LT

all
new -

il
utilities

- The Rest of 80

The Rest of 80

A Wayne Green Publication
Peterborough, New Hampshire

Published by
Wayne Green Books
Peterborough, New Hampshire 03458

ISBN 0-88006-062-X

Copyright ©1983 by Wayne Green Incorporated

All rights reserved. Printed in the United States of America. No part of this pub-
lication may be reproduced, stored in any retrieval system, or transmitted in
any form or by any means—elecironic, mechanical, photocopying, recording,
or otherwise—without the prior written permission of the publisher.

Cover design by Gary Ciocci
Cover illustration by Roger Goode

TRS80 is a rrademark of Radic Shack division of Tandy Corporation

Table of Contents

Introduction. Lo L 7
TUTORIAL
1/Going Beyond Sequential and Random Access
BradfordRusso 9
2/An Unlistable, Unbreakable Program
JonBoczkiewicz o 15
3/Form Fillout Technique
GaryS.Lindsey L. 18
4/Idiosyncracies in Radio Shack's BASIC
JohnBlommers 33
5/The Hidden Sort Routine
TomMueller 41
6/Testing Shell-Metzner Sort Routines
TW.Cleghorn, 44
7/ASCII Converter
DavidD.Busch 51
8/Capture RST 10H: Customized BASIC Commands
JamesCargile Lo L 55
9/Adding Commands to BASIC
AlanR.Moyer. 60
10/Programming in Radio Shack's Tiny Pascal
JohnBlommers o 74
GRAPHICS
11/Beginning Scrolling
RogerB.Wilcox. 85
12/Line Drawing
DanielLindsey 89
13/Defeating the ROM: Scroll Protection
Daniel].Scales, 99

14/Easier Formatting with SCREEN
DonRobertson 104

15/DRAFTER: A Graphics Editor

R K Fnk0 107
UTILITIES
16/HELP with Commands

PhilComeau 116
17/Automatic Master Disk Directory

JackR.Smith 128
18/Short Form Directory

Salvatore Yorks L 134
19/0ONESTEP at a Time in BASIC

AlanSehmero o Lo oo 137
20/Renumber Your BASIC Program

Gary L.Simonds L 143
21/Complete Variable Lister

JohonM.Hammang 155
22/MODSTRING for Packing Strings

TAWells ... o 158
23/PASSWORD Utility

CraigA. Lindley 163
24/A Better LDOS KSM Builder

MikeTipton, 173
25/T-EDASM: Link T-BUG and EDTASM

RonAnderson 175
26/Menu Program for NEWDOS/80 Version 2

Dr. Walter J. Atkins, Jr. 180
27/TRANSCRIPT

BrianCameron 182
28/Tiny Pascal for Disk

DavidR.Goben............... 191
29/Faster Loading for the Model I

MarkE Tyler L, 202
30/Blinking and Repeating onthe Model 1

CraigA.Lindley 223
31/SYNC: Automatic Start and Memory Size Setting

Theodore J. LeSarge 228

Introduction

The people at 80 Micro hate to turn down good manuscripts. The
problem is trying to fit th.em ali in the magazine. So somebody came up
with the great idea: ""Let's take the best of the ‘rest’ of 80 and publish
them in a book!"

Here it is.

We've taken special care to edit and design this book for easy use and
long life. We know yeu re going to want it around. Never before pub-
lished anywhere, these thirty-one tutorials and utlities represent some
of the very best manuscripts ever sent to 80 Micro. Enjoy!

Going Beyond
Sequential and
Random Access

by Bradford Russo

Il data processing requires the storage of data on a peripheral mass

storage device. For most microcomputers, this means disks.
TRSDOS and most other microcomputer operating systems only sup-
port two fundamental file access methods, sequential and random. Both
have limitations.

Sequential Access

Sequential access was the first method used in data processing,
because of the nature of the first mass storage media. To read any given
piece of data from punched cards or from magnetic tape, it was neces-
sary to read through all the records that came before (Figure 1). The se-
quential access technique led to batch processing, which has some major
disadvantages. The most obvious problem is time lag, since data is not
processed until a batch, typically a whole day's or week's worth of ac-
tivity, accumulates. For example, data affected by activity on Monday
may not be brought up to date until Friday.

This earliest of file access methods is also available on microcom-
puters. In sequential accessing, the computer stores data (in ASCII code)
in the same order it is written, starting at the beginning of the file. Se-
quential filing is handy when you need to store only one or a few
variables worth of data. It's also useful when data is needed in RAM in
the form of a table or a set of subscripted arrays. You can use simple and
effective FOR-NEXT loops to read the data into and out of RAM. The
limited accessing capability becomes unimportant, since once the data
resides in RAM it can be accessed in many ways.

THERESTOF80 / ¢

STATIONARY

READ/WRITE
HEAD
Y
- MOVING
TAPE
O O)
Figure 1

Random Access

The random file access technique was developed next, after the ad-
vent of mass storage media which could be read in non-serial order, in-
¢cluding drum and disk. The read/write head on disks not only reads
serially around one track, but can also move sideways from one track to
the next (Figure 2). Multiple platter disk drives also read up and down
along a third dimension by selecting the desired platter from a stack of
several (Figure 3). These new storage devices led to interactive and real-
time processing methods. The advantage to real-time processing is its in-
stantaneous updating of data. This is very usetul, for instance, in a busi-
ness inventory control system. New shipments can be recorded immedi-
ately instead of waiting for a complete batch to be processed.

MOVEMENT OF HEAD
RELATWE TO DISK
SURFACE

DISK
ROTATION

Figure 2

The process of jumping from one given record to any other record
resembles random movement; however, the process is more accurately

10 / THE REST OF 80

described as direct or relative. Direct means the computer can go direct-
ly to a given record, without reading all the intervening records; relative
means that a particular record is referenced by its location relative to the
beginning of the file. In other words, record number 126 is the one hun-
dred twenty-sixth record from the beginning of the file. For example,
assume the file contains records sized so that exactly ten of them fit on
one track of the disk. The first track of the file contains record numbers
1-10. The second track holds 11-20, and so on. To locate record number
126, the computer first moves to the thirteenth track, which holds
records 121-130, then reads around the track from 121 to 126. This two-
dimensional read process only requires 13+ 6=19 reads to find record
number 126. That's a lot faster than a sequential read {Figure 4).

MULTIPLE BISK PLATTEAS HEAD TRANSPORT
ON A SINGLE SPINDLE MECHANISM MOVES
BACK AND FORTH
— e
Sl — ™
7
. —
R
)
|
A
||
R
| #r |
R
ld
A)

Figure 3

In random access files, a record is referenced by a numeric value
called the record number. Each record of the file must have its own iden-
tifying number. For example, in a payroll package, the data pertaining to
a given employee could be identified by the employee's clock number. If
the employees are numbered serially, from 1 on up, clock number be-
comes synonomous with record number. The identifier {clock num-
ber} is directly related to record number. You can also use random ac-
cess to store data whose identifiers are non-numeric. An example of this
is a file storing a record for each day's activities, using dates as iden-
tifiers. The record storing data for the fifth of March would have an iden-
tifier of March 5, which translates into physical record number 64 by the
following process: since there are 31 days in January, and 28 in
February, that means March 5is 31 +28 +5=64 days into the year.

Sometimes the identifier cannot be directly related to record number.
Suppose the identifier is to be Social Security number instead of clock

THERESTOF80 / 11

number. A Social Security Number is nine digits long, so any one persoen
must fall between 100-00-0000 and 999-99-9999. That represents
899,999,999 possible combinations, which would require nine hundred
million records. If your company has only one hundred employees, that
means nine million records are wasted for every record actively used.
Such a waste is impossible, of course, since there isn't that much on-line
storage available on your computer.

RECORD NUMBER
126

— N rrevane

Figure 4

It would be more practical {o relate the 100 identifiers {100 employees}
to a file of a little more than 100 records. The earliest technique
developed to do this is called hashing. In hashing, the relationship be-
tween identifier and record number is no longer direct, but is based on a
mathematical formula—an algorithm devised for reducing the widely
varying identifiers down to a condensed set of record numbers. Occa-
sionally, two or more identifiers hash down to the same record number.
This is called a collision, and the identifiers are called synonyms. The
hashing algorithm must have provisions for handling these incidents.

12 / THE REST OF 80

ISAM or Keyed Index

Another tecknique for relating an identifier to a record number is com-
monly known as ISAM ;Indexed Sequential Access Method), or keyed
index. The unique identifier of a record is called the key field, or key.
ISAM is not supported by TRSDOS or by most other microcomputer
operating systems; however, it is available for the TRS-80 Model Il in the
compiler version of BASIC, as well as FORTRAN and COBOL. You can
create an indexed access method under TRSDOS by combining the se-
quential and random methods.

INDEX FILE MASTER FILE
KEY RECORD {PHYSICAL DATA
FIELD \UMBER RECORD
POINTER NUMBER)

100] I I
053 4 2
1098 5 3
2158) a
332 2 AR 5
5987 3 — 6
B7E0 7 7
9830 6)

9 - 9

) 10

I ' 1

12 >INACT1VE 2

= RECORDS 3

14 ‘ 14

15 , 15
NEXT RECORD AODED TO FILE WOULD TAKE RECORD POINTER NUMBER 9;
INDEX FILE WOULD BE RE-SORTED SO THAT KEY VALUE WAS IN PROPER
PLACE.

Figure 3

Two separate files are required for ar indexed technique. One is the
mas:er file, which holds all the data which is to be stored. The other is an
index to the master file. Unlike hashing, there is no mathematical rela-
tionship between a given key jidentifier!, and its associated record
number. The number is not derived from the key, but assigned arbitrari-
ly. When data is added to the master file, it is piaced in the next available
physical record on the disk. This rccord's number is placed in the index
file beside its associated key [Figure 5). An indexed technique does not
waste disk space for keys that might exist, as direct rancom access does.
It only consumes space for keys which are actually being used. When a
record is deleted from the master file, that space is recovered and can be
used later, to nold new data (Figure 5.

THERESTOF 80 / 13

IMCE¥Y FILE MASTER FILE

KEY RECORD (2HYS!ICAL DATA
FIELD NUMBER RECORD
POINTER NUMEER)

1001 I

053 4 2

2156 8 3

L}

332 2 THE ELEMENT

5987 2 WHICH HELD B

B750 7 KEY 038 15 6

98I0 & NOW MOVED 7
= , DOWN TC THE

"’ & INAZTIVE
3 SECTION 9
10 10
1 1
12 12
12 13)
14 14 |
15 15 |
MASTER RECORD NUMBER 5 IS LYING FALLOW, ————m——

— BUT WILL BE USED AS THE NEXT ADDED RECORD,
BECAUSE IT IS THE NEXT AVAILABLE INACT VE RECORD.

Figure 6

tn order te read data from the master file, the index file is first searched
for the requested key. That key has an associated record number beside
it, which is used 10 read the appropriate record from the master file.
Usually, the index file is sorted by key. You can use a serial read of the
index file, key by key, {o produce reports in key sequence.

14 / THE REST OF 80

2

An Unlistable,
Unbreakable
Program

by Jon Boczkiewicz
System Requirements
Level IT BASIC or
Disk BASIC
Model I or IIT

Have you teachers ever wanted instructional programs your students
could not break to find the answers? A simple POKE command
disables the BREAK key. However, students soon learn they can load
and list a program before they run it. Here is my simple method for mak-
ing your own programs unlistable and unbreakable. You can use it with
any program, although Disk BASIC requires different numbers than
Level I or II. The technique involves breaking the problem into two
parts, because solving one problem creates another.

Make It Unlistable

The first step is to make the program unlistable. While the available
numbers using two bytes run to 65535 (256 times 256 minus one), line
numbers are limited to 0-65529. 1 do not know what these last six
numbers are reserved for, but a program line number in this range
causes a syntax error message. The computer keeps track of where to go
by requiring the first two bytes of a program line to be the address of the
beginning of the next program line. The second two bytes of the program
line are the line number. After you write and debug a program, change
the first line number to a number greater than 65529. Listing the pro-
gram causes the first line to be read as a number higher than the limit,
and a READY message appears. It does not affect the program to have a
line number higher than acceptable.

You can change a line number with a POKE. The problem is knowing
where to POKE. Remember the memory map in Appendix D of your

THERESTOF 80 / 15

Level II BASIC Reference Manual? A look at the map shows the BASIC
program text starts at memory location 17129. This location contains the
first byte of the first program line. Bytes three and four [the line
numbers] must be in memory locations 17131 and 17132. So after the
program is running and debugged, save and back up your own copies,
strip all the comments out of the program in the computer, and com-
pressit, if you can. Then, from the command mode, POKE 17131,251 [or
higher] :POKE 17132,255. It should now be unlistable. Run the pro-
gram—it should be unchanged, except for a small problem with GOTOs
or GOSUBs.

GOTOs or GOSUBs find their target line by going to the start of the
program and looking for the line number, starting with the first line. But
now the first line has a number that is higher than the highest allowed.
The solution is simple-—undo what you have done. You POKEd num-
bers into memory locations 17131 and 17132 to change the line number.
Now POKE the original numbers back, but this time from within the pro-
gram. Your first program line (the one which gets renumbered| can do
this. You can use a special line: 10 POKE 17131, 10:POKE 17132, 0. But
this leaves you right where you were, able to load, run, break and list the
program,

Make It Unbreakable

You could disable BREAK by POKEing 16396, 23 and later enable it by
POKE 16396, 201, but if you have a mean streak, try the following se-
quence: POKE 16396, 62: POKE 16397, 187: POKE 16398,0. This rede-
fines the BREAK key to NEW, and wipes out the program whenever the
key is hit. Or, you can POKE 16397 with any of the internal codes for the
BASIC keywords from Appendix E of the Level II BASIC Reference
Manual. The program then runs as desired, including GOTO and GO-
SUB, but whenever you press BREAK, the program is NEWed. This will
not work if you have had Radio Shack's lowercase modification in-
stalled; instead you get whatever symbol has the ASCII number you
POKEd into 16397. If you are using Disk BASIC (version 2.2 or higher),
POKEing 16396,23 causes the system to reboot when you press BREAK.

You must consider two other possibilities for program security. First, a
student could run the program to its end, then list it. This is prevented by
the END statement which POKEs 17131,251 and 17132,255, and
enables BREAK with POKE 16396,201. The program should have only
one END statement, and all other ending points should GOTO this state-
ment. Second, a student could deliberately or accidentally make an error
that would cause the program to break and list before running again.
Lessen the chance of this by using error traps. These can be statements
that require re-entry of wrong data, or a simple GOTO that sends execu-
tion to the END statement. The only essential condition is that the pro-
gram end through a single statement.

16 / THE REST OF 80

The Code

To use this technique, make the following line the first line of your
program:

10 POKE 17131,10:POKE 17132,0:POKE 16396,62:POKE 16397, 187:POKE 16398,0
If the line number you select is 5, POKE 17131,5. Now add the ending
line as follows:

XXXX POKE 17131,251:POKE 17132,255: POKE 16396,201:END
{or NEW instead of END).

If the program is in Disk BASIC 2.2, replace 17131 with 26304 and 17132
with 26305. In Disk BASICR 2.2, use 26959 and 26960. Otherwise,
everything is the same. To check, run the program. Everything should
work except BREAK. Now, in command mode, POKE 17131,254:POKE
17132,255 or 27754 and 27755, if in Disk BASIC. Try to list it—it should
not work. You can save the program on tape or disk, load it with no spe-
cial effort, and run it.

THERESTOF 80 / 17

3

Form Fillout
Technique

by Gary S. Lindsey

System Requirements:
Level IT BASIC
Model I or III

Havc you ever considered the time and the number of programming
steps it takes to write the code for the entry, viewing, editing, and
reviewing of data? When your program requires a lot of data entry, using
a form fillout program can save both programmer and user a lot of time
and aggravation.

This process involves displaying a form, often with data included, on a
screen with protected fields. The user enters into the free fields new or
modified data by overwriting all or part of the data. Then the user press-
es a combination of keys to transmit the new or modified data back to
the computer. The computer takes the data and converts it to the vari-
ables necessary for processing.

The programs in this chapter allow a programmer to implement a ver-
sion of the form fillout technique on the Model I TRS-80. Program List-
ing 1 is written in assembly language for the Z80 microprocessor. Pro-
gram Listing 2 is written in BASIC to load and demonstrate the assem-
bly-language program. The use of assembly language is necessary for
speed and the implementation of commands that are not available in the
BASIC interpreter.

In my system, I have placed the BASIC subroutines necessary to im-
plement the form fillout program in ASCII disk files that can be ap-
pended to any BASIC program. The program listings in this article are
designed for a 48K disk system. I tested all conversions on my system by
disconnecting the disks or expansion memory and by setting the mem-
ory size to the appropriate values.

18 / THE REST OF 80

Implement the form fillout technique by including two subroutines,
50000 and 60000, in a BASIC program. Subroutine 50000 loads the as-
sembly-language program into memory. Subroutine 60000 places cer-
tain BASIC variables which describe the data to be processed into mem-
ory for use by the assembly-language program, and calls the assembly-
language program. The BASIC program places variables, prompts, and
titles on the screen. The assembly-language program accesses the varl-
able data directly from the screen, allowing changes. The variables are
then sequentially placed directly into the memory allocated by the BA-
SIC interpreter for the variables A$(1} through A${N). The assembly-lan-
guage program handles the data from the screen as ASCII characters.
When control is returned to the BASIC program, the new or moditied
data is present in the A$(1} variables in the order that they appeared on
the screen. The BASIC program must convert the A${I) variables into the
appropriate program numeric and string variables.

The BASIC interpreter in the TRS-80 locates string variables through
the use of a 3-byte description of the string. Byte 1 contains the length of
the string; bytes 2 and 3 contain the memory address of the string pointer.
The address of this 3-byte description is determined by using the VAR-
PTR(AS{1}) BASIC command, which returns the address of byte 1 of the
description of A${1) variable through the use of this command, and
POKEs it into particular memory locations for use by the assembly-lan-
guage program. Since the 3-byte descriptions for all A${I) variables are
contiguous in memory, it is only necessary to pass the address of the
A${1) string to the assembly-language program.

Because the assembly-language program writes data directly into the
A$(I) locations up to the allowable lengths of the variables, the A${l} vari-
ables must be expanded to their maximum possible lengths before the
assembly-language program is executed. Without this step, the A${l)
variables may be of any length when the assembly-language program is
called, and you may destroy the validity of the 3-byte description by
writing more or less data into a variable than the BASIC interpreter is ex-
pecting.

Using the Form Fillout Program

The assembly-language program interprets the six possible operator
commands and responds appropriately.
eThe left and right arrows move the cursor within the variable being
worked.
oThe up and down arrows move the cursor to the first position of the
next or the preceding variable. The up and down arrows can be used at
any time, independent of the cursor position within the variable, with-
out changing the variable. Previous changes to the variable are not
disturbed.

THERESTOF 80 / 19

eThe carriage return works like the down arrow if the cursor is in the
first position of the variable. If the cursor is anywhere else and a carriage
return is entered, the remaining portion of the variable is filled with
blanks. This makes new data entry easy since, under BASIC, the carriage
return terminates entries to the computer.

s Pressing the equal sign stores the variable data from the screen into the
RAM used by the BASIC interpreter for storage of the A$(I) variable and
returns control to the BASIC program.

The data on the screen is changed at the cursor location whenever a
character is entered that is not one of the control characters mentioned
above.

Implementation of the form fillout subroutines in a program is very
simple, as illustrated in the accompanying demonstration program. The
following steps must be taken in order:
3et the memory size to 65217 for a 48K configuration.
eload the assembly-language program with a GOSUB 50000 at the
beginning of the program.
eClear the screen and print the form and its variables on the screen. The
variables are detected by the assembly-language program by the pres-
ence of a colon {:). The screen must be printed with a colon and two
blank spaces preceding each changeable variable. Since the assembly-
language program searches for a colon as the start of variables, you can
protect variables from modification by preceding them with any charac-
ter except a colon. The assembly-tanguage program searches for the col-
ons, skipping over any data on the screen prior to reaching a colon.
eDefine N as the number and L{I} as the lengths of the variables. GOSUB
60000 stores these variables in memory for use by the assembly-lan-
guage program and calls the USR program.
eConvert the AS(I} variables returned by the assembly-language pro-
gram into the appropriate program string and numeric variables.
sProceed with the user's program.

Sample Outputs

To illustrate the use of the form fillout program, I have included some
sample outputs from the demonstration program. Figures 1, 2, and 3
show the three screen displays before any data has been entered into
them. Note in Figure 2 that the numeric entries are shown as zeros. Also
note that a blank space for the sign has been included for the numeric
values. The BASIC interpreter adds these blanks. You don't need to in-
clude the space when you enter data onto the screen. Figure 4 shows
Display 1 with a portion of the data entered, and Figure 5 shows Display
1 with a complete set of data.

Figure 6 shows Display 2 after the NAME has been entered using Dis-
play 1. Note that the NAME prompt and variable are separated by an as-

20 / THE REST OF 80

terisk. The asterisk means that the NAME cannot be changed using Dis-
play 2. The cursor jumps over the NAME variable and positions itself at
the beginning of the EMPLOYEE NUMBER variable. Figure 7 shows a
completed Display 2. Figure 8 shows Display 3 with the protected
fields and titles before any data is entered. Figure 9 shows a completed
Display 3.

DISPLAY 1
DEMONSTRATES DATA ENTRY/EDIT WITHOUT PROTECTED FIELDS
NAME : DATE OF BIRTH :
STREET ADDRESS :
CITY/STATE :
PHONE NUMBER :
OCCUPATION :

Figure 1. Data entry without protected fields

DISPLAY 2
DEMONSTRATES DATA ENTRY/EDIT WITH PROTECTED FIELDS
INCLUDING NUMERIC VALUES
NAME +« EMPLOYEE NUMBER : 0
HIRE DATE :
SECTTION NUMBER : 0
YEAR OF DEGREE: 0
SALARY : 0

Figure 2. Data entry with protected fields

DISPLAY 3
DEMONSTRATES FORMATTED SCREEN WITH EXTRA COMMENTS/TITLES
PERSONAL DATA

NAMIE« PHONE NUMBER*
ADDRESS*
RECREATIONAL DATA
HOBBIES NUMBEER 1:
NUMBER 2:
SKILLS NUMBER 1:
NUMBER 2:

Figure 3. Formatted screen with additional data

' DISPLAY 1
DEMONSTRATES DATA ENTRY/EDIT WITHOUT PROTECTEID> FIELDS
NAME: JOHN Q. PUBLIC DATE OF BIRTH: 7/4/1954
STREET ADDRESS :
CITY/STATE :
PHONE NUMBER :
OCCUPATION:

Figure 4. Data entry without protected fields

THE RESTOF 80 / 21

DISPLAY 1
DEMONSTRATES DATA ENTRY/EDRIT WITHOUT PROTECTED FIELDS
NAME: JOHN Q. PUBLIC DATE OF BIRTH: 7/4/1954
STREET ADDRESS: 100 ANYSTREET
CITY/STATE: ANYTOWN, USA 00000
PHONE NUMBER: 555-1212
OCCUPATION: COMPUTER PROGRAMMER

Figure 5. Screen display showing complete data entry

DISPLAY 2
DEMONSTRATES DATA ENTRY/EDIT WITH PROTECTED FIELDS
INCLUDING NUMERIC VALUES

NAME-+ JOHN Q. PUBLIC EMPLOYEE NUMBER: 0
HIRE DATE:

SECTION NUMBER: 0

YEAR OF DEGREE: 0

SALARY: 0

Figure 6. Data eniry with protected fields

DISPLAY 2
DEMONSTRATES DATA ENTRY/EDIT WITH PROTECTED FIELDS
INCLUDING NUMERIC VALUES

NAME-+ JOHN Q. PUBLIC EMPLOYEE NUMBER: 10000
HIRE DATE: 6/26/75

SECTION NUMBER: 1234

YEAR OF DEGREE: 1974

SALARY: 23000

Figure 7. Display showing complete dala entry

DISPLAY 3
DEMONSTRATES FORMATTED SCREEN WITH EXTRA COMMENTS/TITLES
PERSONAL DATA
NAME+ JOHN Q. PUBLIC PHONE NUMBER« 555-1212
ADDRESS+ 100 ANYSTREET
ANYTOWN, USA 00000
RECREATIONAL DATA
HOBBIES NUMBER 1:
NUMBER 2:
SKILLS NUMBER 1
NUMBER 2

Figure 8. Formatted screen with additional data

DISPLAY 3
DEMONSTRATES FORMATTED SCREEN WITH EXTRA COMMENTS/TITLES
PERSONAL DATA
NAME+« JOHN Q. PUBLIC PHONE NUMBER+ 555-1212
ADDRESS* 100 ANYSTREET

Figure continued

22 /| THE REST OF 80

RECREATIONAL DATA

HOBBIES NUMBER 1: COMPUTER HOBBYIST
NUMBER 2: FLYING AIRPLANES

SKILLS NUMBER 1: 45 WPM TYPIST
NUMBER 2: ELEC MAINTENANCE

Figure 9. Display showing complete data entry

Assembly-Language Program Description

The assembly-language part of the program is discussed here in sym-
bolic language format to show how it works. The assembled program
has been converted to decimal values and is POKEd inte memory by the
subroutine at line 50000 in the BASIC program. The principal variables
in this program are as follows:

NUM The number of changeable variables on the screen as POKEd
into memory by the BASIC program. NUM corresponds to the
BASIC variable N.

LEN A series of numbers representing the lengths of the variables
which are also POKEd into memory by the BASIC program.
These correspond to the L{1) through L{N} BASIC variables.

VARWK Tracks which variable is being entered. The range is 1 1o N,
wilh N less than or equal to 32.

POS Variable indicating position of cursor within the variable he-
ing worked. The range is 0 to LEN.

PTR An address POKEd into memory by the BASIC program
which points to the address in RAM containing the pointer to
the 3-byte description of the A${1) variable. The BASIC pro-
gram derives this address using the VARPTR{A$({1}} com-
mand.

In the assembly-language program, lines 170-330 set up the initial
register variables and position the cursor at the beginning of the first
variable. The INPUT routine, lines 370-540, attempts to get a character
from the keyboard. If no key has been pressed, the subroutine generates
a block cursor, delays, restores the character to the screen, and then tries
again to get a character from the keyboard. This process creates a
flashing cursor on the video screen. Once the routine finds a character,
control branches to the UPARR routine at line 580.

The first two lines of the UPARR routine check to see if the input
character is an up arrow. If it is not an up arrow, control branches to the
RTARR routine at line 810. If it is an up arrow, the routine checks to see
if the variable being worked is the first variable on the screen. If so, con-
trol is returned to the INPUT routine with no further action. If the
variable is not the first, the screen is searched backward, and the cursor
is placed over the first position of the previous variable. The routine then
passes control back to the INPUT routine.

THE REST OF 80 / 23

The first two lines of the RTARR routine check to see if the input
character is a right arrow. If the character is not a right arrow, the routine
Jumps to the LTARR routine at line 950, otherwise, a check is made to
see if the cursor is at the last allowable position of the variable. If it is,
control is passed to INPUT with no changes made. If the cursor is not at
the last position, it moves forward one character space on the screen.
Control is then passed to the INPUT routine.

The first two lines of the LTARR routine check to see if the input
character is a left arrow. If the character is not a left arrow, control is
passed to the DNARR routine at line 1070. If the character is a left arrow,
a check is made to see if the cursor is in the first position of the variable.
If it is, control is passed to INPUT with no changes made. If the cursor
1s not in the first position, the cursor is backed up one character space
on the screen. Control is then passed to the INPUT routine.

The first two lines of the DNARR routine check to see if the input
character is a down arrow. If it is not a down arrow, control is passed to
the CARRET routine at line 1270. If the character is a down arrow, a
check is made to see if the last variable on the screen is being processed.
If so, control is returned to the INPUT routine with no changes. If not,
the cursor is moved down to the first position of the next variable. Con-
trol is then passed to the INPUT routine.

The first two lines of the CARRET routine check to see if the input
character is a carriage return. If the character is not a carriage return,
control is passed to the EQUAL routine at line 1530. If it is a carriage re-
turn, a check is made to see if the cursor was in the first position of the
variable. If so, control is passed to the DNARR routine, and the character
is handled as a down arrow. If not, the number of blanks required to fill
the remaining portion of the variable is calculated, and the remaining
portion of the variable is filled with blanks. A check is then made to de-
termine if the last variable on the screen was being processed when the
key was pressed. If not, control is passed to the DNARR routine to move
the cursor forward one variable. If so, control is passed to BEGIN, where
the cursor is placed at position 0 of the first variable.

The first two lines of the EQUAL routine check to see if an equal sign
was received. If not, control is passed to the CHAR routine at line 1820.
If the character is an equal sign, the VARWK variable is set to 1 and the
index register IX is loaded with the address of the BASIC poinler to the
3-byte description of the A${l) variable in RAM. The cursor is then
placed over position 0 of the first variable on the screen. The A${1} point-
er consists of three values: the length, the lower address, and the upper
address of A${1). First, B is loaded with the length, and DE is loaded with
the address. The variable is then moved from the screen to the memory
designated by the BASIC pointer to hold A${1}. This process continues
for the other variables on the screen until the last variable is completed.

24 / THE REST OF 80

Control is then passed back to the BASIC program through the Z80 RET
instruction.

The CHAR routine first checks to see if the cursor is at the last position
of the variable. If so, control is then returned to the INPUT routine with
no changes. If the cursor is not at the last position of the variable, the
character is printed on the video screen and control returns to the IN-
PUT routine.

Lines 1970-2010 allocate memory for the variables used by the assem-
bly-language program.

BASIC Program Description

The BASIC portions of the form fillout program (Program Listing 2} are
located in subroutines 50000 and 60000 in the demonstration program.
The subroutine at 50000 loads the assembly-language portion of the pro-
gram into high memory. The assembly-language routine, in decimal
values, is located in lines 50090-50420. The data in the demonstration
program is for a 48K disk configuration. The subroutine at 50000 nced
only be run once at the beginning of the BASIC program.

The subroutine at 60000 takes two types of variables from the BASIC
program and slores them in appropriate memory locations for use by the
assembly-language program. N represents the total number of variables
on the display. L{1} through L{N} indicaic the allowable lengths of the N
variables. The subroutine then expands the A${l} variables to the maxi-
mum lengths with line 60080 and derives the BASIC pointer to the A${1)
3-byte description with the VARPTR command in line 60090. This deci-
mal value is converted to a high and low memory address by lines
60110-60120 and POKEd into memory by line 60130. The assembly-lan-
guage program is then called with the USR command in line 60140.
Lines 60040 and 60150 save the variables used by the subroutine and re-
store these variables before exiting the subroutine. The only variables
not available to the programmer are A$(I}, L{l), N, Al, A2, A3, A4, A5,
and A6. As a programming aid, the subroutine also checks to see that no
more than 32 variables have been used. If this condition is not met, the
program halts at that point.

Lines 100-230 set up the initial menu and load the assembly-language
routine with a GOSUB 50000. Subroutine 1000 sets up the first display.
Lines 1010-1100 print the display on the CRT. Line 1110 sets the num-
ber of variables to six and sets their lengths. The GOSUB 60000 sets up
the assembly-language variables and calls the USR routine. Line 1130
converts the A$(I) variables returned into the appropriate program string
variables.

The subroutine at 2000 is similar to the subroutine at 1000 with a few
differences. Line 2060 prints the NAME on the screen but uses an aster-
isk delimiter to separate the prompt from the variable. The display con-

THE REST OF 80 / 25

tains numeric variables in addition to string variables. Line 2140 con-
verts the ASCII strings returned into numeric variables where appropri-
ate and converts the remaining strings into the program string variables.

The subroutine at 3000 illustrates another way to use the form fillout
program. In this subroutine, the display is set up to include titles as well
as prompts and protected variables. These demonstrate how the pro-
gram ignores any data on the screen except the variables preceded by a
colon and two blank spaces.

Conversion to 16K/32K

To convert the BASIC subroutines to run on a 16K or 32K TRS-80 with
or without disks, the following lines must be substituted {or the corre-
sponding lines in the subroutines. For the 16K version, you must sct
memory size to 32449 before entering BASIC. For the 32K version, set
memory size to 48833. Substitute the following lines for the 16K version:

50010 Z=32450
50080 DATA 221, 33, 255, 127, 253, 33, 254, 127, 17, 222, 127
50240 DATA 58, 221, 127
50300 DATA 38, 221, 127
50330 DATA 221, 42, 219, 127
50370 DATA 58, 221, 127
BOOS0 7.=132450
Substitute the following lines for the 32K version:
50010 Z= - 16702
50000 DATA 221, 33, 253, 191, 253, 33, 254, 191, 17, 222, 191
50240 DATA 58, 221, 191
50300 DATA 58, 221, 191
50330 DATA 221, 42, 219, 191
50370 DATA 58, 221 191
BO050 Z=-16702

Without Disk

To use this program without disks, the only additional changes arc m
lines 50030 and 60140. Be sure that you have changed the necessary
lines il the memory size has been changed. In a 16K non-disk configura-
tion, change these lines to read:

50030 POKE 16526, 194: POKE 16527, 126
60140 X = USR{X|

In a 32K, non-disk configuration, change these lines to read:

50030 POKE 16526, 194: POKE 16527, 190
60140 X = USR{X!

In a 48K, non-disk configuration, change these lines to read:

50030 POKE 16526, 194: POKE 16327, 254
60140 X =USR(X)}

26 / THE REST OF 80

Program Listing 1.
Assembly-language program loaded by the subroutine at 50000 in the demonstration BASIC
program

Ll o) ; ASSEMELY LANGUAGE PORTICN OF FORM-FILLOUT

o1l sWRITTEN BY : GARY LINDSEY

20120 : 1841 NOGALES AVENUE

20130 : PAIM BAY, FLORIDA 32945

2o142 ;

20153 ;

#o16a ;
FEC2 20170 ORG @FEC2H ;SETS LOCATION OF PGM
FEC2 DD21FFFF 21580 ID IX,POS ; IX POINTS TO POSITION
FEC6 FD21FEFF @199 iD 1Y, VARWK ;1Y POINTS TO VARWK

80200 ;

Pa219 ;

20220 ;
FBCA 11DEFF @232 BEGIN LD DE,LEN ;DE POINTS TO LEN OF VARWK
FECD 21FF3B 90240 1D HL, 3BFFH {HL= TOP OF VIDED MEM-1
FED@ 23 @250 INC1 INC HL ;HL=TOP OF VIDED MEM
FEDL 7E 00260 LD A, (HL) ;LOAD A WITH VIDEQ CHAR
FED2 FE3A Bo270 CP 'yt {CHECK IF A IS OQOLON
FED4 2@FA 0260 JR NZ, INC1 1 IF NOT COLON JP TO INCL
FED6 23 90290 INC HL ; INCREMENT VIDEO POINTER
FED7 23 3300 INC HL ;TO POS @ OF VARIABLE
FEDE 23 20314 INC HL ;AFTER THE COLON
FED9 FD3620C) 00320 LD (IY),1 ;SETS VARWK TO 1
FEDD DD36@000 92330 LD (1X),@ :SET POS TO @

PA340 ;

2354 ;

BO3EG ;
FEE1 D5 8370 INPUT PUSH DE :SAVE LEN POINTER
FEE2 FDES5 00380 PUSH 184 ; SAVE VARWK POINTER
FEE4 CD2BOQ ©939¢ CALL PO2BH :CALL SCAN KEYBOARD $/R
FEE7 B7 o400 OR A 1OR A
FEES FDEL 20419 POP Iy ; RESTORE VARWK POINTER
FEEA D1 20420 POP DE :RESTORE LEN POINTER
FEEB 20115 203439 JR NZ,UPARR ;IF A NOT @ JP TO UPARR
FEED 4E 00440 LD c, (HL} }SAVE CHAR IN C
FEEE 3ESF 20450 LD A, 143 ;LOAD A WITH CURSOR CHAR
FEF@ 77 B4R LD (HL},A :PUT CURSOR ON SCREEN
FEF1 C5 90470 PUSH BC :SAVE BC WHICH HOLDS CHAR
FEF2 QLEAZS @a480 LD BC, PERH ;LOAD BC WITH DELAY OOUNT
FEFS CD6O0E 90499 CALL BO6OH :CALL DELAY ROUTINE
FEFE Cl 29500 POP BC ;RESTORE BC
FEF9 71 20519 LD (HL),C :PUT CHAR ON SCREEN
FEFA Q1FO0@ 00520 LD BC, @F@H :LOAD BC WITH DELAY OOUNT
FEFD CD6GOE 0U530 CALL BOECH ;CALL DELAY ROUTINE
FF2@ 18DF 23540 JR INPUT JUMP TO INPUT

@550 ;

aesed ;

20570 ;
FFOY2 FESB 29580 UPARR CP SBH ;CHECK IF A IS UP ARROW

FFo4q 2020 20592 JR NZ, RTARR 1 IF NOT JUMP TO RTARR

FFY6 FDTESS O0600 LD A, (1Y) ;LD A WITH VARWK

FF99 FEOL 0610 CP 1 ;CHECK IF FIRST VARIAELE
FFOB 28D4 00620 JR Z,INPUT +IF TRUE JP TO INPUT
FFYD 2B 23639 DECL DEC HL ; DECREMENT VIDBD POINTER
FEYE 7E P60 LD A, (HL) ;LOAD A WITH VIDEO CHAR
FFOF FE3A PR650 cP it ;CHECK IF COLON

FF11 20FA 20660 JR NZ,DECL ; IF NOT OOLON JP TO DECL

Program continued

THERESTOF 80 / 27

FF13 2B g9678 DBC2 DEC HL ; DECREMENT VIDEQ POINTER

FFl4 7E 22680 j#p) A, (HL) :10AD A WITH VIDEQ CHAR
FF15 FE3A 698 cp e ;CHECK IF COLON
FF17 20FA 20708 JR NZ,DEC2 ; IF NOT OCLON JP TO DEC2
FF19 23 2a71e INC HL ; INCREMENT VIDEO POINTER
FF1A 23 20720 INC HL ;TO POS @ OF VARIABLE
FF1B 23 25730 INC HL + AFTER OOLON
FFIC FD352¢ @&740 DEC {ry) s DECREMENTS VARWK
FFLF CD363000 20758 LD {1x),2 +SET POS TO @
FF23 1B Pa760 DEC DE +DE NOW POINTS TO NEW LN
FF24 18BB oyl JR INPUT +JUMP TO INPUT

20780 :

A7 ;

QABZD 3
FF26 FE@9 @P8lY RTARR CP @9H ;CHECK IF A IS RT ARROW
FF28 200F 00620 JR NZ,LTARR ;IF NOT JUMP TO LTARR
FF2A 1A 20830 LD A, {DE) ;1D A WITH LENGTH OF VAR
FF2R DD460@ 0084@ LD B, {1X) ;LD B WITH POSITION
FF2E BS 2eas5d CcP B +COMPARE LEN WITH POS
FF2F 28B& PO860 JR Z, INPUT ;IF POS=LEN THEN INPUT
FF31 23 ARR7a INC HL ;+ INCREMENT VIDEO POINTER
FF32 DD343W0 O0BSO INC {IX) ; INCREMENTS POS
FF35 18AA 2asIwD JR INPUT ;JUMP TO INPUT

39909
FF37 1891 PP910 XFER1 JR BEGIN ;JUMP TO BRGIN

5920

Pe93a ¢

gaeas ;
FF39 FE08 PP95@ LTARR CP @8H ;CHECK IF A IS LT ARROW
FF3B 200E @a968 JR NZ, DNARR :1F NOT JP TO DNARR
FF3D 3EM 30970 LD A0 +LOAD A WITH &
FF3F DD4609 39802 1D B, (IX) ;LOAD B WITH POS
FF42 E8 2990 cp B ;COMPARE POS WITH @
FF43 289C o1000 JR Z, INPUT +IF POS=@ THEN INPUT
FFP45 2B 1016 DEC HL ;DECRMENT VIDEO POINTER
FF46 DD350 01020 DEC (1x) ; DECREMENTS POS
FF49 1896 #1030 XFER2 JR INPUT ;JUMP TOQ INPUT

Q1348 ;

Q19250 ;

Gloaed ;
FF4B FE@A ¢107% DNARR CP ARH ;CHECK IF A IS DNARR
FF4D 201C 21080 JR NZ,CARRET ;IF NOT JP TO CARRET
FRAF FD46@ G189 DNARR1 LD B, (IY) ;LOAD B WITH VARWK
FF52 3ADDFF (1189 LD A, (NUM) ;LOAD A WITH NUM
FF55 B8 gil1a P B +OOMPAR VARWK WITH NUM
FF56 2889 91123 JR Z, INPUT +IF VARWK=NUM THEN INPUT
FF58 23 #1130 INC2 INC HL + INCREMENT VIDEC POINTER
FF59 7E 91140 LD A, (HL} ;LOAD A WITH VIDED CHAR
FF5A FE3A #1158 CP et ; CHECK IF COLON
FF5C 2@FA 21160 JR Nz, INC2 ; IF NOT CQOLON JP TO INC2
FF5E 23 21170 INC HL s INCREMENT VIDEC PCINTER
FFSF 23 1188 INC HL ;TO POS @ OF VARIABLE
FFed 23 #1199 INC HL ;AFTER QOLON
FF61 DD36200¢ 01200 LD (1X},2 ;LOAD POS WITH ZERO
FF65 13 21210 INC DE ;DE POINTS AT NEW LEN
FF66 FD3400 #1220 INC {1y} + INCREMENTS VARWK
FF69 18DE @1238 JR XFER2 ;JP TO INPUT VIA XFERZ

@1249 ;

?125@ ;

p1268 ;
FF6B FEOD @1270 CARRET CP BDH ;CHECK IF A IS CAR RET

28 / THE REST OF 80

FFoD
FF6F
FF72
FF74
FF76
FF77
FF78
FF79
FF7A
FETB
FF7C
FF7E
FFIF
FFB@
FF8L
FF83
FF86
FF89
FF8A
FF8C

FFBE

FFC8
FFCC
FFCE

FFD&
FFD1

2021
DD7EDG

2809
47

oK

3c

2B
2620
23

79

D
20FB
FD4600
3ADDFF

20C3
1829

1889

FE3D
2034
FD362021

21FF3B
23

7E
FE3A
20FA
23

23

23
DD4EDS
aees
DD23
DDSEQ@
DD23
DD5629
EDBO
3ADDFF
FD4606

FD3429
DD23
1807

F5
DD462

2043
Fl1
18BR

21288
21290
21308
9131e
01328
91339
#1348
#1350
@136d
#1376
#1380
91399
91400
21419
91420
91430
091440
21456
21468
21479
91480
21499
a1509
91510
#152¢
21538
91540
#1550
21560
#1572
a1560
91599
al60e
Blelp
31620
o163
B164e
21650
21669
21678
21680
51699
21722
21718
217208
81739
#1740
@175
a1768
Q1778
@178@
81798
o18e9
91818
01820
01838
21848
0185@
21868
@187
21880

JR NZ , EQUAL :1IF NOT JUMP TO EQUAL

1D A, (IX)} ;LOAD A WITH POSITION

CP 4] +COMPARE POS TO ZERD

JR 7, DNARRL +IF POS=0 THEN DNARRL

LD B,A ;LOAD B WITH POS

XOR A :ZERD A REGISTER

] A, (DE) ;LOAD A WITH LENGTH

SUB B ;A= # OF BLANKS TO END

INC A :ADD ONE TO BLANKS

DEC HL : DECREMENT VIDEC POINTER

LD B,20H ;LOAD B WITH BLANK CHAR
CR1 INC HL ; INCREMENT VIDEQ POINTER

LD (HL),B sWRITE BLANK TO SCREEN;

DEC A ;DECEREMENT # OF BLANKS

JR NZ,CRl ;IF BLANKS<>@ THEN CR1

LD B, (IY¥) :TLORD B WITH VARWK

LD A, (NUM) :LOAD A WITH NUM

cp B ; COMPARE VARWK WITH NUM

JR N7, DNARRL ; IF VARWK<>NUM THEN DNARRL

JR XFERL :JUMP TO BEGIN VIA XFERL
XFER3 JR XFER2 sRELATIVE JP XFER INST
EQUAL CP '=! sCHECK IF A 18 BQUAL

JR NZ,CHAR ;IF NOT JP TO CHAR

LD {1Y).1 $SET VARWK TO 1

LD IX, (PTR) +IX=PTR TO BASIC STR PTR

LD HL, 3RFFH ;HL=TOP OF VIDED MEM-1
INC3 INC HL +HL=TOP OF VIDED MEM

1D A, (HL) ;LOAD A WITH CHARACTER

cp e ;CHECK IF QOLON

JR NZ, INC3 ;IF MOT JP TO INC3

INC HL s INCREMENT VIDEO POINTER

INC HL ;TO POS @ OF VARIABLE

INC HL ;AFTER QOLON

LD c, {1X) ;C LOADED WITH BASIC LEN

LD BB ;B=0

INC Ix ;IX= PTR TO LO VAR ADDRESS

LD E,(IX) ;E = LD ADDRESS OF VAR

ING X +IX= PTR TO HI VAR ADDRESS

LD D, (IX} ;D = HI ADDRESS OF VAR

LDIR +MOVE VIDEO TO VAR MEM

LD A, (NUM) :A=TOTAL # OF VARIABLES

LD B, (1Y) :B=VAR WORKED

CP B ;CHECK IF LAST VARIABLE

RET A ;RET TO BASIC IF LAST

INC (1Y) : INCREMENT VARWK

INC i9.4 ;PTR TO NEXT AS VARIARLE

JR INC3 ; START NEXT VARIABLE
CHAR PUSH AF +SAVE CHARACTER IN AF

LD B, (IX} ;LOAD B WITH PCS

1D A, (DE) ;LOAD A WITH LEN

CP B 1 COMPARE LEN WITH POS

JR NZ, STARTL ;IF LEN<>POS JP TO STARTL

POP AF ;RESTORE CHAR IN AF

JR XFER3 :JUMP TO INPUT VIA XFER3

Program continued

THE REST OF 80 / 29

FFD3 F1 2189 START1 POP AF ;RESTORE CHAR IN AP

FFD4 77 2190 LD (HL),A +PUT CHAR ON SCREEN
FFD5 DD34e¢ @1918 INC (1IX) : INCREMENT PCS
FFD8 23 21920 INC HL ; INCREMENT VIDEC POINTER
FFD2 18B3 21938 JR XFER3 1+JUMP TO INPUT VIA XFER3
#1940 ;
P195¢ ;
1968 ;
FFDB 2000 21979 PTR DEFW 2 PTR TO BASIC VAR PTR
FFOD & 21980 NUM DEFB 5] ;NUMBER OF VARIABLES
Pa2d 21994 LFN DEFS 32 ;UP TO 32 VAR LENGTHS
FFFE 0@ B2008 VARWK DE¥FB <] +# OF VAR BEING WORKED
FFFF OF 22910 POS DEFB %] : INDICATES POS WITHIN VAR
60,7, Q2020 END +END OF ASSY LANGUAGE PGM

93003 TOTAL ERRORS

Program Listing 2.
Demonstration BASIC program illustrating the use of the subroutines at 50000 and 60000 to
implement the form fillout technique

12 REM

20 REM

3¢ REM DEMONSTRATICN OF FORM-FILLOUT PROGRAM
40 REM WRITTEN BY: GARY S. LINDSEY

S@ REM 194) NOGALES AVENUE

68 REM PAIM BAY, FLORIDA 32905

70 REM

80 REM

9¢ REM

199 CLEAR 500

11¢ DIM A(32),A$(32),L{32)

120 GOSUB 50000

139 CiS

14 PRINT TAB(2¢) "FCRM FILLOUT DEMCHSTRATION"
158 PRINT

16@ PRINT TAB(16) "1 - PROCESS PERSONAL DATA"

172 PRINT TAB(18) "2 - PROCESS WORK HISTORY DATA"
184 PRINT TAB(18) "3 - PROCESS RECREATIONAL DATA"
199 PRINT

20¢ INPUT “ENTER YGUR CHOICE: ";C

21@ IF C<1 OR C>3 THEN 138

220 ON C GOSUB 1008, 2004, 3000

238 GOTO 139

240 REM

250 REM

260 REM

100¢ REM FIRST SCREEN FOR DEMONSTRATION OF FORM FILLOUT
1016 OIS

1¢2¢ PRINT TAB(25) "DISPLAY 1"

1939 PRINT " DEMONSTRATES DATA ENTRY/EDIT WITHOUT PROTECTED FIE
Lmlt

1948 PRINT

1¢5@ PRINT "NAME: ";N$;TAB(30);"DATE OF BIRTH: ";B$

1960 PRINT "STREET ADDRESS : ":;AD$
1979 PRINT "CITY/STATE : " CS
186868 PRINT "PHONE HUMBER : ":PS

189¢ PRINT

30 / THE REST OF 80

1109 PRINT "OCCUPATION: "; 0§

1119 N=6:L(1)=20:L(2}=12:L{ 3)=30:L(4)=30:L(5)=15:L{6)=3@
1129 GOSUB 60600

1132 N$=AS(1):BS=A%(2):AD$=AS(3):CH=A5(4):P$=AS(5):05=A5(6)
1140 RETURN

11589 REM

1162 REM

1170 REM

200k REM SEQUND SCREEN FOR DEMONSTRATION OF FORM FILLOUT
2018 CS

2@20 PRINT TAR({25) “DISPLAY 2"

2@3¢ PRINT TAB(S5)"DEMONSTRATES DATA ENTRY/EDIT WITH PROTECTED FI
ELDS"

204¢ PRINT TAB({5)" INCLUDING NUMERIC VALUES"
2@5@ PRINT
206@ PRINT "NAME * “;N$;TAB{3d);"EMPLOYEE NUMBER: ";E
2079 PRINT

2080 PRINT "HIRE DATE: “;HD$

2099 PRINT “SECTION NUMBER: “;$

21%3 PRINT "YEAR OF DEGREE: ":Y

211% PRINT "SALARY: ";SA

2120 N=5:L(1)=6:L{2)=18:L{3)}=5:L(4)=5:L{5)=6

2130 GOSUB 60000

Eﬁg E=VAL(A$ (1)) :HD$=A$ (2} :S5=VAL(AS(3)) : Y=VAL(AS (4)) 1 SA=VAL(AS{
215¢ RETURN

2160 REM

217G REMe

2180 REM

3003 REM THIRD SCREEN FOR DEMCNSTRATION OF FORM-FILIOUT
3glE s

392¢ PRINT TAB{25) "DISPLAY 3"

3030 PRINT ™ DEMONSTRATES FORMATTED SCREEN WITH EXTRA OOMMENTS/
TITLES"

3P40 PRINT TAB(20) "PERSCNAL DATA"

3950 PRINT

3960 PRINT "NAME* ";N$;TRAB({30);"PHONE NUMBER* ";P$
3@79 PRINT “ADDRESS*";TAB(1@);AD$

3080 PRINT TAB(1Q):C%

309¢ PRINT

3180 PRINT TAB(2@) "RECREATIONAL DATA"

311@ PRINT

3126 PRINT "HOBBIES";TAB(10);"NUMBER 1: ";H1S

313¢ PRINT TAB{1@)"NUMBER 2: “;H2$

314¢ PRINT “SKILLS";TAB(14)"NUMBER 1: ";Sl$

315¢ PRINT TAR{1J)"NUMBER 2: ";S2$

3169 N=q:L{1)=20:L{2)=29:L(3)=20:L(4)=20

3176 GOSUB 60000

3180 HI1S=A$(1):H2$=A$ (2} :S15=A$(3):825=A5(4)

319¢ RETURY

3200 REM

3210 REe

3220 REM

50000 REM SETS Z=BEGINNING OF USR PROGRAM

50019 z=-318

5A@20 REM SETS USR PROGRAM ENTRY POINT

50930 DEFUSRE=Z

5p@4@ REM POKES USR ASSEMBLY LANGUAGE PROGRAM INTO MEMORY
S095¢ RESTORE:FOR I=Z TC 7+280

50068 READ X:POKE I,X

SO079 NEXT I

Program continued

THE REST OF 80 / 31

5008¢ RETURN

50099 DATA 221, 33, 255, 255, 253, 33, 254, 255, 17, 222, 255
50199 DATA 33, 255, 59, 35, 126, 254, 58, 32, 258, 35
50118 DATA 35, 35, 253, 54, @, 1, 221, 54, @, ©

50120 DATA 213, 253, 229, 205, 43, ¢, 183, 253, 225, 289
50130 DATA 32, 21, 78, 62, 143, 119, 197, 1, 234, &
5140 DATA 205, 96, @, 193, 113, 1, 248, 8, 205, 96, @
50158 DATA 24, 223, 254, 91, 32, 32, 253, 126, @, 254, 1
50163 DATA 40, 212, 43, 126

50178 DATA 254, 58, 32, 250, 43, 126, 254, 58, 32, 250
50188 DATA 35, 35, 35, 253, 53, 4, 221, 54, 0, O

5019¢ DATA 27, 24, 187, 254, 9, 32, 15, 26

50200 DATA 221, 7@, o, 184, 48, 176, 35, 221, 52, @
50210 DATA 24, 178, 24, 145, 254, 8, 32, 14, 62, @
50220 DATA 221, 74, @, 184, 498, 156, 43, 221, 53, @
5@23@ DATA 24, 150, 254, 1€, 32, 28, 253, 7¢, @

5@248 DATA 58, 221, 255

5¢250 DATA 184, 4¢, 137, 35, 126, 254, 58, 32, 254, 35
5@26@ DATA 35, 35, 221, 54, @, @, 19, 253, 52, @

59279 DATA 24, 222, 254, 13, 32, 33, 221, 126, O

50280 DATA 254, @, 4@, 217, 71, 175, 26, 144, 6@, 43
50298 DATA 6, 32, 35, 112, 61, 32, 251, 253, 79, @
S@3e@ DATA 58, 221, 255

50312 DATA 184, 32, 195, 24, 169, 24, 185

5@320 DATA 254, 61, 32, 52, 253, 54, 6, 1

50332 DATA 221, 42, 219, 255

50340 DATA 33, 255, 59, 35, 126, 254, 58

5@35¢ DATA 32, 250, 35, 35, 35, 221, 78, @, 6, B, 221, 35
58368 DATA 221, 94, @, 221, 35, 221, Be, @, 237, 176
5@37@ DATA 58, 221, 255

50382 DATA 253, 7@, 0, 184, 20¢

50393 DATA 253, 52, @, 221, 35, 24, 215

58483 DATA 245, 221, 79, @

5041¢ DATA 26, 184, 32, 3, 241, 24, 187, 241, 119

50420 DATA 221, 52, &, 35, 24, 179

58433 REM

5044% REM=

50453 REM

60003 REM POKES NECESSARY NUMBER (N), LENGTHS (L(I)), AND
62@13 REM THE POINTER TO AS{1l) INTO MEMORY FOR USE BY
62320 REM THE ASSEMBLY LANGUAGE PORTION OF THE PROGRAM.
6@@3@ IF N>32 THEN PRINT "TOO MANY VARIARLES":END
60040 Al=X:A2=T :A3=H:A4=1,:AS=V:A6=2

62050 Z=-318

6006@ X=2+283:POKE X,N:X=X+1

62973 FOR I=1 TO N:POKE X,L{I):X=X+1:NEXT I

©6PB80 FOR I=1 TO N:AS(I)}=STRINGS(L(I)," "):NEXT I
69093 H=@:L~0:X=VARPTR(AS (1))

60100 IF X<@ THEN X=X+65536

69119 H=INT(X/256)

60120 L=X-H*256

60139 POKE 7+281,L:POKE Z+282,H

60140 X=USRB(X)

60159 X=Al:I=RA2:H=A3:L=A4:V=A5:Z=A6

6@16@ RETURN

32 / THE REST OF 80

4

Idiosyncracies in
Radio Shack’s
BASIC

by John Blommers System Requirements:
Model I

Level II BASIC

or Disk BASIC

16K RAM

Radio Shack's Model I Disk BASIC has some bugs and idiosyncracies
you should know. This chapter covers some of them, as well as ways
to avoid numerical errors in solving problems.
The IF-THEN statement does not require the word THEN, provided
there is no ambiguity in the statement. The following lines work properly:
100 A=1:B=A:C=1:D=2:1=9:]=I
110 IF A=B IF C<>D IF =] PRINT "HELLOQO"
Since the three comparisons are all true, the word HELLO is printed.
When a comparison statement is executed, it results in a value which
is either true { -1} or false (0). For example:
99 INPUT Y Z";Y,2
1060 X=Y=Z "sets X toQif Y isn't equal to Z
101 PRINT X ' sets X to -1 if Y equals Z
102 GOTO 99
Compound statements work on a single line, but they also work with the
IF-THEN-ELSE statement:

100 IF I=2 THEN A=B:C=D:E=F ELSE [=K:.L=-M:G=71
BASIC allows the user to define functions, usually at the beginning of
the program. If a run-time error occurs as a result of a problem in the
function definition statement, it is the statement calling the function—
not the statement that defined it—that is flagged as the incorrect state-
ment.

100 DEF FNA|X] = SQRT|X)
200 PRINT FNA{4}

THE RESTOF 80 / 33

This program causes a syntax error in line 200; however, the true error is
in line 100 {the function for square root is SQR, not SQRT-that is the ac-
tual error}.

To suppress the line feed in a PRINT statement, you place a semicolon
after the last variable. This fails to work at location 1023, the last location
on the screen.

100 PRINT @ 1023, "+'; ' still scrolls the screen.

BASIC occasionally interprets mathematically identical values differ-
ently. The numbers 3328D0 and 33.28D0*100D0 should be identical;
however, the following statement results in a nonzero answer:

100 PRINT 3328D0- 33.28D0+ 100D0
The result is — 5.684341886080802D — 14. The multiplication producesa
round-off error in the last digit of the double-precision answer.

Sometimes BASIC can be forced to misinterpret a statement.

110 X=1D0:Y=2.D0

120 PRINT X+0D- (Y +0D} " will print two numbecrs.

12
The confusion arises because the double-precision number 0D should be
written 0DO to help BASIC continue with the arithmetic. Because it
thinks that X + 0 is one variable and the D— (Y + 0D} is a second variable,
it prints two numbers. It prints the numbers 3 and 2 for the following;:
100 PRINT 1+2X+X
The following PRINT statement prints a - 1:
100 PRINT 1=1

This happens because 1=1 is a true statement and, therefore, has the
value -1 assigned to it.

The VAL function converts a string into a number only if the first char-
acter is plus, minus, or a digit from zero to nine. This causes the follow-
ing, otherwise legal conversions to fail and return a zero value:

100 PRINT VAL{" -32"} ' leading blank
110 PRINT VAL{"&HFF"'] ' in DOS BASIC should give 255
120 " bul gives 0 instead !!

Another bug in the VAL function is that it attempts to convert a long nu-
meric string, even though the extra digits cannot contribute to the preci-
sion of the answer. The resulting calculations in BASIC cause an over-
flow or underflow, giving a run-time error. Consider the following:
99 CLEAR 100
100 PRINT VAL([""." + STRINGS${39,"7")

This program results in an OV error when you use 39, but it works with
38. BASIC supports exponents from - 38 to +38.

When typing in DATA statements, you may inadvertently omit a
number, leading to unexpected results, because no error message is gen-

34 / THE REST OF 80

erated by BASIC to tell you it didn't see any data between the commas.
The variable you were trying to READ into the program is set to zero
when this happens. Consider the following program:
100 FORI1=1 TO 10 : READ A : PRINT A; : NEXT : END
110 DATA 1,2,3,,,6,7,8,9,10 ' 4TH & 5TH ARE MISSING
The result of this programis 123006789 10.
The word THEN need not be used in the IF-THEN-ELSE statement, as
shown in the following program:
700 INPUT "ENTER A STRING '";A$%
800 IF A$="2000" ELSE PRINT "NOT 2000"
900 IF A$="1000" PRINT "IT'S 1000* ELSE
PRINT "NOT 1000
990 GO TO 700
Since BASIC stores real numbers using four bytes in binary notation,
certain arithmetic operations give rise to tiny errors. For example:

100 A=20.01: B=20: PRINT A-B 'prints .0100002.

It is true that 20.01 - 20.00=0.01, but because BASIC retains only about
seven to eight digits of precision, subtracting nearly equal real numbers
results in a lot of garbage digits. This result is not peculiar to the TRS-80,
but applies to many computers.

It is not generally known that the file input statement INPUT #1, vari-
ablelist can be expressed more generally as INPUT #N, variablelist,
where N is — 1 or -2 for cassette port 1 or 2. This can be used as follows:

100 INPUT "WHICH CASSETTE PORT ({1 OR 2) ;N
110 IF N<>1 AND N<>2 THEN 100 ELSE N=-N
120 INPUT #N, A$

130 PRINT "THE DATA IS =»2"" A§ “"sses’
140 GO TO 100

In DOS BASIC, N is a positive number that refers to the number of the
file buffer.

BASIC calculates X raised to the Y power internally by the formula
EXP[Y*LOG{X)}). It does so even if both X and Y are integers. Try raising
2 to the thirteenth power. The answer is 8192.01 instead of 8192. If you
know in advance that the calculation should result in an integer, you can
obtain the correct result by adding 0.5 to the calculation and using the
FIX function to create an integer.

BASIC generally allows you to put spaces wherever you want, ignor-
ing them unless they appear inside quotation marks. This is not true for
the TAB function. The following program gives a SUBSCRIPT OUT OF
RANGE message:

100 PRINT TAB {20) "HELLO'' : END

This happens because the token for TAB function represents the charac-
ters TAB|, rather than the characters TAB. BASIC sees the TAB (20) and
assumes that this function refers to the twentieth element of the array

THERESTOF 80 / 35

TA. Since the default dimension of all arrays is 10, BASIC gives you an
error message.

BASIC prints only six significant figures of a number, even if you use
PRINT USING "# ############", as shown in the following program:

100 X=1/3
110 Y=0.333333
120 PRINT XY
130 IF X=Y PRINT ' X AND Y ARE EQUAL "
140 IF X<>Y PRINT "X AND Y ARE UNEQUAL"
This prints the following:
0.333333 0.333333
X AND Y ARE UNEQUAL
Only if Y =0.333 333 33 is entered will X and Y be considered equal by
BASIC.

The built-in math functions, such as SIN(X], return single-precision re-
sults regardless of the precision of the argument X. If X is less than 100,
the SIN function returns an answer correct to at least five decimal
places. For X near 1,000,000, the SIN function returns about one digit of
accuracy, but for X greater than 100,000,000, the value 0 is returned.
The SIN of 1E7 wastes all seven significant digits in specifying the input
angle. Here is a summary of results:

. X [in radians) SIN(X) CORRECT RESULT [6-digit)
100 —-0.506368 —-0.506366
10 000 —-(.30566 -0.305614
1 000 000 -0.382683 -0.349594
10 000 000 0.707107 0.420548
. 100 000 000 0 0.931639
.11 000 Q0G 000 0 0.0681113

The solution to this inaccuracy with the trigonometric functions is to re-
compute the argument in double precision by subtracting multiples of
two times pi. The SIN of the remainder should be fairly accurate. For ex-
ample, run the following program:

100 DEFDBL A-X ' variables double precision
110 P1=3.14159265358979323846 " accurate, eh?

120 INPUT "X= "X ' this is the argument

130 X1=X/2.D0«PI) ' how many unit circles

140 XX =FIX{X1) " # unit circles to remove
150 X2=X1-XX " fraction of unit circle left
160 X3=X2+2.D0+PI " reduced argument

170 Y =SIN{X3| ' accurate result desired
180 PRINT "SIN{"X"}="Y ' ok. print answer!

190 GO TO 120 ' let the human weary itself

Printing out the intermediate values X1,XX, X2, and X3 lets the pro-
grammer see what is happening at each stage.

36 / THE REST OF 80

The SQR function, while accurate to seven digits, may not return the
exact answer. The following program line prints out the word INEXACT
if the answer isn't exact:

100 IF 5=SQR|25) PRINT "EXACT" ELSE
PRINT "INEXACT"

There are many perfect squares for which the SQR function gives an in-
exact result. However, a simple formula based on Newton's Method
makes the square root exact, as shown in line 140 below:

110 INPUT "ENTER A NUMBER ': N

120 X =SQR(N}

130 PRINT "FIRST ESTIMATE IS REALLY" CDBL{X)

140 Z={X+N/X)/2 ' one Newton iteration

1530 PRINT "SECOND ESTIMATE IS REALLY" CDBL{Z}

160 GO TO 110
PRINT SQR(25} prints out a 5 because the TRS-80 shows only six digits.

Other numerical oddities:

PRINT 100000+ 1 prints 100001
PRINT 1000000 + 1 prints 1E+06
PRINT 10000000 + 1 prints 10000001

But

PRINT CDBL{ 100000+1) prints 100001
PRINT CDBL{ 1000000+ 1} prints 1000001
PRINT CDBL{10000000+ 1} prints 10000001
The TRS-80 stores single-precision numbers with four bytes, providing
seven to eight digits of precision.
Repeatedly adding 0.1 eventually yields an error in the sixth digit.
100 FORI=1 TO 20 STEP 0.1
110 PRINT I

120 NEXT I ' results in the following segment:
< 7.6 7.7 7.79999 7.89999 7.99999 8.09999 8.2 8.3 8.4 ...

This happens because 0.1 cannot be represented exactly :
PRINT CDBL{0.1) ' yields 0.1000000014901161.
On general principle, when accumulating many numbers, do the arith-
metic in double precision and convert the final result to single precision
as required:
110 FORI=1TO 200 STEP 1 ' unit stepsize!
120 SUM#=SUM#+0.1D0
120 SUM#=SUM# +0.1D0
130 NEXT
140 PRINT SUM# 'GIVES 20.00000000000001
You should never compare real numbers for equality. Compare num-
bers within the precision possible on the computer, using the following
technique:

100 TL=1E-7 ' seventh digit of precision
110 INPUT “ENTER X AND Y XY

THERESTOF 80 / 37

120 IF ABS((X - Y)Y) <=TL PRINT "EQUAL"
ELSE PRINT "UNEQUAL"

If Y is equal to 0, modify the test by removing the division by Y in line
120. If X and Y are the result of other computer calculations, with only
five significant digits, then TL = 1E -5 is appropriate for the comparison.

Sometimes formulas from handbooks, textbooks, or articles are pro-
grammed directly without regard to the numerical difficulties that may
be encountered. In general, whenever a formula subtracts two numbers,
there is a loss of accuracy.

Consider the subtraction of nearly equal numbers. Suppose two sin-
gle-precision numbers are equal in five places. The difference has only
two significant figures. For example:

1234.567
-1234.523
0440674 where 0674 = garbage digits
44 = two significant figures
Now consider the quadratic formula:
X =(-B+SQR{B«B-4+A+C}}/(2+ Al
The formula loses accuracy when 4*A*C is small compared with B*B.
The resulting square root almost equals B, so that the difference in the
numerator of the formula causes a loss of accuracy. To correct this, use
the formula:
X = -2«C/{ B+SQR{BgB-4:A+C) |

A second way to lose accuracy is to add up a mixture of large and small
numbers. If possible, sort the numbers in ascending order so that all the
small numbers can be summed accurately before adding the remaining
large numbers.

Multiplication and division do not produce serious arithmetic errors,
except that the answers are truncated to seven or eight significant digits.
Therefore, the following lines:

100 X=1/i1: PRINT X,CDBL{X)
110 X=11+X : PRINT X CDBL{X]

produce

0909091 .09090909361839295

1 1
One divided by 11 equals 0.0909090909090909.. . ., an infinitely repeat-
ing decimal number. Its base 2 representation also repeats, so any at-
tempt to store this number with a limited number of bytes will be inex-
act. Only numbers such as 0.5, 0.25, 0.375, 0. 125, and 0.0625, which are
all sums of negative powers of 2, can be represented exactly in a comput-
er which does base 2 arithmetic. Therefore, the statement PRINT
CDBL{0.0125) prints out 1.249999972060323D - 3.

38 / THE REST OF 80

Some formulas are sensitive to small changes in input values. For ex-
ample, the equation of a line is Y =M=X + B, where M is the slope of the
line, and B is the y-axis intercept of the line. Suppose the slope is very
small, say 1E-6, and Bis - 1. The line crosses the x-axis at X = - B/M =
1,000,000. If B is changed to - 1.001, a change of only 0.001, X becomes
1,001,000 {a change of 1000}. The reason for the sensitivity is geometric-
ally clear, but there are many other problems, such as curve-fitting,
which are called ill-conditioned. The only way to cope with them in a
program is to study the program outputs for extreme sensitivity to
changes of the input values. To minimize the effects of single-precision
arithmetic on such outputs, using double-precision arithmetic may help.
In the above problem, if B was computed from other values, using a for-
mula which included the subtraction of nearly equal numbers, the re-
sulting X value would be very inaccurate.

In many statistical packages, the average (or mean| and standard devi-
ation are computed after all the data has been input and converted to
various sums, as follows:

90 DEFSNG A-7Z ‘keep everything single precision
100 READ N 'number of data points

110 5=0:85=0 ‘zero these sums

120 FORI=1TON

130 READ X 'read in an input value

140 $=S+X ‘sum of the data points

150 55=85+X+X ‘sum of squares of data points
160 NEXT |

170 M=%N ‘mean of the data points

180 SD=SQR({SS-S+S/N}/(N-1}} 'standard deviation

190 PRINT “MEAN=" CDBL{M)! " STND DEV="SD

200 DATA 3

210 DATA 6666123, 6666246, 6666369

220 END

The program prints out MEAN = 6666246 STND DEV =0. The correct
answers are MEAN =6666246 STND DEV =123, The arithmetic error
occurs in line 180, where nearly equal quantities are subtracted, losing
most of the seven significant figures. There are two solutions to this
problem. You can convert all the variables to double precision or you
can rewrite the program based on an alternative method of calculating
mean and standard deviation:

100 DEFSNG A-7 ‘all single precision

110 READ N ‘number of data points

120 5=0:585=0 ‘zero the sums

130 FORI=1TON 'process n inputs

140 READ X 'read in a data point

150 5=8+X 'form only the sum of the points
160 NEXT I

170 M=S/N ‘mean of the points

180 RESTORE ‘reset the pointer to the data

190 READ N 'input number of points

THE RESTOF 80 / 39

200 FORI=1TON 'process N inputs again

210 READ X 'read A point
220 S5=55+(X-Mi*(X-M) 'sum of squared diff from mean
230 NEXTI

240 SD=SQR(SS/|N - 1]}

250 PRINT “MEAN = “M " STND DEV =" SD
260 DATA 3

270 DATA 6666123,6666246, 6666369

280 END

The following program calculates the best line through a set of N given
points. It too suffers from arithmetic errors (in lines 200 and 210). The
correct answers are M= 1 and B= —660,000. The program produces the
values 1.52588E -5 and -10.1624:

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

DEFSNG A-Z ‘let all be single precision
READ N ‘N = number of point pairs
XY=0:5X=0:8Y=0:52=0 'zero these sums

FORI=1TON 'process N points

READ XY ‘read a point pair

XY =XY+X+Y ‘sum of X+Y products
SX=5X+X 'sum of the X values
SY=8Y+Y ‘sum of the Y values
S2=52+X+X 'sum of X squared values
NEXT 1

M=|XY - 5X+SY/NJ/{S2 - SX«SX/N|

B=(SY .- M+SXI/N
PRINT "'THE BEST LINE THROUGH''N;

PRINT “"DATA POINTSIS: Y="M "+X+" B
STOP

DATA 3

DATA 665999, - 1, 666000,0, 6660011

If the DATA in line 260 were 999,-1, 1000,0, 1001,1, the program
would correctly calculate M=1 and B= -1000.

40 / THE RESTOF80

5

The Hidden Sort
Routine

by Tom Mueller

System Requirements:
Model 1, I, or T

Disk BASIC

16K RAM

One disk drive

You can sort numbers at incredible speeds using a machine-language
routine already built into your TRS-80. All you have to do is fool the
computer into thinking the numbers are line numbers in a program. It
already has a BASIC sort function for line numbers, designed to allow
the insertion of program lines. If you have a disk drive, you can easily
adapt this ability to sorting whole numbers between 0 and 65,535.
Duplicate numbers are lost, because BASIC does not aliow a program to
have identical line numbers.

Program Listing 1 generates 100 random numbers and saves them to
disk in ASCILI. It fools the computer into thinking that the random num-
bers in the SORT/DAT file are program line numbers. The computer
then puts the line numbers into order.

The asterisk in line 100 of Program Listing 1 is required because the
computer drops any line numbers not followed by a function, com-
mand, or character. Later, line 110 in Listing 2 removes the asterisk
from the number and prints the number on the screen. Line 100 in List-
ing 1 also converts the random number into a non-numeric string. This
lets you add one character before saving it to the disk file. Program List-
ing 3 lets you type in and sort your own numbers. After the prompt,
type your numbers, pressing ENTER after each one. To stop, press EN-
TER without typing a number. The computer continues writing to the
disk until the maximum number of entries is reached. If you enter a
number less than 1 or greater than 65,535, the computer displays ER-
ROR and asks you again to enter your number.

THE RESTOF 80 / 41

Program Listing 1

19 REM LISTING NUMBER 1

29 REM TOM MUELLER, PHOENIX, ARIZ.

32 REM

4@ REM ME-MAX. NUMBER OF ENTRIES

58 ME=100

60 REM OPEN SEQUENTIAL FILE TO STORE NUMBERS IN

70 OPEN"Q", 1, "SORT/DAT"

80 REM GENERATE RANDOM NUMBERS

99 FORI =1 TO ME

109 AS=STRS (RND(9999))+ *"

11¢ PRINT LEFTS(A$,LEN{AS)-1)

128 REM WRITE RANDOM NUMBER ON DISK

13@ PRINT #1, AS

148 NEXT 1 : CLOSE

150 REM DONE

16@ PRINT"TYPE IN LOAD ''SORT/DAT'' AND PRESS <ENTER>"
17¢ PRINT"THEN TYPE IN SAVE ''SORT/DAT'',A AND PRESS <ENTER>"

18¢ PRINT

19% PRINT"THE SORT IS DONE..."

203 PRINT"TO SEE THE NUMBERS, "

21¢ PRINT"TYPE IN THE SECOND PROGRAM (LISTING #2) AND"
220 PRINT"TYPE RUN"

Program Listing 2

18 REM LISTING NUMEER 2

2@ REM TOM MUELLER, PHOENIX, ARIZ.

30 REM

4@ REM OPEN SEQUENTIAL FILE TO LOAD

5@ REM SORTED NUMBERS BACK INTO OOMPUTER.
6¢ OPEN"I",1,"SORT/DAT"

7¢ REM CHECK FOR END OF LIST

8@ IF BEOF(l)} THEN CLOSE : END
9¢ INPUT $1, AS

100 REM DISPLAY NUMBER
11¢ PRINT LEFT${A$,LEN(A$)}-1)
12¢ GOTO 80

Program Listing 3

18 REM LISTING NUMBER 3

2¢) REM TOM MUELLFR, PHOENIX, ARIZ.

3¢ REM

491 REM ME=MAX. NUMBER OF ENTRIES

50 ME=100

6@ OPEN"O",1, "SORT/DAT"

7¢ REM ENTER NUMEERS HERE

86 FOR I = 1 TO ME

99 NS="" : INPUT “TYPE IN A NUMBER OR JUST PRESS <ENTER> TO QUIT

"o N$

42 / THE REST OF 80

19¢ IF N$="" THEN 130

110 IF VAL(N$)<l OR VAL{(N$)>65535 THEN PRINT "ERROR" : GOTO 99
120 NS=NS$+"*" : PRINT #1, N§ : NEXT I

139 CLOSE

149 PRINT"TYPE IN LOAD''SORT/DAT'' AND PRESS <ENTER>"

159 PRINT"THEN TYPE IN SAVE''SORT/DAT'',A AND PRESS <ENTER»"
164 PRINT

178 PRINT"TO DISPLAY THE SORTED LIST, RUN THE PROGRAM SHOWN"
169 PRINT"IN LISTING NUMBER 2."

THE RESTOF 80 / 43

6

Testing Shell-
Metzner Sort
Routines

by T. W. Cleghorn

System Requirements
Model I or 111

Level II BASIC

16K RAM

Reccntly I was looking for a good sorting algorithm to replace a binary
search technique overloaded with increases in file size. I do not have
a standard sort product for my TRS-80, so each application with data to
sorl must include its own sort routine. A diligent search of 80 Micro re-
vealed three programs that include Shell-Metzner sorts.

Doug Walker's '‘Beyond Shell Metzner,” (80 Microcomputing, Septem-
ber 1980) provides an easy test data source, with its parameter driven,
random string generator. Swapping pointers rather than swapping
strings seems promising. Walker's program includes several other op-
tions: multiple field selection, ascending or descending sequences, and
numeric or string data types. Stewart E. Fason's review of the B17 prod-
uct (80 Microcomputing, March 1981) includes a driver test program with
a variation on Shell-Metzner. Thomas C. Mehesan, Jr.'s “The Spare
Time Generator’' (May 1981 is also based on Shell-Metzner.

I defined and programmed a validation and timing experiment to
prove and measure the three techniques. I report the results of my test-
ing here. All times are in seconds, measured by the internal clock. Iiden-
tify the three Shell-Metzner (S-M| algorithms by the author’s name.

Binary vs. Fason

First to fall was the binary search algorithm. I used a production data
file on disk as a data source and selected a varying number of data rec-
ords from the file for several runs. I sorted the same set of records with
each technique. It was no contest. The Fason S-M outperformed my bi-

44 | THEREST OF 80

nary technique by more than three to one at the 50-record level and
reached eight to one at the 125 record mark.

Fason vs. Walker

I added the Fason algorithm to the Walker random string generation
program. Fason won by a technical knock-out. 1 completed two runs
with the same 50 records sorted by each algorithm. The sorting times, in
seconds, are shown below.

Round Fason Walker Ratio W/F
1 17 145 8.5/1
2 19 179 9.4/1
The Walker VARPTR swap routine hit an address greater than 32767
and died with a field overflow error. Since Walker was trailing by nine to
one, | stopped the bout.

Mehesan vs. Fason

"The Spare Time Generator' by Mehesan includes a trim S-M algo-
rithm in 15 lines of BASIC. I constructed another program combining
Walker's data generator, the Mehesan algorithm and the Fason dread-
nought and began a new set of time trials. Another clean swecp for
Fason: after ten rounds the score was 1.36 seconds per record for Fason
and 3.61 seconds per record for Mehesan {see Figure 1].

These statistics reveal a non-linear increase in sorting time per record
as the number of records increase. I assumed this was due to the
TRS-80 string packing algorithm. To test this theory I collected, com-
bined and modified the various test programs used until now and de-
veloped the parameter-controlled sort test program SORT/TST {see
the Program Listing).

Fason Mehesan

Seconds Seconds

Round Records Seconds Per Red. Seconds Per Red.
1 10 2 0.2000 2 0.2000
2 25 6 0.2400 9 0.3600
3 50 14 0.2800 22 0.4400
4 75 27 0.3600 45 0.6000
5 100 52 0.5200 74 0.7400
6 100 54 0.5400 86 0.8600
7 125 71 ° 0.5680 124 0.9920
8 150 110 0.7333 205 1.3667
9 200 351 1.7550 955 4.7750
10 500 1,129 2.2580 3,299 6.5980

Totals 1,335 1,816 1.3603 4,821 3.6112

Figure 1. Fason vs. Mehesan

THERESTOF 80 / 45

Seconds Per Record

Fason Mehesan
Run Floating Floating
No. Records String Point Inleger String Point Integer
1 25 .32 32 32 .32 32 .32
2 50 34 .39 40 .62 .50 46
3 100 51 .39 40 1.08 65 .07
4 150 .82 4333 4333 1.633 6867 6467
5 200 1.665 .46 43 4.445 75 70
Ratio 8 5.2 1.43 1.34 1389 234 2.18

5/1
Figure 2. Data Type Analysis

Statements Function

10 70 Identification and prologue
80 210 Run parameters description
220 Run parameters—DATA statement
230 350 Interpret run parameters, establish the run environment
360 520 Generate the test data
530 540 Pass identification
550 610 Time and invoke Sort One
620 650 Reset the data array
660 720 Time and invoke Sort Two
730 Get parameter and test for another pass
740 750 End of job
760 810 Subroutine to verify sort results

820 850 Clock interface subroutine
860 870 Line print output

4000 Entry point to Sort One
5000 Entry point to Sort Two

Figure 3. SORT/TST Structure

Position Form, Function and Use

1 A number that specifies the number of bytes to be reserved for strings,
this number becomes the operand of a Clear

To specify Data Type, 0= String, 1 =Numeric

0 =Integer, or 1 =Floating Point Numbers. Tested only if parameter 2isa 1
1 =Print to Line Printer, 0=Video Display only

This series defines the number of records per pass and the number of
passes. The program terminates when a zero is read from this series.

LR L
Z

)]

Figure 4. SORT/TST parameters

SORT/TST

SORT/TST, a parameter driven program, facilitates the testing and
measurement of two sorting algorithms. SORT/TST generates test data,

46 / THE REST OF 80

constructs data arrays, invokes and times two sorting algorithms, and re-
ports the results to the video display and, optionally, to the line printer.
The structure of SORT/TST is shown in Figure 3. Line 220 contains all
the run parameters used by SORT/TST to perform a five-pass integer
data test and write the results to the line printer. The run parameters are
positional; they are read and interpreted based on the order in which
they appear in the data statement. Their meanings are tabulated in
Figure 4.

GOSUB statements at lines 570 and 680 invoke the two routines under
test. Array T stores the data to be sorted, and integer variable N contains
the number of records. The sort under test must be written as a closed
routine that retains control until array T is sorted into ascending se-
quence and exits viaa RETURN statement. A numeric array, B, is avail-
able for use by the sort under test. Other variables that may be tested but
not changed are listed in Figure 5.

Floating Numbers

I defined SORT/TST run parameters to perform five passes, varying
the number of records from 25 to 200 with each pass. I ran SORT/TST
three times, setting the data type option to string, floating point numerie,
and integer. The results of three runs of five passes each are shown in
Figure 2. These measures support the theory that the string-packing rou-
tine accounts for the non-linear increases in sort time for string data.

With an eight-fold increase in records between runs one and five, the
time per record for strings increased 5.2 times (Fason} and 13.89 times
(Mehesan), while the integer time increased 1.43 times and 2.18 times,
respectively.

Variable Contents
A, AX, N Number of records

D Parm 1

KT! Start Time in seconds

P2 Parm 2

P3 Parm 3

P4 Parm 4

PN Current Pass Number

T1 Storage Array for Test Data

Figure 5. Reserved variables

Program Listing
1 ' PROGRAM "SORT/TST", 1O CCOMPARE SORT TIME OF TWO

20 ' SORTING ALGORITHMS. THIS PARAMETER DRIVEN PROGRAM
Program continued

THERESTOF 80 / 47

3@
49

GENERATES THE TEST DATA, TIMES, CALLS, AND VERIFIES THE
RESULTS OF TWO SORTING ROUTINES AGAINST THE SAME DATA.

]
1
5@ ' PARAMETERS ARE DEFINED BY THE FOLLOWING DATA STATEMENT
68 ' BY TWC COMPUTING,
7@ ' HOUSTON, TEXAS
o T bttt A Yot deddedededede s b A de g g ek R e
9@ ' THE PARAMETERS, VALUES, AND USE ARE AS FOLLOWS
16¢ ' D = NUMBER OF BYTES OF STRING DATA TO RESERVE
119 ' P2; ¢ = GENERATE AND SORT CHARACTER STRINGS
12¢ 1 = GENERATE AND SORT NUMERIC DATA
130 ' P3: (TESTED ONLY IF P2 = 1)
149 ' 1 = SINGLE PRECISICN FLOATING POINT NUMBERS
159 ' = INTEGER NUMBERS
168 ' P4: 1 = PRINTED SORT STATISTICS ON LINE PRINTER
178 * @ = STATISTICS TC DISPLAY ONLY
180 ' A(l) THRU A(N) = NUMBER OF RECORDS TO GENERATE AND
199 ' NUMRER OF PASSES, TERMINATED WHEN A(N) = @
DEE T EEEEE AR AR R R R R R R ok
218 ' D, P2, P3, P4, A{1l) THRU A(N)
220 DATA l2@@, 1, 2, 1, 25,50, 108,150, 208,05
23¢9 CLS: DEFINT A-8,U-2
249 READ D
250 CLEAR D

26¢ READ D,P2,P3,P4,AX

27¢ ' GET HIGHEST REQUESTED RECORD COUNT FOR ARRAY SET

28@ READ A: IF A > AX THEN AX = A

290 IF A > @ THEN 283

30 RESTORE: READ D,P2,P3,P4,A ' RESET PARMS

31@ IF P4=l THEN LPRINT"SORT TEST, PARMS =";D;P2;P3:P4;".";

3¢ IF pa=1 THEN IF P2=1 THFN LPRINT"NUMERIC DATA"; ELSE LPRINT"
STRING DATA"

33 IF P2 = 1 THEN 34¢ ELSE DEFSTR T: GOTO 368

349 IF P3 = 1 THEN DEFSNG T ELSE DEFINT T

353 IF P4=1 THEN IF P3=1 THEN LPRINT", FLOATING POINT" ELSE LFPRI
NT", INTEGER"

360 ' GENERATE RANDOM SORT RECORDS

370 ' *t****ii**************tﬁi**i******itti*****t****i***

380 DIM T(AX), T1(AX), B{(AX)

390 N=p: FOR 1 = 1 TO A

4@ IF P2 = @ THEN 43@ ELSE T=RND{32767)

416 IF P3 = 1 THEN T = T * RND(1@)

420 GOTO 528

432 ' GENERATE CHARACTER STRINGS

448 T=""

45@ B = RND(8)

460 PORC=1TOB

470 T = T4CHRS (RND(26}+64}

488 NEXT C
49 T =T + " INPUT REC."+5TR$(I)

Sg@ T{I)=T
518 T1(I)=T
520 NEXT I

530 PN=PN+1l: DRINT “#wwat DppSg wwdkdd pi; »,":N; "RECORDS"
544 IF P4 = 1 THEN LPRINT:LPRINT "#**%* PASS *dkdrkk s PN LPRINT

550 GOSUB 820: KTl=TXl ' START TIME
GE@ | MERANREAEERRERE 5553> SORT NO. 1 <¢<¢ iRk R ddedek kN

570 GOSUB 4000 ' <<<<< FERFORM SORT NO. 1

585 GOSUB 82@: PRINT "SORT NO. 1 ELAPSED TIME = "; (TXI~KTl) ;"SEC
ONDS"

59¢ IF P4=1 THEN LPRINT"SORT NO. 1 ELAPSED TIME ="{TX|-KT!);"SEC
ONDS"

48 [THE REST OF 80

680 IF P4=1 THEN GOSUB 864

610 GOSUB 760

620 ' NOW TIME AND PERFORM SORT NO. 2
63 FORI=1TOA ' RESTORE T ARRAY
642 T(I} = T1(I)

650 NEXT I

66Q GOSUB B2@: KTI=TXi1 ' RECORD START TIME

§7@ ¢ dkkkkkdkkdhdrkhdt 5555 SORT NO. 2 gee¢ didiiiiikdinkd

680 GOSUB 5000 ' <<<<« PERFORM SORT NO. 2

699 GOSUB 820 ' RECORD STOP TIME

78¢ PRINT "SORT NO. 2 ELAPSED TIME = ";(TXI-KTI):"SECONDS"

718 IF P4=l THEN LPRINT"SORT NO. 2 ELAPSED TIME ="; (TX|-KT1);"SE

CONDS": GOSUB 86O

720 GOSUB769 ' TEST SORIED FILE

730 READ A: IF A < 1 THEN 74¢ ELSE 39¢

749 IF P4 = 1 THEN LPRINTCHRS(12};

750 END

768 ' TEST SORTED RESULTS

77¢ FOR I = 1 TO A-1

78¢ IF T{I) <= T(I+l) THEN 800

793 PRINT T(I};" > > > ";T(I+l)

B8 NEXT I

810 RETURN

82¢ ' SUB-ROUTINE TO GET TIME IN SECONDS

830 X1$=RIGHTS(TIMES,8) ' HH/MM/SS

84¢ TX.=(VAL(LEFT$(X1$,2)) * 360@) + (VAL{MID$(X1$,4,2}) * 60} +
(VAL{RIGHTS(X1$,2)})

850 RETURN

862 LPRINT"SORTED";N:"RECORDS, AT"; :LPRINTUSING"##.####"; ((TXI-K

T1)/N); :LPRINT" SECONDS PER RECORD"

878 RETURN

a% U dedededkdk kel e kR END OF mm/lrs!r P TTTTI LI L2 T 2

892 ' START SORT NC. 1 AT STATEMENT NO. 4003 AND SORT NO. 2 AT S

TATEMENT NO. S000

4000 ' FROM "Bl7", STEWART E. FASON,

4910 ' 83/MICROCOMPUTING, MAR. '81

4820 Lml

42308 B(L) = N+l

4048 M=l

495@ J=B(L)

4960 I=M-1

4978 IF J-M < 3 THEN 4270

4063 Ml= INT{RND({®)*(J-M) }+M

4998 I = I + 1

4100 IF I = J THEN 4190

4119 IF T(I) <= T(M1) THEN 4899

4120 F = J -1

4139 IF I = J THEN 419¢

4143 IF T{J) >=T(Ml) THEN 4120

4158 T = T(I)

4168 T(I)} = T(J)

4170 T(J) = T

4189 GOTO 4292

419 IF I >= M THEN I =1 -1

4200 IF J = M1 THEN 4250

4218 T = T(I)

422¢ T(I) = T{M1}

423 T(M1) = T

4240 L =L + 1

4250 B(L) = 1

4260 GOTO 4958

4270 IF J-M < 2 THEN 4329 Program continued

THE REST OF 80 / 49

4280 IF T(M) < T(M+1) THEN 4320

4290 T = T(M)

4300 T(M) = T(M+1)

43190 T(M+l) = T

4320 M = B(L) + 1

433 L =L -1

434¢ IF L > @ THEN 4058

435¢ RETURN

508¢ ' “THE SPARE TIME GENERATOR", THOMAS C. MEHESEN, JR.
5019 ' 88/MICROCOMPUTING, MAY, 1981, PAGE 264
5020 M=N

5039 M = INT(M/2)

504¢ IF M = @ THEN RETURN

5859 L = 1: ML =N - M

5060 I=I,

5076 J =1 + M

5080 IF T(I) <= T{J) THEN 5119

5@99 T = T(I): T(I) = ™{J): T(J) = T
5180 I =1 - M: IF I < 1 THEN 511@ ELSE 5070
5114 L = L + 1: IF L>Ml THEN 5839 ELSE 5068

50 / THE REST OF 80

7
ASCII Converter

by David D. Busch
System Requirements:
Model I or ItI
Level IT BASIC
16K RAM

What’s ASCII, and why must it be converted? The answer lies in the
different ways computers and humans process information.

People can handle mixtures of alpha and numeric characters, but com-
puters recognize only binary numbers—ones and zeros. When string
data is fed to a TRS-80, it must be converted to a series of numbers that
the processor can handle. ASCII, or American Standard Code for Infor-
mation Interchange, is one standard of communication that allows com-
puters to exchange alphanumeric information in a form common to pro-
cessors with differing operating systems and languages.

But, even if you have no modem, and aren’t communicating with
other computerists, it is often necessary to translate a string into the cor-
responding ASCII code, or vice versa. In some cases, when only a few
characters need converting, a table of codes and their string values will
do. Other times, longer messages need deciphering.

One good application for ASCII characters in programs is in game-
writing. Writers of BASIC adventure programs may wish to hide mes-
sages from those casually listing the program. The CHR${n) function can
assign the desired string values to string variables called at appropriate
points in the program. CHR${n) returns a one-character string that corre-
sponds to the ASCII code of n. For example, PRINT CHR$(65) produces
an uppercase A on the screen.

A BASIC adventure might use a message such as: "'Look in the hollow
stump.” This hint could be labeled H1$, and concatenated using
CHR$(n}, and the ASCII codes:

THE RESTOF 80 / 51

100 DATA 76,111,111,107,32,105,110,32,116,104,101,32,104,11 1,108,108,
111,119,32,115,116,117,109,112,32

110 FOR N=1 TO 25:READ A

120 H15=H1$+ CHR$(A!}

130 NEXT A

Use additional DATA lines and FOR-NEXT loops to put any number
of messages into difficult-to-read-accidentally string variables. Of
course, any knowledgeable programmer can pick the BASIC game apart,
or enter PRINT H1$ from command mode once the program has been
run past the initialization point. The object of this technique, however, is
to protect the game player who innocently lists the program and wants
to save the fun.

The same method can hide program credits within BASIC code. ASCII
Converter {see Program Listing) accepts any keyboard input {in batches
up to 255 characters each] and translates the alphanumerics into ASCII
code, or converts an ASCII message back into the equivalent string. Those
with Disk BASIC, Model III BASIC, or some other patch for the TRS-80
with LINEINPUT can best use this program. LINEINPUT allows you to
feed any keyboard character, inciuding commas and quotes, into the
string to be translated into ASCIL If you have no LINEINPUT you may
still be able to use this program; try changing the LINEINPUT in line 420
to a simple INPUT. Remember to use no string delimiters in your
message. ‘

ASCII Converter allows you to input a message of up to 100 lines,
stored in a string array, MESS${n], which is dimensioned in line 50.
When you run the program, your instructions are displayed, and you
choose video output only, or output to both the screen and a printer. (If
printer output is desired, PFLAG is set to a value of 1 in line 250.)

The next menu displayed {lines 260-350) allows you to convert a string
to ASCII code, or translate a series of ASCII numbers into the equivalent
string. Your choice sets another flag, CH, to a value of either one or two
in line 340. The ASCII or string message is input within a FOR-NEXT
loop at lines 370-450. Be careful to enter the message correctly, with no
typographical errors. The program does not differentiate between string
and ASCII codes at this point; and, therefore, there is no check to see if
ASCII numbers, if applicable, are valid {less than 255). t's possible to in-
put nonsense. Because spaces (CHR${32)) indicate the end of a group of
ASCII numerals, a space is added to the end of input in line 440, if the
user excludes it.

If the first three characters of the data input equal the string 999, sig-
naling the end of message input, control exits from the loop at line 430 to
the parsing subroutine at lines 470-680. Here, a FOR-NEXT loop is initi-
ated at line 470 and performed as many times as the number of message
lines that have been input, less one [FOR N1=1 to N-1). The final
message line input will be 999, and should not be translated.

52 /| THEREST OF 80

As each line of MESS$(n| is brought on line, a second loop, nested
within the first, looks at each character and assigns its value temporarily
to A$ (line 490). When the CH flag does not equal two, it indicates that
the line is an ASCII series to be decoded, and control drops down te line
510, where the ASCII value of the character is returned. This number is
listed to the screen, followed by three spaces, and, if PFLAG =1, itisalso
sent to the printer. At this point, control branches to line 620, where N2
is incremented by one, signaling the examination of the next character in
the string.

Should CH=2, a different series of operations is performed on the
character in A$. At line 520, the program looks to see if A$ is a space
(CHR${32}), in which case it knows that the parsed ASCII group is com-
plete. Spaces are used to delimit the groups, because the ASCII code in-
put may consist of one, two, or three numbers.

If A% does not equal CHR${32), then at line 550 it is concatenated onto
the end of N3$. Working from left to right, the string representation of
each of the numerals in a given code group is added to N3$ until it is
complete. Then, the value of the string is assigned to the variable B {line
530), and CHRS$(B} is listed to the screen, or printed. Then N3$ is nulled,
and the next group of ASCII code is examined.

Program Listing

lg 1 WhERAERNARRRRFARRRA TR hhhrrrhrhkrhrhkikkhkhkRhkiit
* i
* ASCLI OONVERTER *
2@ . * *
* DAVID D. BUSCH *
g’ * 515 E. HIGHLAND AVE. *
* RAVENNA, OHIO 44266 *
] *
e P v e e e v e v ol e e o e e o e e o e e e e e o o o o e e o e i e e e e e e e e o

4@ CLEAR 4000
5@ DIM MESS$(109)

66 LR 3553 44 INchrImS ke ek b

79 S

8¢ PRINT

99 PRINT

12¢ PRINT " #4444 ASCIT CONVERTER ¥wwst

119 PRINT

120 PRINT "THIS PROGRAM WILL CONVERT ANY CHARACTER OR "
139 PRINT "MESSAGE INPUT FROM THE KEYBOARD TO ITS ASCII"
148 PRINT "“CODE. IT WILL ALSQO CONVERT ASCII QODE"

158 PRINT “BACK INTO A STRING. ENTER SPACES BETWEEN"
168 PRINT "WORDS OR NUMBER PAIRS, AND ENTER '999'"

17¢ PRINT "WHEN FINISHED."

Program continued

THERESTOF 80 / 53

188 PRINT

199 PRINT

200 PRINT "DO YOU WANT YOUR MESSAGE ALSO"
218 PRINT "DIRECTED TO LINE PRINTER?"
220 PRINT

230 PRINT " Y/N";

24¢ INPUT ANS

25@¢ IF LEFT$(ANS,1)="Y" THEN PFLAG=1

26¢ CLS

27@ PRINT

280 PRINT

29¢ PRINT "DO YOU WANT TO :"

38@ PRINT " 1.} OONVERT STRING TO ASCII CODE"

31¢ PRINT " 2.} CONVERT ASCII CODE TC STRING BEQUIVALENT"

339 INPUT " ENTER CHOICE :";CH$

349 CH=VAL{CHS)

35¢ IF CH<l OR CGH»2 GOTO 338

36¢ 'Wwwkiw ENTFR CHARACTERS OR MESSAGE wwwwk#

379 : FOR B=1 TO 109
389 . CLS
390 PRINT
400 : PRINT
112 PRINT “ENTER LINE OF MESSAGE {TYPE 999 WHEN FINISHED) :“
429 LINEINPUT MESSS (N)
438 IF LEFTS (MESSS (N),3)="999" GOTO 470
440 IF RIGHT$ (MESSS(N),1)<>CHRS(32) THEN
MESSS (N)=MESS$ (N)+CHRS (32)
458 ; NEXT N

46@ ' wr**w* PARSE CHARACTER OR MESSAGE *#iwtk

478 :+ FOR Nl=1 TO N-1

4806 : FOR N2=1 TC LEN(MESSS$(N1))

499 : AS=MIDS (MESSS (N1},N2,1)

500 : IF CH=2 GOTO 520

510 : A=ASC(AS):
PRINT A;" e
IF PFLAG=1 THEN LPRINT A;" ";:
GOTO 629

520 : IF AS<>CHRS(32) GOTO 550

530 : B=VAL(N3§):

PRINT CHRS(B);:
IF PFLAG=1 THEN LPRINT CHRS(B):

548 : GOTO 600

550 : N3S=NIS+AS

568 : NU=FH-1

57@ : IF NU=2 GOTO 620

580 : IF AS=CHR$(32) GOTO 620
592 : GOTC 629

60@ : NU=a

612 : N3§=""

620 : NEXT N2

630 : PRINT

648 : INPUT "HIT ENTER WHEN READY FOR NEXT LINE";AS
650 : s

€60 : PRINT

678 : NEXT N1

680 PRINT"END OF MESSAGE(S)" : END

54 / THE REST OF 80

8

Capture RST 10H:
Customized
BASIC Commands

by James Cargile
System Requirements:
Mudel 1
Level 1 BASIC
Editoriassenibler

he problem: you want a clear and easy-to-use link betwecn a BASIC

program and an assembly-language program that does not impair
functioning of the BASIC interpreter or any of the ROM or Disk BASIC
routines. One solution is to use RST 10H, otherwise known as the parser,
to implement customized commands.

RST 10H is one of seven, 1-byte calls to the ROM. On execution of RST
10H, a return address is pushed into the stack, and the program counter
is loaded with the address 0010H for execution. At 0010H in the ROM is
ajump to user RAM address 4003H. At 4003H is a jump to the ROM rou-
tine at address 1D78H. The routine at 1D78H increments the HL register
pair, loads the byte addressed by HL into the A register, and sets flags to
indicate whether the byte contains a colon or null {indicating end of a
BASIC text line), or a digit zero to nine, or other characters such as let-
ters. The annotated code for the subroutine at 1D78H is shown in Figure
1. RST 10H is used frequently by other ROM routines because it is a
1-byte call and because it is useful in deciphering strings of text. Specifi-
cally, it is called by the keyboard driver, text editor, and BASIC interpret-
er portions of the ROM. Since RST 10H vectors to a user RAM address at
4003H it may be temporarily diverted to assembly-language routines by
replacing the jump address to 1D78H with the address of any desired
user routine. The only registers that must be controlled are the HL
register pair, which usually points to the position in a BASIC text line,
and the stack pointer, which contains a return to the routine calling RST
10H.

THE RESTOF 80 / 55

y REkkEkEkkhkkdwk RST1(***t********i*t******

‘

LID78 INC HL i INCREMENT READ POINTER
LD A, (HL)
Ccp 3AH ;1S CHARACTER A COLON?
RET NC sRETURN IF COLON OR
i IF THIS IS A CHARACTER
cp 201 118 THIS A BLANK?
JP Z,L1D78H +IF 80, SKIP IT
CP aBH
JR NC, 1D8BH {CANNOT BE A NULL
{GO CHECX FOR DIGIT
cP J9H
Jp NC, 1D78H :SKIP @9H AND @AH
L1DBB (P 30H ;IF THIS A ZERD?
CCF sSET CARRY IF '¢' TO '9’
sRESET CARRY IF NULL
INC A 7RESET Z FLAG IF '@'
DEC A {SET Z FLAG IF NULL

Ve e e e de e e e EXIT mITImS Pk v vk ok ke e A e e ok

;W% ZERO FLAG wwwe CARRY FLAG *¥**®* pEqIp #

;
H RESET * RESET * CHARACTER

H SET * RESET * ';' OR NULL
H RESET * SET * 'g' 0 ‘9!

; **fi**tti***t*tt*tt*a*tt*w**t**w*wttt**titw***tw**t

Figure 1. Annotated code for the subrowtine ot D78

Because of these features, RST 10H can easily intercept BASIC pro-
gram exccution, divert Lo a user subroutine, exccute it, and return {o the
BASIC interpreter without the bother of DEFUSR and USR, error-trap-
ping techniques, or use of BASIC tokens.

RST 10H does present three problems—all casily solved. Perhaps the
most obvious problem is that you don't want to exccute the assembly-
language routine while entering or editing program text. The problem is
solved by accepting only the calls to RST 10H from ROM address
ID5BH. The second problem may occur if your assembly-language rou-
tine uses RST 10H or calls a ROM routine which uses RST 10H. To pre-
vent endless looping or stack overflow, give control of RST 10H back to
the ROM before entering the user routine. After exiting the user routine,
rccapture RST 10H for further use. Finally, since you relinquish control
of RST 10H upon entry to the user routine, any error in the uscr routine
causes an exit to the BASIC interpreter, with no control over RST 10H. A
simple error processor that recaptures RST 10H prior to processing the
error eliminates this problem.

As an example of the potential uses of RST 10H, [have included por-
tions of the code for a program MATRIX, which provides a set of matrix
operations commands for use in BASIC programming. Each of the ma-
trix operations subroutines is invoked by the command MAT and is fol-

56 / THE REST OF 80

lowed by various operations and functions. The command to multiply
matrices B and C and place the result in matrix A is "MAT A=B+C. The
technique of capturing RST 10H so that the customized command MAT
can be identified is illustrated in the Program Listing.

The 1nitialization portion of the code sets the top of memory and loads
the address of the command processor {CMDPRO) into the RST 10H
veetor at 4004H. It also diverts the Disk BASIC error processor by plac-
ing the address of the error processor (ERRPRO) into the address 41A7H,
replacing the usual vector to 57E6H. The command processor section
saves the stack pointer and examines it to see if the call is from 11D5BH in
the ROM and, if so, exits the user routine (via NOCMD?1| without exe-
cuting it, because the call is from text entry or the editor. The command
processor then determines- whether the MAT command is being
scanned. If it is not, a continuation exit (via NOCMD) to 1D78H is used.
If the MAT command is being rcad, the command processor relin-
quishes control of RST 10H and executes the user subroutine.

The user routine exits normally (via JPOUT) to the BASIC interpreter
after reestablishing control of RST 10H. Abnormal exits due to errors are
handled by the error processor which also recaptures RST 10H. The re-
sult is an cffective method to call assembly-language routines from the
direct mode or from a BASIC program. The customized commands are
entered, edited, and executed in exactly the same manner as those pro-
vided by BASIC. Give it a try the next time you're combining assembly-
language and BASIC programs.

Program Listing. Example of code to use RST 10H for customizing BASIC commands

BOLYY 3 *4*+kkasndk EYAMPIE OF OODE TO USE RST 1QH *hdssss s
@OLLY ;*¥*kkaxkss TN IMDLEMENTING CUSTOMIZED EHEREERRER

G120 ;¥hkkkxxkrx COMMANDS ON THE TRS-80 MOD i hababaladabobobbdd
280139 ;
29142 ;
gglsg H sk koK dedehedr INITIALIZATIQJ KRR A Ak kk
oo1es ;
7000 92170 ORG 70001
7008 211879 @@18Q INIT LD HL,, CMDPRO tADDRESS OF COMMAND PROCESSCR
TOX3 220440 P19 LD (4064 , HL, :LOAD INTO RST 1PH VECTOR
7006 21FF6F @0200 LD HL, INIT-1
7009 22Bl48 29210 LD (4@B1H),HL ;SET TOP OF MEM
700C 22494 00220 LD (4849H) , HI, ;DITTO
TO0F 217170 99239 LD HL, ERRPRO ;ADDRESS OF ERROR PROCESSOR
7012 228741 92240 LD (41A7H} , HL ;DIVERT DISK BASIC ERROR ROUTINE
7015 C3CcC@6 Pa258 JP P6CCH ;EXIT TO BASIC AFTER INITIALIZATION
66 ;
gggjg ;i!******** COMMAND PROCESSOR Faikkaddks
60280 ;
7018 ED737E7@ 9029 CMDPRC 1D (SPSAVE) , SP ;SAVE STACK POINTER
7@1C DDEL 20300 POP IX ;GET QONTENTS OF STACK
7OLE DD228378 #0310 D (RETURN}, IX sSAVE IT

Program continued

THE REST OF 80 / 57

722
7824
7027
7928
7929
7@2C
702F
7030
7833
7034
7835
7636
70937
7939
793B
783D
7840
7041
742
7344
7047
7648
7949
784B
784E
704F
7052
7955

7056
7057
7858
7858
785F

7862
765
7068
7268
TEEF
@78

7871
7872
7875
7378
7979

Ta7C
TI7E

DDES
227C70
28

oo
2ABATG
115B1D
DF
C25679
o)

a8

23

7E
FE20
28FA
FE4D
2587
23

7E
FE41

28

2n7C79
ED7B7E7®
C3781D

211870
220440
2R7C70
ED7B7E70
AF

o

ES
211874
220448
El
C3E657

2a320
a@330
Be342
B8350
22360
37T
22380
20392
Bo400
8414
oa420
22430
20442
P45
B3460
o476
A8
20490
o508
20518
30520
2@530
20540
@550
o568
579
aa580
@a599
20602
ao618
0628
20638
20640

20650 ;

20660
Ba67d
GeBad
71230
20703
0718
20728
90730
20748
2750
o768
20770
Qa8
2a790
2080a
28810

29820 ;

#9830

20849 ;

28859
2986d
22876
Q0880
29890
B990a
Ba21e
63928

PUSH X s RESTORE, CONTENTS OF STACK
LD {BRDPTR} , HL :SAVE BASIC INTERPRETER POINTER
EX AF, AF' :SWAP REGISTER SETS
EXX
LD HL, (RETURN) :EXAMINE QONTENTS OF STACK
1D DE, 1D5BH :TO SEE IF CALL IS FROM INTERPRETER
RST 18H
Jp NZ,NOOMD1 ;IF TEXT ENTRY OR EDIT
EXX ;SWAP BACK TO PRIMAKRY REGISTERS
EX AF,AF'
SKPRLK INC HL ;LOOK AT NEXT CHARACTER
LD A, {HL) ;TO SEE IF IT IS A SPACE
CP 20H
JR Z,SKPRLK ;SKIP ALL SPACES
CcP ™! ;IS THIS 1ST LETTER OF COMMAN?
JP NZ, NOOMD ; IF NOT, RETURN TO INTERPRETER
INC HL :GET NEXT CHARACTER
b A, (HL)
CpP ‘A ;18 THIS 2D CHAR OF COMMAND?
JP NZ, NOOMD +IF NOT RETURN TO INTERPRETER
INC HL +GET NEXT CHARACTER
LD A, {HL)
CP ' ;18 THIS THE LAST CHAR OF COMMAND?
JP NZ , NOCMD ;IF NOT RETURN TO INTERPRETER
PUSH HL ;SAVE POINTER TO END OF VALID COMMAND
LD HL,1D78H ; ADDRESS OF RST 18H ROUTINE
LD (4994H) , HL :RESTORE VECTCR TC RST 18H ROUTINE
POP HL :GET POINTER
pRkRRIeAEAY TNSERT PROGRAM HERE. MUST MAINTAIN CONTROL

;R*ANRAwRe® OF THE POINTER 50 THAT A CLEAN RETURN TO THE

s Rakkkdkkr® BASTC INTERPRETER CAN BE ACCOMPLISHED AT THE
dekdkkkkexk® ND OF THE USER ROUTINE. EXIT TO JPOUT.
;tt******** FXIT HERE IF NO MATCE WITH COMMAND o 9 % e de ke ke e
NOCMD1 EX AF,AF' ;SWAP BACK TO PRIMARY REGISTERS
EXX
NOOMD LD HL, (BRDPTR) ;GET INTERPRETER READ POINTER
LD SP, (SPSAVE) ;GET STACK POINTER
JP 1D78H :GO PROCESS RST 18H
#kkwkwmns EXTT HERE AT COMPLETTION OF USER DGM *#**axsws
JPOUT LD HL, CMDPRO ; ADDRESS OF COMMAND PROCESSOR
LD (40941) , HL ; RECAPTURE RST 1¢H
LD HL, (BRDPTR} ;GET INTERPRETER READ POINTER
LD SP, (SPSAVE) ;GET STACK POINTER
XOR A ;CLEAR CARRY AND ZERD ‘A’
RET ;O BASIC INTERPRETER
;*t******** ERROR PRCOCESSOR e dedededede ek
ERRPRO PUSH HL ;SAVE READ POINTER
Ln HL,, QMDPRO ;ADDRESS OF COMMAND PROCESSOR
LD (4P@4H} , HL ;RECAPTURE RST 1¢H
pop HL ;GET READ POINTER
Jp 57E6H :G0O PROCESS ERROR
BRDPTR DEFW a

SPSAVE DEFW a

58 / THE REST OF 80

7382 R 98933 RETURN DEFW %)

23944
7900 Ba9I5a END INIT :SET TRA ADDRESS TO INIT ROUTINE

GR3d% TOTAL ERRORS

THE RESTOF 80 / 59

°

Adding
Commands to
BASIC

by Alan R. Moyer
System Requirements:
Level I BASIC
16K RAM
Editor/assembler

ave you ever said to yourself, 1 wish [had that command in my
BASIC?" You car add your own commands.

BASIC is an interpretive language. It moves through your program list-
ing, reading each command, deciding what it is to be done, and doing it,
unless an error occurs {in which case it usually stops and tells you about
it}. Each BASIC command is stored in memory as a one-byte representa-
tion of the command. These representations are called tokens. When
one is recognized, the interpreter looks it up in a table. The table tells
where to go to execute the command. This process of interpreting your
commands is what makes BASIC slow compared to machine-language
programs, which are directly executed by the machine.

To get the BASIC interpreter to jump to a machine-language routine of
your choice, put the new routine's address in the look-up table. When
the appropriate command is encountered, BASIC will jump to the new
routine. '

BASIC keeps track of where it is in the program by reserving the Z80's
HL register pair, so that it always points to the memory location of the
character the interpreter is looking at. The A register contains the charac-
ter at which the HL register pair is pointing. LD A {HL] is a Z80 instruc-
tion BASIC uses to load the contents of the memory location pointed to
by the HL register pair into the A register. Anytime the HL register pair is
used in the execution of a BASIC command, its contents are saved and
restored before returning to the BASIC interpreter. If the HL register pair
is not restored, BASIC gets lost and the computer locks up.

60 / THE REST OF 80

When the interpreter recognizes a command and jumps to the appro-
priate routine, the HL register pair points to the next valid character after
the command. You can pass information to a routine by placing the in-
formation after the BASIC command keywords.

Using NAME

For example, the NAME command is usually not used, but you can
use it to pass two pieces of information to a machine-language program
for processing. Put the address of the new routine into the look-up table,
where the jump address for the NAME command is stored, with POKE
16783, X:POKE 16784, Y. Addresses 16783 and 16784 are the jump ad-
dress for NAME. The command to be implemented is NAME A$,BS.
This command exchanges the contents of A$ and B$ without using any
temporary variables (for example, TEMP$ = A$:A$ = B$: BS$ = TEMP$).
The interpreter sees the NAME command and jumps to the proper ad-
dress. The HL register pair then points to the next non-space character
after NAME. In the example, HL points to the A in A$,BS.

Useful ROM Routines

Figure 1 contains addresses for useful ROM routines that can be used
to get information about the arguments that are passed to the routine. To
swap the two string variables in the new command, find the address
value of each of the string variables (VARPTR), and switch the data for
each string. (For a complete explanation of VARPTR and how the vari-
ables are stored in memory, see Radio Shack's Level II BASIC Reference
Manual.) Once you know how to find the information for each variable,
you can switch the string data and return to BASIC.

Three New Commands

The machine-language program in Program Listing 1 adds three new
commands to BASIC.

NAME STR$ (SWAP] exchanges the contents of two specified string
variables without using any string workspace.

NAME CVS (hexadecimal to decimal) converts any hexadecimal num-
ber in either a string literal or a string variable into its decimal equivalent
in a specified integer variable.

NAME CVI (decimal to hexadecimal) converts any decimal number,
either a numeric constant or integer numeric variable, into its hexadeci-
mal equivalent in a specified string variable.

NAME STR$ {SWAP) Command

Program Listing 2 demonstrates the SWAP command. Three identical
sets of string array variables are created, then swapped 100 times. Three
different methods of swapping strings are timed for comparison.

THE RESTOF 80 / 61

Lines 10-190 initialize the string variables and ask which method of
swapping is desired. String workspace cleanup, also known as garbage
collection, is forced before each method. Method one uses a dummy
variable to swap in line 390. This routine takes two minutes, 18 seconds.
The major reason for this long time is garbage collection. By providing
more initial string workspace [CLEAR 15000 bytes), garbage collection
does not occur, and the swap time is only three seconds. That sounds im-
pressive, but is unrealistic. If 15,000 bytes of string space is providedina
program, especially in a business program, most will be used and gar-
bage collection will occur.

The method in lines 420-520 is faster and does essentially the same

BASIC's Accumulator
Useful for temporary storage of values during execution
INT SNG DBL -STRING

411DH— LSB
411EH— LSB
411FH— LSB
4120H - L5B

4121H— LSB LSB LSB LSB=>% DATA
4122H— MSB LSB LSB MSB=>>§ DATA
4123H- MSB MB3B
4124H— EXP EXFP

40AFH—NTF {Number Type Flag! 2=1INT, 3=STRING, 4=5SNG, 8=DBL
0A7FH—Converts ACCUM to INT. Loads HL with ACCUM,

OE6CH—Converts ASCII string pointed to by HL to ACCUM and sets NTF accordingly.
Zero is returned if the string is non-numeric. .
OFBDH— Converts ACCUM to ASCII string for display. HL=string's address, DE =end
of string plus one. ASCII string is terminated with a zero {null).

2337H—Evaluates the expression pointed to by HL. The ACCUM contains the result
and NTF set accordingly. The expression is terminated with any valid delimiter. The
terminator is pointed to by HL when finished. All efror routines are contained in this
subroutine (it flags type mismatch, for example].

2540H— Loads the ACCUM with specified variable's value whose ASCII representation
is pointed to by HL. Sets NTF accordingly. ACCUM is zero if the variable is not found.
HL points to the character after the ASCII of the variable.

25D9H —(RST 20H) Tests the NTF (at 40AFH). A register=NTF -3, Z set if NTF is a
string, S set if INT, S reset and C set if SNG, S and C reset if DBL.

260DH--Gets the VARPTR of the specified variable. HL points to the ASCII representa-
tion of that variable [AS$). If the variable does not exist in the variable table, it is crealed.
DE points to the variable's address and NTF is set accordingly. HL points to the charac-
ter following the ASCII representation of the variable.

2857H—Checks string workspace and reserves the number of bytes contained in the A
register. The address of the work space is contained in 40D4H. Garbage collection takes
place if necessary. An out-of-string error occurs if there's not enough room.
4467H—OQutputs a message (DOS and Disk BASIC. HL points to the beginning of the
ASCII message, Message is terminated with a zero (null).

Figure 1. Important addresses and useful ROM routines

62 / THE REST OF 80

thing as the NAME STR$ command. This method, however, swaps from
BASIC, using the VARPTR statement to point to the string variable's
data. This method takes 18 seconds, a definite improvement. The major
advantage is that garbage collection never occurs, since all data manipu-
lation is done with VARPTR pointers; no actual string operations are
done.

The third method, in lines 530-580, uses the new NAME STR$ rou-
tine. All swaps are done as a single BASIC line (560) taking only two sec-
onds. This improvement is especially noticed when doing a sort in
BASIC.

NAME CVS and CVI

These are two common functions. Disk BASIC only partially ad-
dresses one, with its &H statement, which allows you to use hexadeci-
mal constants instead of decimal. This Disk BASIC command only al-
lows you to use hexadecimal literals, not string variables containing hex-
adecimal values. The NAME CVS command allows string variables with
hexadecimal values to be used as hex constants. This machine-language
routine is quite an advantage over a comparable BASIC routine. NAME
CVI does conversions in the other direction, with the same advantages.
Program Listings 3 and 4 are demonstration programs for NAME CV1
and NAME CVS. For those without an editor/assembler, Program List-
ing 5 contains the NAME STR$/CVI/CVS routine as BASIC DATA state-
ments. This program protects memory size automatically, then installs
the ncw commands. Program Listings 6, 7 and 8 provide each of the
commands in a single format. Each program protects memory size auto-
matically and installs the appropriate command.

Don't be frightened by the length of the NAME STR$/CVI/CVS assem-
bler listing. Much of it consists of comments explaining the concepts.
The code only requires 290 bytes of memory.

Program Listing 1

20109 ; Frakkbibhrikkdkhhhhhhiddbkhhktkihrthrbkihbhbbhrhrhhihiid

GaL1g ;> ** NAME STRS/CVL/CVS (SWAP/DECHEX/HEXDEC) ** *k

BE129 ;** By Alan R. Moyer *x
@e13g ;x> @7/18/81 *k
29148 1** Version 1.9 bl
P015@ ;** faed
Q@168 ;** This supervisory routine checks the syntax of the **
@FL7G 1 ** data following the BASIC NAME cammand word. ke

29183 ;** If the data is one of the tokens that represent *
99199 ;** either STRS (F4); indicating a SWAP ccmmand, or ek
20200 ;** CVI (E6); indicating a Dec to Hex conversion, %
@210 ;** or CVS (E7); indicating a Hex to Dec conversion, **
#9220 :** that cammand is then executed, otherwise a syntax **
A@230 ;** error is generated, See comments under the ind- faled

Program continued

THE RESTOF 80 / 63

Q3240

14
H

ividual commands for their explanations.

Ll

@259 :** To initialize in BASIC; bkl
@@268 :** POKE 16783,221: POKE 16784,254 (48K) *
29278 ;** POKE 16783,221: POKE 16784,198 (32K) ok
@0289 ;** DOKE 16783,221: POKE 16784,126 (16K) bl
ggz% ‘.*******t*t**t***********i*******************************
23308 ;
p@31@ ;** Define labels
o329 ;

262D 32330 VARPTR EQU 260DH +VARPTR subroutine ADDR

OAF4 93349 CHKVAR EQU @PAF4H 1Check for § VAR

TFFF pA3SE MEMI6K EQU @7FFFH :Top of 16K memory

BFFF PP368 MEM32K EQU PRFFFH :Top of 32K memory

FFFF @r370 MEMASK EQU @FFFFH ;Top of 48K memory

4849 933860 TOPMEM EQU 4049H ;Top of memory pointer

418F 3390 NAME EQU 418FH tNAME vector

402D 20408 DOS BQU 492DH ;DOS reentry ADDR

2a72 P3413 BASIC EQU P972H 1BASIC reentry ADDR

2857 06429 STRRM EQU 285TH :String roam check ADDR

2822 (3430 EVALNO BQU 2B@2H ;Evaluate the numeric exp.

2337 29435 EVALST BQU 2337H :Evaluate the string exp.

4121 23440 ACCIM EQU 4121H ;ACCUM in BASIC

1942 0453 ERROR EQU 19a2H ;FError message routine ADDR

4R 29468 NIF EQU 43AFH ;NTF (Number Type Flag)

FFFF @347 MEMSIZ BEQU MEM4BK ;Put your memory size here
Q248@ ;
BP499 :** Housekeeping
oe5 ;

FECE 20519 ORG MEMSIZ-131H H

FECE 21DDFE 205280 START LD HL,, NAMOMD :HL=>New routine ADDR

FEDL 228F41 Q@539 LD {NAME) ,HL New ADDR {LII only)

FED4 21DCFE @054 LD HL, NAMCMD-1 H

FED? 224940 209550 LD (TOPMEM} , HL. ;5et new mermory size

FEDA C32D4@ 90568 JP DOS ;Change to suit
2e579 ;
0@58@ ;** Start of cammand decoder
2a590 ;

FEDD FEF4 29602 NAMOVMD CP @F4H 1Is it STRS?

FEDF CAIDFF 00619 JP Z, SWAP 1Yes, go process

FEE2 FEE6 209620 CP PE6H :Is it QVI?

FEE4 CAEFFE @630 Jp 2, DECHEX 1Yes, go process

FEE7 FEE7 goe40 cP PETH 1Is it Cvs?

FEE9 CASSFF @0650 JP %2, HEXDEC ;Yes, go process

FEEC C3ABFF 09660 JP SNERR 1And print error
ﬂ%?ﬁ ‘.***************t*i***i****tt*i****i*t***t********’****ti*
EM :** ** DECHEX ke L4
DEEN ;** By Alan R. Moyer *x
paTaa ;** 97/82/81 w
@a71a ;** Version 2.1 bl
PRT720 3 b

@@736 ;** DECHEX is a machine language routine that will

E740
BEI5E **
og7ed ;**
ag7rg >
o783 **
0070 ; **
geale ;**
20820 ;**

- dedk

29830 ;

64 / THE REST OF 80

NAME CVI A$,255

-or-

NAME CVI AS(X), (Al+BR)*C+2

{The CVI stands for CorVert fram Integer)
#P08g@ ;** The string variable will be created if it does not **

exist. This routine checks the string work space
and will issue a 'garbage collection' if work
space is insufficient. After that if there is

LL]

;** place a ASCII hex representation of an integer into**
a specified string variable. It is executed as;

wk
Lo g
ik
ik
&

*i
*k
*k

FF@9 CDD2FF

FF13 2603
FF15 7E
FFle 12
FF17 23
FF18 13
FF19 19FA
FF1B El1
FF1C C9

FF1D D7

FF1E CDOD26
FF21 CDF40A
FF24 EDS3F6FF

00840 ;** still not encugh work space, an OUT OF STRING bl
GAB5Q ;** SPACE error will occur. The numeric expression can **
90860 ;** can consist of variables and mumeric values. This **
09870 ;** expression will be evaluated and turned into an bl
6988@ ;** integer value. This integer value will be in bl
#0893 ;** standard RS BASIC integer convention, with values **
#0980 ;** over 32767 to be expressed as negative rnurbers. e
2@91% :** Use the formuila on page 8/6 of the Level II BASIC **
28920 ;** Reference Manual (second edition) for number bl
02932 :** conversions. *e
gm :**********i***********t*****************ii*********i*i**
29950 DECHEX RST 10H :1Get next non blank char
o6 CALL VARPTR 1Get VARPTR of VAR

20970 CALL CHKVAR ;Make sure it's a §

22980 LD {PTR1},DE ;Save the VARPTR

2299 PUSH HL ;Save the Char Pointer
21008 LD A4 ;Need 4 chars work space
21819 CALL STRRM ;Roam? (48D4 }=>work space
Blaz2e PCP HL rHL=>next char

21930 INC HL ;Jump over the delimiter
1949 CALL EVALNO ;Eval the expr. DE=CINT{expr)
21058 PUSH HL ;Save the char pointer
21069 LD HL, (48D4H) sHL=>$ work space

21979 CALL INTHEX 1Canvert DE to HEXS

21960 LD HL, 48D3H 1Get the § data

21292 LD DE, (PTR1) ;Get the § VARPTR

2liee 1D B,3 ;Data cournter

@1118 AGAIN LD A, (HL) ;B=HEX$ data

BL120 LD (DE),A ;VARPTR=HEXS data

a1130 INC HL tHL=>next HEX$ data
21142 INC DE ;DE>=next VARPTR address
3115 DINZ AGAIN :Do again if not done
21160 POP HL ;Done, restore char pntr
o117 :And return to BASIC
ﬂllm '.***i*iii**
B119¢ ‘.** L) SWAP *+% N
P1200 ;** By Alan R. Moyer bl
g1210 ;¥ P6/29/81 hd
#1229 ;** Veraion 1.1 habd
B123@ ;** bl
@1248 ;** SWAP is a machine language routine that will SWAP **
B1258 ;** the contents of two string variables as a direct **
91260 ;** cammand fram BASIC. It is executed as; ek
BL27G ;** NAME STR$ AS,BS bl
9128@ s ** —or- wk
G129G ;** NAME STRS AS(Z%),BS(B#,Ci+2) **
@133 ;** The string variables can be simple string var- %
#1310 :** iables or array string variables. Any nurber of folad
81320 :** array dimensions can be used. For array variables, **
@1330 :** the subscript descriptors can be numeric variables.**
B1340 :** This routine will swap the string variables WITH- **
@135 ;** OUT USING ANY STRING WORKSPACE, WHICH MEANS THAT **
@136@ ;** GARGAGE COLLECTION WILI, NEVER HAPPEN WHEN USING i
Q1379 :** THIS COMMAND| Both string variables will be e
01388 :** created if they do not exist, and their null bl
31393 ;** contents will be swapped. *k
1400 ;*10'l'****************i*****************i***tt*************
21412 SwWap RST 106 iGet next non blank char
21429 CALL VARPTR iGet VARPTR of 1lst VAR
81430 CALL CHKVAR ;Make sure it's a §
21442 LD (PTR1),DE :Save the VARPTR

Program continued

THE RESTOF 80 / 65

FF28 DD21FSFF 91450
FF2C CDECFF @146
FF2F 23 @147a
FF30 CDOD26 (@l488
FF33 CDF4ZA 01499
FF36 ED53FBFF 01500
FF3A DD21FDFF Q1518
FF3E CDBCFF @1520
Frd4l DD2AFEFF @1530
FF45 FD21FDFF Q1548
FF43 CDBFFF #1558
FF4C DD2AFRFF #1560
FF5¢ FD21FSFF 01570
FF54 CDBFFF 91580
FF57 C9 aLsog
o1603
2lela
#1639
21646
a1650
Bloe
21679
21680

2169g

G170 ;**

BL710 ;**

B1723 ;**

a1730

01746

A17508

Bl76¢@

o1770

2176

2179

o1880

p181%

21820 ;

81830 ;*******************
FF58 D7 ?184¢ HEXDEC RST
FF39 CDID26 @185p CALL
FF5C EDS53F6FF @1860 LD
FF69 3ARFP4D 21879 LD
FF63 FEP2 2188¢ CP
FF65 2046 21893 JR
FF67 23 2199 INC
FF68 CD3723 21919 CALL
FFOB CDF4GA 01920 CALL
FP6E EDSB2141 21930 LD
FF72 E5 21940 PUSH
FF73 1A 21950 LD
FF74 FE@S 01%6:0 CP
FF76 393A a197g JR
FF78 47 81980 LD
FF79 13 B199g INC
FF7n EB 82008 EX
Fr7B 5E 22a12 LD
FFIC 23 02020 INC
FF7D 56 292030 LD
FF7E 210009 22244 LD
FF81 29 P2050 HEXBIN ADD
FF82 29 72068 ADD

QEEEEEEESBEE%‘EE

IX,S5TRNGL ;IX=> § data buffer
STORE :Store the $ data

HL ;Jump over the delimiter
VARPTR :1Get VARPTR of 2nd VAR
CHKVAR tMake sure it's a §
{PTR2),DE :Save the VARPTR
IX,STRNG2 ;IX=> $ data buffer

STORE iStore the § data

IX=> VARPTR of lst VAR
:+IY=> 2nd VAR data
SWITCH 1Switch the § data
;IX=> VARPTR of 2nd VAR
:I¥Y=> lst VAR data
SWITCH iSwitch the § data

;And all donel

IX, (PTR1)
LY, STRNG2

IX, (PTR2)
IY, STRNG]

:i************************************t******************

;**
- Wi
H
- Wk
H
Wk
i

+*% HEXDEC is a machine language routine that will
i** convert hexadecimal mumbers contained in string
:** variables into their integer eguivalents., The

** HEXDEC %%
a7/06/81
Version 1.8

;** cammand i3 executed as such;

pa* (The CVS stands for CorVert fram String.)

:** The integer variable will be created if it does
;** exist. The hexadecimal range is @99 to FFFF.

1** The integer variable will be created if it doas
1** not exist. The string characters can be up to four
:** hexadecimal characters contained in either a

i** string variable or string literal.

i** The integer equivalent will be expressed as stand-
** ard RS BASIC convention, with values over 32767 to

i** be expressed as negative numbers.
**********i*****iit********i****t****

66 / THE REST OF 80

NAME CVS A%, AS
—Or=-
NAME CVS A%, "FE"+AS

ok
*k
*k
*k
ke
wrk
*k
*k
EL]
ik
*
L g
*k
*k
Lt 4
*h
*k
LA
L L g
ik
W

10H 7Get next non blank
VARPTR :Get VARPTR of variable
(PTR1}, DE ;Save the VARPTR
AI(NTF) tCheck the NTF

2 iWas it an integer?

NZ, T™ERR 1Mo, output an ™ error
HL 7Skip over the delimiter
EVALST ;Evaluate the expression
CHKVAR iMake sure it's a §

DE, (ACCIM) 1Get VARPTR data

HL ;Bave char pointer

A, (DE) 1Get length of §

5 ;Is § length < 5 chars?
NC,OVERR ;No, output an (W error
B,A 7Put char count in A
DE H

DE,HL H

E, (HL} ;Put ADDR of chars

HI,

D, {HL) ;into DE

HL, B0H 1Zero the binary count
HL, HL, ;Bump the

HL, HL, snumber left

FF83

FF85
FF86
FFeg
FF8A
FF8C
FFEE
FFoQ
FF92
FF94
FF96
FF98
FF9A
FF9B

FFID
FFOF
FFRO
FFA3
FFA4
FFAS
FFAG
FFA7

FFAB
FFAA
FFAD
FFAF
FFB2
FFB4
FFB7

FFBC
FFBD

FFC2
FFC5

FFCB

FFD1

FFD2
FFD3

FFD7
FFD8

29

FE3A

FE41

1EG2
C3n219
1E18
C3a219

C3A219
1EG8
C3A219

D5
FDEL
FD7EDD
DD7708
FD7EGL
DD7781
FD7ED2
DD7782
ce

A
CDD7FF
7B

FS
CB3F

92878
22080
8209%
22100
92118
2120
62130
8214
092152
a2160
32178
92188
92190
22208
92219
22220
92230
Q92248
B225@
92260
92272
a226q
32290
02300
Q231a
22320
62330
92349
22350
22360
22376
92385
#2390
32408
#2410

22670

NOATOF

POP

DE

HEXBIN
DE,HL

HL, {PTR1}
(HL),E
HL

(HL},D
HL

; four

;places

i d=char

;Higher than a "9"?
;No

:Lewer than UC AZ

;Yes

;Adjust if LC

;Adjust for A-F

:ASCII HEX to Binary
;Error if < @

3> 1572

1Yes

;Add with current #
;Put total into L
:DE=>Next char

;Do again if chars left
sDE=Integer value
sHL=>VARPTR of Iht VAR
: (HL)=LSB

; (HL}=MSB
;Restore char pointer
+And retum

;********i***i***i*******************i****t**************

- Kk
i

NAME

SUBROUTINES bl

;********t**tt********************************!***i******

SNERR LD
Jp
TMERR LD
JP
OVERR 1D
JP
FCERR 1D
JP

E,2

;SN errcr code
1™ error code
1OV error code

:FC error code

** STORE and SWITCH subroutine

** IY=>Source ADDR

** IX=>Destination ADDR

T

$¥** gtores data in a working buffer.
-k

i

.

STORE PUSH
POP

SWITCH LD
LD
LD
LD
LD
LD
RET

;%% INTEGER TO HEXS UTILITY

DE
hn's

A, (1Y+2)
(IX+2),A
4, (IY+1)
(IX+1),A
A, (IY+2)
(IX+2),A

;Put the VARPTR into
;the IY register
;A contains § length
;B contains § LSB
;A contains $§ MSB

:
1And return

$*** DE contains integer value to be converted
;%% Hi=sbuffer to contain the HEXS
i*** B is destroyed

INTHEX LD
CALL
LD

CONVRT PUSH
SRL

A,D
CONVRT
AE
AF

A

A=MSB

Convert it
:A=LSB

;Save the digits

Program continued

THE RESTOF 80 / 67

FFDA CB3F 92680 : SRL A

FFDC CR3F 22699 SRL A

FFDE CB3F 32700 SRL A

FFE@ CDEEFF @2719 CALL CHEKXIT iConvert to ASCII

FFE3 77 B2728 LD {HL),A 11st ASCII into buffer

FFE4 23 027338 INC HL $Bump buffer pointer

FFE5 F1 92740 POP AF 1Get original digits

FFE6 E6QF 92750 AND BFH :Mask off high digits

FFEB CDEEFF @276@ CALL CHEKIT 1Convert to ASCIT

FFEB 77 22772 LD (HL),A 12nd ASCII into buffer

FFEC 23 &2780 INC HL {Bump buffer pointer

FFED C% 92799 RET

FFEE (630 92803 CHEKIT ADD A, 30H s Convert

FFF9 FE3A 22810 cp @3AH :0-97

FFF2 FB 22829 RET M :1Yes, return it

FFF3 C6@d7 92832 ADD A,P7H :Correct for A-F

FFF5 C9 22840 RET ;& return it
285@ :ﬂ'f;#---uw-niinw-u--- ----- P99 et e e s e e e de e A T e e L2 2 2 T2 T
2260 ;¥ WORKSPACE o
6287G :******t*i***t*#ﬁ--- ----- whwRdk Whedehdok ok dede gk W o e o ok ik deddew

FFFé6 0000 92888 PTR1 DEFW GooeH ;General gtorage

2003 92899 STRNG1 DEFS 3 ilst § VARPTR storage

FFFB 0000 ©290F PTR2 DEFW (@0ooy 12nd § VARPTR data

2003 22910 STRNG2Z DEFS 3 12nd § VARPTR storage
22920 ;

FECE 02930 END START ;Auto start

98392 TOTAL ERRORS

Program Listing 2

1@ '** Demonstration program for the NAME STR$/CVI/CVS command
200 '** This routine demonstates the STRS (Swap) function

38 DEFINT D,X,Y

4@ CLEAR 6508

50 POKE16783,225: POKE16784,254 *** Install new name vector

60 D=1p@

70(D§M Al1$(D),A28(D),a3$(D) ,BlS(D),B2$(D).B3$(D}.C1$(D),C2$(DJ.C
38{D

89 CLS: PRINT"Initializing strings”

98 FOR X=0 TO D

l%)AlS(X)%TRINSS(RND(IG),HWD(ZSJ*—GS): R28(X)=A15(X): A3$(X)=A1
$(x

1%6)Bl$(x)=STRIM$(RND(1@),RND(25)+65): B2§ (X)=B1$(X}: B3S(X)=R1
${X

120 Cl$(x)=STRING$(RND(lB),MD(25)+65): C2$(X)=C1$(X): C38(X)=C1
F(x)

132 NEXT X

148 A1=9: A2=@: A3=0: Bl=@: B2=@): B3=¢f: Cl=f; C2=g: C3=g

158 CLS: PRINT"Which method 77 - 1, 2, OR 3": x=0

160 AS=INKEYS: IF AS="1"ORAS="2"ORAS="3" THEN 20@

179 X=X+1: IF X>4 THEN X=1

189 IF X=1 THEN PRINT@13," “;: PRINT@Z7, “3":: ELSE IF X=2 THEN
PRINT@18," ";: PRINT@13,"2?"; : ELSE IF X=3 THEN PRINT®@21," "3: p
RINT@18, “1";: ELSE PRINT@27," ;. PRINT®21, "2";

193 FOR Y=¢ TO 5¢: NEXT :GOTO 1le@

200 M=VAL(AS): CLS: PRINT@15, "EXCHANGE #": : PRINT@32, "FREE STRIN
G WORK SPACE";

218 GOSUB 59¢: PRINT@128, “Starting free string work space =";

68 / THE REST OF 80

220 PRINT @192, "Please wait...and wait... (garbage collection ta
king place)";: PRINT@162,FRE(XS);

230 PRINT@192,CHRS(30)

240 GOSUB 590

25@ PRINTG256, "Press *ENTER* to start": X=0

260 AS=INKEYS: IF AS=CHRS(13) THEN 389

278 X=X+1: IF X>2 THEN X=1

28¢ IF X=1 THEN PRINT@262," ";: ELSE PRINT@262, "YENTER*";
299 FOR Y=1 TO 5@: NEXT: GOTO 268 ‘

3@@ PRINT@256,CHRS(30): ON M GOSUB 368,420,530

310 PRINT@784, "Press *ENTER* to continue";: X=@

320 AS=INKEYS$: IF AS=CHRS$(13) THEN PRINT®256,CHRS(31): GOTO 158
330 X=X+1: IF X>2 THEN X=1

34¢ IF X=1 THEN PRINTR714," ";: ELSE PRINT@714, "*ENTER*";
350 FOR Y=1 TO 5@: NEXT: GOTO 320

360 PRINT@256, "Swapping variables using a dummy variable"

37¢ PRINT RIGHTS(TIMES,8)

380 FOR X=@ TO D : PRINT@84,X; :GOSUB 599

390 DS$=A1S${X}:A1$(X)=B1§(X):B1S(X)}=CL8{X):C1$(X)=DS

400 NEXT X

410 PRINT@384,RIGHTS (TIME$,8): PRINT'"Donel": RETURN

420 PRINT@256, "Swapping the strings using the VARPIR routine"
439 PRINT RIGHTS(TIMES,S)

440 FOR X=9 T0 D : PRINTG84,X; :GOSUB 5908

450 Al=PEEK(VARPTR(A2S(X)}) :A2=PEEK({VARPTR(A2S(X))+1) : A3=PEFK(VA
RPTR(A2$(X) }+2}

4600 B1=PEEK(VARPTR(B2S(X)}) :B2=PEEK{VARPTR(B2S$ (X})+1) : B3=PEEK(VA
RPTR{B2§{X))+2}

478 C1=PEEK (VARPTR{C2${X))) : C2=PEEK(VARPTR(C2${X))+1} :C3=PEEK{ VA
RPTR(C25(X})+2}

480 POKE(VARPTR(A25(X))), Bl :POKE(VARPTR{A2S (X})+1), B2 : POKE (VARPT
R(A28(X))+2),B3

499 POKE(VARPTR(B2$ (X))),CL:POKE(VARPTR(B2S {X) }+1),C2 : POKE (VARPT
R{B2$(X)}+2),C3

500 POKE(VARPTR(C25(X))),Al :POKE(VARPTR(C2S (X))+1), A2 : POKE(VARPT
R{C2$(X

510 NEXTX

52¢ PRINT@384,RIGHTS(TIMES,8): PRINT"Donel": RETURN

53¢ PRINT@256, "Swapping variables using the MAME command"

S4¢ PRINTRIGHTS (TIMES,S)

55@ PORX=PTOD:PRINT@84,X; :GOSUB 599

560 NAME STRS A3$(X),B3$(X): NAME STRS R3$(X),C35(X)

578 NEXT X

580 PRINT@384, RIGHTS (TIMES,8) : PRINT"Donel " : RETURN

590 PRINTR10d, (PEEK(&H40D6) +PEEK(sH48D7) *256) - (PEEK | &H4PAH) +PEEK
(&H4AQAL)*256); :RETURN

Program Listing 3

1@ '** Demonstration program for the NAME STR$/CVI/CVS command

20 '** This routine demonstrates the CVI (DECHEX) function

3@ CLS: PRINT@192,"Initializing"

40 POKE 16783,221: POKE 16784,254 '** Install new name vector

50 DEF FN AD(A)=A+{A>32767)*65536 '** Convert to integer

6@ DEFINT X,C,Y

70 DIM HXS(15}

84 DATA 4,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

90 FOR X=@ TO 15: READ HXS({X): NEXT X Program continued

THE REST OF 80 / 69

106 C=1@@

119 GOSUB 399

120 CLS: GOSUB 44@: X=FRE(Z$)

139 PRINTE256, "Decimal to Hexadecimal conversion using BASIC"
14¢ PRINTRIGHTS (TIMES,B}

158 FOR X=1 TO C

168 D=PEEK({X)+PEEK(X+1)*256

170 B@=INT{D/4096)

189 Bl=INT{ (D-BO*4096)/256)

193 B2=INT{ (D~((BO*4F96)+(B1*256)))/16)

203 B3=D-((BE*4@96)+(B1¥256)+(B2*16))

21@ PRINT@78,H{S(BO) ;HXS(Bl);HX$(B2):HX$ (B3);

229 PRINT®@95,X;

230 NEXT X

249 PRINT@384, RIGHTS (TIMES,8)

25@ PRINT"Done!"

26¢ PRINT: GOSUB 39¢

270 CLS: GOSUB 44@: X=FRE(Z$)

280 PRINT®@256, "Decimal to Hexadecimal conversion using NMAME CVI"

290 PRINTRIGHTS (TIMES,B)

3%@ FOR X=1 TO C

3109 NAME CVI AS,FN AD(PEEK(X)+PEEK(X+1)%*256)
320 PRINT@78,AS;

338 PRINT@95,X;

348 NEXT X

350 PRINT@384,RIGHTS$(TIMES,B)

3660 PRINT''Donel"

37¢ PRINT: GOSUB 394

380 GOTO 129

399 X2=(PEEK(16416)+PEEK(16417)%256)-1536@: PRINTEXd, "Press *ENT
ER* to continue”;: X=0

499 AS=INKEYS: IF AS=CHRS(13) THEN RETURN
410 X=X+1: IF X>2 THEN X=1

429 IF X=1 THEN AS=" "y ELSE AS="*ENTER*"
430 PRINTEXG+6,AS;:: FOR Y=1 TO 5¢: NEXTY: GOTO 42@
44Q PRINTR1E, "HEX VALUE STEP NUMBER":

450 RETURN

Program Listing 4

1@ '** Demonstration program for the NAME STR$/CVI/CVS command
28 '** This routine demonstrates the CVS (HEXDEC) function
38 CLS: PRINT@192, "Initializing": CLEAR 500

4% POKE 16783,221: POKE 16784,254 '** Install new name vector
50 DEF FN AD(A)=A+{A>32767)*65536 '** Convert to integer

6@ DEF FN HX{AS)=ASC(AS)+-48-7T*(AS>"9")

7@ DEFINT X,C,Y: DIM A$ (100}

8@ DIM HX$(15)

99 DATA 2,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

129 FOR X= TO 15: READ HXS(X): NEXT X

119 c=1e9

12¢ GOSUB 53@: X=FRE(Z$)

139 FOR X=1 TO C

148 D=PEEK(X)+PEEK({X+1)*256

15@ BA=INT(D/4096)

168 B1=INT((D-B@*4096)/256)

17@ B2=INT((D-{ (B@*4@96)+{B1%256)))/16}

70 / THE REST OF 80

18¢ B3=D-((BO*4096)+(B1*256)+(B2*16))

196 AS(X)=HXS$ (BA)+HIXS (B1) +HXS (B2)+CS (B3)

2% PRINT@78,A% (X);

21@ PRINT@95,X;

220 NEXT X

23¢ PRINT"Donel"

249 PRINT: GOSUB 480

250 CLS: GOSUB 530: X=FRE(AS)

260 PRINT@256, "Hexadecimal to Decimal conversion using BASIC'
27@ PRINTRIGHTS (TIMES,8)

288 FOR X=1 TO C

299 N=@: FOR Y=1 TO LEN{A$(X)): N=N*16+FN HX(MIDS(A$(X),¥,1)): N
EXT Y: N=FN AD{N)

309 PRINT@78,N:

319 PRINT@9S5,X;

320 NEXT X

330 PRINT@384, RIGHTS (TIMES, 8}

349 PRINT'"Donel"

350 PRINT: GOSUB 48@

360 CLS: GOSUB 53@: X=FRE(AS)

379 PRINT@256, "Hexadecimal to Decimal conversion using NAME CVS"

3809 PRINTRIGHTS (TIMES,8)

399 FOR %=1 TO C

479 NAME CVS A%,AS(X)

410 PRINT@78,A35(X);

42¢ PRINT@95,X;

430 NEXT X

440 PRINT@384, RIGHTS (TIMES,8)

45@ PRINT"Donel"

468 PRINT: GOSUB 48¢

479 GOTO 25@

480 X2={(PEEK(16416)+PEEK(16417)*256)-15368: PRINT@XJ, "Press "ENT
ER* to continue";: X=0

490 AS=INKEYS: IF AS=CHRS(13) THEN RETURN
500 X=X+l: IF X>2 THEN X=1

51¢ IF X=1 THEN A$=" “: ELSE AS=""ENTER*"
5208 PRINT@XOH6,A5:: FOR Y=1 TC 58: NEXTY: GOTO 490
530 PRINT@19, "HEX VALUE STEP NUMBER";

540 RETURN

Program Listing 5

58280 ‘** NAME STR$/CVI/CVS (SWAP/DECHEX/HEXDEC) cammand using B
ASIC's NAME cammand

50010 M=65244 ‘for 48K, 48860 For 32K, 32476 for 16K

5020 X2=INT(M/256): X1=M-X2*256: DOKE 16561,X1: POKE 16562,X2:
CLEAR 5@ 'This sets memory size from within BASIC

50636 SA=-291 'for 48K, -16675 for 32K, 32477 for 16K

5@@4@ FOR X= SA TO SA+29¢5: READY

50052 IF Y=888 THEN Y=254 'for 48K, 199 for 32K, 126 for 16K
5@06@ IF Y=999 THEN Y=255 'for 48K, 191 for 32K, 127 for 16K
58070 POKE X,Y: NEXT X

58080 POKE 16783,221: POKE 16784,254 'for 48K, 1990 for 32K, 126
for 16K ** Install new NAME vector

58999 DATA 254,244,202,29,999, 254,230, 202,239,888, 254,231, 202,88
999

50122 DATA 195,168,999,215,285,13,38, 205, 244,10, 237,83, 246,999, 2
29 Program continued

THERESTOF80 / 71

50112 DATA 62,4,205,87,48,225,35,205,2,43,229,42,212,64,205
S¢12@ DATA 210,999,33,211,64,237,91,246,999,6,3,126,18,35,19
5¢130 DATA 16,258,225,201,215,285,13, 38,285, 244,18, 237,83,246,99
9

5014@ DATA 221,33,248,999,205,188,999,35,295,13,38,205,244,10, 23
7

SGL5@ DATA 83,251,999,221,33,253,999, 205,188,999, 221,42, 246,999,
253

5¢166 DATA 33,253,999,205,191,999,221,42,251,999,253,33,248,999,
295

5¢17@ DATA 191,999,281,215,205,13,38,237,83,246,999,58,175,64,25
4

s@18@ DATA 2,32,78,35,285,55,35,205,244,10,237,91,33,65,229
5¢19¢ DATA 26,254,5,48,58,71,19,235,94,35,86,33,0,2,41

S@20% DATA 41,41,41,26,254,58,56,8,254,65,56,41,239,223,214
S@21@ DATA 7,214,48,56,33,254,16,48,29,181,111,19,16, 226,235
50220 DATA 42,246,999,115,35,114,225,291,30,2,195,162,25,30,24
5@23@ DATA 195,162,25,30,19,195,162,25,36,8,195,162,25,213,253
5@24@ DATA 225,253,126,%,221,119,8,253,126,1,221,119,1,253,126
5@250 DATA 2.221,119.2,2ﬁ1,l22,255,215,999,123,245.203,63,253.63

5@26@ DATA 293,63.203,63,205,238,999,119,35,241.23@,15,2ﬂ5,238.9
99

58278 DATA 119,35,201,198,48,254,58,248,198,7,201,8,0,254,58
5@286 DATA 248,8,9,201,28,108

Program Listing 6

SPOPY ' ** NAME CVS (HEXDEC) command using BASIC's NAME command
5pP1@ M=65429 'for 48K, 49945 for 32K, 32661 for 16K

S5P020 X2=INT(M/256): X1=M-X2*256 :PCKE 16561,X]1: POKE 16562,X2:
CLEAR 5@ 'This sets memory size autamatically from within BASIC
50930 SA=-106 'for 48K, -1649@ for 32K, 32662 for 16K

50040 FOR X= SA TO SA+1#5: READY

Sep5@ IF Y=999 THEN Y=255 'for 48K, 191 for 32K, 127 for 16K
SPP6Q POKE X,Y: NEXT X

5e@7¢ POKE 16783,150: POKE 16784,255 'for 48K, 191 for 32K, 127
for 16K ** Install new NAME vector

50080 DATA 254,231,32,88,215,205,13,38,237,83,254,999,58,175,64
S@d90 DATA 254,2,32,70,35,205,55,35,205,244,18,237,91,33,65
5@1¢@ DATA 229,26,254,5,48,58,71,19,235,94,35,86,33,8,9

S@11F DATA 41,41,41,41,26,254,58,56,8,254,65,56,41,230,223
5@129 DATA 214,7,214,48,56,33,254,16,48,29,181,111,19,16,226
53130 DATA 235,42,254,999,115,35,114,225,201,30,2,195,162,25, 30
53140 DATA 24,195,162,25,39,18,195,162,25,38,8,195,162,25,8
5@15@0 DATA @

Program Listing 7

5p00@ '** NAME CVI (DECHEX) cammand using BASIC's NAME command
5010 M=65442 'for 48K, 49058 for 32K, 32674 for 16K

SPP26 X2=INT(M/256): X1=M-X2*256: POKE 16561,X1: POKE 16562,X2:
CLEAR 5@ 'This sets memory size autamatically from within BASIC
55030 Sh=-93 'for 48K, -16477 for 32K, 32675 for 16K

5@@48 FOR X= SA TO SA+92: READY

72 /| THE RESTOF 80

50959 IF Y=999 THEN ¥=255 'for 48K, 191 for 32K, 127 for 16K
50062 POKE X,Y: NEXT X

59876 POKE 16783,163: POKE 16784,255 'for 48K, 191 for 32K, 127
for 16K ** Install new NAME vector

5@%8@ DATA 254,238,4@,5,39,2,195,162,25,215,205,13, 38, 285, 244
5@09¢ DATA 19,237,83,254,999,229,62,4,205,87,40, 225,35, 25,2
50190 DATA 43,229,42,212,64,225,218,999,33,211,64,237,91, 254,999

5p119 DATA 6,3,126,18,35,19,16, 250, 225, 281,122, 285,223, 255,123
58120 DATA 245,203,63,283,63,203,63,203,63,205,246,999,119, 35,24
1

5013¢ DATA 23d,15,205,246,999,119,35,201,198,48,254,58,248,198, 7

56142 DATA 201,8,9

Program Listing 8

500gQ '** NAME STR$ (SWAP) command using BASIC's NAME command
S0010 M=65435 'for 48K, 49951 for 32K, 32667 for 16K

50020 X2=INT{M/256): X1=M-X2*256: POKE 16561,X1: POKE 16562,X2:
CLEAR 5@ 'This sets memory size autamatically from within BASIC
50030 SA=-100 'for 48K, -16484 for 32K, 32668 for 16K

50040 FOR X=SA TO SA+99: READY

58350 IF Y=999 THEN Y=255 'for 48K, 191 for 32K, 127 for 16K
50960 POKE X,Y: NEXT X

50979 POKE 16783,156: POKE 16784,255 'for 48K, 191 for 32K, 127
for 16K ** Install new NAME vector

52080 DATA 254,244,40,5,39,2,195,162,25,215,285,13,38, 205, 244
S@@99 DATA 1¢,237,83,246,999,221,33,248,999,205, 224,999, 35, 25, 1
3

50199 DATA 38,205,244,18,237,83,251,999,221,33,253,999, 205,224, 9
99

S@1l@ DATA 221,42,246,999,253,33,253,999, 205, 227,999, 221,42, 251,
999

50120 DATA 253,33,248,999,205,227,999,201,213,253,225,253,126,0,
221

5013@ DATA 119,@,253,126,1,221,119,1,253,126, 2,221,119, 2, 201
5@142 DATA 191,104,4,0,05,0,8,0,0,0

THE REST OF 80 / 73

10

Programming
in Radio Shack’s
Tiny Pascal

by John Blommers

System Requirements:
Model I

Level IT BASIC

16K RAM

"l'iny Pascal can give you programs which execute quickly, up to ten
times faster than interpreted BASIC programs. Despite the limited
integer and integer array data types, Tiny Pascal provides all of the struc-
tured statements of standard Pascal. With a little ingenuity, you can
write many useful programs. Each program in this chapter contains
comment lines and is accompanied by an explanation in the text.

Celsius to Fahrenheit Conversion

The integer arithmetic limitation requires that the formula F=C*9/5 +
32 be rewritten as F={C+18 + 5)/10+ 32. The 1.8 has been translated to
18/10, and adding 5 inside the parentheses before dividing by 10 resuits
in rounding instead of truncation. This procedure gives the most accu-
rate integer answer possible.

+ CELSIUSE TO FAMRENHEIT CONVERSION #2

ta THIS PROGRAM IS WRITTEN IN RADID SHACK'S TINY PASCAL. SINCE ONLY
INTEGERS ARE SUPPORTED. MULTIFLICATION BY 1.8 IS DONE BY MULTIPLYING BY
12, ADDING S FOR ROUNDING, AND DIVIDING By 11, *)

CONST {CW =@ 3 t# FIRGT TEMPERATURE TO CONVERT #)
HIGH = 41 3 O+ LABT TEMPERATURE TO CONVERT)
FoE = IZ 3
ROUND = § G+ ROUNDING COMSTANT)
VAR DEGREE, FLAG * INTEGER 3 tw GILOBAL VARIABLES *)
BEGIN C# OF MRIN PROGRAM =)
WRITEC1Z) 3 WRITEC'CENTIGRADE TO FAHRENHEIT COMVEREBION', 13X, 1333
WRITE € e m e 1T
FOR DEGREE := LOW TO HIGH DO
BEGIN

74 / THE REST OF 80

WRITE(DEGREE#®, " [T 7y CCDEGREE=18+ROUND) DIV 18)+FZZ2#,'F MR

IF DEGREE THEN WRITE(13y (% CRLF IF DEGREE IS 0ODD #)
END3
WRITE !~~~ T2 130
WRITECLZ, ” 4ok PROGRAM STOP w17, 1303
END. o OF CELSIUS TO FAMRENHEIT PROGRAM #)

Equation Solving Program

This program finds all the integer solutions to the equation 6*X + 4*Y
—14+Z=10for valuesof X, Y, and Z from 0 to 100. The procedure is very
clementary; it does an exhaustive search of all possible combinations of
X, Y, and Z. The program uses INKEY to sense if the S key has been
pressed during execution and stops if it has. Pressing the BREAK key
twice is an alternative.

¢+ THIS PROGRAM PRINTS ALL 1454 OR SO OF THE SOLUTICNS TO THE FORMULA
EXHAY-147=1@.)
VAR X.¥.Z : INTEGER 3

BEGIN
WRITE(1Z, 123, "SOLUTIONS (X, Y,Z3 T EX+4Y-14Z=18', 1%, 17)
Fas ¥ = @ 7O 18& DO C+ I EXHAUSTIVE LOOPS)

FOR ¥ := @ TO 10@ DO

FOR Z := 0 TOD 10@ DO
BEGIN t# STRIKE THE 'S' KEY TD HALT THE PROGRAM *)
IF INKEY = *g" THEN BEGIN X:=1@0@:Y:=10@:Z:=10@ END 3
IF CE*X + 4wy -~ 14%I = 1@ THEN

WRITECY €75 X#y" 72 Y# " " 78,727
ENMD 3
WRITEC(13, 17, 13,133 Ok SEND A FEW LINE FEEDS *)
END. tx OF EQUATION SOLYER PROG #)

Square and Cube Roots

This program lets you calculate square and cube roots for integers less
than or equal to 32767. It does so by guessing initially and halving the
error of its guess by taking the middle between a low and a high limit)
until the uncertainty is not greater than the constant tolerance.

C+ SEUARE AND CUBE RODT PROGRAM »#)
t+ PUT GLOBAL VARIABLES ETC UP HERE =2
VAR NUMBER : INTEGER ;
FUNC SQUARERDOT(NUMBER, POWER) i (* PDWER=1 NO ROOT. 2=SQUARE ROOT.
I=CUBE ROOT
CONST TOLERANCE=1 3
VAR LIPPER, LOWER, MIDDLE. PRODUCT = INTEGER 3
BEGIN
LOWER :=1 i CASE POWER OF 1: UPPER:=1 3 ¢+ FIX L.OWER, UPPER LIMITS #)
23 IF NUMBER) 182 THEN UPPER:=15Z
ELSE UPPER:=NUMBER?
3: IF NUMBER)@ZZ THEN UPPER:=@32
EL SE UPPER:=NUMBER
END ¢+ DF CRSE #) 3
WHILE (UPPER-LOWER))} TOLERANCE DO ¢+ ITERATE WHILE UNCERTAINTY =#)

BEGIN (% EXCEEDS TOLERANCE)
MIDDLE := (UPPER+LOWER) DIV 2 3
CASE POWER OF 1t PRODUCT == MIDDLE 3 Ok NG ROOT)

Program continued

THE RESTOF 80 / 75

2@ PRODUCT := MIDDLE+MIDDLE 3 % SLUARE ROOT #)
I: PRODUCT :i= MIDDLE+MIDDLE#MIDDLE «<+CUBE ROOT #)
END o+ OF CARSE *) 3

IF PRODLUCT <= NUMBER THEN LOWER := MIDDLE (% RECALCULRTE THE =*)
ELGE UPPER := MIDDLE 3 {# NEW #}
END 5 4 BOUNDARIES =)
SEUAREROOT := (UPPER+LOWER) DIV Z ¢+ CALCULATE FINAL ANSWER =)

END ¢+ 0OF S5QURREROOY =) 3

BEGIN ¢+ OF MAIN PROGRAM *)
WRITEC('ENTER A NUMBER ') :; READCNUMBER#) 3
WRITE!(' THREE ROGTS ARE ', SRUARERDDOT (NUMBER. 1)#. " ’
SOUARERQDT ¢NUMBER, 23 #, ' Ty
SEUARERGOT ¢ NUMBER, T #, 130
END, tw (JF ROOT PROGRAM)

Another Square Root Program

This program demonstrates a unique approach to determining square
roots. It counts the number of binary digits in the number and shifts half
of them to the right as a first estimate of the square root. Three Newton
iterations are done to produce a second estimate. This estimate is in error
by, at most, plus or minus one, due to the round-off errors in the integer
arithmetic. The program checks the second estimate, along with values
of one greater and one less than the estimate. The one with the least error
is returned as the square root of the argument passed. The following ex-
ample calculates the square root of Y =20:

20 is binary 10100 and has 5 binary digits
first estimate is 10 binary = 2

second estimate {after 3 Newtons) is 4
4-1=3error = 20~ 9=11

4 =4 error = 20-16= 4 {best of the three]
4+1=5error = 20-25= -5

final answer = 4

VAR Z.1 : INTEGER 3 Ok SEUARE ROOT PROGRAM *)
FUNC SQRT(Y):
VAR X, E1,EZ,ES, I, ¥YY & INTEGER 3

BEGIN
IF ¥ (@ THEN ¥ = @ 3 (+ TRAP NEGATIVE ARGUMENTE *)
CASE ¥ OF
@, 1 % SERT =Y o+ TRIVIAL CASES =»)
ELSE BEGIN
T:=113 YY i= ¥ %
WHILE ¥¥ » B DO BEGIN + COUNT # BINARY DIGITS IN ARGUMENT =)
I &= I+1 3
¥Y 1= ¥Y SHR 1
END
X :t= Y GHR ¢ I SHR 1 1 o+ FIRST ESTIMATE OF ROOT *+)
FOR I := 1 TO Z DO X Y DIV ¢X+X) + X SHR 1 3 (% X NEWTONS)
E1l

ABSLY-SOR(X 133
ABS(Y-SORCX+15)
=X 3
{ EZ THEN SERT := X-1 35 ¢+ RETURM SGRT WITH LERST ERROR #)
{ EZ THEN SGRT := X+1
END ¢ ELSE =)
END % CASE. *)
END3 (+ OF SERT *2

ABSCY-SORCX-12) 3 <+ THREE ERRORS CALCULATED =*)

76 / THE REST OF 80

BEGIN t# MAIN USER PROGRAM BEGINS HERE)

FOR I := @ TO 137 DO BEGIN (+ PLOT THE SERT FUNCTION *)
PLOT (I, 47-4#8GRT (13, 1)
END 3

Z := 1y
WHILE Z 5 -1 DO BEGIN ¢ LET USER TYPE IN VALUES TD TEST #)

WRITE({'ENTER Z ") 3

READ(Z#) 3

WRITEC SGRT (', Z#, ' 3= ', SORTC(Z) ¥, 1T, 170 3

END

END. ¢x OF SOUARE ROOT PROGRAM #)

Random Number Generator with Plotting

This program uses a function that generates a pseudo-random num-
ber, RND. The function depends on the overflow of integer multiplica-
tion. Note that when the result of such a multiplication is negative, the
sign bit must be cleared with the MOD function. The number is not
made positive with the ABS function. Run the program with a few dif-
ferent seeds to see just how pseudo-random the sequence is.

F RANDOM NUMBER GENERATION FOR TINY PRSCAL
REF: PASCAL, BY DAVID L. HEISERMAN P 148, TAB BODK 1205 #)

VAR I.RLOWsRHIGH, NUM.N : INTEGER:

FUNC RNDCRLOW, RHIGH)$ t+ RETURNS RANDOM # BETWEEN RLOW & RHIGH #)
VAR M, P: INTEGER; + LOCAL YARIARBLES #)

BEGIN

REPEAT
Ma=N#+3125% Ok 2125 I8 THE MULTIPLIER =
IF M{@ THEN M:=(M AND 32767) (% MASK SIGN BIT IF REQUIRED *!
NisM 3 Pi=M; G N IS EXTERNAL TO THE RND FUNCTION =3

= P MOD RHIGH
UNTIL (P)=RLOW) AND {P{= RMIGH}% ¢+ QUIT IF P IS IN RANGE %)
RND =P t4 ASSIGN RND A VALUE AND RETURN #)
END: (# OF RND =)

BEGIN {» MAIN PROGRAM EXERCISES RND #)
WRITE('ENTER THE NONZERD RANDOM NUMBER SEED ')%
RERD CN#) &
WRITE (" HOW MANY RANDOM NUMBERS DO YOU WANT ')
READ (NUM# >3
WRITE<'STRTE THE RANGE OF THESE POSITIVE NUMBERS *;:
READ {RLOW#, RHIGH# 1 5

FOR I:=1 TO NUM DO WRITECRND(RLOW, RHIGH)#, * T
WRITE(13,"HIT A KEY TO BEGIN PLOTTING 100@@ RANDOM NUMBERS® 3
READCI} 3

WRITEC(2E,31)3 (+ CLEAR SCREEN #)
FOR I:=1 TO 100@@ DO PLOTC(RNDC(@, 127), RNDC@,47) ,1)
END. U+ OF RANDOM NUMBER PROGRAM »)

Another Random Number Generator

This program uses a different multiplier, MULT, and introduces an
increment, INCR. The MOD function keeps the number in range, and
the AND function keeps the numbers positive. The main program pro-
duces a histogram plot of the random numbers as they are generated.

THERESTOQF 80 / 77

VAR I.J,K,SEED : INTEGER 3 <« ANOTHER RANDOM # GENNER/PLOTTER #*)
XARRAY : ARRAY(127) OF INTEGER 3%
FUNC RAND 3

CONST t+ DEFINE THE MULTIPLIER, INCREMENT AND MODULUS #)
MULY = 25173 3
INCR = 13849 %
MODU = 1E3B4 3
BEGIN
RAND := SEED 3 t+ APPLY THE EXTERNAL SEED =}
SEED := (MULT#SEED+INCR) MOD MODL 5 <+ CONTROL MAGNITUDE >
SEED i= SEED AND 32787 (*+ AND ENSURE NUMBER IS5 POSITIVE #)
END 3 ¢+ OF RAND *)
BEGINM (+ MAIN PROGRAM BEGINS HERE #)
SEED := 5+ USER MUST PREDEFINE A SEED #*)
FOR I := @ TO 127 DO XRARRAY(I» == @ 3 ¢+ CLEAR COUNTERS #*)
FOR I = 1 TO 128+42 DO ¢+ PLOTS A NICE HISTOGRAM *)
BEGIN
J z= RAMD MODL 128 3 + CREATE A RANDOM NUMEBER)
XARRAY CJ) 1= XARRAY(J)+1 5 ¢+ INCR THE COUNTER =)
PLOT(J, XARRAY(J), 13 ¢+ PLOT THE POINT #*)
END
END.

Prime Number Generator Program

This program takes an array, FLAGS, initializes each element to 1,
and marks all elements whose subscripts are multiples of 1, 2, 3, and so
on. The remaining array elements are unmarked by default, and corre-
spond to prime numbers. This algorithm is known as the Sieve of
Eratosthenes. It runs slowly at first and picks up tremendous speed
near the end. Prime numbers less than 8191 are printed.

CONST SIZE=£19@ 3 NUMITS=1 ; (% PRIME NUMRER PROGRAM *)
VAR FLAGS @ ARRAY(SIZE) OF INTEGER 3
I, PRIME, K, COUNT, ITER t INTEGER 3

BEGIN
WRITECNUMITS#, * [TERATIONS OF THE PROGRAM FOLLOW 37,131 3
FOR ITER 1= 1 TODO NUMITS DO
BEGIN CDUNT = @ % (+ COUNTER OF # PRIMES CLERRED =»)
FOR I := @ TO SIZE DG FLAGS(I> := 1 & (% ALL FLAGS TRUE *)
FOR I := @ TO SIZE DD
IF FLAGS(I) THEN
BEGIN PRIME := I+I+3 3
K := I+PRIME i
WHILE K (= SIZE RO
BEGIN FLAGS(K» t= @ 5 (% FLAG A NON-PRIME *)
K = K+PRIME
END 3
COUNT z= COUNT +1 3 <& TALLY HOW MANY PRIMES GENERATED *)
WRITECPRIMER,® 1
END 3
WRITE{13,COUNT#.’ PRIMES FOUND', 13)
END
END. (% OF ERATOSTHEMES' SLEVE *)

Trigonometry Functions Program

This program implements the SIN function scaled in amplitude by
32767. It is practical, because the SIN function normally returns a float-

78 / THE REST OF 80

ing-point number between —1 and +1. The Tiny Pascal version re-
turns integers between — 32767 and + 32767,

The argument of the SIN function is given in degrees. The function
begins by reducing the argument to between 0 and 90 degrees and
keeping track of a possible minus sign in the answer. Samples of the
SIN function are stored in the procedure for every 10-degree step. The
argument is further resolved to lie within one of these 10-degree steps.
Then, a straight-line approximation is made to compute the returned
value.

A separate general-purpose interpolation function, INTER, has been
included in the program for those who want to experiment. The left-
hand point {X1,Y1) and the right-hand point (X2,Y2) are joined with a
line segment. For the x-value given, INTER returns the corresponding
y-value lying on the line segment.

VAR Z. 1 3 INTEGER 3 (+ SINE & COSINE FUNCTION PROGRAM #)
FUNC INTERCX, X1, X2, Y1, ¥2) 3 o+ INTERPOLATION FUNCTION =)
BEGIN

INTER = ¥1 + (¥YZ-Y1) DIV (XZ-X1) » ¢(X—X1) 3
END 3 ¢+ OF INTER #)

ok SINCX) FUNCTION FOR RANY X. —3I2767 (= SIN (= 32767 *)
FUNC SINaX) 3

CONST N=93 3 Ok N+il= NUMBER OF FIXED INTER'N POINTS #)
VAR I,X1,XZyY1,Y2,SIGN ¢ INTEGER 3
XARRAY £ ARRAY(N) OF INTEGER 4
BEGIN
FOR I := @ TO N DO XARRAYC(I) := 1@+[3 (# SETUP XARRAY#*)
X i= X MOD ZE@ 5 (* REDUCE ARGUMENT TO UNIT CIRCLE #*)
SIGN = +1 3 t# ASSUME BTH QUADRANT FIRST OFF #)
IF X (@ THEN BIGN i= -1 5 (#» FOR -VE ARG'E #)
X = ABSOX) 5t YES, -1 MOD JBE@ GIVES ~1 !!'#)
I == X DIV 390 3 ¢+ DETERMINE WHICH RUADRANT *)
CRSE I OF (4 ADJUST TO FIRST GUADRANT *)
@: BEGIN X 2= X H SIGN = SIGN END 3
iz BEGIN X i= 18@0-X 3 SIGN = SIGN END 3
23 BEGIN X i= X-1i8@ BIGN = -BIGN END 1
It BEGIN X = ZE@-X % SIGN = ~5IGN END
END 3 Ok OF CASE =)
I s= 1 3% ¢+ DETERMINE X'S PLACE IN XARRAY »)
WHILE XARRAY(I) ¢ X DD I := I+1 j
CASE I OF (+ DETERMINE INTERPOL'N POINTS)
1: BEGIN Y1 := Q0000 5 Y& 1= 05690 END 3
2 BEGIN ¥1 := P5£90 3 Y2 = 11287 END 3
i BEGIN Y1 == 11287 H Y2 i= 1E3IB4 END 3
[BEGIN ¥i := 16324 5 Y2 = 21082 END 3
=3 BEGIN Yi i= 21862 5 Y2 1= 251@1 END 3
|2 BEGIN ¥t i= 251@1 H Y2 1= 28377 END 3
7: BEGIM ¥1 == 28377 H Y2 = I0791 END 3
g: BEGIN Y1 = 38791 H Y2 1= 3IZES END 3
3z BEGIN ¥1 == 3I22E9 H Y2 = Z2767 END
ENDs (4 QF CASE #*)
X1 == XARRAY(I—-1) 5 ¢+ {EFT SIDE OF INTERVAL *)
X2 3= XARRAY(I) 5 Ok RIGHT SIDE OF INTERVAL #)

SIN = SIGN » INTERCX, X1.XZ,¥1,¥2) (% LINEAR INTERPOLATE #)
ENDs: ¢+ OF SIN #*)

FUNC COS{X) 5 <+ COSINE FUNCTION. REQUIRES SIN #)
BEGIN

Program continued

THERESTOF 80 / 79

Cos := SINCX+38)
END 3 ¢ OF COS *)

BEGIN (k MAIN USER PROGRAM BEGINS HERE #)
Z =13
WHILE Z ¢ 999 DD BEGIN
WRITE(TENTER Z ") 3
READ(Z#» 5 o ENTERING 989 STOPS PROGRAM *)
WRITES"SIN (' Z#:" =1, GIN(Z)#,13:13)
END ¢+ OF DO #3
END. ¢4 OF SIN FUNCTION DEMONSTATOR #)

The Exponential Function

In integer-based Tiny Pascal, the EXP function is limited to arguments
from O to 10. Its value exceeds 32767 for arguments over 10 and is set t0 0
for arguments less than 0. Consequently, a simple set of CASE state-
ments is used to implement the EXP function.

¢ EXPONMENTIAL FUNCTION FOR RADIO BHACK TINY PASCAL #)
VAR X * INTEGER 3 &+ GLOBAL VARIABLE #*)
FUNT EXPCTY 5

BEGIN
CRSE T OF @@ : EXP := DO@BL 5 (* HANDLE THE GOOD ARGUMENTE
PL : EXP = QO2@I 3
@z * EXP := Q00@7 3
@3 @ EXP = @@A2@
B4 @ EXP 1= Q0@ST
@5 : EXP 1= Q@148 3
®E : EXP 1= Q@B4AR3
@7 : EXP 1= @L@%7 3
@c * EXP == @IZ981 3
@3 * EXP i= Q81O ¢
1@ : EXP 1= 2ZORY
ELSE EXP = ITITEY ow THIS 18 THE OVERFLOW CRSE *3
END (# OF CRSE #*13

IF T<@ THEN EXP := Q0000 ¢# RETURN B FOR MINUS INPUTS »)
END G OF FUNCTION #) 3

BEGIN ¢+ MAIN PROGRAM BEGINS HERE *)

X := 8 3 ¢w DEFINE X S0 THE DO-WHILE WItL BEHAVE PREDICTRBLY +)
WHILE X ¢ 9923 DO (4 OUIT IF USER ENTER 9939 2
BEGIN WRITE(' ENTER AN ARGUMENT "3 3
READ(X#) 3
WRITE(' EXPC , X’ =, EXPIXI#, 130 %
END

END. (+ OF EXPONENTIAL PROGRAM *)

Morse Code Speed Timing Program

Connect your Morse code keyer's tone output {or your shortwavera-
dio receive output) to the cassette earphone input of the TRS-80, and
run this program. It measures the code speed in words per minute
(WPM] based on both the dit and the dah durations. You tell the program
how many dits and dahs to count, up to 100. The program stores the du-
ration of each dit and dah in an array. The array is then sorted (simple
bubble sort] by the SORT procedure, and the procedure AVERAGE
computes the average duration of dits and dahs combined. This results

80 / THE REST OF 80

in a first, crude estimate of the code speed. Next, the sorted array is
searched from the beginning until the spot is found where the dahs be-
gin. Two more code speed estimates are made—one based on just dits
and one based on just dahs. The procedures DELAY, MARK, and
SPACE are required to perform timing and detect the presence of dits
and dahs (MARKS]) and silence {SPACES). The program was tested on a
1.7 MHz machine.

This program was tested on a 32K machine and may not work on a
16K machine. Removing comments will help; use the TABs to align
statements or eliminate them altogether. Note that the comments apply
to the DELAY, SPACE, and MARK routines of the Morse code program.

VAR CODE. NUM. L. TEMP, AVG, J. TOTAL 3 INTEGERT (+ MORSE CODE WPM TESTER *}

DITAVG. DAHAVG, THRESHOLD, S : INTEGER: ¢# SUPPORT FUNCTIONS/PROCS)
X P ARRAY (1@ OF INTEGER:
PROC DELAY (M) 3 ¢# ADDS A LITTLE DELAY FOR TIMING *)

VAR Wi INTEGER%
BEGIN K:=@3 WHMILE K<{=N DO Ki=kK+1 END;

FUNC MARK 3 (# MEASURE DURATION OF MARK =)
VAR K:INTEGERS O LOCAL INTEGER K)
BEGIN
K2=03% (# INITIALIZE MARK COUNTER #*)
REPERT OUTP 255, @) 3 tw CLEAR CASSETTE LATCH #)
Ki=K+13 t# INCREMENT MARK COUNTER #+)
DELAY 1Y o WAIT A LITTLE WHILE w)
UNTEIL, CINP(25S)*127)3% ok EXIT IF BIT 7 STAYS OFF =)
MARK : =K tw RETURN VALUE OF MARK #)
END3 (4 OF MARK +)
FUNC SPACE 3 cw MEASURE DURATION OF SPACES #)
VAR K INTEGERS Or LOCAL COUNTER DIFFERENT FROM MARK #)
BEGIN
Ki=03 ¢+ INITIALIZE SPACE COUNTER #)
REPEAT OUTP(285:123 4 KEEP TIMING SAME AS MARK)
Kei=K+13 i+ INCREMEMT SPACE COUNTER #)
DELAY (1) v WAIT A LITYLE WHILE =)
UNTIL CINP(Z55)=255)3 (% TIlL. CASSETTE LATCH SEES SOMETHING =)
SPACE: =K ¢ RETURN VALUE OF SPACE *)
END 3 (#+ OF SPACE *)
PROC SORT{STRART,.STOP»: (* SORTS ARRAY X FROM LOW TO HIGH POINTS =}
VAR I.TEMP.IT @ INTEGER: t+ LOCAL VARIABLES #*)
BEGIN ¢# THE BUBBLE SORT *)
FOR 1= START TO (STOP--1> DO
FOR II:= 1 TO (STOP-1)-¢I-1) DO

BEGIN TEMP:=X(II)3
IF XCII+104XCITY THEN BEGIN XOIId:==X(II+133
X4LI+1):=TEMP
END
END
END3 ¢ 0OF SQORT #+)

FLNC AVERAGE(START. STOPY 5 ¢+ GIVES AVG OF X ARRAY FROM START TO STOP #+3

VAR I.S5UM :INTEGERS (+ LOCAL VARIABLES #)
BEGIN
SUM: =0} t+ INITIALIZE SUM TO ZERO *+)
FOR I:= START TO STOP DO SUM:=8SUM+X{I3: (» FORM THE SUM =)
RVERAGE := BUM DIV (BETOP-8TART+1) t# CALCULATE AVERAGE =)
ENDY % (OF RVERRAGE *) t# END OF SUPPORT FOR WPM PROG *)

Program continued

THERESTOF 80 / 81

BEGIN (+ MAIN PROGRAM FOR MORSE CODE WPM MEASUREMENT #)

WRITE(™ HOW MANY MARK SAMPLES ? ") 3iREAD(TOTALH)

IF TOTAL »18@ THEN TOTAL:=10@3 Ok KEEP TOTAL LEGIT #)

FOR J:=1 TO TOTAL DO BEGIN S:i=SPRCE; (+ IGNORE SPACES) (% GATHER #)
XCJyi=MARK ¢+ AND BTORE MARKS *) (+ DRATRA#*)

END 3

FOR Ji=1 TO TDTAL DO WRITECX(J)#,9)5 ¢+ PRINT RAW DATA =)

WRITE(13, " ====== == =wmmty 1303

READCNUMY 3 1 USER HIT WEY WHEN READY TD VIEW MORE DATA 3

SORT{1,TOTAL>} (+ SORT THE ENTIRE ARRAY OF MEASUREMENTS 3

AVG:=AVERAGE« L, TDTALIS % COMPUTE GROSS AVERAGE WPM *)

FOR Ji=1 TO TOTAL DD WRITECXCJ)#%,3); (% PRINT SORTED MARK DATA *)

WRITE(1®, srrrhr e ssErloCIdrCsCEonoooromommmmomasmsme’? 13

READ(NUMI: ¢* USER HIT KEY WHEN READY TO VIEW MDRE DATA #*)

Ji=03

REPEAT Ji=J+1 (+ FIND WHERE THE MARKS START AND SPACES END)

UNTIL £ CXETAVEY OR O TOTALD)3

DITAVG: =AVERAGE (1, J-1)3% O+ AVERAGE LENGTH OF THE DITS #)
DAHAVG : =AVERAGE (J. TOTAL) 3 o+ AVERAGE LENGTH OF THE DAHS *»
THRESHOLD: = ¢DITAVG+DAHAVG)DIV 25 O+ MIDWAY BETWEEN DITE AND DAHS #*)
WRITEC13)3 t# REPORT THE FINDINGS *»
WRITE (' AGGREGATE AVERAGE = ', AVGH, 1333

WRITEC' DIVIDING SUBSCRIPT IN X-ARRAY = *, J#. 1303

WRITE('DIT AVERRGE = "+ DITAVGH: 1)}

WRITE(" DAH AVERAGE = 7, DAHAYGH, 1315

WRITE(' THRESHOLD = ', THRESHOLD#. 13}

WRITEC' WPM BASED ON DITAVG = °, (2Z4 DIV DITAVG)#,13)3
WRITE(® WPM BASED ON DRHAVG = ', (659 DIV DAHAVGI & 13)3

END. ¢% OF MORSE CODE WPM MEASURING FPROGRAM #)

Morse Code Reading Program (32K Needed)

This program reads the audio signals from the radio receiver at the
black earphone input plug. No special electronics is needed. It decodes a
fair range of code speeds without special modification.

The main program detects the longer silent period between letters in
order to separate the dits and dahs that form letters. It counts the num-
ber of code elements {NUM)} in a character and forms a binary number
{CODE) consisting of zeros and ones. The zeros represent dits and the
ones represent dahs.

Armed with NUM and CODE, the procedure DECODE scans its
CAGSE statements to find the matching letter, digit, or punctuation mark.
If a legal character is found, it is returned for printing. If there is a long
period of silence, the program prints a blank and ceases printing until an-
other character is received. An error causes a dollar sign to be printed.

It's easy to add more codes to the DECODE procedure. Simply find
the CASE for the number of code elements, NUM, and add an extra
CAGSE for the CODE of that new character. The less-than sign (<), for ex-
ample, would be assigned the code ..-- (dit dit dah dah). There are
NUM=4 code elements. The binary code is 0011, so CODE=3. The
source program is edited as follows:

4: BEGIN
CASE CODE OF
O:L:="H"; 1L:L:="V": 2. L:="F"; 3: L:="<"":

82 / THE REST OF 80

The text of the Morse code decoder program follows:

VAR CODE, NUM. L. TEMP. LP ¢ INTEGERS ¢+ SUPPORY PROC’S FOR MORSE DECODER +)
o+ SEE WPM PROGRAM FOR INFO =)

PROC DELAY¢(N>3; (% CREATE A DELAY PROPORTIONAL TO N %)

VAR K INTEGER:

BEGIN #:=0% WHILE K<{=N DO Wi:=K+1 END:

FUMNC MARK: ¢+ RETURN DURATION OF ™MARKS (DITS/DAHS) #)
VAR Kz INTEGERS

BEGIN
K:=03
REPEAT QUTP 2S5, @75
Ke=k+13
DELAY (1}
UNTIL (INPCRES)=1Z720RCK)SEB) 5 C» EXIT IF MARK TOO LONG =)
MARK : =K
END3 Ok OF MARK =}

FUNC SPACE3 «* MEASURE DURATION OF SPACES BETWEEN THE MARKS)
VAR K1 INTEGER3

BEGIN
Ki=@3
REPEAT OUTP(255,173%
(2=K+13
DELAY (1)

UNTIL ¢INPCZSS)=2585)0R(K)S@)5 ¢x EXIT IF SPACE TOO LONG #)
SPACE : =k
END 3 (% OF SPACE *}

PROC DECDDE; (# RETURNS CHARACTER IN GLOBAL L GIVEN NUM & CODE =}

BEGIN t# SUUPPORTE MORSE CODE DECODER PROGRAM #*)

CASE NuM OF
@: BEGIN L:=' ' END% tw NO CDDE ELEMENTS GIVEN #*)
1: BEGIN (v ONE CODE ELEMENT GIVEN #)

CASE CODE OF
@ L:="E"3 13 Li=T"

END
END3
2: BEGIN ¢4 TWO CODE ELEMENTS GIVEN #)
CASE CODE DF
@: Lz='1"% 1t L:="R"% 2% Li='NY S I L=t
END
END 3
I BEGIN ¢# THREE CODE ELEMENTS GIVEN #)
CASE CODE OF
@ L:="5" 1 Li="U0% 2T Le=TR S It Li="W
4: L3='D’'% S: LI="K'3 B3 Li='O"% 7 Li='O0
END
END3
4% BEGIN (# FOUR CODE ELEMENTS GIVEN)
CASE CODE OF
@: Li="H"j 12 Li=’y'3 2t Ls="F's
4t Li=TL0 B Ls="P3 73 Li=20"5
g Li="B"3 93 Lt="X"35 1@ L:="0"3% 113 Li="Y¥'3
12: Li="7"5 13: Li="Q0
END
END3
53 BEGIN o+ FIVE CODE ELEMENTS GIVEN #)
CASE CODE OF
@: La="5"3 11 Ls="4vs FroLisT3Ty 7@ Le=T2Ty
152 Le="1'5 163 L:="E'3 2431 Li='7'3
28: Li="8"3 3Z@: Li="9'y 31t Li='@"; 18: Li=T/7%
1@: BEGIN L:i=" '35 WRITE(' C(END OF MESSAGE) ')> END
END
END3
4] BEGIN t# SIX CODE ELEMENTS GIVEN *)

Program continued

THE RESTOF 80 / 83

CASE CODE OF

123 L:="727y 21t Le=".7% 338 Li="-';
1z =, T
END
ENDs
B BEGIN (+ EIGHT CODE ELEMENTS GIVEN %
CASE CODE OF
@: BEGIN L:=" ’3jWRITEC' (ERROR) *) END
END
END

END
ENDs (+ OF DECODE PROCEDURE)

BEGIN ¢+ MORSE CODE DECODER MAIN PROGRAM BEGINS %)
REPEAT
CODE:==@ ;7 NUMi=@ 5 LP:=L % L:="%"3
WHILE SPACE (=2@ DO
BEGIN TEMP:=MARK?}
IF ({TEMP}=2@1ANDTEMP {50)
THEN CODE:= 1+(CODE SHL 1) ELSE CODE:=CODE SHL 1%

NUM : =NUM+ 1
END S
DECODE
IF ¢LP=" " JAND(L=") THEN ELSE WRITE(L) 5 LPi=lL
UNTIL 1=2 t+ LOOP FOREVER #}

END. o# OQF MORSE CODE DECDDER PROGRAM #)

84 / THE REST OF 80

11

Beginning Scrolling

by Roger B. Wilcox
System Requirements;
Model 1
16K RAM
Disk BASIC

You don't have to have an assembler or much experience to use this
assembly-language program (see Figure 1), It combines a program by
Roger Fuller to scroll a window of lines up and down {80 Microcomput-
ing, January 1982, p. 30), and a program by M. Keller to scroll a number
of lines down while protecting the top and bottom lines (80 Microcomput-
ing, February 1982, p. 264).

This program lets you scroll forward and backward through long lists
of data, using screen lines 3 through 14, while headings or instructions
are protected on the top and bottom lines. It has two entry points, called
by USRO and USR1. There is one exit point, at the end. Let's look at the
part of the program that moves the lines on the screen up (USRI section
of the Program Listing}.

The key machine-language instruction is LDIR, and this section of the
program is built around it. LDIR moves a byte of data from the HL regis-
ter pair to the DE register pair, and checks to see if register pair BC is
zero. If not, BC is decremented, and HL and DE are incremented. This
sequence repeats until BC is zero. LDIR acts like a single instruction
FOR-NEXT loop, using the BC, HL, and DE register pairs.

If HL has the starting address of a line in video memory, DE has the
starting address of the next line up, and BC is initialized to the number of
bytes to move {11 lines="704}. You can see how LDIR begins with the
first line and moves it byte-by-byte up to the next line. LDIR automati-
cally sets itself up to transfer the next line, and continues to drop down
through the lines on the screen until BC =0 at the end of screen line 14.

THE REST OF 80 / 85

DATA MNEMONIC REMARKS
«xxx MOVE DOWN, USRO «x+x

33,63,63 LD HL,16191 End of line 13
17,127,63 LD DE, 16255 End of line 14
1,192,2 LD BC,704 Number bytes to move
237,184 LDDR Move lines down
35 INC HL Get start of top line
2413 JR 13 (ERASE) Erase top line

«++v« MOVE UP, USRI #++»
33,192,60 LD HL,15552 Start of line 4
17,128,60 LD DE, 15488 Start of line 3
1,192,2 LD BC,704 Number bytes to move
237,176 LDIR Move lines up
213 PUSH DE Put DE in stack
225 POP HL HL=DE

txex ERASE *%»»
62,32 |ERASE] LD A" Load A with space
6,64 LD B,64 Number bytes to clear
119 (LOOP) LD (HL},A Clear one byte
35 INC HL Next byte
16,252 DJNZ -4 {LOOP) Loop until B=0
201 RET Return to BASIC

Figure 1

The program begins by initializing HL, DE, and BC for use by the
LDIR instruction. {Initialization means to establish a starting value.) This
is done with the mnemonic LD dd,nn, where dd represents a register
pair, and nn is the least significant byte (LSB} and most significant byte
{MSB} of the number {video memory address, in this case). The Z80 code
listing shows the format for this instruction as 00dd0001,n,n. The binary
value of dd varies from 0 {00} to 3 {11} as follows: 0=BC, 1=DE, 2=HL,
3=5P. For HL the binary part of the format becomes 00100001, which is
decimal 33 from the conversion table.

The BASIC program uses line 1 as a protected line, and line 2 is re-
served as a space, so line 3 is the top of the scrolling lines. Line 4 is the
first line to be moved up. Video memory starts at decimal address 15360,
and line 4 starts at 15552 {15360 + 3*64), which converts to LSB=192
and MSB=60. Therefore, the data representing the first instruction of
this section of the program is 33, 192, 60. This procedure is repeated for
LD DE, 15488 (the starting address of line 3, the next line up) and for LD
BC, 704.

Initialization complete, the next instruction is LDIR, represented by
decimal 237, 176. When this section of the program is called by a USR1
statement, 11 lines on the screen (4-14) are moved up one-by-one. The
bottom scrolling line must be erased to provide a clean space to print the
next line of data from BASIC. Either LD (DE), A or LD (HL),r can be used
to clear the last line, but here [chose LD (HL),r. After the last LDIR in-

86 / THE REST OF 80

crementing of DE, DE contains the starting address of line 14, which is to
be erased using HL. A quick way to transfer this address to HL is to
PUSH the value in DE into the stack and then POP it back into HL.

The erase operation loads register A with a space {ASCII code 32), then
loads the HL address with the contents of A. Register B is used for a byte
counter by loading it with the number of bytes to clear {one line equals
64 bytes).

The B register is used for the counter because the DJNZ e instruction
used for the loop {like GOTO in BASIC) checks B for a non-zero status,
and also decrements B, before performing a relative jump. The value of e
is the number of bytes to jump, and requires an explanation. In this case,
you want to jump backward in the code to the start of the LD (HL),A in-
struction. Counting the number of bytes to jump involves the program
counter {PC). After an instruction is read, the PC has the address of the
byte after the instruction. Relative jumps are counted from this byte, to
the first byte of the target instruction. Here, it is a jump of four bytes.
Since this is a backward jump, the value is a negative number. Negative
numbers in assembly language must be represented by their two's com-
plement. In simple terms that means that 255= -1, 254 = -2, etc. The
—4 becomes 256 - 4 =252, and the data values for DJNZ -4 are 16, 252.

Just prior to the loop, HL is incremented, so the next byte is cleared
each time the loop is performed. At this point, 11 lines of the screen have
been moved up one line and the last line has been erased. A RET instruc-
tion returns control to the BASIC program.

The [earlier] section of the program that moves lines down is called by
USRQO. It is similar to the move-up routine, except that LDDR does the
moving instead of LDIR. The difference is that LDDR decrements HL and
DE. Therefore, the screen address used to initialize HL and DE must be
the end of the lines. Line 16 is a protected line, and line 15 is a space be-
tween the scrolling lines and the bottom. Line 13 is the first to move
down (to line 14). The starting address of line 13 is 15360 + 12*64 = 16128,
and the end of line 13 is 16128+ 63=16191, which is loaded into HL.
Register pair DE, for line 14, is handled in a similar manner. BC is loaded
again with the number of bytes in 11 lines (704).

After the last LDDR decrement (BC =0}, HL has the address of the end
of line 2, which is above the scrolling line. Incrementing HL moves it
down to the starting address of the top scrolling line {line 3), so that it can
be cleared. Since the erase routine uses HL to clear a line, it services both
the move-up and move-down sections of the program.

This program listing can be incorporated into other programs, and
modified if necessary. As long as there is a blank line above and below
the scrolling lines, the ERASE routine can be deleted; make the number
of bytes to be moved equal to 12 lines {768 bytes), and the blank line is
moved to clear the last scrolling line. The RET instruction replaces the

THE RESTOF 80 / 87

LD A" " instruction. The INC HL and PUSH/POP are no longer needed,
and the 2-byte JR 13 can be replaced by a 1-byte RET. With these modifi-
cations you should end up with a 24-byte assembly program. Change the
POKE limits in the BASIC program to agree with the number of bytes.

Program Listing

5 '#%% SCROIL, UP AND DOWN WITH PROTECTED LINES TOP & BOTTOM

19 POKE16561,87:POKE16562,127 '*** SET MEMORY SIZE TO 32599

2@ CLEARL@2%:DIM PAS(26):CLS

3¢ FORX=32680T032635 : READT : POKEX, J : NEXT

40 DATA 33,63,63,17,127,63,1,192,2,237,184,35,24,13

5@ DATA 33,192,60,17,128,60,1,192,2,237,176,213,225

60 DATA 62,32,6,64,119,35,16,252,201

7¢ DEFUSRI=32600: DEFUSR1=22614:DEFINT K,L,X :KA=14408

72 ol te e Yook v i ok ok e ok

74 '* THE PROGRAM THAT CREATES THE DATA TO BE SCROLLED

76 '* GOES IN THIS AREA. LINE 8¢ IS A DEM) PROGRAM.

80 FORX=1TO26 :PAS (X)=STRINGS (1@, 64+X) s NEXT

82 '* CHANGE LINES 99 AND 1@@ TO MATCH YOUR PROGRAM NEEDS.

84 '* (HANGE PN TO EQUAL NUMBER OF DATA LINES.

86 Fodrdrdede e Wk dewr

9¢ PRINT@96@, "PRESS: <[> TO SCROLL UP:; <“CHRS(92)"> TC SCROLL DO
WN; <CLEAR> FOR MENU";

199 PRINT@Z, " ITEM NO. DATA" : PRINT

110 FORX=1TO12:PRINTTAB(2@)X, PAS (X) :NEXT

120 LEw»12:LT=1:PN=26

130 K=PEEK(KA):IF K=8 AND LT>1 THEN LT=LT-1:LE=LE-1:PRINT@USR®(1
48),LT,PAS (LT}

149 ?F K=16 AND LE<PN THEN LE=LE+]:LT=LT+1:PRINT@USRL(852),LE,Pa
$(LE);

158 IF K=2 THEN CLS:STOP '*** REPLACE WITH RETURN TO MENU, ETC.
168 GOTO130

.f’,,f /////'/,'/// ' f‘l{‘:-“/:{?\/
S :' 7. /"‘;’ D .'/
& ™ /,.';} 4 .‘///"",‘1 ‘Q [/ // v ’é’//

/

1,
XKalnd 79
.."
~ Sy

88 / THE REST OF 80

12

Line Drawing

by Daniel Lindsey System Requirements:
Level Il or Disk BASIC

Model T or [H

16K RAM

Editor/assembler

ASIC is too slow for games with graphics. Level II BASIC is flexible,
but falls short when high-speed drawing is required. The STRING$
function helps, but plots only horizontal lines.

There are ways around this problem. You can buy a BASIC compiler
to convert programs into machine code, but this is expensive. You can
suffer with BASIC, or you can write an assembly-language routine to
draw lines, accessing it through the USR[n) function from BASIC.

Operation

Program Listing 1 draws a line between any two points on the screen
given the (x,y} coordinates of both points. Program operation is easier to
follow from the algorithm, outlining the flow of the program in non-com-
puter language {Figure 1}.

To understand the program's operation, divide it into four sections:
the BASIC interface, the slope calculator, the x- or y-plot setup, and the
plot routine.

The BASIC interface links the BASIC program to the plot subroutine.
It compares the number received from the USR call to the known com-
mand numbers, jumping to whatever routine is requested, or returning
on an illegal command.

Before calling the plot subroutine, each routine sets a flag signalling
the set routine to erase or draw. If the command is a table operation, the
program moves a pointer through the table of coordinates, drawing or

THEREST OF 80 / 89

erasing lines. The BASIC interface provides the necessary functions that
use the plot subroutine from a BASIC program.

The slope of a line is the ratio between the change in y- and x-coordi-
nates. Multiplying the slope of a line by an x-coordinate results in its cor-
responding y-coordinate. This lets the plot routine produce the x- and
y-coordinates along the requested line. However, as the line approaches
vertical, the slope approaches an infinite value. If the line is at an angle
greater than 45 degrees, the routine switches the axis along which it
counts,

The slope calculator gathers the necessary values, then generates the
slope of the requested line. Since this is the entry point of the plot sub-
routine, the routine clears the temporary storage area. It then collects the
two x-coordinates from the table and solves for the change in x. After do-
ing the same for the y-coordinates, the routine compares the change in x
with the change in y. If the change in y is greater than the change in x,
then the angle of the line is greater than 45 degrees from the x-axis, and
the routine must plot along the y-axis to avoid a slope that is greater than
one. Once the routine has branched on a y-plot or continued on an
x-plot, the registers are loaded with the change in x and the changeiny,
and the division subroutine is called to calculate the slope. The slope cal-
culator produces a slope and the axis from which it was taken.

Figure 1. Piot Algorithm

BASIC INTERFACE

1. Find n of USR(n}
2. Cases—If:
n=0 then (line draw)
set flag to draw mode
jump to draw program
n=1 then (line erase}
set flag to erase mode
jump to draw program
n=2 then (table draw)
point to table of coordinates
set flag to draw mode
Until second x-coordinate is greater than 127
call draw program {as a subroutine]
move pointer down through the table
End Until
return to BASIC
n=3 then (table erase}
point to table of coordinates
set flag to erase mode
Until second x-coordinate is greater than 127
call draw program {as a subroutine)
move pointer down through the table
End Until
End Cases

90 / THE REST OF 80

SLOPE CALCULATOR

1. Clear storage area

2. Calculate the change in x-coordinates

3. Calculate the change in y-coordinates

4. If the change in y is greater than the change in x
(plot along the y-axis)
calculate slope: change in x/change in y
jump to plot setup [y-plot)

Else:

(plot along x-axis}
calculate slope: change in y/change in x
jump to plot setup {x-plot)

Y-PLOT SETUP

1. Load the counter with the smaller y (starting count}
2. Load memory with the larger y {final count)
3. If the starting count x-coordinate is greater than the final count x-coordinate then
signal a negative slope
Else
signal a positive slope
4. Jump to plot section

X-PLOT SETUP

1. Load the count with the smaller x {starting count)
2. Load memory with the larger x (final count}
3. If the starting count y-coordinafe is greater than the final count y-coordinate, then
signal a negative slope
Else
signal a positive slope
4. Jump to plot section

PLOT

1. While count is less than or equal to final count:
If plot flag is equal to x-plot then,
load the HL registers with the [x,y) coordinates
Else
load the HL registers with the (y,x) coordinates
End If [the [x,y] coordinates are the starting count and the current alternate count,
which was set to a starting value in the setup section)
Call set subroutine to light pixel
If angle of line is 45 degrees then
If slope of the line is negative then
decrement alternate count
Else
increment alternate count
Else
If the line's slope is negative then
add the two's complement of the slope to the alternate count
Else
add the slope of the line to the alternate count
End If
Increment count
End While

THE RESTOF 80 / 91

The x- or y-plot setup initializes the registers and memory necessary
for the plot routine to generate the x- and y-coordinates between the two
given points. The x- and y-plot routines work the same way. The only
difference is that the x- and y-coordinates are switched. The x-plot rou-
tine compares the two x-coordinates, storing the larger as a final count in
temporary storage, and the smaller as an initial count in the C register.
The y-coordinate that corresponds to the initial count is stored in the D
register as an initial y. The DE register pair stores the y-coordinate corre-
sponding to the larger x-coordinate.

The D register contains the integer y-count, and the E register contains
the decimal portion of the y-count. The routine compares the initial and
final y, signalling a negative or positive slope in the temporary storage
area. The routine signals an x-plot in the temporary storage, saves the
slope in the B register, and passes control to the plot routine. The x- or
y-plot setup prepares all values needed by the plot routine to generate a
line.

The plot routine uses the information gathered by the previous sec-
tions to generate all the x- and y-coordinates between the two given
points. Depending on the flag set in one of the setup routines, this rou-
tine counts along an axis from the smallest x or y to the largest x or y. As
the program loops through the routine, the siope in the B register is add-
ed to the alternate coordinate in the DE register pair. The current (x,y)
coordinates are sent to the set subroutine through each loop of the plot
routine. In the case of a 45-degree angle line (slope equals one}, the count
is incremented, and the alternate coordinate is either incremented or
decremented, depending on the sign (plus or minus) of the slope. Once
the line has been plotted, control is returned to either BASIC or the BA-
SIC interface. The plot routine generates the actual values of the x- and
y-coordinates between the given points, setting pixels (picture elements)
as it loops through the routine.

Using the Routines

After making a machine-readable copy of the program, you are ready
to start using the line subroutine in your computer. Always set memory
size to 32000 before loading the program.

Before you can draw a line, you must store the coordinates of the end
points of the line in memory. Simply POKE the first x in 32436, its corre-
sponding y in 32437, the second x in 32438, and its corresponding y in
32439,

Once the coordinates are in memory you can erase or draw a line. To
draw a line use USR(0}, and to erase a line use USR(1). For example, to
plot a line diagonally on the screen, POKE 0 into 32436 and 32437,
POKE 127 into 32438, POKE 47 into 32439, and type M=USR(0}. A
white line will instantly appear from the upper left corner to the lower
right corner of the screen.

92 / THE REST OF 80

While the line functions serve many useful purposes, many applica-
tions require figures with more than one line. The table draw functions
(draw and erase} solve this problem.

They are similar to the line functions with one exception. The line
functions draw only one line, while the table functions draw as many
lines |connected) as the table can hold. The following example will help
you understand the operation of the table functions.

Location Value
32436 0
32437 0
32438 127
32439 0
32440 127
32441 47
32442 0
32443 47
32444 0
32445 0
32446 255

Figure 2

To draw a border, place the numbers shown in Figure 2 into the indi-
cated mernory locations. After these values are in memory, USR(2) will
draw the border, and USR(3} will erase it. To build a table, simply place
the (x,y} coordinates of the points in the order they are to be drawn in
ascending memory. Terminate the list with a number greater than 127.

Using these functions, you should be able to draw lines at an average
speed of 50 lines per second. This greatly reduces the time that it takes
for a program to set up a screen. Try the examples in Program Listings 2
and 3.

This program is designed for a cassette-based Mode! I or III machine.
Both Level I and Model III BASIC require the starting address of any
machine-language subroutines to be stored in memory addresses 16526
and 16527. The usual approach is to POKE the correct values in from the
BASIC program and then do a USR(n) to call the machine-language rou-
tine. This program takes a different approach: lines 280 and 290 of the
assembly-language routine take care of loading the correct value, 7DO0H
(32000 decimal} into locations 16526 and 16527.

Program Listing 1

20109 ;

201192 : * LINE DRAW *

ngL2a ;

93130 : By Daniel Lindsey (1/1/81) (C) Program continued

THERESTOF 80 / 93

408E
408E
D08
7000
7083
7D04
7026
7Da8
TDRA
ToacC
TDOE
D19
D12
7D14
7D15
7D18
DA
1n
20
D22
D25
7D29
7D2C
7D2E
7D32
7D33
7D36
7D38
7034
7D3D
D41
7D44
7D46
TD4A
7D4B
7D4E
7D5@
7D52

7D55
7059
7D5D
7D5E

237D

CD7FBA
L)

FE0S
2815
FE@L
2889
FEG2
2815
FEG3
2829

9
21B37E
3620
C3557D
21B37E
3601
C3557D
FD21B47E
21B37E
3eQ1
FDCEAZTE
ca
CD597D
FD23
FD23
C32E7D
FD21BA7E
21B37E
3604
FDCRA27E
o)
Cn597D
FD23
FD23
C32E7D

FD21B47E
DD21Bl7E
AF
CD7720

: This program draws a graphics line between any
s two points on the screen; given the {X,Y)} coordinates
+ of both points.
; Cormands:
; USR({@)-Draw a single line
; USR(1)-Erase a single line
; USR(2)-Draw a set of lines from a table
: USR({3)-Erase a set of line fram a table
:' *ik QRSTC INTERFACE ***
ORG 16526
DEFW BEGIN ;Define entry-USR call
ORG TDeEH rActual start of program
BEGIN CALL BATFH 1Get N of USR(N}
Lo AL sValue of N
CP [} ;Check for draw
JR Z,DRAW sJunp if draw
cP 1 ;Check for erase
JR Z,ERASE sJump if erase
CP 2 :Check for table draw
JR Z,TDRAW ;Jurp if table draw
CP 3 :Check for table erase
JR Z,TERASE ;Jump if table erase
RET :+Return to BASIC
ERASE LD HL, ESTOR :Pointer to flag
LD (HL), @ :Set flag to erase
JP START ;G0 erase line
DRAW Lo HL,ESTOR sPointer to flag
LD {HL),1 :Set flag to draw
JP START ;G0 draw line
TDRAW [.D IY,TABLE ;Point to coordinates
ID HL,ESTOR ;Point to flag
LD (HL),1 1Set flag to draw
D1 BIT 7, (1Y+2) :1Second X cocrdinate
RET NZ sReturn if X»>127
CALL START2 ;Draw line
INC Iy :Move pointer through
INC 1Y H the table
JP TDL yJump to top of loop
TERASE LD IY,TABLE ;Point to Coordinates
1D HL, ESTOR ;Point to flag
LD (HL),® 18et flag to erase
TEL BIT 7. (1¥+2) 1Second X coordinate
RET NZ ;Return if X»127
CALL START2 ;Erase line
INC IY :1Move pointer through
INC Iy ; the table
JpP TD1 ;Jump to top of loop
H **% FND OF BASIC INTERFACE ***
H *kh STOPE CALCULATOR ***
START 1D 1Y, TARLE :Pointer in table
STARTZ 1D IX,STORE ;Pointer in temp. storage
XOR A ;Clear A
LD (IX+2),A ;Set storage area to zero

94 / THE REST OF 80

7061
D64
D67
TDoA
706B
7D6E
7076
7071
074
D77
D78
7D7B
07D
ID7E
7D7F
7082
7083
7084
087

7D8B
708C
7D8F

7092
7095
7008
7099
7DaC
709D

7Da3
DA6
70A9
TDARA
70AD
0BG
7DB3
7084
7DB6
7DBA
7DBB
7DBE
7DC2
7DC3
7DC6
7DC8
7DCC

7DD
7DDL
70D4
7DD7

700D
7DDE
7DE1

DD77@1
FD5604
FD7E@2
92
F27¢7D
ED44
57
FDSES1
FD7ER3
93
F27D7D
ED44
5F

92
F28A7D
4B

62
CD437E
C3927D
63

4h
CD437E
C3067D

FD7ESD
FD4632
B8
F2A97D
4F
DD7020
FD7EZ]
FD66E3
C3B37D
48
Do7706
FD7E@3
FDe6@1
57
1ESG
DDCB@L1CE
BC
FAC27D
DDCBA1D6
45
C3F77D
FD7EAL
FD4693
B8
F20D7D
4F
DD7¢0d
FD7E2Q
FDE6E2
C3E77D
48
DD7700
FDVE@2

23759
aa7ed
22770
23780
20790
sl
28818
20829
29830
20840
20859
29869
oes7e
2880
20899
23929
29919
20928
293¢
22949
28959
28960
09970

2980 ;
#0990 ;
21088 ;
21910 ;
81920 ;

21930
21048
91050
91060
21978
01280
21929
plleg
g111e
2112e
91138
@114
@115@
21160
#117&
21180
#1190
21209
21218
B1220
21238
21244
91250
21260
01272
Q1280
91299
21308
#1310
a1328
21338
@1340
21358

CONT1

CONT2

XPl

Xp2

XP3

YPLOT

YP1

LD (IX+1),A

LD D, (1Y+3) :load in X ccordinates
1b A, (IY+2)

SUB D ;Find change in X's

JP P,CONT1 sJump if positive

NEG ;Change to positive value
LD DA rSave change in X's

1D E,(IY+1) :Load in Y coordinates
LD A, (IY+3)

SUB E ;Find the change in Y's
Jp P,CONT2 ;Jump if result positive
NEG ;Change tO positive value
LD E,A :Save change in Y's

SUB D ;Find change in Y's-X's
JP P,OONT3 ;Jump if slope positive
LD C,E ;Setup for divide routine
LD H,D ;7 X'sfY's

CALL DIV ;Calculate slope

JP XPLOT ;Junp to next section

LD H,E

D c,b

CALL DIV

JP YPLOT

*** END OF SLOPE CALCULATOR **¥

*** SETUP FOR PLOT ROUTINE ***

LD A, (IY+HY) :Lload in the X's

LD B, {IY+2)

Ccp B ;Compare X's

JP P,XP1 yJump if A>=B

LD C,A 1Save starting count
LD {IX+3),B :Save final count
LD A, (1Y+1) :Load in the Y's

D H, {I¥+3) .

JP Xp2 sContinue @ XP2

LD C,B :Save starting count
LD {IX+3),A :Save final count
LD A, (IY+3) :Load in the Y's

LD H, (1¥+1)

LD D,A :Save initial Y

LD E, ¥ ;Clear E

SET 1, (I%+1) ;Signal XPLOT

CP H :Compare the ¥'s

JP M. XP3 ;Jump if slope positive
SET 2, (IX+1) ;Signal negative slope
LD B,L ;Save slope

Jp PLOT ;Continue @ PLOT

LD A, (IY+1) :Load in the Y's

LD B, (IY+3)

CP B ;Campare the Y's

JP P.YP1 yJump if B

LD C,h ;Save starting count
LD {IX+3),B ;Save final count
LD A, (IY+9} ;Load in the X's

1D H, (I¥Y+2)

Jp YP2 ;Continue @ YP2

LD c,B 1Save starting count
LD {IX+H3)},A ;Save final count
LD A, (TY+2) ;Load in the X's

Program continued

THE RESTOF 80 / 95

7DE4 FDEEOD @1368 LD H, {(TY+3)
TDE7 57 P137@ YP2 1D D,A :1Save the intial X
7DE8 1E0G 7138¢ D E,8 ;Clear E
7DEA DDCB@L18E Q1399 RES 1,{I¥+1) ;8ignal YPLOT
7DEE BC 01420 CP H :Check for negative slope
7DEF FAF67D 01410 JP M, YP3 ;Jump if slope positive
7DF2 DDCROLDG 91420 SET 2, (IX+1) ;Signal a negative slope
TDFe 45 21438 YP3 1D B,L ;1Save slope

21448

01459 ; **% END OF SETUP FOR PLOT *#**

21460 ;

21470 ; *hk PLOT ww*

01488 ;
7DF7 79 #1499 PLOT LD AC :Get current count
7DF8 DDBREZ@ Q1589 CP {IX+0) ;Campare with final count
7DFB 2821 91514 JR Z,PL1 ;Jump if last loop
7DFD F@& #1529 RET P RETURN TO BASIC |
7DFE DDCBO14E @1530 PL1 BIT 1, (IX+1) 1 1-XPLOT @-YPLOT
TES2 2805 21540 JR Z,PL2 Jume on YPLOT
7ER4 61 a155@ LD H,C sLoad HL with X,Y
7EQ5 6A 21560 b L,D ; coordinates for XPLOT
7EB6 C30R7E P157@ JP PL3 ;Continue @ PL3
TEQ9 &9 #1583 PL2 LD L,C ;Load HL with X,Y
TEOA 62 #1599 LD H,D H cocrdinates for YPLOT
TEZB E5 gl609 PL3 PUSH HL ;Save coordinates
TE2C D9 21619 ExXX :Swap registers
7E2D El Q1620 POP HL iRestore coordinates
7E@E CDSETE @1630 CALL SET 1Set point
7ELl D2 91649 X :Restore registers
7E12 DD21BLl7E ©165@ 1D IX,STORE 1Restore pointer
7E16 DDCEOLSE Q91660 BIT 3, (IX+1) ; Z-ANGLE/NOTAS, 1-ANGLE 45
TE1A 280F ag1678 JR Z,PL6 ;Jump if angle not 45
7E1C DDCROLSE 1688 BIT 2, (IX+1) 19-pos. l-negative slope
TE20 2804 21699 JR Z,BL4 Jump if slope positive
7E22 15 21700 DEC D 1Coordinate - 1
7E23 C3277E @171 Jp PL5 ;Continue @ PLS
7E26 14 #1720 PL4 INC D ;Coordinate + 1
TE27 BC #1733 PL5 INC c 1 Count=Count+],
TE28 C3F7ID @1748 JP PLOT :Jump to top of locp
7E2B DDCBP156 $1750 PL6 BIT 2,{IxX+1) ;@-pos. l-negative slcpe
TE2F 2889 B1760 JR Z,PL7 ;Jurp if slope positive
7E31 26FF 81778 LD H,255 ;Set all bits in H
7E33 78 91780 LD A,B ;Load with slope
7E34 2F 21790 CPL ; Complement
7E35 6F 21800 LD L,A tHL has 2's camplement
7E36 23 21819 INC HL ;Canplete 2's complement
TE37 C33D7E Q1820 Jp PLA 1Go add negative slope
TE3A 2600 21839 PL7 LD H,d ;Clear H
7E3C 6B 21849 LD L,B ;Positive glope in HL
7E3D 19 21858 PLS ADD HL,DE ;A3d slcope to count
TE3E EB 2186 EX DE, HL ;Store result in DE
7E3F 2C 21876 INC o ;AAd one to count
7EAB C3F7TD Q1888 JP PLOT +Jump to top of loop

91899 ;

219¢a ; **% END OF PLOT SECTICHN *¥**

21919 ;

d192a ; *¥* SUBROUTINE DIVIDE **+

21930
7E43 7C 21948 DIV LD AH :Check for 45 deg. angle
TE44 91 P195@ 5UB C H & Jump if not 45
TEAS 2005 21968 IR NZ, V1 H

96 / THE REST OF 80

7E47
TE4B
TEAC
TEAE
7TESQ
TE52
7ES3
TES4
7E57
7ES8
TESA
TESC
7ESE

TESF

TE6L
TE63
TES5
TE67
7E68
TE6GA
TB6B
7EED
7ETQ
TE72
TE73
TE74
7E75
7876
7E78
7E7A
TE7B
TETD
JETF
TESS
7EB3
7EB4
TESS
TE8A
TEBC
TEBD
TESF
7E9L
TE93
7E94
TE97
TE99
TE9B
7TESE
7EOF
TEAL
7TEA2

TEAL
TEAS

DDCBO1DE
9
2B
2609
CB25
79

94
FADATE
4F
CBCS
CB21l
19F2
c9

5C

7D
CB3B
1662
3081
14
GCFF
24
D6&3
F26ATE
683
&7

82

4F

68
2600
gepe
2%
19FD
1600
19
11883C
19
P66
DD21AR/E
DDa9
7E
CBIF
2002
3EBD
F5
3AB37E
FED
2008
DD7VEDS
2F
CBFF
(o4

ng

77

o

Fl

@197
2198
21920
02000
g2010
32028
92030
92049
32050
G2060
g207a
2088
22090
32100
92119
92129
@213@
#2140
#2158
02160
2170
22180
32190
92200
32218
@222
92230
92240
32250
02260
2279
92280
92299
@2300
@2310
#2320
@233@
92342
92350
32368
@237
p2380
§2390
@240
@2410
9242@
52430
92440
22450
#2469
22478
02480
92499
@258
@25108
92528
@2530
32540
#2550
#2560
92576

DVl

Dv2

V3

i
H
H
H
;
¥
S

ET

SET1@
SET24

SET30

SET4d

SETS@

SET 3, (IX+1) 1Signal a 45 deg. angle
RET :Return to prog.

LD L,& ;Clear result

LD B,9 ;Number of loops
SLA L :Shift resuit

L A,C ;Get D2

5UB H ;Subtract D1

JP M,DV3 sJump if not positive
LD c,h ;Update D2

SET @,L :Set bit in result
SLA C sGhift D2 left
DINZ ov2 :Loop untill done
RET sReturn to progd.

*k% END OF DIVIDE ***

##% SUBROUTINE SET ***

By William Barden, S@-MICROCOMPUTING, JUNE 1980, PG.24

LD EH 1X

D AL 1Y

SRL E :Get char position in E
LD D, 1Set COL4 to @

JR NC, SET19 1Go if COLA=0

INC D : C0OL#=1

1D B,@FFH =1 to B

INC B ;Bump guotient in B=LINE#
SUB 3 :Successive subt. for /3
Jp P,SET20 :Go if not negative
ADD A,3 ;Add back for remainder
RLCA 1 (ROWE) *2

ADD A,D : {ROWH) *2+COL#=BIT POS.
LD C,A ;Save BIT POS. in C

1D L,B :Line #

L H,D iNow in HL

LD B,6 :Shift count

ADD YL, HL :Multiply LINE#*64
DINZ SET30 :Loop till done

D D,0 sDE now has CHAR POS.
ADD HL,DE : LINE#*64+CHARPOS - in HL
D DE, 3CO0H 1Start of video

ADD HL,DE :Points tO memory

LD B,9 :BC now has bit pos.
LD IX,MASK ;Start of mask table
ADD X, BC ;Point to mask

LD A, {HL) sLoad pixel

BIT T.A 1Check for graphics

JR NZ,SET40 :Jurp if graphics

Lp A,128 ;Blank graphics

PUSH AF ;Save character

5] A, (ESTOR) :Get draw flag

CP o +Check for erase

JR NZ,SET58 ;Jump if not erase

LD A, (IX+0) ;Get mask pattern

CPL ;Complement for erase
SET 7.A ;Make graphics

POP BC ;Restore character

AND B ;Carbine with mask

LD (HL},A :Save in video memory
RET sReturn to PLOT

POP AF ;Restore character

Program continued

THE REST OF 80 / 97

TEAG DDBGGR ©2580 OR (IX+3) ;Set bit

7EAD 77 22590 LD (HL),A ;Save in video mem.
TEAR C3 p2ere RET ;Retum to PLOT

7EAR 81 92618 MASK DEFB 818 ;Masgk table for set
7EAC B2 22620 DEFB 82H

7EAD B4 32630 DEFB 84H

7EAE 88 22648 DEFB 880

7EAF 90 92650 DEFB 9PH

TEB@ no B26602 DEFB CAPH

a2z 92670 STORE DEFS 2 ;#1-final count #2-flags
535.5) 02680 ESTOR DEFS 1 ;Draw-1 Erase-@ flag
[5503 92699 TARLE DEFS 4 :Table of ccordinates
Ll o) 22780 END

90008 TOTAL ERRORS

Program Listing 2

1p !
29 ! *kx LISTING 2 **#%
30
480 ' * LIGHTNING
56 ¢
60 ' MEM SIZE 32090
78 'FOR DISK - DEFUSR=3200¢
80 DI=3243¢
90 X1=RND(127):X2=RND(127):Y1=RND(47):Y2=RND(47)
100 POKEDI,XI:POKEDI+1,Yl:POKEDI+2,X2:POKBDI+3,Y2:CLS:M=USR(B)
118 GoTo 9@
Program Listing 3
5
18 ° ¥k% LISTING 3 ¥¥*
15 ¢
20 ' * RADAR SIMULATOR *
25 !
32 ' MEM SIZE 32080
35 'FOR DISK - DEFUSR=320600
40 €=3,141593/180:D1=32436: POKEDI+2,64: POKEDI+3,24
45 FOR A=@TO 35% STEP 11
50 X1=COS(A*C)*63+64
55 ¥Y1=SIN(A*C)*23+24:M=USR(1)
60 POKEDI,X1:POKEDI+1,Y1:M=USR(8} : NEXT:GOTO45

98 / THE REST OF 80

13

Defeating the
ROM: Scroll
Protection

by Daniel J. Scales
System Requirements:
Model I

Level Il BASIC
16K

ave you ever wanted to protect text or graphics on the screen so it

wouldn't be scrolled off? This capability can be used to keep the
headings of a table from disappearing off the top of the screen, or to build
up a graphics image step-by-step in command mode without having it
move up and off the screen. When I have a lot of disk copying or erasing
to do, I find it convenient to protect the top part of the screen and display
a directory which remains there until I clear the screen or change the
scroll protection.

The Program

The machine-language program in Program Listing 1 controls the
scrolling of the screen. It is directly linked to the video output routine in
ROM (read-only memory) that is used by Level II BASIC, Disk BASIC,
and DOS. The scroll protection works in BASIC, DOS, and almost all
machine-language utilities, as long as the memory for the routine is pro-
tected. Because it is linked to the ROM's video driver routine, the pro-
gram is executed every time there is output to the screen, and is com-
pletely invisible to the user—no special command is needed every time
there is a scroll.

The first part of the routine {see Program Listing 1), named PROT, in-
tercepts the screen driver by placing its own starting address in the
screen control block, which usually contains the address of the video
output routine, and jumping to the video driver only after the scroll pro-
cessing is compieted. The other part of the machine-language program is

THE RESTOF 80 / 99

called directly by the user to change the parameters of the scroll routine
so that it protects a new specified text area, which may be any set of con-
secutive lines on the screen.

This SETUP routine is normally called from BASIC by a USR call. Its
argument has the form 256+FIRST +LAST, where FIRST is the line
number of the start of the text area that is to be scrolled, and LAST is the
line number of the end of the text area. When the cursor is in the text
area, only the text area is scrolled; the rest of the screen is protected. The
cursor can still be placed anywhere on the screen by using a PRINT@
statement or by clearing the screen, and normal scrolling takes place if
the cursor is not in the text area.

The scroll protection routine protects the top four lines of the screen
(making the text area the last twelve lines of the screen) until SETUP is
called to redefine the text area. The lines on the screen are numbered
0-15. If either the FIRST or LAST argument is not between 0 and 15, the
argument is divided by 16, and the remainder is used as the line number.
The SETUP routine does not check to see if FIRST is less than LAST. Itis
not possible for FIRST to equal LAST.

How It Works

Normally, the screen must be scrolled only if the cursor is at the last
position of the screen and a character is to be printed, or if the cursor is
anywhere on the last line of the screen and a line feed is to be printed.
The machine-language routine, PROT, in Program Listing 1, does noth-
ing unless the cursor is at the last position of the text area defined by SET-
UP or on the last line of the text area with a line feed to be printed. If one
of these two conditions is true, it executes a special scroll routine that
scrolls only the text area without spilling over into the protected regions
of the screen. In this way, the scroll routine of the video print subroutine
is defeated and is never invoked while the cursor is in the text area.

PROT starts by saving the contents of registers on the stack and loads
the HL register with memory location 4020H. The screen image is stored
in memory at locations 3CO0H to 3FFFH, and 4020H contains the mem-
ory address associated with the cursor's location. The routine checks to
see if the cursor is on the last character or last line of the text area and
whether the character to be printed {which is in the C register on entry to
PROT) is a carriage return/line feed {ASCII coded 0D hexadecimal). 1f
both these conditions are true, the routine scrolls only the text area. The
scrolling process uses the Z80 LDIR {load, increment, and repeat) in-
struction to move all the lines of the text area {except the first) up one
line, then fills in the last line with blanks, and adjusts the cursor pointer
in 4020H. The routine terminates by popping off the stack all the regis-
ters that were saved at the beginning of the routine and jumping to the
video print routine.

100 / THE REST OF 80

SETUP is the routine which changes various instructions of the PROT
routine so that it scrolls the right screen area according to the USR argu-
ment. It puts the USR argument in the HL register by calling a BASIC
ROM routine, CVINT, at 0A7FH, as described in the Level Il manual. It
has a subroutine, M64, which takes a line number from 0 to 15in the A
register and returns the memory location asssociated with the first char-
acter of that line on the screen. It returns to BASIC after it has made all
the necessary changes.

Using the Routine

The scroll protect routine is created using an editor/assembler and
loaded in by the Level II SYSTEM command or the DOS LOAD com-
mand. The BASIC program in Program Listing 2 can be used to POKE
the routine into memory. The POKE values are for a 32K machine. If the
program is to POKE into the high memory of a 48K machine, all 191sin
the DATA statements and in line 150 should be changed to 255s, and line
140 should start with FOR I=-256 TO -256+141. The routine as
shown sets the bottom twelve lines of the screen as the text area and pro-
tects the top four lines. You can change the location of the text area by
calling the SETUP routine with a USR call, so the address of SETUP
must be known. This address is — 16570 if the addresses of the BASIC
program or assembly listing are not changed. If the 48K modification giv-
en above is used, then this address is — 186. The lines of the screen are
numbered 0-15, and the argument passed to SETUP must be 256*FIRST
+ LAST, where FIRST and LAST are the line numbers of the first and last
lines of the text area. FIRST and LAST should be between 0 and 15, with
FIRST less than LAST.

Only the text area scrolls as long as the cursor is in the text area, but if
the cursor is not in the text area and is at the bottom of the screen, a nor-
mal unprotected scroll takes place. The CLEAR key is not disabled, so
you can erase anything in the protected part of the screen at any time by
clearing the screen. PROT can be modified to check whether the C regis-
ter contains 1FH [the ASCII for clear screen}, and if so, return to the call-
er without jumping to the video print routine, thus disabling the CLEAR
key. The routine could be changed so that the clear code clears only the
current text area.

Program Listing 1. Scroll protection program

aeLea ; SCROLL PROTECTION PROGRAM
gaLle ; MODEL I
B2 ; DAN SCRLES, 1981
PgL38 ;
40206 #9148 CURLOC EQU 4e20H
BATF #3158 CVINT EQU BATFH ;ROUTINE TO GET INTEGER ARGUMENT

Program continued

THEREST OF 80 / 101

Ba169

3090 32179 VIDMEM EQU
@458 88182 VIDPR EQU
BB1L93
B2
491E Aa21e ORG
491E @A@BF 209220 DEFW
29239
BFOE 25246 ORG
BF@@ C5 #325@¢ PROT PUSH
ag2eq
BF@1 D5 20279 PUSH
20280
BF92 F5 29299 PUSH
BFG3 222048 20300 D
BFd6 7C FF3ID D
BFY7 FE3F F32¢ ENDIXT CP
BF@9 2035 333 JR
BFOB 7D 80342 LD
BFYC FEFF 98358 LSTCHR CP
BFEE 280C 20360 JR
BFlg 79 29379 LD
BF1l FE@D 20382 o3
BF13 20828 2339¢ JR
BF15 7D 28433 LD
BF1& E6CQ 284108 AND
BF18 FECY 90420 LSTLIN CP
BFLA 2024 29432 JR
BF1C 214@3D @@44% SCROLL LD
BF1F 118¢3D 006456 LD
BF22 @1C00@2 00460 Lb
BF25 EDR@ 28470 LDIR
BF27 1628 20480 LD
BF29 21C@3F (@249¢ LSTIN2 LD
BF2C 2140909 00500 Lo
BF2F 72 2951@ FILL LD
BF3@ 23 00520 NG
BF31 @B 209530 DEC
BF32 78 00540 LD
BF33 Bl 20558 CR
BF34 20F% 560 JR
BF36 2A2048 Q0572 Lo
BF39 11COFF @058 b
BF3C 19 2a590 ADD
BF3D 222040 00600 LD
BF49 F1 9@618 POPALL POP
BFr4l D1 29620 POP
BF42 C1 2963a poP
BF43 C35804 Q0640 JpP
BF46 CD7F@A P065@¢ SETUP CALL
BF42 4D A0660 LD
BF4A 7C 9670 LD
BF4B E61F 20680 AND
BF4D CD7BEBF 23699 CALL
BFSQ 2220BF @@709 LD
BF53 E5 o371 PUSH
BF54 114800 @Q720 LD
BF57 19 2e73a ADD
BF58 221DBF @@740 LD
BF5B 79 29759 LD
BF5C E61F 28760 AND

102 / THE REST OF 80

:OF USR CALL

3088H ;LOCATION OF VIDEO MEMORY

458H ;ROM ROUTINE TO PRINT CHARACTER
;ON SCREEN

491EH ;LOCATION OF VIDEO DRIVER ADDRESS

OBFZAH :CHANGE DRIVER ADDRESS TO ADDRESS
+OF SCROLL ROUTINE

OBFO@H

BC +C REGISTER CONTAINS CHARACTER
;TO BE PRINTED

DE ;DE CONTAINS ADDRESS OF VIDEO
s DEVICE CONTROL BLOCK

AF :SAVE STATUS FLAGS

HL, (CURLOC)

AH

3FH sCHECK IF NEAR END OF TEXT AREA

NZ,POPALL tNO NEED TC SCROLL

AL CHECK IF CURSOR IS AT LAST

BFFH fPOSITION OF TEXT AREA.
Z,SCROLL ;IF S0, SCROLL.

A, C

@DH ;IS LINEFEED TO BE PRINTED?
NZ,POPALL ;NO, DON'T SCROLL

AL

POOH

@0gH

NZ,POPALL ;NOT ON LAST LINE, $O NO SCROLL
HL, 3D40H

DE, 3D2QH

BC, 2C0H

:SCROLL THE SCREEN

+FILL IN LAST LINE OF TEXT AREA
HL sWITH BLANKS
BC

VIDPR ;OONTINUE VIDED PRINT ROUTINE

CVINT GET USR ARGUMENT
c,L

AH ;GET ADDRESS OF FIRST POSITION
1FH ;MAKE REGISTER A BETWEEN ¢ AND 15
M64 ;OF FIRST LINE OF TEXT AREA
(SCROLL+4), HL

HL, ;SAVE TOP OF SCROLL AREA FOR LATER
DE,40H ;TO MOVE TEXT UP CNE LINE (40H
HL,DE ;CHARACTERS

{SCROLI+1), HL

a.C

1FH ;MAKE A REGISTER BETWEEN @ AND 15

BF5SE 3C Bp765 INC A
BFSF CD7BBF GQ779 CALL M64 :GET ADDRESS OF LAST POSITION
BF62 2B 20780 DEC HL :OF LAST LINE OF TEXT AREA
BF63 7C 20790 LD AH
BF64 3208BF 49800 LD (ENDTXT+1),A
BF67 7D 2e810 LD AL
BF68 320DBF @8820 LD (LSTCHR+1),A
BF6R E6CH 20830 AND BCoH
BF6D 3219BF Q0840 LD {LSTLIN+1),A
BF70 6F 0853 LD L,A
BF71 222ABF (0868 LD (LSTLNZ+1) ,HL
BF74 DL 8ea7a POP DE ;RESTORE ADDR OF TOP OF SCROLL AREA
BF75 ED52 22880 5BC HL,DE ;HL EQUALS THE NUMBER OF CHARACTERS
BF77 2223BF 032899 LD (SCROLIA7),HL ;TQ BE SCROLLED
BF7A C9 A0 RET
2919 H
pa920 sM64 IS A ROUTINE TO GET THE ADDRESS COF THE
#0930 ;FIRST POSITION OF THE LINE ON THE SCREEN WHOSE
3e940 ;:NUMBER IS IN THE A REGISTER.
RF7B 47 AFA50 M4 LD B,A
BF7C 21008¢ 02960 LD HI,, BH
BF7F 114908 002970 LD DE, 40H
BF82 B7 2398 OR A
BF83 2863 Ba999 JR Z, CONT
BFB5 19 21009 LOOP ADD HL,DE
BFB6 1QFD 21012 DINZ LooP
BFES 11883C 01020 CONT LD DE,VIDMEM ;HL NOW EQUALS 64 TIMES REGISTER A
BFSB 19 930 ADD HL,DE
BFBC C9 21243 RET
BFOQ #1852 END PROT

P000@ TOTAL ERRORS

le@
118
120

340

Program Listing 2. BASIC program

' MODEL 1 SCROLL PROTECT
' DAN SCALES, 1981

THE USR ADDRESS TO CHANGE SCROLL PROTECTION IS -1657d.

' FOR INSTANCE, TO CHANGE THE TEXT AREA TO ONLY THE BOTTOM
' FOUR LINES, DEFINE THE USR ADDRESS AS -1657@, AND THEN
' EXBCUTE "X = USR(12 * 256 + 15)".

FOR I=-16640 TO -16640+141:READ X:POKE I,X:NEXT

PCKE
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

16414, @ :POKE 16415,191 'CHANGE SCREEN DRIVER ADDRESS
197,213,245,42,32,64,124,254,63,32
53,125,254,255,44,12,121,254,13,32
43,125,230,192,254,192,32,36,33,64
6l,17,8,61,1,192,2,237,176,22
32,33,192,63,1,64,08,114,35,11
12%4,177,32,249,42,32,64,17,192,255
25,34,32,64,241,209,193,195,88,4
205,127,19,77,124,230,31,285,123,121
34,32,191,229,17,64,9,25,34,29
191,121,239,31,6@,205,123,191,43,124
S¢,8,191,125,58,13,191,230,192,58
25,191,111,34,42,191,209, 237,82, 34
35,191,201,71,33,0,0,17,64,8
183,4%,3,25,16,253,17,8,68,25

201,09

THE REST OF 80 / 103

14

Easier Formatting
with SCREEN

by Don Robertson
System Requirements:
Model I or I
16K or 32K
Level I or Disk BASIC

The SCREEN program is for the BASIC programmer who wants pro-
fessional-looking programs but gets frustrated with the time and en-
ergy required to format a screen using graphics and alphanumerics. The
traditional way to lay out a screen is to PRINT AT, POKE, or PRINT US-
ING. Traditionally, to use the graphics characters, you must look up
their ASCII codes and laboriously POKE or use CHR$ to format them.
SCREEN lets you move the cursor with complete freedor, using graph-
ics to draw pictures, or putting alphanumeric characters where you
want them. When the screen is set up exactly as you want it, the picture
is POKEd into the program itself.

The program is easy to run {see Program Listing). First, the current
screen appears. To create a new screen, type C. This clears the screen
and displays the graphics cursor in the center. To modify the existing
screen, type any character except C. Do not press ENTER after your
choice, as this tells the program to save whatever is currently displayed
on the screen.

The graphics cursor is controlled by the arrow keys. To draw, press
the appropriate key. Press two keys simultaneously for diagonal lines.
To erase or to move the cursor without drawing, hold down the SHIFT
key and press the desired arrow. When SHIFT is pressed, the graphics
cursor blinks. This is useful when the screen is almost full and you've
forgotten where you are.

SCREEN lets you switch between the graphics and the alphanumeric
modes, using the CLEAR key as the switch. When in the alpha mode, the

104 / THE REST OF 80

blinking cursor shows the current position to be typed. Cursor position
is controlled by the arrow keys. When the cursor is in the desired posi-
tion, anything you type appears on the screen, much as it would on a
word processor. Use the space bar to erase in the alpha mode.

When you're satisfied with the screen, press ENTER. The program
scans the display and POKEs it into program lines 30000-30080. It takes
about 20 seconds to dump the screen. When the READY prompt ap-
pears, delete lines 31010-33120 and write your BASIC program. Your
screen is stored in Al$-A8% and printed whenever line 31000 is ac-
cessed. You must type lines 30000-30070 exactly as they appear in the
listing. Each of the strings A1$-A8% must be precisely 128 characters
long; these variables are where your new screen is stored.

Lines 31010-31030 find the beginning of A1$, check whether it is a
modification or an entirely new screen, and position the graphics cursor
in the middle of the display. The program starts in the graphics mode.
Lines 31040-31110 check for cursor movement (arrows}, alpha switch
(CLEAR), and save screen {ENTER). Cursor movement in both modes is
smooth and fast, because the program does not use INKEY$ to detect it.
Keyboard memory is located in locations 3801 H-3880H, with all control
characters at 3840H. By PEEKing at 14400 (3840H) and testing for the
different controls, the program can handle fast typing and support re-
peats—even on the Model 1.

Alpha characters are handled in essentially the same way as graphics.
Lines 33000-33090 detect controls, set the POKEing position, and dis-
play any characters you type. The cursor in the alpha mode is non-de-
structive; the character under the cursor is stored in CH. The ASCIT code
of any character typed is saved into KB and then POKEd to the screen.
Lines 31120-31200 save the screen into variables A1$-A8$ when EN-
TER is pressed.

Program Listing

1 CLEAR1G&Q
32029 Al$="SCREEN SCREEN SCREFN SCREEN SCREEN SCREEN SCREEN SCRE
EN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREE
N SCREEN sC"
3@010 A23="REEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREFN
SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN
SCREEN SCRE"
399280 A3$="EN SCREEN SCREFN SCREEN SCREEN SCREEN SCREEN SCREEN S
CREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SC
REFN SCREEN™
30930 A4$=" SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCR
EFN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCRE
EN SCREEN S“
32¢4¢ AS$="CREEN SCREEN SCRFEN SCREEN SCREEN SCREEN SCREEN SCREE
N SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN

n
SCREFN SCR Program continued

THEREST OF 80 / 105

3p050 h6S="EEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN
SCREENSCREENSCREENSCREENSCREENSCREENSCREENSCREENSCREENS
CREEN SCREE"

30060 A7$="N SCREEN SCREEN SCRERN SCREEN SCREEN SCREEN SCREEN 5C
REENSCREENSCREENSCREENSCREENSCREENSCREENSCREENSCREINSCR
EEN SCREEN "

33070 AB$="SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCREEN SCRE
ENSCREENSCREENSCREENSCREENSCREENSCREENSCREENSCREHQBYBO
N ROBERTSON"

31008 CLS:PRIN'TAI$.-A2$:PB$,-MS:A5$:A6$;A7$;LEFI‘$(AB$,127);:POKEl
6383, ASC(RIGHTS (A8%,1)}

31619 P=VARPTR{Al$)

FIND LOCATION OF Al$

31020 A=PEEK(P+2)*256+PEEK(P+1)

31825 K$=INKEY$:IFK$="'T!-IE~1315251&‘.LSEIFK$="C'"PHENCIS' C -—> CL
EARS SCREEN --> DO ENTTIRELY NEW SCREEN <<-->> ANY OTHER LETTER
LEAVES SCREEN FOR MODIFICATION CNLY

31938 X=63:Y=23:P0O=15360" INITIAL POSITIONS OF CURSORS
31040 M=PEEK{ 14486) : FORI=1TO1@:NEXT"' CHECK FOR ARROWS, (MOVE
CURSCR), ENTER (PUNCH SCREEN TO Al1$-—>ABS), CLEAR (SWITCH IN LET
TER POKER)

31950 IFM=1THEN3112@' ENTER KEYED --> SAVE SCREEN

11855 IFM=2THENFORI=1T044:NEXTI:GUTO32000" CLEAR KEYED --> SW
ITCH TO ALPHABETICS

31868 IFMANDBANDY >@THENY=Y~1"' ARROW KEYED -—> MOVE CURSOR
31¢07¢ IFMAND]GANDY <47THENY=Y+1
31980 IFMAND32ANDX> FTHENX=X-1

3109¢ IFMANDGAANDX<]126THENX=X+1

311¢@ SET(X,Y): IFPEEK(14464) THENRESET(X, Y} SHIFT IS ERASE
31119 GOTO31944

31128 '

SAVE SCREEN INTO PROGRAM
31148 FOR 1I1=1536@T016320STEP128

3115 FORIJ=@TO127

31168 POKEA+YX*1 3911, PEEK(II+IJ)

31170 NEXTJIJ

31188 XN=xXX+1

31199 NEXTIIL

312080 END

32000 ' ALPHA NUMERIC CHARACTERS POKED HERE

32019 M=PEEK(14400}' LOOK FOR CONTROL CHARACTER

32015 CE-I=PEE‘.K(PO):POKEPO.254:PI=PO:POKEP1,G§' FLASHING CURSOR
32029 1FPM>2THEN33900' NOT CLEAR, NOT ENTER --> CURSOR MOVE

32030 IMVME2THENFORI=1T040 :NEXTI :GOTO31046" CLEARR --> SWITCH
TO GRAPHICS

32040 IFM=1THEN31120' ENTER --> SAVE INTO PROGRAM

32050 K$=INKEY$:IFK$<>""ANDK$<>"["’I"HENKMSC(K$):K$=""' CHECK
FOR LETTER

32068 IEKB>31'I‘H:ENPOKEPO,KB:IFPO<16383’I‘E{B€PO=PO+1' CHECK FOR N

ON-OONTROL CHARACTER IN BUFFER, STORE ON SCREEN, MOVE CURSOR 1 P
OSITICN RIGHT

32079 KB=@' RESET BUFFER

32080 GOTO32918" GET NEXT CHARACTER

33008 'GET POKING POSITION

33040 IFMANDGANDPO> 15424 THENPO=PO~64 ' CHECK FOR ARROW --> MO
VE CURSCR

33050 IFMANDLGANDPO< 16328 THENPC=PO+H4

33p6¢ TPMAND32ANDPO> 1536FTHENPO=PO-1

33078 IFMANDGAANDPO< 16383 THENPO=PO+]1

33999 GOTO32018

106 / THE REST OF 80

15

DRAFTER: A
Graphics Editor

by R.K. Fink

System Requirements:
Model I or 11T

32K or 48K

One disk drive

After years of searching for the ideal screen writer, 1 designed
DRAFTER to be both easy to use, and foolproof. It operates quickly,
uses few commands, and requires no computations to find TRS-80 block
graphic codes. It automatically saves the screen as BASIC lines of data
statements, in a file you can merge with another BASIC program. It uses
machine-language block moves to speed up operation of screen saves
and recalls. Two versions of DRAFTER are provided here—one for 32K
systems, and one for 48K systems. Both require one disk drive.
DRAFTER {see Program Listing 1) was developed for a 48K disk sys-
tem. Program Listing 2 is for a 32K system. The machine-language USR
subroutines, which are used to clear buffers, save or recall a screen, or
construct a data buffer, are POKEd into high memory from strings. They
become invisible when a new data file is merged and POKEG to the
screen. The memory maps in Figure 2 show where space is needed for
storage buffers and for the operation codes. When you rerun the pro-
gram, it loads its routines in memory, sets buffers to zero, and starts into
the D {draw) mode with the («] cursor ready for screen construction.

Using DRAFTER

The commands and construction loops are shown in Figure 1. While
you are in the draw mode, hitting the SHIFT key saves the screen and
displays the main menu. If the data on the screen is to be saved as a
group of BASIC DATA statement lines, press S. To append and load a
disk file of data previously made, press L. After loading the storage buff-

THE RESTOF 80 / 107

er and screen you are returned to the draw mode, ready for further con-
struction. X exits to BASIC, but gives you a second chance with a prompt
if your data has not been saved to disk.

While in the draw mode, ASCII keyboard characters may be entered
at the cursor by pressing CLEAR while typing the desired character.
Regular graphic blocks are built by pressing the keys shown on the nu-
meric keypad. If you don't have a numeric keypad, use the numbers

alono the ton l(n\r rr\ur_.un{-h a lnee however af the ralative nacitinn nr
u‘_}l&a Rl LA/ WY LLAR B4 SV, AW/ VY A ¥ Wl WAL LA A NdaLd Y yuull)\lllr WL

touch feel, of building a rectangular block. When a block is begun you
are tn a loop that can be erased and restarted with the space bar. When
you're satisfied, press the ENTER key to enter the graphics equivalent.
The cursor reappears.

MAIN MENU
D ... DRAW
5 .. .- SAVE SCREEN TO
DISK AS DATA
STATEMENTS
L - LOAD A PREVIOUS
SCREEN FROM DISK
Yoo EWT Y ASi
0 BASIC [FROM THE DRAW SELECTION

* CURRENT CURSOR POSITION

MOVE CURSCR
(NON-DESTRUCTIVE)

CLEAR 8 KEY SETS THIS ASCHI
a7 CURSOR

SPACE ERASE AT CURSQR

SHIFT GO TO MAIN MENUL

BUILD A GRAPHICS

/—CHARACTER {LDOPY

ENTER SETS BLOCK

SPACE ERASES AND
RESTARTS
BLOCK BUILD-
uep

]
]
]
]

DR
L]
Lot

NUMERIC KEY PAD

Figure 1. Commands

108 /| THE REST OF 80

MEMOCRY MAPS

i N

USR
SUBRCUTINES
FFOO /’\/\.\“/_
UsR
1K SUBROUTINES
TEMPORARY VIDEQ
STORAGE BUFFER BFOQ
F900
1K
Ik TEMPORARY VIDEOQ
ENCODED STORAGE BUFFER
DATA B90O
STORAGE
BUFFER
3K
£900 ENCQDED
DATA
PROTECT STORAGE
MEMORY SIZE BUFFER
M HERE
AS00
_/‘-\M
M
3FFF 3FFF
VIDEO MEMORY VIDEC MEMOCRY
3Coo0 oo
48K 32K

Figure 2. Memory Maps

The cursor has automatic repeat movement. The non-destructive cur-
sor stops at any boundary position. To erase a position, hit the space bar,
and the character at the cursor is erased. You can make a data file of your
screen with the S command, then use MERGE filespec’' to append
it to any other program. These lines always start at 20000, so put noth-
ing above this in your other program. Only active screen locations
with character contents other than a space are saved. It's assumed that
the screen is cleared with a CLS command before POKEing the data in
later programs. To use the created DATA statements note that there are
three numbers per location: MSB, LSB of screen address {not in reversed
order like Z80 operation code), and the screen character's ASCII code.

A simple program loop to fill the screen follows:

CLS

FOR N =1 TO (Length of the active data locations)

READ M.LD : AD=M=16+L

POKE AD,D

NEXT N Figure continued

THE RESTOF 80 / 109

NAME DESCRIPTION
AS AAS Temporary Data Input

AD POKE Address

CcC Cursor Character

DA Current Character Buildup

F$ Filespec for Disk

I N Closed Loop Counters

KD Keyboard Input of NUMBERS Row
KB Keyboard Input of ARROWS Row
LN$% ASCII DATA Statements Created
Ps Current Cursor Position

PO Temporary POKE Address

S Start of Screen

SA Start Address of Op Codes

SL Line No. of BASIC DATA Lines

U03$-U3$ Strings for USR Subroutine Codes

SUBROUTINES USED
LINE # DESCRIPTION

1500 USR Subroutines
2000 Save DATA Statements To Disk
3500 Load Data From Disk

Figure 3. Major symbols and subroutines

DRAFTER also lets you construct and save a loadable file of a sketch
in just a few minutes. To start, cover a video worksheet with celluloid
and use a grease pencil to get rough starting proportions. Té demon-
strate the technique, I constructed a Giant Android in about eight min-
utes and saved it as Program Listing 3. DRAFTER put all those data lines
automatically on disk. If you want a starting point, put the data lines into
an ASCII file from the keyboard and then load them into DRAFTER.

Program Listing 1

1 ' %+w* DRAFTING BOARD AND DATA ENCODER %%+
2 ' %% DRAFTER/BAS MOD I DISK 32 OR 48K **
3" % RKFINK 1/28/82 VER 1.9 v A
YO & FOR THIS 48K VERSION -
§ 1 PROTECT 50000 TO ENTER BASIC **
6 ' ¥F sriiorzosssiririssssszsiissssssssss WM
7|

B‘

9 CLS:PRINTCHRS (23):"L O W

RES
GRAPHICS
T A B L E T: FORN=1TO3000 : NEXT

19 CLEARS@:CLS
15 DEFINTA-Z:GOSUB15@0:GOSUBL 78

110 / THE REST OF 80

2@ QNERRORGOTOA:5=15360

30 X=0:Y=0:0C=42:DA=128

48 PS=S+X+64*Y : TP=PEEK(FPS)

49 ' t:::: The Main program Loop :::::
5¢ PCKEPS, CC: GOSUB20@ :COSUB270

68 1FPEEK(14464)=QTHENS®

68 ' :

sss asawe
HE 4 HE

: The Main Menu Routine

9@ PRINTTAB(8)" DRAFTING BOARD AND DATA STATEMENT ENCODER"
16@ PRINT:PRINTTAB(25)"M E N U"

112 PRINT" D START OR OONTINUE DRAWING
S SAVE A SCREEN & PUT DATA ON DISK
L LOAD A PREVIOUS SCREEN FROM DISK
X EXIT TO BASIC"

12 PRINT:PRINT"SELECTICN...... "

132 AAS=INKEYS: IFAAS=""THEN138

149 IFAAS="X"THENCLS:PRINT"SURE DATA'S SAVED?? REAILY EXIT (Y
/N)": INPUTAAS : IFAAS="N""THENOSEL SEEND

15¢ IFRAS="S"THEN2000

160 IFAAS="D"THENCLS:Z=USR2 (@) :G0OTO38

1790 IFAAS="1."THENCLS :GOTO3580

189 GOTO13@

200 KB=PEEK (14404) : IFKB=ATHFNRETURN

201 IFKB<»>2THEN219

202 IFPEFK(14400)=2THEN202

203 POKEPS,128:DAS=INKEYS : IFDAS=""THEN2@3

204 DA=ASC{DAS) : POKEPS, DA : TP=DA : FORN=1TO20% : NEXT : RETURN

216 IF(KB=32)AND(X<>@ }THENX=X~1 +POKEPS, TP : PS=S+X+64"Y : TP=PEEK(PS
) : POKEPS, OC: RETURN

220 IF(KB=64}AND(X<>63)THENX=X+1 : POKEPS, TP : PS=5+X+64*Y : TP=PEEK (P
$) : POKEPS , CC: RETURN

230 IF(KB=8)AND(Y>&)THENY= -1 :PCKEPS, TP : PS=S+X+64*Y ; TP=PEEK (PS) :
PCKEPS, CC: RETURN

240 IF(KB-].G)AND(Y<15)THENY=Y+1:PG(EPS,TP:PS=S+X+64’Y:TP=PEH((PS
} : POKEPS, CC: RETURN

259 IF(KB=128)THENPOKEPS, 126 : FORN=1TO280 : NEXT : TP=128 : RETURN

26@ ' Construct A Graphics Block Loop Follows

27¢ KD=PEEK(14352): IFKD=@THENRETURN

28¢ IFPEEK{14403)=128THENPOKEPS, 128 :DA=128

299 IFPEEK({1440@)=1THENPOKEPS, DA: TP=DA: Div=128 : RETURN

389 1FKD=128THFNDP+=DAOR1ELSEIFPEFK(14368 }=1 THENDA=DAOR?

318 IFKD=16THENDA=DAOR4ELSEI FKD=32THENDA=DAORS

32¢ IFKD=2THENDA=DAORI6ELSEIFKD=4THENDA=DAOR3 2

330 POKEPS,DA:KD=PEEK(14352) : TP=DA:GOI0280

196 POKEPS, TP

101¢ Z=USR1 (®) : RETURN

1498 ' ... These are the string packers that set up

1499 ' the USR subroutines ...

1588 PRINT"INITIALIZING PROGRAM ROUTIMES"

1505 U@$="11@1E92100E9AF7 701301 AEDRACS"

1512 PO=6HFF@@ : FORI=1TOLEN{U@% }STEP2 : L=ASC{MIDS (UB$, I})48

152¢ R=ASC(MIDS (UP$, I+1))-48:L=L+7*%(L>9) ; R=R+7* (R>9)

153@ POKEPO, 16*L+R: PO=PO+1 :NEXTI

1540 DEFUSRG=HFFOQ

1541 ' USR# ... Clears buffers with zeros

1550 U1$="1182F921803C10004EDRICI "

1560 PO=R&IFF10:FORI=1TOLEN(UL$)STEP2:L=ASC(MIDS (U1§, I))48

1570 R=ASC{MID$(U1$,I+1) }=4B:LaiA7*{L>9) :R=R+ 7T*(R>9)

1580 POKEPO, 16*L+R: PO=PO+1 :NFXTT Program continued

THERESTOF 80 / 111

159¢ DEFUSR1=8FF10

1591 ' USRl ... Saves screen to video buffer ...

1600 U25="11003C2100F9010004FDBGCO "

161@ PO=EHFF20: FORI=1TOLEN(U2$ }STEP2 : L=ASC(MID$ (U2$, 1))48
1628 R=ASC{MIDS (U2$,I+1))=48:I~L+7*(L>9):R=Rt+7*(R>9)

1630 POKEPO, 16*LA4R: PO=PC+1 :NEXTI

1649 DEFUSR2=KHFF20

1641 ' USR2 ... Moves saved buffer back to screen ...

1658 U3S$="@100FD11003C2100FODD21AFEIFD2100807 EFEBA281 9FE20281 50D
7 2¢0DD23DD7 399002 3DD7 794002 3FD23FD23FD23231 3E5ED4 27CBS 28@3E1 18D6
E1FDESELC3922A"

1660 PO=&HFF3@: FORI=1TOLEN (3§) STEP2 : LaASC(MIDS (U3§,1) }-48
1678 R=ASC(MIDS (U383, I+1))~48:L=L+7*(L>9):R=R+7*(R>9)

168¢ POKEPQ,16%LA4R:PO=PO+1 :NEXTI

1699 DEFUSR3=&1FF30: RETURN

1691 ' USR3 ... Construct Data Buffer fram video buffer

1789 Z=USR@{@):CLS:RETURN: 'Clear Buffers TO ZERCS ...

1999 ' ... Construct Data Statements & Save To Disk ...

2000 CLS

2P1¢ PRINT

202¢ LE=USR3{0) : IFPEEK($HE90Q }=@THENPRINT"NO VIDEO TEXT IN BUFFE
R" : FORN=1TO508 : NEXT : CLS : GOT038

203¢ PRINT:LINE INPUTFILESPEC FOR DATA SAVE? ";F$:CPEN"O",1,F$
2849 PRINT:PRINT"SAVING DATA LINES "

2050 SA= HFE93P : SL=20002 : GOSUB420%

206Q LN$=LN%+"DATA"

2073 FORN=SATOSA+LE-1

2875 IFLEN(LNS)<6@THEN2119

2080 LNS=LEFTS(LNS,LEN(INS)-1}

2998 GOSUBS@@@ : GOSUB4ADY

2109 LN$=LN$+"DATA"

2119 A$=STRS (PEEK(N)) 1AS=RIGHTS (A$, LEN(A$)-1)

2120 LNS=LN$+AS+","

2140 NEXTN

2150 LN$=LEFTS{LN$, LEN(LN$)-1)

216@ GOSUBSOOJ

2179 CLOSE

2180 GOTOY

3499 ' ... Load in a Diskfile of Data Statements ...

358@ CLS:LINE INPUT"FILENAME OF DATA? ";F$:PRINT

3519 PRINT"ENTER RUN 36Q@ AT THE 'READY' PROMPT"

3520 PRINT:PRINT

3537 MERGEF$:END ‘
3600 PRINT"RESETTING PROGRAM SUBRCUTINES":GOSUB15@5:GOSUBL
700

3610 ONERRORGOTO3658

3620 FORN=1TO3872:READM,L,D

3630 AD=M*256+L:PCKEAD,D

3640 NEXT

3649 ' ... When all data is exhausted, jump below on error
3650 Z=USR1 (@) : RESUME2®

4000 LNS=RIGHTS (STRS (SL), LEN{STRS (SL))-1)}+" “:RETURN

5@@@ PRINT#1,INS : SL=SL+1¢ : RETURN

20069 DATA61,71,191,61,151,131,61,152,191,61,153,131,61,157
20919 DATA131,61,158,191,61,159,131,61,216,191,61,217,176,61
2P@2@ DATA218,176,61,219,191,61,220,176,61,221,176,61,222,191
20938 DATAG2,25,149,62,26,148,62,27,144,62,28,140,62,29,140
2004¢ DATAG2,30,144,62,88,131,62,135,191

112 / THE REST OF 80

Program Listing 2, Changes to provide a 32K system program

1 ' **x% DRAFTING BOARD AND DATA ENQODER **#*
2 ' %% DRAFTER/BAS MOD I DISK 32 OR 48K **
3r ww RK FINK 1/28/82 VER 1.8 *k
4 ' ww FOR THIS 32K VERSION il
5 kw PROTECT 43@3@ TO ENTER BASIC **
6 ' N ssrssssnnsnsnnmurrs te vt b s s ssasusE i
7 L]

8 1

9

CLS:PRINTCHRS {23);"L O W
R

APHICS

A B L E T":FORN=1TO392d :NEXT
19 CLEARSP®:CLS

15 DEFINTA-Z:GOSUB158¢ :GOSUBL 780

29 ONERRORGOTOR:5=1536@

3@ X=0:Y=0:00=42:DA=128

40 PS=S+X+64*Y: TP=PEEK(PS)

49 ' ::::: The Main program Loop :::::
5@ POKEPS,CC:GOSUB28d:GOSUB272

60 IFPEEK({14464)=@THENSO

E S
G R
T

68 ' zrri: tEE] IREEE]
69 ' ::::: The Main Menu Routine i:1::
7@ GOSUBLEAA

8¢ CLS:PRINT
9% PRINTTAB(8)" DRAFTING BOARD AND DATA STATEMENT ENCUDER"
1%¢ PRINT:PRINTTAB(25)"M E N U"

11¢ PRINT" D START OR OONTINUE DRAWING
S SAVE A SCREEN & PUT DATA ON DISK
L LOAD A PREVIOUS SCREEN FRCM DISK

X EXIT TC BASIC"
120 PRINT:PRINT"SELBCTION.27"
130 AAS=TNKEYS:IFAAS=""THEN138
149 IFAAS$="X"THENCLS:PRINT"SURE DATA'S SAVED?? REALLY EXIT (Y
/N}": INPUTAAS : IFAAS="N"THENIIELSEEND
15@ IFRAS="S"THEN200O
16¢ IFAAS="D"THENCLS:2=USR2(@):GOTO3@
17¢ IFAAS="L"THENCLS:GOT03500
182 GOTOL 38
200 KB=PEEK(1449%) : IFKB=0THENRETURN
2@) IFKB<>2THEN21@
2@2 IFPEEK(14408)=2THEN202
2¢13 POKEPS, 128:DAS=INKEYS : IFDAS=""THIN283
204 DA=ASC(DA$ }: POKEPS, DA: TP=DA : FORN=1TO20% : NEXT : RETURN
210 IF{KB=32)AND(X<>@)THENX=X—1:POKEPS, TP : PS=G+X+64*Y : TP=PEEK(PS
) : POKEPS, OC: RETURN
220 IF{KB=64)AND(X<>63)THENX=X+1 : POKEPS, TP : PS=S+X+64*Y : TP=PEEK({ P
§} 1 POKEPS , CC: RETURN
239 IF{KB=8)AND({Y>@)THENY=Y-1 :POKEPS, TP: PS=5+X+64¥Y : TP=PEEX (PS) :
POKEPS, OC : RETURN
24¢ IF(KB=16)AND(Y<15)THENY=Y+1 : POKEPS, TP : PS=5+X+64*Y : TP=PEEK(PS
} : POKEPS, OC : RETURN
256 IF(KB=128)THENPOKEPS, 128 : FORN=1T020@ :NEXT : TP=128 : RETURN
26@ ' Construct A Graphics Block Loop Follows
27¢ KD=PEEK(14352): IFKD=CTHENRETURN
28¢ IFPEEK(1440@)=1268THENPOKEPS,128:DA=128
29¢ IFPEEK(14403)=1THENPOKEPS, DA: TP=DA:DA=128 : RETURN
399 IFKD=128THENDA=DAOR]ELSEIFPEEK(14368)=1THENDA=DAOR2
316 IFKD=16THENDA=DAORAELSEIFKD=32THENDA=DAORS
320 IFKD=2THENDA~DAOR] 6ELSEIFKD=4THENDA=DAOR3 2 Program continued

THE RESTOF 80 / 113

339 PCKEPS,DA:KD=PEEK{14352) : TP=DA:GOTO288

1008 POKEPS, TP

1818 Z=USR1(@):RETURN

1498 ' ... These are the string packers that set up

1489 ¢ the USR subroutines

159 PRINT"INITIALIZING PROGRAM ROUTINEScevvrs”

1505 UPS$="1101A92100AORF7 791021 4EDRACI"

151¢ PO=SHEFYE : FORT=1TOLEN{U@S }STEP2 : L=ASC(MIDS (UAS, I})48
1528 ReASC{MIDS (UB$, 1+1))-48:Lal47*{L>3):ReR+7*[R>9)

153@ POKEPQ,16*[+R;PO=PO+1 :NEXTI

1548 DEFUSRO=EHEFOO

1541 ' USR@ ... Clears buffers with zeros

1558 U15="1120B9212030019004E0RACo™

1560 PO=SHEF1@:FORI=1TOLEN{U1§)STEP2 :L=ASC{MIDS$ (U1$,1})-48
1578 R=ASC{MIDS(U1$,I+1))—48:L=IA7*({L>3):R=R+7*(R>3)

1586 POKEPQ, L6"LAR: PO=PO+1 :NEXTI

159¢ DEFUSRI=6BF16

1591 ' USRl ... Saves screen to video buffer ...

1600 U25="11893C210009912034EDBACI "

1610 PO=&HBRF20: FORI=1TOLEN(U2$)STEP2 : LaASC(MIDS (U2§,1)})-48
1620 R=ASC{MIDS{U2$,1+1})-48:LelA7%({L>3) :RmR+T*{R>9)

1638 POKEPOQ, 16*L4R: PO=PO+] :NEXTI

1640 DEFUSR2=SHREF20

1641 ' USR2 ... Moves saved buffer back to screen ...
1658 U3$="@1G4RD11933C210A890D2 L ARIFD2 LB00E T EFESS2819FE20281 50D
7 20¢DD2 3007 388002 3DD7 7¢DD2 3FD23FD23FD2 3231 3E5ED427CB5 280 3E1 1806
ElFDESELC39ABA"

1660 PO=&HEF3@: FORI=1TOLEN(U3$)STEP2 : L=ASC(MIDS (U3$,1))48
1678 R=ASC{MIDS (U3$,I+1))48:Lal+T*{L>9) :R=RtT7*(R>3)

1680 POKEPO, 16 *L+R: PO=PO+1 :NEXTT

1699 DEFUSR3=SHHF3Q : RETURN

1691 ' USR3 .., Construct Data Buffer fram videco buffer
170¢ Z=USRA(P):CLS: RETURN: 'Clear Buffere TO ZERDS ...
1999 ' ... Construct Data Statements & Save To Disk ...
2000 CLS

201¢ PRINT

202¢ LE=USR3(@) : IFPEEK(sHA90Q |=0THENPRINT ™NO VIDEO TEXT IN BUFFE
R" : FORN=1TOSHE :NEXT : CL.S : GOTO3@

2¢3¢ PRINT:LINEINPUT"FILESPEC FOR DATA SAVE? “;F$:OPEN"OQ",1,F$
2044 PRINT:P. "SAVING DATA LINES"

2050 SA=6HA900 : SL=20308 : GOSUBLOAD

296¢ LNS=LNS$+"DATA"

2079 FORN=SATOSA+LE-1

2075 IFLEN(LNS)<GRTHEN211@

2080 LN$=LEFTS (LN$, LEN{LN$)~1)

2099 GOSUBSGE : GOSUB4DOD

2160 LN$=LN$+"DATA"

2110 A$=STRS (PEEK(N)) :A$=RIGHTS (A$, LEN(A$)-1)

2120 LNS=LNS+AS+","

2140 NEXTN

215¢ LN$=LEFTS (LN$, LEN(LNS$)~-1)

216d GOSUB592@

2179 CLOSE

2188 GOTCSO

3499 ' ... Load in a Diskfile of Data Statements ...

35¢¢ CLS:LINEINPUT"FILENAME OF DATA? ";F$:PRINT

3514 PRINT"ENTER RN 368@ AT THE ‘READY' PROMPT"

352¢¢ PRINT:PRINT

3530 MERGEFS :END

36@0 PRINT"RESETTING PROGRAM SUBRCUTINES":GOSUB15@5:GOSUBL

114 / THE REST OF 80

361¢ ONERRORGOTO3658

3628 FORN=1TO30472:REAIM,L,D

3630 AD=M*256+L:POKEAD,D

3648 NEXT

3649 ' ... When all data is exhausted, jump below on error
365¢ Z=USR1{@)}:RESUME2¢

4009 LNS=RIGHTS (STRS (SL) ,LEN{STRS (SL))-1)+" “:RETURN

5089 PRINT#1,LN$:SL~=SL+1Q:RETURN

Program Listing 3.

A Giant Android. These BASIC lines were constructed automatically by DRAFTER after
about 10 minutes of screen construction time.

20023 DATAE@,17,71,6d,19,73,608,21,65,60,23,78,60,25,84,60,28
20018 DATAGS,6P,3,78,60,32,68,60,34,82,60,36,79,690,38,73,60
20029 DATAAH, 68,60, 98,188,60,94,188,6,154,191,69,158,191,68
2003¢ DATA216,191,68,217,191,69,218,191,60,219,191,68,228,191
20840 DATAEY,221,191,60,222,191,68,223,191,6@,224,191,61,23
2005¢ DATA178,61,24,191,61,26,17¢,61,27,191,61,28,191,61,29
20068 DATA191,61,39,149,61,32,191,61,33,149,61,87,178,61,88
20078 DATA191,61,89,149,61,95,179,61,96,191,61,97,149,61,151
20080 DATAl3@,61,152,131,61,153,131,61,154,143,6),155,143,61
2009¢ DATAL56,143,61,157,143,61,158,143,61,159,131,61,168,131
20100 DATA6L,161,129,61,213,162,61,214,176,61,215,176,61,216
2@11¢ DATAL76,61,217,176,61,218,159,61,219,131,61,22@,131,61
29129 DATA221,131,61,222,131,61,223,180,61,224,176,61,225,176
20138 DATAG1,226,176,62,21,191,62,25,191,62,32,191,62,35,191
2014¢ DATA62,84,199,62,89,191,62,96,191,62,199,189,62,147,186
20150 DATA62,152,178,62,153,191,62,168,191,62,161,149,62,165
20169 DATA181,62,211,142,62,216,178,62,217,191,62,224,191,62
2017¢ DATA225,149,62,229,141,63,25,191,63,32,191,63,88,191,63
20180 DATA97,191,63,152,191,63,161,191,63,214,188,63,215,188
20194 DATAG3,216,191,63,225,191,63,226,188,63,227,188

THE RESTOF 80 / 115

16
HELP with Commands

by Phil Comeau System Requirements;
Model I or 1]

16K RAM

Orne disk drive

Editorfassembler

TRSDOS-compatible DOS

Sometimes a short reminder can be more valuable than a three-page
description in a user's manual. TRSDOS's LIB function displays a list
of the available commands on the video screen, but many of them re-
quire extra parameters, and remembering the formats and possibilities
of each command is not an easy task. The HELP program {Program List-
ing 1} does it for you. Type in the name of the command or feature you're
unsure of, and HELP tells you about it. For example, if you type HELP
DEBUG, HELP responds:;

DEBUG [ON/OFF)

ACTIVATES OR DEACTIVATES DEBUGGING MONITQR

FOR MORE INFORMATION TYPE “HELP DEBUG COMMANDS"

HELP can also tell you about the input formats expected by a general
ledger program, or Scripsit formatting commands. It can also be used
for purposes as diverse as an address and phone number list or a quick
recipe reference.

How It Works

HELP begins by getting some information from the command line
buffer, the place in memory where DOS stores the last command en-
tered. You type HELP and a word, called the search keyword, describ-
ing the information you need. A list of available keywords and their as-
sociated informational messages is stored in the HELP program. HELP
searches this list until it locates either the keyword or the end of the list.
If it finds the keyword, the message following the keyword is displayed

116 / THE REST OF 80

on the video screen. If it reaches end of the list without finding the
keyword, HELP displays the message SORRY—NO HELP IS AVAIL-
ABLE FOR [the keyword). In either case, HELP then returns to DOS.

The HELP program, as written, provides information on DOS com-
mand formats. Both the keywords and the help messages are stored as
strings. The last byte of each string is a special character called end-
of-string, or EQS. EOS typically has the value zero.

There are two advantages to storing text in this manner. First, strings
may have variable length. There is no arbitrary restriction that says the
search keyword must be, for example, eight characters long. Second, be-
cause it uses a consistent format to store the text, some general purpose
subroutines can be used. For instance, the subroutine DSPSTR, which is
used to display a string on the video screen, can be lifted out of this pro-
gram and used in another one. As long as DSPSTR is called correctly
{with the HL register pair pointing to a string terminated by EOS}, it will
function properly.

In this program, the list of keywords and help messages is stored as
strings in memory, starting at the symbol HLPLST and ending at the
symbol ENDLST. Each entry in the list is formed by a keyword, fol-
lowed immediately by the help message associated with that keyword.

[used EDTASM to assemble HELP. With this assembler, text can be
represented with the DEFM (define message) pseudo instruction (it is
called a pseudo instruction because it does not generate machine code}.
Each string defined with a DEFM consists of text followed by the symbol
EOS, which is given the value zero in an EQUalte near the start of the
progrant.

Each line of the help message, except the last, ends with a carriage re-
turn (CR). This causes printing to resume at the beginning of the nexl
linc when the message is displayed. It does not mark the end of the
string. Two carriage returns appearing together generate a blank line be-
fore printing resumes. Any number of carriage returns may appear with-
in the message string.

If you want to replace or add to the help list with your own entries,
Program Listing 2 shows how. If the strings in this program are included
in your HELP program, typing HELP MARY SMITH results in this
display:

MARY SMITH

111 18T STREET

ATOWN, WHEREVER

PHONE: 123-4567 :

The first keyword in the help list consists only of the EOS code. This
is a null string, used when no search keyword is entered in the com-
mand line. The null search keyword matches with the null help list
keyword. HELP gives you a display of all the available keywords
known to HELP.

THE RESTOF 80 / 117

Program Listing 1

Pea10 ; HELP V1.l 25-JUL~82
o020 ; AUTHOR: PHIL CQOMEAL
o030 ; DATE WRITTEN: @3-DEC-81
o2ea
28053 ; CONSTANTS
QoD ;
eoa1 ¢2A73 BREAK EQU 1 + <BREAK>
4318 Pe08a COML EQU 4318H ;DOS COMMAND LINE
eI #8092 CR BQU otH ; CARRIAGE RETURN
492D 29198 DOS BQU 402DH 1TRSDOS RE-ENTRY POINT
2833 #9110 DSPC BEU 33H s CHARACTER DISPLAY RIN
o] #0120 EOS BU G ;END OF STRING
oo 20130 SPACE B ' '
20143 ;
o158 ; MAINLINE
#216a ;
5200 2o170 ORG 5200H
5209 3B0D #0180 HELP: LD A,CR ;LEAVE A BLANK LINE
5202 CD330Q OU19% CALL DSPC
5205 11995F 90200 LD DE,KEYWRD ;GET KEYWORD FROM CMD LINE
5208 CD4852 Pd21@ CALL GETCML
2e22 ;
520B 21C252 02239 LD HL,HLPLST
520E 11765F 0@24¢ SRCHLP: LD DE,ENDLST +SRCH FOR KW UNTIL WE REACH
5211 ES 29250 PUSH HL +THE END OF THE TAELE
5212 B7 00268 OR A
5213 ED52 00279 SBC HL,DE
5215 El 00263 POP HL
5216 F23452 Q9299 JP P,NOTFND
00303 ;
5219 11995F O@318 LD DE,KEYWRD {HAVE WE FOUND THE KEYWORD?
521¢ 23 20320 INC HL
521D CDBCS2 @@33R CALL CMPSTR
5220 CA2D52 02340 JP Z,FOUND
B350 ;
5223 CDTFS2 Q@360 CALL SKFSTR ;IF NOT, FIND END OF KW
5226 23 90370 INC HL
5227 CD7FS2 00380 Call, SKPSTR ;THEN SKIP TO NEXT KW
5225 CIPES2 98399 JP SRCHLP
00400 ;
522D 23 P0419 POUND: INC HL +IF FOUND, DISPLAY THE
S22E CDB252 00420 CALL DSPSTR {HELP MESSAGE
5231 C34@52 00439 JP HLEXIT ;AND END
0443 ;
5234 21765F 0450 NOTFND: LD HL,NFMSG ;IF NOT FOUND, SAY SO
5237 CDR252 #3460 CALL DSPSTR
523A 21995F @O470 LD HL,KEYWRD
523D CDB252 90450 CALL DSPSTR
ga4%g ;
5240 3EMD 2950@ HLEXIT: LD A,CR ;LEAVE A BLANK LINE
5242 CD33¢0 09510 CALL DSPC
5245 C32D48 B95208 JP DOS sBACK TO DOS
23530 ;
20540 ;
PE550 ; GETCML: GET PARAM STRING FRCM OMD LINE
BO568 ; ENTRY: DE POINTS TO START OF PARAM STRING BFR
28574 ; EXIT: DE POINTS TO END OF PARAMETER STRING
29580 ;

118

/ THE REST OF 80

5248
5249
524A

524D
524E
525@
5253
5255
5258
525A
5258

525E
525F
5261
5264
5265

5268
5269
526B
526E
5273
5273
5274
5275
5276

5279
5278
527C
527D
327E

527F
5280
5281
5283
5286
5287

5288

F5
ES
211843

7E
FE20
CASES2
FECD
CASES2
FEAL
23
C34D52

7E
FE20
26852
23
C35E52

7E
FEOD
CA7952
FE@L
CAT7952
12

23

13
36852

3EPD
12
EL
Fl
9

F5

7E
FEJ
CABAS2

38052
Fl
c9

22599 GETOQML:
510217 5]

20618

Qo020

0639 SKIPNM:

Q650
266l
Bee7d
2680
20690
TT
Pa71a
DF7 26 SKIPSP:
28739

28749

9a75a

2a768

sare

B9788 LDPRM:
00790

-

20810
20820
20830
gR84d
29850

pes7e ;
HIBBE GCENIT:
3A89G
o5 0]
29919
geoze
29930
0949 ;
a295a ;
209643 ;
23972
90982
NG SKPSTR:
01000 SKPLP:
gLele

21820

#1330

BLa4e

Q1350 SKEIT:
a1g62
gla7e
G1e8e
@1e9¢
119
@111@ ;
g112a
21130
@114
a115a
21169
B117%
#1180

wr vr e e e ome

LD A, (HL)
P SPACE
JP NZ,LDPRM
INC HL

JP SKIPSP

CP CR

JP 2,GCEXIT
CP BREAK
JP Z,GCEXIT
LD (DE).A
INC HL

INC DE

JP LDPRM

LD A,EOS
LD (DE),A
POP HL
POP AF
RET

;PCINT TO OMD LINE

;SKIP PROGRAM NAME
;BY FINDING 15T SPACE

sOR CR
;OR BREARK
;IN CMD LINE

:FIND 1ST NON-SPACE CHAR

H
H

UNTIL A <CR>

;OR A <BREAK> IS FOUND

;i TRY NEXT CHAR

;MARK THE END OF STRING

SKPSTR: FIND END OF STRING
ENTRY: HL POINTS TO START OF STRING

EXIT:

PUSH AF

LD A, (HL)
CP EOS

JP Z,SKEXIT
INC HL

JP SKPLP
POP AF

RET

HL POINTS TO EOS

JWHILE (HL) <>EO8

; TRY NEXT CHAR

CMPSTR: COMPARE STRINGS
ENTRY: HL POINTS TO START OF STRINGL
DE POINTS TO START OF STRING2
HL POINTS TO ENMD OF STRING1 OR
PLACE WHERE (HL}<>(DE)
DE POINTS TO END OF STRING2 OR
PLACE WHERE (HL)<>(DE}
AF = -1 IF {HL) < (DE)
¢ IF {4L) = (DE)
+1 IF {HL} > (DE)

EXIT:

Program continued

THE REST OF 80 / 119

ariog ;

528C C5 @l209¥ CMPSTR: PUSH BC
528D 1A @121@ CSLP; LD A, (DE} :WHILE (HL)=(DE)
528E BE a122a CP (HL)
528F C29D52 @1230 JP NZ,NOTEQ
5292 7E @gi240 LD A, (HL) ;AND (HL)<>EOS
5293 FEOQ PL250 CP EOS
5295 CAAES2 @l26@ JP Z,EQ
5208 23 o1270 INC HL ;TRY NEXT CHAR
5299 13 1280 INC DE
529h C38D52 01290 Jp CSLP
21300 ;
529D 1A @1l31¢ NOTEQ: LD A, (DE) :IF (HL)<(DE)
529E 47 21320 LD B,A
529F 7E #1339 LD A, (HL}
52a8 9 01340 suB
S52A1 F2A952 @1350 JP P,GT
52A4 3EFF L3605 LD A,@FFH :THEN RETURN -1
52A6 CIRG52 Q1378 JP CSEXIT
52A9 3EAL 21380 GT: 1D A,l ;ELSE RETURN +1
52AB C3B@52 Q139 JP CSEXIT
al4ea ;
52AE 3EOQ 914190 BEQ: LD AP 7 (HL)=(DE), SO RETURN @
21420 ;
52p2 ¢l 21430 CSEXIT: POP BC
52B1 C9 21440 RET
21450 ;
91460 ;
21479 ; DSPSTR: DISPLAY STRING
#1480 ENTRY: HL POINTS TO START OF STRING
21499 ; EXITt+ HL POINTS TO EOS
91500 ;
52B2 F5 @1512 DSPSTR: PUSH AF
5283 7E 91529 DSLP: LD A, (ML) ;WHILE (HL)<>EOS
5284 FEQO 21539 CP EOS
52B6 CACO52 91540 JP 2,DSEXIT
52RO CD339@ Q1550 CALL DSPC ;DISPLAY CHAR
52BC 23 21560 INC HL
52BD C3B352 @157¢ JP DSLP
5200 F1 91580 DSEXIT: POP AF
52C1 9 91590 RET
916090 ;
21619 ;
91629 ; HELP LIST
91630 ; EACH HELP LIST ENTRY IS FORMATTED AS FOLLOWS:
Bl64a <KEYWORD STRING> <HELP MESSAGE STRING>
pl650 ;
5202 @1660 HLPLST BEQU $
5202 20 21670 DEFB EOS
52C3 00 g1680 DEFB EOS
52C4 48 21690 DEFM 'HELP V1.1 25-JUL-82'
s20e @ 1700 CEFB GR
5209 oD 21719 DEFE CR
52DA 54 a1L729 DEFM 'TO GET HELP ON ONE OF THE FOLLOWING '
S2FE 43 21730 DEFM 'COMANDS'
5305 @D a1749 DEFB CR
5306 54 #1750 DEFM 'TYPE "HELP <COMMAND>":'
531C @D P1768 DEFB CR
531D e 91779 DEFE CR
531E 41 21780 DEFM 'APPEND AUTO ATTRIB BASIC

120 / THE REST OF 80

5341
5350
5351
5374
538¢
5381
53a4
53B1
53B2
53D5

53E5
53E6
5403
5404
5423

5424
5424
342B
5440
5441
5442
5463

5464
5468
5469
5475
5476
5477
549B

S4AE
54B4
5485
54D4
54D5
5406
54FB
54FC
551D
5529

552a
5535
5536
5550
5551
5552
5573
5574
5598
5599
558D
55BE
55DE
55DF
55F2

SRYEESLEREBEEBS

8888ERE

41
o
a
20
]
20

20
2a

20
4B

#1799
21800
21810
91820
#1830
21642
21850
31860
a187a
1880
21899
21999
21919
21920
21930
21940
#1950
#1960
31972
31980
g19%%
22000
G2010
a2020
22030
22042
22059
92060
22072
22088
22099
02109
2211@
#2128
32136
32148
@21.50
@216
p2179
22180
2219
222009
92210
92220
9223@
32240
32259
62260
@2270
92260
22290
g23ed
#2310
92320
92338
#2340
@235
F2360
22378
2380

'BASIC2 HASICR'

CR

'CLOCK opY DATE DEBUG '
‘DEVICE DIR’

CR

'DUMP KILL FREE LIB '
'LIST LOAD!

CR

'PRINT FROT RENAME TIME !
"TRACE VERIFY'

CR

CR

' < > INDICATE OPTIONAL VALUES'

CR

'/ INDICATES CHOICE QOF VALUES'
EOS

'APPEND'

EOS

'APPEND FILEl TO FILEZ2'

CR

CR

' ADDS FILEl ONTO THE END OF FILE2'
BOS

'AUTO!

BOS

"AUTO COMMAND'

CR

CR

' SPECIFIES A COMMAND TO BE EXECUTED '
'WHEN DOS IS BOOTED'

EOS

'ATTREB'

s

'ATTRIB FILESPEC <{PARM...PARM}>'

CR

CR

' ALTERS PROTECTICN STATUS OF FILESPEC'
CR

' FOR MORE INFORMATION TYPE "HELP '
'ATTRIB PARM"'

E0S

'ATTRIB PARM'

EOS 1 2ND LEVEL ENTRY

'ATTRIB COMMAND PARAMETERS:'

CR

CR

‘I MAKE FILE INVISIBLE'
CR

' ACC=PSW] ACCESS PASSWORD = PSWL'
CR

' UPD=Psw2 UPDATE PASSWORD = PSW2'
CR

' PROT=IVL ACCESS LEVEL = ILVL'
CR

! LvL: '

'KILL/RENAME /WRITE/READ/ EXFC'

Program continued

THE RESTOF 80 / 121

560D

5E2E
5613
5614
561D
561E
561F
5641
5642
5664
5676

5677
567D
567E
5684
5685
5686
56AC
5687

5688
S56RE
56BF
56C8
56C9
56CA
56E6
S6FC

56FD
5792
5763
5713
5714
5715
573a
573D

573E
5742
5743
5756
5757
5758
5779
5785

5786
578A
578B
5798
5799
579A
57AB

57aC
5781
57B2
57C2

%2}

42
1%
42
aD
oo
20
2D
20

o
42

42

28
49
]

42
o
42

28
52

43
aa
43
0]
2D
20
4aF
%

43
%]
43

=88

88

BR8R BX8BLRER

22390
92400
22410
B2420
92430
92440
92450
22460
92470
22480
92499
a2500
@251a
92520
22538
82549
92550
B2568
@2570
22580
22590
92600
22612
92620
22630
32642
92656
226608
92670
92680
#2699
22708
@2ila
02720
92730
22740
72758
g2768
82779
22780
92799
2800
#2818
92828
g2830
22848
2850
Q2860
@287a
F2880
22899
F290a
92918
p2928
92939
22948
@2950
@296@
32972
22980
92999

DEFB

DEFM

DEFM
DEFB

DEFM
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB

DEFM

DEFB

122 / THE REST OF 80

EOS

'BASIC!

BOS

'BASIC <*>'

CR

CR

' LOADS THE DISK BASIC INTERPRETER.'
CR

' BASIC * RETURNS TO BASIC WITHOUT '
'DESTROYING PROGRAM'

B0S

'BASIC2'

EOS

'BASIC2’

CR

CR

' RETURNS TO LEVEL II {NON-DISK} BASIC '
' INTERPRETER'

EOS

'BASICR'

EOS

'BASIC «*>»'

CR

CR

' SAME AS BASIC BUT INCLUDES '
'RENUMBERING CAPABILITY'

nos

ICIod(t

BOS

"CLOCK < {ON/OFF)»"'

CR

CR

' TURNS REAL~TIME CLOCK DISPLAY ON OR °
'OF‘F‘I

EOS

'COPY'

28

‘CoPY FILEl TO FILE2'

CR

CR

' MAKES A DUPLICATE CQOPY OF FILEl '
'CALLED FILE2'

EOS

IDATE'

EOS

'DATE MM/DD/YY'

CR

CR

' SETS SYSTEM DATE'
BEOS

IDEHE 1]

FOS

'DEBUG < {ON/OFF)>'
CR

57C3
57C4
57E8
S7EF
572
5817
58249

5821
582F
5838
5849
5841
5865
5868
586C
5894
5895
S8BB
58C1
58c2
58E8
58F8

5917
5929
592A
5943
5944
596C
S5%F
5970
5996
599D
599E
59C1
59CC

59F@
59FB
59FC
5A23
5A29

552

5A53
5a59
5A5A
5260
5a61
5862
5A83
S5ASA

SABB
S5ABE
SABF

5AA2
S5AA3

HESE¥E SRYBIR8: BYY&EYS

3200
83019
33020
83038
3040
23959
23%62
23279
23080
a3g9a
23102
2311¢
2312¢
B313@
#3140
23150
@3160
33172
23180
23199
g320a
@3218
93220
33230
33246
@325a
3268
#3270
#3280
3329
#3300
3310
@3320
93330
23349
33350
#3360
93370
93380
23399
03400
23419
23420
93430
93448
23450
93460
93470
23480
33490
/ELT)
3510
#3520
#3530
93549
23550
83568
#3579
33580
@359
@3600

DEFB
DEFM
DEFM
DEFB
DEFM
DEFM
DEFB

DEFM

CR

' ACTIVATES OR DEACTIVATES DEBUGGING '
'MONITOR'

CR

' FOR MORE INFORMATION TYPE "HELP DEBUG '
'COMMANDS™ !

EOS

'DEBUG COMMANDS*

BOS

' DEBUG COMMANDS:

CR

‘A SETS DISPLAY TO ASCIT '

' FORMAT"

CR

e SINGLE STEP, EXECUTE CALLS'
CR

' D ADR DISPLAY MEMORY STARTING
'AT ADR'

CR

' G Al,Bl,B2 JUMP TO Al; Bl & B2 ARE '
'OPT. BREAKPOINTS'

CR

| SETS DISPLAY TC '
'HEXADECIMAL FORMAT'

CR

"I SINGLE STEP'

' M ADR MCDIFY MEMORY STARTING AT '
' RRP VAL LOADS VAL INTO REGISTER '
'8 SETS DISPLAY TO FULL

U SETS DYNAMIC DISPLAY '

X SETS DISPLAY TO REGISTER '
o/ INCREMENTS,/DECREMENTS PAGE'

'DEVICE'

BOS

'DEVICE'

CR

CR

' LISTS ALL CURRENTLY DEFINED I/O '
'DEVICES'

EOS

'DIR’

B0S

'BIR <:D> (<§,I,A>)’

CR

CR

' DISPLAYS DIRECTORY OF DISK IN DRIVE :D'

Program continued

THERESTOF 80 / 123

SACA A361e DEFB CR

SACB 20 aI6200 DEFM ' FOR MORE INFORMATION TYPE "HELP DIR '
SAFQ 4F ?3630 DEFM 'OPT"'
SAF4 29 23640 DEFB EOS
33650 ;
SAFS 44 23660 DEFM 'DIR OPT'
SAFC 0p #3670 DEFB EQS
SAFD 44 #3680 DEFM 'DIR OPTIONS:'
5B29 @D 23699 DEFB CR
SEAA BD 233700 DEFB CR
SBOB 20 #3710 DEFM ' § DISPLAY ALL SYSTEM AND '
5B26 4F 23720 DEFM ‘NON-INVISIBLE FILES'
5B39 €D #3730 DEFB CR
SB3A 20 33748 DEFM ' 1 DISPLAY ALL INVISIELE AND '
SB58 4E @3750 DEFM 'NON-SYSTEM FILES'
5p68 WD B376@ DEFB CR
5869 20 23770 DEFM ' & DISPLAY DISK SPACE ALLOCATION'
SEBA 20 a3780 DEFB EDS
A3798 ;
S5BBB 44 23800 DEFM 'DUMP'
S5BEF oa 23812 DEFB ECS
5B9% 44 23829 DEFM 'DUMP FILE (START=X'‘AAAA'',END=X''BBRB'"'
5BA2 3C 2383¢ DEFM '<¢,TRA=X''CooC''>)!
S5BA9 @D B3840 DEFB CR
SBAA @D 23858 DEFE CR
5BAB 20 23860 DEFM ' DUMPS MEMORY FROM ADDRESS AAAA TO '
SRCE 42 92870 DEFM 'BBRB TO DISK,'
SEDB @D 23880 DEFB CR
SHEDC 20 33893 DEFM ' WITH FILESPEC "FILE". WHEN FILE IS '
5001 4C 23999 DEFM 'LOADED, EXECUTION'
5CI2 @D a391@ DEFB CR
5CL3 28 23920 DEFM ' WILL BEGIN AT ADDRESS C0CC {IF '
5¢33 53 23930 DEFM 'SUPPLIED)'’
5C3C 00 23949 DEFB EOS
23959 ;
5C3D 46 F3960 DEFM 'FREE'
5C4l 29 Q3979 DEFB ECS
5C42 46 33980 DEFM 'FREE'
5C46 @D @399 DEFR CR
5047 @D 24060 DEFB CR
5048 2¢ 24010 DEFM ' DISPLAYS FREE SPACE ON ALL DISKS'
5069 20 34020 DEFB EOS
B4d3a ;
5C6A 4B 24049 DEFM 'KILL'
S5C6E 0@ Q4058 DEFB EOS
5C6F 4B 24060 DEFM 'KILL FILESPEC'
5C7C @D 24079 DEFB CR
SC7D @D 24085 DEFB CR
5C7E 20 D430 DEFM ' DELETES FILESPEC FROM DISK'
5099 2@ 4100 DEFB EOS
P4118 ;
5C9A 4C 34120 DEFM 'LIB'
5C3D o2 24130 DEFB EOS
S5CIE 4C 34140 DEFM 'LIB'
5CAl @D B4150 DEFB CR
5CA2 @D 04160 DEFB CR
5CA3 20 94170 DEFM ' DISPLAYS NAMES OF DOS COMMANDS'
5QC2 o8 74180 DEFB EOS
04199 ;
5003 4C 4200 DEFM 'LIST'
scc7 o9 @4a212 DEFB EOS

124 / THE REST OF 80

5QC8
5CD5
5CD6
5CD7
5CF%
S5CFF

5D2@
5024
5D@5
5D12
5D13
5D14
5D37

5D38
5D3D
5D3E
5D4C
5D4D
5D4E
5D75

5076
5D7a
507R
5094
5095
5096
SDB8
5DC9
5DCA
5DFY
SDF5

5DF6
5DFF
SEQ0
SE1@
5El1l
5E12
5E32
5E33
SE58
5ESD
SESE
5E82
SESC

SESD
SE23
SE94
SER9
SEAA
SERB
SECA

SECB

SEDS
SEDD

SY¥ 9988y BXS88A88 8JIKE8s

BEEYERIBERE

388L_E

88

BRE8&

BLEE BY¥88VEY

24220
@423a
24249
04250
D426
84270
24280
24290
B4309
84310
34320
24330
24348
84358
34360
24370
24380
34390

24410
#4420
84430
24440
84450

24479

24499
24500
24519
24520
94538
24548
34550
24560
24570
24580
34599

94610
04620
24630
24640
24650
24668
24679
24680
2469¢
24700
24719
04720
24730
04749
24750
34760
34770
234780
2479

3481@
34820

DEFM

DEFM
DEFB

'LIST FILESPEC'

CR

CR

' DISPLAYS CONTENTS OF FILESPEC ON '
'SCREEN'

BOS

ILOADI

BOS

"LOAD FILESPEC'

CR

CR

' LOADS FILESPEC FROM DISK TO MEMORY'
EOS

'PRINT"

BOS

'PRINT FILESPEC'

CR

CR

' PRINTS CONTENTS OF FILESPEC ON PRINTER'
BOS

'PROT'

B0S

‘PROT <:D> <(PARM...PARM}»>’

CR

CR

' CHANGES PROTECTION STATUS OF ALL '
‘FILES ON DRIVE :D'

CR

' FOR MORE INFORMATION TYPE "HELP PROT '
[} pARM" 1

EOS

'PROT PARM'

EOS

'PROT PARAMETERS:'
CR
CR
' PW CHANGE MASTER PASSWORD'

CR

' UNLOCK REMOVE PASSWORDS FROM USER '
'FILES'

CR

'OLOCK ASSIGN MASTER PASSWORD TO '
'USER F1LES'

EOS

' RENAME

E0S

'"RENAME FILEl TO FILEZ'

CR

CR

' CHAMGES NAME OF FILEl TO FILE2'
EOS

ITM'

B8s

'TIME HH:MM:SS'

CR Program continued

THEREST OF 80 / 125

SEDE
SEDF
SEF4

SEF5
S5EFA
SEFB
5FOB
SFaC
S5FeD
5F33

SF34
5F3A
5F3B
SPAC
S5P4D
SP4E
5F75

SF76
5F76
5F98
5F99

5200

EXBIFRF SEE8X8L 8KE

28

294830 DEFB CR

04840 DEFM ' SETS REAL TIME CLOCK'

24850 DEFE EOS

94860 ;

24870 DEFM "TRACE'

4880 DEFB FOS

24890 DEFM 'TRACE <{ON/OFF}>’

4905 DEFB CR

4910 DEFB CR

9492¢ DEFM ' SETS DISPLAY OF PC REGISTER ON OR OFF'
24930 DEFR BOS

B494d ;

34950 DEFM 'VERIFY'

24960 DEFB ECS

P4978 DEFM 'VERIFY <{ON/OFF}>'

64985 DEFB CR

54990 DEFB CR

25000 DEFM ' SETS DISK WRITE VERIFICATION ON OR OFF'
25012 DEFB EOS

25620 ;

@530 ENDLST EMJ §
@SP42 NFMSG: DEFM 'SORRY —— NO HELP IS AVAILABLE FOR '

25050 DEFB EOS
P5P6Q KEYWRD EQ §
p5a7d ;

25080 END HELP

A0g¢@ TOTAL ERRORS

Program Listing 2

HELP LIST
EACH HELP LIST ENTRY IS FORMATTED AS FOLLOWS:
<KEYWORD STRING> <HELP MESSAGE STRING>

BU § sTHIS MARKS START OF HELP LIST
DEFB ECS

DEFB BOS

DEFM 'HELP V1.1 25-JUL-82°

DEFB CR

DEFB CR

DEFM 'THIS 1S EXAMPLE 1.'

DEFB CR

DEFM 'THESE NAMES ARE KEYWORDS IN A SAMPLE'
DEFB CR

DEFM 'NAME AND ADDRESS LIST:'

DEFB CR

DEFB CR

DEFM 'ALICE ARMSTRCNG, MARY SMITH, BRIDGET TURNER'
DEFB CR

DEFM 'SHARON WILLIAMS'

DEFB CR

DEFB CR

DEFM 'TO FIND AN ADDRESS AND PHONE NUMBER, TYPE'
DEFB CR

DEFM ' "HELP <NAME>"'

DEFB EOS

126 / THE REST OF 80

e

DEFM 'ALICE ARMSTRONG' ;THIS IS THE KEYWORD

DEFB BOS ;E0S MARKS END OF KEYWORD
; INFO FOR ALICE A. FOLLOWS

DEFM 'ALICE ARMSTRONG'

DEFB CR

DEFM '377 OCTAL AVENUE'
DEFE CR

DEFM 'TROIS~-RIVERES, (QUEBEC'
DEFBE CR

DEFM 'PHONE: 745-1263'

DEFB BOS ;EOS MARKS END OF INFO
DEFM 'MARY SMITH'

DEFB EOS

DEFM 'MARY SMITH'

DEFB CR

DEFM '111 1ST STREET'

DEFE CR

DEFM 'ATOWN, WHEREVER'

DEFB CR

DEFM 'PHNE: 123-4567'

DEFB EOS

DEFM 'BRIDGET TURMER'

DEFB BOS

DEFM 'BRIDGET TURNER'

DEFB CR

DEFM '2 RADIUS CIRCLE'

DEFB CR

DEFM 'COMPASS, ONTARIO'
DEFB CR

DEFM 'PHCNE: 314-1592'

DEFB EGS

DEFM 'SHARON WILLIAMS'

DEFB EOS

DEFM ‘'SHARON WILLIAMS'

DEFB CR

DEFM '898¢ PROCESSOR BLVD'
DEFB CR

DEFM 'MEMORY LAKE, MANITORA'
DEFB CR

DEFM 'PHONE: 280-4116'

DEFB BOS

BU $ $THIS MARKS THE END COF HELF LIST

THE RESTOF 80 / 127

17

Automatic
Master Disk
Directory

by Jack R. Smith

System Requirements:
Model ITII

One disk drive
TRSDOS-compatible DOS
Printer optional

Do you get tired of thumbing through your collection of disks looking
for a particular program? My program, INDEX, automatically reads
the directory information from each disk, then sorts and saves the infor-
mation on a master disk program index.

The basis of the first, extraction part of INDEX is a machine-lan-
guage TRSDOS RAM call, SRAMDIR, which allows you to examine a
disk directory one entry at a time or altogether. SRAMDIR is an easy
routine to invoke from BASIC. Set the HL, B, and C registers of the
Z80 to the initial condition described in the Model III Disk System
Owner’'s Manual (Figure 1). SRAMDIR is then called with a USR 0 in-
struction. When the directory has been written into the specified
memory locations, control is returned to the BASIC interpreter.

The initialization, calling and return functions are accomplished in the
short assembler program shown in Program Listing 1. Line 100 ex-
changes the register set in current use with the alternate set [the prime
registers), saving the contents of the normal register set. Line 110 loads
the HL register pair with the starting address of the memory location
where the directory information is to be placed.

Since approximately 1761 bytes of directory information have to be ac-
commodated, as well as the calling program, a 48K machine should start
storing the directory about 2000 bytes below the top of the memory, or at
F700H. Line 120 tells the routine to read the directory using drive 1. Line
130 selects transfer of the entire directory into memory. Line 140 trans-
fers control to the SRAMDIR routine. Line 150 restores the normal regis-

128 / THE REST OF 80

ter set of the Z80 so that return to BASIC is possible without loss of infor-
mation. Line 160 returns control to the BASIC interpreter.

The directory information is written sequentially into memory, start-
ing with the address loaded into the HL register. According to Radio
Shack, this directory information is written in blocks 21 bytes in length,
in the format FILENAME/EXT:DR, left justified, and padded with trail-
ing blanks for a length of 15 bytes, followed by the file's protection level
information, its length, and other information which is not of interest
here (see Figure 2).

Register ~ Contents Purpose

HL F700H Points to start of destination address of directory infor-
mation F700H for 64K machines.

B 1H Drive to be read from

c OH Switch—0H copies entire directory

Figure 1. Entry conditions to SRAMDIR

A
File names without /EXT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Filename:d P E L S G

B
File names with /EXT

123 456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Filename:d P E L S G

P: Protection Level

E: End of File

L: Logical Record Length

S: Last Sector in File

G: Number of Granules in File

Figure 2. Directory files returned by $SRAMDIR

FILENAME/EXT is the user-generated file name and optional exten-
sion under which the program is stored. DR is the drive number that the
disk is read from, in this case drive number 1. A program saved with the
command SAVE "HELLO/BAS" is transferred into memory by $RAM-
DIR as HELLO/BAS: 1bbbbX XXX XXX, where b indicates a blank and X
stands for numeric information not used in the indexing program. The
last entry in the directory is a plus sign [+].

Any file stored with an extension takes 22 characters, while file names
without an extension are transferred into memory using 21 characters.
Consequently, each directory entry must be examined for a slash (",

THE RESTOF 80 / 129

which if found tells the program that the start of the next directory entry
is found 22 characters after the file under examination. If no slash is
found, then the next file entry begins 21 characters later.

The second part of the program reads the resulting files into the array
A${n), sorts the array, and prints the sorted array. Disks are identified
with a user-supplied two-digit serial number from 01 to 99, which isthen
appended to the FILENAME/EXT extracted from the first part of the
program. After the program has read the last disk, a dummy disk num-
ber of 0 is entered and control branches to the print routine.

To speed up the sort, I use the TRSDOS CMD"O'" machine-language
sort routine, which takes only five seconds to sort 400 entries. Since
printing 400 directory entries—one per line—would use seven pages, |
use a 4-column format, which resembles a dictionary in layout and per-
mits the same amount of information to be contained on two pages. The
print parameters are based on an Epson MX-100 printer, with automatic
page performation skip.

Operating the program is simple. The program assumes that you have
numbered each of your disks with a different ID number between 1 and
99, INDEX also requires that you leave a TRSDOS system disk in drive 0
while the program is reading your Jisk from drive 1. If you wish to read
the disk that is in drive 0, substitute any other TRSDOS system disk.

When the program is run, it asks for the ID number of the first disk to
be read, then if that disk is mounted on drive number 1. If your reply is
Y, the directory is read and the directory names are displayed on the
screen as they are read from memory by the program. When the last
name has been read, you are asked for the next disk ID number. If no
more disks are to be read, type 0 as an ID, and an alphabetized master di-
rectory will be printed as hard copy.

Program Analysis

Lines 100-160: Initialize program, set MEMSIZE

Lines 170-240: Set up disk ID and make sure disk is mounted.

Lines 250-330: Line 250 tells the BASIC program the address to trans-
fer control to when the machine-language routine is called. Lines
260-330 are the machine-language routine and the POKE statements for
putting it into memory.

Line 340: Calis the machine-language routine.

Lines 500-520: Initialize the memory reading section.

Lines 530-610: Examine the memory, byte by byte. Non-printing
characters are stripped, and the colon (:} delimiter is searched for. Con-
trol is transferred out of the loop when each FILENAME/EXT is read or
when the end of directory is reached.

Lines 1000-1030: Prompt operator for all disks after the first one.

Lines 1200-1270: Subroutine which is called after a complete record

130 / THE REST OF 80

has been found in lines 530-610. The end of a record is identified by a co-
lon {:}. The disk ID is added to the file name and the resulting string
stored in A${K). Based on the presence or absence of a slash [/}, the next
file name is looked for 21 or 22 characters after the start of the file name
which has just been completed.

Lines 4000-4060: Print a header at the top of the page in double wide
characters, and the date of the run.

Line 4070: Activates automatic page perforation skip feature of Epson
printers.

Lines 4080-4100: Use TRSDOS utility sort routine.

Lines 4110-4180: Break the sorted array into quarters, and then print
the four columns.

Changes for 32K Machines

Line 130 POKE 16562,&HF7 : POKE 16561,&HB7

Line 140 CLEAR 12000

Line 250 DEFUSRO = &HBF0O

Line 260 DATA 217,33,248,183,6,
1,14,0,205,144,66,217,201

Line 310 POKE [&HBF00 + X),P

Line 530 A$ = CHR$(PEEK|&HB7F8 + NN}

Changes for Other 132-Column Printers

Line 4030 LPRINT TAB(53} "MASTER DISK INDEX LIST"
Line 4070 Delete this line.

Program Listing 1. SRAMDIR calling program

o9ed Do eolea EXX 1 SWAP REGISTERS

0001 21e6F7 o018 LD HL, BF70eH +HOAD WITH START ADDRESS
20a4 el G126 LD B.1l +USE DRIVE NUMBER 1
0006 CEAG HFL3G LD (o8} :GET ENTIRE DIRECTORY
2008 CDOG44 AF140F CALL 4490H ;CALL $RAMDIR

2808 D9 23156 EXX +SWAP REGISTERS BACK
a9ac Co oaloe RET ;BACK TO BASIC

2000 oaL7e END

20099 TOTAL ERRORS

Program Listing 2. INDEX

18@ 'MODEL III DISK INDEXER

119 'BY JACK R, SMITH K8Z0OA

1200 'VERSION 1.4 APRIL 11,1982

125 'NO NEED TO SET MEM SIZE

130 POKE 16562, &HF6 : POKE 16561, &HFF: Program continued

THE REST OF 80 / 131

'SETS MEMSIZE
135 'IF 32K POKE 16562,8HB7 : POKE 16561,&HF8
149 CLEAR 220090

:"{48K) IF 32K CLEAR 12009

15¢ DIM A$(1289) 1 'A$ HOLDS PROGRAM NAMES
168 CLS
178 PRINT@512,""; :INPUT "ENTER DISK ID NUMBER ";1D

189 IF ID<@ OR ID>99 THEN GUTD 168

19¢ IF ID=f THEN GOTO 400

209 IDS=STRS(ID) : "CONVERT ID NO. TO STRING

21@ PRINT@ 512, STRINGS(60,32)

228 PRINTR512,"IS DISK NUMBER" ID$;:INPUT " MCUNTED ON DRIVE #1

23@ IF LEFTS$(Y$,1}<>"Y" THEN GOTO 218

258 DEFUSRA=SHFTEY

255 ' IF 32K THEN DEFUSRO=&HBFOJ

260 DATA 217,33,08,247,6,1,14,0,205,144,66,217,201
27¢ 'LINE 26@ FOR 48K JF 32K CHANGE TO

280 'DATA 217,33,248,183,6,1,14,8,205,144,66,217,201

299 FOR X=¢ TC 12 +'PCKE INTO HIGH MEMORY

300 READ P

314 POKE (&HFF@P+X),P : 'CHANGE TO &HBFO@ IF 32K
26 NEXT X

334 RESTORE +'FOR NEXT DISK

340 J=USR@ (&} : 'LOAD DIRECTORY INTO MEMORY
358 !

5@ ' READ DIRECTORY INFORMATION FROM MEMORY AND PUT INTC AS()
5@5 PRINT@512,STRINGS (6d,32)

510 M=0 : 'POSITION (OUNTER

520 NNeM : 'CHARACTER COUNTER

53¢ AS=CHRS (PEEK(SHF70@+NN)) :'LOOK AT DIRECTORY ONE CHR AT A
TIME

535 ' IF 32K THEN PEEK(SHB7FBHIN)

540 TF A$<"1" THEN A$="" : 'CLEAN OUT NONPRINT CHRS.

55¢ 1F AS>"Z" THEN A$="" : 'DITTO

560 NN=II-+1 : ' AIVANCE COUNTER

57¢ IF A$="+" THEN GOTO 108¢ :'END OF DIRECTORY MARKED BY ++
580 IF AS=":" THEN GOSUB 1208 : GOTO 520 :"END OF RECORD
590 B$=B$+AS

600 PRINT@512,B5 .

618 GOTO 530 sREADY FOR NEXT CHARACTER

loge s

1918 PRINT@512, "LOAD NEXT DISK INTO DRIVE #1."

192@ PRINT@576, "ENTER DISK ID NUMBER OR ¢ TO HARDOOPY SORTED LIS
T"; : INPUTID

163@ coTo 188

1200 CLS

1218 'PUT RECORD INTO AS()

122¢F AS(K)=BS$+ ":" + ID$:' RECORD FORMAT FILENAM/EXT :ID
123@ K=K+l

1235 ' TRSDOS HAS TWO LENGTHS -— 21 IF NO /EXT AND 22 IF USE /EX
T

1249 IF INSTR(BS,"/")=@ THEN M=Mt21 ELSE M=wk22

125@ Bg="" :'READY FOR NEXT RECORD
1268 PRINT@512, STRINGS(68,32)

127% RETURN

4008 CLS

491¢ 'PRINT AND SORT SECTION
4@2¢ 'WRITTEN FOR EPSON MX-108 PRINTER

132 / THEREST OF 80

4930 LPRINT TAB(44) CHRS$(14) CHRS(155) "E" "MASTER DISK INDEX LI
ST" CHR${18) CHR$(155) "F" :'DOUBLE WIDE DOUHLE STRIKE HEADER
4P40 LPRINT STRINGS(2,1@)

4950 LPRINT "DATE PREPARED: "LEFT$(TIMES,8)

4068 LPRINT STRINGS{2,1d)

4978 LPRINT CHRS$(155) "N" :"AUTO PAGE SKIP WITH EPSON

4980 N3=K+1

4999 'USE TRSDOS MACHINE SORT ROUTINE

4995 CLS: PRINT@512, "SORTING — READY PRINTER"

418 CMD "O",N%,AS (@)

4114

4120 K4=INT(K/4)+1 :'FOR FOUR COLUMN ACROSS

4139 FOR L~1 TO K4

4140 SP=33 :'132 COLUMN PRINTER

415¢ LPRINT A$(L) TAB(SP) AS{I+K4) TAB{2*SP)} AS(L+2*K4d) TAB(3*SP
) AS(L+3*K4)

416@ NEXT L

4179 LPRINT CHR$S(12) :'FORM FEED

4180 END

THE REST OF 80 / 133

18

Short Form
Directory

by Salvatore Yorks System Requirements:
Model {1

TRSDOS

One disk drive

Editorfassembler

l’ve developed a short machine-language program, D/CMD, that uses a
simple command to put the BASIC directory on the screen after the
TRSDOS READY prompt. This saves you time and frustration when you
can't remember how the program name was abbreviated. [keep a copy
on every disk I own, usually as an invisible file that is transparent to
other users, and cannot be killed accidentally. You can use this program
on all existing versions of DOS, 1.1, 1.2, and 1.3.

TRSDOS uses a buffer located at 4225H for all DOS commands. It
stops reading a program name when it encounters a space. To use
D/CMD, type D, press the space bar,and type 0, 1, 2, or 3. If you call for a
directory by pressing D without entering a number, drive 0 is the default
drive. The resulting display is the same directory you get when you use
the CMD''D:#" command in BASIC. It lists all the program narnes on
any disk together, without scrolling off the screen.

D/CMD is a complete, stand-alone program. 1t occupies the same area
as DEBUG, 5200H-5272H, so no BASIC program resident in memory is
disturbed when the directory is called. The code is completely relocat-
able; you can move it by changing the ORG statement in line 2200 of
the assembly listing.

Once you've entered the program using an editor/assembler, you
can create a build file, using the BUILD command in TRSDOS. Type
BUILD SB and press ENTER. After each prompt, type the following
lines: :

134 / THE REST OF 80

COPY D/ICMD:0 :1
ATTRIB D/CMD:1 {[j

D:1

Now press the BREAK key and you're ready to update all your disks.
*Place the disk with the BUILD file in drive 0.
*Place the disk to receive D/CMD in drive 1.

*Type DO SD and press ENTER.

*Repeat as often as necessary to convert all disks.
*You might want to set the AUTO function to DO SD and simply press

RESET after exchanging disks.

This copies the program from drive 0 to drive 1, then changes the
file’s visibility so that no one will mistakenly delete it. Then it runs the
program from drive 1, to make sure it's there, and has been rendered in-
visible. Once converted, you can call up a usable directory that won't
run off the screen. If you want or need the full file information, you
have to run the fill DIR system function.

Program Listing. Directory Routine

ﬂgzﬂﬁ:.t'ttttwtttiititttt‘ttiitt'ti
Q0380 ;* *
20400 ;* MODEL III - SHORT *
20509 :* DIRECTORY ROUTINE hd
20600 ;* REVISED *
aeioa ;v e7/n4/82 *
o2b0a ;v N
oased *
o1900 ;* *
21108 :* *
Blzm‘.titttt'*tﬁtitli't.tit.lttttt
21300 ; DEFINED ADDRESSES
nmce 2l4tp s B B1C%H sCLEAR SCREEN .
4271 91500 DRIVE EQU 4271H 7POINTER TO DRIVE SELECTED FOR DIRECTORY .
4419 9168¢ DSPDIR EQU 4419H ;DIRECTORY DISPLAY - BASIC FORMAT .
4225 21788 TXT BQU 42250 ;DOS TEXT BUFFER .
4299 21830 RAMDIR EQU 42994 +SELECTIVE DIR ENTRY .
2933 91990 VDCHAR EQU 2@33H 1DISPLAY A SINGLE (HARACTER .
#21R @2009 VOLINE EQU 92184 :DISPLAY AN ENTIRE MESSAGE .
4219 92106 SPECL EQU 42101 ;SPECTAL, CHARACTER SWITCH REGISTER.
5200 02200 ORG 52084 ;D05 "DEBUG" PROGRAM AREA .
82308 ; PROGRAM BEGINS HERF
5200 CDC9@1 2400 START CALL s s CLEAR THE SCREEN |
5293 3E28 92508 LD A, 49 :SETS SPECIAL CHARACTERS
5205 321942 92600 LD (SPECL) , A sTURNS OFF KANA CHARACTERS!
5208 1609 027¢0 LP D2 1@'S TO FILL MEMORY .
520A 217942 Q2800 LD HL, DRIVE~1 +START HERE - CLEARS DRIVE POINTER .
5200 918502 92920 LD BC,5 ;FILL 5 BYTES .
5218 CD7B52 Q3052 CALL FILL ;D0 IT TO IT 1
5213 SlBAPG 33169 LD BC,10 'FILL 10 BYTES .
5216 210352 #3200 L HL, FREE ;START HERE .
521% CD7B52 @330 CALL FILL : DO IT TO IT AGAIN !
93400 ; DISPLAY BASIC FORMAT DIRECTORY
521C 3A2742 03500 LD A, (TXTH2) !GET DRIVE # FROM DOS COMMAND BUFFER .
521F FE3L 23600 cp 1 ;IS IT A "1" ?
5221 280A 23700 IR Z,EXE 10K DO ITL
5223 FE32 #3800 cP 2! ;IS IT A "2" 7
5225 2806 33960 JR Z,EXE oK DO ITH
5227 FE33 Q4200 cp '3 IS IT A "3" 7
5229 2802 24100 JR 2,EXE 10K Do IT!
5228 IE3@ 24200 Lo A0 ;1F IT ISN'T 1,2 OR 3 IT MUST BE @l
522D 327142 094308 EXE LD (DRIVE},A s POINT T0O TARGET DRIVE .
5218 CD1944 P4408 CALL DSPDIR ;DISPLAY THE TARGETED DIRECTORY .

Program continued

THERESTOF80 / 135

5233
5236
5238
523B
523D
523E

5241
5244

5247
524A
524E
524F
5252
5255
5256
5258
525A
5258
525D
525E

5260
5263
5264
5266
5268
S526A
526C
S26E
527
5272

5274
5277

527A

527B
S27C
5270
5278
5277
5280
5282

5283
5284
5285
5286
5287
S22
52a3
52a4
52485
52A6
52a7

52P6
5287
5208
5289
528E
52BF
5209
52C1
52c2

eoon
5200

21352
@EFF
3a7142
0630
47
CDo@42

218352
CDiBg2

2ACS52
DD216E52
AF
DC4601
CD4EDD
87
ED42
3803
i
18F9
%]
0630

CD3380
79
FE@1
2BaC
DD23
DD23
182
6420
BADO
2122

21ABS2
olBe2

e

72
23
aB
18
Bl
2879
9

EE

#4508 ;

B4603
04700
24809
24909
25200
25193
25209
25302
5400
85508
25600
35702
25208
35904
86000
36180
26200
26308
36460
26500
26600
67T
26800
26900
arede
271080
27200
87390
2740
ar5ee
a760¢
Br70e
87008
7900
[
28102
28200
o830

PDECL

PDEC2

PDEC3

DECTHL

DSp

e84 ;

28500
A8600
o878
6608
2899
29028
29100

29208 :

a330e
29402
aysea
A0
2970
29800
#9905
1o00a
1ole¢
1&200
1a308
@408
19508
13608
19708
1e3aa
lagad
11298
11108
11200
1130
11482
11500
L1600

2030 TOTAL ERRORS

FILL

M5G1

MSG2

FREE

GET FREE SPACE INFORMATION

sPOINT TO FREE SPACE RUFFER .
;ASK FOR FREE SPACE INFO

;POINT TO FREE SPACE MESSAGE .
:DISPLAY MESSAGE .

CONVERT FREE SPACE INFO FROM HEX TO DECIMAL

:GET ASCII INTO HL
JPOINTER .

JCLEAR A .

; BC HOLDE THE

H DECIMAL DIGIT .
;CLEAR CARRY .

!SUBTRACT BC .

;DIGIT DOME .

;ELSE INC A .

JONTINUE .

1ADD BACK .

g TO "9r .

SPACE INFO

:+DISPLAY IT .

;IF O=1

; THEN DONE .

; DISPLAY REST OF MESSAGE WHEN DEC. CONV. IS DONE .

; DONE TWICE BECAUSE
THE TABLE 1S STORED IN TWO BYTE WORDS .
:+ OINTINUE CORVERSION .
; TARLE USED FOR DECIMAL
s QUNVERSION

H

+POINT TO NEXT MESSAGE .
;DISPLAY IT |

TQ DISK CALLER WHEN DONE

1 RETURN - DCHE

FI1LL MEMORY WITH SPECIFIC BYTE

+STORE THE BYTE TO USE .
; POINT TO NEXT BYTE .
;ADJUST THE OOUNT .

;M5B OF COUNT .

:MERGE LSB .

7OONTINUE 'TILL DCNE .
tRETURN WHEN DONE .

SCREEN MESSAGE ARER

$SWITCH 1O SPECIAL (HARACTERS
;FAT "X"
;FAT "X"
;FAT "X"

' Model II1 Short Directory '

s SHIRT QUFF POR POINTING HRND
; POINTING
HAND AND
FINGER
SPACE
END-OF-MESSAGE TERMINATOR - NO C.R.

:FAT “X" FOR BOARDER
FOR
MESSAGE .
11 ALWAYS SIGN MY WORK
;FAT "X" FOR
H BORCER .
H AT END OF LINE
; SWITCH BACK TO SPACE COMPRESSION CODES
1 END-OF-MESSAGE TERMINATOR - WI'TH C.R.

STCRAGE BUFFER FOR FREE SPACE INFORMATION

:STORAGE ARER FOR FREE SPACE INFORMATION .

D HL, FREE
D C,255
LD A, (DRIVE)
SuB 3gH
D B,A
CALL RAMDIR
DISPLAY DIRECTORY TITLE
LD HL, MSG1
CAlL, VILINE
LD HL,, (FREE+2)
LD IX,DECTBL
XOR A
1D B, {IX+l)
1D C,{Ix)
OR A
SBC HL,BC
JR C, PDEC3
e A
JR POEC2
ADD HL,BC
ADD A,I0H
DISPLAY DECIMAL FREE
CALL VDCHAR
LD A,C
<P 1
JR Z,06P
INC X
e X
JR PDECL
DEF# 109
DEFW 1B
CEFW 1
DISPLAY FREE SPACE MESSAGE
b HL,MSG2
CALI. VILINE
RETURN
RET
Lo (HL), D
™G HL
DEC BC
9] A,B
OR c
JR NZ,FILL
RET
DEFB 21
DEFB 238
DEFB 23
LEFB 238
DEFM
DEFB 143
DEFB 244
DEFB 245
DEFB 246
DEFB 20H
DEFB @3H
DEFM ' Free Gran(s)
DEFB 238
DEFB 238
DEFB 238
DEFM ' SLY !
DEFB 238
DEFB 238
DEFB 238
DEFB 21
DEFB Lo
DEFS 12
END START

136 / THE REST OF 80

;PROGRAM ENDS HERE |

19

ONESTEP at a
Time in BASIC -

by Alan Sefwmer Model 1
32K RAM

Disk BASIC

One disk drive

TRSDOS

Writing a BASIC program is easy; the hard part is making it work.
The best way to debug is to run the program one command at a
time. ONESTEP lets you run a BASIC program one command at a time,
while displaying the current line number and up to 26 user-defined vari-
ables. The program may be run at close to normal speed, or at a very
slow speed.

Once ONESTEP is entered and loaded, load disk BASIC. Answer the
Memory Size? question with 48128 to keep BASIC from overwriting
ONESTEP. Load the program you want to debug. To turn ONESTEP
on, add this line to the target program: DEFUSR 0=(&HBCO00):
" =USR 0(0), where the asterisk is a dummy variable. The line can be put
anywhere. If you have a long program that runs fine until the last few
lines, ONESTEP need not be activated until just before the problem
lines.

ONESTEP understands six commands.

SHIFT § Go into the one-step mode. Print the BASIC line number and
the variables requested.
ENTER Execute the next command. Display line number and

variables.

N Leave the one-step mode. Run program at normal speed. Dis-
play line numbers in upper right.

S Leave the one-step mode. Run program at slow speed. Dis-
play line numbers in upper right.

C Change the variables to monitor.

THEREST OF 80 / 137

K Kill ONESTEP. This entirely disconnects ONESTEP. The
DEFUSR line must be executed to restart it.

With ONESTEP on, a program can be stopped with the BREAK key
only in modes N or S. The program can then be edited or restarted with
CONT, RUN or GOTO. It is unwise to stop a program in the S mode;
nothing is hurt, but the keyboard is slow to receive input, ONESTEP
uses the variables QA$-QZ$ to store the names of the variables to be
printed. Because all variables are destroyed by the EDIT, CLEAR and
RUN commands, ONESTEP automatically executes a C command if any
of these commands is used. ONESTEP also executes the C command im-
mediately after the DEFUSR line. Any type of variable can be used with
the C command. This includes variables that use other variables, such as
B$(X) or A{l,]). ONESTEP executes only one command each time EN-
TER is pressed. You must press ENTER several times to complete a
multi-statement line.

How It Works

ONESTEP is a machine-language program written for a 32K Model 1
with disk and TRSDOS. When ONESTEP is first called, it ties itself to the
front of the BASIC keyboard driver. Every time BASIC calls the key-
board |after each command), it calls ONESTEP instead. ONESTEP tests
a set of flags and variables to see what needs to be done, does it, and
jumps to the real keyboard driver.

In all but three cases this causes no problems. However, the INPUT,
LINEINPUT and INKEY$ commands must scan the keyboard, which
requires calling the keyboard driver and puts you back into ONESTEP.
INPUT and LINEINPUT do a repetitive keyboard scan, so the program
wauld never get past them. INKEY$ does a one-shot scan, so it always
returns a null string. Patching sections of code—~INSET into the INPUT
routine, LINSET into the LINEINPUT routine, and INRES into the main
interpreter—solves the problem with INPUT and LINEINPUT. No sim-
ple fix works for INKEYS.

One way around the INKEYS$ problem is to temporarily replace the
INKEY$ function with a LET statement, making the INKEY$ variable
whatever you would have entered. Because ONESTEP uses QA$-QZ$
to store variable names, they must not be used in the target program. To
change ONESTEP's variable names, change line 2020. To adjust the
slow speed, change line 390.

ONESTEP commands are straightforward, but the display can be con-
fusing. A PRINT@ command spreads ONESTEP output all over the
screen. This is intentional. If lines were set aside for ONESTEP, program
output could easily be overwritten. It is best to have ONESTEP output
and program output on separate devices. Insert the following lines if you
have a printer:

138 / THE REST OF 80

552 LD HL,058DH
554 LD [401EH) HL
1712 LD HL,0458H
1714 LD (401EH) HL
1742 LD HL,0458H
1744 LD (401EH) HL

The last problem involves monitoring array variables and is best il-

lustrated by the following example:

10 DEFUSR 0= (&HBC00] : 0=USR 0{0) : DIM Y{(50}

20 FOR X=0TO 50

30 Y(X)=X

40 NEXT X
If ONESTEP is told to monitor Y(X), a subscript-out-of-range error oc-
curs at line 40. In a FOR-NEXT loop the NEXT command increments
the FOR variables and tests it against the TO argument. If the TO argu-
ment has been satisfied, program flow falls through the FOR-NEXT
loop. However, the FOR variable is now greater than the TO argument
{in the example X=51). At line 40 ONESTEP tries to print the variable
Y(51}, but Y is only dimensioned to 50: hence, the error.

ONESTEP is a good aid in teaching as well as in debugging. It is
hard for people to catch the ins and outs of programming when one
moment there's a program on the screen and the next the computer is
printing answers. ONESTEP lets you see step-by-step what the com-
puter is doing.

Program Listing

oALHS ; ONESTEP BY AL SEHMER 8/31/81

22110 ;
BCOO 23120 ORG PBCATH ;BOP@ = 48128
BOO@ 21B2BD 09130 LD HL, INRES ;ON RETURN FROM "INPUT"
BCQ3 220541 o040 LD (41C5H), HL ;COMMBND PT. TO INRES
BCOE 21ASED 90150 LD HL,LINSET ;LOAD LINSET JUMP INTO
BCO9 223441 90160 LD {4LA4H) , HL 1 "LINEINPUT" COMMBND
BOAC 3EC3 2a17a LD A,8C3H ;LOAD INSET JWP INTO
BOOE 32P857 DOLBO LD (5788H),A ; "INPUT" COMMBND
BC1l 21958D 20190 LD HL, INSET
BCl4 22B957 00200 LD (5789H) ,HL
BC17 2171BE 00219 LD HL,FLAG ; INIT FLAG
BClA 3630 00220 w (HL), 30H :SINGLE STEP ON
BCIC 2123BC 009230 LD HL, START +SET NEW DRIVER
BC1IF 221648 90240 LD {4916H) , HL
BC22 9 20250 RET ;RETURN FOR USR CALL
BC23 2171BE @2@268 START LD HL,FLAG ; BASIC ENTRY POINT
BC26 CB7E o278 BIT 7, (HL) ; "INPUT" COMMAND 7
BC28 C2D843 PR28g Jp NZ,43D8H 1 IF YES BACK TO BASIC
BC2B 28A240 09290 LD HL, { 4BA2H)
BC2ZE 222141 0@300 LD (4121H),HL ;BASIC LINE # TO REGL
BC3l QlOAZA P@31Q LD BC, JAGAH
BC34 213A3C 99320 LD HL, 3C3AH ;PT. TO SCREEN
BC37 CD2F13 99230 CALL 132FH :TO ASCII & DISPLAY

FProgram continued

THE RESTOF 80 / 139

BC3A

BC3F
BC42

3E20
323F3C
2171BE
CB76
2808
21FF1F
2B

c

20FB
2171EE

2811
3nP438
2180838

FE@9
C2DB43
2171BE

210843
221642
3E41
323BBE
213ABE
CDAD26
1A

A7
2035
3A71BE

3271EE
Cegl
21BFED

3A71RE

ce4l

323BRE
213ABE
9457
213ABE
CoaD26

A7
3A71BE

3271BE
18DF

21F6RD
CD6F20
20A240

3A71RE
E68F
FEC®

3ES2
3279EE
2170HE

20340
20350
20360
20370
22382
29399

20410
8420
23430

20450
00470

20490
20508
20510
2@520
09538
20540
20550
009560
Q579
00582
20590

o26la
20620

92630 GETVAR

2ge4d
Bo650

00679
22690

CELAY

MAIN

22180 NEXT

2e71a
0720
2730
0a748
23750
oa768
00770
2eriBY
23750

o
2e82¢
2083

20858
a0860
22870

22890
2a99a
o
00929
09930

PRTLNE

ESSEEESEEEE

m
=
3

BEESA5EREREAEEEYEEREEEEEEREREEE5EEREEEEEYE49866s

140 / THE REST OF 80

NZ,43D8H
HL,FLAG

4, (HL}
HL,43DBH
(4016H) , HL
A,41H
(BUF1+1),A
HL, BUF1
2600H
A,(DE)

A

NZ, PRTLNE
A, (FLAG)

2FoH
{FLAG),A
Z109H
HL,GETMSG
206FH

A, (FLAG)
2FH

A,41H
(BUF1+1),A
HL, BUF1
5794H

HL, BUF1
26804

A, (DE)}

A
Z,PRTINS
A, (FLAG)

A
(FLAG) A
NEXT

HL, LNEMSG
206FH

HL, { 42R2H)
PFAFH

A, (FLAG)
BFH

9

7 ,GETVAR
n,9

(TEMP), A
HL, TEMP

;TEST FOR NORM. OR SLOW

;IS SINGLE SET FLAG SET

+IS 'S' KEY PRESSED
;PT. TO 'SHIFT' KEY

;ARE BOTH PRESSED
;IF NOT BACK TO BASIC

;SET SINGLE STEP FLAG
+RESTORE QLD DRIVER

DO I NEED TO GET VARS.
BUFl = QA$

PT. TO BUF1
WHERE IS QAS STORED

;DE PTS. TO LENGTH OF QAS
+SET OR RESET ZERO FLAG
;NO NEED, SKIP GETVAR

e me m wa

+CLEAR VAR. COUNT

:CLEARR SCREEN
+PT. TO MESSAGE

; PRINT IT

;GET VAR, COUNT

;MASK OUT CONTROL BITS
ADD OFFSET
INSERT INTC BUFFER
;PT. TO INPUT BUFFER
INPUT VARIARLF

:WAS INPUT A 'ENTER'
WHERE IS ENTRY STORED
DE PTS. TO ENTRY LENGTH
SET OR RESET ZERD FLAG
1IF ZERO DONE WITH INPUT
;GET VAR. COUNT

[- e

T

; RESAVE COUNT

1GET NEXT VARIABLE
;PT. TO MESSAGE

PRINT IT

;GET BASIC LINE NUMBER
$TO ASCII & DISPLAY
:GET VAR, QOUNT

;IS COUNT EQUAL TO ZERD

;INIT % OF VARS. PRINTED

BCCD
BCDE

BDA3

BDOF
BD11
BD12
BD14
BD15
BDL7
BD1A
BDLD
BD29
BD22
BD25
BD26
BD27
BD2A
BD2C
BD2E
BD31
BD34
BD37
BD3A
BD3D
BDAG
BD42
BD44
BD47
BD49
BD4B
BD4D
BD4F
BD51
BD54
BD56
BDS8

CDEF29
o641
323BBE
213ABE
CDID26
ED536EBE
213EBE
3622
23

EB
21000
DD2AGERE
DD4ED
DDEEAL
DDG6d2
EDBE&
ER
363D
23
3622
23
363B
23

EB
310008
DDIED
DD6ED1
DD6602
EDB&
EB
3e2C
23
3600
213EBE
CDEF2Q
3A71BE
E6QF
21798E
34

BE
3N7OBE
20384
3EQQ
3270BE
217¢BE
CD6F20
210CEE
CD6F206
D499
FE4E
2029
2171BE
CBAS
CBB6
183F
FE53
2009
2171BE
CBAG
CBFé
1832

22950
2a960
@2978
22980
20999
21008
1919
91929
21939
91940
2105
21060
1870
01082
21990
91100
2111e
#1129
#1130
91140
#1152
Bl168
21170
21180
21192
21200
21218
21220
21238
21248
21258
71268
2127@
21280
21299
21300
a131@
21320
21330
91340
21350
21360
21379
91389
91399
@140
214109
91429
91430
01442
#1452
91468
21479
21480
#1499
21509
21512
81520
21539
@15408
@155

MORE

PRTINS

GETKEY

SKEY

5EEEREEEE

EEEBEEER

=
=

HENEEEEENEERERED

T EEELENFEELEFEEEIEE L PR

206FH
A,41H
(BUFL+1)},A
HL,BUFL
2600H
(BUF3),DE
AL, BUF2
(HL),22H
HL

DE,HL
BC,d

IX, {BUF3)
C, (IX+H3)
L, {IX+1)
H, (IX+2)

DE, HL
(HL}, 3CH
HL

{HL},22H

L, {IX+1)
H, (IX+2}

DE,HL
(HL), 2CH
HL
(HL},2

:START NEW LINE

s ADD OFFSET

PUT IN BUF1

sPT. TO BUF1

:WHERE IS VAR. STORED
;STORE ADDRESS IN BUF3
+PT. TO STRING FOR PRINT
;ADD " TO BUF2

sCLEAR BC FOR LDIR
;PT. TO VAR. NAME LENGTH
s C=LENGTH OF NAME

;HL=LOC. OF VARIABLE NAME
;MOVE VAR. NMME TO BUF2

;ADD = TO BUF2
;ADD " TO BUF2

$ADD ; TO BUF2

;SAME FUNCTION AS ABOVE

;ADD , TO BUF2Z

1ADD TERMINATOR

:PT. TO OUTPUT BUFFER
:PRINT IT

:GET VAR. COUNT

sMASK OUT QONTROL BITS
:PT. TO TEMP

;BM I DONE 7

;START NEW LINE
;PT. TO MESSAGE
sPRINT IT

;SCAN KEYBOARD
;I8 IT 'N'

+CLEAR SINGLE STEP FLAG
;SET SLOW FLAG

Program continued

THE RESTOF 80 / 141

BDSA FE43 21560 CKEY
BD5C CA7BBC @1579
BD5F FE@D #1588
BDE1 2829 21599
BD63 FE4B 2leod
BD&5 2016 F1618
BD67 21D843 21620
BD6A 221648 Q1630
BDED 218657 ©1640
BD78 222441 @1650

BD73 DD21B8B57 91660
BD77 DD36OCES 91670
BD7R DD36ZLFE @1680
BD7F DD360223 Q1699

EZRbbREEEBELEEEEER35953
A

BDB3 21305A ©1700

BDB6 22C541 (171@

BDA9 C30843 91729

BDSC 2123BC @173@ DONE

BDBF 221648 01740

BD92 CID843 @1750

BD9S FS P1760 INSET

BD9 3ATIBE 91770

BD99 F682 @1780 OR
BD9R 3271EE G179 1D
EDSE Fl 21828 POP
BDOF ES o1810 PUSH
EDAQ FE23 21820 cp
BDAZ2 C38B57 D1820 Jp
BDAS F5 @184@ LINSET PUSH
BDA6 3A71EE Q1850 LD
BDAY F680 21860 OR
BDAB 3271BE 1879 LD
BDAE F1l 21880 POP
BDAF C38657 ©1899 Jp
BDB2 F5 @190¢ INRES PUSH
BDB3 3A71BE Q1919 LD
BDB6 E67F 21920 AND
BDBS 3271BE #1932 LD
BDER F1 91940 POP
BDBC C3305A B1950 Je
BDBF 22 #196@ GETMSG DEFM
BDF5 00 21970 DEFB
BDF6 22 01980 LNEMSG DEFM
BEOR 20 LI DEFB
BERC 22 P200¢ INSMSG DEFPM
BE39 &7 o201 0 DEFB
BE3A 51 2020 BUFL DEFM
BE3D 20 @2030 DEFB
o630 92042 BUF2 DEFS
BEGE 0000 92050 BUF3 DEFW
BE7S o9 92060 TEMP DEFB
BE71 20 #2870 FLAG DEFB

(%l a2080 END
Q3039 TOTAL ERRORS

142 / THE REST OF 80

434
Z.,GETVAR
A0H

Z , DONE

4BH
NZ,GETKEY
HL,43D8H
{4016H) ,HL
HL, 57864
(41a4H) , HL
1X,5788H
(IX+3),BESH
(1X+1),@FEH
(Ix+42),23H
HL, 5A30H
(41C5H) , HL
43D8H

HL, START
(4@16H),HL
4308H

AF

A, (FLAG)
88H
(FLAG),A
AF

HL
23H
57BBH

AF

A, (FLAG)
8oy
(FLAG), &
AF

5786H

AF

A, (FLAG)
7FH
(FLAG), A
AF

SA3PH

;IS IT 'C'
;IS IT 'ENTER'
IS IT 'K’

;RESTORE OLD DRIVER

;s REMWVE INRES JUMP

:BACK TO BASIC
1SET NEW DRIVER

i BACK TO BASIC
:SAVE REGS.

+SET "INPUT" CALLED FROM
: TARGET PROGRAM FLAG
+RESTORE REGS.

;JP TO DOS EXIT
1 SAVE REGS.
+SET "LINEINPUT" FLAG

sRESTORE REGS,

;JP. TO DOS EXIT

;1 SAVE REGS.

:RESET "INPUT" BIT IN
sFLAG RBG, (BIT 7)

s RESTORE REGS.
+JP TO DOS EXIT

' "ENTER VARIABLES TO MONITOR, PRESS ENTER TO END INPUT™'

a0

' "WORKING ON LINE # “;°

o
' " <N>ORMAL
5.5
'Q $ L3
o8
3¢H
B2ae
%%
89

<S>LOW <CrHANGE <ENTER>

<K>ILL"™'

20

Renumber Your
BASIC Program

by Gary L. Simonds
System Requirements:
Model For 111
16K RAM
Level I BASIC

ave you ever had to retype part of your BASIC program because you

didn't leave enough room between line numbers to make correc-
tions? This renumber utility program is the answer. It also adds a profes-
sional look to your programs.

The renumber program lets you renumber a previously written BASIC
program. You may specify any starting line {0-65535} and the increment
between program lines (1-32767). The renumber program also searches
your program for a reference to an existing line number and adjusts that
reference accordingly. In Figure 1, the number 17 after the THEN com-
mand in line 10 is a reference to line 17.

For an example of the actual operations performed by the renumber
program, see Figures 1 and 2. Figure 1 represents an ordinary BASIC
program. Figure 2 shows the same program renumbered with a starting
line number of 10 and an increment of 5. Not only are the lines renum-
bered, but the references to line numbers within a program line have
also been updated to reflect the correct line numbers.

The renumber program is written in assembly language. The BASIC
program in Program Listing 1 POKEs the machine-language code for
the renumber program into memory. The actual renumber program is
contained in the data statements of Program Listing 1. Program Listing
2 contains the assembly code for the renumber program, for those who
prefer to enter the renumber program using an editor/assembler.

THE REST OF 80 / 143

5 CLS

10 IF X=3 THEN 17 ELSE X=X+ 1
11 GOTO 25

17 X=1

25 ON X GOTO 50,51,100

50 PRINT "X=1":GOTO 10

5t PRINT "X=2": GOTO 10
100 PRINT "X =3": GOTO 10

Figure 1. A itypical BASIC program

The BASIC Program

Here is how to use Program Listing 1.
*Set the memory size to 31999. The renumber program occupies the
memory addresses from 32000 to 32698. Setting the memory size pre-
vents BASIC from using memory that contains the renumber program.
*Load Program Listing 1 and run it. If you have made any mistakes
in typing, the program stops and prompts you to check for errors. A
checksum is performed on the data statements. If the resulting
checksum is not as expected, an error is indicated and you must re-
vise the data statements to match the listing.
*Type NEW and load the program you wish to renumber. Do not run it.
*Enter the SYSTEM mode by typing SYSTEM, and press ENTER. The *?
system prompt should appear.
*Type /32093 and press ENTER. This tells the computer to start exccu-
tion of the machine-language program starting at memory location
32093. The renumber program is now in control. The screen should
display the title of the renumber program and the statement ENTER
STARTING LINE NUMBER.
*Enter the starting line number desired {0-65535}, and press ENTER.
eEnter the increment desired between lines (1-32767).

The renumber program now renumbers your program, then returns
to BASIC so you can list or save your program.

10 CLS

15 1IF X=3THEN 25 ELSE X=X +1
20 GOTO 30

25 X=1

3 ON X GOTO 35,40,45

35 PRINT "X=1":GOTO 15

40 PRINT “X=2": GOTQO 15
45 PRINT “X=3":GOTO 15

Figure 2. The program in Figure 1 renumbered with a starting line number of 10 and an in-
crement between fines of 5

144 / THE REST OF 80

The Assembly-Language Program

To use the assembly-language program, set the memory size to 31999.
Load Program Listing 2. You must load the program in the SYSTEM
mode since it is a machine-language program. Do not run it. Return to
BASIC, and continue from the third instruction for Program Listing 1
{type NEW, etc.]

Limitations and Bugs

The renumber program only changes references to other line numbers
if the reference is preceded by a few special command tokens, including
GOTO, GOSUB, ON-GOTO, THEN, ON-GOSUB, and ELSE. If the ref-
erence is not preceded by one of these tokens, it is not recognized by the
renumber program as a reference.

The program to be renumbered should not contain lines with packed
machine language. The renumber program can't tell whether the start-
ing line number and the increment will overshoot the maximum line
number of 65535. Be careful to choose a starting line number and incre-
ment that will not generate line numbers greater than 65535.

A bug shows up the first time you try to save the program that has just
been renumbered. An OM {out of memory) error appears. The second
time you try to save the program, it works without error. Almost all com-
mands, except the LIST command, cause an OM error if they are the first
command exccuted after the renumber program has been used. Since
CSAVE turns on the tape recorder and wastes tape before the OM error
occurs, [usually execute a CLEAR command first. The CLEAR com-
mand causes the OM error and doesn't waste any tape or damage the
program.

The renumber program occupies the memory space 32000 to 32698,
which is a little less than 1000 bytes of code, or 1K. The actual starting
address of the program is 32093. There is approximately 15K of memory
left for the BASIC program that is to be renumbered. The program exe-
cution time varies with the size of the BASIC program to be renumbered
and the number of references in it.

How It Works

To understand how the renumber program works, you must under-
stand that each BASIC program line contains a pointer to the next pro-
gram line, its own line number, the instructions themselves, and an end-
of-line indicator (00).

Each BASIC command is stored in memory as a token, not as ASCII
characters. For instance, a token of 141 represents a GOTO statement.
This saves memory space and makes decoding of the instructions casier.
The renumber program searches for the tokens shown in Figure 3.

THERESTOF80 / 145

Command Token

GOTO 141
GOSUB 145
THEN 202
ELSE 149
ON...GOTO,ON.. GOSUB 161

Figure 3. BASIC commands and their tokens

When a token is found, the number following it is a reference. The new
reference is then calculated and inserted.

Replacing a reference raises a few possible problems. If the new refer-
ence number has more digits than the old reference number, room must
be made to accommodate the extra digits. This is done by shifting the re-
mainder of the program higher in memory by the appropriate number of
digits. You must also go back and update the pointer of each program
line to the following program line. If there are fewer characters in the
new reference number, you compress the remaining program lines by
the appropriate number of digits. When all the references have been up-
dated, you must update cach program line number.

Program Listing 1

2 REM RENUMBER {USING BASIC TO POKE IT IN MEMORY)

. EY GARY L. SIMONDS
1 REM LINE 1¢ SETS UP VARIAELES
2 REM LINE 2¢ READS DATA, ADDS CHECKSUM, POKES DATA INTO MEMORY
3 REM LINES 42 TO 189 CHECK CHECKSUM FOR ERRORS
4 REM LINES 120-52¢ DATA STATEMENTS
5 REM LINE 538 PRINTS OUT ERROR IF ANY EXIST
19 CLS:DEFINT A,B,C,E,I1:DEFSNG 5
290 FORI=3202¢ TO 32698: RERD A :S=S+A: POKE I, A
3@ o=8
49 IF I=32098 THEN S=g:IF C<>6826 THEN B=129:E=160:G0SUB 530
5@ IF I=32198 THEN S=@:IF C<>11181 THEN B=17@:E=220:G0SUB 530
68 IF 1=32299 THEN S=#:IF C<>11860 THEN B=230:E~280:GOSUR 530
7¢ IF I=32400 THEN S=@:IF C<>12012 THEN B=290:FE=340:GOSUB 530
8¢ IF I=32499 THEN S=0:I1F C<>11861 THEN B=350;:E=40):C0SUB 538
98 IF 1=32597 THEN S=@:IF C¢>12235 THEN B=418:E=d6@:GOSUE 538
100 IF 1=32698 THEN S5=f:IF C<>8876 THEN B=478:E=520:GOSUB 53@
112 NEXT I:END
12¢ DATA 82,69,78,85,77,66,69,82,32,66,89,32,71,65,82,89,32,76,4
6,32
13¢ DATA 83,73,77,79,78.68,83,13,54,45,50,53,45,56,49,32,82,69,8
6,73
148 DATA 83,73,79,78,32,48,46,48,13,69,78,84,69,82,32,83,84,65,8
2,84
15¢ DATA 73,78,71,32,76,73,78,69,32,78,85,77,66,69,82,13,69,78,8
4,69
168 DATA 82,32,73,78,67,82,69,77,69,78,84,13,225, 205,201, 1, 33,2,
125

146 / THE REST OF 80

179 DATA 285,212,125,33,28,125,285,212,125,62,13,205,51,0,33,49,
igg DATA 205,166,125,34,153,127,33,76,125,295,166,125,125,183,32
igﬂ DATA 46,1,34,155,127,124,254,128,48, 207,42, 164,64,34,157,127
éggsDATA 228,125,205,109,127,42,249,64,34,251,64,34,253,64,195,2
31@ DATA 26,205,212,125,6,5,33,177,127,205,64,8,33,176,127,215,4
329 DATA 165,33,177,127,285,188, 14, 58,175,64,254,2,4€,12,254,4,3
ga@ DATA 148,58, 36,65,285,251,1@, 235, 201,42, 33,65, 281,126, 35,254
éig DATA 202,224,125,205,51,8,24,244,205,51,08,201,34,185,127,94,
ggﬁ DATA 86,35,237,83,161,127,94, 35,86, 237,83,163,127,35,126,167
égg DATA 22,254,141,480, 39,254, 145,48, 35,254,149,48, 31,254, 202,40
é%; DATA 254,161,48,42,24,229,35,126,167,32,7,35,126,167,32,1,20
;aa DATA 43,237,91,161,127,223,32,211,24,198, 215, 48,232,486, 204,2
ggﬁ DATA 205,9d,39,225,237,83,165,127,205,94,126,24,190,215,40,2
%ge DATA 254,141,4%,4,254,145,32,245,215,40, 202,48, 14, 229, 245,90
.:iig DATA 225,237,83,165,127,295,94,126,24,237,254,44,194,247,125
:‘3.2'2; DATA 233,34,159,127,1,0,08,42,157,127,94,35,86,213,123,178,208
§3ﬂ DATA 63,127,35,94,35,86,42,165,127,223,48,4,225,3,24,233,2@89
.:'l‘]i; DATA 2,2,121,176,49,4,42,155,127,235,42,153,127,25,121,176,4
gsa DATA 5,11,121,176,32,246,34,169,127,34,33,65,33,171,127,1,7,
;69 DATA 205,47,19,42,159,127,205,68,127,121,58,167,127,205,76,1
ggo DATA 121,58,168,127,58,167,127,145,48,51,242,12,127,245,167,
ggﬁ DATA 249,64,229,237,75,159,127,237,66,229,193,225,229,209,19
5337DATA 184,42,249,64, 35, 34, 249,64,42,161,127, 35,34, 161,127,235
40 DATA 185,127,115,35, 114,205, 252,26, 241,60, 32, 208,56, 168,127,
1?6 DATA 6,9,33,171,127,237,91,159,127,237,176,58, 168, 127,42,159
&ééTDATA 133,111,62,6,148, 103, 201, 245, 167,42, 249,64,237,75,159, 1
i;ﬂ DATA 237,66,229,193,42,159,127,229,289,35,237,176,42,249,64,
:ia DATA 34,249,64,42,161,127,43,34,161,127,235,42,185,127,115,3
iSﬂ DATA 114, 205,252,26,241,61,32,207,24,177,209,42,159,127,201,
igﬂ DATA 9,43,215,208,12,24,251,14,9,33,171,127,43,215,208,254,4
270 DATA 44,5,12,215,2688,24,251,229,197,213,1,5,8,229,299,35,237
e Program continued

THE RESTOQF 80 / 147

480 DATA 209,193,225,24,228,42, 155, 127,235, 42,153, 127, 167, 237,82
i% mm 183,127,42,157,127,94, 35,86, 123,178, 208, 213,35, 229, 42,1
g 127,235,42,183,127,25,34,183,127, 235, 225, 115, 35,114, 225
$3 baTa 226,0.0,0,2,0,8,8,8,6,9,0,0,0,8,8,2,0,0,0,0,0,2,0,8,8,8
$5 AT 2.2,2.8,5,0,0

mmm"m DATA LINES ";B:" TO “;E;:;". THERE IS AN ERROR.":R

Program Listing 2

009 20010 ORG TDAYH
08d 52 90926 TEXTL DEFM ‘RENUMBER BY GARY L. SIMONDS®
7D1E 8D 20a30 DEFB @0y
7D1C 36 20040 TEXT2 DEPM '6-25-81 REVISICN 2.9
7038 2D 20050 DEFB 55 2}
7031 45 29963 TEXTI DERM 'ENTER STARTING LINE NUMBER'
74B @D o7 DEFB @D
7040 45 90080 TEXT4 DERM 'ENTER INCREMENT'
7058 oD 20097 DEFB o |
7p5C El ®0190@ BEGINL POP HL sIXMMY POP
ggllg :*it***tiiii**i**ii*it****t*w*t*t*ﬁi!*ti*
GaL2g ;* BEGIN
#8133 ;* BEGIN IS THE START OF THE RENUMBER
0Ol40 :* ROUTINE.
Be152 ;* 1, PROMPTS FOR PROPER INPUTS
90163 ;* 2, RENUMBERS REFERENCES
@2178 ;* 3. REMUMBERS LINES
24183 ;% 4. RETURNS TO BASIC
@2192 ;* INTERNAL CALLS-DISPLY,INPKB,NEWLIN,UPLATE
#920@ ;* EXTERNAL CALLE—JLCH-CLEARS SCREEN,1Al9-
P021¢ ;* RETURNS TO BASIC,@@33-DISPLAYS
00226 H LA R R LAl LR T T T T LY T T TR T T)
7DSD CDCOP1 @923@ BEGIN CALL @1C9H CLEAR THE SCREEN
7068 210070 32240 LD HL,, TEXT]
7063 CODATD G925@ CALL DISPLY :DISPLAY TITLE & DATE
7066 211070 pE26R LD HL,, TEXT2
7D6% CDDA7D @9270 CAIL, DISPLY
706C 3EGD oE280 LD A, @D
7D6E CD336E 90290 CALL 2a33H
7D71 213170 08308 LD HL, TEXT3 ;PROMPT FOR STARTING LINE #
7074 CDAGTD @BO318 CALL INPKB
7077 22997F P@320 b (STRET) ,HL 1SAVE IT IN ‘START'
TD7A 214C7D PA33D b HL, TEXT4
7D7D CDAGTD G0348 CALL, INPKE ;PROMPT FOR INCREMENT
7p8¢ 7D Pe5p b A,L
7061 B4 20362 OR H
7082 2002 2375 JR NZ,NOT@ ;IF INCREMENT=Q, FORCE IT TO 1
7D84 2EJL 038G D L,21
7086 229B7F Q@399 NOTG LD (INCR) , HL !SAVE IT IN 'INCR'
7DB9 7C 20400 LD AH
7DBA FESG eM1g <P 80
7D8C 3BCF 03420 JR NC,BEGIN ;IF INCR IS NOT NUMERIC, START OVER
7DBE 2AA448 20438 LD HL, (ABA4H)
7D91 229D7F PO445 LD {STRBSC), HL +GET STARTING ADDR. OF BASIC

148 / THE REST OF 80

7094
7097

CDE47D
CDEDTF

7D9A 2AF94Q
709D 22FB40

70AG
7DA3

7DA6
7DRS
7DAB
7DAE
7081
TDB4
7DB5

22FD49
C3191A

CDD47D
o6E5
21BL7F

7E
23

CAEBTD
CD3300
18F4

CD3306

33450
08460
473
Bo400
23492
o500
2a519
20529
29530
20549
@a55@
@356
20578
29580
93590
00630
Boeld
da62a
az63a
02649
22653
00668
20670
o650
Bo620
o700
29710
3720
o730
09748
@75
2e76d
20779
0780
190
20600
o2810
30820
29839
29842
29850
29860
2ea7o
22887
22899
ae90d
91a
22920
2093¢
00949
29950
2@962
29978
o088
29999
31080
g1818
A102¢
31033
21943

%EGEEE

NEWLN SEARCH AND CORRECT REFERENCES
UPDATE ;UPDATE ALL LINE #S

HL, {40F9H)

(49FBH) ,HL. :RESTORE, STACK & END OF BASIC
(40FDH) , HL

1AI9H ;RETURN TO BASIC

:****itt*ttttittt*ttttiiitt*ii**********t********

-k
i

H

INPKB

:* 1.DISPLAY MESSAGE TEXT

2.INPUT UP TO 5 ASCII CHARACTERS
3.CONVERT THE NUMBER TO BINARY
4.RETURN # IN HL-REG PAIR

L
&
*
¥
* EXTERNAL CALLS—@E6C-CONVERTS ASCII TO BINARY
*
-
*

1 INTERNAL CALLS-DISPLY
r
: @AFB-CONVERTS SINGLE PRECISION TO INTEGER
; KRR drddhd kAN RN AR A AR AR ARk dk kR hwk
INPKE CALL DISPLY ;DISPLAY TEXT
LD B,95 ;INPUT 5 ASCII CHARACTERS
LD HL, KBUFF
CALL Pa4eH
LD HL, KBUFF-1
RST 18H : TEST INPUT
JR NC, BEGINL
LD HL, KBUFF
CALL PESCH ;OONVERT IT TG BINARY
LD A, (4QAFH)
cP 2 ;TEST FOR INTBGER
JR 2, INPKL ;JumMP IF IT IS
cp 4 : TEST FOR SINGLE PRECISION
JR NZ, BEGINL 1START OVER IF NOT
LD A, (4124H)
CALL, @AFBH :CONVERT TO INTHSER
EX DE,HL
RET
INPKL LD HL, {4121H) ;RETURN WITH #IN HL
:ittti*t*t********itiitt**iiit***tit*tt*t***
P DISPLY
;% 1. SEND MESSAGE TEXT TQ DISPLAY
;* 2, STOP WHEN RETURN 1S ENCOUNTERED
;% EXTERNAL CALLS-2@33-DISPLAY A CHARACTER
;* ON THE SCREEN
;*****ttti***iiiit****ﬂ************iiiii*i**
DISPFLY LD A, (HL)
INC HL
ce o ;NEXT CHARACTER A RET?
JP Z,DI5PL1 ;JUMP IF IT IS
CALL @333H ;DISPLAY CHARACTER
JR DISPLY
DISPLL CALL @@33H ;SEND RETURN AND RETURN
;*ttt***EEE******tttt**t**t*t**it*i***
thd NEWLN
;* 1. CHECK LINE FOR REFERENCE
;% 2, CALCULATE NEW REFERENCE
;* 3. INSERT NEW REFERENCE
;* 4, CONTINUE UNTIL ALL LINES CHECKED
:* INTERNAL CALLS-SUBTT
1* EXTERNAL CALLS-1ESA-CONVERTS ASCII TO BINARY

A105a +dedr Ak R RN dedededede B i i i ek dek ol dede e de e ke de el ke
’

Program continued

THE RESTOF 80 / 149

7DE4 22B97F 01060 NEWIN LD {(LNSTRT) , HL. +SAVE ADDR. OF LINE

TNE7 SE 21079 LD E, (HL}

7DES 23 01930 INC HI.

7DES 56 31090 D, (HL)

7DEA, 23 1103 HL,

7DEB ED53AL7F @1119 (NXTLN).DE 7SAVE POINTER TO NEXT LINE
7DEF 5B @120 E, (HL)

7DFE 23 81130 HL

7DFl 56 gl140 D, (HL})

7DF2 ED53A37F @1150 (LNNUM) , DE {SAVE LINE #

7DF6 23 #1168 GETCHR HL s POINT TO NEXT CHARACTER
7DF7 7E ©1179 GETCHL A, {HL)

70F8 A7 21182 A

7DF9 2816 21194 %, ENDTST ;TEST FOR END OF LINE
7DFB FESD 21200 141

7DFD 2827 ai21a %, GENCH ;TEST FOR 'GOTO'

7DFF FE9L a1224 145

TEAL 2823 g123@ Z,GENCH ;TEST FOR 'GOSUR'

7E¥3 FE9S a124a 149

7E85 281F 91259 Z,GBNCH ;TEST FOR 'ELSE'

7EA7 FECA 91268 202

7E39 281B 21270 Z,GENCH ;TEST FOR '"THEN'

7E9B FEAL 91289 161

TEAD 282A 31290 7, ONBCH ;TEST FOR 'ON'

7E3F 18E5 a1300 GETCHR

7E11 23 31318 ENDTST HL

7E12 7E A1320 a,{HL} ;TEST NEXT CHARACTER FOR ZERD
7EL3 A7 @1339 A

TEI4 2007 @1340 NZ,NTLN1 ;JUMP IF NOT ZERO
TEL6 23 B1350 HL

7E17 7E 1360 A,(HL) ;TEST FOR SEQCOND ZERD

7E18 A7 91378 A

7E19 2001 21380 NZ,NTLNE ;JUMP IF NOT ZERD
7ElR C9 21392

7ELC 2B 91498 NTLNE HL

7ELD EDSBAL7F 91418 NTLN1 DE, (NXTIN) ;ADDR. = NEXT LINE ADDR.
7E21 DF @142@ 18H

7E22 24D3 21430
7E24 18BE 21448

NZ,GETCHL ;IF NOT, GC TEST NEXT CHARACTER
NEWLN ;IF YES, GET NEW LINE

7R26 D7 91458 GBNCH 19H

7E27 28E8 31460 2, ENDTST :TEST FOR END OF LINE
TE29 38CC 21472 NC,GETCHL ;JUMP IF NOT NUMERIC
7E2B E5 91480 HL +FOUND REFERENCE

7E2C CDSAlE 91490 1ES5AH ;CONVERT TO BINARY

7E2F El 91529 HL

TE3@ ED53AS7F 61510 (LNREF) ,DE +SAVE LINE IN LNREF

7E34 CDSE7E 915208
7837 18BE 31532

SUBTT ;G0 SUBSTITUTE NEW REFERENCE

7E39 D7 $1549 ONBCH 134 ;FOUND 'ON' REFERENCE

TE3A 28D5 gL550 2, ENDTST

7TE3C FESD #1560 141 ;TEST FOR GOTO

TE3E 2884 #1570 2, ONBC1

TE4Z FE9L 21580 145 +TEST FOR GOSUB

TEA2 20F> 41599 NZ,NBCH

TFA4 7 #1638 ONBC1 10H

TEAS 28CA 21618 Z, ENDTST TEST FOR END OF LINE

NC,ONBC2 ;JUMP IF NOT NUMERIC

1 EE EREREL B R EEF R LR TR AT BELRLLARREREL L EEEEEELEE

7EA7 3IME 21628

7F49 E5 @1638 HL

TE4A CDSALE 91644 LESAH ;CONVERT TO BINARY

7EAD EL #1650 HL

TEAE EDS3AST7F 91664 (LNREF) ,DE ;SAVE LINE IN LNREF

150 / THE REST OF 80

7E52 CDS5E7TE 0le7d CALL SUBTT ;SURSTITUTE NEW REFERENCE

7855 18ED 1680 JR ONBC1
TES7 FE2C 3169¢ ONBC2 CP 2CH :TEST FOR COMMA
7ES9 C2F77D @L700 JP NZ,GETCH] ;IF NOT GET NEXT CHARACTER
7E5C 18F6 a171a JR ONBC1 ;OTHERWISE, CONTINUE
31725 : drdrdrdrdrddeddrdrdokdodo ek ik kk kAt ikl
#1730 ;* SUBTT
@1748 :* 1. SEARCH FOR LINE THAT IS REFERENCED
@175¢ ;* 2. CALCULATE THE NEW LINE #
@g176@ ;* 3. SUBSTITUTE NEW REFERENCE INTO LINE
@177 ;* INTERNAL CALLS-NCHK,FIXCHR
$1780 ;* FEXTERNAL CALLS-132F-OONVERT BINARY TO ASCII
#1790 ;* 1AFC-CALCULATE NEW LINE ADDRESSES
glm H e dedede &t dededcdededede e dededede de e we e i ek de e e ok e e de e ke
7ESE 229F7F @1813 SUBTT LD (PRSPS),HL 7SAVE THE PRESENT POSITION
TEG]1 Qo000 21820 LD BC, B3040
7E64 2A9D7F @1B83J 1D HL, {STRBSC)
7867 SE #1840 sUBM. LD E, (HL)
7E68 23 21859 NG HL
7E69 56 21866 LD D, {HL)
7E6A D5 g1a7e PUSH DE ;DE = ADDR. OF KEXT LINE
7E6B 7B P1882 LD AE
7E6C B2 91890 OR D
7E6D CAIFIF 91900 JP 7, SUEXT ;IF DE = ZERD, WE ARE DONE
TE76 23 21918 INC Hi
7E71 SE 21920 LD E, (HL)
7JE72 23 291930 ING HL
7E73 56 21940 b D, (HL} ;DE = LINE #
7JE74 2RARTF #1950 LD HL, {LNREF) JHL = LINE WE ARE WORKING (N
7ET? DF #1960 RST 18H
7E78 2804 @970 JR 2, 5UBT2 ;JUMP IF THEY ARE EQUAL
7E7A El 1900 POP HL
7E7B 43 21990 INC BC sELSE GO TO NEXT LINE AND
7E7C 1BE9 92000 JR SUBTL ;INCREMENT BC
7E7E D1 #2018 SUBT2 POP DE
TJETF 110000 02028 LD DE, 2000
7EB2 79 P20130 LD A,C ;CALCULATE NEW REFERENCE
7E83 B 92040 OR B
TES4 2804 92050 JR % ,SUBT3
TES6 2A9R7F (2060 LD HL, (INCR) ;NEW REF=BC*(INCR)+START
7689 EB a207a EX DE,HL
7ESA 2A997F @208@ SURT3 LD HL, (START)
7ESD 19 @2099 SURT4 ADD HL,DE
7EBE 79 92100 LD A,C
7ERF PO 92110 CR B
7E99 2805 @212¢ JR Z, SUBTS
7E92 2B @213 DEC BC
7E93 79 @2140 D A,C
7ES4 BA 32150 OR B
7E95 2016 92169 JR NZ,SUBT4
TEG7 22897F 92170 SUBTS LD (NWLNM) ,HL ;SAVE NEW REFERENCE IN NWLNM
TEOA 222141 92180 LD (4121H),HL
7E9D 21AB7F ©2198 LD HL, BUFF
TEAD 019707 ©2200 LD BC,B707H ;CONVERT NEW REF TO ASCII
7EA3 CD2F13 @221Q CALL 132PH
7EA6 2R9FTF 92220 D HL, (PRSPS)
7EA9 CD447F @2238 CALL NCHK ;CALCULATE # OF DIGITS IN OLD REF
TERC 79 82240 D a,C
7EAD 32A7TIF @2250 LD (CHR¥O) ,A ;CHRNO=# OF DIGITS IN OLD REF
7EBS CDACTF 192260 CALL FIXCHR ;FIX # TO PROPER FORMAT
7ER3 79 62270 LD A,C

Program continued

THE RESTOF 80 / 151

7EB4 32A87F 092260 LD (CHREN) A :CHRNN=# DIGITS IN NEW REF
TEB7 32ATTF 092290)] A, (CHRNO)

7EBA 91 092300 SUB c

7EBB 2833 92310 JR %,SURTS ;JUMP IF CHRNO=CHRMN

7EBD F20CTF ©2328 JP P,SUBT7 ;JUMP IF CHRNO > CHRNN
7ECH F5 92330 SUBT6 PUSH AF 7SAVE THE DIFFERENCE

7EC1 A7 92340 AND A ;CLEAR THE CARRY

TEC2 2AF942 92350 LD HL, (40F9H)

7ECS ES 32369 PUSH HL

7EC6 ED4ROFTF 82370 LD BC, (PRSPS)

7ECA ED42 22380 SBC HL,BC

7BOC E5 @239 PUSH HL

7ECD ¢l 92400 POP BC :BO=TOTAL # OF BYTES TO BE MOVED
7ECE E1 32418 pop HL

7ECF E5 02420 PUSH HL ;HL=END OF BASIC ADDR.

7ED@ D1 92430 POP DE

7801 13 @2440 INC DE ;DE=END OF RASIC+L

7ED2 EDB3 22459 LIDR MWVE MEMORY FOR 1 NEW CHARACTER
7ED4 2AF948 (2460 LD HL, {40F9H)

7ED7? 23 92470 INC HL

TEDB 22F948 (32480 LD (49F9H) HL. ;FIX END OF RASIC POINTER
TEDB 2AA17F 22490 LD HL, {NXTLN)

7EDE 23 92500 INC HL

7EDF 22A17F 92510 LD (NXTLN) ,HL. ;FIX NEXT LINE POINTER
7EE2 @252 EX DE, HL

7EE3 2ABO7P (2530 LD HL, (LNSTRT)

TEE6 73 2540 LD (HL) ,E

TEE7 23 32550 INe HL

FEE8B 72 ?256Q LD (#L),D

TEES CDFClA 82570 CALL 1AFCH ;UPDATE ALL NEXT LINE POINTERS
7EEC F1 32580 POP AP

7EED 3C #2590 NG A ;JUMP IF MORE CHARACTERS EXIST
TEEE 20D0 72600 JR NZ, SUBT6

7EFG 3AASTF 02610 SUBTS LD A, (CHRNN)

TEF3 4F 92620 LD C,A

TEF4 0650 92630 LD B,®

TEF6 21ABTF (32644 LD HL,, BUFF

7EF9 EDSBIOFTF 0265¢ LD DE, (PRSPS) ;MOWE NEW REFERENCE TC
7EFD EDRJ 2660 LDIR ;PROGRAM LINE

7EFF 3AABTF @267@ SUBT9 LD A, {CHRNN)

7F02 209F7F @2680 LD HL,, (PRSPS)

7605 85 92690 ADD AL

7F06 6F 02700 LD L,A

7F07 3E @2710 D A8

7FE0 8C a2720 ADC AH

TFOR 67 32730 LD H,A ;POINT TO NEXT CHARACTER

TFOB 9 82740 RET ;AND RETURN

7TFOC F5 92753 SUBT? PUSH AF 1 SAVE THE DIFFERENCE

TFeD A7 #2760 AD A

TFOE 2AF94Q @2770 LD HL, {40F9H)

7F11 ED4ROF7F $2780 LD BC, {(PRSPS)

7F15 ED42 #2799 SBC HL,BC

7F17 ES 32800 PUSH HL

7F18 Cl 02810 POP BC yBC=TOTAL # OF BYTES TO BE MOVED
7F13 2R9F7F 092820 LD HL, (PRSPS}

7F1C E5 22830 PUSH HL + HL=PRESENT POSITION

7FLD D1 32840 POP DE ; DE=PRESENT POSITION

TFLE 23 92859 INC HL

TF1F EDRD 92860 LDIR sMOVE MEMORY FOR 1 DIGIT

TF21 2AF94@ 92870 5] HL, { 49F9H) :ADJUST END OF BASIC POINTER
7F24 2B 72880 DEC HL

152 / THE REST OF 80

TF25
7F28
7F2B
TF2C
TF2F
TF36
7F33
7F34
TF35
TF36
7F39
TF3A
7F38
TF3D
TF3F
TF43
7F43

TF44
P46
TF47
7F48
TF49
7F4A

TF4C
TF4E
TF51
7F52
7F53
TF54
TF56
TF58
7F59
TF5A
TFSB
TFSD
TF5E
TFSF
160
TFe3
7F64
P65
TFe6
7Fe8
7F69
7F6A
7r6B

7F6D

22F940
28817F
2B

22R17F

2AB97F
73

23

72
CDFC1A
¥l

3D
28CF
1881
Dl
2A9F7F
c9

2B
D7

ac
18FB

21ABF

2R9B7F

92892
2900
92918
82929
22930
492948
092950
32960
#2973
32903
32999
@390
23910
aszaze
23830
33840
93950
23060
23070
3060

@369 ;* CHARACTERS POINTED TO BY HL~REGISTER
93]_% ;**t*****i***t*t*ii*tti**i*i***t***t***t
#3110 NCHK LD c,e

#3120 DEC HL

93139 NCH2 RST 10H ;TEST CHARACTER

@3149 RET NC sRETURN IF NOT NUMERIC
23158 INC C 3 INCREMENT QOUNT
23168 JR NCH2 1 CONTINUE

5317 :***iiii**iﬂ*ttttt****t*ti**ttti*i**tii*

@318@ ;* FIXCHR

@3190 ;* 1. FIXES ASCII # SO THAT IT IS IN

@3200 ;* THE CORRECT FORM FOR USE IN SUBTT

g321g '.*i!***ttttitttt***i*i**i******tt*ttt***

#3220 FIXCHR LD c.9

93230 LD HL, BUFF

#3240 FIXCHL DEC HL

93250 RST 10 s TEST CHARACTER

?3260 RET NC ;RETURN IF NOT NUMERIC
a327a cP 3eH

33280 JR Z,FIXCH3 ;JUMP IF IT IS AN ASCII ZFRD
@329¢ FIXCH2 INC c

33300 RST 184 s QOUNT UNTIL NON-NUMERIC
33310 RET NC 1 CHARACTER IS FOUND
#3320 JR FIXCH2

83338 FIXCH3 PUSH HL ;ROTATE NUMRER LEFT TO
23340 PUSH BC ;DELETE LEADING ZEROS
B3359 PUSH DE

23368 LD BC, 3005

93370 PUSH HL

33388 POP DE

#3399 NG HL

03408 LDIR

93410 POP DE

33420 POP BC

93439 POP HL

93440 JR FLXCHL ;GET NEXT CHARACTER
33455 '.t**ttttﬁt***i**t*i*i*i**tii*i*titt*i**

23468 ;* UPDATE

@347¢ ;* 1, UPDATES THE ACTUAL LINE NUMBERS

23480 ;*

534% 7it**t**i'*ititl'ttt**i*****iii*ttt***t*t

73503 UPDATE LD HL, (INCR)

(48F9H) , HL
HL, {NXTLN)
HL

DE, HL
HL, {LNSTRT)
(ML) ,E

HL

(HL),D

AF
A

EEEREFTLEEEEEERE

DE

‘-****i*****iii*i*********t*i*iiﬁiii***i*
i* NCHK
:* 1. COUNTS THE NUMBER OF ASCII

{NXTIN) ,HL +ADJUST NEXT LINE POINTER

1AFCH sUPDATE ALL NEXT LINE POINTERS

NZ, SUBT? ;JUMP IF MORE DIGITS EXIST
SUBT8 ;GO PUT NEW REFEFENCE IN LINE

HL, (PRSPS) ;EXIT SUBSTITITE MODE

Program continued

THE REST OF 80 / 153

7¥70 EB 9?3519 X
TF71 28997F 83529 LD
TF74 A7 83539 AND
7F75 ED52 83540 SBEC
7¥77 22B77F 83550 LD
TFIA 289DTF 93560 LD
TFID SE 83579 UPDAT1 LD
TFIE 23 23580 ING
7F7F 56 43599 LD
7F88 7B 33600 LD
7F81 B2 23618 OR
7F82 B 23620 RET
7F83 D5 @3639 PUSH
7F84 23 33640 INC
7F85 Eb 23659 PUSH
7F86 2A9R7F @3660 LD
7F89 EB 33670 EX
TFBA 2AB77F 03689 LD
7r8D 19 33699 ADD
7F8E 22B77F @3700 LD
7F91 EB 33719 EX
7F92 El A3720 FOP
7F93 73 93730 LD
7F94 23 3749 INC
7F95 72 23758 LD
7F96 El 43760 POP
7F97 184 @377e JR
2002 ©3780 START DEFS
a2 23799 INCR DEFS
3032 9380@ STRBSC DEFS
2062 93819 PRSPS DEFS
2002 @3820 NXTIN DEFS
2ea2 #3830 LNWUM DEFS
Baa2 93849 LNREF DEFS
2221 @3853 CHRMO DEFS
20a1 93868 CHRNN DEFS
a0a2 @387¢ NWLNM = DEFS
o4 33883 BUFF DEFS
TFAF Q020 33899 DEFW
o004 9399¢ KBJFF DEFS
TFBS 2500 93912 DEFW
2002 #3920 TOTAL DEFS
a%az2 #3930 LNSTRT DEFS
7D5D 33942 END

29330 TOTAL ERRORS

154 / THE REST OF 80

DE,HL

HL, (START) ;UPDATE ALL LINE #S
A

HL,DE

(TOTAL) , HL +TOTAL = START - INCR
HL, (STRBSC)

E, (HL) +FIND NEXT LINE ADDR.

HL

D, {HL)

AB

D

Z sRETURN IF DONE

DE

HL

HL

HL, {INCR) ;CALCULATE LINE $#

DE, HL

HL, {TCTAL} $TOTAL = TOTAL + INCR
HL,DE

(TOTAL) ,HL

DE,HL

HL

(HL},E ;LINE # = TOTAL

HL:

(HL},D

HL ;POINT TO NEXT LINE

UPDAT1 1 CONTINUE

2 :STARTING LINE #

2 : INCREMENT

2 ;ADDR. OF START OF BASIC PROG.
2 : PRESENT POSITION

2 :NEXT LINE

2 ; LINE NUMBER

2 ;LINE REFERENCE

1 ;# OF DIGITS IN OLD REFERENCE
1 ;# OF DIGITS IN NEW REFERENCE
2 ;NEW LINE REFERENCE

4

% 4]

4

o2

2

2 1+ STARTING LINE

BHGIN

21

Complete
Variable Lister

by John M. Hammang
System Requirements:
Level 1I BASIC
Model [
16K RAM

With John Webster's variable lister article (80 Microcomputing, July
1981), I could finally document all my TRS-80 programs. Unfor-
tunately, Mr. Webster's program fails to list the array variables. My
modification of it does.

The key to listing these variables is to jump from array name to array
name without stumbling over the intervening data and string pointers.
The first array name immediately follows the last simple variable name.

Each array describes its contents with the following format. The first
byte indicates variable type (2 =integer, 3=string, 4=single precision,
and 8 = double precision). The next two bytes are the ASCII values of the
variable name in reverse order. For instance, if your variable is named
AB, the B appears first (66) and the A appears second (65). The HL register
in the Z80 microprocessor reverses them when it retrieves the values for
processing. The fourth and fifth bytes specify the total number of bytes
which occur after the fifth byte. These two values, added together, deter-
mine the size of the array and are also reversed. The value in the fourth
byte is multiplied by one. This is the least significant byte (LSB). The
value in the fifth byte is multiplied by 256 {the decimal equivalent of the
third place value of numbers in the hexadecimal numbering system).
This fifth byte is the most significant byte (MSB]. When you add the
fourth and fifth bytes you know how far to jump, in decimal form, to the
next array variable name.

This gives you the basic array names. The sixth byte tells how many
dimensions this array has and each following pair of bytes tells the size

THE RESTOF 80 / 155

or depth of each dimension in the array. Thus you can determine and re-
port not only the number of dimensions for each array but the size of
each dimension.

The dimension size byte pairs are reversed for normal Z80 operations.
The sequence of dimension sizes is also stored in reverse order. For ex-
ample, if you dimension AB{(3,4,5), Level II will store the third size {5)
first, the second size (4} next, and the first size {3) last. The Complete
Variable Lister also reports the dimension sizes in reverse order.

The first part of the program listing approximates Mr. Webster's. Line
65000 finds the start of the simple variable storage area and dimensions a
terminating test array. Line 65010 establishes the variable name vatues
and checks for variable name ZV (the first variable name used in this
routine). The first time this variable name is encountered, ZU is incre-
mented and the program flows to the array listing routines. For an expla-
nation of how the first segment of this program works, see page 259 of
the July 1981 issuc of 80 Microcomputing.

When you find the ZV variable name the first time, 35 is added to the
PEEK pointer value {the value of ZV + 35), to jump over the simple vari-
able names in this program. I use five single precision variables
(5*7=235). As in the first segment, the program prints the type of data in
the array and the variable name. Line 65120 reports the number of
dimensions (PEEK(ZV + 5}}. Next, the program enters a FOR-NEXT loop
to report the size of each dimension. Dimension size is computed
(LSB* 1} + (MSB*256) and printed in reverse order. Line 65140 computes
the jump to the next array variable name and returns to the start of the
reporting routine in line 65020. Five is added to the computed jump
value in line 65140 because the array size, stored in bytes 4 and 5 of the
array variable, reports only the number of bytes following the array size
information.

This program uses very high line numbers so you can add this Com-
plete Variable Lister to existing programs without renumbering. It also
uses unusual variable names to avoid conflicts with variable names uti-
lized in object programs.

. CLOAD the object program

. PRINT PEEK[16633! PEEK{16634) and write down the results

. If PEEK{16633)22 then go to step 5

. If PEEK[16633}<2 then POKE 16548, PEEK{16633) + 254:
POKE16549, PEEK(16634) — 1 then go to step 6

- POKE 16548, PEEK{16633) - 2: POKE 16549, PEEK|[16634)

CLOAD the ‘Complete Variable Lister program

- POKE 16548,233: POKE 16549,66

. Run the object program with all its subroutines and variations

BREAK and GOTO 65000 to execute the Complete Variable Lister

£ Lo -

0o~ oW

Figure 1. How to merge the Complete Variable Lister with your object program

156 / THE REST OF 80

Use the procedure listed in Figure 1 to add this program to the pro-
gram for which you want the list of variables. Complete step 7 before
listing the combined programs. Step 7 is a call to the Level 11 merge func-
tion. You have to run the object program with all its subroutines and
variations to find all the variables.

The Level Il manual erroneously states that the number and size of di-
mensions are limited only by the amount of memory available. The data
pattern for array names and sizes limits the number of dimensions to 255
and a dimension's depth to 32,768.

The Complete Variable Lister program reports all simple and array
variables with any type of data as well as the number and size of each
array dimension. All arrays are reported whether directly dimensioned
in the program or dimensioned by default.

Program Listing

6495@ '*** COMPLETE VARIABLE LISTER *** '

64968 'BY: JOEN M. HAMMANG

6497@ '21738 CHIPMUNK TRAIL EAST

64988 'WOODHAVEN, MICHIGAN 48183

64999 'VERSION 1.0

65009 ZV=PEEK(16633)}+256*PEEK{16634) : DIMZVS (1):ZU=] : LPRINT" *
* * STMPLE VARIABLES * * *":LPRINTCHRS (138)

65010 ZW=PEEK(ZV) : T¢=PEEK (ZV+1) : ZY=PEEK(ZV+2) : IPZX=86ANDZY=00THE
NZU=ZU+1 : GOSUB6 51 6@ : GOTOE5H 13

65020 LPRINTCHRS (ZY) ; CHRS {ZX) ; :GOSUBG5@3¢: LPRINT" ": LPRINTCHRS (1
38) :GOTO6501¢

65039 IFZW=2THENLPRINT" $ INTEGER"; :COTO6537¢

65840 IFZW=3THENLPRINT"S$"; :GOTO65870

65050 IFZW=4THENLPRINT" | SINGLE PRECISION"; :GOTO65874

65060 IFZW=STHENLPRINT" # DOUBLE PRECISION": :GOTO65870

65870 ONZUGOTO65080,65120

65880 IFZW=2THENZV=ZV+5 : RETURN

65399 IFZwW=3THENLPRINTPEEK(ZV+3);"CHAR. LONG"; :ZV=ZV+6: RETURN
65190 IFZW=4THENZV=ZV+7 : RETURN

65110 IFZW=STHENZV=ZV+11:RETURN

65120 LPRINT" ARRAY WITH";PEEK(ZV+5);"DIMENSION{S)":ZW=ZV+5
65139 FORZX=PEEK(ZV+5)TO1STEP-1 :LPRINTTAB{5) "DIM SIZE NO.":ZX;:"I
S*; (PEEK(ZW+1)+ (PEEK(ZW+2) *256) }-1; "ELEMENTS" : ZW=2ZW+ 2 : NEXTZX
65140 ZV=ZV+(PEFK{ZV+3)+{PEEK(ZV+4)*256))+5 : RETURN

651680 IFZU=2THENZV=ZV+35:LPRINT" ":LPRINT" * * * ARRAY VARIARL
ES * ¥ *":RETURN

65170 IFZU=3THENLPRINT" ":LPRINTCHRS(138):LPRINT"ALL VARIABLES L
ISTED":END

THE RESTOF 80 / 157

22

MODSTRING for
Packing Strings

by T.A. Wells System Requirements:
Model 1

16K RAM
Level II BASIC

ODSTRING, a utility written in BASIC, can be merged with an-

other BASIC program. It enables you to pack strings for faster
graphics or embed machine language in a BASIC program. With MOD-
STRING, you can pack, modify, and display strings wthout typing and
later deleting FOR-NEXT loops, DATA statements, and POKE
statements.

MODSTRING works by modifying itself. When you type the name of
the string to be packed or modified, MODSTRING POKEs that name in-
to one of its own lines, so the VARPTR and LEN functions can be used.
After the information is obtained, MODSTRING unmodifies itself, to al-
low another string to be processed.

How to Use MODSTRING

If you have a disk system, it's easy. First load your program, in which
you have put dummy strings. Make sure you don't use line numbers
higher than 59999. Then merge MODSTRING with it. If you do not have
a disk system, you will need a separate utility program that allows the
merging of two BASIC programs.

After merging, run your program. When it has passed through all lines
containing dummy strings, BREAK the program. This assures that the
BASIC interpreter has positioned your string variables in memory just
above the end of the program.

Type GOTO 60000. You are prompted from here on by MOD-
STRING. Type the name of the string. The ENTER key is not needed in

158 / THE REST OF 80

any part of MODSTRING. Answer the other prompts and your string
should print, or list on the screen. You must list the string to modify it. i
you have printed it, press L. The listed string is in the form
BYTE#>VALUE. When you press M, you are asked for the number of
the byte you wish to modify. Three digits must be pressed. For example,
to change byte 7, press 007. You are then asked for a value from 1 to 255
(except 34, the ASCII value for a quotation mark).

Here is an example to try. Load MODSTRING and type the following
lines:

100 A$="1234567890"
200 EX${3)="12345678901234567890"

Run the program. When the first prompt appears, press the space
bar, then A. Answer the subscript quesion with N. Press P to print the
length of the string {10}. Below that, 1234567890 should appear. Now
press L. The contents of the string {A$] should appear in the
BYTE#>VALUE format. Press M; to modify the first byte, press 001.
Select a value, say 191, and type it. This value appears next to the 1>
near the upper left of the screen. Now press P. The string starts with the
graphics block.

For fun, press Q, then type LIST 100. The line is now: 100
A% ="USING234567890"". The value 191 is the computer's code for the
USING keyword. When you print the string, the graphics character is
always printed. Now run MODSTRING again. List and modify EX${3]
in the same way, but press Y in response to the subscript prompt, then
press 3.

Program Limitations

There are some restrictions which must be observed when using this
program. Don't try to modify the program unless you understand it

Variable Name Use

PQ% Loop counter

PS%, PS! Pointer to end of BASIC program

Pi$, P23, P33, P45 INKEYS$ variables {o input string name and choice of process
P5%, P5% New value for byte to be modified

PZ!, PL% Location of string in memory

PP$ Name of string to be processed

PL% Length of string being processed

PA% Length of string being processed, minus one

PPF!, PP% Pointer to location of string in memory

P1% Counter for byte number of string being processed
P1% Counter variable

P4% Byte position in string

Figure 1. Variables

THE REST OF 80 / 159

completely. If you do modify it, or just type it in, save a copy before you
run it.

String length can’t be changed by MODSTRING. You should decide
beforehand how long your strings must be. The longest string possible
is 104 characters. If you like a challenge, try increasing the maximum
length to 240 characters or so.

Variable names in your program must be different from those I have
used (see Figure 1). All variables in MODSTRING have type declara-
tions such as a percent sign {%) or exclamation point (!). This avoids
confusion with variables in your program or such statements as
DEFINTA-Z, DEFDBL or DEFSTR, which you are free to use. When in
doubt, check the list of variables.

Do not manipulate any string that is or will be packed

This program has only been verified on Radio Shack hardware tape
and disk {(with TRSDOS 2.3) systems. Any other hardware or operating
systems that change the end-of-program pointers {16633,4] will pro-
duce problems.

Line-by-Line Program Description

60000 Ask for name of string variable to be processed.

60005 Subroutine to replace PP$ in the LEN and VARPTR statements
in line 62000.

60009-60010 Get first letter of string variable name.

60020 Get second letter of string variable name. Put first plus second
letters into PP$.

60022-60027 Ask if the string variable is subscripted. If so, get the value
of the subscript and put the whole variable name into PP$.

60030-60040 Print or list option.

60060 Initialize variables. This keeps ROM from moving them
around in later steps.

60100 Go to the heart of the program.

60200-60201 Set up pointers for the PEEK statements to follow.

60202 Reject string variables with LEN>104 bytes.

60208-60232 Print or list the contents of the variable.

60240-60250 Ask operator for next instruction.

60260-60320 If modify is selected, modify the screen display and the
variable.

60330 Go back for further instructions.

61000 Find the end of the BASIC program. Memory locations 16633
and 16634 contain the pointer.

61220 STEP from the end of the program toward the front looking for
“"PP$'" (in ASCII, PP$ is 80, 80, and 36}. When found, exit to
the next statement.

61900 POKE the name of the variable sought into the next BASIC

160 / THE REST OF 80

62000

line, replacing the two occurrences of PP$ in line 62000 with
the name of the variable the operator has specified. One is the
argument of the LEN statement at the beginning of the line
and the other is the argument of the VARPTR statement near
the end. The blanks in line 62000 following each occurrence of
PP$ are significant. They provide room for POKEing the name
of a subscripted variable.

Find the length of the requested function. If it's less than one,
put the PP$ back into line 62000, print an error message and
go get another name. If the length is okay, get PP!, the pointer
to the variable in memory. Put the PP$ back into line 62000,
then go process the variable (print, list or modify]).

Program Listing

59998 REM ** MODSTRING **
59999 REM - STRING MODIFICATION PROGRAM - COPYRIGHT 1981

T. A. WELLS - N.O., LA. 70118

6200¢ CLS:PRINT"STRING MODIFICATION PROGRAM":PRINT:PRINT"ENTER T
HE NAME QF THE STRING USING ONLY ONE OF THESE 3 FORMATS:
<SPACE><LFTTER* - <LETTER><LETTER> - <LETTER> <NUMBER>

———> ? "; :GOTO60029

60205 FORPQ¥=1TO2:POKEPSY-3+PQ%, 80 : POKEPSS-124+P0%, 80 1 NEXT : POKEP
5%, 361 POKEPSY-~121, 36 : FORPQ#=4TO6 : POKEPS% -3+DPQ%, 32 : POKEPSS -1 24+PC
%, 32:NEXT : RETURN

60009 P1$=INKEYS

60310 P1$=INKEYS:IF(P1S<"A"ORP1$>"Z" JANDP1S <>" "THEN69S1PELSEPRT
NTPL1$; :P2§=TNKEYS

60020 P2$=INKEYS: IF(P258>" /"ANDP2S<": "ANDP1S <>" *)JOR(P2$>"@"ANDP2
§ <" [)THENPPS$=P1$+P25+" $" : PRINTP2S " § "ELSE6P@20

60922 PRINT"IS "PP$" SUBSCRIPTED (Y/N}?":Pl$=INKEYS

60024 Pl$=INKEYS: IFPLl$="N"THENPP$=PPS+" " : GOTO6 M 3PELSEIFPL $="
Y"THENPPS=PP$+" ("ELSE6O024

60926 PRINT"VALUE OF SUBSCRIPT (£-9)?";:P1$=INKEYS

60027 P1$=INKEYS:IFP1$<"@"ORP1S$> "9 " THENGAY2 TELSEPPS=PPS+P1S+")"
€PQ30 PRINTEG, CHRS (31)"<P>RINT "PP$" -OR- <L>IST ITS CONTENTS?"
600490 P1S=INKEY$: IFNOT(P1$="P"ORP1$="L")THENCOS4H

60060 PLA=E :PP3=0:PP| =0 :PSi=0 P51 =% PAY =0 PI%0: P2 | =0 : PZ =P : P35=
"M p4S=""1P5%=" " P18=0: PA%=0: P53=01 PQ¥=: PQS=""

69198 GOTO61E0e

60200 PAR=PL%-1:PI%=]:IFPPI|>32767THENPP%=65536-PP | ELSFPPR=PP|
60201 PZI=PEEK(PP%+1)+256*PEEK(PP%#+2) : IFPZ| >32767THENPZS=PZ | ~655
36ELSEPZR=PZ!

62202 IFPLY>1P4THENPRINTPPS" IS TOO LONG - IT HAS"PLS"CHARACTERS

MAXIMUM IS 104 CHARACTERS.":FORPQ#=1TOL1111 :NEXTPQS : GOTOGOOOG
60208 PRINT"LEN("PP$")="PL%
60219 FORPS$=PZSTOPZS+PA%
60220 IFP1$="L"THENPRINTUSING"###";PI%; :PRINT">"; : PRINTUSING" §##
"+ PEEK{PS%) ; : PRINT" "; :PI%=PI%+1
69233 IFP1$="P"THENPRINTCHRS (PEEX(PS%)); : PI$=PI%+1
60232 NEXT
60249 PRINT@96d, "<A>NOTHER STRING <QyUIT “;:IFP1$="P"THENPRINT"

Program continued

THE REST OF 80 / 161

<L>IST ? “;ELSEPRINT"<P>RINT <M>ODIFY 7 “:
60256 P3I$=INKEYS : IFP3$="M"ANDP] $="L"THEN6A260ELSEIFP35="L"ANDP1S
="P"THENCLS : P1 $="L" : PRINT : GOTO6@ 28@ELSEIFP35="P"ANDP1 $="L"THENCL
S:PRINT:P1$="P" : GOTO6@ 230 ELSEIFP3$= "0 "THENENDELSEIFP3$="A"THENG@
BOPELSE6Q250
60260 PRINT@962,CHRS (38) ; "MODIFY WHICH BYTE (@01 TO ";STRINGS (4-
LEN({STRS (PL%) }, ")RIGHTS (STRS (PL&), LEN(STRS (PL8) }-1)") 2";
60273 P4S="":FORP1%=1TO3:P3§=""
60280 P3S=INKEYS: IFP3$> “9"0ORP3$ <" " THENGP280ELSEPA$=P4$-+P3$: PRIN
TP3$; sNEXT: P4$=VAL(P45) : IFP4% < 10RP4%> PLATHENG 260
6029¢ PRINT@I6G, CHRS (30) ; "NFEW VALUE FOR BY'TE #"P4R" = ? ";
60300 P5$="":FORP1%=1T03;P45="" .
60319 PA$=INKEY$:IFP4$> "9"ORP4S <" 0" " THENG6E I 1GELSEP5$=P5$+P4S : PRIN
TP4$; :NEXT: P5S%=VAL(P5%) : IFP5%=00RP5%=340RP5% > 25 5 THEN6A29¢
60320 POKEPZR+P48-1,P5%: FORP1$=0T02 :POKEL 5360+1 32+4P1848% (P4s-1),
ASC{MIDS (P55, P1%+1,1)) :NEXT
60330 GOTO6H24%
61900 PSI=PEEK(16633)+256*PEEK(16634}: IFPS! >3276 7THENPSY=PS| —655
I6ELSEPS=Psl
61220 FORPP#=PS3$TOPSY-1AQISTEP-1 : IFPEEK(PP%) =36ANDPEEK (PPR -1) =804
NDPEEK{ PP$—2) =80THENG . SOFELSENEXT
6190¢ FORPQ%=1TO6 : POKEPPR+PQ%~3,ASC(MIDS (PP$, PQ%, 1 }) : POKEPP$-124
+PO%, ASC{MID$ (PP$, PO%, 1)) :NEXT
62009 PS§=PPY:PLE=LEN(PP$):IFPLA<1THENPRINT"ERROR - STRING HA
S TO BE DEFINED ALREADY & HAVE A LENGTH > ¢ ...":FORPQ$=1TOL67D:
NEXTPQR : GOSUBG @05 : GOTOGBOMPELSEPP | =VARPTR(PP$)} :GOSUBGEAAS :GO
TOGH 200

162 / THE REST OF 80

23

PASSWORD
Utility

by Craig A. Lindley System Requirements:
Model 1

16K RAM

Editoriassembler

One disk drive

TRSDOS

ASSWORD lets you lock or unlock password protection so you can

investigate the system, FORMAT/CMD, BACKUP/CMD and BASIC/
CMD files. You can also perform many other operations while the sys-
tem disk in drive O has its password protection unlocked. You can copy,
kill, print, and list all those files that until now were only entries in your
directories.

How the Program Works

PASSWORD patches the SYS2/SYS file. This file is called up as an
overlay anytime the operating system tries to open a file for access. In or-
der to open a file, the operating system must calculate a password code
{two bytes in length) from the password specified in the disk control
block {DCBJ. Subroutine CALPW (see Program Listing} contains the
code to do this. The calculated password code is compared to the pass-
word code stored in the directory entry for the specified file. Usually, if
the two match, the file opens and control passes back from the open rou-
tine to the calling program, with the Z flag set to indicate the operation
was completed successfully. If the calculated and stored password codes
do not match, the open routine ends, and an error message code passes
back to the calling program in the A register, indicating that access to the
file was denied. PASSWORD defeats this process by modifying the code
contained in the SYS2/SYS file so that the calculated and stored pass-
word codes always appear to match. This is done by changing the

THE RESTOF 80 / 163

relative jump-if-zero instruction to an unconditional jump instruction.
The lock procedure replaces the jump-if-zero instruction, restoring pass-
word protection.

How to Use PASSWORD

Execute the program by typing PASSWORD while in the DOS com-
mand mode. After the sign-on message is displayed, you are prompted to
indicate which disk in the system [0-3) to alter. The specified disk must
have the SYS2/SYS file resident (it must be a system disk]. If not, PASS-
WORD displays an error message.

The program prompts for the disk master password before performing
the unlock/lock operation. If the password you supply is incorrect, the
program ends.

It doesn't matter whether the disk in drive 0 is locked. If you enter the
correct password, the area normally occupied by the SYS2/SYS file is
loaded into memory from the disk drive specified. PASSWORD checks
the format of the data to make sure the disk is a systeni disk. lf it isn't, an
error message is displayed, and the program ends. If the data format is
correct, the program tells whether the specified disk-is locked or un-
locked and displays a menu showing the following three options:

L.—Lock selected disk

U—Unlock selected disk

Q—0Quit this program
The lock option restores password protection afforded by the operating
system. The unlock option removes it. These functions patch the
SYS2/SYS file accordingly and write it back to the specified disk before
returning to the operating system. Every time you use the altered disk
as a system disk in drive 0, the password protection of all files in the
system is unlocked or locked, depending on which option you chose.
The quit option returns you to the operating system withoul altering
the selected disk password status. This option allows you to check a
disk's status.

Program Listing

2913 kA bk krhkhhiddihhthkrrihikdieidt

BALLG ;*iwan PASSWORD UTILITY ickad
PaL28 *Ew VERSION 1.9 bl
PELIG jwre AG 18, 1981 *rn
BOLAY ;W BY ik
gglsﬂ ‘.***'ﬁ* CRAIG, A_ LINDIEY el s 1
gﬂlsﬂ :***i***ﬁ********ii**i**tt***i*tﬂﬁ!ﬁ'ﬁiii
28170 ;
700 20160 ORG 7000

azL9e ;

29208 :SYSTEM EQUATES

2210 ;

164 / THE REST OF 80

B349
B33A
21C9
4020
060
Q509
402D

6FFF

Baa1
221
2931

7083 FD
7004 52
7905 £l

7086 21
7087 19
7e@8 FE

7ee9 913C
7988 55
7827 @3
7028 593D
782n 52
7032 93
7933 1C3E
7035 42
7037 @3
7038 553E
7038 43
7040 23
704B CD3E
784D 44
071 o9

7872 55
708E @D
708F @D
7099 55
T2R9 00

Te2a @D
70AB 2D
70AC 49
7o 00

70CE 55
T9EA 0D
T2ER @D
TIEC 53

0222¢ CHRIN BQU
9923 CHROUT BQU
23248 CLRSCN BQU
33250 CURSOR EQU
20268 DELAY B
80278 LINEIN EU
09282 OPSYS EQU

o290

29300 STACK BEQU

29318

-
i

20329 ;SYSTEM STORAGE LOCATIONS

20330

94340 DRIVE DEFS
20350 SECTOR DEFS
20360 TRACK DEFS

o491 ROM CHAR IN ROUTINE
@33AH :ROM CHAR QUT ROUTINE
91C9H ;ROM CLEAR SCREEN ROUTINE
40200 ;CURSOR STORAGE

D06H s ROM DELAY ROUTINE

P5D9H :ROM LINE INPUT ROUTINE
492D ;OP SYS ENTEY POINT

$-1

1 +DRIVE # STORAGE

1 ;SECTOR # STORAGE
1 H

CQOMPARE STRIMGS FOR SYS2/SYS - MUST BE CORRECT FOR

PEDH
P52H
QELH

B21H
&79H
@FEH

3C91H

"UNLOCK/LOCK PASSWORD UTILITY'
3

3D59H

'REV. 1.2'

3

3E1CH

Igyl

3

3ESSH

'CRAIG A. LINDLEY'

3

3BCTH

'DRIVE TO BE UNLOCKED/LOCKED (2-3) ? '
@

'UNLOCK/LOCK. PASSWORD UTILITY'
13

13

*UNLOCK/LOCK DISK DRIVE # '

(4]

13
13
'INPUT THE DISK MASTER PASSWORD - '
2

"UNLOCK/LOCK PASSWORD UTILITY"
13
13

ae37a ;

Pa3sd ;

20399 ; PROGRAM OPERATICN.
P8400

20410 CMPST1 DEFB
29420 DEFB
08430 DEFB
00440 ;

29450 CMPST2 DEFB
22460 DEFB
PAA7a DEFB
#2480 ;

28499 ; SYSTEM MESSAGES
20500 ;

99519 MSG1 DEFW
28520 DEFM
234536 DEFB
540 DEFW
22550 DEMM
23560 DEFB
2570 DEFW
2580 DEFM
PA59G DEFB
2600 DEFW
e1d DEFM
00620 DEFB
99630 DEFW
P640 DEFM
29650 DEFB
20668 ;

2670 MSG2 DEFM
29680 DEFB
P69 DEFB
00 DEFM
o710 DEFB
3729 ;

20739 MSG3 DEFB
o0740 DEFB
a5 DEFM
Ba76l DEFB
22779 ;

22768 MSG4 DEFM
23790 DEFB
02800 DEFB
2810 DEFM

'SELECTED DISK IS CURRENTLY: °

Program continued

THE RESTOF 80 / 165

71@9

718n
7118
7119

711A
712A
7128

712C
712D
7128
714E
714F
7150
716B
716C
7189
7188
714
71A5
71A6
71AE

71AF
71CB
71¢cC
71¢D
71DF
71EQ
71E1l
71E2

71E3
71E4
71E5
7200
7201

7202
7263
1204
7223
7224

7225
7226
7227
724E
724F

7258
7251
7252
7278
7279

166 / THE REST OF 80

o

pL.
oD
x

2A
o]
2

2D
0]
2A
2D
@D
20
@D
20
oD
29
an

57

888945884

£S89 ESHE88 28y 88 EB8H88

D
o8

#0829
90330 ;
PP84AG MSGS5
26850
Pes60
oe8s7a ;
POBBA MSGE
2e899
23900
B@9La :
22929 MsG7
23930
22943
oFI53
oFI6F
a97a
298G
20990
21000
@10619
71620
21830
21e40
21a53
81968 ;
g1979 MSG8
21983
2129
1108
91119
21128
21130
21148
211540
gl160
PL17e
@118& EMSGL
#1199
Q1200
21210
21229
91230 ;
21240 EMSG2
B125e

p1264
9127@
21280
@129 ;
21300 EMSG3
pl3ie

71328
91338
91340
#1358 ;
@136 EMSG4
21372
21380
@139
14850
21416 ;

~ wr we

DEFB

DEFM

DEFB

DEFB
DEFB

DEFB
DEFB
DEFM
DEFB
DEFB

eek [OCKED k!

13
&

"% UNLOGKED ***'

13
]

13
13

‘*++ OPERATION SELECTICN MENU ****

13
13
13
13
13
13

'WHICH ? '
9

L - LOCK SELECTED DISK'
U - UNLOCK SELECTED DISK'

Q - QUIT THIS PROGRAM'

"UNLOCK,/LOCK PASSWORD UTILITY'

13
13

'OPERATION COMPLETE'

13
13
13
a

SYSTEM ERROR MESSAGES

13
13
‘wa% ERROR
13
L4

13
13
'*#¥% ERROR
13
2

13

13

'*#% ERROR
13

e

13

13

'#4+ ERFOR
13

2

IN DISK 1/0 !

DRIVE NOT READY #*##!

INCORRECT DISK PASSWORD Wwi!

NOT SYSTEM DISK FORMAT *%%'

91460 :THE OPERATOR INPUT
91470
727A 21FFFF @1480 CALPW LD HL,-1
727D 9688 21498 LD B,8
727F 7B #1500 LD AE
7288 C607 #1519 ADD a,7
7282 SF 21520 D E,A
7283 3901 21530 JR NC, PWL
7285 14 21548 INC D
7286 1A 1558 PwWl D A, (DE)
7287 D5 21560 PUSH DE
7288 57 1578 LD D,A
7289 5C o1580 LD E,H
7287 7D 159 LD AL
728B E687 1600 AND 7
728D OF 21618 RRCA
728E @F 91620 RRCA
728F OF 21632 RRCA
729¢ AD A1640 XOR L
7291 6F 21650 LD L,A
7202 2600 1668 LD H,0
7204 29 21670 ADD HL.HL
7295 29 #1682 ADD HL,HL
7296 29 21698 ADD HL,HL
7297 29 21709 ADD HL, HL
7298 AC 21710 XOR H
7299 AA 21720 XOR D
729A 57 21736 LD D,A
7298 7D 21740 1D AL
729C 29 21752 ADD HL,HL
729D AC 81760 XOR H
729E AR 81770 ¥OR E
729F 5F 21780 LD E,A
7280 EB 21790 EX DE, HL
72A1 D1 31800 PopP DE
72A2 1B #1810 DEC DE
7273 10E1 21820 DINZ PWl
7285 C9 21839 RET
- 91848 ;
91850 ;DISPLAY LINE OUTEUT ROUTINE
21860 ;
7286 TE P1870 LOUT LD A, (HL} ;GET CHAR
7277 B7 21850 OR A ;ISIT 8 ?
7208 C8 21899 RET Z 1 IF YES THEN
72A9 FEG3 21900 cP 3 ;OTHER TERMINATOR
725B C8 21919 RET z ; IF YES THEN
720C CD3RO3 ©1929 CALL CHROUT ;DISPLAY IT
72AF 23 2193¢ INC HL ;NEXT CHAR
7280 18F4 91940 JR LouUT ;UNTIL FINISHED
91959 ;
£196@ ; FORMATTED MESSAGE OUTPUT ROUTINE
21979 ;
72B2 112040 @1989 MSGOUT LD DE, CURSCR sCURR CURSOR STORAGE
72BS 219200 199G o) BC,2 sMWE ADDRESS
72B8 EDB@ 22000 LDIR : INTO CURSOR STORAGE
72BA CDA672 @2019 CALL LLUT :DISPLAY LINE

Program continued

THERESTOF 80 / 167

T2BD
72BE
72C0
7203
7204
72C5
72C7
7209
72CB

7209

72m1
72D4
7206
7209
72DC
1208
72E3
72F1

72E3
T2E6
7289
72BC
72EF
72F2
T72F5
72F7
72F8
72F9
72FA
72FB
T2FC
72FD
72FE
7308
7381

7384
73085
7306
73a7

7389

730A 300070

738D
T30E
7314
7311
7313
7316

F5
3EQF
CD3AG3

23
FEBQ
2802
18E7
3E2E
CD3A23

o973
3E23

32EC37
CD2973
3AEC37

18F6

CDRaa73
21EC37
3AR270
32EF37
3n0170
32EE37
3ELF

47
3ES8

19FD
32E137
Cl

D282
22030
02040
22058
@2060
@279
p2080
02899
92129
@211a
92128
@213a
22148
32159
@216
@217
22180
92192
22208
a221e
22228
02230
@2246
92258
82260
92278
2288
22299
22300
92310
92320
92338
923448
@2350
22368
92379
@2380
292399
02400
92410
02420
22438
02440
g2450
32460
92472
92458
22499
22500
925149
92520
D253
92540
92558
g256@
92578
92580
22590
22600
g261@

PUSH AF 1 SAVE TERM CHAR
LD A,15 ;QURSOR OFF CODE
CALL CHROUT ;OUTPUT IT
POP AF sRESTORE CHAR
INC HL ;NEXT CHAR
CP @ {END OF MESSAGE 7
JR Z,MSGOL :YES, FINISH UP
JR MSGOUT ;UNTIL FINISHED
MSGOlL LD A,l4 +CURSOR ON CHAR
CALL CHROUT ;Do IT
RET
;RESTORE DRIVE TO TRACK @¢ ROUTINE
RESTOR CALL SELDSK ;: SELECT DRIVE
LD a,3 +SEEK 99 OMD
LD (37ECH}, A 160
RES1 CALL SELDSK ; SELECT DRIVE
b A, (37ECH) +GET STATUS
RRCA sBUSY ?
RET NC ;IF NOT THEN
JR ‘RES1 ;LOOP UNTIL NOT BUSY
;SEEK ROUTINE - THIS ROUTINE SETS UP THE SELECTED DISK

sWITH A SEEK TC THE SPECIFIED TRACK. ON RETURN, THE
;HEAD IS POSITIONED AT TRACK (TRACK), SECTOR (SECTOR).

SEEK CALL SELDSK
LD HL,37ECH
LD A, (TRACK)
LD {37eFH),A
LD A, (SECTOR)
LD (37EEH),A
LD a,1FH
LD (HL), A
PUSH AF
POP AF
PUSH AF
POP AP
CREADY LD A, (HL)
RLCA
JR NC, CBUSY
POP HL
JP NREADY
CBUSY RRCA
RRCA
RET NC
JR CREADY
$ SELECT THE DISK DRIVE ROUTINE
SELDSK PUSH BC
D A, (DRIVE)
LD B,A
1D A,B0H
SEL1 RLCA
DINZ SEL1
1D {37E1H} A
POP BC

168 / THE REST OF 80

; SELECT THE DRIVE
+POINT AT STATUS/OOM REG

;SEEK POSITION

WASTE TIME
;GET STATUS

;GO IF READY
FIX STACK

+ADJ BYTE

:BUSY BIT TO FLAG
+IF NOT BUSY THEN
;ELSE

‘.ﬁvE Ilm'l

;GET DRIVE #

:"B" IS COINTER
:SELECTION BITS

: ROTATE

;UNTIL FINISHED
SELECT THE DRIVE
RESTORE "BC"

H
v

7317 C9

7318 CDE372

731B 368C
731D 11EF37
7320 F5
7321 F1
7322 F5
7323 F1
7324 1803

7326 OF
7327 300n
7329 7B
7327 CB4F
732C 28F8
732E 1a
732F 22
7330 23
7331 l8Fe
7333 7E
7334 E65C
7336 C8

7337 21E371
733A CDAGT2
733D C32D40
7342 210272
7343 18F5

7345 1A
7346 BE
7347 2005
7349 23
7347 13
7348 10F8
734D 9
734E El1
734F 215072
7352 C33A73

7355 CDE372

7358 36AC
735A 11EF37
735D F5
735E Fl1
735F F5
7360 F1
7361 1883

02620
92630
92649
926508
2664
a2670
22680
02690
22708
02718
02720
92730
02749
a2758
22760
22779
@276
@279
F2600
a281e@
o282
22832
22848
22852
2860
9287
22680
22899
22990

2912 ;

22929
22930
02948
92959
92960
82970
22980
22990
3000
23018
Q3020
93239
93040
23058
23060
23879
23080
a3eoe
a3108
23119
a312e
93130
43140
23150
23168
#3170
03180
23198
23200
93218

RET

+SECTOR READ ROUTINE ENTRY WITH BUFFER IN “BC"
1DRIVE TRACK AND SECTCR NUMBERS ALREADY IN MEMORY

SREAD CALL

READ LD
LD

READ1 RRCA

READ2 LD
BIT

READIT LD

JR

SEEK

(HL) ,8CH
DE, 37EFH

g%%ﬁﬁ

sPOSITION HEAD FOR

s REQUIRED OPERATION
READ OOMMAND

;POINT TC DATA FEGISTER

;BUSY BIT TO FLAG
s BUSY/DONE GO CK STATUS
;GET STATUS

;DRQ BIT

GO CHECK BUSY
;GET DATA BYTE
STCRE IN BUF1
NEXT BUF POSITICN
GO CK DRO.

GET STATUS

MASK IT

IF NO ERROCR

- e e s W

R R I B)

;DISK ERROR MSG

s DISPLAY IT

1BACK TO DOS

;DRIVE NOT READY ERR MSG
;DISPLAY AND ABORT

;STRING COMPARISON ROUTINE FOR SYS2/SYS FORMAT VERIFY

A, (DE)
(HL)
NZ, ERR1
HL,

DE
STRCMP

HL

+GET DISK CHAR

;18 IT = TO OMPSTR CHAR ?
; IF MISOOMPARE THEN

1 INC PIRS

CHECK ALL 7 CHARS
WHEN QOMPARE FINISHED
FIX STACK

FORMAT ERROR MSG
DISPLAY AND ABORT

L T T

tPOSITION HEAD FOR THE
s RECUIRED OPERATION
JWRITE O¥D _
:POINT TO DATA REGISTER

WASTE TIME

Program continued

THE RESTOF 80 / 169

7363

7366
7367
7369
736B
736C
736D
736E

7379
7373
7376
7379

7378
737B
737E
7381
7384
7387
7388
738C
738E
7399
7392
7393
7395
7396

7399
739C
739F
73n2
73A3

73A6

7389
73AB
73AE
730
73B3
73B6
73B89

oF

7E
CB4F
28F8

a3
12
18F6

CDa973
0129069

F3
31FF6F

210972
CoB272
CD4920
FE34
JeF9
FE3@
38F5
F5
D63

320076

CDCI91
217278
CDA672
Fl

CD3AD3

CD7973

3E1l

320270
3ES

320179
CDD172
d16A74
D1873

23228

#3230 WRITEL RRCA

.
i

93240 JR NC, STATCK sBUSY/DONE GO CK STATUS
B3250 WRITE2? LD A, (HL} 1GET STATUS

23263 BIT 1,A ;DRO BIT

a327e JR Z ,WRITE1 ;G0 CHECK BUSY

#328¢ WRITIT LD A, (BC) ;GET BYTE

23290 INC BC 1 POINT TO NEXT

93300 LD {DE),A 1STORE (N DISK

#3318 JR WRITE2 ;GO CHECX DRQ

93320 ;

@333¢ :WAIT ROUTINE - THIS ROUTINE SELECTS THE SPECIFIED DISK

#3348 ;DRIVE AND WAITS FOR IT TO OOME UP TO SPEED BEFORE
9335@ ; RETURNING TO THE CALLING PROGRAM.

23364 ;

@337 WAIT CALL SELDSK ;1 SELECT THE DRIVE
#3380 iDd BC,2 1MAX DELAY

339 CALL DELAY +ROM ROUTINE

23400 RET

93419 ;

3426 : LA g2 22 2 2 2 2 20 T R L L B ey

$343@ ;**%¥* START OF MAIN PROGRAM **%v%

gm :it*tttttit*iii*t*t'itt**ti*iii*t*

23450 ;

#3460 START DI ;DISARLE INTERRUPTS
23479 LD SP,STACK :LOAD STACK PTR
23480 CALL CLRSCN ;CLEAR DISPLAY
93499 LD HL, MSG1 +SIGN ON MESSAGE
23528 CALL MSGOUT :DISPFLAY IT

23519 AsSK CALL, CHRIN }GET RESPONSE

23520 CP ‘4! IMBX + 1

2353 JR NC,ASK 1ERROR IF » 3
#3548 cp 'a’ sMIN

23550 JR C,ASK ;ERRCR IF < @

P3568 PUSH AF +SAVE ASCII DRIVE #
23578 SUB 301 :CONVERT TQ HEX
@3588 INC A :ADD ONE TO DRIVE NUMRER
9359 LD (DRIVE) A }STORE DRIVE NUMBER
@365a

33610 ;ANSWER IN RANGE OONTINUE

23629 ;

23630 CALL CLRSCN +CLERR DISPLAY
23648 LD HL,MSG2 1 M5G

23650 CALL LOUT ;DISPLAY IT

23660 POP AF +RESTORE ASCII DRIVE #
23670 CALL CHROUT :DISPLAY IT

2368 ;

@369¢ ;READ THE DIRECTORY GAT SECTOR &3 OF SELECTED DISK DRIVE
03700 ;

23719 CALL WAIT :WAIT FOR DRIVE TO
93721 yOOME UP TO SPEED
23738 LD A,11H : TRK NUM

937409 LD (TRACK) A STORE TRK NUM
93759 LD A, :SECTOR @ -

#3760 LD (SECTOR) , A ;STORE SECTOR NUM
23776 CALL RESTOR 1SEEK TRK 00

#3780 LD BC, DBUF ;SECTOR BUFFER AREA
937% CALL SREAD :READ GAT IN DIR
23899 ;

170 / THE REST OF 80

73CE

7306
73D1
73D2
7304
73D5
73D7
73p8
7309
73DB
73DC

73DE

73El
73ES
73E6

73E8
73EB

73EE
73F9
73F3
73F5
73F8

73FB
73FE

7401
7404
7407
7409
748C
T48F
7412
7414

21A870
Chae72
216A75
@628
CDD9@5
78

B7
28EE

EB
83
6F
TA
CE2R
67
3EQ8
%d
47
3028
23
19FB

CD7A72

ED5SB3875
DF
2806

212572
C33A73

3E1Q
320272
3EQ6
320179
CD7973

21674
CD1873

218370
11CA74
2643

4573
219672
11CE74
2603

4573

93814 ;ASK FOR DISK PASSWORD ROUTINE
23820 ;

@3830 ASK1 LD HL,MSG3
#3840 CALL LoUT
@3850 LD HL, INBUF
213860 LD B.8
43879 CALI LINEIN
#3880 LD A,B
93850 OR A
235900 JR Z,BSK1
93910 ;

23920 EX DE,HL
#3930 ADD AE
93940 D L,A
23950 LD A,D
#3964 AbC A0
23970 1D H.A
B3980 LD A8
#3999)] B
BAGNKS LD B.A
24910 ASK2 LD (HL), 208
B4g20 INC HL
24030 DINZ ASK2
04040

BAASH CALL CALPW
B406a

24070 ;

1 REQUEST MSG

;DISPLAY IT

;BUF FOR QPERATOR INPUT
;MAX LENGTH OF PASSWORD
;GET PASSWORD

; LENGTH INTO "A"

:IF-NO INPUT ASK AGAIN

;POINT "DE" AT PASSWORD
;POINT "HL" AT END

i MRX LENGTH

LENGTH
mm “B"
STORE EBLANKS
NEXT POSITION
FILL REMAINDER WITH
BLANK CODE 20d
CALOULATED PASSWORD
JIN "HL"

94282 ;COMPARE CALCULATED PASSWORD TO THE ONE STORED IN THE GAT

24¢29¢ ; SECTOR OF THE SELECTED DISK.
4100 ;

24110 LD DE, (DBUF+206)
84120 RST 180

24130 JR Z,ASK3
34149 ;

24150 LD HL, EMSG3
24160 Je ERFOR
24172 :

4180 ASK3 LD A,1PH
24192 LD (TRACK) ,A
24200 D A6

242108 LD (SECTOR) A
24220 CALL, ~ WAIT

#4230

24240 LD BC, DBUF
84250 CALL SREAD
24260 ;

24278 ;

34260 :

@4290 LD HL,CMPST1
24300 LD DE, DBUF+96
24310 LD B,3

24320 CALL STRCMP
84330 i¥)] HL, OMPST2
B4340 D DE, DEUF+109
24358 LD B,3

24368 CALL STROMWP
#4372

+ PASSWORD LOCATICN IN GAT
: QOOMPARE
+IF OK THEN

1 NOXCESS DENIED MESSAGE
;DISPLAY AND ABORT

; SY52/SYS LOCATION
+SECTOR NUM

{WAIT FOR DRIVE TO
;OOME UP TO SPEED
7sm'IUR BUFFER AREA
;READ SYS2/8YS

SYS2/SYS SHOULD NOW BE LOADED. CHECK FORMAT TO BE SURE.

;POINT AT COMPARE STR 1
;PATCH POINT COMPARE
:+BYTES TO COMPARE
COMPARE THE STRINGS
2ND COMPARE STRING
PATCH POINT OCMPARE
BYTES TO QOMPARE
OOMPARE THE STRINGS

s wE wp wp e N

94380 ;DISPLAY CURRENT STATUS UNLOCKED OR LOCKED

94399 ;

Program continued

THE RESTOF 80 / 171

7417 CDCO@1
741A 21CE7Q
741D CDA672
7429 21074
7423 TE
7424 FE28
7426 2825
7428 211A71
742B 1803
742D 216771
7430 CDAGT2

7433 212C71
7436 CDMET2
7439 D499
743C CD3nAG3
743F FE51
7441 CA2D4Q
7444 FEAC
7446 2806
7448 FE55
T44A 2806
744C 18C9

744E 3E28
7458 1822
7452 3E18

7454 21CD74
7457 77
7458 D973

745B 916A74
745E CD5573
7461 CDCIPL
7464 21AF71
7467 C33A73

2109
7562

737

B4470

:
%E%%EEEB

:
;
&

94508 DISIT
24519 ;

:
:

28H

%, LOCKED
HI., MSG6
DISIT
HL,,MSG5

04529 ;GET OPERATOR RESPONSE

24530
84548
2455¢
24568
@457¢
24568
24599
24608
24610
24628
24632
24648
24658 ;
24668 LOCK
24679
24680 UNLOCK ID
34699 ;

25 %%%%Q%QEEEE

HL,MSG7
LogT

IQI
Z,0PSYS
ILI
Z,LOCK
IUI

2, UNLOCK
ASKS

A,28H
PATCH
A,l8H

yCLEAR DISPLAY
:STATUS MSG

:PATCH DATA
+GET DATA
;LOCKED ?

tUNLOCKED MSG
sDISPLAY IT

s LOCKED MSG
;DISPLAY STATUS

;OPTION MENU
:DISPLAY IT

;GET RESPONSE
;DISPLAY RESPCHSE
JQUIT 7

:IF YES THEN
;LOCK DISK ?

sUNLOCK DISK ?
;IF NONE ASK AGAIN
;PATCH VALUE - LOCK

tPATCH VALUE - UNLOCK

24799 ;SYS2/SYS IS LOADED CQORRECTLY NOW MAKE PATCH

24710 ;
94720 PATCH LD
24730
24740
34750
34760
24770
24786
a479a
24800
24818 ;
ga8ze ;
24838 DBUF
24849 INBUF BEQU
24859 ;
24868 :
24870

%SEEB EE

:

g

02233 TOTAL ERRORS

172 / THE REST OF 80

HL, DBUF+99
(HL),A
WAIT

BC, DBUF
SWRITE
CLRSCN
HL ,MSG8
ERRCR

256
$

START

sPATCH LOCATICON

:DISPLAY AND ABORT

SECTOR DATA STORAGE
INFUT BUFFER ARER

.~ wa

24

A Better LDOS
KSM Builder

by Mike Tipton Systemn Requirements:
Model I or 1Y

16K RAM

One disk drive

LDOS

One of the most useful features of the LDOS disk operating system is
the filter routine, which you can use to enhance the capability of a
peripheral driver. The keystroke multiplier (KSM), one of the LDOS fil-
ters, lets you build a file of commands or text strings. The file of com-
mands is loaded into memory when KSM is activated. You select each
command by pressing CLEAR and an alphabetic key. When program-
ming in BASIC, for example, you might define CLEAR-G to display
GOTO. All the 26 letters can define useful BASIC keywords.

The BUILD library command permits you to define KSM files. When
you invoke BUILD, it displays a letter of the alphabet. You are to type
the text string that is to be assigned to the letter. Each letter is displayed
in succession. You can exit before Z, but you must start with A and you
cannot skip any letters. BUILD has no editing capabilities. If you make
an error, you must start over at A. This makes the BUILD utility awk-
ward to use, but I solved this problem by writing a short program in
BASIC (see Program Listing) that allows you to both create and edit
KSM files. It only takes a few minutes to type it into your system. Com-
ments were left out to make the typing easier, but it is short enough that
you should be able to figure out how it works.

The first prompt is (B)UILD NEW FILE OR (RJEVISE OLD. If you type
R you are asked for the name of the file you wish to revise. If you type B
the program goes directly to the build and edit function. The next
prompt is WHICH LETTER. If you type a single letter (A-Z), the pro-
gram displays the text associated with the letter, if any, and permits you
to change it. If no change is desired, press ENTER; otherwise, type the
text you want. This process repeats as often as necessary.

THERESTOF 80 / 173

There are also four commands you can use to respond to the prompt:

PRINT—Prints all your definitions on a line printer. The printout can
be saved for future reference. Make certain that your printer is on-line
before using this command. The computer will lock up if it is not.

LIST—Displays all your definitions on the CRT.

SAVE—Allows you to write your new KSM file to the disk. You are
asked for a file name.

LOAD-—Allows you to load and edit a new KSM file. The current file
in memory is destroyed.

Program Listing

20 CLS : PRINT@384, “"KSM BUILD UTILITY"
40 CLEAR 2030

60 DEFINT A-Z: DIM AAS(26)

8@ INPUT "(B)UILD NEW FILE OR (R)EVISE OLD"; TS
19¢ IF T$="B" THEN GOTO 260:

120 IF T$="R" THEN GOTO 168

149 GOTO 809

169 INPUT "FILENAME";T$

182 OPEN "I",1,TS

208 FOR J=1 TC 26: INPUT #1,AAS(J): NEXT J
228 CLOSE 1

240 GOTO 280

26@ FOR J=1 TO 26: AAS(J)=" ":; NEXT J

280 LINEINPUT "WHICH LETTER ;TS

302 IF T$="" THEN PRINT "ERROR": GOTO 280
329 IF T$="PRINT" THEN GOTO 648

340 IF T$="LIST" THEN GOTO 720

360 IF T$="SAVE" THEN GOTO 540

380 IF T$="LOAD" THEN GOTO l6@

499 1F LEN(T$)>1 THEN PRINT "ERROR": GOTO 280
420 T=ASC{LEFTS(TS,1))-64

440 IF T<l OR T>27 THEN PRINT "ERROR": GOTO 280
468 PRINT T$;"=":;AA3(T)

480 PRINT T$;"=2";:T$="":LINEINPUT T§

508 IF T$<>"" THEN AAS(T)=T$

520 GOTO 280

540 INPUT "FILE NAME":FS

5680 QPEN "O",1,FS

582 FOR J=1 TO 26: PRINT #1,AAS(J): NEXT J
600 CLOSE 1

620 CGOTO 289

649 FOR J=1 TO 26

660 LPRINT CHRS{J+64):"=";ARS (J)

680 NEXT J

703 GOTC 289

72¢ FOR J=1 TO 26

74¢ PRINT CHRS(J+64);"="; AAS(J),

174 / THE REST OF 80

25

T-EDASM:

Link T-BUG and
EDTASM

by Ron Anderson System Requirements:
Level II BASIC

Model I
16K RAM
Radio Shack EDTASM and T-BUG

A;e you tired of loading and reloading EDTASM and T-BUG again
nd again to assemble and debug one simple machine-language pro-
gram? I was, until I developed a program, T-EDASM, that links these
two utilities (EDTASM and T-BUG] into a unified assembly and check-
out program.

T-EDASM lets you jump between EDTASM and T-BUG with single
commands, and loads assembled object code directly into memory from
EDTASM. No tape and play sequence is required. You only have to load
your machine-language program once to fully develop, test, and debug it.

To use T-EDASM, load the single tape program and enter EDTASM.
To move to T-BUG, type the new command B and press ENTER. To re-
turn to EDTASM, press A. T-EDASM gives T-BUG two other new com-
mands. The I command tells EDTASM to dump object code in memory.
Instead of producing an object code on tape (A command plus two EN-
TERs), it puts the code directly into memory at the ORG indicated in the
code. The E command converts EDTASM to the normal tape dump
mode again. After an EDTASM assemble command, the prompt READY
CASSETTE appears in the E mode. In the I mode, however, the prompt
is READY TO STORE.

Here is a typical programming session with T-EDASM. Develop your
program using EDTASM, hop to T-BUG {with B}, convert to internal
load, and move back to EDTASM (I} to assemble and load the code into
memory. Next, go back to T-BUG (B} and use it on your new program
now in memory. Repeat as required. Finally, use the T-BUG E com-

THE REST OF 80 / 175

mand to go back to the normal EDTASM and produce final object and
source tapes.

You must move T-BUG to a higher than normal memory location be-
cause of a fundamental EDTASM and T-BUG conflict. I recommend
that you extend T-BUG as described in “T-BUG and Then Some," by M. Pax-
ton (80 Microcomputing, November 1980}, then move the modified program in-
to high memory. For this, see "Get T-BUG High,” by 1. Rappaport (80 Micro-
computing, January 1980). The version of T-EDASM shown in the program list-
ing is for use with the extended form of T-BUG starting at address 7380H.

After you have moved T-BUG, the memory map for the final
T-EDASM (for 16K of memory) is as shown in Figure 1. This leaves
6600H-71FFH {a little over 3K bytes) of storage for your new program.
By using relative jumps in your program, you can use a new ORG just
before making the final tapes to put your program anywhere else in
memory.

Hex Memory Locations Program Portion
42E9-5D40 plus EDTASM text EDTASM jcheck end of text with T-BUG)
6600-71FF Memory for ohject code (varies with text)
7200-72E4 {7200-72E9 for regular T-EDASM

T-BUG]
7380-797F Regular T-BUG
7380-7B8A Extended T-BUG
7B8B-7FFF EDTASM Table

Figure 1

Type the T-EDASM program listing into EDTASM and record the ob-
ject code. If you do not use the extended T-BUG, insert the following
program lines into the listing in place of line 710:

710 CP 'F' ‘REPLACE ORIG T-BUG
712 JP Z,780DH ;BYTES
714 JP 73EAH ;GOTO T-BUG{HIGH)
and use regular T-BUG, moved to start at 7380H.

Load T-EDASM, EDTASM and T-BUG (high) and enter T-BUG. Us-
ing the M command make the code change in T-BUG and EDTASM
shown in Figure 2. The old bytes for T-BUG are for the extended ver-
sions. If you are not using this version, the old bytes from 73E5H to
73E9H are FE, 46, CA, 0D, and 78 [hex). Jump ({J468A) to EDTASM's
cold start and try everything. Load a fresh tape and use T-BUG's P com-
mand (P 42E9 7B8A 468A TEDASM) to save the programs. The 7B8A
should be 797F if you have the non-extended T-BUG. T-EDASM is now
ready with a file name of TEDASM.

If your experimental program crashes, Figure 3 shows a few entry
points that may restore operation of T-EDASM. If that does not work,

176 / THE REST OF 80

you have to reload the programs, so make a source code tape every now
and then for along machine language program. If T-BUG hangs up, just
press ENTER.

T-BUG EDTASM
Hex Mem OldNew Hex Mem Old New
73E5 C3 C3 4930 DD AD
73E6 06 6C 4931 ga 73

73E7 TA T2
73E8 % 00
73E9 00 00

Figure 2
Program Portion Entry [Hex) Entry (Dec}
EDTASM (cold start} 468A 18058
EDTASM {warm start) 46A2 18082
T-BUG {highi 7340 29600
Figure 3

Program Commentary

Lines 30-190 contain the program which stores the register-A byte
passed from EDTASM (originally to be output to tape} in memory as an
object code. The code here is similar to the tape-read portion of T-BUG
(low) from 4668H to 469BH. Line 40 is the entry point for the first byte
from EDTASM, if no call was made to EDTASM. Lines 200~310 com-
plete EDTASM data passage to memory and reinitiate the first byte en-
try point. Lines 320-380 contain the first entry point from EDTASM
where register A has data, without requiring a call. This portion of the
program saves important EDTASM parameters and changes subse-
quent T-EDASM entry points to RENTRY.

Lines 390-470 save local CALL-RETURN addresses, store T-EDASM
important variables, and restore EDTASM parameters. Lines 480~-550
save EDTASM variables and retrieve T-EDASM parameters. Lines
560-580 set aside storage space to save T-EDASM parameters. Lines
590-720 are the extension of the T-BUG command input routine to
check for A, I, and E commands and jumps as required. The delay
prevents key bounce.

Lines 730-830 revise EDTASM to incorporate T-EDASM and assem-
ble to memory. They also madify the prompt to READY TO STORE.
Lines 840-940 restore EDTASM to its original configuration, which as-
sembles to tape. They also restore the READY CASSETTE prompt.

The linkage between EDTASM and T-EDASM is accomplished when
an EDTASM call statement attempts to pass an assembled byte to a rec-

THERESTOF80 / 177

ord subroutine, and T-EDASM intercepts the byte, decodes the informa-
tion it contains, and stores the actual object code in memory. T-EDASM
then cails (RET) EDTASM for another byte.

Program Listing

90213 ;TEDASM BY RON ANDERSONM

200 Baa2a ORG
728¢ CD4572 20830 DOl CALL
7293 FET3 PB4 ENTRY CP
7205 281C 20058 JR
7287 FE3C 260 cp
7209 20F5 B0373 JR
7288 CD4572 0RB0 CALL
720E 47 3090 Lo
720F CD4572 20109 CALL
7212 5F #0110 LD
7213 CD4572 89120 CALL
7216 57 Qa138 D
7217 CD4572 99149 DO2 CALL
721a 12 150 Lo
721B 13 o160 INC
721C 19F9 BeL7Y DINZ
T21E 04572 20180 CALL
7221 18DD 20199 JR
7223 CD4572 2020@ FIN CHLL,
7226 ©F da219 p
7227 (4572 0@220 CALL
7227 €7 P23 LD
722B 226672 @@24@ LD
7228 213972 00250 o
7231 22803 20260 LD
7234 FL 23270 POP
7235 D1 Ba260 POP
7236 C1 290 pop
7237 E1 23R POP
7238 C9 29319 RET
7239 E5 P@32¢ FIRENT PUSH
7238 C5 20330 PUSH
723B D5 26348 PUSH
723C 75 22358 PUSH
723D 215672 @036d LD
7248 228843 29370 LD
7243 18BE 22380 JR
7245 El @039¢ DATA POP
7246 226672 00409 o
7249 ED536872 00419 D
724D ED436AT2 08429 jo
7251 Fl 20438 pop
7252 D1 pa4ad POP
7253 C1 2945@ POP
7254 E1 29460 POP
7255 C9 a47g RET
7256 E5 Be48¢ RENTRY PUSH
7257 C5 22492 PUSH
7258 DS G500 PUSH
7259 F5 P251d PUSH

178 / THE REST OF 80

72004

DATA 1G0 GET A BYTE FROM EDTASM

78H ;END OF FILE?

Z,FIN :IF S0 GO FINISH

3 ; DATA HEADER?

NZ,D0Ll ;NO SEARCH MORE

DATA ;YES, GET FIRST BYTE (DATA COUNT)

B,A :GAVE DATA QOUNT

DATA :GET LSB QF LOAD ADDR
E.A

DATA sGET MSB OF LOAD ADDR
D,A

DATA, :GET LINE QF DATA

(DE),A ;LOBD A BYTE

DE MOVE UP

Doz +£0 TIL DONE

DATA sGET CHECKSIM (DON'T USE)
ol $START OVER AGAIN

DATA ;GET LSB OF ENTRY ADDR
LA

DATA ;GET MSB OF ENTRY ADDR
H,A

{STOREL } . HL ;DUMP STRRT ADDR
HL,, FIRENT ; FIX PROGRAM
{438aH) ,HL : START

AF

HL, RENTRY JMODIFY ENTRY PT
(438aH) HL ; : SUBSQ DATA
ENTRY ;PRESS ON

HL JGET LOCAL RET ADDR
(STOREL), HL. ;SAVE LOCAL RET
(STOREZ2), DE ;SAVE LOAD INDEX
(STORE3), BC s SAVE DATA COUNT
AF

DE ;GET STUFF

BC

HL

s BACK TO EDTASM

HL

BE sSAVE STUFF

DE

AF

725A ED5B6BT2 @052
725FE ED4BGAT2 20530

7262 206672 00540
7265 E2 20558
o002 22560
o2 0a570
2002 20580
726C FE4L 2592
726E 22¢B 00608
7276 B10050 0610
7273 @B 20620
7274 78 00630
7275 Bl o0640
7276 20FB 20650
7278 C3A246 20660
727B FE49 20672
7270 280C D68
727F FEA45 20699
7281 282E 700
7283 C3@967A 710
ooas - 23720
7288 DD21A943 207302
728F DD3600CY 09742
7293 DD218943 99750
7297 DD362EIC3 2AT6R
7298 DD36013% 0@770
729F DD36Q272 20780
7R3 019700 BOTD
7286 21D772 o080
7279 11EA48 0281&
72AC EDBJ ao820
7230E C37972 o@838
72B1 DD21A943 92848
72R5 DD36@@CD 20850
7289 DD218943 00862
72BD DD36PCES 02872
72C1 Db36@1CS 9a883
72C5 DD3622D5 2@892
72C0 910700 B0
72¢C 21DE72 @919
72CF 11End8 20920
72D2 EDBO 20930
72D4 C37972 9940
7207 54 3350
72DE 43 2960
22 0978

#0033 TOTAL ERRORS

STOREL
STORE2
STORE3

DEL
DO3

INT

3=

EEEEEEEBEYEEEEEEEEEE
F]

855°5

DE, (STORE2) ;RECOVER LOAD INDEX
BC, (STORE3} :RECOVER BYTE COUNT
HL, (STORE1) s RECOVER LOCAL RET
(HL) : AND GOTO IT

2

2

2

Al ;CHK FOR EDTASM RETURN
KZ,NEXT ;NO, NEXT INPUT CHK

BC, SO00H " ;YES, DELAY

BC H THE

A,B 1 ' JUMP

c ; 1o]

Nz,DO3 EDTASM

46A2H ;GOTO EDTASM

1 ;CHK FOR INTERNAL ASSEMBLY
Z,INT ;YES,SET-UP FOR INT STORE
'E' ;CHK FOR EXTERNAL ASSEMBLY

Z,EXT ;YES, RESTORE INT TO EXT
7a@6H ;NO HITS, PRESS ON IN TBUG
5 ; ROOM FOR TEDASM ADDITIONS

IX,43A9H 1 PREVENT EDTASM
{1X),8c9H ; TAPE ON AND SYNC
IX,4389H 1SET-UP JUMP TO
(Ix},0C3H 1 THE

(IX+1)},39H s NEW
{IX+2),72H ; PROGRAM
BC,7 ; CHANGE

HL, M1l H ASSM

DE,48EAH : PROMPT

H MESSAGE

DEL $BACK TO EDTASM

IX,43A3H ; RESTORE TAPE
{IX),0CH ; AND SYNC
IX,4389H ; RESTORE

(IX),@ESH ; ORIGINAL
{IX+1),BCSH : EDTASM
(IX+2),0D5H : PROGRAM
BC,7 + RESTORE

HL,M2 H ASSM

DE,48EAH : PROMPT

? MESSAGE

DEL +BACK TO EDTASM
'70 STOR'

'CASSETT'

THE REST OF 80 / 179

26

Menu Program for
NEWDQOS/80
Version 2 e Rt

by Dr. Walter J. Atkins, Jr. Model I
32K RAM

Level I BASIC

One disk drive

NEWDOS/80 Version 2

have been using Barry Kornfield's disk menu program (80 Microcom-

puting, Novernber 1980, p. 226) on all my game program disks since it
appeared. That program, DIRPICK, reads the directory of the disk drive
of your choice, numbers the programs, and runs any BASIC or /CMD file
by entering its number. Unfortunately, it doesn't work with the latest
verston of Apparat's NEWDOS/80 operating system. My program is an
adaptation of DIRPICK for use on the NEWDOS/80 Version 2.

Because NEWDQOS/80 Version 2 is designed to work with double den-
sity as well as with single density disk drives, it uses a different format
that allows more files to be displayed on the screen at a time. It displays
the disk directory in four columns, of fifteen characters each.

I originally just changed line 230 of DIRPICK to accommodate the
new format. The original line is L= 15488 + 64*Y + 20+Z. The variable Z
counts the programs across the screen and the variable Y counts the
lines on the screen. I changed the line to L=15488 +64*Y + 15*Z. I also
changed line 200 from FOR Z=0TO 2 to FOR Z=0 TO 3, but this left the
screen too crowded.

[fixed that problem when I noticed that there is no need to display the
file extensions when picking a program to run. /CMD and /BAS merely
tell the computer whether a file is BASIC or machine language. Without
the extensions the maximum length of a file name is eight characters,
and the screen display is neater. Line 350 uses the INSTR function to
find how many characters there are in the file name preceding the slash
(/) used to begin the file extension. It then displays all characters up to the
extension.

180 / THE REST OF 80

The original DIRPICK program could display a maximum of 31 pro-
grams on the screen. This modified version can display and select from a
maximum of 48. If you have more than 48 programs on a disk, this pro-
gram does not work correctly, because NEWDOS/80 Version 2 then dis-
plays the disk directory in pages of up to 48 files each.

If you run a single drive system, you must change line 200 to read 200
CMD"DIR". This reads the directory of the disk on drive 0 rather than
the disk on drive 1.

Program Listing

190 REM *hwddddddikdddss MPUIBY et de e sk e e e ol e o e e e W e e

118 REM ———- DISK MENU PROGRAM —-—--——m
128 REM - ADAPTED FROM 88 MOCROCOMPUTING NOV 80 P226 -
138 REM --- CODED 25 AUG 1981 ——-

140 REM wesw= OODED BY DR. WALTER J. ATKINS

159 Rm ke v e e e o e oo ol o o o o e e e e e e e i e e e v e de e e e

16¢ REM == PROGRAM PURPOSE : TO PROVIDE A SELECTION
MENU THAT ALLOWS ANY PROGRAM TO RE SELECTED BY
NUMBER .

178 REM P LI T2 Tt e et T e e e I IR L AT 2L 212222t g]

180 REM

198 CLEARSOQ

208 CMD'DIR :1"

216 TIT$="AUTOMATIC PROGRAM SELECTION":TLsLEN(TITS)

220 SLe={64-TL)/2:5L=SL~1

230 PRINT®Y, STRINGS{SL, "*" }+" “4TIT$+" "+STRINGS(SL,"*"};

249 REM

250 DIM AS{6@)

26¢ FOR Z=@ TO 3

270 L=15488+64*Y+15%2

280 PupP+l

299 Cug

300 X=PEEK({L+4C):IF X<32 THEN X=X+64

310 AS(P)=AS(P)+CHRS (X)

320 O=C+l

330 IF PEEK(L+4C)<>32 GOTC 320

346 IF AS(P)=" " GOTC 400

35¢F ST=®:SP=):SP=INSTR{*S$ (P),"/"):IF SP>? THEN ST=SP-1 ELSE S§T=L

EN(a$(P))

36¢ IF P<1@ THEN PS=" "+STR$(P) ELSE P$=STRS(P)

37¢ PRINT@(L-15424),CHRS(30); RIGHTS (P$, LEN(PS)-1);". ";LEFTS{AS(

P),SI‘)+" ll‘.

380 NEXT 2

399 Y=Y+1:IF Y>12 THEN 400 ELSE Z=0:G0TO 260

400 PRINTCHRS (31);:PRINT@832," "STRING$(63,"*");

410 PRINT@896, " CHOOSE THE PROGRAM YOU WOULD LIKE BY ITS NUM

BER => ";

420 IF P>19 GOTO46Q

430 XS$=INKEYS:IF X$="" GOTO 430

440 X=VAL(XS$}:IF X<1 OR X>P-1 THEN 400

450 GOTO47¢

460 INPUT X:IF X<1 OR X>P~1 THEN 400

470 IF RIGHTS(AS(X),3)="CMD" THEN CMD AS$(X) ELSE RUN AS(X)

THE RESTOF 80 / 181

27
T RAN S CR l PT System Requirements:

by Brian Cameron 48K RAM

Editorfassembler
Casselte or dish Scripsit
RS8232 Interface

efore I could save enough money to buy a disk drive for my 32K

Model I system, the tape-based version of Scripsit was the most use-
ful program I had. To get the most from my system, I used the tape-based
version of Scripsit as an off-line editor, to edit text and transmit it to the
IBM computer where I work. This way I could create files even when
the IBM was down or the limited phone lines were taken, and transmit
later.

The trick was to modify Scripsit to allow a communications program
to interface with it. With my program, TRANSCRIPT, you can create a
text file, jump into communications mode, sign on to the computer at
work, and transmit the formatted text using the Scripsit P,S (print to seri-
al port) command.

TRANSCRIPT modifies the BREAK S (SAVE) command for tape, and
the BREAK S, T command for disk. I used S, T for the disk version so you
won't be annoyed by a terminal prompt each time you want to save to
disk. Although a save to tape for the disk version of Scripsit is rare, it is
still supported.

Normally the SAVE command saves the data to tape or disk. Now,
when you invoke it, the program asks if you want to save the text via the
terminal mode. Reply N, and a normal save is performed. Reply Y, and
you are put in terminal mode. The terminal program lets you sign on to a
host system and prepare to transmit data. You can send a break signal to
the host computer by pressing BREAK, or the up-arrow key if the
BREAK key is disabled.

182 / THE REST OF 80

Having established a link with the host computer, you enter the 'inp'ut
mode of a system editor, in order to collect and save the data for trans-
misston. Return to TRANSCRIPT by pressing CLEAR. The screen that
was saved away is restored and you can send text to the main computer
by issuing the P,S command. The cursor stops. flashing temporarily
while the data is being transmitted. Type BREAK § again to return to the
communication mode and close the file on the host computer.

TRANSCRIPT contains a reverse bit roufine to convert uppercase
characters to lowercase and vice versa before sending the byie to the se-
rial port. {When you type a lowercase letter on the TRS-80, the computer
sends it uppercase, and when you press the shift key, it sends it lower-
case.} | also modified the Scripsit program to allow a delay after a car-
riage return is sent. Without the delay, a few bytes get lost at the begin-
ning of the next line.

When I purchased my disk drive, I refined TRANSCRIPT so it would
be useful with both disk and tape versions of Scr1p51t To use it, you must
bave 48K of memory in your system.

The program loads at FOOOOH. Enter the assembly source code in-
to EDTASM and generate an object file. Then load Scripsit into
memory without executing it. If you are running a tape version, you
must load a monitor program at the address specified in the TRAN-
SCRIPT patch program. Load and execute the patch program. It
modifies Scripsit and moves the communications package, sitting at
location FOOOOH, up against Scripsit. Save the memory addresses
specified by the program, and you have the modified version of
Scripsit I cali TRANSCRIPT. It is no longer necessary to [oad two
programs.

When you load and execute TRANSCRIPT, it moves the packed code
above FOOOH. It also protects memory and prevents TRANSCRIPT text
from overwriting the communications code. The tape version of Scripsit
sits in memory locations 4300H-69C5H. On an NMI {non-maskable in-
terrupt}), memory locations 433FH-434BH are destroyed. This would
mean that you could execute Scripsit only once without having to reload.
To solve this problem I save the code originally at these addresses and re-
store it at each reset. The packed code is moved back to location FOOOH
only once, and then the LDIR instruction is set to a 00H [NOP) instruc-
tion so it will fall through without moving data.

The modifications for the disk version of Scripsit are minor. I make a
check of common memory locations, and determine which version ts
resident, if any, and apply the appropriate changes.

One change I make to the disk version is to alter the return address.of
the END command. Normally address 6595H contains 0000H which re-
boots the system. I add a jump to the display routine to clear the screen,
and then go to the warm-start address.

"THE REST OF 80 / 183

Modifying Scripsit

*Load EDTASM

*L. D=TRSCRIPT/SRC:1 (The source for the patch is on drive 1 and
called TRSCRIPT}

* A/WE (specify TRSCRIPT/CMD:1 to prompt}

*Reset your system.

*LOAD Scripsit (do not execute).

*TRSCRIPT {will execute the patches)

*Reset your system.

*DUMP TRANS/CMD:1 5200H 8000H 5200H

I use the NEWDOS/80 Version 2 disk operating system, and I can-
not guarantee the results with any other operating system. You
should be able to make any changes necessary for your particular op-
erating system:

In the procedure for the tape version, you must load a monitor pro-
gram that will allow you to save the modified version to tape after the
changes have been made.

*]oad EDTASM

*Load the assembly source code
*Change the monitor jump address
* A/WE (write object to tape)

®Load Scripsit

*Load the object patch program
*Load a monitor

*Run the patch program at FOOOH
*Save the version of TRANSCRIPT

The monitor program [use is CPU80, an extended version of my CP80
monitor program (80 Microcomputing, April 1982), with tape /O rou-
tines. I recommend the MON3 monitor, a relocating monitor you can
move to location AOOOH. You can use MON3 at its normal load address
7000H, but you have to change the source-code listing to reflect the new
jump address. If you are using T-BUG, relocate it to a higher address (80
Microcomputing, January 1980).

Program Listing

Foo0 21280 ORG JFedeH

292B #1309 KEYBRD EQU 2BH

5% #1409 DISP QU 8980H

4P1E 21500 VIDRAM EQU 4@1EH

0960 91640 DELAY EQU 0oeldH

202D 91780 CR EQU €DH

JaFF 21800 TRUE EQU @FFH s LOGICAL TRUE
Jeeg 21900 FALSE EQU 9gH s LOGICAL FALSE
(4], 5] 02000 EM EQU &¢H

184 / THE REST OF 80

F1co
2928
2833
2PES
@RE9
Q@EA

4020

FOO8
FOO3
FOa5
Foa8
FO@A
FO@C
FOOF
F@12
Fo12
Fol4
FO2F
F&30

F@3l
Fa31
Fa33
Fé36
F@39
Fo3C
F@3F
Fi342
Fo45
Fo48
F@4B
FO4E
F@51
F@53
Fi¥56
F&59
Fa5C
FOSF
Fae2
F@65
Fo67
Fo6A
F&6D
FO70
Fo72
F@75
F@78
F&7B
F@7D

Fp83
Fo86

3EC3

32745F
321266
2106F3
221366
214AF3
229565
21DCF1
22F966
212F52
22755F
3E21

326752
21FFEF
226852
@12209
110852
2191F9
EDB&

GlB1o1
110270
21D3F1
EDBJ

211020
112F52
21B3F9
EDB?

211830
21B8F1
11¥757
EDBA

P219% CLEAR
#2298 KBD
B2324 DSP
92408 RESURT
@2540 SWITCH
22608 CTRL
92700 DATA
92800 CURPOS
02909 ;
23050 ;
93103 ;
23200 ;
Q3300
23400
3500
3620
23780
23800
23999
24000
04100
24209
24300
24400
4508 ;
Q4603 ;
04703

QODE

LooP

LOADS

a4802
24902 ;
95008 DMOVE
25100
25200
95400
25500
95608
5601
95611
25700
@571
05900
Q6
06100
06200
26300
26400
26500
26600
26703
26603
26900
o700
a710a
a7200
97302
37400
A7500
g7600
a7700
27800
7900
08000

BQU
B
EQU

BQU
EQU
BQu
BEQU
ER)

SEEFEEREEE

DEFB
DEFB

DISK VERSION

Bu

EEEEEEEEEEEEEEEEEEEEEE5EEE66EEE
) x o

=
o

G1C3H
2BH
33H
PESH
PESH
@EAH
PERH
49284

A, (5202H)
98H
Z.MOVER
43H
Z,DMNE
HL,LOADS
MSGDSP

$

LOOP

; KEYBOARD ROUTINE

7 INSCONTROL BITS ,QUT=RESET
;INSSWITCH , OUT=RAUD RATE

+RS5232 CONTROL
+RS232 DATA

FIND QUT WHICH VERSION OF SCRIPSIT
IS LOADED AND JUMP TO PROPER ZAP

:GRAR A OOMMON ADDRESS
;IS IT TAPE VERSION?
1YES

;IS IT BISK VERSION?

' YES

s TELL USER

7.»s SCRIPSIT NOT LOADED

;BUZZ LOOP

'SCRIPSIT NOT LOADED — RESET'

CR
EOM

THE FOLLOWING CODE WILL ZAP AND MWE THE QOMMUNICATION
PROGRAM INTO PLACE SO IT CAN BE SAVED AWRY ...
TO BE EXECUTED AS ONE MODULE LATER

$
A,BC3H 1 JUMP COMMAND
(5F74H),A tZAP IT
{6612H),A
HL, DART
(6613H),HL
HL,XDOS
(6595H) ,HL
HL, OURS
(66F9H) , HL
HL,522FH ; JUMP ADDRESS
(SF75H) , HL 7 ZAP
A,21H 1 LOAD QOMMAND
(5267H),A 1ZAP ZAP
HL,@EFFFH 1GET ADDRESS
(5268H) , HL ;ZAP ZAP ZAP
BC,DEND-DAME ~ ;GRAB OOUNT
DE, 5200H s DESTINATICN
HL, DAME ; SOURCE
IMWVE IT
BC, STACK-CHECKX ; COUNT
DE, 7D0¢H ; DESTINATION
HL, CHECKX 7 SOURCE
:MNE IT
BC,16 7 COUNT
DE,522rH ; DESTINATION
HL, CRCK2 ; SCURCE
tMNE IT
BC,27
HL, LOGO
PE,57F7TH

Program continued

THE REST OF 80 / 185

Fo88
FJ8B
FO8E

F@91
o9l
F2R4
Fa97
F@on
F@9D
FAAD
FOA3
FOAS
Fen7
FaAR
FOAD
FEBd
FEB3

F@B3
F@B3
FOBS
FOB8
FOB9
F@BC
FOBF
FOCO

Fac3
Foac3
Facs
Focs
FCB
FOCE
FAD1
F&D4
FaD7
FIDA
FODD
FoED
FOE2
FOES
FPES
FIEB
FOEE
F@F1
FEF4
FOF6
FOF9
FAFC
FAOFF
Flol
Flo4
Fl1e7
Flea
F16C
Fl18C
Fl@F
Fl12
F112
F115

21608F]
CD3DF3
C38EF9

21FEEF
22B142
220649
G1BLAL
11D3F1
210870
EDBED

3E02

321252
321352
CD1266
C33F52

FE@D
C2785F
Cc5
Q1FFFF
CD62eD
Ci
C37CSF

3EC3

32294F
32AE56
32EASS
21EEF2
22EB55
21D3F1
220F56
212F43
222M4F
3E21

326443
21FFEF
226543
91200
119043
218BF1
EDB?

@1B1P1
11006a
21D3F1
EDBZ

211820
2188F1
11F448
EDBJ

211RF1
CD3DF3

D288
B7

#8100
pa102
28104
29100 ;
#9200
#9300
89400
29500
39600
29700
@980
39900
10000
10108
10200
18212
10300
16406 DEND
10500 ;
19620 CRCK2
18700
16800
18900
11000
11189
11208
11300
1142@ ; TAPE VERSION
11508 MOVER BQU
11600
11708
11800
11902
12006
12100
12200
12300
12406
12509
12600
12700
12800
12900
13000
13100
13200
13308
13409
13500
13600
13709
13809
13900
14002
14109
14200
14300
1431¢
14326 KWT
14330
14340

93R6EYRE BUEEEEEEEEEEES
2o

EEEcEE5EPEbEEE

=
=}

EEEEEEEEEEE
=

:
gdide

186 / THEREST OF 80

HL, DUND
MSGDSP
BUZZ
$
HL,QEFFEH :PROTECT ..
{48B1H), HL ;TOP OF BASIC
(49D6H) , HL s AND MEMORY SIZE
BC, STACK-CHECKX 1 OCUINT
DE, CHECKX ; DESTINATION
HL, 7DO0H 3 SOURCE
‘ IMNVE IT
A,00H
{5212H},A
(5213H),A
66l2H ;INIT THE UART
_523FH
$
$
@DH ;IS IT A CR
Nz,5F78H ;ND — RETURN
BC 1SAVE
BC, @FFFFH ;AMOUNT OF TIME
DELAY FWAIT
EC 1 RESTORE
SFICH 1 RETURN
$
A,QC3H ; JUMP OOMMAND
{4F29H) , A :ZAP IT
(56AEH), A ;ZAP THE 5 OOMMAND
{55EAH) ,A
HL, TART
(55EBH) , HL
HL, CHECKX,
{56AFH), HL
HL,432FH ;JUMP ADDRESS
{4F2AH) , HL
A,21H ;LD COMMAND
(4364H),A JZAP IT
HL, EFFFH +GET ADDRESS

{4365H) ,HL $ZAP IT
BC,SEND-SAME ;GRAR THE COUNT

DE, 43221 s DESTINATION

HL, SAME 1 SOURCE
sMVE IT

BC, STACK-CHECKX 1 OOUNT'

DE, 6A20H + DESTINATION

HL, CHECKX 1 SOURCE
tMOVE IT

BC,27

HL, LOGO

DE, 48r4H

s

HIL., DUNT

MSGDSP

$

KED

A

Fl16

Fl18
FllB
Fl44
F145
F15E
F15F
Fl60
F189
Fl8a
Fl18B
F18B
F18E
F191
F194
F197
F19a
F19D
F19F

F1a5
F1a8
FLAA
FlAC

F1B2
F1B5
F1B8

FlB8
F1D3
F1D3
F1D5
F1D7
F1D8
F1D9

F1DC
F1DC
F1DD
F1DE
F1DF
F1EQZ
F1E2
F1E6
FlE9
F1EB
F1EB
F1EE
F1Fl
F1Fl
F1F4
F1F5
F1E7
F1Fr9
F1FB
F1FD

Fap1

28FA

C322a0

21FEEF
22Bl149
220640
218101
11D3F1
21296A
EDBA

911F20
112F43
2)1EF3
EDB?

3ED0

321243
321343
CDEASS
C33F43

54

FES3
2805
F5

Fl
C3B256

F5

c5

D5

ES
210004
1100FC
21993C
EDB@

2126F2
Ches6B

CD2B2
B7
28FA
CBAF
FES9
284B
FE4AE
20FA
3EQF

14350
14368
14372
14380
14628
14700

14800 -

14900
15200
15192
15200
15320
15400
15500
15609
15790
15808
15900
16008
16160
16220
16302
led0a
16509
16683
16700
168802
168148
16920
1702
17120
17200
17308
17429
17509
17600
18000
18100
18520
18602
18700
18822
18922
19200
19122
19209
19300
19409
1988
19909
20000
20109
20200
20300
20409
20439
20508
20600
20700
20800
20900

JR

2, KWT'

;REPLACE ADDRESS OF NEXT LINE
:WITH THE ADDRESS OF YOUR MCNITOR

DUNT

o

JP CARPOH :
DEFM 'SAVE MEMORY 4300 TO 608@ FOR TAPE VERSION'
DEFB CR - o .
DEFM 'PRESS ANY KEY TO CONTINUE'

DEFE 9DH :

DEFB @@H :

DEFM 'RESET SYSTEM AND DUMP MEMORY 5200 TO 800"
DEFB CR

DEFB @@H

U §

LD HL,@EFFEH ; PROTECT ...

ID {4@B1H) ,HL 1TOP OF BASIC

D {4@D6H) , HL :AND MEMORY S1ZE

LD BC, STACK~-CHECKX yCOURT

1D DE, CHECKX s DESTINATION

LD HL, 6880H ; SOURCE

LDIR

LD BC,CURE-CURCK :LENGTH

LD DE,432FH : DESTINATION

LD HL, OURCK * 1 SOURCE

LDIR

LD A,00H sNOP QUT .ww

LD {4312H),Aa :THE LDIR

LD (4313H) A 3 INSTRUCTION
CALL 55EAH '

JP 433FH

BV §

DEFM 'TRANSCRIPT BY BRIAN CAMERON'

U § :

P 's' :I8 IT SAVE TAPE? -
JR Z,0URS {YES - OUR SAVE FIRST
PUSH AF

POP AF : RESTORE REG

JP 56R2H 1 RETURN TC SCRIPSIT
BEX $

PUSH AF

PUSH BC

PUSH DE

PUSH HL

LD BC, 400H ;GET THE QOUNT

LD DE, OFCOBH : POINT TO DEST

1D HL, 3C00H ; POINT TQ SCURCE
LDIR

B S

ID HL,TERMM ;GET MESSAGE
CALL 6BCSH :DISPLAY AT BOTTOM

BU §

CALL KEBD ;GET ANSWER

OR A ; ANYTHING?
JR Z,MLP1 ;NO RETRY '

RES S,A ; INSURE UPPER CASE

P ' ;IS IT YES?
JR %, PRETOP :

cP ‘N ;IS IT NO? :
JR NZ,MDSP ; INVALID ~ TRY AGAIN
1D A0 ; TURN CURSOR ...

Program continued

THE REST OF 80 / 187

F203 (D3390 21800 CALL. DSP 1OFF
F206 0190904 21100 LD BC,488H : LENGTH
F209 11993C 21200 LD DE, 302¢H ; DESTINATION
F20C 2130FC 21320 j#s) HL, @FCOSH + SOURCE
F28F EDBO 214006 LDIR
F211 3AC556 21580 LD A, {56C5H) ;GET QOMMON BYTE
F214 FECD 21600 CP ecrH ;1S IT TAPE?
F216 2807 21700 JR Z,DISKE
F218 E1 21800 POP HL
F219 D1 21900 POP IE
F2lA C1 22000 POP BC
F21B F1 22108 POP AF
F21C C34F63 22200 JP 634FH

22300 ;
F21F 2242¢@ DISKE BU §
F21F El 22500 POP HL
F220 D1 22600 POP DB
F221 C1 22700 POP BC
F222 F1 22600 FOP AF
F223 C3C256 22990 JP 56C2H

23000 ;
F226 23100 TERMM U S
F226 20 23112 DEFM ' *
F227 54 23200 DEFM ‘'TERM MODE?*
F231 29 23400 DEFM ' (Y/N}'
F237 20 23419 DEFM ' '
F247 o8 23600 CEFB BOM

23790 ;
F248 23712 PRETOP EQU $
F248 CDC9ZL 23728 CALL 1C9H ;CLEAR AND HOME
F24B 3ECE 23721 LD A,@EH ;TURN CURSOR ON
F24D CD330¢ 23731 CALL DsP
F250 23800 TOP BEX 0§
F25¢ CD2B2@ 23909 CALL KBD 7 SCAN KEYROARD
F253 B7 24000 OR A s ANYTHING?
F254 2838 24100 JR Z,CKIN ;MO - CHECK INPUT
F256 FEZA 24200 cp 2AH s DOWN ARROW?
F258 2834 24300 JR Z,CKIN ;YES IGNORE FOR NOW
F25a 214038 24400 LD HL, 3848H 1GET ROW
F25D CB66 24500 BIT 4,(HL) 7TEST OONTROL KEY
F25F 2804 24600 JR Z,NOTCTL tNOT DOWN
F261 CBB? 24706 RES 6,A ;MBKE CONTROL
F263 1824 24800 JR NBRK ; SHOW AND TELL
F265 24909 NOTCTL. BX §
F265 CDAAF2 25809 CALL REVBIT tREVERSE BITS
F268 FEIF 25100 cPp 1FH ;IS IT A CLEAR?
F26A CACOF2 25200 JP Z,EXIT ;JUMP TO CMD HANDLER
F26D FEO1 25210 cP @lH ;IS IT BREAK
F26F 2804 25220 JR 2,.BREAK :YES
F271 FESB 25300 cp 5BH
F273 20614 25400 JR NZ,NBRK :NO — TRANS CHAR
F275 25508 BREAK BU §
F275 3A50F3 25600 LD A, (CTRLS) ;GET READY TO BREAK
F278 CB97 25709 RES 2,A ;TURN ON BREAK
F27A D3EA 25800 QUT (CTRL).A ;SEND BREAK
F27C @14A35 25900 LD BC,354AH ;SET WAIT TIME
F27F CD6O20 26000 CALL DELAY ;GO WAIT
F282 3AS50F3 26190 LD A, (CTRLS) ;TURN OFF BREAK
F285 D3EA 26200 oUr (CTRL),A ;SEND RESET
F287 1805 26300 JR CKIN ;CHECK FOR INPUT
F289 26400 NBRK BU §

188 / THE REST OF 80

F28%
F28C
F28C

F28E
F28E
F290
F292
F295
F297
F299
F29B
F29D
F29F

F2A3
F2A5
F2A5
F2a8

F2hA
F2BA
F2AC
F2AF
F2Bl
F2B4
F2B6
F2B8
F28B8
F2BD
F2BD
F2BF
F2C1
F2C4
F2C4
F206
Facs
F2c8
P2C9
F2c9

F2CE
F2D1

F2D7
F2D9
F2DC
F2DE

F2El
F2E2
F2E3
F2E4
F2E7
F2E7
F2E8

D3390

D3EB

DBEA
CB7F
CAS@F2

FEQA
28F3
FE7F
28EF
FEZB
2092
3E18

CD3300
18E4

26500
26600
26700
26800
26900
27000
27108
27200
27300
27490
27508
27600
27799
27800
27900
28000
28100
28200
28300
28420
28500
28600
28700
28800
28900
29008
291908
29200
29380
29400
29560
29606
29700
29809
29992
30000
39108
30208
30300
39400
30500
o T
32700
32800
30920
3lead
31108
31200
31300
31400
31502
31608
31708
31800
31990
32000
32108
32209
32380
32400
32500

CALL DSP +ECHD
DSPIT BEU 3
OUT {(DATA).A
CKIN B 0§
N A, (CTRL) ;GET STATUS
BIT 7.A ;ANYTHING WAITING?
JP Z, TOP ;NO - RETURN
IN A, (DATA)} ;GET BYTE FROM LINE
cp @aH ;15 IT A LF?
JR Z,CKIN }YES - IGORE
P TFH ;18 IT A DEL
JR Z,CKIN {YES - IGNORE
cp @81 :IS IT BKSP?
JR NZ, TBELL :NO - CONTINUE
LD A,18H s CHANGE TO OUR BKSP
TBELL mU §
CALL DsP ;ECHO
JR CKIN 1 TRY AGAIN
; REVBIT - ROUTINE TO OONVERT
H UPPER CASE TO LOWER
; AND LOWER TO UPPER
REVBIT B §
cP 41H ;CAPS A?
Je M, NOREV
cP 7BH ;LOW CASE 27
JP P,NOREV
P 5BH } SQUARE BRACKET?
JR Z,NOREV
JP P, TESTUL
JR REV : REVERSE CODE
TESTUL BW §
cP 60H s AOCENT GRAVE
JR Z, NOREV
JP M, NOREV
REV BEU $
XOR 20H ;REVERSE CASE
RES §,A ;CHANGE TG UPPER CASE
NOREV BU §
RET
BT BU §
i) A, BFH : TURN CURSOR OFF
CALL DSP
LD BC,400H ;SET COUNT
LD DE, 3CO0H $ POINT TO DESTIMATION
D HL, 0FCO0H
LDIR
> A, (56C5H)} ;FIND OUT IF TAPE OR DISK
loisd BChH ;IS IT TAPE?
JR Z,TAPEFE, ;NO
POP HL
POP B
PP EC
POP AF
Jp 6F8BH
TAPEE BU §
POP HL
FOP DE Program continued

THE REST OF 80 / 189

F2E9
F2EA
F2EB

Cl
Fl
C3FASE

D3E8
DBES
3251F3
E6F8
Fedh
325@F3
D3EA
3A51F3
E6@7
C3FES5

D3E8
DBE9
3251F3
EGF8
Feas
325013
D3EA
3R51F3
£6a7
C32666

FEID
C22D4F
cs
ALFFFF
CDeg0o
Cl
C3314F
31FC41
3EQA
32E837
AF
32A36B
32a16B

0
B7
23
CA49F3
CD3308
C33DF3

9

CDCo91
C32D40

32008 POP BC
32700 POF AF
32800 JP SEFAH
32900 ;

33090 TART BU $

33109 oo (RESURT},A

33110 IN A, (SWITCH)

33120 9] (SWTCHS) A

33130 AND @FEeH

331490 OR @5H

33158 LD (CTRLS),A

33160 ouT {CTRL),A

33179 LD A, {SWICHS)

33189 BND 274

33194 Jp 55FEH

33528 ;

33680 DART B

33618 ouT (RESURT) , A

33620 IN A, (SWITCH)

33639 LD {SWTCHS),A

33640 AND PFBH

33650 OR @5H

33660 1D {CTRLS) ,A

33670 ooT (CTRL),A

33680 1D A, { SWICHS)

33692 AND P7H

33702 JP 6626H

34109

342080 OURCK B §

34309 CP ZDH ;15 IT CR?
34400 JP Nz, 4F2DH 1NO = RETURN
34500 PJSH BC :SAVE REG
34600 LD BC,@FFFFH : AMOUNT OF TIME
34700 CALI, DELAY JWAIT
34800 POP BC ; RESTORE
34900 JP 4F31H 1 RETURN
35000 D SP,41FCH

35109 LD A,@8H

35200 D {37E8H).A

35300 XOR A

35400 LD (6BA3H), A

35500 D (6BAIH) A

35600 OURE B 3

35708 MSGDSP BW §

35800 LD A, (HL)

35900 OR A

36000 INC HL

36100 Jp Z,LP1

36200 CALI, DSP

36300 Jr MSGDSPE

36400 LP1 jae ¥ §

36500 RET

36600 ;

36601 XDOS EQU 3

36682 CALL, 1C9H ;CLEAR AND HWME
36603 Jp 4P2DH ;WARM START DOS
36700 ; .

36800 CTRLS DEFB @2H
36818 SWICHS DEFB 28

36902 DEFS 50
37908 STAK B §
37160 ED BFO00H

/ THE REST OF 80

28

Tiny Pascal for Disk

by David R. Goben

System Requirements:
Model I

32K RAM

Disk BASIC
NEWDOS/80

One disk drive

Tiny Pascal gives you much of the power of Pascal, at low cost. Radio
Shack sells Tiny Pascal for the 16K and 32K Model I. Unfortunately,
it's a tape-based version that cannot perform as is from disk. John B. Har-
reil came to the rescue with alterations so Tiny Pascal can operate on a
32K disk system (80 Microcomputing, July 1981). I have modified and ex-
panded Harrell's program to run faster on my 48K Model I, and operate
all functions without complicated commands. I have also added printer
capability and an option to convert tab characters created in the Pascal
editor to three spaces, for easier reading on a program such as Scripsit.

The three BASIC programs in this chapter run unchanged on a NEW-
DOS/80 system, Versions 1 and 2, for the Model 1. If you have another
operating system, you must modify the BASIC code. Program Listing 1 is
the introductory page; save it under the name INTRO. It runs on DOS
boot. Program Listing 2 loads a program to memory, and to a printer if
desired, from disk, then runs the Tiny Pascal program. Save it under the
name LOAD. Program Listing 3 saves a Pascal program from memory to
disk; save it under SAVE. _

A user's manual explaining functions and options for the entire pack-
age is at the end of this chapter. It includes instructions for developing or
editing Pascal programs with Scripsit. The LOAD program accepts Scrip-
sit-created files. The Scripsit program is optional, since Tiny Pascal con-
tains its own text editor. However, Tiny Pascal's editor is line-oriented,
simple, and limited. You can use any other word processing program,
such as Electric Pencil, or a BASIC program, in place of Scripsit, as long

THERESTOF 80 / 191

as it saves the entire text file to disk in ASCII format and concludes with
a unique character recognized by LOAD.

LOAD recognizes OFFH {255), the Tiny Pascal end-of-file marker, and
Scripsit’s block-end character, 1BH (27). Refer to line 9 of the LOAD list-
ing for the recognition coding. You can use any unique ASCII character,
other than 1BH, produced by the word processing program. A 35-track
disk easily holds NEWDOS/80, the Tiny Pascal program, three utility
programs, and a word processor, such as Scripsit.

The user's manual assumes you have a disk with the following pro-
grams loaded on it: NEWDOS/80, PASCAL/CMD {Modified PAS32K),
SCRIPSIT/CMD (with patches for NEWDOS/80), and the three BASIC
programs, INTRO, LOAD, and SAVE.

Patching PAS32K for PASCAL/CMD

Here's how to modify the tape-based PAS32K program to disk. Nov-
ices at NEWDOS$/80's LMOFFSET and SUPERZAP programs should be
able to use them without any experience. This should be a one-time op-
eration. Have ready a NEWDOQS/80 system disk with all visible files ex-
cept Scripsit and the three BASIC programs removed. These patches use
Harrell's Z80 assembly source.

Boot NEWDOS/80 and load LMOFFSET. Load the PAS32K tape to the
recorder, set the volume, press PLAY, and type T and press ENTER.
When the PAS32K program is loaded, the display shows that the pro-
gram loads from 4D90-73C6. Type 7000, the new module load address,
and press ENTER. Reply Y to the SUPPRESS APPENDAGE? question.
You are now told that the module loads from 7000-9636. Answer by
pressing ENTER. ‘

If you have Version 2 of NEWDOS/80, you are asked if the destination
is disk or tape. Make sure that you have the appropriate disk ready to ac-
cept the file, then type D and press ENTER. After the prompt, type PAS-
CAL/CMD:d and press ENTER, where :d is the drive number. If you
have Version 1, reboot DOS. If you have Version 2, type N and press
ENTER after the next two prompts.

When the next READY prompt appears, type LOAD PASCAL/CMD
and press ENTER. Then type DUMP PASCAL/CMD 7000H 969CH
9637H and press ENTER. After the READY prompt, type SUPERZAP
and press ENTER. Type DFS and press ENTER. Type PASCAL/CMD
and press ENTER. Type 38 and press ENTER, for the relative sector.
When the sector is displayed, type MODD3. When you see the blink-
ing block cursor over location D3, type the following lines:

F3 AF 21 D2 06 11 ©0 40 01 36 00 ED BO
3D 3D 20 F1 06 27 12 13 10 FC 11 80 40 21 F7 18
0l 27 00 ED BO 21 00 70 11 90 4D 01 37 26 ED BO

The last two-hex-number entry should force the cursor to location
00. If not, recheck your entries.

192 / THE REST OF 80

When the cursor blinks over location 00, press ENTER and reply Y to
the prompt. Press ENTER again, and the modified page is displayed.
Press the plus sign (+), and page 39 is displayed. Type MODOO and
press ENTER, and the block cursor appears over location 00.

Type the following patch. When done, the next four hex digits should
be 02 02. If not, check your work. Do not type the asterisks (*) sur-
rounding three of the listed entries. If you have a 48K system, change
BF to FF, and the two 28s to 68.

21 72 96 11 D5 *BF* 01 2B 00 ED BO C3 90 4D 21 00
98 11 PO 73 Ol 00 *28* ED Bo 3E FF 21 FO 73 01 00
28 22 80 41 22 8C 41 ED Bl 22 84 41 22 86 41 22
96 41 2B 22 82 41 C3 3A 47

When the cursor blinks over the zero in the first 02, press ENTER,
answer Y, and press ENTER again when prompted. When page 39 is
displayed again, press K. Answer the prompt with 0 and press ENTER.
When page 0 is displayed, type MOD10. When the cursor appears, for
32K machines type D5BF and press ENTER, and for 48K machines
type D5FF and press ENTER. Answer Y and press ENTER when
prompted. When the modified page 0 is displayed, press X to exit the
mode, then type EXIT and press ENTER to leave SUPERZAP. To test
your work, after the DOS READY prompt, type PASCAL and press
ENTER, and Tiny Pascal should be up and running.

Tiny Pascal User's Manual

Here is a detailed list of operating instructions for the disk options of
Radio Shack's Tiny Pascal package. Refer to all data related to the Pas-
cal program itself in the Tiny Pascal User’s Manual.

Running INTRO

When the Pascal disk is booted, an AUTO file, BASIC RUN
"INTRO", initializes the system. A menu of seven choices is displayed
{see Figure 1).

Option 1 loads the Tiny Pascal program with an empty buffer.

Option 2 loads a Pascal program from disk and runs Pascal.

Option 3 saves a program to disk and reruns INTRO.

Option 4 loads and runs Scripsit.

Option 5 asks which disk directory to read, reads it, and asks you to
press ENTER to redisplay the menu.

Option 6 allows you to run DOS command strings from INTRO.

Option 7 leaves INTRO and returns to the DOS command mode.

Running LOAD

To answer yesin LOAD and SAVE, type Y or Yes. Toanswer no, type
N or No or press ENTER.

When you run LOAD, you are asked for the source file's filespec,

THE REST OF 80 / 193

then whether the file is resident on a currently mounted disk. If you an-
swer no, you are prompted to mount it. If you have a one disk system,
the source program must be on a disk with the same operating system
as the Pascal package. If you answer X, the filespec request repeats,
which is useful when you enter an erroneous fllename You are next
asked if you want to print the file. :

If you answer Y when the printer is not ready, you are prompted, and
the question is repeated. When the printer is ready, you are asked how
many lines long each page is. If your pages hold a maximum of 66 lines,
you would type 66 and press ENTER. You are next asked if you want
pauses between pages. Last, you are asked if you want data sent to the
line printer only. If so, after printing, INTRO runs rather than
PASCAL/CMD.

The appropriate PASCAL program is loaded to RAM, and listed one
line at a time to the screen (and printer, if specified). After the program is
loaded, the Pascal file is run unless you need to mount another disk to
load the file. In that case you are prompted to reload the Pascal disk to
drive 0. Once you do this and press ENTER, Tiny Pascal loads and runs.

** TINY * PASCAL ** Disk Version
Pascal Menu

<1> PASCAL program without data

<2> *LOAD a PASCAL source program & run PASCAL
<3> *SAVE a PASCAL program to disk

<4> Load SCRIPSIT to edit or create files

<5> Do a DIRECTORY read with 'A’ option

<6> Do a DOS command

<7> Exit BASIC to DOS command mode

*Note that you must RE-BOOT DOS [whlch returns to this program]} from PASCAL to
SAVE [or LOAD) a file via disks.

Key in your choice <1-7>7

Figure 1. Screen display of Pascal menu

Running SAVE

To run SAVE while in Tiny Pascal, reboot DOS, and INTRO reruns.
Answer the prompt with option 3. When SAVE is run, you are asked if
you want the file printed. If you answer yes, you are asked (as in LOAD)
for the page length and whether you want pauses between pages. Next,
you are asked if you want the file sent to the line printer only. If you an-
swer yes, skip the next paragraph. A no answer sends the file to the
printer, disk, and screen.

194 / THE REST OF 80

If you answered no to the print question, you are asked for the
name of the program, then whether the destination disk is currently
mounted. If you answer X, the filespec request repeats. If you answer
no, you are prompted to load the destination disk. The drive 0 disk must
contain the same operating system as the Pascal disk.

You are asked if you want the TAB characters (09H), used in Tiny Pas-
cal's editor, converted to three spaces by the editor’s display driver. This
option is handy if you want to use Scripsit to edit a program created or
edited by Pascal's editor. Otherwise, Scripsit prints each TAB character
as a single left arrow. The program is displayed on the screen one line at
a time, to show that it is being loaded to disk properly. Once the program
is loaded, INTRO reruns.

Line-Print from Tiny Pascal

If you want data that is normally sent to the monitor printed instead,
include the two procedures in Figure 2 in your Pascal program. The first
diverts video output to the printer driver, and the second resets the
video driver to normal.

PROC LPRINT; (* DIVERT VIDEO TO PRINTER *|
BEGIN
MEMW (%401E): = %058D;
END;

PROC VIDEQ; (* RESET VIDEO QUTPUT TO VIDEQ *)
BEGIN
MEMW/(%A401E]: = %0458,
END,

Figure 2

Handling Pascal Files with Scripsit

Use uppercase (SHIFT@ command) to type programs if you have the
lowercase modification. If you want a blank line separating program
blocks, insert a space before pressing ENTER. Tiny Pascal must have
data on a line, even if it is only a blank space. Do not include any special
Scripsit printer options in the file. Tiny Pascal sees them as illegal entries.

LOAD recognizes Tiny Pascal files, and Scripsit files that meet specifi-
cations. Two other points are important. First, the Pascal program ends
with an end-block character, followed by a carriage return. When the
last line has been typed and entered, press control-block, control-end,
ENTER, CLEAR. Second, the file must be saved in ASCII format. If you
want to load it to a file that Scripsit has called from disk, press BREAK,
type S,A and press ENTER. If it is a new file, or you want to change
the file name, enter the command mode via BREAK. Then type S A

THERESTOF 80 / 195

and press space and type the filename you want for the Pascal
program.

Special Notes

It is a good idea to put a /PAS extension on Pascal filenames, for easy
recognition. If you are editing in Scripsit an existing Pascal program
which was loaded to disk in the SAVE program, you will note two graph-
ics blocks at the end of the program listing, followed by a Scripsit car-
riage return character. If you modified the program listing and want to
save the newer version to disk, you must delete the three graphics char-
acters and add the end-block and carriage return characters as described
earlier.

As an aid in writing the source programs, before keying in data, press
BREAK and type T=3,6,9,12,15,18,21, then press ENTER. This allows
you to use control-right arrow to tab three spaces at a time.

Program Listing 1. INTRO

1 * INTRDO
2 L]
3 POKE &H4PB1, &HFF:
POKE &H4@BZ, &H97:
ON ERROR GQTO 27:
CLS
PRINT "#** TINY * PASCAL ** Disk version":
PRINT
4 PRINT TAB{ 8);"Pascal Menu
% PRINT “<1> PASCAL program without data
6 PRINT *“<2> *1LOAD a PASCAL source program & run PA
SCAL
7 PRINT "<3> *SAVE a PASCAL program to disk
8 PRINT "<4> Load SCRIPSIT to edit or create files
9 PRINT "<5> Do a DIRECTORY read with 'A' option
18 PRINT "<6> Do a DOS Command
11 PRINT “<7> Exit BASIC to DOS Command mode":
PRINT

12 PRINT "*Note that you must RE~BOQT DOS (which returns t
o this program!}

13 PRINT " from PASCAL to SAVE (or LOAD) a file via disks,
PRINT

14 INPUT "Key in your choice <1-7>";CHS$

15 IF WAL (CH$) < 1 OR VAL (CHS$) > 7

THEN
PRINT "Wrong choice. Please try again":
FOR
X =1 TO 754:
NEXT :
GOTO 3

16 ON VAL {(CH$) GOTO 17,18,19,26,28,28,25
17 CMD “S=PASCAL"
18 RUN "LOAD"

196 / THEREST QF 80

19

RUN "SAVE”

28 INPUT "which Drive <f§-3>":D$
21 IF VAL (D$) < @ OR VAL (D$) > 3
THEN
28
22 D$ = "DIR " + D§ + " a":
CMD "D§"
Z3 PRINT :
INPUT "Press ENTER to redisplay Menu";CHS
24 GOTOC 3
25 CLS :
CMD "g"
26 CMD "S=SCRIPSIT”
27 CMD "B":
FOR
Vv =1T7T0 7508:
NEXT :
RESUME 3
28 CLS :
LINE INPUT “Key In Command string: ";STS:
IF STS = "o
THEN
3
ELSE
CMD “5TS5":
GOTOD 23
Program Listing 2. LOAD
1 ' LOAD
2 1
3 POKE gH4@BLl, &HFF:

POKE sH4BRB2,&H97:
CLS :
CLEAR 388:
DEFINT A ~ Z:
AD = EH98HG:
PRINT TAB(14)"%* TINY * PASCAL ** File Loader™:
PRINT
LINE INPUT "Enter Filespec for Source File: ":;F8$:
IF FS$ = "
THEN
RUN "INTRO“
ELSE
a5 = "
PRINT "Is Source on a mounted disk {if not, then it mus
t be on a":
INPUT "System Disgk)";A$:
IF A$ = l!xll
THEN
4
ELSE
IF LEFTS (R$,1} = "N
THEN
INPUT “"Mount Source Disk and press ENTER";
T$ - n IP:
INPUT "Qutput data to Line Printer™;T$:
IF LEFT$ (T§,1) = "yv
Program continued

THERESTOF 80 / 197

THEN
IF PEEK (14312) < > 63
THEN
PRINT "Line Printer NOT ready!":
PRINT :
GOTG 5
ELSE
INPUT "What is your page leanth";LL:
IF LL < 7
THEN
17
ELSE
LL = 1L - 6:
L = LL:
INPUT "Pause between pages";G$
6 Us = !I!l:
IF LEFT$ (T$,1) = "Y"
THEN
PRINT :
PRINT “"Loading *** “PS$" #*x* from disk":
IF LEFTS$ (U$,1) = "¥"
THEN
PRINT "* Data to Printer ONLY *":
PRINT
ELSE
PRINT
8 L$ ="":
LINE INPUT #1,LS:
IF LEFTS$ (T§,1) = "Y"
THEN
LPRINT TAB(6);L$:
L=1L - 1:
IFL=§f
THEN
GOSUB 16:
GOSUB 15
9 PRINT L$:
G = ASC { LEFT$ (L§,1)):
IF G = 255 OR G = 27
THEN
11
ELSE
IF LEFTS$ (U$,1) = "y*
THEN
18
ELSE
FOR
J=1T0O LEN (L$):
POKE AD, ASC (MID$ (L$,7,1)):
AD = AD + 1:
NEXT :
POKE AD,13:
AD = AD + 1
1 POKE 14384, PEEK (17161):
GOTO B
11 CLOSE :
POKE AD,255:
POKE AD + 1,255:
IF As = “N"
THEN :
INPUT “"Mount PACAL Disk and press ENTER";

198 / THE REST OF 80

12

13
14

15
16

17

IF LEFT$ (T$,1) = "¥"

IF LEFT§ (U§,1) = "¥"

RUN "INTRO"

CMD “"S=PASCAL"
CLS
CMD “E":
FOR

v =1 TO 75f@:
NEXT :
RESUME 3
LERINT " "; CHRS (13);" "; CHR$ (13);™ "; CHR$ (13):
RETURN
GOSUB 15:
CLS :
IF LEFTS (GS$,1) < > "Y"

ELSE
INPUT “Press ENTER to continue”;:
L = LL:
RETURN
PRINT "Illegal entry., Try this part again.":
FOR
X
NEXT
GOTO

1 TO 754:

e Q|

(¥l Sy

Program Listing 3. SAVE
' 8SAVE

1
POKE &H4@Bl, §HEF:
POKE &H48B2,5H73:
CLEAR 38f:
CLS :
DEFINT B - Z:
PRINT TAB(16)"#** TINY * PASCRL ** File Saver":
PRINT
INPUT "Output data to Line Printer";T$:
IF LEFTS$ (T$,1) = "¥Y"
THEN
IF PEEK (14312) < > 63
THEN
PRINT "Line Printer NOT ready!":
PRINT :
GOTO 3
ELSE
INPUT "What is your page leanth¥;LL:
IF LL < 7
THEN
4
ELSE
LL = LL ~ 6:
L = LL:
INPUT "Pause between Pages”:G§ Program contired

THE RESTOF 80 / 199

14
11

12

13

14

IF LEFTS (T$,1) = "Y*
THEN
INPUT "Data te Line Printer only™;U$:
U$ = LEFTS (US$,1)
INPUT "Should TABs be converted to 3 SPACES";J$:
IF LEFTS (T$,1) = "Y*"
THEN
GOSUB 22:
IF Us = IIY'I
THEN
9
LINE INPUT "Enter Filespec for PASCAL File: “;FS§:
IF Fss = tu
THEN
RUN "INTRO"
ELSE
ON ERROR GOTO 19:
R$ = lull:
INPUT "Is Destination Disk mounted on Drive";RS$:
IF LEFT$ (R$,1) = "N"
THEN
GOSUB 24
ELSE
IF RS = "X"
THEN
7

OPEN "O",1,FSS$§
AD = &H73Ff:
PRINT :
IF Us = IIYII
THER
PRINT "Putting *%* "FS§" #*** o Printer":
PRINT
ELSE
PRINT "Saving *** "FS8§" #*** o disk":
PRINT
AS = tw
J = PEEK (AD):
IF J = 255
THEN
16
ELSE
AD = AD + 1:
IF AD > 32767

THEN
AD = AD - 65536
IF J =9
THEN
IF LEFTS (JS,1) = "Y"
THEN
A$ = AS + STRINGS (3,32):
GOTO 11
IF J = 13
THEN
14
ELSE
A$ = AS + CHR$ (J):
GOTO 11
IF U$ < > "y"
THEN

POKE 143¢4, PEEK (17161):

200 / THE REST OF 80

15

16

17

18
19
28
2l
22
23

PRINT #1,A$
PRINT AS$:
IF LEFTS (T$,1) = "¥"
THEN
LPRINT A$:
L =L - 1:
IF L =g
THEN
GOSUB 23:
GOSUB 22:
GOTO 14
ELSE
19
ELSE
18
IF U$ < > "y»
THEN
PRINT #1, CHR$ (2551}:; - CHR$ (255):
CLOSE
POKE &H4@Bl, &HFF:
POKE &H4fB2,&HBF:
IF LEFTS (R$,1) = "N"
THEN
GOSUB 21
RUN "INTRO"
CMD "E":
CLOSE :
RESUME 7
INPUT "Load Destination System Disk and press ENTER";:
RETURNR
INPUT "Load PASCAL Disk and press ENTER";:
RETURN
LPRINT " "; CHR$ (13);" "; CHR$ (13);" "; CHRS (13):
RETURN
GOSUB 22:
CLS :
IF LEFTS$ (G$,1) < > "y*

ELSE
INPUT "Press ENTER to continue";:
L = LL:
RETURN

THE REST OF 80 / 201

29

Faster Loading
For the Model |

by Mark E. Tyler
System Requirements:
Model T
16K RAM
Editoriassembler

Get tired of waiting for your Model I to load cassette programs? It's
possible to exceed the Model I's 500-baud rate. The programs in
this chapter show you how. _

The TRS-80 uses the double frequency encoding system for data stor-
age. The timing in this system uses a synchronizing pulse at the start of
each bit. The synchronizing pulse is followed by a data pulse if the bit to
bereadisa 1, or nopulse if the bit to be read isa 0. Figure 1 shows the dif-
ferent ways a 1 and a 0 bit are stored on tape.

The timing is important. The software controlling the reading looks for
the synchronizing pulse. Once it's found, the software delays a predeter-
mined amount of time, then looks for the data pulse. If it is there, the bit
is considered a 1. if not, a 0. If noise on the tape causes the TRS-80 hard-
ware to think there is a pulse where there is not, an error occurs. By con-
trolling the delay times and the reading times, you can speed up the read-
ing and writing of the tape and improve the reliability of data transfer.

The address of the software for reading a byte of data from the tape is
0235H in the Level I ROM. See Figure 2 for a flow diagram. The code at
this location saves the BC and HL registers on the stack and sets up a
loop to repeat eight times. The loop repeats eight times because data is
read serially—one bit at a time—from the tape. The loop calls the code at
0241H where the actual reading takes place. Once the synchronizing
pulse is detected, the data pulse will arrive exactly one millisecond later
(assuming a 500-bit baud rate): The timing is accomplished automatical-
ly, because the software is written so that the time it takes to execute all
the read instructions is one millisecond.

202 / THE REST OF 80

I BIT

/- SYNCH PULSE / DATA PULSE

e— | MILLISECOND ———»

Y

|
|
I
b 2 MILLISECONDS —

0 BIT

/- SYNCH PULSE

[R
Y

2 MILLISECONDS

Figure 1. No data pulse is present if bit is a 0. Timing is for 500 bits/second .

The Z80 microprocessor used by the TRS-80 requires a definite num-
ber of T-states to execute each instruction. A T-state is one clock cycle. In
an unmodified TRS-80, a clock cycle is 563 nanoseconds (5.63 x 10E-7
seconds). The instruction PUSH HL, which requires 11 T-states, would
take 11x563, or 6,193, nanoseconds to execute. The complicated in-
structions are the conditional branches, which require a different
number of T-states depending on whether the condition is true or false.
For example, the DJNZ instruction requires 13 T-states if B does not
equal zero, but only eight if B does equal zero.

Tape reading timing is automatic because the number of T-states has
been accounted for by careful selection of the instructions and delay
loops in the software. Take the code at 0241H in the ROM. Here the BC
and AF registers are saved on the stack, and port OFFH, the TRS-80's
tape port, is checked for synchronizing pulse. Once the pulse is found,

THE RESTOF 80 / 203

critical timing starts, with a delay loop to use up some T-states. In the
later versions of ROM, this loop takes up 1250 T-states. This important
loop, DJNZ1, is changed when the tape speed is increased.

Next, the code at 021EH is called. It resets the flip/flop in the TRS-80
tape reading circuit to prepare for the possible 1 pulse from the tape.
This code requires 82 T-states. Another delay loop, DJNZ2, is started. It
is 1731 T-states long. After this loop, the flip/flop is checked for the pres-
ence of a 1-bit pulse. The data, whetheritisa 1 or a0, is stored, and the
flip/flop is reset. The program then returns to the code at 0235H. Here
the B register is decremented and the whole process repeats until the full
eight bits are read.

Remember that DJNZ1 is used to control the length of time between
detection of the synchronizing pulse and the resetting of the flip/flop in
preparation for the possible data pulse. The flip/flop shouldn't be reset
too soon. That causes a long time between resetting and data pulse arri-
val, and any noise in the interval can set the flip/flop and cause a reading
error. DJNZ2’s length controls the time between resetting the flip/flop
and checking it. Some time must be allowed for the electronics to stabi-
lize, but too much time can cause an error. The two delay loops together

|
CHECK FLIP/FLOP
1

SAVE REGISTERS |
22
T SAVE BIT IN 4
REGISTER
SET UP EIGHT 4|
REPEATS FOR LOO;4 I

RESET FLIP/FLOF
ez

FIND SYNCH PULSE
44

l

DELAY DuNZ/
1250

RESET FLIP/FLOP

»

DELAY DJNZZ2
73

I

Figure 2. Tape read subroutine flow chart. Number in bottom right hand corner is number of
T-states required to execute the indicated section.

RESTORE REGISTER%S

204 / THE REST OF 80

control how long the software waits after the synchronizing pulse before
it looks for a data pulse. Changing these two delay loops is the key to in-
creasing the tape reading speed of the TRS-80.

In order to read a tape faster, it must be written faster. The code for
writing a byte to tape is at memory address 0264H. The byte to be writ-
ten should be in the A register. T-states are important in this code be-
cause timing is critical. See Figures 3A and 3B for a flow diagram of the
software. First, the registers used by the code are saved. This includes
the HL, BC, DE and AF registers. Next, a loop is set up to be executed
eight times, and the byte to be written is transferred to the D register.

START

SET UP LOOP
AND S4vE BYTC
N2 RENETER

i

CALL PULSE ROUTINE CALL FULIE SUBRCUTINE
1781 178

PUT BT TO BE
WRITTEN INTO

CARRY FLAG
12

AESTORE REGISTERS
50
RETURN

LOAD POIITIVE

YES
DELAY OuwZ4
1785
PULEE CONTADL WORD

Figure 3A, Tape write subroutine flow chart. Numbers L

indicate number of T-states required to execute the e soree
indicated section. 2

LOAD NEGATIVE
PULSE CONTROL WORD

1]

wRITE PULSE
27
o

LOAD TERMINATION
CONTROL wWOoRD

WRITE TEAMINATOR

21T

DELAY DJNI3
n4as

Figure 3B, Pulse subroutine called from write subroutine

THE RESTOF 80 / 205

The code at 01D9H is called. This code writes the synchronizing pulse
on the tape. The pulse is really two pulses, one after the other. The first
pulse is positive and the second is negative. Each pulse lasts 227 T-states.

The A register is loaded with the byte to be written, from the D regis-
ter. The A register is then rotated left so the bit to be written is put into
the carry flag. The shifted byte is then loaded back into the D register for
safekeeping. The bit in the carry flag can be easily tested to seeif itisa
1 or a 0. If the carry flag is set (bit is a 1), the code continues by calling
01D9H. If the carry flag is reset {bit is a 0}, the code branches to 027EH.

The code at 027EH is a delay loop. It is necessary because if the bitis a
0, no data pulse is written and you have to kill some time. This is done
with another DJNZ {oop, DJNZ4, which is 1769 T-states long. On com-
pletion, control transfers to 0276H. This is the same location the pro-
gram flow returns to after writing a data pulse, if the carry flag was set.
The one data pulse is written with a call to 01D9H, the same code that
wrote the synchronizing pulse.

| BIT

/-SYNCH PULSE /-DATA PULSE

135 « DJNZ3 132 + DJNI3

227 2z7

0 BIT

/ SYNCH PULSE

170 + DJNZ3 + DUNZ4

227

Figure 4. Software timing measured in T-states

206 / THE REST OF 80

At 01D9H, a control word is loaded into the HL register and the code at
0221H is called (Figure 3B)}. This outputs a positive pulse to the tape re-
corder. The length of the pulse is controlled by a DJNZ loop. Another
control word is loaded into the HL register, and the routine at 0221H is
called again, but this time a negative pulse is written to the tape. Its
length is also controlled by a DNJZ loop. To terminate the negative pulse
another control word is loaded into the HL register, and the routine at
0221H is called once more. Finally, another DJNZ loop, DJNZ3, is exe-
cuted. It is important in controlling the writing time, and is 1198 T-states
long. After executing this loop, control transfers back to 0276H.

The C register is decremented and checked to see if all eight bits have
been written. If not, control goes back to 026BH, where the synchroniza-
tion pulse is again written. If all eight bits have been written, the regis-
ters pop off the stack, and control returns to the calling routine. Figure 4
is Figure 1 redrawn to show the length of time, measured in T-states, for
each part of the stored signal. DJNZ3 alone controls the timing of the 1
bit. You can shorten the delay of DJNZ3 and increase the number of 1
bits you can write per second. The 0 bit is controlled by both DJNZ3 and
DJNZ4. It is a simple matter to shorten the length of the 0 bit so you can
write faster. Just make sure the 0 bit is about the same length as the 1 bit.
They need not have exactly the same length because there is some excess
time in the reading code, and the reading timing always starts with the
detection of the synchronization pulse.

Figure 5 shows how DJNZ1 and DJNZ2 control the reading time: the
positive pulse represents the reading of the TRS-80 tape flip/flop, and the
negative pulses represent the resetting of the flip/flop. The figure starts
with the detection of the synchronization pulse. The numibers represent
the length of time, measured in T-states. By adjusting DJNZ1 and
DJNZ2, you can control when the flip/flop is reset and how far into the
data pulse you check for the presence of the pulse.

By controlling these four delay loops, you control the tape writing and

66 + DJNZI 30 + DJNZ2 90 103

Figure 5. Posifive pulse represents cheching status of ﬂlp/ﬁop Negative pulse represents
resetting the flip/flop.

THERESTOF 80 / 207

reading speeds. 1 have done experiments at various speeds of writing
and reading that range from the 500 bits/second standard to over 1500
bits/second. Figure 6 is a table of the various delay times, in T-states, for
the four DJNZ loops in the reading and writing routines. The control
bytes to be loaded into the B register to obtain the necessary delays are in
parentheses.

Bits/Sec Total Pulse Length DJNZ1 DINZ2 DJNZ3 DJNZ4

500 3554 1243(60H) 1724(85H) 1193(5CH] 1750(87H!
600 2959 1035{50H) 1412(6DH} 892{43H) 1438(6FH]
700 2340 879/44H) 1204/5DH) 684/35H) 1230/5FH)
800 2228 775(3CH] 035(50H) 528(29H] 1074(53H)
900 1968 671(34H) 918(47H) 398{1FH| 944{49H)
1000 1760 554{2BH) 840[41H! 294(17H] 840{41H)
1100 1604 476(25H}) 736(39H) 216(11H) 762({3BH]
1200 1474 424(21Hj 684(35H) 151(0CH} 697(36H)
1300 1370 372(1DH] 645(32H) 99(08H) 645(32H!
1400 1266 320(19H) 593(2EH) 47(04H) 593{2EH]
1300 1188 204(17H) 489(26H) 801H) 554[2BH!

Figure 6. Delay time constants for read and write subroutines. Numbers in parentheses are
control bytes needed for the delay loops.

Keep in mind when using modified tape speeds that the speed is for
writing the bits of a byte. If you use a 1500 bit/second reading or writing
subroutine, it does not control the length of time between bytes. The
calling program does that. That is how you can still do all the things be-
tween bytes that were done before. You are not really writing everything
at the 1500 bits/second rate; if you could see the bits on the tape, you
would see groups of eight bits spaced at 0.666 millisecond intervals and
the 8-bit groups spaced at some other interval, dependent on the pro-
gram calling the faster writing subroutine.

If these high-speed routines are to be of any practical value, you must
be able to use them to read and write both BASIC and system tapes. You
should be able to read in existing tapes at the normal speed and write
them again at the higher speed. You can do this with machine-language
programs that patch themselves into BASIC ROM, giving you two new
commands and a third, modified command. The two new commands
are LOAD and SAVE. They operate like CLOAD and CSAVE, but at a
higher speed. The third command is a modified SYSTEM command
which allows system tapes to be read at normal or faster speed. Another
program (Program Listing 4) shows how to modify John Harrell's
ZBUG monitor {80 Microcomputing, January 1981, p. 130} to read and
write tapes at both normal and fast speed.

The first three programs add new commands to ROM. The LOAD and

208 / THE REST OF 80

SAVE commands are already reserved words in the ROM, but are used
only on disk systems. If you try to execute the SAVE command without
Disk BASIC, you get the L3 ERROR message. This is because Level 11
BASIC branches to RAM memory location 41A0H after a SAVE com-
mand. A jump to the error message routine is placed there during the ini-
tialization of this area of RAM from the MEM SIZE message. When Disk
BASIC is loaded and initialized, it places new jump instructions at this
and other RAM locations that patch into Disk BASIC. You can do the
same thing with this program by placing jump instructions to the loca-
tions of our new code.

When the ROM encounters the SYSTEM command, a call is made to
41E2H in RAM. Normally there is a RETurn instruction there so pro-
gram control goes back into ROM. By placing a jump instruction here,
you can branch to the new SYSTEM code very easily. The initialization
portion of each program sets up all the jumps needed.

Each program is similar to the corresponding program in ROM written
by Microsoft, with the new read and write codes patched in. The similar-
ity means the programs operate exactly like the corresponding BASIC
command. The start of the code is the initialization portion of the pro-
gram. Jump instructions are placed into the communications section of
RAM at the correct locations for LOAD, SAVE, and SYSTEM.

The first program (see Program Listing 1} is SAVE, which is the high
speed equivalent of CSAVE. The first thing that SAVE does is turn on the
recorder, by calling a ROM subroutine at 01FEH, which selects the cor-
rect recorder and turns it on. Next, it writes 256 zeros to tape followed by
the 0ASH marker. A call is made to 2337H in the ROM. This code looks
for a file name. The address of the string containing the file name isin the
HL register on returning from the subroutine. A call to 2A13H gets the
address into the DE register. Next, the three 0D3H leader bytes are written
on the tape, followed by the file name whose address is in the DE register.

The DE register is set up to point to the start of the BASIC program.
The HL register contains the address of the end of the program. The A
register is loaded with the contents of the address in the DE register. The
A register is written to tape using the fast writing program. The DE regis-
ter is incremented and compared with the HL register. This procedure
repeats until the end of the BASIC program {HL = DE). The recorder is
turned off with a call to 01F8H, the HL and BC registers are restored,
and control returns to ROM.

The rest of the SAVE program involves the speeded-up write subrou-
tine. The program defines a word called WRSP, which contains the
DJNZ3 and DJNZ4 delay loop variables to be loaded into the B register in
order to obtain the desired tape speed. The WRSP variable in Program List-
ing 1 is for writing at 1000 bits/second. Use Figure 6 to select a speed.
DJNZ4 is the most significant byte and DJNZ3 is the least significant byte of

THE RESTOF 80 / 209

WRSP. To use WRSP, load HL with the address of WRSP, then load B
with the contents of the address pointed to by the HL register.

The next program (Program Listing 2] is called LOAD. It loads a fast
tape written by SAVE. First, the proper RDSP variable is created. Next, a
check is made to see if a question mark {?} follows the LOAD command. If
so, the load is being verified as in CLOAD? If it is a LOAD? command, a flag
is set and saved. A LOAD command resets the flag before saving it. The file
name is searched for, and when found, combined with the LOAD/LOAD?
flag and stored in RAM. If this is a LOAD command, the NEW subroutine
at 1B4DH is called. The tape recorder is turned on and the tape is read, look-
ing for the synchronizing zeros in the leader. Once these are found, the
LOAD/LOADY? flag and the file name to the DE register are restored. The
three OD3H bytes are read from the tape. The file name is read from the
tape and compared with the one stored in the E register. If it is not right, a
jump is made to LD4 to wait for the right file name to be read.

After the right file name has been found, the tape is read again, look-
ing for the next byte. If the LOAD/LOAD? flag in the D register is set,
the byte is compared with the data in memory. If an error occurs, a
jump is made to LD2, where the BAD message is displayed, before the
return to BASIC at 1A18H. If the byte was the same as in the program
or if the LOAD/LOAD? flag is reset, the bit is saved and the free mem-
ory pointer is updated with a call to 196CH.

A test is made to see if the byte is a zero. If so, the star in the right hand
corner of the screen blinks, and the process starts over, until three zeros
are found. When that is accomplished, the READY message appears, the
recorder is turned off, and the starting address is saved on the stack be-
fore returning to BASIC at 1AE8H. The LOAD routine uses the READ
and SYNCH routines following the SYSTEM program. A storage arca
called RDSP is defined, with the DJNZ1 and DJNZ2 delays already load-
ed into them. Then the B register is loaded with these delays from the
RDSP word. DJNZ2 is the most significant byte of RDSP and DJNZ1 is
the least significant byte.

The third program {Program Listing 3) is the SYSTEM code. It func-
tions like the standard SYSTEM command, except that whenever a file
name is specified, a short message which says [FAST/SLOW} is dis-
played. Responding F to this message loads the RDSP word with the
faster reading speed variable. Any other response loads the RDSP word
with the standard 500 bit/second speed variable. The tape then reads at
the selected speed with the same results as the regular SYSTEM
command.

The SYSTEM code starts by popping the return address of the calling
program off the stack. This keeps the stack in order. Next a jump is made
to SYSTM2, to set up a new stack pointer and skip down one line on the
video with a call to 20FEH. The system prompt (*?} displays, and execu-

210 / THE REST OF 80

tion waits on input from the keyboard. This input is evaluated and a
branch is made if the first character is a slash (/). If it is, a jump is made
back into the ROM SYSTEM routine at 031DH. If there was no slash,
the input is assumed to be a file name. The SPEED subroutine is called
where the (FAST/SLOW) message is displayed, and the input is evalu-
ated so the proper DJNZ delays are loaded into RDSP.

The tape recorder is turned on and the synchronizing byte is looked
for. The 55H byte is found next, followed by a search for the correct file
name. Once it's found, the star in the top right-hand side of the screen is
turned on or off. Another byte is then read and compared to 78H. This is
the end of the tape flag and it branches to SYSTM1, where the transfer
address is stored in 40DFH, and the recorder is turned off. The stack
pointer is readjusted, the system prompt (*?} displays, and the program
waits for input.

If the 78H flag is not found, the tape is read until a 3CH is detected.
This is followed by the number of bytes to read and the address where
the bytes are to be stored. A checksum is set up, and the bytes are read
from the tape and stored in the appropriate place. Once all the bytes are
ready, the checksum is compared with the one read from tape. If they
are different, a C displays in the upper right-hand corner of the screen,
and the tape is scanned for the start of the next program. If the check-
sumisright, the program branches to SYSTMS5, to look for the 78H byte
and continue from there. The SYSTEM program sequence ends by
turning off the tape recorder and displaying the system prompt {*?7).

These three programs provide the commands to read and write fast
BASIC tapes and to read fast system tapes, but you need a method of
writing fast system tapes. The easiest way is to modify a monitor pro-
gram, as in Program Listing 2. I chose John Harrell's ZBUG program (80
Microcomputing, January 1981} for its very good tape copying and verifica-
tion commands. Modification requires finding all the locations in the
monitor where a write-from-tape or read-to-tape function occurs and sub-
stituting calls to the new routines. You can use the ZBUG monitor to find
these Jocations. The find address {A] command in ZBUG is loaded with
one of the subroutine addresses to be searched for, followed by the area
in memory where ZBUG resides. The addresses needed are
0235H({READ), 0264H{WRTAPE}, 0287H{WSYNCH), 0214H|RDBIT}
and 0296H(SYNCH}. Once found, the address portion of the call instruc-
tions is changed to point to the appropriate new subroutine patched in at
the end of ZBUG. Some editor/assembler programs make the address
changing easier because they have a macro command. The EDTASM +
program allows the use of macros. In Program Listing 2, the macro NEW
is defined with variables #ADD and #NAME. The macro is simply ORG
#ADD, followed by CALL #NAME, and is used 43 times to set up all the
necessary patches.

THE RESTOF 80 / 211

In Program Listing 4, TAPE is the subroutine that prints an F/S message
after the selected ZBUG command. It accepts a one letter response. An F
response loads the WRSP and RDSP words with the high-speed DJNZ var-
jables. Any other response loads the words with the regular speed vari-
ables. The COPY and WRITE subroutines in Program Listing 4 are neces-
sary because these ZBUG commands need slightly different processing
than the others.

These programs can also be assembled on an editor/assembler like ED-
TASM +. Program Listings 1-3 reside in upper memory and are shown at
7E00H for a 16K machine. This is a multiple-origin set of programs. Only
the origin indicated in the comments on each program should be
changed when relocating the program. Once the programs have been
entered and debugged, save them to tape. They can then be loaded un-
der the SYSTEM command. Always load Program Listing 1 last, because
there the changes to the RAM addresses for SYSTEM, LOAD and SAVE
are made. If Program Listing 1 is loaded before Program Listing 3, the SYS-
TEM command jumps to the new address, but there is no program there.
No initialization of the programs is necessary, so control returns to BASIC
with a slash (/) ENTER after the last part is loaded under the SYSTEM
command. You have the three new commands in your Level I BASIC un-
til you return to the memory size question, when you must enter the pro-
grams again. Be sure to protect sufficient memory (32255) when answer-
ing the memory size question.

Program Listing 4 can be entered by using an editor/assembler that sup-
ports macros, such as Microsoft's Editor/Assembler +. Once ZBUG (or a
similar monitor) has been modified, it can make copies of itself at slow or
fast speed. You can use it to read any SYSTEM tape at 500 baud, and write
it to tape at a higher speed using the COPY (,) command. Using the 1000
bit/second loading speed can decrease your loading time by more than
half.

Cautions

Higher speed tapes are more sensitive to the volume control setting.
Usually it must be turned down when you load them. Once the proper
setting is found, the tapes load very reliably; however, reliability de-
creases as speed increases. I believe that the volume control problem
could be easily overcome with the addition of a pulse-shaping device
such as The Data Dubber from the Peripheral People, or a similar
device.

The slow DJNZ delays used in both listings are from the new Level I
ROM with its improved tape loading features. Some commercial tapes
will not load using these delays. This has been true for system tapes
more than BASIC tapes. The easiest way to fix the problem is to use the
old delays from the original ROM. This would mean changing DJNZ1 to

212 / THE REST OF 80

41H, and DJNZ2 to 76H. After you have made a copy of the troublesome
tape, it can be read more reliably using the new delays already in the

programs.
Program Listing 1. SAVE
aeia ;
02029 ; LISTING I
09338 ; FSTAPE VER 1.2
20343 ; BY MARK TYLER
PeI5e ;
20068
20870
20080
41A0 39%2 ORG 41A%H ;SET UP
41A0 CIRQTE 02180 Jp SAVE ; 'SAVE' VERB
4188) L ORG 41880 :SET UP
4188 C37ETE @@120 JP LOAD 1 'LOAD" VERB
41E2 w13 ORG 41E2H ;SET UP
41E2 C3117F @0140 Jp SYSTEM ;'SYSTEM' MODIFICATION
29158
AdL6a
gaL7a
230180
29192
TERQ 92203 MEMORY DEFL 7E@PH ;CHANGE THIS ADDRESS ONLY.
0821 :TO RELOCATE
2800 3223 DIs DEFL MEMORY - 7EOFH
TEQQ AF233 ORG MEMORY
248
0a252
Qa2eQ ;
29278 ; SAVE
00280 ; 1809 BIT/SEC VERSION
09290 ;
20380
ga31e
29320
7EXQ CD2DTE 90330 SAVE CALL WSYNCH ;TURN ON CASSETTE
#9349 ;AND WRITE HEADER
7E@3 CD3723 @3353 CALL 2337H ;EVALUATE REST OF
9a368 ; 'SAVE' COMMAND
7E06 C5 3370 PUSH BC :SAVE REGISTER
TE97 E5 22380 PUSH HL ;SAVE ADD OF FILE NAME
TEGE CD132A @9390 CALL 2A13H ;PUT ADD IN 'DE' REGISTER
7B9B 3ED3 o400 LD A,2D3H ;WRITE THE THREE
TEID 9643 20410 LD B,A3 +LEADER BYTES
7EQF CD3ATE 90420 CALL WRITE ;N TAPE
7E12 10FB 99430 DINZ §-3
7E14 1A 23440 LD A, (DE}) ;FILE NAME TO 'A' REGISTER
7EL5 CD3ATE 29450 CALL WRITE ;WRITE IT ON TAPE
7E1S 2AA440 334608 Do HL, {48A4H) ;POINTER TO BEGINNING
7E1B EB 28479 EX DE,HL ;OF BASIC PROGRAM TO 'DE'
TELC 2AF942 29480 o HL, {40F9H) ;END OF BASIC PROGRAM
3490 ;POINTER TO 'HL' REGISTER
7ELF 1A 82500 LD A,{DE) ;GET NEXT BYTE
7E20 13 23518 INC DE ;STEP POINTER

Program continued

THE RESTOF 8¢ / 213

TE21
TE24
TE25
TE27
TEZA
7E28
7E2C

TE2D
TE30
7E32
7TE33
TE36
7E38

TE3A
7E3B
TE3C
7E3D
7E3E
TRA0
7e41
TE44
TE4AS

TEA7
TEAB
TE4AA
7E4D
7TEAE
TE59
7E51
TE52
TES3
TE54

7E55
TESS
TE59
7E5B
7E5D
TECD
TE63
7ER5
TE67
TEGA
7E6D
TEGF
7E71
TE74
7877
TETA
7E7B
7ED

7E7E
7F1l
TFFC

1a19

CD3ATE
DF
20F8
CDFS@L
El

<l

c9

CDFEZL
BEFF
AF
CD3ATE
10FB
3EAS

ES

c5

D5

F5
oE38
57
CDSD7E
7a

57

20529
30539
@a549
Ba550
28569
20578
09589
3a593
2@600 WSYNCH
29610
20620
20630
o06Ad
o650
20669
20673 WRITE
goe8d
20690
aa1ea
29710
23720
@Y730 WR2
02740
2a75¢

. Bd76d

#2778
ea780
00799
20808 WR3
2818
a3820
20833
30848
B85
ae86d
20873
92882 WR4
Bra%0
3292
2310
9@920 WRS
20930
Ba24a
29958
22968
Aa974
33989
993
a1009
21019
gLeze
21233
g1g4e
a1859
21060
21979

5% 333988

13

§EEEEEEEREEEEEHEEE ARARASAEAE BEgEERZLE ©

WRITE BYTE TO TAPE

18H ;COMPARE 'HL' AND 'DE’
tAGATN IF 'DE’<»'HL'

@1F8H ;TURN OFF CASSETTE
;RESTORE REGISTERS

8
A

;GO BACK TO BASIC

PIFEH ;TURN ON CASSETTE

B,AFFH ;WRITE 255
A 1 ZEROES
WRITE :TO TAPE
$-3 sDONE YET 7
A,0ASH WRITE SYNCH BYTE FIRST
HL :SAVE NEEDED REGISTERS
BC
DE
AF
c,8 +OCUNTER FOR 8 BITS
D,A ;SAVE BYTE TO BE WRITTEN
WRS sWRITE SYNCH PULSE TO TAPE
a,D +RETURN BYTE TO 'A' REG.
A ;ROTATE BIT TO BE WRITTEN
;7O CARRY FLAG
D,A ;SAVE IN 'D' AGAIN
NC,WR4 ;GO IF BIT IS ZERO
WR5 ;WRITE A ONE BIT
c 1ADJUST THE COUNTER
NZ,WRZ :AGAIN IF 'C'<> @
AF ;RESTORE REGISTERS
DE
BC
HL
;RETURN TC CALLING PROGRAM
HL, WRSP+1
B, (HL) :GET DINZ4
S ;DELAY AWHILE
WR3 ;G0 BACK TO MAIN PROGRAM

HL,BFC@1H ;POSITIVE CONTROL WORD
@221H ;WRITE POSITIVE PULSE
B,ABH DELAY
$ AWHILE
HL,@FC#2H ;NEGATIVE OONTROL WORD
@221H ;WRITE NEGATIVE PULSE
B,OBH ;DELAY
$ AWHILE
HL, BFCO@H ; TERMINATOR OQONTROL WORD
@211 ;WRITE TERMINATOR
HL,WRSP ;GET DJINZ3
B, (HL)
$;DELAY AWHILE

;RETURN TO CALLING PROGRAM

o

@198¢ ; FSTAPE PROGRAM DEFINITIONS

#1093 LOAD
9110¢ SYSTEM
21119 WRSP
#1129

21138

BQU
BQU
BU

END

214 / THE REST OF 80

TETEE+DIS
TFL1H+DIS
TFFCHHDIS

1a19H

TEDD

200
7E7E

7E7E E5
TETF 212841
TE82 22FETF
7E85 El
7EB& D6B2
7ERS 28012
7EBA AF
7EBB 912F23

7TEBE F5
7EBF 7E
TESY B7
TE91 28a7
TE93 (D3723
TE6 CDl32A
7E99 1A
7E9A 6F
7E9B F1
7E9C B?
7E9D 67
7E9E 222141
7EAL QC4DLB
TEA4 210000
TEAT CDBOTF

TEAA 272141
TEAD EB
7EAE 9643
TERA CD967F
7EB3 D6D3
7EBS 28F7
7EB7 10F7
7EB3 CDI6TF
7EBC 1C
7EBD 1D
7EBEE 2843
7BC0 BB
7BC1 204137
7EC3 2AR440

THCe 2623

0260
Ba6a5
20610
22615
80622
A%625
as63a
90635
2064@
20645
29650
28655
266
ae665
20672
20675
22680
22690
23695
ae700
aa7as5
ad71e
2a715
720
23725
20730
20735
@0740
22745
20759
@755
20760
28765
20710
oe775
oa780
aa785
2a79¢
20795
23000
23835
@810
2@815
23529
02825
83332
20835
23842
28845
22850
3855
208649
32865
20873
23875
23884
29885
20890
3@895

Program Listing 2. LOAD

‘.*i#ttiit* FSTAPE PART 2 VER 1.2 ek ddedd ok
:t***t*tii BY MARK TYLER khkhkhhik

MEMORY DEFL TEA@R ;CHANGE ONLY THIS ADDRESS
;TO RELOCATE

BIs DEFL. MEMORY~7E@ZH
ORG 7ETER+DIS
; LOAD
: 10¢¢ BIT/SEC VERSION
’
LOAD PUSH HL ;SAVE REGISTER
LD HL,412BH ;DINZ1 AND DINZ2
LD (RDSP),HL. ;INTO RDSP
PoP HL ; RESTORE REGISTER
SUB @n2H ;TEST FOR LOAD?
JR Z,$+4 ;JUMP IF LOAD?
XOR A ;SET UP LOAD FLAG
LD BC,232FH ;USE 2ND AND 3RD BYTES
;TC CPL AND INC ‘HL'
PUSH AF 7SAVE FLAG
) A,{HL) ;:GET FILE NAME IF THERE
OR A ;ZERO 'A' IF NO FILE NAME
JR Z,5+9 ;JUMP IF NO FILE NAME
CALL 2337 ;EVALUATE FILE NAME
CALL 2A13H ;FILE NAME ADD INTC ‘DE’
LD A,(DE) :PUT FILE RAME
LD LA 1 INTO ‘L' REGISTER
POP AF ;GET BACK LOAD/LOAD? FLAG
OR A ;SET A ACCORDING TC FLAG
1D H,A ;SAVE IN 'H' REGISTER
w {4121H),HL ;SAVE IN RAM
CALL 2,1B4DH ;CALL 'NEW' IF FLAG RESET
b HL,2000d ;CASSETTE CONTROL WORD
CALL, SYNCH ;TURN ON CASSETT AND
;FIND @A5H BYTE
LD HL, (4121H) ;RESTORE LD/LD? FLAG
EX DE.HL ;PUT IN 'DE' RBGISTER
LD3 LD B,@3H ;SET UP LOOP
CALL. READ ;TO LOOK FOR THREE
SUB an3g ;@D3H BYTES
JR NZ,LD3 ;JUMP IF NOT 9D3H
DINZ $-7 ;D0 UNTIL FOUND
CALL READ :READ FILE NAME
INC E ;USER SPECIFIED NAME?
DEC E ;SET FLAG IF NAME EXIST
JR Z,8+5 ;JMP IF NO FILE KAME
ce E ;(OMPARE TO CALLER'S NAME
JR NZ,LD4 ;WAIT UNTIL NAME IS FOUND
b HL,{48A4H) ;BASIC PROGRAM POINTER
; TO 'HL' REGISTER
LD B,03H ;NEED THREE ZEROES FOR
;END OF FILE

Program continued

THE RESTOF 80 / 215

7ECS CD96TF 06099@ LD CALL READ ;READ A BYTE
7BCR '5F aF9a5 LD E,A ;SAVE IN 'E' REGISTER
TEXC 9% 20910 SUB (ML) + COMPARE WITH PROGRAM
780D A2 0915 AND D y AND WITH LOAD/LOAD? FLAG
7ECE 2021 90920 JR NZ,LD2 ;PRINT ERROR MESSAGE
Be925 ; IF MISMATCH
7ED@ 73 20930 b {HL),E ;OTERWISE SAVE BYTE
7ED). CDEC19 B3935 CALL 196CH ;ADJUST FREE MEMORY PT
7ED4 7E 23940 LD A,{HL) ;TEST BIT
7ED5 BY BEI45 OR A ;FOR A ZERD
7ED6 23 23952 INC HL ;ADJUST 'HL'
7ED7 20FD @@955 JR NZ,$-17 ;LOOP IF NOT ZERD
TED9 (D2C@2 @969 CALL, @22CH ;BLINK '*'
7EDC 10EA 00965 DINZ LDL ;NEED THREE ZEROES
7EDE 227340 20970 LD (40F9H) ,HI, ;SAVE END OF PROGRAM
83975 ;ADDRESS IN RAM
7EEL 212919 #9980 LD HL, 19294 : "REALY' MESSAGE ADD
7EE4 CDAT2B B@9I85 CALL 268A7H ;DISPLAY MESSAGE
7EE7 CDFBI1L 93999 CALL OlF8H ;TURN OFF CASSETTE
7EEA 2AR440 OF995 LD HL, (4#A4H) ;STARTING ADD OF
7EED E5 21000 PUSH HL s PROGRAM TO STACK
7EEE C3EBlLA @1005 JP 1AES8H ;RETURN TO BASIC
21012
7EF1l 21@C7F 91815 LD2 b HL,MSGl ; 'HL'=ERROR MESSAGE ADD
TJEF4 CDA728 @1929 CALL 28A7H ;DISPLAY MESSAGE
7EF7 C318l1A @1025 Jp 1A18H ;RETURN TO BASIC
7EFA 323E3C 91938 LD4 LD (3C38) A :SAVE FILE NAMF
7EFD @63 ?#1635 LD5 LD B,@3H :SEARCH FOR
7EFF CD967F @ld49 LDé CALL READ 1THREE ZEROES
7F02 B7 91045 OR A ;0O UNTIL
7FO3 20F8 91952 JR NZ,1LD5 :YOU FIND
7F95 12F8 a1955 DJINZ LD6 ;THREE IN A ROW
7FO7 CDA3TF Q1060 CALL SYNCH+3 ;START READING TAPE AGAIN
7F0A 18A2 B1965 JR LD3 ; CONTINUE
91078
TFOC 42 g1375 MSGL DEFM 'BAD' ;ERROR MESSAGE
7FOF oD 21082 DEFB @
7F1a 22 91285 DEFE @¢H
21099
21495
@119@ ; FSTAPE PROGRAM DEFINITICNS
7FFE 21185 RDSP BU TFFEHHDIS
7F80 21119 SYNGH EW 7FS@H4DIS
7F96 #1115 READ BU 7FI6HDIS
#1120 -
#1125
1A19 21138 END 1A19H
Program Listing 3. SYSTEM
glzw :****ittt* FSTAPE pm 3 VER 1.2 Rk bk
91265 ;ii*ii*i** BY m TYLER e Jr e dr e e ke
21219
TEZD @1215 MEMORY DEFL 7EAPH ;CHANGE THIS ADDRESS ONLY
91226 ;TO RELOCATE
@1225
3202 @123¢ DIS DEFL. MEMORY-TEQQH
7F11 #1235 ORG TFLLE+DIS
216 / THE REST OF 80

21240

31245 ;

#1253 ; SYSTEM

#1255 ; 190¢ BIT/SEC VERSION

B1268 ;

21265

a127¢
7Fll El Q1275 SYSTEM POP HL ;KEEP STACK IN ORDER
7F12 1889 71283 SYSTM2 ; OONTINUE

7F14 CDET7F @1285
TF17 22D0F48 21298
7F1A CDFBAL 91295
7F1D 318842 @1393 SYST™M2
7F2d CDFE20 01385
7F23 3E2A a1319
7F25 CD2A@3 @1315
7F28 CDB31B Q1320
7F2B DACCOE 91325

§

RDHL +GET TRANSFER ADD
(42DFH) ,HL. ;SAVE IN RAM
G1F8H ;TURN OFF TAPE
SP,4288H ;SET UP NEW STACK
20FEH H
A,20H ;'*' TO A REGISTER
#32aH ;1 DISPLAY STAR

1RR3H ;WAIT ON INPUT
C,P6CCH ;JUMP IF BREAK KEY

TF37 CDCE7F 091358
7F3A CDB@TF 91355

J1360
7F3D CD96TF 01365
7F4@ FES5 g1379
TP42 20F9 @1375
TF44 2696 71380
TF46 7E 91385
7F47 B7 21399
7F48 2809 21395
TP4A CDI6TF 01400

GET SPEED WANTED

SYNCH ;START CASSETTE AND
s FIND @ASH BYTE

READ sREAD NEXT BYTE

55H ;LOOK FOR 55H BYTE

NZ,5YSTM3 ;DO UNTIL YOU FIND IT

B,36H ;LOOK FOR

A, (HL) 6 LETTER

A :FILE NAME

Z,8YSTM5 ;POINTED 10

READ ;BY 'HL' REGISTER

7F2E D7 #1330 16H tLOCK FOR '/’

7F2F CA9719 Q1335 Z,1997H ;TP TO SN ERROR

7F32 FE2F 1340 2FH 1 COMPARE TO '/!

7F34 CAIDA3 91345 Z,83108 ;JUMP BACK TO RAM IF '/’

%

%
E%QEEG%%EE EE EEE ;%faggggﬁegﬁgsawg EE%Q%Q%EESEEEBE%

7F4D BE 21495 (HL)} :AND COMPARE
7F4AE 20ED a141¢ NZ,5YSTM3 ;JUMP IF NOT THE SAME
7F50 23 @1415 HL ;DO UNTIL

7F51 19F3 aL42n
7F53 CD2092 dl425
7F56 CD96TF 31432
7F59 FE78 #1435
7F5B 2887 31440

SYs™4 ;MATCH IS MADE

922CH ELINK '*'

READ ;READ NEXT BYTE

78H s OOMPARE WITH 78H
‘

i

2Z,8YSTM1 ;JUMP IF MATCH

75D FE3C #1445 3 COMPARE WITH 3CH
7FSF 208F5 91450 NZ,SYST™M6 ;DO UNTIL 3CH OR
‘ 71455 ;78H FOURD
j7P61 CDO6TF Bldel READ ;GET # OF BYTES TO LOAD
P64 47 #1465 B,A 1SAVE IN 'B' REGISTER
7F65 CDET7F 21476 RDHL +READ NEXT 2 BYTES AND
1475 sPUT INTO "HL' REGISTER

7F68 85 aL4e0 AL ;START CHECK SUM
TF6S 4F #1485 C,A

) o490

~:. TJF6A CDO6TF @l495 SYST™M7 READ ;READ NEXT BYTE
7F6D 77 21500 {4L),A ;STORE IT
TF6E 23 1585 HL ;ADJUST STORAGE ADD
7F6F 81 @519 A,C ;USE FOR CHECK SUM
7F70 4F #1515 c,A $SAVE NEW CHECK SUM
7F7L 10F7 1528 SYSTM? ;ARE ALL BYTES READ?
7F73 CD967F #1525 READ $READ CHECK SUM
7F76 B9 a153¢ o] ;COMPARE WITH CUR'S

TFT7 28DA @1535
7F79 3E43 @1549

Z,8YST™M5 ;GO IF MATCH
A43H ;LOAD A WITH 'C’
Program continued

THEREST OF 80 / 217

7FTB 32083D 91545 o
7F7E 18D6 01558 JR
21555
7F80@ CDFE#L 91569 SYNCH CALL
7F83 ES 21565 PUSH
7F84 AF 2157 XOR
7F85 CDA27F 01575 CALL
7F88 FEAS 21580 cp
7F8A 20F9 91585 JR
7FBC 3E2A 71599 b
TFBE 323E3C 91595 LD
7F91 323F3C QJlege b
7F94 El 21635 POP
7F95 C9 21610 RET
21615
7F96 C5 01620 READ PUSH
7F97 E5 21625 PUSH
7F98 2698 21639 LD
TFOA CDA2TF #1635 CALL
7F9D 19FB 21642 DINZ
7¥9F EL 21645 POP
7FAZ C1 9165@ POP
7FAl C9 #1655 RET
2166@
7FA2 C5 #1665 RDBIT PUSH
7FA3 F5 ale7a PUSH
7FA4 DBFF 21675 IN
7FA6 17 91689 RLA
7FA7 30FB 91685 JR
7FA9 21FETF 91699 Lo
TFAC 46 21695 LD
7FAD l@FE o170¢ DINZ
7FAF CDlE@Z 91785 CALL
7FB2 21FF7F 917182 LD
7FB5 46 21715 D
7FB6 10FE 21720 DINZ
7FB8 DBFF a1725 IN
7FBA 47 #1738 LD
7FBB F1 91735 POP
7FBC CBl19 41749 RL
TEBE 17 91745 RLA
7FBF F5 1750 PUSH
7FCA CDIE@2 81755 CALL
TRC3 FL 21768 pPoP
7FC4 CL 31765 POP
TFCS 9 21779 RET
@1775
7FC6 ES @178@ SPEED PUSH
TFC7 21F7F 21785 LD
TFCA CDAT28 921799 CALL
TFCD CD4%33 21795 CALL
TFDE FEAS 21800 ce
7FD2 2808 218095 JR
7FD4 216085 91810 LD
TFD7 22FE7F Q1815 LD
7FDA 1806 91829 JR
TFDC 21241 91825 FAST LD
TFDF 22FE7F 21830 LD
7FE2 CDFE28 @1835 PT1 CALL
TFES Fl1 21840 pPOP
TFEG C9 21845 RET

218 / THE REST OF 80

(3D0@H) ,A ;AND DISPLAY
SYSTME ; CONTINUE

1FEH ;TURN ON CASSETTE
HL {SAVE 'HL'
A ;:LOAD A WITH '@°
RDBIT ;READ FROM TAPE
@A5H ;IS IT OASH BYTE?
NZ,$-5 :NO —— KEEP TRYING
A,2RBH ;'*' TO A REGISTER
(3C3EH),A ;AND DISPLAY
{3C3FH),A ;ON VIDEO
HL ;RESTORE 'HL'

;RETURN TO CALLER
BC :SAVE REGISTERS
HL ;USED
B,8 ;READ B BITS PER BYTE
RDBIT ;READ ONE BIT FROM TAPE
$-3 +READ ALL EIGHT BITS
HL 1 RESTORE
BC ; REGISTERS

;RETURN TO CALLER
BC ;SAVE NEEDED
AF ; REGISTERS
A, (@FFH) ;LOOK FOR

;SYNCH PULSE
NC,$-3 ;DO UNTIL FOUND
HL,RDSP ;GET DINZ1
B,(HL) :AND USE IT
$;FOR A DELAY
21ER ;RESET FLIP/FLOP
HL,RDSP+1 ;GET DJNZ2
8, (HL} ;AND USE IT
] ;FOR A DELAY
A, (PFFH) :CHECK FLIP/FLOP
B,A ;:SAVE IN 'B'
AF ;AND ON STACK
B ;CHECK TO SEE IF

s PULSE WAS FOUND
AF :SAVE ON STACK
21EH ;RESET FLIP/FLOP
AF 1 RESTORE
BC ; REGISTERS

;RETURN TO CALLER
HL ;SAVE 'HL'
HL,MSG2 ;DISPLAY
28A7H ;PROMPT
P49H ;WAIT ON KEYBOARD INPUT
‘P’ s COMPARE WITH 'F’
Z,FAST ;G0 IF MATCH
HL,8560H ;SLOW RDSP
(RDSP),HL ;VARIABLE
PT1 ; CONTINUE
HL,412BH ;FAST RDSP

(RDSP},HL ;VARIAELE
20FEH H
HL ;RESTORE ‘HL'

31850

7FE7 CDO9S7F @1855 RDHL CALL READ s READ NEXT BYTE

7FEA 6F 21868 D LA ;STORE IN 'L’

TFEB CDY67F Pl865 CALL READ s READ NEXT BYTE

TFEE 67 B1879 LD H,A ;STORE IN ‘H'

TFEF C3 dil875 RET sRETURN TO CALLER
31880

TFFD 28 1885 M52 DEFM ' (FAST/SLOW} ™"
218990

TFFC 1741 #1895 WRsSP DEFW 4117H 1199@ BITS PER SECOND
21900 ;DINZ4 AND DINZ3

TFFE 2B41 @L995 RDSP DEFW 412BH :1p3¢ BITS PER SEOOND
#1919 sDINZ2 AND DINZY
31915

1A19 a192g END 1A19H

Program Listing 4. ZBUG Modification

238

oea2d LISTING 4

o0a3a ZRJG MODIFICATION VER.1.2

20049 ; 1838 BITS PER SECOND

Jgoasa BY MARK TYLER

29068

20070

ooa8d ; ————- > RBEQUIRES FIXTASM THAT SUPPORTS

20285 ; ———m= > MACROs (such as EDTASMb)

2ea87 »

il e

egLed SET UP MACRO TO CHANGE

aFLla CALLS TO ROM

aaLza

peL3e

P43 NEW MACRC #ADD, #NAME

2315 ORG $ADD

peL6d CALL #NAME

o173 ENDM

2018@ NEW 4543H,TAPE

29192 NEW 459FH, WRITE

22200 NEW 46531, TAPE

daz21a NEW 4751H, TAPE

33220 NEW 47C9H, CoPY

230 NEW 450CH, WSYNCH

3240 NEW 47DFH , WSYNCH

29250 NEWN 454AH, SYNCH

2e260 WEM 4663H, SYNCH

Re270 NEW 47614, SYNCH

U280 NEW 45D1H, WRTAPE

20299 NEW 45DAH, WRTAPE

JF3e NEW 45EEH, WRTADE

a31a NEW 45F3H , WRTAPE

20328 NEW 45F7H, WRTAPE

39330 NEW 45FBH , WRTAPE

23348 NEW 4601LH, WRTAPE,

PB3I5Y NEW 46@0H, WRTAPE

Aa368 NEW 46184, WRTAPE

as37a NEW 461CH, WRTAPE

o388 NEW 4620H, WRTAPE Program continued

THERESTOF 80 / 219

ag3%a NEW 4624H, WRTAPE

da40a NEW 462RH, WRTAPE
2e419 NEW 4633H, WRTAPE
Ba420 NEW 4638H, WRTAPE
20439 NEW 463FH , WRTAPE
23440 NEW 4643H, WRTAPE
209450 NEW 47F6H, WRTAPE
dede0 NEW 4552H, READ
o473 NEW 45574, READ
28482 NEW 4562H, RERD
20490 NEW 456CH, READ
ousad WEW 4573H, READ
2e51a NEW 457CH, READ
B0520 NEW 466AH, READ
Pa533 NEW 4674H, READ
22542 NEW 467FH, READ
29558 NEW 4669, READ
29560 NEW 469EH, READ
20573 NEW 46A5H, READ
22583 NEW 4830, READ
33593 NBEW 4348, RRAD
2062a NEW 4852H, READ
2eela

3620

Q2623 WRMD B0 4ARSH ;THESE ARE THE
Agedd GETCH B AA49H ;ADDRESSES NEEDED

?@650 OUTSTR BQU 28A7TH ;FOR SUBROUTINE CALLS
30660 SETUPZ EQU 429FH ;TO ROM OR ZHUG
2678

33680 ORG 4F2¢0H ;STORE OUR PATCHES
20690 ; STARTING HERE
29798

B9718 WSYNCH 1D B,AFFH ;SET UP LOOP

3724 XOR A ;TO WRITE 256

24730 CALL WRTAPE ;8'S TO TAPE

BF748 DINZ $-3 s FOLLOWED BY

Ba750 L A,@A5H ;@ASH BYTE

Q9768 WRTAPE PUSH HL ;SAVE NEEDED

2770 PUSH BC ; REGISTERS

pa76d PUSH DE ;THEN SET UB

Be799 PUSH AF 1 TO WRITHE

800 b <8 18 BITS PER BYTE
2981a LD D.,A ;STORE BYTE TO RE
ae82a JWRITTEN IN 'A‘
op830 LP2 CALL PULSE ;WRITE SYNCH PULSE
2e84d Lb A,D +RESTORE BYTE TO BE
aps5e sWRITTEN TO ‘A’
29868 RLCA ;ROTATE BIT TO BE WRITTEN
aa87a ;TO CARRY FLAG

ol $13) LD DA ;SAVE ROTATED BYTE IN 'D°
008950 JR NC,IP4 ;JUMP IF CARRY FLAG RESET
290 CALL PULSE ;WRITE DATA PULSE
29919 LP3 DEC C yHAVE WE WRITTEN
2920 JR NZ,LP2 ;ALL 8 BITS ?

2293a pPOP AF ;I8 80

Qo4 PopP DE ;RESTORE ALL

aa95e POP BC +THE REGISTERS
Be96d POP HL

Aee79 RET ;RETURN TO CALLER
ag98a

26992 LP4 LD HL,WRSP+l ;GET DJINZ4

220 / THE REST OF 80

#1009
21919
21020
21230
21040
F1a5a

a1878
@180
219G
o110
gl11a
g112a
31130
@1148
31158
d11le6@
2117
a118a
@119
G1200
#3121
#1229
g123a
21240
21259
31260
#1274
a12ee
31292
21300
31319
31320
91330
21340
#1350
21368
a137a
2138a
a13%
al4ea
21418
#1420
21434
21443
21458
21460
21473
21480
21490
a1528
g1518
ais52e
@153
a1540
#1550
a156a
21572
41580
2159@
2160

PULSE

RDBIT

SYNCH

PUSH
PUSH

PUSH

POP

B, (HL) ;AND WASTE
+SOME TIME
LP3 GO BACK TO MAIN PROGRAM

HL,dFCALH ;POSITIVE CQONTROL WORD
#221H ;WRIT POSITIVE PULSE
B,B ;DELAY

$:138 'T' STATES

HL,dFC@2H NEGATIVE OONTROL WORD
A221H +WRITE NEGATIVE PULSE
B,@BH ;DELAY

$;138 'T' STATES

HL,dFCEPH ; TERMINATOR CONTROL WORD
@221H ;WRITE TERMINATOR

HL,WRSP ;GET DJNZ3

B, (HL} :AND DELAY
§ ; AWHILE

:RETURN TC CALLER
BC 1 SAVE REGISTERS
HL, 7 USED

8,880 ;READ 8 BITS PER BYTE
ROBIT ;READ 1 OF THE BITS

$-3 ;DONE B TIMES?

HL ; RESTORE

BC : REGISTERS USED
:RETURN TO CALLER

BC ;SAVE NEEDED

AF : REGISTERS

A, (2FFH) ;LOOK FOR
;SYNCH PULSE

NC,$-3 ;DO UNTIL FOUND
HL,RDSP ;GET DJNZ1

B, (HL} ;AND DELAY

$ s AWHILE

@21EH ;RESET FLIP/FLOP
HL,RDSP+1 ;GET DJNZ2

$

A, (QFFH)} ;CHECK FLIP/FLOP

B.A ;SAVE IN ‘B’

AF ;RESTORE 'A' FROM STACK

B ;CHECK TO SEE IF
;FLIP/FLOP WAS SET

AF :SAVE RESULTS ON STACK

(3C3EH),A ;AND DISPLAY
(3C3FH)},A ;ON VIDED
HL: ;RESTORE 'HL'
;RETURN TO CALLER Program continued

THE REST OF 80 / 221

P161a
91620 ROSP DEFW 412BH ;100@ BITS/SECOND

91630 ;DINZ4 AND DINZ3
#1649 WRSP DEFW 4117H :180¢ BITS/SECOND
21658 ;DINZ2 AND DINZ1
216608

#1670 TAPE CALL WRCMD ;ZBUG SUBROUTINE TO
91650 DEFM ' {F/S) ,' WRITE MESSAGE
91699 CALL GETCH ;2ZBJG SUBROUTINE
g1700 ;7O GET REPLY
#1710 cp ‘P ;1S REPLY AN 'F'
#1726 JR Z,FAST ;YES———-GOTO FAST
#1736 LD HL,B8560H ;OTHERWISE LOAD
21748 LD (RDSP) ,HL :RDSP AND WRSP
91750 LD HL,875CH ;WITH SLIW
a176@ LD (WRSP),HL ;SPEED VARIABLES
21778 RET ;RETURN TO CALLER
a1783

91799 FAST LD HL,412BH ;LOAD RDSP
21890 LD (RDSP) ,HL ;AND WRSP

@181d LD HI.,4117H WITH FAST
21820 LD (WRSP) ,HI. ;SPEED VARIABLES
#1832 RET ;RETURN TO CALLER
#1843

21858 COPY CALL, OUTSTR ;NEED MORE ROOM
21860 CALL TAPE ;IN ZBUG PROGRAM
21879 RET ;RETURN TO CALLER
21888

P1899 WRITE CALL TAPE :NEED MORE ROOM
21900 Jp SETUP2 ;AGAIN

21910 END 4338H ;ZBUG STARTING POINT
*

222 |/ THE REST OF 80

30

Blinking and
Repeating on the
Model |

by Craig A. Lindley

System Requirements:
Model [

16K RAM

One disk drive
TRSDOS-compatible DOS

he Model I, unlike newer and more expensive computers, lacks a

blinking cursor and repeating keys. This utility adds these capabili-
ties to your Model I. Like most other special keyboard drive routines,
NEWDVR patches itself into the keyboard device control block (DCB}
so that it, not the normal keyboard driver routine, is executed when the
keyboard is polled. The computer is continually polling the keyboard in
order to respond to input immediately.

Essentially, NEWDVR directs the computer to:

*Blink cursor on then off until a key is pressed.
*Transmit the valid key code immediately to the operating system.
*If the key is held down, delay before repeating the key.
* After delay is up, repeat key until key is released.
I have successfully tested this routine in BASIC and machine-language
programs.

How It Works

The first portion of code, labeled PATCH, puts the address of the
NEWDVR routine into the keyboard DCB (see Program Listing). The
PATCH routine also places the address of the normal keyboard scan rou-
tine, taken from the DCB, into the NEWDVR code at two places, so you
can call the keyboard scan routine to get keyboard characters from the
operator. PATCH also protects NEWDVR from being overwritten, by
storing its address, minus one, in the DOS top-of-memory pointer at
4049H.

THE RESTOF 8¢ / 223

The first part of the NEWDVR code checks to see if the routine calling
the keyboard scan is the wait-for-key routine at 49H in ROM. If so, the
blinking cursor routine is executed. If not, the normal key scan routine is
initiated. This function is checked by looking back on the stack to see
what the return address of the calling routine is. An address of 4CH, ten
bytes back on the stack, indicates the routine at 49H is calling. Any other
address indicates the calling program is doing a keyboard scan, probably
just to check whether the BREAK key is active, not waiting for input.
This feature was added because quite a few TRS-80 programs scan the
keyboard constantly for a BREAK command. This is normally invisible,
but becomes painfully obvious if the cursor has to blink before the call-
ing program can continue execution.

If the NEWDVR routine decides that the blinking cursor routine
should be executed, the first thing it does is turn off the normal cursor
character, by outputting the cursor-off character code of 15 decimal to
the ROM display routine at 33H. Then the address of the cursor is loaded
into HL and the character at the current address of the cursor is loaded
into register C for safekeeping. The new block cursor character {code
143 decimal} is stored over the original character at the current address
of the cursor. The RDKEYS routine, described below, is called to read
the keyboard repeatedly until either a key press is detected or a predeter-
mined time period elapses. This time period is controlled by the BLINK
equate in the listing.

The RDKEYS routine returns with the Z flag reset, if a key was detect-
ed; or set, if not. The original character at the cursor position is replaced.
If the RDKEYS routine detected a key, control returns to the operating
system with that character in the A register. If not, the RDKEYS routine
is again called to see if a key has now been pressed. Control returns un-
conditionally to the operating system after this call, with the Z flag set ac-
cordingly. Calling the RDKEYS subroutine twice, first with the block
cursor character at the cursor address, and then with the original charac-
ter at the cursor address, causes the cursor to blink at a 50/50 duty cycle
{half on, half off}].

The RDKEYS routine performs the actual polling of the keyboard. The
number of times it polls before returning to the NEWDVR routine is con-
trolled by the BLINK time constant, which is contained in DC. This
count decrements one each time the keyboard is polled and no key has
been pressed. The delay count (IX) and the first-time flag {IX + 1) are re-
set to zero to indicate that a key was not found. The delay count deter-
mines how long after the key is held down the repeat function begins.
The first-time flag is zero before a new key is pressed, and one
afterwards.

If the BLINK count reaches OFFH, or 255, before a key is detected, the
RDKEYS routine returns to the NEWDVR routine with Z=1 indicating
this. Clearing the 7-byte keyboard work area at 4036H to zero before

224 /| THE REST OF 80

polling the keyboard causes the normal keyboard driver routine to re-
turn a key code, even if the key has not been released. Normally, the
keyboard driver routine does not return a key code until another key is
pressed, or the original key was released and pressed again.

If the RDKEYS routine determines that a key has been pressed before
the BLINK count is exhausted, control transfers to the FOUND routine
for additional processing. There, the key character code is placed in the
B register for temporary storage. The delay count is loaded into the accu-
mulator and a comparison is done to see if the count equals zero. The
count equals zero when a key is first pressed, or after the delay time
counter has overflowed. If a key was just pressed, control transfersto F1,
and the keyboard character stored in B is returned to the A register.

A test is performed to see whether this is a new keypress, signified by
the first-time flag equaling zero. If so, the delay count is incremented to
one and the first-time flag is set to one, so that these instructions are
skipped the next time the F1 routine is entered. The F2 routine is execut-
ed whether or not this was the first time through F1. F2 resets the Z flag
to indicate that a key has been pressed, before returning the key charac-
ter in the A register to the NEWDVR routine and eventually to the oper-
ating system.

If the key remains pressed the next time the keyboard is polled, con-
trol does not pass to the F1 routine because the delay count is not zero.
This causes the delay count to shift, the accumulator to clear, the Z flag
to be set, and control to return to the NEWDVR routine. This means a
delay before the keys start to repeat, because when the delay count
doesn't equal zero, this routine passes the keyboard null code of 00 back
to the operating system, just as if no keys were being pressed. When
shifting the count causes the count to again equal zero, the F1 routine is
executed again. This time, however, the F1 routine doesn’t increment
the delay count, so the keys repeat at full speed.

Using this Program

Place this program in memory one byte at a time, by using a monitor
program such as DEBUG and writing it to tape or disk. Or, assemble it as
a DOS/CMD file, using an editor/assembler. Change the program ORG,
as shown on the listing, to reflect your computer’'s memory size. If your
system is non-disk, change the jump to the operating system in line 250
of the listing to a return to BASIC {1A19H). Make sure the memory loca-
tion of this program doesn't conflict with any other high memory
programs.

THE RESTOF 80 / 225

2400
9@33
4020
4216
492D
4249
4836

FF7@
FE73
FET6
FF79
FFIC
FF7F
FEg2
FF85

21648
2208FF
2296FF
2188FF
221648
2187FF
224940
C32048

ED73B3FF
DD2AB3FF
3E4C

DDBESA
C20006

DDZ1B1FF
3EQF
CD3306
2A2040
4E

3E8F

17

Program Listing

215185 %] :*t***ti*********t****************i*****

BPLLE ;*ex BLINKING CURSOR LA

BPL2QA ;v REPEAT KEY UTILITY wh

RAL3G ;Hhwx VERSION 1.2 il

BALAG *%* NOVEMBER 26, 1981 ik

BOL5Q ;**> BY i

BOLED ;*** CRAIG A. LINDLEY ek

gﬂ17g :**it**t*******************************i

20189 ;

29193 ;SYSTEM EQUATES

oazee ;

@9216 BLINK B P400H ; CURSOR ELINK TIME QONST.
#0220 CHRRT EQU 9331 ;VIDED CHAR OUT ROUTINE
PP230 CURSOR BQU 4Q20H ; CURSOR ADDR STORAGE
P0248 YEYDCE BQU 4P16H 1 KEYBCARD DCB

PE25@ OPSYS EW 42204 ;DOS REENTRY POINT
#0264 TOPMEM EX 4P4%H ;D0S TOP MEM PTR
@¢270 WKAREA EQI 409364 ;KEY DVR WORK AREA
0@280

gg29¢ :***ttt*t*i

@032¢ ;PROGRAM ORGS FOR VARIOUS MEMORY SIZES

@9310 ;48K - FF7€H

93320 ;32K - BF7@H

90330 ;16K - TF7H

gg34@ ;*1********

#0350

29360 ORG @FF72H

20379 :

ggaaﬂ :********!*

29399 ;START OF PROGRAM

405 ;th\'*t****i

00410 ;

P0420 PATCH LD HL, (KEYDCB) :GET NORM KEY DRIVER ADDR
22439 LD (SCaN2+1},HL {PLACE IN QODE FOR CALL
o440 LD {NEWD1+1),HL

20450 LD HL, NEWDVR {GET NEW DVR ADDR
20460 LD {KEYDCB) , HL :PLACE IN KEYBOARD DCB
#9470 LD HL , NEWDVR-1 ;MEMORY PROTECT LIMIT
23480 LD (TOPMEM) , HL ;STORE FOR DOS

BR4Y JP OPSYS ; BACK TO OPSYS

215577

BGSIE ;**#tiﬁt***

29529 :NEW KEYBOARD DRIVER ROUTINE

gg53g :*i#*******

2e549

90558 NEWDVR LD (STKPTR) , 5P ;GET STACK PTR ADDR
20560 LD IX, (STKPTR) ; INTO IX

90570 LD A,4CH {LSB OF CALL TO 49H
99588 ;FET ADDRESS

29599 ce (I%+1@) sCALL FROM 49H ?
90600 NEWDL JP NZ,$-$; IF NOT THEN

20610 ;

0620 LD IX,STATUS :PT AT STATUS

36630 s} A5 ; CURSOR OFF QODE
Po6an CALL CHROUT ;OUTPUT CODE

00650 LD HL, (CURSOR) ;GET CURSOR LOCATION
2660 LD C, (HL) :GET CHAR AT CURSOR
o670 LD A,143 s BLOCK CURSOR CODE
20680 75} {HL), A ;STORE AT CURSOR LOCATION

226 / THE REST OF 80

FFAS
FFAB

FFAC
FFAD
FFB

2go1
2991
B2

FFB5
FFBE8
FFB9
FFBA
FFBB
FFBE
FFCQ
FFC2
FFC3
FFC5

FFCB
FFC2
FFCB
FFCF
FFD3

FFD5

113004
ES

D5

C5
213649
2607
3600
23
19FB
CDeded

B7

2098
DD3600Y
DD36a180
Cl

Dl

El

2005

18

BA

200C

9

47
DD7ESD
FEOD
2806
DDCBI26
AF

]

78
DDCBO146
2007
DD340¢
DDCBALCS
FEG

co

K
20708
ga719
20720
29739
2744
Be758
2ag7ed
6770
29780
22790
20880
20810
09820
Be830
20840
o858
3864
20870
s
23896
SO0
#2918
20920
22939
62944
9950
jus e
22979
29980
2999
Q1000
21019
21020
21030
21240
B1250
1260
21279
210686
21399
31100
g111e
o112
B1130
g114a@
#1152
2116@
21178
91160
1199
21208
21218
21220
91230
21242
91250
1268

CALL
RET

1 SYSTEM STORAGE

STATUS DEFS

DEFS
STKPTR DEFS
’**********

SUBRCUTINES
RIS

o me

RDKEYS LD

SCAN PUSH
PUSH
PUSH

SCAaNl LD

SCAN3

Fl

F2 CP

e

(H),c

NZ

LOCATIONS

[

SCANL
$-$

A
NZ,SCAN3
(1x}),2
(IX+1),0
BC

DE

HL

NZ , FOUND

A,B

@, (IX+1)
NZ,F2
(1)

@, (IX+1)
a

PATCH

s DELAY QOUNT
;18T TIME FLAG
;STACK PTR STORAGE

LOAD TIME OCNSTANT
SAVE REGS

e

1CLEAR KEYBOARD WORK AREA
:TO MAKE DRIVER REIURN A
;KEY CODE EVERYTIME IT IS

THE RESTOF 80 / 227

31

SYNC: Automatic
Start and Memory
Size Setting

by Theodore J. LeSarge
System Requirements:
Model I
16K RAM
Editorlassembler

l wrote SYNC to provide automatic start and automatic memory size
setting for my tape-based BASIC programs. SYNC assigns a number to
each program CSAVEd and lets you CLOAD it by entering its identifi-
cation number. You can choose any number from 1-255 (except 165, a
code used by the computer to signal the end of the header pulses used to
synchronize the data pulse and the computer's clock].

It's easy to relocate the program. Just make sure the new origin in line
190 and the END statement in line 1160 are the same. Lines 200-210 re-
set the automatic start. Lines 220-250 answer the memory size question
at power-up. The computer stores the memory size, minus two, in mem-
. ory location 40B1H. The TRS-80 automatically sets string space to 50
bytes and stores that number at location 40A0H. The HL register pair is
loaded with the location in memory of the label DEF, minus 52. This
numnber is placed at 40A0H. The process then repeats, but minus two.
This number is stored at 40B1H.

When your non-disk TRS-80 is ready, memory locations 4152H-
41A5H are set to jump to the L3 {Disk BASIC only} error display. Since
these locations are in user RAM, you can easily detour the interpreter
and use disk commands to execute your own machine-language pro-
grams. Lines 270-320 do just that. These locations already contain the JP
(195 decimal) op code; just enter the 2-byte address of your program's
entry point.

Line 340 returns you to BASIC. Note that I used 06CCH rather than
the popular 1A19H for the entry point. A jump to 1A19H often produces

228 /| THE REST OF 80

the 70OM (out of memory} error when the next command in BASIC is
executed. When you type DEF in the command mode, the computer
jumps to the memory location specified in line 360. Line 620 usesa ROM
routine at 01C9H to clear the video display. Lines 630-660 set the cursor
to the eighth line of the screen, set up the HL register pair to the message
address at line 1060, and use ROM routine 28A7H for display. Line 670
sets the HL pair to the start of the buffer location. Lines 680-800 allow
up to three numbers to be entered without pressing ENTER. Line 690
uses the ROM keyboard scan operation.

The A register now contains the character(s) entered. This is compared
with ODH, the code for ENTER. If ENTER is pressed for the first num-
ber, the computer responds with the ?MO [missing operand| error.
Lines 730-760 trap non-numeric input. When a number is entered, line
770 loads it into a buffer. Line 780 uses the ROM display location 033H.
The character in the A register is displayed at the current cursor location.
Line 790 moves the HL pair to the next memory location in the buffer,
while line 800 decrements the B register and checks for a non-zero re-
sult. After three numbers are entered, the program loop falls through
and line 810 is executed. If fewer than three numbers are entered, the
program goes back to the keyboard scan. Lines 810 and 820 set the last
location in the buffer to zero, used in the next instruction.

Decimal Conversions

When you enter a number in response to the computer's prompt, the
program uses the ROM keyboard scan at 049H, and loads {He A register
with the ASCII value of your input. For decimal 145, these would be
31H, 34H, and 35H. Each number is converted to binary coded decimal
{BCD) by subtracting 30H from the ASCII value. Then each digit is mul-
tiplied by the power of ten it represents. This is a long process; the ROM
routine at location 2B02H does the work. Each number input is stored in
a buffer. The buffer is terminated with a zero (lines 810 and 820}, the HL
pair is set to the beginning address of the buffer, and 2B02H is called.
The result is put in the DE register pair.

You can use this routine for numbers up to 32767; numbers beyond
that give you an error. Because this program uses numbers up to 255 {the
maximum for a single register}, the answer from 2B02H is in the E regis-
ter. Line 860 stores this number in memory. Lines 870-920 check for a
synchronization byte of less than one or more than 255. The A register is
set to zero and the HL pair is loaded with 255. If the E register is equal to
the A register or greater than the HL pair, you get an error message.
Lines 950-1040 set up and display the error message. A delay routine
holds the display for about three seconds before returning you to line
620 for another try. If everything is entered correctly, the operation re-
turns to 370, which jumps to the BASIC command mode.

THE REST OF 80 / 229

To save your BASIC program, type SAVE and press ENTER. A file
name is not needed. The program jumps to line 390, the cassette
recorder starts, a leader of 255 zeros is written to tape, and return points
used by ROM are saved on the stack. Line 480 loads the A register with
your next synchronization byte; this also goes on the tape. Line 490
jumps to the remainder of the normal CSAVE instructions in ROM. Your
BASIC program is now saved on tape with its code number. Confirm the
save with LOAD?.

To load a program type DEF, type the identification number and enter
the word LOAD. Lines 510-600 start the cassette recorder, load the DE
register pair, and compare the value in the DE register to what the
TRS-80 reads from the tape. When there is a match, lines 570-590
display two asterisks in the upper corner. If one of them doesn't blink,
you entered the wrong code number; press RESET to continue.

Now, for the automatic start: lines 1140-1160 place the instruction
“jump to where HL points'' at 41E2H. The END statement loads the pro-
gram start into HL. Then the first system command calls 41E2H, nor-
mally C9H or a return function. When this program loads, the computer
jumps to the start of the program. Lines 200 and 210 reset this location so
the system command operates correctly the next time.

* il

Program Listing

00100 ;BASIC CODING PROGRAM
29119 ;CREATES NEW SYNC BYTE
#0120 ; THEODORE J. LESARGE
#0139 ;6327 W. DECKER ROAD
20140 ;LUDINGTON, MI. 49431
@215@ ; (616) B45-69@5
#9168 ;JULY 205, 1981
Ge170
20180
TF20 pa19g ORG TF20H 132544
7F28 3BEC9 20208 LD A,9dC9H : RESET
7F22 328241 QQ21@ LD (41E2H) ,A + AUTQ START
7F25 21157F Q0220 LD HL,DEF-52 +SET
TF28 220340 00230 LD {49n0H) , HL + STRING SPACE
7F2B 21477F 20240 LD HL,DEF-2 : SET
TF2E 22Bl48 00250 j#5) (49B1H) ,HL. r MEM SIZE
90260 ;SET DISK BASIC ENTRY WORDS
TF3Ll 214F7F @g270 LD HL, CSAVE
7F34 224141 29280 LD (41A1H), HL : "SAVE" WORD
7F37 21687F 00290 LD HL,LOAD
TF3A 228941 0309 LD (4189H) ,HL + "LOAD" WORD
7F3D 21497F 00310 LD HL,DEF
TF4Q 225C41 Q0320 LD (415CH) ,HL : "DEF" WORD
7F43 CD491R @0330 CALL 1B49H 1 NEW
TF46 C3C006 00340 Jp P6CCH ; READY/ //NOT 1A19H
235
7r49 CDB27F Q@360 DEF CALL 5N
TRAC CICCP6 09370 JP G6CCH : READY

230 / THE REST OF 80

TF4F
TF52
TF53
7F56
JF57
TF5A
7F5C
7F5D
760
TF62
TF65

7F68
7F6B
TPeC
TF6F
TF73
7F74
TF76
7F78
7F7B
7FIE
TF7F
7¥82
7F85
7re8
7F8B
7F8E
7F91
794
TF96
7F39
7F9B

7FID
7FIF
7FA2
7Fa4
TFAT

TFAC

B6FF
AF
De48?2
18FB
3AFETF
C3e402

CDFEDL
ES
41092
EDSBFE7F
BB
20F6
3E2A
323E3C
323F3C
£l
Cc3222C
CDCo@1
210A3D
222040
21D97F
CDA728
21FATF
2683
CD499@
FEZD
2811

FE32
FA96TF

21FATF

CDa228
EDS3FE7F
AF

BB

2807
21FFad
DF

3861

[]

21ECTF
CDA728

2693

08389

28400
28410
20420
20430
20440
20453
29460
0470
30483
23499
20500
33510
2@528
29538
33542
92550
easee
23570
aas52
28593
20600
00618
2620
03630
Q@640
20658
20660
20673
Bo68e
20690
29700
89710
o720
o738
742
o752
x7ed
20770
o780
ST
aABAD
081a
33820
es30
028445
20850
2860
Q887
208EQ
20899
22990
22919
88920
28930
23949
2250

09399 CSAVE LD HL, 360CH :RET POINTS
PUSH HL ; ROM WILL
1D HL, 2BFBH ; USE
PUSH HL
CALL @1FEH ;ON TAPE
LD B.@FFH : 255
XOR A ; PO008'S
CALL B264H WRITE
DINZ $-@3H 1 B=07
LD A, (SYNC) :NEW SYNC EYTE
JP J264H ;BACK TO ROM
LOAD CALL B1FEH ;ON TAPE
PUSH HL
CALL 9241H : READ
LD DE, (SYNC) sNEW SYNC BYTE
cp E ;A SAME AS E
JR NZ,$-88H tNO? GO AGAIN
D A,2RH ;*
D {3C3EH), A 1 SCREEN
LD (3C3FH) A 1 SAME+1
POP HL
Jp 20224 ; BACK TO ROM
s CALL 91094 :CLS
LD HL, 3DCFH 1 SCREEN LOC
LD (4920H) ,HL ; SET CURSCR
LD HL, MESG1 +SET PTR
CALL 28A7H +DISPLAY IN ROM
LD HL, BUFFER +SET PTR
LD BR,@3H ; THREE NUMBERS
CALL @49H ;KEYBD SCN
CP a0H +ENTER PRESSED?
JR Z,$+13H ;YES| CONTINUE
:NUMBER TEST ROUTINE/NUMBERS ONLY
CP Q30
Jp M, $—09H
cp @38H
JP P,$-@EH
LD (HL),A ;NO. TO BUFF
CALL 9330 ;DISPLAY IN ROM
INC HL :BUMP ONE
DINZ $-B16H ;B=07? NO GO AGAIN
XOR A $ZFERO IN A
LD (HL),A ; DELIMITER FOR BUFF
LD HL, BUFFER :SET PTR
+ROM ROUTINE CONVERTS ASCII NUMERIC/RESULTS IN DE
CaLL 2BG2H sVERY USEFUL
190} (sync),DE : STORE
XOR A ;ZERO A REG
CP E 1E=07
JR Z,ERROR : YES/END
LD HL., BFFH ;255 MAX NUMBER
RST 18H s DEPHL?
JR ¢, ERROR ;YES IF CARRY
RET
ERROR LD HL, ERRMSG :SET PTR
CALL 28ATH ; DISPLAY

22960

#@970 ;DELAY ROUTINE FOR ERROR DISPLAY--ABOUT 3 SECONDS

2@o8d

LD

B,@3H

+THREE LOCPS
Program continued

THE RESTOF 80 / 231

7FCD 21FFFF Q@999 LD HL, @FFFFH 765535

TFDE 2B 21900 DEC HL ;ONE LESS
7FDL 7C 01010 LD A,H ;HTO A
7FD2 BS Blo2g CR L ; 2ZERD TEST
7FD3 20FB 21930 JR NZ, §~03H sNOPE?
7FD5 18F6 71940 DINZ $-DBH s B=R?
7FD7 1829 91850 JR SCN s BACK AGATHN
7FD9 45 g1060 MESGL DEEM 'ENTER CODE NUMBER '
7FEB o 91870 DEFB a 1 STOPS OUTPUT
7FEC 20 91080 ERRMSG DEFM ' (1 TO 255)'
TFF9 80 21990 DEFB 2
004 @112¢ BUFFER DEFS B4 ; BUFFER LENGTH
7EFFE 0000 21119 SYNC DEFW @ :NEW SYNC BYTE STORE
#1120
91130 ;SET UP FOR AUTO START
41E2 21140 ORG 41E2H ;SET UP
41E2? E9 pLISY JP (HL) ; AUTO STARD
TF29 B1163 END TF2eH

29822 TOTAL ERRORS

232 ./ THE REST OF 80

Index

Array variables, 155
ASCIL, 51
ASCII code(s), 104, 105
program listing, 53-54
translating strings into, 51-53
ASCII disk files, 18
ASCII strings, 26
Assembly and check-out program
(EDTASM and T-BUG, 175-178
program listing, 178-179
Assembly-language and BASIC
programs, how to combine,
55-57
program listing, 57-59
Assembly-language routine to draw
lines, 89-9Q, 92-93
program listings, 94-98
BASIC, adding commands to, 60-63
program listings, 63-73
BASIC and assembly-language
programs, how to combine,
55-57
program listing, 57-59
BASIC compiler, 89
BASIC DATA statement lines, saving
screen as, 107-110
program listings, 110-115
BASIC interpreter, 18, 19, 55, 56, 57,
60, 128, 129, 158
BASIC keywords, defining, 173-174
program listing, 174
BASIC tokens, 56
Batch processing, 9
Binary search algorithm compared to
Shell-Metzner sort, 44-45
Blinking cursor for the Model [,
223-225
program listing, 226-227
Block moves, machine-language, 107

BREAK key, how to disable, 16-17
code, 17
Bugs and idiosyncracies in Radio
Shack's Model I disk BASIC,
calculations, loss of accuracy in, 38
comparison statement, 33
compound statement, 33
DATA statements, 34-35
double precision, 37
errors in arithmetic operations, 35
FIX function to create integer, 35
formulas, sensitivity to changes in
input values, 39-40
IF-THEN-ELSE statement, 35
IF-THEN statement, 33
INPUT#1 statement, 35
mathematically identical values,
interpretation of, 34
misinterpretation of statement, 34
PRINT statement, how to suppress
a line feed in, 34
real numbers, comparison of,
37-38
significant figures in BASIC, 36
single precision, 37
SOR funetion, inaccuracy of, 37
TAB function, use of spaces with,
35-36
trigonometric functions,
inaccuracy of, 36
user defined functions, 33-34
VAL function, 34
Byte,
least significant {L5B}, 86, 155, 209
most significant {MSB), 86, 155,
209
synchronizing, 211
Cassette programs, faster loading of,
202-213
program listings, 213-222
CHRS, 104

THE REST OF 80 / 233

CHRS${n] function, 51
CHR$(32}, 52, 33
Commands, adding to BASIC, 60-63
program listings, 63-73
Commands, program to describe,
116-117
program listing, 118-127
CRT, 25
Cursor, blinking, for the Model 1,
223-225
program listings, 226-227
Data entry, form fillout program for,
18
assembly-language portion, 23-25
assembly-language program listing,
27-30
BASIC portion, 25-26
BASIC program listing, 30-32
implementation of, 19-20
modifications, 26
DATA lines, 52
Debugging, program to aid in,
137-139
program listing, 139-142
DEFUSR, 56
Directory routine, 134-135
program listing, 135-136
Disk index, 128-131
program listings, 131-133
Disk menu program for
NEWDOS/80 Version 2, 180-181
prograrn listing, 181
EDTASM and T-BUG combined,
175-178
program listings, 178-179
80 Micro, see 80 Microcomputing
80 Microcomputing, 44, 85, 155, 156,
176, 180, 184, 191, 208, 211
Epson MX-100 printer, 130
500-baud rate of Model I, how to
exceed in cassette loading,
202-213
program listings, 213-222
Formatting, 104-105
program listing, 105-106

234 /| THE REST OF 80

Form fillout program for data entry,
18
assembly-language portion, 23-25
assemnbly-language program listing,
27-30
BASIC portion, 25-26
BASIC program listing, 30-32
implementation of, 19-20
madifications, 26
FOR-NEXT loop|s), 52, 85
Garbage collection, 62
Graphics editor, 107-110
program listings, 110-115
Hashing, 12
Idiosyncracies and bugs in Radio
Shack's Model I Disk BASIC,
calculations, loss of accuracy in, 38
comparison statement, 33
compound statement, 33
DATA statements, 34-35
double precision, 37
errors in arithmetic operations, 35
FIX function to create integer, 35
formulas, sensitivity to changes in
input values, 39-40
IF-THEN-ELSE statement, 35
IF-THEN statement, 33
INPUT#1 statement, 35
mathematicalty identical values,
interpretation of, 34
misinterpretation of statement, 34
PRINT statement, how to suppress
a line feed in, 34
real numbers, comparison of,
37-38
significant figures in BASIC, 36
single precision, 37
SQOR function, inaccuracy of, 37
TAB function, use of spaces with,
35-36
trigonometric functions,
inaccuracy of, 36
user defined functions, 33-34
VAL function, 34
Indexed access method, 13

under TRSDOS, 13-14
Index program for disks, 128-131
program listings, 131-133
Initialization, 86
Keystroke multiplier, LDOS,
173-174
program listing, 174
LDIR instruction, 85, 100
LDOS keystroke multiplier {KSMJ,
173-174
program listing, 174
Least significant byte {LSB}, 86, 155,
209
LEN, 158
Level Il BASIC Reference Manual, 16,
61
Level II manual, 101
LINEINPUT, 52
Line number, how to change with
POKE, 15-16
Link between BASIC and assembly-
language programs, 55-57
program listing, 57-59
LIST, how to disable, 15-16
code, 17
Machine-language sort routine buiit
into TRS-80, 41
program listings, 42-43
Machine-language subroutines,
starting address requirements in
Level II and Model 111 BASIC, 93
Memory size, setting automatically,
for tape-based BASIC programs,
228-230
program listing, 230-232
Model HI Disk System Owner's
Manual, 128
Most significant byte (MSB}, 86, 155,
209
Numbers, sorting on TRS-80, 41
program listings, 42-43
Numeric variables, 26
Password protection, locking and
unlocking, 163-164
program listing, 164-172

Pixels, 92
POKE, 104
using, to change line number,
15-16
PRINT@, 100
PRINT AT, 104
PRINT USING, 104
Professional-looking programs,
formatting, 104-105
program listing, 105-106
Pseudo instruction, 117
Radio Shack, 129
Random access, 10
examples, 11-12
locating files, 11
Renumber utility program, 143,
145-146
assembly-language program, using,
145
assembly-language program listing,
148-152
BASIC program, using, 144
BASIC program listing, 146-148
limitations, 145
Repeating keys for the Model 1,
223-225
program listing, 226-227
ROM, 55, 56, 57, 99
RST 10H, 55, 56, 57
Scripsit, modified to allow
communications pregram to
interface with it, 182-184
program listing, 184-180
use with T-BUG, 184
Scrolling, 85-88
program listing, 88
Scrolling, how to control, 99-101
program listings, 101-103
Sequential access, 9
Shell-Metzner sort routines,
comparison of, 44-45
description of program, 46-47
program listing, 47-50
Sketch, how to construct and save
file of, 107-110

THE RESTOF 80 / 235

program listings, 110-115
Slope of a line, 90
Sort routine, machine-language, built
into TRS-80, 41
program listings, 42-43
Start, automatic, for tape-based
BASIC programs, 228-230
program listing, 230-232
String packing algorithm, TRS-80, 45
String packing program, 158-161
program listing, 161-162
Strings,
displaying, 158
modifying, 158
packing, 158
STRINGS, 89
String variables, 19, 26, 51, 52, 61,
62, 63, 158
Synchronizing byte, 211
T-BUG and EDTASM combined,
175-178
program listing, 178-179
Tiny Pascal,
Celsius to Fahrenheit conversion,
74-75
compared to standard Pascal, 74,
191
cube root program, 75-76
disk version, 191-193
disk version, program listings,
196-201
disk version, user's manual,
193-196
equation solving program, 75
exponential function program, 80
Morse code program, reading,
82-84
Morse code program, speed
timing, 80-82
prime number generator, 78
Radic Shack's, 193
random number generators, 77-78
square root programs, 75-77
trigonometry program, 78-80
Tiny Pascal User's Manual, 193

236 /| THEREST OF 80

Token(s), 60, 145
BASIC, 56
TRSDOS's LIB function, 116
T-state, 203
Two's complement, 87
USR, 25, 56, 100
USR(n} function, 89
USR subroutines, 107
Variables,
array, 155
numeric, 26
string, 19, 26, 51, 52, 61, 62, 63,
158
Variables, program to list, 155-156
program listing, 157
VARPTR, 19, 25, 61, 63, 158
{x,y} coordinates, using, to draw
lines, 89-90, 92-93
program listings, 94-98
Z80, 128, 129
Z80 code, 86
Z80 microprocessor, 18, 155, 203

31

all
new

tutorials
and.
utilities

From the overflowing files of 80 MICRO: The very best
articles from files full of manuscripts too good to pass up.
These 31 useful, clearly documented tutorials and utilities
were chosen, edited, and formatted to last for years of
practical computing. Beginning and advanced program-
mers alike will find time- and effort-saving articles for the
TRS-80 Model I and Model 111. From line drawing to de-
bugging, from sorting routines to adding commands and
automatic features, you'll find THE REST OF 80 a gold-
mine of useful information.

ISBN 0-88006-062-X $9.97

