, so let’s learn how to make a back-up copy of it. That way we
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can put the original copy away in a safe place and operate with the
copy. The necessary information about T-BUG is summarized in
Table 3-5. Set up the cassette recorder to RECORD, and enter the
PUNCH command:

# P 4380 497F 43A0 T-BUG (ENTER)

The cassette should start and run for about 20 seconds, and then stop.
You have just “backed-up” your T-BUG program. Now, put the orig-
inal away in a safe place and use only the copy from now on. Should
something happen to the copy, simply make another “copy” from the
original. If you have any other SYSTEM programs where you know
this address information, now would be a good time to make back-up
copies of them, too.

Table 3-5. Addresses Used {o Save T-BUG on Tape

Beginning address, aaaa: 4380H
Ending address, bbbb: 497FH
Avutostart address, ccce: 43A0H
File name, xxxxx: T-BUG

Did you notice that T-BUG automatically placed a “space” be-
tween entries in the PUNCH command? If not, that might explain
any problems you may be having. Remember, the “space” you enter
is ignored in the numeric entries, but will be used in the File Name!

Unless T-BUG is modified, there is no provision for verifying or
“checking” the information on the cassette against the contents of
memory, as there is with BASIC’s CLOAD? statement. However, for
the adventurous reader, some modifications to T-BUG have been
published.! When implemented, these modifications to T-BUG pro-
vide the ability to: (1) VERIFY (V) a program PUNCHed to cas-
sette, (2) DUMP (D) onto the video display 16 consecutive mem-
ory addresses at once, and (3) step both forward (ENTER key) and
backward (SPACE bar) through memory. Although these enhance-
ments are neither covered nor used in this book, you might like to
add them to T-BUG.

LOADING MULTIPLE PROGRAMS

When more than one program must be loaded into memory, just
use the SYSTEM command as often as required. This technique
works well as long as none of the programs “overlap” or try to use
the same memory areas. It can also be used as often as necessary,
not just once or twice.

The trick here is NOT to press the slash (/) and then the ENTER
key accidentally! If you do, you'll end up executing the last program

65



entered. The correct procedure is to type the slash and decimal ad-
dress (/....) of the program you actually want to use, once all the
programs and data have been loaded from cassette, forcing T-BUG
to jump to that program and begin' execution. This lets us load data
and programs from cassette into memory.

The following is an example of how to load a second SYSTEM
tape (program or data) with T-BUG already in memory and oper-
ating:

# J 1A19 ;JJUMP back to BASIC
SYSTEM (ENTER) ;enter SYSTEM command mode
*? FILE NAME (ENTER) ;Load FILE NAME from cassette
*?2  [17312 (ENTER) ;T-BUG’s autostart address

T-BUG AND ASCIi

We have already discussed the fact that decimal numbers must
be converted into binary numbers before the computer can actually
operate on them. The same is true for letters and symbols. The let-
ters of the alphabet (A-Z), numerals (0-9), and symbols (1,$,* etc.)
are implemented using the American Standard Code for Information
Interchange (ASCII), a standardized set of 7-bit binary values that
represent 128 different characters or operations. The complete set
of ASCII values is listed in Appendix F, and is shown in an abbrevi-
ated form, along with the TRS-80 modifications, in Table 3-6. Due to
the manner in which graphics and alphanumerics are operated on
in the Model I TRS-80, lowercase (a...z) letters cannot be displayed
on the Video Display, but are output to peripherals, such as the line
printer, cassette tape deck, etc. This is indicated by the UPPER-
lower (Aa...Zz) case pairs in the 6-H and 7-H columns of Table 3-6.
The Model I TRS-80 automatically converts lowercase letters to
uppercase for display purposes.

Because Radio Shack has used several different character gener-
ator chips (Z29 on the Model I TRS-80 schematic), the actual char-
acters displayed in response to the different hexadecimal codes may
be different from those shown in Table 3-6. In the Model III, the
character generator chip is U36 (MCMG68A316E). Four ASCII char-
acters have been modified to accommodate the TRS-80’s four AR-
ROW keys (1,~,1,<) as shown in Table 3-7. Most TRS-80 compat-
ible peripherals (i.e., Centronics printers, plotters, etc.) recognize
these new symbols.

Did you notice that the numerals (0-9) are converted to ASCII
by simply adding 30 to the decimal number?

The program in Example 3-2 causes the Model I TRS-80 to dis-
play all the above ASCII characters and symbols, as well as the 64
different graphic symbols.
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Table 3-6. TRS-80 ASCH Table

MSB —> 2 3 4 5 6 7 LsBl

SPACE 0 @ P d Pp OH
! 1 A Q Aa Qq H

“ 2 B R Bb Rr 2H

# 3 c S Cc Ss 3H

$ 4 D T Dd Tt 4H

% 5 E U Ee Uu 5H

& 6 F v Ff Vv 6H

. 7 G w Gg Ww 7H

( 8 H X Hh Xx 8H

) 9 1 Y li Yy 9H

* J z Jj 2z AH

+ ; K [ Kk { BH

, < L AN ] ! CH
—_ = M ] Mn } DH

. > N 1 Nn -> EH

/ ? o - Oo DEL FH

Table 3-7. Nonstandard Characters for Four ASCH Values

Normal Hex TRS-80
ASCIL: Code Symbol:
A 5E 0
- 5F “«

N 60 \:

n 7E -

Addr

5000
5003
5006
5008
5009
500A
5008
500C
500D
500E
500F
5011

5014

Example 3-2. Display Characters on the CRT Screen.

Op-Code
cb C9 o1
21 FF 3B
06 1IF
23

23

23

23

04

70

78

FE

C2 08 50
C3 14 50

Label
CLS

TAB

LOOP

Mnemonic/
Operand

CALL CLs
LD HL,3BFF
LD B,1F
INC HL
INC HL
INC HL
INC HL
INC B
Lb (HL),B
LD AB
CcpP BF
JP NZ,TAB
JP LOOP

Remarks

;CLEAR SCREEN
;3CO0H - 1 (CRT)
;20H - 1 (COUNTER)
;4 SPACES ON CRT

7

7

;NEXT ASCII VALUE
;DISPLAY IT

;ASCHE INTO ACCuM
;1S IT 191 (DECIMAL)?
;IF75191 THEN GO TAB
;ENDLESS LOOP
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Unless your TRS-80 has been modified (Radio Shack or “add-on™)
for lowercase, a rather peculiar display occurs, there are no lower-
case letters! The Model I1I does not have this problem as it features
both uppercase and lowercase display.

Luckily, all is not lost for the un-modified Model I TRS-80, be-
cause the lowercase to uppercase translation does not occur when
data is sent to peripheral (external) devices. For example, the
BASIC program in Example 3-3 outputs ASCII characters 20H

(SPACE) through the last graphics symbols BFH () to the line
printer.

Example 3-3. Printing Uppercase and Lowercase Characters on o Printer.

10 FOR X=32 TO 191

20 LPRINT CHR$(X);" “;REM 4 BLANK SPACES!
30 NEXT X

40 END

This program must only be used with a TRS-80 that is connected to
a printer, or the computer will “lock up,” and it will have to be
reset. Also, if you enter this program into memory, you will wipe
out T-BUG.

When this BASIC program is run, you should see the same ASCII
characters being printed as were displayed. However, there will be
a very noticeable difference, the lowercase letters are back! Actu-
ally, they were never “lost,” just that they are not displayed on the
un-modified Model I TRS-80. Also, if the printer has provisions to
print the TRS-80 graphics symbols (Okidata Microline 80, Paper
Tiger, etc. ), you will see them also. Otherwise, the printing becomes
somewhat erratic as the characters end and the graphic symbols
(80H-BFH) begin. This seemingly contradictory behavior concern-
ing uppercase and lowercase characters must be remembered, or
your lowercase w will end up a 7 on the display, but will look all
right on a printer. Forewarned is forearmed.

REFERENCE
1. Curtis, H. A., “T-BUG for I1,” 80 Microcomputing, April, 1980, pp. 84-86.

REVIEW QUESTIONS
1. What is the significance of the two numbers 17312 and 43A0H?

2. What happens when a JUMP command is executed to address 1A19H?
3. What is the purpose of T-BUG’s “R” command?

4. When are the F and G commands used?
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10.

11.

12.
13.
14.
15.

. What must be done to change the content of the D register?

. While operating, what does T-BUG hold in the HL register pair?
. What is the Level II BASIC prompt symbol?

. What is the T-BUG prompt symbol?

. What is the SYSTEM prompt symbol?

What is the first address (lowest address) of the Video Display?

How are the letters of the alphabet (A-Z) and numerals (0-9) handled
within the TRS-80?

If 6AH is sent to the Video Display, what will be seen?
What ASCII value is used to send a DOWN-ARROW ({) to a printer?
How can the Video Display be “cleared” from assembly language?

What must be done to display the number “1” on the CRT Video Display?
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CHAPTER 4

TRS-80 Memory Map

The purpose of this chapter is to provide you with an introduction
to the memory map of the TRS-80 and the Level II BASIC ROMs.
We will discuss in general terms what the TRS-80 memory map is,
and what the Level IT ROMs contain. Detailed discussions and spe-
cific examples will be covered in later chapters.

The TRS-80 memory map consists basically of two areas, the Level
IT BASIC ROMs and the user read/write (RAM) memories. The
memory map is nothing more than a memory-location by memory-
location accounting of those addresses that are either “dedicated”
or “reserved” for use by the CPU and are not generally available to
the programmer. Some addresses are actual locations within mem-
ory chips, others are hardwired locations which act like memory, and
some areas of the map are blank.

Table 4-1 presents the general organization of the TRS-80 memory
map addresses in both hexadecimal and decimal notations. The ma-
jor areas of interest in the map are summarized in Table 4-2. Let’s
look at each of these areas in closer detail.

Table 4-1. General Organization of the TRS-80 Memory Map

Address Contents
0000H-2FFFH (12K ROM) Level 11 BASIC ROMS.
3000H-37DDH Model I—Empty (2013 bytes); no memory.
Model H1--System routines (2K ROM).
3800H-3880H (HARDWIRED) Keyboard matrix.
3CO0H-3FFFH (1K RAM) CRT video display memory.
4000H-42E8H (RAM) “Reserved’’ memory; system work area.
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Table 4-2. Major Areas of TRS-80 Memory Map

Hexadecilmal Decimal
Address Memory Contents Address
0000H (o]
LEVEL 1l BASIC ROM
grppy | (1ZKILEVELIIBAS y 12287
3000H Model |: Empty, nothing here 12288
01 1
37DDH (2013 bytes) Model 11l: Date/Time & cassette Baud routines 14301
37DEH DOS Communication Status Address 14302
37DFH DOS Communication Data Address 14303
37EOH Interrupt Latch Address 14304
37E1H Disk Drive Select Latch Address 14305
37E4H Cassette Select Latch Address 14308
37E8H Line Printer Port Address 14312
37ECH Floppy Disk Controller Address 14316
3800H 14336
3880H KEYBOARD MEMORY MATRIX 14464
3CO0H 15360
Dl
3FFFH (1K) VIDEO MEMORY 16383
...................... beginning of user read/write (RAM) memory .....ccocoveeeeeeforenecenene
4000H 16384
CTOR
4012H VECTORS (RSTs 1 through 7) 16402
4016H KEYBOARD Driver entry point 16406
401EH VIDEO Driver entry point 16414
4020H Video memory address of current CURSOR position 16416
4026H LINE PRINTER Driver entry point 16422
403DH PRINT SIZE Flag (00 = 64 ch; 08 = 32 ch) 16445
403EH 16446
u by L SIC
407FH nused by Level 11 BASIC (used by DOS) 16511
4080H . L. 16512
le- DIV
408DH Single-precision IDE work area 16525
408EH USR Routine entry pointer 16526
4090H RND Function Multiplicative Constant Mantissa 16528
4093H INP Routine (4093="IN"" inst; 4094 = port#; 4095=Ret) 16531
4096H OUT Routine (4096 ="0OUT" inst; 4097 =port #; 4098 =Ret) 16534
4099H INKEY$ Buffer (holds fast entry from keyboard) 16537
409AH ERROR CODE Buffer (for RESUME use) 16538
409BH LINE PRINTER Line position 16539
409CH Output Device Flag (00==VIDEO; 01=LPRINTER; FF=CASSETTE) 16540
409DH Max. Line-length of VIDEO (00=64 ch) 16541
409EH Next Print Zone (reached after comma as: ?X,Y,Z) 16542
409FH Unused by Level 11 BASIC 16543
40A0H Beginning of STRING Space Pointer 16544
40A2H Current Line-number being processed 16546
40A4H Beginning of BASIC Program Pointer 16548
40A6H Current Line CURSOR Position in VIDEO (used by TAB) 16550
40A7H Input Buffer Pointer 16551
40A9H Flag Byte for INPUT# — 1 Routine 16553
40AAH RND Function “seed” (also used with RANDOM) 16554




Table 4-2—cont. Major Areas of TRS-80 Memory Map

72

Hekadecivlnal Decimal
Address Memory Contents Address
40ADH Unused by Level 1l BASIC 16557
40AEH DIM and LET Flag 16558
40AFH NUMBER TYPE FLAG (NTF1) 2=INT; 3=STR; 4=5GL; 8=DBL 16559
4031H Address of last usable byte in memory (MEM SIZE?) 16561
40B3H String work area pointer 16563
40B5H String work area 16565
40D3H Current string length 16595
40D4H Address of current string 16596
40D6H Next free byte in string area 16598
40D8H PRINT USING format byte (bit 2=13k; 3= +; 4=%; 6=comma(,)) 16600
40DAH Last DATA line-number read 16602
40DCH DIM use (set = 64 to prevent subscripted variable) 16604
40DFH Entry point storage for SYSTEM tapes 16607
40ETH AUTO Flag (00 = not AUTO, else AUTO; set 00 after BREAK) 16609
40E2H AUTO line-number 16610
40E4H AUTO increment size 16612
40E6H Pointer to end of previous/current line 16614
40E8H STACK POINTER save area 16616
40EAH Used by RESUME (holds "error’’ line-number) 16618
40ECH EDIT current line-number 16620
40EEH Used by RESUME (points to end previous/current line) 16622
40FOH Address of ON ERROR 16624
40F2H ON ERROR Flag (FF after error, 00 if no error) 16626
40F5H Last line-number executed 16629
40F7H Pointer to next byte used after CONT 16631
40F9H Pointer to Simple (scalar) Variables 16633
40FBH Pointer to Array Variables 16635
40FDH Last Array Variables memory location 16637
40FFH Used by RESTORE (holds current line-number for READ) 16639
4101H 16641
E TYPE TABLE (A- =INT; 3=STR; 4=8GL; 8=DBL,
411AH VARIABL ABLE (A-Z) (2=INT; 3=STR; 4=SGL DBL) 16666
411BH TRON Flag (00 = TROFF; AF = TRON) 16667
411DH . . 16669
F - t t A
4124H loating-point Accumulator (FPA1) 16676
::;Z: Floating-point Accumulator (FPA2) :222:
4130H . 16688
p
4151H Numeric work area / PRINT USING buffer 16721
41E8H 16870
d t) Buff
42E8H Input (and output) Buffer area 17127
42E9H Beginning of user-available memory 17129
4288H STACK POINTER for SYSTEM - 17032




Table 4-2—cont. Major Areas of TRS-80 Memory Map

T
Hexadecimal Decimal

Address Memeory Contents Address
4FF:FH End of 4K memory 20%79
7FF;FH End of 16K memory 32%67
BFi':FH End of 32K memory 49?51
FFF.FH End of 48K memory 65535

THE BASIC ROMs (0000H—2FFFH)

This is the 12K ROM area of the memory map that contains Level
IT BASIC. The general organization of the BASIC ROMs is given in
Table 4-3. There have been at least four different ROM versions of
Level II: 1.0, 1.1, 1.2, and 1.3. ROM 1.3 is currently used in both
Model I and Model IIT computers and is easily recognized by its
abbreviated “MEM SIZE?” and “R/S L2 BASIC” sign-on messages.
This area of the memory map is read-only memory (ROM) and can
be “read” but not “written” to, that is, you can inspect but not change
the contents of these memory locations. You can attempt to change

Table 4-3. General Organization of BASIC ROMs

Address Contents
0000H-01D8H System power-up initialization and 1/O.
01D9H-03E2H Cassette subroutines.
03E3H-0457H Keyboard driver.
0458H-058CH Video display driver.
0674H-070AH Initialization code.
070BH-1607H Floating-point arithmetic/ mathematic.
1608H-164FH Table of entry points for functions.
1650H-1820H Table of Level 11 BASIC reserved words.
1821H-1899H Table of entry points for Level Il commands.
189AH-18C8H Table of precedent operators.
18C9H-18F6H Non-DOS error messages.
18F7H-191CH Non-DOS power-up initialization.
191DH-1953H Message table.
1936H-2FFFH Level 11 BASIC interpreter subroutines.
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the content of one of these memory locations using the M command
in T-BUG, but the information in the ROMs will not be altered.
To determine which version you have use the following BASIC
program:
10 FOR 1=11264 TO 12287:V=PEEK(I):S=S+V:NEXT 1:X=5/16

20 A=(X—FIX(X))*% 16:Y =FIX(X)/ 16:B=(Y —FIX(Y))}> 256
30 PRINT (A+B)

If the result is 176, it is ROM 1.0; 142 = ROM 1.1; 10 = ROM 1.2
and 162 = ROM 1.3.

EMPTY, NO MEMORY, OR SYSTEM ROUTINES (3000H-~37DDH)

In the Model I TRS-80 computers, this area of the memory map
is empty—there is nothing there—and is simply wasted memory space.
Some peripherals use this area to insert their own ROM software,
such as Exatron’s Stringy Floppy, and are easily recognized by their
decimal addresses between 12288 and 14301. For example, Exatron
uses the extremely easy-to-remember address, 12345.

In Model III TRS-80s, this area contains a 2K ROM that holds
the Date, Time, and Cassette (500/1500 baud) subroutines.

KEYBOARD MATRIX (3800H-3880H)

This is the hardwired keyboard matrix area of the memory map
which “pretends to be” memory. As a key is pressed, one bit of one
memory address is connected to +5 V dc, assigning a decimal value
of 1,2, 4, 8, 16, 32, 64, or 128 to that “memory location.” A special
subroutine then translates the address and value into the appropri-
ate keyboard (ASCII) character value. The keyboard matrix is de-
picted in Fig. 4-1.

More than one key may be pressed at the same time, resulting in
a value equal to the SUM of the values of the keys pressed. For ex-
ample, simultaneously pressing the “J,” “K,” and “L” keys assigns a
value of 28 to memory location 3802H (J+ K+ L=4+8+16=
28). More on this later!

The keyboard matrix area of the memory map is essentially an
input only set of contacts connected across specific memory address
lines (see p. 44, TRS-80 Microcomputer Technical Reference Hand-
book). Data (the key(s) that is (are) pressed) can be read from,
but not written to, the keyboard.

VIDEO DISPLAY (3COOH-3FFFH)

This 1k RAM area is the CRT Video Display memory and consists
of seven (unmodified Model I's) 2102-type static memory chips. Six
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chips are used to store ASCII characters while the seventh chip de-
termines whether the display is “characters” or “graphics symbols.”
The TRS-80 assumes that any data stored here is either ASCII char-
acters or graphics symbols. Because the video display is normally
64 characters per line, the 1024 video memory locations can display
up to 16 lines of data (1024/64 = 16). The memory addresses for
each of the 16 rows in the video memory area are summarized in
Table 4-4. This area of the memory map can be used for temporary
data storage and simultaneous display only if the eighth 2102 has
been installed. Without the eighth memory chip, a value of 10H
stored at 3COOH will be converted to 61H, because an offset is
“added” to values less than 20H in unmodified Model I TRS-80s.
Also, the display is subject to erasure when errors occur that cause
the display to be “cleared.” For these reasons, this area of the mem-
ory map should be used with caution.

Table 4-4. CRT Video Display Memory Locations

Address Row Position (0-1023) decimal
3CO0H-3C3FH 1 0-63
3C40H-3C7FH 2 64-127
3C80H-3CBFH 3 128-191
3CCOH-3CFFH 4 192-255
3D00H-3D3FH 5 256-319
3D40H-3D7FH 6 320-383
3D80H-3DBFH 7 384-447
3DCOH-3DFFH 8 448-511
3EQOH-3E3FH 9 512-575
3E40H-3E7FH 10 576-639
3E80H-3EBFH 11 640-703
3ECOH-3EFFH 12 704-767
3FO0H-3F3FH 13 768-831
3F40H-3F7FH 14 832-895
3F80H-3FBFH 15 896-959
3FCOH-3FFFH 16 960-1023

COMMUNICATION AREA (4000H-42E8H)

This 744 byte section of user read/write (RAM) memory is used
by Level II BASIC as a temporary storage area, and contains buffer
and control block areas used by both BASIC and DOS. The use of
this section of memory is summarized in Table 4-5. This area is
called the communication area of the TRS-80 memory map.

This area should be used with caution, especially when operating
in BASIC, as accidental changes can have drastic results, i.e., com-
plete loss of programs! Specific portions of this “reserved” area of
the memory map will be discussed further in later chapters. For now,
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Table 4-5. The Communications Region of RAM

Address Contents
4000H-4012H VECTORS (RSTs 1 through 7).
4015H-401CH KEYBOARD Device Control Block.
401DH-4024H VIDEO DISPLAY Device Control Block.
4025H-402CH LINE PRINTER Device Control Block.
4036H-403CH KEYBOARD work area.

403DH PRINT SIZE Flag (00==64 ch; 08=32 ch).
403EH-407FH Used by DOS.
4080H-408DH Single precision DIVISION work area.
408EH-411CH “‘Reserved’’ area used by Level Il BASIC.
411DH-412EH Floating-point Accumulators (FPA1 & FPA2).
4130H-4151H Numeric work area (binary to ASCII & FPA3).
4152H-41E7H DOS Entry and Link addresses.
41E8H-42E8H Input Buffer area.

it is sufficient to know that the first 744 bytes of the user read/write
(RAM) memory should not be used by the programmer. With a
16K-RAM Model I TRS-80, this means about 13,950 bytes of mem-
ory available.

USER RAM (42E9H-7FFFH/BFFFH/FFFFH)

This portion of the memory map is where your programs and data
reside. It is the memory available to you when you enter the BASIC
“PMEM?” statement. The last addresses and amount of usable mem-
ory for the three RAM configurations are listed in Table 4-6. With
T-BUG loaded into memory locations 4380H-497FH, free (usable)
memory is from 4980H through the end of memory. Witha 16K-RAM
Model T TRS-80, this means about 13,950 bytes of memory available.

Table 4-6. TRS-80 Memory Size and Usable Memory

Hex Address Memory Usable Memory*
4000H-4FFFH 4K 3,284 bytes
4000H-7FFFH 16K 15,572 bytes
4000H-BFFFH 32K 31,956 bytes
4000H-FFFFH 48K 48,340 bytes

Note: *Subtract 2 bytes for computers with ROM 1.3.

THE ROMs

The ROMs contain the TRS-80’s Level II BASIC, which was writ-
ten by Paul Allen and Bill Gates of Microsoft. The BASIC interpreter
was written in 8080- and not Z-80-assembly language as you might
expect, which explains its less than spectacular speed. Although the
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Table 4-7. TRS-80 Level Il BASIC ROM Eniry Addresses

ABS
ASC
ATN
AUTO

CDBL
CHR$
CINT
CLEAR
CLOAD
CLs
CONT
cos
CSAVE
CSNG

DATA
DEFDBL
DEFINT
DEFSNG
DEFSTR
DELETE
DIM

EDIT
ELSE
END
ERL
ERR
ERROR
EXP

FIX
FOR
FRE

GOsuUB
GOTO

IF
INKEY$
INP
INPUT
INT

LEFT$
LEN
LET
LIST
LLIST
LOG
LPRINT

0977H
2A0FH
15BDH
2008H

OADBH
2ATFH
0A7FH
1E7AH
2C1FH
01C9H
1DE4H
1541H
2BF5H
OABIH

1FO5H
1EQ9H
1EO3H
1E06H
1EQCH
2BC6H
2608H

2E60H
1FO7H
1DAEH
24DDH
24CFH
1FF4H
1439H

0B26H
1CATH
27D4H

1EBTH
1EC2H

2039H

019DH
2AEFH
219AH
0B37H

2A61H
2A03H
1F21H

2B2EH

2B29H
0809H
2067H

MID$
MEM

NEW
NEXT
NOT

ON
out

PEEK
POINT
POKE
POS
PRINT

RANDOM
READ
REM
RESET
RESTORE
RESUME
RETURN
RIGHT$
RND

RUN

SET

SGN

SIN

SQR
STOP
STR$
STRINGS
SYSTEM

TAN

TROFF
TRON

USR

VAL
VARPTR

2A9AH
27C9H

1B49H
22B6H
25C4H

1F6CH
2AFBH

2CAAH
0132H
2CB1H
27F5H
206FH

01D3H
21EFH

1FO7H

0138H
1D91H
1FAFH
1EDEH
2A91H
14C9H
1EA3H

0135H
098AH
1547H
13E7H
1DASH
2836H
2A2FH
02B2H

15A8H

1DF8H
1DF7H

27FEH

2AC5H
24EBH
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alternate (complementary) registers are occasionally used for tem-
porary storage (look at the content of memory at 005AH, 1479H,
1619H, etc., using T-BUG), the bulk of the interpreter was written
in 8080 assembly language.

What does this mean to the programmer? Simply, the alternate
registers are not used, unless BASIC has executed an 08H or D9H
register exchange instruction within the subroutine accessed. This
means that the programmer may “swap” the registers to preserve
their contents when interrupting normal computer operation to in-
sert special-purpose routines! This technique is demonstrated in the
Mumford and Richardson “JKL” LPRINT subroutine that will be
discussed later.

Table 4-7 lists the entry or starting addresses of some of the Level
IT BASIC’s ROM subroutines. Some of these “routines” may be ac-
cessed only through a Call (CDH) instruction, others may be sim-
ply Jump’ed to. Also, some routines require one or two variables for
operation, and these must be stored in the proper memory locations
and buffers by the programmer or errors occur. Exactly which reg-
ister(s) and buffers are required by each “routine” will be covered
in following chapters. However, some routines use neither variables
nor buffers and can be used “as is.” The CLEAR SCREEN (CLS)
routine (01C9H) and BASIC re-entry point (1A19H) are examples
of routines that require no additional information. Another no-argu-
ment routine is the BASIC “SYSTEM” routine (02B2H) which
jumps directly to the SYSTEM prompt. Its use allows you to branch
directly to the SYSTEM command from T-BUG when loading-in
additional cassette tapes:

# 1 o022
*

Why type and enter something that can be jumped directly to? In a
later chapter we will learn how to input data from cassettes directly
from T-BUG and assembly-language programs without having to
use this routine.

In closing this chapter, try the following exercise and see what
happens:

# M 403D 00 08
403E 00 X
# 1 1Aa19

What happened? Can you explain what occurred? How can the dis-
play be restored to the original state? HINT: check the TRS-80
memory map for the significance of address 403DH.
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CHAPTER 5

Formatting, Moving,
and Converting Data

In this chapter we will begin to explore and use the Level II
BASIC ROM subroutines that format, move, and convert data within
the TRS-80. We will discuss numerical and string data and their
formats, the operation and use of the keyboard and CRT video dis-
play subroutines, and the operation and use of the ROM subroutines
that can move and convert data.

Throughout this and following chapters, you will be introduced
to many special-purpose terms and labels and memory addresses
associated with the Level II BASIC ROM subroutines. Their pur-
pose is strictly to give you a “handle” with which to grasp the whats
and wherefores of using the ROM subroutines. The terms and labels
provide mnemonic-like descriptions of a function or operation, and
the addresses tell you where the desired subroutine or buffer resides.
The addresses are important, but you DO NOT have to memorize
them! Instead, you should concentrate on understanding what each
subroutine does and what it can do for you. It is much easier to look
up an address than to re-read a complete explanation of each ROM
subroutine’s purpose and use.

The TRS-80 Level II BASIC handles numeric (numbers) and
string (characters and symbols) data differently. Numeric data is
represented in one of four formats depending upon their use. These
four formats are: integer, single precision, double precision, and 16-
bit unsigned integer. String data, however, is always represented
as ASCII values. With the exception of the 16-bit unsigned integer
format, it is the programmer who determines which format is used.
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In BASIC, this is accomplished by using the variable specifiers: %
for integer, | for single precision, # for double precision, and $ for
string. In assembly language, you do not use these specifiers. How-
ever, you can use the ROM subroutines that implement them.

NUMERIC FORMATS

All numeric data within the TRS-80 are represented in either inte-
ger, single-precision, or double-precision formats; plus a specialized-
use format—16-bit unsigned integer. Integers are numbers without
a decimal point, while single-precision and double-precision num-
bers (also called floating-point numbers) have a decimal point and,
respectively, up to six or sixteen significant digits. The TRS-80 han-
dles each format differently. Let’s examine each format.

Integer (INT)

Integer numbers are stored in two consecutive bytes in memory,
or in the register pairs BC, DE, or HL, and may be either positive
or negative. Positive integers are those numbers from 0 to 432767;
negative integers are from —1 to —32768.

The most-significant bit of the most-significant byte of the two
bytes that comprise an integer is the sign bit. If this bit is set (logic
1) the number is negative; if it is reset (logic 0) the number is posi-
tive. Fig. 5-1 illustrates the use of the sign bit within the integer for-
mat. Positive integers are stored as simple, 15-bit binary (plus sign
bit) numbers, but negative integers are stored in two’s complement
form.

OXXXXXXX  XXXXXXXX = “positive’ integer.
IXXXXXXX  XXXXXXXX = ‘“negative’ integer.

I

Fig. 5-1. Sign bit repr tation in integer format.

To convert a decimal number into its two’s complement equiva-
lent, you simply subtract the absolute value of the decimal integer
from 65.536, and then convert the integer difference into hexadeci-
mal using the conversion table provided in Appendix E. This tech-
nique is shown in Example 5-1.

Example 5-1. Decimal Two’s-Complement Conversion.

Example: Convert — 12345 into its proper 2’s-complement.
(1) 65536 — (12345) = 53191
(2) 53191 = 52992 —» (CF—H)
+199 - (—C7H)

—12345 = 53191 = CFC7H
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The same technique may also be used with hexadecimal numbers,
but you must add 1 to the result (FFFFH = 65535 as compared to
the 65536 used previously ), as shown in Example 5-2.

Example 5-2. Hexadecimal Two’s-Complement Conversion.

Example: Convert —(3039H) into its proper 2’s-complement.
(1) FFFFH — (3039H) = CFC6H
(2) Add 1: CFC6H + 1 = CFC7H

Integer numbers are stored in memory least-significant byte first,
and most-significant byte second, in normal 8080/Z-80 fashion. For
example, the number CFC7H would be stored in memory as C7
(LSB), then CF (MSB).

Single Precision (SGL)

Single-precision numbers are stored in four consecutive bytes in
memory, or in two register pairs, and are represented in normalized,
excess-128, base-2 exponential format. The most significant of the
four bytes that comprise a single precision number is the exponent
byte (EXP) and contains the base-2 exponent of the “floating-point”
number. Its purpose is to specify where the decimal point goes. The
exponent is stored in excess-128 format, where the “true” exponent
is actually 128 less than the number represented. For example, if the
exponent byte is 84H, the “true” exponent is 4 (84H = 132-128 = 4).
This format allows both positive and negative exponents to be repre-
sented using only a single byte. The remaining three bytes form the
mantissa, or numerical value, of the number represented, and are in
normalized floating-point format. The most significant bit in the
mantissa (in the most significant byte) is used to indicate the sign
of the mantissa. Thus, a 1 indicates that the mantissa is negative,
a 0 indicates that the mantissa is positive. The remaining 23 bits in
the mantissa actually represent the numerical value. If the most
significant bit of these 23 bits (the second to the most significant bit)
in the most significant byte of the mantissa is a 1, then the mantissa
is normalized. Thus, a mantissa of 11001010 111061011 00101100 is
normalized, and a mantissa of 10000100 10111101 00010111 is not
normalized. As an example of positive and negative mantissas, the
single-precision number +12.345 is represented as 84H 45H 85H
1EH, but —12.345 is represented as 84H C5H 85H 1EH. If you
break down the hexadecimal numbers 45H and C5H to their respec-
tive binary equivalents (45H = 0100 0101; C5H = 1100 0101) you
see that the only difference is that the most-significant bit (sign bit)
has been set, indicating a negative number. Only this sign bit is used
to designate whether a single-precision number is positive or nega-
tive, because two’s complement is NOT used with floating-point
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numbers. Example 5-3 illustrates how a single-precision number is
represented in the TRS-80.

Example 5-3. Single-Precision Representation.

Example: 12.345 = 1.2345E+1 = 84H 45H 85H 1EH

EXPONENT "N panTissa
Exponent: 84H = 132—128 = +4 decimal places
Mantissa: 45H 85H 1EH
(MSB): [N (LSB)

4H 5H 8H 5H TH EH

0100 0101 1000 0101 0001 1110
Normalize: +1
1100 0101 1000 0101 0001 1110

Move decimal point 4 positive places:
1100.0101 1000 0101 0001 1110
—1

The one-byte exponent (EXP) and the three-byte mantissa (MSB

.. LSB) are stored in memory in normal 8080/Z-80 fashion: LSB
... MSB EXP. Single precision in the TRS-80 yields six significant
decimal digits.

Double Precision (DBL)

Double-precision numbers are stored in eight consecutive bytes
of memory, and use the same single-precision representation except
with four additional mantissa bytes. Thus, double-precision format
looks like: EXP MSB ... ... ... ... ... LSB. However, like both
integer and single-precision numbers, double-precision numbers are
also stored in memory in reverse order, so the arrangement in
memory would appear as: LSB ... ... ... ... MSB EXP.
Again, the only difference between double—premsmn and single-
precision formats is the number of mantissa bytes, 7 vs 3, all else is
identical. Double precision in the TRS-80 yields 16 signiﬁcant deci-
mal digits.

16-Bit Unsigned Integer

This special format is used by the TRS-80 for line numbers and
memory addresses only, and because there is no sign bit, only
positive integers may be represented. Without a sign bit, all 16
bits of the two bytes are used to represent integers up to 65,535.

The four numerical representations used within the TRS-80 are
summarized in Table 5-1. Luckily, the Level II BASIC ROMs con-
tain subroutines that will automatically format data to integer,
single precision, or double precision for us. They will be discussed
later in this chapter.
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Table 5-1. Summary of TRS-80 Numeric Formats

Sign Range/Precision Bytes as Stored in Memory
INTEGER +/— —32768 to +32767 | LSB MSB (— in 2's complement)
SINGLE +/— | SIX significant LSB ... MSB EXP (EXP = XXH—128)
PRECISION decimal digits
DOUBLE +/— 16 significant ISB ... ... ... ... ... MSB EXP
PRECISION decimal digits
16-BIT -+ 0-thru-65535 LSB MSB (no sign bit)
UNSIGNED
INTEGER

STRING DATA FORMAT

String data (anything not numeric) is handled as ASCII values.
Examples of string data are the letters of the alphabet (A,a-Zz),
the symbols ($, P, ¥, etc.), and the numerals (0-9). String data
is stored as consecutive, single-byte hexadecimal ASCII values.
For example, the uppercase letter A is stored as a 41H value, and the
character string ABC would be stored as 41H 42H 43H.

REGISTERS, BUFFERS, AND FPAs

With the exception of the “service” ROM subroutines, which
require no variables or arguments, most of the Level II BASIC ROM
subroutines expect to use either one or two input values, called
operands, and return a single output value, called the result, to the
user. Depending upon the subroutine, these operands and result
are stored in either specific memory locations, called buffers, or
in certain register pairs. The subroutine always looks for its operands
in these assigned locations or registers, and always stores its result
in a specific place. With this in mind, we must first discuss which
buffers and registers are used by which subroutines before we can
begin to use the Level Il ROM subroutines in our assembly-language
programs. In doing so, we will learn where to place the operands
for the subroutines, and where to expect the result.

integer

In general, integer operands are passed, or transferred, to the
using ROM subroutine via the HL (single operand), or HL and
DE (two operand) register pairs, and the result from the subrou-
tine is stored in the integer buffer area (4121H-4122H) located
in the Communication Area of user read/write memory (RAM).
Register pair HL is used by the integer subroutine to address this
section of RAM.
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Single Precision

Single-precision operands are passed to subroutines via the single-
precision buffer areas, 4121H-4124H and 4127H-412AH, and/or
the BC and DE register pairs. Subroutines that require only a single
operand use only the buffer area 4121H-4124H for both input and
output. When two operands are required, both of the buffer areas
and the BC and DE register pairs are used. One operand is stored
in buffer area 4121H-4124H and the other is stored in the second
buffer area 4127H-412AH. Although the actual operand is stored
in the second buffer area, the BC and DE register pairs are used

Table 5-2. Single Precision Use of BC and DE Register Pairs

Register Content
B (EXP) Exponent
C (MSB) Most-significant Mantissa
D (. ..) Next-significant Mantissa
E (LSB) Least-significant Mantissa

to pass the operands to and receive the result from the subroutine.
When this occurs, the second operand is handled in the manner
shown in Table 5-2. The result returned from both single-precision
and double-precision subroutines is stored in the buffer area 4121H-
4124H, destroying the original contents.

Double Precision

Double-precision operands are passed to subroutines via the
buffer areas, 411DH-4124H and 4127H-412EH. Single operand
subroutines use the buffer area 411DH-4124H for both input and
output. Two operand subroutines use the buffer area 411DH-4124H
for the first operand, and the buffer area 4127TH-412EH for the
second operand. The result is returned in the buffer area 411DH-
4124H, destroying the original contents.

These buffer areas are referred to as Floating-Point Accumulators
(FPAs) in reference to their accumulator-like handling of data.
Level II BASIC ROM subroutines utilize three different FPAs. The
first floating-point accumulator (FPA1) consists of memory loca-
tions 411DH-4124H and is the most frequently used FPA. The
second floating-point accumulator (FPA2) consists of memory loca-
tions 4127H-412EH and is used only with two operand subroutines.
The third floating-point accumulator (FPA3) consists of memory
locations 414AH-4151H and is the least used, because it is only
used with single-precision MULTIPLICATION and double-preci-
sion subroutines. Thus, we will limit our discussion to FPAl and
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Table 5-3. Floating-Point Accumulators (FPAs)

FPA1 = Buffer Area 411DH—4124H.
FPA2 = Buffer Area 4127H—412EH.
FPA3 = Buffer Area 414AH—4151H.

FPA2. The use and addresses of the FPAs are summarized in
Table 5-3.

NUMBER TYPE FLAGS

Associated with these two FPAs are the two Number Type Flags
(NTFs) which indicate the type (integer, single precision, double
precision, or string) of the operand stored in the respective FPAs.
The first buffer area (FPAL) is represented by NTF1 which re-
sides at memory location 40AFH. The second buffer area (FPA2)
is represented by NTF2 which resides at memory location 40BOH
and is the least used of the two NTFs.

The “type” of operand stored in the respective FPAs is flagged,
or indicated, as shown in Table 5-4. The NTF flag value is actually
the number of bytes used by the operand stored in the FPAs. If
the NTF and the actual operand do not match, too few or too many
bytes will be passed to the using subroutine, producing erroneous
and unpredictable results. Thus, it is up to the programmer to ensure
that the NTF and the operand agree. For example, the NTF must
be 02H for an integer, but 04H for a single precision number, etc.

Table 5-4. Number-Type Flags (NTFs)

NTF1 . FPA1 Contents
02H INTEGER

03H STRING

04H SINGLE PRECISION
08H DOUBLE PRECISION

There are two ways to assign the NTF values. The first way is
to manually “load” the proper value into the appropriate NTF
memory location. The second, and easiest, way is to use certain
ROM subroutines that automatically load the NTF for us. These
subroutines are:

CALL OA9DH SETINT: sets NTF1 = 2 by loading 02H into memory location
40AFH; uses only the A register.

CALL OAEFH SETSGL: sets NTF1 = 4 by loading 04H into memory location
40AFH; uses only the A register.
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CALL OAECH SETDBL: sets NTF1 — 8 by loading 08H into memory location
40AFH; uses A register and BC register pair.

Now that you know how to load the FPAs, is there a way that you
can determine their contents? Is the variable currently stored in the
FPA an integer, single-precision, or double-precision number? This
can be done by using the ROM subroutine RST32 which is located
at address 25D9H::

CALL 25D9H RST32: tests the content of FPA1 and returns the result in the F regis-
ter by setting the ZERO, NEGATIVE, PARITY ODD, or NO CARRY
flags as follows:

Set ZERO (Z = 1) = STRING variable.

Set NEGATIVE (S = 1) = INTEGER variable.

Set PARITY ODD (P/V = 1) = SINGLE-PRECISION variable.
Set NO CARRY (C = 0) = DOUBLE-PRECISION variable.

Using this subroutine and the short program shown in Example
5-4, a simple four-way branch to other processing routines can

be made.

Example 5-4. Four-Way Branch Using RST32 (25D9H).

Mnemonic/
Addr  Op-Code (Hex) Label Operand Remarks
5000 Cb D9 25 RST32 CALL 25D9H ;TEST NTF1
5003 CA XX XX JP ZSTR ;90 STRING if ZERO set
5006 FA XX XX JP M,INT ;90 INTEGER if MINUS set
5009 E2 XX XX JP PO,SGL ;go SINGLE if PARITY-ODD set
500C D2 XX XX JP NC,DBL ;go DOUBLE if CARRY reset
STRINGS

String variables are stored as consecutive ASCII values in mem-
ory, beginning at the address pointed to by the input buffer pointer
(40A7H), and are terminated with either a zero byte (ASCII con-
trol code: NULL, 00H) or a BREAK (01H).

String variables may be input from the keyboard using the multi-
purpose ROM subroutine called QINPUT which is located at
1BB3H. This subroutine not only sets the NTF1 to the proper code
(03H = string) for us, but it also directs the string to memory and
loads the beginning address of the string into the input buffer
pointer (40A7H). We will discuss QINPUT in greater detail later
in this chapter.

Table 5-5 summarizes the TRS-80’s use of registers, buffers, FPAs,
variable types, and NTFs. Notice that integer and single-precision
numbers use both FPAs and registers to store data, depending upon
the ROM subroutine used.
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Table 5-5. Summary of Registers, Buffers, FPAs, and NTFs

Inputs Outputs
NTFs Operand FPA1 INT | SGL | DBL INT| SGL| DBL Registers

411DH LSB LSB
411EH ..
411FH
4120H e .
4121H [ LSB [LSB | ... LSB | LSB | ... H = MSB
4122H [ MSB| ... | ... MSBf ... ] ... L=
4123H MSB| MSB MSB | MSB
4124H EXP | EXP EXP | EXP
FPA2

4127H | LSB | LSB | LSB D = MSB
4128H | MSB] ... | ... E = LSB
4129H MSB
412AH EXP | ... B
412BH ... C

D

E

NTFI
40AFH

SINGLE
FIRST

NTF2
40BOH

SECOND

412CH s
412DH MSB
412EH EXP

MOVING VARIABLES

Now that you know where the operands and results belong, how
do you actually get them there? One way is to manually load them
directly into the appropriate memory locations using T-BUG’s M
command. Another way is to let some ROM subroutines move them
for us. Some of these subroutines use the stack, while others use
memory locations.

Single Precision Variables

The following ROM subroutines can be used to move single-
precision variables between memory locations, buffer areas, register
pairs BC and DE, and the stack:

CALL 09B1H HLFPA1: Memory-to-FPA1 ( (HL)-to-FPA1), moves a single-precision
variable from any memory location pointed to by the HL register pair
into FPA1 (4121H-4124H); uses the HL, BC and DE register pairs, all
saved.

CALL 09CBH FPATHL: FPAl-to-memory (FPAl-to-(HL) ), moves a single-precision
variable from FPA1 into any memory location pointed to by the HL regis-
ter pair; uses HL,, DE, and B registers, none saved.

CALL 09B4H REGFPA: Register-to-FPAl (BCDE-to-FPA1), moves a single-preci-
sion variable from the BC and DE register pairs into FPA1; uses HL, BC
and DE registers, all saved. NTF not updated.

CALL 09BFH FPAREG: FPAl-to-register (FPA1l-to-BCDE ), moves a single-precision
variable from FPA1 into the BC and DE register pairs; uses HL, BC and
DE register pairs, none saved.



CALL 09C2H HLBCDE: Memory-to-register ( (HL)-to BCDE ), moves a single-pre-
cision variable from any memory location pointed to by the HL register
pair into the BC and DE register pairs.

CALL 09A4H FPASTK: FPAl-to-stack, moves a single-precision variable from FPA1
onto the stack; uses HL. and DE register pairs; HL is saved, DE is not
saved.

POP BC  Stack-to-register (stack-to-BCDE): retrieves a single-precision vari-

POP DE  able from the stack and places it in the BC and DE register pairs

in proper order.

Single-Precision and Double-Precision Variables

The following two ROM subroutines move either single-precision
or double-precision variables between any two sections of memory:

CALL 09D2H HLTODE: Memory-to-memory ( (HL)-to-(DE)), transfers the con-
tents of the memory locations pointed to by the HL register pair into
the memory locations pointed to by the DE register pair. The content
of NTF1 (40AFH) specifies the number of bytes to be moved.

CALL 09D3H DETOHL: Memory-to-memory ( ( DE )-to-(HL) ), performs the inverse
of 09D2H by transferring the contents of the memory locations pointed
to by the DE register pair into the memory locations pointed to by the
HL register pair. The content of NTF1(40AFH) specifies the number
of bytes to be moved.

Table 5-6. Summary of Data Movement
Subroutines and Op-Codes

NTF1 (40AFH)

Movement Label Cali INT [SGL | DBL|[STR Notes

FPA1-to-Stack FPASTK 09A4H 2 4

(HL)}-to-FPA1 HLFPA1 09BTH 4

BCDE-to-FPA1 REGFPA 09B4H 4

FPA1-to-BCDE FPAREG 09BFH 4

(HL)-to-BCDE HLBCDE | 09C2H 4

FPA1-to-(HL) FPATHL 09CBH 4

(HL)-to-(DE) HLTODE | 09D2H 2| 4|8 | 3| General purpose

(DE)-to-(HL) DETOHL | 09D3H 2| 4|8 | 3| Inverse of above

(DE)-to-(HL) DEHLA 09D6H 2 | 4 |8 |3 | A=number bytes moved
(up to 255).

(DE)-to-(HL) DEHLB 09D7H 2 | 4 | 8 | 3 | B=number bytes moved
(up to 255)

FPA2-to-FPA1 DBLSGL 09F4H 214 8

FPA1-to-FPA2 | SGLDBL 09FCH 2148

HL-to-FPA1 0A9AH 2

DE-to-HL EX DEHL | 2 Z-80 Op-Code

HL-to-DE EX DEHL | 2 "

BC-to-stack PUSH BC | 2 | 4 "

DE-to-stack PUSH DE | 2 | 4 "

HL-to-stack PUSH HL 2 "

Stack-to-HL POP HL 2 |4 ”

Stack-to-BC POP BC 2] 4 “

Stack-to-DE POP DE 2] 4 ”
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The following ROM subroutine moves either single-precision or
double-precision variables from the first floating-point accumulator
(FPAL1) into the second floating-point accumulator (FPA2):

CALL 09FCH SGLDBL: FPA1-to-FPA2, works only with NTF1 equal to 04H or 08H.
If NTF1 = 4, then the four bytes comprising a single-precision variable
beginning at FPA1 address 4121H are moved into FPA2 beginning at
address 4127H. If NTF1 = 8, then the eight bytes comprising a double-
precision variable beginning at FPA1 address 411DH are moved into
FPA2 beginning at address 4127H (see Table 5-5).

Table 5-6 lists the most useful ROM subroutines and Z-80 op-
codes for moving variables. Two of the subroutines listed, CALL
09D6H and CALL 09D7H, deserve special attention. Both move
variables of up to 255 bytes between memory addressed by the
DE and HL register pairs as the “source” and “destination” pointers,
respectively. Their only difference lies in where the number of
bytes to be moved is held. Subroutine 09D6H requires the number
of bytes to be moved be held in the A register, while subroutine
09D7H requires the number of bytes to be moved be held in the
B register. Also, notice that the last eight entries in Table 5-6 are
just Z-80 op-codes. Since these instructions are used to move infor-
mation around in memory, they deserve to be included in this table.

KEYBOARD INPUT

Now that you know where the variables go and how to get them
there, it is time to investigate how to get them into the TRS-80
in the first place. The Level II BASIC ROMs provide at least four
different subroutines for inputting data. One subroutine is rather
primitive and is seldom used. Two other subroutines are essentially
the same, differing only in that one saves the contents of the DE
register pair before being executed and the other does not. The
fourth, and most powerful, subroutine accepts a string of up to 240
characters from the keyboard and displays them on the CRT. Let’s
look at each of these subroutines in closer detail:

CALL 002BH KBSCAN: performs a primitive keyboard scan and returns an ASCII
value in the A register if a key is pressed; if no key is pressed, a zero is
returned. It uses the DE register to store the address of the keyboard con-
trol block (4015H) and so destroys the original contents of the DE
register pair. It requires the programmer to supply a “loop” consisting
of a compare and jump-zero instructions such as shown in Example 5-5.
This subroutine is similar to the BASIC INKEY$ function and does not
display the character on the CRT.

CALL 035BH KBDSCN: identical to 002BH except the contents of the DE register
pair are saved.

CALL 0049H GETCHR: essentially the BASIC INKEY$ function and consists of ROM
subroutine 002BH plus the necessary loop instructions. It automatically
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Example 5-5. Keyboard Scan Using KBSCAN (0028H).

Mnemonic/
Addr Op-Code (Hex) Label Operand Remarks
5000 D5 PUSH DE ;save DE
5001 CcD 2B 00 KBSCAN CALL 002BH ;scan keyboard
5004 FE 00 CP A, 00H ;key pressed?
5006 CA 01 50 JP ZKBSCAN Jloop back if NO
5009 D1 POP DE ;retrieve DE

scans the keyboard until a key is depressed and returns the ASCII value
in the A register, and then returns to the calling program. Again, no CRT
display; DE not saved.

CALL 1BB3H QINPUT: displays the SYSTEM prompt “?” ( without the asterisk) and
accepts numeric and string inputs of up to 240 characters. The input is
assumed to be numeric regardless of what it really is, so whatever is
entered is converted to a number, including strings and symbols. This sub-
routine is typically followed by a Z-80 op-code which sets the C flag, such
as RST 10 (D7H). Upon exit, the HL register pair contains a value one
less than the beginning address in memory where the input string is
stored. When followed by the ROM subroutine ASCBIN (0E6CH), the
output is automatically converted to the lowest possible representation
(integer, single- or double-precision) and directed to the appropriate
FPA with the NTF set as shown in Table 5-7.

Now, let’s see how numeric data is handled and represented
within the TRS-80 using the subroutine QINPUT (1BB3H) and
ASCBIN (0E6CH).

Using T-BUG’s M command, enter the program shown in Example
5-6 and then “clear” the contents of FPAl (411DH-4124H) by
entering zeros in each memory location.

Example 5-6. Keyboard Input and Conversion Using QINPUT (1BB3H) and
ASCBIN (0E6CH).

Mnemonic/
Addr Op-Code (Hex) Label Operand Remarks
5000 CD B3 1B QINPUT CALL 1BB3H ;kybd scan and display
5003 23 INC HL ;next cursor position
5004 CD 6C OF ASCBIN CALL OE6CH ;convert INT,SGL,DBL
5007 C3 A0 43 JP  43A0H sreturn to T-BUG

Table 5-7. QINPUT (1BB3H) vs. FPA1 and NTF1

(FPAT)

Result Stored In NTF1
INTEGER 4121H-4122H 02H
SINGLE
PRECISION 4121H-4124H 04H
DOUBLE
PRECISION 411DH-4124H 08H
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Now execute the program by jumping to its starting address
(5000H ) by using the ] command. The screen will clear and dis-
play the SYSTEM prompt “?” (if an extraneous 0 ends up on the
screen too, simply erase it using the BACKSPACE key). Notice
that QINPUT recognizes all of the Level IT BASIC control functions,
such as BACKSPACE, TAB, etc. Type and enter the integer num-
ber, 12345. The screen will again clear, and display only the
T-BUG prompt “#.”

Since we entered an integer, the NTF should be 2. Let’s check
the content of NTF1 (406AFH) and see for ourselves:

# M 40AF 02

which is correct for an integer number. Next, let’s see what the
integer number looks like when stored in FPA1 (411DH-4124H):

# M 411D 00
411E 00
411F 00
4120 00
4121 39
4122 30
4123 00
4124 00

Referring back to the earlier example of integer format and storage,
you will recall that the decimal integer 12345 is the same as 3039H,
used FPA1 memory locations 4121H-4122H, and was stored LSB
preceding the MSB, which is exactly what is seen on the display.

Next, let’s see how a single-precision number, such as 12.345, is
handled. Again, clear the FPA1 buffer area, and execute the pro-
gram by using the J command to jump to address 5000H. Then type
and enter the number 12.345. Using T-BUG’s M command, check
the content of NTF1 at address 40AFH:

# M 40AF 04

which is correct for a single-precision number. Next, check the
contents of FPA1 buffer area:

# M 411D 00
411E 00
411F 00
4120 00
4121 1E
4122 85
4123 45
4124 84

Again, referring to the earlier example given for single-precision
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format and storage, you will recall that the single-precision number
12.345, is indeed 84H 45H 85H 1EH.

What happens when a number exceeding single precision capacity
is entered? Well, let’s try one and see. To do this, you can simply
carry the single-precision number 12.345 out three additional deci-
mal places with zeros which does not change the arithmetic value
of the number to 12.345000. Again, clear FPAl and execute the
program, and then enter the double-precision number 12.345000.
A check of NTF1 indicates 08H, which is the correct flag for a
double-precision number, and a look at the contents of FPAL
yields:

# M 411D 85
411E EB
ANF 51
4120 B8
4121 1E
4122 85
4123 45
4124 84

which, when rearranged, indicates that the decimal number,
12.345000, is represented within the TRS-80 as:

84H 454 85H 1EH B8H 51H EBH 85H
(EXP) (MSB) (..) (-9 (..) ¢.) (.) (SB)

Adding Level II BASIC’s CINT ROM subroutine (0A7FH) to
the example program produces an integer output regardless of the
size of the number input. Note, however, that a fatal error (crash
back to “MEMORY SIZE?”) will occur when using this subroutine
and a number greater than 32767 is either (1) entered from the
keyboard, or (2) generated by the conversion routine (see Exam-
ple 5-7).

The subroutine QINPUT (1BB3H) can also be used to simul-
taneously input and display string data as well as numeric data.
Strings of up to 240 characters in length may be entered from the

Example 5-7. Keyboard Input and Integer Conversion Using QINPUT (1BB3H) and
CINT (OA7FH).

Mnemonic/
Addr Op-Code (Hex) Label Operand Remarks
5000 cb C9 O1 CLS CALL O01C9H ;clear screen
5003 CD B3 1B QINPUT CALL 1BB3H ;kybd scan and display
5004 23 INC HL ;next cursor position
5005 CD 6C OE ASCBIN CALL OE6CH ;convert INT,SGL,DBL
5008 CD 7F OA CINT CALL OA7FH ;convert INTEGER only
5008 C3 A0 43 JP 43A0H ;return to T-BUG
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keyboard and displayed, starting at the current cursor position. The
input string will be stored as ASCII values in consecutive memory
locations beginning at the address pointed to by the input buffer
pointer (40ATH-40A8H) and will be terminated with a NULL
(00H) character. The input buffer pointer is initialized to 41ES8H,
the beginning address of the input buffer area (41ES8H-42E8H),
during the power-up sequence. However, by changing the content
of the input buffer pointer, you can direct the input string to any
memory area that you wish. Using the short, nine-byte program
shown in Example 5-8, you can see what happens when string data
are used with QINPUT (1BB3H).

Example 5-8. Keyboaord Inpuf of String Data Using QINPUT (1BB3H).

Mnemonic/
Addr Op-Code (Hex) Label Operand Remarks
5000 Ch C9 01 CLS CALL 01C9H ;clear screen
5003 CD B3 1B QINPUT CALL 1BB3H ;kybd scan and display
5006 C3 A0 43 JP 43A0H ;return to T-BUG

Enter the example program and execute it. You should see the
SYSTEM prompt “?” on the display. Now type and enter the string,
ABCD. The T-BUG prompt “#” will reappear, signalling return to
the T-BUG command mode. If you examine the contents of the
input buffer area (41ESH-41ECH), you will find the following
bytes: 41 42 43 44 00, which are, respectively, the ASCII values for:
A, B,C, D, and NULL.

How do you direct the input to some other area in memory?
Simple, just change the address held in the input buffer pointer
(40ATH-40A8H) to the address in memory where you want the
string to begin, and you can send the input string anywhere in
memory (except ROM, of course ). Let’s try it and see what happens.

Use T-BUG’s M command and change the content of the input
buffer pointer (40A7TH-40A8H) to the address of some area in high
memory, such as 6000H (remember, LSB first, then MSB). Then
execute the program and enter the string, DCBA. Now examine the
contents of memory locations 6000H-6004H, where you will find
the ASCII values: 44 43 42 41 00, which represent the characters
D, C, B, A, and NULL. Both numeric and string data can be
handled in this manner.

CRT VIDEO DISPLAY

In addition to the subroutine QINPUT (1BB3H), there are four
other ROM subroutines that can be used to display data on the
CRT. Three of these subroutines display the content of the A
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register. The fourth, and most powerful, subroutine actually consists
of two subroutines. Let’s examine each subroutine separately:

CALL 0033H CRTBYT: displays the ASCII character represented by the value in the
A register at the CRT position specified in the cursor position block
(4020H-4021H); uses A, DE, and 1Y registers, content of DE not saved.
Because this subroutine accesses the video driver, all of the ASCII control
codes (00H-1FH) supported by Level IT BASIC are recognized.

CALL 032AH DSPCHR: displays the ASCII character represented by the value in
the A register, if the device type flag (DTF, 409CH) is zero, and stores
the current cursor position at 40A6H.

CALL 033AH CRTOUT: same as CRTBYT (0033H) except the content of the DE
register pair is saved. This is probably the most used ROM display sub-
routine by the BASIC interpreter.

The fourth and most powerful of the display subroutines, actually
consists of the two subroutines, BINASC (0FBDH) and OUTLIN

(28A7TH):

CALL OFBDH BINASC: converts an integer, single-precision, or double-precision
representation into a corresponding numeric character string (binary-to-
ASCII); uses the NTF1 (40AFH) and the appropriate FPA buffer con-
tents to determine input. The resulting numeric character string is stored
in memory beginning at location 4130H and is terminated with a zero
byte (00H). The HL register pair contains 4130H upon exit.

CALL 28A7H OUTLIN: automatically displays and updates the cursor position until
a zero byte is encountered. The HL register pair must point to the start-
ing address of the character string to be displayed (already done by
BINASC). NTF1 automatically set to 3 (string).

Device Type Flag (DTF)
Associated with the keyboard input subroutine QINPUT
(1BB3H) and the CRT video display subroutine DSPCHR (032AH)

Table 5-8. Device-Type Flags (DTFs) at 409CH

DTF (409CH) Output to
01H (+1) LINE PRINTER
OO0H ( 0 ) CRT Video Display
FFH (—1) CASSETTE

is the device type flag (DTF) located at memory location 409CH,
which determines where the output of these (and other) subroutines
go. This DTF is shown in Table 5-8. Upon power-up, Level II
BASIC initializes this memory location to zero (00H = CRT).

Seme Examples

To display a number contained in FPA1, simply ensure that the
contents of NTF1 (40AFH) corresponds to the type of number in
FPA1, and then call the two subroutines BINASC (OFBDH) and
OUTLIN (28A7H) as shown in Example 5-9.
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Example 5-9. Data Display Using BINASC (OFBDH) and OUTLIN (28A7H).

Step 1. Load AOH into 4121H and 43H into 4122H.
Step 2. Load 02H into NTF1 (40AFH).
Step 3. Execute program below.

Mnemonic/
Addr  Op-Code (Hex) Label Operand Remarks

5000 CD BD OF BINASC CALL OFBDH ;binary-to-string
5003 CD A7 28 OUTLIN: CALL 28A7H display til zero byte
5006 C3 A0 43 JP 43A0H ;return to T-BUG

Use T-BUG’s M command and place the value AOH in memory
location 4121H, and the value 43H in the next location, 4122H.
These two locations are the integer (INT) area of FPAl. Ac-
cordingly, you must also set the NTF1 (40AFH) to 02H to match
the integer number 43A0H. After this has been done, execute the
program. What do you see? That’s right, you will see “17312,” which
is the decimal equivalent of the hexadecimal number 43A0H (T-
BUG’s entry address). With careful attention paid to matching the
NTF1 with the content of the FPAL buffer, these subroutines can
be used to perform hexadecimal-to-decimal number conversion and
display.

The subroutine OUTLIN (28A7H) can also be used to display
string data. The two programs shown in Example 5-10 illustrate
how this can be accomplished using a string of data that was previ-
ously entered.

Example 5-10. A) Keyboard Input Using QINPUT (1BB3H); B) Display o String
Using OUTLIN (28A7H).

Mnemonic/

A) Addr Op-Code (Hex) Label Operand Remarks
5000 cCh C9 01 CLS CALL O01C9H iclear screen
5003 CD B3 1B QINPUT CALL 1BB3H ;kybd scan and display
5006 C3 AC 43 JP  43A0H ;return to T-BUG
Mnemonic/
B) Addr Op-Code (Hex) Label Operand Remarks
6000 ch C9 o1 CLs CALL O1C9H jclear screen
6003 23 INC HL ;HL = 41E8H
6004 CD A7 28 OQUTLIN CALL 28A7H ;display til zero byte
6007 C3 07 60 LOOP JP  6037H ;endless loop

Note: You must press the RESET button to exit this program due to endless loop at
6007H-6009H.

Load both programs, and then execute Example 5-10A. Type and
enter the string, HELLO. Then execute Example 5-10B. You will
see the original string input displayed again. Can you explain the
purpose of the INC HL instruction (23H) in Example 5-10B? The
answer is found by recalling that when string data is input using
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the input buffer pointer (46ATH-40A8H ), the HL register pair con-
tain a value one less than the address. For example, if the input
buffer pointer contains 41E8H, then the HL register pair contains
41E7H. Thus, by simply adding 1 (incrementing) to the HL register
pair, the address held in the input buffer can be obtained! However,
when displaying string data that is nof stored in the input buffer
area, you must load the starting address of the string into the HL
register pair before calling the OUTLIN subroutine.

Is it possible to “limit” the number of characters input from the
keyboard? The answer is yes, if you make use of the buffer input
subroutine, BUFFIN (05D9H), which accepts up to n-characters
and then ignores the rest. The number of characters (n) that will
be accepted by BUFFIN is determined by the content of the B
register. The HL register pair must point to the memory area where
the string of characters is to be stored. Upon completion, the A
register contains the ASCII value of the last character entered,
either a carriage return (CR on the TRS-80 is the ENTER key) or
a BREAK character. Since this subroutine also accesses the video
display driver, the ASCII control codes supported by Level II
BASIC are recognized. The input string characters will be stored
as ASCII values in consecutive memory locations beginning at the
address pointed to by the HL register pair, and will be terminated
with either a CR (ODH) or BREAK (01H) character. Example
5-11 provides a short program that accepts up to six characters (ex-
cluding the CR or BREAK) and places them in the input buffer area
(41E8H-42E8H).

Example 5-11. Limiting Keyboard Input to N-Characters Using BUFFIN (05D9K)
and B Register.

Mnemeonic/
Addr  Op-Code (Hex) Label Operand Remarks
5000 cb C9 01 CLS CALL 01C9H sclear screen
5003 2A A7 40 LD HL,(40A7H) ;get address of input buffer
5006 06 06 LD B,06H ;number of characters (n)
5008 CD D9 05 BUFFIN CALL 05D9H ;input to n-characters
5003 C3 A0 43 JP 43A0H ;return to T-BUG

As you can see, the “?” prompt is not displayed by BUFFIN. If this
feature is desired, the example program must be modified as shown
in Example 5-12.

DATA CONVERSIONS

Now that you know where the variables belong and how to get
them there, it’s time to investigate getting them converted from
one format to another. The ROMs contain many subroutines that
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Example 5-12. Display **?"’ Prompt Using CRTOUT (033AH).

Mnemonic/
Addr Op-Code (Hex) Label Operand Remarks
5000 CD C9 01 CLS CALL 01C9H sclear screen
5003 3E 3F LD A,3FH ;ASCIE 27 into A
5005 ChD 3A 03 CRTOUT CALL 033AH display 2"
5008 3E 20 LD A,20H ;ASCH "B into A
500A CD 3A 03 CRTOUT  CALL 033AH sdisplay "
500D 2A A7 40 LD HL,(40A7H) ;get address of input buffer
5010 06 06 LD B,06H mnumber of characters (n)
5012 CD D9 05 BUFFIN CALL 05D9H ;input to n-characters
5015 C3 A0 43 JP  43A0H ;return to T-BUG

can be used to perform data conversions, but we will limit our
discussion to only those ROM subroutines that are the most useful
and easy to use. The use of existing subroutines to perform data
conversions, instead of writing your own routines, will greatly re-
duce the task of writing assembly-language programs that must
handle data in more than one format.

The Level II BASIC ROMs contain subroutines that enable you
to convert from one data type to another, to convert between binary
and ASCII representations, and to convert from ASCII to numeric
representation. The data conversions that will be discussed are:

® Floating Point to Integer.

® Integer or Double Precision to Single Precision.
@ Integer or Single Precision to Double Precision.
® ASCII String to Numeric.

® Numeric to Unformatted-ASCII String.

© Numeric to Formatted-ASCII String.

Some of these data conversions are performed by the Level II
BASIC ROM subroutines that implement BASIC functions, others
are performed by subroutines within the Level II BASIC’s arith-
metic and mathematic functions. One conversion, numeric-to-for-
matted ASCII string, is performed by the subroutine that is used
by Level II BASIC PRINT USING statement.

Number Type Conversions

To convert a variable from one number type to another, such as
from integer to single precision, you simply call the subroutine that
implements the appropriate BASIC function. For instance, in BASIC
you used the CINT function to convert a number to an integer. In
assembly language you can use the same function by simply calling
the subroutine that implements CINT! There are four ROM sub-
routines that you can use to perform number type conversions.
Three of these subroutines are:
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CALL OA7FH CINT (FPA1-o-INT): converts the content of FPAL to an integer, re-
turns the result in the integer area of FPA1 (4121H-4122H ), and updates
the number type flag (NTF1, 40AFH) to 2; uses all registers. If a num-
ber greater than 32767 is generated, the “OV”-error message is displayed
and control is returned to BASIC.

CALL OABIH CSNG (FPA1-to-SGL): converts the content of FPA1 to single-precision
format, returns the result in the single-precision area of FPA1 (4121H-
4124H), and updates NTF1 to 4; uses all registers.

CALL OADBH CDBL (FPA1-to-DBL): converts the content of FPA1 to double-precision
format, returns the result in the double-precision area of FPA1 (411DH-
4124H), and updates NTF1 to 8; uses all registers.

The fourth data conversion that often proves useful is the Level 11
BASIC FIX function which yields a “truncated” whole number result
instead of a “largest” whole number as the CINT function does.
For example, INT(—1.5) “rounds” the result to the next largest
whole number and returns —2, while FIX(—-1.5) “chops” the num-
ber at the decimal point and returns —1. To access this subroutine
you use:

CALL OB26H FIX (FPAl.to-"truncated” INT): truncates the floating-point content of

FPAl and returns the result in the appropriate source area of FPAI;
NTF1 is not changed.

ASCIl to Numeric Conversions

The Level II ROMs contain three subroutines that you can use
to perform ASCII-to-numeric conversions. These subroutines per-
mit you to perform these conversions: ASCII string-to-binary repre-
sentation, ASCII string-to-integer format, and ASCII string-to-
double precision format. You have already seen one of these
subroutines, ASCBIN (0E6CH). That ROM subroutine was used
earlier to automatically convert an ASCII string to its lowest possible
binary number type (integer, single precision, or double precision).
The three ASCII-to-numeric conversion subroutines are:

CALL OE6CH ASCBIN (ASCllto-binary): converts the ASCII string pointed to by
the HL register pair to the lowest possible binary number type: integer
if less than 32767 and no decimal point or “E” or “D” scientific-notation
exponent descriptor; otherwise converts to single precision or double
precision as appropriate (automatically converts to double precision if
input exceeds 7 digits); result returned in appropriate area of FPAIL;
NTF1 updated to match result.

CALL OE65H ASCDBL (ASCil-to-DBL): converts the ASCII string pointed to by the
HL register pair to double-precision format; result returned in FPA1l
(411DH-4124H). The ASCII string must be terminated with either a
colon (:) or a zero byte (00H); uses all registers.

CALL 1E5AH ASCINT (ASCll4o-INT): converts the ASCII string pointed to by the
HL register pair to an integer and returns the result in the DE register
pair; terminates on the first nonnumeric character.
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The use of these subroutines proves very handy when data must
be input from the keyboard and then later processed by either
arithmetic or mathematic routines. For example, the subroutine
ASCBIN (0E6CH) enables you to interface the ASCII string output
from the Level II BASIC’s keyboard and display subroutines with
your assembly-language programs, which require numeric data in-
puts. To interface the numeric output from your programs with the
Level IT BASIC ROM CRT video display subroutines, you can use
the ROM subroutine BINASC (OFBDH).

Numeric to ASCIl Conversions

The Level II BASIC ROMs contain two subroutines that perform
numeric-to-ASCII conversions. One subroutine produces an unfor-
matted output which contains only the ASCII values representing

Table 5-9. Format Specifiers for BINFOR (OFBEH)

A Register: contains formatting specifiers:
00H = Binary to ASCli without formatting.
80H + XXH = Binary to ASCIHl with formatting, where XXH equals:
O1H = Exponential format: " # 4 4y
02H = RESERVED (not used)
04H = Sign follows number: ““# # # #-
08H = Sign precedes number: *+ # # #
10H = Print $ before number: “‘$FF # # 4
20H = Print * before number: “*F 4 H+
40H = Print comma (,) every 3rd number: "3 # # # . #"

B Register: specifies number of digits to LEFT of decimal point, less two.

C Register: specifies number of digits to RIGHT of decimal point, plus one.

Note: A register contents may be intermixed, i.e., A = 91H means print $ before number in
exponential format (80 4 10 4 1).

the numeric input. The other subroutine produces a formatted out-

put which may also contain such descriptor characters as “+”, ,
“$”, “*”, or the comma (,). The two ROM subroutines that enable
you to perform numeric-to-ASCII conversions are:

CALL OFBDH BINASC (binary-to-unformatied ASCII): converts the content of FPA1
(integer, single precision, or double precision) to its corresponding, un-
formatted ASCII string and returns the result in memory locations 4130H-
4151H; input must be terminated with a zero byte (00H).

CALL OFBEH BINFOR (binary-to-formatted ASCII): converts the floating-point content
of FPAL to its corresponding, formatted ASCII string using the Level II
BASIC PRINT USING statement formats, and stores the result in
memory beginning at the address pointed to by the HL register pair. The
contents of the A, B, and C registers specify the formatting to be used,
as shown in Table 5-9.
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This last ROM subroutine, BINFOR (OFBEH), proves very useful
when writing assembly-language programs that require formatted
output, such as financial reports, ledgers, and inventories, but it
also has a problem. It rounds up the decimal portion of a formatted
number, something you should remember when handling mone-
tary figures where such rounding is undesirable.

An Example

The three routines shown in Example 5-13 illustrate how the
Level IT BASIC ROM subroutines may be used to convert keyboard
input to ASCII string, ASCII string to binary, and binary to for-
matted ASCII numeric.

Example 5-13. Example of Formatted Data Conversion.

(A) INPUT o String

Mnemonic/
Addr Op-Code (Hex) Label Operand Remarks
5000 Ch C9 O INPUT CALL 01C9H ;CLS, clear screen
5003 Cb B3 1B CALL 1BB3H ;QINPUT
5006 23 INC HL ;
5007 CD 6C OE CALL OE6CH ;ASCBIN
500A C3 A0 43 JP 43A0 ;rtn T-BUG
(B) CONVRT String to Lowest Binary Representation and Format
Mnemonic/
Addr Op-Code (Hex) Label Operand Remarks
6000 21 EB 41 CONVRT LD HL41E8H ;string location/PRINT
USING BUFF
6003 CD 6C OE CALL OE6CH ;ASCBIN
6006 21 30 4 LD HL,4130H ;where store
6009 3E 90 LD A90H A = 90H = $ prefix
600B 06 06 LD B,06H ;B = 06H = 8 spaces
LEFT
600D OE 03 LD C,03H ;€ = 03H = 2 spaces
RIGHT
600F CD BE OF CALL OFBEH ;BINFOR
6013 C3 A0 43 JP 43A0H ;rin T-BUG
(C) OUTPUT Formatted String to CRY Video Display
Mnemonic/
Addr  Op-Code (Hex) Label Operand Remarks
7000 21 30 41 OUTPUT LD HL,4130H sstring location
7003 CD A7 28 CALL 28A7H ;display till zero byte
7006 C3 19 1A JP 1A19H ;rtn BASIC

The first routine, called INPUT, is located at 5000H and accepts
numeric input from the keyboard, stores the input string of ASCII
values in the input buffer area of memory (41ES8H-42ESH), con-
verts the input to its lowest possible number type, and returns the
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result in the appropriate area of FPAl. The second routine, called
CONVRT, is located at 6000H and converts the ASCII values stored
in the input buffer area back into binary representation, formats the
result as specified by the contents of the A, B, and C registers, and
stores the formatted ASCII string in the PRINT USING buffer area
(4130H-4151H) of memory. The third routine, called OUTPUT, is
located at 7000H and displays the formatted contents of the PRINT
USING buffer. Now that you know what each routine does, let’s
discuss how each accomplishes its respective tasks.

Key-in the three programs at the addresses indicated, and place
FFH in each of the first 10 locations of the input buffer (41ES8H-
41F2H ) and in each of the eight locations of FPA1 (411DH-4124H).
Then, execute the first routine, INPUT. The screen will clear and
the “?” prompt will appear. Type and enter the number, 123.456.
The screen will again clear and the T-BUG prompt “#” will reappear,
signalling a return to T-BUG. If you examine the contents of the
PRINT USING buffer (41ES8H-42E8H), you will find the hexa-
decimal values: 31 32 33 2E 34 35 36 00, which are the ASCII values
representing the number that was just entered. QINPUT (1BB3H)
stores the ASCII values representing the keyboard input in the
PRINT USING buffer. But, ASCII values are not what you want;
you want binary values.

To convert the ASCII string contained in the PRINT USING
buffer to its corresponding binary representation (integer, single
precision, or double precision), the ROM subroutine ASCBIN
(OE6CH) is used. Normally when this ROM subroutine is used,
the programmer must load the HL register pair with the starting
address of the ASCII string to be converted; but this step is not
necessary when ASCBIN follows QINPUT as we said earlier. This
occurs because upon leaving QINPUT, the HL register pair con-
tains the value 41E7H, which is one less than the starting address
of the PRINT USING buffer (41ES8H). The INC HL instruction
adds 1 to the content of the HL register pair, producing 41ESH,
the desired address.

The second routine, CONVRT, is located at 6000H and converts
the ASCII string stored in the PRINT USING buffer (41ES8H-
42E8H) into numeric representation so that it can be formatted
by the ROM subroutine BINFOR (0FBEH ), which accepts only
numeric values. Here, ASCBIN does not follow QINPUT, so the
HL register pair must be loaded with the starting address of the
ASCII string in memory that is to be converted to numeric repre-
sentation. In this case, the address is 41ESH, the starting address of
the PRINT USING buffer. The output of ASCBIN is returned in
FPAL

Before the ROM subroutine BINFOR (OFBEH) can be called,
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certain conditions must first be established: (1) the HL register
pair must point to the memory location where the formatted output
ASCII string is to be stored, (2) the A register must contain the
appropriate formatting value (see Table 5-9), (3) the B register
must contain fwo less than the desired number of spaces to the
LEFT of the decimal point, and (4) the C register must contain
one more than the desired number of spaces to the RIGHT of the
decimal point. The values given in Example 5-13 specify a for-
matting of: (1) store the result in memory beginning at address
4130H, (2) print “$” before the number (A =90H), (3) allocate 8
spaces (8 — 2 = 6) to the left of the decimal point (B = 06H), and
4) assign 2 spaces (2 + 1 = 3) to the right of the decimal point
(C = 03H).

Now, execute the second routine, CONVRT, and examine the
contents of the numeric work area (4130H-4149H). There, you
will find the ASCII values: 20 20 20 20 24 31 32 33 2E 34 36 00,
which represent the characters: yf BBP$123.46NULL. As you
can see, BINFOR has rounded up the original decimal value “.456”
to “46”, again something that you must remember when dealing
with monetary figures.

The last routine, OUTPUT, displays the formatted ASCII string
stored in the numeric work area. This routine automatically outputs
the ASCII string pointed to by the HL register pair to the CRT
video display until a zero byte (00H) is encountered. Executing
OUTPUT causes the number that was entered earlier, 123.456, to
be displayed in the specified format: eight spaces from the left
margin to the decimal point, a dollar sign ($) prefix, and two
decimal places.
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CHAPTER 6

Arithmetic
and Mathematic Functions

In this chapter we will discuss the Level 11 BASIC ROM sub-
routines that will enable you to quickly and simply write assembly-
language programs to perform arithmetic and mathematic operations
upon data.

One of the computer’s greatest assets is its ability to perform
lengthy and repeated arithmetic and mathematic operations (called
“number crunching”) with both speed and accuracy. But, a com-
puter alone can do very little, because it is actually the programs
within the software that perform the arithmetic and mathematic
operations that do the number crunching. The computer is simply
the tool.

The Microsoft authors of Level II BASIC, Paul Allen and Bill
Gates, went to great effort to write a BASIC interpreter that is
both accurate and efficient. Many hours were spent writing the
excellent subroutines that comprise Level IT BASIC, but their great-
est efforts consisted of compressing the BASIC interpreter to fit in
the available memory without sacrificing features.

The result of their efforts is amply demonstrated by the power
and flexibility of Level II BASIC and the fact that it requires only
12K of memory. With this in mind, we should think twice about
trying to write our own subroutines, especially arithmetic and mathe-
matic routines; we might be able to write something that was either
better or faster, but it is rather doubtful that we could write anything
that was both better and faster! So, instead of attempting to “re-
invent” the wheel with each assembly-language program that we
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write, we will use the existing Level 11 BASIC ROM subroutines
that perform arithmetic and mathematic functions whenever our
programs require such operations to be performed upon data.

Before proceeding further, let’s define the difference between
an arithmetic function and a mathematic function. Strictly speak-
ing, mathematics is the science of numbers, and arithmetic is a
subset of mathematics. But we can describe their difference in
somewhat less abstract terms: arithmetic functions deal with rela-
tionships between two numbers; mathematic functions deal with the
attributes (characteristics) of a single number. For instance, the
arithmetic function ADDITION requires two numbers (operands),
an augend and an addend; but the mathematical function SINE(X)
requires only the single operand, X.

ARITHMETIC FUNCTIONS

The Level II BASIC ROMs contain 15 subroutines that you can
use in your programs to perform arithmetic functions. These sub-
routines allow you to perform addition, subtraction, multiplication,
division, and comparison, with each of the three number types,
integer, single precision, and double precision. Some of these sub-
routines use registers for input/output while others use the floating-
point accumulators (FPAs).

The five arithmetic functions that we will be discussing in this
chapter are:

® Addition (+).

@ Subtraction (—).

@ Multiplication (*).

@ Division (/).

® Comparison (<, = ,>).

We will examine these functions according to their applications to
the three number types, integer, single precision, and double pre-
cision.

Integer

There are five ROM subroutines that you can use to perform
integer arithmetic. All integer arithmetic operands, or input vari-
ables, are passed to the using subroutine via the DE and HL register
pairs. The results of integer addition, subtraction, and multiplica-
tion are returned in the HL register pair, but the result of integer
division is returned in FPA1. This occurs because with integer addi-
tion, subtraction, or multiplication only an integer result can occur.
With integer division, however, an integer quotient, or result, will
only occur when the divisor and dividend are even multiples of
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each other. If any of these integer arithmetic operations exceed
integer capacity (2!°), either by overflow or underflow, the opera-
tion is automatically redone using the equivalent single-precision
subroutine and the result is returned in FPAl. No error is flagged
when this occurs.

The results of all comparisons, regardless of number type (integer,
single precision, or double precision), are flagged in the A register.
When the first operand is “less-than” the second operand (A<B),
the result returned in the A register is +1 (01H). When the first
operand is “greater-than” the second operand (A>B), the result
returned in the A register is —1 (FFH). And, when the two op-
erands are “equal” (A=B), the A register will contain zero (00H).

The five Level II BASIC ROM subroutines that you can use to
perform integer arithmetic are shown in Table 6-1. To use any of
these subroutines, you must load the first operand into the DE
register pair; load the second operand into the HL register pair;
and then call the appropriate ROM subroutine. The result will be
returned in the HL register pair, unless a division (INTDIV) or
comparison (INTCMP) was performed, in which case the result
will be, respectively, in either FPA1 or the A register.

Table 6-1. Integer Arithmetic ROM Subroutines

Function Subroutine Operation Result in
(+) ADDITION INTADD (0BD2H) DE 4 HL HL
(—) SUBTRACTION INTSUB (OBC7H) DE — HL HL
(k)  MULTIPLICATION INTMUL (OBF2H) DE % HL HL
(/) DIVISION INTDIV  (2490H) DE / HL FPA1
(<,=,>) COMPARISON INTCMP (0A39H) DE < HL A =41 (01H)
DE > HL A = —1((FFH)
DE = HL A= 0(O0H)

Example 6-1 illustrates the use of the Level II BASIC ROM
integer addition subroutine, INTADD (0BD2H), and introduces
you to the programming technique called nesting. This is the tech-
nique of embedding one or more subroutines within another sub-
routine, and is used whenever a routine or sequence of instructions
is to be used more than once within a program. In this example, in-
stead of writing the subroutine INPUT twice, once to input augend
operand and again to input the addend operand, it is written only
once, at the end of the program, and is simply called whenever it is
needed. The use of nested subroutines whenever possible greatly
simplifies and shortens any program, assembly language, or BASIC.

Use T-BUG and enter the program, and then execute it. Type and
enter the floating-point number, 12345.5, when the first “?” prompt
appears, and then type and enter 12345.6 when the second “?”

106



Example é-1. Program Yo Add Two integer Numbers and Display the Sum.

Mnemonic/

Addr Op-Code Label Operand Remarks
5000 Ch 18 50 ADDEND CALL INPUT s;input addend
5003 ED 58 21 41 LD DE,(4121H) ;move from FPA1

to DE
5007 D5 PUSH DE ;store on stack
5008 Cchb 1B 50 AUGEND CALL INPUT jinput augend
5008 2A 21 4 LD HL(4121H) ;move from FPA1

to HL
500E D1 POP DE ;retrieve addend
500F CD D2 OB ADD CALL INTADD ;DE + HL - HL
5012 22 00 60 LD  (6000H),HL ;store sum at 6000H
5015 C3 A0 43 END JP T-BUG ;return to T-BUG
5018 Ch C9 O INPUT CALL CLS sclear screen
5018 CD B3 1B CALL QINPUT ;kybd scan and display
501E 23 INC HL ;
501F CD 6C OF CALL ASCBIN ;ASCI to binary
5022 C3 7F OA JP CINT jconvert to INT

prompt appears. If you examine the content of memory locations
6000H-6001H you will find the sum, 6072H or 24,690 (12345.5 +
12345.6 = 3039H + 3039H = 6072H). How did we eliminate the
decimals? Simple, by calling CINT (0A7FH) within the subroutine
INPUT.

The program functions in the following manner: The first operand,
the augend, is input and converted to an integer using the ROM
subroutines, QINPUT (1BB3H), ASCBIN (OE6CH), and CINT
(0ACFH), and is then loaded from FPALI into the DE register pair
and pushed onto the stack for temporary storage. Then, the second
operand, the addend, is input and converted to an integer and
loaded from FPAI into the HL register pair. At this point, the
augend is popped off the stack into the DE register pair, and
INTADD (OBD2H) is called to “add” the two integer operands.
The result is stored in memory at 6000H-6001H.

Of course, the observant reader will realize that this subroutine
could be replaced by a single-byte instruction, ADD HL,DE (19H),
saving some time and a small amount of memory. This is all right,
if you are sure that the sum of the two integer operands will never
exceed 32767. If there is any doubt, use INTADD with its automatic
conversion to single-precision should the sum exceed integer ca-
pacity. Testing NTF1 will tell you whether the result will be in the
HL register (integer result) or in FPA1 (single-precision result).

Single Precision

The five ROM subroutines that you can use in your assembly-
language programs to perform single-precision arithmetic are
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Table 6-2. Single-Precision Arithmetic ROM Subroutines

Function Subroutine Operation Result in

(+) ADDITION SGLADD (0716H) | BCDE - FPA1 | FPAI
(—)  SUBTRACTION SGLSUB (0713H) | BCDE — FPA1 | FPAI
(k)  MULTIPLICATION SGLMUL (0847H) | BCDE * FPA1 | FPAI
(/) DIVISION SGLDIV (08A2H) | BCDE / FPAI | FPAI

(<,=,>) COMPARISON SGLCMP (0OAOCH) | BCDE < FPA1 | A =41 (01H)

BCDE > FPA1 | A= —1 (FFH)

BCDE — FPA1 | A= 0 (00H)

shown in Table 6-2. Single-precision arithmetic operands are passed
to the using subroutine via the BC and HL register pairs and
FPAl. The result of single-precision arithmetic operation is re-
turned in FPA1. The result of a single-precision comparison, like an
integer comparison, is flagged in the A register using the same
format.

When using any of the single-precision arithmetic ROM subrou-
tines, you must load the first operand into the BC and DE register
pairs (using the single precision BCDE register format discussed
in Chapter 5); load the second operand into the single-precision
area of FPAl (4121H-4124H); and then call the appropriate ROM
subroutine. The result of single-precision addition, subtraction,
multiplication, and division is returned in FPAl. The result of a
single-precision comparison, like an integer comparison, is flagged
in the A register.

The program shown in Example 6-2 illustrates the use of the ROM
single-precision subtraction subroutine, SGLSUB (0713H).

Example 6-2. Program To Subtract Two Single-Precision Numbers and Display
the Difference.

Mnemonic/
Addr Op-Code Label Operand Remarks
5000 cb 19 50 MINUND: CALL INPUT ;input minuend
5003 CD BF 09 CALL FPAREG ;FPA1 into BCDE
5006 C5 PUSH BC ;store on stack
5007 D5 PUSH DE ;store on stack
5008 CD 1C 50 SUBTRA CALL INPUT ;input subtrahend
500B D1 POP DE ;retrieve minuend
500C Ci POP BC ;sretrieve minuend
500D cb 13 07 SUBT CALL SGLSUB ;BCDE — FPA1 — FPAI1
5010 21 00 60 LD HL,6000H ;set pointer
5013 Ch CB 09 CALL FPATHL ;store diff at 6000H
5016 C3 A0 43 END JP  T-BUG sreturn to T-BUG
5019 chD C9 o1 INPUT CALL CLS sclear screen
501C Ch B3 1B CALL QINPUT ;kybd scan and display
501F 23 INC HL ;
5020 CD 6C OE CALL ASCBIN ;ASCH to binary
5023 C3 B1 OA JP CSNG ;convert to SGL
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It inputs the first operand, the minuend, using the ROM subroutines,
QINPUT (1BB3H), ASCBIN (OE6CH) and CSNG (0AB1H).
Upon returning to the main portion of the program from the INPUT
subroutine, the single-precision minuend operand is moved from
FPALI into the BC and DE register pairs using the ROM subroutine
FPAREG (09BFH), and then both register pairs are pushed onto
the stack for temporary storage. Then, the second operand, the
subtrahend (number to be subtracted from the minuend), is input
via a call to the INPUT subroutine. The single-precision subtrahend
operand is returned in the single-precision area of FPA1. The minu-
end is popped from the stack back into the BC and DE register
pairs, and the ROM subroutine SGLSUB (0713H) is called to
perform the subtraction. The result is returned in the single-precision
area of FPA1 and moved into memory locations 6000H-6004H using
the ROM subroutine FPATHL (09CBH).

Double Precision

Table 6-3 lists the five Level IT BASIC ROM subroutines that you
can use in your assembly-language programs to perform double-
precision arithmetic operations. These subroutines use the floating-
point accumulators FPA1 and FPA2 for both operands and the
result. For all double-precision arithmetic operations the first oper-
and must be in FPAl and the second operand must be in FPA2.
The result of a double-precision addition, subtraction, multiplica-
tion, and division is returned in FPAl. However, the result of a
double-precision comparison, like an integer or a single-precision
comparison, is flagged in the A register.

Table 6-3. Double-Precision Arithmetic ROM Subroutines

Function Subroutine Operation Result in

+) ADDITION DBLADD (0C77H) | FPA1 -} FPA2 | FPA1
(—) SUBTRACTION DBLSUB (0C70H)- | FPA1 — FPA2 FPA1
(k)  MULTIPLICATION | DBLMUL (ODATH) | FPAT %k FPA2 FPA1
(/) DIVISION DBLDIV (NDE5H) | FPA1 |/ FPA2 | FPAI

(<,=,>) COMPARISON DBLCMP (0A78H) | FPA1 < FPA2 | A = -1 (01H)

FPAT > FPA2 A = —1 (FFH)

FPA1 — FPA2 A= 0 (O0H)

Enter the program shown in Example 6-3 using T-BUG and
execute it. Then enter the double-precision number 1234.56789 when
the first “?” prompt appears. Enter 9876.54321 when the second
“?” prompt appears. When the T-BUG prompt “#” reappears, use
T-BUG’s command and inspect the content of the A register, which
contains the flag that indicates whether operand A is less-than,
greater-than, or equal-to operand B. In this example, operand A is
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Example 6-3. Program To Compare Two Double-Precision Numbers.

Mnemonic/

Addr Op-Code Label Operand Remarks

5000 CD 30 50 A CALL INPUT ;input operand A

5003 CD EC OA CALL SETDBL NTF1=8=# bytes to
move

5006 21 1D 41 LD HL411DH ;from FPA1

5009 11 00 60 LD DE,6000H ;to 6000H

500C cb D2 09 CALL HLTODE ;store A at 6000H

500F CD 33 50 B CALL INPUT ;input operand B

5012 CD EC OA CALL SETDBL NTF1=8=# bytes to
move

5015 21 1D 41 LD HL,411DH ;from FPA1

5018 11 27 4 LD DE,4127H ;to FPA2

5018 ch D2 09 CALL HLTODE ;move B into FPA2

501E CD EC OA CALL SETDBL iNTF1=8=4# bytes to
move

5021 21 00 60 LD HL,6000H ;from 6000H

5024 11 1D 41 LD DE,411DH sto FPA1

5027 Cb D2 09 CALL HLTODE ;move A into FPA1

502A CD 78 O0A COMPAR CALL DBLCMP ;compare A and B

502D C3 A0 43 END JP T-BUG ;return to T-BUG

5030 cbhb C9 01 INPUT CALL ClS ;clear screen

5033 CD B3 1B CALL QINPUT ;kybd scan and display

5036 23 INC HL ;

5037 Ch 6C OE CALL ASCBIN ;ASCH to binary

503A C3 DB OA JP CDBL ;convert to DBL

1234.56789 and operand B is 9876.54321, or A< B, so the A register
should contain the value 01H. To verify this, you simply press the
R key and T-BUG will display the current contents of the registers;
and the A register does indeed contain 01H, the “less-than” flag.

The 15 Level II BASIC ROM subroutines that you can use to
perform integer, single-precision, or double-precision arithmetic
operations in your assembly-language programs are summarized
in Table 6-4. Integer arithmetic supports the numbers from —32,768
to +32,767; single-precision arithmetic handles numbers in the
range —1.701411E+38 to +1.701411E+38; and, double-precision
arithmetic handles numbers in the range —1.701411834544556D+38
to +1.701411834544556D=38.

MATHEMATIC FUNCTIONS

The Level II BASIC ROMs contain 14 subroutines that you
can use in your programs to perform mathematic operations upon
data. These subroutines allow you to calculate the transcendental
value of a variable, determine its sign and magnitude, or raise it to
some power. Transcendental functions include the trigonometric
(SIN, COS, TAN, etc.), logarithmic (log,, and log.) and exponen-
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tial (e¥ and XY) functions. You can also determine whether a
variable is negative, zero or positive, and its absolute value. A
variable can also be raised to any positive or negative power less
than 2127,

The 14 Level II BASIC ROM subroutines that you can use to
perform mathematic operations upon data are:

@ ABS(X)—Absolute value of X, |X|.

® ATN(X)—Arc-tangent of X, angle in radians, TAN—1.
® COS(X)—Cosine of X, angle in radians.

& EXP(X)~Natural (base e) antilog of X, e*.

@ FIX(X)--Truncate value of X to integer.

@ INT(X)-Largest whole number value of X.

@ LOG(X)—Natural (base e) logarithm of X, In X.

® X1Y—Raise X to the Y power, X*.

® RANDOM—Reseed (randomize) the RND(X) function.
® RND(X)—Return random number between 0 and X.
@ SGN(X)—Return sign of X, positive, negative, or zero.
@ SIN (X)—Sine of X, angle in radians.

® SQR(X)--Square root of X, \/X.

® TAN (X)—Tangent of X, angle in radians.

All of these ROM subroutines use single-precision operands and
return single-precision results, except RANDOM, which requires
no operand and returns no result.

TRIGONOMETRIC FUNCTIONS

There are four trigonometric functions contained in the Level II
BASIC ROMs that you can use in your programs: sine, cosine, tan-
gent, and arc-tangent. Table 6-5 lists the ROM subroutines that
you can use in your assembly-language programs to implement
these trigonometric functions. Note that the operands for the sine,
cosine, and tangent subroutines must be in radians, not degrees!
One radian is equal to 57.29577951 degrees (180°/7), and one
degree equals 0.0174532952 radians (7r/180°). The output is re-
turned in FPA1 in single-precision format. Conversely, the ATN(X)
subroutine expects a single-precision operand and returns a single-
precision angle in radians.

To use any of the trigonometric functions, you must load the
operand, in single-precision format, into FPA1l and then call the
appropriate subroutine. The result is returned in FPA1, overwriting
the original operand content, something that you should consider
if the operand might be used more than once.

Example 6-4 inputs an angle in degrees, converts it to radians,
and displays the result on the CRT. It consists of 15 instructions,
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Table 6-5. Level 1i BASIC Trigonometric ROM Subroutines

Input
Function Subroutine in Mathematic Operation® Result in
SIN(X) SIN(X) (1547H) FPA1 Sine of angle X FPA1
COS(X) COS(X) (1541H) FPA1 Cosine of angle X FPAT
TAN(X) TAN(X) (15A8H) FPA1 Tangent of angle X FPA1
ATN(X) ATN(X) (15BDH) FPA1 Arc-tangent to angle FPA1

*Note: All angles in radians, not degrees! All inputs and outpuis in single-precision format.

of which 10 are calls to ROM subroutines! This should give you some
idea of how much can be done using the existing Level II BASIC
ROM subroutines.

This program inputs a number, assumed to be in degrees, using
the ROM subroutines QINPUT (1BB3H), ASCBIN (OE6CH) and
CDBL (0ADBH), and divides the result by the “degrees-per-radian”
constant, 57.29577951, using the mathematic ROM subroutine
DBLDIV (0DE5SH ). Notice that double-precision was used during
both the input (CDBL) and division (DBLDIV) operations to re-
duce round-off errors. The result is converted to single precision
just prior to calling the binary-to-ASCII conversion subroutine,
BINASC (OFBDH).

Example 6-4. Program To Converf Degrees to Radians and Display Resulf.

Mnemonic/
Addr Op-Code Label Operand Remarks
5000 cb ¢ 01 INPUT CALL CLS sclear screen
5003 Cb B3 1B CALL QINPUT ;kybd scan and display
5006 23 INC HL ;
5007 CD 6C OE CALL ASCBIN ;ASCIH to binary
500A CD DB OA CALL CDBL ;convert to DBL
500D CD EC O0A CALL SETDBL iNTF1=8=4# bytes to move
5010 21 2B 50 LD HL,502BH ;from constant
5013 1M 27 41 LD DE,4127H to FPA2
5016 Ch D2 09 CALL HLTODE ;constant into FPA2
5019 CD E5 0D DIVIDE CALL DBLDIV JFPAT/FPA2 —> FPA1
501C CD Bl OA CALL CSNG ;convert to SGL
501F CD BD OF CALL BINASC ;binary to ASClI
5022 21 30 41 LD HL4130H ;set pointer
5025 CD A7 28 CALL OUTLIN ;display until zero byte
5028 C3 B2 02 END JP  SYSTEM ;return to SYSTEM
5028 8D CONST ;57.29577951 in
502C 1B ;double precision
502D E9 Hformat
502E D2
502F EQ
5030 2E
5031 65
5032 86
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The hexadecimal values from 502BH to 5032H represent the con-
stant, 57.29577951, in double-precision format. This number is
loaded into FPA2 by the four instructions at 500DH-5018H, and is
used by DBLDIV (0DES5H) as the divisor operand. Table 6-6 lists
some of the more useful mathematical constants in both single-
precision and double-precision formats.

Example 6-5 illustrates the use of the Level II BASIC ROM
subroutine, COS(X). This program is nothing more than Example
6-4 with one additional instruction, CALL. COS(X). Any number
input is first converted to double precision, divided by the double-
precision constant 57.29577951, and converted into single precision.
Then, the ROM subroutine COS(X) (1541H) is called to calculate
the cosine function of the single-precision quotient that resulted
when the input operand was divided by the “degrees-to-radians”
constant. The resultant cosine value, in single-precision format,
is returned in FPAL1, converted to ASCII, and displayed on the CRT.

Example 6-5. Program To Calculate and Display the Cosine of an Input Angle
in Degrees.

Mnemonic/
Addr Op-Code Label Operand Remarks
5000 ch C9 01 INPUT CALL CLS sclear screen
5003 CD B3 1B CALL QINPUT ;kybd scan and display
5006 23 INC HL ;
5007 CD 6C OE CALL ASCBIN ;ASCIHI to binary
500A CD DB OA CALL CDBL ;convert to DBL
500D CD EC OA CALL SETDBL ;NRF1=8=# bytes to move
5010 21 2E 50 LD HL,502EH from constant
5013 11 27 41 LD DE,4127H ;to FPA2
5016 Ch D2 09 CALL HLTODE ;move constant into FPA2
5019 Cbh E5 0D DIVIDE CALL DBLDIV FPA1/FPA2 - FPA1
501C CD Bl O0A CALL CSNG ;convert to SGL
501F CD 41 15 COSINE CALL COS(X) ;calculate cosine, FPA1
5022 CD BD OF CALL BINASC ;binary to ASCII
5025 21 30 4 LD HL,4130H jset pointer
5028 Ch A7 28 CALL OUTLIN ;display until zero byte
502B C3 B2 02 END JP SYSTEM ;return to SYSTEM
502E 8D CONST ;57.29577951 in
502F 1B ;double precision
5030 E9 ;format
5031 D2
5032 EO
5033 2E
5034 65
5035 86

LOGARITHMIC AND EXPONENTIAL FUNCTIONS

There are four logarithmic and exponential functions that you
can use from Level II BASIC. These four functions and the ad-
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Table 6-7. Level li BASIC Mathematics ROM Subroutines
that Implement Logarithmic and Exponential Functions

Result
Function Subroutine Input in Mathematic Operation in
LOG(X) | LOG(X) (0809H) FPA1 | Natural (base e) logarithm of X, In X | FPA1
EXP(X) | EXP(X)(1439H) FPA1 Natural anti-logarithm of X, eX FPA1
XY X1Y(13F7H) X->BCDE | Raise X to the Y power, XY FPA1
Y-> FPA1
SQR(X) | SQR(X) (13E7H) FPA1 Square root of X, VX FPA1

Note: All inputs and outputs in single-precision format.

dresses of the ROM subroutines are listed in Table 6-7. They allow
you to find the natural (base e) logarithm (LOG(X)), natural
anti-logarithm (EXP(X) ), square root (SQR(X) ), and exponential/
power function (X1Y) of a single-precision variable. Although Level
IT BASIC does not support the use of common (base-10) logarithms,
they can be easily implemented in assembly language, as you will
soon discover.

To use any of these logarithmic or exponential ROM subroutines,
except X1Y, you must load the operand, in single-precision format,
into FPA1L and then call the desired subroutine. The result is re-
turned in FPA1 in single-precision format, overwriting the original
operand. For instance, Example 6-6 calculates and displays the
natural logarithm (log. X) of any positive number entered (loga-
rithms of negative numbers are undefined ).

Example 6-6. Program To Calculate and Display the Notural Logarithm of a
Number Less-Than 1.701411835D + 38 (2'?7).

Mnemonic/
Addr Op-Code Label Operand Remarks
5000 Ccb C9 01 INPUT CALL CLS ;clear screen
5003 CD B3 1B CALL QINPUT ;kybd scan and display
5006 23 INC HL H
5007 CD 6C OE CALL ASCBIN ;ASCH to binary
500A Cch 77 09 CALL ABS(X) ;no negatives allowed
500D CD Bl OA CALL CSNG ;convert to SGL
5010 CD 09 08 LOG CALL LOG(X) Afind In X
5013 CDh BD OF CALL BINASC ;binary to ASCII
5016 21 30 41 LD HL 4130H ;set pointer
5019 Ch A7 28 DISPLA CALL OUTLIN ;display until zero byte
501C C3 B2 02 END JP  SYSTEM ;return to SYSTEM

To use the X1Y subroutine, load X (the base) into the BC and
DE register pairs, in single-precision format, and load Y (the
exponent ) into FPAL in single-precision format. The single-precision
result is returned in FPAl. Note that a fatal error back to Level 11
BASIC occurs when: (1) the base is negative and the exponent is
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not a whole number, (2) the absolute value of the result exceeds
single-precision capacity (227 ~ 10%), or (3) the base is zero and
the exponent is negative.

The ROM subroutine that implements the exponential function,
X1Y, deserves special attention. Not only does it allow you to
raise a number (base) to a power (exponent), it also enables
you to calculate the common anti-logarithm of a number! This
is possible because the anti-logarithm of any number is simply
the base (10 for common logarithms) raised to the logarithmic-
power (10%&0* = X! This means that if you substitute the number
10 as a constant for the base (X) and enter a common logarithm
as the variable for the exponent (Y) in the function X1Y, the com-
mon anti-logarithm may be found. But, what good is a common
anti-logarithm without first having a common logarithm? Let’s
see .. .. .

The two most used bases for logarithms are base-10 ( common)
and base e (natural), although any base could be used just as
easily. The Level IT BASIC ROMs contain the necessary subroutines
to calculate the natural logarithm of a number, but not the common
logarithm, so we must find some way to express a common logarithm
as a function of a natural logarithm. Luckily, just such a relation-
ship exists:

log, X
log. 10

which states that the ratio of the natural logarithm of X to the

natural logarithm of the constant 10 is the common logarithm of X!
Or,

lOglO X=

logyo X = % (NOTE: 1n = natural logarithm)

which can be simplified by substituting the value representing the
natural logarithm of 10 (1n 10 = 2.302585093) into the above equa-
tion. When this is done, we end up with exactly what we were after,
the common logarithm of a number (log;o X) expressed in terms of
a natural logarithm (1n X), divided by a constant:

InX

logio X = 5350535003

which is the basis for the program shown in Example 6-7. This
program consists of the program given in Example 6-6 to find the
natural logarithm of a number, plus instructions to divide by the
constant 2.3025. . . . The result, in single-precision format, is returned
in FPA1 as well as displayed on the CRT.

17



Example 6-7. Program To Calculate and Display the Common (Base 10)
Logarithm of a Positive Number.

Mnemonic/
Addr Op-Code Label Operand Remarks
5000 cb C9 ol INPUT CALL CLS ;clear screen
5003 CD B3 1B CALL QINPUT ;kybd scan and display
5006 23 INC HL ;
5007 CDh 6C OE CALL ASCBIN ;ASCIL to binary
500A ch 77 09 CALL ABS(X) ;no negatives allowed
500D CD Bl OA CALL CSNG ;convert to SGL
5010 cCD 09 08 LN X CALL LOG(X) find In X
5013 CD EF OA CALL SETSGL ;NTF1=4=# bytes to move
5016 21 31 50 LN 10 LD HL,5031H sfrom constant @ 5031H
5019 11 27 4 LD DE4127H ;to FPA2
501C cD D2 09 CALL HLTODE ;constant into FPA2
501F CD BF 09 CALL FPAREG ;tn X into BCDE
5022 Cch A2 08 DIVIDE CALL SGLDIV An X/In 10 — FPA1
5025 Cb BD OF CALL BINASC ;binary to ASCII
5028 21 30 41 LD HL,4130H ;set pointer
502B CD A7 28 DISPLA CALL OUTLIN ;display until zero byte
502E C3 B2 02 END JP  SYSTEM ;return to SYSTEM
5031 8E CONST ;1n 10 (2.302585093)
5032 5D ;in single precision
5033 13 ;format

5034 82 F

Using the ROM subroutine XtY (13F2H), you can also calculate
the power- and exponential functions of a number. To find the
“power” of a number, remember that the base is the variable and
the exponent is a constant (X¢), where C is some constant. Con-
versely, to determine the “exponential” of a number, remember that
the exponent is the variable and the base is a constant (CX), where
C is some constant. With this and the logarithmic relationship
described above, you can determine any base logarithm and anti-
logarithm that you desire.

The square root function is implemented by loading a single-
precision operand into FPAl and calling the ROM subroutine
SQR(X) (13ETH). The result is returned in FPA1 in single-preci-
sion format. Note that only positive operands are accepted, other-
wise a fatal error back to Level II BASIC occurs. To eliminate
this problem you can simply ensure that only positive operands reach
the SQR(X) subroutine by placing the ROM subroutine ABS(X)
(0977H) in your program between the input portion of your pro-
gram and the call to SQR(X). This will convert all operands to
positive numbers and eliminate the mistake of trying to take the
square root of a negative number.

To find a “root,” other than the square root (/X), of a number,
you can use the versatile X1Y subroutine. Here, you let X be the
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number that you wish to find the root of, and let Y be the reciprocal
of the root that you wish to extract. For instance, to find the cube

root (\/X) of a number, X would equal the number you are trying
to extract the cube root of, and Y would equal 1/3, or 0.3333333

(¥/X = X% = X03333833)  Similarly, you can extract noninteger
roots in the same manner, just let Y equal the reciprocal of the root
that you wish to extract.

SIGN AND MAGNITUDE FUNCTIONS

You have already seen three of the four sign and magnitude
functions that you can use from the Level II BASIC ROM sub-
routines. They are: absolute value of a variable, ABS(X); truncate
the decimal, FIX(X); and, largest whole number, INT(X). These
have been discussed earlier because of their wide applicability.
The only remaining function is the sign function, SGN(X), which
returns the value —1, 0 or +1, representing, respectively, that the
input operand is negative, zero or positive. These values are re-
turned in the integer-area of FPAl (and in the HL register pair).
The four sign and magnitude ROM subroutines that you can use
are listed in Table 6-8.

RANDOM FUNCTIONS

Level II BASIC contains two random number functions, RAN-
DOM and RND(X). These functions perform, respectively, a re-
seeding or “randomization” of RND(X), and the generation of a
pseudo-random integer number between one and X. The subroutine
that implements RANDOM (01D3H) requires no operand. It simply
copies the current contents of the R (memory refresh) register in
the Z-80 CPU chip into memory locations 40ABH-40ACH, changing
the value of the number used to “seed” the subroutine that generates
the random number. The ROM subroutine RND(X) (14CCH) re-
quires an integer operand, X, which is used to establish the “range”
of the pseudo-random integer number generated, from 1 through
X. A fatal error will occur if a number greater than 32767 is used
for X. Typically, the ROM subroutine CINT (OGA7FH) is placed
after RND(X) (14CCH) to convert the output to an integer. Table
6-9 shows these functions and their ROM subroutines.

To use RND(X) in your programs, you must load the HL register
pair with the non-zero integer value of X, in the range 1 to 32767,
and then call RND(X) (14CCH). Assuming CINT (0A7FH) fol-
lows RND(X), the integer result is returned in both the integer-
area of FPAL (4121H-4122H) and the HL register pair.
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Table 6-9. Level Il BASIC ROM Subroutines that Implement
Random Number Generation

Function Subroutine Input in Operation Result in
RANDOM RANDOM (01D3H) (none) Reseed RND(X) (none)
RND(X) RND(X) (14CCH) *HL Random # 1-X FPA1}

Note: *Input operand must be non-zero integer.
fResult returned is single-precision; must be converted to integer before using.

Although the actual procedures and programming are beyond
the scope of this book, you can modify any of these ROM subrou-
tines to yield precisions greater than are now produced, such as
double-precision trigonometric and logarithmic functions, etc. To
do this you will need to disassemble and study the ROM sub-
routine(s) that actually perform the function that you wish to
extend the precision of. Use the address listed for the subroutine as
a starting place to begin your disassembly. It wont be easy, but
it can be done!

In most cases, the single-precision results produced by the Level
IT BASIC arithmetic and mathematic ROM subroutines are more
than adequate. However, to ensure the highest accuracy possible,
you should perform all computations prior to the limiting arith-
metic or mathematic function subroutine in double precision, and
then convert to single precision just before calling the function.

REVIEW EXERCISES

1. ‘Write a program to multiply two integer numbers and store the product at
6000H.

. What must be done to Example 6-2 to add, instead of subtract, the two single-
precision numbers?

. Write a program to calculate and display the tangent of an angle in radians.

. Modify the program in Exercise 3 to accept angles in degrees.

. Write a program to simulate the conditional three-way branch ( +,0,— ) used
in FORTRAN and BASIC using the SIGN(X) function.

GU o [
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CHAPTER 7

Cassette, Printer, and
Port 1/O

A computer without data is useless. Without some means of
accepting and returning information to the outside world, a com-
puter would serve no useful purpose, it would simply be a do-
nothing box of microelectronics, because the very purpose of a
computer is data handling. In fact, by definition, a microcomputer
must contain a central processing unit, memory, and input/output,
or it is not a computer. The function of input and output (I/0O)
is to interface the computer to the programmer and the outside
world. It allows us to communicate with the computer in the form
of control, programs, and data, and allows the computer to return
results to us in some way that we can understand and use. In this
chapter we will discuss three of the devices that the TRS-80 uses
to perform I/O and some of the Level II BASIC ROM subroutines
that can be used to control these devices.

MEMORY-MAPPED VERSUS PORT-ADDRESSED

The TRS-80 supports two types of I/O, memory-mapped and
port-addressed. Memory-mapped I/O utilizes a specific memory
address for the input and output of data. Examples of memory-
mapped I/O devices that use memory addresses are: the keyboard,
the CRT video display, the disks, and the printer. Port-addressed
1/0 use one (or more) of the Z-80’s 256 input and 256 output port
addresses. Examples of port-addressed devices are the cassette and
part of the video display logic. In this chapter we will discuss the
printer, the cassette, and general-purpose 1/O ports.
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You have already met two of the TRS-80’s four memory-mapped
IO devices, the keyboard and the CRT video display. These are
examples of specialized I/O devices that perform specific I/O
functions. The keyboard is an input-only device which accepts
information from the programmer and passes it to the computer.
The CRT video display is an output-only device which returns in-
formation from the computer to the programmer.

The two remaining memory-mapped devices supported by the
TRS-80 are the disks and the printer. Unlike the keyboard and CRT
video display which are unidirectional I/O devices, the disks and
printer are bidirectional I/O devices which pass data both to and
from the computer. The disks are beyond the scope of this book
and will not be covered. The cassette is also a bidirectional 1/0
device. Thus, in this chapter we will be discussing three of the
TRS-80’s four bidirectional I/O devices: the cassette, the printer,
and general-purpose I/0 ports.

CASSETTE

Up to now, we have discussed only memory-mapped devices, such
as the keyboard and the CRT video display. The cassette, however,
is not a memory-mapped device. It is a port-addressed device that
is accessed through port 255 (FFH). This port also controls the
32-/64-character mode of the CRT video display.

The Level II BASIC ROMs contain subroutines for writing
(SAVE) and reading (LOAD) four different types of cassette tapes.
These four types of tapes are: the BASIC program format created
using the CSAVE statement, the BASIC data format created using
the PRINT#-1 statement, the SOURCE code format created using
the editor/assembler, and the OBJECT (binary) code format
created using T-BUG’s PUNCH command or the editor/assembler’s
ASSEMBLE command.

Because we are discussing how to do assembly-language program-
ming using a monitor/debugging program, such as T-BUG, instead
of using an editor/assembler, we will limit our discussion to the
SYSTEM cassette tape format.

SYSTEM FORMAT

The SYSTEM cassette tape format used in creating object code
(binary) tapes is shown in Table 7-1. The SYSTEM cassette tape
format consists of six identifiers: the leader and sync byte, the
SYSTEM format header byte, the filename, the data block(s), the
end-of-file marker byte, and the entry address.

The leader consists of a string of 256 zeros followed by the
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sync byte consisting of the symmetrical bit pattern, 10100101 (A5H).
The string of 256 zeros is used to “synchronize” the tape-reading
subroutine with the output from the cassette, and thus compensate
for small fluctuations in tape speed. The ASH sync byte signals
the tape-reading subroutine that the leader has ended and data
follows.

Table 7-1. TRS-80 SYSTEM Cassette Tape Format

LEADER (256 zeros) = SYNC BYTE (A5H)
55H—SYSTEM FORMAT HEADER BYTE
XX XX XX XX XX XX—6é character FILENAME
3CH—Data Block Header Byte
XX-—Data Block Length (00H = 256 bytes)
Nl\-gg} Loading Address
XX...XX—Data bytes
XX—Checksum (load address = data)
78H—END-OF-FILE (EOF)

LSB e\TRY ADDRESS
MSBJ

Following the sync byte is the SYSTEM format header byte
(55H). This format header byte tells the tape-reading subroutine
that the data was recorded using the SYSTEM format (the other
tape formats have their own format header byte codes). Next,
comes the filename (XX XX XX XX XX XX), consisting of a six-
character string of ASCII values, used to “name” the file. ALL six
characters must be filled, either with a valid character or with
blanks (20H).

After the filename comes the data block header (3CH) that serves
as a “marker” to indicate the beginning of each block of data. It is
followed by the data length byte (XX) which indicates the num-
ber of bytes of data contained in this particular block of data
(00H = 256 bytes). This byte is usually set to 00H for all but the
last data block, so that the maximum number of data bytes (256)
will be recorded per data block, although any number from 1 to
256 may be used. Then comes the two-byte loading address (LSB/
MSB) that specifies the starting address in memory where this
block of data is to begin loading. This is followed by the data block
(XX ...XX) that consists of the actual data bytes stored in con-
secutive, ascending order (referenced to the loading address).

The checksum marks the “end” of a data block, and is the “sum,”
without carry, of the two load address bytes (LSB/MSB) plus
each of the data bytes in that data block. For example, if the load
address is 5000H and the data bytes are 00, 01, 02, 03, 04, and FF,
then the checksum will be 59H. You can easily verify this by adding
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all of the bytes like this: 50 4+ 00 + 00 + 01 + 02 + 03 + 04 + FF =
(01)59H. But, remember, the carry IS NOT used.

The sequence of “data header/data length/loading address/data
block/checksum” is repeated as many times as necessary until the
complete program has been recorded. To mark the “end” of the
SYSTEM tape format, an end-of-file (EOF) byte (78H) is recorded,
followed by the entry address (LSB/MSB) of the program being
recorded.

Cassette Subroutines

The Level II BASIC ROMs contain seven subroutines that you
can use to control the cassette. Using these subroutines allows you
to write your own programs to read or write SYSTEM format tapes.
Let’s look at these seven cassette subroutines in closer detail.

CALL 0212H DEFCAS: defines the drive (cassette) and turns motor ON. Content
of A register specifies which cassette: A = 0 for cassette #1, or A = 1
for cassette #2; uses all registers, all saved.

CALL OTF8H CASOFF: turns cassette in operation OFF; uses A register, contents
not saved.

CALL 0287H WRLDR: writes leader and A5SH sync byte to cassette in operation; uses
all registers, contents of A register not saved.

CALL 0296H RDLDR: reads leader and A5H sync byte and displays the two
asterisks (**) in the upper-right-hand corner of the CRT video display
upon completion; readies tape-reading subroutine for data input; uses
all registers, saves all contents.

CALL 0264H WRBYTE: writes a byte of data contained in the A register to the cas-
sette in operation; uses HL, BC, and DE register pairs in addition to the
A register, all saved, except A register.

CALL 0235H RDBYTE: reads a byte of data from cassette into the A register; uses and
saves all registers.

CALL 0314H RDADDR: reads two consecutive bytes from cassette and places them
into the HL register pair in LSB/MSB order; uses HL, and A registers
only.

There is one other subroutine that you might find useful, BLSTAR
(022CH). Although this subroutine does not control cassette opera-
tion, it provides a means for “blinking” the asterisks (stars) to
indicate when reading or writing is occurring:

CALL 022CH BLSTAR: alternately “blinks” the right asterisk of the two asterisks
displayed by RDLDR (0296H); uses A register only, not saved.

Timing
Normally, you do not have to worry about timing when using
any of these cassette read or write subroutines, because the timing

is automatic. All that you must do is ensure that they are called often
enough to keep up with the cassette’s 500-baud data rate.
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How often is often enough? Well, if you call a cassette read
or write subroutine too soon, nothing happens, because the subrou-
tine simply waits until the timing is correct before performing any
additional operations. But, if you call a cassette read or write
subroutine too late, you'll end up with “scrambled” data, because
the timing will be out-of-sync. Calling a cassette read subroutine
too late results in missed data, because the data on the tape will
have already passed the recorder’s playback head by the time the
subroutine is ready to accept data. This generally produces a
“checksum error.” Calling a cassette write subroutine too late re-
sults in a loss of synchronization, from which there is no recovery.
When this occurs, your only recourse is to shorten the time between
calls and do the recording over.

To gain some idea of how late is too late, you can divide the
time available between data pulses by the time required to execute
a typical instruction. The cassette’s 500-baud data rate means that
there are 2000 microseconds between sync pulses, but only 1000
microseconds between a sync pulse and a data pulse. And, as you
will recall, the typical Z-80 instruction takes about 4 microseconds,
so approximately 250 individual instructions can be executed be-
tween a sync pulse and a data pulse. Remember to include the
number of instructions within the called cassette read or write ROM
subroutines!

Unless you are processing data in real-time, timing is usually
not a problem; it takes very little time to transfer data between
the cassette read or write subroutines and the memory locations.
However, when you are handling data in real-time and are at-
tempting to perform lengthy calculations between reading and
writing, you can run into problems. Usually this occurs when per-
forming arithmetic or mathematic operations since they take quite
a bit of time to execute. When this occurs, you must either simplify
and shorten the processing, or postpone it until later.

Cassette Read (CDUMP) Example

The program shown in Example 7-1 makes use of three of the
Level II BASIC’s cassette ROM subroutines: DEFCAS (0211H),
RDLDR (0296H) and RDBYTE (0235H); to define the cassette
and turn the motor ON, read the leader and sync byte, and read a
byte of data.

This program will read-in any cassette tape (BASIC program,
BASIC data, SOURCE, or SYSTEM) and dump the tape contents,
byte for byte, into memory beginning at address 6000H. Using this
program, you can examine the actual format of a SYSTEM tape,
such as T-BUG. To do this, first enter the example program into
memory, and then clear memory locations 6000H-600AH by entering

126



Example 7-1. CDUMP Program.

Mnemonic/
Addr Op-Code Label Operand Remarks
5000 Cb 12 02 cDumpP CALL DEFCAS ;CASS#H1 ON
5003 CD 9 02 CALL RDLDR ;LEADER & SYNC BYTE
5006 21 00 60 LD HL,6000 ;DUMP ADDRESS
5009 CD 35 02 BYTE CALL RDBYTE ;READ A BYTE
500C 77 ID (HL),A ;STORE IT
500D 23 ING HL ;NEXT ADDRESS
500E C3 09 50 JP BYTE ;ANOTHER BYTE

zeros. Insert the T-BUG copy tape into the recorder and press the
PLAY button; nothing should happen. Now, execute the program
by jumping to its starting address. The cassette will start run-
ning. The appearance of the two asterisks (**) in the upper-right-
hand corner of the display indicates that the leader and sync byte
have been read. Wait about 20-25 seconds after the “stars” (as-
terisks) appear and then press the RESET button. Because the
length of a cassette tape program is not always known, this simple
program is designed to read “forever.” Thus, you must use the
RESET button to regain control after the program has been read-in.
The cassette will now stop and control will be returned to BASIC.

To get back to T-BUG, type and enter SYSTEM and /17312.
Now, let’s examine the contents of memory locations 6000H-64C7H.
At location 6000H you will find 5H, the SYSTEM format header
byte. It is followed by the six ASCII values 54 42 55 47 20 20, which
represent the filename T-BUG}% () = blank, 20H). Next, you will
see 3CH, the data header byte that marks the start of each data
block. Then you will see the data length byte, 00H, indicating a
data block length of 256 bytes. At addresses 6009H-600AH you
will find the loading address, 4380H (first address in T-BUG), for
this data block. At address 600BH you see the first byte of data,
EDH, which is the first byte of the T-BUG program. To verify
this, use the T-BUG M command and inspect the content of memory
location 4380H. You will find that it does indeed contain EDH.

To find the “end” of the first data block, add 100H to the address
of the first byte of data (600BH + 100 = 610BH). There you will
find the last byte of data (B9H) in the first data block. It is fol-
lowed by another data header byte (3CH), which signals the be-
ginning of another data block. This sequence repeats every 261
bytes (256 bytes of data plus 6 bytes of format) until the program
is complete. Note that the last data block can. be any length from
1 to 256 bytes. This is done automatically by the program that
creates the SYSTEM tape.

Skipping ahead to memory location 64C4H, you will find the
last byte of data (FDH) in the T-BUG program. It is followed by
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the end-of-file (EQF) byte (78H) and the entry address bytes
(4380H ). CDUMP is a very useful program that you can use with
any format tape. Try it with a short BASIC program tape and see if
you can determine the format used by BASIC program cassette
tapes.

Cassette Write (CWRITE) Example

The program shown in Example 7-2 illustrates how you can use
the cassette ROM subroutines to write data onto a cassette tape.
This example program, called CWRITE, performs a simple memory
dump to a cassette tape, of the content of all memory locations

Example 7-2. CWRITE Prograum.

Mnemonic/

Addr Op-Code Label Operand Remarles

5000 chD C9 01 CALL CLS JCLEAR SCREEN

5003 CD 39 50 START CALL ADDR ;GET STARTING ADDRESS
5006 E5 PUSH HL ;START TO STACK
5007 CD 39 50 END CALL ADDR ;GET ENDING ADDRESS
500A D1 : POP DE ;START INTO DE

500B ED 52 LENGTH $3C HL,DE ;JLENGTH=HL-DE

500D 23 INC HL SLENGTH+1

500E 23 INC HL SLENGTH+1

500F D5 PUSH DE ;START TO STACK
5010 E5 PUSH HL SLENGTH TO STACK
5011 cCD 12 02 CASSON CALL DEFCAS ;CASS#1 ON

5014 CD 87 02 CALL WRLDR ;WRITE LEADER & SYNC
5017 D1 POP DE ;LENGTH INTO DE
5018 78 LD AE ;LSB INTO A-REGISTER
5019 CD 64 02 CALL WRBYTE SWRITE T

501C 7A LD AD ;MSB INTO A-REGISTER
501D CD 64 02 CALL WRBYTE JWRITE 1T

5020 El POP HL ;START INTO HL

5021 7D D AL ;LSB INTO A-REGISTER
5022 CD 64 02 CALL WRBYTE JWRITE 1T

5025 7C LD AH :MSB INTO A-REGISTER
5026 CD 64 02 CALL WRBYTE JWRITE T

5029 7E DATA LD A, (HY) ;DATA INTO A-REGISTER
502A CD 64 02 CALL WRBYTE ;WRITE DATA

502D 23 INC HL ;NEXT ADDRESS

502E 18 DEC DE SLENGTHA1

502F 78 LD AE ;E INTO A-REGISTER
5030 B2 OR AD ;E-OR-D

5031 20 Fé JR NZ,DATA ;NZ=ANOTHER BYTE
5033 CD F8 O CALL CASOFF ;CASSETTE OFF

5036 C3 A0 43 FINIS JP T-BUG ;RETURN TO T-BUG
5039 CD B3 1B ADDR CALL QINPUT ;GET ADDRESS

503C D7 RST 10H H

503D CD 6C OE CALL ASCINT JCONVERT TO INT
5040 2A 21 41 LD HL4121H ;FPAT INTO HL

5043 Cco RET ;RETURN
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Table 7-2. CWRITE Cassette Tape Fermat

LEADER (256 zeros) & SYNC BYTE (A5H)

LSB)
NG
msB FILELENGTH

LSB STARTING ADDRESS
MSB [

XX...XX DATA BYTES

between a starting address and an ending address. The contents of
these memory locations are written onto the cassette as a single,
continuous file. CWRITE is NOT campatible with the SYSTEM
format.

The format of CWRITE is shown in Table 7-2 and consists of
the normal SYSTEM tape header (256 zeros) and sync byte (A5H),
followed by a two-byte filelength (LSB/MSB), a load address
(LSB/MSB), and the actual data file. No other format data, such
as filename, checksum, or end-of-file, are used. The two-byte file-
length permits up to 65535 bytes to be recorded at one time vs
the maximum number of 256 bytes used with the SYSTEM format.

CWRITE allows you to write onto cassette tape any number of
bytes (up to 65535) from any portion of memory. To use CWRITE,
set the cassette recorder to RECORD, execute CWRITE by jump-
ing to its starting address (5000H) and enter the STARTING ad-
dress followed by the ENDING address (both in decimal).

Upon execution, CWRITE clears the CRT video display and dis-
plays the “?” prompt, indicating that it is ready to accept the
STARTING address. Then a second “?” prompt is displayed below
the first, indicating that CWRITE is ready to accept the ENDING
address. The cassette recorder will then start and the contents of
memory from the starting address through the ending address are
written to the cassette tape.

CWRITE functions in the following manner: First, the CRT is
cleared by calling the ROM subroutine CLS (01C9H ). Then. sub-
routine ADDR is called which accepts the starting address input
from the keyboard using the ROM subroutine QINPUT (1BB3H).
RST 10H sets the C flag. ASCINT (OE6CH) converts the ASCII
input from the keyboard to integer and stores the result in FPA1
(4121H-4122H) which is then loaded into the HL register pair.
Upon return, HL is pushed onto the stack. This sequence is repeated
for the ending address. The starting address is then retrieved from
the stack and subtracted from the ending address, and 2 is added to
the result to obtain the actual filelength. Then, both the starting
address and the filelength are pushed onto the stack. The cassette
drive is then specified and the motor is turned ON using the ROM
subroutine DEFCAS (0212H), followed by the leader and sync
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bytes being written onto the tape using WRLDR (0287H). The
filelength (followed by the starting address) is then retrieved from
the stack and written (LSB first, MSB second) onto the tape. Next,
the HL register pair, which contains the starting address, is used
as a pointer to load the first byte of data from memory into the A
register. Subroutine WRBYTE (0264H) is called to write the data
byte onto the tape. The HL register pair is then incremented to
the next memory location, and the filelength (DE register pair)
is decremented by one. The A register is then loaded with the con-
tent of the E register, which is then ORed with the content of
the D register. If the result is not zero, another byte of data is
fetched from memory and recorded, otherwise subroutine CASOFF
(01F8H) is called to turn the cassette OFF, and control is returned
to T-BUG.

CWRITE allows you to write programs, data and contents of
ROM to tape, but it’s not much use without some means of getting
the previously recorded information back again. So, let’s investi-
gate the use of the ROM subroutines to read tapes written by
CWRITE.

CREAD Example

The program shown in Example 7-3, called CREAD, is the com-
plement of CWRITE; it reads the tapes written by CWRITE.

Example 7-3. CREAD Program.

Mnemonic/

Addr Op-Code Label Operand Remarks
5000 Cb 12 02 CALL DEFCAS ;CASS#1 ON

5003 CD 96 02 CALL RDLDR ;LEADER & SYNC BYTE
5006 CD 14 03 CALL RDADDR ;GET LENGTH IN HL
5009 E5 PUSH HL ;STORE ON STACK
500A CD 14 03 CALL RDADDR ;GET START IN HL
500D D1 POP DE ;LENGTH IN DE
500E Cb 35 02 DATA CALL RDBYTE ;READ A BYTE

5012 77 LD (HL),A ;STORE IT

5013 1B DEC DE LENGTH-1

5014 23 INC HL ;NEXT ADDRESS
5015 7B LD AE ;E INTO A-REG
5016 B2 OR AD ;E-OR-D

5017 20 F6 JR NZDATA ;NZ=NOTHER DATA
5019 CD F8 01 CALL CASOFF ;CASSETTE OFF
501C C3 A0 43 END JP T-BUG ;RETURN TO T-BUG

It uses the cassette ROM subroutines, DEFCAS (0212H), RDLDR
(0296H), RDADDR (0314H), and RDBYTE (0235H), and func-
tions as follows: The ROM subroutine DEFCAS (0212H) defines
the cassette drive and turns the motor ON, and RDLDR (0296H )
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reads the leader and sync bytes, and displays the two stars on the
CRT. Then, RDADDR (0314H) reads the two consecutive bytes
that comprise the filelength from the tape and loads them into the
HL register pair, from which they are pushed onto the stack for
temporary storage. RDADDR (0314H) is called again to read the
two consecutive bytes that comprise the starting address from the
tape and loads them into the HL register pair. The filelength is
popped from the stack into the DE register pair, and RDBYTE
(0235H) reads the first byte of data from the tape into the A regis-
ter. This is then stored in memory using the HL register pair
(starting address) as a pointer. The DE register pair is then decre-
mented by one and the HL register pair is incremented by one to
point to the next memory location. Finally, a test is made to see if
the contents of the DE register pair (filelength) is zero using the
same technique described in CWRITE.

PRINTER

Unlike the cassette which is port-addressed, the printer is a
memory-mapped I/O device. That is, it receives and transmits data
by using a 16-bit memory address. In the TRS-80, this address,
called LPADDR (37E8H), is located above the BASIC ROMs,
but below the keyboard, CRT video display memory, and read/
write memory (RAM) addresses. Data are passed both ways through
this address. The printer outputs the ASCII value 3FH (“?”) to
the TRS-80 when it is ready to accept another character. When the
computer detects this “?” the content of the A register is output to
the printer through the memory address, LPADDR (37ES8H). This
is called “handshaking.”

The Level IT BASIC ROMs contain three subroutines that can be
used to control the printer. They are the printer status subroutine
LPSTAT (05D1H), the send byte to printer subroutine LPBYTE
(033BH), and the send byte and update line position subroutine
LPNCHR (039CH). Let’s look at each of these subroutines:

CALL 003BH LPBYTE: sends the content of the A register to the printer via the C
register; maintains a line count (number of lines printed) at address
4029H; content of DE register pair destroyed.

CALL 039CH LPNCHR: sends the content of the A register to the printer; maintains
a line position (number of characters printed so far) at address 409BH;
content of DE register pair saved.

CALL 05DTH LPSTAT: tests the printer status at LPADDR (37E8H) and returns the
result in the F register: printer is “ready” if the Z flag is set (Z = 1), or
“busy” if reset (Z = 0).

The use of these subroutines will greatly simplify the task of writing
assembly-language programs that utilize the printer for I/O. How-
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ever, you do not always have to use these subroutines as you will
see in the following example.

JKL LPRINT Printer Example

The program shown in Example 7-4 is called JKL. LPRINT and
illustrates how data can be read from the CRT video display and
sent to the printer. It was written by Robert Richardson (author,
Disassembled Handbook for TRS-80) and Bryan Mumford (co-
author, Inside Level II) and provides the nondisk user with the
ability to print out the content of the video display to the printer
by simultaneously pressing the J, K, and L keys. This program makes
use of many of the points that we have discussed; such as the
multiple-key entry from the keyboard discussed in Chapter 4, and
the exchanging of the working and complement registers to preserve
their contents when interrupting normal program operation.

Enter the program using T-BUG, but DO NOT execute it! In
order for the JKL program to function, we have to “link” it to
some other operation or function that the TRS-80 performs fre-
quently. Thus, the JKL program must be linked to the video soft-
ware that updates the video display. Since the address of the video
display subroutine is stored in memory locations 401EH and 401FH,
the starting address of JKL must be stored in these memory loca-
tions. At the end of the JKL program, the Z-80 has to jump to the
normal video display subroutine, so that the video display operations
are performed normally. The actual linking of the JKL program
to the video subroutine is done by using the M command and
changing the contents of 401EH-401FH from 0458H to 7D00H, the
beginning address of JKL.

That’s all there is to it! JKL is now operational. It resides quietly
in memory until you call it into action by simultaneously pressing
the J, K, and L keys. When this is done, it directs the contents of
the video memory to the printer to produce a hardcopy of whatever
is on the screen (no graphics, however). You can terminate the
printing at any time by simply pressing the SPACEBAR. Let’s
see how the JKL program operates.

First, the AF and AF’ and the working and complement registers
are swapped to preserve the contents of the interrupted program.
Then the address of the 'H 1] K L M N O’ keyboard row is tested
for an input value of 28 (J + K+ L =4 + 8 + 16 = 28). If it IS
NOT 28, then the registers are all swapped back, and control is
passed back to the video driver routine (0458H ). If the input value
IS 28, program control continues as follows: The HL register pair
is loaded with 3CO0H, the first address of the video display memory.
The DE register pair is loaded with 10H (16 decimal ), the number
of rows in the video display, and the BC register pair is loaded
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Addr

7D00
7D01

7D02
7D05
7D07

7D09

7D0C
7DOF
7D12

7D15

7D16
7D19

7D1C
7D1E
7D20

7D21

7D22

7D24

7D27
7D29
7D2C

7D2D

7D2F
7D31

7D34
7D36
7D38
7D39
7D3C
7D3E
7D41

7D42
7D43

Op-Code

08
D9

3A
FE
20

21

11
01
cp

7E

32
3A

FE
28
23

oD

20

cb

3E
32
1D

20

18
3A
FE
20
ce
CD
3E
32
08
D9
c3

02
1C
38
00

10
40

E8
40

80
19

EE
31

ob
E8
EO
08
E8
3F
F9
31

o]}
E8

48

38

3C

00
7D

37
38

7D

37

37

7D

37

04

Example 7-4. JKL LPRINT Program.

Label

LOOP1
LOOP2

TEST

out

RETURN

Mnemonic/
Operand

EX AFAF
EXX

LD A,3802
Cp 1C
JR NZ,RETURN

LD HL,3000

LD DE, 0010
LD BC,0040
CALL TEST

LD A/(HL)

LD (37E8)A
LD A,(3840)

Ccp 80
JR Z,0UT
INC HL

DEC C
JR NZ,LOOP2
CALL TEST

LD A,0D
LD (37E8),A
DEC E

JR NZ,LOOP1

JR OUT

LD A,(37E8)
CP 3F

JR NZTEST
RET

CALL TEST
LD AOD

LD (37E8)A
EX AFAF
EXX

JP 0458

Remarks

;SWAP ALTERNATE REGISTER
;SWAP ALTERNATE
REGISTERS

;JKL KEYBOARD ROW

;JKL PRESSED=28 DECIMAL
;RETURN NORM VIDEO
NOT 0

;1ST VIDEO CHARACTER
MEM

;NUMBER OF VIDEO LINES
;VIDEO CHARACTERS/LINE
;CHECK FOR PRINTER
READY?

;1ST VIDEO CHARACTER TO
A

;OUTPUT CHAR TO PRINTER
;KYBD LINE WITH
SPACEBAR

;SPACEBAR PRESSED = 128
;GOTO 'OUT’ IF ZERO
;ADD +1 TO VIDEO
LOCATION

;MINUS 1 TO CHAR
COUNTER

;GOTO NEXT CHAR NOT
ZERO

;CHECK FOR PRINTER
READY?

;ODH = CARRIAGE RETURN
;DO IT!

;MINUS 1 TO LINE
COUNTER

;START ON NEXT LINE
NOT 0

;QUICK EXIT IF DONE
;PRINTER READY = 3FH = ?
;1S IT 3F?

;LOOP TILL PRINTER READY
;RETURN — LINE AFTER CALL
;IS PRINTER READY ?

;0DH = CARRIAGE RETURN
;DO IT!

;RETURN ORIG REGISTER
;RETURN ORIG REGISTERS
;GOTO STD VIDEO ROUTINE

Courtesy Richcraft Engineering Ltd.

with 40H (64 decimal), the number of characters per line in the
video display.
At this point, a call is made to the TEST subroutine within the
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JKL program to check the status of the printer. If the printer is
“ready” it outputs a “?” character (3FH) through the printer ad-
dress, 37ESH, so program execution continues. However, if the
printer is not ready, a loop is executed until it IS ready, and then
program execution continues (hence a printer MUST be connected
to the TRS-80 or “lock-up” will occur).

Program execution continues with a byte of data from the video
display memory being sent to the printer, followed by the keyboard
(address 3840H) being tested for an input value of 128 (spacebar).
If this value is found, program control branches to the OUT sub-
routine within the JKL program where a carriage return (CR, 0DH)
is sent to the printer to terminate the current line in print, and an
exit is made back to the video driver routine after all of the registers
have been swapped back. If the spacebar has NOT been pressed,
another byte of data is copied from the video display memory into
the A register and sent to the printer. This sequence continues
until one of two conditions are met: (1) all of the video display
memory contents have been sent to the printer, or (2) the space-
bar is pressed and the printing is terminated.

As you can see, this program does not use any of the ROM sub-
routines mentioned earlier. Also, the manner in which the status
of the printer is continually tested until a “ready” is received is
worth noting. This technique will be necessary for just about all
printer output programs that you may write. Using JKL lets you
make a hardcopy of your assembly-language programs for both
debugging purposes and for documentation—by simply pressing the
JKL keys.

PORT I/0O

There are no Level II BASIC ROM subroutines that directly
support the input and output of data through the ports (except
the cassette) because port 1/O is very simple. However, the Z-80
instruction set does contain 24 instructions that perform port I/0O
—12 input port instructions and 12 output port instructions. These
instructions control the passage of data between the ports and the
Z-80’s internal registers.

Although there are only 256 port addresses (00H-FFH), you
really have 512 ports available, because each port can be addressed
as either an input or as an output. Thus, each port may be ad-
dressed separately to provide 256 input-only ports and 256 output-
only ports, or in combination to provide 256 input/output ports.
The first port is port 0 (00H) and the last port is port 255 (FFH).
In the TRS-80, only port 255 is used (for the cassette and video),
leaving the remaining 255 unused port addresses for you to use
as you wish.
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To use the Z-80’s ports, you will need additional hardware and
interfacing to decode the digital address and control signals from
the computer; however, the design and construction of this hard-
ware and interfacing is beyond the scope of this book and will not
be covered. For specific information on this subject, you are re-
ferred to TRS-80 Interfacing, Books 1 and 2 (Howard W. Sams &
Co., Inc., Indianapolis, IN 46268 ).

INPUT Instructions

The Z-80 instruction set contains 12 instructions that control
the input of data from input ports. These instructions allow you to
specify the movement of data using one of three addressing modes:
immediate, register-indirect, and indirect. The Z-80’s 12 input
port instructions are listed in Table 7-3A; an explanation of each
follows.

IMMEDIATE~IN A,n. In the immediate addressing mode, data
are input from the port specified by the immediate byte, n, and
placed in the A register. Only the A register can be addressed in
this manner.

REGISTER-INDIRECT—IN X,(C). In the register-indirect ad-
dressing mode, data are input from the port specified by the content

Table 7-3. Z-80 Port Input and Qutput Instructions

A. Port INPUT Instruction
ADDRESSING MODE:| MNEMONIC/OPERAND REMARKS

IMMEDIATE IN A,n n = source port

REGISTER-INDIRECT IN X,(C) (C) = source port

X = destination register
(A,B,C,D,E Horl)

INDIRECT INI (HL)(C) input & inc HL, dec B
INIR (HL),(C) | input & inc HL, dec B, repeat
until B =0

IND (HL),(C) input & dec HL, dec B
INDR (HL)(C) | input & dec HL, dec B, repeat
until B = 0

B. Port OUTPUT Instructions
ADDRESSING MODE: MNEMONIC/OPERAND REMARKS

IMMEDIATE OUT n,A n = destination port
REGISTER-INDIRECT ouT (C),X X == source register

(A, B,C,D,EH,orl)
(C) = destination port

INDIRECT OUTI (C),(HL} | output & inc HL, dec B
OTIR (C),(HL) | output & inc HL, dec B, repeat
until B = 0

OUTD (C),(HL)| output & dec HL, dec B
OTDR (C),(HL) | output & dec HL, dec B, repeat
until B = 0
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of the C register and placed into the working register specified
by X, where X may be either the A, B, C, D, E, H, or L register.

INDIRECT—-INX (HL),(C). In the indirect addressing mode,
data are input from the port specified by the content of the C reg-
ister pair. In indirect port input addressing, the HL register pair
specifies where the data are to be stored, the B register specifies
the number of bytes to be input, and the C register specifies the
source port. Indirect addressing is used to load blocks of data from
a port directly into memory. There are four different indirect port
input instructions. These four instructions are specified by the X
character as follows:

Increment (X =1I) — INI (HL),(C). A byte of data is input
from the port specified by the content of the C register and loaded
into the memory location pointed to by the HL register pair; the
HL register pair is incremented by one, and the B register is decre-
mented by one.

Increment and Repeat (X = IR) - INIR (HL),(C). Data are
automatically input from the port specified by the content of the
C register and loaded into the memory locations pointed to by the
HL register pair until the content of the B register reaches zero.
After each data value is input, the HL register is incremented by
one and the B register is decremented by one. The process is
then repeated until the content of the B register is decremented
to zero.

Decrement (X = D) - IND (HL),(C). A byte of data is
input from the port specified by the content of the C register and
loaded into the memory location pointed to by the HL register
pair; the HL register pair is then decremented by one, and the
Be register is also decremented by one.

Decrement and Repeat (X = DR) - INDR (HL),(C). Data
are automatically input from the port specified by the content
of the C register and loaded into the memory locations pointed
to by the HL register pair until the content of the B register
reaches zero. The HL register pair and the B register are each
decremented by one, and the process is automatically repeated
until the B register is decremented to zero.

OUTPUT Instructions

The Z-80 instruction set contains 12 output port instructions that
complement the 12 input port instructions and control the output
of data from the Z-80 to any one of the 256 possible output ports.
Just as with the input port instructions, there are three addressing
modes: immediate, register-indirect, and indirect. These instruc.
tions are listed in Table 7-3B; an explanation of each follows.
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IMMEDIATE—-OUT n,A. In the immediate addressing mode, the
content of the A register is output to the port specified by the im-
mediate byte, n.

REGISTER-INDIRECT—-OUT (C),X. In the register-indirect
addressing mode, the content of the working register specified by
X (A, B,C, D, E, H, or L) is output to the port specified by the
content of the C register.

INDIRECT-OUTX (C),(HL) and OTXX (C),(HL). In the
indirect addressing mode, data are output from the memory location
pointed to by the HL register pair to the port specified by the
content of the C register. In indirect port output addressing, the
HL register pair specifies the memory location where the data are
to come from, the B register specifies the number of bytes to be
output, and the C register specifies the destination port. The four
indirect output port instructions are specified by the X and XX
characters as follows:

Increment (X = I) — OUTI (C),(HL). A byte of data is
output from the memory location pointed to by the HL register
pair to the port specified by the content of the C register, the HL
register pair is incremented by one and the B register is decre-
mented by one.

Increment and Repeat (XX = IR) - OTIR (C),(HL). Data
are automatically output from the memory locations pointed to
by the HL register pair to the port specified by the content of the
C register until the content of the B register reaches zero. The
HL register is incremented by one, the B register is decremented
by one, and the process automatically repeats until the B register
is decremented to zero.

Decrement (X = D) - OUTD (C),(HL). A byte of data is
output from the memory location pointed to by the HL register
pair to the port specified by the content of the C register, the
HL register pair and the B register are each decremented by one.

Decrement and Repeat (XX = DR) - OTDR (C),(HL). Data
are automatically output from the memory locations pointed to by
the HL register pair to the port specified by the content of the
C register until the content of the B register reaches zero. After
each output, the HL register pair and B register are each decre-
mented by one, and the process is automatically repeated until the
B register is decremented to zero.

Hypothetical Example

Because we do not have the necessary hardware to implement
an example which uses the I/O ports, we must assume a hypo-
thetical situation where such a “black box” exists. For example, our
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black box will be a temperature-sensing device which generates an
8-bit digital value in degrees (°C). Our task is to input and convert
the data to degrees Fahrenheit (°F) and display the result on
the CRT.

Example 7-5 shows a program that will input a byte of data from
our hypothetical black box Celsius thermometer, convert that input
to degrees Fahrenheit, and then display the result using many of
the Level II BASIC ROM subroutines that you have studied.

Example 7-5. Hypothetical Port 1/ O Example.

INPUT IN A00 ;GET TEMP FROM PORT O
LD LA ;LSB=TEMP
LD H,00 #MSB=00

LD DE,(XXXX} ;GET 1.8 CONSTANT
CALL INTMUL ;TEMP*1.8 INTO FPA1
LD DE/YYYY) ;GET 32 CONSTANT

CALL CINT ;TEMP*1.8 TO INT
LD HL(4121) ;MOVE TO HL
CALL INTADD ATEMP*1.8)+32
LD AL ;MOVE TO A-REG
CALL CLS ;CLEAR SCREEN
CALL CRTBYT ;DISPLAY IT

JR INPUT ;DO IT AGAIN

Although only a hypothetical example, this program illustrates what
you can do using the Z-80 port I/O instructions and some of the
Level II BASIC ROM subroutines. The mathematical relationship
between temperature measured in °C and °F is:

°C = 555(°F — 32) or °F = 1L§(°C) + 32

REVIEW QUESTIONS

. Describe the difference between a memory-mapped I/0 and a port-ad-

dressed I/0.

How many different ports can you address?

. Theoretically, how many memory-mapped I/0 devices can the Z-80 address?

. What is the purpose of the 3CH byte in the SYSTEM cassette tape format?

Which cassette will be turned ON if the content of the A register is 01H

when ROM subroutine DEFCAS (0212H) is called?

What is the difference between ROM subroutines 0235H and 0314H?

. What happens if a cassette read or write ROM subroutine is called too soon?

. What is the function of the printer’s output of the value 3FH?

What occurs if the printer is sent data, but there is no printer connected?

. What is the function of the B, C, and HL registers in the Z-80 port I/0 in-
structions INIR/INDR and OTIR/OTDR?

Pt
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CHAPTER 8

Putting it All Together

Now that you have an understanding of the TRS-80’s Z-80 micro-
processor and its instruction set, of how to use T-BUG to do
assembly-language programming, of the different areas of the
memory map, and of how to use some of the Level II BASIC ROM
subroutines—it is time that we discussed how to bring everything
together and actually write assembly-language programs.

In this chapter we will discuss some of the tips, tricks, and tech-
niques of writing assembly-language programs using the Level II
BASIC ROM subroutines. At the end of this chapter, you will have
covered everything that is needed to be able to write your own
assembly-language programs on the Model I TRS-80 microcomputer.

THINK IN BASIC, WRITE IN ASSEMBLY . . .

Typically, the first stumbling block that you encounter when
sitting down to write an assembly-language program for the first
time is deciding where to begin. Obviously, you should start at
the beginning, but what comes first? Well, you begin an assembly-
language program just as you do a BASIC program. First, you
define the problem. Second, you define the goal (are you looking
for apples or for oranges?). And, last, you do the actual coding, or
writing, of the program. Why? Because, if you don’t understand
the problem well enough to define it, you probably don’t understand
it well enough to solve it. Defining the problem gives you a starting
point to work from and lets you inventory what you have to work
with (and against). Defining the goal gives you an ending point to
work fowards, because often an “exact” answer is not possible or
practical, and you need to know when “close enough” is sufficient.
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Also, when there is NO answer, you need to decide when to “give
up.” All of these things must be considered before you sit down and
actually do the program coding, because they will greatly influence
how the program is written. Think of the program coding that you
do as the “path” that connects the problem with the goal. Without
a clear definition of both the problem and the goal, your program,
like a meandering path, will have no defined starting point nor
ending point and will just wander along aimlessly. So, you begin
your assembly-language programming by planning what you want
to accomplish and how you are to accomplish it.

OK, you've done your planning. You have the problem and the
goal defined and now you are ready to do the coding. Now what?
How do you translate your plans into the appropriate Z-80 instruc-
tion codes? Simple, you THINK IN BASIC and WRITE IN AS-
SEMBLY LANGUAGE! This is possible because the thought-pro-
cesses that you developed while learning to program in BASIC
are equally valid in assembly language. This is especially true when
you consider that many of the ROM subroutines that you will be
using are the same subroutines that implement the BASIC function!

But, what about the “other” stuff, the coding that isnt related
to a BASIC subroutine? Which instructions do you use to do what?
Again, rely upon your BASIC programming experience and you
can’t go wrong. For instance, earlier we compared a BASIC FOR-
NEXT statement with its equivalent assembly-language coding. We
said that the BASTC statement contained a single, multi-purpose in-
struction to the computer, while the equivalent assembly language
coding consisted of multiple, special-purpose instructions to the
computer. Thus, you can think out and draft your program in
BASIC, and then break the BASIC up into its singular functions for
converting to assembly language. Let’s see how this works.

In the BASIC FOR-NEXT example, you supplied a starting num-
ber, an ending number, and a step size (if other than 1); and the
Level II BASIC interpreter took it from there. BASIC takes your
starting address, adds the step size to it, and compares the result
with your ending number. When the result is equal to, or greater-
than, the ending number, the computer exits from the loop and
normal program execution continues. So, basically, what you have
is a starting number, a means of incrementing (or decrementing)
this number, a comparison, and a branch back to the instructions
that are to be repeated.

Thus, for your assembly language program you would need:
some convenient place to store the starting number (a register pair);
an increment instruction; a way to compare the sum created in
step 2 with the ending number; and a conditional branch (jump)
back to whatever instructions that you want to be repeated.

140



Armed with this information you can look up the appropriate
Z-80 instructions and op-codes using the information given in
Chapter 2. For example, in Fig. 2-7, the 16-bit load instructions,
you find that LD BC,nn (op-code 01 nn) will load an immediate
two-byte value nn (the starting address) into the BC register pair.
Then, in Fig. 2-12, the 16-bit arithmetic instructions, you find that
INC BC (03H) will increment the content of the BC register pair.
Next, you must look in Fig. 2-11, the 8-bit arithmetic and logic
instructions, for instructions to perform the comparison, because
there are NO 16-bit comparison instructions. Hence, you must use
two 8-bit comparisons, one for the most-significant byte and one
for the least-significant byte of the ending number. However, as you
look through the 8-bit arithmetic and logic instructions you find
that there are NO instructions that test the B or C register contents
against an immediate byte of data. Instead, you must first load the
LSB of the ending number into the A register, and then compare
the content of the C register with the content of the A register.
This process is then repeated using the MSB of the ending number
and the B register contents. Finally, you must look in the jump
instructions (Fig. 2-18) for an instruction to perform a conditional
jump when the comparisons are nonzero. Such an instruction is
JP NZ,nn (C2 nn). Now, you match the op-codes and hexadecimal
operands for each instruction with the memory locations where you
want the program to reside, and you've just written an assembly-
language program. Later in this chapter we will discuss one of the
Z-80’s instructions that will enable you to perform this whole proce-
dure using just two instructions.

RELATIVE VERSUS ABSOLUTE ADDRESSING

There are two ways to specify an address, relative and absolute.
A relative address is one that is specified by the number of memory
locations that it is away from a reference memory location, and
thus is position independent. An example of relative addressing
is when you refer to your neighbor’s house as being “three houses
down” from your house. The reference address is your house and
the relative address is “three down” The number of spaces (ad-
dresses) away from the reference address is called the displacement
and is denoted by the symbol e~2 to indicate that it is a signed, two’s
complement number. Displacements can be “positive” (forward) or
“negative” (backward), and can be up to 127 spaces forward
(e=2 =TFH) or up to 128 spaces backward (e~* = 80H). Table
8-1 lists the positive (forward) and negative (backward) displace-
ments and their hexadecimal codes that are used with relative
(and “indexed”) addressing.
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To use Table 8-1, you must know how the program counter
(PC) operates. As you will recall, the PC always contains the
address of the first byte of the next instruction to be executed.
Because the jump-relative instructions are two bytes in length,
the PC will automatically be advanced two bytes, and point to the
first byte of the next instruction. Thus, you must begin your for-
ward or backward counting from the first byte of the NEXT in-
struction, NOT from the current jump-relative instruction! This
means that the minimum forward jump is two, not zero, because
although the displacement may be zero (e—2 = 00H), the PC is
already pointing to the next instruction (0 + 2 = 2). Conversely,
the minimum backward jump again is two, not one, because jumps
must always be made to the first byte of an instruction, NOT to data
or operands. So, just to get back to the current jump-relative
instruction you need a negative displacement of two (e—2 = FEH;
—2+42 = 0). Thus, the maximum forward jump is 129 (+127 + 2 =
129) and the maximum backward jump is 126 (—128 + 2 = 126).

An absolute address is one that is specified by a 16-bit memory
address within the memory map. Absolute addressing, as the name
implies, is absolute or “fixed,” such as your home address and the
addresses of the Level II BASIC ROM subroutines. It is a simple
and easily understood method of addressing, because the address

Table 8-1. Relative Displacements and Their Hexadecimal Values

Forward (O0H-7FH)
IMSB o 1 2 3 4 5 6 7 8 9 A B C D E F «ISB

0 o 1 2 3 4 5 6 7 8 9 10 11 12 183 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
5 80 81 82 83 84 85 85 87 83 89 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Backward (80H-FFH)
IMSB 0 1 2 3 4 5 6 7 8 9 A B C D E F «ISB

8 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113
112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97
96 95 94 93 92 91 90 89 88 87 85 85 84 83 82 81
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

TmTUOwP o
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is always the same no matter where you are in memory. However,
as you will soon see, this is not always a desirable feature.

Relocatable Code

One of the greatest benefits of using relative addressing is the
ability to write relocatable code, that is, programs that you can
move anywhere in memory and still have operate properly without
having to modify them first. T-BUG is NOT a relocatable program.

What makes a program “relocatable?” It is not the actual use
of relative vs absolute addressing that determines whether or
not a program is relocatable, but rather HOW the relative and ab-
solute addressing are used. Relocatable code is made by using
relative addressing for all addressing within the program, and using
absolute addressing for all addressing outside the program. Thus,
if your program needs to jump to the last byte in the program,
you would use relative addressing. But, if it needs to jump to some
memory address outside your program, such as to one of the ROM
subroutines, you would use absolute addressing.

A shortcoming of using relative addressing is that normally
you are limited to jumps of less than 129 bytes forward or 126 bytes
backward. This limitation can be bypassed by using relay jumps
within your programs. They will enable you to extend indefinitely
the number of memory locations that you can relatively address.
These relay jumps are simply unconditional jump relative (JR e—2)
instructions imbedded in your program that are accessed only by
another jump relative instruction. This is accomplished by placing
an unconditional jump relative instruction immediately in front of
the relay jump relative instruction which directs “normal” program
control “around” the relay jump relative instruction. Using this
technique, you are no longer limited to jumps of only 129 spaces
forward or 126 spaces backwards. Figure 8-1 illustrates this tech-
nique.

5000 ;12742 TO 5081H
NORMAL PROGRAM FLOW

507F

;ARQUND RELAY JR
5081 69+2 TO 50C8H = 200!
;NORMAL PROGRAM OPER.

5083

RELAY PATH

50C8

;DESTINATION 200 BYTES

Fig. 8-1. Relay relative jump 200 bytes in a program.
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Relocating Code

Now that you've mastered relocatable code, how do you actually
move a program to take advantage of its relocatability? It's much
easier than you expect. In fact, you need only four instructions!

To move a block of code (programs or data) from one location
to another you need one instruction to load the HL register pair
with the “source” address of the code to be moved. You need a
second instruction to load the DE register pair with the “destination”
address of memory (where the code is to be moved to). The third
instruction must load the BC register pair with the “length” (num-
ber of bytes to be moved ). The fourth instruction that you need is
the most important. It is the LDIR (ED BO0) instruction which auto-
matically moves a block of data from memory pointed to by the
HL register pair, to memory pointed to by the DE register until the
BC register pair contents are decremented to zero. Example 8-1
illustrates how you might copy T-BUG from its location in low
memory into high memory (although you must remember that
T-BUG will NOT operate properly when relocated ).

Example 8-1. Program te Move T-BUG from Low Memory fo High Memory

Using LDIR.
Addr  Op-Code Label Mnemonic/Operand Remarks
5000 21 80 43 SOURCE LD HL,4380H ;START OF T-BUG
5003 11 00 60 DESTIN LD DE,6000H ;HIGH MEMORY
5006 01 FF 05 LENGTH LD BC,05FFH ;HOW MANY BYTES
5009 ED BO LDIR ;DO IT
5008 C3 A0 43 JP  43A0H ;BACK TO T-BUG LOW

LDIR produces a forward block move, where the destination ad-
dress is always greater than the last address of the source address.
But, if the destination address is NOT greater than the last address
of the source program, you must use a different instruction; other-
wise the first-moved instructions will overwrite the end of the source
program, destroying a part of it. When you need to move a block
of data only a short distance, or any distance less that the length
of the source program, you use a backward block move. For this,
you use the LDDR (ED B8) instruction. Here, you load the HL
and DE register pairs with the last address of the “source” and
“destination” memory locations, respectively. The BC register again
holds the “length,” or byte count.

You can also use these block move instructions (especially
LDIR) to “flI” blocks of memory with a constant, such as “zero-
ing” a portion of memory by loading the value 00H into each ad-
dress. Or, you can “paint” the CRT screen white by loading the
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graphic character BFH into each of the CRT video memory ad-
dresses as shown in Example 8-2. You can also use these instructions
to write your own memory test program, using LDIR to fill each

Example 8-2. Program fto “Paint’ CRT Video Display White Using LDIR and BFH
Graphics Character.

Addr  Op-Code Label Mnemonic/ Operand Remarks

5000 21 00 3C SOURCE LD HL,3COOH ;START OF VIDEO MEM.
5003 11 01 3C DESTIN LD DE3COIH ;NEXT LOCATION

5006 01 FF 03 LENGTH LD BC,03FFH ;VIDEO MEMORY LENGTH
5009 36 BF LD (HL),BFH ;GRAPHICS CHARACTER
5008 ED BO LDIR ;DO IT

500D C3 A0 43 JP 43A0H ;BACK TO T-BUG

memory location and LDDR to move backward checking/verifying
the contents.

TIPS, TRICKS, AND TECHNIQUES
(... things | wish they'd told me before . . .)

The second area of assembly-language programming that will
probably cause you problems has to do with the idiosyncrasies of
both the Z-80 microprocessor and the TRS-80 hardware. Some things
they just don't tell you, you have to find them out for yourself the
hard way, usually by trial-and-error. The purpose of this section is
to (hopefully) save you from having to repeat the same errors and
problems that have plagued others. Unfortunately, not every stum-
bling block that you might encounter can be covered, but Chart 8-1
lists some of the more useful bits of information that you will find
helpful. The chart lists some of the problems that you might en-
counter with the Z-80 as well as some of the problems due to the
TRS-80 hardware, such as the “hardwiring” of the HALT (76H)
instruction to the RESET pin on the CPU. Referring to this chart
when you run into a programming problem can save you a lot
of frustration and irritation.

THE STACK

The majority of the problems that you are likely to encounter
will probably be related in some way or another to the improper
use of the PUSH and POP instructions, especially when they are
used within subroutines. The trick here is to treat these instructions
as you would the parentheses “( )” in BASIC and always match a
PUSH instruction with a POP instruction, and vice versal If you
don’t, you end up with “dangling” information on the stack which
can cause no end of trouble.
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Chart 8-1. Tips, Tricks and Techniques ( . . . things | wish
they'd told me before . . . )

(]

(Z-80) INC and DEC instructions DO NOT affect the CARRY (C) flag! Only the ADD,
ADC, SUB, and SBC instructions affect the status of the C flag.

(Z-80) You CANNOT decrement a register pair (BC, DE, HL, SP, IX, or 1Y) to zero
in a loop using JP NZ,nn, because this operation does not affect any of the status
flags! Instead, use the technique of loading one byte into the A register and ORing
the other byte with it to determine if the content of the register pair is zero.
(Z-80) The AND, OR, and XOR instructions always reset the C flag, performing a
complement to the SCF instruction.

(Z-80) The result of SBC HL,rr is returned in HL (HL-r—>HL). Use the OR A instruc-
tion before SBC HL,rr to reset the C flag if necessary (rr = BC, DE, HL, or SP).
(Z-80) The result of ADD IX,rr and ADD IY,rr is returned in I1X and 1Y, respectively
(rr = BC, DE, IX, 1Y, or SP). Note, the HL register pair is NOT included.

(Z-80) To move data between index registers 1X and IY and one of the register
pairs (BC, DE, HL, or SP) use the PUSH and POP instructions:

PUSH IX (or 1Y)
POP  rr (where rr = any register pair)

(Z-80) DIJNZ e7? functions like an assembly-language version of the BASIC FOR-
NEXT statement. The B register holds the number of loops to be executed. It is
a jump relative instruction.

(Z-80) The PUSH and POP instructions should always be matched (like BASIC's
parentheses "“( )"”). There are exceptions to this, but you must know what you're
doing to do so.

(TRS-80) The HALT (76H) instruction no longer suspends CPU operation, because
it has been “hardwired” to the RESET pin of the Z-80 CPU. It now causes a com-
plete system reset!

(TRS-80) FFH is the op-code for RST 56 at memory location 0038H and is the entry
point for interrupts. It causes a jump to 4012H to occur (non-DOS) where an El
instruction enables the interrupts and a RET instruction returns control to the point
of interruption.

(TRS-80) Level 11 BASIC does not use the alternate (complement) register set except
within a subroutine as temporary storage.

(TRS-80) Level 1l BASIC uses the IX register only 21 times, and does not use the
1Y register at all.

(TRS-80) Level 1l BASIC uses the register pairs in the following manner: HL as a
pointer to characters in BASIC text and input strings, DE as a pointer to line num-
bers, and BC as byte storage or byte counter.

(TRS-80) There are at least four different Level 11 BASIC ROMs. Use the following
BASIC program to determine which one you have:

10 FOR | =11264 TO 12287:V=PEEK(1):S=S+ V:NEXTI:X=§/16
20 A=(X—FIX(X))%k 16:Y=FIX(X)/ 16:B==(Y —FIX(Y)) % 256
30 PRINT (A+B)

If the result is 176, it is ROM 1.0; 142 = ROM 1.1; 10 = ROM 1.2; 162 = ROM
1.3.

(Z-80) XOR A will “zero” the content of A, but XOR B, XOR C, etc., WILL NOT
zero the B or C registers! They are being XORed with the content of the A reg-
ister, not with themselves (as in the case of XOR A).

(Z-80) (1234H) is NOT the same as 1234H! (1234H) means use the “content of"
1234H; 1234H alone is only an address!
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Passing Data to a Subroutine

One of the times when stack operations can become a problem
is when you attempt to pass data to a subroutine using the stack. To
understand why this is so, you must recall how the SP is used when
a call is made to a subroutine from the main program. When a call
instruction is encountered, the PC is already pointing to the first
byte of the next instruction to be executed in the main program.
Thus, as the call is executed, the content of the PC register is
pushed onto the stack for storage and the call address is loaded
into the PC. Thus, if you had pushed a data variable onto the stack,
it is no longer at the top of the stack but rather one down from the
top. The address where the main program will “resume” operation
upon returning from the called subroutine is on the top of the stack!

So, how do you get the data off of the stack without losing the
“return” address for the PC? This can be accomplished by using the
Z-80 instruction that exchanges the content of HL and the top of
the stack: EX (SP),HL (E3H). Instead of simply popping the
data from the stack twice (once gets you the PC, second gets the
data), you pop the PC content from the top of the stack into the
HL register pair first. This brings the data you are really after to
the top of the stack. Then, you use the EX (SP),HL instruction to
swap the content of HL (the PC “resume” address) with the top
of the stack (the data).

PUSH DE ;DATA ONTO STACK
CALL DIVIDE

DIVIDE CALL XYZ
POP  HL ;PC INTO HL
EX (SP),HL ;DATA INTO HL, PC BACK TO STACK

RET
This way, you never lose the PC “resume” address from its correct
position at the top of the stack! And, this technique is not limited

to being used just once, it can be used as often as necessary in the
subroutine.

Returning Data from a Subroutine

If passing data fo a subroutine can cause problems, then it stands
to reason that passing data from a subroutine will cause you prob-
lems too. As before, the problem lies with keeping the PC “resume”
address at the top of the stack so that when control passes back
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to the main program from the subroutine, the correct address will
be retrieved from the stack and loaded back into the PC. And,
again, you can use the EX (SP),HL instruction to solve this prob-
lem. Instead of just pushing the data onto the stack (and “burying”
the PC “resume” address in the process), you first load the data to
be returned into the HL register pair and then use the EX (SP),HL
instruction to exchange the content of HL and the top of the stack.
This is then followed by a PUSH HL instruction.

CALL DIVIDE
POP  DE ;RETRIEVE DATA

DIVIDE CALL XYZ

LD HL,DATA ;DATA INTO HL
EX (SP),HL  ;DATA ONTO STACK, PC INTO HL
PUSH HL ;PC BACK TO TOP OF STACK

RET

What this does is load your data into the HL register pair, then
exchange HL and the top of the stack (PC “resume” address). This
leaves your data at the top of the stack and the PC “resume” ad-
dress in HL, which is taken care of by the PUSH HL instruction
so that it is returned to its correct position at the top of the stack.

Doesn’t that tend to “bury” your data below the PC “resume”
address? Not really, because as soon as the RET instruction in the
called subroutine is encountered, the PC “resume” address is popped
from the stack and loaded back into the PC register so that the main
program can continue from the point where the call to the sub-
routine was made. This then brings the last data that you pushed
onto the stack from within the subroutine to the top of the stack
(remember the LIFO operation of the stack). You can use this
technique as often as necessary within a subroutine to transfer more
than one variable from the subroutine to the stack.

FOUR MORE REGISTERS

Another problem you will undoubtedly face is not having enough
registers. That’s right, not enough! This problem results from the
possibility of conflict of use when using the Level II BASIC ROM
subroutines. You have to be careful that you use a register in your
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program that won't interfere with, or be overwritten by, the sub-
routine that you are calling. Needless to say, this usually doesn’t
leave you with many registers to use. But, there is a solution to
this problem, simply use the IX and IY registers.

As noted in Chart 8-1, Level II BASIC only uses the IX register
a few times, and does not use the IY register at all! The IX register
is only used 21 times (5 times at 03C3H-03DEH, 9 times at 0458H-
04BCH and 7 times at 059AH-05D0H ), so the chances of a register-
use conflict are very small, except when calling the cassette and
video display driver subroutines.

What does this mean to you? It means that there are two more
16-bit registers that you can use. But, you say that you would rather
have a couple of 8-bit registers instead? No problem, simply use the
proper instructions and you can use the IX and 1Y registers as four
separate one-byte registers! There are no instructions to access the
high and low bytes of the IX and IY registers, but they do exist!
There are undocumented Z-80 instructions that enable you to both
load and retrieve 8-bit data into either the “high” or “low” bytes
of both the IX and IY registers. Using these undocumented in-
structions will give you four more registers!

To use these undocumented instructions you must “derive” the
proper instructions from the existing instructions. These derived,
undocumented instructions will always have two bytes. The first
byte will always be either DD (IX register) or FD (IY register).
The second byte will always be one of the 8-bit register-to-register
instructions. When using these undocumented instructions, the H

Table 8-2. Undocumented IX and 1Y Index Register Instructions

Source Register:
Destination: A B Cc D E H L
IX “high”
(XXXXXXXX -------- ) | DD 67 { DD 60 | DD 61| DD 62| DD 63 DD 65
15 o
IX “low"
(remmmmen XXXXXXXX) | DD 6F | DD 68 | DD 69 | DD 6A | DD 6B | DD 6C
15 0
1Y “high”
(XXXXXXXX -« =----- } | FD 67 | FD 60 | FD 61 | FD 62 | FD 63 FD 65
15 o
1Y “low"
(-------- XXXXXXXX) | FD 6F | FD 68 | FD 69 | FD 6A | FD 6B | FD 6C
15 o

Note: DD 65 = load IX “low’ into IX “high’’, or LD IXH,IX1.
DD 6C = load IX “high” into IX ““low”, or LD IXL,IXH.
FD 65 == load IY “low’’ into 1Y “high’’, or LD IYH,IYL.
FD 6C = load 1Y “high” into IY “low", or LD IYL,IYH.
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and L registers become the passages that enable you to separately
address the “high” or “low” byte of the IX and IY registers. Thus, to
load an 8-bit value from the C register into the “low” byte of the
IY register, you would select the LD L,C instruction (69H). The
first byte of this undocumented instruction would be FD (IY regis-
ter) and the second byte would be 69H (LD L,C), or FD 69. Table
8-2 lists some of the more useful undocumented IX and IY instruc-
tions. As you see, you can even load the content of the “low” byte
into the “high” of the same register, and vice versa. However, you
cannot directly move an 8-bit value from one index register to
another, this transfer can only be done using all 16 bits. Also, you
cannot move an immediate byte of data into one of these 8-bit
IX or IY registers. To do this, you must first load it into one of the
general-purpose registers, and then move it into the desired IX or
IY register. You will probably find these “hidden” registers most
useful as additional internal data storage; they don’t have to be
swapped back and forth with each subroutine.

REAL TIME

If you are just bringing data into the TRS-80 and then sending
it directly to the cassette in a “data logging” mode, you will probably
never have any timing problems. However, if the data must be
manipulated before being recorded (such as from °C to °F), there
is a good possibility that you will run into timing problems. The
reason for this lies in the amount of time available between sync
pulses and data pulses (1000 microseconds) using the cassette read/
write subroutines. Unless you are prepared to write your own
timing loops and delays, you are going to have to use the standard
TRS-80 500 baud cassette data rate (unless you have a Model 111
which accepts both 500 and 1500 baud data rates). This isn’t too
bad, unless your application is one that requires a large amount of
arithmetic or mathematical calculations. As you can see from Table
8-3 which lists typical execution times for various arithmetic and
mathematic functions, some of these functions CANNOT be used in
real-time processing because they take too long to execute.

If, however, your application does require arithmetic or mathe-
matical calculations before the data can be used, you are then faced
with two possibilities. The first, and easiest, approach is to simply
record the raw, unprocessed data in real time and then perform the
necessary calculations later, when you are not under a time limit.
This is called “post processing.”

The second, and more complicated, approach is to input the data
for a period of time (called the “sample time”) and store it in
memory. Then, for another period of time (called the “process

150



time”) each datum is retrieved from memory and processed as neces-
sary with the result being stored in its original memory location.
Finally, when all the processing is done, the conditioned data are
recorded from memory directly to the cassette. This is called “batch”
or “sample processing.” Each approach has its own merits and
shortcomings. Let your specific application determine which one

Table 8-3. Arithmetic and Mathematic Function Execution Times

Arithmetic
Function INT SGL DBL
(+) ADDITION 130 us 630 us 1300 ws
(—) SUBTRACTION 210 ps 1300 us 1300 us
(k) MULTIPLICATION 900 us 2200 us 2200 ps
(/) DIVISION 5100 ps 4800 us 42 ms!
Mathematic
TRIGONOMETRIC SIN(X) 25 ms
COS(X) 25 ms
ATN(X) 27 ms
TAN(X) 54 ms
LOGARITHMIC/ EXPONENTIAL LOG(X) 19 ms
EXP(X) 28 ms
SQR(X) 48 ms
XY 50 ms

<.

that you use, but remember that raw data can always be “re-
processed” if the results aren’t what you expected. Processed data
can be in error due to one of two sources, the data itself, or from
faulty (improper) processing. Trying to determine which one is
the source of the error can get very frustrating! So, as a rule-of-
thumb, “keep it simple” and use post-processing whenever possible.
It is simpler to use and much easier to debug,

LINKING BASIC WITH ASSEMBLY

Now that you know how to write your own assembly-language
programs, how do you connect them with your BASIC programs?
This is done using the USR(N) function in Level II BASIC, and
is covered on pages 8/8 through 8/12 of the Level II BASIC Ref-
erence Manual, 2nd Edition.

As you know, the USR (N) function permits the passing of a
two-byte, signed integer variable between BASIC and a machine-
language program resident in memory. To use this function, you
must first load the starting address of your assembly-language pro-
gram object code into memory locations 408EH-408FH (LSB/
MSB). This can be done either from BASIC using the POKE state-
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ment, or in assembly-language using an instruction such as LD
(408E),HL, where HL was previously loaded with the starting
address of your program.

To access the assembly-language program from BASIC, you now
simply place the statement X=USR(N) in your BASIC program.
To return control from the assembly-language program back to
BASIC, terminate the assembly-language program with RET
(C9H).

Passing Data From BASIC To USR

To pass a variable from BASIC to an assembly-language sub-
routine using the USR(N) function, the variable (N) must be in
the range —32768 through +32767 inclusive, or an error will occur.
To receive this variable in assembly language, your assembly-lan-
guage subroutine must have the instruction CALL 0A7FH at or
very near its beginning. The variable will be in the HL register pair
in integer (INT) format.

Passing Data From USR To BASIC

To pass a variable back to BASIC from the assembly-language
subroutine using the USR(N) function, you place the variable
in the HL register pair and execute a JP 0A9AH instruction. The
signed integer will be passed to BASIC through USR(N) to the
BASIC variable X like this:

&N N
X = USR(N) HL

Although only one variable can be passed at a time, any number of
variables can be handled in this manner.

You are not restricted to using only one assembly-language
program if you use the POKE command to load memory location
408EH-408FH with each new program’s starting address before
invoking USR(N), such as:

100 IF A<B THEN LSB=XX1: MSB=YY1:GOTO 130
110 IF A=B THEN LSB=XX2: MSB=YY2:GOTO 130
120 LSB=XX3:MSB=YY3 ‘REM A>B

130 POKE 16526,LSB:POKE 16527,MSB

where XX1 and YY1 are the decimal equivalents of the LSB and
MSB of the starting address of the assembly-language program to
be called. Remember that if you invoke the USR(N) function but
do not plan on passing (or receiving) a variable, you still must put
some value in for N, called a “dummy argument.”
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Keeping Machine Language Programs in “Low” Memory

Although the Radio Shack books tell you that in order to work
correctly your machine-language programs must reside in “high”
memory, above BASIC, this is not really true. There is a way to
keep programs that aren’t relocatable and load into low memory
(T-BUG!), and have the Level II BASIC interpreter begin loading
the BASIC program after the assembly-language program.

To “protect” an assembly-language program (or series of pro-
grams) already residing in low memory, you just load memory lo-
cations 40A4H-40A5H with an address one greater than the ending
address of the assembly-language program(s), and terminate the
last program with 00H. There are two reasons why this is possible.
First, BASIC programs are inherently relocatable. And, second,
BASIC programs are loaded into memory beginning at the address
held in memory locations 40A4H-40A5H. Upon initialization, Level
IT BASIC loads these locations with 42E9H (higher with disks).
The only “setup” that is necessary is that the address immediately
preceding the first byte of the BASIC program be 00H. That’s why
you end the assembly-language program with 00H. Now, when you
load your BASIC program from cassette into memory, it will load
after your resident assembly-language program!

Let’s see how this works with T-BUG. First, use the M command
and change the content of 40A4H-40A5H from 42E9H to 4981H, an
address one more than the 00H byte that must be placed at the
end of T-BUG. Now, load in any short BASIC program that you
have using the normal CLOAD procedure, but do not RUN the
program yet. After the BASIC program is loaded, return to T-BUG
by typing SYSTEM and then /17312. Now, look at the contents of
memory beginning at 4980H on. You will see the BASIC program!
And, T-BUG works fine. Now you know how to keep T-BUG in
memory at the same time that you are writing BASIC programs
which use USR(N) and assembly-language programs! T-BUG is
then available to debug the assembly-language object code(s) and
lets you use T-BUG to write SYSTEM and BASIC programs to
cassette!

Yes, you CAN save BASIC programs on cassette using the SYS-
TEM format. However, to do so, you must know both the starting
address and the ending address of the BASIC program. The starting
address is the address that you earlier placed in memory locations
40A4H-40A5H. The ending address is automatically calculated
during the CLOAD process and is stored at 40F9H-40FAH. Thus, to
use T-BUG’s PUNCH command to write a BASIC program to cas-
sette in SYSTEM format, you can find the starting address at
40A4H-40A5H and the ending address at 40F9H-40FAH. This is
iltustrated in Table 8-4.
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Table 8-4. Addresses Used fo Save a BASIC Program
Using SYSTEM Format

Beginning address, aaaa: (40A4H-40A5H)

Ending address, bbbb: (40F9H-40FAH)

Autostart address, ccce: 43A0H (assuming T-BUG + BASIC)
Filename, XXXXXX; ~  ------

You can also record both the assembly-language program and
the BASIC program together as a single file by using the beginning
of the assembly-language program as the starting address (aaaa)
and the end of the BASIC program as the ending address (bbbb).
But, when this is done, you must manually load the starting and
ending address into memory location 40A4H-40A5H and 40F9H-
40FAH, respectively, before the BASIC program can be RUN.

A PROGRAM TO WRITE A SYSTEM TAPE

Level II BASIC contains a subroutine to read SYSTEM tapes
(02B2H), but there are NO subroutines to write a SYSTEM tape.
For this, you must use either T-BUG’s PUNCH command or the
Editor/ Assembler’s ASSEMBLE command. Example 8-3 is a pro-
gram to write a SYSTEM tape that you can use alone, or within
your own assembly-language programs. Although it is NOT re-
locatable “as is,” this program can be used anywhere in memory
with only a few changes. These changes will be noted as we discuss
how the program works.

The program shown in Example 8-3 is called SYSWR. It loads
into memory at 5000H-5088H and uses four external areas of mem-
ory, one to hold the filename, one to hold the starting address, one
to hold the ending address and one to hold the entry address. The
filename is stored in memory locations 6000H-6005H, but can be
relocated to any location by changing the source-operands in the
instructions at addresses 5000H and 500AH. The starting address
is stored at memory locations 4FFAH-4FFBH, the ending address

Example 8-3. SYSWR, a Program te Write SYSTEM Format Cassette Tapes.

Addr  Op-Code Label Mnemonic/Operand Remarks

5000 21 00 60 LD HL,6000H ;FILENAME BUFFER
5003 06 06 LD B,06H ;6 CHARACTERS

5005 36 20 FILL b (HL),20H ;FILL W/BLANK SPACES
5007 23 INC HL ;NEXT ADDRESS

5008 10 FB DJNZ FILL ;DO 6 TIMES

500A FD 21 00 60 LD 1Y,6000H ;JIY=FILENAME POINTER
500E AF XOR A JCASSETTE #1

500F Ch 12 02 CALL DEFCAS ;DEFCAS & MOTOR ON
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5012
5015
5019
501A
501C
501D
5020
5022
5025
5027
502A
502D
502F

5031

5032
5035

5037

503A
5038
503E

5041

5043
5044
5045
5047
5049
504C
504D
5050
5053
5055
5058

5058
505E
5061

5064
5067
5070
5071

5072
5075
5076
5079

507A
5078
507C
507F

5080
5081

5082
5084
5085
5088

2A
ED
AF
ED
23
cb
3E
cb
06
FD
CD
FD
10
25
FA
3E
Cb
AF
CD
(@)
18
AF
BD
28
3E
(o]
7D
cb
cb
3E
CcD
3A
cb
3A
cD
CD
c9
47
78
cb
7A
CcD
83

4F

1A
CcD
81

4F
13
10
79
cD
ce

FC
5B

52

87
55
64
06
7E
64
23
Fé

43
3C
64

64
70
EE

3C
64

64
70
78
64
FE

64
FF

64
F8

64

64

F7

64

4F
FA

02

02

00
02

50*

02

02
50*

02

02
50*
02
4F
02
4F

02
01

02

02

02

02

4F

END
START

LENGTH

LDRSYN

SYSFOR

FILNAM

LOOP

CLEARA

EOF
EOF

ENTRYL

ENTRYH

DATBLK

GETBYT

CHKSUM

LD
LD
XOR
SBC
INC
CALL
LD
CALL
LD
LD
CALL
INC
DJNZ
DEC
JP
LD
CALL
XOR
CALL
CALL
JR
XOR
cp
JR
LD
CALL
LD
CALL
CALL
LD
CALL
LD
CALL
LD
CALL
CALL
RET
LD
LD
CALL
LD
CALL
ADD

LD
LD
CALL
ADD
LD
INC
DINZ
LD
CALL
RET

HL,(4FFCH)
DE,(4FFAH)
A

HL,DE

HL
WRLDR
A,55H
WRBYTE
B,06H
A(1Y +00H)
WRBYTE
Iy
FILNAM

H
M,CLEARA
A,3CH
WRBYTE
A
WRBYTE
DATBLK
LooP

A

L

Z,EOF
A,3CH
WRBYTE
AL
WRBYTE
DATBLK
A,78H
WRBYTE
A, (4FFEH)
WRBYTE
A (AFFFH)
WRBYTE
CASOFF

B,A
AE
WRBYTE
AD
WRBYTE
AE

CA

A (DE)
WRBYTE
AC

CA

DE
GETBYT
AC
WRBYTE

;HL=ENDING ADDRESS
;DE=STARTING ADDRESS
;CLEAR A REGISTER
;LENGTH=HL—DE
JLENGTH 41

;WR LEADER & SYNC BYTE
;SYSTEM FORMAT HEADER
;WRITE “55H"

:6 CHARACTERS

;1Y =FILENAME

;WRITE A CHARACTER
;NEXT CHARACTER

;DO 6 TIMES

;DATA BLOCK LOOP

;LESS THAN 256 BYTES?
;DATA BLOCK HEADER
;WRITE “3CH"

;DATA BLOCK LENGTH = 00H
;WR “O0H" (256 BYTES)
;DATA BLOCK SUBROUTINE
;DO IT AGAIN

;CLEAR A REGISTER
;LENGTH=0?

;IF YES THEN EOF

;DATA BLOCK HEADER
;WRITE “3CH"

;DATA< 256 BYTES?

;WR DATA LENGTH
;DATA BLK & CHECKSUM
;EOF=78H

\WRITE “78H"

;LSB ENTRY ADDRESS
WRITE LSB

:MSB ENTRY ADDRESS
WRITE MSB

CASSETTE OFF

;NUMBER DATA BYTES
;LSB LOAD ADDRESS
;WRITE LSB LOAD ADDR.
;MSB LOAD ADDRESS
;WRITE MSB LOAD ADDR.
;A=D+E OF LOAD AD-
DRESS

;A INTO C=CHECKSUM
;GET A BYTE OF DATA
;WRITE DATA

;ADD TO CHECKSUM
;UPDATE CHECKSUM
:NEXT DATA

;DO TIL B REG=0
;CHECKSUM INTO A REG.
WRITE CHECKSUM
;RETURN

Note: *Denotes what must be changed to operate properly if relocated.
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is stored at memory locations 4FFCH-4FFDH and the entry ad-
dress is stored at memory locations 4FFEH-4FFFH. You can change
these to whatever locations you wish by changing the source-
operands in the instructions at memory locations 5012H (ending
address), 5015H (starting address) and 5058H and 505EH (entry
address). SYSWR functions in the following manner.

First, the buffer to hold the filename is defined (6000H-6005H)
and the B register is loaded with the number of characters (6) in
the filename, and this buffer is filled with blank spaces (20H).
Then, the IY register is loaded with the address (6000H) of the
buffer holding the filename. The A register is cleared and cassette
#1 is defined using DEFCAS (0212H) and the motor turned ON.
The ending address is loaded from 4FFCH-4FFDH into the HL
register pair and the starting address is loaded from 4FFAH-4FFBH
into the DE register pair. Then, the program “length” is determined
by subtracting the starting address (DE) from the ending address
(HL). One is added to the result to establish the actual program
length.

At this point, the leader and sync byte are written to the cassette
using WRLDR (0287H). The SYSTEM tape format header byte
(55H ) is loaded into the A register and written to the cassette using
WRBYTE (0264H). The B register is loaded with the number of
characters (6) that are to be written to the cassette as the filename
and the IY register is pointed to the buffer at 6000H containing the
filename. The DJNZ instruction executes the loop which fetches the
six filename characters and writes them to the cassette using
WRBYTE.

After the filename has been written, a short subroutine is en-
tered which writes the data block header (3CH) and block length
(00H) for all of the data blocks, except the last one. The actual
fetching of data from memory, calculation of the checksum, and
the writing of data to the cassette are performed in the subroutine
DATBLK (5070H-5088H ).

When the number of bytes of data remaining to be recorded is
less than 256, control jumps to CLEARA (5043H) and the actual
number of bytes is recorded as the data block length instead of 00H.
The last data block is then recorded to the cassette and the end-of-
file (78H) byte and entry address (LSB/MSB) are recorded.
Then, CASOFF (01F8H) turns the cassette OFF and control is
returned to the calling program.

SYSWR has been included so that you will have a means of writ-
ing data and programs to cassette without having to rely upon
T-BUG. You can use SYSWR as a subroutine within your assembly-
language programs and no longer need to load T-BUG each time
that you wish to save a program or (especially) output data. Al-
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though SYSWR is NOT a relocatable program as given, it CAN
be easily relocated by making appropriate changes to the three
instructions at addresses 5032H (JP M,5043H), 503EH (CALL
5070H ) and 5050H (CALL 5070H ). To determine the proper source
operand for 5032H, add 43H to the starting address of SYSWR that
you intend to use. Likewise, you add 70H to the starting address
to determine the starting address of the subroutine DATBLK.

You have now covered what you need to be able to plan, write,
and execute your own assembly-language programs on the Model 1
TRS-80 microcomputer. As you become more proficient and com-
fortable at writing assembly language programs, you will find
Appendix D and the Z-80 instruction tables found in Chapter 2 to
be very handy. They will provide you with the information that will
be needed most often to do assembly-language programming using
the Level IT BASIC ROM subroutines. Appendix D summarizes
the Level II BASIC ROM subroutines discussed in this book, and
the tables in Chapter 2 list the Z-80 instruction set in easy-to-use
groupings.

When the challenge has gone from writing assembly language and
the same search for new knowledge that prompted you to become
interested in assembly-language programming in the first place
returns, what do you do? Have you thought about Pascal or
FORTH?
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APPENDIX B

Z-80 Op-Codes by Hex

The complete Z-80 Instruction set is given in the following tables.
Table B-1 lists the Z-80 op-codes by hex. The remaining tables
contain the op-codes for extended (direct) addressing.

Table B-1. Z-80 Op-Codes by Hex

Op-Code | Mnemenic Op-Code | Mnemenic Op-Code | Mnemenic
00 NOP 10 e DINZ e 20 e JR NZ,e
0l n LD BC,n i1 n LD DE,n 21 n LD HL,n
02 LD (BC),A 12 LD (DE),A 22 nn LD (nn),HL
03 INC BC 13 INC DE 23 INC HL

04 INC B 14 INC D 24 INC H

05 DEC B 15 DEC D 25 DEC H

06 n LD B,n 16 n LD D.,n 26 n LD H,n
o7 RLCA 17 RLA 27 DAA

08 EX AF,AF i8 e JR e 28 e JR Ze

09 ADD HL,BC 19 ADD HL,DE 29 ADD HLHL
0A LD A,(BC) 1A LD A ,(DE) 2A nn LD HL,(nn)
oB DEC BC 18 DEC DE 2B DEC HL

ocC INC C ic INC E 2C INC L

oD DEC C 1D DEC E 2D DEC L

OE n LD Cn - 1E n LD E.n 2E n LD Ln

OF RRCA 1F RRA 2F CPL

160



Op-Code | Mnemonic Op-Code | Mnemonic Op-Code | Mnemonic
30 e JR NC,e 40 LD B,B 50 LD D.B
31 n LD SP,n 41 LD B,C 51 LD b,C
32 n LD (nn),A 42 Lb 8D 52 LD D.,D
33 INC SP 43 LD B,E 53 LD D,E
34 INC  (HL) 44 LD B,H 54 LD D,H
35 DEC (HL) 45 LD B,L 55 LD D,L
36 n LD (HL)n 46 LD B,(HL) 56 LD D,(HL)
37 SCF 47 LD B,A 57 LD D,A
38 e JR Ce 48 b CB 58 LD E,B
39 ADD HLSP 49 b CC 59 LD E,C
3A nn LD A,(nn) 4A LD C,D 5A LD E,D
3B DEC SP 4B LD CE 5B LD E,E
3C INC A 4C LD CH 5C LD EH
3D DEC A 4D LD CL 5D LD E,L
3E n LD A,n 4E LD C,(HL) 5E LD E,(HL)
3F CCF 4F b CA 5F LD E,A
Op-Code | Mnemonic Op-Code | Mnemenic Op-Code | Mnemonic
60 LD H,B 70 LD (HL),B 80 ADD AB
61 H H,C 71 LD (HL),C 81 ADD A,C
62 LD H,D 72 LD (HL),D 82 ADD A
63 LD H,E 73 LD  (HL)E 83 ADD A
64 LD HH 74 LD (HL),H 84 ADD AH
65 LD H.L 75 LD (HL)L 85 ADD AL
66 LD H(HL) 76 HALT 86 ADD A, HL)
67 LD HA 77 LD (HL,A 87 ADD AA
-68 LD LB 78 LD AB 88 ADC A,B
69 LD LC 79 b AC 89 ADC AC
6A LD LD 7A LD AD 8A ADC A,D
6B LD LE 7B LD AE 8B ADC AE
6C LD LH 7C LD AH 8C ADC A,H
6D LD LL 7D LD AL 8D ADC AL
6E LD L(HL) 7E LD A,(HL) 8E ADC  A,HL)
6F LD LA 7F LD AA 8F ADC AA
Op-Code | Mnemonic Op-Code | Mnemonic Op-Code | Mnemonic
90 sus B AO AND B BO OR B
91 sup C Al AND C B1 OR C
92 SuB D A2 AND D B2 OR D
93 SuUB E A3 AND E B3 OR E
94 SUB H A4 AND H B4 OR H
95 SUB L A5 AND L B5 OR L
96 SUB  (HL) A6 AND (HL) B6 OR  (HL)
97 SuB A A7 AND A B7 OR A
98 $3C AB A8 XOR B B8 cp B
99 SBC AC A9 XOR C B9 ce C
9A SssC AD AA XOR D BA cp D
93 SBC AE AB XOR E B8 cp E
9C SBC AH AC XOR H BC cp H
9D SBC AL AD XOR L BD cp L
9E SBC  A,(HL) AE XOR (HL) BE CP  (HL
9F SBC AA AF XOR A BF cp A
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Op-Code | Mnemonic Op-Code | Mnemonic
co RET Nz DO RET NC
[o3] POP BC D1 POP DE
C2 nn JP NZ,nn D2 nn JpP NC,nn
C3 nn JP nn D3 n OUT nA
C4 nn CALL NZ,nn D4 nn CALL NC,nn
C5 PUSH BC D5 PUSH DE
Cé n ADD An D6 n SUB n
Cc7 RST OH D7 RST 10H
cs8 RET Z D8 RET C
Cco RET D9 EXX

CA nn JP Z,nn DA nn JP C.nn
CB (SEE TABLE B2) DB n IN A,n
CC nn CALL Z,nn DC nn CALL C,nn
CD nn CALL nn DD (SEE TABLE B4)
CE n ADC A,n DE n SBC  A,n
CF RST 8H DF RST 18H
Op-Code | Mnemonic Op-Code | Mnemonic
EO RET PO FO RET P

El POP HL F1 POP AF
E2 nn JP PO,nn F2 nn JP P,nn
E3 EX (SP),HL F3 [3]]

E4 nn CALL PO,nn F4 nn CALL P,nn
E5 PUSH HL F5 PUSH AF
E6 n AND n F6 n OR n
E7 RST 20H F7 RST 30H
E8 RET PE F8 RET M
E9 JP (HL) F9 LD SP,HL
EA nn JP PE,nn FA nn JP M,nn
EB EX DE,HL FB El

EC nn CALL PE,nn FC nn CALL M,nn
ED (SEE TABLE B3) FD (SEE TABLE B4)
EE n XOR n FE n cp n
EF RST 28H FF RST 38H
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Table B-2. Extended Instruction Set: CB XX, Where XX Is:

Op-Code| Mnemonic | Op-Code| Mnemonic | Op-Code| Mnemonic | Op-Code| Mnemonic
00 RLC B 10 RL B 20 SLA B 30 -

01 RLC C n RL C 21 SLA C 31 -

02 RIC D 12 RL D 22 SLA D 32 —

03 RLC E 13 RL E 23 SLA E 33 -

04 RLC H 14 RL H 24 SLA H 34 -

05 RIC L 15 RL L 25 SLA L 35 -

06 RLC (HL) 16 RL (HL) 26 SLA (HL) 36 —

07 RLC A 17 RL A 27 SLA A 37 -

(03] RRC B 18 RR B 28 SRA B 38 SRL B
09 RRC C 19 RR C 29 SRA C 39 SRL C
(07 RRC D 1A RR D 2A SRA D 3A SRL D
0B RRC E 1B RR E 2B SRA E 3B SRL E
oC RRC H 1C RR H 2C SRA H 3C SRL H
oD RRC L 1D RR L 2D SRA L 3D SRL L

OE RRC (HL) 1E RR (HL) 2E SRA (HL) 3E SRL (HL)
OF RRC A 1F RR A 2F SRA A 3F SRL A
Op-Code|Mnemonic | Op-Code|Mnemonic | Op-Code |Mnemonic | Op-Code| Mnemonic
40 BIT 0,B 50 BIT 2,B 60 BIT 4,B 70 BIT 6,B
41 BIT 0,C 51 BIT 2,C 61 BIT 4,C 71 BIT 6,C
42 BIT 0D 52 BIT 2,D 62 BIT 4,D 72 BIT 6,D
42 BIT OE 53 BIT 2,E 63 BIT 4,E 73 BIT 6,E
44 BIT OH 54 BIT 2,H 64 BIT 4,H 74 BIT 6,H
45 BIT OL 55 BIT 2,L 65 BIT 4,L 75 BIT 6,L
46 BIT O,(HL) | 56 BIT 2,(HL) | 66 BIT 4,HL) | 76 BIT 6,(HL)
47 BIT 0,A 57 BIT 2,A 67 BIT 4A 77 BIT 6,A
48 BIT 1,B 58 BIT 3,B 68 BIT 5B 78 BIT 7,8
49 BIT 1,C 59 BIT 3,C 69 BIT 5C 79 BIT 7,C
4A BIT 1,D 5A BIT 3,D 6A BIT 5D 7A BIT 7,D
4B BIT 1,E 5B BIT 3,E 6B BIT 5,E 7B BIT 7,E
4C BIT 1,H 5C BIT 3,H 6C BIT 5H 7C BIT 7,H
4D BIT 1,L 5D BIT 3L 6D BIT 5L 7D BIT7,L
4E BIT 1,(HL) | 5E BIT 3,(HL) | 6E BIT 5,(HL) | 7E BIT 7,(HL)
4F BIT 1,A 5F BIT 3,A 6F BIT 5A 7F BIT 7,A
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Op-Code [Mnemonic | Op-Code|Mnemonic | Op-Code |Mnemonic | Op-Code [Mnemonic
80 RES 0,B 90 RES 2,B A0 RES 4,B BO RES 6,B
81 RES 0,C 1 RES 2,C Al RES 4,C B1 RES 6,C
82 RES 0,D 92 RES 2,D A2 RES 4,D B2 RES 6,D
83 RES O,E 93 RES 2,E A3 RES 4,E B3 RES 6,E
84 RES OH 94 RES 2,H A4 RES 4,H B4 RES 6,H
85 RES O,L 95 RES 2,L A5 RES 4,L B5 RES 6,L
86 RES O,(HL) | 96 RES 2,(HL) | A6 RES 4,(HL) | B6 RES 6,(HL)
87 RES 0,A 97 RES 2,A A7 RES 4,A B7 RES 6,A
88 RES 1,8 98 RES 3,B A8 RES 5,B B8 RES 7,B
89 RES 1,C 99 RES 3,C A9 RES 5,C B9 RES 7,C
8A RES 1,D 9A RES 3,D AA RES 5,D BA RES 7,D
8B RES 1,E 9B RES 3,E AB RES 5,E BB RES 7.E
8C RES 1,H 9C RES 3,H AC RES 5H BC RES 7,H
8D RES 1,1 9D RES 3,L AD RES 5,1 BD RES 7,L
8E RES 1,(HL) | 9E RES 3,(HL) | AE RES 5,(HL) | BE RES 7,(HL)
8F RES 1,A 9F RES 3,A AF RES 5,A BF RES 7.A
Op-Code|Mnemonic | Op-Code| Mnemonic | Op-Code|Mnemonic|Op-Code| Mnemonic
co SET 0,B Do SET 2B EO SET 4,B FO SET 6,B
Ci SET 0,C D1 SET 2,C El SET 4,C F1 SET 6,C
Cc2 SET 0,D D2 SET 2,D E2 SET 4D F2 SET 6,D
Cc3 SET O,E D3 SET 2,E E3 SET 4,E F3 SET 6,E
C4 SET OH D4 SET 2,H E4 SET 4,H F4 SET 6,H
Cc5 SET O,L D5 SET 2,L ES SET 4,L F5 SET 6,L
C6 SET O,(HL) | D6 SET 2,(HL) | E6 SET 4,(HL)| F6 SET 6,(HL)
c7 SET 0,A D7 SET 2,A E7 SET 4,A F7 SET 6,A
c8 SET 1,8 D8 SET 3,8 E8 SET 5,8 F8 SET 7,B
co SET 1,C D9 SET 3,C E9 SET 5,C F9 SET 7,C
CA SET 1,D DA SET 3,D EA SET 5D FA SET 7,0
CB SET 1,E DB SET 3,E EB SET 5,E FB SET 7,E
cc SET 1,H DC SET 3,H EC SET 5,H FC SET 7H
cD SET 1,L DD SET 3,L ED SET 5L FD SET 7L
CE SET 1,(HL) | DE SET 3,(HL) | EE SET 5,(HL)| FE SET 7,(HL)
CF SET 1,A DF SET 3,A EF SET 5,A FF SET 7,A
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Table B-3. Extended Instruction Set: ED XX, Where XX Is:

Op-Code | Mnemonic Op-Code | Mnemonic Op-Code| Mnemonic
40 IN B,(C) 50 IN DC) 60 IN H,(C)
41 OUT (C),B 51 outr (C),D 61 OuT (CO)H
42 SBC HL,BC 52 SBC HLDE 62 SBC HLHL
43 nn LD (nn),BC 53 nn LD (nn),DE 63 —

44 NEG 54 —_ 64 -

45 RETN 55 — 65 —

46 m 0 56 IM 1 66 -

47 LD LA 57 LD Al 67 RRD

48 IN C,(0) 58 IN E(C) 68 IN L.(C)
49 our (C),C 59 ouT (C),E 69 ouT ()L
4A ADC HL,BC 5A ADC HL,DE 6A ADC HLHL
48 nn LD BC,(nn) 5B nn LD DE,(nn) 6B —

4C —_ 5C - 6C —

4D RETI 5D - 6D -

AE —_ 5E IM 2 6E —

4F — 5F — 6F RLD
Op-Code | Mnemonic Op-Code | Mnemonic Op-Code| Mnemonic
70 —_ A0 LDI BO LDIR

71 —- Al CPl B1 CPIR

72 S3C HLSP A2 INI B2 INIR

73 nn LD  (nn),SP A3 OuTI B3 OTIR

74 — Ad — B4 —

75 - A5 — BS -

76 - A6 - B6 -

77 - A7 - B7 _

78 IN AC) A8 LDD B8 LDDR

79 out (A A9 CPD B9 CPDR

7A ADC HL,SP AA IND BA INDR

78 nn LD SP,(nn) AB OouTD BB OTDR

7C - AC — BC -

7D — AD — BD —

7E — AE - BE -

7F _ AF - BF —_
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Table B-4. Extended Instruction Set: (For FD, Replace Each IX with 1Y)

(IX) = DD XX
(IY) = FD XX, Where XX Is:
Op-Code | Mnemenic Op-Code | Mnemonic Op-Code | Mnemonic
00 ADD 1X,BC 10 - 20 -
01 — 11 — 21 nn LD IX,nn
02 —_ 12 — 22 nn LD (nn),IX
03 - 13 - 23 INC IX
04 - 14 - 24 -
05 - 15 - 25 —
06 - 16 - 26 —_
07 - 17 — 27 -
08 - 18 - 28 -
09 ADD IX,BC 19 ADD IX,DE 29 ADD IX,IX
0A - 1A - 2A nn LD 1X,(nn)
08 - 18 - 28 DEC IX
oC -— 1C - 2C -
oD - 1D - 2D -
OE - 1E - 2E -
OF - 1F - 2F —
Op-Code | Mnemonic Op-Code | Mnemonic Op-Code | Mnemonic
30 —_ 40 — 50 —
31 —_ 41 — 51 —
32 — 42 - 52 —
33 - 43 - 53 -
34 d INC (IX+d) 44 — 54 -
35d DEC (IX+d) 45 —_ 55 —_
36dn |[LD (IX+d)n | 46 d LD B(IX+d) | 56 d LD D(X+d)
37 —_ 47 —_ 57 —
38 — 48 - 58 —
39 ADD IX,SP 49 — 59 -
3A - 4A - 5A —
3B — 4B - 58 —
3C — 4C — 5C —_
3D — 4D — 5D —_
3E — 4E d LD C,(IX+d) 5E d LD E(IX+d)
3F — 4F - 5F —
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Op-Code | Mnemonic Op-Code | Mnemonic Op-Code| Mnemonic
60 - 70 d LD (IX+d),B | 80 —_

61 — 71 d LD (X-+d),C| 81 —

62 - 72 d LD (IX+d),D | 82 —

63 - 73 d LD (IX+d),E | 83 -

64 - 74 d LD (IX+d)H | 84 —_

65 - 75 d LD (X+d),l | 85 -

66 d LD H(X+d) | 76 - 86 d ADD A/(IX+d)
67 — 77 d LD (IX+d)A | 87 —

68 - 78 — 88 —

69 - 79 —_ 89 -

6A — 7A - 8A —

6B —_ 7B - 8B —

6C - 7C —_— 8C —

6D - 7D —_ 8D —

6E d LD L(IX+d) | 7E d LD A(IX+d)| 8Ed ADC  A(IX+d)
6F - 7F — 8F —

Op-Code| Mnemonic Op-Code | Mnemonic Op-Code | Mnemonic
90 — A0 - BO —

91 — Al — B1 —

92 —_ A2 — B2 —

93 — A3 L B3 —_

94 - A4 - B4 —

95 —_ A5 — B5 —

96 d SUB (IX+d) A6 d AND (IX+d) B6 d OR  (IX+d)
97 - A7 — B7 —

98 —_ A8 — B8 —

99 — A9 —_ B9 —_

9A —_ AA — BA -

9B —_ AB - BB —

9C —_ AC - BC —

9D — AD - BD —

9E d SBC A,(IX+d) | AE d XOR (IX+d) BE d CP (IX+d)
9F — AF - BF -
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Op-Code | Mnemonic Op-Code | Mnemonic
co — DO -
Ci — D1 —
Cc2 - D2 -
C3 - D3 —
C4 — D4 —
Cc5 - D5 —
Ccé — D6 -
c7 — D7 —
cs8 - D8 -
c9 — D9 -
CA — DA -
CB (SEE TABLE B5) DB -
cC —_ DC —
CD — DD —
CE —_ DE —
CF — DF —
Op-Code | Mnemonic Op-Code | Mnemonic
EO - FO —
El POP IX F1 -
E2 - F2 —
E3 EX  (SP),IX F3 -
E4 — F4 -
E5 PUSH IX F5 —_
E6 - Fé —
E7 - F7 -
E8 —_ F8 —_
E9 Jp (1X) F9 LD  SP,IX
EA — FA -
EB — FB —
EC — FC -
ED - FD —
EE - FE —
EF - FF -




Table B-5. DD and FD Double-Extended Instructions:

DD CB d XX
FD CB d XX, Where XX Is:
Op-Code | Mnemonic Op-Code | Mnemonic
CB d 06] RLC  (IX+d) CB d 46 | BIT 0,(IX+d)
CB d OE| RRC (IX+d) CB d 4E | BIT 1,(1X+d)
CB d 16| RL (IX+d) CB d 56 | BIT 2,(IX+d)
CB d 1E| RR (IX+d) CB d 5E | BIT 3,(IX+d)
CB d 26| SLA  (IX+d) CB d 66 | BIT 4,(IX+d)
CB d 2E| SRA  (IX-+d) CB d 6E | BIT 5,(IX+d)
CB d 3E| SRL  (IX+d) CB d 76 | BIT 6,(IX+d)
CB d 7E | BIT 7,(1X+d)
Op-Code | Mnemonic Op-Code | Mnemonic
CB d 86| RES 0,(IX+d) CB d C6|SET 0,(IX+d)
CB d BE| RES 1,(IX+d) CB d CE|SET 1,(IX+d)
CB d 96| RES 2,(1X+d) CB d D6 SET 2,(IX+d)
CB d 9E| RES 3,(1X+d) CB d DE| SET 3,(IX+d)
CB d A6| RES 4,(1X+d) CB d E6 | SET 4,(IX+d)
CB d AE| RES 5,(IX+d) CB d EE [ SET 5,(I1X+d)
CB d B6| RES 6,(1X+d) CB d F6 | SET 6,(1X+d)
CB d BE| RES 7,(1X+d) CB d FE | SET 7,(IX+d)
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APPENDIX C

Summary of Flag Effects
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D7 Do
P/
Instruction s 12 H VIN |C | C
ADD As; ADC A5 1 PIX TV IXTVv]o [V | 8bitadd or add with carry
SUBs; SBCA5; CPs; NEG H PIXPyIx vt { | 8bit subtract, subtract with carry, compare and negate accumulator
AND s Ppvfxryxfelofo } . .
ORs: XOR s 1 vixtolxielo 0 Logical operations
INCs Vhydx | tfx [ vio |e [ 8bitincrement
DECs tlex b x | v]t e | 8bitdecrement
. ADD DD, 8§ o e X |X|X]o |0 ]} | 16bitadd
H ADC HL, S§ t PIX IXx|vi]e t | 16-bit add with carry
SBC HL, SS PLV]X X)X vt | | 16bitsubtract with carry
RLA; RLCA; RRA; RRCA ® e IX |0 |X)e |0 |} | Rotateaccumulator
RLs; RLCs; RRs; RRCs; 4 X topx|pPijo § Rotate and shift locations
SLA5; SRAs; SRLs
RLD; RRD Pl [x]ofxfiep]o|e | Rotate digit left and right
DAA L Ix 8 x| P e |} | Decimal adjust accumulator
CPL e jeo [ X 11 Xt |1 @ | Complement accumulator
SCF e e X [0 |X|® [0 |1 |Setcarry
CCF et X [X]|X]®]0 |1t | Complementcarry
INT, (C) Prb X Jo x| e o |e [ inputregister indirect
INI; IND; OUTI; OUTD X{VIxix x| xjr|x }Bluck input and output
INIR; INDR; OTIR; OTDR X1V X P X|X] x| X PZ=0if B+ 0otherwise Z= 1
LD); LDD X[ X]x|o]x|}t|o]e }Block transfer instructions
LDIR; LDOR XA X)X [0 X0 [0 |e [IP/V=1ifBC#Q, otherwise P/V =0
CP1; CPIR; CPD; CPDR H PIX Py Ex )t @ | Block search instructions
Z=1if A =(HL), otherwise Z = 0
P/V =1if BC # 0, otherwise P/V = 0
LDAL;LDAR VP4 X [0 ] X JIFF|0 | | Thecontent of the interrupt enable flip-flop (IFF) is copied into
the P/V flag
BITh,s X PV PX §1 X ] X0 e | Thestate of bit b of location s is copied into the Z flag
The following notation is used in this table:
SYMBOL OPERATION

Carry/link flag. C=1 if the operation produced a carry from the MSB of the operand or result,

Zero flag. Z=1 if the result of the operation is zero.

Sign flag. S=1 if the MSB of the result is one.

P/IV Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this fiag
with the parity of the result while arithmetic operations affect this flag with the overflow of the result,
If P/V holds parity, P/V=1 if the result of the operation is even, P/V=0 if result is odd. If P/V holds over-

O NO

flow, P/V=1 if the result of the i an .

H Half-carry flag. H=1 if the add or subtract operation produced a carry into or borrow from bit 4 of the
accumulator.

N Add/Subtract flag. N=1 if the previ ion was a
H and N flags are used in conjunction with the decimal adjust instruction {DAA) to properly correct the

followi ddi

result into packed BCD format or ion using with packed BCD format.
The fiag is affected according to the result of the operation.

The flag is unchanged by the operation.

The flag is reset by the operation.

The flag is set by the operation.

The flag is a “don’t care’’.

P/V flag affected according to the overflow result of the operation.

P/V fiag affected according to the parity result of the operation.

Any one of the CPU registers A, B,C, D, E, H, L.

Any 8-bit location for all the addressing modes allowed for the particular instruction.
Any 16-bit location for all the addressing modes allowed for that instruction.

Any one of the two index registers 1X or Y.

Refresh counter.

8-bit value in range <0, 255>

nn 16-bit value in range <0, 65535

8 ® T v X=290080

3>

Courtesy Mostek Corp.
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APPENDIX D

Summary of

Level Il BASIC ROM

® FLOATING POINT ACCUMULATORS
411DH-4124H FPA1:

4127H-412EH

414AH-4151H

40AFH

40BOH

OA9DH
OAEFH
0AECH
25D9H

FPA2:

FPA3:
NTF1:

NTF2:

SETINT:
SETSGL:
SETDBL:
RST32:

© MOVING VARIABLES
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09B1H
09CBH
09B4H
09BFH
09C2H
09A4H
09D2H
09D3H
O09FCH

HLFPAT1:
FPATHL:
REGFPA:
FPAREG:
HLBCDE:
FPASTK:
HLTODE:
DETOHL:

SGLDBL:

-
Subroutines
4121-4122 = INT (HL)
4121-4124 = SGL (BCDE)
411D-4124 = DBL
4127-4129 = INT (DE)
4127-412A = SGL (BCDE)
4127-412E = DBL

SGL-multiplication & DBL-division work area.
Number Type Flag for FPA1: 2=INT, 3=STR, 4=SGL,

8=DBL.

Number Type Flag for FPA2: 2=INT, 3=STR, 4=SGl,

8=DBL.
Set NTF1 = 2.
Set NTF1 4,
Set NTF1 8.
Test content of FPA1, result in F:
Z=1=8TR
S==1=INT
P/V=1=SGL
C==0=DBL

]

MEM-to-FPA1 ((HL)-to-FPA1), SGL.
FPA1-to-MEM (FPA1-to-(HL)), SGL.
REG-to-FPA1 (BCDE-to-FPA1), SGL.
FPA1-t0-REG (FPA1-to-BCDE), SGL.
MEM-to-REG ((HL)-to-BCDE), SGL.
FPA1-to-Stack, SGL.

MEM-to-MEM ((HL)-to-(DE)), DBL, NTF1
MEM-to-MEM ((DE)-to-(HL)), DBL, NTF1
FPA1-to-FPA2, NTF1 must be 4 or 8.

# bytes moved.
# bytes moved.



® KEYBOARD INPUT

002BH
035BH
0049H
1BB3H

0E6CH
40A7H-40A8H
41E8H-42E8H

KBSCAN:

KBDSCN:
GETCHR:
QINPUT:

ASCBIN:
BUFPTR:
INPBUF:

® CRT VIDEO DISPLAY

0033H
4020H-4021H
032AH,
40A6H
409CH
OFBDH
28A7H

3COOH-3FFFH
401EH
0458H
01C9H
022CH

© CASSETTE
0212H

O1F8H
0287H
0296H
0264H
0235H
0314H

@ LINE PRINTER

37E8H
003BH
4029H
039CH
409BH
05D1H

CRTBYT:

CCRPOS:

DSPCHR:
CCPPTR:
DTF:

BINASC:
OUTLIN:

VIDMEM:

VIDDRA:
VIDDRR:
CLS:
BLSTAR:

DEFCAS:

CASOFF:
WRLDR:
RDLDR:
WRBYTE:
RDBYTE:

RDADDR:

LPADDR:
LPBYTE:
LPCTRA:
LPNCHR:
LPPOSC:
LPSTAT:

® DATA CONVERSIONS

OA7FH
OABIH
OADBH
0B26H
OE6CH

OE65H

1E5AH

CINT:
CSNG:
CDBL:
FIX:
ASCBIN:

ASCDBL:

ASCINT:

Single keyboard scan; ASCII value returned in A.

Same as 002BH, except DE saved.

KBSCAN plus “loop” instructions.

Keyboard input & display “?'’; up to 240 characters; typically
followed by RST 10.

ASCli-to-binary, result in FPA1; NTF1 set to 3.

Location of Input Buffer Pointer.

Input Buffer; up to 240 characters.

Display ASCII value in A at current cursor position.

Location of Current Cursor Position.

Display ASCII value in A if Device Type Flag = OOH.

Location of Current Cursor Position pointer.

Device Type Flag, O1H = LP, O0H = CRT, FFH = CASS.

Binary-to-ASCII; FPAT & NTF1 specify source.

(HL)}-to-CRT, automatically displays and updates cursor posi-
tion until zero byte encountered; HL points to string loca-
tion, NTF1 set to 3.

CRT video memory addresses.

Video Driver address.

Video Driver routine.

Clear CRT video display & home cursor.

Alternately blink right ** on CRT.

Define cassette & turn motor ON; content of A specifies
which cassette: A=0=cass#1, A=1=cass#2.

Turn cassette OFF.

Write LEADER & SYNC byte.

READ LEADER & SYNC byte and display ** when done.

Write a byte of data in A to cassette.

Read a byte of data from cassette into A.

Read two consecutive bytes from cassette into HL.

Line printer memory-map address.

Send content of A to printer via C; update line counter.
LP Line Counter.

Send content of A to printer; update line position.

LP Line Position Counter.

Test LP status, result in F: Z=1=READY, Z=0=BUSY.

FPAT-to-INT; NTF1 set to 2; “OV* error if >>32767.

FPA1-t0-SGL; NTF1 set to 4.

FPA1-to-DBL; NTF1 set to 8.

FPAl-to-truncated FPA1; NTF not changed.

ASCll-to binary, automatically to lowest possible number
type, DBL if more than 7 digits.

ASCli-to-DBL;! source pointed to by HL; string must end with
colon (:) or zero byte (OOH).

ASCIl-to-INT; source pointed to by HL; result in DE; termi-
nates on first non-numeric character.
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@ ARITHMETIC FUNCTIONS

OFBDH BINASC:

OFBEH

BINFOR:

Binary-to-ASCII (unformatted), result in FPA3 (4130-4151H),
terminated with a zero byte.
Binary-to-ASCII (formatted); PRINT USING format; regs A, B
and C specify format:
A=00H=no formatting.
81H=Exponential format.
84H=Sign follows number if negative.
88H=S8ign precedes number if positive.
90H=Print $ before number.
AOH=Print * before number.
COH="Print comma (,) every 3rd place.
B=Number of digits to LEFT of decimal point.
C=Number of digits to RIGHT of decimal point.

+ OBD2H INTADD: DE+ HL - HL} tAutomatically defaults to SGL
0716H SGLADD: BCDE+ FPA1 ->FPA1 if INT capacity exceeded.
0C77H DBLADD: FPA1+FPA2 ->FPAI1

- 0BC7H INTSUB: DE—HL —>HLT
0713H SGLSUB: BCDE —FPA1 —>FPAI1
OC70H DS3LSUB: FPA1 —FPA2 —>FPA1

% OBF2H INTMUL: DE HL —>HLT
0847H SGLMUL: BCDE % FPA1 ~->FPA1
08A2H DBLMUL: FPA1kFPA2  —>FPAl

/ 2490H INTDIV: DE / HL —>FPAI1
08A2H SGLDIV:  BCDE | FPA1 —>FPA1
ODE5H DBLDIV: FPA1 [ FPA2 —>FPAI1

<=>>0A39H INTCMP: DE@HL inA: @ =< = +1 =0lHin A
OAOCH SGLCMP: BCDE@FPA1 > = —1 = FFH
0A78H DBLCMP: FPAT@FPA2 = = 0 = 00H

@ MATHEMATIC FUNCTIONS

TRIG  1547H SIN(X): 4 in FPA1 = 4 in FPAI NOTE: operand —> result
1541H COS(X): 4 in FPA1 = 4 in FPA1 2 = INT
15A8H TAN(X): 4 in FPA1 —> 4 in FPA1 4 = SGL
15BDH ATN(X): 4 in FPA1 = 4 in FPA1 8 = DBL

LOG 0809H LOG(X): 4 in FPAT = 4 in FPAT In X
1439H EXP(X): 4 in FPA1 = 4 in FPAl1 &% ALL angles in radians
1357H X1Y: X in BCDE —> 4 in FPA1 X¥

Y in FPA1
13E7H  SQR(X): 4 in FPA1 = 4 in FPA1

S&M 0977H ABS(X): 2,4,8 in FPA1 = 2,48 in FPA1
0326H FIX(X): 4,8 in FPA1 - 4,8 in FPA1
O0B37H INT(X): 4,8 in FPA1 —> 2 in FPAY (>32767 = 4 in FPAl)
098AH SGN(X): 2,4,8 in FPA1 — 2 in FPA1

RND 01D3H RANDOM:
14CCH RND(X): 2 in HL = 4 in FPA1 (must be converted to INT)

® BASIC PROGRAMS

40A4H-40A5H Location of starting address of BASIC program.
40F9H-40FAH  Location of ending address of BASIC program (after CLOAD).
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© MISCELLANEOUS SUBROUTINES

02B2H SYSTEM: SYSTEM input entry.

27C9H FREMEM: Returns amount of free memory as SGL in FPA).

213FH CRTTAB: Tab cursor to position n on display line; n must be integer
0-3FH in E register; HL register pair must point to address
containing zero byte.

0553H SCROLL: Scroll CRT video display up one line.

057CH CRTCLR: Clear CRT video display from n to end of display; n must be
integer 0-3FH; HL must contain 3COOH+n,

1A19H BASIC2: Entry point to Level |l BASIC.
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Decimal/Hex
Conversion Table

APPENDIX E

00-0F 10-1F 20-2F 30-3F

Hex Decimal Hex Decimal Hex Decimal Hex Decimal
00 (4] 0 10 4096 16 20 8192 32 30 12288 48
01 256 1 11 4352 17 21 8448 33 31 12544 49
02 512 2 12 4608 18 22 8704 34 32 12800 50
03 768 3 13 4864 19 23 8960 35 33 13056 51
04 1024 4 14 5120 20 24 9216 36 34 13312 52
05 1280 5 15 5376 21 25 9472 37 35 13568 53
06 1536 6 16 5632 22 26 9728 38 36 13824 54
07 1792 7 17 5888 23 27 9984 39 37 14080 55
08 2048 8 18 6144 24 28 10240 40 38 14336 56
09 2304 9 19 6400 25 29 10496 41 39 14592 57
OA 2560 10 1A 6656 26 2A 10752 42 3A 14848 58
oB 2816 1 1B 6912 27 28 11008 43 3B 15104 59
oC 3072 12 1C 7168 28 2C 11264 44 3C 15360 60
oD 3328 13 1D 7424 29 2D 11520 45 3D 15616 61
OE 3584 14 1E 7680 30 2E 11776 46 3E 15872 62
OF 3840 i5 1F 7936 31 2F 12032 47 3F 16128 63
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40-4F 50-5F 60-6F 70-7F

Hex Decimal Hex Decimal Hex Decimal Hex  Decimal
40 16384 64 50 20480 80 60 24576 96 70 28672 112
41 16640 65 51 20736 81 61 24832 97 71 28928 113
42 16896 66 52 20992 82 62 25088 98 72 29184 114
43 17152 67 53 21248 83 63 25344 99 73 29440 115
44 17408 68 54 21504 84 64 25600 100 74 29696 116
45 17664 69 55 21760 85 65 25856 101 75 29952 117
46 17920 70 56 22016 86 66 26112 102 76 30208 118
47 18176 71 57 22272 87 67 26368 103 77 30464 119
48 18432 72 58 22528 88 68 26624 104 78 30720 120
49 18688 73 59 22784 89 69 26880 105 79 30976 121
4A 18944 74 5A 23040 90 6A 27136 106 7A 31232 122
4B 19200 75 58 23296 9N 6B 27392 107 7B 31488 123
4C 19456 76 5C 23552 92 6C 27648 108 7C 31744 124
4D 19712 77 5D 23808 93 6D 27904 109 7D 32000 125
4E 19968 78 5E 24064 94 6E 28160 110 7E 32256 126
4F 20224 79 5F 24320 95 6F 28416 111 7F 32512 127
80-8F 90-9F AQ-AF BG-BF

Hex Decimal Hex Decimal Hex Decimal Hex Decimal
80 32768 128 90 36864 144 A0 40960 160 BO 45056 176
81 33024 129 91 37120 145 Al 41216 161 B1 45312 177
82 33280 130 92 37376 146 A2 41472 162 B2 45568 178
83 33536 131 93 37632 147 A3 41728 163 B3 45824 179
84 33792 132 94 37888 148 A4 41984 164 B4 46080 180
85 34048 133 95 38144 149 A5 42240 165 B5 46336 181
86 34304 134 96 38400 150 A6 42496 166 B6 46592 182
87 34560 135 97 38656 151 A7 42752 167 B7 46848 183
88 34816 136 98 38912 152 A8 43008 168 B8 47104 184
89 35072 137 99 39168 153 A9 43264 169 B9 47360 185
8A 35328 138 9A 39424 154 AA 43520 170 BA 47616 186
8B 35584 139 9B 39680 155 AB 43776 171 BB 47872 187
8C 35840 140 9C 39936 156 AC 44032 172 BC 48128 188
8D 36096 141 oD 40192 157 AD 44288 173 BD 48384 189
8E 36352 142 9E 40448 158 AE 44544 174 BE 48640 190
8F 36608 143 9F 40704 159 AF 44800 175 BF 48896 191
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CO-CF DO-DF EO-EF FO-FF

Hex Decimal Hex Decimal Hex Decimal Hex Decimal
CoO 49152 192 DO 53248 208 EO 57344 224 FO 61440 240
(o3} 49408 193 D1 53504 209 El 57600 225 F1 61696 241
C2 49664 194 D2 53760 210 E2 57856 226 F2 61952 242
C3 49920 195 D3 54016 211 E3 58112 227 F3 62208 243
C4 50176 196 D4 54272 212 E4 58368 228 F4 62464 244
C5 50432 197 D5 54528 213 E5 58624 229 F5 62720 245
Cé6 50688 198 D6 54784 214 E6 58880 230 F6 62976 246
C7 50944 199 D7 55040 215 E7 59136 231 F7 63232 247
Cc8 51200 200 D8 55296 216 E8 59392 232 F8 63488 248
C9 51456 201 D9 55552 217 E9 59648 233 F9 63744 249
CA 51712 202 DA 55808 218 EA 59904 234 FA 64000 250
CB 51968 203 DB 56064 219 EB 60160 235 FB 64256 251
CC 52224 204 DC 56320 220 EC 60416 236 FC 64512 252
CD 52480 205 DD 56576 221 ED 60672 237 FD 64768 253
CE 52736 206 DE 56832 222 EE 60928 238 FE 65024 254
CF 52992 207 DF 57088 223 EF 61184 239 FF 65280 255
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APPENDIX F

ASCII Table
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HLL H.9 HLS HLy HZE H.T HZL HZ0
| 413 138
61 €0l L8 v 5§ 6¢ | HOZe £z
H9/L H99 H9S H9Y H9E H9T H91L H90
k) NAS AV
8Ll (48 98 0L 143 8¢ [44
HSZ HS9 HSS HSY HSE HST HG1 HSO
% AVN ON3
LUt Lot S8 69 €5 L8 1z
HYL HY9 HYS HYy HYe HYZ HPL HY0
$ yoa 103
9Ll 00t ¥8 89 s 9e 0T
HEL HES HES HEy HEE HET HEL HEO
# ple X13
St 66 €8 L9 189 S€ 61
HZL HZ9 HTS HZy Hze HZe HZ1 HZO
“ Zoa X1s
vit 86 4} 99 05 vE 8l
HLL H19 HIig HiY HLE HIZ HLlL H10
i 12a HOS
Ell L6 8 s9 14 £e L1 | Av3dg
HOZ HO09 HOS Hoy HOE HOZ HOL HOO
ds aa NN
Til 96 08 9 8y e ol
ase) Jamol ase) Joddp sjoquiig josuc)

slaquinp
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X3H

¥ILOVAVHD 1108V :1VWHO4
08-53L wwWI23a 5
HdL
HdL H49 HdS HiY H4E H4Z sn H40
sjajop — / N33¥OS 40 IS
Ped! Lt | 20s¥nd 6 6L £9 ¢y | GN3 OL V31D (€ | 440 ¥OS¥ND  §1
Hal
H3L H39 Has Hay Hae HazZ oy H30
v
n aNIT 4O anNa3 os
<« 9zl oLt v6 8. 29 9y OLAOSAND  0F | NO ¥0SIND ¥l
Hal
HAZ Ha9 Has Hay Hage Haz SO Hao
NI 40
{ [ - ONINNIO3g ]
- szl 601 £6 L 19 Sy| OL 4OS¥ND 67 | ¥3IN3 el
HOL
HOZL HO9 HOS HOY HOE HOZ o4 HO0
! N ! HO-¥9 40SdND 44
0 vzt 801 26 9L 09 v¥ | IWOH 8z zt
Hel Hg0
HeL Ha9 HEs Hay Hag HaZ 253 1A
} 1 + i
i ezt 01 16 st 65 gr| dn Yed 1t
HVL HVO
HYL HV9 HVS Hvy HVE HVZ ans 5
z z * 0
zzl 01 06 L 85 zr | Nmoa 9% ol
H6L H60
H6L H69 H6S Hév HéE H6e W3 I
A A ( —
1zt sol 68 € 5 7| quvmeos sz 6
H8¢L H89 H8S H8Y HsE H8Z H81L H80
x X ) NVD sg
-
ozt vot 8 o 95 or| 3dvdsdova vz g




COP D UUE N

11.

12.

14.
15.

= NN L Y
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APPENDIX G

Answers to
Review Questions

CHAPYER 1

. High-level, assembly-level, and machine-level programming.

. Binary; i.e.,, ONEs and ZERO:s.

. Symbolic.

. “English-like.”

. Mnemonics . . . labels.

. (A) Machine-level. (B) High-level.

. Source code.

. Source . . . object.

. Op-codes.

. Mnemonics and op-codes represent microprocessor instructions; labels and

operands represent addresses and data variables.

Assembly-language programming consists of selecting a sequence of micro-
processor instructions which when executed produce the desired results.
Multi-purpose (BASIC) .. . specific (assembly language).

. 7 clock cycles.

4 microseconds.
Speed and memory conservation.

CHAPTER 2

CPU or microprocessor.

. General-purpose, 8-bit, digital.

Dynamic.

. Microprocessor - I/0 - memory.
. Data bus, address bus, and control bus.
. 256 input and 256 output, or 512 total.

Two.



o YUA Lo

~1

. A,F,B,C,D,E, H, and L.

. 216 — 65,536 — 64K addresses.

. Accumulator or A register.

. Indicate status of an ALU operation via the condition of the flags.

. Indirect addressing . . . the contents of the memory location addressed or

pointed to by the register(s) enclosed in parentheses.

. Indirect addressing.

=1

. Permit conditional or decision-making instructions to exist.

. C register is the source; B register is the destination: LD B C.

. 19 1A ... low-byte first (19H), then the high-byte (1AH).

. Both use 2’s complement numbers to compute their displacement.

. No 16-bit logical instructions exist.

. Jump does not save original contents of PC register; call does by pushing it

onto the stack before loading a new address into the PC.

CHAPTER 3

. Respectively, decimal and hex address for T-BUG autostart (entry).

. Jump back into Level II BASIC.

. Causes current contents of Z-80’s registers to be displayed.

. ONLY after a B(breakpoint) command has been executed.

. Access address 482EH using M command, enter new contents; actual transfer

occurs upon JUMP or GO command.

. Autostart (entry) address for T-BUG.

>
#.
*?P.

. 3CO0H.
. As ASCII values.
. On an un-modified Model I TRS-80, a “*k” will be displayed, because no

lowercase characters can be displayed. On a modified Model I or Model ITI
TRS-80, a “§” will be displayed.

. “Call” Level IT BASIC’s CLEAR SCREEN (CLS) subroutine at 01C9H, by

using CD C9 01 in your program.

. Add 30H to the number (30H + 1 = 31H) and store the result at address

3CO0H.

CHAPTER 7

. Memory-mapped 1/0 is addressed through a 16-bit memory address and

port-addressed I/0O is addressed through an 8-bit port.

. There are 512 different ports, 256 inputs, and 256 outputs.

As many as there are memory addresses, 216 — 65,536.

. Begins each new data block.
. Cassette #2 (If Expansion/Interface is connected ).
. Subroutine 0235H reads ONE byte from tape into A register; but 0314H

reads TWO consecutive bytes from tape into the HL register pair.

. Nothing, it simply waits until the timing is correct.
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8.

9.

10.
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Handshaking, it tells the computer that the printer is ready for another byte
of data.

“Lockup” occurs, because the computer will look for the “P” character that
does not exist.

The HL register pair specifies the source/destination memory address, the B
register specifies the number of bytes (256 maximum) to be input/output,
and the C register specifies the destination/source port.



Index

A

Absolute addressing, 141-145
Accumulator(s), 26, 30, 57

floating-point, 84-86, 105, 109, 172

Address(es)
bus, 23
memory, 15
registers, 29
Addressing
bit, 36-37
direct, 35, 160-169
extended, 35, 160-169
immediate, 34
extended, 34-35, 38
indexed, 35
indirect, 29
modes, 33-37
register, 33-34
indirect, 34
relative, 36
versus absolute, 141-145
Allen, Paul, 77, 104
ALU, 26, 28, 30, 31
Arithmetic
and logic instructions, 32, 41, 141
mathematical functions,
150-151
double-precision, 29, 109-110
functions, 105-110, 174
logic unit, 26
operations, 30, 31, 104
single-precision, 107-109
ASCI1, 80, 84, 179-181
characters, 76
and symbols, 66-67
T-BUG and, 66-68
to numeric conversions, 99-100

Assembly
language, 11-21, 50, 116
programming, 9, 22, 50, 51,
139-141, 145, 151-152
programs, 79, 104, 134, 153-154,
157
-level languages, 9-10, 14

Back-up copy, 64-65
BASIC
interpreter, 104
loop, 18-19
program, 19-20
Batch processing, 151
Binary, 10, 11, 13
Bit
addressing, 36-37
manipulation instructions, 37, 45, 46
Block
of code, 144
moves, 18, 144
search instructions, 38, 40-41
transfer instructions, 38-40
Breakpoint(s), 16, 53, 61
command, 60-62
Bus, 23

c

Call and return instructions, 47

Cassette, 122, 123-131, 153
subroutines, 125-126, 173
tapes, 79, 154-156

Central processing unit, 22
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Character generator chip, 66
Clock
cycles, 18
speed, 18
COBOL, 15
Code(s)
instruction, 11
object, 11, 13, 22
relocatable, 143-145
source, 11, 13
‘symbolic, 9, 11
Command(s)
BREAKPOINT, 60-62
FIX, 60, 61
GO, 60, 61-63
JUMP, 59-60
MEMORY, 56-57, 58, 61
Mode, 56
PUNCH, 63-65
REGISTER, 57-59, 63
T-BUG, 55-65
Communication area, 76-77
Compare instruction, 17
Compiler, 16
Complement registers, 28
Computer
instructions, 9
programming languages, 9
Conditional instructions, 30-31
Control bus, 23
Conventions, Z-80, 32-33
Conversion(s)
ASCII to numeric, 99-100
data, 97-103
number, 96, 98-99
numeric to ASCII, 100-101
routine, integer, 93-94
table, decimal/hex, 176-178
Converting data, 80-103
CPU, 22, 23, 26, 29, 32
control instructions, 42-44
register, 37, 47

Data
blocks, 156
bus, 23
conversions, 97-103, 173-174
converting, 80-103
formatting, 80-103
input and output of, 122, 134
inputting, 90
movement subroutines, 89-90
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Data—cont

moving, 80-103

numerical, 80

processing, 150-151

string, 80, 94, 96

variables, 9, 11, 13, 147
Debug program, 54
Debugging, 10, 50, 51, 53, 60
Decimal, 96

/Hex conversion table, 176-178
Defined structures, 9
Devices, 1/0, 123
Direct addressing, 35, 160-169
Display logic, video, 23
Documentation, 134
Double-precision

arithmetic, 29, 109-110

format, 80-81, 83

variables, 89-90
Dynamic memory, 23

Editor/assembler, 51, 52, 54, 154
T-BUG versus, 50-54

8-bit operations, 32

8080 instructions, 23

8080/Z-80 Family, 25

Exchange instructions, 38-39

Execution speed program, 18-19

Exponential functions, 110, 114-119

Extended addressing, 35

“Fetch,” 29
File names, 63, 64
Filename, 123, 124, 154-156
Flag(s), 86-87, 95, 170-171
number type, 86-87
register, 26, 30-32, 57, 58
Floating-point
accumulators, 84-86, 90, 105, 109,
172
numbers, 81, 82
Format(s)
double-precision, 80-81, 83
integer, 80-82
numeric, 81-84
single-precision, 80-83
16-bit unsigned integer, 80-81, 83
SYSTEM tape, 123-131
Formatted output, 100-101



Formatting data, 80-103

FORTH, 157

FORTRAN, 15

4-bit operations, 32

Functions
arithmetic, 105-110, 174
logarithmic and exponential, 110,

114-119

mathematic, 105, 110-112, 174
random, 119-121
sign and magnitude, 119
transcendental, 110-112
trigonometric, 110, 112-114

G

Gates, Bill, 77, 104
General-purpose registers, 26, 28
GO command, 60, 61-63
Graphics symbols, 76

Hand assembly, 51, 52-53, 54
Handshaking, 131

Hard copy, 134

Hardware and interfacing, 135
Hardwired locations, 70
Hardwiring, 145

Hexadecimal, 10, 11, 13, 81-82, 84, 96

High-level
languages, 9-10, 15, 16
programming, 9

Immediate
addressing, 34
extended addressing, 34-35, 38
Implicit addressing, 33
Implied addressing, 33
Increment instruction, 17
Index registers, 30, 38, 58
Indexed addressing, 30, 35
Indirect addressing, 29
1/0
devices, 25, 123
instructions, 23, 47-48
memory-mapped, 122-123, 131
port(s), 47, 122, 134-138
port-addressed, 122-123, 131

Input
and output
instructions, 47-48
of data, 122, 134, 135-136
instructions, 135-136
keyboard, 90-94
routine, keyboard, 173
Inputting data, 90
Instruction(s)
arithmetic and logic, 32, 41, 141
bit manipulation, 37, 46
block transfer, 38-41
call and return, 47
codes, 11
computer, 9
conditional, 30-31
CPU control, 42-44
8080, 23, 25
exchange, 38-41
input, 47-48, 135-136
1/0, 23, 47-48
jump, 46, 47
load, 37-38
microprocessor, 16-17
output, 47-48, 136-137
port, 134-138
program, 10, 26
PUSH and POP, 145
rotate and shift, 44-46
search, 38-41
set, 22
Z-80, 32-33, 50
Z-80, 23
Integer, 105-107
conversion routine, 93-94
format, 80-82
16-bit unsigned, 80-81, 83
variable, signed, 151
Interfacing, hardware and, 135
Internal
memory, 28
registers, 25-26, 57
Interpreter, 16, 17, 153
BASIC, 77-79, 104

“JKL” LPRINT
program, 20, 132-134
subroutine, 79

Jump
command, 59-60
instruction, 17, 46, 47
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K
Keyboard
input, 90-94
routine, 173
matrix, 74
L

Labels, 9, 11, 13, 50-52, 80
Language(s)
assembly, 11-21, 50, 51
-level, 9-10, 14
computer programming, 9
high-level, 9-10, 15, 16
machine, 10-11, 50, 51
-level, 9-10, 14
programming, 9-10
Level 1I BASIC, 15-16, 20, 73, 77-80,
104, 157, 172-175
subroutines, 139, 148
Line printer subroutine, 173
Load instructions, 17, 37-38, 40
Loading multiple programs, 65-66
Logarithmic and exponential
functions, 110, 114-119
Logic
operations, 30, 31
video display, 23
Loop, BASIC, 18-19
Lowercase letters, 66, 68

M

Machine
language, 10-11, 50
monitor, 54
programs, 53, 153-154
-level, 9
languages, 9-10, 14
programming, 9
Mathematic
functions, 105, 110-112, 174
operations, 104, 110, 112
Memories, read/write, 70
Memory, 25, 77
addresses, 15
command, 56-57, 58, 61
dynamic, 23
internal, 28
locations, 33, 35, 37, 39, 64, 70, 76,
141
map, TRS-80, 70-79
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Memory—cont

-mapped 1/0, 122-123, 131

requirement, program, 19

static, 23

utilization, 9, 17
Microprocessor

instructions, 16-17

operation, 16

registers, 15

7-80, 22-49
Mnemonics, 9, 11-13, 14, 50-52, 160-

169

Modifications, T-BUG, 65
Monitor, 13, 51, 53

program, 16

T-BUG, 50
Moving

data, 80-103, 152

variables, 88-90, 172
Multiple programs, loading, 65-66
Multipurpose operation, 17
Mumford, Bryan, 79, 132

Nested subroutines, 106
Nesting, 106
Nibble, 31, 37
Number
conversion, 96, 98-99
crunching, 104
types, 98-99, 105
Numeric
formats, 81-84
to ASCII conversions, 100-101
Numerical data, 80, 91

(o]

Object code(s), 11, 13, 22, 51, 153
programs, 53, 63-64

Octal, 10, 11, 13

One-byte instructions, 33, 36

Op-codes, 11, 13-14, 17, 26, 33, 50-52,

60, 89, 141, 160-169

Operands, 84-86

Operating systems, 19-20

Operation
codes; see op-codes
microprocessor, 16
multipurpose, 17

Operational registers, 28



Output
instructions, 136-137
of data, 136-137

Pascal, 15, 157
Port
-addressed 1/0, 122-123, 131
instructions, 134-138
1/0, 122, 134-138
255, 23, 47, 134
Post processing, 150
Printer subroutine, 122, 131-134, 173
Process time, 150-151
Processing
batch, 151
data, 150-151
post, 150
real-time, 15, 19
sample, 151
Program(s), 17-18
and routines, special-purpose, 19-20
assembly-language, 134
BASIC, 19-20
coding, 140
counter, 26, 29, 58, 142
debug, 54
8080, 25
execution speed, 18-19
instructions, 10, 26, 60
“JKL” LPRINT, 20
loading multiple, 65-66
machine-language, 53
memory, 19
monitor, 16
object-code, 53
SYSTEM, 53
Programming, 15
assembly-language, 9, 22, 50, 51,
139-141, 145, 151-154
high-level, 9
language(s), 9-10
computer, 9
machine-level, 9
PUNCH command, 63-65
PUSH and POP instructions, 145

Radians, 112
Random functions, 119-121
Read/write memories, 70

Real-time processing, 15, 19
Register(s), 84-85, 148-150
address, 29
addressing, 33-34
command, 57-59, 63
complement, 28
exchange instruction, 79
flag, 57, 58
general-purpose, 26, 28
index, 38, 58
indirect addressing, 34
internal, 25-26, 57
microprocessor, 15
operational, 28
pairs, 29, 82, 84-85
16-bit, 28-29
special-purpose, 26, 28
working, 28-29, 39
Relative addressing, 36, 141-145
Relocatable code, 143-145
Richardson, Robert, 79, 132
Rotate and shift instructions, 44-46
Routine(s)
assembly language, 18-19
special-purpose, 19-20, 79

Sample
processing, 151
time, 150
Sign
and magnitude functions, 119
bit, 81, 83
(S) flag, 31
Signed integer variable, 151
Single-precision
arithmetic, 107-109
format, 80-83
variables, 88-90
16-bit
operations, 32
register, 28-29
unsigned integer format, 80-81, 83
Software, video, 132
Source code, 11, 13
Special-purpose
programs and routines, 19-20
registers, 26, 28, 29-30
routines, 79
Speed
clock, 18
of execution, 9
program execution, 18-19
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Stack, 145-148
area, 29-30
pointer, 26, 29, 58
Static memory, 23
Status register; see flag register
Storage locations, 25-26
String(s), 87, 103
data, 80, 84, 94, 96
Structures, defined, 9
Subroutine(s), 15, 17, 47, 64, 74, 98-
99, 139-141, 147-148, 157,
172-175
cassette, 125-126
data movement, 89-90
“JKL” LPRINT, 79
nested, 106
printer, 131-134
video display, 80
Symbolic codes, 9, 11
SYSTEM
command, 65
format, 153-154
program(s), 53, 54, 65, 153
routines, 74, 79
tape format, 123-131
tapes, a program to write, 154-157

T

T-BUG, 16, 18, 79, 126-127, 132, 139,
143, 153, 154
and ASCII, 66-68
commands, 55-65
modifications, 65
versus an editor/assembler, 50-54
Temporary storage, 25-26, 29, 30, 64,
76

Terminology, Z-80, 32-33
Time

process, 150-151

sample, 150
Timing problems, 125-126, 150-151
Tips, Tricks, and Techniques, 145, 146
Transcendental functions, 110-112
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Trigonometric functions, 110, 112-114
TRS-80 memory map, 70-79

u

Unformatted output, 100
User RAM, 77
Utility routines, 18

v

Variable(s)
data, 9, 11, 13, 147
double-precision, 87-89
moving, 88-89, 172
signed integer, 151
single-precision, 87-89
specifiers, 81
string, 87-88

Video display, 94-97, 123, 132
logic, 23
memory, 74-76
software, 132
subroutines, 80, 95, 173

w

Working registers, 28-29, 39, 132

z
Z-80
conventions, 32-33
flags, 22

instruction set, 32-33, 50
instructions, 23
microprocessor, 22-49
registers, 22, 25-32
terminology, 32-33

Zero (Z) flag, 31
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According to Business Week magazine (Technology July 6, 1976) large scale integrated circuits
or LSI “chips” are creating a second industrial revolution that will quickly involve us all. The
speed of the developments in this area is breathtaking and it becomes more and more difficult to
keep up with the rapid advances that are being made. It is also becoming difficult for newcomers
to “get on board.”

It has been our objective, as The Blacksburg Group, to develop timely and effective educational
materials that will permit students, engineers, scientists, technicians and others to quickly learn
how to use new technologies and electronic techniques. We continue to do this through several
means, textbooks, short courses, seminars and through the development of special electronic de-
vices and training aids.

Our group members make their home in Blacksburg, found in the Appalachian Mountains of
southwestern Virginia. While we didn't actively start our group collaboration until the Spring
of 1974, members of our group have been invelved in digital electronics, minicomputers and
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The Mark-B was featured in Radio-Electronics magazine in 1974. We have also designed several
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have been provided in each book. We are strong believers in the use of detailed experiments and
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-~We have pioneered the use of small, self-contained computers in hands-on courses for micro-
computer users. Many of our designs have evolved into commercial products that are marketed
by E&L Instruments and PACCOM, and are available from Group Technology, Lid., Check, VA
24072.

—Our short courses and seminar programs have been presented throughout the world. Programs
are offered by The Blacksburg Group, and by the Virginia Polytechnic Institute Extension Divi-
sion. Each series of courses provides hands-on experience with real computers and electronic
devices. Courses and seminars are provided on a regular basis, and are also provided for groups,
companies and schools at a site of their choosing. We are strong believers in practical labora-
tory exercises, so much time is spent working with electronic equipment, computers and circuits.

Additional information may be obtained from Dr. Chris Titus, the Blacksburg Group, Inc. (703)
951-9030 or from Dr. Linda Leffel, Virginia Tech Continving Education Center (703) 961-5241.

Our group members are Mr. David G. Larsen, who is on the faculty of the Department of Chem-
istry at Virginia Tech, and Drs. Jon Titus and Chris Titus who work full-time with The Blacksburg
Group, all of Blacksburg, VA.
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