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PREFACE

This book has been designed as a complete self-contained text for
learning programming, using the Z80. It can be used by a person who
has never programmed before, and should also be of value to anyone
using the Z80.

For the person who has already programmed, this book will teach
specific programming techniques using (or working around) the speci-
fic characteristics of the Z80. This text covers the elementary to inter-
mediate techniques required to start programming effectively.

This text aims at providing a true level of competence to the person
who wished to program using this microprocessor. Naturally, no book
will effectively teach how to program, unless one actually practices.
However, it is hoped that this book will take the reader to the point
where he feels that he can start programming by himself and can solve
simple or even moderately complex problems using a microcomputer.

This book is based on the author’s experience in teaching more than
1000 persons how to program microcomputers. As a result, it is strongly
structured. Chapters normally go from the simple to the complex. For
readers who have already learned elementary programming, the intro-
ductory chapter may be skipped. For others who have never program-
med, the final sections of some chapters may require a second reading.
The book has been designed to take the reader systematically through
all the basic concepts and techniques required to build increasingly
complex programs. It is, therefore, strongly suggested that the ordering
of the chapters be followed. In addition, for effective results, it is
important that the reader attempt to solve as many exercises as possible.
The difficulty within the exercises has been carefully graduated. They
are designed to verify that the material which has been presented is
really understood. Without doing the programming exercises, it will
not be possible to realize the full value of this book as an educational
medium. Several of the exercises may require time, such as the multi-
plication exercise. However, by doing those, you will actually program
and learn by doing. This is indispensable.

For those who have acquired a taste for programming when reaching
the end of this volume, a companion volume is planned: the “‘Z80
Applications Book.”’

13



Other books in this series cover programming for other popular
MiCroprocessors.

For those who wish to develop their hardware knowledge, it is
suggested that the reference books “Microprocessors’’ (ref. C201) and
““Microprocessor Interfacing Techniques’’ (ref. C207) be consulted.

The contents of this book have been checked carefully and are
believed to be reliable. However, inevitably, some typographical or
other errors will be found. The author will be grateful for any comments
by alert readers so that future editions may benefit from their experience.
Any other suggestions for improvements, such as other programs
desired, developed, or found of value by readers, will be appreciated.

14



1
BASIC CONCEPTS

INTRODUCTION

This chapter will introduce the basic concepts and definitions re-
lating to computer programming. The reader already familiar with
these concepts may want to glance quickly at the contents of this
chapter and then move on to Chapter 2. It is suggested, however,
that even the experienced reader look at the contents of this intro-
ductory chapter. Many significant concepts are presented here in-
cluding, for example, two's complement, BCD, and other represen-
tations. Some of these concepts may be new to the reader: others
may improve the knowledge and skills of experienced programmers.

WHAT IS PROGRAMMING?

Given a problem, one must first devise a solution. This solution,
expressed as a step-by-step procedure, is called an algorithm. An
algorithm is a step-by-step specification of the solution to a given
problem. It must terminate in a finite number of steps. This
algorithm may be expressed in any language or symbolism. A sim-
ple example of an algorithm is:

1—insert key in the keyhole

2—turn key one full turn to the left
3—seize doorknob

4—turn doorknob left and push the door

15



PROGRAMMING THE Z80

At this point, if the algorithm is correct for the type of lock in-
volved, the door will open. This four-step procedure qualifies as an
algorithm for door opening.

Once a solution to a problem has been expressed in the form of
an algorithm, the algorithm must be executed by the computer.
Unfortunately, it is now a well-established fact that computers
cannot understand or execute ordinary spoken English (or any
other human language). The reason lies in the syntactic ambiguity
of all common human languages. Only a well-defined subset of
natural language can be ‘‘understood’”’ by the computer. This is
called a programming language.

Converting an algorithm into a sequence of instructions in a pro-
gramming language is called programming. To be more specific,
the actual translation phase of the algorithm into the program-
ming language is called coding. Programming really refers not just
to the coding but also to the overall design of the programs and
“data structures”” which will implement the algorithm.

Effective programming requires not only understanding the
possible implementation techniques for standard algorithms, but
also the skillful use of all the computer hardware resources, such as
internal registers, memory, and peripheral devices, plus a creative
use of appropriate data structures. These techniques will be
covered in the next chapters.

Programming also requires a strict documentation discipline, so
that the programs are understandable to others, as well as to the
author. Documentation must be both internal and external to the
program.

Internal program documentation refers to the comments placed
in the body of a program, which explain its operation.

External documentation refers to the design documents which
are separate from the program: written explanations, manuals,
and flowcharts.

FLOWCHARTING

One intermediate step is almost always used between the
algorithm and the program. 1t is called a flowchart. A flowchart is
simply a symbolic representation of the algorithm expressed as a
sequence of rectangles and diamonds containing the steps of the
algorithm. Rectangles are used for commands, or “executable
statements.”’ Diamonds are used for tests such as: If information

16



BASIC CONCEPTS

X is true, then take action A, else B. Instead of presenting a formal
definition of flowcharts at this point, we will introduce and discuss
flowcharts later on in the book when we present programs.
Flowcharting is a highly recommended intermediate step be-
tween the algorithm specification and the actual coding of the solu-
tion. Remarkably, it has been observed that perhaps 10% of the
programming population can write a program successfully with-
out having to flowchart. Unfortunately, it has also been observed
that 90% of the population believes it belongs to this 10%! The
result: 80% of these programs, on the average, will fail the first
time they are run on a computer. (These percentages are naturally
not meant to be accurate.j In short, most novice programmers sel-
dom see the necessity of drawing a flowchart. This usually results
in “unclean” or erroneous programs. They must then spend a long
time testing and correcting their program (this is called the

START

!

READ TEMPERATURE SETTING “T~

ON THERMOSTAT BOX
_ i {
READ ACTUAL ROOM TEMPERATURE "R~
FROM THERMOMETER OR OTHER SENSOR
2 1S TLESS
NO THAN R YES
(ROOM OREQUAL " (ROOM
TOO COLD) JOR? TOO HOTH)
HEATERON |4 5| HEATER OFF
(OPTIONAL DELAY) (OPTIONAL DELAY)

Fig. 1.1: A Flowchart for Keeping Room Temperature Constant
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PROGRAMMING THE Z80

debugging phase). The discipline of flowcharting is therefore
highly recommended in all cases. It will require a small amount of
additional time prior to the coding, but will usually result in a clear
program which executes correctly and quickly. Once flowcharting
is well understood, a small percentage of programmers will be able
to perform this step mentally without having to do it on paper. Un-
fortunately, in such cases the programs that they write will usual-
ly be hard to understand for anybody else without the documenta-
tion provided by flowcharts. As a result, it is universally recom-
mended that flowcharting be used as a strict discipline for any
significant program. Many examples will be provided throughout
the book.

INFORMATION REPRESENTATION

All computers manipulate information in the form of numbers or
in the form of characters. Let us examine here the external and
internal representations of information in a computer.

INTERNAL REPRESENTATION OF INFORMATION

All information in a computer is stored as groups of bits. A bit
stands for a binary digit(*‘0’’ or ‘“1”’). Because of the limitations
of conventional electronics, the only practical representation of infor-
mation uses two-state logic (the representation of the state ‘0’ and
“1°’). The two states of the circuits used in digital electronics
are generally ““on” or “off’’, and these are represented logi-
cally by the symbols ““0’’ or ‘1”’. Because these circuits are
used to implement ‘“logical”” functions, they are called ‘“‘binary
logic.” As a result, virtually all information-processing today is
performed in binary format. In the case of microprocessors in
general, and of the Z80 in particular, these bits are structured in
groups of eight. A group of eight bits is called a byte. A group of
four bits is called a nibble.

Let us now examine how information is represented internally in
this binary format. Two entities must be represented inside the
computer. The first one is the program, which is a sequence of
instructions. The second one is the data on which the program will
operate, which may include numbers or alphanumeric text. We will
discuss below three representations: program, numbers, and alpha-
numerics.
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Program Representation

All instructions are represented internally as single or multiple
bytes. A so-called ‘‘short instruction’ is represented by a single
byte. A longer instruction will be represented by two or more
bytes. Because the Z80 is an eight-bit microprocessor, it fetches
bytes successively from its memory. Therefore, a single-byte
instruction always has a potential for executing faster than a two-
or three-byte instruction. It will be seen later that this is an impor-
tant feature of the instruction set of any microprocessor and in
particular the Z80, where a special effort has been made to pro-
vide as many single-byte instructions as possible in order to im-
prove the efficiency of the program execution. However, the limita-
tion to 8 bits in length has resulted in important restrictions which
will be outlined. This is a classic example of the compromise be-
tween speed and flexibility in programming. The binary code used
to represent instructions is dictated by the manufacturer. The
Z80, like any other microprocessor, comes equipped with a- fixed
instruction set. These instructions are defined by the manufac-
turer and are listed at the end of this book, with their code. Any
program will be expressed as a sequence of these binary instruc-
tions. The Z80 instructions are presented in Chapter 4.

Representing Numeric Data

Representing numbers is not quite straightforward, and several
cases must be distinguished. We must first represent integers, then
signed numbers, i.e., positive and negative numbers, and finally we
must be able to represent decimal numbers. Let us now address
these requirements and possible solutions.

Representing integers may be performed by using a direct
binary representation. The direct binary representation is simply
the representation of the decimal value of a number in the binary
system. In the binary system, the right-most bit represents 2 to
the power 0. The next one to the left represents 2 to the power 1,
the next represents 2 to the power 2, and the ieft-most bit
represents 2 to the power 7=128.

b,bsb;b,b;b,b, b,

represents
b;2" + be2¢ + by2° + b2 + b,2° + b,22 + b,2! + b,20
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The powers of 2 are:
9T = 198, 26 = 64, 2° = 32,2 =16,2°=8,2:=4,2'=2,2°=1

The binary representation is analogous to the decimal representa-
tion of numbers, where “123" represents:

1 X 100 = 100
+2X 10= 20
+3X 1= 3

= 123
Note that 100 = 10% 10 = 10, 1 = 10°.
In this ‘“positional notation,” each digit represents a power of 10.

In the binary system, each binary digit or “‘bit” represents a power
of 2, instead of a power of 10 in the decimal system.

Example: ‘‘00001001”’ in binary represents:

1X 1=1 (2%
o0x 2=0 (29
00X 4=0 (29
1X 8=8 (2%)
00X 16=0 (24
00X 32=0 (2%
00X 64=0 (2°8)
0x128=0 (20
in decimal: =9
Let us examine some more examples:
“10000001"’ represents:
I1X 1= 1
00X 2= 0
0X 4= 0
o0OxX 8= 0
00X 16= 0
00X 32= 0
00X 64= 0
1 X 128 =128
in decimal: = 129

410000001’ represents, therefore, the decimal number 129.
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By examining the binary representation of numbers, you will
understand why bits are numbered from 0 to 7, going from right to
left. Bit 0 is “‘b,”" and corresponds to 2°. Bit 1 is *‘b,” and cor-
responds to 2!, and so on.

Decimal Binary Decimal Binary
01 00000000 32 | 00100000
1] 00000001 33 | 00100001
21 00000010 .
3| 00000011 .

41 00000100 .

51 00000101 63 ] 00111111
6| 00000110 64 { 01000000
7 1 00000111 65 | 01000001
81 00001000 .

91 00001001 .

10 § 00001010 127 01111111
11 | 00001011 128 | 10000000
12 | 00001100 129 | 10000001
13 | 00001101

14 | 00001110 .

15 | 00001111 .

16 | 00010000

17 | 00010001 .

. 254 11111110
31 | 00011111 255 | 11111111

Fig. 1.2: Decimal-Binary Table

The binary equivalents of the numbers from 0 to 255 are shown
in Fig. 1-2.

Exercise 1.1: What is the decimal value of 111111002
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Decimal to Binary

Conversely, let us compute the binary equivalent of *“11”
decimal:
11 +2=35 remains 1 —=1 (LSB)
5+2=2 remains 1 —=]
2+2=1 remains 0 —=0
1+2=0 remains 1 —=1 (MSB)

The binary equivalent is 1011 (read right-most column from bot-
tom to top).

The binary equivalent of a decimal number may be obtained by
dividing successively by 2 until a quotient of 0 is obtained.

Exercise 1.2: What is the binary for 2577

Exercise 1.3: Convert 19 to binary, then back to decimal.
Operating on Binary Data

The arithmetic rules for binary numbers are straightforward.
The rules for addition are:

0+0= 0
O+1= |
1+0= 0
1+1=(1) 0

where (1) denotes a ‘“‘carry’” of 1 (note that “10" is the binary
equivalent of 2" decimal). Binary subtraction will be performed
by “adding the complement’” and will be explained once we learn
how to represent negative numbers.

Example:
(2) 10
+(1) +01
=(3) 11

Addition is performed just like in decimal, by adding columns,
from right to left:

Adding the right-most column:

10
+01

0o+1= 1. No carry.)
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Adding the next column:
+01
11 (1 + 0 =1. No carry.)

Exercise 1.4: Compute 5 + 10 in binary. Verify that the result is 15.

Some additional examples of binary addition:

0010 (2) 0011 {3)
+0001 1 +0001 (1}
=0011 (3) =0100 (4)

This last example illustrates the role of the carry.

Looking at the right-most bits: 1 + 1 = (1) 0
A carry of 1 is generated, which must be added to the next bits:

001 — column 0 has just been added
+000 —
+ 1 (carry)

= (1)0 — where (1) indicates a new
carry into column 2.

The final result is: 0100

Another example:

0111 (1)
+0011  + {3)
1010  =(10)

In chis example, a carry is again generated, up to the left-most co-
lumn.

Exercise 1.5: Compute the result of:

1111
+0001

=9
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Does the result hold in four bits?

With eight bits, it is therefore possible to represent directly the
numbers 00000000 to 11111111, ie., “0” to “255”. Two
obstacles should be visible immediately. First, we are only
representing positive numbers. Second, the magnitude of these
numbers is limited to 255 if we use only eight bits. Let us address
each of these problems in turn.

Signed Binary

In a signed binary representation, the left-most bit is used to in-
dicate the sign of the number. Traditionally, <0’ is used to denote
a positive number while “1” is used to denote a negative number.
Now “11111111"" will represent —127, while “01111111" will
represent +127. We can now represent positive and negative
numbers, but we have reduced the maximum magnitude of these
numbers to 127.

Example: 0000 0001 represents +1 (the leading “0" is A Sl
followed by ‘000 0001 = 11.

“1000 0001” is —1 (the leading 1" is “—""}

Exercise 1.6: What is the representation of *‘—5"" in signed binary?

Let us now address the magnitude problem: in order to represent
larger numbers, it will be necessary to use a larger number of bits.
For example, if we use sixteen bits (two bytes) to represent
numbers, we will be able to represent numbers from —32K to
+32K in signed binary (1K in computer jargon represents 1,024).
Bit 15 is used for the sign, and the remaining 15 bits (bit 14 to bit
0) are used for the magnitude: 2'* = 32K. If this magnitude is still
too small, we will use 3 bytes or more. If we wish to represent large
integers, it will be necessary to use a larger number of bytes inter-
nally to represent them. This is why most simple BASICs, and
other languages, provide only a limited precision for integers. This
way, they can use a shorter internal format for the numbers which
they manipulate. Better versions of BASIC, or of these other
languages, provide a larger number of significant decimal digits at
the expense of a large number of bytes for each number.

Now let us solve another problem, the one of speed efficiency.
We are going to attempt performing an addition in the signed
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binary representation which we have introduced. Let us add *“—5’
and “+7".

+7 is represented by 00000111
—5 is represented by 10000101

The binary sum is: 10001100, or —12

This is not the correct result. The correct result should be +2. In
order to use this representation, special actions must be taken, de-
pending on the sign. This results in increased complexity and re-
duced performance. In other words, the binary addition of signed
numbers does not “‘work correctly.’’ This is annoying. Clearly, the
computer must not only represent information, but also perform
arithmetic on it.

The solution to this problem is called the two's complement
representation, which will be used instead of the signed binary
representation. In order to introduce two's complement let us first
introduce an intermediate step: one’s complement.

One's Complement

In the one’s complement representation, all positive integers are
represented in their correct binary format. For example “+3" is
represented as usual by 00000011. However, its complement *“—3”’
is obtained by complementing every bit in the original representa-
tion. Each 0 is transformed into a 1 and each 1 is transformed into
a 0. In our example, the one's complement representation of *“—3"’
will be 11111100.

Another example:

+2 is 00000010
—21is 11111101

Note that, in this representation, positive numbers start with a
“0”" on the left, and negative ones with a ‘““1” on the left.

Exercise 1.7: The representation of “+6" is “00000110’’. What is
the representation of **—6" in one’s complement?

As a test, let us add minus 4 and plus 6:
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—41is 11111011
+6 is 00000110

the sum is: (1) 00000001 where (1) indicates a
carry

The “‘correct result’’ should be “2”, or “00000010"".

Let us try again:

—3is 11111100
—2is 11111101

1) 00000001
The sum is: (1

or “1,” plus a carry. The correct result should be ““—5.”” The repre-
sentation of “‘—5°? is 11111010. It did not work.

This representation does represent positive and negative
numbers. However the result of an ordinary addition does not
always come out ‘“‘correctly.” We will use still another representa-
tion. It is evolved from the one’s complement and is called the
two’s complement representation.

Two’s Complement Representation

In the two's complement representation, positive numbers are
still represented, as usual, in signed binary, just like in one’s com-
plement. The difference lies in the representation of negative
numbers. A negative number represented in two's complement is
obtained by first computing the one's complement, and then ad-
ding one. Let us examine this in an example:

+3 is represented in signed binary by 00000011. Its one’s com-
plement representation is 11111100. The two's complement is ob-
tained by adding one. It is 11111101.

Let us try an addition:

(3) 00000011
+(5) +00000101

=(8) =00001000

The result is correct.
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Let us try a subtraction:

(3) 00000011
(—5) +11111011
=11111110

Let us identify the result by computing the two’s complement:

the one's complement of 11111110 is 00000001

Adding 1 + 1
therefore the two’s complement is 00000010 or +2

Our result above, ‘11111110 represents ‘“—2"". It is correct.

We have now tried addition and subtraction, and the results were correct
(ignoring the carry). It seems that two’s complement works!

Exercise 1.8:  What is the two's complement representation of
41272

Exercise 1.9:  What is the two's complement representation of
‘12877

Let us now add +4 and —3 (the subtraction is performed by add-
ing the two's complement:

+4 is 00000100
—-3is 11111101

The result is: (1} 00000001

If we ignore the carry, the result is 00000001, i.e.. ‘1"’ in decimal.
This is the correct result. Without giving the complete mathe-
matical proof, let us simply state that this representation does
work. In two’s complement, it is possible to add or subtract signed
numbers regardless of the sign. Using the usual rules of binary addi-
tion, the result comes out correctly, including the sign. The carry
Is ignored. This is a very significant advantage. If it were not the
case, one would have to correct the result for sign every time, caus-
ing a much slower addition or subtraction time.

For the sake of completeness, let us state that two's complement
is simply the most convenient representation to use for simpler
processors such as microprocessors. On complex processors, other
representations may be used. For example, one's complement may
be used, but it requires special circuitry to “‘correct the result.”
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From this point on, all signed integers will implicitly be represented
internally in two’s complement notation. See Fig. 1.3 for a table of
two’s complement numbers.

Exercise 1.10: What are the smallest and the largest numbers
which one may represent in two's complement notation, using only
one byte?

Exercise 1.11: Compute the two's complement of 20. Then com-
pute the two’s complement of your result. Do you find 20 again?

The following examples will serve to demonstrate the rules of two’s
complement. In particular, C denotes a possible carry (or borrow)
condition. (It is bit 8 of the result.)

V denotes a two's complement overflow, i.e., when the sign of the
result is changed ‘‘accidentally”” because the numbers are too
large. It is an essentially internal carry from bit 6 into bit 7 (the
sign bit). This will be clarified below.

Let us now demonstrate the role of the carry “C’’ and the overflow
4 (V iR .
The Carry C

Here is an example of a carry:

(128) 10000000
+(129) 410000001

(257) = (1) 00000001

where (1) indicates a carry.

The result requires a ninth bit (bit “‘8”, since the right-most bit is
“0"). It is the carry bit.

If we assume that the carry is the ninth bit of the result, we
recognize the result as being 100000001 = 257.

However, the carry must be recognized and handled with care.
Inside the microprocessor, the registers used to hold information
are generally only eight-bit wide.When storing the result, only bits 0 to
7 will be preserved.

A carry, therefore, always requires special action: it must be
detected by special instructions, then processed. Processing the
carry means either storing it somewhere (with a special instruc-
tion), or ignoring it, or deciding that it is an error (if the largest
authorized result is “11111111"').
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. 2’s complement B 2’s complement
code code
+ 127 O1t1111} —128 10000000
+126 01111110 -127 10000001
+125 01111101 ~ 126 10000010
— 125 10000011
+65 01000001 - 65 10111111
+ 64 01000000 — 64 11000000
+63 00111111 - 63 11000001
+33 00100001 -33 11011111
+32 00100000 -32 11100000
+31 00011111 —31 11100001
+17 00010001 —17 11101111
+16 00010000 - 16 11110000
+15 00001111 - 15 11110001
+14 00001110 - 14 11110010
+13 00001101 - 13 11110011
+12 00001100 —12 11110100
+11 00001011 ~11 11110101
+ 10 00001010 - 10 11110110
+9 00001001 -9 11110111
+8 00001000 -8 11111000
+7 00000111 -7 11111001
+6 00000110 -6 11111010
+5 00000101 -5 11111011
+4 00000100 -4 11111100
+3 00000011 -3 11111101
+2 00000010 -2 1I111o
+ 1 00000001 -1 IBRRDREE!
+0 00000000

Fig. 1.3: 2’s Complement Table
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Overflow V
Here is an example of overflow:
bit 6
bit 7
01000000 (64)
+01000001 +{65)
= 10000001 ==(—127)

An internal carry has been generated from bit 6 into bit 7. This is
called an overflow.

The result is now negative, ‘‘by accident.”” This situation must
be detected, so that it can be corrected.

Let us examine another situation:

11111111 {(—1)
+11111111  +(—1)
=(1) 11111110 =(-2)

carry

In this case, an internal carry has been generated from bit 6 into
bit 7, and also from bit 7 into bit 8 (the formal ‘‘Carry” C we have
examined in the preceding section). The rules of two’'s complement
arithmetic specify that this carry should be ignored. The result is
then correct.

This is because the carry from bit 6 into bit 7 did not change the
sign bit.

This is not an overflow condition. When operating on negative
numbers, the overflow is not simply a carry from bit 6 into bit 7.
Let us examine one more example.

11000000 (—64)
+10111111 (—65)
={1) 01111111 (+127)

carry

This time, there has been no internal carry from bit 6 into bit 7, but
there has been an external carry. The result is incorrect, as bit 7
has been changed. An overflow condition should be indicated.
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Overflow will occur in four situations:

1—adding large positive numbers

2—adding large negative numbers

3—subtracting a large positive number from a large negative
number

4—subtracting a large negative number from a large positive
number.

Let us now improve our definition of the overflow:

Technically, the overflow indicator, a special bit reserved for this
purpose, and called a “‘flag,”” will be set when there is a carry from
bit 6 into bit 7 and no external carry, or else when there is no carry
from bit 6 into bit 7 but there is an external carry. This indicates
that bit 7, ie., the sign of the result, has been accidentally
changed. For the technically-minded reader, the overflow flag is
set by Exclusive ORing the carry-in and carry-out of bit 7 (the sign
bit). Practically every microprocessor is supplied with a special
overflow flag to automatically detect this condition, which re-
quires corrective action.

Overflow indicates that the result of an addition or a subtraction
requires more bits than are available in the standard eight-bit
register used to contain the result.

The Carry and the Ouverflow

The carry and the overflow bits are called ““flags.” They are pro-
vided in every microprocessor, and in the next chapter we will
learn to use them for effective programming. These two indicators
are located in a special register called the flags or “‘status”
register. This register also contains additional indicators whose
function will be clarified in Chapter 4.

Examples

Let us now illustrate the operation of the carry and the overflow
in actual examples. In each example, the symbol V denotes the
overflow, and C the carry.

If there has been no overflow, V = 0. If there has been an
overflow, V = 1 (same for the carry C). Remember that the rules of
two's complement specify that the carry be ignored. (The
mathematical proof is not supplied here.}
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Positive-Positive

00000110 (+6)
(

-+ 00001000 +8)
= 00001110 (+14) V:0 C:0
(CORRECT)

Positive-Positive with Overflow

01111111 (+127)
+ 00000001 {(+1)

= 10000000 (—128) V:1 C:0

The above is invalid because an overflow has occurred.
(ERROR)

Positive-Negative (result positive)

00000100 (+4)
+ 11111110 (-2

=(1)00000010 (+2) V:0 C:1 (disregard)
{CORRECT)
Positive-Negative (result negative)

00000010 (+2)
+ 11111100 (—4)

= 11111110 (—2) V:0 C:0
{(CORRECT)
Negative-Negative

11111110 (—2)
+ 11111010 (—4)
=(1)11111010 (—6) V:0 C:1 (disregard)
(CORRECT)

Negative-Negative with Overflow

10000001 (—127)
+ 11000010 (—62)

=(1)01000011 (67) V:1 C:1
(ERROR)
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This time an “underflow’’ has occurred, by adding two large
negative numbers. The result would be —189, which is too large to
reside in eight bits.

Exercise 1.12:  Complete the following additions. Indicate the

result, the carry C, the overflow V, and whether the result is correct
or not:

10111111 () 11111010 (3
+11000001 () +11111001 ()
= V: C: = V: C:
[J CORRECT J ERROR J CORRECT O ERROR
00010000 () 01111110 ()
+01000000 ) +00101010 .}
= V: C: = V: C:

J CORRECT 0 ERROR UJ CORRECT UJ ERROR

Exercise 1.13: Can you show an example of overflow when adding a
positive and a negative number? Why?

Fixed Format Representation

Now we know how to represent signed integers. However, we
have not yet resolved the problem of magnitude. If we want to
represent larger integers, we will need several bytes. In order to
perform arithmetic operations efficiently, it is necessary to use a
fixed number of bytes rather than a variable one. Therefore, once
the number of bytes is chosen, the maximum magnitude of the
number which can be represented is fixed.

Exercise 1.14:  What are the largest and the smallest numbers
which may be represented in two bytes using two’s complement?

The Magnitude Problem

When adding numbers we have restricted ourselves to eight bits
because the processor we will use operates internally on eight bits
at a time. However, this restricts us to the numbers in the range
—128 to +127. Clearly, this is not sufficient for many applications.

Multiple precision will be used to increase the number of digits
which can be represented. A two-, three-, or N-byte format may
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then be used. For example, let us examine a 16-bit, ‘‘double-pre-
cision”” format:

00000000 00000000 is “0”
00000000 00000001 is “1”

(ﬁilllll 11111111 is “‘32767"
11111111 11111111 is =17
11111111 11111110 is ““—2"

Exercise 1.15: What is the largest negative integer which can be
represented in a two’s complement triple-precision format?

However, this method will result in disadvantages. When adding
two numbers, for example, we will generally have to add them
eight bits at a time. This will be explained in Chapter 3 (Basic Pro-
gramming Techniques). It results in slower processing. Also, this
representation uses 16 bits for any number, even if it could be
represented with only eight bits. It is, therefore, common to use 16
or perhaps 32 bits, but seldom more.

Let us consider the following important point: whatever the
number of bits N chosen for the two’s complement representation,
it is fixed. If any result or intermediate computation should
generate a number requiring more than N bits, some bits will be
lost. The program normally retains the N left-most bits (the most
significant) and drops the low-order ones. This is called truncating
the result.

Here is an example in the decimal system, using a six digit
representation:

123456
X 1.2

246912
123456

=148147.2

The result requires 7 digits! The ‘2" after the decimal point will be
dropped and the final result will be 148147. It has been truncated.
Usually, as long as the position of the decimal point is not lost, this
method is used to extend the range of the operations which may be
performed, at the expense of precision.

The problem is the same in binary. The details of a binary multi-
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plication will be shown in Chapter 4.

This fixed-format representation may cause a loss of precision,
but it may be sufficient for usual computations or mathematical
operations.

Unfortunately, in the case of accounting, no loss of precision is
tolerable. For example, if a customer rings up a large total on a
cash register, it would not be acceptable to have a five figure
amount to pay, which would be approximated to the dollar.
Another representation must be used wherever precision in the
result is essential. The solution normally used is BCD, or
binary-coded decimal.

BCD Representation

The principle used in representing numbers in BCD is to encode
each decimal digit separately, and to use as many bits as necessary
to represent the complete number exactly. In order to encode each
of the digits from 0 through 9, four bits are necessary. Three bits
would only supply eight combinations, and can therefore not en-
code the ten digits. Four bits allow sixteen combinations and are
therefore sufficient to encode the digits ““0”" through “9”. It can
also be noted that six of the possible codes will not be used in the
BCD representation (see Fig. 1-3). This will result later on in a po-
tential problem during additions and subtractions, which we will
have to solve. Since only four bits are needed to encode a BCD

BCD BCD
CODE SYMBOL CODE SYMBOL

0000 0 1000 8
0001 I 1001 9
0010 2 1010 unused
0011 3 1011 unused
0100 4 1100 unused
0101 5 1101 unused
0110 6 1110 unused
0111 7 1111 unused

Fig. 1.4: BCD Table
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digit, two BCD digits may be encoded in every byte. This is called
“packed BCD.”
As an example, “00000000" will be 00" in BCD. “10011001”

will be “99"".
A BCD code is read as follows:
0010 0001
BCD digit 2"
BCD digit “1" <«—
BCD number ‘21"’
Exercise 1.16:  What is the BCD representation for 297¢ *91"°?
Exercise 1.17: Is “'10100000"" a valid BCD representation? Why?

As many bytes as necessary will be used to represent all BCD
digits. Typically, one or more nibbles will be used at the beginning
of the representation to indicate the total number of nibbles, i.e.,
the total number of BCD digits used. Another nibble or byte will
be used to denote the position of the decimal point. However, con-
ventions may vary.

Here is an example of a representation for multibyte BCD in-
tegers:

{ 3 [ + | 2 [ 2 | 1 | (3bytes)
! \_/‘—\/—\__,./
nun%ber i’ number ‘221"
of digits '

(up to 255) sign

This represents +221
(The sign may be represented by 0000 for +, and 0001 for —, for
example.)

Exercise 1.18: Using the same convention, represent “‘—23123"
Show it in BCD format, as above, then in binary.

Exercise 1.19: Show the BCD for *'222°" and *‘111", then for the re-
sult of 222 X 111. (Compute the result by hand, then show it in the
above representation.)

The BCD representation can easily accommodate decimal
numbers.
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For example, +2.21 may be represented by:

L3 | 2 ] +] 2 [ 2 1
R
i l i
3 digits “."is on the -+

left of digit 2

The advantage of BCD is that it yields absolutely correct
results. Its disadvantage is that it uses a large amount of memory
and results in slow arithmetic operations. This is acceptable only
in an accounting environment and is normally not used in other
cases.

Exercise 1.20: How many bits are required to encode ‘9999 in
BCD? And in two's complement?

We have now solved the problems associated with the represen-
tation of integers, signed integers and even large integers. We
have even already presented one possible method of representing
decimal numbers, with BCD representation. Let us now examine
the problem of representing decimal numbers in a fixed length for-
mat.

Floating-Point Representation

The basic principle is that decimal numbers must be represented
with a fixed format. In order not to waste bits, the representation
will normalize all the numbers.

For example, “0.000123" wastes three zeros on the left of the
number, which have no meaning except to indicate the position of
the decimal point. Normalizing this number results in 123 X 103,
“.123" is called a normalized mantissa, ‘‘—3"" is called the expo-
nent. We have normalized this number by eliminating all the meaning-
less zeros on the left of it and adjusting the exponent.

Let us consider another example:
22.1is normalized as .221 x 10?

or M X 10F where M is the mantissa, and E is the exponent.
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It can be readily seen that a normalized number is characterized
by a mantissa less than 1 and greater or equal to .1 in all cases
where the number is not zero. In other words, this can be repre-
sented mathematically by:

1<M<lorlo'<s M<10°
Similarly, in the binary representation:

2-1gM<2° (or .5<M<1)
Where M is the absolute value of the mantissa (disregarding the
sign).
For example:

111.01 is normalized as: .11101 X 22

The mantissa is 11101,

The exponent is 3.

Now that we have defined the principle of the representation,
let us examine the actual format. A typical floating-point represen-
tation appears below.

31 24 23 16 15 8 7 0
I 1 i |

S EXP S M A N T 1 S S A
| f L L

Fig. 1.5: Typical Floating-Point Representation

In the representation used in this example, four bytes are used
for a total of 32 bits. The first byte on the left of the illustration is
used to represent the exponent. Both the exponent and the man-
tissa will be represented in two's complement. As a result, the
maximum exponent will be —128. ““S”’ in Fig. 1-5 denotes the sign
bit.

Three bytes are used to represent the mantissa. Since the first
bit in the two's complement representation indicates the sign, this
leaves 23 bits for the representation of the magnitude of the man-
tissa.

38



BASIC CONCEPTS

Exercise 1.21: How many decimal digits can the mantissa repre-
sent with the 23 bits?

This is only one example of a floating point representation. It is
possible to use only three bytes, or it is possible to use more. The
four-byte representation proposed above is just a common one
which represents a reasonable compromise in terms of accuracy,
magnitude of numbers, storage utilization, and efficiency in
arithmetic operation. .

We have now explored the problems associated with the rep-
resentation of numbers and we know how to represent them in in-
teger form, with a sign, or in decimal form. Let us now examine
how to represent alphanumeric data internally.

Representing Alphanumeric Data

The representation of alphanumeric data. i.e. characters, is com-
pletely straightforward: all characters are encoded in an eight-bit
code. Only two codes are in general use in the computer world, the
ASCII Code, and the EBCDIC Code. ASCII stands for “American
Standard Code for Information Interchange,”” and is universally
used in the world of microprocessors. EBCDIC is a variation of
ASCII used by IBM, and therefore not used in the microcomputer
world unless one interfaces to an IBM terminal.

Let us briefly examine the ASCII encoding. We must encode 26
letters of the alphabet for both upper and lower case, plus 10
numeric symbols, plus perhaps 20 additional special symbols. This
can be easily accomplished with 7 bits, which allow 128 possible
codes. (See Fig.1-6.) All characters are therefore encoded in 7 bits.
The eighth bit, when it is used, is the parity bit. Parity is a tech-
nique for verifying that the contents of a byte have not been ac-
cidentally changed. The number of 1’s in the byte is counted and
the eighth bit is set to one if the count was odd, thus making the
total even. This is called even parity. One can also use odd parity,
Le. writing the eighth bit (the left-most) so that the total number of
1's in the byte is odd.

Example: let us compute the parity bit for “0010011" using even
parity. The number of 1's is 3. The parity bit must therefore be a 1
so that the total number of bits is 4, i.e. even. The result is
10010011, where the leading 1 is the parity bit and 0010011 iden-
tifies the character.
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The table of 7-bit ASCII codes is shown in Fig. 1-6. In practice, it
is used ‘‘as is,’”’ i.e. without parity, by adding a 0 in the left-most
position, or else with parity, by adding the appropriate extra bit on
the left.

Exercise 1.27- Compute the 8-bit representation of the digits 0"’
through 9", using even parity. (This code will be used in applica-
tion examples of Chapter 8.

Exercise 1.23: Same for the letters “A" through i

Exercise 1.24: Using a non-parity ASCII code (where the left-most
bit is “0”), indicate the binary contents of the 4 bytes below:

HEX _MSD 0 1 2 3 4 5 6 7
1sp | BITS 000 001 010 011 100 101 110 111
0 o000 | NUL DLE SPACE 0 @ P — P
1 0001 SOH DC1 ! 1 A Q a q
2 ooto | STX  DC2 2 8 AR b r
3 0011 ETX DC3 # 3 C S c s
4 o100 | EOT DC4 $ 4 D T d t
5 0101 | ENQ  NAK % 5 E U e u
6 0110 | ACK  SYN & 6 F v f v
7 o111 BEL ETB ’ 7 G W g w
8 1000 BS  CAN ( g H X h X
9 1001 HT EM ) 9 ! Y i y
A 1010 LF  SUB . : J Z z
B 1011 VT  ESC + : K { K {
c 1100 FF FS , < L A P
D 1101 CR GS - = M ] m }
E 1110 S0 RS : > N A N o~
F 111 S| us / 2 0O <« o DEL

Fig. 1.6: ASCII Conversion Table

(see Appendix B for abbreviations)

In specialized situations such as telecommunications, other
codings may be used such as error-correcting codes. However they
are beyond the scope of this book.
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We have examined the usual representations for both program
and data inside the computer. Let us now examine the possible ex-
ternal representations.

EXTERNAL REPRESENTATION OF INFORMATION

The external representation refers to the way information is pre-
sented to the user, i.e. generally to the programmer. Information
may be presented externally in essentially three formats: binary,
octal or hexadecimal and symbolic.

1. Binary

It has been seen that information is stored internally in bytes,
which are sequences of eight bits (0’s or 1's). It is sometimes
desirable to display this internal information directly in its binary
format and this is called binary representation. One simple exam-
ple is provided by Light Emitting Diodes (LEDs) which are essen-
tially miniature lights, on the front panel of the microcomputer. In
the case of an eight-bit microprocessor, a front panel will typically
be equipped with eight LEDs to display the contents of any inter-
nal register. (A register is used to hold eight bits of information
and will be described in Chapter 2). A lighted LED indicates a one.
A zero is indicated by an LED which is not lighted. Such a binary
representation may be used for the fine debugging of a complex
program, especially if it involves input/output, but is naturally
impractical at the human level. This is because in most cases, one
likes to look at information in symbolic form. Thus “9" is much
easler to understand or remember than “1001". More convenient
representations have been devised, which improve the person-
machine interface.

2. Octal and Hexadecimal

“Octal” and ‘‘hexadecimal’’ encode respectively three and four
binary bits into a unique symbol. In the octal system, any
combination of three binary bits is represented by a number be-
tween 0 and 7.

“Octal” is a format using three bits, where each combination of
three bits is represented by a symbol between 0 and 7:
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binary | octal

000
001
010
011
100
101
110
111

SO UL WO

Fig. 1.7: Octal Symbols

For example, “00 100 100" binary is represented by:

v v v
0 4 4

or ‘044" in octal.

Another example: 11 111 111 is:
v v v
3 7 7

or “377" in octal.

117

Conversely, the octal 211" represents:
010 001 001
or *“10001001" binary.

Octal has traditionally been used on older computers which were
employing various numbers of bits ranging from 8 to perhaps 64.
More recently, with the dominance of eight-bit microprocessors,
the eight-bit format has become the standard, and another more
practical representation is used. This is hexadecimal.

In the hexdecimal representation, a group of four bits is en-
coded as one hexadecimal digit. Hexadecimal digits are
represented by the symbols from 0 to 9, and by the letters A, B, C,
D. E. F. For example, 0000 is represented by ““0”, “0001" is
represented by ‘1" and ‘“1111"" is represented by the letter “F”
(see Fig. 1-8).
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DECIMAL BINARY HEX OCTAL
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 8 10
9 1001 ] 1A
10 1010 A 12
I 1011 B 13
12 1100 C 14
13 1101 D 16
14 1110 E 16
15 1M F 17

Fig. 1.8: Hexadecimal Codes
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Example: 1010 0001 in binary is represented by
et

A 1 in hexadecimal.

Exercise 1.25: What is the hexadecimal representation of
©101010107?°

Exercise 1.26: Conversely, what is the binary equivalent of “FA”
hexadecimal?

Exercise 1.27: What is the octal of *‘01000001 "2

Hexadecimal offers the advantage of encoding eight bits into on-
ly two digits. This is easier to visualize or memorize and faster to
type into a computer than its binary equivalent. Therefore, on
most new microcomputers, hexadecimal is the preferred method of
representation for groups of bits.

Naturally, whenever the information present in the memory has
a meaning, such as representing text or numbers, hexadecimal is
not convenient for representing the meaning of this information
when it is brought out for use by humans.

Symbolic Representation

Symbolic representation refers to the external representation of
information in actual symbolic form. For example, decimal num-
bers are represented as decimal numbers, and not as sequences of
hexadecimal symbols or bits. Similarly, text is represented as
such. Naturally, symbolic representation is most practical to the
user. It is used whenever an appropriate display device is
available, such as a CRT display or a printer. (A CRT display is a
television-type screen used to display text or graphics.}) Unfortu-
nately, in smaller systems such as one-board microcomputers, it is
uneconomical to provide such displays, and the user is restricted
to hexadecimal communication with the computer.

Summary of External Representations

Symbolic representation of information is the most desirable
since it is the most natural for a human user. However, it requires
an expensive interface in the form of an alphanumeric keyboard.,
plus a printer or a CRT display. For this reason, it may not be
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available on the less expensive systems. An alternative type of rep-
resentation is then used, and in this case hexadecimal is the domi-

nant representation. Only in rare cases relating to fine de-bugging
at the hardware or the software level is the binary representation

used. Binary directly displays the contents of registers of memory
in binary format.

(The utility of a direct binary display on a front panel has always
been the subject of a heated emotional controversy, which will not
be debated here.)

We have seen how to represent information internally and exter-
nally. We will now examine the actual microprocessor which will
manipulate this information.

Additional Exercises
Exercise 1.28: What is the advantage of two's complement over
other representations used to represent signed numbers?

Exercise 1.29: How would you represent 1024’ in direct binary?
Signed binary? Two's complement?

Exercise 1.30: What is the V-bit? Should the programmer test it
after an addition or subtraction?

Exercise 1.31: Compute the two's complement of “+16", “+17",
lt+18”' “.—16", ““17”, “_18”_

Exercise 1.32: Show the hexadecimal representation of the follow-
ing text, which has been stored internally in ASCII format, with
no parity: = “MESSAGE".
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780 HARDWARE ORGANIZATION

INTRODUCTION

In order to program at an elementary level, it is not necessary to
understand in detail the internal structure of the processor that one is
using. However, in order to do efficient programming, such an
understanding is required. The purpose of this chapter is to present the
basic hardware concepts necessary for understanding the operation of
the Z80 system. The complete microcomputer system includes not only
the microprocessor unit (here the Z80), but also other components.
This chapter presents the Z80 proper, while the other devices (mainly
input/output) will be presented in a separate chapter (Chapter 7).

We will review here the basic architecture of the microcomputer
system, then study more closely the internal organization of the Z80.
We will examine, in particular, the various registers. We will then study
the program execution and sequencing mechanism. From a hardware
standpoint, this chapter is only a simplified presentation. The reader in-
terested in gaining detailed understanding is referred to our book ref.
C201 (““Microprocessors,”’” by the same author).

The Z80 was designed as a replacement for the Intel 8080, and to of-
fer additional capabilities. A number of references will be made in this
chapter to the 8080 design.

SYSTEM ARCHITECTURE

The architecture of the microcomputer system appears in Figure 2.1.
The microprocessor unit (MPU), which will be a Z.80 here, appears on
the left of the illustration. It implements the functions of a central-
processing unit (CPU) within one chip: it includes an arithmetic-logical
unit (ALU), plus its internal registers, and a control unit (CU), in
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charge of sequencing the system. Its operation will be explained in this
chapter.

\V

0sC [ K DATA  BUS

PORT A
ROM RAM PIO

B
280
PORT B
—dqRST

MREQ
RD

ADDRESS  BUS

>
L 7
< CONIROL  BUS ‘>

TV GND

Fig. 2.1: Standard Z80 System

The MPU creates three huses: an 8-bit bidirectional dara bus, which
appears at the top of the illustration, a 16-bit unidirectional address
bus, and a control bus, which appears at the bottom of the illustration.
Let us describe the function of each of the buses.

The data bus carries the data being exchanged by the various ele-
ments of the system. Typically, it will carry data from the memory to
the MPU or from the MPU to the memory or from the MPU to an in-
put/output chip. (An input/output chip is a component in charge of
communicating with an external device.)

The address bus carries an address generated by the MPU, which will
select one internal register within one of the chips attached to the
system. This address specifies the source, or the destination, of the data
which will transit along the data bus.

The control bus carries the various synchronization signals required
by the system.

Having described the purpose of buses, let us now connect the addi-
tional components required for a complete system.

Every MPU requires a precise timing reference, which is supplied by
a clock and a crystal. In most “‘older®’ microprocessors, the clock-oscil-
lator is external to the MPU and requires an extra chip. In most recent
microprocessors, the clock-oscillator is usually incorporated within the
MPU. The quartz crystal, however, because of its bulk, is always exter-
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nal to the system. The crystal and the clock appear on the left of the
MPU box in Figure 2.1.

Let us now turn our attention to the other elements of the system.
Going from left to right on the illustration, we distinguish:

The ROM is the read-only memory and contains the program for the
system. The advantage of the ROM memory is that its contents are per-
manent and do not disappear whenever the system is turned off. The
ROM, therefore, always contains a bootstrap or a monitor program
(their function will be explained later) to permit initial system opera-
tion. In a process-control environment, nearly all the programs will
reside in ROM, as they will probably never be changed. In such a case,
the industrial user has to protect the system against power failures; pro-
grams must not be volatile. They must be in ROM.

However, in a hobbyist environment, or in a program-development
environment (when the programmer fests his program), most of the
programs will reside in RAM so that they can be easily changed. Later,
they may remain in RAM, or be transferred into ROM, if desired.
RAM, however, is volatile. Its contents are lost when power is turned
off.

The RAM (random-access memory) is the read/write memory for the
system. In the case of a control system, the amount of RAM will
typically be small (for data only). On the other hand, in a program-
development environment, the amount of RAM will be large, as it will
contain programs plus development software. All RAM contents must
be loaded prior to use from an external device.

Finally the system will contain one or more interface chips so that it
may communicate with the external world. The most frequently used
interface chip is the P1O or parallel input/output chip. It is the one
shown on the illustration. This P1O, like all other chips in the system,
connects to all three buses and provides at least two 16-bit ports for
communication with the outside world. For more details on how an ac-
tual P10 works, refer to book C201 or, for specifics of the Z80 system,
refer to Chapter 7 (Input/Output Devices).

All the chips are connected to all three buses, including the control
bus. However, to clarify the illustration, the connections between the
control bus and these various chips are not shown on the diagram.

The functional modules which have been described need not
necessarily reside on a single LSI chip. In fact, we could use combina-
tion chips, which may include both P10 and a limited amount of ROM
or RAM.

Still more components will be required to build a real system. In par-
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ticular, the buses usually need to be buffered. Also, decoding logic may
be used for the memory RAM chips, and, finally, some signals may
need to be amplified by drivers. These auxiliary circuits will not be
described here as they are not relevant to programming. The reader in-
terested in specific assembly and interfacing techniques is referred to
book C207 ‘‘Microprocessor Interfacing Techniques.””

INSIDE A MICROPROCESSOR

The large majority of all microprocessor chips on the market today
implement the same architecture. This “‘standard’’ architecture will be
described here. It is shown in Figure 2.2. The modules of this standard
microprocessor will now be detailed, from right to left.

EXTERNAL DATA BUS
INTERNAL BUS ﬁ (8 BITS)

8 3

5P PC

=
-

ACCUMULATORS

ED ZOMM e ) e GO
SZ L ZOFT e ) COM 30

FOT4ZOO

e mmmtar
l'_J 8 BITDATA

REGISTERS

EXTERNAL
ADDRESS BUS
(16 BITS)

Fig. 2.2: “‘Standard’’ Microprocessor Architecture

The control box on the right represents the control unit which syn-
chronizes the entire system. Its role will be clarified within the re-
mainder of this chapter.
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The ALU performs arithmetic and logic operations. A special
register equips one of the inputs of the ALU, the left input here. It is
called the accumulator. (Several accumulators may be provided.) The
accumulator may be referenced both as input and output (source and
destination) within the same instruction.

The ALU must also provide shift and rotate facilities.

A shift operation consists of moving the contents of a byte by one or
more positions to the left or to the right. This is illustrated in Figure
5 3. Each bit has been moved to the left by one position. The details of
shifts and rotations will be presented in the next chapter.

SHIFT LEFT

LD DN DD A

( CARRY

ROTATE LEFT

LN DD DD -

C CARRY

Fig. 2.3: Shift and Rotate

The shifter may be on the ALU output, as iltustrated in Figure 2.2, or
may be on the accumulator input.

To the left of the ALU, the flags or status register appear. Their role
is to store exceptional conditions within the microprocessor. The con-
tents of the flags register may be tested by specialized instructions, or
may be read on the internal data bus. A conditional instruction will
cause the execution of a new program, depending on the value of one of
these bits.

The role of the status bits in the Z80 will be examined later in this
chapter.
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Setting Flags

Most of the instructions executed by the processor will modify some
or all of the flags. It is important to always refer to the chart provided
by the manufacturer listing which bits will be modified by the instruc-
tions. This is essential in understanding the way a prc zram is being ex-
ecuted. Such a chart for the Z80 is shown in the Appendix.

The Registers

Let us look now at Figure 2.2. On the left of the illustration, the
registers of the microprocessor appear. One can distinguish the general
purpose registers and the address registers.

The General-Purpose Registers

General-purpose registers must be provided in order for the ALU to
manipulate data at high speed. Because of restrictions on the number of
bits which it is reasonable to provide within an instruction, the number
of (directly addressable) registers is usually limited to fewer than eight.
Each of these registers is a set of eight flip-flops, connected to the
bidirectional internal data bus. These eight bits can be transferred
simultaneously to or from the data bus. The implementation of these
registers in MOS flip-flops provides the fastest level of memory
available, and their contents can be accessed within tens of
nanoseconds.

Internal registers are usually labelled from 0 to n. The role of these
registers is not defined in advance: they are said to be ‘‘general
purpose.”” They may contain any data used by the program.

These general-purpose registers will normally be used to store eight-
bit data. On some microprocessors, facilities exist to manipulate two of
these registers at a time. They are then called “‘register pairs.”’ This ar-
rangement facilitates the storage of 16-bit quantities, whether data or
addresses.

The Address Registers

Address registers are 16-bit registers intended for the storage of ad-
dresses. They are also often called dara counters or pointers. They are
double registers, i.e., two eight-bit registers. Their essential
characteristic is to be connected to the address bus. The address

registers create the address bus. The address bus appears on the left and
the bottom part of the illustration in Figure 2.4.
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The only way to load the contents of these 16-bit registers is via the
data bus. Two transfers will be necessary along the data bus in order to
transfer 16 bits. In order to differentiate between the lower half and the
higher half of each register, they are usually labelled as L (low) or H
(high), denoting bits 0 through 7, and 8 through 15 respectively. This
label is used whenever it is necessary to differentiate the halves of these
registers. At least two address registers are present within most
microprocessors. “MUX” in Fig. 2.4 stands for multiplexer.

DATA BUS (8)
HUX
INDEX | REGISTER
4 16-8IT
STACK | POIRTER ADDRESS REGISTERS
PROGRAM ! COUNTER
I

ADDRESS BUS (16)

N

1 4

Fig. 2.4: The 16-bit Address Registers Create the Address Bus

Program Counter (PC)

The program counter must be present in any processor. It contains
the address of the next instruction to be executed. The presence of the
program counter is indispensable and fundamental to program execu-
tion. The mechanism of program execution and the automatic sequenc-
ing implemented with the program counter will be described in the next
section. Briefly, execution of a program is normally sequentiai. In
order to access the next instruction, it is necessary to bring it from the
memory into the microprocessor. The contents of the PC will be
deposited on the address bus, and transmitted towards the memory.
The memory will then read the contents specified by this address and
send back the corresponding word to the MPU. This is the instruction.
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In a few exceptional microprocessors, such as the two-chip F8, there is
no PC on the microprocessor. This does not mean that the system does
not have a program counter. The PC happens to be implemented direct-
Iy on the memory chip, for reasons of efficiency.

Stack Pointer (SP)

The stack has not been introduced yet and will be described in the
next section. In most powerful, general-purpose microprocessors, the
stack is implemented in ‘‘software,” i.e., within the memory. In order
to keep track of the top of this stack within the memory, a 16-bit
register is dedicated to the stack pointer or SP. The SP contains the ad-
dress of the top of the stack within the memory. It will be shown that
the stack is indispensable for interrupts and for subroutines.

Index Register (I1X)

Indexing is a memory-addressing facility which is not always pro-
vided in microprocessors. The various memory-addressing techniques
will be described in Chapter 5. Indexing is a facility for accessing blocks
of data in the memory with a single instruction. An index register will
typically contain a displacement which will be automatically added to a
base (or it might contain a base which would be added to a displace-
ment). In short, indexing is used to access any word within a block of
instructions.

The Stack

A stack is formally called an LIFO structure (last-in, first-out). A
stack is a set of registers, or memory locations, allocated to this data
structure. The essential characteristic of this structure is that it is a
chronological structure. The first element introduced into the stack is
always at the bottom of the stack. The element most recently deposited
in the stack is on the top of the stack. The analogy can be drawn with a
stack of plates on a restaurant counter. There is a hole in the counter
with a spring in the bottom. Plates are piled up in the hole. With this
organization, it is guaranteed that the plate which has been put first in
the stack (the oldest) is always at the bottom. The one that has been
placed most recently on the stack is the one which is on top of it. This
example also illustrates another characteristic of the stack. In normal
use, a stack is only accessible via two instructions: ““push’’ and “‘pop”’
(or “‘pull’’). The push operation results in depositing one element on
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top of the stack (two in the case of the Z80). The pu// operation consists
of removing one element from the stack. In the case of a
microprocessor, it is the accumulator that will be deposited on top of
the stack. The pop will result in a transfer of the top element of the
stack into the accumulator. Other specialized instructions may exist to
transfer the top of the stack between other specialized registers, such as
the status register. The Z80 is more versatile than most in this respect.

The availability of a stack is required to implement three program-
ming facilities within the computer system: subroutines, interrupts, and
temporary data storage. The role of the stack during subroutines will be
explained in Chapter 3 (Basic Programming Techniques). The role of
the stack during interrupts will be explained in Chapter 6 (Input/Out-
put Techniques). Finally, the role of the stack in saving data at high
speed will be explained during specific application programs.

We will simply assume at this point that the stack is a required facility
in every computer system. A stack may be implemented in two ways:

1. A fixed number of registers may be provided within the micro-
processor itself. This is a ‘‘hardware stack.’” It has the advantage of
high speed. However, it has the disadvantage of a limited number of
registers.

2. Most general-purpose microprocessors choose another approach,
the software stack, in order not to restrict the stack to a very small
number of registers. This is the approach chosen in the Z80. In the soft-
ware approach, a dedicated register within the microprocessor, here
register SP, stores the stack pointer, i.e., the address of the top element
of the stack (or, sometimes, the address of the top element of the stack
plus one). The stack is then implemented as an area of memory. The
stack pointer will therefore require 16 bits to point anywhere in the
memory.

MICROPROCESSOR 7 MEMORY O

|
|
7 j 0 |
| pusH
|
1
|
|

STACK
BASE

Fig. 2.5: The Two-Stack Manipulation Instructions
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The Instruction Execution Cycle

Let us refer now to Figure 2.6. The microprocessor unit appears on
the left, and the memory appears on the right. The memory chip may be
a ROM or a RAM, or any other chip which happens to contain
memory. The memory is used to store instructions and data. Here, we
will fetch one instruction from the memory to illustrate the role of the
program counter. We assume that the program counter has valid con-
tents. It now holds a 16-bit address which is the address of the next in-
struction to fetch in the memory. Every processor proceeds in three
cycles:

I—fetch the next instruction
2—decode the instruction
3—execute the instruction

Fetch

Let us now follow the sequence. In the first cycle, the contents of the
program counter are deposited on the address bus and gated to the
memory (on the address bus). Simultaneously, a read signal may be
issued on the control bus of the system, if required. The memory will
receive the address. This address is used to specify one location within
the memory. Upon receiving the read signal, the memory will decode
the address it has received, through internal decoders, and will select
the location specified by the address. A few hundred nanoseconds later,
the memory will deposit the eight-bit data corresponding to the
specified address on its data bus. This eight-bit word is the instruction
that we want to fetch. In our illustration, this instruction will be
deposited on top of the data bus.

Let us briefly summarize the sequencing: the contents of the program
counter are output on the address bus. A read signal is generated. The
memory cycles, and perhaps 300 nanoseconds later, the instruction at
the specified address is deposited on the data bus (assuming a single
byte instruction). The microprocessor then reads the data bus and
deposits its contents into a specialized internal register, the IR register.
The IR is the instruction register: it is eight-bits wide and is used to con-
tain the instruction just fetched from the memory. The fetch cycle is
now completed. The 8 bits of the instruction are now physically in the
special internal register of the MPU, the IR register. The IR appears on
the left of Figure 2.7. It is not accessible to the programmer.
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MPU ROM/RAM
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PC: §INSTRUCTION
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Fig. 2.6: Fetching an Instruction from the Memory

Decoding and Execution

Once the instruction is contained in IR, the control unit of the
microprocessor will decode the contents and will be able to generate the
correct sequence of internal and external signals for the execution of the
specified instruction. There is, therefore, a short decoding delay fol-
lowed by an execution phase, the length of which depends on the nature
of the instruction specified. Some instructions will execute entirely
within the MPU. Other instructions will fetch or deposit data from or
into the memory. This is why the various instructions of the MPU re-
quire various lengths of time to execute. This duration is expressed as a
number of (clock) cycles. Refer to the Appendix for the number of

DATA BUS

DECODER
VYV
SIGNALS
READ
[+3
ADORESS BUS

Fig. 2.7: Automatic Sequencing
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cycles required by each instruction. Since various clock rates may be
used, speed of execution is normally expressed in number of cycles
rather than in number of nanoseconds.

EXTERNAL < INTERNAL DATA BUS

B I I (0

I ACCUMULATOR l

R@ R1 Rn
REGISTERS

RESULT (DESTINATION) BUS
Fig. 2.8: Single-Bus Architecture

Fetching the Next Instruction

We have described how, using the program counter, an instruction
can be fetched from the memory. During the execution of a program,
instructions are fetched in sequence from the memory. An automatic
mechanism must therefore be provided to fetch instructions in se-
quence. This task is performed by a simple incrementer attached to the
program counter. This is illustrated in Figure 2.7. Every time that the
contents of the program counter (at the bottom of the illustration) are
placed on the address bus, its contents will be incremented and written
back into the program counter. As an example, if the program counter
contained the value “0”’, the value “0’’ would be output onthe address
bus. Then the contents of the program counter would be incremented
and the value *‘1”” would be written back into the program counter. In
this way, the next time that the program counter is used, it is the in-
struction at address 1 that will be fetched. We have just implemented an
automatic mechanism for sequencing instructions.

It must be stressed that the above descriptions are simplified. In reali-
ty, some instructions may be two- or even three-bytes long, so that suc-
cessive bytes will be fetched in this manner from the memory. However,
the mechanism is identical. The program counter is used to fetch
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successive bytes of an instruction as well as to fetch successive instruc-
tions themselves. The program counter, together with its incrementer,
provides an automatic mechanism for pointing to successive memory
locations.

INTERNAL DATA BUS
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EXTERNAL
BUS

REGISTERS

Fig. 2.9: Execution of an Addition—R0 into ACC
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Fig. 2.10: Addition—Second Register R1 into ALU
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We will now execute an instruction within the MPU (see Figure 2.8).
A typical instruction will be, for example: RO = RO + R1. This means:
““ADD the contents of RO and R1, and store the results in R0.”” To per-
form this operation, the contents of RO will be read from register RO,
carried via the single bus to the left input of the ALU, and stored in the
buffer register there. R1 will then be selected and its contents will be
read onto the bus, then transferred to the right input of the ALU. This
sequence is illustrated in Figures 2.9 and 2.10. At this point,
the right input of the ALU is conditioned by R1, and the left
input of the ALU is conditioned by the buffer register, containing the
previous value of RO. The operation can be performed. The addition is
performed by the ALU, and the results appear on the ALU output, in
the lower right-hand corner of Fig. 2.11. The results will be deposited
on the single bus, and will be propagated back to RO. This means, in
practice, that the input latch of RO will be enabled, so that data can be
written into it. Execution of the instruction is now complete. The
results of the addition are in RO. It should be noted that the contents of
R1 have not been modified by this operation. This is a general prin-
ciple: the contents of a register, or of any read/write memory, are not
modified by a read operation.

The buffer register on the left input of the ALU was necessary in
order to memorize the contents of RO, so that the single bus could be
used again for another transfer. However, a problem remains.

EXTERNAL INTERNAL DATA BUS
BUS < 7 A
. Z

RO Rl RN

STATUS R+R1
ACC + R1— RO

Fig. 2.11: Result Is Generated and Goes into R0
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The Critical Race Problem

The simple organization shown in Figure 2.8 will not function cor-
rectly.

Question: What is the timing problem?

Answer: The problem is that the result which will be propagated out
of the ALU will be deposited back on the single bus. It will not pro-
pagate just in the direction of R0, but along all of the bus. In particular,
it will recondition the right input of the ALU, changing the result coming
out of it a few nanoseconds later. This is a critical race. The output of
the ALU must be isolated from its input (see Figure 2.12).

Several solutions are possible which will isolate the input of the ALU
from the output. A buffer register must be used. The buffer register
could be placed on the output of the ALU, or on its input. It is usually
placed on the input of the ALU. Here it would be placed on its right in-
put. The buffering of the system is now sufficient for a correct opera-
tion. It will be shown later in this chapter that if the left register which
appears in this illustration is to be used as an accumulator (permitting
the use of one-byte long instructions), then the accumulator will require
a buffer too, as shown in Figure 2.13.

EXTERNAL INTERWAL DATA BUS
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Fig. 2.12: The Critical Race Problem
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Fig. 2.13: Two Buffers Are Required

INTERNAL ORGANIZATION OF THE Z80

The terms necessary in order to understand the internal elements of
the microprocessor have been defined. We will now examine in more
detail the Z80 itself, and describe its capabilities. The internal organiza-
tion of the Z80 is shown in Figure 2.14. This diagram presents a logical
description of the device. Additional interconnections may exist but are
not shown. Let us examine the diagram from right to left.

On the right part of the illustration, the arithmetic-logical unit (the
ALU) may be recognized by its characteristic “*V’’ shape. The accumu-
lator register, which has been described in the previous section, is iden-
tified as A on the right input path of the ALU. It has been shown in the
previous section that the accumulator should be equipped with a buffer
register. This is the register labeled ACT (temporary accumulator).
Here, the left input of the ALU is also equipped with a temporary
register, called TMP. The operation of the ALU will become clear in the
next section, where we will describe the execution of actual instructions.

The flags registeriscalled*‘F*’inthe Z80,and is shown on the right of the
accumulator register. The contents of the flags register are essentially
conditioned by the ALU, but it will be shown that some of its bits may
also be conditioned by other modules or events.

The accumulator and the flags registers are shown as double registers
labelled respectively A, A’ and F, F’. This is because the Z80 is
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equipped internally with two sets of registers: A + F, and A’ + F’.
However, only one set of these registers may be used at any one time. A
special instruction is provided to exchange the contents of A and F with
A’ and F’. In order to simplify the explanations, only A and F will be
shown on most of the diagrams which follow. The reader should
remember that he has the option of switching to the alternate register
set A’ and F’ if desired.

The role of each flag in the flags register will be described in Chapter
3 (Basic Programming Techniques).

A large block of registers is shown at the center of the illustration. On
top of the block of registers, two identical groups can be recognized.
Each one includes six registers labeled B, C, D, E, H, L. These are the
general-purpose eight-bit registers of the Z80. There are two peculiari-
ties of the Z80 with respect to the standard microprocessor which has
been described at the beginning of this chapter.

First, the Z80 is equipped with /wo banks of registers, i.e., two iden-
tical groups of 6 registers. Only six registers may be used at any one
time. However, special instructions are provided to switch between the
two banks of registers. One bank, therefore, behaves as an internal
memory, while the other one behaves as a working set of internal
registers. The possible uses of this special facility will be described in
the next chapter.

Conceptually, it will be assumed, for the time being, that there are
only six working registers, B, C, D, E, H, and L, and the second
register bank will temporarily be ignored, in order to avoid confusion.

The MUX symbol which appears above the memory bank is an ab-
breviation for multiplexer. The data coming from the internal data bus
will be gated through the multiplexer to the selected register. However,
only one of these registers can be connected to the internal data bus at
any one time.

A second characteristic of these six registers, in addition to being
general-purpose eight-bit registers, is that they are equipped with a con-
nection to the address bus. This is why they have been grouped in
pairs. For example, the contents of B and C can be gated simultaneous-
ly onto the 16-bit address bus which appears at the bottom of the illustra-
tion. As a result, this group of 6 registers may be used to store either
eight-bit data or else 16-bit pointers for memory addressing.

The third group of registers, which appears below the two previous
ones in the middle of Figure 2.14, contains four ‘“‘pure’’ address
registers. As in any microprocessor, we find the program counter (PC)
and the stack pointer (SP). Recall that the program counter contains
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the address of the next instruction to be executed.

The stack pointer points to the top of the stack in the memory. In the
case of the Z80, the stack pointer points to the /ast actual entry in the
stack. (In other microprocessors, the stack pointer points just above the
last entry.) Also, the stack grows “‘downwards,’’ i.e. towards the lower
addresses.

This means that the stack pointer must be decremented any time a
new word is pushed on the stack. Conversely, whenever a word is
removed (popped) from the stack, the stack pointer must be in-
cremented by one. In the case of the Z80, the ‘‘push’ and ‘‘pop”’
always involve fwo words at the same time, so that the contents of the
stack pointer will be decremented or incremented by two.

Looking at the remaining two registers of this group of four registers,
we find a new type of register which has not been described yet: two
index-registers, labeled IX (Index Register X) and 1Y (Index Register
Y). These two registers are equipped with a special adder shown as a
miniature V-shaped ALU on the right of these registers in Figure 2.14.
A byte brought along the internal data bus may be added to the con-
tents of IX or IY. This byte is called the displacement, when using an in-
dexed instruction. Special instructions are provided which will
automatically add this displacement to the contents of 1X or IY and
generate an address. This is called indexing. It allows convenient access
to any sequential block of data. This important facility will be des-
cribed in Chapter 5 on addressing techniques.

Finally, a special box labeled ‘“ = 1’7 appears below and to the left of
the block of registers. This is an increment/decrement. The contents of
any of the four registers belonging to the group we have just described
(the‘‘pure-address’’ registers) may be automatically incremented. or
decremented every time they deposit an address on the internal address
bus. This is an essential facility for implementing automated program
loops, which will be described in the next section. Using this feature, it
will be possible to access successive memory locations conveniently,

Let us move now to the left of the illustration. One register pair is
shown, isolated on the left: I and R. The I register is called the inferrupt-
page address register. Its role will be described in the section on inter-
rupts of Chapter 6 (Input/Output Techniques). It is used only in a
special mode where an indirect call to a memory location is generated in
response to an interrupt. The I register is used to store the high-order
part of the indirect address. The lower part of the address is supplied by
the device which generated the interrupt.
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The R register is the memory-refresh register. 1t is provided to refresh
dynamic memories automatically. Such a register has traditionally been
located outside the microprocessor, since it is associated with the
dynamic memory. It is a convenient feature which minimizes the
amount of external hardware for some types of dynamic memories. It will
not be used here for any programming purposes, as it is essentially a
hardware feature (see reference C207 ‘‘Microprocessor Interfacing
Techniques®” for a detailed description of memory refresh techniques).
However, it is possible to use it as a software clock, for example.

Let us move now to the far left of the illustration. There the control
section of the microprocessor is located. From top to bottom, we find
first the instruction register IR, which will contain the instruction to be
executed. The IR register is totally distinct from the ‘I, R’ register pair
described above. The instruction is received from the memory via the
data bus, is transmitted along the internal data bus and is finally
deposited into the instruction register. Below the instruction register ap-
pears the decoder which will send signals to the controller-sequencer
and cause the execution of the instruction within the microprocessor
and outside it. The control section generates and manages the control
bus which appears at the bottom part of the illustration.

The three buses managed or generated by the system, i.e., the data
bus, the address bus, and the control bus, propagate outside the
microprocessor through its pins. The external connections are shown
on the right-most part of the illustration. The buses are isolated from
the outside through buffers shown in Figure 2.14.

All the logical elements of the Z80 have now been described. It is not
essential to understand the detailed operation of the Z80 in order to
start writing programs. However, for the programmer who wishes to
write efficient codes, the speed of a program and its size will depend
upon the correct choice of registers as well as the correct choice of
techniques. To make a correct choice, it is necessary to understand how
instructions are executed within the microprocessor. We will therefore
examine here the execution of typical instructions inside the Z80 to
demonstrate the role and use of the internal registers and buses.
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INSTRUCTION FORMATS

The Z80 instructions are listed in the Appendix. Z80 instructions may
be formated in one, two, three or four bytes. An instruction specifies
the operation to be performed by the microprocessor. From a
simplified standpoint, every instruction may be represented as an op-
code followed by an optional literal or address field, comprising one or
two words. The opcode field specifies the operation to be carried out.
In strict computer terminology, the opcode represents only those bits
which specify the operation to be performed, exclusive of the register
pointers that might be necessary. In the microprocessor world, it is con-
venient to call opcode the operation code itself, as well as any register
pointers which it might incorporate. This ‘‘generalized opcode’’ must
reside in an eight-bit word for efficiency (this is the limiting factor on
the number of instructions available in a microprocessor).

The 8080 uses instructions which may be one, two, three, bytes long
(see Figure 2.15). However, the Z80 is equipped with additional indexed
instructions, which require one more byte. In the case of the Z80, op-
codes are, in general, one byte long, except for special instructions
which require a two-byte opcode.

Some instructions require that one byte of data follow the opcode. In
such a case, the instruction will be a two-byte instruction, the second
byte of which is data (except for indexing, which adds an extra byte).

In other cases, the instruction might require the specification of an
address. An address requires 16 bits and, therefore, two bytes. In that
case, the instruction will be a three-byte or a four-byte instruction.

For each byte of the instruction, the control unit will have to perform
a memory fetch, which will require four clock cycles. The shorter the
instruction, the faster the execution.

A One-Word Instruction

One-word instructions are, in principle, fastest and are favored by
the programmer. A typical such instruction for the Z80 is:

IDr,

This instruction means: ‘‘Transfer the contents of register r’ intor.”’
This is a typical ‘‘register-to-register’’ operation. Every microprocessor
must be equipped with such instructions, which allow the programmer
to transfer information from any of the machine’s registers into
another one. Instructions referencing special registers of the machine,
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Fig. 2.15 Typical Instruction Formats

such as the accumulator or other special-purpose registers, may have a
special opcode.

After execution of the above instruction, the contents of r will be
equal to the contents of r’. The contents of r’ will nor have been
modified by the read operation.

Every instruction must be represented internally in a binary format.
The above representation “LD r,r’ *" is symbolic or mnemonic. 1t is
called the assembly-language representation of an instruction. It is
simply meant as a convenient symbolic representation of the actual
binary encoding for that instruction. The binary code which will repre-
sent this instruction inside the memory is: 0 1 DD D S S S (bits 0 to 7).

This representation is still partially symbolic. Each of the letters S
and D stands for a binary bit. The three D’s, “D D D’’, represent the
three bits pointing to the destination register. Three bits allow selection
of one out of eight possible registers. The codes for these registers ap-
pear in Figure 2.16. For example, the code for register Bis ‘000, the
code for register C is “0 0 1”’, and so on.

Similarly, ‘S S S”” represents the three bits pointing to the source
register. The convention here is that register r’ is the source, and that
register r is the destination. The placement of the bits in the binary
representation of an instruction is not meant for the convenience of the
programmer, but for the convenience of the control section of the
microprocessor, which must decode and execute the instruction. The
assembly-language representation, however, is meant for the conve-
nience of the programmer. It could be argued that LD r,r’ should really

7

mean: ‘“Transfer contents of r into r’.”” However, the convention has

67



PROGRAMMING THE Z80

been chosen in order to maintain compatibility with the binary
representation in this case. It is naturally arbitrary.

Exercise 2.1: Write below the binary code which will transfer the con-
tents of register C into register B. Consult Fig. 2.16 for the codes cor-
responding to C and B.

Another simple example of a one-word instruction is:
ADD A,

This instruction will result in adding the contents of a specified
register (r) to the accumulator (A). Symbolically, this operation may be
represented by: A = A + r. It can be verified in Appendix C that the
binary representation of this instruction is:

10000SSS

were S S S specifies the register to be added to the accumulator. Again,
the register codes appear in Figure 2.16.

Exercise 2.2:: What is the binary code of the instruction which will add
the contents of register D to the accumulator?

CODE REGISTER

600
001
010
011
100
101 (L

110 [- (MEMORY)
111 (A

b B o I e B o T = <

Fig. 2.16: The Register Codes

A Two-Word Instruction
ADD A, n

This simple two-word instruction will add the contents of the second
byte of the instruction to the accumulator. The contents of the second

68



280 HARDWARE ORGANIZATION

word of the instruction are said to be a “‘literal.”” They are data and are
treated as eight bits without any particular significance. They could
happen to be a character or numerical data. This is irrelevant to the
operation. The code for this instruction is:

11000110 followed by the 8-bit byte “‘n”

This is an immediate operation. ‘‘Immediate,’’ in most programming
languages, means that the next word, or words, within the instruction
contains a piece of data which should not be interpreted (the way an op-
code is). It means that the next one or two words are to be treated as a
literal.

The control unit is programmed to ‘‘know’’ how many words each
instruction has. It will, therefore, always fetch and execute the right
number of words for each instruction. However, the longer the possible
number of words for the instruction, the more complex it is for the con-
trol unit to decode.

A Three-Word Instruction

LD A, (nn)

The instruction requires three words. It means: “Load the ac-
cumulator from the memory address specified in the next two bytes of
the instruction.”” Since addresses are 16-bits long, they require two
words. In binary, this instruction is represented by:

00111010: 8 bits for the opcode
Low address: 8 bits for the lower part of the address
High address: 8 bits for the upper part of the address

EXECUTION OF INSTRUCTIONS WITHIN THE Z80

We have seen that all instructions are executed in three phases:
FETCH, DECODE, EXECUTE. We now need to introduce some
definitions. Each of these phases will require several clock cycles. The
Z80 executes each phase in one or more logical cycles, called a
‘‘machine cycle.”” The shortest machine cycle lasts three clock cycles.

Accessing the memory requires four clock cycles. Since each instruc-
tion must be fetched first from the memory, the fastest instruction will
require four clock cycles. Most instructions will require more.

Each machine cycle is labeled as M1, M2, etc., and will require three
or more clock cycles, or “‘states,”” labeled T1, T2, etc.
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The FETCH Phase

The FETCH phase of an instruction is implemented during the first
three states of machine cycle M1; they are called T1, T2, and T3. These
three states are common to all instructions of the microprocessor, as ail
instructions must be fetched prior to execution. The FETCH
mechanism is the following:

T1: PC OUT

The first step is to present the address of the next instruction to the
memory. This address is contained in the program counter (PC). As the
first step of any instruction fetch, the contents of the PC are placed on
the address bus (see Figure 2.17). At this point, an address is presented
to the memory, and the memory address decoders will decode this ad-
dress in order to select the appropriate location within the memory.
Several hundred ns (a nanosecond is 107 second) will elapse before the
contents of the selected memory location become available on the out-
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Fig. 2.17: Instruction Fetch—(PC) Is Sent to the Memory
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put pins of the memory, which are connected to the data bus. It is standard
computer design to use the memory read time to perform an operation

within the microprocessor. This operation is the incrementation of the
program counter:

T2: PC = PC + 1

While the memory is reading, the contents of the PC are incremented
by 1 (see Figure 2.18). At the end of state T2, the contents of the

memory are available and can be transferred within the micro-
processor:

T3 : INST into IR

DATA BUS

mmm e

v
U558 i
‘ o 7
——
Wy ) £
CONTROLLER
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SEQUENCER "
. V PC
B
//lm%

B
U
16 f
£ [DDADDRESS BUS

CONTROL
| stouas

Fig 2.18: PC Is Incremented

The DECODE and EXECUTE Phases
During state T3, the instruction which has been read out of the

memory is deposited on the data bus and transferred into the instruc-
tion register of the Z80, where it will be decoded.
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Fig. 2.19: The Instruction Arrives from the Memory into IR

It should be noted that state T4 of M1 will always be required. Once
the instruction has been deposited into IR during T3, it is necessary to
decode and execute it. This will require at least one machine state, T4.

A few instructions require an extra state of M1 (state T5). It will be
skipped by the processor for most instructions. Whenever the execution
of an instruction requires more than M1, i.e., M1, M2 or more cycles,
the transition will be directly from state T4 of M1 into state T1 of M2.
Let us examine an example. The detailed internal sequencing for each
example is shown in the tables of Figure 2.27. As these tables have not been
released for the Z80, the 8080 tables are used instead. They provide an in-
depth understanding of instruction execution.

IbD,C

This corresponds to MOV rl, r2 for the 8080. Refer to line 1 of Fig. 2.27.

By coincidence, the destination register in this example happens to be
named ““D’’, The transfer is illustrated in Figure 2.20.

This instruction has been described in the previous section. It
transfers the contents of register C, denoted by *“C”’, into register D.

The first three states of cycle M1 are used to fetch the instruction
from the memory. At the end of T3, the instruction is in IR, the In-
struction Register, where it can be decoded (see Figure 2.19).

During T4: (§S S) B TMP.
The contents of C are deposited into TMP (See Figure 2.21).
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During T5: (TMP) & DDD.

The contents of TMP are deposited into D. This is shown in Figure 2.22.

D C
[oocilo001 [ 10001000 1
BEFORE

D C
[1o001000 ] tooo0i000 |
AFTER

Fig. 2.20: Transferring C into D
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Fig. 2.21: The Contents of C Are Deposited into TMP
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Fig. 2.22: The Contents of TMP are Deposited into D

Execution of the instruction is now complete. The contents of
register C have been transferred into the specified destination register
D. This terminates execution of the instruction. The other machine
cycles M2, M3, M4, and M5 will not be necessary and execution stops
with M1.

It is possible to compute the duration of this instruction easily. The
duration of every state for the standard Z80 is the duration of the clock:
500 ns. The duration of this instruction is the duration of five states, or
5 X 500 = 2500 ns = 2.5 us.

Question: Why does this instruction require two states, T4 and T35,
in order to transfer the contents C into D, rather than just one? It
transfers the contents of C into TMP, and then the contents of TMP in-
to D. Wouldn't it be simpler to transfer the contents of C into D direct-
ly within a single state?

Answer: This is not possible because of the implementation chosen
for the internal registers. All the intenal registers are, in fact, part of a
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single RAM, a read/write memory internal to the microprocessor chip.
Only one word may be addressed or selected at a time within an RAM
(single-port). For this reason, it is not possible to both read and write
into, or from, an RAM at two different locations. Two RAM cycles are
required. It becomes necessary first to read the data out of the register
RAM, and store it in a temporary register, TMP, then, to write it back
into the final destination register, here D. This is a design inadequacy.
However, this limitation is common to virtually all monolithic
microprocessors. A dual-port RAM would be required to solve the
problem. This limitation is not intrinsic to microprocessors and it normally
does not exist in the case of bit-slice devices. It is a result of the constant
search for logic density on the chip and may be eliminated in the future.

Important Exercise:

At this point, it is highly recommended that the user review by him-
self the sequencing of this simple instruction before we proceed to more
complex ones. For this purpose, go back to Figure 2.14. Assemble a few
small-sized “‘symbols’’ such as matches, paperclips, etc. Then move the
symbols on Figure 2.14 to simulate the flow of data from the registers
into the buses. For example, deposit a symbol into PC. T1 will move
the symbol contained in PC out on the address bus towards the
memory. Continue simulated execution in this fashion until you feel
comfortable with the transfers along the buses and between the
registers. At this point, you should be ready to proceed.

Progressively more complex instructions will now be studied:

ADD A, r

This instruction means: ‘‘Add the contents of register r (specified by
a binary code S S S) to the accumulator (A), and deposit the result in
the accumulator.”’ This is an implicit instruction. It is called implicit as
it does not explicitly reference a second register. The instruction expli-
citly refers only to register r. It implies that the other register involved
in the operation is the accumulator. The accumulator, when used in
such an implicit instruction, is referenced both as source and destina-
tion. Data will be deposited in the accumulator as a result of this addi-
tion. The advantage of such an implicit instruction is that its complete
opcode is only eight bits in length. It requires only a three-bit register
field for the specification of r. This is a fast way to perform an addition
operation.

Other implicit instructions exist in the system which will reference
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other specialized registers. More complex examples of such implicit in-
structions are, for example, the PUSH and POP operations, which will
transfer information between the top of the stack and the accumulator,
and will at the same time update the stack pointer (SP), decrementing it
or incrementing it. They implicitly manipulate the SP register.

The execution of the ADD A, r instruction will now be examined in
detail. This instruction will require two machine cycles, M1 and M2. As
usual, during the first three states of M1, the instruction is fetched from
the memory and deposited in the IR register. At the beginning of T4, it
is decoded and can be executed. It will be assumed here that register B is
added to the accumulator. The code for the instruction will then be:
1 0000000 (the code for register B is 0 0 0). The 8080 equivalent is
ADD r.

T4: (SS S) & TMP, (A) » ACT
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Fig. 2.23: Two Transfers Occur Simultaneously

Two transfers will be executed simultaneously. First, the contents of
the specified source register (here B) are transferred into TMP, i.e., to
the right input of the ALU (see Fig. 2.23). At the same time, the con-
tents of the accumulator are transferred to the temporary accumulator
(ACT). By inspecting Fig. 2.23, you will ascertain that those transfers
can occur in parallel. They use different paths within the system. The
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transfer from B to TMP uses the internal data bus. The transfer from
ACT uses a short internal path independent of this data bus. In order to
gain time, both transfers are done simultaneously. At this point, both
the left and the right input of the ALU are correctly conditioned. The
left input of the ALU is now conditioned by the accumulator contents,
and the right input of the ALU is conditioned by the contents of register
B. We are ready to perform the addition. We would normally expect to
see the addition take place during state T5 of M1. However, this state is
simply not used. The addition is not performed! We will enter machine
cycle M2. During state T1, nothing happens! It is only in state T2 of M2
that the addition takes place (refer to ADD r in Figure 2.27):

T2 of M2: (ACT) + (TMP) B A

The contents of ACT are added to the contents of TMP, and the
result is finally deposited in the accumulator. See Figure 2.24. The

operation is now complete.
“ DATA BUS

RN
AN

HUX

E-RET E
~lm e e

CONTROLLER

SEQUENCER

SP
PC
tl
L

]
5 |¢
£

ADDRESS BUS

CONTROL
SIGHALS

=

v

Fig.2.24: End of ADD r

Question: Why was the completion of the addition deferred until
state T2 of machine cycle M2, rather than taking place during state T5
of M1? (This is a difficult question, which requires an understanding of
CPU design. However, the technique involved is fundamental to clock-
synchronous CPU design. Try to see what happens.)
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Answer: This is a standard design “‘trick”’ used in most CPU’s. It is
called ‘‘fetch/execute overlap.”” The basic idea is the following: looking
back at Figure 2.23 it can be seen that the actual execution of the addi-
tion will only require the use of the ALU and of the data bus. In parti-
cular, it will not access the register RAM (register block). We (or the
control unit) know that the next three states which will be executed after
completion of any instruction will be T1, T2, T2 of machine cycle M1
of the next instruction. Looking back at the execution of these three
states, it can be seen that their execution will only require access to the
program counter (PC) and use of the address bus. Access to the pro-
gram counter will require access to the register RAM. (This explains
why the same trick could not be used in the instruction LD r,r’.) It is
therefore possible to use simultaneously the shaded area in Figure 2.17
and the shaded area in Figure 2.24.

The data bus is used during state Tl of M1 to carry status informa-
tion out. It cannot be used for the addition that we wish to perform.
For that reason, it becomes necessary to wait until state T2 before the
addition can be effectively carried out. This is what occurred in the
chart: the addition is completed during state T2 of M2. The mechanism
has now been explained. The advantage of this approach should now be
clear. Let us assume that we had implemented a straightforward
scheme, and performed the addition during state T5 of machine cycle

{
i

INSTRUCTION n: LU l 2713 }“‘ ]I: 1 } 2 t’ END
[

b—— FETCH ——~><—+—EXECUT5—>1

INSTRUCTION N + 15 — o o o Il W12 173 |74 4

rE—FETCH T <——— EXECUTE—

! l
1 1
1 1
i !

 OVERLAP _ |

I !
Fig. 2.25: FETCH-EXECUTE Overlap during T1-T2

M1. The duration of the ADD instruction would have been § x 500 =
2500 ns. With the overlap approach which has been implemented, once
state T4 has been executed, the next instruction is initiated. In a manner

78



Z80 HARDWARE ORGANIZATION

that is invisible to this next instruction, the ‘‘clever’’ control unit will
use state T2 to carry out the end of the addition. On the chart T2 is
shown as part of M2. Conceptually, M2 will be the second machine cy-
cle of the addition. In fact, this M2 will be overlapped, i.e., be identical
to machine cycle M1 of the next instruction. For the programmer, the
delay introduced by ADD will be only four states, i.e., 4 X 500 = 2000
ns, instead of 2500 ns using the ‘‘straightforward’’ approach. The
speed improvement is 500 ns, or 20%!

The overlap technique is illustrated on Figure 2.25. It is used when-
ever possible to increase the apparent execution speed of the micropro-
cessor. Naturally, it it not possible to overlap in all cases. Required
buses or facilities must be available without conflict. The control unit
“‘knows’’ whether an overlap is possible.

NOTES: 12. 1 the condition was met, the contents of the register

parr WZ are output on the address lines {Ag.15} 1nstead of

1. The first memory cycie (M1} is always an nstruction the contents of the program counter (PC).

fetch; the first {or only} byte, containing the op code, is
fetched during this cycle. 13. If the condition was not met. sub-cycles M4 and M5
are skipped; the processor instead proceeds immediately to

2. lfthe READY input from memory is not high during the mstruction fetch {M1] of the next instruction cycle,

T2 of each memory cycle, the processor will enter a wart
state {TW) until READY is sampled as high. 14, 1f the condition was not met, sub-cvcles M2 and M3
are skipped; the processor instead proceeds immediately to

3. States T4 and TS5 are present, as required. for apera- the instruction fetch (M1} of the next instructton cyele,

tions which are completely internal to the CPU. The con-
tents of the internal bus during T4 and T5 are available at
the data bus: this s designed for testing purposes onfv. An
X" denotes that the state is present, but is only used for

15. Stack read sub-cvcle.
16. Stack write sub-cycle.

. 17. CONDITION cce
such internal operations as instruction decoding.

NZ -~ not zZ= ooo

4. Only register pairs rp = 8 {registers Band C) or rp=D 7 - ::roz;z;o:” o 001
{registers D and E} may be specified. NC ~ no carry (CY = 0) 010
5. These states are skipped, C — carry (CY = 1) 011
6. Memory read sub-cycles; an instruction or data word PO — parity odd (P =20} 100
will be read, PE — parity even (P =1} 101
P — plus{S=0) 110

7. Memory write sub-cvcle. M — mins (S = 1) 1

8. The READY signal is not required during the second
and third sub-cycles {M2 and M3}. The HOLD signal is
accepted during M2 and M3, The SYNC signal is not gene-
rated during M2 and M3. During the execution of DAD,
M2 and M3 are required for an internal register-pair add:

18, 1/0 sub-cycle: the 1/Q port’s B-bit select code is dupli-
cated on address lines 0-7 (Ag7} and 815 {Ag.ys).

19. Qutput sub-cycle,

20. The processor will remain idie in the halt state until

memory is not referenced,

9. The results of these arithmetic, logical or rotate in-
structions are not moved into the accumulator (A} untit
state T2 of the next istruction cycle. That is, A 15 foaded
while the next instruction is being fetched; this overlapping
of operations alfows for faster processing.

10. H the value of the least significant 4-bits of the accumu-

lator is greater than 9 or_if the auxiliary carry bit is set, 6

1s added to the accumulator, If the value of the most signifi-

cant 4-bits of the accumulator is now greater than 9, or if
the carry bit is set, 6 is added to the most significant
4-bits of the accumulator.

11, This represents the first sub-cycle {the instruction
fetch) of the next instruction cycle.

an interrupt, a reset or a hold is accepted. When a hold re-
quest is accepted, the CPU enters the hold mode; after the
hold mode s terminated, the processor returns 1o the hait
state, After a reset 1s accepted, the processor begins execu-
tion at memory location zero. After an tnterrupt 15 accepted,
the processor executes the instruction forced onto the data
bus {usually a restart instruction}.

§SSor DDD Value mn Vatue

A 111 8 00

] 000 D o
C 001 H 10

] 010 SP 1

E a1t

H 100

L 101

Fig. 2.26: Intel Abbreviations
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MNEMONIC OF CODE a1t Mz
07DGD50s | D30201Dp ™ 22 ] va ™ n T2t 13
#OV (1,12 010D | DS SS |PCOUT | PCaPCl [INST=TMPAR | (SSSH-THP #1000 d
STATUS
MOV M 610D D1 g f xi3t HLOUT DATA—is-00D
: SYATUSIE
wov M, 9:i i1 |osss 15551~T0P HLOUT
ot (FMPI~mDATA BUS
sPHL T ooy U
V11, data o000 [D4 0 x #COUT B2 —{»-DDDD
STATUSIE
MVI M, ata 063 i oo x B2 ThP
LXtp, dars eoRrRP looo i x PCePCet 87 e
x
LDA g o0 i [io:a x PCPCH 1 a7 iz
STA adar o0 i foo:o x FCePC et 82wz
LBLD s 000 lioigo x | PC-PC et
]
SHLD addr 0010 [oe o x PC GUT PCoPC et 82—jnz
STATUSIG
LDAX rpl4l VO AP 1010 x wm OUT DATA—ma
STATUSIE!
sTax rpl4l soRP 1000 x pOuT A} ~{-DATA GUS
STATUS!
xcHe vo o (HLI—{DE :
ARDr 1600 [0S5SS 1SSSI=ThP © (ACTIHTIPI=A
(AF-ACT
200 M iooo foiio (A}-ACT L OUT DATA—{a-TMP
STATUSHE!
ADI s troe e e {A1-ACT PCPC B2~ THP
sTATUsiSl
ADC ¢ 1000 | 1555 15551=THP l HACT)» (TMPLCY-A
{A~ACT
ADC M iooo 1o (Ai=act HLOUT, DATA— TP
i STATUSHE
ACH stz iieo0 i (at~acT PCOUT PCpCHT 82—fm TP
STATUSHE
sus s 1o00i fosss (5551--TMP 191 (ACTI(TMPI~A :
(al~aCT
SUBM IR EREE) 1AraCT HL OUT DATA— - THP
sTaTysiol
Su1data iies Joirao tal-act PCouT PCuPCat
STATUS!S!
s88¢ 10861 1S5S {5S5)-THAP 1 ACTIITMEI-CY A
(alaCT
saBm toa vl (A1-ACT HLOYT CATA—fwTMP
STATUS!E
S8t dus LEot o 1al-acT e ouT BCoPC4T 82t THP
STATUSIE!
INA 9000 |{Dioo {Oo0r-TMR ALU-DBD
(M) + 1-ALY
INR M IR EEEE] x BLOUT OATA - ThP
STATUSIE! [TMPI4 St ALU
DCR ¢ IR E (QOD)-TMP ALU-DDD g
OMPL—ALY ;
ocR M ot [osen x HLOUT DATA—wm TAP
sTaTUSiEl {TMPE-1 i ALY
NX e coar oo (LI ap
BCX1p caoari o @R -1 RP
DAD il soAariioegs x filACT | (LhTMP. ALU-L.CY
ACTHHTMPALY
BAA 010 }0o 1 DAA-A, FLAGSHO! B
ANAT ioio|o0sss i ISESI=TMP o (ACTIHTMPIA
¥ {A-ACT —
ANA M 3010 {0 i 30 | PCOUT | PC-PC+1| INST=TMPAR | (AleACT Gl HLout DATA~fe- TP
STATUS sTATUSIE
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Fig. 2.27: Intel Instruction Formats
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M3 " w5
Ll 218 ¥3 T T2l 13 T 720 Ta T& 15
HLOUT ITMP} e DATA BUS
STATuS!
PCouT FCepCot LER 1Y
sTatysiel
PCapCt LEme WZ OUT, DATA——q A
STATUSIO
PCnPCHT [ 3 WZOuT, [Ty p— £ 0aTA BUS
syavust
(S T-28 83—fmW WZOUT | DATA——— Wz ouT DATA-et
STATUSIE | wz-wzet STATUSIS!
reouT PC-PCe s 83—fww Wz ouT U —————t-DATABUS | WZOUT, {HI——{=DATA BUS
STATUSISI statusil | wzewzsey STATUSI
& (ACTIe[THPI-A
19 (ACTIHTMP-A
] 1ACTIHTHPIACY--A
i IACTH (TP CY=A
191 (ACTI-UTMPI=A
81 LACTI-(TMPI=A
) (ACTI-(THPI-CY-A
o] (ACTI-(TMP)-CY=A
HLOUT ALy—fe-paTABUS
STaTust
HL OUT ALU-{w DATA BUS !
sTatust?]
{rhi-ACT ALU=H, CY

1H}=TMP
(ACTHHTAPI+CY= ALY

181

TACTHHTMPI-A

Fig. 2.27: Intel Instruction Formats (continued)
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MNEMONIC o cODE w1l M2
DyDgPsDa | P3D205Dg R 2] T2l 3 T4 T T2l T3
AN cate i1t o] o1t e | PeouT | PCaPCetlINST-TMPAR | (AM-ACT Feour PCaBE B2_{oThP
STATUS STATUS!IE
XRA T To10| 15558 (A}=ACT ] (ACTIHTPMI-A : il
(5551-TMP e
XRA M 1o a0 [ 1a1-ACT) HLOUT BATA —mTHP
sTatusiel
XA) cata iiio i ta1-ACT FCOUT PCPCeT 82w ThR
STATUSIS
ORA« to13  0s55S (AlACT : wl (ACTHTIPIA
: {5551--THMP : S
oAAM IEEEREERE] (Ar-acT uLouT QATA —fmTMP
it sTATUsISH
ORI gate R EEEEE] tAl=ACT Sl e out PCREC 82 ~lm TP
R STATUSIS!
P R EEEE 1a)=ACT . q e (ACTI-{TMPI, FLAGS
{SSSH-THP S (
CMP M B ie (AlACT HLOUT DATA ~im TMP.
i i sTatusist
ol aats IR HAL-ACT Pcaut FCepCet 82 fatip
8 STATUSIS
RLE 0000 | 0 (Al-aLy 3 al ALU~A.CY
ROTATE
RRC 0000 | i Al-ALL L ALUA, CY T
ROTATE o
RAL EEEEREER (A1 CY=ALY ‘ ] ALtbes, TY E
AQYATE
RAR R 1A}, CY-ALY 1 ALU-A, CY
ROTATE i
Y @0 o f i1 (A=A . ;
=2 KR Tr-cy G
sTc ea 1 a1 [ ‘
P acr tiealoo x | PCOUT PC=PC 82 ez
o staTustel
deondaderlt L4 e C | Co 0 H JUDGE CONDITION oc PCoPC et 87 —e-2
‘ sTatusiel
CALL sadr R EREE sPesPos ¢ OUT FC-PC Y1 82 ~{mZ
STATUSISE
Condasil! |+ 5 cc ] cieo JUDGE CONDITION PCOUT. PCaFC o1 B2—m2
{F TAUE.SP=SP - § SYATUSIEH
RET 1ieg oo X P sPOUT SP-5Ps1 DATA—qeZ
. i STATUSISI
Acondaserl 1 1 v cc [ cooo INST-TMPAR HOGE conpimone 5P OUT SPeSPe1  DATA—eZ
STATUSHS
ASTn TANKRE NG ot 5P 0UT SPe5P-i  {PCH)—{=DATA BUS
INST=TMPAR STATUSHE
PCHL i3 10500 INST=TMPAR | (4i)e v TPC ;
FUSH1p T tRP] 0102 i 5 OUT EXC t1h)—eDATA BUS
i STATUSHE
PUSH PSW IR EEEE Spespoi 500Ut EXr 1A) —{=DATA BUS
i sTaTyshist
POP o P i RP OO0 O H x P OUT SPSP+1  DATA~feri
STATUS!S!
PO PSW 11 laoas x [ 5P OuT SReSPei  DATA—JmFLAGS
STATUS!S!
XTHL i1 10| 0011 x 5P ouT SP-SPet  DATAjeZ
: STatushist
1 port R x PCOuT PCPC o [ A
; STATUSIS!
OUT port R x : #c ouT PG-FC 41 82-{wz,w
STATUSIE!
& IR EEEE SET INTEFIF B
o IR EEEE AESET INTE £ /F
BLY LERTEE B B SR ) X PCOUT HALT MOOE(D!
; STATUS
NOP 6000 | 0000 |PCOUT | PC=PCI| INST-THPAR x : o
STATUS % i s
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M3 Ma M5
ksl 212 Ta Rl T212 T3 T raid L= T4 15
ol (ACTIS (TMPLA
ol (ACTIVITMPIA
] (ACTI+(TMPI=A ;
] (ACTITMA)-A § —_] i G
is (ACTI+{TMPIA
] (ACT)-{THP); FLAGS
s} {ACTI-{TMPI: ELAGS 2 :
PCouT PCapCes 83—l ] Wz ouT W21+ 3BT
STATUSIE) i ke id staTushiy
PCOUT PCeBC 83wy : i it wzout, Wz} 41 PG
STATUSIE! it G 1 sTavusiinia
ecouT PG PG+t B3 e o OUT »DATABUS | SeoUT {PCLI~4- DATA BUS {737 wzouT iZ) 41 PC
STATUSIS! STATUS!E STATUS!I6H -] staTusDl
PCOUT PCuPE+1 83—l 5P OUT {PCH) ———{mDATABUS | 5POUT {PCLI-$- DATA BUS ViZ QUT W ¢ 1 PC
STATUSIE! STATUS!6! | sPesSP. STATUSUIS ‘ STATUSI 192
5P OUT SPeSR+l  DATA—ev sk % WZOUT, W2l e 3—Pe
STATUSIISH ¥ sTatuslin
spauT SPeSPe1 DATA—lewW : 3 i W2 oUT, W2 41 PC
STATUSUISE STATUSINE]
sPoUT (TMP = GONNNDOD) — o2 ot w2 our, Wzl 1 ~PC
sratustiet 1PCLI—mLATA BUS STATUSHY
5P OUT (18} —{wDATA BUS . |
STaTUStS! i
sPOUT FLAGS —j»-DATA BUS
STATUSHE e :
seout SFuSPel  DATA—fmen
STATUSHS)
seout SPesP+l  DATA-—lwa
Sravushsl , ;
sPouT DATA—jmw sPouT [ (=DATABUS | $POUT
STATUSHIS STATUSIIE! srayushel
w2 aut DATA—jmA ;
STATUSHE! ¥
wz QuT A} mOATA BUS
STATUS!HEL

Fig. 2.27:

Intel Instruction Formats (continued)
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Question: Would it be possible to go further using this scheme, and
to also use state T3 of M2 if we have to execute a longer instruction?

In order to clarify the internal sequencing mechanism, it is suggested
that you examine Figure 2.27, which shows the detailed instruction
execution for the 8080. The Z80 includes all 8080 instructions, and
more. The information presented in Figure 2.27 is not available for the
Z80. 1t is shown here for its educational value in understanding the in-
ternal operation of this microprocessor. The equivalence between Z80 and
8080 instructions is shown in the Appendix.

A more complex instruction will now be examined:

ADD A, (HL)

The opcode for this instruction is 10000110. This instruction means
“‘add to the accumulator the contents of memory location (HL).”” The
memory location is specified through a rather strange system. It is the
memory location whose address is contained in registers H and L. This
instruction assumes that these two special registers (HL) have been
loaded with contents prior to executing the instruction. The 16-bit con-
tents of these registers will now specify the address in the memory
where data resides. This data will be added to the accumulator, and the
result will be left in the accumulator.

This instruction has a history. It has been supplied in order to pro-
vide compatibility between the early 8008, and its successor, the 8080.
The early 8008 was not equipped with a direct-memory addressing
capability! The procedure used to access the contents of the memory
was to load the two registers H and L, and then execute an instruction
referencing H and L. ADD A, (HL) is just such an instruction. It must
be stressed that the 8080 and the Z80 are not limited in the same way as
the 8008 in memory-addressing capability. They do have direct-memory
addressing. The facility for using the H and L registers becomes an
added advantage, not a drawback, as was the case with the 8008.

Let us now follow the execution of this instruction (it is called
ADD M for the 8080 and is the 16th instruction on Figure 2.27). States
T1, T2, and T3 of M1 will be used, as usual, to fetch the instruction.
During state T4, the contents of the accumulator are transferred to its
buffer register, ACT, and the left input of the ALU is conditioned.

Memory must be accessed in order to provide the second byte of data
which will be added to the accumulator. The address of this byte of
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data is contained in H and L. The contents of H and L will therefore
have to be transferred onto the address bus, where they will be gated to
the memory. Let us do it.

U
4 DATA BUS
E
R
INST. REG.
| H 7
*
2 o
i} £
[CONTROLLER; " g
;,/%:’/// 4/4/
SEQUENCER 3

7S G

o ; '

N % — " T0 MEMORY
S T 7T A ARESS BUS
i ‘ L ; A
L >

v

CONTROL
SIGNALS

Fig. 2.28: Transfer Contents of HL to Address Bus

During machine cycie M2,we read: HL. QUT. H and L are deposited on
the address bus, in the same way PC used to be deposited there in
previous instructions. As a remark, it has already been indicated
that during state T1 sfatus is output on the data bus, but no use of
this will be made here. From a simplified standpoint, it will require two
states: one for the memory to read its data, and one for the data to
become available and transferred onto the right input of the ALU,
TMP.

Both inputs of the ALU are now conditioned. The situation is analo-
gous to the one we were in with the previous instruction ADDA, 1: both
inputs of the ALU are conditioned. We simply have to ADD as before.
A fetch/execute overlap technique will be used, and, instead of exe-
cuting the addition within state T4 of M2, final execution is postponed
until state T2 of M3. It can be seen in Figure 2.27 that during T2 we in-
deed have: ACT -+ TMP A. The addition is finally performed, the con-
tents of ACT are added to TMP, and the result deposited into the ac-
cumulator A.
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Question: What is apparent execution time (to the programmer) for this
instruction? Is it 7.5 us, oris it 4.5 us?

Another more complex instruction will now be examined which is a
direct-memory addressing instruction using two invisible W and Z
registers:

LD A,(nn)

The opcode is 00111010. The 8080 equivalent is LDA addr. As usual,
states T1, T2, T3 of M1 will be used to fetch the instruction from the
memory. T4 is used, but no visible result can be described. During state
T4, the instruction is in fact decoded. The control unit then finds out
that it has to fetch the next two bytes of this instruction in order to ob-
tain the address from which the accumulator will be loaded. The effect
of this instruction is to load the accumulator from the memory contents
whose address is specified in bytes 2 and 3 of the instruction. Note that
state T4 is necessary to decode the instruction. It could be considered a
waste of time since only part of the state is necessary to do the
decoding. It is. However, this is the philosophy of clock-synchonous
logic. Because microinstructions are used internally to perform the
decoding and execution, this is the penalty that has to be paid in return
for the advantages of microprogramming. The structure of this instruc-
tion appears in Figure 2.29.

N: DA (B1) :0PCODE

N+ (B2) |[16-BIT
= ADDRESS v
N+2: B3) \ADDRESS

Fig.2.29: LD A, (ADDRESS) Is a 3-Word Instruction

The next two bytes of instruction will now be fetched. They will
specify an address (see Figure 2.30).
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M/\/\/\
A (HEX
oo ALEOLO0H ool 00TITO10 LD A
[0000000110000000(1 101: 0001000090 1002
102 00000010 JCHEX)

l"\/\/\/'\/""

Fig. 2.30: Before Execution of LD A

—\/\—/\/\/\

100: g0lllo1lg
10L 00010000

102 gooooo0lo

-/\/\/\_/'\/N

A
5000111
[boooooofooooool]] ~—" N\
) 00001111

Fig. 2.31: After Execution of LD A

The effect of the instruction is shown in Figures 2.30 and 2.31 above.
Two special registers are available to the control unit within the Z80

(but not to the programmer). They are “W”’ and ‘““Z’’, and are shown
in Figure 2.28.
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Second Machine Cycle M2: As usual, the first 2 states, T1 and T2, are
used to fetch the contents of memory location PC. During T2, the pro-
gram counter, PC, is incremented. Sometime by the end of T2, data be-
comes available from the memory, and appears on the data bus. By the
end of T3, the word which has been fetched from memory address PC
(B2, second byte of the instruction) is available on the data bus. It must
now be stored in a temporary register. It is deposited into Z: B2 B Z
(see Figure 2.32).

B2 w7
. i i
DATA BUS g
Z
4 1PU
<7
V7222 Z
7 B3
PC
W o0RESs
bt //7@ ADDRESS DECODER
280 =780 MEMORY

Fig. 2.32: Second Byte of Instruction Goes into Z

Machine Cycle M3: Again, PC is deposited on the address bus, incre-
mented, and finally the third byte, B3, is read from the memory and de-
posited into register W of the microprocessor. At this point, i.e., by the
end of state T3 of M3, registers W and Z inside the microprocessor con-
tain B2 and B3, i.e., the complete 16-bit address which was originally
contained in the two words following the instruction in the memory.
Execution can now be completed. W and Z contain an address. This ad-
dress will have to be sent to the memory, in order to extract the data.
This is done in the next memory cycle:

Machine Cycle M4: This time, W and Z are output on the address bus.
The 16-bit address is sent to the memory, and by the end of state T2,
data corresponding to the contents of the specified memory location
becomes available. 1t is finally deposited in A at the end of state T3.
This terminates execution of this instruction.
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This illustrates the use of an immediate instruction. This instruction
required three bytes in order to store a two-byte explicit address. This
instruction also required four memory cycles, as it needed to go to the
memory three times in order to extract the three bytes of this three-
word instruction, plus one more memory access in order to fetch the
data specified by the address. 1t is a long instruction. However, it is also
a basic one for loading the accumulator with specified contents residing
at a known memory location. It can be noted that this instruction re-
quires the use of W and Z registers.

Question: Could this instruction have used other registers than W, Z
within the system?

Answer: No. If this instruction had used other registers, for example
the H and L registers, it would have modified their contents. After ex-
ecution of this instruction, the contents of H and L would have been
lost. It is always assumed in a program that an instruction will not
modify any registers other than those it is explicitly using. An instruc-
tion loading the accumulator should not destroy the contents of any
other register. For this reason, it becomes necessary to supply the extra
two registers, W and Z, for the internal use of the control unit.

Question: Would it be possible to use PC instead of W and Z?

Answer: Positively not. This would be suicidal. The reader should ana-
lyze this.

One more type of instruction will be studied now: a branch or Jjump
instruction, which modifies the sequence in which instructions are
executed within the program. So far, we have assumed that instructions
were executed sequentially. Instructions exist which allow the pro-
grammer to jump out of sequence to another instruction within the
program, or in practical terms, to jump to another area of the memory
containing the program, or to another address. One such instruction is:

JP nn

This instruction appears on Line 18 of Figure 2.27 as “JMP addr.”
Its execution will be described by following the horizontal line
of the Table. This is again a three-word instruction. The first word
is the opcode, and contains 11000011. The next two words contain the
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16-bit address, to which the jump will be made. Conceptually, the ef-
fect of this instruction is to replace the contents of the program counter
with the 16 bits following the “JUMP’’ opcode. In practice, a some-
what different approach will be implemented, for reasons of efficiency. -

As before, the first three states of M1 correspond to the instruction-
fetch. During state T4 the instruction is decoded and no other event is
recorded (X). The next two machine cycles are used to fetch bytes B2
and B3 of the instruction. During M2, B2 is fetched and deposited into
internal register W. The next two steps will be implemented by the pro-
cessor during the next instruction-fetch, as was the case already with the
addition. They will be executed instead of the usual steps for T1 and T2
of the next instruction. Let us look at them.

The next two steps will be: WZ OUT and (WZ) + 1 B PC. In other
words, the contents of WZ will be used instead of the contents of PC
during the next instruction-fetch. The control unit will have recorded
the fact that a jump was being executed and will execute the beginning
of the next instruction differently.

The effect of these two extra states is the following:

The address placed on the address bus of the system will be the ad-
dress contained in W and Z. In other words, the next instruction will be
fetched from the address that was contained in W and Z. This is effec-
tively a jump. In addition, the contents of WZ will be incremented by 1
and deposited in the program counter, so that the next instruction will
be fetched correctly by using PC as usual. The effect is therefore cor-
rect.

Question: Why have we not loaded the contents of PC directly? Why
use the intermediate W and Z registers?

Answer: 1t is not possible to use PC. If we had loaded the lower part
of PC (PCL) with B2, instead of using Z, we would have destroyed PC!
It would then have become impossible to fetch B3.

Question: Would it be possible to use just Z, instead of W and Z?

Answer: Yes, but it would be slower. We could have loaded Z with
B2, then fetched B3, and deposited it into the high order half of PC
(PCH). However, it would then have become necessary to transfer Z in-
to PCL, before using the contents of PC. This would slow down the
process. For this reason, both W and Z should be used. Further, and in
order to save time, W and Z are not transferred into PC. They are
directly gated to the address bus in order to fetch the next instruction.
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Understanding this point is crucial to the understanding of efficient ex-
ecution of instructions within the microprocessor.

Question: (For the alert and informed reader only). What happens
in the case of an interrupt at the end of M3? (If instruction execution is
suspended at this point, the program counter points to the instruction

following the jump, and the jump address, contained in W and Z, will
be lost.)

The answer is left as an interesting exercise for the alert reader.

The detailed descriptions we have presented for the execution of
typical instructions should clarify the role of the registers and of
the internal buses. A second reading of the preceding section may
help in gaining a detailed understanding of the internal operation
of the Z80.
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Fig. 2.33: Z80 MPU Pinout
The Z80 Chip

For completeness, the signals of the Z80 microprocessor chip will be
examined here. It is not indispensable to understand the functions of
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the Z80 signals in order to be able to program it. The reader who is not
interested in the details of hardware may therefore skip this section.
The pinout of the Z80 appears on Fig. 2.33. On the right side of the
illustration, the address bus and the data bus perform their usual role,
as described at the beginning of this chapter. We will describe here the
function of the signals on the control bus. They are shown on the left of
Figure 2.33.

The control signals have been partitioned in four groups. They will
be described, going from the top of Figure 2.33 towards the bottom.

The clock input is 0. The Z80 incorporates the clock oscillator within
the microprocessor chip. Only a 330-ohm pull-up resistor is necessary
externally. It is connected to the 0 input and to 5 volts. However, at 4
MHz, an external clock driver is required.

The two bus-control signals, BUSRQ and BUSAK, are used to dis-
connect the Z80 from its busses. They are mainly used by the DMA, but
could also be used by another processor in the system. BUSRQ is the
bus-request signal. It is issued to the Z80. In response, the Z80 will place
its address bus, data bus, and tristate output control signals in the high-
impedance state, at the end of the current machine cycle. BUSAK is the
acknowledge signal issued by the Z80 once the busses have been placed
in the high-impedance state.

Six Z80 control signals are related to its internal status or to its se-
quencing:

INT and NMI are the two interrupt signals. INT is the usual interrupt
request. Interrupts will be described in Chapter 6. A number of in-
put/output devices may be connected to the INT interrupt line. When-
ever an interrupt request is present on this line, and when the internal
interrupt enable flip-flop (IFF) is enabled, the Z80 will accept the inter-
rupt (provided the BUSRQ is not active). It will then generate an
acknowledge signal: IORQ (issued during the M1 state). The rest of the
sequence of events is described in Chapter 6.

NMLl is the non-maskable interrupt. It is always accepted by the Z80,
and it forces the Z80 to jump to location 0066 hexadecimal. It too is
described in Chapter 6. (It also assumes that BUSRQ is not active.)

WAIT is a signal used to synchronize the Z80 with slow memory or
input/output devices. When active, this signal indicates that the
memory or the device is not yet ready for the data transfer. The Z80
CPU will then enter a special wait state until the WAIT signal becomes
inactive. It will then resume normal sequencing.

HALT is the acknowledge signal supplied by the Z80 after it has ex-

92



Z80 HARDWARE ORGANIZATION

ecuted the HALT instruction. In this state, the Z80 waits for an exter-
nal interrupt and keeps executing NOPs to continually refresh memory.

RESET is the signal which usually initializes the MPU. It sets the
program counter, register I and R to “0°". It disables the interrupt
enable flip-flop and sets the interrupt mode to “‘0°’. It is normally used
after power is applied to the board.

Memory and I/0 Control

Six memory and I/0 control signals are generated by the Z80. They are:
MREQ is the memory request signal. It indicates that the address pres-
ent on the address bus is valid. A read or write operation can then be
performed on the memory.

M1 is machine cycle 1. This cycle corresponds to the fetch cycle of an
instruction.

IORQ is the input/output request. It indicates that the I/O address
present on bits 0-7 of the address bus is valid. An I/O read or write
operation can then be carried out. IORQ is also generated together with
M1 when the Z80 acknowledges an interrupt. This information may be
used by external chips to place the interrupt response vector on the data
bus. (Normal I/O operations never occur during the M1 state. The
combination IORQ plus M1 indicates an interrupt-acknowledge situa-
tion.)

RD is the memory-read signal. It indicates the Z80 is ready to read
the contents of the data bus into its accumulator. It can be used by any
external chip, whether memory or /0, to deposit data onto the data
bus.

WR is the memory write signal. It indicates that the data bus holds
valid data, ready to be written into the specified device.

RFSH is the refresh signal. When RFSH is active, the lower seven
bits of the address bus contain a refresh address for dynamic memories.

The MREQ signal is then used to perform the refresh by reading the
memory.

HARDWARE SUMMARY

This completes our description of the internal organization of the
Z80. The exact hardware details of the Z80 are not important here.
However, the role of each of the registers is important and should be
fully understood before proceeding to the next chapters. The actual in-
structions available on the Z80 will now be introduced, and basic pro-
gramming techniques for the Z80 will be presented.
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BASIC PROGRAMMING
TECHNIQUES

INTRODUCTION

The purpose of this chapter is to present the basic techniques neces-
sary in order to write a program using the Z80. This chapter will intro-
duce new concepts such as register management, loops, and sub-
routines. It will focus on programming techniques using only the inter-
nal Z80 resources, i.e., the registers. Actual programs will be de-
veloped, such as arithmetic programs. These programs will serve to il-
lustrate the various concepts presented so far and will use actual in-
structions. Thus, it will be seen how instructions may be used to
manipulate the information between the memory and the MPU, as well
as to manipulate information within the MPU itself. The next chapter
will then discuss in complete detail the instructions available on the Z80.
Chapter 5 will present Addressing Techniques, and Chapter 6 will pre-
sent the techniques available for manipulating information outside the
Z80: the Input/Output Techniques.

In this chapter, we will essentially learn by ‘‘doing.”” By examining
programs of increasing complexity, we will learn the role of the various
instructions, of the registers, and we will apply the concepts developed
so far. However, one important concept will not be presented here; it is
the concept of addressing techniques. Because of its apparent complexi-
ty, it will be presented separately in Chapter 5.

Let us immediately start writing some programs for the Z80. We will
start with arithmetic programs. The ‘‘programmer’s model’” of the Z80
registers is shown in Figure 3.0.
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MAIN SET ALTERNATE SET
A F .
(i (accumulator) (tlogs) A F
{000) B C {001) 8’ c
GENERAL
(010) D E (o D 3 PURPOSE
REGISTERS
(100) H L (101) H v
l R
(interrupt vector)f (mem refresh)

IX
INDEX

REGISTERS

Y

SP
(stack pointer)
PC
(program counter)

Fig. 3.0: The Z80 Registers

ARITHMETIC PROGRAMS

Arithmetic programs include addition, subtraction, multiplication,
and division. The programs presented here will operate on integers.
These integers may be positive binary integers or may be expressed in
itwo’s complement notation, in which case the left-most bit is the sign
bit (see Chapter 1 for a description of the two’s complement notation).

8-Bit Addition

We will add two 8-bit operands called OP1 and OP2, respectively
stored at memory address ADR1, and ADR2. The sum will be called
RES and will be stored at memory address ADR3. This is illustrated in
Figure 3.1. The program which will perform this addition is the follow-
ing:

Instructions Comments
LD A,(ADR1) LOAD OPR INTO A
LD HL, ADR2 LOAD ADDRESS OF OP2 INTO HL
ADD A, (HL) ADD OP2 TO OP!1
LD (ADR3), A SAVE RESULT RES AT ADR3

95



PROGRAMMING THE Z80

MEMORY

NSNS

ADR] —————— OP1 (FIRST OPERAND)
ADR2 ————— opP2 (SECOND OPERAND)
ADR3 ————— RES (RESULT)

ADDRESSES PN

Fig. 3.1: Eight-Bit Addition RES = OP1 + OP2

This is our first program. The instructions are listed on the left and
comments appear on the right. Let us now examine the program. Itis a
four-instruction program. Each line is called an instruction and is ex-
pressed here in symbolic form. Each such instruction will be translated
by the assembler program into one, two, three or four binary bytes. We
will not concern ourselves here with the translation and will only look at
the symbolic representation.

The first line specifies loading the contents of ADRI into the accu-
mulator A. Referring to Figure 3.1, the contents of ADRI are the first
operand, ‘“OP1”’. This first instruction therefore results in transferring
OP1 from the memory into the accumulator. This is shown in Figure
3.2. ““ADR1”’ is a symbolic representation for the actual 16-bit address
in the memory. Somewhere else in the program, the ADR1 symbol will
be defined. It could, for example, be defined as being equal to the ad-
dress ““100”.

This /oad instruction will result in a read operation from address 100
(see Figure 3.2), the contents of which will be transferred along the data
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280 MEMORY

DATA BUS
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BZ ///.".../.7«, s
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(ADRT}

———

ADDRESS BUS

Fig.3.2: LD A, (ADR1): OP1is Loaded from Memory

bus and deposited inside the accumulator. You will recall from the pre-
vious chapter that arithmetic and logical operations operate on the
accumulator as one of the source operands. (Refer to the previous
chapter for more details.) Since we wish to add the two values OP1 and
OP2 together, we must first load OP1 into the accumulator. Then, we
will be able to add the contents of the accumulator, i.e., add OPI to
OP2. The right-most field of this instruction is called a comment field.
It is ignored by the assembler program at translation time, but is pro-
vided for program readability. In order to understand what the pro-
gram does, it is of paramount importance to use good comments. This
is called documenting a program.

Here the comment is self-explanatory: the value of OP1, which is
located at address ADRI, is loaded into the accumulator A.

The result of this first instruction is illustrated by Figure 3.2. The
second instruction of our program is:

LD HL, ADR2

It specifies: “‘Load from (ADR?2) into registers H and L.”’ In order.
to read the second operand, OP2, from the memory, we must first place.
its address into a register pair of the Z80, such as H and L. Then, we
can add the contents of the memory location whose address is in H and
L to the accumulator.

Referring to Figure 3.1, the contents of memory location ADR2 are
OP2, our second operand. The contents of the accumulator are now
OP1, our first operand. As a result of the execution of this instruction,
OP2 will be fetched from the memory and added to OP1. This is il-
lustrated in Figure 3.3.
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DATA BUS
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ADR2

{ADR2)

ADDRESS BUS

Fig. 3.3: ADD A, (HL)

The sum will be deposited in the accumulator. The reader will
remember that, in the case of the Z80, the results of the arithmetic oper-
ation are deposited back into the accumulator. In other processors, it
may be possible to deposit these results in other registers, or back into
the memory.

The sum of OP1 and OP2 is now contained in the accumulator. To
complete our program, we simply have to transfer the contents of the
accumulator into memory location ADR3, in order to store the results
at the specified location. This is performed by the fourth instruction of
our program:

LD (ADR3), A

This instruction loads the contents of A into the specified address
ADRS3. The effect of this final instruction is illustrated by Figure 3.4.

780 MEMORY
> I
pAtABUS  © [
[
i3
i i
A RES Dt
gt
' ]
\1'
ADR3 | RES:
(ADR3

ADDRESS BUS

Fig. 3.4: LD (ADR3), A (Save Accumulator in Memory)
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Before execution of the ADD operation, the accumulator contained
OP1 (see Figure 3.3). After the addition, a new result has been written
into the accumulator. It is “OP1 + OP2”’. Recall that the contents of
any register within the microprocessor, as well as any memory location,
remain the same after a read operation has been performed on this
register. In other words, reading the contents of a register or memory
location does not change its contents. It is only, and exclusively, a write
operation into this register location that will change its contents. In this
example, the contents of memory locations ADR1] and ADR?2 remain
unchanged throughout the program. However, after the ADD instruc-
tion, the contents of the accumulator will have been modified, because
the output of the ALU has been written into the accumulator, The
previous contents of A are then lost.

Actual numerical addresses may be used instead of ADRI1, ADR2,
and ADR3. In order to keep symbolic addresses, it will be necessary to
use so-called “‘pseudo-instructions’’ which specify the value of these
symbolic addresses, so that the assembly program may, during transla-
tion, substitute the actual physical addresses. Such pseudo-instructions
could be, for example:

ADR1 = 100H
ADR2 = 120H
ADR3 = 200H

Exercise 3.1: Now close this book. Refer only to the list of instructions
at the end of the book. Write a program which will add two numbers
stored at memory locations LOCI and LOC2. Deposit the results at
memory location LOC3. Then, compare your program to the one
above.

16-Bit Addition

An 8-bit addition will only allow the addition of 8-bit numbers, i.e.,
numbers between 0 and 255, if absolute binary is used. For most prac-
tical applications it is necessary to add numbers having 16 bits or more,
i.e., to use multiple precision. We will here present examples of arith-
metic on 16-bit numbers. They can be readily extended to 24, 32 bits or
more (always multiples of 8 bits). We will assume that the first operand
is stored at memory locations ADR1 and ADRI-1. Since OP1 is a 16-bit
number this time, it will require two 8-bit memory locations. Similarly,

99



PROGRAMMING THE 280

OP2 will be stored at ADR2 and ADR2-1. The result is to be deposited
at memory addresses ADR3 and ADR3-1. This is illustrated m Figure
3.5. H indicates the high half (bits 8 through 15), while L indicates the
low half (bits O through 7).

MEMORY

ADRI =1 (OPIH
ADRI1 {OPT U

ADR2 -1 {OPRZ)H
ADRZ (OPR2X

ADR3I~ 1 (RESIH
ADR3 (RESK.

Fig. 3.5: 16-Bit Addition—The Operands

The logic of the program is exactly like the previous one. First, the
lower half of the two operands will be added, since the microprocessor
can only add on 8 bits at a time. Any carry generated by the addition of
these low order bytes will automatically be stored in the internal carry
bit (*‘C”"). Then, the high order half of the two operands will be added
together along with any carry, and the result will be saved in the
memory. The program appears below:

LD A,(ADRI) LOAD LOW HALF OF OPI

LD HL, ADR2 ADDRESS OF LOW HALF OF OP2
ADD A, (HL), ADD OP! AND OP2 LOW

LD (ADR3),A STORE RESULT, LOW

LD A,(ADRI-i) LOAD HIGH HALF OF OP1

DEC HL ADDRESS OF HIGH HALF OF OP2
ADC A, (HL) (OP1 + OP2) HIGH + CARRY

LD (ADR3-1),A STORE RESULT, HIGH
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The first four instructions of this program are identical to the ones
used for the 8-bit addition in the previous section. They result in adding
the least significant haives (bits 0-7) of OP1 and OP2. The sum, called
“RES’’ is stored at memory location ADR3 (see Figure 3.5).

Automatically, whenever an addition is performed, any resulting
carry (whether ““0’" or ““1’”) is saved in the carry bit C of the flags
register (register F). If the two numbers do generate a carry, then the C
bit will be equal to *‘1"" (it will be set). If the two 8-bit numbers do not
generate any carry, the value of the carry bit will be 0",

The next four instructions of the program are essentially like those
used in the previous 8-bit addition program. This time they add
together the most significant half (or high half, i.e., bits 8-15) of OP1
and OP2, plus any carry, and store the result at address ADR3-1.

After execution of this 8-instruction program, the 16-bit result is
stored at memory locations ADR3 and ADR3-1, as specified. Note,
however, that there is one difference between the second half of this
program and the first half. The “ADD’’ instruction which has been
used is not the same as in the first half. In the first half of this program
(the 3rd instruction), we had used the ““ADD’" instruction. This instruc-
tion adds the two operands, regardless of the carry. In the second half,
we use the **ADC’" instruction, which adds the two operands together,
plus any carry that may have been generated. This is necessary in order
to obtain the correct result. The addition initially performed on the low
operands may result in a carry. Such a possible carry must be taken into
account in the second half of the addition.

The question which comes naturally then is: what if the addition of
the high half of the operands also results in a carry? There are two pos-
sibilities: the first one is to assume that this is an error. This program is
then designed to work for results of only up to 16 bits, but not 17, The
other one is to include additional instructions to test explicitly for the
possibility of a carry at the end of this program. This is a choice which
the programmer must make, the first of many choices.

Note: we have assumed here that the high part of the operand is
stored ‘‘on top of’" the lower part, i.e., at the lower memory address.
This need not necessarily be the case. In fact, addresses are stored by
the Z80 in the reverse manner: the low part is first saved in the memory,
and the high part is saved in the next memory location. In order to use a
common convention for both addresses and data, it is recommended
that data also be kept with the low part on top of the high part. This is
illustrated in Figure 3.6.
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MEMORY

ADRY (OPRI )t

ADRY + ¢ {OPRIH
ADRZ {OPR2L

ADR2+ 1 (OPR2IM
ADR3 {RESR
ADR3+ 1 {RESH

Fig. 3.6: Storing Operands in Reverse Order

When operating on multibyte operand, it is important to keep in mind
two essential conventions:

—the order in which data is stored in the memory.

—where data pointers are pointing: low byte or high byte.

Exercises 3.2 and 3.3 are designed to clarify this point.

Exercise 3.2: Rewrite the 16-bit addition program above with the
memory layout indicated in Figure 3.06.

Exercise 3.3: Assume now that ADRI does not point to the lower hulf
of OPR/ (as in Figures 3.5 or 3.6), but points to the higher part of
OPRI. This is illustrated in Figure 3.7. Again, write the corresponding
program,
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MEMORY

ADRI-1 (OPRIL
e ADR1 {OPRIM
ADR2-1 (OPR2YL
- ADR2 {OPR2IM
ADR3-Y (RESK.
— ADR3 (RESIH

Fig. 3.7: Pointing to the High Byte

It is the programmer, i.e., you, who must decide how to store 16-bit
numbers (i.e., low part or high part first) and also whether your address
references point to the lower or to the higher half of such numbers. This
is another choice which you will learn to make when designing
algorithms or data structures.

The programs presented above are traditional programs, using the
accumulator. We will now present an alternative program for the 16-bit
addition that does not use the accumulator, but instead uses some of
the special 16-bit instructions available on the Z80. Operands will be
assumed to be stored as indicated in Figure 3.6. The program is:

LD HL, (ADRI) LOAD HL WITH OPI
LD BC,(ADR2) LOAD BC WITH OP2
ADD HL, BC ADD 16 BITS

LD (ADR3), HL STORE RES INTO ADR3

Note how much shorter this program is, compared to our previous ver-
sion. It is more ‘‘elegant.”’ In a limited manner, the Z80 allows registers
H and L to be used as a 16-bit accumulator.
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Exercise 3.4: Using the 16-bit instructions which have just been intro-
duced, write an addition program for 32-bit operands, assuming that
operands are stored as shown in Figure 3.8. (The answer appears
below.)

Answer :

LD HL,(ADRI-I)
LD BC, (ARR2-1)
ADD HL, BC

LD (ADR3-1), HL
LD HL, (ADRI-3)
LD BC, (ADR2-3)
ADC HL, BC

LD (ADR3-3),HL

MEMORY

ADR1-3 HIGH
OPR}Y

ADRI Low
HIGH

OPR2

ADR2 LOW
HIGH

RES

ADR3 LOW

Fig. 3.8: A 32-Bit Addition
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Now that we have learned to perform a binary addition, let us turn to
subtraction.

Subtracting 16-Bit Numbers

Doing an 8-bit subtract would be too simple. Let us keep it as an ex-
ercise and directly perform a 16-bit subtract. As usual, our two num-
bers, OP1 and OP2, are stored at addresses ADR1 and ADR2. The
memory layout will be assumed to be that of Figure 3.6. In order to

subtract, we will use a subtract operation (SBC) instead of an add
operation (ADD).

Exercise 3.5: Now write a subtraction program.

The program appears below. The data paths are shown in Figure 3.9.

LD HL, (ADRI) OP1 INTO HL
LD DE, (ADR2) OP2 INTO DE
AND A CLEAR CARRY
SBC HL, DE OP1 — OP2

LD (ADR3),HL RES INTO ADR3

The program is essentially like the one developed for 16-bit addition.
However, the Z80 instruction-set has two types of additions on double
registers: ADD and ADC, but only one type of subtraction: SBC.

As aresult, two changes can be noted.
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MEMORY
H L
(OPHIH (OPIIL
i { (OPIL ADR1
i
(OP1H ADRY + 1

Fig. 3.9: 16-Bit Load — LD HL, (ADRD

A first change is the use of SBC instead of ADD.

The other change is the ““AND A’ instruction, used to clear the carry
flag prior to the subtraction. This instruction does not modify the value
of A.

This precaution is necessary because the Z80 is equipped with two
modes of addition, with and without carry on the H and L register, but
with only one mode of subtraction, the SBC instruction of *‘subtract
with carry’" when operating on the HL register pair. Because SBC auto-
matically takes into account the value of the carry bit, it must beset to 0
prior to starting the subtraction. This is the role of the ““AND A’ in-
struction.

Exercise 3.6: Rewrite the subtraction program without using (he
specialized 16-bit instruction.
Exercise 3.7: Write the subtract program for 8-bit operands.

It must be remembered that in the case of two’s complement arithme-
tic, the final value of the carry flag has no meaning. 1 an overflow con-

dition has occurred as a result of the subtraction, then the overflow bit
(bit V) of the flags register will have been set. It can then be tested.
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The examples just presented are simple binary additions or subtrac-
tions. However, another type of arithmetic may be necessary; it is BCD
arithmetic.

BCD ARITHMETIC
8-Bit BCD Addition

The concept of BCD arithmetic has been presented in Chapter 1. Let
us recall its features. It is essentially used for business applications
where it is imperative to retain every significant digit in a result. In the
BCD notation, a 4-bit nibble is used to store one decimal digit (0
through 9). As a result, every 8-bit byte may store two BCD digits.
(This is called packed BCD). Let us now add two bytes each containing
two BCD digits.

In order to identify the problems, let us try some numeric examples
first.

Letusadd ““01’" and “02”’:

‘01 is represented by: 0000 0001
‘02" is represented by: 0000 0010

The result is: 00000011

This is the BCD representation for 03", (If you feel unsure of the
BCD equivalent, refer to the conversion table at the end of the book.)
Everything worked very simply in this case. Let us now try another ex-
ample.

‘08" is represented by 0000 1000
*‘03”" is represented by 0000 0011

Exercise 3.8: Compute the sum of the two numbers above in the BCD
representation. What do you obtain? (answer follows)

If you obtain **0000 1011’", you have computed the binary sum of 8
and 3. You have indeed obtained 11 in binary. Unfortunately, <1011
is an illegal code in BCD. You should obtain the BCD representation of
“11°, i.e., 0001 0001!

The problem stems from the fact that the BCD representation uses
only the first ten combinations of 4 digits in order to encode the decimal
symbols 0 through 9. The remaining six possible combinations of 4
digits are unused, and the illegal ““1011°" is one such combination. In
other words, whenever the sum of two binary digits is greater than 9,
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then one must add 6 to the result in order to skip over the 6 unused
codes.
Add the binary representation of “‘6’" to 1011:

1011 (illegal binary result)
+ 0110 (+6)

The result is: 0001 0001

This is, indeed, ““11°" in the BCD notation! We now have the correct
result.

This example illustrates one of the basic difficulties of the BCD
mode. One must compensate for the six missing codes. A special in-
struction, “DAA"", called ‘‘decimal adjust,”” must be used to adjust the
result of the binary addition. (Add 6 if the result is greater than 9.)

The next probiem is illustrated by the same example. In our example,
the carry will be generated from the lower BCD digil (the right-most
one) into the left-most one. This internal carry must be taken into ac-
count and added to the second BCD digit. The addition instruction
takes care of this automatically. However, it is often convenient to
detect this internal carry from bit 3 to bit 4 (the ‘‘half-carry’’). The H
flag is provided for this purpose.

As an example, here is a program to add the BCD numbers *“11’" and

5‘2233:

LD A,IIH LOAD LITERAL BCD *Ii”
ADD A, 22H ADD LITERAL BCD *22°
DAA DECIMAL ADJUST RESULT
LD (ADR). A STORE RESULT

In this program, we are using a new symbol “H’’. The ““H’’ sign
within the operand field of the instruction specifies that the data which
follows is expressed in hexadecimal notation. The hexadecimal and the
BCD representations for digits “0’” through **9”" are identical. Here we
wish to add the literals (or constants) ““I1'" and “‘22°". The result is
stored at the address ADR. When the operand is specified as part of the
instruction, as it is in the above example, this is called immediate ad-
dressing. (The various addressing modes will be discussed in detail in
Chapter 5.) Storing the result at a specified address, such as LD (ADR), A
is called absolute addressing when ADR represents a 16-bit address.
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MEMORY

(RESULT} (ADRY

Fig. 3.10: Storing BCD Digits

This program is analogous to the 8-bit binary addition, but uses a
new instruction: ““DAA”’. Let us illustrate its role in an example. We
will first add ““11°" and ‘22" in BCD:

00010001 (i1)
+ 00100010 (22)
= 00110011 (33)

\.w’\‘v.’
3 3
The result is correct, using the rules of binary addition.
Let us now add ‘22’ and ‘39", by using the rules of binary addi-

tion: 00100010 (22)
+ 00111001 (39)

= 01011011

Nt e et

5 7

““1011"" is an illegal BCD code. This is because BCD uses only the
first 10 binary codes, and ‘‘skips over’’ the next 6. We must do the
same, i.e. add 6 to the result:

01011011 (binary result)
+ 0110 (6)

= 01100001 (61)

6 1
This is the correct BCD result.
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Lxercise 3.9: Could we move the DAA instruction in the program after
the instruction LD (ADR), A?

BCD Subtraction

BCD subtraction is, in appearance, complex. In order to perform a
BCD subtraction, one must add the ten’s complement of the number,
just as one adds the two’s complement of a number to perform a binary
subtract. The ten’s complement is obtained by computing the comple-
ment 10 9, then adding *‘1"". This requires typically three to four opera-
tions on a standard microprocessor. However, the Z80 is equipped with
a powerful DAA instruction which simplifies the program.

The DAA instruction automatically adjusts the value of the result in
the accumulator, depending on the value ol the C and H flags before
DAA, to the correct value. (See the next chapter for more details on
DAA))

16-Bit BCD Addition

16-bit addition is performed just as simply as in the binary case. The
program for such an addition appears below:

LD A,(ADRI) LOAD (OPI) L INTO A

LD HL, ADR2 LOAD ADR2 INTO HL

ADD A, (HL) (OP1 + OP2) LOW

DAA DECIMAL ADJUST

LD (ADR3), A STORE (RESULT) LOW

LD A,(ADRI +1) LD (OPI)H INTO A

INC HL POINT TO ADR2 + 1

ADC A, (HL) (OP1 + OP2) HIGH + CARRY
DAA DECIMAL ADJUST

LD (ADR3 + 1),A  STORE (RESULT) HIGH

Packed BCD Subtract

Elementary BCD addition and subtraction have been described.
However, in actual practice, BCD numbers include any number of
bytes. As a simplified example of a packed BCD subtract, we will
assume that the two numbers N1 and N2 include the same number of
BCD bytes. The number of bytes is called COUNT. The register and

110



BASIC PROGRAMMING TECHNIQUES

memory allocation is shown in Figure 3.11. The program appears
below:

BCDPAK LD B, COUNT

LD DE, N2
LD HIL, NI
AND A CLEAR CARRY
MINUS LD A, (DE) N2 BYTE
SBC A, (HL) N2 -1
DAA
LD (HL), A STORE RESULT
INC DE
INC HL
DJNZ MINUS DEC B, LOOP UNTIL B = 0.
8 COUNT
. £ .~ N2
] N2
: COUNT
v L
H N1
!

Fig. 3.11: Packed BCD Subtract: N1-«— N2- N1

N1 and N2 represent the addresses where the BCD numbers are stored.
These addresses will be loaded in register pairs DE and HL:

BCDPAK LD B, COUNT
LD DE, N2
LD HL, NI
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Then, in anticipation of the first subtraction, the carry bit must be
cleared. It has been pointed out that the carry bit can be cleared in a
number of equivalent ways. Here, for example, we use:

AND A
The first byte of N2 is loaded into the accumulator, then the first byte
of N1 is subtracted from it. The DAA instruction is then used, to obtain
the correct BCD value:

MINUS LD A, (DE)
SBC A, (HL)
DAA

The result is then stored into N1:
LD (HL), A
Finally, the pointers to the current byte are incremented:

INC DE
INC HL

The counter is decremented and the subtraction loop is executed until it
reaches the value ““0’’:

DINZ MINUS

The DINZ instruction is a special Z80 instruction which decrements
register B and jumps if it is not zero, in a single instruction.

Exercise 3.10: Compare the program above to the one for the [6-bit
binary addition. What is the difference?

Exercise 3.11: Can you exchange the roles of DE and HL? (Hint: Be
careful with SBC.}

Exercise 3.12: Write the subtraction program for a 16-bit BCD.
BCD Flags

In BCD mode, the carry flag during an addition indicates the fact
that the result is larger than 99. This is not like the two’s complement
situation, since BCD digits are represented in true binary. Conversely,
the presence of the carry flag during a subtraction indicates a borrow.

Instruction Types

We have now used two types of microprocessor instructions. We
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have used LD, which loads the accumulator from the memory address,
or stores its contents at the specified address. This is a data (ransfer in-
struction.

Next, we have used arithmetic instructions, such as ADD, SUB,
ADC and SBC. They perform addition and subtraction operations.
More ALU instructions will be introduced soon in this chapter.

Still other types of instructions are available within the micropro-
cessor which we have not used yet. They are in particular “‘jump’ in-
structions, which will modify the order in which the program is being
executed. This new type of instruction will be introduced in our next ex-
ample. Note that jump instructions are often called “‘branch’ for con-
ditional situations, i.e. instances where there is a logical choice in the
program. The “‘branch’ derives its name from the analogy to a tree,
and implies a fork in the representation of the program.

MULTIPLICATION

Let us now examine a more complex arithmetic problem: the multi-
plication of binary numbers. In order to introduce the algorithm for a
binary multiplication, iet us start by examining a usual decimal multi-
plication: We will multiply 12 by 23.

12 (Multiplicand)
X 23 (Multiplier)

36 (Partial Product)
+ 24

= 276 (Final Result)

The multiplication is performed by multiplying the right-most digit of
the multiplier by the multiplicand, i.e., ‘3"’ x ““12”’. The partial prod-
uct is *“36”’. Then one multiplies the next digit of the multiplier, i.e.,
Y27, by ‘127, “24”" is then added to the partial product.

But there is one more operation: 24 is offset to the left by one posi-
tion. We will say that 24 is shifted left by one position. Equivalently, we
could have said that the partial product (36) had been shifted one posi-
tion to the right before adding.

The two numbers, correctly shifted, are then added and the sum is
276. This is simple. The binary multiplication is performed in exactly
the same way.
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Let us look at an example. We will' multiply 5 x 3:

(5) 101 (MPD)
(3) x 0ll (MPR)
101 (PP)
101
000

(15) 01111 (RES)

In order to perform the multiplication, we operate exactly as we did
above. The formal representation of this algorithm appears in Figure
3-12. It is a flowchart for the algorithm, our first flowchart. Let us ex-
amine it more closely.

1

SETRESAT 10 RO

NO
158 (PR 17

Yt§

RESULT = RESLLT + MPD

| —

LEFT SHIFT 41134PD.

OR RIGHT SHIFT 1118}

!
i

NEXT LSS (MPY

Fig. 3.12: The Basic Multiplication Algorithm—F lowchart

This flowchart is a symbolic representation of the algorithm we have
just presented. Every rectangle represents an order to be carried out. It
will be translated into one or more program instructions. Every
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diamond-shaped symbol represents a test being performed. This will be
a branching point in the program. If the test succeeds, we will branch to
a specified location. If the test does not succeed, we will branch to
another location. The concept of branching will be explained later, in
the program itself. The reader should now examine this flowchart and
ascertain that it does indeed exactly represent the algorithm which has
been presented. Note that there is an arrow coming out of the last dia-
mond at the bottom of the flowchart, back to the first diamond on top.
This is because the same portion of the flowchart will be executed eight
times, once for every bit of the multiplier. Such a situation, where ex-
ecution will restart at the same point, is called a program loop for ob-
vious reasons.

Exercise 3.13: Multiply ““4°’ by “*7’’ in binary, using the flowchart, and
verify that you obtain “‘28°". If you do not, try again. It is only if you
obtain the correct result that you are ready to translate this flowchart
nto a program.
8-By-8 Multiplication

Let us now translate this flowchart into a program for the Z80. The
complete program appears in Figure 3.13. We are going to study it in
detaii. As you will recall from Chapter I, programming consists here of
translating the flowchart of Figure 3.12 into the program of Figure
3.13. Each of the boxes in the flowchart will be translated by one or
more instructions.

It is assumed that MPR and MPD already have a value.

MPY88 LD BC,(MPRAD) LOAD MULTIPLIER INTO C

LD B.8 B IS BIT COUNTER

LD DE.(MPDAD) LOAD MULTIPLICAND INTO E

LD D,0 CLEAR D

LD HL.,O SET RESULT TO 0
MULT SRL C SHIFT MULTIPLIER BIT INTO

CARRY

JR NC, NOADD TEST CARRY

ADD HL, DE ADD MPD TO RESULT
NOADD SLA E SHIFT MPD LEFT

RL D SAVE BITIND

DEC B DECREMENT SHIFT COUNTER

JP NZ, MULT DO IT AGAIN IF COUNTER # 0
LD (RESAD),HL STORE RESULT

Fig. 3.13: 8 x 8 Multiplication Program
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The first box of the flowchart is an initialization box. It is necessary
to set a number of registers or memory locations to ““0’", as this pro-
gram will require their use. The registers which will be used by the
multiplication program appear in Figure 3.14.

g

A

| RES (RESAD)

1
AN

{MPRAD)

A

MPD (MPDAD)

=

Fig 3.14: 8§ x 8 Multiplication—The Registers

Three register pairs of the Z80 are used for the multiplication pro-
gram. The 8-bit multiplier is assumed to reside at memory address
MPRAD. The multiplicand MPD is assumed to reside at memory ad-
dress MPDAD. The multiplier and the multiplicand respectively will be
loaded into registers C and E (see Figure 3.14). Register B will be used
as a counter.

Registers D and E will hold the muitiplicand as it is shifted left one

bit at a time.
Note that, even though only C and E need to be loaded initially, a 16-
bit load must be used, so that B and D will also be loaded from memory,

and will have to be reset respectively to “‘8’' and to <‘0°".
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Finally, the results of an 8-bit by 8-bit multiplication may require up
to 16 bits. This is because 2' x 2* = 2'¢, Two registers must therefore
be reserved for the result. They are registers H and L, as indicated on
Figure 3.14.

The first step is to load registers B, C, and E with the appropriate
contents, and to initialize the result (the partial product) to the value
““0”" as specified by the flowchart of Figure 3.12. This is accomplished
by the following instructions:

MPY88 LD BC, (MPRAD)

LD B,38

LD DE. (MPDAD)
LD D,0

LD HL, 0

The first three instructions respectively ioad MPR into the register pair
BC, the value “‘8” into register B, and MPD into the register pair DE.
Since MPR and MPD are 8-bit words, they are, in fact, loaded into
registers C and E respectively, while the next words in the memory after
MPR and MPD get loaded into B and D. This is shown in Figure 3,15
and 3.16. The next instruction will zero the contents of D.

In this multiplication program, the multiplicand will be shifted left
before being added to the result (remember that, optionally, it is pos-
sible to shift the result right instead, as indicated in the fourth box of
the flowchart of Figure 3.12). The multiplicand MPD will be shifted in-
to register D at each step. This register D must therefore be initialized to
the value ““0’". This is accomplished by the fourth instruction. Finally,
the fifth instruction sets the contents of registers H and L to 0 in a single
instruction.

MEAMORY
. ci 7 |
0
7 7 MPRAD R
i b7

Fig. 3.15: LD BC, (MPRAD)
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MEMORY

MPDAD : L IMPDL

Fig. 3.16: LD DE, (MPDAD)

Referring back to the flowchart of Figure 3.12, the next step is to test
the least significant bit(the right-most bit)of the multiplier MPR. If this
bitisa ‘1”7, then the value of MPD must be added to the partial result,
otherwise it will not be added. This is accomplished by the next three in-
structions:

MULT SRL C
JR NC, NOADD
ADD HL, DE

The first problem we must solve is how to test the least significant bit of
the multiplier, contained in register C. We could here use the BIT in-
struction of the Z80, which allows testing any bit in any register. How-
ever, in this case, we would like to construct a program as simple as
possible, using a loop. If we were using the BIT instruction here, we
would first test bit 0, then later test bit 1, and so on until we reached bit
7. This would require a different instruction every time, and a simple
loop could not be used. In order to shorten the length of the program,
we must use a different instruction. Here we are using a shift instruc-
tion.

Note: There is a way to use the BIT instruction and a loop, but this
would require the program to modify itself, a practice we will avoid.
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SRL is a new type of operation within the arithmetic and logical unit.
It stand for ‘‘shift right logical.”” A Jogical shift is characterized by the
fact that a ‘0"’ comes into bit position 7. This can be contrasted to an
arithmetic shift, where the bit coming into position 7 is identical to the
previous value of bit 7. The different types of shift operations will be
described in the next chapter. The effect of the SRL C instruction is il-
lustrated in Figure 3.14 by an arrow coming out of register C and into
the square used to designate the carry bit (also called “C’"). At this
point, the right-most bit of the MPR will be in the carry bit C, where it
can be tested.

The next instruction, ““JR NC, NOADD"", is a jump operation. It
means ‘‘jump on no carry’’ (NC) to the address (the label) NOADD. If
the contents of the carry bit are “‘0’" {(no carry), then the program will
jump to the address NOADD. If the contents of C are ‘‘1"’ (the carry
bit is set), then no branch will occur, and the next sequential instruction
will be executed, i.e., the instruction ““ADD HL, DE’’ will be executed.

This instruction specifies that the contents of D and E be added to H
and L, with the result in H and L. Since E contains the multiplicand
MPD (see Figure 3.14), this adds the multiplicand to the partial result.

At this point, regardless of whether MPD has been added to the
result or not, the multiplicand must be shifted left (this is the fourth box
in the flowchart of Figure 3.12). This is accomplished by:

NOADD SLA E

SLA stands for ‘‘shift left arithmetic.”” It has just been explained above
that there are two types of shift operations, a iogical shift and an arith-
metic shift. This is the arithmetic one. In the case of a left shift, an SLA
specifies that the bit coming into the right part of the register (the least
significant bit) be a ““0’’ (Just as in the case of an SRL before).

As an example, let us assume that the initial contents of register E
were 00001001, After the SLA instruction, the contents of E will be
00010010. And the contents of the carry bit will be 0.

However, looking back at Figure 3.14, we really want to shift the
most significant bit (called the MSB) of E directly into D (this is il-
lustrated by the arrow on the illustration coming from E into D).
However, there is no instruction which will shift a double register such
as D and E in one operation. Once the contents of E have been shifted,
the left-most bit has “‘fallen into’” the carry bit. We must collect this bit
from the carry bit and shift it into register D. This is accomplished by
the next instruction:

RL D
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RL is still another type of shift operation. It stands for ‘‘rotate left.”’
In a rotation operation, as opposed to a shift operation, this bit coming
into the register is the contents of the carry bit C (see Figure 3.17). This
is exactly what we want. The contents of the carry bit C are loaded into
the right-most part of D, and we have effectively transferred the left-
most bit of E.

This sequence of two instructions is illustrated in Figure 3.18. It can
be seen that the bit marked by an X in the most significant position of E
will first be transferred into the carry bit, then into the least significant
position of D. Effectively, it will have been shifted from E into D.

At this point, referring back to the flowchart of Figure 3.12, we must
point to the next bit of MPR and check for the eighth bit. This is ac-
complished by decrementing the byte counter, contained in register B
(see Figure 3.14). The register is decremented by:

DEC B

This is a decrement instruction, which has the obvious effect.

Finally, we must check whether the counter has decremented to the
value zero. This is accomplished by checking the value of the Z bit. The
reader will recall that the Z (zero) flag indicates whether the previous
arithmetic operation (such as a DEC operation) has produced a zero
result. However, note that DEC HL, DEC BC, DEC DE, DEC IX,
DEC SP do not affect the Z flag. If the counter is not *‘0’", the opera-
tion is not finished, and we must execute this program loop again. This
is accomplished by the next instruction:

JP NZ MULT
SHIFT LEFT

LN N DYDY

( CARRY

ROTATE LEFT

L DN DD D DD &
( CARRY )

Fig. 3.17: Shift and Rotate
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Fig. 3.18: Shifting from E into D

This is a jump instruction which specifies that whenever the Z bit is
not set (NZ stands for non-zero), a jump occurs to location MULT. This
is the program loop, which will be executed repeatedly until B decre-
ments to the value 0. Whenever B decrements to the value 0, the Z bit
will be set, and the JP NZ instruction will fail. This will result in the
next sequential instruction being executed, namely:

LD (RESAD), HL

This instruction merely saves the contents of H and L, i.e., the result of
the multiplication, at address RESAD, the address specified for the
result. Note that this instruction will transfer the contents of both regis-
ters H and L into two consecutive memory locations, corresponding to
addresses RESAD and RESAD + 1. It saves 16 bits at a time.

Exercise 3.14: Could you write the same multiplication program using
the BIT instruction (described in the next chapter) instead of the SRL C
instruction? What would be the disadvantage?

Let us now improve the program, if possible:

Exercise 3.15: Can JR be substituted for JP at the end of the program?
If so, what is the advantage?

Exercise 3.16: Can you use DJNZ to shorten the end of the program?
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Exercise 3.17: Examine the two instructions: LD D, 0 and LD HL, 0 at
the beginning of the program. Can you substitute:

XOR A

LD D, A
LD H A
LD L, A

If so, what is the impact on size (number of bytes} and speed?

Note that, in most cases, the program that we have just developed
will be a subroutine and the final instruction in the subroutine will be
RET (return). The subroutine mechanism will be explained later in this
chapter.

Important Self-Test

This is the first significant program we have encountered so far. It in-
cludes many different types of instructions, including transfer instruc-
tions (LD), arithmetic operations (ADD), logical operations (SRL,
SLA, RL), and jump operations (JR, JP). It also implements a pro-
gram loop, in which the lower seven instructions, starting at address
MULT, are executed repeatedly. In order to understand programming,
it is essential to understand the operation of such a program in com-
plete detail. The program is much longer than the previous simple arith-
metic programs we have developed so far, and it should be studied in
detail. An important exercise will now be proposed. The reader is
strongly urged to do this exercise completely and correctly before pro-
ceeding. This will be the only real proof that the concepts presented so
far have been understood. If a correct result is obtained, it will mean
that you have really understood the mechanism by which instructions
manipulate information in the microprocessor, transfer it between the
memory and the registers, and process it. If you do not obtain the cor-
rect result, or if you do not do this exercse, it is likely that you will ex-
perience difficulties later in writing programs yourself. Learning to pro-
gram requires personal practice. Please pause now, take a piece of
paper, or use the illustration of Figure 3.19, and do the following exer-
cise:

Exercise 3.18: Every time that a program is written, it should be verified
by hand, in order to ascertain that its results will be correct. We are go-
ing to do just that: the goal of this exercise is to fill in the table of Figure
3.19 completely and accurately.
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LABEL [INSTRUCTION} B C C D E H L

{CARRY)

Fig. 3.19: Form for Multiplication Exercise

You may want to write directly on Figure 3.19 or make a copy of it.
You must determine the contents of every relevant register in the Z80
after the execution of each instruction in the program, from beginning
to end. All the registers used by the program of Figure 3.13 are shown
in Figure 3.19. From left to right, they are registers B and C, the carry
C, registers D and E, and, finally, registers H and L. On the left part of
this illustration, fill in the label, if applicable, and then the instructions
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being executed. On the right of the instruction, fill in the contents of
each register after execution of the instruction. Whenever the contents
of a register are not known (indefinite), you may use dashes to repre-
sent its contents. Let us start {illing in this table together. You will then
have to fill it out by yourself until the end. The first line appears below:

LABEL |INSTRUCTION| B C C D E H L

MP488 LD BC,(0200)| 0O 03 - -- == == ="

Fig. 3.20: Multiplication: After One Instruction

We will assume here that we are multiplying *‘3” (MPR) by “5"
(MPD).

The first instruction to be executed is “LD BC, (MPRAD)"". The
contents of memory location MPRAD is loaded into registers B and C.
It has been assumed that MPR is equal to 3, i.e., “‘00000011"". After ex-
ecution of this instruction, the contents of register C have been set to
‘3", Note that this instruction will also result in loading register B with
whatever followed MPR in the memory. However, the next instruction
in the program will take care of this by loading register B with ““8”’, as
shown in Figure 3.21. Note that, at this point, the contents of D and E
and H and L are still undefined, and this is indicated by dashes. The LD
instruction does not condition the carry bit, so that the contents of the
carry bit C are undefined. This is also indicated by a dash.

LABEL [INSTRUCTION;{ B C C D E H L

MP488 LD BC,(0200)| 00 03 - - -- - | -
LD B, 08 08 03 - -- -- e | --

Fig. 3.21: Multiplication: After Two Instructions

The situation after the execution of the first five instructions of the
program (just before the MULT) is shown in Figure 3.22.
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LABEL |INSTRUCTION| B C C D E H L
MP488 LD BC,(0200){ 00 03 - -- -- - =
LD B, 08 08 03 - -- == - o=
LD DE,(0202) | 08 03 - 00 05 il i
LD D, 00 08 03 - 00 05 il
LD HL,0000 08 03 - 00 05 |1 00| OO

Fig. 3.22: Multiplication: After Five Instructions

The SRL instruction will perform a logical shift right, and the right-
most bit of MPR will fall into the carry bit. You can see in Figure 3.23
that the contents of MPR and after the shift is ‘0000 0001°". The carry
bit Cis now set to ‘‘1”’. The other registers are unchanged by this opera-

tion. Please continue to fill out the chart by yourself.
A second iteration is shown at the end of this chapter in Fig. 3.41.

LABEL [INSTRUCTION| B C C D E H L
MP488 LD BC,(0200)¢ 00 03 - -- -- =] ="
DB, 08 08 03 - -- - R B
LD DE,(0202) ; 08 03 - 00 05 R
DD, 00 08 03 - 00 05 il R
LD HL,0000 08 03 - 00 05 | 00| OO
MULT SRLC 08 01 1 00 05 | 00 | 00
JRINC,0114 08 01 1 00 05 100 OO
ADD HL,DE 08 01 0 00 05 1 00| 05
NOADD | SLAE 08 o1 0] 00 OA | 00 | 05
RLD 08 01 0 00 OA | 00 | 05
DECB 07 01 0 00 OA | 00 | 05
JPNZ,010F 07 01 0 00 OA | 00 | 05

Fig. 3.23: One Pass Through The Loop.
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A complete listing showing the contents of all the Z80 registers and
the flags is shown in Fig. 3.39 at the end of this chapter for the complete
multiplication. A hex or decimal listing is shown in Fig. 3.40.

Programming Alternatives

The program that we have just developed could have been written.in
many other ways. As a general rule, every programmer can usually find
ways to modify, and often improve, a program. For exampie, we have
shifted the multiplicand left before adding. It would have been mathe-
matically equivaient to shift the result one position to the right before
adding it to the multiplicand. As a matter of fact, this is an interesting
exercise!

Exercise 3.19: Write an 8 X 8 multiplication program using the same
algorithm, but shifting the result one position to the right instead of
shifting the multiplicand by one position to the left. Compare it to the
previous program, and determine whether this different approach
would be faster or slower than the preceding one. The speeds of the Z80
instructions are given in the next chapter and also in the appendix.

Improved Multiplication Program

The program that we have just developed is a straightforward trans-
lation of the algorithm to code. However, effective programiiing re-
quures close attention to detail, and the length of the program can often
be reduced or its execution speed can be improved. We are now going to
study alternatives designed to improve this basic program.

Step 1

A first possible improvement lies in the better utilization of the Z80
instruction set. The second-to-last instruction as well as the preceding
one can be replaced by a single instruction:

DJNZ LOOP

This is a special Z80 ‘‘automated jump’’ which decrementsthe B register
and branches to a specified location if it is not **0”". To be absolutely
correct, the instruction is not completely identical to the previous pair:

DEC B
JP NZ, MULT
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for it specifies a displucement, and one can only jump within the range
of —256 to +256. However, we must here jump to a location which is
only a few bytes away, and this improvement is legitimate. The
resulting program is shown in Figure 3.24 below:

MP488B LD DE, (MPDAD)

LD BC, (MPRAD)
LD B, 8 BIT COUNTER
LD HL, 0
MULT  SRL C
JR NC, NOADD

ADD HL, DE
NOADD SLA E

RL D

DINZ MULT

LD (RESAD), HL
RET

Fig. 3.24: Improved Multiply, Step 1
Step 2

In order to improve this multiplication program turther, we will
observe that three different shift operations are used in the initial pro-
gram of Figure 3.13. The multiplier is shifted right, then the multipli-
cand MPD is shifted left, in two operations, by first shifting register E
left, then rotating register D to the left. This is time-consuming. A stan-
dard programming ““trick’” used in the case of multiplication is based
on the following observation: every time that the multiplier is shifted by
one bit position, another bit position becomes available in the multi-
plier register. For example, assuming that the multipiier shifts right (in
the previous example), a bit position becomes available on the left.
Simultaneously, it can be observed that the first partial product (or
“‘result’’) will use, at most, 9 bits. It a single register had been allocated
to the result in the beginning of the program, we could then use the bit
position that has been vacated by the multiplier to store the fourth bit
of the result.

After the next shift of the MPR, the size of the partial product will be
increased by just one bit again. In other words, a single register can be
reserved intially for the partial product, and the bit positions which are
being freed by the multiplier can then be used as the MPR is being
shifted. In order to improve the program, we are therefore going to
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assign MPR and RES to a register pair. ldeally, they should be shifted
together in a single operation. Unfortunately, the Z80 shifts only 8-bit
registers at a time. Like most other 8-bit microprocessors, it has no in-
struction that allows shifting 16 bits at a time.

However, another trick can be used. The Z80 (like the 8080) is
equipped with special 16-bit add instructions that we have already used.
Provided that the multiplier and the result are stored in the register pair
H and L, we can use the instruction:

ADD HL, HL

which adds the contents of H and L to itself. Adding a number to
itself is doubling it. Doubling a number in the binary system is equiva-
lent to a left shift. We have just obtained a 16-bit shift in a single in-
struction. Unfortunately, the shift occurs to the left when we would like
it to occur to the right. This is not a problem.

Conceptually, the MPR can be shifted either left or right. We have
used a right shift algorithm because this is the one which is used in or-
dinary addition. However, it does not necessarily need to be so. The
addition operation is commutative, and the order can be reversed: shif-
ting the MPR to the left is just as valid.

In order to take advantage of this simulated 16-bit shift, we will have
to shift the MPR to the left. Therefore, the MPR will reside in register
H and the result in register L. The resulting register configuration is
shown in Figure 3.25.

Bl COUNTER

D| 0 | mpD

S—

Fig. 3.25: Registers for Improved Multiply
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The rest of the program is essentially identical to the previous one.
The resulting program appears below:

MULSSC LD HL, (MPRAD-1)
LD L,0
LD DE, (MPDAD)
LD D, 0
LD B.8 COUNTER
MULT ADD  HL, HL SHIFT LEFT
JR NC, NOADD

ADD HL, DE
NOADD DIJNZ MULT

LD (RESAD), HL

RET

Fig. 3.26: improved Multiply, Step 2

When comparing this program to the previous one, it can be seen that
the length of the multiplication loop (the number of instructions be-
tween MULT and the jump) has been reduced. This program has been
written in fewer instructions and this will usually result in faster execu-
tion. This shows the advantage of selecting the correct registers to con-
tain the information.

A straightforward design will generally result in a program that
works. It will not result in a program that is optinzed. 1t is theretore
important to understand and use the available registers and instructions
in the best possible way. These examples illustrate a rational approach
to register selection and instruction selection for maximum efficiency.

Exercise 3.20: Compute the speed of a multiplication operation using
this last program. Assume that a branch will occur in 50% of the cases.
Look up the number of cycles required by every instruction in the index
section. Assume a clock rate of 2 MHz (one cycle = 2 us).

Exercise 3.21: Note that here we have used the register pair D and E 10
contain the multiplicand. How would the above program be changed if
we had used the register pair B and C instead? (Hint: this would re-
quire a modification at the end.)

Exercise 3.22: Why did we have to bother zeroing register D when
loading MPD into E?

Finally, let us address a detail which may look irritating to the pro-
grammer who is not yet familiar with the Z80. The reader will have
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noticed that, in order to load MPD into E from the memory, we had to
ioad both registers D and E at the same time from a memory address.
This is because, unless the address is contained in registers H and L,
there is no way to fetch a single byte directly and load it into register E.
This is a feature carried over from the early 8008, which had no direct
addressing mode. The feature was carried forward into the 8080, with
some improvements, and improved still further in the Z80, where it is
possible to fetch 16 bits directly from a given memory address (but not
8 bits).

Now, having solved this possible mystery, let us execute a more
complex multiplication.

A 16 X 16 Multiplication

In order to put our newly acquired skills to a test, we will multiply
two 16-bit numbers. However, we will assume that the result requires
only 16 bits, so that it can be contained in one of the register pairs.

The result, as in our first multiplication example, is contained in
registers H and L (see Figure 3.27). The multiplicand MPD is contained
in registers D and E.

@]

B C

COUNTER MPR, HIGH A

MPR, LOW

D MPD E
[ ©
T

H RESULT L

AN

+

Fig. 3.27: 16 X 16 Multiply—The Registers
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It would be tempting to deposit a multiplier into register B and C.
However, if we want to take advantage of the DINZ instruction,
register B must be allocated to the counter. As a result, half of the
multiplier will be in register C, and the other half in register A (see
Figure 3.27). The multiplication program appears below:

MULt6 LD A, (MPRAD + 1) MPR, HIGH

LD C A
LD A, (MPRAD) MPR, LOW
LD B, 16 COUNTER
LD DE, (MPDAD) MPD
LD HL, 0
MULT SRL C RIGHT SHIFT MPR,
HIGH
RRA ROTATE RIGHT MPR,
LOW
JR NC, NOADD TEST CARRY
ADD HL, DE ADD MPD TO RESULT
NOADD EX DE, HL
ADD HL, HL DOUBLE - SHIFT MPD
LEFT

EX DE, HL
DINZ MULT
RET

Fig. 3.28: 16 X 16 Multiplication Program

The program is analogous to those we have developed before. The
first six instructions (from label MUL16 to label MULT) perform the
initialization of registers with the appropriate contents. One complica-
tion is introduced here by the fact that the two halves of MPR must be
loaded in separate operations. It is assumed that MPRAD points to the
low part of the MPR in the memory, followed in the next sequential
memory location by the high part. (Note that the reverse convention
can be used.) Once the high part of MPR has been read into A, it must
be transferred into C:

LD A, (MPRAD + 1)
LD C, A

Finally, the low part of MPR can be read directly into the accumulator:

LD A, (MPRAD)
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The rest of the registers, B, D, E, H, and L are initialized as usual;

LD B, 16
LD DE, (MPDAD)
LD HL, 0

A 16-bit shift must be performed on the multiplier. It requires two
separate shift or rotate operations on registers C and A:

MULT SRL C
RRA

After the 16-bit shift, the right-most bit of the MPR, i.e., the LSB, is
contained in the carry bit C where it can be tested:

JR NC, NOADD

As usual, the multipiicand is not added to the result if the carry bit is
“0’", and is added to the result if the carry bit is ““1’":

ADD HL, DE

Next, the multiplicand MPD must be shifted by one position to the left.

However, the Z80 does not have an instruction which will shift the
contents of register D and E simultaneously to the left by one bit posi-
tion, and it can also not add the contents of D and E to itself. The con-
tents of D and E will therefore first be transferred into H and L, then
doubled, and transferred back to D and E. This is accomplished by the
next three instructions:

NOADD EX DE, HL
ADD HL, HL
EX DE, HL

Finally, the counter B is decremented and a jump occurs to the begin-
ning of theloop as long as it does not decrement to *‘0’’:

DINZ MULT

As usual, it is possible to consider other register allocations which may
(or may not) result in shorter codes:

Exercise 3.23: Load the multiplier into registers B and C. Place the
counter in A. Write the corresponding multiplication program and
discuss the advantages or disadvantages of this register allocation.
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Exercise 3.24: Referring (o the original 16-bit multiplication program
of Figure 3.28, can you propose a way to shift the MPD, contained in
registers D and E, without transferring it into registers H and L?

Exercise 3.25: Write a 16-by-16 multiplication program which detects
the fact that the result has more than 16 bits. This is a sunple improve-
ment of our basic prograin.

Exercise 3.26: Write a 16-by-16 multiplication program with a 32-bit
result. The suggested register allocation appears in Figure 3.29.
Remember that the initial result after the first addition in the loop will
require only 16 bits, and that the multiplier will free one bit for each
subsequent iteration,

[
B MPD C
I
H
) MPR E
1 RESULT
AFTER
MULTIPLICATION
H RES L

Fig. 3.29: 16 x 16 Multiply with 32-Bit Result

Let us now examine the last usual arithmetic operation, the division.

BINARY DIVISION

The algorithm for binary division is analogous to the one which has
been used for the multiplication. The divisor is successively subtracted
from the high order bits of the dividend. After each subtraction, the
result is used instead of the initial dividend. The value of the quotient is
simultaneously increased by 1 every time. Eventually, the result of the
subtraction is negative. This is called an overdraw. One must then
restore the partial result by adding the divisor back to it. Naturally, the
quotient must be simultaneously decremented by 1. Quotient and divi-
dend are then shifted by one bit position to the left and the algorithm is
repeated. The flow-chart is shown in Figure 3.30.

The method just described is called the restoring method. A variation
of this method which yields an improved speed of execution is called the
non-restoring method.
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INITIALIZE
QUOTIENT = 0
SHIFTCOUNTER = 4

SHIFT LEFT
DIVIDEND
(WITH 8 LEADING ('s}
AND QUOTIENT

i

TRIAL SUBTRACT:
LECT (DIVIDEND)-DIVISOR

YES
BORROW?
NO
RESTORE:
QUOTIENT = QUOTIENT +1 ADD DIVISOR

13 :

COUNTER = COUNTER~ 1

NO

YES
END (REMAINDER IN LEFT (DIVIDEND}

Fig. 3.30: 8-Bit Binary Division Flowchart

B { COUNTER C

H | DIVIDEND/QUOTIENT

Fig. 3.31: 16 X 8 Division—The Registers
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16-by-8 Division

As an example, let us here examine a 16-by-8 division, which will
yield an 8-bit quotient and an 8-bit remainder dividend. The register
allocation is shown in Figure 3.31.

The program appears below:

DIVie8 LD A,(DVSAD) LOAD DIVISOR
LD DA INTO D
LD E, 0
LD HL, (DVDAD) LOAD 16-BIT DIVIDEND
LD B,8 INITIALIZE COUNTER
D1v XOR A CLEAR C BIT
SBC HL, DE DIVIDEND - DIVISOR
INC HL QUOTIENT = QUOTIENT + 1
JP P, NOADD TEST IF REMAINDER
POSITIVE
ADD HL, DE RESTORE IF NECESSARY
DEC HL QUOTIENT = QUOTIENT - 1
NOADD ADD HL, HL SHIFT DIVIDEND LEFT
DINZ DIV LOOP UNTIL B =0
RET

Fig. 3.32: 16 X 8 Division Program

The first five instructions in the programload the divisor and the divi-
dend respectively into the appropriate registers. They also initialize the
counter, in register B, to the value 8. Note again that register B is a pre-
ferred location for a counter if the specialized Z80 instruction DINZ is
to be used:

DIvies LD A, (DVSAD)

LD D, A
LD E, O
LD HL, (DVDAD)
LD B, 8

Next, the divisor is subtracted from the dividend. Since an SBC in-
struction must be used (there is no 16-bit subtract without carry), the
carry must be set to the value ‘0"’ before subtracting. This can be ac-
complished in a number of ways. The carry can be cleared by perform-
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ing instructions such as:

XOR A
AND A
OR A

Here, an XOR is used:
DIV XOR A
The subtraction can then be performed:
SBC HL, DE

It is anticipated that the subtraction will be successful, i.e., that the re-
mainder will be positive. This is called the ‘‘trial subtract’’ step (refer to
the flowchars of Figure 3.30). The quotient is therefore incremented by
one. If the subtraction has in fact failed (i.e., if the remainder is
negative), the quotient will have to be decremented by one later on:

INC HL
The result of the subtraction is then tested:
JP P, NOADD

If the remainder is positive or zero, the subtraction has been successful,
and it is not necessary to store it. The program jumps to address
NOADD. Otherwise, the current dividend must be restored to its
previous value, by adding the divisor back to it, and the quotient must
be decremented by one. This is performed by the next instructions:

ADD HL, DE
DEC HL

Finally, the resulting dividend is shifted left, in anticipation of the
next trial subtract operation. Finally, the B counter is decremented and
tested for the value “‘0’". As long as B is not zero, this loop is executed:

NOADD ADD HL, HL
DINZ DIV
RET

Exercise 3.27: Verify the operation of this division program by hand,
by filling out the table of Figure 3.33, as in Exercise 3.18 Sfor the multi-
plication. Note that the contents of D need not be entered on the form
of Figure 3.33, since they are never modified.
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LABEL INSTRUCTION B H i

Fig. 3.33: Form for Division Program
8-Bit Division

The following program uses a restoring method, and leaves a com-
plemented quotient in A. It divides 8 bits by 8 bits (unsigned).

E IS DIVIDEND

C IS DIVISOR
AIS QUOTIENT
B IS REMAINDER

DIV88 XOR A CLEAR ACCUMULATOR
LD B, 8 LOOP COUNTER

LOOP88 RL E ROTATE CY INTO ACC-

DIVIDEND

RLA CY WILL BE OFF
SUB C TRIAL SUBTRACT DIVISOR
JR NC,$ + 3 SUBTRACT OK
ADD A C RESTORE ACCUM, SET CY
DINZ  LOOPSS
LD B,A PUT REMAINDER IN B
LD AE GET QUOTIENT
RLA SHIFT IN LAST RESULT BIT
CPL COMPLEMENT BITS
RET

Note: the **$"" symbol in the sixth instruction represents the value of the
program counter,
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Non Restoring Division
The following program performs a 16-bit by 15-bit integer division,

using a non-restoring technique. 1X points to the dividend, 1Y to the
divisor (not zero). The resulting address is left in IX (see Figure 3.34).

A DVD, HI !

B[ COUNTER H DVD,LO Jc

p| DIVISOR i
H | REM It
x| ovoappress ]
| DVS ADDR

Fig. 3.34: Non-Restoring Divisor—The Registers

Register B is used as a counter, initially set to 16.
A and C contain the dividend.
D and E contain the divisor.
H and L contain the result.
The 16-bit dividend is shifted left by:
RL C
RLA
The remainder is shifted left by:
ADC HL, HL.
The final quotient is left in B, C, with the remainder in HL. The
program follows.
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TRIALSB

NULL

PTV

RESTOR

NGV
DONE

LD
LD
LD
LD
LD
OR

JR

LD
LD
LD
RL

RLA
ADC

SBC
CCF
JR

DINZ
JP
RL

RLA
ADC
AND
ADC
JR
JR
DINZ
RL.
RLA
ADD
LD
RET

B,.{UX + 1)
C, IX)
D,(Y + 1)
E, (1Y)

A, D

E

Z, ERROR

A,B
HL,0
B, 16
C

HL, HL
HL, DE
NC, NGV

TRIALSB
DONE
C

HL, HL
A

HL, DE
C.PTV
Z,NULL
RESTOR
C

HL, DE
B, A
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(DIVISOR) HIGH OR
(DIVISOR) LOW

CHECK FOR DIVISOR =
ZERO

GET (DVD) HI

CLEAR RESULT
COUNTER

ROTATE RESULT + ACC
LEFT

LEFT SHIFT. NEVER SETS
CARRY.

MINUS DIVISOR

RESULT BIT
ACCUMULATOR
NEGATIVE?

COUNTER ZERO?

ROTATE RESULT + ACC
LEFT

AS ABOVE

RESTORE BY ADDING DVSR
RESULT POSITIVE

RESULT ZERO

COUNTER ZERO?

SHIFT IN RESULT BIT

CORRECT REMAINDER
QUOTIENT IS IN B, C
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Exercise 3.28: Compare the previous program to the following one, us-
ing a restoring technique:

DIVIDEND IN AC
DIVISOR IN DE
QUOTIENT IN AC
REMAINDER IN HL

DIV16 LD HL,0 CLEAR ACCUMULATOR
LD B, 16 SET COUNTER

LOOP16 RL C ROT ACC-RESULT LEFT
RLA
ADC HL,HL LEFT SHIFT
SBC HL,DE TRIAL SUBTRACT DIVISOR
JR NC,$ +3 SUB WAS OK
ADD HL,DE RESTORE ACCUM
CCF CALC RESULT BIT
DINZ LOOPI16 COUNTER NOT ZERO
RL C SHIFT IN LAST RESULT BIT
RLA
RET

Note: The symbol ‘$>’ means ‘‘current location’’ (eighth instruction).

LOGICAL OPERATIONS

The other class of instructions which can be executed by the ALU in-
side the microprocessor is the set of logical instructions. They include:
AND, OR and exclusive OR (XOR). In addition, one can also include
here the shift and rotate operations which have already been utilized,
and the comparison instruction, called CP for the Z80. The individual
use of AND, OR, XOR, will be described in Chapter 4 on the instruc-
tion set.

Let us now develop a brief program which will check whether a given
memory location called LOC contains the value *‘0’’, the value *‘1”°, or
something else.

The program will introduce the comparison instruction, and perform
a series of logical tests. Depending on the result of the comparison, one
program segment or another will be executed.
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The program appears below:

LD A, (LOC) READ CHARACTER IN

LOC
CP  OOH COMPARE TO ZERO
JP Z,ZERO ISITAO?
CP 0OIH COMPARE TO ONE
JpP Z. ONE
ONEFOUND
ZERO
ONE

The first instruction: “LD A, (LOC)" reads the contents of memory
location LOC, and loads it into the accumulator. This is the character
we want to test. It is compared to the value 0 by the following instruc-
tion:

CpP 00H

This instruction compares the contents of the accumulator to the hex-
adecimal value ‘007", i.e., the bit pattern **0000 0000°". This compari-
son instruction will set the Z bit in the flags register to the value “rmyif
it succeeds. This bit can then be tested by the next instruction:

JP Z, ZERO

The jump instruction tests the value of the Z bit. If the comparison suc-
ceeds, the Z bit has been set to one, and the jump will succeed. The pro-
gram will then jump to the address ZERO. If the test fails, then the next
sequential instruction will be executed:

Cp 01H

Similarly, the following jump instruction wili branch to location ONE
if the comparison succeeds. If none of the comparisons succeed, then
the instruction at location NONEFOUND will be executed.

JP Z, ONE
NONEFOUND . ..
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This program was introduced to demonstrate the value of the com-
parison instruction followed by a jump. This combination will be used
in many of the tfollowing programs.

Exercise 3.29: Refer (o the definition of the LD A, (LOC) instruction in
the next chapter. Examine the effect of this instruction on the flags, if
any. Is the second instruction of this program necessary (CP 00H)?

Exercise 3.30: Write the program which will read the contents of
memory location **24"" and branch (o an address called 'STAR”if there
was a “*7 in memory location 24. The bit pattern for a ***" in binary
notation will be assumed to be represented by ‘00101010

INSTRUCTION SUMMARY

We have now studied most of the important instructions ol the Z80
by using them. We have transterred values between the memory and the
registers. We have performed arithmetic and logical operations on such
data. We have tested it, and depending on the resulls ol these tests,
have executed various portions of the program. In particular, special
“‘automated’’ Z80 instructions such as DJNZ have been used to shorten
programs. Other automated instructions: LDDR, CPIR, INIR will be
introduced throughout the remainder of this book.

Full use has been made of special Z80 features, such as 16-bit register
instructions to simplify the programs, and the reader should be careful
not to use these programs on an 8080: they have been optimized for the
Z80.

We have also introduced a structure calied a loop. Another impor-
tant programming structure will be introduced now: the subroutine.

SUBROUTINES

In concept, a subroutine is simply a block of instructions which has
been given a name by the programmer. From a practical standpoint, a
subroutine must start with a special instruction called a subroutine
declaration, which identifies it as such for the assembler. 1t is also ter-
minated by another special instruction called a refurn. Let us first il-
lustrate the use of a subroutine in a program in order to demonstrate its
value. Then, we will examine how it i1s actually implemented.
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MAIN PROGRAM

SUBROUTING

CALt SuB - pu—

RETURN

CALL SUB

i

Fig. 3.35: Subroutine Calls

The use of a subroutine is illustrated in Figure 3.35. The main pro-
gram appears on the left of the illustration. The subroutine is shown
symbolically on the right. Let us examine the subroutine mechanism.
The lines of the main program are exccuted successively until a new in-
struction **CALL SUB™ is mel. This special instruction is the
subroutine call and results in a transfer 1o the subroutine. This means
that the next instruction to be executed after the CALL SUB is the first
instruction within the subroutine. This is illustrated by arrow 1 on the
illustration.

Then, the subprogram within the subroutine executes just like any
other program. We will assume that the subroutine does not contain
any other calls. The last instruction of this subroutine is a RETURN.
This is a special instruction which will cause a return to the main pro-
gram. The next instruction to be exccuted after the RETURN is the one
following the CALL SUB in the main program. This is illustrated by ar-
row 3 on the illustration. Program execution continues then, as il-
lustrated by arrow 4,

In the body of the main program a second CALL SUB appears. A
new transfer occurs, shown by arrow 5. This means that the body of the
subroutine is again executed following the CALL SUB instruction.

Whenever the RETURN within the subroutine is encountered, a
return occurs to the instruction following the CALL SUB in question.
This 1s illustrated by arrow 7. Following the return to the main pro-
gram, program execution proceeds normally, as illustrated by arrow 8.

The effect of the two special instructions CALL SUB and RETURN
should now be clear. What is the value of the subroutine mechanism?

The essential value of the subroutine is that it can be called from any
number of points in the main program, and used repeatedly without
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rewriting it. A first advantage is that this approach saves memory
space, since there is no need to rewrite the subroutine every time. A se-
cond advantage is that the programmer can design a specific subroutine
only once and then use it repeatedly. This is a significant simplification
in program design.

Exercise 3.31: What is the main disadvantage of a subroutine? (Answer
follows.)

The disadvantage of the subroutine should be clear just by examining
the flow of execution between the main program and the subroutine. A
subroutine results in a slower execution, since extra instructions must
be exccuted: the CALL SUB and the RETURN.

Implementation of the Subroutine Mechanism

We will examine here how the two special instructions, CALL SUB
and RETURN, are implemented internally within the processor. The
effect of the CALL SUB instruction is to cause the next instruction to
be tetched at a new address. You will remember (or else read Chapter
| again) that the address of the next instruction to be executed ina
computer is contained in the program counter (PC). This means that
the effect of the CALL SUB is to substitute new contents in register PC.
Its eftect is to load the start address ol the subroutine in the program
counter. Is that really sufficieni?

To answer this question, let us consider the other instruction which
has to be implemented: the RETURN. The RETURN must cause, as its
name indicates, a return to the instruction that follows the CALL SUB.
This is possible only if the address of this instruction has been preserved
somewhere. This address happens to be the value of the program
counter at the time that the CALL SUB was encountered. This is
because the program counter is automatically incremented every time it
is used (read Chapter | again). This is preciscly the address that we want
to preserve, so thal we can later perform the RETURN.

The next problem is: where can we save this return address? This ad-
dress must be saved in a location where it is guaranteed that it will not
be erased.

However, let us now consider the following situation, illustrated by
Figure 3.36. In thisexample, subroutine 1 contains a call to SUB2. Our
mechanism should work in this case as well. Naturally, there might even
be more than two subroutines, say N ‘‘nested’’ calls. Whenever a new
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CALL is encountered, the mechanism must therefore again store the
program counter. This implies that we need at least 2N memory loca-
tions for this mechanism. Additionally, we will need to return from
SUB2 first and SUBI next. In other words, we need a structure which
can preserve the chronological ordering in which addresses have been
saved.

The structure has a name and has already been introduced. It is the
stack. Figure 3.38 shows the actual contents of the stack during suc-
cessive subroutine calls. Let us look at the main program first. At ad-
dress 100, the first call is encountered: CALL SUBI. We will assume
that, in this microprocessor, the subroutine call uses 3 bytes (RST is an
exception). The next sequential address is therefore not “101°", but
“103"". The CALL instruction uses addresses ‘100", *‘101°*, <102"".
Because the control unit of the Z80 ““knows’’ that it is a 3-byte instruc-
tion, the value of the program counter, when the call has been com-
pletely decoded, will be ““103’". The effect of the call will be to load the
value ‘280" in the program counter. ““280°' is the starting address of
SUBI.

s su ?

TALLSUB - CALLSUB 3

AN
RETUBN 1 N RETugn

Fig. 3.36: Nested Calls

We are now ready to demonstrate the effect of the RETURN instruc-
tion and the correct operation of our stack mechanism. Execution pro-
ceeds within SUB2 until the RETURN instruction is encountered at
time 3. The effect of the RETURN instruction is simply to pop the top
ol the stack into the program counter. In other words, the program
counter is restored to its value prior to the entry into the subroutine.
The top of the stack in our example is *“303"". Figure 3.38 shows that, at
time 3, value ‘“303’" has been removed from the stack and has been put
back into the program counter. As a result, instruction execution pro-
ceeds from address ‘303", At time 4, the RETURN of SUBI is encoun-
tered. The value on top of the stack is ‘103", It is popped and is in-
stalled in the program counter. As a result, program execution will pro-
ceed from location ““103’’ on within the main program. This is, indeed,
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the effect that we wanted. Figure 3.38 shows that at time 4 the stack is
again empty. The mechanism works.

The subroutine call mechanism works up to the maximum dimension
of the stack. This is why early microprocessors which had a 4- or
8-register stack were essentially limited to 4 or 8 levels of subroutine
calls.

Note that, on Figures 3.36 and 3.37, the subroutines have been
shown to the right of the main program. This is only for the clarity of
the diagram. In reality, the subroutines are typed by the user as regular
instructions of the program. On a sheet of paper, when producing the
listing of the complete program, the subroutines may be at the begin-
ning of the text, in its middle, or at the end. This is why they are pre-
ceded by a subroutine declaration: they must be identified. The special
instructions tell the assembler that what follows shouid be treated as a
subroutine. Such assembler directives will be discussed in Chapter 10.

ADDRESS (MAIN]
100: CALLSUB Y O
1
103: sus)
80
- @ %00 {SuB2)
e mrreiaelZnd
D— 300: CALLSUB 2 A —
RETURN —

@ RETURN

Fig. 3.37: The Subroutine Calls

STACK: | TIME @ TIME @ TIME @ TIME @

103 103 103

303

Fig. 3.38: Stack vs. Time
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Z80 Subroutines

The basic concepts relating to subroutines have now been presented.
It has been shown that the stack is required in order to implement this
mechanism. The Z80 is equipped with a 16-bit stack-pointer register.
The stack can therefore reside anywhere within the memory and may
have up to 64K (1K = 1024) bytes, assuming they are available for that
purpose. In practice, the start address for the stack, as well as its max-
imum dimension, will be defined by the programmer before writing his
program. A memory area will then be reserved for the stack.

The subroutine-call instruction, in the case of the 780, is called
CALL, and comes in (wo versions; the direct or unconditional call,
such as CALL ADDRESS, is the one we have already described. In ad-
dition, the Z80 is equipped with a conditional call instruction which will
call a subroutine if a condition is met. For example: CALL NZ, SUBI
will result in a call to subroutine 1 if the result of the previous operation
is non-zero. This is a powerful facility, since many subroutine calls are
conditional, i.e., occur only if some specific condition is met.

CALL CC, NN is executed only if the condition specified by “CC”
is true. CC is a set of three bits (bits 4, 5 and 6 of the opcode) which
may specify up to eight conditions. They correspond respectively to the
four flags ““Z’, “C”’, “P/V?”’, “S” oeing either zero or non-zero.

Similarly, two types of return instructions are provided: RET and
RET CC,

RET is the basic return instruction. It occupies one byte, and causes
the top two bytes of the stack to be re-installed in the program counter.
It is unconditional.

RET CC has the same effect except that it is executed only if the con-
ditions specified by CC are truc. The condition bits are the same as for
the CALL instruction just described.

Additionally, two specialized types of return are available which are
used to terminate interrupt routines: RETI, RETN. They are described
in the section on the Z80 instructions as well as in the section on inter-
rupts.

Finally, one more specialized instruction is provided which is analo-
gous to a subroutine call, but allows the program to branch to only one
of eight starting locations located in page zero. This is the RST P in-
struction. This is a one-byte instruction which automatically preserves
the program counter in the stack, and causes a branch to the three-bit
address specified by the P field. The P field corresponds to bits 4, 5,
and 6 of the instruction, multiplied by eight.
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In other words, if bits 4, 5, 6 are <“000”", the jump will occur to loca-
tion OOH. If these bits are <‘001"", the branch will occur to O8H, ete. up
to 111, which will cause a branch to location 38H. The RST instruction
is very efficient in terms of speed since it is a single-byte instruction.
However, it can jump to only eight locations, in page 0. Additionally,
these addresses in page 0 are only eight bytes apart. This instruction is a
carry-over from the 8080 and was extensively used for interrupts. This
will be described in the interrupt section. However, this instruction may
be used for any other purpose by the programmer, and should be con-
sidered as a possible specialized subroutine call.

Subroutine Examples

Most of the programs that we have developed and are going to
develop would usually be written as subroutines. For example, the
multiplication program is likely to be used by many areas of the pro-
gram. In order to facilitate and clarify program development, it is
therefore convenient to define a subroutine whose name would be, for
example, MULT. At the end of this subroutine we would simply add
the instruction RET.

Exercise 3.32: If MULT is used as a subroutine, would it ‘‘damage’’
any internal flags or registers?

Recursion

Recursion is a word used to indicate that a subroutine is calling itself.
If you have understood the implementation mechanism, you should
now be able to answer the following question:

Exercise 3.33: Is it legal to let a subroutine call itself? (In other words,
will everything work even if a subroutine calls itself?) If you are not
sure, draw the stack and fill it with the successive addresses. Then, look
at the registers and memory (see Exercise 3.18) and determine if a pro-
blem exists.

Interrupts will be discussed in the input/output chapter (Chapter 6).
All returns are one-byte instructions; all calls are 3-byte instructions
(except RST).

Exercise 3.34: Look at the execution times of the CALL und the RET
instructions in the next chapter. Why is the return from a subroutine so
much faster than the CALL? (Hint. if the answer is not obvious, look
again at the stack implementation of the subroutine mechanism, and
analyze the internal operations that musi be performed.)
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Subroutine Parameters

When calling a subroutine, one normally expects the subroutine to
work on some data. For example, in the case of multiplication, one
wants to transmit two numbers to the subroutine which will perform
the multiplication. We saw in the case of the multiplication routine that
this subroutine expected to find the multiplier and the multiplicand in
given memory locations. This illustrates one method of passing para-
meters: through memory. Two other techniques are used, so that we
have three ways of passing parameters.

I—through registers

2—through memory

3—through the stack

Registers can be used to pass parameters. This is an advantageous
solution, provided that registers are available, since one does not need
to use a fixed memory location: the subroutine remains memory-inde-
pendent. If a fixed memory location is used, any other user of the sub-
routine must be very careful that he uses the same convention and that
the memory location is indeed available (look at Exercise 3.19 above).
This is why, in many cases, a block of memory locations is reserved
simply to pass parameters among various subroutines.

Using memory has the advantage of greater flexibility (more data),
but results in poorer performance and also in tying the subroutine to a
given memory area.

Depositing parameters in the stack has the same advantage as using
registers: it is memory-independent. The subroutine simply knows that
it is supposed to receive, say, two parameters which are stored on top of
the stack. Naturally, it has disadvantages: it clutters the stack with data
and, therefore, reduces the number of possible levels of subroutine
calls. It also significantly complicates the use of the stack, and may re-
quire multiple stacks.

The choice is up to the programmer. In general, one wishes to remain
independent from actual memory locations as long as possible.

If registers are not available, a possible solution is the stack. How-
ever, if a large quantity of information should be passed to a sub-
routine, this information may have to reside directly in the memory. An
elegant way around the problem of passing a block of data is simply to
transmit a pointer to the information. A pointer is the address of the
beginning of the block. A pointer can be transmitted in a register, or in
the stack (two-stack locations can be used to store a 16-bit address), or
in a given memory location(s).
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Finally, if neither of the two solutions is applicable, then an agree-
ment may be made with the subroutine that the data will be at some
fixed memory location (the ‘“‘mail-box’").

Exercise 3.35: Which of the three methods above is best for recursion?

Subroutine Library

There is a strong advantage to structuring portions of a program into
identifiable subroutines: they can be debugged independently and can
have a mnemonic name. Provided that they will be used in other areas
of the program, they become shareable, and one can thus build a
library of useful subroutines. However, there is no general panacea in
computer programming. Using subroutines systematically for any
group of instructions that can be grouped by function may also result in
poor efficiency. The alert programmer will have to weigh the advan-
tages against the disadvantages.

SUMMARY

This chapter has presented the way information is manipulated inside
the Z80 by instructions. Increasingly complex algorithms have been in-
troduced and translated into programs. The main types of instructions

have been used and explained.

Important structures such as loops, stacks and subroutines, have
been defined.

You should now have acquired a basic understanding of program-
ming, and of the major techniques used in standard applications. Let
us study the instructions available.
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A=00
AT=00
A=00
A=00

BC=0000
B/ =0000
EC=0003
B =0000
BC=0803
B/ =0000
RC=0803
E/=0000

- BC=0803

E’=0000
BLC=0803
B/=0000
RC=0801
B =0000
EC=0801
B/ =0000
BC=0801
B’ =0000
EC=0801
B/=0000
RC=0801
B/ =0000
BC=0701
E’=0000
BC=0701
B'=0000
BC=0700
B/=0000
EC=0700
B =0000
RC=0700
B =0000
BC=0700
E‘=0000
BC=0700
B/=0000
BC=0600
B =0000
RC=0600
B/ =0000
BRC=0600
B/=0000
EC=04600
B =0000
RE=0600
B =0000

R 500
E=0000
EC=0500
B =0000
I

E/=0000
HC=0500

L =GO00
BC=0400
RB7=0000
BC=0400
B7=0000

LE=0000
0/=0000
LE=0000
I’ =0000
LDE=0000
I’ =0000
DE=0005
I/=0000
DE=0005
0’=0000
DE=0005
0=0000
DE=0003G
07=0000
LE=000%
[’=0000
DE=0005
L7=0000
DE=000A
0/=0000
LE=0004
0/=0000
LE=000A
0/=0000
DE=0004A
L7=0000
DE=000A
’=0000
DE=0004A
0/=0000
DE=000A
0/=0000
DE=0014
L7 =0000
LE=0014
I1’=0000
DE=0014
N7 =0000
DE=0014
0=0000
DE=0014
[/ =0000
DE=0014
I’ =0000
DE=0028
0=0000
DE=0028
I =0000
DE=Q024
07=0000
DE=0028
0=0000
NE=0028
L7 =0000

DE=00350
D’=0000
DE=0030

=0000
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HL=0000
H'=0000
HL=0000
H =0000
HL=0000
H’=0000
HL=0000
H =0000
HL=0000
H’=0000
HL=0000
H’=0000
HL=0000
H’=0000
HL=0000
H’=0000
HL=0003
H =0000
HL=000%
H =0000
HL=0005
H’=0000
HL=000%
H/=0000
HL=0005G
H’=0000
HL=000%

=Q000
HL=000%
H=0000
HL=000F
H’=0000
HL=000F
H’=0000
HL=000F
H=0000
HLL=000F
H =0000
HL=000F
H’=0000
HL=000F
H’/=0000
HL=000F

H’=0000

HL.=000F
H’=0000
HL=000F
H’=0000
HL=00Q0F
H =0000
HL=000F
H =0000
HL=000F
H’=0000
HL=000F
H =0000
HL=000F
H’=0000
HL=000F

H =0000 X=
HL=000F §

H=0000
HL=000F
H’=0000

5=0300 F=0100
X=0000 Y=0000
§=0300 F=0104
X=0000 Y=0000
§=0300 F=0106
X=0000 Y=0000
§=0300 F=0104A
X=0000 Y=0000
§=0300 F=010C
X=0000 Y=0000
S=0300 F=010F
X=0000 Y=0000
S$=0300 FP=0111
X=0000 Y=0000
$=0300 F=0113
X=0000 Y=0000
$=0300 F=0114
X=0000 Y=0000
§=0300 F=0114
X=0000 Y=0000
§=0300 F=0118
X=0000 Y=0000
§=0300 F=0119
X=0000 Y=0000
§=0300 F=Q10F
X=0000 Y=0000
5=0300 F=0111
X=0000 Y=0000
$=0300 F=0113
X=0000 Y=0000
§=0300 F=0114
X=Q000 Y=0000
§=0300 F=0116
X=0000 Y=0000
6=0300 F=0118
=000 Y=0000
§=0300 F=0119
X=0000
S$=0300
X=0Q000
5=0300
X=0000
320300

8=0300
X=0Q000
5=0300
X=0000 Y=0000
8=0300 F=010F
X=0000 Y=0000
§=0300 F=0111

F=0118
Y=0000
D11
000
§=0300 F=010F
X=0000 Y=0000

01007
1=00
01047
I=00
010467
I=00
010a7
I=00
o10C”
I=00
QLOF’
I=00
oL1LL”
I=00
0113~
I=00
o114/
I=00
01167
I=00
o118’
I1=00
0119/
I=00
QLlOF”
I=00
0111’
I=00
01137
I=00
0114
=00
0116~
=00
o1ia’
I=00
0119/
I=00
Q10F~
I=00

il o111~

I=00
01147
I=00
01187
I=00
o118
I=00
o119
I=00
O10F’
I=00

, -

Y=0000 I=
F=0114

I=00
01147
I=00
o118
T=00
Q119”
=00
QLOF”
I=00

Ln

Lo

LIt

LI

Lo

SRL

JR

ADD

SLA

NEC

JF

SRL

AL

SLA

RL

DEC

JE

SRL

JR

SRL

JR

Sla

RL

SRI

Fig. 3.39: Multiplication: A Complete Trace
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(00007
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HLy DE
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NCs0114
01147
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FARY A=00 EC=0400 DE=00%50 §=0300 F=0111 NCy0O114
2 B/ =0000 X=0000 Y=0000 I= Q1147
FARY A=00 RC=0400 3 F=0114 [
A’=00 K/=0000 I'=0000 10000
g v A=00 BC=0400 DE=00AQ HL=000F POl jul
A’ =00 B’'=0000 H7=0000 Y=0000
FARY A=00 R(C=0400 HL=000F F=0118 B
A’=00 B/ =0000 H/=0000 Y=0000
N A=00 RC=0300 ¥ ] F=0LLY OJlV’ JF NZyOLOF
A=00 B’ =0000 Y=0000 =00 CQLOF )

F=010F 0L0F 8RL O
Y=0000 [=00

N A=00 BC=0300
A’=00 R’/=0000

: H=0000
LE=00a0 HL=

FARY A=00 000F §=0300 F= 01117 JR NC-OL14
A’ =00 1 =0000 X=0000 1=00 (OLL47 )
FARY A=00 NE=00A0 3 01147 Sla E

X=0000

A =00 B/=0000 [I'=0000 :
HL=000F §=0300

C  A=00 BRC=0300 REL. It
A’=00 B/ =0000 H/=0000 X=0000
RC=0300 HL=000F §=0300 LNEC R

I =0000 H/=0000
N O0F JF NZyOLOF
000 X OOOO {(OL1OF
N RC=0200 DE=0140 =000F §=0300 SR C

A’=00 B/=0000 D’=0000 H’ =0000 X=0000

yARY A=00 RC=0200 DE=0140 HL=000F $=0300 JR NC,OLL4

=00 000 H/ =0000 X=0000 (014
ARV A=Q0 HL=000F $=0300 sla K
A’ =00 H =0000 X=0000
S A=00 BC=0200 HL=000F $=0300 KL It
A’=00 B/ =0000 H =0000 X=0000
A=00 200 HL= $=0300 nEC B
A’=00 B =0000 H’ X=(G000

N A=00 RC=0100 HL=000F & JF Nh1010
A =00 B/ =0000 = H/=0000 X=0000
N A=00 100 DE=0280 HL=000F $=0300
A=00 E/=0000 [’/=0000 H/=0000 X=0000

0300

SREL C

zv a=00 RC=0100 HL=000F §=0300 JR NCs Q114
A =00 B =0000 H/=0000 X=0000 01147}
FARY A=00 RC=0100 HL=000F 8=0300 SLa B
A =00 B/ =0000 I/=0000 H'=0000 X=0000
Z V€ A=00 BC=0100 DE=0200 HL=000F $=0300 RL I
A’=00 E/=0000 [I’'=0000 H'=0000 X=0000
Vv A=00 EC=0100 [E=0500 HL=000F $=0300 LEC R
A’ =00 R/=0000 ['=0000 H’/=0000 X=0000
Z N A=00 RC=0000 DE=0%H00 HL=000F 8=0300 JE NZyOLOF
A=00 B =0000 I/=0000 H’/=0000 X=0000 (OLOF ")
Z N A=00 RC=0000 DE=0500 HL=000F $=0300 ] LI (0204 o HL
A’=00 E’=0000 [’=0000 H’/=0000 X=0000 Y=0000 (02047

Z N A=00 EC=0000 DE=0500 HL=000F $=0300 F=011F
A‘=00 B/ =0000 I’=0000 H/=0000 X=0000 Y=0000

NOF

Fig. 3.39: Multiplication: A Complete Trace (continued)
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ANSWERS TO EXERCISE 3.18 MULTIPLICATION):

CROMEHCO CUGS 790 ASSIMHELER wersion 02,159 FAGE Q001
00007 0001 OReG 2100H
(0200 0002 MPRAL U 0200H
Qz02 2003 MFDAR Ll 0202+
€0204) 0004 RESAD I D20

DOO5
Q100 EDABOGOD Q00§ HF42Q Lo RCy (HFRAT) FLOAD MULTIPLIER IH10 ©
0loa 0408 D007 Lo B8 HlO TS BIT COUNTER
0106 ENSROZ0Z 0008 Lo DE s (HF DAL i MUTTFLICANE INTO E
010a 1400 G009 Lo by0 {
G100 210000 2010 Lo Hi_r 0
0O10F  CHE39 Q011 MULT GREL i Rt MULTTELIER RIT TNTO CoRRY
01tr 3001 0012 JR HE y NOAR ! B AfivY
0113 1% D015 iy HL s RE FALL MPD TO RESULY
0114 0014 NOALD St £ FSHIFT MRPI LEFT
0114 0015 KL I FSAVE RIT I I
0118 00La LEL u

SHIFT COUNTER

0L1e - Q0L Je NZyMULT IFOLOHHTER 0
011C 220902 0018 LI CRESAD) s HL

OL1F  (0000) 0019 ENIY

Errors Q

Fig. 3.40: The Multiplication Program (Hex)

LABEL |[INSTRUCTION| B C (CA%:RY) D E H L
00 00 0 00 00 | 00 | 00

MP488 LD BC,(0200); 00 03 0 00 00 | 00 | OO
LD B, 08 08 03 0 00 00 } 00! 00

LD DE,(0202) | 08 03 0 00 05 1 00| 00

LDD, 00 08 03 0 00 05 | 060 | 0O

LD HL,0000 08 03 o 00 05 | 00 | CO

MULT SRLC 08 | 01 1 00 05 ¢ 00 | 00
JRNC,0114 08 o1 1 00 05 | 00 | 0O

ADD HL,DE 08 | 01 1 00 05 | 00| 05

NOADD | SLAE 08 | 01 0 00 OA | 00 | 05
RLD 08 | 01 0 00 OA | 00 | 05

DECB 07 | 01 0 00 OA | 00 | 05

JP NZ,010F 07 | O 0 00 OA | 00 | 05

MULT SRLC 07 | 0O ] 00 OA | 00 | 05
JRNC,0114 07 | 00 1 6o OA 1 00 | 05

ADD HL,DE 07 | 00 0 00 OA | 00 | OF

NOADD | SLA E 07 | G0 0 00 i4 | 00 | OF
RLD 07 | 00 0 00 14 | 00 | OF

DECB 06 | 00 0 00 14 | 00 | OF

JP NZ,010F 06 | 00 0 00 14 | 00 | OF

Fig. 3.41: Two Iterations Through the Loop
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4
THE Z80 INSTRUCTION SET

INTRODUCTION

This chapter will first analyze the various classes of instructions
which should be available in a general-purpose computer. It will then
analyze one by one all of the instructions available for the Z80, and ex-
plain in detail their purpose and the manner in which they affect flags
or can be used in conjunction with various addressing modes. A de-
tailed discussion of addressing techniques will be presented in Chapter
s.

CLASSES OF INSTRUCTIONS

Instructions may be classified in many ways, and there is no stan-
dard. We will here distinguish five main categories of instructions:

1—data transfers
2—data processing
3—test and branch
4—input/output
S5—control

Let us now examine each of these classes of instructions in turn.

Data Transfers

Data transfer instructions will transfer data between registers, or be-
tween a register and memory, or between a register and an input/output
device. Specialized transfer instructions may exist for registers which
play a specific role. For example, push and pop operations
are provided for efficient stack operation. They will move a word of
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data between the top of the stack and the accumulator in a single in-
struction, while automatically updating the stack-pointer register.

Data Processing

Data processing instructions fall into five general categories:

I—arithmetic operations (such as plus/minus)

2--bit manipulation (set and reset)

3—increment and decrement

4-—logical operations (such as AND, OR, exclusive OR)
5—skew and shift operations (such as shift, rotate)

It should be noted that, for efficient data processing, it is desirable to
have powerful arithmetic instructions, such as multiply and divide.
Unfortunately, they are not available on most microprocessors. It is
also desirable to have powerful shift and skew instructions, such as
shift n bits, or a nibble exchange, where the right half and the left half
of the byte are exchanged. These are also usually unavailable on most
miCroprocessors.

Before examining the actual Z80 instructions, let us recall the dif-
ference between a shift and a rotation. The shift will move the contents
of a register or a memory location by one bit location to the left or to
the right. The bit falling out of the register will go into the carry bit.
‘The bit coming in on the other side will be a ““0’” except in the case of an
“‘arithmetic shift right,”” where the MSB will be duplicated.

In the case of a rotation, the bit coming out still goes in the carry.
However, the bit coming in is the previous value which was in the carry
bit. This corresponds to a 9-bit rotation. 1t is often desirable to have a
true 8-bit rotation where the bit coming in on one side is the one falling
from the other side. This is not provided on most MmiCroprocessors
but is available on the Z80 (see Figure4.1).

Finally, when shifting a word to the right, it is convenient to have one
more type of shift, called a sign extension or an “‘arithmetic shift
right.”” When doing operations on two’s complement numbers, parti-
cularly when implementing floating-point routines, it is often necessary
to shift a negative number to the right. When shifting a two’s comple-
ment number to the right, the bit which must come in on the left side
should be a ‘1"’ (the sign should get repeated as many times as needed
by the successive shifts). This is the arithmetic shift right.
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SHIFT LEFT

LN A

( CARRY

ROTATE LEFT

L. DD DD DD

el et

Fig. 4.1: Shift and Rotate

Test and Jump

The test instructions will test bits in the specified register for *“0’" or
““1”’, or combinations. At a minimum, it must be possible to test the
flags register. It is, therefore, desirable to have as many flags as pos-
sible in this register. In addition, it is convenient to be able to test for
combinations of such bits with a single instruction. Finally, it is
desirable to be able to test any bit position in any register, and to test
the value of a register compared to the value of any other register
(greater than, less than, equal). Microprocessor test instructions are
usually limited to testing single bits of the flags register. The Z80, how-
ever, offers better facilities than most.

The jump instructions that may be available generally fall into
three categories:

I—the jump, which specifies a full 16-bit address

2—the relative jump, which often is restricted to an 8-bit displace-
ment field

3—the call, which is used with subroutines
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It is convenient to have two- or even three-way jumps, depending, for
example, on whether the result of a comparison is “‘greater than,”” “‘less
than,’” or “‘equal.” It is also convenient to have skip operations, which
will jump forward or backwards by a few instructions. However, a
“skip’’ is equivalent to a ‘“‘jump.”” Finally, in most loops, there is
usually a decrement or increment operation at the end, followed by a
test-and-branch. The availability of a single-instruction increment/
decrement plus test-and-branch is, therefore, a significant advan-
tage for efficient loop implementation. This is not available in most
microprocessors. Only simple branches, combined with simple tests, are
available. This, naturally, complicates programming and reduces effi-
ciency. In the case of the Z80, a ‘‘decrement and jump’’ instruction is
available. However, it only tests a specific register (B) for zero.

Input/QOutput

Input/output instructions are specialized instructions for the hand-
ling of input/output devices. In practice, a majority of the 8-bit micro-
processors use memory-mapped 1/0: input/output devices are con-
nected to the address bus just like memory chips, and addressed as
such. They appear to the programmer as memory locations. All
memory-type operations normally require 3 bytes and are, therefore,
slow. For efficient input/output handling in such an environment, it is
desirable to have a short addressing mechanism available so that 170
devices whose handling speed is crucial may reside in page 0. However,
if page 0 addressing is available, it is usually used for RAM memory,
which prevents its effective use for input/output devices. The
780, like the 8080, is equipped with specialized 1/0 instructions. As a
result, in the case of the Z80, the designer may use either method: in-
put/output devices may be addressed as memory devices, or else as in-
put/output devices, using the 1/0 instructions.

They will be described later in this chapter.

Control Instructions

Control instructions supply synchronization signals and may suspend
or interrupt a program. They can also function as a break or a simu-
lated interrupt. (Interrupts will be described in Chapter 6 on In-
put/Output Techniques.)
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THE Z80 INSTRUCTION SET

Introduction

The Z80 microprocessor was designed to be a replacement for the
8080, and to offer additional capabilities. As a result of this design
philosophy, the Z80 offers all the instructions of the 8080, plus addi-
tional instructions. In view of the limited number of bits available in an
8-bit opcode, one may wonder how the designers of the Z80 succeeded
in impiementing many additional ones. They did so by using a few
unused 8080 opcodes and by adding an additional byte to the opcode
for indexed operations. This is why some of the Z80 instructions oc-
cupy up to five bytes in the memory.

It is important to remember that any program can be written in many
different ways. A thorough knowledge and understanding of the in-
struction set is indispensable for achieving efficient programming.
However, when iearning how to program, it is not essential to write op-
timized programs. During a first reading of this chapter, it is therefore
unimportant to remember all the various instructions. It is important to
remember the categories of instructions and to study typical examples.
Then, when writing programs, the reader should consult the Z80
instruction-set description, and select the instructions best suited to his
needs. The various instructions of the Z80 will therefore be reviewed in
this section with the intent of simplifying them and grouping them in
logical categories. The reader interested in exploring the capabilities of
the various instructions is referred to the individual descriptions of the
instructions.

We will now examine the capabilities provided by the Z80 in terms of
the five classes of instructions which have been defined at the beginning
of this chapter.

Data Transfer Instructions

Data transfer instructions on the Z80 may be classified in four
categories: 8-bit transfers, 16-bit transfers, stack operations, and
block transfers. Let us examine them.

Eight-Bit Data Transfers

All eight-bit data transfers are accomplished by load instructions.
The format is:

LD destination, source
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For example, the accumulator A may be loaded from register B by
using the instructions:

LD B, A

Direct transfers may be accomplished between any two of the
working registers (ABCDEHL).

In order to load any of the working registers, except for the accu-
mulator, from a memory location, the address of this memory loca-
tion must first be loaded into any register pair, such as registers H
and L .

For example, in order to load register C from memory location 1234,
register H and L will first have to be loaded with the value ““1234”". (A
load instruction operating on 16 bits will be used. This is described in
the following section.)

Then, the instruction LD C, (HL) will be used and will accomplish
the desired result.

The accumulator is an exception. It can be loaded directly from any
specified memory location. This is called the extended addressing
mode. For example, in order to load the accumulator with the contents
of memory location 1234, the following instruction will be used:

LD A, (1234H) (Note the use of “‘()”’ to denote ““contents of.’’)
The instruction will be stored in the memory as follows:

address PC 3A (opcode)
PC + 1:34 (low order half of the address)
PC + 2:12 (high order half of the address)

Note that the address is stored in ‘‘reverse order’’ in the instruction
itself:

3A | low addr | high addr |

All the working registers may also be loaded with any specified eight-bit
value, or “‘literal,”’ contained in the second byte of the instruction (this
is called immediate addressing). An example is:

LD E, 12H

which loads register E with the value 12 hexadecimal.
In the memory, the instruction appears as:

PC: 1E (opcode)
PC + 1:12 (literal operand)
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As a result of this instruction, the immediate operand, or literal value
will be contained in register E.

The indexed addressing mode is also available for loading register
contents, and will be fully described in the next chapter on addressing
techniques. Other miscellaneous possibilities exist for loading specific
registers, and a table listing all the possibilities is shown in Figure 4.2
( tables supplied by Zilog, Inc.). The grey areas show instructions

common with the 8080A.
SOURCE
EXT,
IMPLIED REGISTER REG INDIRECT INDEXED | ADDR.| IMME.
1 R A 8 [ o £ H L (HLE} {BC) | (DE} jux + ity +d)] (ol n
DD | FD |3A §-3E
A eo | eo | v | e e et e P ea ] e | e | n
57 | s d 4 A
o0 | FO
[ arilan | e e | e | e | a5 s 4 | 4 o
d ) "
oo | FD
c aei el oae ) aa ] e | e a0 | a2 € | 4 oF
d d n
oo | fD
REGISTER | D s7i | 0| 61| 2 | eat]sa | a5 ] s 56 | 56 80
d d n
. bo | FD
€ s8] 68| 5o} sa | 68 | 8¢ | 60| e s | sE €
d d n
ob | fo
H 61 s06°) 61|62 | 63| 66 ] & | 68 66 | 66 2
d 4 n
i oD | FD
L e | e | 69| ea | e8| 6c | 60| 6 6€ | 6F %
d d n
DESTINATION ML ol ol | nla| s 3
"
REG
INDIRECT (8C) 2
[L13) 2
o0 | op| oo | oo | oD | DO | OD 74
(X st} 77 0 n 72 73 74 75 o
q d d d g d d "
INDEXED T
F0 | F0 | FD | Fo | 0 | D | fO J
iKY +d} 77 70 n 2 73 74 5 d
d d d ¢ d d ) n
52
EXT. ADDR | {nn) 0
W
1 &0
47
IMPLIED
] €0
i

8 BIT LOAD GROUP
“wp’
TABLE 5.3—1

Fig. 4.2: Eight-Bit Load Group—‘LD’

16-Bit Data Transfers

Basically, any of the 16-bit register pairs, BC, DE, HL, SP, IX, 1Y,
may be loaded with a literal 16-bit operand, or from a specified
memory address (extended addressing), or from the top of the stack,
i.e., from the address contained in IP. Conversely, the contents of these
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register pairs may be stored in the same manner at a specified memory
address or on top of the stack. Additionally, the SP register may be
loaded from HL, IX, and IY. This facilitates creating multiple stacks.
The register pair AF may also be pushed on top of the stack.

The table listing all the possibilities is shown in Figure 4.3. The stack
push and pop operations are included as parts of the 16-bit data
transfers. All stack operations transfer the contents of a register pair to
or from the stack. Note that there are no single push and pop instruc-
tions for saving individual eight-bit registers.

SOURCE
iMM. | EXT. | REG.
REGISTER EXT. | ADDR.| INDIR.
AF BC OE HL sp X [h 4 nn {nn} {sP)
AF
e ED
ol 4B
BC a3
no n
B ep e
2 DE o " 23 i
& n n L
S el oam 1 EY
DESTINATION T " s :
E n P L B
R o1 s oo | o |9 B2
F9 Fg j=im a
n n
DD DD
iX 21 2A oD
n n El
n n
FD FD
Yy 21 2A FD
n n 3]
n n
EXT. R
AppR.| o n n a
n n n
PUSH » REG. (P} Db FD
INSTRUCTIONS IND. ES ES
NOTE: The Push & Pop Instructions adiust *

the SP after every exscution o
INSTRUCTIONS

Fig. 4.3: 16-Bit Load Group—‘LD’, ‘PUSH’ and ‘POP’

A double-byte push or pop is always executed on a register pair: AF,
BC, DE, HL, IX, 1Y (see the bottom row and right-most column in
Figure: 4.3).

When operating on AF, BC, DE, HL, a single-byte is required for the
instruction, resulting in good efficiency. For example, assume that the
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stack pointer SP contains the value ‘“‘0100°’. The foilowing instruc-
tion is executed:

PUSH AF

When pushing the contents of the register pair on the stack, the stack
pointer SP is first decremented, then the contents of register A are de-
posited on top of the stack. Then the SP is decremented again, and the
contents of F are deposited on the stack. At the end of the stack trans-
fer, SP points to the top element of the stack, which in our example
is the value of F.

It is important to remember that, in the case of the Z80, the SP
points to the rop of the stack and the SP is decremented whenever a
register pair is pushed. Other conventions are often used in other pro-
cessors, and this may be a source of confusion.

The effect of this instruction is illustrated by the following diagram:

IMPLIED ADDRESSING
AF |BC.DE&HL | HL | IX 1y
AF | 08
BC,
DE b
IMPLIED] &
HL
DE EB
REG. | (sP) g3 | po | FD
INDIR. | e E3

Fig. 4.4: Exchanges ‘EX’ and ‘EXX’

Exchange Instructions

Additionally, a specialized mnemonic EX has been reserved for ex-
change operations. EX is not a simple data transfer, but a dual data
transfer. It actually changes the contents of two specified locations. EX
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may be used to exchange the top of the stack with HL, IX, 1Y and also
to swap the contents of DE and HL and AF and AF’ (remember that
AF’ stands for the other AF register pair available in the Z80).
Finally, a special EXX instruction is available to exchange the con-
tents of BC, DE, HL with the contents of the corresponding registers in
the second register bank of the Z80.
The possible exchanges are summarized in Figure 4.4.

SOURCE
REG.
INDIR.
(HL}
ED ‘LDI’ — Load (DE )=s—(HL}
A0 fnc HL & DE, Dec BC
ED ‘LDIR,” — Load (DE)-e—(HL}
BO Inc HL & DE, Dec BC, Repeat until BC =0

REG.
DESTINATION INDIR. (DE)

ED ‘LDD’ — Load (DE)-e—{HL}
A8 Dec HL & DE, Dec BC
ED ‘LDDR’ - Load (DE)-—(HL)
B8 Dec HL & DE, Dec BC. Repeat until BC = 0

Reg HL points to source
Reg DE points to destination
Reg BC is byte counter

Fig. 4.5: Block Transfer Group

Block Transfer Instructions

Block transfer instructions are instructions which will result in the
transfer of a block of data rather than a single or double byte. Block
transfer instructions are more complex for the manufacturer to imple-
ment than most instructions and are usually not provided on micropro-
cessors. They are convenient for programming, and may improve the
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performance of a program, especially during input/output operation.
Their use and advantages will be demonstrated throughout this book.
Some automatic block transfer instructions are available in the case of
the Z80. They use specific conventions.

All block transfer instructions require the use of three pairs of
registers: BC, DE, HL:

BC is used as a 16-bit counter. This means that up to 2'* = 64K bytes
may be moved automatically. HL is used as the source pointer. It may
point anywhere in the memory. DE is used as the destination pointer
and may point anywhere in the memory.

Four block transfer instructions are provided:
LDD, LDDR, LDI, LDIR

All of them decrement the counter register BC with each transfer. Two
of them decrement the pointer registers DE and HL, LDD and LDDR,
while the two others increment DE and HL, LDI and LDIR. For each
of these two groups of instructions, the letter R at the end of the
mnemonic indicates an automatic repeat. Let us examine these instruc-
tions.

LDI stands for ‘‘load and increment.”’ It transfers one byte from the
memory location pointed to by H and L to the destination in the
memory pointed to by D and E. It also decrements BC. It will automati-
cally increment H and L and D and E so that all register pairs are pro-
perly conditioned to perform the next byte transfer whenever required.

LDIR stands for ‘‘load increment and repeat,”’ i.e., execute LDI
repeatedly until the counter registers BC reach the value ‘0. It is used
to move a continuous block of data automatically from one memory
area to another.

LDD and LDDR operate in the same way except that the address
pointer is decremented rather than incremented. The transfer therefore
starts at the highest address in the block instead of the lowest. The ef-
fect of the four instructions is summarized in Figure 4.5.

Similar automated instructions are available for CP (compare) and
are summarized in Figure 4.6.

Data Processing Instructions

Arithmetic

Two main arithmetic operations are provided: addition and subtrac-
tion. They have been used extensively in the previous chapter. There are
two types of addition, with and without carry, ADD and ADC respec-

164



THE Z80 INSTRUCTION SET

SEARCH
LOCATION
REG.
INDIR.
(HL}
£D ‘CPI’
At Inc HL, Dec BC
ED ‘CPIR’, inc HL, Dec BC
B1 repeat until BC = 0 or find match
ig ‘CPD" Dec HL & BC
ED- ‘CPDR' Dsc HL & BC
B2 Repaatuntil BC = 0 or find match

HL pomts to iocation in memory
to be compared with sccumutator
contents

BC is byte counter

Fig. 4.6: Block Search Group

tively. Similarly, two types of subtraction are provided with and
without carry. They are SUB and SBC.

Additionally, three special instructions are provided: DAA, CPL,
and NEG. The Decimal Adjust Accumulator instruction DAA has been
used to implement BCD operations. It is normally used for each BCD
add or subtract. Two complementation instructions also are available.
CPL will compute the one’s complement of the accumulator, and NEG
will negate the accumulator into its complement format (two’s comple-
ment).

All the previous instructions operate on eight-bit data. 16-bit opera-
tions are more restricted. ADD, ADC, and SBC are available on
specific registers, as described in Figure 4.8.

Finally, increment and decrement instructions are available which
operate on all the registers, both in an eight-bit and a 16-bit format.
They are listed in Figure 4.7 (eight-bit operations) and 4.8 (16-bit opera-
tions).
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SOURCE
REG.
REGISTER ADDRESSING INDIR.| INDEXED [IMMED,
A B c D E H L (HL} | UX+d) | (iY+d}| n
i DD FD
‘ADD’ 87 80 81 82 ‘83l 84 85|86 86 86 6
s d d L
Foaan o g e ; DD FD
ADDwWCARRY | 8F | 88 |88 -1 8a |88 |.8C | 8D | 8E 8 8E CE
‘ADC’ b = e e : d d g
2l op FD i
SUBTRACT 0] 96 96 ‘D8
'SUB’ d d n
1 DD FD :
SUB w CARRY ] oE 9E DE
‘SBC’ d d n
jop FD
‘AND’ ot A6 A8 ZEB
]d d n
“{oo |FD o
‘XOR’ AE AE EE
iy d d i
21 DD | FD ‘
OR* ‘186 B6
d d
DD FD
COMPARE | BE BE
cPr ld d
] oD FD
INCREMENT 34 34
NG ld d
DD FD
DECREMENT 35 35
‘DEC’ d d

Fig. 4.7: Eight-Bit Arithmetic and Logic

Note that, in general, all arithmetic operations modify some of the
flags. Their effect is fully described in the Appendix at the end of this
book. However, it is important to note that the INC and DEC instruc-
tions which operate on register pairs do not modify any of the flags.
This detail is important to keep in mind. This means that if you incre-
ment or decrement one of the register pairs to the value ““0”’, the Z-bit
in the flags register F will not be set. The value of the register must be
explicitly tested for the value “0”” in the program.

Also, it is important to remember that the instructions ADC and SBC
always affect all the flags. This does not mean that all the flags will
necessarily be different after their execution. However, they might.
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SOURCE
BC DE HL SP X Y
HL 09 19 29 39
g | ‘apD’ X DD DD DD DD
E 09 19 39 29
L4
=
= 1y FD FD FD FD
8 09 19 39 29
o
ADD WITH CARRY AND | HL ED ED ED ED
SETFLAGS ‘ADC’ 4A 5A BA 7A
SUBWITH CARRY AND | HL ED ED ED ED
SET FLAGS ‘SBC’ 42 52 62 72
INCREMENT  ‘INC’ 03 13 23 33 DD FD
23 23
DECREMENT 'DEC’ oB 1B 2B 3B DD FD
2B 2B
Fig. 4.8: Sixteen-Bit Arithmetic and Logic
Logical

Three logical operations are provided: AND, OR (inclusive) and
XOR (exclusive), plus a comparison instruction CP. They all operate
exclusively on eight-bit data. Let us examine them in turn. (A table list-
ing all the possibilities and operation codes for these instructions is part
of Figure 4.7.)

AND

Each logical operation is characterized by a truth table, which ex-
presses the logical value of the result in function of the inputs. The
truth table for AND appears below:
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0ANDO =0 AND | 0 1
OANDI =0

1ANDO =0 © |0 0 0
1ANDI =1 1 0 1

The AND operation is characterized by the fact that the output is
““1”’ only if both inputs are *‘1’". In other words, if one of the inputs is
““0”’, it is guaranteed that the result is <“0’’. This feature is used to zero
a bit position in a word. This is called ‘‘masking.”

One of the important uses of the AND instruction is to clear or
““mask out’’ one or more specified bit positions in a word. Assume for
example that we want to zero the right-most four-bit positions in a
word. This will be performed by the following program:

LD A, WORD WORD CONTAINS ‘10101010’
AND 11110000B ‘11110000° IS MASK

Let us assume that WORD is equal to ‘10101010°. The result of this
program is to leave the value ‘10101010’ in the ‘accumulator.B’’ is
used to indicate a binary value.

Exercise 4.1: Write a three-line program which will zero bits I and 6 of
WORD.

Exercise 4.2: What happens with a MASK = ‘11111111°?
OR

This instruction is the inclusive OR operation. It is characterized by
the following truth table:

OORO =0 OR 0 1
OOR1 = 1

1orR0 =1 & 0 | 0 1
10R1 =1 ’ : 1

The logical OR'is characterized by the fact that if one of the operands
is ‘177, then the result is always ‘“1’". The obvious use of OR is to set
any bit in a word to ‘1.

Let us set the right-most four bits of WORD to 1’s. The program is:

LD A, WORD
OR A, 00001111B
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Let us assume that WORD did contain ‘10101010’. The final value of
the accumulator will be ‘10101111°.

Exercise 4.3: What would happen if we were to use the instruction
OR A, 10101111B?

Exercise 4.4: What is the effect of ORing with “FF’’ hexadecimal?

XOR

XOR stands for “‘exclusive OR.’" The exclusive OR differs from the
inclusive OR that we have just described in one respect: the result is
‘0’" only if one, and only one, of the operands is equal to ““1”’. If both
operands are equal to ‘‘1’’, the normal OR would give a ““1’’ result.
The exclusive OR gives a ‘0’ result. The truth table is:

0 XOR 0 =0 XOR| o | 1
0XOR1 = 1

IXORO=1 o [ 0 [ 01
1 XOR1 =0 T | 1| o

The exclusive OR is used for comparisons. If any bit is different, the
exclusive OR of two words will be non-zero. In addition, in the case of
the 780, the exclusive OR may be used to complement a word, since
there is no complement instruction on anything but the accumulator.
This is done by performing the XOR of a word with all ones. The pro-
gram appears below:

LD A, WORD
XOR 1,11111111B

where ““r’’ designates the register.

Let us assume that WORD contained ‘‘10101010°’. The final value of
the register will be ““01010101”°. You can verify that this is the comple-
ment of the original value.

XOR can be used to advantage as a ““bit toggle.”

Exercise 4.5: What is the effect of XOR using a register with ““00°’ hex-
adecimal?

Skew Operations (Shift and Rotate)

Let us first differentiate between the shift and the rotate operations,
which are illustrated in Figure 4.9. In a shift operation, the contents of
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the register are shifted to the left or to the right by one bit position. The
bit which falls out of the register goes into the carry bit C, and the bit
which comes in is zero. This was explained in the previous section.

SHIFT LEFT
AN ADARND™D L
( CARRY

ROTATE LEFT

NN DN DYDY DY 4

Pt —IE

|

Fig. 4.9: Shift and Rotate

One exception exisis: it is the shift-right-arithmetic. When perform-
ing operations on negative numbers in the two’s complement format,
the left-most bit is the sign bit. In the case of negative numbers it is
““1>’. When dividing a negative number by ‘‘2’’ by shifting it to the
right, it should remain negative, i.e., the left-most bit should remain a
““1”’. This is performed automatically by the SRA instruction or Shift
Right Arithmetic. In this arithmetic shift right, the bit which comes in
on the left is identical to the sign bit. It is ¢‘0’’ if the left-most bit was a
0", and *‘1’" if the left-most bit was a ¢‘1”’. This is illustrated on the
right of Figure 4.10, which shows all the possible shift and rotate opera-
tions.

Rotations

A rotation differs from a shift by the fact that the bit coming into the
register is the one which will fall from either the other end of the
register or the carry bit. Two types of rotations are supplied in the case
of the Z80: an eight-bit rotation and a nine-bit rotation.

The nine-bit rotation is illustrated in Figure 4.11. For example, in the
case of a right rotation, the eight bits of the register are shifted right by
one bit position. The bit which falls off the right part of the register
goes, as usual, into the carry bit. At this time the bit which comes in on
the left end of the register is the previous value of the carry bit (before it
is overwritten with the bit falling out.) In mathematics this is called a
nine-bit rotation since the eight bits of the register plus the ninth bit (the

170



THE Z80 INSTRUCTION SET

carry bit) are rotated to the right by one bit position. Conversely, the
left rotation accomplishes the same result in the opposite direction.

: H Rotets
3
Ae| cfcef ol w|wl | w|B|E rcal o7
@ oo o @ joa]o]oes|os |4 |a Rotste
wrc| co | ca ] ca | ca| s | co| oo | ca | s “
o | o8 | @ | oa ] on o | oo |t | g | & oA | of
G | 8¢ Rour
e | el cafco|eafcolenl colocal| 88} R ma | o
KRR R AR R RN
- 65| D 1] o
aR L e} el ca el | w] caics —
¥ <8 {8
e w el s | wle e ol by BRA | AF Rught
Rorae |
sia | ca | co | en | cn | ca | | o | en | 20| £ F{ == oo Bt
SHIFT ERIECN IR I T AR R A I i
e
waac| ca | cs | col cofow | ca| ca|ca | cw St
Rught Arsthmatec

f s | 2w zalm | x| om| ¥ | g

sav | co | ca | o co o e} ocs s ||

¢
i

3F 38 M A Bl 3¢ kL 3 E) o Shft
Tk 0 o Lopen
o - i3
RLY &F °
51 AT y ]
Hu FRught

Fig. 4.10: Rotates and Shifts

7 REGISTER 0 C
RIGHT [} e 1 ']
7 REGISTER 0 C
|
LEFT {—j DA ~ ‘}
i

Fig. 4.11: Nine-Bit Rotation

The eight-bit rotation operates in a similar way. Bit 0 is copied into
bit seven, or else bit seven is copied into bit 0, depending on the direc-
tion of the rotation. In addition, the bit coming out of the register is
also copied in the carry bit. This is illustrated by Figure 4.12.

L? 0
RIGHT
r 7]
LEFT e

Fig. 4.12: Eight-Bit Rotation

(@}

(8}
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Special Digit Instructions

Two special digit-rotate instructions are provided to facilitate BCD
arithmetic. The result is a four-bit rotation between two digits con-
tained in the memory location pointed to by the HL registers and one
digit in the lower half of the accumulator. This is illustrated by Figure

4.13.

MEMORY

/\/\/‘

RIGHT: g - @ - @

- /\//\/
MEMORY

LEFT: ? < H<+——@ <
!

H ADDRESS

Fig. 4.13: Digit Rotate Instructions

Bit Manipulation

It has been shown above how the logical operations may be used to
set or reset bits or groups of bits in specific registers. However, it is con-
venient to set or reset any bit in any register or memory location with a
single instruction. This facility requires a considerable number of op-
codes and is therefore usually not provided on most microprocessors.
However, the Z80 is equipped with extensive bit-manipulation
facilities. They are shown in Figure 4.14. This table also includes the
test instructions which will be described only in the next section.

Two special instructions are also available for operating on the carry
flag. They are CCF (Complement Carry Flag) and SCF (Set Carry
Flag). They are shown in Figure 4.15.

Test and Jump

Since testing operations rely heavily on the use of the flags register,
we will here describe in detail the role of each of the flags. The contents
of the flags register appear in Figure 4.16.
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REG.
REGISTER ADDRESSING INDIR.]  INDEXED
A 8 c [ 3 H Lo O | x| ayea
BIT
0D | FD
0 cB | c8 | c8 cB | c8 | c8 | ce | ca c8 | c8
47 40 41 42 43 44 45 46 d d
46 6
OD | FO
1 c8 | c8 | c8 c8 | c8 | ce | c8 | ce |cB | cB
4F 4 49 4 4 d d
1] aA 8 | 4c | 4D £ 4 4
DD | F
2 c8 | c8 | c8 | ca s | c8 | c8a|ca | B8 | &R
7 51 52 54 55 | 56 d
5 50 53 g g
3 c8 | c8 | c8 | c8 cB | c8 e | cs | 25| 58
TEST 5F 58 | s9 A §8 | sC | s | g d
8IT’ 1) £D
4 cB | ce | e | ca c8 | c8 cB | cB | CB c8
67 60 | &1 62 64 65 66
3 6 66
F
5 cs | c8 | ¢ | cB cs | ca s | e | | &
6F 68 | 69 6o | 68 | 6c | 60 | 66 | d
6E 6E
DB | FD
6 cs | ce | c8 | cs e | c8 | e8| cB c8 | cB
77 70 71 72 73 74 75 76 d
76 | 78
)
7 [=:] €8 cB c8 cB cs cB c8 83’3 8
F | 8 79 7A ® | 1c | 7E
7€ 7€
oo | Fo
0 cB jcB [ ce | cB c8 | c8 c8 [ c8 | ¢8 | c8
7 | 80 1 82 8. 85
8 8 3 | 84 86 g de
1 cs | c8 | cs | cB ce | cs s |8 | |88
8F | 88 | 8o 8Aa | 88 | 8 | 80 | 8 | d
13 8E
D
2 c8 | c8 | cB | co s | ce | 8| ce | B9 | &R
97 %0 | o a3 | 84 95 d d
92 % 4 4
3 cg | c8 | cs | ca |ce jos | ce | ce | 25| E8
RESET 9f | @8 | @ 9a | 98 | o s | 9 | d
BIT SE 9E
RES' FD
R& | 4 | ca | cs |ce |ca |ce|ca | ca|cel| 20 ]ED
A7 AQ Al A2 A3 A4 A5 A6 d
A6 | As
5 ca {cs | cs | 8 | c8 |cs |ce|ce | 20 ER
AF A8 Ag AA A8 AC AD AE
AE | AE
£
6 c8 | c8 | cB cB ca{c | c|cs | B9 |E8
87 | B | 81 82 83 | B4 85 | 86 d
B6 86
]
7 cg | c8 | c8 | ce c8 | c8 e | ca | 25 | &
BE | 88 | B9 BA | 8B | 8C 80 { BE d
BE BE
)
o ce | c8 | c8 | ca @ | cs | s |cs|CB CB
[0 e =T SHERERERES s
00 | FD
1 c8 cg | c8 | c8 [ ce | c8 | 8B | c8 | CB G
CF C8 | & | ca B fcec|cofce g |d
B0 | FD
2 c8 cB | c8 | c8 8 | ceg | e | ca cs | B
o7 Do | Ot | D2 03 [ o4 | ps | os d
o6 | D6
Do | FD
3 ce | ¢8| cB | cB cs8 | e | ¢ | ca C8 | c8
SET OF D8 D9 DA oa bc oD | DE d g
e DE | DE
SET DD | FD
4 c8 { ce | c8 | cB | c8 | c8 | ca | cB e | o
E7 € | E1 E2 E3 | E¢ E5 | E6 & | %
DO | FD
5 ce | ca | c8 | c c8 | c8 | c8 | cB €6 |8
EF es | €9 | ea €8 | €c | D | EE S | g
OO | FD
6 ce | c8 | c8 | c8 ca cs |ca|ca | CB | CB
F7 Fo | F1 F2 F3 | Fa F5 | Fg 3 de
oD | fD
7 c8 | c8 | c8 | cs cB | c8 {cB | co c8 | c8
FF | F8 Fg | FA | FB | FC | FD | FE d. | 4

Fig. 4.14: Bit Manipulation Group
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Decimat Adjust Ace, ‘DAA’ 27
Complement Acc. 'CPL’ 2F
Negate Acc, ‘NEG’ £D
{2's complement} 44

Complement Carry Flag, ‘CCF’ 3F

Set Carry Flag, 'SCF’ 37

Fig. 4.15: General-Purpose AF Operations

7 6 5 4 3 2 1 0
s z - H - PV ] N c
m M M M

Fig. 4.16: The Flags Register

C is the carry, N is add or subtract, P/V is parity or overflow, H is half
carry, Z is zero, S is sign. Bits 3 and 5 of the flags register are not used
(““0”"). The two flags H and N are used for BCD arithmetic and cannot
be tested. The other four flags (C, P/V, Z, S) can be tested in conjunc-
tion with conditional jump or call instructions.

The role of each flag will now be described.

Carry (C)

In the case of nearly all microprocessors, and of the Z80 in par-
ticular, the carry bit assumes a dual role. First, it is used to indicate
whether an addition or subtraction operation has resulted in a carry (or
borrow). Secondly, it is used as a ninth bit in the case of shift and rotate
operations. Using a single bit to perform both roles facilitates some
operations, such as a multiplication operation. This should be clear
from the explanation of the multiplication which has been presented in
the previous chapter.
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When learning to use the carry bit, it is important to remember that
all arithmetic operations will either set it or reset it, depending on the
result of the instructions. Similarly, all shift and rotation operations use
the carry bit and will either set it or reset it, depending on the value of
the bit which comes out of the register.

In the case of logical instructions (AND, OR, XOR), the carry bit
will always be reset. They may be used to zero the carry explicitly.

Instructions which affect the carry bit are: ADD A,s; ADC A,s;
SUB s; SBC A,s; CP s; NEG; AND s; OR s; XOR s; ADD DD,ss; ADC
HL,ss; SBC HL,ss; RLA; RLCA; RRA; RRCA; RL m; RLC m; RR m;
RRC m; SLA m; SRA m; SRL m; DDA; SCF; CCF; NEG's:

Subtract (N)

This flag is normally not used by the programmer, and is used by the
Z80 itself during BCD operations. The reader will remember from the
previous chapter that, following a BCD add or subtract, a DAA
(Decimal Adjust Accumulator) instruction is executed to obtain the
valid BCD results. However, the ‘‘adjustment’’ operation is different
after an addition and after a subtraction. The DAA therefore executes
differently depending on the value of the N flag. The N flag is set to
0’ after an addition and is set to a ‘“1’’ after a subtraction.

The symbol used for this flag, ““N’’, may be confusing to program-
mers who have used other processors, since it may be mistaken for the
sign bit. It is an internal operation sign bit.

N is set to ““0’” by: ADD A,s; ADC A,s; ANDs;ORs; XORs; INCs;
ADD DD,ss; ADC HL,ss; RLA; RLCA; RRA; RRCA; RL m; RLC m;
RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; SCF; CCF; INr,
(C); LDI; LDD; LDIR; LDDR; LD A, I; LD A,r; BIT b, s.

Nisset to ““1”” by: SUBs; SBC A,s; CP s; NEG; DEC m; SBC HL, ss;
CPL; INI; IND; OUTI; OUTD; INIR; INDR; OTIR; OTDR; CPI;
CPIR; CPD; CPDR.

Parity/Overflow (P/V)

The parity/overflow flag performs two different functions. Specific
instructions will set or reset this flag depending on the parity of the
result; parity is determined by counting the total number of ones in the
result. If this number is odd, the parity bit will be set to *0°’ (odd pari-
ty). If it is even, the parity bit will be set to ““1>’ (even parity). Parity is
most frequently used on blocks of characters (usually in the ASCII for-
mat). The parity bit is an additional bit which is added to the seven-bit
code representing the character, in order to verify the integrity of data
which has been stored in a memory device. For example, if one bit in
the code representing the character has been changed by accident, due
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to a malfunction in the memory device (such as a disk or RAM
memory), or during transmission, then the totai number of ones in the
seven-bit code will have been changed. By checking the parity bit, the
discrepancy will be detected, and an error will be flagged. In particular,
the flag is used with logical and rotate instructions. Also, naturally,
during an input operation from an 1/0 device, the parity flag will in-
dicate the parity of the data being read.

For the reader familiar with the Intel 8080, note that the parity flagin
the 8080 is used exclusively as such. In the case of the Z80, it is used for
several additional functions. This flag should therefore be handled with
care when going from one of the microprocessors to the other.

In the case of the Z80, the second essential use of this flag is as an
overflow flag (not available in the 8080). The overflow flag has been de-
scribed in Chapter 1, when the two’s complement notation was intro-
duced. It detects the fact that, during an addition or subtraction, the
sign of the result is‘“‘accidentally’’changed due to the overflow of the
result into the sign bit. (Recall that, using an eight-bit representation,
the largest positive number is + 127, and the smallest negative number
is — 128 in two’s complement.)

Finally, this bit is also used, in the case of the Z80, for two unrelated
functions,

During the block transfer instructions (LDD, LDDR, LDI, LDIR),
and during the search instructions (CPD, CPDR, CPI, CPIR), this flag
is used to detect whether the counter register B has attained the value
“0’". With decrementing instructions, this flag is reset to ‘0"’ if the
byte counter register pair is “‘0’’. When incrementing, it is set if BC — 1
= 0 at the beginning of the instruction, i.e., if BC will be decremented

to ‘0’ by the instruction.
Finally, when executing the two special instructions LD A,I and LD

AR, the P/V flag reflects the value of the interrupt enable flip-flop
(IFF2). This feature can be used to preserve or test this value.

The P flag is affected by: AND s; OR s; XOR s; RL m; RLC m; RR m;
RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; IN r,(C).

The V flag is affected by: ADD A,s; ADC A,s;SUBs; SBC A,s;CPs;
NEG; INCs; DEC m; ADC HL,ss; SBC HL, ss; NEG.

It is also used by: LDIR; LDDR (set to “‘0’’); LDI; LDD; CPI;
CPIR; CPD; CPDR.

The Half-Carry Flag (H)

The half-carry flag indicates a possible carry from bit 3 into bit 4 dur-
ing an arithmetic operation. In other words, it represents the carry from
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the iow-order nibble (group of 4 bits) into the high order one. Clearly, it
is primarily used for BCD operations. In particular, it is used internally
within the microprocessor by the Decimal Adjust Accumulator (DAA)
instruction in order to adjust the result to its correct value.

This flag will be set during an addition when there is a carry from bit
3 to bit 4 and reset when there is no carry. Conversely, during a subtract
operation, it will be set if there is a borrow from bit 4 to bit 3, and reset
if there is no borrow.

The flag will be conditioned by addition, subtraction, increment,
decrement, comparisons, and logical operations.

Instructions which affect the H bit are: ADD A,r ; ADD A,s; SUB s;
SBC A,s; CP s; NEG; AND s; OR s; XOR s; INC s; DEC m: RLA;
RLCA; RRA; RRCA; RL m; RLC m; RR m; RRC m; SLA m; SR m;
SRL m; RLD; RRD; DAA; CPL; SCF; INT,(C); LDI; LLD; LDIR;
LDDR; LD A; LD A,r; BIT b,r; NEGs;

Note that the H bit is not affected by the 16-bit add and subtract in-
structions.

Zero (Z)

The Z flag is used to indicate whether the value of a byte which has
been computed, or is being transferred, is zero. It is also used with com-
parison instructions to indicate a match, and for other miscellaneous
functions.

In the case of an operation resulting in a zero result, or of a data
transfer, the Z bit is set to ‘‘1’’ whenever the byte is zero. Z is reset to
‘0’ otherwise.

In the case of comparison instructions, the Z bit is set to *1”’ when-
ever the comparison succeeds and to *‘0’’ otherwise.

Additionally,inthe case of the Z80, it is used for three more functions:
it is used with the BIT instruction to indicate the value of a bit being
tested. It is set to “‘1°” if the specified bit is ““0’" and reset otherwise.

With the special ‘‘block input-output instructions’” (INI, IND,
OUTI, OUTD), the Z flag is set if B — 1 = 0, and reset otherwise; it is
set if the byte counter will decrement to “‘0”’ (INIR, INDR, OTIR,
OTDR).

Finally, with the special instructions IN r,(C), the Z flag is set to ‘1"’
to indicate that the input byte has the value ‘0.

In summary, the following instructions condition the value of the Z
bit: ADD A,s; ADC A,s;SUB s; SBC A,s; CP s; NEG; AND s; OR s;
XOR s; INC s; DEC m; ADC HL, ss; SBC HL,ss; RL m; RLC m:
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RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; IN r,(C);
INI; IND; OUTI; OUTD; INIR; INDR: OTIR; OTDR; CPI; CPIR;
CPD; CPDR; LD A,I; LD A.r; BIT b,s; NEGs.

Usual instructions which do not affect the Z bit are: ADD DD,ss;
RLA; RLCA; RRA; RRCA; CPL; SCF; CCF; LDI; LDD; LDIR;
LDDR; INC DD; DEC DD.

Sign (§)

This flag reflects the value of the most significant bit of a result or of
a byte being transferred (bit seven). In two’s complement notation, the
most significant bit is used to represent the sign. *“0’" indicates a posi-
tive number and a ‘‘1’’ indicates a negative number. As a result, bit
seven is called the sign bit.

In the case of most microprocessors, the sign bit plays an important
role when communicating with input/output devices. Most micropro-
cessors are not equipped with a BIT instruction for testing the contents
of any bits in a register or the memory. As a result, the sign bit is usual-
ly the most convenient bit to test. When examining the status of an in-
put/output device, reading the status register will automatically condi-
tion the sign bit, which will be set to the value of bit seven of the status
register. It can then be tested conveniently by the program. This is why
the status register of most input/output chips connected to micropro-
cessor systems have their most important indicator (usually ready/not
ready) in bit position seven.

A special BIT instruction is provided in the case of the Z80.
However, in order to test a memory location (which may be the address
of an 1/0 status register), the address must first be loaded into registers
1X, 1Y or HL. There is no bit instruction provided to test a specified
memory address directly (i.e., no direct addressing mode for this in-
struction). The value of positioning an input/output ready flag in bit
position seven, therefore, remains intact, even in the case of the Z80.

Finally, the sign flag is used by the special instruction IN, (C) to in-
dicate the sign of the data being read.

Instructions which affect the sign bit are: ADD A,s; SUBs; SBC A,s;
CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; ADC HL, ss; SBC
HL, ss; RL m; RLC m; RRm; RRCm; SLAm; SRAm; SRL m; RLD;
RRD; DAA; IN r,(C); CPR; CPIR; CPD; CPDR; LD A, LDA,r;
NEG.
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Summary of the Flags

The flag bits are used to automatically detect special conditions with-
in the ALU of the microprocessor. They can be conveniently tested by
specialized instructions, so that specific action can be taken in response
to the condition detected. It is important to understand the role of the
various indicators available, since most decisions taken within the pro-
gram will be taken in function of these flag bits. All jumps executed
within a program will jump to specified locations depending on the
status of these flags. The only exception involves the interrupt
mechanism, which will be described in the chapter on input/output and
may cause jumping to specific locations whenever a hardware signal is
received on specialized pins of the Z80.

At this point, it is only necessary to remember the main function of
each of these bits. When programming, the reader can refer to the de-
scription of the instructions in the Appendix section of the book to
verify the effect of every instruction of the various flags. Most flags can
be ignored most of the time, and the reader who is not yet familiar with
them should not feel intimidated by their apparent complexity. Their
use will become clearer as we examine more application programs.

A summary of the six flags and the way they are set or reset by the
various instructions is shown in Figure 4.17.

The Jump Instructions

A branch instruction is an instruction which causes a forced bran-
ching to a specified program address. It changes the normal flow of
execution of the program from a sequential mode into one where a dif-
ferent segment of the program is suddenly executed. Jumps may be
conditional or unconditional. An unconditional jump is one in which
the branching occurs to a specific address, regardless of any other con-
dition.

A conditional jump is one which occurs to a specific address only if
one or more conditions are met. This is the type of jump instruction
used to make decisions based upon data or computed results.

In order to explain the conditional jump instructions, it is necessary
to understand the role of the flags register, since all branching decisions
are based upon these flags. This was the purpose of the preceding sec-
tion. We can now examine in more detail the jump instructions pro-
vided by the Z80.

Two main types of jump instructions are provided: jump instructions
within the main program (they are called “jumps’’), and the special
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INSTRUCTION ciz *7\/ SINjH COMMENTS
ADD A_3; ADCA.s it vitloej?t 8-bit add or add with carry
SUB 5:SBC A, 3, CP s, NEG plrtvirbadt 8-t subtract, subtract with
carry, compare and
negate accumulator
AND s ol jPpiijoin Logical operations
OR s; XOR s gitjpPiijojo And sets different tags
INCs o tvittiog: 8-bit increment
DECm et iV}l 8-tit decrement
ADD DD, 53 ijeje jelol X 16-tit add
ADCHL, s HE B SAVAR B N I 4 16-bit add with carry
SBC HL, s R IO IAVAN A (N O I ¢ 16-but subtract with carry
RLA; RLCA, RRA. RRCA tjesjelejo0 Rotate accumulator
RLm:RLCm;RRm;RRCm{ 3|+ {P }:]0 [} Rotate and shaft location m
SLA m:SRAm:SRL m
RLD, RRD ef!t P |l ]O}jO Rotate digit ieft and right
DAA 1 I e (tie|1l Decimal adjust accumulatar
CcPL oo le jol 1} Campiement accumulator
SCF 1je e (1010 Set carry
CCF tjojoe je|0{X Complement carry
INr, (C} ol ;P jrtoi0 input register indirect
INS; IND: OUTE QUTD L I X ixXit x } Block input and output
INIR; INDR; OTIR; GTDR e 1 X IXit1iX Z2=01#8 #0otherwise 2= 1
LDi LDD e x|t IX]|0]0 | Biock transfer instructions
LDIR. LDDR elxio xtola { P/V =14 BC ¢ 0, otherwise
PIV=0
CP1. CPIR, CPD, CPOR L 111X Black search instructions
Z - 14 A= (HL),
otherwise Z = 0
PIV=1.4BC =0, g
atherwise P/V = 0 =
tDAILDA A ol ! NFFIL 10O The content of the interrupt 4
enable flip-flop LIFF) s E
copied into the P/V flag pons
BITh, s ol Ixixjols The complement of bit b of i
) jocation s copied into the §
NEG v Z ftag 5
Negate accumulator 8
The following notation i3 used in this table:
SYMBOL OPERATION
c Carry/link flag. C=1if the operation producad a carry from the MSB of the operand ar result.
Z Zero flag. Z=1 if tha rasuit of the operation is zero.
s Sign flag. S=1.if the MSB of the rasuit 13 one.
PV Parity or averfiow flag, Parity (P] and ovarflow (V) share the same flag. Logical operations
affect this flag with the parity of the result while srithmetic operations affect this flag with
the avarflow of the result. 1f P/V holds parity, P/V=1if the result of the operation i3 aven.
P/V=0 if resuit 13 odd. If P/V holds overflow, P/V=1 if the result of the operation produced
an overflow.
H Half-carry flag. Hw1if the add or subtract operation produced a carry into or borrow from
bit 4 of the accurnulator.
N Add/Subtract flag. N=1 if the previous operation was a subtract.
+ and N flags are used in comjunction with the decimal adjust instruction {DAA] to properiy
correct the result into packed BCD format following addition or subtraction using aperands
with packed BCD format.
: The fiag 15 atfected according to the result of the operation.
° The flag 1s unchanged by the operation.
0 The flag is reset by the operation.
1 The flag i3 set by the operation.
X The flag s » "don’t care.”
v P/V flag atfected according ta the overflow result of the operation.
P PIV flag affected according to the parity result of the operation.
r Any one of the CPU registers A, B, C D, E, H L.
s Any 8-bit location for afl the addrassing modes allowed for the particular instruction.
33 Any 16-bit iocation for all the addressing mades allowed for that instruction.
it Any one of the two index registers iIX or 1Y,
R Refresh counter.
n 8-but value s range <0. 295>
an 16-bit value m range <0, 65535>
m Any 8-bit location for ail the addressing modes atlowed for the paticular instruction.

Fig. 4.17: Summary of Flag Operation
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type of branch instructions used to jump to a subroutine and to return
from it (“‘call”” and “‘return’’). As a result of any jump instruction, the
program counter PC will be reloaded with a new address, and the usual
program execution will resume from this point on. The full power of
the various jump instructions can be understood only in the context of
the various addressing modes provided by the microprocessor. This
part of the discussion will be deferred until the next chapter, where the
addressing modes are discussed. We will only consider here the other
aspects of these instructions.

Jumps may be unconditional (branching to a specified memory ad-
dress) or else conditional. In the case of a conditional jump, one of four
flag bits may be tested. They are the Z, C, P/V, and S flags. Each of
them may be tested for the value “0’’ or ““1’°.

The corresponding abbreviations are:

Z =zero(Z = 1)

NZ = non zero (Z = 0)
C =carry (C = 1)
NC= no carry (0 = C)
PO = odd parity

PE = even parity

P = positive (S = 0)
M = minus (S = 1)

In addition, a special combination instruction is available in the Z80
which will decrement the B register and jump to a specified memory ad-
dress as long as it is not zero. This is a powerful instruction used to ter-
minate a loop, and it has already been used several times in the prevous
chapter: it is the DJNZ instruction.

Similarly, the CALL and the RET (return) instructions may be condi-
tional or unconditional. They test the same flags as the branch instruc-
tion which we have already described.

The availability of conditional branches is a powerful resource in a
computer and is generally not provided on other eight-bit micropro-
cessors. It improves the efficiency of programs by implementing in a
single instruction what requires two instructions otherwise.

Finally, two special return instructions have been provided in the case
of interrupt routines. They are RETI and RETN. They will be described
in the section of Chapter 6 on interrupts.

The addressing modes and the opcodes for the various branches
available are shown in Figure 4.18.
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CONDITION
UN- NON NON |PARITY |PARITY| SIGN | SIGN | REG
COND. | CARRY| CARRY| 2€RO0 | ZERO [EVEN |0DOD NEG POS B0
<3 DA D2 CA c2 EA E2 FA F2
Jump JP° IMMED, nn n n n n n 0 o n n
EXT. n n n n n n n n n
JUMP TJRT RELATIVE | PCte 18 38 30 28 20
e2 &2 &2 e2 e-2
Jump et {HL} E9
UM e REG. X op
INDIR, E9
JUMP  JP° 1Y) FD
2]
(23] pc D4 cc c4 EC E4 FC F4
‘CALL" IMMED. nn n a n n n n n n n
EXT. n n n n n n n n n
DECREMENT 8.
JUMP iF NON RELATIVE | PC+s 10
ZERO 'DJINZ’ e2
RETURN REGISTER | (5P} Ccs D8 oo | c8 <o EB EQ F8 FO
‘RET" INDIR, (SP+1}
RETURN FROM | REG. (st ED
INT 'RETI" INDIR, {SP+1}} 4D
RETURN FROM
NON MASKABLE | REG- ‘SP’” ED
INT "RETN’ INDIR, {SP+ 45

Fig. 4.18: Jump Instructions

A detailed discussion of the various addressing modes is presented
in Chapter 5.
By examining Figure 4.18, it becomes apparent that many ad-
dressing modes are restricted. For example, the absolute jump JPnn
can test four flags, while JR can only test two flags.
Note an important observation: JR tends to be used whenever
possible as it is shorter than JP (one less byte) and facilitates program
relocation. However, JR and JP are not interchangeable: JR cannot
test the parity or the sign flags.
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One more type of specialized branch is available: this is the restart or
RST instruction. It is a one-byte instruction which allows jumping to
any one of eight starting addresses at the low end of the memory. Its
starting addresses are, in decimal, 0, 8, 16, 24, 32,40,48 and 56. Itis a
powerful instruction because it is implemented in a single byte. It is the
fastest branch that can be used, and for this reason, is used essentially
to respond to interrupts. However, it is also available to the program-
mer for other uses. A summary of the opcodes for this instruction is
shown in Figure 4.19,

op
CODE

6ooo,, | €7 ‘RST O

(]0()8H CF ‘RST 8

g goto, ; D7 ‘RST 16
[
L
A 0018, DF ‘RST 24’
D
D
2 0020, E7 ‘RST 32°
N
S

0030, | F7 ‘RST 48’

0038, | FF ‘RST 56’

Fig. 4.19: Restart Group

Input/Output Instructions

Input/output techniques will be described in detail in Chapter 6.
Simply, input/output devices may be addressed in two ways: as
memory locations, using any one of the instructions that have already
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been described, or using specific input/output instructions. Usual
memory addressing instructions use three bytes: one byte for the op-
code and two bytes for the address. As a result, they are slow to ex-
ecute, since they require three memory accesses. The main purpose of
specialized input/output instructions is to provide shorter and,
therefore faster, instructions. However, input/output instructions have
two disadvantages.

First, they ‘‘waste’” several of the precious few opcodes available
(since usually only 8 bits are used to supply all opcodes necessary for a
microprocessor). Secondly, they require the generation of one or more
specialized input/output signals, and therefore “‘waste”” one or more of
the few pins available in the microprocessor. The number of pins is
usually limited to 40. Because of these possible disadvantages, specific
input/output instructions are not provided on most Mmicroprocessors.
They are, however, provided on the original 8080 (the first powerful
eight-bit general-purpose microprocessor introduced) and on the Z80,
which we know is compatible with the 8080.

The advantage of input/output instructions is to execute faster by re-
quiring only two bytes. However, a similar result can be obtained by
supplying a special addressing mode called ‘““page 0"’ addressing, where
the address is limited to a field of eight bits. This solution is often
chosen in other microprocessors.

The two basic input/output instructions are IN and OUT. They
transfer either the contents of the specified 170 locations into any of
the working registers or the contents of the register into the 170 device.
They are naturally two bytes long. The first byte is reserved for the op-
code, the second byte of the instruction forms the low part of the ad-
dress. The accumulator is used to supply the upper part of the address.
It is therefore possible to select one of the 64K devices. However, this
requires that the accumulator be loaded with the appropriate contents
every time, and this may slow the execution.

In the register-interrupt mode, whose format is IN 1, (C), the register
pair B and C is used as a pointer to the 1/0 device. The contents of B
are placed on the high-order part of the address bus. The contents of
the specified 1/0 device are then loaded into the register designated by
r

Additionally, the Z80 provides a register-indirect mode, plus four
specialized block-transfer instructions for input and output.

The same applies to the OUT instruction.

The four block-transfer instructions on input are: INIL, INIR
(repeated INI), IND and INDR (repeated IND). Similarly, on output,
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they are: OUTI, OUTIR, OUTD, and OUTDR.

In this automated block transfer, the register pair H and L is used as
a destination pointer. Register C is used as the 1,0 device selector (one
out of 256 devices). In the case of the output instruction, H and L point
to the destination. Register B is used as a counter and can be incre-
mented or decremented. The corresponding instructions on input are
INI when incrementing and IND when decrementing.

INI'is an automated single-byte transfer. Register C selects the input
device. A byte is read from the device and is transferred to the memory
address pointed to by Hand L. H and L are then incremented by 1, and
the counter B is decremented by I.

INIR is the same insiruction, automated. It is executed repeatedly
until the counter decrements to ““0’". Thus, up to 256 bytes may be
transferred automatically. Note that to achieve a total transfer of exact-
ly 256, register B should be set to the value Q" prior to executing this
instruction.

The opcodes for the input and output instructions are summarized in
Figures 4.20 and 4.21.

Control Instructions

Control instructions are instructions which modify the operating
mode of the CPU or manipulate its internal status information. Seven
such instructions are provided.

The NOP instruction is a no-operation instruction which does
nothing for one cycle. It is typically used either to introduce a deliberate
delay (4 states = 2 microseconds with a 2MHz clock), or to fill the gaps
created in a program during the debugging phase. In order to facilitate
program debugging, the opcode for the NOP is traditionally all 0’s.
This is because, at execution time, the memory is often cleared, i.e., all
0’s. Executing NOP’s is guaranteed to cause no damage and will not
stop the program execution.

The HALT instruction is used in conjunction with interrupts or a
reset. It actually suspends the operation of the CPU. The CPU will then
resume operation whenever either an interrupt or a reset signal is re-
ceived. In this mode, the CPU keeps executing NOP’s. A halt is often
placed at the end of programs during the debugging phase, as there is
usually nothing else to be done by the main program. The program
must then be explicitly restarted.

Two specialized instructions are used to disable and enable the inter-
nal interrupt flag. They are El and DI. Interrupts will be described in
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SOURCE
REG.
REGISTER IND.
A B c D E H i (HL)
IMMED.
‘ouT
REG. | (€} | €D | ED ED €0 | ED | ED | ED
IND. 79 41 49 51 59 61 69
‘OUTI — OUTPUT REG. | (€} ED
inc HL, Dacb IND, A3
‘OTIR’ — QUTPUT, IncHL, | REG. | (C) ED
Dec B, REPEAT IF B#0 IND. 83 BLOCK
OUTPUT
‘QUTD’ - QUTPUT REG. | (O ED COMMANDS
Dec HL& B IND, AB
‘OTDR’ — OUTPUT. DacHL | REG. | {C} ED
& B, REPEAT IF B#0 IND, 88
\__v_.__./
PORT
DESTINATION
ADDRESS
Fig. 4.20: Output Group
SOURCE
PORT ADDRESS
IMMED | REG.
INDIR.
{ni tc}
A +,:] ED
n 8
B ED
40
R
£ le €0
48
AN A
INPUT "IN o
o |o® €D
R 0
£
$
s |E €0
¢ 58
INPUT N
DESTINATION S |w £0
60
L ED
68
INE — INPUT & £D
inc HL, Dec 8 A2
INIR = INP Inc HL, ED
Dwc B, REPEAT IF 8x0 REG BZ
A UL BLOCK INPUT
IND'—INPUT & 4] COMMANDS
Dec Hi, Dec 8 AA
CINDR' - INPUT Dac HL, &0
Ouc 8. REPEAT If 850 8A

Fig. 4.21: Input Group
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Chapter 6. The interrupt flag is used to authorize or not authorize the
interruption of a program. To prevent interrupts from occurring during
any specific portion of a program, the interrupt flip-flop (flag) may be
disabled by this instruction. It will be used in Chapter 6. These in-
structions are shown in Figure 4.22,

‘Nop* 00

HALT' 7% .

DISABLE INT ‘(D) | F3

ENABLE INT{E1) | FB

ET INT MODE E

s ,,M{;? 0 45 8080A MODE

SET INT MODE 1 ED
™M 56 CALL TO LOCATION 0038,

SET INT MODE 2 ED INDIRECT CALL USING REGISTER
M2’ 5E 1 AND 8 BITS FROM INTERRUPTING

DEVICE AS A POINTER,

Fig. 4.22: Miscellaneous CPU Control

Finally, three interrupt modes are provided in the Z80. (Only one is
available on the 8080). Interrupt mode 0 is the 8080 mode, interrupt 1 is
a call to location 038H, and interrupt mode 2 is an indirect call which
uses the contents of the special register I, plus 8 bits provided by the in-
terrupting device as a pointer in the memory to the interrupt routine.
These modes will be explained in Chapter 6.

Finally, special pins on the Z80 will trigger an interrupt mechanism

which will also be explained in Chapter 6. They are the IRQ and the
NMI pins.
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SUMMARY

The five categories of instructions available on the Z80 have now
been described. The details on individual instructions are supplied in
the following section of the book. It is not necessary to understand the
role of each instruction in order to start to program. The knowledge of
a few essential instructions of each type is sufficient at the beginning.
However, as you begin to write programs by yourself, you should learn
about all the instructions of the Z80 if you want to write good pro-
grams. Naturally, at the beginning, efficiency is not important, and this
is why most instructions can be ignored.

One important aspect has not yet been described. This is the set of
addressing techniques implemented on the Z80 to facilitate the retrieval
of data within the memory space. These addressing techniques will be
studied in the next chapter.
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THE Z80 INSTRUCTION SET

THE 780 INSTRUCTIONS: INDIVIDUAL DESCRIPTION

ABBREVIATIONS

FLAG ON OFF
Carry C (carry) NC (no carry)
Sign M (minus) P (plus)
Zero Z (zero) NZ (non zero)
Parity PE (even) PO (odd)

@ changed according to operation

¢] flag is set to zero

1 flagis set to one

? flag is set randomly by operation

X

special case, see accompanying note on that page

bit positions 3 and 5 are always random
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ADCA,s

Function:

Format:

(HL)

(IX + d)

ay + d)

190

Add accumulator and specified operand with
carry.

A<A+s+C

s: may be r, n, (HL),(IX + d), or (1Y + d)

Cfelefel = =]
F‘l‘ololllllilol byte 1: CE

{71 T nJ byte 2: immediate
! data

H I} i 1 i 1 }

Cloleleln it o]
DDl [ fefr] byet:DD
[lofefoli ] o] bye2sE
e
RN
[ Tole]e]
Er—

(e 2]

E

- J byte 3: offset value

1 H

] ]o] byte2: 8E

ll‘o‘lj byte 1: FD
|

: :J byte 3: offset value

r may be any one of:

A — 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010



THE Z80 INSTRUCTION SET

Description. The operand s and the carry flag C from the status
register are added to the accumulator, and the
result is stored in the accumulator. s is defined in
the description of the similar ADD instructions.

Data Flow:

A

B C

D E ALU s
H L +C

Timing: use¢
s M cycles: | T states: | @ 2 MHz:
r 1 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + d) 5 19 9.5
ay + d) 5 19 9.5

Addressing Mode:

Byte Codes:

Flags:

Example:

CE
1A

OBJECT CODE

r: implicit; n: immediate; (HL): indirect; (Ix +
d). 1Y + d): indexed.

ADC A,r r:

A B C D E H L
LaFlas[sczlaAlsalsclsﬂ

S _Z H PO N C
(o[e] o] [e[Ce]

ADC A, 1A

Before: After:

AL e [ s A
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ADC HL, ss Add with carry HL and register pair ss.

Function: HL <« HL +ss + C

Format:
Lol el ] bwet:Ep

GOl e] b

Description: The contents of the HL register pair are added to
the contents of the specified register pair, and then
the contents of the carry flag are added. The final
result is stored back in HL. ss may be any one of:

BC — 00 HL —~ 10
DE — 01 SP - 11
Data Fiow:
A B =X \/
B C
D E ALU
L I,HV// 7 L +
so[ ]
Timing: 4 M cycles; 15 T states: 75 usec @ 2 MHz
Addressing Mode: Implicit.
Byte Codes: BC DE HL SP

SS.
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Flags: sz H PO N C
(@le] [®] [®]C[e]
H is set if there is a carry from bit 11.
Example: ADC HL, DE
Before: After:
Lo T g
£ D 3291 £

5A

OF18 L N4 A ).

X

OBJECT
CODE
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ADD A, (HL) Add accumulator with indirectly addressed

memory location (HL).

Function: A < A + (HL)

Format:

{ﬂololoioilllkﬂ 86

Description: The contents of the accumulator are added to the
contents of the memory location addressed by the
HL register pair. The result is stored in the ac-

cumulator.
Data Flow:
A (oA
8 C
D E VT —
H j MEMORY
Timing: 2 M cycles; 7 T states: 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s Z H PAON C
[@[e] (@] [e[C]e
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Example: ADD A, (HL)
Before: After:
A Y

H 9620 1w 9620 ]

T~ T~
86 9620 B1 9620 B1
/\_J /\_)

OBJECT CODE
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ADD A, (IX + d) Add accumulator with indexed addressed
memory location (IX + d)

Function: A< A+ (X +d

Format:

Flilollinlxioid byte 1: DD
F\ololo!olxllkﬂ byte 2: 86

ﬁ 1 ‘.d]. : : iJ byte 3: offset value

Description: The contents of the accumulator are added to the
contents of the memory location addressed by the
contents of the IX register plus the immediate off-
set value. The result is stored in the accumulator.

Data Flow:
A /\/‘
B o _M
D E :
/\_/‘
ADD
X[ —F Z
d
Timing: 5 M cycles; 19 T states: 9.5 usec @ 2 MHz

Addressing Mode: Indexed.

H P N C

Flags: s Z
@[e] [e] [@[Ole]
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Example:

N

DD

86
03

g

OBJECT CODE

THE Z80 INSTRUCTION SET

ADD A, (IX + 3)

A

Before:

After:
A

ix[

1w

0B61

-

0861 04
0B62 B2
0B63 36
0B64 91

N

0861 04

0B62 82

0863 36

0B64 91
TN
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ADD A, dY + d)

Add accumulator with indexed addressed
memory location (1Y + d)

Function: A< A + (Y + d)
Format:
DTl fefr] byen:FD
[TefoTofofr]1]o] bye2:86
3 T ¥ T T T 1
r — 4 = j byte 3: offset value
Description: The contents of the accumulator are added to the
contents of the memory location addressed by the
contents of the 1Y register plus the given offset
value. The result is stored in the accumulator.
Data Flow:
A DATA
8 o
D E
H L
//\\“\/
—
[ + z
L4 |
Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode:

Flags:

198

Indexed.

H PAON C

OOEOR0E0




Example:

T~

FD

86

01

T~

OBJECT
CODE

THE Z80 INSTRUCTION SET

ADD A, (IY +1)

Before: After:
A AL G

/\_, /\_
0028 06 0028 06
002¢C 9A 002C 9A
b~ b~
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ADD A, n

Function:

Format:

Description.

Data Flow:

Add accumulator with immediate data n.

A< A +n

F}!lolololllliﬂbytelz(ﬁ

i LIS S L lbyteZ: immediate
i 1 1 i i i lgda[a

The contents of the accumulator are added to the
contents of the memory location immediately
following the op code. The result is stored in the
accumulator.

Timing:

Addressing Mode:

Flags:

Example:

T~

C6
E2

T —
OBJECT CODE

200

MEMORY

2 M cycles; 7 T states: 3.5 usec @ 2 MHz
Immediate.

pPON C

OOEOE0E0

ADD A, E2
Before: After:
A =7
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ADDA,r Add accumulator with register .
Function: A<~ A +r
Format:

Lfofefo o=

Description: The contents of the accumulator are added with
the contents of the specified register. The result is
placed in the accumulator. r may be any one of:

A — 111 E - 011
B - 000 H - 100
C - 001 L - 101
D - 010
Data Flow:
A — \/
B C
D E ALU
H L +
Timing: I M cycle; 4 T states: 2 usec @ 2 MHz.
Addressing Mode: Implicit.
Byte Codes: I A B C D E H L

]87180[81 !82‘83’84[85-1

Flags: H @O N C
ele] To [®[Cle]
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Example:

(T

80

OBJECT CODE

202

ADD A, B

Before:

After:

2

il
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ADD HL, ss Add HL and register pair ss.

Function: HL < HL + ss
Format: [
Lofofs s]1ofo "]
Description: The contents of the specified register pair are

added to the contents of the HL register pair and
the result is stored in HL. ss may be any one of:

BC — 00 HL - 10
DE - 01 SP —- 11
Data Flow:
A
B C
D £ ALU
[_ H AL +
sp |
Timing: 3 M cycles; 11 T states: 5.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: SS: BC DE HL SP

(oo 19]20] ]
Flags: s 2

[T T Te[ T [Ofe)

Cis set by carry from bit 15, reset otherwise.

Hissetby a carry from bit 11
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Example: ADD HL, HL

Before: After:

T~ H 0681 I v i

29

OBJECT
CODE
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ADDIX, rr Add IX with register pair rr.
Function: IX < IX + rr
Format:

Dl lef [ ToT ]byte 1: DD

Lololr r[rfofo] Joyte2

Description: The contents of the 1X register are added to the
contents of the specified register pair and the
result is stored back in 1X. rr may be anyone of:

BC —~ 00 IX —- 10
DE - 01 SP —~ 11
Data Flow: {} F
A
é B C
{D 3 ALU
H L +
. L=
sp| |
Timing: 4 M cycles; 15 T states: 7.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: rr:  BC DE IX sp

5o [ [[7]
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CTT e[ 1 Iofe

H is set by carry out of bit 11.
C is set by carry from bit 15.

Example: ADD IX, SP
Before: After:
T~ ix[ 0000 1 70 |
l;g sp[ 3021 ] sl 3021 ]
T~
OBJECT
CODE
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ADDIY,r Add 1Y and register pair rr.
Function: IY < 1Y + rr
Formaz:

!lfxlllllllllol']bytel:FD

EIKIEE

IIOIOII]byteZ

Description: The contents of the 1Y register are added to the
contents of the specified register pair and the
result is stored back in IY. rr may be any one of:

BC - 00 Iy — 10
DE - 01 SP — 11
Data Flow: i} F
A
{B C
i b E ALU
H L +
Timing: 4 M cycles; 15 T states: 7.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: IT: BC DE IY SP

o o] [#[7]
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Flags: s z H PV N C
L[ [ [el [ [Ole]
H is set by carry out of bit 11.
C is set by carry out of bit 15.
Example: ADD 1Y, DE
Before: After:
~__ D 6122 le ol 6122 e
D Y| 3051 | Y5
19
OBJECT
CODE
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AND s Logical and accumulator with operand s.
Function: A<ARs
Format: s may ber, n, (HL), (IX + d), or IY + d)
¢ [ Telo=—]
n Lol [Te) bytet: s
] g e
oy [Tl ool ]]o] %
ax +d [ [r]e[i i1 ]e]1] byte1: DD
CTe[ ToTol T o] byte: 56
(Y +d) |~————d—————| byte 3: offset value
CT T o] byte 1 ¥
Lol ool T o] bwee2: 56
|~————d————| byte 3: offset value

1 1

r may be any one of:

A — 111 E - 011
B — 000 H - 100
C - 011 L - 101
D - 010
Description: The accumulator and the specified operand are

logically ‘and’ed and the result is stored in the ac-
cumulator. s is defined in the description of the
similar ADD instructions.
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Data Flow:
A
B C
D E A/L{J { s
H
]
Timing: usec
s: M cycles: | T states: | @ 2 MHz:
r 1 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX +d 5 19 9.5
Iy + d) 5 19 9.5

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX +
d), 1Y + d): indexed.

Byte Codes: AND r B

TwTsoai el wsae] ]

Flags:

A H @V N C
lele] ['[ [®|O[O]

Example: AND 4B
Before: After:
A a9
/\.
E6
4B
OBJECT
CODE
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BIT b, (HL)

Function:

Format:

Description:

THE Z80 INSTRUCTION SET

Test bit b of indirectly addressed memory location
(HL)

Z < (HL),

L[ fofofrfo]r 1] byter:cn
L [ o] byee

The specified bit of the memory location address-
ed by the contents of the HL register pair is tested
and the Z flag is set according to the result. b may
be any one of:

0 — 000 4 — 100
1 - 001 5 — 101
2 — 010 6 — 110
3 - 011 7 111
Data Flow: %: ] —~__
A F DATA
B o
D E ALU
Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz

Addressing Mode: Indirect.

Flags:

PV N C

EORDEEDE
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Byte Codes:

Example:

N~

cB
5E

b —
OBJECT CODE

212

b.

o 1 2

6 7

co- [a6] €] | 5t [ 60 ] et [76 | 7% |

6A42

BIT 3, (HL)
Before: After;
[ Jr W70 -
6A42 L H 6A42 L
05 6A42 05
/\_._/ /\/
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BIT b, (IX + d) Test bit b of indexed addressed memory location

Function:

Format:

Description:

(IX + d)
Z < (X + dy,

111110]1[1[110[1! byte 1: DD
llil]o]olilob%l byte 2: CB

] : : : d : : ' % byte 3: offset value
Lo [ To] bvies

The specified bit of the memory location address-
ed by the contents of the IX register plus the given
offset value is tested and the Z flag is set according
to the result. b may be any one of:

0 — 000 5 — 101
1 — 001 6 — 110
2 - 010 7 — 111
3 - 011
4 — 100
Data Flow: J ;““‘—:
/\_
A 7 F DATA
B c
D E ALU
H L /\“
IX ) o o~
BIT
d
b
T~
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Timing: 5 M cycles; 20 T states: 10 usec @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: 0 v 2 3 4 5 6 7
DD-CB-d- Pb l 4 lsa 158 iéé léE i76 [7& {
Flags: Sz H PV N _C
BOEDEEON
Example: BIT 6, (X + 0)
Before: After:
F Nk
X | AATT | X | AAT |
/\_ T — T~
DD AAY1 42 AATT 42
= —— —~
76

T —
OBJECT CODE
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BIT b, (IY + d) Test bit b of the indexed addressed memory loca-

tion 1Y + d)

Function: Z < {IY + d)
Format:
Dol ] byter:FD
Llfelefr o[ [r] bye2:cr
[ I ] { ] l 1
L T T 1 byte 3: offset value
Lo[ e T ]o] byes
Description: The specified bit of the memory location ad-
dressed by the contents of the 1Y register plus the
given offset value is tested and the Z flag is set ac-
cording to the result. b may be any one of:
0 — 000 4 — 100
1 — 001 5 — 101
2 - 010 6 — 110
3 - 011
Data Flow:
A
8
D
H
1|
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Timing: 5 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: b: 0 1 2 3 4 5 6 7
]46]45]56‘5&’66]65[7@]75]

Flags: S 2 H PV N C
clef ] [-lo] |
Example: BIT 0,dY + D)
Before: After:
92 F
1| FF12 ] rv] FF12
/\_ T~ /\
FD FF12 61 FF12 61
cB FF13 B2 FF13 B2
/\_,
OBJECT CODE
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BIT b, r Test bit b of register r.
Function: Z "‘r_b
Format: Illl!OlOll]O[llllbytel:CB
Lo v o] byte2
Description: The specified bit of the given register is tested and

the zero flag is set according to the results. b and r
may be any one of:

b: 0 - 000 4 - 100
I — 001 5 - 101
2 - 010 6 — 110
3 - 011 7 - 111

r A — 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010

Data Flow: i ; l ;
A iz] F \/
B C
D E ALU
H L
I

Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.
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Byte Codes: b: A B C D E H L

2 | 57| 50|51 52)53|54]55

3 | 5F|58|59|5A]5B15CH 5D

4 | 67| 60| 61| 62| 63]64]65

5 | 6F | 68| 69| 6A| 6B | 6C| 6D

6 | 7717071172173 {74175

Flags: sz H PV N C

Example: BIT 4,B
Before:
N~
s e | [ o Jr
cB
60

VT~
OBJECT CODE
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CALL cc, pq

Function:

Format:

Description:

THE Z80 INSTRUCTION SET
Call subroutine on condition.
if cc true: (SP — 1) < PChigh; (SP — 2) <

PClow; SP <SP — 2; PC < pq
If cc false: PC <« PC + 3

1 byte 2: address,

low order
‘ byte 3: address,
high order

‘o byte 1
T
!
|
[

If the condition is met, the contents of the pro-
gram counter are pushed onto the stack as de-
scribed for the PUSH instructions. Then, the con-
tents of the memory location immediately follow-
ing the opcode are loaded into the low order of the
PC and the contents of the second memory loca-
tion after the the opcode are loaded into the high
order half of the PC. The next instruction fetched
will be from this new address. If the condition is
not met, the address pq is ignored and the follow-
ing instruction is executed. cc may be any one of:

NZ — 000 PO — 100
Z - 001 PE - 101
NC - 010 P - 100
C - 011 M - 111

An RET instruction can be used at the end of the
subroutine being called to restore the PC.
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Data Flow:

Timing:

j

ICONTROL
LOGIC CALL

T O @ P

LI

_mﬂ’"’

pc P

000 0

usec
M cycles: | T states: | @ 2 MHz
condition
frue: 5 17 8.5
condition
not true: 3 10 5

Addressing Mode: Immediate.

Byte Codes:

Flags:

220

CC: NZ.Z NC C PO PE P M

LC_A]FC]DAIDC,H IEC 1F4 »FC "q@

PV N C
i 1 (no effect)

(T




Example:

/\_,
OBJECT CODE

THE Z80 INSTRUCTION SET

CALL Z, BO42

Before: After:

F :
rc| 0BO1 ] rc
sp | BEI2 1 e 8812 |

T~ T~
BBIO|  &F BB1O oF
BB11 04 8811 04
| ]
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CALL pgq

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

222

pC

000 0

Call subroutine at location pq.

(SP — 1) = PChigh; (SP — 2) < PCloy; SP <SP
-2, PC~pq

Olol‘l'lol‘lbyteI:CD
: ‘.g : i z ]byte 2: address, low order

T i i

T byte 3: address, high order

|

The contents of the program counter are pushed
onto the stack as described for the PUSH instruc-
tions. The contents of the memory location im-
mediately following the opcode are then loaded in-
to the low order half of the PC and the contents of
the second memory location after the opcode are
loaded in the high order half of the PC. The next
instruction will be fetched from this new address.

I O w »

I

5 M cycles; 17 T states: 8.5 usec @ 2 MHz

Immediate.



Flags:

Example:

T~

Cb
B1
40

o~
OBJECT CODE

THE Z80 INSTRUCTION SET

S z H PV N C
L f I { ‘ (no effect)
CALL 40BI
Before: After:
pC | AA40 |l 777
sP | 0814 | S
T
0812 9A 0B12 WM///,
0B13 01 0B13 %// ///;;
0B14 F4 0814 -F4
—~__| o~
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CCF

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

224

Complement carry flag.

r o w >

C «<C

[lol [ ]sF

The carry flag is complemented.

~— m O

1 M cycle; 4 T states: 2 usec @ 2 MHz

Implicit.

p/V N C

! S ] Z{ | :[ | [O]®] I—Becomes previous

? carry status.
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CPs Compare operand s to accumulator.
Function: A —s
Format: s: may be n, (HL), (IX + d), or (IY + d).
‘ T T
v ol ]

nnDonnnoE:

1 T ' l byte 2: immediate
PP S data

(HL) illolilllllllilo{ byte 1: BE
ax+d [ [iJo[i [ ][ ]o]1] bytet1:DD

[1]0]1|llllllllﬂ byte 2: BE

1 d i byte 3: offset value

ay+d [ ]e] ] byte1:FD

DJe "' To]  byte2: BE

i : ‘ : ‘:’ , , , 1 byte 3: offset value
r may be any one of:

A - 111 E - 011

B — 000 H - 100

C - 001 L — 101

D - 010
Description: The specified operand is subtracted from the ac-

cumulator, and the result is discarded. s is defined
in the description of the similar ADD instructions.
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Data Flow:
A F
B c
D E s |
H L
Timing: usec
s. M cycles: | T states: |@ 2 MHz:
r 1 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + d) S 19 9.5
dy + d) 5 19 9.5
Addressing Modes: 1: implicit; n: immediate; (HL): indirect;
(IX + d), (1Y + d): indexed
Byte Codes- CP = r C D E H L
lBF laaieqlexx\selsc‘eo]
Flags: s Z H PAY N C
@[e] [ [ [0
Example: CP (HL)
Before: After:
Al s [ 36 JF Al 96 e F
H] B203 L H 8203 [
BE 8203 42 8203 42
\/\__4 V-\_/
OBJECT
CODE
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CPD Compare with decrement.
Function: A —[HL]; HL =<—HL — 1; BC ~—BC — |
Fi N

ot L'l}[‘lol‘l‘lofilbytel:ED

LIIO] 1[0[1!010[11 byte 2: A9

Description: The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.
Then both the HL register pair and the BC register
pair are decremented.

Data Flow:

‘k} o T~
) Z \/ DATA

B

H

Timing: 4 M cycles; 16 T states: 8 usec @ 2 MHz

Addressing Mode: indirect.

Flags:
H P/VNC

S z
@[ x] [® [x[7] ] Reset if BC = 0 after execution; set otherwise
t L—_rr Setif A = [HL]
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Example: CPD
Before: After:
2A 06 F ////M
B 3154 c B /////W c
H B6BS |t HZ AL
L T T T~
D 8685 2A 86B5 2A
A9 L LT~

L
OBJECT CODE
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CPDR

Function:

Format:

Description:

Data Flow:

THE 780 INSTRUCTION SET

Block compare with decrement.

A —[HL]; HL=— HL — 1; BC~— BC — 1;
Repeat until BC = Qor A = [HL]

bl‘f‘f"l‘l'lﬂﬂ byte 1: ED

LVIOIIIIIIIOIO]q byte 2: B9

The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.
Then both the BC register pair and the HL register
pair are decremented. If BC = O and A = [HL],
the program counter is decremented by two and
the instruction is re-executed.

B

H

Timing:

Flags:

, 777
7/

7/

C -Iitl i

|

BC = 0or A = [HL]: 4 M cycles; 16 T states:
8 usec @ 2 MHz

BC = 0and A = [HL]:5 M cycles; 21 T states:
10.5 usec @ 2 MHz

Reset if BC = 0 after
execution; set otherwise

LT o 5[] ]
P [

Setif A = [HL]

229



PROGRAMMING THE 780

Example:

T T~

ED
B9

L
OBJECT CODE

230

A
B

H

60FE
60FF
6100

CPDR

Before:

on |

00

0002

[ 6100

It

08
00
2A

After:

.
s

Y

G60FE 08
60FF Q00
4100 2A
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CPI1 Compare with increment.
Function: A —{HL]; HL =— HL + 1; BC ==BC — 1
Format:

L}‘I‘IO]‘]‘IOW] byte I: ED

Lu!o{zio]o’o]o]ﬂ byte 2: Al

Description: The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.
The HL register pair is incremented and the BC
register pair is decremented.

Data Flow:

, i
7/ c DATA 1

B

H

Timing: 4 M cycles; 16 T states: 8 usec @ 2 MHz

Addressing Mode: indirect.

Flags:

H P/VN C

s 2
Reset if BC = 0 after execution set otherwise
® x| ® |x|:
LILJ o ]4] L [ Setif A = [HL]
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Example: CPI
Before: After:
B 0510 < D /%%V/// /
W[ 8689 W "D
/_—\1 /\_‘ T T —
ED 86B9 98 86B9 9B
Al L LT
R

232



CPIR

Function:

Formai:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Block compare with increment.

A—[HLH =— HL + 1;BC —BC —I;
Repeat until BC = Oor A = [HL]

Llll]:]ofijxloillbytel:ED

hIOI'I'IOIOIOIT] byte 2: Bl

The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.
Then the HL register pair is incremented and the
BC register pair is decremented. If BC # 0 and A
# [HL], then the program counter is decremented
by 2 and the instruction is re-executed.

i,

A 7///////////4 i \/ DATA
i & Vo N
U 7 - B —
Timing: BC = 0or A = [HL] : 4 M cycles; 16 T states:
8 usec @ 2 MHz
BC # Oand A # [HL]: 5 M cycles; 21 T states:
10.5 usec @ 2 MHz
Addressing Mode: indirect.
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Flags:

PN C . . .
T Reset if BC = 0 after execution; set otherwise

sz H
@1?1 o] Ixfgl] JSetifAz[HL]

Example: CPIR
Before: After:
Al | s w V7%
B 0051 Y
H[ 0398 ] W 55 -
S T T
— ] o 06. 039D 06
OBJECT CODE ] ]

234



THE Z80 INSTRUCTION SET

CPL Complement accumulator.
Function. A<A
Format:
Lofol o [T T 2F
Description: The contents of the accumulator are com-

plemented, or inverted, and the result is stored
back in the accumulator (one’s complement).

Data Flow:
A R
B C
D E ALU
H L
Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz
Addressing Mode: Implicit.
Flags: s z H PV N C
LIT DT T T
Example: CPL
Before: After:

2F

T~
OBJECT
CODE
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DAA Decimal adjust accumulator.
Function: See below.
Format:
{0}0\11010‘1\1}1J27
Description: The instruction conditionaly adds ‘6’ to the
right and/or left nibble of the accumulator, based
on the status register, for BCD conversion after
arithmetic operations.
value of value of | #added | C after
N C | high nibble | H | low nibble to A execution
0 0 0-9 0 0-9 00 0
(ADD, | O 0-8 0 A-F 06 0
ADC, | 0 0-9 1 0-3 06 0
INC) | O A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1
1 0 0-9 0 0-9 00 0
(SUB, |0 0-8 1 6-F FA 0
SBC, 1 7-F 0 0-9 AO 1
DEC, |1 6-F 1 6-F 9A 1
NEQG)
Data Flow:
Al F
8 C
D E awv/
H L DAA /
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Timing: I M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s 7 H AV N C
o/e] (o] o] [o
Example: DAA
Before: After:
S~
27 SRR )

OBJECT
CODE
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DECm Decrement operand m.
Function: m<m-— 1
Format: m: may be r, (HL), (IX+d), 1Y+d)

SnnEE=non
o BLL el %
ax + o [Tl [T [e[7] bwe: D
LT ol Tel] by 23

l:' ' ’ %‘ : : lJ byte 3: offset value

1

ay +d [ le] 1] byte1: FD
rololl!1\0\1]0‘1bet62:35

r: ¢ ! :bet€3:0ffsetvalue

Description: The contents of the location addressed by the
specific operand are decremented and stored back
at that location. mis defined in the description of
the similar INC instructions.

Data Flow:
A
B c
D E ALY M
H L -1
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Timing:

THE Z80 INSTRUCTION SET

usec
m. M cycles: | T states: (@ 2 MHz:
r 1 4 2
(HL) 3 11 5.5
(X + d) 6 23 11.5
ay + d) 6 23 11.5

Addressing Mode: r:implicit; (HL): indirect; (IX + d), Y + d):in-

Byte Codes:

Flags.

Example:

oD

OBJECT
CODE

dexed.

DECr

r:

: A B C D E H L
Laolosloollslmlzslmw

ole] To] o [

DEC C
Before: After:
L ¢ | 57
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DEC rr

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

240

Decrement register pair rr.

reor — 1

[ofol- Do lof 1]

The contents of the specified register pair are
decremented and the result is stored back in the
register pair. rr may be any one of:

HL - 10
SP - 11

T U W P

sl

—

1 M cycle; 6 T states; 3 usec @ 2 MHz

Implicit.

BC DE HL SP
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Flags. s z H PV N C
L ! l l I ] l ‘ —l (no effect).
Example: DEC BC
Before: After:

F ﬂ s[ 3B < 7z 77

OBJECT CODE
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DECIX Decrement 1X.
Function: IX<+<1IX -1
Format:
F;:iolllilxioxllbytelzDD
Eo{ﬂoll\olill ]byteZ:ZB
Description: The contents of the 1X register are decremented

and the result is stored back in IX.

Data Fiow:
A
B
)
H
X
Timing: 2 M cycles: 10 T states; 5 usec @ 2 MHz

Addressing Modes: 1mplicit.

Flags: A H PV N C

[1 ‘ ﬁ 1 l 1 , ] (no effect).
Example: DEC IX

Before: After:

M [ o | T

OBJECT CODE

242



DEC 1Y

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

T~

FD
2B

T~ |

OBJECT CODE

THE Z80 INSTRUCTION SET

Decrement 1Y.

IY < 1Y - 1

Lli111[111{1]011]byt611FD
Loloilio}IIOIIIT]byteZ:ZB

The contents of the 1Y register are decrementeq
and the result is stored back in IY.

%

E
L

I O w »

YW <——— |

2 M cycles; 10 T states; 5 usec @ 2 MHz

Implicit.

S 2 H PV N C

L] ] I ! } I ]T (no effect).
DEC 1Y

Before: After:
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DI Disable interrupts.

Function: IFF < 0

Format: Pl‘lllllolo“lx}m

Description: The interrupt flip-flops are reset, thereby disabling

all maskable interrupts. A maskable interrupt may
be disabled during its execution by DI. It is re-
enabled by an EI instruction.

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz
Addressing Mode: Implicit.

Flags: s Z H pV N C

(l l I l ‘ l lJ (no effect).
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DINZ e

Function:

Format:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Decrement B and jump e relative on no zero.

B<b ~1;if B#0: PC< PC + ¢

Jo!o!o]ﬂ byte I: 10

The B register is decremented. If the result is not
zero, the immediate offset value is added to the
program counter using two’s complement
arithmetic so as to enable both forward and
backward jumps. The offset value is added to the
value of PC + 2 (after the jump). As a result, the
effective offset is -126 to +129 bytes. The as-
sembler automatically subtracts from the source
offset value to generate the hex code.

DINZ

e-2

Timing:

B #0: 3 M cycles; 13 T states; 6.5 usec @ 2 MHz.
B = 0: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Modes: Immediate.
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Flags:

Example:

/\_,1

i

10
Fo

OBJECT CODE

246

A PV N C

{ l l IH] l 1 lJ(noeffect)

DINZ $ — 5 ($ = current PC)

Before: After:

EENL V5
e om | <5 a




El

Function:

Format:

Description:

Timing:

Addressing Mode:

Flags:

Example:

THE Z80 INSTRUCTION SET

Enable interrupts.

IFF < 1

LT Tel T re

The interrupt flip-flops are set, thereby enabling
maskable interrupts after the execution of the in-
struction following the EI instruction. In the mean-
time maskable interrupts are disabled.

I M cycle; 4 T states; 2 usec @ 2 MHz
Implicit.

Z H PV N C

LSI l l f ! f { ](noeffect).

A usual sequence at the end of an interrupt routine is:
El

RETI

The maskable interrupt is re-enabled following
completion of RETI.
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EX AF, AF' Exchange accumulator and flags with alternate
registers.

Function: AF=<=AF'

Format:

Sleee o Toe] os

Description: The contents of the accumulator and status
register are exchanged with the contents of the
alternate accumulator and status register.

Data Flow:
AL F <:> Al i
B C B! c
D E D! £
H L o L
Timing: 1 M cycle; 4 T states: 2 usec @ 2 MHz
Addressing Mode: 1mplicit.
Flags: s Z H PV N C

r—[ ‘ \ t § 1 lj(noeffect).

Example: EX AF, AF?
Before: After:
N Al o [ & Jr A[_w [ s
= N I - T MR
\/

OBJECT CODE
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EX DE, HL Exchange the HL and DE registers.

Function: DE «— HL

Format:

COT Lol s

Description: The contents of the register pairs DE and HL are
exchanged.
Data Flow:
A
B c
D SAE
H L
Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s z H PV N _C
L ‘ } 1 1 i 1 l ] (no effect).
Example: EX DE, HL
Before: After:
/\—/ D A4ESL E D 9604 £
H 9604 L H AJES L
£B

./

OBJECT CODE

249



PROGRAMMING THE 780

EX (SP), HL  Exchange HL with top of stack.

Function: (SP) <~L; (SP + 1)« H
Format: lel]lo‘o!oil‘j E3
Description: The contents of the L register are exchanged with

the contents of the memory location addressed by
the stack pointer. The contents of the H register
are exchanged with the contents of the memory
location immediately following the one addressed
by the stack pointer.

Data Flow:

A

8 C

D E

H L

se[ J————] N
Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: S Z H PV N C

ﬂ l ‘ l l l 1J (no effect).
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Example:

N~

E3

T ~—
OBJECT CODE

THE Z80 INSTRUCTION SET

EX (SP), HL

Before: After

HL 8290 I A .
s B409 ] sp|. B409 ]

T~
B409 3F 8409557
B40Al  OF Ba0Al/8277)
] L~
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EX (SP),IX

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

252

Exchange I1X with top of stack.
(SP) <> 1Xjows (SP + 1) <> 1Xpjgh
F‘l!Oll!l‘i {oll ‘ byte 1: DD
Dl fefefofr[1] bye2:E3
The contents of the low order of the IX register
are exchanged with the contents of the memory
location addressed by the stack pointer. The con-
tents of the high order of the IX register are ex-
changed with the contents of the memory location
immediately following the one addressed by the
stack pointer.

A

B C

D E

H L

X ]

__baTAa |
L_ﬁ

Spﬁ J———‘ _\/
6 M cycles; 23 T states; 11.5 usec @ 2 MHz
Indirect.

s z H PV N C

r l ‘ ‘ ! l l l } (no effect).




Example:

N

DD
E3

TN

OBJECT CODE

EX (SP), IX
Before:
IX| 9234
SPL 0402

0402
0403

6B
()

THE Z80 INSTRUCTION SET

After:

X[ 0168

sp| 0402

0402} 7
0403 _
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EX (SP),IY Exchange 1Y with top of stack.

Function: (SP) < IY|gws (SP + 1) < IYhigh

Format:

r1l1!111llll‘old byte 1: FD

]‘le‘IololOl‘\‘J byte 2: E3

Description: The contents of the low order of the 1Y register
are exchanged with the contents of the memory
location addressed by the stack pointer. The con-
tents of the high order of the 1Y register are ex-
changed with the contents of the memory location
immediately following the one addressed by the
stack pointer.

Data Flow:

A

B C

D E

H L

v i

s T
Timing: 6 M cycles: 23 T states; 11.5 usec @ 2 MHz
Addressing Mode: Indirect.
Flags: s z H p/V N C

f ‘ l ! } ] ‘ ] J (no effect).
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Example:

FD
£3

OBJECT CODE

THE Z80 INSTRUCTION SET

EX (SP), ly
Before: After:
Iy | BFO3 ]
sP | 6211 | se[ 6211 ]
N
6211 90 2 e
6212 ) 22 s
—~__
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EXX Exchange alternate registers.
Function: BC <~ BC'; DE <~DE’ HL <~HL'
Format:
el [ fofel ] Do
Description: The contents of the general purpose registers are

exchanged with the contents of the corresponding
alternate registers.

Data Flow:

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: sz H PV N C
CT LTI [T e,
Example: EXX
Before: After:
A 04 28 FooA 28 F
8 39 26 c B 00 C
D 54 02 £ D DO E
H Fi ) L H £3 L
/\_,
Do Al 3F 2A FlooAl 3IF 2A F
) Bl 8C 0 |c | 39 L2 4C
a— ol 93 Do |E! D 54 T2 E
OBJECT | o 5o
CODE H 4 E3 ¢ HY R
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HALT

Function:

Format:

Description.

Timing:

Addressing Mode:

Flags:

THE Z80 INSTRUCTION SET

Halt CPU.

CPU suspended.

L[ Te[ [ o]

CPU suspends operation and executes NOP’s so
as to continue memory refresh cycles, until in-
terrupt or reset is received.

I M cycle; 4 T states; 2 usec @ 2 MHz + inde-
finite Nop’s.

Implicit.
sz H PV N C
L l ] ! ‘ ] l ! [ (no effect).
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IMO Set interrupt mode 0 condition.
Function: Internal interrupt control.
Format:
]1[1}1[0}1]1{0[1] byte 1: ED
[0!1 lo]o]of1 [1]0[ byte 2: 46
Description: Sets interrupt mode 0. In this condition, the in-

terrupting device may insert one instruction onto
the data bus for execution, the first byte of which
must occur during the interrupt acknowledge cycle.

Timing: 2 M cycle; 8 T states; 4 usec @ 2 MHz

Addressing Mode: 1mplicit.

Flags: s 2z H PV N _C
i [ l } i l ’ l l (no effect).
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IM1

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

THE Z80 INSTRUCTION SET

Set interrupt mode 1 condition.

Internal interrupt control.

llll]}lolllll()]‘Jbyte]ZED

Lolilolllollixlo]byte2:56

Sets interrupt mode 1. A RST 0038H instruction
will be executed when an interrupt occurs.

00 38

U e dd
—

[

0038 | INT
L

ROUTINE |

N~

PCH
PCL

STACK
2 M cycles; 8 T states; 4 usec @ 2 MHz

Implicit.

s z H PVN C
L] l ’ [ [ 1 [ ‘ (no effect).
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M2 Set interrupt mode 2 condition,
Function: Internal interrupt control.
Format:
11{ 1& 1]0‘ 11 1]0! 1J byte 1: ED
Loilloixl1]1]1lol byte 2: SE
Description: Set interrupt mode 2. When an interrupt occurs,

one byte of data must be provided by the peripheral
which is used as the low order of an address. The
high order of this vector address is taken from the
contents of the I register. This points to a second
address stored in memory,which is loaded into the
program counter and begins execution.

Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: sz H PV N C
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IN r, (O) Load register r from port(C)
Function: r < (Q)
Format.

UJ_JOI"‘}OIIWbytel

‘o%‘-i—r—l——[o‘o‘olbytez

Description: The peripheral device addressed by the contents of
the C register is read and the result is loaded into
the specified register.

C provides bits A0 to A7 of the address bus.

B provides bits A8 to Al5.
Data Flow:
A PORT
B c
D E
H L
r may be any one of:
A - 111 E — 011
B — 000 H - 100
C - 001 L — 101
D - 010
Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz

Addressing Mode: External.

Byte Codes:

EDL78|40| 48!50]58!60;68}
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Flags: s 7 H PV N C

ole] (e (@0 |

It is important to note that INA,(N) does not have
any effect on the flags, while IN 1, (C) does.

Example: IN D, (©)
Before: After:
iz o| o | | zA |port DOZSR770 | oA Jpomr
5 A5
o~

OBJECT CODE
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IN A, (N) Load accumulator from input port N.
Function: A < (N)
Format:
Ll fel [T o[ ] bye 1: DB
l : : : f:" : : }T byte 2: port address
Description: The peripheral device N is read and the result is
loaded into the accumulator.
The literal N is placed on lines A0 to A7 of the
address bus. A supplies bits A8 to Al5.
Data Flow: T~
A
B C IN
D £ f - N
H t PORT ]
Timing: 3 M cycles; 11 T states; 5.5 usec @ 2 MHz
Addressing Mode: External.
Flags: sz H PV N ¢
[TTTTTTT1] o
Example. IN A, (B2)
Before: After:
T~ A s | [ m leort Al 70, | 7 Jeorr
B2 B2
DB
B2
/\J

OBJECT CODE
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INCr Increment register r.
Function: r<r +1
Format: [efol—r—l o]0}
Description: The contents of the specified register are in-
cremented. r may be any one of:
A — 111 E - 011
B — 000 H - 100
C — 001 L - 101
D - 010
Data Flow: i ;
Al
B \/
D E ALU
H L +1
Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz
Addressing Mode: Implicit.
Byte Codes: rr A B C D E H L
iac!oa Ioc‘m ixc‘u lzcl
Flags: sz H PAON C
ole| @ [®[C] |
Example: INC D
Before: After:
N~ 7
D o D570
14
OBJECT
CODE
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INC rr Increment register pair rr.
Function: r<irr + 1
Format:

Lofofr - fofo]" 1]

Description: The contents of the specified register pair are in-
cremented and the result is stored back in the
register pair. rr may be any one of:

BC - 00 HL - 10
DE - 01 SpP - 11

Data Flow:

R}
V.

ALU
+

|

o 1

I U w >
m

Timing: I M cycle; 6 T states; 3 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: IT: BC DE HL SP

(w[s[x
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Flags:

Example:

23

OBJECT
CODE

266

P/V N

(TTTT T[]

C
J (no effect).

INC HL

Before:

i

0B14

It

After:

S S
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INC (HL) Increment indirectly addressed memory location
(HL).
Function: (HL) <« (HL) + 1
Format:
lefo[ [ fefi]ofo] 34
Description: The contents of the memory location addressed by
the HL register pair are incremented and stored
back at that location.
Data Flow:
A
° c %
D E ALU ',
H L—‘ +1
Timing:

Addressing Mode:

3 M cycles; 11 T states; 5.5 usec @ 2 MHz

Indirect.

Flags: s 7 H PAO N C
e/e| (@] @O ]
Example: INC (HL)
Before: After:
H] 0681 L H 0681 L
/\ /\_
34 0681 38 06B1
T N—— \_/
OBJECT
CODE
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INC (IX + d) Increment indexed addressed memory location

(IX + d).
Function: (X +d)«<dX +d) +1
Format:
]1|:lolllalx[olebytel:DD
Io[o]1[1]011]o|o[byte2:34
] : : : (%1 ' : : l byte 3: offset value
Description: The contents of the memory location addressed by
the contents of the IX register pius the given offset
value are incremented and stored back at that
location.
Data Flow: - ]
Y,
A
5 c |-oara ] {
H L
INC
x| — —
e
+
U /\—/
Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indexed.

H PON C

Flags: s z
e/e| (@] [@[O] |
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Example: INC (IX + 2)
Before: After:
X[ 0381 x| 0381
DD 0381 B 0381 B1
34 0382 85 0382 as
02 03B3 B9 0383 5K
] o~
OBJECT
CODE
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INC (IY + d) Increment indexed addressed memory location (IY
+ d).
Function: (Y +d) <= (dYy + d) + 1
Format:
Dl de]r] byter: ¥D
lojo]1{1[o]1]o]o| byte 2: 34
[ : ' : é : : : [ byte 3: offset value
Description: The contents of the memory location addressed by
the contents of the I'Y register plus the given offset
value are incremented and stored back at that
location.
Data Flow: ’ ]
A Ui
B c ~DATA ]
D E
H L
Iy -
d
T ~—
Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz
Addressing Mode: Indexed.
Flags: H PO N C

270
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Example:

D

34

OBJECT
CODE

THE Z80 INSTRUCTION SET

INC dY + 0)
Before: After:
[ 0601 | v 0601
T~
0601 51 0601 W //%
0602 80 0602
T —
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INC IX

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

N~

Db
23

T~ ]
OBJECT CODE

272

Increment IX.

IX<IX + 1

f][1}0]1!1|1lolllbyte1:DD

loJolt]ofofo]r]]byte2: 23

The contents of the IX register are incremented
and the result is stored back in IX.

—

N\ Y/

g <— |

I U w >

2 M cycles; 10 T states; 5 usec @ 2 MHz

Implicit.
S _Z H PV N C
[ [ l { l [ ] l 1 (no effect).
INC IX
Before: After:
ix | B1BO ] X
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INC 1Y Increment 1Y
Function: IY < 1Y + 1
O o e 1
oo oo oo bte 2: 23
Description: The contents of the 1Y register are incremented

and the result is stored back in 1Y.

Data Flow: < L
A
B c v
D E ALU
H L +1

N e—

Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s Z H PV N C
L } I f } i 1 l W (no effect).
Example: INC 1Y
Before: After:

T~ M 3681 1 YOO

FD
23

T N——
OBJECT CODE
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IND Input with decrement.
Function: (HL) < (C); B< B — I; HL < HL -1
Format:

e frfe]r] byter:ED

e[ ol o o] byie2: Aa

Description: The peripheral device addressed by the C register
is read and the result is loaded into the memory
locaton addressed by the HL register pair. The B
register and the HL register pair are then each

decremented.
Data Flow:
a [ omi ]
lE;coumer A c e -7/////////// ‘]
E R
H L
Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: External.

Flags: s Z H PV N C
P ] X l ! ? ‘ > l 1 l [ Set if B = 0 after execution
I Reset otherwise
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Example:

T~

ED

AA

b —
OBJECT CODE

THE Z80 INSTRUCTION SET

IND

Before: After:

N

i

Bl a [ 8 |c s 78 e c
HY 06BA v " /R

85 B

S [
06BA 00 068A 2236777,
] ]
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INDR Block input with decrement.
Function: (HL) < (C); B< B — I; HL < HL -1
Repeat until B = 0
Format:
[1i 1] 1]0{1‘1!011J byte 1: ED
Clolo[ [0 o] [of byte2:BA
Description: The peripheral device addressed by the C register
is read and the result is loaded into the memory
location addressed by the HL register pair. Then
the B register and the HL register pair are
decremented. If B is not zero, the program
counter is decremented by 2 and the instruction is
re-executed.
Data Flow:
o ///////////// P
[ .| B
BP.COUNTER 7 C i <|1
D £ PORT |
Wi iR
Timing: B = 0:4 M cycles; 16 T states; 8 usec @ 2 MHz.
B # 0:5 M cycles; 21 T states; 10.5 usec @ 2 MHz.
Addressing Mode: External
Flags: sz H P/YN C
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THE Z80 INSTRUCTION SET

Example: INDR

Before: After:

sl [ s ¢ Y e
Hl 09F2 |t "2 Y /1

T~ (\
;i 2950 E: 09F0 ,f//// //%
o9F1| 48 o s
m ook2l oA 0R2 7 %7
—~_| ~—_]
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INI Input with increment.
Function: (HL) < (C); B< B - I; HL< HL + 1
Format:

el rfel Joyter:ED

Fa{ol1}010101110l>byte2:A2

Description: The peripheral device addressed by the C register
is read and the result is loaded into the memory
location addressed by the HL register pair. The B
register is decremented and the HL register pair is
incremented.

The contents of C are placed on the low half of the
address bus. The contents of B are placed on the
high half. 1/0 selection is generally made by C,
i.e., by A0 to A7. B is a byte counter.

Data Flow:
A

PORT

(" oma ]

Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: External.

sz H PV N C
Lo [x] 2] L2100 |

Z 1is set if B = 0 after execution,
Reset otherwise

Flags:
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Example:

T~

ED

A2

/\J

OBJECT CODE

THE Z80 INSTRUCTION SET

INI

Before: After:

sl o [ 2 o S o c
Hl A2 I "2 Y /D

21 21

A112 09 A2 7
N

§
.

)
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INIR

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

280

Block input with increment.

(HL) < (C); B< B — I; HL < HL + 1 Repeat
until B = 0

DD el o] ] bye s
F]o‘ululo\OII]ObeteZ.}R

The peripheral device addressed by the C register
is read and the result is loaded into the memory
location addressed by the HL register pair. The B
register is decremented and the HL register pair is
incremented. If B is not zero, the program counter
is decremented by 2 and the instruction is re-
executed.

( omn ]
1

»
D,

-2

B = 0:4 M cycles; 16 T states: 8 used @ 2 MHz.
B # 0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz.
External.

s z H PV N C

LT -]




Example:

ED
B2

T~
OBJECT CODE

THE Z80 INSTRUCTION SET

INIR

Before: After:

S0 > Ic OB 5 c
HL_ 91A5 1 " .
[ 21 Jeorr ///// PORT

51

91A5 8F Q1AS ///W

91A6 3D F1A6 W

91A7 09 91A7 //“/
/\J
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JP c¢, pqg Jump on condition to location pq.
Function: if cc true: PC < pq
Format:
(T o[ [o] byee:
l——r S B R I byte 2: address,
I A low order
lﬁx e S S byte 3: address,
PRI SR J high order
Description: If the specified condition is true, the two-byte ad-

dress immediately following the opcode will be
loaded into the program counter with the first byte
following the opcode being loaded into the low
order of the PC. If the condition is not met, the
address is ignored. cc may be any one of:

NZ — 000 110 ZEro
Z - 001 zero
NC -~ 010 no carry
C - 011 carry
PO - 100 parity odd
PE — 101 parity even
P - 110 plus
M — 111 minus
Data Flow: { {L
A ; T~
CONTROL
B C LOGIC Jpcc
D £ I q
H L T ” P
T~
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Timing:

Addressing Mode:

Byte Codes:

Flags:

Example:

T~

DA
24
3B

T —
OBJECT CODE

THE Z80 INSTRUCTION SET

3 M cycles; 10 T states: 5 usec @ 2 MHz

Immediate.

NZ Z NC C PO PE M
1C2]CA,D2!DAIE2[EA[F?!FA'

S Z H PV N C

LT TT T moeftecy

JP C,3B24

Before: After:

ENGE T

e[ 0032 1 7 777
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JP pg Jump to location pq.
Function: PC < pq
Format: i‘l‘IO‘Oiololll‘J byte 1: C3
r —T—T—T—1—T—7T] byte 2: address,
T T low order
F S SN byte 3: address,
L high order
Description: The contents of the memory location immediately

following the opcode are loaded into the low order
half of the program counter and the contents of
the second memory location immediately follow-
ing the opcode are loaded into the high order of
the program counter. The next instruction will be
fetched from this new address.

Data Flow: A T~
B C Jp
D E 9
H t P

Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Immediate.

F[a - S z H P’V N C
. [T T T T T LT Jovoeffeet
Example: Jp 3025
Before: After:
/\‘\ rcl 5520 | 557
ca
25

30

OBJECT CODE
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JP (HL) Jump to HL.
Function: PC < HL
Format:

Lo i efo]] e

Description: The contents of the HL register pair are loaded in-
to the program counter. The next instruction is
fetched from this new address.

Data Flow:
, ¢
g

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: S 2 H PV N C
[ l ‘ | I ‘ ] l 7 (no effect).
Example: JP  (HL)
Before: After:
E\_ R 0411 [t H] 0411 I
= Pc| 8001 1 57

OBJECT CODE
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JP (IX)

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

T~

DD
£9

T~
OBJECT CODE

286

Jump to IX.

PC < IX

(ﬂliotzllillolll byte 1: DD
Flllllolti(}]oilj byte 2: E9
The contents of the 1X register are loaded into the

program counter. The next instruction is fetched
from this new address.

T O w »
m

IX

E— |
LoV

2 M cycles; 8 T states; 4 usec @ 2 MHz

Implicit.

CTTT LT Jmostren.

JP (IX)

Before: After:

ix [ 80F1 ] x| 80F1 |
el 3B4A | s T




JP (1Y)

Function:

Formazi:

Description:

Data Flow:

Timing.

Addressing Mode:

Flags:

Example:

T~

FD
£9

S~
OBJECT CODE

THE Z80 INSTRUCTION SET

Jump to 1Y.
PC <1y
L), ]jz]uj byte i: FD
[i»!¢}o!1f0’ ]T] byte 2: E9

The contents of the 1Y register are moved into the
program counter. The next instruction will be fel-
ched from this new address,

I O w »

M f ]
v U
"

2 M cycles; 8 T states; 4 usec @ 2 MHz

Implicit.
S Z H P/V N
L ! l l I :] (no effect).
JP (1Y)
Before: After:

MY W[ aam ]
rc[ E410 1 <R
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JR cc,e

Function:

Format:

Description:

Data Flow:

Jump e relative on condition.

if cc true, PC < PC + ¢

Tl [ ToTe o] by

T T T T 1 f
l e-2
| | | 1 1 I ]

5 byte 2: offset value

If the specified condition is met, the given offset
value is added to the program counter using two’s
complement arithmetic so as to enable both for-
ward and backward jumps. The offset value is
added to the value of PC + 2 (after the jump). As
a result, the effective offset is -126 to +129 bytes.
The assembler automatically subtracts 2 from the
source offset value to generate the hex code. If the
condition is not met, the offset value is ignored
and instruction execution continues in sequence.
cc may any one of:

A

8
D
H

NZ - 00 NC - 10
Z - 01 C - 11
; T~
———
R — -~

Timing:

288

M cycles: | T states: | @ 2 MHz:

condition

met: 3 12 6
condition

not met: 2 7 3.5




Addressing Mode:

Byte Codes:

Flags:

Example:

OBJECT CODE

THE Z80 INSTRUCTION SET

Immediate.

cc: NZ 7 NC C

([ w]]

Sz H PV N C
LITTTTTTT moettecn.
JR NC, § -3 $ = current PC
Before: After:

[ o [ o e

PC| BOOO ] rc %/////////ﬁi%//////%
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JRe Jump e relative.

Function: PC < PC + ¢

Format: F]O\Ol'lllololojbytelzw
[T —————| byte 2: offset val
02— yte 2: offset value

Description: The given offset value is added to the program

counter using two’s complement arithmetic so asto
enable both forward and backward jumps. The off-
set value is added to the value of PC + 2 (after the
jump). As a result, the effective offset is -126 to
+ 129 bytes. The assembler automatically subtracts
2 from the source offset value to generate the hex

code.
Data Flow:
A /\1
B R
b e-2
H b—
PC <:
Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz
Addressing Mode: 1mmediate.
Flags: S Z H P/V N C
(T T L TT LT toerern
Example: JR D4
Before: After:

T~ e B10O 1 5%

18
D2

b —
OBJECT CODE
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LD dd, (nn)

Function:

Format:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Load register pair dd from memory locations ad-

dressed by nn.

ddjow < (nn); ddhigh < (nn +1)

L:l]]]Jo’lIl{OIr}bytel:ED

EIEIENIE

|
l

o}iilibyteZ

T

=

n
i

low order

H 1

I T

.

n
1

!

| i

high order

L Ea— ] byte 3: address,

T 1 byte 4: address,

The contents of the memory location addressed by
the memory locations immediately following the
opcode are loaded into the low order of the
specified register pair. The contents of the
memory location immediately following the one
previously loaded are then loaded into the
high order of the register pair. The low order byte
of the nn address immediately follows the opcode.
dd may be any one of:

I O v »

BC - 00 HL — 10
DE - 01 SP - 11
| e
C o0
E n
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Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz
Addressing Mode: Direct.

Byte Codes: dd: BC DE HL SP

][ co] 7]

F[ags.- S Z H p/v N C

[__1 5 t 1 ] ij(noeffect)

Example: LD DE, (5021)

Before: After:

b DBE2 Je o 7 7/ e

/\A /\J
ED 5021 Fa 5021 F4
5B 5022 30 5022 30
21
50 TN

QBJECT CODE
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LD dd, nn

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

Flags:

THE Z80 INSTRUCTION SET

Load register pair dd with immediate data nn.

dd < nn

[ofofa s oJofo 1] byter
[T 71T 1T 771 ] byte 2: immediate
L L I T /7T T 771 data, low order

T 1 171 rjbyte3:immediate
C T 1T data, high order

The contents of the two memory locations im-
mediately following the opcode are loaded into the
specified register pair. The lower order byte of the
data occurs immediately after the opcode.dd may
be any one of:

BC - 00 HL - 10
DE - 01 SP - 11
A
D E EL‘*"— b
H L i
se| ] /‘\)

3 M cycles; 10 T states; 5 usec @ 2 MHz

Immediate.

dd: BC DE HL Sp

(o n[a ]

4 H PV N C

EL 1 ! l l [ l ](noeffect)
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Example:

11
31
41

OBJECT CODE

294

LD DE, 4131

Before:

After:

o[

0394

=L




IDr,n

Function;

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

Flags:

THE Z80 INSTRUCTION SET

Load register r with immediate data n.

r<n
U l ““r““" ! l ! lj byte 1
L - : : ',‘ ; W byte 2: immediate data

The contents of the memory location immediately
following the opcode location are loaded into the
specified register. r may be any one of:

A~ 111 E - 011
B - 000 H - 100
C — 001 L - 101
D - 010

r\__

LD

n

T O w >
m 0
S

T ~——

2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Immediate.

rt;loi]oelwllelzclzq

S Z H PV N C

L} ] ‘ l I I ] ] (no effect).
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Example: LD C,3B
Before: After:

(T o 1 <l

O
3B

b

OBJECT CODE
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IDr, 1 Load register r from register r’.
Function: r < rf
Format. — —
Lol =it ]
Description: The contents of the specified source register are

loaded into the specified destination register. r and
r’ may be any one of:

A - 111 E - 011
B - 000 H - 100
C - 001 L - 101
D - 010
Data Flow: A
B C { —
D E
H L
Timing: I M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

A B C D E H L (source)
Byte Codes:

>

7F|1 781791 7A17B| 7C1 7D
47 | 40| 41 1 42| 43| 44| 45
4F | 48 | 49 | 4A| 4B | 4C| 4D
571 50|51 (52]53|54]|55
4F 1 58 1 59 | 5A1 58| 5C| 5D
67| 60| 61 16216316465
6F | 68169 | 6A| 6B 6C| 6D

T ImouNw

Y
o3
«»

Flags: is ]Z N - | lp/v' : | < | (no effect).
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Example:

N —

67

ThN—
OBJECT CODE

298

LD H, A

Before: After:

Al ec ] Al s ]
W o | Wl




THE 780 INSTRUCTION SET

LD BO), A Load indirectly addressed memory location (BC)

from the accumulator.

Function: (BC) < A
Format: —T—
oo ofofofofi]o] 02
Description: The contents of the accumulator are loaded into

the memory location addressed by the contents of
the BC register pair.

Data Flow:

I O w 3

L

DATA

Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

PVN C

Flags: 5 2 o o
“8s lehw ] T—] T‘} (no effect).

Example: LD (BO), A

Before: After:

A 3F A 3F |

B 4109 lc B 4109
= ™ [

02 4109 1€ a0 ¥
/\_/

OBJECT CODE
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LD (DE), A Load indirectly addressed memory location (DE)
from the accumulator.

Function: (DE) < A
Format: [ofo[olllo[()]i{o[lz
Description: The contents of the accumulator are loaded into

the memory location addressed by the contents of
the DE register pair.

Data Flow:

I U w >

Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: sz H PV N C

(TTT L1 o
Example: LD (DE), A

Before: After:

D | 0392 1 o 0392 ]
N N

12 0392 F7
TN

OBJECT CODE
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LD@EHL), n Load immediate data n into the indirectly ad-
dressed memory location (HL).

Function: (HL) <= n

Format: e
0 o{ tfvioft}1]0|bytel: 36
Lololx[aTef Ti [o]by
[ Tt T "";;"‘I““T“T“] byte 2: immediate
ST R N S S T data

Description: The contents of the memory location immediately
following the opcode are loaded into the memory
location indirectly addressed by the HL data

counter.
/\,‘

Data Flow: n

A

B n

D E /\__/

H L

DATA

Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Immediate/indirect.

Flags: A H PPV N C
1 1 I } [ ] ] I ] (no effect).
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Example: LD (HL), 5A
Before:
H A342 e
/\___ /\_—
36 A342 20
5A b~
T~

OBJECT CODE

302

After:

Hl

A342

A342

o~



LD#HL),r

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

THE Z80 INSTRUCTION SET

Load indirectly addressed memory location (HL)
from register r.

(HL) < r

Lo o [ [+ Jo =]

The contents of the specified register are loaded
into the memory location addressed by the HL
register pair. r may be any one of:

A - 111 E — 011
B — 000 H - 100
C - 001 L — 101
D - 010

c

I U w >

—

2 M cycles; 7 T states; 3.5 usec @ 2 MHz
Indirect.

w A B C D E H 1
]77[70]71'72'73!74[75]
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Flags: s z H PV N C
[TTTIIIT] o
Example: LD (HL), B
Before: After:
e[ & ] J T
Hl C501 }L H] C501 L
= i
70 50l 2A o\ R
—~— o~ |

OBJECT CODE
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LDr,(IX + d) Load register r indirect from indexed memory
location (IX + d)

Function: r<= (X + d
Format:
Ul le] ] Je]"] byter:DD
]O[]!%: ]‘]‘]0] byte 2
! SN N N/ B l byte 3: offset value
1 1 1 L ! 1 1
Description: The contents of the memory location addressed by

the IX index register plus the given offset value,
are loaded into the specified register. r may be any

one of:
A - 111 E - 011
B — 000 H - 100
C - 001 L — 101
D - 010
DATA
Data Flow: N ) /\40—!
8 c ) T~
D 3
H L D
r
IX } d
/\_/
Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz
Addressing Mode: Indexed.
Byte Codes: m A B C D E H L

DD-l?E[4é’4El56]5Eléé]6El~d
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Flags: s Z H PV N C
[TTTT1 1] ot
Example: LD E, (X + 35)
Before: After:
[ 03 e 5
IX 3020 | x| 3020 |
T~ T~ N~
oD 3020 2A 3020 2A
58
05
] 3025 15 3025 15
OBJECT CODE b~ T~
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LDr,dY + d)

THE Z80 INSTRUCTION SET

Load register r indirect from indexed memory
location (IY + d)

Function: r<=JdY + d)
Format:
[‘]“‘l'l‘l‘{ol'ibyteI:FD
Lol [=—r—[ [ ]o] byte2
T 1 T T 1 H T
l . A ] byte 3: offset value
Description: The contents of the memory location addressed by
the 1Y index register plus the given offset value,
are loaded into the specified register. r may be any
one of:
A — 111 E — 011
B — 000 H - 100
C — 001 L — 101
D - 010
N~
DATA
Data Flow: A /\_—’—’
8 C ) T~
b E
H L ) b
I | d
T ~—
Timing: 5 M cycles, 19 T states; 9.5 usec @ 2 MHz
Addressing Mode: Indexed.
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Byte Codes: s A B C D E H L
FD-|7El46]4E156|SGIééléEl-d

F[ags: S Z H P2V N C
[TTT T[] woermn
Example: LD A, {dY + 2)
Before: After:
al e | N &%
v | B0O5 ! ! B0O5
FD BOO5 61 BOOS 61
7E
02 BOO7 F9 8007 Fo
T — ] /\_

OBJECT CODE
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LD (X + d),n Load indexed addressed memory location (IX +

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

: <
H L
X[ I D
F
T~

d) with immediate data n.

IX +d)y<n

]1] 1]0]1]1111011]byte1:DD
]o]o] 1} 1]0]111}01byte2:36

[ : : : ci? : : :j]byte 3: offset value
{ T r:, ML 1byte 4: immediate

data

The contents of the memory location immediately
following the opcode are transferred into the
memory location addressed by the contents of the
index register plus the given offset value.

5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Indexed/immediate.

s 7 H P/V N C

{ ] l ] ’ I ] ] T (no effect).
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Example:

S~

DD
36

04

FF

T —
OBJECT CODE

310

LD (IX + 4),FF

Before: After:
ix] B109 | x| BI09
N~ N~
B109 60 B109 60

BIOD 4E BIOD
Vo~



THE Z80 INSTRUCTION SET

LD (Y + d),n  Load indexed addressed memory location (IY +
d) with immediate data n,

Function: dY + d)<n
Format:
111:11]111‘1]0lj byte 1: FD
}o]ollll IOIII] !ol byte 2: 36
[ : : : c:i E 1 } l byte 3: offset value
L } : : ;:1 } ! {T ygﬁz 4: immediate
Description: The contents of the memory location immediately

following the opcode are transferred into the me-
mory location addressed by the contents of the
index register plus the given offset value.

Data Flow: T~

A

. E )

D 'E -

H 't d

X

%

Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode: Indexed/immediate.

Flags: 5 7 H PV N C

] i ] l } ‘ I I ](noeffect).
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Example: LD (Y + 3), BA
Before: After:
v | 0100 | v 0100

2 N N

o 0100 D2 0100 D2
36 62 62
03 OF oF
BA 0103 04 0103 Z_ZBA_Z

—~_ T

OBJECT CODE
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LD (IX + d)r

Format:

Description:

Data Flow:

Timing:

THE Z80 INSTRUCTION SET

Load indexed addressed memory location (IX +
d) from register r.

1[ llolq byte 1: DD
0 1«—'~r~j—»1 byte 2

1
T
1

[ [o] 1]
o?s!l!il

T
d
1

: [ byte 3: offset value

The contents of the specified register are loaded in-
to the memory location adressed by the contents of
the index register plus the given offset value. r may
be any one of:

A — 111 E - 011
B -~ 000 H - 100
C - 001 L - 101
D - 010

IO = >

|

5 M cycles; 19 T states; 9.5 usec @ 2 MHz
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Addressing Mode: Indexed.

Byte Codes: rr A B C D E H L
DD~[77[70‘71l72l731741751—d

Flags: s z H PVN C

[ 1 l l l 1 l l J (no effect).
Example: LD (IX + 1), C

Before: After:

/\“/—\‘T

oD 4462 9D se2 | b |
7 4463 OF 4463 V600
o —_ |~
/\_/
OBJECT CODE
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LD (IY + d),r Load indexed addressed memory location (IY +
d) from register r.

Function: Yy + dy<r
Format:
’ Dl fo]r] byter:Fp
Lol fof-—r=] bye2
1 : : : ‘:ﬂ : : : l byte 3: offset value
Description: The contents of the specified register are loaded

into the memory location addressed by the con-
tents of the index register plus the given offset
value. r may be any one of:

A — 111 E — 011
B — 000 H - 100
C — 001 L — 101
D - 010
Data Fi Dk
f N
ata Flow A ~
B c({—|
5 : /\/‘
H L D
il d
/\/
Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz
Addressing Mode: Indexed.
Byte Codes: m A B C D

o 77 [0 |71 [72 [ [74 75 -«
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Flags:

Example:

T

D

77

03

Vo~
OBJECT CODE

316

5 Z H

PV N C

| } i J l ] t l ’(noeffect).

LD (1Y + 3), A

Before: After:
A A
| 5ABA ] 1v| 5AB4
N~ /\
5AB4 21 5AB4 21
5AB7 5A 5AB7 %// //%
] ]



THE Z80 INSTRUCTION SET

LD A, (nn) Load accumulator from the memory location
(nn).
Function: A = (nn)
Format:
101011 ]1 11 'o]xlo] byte 1: 3A
[ I S ] byte 2: address, low
R ST R order byte
1 o T ‘_] byte 3: address, high
) order byte
Description: The contents of the memory location addressed by

the contents of the 2 memory locations immediate-
ly following the opcode are loaded into the ac-
cumulator. The low byte of the address occurs im-
mediately after the opcode.

Data Flow: N
NS ——— DATA
B C -
: : NS
H L
/\/
LD
/\/
Timing: 4 M cycles; 13 T states; 6.5 usec @ 2 MHz

Addressing Mode: Direct.
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Flags:

Example:

N

3A

01

33

/‘\/

OBJECT CODE

318

s z H PAVYN C
i l l ] ] ! ‘ } ] (no effect).
LD A, (3301)
Before: After:

3301 28 3301 28



LD (nm), A

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

T O w »

THE Z80 INSTRUCTION SET

Load directly addressed memory location (nn)
from accumulator.

(nn) < A

o[IlO\byteI:32

T : ] byte 2: address, low
;

T

L1

order
’ byte 3: address, high
order

bod o A —f

The contents of the accumulator are loaded into
the memory location addressed by the contents of
the memory locations immediately following the
opcode. The low byte of the address immediately
follows the opcode.

~ om0

4 M cycles; 13 T states; 6.5 usec @ 2 MHz

Direct.
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Flags: s z H Py N C

l I [ 1 l I | 1 l (no effect)
Example: LD (0321), A

Before: After:

32 0321 06 0321
21
03 TN

OBJECT CODE

320



LD (nn), dd

Function:

Format:

Descriptions:

Data Flow:

THE Z80 INSTRUCTION SET

Load memory locations addressed by nn from
register pair rr.

(nn) <ddjgy; (nn + 1) <ddhjgh

ll!lll}ol]l]lolllbyteliED

Gl T

|
[T T ]byte 3: address,
1
—]

byte 2

low order

byte 4: address,
high order

| T T T T
[ I 1 L l?

The contents of the low order of the specified
register pair are loaded into the memory location
addressed by the memory locations immediately
following the opcode. The contents of the high
order of the register pair are loaded into the
memory location immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the opcode.dd
may be anyone of:

BC - 00 HL - 10
DE — 01 SP - 11
N
A )
8 c dd
D E n T
H L n
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Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz
Addressing Mode: Direct.

Byte Codes: dd: BC DE HL SP

o [a[5[<[ ]

Flags: s 7 H PV N C

CTTTTET T wostteen,
Example: LD (040B), BC
Before: After:
B[ 0221 c s 0221
N N
£D 0408 06 0408 )
43 040C AB o
8
24 TN
OBJECT
CODE

322



LD (nn), HL

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

I o v >

THE Z80 INSTRUCTION SET

Load the memory locations addressed by nn from
HL.

(nmn) < L;(on + 1)< H

Lo{oilio‘ololl IO]bytel:ZZ

byte 2: address,
L_L__.L T _L‘_J low order

] byte 3: address,
- he high order

L‘.l___.l J—

The contents of the L register are loaded into the
memory location addressed by the memory loca-
tions immediately following the opcode. The con-
tents of the H register are loaded into the memory
location immediately following the location
loaded form the L register. The low order of the
nn address occurs immediately after the opcode.

N

LD

L=

5 M cycles; 16 T states; 8 usec @ 2 MHz

Direct.
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Flags:

Example:

22

B9

40

OBJECT
CODE

324

S Z H PV N C

r; ; l { ( I 1 }(noeffect).

LD (40B9), HL

Before: After:

o T o 7

4089 20 4089 4A
40BA 9F 40BA 30



LD (nm), IX

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

I U w »

THE Z80 INSTRUCTION SET

Load memory locations addressed by nn from IX.

(nn) < IXjoy: (o + 1) < IXhigh

111110||{1|1Ioix}bytel:DD

loloia]ololo[x}ﬂbytez:n

L S S N byte 3: address,
l 1 ! 1 s 1 1 L low order

LA S S B J byte 4: address,
l Y SRS SO W TN N high order

The contents of the low order of the IX register
are loaded into the memory location addressed by
the contents of the memory location immediately
following the opcode. The contents of the high
order of the IX register are loaded into the
memory location immediately following the one
loaded from the iow order. The low order of the
nn address occurs immediately after the op code.

.
.

SR

6 M cycles; 20 T states; 10 usec @ 2 MHz

Direct.
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Flags: s 7 H PV N C
r ‘ I l ‘ 1 J l } {no effect).
Example: LD (012B), IX
Before: After:
x| : 0406 l x| ™y
oo 0128 D3 0128 A
2 012C 9A 012¢ i
28
o1 TN .
OBJECT
CODE

326



LD (nm), IY

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

I o w »

THE Z80 INSTRUCTION SET

Load memory locations addressed by nn from 1Y.

(M0 < IYjgys (n + 1) < IYhigh

1liliaililllloll]bytel:FD

[0101110[0'0[1 |0 ] byte 2: 22

[ T 71— byte 3: address,
1 ! I | 1 1 1 Howorder

[T T 7 byte 4: address,
L

L1 1+ v 1 i high order

The contents of the low order of the I'Y register are
loaded into the memory location addressed by the
contents of the memory locations immediately
following the opcode. The contents of the high
order of the 1Y register are loaded into the
memory jocation immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the opcode.

N

LD

- m

‘////////
__

6 M cycles; 20 T states; 10 usec @ 2 MHz

Direct.
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Flags: s z H PAV N C
[ ! 1 ' ’ 1 1 1 J (no effect)
Example: LD (BD04), IY
Before: After:
vl D204 ] ] D204

FD BDD4 A5 8004 5Tl

22 BDO5 96 8DOS W/ i
~_

04

BD TN
/\/

OBJECT CODE

328



LD A, (BO)

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

=

0A

TN

OBJECT CODE

3201 41 32D1 41

THE Z80 INSTRUCTION SET

Load accumulator from the memory location in-
directly addressed by the BC register pair.

A < (BCO)

Lefofofo] Jo o] 0a

The contents of the memory location addressed
by the contents of the BC register pair are loaded
into the accumulator,

DATA

.

2 M cycles; 7T states; 3.5 usec @ 2 MHz

I o w >
- m A

Indirect.

S 7 H PV N C

LI T T T T ] moeffec.
LD A, (BO)

Before: After:

A AB 1 Yy 3

[ 3201 c

N N

NG N

329
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LD A, (DE) Load the accumulator from the memory location
indirectly addressed by the DE register pair.

Function: A < (DE)
Format:
[0101011!110111011/%
Description: The contents of the memory location addressed by

the contents of the DE register pair are loaded into
the accumulator.

Data Flow:
AW
B c DATA __\
D E e
H : T
Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s Z H PV N C
' ( } ] ] | } ] ’ J (No effect).
Example: LD A, (DE)
Before: After:
A N &Y
o| 6051 ] o] 5051 e
A 6051 09 5051 )
T~ L~

b~
OBJECT CODE
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LD A,I Load accumuiator from interrupt vector register I.
Function: A<~
Format:

[FL [T [TD byte I: ED
Lol el [l T byte2: 57

Description. The contents of the interrupt vector register are
loaded into the accumulator.

Data Flow:

I O w »

Timing: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

S ZI H PV N C S b
et to the contents
(ool TOT Lol J-Srtsee

Example: LD A, I

Before: After:

N, Al 30 W[ e | aEZ#77 48

ED
57

OBJECT CODE

331
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LD LA Load Interrupt Vector register 1 from the ac-
cumulator.

Function: 1< A

Format: l‘l’l‘]oi‘]‘h!jbyteliED
{o{‘lo[o]o|1 l] llj byte 2: 47

Description: The contents of the accumulator are loaded into

the Interrupt Vector register.

Data Flow:

T O w >

Timing: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz
Addressing Mode: Implicit.

Flags: sz H PNV N C
( ] l ] ] l l lJ (no effect)
Example: LD I,A
Before: After:
TN, Al e [ 02 Al e | BF
£D

47

OBJECT CODE

332
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LD AR Load accumulator from Memory Refresh register
R.
Function: A <R
Format:
L;] |[ |1011!:]oft]byte1:ED
Lo, '!Of'l 1]111%1 byte 2: 5F
Description: The contents of the Memory Refresh register are

loaded into the accumulator,

Data Flow:
NN ———
B o
o E
H L
R
Timing: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz

Addressing Mode: 1mplicit.

Flags: s Z H PV N_C
@@ [O] [<[O] ]
S contents of IFF2
Example: LD A,R

Before: After:

TN Al & R[] APZEZZ R A |
ED
5F

OBJECT CODE

333



PROGRAMMING THE Z80

LD HL, (nn) Load HL register from memory locations addres-
sed by nn.

Function: L~ @n; H<(un+ 1)

Format:
[ololllollloilm byte 1: 2A
L L J byte 2: address, low
{ L I ) 1 L ! 1 Order
[ L S A 1 byte 3: address, high
1 | t L 1 [ 1 Order
Description: The contents of the memory location addressed by
the memory locations immediately after the op-
code are loaded into the L register. The contents
of the memory location after the one loaded into
the L register are loaded into the H register. The
low byte of the nn address occurs immediately
after the opcode.
TN,
Data Flow: o
A
B | c n
e P
" i) - —
i X
i v
/_\/
Timing: 5 M cycles, 16 T states; 8 usec @ 2 MHz

Addressing Mode: Direct.

Flags: s z H PNVN C

{ [ } [ l 1 Li_} (no effect)
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Example: LD HL, (0024)

Before: After:

H] 08BF It o+ sy L

N e N

2A 0024 69 0024 &9
| 2 o025 4D 0025]  ap
00

Nl T

—~_

OBJECT CODE

335



PROGRAMMING THE Z80

LD IX, nn Load IX register with immediate data nn.
Function: IX < nn
Format:

[ Tefrfifrfo]r|byee1:DD

[ofo[tTofo o o] Jbyte2: 21

r — byte 3: immediate

n

| 1 I l i i ' | data, low order

] ljbyte 4: immediate
|l _i. 1.} data, high order

1T 71T 1
b

]
n
|

Description: The contents of the memory locations immediate-
ly following the opcode are loaded into the IX
register. The low order byte occurs immediately
after the opcode.

Data Flow:
A
8 C
D 3
H L
N~
X Lb
n
T ~——
Timing: 4 M cycles; 14 T states; 7 usec @ 2 MHz

Addressing Mode: Immediate.

Flags: 5 7 H PV N C
[ LT T[] ] (moeteen
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Example: LD 1IX, BOBI
Before: After:
T~ x [ 306F | ix sk )

DD
21
B1
BO

OBJECT CODE
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PROGRAMMING THE Z80

LD IX, (nn) Load IX register from memory locations ad-
dressed by nn.

Function: IXjow < (@n); IXpjgh < (nn + 1

DL‘]Oisil \1 lolljbytelzDD
[lgtjjjﬂT_]] byte 2: 2A
Ej , e }byte:} address,

low order
s byte 4: address,
r—:—’: T 1 ll_J hlgh order

Format:

1
1 i 1

M

Descriptions: The contents of the memory location addressed by
the memory locations immediately following the
opcode are loaded into the low order of the IX
register. The contents of the memory location im-
mediately following the one loaded into the low
order are loaded into the high order of the IX reg-
ister. The low order of the nn address immediately
follows the opcode.

Data Flow: N
N =
B - s
D £ -
H L
N TN
ﬁ \2
TN
Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direct.
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Flags:

Example:

—__

DD

2A

0B
01

—__

OBJECT CODE

THE Z80 INSTRUCTION SET

S Z H PV N C

Ll } l ] ] ‘ ] l(noeffect).

LD IX, (010B)

Before: After:

ix| FF4B 1 m@m

0108 00 0108 00
o1ec 32 010C 32
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PROGRAMMING THE Z80

LD 1Y, (nm

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

340

I O w

Load 1Y register with immediate data nn.

1Y < nn

(1[1]|lxlx]1loillbytel:FD

molI]O]OlOIO]\beteZ:ZI

T T J byte 3: immediate

TR data, low order

rl L S J byte 4: immediate
Lov 1111 data, high order

The contents of the memory locations immediate-
ly following the opcode are loaded into the 1Y
register. The low order byte occurs immediately
after the opcode.

C LD
£ -
L { n

n

”/I\‘ TN

4 M cycles; 14 T states; 7 usec @ 2 MHz

Immediate.



Flags:

Example:

N

FD

21

21

00

—~__

OBJECT CODE

THE Z80 INSTRUCTION SET

5 ¢ H PV N C
L [ I I | [ ] ] l (no effect)
LD 1Y, 21

Before: After:

1| 0698 | )
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LD 1Y, an

Function:

Format:

Description:

Data Flow:

342

Load register 1Y from memory locations addressed
by nn.

IY)ow < (qn); IYhigh < (nn + 1)

W{l’l}l\l&Dtl}byleliFD
(otolvlollloll_labytekbx

T T T r!] T T T J byte 3: address,
T S low order
LS S S ‘ byte 4: address,
l 1 : ! 1 { i 1 hlgh order

The contents of the memory location addressed by
the memory locations immediately following the
opcode are loaded into the low order of the 1Y
register. The contents of the memory location im-
mediately following the one loaded into the iow
order are loaded into the high order of the 1Y
register. The low order of the nn address im-
mediately follows the opcode.

LD
A
0 ———
B C
n
D £
H : N

v i)

T




THE Z80 INSTRUCTION SET

Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz
Addressing Mode: Direct.

Flags: s 7 H PV N C
LIT T LT[ 1] woefe.
Example: LD 1Y, (500D)
Before: After:
v ] 6002 | Y2
N N N,
) 500D 03 500D 03
2A 500E 44 500E 44
B N N
OBJECT
CODE

343
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LD R,A

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

£D
4F

OBJECT CODE

344

Load Memory Refresh register R from the ac-
cumulator.

R<A

{x[xli]o%‘a[ollj byte 1: ED

|o‘11oio]1];11[1] byte 2: 4F

The contents of the accumulator are loaded into
the Memory Refresh register.

I O w

2 M cycles; 9 T states; 4.5 usec @ 2 MHz

Implicit.

s 7 H PV N C

T T 1] [ ] (noeffect)
LD R, A

Before: After:

Al or R[4 Al or 1R 777




LD SP, HL

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

/\/

F9

/\/

OBJECT
CODE

THE Z80 INSTRUCTION SET

Load stack pointer from HL.

SP < HL

DD efefv] Fo

The contents of the HL register pair are loaded in-
to the stack pointer.

I O W »

s W@

1 M cycles; 6 T states; 3 usec @ 2 MHz

Implicit.

s Z H PV N C

t [ ] 1 l l I I 7 (no effect)

LD SP, HL

Before: After:
HI 06AF L] 06AF I
5P l DBOE ] SPW GOAF %
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LD SP,IX Load stack pointer from IX register.
Function: SP < IX
Format:

rllllolllltlloljbytellDD

{111‘1‘1}1!?(011ibyte2:F9

Description: The contents of the IX register are loaded into the
stack pointer.

Data Flow:
A
B c
D E
H L
IX i
Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: sz H PV NC
(T T T L] tmoefeey
Example: LD SP, IX
Before: After:
= x| 09D2 | x[ o |
DD

F9 s 54A0 | se P 002 72
TN

OBJECT
CODE

346



THE Z80 INSTRUCTION SET

LD SP, 1Y Load stack pointer from 1Y register.
Function: SP < 1Y
Format:
L111\1]1]1‘1]Ol\lbytel:FD
Lxl1}1]1‘1}0}0[1}byte2:F9
Description: The contents of the 1Y register are loaded into the

stack pointer.

Data Flow:
A
8 C
D E
H L
il A
S——
Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz
Addressing Mode: Implicit.
Flags: s Z H PV N C
LL LT L[] [ ] moeffec
Example: LD SP, 1Y
Before: After:
/—\/
FD !
= |Y1 09AB J V| 09AB |

TN SP[ 6004 J s M

OBJECT CODE

347
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LDD

Function:

Format:

Description:

Data Flow:

Timing:

Block load with decrement.

(DE) < (HL); DE<DE -~ I, HL<HL - I}
BC < BC -1

I‘t‘llloilllioid byte 1: ED

lltoilloilioloiol byte 2: A8

The contents of the memory location addressed by
HL are loaded into the memory location address-
ed by DE. Then BC, DE, and HL are all
decremented.

=
]

]
Ym0
s T
¢ ~

T~

4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Modes: Indirect.

Flags:

348

s z H PV N C
L1 Io] [x|o] |
L———Reset if BC = 0 after
execution, set otherwise.




THE Z80 INSTRUCTION SET

Example: LDD
Before: After:
8 0B04 c B ////////// 0603777
b 6211 C . ///////// E
H 8438 L H S
T~ N~
£E0 6211 98 6211 W
A8 T~ ~
T ——
OBJECT CODE T~ N~
8438 o2 6438 62
b~ /\___

349



PROGRAMMING THE Z80

LDDR Repeating block load with decrement.

Function: (DE) < (HL): DE< DE — I; HL < HL - 1;
BC < BC — 1; Repeat until BC =

Format:
D fefo[rfe] ] byer:ED
[1[011,1!1]0!0[0] byte 2: B8
Description: The contents of the memory location addressed by
HL are loaded into the memory location address-
ed by DE. Then DE, HL, and BC are all
decremented. If BC # 0, then the program counter
is decremented by 2 and the instruction re-
executed.
"""""" 1
=s=a T
Data Flow: i b
L
1 |
g !
[ 1
[ !
[ :
L
[
t 3
4
Timing: BC # 0: 5 M cycles; 21 T states; 10.5 usec @ 2

MHz.
BC = 0: 4 M cycles; 16 T states: 8 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: PV N C

EERCECEN

350



Example:

N

ED
B8

\/_\/

OBJECT CODE

LDDR
Before:

B 0003

, DI, 0682

HT 9035
06AF 81
06BO 04
Q6B1 DE
0682 36
9032 92
9033 DE
9034 El
9035 BF

THE Z80 INSTRUCTION SET

Cc B
3
L H

Q6AF
06B0
06B1

0682

9032
9033
9034
9035

After:

////W

o
=7

92

DE

El

BF

) g7 c
ek
i

351
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LDl Block load with increment.

Function: (DE) < (HL); DE < DE + 1I; HL < HL + 1;
BC <« BC ~ 1

Format:
Dlrlfefifrfol ] byter:ED

l\lolllo]o{o[olo] byte 2: AO

Description: The contents of the memory location addressed by
HL are loaded into the memory location addressed
by DE. Then both DE and HL are incremented,
and the register pair BC is decremented.

Data Flow:
o .
o7 %IWM//A E
s QURSE DA
\
/\/
Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: Indirect.

e ERECEREE
[

Reset if BC = 0 after
execution, set otherwise,.
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Example: LDI
Before: After:
B 0006 C
D 3481 E
H 3902 L
~_
ED 34B1 0A 34B1
AO
OBJECT CODE I~
3902 a2 3902

353



PROGRAMMING THE Z80

LDIR Repeating block load with increment.

Function: (DE) < (HL); DE< DE + }; HL < HL + 1;
BC < BC — 1; Repeat until BC = 0

Format:
]l‘iilloilllloLLl byte 1: ED
Llol [ [ofofo]o] byte2:BO
Description: The contents of the memory location addressed by
HIL are loaded into the memory location ad-
dressed by DE. Then both DE and HL are in-
cremented. BC is decremented. If BC # 0 then
the program counter is decremented by 2 and the
instruction is re-executed.
Yy, =i
Data Flow: / /////////// ro -;,._3_
N ¢ Gilalw
e —~
o bl i
Pyt
H Pt
RN
Py
______ 40! H
i I
__________ 4
T —
Timing: For BC # 0: 5M cycles; 21 T states; 10.5 usec @ 2
MHz.
For BC = 0: 4 M cycles; 16 T states; 8 usec @ 2
MHz

Addressing Mode: Indirect.
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Flags:

Example:

N

ED

BO

~__J

OBJECT CODE

THE 280 INSTRUCTION SET

s Z H PNV N C
Ll [ o] [o]o] |
LDIR
Before: After:
B 0002 < 8y 8677 c
D 4A03 e oy A
H 962 L W%
/\/

o3| 12
I~
/\/
N TN

355
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LD r, (HL) Load register r indirect from memory location
(HL).

Function: r < (HL)

Format: —
Lol [ ][]0}

Description: The contents of the memory location addressed by

HL are loaded into the specified register. r
may be any one of:

A — 111 E - 011
B — 000 H - 100
C - 001 L — 101
D - 010
Data Flow:
A
B C TN~
D 3
H |—————— DATA
5 —J |
Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Byte Codes: r: A B C D E H L
t 7E]»46i 4E1 56[ SEl 661 éEl
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Flags:

Example:

N~

56

b —
OBJECT CODE

THE Z80 INSTRUCTION SET

S Z PPV N C

l ‘ l l ! ‘ l I ] (no effect).
LD D, (HL)
Before: After:

D A | o VO

H (L 2 |t w oc | 32 L
/\__ /\_—‘

0C32 24 oc 32 ”

— ]

357



PROGRAMMING THE Z80

NEG

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

T~

ED
44

OBJECT
CODE

358

Negate accumulator.

A<0-A

Lol [e]1] byte1: ED

L ToTe o Tele] bwe2: 44

The contents of the accumulator are subtracted
from zero (two’s complement) and the result is
stored back in the accumulator.

\/

ALU

T O w »
m

2 M cycles; 8 T states; 4 usec @ 2 MHz

Impiicit.

S Z H PO N C

ee o (e |0

C will be set if A was 0 before the instruction.
P will be set if A was 80H.

NEG
Before: After:
AL 32| AT



NOP

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

THE 780 INSTRUCTION SET

No operation.

Delay.

[olofoofofofo]o] 00

Nothing is done for 1 M cycle.

No action
C
E
L

T O w >

1 M cycle; 4 T states; 2 usec @ 2 MHz

Implicit

lslzl th iPN‘NlC\ (no effect).
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PROGRAMMING THE Z80

OR s Logical or accumulator and operand s.
Function: A< AVs
Format: s: may be r, n, (HL), (IX+ d), or (IY + d)
v el fifof—r—]
n]l’l[l‘llollllio] byte 1: F6
l LS SO lbyteZ: immediate
e data
(HL)l]lO]l]?[O]l]llOIbyt€12B6
ax+d) i Jo[ i ]o] 1] byte1: DD

Lijol i ]o]v]1]o] byte2: B6

l————d————] byte 3: offset value

1 ] | 1

ay +d) o[ [ ]e] 1] byte1: FD

l‘lollllloi‘]‘lol byte 2: B6

L : : : ‘:’ : , : l byte 3: offset value
r may be any one of:

A — 111 E — 011

B — 000 H - 100

C ~ 001 L — 101

D - 010
Description: The accumulator and the specified operand are

logically ‘or’ed, and the result is stored in the ac-
cumulator. s is defined in the description of the
similar ADD instructions.
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Data Flow:

!

THE Z80 INSTRUCTION SET

F

T U @ >

Timing:

Addressing Mode:

Byte Codes:

Flags:

Example:

BO

OBJECT
CODE

IRV
ALU
1\ /S =
usec
S: M cycles: | T states: |@ 2 MHz:
r 1 4 4
n 2 7 3.5
(HL) 2 7 35
(IX + d) S 19 9.5
(Y + d) 5 19 9.5

r: implicit; n: immediate; (HL): indirect; (IX -+
d), (1Y + d): indexed.

OR r r: L
]B7[BO[B1]BZ]53{54!55]
s 7 H ®&v N C
®/® [O] |@O[]]
OR B
Before: After:
06 Y 5
B9 B 8 |
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OTDR Block output with decrement
Function: (O<(HL); B B-1; HL=HL - I; Repeat untii B = 0.
Format:
’xllillollll‘O!l}byteleD
Iliollil 51 ‘o]x lijyteZ:BB
Description: The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the contents of the C register.
Both the B register and the HL register pair are
then decremented. If B # 0, the program counter
is decremented by 2 and the instruction is re-
executed. C supplies bits AQ to A7 of the address
bus. B supplies (after decrementation) bits A8 to
AlS.
Data Flow:
S~
DATA
= BiE
& ! == 1
c Wi ‘
f PORT ~
Timing: B = 0: 4 M cycles; 16 T states; 8 usec @ 2 MHz.
B #0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz
Addressing Mode: External.
Flags: sz H PAY N C
GO T
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Example:

T~

ED
BB

OBJECT CODE

THE Z80 INSTRUCTION SET

OTDR
Before: After:
s [ & lc slZ877) & |c
H 0051 " W55
PORT Y57 rorT
£5 E5
/\1 T~
B oo |8
VT — /\_
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OTIR

Function:

Format:

Description:

Data Flow:

H

Timing:

Addressing Mode:

Flags:

364

Block output with increment.

(C) = (HL); B=< B — 1; HL < HL + 1; Repeat
untit B = 0

Wi}—tlorlIJO}l]bytel:ED

tjo}lillo’oflli}byt62:83

The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the contents of the C register.
The B register is decremented and the HL register
pair is incremented. If B # 0, the program counter
is decremented by 2 and the instruction is re-
executed. C supplies bits AOto A7 of the address
bus. B supplies (after decrementation) bits A8 to
Als.

N~

|c

=

1
r=3
[ ]

W N -

[

o~

0: 4 M cycles; 16 T states; 8 usec @ 2 MHz.

B =
B #0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz

External.




THE Z80 INSTRUCTION SET

Example: OTIR

Before: After:

sl [ a0 ¢ <V ~  c
O 5550 v " .

PORT 3577 port
Y AQ
ED 5550 6B 5550 68
B3 5551 02 5551 02
] 5552 9A 5552 9A
OBJECT CODE 5553 45 5553 65
/\_ /\’
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outT O, r Output register r to port C.

Function: C)<r

Format:

o] [ ri=fefo] by

i

{»}Mowlow1byte1:r~:n

Description: The contents of the specified register are output to
the peripheral device addressed by the contents of
the C register. r may be any one of:

A - 111 E - 011
B — 000 H - 100
C - 001 L — 101
D - 010

Register C supplies bits A0 to A7 of the address
bus. Register B supplies bits A8 to AlS.

Data Flow:

PORT

LI O m
O

Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz
Addressing Mode: External.

Flags: {S }Z ‘ ‘H* {W!N ‘C } (no effect).

Byte Codes: m A B C D E H L
}79'41149]51]59]61]69]
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Example:

T~

ED

41

v~
OBJECT CODE

THE Z80 INSTRUCTION SET

OuUT (C), B
Before: After:
Bl o [ A o 8w T A e
[ 88 [eorr 257 port
Fi Fl
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ouT (N), A Output accumulator to peripheral port N.

Function: (N) < A
Format:
"I‘IO“’OlOl‘% lbytel:D3
11 S S 1b
T yte 2: port address
Description: The contents of the accumulator are output to the

peripheral device addressed by the contents of the
memory location immediately following the op-

code.
Data Flow: TT——
A
8 C out
D E a— N
H L PORT
/\_/
Timing: 3 M cycles, 11 T states; 5.5 usec @ 2 MHz
Addressing Mode: External.
Flags: s Z H PV N C
(T 1] o
Example: OUT (0A), A
Before: After:
>~ A st ][ oA Jrort A s | OO Arort
D3
0A
|

OBJECT CODE
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OUTh Output with decrement.
Function: (C) < (HL); BC+~ B — 1; HL < HL - 1
Format:
t;l:‘11011[1‘0‘1]bytel:ED
11101:]oilloﬁll!lbyteZ:AB
Description: The contents of the memory location addressed by

the HL register pair are output to the peripheral
device addressed by the contents of the C register.
Then both the B register and the HL register pair
are decremented. C supplies bits A0 to A7 of the
address bus. B supplies (after decrementation) A8

to AlS.
Data Flow:
2 COUNTER c -——-—W =
D| £ PORT /\_‘}
w000

Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz
Addressing Mode: External.

Flags:

LT
[

p/v N C

]

?

Set if B = 0 after execution,
reset otherwise.
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Example: OouUTD

Before: After:

8 30 [ 9 Jc sZ/%7j o lc
H 228F v WD

PORT 227 rorT
9A
T~ T~ T~
D 228F A 228F A
AB L~ ]

v~
OBJECT CODE
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OUTI Output with increment.
Function: )< HL;B<B —~ 1; HL <« HL + 1
Format:
]I]lll](}l!l!loll] byte 1: ED
Lfofrfofofer [r] byie2: A3
Description: The contents of the memory location addressed by

the HL register pair are output to the peripheral
device addressed by the C register. The B register
is decremented and the HL register pair is incre-
mented.

C supplies bits A0 to A7 of the address bus.
B (after decrementation) supplies bits A8 to A1S5.

Data Flow:

A DATA

B
Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz
Addressing Mode: External.
Flags:

sz H PV N C
Llel fa] l?li[j —— Set if B = 0 after execution,

reset otherwise.
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Example:

T~

ED
A3

T~
OBJECT CODE

372

OUTI
Before: After:
s on | e o P57 e c
L 0F9A R
pom ) on )/ APORT
T~ T~
b~ ] T~ ]




THE Z80 INSTRUCTION SET

POP qq Pop register pair qq from stack.
Function: 445w < (SP); 99phijgh= (SP + 1); SP< SP + 2
Format:

L[ e afe o o]

Description: The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the specified register pair and then the stack
pointer is incremented. The contents of the
memory location now addressed by the stack
pointer are loaded into the high order of the
register pair, and the stack pointer is again in-
cremented. qqmay be any one of:

BC - 00 HL - 10
DE - 01 AF - 11
Data Flow;
A
8
D
H
Timing. 3 M cycles; 10 T states; S usec @ 2 MHz

Addressing Mode: Indirect.

Byte Codes: a¢ BC DE HL AF

o a ]
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Flags: s z H PV N C
CT T T L1 [ 1] ot
Example: POP BC
Before: After:
se | 158 | sV )
Cl 0158 0A 0158 0A
L~ o15¢ 42 015C 42
OBJECT CODE 0150 b3 015D b3
/\_/ E
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POP IX

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

THE Z80 INSTRUCTION SET

POP IX register from stack.

IXlOW « (SP); IXhigh <SP +1);SP<SP +2

Llllfcr'!‘:ilolqbytelzDD

lliullfofofo{oll]byteZ:El

The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the IX register, and the stack pointer is in-
cremented. The contents of the memory location
now addressed by the stack pointer are loaded in-
to the high order of the I1X register, and the stack
pointer is again incremented.

X O o »

Y = 0

4 M cycles; 14 T states; 7 usec @ 2 MHz

Indirect.
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Flags: s 7 H PN N _C

(l 1 } 1 l l ‘J (no effect).

Example: POP IX

Before: After:

x [ 0001 | w70
sl 0908 B SPWW

DD 0908 36 0908 36

£l 090C 04 090C 04
. 050D B2 090D B2
OBJECT CODE TN TN
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POPIY POP 1Y register from stack.
Function: 1y low ™™ (SP); 1Y high < (SP + 1);SP<SP + 2
Formau:

l‘l'l‘l‘l‘i]lolqbykaD

11]1]3}0]0}0!0]11 byte 2: El

Description: The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the 1Y register, and then the stack pointer is incre-
mented. The contents of the memory location now
addressed by the stack pointer are loaded into the
high order of the 1Y register, and the stack pointer
is again incremented.

Data Flow. S,
A
8 a C
D o £
W T L
i ! ]
E/\
} ~ DATA
5
Timing: 4 M cycles; 14 T states; 2 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s z H PV N C

I l I i ’ | ‘ J—_](noeffect).
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Example: POP 1Y
Before: After:
W[ 032A | Y

s wi | S50

3004 61 3004 61

3005 40 3005 40

3006 39 3006 39
OBJECT CODE \/ V\—/
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PUSH qq

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

THE Z80 INSTRUCTION SET

Push register pair onto stack.

(SP — 1) <qqhigh’ (SP — 2) < aqlow:
SP <SP -2

[ [faiafel o ]t]

The stack pointer is decremented and the contents
of the high order of the specified register pair are
then loaded into the memory location addressed
by the stack pointer. The stack pointer is again
decremented and the contents of the iow order of
the register pair are loaded into the memory loca-
tion currently addressed by the stack pointer.qq
may be any one of:

BC - 00
DE - 01

HL - 10
AF - 11

\
.
.\

-
__

\

3 M cycles; 11 T states; 6.5 usec @ 2 MHz

Indirect.

qq: BC DE HL AF

S [os[]]
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Flags: s Z H PV N C
CT T[] L] woetan
Example: PUSH DE
Before: After:
ol 0A03 e D| 0A03 J:
sp | 00B1 | s om0
N /\4
D5 O0AF B6 00AF /
I~ oo [

OBJECT CODE

W\/
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PUSH IX

Function:

Format:

Description:

Data Flow:

Timing:

THE Z80 INSTRUCTION SET

Push IX onto stack.

(SP = 1) = IXpjgh; (SP — 2) < IX|gu;
SP <SP -2

L‘l’IOJ’JIIIAJ&ubyteI:DD
{!J‘IjoJo,'lolbeteZ:ES

The stack pointer is decremented, and the contents
of the high order of the IX register are loaded into
the memory location addressed by the stack
pointer. The stack pointer is again decremented
and then the contents of the low order of the IX
register are loaded into the memory location ad-
dressed by the stack pointer.

4 M cycles; 15 T states; 7.5 usec @ 2 MHz

Addressing Mode : Indirect.

Flags:

[sﬁfﬁ{ lP/VE‘NI‘i (no effect)

381



PROGRAMMING THE Z80

Example: PUSH IX

Before: After:

DD 0094 88
E5 0095 9F
0096 04
OBJECT CODE
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PUSH 1Y

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode.

Flags:

A

juel

THE Z80 INSTRUCTION SET
Push 1Y onto stack.

(SP = 1) < 1Y Bjghs (SP = 2) < IY]oy:
SP <SP — 2

Dlalill[i‘lﬁmi byte 1: FD

Li}ifrgolo![;ofljjbytelES

The stack pointer is decremented and the contents
of the high order of the 1Y register are loaded into
the memory location addressed by the stack
pointer. The stack pointer is again decremented
and the contents of the low order of the ['Y register
are loaded into the memory location addressed by
the stack pointer,

H

3 M cycles; 15 T states; 7.5 usec @ 2 MHz

Indirect.

s Z H Pv N C

L ! } J ! I t ]j (no effect)
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Example: PUSH 1Y

Before: After:

Y S T N B S
®L N

00B4 FF
00B5 85
0oB6 9D

OBJECT CODE V\/
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RLCA

Function:

Format:

Description:

Data Fiow:

Timing:

Addressing Mode:

Flags:

Example:

07

T~
OBJECT CODE

I O w »

THE Z80 INSTRUCTION SET

Rotate accumulator left with branch carry.

m

Lelefelo[o [N T2 T7] o7

The contents of the accumulator are rotated left
one bit position. The original contents of bit 7 is
moved to the carry flag as well as to bit 0.

~ m O m;

I M cycle; 4 T states; 2 usec @ 2 MHz

Implicit.

[ TIoI T Io7e)
1s set by bit 7 of A.

5

L
C
RLCA

Before: After:

e [ o T %)
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RES b,s Reset bit b of operand s.
Function: Sp <0
Format: s:
. Ma 001110\1 byte 1: CB

byte 2

(HL) byte 1: CB

poEC==n=

T L] oo

(IX + d) n“nn byte 1: DD
[‘Tlo l o\ 1@ ilj byte 2: CB

r—% byte 3: offset value
110 <—-1T—b—i~—-—> 1 { 1 \ OJ by[e 4
ay «+dy [l byte 1: FD

l L\ byte 2: CB
: J byte 3: offset value

Fl o‘lw——ty—»l x 1Lo_} byte 4

b may be any one of:

0 — 000 4 — 100
1 — 001 5 — 101
2 — 010 6 — 110
3 - 011 7 — 111

r may be any one of:

A — 111 E — 011
B — 000 H — 100
C - 001 L - 101
D - 010
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Description: The specified bit of the location determined bysis
reset. s is defined in the description of the similar
BIT instructions.
Data Flow:
A - |
B C
D E
H L ALU
Timing: usec
s M cycles: | T states: | @ 2 MHz:
r 2 8 4
(HL) 4 15 7.5
X + d 6 23 11.5
(dY + d) 6 23 11.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d), Y + d): in-

dexed.
Byte Codes: RES b,r
RES b, (HL)

b PA B C D E H L
CB— 0 |87|80|8r|82|83]a4]as
I |8Fi88|89|8Aleslsc s

2 197190 91192 |93 |94 |o5

3 | oF| 98|99 9al98]|9oc|op
4 | A7| A0 Al|A2|A0 | A4 | A5 |

5 | aF| A8 A9 | AAlAB | AC | AD

6 | 87|80 B1|B2|8B3|B4]8s

7 | BF | B8 | B9 |BA|BB |BC|BD
_

b: 0 1 2 3 4 5 ¢ 7

o [oo]ac]oe]

QEiAélAElE%[BEi
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RES b, (IX+d) DD— b 0O 1V 2 3 4 5 6 7
CB— |gs|sE|96|9E | A6lAE|BS |BE
RES b, (Y +d) (e e e[ [re e[ ]
Flags: s z H PV N C
[T T T T T 1] loNoeffect
Examples: RES 1, H
Before: After:

(T W[ ]
cB
8C

o~

OBJECT CODE
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RET Return from subroutine
Function: PClow * (SP); PChigh = (SP + 1); SP <SP + 2
Format:

LIIIIO[OIIIO{OII—ICQ

Description: The program counter is popped off the stack as
described for the POP instructions. The next in-

struction fetched is from the location pointed to
by PC.

Data Flow:

C
E
L

< i T~

I O w >

STACK

PCL
a PCH
e g T

Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s 7 H PV N C

LI T T T T TT ]wosten
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Example: RET

Before: After:

e[ w |~ V)
S 3310 1 s VU

c9 3310 21 3310 21
b 3311 B4 3311 B4
OBJECT CODE -~ L~ ]
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RET cc

Function:

Format:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Return from subroutine on condition.

If cc true: PCiqy, < (SP); PChigh =< (SP + 1);
SP-SP + 2

[ [ o o o]

If the condition is met, the contents of the pro-
gram counter are popped off the stack as described
for the POP instructions. The next instruction is
fetched from the address in PC. If the condition is
not met, instruction execution continues in
sequence.

— m 0 o,

s Ll

Timing:

Addressing Mode:

CONTROL
LOGIC

STACK

P PCL
" PCH
R /\/

cc may be any one of:

NZ - 000 PO - 100
Z — 001 PE - 101
NC - 010 P - 110
C - 011 M - 111

Condition met: 3 M cycles; 11 T states; 6.5 usec @
2 MHz.

Condition not met: 1 M cycle; 5 T states; 2.5 usec
@ 2 MHz

Indirect.
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By[e Codes: CC: NZ Z NC C PO PE P M
rCO‘CBlDO‘DBlEO lEB \FO iFS I

Flags: s _Z H PV N

r] l 1 ; l ] [Cj(noeffect)

Example: RET NC

Before: After:

j i
rc 0124 < UEE)
se[ 8511 0 Yes

DO 8511 85 8511 85
8512 B1 8512 Bl
OBJECT CODE L~ |
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RETI

Function:

Format:

Description:

Data Flow:

Timing:

THE Z80 INSTRUCTION SET
Return from interrupt.

PClow = (SP); PChigh < (SP + 1); SP <SP + 2

t}r%[o[;[r]o[ﬂbytel:ED
[ofo] 1]

LOII oo 1 oiﬂ byte 2: 4D

1

The program counter is popped off the stack as
described for the POP instructions. This instruc-
tion is recognized by Zilog peripheral devices as
the end of a peripheral service routine so as to
allow proper control of nested priority interrupts.
An EI instruction must be executed prior to RETI
in order to re-enable interrupts.

4 M cycles; 14 T states; 7 usec @ 2 MHz

Addressing Modes: Indirect.

Flags:

S_Z H PV N

LI ] l f i I {LI (no effect).
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Example: RETI

Before: After:

1 <)
sp| 8982 ] S )

rc 84E1

T~ T~ /\T
ED 8982 A4 8982 A4
4D 8983 Bl 89B3 Bl
b~ T~

OBJECT CODE
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RETN

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

THE Z80 INSTRUCTION SET

Return from non-maskable interrupt.

PClow < (SP); PChigh < (SP + 1); SP <SP +
2; IFF1 < IFF2

L
Lol

1

‘f‘lolilllo byte 1: ED
Jofofo]r]

]
ofofof1]o|1]| byte2:4s

The program counter is popped off the stack as
described for the POP instructions. Then the con-
tents of the IFF2 (storage flip-flop) is copied back
into the IFF1to restore the state of the interrupt
flag before the non-maskable interrupt.

4 M cycles; 14 T states; 7 usec @ 2 MHz

Indirect.
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Flags: s 7 H v N C
F I ' 1 i [ ‘ ‘ i (no effect).
Example: RETN
Before: After:

e | ASF1 1 S
sp i 8B4C ] SV

/\_ /\’_ /\—
ED 8B4C 01 8B4C 01
45 884D 9A 884D 9A
b~ ] ]

OBJECT CODE
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Rotate left through carry operand s.

L —

<

. rl1[}[0[0!1Io]1]1!byte1:CB

CoTe [o] o [ bwee2

(HL)]1{1[0]0{1]01111]byte1:CB

RL s

Function:

Format: K
(Y + )

Description:

[olo‘o,1]0[1[;]0!byte2:16

1 ’byte 1: DD

U lbyte 2: CB

o]

[

i : [byte 3: offset value
[ 1 Jo ] byte 4: 16
o]
]
|

01 Ibyte 1: FD
1 ]byte 2: CB

! W byte 3: offset value

I[Olbyteéiz 16
r may be any one of:
A — 111 E - 011
B — 000 H - 100
C - 001 L — 101

D - 010

The contents of the location of the specific
operand are shifted left one bit place. The con-
tents of the carry flag are moved to bit 0 and the
contents of bit 7 are moved to the carry flag. The
final result is stored back in the original location. s
is defined in the description of the similar RLC in-
structions.
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Data Flow:
A
B
D
H
Timing: usec
s M cycles: | T states: | @ 2 MHz:
r 2 8 4
(HL) 4 15 7.5
(IX + d) 6 23 11.5
ay +4d) 6 23 11.5

Addressing Mode: r:implicit; (HL): indirect; (IX + d), (IY + d):in-
dexed.

Byte Codes: RL

il nT a1 5]

F[ags; s Z H @V' N C
@] (O] [@Ole
C is set by bit 7 of source.
Example: RL E
o~ Before: After:
@ TN ; 7k
13
6E E 7 E

OBJECT CODE
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RLA

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

T~

17

OBJECT CODE

THE Z80 INSTRUCTION SET

Rotate accumulator left through: carry flag.

e

cf A

Lelofolnfe[i]r 0] w7

The contents of the accumulator are shifted left
one bit position. The contents of the carry flag are
moved into bit 0 and the original contents of bit 7
are moved into the carry flag. (9 bit rotation.)

=L : \/u

ALU

I O w >

1 M cycle; 4 T states; 2 usec @ 2 MHz

Implicit.

S Z H PV N C

L1 [ [o | [O]e]
Cisset by bit 7 of A,

RLA

Before: After:

sl | o A
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RICr Rotate register r left with branch carry.
Function:

=

Ct r
Format:

Pllloiollgoil ljbytel:CB

Iololo]olei%r-'ﬁ"byteZ

Description: The contents of the specified register are rotated
left. The original contents of bit 7 are moved to
the carry flag as well as bit 0. r may be any one of:

A — 111 E - 011
B — 000 H - 100
C — 001 L - 101
D - 010
Data Flow:
[— v
A @F l
B C
D 3 ALU
H L - /
Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes:

A B C HoL
ca-{oﬂoo}mloz[oslm'os’

400



Flags:

Example:

T~

CB

00

VT —
OBJECT CODE

THE Z80 INSTRUCTION SET

H ®vV N C

ele] o] le[0]e)

C is set by bit 7 of source register.

RLC B
Before: After:
862 || % | 8K 5
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RLC (HL) Rotate left with branch carry memory location
(HL).
Function:
(HL)
Format:
Dl fefolifel vt byt cn
!010[01010]]]1“] byte 2: 06
Description. The contents of the memory location addressed by

the contents of the HL register pair are rotated left
one bit position and the result is stored back at
that location. The contents of bit 7 are moved to
the carry flag as well as to bit 0.

Data Flow:
X & [ ][
B c b
b ‘ .
H L — | —DATA |
Timing: 4 M cycles; 15 T states; 7.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags:

s z H ®v N C
[®[®] [O] [e[O[e]

Cis set by bit 7 of the memory location.
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Example: RLC (HL)
Before: After:
F 2 Y &
H[ 6114 oW 6114 T
/\_ /\__
CB 6114 cs
% P~
v ~—

OBJECT CODE
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PROGRAMMING THE Z80

RLC (IX + d) Rotate left with branch carry memory location (IX

Function:

Format:

Description:

Data Flow:

+ d)

FlilolllllllolsibytelzDD
(T[T e s

] — : c:i bete3 offset value
lo‘o}o]olOIilllojbyte4106

The contents of the memory location addressed by
the contents of the IX register plus the given offset
value are rotated left and the result is stored back
at that location. The contents of bit 7 are moved
to the carry flag as well as to bit 0.

I O m »

(1
w
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Timing:

THE Z80 INSTRUCTION SET

6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags:

Example:

T~

DD

cB

01

06

T~

OBJECT CODE

le [0] [e[0[e)

C is set by bit 7 of memory location.

RLC (IX + 1)
Before: After:
L2 2570
IX| 0481 1 [ 0481 ]
T~
04B1] €3
0482 94
/\/
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RLC (IY + d) Rotate left with carry memory location (1Y + d).
Function:
[ -
c [y +d]
Format:
Do fefefofr ] byter: FD
{111‘0]0]1 !obiljbyteZ:CB
% : : : c:l : : : J] byte 3: offset value
ﬁ]o{o}o[oll ’1 ‘ojbyte4:06
Description: The contents of the memory location addressed by
the contents of the 'Y register plus the given offset
value are rotated left and the result is stored back
at the location. The contents of bit 7 are moved to
the carry flag as well as bit 0.
Data Flow:
A e
B c
D E
H L
Y
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Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz
Addressing Mode: Indexed.
Flags: s 7 H ®v N C
[e[e] [O] [e[O]e]
C is set by bit 7 of memory location.
Example. RLC 1Y + 2)
Before: After:
F V.57
[ 0021 1] 0021 |
FD 0021 05 0021 05
CB 0022 B1 0022 B1
02 0023 A2 0023 W
06 b — ]

b~
OBJECT CODE
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RLD Rotate left decimal.

Function: al7 43 o] [ 43 oj[m]

Format: P]]i\‘oi}}!]()!!! byte 1: ED
(o[ [ Jo[n 1] ] byte2:6F

Description: The 4 low order bits of the memory location ad-

dressed by the contents of HL are moved to the
high order bit positions of that same location. The
4 high order bits are moved to the 4 low order bits
of the accumulator. The low order of the ac-
cumulator is moved to the 4 low order bits of the
memory location originally specified. All of these
operations occur simultaneously.

Data Flow:

W;

N et
oy

T O w >
(@]

Timing: 5 M cycles; 18 T states; 9 usec @ 2 MHz

Addressing Mode: Indirect.
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Flags: s 1 H @®v N C
@/®] [O] [@[O] |
Examples: RLD
Before: After:
A D70
H [ B4F2 L H [ B4F2
s s [
D B4F2 48 B4F2 7/////#%////%
& —~__ —
T~
OBJECT CODE
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RR s

Function:

Format:

(HL)

(IX + d)

Iy + d)

Description:

410

Rotate right s through carry.

C

S

I 0'0]:‘0]1'1} byte 1: CB

L] ]

{o]oiotlll(<~-;—~r7~> byte 2
o[l [e] [1] brer:cs
{Oio]olllllliilol byte 2: 1E
[\ll}o[ljllilolli byte 1: DD
‘1}1}010]110]111[ byte 2: CB

’ : : : <ii i : : 1 byte 3: offset value
ioIo]o{x];llliloI byte 4: 1E
111:11‘1]1]1{0'11 byte 1: FD
]1’1)0]011]0]1]11 byte 2: CB

[~~:— 1‘~‘;—d ; ::—»] byte 3: offset value
1010101‘]‘1'1‘101 byte 4: 1E

r may be any one of:

A - 111 E - 011
B - 000 H - 100
C - 001 L — 101
D - 010

The contents of the location determined by the
specific operand are shifted right. The contents of
the carry flag are moved to bit 7 and the contents
of bit 0 are moved to the carry flag. The final
result is stored back in the original location. s is
defined in the description of the similar RLC in-
structions.



Data Flow:

I O w >

Timing:

Addressing Mode:

Byte Codes:

Flags:

Example:

T~

CcB
1C

OBJECT CODE

~ m O m

THE Z80 INSTRUCTION SET

usec

s M cycles: | T states: | @ 2 MHz:
r 2 8 4
(HL) 4 15 7.5
(Ix + d) 6 23 11.5
(Y + d) 6 23 11.5

dexed.

RR 1

r: implicit; (HL): indirect; (IX + d), (IY + d): in-

s v Tia oo ToaJio [ic [0

P/V N

C

[e[e[ O] [®[0

L)

C is set by bit 0 of source data.

RR H

Before:

e [

aJF

After:

W00 T8 00
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RRA Rotate accumulator right through carry.

Function:

g

A Cf
Format:
Lofofol [ [P [o [ ] 1R
Description: The contents of the accumulator are shifted right-

one bit position. The contents of the carry flag
are moved to bit 7 and the contents of bit 0 are
moved to the carry flag (9-bit rotation).

Data Flow: @
_____j
A Felr
D £ ALU
H L ———
Timing: 1 M cycle; 4 T states; 2 usec @ MHz
Addressing Mode: 1mplicit.
F[ags.' S Z H PV N C
L1 [ [o] [ [J]e]
Cis set by bit 0 of A.
Example: RRA
Before: After:
T~ Al T s Foa FA 8 Ar
1F
o~

OBJECT CODE
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RRC s

Function:

Format: S:

(HL)

(IX + d)

1y + d)

Description:

THE Z80 INSTRUCTION SET

Rotate right with branch carry s.

-7 o' .
S C

sisany of r, (HL), (IX + d), (IY + d).
TTiTolo] o[ 1] byee 1: cB
olo]oiol '<——-r—~>] byte 2

IIOIO}!‘O‘I]I’by[el CB

O
o]

0 o’o]o]1‘11110]byte2
‘1111110]11byte1.DD

1 |

(
{
L
|
|
|
a
|
|
|
|
|

|
|
[ ]o
1‘1]0!0};‘01:}!]byteZ:CB
1 : : (lfl : : : lbyteB:offsetvalue
0101010}1[11'l0]byte4:0E
!{1\1|1‘1|1}0]!iby[e1:FD
t}ilololliolillibyteZ'CB
: : : d: : | lbyte3 offset value
o] ] IO‘lliI Io!by[eél.OE
r may be any one of:
A — 111 E — 011
B - 000 H - 100
C - 01l L — 101
D - 010

The contents of the location determined by the
specified operand are rotated right and the result
is stored back in the original location. The con-
tents of bit 0 are moved to the carry flag as well as
to bit 7. s is defined in the description of the
similar RLC instructions.

413



PROGRAMMING THE Z80

Data Flow:

—

A 12

D E ALU

H L —_— /\

Timing: usec

S M cycles: | T states: | @ 2 MHz:
r 2 8 4
(HL) 4 15 7.5
(IX + d) 6 23 11.5
(Iy + & 6 23 11.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (1Y + d): in-
dexed.

Byte codes: RRC r » A B C D E H L
CB-lOFlOBIOO{OA{OB}OClOD‘

Flags: S Z H EWwW N C
ele| [0 |eCle]
C is set by bit 0 of source data.
Example: RRC (HL)
Before: After:
[ & D5 ¢
H 3FF2 Ju H[ 3FF2 [t
/\_ /\
B 3FF2 06
0F
/\J

OBJECT CODE
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RRCA Rotate accumulator right with branch carry.
Function:
b=l
A C
Format:
Lofofofol o] Ti]or
Description: The contents of the accumulator are rotated right

one bit position. The contents of bit 0 are moved
to the carry flag as well as to bit 7.

Data Flow: @
A ;C F
B C
D E ALU
H L ——
Timing: I M cycle; 4 T states; 2 usec @ 2 MHz
Addressing Mode: Implicit.
F/ags.' S Z H PV N C
L[ [ Jol T Tole]
Cis set by bit 0 of A.
Example: RRCA
Before: After:
T~ alba ]
OF
T~

OBJECT CODE
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RRD

Function:

Format:

Description:

Data Flow:

Z80

Rotate right decimal.

S s "

l i‘J byte 1: ED
“l‘} byte 2: 67

The 4 high order bits of the memory location ad-
dressed by the contents of the HL register pair are
moved to the low order 4 bits of that location. The
4 low order bits are moved to the 4 low order bits
of the accumulator. The low order bits of the ac-
cumulator are moved to the 4 high order bit posi-
tions of the memory location originally specified.
All of the above operations occur simultaneously.

I O w >

Timing:

Addressing Mode:

416

A

5 M cycles; 18 T states; 9 usec @ 2 MHz

Indirect.



Flags:

Example:

(T

ED

&7

/\_)
OBJECT CODE

THE Z80 INSTRUCTION SET

C

o] TG Je[o] |

RRD
Before: After:
A Y 5

M FEBI v W[ FEBI

FEBY 50 FEBY
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RST p

Function:

Format:

Description:

Data Flow:

Restart at p.

(SP - D+ PChl hs (SP — 2) = PClow: SP <SP
- 2; PChlgh - O PCiow < P

P Joe—p—| 1| 1|1

The contents of the program counter are pushed
onto the stack as described for the PUSH instruc-
tions. The specified value for p is then loaded into
the PC and the next instruction is fetched from
this new address. p may be any one of:

00H — 000 20H — 100
08H - 001 28H — 101
10H - 010 30H ~ 110
18H — 011 38H - 111

This instruction performs a jump to any of eight
starting addresses in low memory and requires only
a single byte. It may be used as a fast response to
an interrupt.

I O w »
[a]

418
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Timing: 3 M cycles; 11 T states; 5.5 usec @ 2 MHz
Addressing Mode: Indirect.

Byte Codes: p: 00 08 10 18 20 28 30 38

LC7’CF{D7IDF!E7’EF IF? ;ﬂ

Flags: s 7 " o N C
L l ] l I ‘ l ’ l (no effect).
Example: RST 38H
Before: After:

e[ 441A ‘ ] e 5% )
se[ 0268 B V)

(\_/\

FF 0269 51 0269 W

026A BF 026A W

OBJECT CODE 0268 03 0268 —
T~ ]
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SBCA,s

Function:

Format:

(HL)

(IX+d)

(1Y + d)

Subtract with borrow accumulator and specified

operand.

A<A-5s~—-C

s may be r,n, (HL), (IX + d), or (IY + d)

[Telol T[]
P el el
e r——
[ Tofol Tl ]e]
HIDnnnan
[ Telol [T fe]
e r—
DoDnnnnn
[ Tofol ] ]fo]

]

1 I i

r may be any one of:

Description:

420

A — 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010

byte 1:
byte 2:

data

byte 1:

byte 1:

SE

byte 3:
byte 1:
byte 2:

byte 3:

DE

immediate

9E

DD

offset value

FD

9E

offset value

The specified operand s, summed with the con-
tents of the carry flag, is subtracted from the con-
tents of the accumulator, and the result is placed
in the accumulator. s is defined in the description
of the similar ADD instructions.
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Data Flow:
A
B C
D E S
H L
Timing. r usec
N M cycles: | T states: | @ 2 MHz:
f r 1 4 2
'n 2 7 3.5
(HL) 2 7 3.5
(IX + d) 5 19 9.5
Y + d) S 19 9.5

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX +
d), Y + d): indexed.

Byte Codes: SBC A, r na

BF]%]W[%]%[QC’J

Flags: H PO N C
efe) o] [o] [o]

Example: SBC A, (HL)
Before: After:
Al B2 [ 5 F A Y74 7
H[ 3600 oW 3600 e

T~ T~

9E 3600 OF 3600 OF
T~ T~

OBJECT CODE
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SBC HL,ss Subtract with borrow HL and register pair ss.

Function: HL < HL —ss — C

Format:

{111]110]1\1\Oljby1e1:ED
o[ Ts s ToTo[ To] bwe

Description: The contents of the specified register pair plus the
contents of the carry flag are subtracted from the
contents of the HL register pair and the result is
stored back in HL. ss may be any one of:

BC - 00 HL - 10
DE - 0l SP - 11
Data Flow: | E-—
A tcir 0
B C
D E
( ﬁ_H L ﬁ
e N
Timing: 4 M cycles; 15 T states; 7.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: §S; BC DE HL SP

o [a2]a]n]
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Flags: s z H PAD N C
0[] o] [o[ Te]

H is set if borrow from bit 12.
Cisset if borrow.

Example: SBC HL, DE
Before: After:
m D 0689 E D 0689 E
H 3142 L H 2A89 L
OBJECT
CODE
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SCF Set carry flag.
Function: C <1
Format:

(oiolllllo\w]\j 37

Description: The carry flag is set.

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

p/V N C

‘T ol 1 ol

Flags:
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SET b,s Set bit b of operand
Function: Sp < 1
Formar: s

‘mb*—*—*rﬂj byte 2

ALY [ ToTol o[ [T] byet:cn
[:[:}:+b+iﬂif' [o]  byte2

r --nu n.- byte 1: CB

IX +d | OQtprprge g byte 1: DD
{ 1 0]0 1 0 i i byte 2: CB
T byte 3: offset value

(TSl [ T] oyes

ay + d) ..n.-!ﬂ. byte 1: FD
] °l° ‘iO{ byte 2: CB
L | : ¢ ; | T byte 3: offset value

OnEE=nnn Y

r may be any one of:

A - 111 E - 001
B - 000 H - 100
C — 001 L - 101
D - 010
b may be any one of:
0 - 000 4 —- 100
I - 001 5 - 101
2 - 010 6 — 110
3 - 011 7 - 111
Description: The specified bit of the | location determined by s is

set. s is defined in the description of the similar
BIT instructions,
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Data Flow:

ALU

T O ® >
m

Timing: usec |
s: M cycles: | T states: | @ 2 MHz:
r 2 8 4
(HL) 4 15 7.5
ax + d) 6 23 11.5
ay + d) 6 ‘ 23 11.5
Addressing Mode: 1. implicit; (HL): indirect; (IX + d), Ay + d): in-
dexed.
Byte Codes: SET b,r

b::A B C D E H L
ce- 0 Fj C0 ‘ criczics ‘CA C5 l
1 {CF|C3IC9ICA|ICB CC|CD

2 lp7{Do| D1} D2|D3|D4 D5

3 {DF| D8|D9|DA|DB|DC;DD

4 LE7{EO BV | E2 | E3 | E4 | ES

5 | EF | E8 | E9 | EA|EB | EC| ED

6 | F7{FO|F1|F2|F3 | F41F5

7 {FF | F8 | FO | FA | FB |FC | FD

SET b, (HL)

b 0 1 2 3 4 5 6 7
SET b, (X + d) BICElDthElE"lEE‘F"\Fd

SET b, (Y + d)
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) /
Flags: > Z H_ PV N C

L} I ’ } l ! lW(noeffect)

Example: SET 7. A
Before: After:
i A e
cB
FF
o~
OBJECT CODE
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SLA s

Function:

Format: K

(HL)

ax + d)

(ay + d)

Description:

428

Arithmetic shift left operand s.

B e s
C S

r may be any one of:

A - 11 E - 011

byte 1:
byte 2
byte 1:
byte 2:
byte 1:
byte 2:
byte 3:
byte 4:
byte 1:
byte 2:
byte 3:
byte 4:

B — 000 H — 100

C - 001 L — 101

D - 010

CB

CB

26

DD

CB

offset value
26

FD

CB

offset value

26

The contents of the location determined by the
specific operand are arithmetically shifted right
with the contents of bit 7 being moved to the carry
flag and a O being forced into bit 0. The final
result is stored back in the original location. s is
defined in the description of the similar RLC in-

structions.
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Data Flow:

I 9 o »

Timing:

r

(HL)
(IX + d)
Yy + d)

Addressing Mode: r: implicit; (HL): indirect; (1X + d), (1Y + d): in-
dexed.

Byre Codes. SLA r

rA B C D E H L
CB~E7FO i:z] 22 |23 24}25

Flags: s Z H @®v N ¢
®[e] [O] [e[Cle]
C s set by bit 7 of source data.

Example: SLA (HL)

Before: After:
F 057

H OFF2 L

[

[ | om[ v 0FF2

xI
—

OBJECT CODE
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SRA s

Function:

Format:

Description:

430

annnpnonn
STl ol =t byee2

wim [ Lo Lol [o] ][] byet: cB
Colo [ol Tv]]o] byte2:2E

Shift right arithmetic s.

o

yte 1: CB

ax + a [ Jel [ Trlelr] byet:DD

1y + d)

-nn- 1] 1] byte2: CB

E&E byte 3: offset value
Sl foli [ [1[o] oness2e
ST L[ L[] e
Tlele] [o[ L] owezcs

byte 3: offset value

[oJol ol ]! [ [o] byte 4: 2E

r may be any one of:

A — 111 E — 011
B — 000 H - 100
C — 001 L — 101
D - 010

The contents of the location determined by the
specific operand are arithmetically shifted right.
The contents of bit 0 are moved to the carry flag
and the contents of bit 7 remain unchanged. The
final result is stored at the original location. s is
defined in the description of the similar RLC in-
structions.
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Data Flow: \ .

Tinung. usec
s M cycles: | T states: | @ 2 MH-z:
T 2 7 8 4
(HL) 4 15 7.5
(IX + d) 6 23 I1.5
(Y + d) 6 23 I1.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (IY + d):in-

dexed.
Byte Codes: SRA r "A B C D E H L
ce- [ 2 [ 28] 29[ oa 20 [2c [0
Flags: sz H @v N ¢
lele] [O] [e[C]e]
Cis set by bit 0 of source data,
Example: SRA A
Before: After:
Al [ o S ) F
CB
2F

OBJECT CODE
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SRL s

Function:

Format: AN

(HL)

(X + d)

(ay + d)

Description.

432

Logical shift right s.

: CB

(=)
o

BiE|EE

| o
Telol [o 1] bver:c
Ol‘\, 11]‘1!ﬂ byte 2: 3E
Tl [ [[o] ] bvet:op
L lolol (e[ 1] e cn
T T T 1 byte 3: offset value

\

F‘Q\l\; 111]1‘ byte 4: 3E

Fl,l;lx 1‘1‘0]1J byte 1: FD

[ ] o]0 o[ 1] 1] byte2: CB

Fl—; : ll : ')J byte 3: offset value
ERna

]
o
o

: 3E

r may be any one of:

A — 111 E -~ 011
B — 000 H - 100
C - 001 L — 101
D - 010

The contents of the location determined by the
specific operand are logically shifted right. A zero
is moved into bit 7 and the contents of bit 0 are
moved into the carry flag. The final result is stored
back in the original location.
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Data Flow:
A fcle
B c
D E
H L
Timing: usec
s: M cvcles: | T states: | @ 2 MHz:
r 2 8 4
(HL) 4 15 7.5
(IX + d) 6 23 11.5
(1Y + d) 6 23 11.5

Addressing Mode: r:implicit; (HL): indirect: (IX + d), (1Y + d): in-

Byte Codes:

Flags:

Example:

cB
38

T —
OBJECT CODE

dexed.

SRL r r A B C D E H |
cs 'LsF] 38, 39} 3Ai 35] 3c[ 3ﬂ

s z H ®v N ¢
®[®] [O] [@[C]e]
C is set by bit 0 of source data.

SRL E
Before: After:
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SUB A, s Subtract operand s from accumulator.

Function:

Format:

(HL)

(IX + d)

ay + d)

Description:

434

A< A -5

s:may ber, n, (HL), IX + d) or (IY + d)

(ol o=
nnonnnnn

[ ] Gy % immediate
[l el [ o] 9
nnDnnnnn
Clelel e[ T[]
]
oD el ]
HEnnBnnn
]

r may be any one of:

byte 1: D6

byte 1: DD

byte 2: 96

byte 3: offset value

byte 1: FD

byte 2: 96

byte 3: offset value

A - 111 E - 0l
B — 000 H - 100
C - 001 L - 101
D - 010

The specified operand s is subtracted from the ac-
cumulator and the result is stored in the ac-
cumulator. The operand s is defined in the
description of the similar ADD instructions.
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Data Flow:
A
B C
D E ALU [ s
H L -
Timing: usec
N M cycles: | T states: | @ 2 MHz]
T 1 4 2
n 2 7 3.5
(HL) 2 7 35
(IX + d) 5 19 9.5
(IX + d) 5 19 9.5
Addressing Mode: r: implicit; n: immediate; (HL): indirect; (X +
d), 1Y + d): indexed
Byte Codes: SUB A,r rn A B C D E H
L97[9o]91 i92]93|94}9?]
Flags: A H PAON C
®o[0] [o] [o] [e]
Example: SUB A,B
Before: After:
T~ 8 )
90
\/

OBJECT CODE
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XOR s

Function:

Format:

(IX + d)

ay + d)

Exclusive or accumulator and s.

A< A¥s

s: may be r,n, (HL), (IX + d), or (1Y + d)

el e[t =
NRDDEEEG
——— ——
[lolt ol [ 1] ]
Lo el
[Tl ol v ] i ] ]o]
——
Lol
Tl Tol [ ] ]o]
e S—

r may be any one of:

Description:

436

A — 111 E -~ Ol
B - 000 H — 100
C - 001 L — 101
D - 010

byte 1: EE

byte 2: immediate
data

AE

byte 1: DD
byte 2: AE

byte 3: offset value

The accumulator and the specified operand s are
exclusive ‘or’ed, and the result is stored in the ac-
cumulator. s is defined in the description of the

similar ADD instructions.



Date Flow:
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I O w >

Timing:

usec
s M cycles:| T states: | @ 2 MHz:
r 1 4 2
n 2 7 3.5
(HL) 2 7 3.5
X + d) 5 19 9.5
Yy + d) 5 19 9.5

Addressing Modes: t: implicit; n: immediate: (HL): indirect; (IX +

Byte Codes:

Flags:

Example:

d), (IY + d): indexed

XOR r r:ABCDE

(o Tra oo [aals [ocToo]

S Z H ®V N C
|®[®] [O] [@[C]]]

XOR A, BIH
Before: After:
al s ] 57
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ADDRESSING TECHNIQUES

INTRODUCTION

This chapter will present the general theory of addressing and the
various techniques which have been developed to facilitate the retrieval
of data. In a second section, the specific addressing modes available in
the Z80 will be reviewed, along with their advantages and limitations.
Finally, in order to familiarize the reader with the various trade-offs
possible, an applications section will demonstrate possible trade-offs
between the various addressing techniques by studying specific applica-
tion programs.

Because the Z80 has several 16-bit registers, in addition 1o the pro-
gram counter, which can be used to specify an address, it is important
that the Z80 user understand the various addressing modes, and in par-
ticular, the use of the index registers. Complex retrieval modes may be
omitted at the beginning stage. However, all the addressing modes are
useful in developing programs for this microprocessor. Let us now
study the various alternatives available.

POSSIBLE ADDRESSING MODES

Addressing refers to the specification, within an instruction, of the
location of the operand on which the instruction will operate. The main
addressing methods will now be examined. They are all illustrated in
Figure 5.1.

Implicit Addressing (or ‘‘Implied,”” or “‘Register’’)

Instructions which operate exclusively on registers normally use im-
plicit addressing. This is illustrated in Figure 5.1. An implicit instruc-
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tion derives its name from the fact that it does not specifically contain
the address of the operand on which it operates. Instead, its opcode
specifies one or more registers, usually the accumulator, or else any
other register(s). Since internal registers are usually few in number
(commo ily eight), this will require a small number of bits. As an exam-
ple, three bits within the instruction will point to one out of eight inter-
nal registers. Such instructions can, therefore, normally be encoded
within eight bits. This is an important advantage, since an eight-bit in-
struction normally executes faster than any two- or three-byte instruc-
tion.
An example of an implicit instruction is:

LDA,B

which specifies “‘transfer the contents of Binto A’ (Load A from B.)
Immediate Addressing

Immediate addressing is illustrated in Figure 5.1. The eight-bit op-
code is followed by an 8- or 16-bit literal (a constant). This type of
instruction is needed, for example, to load an eight-bit value in an
eight-bit register. Since the microprocessor is equipped with 16-bit reg-
isters, it may also be necessary to load 16-bit literals. An example of an
immediate instruction is:

ADD A, OH

The second word of this instruction contains the literal 0", which is
added to the accumulator.

Absolute Addressing

Absolute addressing usually refers to the way inwhich data is retrieved
from or placed in memory, in which an opcode is followed by a 16-bit
address. Absolute addressing, therefore, requires three-byte instruc-
tions. An example of absolute addressing is:

LD (1234H), A

It specifies that the contents of the accumulator are to be stored at
memory location *“1234°" hexadecimal.

The disadvantage of absolute addressing is to require a three-byte in-
struction. In order to improve the efficiency of the microprocessor,
another addressing mode may be made available, whereby only one
word is used for the address: direct addressing.
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i e

IMPLICIT/IMPLIED OPCODEA

IMMEDIATE OPCODE

LITERAL

1 LITERAL

[

EXTENDED/ABSOLUTE OPCODE

FULL16-BIT

ADDRESS

DIRECT/SHORT OPCODE

SHORT ADDRESS

1
OPCODE "

INDEXED OPCODE XREG

DISPLACEMENT

X OR ADDRESS \
4

Fig. 5.1: Basic Addressing Modes
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Direct Addressing (or ‘‘Short,”” or ‘“‘Relative’")

In this addressing mode, the opcode is followed by an eight-bit ad-
dress. This is also illustrated in Figure 5.1. The advantage of this ap-
proach is to require only two bytes instead of three for absolute ad-
dressing. The disadvantage is to limit all addressing within this mode to
addresses 0 to 255 or else — 128 to +127. When using 0 to 255 (“‘page
zero’"), this is also called short addressing, or 0-page addressing. When-
ever short addressing is available, absolute addressing is often called ex-
tended addressing by contrast. The range — 128 to + 127 is used with
branch instructions. This is called relative addressing.

Relative Addressing

Normal jump or branch instructions require eight bits for the op-
code, plus the 16-bit address to which the program has to jump. Just as
in the preceding example, this mode has the disadvantage of requiring
three words, i.e., three memory cycles. To provide more efficient
branching, relative addressing uses only a two-word format. The first
word is the branch specification, usually along with the test it is imple-
menting. The second word is a displacement. Since the displacement
must be positive or negative, a relative branching instruction allows a
branch forward to 127 locations (seven-bits) or a branch backwards to
128 locations (usually +129 or —126, since PC will have been incre-
cremented by 2). Because most loops tend to be short, relative branch-
ing can be used most of the time and results in significantly improved
performance for such short routines. As an example, we have already
used the instruction JR NC, which specifies a “‘jump if no carry’’ to a
location within 127 words of the branch instruction (imore precisely
+129 to —126).

The two advantages of relative addressing are improved performance
(fewer bytes used, higher speed) and program relocatability (indepen-
dence from absolute addresses).

Indexed Addressing

Indexed addressing is a technique used to access the elements of a
block or of a table successively. This will be illustrated by examples
later in this chapter. The principle of indexed addressing is that the in-
struction specifies both an index register and an address. The contents
of the register are added to the address to provide the final address. In
this way, the address could be the beginning of a table in the memory.
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The index register would then be used to access all the elements of a
table successively in an efficient way. (This requires the availability of
increment/decrement instructions for the index register). In practice,
restrictions often exist which may limit the size of the index register, or
the size of the address or displacement field.

OPCODE INDEX REGISTER

T
DISPLACEMENT BASE
H

1

BASE ——3 G -
TABLE

displacement
DATA

final oddress

MEMORY

Fig. 5.2: Addressing (Pre-indexing)

Pre-Indexing and Post-Indexing

Two modes of indexing may be distinguished. Pre-indexing is the
usual indexing mode in which the final address is the sum of a displace-
ment or address and of the contents of the index register. It is shown in
Figure 5.2, assuming an 8-bit displacement field and a 16-bit index
register.

Post-indexing treats the contents of the displacement field iike the
address of the actual displacement, rather than the displacement itself.
This is illustrated in Figure 5.3. In post-indexing, the final address is the
sum of the contents of the index register plus the contents of the mem-
ory word designated by the displacement field. This feature utilizes, in
fact, a combination of indirect addressing and pre-indexing. But we
have not defined indirect addressing yet. Let us do that.
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MEMORY Y index}
OPCODE
ADDRESS I ——’
e POINTER o] -+

MEMORY

FINAL
16 8IT
ADDRESS

= DATAN ha—

POINTER = BASE

N

Fig. 5.3: Indirect Indexed Addressing (Post-Indexing)

Indirect Addressing

We have already seen that two subroutines may wish to exchange a
large quantity of data stored in the memory. More generally, several
programs, or several subroutines, may need to access a common block
of information. To preserve the generality of the program, it is desira-
ble not to keep such a block at a fixed memory location. In particular,
the size of this block might grow or shrink dynamically, and it may
have to reside in various areas of the memory, depending on its size. It
would, therefore, be impractical to try to access this block using abso-
lute addresses, that is without rewriting the program every time.

The solution to this problem lies in depositing the starting address of
the block at a fixed memory location. This is analogous to a situation in
which several persons need to get into a house, and only one key exists.
By convention, the key to the house will be hidden under the mat. Every
user will then know where to look (under the mat) to find the key to the
house (or, perhaps, to find the address of the scheduled meeting, to
propose a stricter analogy). Indirect addressing, therefore, normally
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uses an opcode (16 bits in the case of the Z80) followed by a 16-bit ad-
dress. This address is used to retrieve a word from the memory. Usu-
ally, it will be a 16-bit word (in our case, two bytes) within the memory
since it is an address. This is illustrated by Figure 5.4. The two bytes at
the specified address Al contain “‘A2’". A2 is then interpreted as the ac-
tual address of the data that one wishes to access.

INSTRUCTION MEMORY
OPCODE
INDIRECT (A FINAL
ADDRESS A ADDRESS (A}
Az DATA

Fig. 5.4: Indirect Addressing

Indirect addressing is particularly useful any time that pointers are
used. Various areas of the program can then refer to these pointers t0
access a word or a block of data conveniently and elegantly. The final
address may also be obtained by pointing within the instruction to a
16-bit register in which it is contained. This is called ‘‘register indirect.”

Combinations of Modes

The above addressing modes may be combined. In particular, it
should be possible in a completely general addressing scheme to use
many levels of indirection. The address A2 could be interpreted as an
indirect address again, and so on.

Indexed addressing can also be combined with indirect access. This
allows the efficient access to word n of a block of data, provided one
knows where the pointer to the starting address is (see figure 5.2).
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We have now become familiar with all usual addressing modes that
can be provided in a system. Most microprocessor systems, because of
the limitation on the complexity of an MPU, which must be realized
within a single chip, do not provide all possible modes but only a small

subset of these. The Z80 provides a good subset of possibilities. Let us
examine them now.

730 ADDRESSING MODES
Implied Addressing (Z80)

Implied addressing is essentially used by single-byte ‘instructions
which operate on internal registers. Whenever implicit instructions
operate exclusively on internal registers, they require only one cycle to
execute.

Examples of instructions using implied (or “‘register’’) addressing
are: LDr,r’; ADD A,r; ADC A,s; SUBs; SBC A,s; ANDs; ORs;
XOR s; CPs; INCr.

Zilog further distinguishes between ‘‘register addressing’’ and ““im-
plied addressing.”” Implied addressing is then limited, in that definition,
to instructions that do not have a specific field to point to an internal
register. This introduces one more addressing mode. This is one reason
why the number of addressing modes is insufficient to characterize the
capabilities of a microprocessor.

Immediate Addressing (Z80)

Since the Z80 has both single-length registers (eight bits), and double-
length register pairs (16 bits), it provides two types of immediate ad-
dressing, both with 8-bit and 16-bit literals. Instructions are then
either two or three bytes long. The first byte contains the constant, or
literal, to be loaded in a register or used for an operation. Exceptions
are LD IX and LD 1Y, which require 16-bit opcodes.

Examples of instructions using the immediate addressing mode are:

LD r,n (two bytes)
LD dd,nn (three bytes)

and
ADD A;n (two bytes)

When the literal is two bytes long, the mode is called ““immediate ex-
tended,”’ in the case of the Z80.
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Absolute or ‘‘Extended’’ Addressing (Z80)

By definition, absolute addressing requires three bytes. The first byte
is the opcode and the next two bytes are the 16-bit address specifying
the memory location (the ‘‘absolute address’).

By contrast with ‘‘short addressing’’ (eight-bit address), this mode is
also called “‘extended addressing.”

Examples of instructions using extended addressing are:

LD HL, (nn) and JP nn

where nn represents the 16-bit memory address, and (nn) represents the
contents of the specified location.

Modified Zero-Page Addressing (Z80)

Zero-page addressing is not available in the Z80, except through the
CALL instruction. The special addressing mode used by this instruction
is called ““modified zero-page addressing.”

The CALL instruction contains a 3-bit field in bit positions bs by b3
used to point to one of 8 locations in page 0 of memory. The effective
address is bsbsb3000 and is loaded into PC. Since it requires only a
single byte, this instruction executes rapidly, and is easily generated in
hardware. It was generally used to respond to multiple interrupts (up to
8). Its disadvantage is either to limit the execution sequence to 16 loca-
tions, or to require a jump eliminating the speed advantage. This is
because each of the 8 branch addresses are 16- bytes apart.

This instruction is used less frequently now that priority interrupt
controller chips (PIC’s) have become available (see refs C201 or C207
for a detailed description of PIC’s). A PIC will automatically output a
three-byte absolute jump in response to an interrupt acknowledge.

This instruction is now generally used as a restart.

Relative Addressing (Z80)

By definition, relative addressing requires two bytes. The first one is
the “‘jump relative’’ opcode, whereas the second one specifies the dis-
placement and its sign.

In order to differentiate this mode from the absolute jump instruc-
tion, it is labeled “JR’".

From a timing standpoint, this instruction should be examined with
caution. Whenever a test fails, i.e., whenever there is no branch, this in-
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struction requires only seven ‘‘T cycles.”” This is because the next
instruction to oe executed is already pointed to by the program counter.

However, when the test succeeds, i.e., whenever the jump takes
place, this instruction requires 12 ““T-states’’; a new effective address
must be computed and loaded into the program counter.

When computing the duration of the execution of a program seg-
ment, caution must be exercised. Whenever one is not sure whether or
not the jump will succeed, one must take into consideration the fact
that sometimes the jump will require 12 T-states, (condition met),
sometimes 7 (condition not met).

When designing a loop, execution will, therefore, be faster using a
JR (Jump Relative) testing a condition usually not mer, such as a non-
zero condition for the counter.

When JR’s are used outside of loops, and the condition under test is
unknown, an average timing value is often used for the duration
of JR.

This timing problem does not apply to the unconditional jump JR e. It
does not test any condition, and always lasts 12 T-states.

Indexed Addressing (Z80)

This addressing mode did not exist in the 8080, and was added to the
7380 (as well as the two index registers). As a result, it became necessary
to add an extra byte to the opcode, making it a 16-bit opcode in the Z80
instruction set (LDIR is another example of a 16-bit opcode). The
structure of an indexed instruction is shown on Figure 5.5.

OPCODE BYTE |

OPCODE BYTE 2
DISPLACEMENT BYTE 3

: LITERAL | BYTE4

P |

Fig. 5.5: Indexed Addressing Has 2-byte Opcode
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Instructions allowing indexed addressing are:
LD, ADD, INC, RLC, BIT, SET

This mode will be used extensively in the programs operating on
blocks of data, tables or lists.

Indirect Addressing (Z80)

The Z80 provides a limited indirect addressing capability called
““Register Indirect Addressing.”” In this mode, each of the 16-bit regis-
ter pairs BC, DE, HL may be used as a memory address.

Whenever they point to 16-bit data, they point to the lower part. The
higher part resides at the next (higher) sequential address.

Combinations of Modes

Combinations of modes are essentially non-existent, except that in-
structions referring to two operands may use a different type of ad-
dressing for each.

Thus, a load or an arithmetic instruction may access one operand in
the immediate mode, and the other one through an indexed access.

Also, the bit addressing mechanism may access the eight-bit byte
through one of three addressing modes, as explained in the previous
paragraph.

The specific addressing modes available for each instruction are indi-
cated in the tables of the preceding chapter.

Bit Addressing

Bit addressing is generally not considered an addressing mode if ad-
dressing is defined as accessing a byte. However, whether defined as a
mode or a group of instructions, it is a valuable facility. Since it is de-
fined as an ‘‘addressing mode”’ in Zilog nomenclature, it will be so de-
scribed here. It is specific to the Z80 and was not provided on the 8080.

Bit addressing refers to the access mechanism to specified bits. The
780 is equipped with special instructions for setting, resetting and test-
ing specified bits in a memory location or a register. The specified byte
may be accessed through one of three addressing modes: register, regis-
ter-indirect, and indexed. Three bits are used within the opcode to select
one of ¢ight bits.
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USING THE Z80 ADDRESSING MODES
Long and Short Addressing

We have already used relative jump instructions in various programs
that we have developed. They are self-explanatory. One interesting
question is: What can we do if the permissibie range for branching is
not sufficient for our needs? One simple solution is to use a so called
long jump. This is simply a jump to a location which contains an abso-
lute or ““long’’ jump specification:

JRNC,§ + 3 BRANCH TO CURRENT ADDRESS
+3 IF C CLEAR
JP FAR OTHERWISE JUMP TO FAR

(NEXT INSTRUCTION)

The two-line program above will result in branching to location FAR
whenever the carry is set. This solves our long-jump problem. Let us
therefore now consider the more complex addressing modes, i.e., in-
dexing and indirection.

Use of Indexing for Sequential Block Accesses

Indexing is primarily used to address successive locations within a
table. The restriction is that the maximum length must be less than 256
so that the displacement can reside in an eight-bit index register.

We have learned to check for a character. Now we will search a table
of 100 elements for the presence of a ‘*’. The starting address for this
table is called BASE. The table has only 100 elements. The program ap-
pears below: (see flowchart on Figure 5.6):

SEARCH LD IX, BASE

LD A,’*

LD B, COUNT
TEST CP (UIX)

JR Z, FOUND

INC IX

DEC B

JR  NZ, TEST
NOTFND

An improved program will be presented below in the section on
Block Transfer.
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INITIALIZE
TOELEMENTO

[

READ NEXT
ELEMENT

YES
o4 STARFOUND

NO
Y

POINTTO
NEXT ELEMENT

NO

LAST ELEMENT?

YES

NOT FOUND

Fig. 5.6: Character Search Flowchart

A Block Transfer Routine for Fewer Than 256 Elements

We will call ““COUNT”’ the number of elements in the block to be
moved. The number is assumed to be less than 256. FROM is the base
address of the block. TO is the base of the memory area where it should
be moved. The algorithm is quite simple: we will move a word at a time,
keeping track of which word we are moving by storing its position in
the counter C. The program appears below:

BLKMOV LD
LD
LD
LD
LD
INC
INC
DEC

JR
Let us examine it:

BLKMOV LD
LD
LD

NEXT

IX, FROM
IY, TO

C, COUNT
A, (IX)
ay), A

IX

IY

C

NZ, NEXT

GET WORD

IX,FROM
IY, TO
C, COUNT

These three instructionsinitialize registers 1X, 1Y, and C respectively, as
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MEMORY

C| COUNT

X | SOURCE -

4 FROM

IX[_ DESTINATION F

Fig. 5.7: Block Transfer: Initializing the Register

illustrated in Figure 5.7. Index register IX is used as the source pointer,
and will be incremented regularly. Index register IY is used as the desti-
nation pointer, and would be incremented regularly. Register C is load-
ed with the maximum number of elements to be transferred (limited to
256 since this is an eight-bit register) and will be decremented regularly.
Whenever C decrements to zero, all elements have been transferred.
The next two instructions:

NEXT LD A, (IX)
LD dY), A

load the contents of the memory location pointed to by IX into the ac-
cumulator, then transfer it into the memory location pointed to by reg-
ister I'Y. In other words, these two instructions transfer an element of
the source block into the destination block. The two index registers are
then incremented:

INC IX
INC 1Y

And the counter register is decremented:
DEC C

Finally, as long as the counter is not 0, the program loops back to the
label NEXT:

JR  NZ, NEXT
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This is an example of the possible utilization of index registers. How-
ever, let us compare it to the same program written for another micro-
processor, the MOS Technology 6502, which is also equipped with an
indexing capability, but uses different conventions (i.e., has different
limitations on a general-purpose indexing facility).The program appears
below:

LDX #NUMBER

NEXT LDA FROM, X
STA TO, X
DEX

BNE NEXT

Without going into the details of the above program, the reader will
immediately notice how much shorter it is than the previous one. This is
because the index register X is used as a variable displacement, whereas
BASE and DEST are used as the fixed source and destination ad-
dresses.

This example should point out that although in theory indexing is a
powerful facility, it does not necessarily lead to efficient coding, due to
the addressing limitations imposed on it in the case of various micro-
processors. Truly general-purpose indexing requires the possibility of a
16-bit displacement or address field as well as a 16-bit index register.

However, it should be noted that this specific problem is solved, in
the Z80 by the presence of specialized instructions. A general-purpose
block transfer will now be described which can be implemented in just
four instructions. However, to be fair to the Z80, let us suggest addi-
tional exercises for the reader:

Exercise 5.1: Write the block transfer program for the Z80 in the style
of the above program for the 6502, i.e., assuming that the index register
contains a displacement. Assume that the source and the destination
block are located in page 0, i.e., at addresses 0 to 256. Naturally, it will
be assumed that the number of elements within each block is small
enough that they do not overlap.

Exercise 5.2: Assume now that the source and the destination blocks are
located anywhere in the memory, except that they are both within the
same page. Rewrite the above program in that case.

Generalized Block Transfer Routine (More Than 256 Elements)

The register allocation and the memory map are shown in Figure 5.8.
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The program is shown below:

LD BC, COUNT NUMBER OF BYTES

LD DE, TO DESTINATION ADDRESS
LD HL, FROM START ADDRESS

LDIR TRANSFER ALL BYTES

Memory used: 11 bytes
Timing: 21 cycles/byte

The first instruction is:
LD BC, COUNT

It loads the number of elements to be transferred (a 16-bit value) into
the register pair BC. The next two instructions initialize the register pair
DE and the register pair HL respectively:

LD DE, TO
LD HL, FROM

Finally the fourth instruction:
LDIR

performs the complete transfer.

LDIR is an-automated block-transfer instruction. Its power should
be obvious from this exampie. LDIR results in the following sequence:
The contents of the memory location pointed to by H and L are trans-
ferred into the memory location pointed to by DE: (DE) =(HL). Next,
DE is incremented: DE = DE + 1. Then, HL is incremented: HL =
HL + 1. Next, BC is decremented: BC = BC —1. If BC becomes 0, the
instruction is terminated. Otherwise, the instruction is repeated.

1]
COUNTER c
D DESTINATION -E FROM
H SOURCE =
REGISTERS COUNT

TO

MEMORY
Fig. 5.8: A Block Transfer-Memory Map
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The value and power of the LDIR instruction should be apparent at
this point without further comments. Similarly, our search for the char-
acter “‘star’’can be improved by the use of an automated instruction,
CPIR, special to the Z80. The corresponding program appears below:

LD A,*

LD BC, COUNT

LD HL, STRING
STAR CPIR

JR Z, STAR
NOSTAR ——

The first instruction loads the accumulator with the code for the
character star. Next, the register pair BC is initialized to the count of
the number of words to be searched within the block:

LD BC, COUNT

The register pair H and L is set to the starting address of the block to
be searched (STRING). The automated instruction is then executed:

LD HL, STRING
CPIR

The CPIR instruction is an automated compare instruction. The con-
tents of the memory location specified by the address contained in H
and L is compared to the contents of the accumulator. If the compari-
son succeeds, then Z of the flags register will be set to 1. Then, the reg-
ister pair H and L is decremented. The instruction is repeated until
either the pair BC goes to 0 or else the comparison succeeds. After the
instruction CPIR is executed, it is therefore necessary to test the Z flag
to determine whether the comparison has succeeded (the CPIR might
have looped through 64K words without success in the extreme case).
This is the purpose of the last instruction of the program:

JR Z, STAR

Exercise 5.3: Rewrite the above program so that a search proceeds
backwards. (Hint: Use the CPIR instruction) “Continue the block
transfer until star is found.”

Let us now develop a program combining the features of the two pre-

‘vious ones. We will implement the block transfer from location FROM
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to location TO, which shall stop automatically whenever an escape
character, “‘star’’, is found. The program appears below:

LD  BC, COUNT
LD HL, FROM

LD DE, TO
LD A* DECIMITER
TEST CP (FROM) COMPARE WITH MEMORY

CHARACTER

JR  Z,END END IF SUCCESS

LD1 TRANSFER CHARACTER AND
UPDATE POINTERS AND
COUNT

JR  PE, TEST KEEP TESTING UNLESS DONE

P INDICATES WHETHER BC = 0

The first three instructions of the program perform the usual initialj-
zation, setting up the counter registers and the source and destination
pointers:

LD BC, COUNT
LD HL, FROM
LD DE, TO

The star character is deposited, “‘as usual’’ into the accumulator, so
that it can be compared to the character read from a memory location.

LD A, ¢
This is exactly what is done by the next instruction:
TEST CP (FROM)

The success or failure of the comparison is determined by testing the Z
bit. The Z bit will have been set if the comparison has succeeded. This is
performed by the next instruction:

JR Z, END
The next instruction is an automated transfer instruction:
LDI

This instruction transfers the character, and updates the pointers and
the count in a single instruction. LDI transfers the contents pointed to
by H and L into the memory location pointed to by D and E: (DE) =
(HL). It increments DE and HL:

DE = DE + 1
HL = HL + 1
455



PROGRAMMING THE Z80

Finally, it decrements BC: BC becomes BC —1. The particularity of
this instruction is that the P/V flag is set if BC decrements to “‘0’’ and
reset otherwise. This will be explicitly tested by the last instruction in
the program to determine whether exit should occur:

JR PE, TEST
Adding Two Blocks

A program will be developed here to add . element! by'element two
blocks starting respectively at addresses BLK1, and BLK2, and having
equal numbers of elements, COUNT. The program is shown below:

BLKADD LD IX, BLKI
LD 1Y, BLK2
LD B, COUNT

XOR A

LOOP LD A, (X +0)
ADC A, (Y +0)
LD Ix), A
DEC IX
DEC 1Y
DEC B

JR NZ, LOOP

B COUNTER

IX BLK 1
i
iy BLK 2
REGISTERS - BLK 1
BLK 2

A

MEMORY

Fig. 5.9: Adding Two Blocks: BLK1=BLK1 + BLK2
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The memory layout is shown in Figure 5.9. The program is straightfor-
ward. The number of elements to be added is loaded into the counter
register B, and the two index registers IX and 1Y are initialized to their
values BLK1 and BLK2:

BLK ADD LD IX, BLKI
LD 1IY, BLK2
LD B, COUNT

The carry bit is then cleared in anticipation of the first addition:

XOR A
The first element is loaded into the accumulator:
LOOP LD A, (X + 0)

The corresponding element of BLK2 is then added to it:
ADC A, (Y +0)

and finally saved into the element of BLK1:
LD (IX), A

The two pointer registers X and Y are decremented:

DEC IX
DEC 1Y

as well as the counter register:
DEC B

As long as the counter register is not 0, the addition loop is executed:
JR NZ, LOOP

Exercise 5.4: Can you use the above program to perform a 32-bit addi-
tion?

Exercise 5.5: Can you use the above program to perform a 64-bit addi-
tion?

Exercise 5.6: Modify the above program so that the result is stored in a
separate block starting at address BLK3.

Exercise 5.7: Modify the above program to perform a subtraction
rather than an addition.
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Exercise 5.8: Modify the original program above so that BLKI and
BLK?2 are at the top of each block rather than the botiom (see Fig.5.10).

FROM -t
_ TRANSFER
COUNT =N SOURCE BLOCK
A X
ir ELEMENT l l COUNTER ]
TO wrrtom
N1 DESTINATION BLOCK

Fig. 5.10: Memory Organization for Block Transfer

SUMMARY

A complete description of addressing modes has been presented. It
has been shown that the Z80 offers many possible mechanisms, and the
specific addressing modes available on the Z80 have been analyzed.
Finally, several application programs have been presented to demon-
strate the value of the various addressing mechanisms. Programming
the Z80 efficiently requires an understanding of these mechanisms.
They will be used throughout the programs in the remainder of this
book.

EXERCISES

5.9: Write a program to add the first 10 bytes of a table stored at loca-
tion “BASE’”’. The result will have 16 bits. (This is a checksum com-
putation).

5.10: Can you solve the same problem without using the indexing
mode?

458



ADDRESSING TECHNIQUES

5.11: Reverse the order of the 10 bytes of this table. Store the result
at address “REVER’’.

5.12: Search the same table for its largest element. Store it at memory
address “LARGE”’,

5.13: Add together the corresponding elements of three tables, whose
bases are BASEI, BASE2, BASE3. The length of these tables is stored
in page zero at address “LENGTH .
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INPUT/OUTPUT TECHNIQUES

INTRODUCTION

We have learned so far how to exchange information between the
memory and the various registers of the processor. We have learned to
manage the registers and to use a variety of instructions to manipulate
the data. We must now learn to communicate with the external world.
This is called input/output.

Input refers to the capture of data from outside peripherals (key-
board, disk, or physical sensor). Output refers to the transfer of data
from the microprocessor or the memory to external devices such as a
printer, a CRT, a disk, or actual sensors and relays.

We will proceed intwo steps. First, we will learn to perform the input/
output operations required by common devices. Secondly, we will
learn to manage several input/output devices simultaneously, i.e., to
schedule them. This second part will cover, in particular, polling vs. in-
terrupts.

INPUT/OUTPUT

In this section we will learn to sense or to generate simple signals,
such as pulses. Then we will study techniques for enforcing or measur-
ing correct timing. We will then be ready for more complex types of in-
put/output, such as high-speed serial and parallel transfers.

The Z80 Input/QOutput Instructions

The Z80 is equipped with a special set of input and output instruc-
tions. Most eight-bit microprocessors are not equipped with a special
set of input and output instructions, and use the general instruction set
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on input/output devices. The Z80, like the 8080, is equipped with basic
input and output instructions. However, the Z80 is also equipped with
additional 170 instructions. These will be described in more detail here
in order to facilitate understanding of the programs that will be pre-
sented throughout this section.

The basic input and output instructions are respectively: IN A, (n)
and OUT (n),A. These two instructions are inherited from the 8080.
They will respectively read or write one byte between the selected port
and the accumulator. The actual addressing process is such that the 1,0
device address “‘n’’ is gated on lines AO through A7 of the address bus),
while the contents of the accumulator appear on address lines A8 through
A15. When only 256 devices are addressed, it may be necessary to zero
the contents of the accumulator explicitly if any of the address lines A8
through A15 may be decoded by an 1/0 device. In the simpie examples
that follow, we will assume that fewer than 256 devices are present and
that they are not connected to addresses A8 through A1S5, so that it will
not be necessary to zero the contents of the accumulator explicitly, for
example prior to using the IN instruction.

A special input instruction: IN r, (C), allows using the contents of
register C as the I/0 device address. When using this instruction, the
contents of register B automatically provide the top part of the address
(A8 through A1S5). The specified register r is loaded from the specified
address. ‘‘r’’ may be any of the usual seven generai-purpose registers.

Generate a Signal

In the simplest case, an output device will be turned off (or on) from
the computer. In order to change the state of the output device, the pro-
grammer will merely change a level from a logical *‘0’’ to a logical *‘17",
or from ‘1’ to “‘0”’. Let us assume that an external relay is connected
to bit ‘0’ of a register called ““OUT1’". In order to turn it on, we will
simply write a ‘1’ into the appropriate bit position of the register. We
assume here that OUT]1 represents the address of this output register
within our system. A program which will turn the relay on is:

TURNON LD A, 00000001B LOAD PATTERN INTO A
OUT (OUT1), A OUTPUT IT TO DEVICE

where OUT is the output instruction.

We have assumed that the state of the other seven bits of the register
OUT]1 is irrelevant. However, this is often not the case. These bits
might be connected to other relays. Let us, therefore, improve this sim-
ple program. We want to turn the relay on, without changing the state

461



PROGRAMMING THE Z80

of any other bit within this register. We will assume that it is possible to
read and write the contents of this register. Our improved program now
becomes:

TURNON IN A, (OUTD) READ CONTENTS OF OUT!
OR  00000001B FORCE BIT “0” TO “1” IN A
OouT (OUThH, A

The program first reads the contents of location OUT]I, then per-
forms an inclusive OR on its contents. This only changes bit position 0
to ‘1”7, and leaves the rest of the register intact. (For more details on
the OR operation, refer to Chapter 4.) This is illustrated by Figure 6.1.

BEFORE AFTER

DATA BUS

RELAY

outt

Fig. 6.1: Turning on a Relay

Pulses

Generating a pulse is accomplished exactly as in the case of the leve/
above. An output bit is first turned on, then later turned off. This re-
sults in a pulse. This is illustrated in Figure 6.2. This time, however, an
additional problem must be solved: one must generate the pulse for the
correct length of time. Let us, therefore, study the generation of a com-
puted delay.

CPy QUTPUT PORT SIGNAL
REGISTE!

0 b—

0 b <— N USEC -~

i
|

[ i et T
Qe t (Rt

THE PROGRAM: SELECT OUTPUT PORT

LOAD QUIPUT PORT REGISTER WITH PATTERN

WAIT (LOOP FOR N USEC)

LOAD OUTPUT FORT WITH ZERO

RETURN

Fig. 6.2: A Programmed Puise
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Delay Generation and Measurement

A delay may be generated by software or by hardware methods. We
will here study the way to perform it by program, and later show how it
can also be accomplished with a hardware counter, called a program-
mable interval timer (PIT).

Programmed delays are achieved by counting. A counter register is
loaded with a value, then is decremented. The program loops on itself
and keeps decrementing until the counter reaches the value ““0’". The
total length of time used by this process will implement the required
delay. As an example, let us generate a delay of 67 clock cycles:

DELAY LD A,S A 1S COUNTER
NEXT DEC A DECREMENT
JP NZ,NEXT NEXT TEST

This program loads A with the value 5. The next instruction decre-
ments A and the following instruction will cause a branch to NEXT to
occur as long as A does not decrement to “‘0’’. When A finally decre-
ments to zero, the program will exit from this loop and execute what-
ever instruction follows. The iogic of the program is simple and appears
in the flowchart of Figure 6.3.

Let us now compute the effective delay which will be implemented by
the program. In the Appendix section of the book, we will look up the
number of cycles required by each of these instructions:

LDA in the immediate mode, requires nine clock cycles. DEC will use
four cycles. Finally, JP will use seven cycles except during the last itera-
tion, where it will use 12 cycles. When looking up the number of cycles
for JP in the table, verify that two possibilities exist: if the branch does
not occur, JP will only require seven cycles. If the branch does succeed,
which will usually be the case during the ioop, then 12 cycles are re-
quired.

The timing is, therefore, seven cycles for the first instruction, plus 11
cycles for the next two, multipiied by the number of times the loop will
be executed, plus an extra five-cycle delay for the last unsuccessful JP:

Delay = 7 + 11 X 5 + 5 = 67 cycles

Assuming a .5 microsecond cycle, this programmed delay will be 33.5
microseconds.
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I

COUNTER=VALUE

—

DECREMENT COUNTER

ourt

Fig. 6.3: Basic Delay Flowchart

The delay loop which has been described is used by most input/output
programs. It should be well understood. Try to do the following exercises:

Exercise 6.1: What are the maximum and the minimum delays which
can be implemented with these three instructions?

Exercise 6.2: Modify the program to obtain a delay of about 100 micro-
seconds.

If one wishes to implement a longer delay, a simple solution is to add
extra instructions in the program, between DEC and JP. The simplest
way to do so is to add NOP instructions. (The NOP does nothing for
four cycles.)

Longer Delays

Generating longer delays by software can be achieved through using
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a wider counter. A register pair can be used to hold a 16-bit count. To
simplify, let us assume that the lower count is “‘0’". The lower byte will
be loaded with ‘‘255"", the maximum count, then go through a decre-
mentation loop. Whenever it is decremented to “‘0’’, the upper byte of
the counter will be decremented by 1. Whenever the upper byte is decre-
mented to the value *‘0”’, the program terminates. If more precision is
required in the delay generation, the lower count can have a non-null
value. In this case, we would write the program just as explained and
add at the end the three-line delay generation program, which has been
described above.

A 24-bit delay program appears below:

DEL24 LD B, COUNTH COUNTER HIGH (8 BITS)

DEL16 LD DE, -1

LOOPA LD HL, COUNTL COUNTER LOW

LOOPB ADD HL, DE DECREMENT IT
JR C, LOOPB GO ONUNTIL NULL
DINZ LOOPA DECREMENT B AND JUMP

Note that DE is loaded with ‘=1, and used to decrement the 16-bit
counter HL.

Naturally, still longer delays could be generated by using more than
three words. This is analogous to the way an odometer works on a car.
When the right-most wheel goes from ““9”° to *“0”’, the next wheel to the
left is incremented by 1. This is the general principle when counting
with multiple discrete units.

However, the main disadvantage of this method is that when one is
counting delays, the microprocessor will be doing nothing else for hun-
dreds of milliseconds or even seconds. If the computer has nothing else
to do, this is perfectly acceptable. However, in general the microcom-
puter should be available for other tasks, so that longer delays are nor-
mally not implemented by software. In fact, even short delays may be
objectionable in a system if it is to provide some guaranteed response
time in given situations. Hardware delays must then be used. In addi-
tion, if interrupts are used, timing accuracy may be lost if the counting
loop can be interrupted.

Exercise 6.3: Write a program to implement a 100 ms delay (typical of a
Teletype).

Hardware Delays

Hardware delays are implemented by using a programmable interval
timer or “‘timer’’ in short. A register of the timer is loaded with a value.
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The difference is that the timer will automatically decrement the
counter periodically. The period can usually be adjusted or selected by
the programmer. Whenever the timer has decremented to ‘0’7, it will
normally send an interrupt to the microprocessor. It may also set a
status bit which can be sensed periodically by the computer. The use of
interrupts will be explained later in this chapter.

Other timer operating modes may include starting from ‘“0’" and
counting the duration of the signal, or, counting the number of pulses
received. When functioning as an interval timer, the timer is said to
operate in a one-shot mode. When counting pulses, it is said to operate
in a pulse counting mode. Some timer devices may even include mul-
tiple registers and a number of optional facilities which the programmer
can select.

Sensing Pulses

The problem with sensing pulses is the reverse of that of generating
pulses, and includes one more difficulty: whereas an output pulse is
generated under program control, input pulses occur asynchronously
with the program. In order to detect a pulse, two methods may be used:
polling and interrupts. Interrupts will be discussed later in this chapter.

Let us now consider the polling technique. Using this technique, the
program reads the value of a given input register continuously, testing a
bit position, perhaps bit 0. It will be assumed that bit 0 is originally
““0’’. Whenever a pulse is received, this bit will take the value *“1’’. The
program continuously monitors bit 0 until it takes the value “‘1’’. When
a ‘1’ is found, the pulse has been detected. The program appears
below:

POLL IN A, (INPUT) READ INPUT REGISTER
ON BIT 0, A TEST FOR 0
JR Z, POLL KEEP POLLING IF 0

Conversely, let us assume that the input line is normally “‘1’" and that
we wish to detect a ““0’". This is the usual case for detecting a START
bit, when monitoring a line connected to a Teletype. The program ap-
pears below:

POLL IN A, (INPUT) READ INPUT REGISTER
BIT 0. A SET ZFLAG
JR NZ, POLL TEST IS REVERSED
START
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Monitoring the Duration

Monitoring the duration of the pulse may be accomplished in the
same way as computing the duration of an output pulse. Either a hard-
ware or a software technique may be used. When monitoring a pulse by
software, a counter is regularly incremented by 1, then the presence of
the pulse is verified. If the pulse is still present, the program loops upon
itself. Whenever the pulse disappears, the count contained in the
counter register is used to compute the effective duration of the pulse.
The program appears below:

DURTN LD B,0 CLEAR COUNTER
AGAIN IN A, (INPUT) READ INPUT

BIT 0, A MONITOR BIT 0

JR  Z, AGAIN WAIT FOR A “1”
LONGER INC B INCREMENT COUNTER

IN A, (INPUT) CHECK BIT 0

BIT 0, A

JR NZ, LONGER WAIT FOR A “0”

Naturally, we assume that the maximum duration of the pulse will
not cause register B to overflow. If this were the case, the program
would have tobe changed to takethat into account (or elseit wouldbe a
programming error!).

Since we now know how to sense and generate pulses, let us capture
or transfer larger amounts of data. Two cases will be distinguished:
serial data and parallel data. Then we will apply this knowledge to ac-
tual input/output devices.

PARALLEL WORD TRANSFER

It is assumed here that eight bits of transfer data are available in par-
allel at address “INPUT”’ (see Fig. 6.4). The microprocessor must read
the data word at this location whenever a status word indicates that it is
valid. The status information will be assumed to be contained in bit 7 of
address ““‘STATUS”’. We will here write a program which will read and
automatically save each word of data as it comes in. To simplify, we
will assume that the number of words to be read is known in advance
and is contained in location “COUNT”". If this information were not
available, we would test for a so-called break character, such as a
rubout, or perhaps the character “‘*’’. We have learned to do this al-
ready.
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COUNT |2

VALID

STATUS |-

8BITS

<::] 1/0 DEVICE

7 0

Fig. 6.4: Parallel Word Transfer - The Memory

The flowchart appears in Figure 6.5. 1t is quite straightforward. We
test the status information until it becomes ‘17", indicating that a word
is ready. When the word is ready, we read it and save it at an appropri-
ate memory location. We then decrement the counter and test whether
it has decremented to *‘0’". If so, we are finished; if not, we read the
next word. A simple program which implements this algorithm appears

below:

PARAL LD
LD
WATCH IN

BIT
JP

IN
PUSH

468

A, (COUNT) READ COUNT INTO A

B, A B IS COUNTER

A, (STATUS) LOOK FOR ‘DATA READY'
TRUE

7, A BIT 7 IS ‘1" IF DATA READY

Z, WATCH DATA VALID?

A, (INPUT) READ DATA

AF SAVE DATA INTO STACK
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DEC B DECREMENT COUNT
JP NZ, WATCH DO IT UNTIL ZERO

It is assumed that the ‘‘data ready’” flag is automatically cleared when
STATUS is read, as is usually the case on a device controller.
The first two instructions initialize the counter register B:

PARAL LD A, (COUNT)
LD B, A
Note that there is no easy way to load B only from memory. One must
either load A, then transfer its contents to B, or load B and C
simultaneously.

POLLING OR SERVICE REQUEST

|

READ COUNT

TRANSFER
WORD

v

DECREMENT
COUNTER

NO

COUNT =07

YES

ouTt

Fig. 6.5: Parallel Word Transfer: Flowchart
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The next three instructions of the program read the status informa-
tion and cause a loop to occur as long as bit seven of the status register
is *“0””. (It is the sign bit, i.e., bit N.)

IN A, (STATUS)
BIT 7, A “IN’’ DOES NOT SET THE FLAGS
JP Z, WATCH

When JP fails, data is valid and we can read it:
IN A, (INPUT)

The word has now been read from address INPUT where it was, and
must be saved. Assuming that a sufficient stack area is available, we
can use:

PUSH AF

which saves A (and F) in the stack. If the stack is full, or the number of
words to be transferred is large, we could not push them on the stack
and we would have to transfer them to a designated memory area, us-
ing, for example, an indexed instruction. However, this would require
an extra instruction to increment or decrement the index register.
PUSH is faster (only 11 clock cycles).

The word of data has now been read and saved. We will simply decre-
ment the word counter and test whether we are finished:

DEC B
Jp NZ,WATCH

We keep looping until the counter eventually decrements to “‘0”’.

This nine-instruction program can be called a benchmark. A bench-
mark program is a carefully optimized program designed to test the
capabilities of a given processor in a specific situation. Parallel trans-
fers are one such typical situation. This program has been designed for
maximum speed and efficienty. Let us now compute the maximum
transfer speed of this program. We will assume that COUNT is con-
tained in memory. The duration of every instruction is determined by
inspecting the table at the end of the book and is found to be the follow-
ing:

PARAL LD A, (COUNT) i3
LD B, A 4
WATCH IN A, (STATUS) 11
BIT 17,A 8
JP Z, WATCH  7/12

-
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IN A, (INPUT) 11
PUSH AF H
DEC B 4
JP NZ, WATCH 7/12

The minimum execution time is obtained by assuming that data is
available every time that we sample STATUS. In other words, the first
JP will be assumed to fail every time. Timing is then:

13+4+ (1 +8+7+ 11 +11 +4 + 7) + COUNT

Neglecting the first 17 cycles necessary to initialize the counter regis-
ter, the time used to transfer one word is 59 clock cycles or 29.5 micro-
seconds with a 2 MHz clock.

The maximum data transfer rate is, therefore:

—— = 33 K bytes per second
29.5 (10%)

Exercise 6.4: Assume that the number of words to be transferred is
greater than 256. Modify the program accordingly and determine the
impact on the maximum data transfer rate.

Exercise 6.5: Modify this program in order to try io improve its speed:
1—using JR instead of JP
2—using DINZ
3—using INIR or INDR

Was the above program truly optimal?

We have now learned to perform high-speed parallel transfers. Let us
consider a more complex case.

BIT SERIAL TRANSFER

A serial input is one in which the bits of information (0’s or 1’s) come
in successively on a line. These bits may come in at regular intervals.
This is normally called synchronous transmission. Or, they may come
as bursts of data at random intervals. This is called asynchronous trans-
mission. We will develop a program which can work in both cases. The
principle of the capture of sequential data is simple: we will watch an
input line, which will be assumed to be line 0. When a bit of data is de-
tected on this line, we will read the bit in, and shift it into a holding reg-
ister. Whenever eight bits have been assembled, we will preserve the
byte of data into the memory and assemble the next one. In order to
simplify, we will assume that the number of bytes to be received is
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known in advance. Otherwise, we might, for example, have to watch
for a special break character, and stop the bit-serial transfer at this
point. We have learned to do that. The flowchart for this program ap-
pears in Figure 6.6. The program appears below:

SERIAL LD C.0 CLEAR INPUT WORD
LD A, (COUNT) LOAD B WITH BYTE COUNT
LD B, A

LOOP IN A, (INPUT) READ PORT
BIT 7, A BIT 7 IS STATUS, BIT 0 IS DATA

JR Z, LOOP WAIT FOR A “1”

SRL A SHIFT DATA BIT INTO CARRY
RL C SAVE INPUT B INTO C

JR NC, LOOP  CONTINUE UNTIL 8 BITS IN

POLLING OR SERVICE REQUEST

{

READ WORD COUNT

BIT READY? NO

STORE BIT
INCREMENT COUNTER

- WORD ASSEMBLED? >

YES

STORE WORD
RESET BIT COUNTER
DECREMENT WORD COUNT

. WORD COUNT=0? __>>

YES

DONE

Fig. 6.6: Bit Serial Transfer—Flowchart
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PUSH BC SAVE WORD IN STACK
LD C, 0lH RESET MARKER BIT
DEC B DECREMENT BYTE COUNTER

JR NZ, LOOP  ASSEMBLE NEXT WORD

This program has been designed for efficiency and will use new tech-
niques which we will explain (see Fig. 6.7).

The conventions are the following: memory location COUNT is as-
sumed to contain a count of the number of words to be transferred.
Register C will be used to assemble eight consecutive bits coming in.
Address INPUT refers to an input register. It is assumed that bit posi-
tion 7 of this register is a status flag, or a clock bit. When it is ‘0", data
is not valid. When itis ““1"", the data is valid. The data itself will be as-
sumed to appear in bit position 0 of this same address. In many in-
stances, the status information will appear on a different register than
the data register. It should be a simple task, then, to modify this pro-
gram accordingly. In addition, we will assume that the first bit of data
to be received by this program is guaranteed to be a “‘1’’. It indicates
that the real data follows. If this were not the case, we will later see an
obvious modification to take care of it. The program corresponds ex-
actly to the flowchart of Fig. 6.6. The first few lines of the program im-
plement a waiting loop which tests whether a bit is ready. To determine
whether a bit is ready, we read the input register, then test the zero bit
(Z). As long as this bit is “‘0”’, the instruction JR will succeed, and we
will branch back to the loop. Whenever the status (or clock) bit
becomes true (‘‘1’"), then JR willfail and the next instruction will be
executed.

This initial sequence of instructions corresponds to arrow 1 in Fig.
6.7.

At this point, the accumulator contains a ‘1’ in bit position 7 and
the actual data bit in bit position 0. The first data bit to arrive is going
tobea “‘I’". However, the following bits may be either “‘0’’ or “‘1’". We
now wish to preserve the data bit which has been collected in position 0.
The instruction:

SRL A

shifts the contents of the accumulator right by one position. This causes
the right-most bit of A, which is our data bit, to fall into the carry bit.
We will now preserve this data bit into register C (this process is illus-
trated by arrows 2 and 3 in Fig. 6.7):

RL C
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COUNT l X

STATUS
OR
CLOCK

SERIAL
DATA
IN

INPUT

Fig. 6.7: Serial-to-Parallel: The Registers

The effect of this instruction is to read the carry bit into the right-most
bit position of C. At the same time, the left-most bit of C falls into the
carry bit. (If you have any doubts about the rotation operation, refer to
Chapter 4!)

It is important to remember that a rotation operation will both save
the carry bit, here into the right-most bit position, and also recondition
the carry bit with the value of bit 7.

Here, a *‘0’" will fall into the carry. The next instruction:

JR NC, LOOP

tests the carry and branches back to address LOOP as long as the carry
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is ““0”". This is our automatic bit counter. It can readily be seen that, as a
result of the first RL, C will contain ‘00000001 "". Eight shifts later, the
“I"" will finally fall into the carry bit and stop the branching. This is an
ingenious way to implement an automatic loop counter without having
Lo waste an instruction to decrement the contents of an index register,
This technique is used in order to shorten the program and improve its
performance.

When JR NC finally fails, 8 bits will have been assembled into C.
This value should be preserved in the memory. This is accomplished by
the next instruction (arrow4 on Fig. 6.7):

PUSH BC

We are here saving the contents of B and C into the stack. Saving into
the stack is possible only if there is enough room in the stack. Provided
that this condition is met, it is usually the fastest way to preserve a word
in the memory, even though we save an unnecessary register (B). The
stack pointer is updated automatically. If we were not pushing a word
in the stack, we would have to use one more instruction to update a
memory pointer. We could equivalently perform an indexed addressing
operation, but that would also involve decrementing or incrementing
the index, using extra time.

After the first word of data has been saved, there is no longer any
guarantee that the first data bit to come in will be a *“1'". It can be any-
thing. We must, therefore, reset the contents to ““00000001"’ so that we
can keep using it as a bit counter. This is performed by the next instruc-
tion:

LD C,01H

Finally, we will decrement the word counter, since a word has been
assembled, and test whether we have reached the end of the transfer.
This is accomplished by the next two instructions:

DEC B
JR NZ, LOOP

The above program has been designed for speed, so that one may
capture a fast input stream of data bits. Once the program terminates,
it is naturally advisable to immediately read away from the stack the
words that have been saved there and transfer them elsewhere into the
memory. We have already learned to perform such a block transfer in
Chapter 2.
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Exercise 6.6: Compute the maximum speed at which this program will
be able to read serial bits. Look up the number of cycles required by
every instruction in the table at the end of this book, then compute the
time which will elapse during execution of this program. To compule
the length of time which will be used by a loop, simply multiply the
total duration of this loop, expressed in microseconds, by the number
of times it will be executed. Also, when computing the maximum speed,
assume that a data bit will be ready every time that the input location is
sensed.

This program is more difficult to understand than the previous ones.
Let us look at it again (refer to Fig. 6.6) in more detail, examining some
trade-offs.

A bit of data comes into bit position 0 of “INPUT”’ from time to
time. There might be, for example, three “‘Is’" in succession. We must,
therefore, differentiate between the successive bits coming in. This is
the function of the “‘clock’ signal.

The clock (or STATUS) signal tells us that the input bit is now valid.
Before reading a bit, we will therefore first test the status bit. If the
status is ““0”’, we must wait. If it is *1”", then the data bit is good.

We assume here that the status signal is connected to bit 7 of register
INPUT.

Exercise 6.7: Can you explain why bit 7 is used for status, and bit 0 for
data? Does it matter?

Once we have captured a data bit, we want to preserve it in a safe
location, then shift it left, so that we can get the next bit.

Unfortunately, the accumulator is used to read and test both data
and status in this program. If we were to accumulate data in the accu-
mulator, bit position 7 would be erased by the status bit.

Exercise 6.8: Can you sugges! a way (o lest status without erasing the
contents of the accumulator (a special instruction)? If this can be done,
could we use the accumulator to accunulate the successive bits coming
in? Can you improve speed by using an ‘‘automated jump’’?

Exercise 6.9: Rewrite the program, using the accumulator to store the
bits coming in. Compare it to the previous one in terms of speed and
number of instructions.

Let us address two more possible variations.
We have assumed that, in our particular example, the very first bit to
come in would be a special signal, guaranteed to be *‘1”’. However, in
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general, it may be anything.

Exercise 6.10: Modify the program above, assuming thai the very first
bit to come in is valid data (not to be discarded), and can be ‘0’ or
17 Hint: our “*bit counter’” should still work correctly, if you initial-
i1ze it with the correct value.

Finaily, we have been saving the assembled word in the stack, to gain
time. We could naturally save it in a specified memory area.

Exercise 6.11: Modify the program above, and save the assembled word
in the memory area starting at BASE.

Exercise 6.12: Modify the program above so that the transfer will stop
when the character 'S’ is detected in the Input stream.

The Hardware Alternative

As usual for most standard input/output algorithms, it is possible to
implement this procedure by hardware. The chip is called a UART. It
will automatically accumulate the bits. However, when one wishes to
reduce the component count, this program, or a variation of it, will be
used instead.

Exercise 6.13: Modify the program, assuming that data is available in bit
position 0 of location INPUT, while the status information is available
in bit position 0 of address INPUT + 1.

BASIC I/0 SUMMARY

We have now learned to perform elementary input/output opera-
tions as well as to manage a stream of parallel data or serial bits. We are
now ready to communicate with real input/output devices.

COMMUNICATING WITH INPUT/OUTPUT DEVICES

In order to exchange data with input/output devices, we will first
have to ascertain whether data is available, if we want to read it; or
whether the device is ready to accept data, if we want to send it. Two
procedures may be used: handshaking and interrupts. Let us study
handshaking first.

Handshaking

Handshaking is generally used to communicate between any two
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MPU

READY?
ERLEONE

{READ
SIATUS)

YES/NO

STATUS
REGISTER

DATA

—

OuUTPUT
DEVICE

QuiPuT
REGISIER

170 CHIP

Fig. 6.8: Handshaking (Qutput)

asynchronous devices, i.e., between any two devices which are not syn-
chronized. For example, if we want to send a word to a parallel printer,
we must first make sure that the input buffer of this printer is available.
We will, therefore, ask the printer: Are you ready? The printer will say
“‘yes’” or “‘no.”" If it is not ready we will wait. If it is ready, we will send
the data (see Fig. 0.8).

DATA

—

NPUT
REGISIER
STATUS
REGISTER

Fig. 6.8a: Handshaking (Input)

INPUT
MPU DEVICE

CHARACTER
READY?

YES/NQ

Conversely, before reading data from an input device, we will verify
whether the data is valid. We will ask: ““Is data valid?’" And the device
will tell us “‘yes’” or “‘no.”” The ‘‘ves or no’’ may be indicated by status
bits, or by other means (see Fig. 6.8a).

As an analogy, whenever you wish to exchange information with
someone who is independent and might be doing something else at the
time, you should ascertain that he is ready to communicate with you.
The usual rule of courtesy is to shake his hand. Data exchange may then
follow. This is the procedure normally used in communicating with in-
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put/output devices.
Let us now illustrate this procedure with a simple example.

Sending a Character To The Printer

The character will be assumed to be contained in memory location
CHAR. The program to print it appears below:

WAIT IN A, (STATUS)
BIT 7, A TEST IF READY
JR Z, WAIT OTHERWISE WAIT

LD A, (CHAR) GET CHARACTER
OUT (PRNTD), A PRINTIT
JR WAIT GO FOR NEXT

The print program is straightforward and uses the handshaking pro-
cedure which has been described above. The data paths are shown in
Figure 6.9.

STATUS
A l\/
1 H
CHAR DATA "X } N !
PRNTD
PRINTER
C L DATA ]

MEMORY 780

Fig. 6.9: Printer—Data Paths

The character (called DATA) is located at memory location CHAR.
First, the status of the printer is checked. Whenever bit 7 of the status

479



PROGRAMMING THE Z80

register becomes 1, it indicates that the printer is ready for output, i.e.,
its output buffer is available. At this point, the character is loaded into
the accumulator, then output to the printer, via the accumulator. As
long as the status bit remains 0, the program will remain in a loop,
called WAIT in the program.

Exercise 6. 14: How many instructions would be saved in the above pro-
gram if it were possible 10 load data directly into register C as well as
output the contents of register C directly?

Exercise 6.15: When using an actual printer, it is usually necessary to
send a start order before using the device. Modify this program to gen-
erate such an order, assuming that the start command is obtained by
writing a 1 in bit position 0 of the STATUS register, which is assumed
to be bidirectional.

Exercise 6.16: If the BIT instruction were not available, could you use
another instruction instead, in line 4 of the program? If so, explain the
advantage of using the BIT instruction, if any.

Exercise 6.17: Modify the program above to print a string of n charac-
ters, where n will be assumed to be less than 255.

Exercise 6.18: Modify the above program to print a string of characters
until a “‘carriage-return’’ code is encountered.

Let us now complicate the output procedure by requiring a code con-
version and by outputting to several devices at a time:

Qutput To a Seven-Segment LED

A traditional seven-segment light-emitting diode (LED) may display
the digits “‘0’’ through *‘9’", or even ‘0’ through ‘“‘F’’ hexadecimal by
lighting combinations of its 7 segments. A seven-segment LED is shown
in Figure 6.10. The characters that may be generated with this LED
appear in Figure 6.11.

The segments of an LED are labeled ““a” through ‘g’ in Figure 6.10.

For example, “‘0’" will be displayed by lighting the segments abcdef.
Let us assume, now, that bit ‘0’ of an output port is connected to seg-
ment ‘‘a’’, that I’ is connected to segment ‘‘b’’, and so on. Bit 7 is
not used. The binary code required to light up fedcba (to display ¢‘0”")
is, therefore, “‘0111111"". In hexadecimal this is *‘3F”’. Do the follow-
ing exercise.
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Fig. 6.10: Seven-Segment LED
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Fig. 6.11: Hexadecimal Characters Generated
with a Seven-Segment LED
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Exercise 6.19: Compute the seven-segment equivalent for the hexadeci-
mal digits *‘0”’ through “‘F”°. Fill out the table below:

LED code x| LEX code x| LED code x| LED code

3F

"EH?JUO%

o 2> © oo

ww»—aog*'
5
qoacnu:-c?

Let us now display hexadecimal values on severa/ LED’s.

Driving Multiple LED’s

An LED has no memory. It will display the data only as long as its
segment lines are active. In order to keep the cost of an LED display
low, the microprocessor will display information on each of the LED’s
in turn. The rotation between the LED’s must be fast enough so that
there is no apparent blinking. This implies that the time spent from one
LED to the next is less than 100 milliseconds. Let us design a program
which will accomplish this. Register C will be used to point to the LED
on which we want to display a digit. The accumulator is assumed to
contain the hexadecimal value to be displayed on the LED. Our first
concern is to convert the hexadecimal value into its seven-segment rep-
resentation. In the preceding section, we have built the equivalence
table. Since we are accessing a table, we will use the indexed addressing
mode, where the displacement index will be provided by the hexadeci-
mal value. This means that the seven-segment code for hexadecimal
digit ““3”’ is obtained by looking up the third element of the table after
the base. The address of the base will be called SEGBAS. The program
appears below:

LEDS LD E A A CONTAINS HEX DIGIT
LD D, 0 USE ““DE’’ AS DISPLACEMENT
LD HL, SEGBAS USE ‘““HL” AS INDEX
ADD HL, DE TABLE ADDRESS
LD A, (HL) READ CODE FROM TABLE
LD B, 50H DELAY VALUE = ANY
LARGE NBR
OouT <), A OUTPUT FOR SET DURATION
DELAY DEC B DELAY COUNTER
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JR NZ, DELAY KEEP LOOPING

DEC C C IS PORT NUMBER
LD A, C

CP MINLED DONE FOR LAST LED?
JR NZ, OUT

LD BC, MAXLED) IF SO, RESET C TO TOP LED
ouT RET

The program assumes that register C contains the address of the LED
to be illuminated next, and that the accumulator A contains the digit to
be displayed.

The program first looks up the seven-segment code corresponding to
the hexadecimal value contained in the accumulator. Registers D and E
are used as a displacement field, and registers H and L are used as a
16-bit index register. The code for the hexadecimal digit is added to the
base address of the table:

LEDS LD E, A 7-SEGMENT CODE
LD D, 0
LD HL, SEGBAS
ADD HL, DE

A delay loop is then implemented, so that the code obtained from the
table is displayed for an appropriate duration. Here the constant ‘50"’
hexadecimal has been arbitrarily chosen:

LD A, (HL) READ CODE FROM TABLE
LD B, 50H DELAY VALUE

The delay is accomplished using a classic delay loop. The first instruc-
tion:

ouT <A

outputs the contents of the accumulator at the 1/0 port pointed to by
register C (the LED number). The next two instructions implement the
delay loop:

DELAY DEC B
JR NZ, DELAY

Once the delay has been implemented, we must simply decrement the
LED pointer, and make sure that we loop around to the highest LED
address if the smallest LED address has been reached:

DEC C
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LD A, C

CP MINLED

JR NZ, OUT

LD BC, (MAXLED)
OouT RET

It is assumed here that the above program has been written as a sub-
routine, and the last instruction is then RET:““return from subroutine’”

Exercise 6.20: It is usually necessary to turn off the segment drivers for
the LED prior to displaying the digit. Modify the above program by
adding the necessary instructions (output 00" as the character code
prior to outputiing the character).

Exercise 6.21: What would happen to the display if the DELAY label
were moved up by one line position? Would this change the timing?
Would this change the appearance of the display?

Exercise 6.22: You will notice that the first four instructions of the pro-
gram are, in fact, performing a 16-bit indexed memory access. How-
ever, it seems clumsy, without using the indexing mechanisim. Assume
that the SEGBAS address is known in advance. Call SEGBSH the
high-order part of this address, and SEGBSL the low part of this ad-
dress. Store SEGBSH in the high-order part of the IX register. Now
write the above program, using the Z80 index-addressing mechanism,
and using SEGBSL as the displacement field of the instrucion. What
are the advantages and disadvantages of this approach?

Exercise 6.23: Assuming that the above program is a subroutine, you
will notice that it uses registers B, D, E, H and L internally, and modi-
fies their contents. If the subroutine may freely use the memory area
designated by address T1, T2, T3, T4, T35, could you add instructions at
the beginning and at the end of this program which will guarantee that,
when the subroutine returns, the contents of registers B, D, E, H and L.
will be the saime as when the subroutine was entered?

Exercise 6.24: Same exercise as above, but assume that the memory
area Tl, etc., is not available to the subroutine. (Hint.: remember that
there is a built-in mechanism in every computer for preserving informa-
tion in a chronological order.)

5 We have now solved common input/output problems. Let us con-
sider the case of a common peripheral: the Teletype.
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Teletype Input-Output

The Teletype is a serial device. It both sends and receives words of in-
formation in a serial format. Each character is encoded in an 8-bit
ASCII format (the ASCII table appears at the end of this book). In ad-
dition, every character is preceded by a *‘start’ bit, and terminated by
two “‘stop’’ bits. In the so-called 20-milliamp current loop interface,
which is most frequently used, the state of the line is normally a ““1”".
This is used to indicate to the processor that the line has not been cut. A
start isa “‘1’’-to-*‘0’’ transition. It indicates to the receiving device that
data bits follow. The standard Teletype is a 10-characters-per-second
device. We have just established that each character requires 11 bits.
This means that the Teletype will transmit 110 bits per second. It is said
to be a 110-baud device. We will design a program to serialize bits out
to the Teletype at the correct speed.

START PULSE 2 STOP PULSES

e o,

L STOP 14 STOP 2,4

e AN ENERRDEREE
SPACE - — ———

Fig. 6.12: Format of a Teletype Word

One-hundred-and-ten bits per second implies that bits are separated
by 9.09 milliseconds. This will have to be the duration of the delay loop
to be implemented between successive bits. The format of a Teletype
word appears in Figure 6.12. The flowchart for bit input appears in
Figure 6.13. The program follows:

TTYIN IN A, (STATUS)

BIT 7, A DATA READY?
JR Z, TTYIN OTHERWISE WAIT
CALL DELAY! CENTER OF PULSE

IN A, (TTYBIT) START BIT
OUT (TTYBIT), A ECHOIT
CALL DELAYS NEXT PULSE (9 MS)
LD B, 08H BIT COUNT

NEXT IN A, (TTYBIT) READ DATA BIT
OUT (TTYBIT), A ECHOIT
SRL A SAVE IT IN CARRY
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TTYIN
fro—————————————— =
NO
START BIT?
YES
WAIT 4.5ms

ECHO START BIT

1

WAIT9.09 ms

SHIFT IN DATA BIT
ECHOIT

NO CHARACTER
ASSEMBLED?

YES

WAIT9.09 ms

OUTPUT STOP BIT

|

WAIT 13.59 ms

Fig. 6.13: TTY Input with Echo
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RR C PRESERVE IT INTO C
CALL DELAY9 NEXT PULSE (9 MS)
DEC B DECREMENT BIT COUNT

JR NZ, NEXT

IN A, (TTYBIT) READ STOP BIT
OUT (TTYBIT), A ECHOIT

CALL DELAY9 SKIP SECOND STOP
RET

Fig. 6.14: Teletype Program

Let us examine the program in detail. First, the status of the Teletype
must be tested to determine if a character is available:

TTYIN IN A, (STATUS)
BIT 7, A
JR Z, TTYIN
The ““BIT” instruction is a useful Z80 facility which allows testing
any bit in any data register. It does not modify the contents of the regis-
ter under test. The Z flag is set if the specified bit is 0, and reset other-
wise.
This program will, therefore, loop until the status finally becomes
“1’. It is a classic polling loop.
Note also that, since the STATUS does not need to be preserved, we
could advantageously use

AND  10000000B
instead of

BIT 7,A

Using the AND instruction saves two bytes. However, it destroys the
contents of A (acceptable here).

When optimizing a program, remember that each new instruction
may introduce side-effects.

Next, a 4.5 ms delay is implemented in order to sense the start bit in
the middle of the pulse.

CALL DELAYI
where DELAY1 is the delay subroutine implementing the required

delay. The first bit to come is the start bit. It should be echoed to the
Teletype, but otherwise ignored. This is done by the next instructions:

TTYIN IN A, (TTYBIT)
OUT (TTYBIT), A
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We must then wait for the first data bit. The necessary delay is equal to
9.09 milliseconds and is implemented by a subroutine:
CALL DELAYS

Register B is used as a counter and is loaded with the value 8 in order to
capture the 8 data bits:

LD B, 08H

Next, each data bit will be read in turn into the accumulator, then
echoed. It is assumed to arrive in bit position 0 of the accumulator. The
data bit will then be preserved into register C, where it will be shifted in.
The transfer from A to C is performed through the carry bit:

NEXT IN A, (TTYBIT)
OuUT (TTYBIT), A

SRL A

Cc C

This sequence is illustrated in Figure 6.15.

170 SPACE

TELETYPE

—STATUS
DATA P

B C

TTYBIT
I COUNTER l —-B>! X l

Fig. 6.15: Teletype Input

Next, the usual 9 millisecond delay is implemented, the bit-counter is dec-
remented, and the loop is entered again as long as the eight bits have
not been captured:

CALL DELAYS9

DEC B

JR NZ, NEXT
Finally, the STOP bit is captured, and echoed. It is usually sufficient to
send a single STOP bit, however both could be sent back using two
more instructions:

IN A, (TTYBIT)
OUT (TTYBIT), A
CALL DELAY9
RET
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The program should be examined with attention. The logic is quite
simple. The new fact is that whenever a bit is read from the Teletype (at
address TTYBIT), it is echoed back to the Teletype. This is a standard
feature of the Teletype. Whenever a user presses a key, the information
is transmitted to the processor-and then back to the printing mechanism
of the Teletype. This verifies that the transmission lines are working
and that the processor is operating when a character is, indeed, printing
correctly on the paper.

ENTER ENTER
Y ¥
Q
SEND START cduENTTgRITTo
BIT ELEVEN
Y >y
SEND DATA oUTPUT
BITS A BIT
+ DELAY
SEND STOP 9,1 Msec
BIT
+ NO .
EXIT
v YES
RET

Fig. 6.16: Teletype Output

Exercise 6,.25: Write the delay routine which results in the 9.09 millisec-
ond delay. (DELAY subroutine)

Exercise 6.26: Using the example of the program developed above,
write a PRINTC program which will print on the Telet 'ype the contents
of memory location CHAR (see Fig. 6.15).

The answer appears below:

PRINTC LD B, 11 COUNTER = 11 BITS
LD A, (CHAR) GET CHARACTER
OR A CLEAR CARRY = START BIT
RLA CARRY INTO A
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NEXT OUT (TTYBIT), A OUTPUT
CALL DELAY

RRA NEXT BIT

SCF CARRY = 1 (STOP BIT)
DEC B BIT COUNT

JR NZ, NEXT

RET

Register B is used as a bit counter for the transmission. The contents
of bit 0 of A will be sent to the Teletype line (‘““TTYBIT”’). Note how
the carry is used to provide a ninth bit (the START bit). Also, note that
the carry is cleared by:

OR A
At the end of the program, the carry is set to one by:
SCF

in order to generate a stop bit.

Exercise 6.27: Modify the program so that it waits fora S TART bit in-
stead of a STATUS bit.

Printing a String of Characters

We will assume that the PRINTC routine (see Exercise 6.26) takes
care of printing a character on our printer, or display,or any output de-
vice. We will here print the contents of memory locations (START) to

(START + N).
The program is straightforward (see Figure 6.17):
»
PSTRING LD B, NBR LENGTH OF STRING
LD HL, START BASE ADDRESS
NEXT LD A, (HL) GET CHARACTER
CALL PRINTC PRINT IT
INC HL NEXT ELEMENT
DEC B
JR NZ, NEXT DO IT AGAIN
RET
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MEMORY

B A

COUNTER

START +N Zil

TO PRIMTER
QUTPUT REGISTER

Fig. 6.17: Printing a Memory Block

PERIPHERAL SUMMARY

We have now described the basic programming techniques used to
communicate with typical input/output devices. In addition to the data
transfer, it will be necessary to condition one or more control registers
within each 1/0 device in order to condition the transfer speeds, the in-
terrupt mechanism, and the various other options correctly. The man-
ual for each device should be consulted. (For more details on the spe-
cific algorithms for exchanging information with all the usual peripher-
als, the reader is referred to our book, C207, Microprocessor Interfac-
ing Techniques.)

We have now learned to manage single devices. However, in a real
system, all peripherals are connected to the buses, and may request
service simultaneously. How are we going to schedule the processor’s
time?

INPUT/OUTPUT SCHEDULING

Since input/output requests may occur simultaneously, a scheduling
mechanism must be implemented in every system to determine in which
order service will be granted. Three basic input/output techniques are
used, which can be combined with each other. They are: polling, inter-
rupt, DMA. Polling and interrupts will be described here. DMA is
purely a hardware technique, and as such will not be described here. (It
is covered in the reference books C201 and C207.)
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Polling

Conceptually, polling is the simplest method for managing multiple
peripherals. With this strategy, the processor interrogates the devices
connected to the buses in turn. If a device requests service, the service
is granted. If it does not request service, the next peripheral is exam-
ined. Polling is used not just for the devices, but for any device service
routine. ’

As an example, if the system is equipped with a Teletype, a tape re-
corder, and a CRT display, the polling routine would interrogate the
Teletype: ‘Do you have a character to transmit?’" It would interrogate
the Teletype output routine, asking: ‘Do you have a character to
send?’’ Then, assuming that the answers are negative so far, it would
interrogate the tape-recorder routines, and finally the CRT display. If
only one device is connected to a system, polling will be used as well to
determine whether it needs service. As an example, the flowcharts for
reading a paper-tape reader and for printing on a printer appear in Fig-
ures 6.20 and 6.21.

MEMORY
t DATA BUS

e e - — o — e — 5 ?
MPU - - INTERRUPT
L 170 ] L 170 }
INTI VT ¥ T
|
HOLD | MEMORY| [ DMA |
TTIX g
MPU ! ! DMA
o
| 170 - _{ I/Ol
L e 3

Fig. 6.18: Three Methods of 1/0 Control
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Example: a polling loop for devices 1, 2, 3, 4 (see Fig. 6.19):
POLL4 IN A, (STATUS1) GET STATUS OF DEVICE 1

BIT 7, A SERVICE REQUEST?
CALL NZ, ONE BIT7 = 1?

IN A, (STATUS2) DEVICE 2

BIT 7, A

CALL NZ, TWO

IN A, (STATUS3) DEVICE 3
BIT 7, A

CALL NZ, THREE

IN A, (STATUS4) DEVICE 4

BIT 7, A
CALL NZ, FOUR
JR POLL4 NO REQUEST, TRY AGAIN

Bit 7 of the status register for each device is ‘1’ when it wants serv-
ice. When a request is sensed, this program branches to the device
handler, at address ONE for device 1, TWO for device 2, etc.

A fine point is worth noting here. For each instruction, it is impor-
tant to verify carefully the way in which it affects the condition codes.
It should be noted that the input instruction does not change the flags.
If a memory-load instruction has been used instead of an input instruc-
tion, bit 7 of the input would automatically be reflected as the SIGN
bit in the flags register. The special instruction “BIT 7,A’" would be-
come unnecessary. However, because the IN instruction does not
change the flags, this extra test must be included in the program.

In some hardware implementations, input/output devices may be
treated as memory devices for purposes of addressing. This is called
memory-mapped input/output. In this case, the IN instruction would
be replaced by an LD instruction and the rest of the program would be
modified as indicated above.

The advantages of polling are obvious: it is simple, does not require
any hardware assistance, and keeps all input/output synchronous with
the program operation. Its disadvantage is just as obvious: most of the
processor’s time is wasted looking at devices that do not need service.
In addition, by wasting so much time, the processor might give service
to a device too late.

Another mechanism is, therefore, desirable in order to guarantee that
the processor’s time can be used to perform useful computations rather
than polling devices needlessly all the time. However, let us stress that
polling is used extensively whenever a microprocessor has nothing bet-

493



PROGRAMMING THE Z80

A
REQUESTING

SERVICE?
SERVICE ROUTINE

NO FOR DEVICE A

REQUESTING
SERVICE?

SERVICE ROUTINE
FOR DEVICEB

]

C
YE.
REQUESTING S
SERVICE?
SERVICE ROUTINE

NO FOR DEVICEC

|

NO

Fig. 6.19: Polling Loop Flowchart

X

SET READER
ENABLE ON

Py

READY?

YES

READ CHARACTER

Fig. 6.20: Reading from a Paper-Tape Reader
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NO

YES

LOAD PUNCH
OR PRINTER
BUFFER

TRANSMIT
DATA

Fig. 6.21: Printing on a Punch or Printer

ter to do, as it keeps the overall organization simple. Let us examine the
essential alternative to polling: interrupts.

Interrupts

The concept of interrupts is illustrated in Figure 6.18. A special hard-
ware line, the interrupt line, is connected to a specialized pin of the mi-
croprocessor. Multiple input/output devices may be connected to this
interrupt line. When any one of them needs service, it sends a level or a
puise on this line. An interrupt signal is the service request from an in-
put/output device to the processor. Let us examine the response of the
processor to this interrupt.

In any case, the processor completes the instruction that it was cur-
rently executing; otherwise, this would create chaos inside the micro-
processor. Next, the microprocessor should branch to an interrupt-han-
dling routine which will process the interrupt. Branching to such a sub-
routine implies that the contents of the program counter must be saved
on the stack. An interrupt must, therefore, cause the automatic preser-
vation of the program counter on the stack. In addition, the flag regis-
ter F should be also preserved automatically, as its contents will be
altered by any subsequent instruction. Finally, if the interrupt-handling
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routine should modify any internal registers, these internal registers
should also be preserved on the stack (see Figures 6.22 and 6.23).

SP s PCL

PCH

Fig. 6.22: Z80 Stack After Interruption

\/\/

»lT|lwlo]lolm

L — "\ —

Fig. 6.23: Saving Some Working Registers

After all these registers have been preserved, one can branch to the
appropriate interrupt-handling address. At the end of this routine, all
the registers should be restored, and a special interrupt return should be
executed so that the main program will resume execution. Let us exam-
ine in more detail the interrupt lines of the Z80.

Z.80 Interrupts

An interrupt is a signal sent to the microprocessor, which may re-
quest service at any time and is asynchronous to the program. When-
ever a program branches to a subroutine, such branching is synchron-
ous to program execution, i.e., scheduled by the program. An inter-
rupt, however, may occur at any time, and will generally suspend the
execution of the current program (without the program knowing it).
Because it may happen at any time relative to program execution, it is
called asynchronous.

Three interruption mechanisms are provided on the Z80: the bus re-
quest (BUSRQ), the non-maskable interrupt (NMI) and the usual inter-
rupt (INT).

Let us examine these three types.
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The Bus Request

The bus request is the highest priority interrupt mechanism on the *
Z80. The interrupt sequence for the Z80 is shown in Figure 6.24. As a
general rule, no interrupt will be sensed by the Z80 until the current
machine cycle is completed. The NMI and INT interrupts will not be
taken into account until the current instruction is finished. However,
the BUSRQ will be handled at the end of the current machine cycle,
without necessarily waiting for the end of the instruction. It is used for

YES
s o
SET BLSAG £ F
{:—j NO
€80 OF aa
INSTRUCTION

el
USRI F F

~ON
AASKARLE
lNXiPRUPI

INTERRUPT
MODE

MASRAEMJ

Fig. 6.24: Interrupt Sequence
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a direct memory access (DMA), and will cause the Z80 to go into DMA
mode (see ref. C201 for an explanation of the DMA mechanism). If the

end of an instruction has been reached, and if any NMI or INT were
pending, they would be memorized internally in the Z80 by setting spe-
cialized flip-flops: the NMI flip-flop, and the INT flip-flop. In DMA
mode, the Z80 suspends operation and releases its data-bus and
address-bus in the high-impedance state. This mode is normally used by
a DMA controller to perform transfers between a high-speed input-
output device and the memory, using the microprocessor data-bus and
address-bus. The end of a DMA operation is indicated to the Z80 by
BUSRQ changing levels. At this point, the Z80 will resume normal
operation. In particular, it will first check whether its internal NMI or
INT flip-flops had been set and, if so, execute the corresponding inter-
rupts.

The DMA should normally not be of concern to the programmer, un-
less timing is important. If a DMA controller is present in the system,
the programmer must understand that the DMA may delay the
response to an NMI or an INT.

The Non-Maskable Interrupt

This type of interrupt cannot be inhibited by the programmer. It is
therefore said to be non-maskable, hence its name. It will always be ac-
cepted by the Z80 upon completion of the current instruction, assuming
no bus request was received. (If an NMI is received during a BUSRQ,
it will set the internal NMI flip-flop, and will be processed at the end of
the BUSRQ.)

The NMI will cause an automatic push of the program counter into
the stack and branch to address 0066H: the two bytes representing the
address 0066H will be installed in the program counter. They represent
the start address of the handling routine for the NMI (see figure 6.25).

This interrupt mechanism has been designed for speed, as it is used in
case of “‘emergencies’. Therefore, it does not offer the flexibility of the
maskable interrupt mode, described below.

Note also that an interrupt routine must have been loaded at address
006H prior to using the NMI.
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MEMORY
IFFl IFF2
o[ |—>[] 0066
NMI
HANDLER

-
=
——

—~  PC 4 stack

Fig. 6.25: NMI Forces Automatic Vectoring

NMI causes an automatic restart at location 0066H. The sequence of
events is the following:

PC s STACK (preserve program counter)
IFF] v  IFF2 (preserve IFF)

0 ———p=  [FF1 (reset IFF)

JUMP TO 0066H (execute interrupt handler)

Also, the status of interrupt-mask-bit flip-flop (IFF1) at the time that
NMI was received is preserved automatically into IFF2, Then, IFF1 is re-
set in order to prevent any further interrupts. This feature is important to
prevent the loss of lower-priority INT’s and simplifies the external hard-
ware: the status of a pending INT is preserved internally in the Z80.

The NMI interrupt is normally used for high priority events such as a
real-time clock or a power failure.

The return from an NMI is accomplished by a special instruction, RETN:
“return from non-maskable interrupt.” The contents of IFF1 are restored
from IFF2, and the contents of the program counter PC are restored from
their location in the stack. Since IFF1 had been reset during execution
of the NMI, no external INT’s could be accepted during the NMI: there
has been no loss of information.

Upon termination of the interrupt handler, the sequence is:

IFF2  ——swesep=  [FF1 (restore IFF)
STACK =———~ PC (restore program counter)

Note that, once IFF] is restored, maskable interrupt enable status is
restored.
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Interrupt

The ordinary, maskable, interrupt INT may operate in one of three
modes. They are specific to the Z80, as the 8080 is equipped with only a
single interrupt mode. The ordinary interrupt INT may also be masked
selectively by the programmer. Setting the interrupt flip-flops IFF1 and
IFF2 to a “‘1’" will authorize interruptions. Setting them to a ‘0"’
{masking them) will prevent detection of INT. The El instruction is
used to set them, and the DI instruction is used to reset them. IFF1 and
IFF2 are set or reset simultaneously. During execution of the EI and DI
instructions, INT’s are disabled in order to prevent any loss of informa-
tion.

Let us now examine the three interrupt modes:

Interrupt Mode 0

This mode is identical to the 8080 interrupt mode. The Z80 will
operate in interrupt mode 0 either when initially started (when the RE-
SET signal has been applied) or else when an IMO instruction has been
executed. Once mode 0 has been set, an interrupt will be recognized if
the interrupt enable flip-flop IFF1 is set to 1, provided no bus-request
or non-maskable interrupt occurs at the same time. The interrupt will
be detected only at the end of an instruction. Essentially, the Z80 will
respond to the interrupt by generating an IORQ (as well as an M1 sig-
nal), and then do nothing, except wait.

It is the responsibility of an external device to recognize the IORQ
and MI (this is called an interrupt acknowledge or INTA) and to place
an instruction on the data-bus. The Z80 expects an instruction to be
placed on its data bus by the external device within the next cycle. Typi-
cally, an RST or a CALL instruction is placed on the bus. Both of these
instructions automatically preserve the program-counter in the stack,
and cause branching to a specific address. The advantage of the RST in-
struction is that it resides within a single byte, i.e., it executes rapidly.
Its disadvantage is to branch to only one of eight possible locations in
page zero (addresses 0 through 225). The advantage of the CALL in-
struction is that it is a general-purpose branch instruction which speci-
fies a full 16-bit address. However, it requires three bytes and therefore
executes less rapidly.

Note that once the interrupt processing starts, all further interrupts
are disabled. IFF1 and IFF2 are automatically set to ““0”’. It is then the
responsibility of the programmer to insert an EJ instruction (Enable In-
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terrupts) at the appropriate location within his program if he wishes to
enable interrupts, and, in any case, before returning from the interrupt.

The detailed sequence corresponding to the mode 0 interrupt is
shown in Figure 6.26.

MODE 0 MODE wODE 2
[ : i
I CISABLE INIERRUPTS “ I DISABLE INTERRUPTS 4 T LABLE NTERQUPTS:
H BFPOHE) = i 1FF) 1FF2 = 0 i ISR & S i
! | i
T T
i i ' i
READ FIRST BYTE -
[ QOF NSTRUCTION { PC STACK | ! 3£AD VECTOR I
A GRQ LOWY * ‘
1 [ JUMP 1O 0038H I { 2 STACK ]i
v
MORE BYIES NO

REQUIRED FOR “C M VECTOR

.
.
. P
ERE
El {ENABLE INTERRUPTS} -
YES ; |

READ NEXT BYTE
INORMAL MEM. READ

GIT STARDUNG
WITH PC STATIONARYY

AZZRESS FROM
RET «IITOR TABLE
STACK  PC
SO | 1

CALL OR RST

PCSTACK E1IENAZLES INTERRUPTS)

:
.
\
—

f
1 EXECUTE INSTRUCTION | } ta: oo
t $Tals 20 §
O |
) FOR CALL
y OR RST
» ONLY

Fig. 6.26: Interrupt Modes

The return from the interrupt is accomplished by an RETI instruc-
tion. Let us remind the programmer at this point that he/she is usually
responsible for explicitly clearing the interrupt which has been serviced
on the 1/0 device, and always for restoring the interrupt disable flag in-
side the Z80. However, the peripheral controller may use the INTA sig-
nal to clear the INT request, thus freeing the programmer of this chore.

In addition, should the interrupt-handling routine modify the con-
tents of any of the internal registers, the programmer is specifically re-
sponsible for preserving these registers in the stack prior to executing
the interrupt-handling routine. Otherwise, the contents of these regis-
ters will be destroyed, and when the interrupted program resumes exe-
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0

cution, it will fail. For example, assuming that registers A, B, C,D,E,
H and L will be used within the interrupt handler, they will have to be

saved (see Figure 6.27).

A

m

DECREASING

ADDRESSES

w O o

-

A

PCL

PCH

STACK

Fig. 6.27: Saving the Registers

The corresponding program is:

SAVREG PUSH
PUSH
PUSH

PUSH HL

AF
BC
DE

Upon completion of the interrupt-handling routine, these registers must
be restored. The interrupt handler will terminate with the following se-

quence of instructions:

POP
POP
POP
POP
El

HL
DE
BC
AF

(unless EI was used earlier in
the routine)

Additionally, if registers IX and 1Y are used by the routine they must
also be preserved, then restored.

502



INPUT/OUTPUT TECHNIQUES

Interrupt Mode 1

This interrupt mode is set by executing the IM1instruction. It is an
automated interrupt handler which causes an automatic branch to loca-
tion 0038H. It is therefore essentially analogous to the NMI interrupt
mechanism except that it may be masked. The Z80 automatically pre-
serves the contents of PC into the stack (see Figure 6.28).

o INT 0
automatic 38 INTERRUPT
vectoring ROUTINE
PROGRAM sp
PCL LOCATION OF
f
o . Gutomatic N PCH }INTERRUPTION
}\A;—-—.—J preserve 7
. _
STACK
0038
(ovtomatic) —//

MEMORY

Fig. 6.28: Mode 1 Interrupt

This automated interrupt response, which “‘vectors’” all interrupts to
memory location 38H, minimizes the amount of external hardware nec-
essary for using interrupts. Its possible disadvantage is to cause a
branch to a single memory location. In case several devices are con-
nected to the INT line, the program starting at location 38H will be re-
sponsible for determining which device requested service. This problem
will be addressed below.

One precaution must be taken with respect to the timing of this inter-
rupt: when performing programmed input/output transfers, the Z80
will ignore any data that may be present in the data bus during the cycle
which follows the interrupt (the interrupt acknowledge cycle).
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Interrupt Mode 2 (Vectored Interrupts)

This mode is set by executing an IM2 instruction. It is a powerful
mode which allows automatic vectoring of interrupts. The interrupt
vector is an address supplied by the peripheral device which generated
the interrupt, and used as a memory pointer to the start address of the
interrupt-handling routine. The addresssing mechanism provided by
the Z80 in mode 2 is indirect, rather than direct. Each peripheral sup-
plies a seven-bit branching address which is appended to the 8-bit ad-
dress contained in the special I register in the Z80. The right-most bit of
the final 16-bit address bit 0 is set to ““0”*. This resulting address points
to an entry in a table anywhere in the memory. This table may contain
up to eight double-word entries. Each of these double words is the ad-
dress of the interrupt handler for the corresponding device. This is illus-
trated in Figures 6.29 and 6.30.

A SN
DEVICE 2X VECTOR
7 BIT VECTOR 0—s
N START |
ADDRESS |
|
DEVICE
HANDLER
MEMORY

Fig. 6.29: Mode 2 Interrupt

The interrupt table may have up to 128 entries.

In this mode, the Z80 also automatically pushes the contents of the
program counter into the stack. This is obviously necessary, since PC
will be reloaded with the contents of the interrupt table entry corre-
sponding to the vector provided by the device.

Interrupt Overhead

For a graphic comparison of the polling process vs. the interrupt
process, refer to Figure 6.18, where the polling process is illustrated on
the top, and the interrupt process underneath. It can be seen that in the
polling technique the program wastes a lot of time waiting,
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PC [ o1 \ 52 l VTE/SBTEZR 30500 ;/////////////////j
Spl 10 1 00 J! ;///////////%//é

BEFORE 0504 Z/// ///55
PC 20 : 04 ] o
3 - ; ~ ] 2004

MEMORY

Fig. 6.30: Mode 2 - A Practical Example

Using interrupts, the program is interrupted, the interrupt is serviced,
then the program resumes. However, the obvious disadvantage of an
interrupt is to introduce several additional instructions at the beginning
and at the end, resulting in a delay before the first instruction of the de-
vice handler can be executed. This is additional overhead.

Exercise 6.28: Using the table indicating the number of cycles per in-
struction, in the Appendix, compute how much time will be lost to save
and then restore registers A, B, D, H.

Having clarified the operation of the interrupt lines, let us now con-
sider two important remaining problems:

I—How do we resolve the problem of multiple devices triggering an
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interrupt at the same time?
2—How do we resolve the problem of an interrupt occurring while
another interrupt is being serviced?

Multiple Devices Connected to a Single Interrupt Line

Whenever an interrupt occurs, the processor branches to a specified
address. Before it can do any effective processing, the interrupt han-
dling routine must determine which device triggered the interrupt. Two
methods are available to identify the device, as usual: a software
method and a hardware method.

In the software method, polling is used: the microprocessor interro-
gates each of the devices in turn and asks them, “‘Did you trigger the in-
terrupt?’’ If the answer is negative, it interrogates the next one. This
process is illustrated in Figure 6.31. A sample program is:

POLINT IN A, (STATUS!) READ STATUS

BIT 7,A DID DEVICE REQUEST INT?
jp NZ, ONE HANDLE IT IF SO

IN A, (STATUS2)

BIT 7.A

Jp NZ, TWO

etc. e

The hardware method uses additionai components but provides the
address of the interrupting device simultaneously with the interrupt re-
quest. The device now universally used to provide this facility is called a
“PIC”’, or priority-interrupt-controller. Such a PIC will automatically

INT 1 PULUNG INTERRUPT VECTORED

L POLLING 3

WHICH "2"—, ROUTINE
DEVICE?

SERVICE
ROUTINE P

SERVICE
ROUTINE

SERVICE
ROUTINE N

Fig. 6.31: Polled vs. Vectored Interrupt
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place on the data bus the actual required branching address for the in-
terrupting peripheral.

To be more precise, when operating in mode 0, the PIC will supply a
one-byte RST or a three-byte CALL on the data bus in response to the
interrupt acknowledge, thus automating the interrupt vectoring, and
minimizing the overhead.

Note that a subroutine call instruction is required as the Z80 does not
save the PC when operating in mode 0.

In most cases, the speed of reaction to an interrupt is not crucial, and
a polling approach is used. If response time isa primary consideration,
a hardware approach must be used.

Simultaneous Interrupts

The next problem which may occur is that a new interrupt can be trig-
gered during the execution of an interrupt-handling routine. Let us
examine what happens and how the stack is used to solve the problem.
We have indicated in Chapter 2 that this was another essential role of
the stack, and the time has come now to demonstrate its use. We will
refer to Figure 6.33 to illustrate multiple interrupts. Time elapses from
left to right in the illustration. The contents of the stack are shown at
the bottom of the illustration. Looking at the left, at time TO, program
P is in execution. Moving to the right, at time T1, interrupt I1 occurs.
We will assume that the interrupt mask was enabled, authorizing 11.
Program P will be suspended. This is shown at the bottom of the illus-
tration. The stack will contain the program counter and the status reg-
ister of program P, at least, plus any optional registers that might be
saved by the interrupt handler or I1 itself.

170 4
MPU
INTERFACE| °*° |INTERFAC
INT Y L
1 ¥ 4T 2 § N

Fig. 6.32: Several Devices May Use the Same Interrupt Line

At time T1, interrupt 11 starts executing until time T2. At time T2, in-
terrupt 12 occurs. We will assume that interrupt 12 has a higher priority
than interrupt 11. If it had a lower priority, it would be ignored until 11
had been completed. At time T2, the registers for 11 are stacked, and
this appears at the bottom of the illustration. Again, the contents of the
program counter and AF are pushed into the stack. In addition, the
routine for 12 might decide to save an additional few registers. 12 will
now execute to completion at time T3.
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When 12 terminates, the contents of the stack are automatically
popped back into the 280, and this is illustrated at the bottom of Figure
6.33. Thus, automatically 11 resumes execution. Unfortunately, at time
T4, an interrupt 13 of higher priority occurs again. We can see at the
bottom of the illustration that again the registers for 11 are pushed into
the stack. Interrupt 13 executes from T4 to T5 and terminates at TS. At

Time {o T b I fs Ts Ts
PROGRAM P '-—-—: _________________ —
INTERRUPT 1, e = e e e e . e by
INTERRUPT 1, i L —

' e —l
INTERRUPT 1,

“ 00 B0
T . 1

T, T ‘ A T

Fig. 6.33: Stack Contents During Multiple Interrupts

that time, the contents of the stack are popped into Z80, and interrupt
I1 resumes execution. This time it runs to completion and terminates at
T6. At T6, the remaining registers that have been saved in the stack are
popped into Z80, and program P may resume execution. The reader
will verify that the stack is empty . this point. In fact, the number of
dashed lines indicating program suspension indicates at the same time
how many levels there are in the stack.

Exercise 6.29: Assume that the area available to the stack is limited to
300 locations in a specific program. Assume that all the registers nust
always be saved and that the programmer allows interrupis ro be nest-
ed, i.e., to interrupt each other. Which is the maximum number of
simultaneous interrupts that can be handled? Will an y other factor con-

tribute to still reduce further the maximum number of simultaneous in-
terrupts?

It must be stressed, however, that, in practice, microprocessor sys-
tems are normally connected to a small number of devices using inter-
rupts. It is, therefore, unlikely that a high number of simultaneoys in-
terrupts will occur in such a system.

We have now solved ali the problems usually associated with inter-

rupts. Their use is, in fact, simple and they should be employed to ad-
vantage even by the novice programmer.

508



INPUT/QUTPUT TECHNIQUES

SUMMARY

In this chapter we have presented the range of techniques used to
communicate with the outside world. From elementary input/output
routines to more complex programs for communication with actual
peripherals, we have learned to develop all the usual programs and have
even examined the efficiency of benchmark programs in the case of a
parallel transfer and a parallel-to-serial conversion. Finally, we have
learned to schedule the operation of multiple peripherals by using poll-
ing and interrupts. Naturally, many other exotic input/output devices
might be connected to a system. With the array of techniques which
have been presented so far, and with an understanding of the peripher-
als involved, it should be possible to solve most common problems.

In the next chapter, we will examine the actual characteristics of the
input/output interface chips usually connected to a Z80. Then, we will
consider the basic data structures that the programmer may use.

Exercise 6.30: Compute the overhead when operating in mode 0, as-
suming that all registers are saved, and that an RST is received in re-
sponse to the interrupt acknowledge. The overhead is defined as the
total delay incurred, exclusive of the instructions required to implement
the interrupt processing proper.

Exercise 6.31: A 7-segment LED display can also display digits other
than the hex alphabet. Compute the codes for: H, I, J, L, O, P, S, U,
Y,g, ho i, 5, L, n o p ot u y.

Exercise 6.32: The flowchart for interrupt management appears in Fig-
ure 6.34 Answer the following questions:
a—What is done by hardware, what is done by software?
b—What is the use of the mask?
c—How many registers should be preserved?
d—How is the interrupting device identified?
e—What does the RETI instruction do? How does it differ from a
subroutine return?
JS—Suggest a way to handle a stack overflow situation.
g—What is the overhead (*‘lost time’’} introduced by the interrupt
mechanism?
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510

EXECUTE
INSTRUCTION

" INTERRUPT
REQUEST

NEXT INSTRUCTION

1
i SET MASK J

L PRESERVE REGISTERS 1

(if necessary)

!

[ UNSET MASK ]

IDENTIFY DEVICE
{if necessory)

{ EXECUTE ROUTING ]
L RESTORE REGISTERS l

l

RETURN

Fig. 6.34: Interrupt Logic



7
INPUT/OUTPUT DEVICES

INTRODUCTION

We have learned how to program the Z80 microprocessor in most
usual situations. However, we should make a special mention of the
input/output chips normally connected to the microprocessor. Be-
cause of the progress in LSI integration, new chips have been intro-
duced which did not exist before. As a result, programming a system
requires, naturally, first to program a microprocessor itself, and then
to program the input/output chips. In fact, it is often more difficult
to remember how to program the various control options of an input/
output chip than to program the microprocessor itself! This is not be-
cause the programming in itself is more difficult, but because each of
these devices has its own idiosyncrasies. We are going to examine here
first the most general input/output device, the programmable input/
output chip (in short a ‘““PIO”’), then some Zilog I/0 devices.

The **Standard PIO”’

There is no ‘‘standard PIO”’. However, each P1Odeviceis essentially
analogous in function to all similar PIO’s produced by other
manufacturers for the same purpose. The purpose of a PIO is to
provide a multiport connection for input/output devices. (A “‘port’’ is
simply a set of 8 input/output lines.) Each PIO provides at least
two sets of 8-bit lines for I/0 devices. Each 1/0 device needs a data
buffer in order to stabilize the contents of the data bus on output at
least. Our PIO will, therefore, be equipped at a minimum with a
buffer for each port.

In addition, we have established that the microcomputer will use
a handshaking procedure, or else inferrupts to communicate with the
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1/0 device. The P10 will also use a similar procedure to communicate
with the peripheral. Each PIO must, therefore, be equipped with at
least two control lines per port to implement the handshaking
function.

The microprocessor will also need to be able to read the status of
each port. Each port must be equipped with one or more sfatus bits.
Finally, a number of options will exist within each PIO to configure its
resources. The programmer must be able to access a special register
within the PIO to specify the programming options. This is the
control-register. In some cases the status information is part of the
control register.

CRA DDRA PDRA < CAl
e CA2
A0 o2 o m 8
92 |0RY |6%%
24 wm @
DATABUS<:> Gl K a;%<::>PORTA
b Q ;U% o
CRB DDRB PDRB
o
I I 8
£3 (= eoRr
REGISTER | —> RSP SZ PORTB
SELECT |~ RS1 c s
IRQA <t tmrnipe B2
IRQB <——| le—— CBI
Fig. 7.1: Typical PIO

One essential faculty of the PIO is the fact that each line may be
configured as either an input or an output line. The diagram of
a PIO appears in illustration 7.1. The programmer may specify
whether any line will be input or output. In order to program the
direction of the lines, a data-direction register is provided for each
port. A “0”” in a bit position of the data-direction register specifies an
input. A ¢‘1”’ specifies an output.

It may be surprising to see that a ‘0’ is used for input and a “‘1”’
for output when really ““0°* should correspond to output and ““1°” to
input. This is quite deliberate: whenever power is applied to the
system, it is of great importance that all the /O lines be configured as
input. Otherwise, if the microcomputer is connected to some
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dangerous peripheral, it might activate it by accident. When a reset is
applied, all registers are normally zeroed and that will result in con-
figuring all input lines of the PIO as inputs. The connection to the
microprocessor appears on the left of the illustration. The PIO
naturally connects to the 8-bit data bus, the microprocessor address
bus, and the microprocessor control-bus. The programmer will simply
specify the address of any register that it wishes to access within the
PIO.

The Internal Control Register

The Control Register of the PIO provides a number of options for
generating or sensing interrupts, or for implementing automatic hand-
shake functions. The complete description of the facilities provided is
not necessary here. Simply, the user of any practical system which uses
a PIO will have to refer to the data-sheet showing the effect of setting
the various bits of the control register. Whenever the system is
initialized, the programmer will have to load the control register of the
PIO with the correct contents for the expected application (see ref.
D380 for a detailed description).

e CA 1

IRQA —>CA D

D@-D7

{DDRA)
DATA
DIRECTION

2

PERIPHERAL :
INTERFACE A <:>PA¢ Pa7

CONTROL

11

PERIPHERAL <:>PB¢-PB7

INTERFACE B
i
DATA
DIRECTION

EN —> (DDRB)
RESET —

gCHIP SELECT

REGISTER
| SELECT

LI

e

RRREE.

[1

CONTROL

{CRB)
TN la— CB 1
STATUS le—» CR 2

IRQB =

Fig. 7.2: Using a2 P10-Load Control Register
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Fig. 7.3: Using a PIO-Load Data Direction
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A 1' STATUS [ D
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’ @ ‘BUFFER" — CONTROL
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;: DATA
BUS INPUT T—— DIRECTION
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Fig. 7.5: Using a PIO Read INPUT
Programming a P10

A typical sequence, when using a PIO channel, is the following (as-
suming an input):

Load the control register

This is accomplished by a programmed transfer between a Z80 re-
gister (usually the accumulator) and the PIO control register. This sets
the options and operating mode of the PIO (see Figure 7.2). It is nor-
mally done only once at the beginning of a program.

Load the direction register

This specifies the direction in which the 170 lines will be used. (See
Figure 7.3.)

Read the status
The status register indicates whether a valid byte is available on in-

put. (See Figure 7.4),

Read the port
The byte is read into the Z80. (See Figure 7.5).
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Fig. 7.6: 280 P10 pinout
The Zilog Z80 P10

The Z80 PIO is a two-port PIO whose architecture is essentially
compatible with the standard model we have described. The actual
pinout is shown in Figure 7. 6, and a block diagram is shown in Figure
7.7.

Each PIO port has six registers: an 8-bit input register, a 9-bit
output register, a 2-bit mode-control register, an 8-bit mask register,
an 8-bit input/output select (direction register), and a 2-bit mask-
control register. The last three registers are used only when the port is
programmed to operate in the bit mode.

The PIO may operate in one of four modes, as selected by the con-
tents of the mode-control registers (2 bits). They are: byte output,
byte input, byte bidirectional bus, and bit mode.

The two bits of the mask control registers are ioaded by the pro-
grammer, and specify the high or low state of a peripheral device
which is to be monitored, and conditions for which an interrupt can be
generated. .
~ The 8-bit input/output select register allows any pin to be either an
input or an output when operating in that mode.
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Fig. 7.7: 280 P10 Block Diagram
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Programming the Zilog PI1O

A typical sequence for using a PIO, say in bit mode, would be the
following:
Load the mode control register to specify the bit mode.
Load the input/output select register of port A to specify that
lines 0-5 are inputs and lines 6 and 7 are outputs.
Then a word would be read by reading the contents of the input
buffer.
Additionally, the mask register could be used to specify the status
conditions.
For a detailed description of the operation of the P10, the reader is
referred to the companion volume in this series, the Z80 Applications
Book.

The Z30 S10

The SIO (Serial Input/Output) is a dual-channel peripheral chip de-
signed to facilitate asynchronous communications in serial form. It in-
cludes a UART, i.e., a universal asynchronous receiver-transmitter.
Its essential function is serial-to-parallel and parallel-to-serial conver-
sion. However, this chip is equipped with sophisticated capabilities,
like automatic handling of complex byte-oriented protocols, such as
IBM bisync as well as HDLC and SDLC, two byte-oriented protocols.

Additionally, it can operate in synchronous mode like a USRT, and
generate and check CRC codes. It offers a choice of calling, interrupt,
and block-transfer modes. The complete description of this device is
beyond the scope of this introductory book and appears in the
Z80 Applications Book,

Other 1/0 Chips

Because the Z80 is commonly used as a replacement for the 8080, it
has been designed so that it can be associated with almost any of the
usual 8080 input/output chips, as well as the specific I/0 chips manu-
factured by Zilog. All the 8080 input/output chips may be considered
for use in a Z80 system.
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SUMMARY

In order to make effective use of input/output components it is
necessary to understand in detail the function of every bit, or group of bits,
within the various control registers. These complex new chips automate a
number of procedures that had to be carried out by software or special
logic before. In particular, a good deal of the handshaking procedures are
automated within components such as an SIO. Also, interrupt handling
and detection may be internal. With the information that has been pre-
sented in the preceding chapter, the reader should be able to understand
what the functions of the basic signals and registers are. Naturally, still
newer components are going to be introduced which will offer a hardware
implementation of still more complex algorithms.
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INTRODUCTION

This chapter is designed to test your new programming skills by pre-
senting a collection of utility programs. These programs or ‘‘routines’’
are frequently encountered in applications, and are generally called
‘“utility routines.”” They will require a synthesis of the knowledge and
techniques presented so far.

We are going to fetch characters from an 1/O device and process
them in various ways. But first, let us clear an area of the memory (this
may not be necessary—each of these programs is only presented as a
programming example).

CLEARING A SECTION OF MEMORY

We want to clear (zero) the contents of the memory from address
BASE + 1 to address BASE + LENGTH, where LENGTH is less then
256.

The program is:
ZEROM LD B, LENGTH LOAD B WITH LENGTH

LD A0 CLEAR A
LD HL, BASE POINT TO BASE

CLEAR LD (HL), A CLEAR A LOCATION
INC HL POINT TO NEXT
DEC B DECREMENT COUNTER
JR NZ, CLEAR END OF SECTION?
RET

In the above program, the length of the section of memory is as-
sumed to be equal to LENGTH. The register pair HL is used as a point-
er to the current word which will be cleared. Register B is used, as
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usual, as a counter.

The accumulator A is loaded only once with the value 0 (all zeros),
then copied into the successive memory locations.

In a memory test program, for example, this utility routine couid be
used to zero the contents of a block. Then the memory test program
would usually verify that its contents remained 0.

The above was a straightforward implementation of a clearing rou-
tine. Let us improve on it.

The improved program appears below.

ZEROM LD B, LENGTH
LD HL, BASE
LOOP LD (HL), 0

INC HL
DJNZ LOOP
RET

The two improvements were obtained by eliminating the LD A, 0 in-
struction and loading a “‘zero”’ directly into the location pointed to by H
and L, and also by using the special Z80 instruction DINZ.

This improvement example should demonstrate that every time a
program is written, even though it may be correct, it can usuall ly be im-
proved by examining it carefully. Familiarity with the complete con-
struction set is essential for bringing about such improvements. These
improvements are not just cosmetic. They improve the execution time
of the program, require fewer instructions and therefore less memory
space, and also generally improve the readability of the program and,
therefore, its chances of being correct.

Exercise 8.1: Write a memory test program which zeroes a 256-word
block, then verifies that each location is 0. Then, it will write all 1’s and
verify the contents of the block. Then it will write 010] 0101 and verify
the contents. Finally, it will write 10101010, and verify the contents.

Exercise 8.2: Modify the above program so that it will fill the memory
section with alternating 0’s and 1’s (all 0’s, then all I’s).

Let us now poll our I/0 devices to find which one needs service.

POLLING 1/0 DEVICES

We will assume that those 1/0 devices are connected to our sys-
tem. Their status registers are located at addresses IOSTATUSI,
IOSTATUS2, IOSTATUS3. The program is:
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TEST IN A, (STATUSI) READ IO STATUSI
BIT 7, A TEST “READY” BIT (BIT7)
JP NZ, FOUND! JUMP TO HANDLER 1
IN A, (STATUS2) SAME FOR DEVICE 2
BIT 7, A
JP NZ, FOUND2
IN A, (STATUS3) SAME FOR DEVICE 3
BIT 7, A
JP Nz, FOUND3
(failure exit)

The MASK will contain, for example, ‘10000000 if we test bit posi-
tion 7. As a result of the BIT instruction, the Z bit of the status flags
will be set to 1 if “MASK AND STATUS” is non-zero, i.e., if the cor-
responding bit of STATUS matches the one in MASK. The JP NZin-
struction (jump if non-equal to zero) will then result in a branch to the
appropriate FOUND routine.

GETTING CHARACTERS IN

Assume we have just found that a character is ready at the keyboard.
Let us accumulate characters in a memoryarea called BUFFER until we
encounter a special character called SPC, whose code has been previ-
ously defined.

The subroutine GETCHAR will fetch one character from the key-
board (see Chapter 6 for more details) and leave it in the accumulator.
We assume that 256 characters maximum will be fetched before an SPC
character is found.

STRING LD HL, BUFFER POINT TO BUFFER
NEXT CALL GETCHAR GET A CHARACTER

CP SPC CHECK FOR SPECIAL CHAR
JR Z, 0UT FOUND IT?
LD (HL), A STORE CHAR IN BUFFER
INC HL NEXT BUFFER LOCATION
JR NEXT GET NEXT CHAR

ouT RET

Exercise 8.3: Let us improve this basic routine:
a—Echo the character back to the device (for a Teletype, for example).
b—Check that the input string is no longer than 256 characters.

We now have a string of characters in a memory buffer. Let us proc-
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ess them in various ways.

TESTING A CHARACTER

Let us determine if the character at memory location LOC is equal to
0,1,o0r2:

Z0T LD A, (CHAR) GET CHARACTER

CpP 00 IS IT A ZERO?

Jp Z, ZERO JUMP TO ROUTINE
Cp 01 A ONE?

JP Z, ONE

Ccp 02 A TWO?

JP Z, TWO

JP NOTFND FAILURE

We simply read the character, then use the CP instruction to check its
value.
Let us run a different test now.

BRACKET TESTING

Let us determine if the ASCIHI character at memory location LOCis a
digit between 0 and 9:

BRACK LD A,(CHAR) GET CHARACTER

AND 7FH MASK OUT PARITY BIT
CP 30H ASCII 0

JR C, OUT CHAR TOO LOW?

CP 39H ASCI1 9

JR NC, OUT CHAR TOO HIGH?

CP A FORCE ZERO FLAG

ouT RET EXIT

ASCII **0” is represented in hexadecimal by *‘30°’ or by “D0”’, de-
pending upon whether the parity bit is used or not. Similarly, ASCII
9" is represented in hexadecimal by ‘39’ or by “B9”’.

The purpose of the second instruction of the program is to delete bit
7, the parity bit, in case it was used, so that the program is applicable to
both cases. The value of the character is then compared to the ASCII
values for ““0’’ and ¢‘9’. When using a comparison instruction, the Z
flag is set if the comparison succeeds. The carry bit is set in the case of
borrow, and reset otherwise. In other words, when using the CP in-
struction, the carry bit will be set if the value of the literal that appears
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in the instruction is greater than the value contained in the accumu-
lator. It will be reset (‘07") if less than or equal.

The last instruction, CP A, forces a “‘0”” into the Z flag. The Z flag is
used to indicate to the calling routine that the character in CHAR was
indeed in the interval (0, 9). Other conventions can be used, such as
loading a digit in the accumulator in order to indicate the result of the
test.

Exercise 8.4: Is the following program equivalent to the one above?:

LD A, (CHAR)

SUB  30H

JP M, OUT
SUB 10

JP P, OUT
ADD 10

Exercise 8.5: Determine if an ASCII character contained in the accumu-
lator is a letter of the aiphabet.

When using an ASCII table, you will notice that parity is often used.
For example, the ASCII for ““0’" is *‘01 10000°", a 7-bit code. However,
if we use odd parity, for example, we guarantee that the total number
of ones in a word is odd; then the code becomes: ‘‘10110000”°. An extra
«17’ is added to the left. This is ‘B0’ in hexadecimal. Let us therefore
develop a program to generate parity.

PARITY GENERATION
This program will generate an even parity in bit position 7:

PARITY LD A, (CHAR) GET CHARACTER

AND 7FH CLEAR PARITY BIT
JR PE, OUT CHECK IF PARITY
ALREADY EVEN
OR 80H SET PARITY BIT
ouT LD (LOC), A STORE RESULT

The program uses the internal parity detection circuit available in the
Z80. '

The third instruction: JR PE, OUT checks whether parity of the
word in the accumulator is already even. This instruction will succeed if
the parity is even, ‘PE’’, and will exit.

If the parity is not even, i.e., if the jump instruction failed, then the
parity is odd, and a “‘1’* must be written in bit position 7. This is the

524



APPLICATION EXAMPLES

purpose of the fourth instruction:
OR 80H

Finally, the resulting value is saved in memory location LOC.

Exercise 8.6: The above problem was too simple to solve, using the in-
ternal parity detection circuitry, As an exercise, you are requested to
solve the same problem without using this circuitry. Shift the contents
of the accumulator, and count the number of 1’s in order to determine
which bit should be written into the parity position.

Exercise 8.7: Using the above program as an example, verify the parity
of a word. You must compute the correct parity, then compare it to the
ohne expected.

CODE CONVERSION: ASCII TO BCD

Converting ASCII to BCD is very simple. We will observe that the
hexadecimal representation of ASCII characters 0 to 9 is 30 to 39 or B0
to B9, depending on parity. The BCD representation is simply obtained
by dropping the 3’ or the “B”, i.e., masking off the left nibble (4
bits):

ASCBCD CALL BRACK CHECK THAT CHAR ISOTO 9
JP NZ, ILLEGAL EXIT IF ILLEGAL CHAR
LD A, (CHAR) GET CHARACTER
AND OF MASH HIGH NIBBLE
LD (BCDCHAR), A STORE RESULT

Exercise 8.8: Write a program to convert BCD to ASCII.

Exercise 8.9: Write a program to convert BCD to binary (more diffi-
cult).

Hint:N; N, N, N, in BCDis (N, x 10) + N2) x 10 + N,) x 10 + N, in
binary.

To multiply by 10, use a left shift (= X2), another left shift (= x4),
an ADC (= X 5), another left shift (= x10).

In full BCD notation, the first word may contain the count of BCD
digits, the next nibble contain the sign, and every successive nibble con-
tain a BCD digit (we assume no decimal point). The last nibble of the
block may be unused.

CONVERT HEX TO ASCII

“A” contains one hexadecimal digit. We simply need to add a *3” (ora
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“B’") into the left nibble:

AND FH ZERO LEFT NIBBLE (optional)
ADD A, 30H ASCII

Ccp A, 3AH CORRECTION NECESSARY?
JP M, OUT

ADD A7 CORRECTION FOR ATO F

Exercise 8.10: Convert HEX to ASCII, assuming a packed format (two
hex digits in A).

FINDING THE LARGEST ELEMENT OF A TABLE

The beginning address of the table is contained at memory address
BASE in page zero. The first entry of the table is the number of bytes it
contains. This program will search for the largest element of the table.
Its value will be left in A, and its position will be stored in memory loca-
tion INDEX.

This program uses registers A, B, H and L, and will use indirect ad-
dressing, so that it can search a tabie anywhere in the memory (see Fig-
ure 8.1).

MAX LD HL, BASE TABLE ADDRESS
LD B, (HL) NBR OF BYTES IN TABLE
LD A,O CLEAR MAXIMUM VALUE
LD (INDEX), HL INITIALIZE INDEX
INC HL NEXT ENTRY

LOOP CP (HL) COMPARE ENTRY
JR NC, NOSWITCH JUMP IF LESS THAN MAX
LD A, (HL) LOAD NEW MAX VALUE
LD (INDEX), HL LOAD NEW MAX VALUE

NOSWITCH INC HL POINT TO NEXT ENTRY
DEC B DECREMENT COUNTER
JR NZ, LOOP KEEP GOING IF NOT ZERO
RET

This program tests the nth entry first. If it is greater than 0, the entry
goes in A, and its location is remembered into INDEX. The (n-1)st en-
try is then tested, etc.

This program works for positive integers.

Exercise 8.11: Modify the program so that it works ailso for negative
numbers in two’s complement.

Exercise 8.12: Will this program also work for ASCII characters?
Exercise 8.13: Write a program which will sort n numbers in ascending
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/\/\/\’

POINTERTO __} INDEX
MAX

A | CURRENTMAX |

COUNT =N BASE
‘ELEMENT |

B | COUNTER ]

XX
A

HLI

b

ELEMENT N

N

Fig. 8.1: Largest Element in a Table

order.

Exercise 8.14: Write a program which will sort n names (3 characters
each} in alphabetical order.

SUM OF N ELEMENTS

This program will compute the 16-bit sum of N entries of a table. The
starting address of the table is contained at memory address BASE, in
page zero. The first entry of the table contains the number of elements
N. The 16-bit sum will be left in memory locations SUMLO and
SUMHLI. If the sum should require more than 16 bits, only the lower 16
will be kept. (The high order bits are said to be truncated.)

This program will modify registers A, B, H, L, IX, It assumes 256
elements maximum (see Figure 8.2).

SUMIG LD HL, BASE POINT TO TABLE BASE

LD B, (HL) READ LENGTH INTO
COUNTER

INC HL POINT TO FIRST ENTRY

LD IX,SUMLO POINT TO RESULT, LOW

LD A,O CLEAR RESULT

527



PROGRAMMING THE Z80

LD (X+0), A LOW
LD (IX+1), A AND HIGH
ADLOOP LD A, (HL) GET TABLE ENTRY
ADD A, (IX+0) COMPUTE PARTIAL SUM
LD ({IX+0), A STORE IT AWAY
JR NC, NOCARRY CHECK FOR CARRY
INC (IX+1) ADD CARRY TO HIGH BYTE
NOCARRY INC HL POINT TO NEXT ENTRY
DEC B DECREMENT BYTE COUNT
JR NZ, ADLOOP KEEP ADDING TILL END
RET
B COUNT ]<
i
LENGTH=N | BASE
M | BASE }-r ELEMENT 1
1 @
x| . F :
ELEMENT N
o SUMLO
SUMH |

Fig. 8.2: Sum of N Elements

This program is straightforward and should be self-explanatory.

Exercise 8.15: Modify this program to:
a—compute a 24-bit sum

b—compute a 32-bit sum

c—detect any overflow.

A CHECKSUM COMPUTATION

A checksum is a digit or set of digits computed from a block of suc-
cessive characters. The checksum is computed at the time the data is
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stored and put at the end. In order to verify the integrity of the data, the
data is read, then the checksum is recomputed and compared against
the stored value. A discrepancy indicates an error or a failure.

Several algorithms are used. Here, we will exclusive-OR all bytes in a
table of N elements, and leave the result in the accumulator. As usual,
the base of the table is stored at address BASE in page zero. The first
entry of the table is its number of elements N. The program modifies A,
B, H, L. N must be less than 256.

CHECKSUM LD HL, BASE LEAD ADDRESS OF TABLE
INTO HL
LD B, (HL) GET N = LENGTH
XOR A CLEAR CHECKSUM
INC HL POINT TO FIRST ELEMENT
CHLOOP XOR (HL) COMPUTE CHECKSUM
INC HL POINT TO NEXT ELEMENT
DEC B DECREMENT COUNTER

JR NZ, CHLOOP DO IT AGAIN IF NOT END
LD (CHECKSUM),A PRESERVE CHECKSUM
RET

COUNT THE ZEROES

This program will count the number of zeroes in our usual table, and
leave it in location TOTAL. It modifies A, B,C, H, L.

ZEROS LD HL, BASE POINT TO TABLE

LD B, (HL) READ LENGTH INTO COUNTER
LD C,0 ZERO TOTAL
INC HL POINT TO FIRST ENTRY
ZLOOP LD A, (HL) GET ELEMENT
OR 0 SET ZERO FLAG
JR NZ, NOTZ ISIT A ZEROQ?
INC C IF SO, INCREMENT ZERO COUNT
NOTZ INC HL POINT TO NEXT ENTRY
DEC B DECREMENT LENGTH COUNTER
JR NZ, ZLOOP
LD AC

LD (TOTAL), A SAVE IT

Exercise 8.16: Modify this program to count
a—the number of stars (the character *** )
b—the number of letters of the alphabet
c—the number of digits between “0° and <°9*
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BLOCK TRANSFER

Let us pick up every third entry in the source block at address FROM
and store it into a block at address TO:

FER3 LD HL, FROM

LD DE, TO SET UP POINTERS
LD BC, SIZE
LOOP LDi AUTOMATED TRANSFER
INC HL
INC HL SKIP 2 ENTRIES

JR PE., LOOP

BCD BLOCK TRANSFER

We will push up BCD digits in the memory, i.e, shift 4-bit nibbles
(see Figure 8.3). The program appears below:

A EZ/%% 3
-

B COUNT ‘—W
%/5?7%%/%

i
H BLOCK ]
] / Z COUNT

s
»C@%@ S0y

Fig. 8.3: BCD Block Transfer - The Memory

DMOV LD B, COUNT
LD HL, BLOCK

XOR A A=20
LOOP RLD
INC HL POINT TO NEXT BYTE
DINZ LOOP DEC COUNT LOOP UNTIL ZERO
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The program uses the RLD instruction, which we have not used yet.
RLD rotates a BCD digit left between A and (HL). (HL) or M designate
the contents of the memory location pointed to by H and L.

M LOW goes into M HIGH
M HIGH goes into A LOW
A LOW goes into M LOW

Here, ‘“‘low”” and ‘‘high’’ refer to a 4-bit nibble.

In order to use the powerful DINZ instruction, register B is used as
the digit counter. HL is set to point to the beginning of the block.

A is used to store the left digit displaced by each rotation between
two successive accesses to the block.

By convention, ‘‘0”” will be entered at the bottom of the block.

COMPARE TWO SIGNED 16-BIT NUMBERS

IX points to the first number N1.
1Y points to N2 (see Figure 8.4).

The program sets the carry bit if N1< N2, and the Z bit if NI = N2.
COMP LD B, IX+1) GET SIGN OF N1
LD A, B
AND 80H TEST SIGN, CLEAR CY
JR NZ, NEGM1 NI1ISNEG
BIT 7, AY + 1)

RET NZ N2 IS NEG
LD A,B
CP  (IY+1) SIGNS ARE BOTH POS
RET NZ
LD A, (IX)
CP (1Y)
RET

NEGM! XOR (Y + 1)
RLA SIGN BIT INTO CY
RET C SIGNS DIFFERENT
LD A,B
CP  (IY+1) BOTH SIGNS NEG
RET NZ
LD A, (IX)
CP (1Y)
RET

The program first tests the signs of N1 and N2. If N1 is negative, a
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jump occurs to NEGMA\. Otherwise, the top of the program is executed.

MEMORY

AT

N1, HIGH

N1, HIGH

l HIGH ADDRESSES

Y |
N2, LOW

N2, HIGH

P %

Fig. 8.4: Comparing Two Signed Numbers
Note that the BIT instruction is used in the 5th line to test directly the
sign bit of N2 in the memory:
BIT 7,(Y + 1)

The same could have been done for N1, except that we will need the
value of NI shortly. It is therefore simpler to read N1 from memory
and preserve it into B:

COMP LD B, (IX + 1)

It is necessary to preserve N1 into B because the AND may destroy the
contents of A:

LD A, B
AND 80H

Note also that a conditional return is used (line 6):

RET NZ
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This is a powerful feature of the Z80 which simplifies programming.
Note that the comparison instruction executes directly on the con-
tents of memory, in indexed mode:

CP ay + 1

When comparing the two numbers, the most significant byte is com-
pared first, the least significant one second.

Note the extensive use of the indexing mechanism in this program,
which results in efficient code.

BUBBLE-SORT

Bubble-sort is a sorting technique used to arrange the elements of a
table in ascending or descending order. The bubble-sort technique de-
rives its name from the fact that the smallest element ‘‘bubbles up’’ to
the top of the table. Every time it ‘‘collides’” with a ‘‘heavier’’ element,
it jumps over it.

A practical example of a bubble-sort is shown on Figure 8.5 The list
to be sorted contains: (10, 5, 0, 2, 100), and must be sorted in descend-
ing order (*‘0’" on top). The algorithm is simple, and the flowchart is
shown on Figure 8.7

The top two (or else bottom two)elements are compared. If the lower
one is less (‘‘lighter’”) than the top one, they are exchanged. Otherwise
not. For practical purposes, the exchange, if it occurs, will be remem-
bered in a flag called “EXCHANGED’’. The process is then repeated
on the next pair of elements, etc., until all elements have been com-
pared two by two.

This first pass is illustrated by steps 1, 2, 3, 4, 5, 6 on Figure 8.5, go-
ing from the bottom up. (Equivalently we could go from the top down.)

If no elements have been exchanged, the sort is complete. If an ex-
change has occurred, we start all over again.

Looking at Figure 8.6, it can be seen that four passes are necessary in
this example.

The process is simple, and is widely used.

One additional complication resides in the actual mechanism of the

exchange.
When exchanging A and B, one may not write
A =B
B =A

as this wouid result in the loss of the previous value of A (try it on an
example).
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10 10 10
5 5 5 petip— | = 2
o 0 — 123 0 <t— =3
2 lat— | =4 2 [ =4 2
100 [ (=5 100 100
100> 2: 250 0<5
NO CHANGE NO CHANGE EXCHANGE!

10 10 1= 0 : ]
g | =2

2 2 2
100 100 100
0<10: EXCHANGE 0
FcnANGED EXCHANGE! END OF PASS |
® ® ®
END OF PASS ¢
¢] o 0
10 10 0
5 5 - =3 2 :—_-]
2 <t— 1=4 9 < =4 N
100 <t =5 100 o
100> 2: 24 5:
NO CHANGE EXCHANGE! EXCHANGED

0 0 0 [ =1
10 b | == 2 2 :j 2 g | = 2
2 @ =3 10 10
5 5 5
100 100 100
2<10: 2>0:
EXCHANGE EXCHANGED NO CHANGE

O ©)

END OF PASS 2

Fig. 8.5: Bubble-Sort Example: Phases 1 to 12
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0
2
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5 - (=4
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5

10
100

2>0:
NO CHANGE
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END OF PASS 3

5>2:
NO CHANGE
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—]
10

EXCHANGED

0
2
5
10 lt— =4
100 [TI=5

100 >10:
NO CHANGE

0 g =]

2 - (=2

2>0:
NO CHANGE

@

END

Fig. 8.6: Bubble-Sort Example: Phases 13 to 21

The correct solution is to use a temporary variable or location to pre-

serve the value of A:

TEMP = A
A =
B = TEMP

It works (try it on

an example). This is called a circular permutation.

This is the way all programs implement the exchange. This technique
is illustrated on the flowchart of Figure 8.7.
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Y
[ EXCHANGED = 0

¥

GET NUMBER OF
ELEMENTS N
l=N

)
READ ELEMENT
£l
¥y
DECREMENT |

A READ E(l) DONE

EXCHANGE E AND £
TEMP = E(1)
£y = E'(l)
E(l) = TEMP

¥
EXCHANGED = 1

. )

Fig. 8.7: Bubble-Sort Flowchart
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EXCHANGE/NOT

o

Bl P || count e i
ol nex [ cumrent e

LIsT
4] ! [t 7

T ] COUNT
[ .

Fig. 8.8: Bubble-Sort

The register and memory assignments are shown on Figure 8.8, and
the program is:

BUBBLE LD (TEMP), HL TEMP=(H, L)

AGAIN LD IX, (TEMP) (IX) =(HL)
RES FLAG, H EXCHANGED FLAG =0
LD B, C
DEC B

NEXT LD A, (IX)
LD D, A D =CURRENT ENTRY
LD E, (IX+1) E=NEXT ENTRY
SUB E COMPARE

JR NC, NOSWITCH GO TO NOSWITCH IF
CURRENT > NEXT

XCHANGE LD (IX), E STORE NEXT INTO
CURRENT
LD (IX+1),D STORE CURRENT INTO
NEXT
SET FLAG, H EXCHANGED FLAG =1
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NOSWITCH INC IX NEXT ENTRY
DINZ NEXT DEC B, CONTINUE UNTIL
ZERO
BIT FLAG, H EXCHANGED =17
JR  NZ, AGAIN RESTART IF FLAG =1
RET
SUMMARY

Common utility routines have been presented in this chapter which
use combinations of the techniques we have described in the previous
chapters. They should allow you to start designing your own programs
now. Many of these routines have used a special data structure, the
table. Other possibilities exist for structuring data, and will now be re-
viewed.
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9
DATA STRUCTURES

PART I — THEORY

INTRODUCTION

The design of a good program involves two tasks: algorithm design
and data structures design. In most simple programs, no significant
data structures are involved, so the main objective in learning program-
ming is designing algorithms and coding them efficiently in a given
machine language. This is what we have accomplished here. However,
designing more complex programs aiso requires an understanding of
data structures. Two data structures have already been used through-
out the book: the tabie and the stack. The purpose of this chapter is to
present other, more general, data structures that you may want
to use. This chapter is completely independent of the microprocessor,
or even the computer, selected. It is theoretical and involves the logical
organization of data in the system. Specialized books exist on the topic
of data structures, just as specialized books exist on the subject of
efficient multiplication, division or other usual algorithms. This
chapter, therefore, will be limited to essentials only. It does not claim
to be complete. The most common data structures will now be reviewed.

POINTERS

A pointer is a number which is used to designate the location of the
actual data. Every pointer is an address. However, every address is not
necessarily called a pointer. An address is a pointer only if it points at
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some type of data or at structured information. We have-already en-
countered a typical pointer: the stack pointer, which points to the top
of the stack (or usually just over the top of the stack). We will see that
the stack is a common data structure, called an LIFO structure.

As another example, when using indirect addressing, the indirect ad-
dress is always a pointer to the data that one wishes to retrieve.

Exercise 9.1: Examine Fig. 9.1. At address 15 in the memory, there is a
pointer to Table T. Table T starts at address 500. What are the actual
contents of the pointer to T?

¢
15
— POINTERTO T
16
500
TABLE T

Fig. 9.1: An Indirection Pointer

LISTS

Almost all data structures are organized as lists of various kinds.

Sequential Lists

A sequential list, or table, or block, is probably the simplest data
structure, and is one that we have already used. Tables are normally
ordered in function of a specific criterion, such as alphabetical ordering
or numerical ordering. It is then easy to retrieve an element in a table,
using, for example, indexed addressing, as we have done. A block nor-
mally refers to a group of data which has definite limits but whose con-
tents are not ordered. It may contain a string of characters; it may
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be a sector on a disk; or it may be some logical area (called segment) of
the memory. In such cases, it may not be easy to access a random ele-
ment of the block.

In order to facilitate the retrieval of blocks of information, directo-
ries are used.

Directories

A directory is a list of tables or blocks. For example, the file system
will normally use a directory structure. As a simple example, the master
directory of the system may include a list of the users’ names. This is il-
lustrated in Figure 9.2. The entry for user ‘‘John’’ points to John’s file
directory. The file directory is a table which contains the names of all of
John’s files and their location. This is, again, a table of pointers. In this
case, we have just designed a two-level directory. A flexible directory
system will allow the inclusion of additional intermediate directories, as
may be found convenient by the user.

USER DIRECTORY

JOHN'S
FiLE DIRECTORY

JOHN

JOHN'S FRE
ALPHA

ALPHA

SIGMA DATA

SIGMA

Fig. 9.2: A Directory Structure

Linked List

In a system there are often blocks of information which represent
data, events, or other structures which cannot be moved around eas-
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ily. If they could, we would probably assemble them in a table in order
to sort or structure them. The problem now is that we wish to leave
them where they are and still establish an ordering among them such as
first, second, third, fourth. A linked list will be used to solve this prob-
lem. The concept of a linked list is illustrated by Figure 9.3. On the il-
lustration, we see that a list pointer, called FIRSTBLOCK, points to the
beginning of the first block. A dedicated location within Block 1 such
as, perhaps, the first or the last word in it, contains a pointer to Block
2, called PTR1. The process is then repeated for Block 2 and Block 3.
Since Block 3 is the last entry in the list, PTR3, by convention, either
contains a special “‘nil’” value, or points to itself, so that the end of the
list can be detected. This structure is economical, as it requires only a
few pointers (one per block) and frees the user from having to physi-
cally move the blocks in the memory.

FIRST
o
BLOCK

BLOCK 3

PTR 2

PIR3
L4

BLOCK 2

PTR1

BLOCK1

Fig. 9.3: A Linked List

Let us examine, for example, how a new block will be inserted. This
is illustrated by Figure 9.4. Let us assume that the new block is at ad-
dress NEWBLOCK, and is to be inserted between Block 1| and Block 2.
Pointer PTR1 is simply changed to the value NEWBLOCK, so that it
now points to Block X. PTRX will contain the former value of PTRI,
i.e., it will point to Block 2. The other pointers in the structure are left
unchanged. We can see that the insertion of a new block has simply re-
quired updating two pointers in the structure. This is clearly efficient.

Exercise 9.2: Draw a diagram showing how Block 2 would be removed
Jrom this structure.

NEW BLOCK

BLOCK X

J L BLOCK2

Fig. 9.4: Inserting a New Block

PIR X

-

FIRST
BLOCK

PTR 2

PTR 3

BLOCK 1

BLOCK 3

PIR Y
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Several types of lists have been developed to facilitate specific types
of access, insertions, and deletions to and from the list. Let us examine
some of the most frequently used types of linked lists.

Queue

A queue is formally called a FIFO, or first-in-first-out list. A queue
is illustrated in Figure 9.5. To clarify the diagram, we can assume, for
example, that the block on the left is a service routine for an output
device, such as a printer. The blocks appearing on the right are the re-
quest blocks from various programs or routines, to print characters.
The order in which they will be serviced is the order established by the
waiting queue. It can be seen that the first event which will obtain serv-
ice is Block 1, the next one is Block 2, and the following one is Block 3.
In a queue, the convention is that any new event arriving in the queue
will be inserted at the end. Here it will be inserted after PTR3. This
guarantees that the first block to be inserted in the queue will be the
first one to be serviced. It is quite common in a computer system to
have queues for a number of events whenever they must wait for a
scarce resource, such as the processor or some input/output device.

SERVICE ROUTINE BLOCKI

NEXT — PIR Y

BLOCK 3

E PIR3

Lo

BLOCK 2

PTR 2 A

Fig. 9.5: A Queue
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Stack

The stack structure has already been studied in detail throughout the
book. It is a last-in-first-out structure (LIFO). The last element depos-
ited on top is the first one to be removed. A stack may either be im-
plemented as a sorted block, or it may be implemented as a list. Because
most stacks in microprocessors are used for high-speed events, such as
subroutines and interrupts, a continuous biock is usually allocated to
the stack instead.of using a linked list.

Linked List vs. Block

Similarly, the queue could be implemented as a block of reserved
locations. The advantage of using a continuous block is fast retrieval
and the elimination of the pointers. The disadvantage is that it is usu-
ally necessary to dedicate a fairly large block to accommodate the
worst-case size of the structure. Also, it makes it difficult or impractical
to insert or remove elements from within the block. Since memory is
traditionally a scarce resource, blocks have usually been reserved for
fixed-size structures or structures requiring the maximum speed of re-
trieval, such as the stack.

Circular List

“‘Round robin’’ is a common name for a circular list. A circular list is
a linked list in which the last entry points back to the first one. This is il-
lustrated in Figure 9.6. In the case of a circular list, a current-block
pointer is often kept. In the case of events, or programs, waiting for
service, the current-event pointer will be moved by one position to the
left or to the right every time. A round robin usually corresponds to a
structure in which all blocks are assumed to have the same priority.
However, a circular list may also be used as a subcase of other struc-
tures simply to facilitate the retrieval of the first block after the last
one, when performing a search.

As an example of a circular list, a polling program usually goes in a
round robin fashion, interrogating all peripherals and then coming
back to the first one.

Trees

Whenever a logical relationship exists among all elements of a struc-
ture (this is usually called a syntax), a tree structure may be used. A sim-
ple example of a tree structure is a descendant, or genealogical, tree.
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t

CURRENT EVENT

Fig. 9.6: Round Robin is Circular List

This is illustrated in Figure 9.7. It can be seen that Smith has two chil-
dren: a son, Robert, and a daughter, Jane. Jane, in turn, has three
children: Liz, Tom and Phil. Tom, in turn, has two more children: Max
and Chris. However, Robert, on the left of the illustration, has no de-
scendants.

This is a structured tree. We have, in fact, already encountered an ex-
ample of a simple tree in Figure 9.2. The directory structure is a two-
level tree. Trees are used to advantage whenever elements may be classi-
fied according to a fixed structure. This facilitates insertion and re-
trieval. In addition, they may establish groups of information in a
structured way which may be required for iater processing, such asina
compiler or interpreter design.

SMITH
/ \ B
ROBERT JANE
/ \
uz Tom PHIL
/ \\
MAX CHRIS

Fig. 9.7: Genealogical Tree

Doubly-Linked Lists

Additional links may be established between elements of a list. The
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simplest example is the doubly-linked list. This is illustrated in Figure
9.8. We can see that we have the usual sequence of links from left to
right, plus another sequence of links from right to left. The goal is to
allow easy retrieval of the element just before the one which is being
processed, as well as just after it. This costs an extra pointer per block.

BLOCK 1 plockz &

PTR

BLOCK 3

PTR
p
PTR

Fig. 9.8: Doubly-Linked List

SEARCHING AND SORTING

Searching and sorting elements of a iist depends directly on the type
of structure which has been used for the list. Many searching algo-
rithms have been developed for the most frequently used data struc-
tures. We have already used indexed addressing. This is possible when-
ever the elements of a table are ordered in function of a known
criterion. Such elements may then be retrieved by their numbers.

Sequential searching refers to the linear scanning of an entire block.
This is clearly inefficient but may have to be used when no better tech-
nique is available, for lack of ordering of the elements.

Binary, or logarithmic, searching attempts to find an element in a
sorted list by dividing the search interval in half at every step. Assum-
ing that we are searching an alphabetical list, one might start, for exam-
ple, in the middle of a table and determine if the name we are looking
for is before or after this point. If it is after this point, we will eliminate
the first half of the table and look at the middle element of the second
half. We compare this entry again to the one we are looking for, and we
restrict our search to one of the two halves, and so on. The maximum
length of a search is then guaranteed to be log,n, where n is the number
of elements in the table.

Many other search techniques exist.

SECTION SUMMARY

This section was intended as only a brief presentation of usual data
structures which may be used by a programmer. Although most com-
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mon data structures have been organized in types and given a name, the
overall organization of data in a complex system may use any combina-
tion of them, or require the programmer to invent more appropriate
structures. The array of possibilities is only limited by the imagination
of the programmer. Similarly, a number of well-known sorting and
searching techniques have been developed for coping with the usual
data structures. A comprehensive description is beyond the scope of
this book. The contents of this section were intended to stress the im-
portance of designing appropriate section structures for the data to be
manipulated and to provide the basic tools to that effect.
Actual programming examples will now be presented in detail.
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PART 1l — DESIGN EXAMPLES

INTRODUCTION

Actual design examples will be presented here for typical data struc-
tures: table, sorted list, linked list. Practical searching and insertion and
deletion algorithms will be programmed for these structures.

The reader interested in these advanced programming techniques is
encouraged to analyze in detail the programs presented in this section.

However, the beginning programmer may skip this section initially,
and come back to it when he feels ready for it.

A good understanding of the concepts presented in the first part of
this chapter is necessary to follow the design examples. Also, the pro-
grams will use all of the addressing modes of the Z80, and integrate
many of the concepts and techniques presented in the previous chapters.

Three structures will now be introduced: a simple list, an alphabetical
list and a linked-list plus directory. For each structure, three programs
will be developed: search, enter and delete.

DATA REPRESENTATION FOR THE LIST

Both the simple list and the alphabetic list will use a common repre-
sentation for each list element:

C C C D D é% D D

e, S
3-byte label Data
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ENTLEN M LENG TH OF ENTRY
TABLEN Ne NUMBER OF ENTRIES
TAB BASE
LABEL
ENTRY MBYTES
DATA

/\/\/\/\/\ at———— ENTER NEW ELEMENT

Fig. 9.9: The Table Structure

, c b
c © LABEL
c )
D
ELEMENT ENTLEN
NNANANNN
( DATA
VAYAVAVAVAVANV AV \
o |/ 1
C ) A
c ; LABEL
c )
D
ELEMENT ENTLEN
AANANNANINN
( DATA
AANANANANN
D
v

Fig 9.10: Typical List Entries in the Memory
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Each element, or ‘‘entry’’, includes a 3-byte label, and an n-byte block
of data, with n between 1 and 253. Thus, at most, each entry uses one
page (256 bytes). Within each list, all elements have the same length (see
Figure 9.10). The programs operating on these two simple lists use some
common variable conventions:

ENTLEN is the iength of an element. For example, if each element
has 10 bytes of data, ENTLEN = 3 + 10 = 13

TABASE  is the base of the list or table in the memory

POINTR  is arunning pointer to the current element

OBJECT  isthe current entry to be located, inserted or deleted

TABLEN is the number of entries.

All labels are assumed to be distinct. Changing this convention would
require a minor change in the programs.

TABASE ] ELEMENT I LE?NGTTLE{Ns
ELEMENT 2
POINTR o CURRENT
ELEMENT
ELEMENT n (TABLEN =n)
FREE SPACE — | EREE SPACE SERT
QBJECT
10 BE INSERTED

Fig. 9.11: The Simple List
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A SIMPLE LIST

The simple list is organized as a table of n elements. The elements are
not sorted (see Figure 9.11). When searching, one must scan through
the list until an entry is found or the end of the table is reached. When
inserting, new entries are appended to the existing ones. When an entry
is deleted, the entries in higher memory locations, if any, will be shifted
down to keep the table continuous.

Searching

A serial search technique is used. Each entry’s label field is compared
in turn to the OBJECT’s label, letter by letter.
The running pointer POINTR is initialized to the value of TABASE.

SEARCH

¥

COUNTER =
NUMBER OF ENTRIES

READ ENTRY
{3 LETTERS)

FOUND
(SET A TO “FF")

FAILURE EXIT

Y NO
POINT TO NEXT ENTRY

Fig. 9.12: Table Search Flowchart
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The search proceeds in the obvious way, and the corresponding flow-
chart is shown on Figure 9.12. The program appears on Figure 9.16
at the end of this section (program “SEARCH’’). A sample run of the
program is shown in Figure 9.17.

Inserting

When inserting a new element, the first available memory biock of
(ENTLEN) bytes at the end of the list is used (see Figure 9.11).

The program first checks that the new entry is not already in the list
(all Iabels are assumed to be distinct in this example). If not, it incre-
ments the list length TABLEN, and moves the OBJECT to the end of
the list. The corresponding flowchart is shown in Figure 9.13.

The program is shown in Figure 9.16. 1t is called ““NEW’’ and resides
at memory locations 0135 to 015E.

The index register 1Y points to the source. HL and DE are destina-
tion pointers.

EXIT

[ SAVE OLD TABLE LENGTH ‘}

‘

I INCREMENT TABLE LENGTH ]

v

POINT AFTER
END OF TABLE

l INSERT OBJECT j

END

Fig. 9.13: Table Insertion Flowchart
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Deleting

In order to delete an element from the list, the elements following it
in the list at higher addresses are merely moved up by one element posi-
tion. The length of the list is decremented. This is illustrated on Figure
9.14.

The corresponding program is straightforward and appears on Fig-
ure 9.16. It is called “DELETE’’, and resides at memory addresses
015F to 0187. The flowchart is shown in Figure 9.15. k

Memory location TEMPTR is used as a temporary pointer pointing
to the element to be moved up.

During the transfer, POINTR always points to the ‘“*hole’ in the list,
i.e., the destination of the next block transfer.

The Z flag is used to indicate a successful deletion upon exit.

Note how the LDIR instruction is used for efficient automated block
transfer (refer to address 0178 in Figure 9.16).

LD A, B BLOCK COUNTER
NEWBLOC LD BC, (ENTLEN) BLOCK LENGTH

LDIR

DEC A

JP NZ, NEWBLOC

BEFORE

DELETE ——of
MOVE

TEMPTR ~————p

OEEEO;

MOVE

OO

N,

Fig. 9.14: Deleting an Entry (Simple List)

553



PROGRAMMING THE Z80

i

FIND ENTRY

v

out

DECREMENT TABLE LENGTH

FIND NBR OF ENTRIES
AFTER OBJECT IN TABLE

EXIT

SHIFT ONE ENTRY UP

\

DECREASE COUNT OF
ENTRIES REMAINING
AFTER THE ONE SHIFTED

!

ouT

Fig. 9.15: Table Deletion Flowchart
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0000 ORG 0100H

€0187) ENTLEN DL ENDER

(0189} TABLEN IL ENDER+2

(0184) TARASE DL ENDER+3

0180) TEMP oL ENDER+S
0100 1600 SEARCH LIt s 0 JCLEAR I
0102 3A8901 Lo Ay (TABLEN) $CHECK FOR A ZERO TARLE LENGTH
0105 A7 AND A FSET FLAGS
01046 C8 RET Z
0107 47 Lo ErA iSTORE TABLE LENGTH
0108 [D2ABAO1 Lo IX» (TARASE) $FUT EBASE ADDR, IN IX
010C DR7EQC LOOF Lo Ar (IX40) SCHECK FIRST LETTER OF ENTRY
010F FIEREOO cF (IY+0)
0112 C22701 JE NZ s NEXTONE
0115 TLO7E0L Lo Ar (IX+1) $CHECK 2NN LETTER
0118 FREEOL ce (IY+H1:
O11E C22701 JE NZsNEXTONE
0118 DD7E0R Lo Ay (IX+2) $CHECK 3RO LETTER
0121 FLOREOR cF (IY+2)
0124 CA3201 JF ZFOUND FEXIT IF ALL LETTERS MATCH
0127 05 NEXTONE DEC 2l SHECREMENT TARLE LENGTH COUNTER
0128 (8 RET Z FEXIT IF AT END OF TABLE
0129 EDSEB701 LD DEr (ENTLEN) $SET IX TO NEXT ENTRY ADDR.
012 LDi? AL IXsDE
012F  C£30C01 JF LOaF FTRY AGAIN
0132 16FF FOUNI Lo [ OFFH $SET I TO SHOW IX CONTAINS ANDR.
0134 L9 RET $..0F ENTRY IN TARLE
0135  CI000t NEW CALL SEARCH $SEE IF OBJECT IS THERE
0138 14 INC It
0139 CASEOL JF ZsOUTE FIF I WAS FFs EXIT
013C 3A8901 Lo Ar {TABLEN)
013F SF Lo Evh FLOAD E WITH TABLE LENGTH
0140  3C INC A
0141 328901 Lo (TABLEN) s A 5 INCREMENT TABLE LENGTH
0144 1600 (84 0y0
0146 248401 Lo HL» (TARASED
0149 EI4E8701 Lo BC» (ENTLEN) FJSET B TO LENGTH OF AN ENTRY
014l 41 Lo HeC
Q14E 19 LOGFE ALL HL s BE
014F  10FD DJNZ  LOOFE FALD HL TO (ENTLEN:TABLEN)
0151 ED4EB701 1] BCy (ENTLEN)
0155 FLES FUSH  TIY FMOVE IY T0 DE
0137 D1 FOF LE
0158 ER EX DEsHL
0159 EIRO LDIR 5MOVE MEMORY FROM OBJECT TO END
015K OLIFFFF Lo HCyOFFFFH i..0F TABLE
018E C9 OUTE RET

¢

O15F CL0001 DELETE CALL SEARCH FIND ENTRY TO KRE DELETEDR
0162 14 INC I $SEE IF IT WAS FOUND
0183 (28401 JE NZyOUT
0166 3AB701 o Ay (TARLEN) FDECREMENT TARLE LENGTH
0169 3D REC A
016A 328901 Ly (TARLEN) A
0160 0% HEC B 5B NOW=$ OF ENTRIES LEFT IN TABLE
016E CA8301 JE ZsEXIT i. AFTER ONE TO BE DRELETED
0171 DDES FUSH  IX FMOVE IX 10 DE
0173 1 FOF DE
0174 2AB70% Lo HL ¢ (ENTLEN) $SET HL ONE ENTRY AHEAD OF DE
Q177 19 AL HLsDE
o178 7 LD ArR $SET HLOCK COUNTER
0179 ED4BB701 NEWRLOC LI ECy (ENTLEN) $SET BLOCK LENGTH COUNTER
Q1700 EDRO LDIR $SHIFT 1 ENTRY OF TABLE
017¢F 3D nec A
0180 (27901 JF NZ s NEWRLOC $SHIFT ANOTHER BLOCK
0183 OIFFFF EXIT Lo HC+OFFFFH FGHOW THAT IT WAS DONE
0184 C9 out RET
0187 (0000 ENDER END

Fig. 9.16: Simple List— The Programs
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SYMROL TAELE
DELETE O015F ENDER 0187 ENTLEN 0187 EXIT 0183 FOUND 0132

LOoF 010C LOOFPE 014€ NEW 0135 NEWBLO 0179 NEXTON 0127
our 01846 QuUTE 01SE SEARCH 0100 TABASE 0184 TABLEN 0189
TEMF 018C

Fig. 9.16: Simple List — The Programs (cont.)

Display Memory Listing of Objects
with their locations
in memory

~IM300

0300 53 4F 4E 31 31 31 31 31-31 31 31 31 31 00 00 00 SONt11111ilit..,
0310 44 41 44 32 32 32 32 32-32 32 32 32 32 00 00 00 DARERR2222222...,
0320 40 AF Al 33 33 33 33 33-33 33 33 33 33 00 00 00  MOM33333233333...
0330 95 4E 43 34 34 34 34 34-34 34 34 34 34 00 00 00 UNCA444444444,,,
0340 41 4E S4 35 35 35 35 3S-35 3% 35 35 35 00 00 00 ANTE5S5S555555. .,

0350 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 LI T
0350 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 PR N
0370 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 R N
-8Y

v=0000 300  SetlY to 0300H (pointer to OBJECT)

-6193/194
#=0196 0196° Run ‘INSERT’

Table configuration
~IM400 after program run

0400 53 4F 4FE 31 31 31 31 31-31 31 31 31 31 00 00 00 SON1111111111.,
0410 00 00 00 60 00 00 00 00-00 00 00 00 00 00 00 00 tuvunnnnnnnnnny
0420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 v.vusuuvnvnnsnnn
0430 00 00 00 00 0O 00 00 00~00 0O 00 0O 00 00 00 00  +ruesnnnnni it
0440 00 00 00 00 00 00 00 00~00 00 00 00 00 00 00 00 wvruurreeessnns.
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 Leouvnnsrnnunnns
G460 00 00 00 00 00 00 00 00~00 00 00 00 00 00 00 00 vivenvnnnsnnsses
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 viisiivvernnnnans

-8Y

v=0300 310 SetlY to 0310H (next OBJECT)

~G193/1946

F=0194 01946° Run ‘INSERT’

Table configuration
after second insert
~DIM400
0400 53 4F 4E 31 31 31 31 31-31 31 31 31 31 44 41 44 SON11111111117A0
0410 32 32 32 32 32 32 32 32-32 32 00 00 00 00 00 00 27222222222
0420 00 00 00 00 00 00 00 00~00 00 00 00 00 00 00 00  vivursvinnnnnsss

0430 00 00 00 00 00 00 00 00-00 00 00 00 D0 00 00 00 +rversenrinerll!
0440 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 veuveurnssnenn..
0450 00 00 00 G0 00 00 00 00-00 00 00 00 GO 00 00 00 s
0460 00 00 00 00 00 00 00 00~00 00 00 00 00 00 00 00 e,
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 i
“ e . . o
(More insertions) Table configuration
after several inserts
~IIM400
0400 53 4F 4E 31 31 31 31 31 31 31 31 44 41 44 SON1111111111DADR
0410 32 32 32 32 55 4E 43 34 34 34 22222 UNC444
0420 34 34 34 400 33 33 33 33 33 33 4444444MOM33I333I3
0430 41 4E 54 35 35 35 35 35 35 35 333I3ANTSSS55555S

0440 35 00 00 00 00 00 00
0430 00 00 00 00 00 00 00
0440 00 00 00 00 00 00 00
0470 00 00 00 00 00 00 00

00 00 00 00 00 00 00 S....,,
00 00 00 00 00 00 00 ,...,.,
G0 00 00 00 00 00 00 .......

00 00 00 00 00 00 00 vvuvesrnsnnrassn,

Fig. 9.17: Simple List—A Sample Run
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-8Y
Y=0340 320
~G190/193

F=0193 0193 Run ‘SEARCH’
Reg D shows that Object was found

Register contents

~DR
Z N A=4D EC=02FF DE=FFOD HL=034D 5=0100 F=0193 0193’ CALL 0135
A’=00 E’=0000 It’=0000 H‘=0000 X=0427 Y=0320 I=00 01357
I—w‘\ddress of Object

~G196/199

p=0199 0199’ Run ‘DELETE’ ‘Table configuration

after deletion

-M400

0400 53 4F AE 31 31 31 31 31-31 31 31 31 31 44 41 44 SON1111111111DLAD
0410 32 32 32 32 32 30 32 32-32 32 55 4E 43 34 34 34 22 2222UNCAA4A
0420 34 34 34 34 34 34 34 A1-4E S4 35 35 35 35 35 35 4444444ANTHESSSS
0430 35 35 35 35 41 4E 54 35-35 35 35 3% 35 35 35 39 SE5S5ANTSES555555
0440 35 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 Seserrensranenns
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 Q0  sovessvoveranens
0440 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 Q0  .esvsvrsrnssses

0470 00 00 00 00 00 00 00 0000 Q0 00 00 00 00 00 00 iovvvrvvevervn

-8y

Y=0240 3@0

G194/199 Delete last entry in table Note: no apparent

F=0199 01997 change in table
configuration

~[H400

0400 53 AF 4E 31 31 31 31 31-31 31 31 31 31 44 41 44  SONi1111111111DAD
0410 32 32 32 32 32 32 32 32-32 32 55 4E 43 34 34 34 22RZUNCALKA
0420 34 34 34 34 34 34 34 41-4E 54 35 35 35 35 35 35 AAANTSSEESS
0430 35 35 35 35 41 4E 54 35-35 35 35 35 35 35 35 35 ANTS55555555
0440 35 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 < e
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .e.r-vvenervroee

0440 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ..v.vvierrvrerne
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  «e.svevrvvrvrase
~IM189s1

géirgo/ggz«—— Memory location *TABLEN’ — shows true length of table

F=0193 01937 Run ‘SEARCH’ for deleted Object

D shows that Object was not found

Z N A=55 RC=00FF DE=000D HL=0441 $=0100 F=0193 0193° CALL 0135
A’=00 R’=0000 L'=0000 H’=0000 X=041A4 Y=0340 I=00 (01357

Fig. 9.17: Simple List— A Sample Run (cont.)
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ALPHABETIC LIST

The alphabetic iist, or ‘“‘table,” unlike the previous one, keeps all
its elements sorted in alphabetic order. This allows the use of fast-
er search techniques than the linear one. A binary search is used here.

Searching

The search aigorithm is a classic binary search. Let us recall that
the technique is essentially analogous to the one used to find a name in
a telephone book. One usually starts somewhere in the middle of the
book, and then, depending on the entries found there, goes either back-
wards or forward to find the desired entry. This method is fast and
reasonably simple to implement.

The binary search flowchart is shown in and the program Fig. 9.18,
is shown in Fig. 9.23,

This list keeps the entries in alphabetical order and retrieves them by
using a binary or ‘‘logarithmic’’ search. An example is shown in Figure
9.19. The search is somewhat complicated by the need to keep track of
several conditions. The major problem to be avoided is searching for an
object that is not there. In such a case, the entries with immediately
higher and lower alphabetic values could be alternately tested forever.
To avoid this, a flag is maintained in the program to preserve the value
of the carry flag after an unsuccessful comparison. When the INCMNT
value, which shows by how much the pointer will next be incremented
reaches a value of ““1”°, another flag called ““CLOSENOW?’, which we
will abbreviate to ““CLOSE’’, is set to the value of the COMPRES
flag Thus, since all further increments will be “1°°, if the pointer goes
past the point where the object should be, COMPRES will no longer
equal CLOSE and the search will terminate. This feature also enables
the NEW routine to determine where the logical and physical pointers
are located, relative to where the object will go.

Thus, if the OBJECT searched for is not in the table, and the running
pointer is incremented by one, the CLOSE flag will be set. On the next
pass of the routine, the result of the comparison will be opposite to the
previous one. The two flags will no longer match, and the program will
exit indicating ‘‘not found’’.
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[ FLAGS = 0

'

L POINT TO TABLE BASE

LOGICAL POSITION =
INCREMENT VALUE =
TABLE LENGTH / 2
(ADD 1 IF IT WAS ODD)

Y

YES
NOT FOUND

NO

r POINT TO MIDDLE OF TABLE

* r——-———— (ENTRY)

{ INCREMENT VALUE = INCREMENT VALUE/2 I

'

!l ADD ONE IF 1T WAS ODD

v

COMPARE OBJECT TO ENTRY J

!

I

FOUND

NO

PRESERVE CARRY (SIGN OF COMPARISON)
IN COMPRES FLAG

Y

1S INCREMENT
VALUE ONE?

(NEXT TEST)

(LAST ONE)

Fig. 9.18: Binary Search Flowchart
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(NEXT TEST} (LAST ONE}

CLOSENOW =
COMPRES

BRANCH
ON COMPRES

WILL INCREMENT
GO PAST END
OF TABLE?

AT END
OF TABLE?

(TOOHN

MOVE POINTERS
up 8Y !

UPDATE POINTERS

(ENTRY)

WILL INCREMENT
GO PAST END
OF TABLE?

= BOTIOM OF i INTER!
FOUND TABLE? UPDATE POINTERS

{ENTRY}

(10010}
INCREMENT = 1
MOVEN"S'B"“(“‘RS CLOSENOW = COMPRES

}

(ENTRY)

Fig. 9.18: Binary Search Flowchart (cont.)
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The other major problem that must be dealt with is the possibility of
running off one end of the table when adding or subtracting the incre-
ment value. This is solved by performing a test ‘‘add’’ or ‘“‘subtract”
using the logical pointer and length value which record the actual num-
ber of entries, not the physical positions in memory used by the physical
pointers. '

In summary, two flags are used by the program to memorize infor-

(0121) LD
SRL
ADC
LD

no»p
9!

>

OBJECT
P “SYR"

TABASE

BAC

(NO)

@——» FIL TES
TES @.-. XYz

(NO)

XYz

NANNNN

FIRST TRY SECOND TRY
SEARCH INTERVAL = 5 SEARCH INTERVAL = 2

Fig. 9.19: A Binary Search
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mation: COMPRES and CLOSE. The COMPRES flag is used to preserve
the fact that the carry was either ““0’’ or ““1’’ after the most recent com-
parison. This determines if the element under test was larger or smaller
than the one with which it was compared. The C indicates the relation.
Whenever the carry C was “‘1°’, and the element was smaller than the
object COMPRES is set to ‘‘1’’. Whenever the carry C was “‘0”’, indi-
cating that the element was greater than the object, COMPRES will be
set to “FF”’.

The second flag used by the program is CLOSE. This flag is set equal
to COMPRESS when the search increment INCMNT becomes equal to
“1”. It will detect the fact that the element has not been found if

COMPRES is not equal to CLOSE the next time around.
Other variables used by the program are:

LOGPOS  which indicates the logical position in the table
(element number)

INCMNT  which represents the value by which the running
pointer will be incremented or decremented if
the next comparison fails

TABLEN represents as usual the total length of the list.

LOGPOS and INCMNT will be compared to TABLEN in order to
assure that the limits of the list are not exceeded.

The program called ““SEARCH”’ is shown on Figure 9.23. It resides
at memory locations 0100 to 01CF, and deserves to be studied with care,
as it is much more complex than in the case of a linear search.

An additional complication is due to the fact that the search interval
may at times be either even or odd. When it is odd, a correction must
be introduced. (It cannot, for instance, point to the middle element of a
four-element list.) When it is odd, a ““trick’” is used to point to the
middle element: the division by 2 is accomplished by a right shift. The
bit ““falling off”’ into the carry after the SRL instruction will be ““1”* if
the interval was odd. It is merely added to the pointer.

The OBJECT is then matched against the entry in the middle of the
new search interval. If the comparison succeeds, the program exits.
Otherwise (‘““NOGOOD?"), the carry is set to ““0”" if the OBJECT is less
than the entry. Whenever the INCMNT becomes ‘‘1’’, the CLOSE flag
(which had been initialized to “‘0’") is then checked to see if it was set. If
it was not, it gets set. If it was set, a check is run to determine whether we
passed the location where the OBJECT should have been but is not.
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Also note that when the carry was ““1”’, the running pointer will point
to the entry below the OBJECT.

Element Insertion

In order to insert a new element, a binary search is conducted. If the
element is found in the table, it does not need to be inserted. (We
assume here that all element are distinct). If the element was not found
in the table, it must be inserted immediately before or immediately after
the last element to which it was compared. The value of the COMPRES
flag after the search indicates whether it should be inserted immediately
before or immediately afterwards. All the elements following the new
location where it is going to be placed are moved down by one block
position, and the new element is inserted.

BEFORE AFTER
TABASE ——s> AAA AAA
ABC ABC
BAT BAC e NEW
ELEMENT
TAR BAT
ZAP TAR
ZAP
v
OB JECT ] BAC MOVE DOWN

Fig. 9.20: Insert: “BAC”’
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The insertion process is illustrated in Figure 9.20, and the corre-
sponding program appears in Figure 9.23.

The program is called NEW, and starts at memory location 01D0.
Note that the automated Z80 instructions LDDR and LDIR are used for
efficient block transfers.

Element Deletion

Similarly, a binary search is conducted to find the object. If the
search fails, it does not need to be deleted. If the search succeeds, the
element is deleted, and all the following elements are moved up by one
block position. A corresponding example is shown in Figure 9.21, and
the program appears in Figure 9.23. The flowchart is shown in Fig.
9.22.

The program is called “DELETE’" and resides at address 0221.

A sample run of the above programs is shown in Fig. 9.24.

BEFORE AFTER
AAA AAA
MOVE UP ABC ABC
A
BAC e BAT
BAT TAR
o TAR ZAP
ZAP
v

DELETE

Fig. 9.21; Delete ‘‘BAC”
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DELETE

v

ALREADY IN? LUTS

COUNT HOW MANY
ELEMENTS FOLLOW THE
ONE TO BE DELETED

!

YES

NO

RESULT = COUNITER
(LOG POS )

v

o POINT TO NEXT ENTRY
POINTER = TEMP ;SOURCE

{

TRANSFER IT UP ONE BLOCK

v

POINT TO NEXT ENTRY
POINTER = POINTER (DESTINATION,

!

L DECREMENT LOGPOS ‘]

!

(DOWNTAB) g YES

L SET 2 FLAGS 1!4——————-

RIS

Fig. 9.22: Deletion Flowchart (Alphabetic List)

565



Q000
024h)
(024K COMFRES
0240 TAKLEN
OZAL TARASGE
(024 ENTLEN

i

0100 3JEO00 SEARCH

0102 324A00

QG105 324R02

0108 57

0109  2A4002

QLoC  3A4C02

010F  CR3F

G111 CEQO

0113  4F

Q1ta 47

011%  CABRAOCL

o118 S

0119 1o

01lA  CREDBOY

ot 19

O11E  ES ENTRY

011F [DDE1L

0121 79

0122 CE3F

G124 CEOO

0126 4F

0127 DO7ECO

012A4 FDREOO

Q121 C2420%

0130 DD7EOL

0133 FLIEEOL

0136 £24201

0139 DO7EQ2

013C FUEEOZ

013F CAECOL

0142 3E01 NOGOOD

(0144 [1A4901

0147  3EFF

0149 324ROD TESTS

Qrac 79

0141 30

O14E  CR6%01

0151 3A4002

0154 A7

0135 CA4301

0158 87

0159 3R4E02

o18C 92

QG150 CA4901

0160 C3BAOL

0143 3A4R02 NOTCLOSE L

0146 324402

01469 DRES NEXTEST

Q01860 EL

016C 59

0160 CORDOL

0170 3A4R02

0173 3L

0174 29601

0177 78

0178 71

0179 C£AB501

017C DABSOL

017F 47

0180 EDS2

0182 (31801

0185 78 TOOLOW

o186 3

0187 CAEAOL

018A EDNGRAFOZ

0188 37

018F 3F

0190 EDS2

0192 05

0193 C3AFO01

LI

0100H
E 1t
ENDEDR T
ENDETH 2
ENDEDH3
ENDEDHS

Ar(d

HLy (TARBASE
Ay (CTORLENY
A

[

Crir

Hefd
ZsNDTFDUND
£eA

MULT

Hi o IE

HL

X

Al

a

O

Cra

Ar (IXH0)
(IY+H0)
NZ»yNOGOOD
Ar{IX+1)
(IY+1D
NZ»NOGOOT
Ay (IX+2)
(IY+2)
ZyFOUND

Arl

CyTESTS

AT OFFH
{COMFPRES) 1A
A

a
NZyNEXTEST
Ay (CLOSENDW
A
ZyNOTCLOSE
Drd

Ar (COMPRES)
g

ZrNEXTEST
NOTFOUND

Ay (COMPRES)
(CLOSENQUW) s A
X

HE

£70

MULT

Ay (COMPRES)
A

NZrADDIT
Arl

8

Z,T00LOW
CyTOOLOW
Hel

HLy IIE

ENTRY

AR

o
ZyNOTFOUND
LE» (ENTLEN)

HL» IIE
B
REALCLOS

FZERD FLAG LOCATIONS

SINTTIALTZE HL

SHIVIDE RY 2

AL LS BIT BACK TN
FSTORE AS TNCREMENT VALUE
ISTORE AS LOGICAL FOSITION
FCHECK TF LENGTH IS ZERO
PMULTIFLY (E-1)2ENTLEN

VALUE

FSET HL
FLOAD HL

TO MIDILE OF TARLE
INTD IX

sDIVIDE INCREMENT UALUE BY TWO

FCOMFARE FIRGT LETTER

SCOMPARE 2NIN LETTER

SCOMFARE 3RO LETTER

iSET COMPARE
i. RESULT OF

RESULT FLAG TO
COMPARE (1:FF)

i1

INCREMENT VALUE 17

PYESy IS CLOSE FLAG SETY

SYES,SEE IF HAVE FASSEDR WHERE
5. ENTRY SHOULD BE RUT ISN'T

$SET CLOSE FLAG TO DIRECTION OF
$..SEARCH TO FREVENT REFETITION
EFARE HL AND DE FOR ADD OR
Vo SUR OF TNCREMENT VALUE

FTEST IF WANT TO ADD OR SUR

$TEST TO SEE IF SUK WILL RUN
i, 0FF BOTTOM OF TARLE

FSET NEW LOGICAL FOSITION VALUE
FCHANGE ADDRESS ITSELF

FGEE IF POSITION IS 1

3 IF 80y EXIT
s JJUST SUK 1 ENTRY FOSITION

FCHANGE LOGICAL FOSITION

Fig. 9.23: Binary Search Program

566



0194
0199
0194
19K
G1PE
O19F
0140
0141
0167
0145
0146
01N
01Al
GLAE
O1AF
O1HI
Q1B
O1R7
O1RA
O1RC

Q1B
O1RE
O1RF
OLCH
0nica
0ies
el1Ce

010h0
D103
G104
o117
O10a
O1IE
O10E
D1Es
NIED

O1FE
O1FL
QO1FF
0200
Q201
0205
G207
o208
020K
o200
020F
O20F
6210
0234
0216
0219
02ta
021p
0220

3AAC02
20

@1
nAATSO 1
19

78

81

a7
£31E0L
81
CABAO1
ERGEAFOD
19

04
0EO1

15600
210000
EUARAFOD

Cnooot

3naron
A7
£AQUon
3A4ROD
ac
Carnnt
ELSHAFOD

S0
Laocon
GF
COROOY
19

oK

ER
2AAF 02
19

ER
ENARAFOD
ENRG
3n
cr0107

P

FRES

Ie1

EH
EDARAF QT
ENRO
3A4COD
3C
324C02
OLFFFF
ce

ADDYT

TOUHTGH
REALCLOS
NOTFOUND
FOUND

H

MU T

AT H

NiTW

HIGIDE
SETUF

HOVEM

TNSERT

aur

Ln
SUR
SUR
JE
AL
]
AL
L
JE
AL
JE
Lo
nhh
NG
L
t.n
LIr
JE
L
INF T

FLISH
FLUSH
i
LT
L
in
300
ILINY
FOF
EX
B
RET

ontt
TNC
JE
1
AND
JE
L
Ne
iy
foir
AT
P
nee
it
HUR
JE
Ln
oalt
AT
DEC
{25 ¢
Lo
AL
EX
LIt
(Rl

A CTARLIN)
R

¢

CrTOOHIGH
HL v DE

Arit

C

Eipy

ENTRY

£

T NOTFOUND
BEy CENTLEN)
HiL o LIE

i

Crt

Ar LCOHPRES )
(CHOBENOW) v A
ENTRY

Ly OFF

HI

BC

Ty 0

HiL» 0000
Ry CFMTLEND
By fD

HL o I
ADTETH
B

T r L

Hi

SENRCH

it

N7 «31

Nr CTARLEN)
A

73 INSERT

Ay CCOMEPRES)
n

ZoHIS T
LE, CENTEHFRD
HL oy I

SETUE

1

Ay CTARLEN)
H

7y INSERT
Ern

MULT

HL » 1k

HL.

ey HI

HL s CENTLEN)
Hi e IiE

DE 1

HE s (ENTLFNY

n

NZ s HOUEH

HL

Iy

E

D s 4L

HE P CENTLEN)

A (TABLEN)
A

(TARLENY A
RO OFFFFH

P JENDUOF

P15 0Ky
F CHANGE

FSEE
Ve TARLE
POl 1

P TNCREMENT

s W RESULT

e M

ERI

FOHF LN

FCOMFRES <1y
v DRJECT SHOUL L GO

FLOMFRESSO0y
3SEE

FHET O
§a W ENTRY

SGET DE
FEHIFT LR
PREFEAT 1F

FHLL 18
iLOADl OR.

# INCREMENT TARLE

DATA STRUCTURES

IF CURRENT
EMENT WTLY
THE TARLY

FOSITION

LUS  INC GO PAST

CHANGE ACTUAL
LOGIUNL FOS.

ADDRESS
ualLuE

IF POSTTION
(5AME NS
ENTRY

1S AT YO OF
TAORLEN-F)
FOSTTION

LOGTON
F'T OINCREMENT T80 1
SET CLOSE FLAG 10 CUOMPARF

FOSTTTON

PEFILIES £ uY
SARALUE TN IFON

CENTLEN) »
FX11

OQHICT 15 alLkEANY THERE

FORO

TnkLE

SET HL

AROVE WHERE

SET K FOR
HOW MANY ENTRES

BSUHTRALT
ARE LEFT

T0LAST FOSTTION TN LAST

ENTRY ARDVE HL

ONE ENTRY OF MEHORY

NECCESSARY
FRONT DOF NOW EMPTY
T INTD ENMFTY §F

LENGTH

FSHOW THAT 1T WAS DONE

Fig. 9.23: Binary Search Program (cont.)
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0221 CDOOO1L DELETE CALL  SEARCH FGET ADDRESS OF OQRJECY

0224 14 INC I $SEE IF ORJECT IS THERE

0225 CA4a902 JE ZyQUTE

0228 EDSHAFOR (1] DEy (ENTLEN)

022C ER EX LEHL

022p 19 AT HL» DE FIE IS LOC. OF OBJECT. HL IS
022E 3a4C02 Lo Ar (TARLEN) i . ONE ENTRY OROVE

0231 90 SUH R FGEE HOW MANY ENTRIES ARE LEFT
0232 CA3FO2 JE ZyDOWUNTAR

0235 ED4AR4FO02  SHIFTIN LI RBCy (ENTLEN)

0239 EDEO LDIR FSHIFT DOWN 1 ENTRY LENGTH
023 3D DEC A

023C  C23302 JE NZsSHIFTIN

023F 3A4COR IOWNTAE LD Ay (TARLEN) s BECREMENT TAHLE LENGTH

0242 30 LEC a

0243 324002 Lo (TARLEN) s A

0246 O1LFFFF Lo RCrOFFFFH $SHOW THAT ACTION WAS TAKEN
0249 C9 QUTE RET

024A (0000 ENDED END

SYMROL TABLE

ALDEM 01C9 ADDIT 0196 CLOSEN 0244 COMFRE 024B DELETE 0221
DOWNTA  023F ENDED 0244 ENTLEN 024F ENTRY 011E FOUNR 01BC

HISIDE O1ED INSERT 020C MOVEM 0201 MULT Q1BD NEW o110
NEXTES 0169 NOGOOL 0142 NOTCLO 0163 NOTFOU  O1EA our 0220
OuTE 0249 REALCL  01AF SEARCH 0100 SETUP O1EE SHIFTI 0235
TABASE 024D TARLEN 024C TESTS 0149 TOOHIG 01AS TOOLOW 0183

Fig. 9.23: Binary Search Program (cont.)

LINKED LIST

The linked list is assumed to contain, as usual, the three alphanu-
meric characters for the label, followed by one to 250 bytes of data, fol-
lowed by a two-byte pointer which contains the starting address of the
next entry, and lastly followed by a one-byte marker. Whenever this
one-byte marker is set to “‘1’", it will prevent the insert-routine from
substituting a new entry in the place of the existing one.

Further, a directory contains a pointer to the first entry for each let-
ter of the alphabet, in order to facilitate retrieval. It is assumed in the
program that the labels are ASCII alphabetic characters. All pointers at
the end of the list are set to a NIL value which has been chosen here to
be equal to the table base, as this value should never occur within the
linked list.

The insertion and the deletion program perform the obvious pointer
manipulations. They use the flag INDEXED to indicate if a pointer
pointing to an object came from a previous entry in the list or from the
directory table. The corresponding programs are shown in Figure 9.29.

The data structure is shown in Figure 9.25.
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“IM400 Initial ahie

0400 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 PR N I
0410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 B I
0420 00 00 00 00 00 GO 00 00-00 00 00 00 00 00 00 00 L I I T IO
0430 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 P i a s
0440 00 00 00 00 00 00 00 00~00 00 00 00 00 00 00 00 e e e s
0450 00 00 00 00 00 00 60 00-00 00 00 00 GO 00 00 00 S se et ey
0460 00 00 00 00 00 00 00 CO-00 00 00 00 00 00 00 00 Pt et
0470 00 00 00 00 00 00 00 00-00 0O 00 00 00 00 00 00 I AP

Listing of Objects
and their locations
mmemory

00 00 SON1111111111...
00 00 BAD22 2
00 00 MOM3I33C 3333...
00 00 UNCAA44444444, ..,

00 00 ANTSSSSS55555. ..,

~0M300

0300 53 4F 48 31 31
0310 44 41 44 32 32 30 30
0320 Al 4F 40r 33 33
0330 55 4E 43 34 34
0340 41 4K 5S4 35 35
0350 00 00 00 00 00 00 00 ..eivinvsinnn
03460 00 00 00 00 00 00 00 tuivsinvssnen
0370 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  «evververnnosans

-5Y
¥Y=0000 320

~G263/ 066 Run ‘INSERT’

F=00646 03266°

~1tM400 ‘Table after insertion

Q400 4D AF 4D 33 33 33 33 33-33 33 33 33 33 00 00 00 MOM3IZI33I3BIII.,.
0410 00 00 00 00 00 00 00 00-00 GO 00 00 00 00 00 00 .4srsrernessnanrs
0420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .uyvervensrennsss
0430 00 00 Q0 00 00 00 00 00~00 00 00 00 00 00 00 00 .....,...
0440 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  .....0..s
0450 00 00 00 00 00 00 00 00~00 00 00 00 00 00 00 00 ..... .
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ..... B
0470 00 00 00 00 06 00 00 00~00 00 00 00 00 00 00 00 +.vessrass

-sY

Y=0320 310

6243/266 Run ‘INSERT’ on another Object

P=000s 064 " Listing of table after
insertion. Note: table

~1HA00 is kept alphabetic

0400 44 41 44 32 32 32-32 32 32 3D 32 Al 4F 40 DADD2222Z2222M0OM

0410 33 33 33 33 33 33 33 33-33 33 00 00 00 00 00 00
0420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .uveveenessnrans
0430 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 e uierusssansens
0440 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0450 00 00 00 00 00 00 00 Q0-00 00 00 00 00 GO 00 00 .....
0440 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  .ivrrereurnesson
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  «herunnsersnsans

(additional inserts) *

Fig. 9.24: Alphabetic List—A Sample Run
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570

Table configuration

after afl Objects

have been inserted
44 41 44 ANTSS555S55550AD
33 33 33  2222222222M0M333
31 3t 31 3333I3I33ISONIIIL1L
24 34 34 1111UNCA4A444044
B0 00 00 diuversresasvess

~1M400

0400 41 4E G4 35 395
0410 32 32 32 32 32
0420 33 33 33 33 33
0430 31 31 31 31 55
0440 34 00 00 00 0O

0450 00 00 00 00 00 00 00 00 s esese e aere
04460 00 00 00 00 00 Q0 00 00 ovnvrrserrereny
0470 00 00 00 00 00 00 00 00 +evvsrsennosoane
~-8Y

Y=0340 300

~G260/263 Run ‘SEARCH’ for “SON"’ (at address 0300)

F=0243 02637

~IIft —— Found
7 N A=4E BC=0401 DE=000D HL=0427 S=0100.F=0243 0263’ CALL O1DO0
A’=00 B’=0000 [I’=0000 H’=0000 X=0427 Y=0300 I=00 (01007

Address of Object in table
(verify in Table above that it is “*SON"")

~G264/269
Run ‘DELETE’ on **SON"

P=0269 02697 ‘Table configuration

after deletion. Note:

that UNC was shifted

up. The iast UNC

entry must be
~ItM400 disregarded
0400 41 4E 54 35 35 35 35 35-35 35 35 35 30 44 41 44 ANTSS55555555950AD
0410 32 32 37 32 32 33 32 32-37 32 4D AF 40 33 33 33 222020222 2HOM333
0420 33 33 33 33 33 33 33 S5-4E 43 34 34 34 34 34 34 3333333UNCA44444
0430 34 34 34 34 55 4E A3 34-34 34 34 34 34 34 34 34 4444UNCA4A444444
0440 34 00 00 00 00 00 00 00-00 00 00 00 00 Q0 00 0C 4..
0450 00 00 00 CO 00 00 00 00-00 00 Q0 00 00 00 00 00 ...

0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .....
0470 00 00 00 00 00 00 00 00~00 00 00 00 00 00 00 00 veesrserreroacn

TeReoszes Try run of **‘SEARCH again (on “*“SON"")

F=02463 02437

IR —— Not found

S N ASFE BC=0401 DE=FFOIl HL=0427 §=0100 F=0263 0263’ CALL 0110
A’=00 E/'=0000 [’=0000 H'=0000 X=0427 Y=0300 I1=00 (01n0’)

-G2463/264

Re-insert Object (**SON’’)

F=Q2646 02667
Current table
configuration.
Compare to the one
prior to the

~IM400 DELETE

0400 A1 4E S4 35 35 35 35 35-35 35 35 35 35 44 41 44 ANTSHSESES5SSDAD

0410 32 32 32 32 32 32 32 32-32 32 4D 4F 4D 33 33 33 22222HOM333

0420 33 33 33 33 33 33 33 S3-4F 4E 31 31 31 31 31 31 3333333S0N111111

0430 31 31 31 31 55 4E 43 34-34 34 34 34 34 34 34 34 1111UNCA44444444

0440 34 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 A.eeesivvrrravnn

0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 +ovvvvvervrenvesy
0460 00 00 00 00 00 00 00 00~00 00 00 00 00 00 00 00 ,.eersnrvrraeanve
0470 00 00 00 DO 00 00 00 00-00 00 00 00 00 00 GO 00 . evrvecvrvreens

Shows that action was executed
-OR
A=05 BC=FFFF LE=0434 HL=030L S=0100 F=0264 03244’ CALL 0221
A’=00 E/=0000 [’/=0000 H’/=0000 X=0427 Y=0300 I1=00 02217

Fig. 9.24: Alphabetic List—A Sample Run (cont.)
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DIRECTORY
AT POINTER
A
POINTER A
R NIL
R POINTER S
NIL

Fig. 9.25: Linked List Structure

An application for this data structure would be a computerized ad-
dress book, where each person is represented by a unique three-letter
code (perhaps the usual initials) and the data field contains a simplified
address, plus the telephone number (up to 250 characters). Let us exam-
ine the structure in more detail on Figure 9.23. The entry format is:

C C C D D ig D P P O
v

W e N ——
unique label data (1 to 250 bytes) pointer to +
(ASCID next ;
occupied

As usual the conventions are:

ENTLEN: total element length (in bytes)
TABASE: address of base of list

The address of the OBJECT is always assumed to reside in the 1Y register
prior to entering the program. Here, REFBASE points to the base ad-
dress of the directory, or ‘‘reference table.”

Each two-byte address within this directory points to the first occur-
rence of the letter to which it corresponds in the list. Thus, each group
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of entries with an identical first letter in their labels actually forms a sep-
arate list within the whole structure. This feature facilitates searching
and is analogous to an address book. Note that no data are moved dur-
ing an insert or delete. Only pointers are changed, as in every well-
behaved linked list structure.

If no entry starting with a specific letter is found, or if there is no en-
try alphabetically following an existing one, their pointers will point to
the beginning of the table (= ‘““NIL’"). At the bottom of the table, by
convention a value is stored such that the absolute value of the differ-
ence between it and ““Z’’ is greater than the difference between ‘‘A”
and ““Z’’. This represents an End Of Table (EOT) marker. The EOT
value is assumed here to occupy the same amount of memory as a nor-
mal entry but could be just one byte if desired. The letters are assumed
to be alphabetic letters in ASCII code. Changing this would re-
quire changing the constant in the PRETAB routine.

The end-of-table marker is set to the value of the beginning of the
table (‘‘NIL”).

By convention, the ‘“‘NIL pointers’’, found at the end of a string, or
within a directory location which does not point to a string, are set to
the value of the table base to provide a unique identification. Another
convention could be used. In particular, a different marker for EOT
results in some space savings, as no NIL entries need be kept for non-
existing entries.

Insertion and deletion are performed in the usual way (see Part I of
this chapter) by merely modifying the required pointers. The
INDEXED flag is used to indicate if the pointer to the object is in the
reference table or another string element.

Searching

The SEARCH program resides at memory locations 0100 to 0155
an uses subroutine PRETAB at address 01D2.

The search principle is straightforward:

1—Get the directory entry corresponding to the letter of the alphabet
in the first position of the OBJECT’s label.

2—Get the pointer. Access the element. If NIL, the entry does not
exist.

3—If not NIL, match the element against the OBJECT. If a match is
found, the search has succeeded. If not, get the pointer to the next entry
down the list.

4—Go back to 2.
An example is shown in Figure 9.26.
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A-POINTER

AAA

B-POINTER

T

ABC AZC
._r NiL

OBJECT ———p}

AZC

Inserting

(FOUND)

{4 STEPS REQUIRED)

Fig. 9.26: Linked List—A Search

The insertion is essentially a search followed by an insertion once a
““NIL’’ has been found.

A block of storage for the new entry is allocated past the EOT
marker by looking for an occupancy marker set at ‘‘available’”.

The program is called “NEW’’ in Figure 9.29 and resides at ad-
dresses 0156 to 1A3. An example is shown in Figure 9.27.

BEFORE

A-POINTER

CAB

B-POINTER

)

I czz
Nit

C-POINTER
<8BS e OB JECT
NIt
AFTER
A-POINTER CAB €2z
B-POINTER Nit
C-POINTER

<Bs

Fig. 9.27: Linked List: Example of Insertion
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Deleting

The element is deleted by setting its occupancy marker to ‘‘available”
and adjusting the pointer to it from the directory or else the previous

element.
The program is called ““DELETE’’, and resides at addresses 01A4 to

01D1.
An example of a deletion is shown in Figure 9.28.

{BEFORE}

oNnw»

DAF POINTER
LP “DAF” [—> “pOC
DOC POINTER NiL

DELETE

(AFTER}

UNE>

DOC POINTER P “pOC™

NIL

NOTE DAF iS NOT ERASED. BUT "INVISIBLE"”

Fig. 9.28: Example of Deletion (Linked List)

574



D000

D100
a1onr
Q103
0104
N1o?
010Aa
010R
0106
a1on
O10E
G10F
0110
0112
D115
01t
0114
otin
0120
0173
0126
0129
o120
OG10F
0132
0135
01383
013K
O13E
0140
0141
01a4
0145
Dtads
Dtaz
0148
0149
O14R
14D
D150

O14%
0166
0167
0168
0169
DLAA
O14R
14

O16F
D170
(SR
G173
0177
0179
O17n
Q1720
0170
017k
O17F
9180
01814

ColE s
{018
(O1EM
(OIEMD)

01

DOE ¢
unzEoon
FEZC

FUREGO
BAJEO1

FUOREO1

DAZEQL
C25501
Hn7eoe?
FDREOD
CAS304
13501
HnES
1
2AFCOY
e

4t

o3

A

951
DDE L
3EOQQ
L7014
C31201
Q&6F)
"y

LROGo1
04
Canlot
i
PAESO Y
VR
2akron

EIEYy

3]
ChABECot
E RO
HOES

El

k1

3601

ARG
INBESED i
FanpnsE i

HEFIASE il
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SEARCH [

(R0
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COMPARE L0

NOGOOT FUSH
Far
L
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[
NG
[
FUSH
FOF

FOUND Lt
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THG
ie
FLUSH
o

HEXTOME (B4
L
THC
NG
NG
AD
Ln
(LA
o
IR
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PHSH
0

a100H
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ENT g
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7€H
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Ar CTXEED
LIYEDY

Ey NOGE

NZ e NOTEQUNS
Ny CEXEDTY
CIY4)
FeENUND
NCNOTFOHND
X

I

HE o CENTLL N
Hi v 1IE

[PEREE ]

Ht

By CHE )

HC

[

fiv (2
CINDEXTTtr vy
COMPARE

By OFFH

TARCH

B
2oty

hi

HE =« CTARAGE Y
T v FHL

HE = AENTEHE 8D
H

Hi.

Hi

Hi

Ao CHIL)

3]

7y NEX T

nr

UE

Ty

i

RUy FNTLENY

i3

HI

DE s
fHILY . E
HE.

CHE Y v R
HL

(HEL vt

ChHL

SGE

5 MOVt

1,
FHEFR

i COME

EOMP

FOOM

» M

LA NN

00N

SREGE

ERT

SHT0k
SEIND
S HO

«nbh

SIE 4

SRAVE
ML

FHOVE

EAR A
soafil

50T

DATA STRU

Pat BZ7E 11 ans

ABTE OF  INDEYX JINT
POITNTER CONTENTS T

AT T TR LETTER OF
1E 19 IO MARRETY

ARE FIRST FETTERS

ARE ONDE D TTERS

NARFE 3RD LETTERS

T FOTNIFR OF ENTE

FOINTEIC UALUE TN RO

P WITE OTHTER

T FLaG

WHERE BREDT SHOUL

L oabhRk. OF FREVIOUS
SEACE TH TARLE FOR
FOOEND O HEXT ENY

S OFNDI REAL LENGTH 1)

OHETHING 1S THERE.

POSTTION (0 FMFTY
Py 10 HI

OFJFCT INTHO AR E

Aaltnic OF ENTRY OF TER
POTHTER FOSTTION

DUUCHUCANGY HARKRE T

Fig. 9.29: Linked List—The Programs

CTURES

Fl-
0o

ENTIY

7

50

ENTRY
MFW
kY

FOENTRY

TRY AGNATN

CFACE

QRIECT
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0183 El HL $GET ARIDR OF WHERE THIS SFACE 1S
0184 3AE701 Ay CINDEXED) FSEF WHAT FREVIOUS FOINTERS mMUST
0187 3b i, BE SET
0188 CA?801
019r E3 SGET ALDIR OF ENTRY FREVIOUS T0
018C EBSRECOL ;.. ORJECT & MOVE TO FOINTER AREA
0190 1%
0191 1 JRETRIEVE ADDR OF OQRJECT
0192 73 EPUT IT AT FDINTER FOSITION
0193 23
0194 72
019S  C3A001 FINTISH
0198  C1 SETINX EBC PCLEAR OUT STACK
0199  CIN201 FRETAR $GET INDEX ADDRESS
01%C EH DE s HL SLOAD HL INTO IT
017n 73 (HLY P E
O19E 23 HL
019F 72 (HL # 2D
01A0  OLFFFF FINISH BCyOFFFFH $SHOW THAT IT WAS DONE
01A3 L9 ouT
;
3
¥
o1A4  CROOOL DELETE SEARCH FGET ANDRESS OF ORJECT
01A7 04 B B = IF IT 1S THERE
01a8 C20101 NZ» QUTE
1Ak DOES X FGET HI. TO POINTER AREA OF ORJELT
o1Alr E1 HL
01AE  EDARECOL BCY (ENTLEN)
Q1R2 09 HE s BT
QLE3  AE Ty (HL) FRETRIEVE FOINTER
01R4 23 HL.
O1KS A4 By (HL)
O1R6 23 HL
O1R7 3500 (HL.1» O $REMOVE OCCURANCY MARKER
O1E?  3AEZ01 Ay CINDEXEDD $GEE IF INDEX NEEDS CHANGING
QIR 3D N
Q1ED C701 N7« CHANGEM
01C0  Cnp2oL F NN SYES(FUT ABBR INTO H
01C3  ER TiE s HL.
0104 JBO1 HMOVIN
Q1€7  2RECOL CHANGEN HLy (ENTLEN? FGET HL TO FOINTER OF FREUIOUS
0ichA 19 HL.» DE
01CE 71 MOVIN (HL Y O FEUT ADDR OF NEXT INTO WHATEWER
01ce HL. 3, (ETTHER TNDEX OR ENTRY)
Qe 7o (HL v R
DICE  OLIFFFF BOOFFFFH
nipy €9 OUTE
i
oLn?  ES PRETAR FUSH  HL
0103 FDB7E00 Lt N CTYAHO? ©OORJEDT
oiné 30 nEC n
o1y 1840 SUR A0H
[PRacs CH sLA 2} SMULTIFLY RY
0Lng LI i« (REFRA
Q1DE Ak i
[3RG .o Ly
OIEQ  D[IEAG] JF NE P FIXUF
OIE3 24 TN H
01E4 FR FIXUF EX DE s HL
OIES  El POF H
Ql1ES& R RET
3
OLE? (0000} ENDRER END
SYMROL TABLE
CHANGE  01C7 COMFAR 0112 DELETE 0144 ENDER 01E7 ENTLEN OI1EC
FINISH 01A0 FIXUF Q1EA FOUND 0153 INDEXE OQ1E7 MOVIN Q1CR
NEW Q1548 NEXTON 0141 NOGODD  013F NOTFOU 0155 ain 01A3
OUTE oLnt FRETAE  OLLD2 REFHAS OQ1En SEARCH 0100 SETINX 0198

TARASE  OtES

Fig. 9.29: Linked List—The Programs (cont.)

576



DATA STRUCTURES

Listing of Objects

The Objects in memory and their locations
) in memory

P30 30 31318 31 00 00 000 SONULIIILUILL. .,
J2-A0 3D 3D 5D 3D 00 00 00 pADDDDNINRIRD, L.
A0034 35 33 33 33 00 00 00 MOMEi3 333, ..
434 34 34 T4 34 00 00 00 NG 44@4444444.5 N
3 3% 00 00 00  ANISSSSHES55S
36 00 00 00 NAALLLLLLAY )u“)

37 00 00 00 ﬁ]?:”,’,’???:’?'!.
1800 00 00 STDELBBLR/AES.

M3I00
0300 H3 aF a4l 3t
<)§I') a4 4t 44 30
> oAb 4y an 33
B0 55 Al 45 34
D340 41 4E 54 3%
0350 41 41 41 34
0350 41 5A S
D370 H3 49 A4

35-3% 35
36-386 36
37537 57
38398 39

— EOT charucter in
wtia table
THa00

G400 L0000 00 00 006 00 00-00 00 00 00 00 00 00 00 (...
G410 00 00 00 00 00 00 00 00 00 00 00 00 00 0O 0O 00 B Sassea e s B
0420 00 00 00 0C 00 00 00 00-00 00 00 00 00 00 00 00 B e
DAZ0 00 00 00 00 00 00 00 00-00 00 00 DO 00 00 00 00 s
0446 6O 00 00 00 00 00 00 00-0G 00 00 60 00 00 00 00 Fara—
0450 00 00 00 00 00 00 00 00 -00 00 00 00 00 00 00 00 s
DAGO 00 06 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 ...
0470 00 00 GO 00 00 OO 00 00 GO G0 00 00 00 80 00 00

~ 500 Initial Directory
OJO() 00 04 00 04 00 04 00 04-00 04 00 04 00 04 00 04 I I

G0 04 00 04 00 04 00 04-00 04 00 04 00 04 00 04 ...urrvrnsnses..
00 04 00 04 00 04 00 0400 08 06 04 00 04 DO DA vt rnssnssssns,
00 04 60 04 GO 00 00 00-00 00 00 00 00 00 00 00  +ussserssssasn,
00 00 00 OC 00 00 00 00-00 00 00 00 00 00 00 GO0  .vrvinversssrsrs
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  veverurrresean
00 00 00 00 00 00 00 0000 Q0 00 00 00 00 00 00 Sassaaaasraass
D0 00 00 0¢ 00 00 00 00-00 G0 00 00 00 00 00 00  ..uussrsrsissss.

Occupancy markers —

Pointers —. Table configuration
after several
[MA00 msertions.
0400 TH 00 00
oAl at 0a 01 s
G420 44 04 0f 2 NN
0430 41 04 01 (1/\/\(».’..‘»’x‘x.‘;’,“w“«’ .
9440 53 04 Ot SONTLITTI T, .,
D450 4D 09 0t HOM3I3333333:8
D460 53 a8 0t S1ha8usay
D470 44 a4 0) K B
sy

Y0340

Ga0sD

Delete an entry

PEODRY GUDer

4y
0400 SHOOO 00 00 00 00 00 60-00 00 00

Only change

00 06 [SN

GalG AL 4E G4 35 04 ANTE .
D420 44 41 44 n 60 Ha i L) Eha f
D436 41 4t 41 35 10 064 0f (\(\n‘.(’v.)\.\‘;&/»

3121 31 D0 04 0f xﬂNHIIHIHlH,
G335 33 00 04 01 MOMZ
1840 04 01 4IDG
1700 04 01 (7277

3440 LT ar Al
0450 afr 41 4n
9450 53 49 aa
GA70G A1 SA B

.i”‘l‘]‘lﬂ‘i‘jf‘

yrar,

Fig. 9.30: Linked List—A Sample Run
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~G220/223

Run ‘SEARCH?’ for deleted entry

e —Not found
N A=37 RC=00FF DE=0400 HL=0000 $=0100 F=0223 02237 CALL 0171
A‘=00 B/ =0000 [’=0000 H’'=0000 X=0400 Y=0310 1=00 (0171
-§Y
Y=0310 340
52207203 Run “SEARCH" for an existent entry
£=Q2023 02237 .
—Entry found
S UN
Z 0N A=54 RC=FF10 DE=0430 HL=043E $=0100 F=0223 0223’ catl 0171
A’=00 R‘=0000 [’=0000 H’/=0000 X=0410 Y=0340 T=00 QL7172
~GR2A6/22 .
Delete ~— Address of entry in table

F=0229 02097

Note: Changes in
-1M400 pointers.
0400  7H 00 00 00 00 00 00 00-00 00 00 00 00
=
S

0410 41 AE 54 35 35 35 35 35 70 04 00
0420 44 41 44 3 2 32 32 00 04 00

0430 AL 41 41 36 35 70 04 01 AAAGGELE6666E

4 34 34 % 5
0440 53 4F AE 31 31 31 31 3 31 31 31 31 00 04 01 SONITL1111111L

0450 4D AF 4l 33 33 33 33 3
04460 53 49 44 3g 38 38 38 3
0470 41 SA Sa 37 37 37 37 A7~

33 33 33 33 00 04 01 HOMIZZIZIZII3A3...
38 38 38 40 04 0i SIDBEBBB88883E. .
37 37 37 00 04 0L AZITVTIIIIVIIV.. .

Fig. 9.30: Linked List— A Sample Run (cont.)

SUMMARY

The beginning programmer need not concern himself yet with the
details of data structures implementation and management. However,
efficient programming of non-trivial algorithms requires a good under-
standing of data structures. The actual examples presented in this
chapter should help the reader achieve such an understanding and solve
all the common problems encountered with reasonable data structures.
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PROGRAM DEVELOPMENT

INTRODUCTION

All the programs we have studied and developed so far have been
developed by hand without the aid of any software or hardware re-
source. The only improvement over straight binary coding has been the
use of mnemonic symbols, those of the assembly language. For effec-
tive software development, it is necessary to understand the range of
hardware and software development aids. It is the purpose of this chap-
ter to present and evaluate these aids.

BASIC PROGRAMMING CHOICES

Three basic alternatives exist: writing a program in binary or hexa-
decimal, writing it in assembly-level language, or writing it in a high-
level language. Let us review these alternatives.

Hexadecimal Coding

The program will normally be written using assembly language mne-
monics. However, most low-cost, one-board computer systems do not
provide an assembler. The assembler is the program which will auto-
matically translate the mnemonics used for the program into the re-
quired binary codes. When no assembler is available, this translation
from mnemonics into binary must be performed by hand. Binary is
unpleasant to use and error-prone, so that hexadecimal is normally
used. It has been shown in Chapter 1 that one hexadecimal digit will
represent four binary bits. Two hexadecimal digits will, therefore, be
used to represent the contents of every byte. As an example, the table
showing the hexadecimal equivalent of the Z80 instructions appears in
the Appendix.
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In short, whenever the resources of the user are limited and no assem-
bler is available, he will have to translate the program by hand into hex-
adecimal. This can reasonably be done for a small number of instruc-
tions, such as, perhaps, 10 to 100. For larger programs, this process is
tedious and error-prone, so that it tends not to be used. However, near-
ly all single-board microcomputers require the entry of programs in
hexadecimal mode. They are not equipped with an assembler and a full
alphanumeric keyboard, in order to limit their cost.

In summary, hexadecimal coding is not a desirable way to enter a
program in a computer. It is simply an economical one. The cost of an
assembler and the required alphanumeric keyboard is traded-off
against increased labor required to enter the program in the memory.
However, this does not change the way the program itself is written.
The program is still written in assembl 'y-level language so that it can be
examined by the human programmer and be meaningful.

Assembly Language Programming

Assembly-level programming covers both programs that may be
entered in hexadecimal and those that may be entered in symbolic
assembly-level form in the system. Let us now examine the entry of a
program directly in its assembly language representation. An assembler
program must be available. The assembler will read each of the mne-
monic instructions of the program and translate it into the required bit
pattern using 1 to 5 bytes, as specified by the encoding of the instruc-
tions. In addition, a good assembler will offer a number of additional
facilities for writing the program. These will be reviewed in the section
on the assembler below. In particular, directives are available which
will modify the value of symbols. Symbolic addressing may be used and
a branch to a symbolic location may be specified. During the debugging
phase, when a user may remove or add instructions, it will not be neces-
sary to rewrite the entire program if an extra instruction is inserted be-
tween a branch and the point to which it branches, as long as symbolic
labels are used. The assembler will take care of automatically adjusting
all the labels during the translation process. In addition, an assembler
allows the user to debug his program in symbolic form. A disassembler
may be used to examine the contents of a memory location and recon-
struct the assembly-level instruction that it represents. The various soft-
ware resources normally available on a system will be reviewed below.
Let us now examine the third alternative.
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POWER OF
THE
LANGUAGE

APL )

£0oBoL

FORTRAN HIGH-LEVEL
PL/M

PASCAL

BASIC

| mnusasc

T

—1 MACRO )
SYMBOLIC L_{ CONDITIONAL ;ASSEMBLY-LEVEL

b d ASSEMBLY

HEXADECIMAL/ )
L ocral

MACHINE-LEVEL
BINARY

Fig. 10.1: Programming Levels

High-Level Language

A program may be written in a high-level language such as BASIC,
APL, PASCAL, or others. Techniques for programming in these vari-
ous languages are covered by specific books and will not be reviewed
here. We will, therefore, only briefly review this mode of program-
ming. A high-level language offers powerful instructions which make
programming much easier and faster. These instructions must then be
translated by a complex program into the final binary representation
that a microcomputer can execute. Typically, each high-level instruc-
tion will be translated into a large number of individual binary instruc-
tions. The program which performs this automatic translation is called
a compiler or an interpreter. A compiler will translate all the instruc-
tions of a program in sequence into object code. In a separate phase,
the resulting code will then be executed. By contrast, an interpreter will
interpret a single instruction, then execute it, then ‘‘translate’’ the next
one, then execute it. An interpreter offers the advantage of interactive
response, but results in low efficiency compared to a compiler. These
topics will not be studied further here. Let us revert to the programming
of an actual microprocessor in the assembly-level language.
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SOFTWARE SUPPORT

We will review here the main software facilities which are (or should
be) available in the complete system for convenient software develop-
ment. Some of the definitions have already been introduced. They will
be summarized here and the rest of the important programs will be de-
fined before we proceed.

The assembler is the program which translates the mnemonic repre-
sentation of instructions into their binary equivalent. It normally trans-
lates one symbolic instruction into one binary instruction (which may
occupy 1, 2 or 3 bytes). The resulting binary code is called object code.
It is directly executable by the microcomputer. As a side effect, the
assembler will also produce a complete symbolic listing of the program,
as well as the equivalence tables to be used by the programmer and the
symbol occurrence list in the program. Examples will be presented later
in this chapter.

In addition, the assembler will list syntax errors such as instructions
misspelled or illegal, branching errors, duplicate labels or missing
labels.

It will not delete logical errors (this is your problem).

A compiler is the program which translates high-leve! language in-
structions into their binary form.

An interpreter is a program similar to a compiler, which also trans-
lates high-level instructions into their binary form but does not keep the
intermediate representation and executes them immediately. In fact, it
often does not even generate any intermediate code, but rather executes
the high-level instructions directly.

A monitor is the basic program which is indispensable for using the
hardware resources of this system. 1t continuously monitors the input
devices for input and manages the rest of the devices. As an example, a
minimal monitor for a single-board microcomputer, equipped with a
keyboard and with LED’s, must continuously scan the keyboard for a
user input and display the specified contents on the light-emitting
diodes. In addition, it must be capable of understanding a number of
limited commands from the keyboard, such as START, STOP, CON-
TINUE, LOAD MEMORY, EXAMINE MEMORY. On a large sys-
tem, the monitor is often qualified as the executive program, when
complex file management or task scheduling is also provided. The over-
all set of facilities is called an operating system. 1f files are residing on a
disk, the operating system is qualified as the disk operating system, or
DOS.
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An editor is the program designed to facilitate the entry and the mod-
ification of text or progams. It allows the user to enter characters con-
veniently, append them, insert them, add lines, remove lines, search for
characters or strings. It is an important resource for convenient and ef-
fective text entry.

A debugger is a facility necessary for debugging programs. When a
program does not work correctly, there may typically be no indication
whatsoever of the cause. The programmer, therefore, wishes to insert
breakpoints in his program in order to suspend the execution of the
program at specified addresses, and to be able to examine the contents
of registers or memory at this point. This is the primary function of a
debugger. The debugger allows for the possibility of suspending a pro-
gram, resuming execution, examining, displaying and modifying the
contents of registers or memory. A good debugger will be equipped
with a number of additional facilities, such as the ability to examine
data in symbolic form, hex, binary, or other usual representations, as
well as to enter data in this format.

A loader, or linking loader, will place various blocks of object code
at specified positions in the memory and adjust their respective symi-
bolic pointers to that they can reference each other. It is used to relocate
programs or blocks in various memory areas. A simulator or an emu-
lator program is used to simulate the operation of a device, usually the
microprocessor, in its absence, when developing a program on a simu-
lated processor prior to placing it on the actual board. Using this ap-
proach, it becomes possible to suspend the program, modify it, and
keep it in RAM memory. The disadvantages of a simulator are that:

I—It usually simulates only the processor itself, not input/output
devices.

2—The execution speed is slow, and one operates in simulated time.
It is therefore not possible to test real-time devices, and synchronization
problems may still occur even though the logic of the program may be
found correct.

An emulator is essentially a simulator in real time. It uses one proces-
sor to simulate another one, and simulates it in complete detail.

Utility routines are essentially all the routines which are necessary in
most applications and that the user wishes the manufacturer had pro-
vided!

They may include multiplication, division and other arithmetic oper-
ations, block move routines, character tests, input/output device han-
dlers (or ‘“drivers’), and more,
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THE PROGRAM DEVELOPMENT SEQUENCE

We will now examine a typical sequence for developing an assembly-
level program. We will assume that all the usual software facilities are
available in order to demonstrate their value. If they should not be
available in a particular system, it will still be possible to develop pro-
grams, but the convenience will be decreased and, therefore, the
amount of time necessary to debug the program is likely to be in-
creased.

The normal approach is to first design an algorithm and define the
data structures for the problem to be solved. Next, a comprehensive set
of flowcharts is developed which represents the program flow. Finally,
the flowcharts are translated into the assembly-level language for the
microprocessor; this is the coding phase.

Next, the program has to be entered on the computer. We will exam-
ine in the next section the hardware options to be used in this phase.

The program is entered in RAM memory of the system under the
control of the editor. Once a section of the program, such as one or
more subroutines, has been entered, it will be tested.

First, the assembler will be used. If the assembler did not already
reside in the system, it would be loaded from an external memory, such
as a disk. Then, the program will be assembled, i.e., translated into a
binary code. This results in the object program, ready to be executed.

One does not normally expect a program {o work correctly the first
time. To verify its correct operation, a number of breakpoints will nor-
mally be set at crucial locations where it is easy to test whether the inter-
mediate results are correct. The debugger will be used for this purpose.
Breakpoints will be specified at selected locations. A ““Go’’ command
will then be issued so that program execution is started. The program
will automatically stop at each of the specified breakpoints. The pro-
grammer can then verify, by examining the contents of the registers, or
memory, that the data so far is correct. If it is correct, we proceed until
the next breakpoint. Whenever we find incorrect data, an error in the
program has been detected. At this point, the programmer normally
refers to his program listing and verifies whether his coding has been
correct. 1f no error can be found in the programming, the error might
be a logical one and one might refer to the flowchart. We will assume
here that the flowcharts have been checked by hand and are assumed to
be reasonably correct. The error is likely to come from the coding. It
will, therefore, be necessary to modify a section of the program. If the
symbolic representation of the program is still in the memory, we will
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simply re-enter the editor and modify the required lines, then go
through the preceding sequence again. In some systems, the memory
available may not be large enough, so that it is necessary to flush out
the symbolic representation of the program onto a disk or cassette prior
to executing the object code. Naturally, in such a case, one would have
to reload the symbolic representation of the program from its support
medium prior to entering the editor again.

The above procedure will be repeated as long as necessary until the
results of the program are correct. Let us stress that prevention is much
more effective than cure. A correct design will typically result in a pro-
gram which runs correctly very soon after the usual typing mistakes or
obvious coding errors have been removed. However, sloppy design may
result in programs which will take an extremely long time to be de-
bugged. The debugging time is generally considered to be much longer
than the actual design time. In short, it is always worth investing more
time in the design in order to shorten the debugging phase.

However, using this approach, it is possible to test the overall organi-
zation of the program, but not to test it in real time with input/output
devices. If input/output devices are to be tested, the direct solution con-
sists of transferring the program onto EPROM’s and installing it on the
board and then watching whether it works.

There is a better solution. It is the use of an in-circuit emulator. An
in-circuit emulator uses the Z80 microprocessor (or any other one) to
emulate a Z80 in (almost) real time. It emulates the Z80 physically. The
emulator is equipped with a cable terminated by a 40-pin connector, ex-
actly identical to the pin-out of a Z80. This connector can then be in-
serted on the real application board that one is deveioping. The signals
generated by the emulator will be exactly those of the Z80, only perhaps
a little slower. The essential advantage is that the program under test
will still reside in the RAM memory of the development system. It will
generate the real signals which will communicate with the real in-
put/output devices that one wishes to use. As a result, it becomes possi-
ble to keep developing the program using all the resources of the devel-
opment system (editor, debugger, symbolic facilities, file system) while
testing input/output in real time.

In addition, a good emulator will provide special facilities, such as a
Irace. A trace is a recording of the last instructions or status of various
data busses in the system prior to a breakpoint. In short, a trace pro-
vides the film of the events that occurred prior to the breakpoint or the
malfunction. It may even trigger a scope at a specified address or upon
the occurrence of a specified combination of bits. Such a facility is of
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great value, since when an error is found it is usually too late. The in-
struction, or the data, which caused the error has occurred prior to the
detection. The availability of a trace allows the user to find which seg-
ment of the program caused the error to occur. If the trace is not long
enough, we will simply set an earlier breakpoint.

ROM RAM
ASSEMELER
Or
COMPILER
BOOTSIRAP
R OOTS! or
NTERPRETER
KEYBOARD 008
DRivER
fishle
oR
IsPLAY
DEBUGGER
DRIVER oR
SIMULAIOR
Y SYSTEM
DRIVER WORKSPACE
(AND STACK)
CASSETIE USER
DRIVER PROGRAM
COMMAND USER
INTERPRETER WORKSPACE
unurY
ROUTINES
ELEMENTARY
DEBUGGER
ELEMENTARY
EDHOR

Fig. 10.2: A Typical Memory Map

This completes our description of the usual sequence of events in-

volved in developing a program. Let us now review the hardware alter-
natives available for developing programs.
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HARDWARE ALTERNATIVES
Single-Board Microcomputer

The single-board microcomputer offers the lowest cost approach to
program development. It is normally equipped with a hexadecimal key-
board, plus some function keys, plus 6 LED’s which can display ad-
dress and data. Since it is equipped with a small amount of memory, an
assembler is not usually available. At best, it has a small monitor and
virtually no editing or debugging facilities, except for a very few com-
mands. All programs must, therefore, be entered in hexadecimal form.
They will also be displayed in hexadecimal form on the LED’s. A sin-
gle-board microcomputer has, in theory, the same hardware power as
any other computer. Simply because of its restricted memory size and
keyboard, it does not support all the usual facilities of a larger system
and makes program development much longer. Because it is tedious to
develop programs in hexadecimal format, a single board microcom-
puter is best suited for education and training where programs of lim-
ited length have to be developed and their short length is not an obstacle
to programming. Single-boards are probably the cheapest way to learn
programming by doing. However, they cannot be used for complex
program development unless additional memory boards are attached
and the usual software aids are made available.

The Development System

A development system is a microcomputer system equipped with a
significant amount of RAM memory (32K, 48K) as well as the required
input/output devices, such as a CRT display, a printer, disks, and, usu-
ally, a PROM programmer, as well as, perhaps, an in-circuit emulator.
A development system is specifically designed to facilitate program
development in an industrial environment. It normally offers all, or
most, of the software facilities that we have mentioned in the preceding
section. In principle, it is the ideal software development tool.

The limitation of a microcomputer development system is that it may
not be capable of supporting a compiler or an interpreter. This is be-
cause a compiler typically requires a very large amount of memory,
often more than is available on the system. However, for developing
programs in assembly-leve! language, it offers all the required facilities.
But because development systems sell in relatively small numbers com-
pared to hobby computers, their cost is significantly higher.
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Hobby-Type Microcomputers

The hobby-type microcomputer hardware is naturally exactly analo-
gous to that of a development system. The main difference lies in the
fact that it is normally not equipped with the sophisticated software
development aids which are available on an industrial development sys-
tem. As an example, many hobby-type microcomputers offer only ele-
mentary assembiers, minimal editors, minimal file systems, no facilities
to attach a PROM programmer, no in-circuit emulator, no powerful
debugger. They represent, therefore, an intermediate step between the
single-board microcomputer and the full microprocessor development
system. For a user who wishes to develop programs of modest complex-
ity, they are probably the best compromise, since they offer the advan-
tage of low cost and a reasonable array of software development tools,
even though they are quite limited as to their convenience.

Time-Sharing System

It is possible to rent terminals from several companies which will con-
nect to time-sharing networks. These terminals share the time of the
larger computer and benefit from all the advantages of large installa-
tions. Cross assemblers are available for all microcomputers on vir-
tually all commercial time-sharing systems. A cross assembler is simply
an assembler for, say, a Z80 which resides, for example, in an IBM370.
Formally, a cross assembler is an assembler for microprocessor X,
which resides on processor Y. The nature of the computer being used is
irrelevant. The user still writes a program in Z80 assembly-level lan-
guage, and the cross assembler translates it into the appropriate binary
pattern. The difference, however, is that the program cannot be ex-
ecuted at this point. It can be executed by a simulated processor, if one
is available, provided it does not use any input/output resources. This
solution is used, therefore, only in industrial environments.

In-House Computer

Whenever a large in-house computer is available, cross assemblers
may also be available to facilitate program development. If such a com-
puter offers time-shared service, this option is essentially analogous to
the one above. If it offers only batch service, this is probably one of the
most inconvenient methods of program development, since submitting
programs in batch mode at the assembly level for a microprocessor re-
sults in a very long development time.
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Front Panel or No Front Panel?

The front panel is a hardware accessory often used to facilitate pro-
gram debugging. It has traditionally been a tool for conveniently dis-
playing the binary contents of a register or of memory. However, all the
functions of the control panel may be accomplished from a terminal,
and the dominance of CRT displays now offers a service almost equiva-
lent to the control panel by displaying the binary value of bits. The ad-
ditional advantage of using the CRT display is that one can switch at
will from binary representation to hexadecimal, to symbolic, to decimal
(if the appropriate conversion routines are available, naturally). The
disadvantage of the CRT is that one must hit several keys to obtain the
appropriate display rather than turn a knob. However, since the cost of
providing a control panel is quite substantial, most recent microcom-
puters have abandoned this debugging tool. The value of the control
panel is often considered more on the basis of emotional arguments in-
fluenced by one’s own past experience than by the use of reason. It is
not indispensable.

Summary of Hardware Resources

Three broad cases may be distinguished. If you have only a minimal
budget and if you wish to learn how to program, buy a single-board
microcomputer. Using it, you will be able to develop all the simple pro-
grams in this book and many more. Eventually, however, when you
want to develop programs of more than a few hundred instructions,
you will feel the limitations of this approach.

If you are an industrial user, you will need a full development system.
Any solution short of the full development system will cause a signifi-
cantly longer development time. The trade-off is clear: hardware re-
sources vs. programming time. Naturally, if the programs to be devel-
oped are quite simple, a less expensive approach may be used. How-
ever, if complex programs are to be developed, it is difficult to justify
any hardware savings when buying a development system, since the
programming costs will be by far the dominant cost of the project.

For a personal computerist, a hobby-type microcomputer will typi-
cally offer sufficient, although minimal, facilities. Good development
software is still to come for many of the hobby computers. The user will
have to evaluate his system in view of the comments presented in this
chapter.

Let us now analyze in more detail the most indispensable resource:
the assembler.
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THE ASSEMBLER

We have used assembly-level language throughout this book without
presenting the formal syntax or definition of assembly-level language.
The time has come to present this definition. An assembier is designed
to allow the convenient symbolic representation of the user program,
and yet to make it simple for the assembler program to convert these
mnemonics into their binary representation.

Assembler Fields

When typing in a program for the assembler, we have seen that fields
are used. They are:

The label field, optional, which may contain a symbolic address for
the instruction that follows.

The instruction field, which includes the opcode and any operands.
(A separate operand field may be distinguished.)

The comment field, far to the right, which is optional and is intended
to clarify the program.

These fields are shown on the programming form in Figure 10.3.

Once the program has been fed to the assembler, the assembler will
produce a listing of it. When generating a listing, the assembler will
provide three additional fields, usually on the left of the page. An ex-
ample appears on Figure 10.4. On the far left is the line number. Each
line which has been typed by the programmer is assigned a symbolic line
number.

The next field to the right is the actual address field, which shows in
hexadecimal the value of the program counter which will point to that
instruction.

Moving still further to the right, we find the hexadecimal representa-
tion of the instruction.

This shows one of the possible uses of an assembler. Even if we are
designing programs for a single-board microcomputer which accepts
only hexadecimal, we should still write the program in assembly-level
language, providing we have access to a system equipped with an as-
sembler. We can then run the programs on the system, using the assem-
bler. The assembler will automatically generate the correct hexadecimal
codes on our system. This shows, in a simple example, the value of ad-
ditional software resources.
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Fig. 10.3: Microprocessor Programming Form
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Tables

When the assembier translates the symbolic program into its binary
representation, it performs two essential tasks:

1—It translates the mnemonic instructions into their binary en-
coding.

2—1It translates the symbols used for constants and addresses into
their binary representation.

In order to facilitate program debugging, the assembler shows at the
end of the listing the equivalence between the symbol used and its hexa-
decimal value. This is called the symbol table.

Some symbol tables will not only list the symbol and its value, but
also the line numbers where the symbol occurs, thereby providing an
additional facility.

Error Messages

During the assembly process, the assembler will detect syntax errors
and include them as part of the final listing. Typical diagnostics in-
clude: undefined symbols, label already defined, illegal opcode, illegal
address, illegal addressing mode. Many more detailed diagnostics are
naturally desirable and are usually provided. They vary with each as-
sembler.

The Assembly Language

Opcodes have already been defined. We will here define the symbols,
constants and operators which may be used as part of the assembler
syntax.

Symbols

Symbols are used to represent numerical values, either data or ad-
dresses. Symbols may include up to six characters, and must start with
an alphabetical character. The characters are restricted to letters of the
alphabet and numbers. Also, the user may not choose names identical
to the opcodes utilized by the Z80, the names of registers such as A,B,
C,D,E,H,L, BC, DE, HL, AF, BC, DE, IX, 1Y, SP, as well as the
various short names used as pseudo-operators by the assembler. The
names of these assembler ‘‘directives’” are listed below in the corre-
sponding sections. Also, the abbreviations used to designate the flags
should not be used as symbols: C,Z,N,PE,NC,P,PO.
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Assigning a Value to a Symbol

Labels are special symbols whose values do not need to be defined by
the programmer. The value will automatically be defined by the assem-
bier program whenever it finds that label. The label value thus auto-
matically corresponds to the number of the line where it appears.
Special pseudo-instructions are available to force a new starting
value for labels, or to assign them a specific value.

CROBEMEO CUOS 780 ASSTMBLER version 90, 1% FAGE 000!

QOO0 0001 [HINE 2100

(0200 0002 MIPRAD jus G200H

02022 2003 MFDAD DL Q202H

€0204) D004 RESAR i Q20494

D005 3

Q100 EDABOGOD OB0s Hragg LI ROy (HFRAD? FLOAD MULTIFLTER TNTO
Qioa 0408 0007 Lo T8 i 15 RBIT COUNTER
0106 ERSROIODN 0008 LI DE y {HPBATD FLOAD MUTTIFLICAND INTO E
10A 1400 0009 LI Iy Q (2™ oI
Q100 210000 9010 Lo HL -0 RESUL T 0
O1OF  CRE3Y GOt HULT GRL [ FT MULTICLIER BT THTD CARRY
Otii 300! 0012 JR HE 7 NDO CARRY
0113 19 0013 NN .y OE FOHN RED TO RESULT
0114 CR23 0014 NOARD Sia i 38 ToMen LEFT
DILs LRID 0015 kL i HIT Lito
0118 0U D01a B i u SRPCREFNEMY SHEF T OOONTER
QH1% CR20F0) Q0L i HIsHOLT IO OTE AAEN EY COBUTER 0
BLIC 220400 [ehFR:] L LRESALD yHL FurORL RLEUL)
QLLF (00002 00Le END
Errors I

Fig. 10.4: Assembler Qutput—An Example
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However, other symbols used for constants or memory addresses
must be defined by the programmer prior to their use.

A special assembler directive may be used to assign a value to any
symbol. A directive is essentially an instruction to the assembler which
will not be translated into an executable statement. For example, the
constant LOG will be defined as:

LOG DFW 3002H

This assigns the value 3002 hexadecimal to the variable LOG. The
assembler directives will be examined in detail in a later section.

Constants or Literals

Constants may traditionally be expressed either in decimal, in hexa-
decimal, in octal, or in binary, or as alphanumeric strings. In order to
differentiate between the base used to represent the number, a symbol
must be used. To load ‘0’ into the accumulator, we will simply write:

LD A0

Optionally a “‘D’’ may be used at the end of the constant.
A hexadecimal number will be terminated by the symbol “H’’. To
load the value “FF’ into the accumulator, we will write:

LD A, FFH

An octal symbol is terminated by the symbol *‘0’’ or ““Q’’. A binary
symbol is terminated by “B”’.

For example, in order to load the value ‘11111111’ into the accumu-
lator, we will write:

LD A, I11111111B

Literal ASCII characters may also be used in the literal field. The
ASCII symbol must be enclosed in single quotes.

For example, in order to load the symbol ¢‘S’’ into the accumulator,
we will write:

LD A, §

Exercise 10.1: Will the following two instructions load the same value
in the accumulator: LD A, ‘S°, and LD A, 5H?
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Note that in the Zilog convention, parentheses denote an address.
For example:

LD A, (10

specifies that the accumulator is loaded from the contents of memory
location 10 (decimal).

Operators

In order to further facilitate the writing of symbolic programs, as-
semblers allow the use of operators. At a minimum, they should allow
plus and minus so that one can specify, for example:

LD A, (ADDRESS)
LD A, (ADDRESS +1)

It is important to understand that the expression ADDRESS + 1 will
be computed by the assembler in order to determine the actual memory
address which must be inserted as the binary equivalent. It will be com-
puted ar assembly time, not at program-execution time.

In addition, more operators may be available, such as multiply and
divide, a convenience when accessing tables in memory. More special-
ized operators may be also available, such as greater than and less
than, which truncate a two-byte value respectively into its high and low
byte.

Naturally, an expression must evaluate to a positive value, Negative
numbers may normally not be used and should be expressed in a hexa-
decimal format,

Finally, a special symbol is traditionally used to represent the current
value of the address of the line: *“$’". This symbol should be interpreted
as “‘current location’’ (value of PQO).

Exercise 10.2: What is the difference berween the Sfollowing instruc-
tions?

LD A, 10101010B
LD A, (10101010B)

Exercise 10.3: What is the effect of the folio wing instruction?
JP NC,§ -2

Expressions

The Z80 assembler specifications allow a wide range of expressions
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with arithmetic and logical operations. The assembler will evaluate the
expressions in a left-to-right manner, using the priorities specified by
the table in Figure 10.5. Parentheses may be used to enforce a specific
order of evaluation. However, the outermost parentheses will denote
that the contents are to be treated as an address.

Assembler Directives

Directives are special orders given by the programmer 1o the assem-
bler, which result either in storing values into symbols or into the mem-
ory, or in controlling the execution or printing modes of the assembler.
The set of commands which specifically controls the printing modes of
the assembler is also called «‘commands’’ and is described in a separate

section.
To provide a specific example, let us review here the 11 assembler

directives available on the Zilog development system:

ORG nn

This directive will set the assembler address counter to the value nn. In
other words, the first executable instruction encountered after this
directive will reside at the value nn. It can be used to locate different
segments of a program at different memory locations.

EQU nn
This directive is used to assign a value to a label.
DEFL nn

This directive also assigns a value n to a label, but may be repeated
within the program with different values for the same label, whereas
EQU may be used only once.

DEFB n

This directive assigns eight-bit contents to a byte residing at the current
reference counter.

DFB ‘S’
assigns the ASCII value of ““S’’ to the byte.
DEFW nn

This assigns the value nn to the two-byte word residing at the current
reference counter in the following location.
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OPERATOR FUNCTION PRIORITY
+ UNARY PLUS 1
-— UNARY MINUS 1
NOT. or LOGICAL NOT i
.RES. RESULT 1
* EXPONENTIATION 2
* MULTIPLICATION 3
/ DIVISION 3
.MOD, MODULO 3
.SHR, LOGICAL SHIFT RIGHT 3
CSHL., LOGICAL SHIFT LEFT 3
+ ADDITION 4
- SUBTRACTION 4
LAND. or & LOGICAL AND 5
OR. or 1 LOGICAL OR 6
.XOR. LOGICAL XOR 6
EQ. or = EQUALS 7
.GT.or> GREATER THAN 7
AT. or < LESS THAN 7
LUGT. UNSIGNED GREATER THAN 7
JULT. UNSIGNED LESS THAN 7

Fig. 10.5: Operator Precedence
DEFS nn

reserves a block of memory size nn bytes, starting at the current value
of the reference counter.

DEFM ‘S’

stores into memory the string ‘S’ starting at the current reference coun-
ter. It must be less than 63 in length.

MACRO PO P!...Pn

is used to define a label as a macro, and to define its formal parameter
list. Macros are defined in another section below.

END

indicates the end of the program. Any other statements following it will
be ignored.

ENDM

is used to mark the end of a macro definition.
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Assembler Commands

Commands are used to modify the format of the listing to control the
printing modes of the assembler. All commands start with a star in col-
umn one. Seven commands are provided by the Z80 assembler. Typical
examples are:

EJECT
which causes the listing to move to the top of the next page; and

LIST OFF

which causes the printing to be suspended, effective with this com-
mand. The others are: “*HEADING S”, “*LIST ON”’, “*MACLIST
ON”, “*MACLIST OFF”’, “*INCLUDE FILENAME”.

Macros

A macro is simply a name assigned to a group of instructions. Itisa
convenience to the programmer. If a group of instructions is used sev-
eral times in a program, we could define a macro to represent them, in-
stead of always having to write this group of instructions.

As an example, we could write:

SAVREG MACRO PUSH AF
PUSH BC
PUSH DE
PUSH HL
ENDM

then simply write the name “SAVREG”’ instead of the above instruc-
tions. Any time that we write SAVREG, the five corresponding lines
will get substituted instead of the name. An assembler equipped with a
macro facility is called a macro-assembler. When the macro assembler
encounters a SAVREG, it performs a mere physical substitution of
equivalent lines.

Macro or Subroutine?

At this point, a macro may seem to operate in a way analogous to a
subroutine. This is not the case. When the assembler is used to produce
the object code, any time that a macro name is encountered, it will be
replaced by the actual instructions that it stands for. At execution time,
the group of instructions will appear as many times as the name of the
macro did.
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By contrast, a subroutine is defined only once, and then it can be
used repeatedly; the program will jump to the subroutine address. A
macro is called an assembly-time facility. A subroutine is an execution-
time facility. Their operation is quite different.

Macro Parameters

Each macro may be equipped with a number of parameters. As an
example, let us consider the following macro:

SWAP MACRO #M, #N, #T

LD A, IM M INTO A

LD #T, A A INTOT (=M)
LD A, #N N INTO A

LD #M, A A INTOM (=N)
LD A, #T T INTO A

LD #N, A A INTON (=T)
END M

This macro will result in swapping (exchanging) the contents of mem-
ory locations M and N. A swap between two registers, or two memory
locations, is an operation which is not provided by the Z80. A macro
may be used to implement it. ““T’’ in this instance is simply the name
for a temporary storage location required by the program. As an exam-
ple, let us swap the contents of memory locations ALPHA and BETA.
The instruction which does this appears below:

SWAP (ALPHA), (BETA), (TEMP)

In this instruction, TEMP is the name of some temporary storage
location, which we know to be available and which can be used by the
macro. The resulting expansion of the macro appears below:

LD A, (ALPHA)
LD (TEMP), A
LD A, (BETA)
LD (ALPHA), A
LD A, (TEMP)
LD (BETA), A

The value of a macro should now be apparent: it is convenient for the
programmer to use pseudo-instructions, which have been defined with
macros. In this way, the apparent instruction set of the Z80 can be ex-
panded at will. Unfortunately, one must bear in mind that each macro
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directive will expand into whatever number of instructions were used. A
macro will, therefore, run more slowly than any single instruction. Be-
cause of its convenience for the development of any long program, a
macro facility is highly desirable for such applications.

Additional Macro Facilities

Many other directives and syntactic facilities may be added to a sim-
ple macro facility; macros may be nested, i.e., a macro call may appear
within a macro definition. Using this facility, a macro may modify it-
self with a nested definition! A first call will produce one expansion,
whereas subsequent calls will produce a modified expansion of the same
macro. This is allowed by the Z80 assembler, but nested definitions are
not allowed.

CONDITIONAL ASSEMBLY

Conditional assembly is another facility provided in the Z80 assem-
bly. With a conditional assembly facility, the programmer can devise
programs for a variety of cases, and then conditionally assemble the
segments of codes required by a specific application. As an exampie, an
industrial user might design programs to take care of any number of
traffic lights at an intersection, for a variety of control algorithms. He
will then receive the specifications from the local traffic engineer, who
specifies how many traffic lights there should be and which algorithms
should be used. The programmer will then simply set parameters in his
program and assemble conditionally. The conditional assembly will
result in a “‘customized’’ program which will retain only those routines
which are necessary for the solution to the problem.

Conditional assembly is, therefore, of specific value to industrial
program generation in an environment where many options exist and
where the programmer wishes to assemble portions of programs quick-
ly and automatically in response to external parameters.

Only two conditional pseudo-OPs are provided in the standard
micro-assembler version supplied by Zilog. They are respectively:

COND NN and ENDC

where NN represents an expression. The pseudo-OP ““COND NN”’ will
result in the evaluation of the expression NN. As long as the expression
evaluates to a true value (non-zero), the statement following the COND
will be assembled. However, if the expression should be false, i.e., eval-
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uate to a zero value, the assembly of all subsequent statements will be
disabled up to the ENDC instruction.

ENDC is used to terminate a COND, so that the assembly of subse-
quent statements is re-enabled. The COND pseudo-OP’s cannot be
nested.

In theory, more powerful conditional assembly facilities could exist,
with “IF*" and ““ELSE’" specification. They may become available in
future versions of the assembler.

SUMMARY

This chapter has presented the techniques and the hardware and soft-
ware tools required to develop a program, along with the various trade-
offs and alternatives.

These range at the hardware level from the single-board microcom-
puter to the full development system; at the software level, from binary
coding to high-level programming.

You will have to select them on the basis of your goals and resources.
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CHAPTER 11

CONCLUSION

We have now covered all important aspects of programming, from
definitions and basic concepts to the internal manipulation of the Z80
registers, to the management of input/output devices, as well as the
characteristics of software development aids. What is the next step?
Two views can be offered, the first one relating to the development of
technology, the second one relating to the development of your own
knowledge and skill. Let us address these two points.

TECHNOLOGICAL DEVELOPMENT

The progress of integration in MOS technology makes it possible to
implement more and more complex chips. The cost of implementing the
processor function itself is constantly decreasing. The result is that
many of the input/output chips or the peripheral-controller chips used
in a system now incorporate a simple processor. This means that most
LSI chips in the system are becoming programmable. An interesting
conceptual dilemma is now developing. In order to simplify the soft-
ware design task, as well as to reduce the component count, the new
1/0 chips now incorporate sophisticated programmable capabilities:
many programmed algorithms are now integrated within the chip.
However, as a result, the development of programs is complicated by
the fact that all these input/output chips are radically different and
need to be studied in detail by the programmer? Programming the
system is no longer programming the microprocessor alone, but also
programming all the other chips attached to it. The learning time for
every chip can be significant.

Naturally, this is only an apparent dilemma. If these chips were not
available, the complexity of the interface to be realized, as well as of the
corresponding programs, would be still greater. The new complexity
that is introduced is the need to program more than just a processor,

602



CONCLUSION

and to learn the various features of the differentchips in a system. How-
ever, it is hoped that the techniques and concepts presented in this book
will make this a reasonably easy task.

THE NEXT STEP

You have now learned the basic techniques required to program sim-
ple applications on paper. That was the goal of this book. The next step
is actual practice for which is no substitute. It is impossible to learn pro-
gramming completely on paper; experience is required. You should
now be in a position to start writing your own programs. It is hoped
that this journey will be a pleasant one.

For those who feel they would benefit from the guidance of an addi-
tional book, the companion volume to this one in the series is the Z80
Applications Book (refD380), which presents a range of actual appli-
cations which can be executed on a real microcomputer.
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HEXADECIMAL CONVERSION TABLE

HEx | o 3 2 3 a4 5 6 7 8 9 A B C D E F 00 000
0 0 1 2 3 4 5 6 7 8 9 10 11 12 183 14 15 0 0
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 256 | 4096
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 512 | 8192
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 768 | 12288
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 1024 | 16384
5 80 81 82 83 B84 85 86 87 88 83 90 91 92 93 94 95 1280 | 20480
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 1536 | 24576
7 ] 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 1792 | 28672
8 | 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 2048 | 32768
9 | 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 2304 | 36864
A | 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 2560 | 40960
B | 176 177 178 179 180 181 132 183 184 185 186 187 188 189 190 191 2816 | 45056
C | 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 3072 | 49152
D | 208 209 210 211 212 213 214 215 216 217 218 21§ 220 221 222 223 3328 | 53248
E | 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 | 57344
F | 240 241 242 243 244 245 246 247 248 243 250 251 252 253 254 255 3840 | 61440
5 4 3 2 I 0
HEXI DEC HEX} DEC HEX[ DEC [HEX] DEC {HEX] DEC |HEX] DEC
0 of 0 0f 0 (¢ Y] o} 0 o1 o0 0
1 1,048,576] 1 65536] 1 4,0961 1 2561 1 161 1 1
2 2097152} 2 131,072} 2 8,192 2 5121 2 324 2 2
3 3.145728] 3 196,608 3 12,288] 3 7681 3 48 | 3 3
4 4,194,304] 4 262,144] 4 16,384| 4 1,024 | 4 64 | 4 4
5 5242880f 5 327.680] 5 204801 5 1,280] 5 80| 5 5
6 6,291,456 6 393.216] 6 24576] 6 1,536} 6 961 6 6
7 7.340,032] 7 458,752} 7 28,672y 7 1792| 7 12437 7
8 8,388,608 8 524,288] 8 32,768 8 2,048| 8 1281 8 8
9 9,437,184] 9 589.824] 9 36.864] 9 2304} 9 1441 9 9
A 10.485760] A 655360f A 40,960 A 2,560} A 160 1 A 10
B 11,534,336] B 720896f B 45056} B 2816| B 176 | B i
C 12,582,912] C 786,432 C 49,1521 C 3,072 C 1921 C 12
D 13.631,488] D 851,968] D 53248] D 3328| D 208 | D 13
E 14,680,064f E 917,504] E 57.344] E  3,584| E 2241 E 14
F 15,728,640 F 983040] F 61,4404 F 3,840} F 240 | F 15
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APPENDIX B

ASCII CONVERSION TABLE
HEX MSD 0 1 2 3 4 5 6 7
LSD BITS 000 001 010 011 100 101 110 111
0 0000 NUL DLE SPACE 0 @ P - p
1 0001 SOH DCH ! 1 A Q a q
2 0010~ STX DC2 " 2 B R b r
3 0011 ETX DC3 # 3 c S c s
4 0100 EOT DC4 $ 4 D T d t
5 0101 ENQ NAK % 5 E U e u
6 0110 ACK SYN & 6 F v i v
7 0111 BEL  ETB ’ 7 G W g w
8 1000 BS CAN ( 8 H X h X
9 1001 HT EM ) g ! Y i y
A 1010 LF suB . : J z i z
B | 1011 VT ESC + o Ko k|
C 1100 FF FS y < L \ I --
D 1101 CR GS - = M ] m }
E 1110 SO RS . > N A n ~
F 1111 Si us / ? e} « o DEL
THE ASCII SYMBOLS
NUL.  —Nuil DLE —Data Link Escape
SOH —Start of Heading DC  —~Device Control
STX - Start of Text NAK —Negative Acknowledge
ETX —End of Text SYN —Synchronous ldle
EOT —End of Transmission ETB —End of Transmigsion Block
ENQ -—Enquiry CAN —Cancel
ACK - Acknowledge EM —End of Medium
BEL —Bell SUB - Substitute
BS - Backspace ESC —Escape
HT  —Horizontal Tabulation FS  —File Separator
LF  —Line Feed GS  ~Group Separator
VT  —\Vertical Tabulation RS —Record Separator
FF  —Form Feed US  —Unit Separator
CR  —Carriage Return SP  —Space (Blank)
SO  —Shift Qut DEL —Delete

Sl —Shiftin
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FORWARD RELATIVE BRANCH TABLE

APPENDIX C

RELATIVE BRANCH TABLES

S0 2 3 4 s 6 7 8 ° A B C D E F
msd
oo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i le w7 18 19 20 21 22 23 24 25 2 27 28 29 30 3
G T T R 7 R T T R T R TR, B M R I BT S T
3 |4 4 S0 51 52 53 54 55 56 5 S8 59 60 61 62 43
4 64 65 66 67 &8 &9 70 71 72 73 74 75 76 77 78 79
s (8 8 8 8 84 85 8 87 88 8 90 91 92 93 94 95
e To6 67 o8 99 100 101 10z 103 104 105 106 107 108 10% 110 11T
7 112 113 114 115 116 M7 118 119 120 121 122 123 124 125 126 127
BACKWARD RELATIVE BRANCH TABLE

50 -

Wbl ¢ ! 2 3 4 s & 7 8 9 A B C D £ F
8 128 127 126 125 124 123 122 121 120 119 118 117 & 115 114 113
o l112 11 10 109 108 107 106 105 304103102 10} 100 99 _ 98 97
A9 95 T 93 9z 9T 90 8 88 87 8 85 84 83 82 8
B |8 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
C [ 6a 83 62 6l 60 59 58 57 56 55 54 53 52 51 50 @
D |48 a7 46 45 41 a3 42 4140 39 3837 36 35 34 33
R N R R T T Y T Y T T T R
F ol 15 14 13 12 1 w0 9 8 7 & 5 4 3 2 1
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APPENDIX D

DECIMAL TO BCD CONVERSION

DECIMAL BCD DEC BCD DEC BCD
0 0000 10 00010000 90 10010000
1 0001 1 00010001 91 10010001
2 0010 12 00010010 92 10010010
3 0011 13 00010011 93 10010011
4 0100 14 00010100 94 10010100
5 0101 15 00010101 95 10010101
3 0110 16 00010110 % 10010110
7 0111 17 00010111 o7 100101171
8 1000 18 00011000 98 10011000
9 1001 19 00011001 99 10011001
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APPENDIX E

Z80 INSTRUCTION CODES

osJ SOURCE osJ SOURCE
CODE STATEMENT CODE STATEMENT
8E ADC AHL) £620 AND n
DDBEO5 ADC Al1X+d) CB46 BIT 0.(HL)
FDBE05 ADC AL1Y+d) DDCBO546 BIT 0,(1X+d)
8F ADC AA FDCB0546 BIT 0,(1Y+d)
88 ADC AB cB47. BIT 0.A
89 ADC AL cB40 BIT 0.8
8A ADC AD CB41 BIT 0.c
8B ADC AE cB42 BIT 0,0
8c ADC AH ©B43 BIT 0.E
8D ADC AL CB44 BIT 0.4
CE20 ADC An CB45 BIT oL
ED4A ADC HL.BC CB4E BIT 1 (HL)
EDSA ADC HL.DE DDCBOB4E BIT 1,(1X+d)
EDBA ADC ML, HL FDCBOS4E BIT 1,(1Y+d)
ED7A ADC HL.SP CB4F BIT 1.A
86 ADD  AHL) cB48 8IT 1.8
DD8605 ADD Al1X+d) cB49 BIT 1.€
FDB60S ADD AlIY+d) CB4A BIT 1.0
87 ADD  AA cB4B BIT 1.E
80 ADD AB cB4C BIT 1.H
81 ADD  AC CB4D BIT 1L
82 ADD  AD cB56 BIT 2 (HU)
83 ADD  AE DDCBO5S6 8IT 2,(iX+d)
84 ADD  AH FDCBO556 BIT 2.(1Y+d)
85 ADD AL CB57 8IT 2.A
c620 ADD  An CBS0 BIT 28
09 ADD HL.BC cB51 BIT 2.C
19 ADD  HL,DE CB52 BIT 2,0
29 ADD HL ML cB53 BIT 2,E
39 ADD HL.SP cBs4 BIT 2.H
DDO9 ADD IX,8C CBS5 BIT 2L
DD19 ADD IX.DE CBSE BIT 3,(HL)
DD29 ADD IX X DDCBOSSE BIT 3.(I1X+d)
DD39 ADD 1X.5P FDCBOSSE BIT 3.1Y+d}
FDO9 ADD  IY.BC CBSF BIT 3.A
FD19 ADD  IY,DE cBs8 BIT 3.8
FD29 ADD 1YY CBS9 BIT 3.c
FD39 ADD  1YSP CBSA 8IT 3.0
AR AND HL) cB58 8IT 3E
DDAB0S AND {1X+d) cB5C BIT 3.H
FDAG05 AND (1Y +d) cBsD BIT 3L
A7 AND A CB66 BIT 4 (HL)
A0 AND B DDCBO566 BIT 4(1X+d)
Al AND ¢ FDCB0566 BIT 4,01Y+d)
A2 AND D CB67 BIT 4.A
A3 AND E CB60 BIT 4.8
A4 AND H CB61 BIT ac
A5 AND L CB62 BIT 4D
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APPENDIX

oBJ SOURCE oBJ SOURCE
CODE STATEMENT CODE STATEMENT
CB63 BIT 4E EDB1 CPIR
cB64 BIT 4H EDA1 CcPi
CB65 BIT 4L 2F CPL
CBBE BIT 5.(HL} 27 DAA
DDCBOSGE  BIT 5,(1X+dl) 35 DEC  (HL)
FOCBOSGE BT 5.1V +d) DD3505 DEC {IX+d)
caaF - 5A FD3505 DEC {Y+d)
cBe8 BIT 5,8 3D DEC A
05 DEC 8
CB69 BIT 5.C
C86A BIT 50 08 DEC  BC
CcB6B BIT 5E b DEC ¢
cB6C BIT 5.H 15 DEC D
18 DEC DE
CBED BIT 5.L o DEG £
CB76 BIT 6.(HL) 25 bEG H
DDCBO576 BIT 6,1 X+d} 8 DEG L
FDCBO576 BIT 6.(1Y+d)
877 BiT oA DD28B DEC 1X
o870 aiT iy FD2B DEC 1y
20 DEC L
cB71 8IT 6.C 38 bEC o
cB72 8IT 6.0 3 ol
€873 BIT 6.E 102€ DINZ e
cB874 BIT 6.H £8 El
cB75 BIT B.L E3 EX {SPJ . HL
cB7E 8IT 7AHL) DDE3 EX (SP1IX
DDCBOS7E B8IT 7.(IX+d} FDE3 £X 1SPIIY
FDCBOS7E BIT 741Y+d) 08 EX AFAF
cB7F BIT 7.A EB £X DE HL
cB78 BIT 7,8 D9 EXX
cB79 BIT 7. 76 HALT
CB7A BIT 7.0 ED46 M 0
cB7B BIT 7E EDS6 M 1
cB7C 8IT 7.H EDSE v 2
CB7D BIT 7L ED78 IN ALC)
DC8405 CALL  Cnn £D40 N B.(C)
FC8405 CALL  Man ED4S IN c.ic
D48405 CALL  NCuan £D50 IN DC)
£48405 CALL  NZnn EDSS IN E.(C)
F48405 CALL  Punn ED6O IN H.(C)
ECB405 CALL  PEnn £D68 IN LAcy
E48405 CALL  PO.nn 34 INC {HLI
€C8405 CALL  znn DD3405 INC (1X+d)
CD8405 CALL  an FD3405 INC (1Y +d)
3F CCF ac INC A
BE cp (HL) 04 INC B8
DDBEOS cp (1X+d) 03 INC BC
FDBEO5 cp {1Y+d) oc INC o
BF cp A 14 INC D
B8 cp 8 13 INC DE
B9 cp c 1c INC £
BA cp D 24 INC H
BB cp 3 23 INC HL
BC cp H DD23 INC 1X
8D cp L FD23 INC 1y
FE20 cp n 2¢ INC L
EDAZ cPD 33 INC sP
EDBY CPDR DB20 IN Aln)
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PROGRAMMING THE Z80

oBJ SOURCE oBJ SOURCE

CODE STATEMENT CODE STATEMENT
EDAA IND DD7E05 LD A(IX+d)
EDBA INDR FD7EDS LD A(1Y+d)
EDA2 INI 3AB405 LD A {nni
EDB2 INIR 2F LD AA
38405 JP nn 78 Lo AB
£9 P {(HL) 79 LD AC
DDES ¥ (X 74 LD AD
FDE9 Je (v 78 Lo AE
DA8405 Jp C.nn 7C LD A H
FAB40S P M.an EDS7 LD Al
D28405 JP NC.an 70 LD AL
C28405 Jp NZ.nn 3E20 LD A.n
F28405 JP P.nn EDSF LD AR
EAB405 P PE,nn a6 LD B8,(HL)
E28405 Jp PO.nn DD4605 LD B {IX+d}
CAB405 JP Znn FD4605 LD B{1Y+d)
382€ JR Ce 47 LD B.A
302E JR NC.e 40 LD B8.B
202E JR NZ.e 41 LD 8.C
282E JR Ze 42 LD B.D
182€ JR e it 43 LD B.E
02 LD 18C),A a4 LD B.H
12 LD (DE).A 45 Lo B.L
77 ) {HL).A 0820 Lo B.n
70 LD (HLI.B ED4B8405 LD BC.(nn)
7 LD (HL).C 018405 LD BC.nn
72 LD {HL).D 4E Lp C.AHL)
73 LD (HL}.E DD4EQS LD C 1X+d)
74 LD (HLLH FD4EDS LD C.{1Y+d)
75 LD (HLI.L 4F Lo CA
3620 LD (HLi.n 48 LD c.B
DD7705 LD (iX+d),A 49 LD cc
DD7005 LD (1X+d} B 4A LD c.D
DD7105 LD (1X+d).C 48 LD CE
DD7205 LD (IX+d},D 4c LD CH
DD7305 LD (1X+d) E 40 LD c.L
DD7405 LD (IX+d) H 0E20 LD C.n
DD7505 LD {1X+d) L 56 D DAHL}
DD360520 LD (1X+d) 0 DD5605 LD D {IX+d)
FD7705 LD {1y +d),A FD5605 LD D,{1Y+d)
FD7005 LD {ty+d) B 57 LD D.A
FD7105 LD (1Y+d),C 50 LD D.B
FD7205 LD (tY+d).D 51 LD DC
FD7305 L (1Y+d).E 52 LD D.D
FD7405 LD (1Y +d} H 53 LD D.E
FD7505 LD (1y+d) 54 LD DH
FD360520 LD (1Y+d),n 56 LD DL
328405 LD {nn},A 1620 LD D,n
ED438405 LD {nn},BC ED5BB405 LD DE.(nn)
ED538405 LD {nn} DE 118408 LD DE.nn
228405 LD {nn} HL SE LD E,(HLI
DD228405 LD {nn) X DDSEOS LD E {1X+d)
FD228405 LD () 1Y FDSEQS LD E(IY+d)
ED738405 LD {nn} SP 5F LD E.A
0A LD A(BC) 58 LD E.B
1A LD A (DE) 59 LD E.C
7E LD AHLI SA LD ED
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APPENDIX

0BJ SOURCE oBJ SOURCE
CODE STATEMENT CODE STATEMENT

58 LD E.E EDB3 OTIR

5C LD EH £D79 ouT (c),A
5D LD EL ED41 ouT (1B
1£20 LD En EDA4Y ouT [cre
66 LD H.{HL) ED51 ouT (1,0
DD6605 LD H. {1X+d) ED59 ouT {CLE
FD6605 LD H,(1Y+d) ED61 ouT (C),H
67 LD H.A ED69 ouT ©,L
60 Lo H.B D320 ouTt (n},A
61 LD H.C EDAB ouTD

62 LD H.D EDA3 ouTI

63 LD H.E F1 POP AF

64 LD H.H c1 POP 8C

65 LD L D1 POP  DE
2620 LD H.n 1 POP HL
2A8405 LD HL {nn) DDEY pOP Ix
218405 Lo HL,nn FDE1 POP Y
ED4T7 LD 1A F5 PUSH  AF
DD2A8405 LD 1X.{nn} cs PUSH  BC
DD218405 LD 1X.nn D5 PUSH DE
FD2A8405 LD 1Y {nni E5 PUSH  HL
FD218405 LD 1Y,nn DDES PUSH  IX

6E LD LAHL) FDES PUSH 1Y
DD6EDS LD LUIX+d) cB86 RES 0,(HL)
FDEEQOS LD L {1Y+d) DDCB0586 RES 0,{1X+d}
5E LD LA FDCBO586 RES 0.(1Y+d)
68 LD LB cB87 RES 0.A

69 LD Lc cB80 RES 0.8

BA LD LD cB81 RES 0c

68 LD LE cB82 RES 0,0

6C LD LH CB83 RES 0.E

60 Lb LL c884 RES 0H
2E20 LD La CB8S5 RES o.L
EDAF LD R.A fol::1 RES 14HL)
ED78B8405 LD SP.(nn) DDCBOSSE RES 1.(1X+d)
F9 LD SP.HL FDCBOSSE RES 1.{1Y+q}
DDFY LD SP.IX cB8F RES 1A
FOFQ L.D SP 1Y CcB8g RES 1.8
318405 LD SP.an cB8g RES  1.C
EDAS LDD cBBA RES 1D
‘égi% tg?“ cB8B RES  1E

cB8C RES 1.H

EDBO LDIR cB8D RES 1.4
ED44 NEG :

00 NOP CBY6 RES 2,(HL)
BG oR (HL) DDCBO596 RES 2,(iX+d)
DDBES on (i X+d) FDCB0596 RES 2,(1Y+d)
FDBB0S OR {1Y+d) ca97 RES  2.A

87 oR A CB9O RES 28

80 OR 8 cB91 RES 2.0

B1 OR c CBg2 RES 2.0

B2 oR 0 cB93 RES 2.
B3 OR £ CBg4 RES 2H

84 OR H CBg5 RES 2.L

85 OR L CB9E RES 3.(HL
F620 OR n DDCBOS9E RES 3,(1X+d)
£D8B OTDR FDCBOS9E RES 3,{1Y+d)
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PROGRAMMING THE Z80

0BJ SOURCE o84 SOURCE
CODE STATEMENT CODE STATEMENT
CBOF RES 3.A ED4D RETI
cB98 RES 3.8 ED45 RETN
c899 RES 3. cB16 AL (HL)
CBIA RES 3D DDCBO516 AL (1X+d)
cB9B RES 3£ FDCBO516 AL (1Y +d)
cBaC RES IH c817 RL A
cB9D RES 3L c810 AL 8
CBA6 RES 4.(HL) cB11 RL c
DDCBOSAE  RES 4.,(1X+d) cB12 RL D
FDCBOSAB RES 4,01V +d) cB13 RL £
CBA7 RES 4.A cB14 RL H
CBAO RES 4.8 CB15 AL L
CBA1 RES 4c 17 RLA
CBA2 RES 4.0 CBOB RLC {HLI
DBA3 RES 4 DDCBO506 RLC (IX+d)
cBA4 RES 4R FDCBO506 RLC (1Y +d)
CBAS RES 4L cBO7 RLC A
CBAE RES 5,(HL) €BOO RLC B
DDCBOSAE  RES 5,{1X+d) CBOY RLC c
FDCBOSAE  RES 5,(1Y +d} CBO2 RLC D
CBAF RES 5,A CBO3 ALC E
CBAS RES 5.8 cB04 RLC H
CBA9 RES 5.C CBO5 RLC L
CBAA RES 5.D 07 RLCA
CBAB RES 5.8 EDGF ALD
CBAC RES 5.H CB1E RR (HL)
CBAD RES s,L DDCBOS1E RR {(1X+d)
cBB6 RES 6.(HL) FDCBOS1E RR {(1Y+d)
DDCBO586 RES 6,(1X+d) CB1F RR A
FDCBO586 RES 6.(1Y+d) cB18 AR 8
cBB7 RES 6.A cB19 RR c
cBBO RES 6.8 CB1A RR D
cBB1 RES 6.C ce1B RR E
CBB2 RES 6,0 cB1c RR H
CBB3 RES 6.E 1C::31D SSA L
g::g 2;3 2": CBOE RRC (HL)
: DDCBOS0E RRC (1X+d)
CBEE RES 7.AHL) FDCBOS0E RRC (1Y +d)
DDCBOSBE  RES 7.41X+d) CBOF mRe A
FDCBOSBE RES 7(1Y+d) 808 RRe .
CBBF RES 7.A
CBOg RRC ¢
cBB8 RES 7.8 CBOA NS o
R G oo
CBBB RES  7.E ceoc RRC M
CBOD RRC L
cBBC RES 7.H OF RROA
cBBD RES 7.L ED67 RRD
co RET c7 RST  OOH
D8 RET o] CF RST 08H
78 RET m o7 RST 10H
Do RET NG DF RST 18H
co RET  NZ g7 RST  20H
FO RET P EF RST 28H
E8 RET PE E7 RST 30H
£0 RET PO £E RST 38H
c8 RET z DE20 SBC An
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oBJ SOURCE 0BJ SOURCE
CODE STATEMENT CODE STATEMENT
9E SBC AHL) DDCBOSE6  SET 4,(1X+d)
DDIEDS SBC ALIX+d) FDCBOSEE  SET 4(1Y+d)
FDYEDS SBC AltY+d) CBE7 SET 4.A
9F SBC AA CBEO SET 4B
98 SBC AB CBE1 SET 4c
99 s8C AL CBE2 SET 4D
9A SBC AD CBE3 SET 4.E
98 s8C AE CBE4 SET 4H
ac SBC AH CBES SET 4L
9D :le AL CBEE SET 5.{HL)
ED42 SBC HL.BC DDCBOSEE  SET 5.(1X+d)
ED52 SBC HL.DE FDCBOSEE  SET 5,(1Y+d)
ED62 SBC HLHL CBEF SET 5.A
ED72 SBC HLSP CBES SET 5.8
37 SCF CBE9 SET 5.C
CBCS SET 0.(HL) CBEA SET 5D
DDCBO5C6 SET 0,(1X+d) CBEB SET 5.6
FDCBO5C6  SET 0,(1Y+d) CBEC SET 5 H
CBC7 SET 0.A CBED SET -
CBCO SET 0B CBF6 SET  6.(HL)
CBCt SET  0cC DDCBOSF6  SET  6.(1X+d)
CBC2 SET 0D FDCBOSF6  SET  6(1Y+d)
cBC3 SET 0.E CBRT SET 6 A
CcBCa SET  OM CBFO SET 6.8
CBCS Sev oL Cc8F1 SET  6.C
CBCE SET 1.(HL) caE2 seT 60
DDCBOSCE  SET 1.41X+d) CBES sET 6.6
FDCBOSCE  SET 141Y+d) cBFa SET 6.H
CBCF SET 1A CBFS SET B
cecs SET 18 CBFE SET  7.(HL)
CBCY SET 1€ DDCBOSFE  SET  7.(iX+d)
CBCA SET 1D FDCBOSFE  SET  7.(IY+d)
CBCB SET 1,E CBEF SET 7 A
CBCC SET 1H CBF8 SET 7.8
CBCD SET L CBFY SET  7.C
CBDS SET 2,(HL) CBFA SET 7.0
DDCBOSD6  SET 2,(IX+d) cBFB SET 7 E
FDCBO5D6 SET 2.{1Y+d) CBEC SET 7.H
€8D7 SET 2.A CBFD SET 7.L
CBDO SET 2.8 cB26 SLA {HL)
CBD1 SET 2.C DDCB0526 SLA {1X+d)
CcBD2 SET 2.D FDCB0526 SLA (1Y +d)
c8D3 SET 2,E cB27 SLA A
cBD4 SET 2.H CB20 SLA 8
CBD5S SET 2.L CB21 SLA c
CBDS8 SET 3B cB22 SLA D
CBDE SET 3.4HL} cB23 SLA £
DDCBOSDE  SET 3.(1X+d) cB24 SLA H
FDCBOSDE SET 3.41Y+d)} CB25 SLA L
CBDF SET 3.A CB2E SRA HL)
CBD9 SET 3.C DDCBOS2E SRA (1X+d)
CBDA SET 3.D FDCBOS2E  SRA {1Y+d)
cBDB SET 3.E cB2F SRA A
CBDC SET 3H cBo8 SRA B
CBDD SET 3.L cB29 SRA c
CBE6 SET 4,{HL) CB2A SRA s}
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PROGRAMMING THE Z80

oBJ SOURCE

CODE STATEMENT
cB2e SRA E
cB2C SRA H
CB2D SRA L
CB3E SRL (HL)
ODCBOS3E SRL {IX+d}
FDCBOS3E SRL (1Y +d}
CB3F SRL A
CB38 SRL 8
CcB39 SRL C
CB3A SRL o]
cB3B SRL £
CB3C SRL H
CB3D SRL L
96 sus (HL)
DDY605 suB (1 X+d)
FD9605 sug {1Y+d}
97 SuB A
90 sus 8
91 SUB C
92 SUB D
93 sSUB E
94 suB H
g5 suB L
D620 SUB n
AE XOR (HL)
DDAEQCS XOR (1X+d)
FDAEQS XOR (1Y+d)
AF XOR A
AB XOR B
A9 XOR C
AA XOR D
AB XOR £
AC XOR H
AD XOR L
EE20 XOR n

(Courtesy of Zilog Inc.)
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APPENDIX F

780 to 8080 EQUIVALENCE

z80 8080 Z80 8080 280 8080
ADCA, (HL)  ADCM EX (SP), HL XTHL ORn ORI [B2]
ADCA, n ACI[B2] HALT HLT ORr ORA ¢
ADCA, ¢ ADCr INA, (n} IN [B2] OR (HL) ORA M
ADD A, (HL)  ADDM INC BC INX B OuUT(n), A OUT [B2]
ADD A, n ADI [B2] INC DE INX D POP AF POP PSW
ADD A, r ADD ¢ INC HL INX H POP BC POPB
ADD HL, BC DADSB INCr INR ¢ POPDE POPD
ADD HL, DE DADD INC SP INX SP POP HL POPH
ADD HL, HL DAD H INC (HL) INR M PUSH AF PUSH PSW
ADDHL SP DADSP JPC. nn IC [B2) [B3] PUSH BC PUSH B
AND n ANI[B2] JPM, nn M [B2)[B3] PUSH DE PUSH D
AND ¢ ANAT JPNC, nn INC {B2] [B3] PUSH HL PUSH H
AND (HL) ANAM JPnn IMP {82} [B3] RET RET
CALLC, nn CCB2] (B3] PNZ, on JINZ (B2} {83 RETC RC
CALLM, nn CM [B2] (B3] JPP, nn P [B2] [B3) RET M RM
CALLNC, nn CNC [B2] [B3] JPPE, nn JPE [B2][B3] RET NC RNC
CALL nn CALL JPPO, nn JPO [B2}{B3] RET NZ RNZ
CALLNZ, nn  CNZ[82][B3] JPZ nn 12 {82][B3) RETP RP
CALLP, nn CP [B2] B3] JP (HL) PCHL RET PE RPE
CALLPE nn  CPE(B2] [83] LD A, (DE) LDAX RET PO RPO
CALLPO.nn  CPO (B2] (B3] DA, (nn) LDA [82] [B3] RETZ RZ
CALLZ, nn CZ (82} {83] LD DE, nn LXID, [82] [B3] RLA RAL
CCF cme LDSP, nn LXI P, [82] (B3] RLCA RIC
CPr CMP ¢ 1D (BC), A STAXB RRA RAR
CP (HL) CMP M LD (D}, A STAXD RRCA RRC
cpL CMA LD (HL), ¢ MOV M, r RSTP RSTP
CPn CPi [B2} LD (nn), A STA [82] [B3] SBC A, (Hi) SBBM
DAA DAA D(nn), ML SHLD[B2][83] SBCA. n 581 [82]
DECBC DCx 8 DA (BC)  (DAXB SBCA, ¢ SBB«
DEC DE DCX D LDBC, nn LXiB, [82] [B3] SCF sTC
DEC HL DCX H D HL, (nn) LHLD {B2] (B3] SUB n SU [B2)
DECr DCRr D HL, an LXI H (B2) [83] SuBr Sus«
DECSP DCX SP 1D+, (HC) MOV M SUB (HL) SUB M
DEC (HL) DCR M s, n MVI T, [B2] XORn XRi [82]
b DI D ¢ MOVt 12 XORr XRA ¢
£ £l DSP, HL SPHL XOR (HL} XRA M
£X DE, HL XCHG NOP NOP
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8080 to Z80 EQUIVALENCE

8080 z80 8080 Z80 8080 280
ACH[B2] ADCA, n IN[82) INA, (n) POPH POP HL
ADC M ADC A, (HL) INR M INC (HL) POP PSW POP AF
ADCr ADCA, ¢ INR INC PUSHB PUSH BC
ADD M ADD A, (HL) INX B INC BC PUSH D PUSH DE
ADD ADD A, ¢ INX D INC DE PUSHH PUSH HL
AD! [B2] ADD A, n INX H INC HL PUSH PSW PUSH AF
ANA M AND (HL) INX SP INC SP RAL RLA
ANAT AND ¢ JC[B21{B3] JPC nn RAR RRA
ANI (B2} AND n JM{B2}[B3]  JPM, nn RC RETC
CALL CALL nn IMP (B2} (B3] JPnn RET RET
CC [B2] (B3} CALLC, nn JNC [B2] (B3] JPNC, nn RLC RLCA
CMB2][B3] CALLM, nn INZ [B2][B3] JPNZ, nn RM RET M
CMA cPL JP[B2][B3] PP, nn RNC RET NC
cme CCF JPE{B2}{B3] JPPE nn RNZ RETNZ
CMP M CP(HL) JPO([B2] (B3] JPPO, nn RP RETP
CMP ¢ CPe JZ([B2}(B3]  JPZ an RPE RET PE
CNC [B2}{B3] CALLNC, an LDA [B2][B3] LD A, (nn) RPO RETPO
CNZ[B2][B3] CALLNZ, nn LDAX B LD A, {BC) RRC RRCA
CP(B2](B3]  CALLP, nn LDAX D LD A, (DE) RST RSTP
CPE[B2][B3] CALLPE an LHLD (B2]{B3] LDHL, (nn) RZ RETZ
CPi [B2] CPn {X18182] (B3] LDBC, nn S88 M SBCA, (HL)
CPO[B2][83] CALLPO, nn LDID [B2]{83] LD DE, nn SBBr SBCA, r
Cz[B2][B3] CALLZ nn LXIH[B2] [B3] LDHL nn SBI [B2] SBCA, n
DAA DAA LXI SP [B2] [B3] DSP, nn SHLD [B2] (B3] LD (nn), HL
DAD B ADD HL, BC MOV M, 1 LD (HL), © SPHL LD SP, HL
DADD ADD HL, DE MOV r, M LD v, (HL) STA[B2] (B3] (D (nn), A
DADH ADD HL, HL MOV ri, 12 e, ¢! STAX B LD (BC), A
DAD SP ADD HL, 5P MVIM 1D (HL}, STAXD LD (DE), A
DCR M DEC (HL) MVI T {B2] Drn STC SCF
DCRr DECr NOP NOP SUB M SUB (HL)
DCX B DECBC ORA M OR (HL) SuBr SuBr
DCX D DEC DE ORA ORr SUI (B2] SUBn
DCX H DEC HL ORI [B2] ORn XCHG EXDE, HL
DCX SP DECSP ouT (B2} OUT (n), A XRA M XOR (ML)
Dl bi PCHL P (HL) XRAT XORr
El £l POPB POP BC XRI [B2] XOR n
HALT HLT POPD POP DE XTHL EX (SP), HL
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INDEX

A
absolute addressing 108, 439, 446
ACT 61
accumulator 439
ADC 101
ADC, A, s 190
ADCHL, ss 192
ADD 101
ADD A, (HL) 84, 194
ADD A, (IX + d) 196
ADD A, (1Y + d) 198
ADD A, n 67, 200
ADDA,r 67,75, 76, 201
ADD HL, ss 203
ADDIX, rr 205
ADDIY, r 207
addition 58, 95, 100, 105
address bus 47
address registers 51
addressing 438,442
addressing modes 438, 440, 444, 445
addressing techniques 438
algorithm 15,16, 114, 539
alphabetic list 558, 565, 569, 570
alphanumeric data 39
ALU 46, 77, 85
AND 166, 167
ANDs 209
application examples 520
arithmetic-logical unit 46, 61
arithmetic programs 94
arithmetic shift 119
ASCIl 39,524, 525
ASClI conversion table 40
assembler 96, 582, 590
assembler directives 596, 598
assembler fields 590
assembly-language 67, 580, 592
assigning a value 593
asynchronous 471, 496, 518
automated Z80

instructions 142, 453, 455

B

B 62
banks of registers 62
BASIC 24
basic architecture 46
basic concepts 15
basic programming choices 579
basic programming techniques 94
BCD 35,37,525
BCD addition 107,110
BCD arithmetic 107
BCD block transfers 530
BCD flags 112
BCD representation 35
BCD subtraction 110
BCD table 35
benchmark 470
binary 20,21, 22,41, 45
binary code 19
binary digit 18
binary division 133
binary logic 18
binary representation 41

546, 558, 559, 560,
561, 566, 567, 568

binary search

BIT b, (HL) 211
BiT b, (IX + d) 213
BITb, (IY + d) 215
BITb, r 217
bit 18, 20, 41
bit addressing 448
bit manipulation 172,173
bit serial transfer 471,472
block 540, 542, 544

block transfer 450, 451, 453, 458, 530
block transfer

instructions 163, 450, 452
bootstrap 48
bracket testing 523
branch instruction 44]
branching point 115
break character 467
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breakpoint 584, 586
bubble-sort 533, 534, 535, 536, 537
buffer register 59, 61
buffered 49
buffers 61
bus request 497
BUSRQ 92, 497
byte 18, 19,41, 444
C

C 28, 30,31,62,73
CALL 145, 156, 446, 500
CALL cc, pg 219
CALL pg 222
CCF 224
CALLSUB 143, 144, 145
carry 22,23,26,28,30,174
central-processing unit 46
checksum computation 528
circular list 544, 545
classes of instructions 154
clearing memory 520
clock 47
clock cycles 69
clock-synchronous logic 86
code conversion 525
coding 16
combination chips 48
commands 16
comment field 590
compare 531
compiler 545, 581, 582
COND 600
conclusion 602
conditional assembly 600
conditional instruction 50
constants 439, 445, 594
control box 49
control bus 47
control instructions 157,185

control registers 512,513,515

control signals 91
control unit 46
count the zeroes 529
counter 463, 465
Cp 166
CPs 225
CPD 227
CPDR 229
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CP1 231
CPIR 233
CPL 165, 235
CPU 46, 187
critical race 60
CRT display 44, 587
crystal 47
CuU 46
D

D 62,74
DAA 109, 236
data buffer 511
data bus 47
data counters 51
data direction register 512
data processing 155
data processing instructions 164
data ready 469
data representation 548
data structures 539
data transfers 154, 158, 160
debugger 583
debugging 18
decimal 20, 21,22
DECm 238
DECrr 240
DEC IX 242
DECIY 243
decode 71, 86
decoding 56
decoding logic 49
decrement 164, 442
DEFB 596
DEFL 596
DEFM 597
DEFS 597
DEFW 596
delay generation 463
delay loop 464, 483
deleting 553, 565,574
design examples 548
destination register 67
development systems 587
DFB 596
DI 244
direct addressing 439, 441
direct binary 19
direction register 515



directives
directories
disk operating system
displacement
displacement field
DINZ e

DMA

documenting

DOS

doubly-linked lists
double-precision format
drivers

E

E

EBCDIC

echo

editor

El

8-bit addition

8-bit division

element deletion

element insertion

emulator

END

ENDC

ENDM

EPROM’s

EQU

error

£ITOr messages

EX AF, AF

exchange instructions

Exclusive ORing

EXDE, HL

executable statements

execute

execution

execution cycle

exponent

EX (SP), HL

EX(SP), IX

EX (SP), IY

extended addressing

external representation
of information

EXX

146, 571, 580, 594

541, 545
541,582
63

442

245
491, 498
97

582

545, 546
34

49

62

39

486

583

247

95

134, 137
564
550, 563
583

597

600

597

585

596

586

592

162

162

31

249

16

71

56, 69, 599
55
37,38
250

252

254

160, 441, 446

41,44
256

INDEX

F

F 61
fetch 55,70, 84
fetch-execute overlap 78
FIFO 543
file directory 541
flags 31, 50,51, 179, 180
flags register 61
flip-flops 51

floating point representation 37, 38

flowcharting 16, 17, 114,
450, 464, 469, 494, 559
front panel 45, 589
G
general purpose registers 51
getting characters in 522
H
H 62,176
half-carry flag (H) 176
HALT 92, 185, 257
handshaking 477, 478, 511
hardware 93
hardware delays 465
hardware organization 46
hardware resources 587, 589
HEX 525
hexadecimal 41,42, 481
hexadecimal coding 43,579
high byte 103
high level language 581
I
I 63
IFF1 499
1IFF2 499
illegal code 107
IMO 258
IMi 259
M2 260
immediate addressing 108,159,439,445
immediate operation 69
implicit addressing 438, 445
implied addressing 438
improved multiplication 126, 128, 129
INTt, (C) 261
INA, (N) 263
in-circuit emulator 585
INC(HL) 267
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INCr 264
increment 164, 442
incrementer 57
INCrr 265
INC (X + d) 268
INC (1Y + d) 270
INCIX 272
INCIY 273
IND 274
index register 53, 63,441, 442
indexed addressing 160, 441, 447, 540
indexing 63
indirect addressing 443, 444, 448, 540
indirect indexed addressing 443
indirect memory access 499
INDR 276
information representation 18
in-house computer 588
INI 278
INIR 280
input/output 157, 460, 518
input/output devices 511,521
input/output instructions 183, 460
input register 466
inserting 552,573
instruction 96
instruction field 590
instruction formats 66
instruction register 55, 64
instruction set 154
instruction types 112
INT 91
internal control registers 51,513
internal representation
of information 18
interpreted 69
interpreter 545, 581, 582
interrupt 466, 496, 497, 500, 505,
508, 509, 511
interrupt acknowledge 500
interrupt flag 187
interrupt handler 502
interrupt logic 510
interrupt-mask-bit 499
interrupt mode 0 500
interrupt mode 1 503
interrupt mode 2 504
interrupt overhead 504

interrupt-page addressing register 63
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interrupt table
interrupt vector
interrupts

1/0 control
IORQ

IR

X

IY

J

JP cc, pq
JP nn
JP pq
JP (HL)
JP(IX)
JP(IY)
JRcec, e
JRe
JUMP

jump instruction
jump relative (JR)

1K

L

L

labet field
largest element
LDA.(n,m)
LDD,C

LDD

LDDR

LDI

L.DIR

LD dd, (nn)
LDdd, nn
LDr,n

IDr, 1

LDr, 1
LD(BC), A
LD (DE), A
LD(HL),n
LD(HL), r
LDr, (HL)
LDr, (IX + d)
LDr, (1Y + d)
LD({IX + d),n
LDIY + d),n

504
498
495

92

92, 500
55
53,63
63

282

89

284

285

286

287

288

290

90, 172, 179, 441
156, 182
446, 447

24

62
590
526, 527
69, 86
72
164
164
164
142, 164
291
293
295
66
297
299
300
301
303
356
305
307
309
311



LD(IX + d), r 313
LDAY + d), r 315
LD (nn), A 317
LD (nn), A 319
LD (nn), dd 321
LD (nn), HL 323
LD (nn), IX 325
LD (nn), 1Y 327
LD A, (BC) 329
LD A, (DE) 330
LDA,I 331
LDLA 332
LDA,R 333
LD HL, (nn) 334
LDIX, nn 336
LD IX, (nn) 338
LDI1Y, (nn) 340
LDIY,nn 342
LDR. A 344
LD SP, HL. 345
LDSP, IX 346
LDSP, 1Y 347
LDD 348
LDDR 350
LDI 352
LDIR 354
LED 41, 480
LIFO structure 540, 544
light emitting diodes 41

linked list 542, 544, 568, 571, 573,
574,577,578

linked loader 583
list 540, 548, 549, 550, 555, 556, 557
listing 590
list pointer 542
literal 69,439, 455, 594
load 96, 106
loader 583
logarithmic searching 546, 562
logical 166, 558
logical errors 582
logical operations 141
logical shift 119
long addressing 449
longer delay 464
M
machine cycle 69
MACRO 597, 598, 600

INDEX

mantissa 38
MASK 168, 522
memory cycles 55
memory map 453, 586
memory-mapped i/0 157
memory-refresh register 64
micro instructions 86
mnemonic 67,579
MI 92
modes 444
monitor 48, 582
monitoring 467
MOS Technoiogy 6502 452
MPU 52,59
MPU pinout 91
MREQ 92
multiple devices 506
muitiple LED’s 482
multiple precision 98
multiplexer 52,62

multiplication 113,114,115, 116,

124,151,152, 153

MUX 52,62
N

N 34
NEG 358
negative 24,26, 32
nested calls 145
nibble 18, 36
NMI 91, 92, 498
nonmaskable interrupt 498
nonrestoring method 133
NOP 359
NOPs 92
normalize 37
normalized mantissa 37
0

octal 41,42
odometer 465
one’s complement 25
one-shot 466
opcode 66, 86, 439, 444, 446
operand 100, 102, 438, 439
operating system 582
operator precedence 587
OR 166, 168
ORs 360
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ORG 596
OTDR 362
OTIR 364
OUT(C), 1 366
OUT(N), A 368
ouTD 369
OUTI 371
output register 461
overdraw 133
overflow 28,30, 31,32
overlap technique 79
P

packed BCD 36, 107
packed BCD subtract 110, 111
paper-tape readers 494
parallel input/output 48
parallel work transfer 467, 468, 469
parity bit 39,40
parity generation 524
parity/overflow (P/V) 175
PC 52
PIC 446, 506

PIO 48,511, 512,513,514,515,518
pointers 51, 62, 444, 539, 544, 550, 551

polling 466, 469, 492, 521, 544
polling loop 493, 494
POP qq 373
POPIX 375
POPIY 377
pop 53,176,154
port 511,515,516
positional notation 20
positive 24, 26, 32
post-indexing 442, 443
power failures 48
pre-indexing 442
printer 44, 479, 495
program 16, 48
program counter 52
program development 579, 584
program loops 63, 121

programmable input/output chip 511

programmable interval

timer (PIT) 463, 465
programmer’s model 94
programming 15, 16, 515,518, 602
programming language 16
pseudo-instructions 98
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pulse 462, 467
pulse counting 466
punch 495
PUSH qq 379
PUSH IX 381
PUSHIY 383
push 53,76, 154
Q

queue 543, 544
R

R 64
RAM 48,75, 584, 587
random element 541
RLCA 385
RD 92
read operation 96, 515
read-only memory 48
read-write memory 48,75
recursion 148
reference table 571
register addressing 438
register indirect addressing 444, 448
register-interrupt 184
register pairs 51
registers 31,51, 149,439, 474
relative addressing 441, 446
relative jump 156
relays 461, 462
request blocks 543
RESb, s 386
RESET 92
restoring method 133
RET 389
RETcc 391
RETI 181, 393, 501
RETN 181, 395, 499
RETURN 144, 145
RFSH 93
RLs 397
RLA 399
RLCr 103
RLC(HL) 402
RLC(IX + d) 404
RLC(IY + d) 406
RLD 408
ROM 48
rotation 120, 155,170, 171



rotate 50, 156
round robin 544, 545
RRs 410
RR A 412
RRCs 413
RRCA 415
RRD 416
RST 183, 500
RSTp 418
rubout 467
S
S 178
saving the registers 502
SBCA,s 420
SBC HL, ss 422
SCF 424
scheduling 491
searching 551, 558,572
segment drivers 484
segments 480,541
sensing pulses 466
sequential lists 540
sequential searching 546
service routing 492
SETb, s 425
seven-segment light-emitting

diode (LED) 480, 481
shift 50, 118, 120, 155, 156
short addressing 441, 446, 449
short instruction 19
sign 178
signal 461
signed binary 24,25
signed numbers 532
simple list 551
simulator 583
simultaneous interrupts 507
single-board microcomputers 587
16-bit accumulator 103
16 by 8 division 134, 135
16 by 16 multiplication 130, 131
skew operations 169
skip 157
SLAs 428
software aids 582, 587
SP 53
special digit instructions 172
speed 476

INDEX

SRA s - 430
SRLs 432
stack 53, 146, 149, 496, 508, 539, 544
stack pointer 53, 540
standard architecture 49
standard P10 511
status 31, 85,476, 515
status bits 50, 512
status register 50
storing operands 102
string of characters 490
SUBA,s 434
subroutine call 143, 146
subroutine library 150
subroutine mechanism 144
subroutine parameters 149
‘subroutines 142, 147, 443, 598
subtraction 104
subtract (N) 175
sum of N elements 527, 528
symbolic 41,44
symbols 592, 593
synchronous 471, 496
syntactic ambiguity 16
syntax 544
system architecture 46
T

tables 526, 539, 540, 551, 554, 592
technological development 602
teletype 466, 485, 487, 488, 489
temporary register 61
test 16, 156, 172
testing a character 523
timer 465
time-sharing system 588
timing 463
trace 585
transfers 52
trees 544, 545
truncating 34
truth table 167
two’s complement 25,26,27,29
two-level directory 541
U

UART 477, 518
underflow 32
utility routines 583
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A\
Vv
3

vectoring of interrupts

w

“I

WAIT

working registers
WR
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28, 30, 31
137
504

87
92
496
92

XOR
XORs

VA

4

Z80 registers

zero

zero page addressing
Zilog Z80 PIO

Zilog Z80 SIO

166, 169
436

87,177
95
177
441, 446
516,517
518
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