e Go: L]
A 51-"::;1
L.Sf': 3

y;a_-_—f

¥4
O

¢
5
b

Lr®

i

A
i
o4

R
I\
L

: J)."i
f

8 ot

syrea
e amnid

'

3,

=4

3

A

N Conard!

e

i ey

o
5
gy

N ia VRS

ot ety P

r

Ao

-+,
r
Xer

' RN,

o
-
et L

-
e

A,
y)
T

i

ST
SRR

DISCLAIMER

Houston Micro-Computer Technologies, Inc. in the
presentation of the Software Technical Manual, 1s
in no way attempting to uzurp the information
contained in the Level 11 Basic Manual provided by
Microsoft., It is our desire only, to clarify some
of the fecatures available in Level II Basic,

o)
e

AR

R
. Y
'
t
A
"

[Af i

-ty

 roir et

2

B,

~

Lot

3 CORYRIGHT

a3

N :

.s%‘ A copyright has been applied for this document by
TP Houston Micro~Computer Technologies, Inc.,
o therefore any reproduction without expressed
s written consent from Houston Micro-Computer
I Technologies Inc., is strictly prohibited. No
N3 liability is assumed with respect to the use of

the information contained herein nor any damages
resulting from the use of the infomation contained

B " herein. :
‘fi " Copyricht 1979, Houston Micro-Computer
" Technologies, Inc.

- nta

i '\N 3 .

“ﬁ 5313 Bisscnet

:%" Bellaire, Texas 77401

W 713-661-2005

d E

T T

-~

-,

-
ATy

s

|
| , .
TABLE OF CONTENTS

TITLE PAGE NO.
INTRODUCTION 4o te et s veseenenanenseen et neeaeean ... 1
DATA HANDLING o vvuvennnens e et 2
TABLE 1 ACC & DTEM DATA ORGANTIZATION «..evwe... cee. 3
TABLE 2 DATA HANDLING .+.uvwv.. ettt aanees 4
COMPARES v vvvern.. e e e 5
TABLE 3 COMPARE LOGIC e e tererieena.. B
FIGURE 1 vovevnennnnnennn R et 7

ARITHMETIC

TABLE 4 ARITHMETIC OPERATIONS +evveorronnnnneennas
BASIC FUNCTIONS «uuuuven... e e
TABLE 5 LEVEL II BASTC FUNCTIONS e
DATA CONVERSTIONS AND TI/0 +evvunennenn. e e
EXANPLE 1 LOADING JHMEDIATE VALUES e
TABLE 6 DATA CONVERSTONS AND T/0 +rveuens. e
KEYBOARD INPUT «ovvuenn.. R e e
EXAMPLE 2 INPUT X,Y TN ASSEMBLER +vveunerennnenn
EXAMPLE 3 KEYBOARD DEBOUNCING v vurervnenn.. e
EXANPLE 4 DISPLAYS KEVBOARD MEMORY ...vuun... ..
5 DETECTING MULTI-KEYING ENTRIES

EXAMPLE

% o ¥ o e e s e s e 0w © $ 8 6 4 ¢ 9 6 50 8+ O 6O e w o 80 PP e

10
10
11
13
14
15
16

16

DATA CONVEﬁSIONS AND I/0 CONT'D

TAPE I/0 it eeneennnnens

EXAMPLE 6 TAPE COPY PROGRAN

GENERAL OUTPUT +.vueeeanan

GRAPHICS

EXAMPLE 7 .. i

EXTENDING THE USR OPTION ...

€ v & 2 s e w e

¢z 8 0 0 s 9 e

EXAMPLE 8 TEE DEFUSR PROGRAEM

--

TABLE 7 MEMORY ORGANIZATION FOR VARIABLES AND

ARRAYSivivvvenns e

t

APPENDIX A — MEMORY MAPS ... e it incernoecsns

TABLE 10 DISK BASIC ENTRY POINTS

APPENDIX B - TAPE I/0 AND SQUARE WAVE MUSIC

EXAMPLE 9 SQUARE WAVE NOTE ROUTINE

APPENDIX C ~ TAPE 2ND BASIC HMEMORY PORMATS

APPENDIX D v ioeneannaens

EXAMPLE 10 A FUNCTION TEST

FRGGRAMN

v~

«

CARY

* e »

LI Y
e ¢ @

s o .

L] °

17
17

18

18

18

19
20

24

26

27

34

35

39

40

N

de INTRODUCTION |

. ' .
The purpose of this manual is to provide the assembly programmer with
documentation of ihe TPS-80 Level 1II BASIC ROM entry points and
provide working examples of their use, Several implicit assumptions
were made about the needs and background of the readers, First, it is
assumecd that the reader understands and programs in Z80-assembly

language. Second it - is assumed that the assembl rogrammer 1is
19ueg P 48 X ; .

primarily interested 1in writing fast, computationally oriented
programs. These assumptions have irnfluenced the material included in

this manual. This manual is not an cxhaustive technical program
manual. Rather, it is a brief, concice description of computationally
oriented routines in the ROM. Level IT BAZYC and DISK BASIC functions
and commands-wvhich are not discussed in the text are referenced in the
memory maps of Appendix A. The entry points discussed in this manual
are summarized in Tables 2 through 6 and Table 8. It is worthwhile to
reproduce these tables so they may be kept handy for reference,

This manual is organized in sections which emphasize different aspects
of computation. Sect_on 2 discusses data handling. This includes
General information about the Level II ROM, notational conventions and
descriptions of routines which move data. Section 3 is concerned with
compares. Compares act in the same sense as the Z80 CP (compare)
instruction. Flags are set as if the data values had been subtracted.
Section 4 discusses entry points for the arithmetic operation (+,-,*
and /) for integer, single and double precicsion arithmetic. Section 5
is concerned with the BASIC mathematical functions such as LOG,; SQOR,
SIN ... as well as the number type conversion routines, CINT, CSNG and
CDBL. Secticn 6 discusses data conversion routines (ASCII <->
internal numbers) end I/0 routines, (keyboard, video, tape, graphics,
and 1line printer). Finally, Section 7 discusses logic, which
extends the USR option, By using variable location, variable
evaluation and expression evaluation logic¢ it is possible to allow an
arbitrary number of user exits and &an arbitrary number of user
arguments.

The appendices contain enhancing information, Appendix A contains
complete maps of Level II BASIC and DISK BASIC keyword entry points,
Appendix B discusses detailed tape I/0 functions and square wave music
generation. Appendix C presents detailed tape formats and Appendix D
presents a test and demonstration program.

.

Finally, a word about RST instructions, These instructions pass
control to RAM link areas. This manual assumes these link areas have
been initialized by Level II BASIC, Caution should be used when

operating under DISK BASIC.

2. DATA HANDLING

%
This section is concerned with the storage format and manipulation of
integers, single precision floating point, {or simply single), and
double precision floating point data, (double). Also, two calls can
handle strings up to 256 bytes in length.

First, some general aspects of data handling are presented. The Level
IT ROM never uses the alternative register set. BY using EX, AF, Apr'
and EXX instructions, registers can be saved during ROM calls.
Similarly, the IX and IY register are preserved by Level II ROHM
subroutines. The Level II ROIl does use RAM storage. Both stack
memory and pre-assigned RAM are used. RAM through 42E8H should be
considered unavailable for user programs. When the SYSTEM command is
used to initiate execution of orograms, the stack is initialized in
the I/0 buffer area, (SP <-- 4288H). The user should redefine the
stack before ROM subroutines are called.

Certain RAM locations are used extensively by the arithmetic routines.
The most Ffreguently acnessed memcry acts as an accumulator, and will
be referred to as ACC, (see Table 1). The ACC notaticon will be used to
refer to RAM storage just as A is used to refer to the register
storage in the 780 CPU. Most ROM routines expect the ACC to contain a

specific type of data, (integer, single or double precision). For
routines that allow different input data types, the type is indicated
by the contents of address 40AFH. This will be abbreviated NTF

(number type flag). The type conventions are:

NTF = (40AFB) = 2 Integer
3 String
4 Single precision
8 Double precision

Note that the NTF corresponds to the length of the data. The
exception is string data where, in most applications, the ACC contains
a pointer to the string lergth (1 byte) and string address (2 Dbytes).
The RAM storage labled DTEM in Table 1 is used primarily by the double
precision arithmetic operations. The ACC and DTEM are changed by data
conversion and string operations. DTEM is not changed by compares,
integer or single precision arithmetic operations or arithmetic
functions. Finally, unless otherwise indicated, register values can
be considered as having been modified by ROM calls.

Table 2 describes the data handling routines. The indirect addresses
are indexed upward during the move. Data loaded to the ACC, DTEM or
the BCDE registers are correctly arranged for arithmetic operations
provided the originating memory was correctly arranged, (sce Level II
Reference manual pages 8/8 - 8/10).

!

i
i
\

TABLE 1_ACC & DTEM_DATA ORGANIZATION

ADDRESS DOUBLE . SINGLE INTEGER
ACC 411DH LSB
4121H e LSB I.SB
£122H ——— _— 1SB
4123H MSB ” MSB
41244 EXP EXP
DTEM 41271 LSB LSB LSP
412841 —— ——— MSB
4129H ——— [SB MSB
41210 S EXP
412DH MSRB
412FEH EXP

See the Level II BASIC Reference Manual, pages 8/9 and 8/10 for syntax
of single and double precision numbers.

TABLE 2 DATA HANDLING

Unmentioned register contents are changed.

CALL COUNT T0 EROM DISROSITIONS
09D7H BT - (HL) <-- (DB) DE <-- DE+A
(0 => 256) . HL <-- RKL+A
09D6H A (HL) <-- (DE) DE <~--DE+A
(0 => 256) HL <--HL+A
09D3H NTF (BL) <-- (EE) DE <-- DE+NTF
- HL <-- HL+NTF
0S8D2H NTF (DE) — (HL) DE <-- DE+NTF
RL <—- HL+NTF
09CEHR 4 (HL) <-- (DE) DE <-- DE+4
HL <~- BL+4
09CBH 4 (HL) <-- ACC HI <-- HKHL+t4
09B1H 4 ACC <-- (HL) HL, <-- HL+4
09B4H L LCC <-- BCDE BC,HL unchanged
09BFH - BCDhE (-~ ACC = ~——7=—
G9C2H 4 BCDE <-- (HL) BEL <~- HL+4
0A9AH - ACC <—-- HL NTF <-— 02
BC,DE unchanged
09F4H NTF ACC £—— pTENM e
09FCH NTF DTEM <-- ACC —————
0SndH 4 ’ Stack* <-- ACC A, BC,EL unchangead

7o retrieve the value, use POP BC followed by POP DE in the calling
program, If the accumulator was an integer, DE will be the integer
value.

3. COMPARES
\

This section igs concerned with logic which compares numeric and
character values, The logic is designed to be similar in philosophy
to the compare (CP) instruction. That is, the ¥ and S flags are set
to express the result of a subtraction, but the subtraction is never
actually performed and the original values compared remain unchanged.
Table 3 summarizes the compare legic,

The first compare can be executed by CALL 1C90H or by RST 18H. This
compare sets or resets the %z flag as if the subtraction HL-DE had been
performed. EL and DE are treated as unsigned (positive) integer
constants. - This 1logic is best suited for use where HL and DE are
addresses, '

The compares 2) through 6) are self-explanatory. They all set the 7Z
and S flags as a result of the indicated subtraction, (compare 3 can
be considered ACC-0). :

Conmpare 3) is related to the SGN funciion (see section 5). Using it
with NTF = 3 is an error, in which case the machine 1is reinitialized
into BASIC. All of these compares set the A register to FFH, 0 oOr 1
provided the subtraction would result a negative, zero or positive
respectively.

Compare 7) can be executed by CALL 25D31 or REeT 20H (in Level II
BASIC). This compare test the NTF (Number Type Flag) as indicated.

RST 8 and RST 10H, (see compares 8 and 9 of Table 3), are used in
scanning strings, mostly in conjunction with the BASIC interpreter.
First, the RST 10H logic is displayed in Figure 1. This logic begins

by incrementing HL and checking characters at (HL). It increments
through spaces, (" "), and control characters with value 9 and 10 (
carriage returns). The routine returns C set when A = {(HL) contains a
numeric ASCII character. 7 is set for A= (BL) = Zero (BASIC

end-of-1line) or ":" (BASIC end of statement).

RST 8 compares the character pointed to by HL, with the character
located at the return address, ((SP)). If they are not equal, a SN
ERROR results and the machine is reinitialized into BASIC. If they
are equal the return address is incremented (so the return by-passes
the test character) and control is passed to the RST 10H Logic. The
RST 8 logic is used by BASIC to check for cxpected characters, such as
n(" in SIN(X), and then find the next non-blank character, (the RST
10H logic).

TABLE_3 COMPARE_ LOGIC

CALL ; COMPARE NOTES*

1) 1C90H HL-DE A used, S and C flags
(EST 1l¢&H) (unsigned) not well defined.
2) QA3 9H BEL~-DE A =00 if =0
(signed) ., A =01 if > O
A =FF 1if < 1
3) 0994H ACC A as from 0A39H.
(integer,single Error if NTF = 3
double) (string) .
4) 0AGCH ACC-BCDE A as from OA39H.
‘ (single)
) CATEN ~ DTERN-ACC A as from 0A3SH.
(double) Uses all registers.
6) Or4rH ACC-DTEM A as from OA39H.
{double) Uses all registers.
7) 25D9H NTF-3 A = NTF-3
(RST 20H) Z & S set accordingly
C set if NTF isn't =8
C is reset if NTF =8
g) 1C968 {HL)~{ (5P}) See discussion. SN
(RST 8) Frror if not =, else
go 1D78H, (see below) .
RC,DE, unchanged.
9) 1D78H (RL) See discussion. BC,
(RST 10H) DE unchanged.
HL incremented. C set
for numeric.
* No registers are modified except as indicated. Also, no RAM
locations are modified. Test 1-6 set or reset 2 & S accordingly.

Tegt 2-6 set or reset C to &E.

N

Trho HL
Lo A, CHY

C osed
Fhocader Preq
7 sctif A=

Ficure 1
CALL, ID7EH, (or RST 10H in Level 11 RASIC).

This logic reads through spaces and control characters 9 and
1¢ to return C set for numcric characters.

4. ARITHRETIC
i

Calling arithmetic routines is Straight forward, as depicted in Teble
4, It is up to the user to make szurc that the input agrees in number
type and that the correct routine is called. 1If convercions from one
type to another are necessary, refer to Section 5 for functions CINT,
CSNC cr CDBL.

Input to the arithmetic computations can be regarded as unpredictable
after the CALL is executed., The results of each computation are stored
in the ACC, and agree in number type with the input. Exceptions to
this are integer divide, (/), which always returns single float, and
integer +, - and * which return single float upon overflow. Check the
NTE to sece¢ if conversion to single has occurred.

If single or double exponent overflov occurs, or zero divide occurs,
an error conditien will result in the reinitialization into BASIC.
Firally, the routines use stack Space which must be provided by the
user.

TABLE 4 ARITHMETIC OPERATICONS

Operators (op) = fo~, %,/
e . A A
INTEGER
CE op 1L OBD2H CRC7H 0BF2E 2490H
(sinale out to ACC or overflow) (single out)
SINCGLE -
BCDE cp ACC 071¢H 07134 0&47R 08A2R
DOUBLE
ACC op DTEM aC778 GC70H ORALE 0DESE
All output is returned in the ACC. Integer +, -, and * cutput to ACC
and HL, and NTF <-- 2. Integer overflow and integer divide, /, result

!
in single flcat to ACC with NTF <—- 4.

/
5. BNSIC_FUNCTJONS

This secticn preseﬁts the Level II RBASIC arithmetic function entry
points, (&ee Table 5). OCther BASTC keyboard entry points will be
Giscussed later or can be founé on the memcry map, ‘(Appendix A).
Complete descriptions of the arithmetic functions can be found in the
Level II BASIC Reference Manual, Chapter 7. The user must be careful
to supply arguments within the allowed range or an error will occur
and the machine will be initialized into BASIC. Also, it is necessary
for the user to supply the correct number type sirnce many of the
routines do not check the NTF.

The functions CINT, CSNC anéd CDBL are useful in converting number
types for use in arithmetic operations or other functions,

Also included in Table 5 are routines which change the sign of integer
or float numbers,(chg.sgn.).

TARLE S _LEVEIL_ I1 BAZIC PUNLCTIONS

FUNCTION _______CALL__ _________QurplT _________INPUT)

L.OG 0gocH ACC single ~ ACC single
SQR 13E7E " "

EXP 1439H - " "

COS5 1541H " g

SIN 1547H " "

TAN 15A8H " "

ATAN 15BEDH " "

ARS 0977H Seme &% incut ACC,NTF=2,4 or &
INT QATFH UL, ACC, RTE=Z "

CSNC OABIE hCC, NTF=4 "

CLOBL OADBH ACC, NTF=E "

PIX 0B268H LCC, XRTF=2 cr 4% "

INT OR3TH " "

RND 14COH ACC, NirF=4 "

SGHN 098AH ACC= -1,0,1,NTF=2 "

chg.sgn. 0C51H HL, ACC, NTF=2 HL

chg.sgn. 09821 ACC <—-- =-ACC ACC,NTF=4 or 8

BCDE unchanged. .

*NTF = 2 1f amplitude < 22767.

6. DATA_CONVERSIONS_AND_I/0

This section is concerned with the conversion of numbers to strings
(and vice versa) and I/0 to external devices. It is divided into four
parts; date conversion, keyboard input, tape 1I/0, general output
(tape, video, and line printer), and graphics., Additional detail on
cassette 1/0, along with cassette tape formats can be found in the
appendicies. A summary of the calls discussed below can be found in
Table 6.

Data Conversion

'CALL OQFBDH converts the ACC, NTF= 2, 4 or 8 into an ASC II character
string whose Starting address, HL, is about 4130H. In performing the
conversion, the contents of the ACC and DTEM are destroyed. The ASC
‘II string is terminated with a zero hyte.

CALL's 0E6SH and O0OE6CH convert an ASC II character string into a
number stored in the ACC and fixes the NTF, (DTEM is destroyed). CALL
0E65H stores such that NTF=8 and CALL OE6CH stores the number lype
with the least length compatible to the input string., The rules for
the string formats are those used in Level II BASIC. -The ASC II
character string converted by these routines must be terminated by a
comma or zero byte. (zero bytes are inserted by keyboard input
routines 0361H and 1BB3H discussed below).

These data conversion routines suggest an easy subroutine to input
single or double precision immediate values to the ACC and NTF, (see
Example 1). Notice how the subroutine retrieves the string address
from the return address. Eventually, control is returned to the
statement after the DEFM.

EXAMPLE 1 Loading Immediate Values

CALL LOAD
DEFM '1.,23456," simmediate value
I.OAD POP HL
CALL O0E65H : convert string to ACC + NTF
INC HL
PUSH HL
RET '

CALL

TARLE 6 DATA_CONVERSIONS AND_I1/0Q

i
| 1
i

OUTPUT INPUT

Data conversion

0FBDH

0E65H

0E6CH

Kevboard Input

05D%H

0361H
(see warning)

1BB3H
(see warning)

002BH

0049t

Tape Input Logic

02124

0296H

0235H

OlF8H

HL <~- string ACC,NTF = 2,4 or 8

address

ACC,NTEF = 8.
HI, <—- delimiter
address

H1, <-—- string address.
String terminated
with zero byte or
comma

ACC,

NTF = 2,4,0r 8.
HL <-~ delimiter
address

HI, <-— string address.
String terminated
with zero byte or
comma,

HI, Buffer address.
B Buffer length.

HL unchanged.
B input length.
Input to video.

(40A7H) Buffer
address. .
FOH Buffer length.

HL = (40A7H) -1
input string
terminated with
Zero,

outputs "2 " with CALL 032AH and then
jumps to 0361H.

A = ASC II of keystroke
A = 0 no keystroke
A = ASC IT of keystroke (waits for

keystroke)

Use A as cassette select latch and store it
at 37E4H, (A = 0 for cassette #-1 and A = 255
for cassette #-2). 0212H also turns on
cassette. BC, DE & IiL, unchanged.

Read until
BC,DE & UL

sync byte, A5, H; found-.
unchanged.
Read next byte into A, DE & HL
unchanged,

BC,

Turn off cassettce, BC, DE & HL unchanged.

R

Tape Qubpul Logic

02121

02871
0264H

01F8H

General Outopt

28AT7H

032AH

0033R8
Graphics

GRAPH .
(See Ex. 7)

~see rape Input Logic-

Write leader and ASH sync byte.
DE and HI, unchanged.

Write byte in A to tape.
BC, DE and ilL. unchanged.

-sece Tape Inpult Logic-

HI, string address (delimiter 00 or 22H byte)
(409CH) = -1,0,1 for tape, video, or line
printer

Displays byte in A, (409CH) -1,0,1 for tape,
video, or line printer

Display byte in A tc video,

X coordinate; 0-127
Y coordinate; 0-47
00H fcor POINT
80H for SET

01E for RESES
output; If POINT then ACC

Input:

janllie=giey)
oo

00008 for off
FFFPFH for on

o

S

fiie @mOST b owd .ul routli. at: at uSLY , 0561H and 1JB3H \See Table
6). The most fundamental of these roucines is at 0S5D9H. This routine
accepts keyboard input as if INPUT were being executed in BASIC, The
keystrokes are reflected on the video. The buffer address is input by
HL and buffer length is input by register B. Keyboard input exceeding
the buffer length is ignored. After a carriage return, control passes
to the calliny program with HL the original buffer address and B the
length of the input string.

The next routine is 0361H. This routine uses the buffer address
stored at 40A7H, HL <-- (40Aa7H), and fixes buffer length, B <-- FOH.
A CALL OSDY9H is then executed (sce above). Upon return, the input
string is terminated with a zero byte, (necessary to convert ..8CIT -->
ACC) .

Warning! In Level II BASIC,
the buffer area is 41E8H=(40A7H). If you initiate your program via
SYSTEM, the stack peinter is set SP <-- 4288H, So please reset the ST
out of the buffer area or redefine (40A7H) before input. '
Warnina! In DOS BASIC, .

CALL 0361H will CALL DOS code via address 41AFH. The purpose of this
call is unknown and may affect performance. To overcome, use Level II
or set (41AFH) = C%H, (RET).

Finally, the most useful routine is 1BB3H. This routine displays the
prompt "? " and passes control to 0361H.

An example of keyboard input and conversion is most useful at this
point. ‘Suppose it is necessary to input two single precision
variables, analogous Lo:

INPUT X,Y
Azsembler code to do this is given by Example 2.

Mote the use of RST 10H to skip past the delimiter and find the next
non-blank character. The CALL OE69H is quite forgiving about what
character is used as a delimiter. Any given character that does not
make sense as a part of the number causes the ACC to be fixed, and
control to be returned to the user. Also, recall.that after RST 10H,
the wuser can check the C {carry) flag to see if the next character is
numeric.

The last keyboard scan routines discussed, returns only one byte in
register A. CALL 002BH returns the ASCII representation of the
current key being pressed. A=0 indicates the keyboard is clear. CALL
0049H does the same, but waits until A does not equal 0. It is
possible ‘to disassemble the code beginning at 2BH and learn how to
intercept the keyboard driver routine via its address in the Keyboard
DCB (sce pvage D/1 of the Level II BASIC Reference Manual). By putting
a delay routine in the intercepting program, keyboard debouncing can
be achieved. Using the delay routine at 601 (see Appenidix B) gives
the ASM program in Example 3. Note that if the system is
reinitialized, MEMORY SIZLE? appears, then the debounce routine must be
reloaded.

EXAMPLE 2 Input X,Y in Assembler

Redefine SP out of

CALL
RST

CALL
PUSH
CALL
LD
CALL
POP
RST
CALL
CALL
LD

CALL

DEFS
DEEFS

END

1BB3H
10H
0E6CH
HL
0ABLE
HL, X
09CBH
HL
10H
OE6CH
OAB1H
HL, Y

0SCBH

buffer area if using SYSTEM.

prompt and Keyboard input

~e

; locate 1l-st character (see Section 3)
; éohvert X to ACC. A
; save string pointer

;7 CSNG

; destination address

: save X, (sce Section 2)

: restore string pointer

: locate next character,

; convert Y to ACC

; CSNG

; destination address

save Y

~e

4EKAMEL§W1VK§xQQard Debouncing

DEBNCE

ORG

DEFW

ORG

CALL

LD

LD

CALL

LD

4016H
DEBNCE
7E00H
03E3H

H,A

-
{

.
7

BC,02AFH

60H

AH

-
’

location of keyboard driver address
load new driver address

high memory

call keyboard driver.
save.keyboard input

count for 1/100 second delay

delay loop

restore keyboard input

It may also be useful to understand how the keyboard RAM is used. The
keyboard forms a matrix. When a key 1s pressed, the row and column of
the matrix determine memory address and memory contents,
respectively. From & programming view, one can see what Thappens Dby
running the program of Example 4. (Be sure to hold down the keys
during the PRINT.) Also, if PEEK (14463)=0, then no Kkeys are being
pressed, including SHIFT. To exclude SHIFT, use PEEK (14591) .

EKAMELEWA,Diﬁpl@xEMKQyDngg,Mgmggx

10 FOR I=0 TO 7

20 AD = 14336 '+ 2 1
30 PRINT AD,PEEK(AD)
40 NEXT I

50 PRINT

60 IF INKEYS$S="" THEN 60 ELSE 10

EXAHBLﬁﬂﬁwDﬁiﬁgﬁiﬂQ_ﬂBlﬁi:&gilﬂg,ﬁﬂ££l§§
Using this knowledge, it is possible to detect multiple key . entries.
For example, the following program will draw verticle, horizontal or
diagonal lines using the keys for right arrow, left arrow, down arrow,
and up arrow. ‘
10 X=64: Y=24:
20 I=PEEK(14400): IF I=0 THEN 20
25 DX=0: DY=0
30 IF I AND 8 THEN DY =-1
40 IF I AND 16 THEN DY=1
50 IF I AND 32 THEN DX=-1
60 TF I AND 64 THEN DX=1
70 X=X+DX: Y¥Y=Y+DY: SET(X,Y)
80 GOTO 20

In particular, note that the use of "AND" allows for the determination
of multiple key entries.

oo

Tape 1/0)
Entry points for the tape 1/C logic are given in Table 6. The use of
these entry points 1is straightforward and no additional detail will be
given hecre. Appendix B discusses how to drive the I/0 port to acheive
sguare wave music. Example 6 demonstrates the use of the tape 1I/0
calls to accomplish tape copies. Appendix C contains tape formats for
tapes written with CSAVE, PRINT#, EDTASH W and EDTASM A commands.

tote that the tape I/0 requires the user to know when to stop reading.
rhat is,CALL 023501 may load garbage into theé A register ‘after the end
of wvalid data or, CALL 0235H may never return control to the user.
Also data is transmitted bit by hit. Each bit 1s preceeded by a
timing bit. Thus, it is acceptable to introduce appreciable delays 1in
the output. This would allow computation to be performed during
output or input. Also note that no interrupts are allowed during tape
1/0, so turn off the clock!

EXAMPLE 6 Tape Copy Program

00010 ORG 4C901 ;19600

00020 READ LD A0

00030 CALL 0217H : DEFINE DRIVE
00040 CALL 0296H ; FIND SYNC BYTE
00050 LD HL,4CEOH : DEST ADDR 19680
00060 LD BC,331F0 : 4 BYTES I/0 13087
00090 L1 CALL 0235H : READ ONE BYTE
00120 LD (HL) A

00130 THC HL

60140 DEC BC

00150 LD A,B

00160 OR C

00170 JR NZ, L1

00180 CALL 01F8H ; DISABLE DRIVE
00190 Jp 1R] 9H ; RETURN TO BASIC
00200 WKRITE LD A0 ; 19630

00210 CALL 0212H ; DEFINE DRIVE
60220 CALL 0287H : WRITE LEADER
00230 LD L, 4CEOH ; ORIG ADDR

00240 LD BC,331Fl : % BYTES I/O 13087
00250 L2 LD A, (HL)

00280 CALL 02644 ; OUTPUT BYTE
00310 IKC HL, ,
00320 DEC BC

00330 LD A, B

00340 OR C

00350 JR NZ, L2

00360 CALL 01F8H ; DISABLE DRIVE
00370 Jp 1A19H ; RETURN TO BASIC
00380 END

Under System /19600 will cause 13087 bytes to be read to RAM (Resetb
will stop the program). /19630 will cause the same 13087 bytes to be
written to tape.

Gepneral Output

CALL 28A7H provides the most general purpose output routine. An
example of its use is given in Appendix D. This routine will output a
character string to the cassette, video or line printer, depending on
the contents of 409CH. The address of the character string is input
with HL, and the string must be terminated with a zero or 22H (quote)
delimiter. Upon return, for video, 40AG6H contains the current cursor
position on the line. When using video, the control characters given
by the Level II BASIC Reference Manual, pp. C/1, will be effective.
Line printer control characters are given on page 10/3. When used
with tape, CALL 28A7H only replaces Call 0264H. It is still up to the
user to CALL 0212H, 0287H and 01F8H appropriately. CALL 28A7H does
not transmit the string delimiter character.

CALL 032AH performs the same function as CALL 28A7H, except that only
the character stored in the A register is transmitted. CALL 0033H is
the same as 032AH except it is for video only and does not store the
line cursor position in 40A€H.

Graphics

Use of the graphic logic is complicated by the fact that the logic
deciphers the BASIC argument list. This is best overcome by setting
up parameters as indicated in Table 6 and executing CALL GRAPH where
GRAPH as is given in Example 7. This approach bypasses the tests for
bounds on the X and Y coordinates. Thus it is up to the user to be
sure they are within 0-127 and 0-47 respectively. The routine 'GRAPH
sets up HL to point to a dummy string, "y." to satisfy a RST 8 at the
end of the graphics logic.

EXAMPLE 7 Graph Subroutine

10 ORG 070001

2C ENTRY CALL 01C9H ;CLS

30 LD B,40 ;INITIALIZE X COORDINATE

40 LOOP LD A,B ;PFIX Y COCRDINATE

50 PUSH BC ; SAVE X COORDINATE

60 LD H,B80HR : PERFORM SET FUNCTION

70 CALL GRAPH .

80 POP BC ; RECALL X COORDINATE

90 DJINZ LOOP ; DECREMENT X COORD. &
REPEAT

100 STOP JR STOP

110 ;

120 ; o

130 GRAPH PUSH HL ; PUSH INDICATOR

140 PUSH BC ; PUSH X COORDINATE

150 LD HL , LGRPX

160 Jp 01504

170 LGRPX DEFW 3B29H ; STRING") ; "

180 END ENTRY

(This program plots a diagonal line from (40,40) to (1,1))

R

1. EXTENDING THE USR OPTION

1t is easy to proviae additional flexability in the USR option, For
an example of what the possibilities are, consider a program which
must compute

C <= A * (B+A)

where A,B,and C are matrices (see Level II Reference Manual p. 6/4-6).
The program could be coded in BASIC as follows: ’

100 DUMMY=USR ADD (B,A) 'B = B+A
110 DUMMY=USR MULT (C,A,B) 'C = A*B

Specifically the possibilities are, (1) to allow any number of
arbitrarily named user exits, (2) to allow any number of arguments in
the argument list, and (3) to pass arguments by address, (hence the
value of the argument can be changed by the object program) ., This
section will present a program which allows this to be done, (see
Example 8, the DEFUSR program). Also, various alternatives will be
discussed. The DEFUSR program will not be discussed in detai except
to note tnat the data loaded between 4150H and 41BDH is destroyed when
the machine is initialized. Hence, if MEMORY SIZE? appears, DEFUSR -
must be reloaded. Also, DEFUSR can only be used with Level II BASIC
since it interfers with the RCH-DISK-BASIC linkage, (see Appendix A).

Here 1is how to use DEFUSR. Before a user program is called, its
location in memory must be defined with the DEF statement.

The syntax of the DEF statement is:

DEF Name = Address

For example: DEF MULT = 30000
DEF ADD = 14000 * 2

Names are arbitrary length alpha-numeric strings terminating with
space or “"=", DEF nced only be used once for each name, Names can be
defined any number of times and only the latest definition is
effective. For addresses above 32767, use:

desired address - 65536

The only restrictions with DEF are that the names and their addresses
are stored in a table one hundred bytes 1long with no overflow
protection (see statement 140).

~19~

ooalLo
(IRVEOMEAL!
Qooso
[FRIRVEL A
NOOS0
0Go&s0
goo7o
GO08B0
gouen
gouioa
GuiLo
(s
00130
[ERUN RS
00150
001 &0
60170
onLen
01N
DOE00

S RV Y

0220
o2z
(2
a0 .4~U
U 0 L (J

UJ’PU
a0Lea
0E%0
ana3aa
o3l
00320
ﬁ(ﬂm,
Nos

fws

10
{ (J sRRL
IRV AV
()(130
yOA4 G
(VLN (
I &
)

4

(! t) 330
anssa
HOHGo

REGET

o wE %>

RESET

T AL

TREXT

a
b

U DATE

~
4

DEF

B

3l (O U
FEEACE
PLE

FUE ONOT

PRIV

'

ORG
\J i:‘
OREG
JF
ORG
JF

- QRG

Tl

Ly
LD
R
DE
DG
DEFR

Tk

FLSH
ool
X
PO
ENIE
LA
ANC
LD
INEG
L
TINC
l'll- (] ‘.’:'
BN
BT
LD
RET

SYRING AT L
nat ()1
FOUND
F O 8

T B

70

D
A1 avH
BIEHN
FEEOH

I TARLEL FODDEESS OF “I'«;\lfz
CTMEXT) v UK FEOUNTER FUOR NE

(8
100
Tl

FRI DEF

- Blan
a1
e O
Dy L
RV
D y i
[
i
joH
g
213
PACIE VAR
Fil.
FeVat!
DE e HIL.
M.
IX
L0y vt
X
CLA Y e I
X
CIXY»0
I~
Al
&
NZ

FTRC ;e
5 (30 [(‘ M
3 DSk '

©OLINK XN RUN TNIT.
ST TARLE
COLINK ON DEY

PDCEC-EASBTE LINIG OR LIS

; 32490

MO ENTRIES

CTENTRY

FTARLE
SMNEXAT VACARNT ENMNTRY .

MMM

FLOOI DE NAME (N TARL E.

¢ 1A

,b\a. STRONG LENGTH .

SDE GETS BASICs M. GETE TakLE
SMOVE STRING FROM BASTC TO Taklg
SHL GETS BASLCYy DE 5 TAELE
SPUSH TakLE ADDRESS POINTER

FOEARCH FOR H=Y

SCHECK FOR "= & FIND NEXT CHAR.
FEAGTLE vt

SEVALUATE EXPFRESSTON.

FOAVE BeSTO FOTNTER

FOINT TO B

PDE GETS USKR ADDRESS

s LOFOINTER
FTARLE ADDRESS POINTER
.0AD AanbRESS 10 Taklk

’

FIFLAG FOR NO ENTRY FOURD

FGOTE ENTRY Was AN UFDAETE

CYREXTY v X SUFDATE TARLE END POMNTER

" (L ‘) .
DIk
X F

'L
"})
PR R B

JINTE TO T oAk

TN TABLEs (STRING DELTMITER X6

B NAMED
\S"& T Akl ALDRESS

Dol CUMEAT D

AN
e

VIYRG LG

—-20=

BOo7

(USR]
aouHy
(&0 a
BUsH10
anazd
00530
30510
04550
00660
00670
00680
0046910
Qo700
G710
00720
0730
0740
QU7e0
go/&0
OnFe
o/
Qu7%0
aoans
o810
B ERNERT!
033y
10840
U 0 3 I\J
QoaE0
anaro
po8eEy
0070
agYan
00210
GO9YE0
Quv30
6OYA0
GO EG
00260
a0

usreo
ga92v0
03000
0La1o
01020
g1 0=0
0OL040
01.0%0
0lLo60

01070

0Loe0
grova
01100
1Ll
OLLE0

LA ian 9 cont a ﬁ A

HiL UNMOCHAMGE D

“s e

AN P HEL b FEACK UP FPOIMTER
CORGT Lo SFIMD NEXT CHARACTER
FUsH L. FOAVE FOXMTER
LD Gy
Lh THE e
ANC I PNEXT CHARAGCTEIR,
L Gy CHLD)
e 32 ‘
NIEN Zy L2 360 ON SFACE
CF 213
S ZyLBELE 300 ON BASIC Tt
CF 0
R Ny LB
I A f .. SRED BEASTC POINTER
L. DE s VaRLE : TARLLE ADDRESS
NTEL. Fribst HL. 7“(\1(LN T
st P SNEECT TadBLE ADDEESS
L By SEASTE STRING LENGTH
Tk LD Ay (LD FLOAD T CHARGUTER
G CHILLD COSUOMPARE BaSTC CHARACTER
JR MNZyNMTUR #6000 NOT EQUAL
AN HI.
ANC W]
DN TTER FNEXT CHARAGCTER
FLSH D FROSESTEELE MATCHy CHECH TaBLE
Frl X
LD fry (XD
BIEN #) FTEGT (DERZ
IR N MMTEH § 60 !ﬁl/ VARLE ENTRY LENGTH
PO DE s TAELE NAME ADDRESS
O L 3(.)15121.!.” N BASTO FOTNTER
LD Ny OFFH

1)

Il("

. FRETURN OM MaTeH
MITOM e DE FEDDRESE FREVIOUS TABLE ENTRY
IR EH e L. vy (D) FLOCE FOR NEXT TABRLE ENTRY
AN D58
Bl e
R ML LELY GO TF (DE--1) NOT ZERO,
(I iy CTNEDCT)
RET 184 FCOMPFARE CTNEXTY) —DIE
b HI. SEESTORE RASTC FOTNITER
SR My NTEL SNEAT Akl ENTRY ’ ’ .
L Avl '

b4
PTHIES LOGIC BEEFLACES THE O Uske CODE,
ST LOOIS UE THE USIE FROGROM ADDREESS WETH Oal:l. SOAN.
AT OTHERN STUFFS THE ORGUERENT AbDDRESSES TO THAT FROGRAM
FPADDRESS CPENCE AGRUEMENTS AN ONL Y B STHPLE VARIARLESY .
PORETURN AabDDRESS 0& FOSHED ARHD CONTROL LS FAssSED 10 THE
SUSK AT THE ARDRESS ab TER THE LAST ARGUEMENT ADDRESS.
H
Uste B G FREFE OUT RETURN ADDRESHS

TN Hl.

-1 -

EXAMPLE 8 cont d

OL130
114U
0L150
OL1L&0O
01170
01160
0L190
01200
01210
Q1L
01230
01240
01250
01280
01270
przed
0reen
413na
01310
1.3%
(1132
013~
0L350
01340
0137
U130
01390
aLaa0
01410
1440

NXTARE,

ouT

(1420 -

Call.
O
\.JF:.
L.l
LD
FUSH
=0
L1y
ADD
DEC
ReT
RET
DEFE
Cabd,
LD
LN
LD
AN
DEC
R&T
CF
W1
R&T
SR
R&T
D
FUSH
LG
FUSH
I
END

SCAMN FOET USSR ADDRESS
&

Ly 199
By (TX)

D (X401
DE

X s USER ADDRESS
Eiy

MLy B

ML

1O FFUND
£ SCHECK
20H FE
2&00H FLARTAELE FINDING LOGTC
(IXTyE 3 8AUE ARBUEMENT abDDRESS
TX

(IXo sy

1K ‘

HI FIIND "y

i

NG TEARLE ENTRY 14 6N ERROR

ll(ll
H(B

101
l* I.}

NZy (UIT SNG "y
1o

NWKTAREG SNEXT
3 > UHIECK
AR A R
HL. FPUSH FOUNTER

HEL vy DEY O

HI., s FUSH FETURN ADDIRESS
L] #JUME TO USER

ARGUEMENT
FOR *)y

To call an assembler program, use the syntax
Variable = USR Name (argqument variables)

As with the standard USR exit, Variable is assigned the value left in
ACC and NTF by the user program. Using the previous DEF exanple,

X = USR MULT (C,A,B)

causes the USR program located at 30000 to be exe§uted,) Ogly simple
variables or array elements which have been previously defined can be
passed in the argument list.

Finally, the USR program muslt be correctly designed to rece@ve
arqument addresses and control. In the MULT example, the routine
should be coded:

ORG 30000
CX DEFW 0
AX DEFW 0
BX DEFW 0

—-executable code-

That is, control is not passed to location 30000. Rather, the address
of each argument in the argument list is loaded beginning at 30000 and
control is passed to the address after the last address locad point,
For an example of use, supposc C were an integer. To get the value of
C in HL, use: '

LD IX,(CX)
LD L, (IX)
LD H, (IX+1)

The advantages and disadvantages of passing argument addresses are:

1) By changing the value at the address passed, the USR progranm
changes the value of the argument as seen by the BASIC program.

2) The receiving program can process any type of cata by looking up

the associated number type. (See Table 7 for data organization.)

Passing values and number types would be an alternative. Another
alternative would be to convert and pass numbers in double precision,

/ -23-

DATA(single elcement or array)

L;} I‘-~%> High Memory ———>

——————> 1~-st character of variable name
7> 2-nd character of variable name, or zero.
> NTF = 2 integer
3 string
4 single precision
8 double precision

, DATA:

l e DATA ELEMENTS ————3%
)) ARRAYS
Byte Integer gSinagle Double String Format Ex. (HEX)
G LSB (1) LSB(1) LSB(1) LENGTH(1) LSB] Size (2) 65
1 MSB . . LSE} String MSBJ 00
2 - MSB . MSBJ Adrs. # Dimensions 02
3 EXP . LSB|Value 1-st 08
4 MSBJ Dimension 00
5 . .
6 1SB .
7 EXP LSB) Value Last 06

MSB) Dimension 00

High ° .|1st Data
Memory .1 Element (3),(1)
(1) Address returned by CALL 260DH.
(2) Size = # bytes used by # Dimensions, Dimension values and data

elements.

(3) Data clements of the array are ordered by varying
the fastest, For example, the ordering is X(0,0), X(1
X(5,00, X(0,1), X(1,1), ..., X(5,7).

he first index
), X

t i
0 (2,0)

Al

4) Passing values with number type conventions makes for the easiest
loading in the user program.

5) Passing values allow arguments to be expressions. Passing
addresses require simple variables or array elements, (array A 1is
really array element A(0,0,...)). “

There are several useful routines related to argument passing. These
routines are summarized in Table 8 and facilitate the DEFUSR program
and possible variations,

The variable location and crecation logic at 260DH returns the address
of the wvariable (ASCII string) pointed to by the HL register pair.
After execution, HL points to the character following the last
character of the variable name. If a variable cannot be found, it is
created.

Be careful

, variable creation may cause the dynamic

relocation of other variables or arrays.

This will cause previously acquired variable addresses to be

questionable. The variable address is returned in the DE register

pair. For NTF = 2, 4 or 8, (integer, single, or double precision) the
DE address returned is that given by the VARPTR logic in BASIC, (see
Reference Manual 8/8-8/11 and Table 7). For NTF = 3, (strings), the
DE address returned points to the first of three bytes which contain
the string length and string address.

The variable to ACC and NTF logic located at 2540H returns the wvalue
of the variable (ASCII string) pointed to by the HL register pair.
After execution, HL points to the character following +the last
character of the variable name. 1If a variable cannot be found, it is
created and given a value of zero. The value is returned in the ACC
and NTF. For NTF=3, (strings), the ACC contains the address of the
first of three bytes which contain the string length and string
address.

The expression to ACC and NTF logic located at 2337H returns the value
of the expression, (ASCII string terminated with delimiters ")", ",",
w.v or zero byte). On execution, the HL register pair points to the
first character of the expression, After execution, HL points to the
delimiter. 1In the case of string expressions, the ACC contains the
address of the first of three bytes which contain the string length
and string address. Note, CALL 23378 expects the machine to be
formatted for BASIC RUN mode. Also, CALL 2337H makes significant use
of the stack.

i

[oal

TABLE 8 USEFUL INTERFACE_ROUTINES

1) Variable Location and Crestion: CALL 260DH
Input HL address of 1-st character.

Cutput HL updatea to character following last
character of variable,

DE address of variable.
2) variable --> ACC, NTF: CALL 25408
Input HL address of l1-st character.

Qutput HL updated to character following last
character of variable.

ACC,NTHF value of variable,
3) Expression --> ACC, NTF: CALL 2337H

Input HL address of 1-st character. String must

terminate with appropriate delimiter;
"}", zero byte , "," or ":" are

satisfactory.

Qutput HL address of delimiter.
ACC, NTF value of expression.

(See text for discussion)

A PPENDTIX A

MEMORY MAPS

Table 2 1is a memory map of the Level II BASIC ROM. It has an entry
point for each of the Level II keywords. Hence, keywords which have
not been discussed in this document can be investigated with the help
of a disassembler. 1In addition to keywocrds, entry points for other
logic useful to assembler programming are included.

Table 10 lists the entry points for DISK BASIC keywords, It is useful
to understand how DISK-BASIC is incorporated into Level II BASIC, (see
the DEFUSR program in Section 7). Each DISK-BASIC command passes
control to a unique address between 4152H-41A3H. If Level II BASIC is
in use, these RAM addresses pass control to L3 ERROR (DISK BASIC

only) . If DISK BASIC is in use, control passes to the appropriate
routine, Table 10 lists these link addresses. In addition to these
link addresses, 41A6H ~ 41E2H link to DISK BASIC code to perform a

number of maintenance functicons or extensions of Level II commands,
These include USR at 41A91, error nrocessing for extended messages at
41Ah6H, (can be used to trap errors - Dbut the stack 1is 1lost), and
program initialization at 41BEBH.

-2
/

0008
001C -

0018
0020

0028
0033
0045
0060
0133*
0135%*
0138*
019D*
01C9*
01D3*

G1DY
01F8
0212
0235
0241
0264
0287
0296
02B2%
0324A
0361
03E3
0458
05D9
0708
0710
0713
0716
(0209*
0847
038A2
0955
0977*
0982
098A%

0994

09A4

0981

TARLE 9 LEVEL II ROM MAP
(all addresses are in hexadecimal)

RST 8;TEST (HL)-((SP)). IF NOT ZEKO,SN ERROR. THEN RST 104

RST 10H:INC HL FIRST,WORK THRU STRING, IGNORE CR & SPACES. SET C IF NEXT CHARACTER
A NUMBER, ELSE RESET C.

RST 18H; Z, C, & S FIXED FROM INTEGER COMPARE HL-DE. MAINTAINS BC, DE, HL.

RST 720H: IF NTF=8 C IS RESET ELSE C SET. A=NTF-3 FIXES § & 2 FLAGS. MAINTAINS BC,

DE, HL.

KEYBOARD SCAN. RETURNS ASCLI CHARACTER IN A. MAINTAINS BC, HL.
DISPLAY BYTE IN A ON VIDEO. MATNTAINS BC, HL.

GET CHARACTER FROM KEYBOARD & PUT IN A (WAITS FOR KEYSTROKE)
DELAY LOOP. BC=68828*SECONDS. MAINTAINS D , HL.

POINT. SEE NOTES TO USE GRAPHICS.

SET . .

RESET

INKEY$

CLS

RANDOM

VRITE WAVEFORM

TURN TAPE OFF

DEFINE DRIVE

READ BYTE

READ BIT

WRITE BYTE IN A TO TAPE

WRITE LEADER

LOOK FOR SYNC BYTE ASH.

SYSTEM .

DISPLAY BYTE IN A USING DEVICE TYPE (409CH)
KEYBOARD TO STANDARD BUFFER & DISPLAY (FOLLOW BY INC HL OR RST 10MH).
(03E3 - 0457) == e e EEYBOARD DRIVER
(0458 — 058B) ———mm——mmm e VIDEO DRIVER
EEYBOARD TO BUFFER AT HL & DISPLAY. HL RETURNED UNCHANGED
FADD: ACC=(HL) + ACC

FSUB: ACC=(HL) - ACC

FSUB: ACC=BCDE — ACC

FADD: ACC=BCDE + ACC

LOG: ACC=L0OG(ACC). SINGLE IN AND OUT.

FMULT: ACC=BCDE#ACC

FDIV: ACC=BCDE/ACC

CHECK ACC FOR ZERO

ABS: ACC=ABS(ACC). INTEGER IN & OUT, OR STNGLE IN & OUT. NTF REQUIRED & MAINTAINED.

ACC= —ACC: SINGLE ONLY. MAINTAINS BC, DE. .

SGN: ACC & NTF INPUT FLOAT OR INTEGER. .
ACC=SGN(ACC)=-1,0,1 & NTF=02(ACC INTEGER).

CHECK SIGN OF ACC, FLOAT OR INTEGER. REQUIRES NTF. A=00 IF ACC=0. A=Ql IF ACC

GREATER THAN 0. A=FF IF ACC LESS THAN 0. S & Z FLAGS ALSO REPRESENT ACC.

LOAD STNGLE ACC TO STACK. TO RETRIEVE

POP BC

POP DE.

LOAD MAINTAINS A,BC, HL. x

LOAD SINGLE: ACC=(HL),(UL+l) LEAVES HL=HL+4 |

1

C9B4
09BF
09C2

09n7
09D6
09D3
09D2
09CE
09CB
09F4
09FC
0AQC
0A39
QALT
DA78
OA7F*

OA9A
0ABL*

0ACC
" QACF
OADB*
0AF 4
0B26%

0B37*
0BCY

0RD2
OBF2
0cs4c
0c3sl
0C6B
0C70
0C77
0DAl
ODES
0E6S
0E6C
OF8F
OFBD
13E7*
1439%
14C9%
1541%
1347%
15A8%
158D%

LOAD SINGLE: ACC=BCDE, MAINTATNS HL.

LOAD SIKGLE: BCDE=ACC.

LOAD SINGLE: DBCDE=(HL),(HL+1) LEAVES HL=HL+t4
i

BYTE COUNT FROM ADDRESS TO ADDRESS
B DE HL
A ' DE HL
NTF DE ~ HL .
NTF HL DE
4 DE HL
4 ACC HL

LOAD SIKGLE OR DOURLE(MEED NTF): ACC=DTEM
LOAD SINGLE OR DOUBLE (NEED NTF): DTEHM=ACC
SINGLE COMFARE: ACC-BCDE:FIXES S & Z FLAGS.
INTEGER COMPARE: HL-DE: FIXES S & Z FLAGS. MAINTAINS EC.
DOUBLE COMPARE: ACC-DTEM: FIXES S & Z FLAGS.
DOUBLE COMPARE: DTEM-ACC: FIXES S & Z FLAGS.
CINT:SINGLE: ACC=CINT(ACC): LARGEST INTEGER NOT GREATER THAN THE ARG. INTEGER:
IMMEDIATE RETURN,
INTEGER LOAD: ACC=HL: NTF=02: MAINTAINS BC,DE.
CSKG: INTEGER: 1-ST CONVERT TO SINGLE.
SINGLE: NOTHING
DOUBLE: 4/5'S ROUND TO SINGLE.
CONVERT INTEGER ACC TO SINGLE ACC.
CONVERT INTEGER HL TO SINGLE ACC.
CDBL: ACC{DOUBLE)=ACC(INTEGER OR SINGLE). REQUIRES NTF :
TEST NTF=3 (STRING). IF STRING, RETURN, ELSE, ERROR. MAINTAINS BC,DE & HL.
FIX: TRUNCATE FLOAT TO INTEGER & RETURN FLOAT. IF INTEGER, IMMEDIATE RETURN.
STRING ERROR,
INT:RETURNS LARGEST SINGLE PRECTISION WHOLE NUMBER NOT GREATER THAN ARGUMENT.
INTEGER, IMMEDIATE RETURM. STRING, ERROR.
SUB: ACC=HL=DE-HL: NTF=2
ON OVERFLOW DOES IN SINGLE & RETURNS SINGLE.
ADD: SEE SUB.
MULT: SEE SUB.
INTEGER ABS: ACC=HL=ABS(HL):NTF=2: MATINTAINS B,DE. SEE ABS AT 0977.
INTEGER CHANGE SIGN: ACC=HL=-UL:NTF=2: MAILNTAINS C,DE.
IRTEGER TO SINGLE: ACC(SINCLE)=DE(INTEGER): SEE OACF.
DSUR: (DOUBLE SUBTRACT): ACC=ACC-DTEM ,
DADD: (DOUBLE ADD): ACC=DTEM + ACC
DMULT: ACC=ACC*DTEM
DDIV: ACC=ACC/DTEM
ASCIT CONSTANT TO ACC. RETURNS DOUBLE
ASCII CONSTANT TO ACC. RETURNS LEAST NECESSARY TYPE
POP THE STACK AND FADD.
ACC TO ASCII

SQR IN & OUT SINGLE ACC.
EXP IN & OUT SINGLE AlC.
ND IN & OUT SINGLE ACC.
COS IN & OUT SINGLE ACC. ANGLE IN RADIANS.
SIN IN & OUT SINGLE ACC. ANGLE IN RADIANS.

TAN IN & OUT SINGLE ACC. ANGLE IN RADIANS.
ATAN IN & OUT SINGLE ACC. AMGLE IN RADIANS.

-0

4

1608+ TABLE OF BASIC FUNCTION ADDRESSES. ADDRESSES CORRESPOND TO THE SECOND HALF OF THE
TABLE AT 165DH.

165D TABLE OF CHARS. MASK HIGH ORDER BIT AND USLE TABLE AT 1822 TO DECODE FUNCTION NAME.

1822 2-ND TABLE OF BASIC FUNCTION ADDRESSES, ADDRESSES CORRESPOND TO THE FIRST HALF OF
THE TABLE AT 165DH.

18C9 TABLE OF ERROR CODES ON PAGE B/1 OF LEVEL II BASIC MANUAL TH1S TABLE CONTINUES TO
18F6.

191E FROM HERE TO 1936 IS A TABLE OF CHAR STRINGS. 'ERROR' 'IN' 'READY' 'BREAK'

1A19 RE-ENTER BASIC WI1TH READY.

1 B49* NEW

1BB3 PROMPT & KEYBOARD INPUT TO STANDARD BUFFER.

1C90 COMPARE HL-DE UNSIGNED. FIXES Z FLAG ONLY.

1C96 RST 8 LOGIC. COMPARE (HL)-({SP))

1CAl* FOR .

1D78 RST 10H LOGIC.

1D21* RESTORE

1DA9* ETOP

1DAE* END

1DE4* CONT

1DF7+% TRON

1DF8% TROFF

1EQO0* DEFSTR

1FE03* DEFINT .

1EQ06* DEFSNG :

1EQ9* DEFDEL

1E7A%* CLEAR

1FA3* RUN

1EB1* GOSUB

1EC2% GOTO

1EDE* RETURN

1FO5% DATA

1F07% REM

1F21* LET

1F6C* ON

1 FAF* RESUME

1 FAF* ERROR

2008% AUTO

2039% IF

2067% LPRINT

206F% PRINT

21 9A* INPUT

21 EF* READ

2286% NEXT

2337 EVALUATE EXPRESSION, STORE IN ACC

2490 DIV: INTEGER DIVIDE: ACC=DE/HL: DE & HL ARE FIRST CONVERTED TO SINGLE. ACC RESULTS
IN STINCLE.

24CF* ERR

24DD% ERL : o

24EB% VARPTR

2540 ASCLI VAR TO ACC

25C4% NOT

25D RST 20H LOGIC: COMPARE NTF-3.

2008% DIM ’

260D ASCIT VARTADLE LOCATTON/CREATTICH. RETURNS ADDRESSES.

-30-

27C9x
27FE*
27D4*
27F5*
2836%*
28A7

2A03*
2A0F*
2A1F*
2A2F*
2A61%
2A91%
2A9A%
2AC5*
2AEF=
2AFB*
2B2G%
2B2E*
2BCH*
2BF5%
2C1F*
2CAA*
2CB1>
2E60%

MEM
USR
FRE
rOSs i
STRS i
DISPLAY A STRING '
LEN

ASC

CHRS

STRINGS

LEFTS

RIGHTS

MIDS

VAL

INP

QUT

LLIST

LIST

DELETE

CSAVE

CLOAD

PEEK

POKE

EDIT

* denotes Level II BASIC keywords.

TABLQ 10 DISK BASIC ENTRY POINTS
(addresses in Hexadecimal)

CODE ADDRESS COMMAND LEVEL II LINK ADDRESS
558E FN 4155
5655 DEF 415B
56C4 CMD 4173
5714 TINES 4176
5756 LINE 41473
582F INSTR 419D
58B7 & 4194
5E2D MKIS 41617
S5E30 MKSS 416D
5E33 MKDS 4170
5E46 CVI 4152
5E49 Cvs 4158
5EAC CvD 415F
5F78 LOAD 4188
600E MERGH 418B
6044 SAVE 41 A0
606F CLOSE 4185
60AB FIELD 417¢C
60ES RSET 419A
60E6 LSET 4197
G1EB EOF 4161
6231 L.OC 4164
6242 LOF 4167
6278 PUT 4182
627C GET 417F
6346 NAME 418E
6349 OPEN 4179
63C0 KILL 4191

\ AP PENDIX_ B

TAPE I/0 AND SOUARE WAVE MUSIC

The output port number 255 controls the 32 and 64 character display
modes, the tape on/off function and the output tape voltage. The
contents of address 37EAH controls cassette #-1. Address 37E4H 1is
defined by CALL 0212H, (see Section 6).

When. ..
ouT (255), A

is executed, .the format of A is:

. 7654 3210

AN
1_». 01 pPuts + voltage to recorder.
- 00
10

puts zero voltage to recorder.
puts - voltage to recorder.

] 1 causes the tape drive to be turned on.
0 For off.

‘ 1 Tells video hardware to display in 32
character mode,
l 0 For 64 character mode.

Creating sguare wave music on the tape output line 1is a matter of
outputting the correct number to port 255 at the correct time. An
example of OUT instructions and timing loops is given in Example 9.
This routine processes data pointed to by the 1X register, First, DE
is loaded with the number of square wave cycles to be in the note.
Plus (+) and minus (-) voltages are sustained by the timing logic at
0060H, (0060H uses the A and BC registers only) . The duration of
timing delay 1is:

T(in seconds) = (1.453 * 10 %% (=5)) * BC
The f{requency (in cycles per second) if the note is given by
F=1/(Tp + Tm)

where Tp and Tm are durations (in seconds) of the plus and minus wave
forms respectively. The duration of a note (in seconds) 1is given by:

d = (Tp + Tm) * DE

Finally. if N represenfs notes on the chromatic scale, with N=0
corresponding to middle C, then their frequency is given by:

F =EXP (.05776 M + 5.567)

~ 33

EXAMPLE_ 9 Syuare Wave Note Routine

10 LD E, (I1X) ; get number cycles
20 LD D, (IX+1)
30 DURA LD A,5 ; + waveform
40 ouT (255) ,A o
50 LD C, (IX+2) ; set up delay loop <
60 LD B, (IX+3) T
70 CALL 0060H ; call delay loop
g0 LD A6 : - waveform
90 ouT (255) ,A
100 LD C, (IX+4) ; set up delay loop
110 LD- B, (IX+5)
120 CALL 0060H ;call delay loop
130 DEC DE ; decrement duration
counter

140 LD A,D ~ ; test duration
150 OR E

; go repeat waveform

160 JR NZ ,DURA
To create music, one generally wants a certain note, N, and duration,
d. Solving for' the above equations on the previous page, then:

BCp + BCm = EXP (~.05776N - 5.567)/1.453 * 10 *+* (-5)

DE = d*EXP (.05776N + 5.567)
By splitting the total count BCp + BCm (where BCp is the value of the
BC register delay count for the plus waveform and BCm 1is for the
negative waveform, respectively pointed to by IX + 2 and IX + 4y,

notes having different tone result. Even splitting produces pure
tones while uneven splitting produces more resonant tones.

3~

APPENDIZX C

TAPE AND BASIC MEMQRY FORMATS

These formats are useful to know when you only have one copy of a tape
that will not load. Example 6 (see Section 6) lists a program that
would read such a tape into memory, where it can be edited. The
program will also write the data out to a new tape. None of the
formats discussed below include the 256 zero byte leader and A5H sync
byte written by CALL 0287H.

EDTASH SOQURCE TAPE FORMAT (from W command) :

b3 . header
54 45 53 54 41 41 file name "TESTAA" up to 6
;haracters.

BO BO BO Bl B0 line # 10

(1) 20 data header (character blank)
XX XX XX XX . . . data (09 as tab)
on data trailer (character CR)
1A : end of file mark

(1) Repeated record.

(&%,
(O3]
i

EDTASM OBJECT TAPE FORMATS:

(1)

(1)

55

54 41 50 45 49 4F

3C

44

90 47

XX XX XX XX .

23

78
6D 43

Repeated record.

-

header
file name "“TAPEIO"
Code ' (78 implied end of file)

length of data portion (00 is
a full record of 256 bytes)

points to address of data
load (LSB,HMSB)

data bytes

check sum (add together data
and load point)

end of file mark
execution address (LSB,MSB)

-3

ey

PRINT # -1 TAPE FORMATS:

i

t
. character string repecated unit,

2C ASCII comma

t ’

When a character string is output it goes into the above character
' string field unmodified. Variable outputs are preceeded and followed

by a blank. For example, PRINT #-1, EXP(1l) gives a character string
field: 12.71828b.

-3 -

BASIC TAPE AND_RAM FORMAT:

D3 D3 D3 ;
< (Tape header record.
XX File name
XX LSB Address of -
XX MSBR next line,
XX LSB Line ‘ . '
XX MSB number,
XX Memory format and tape
repeated unit
. Line
XX
00 Zero =
00 Zero address denotes end of file. These
00 zeros are also loaded to memory.

'

For example, when CSAVE"F" is performed on the program

10 BB
20 CCD
30 DDDD

tape and memory appear

D3 D3 D3 46 Tape only, 46H = "F",
Address Memory & Tape Contents Comment
42E9 FO 42
oA 00 Line no, 10
42 42 "BR"
00 ’
42F0 & F8 42
14 00 Line no, 20
43 43 44 "CCo"
00
42F8 & 01 43
1E 00 Line no, 30
44 44 44 44 "bpop"
00 ;
4301 & 00 00

- 38~

APPENDIX D

{

" 'A_FUNCTTON TEST PROGRAM

RS
P

The test program listed on the following page, serves two . purposes. .

First, it allows many of the functions described in this manual to be. -
verified by direct means. Second, it demonstrates (and implicitly ;-

tests) data conversion routines, display routines and- data move .

routines. Except for initialization,, the roéutine returns. to ".RET.
after CALLing a function. At that point, all registers, ACC, NTF and

DTEM are saved because they will be affected by the data conversion -

routines. Next, the NTF and ACC are displayed. The user is then'’
prompted for the (decimal) address of the . test function, ~This, is i
converted and stored at GOTO. ~ The ACC, NTF and DTEM are then:’

restored, Im normal programming, a dynamic address, (the -function -
address at GOTO) would be transferred by JP (HL). But, in this case,
that would disturb the HL register pair. 1Instead, the return address,
ARET, is PUSH'd, ; then (GOTO) is PUSH'd. The registers are .restored
and a CALL is achieved by executing a RET. : R Ci

bt v

Ty

-39~

EXAM

goiano
IR RERIRT]
o3¢
(EAVERRIRY!
aouun
0n&s00
Guyna
Uissu0

LE 10 A

STUmRT

ARETD

Gusng

G020
0024
RV VIR

G090

e onn
olad
fleun
{ Lifil) {1
GlAg
i l B ;.) !l

T

iy t‘”x)
Uty
LR RS
(1 auh
uLFnn
(IR IR
R
[!'i‘(m(u
g

Uainu
(RS SNARY

i)H
Naanu
'.xx:/l)(t

HARY!
L by
IR S R
g

3 SN

T
NORRE
Gua
T M

RIBTRIAN S
sl

(D
L, x“"ll i,

4l
\

I}

CO¥DEM .35':':114\&‘{:; DTEM

COGDRH s EaW

e S

£y

FUNC '”‘] ON_TF "‘l‘

TR E

s

! Ijn(vsnrJi

B
,

OO0k

BTART

G GTART -7
My LAV UH
OFELH

MLy 4 00AF T

.
3 A

Ly : o .
SOOD e

ERSTALEI

ARy aF
DE s 1271
Ly T TE ™

fry &3
Dy 3T 10

e 83

TRV ey Sian

ain g
g4l

LG
AT
AFRRSE
FRAM SRR
B PR
IR
AN
DA

CNGLITO Y S 58

1w VAL

Ly <000
2w {d

U7 H

e KT
DR TN Py o _.'
DI REEE NS B
(RIS B
iy 3 :
IRV R RS
HL o A0 ,
ML s LG
Hl.y (O30T

RED N

K

i LS
.ﬁ['“ v il !

HEevalL, e

TR DR

ERRTSIRAR)

CETS —1/3

Lo

CSERUNM
CITO ADLREE
S TE GO

A

LT

Al STl
Lant, MTY

Lot B e
Vid oSl X
Py s L

TR REYEOARD 10

S ARG T T Al
U FUINT

VED Rl abDiaE
L F R
TUETU AR G

SESCTE GO

ISH 5’,1 R T I

l

l (

R RN S T I S Y N R
0 faDlbss
GOt

¥ '"l
TN TR

fals \Jl-i’i‘\‘ ADDEES

ek L ADDRE G

Ul

ADDRERE

TN IRV RSN S

FfE NHT'V

