Radio fhaek

PROGR AMMING
TECHNIQUES

for
LEVEL I

BASIC william barden, jr.

Programming
Techniques
for
Level Il BASIC

by
William Barden, Jr.

Radlo Shaek

AAAAAAAAAAAAAAAAAAAAAAA

FIRST EDITION
SECOND PRINTING-1981

Copyright © 1980 by Radio Shack, A Tandy Corporation
Company, Fort Worth, Texas 76107. Printed in the United
States of America.

All rights reserved. Reproduction or use, without express per-
mission, of editorial or pictorial content, in any manner, is pro-
hibited. No patent liability is assumed with respect to the use
of the information contained herein.

Library of Congress Catalog Card Number: 80-51523

Preface

This book is meant to be a “cookbook” of Level II BASIC rou-
tines for the Radio Shack TRS-80 Model I Computer. If you have
questions about the ways in which you can output graphics to the
display, Programming Techniques for Level 11 BASIC can help you
out. If you want to know about efficient sorting and searching, this
book will show you how. If you want some concrete examples of
how to interface to machine-language routines in BASIC, you can
find the information and examples here. Programming Techniques
for Level II BASIC is meant to supplement the Level II BASIC
Reference Manual; it provides practical examples of common BA-
SIC operations that you will want to try.

What do you need to know before using this book? You should
have at least a nodding acquaintance with Level II BASIC. You
should be somewhat familiar with simple BASIC program structure
and Level II BASIC operations. But, if you don’t know all of the
details in Level II, don’t be afraid to plunge right into the exam-
ples in this book. The best way to learn is by practical example,
and we have attempted to provide plenty of them. You don’t need
a degree in computer science or mathematics, either. Most opera-
tions described here use simple straightforward logic; Level 1I
BASIC is capable of providing advanced mathematical processing,
but we have kept math discussion to an absoclute minimum.

Most of all, you need to have an interest in using the power of
TRS-80 Level II BASIC. We all have a tendency to become jaded
as we are exposed to better and better small computer systems, but
the BASIC operations provided in Level II are extremely powerful.
This book will show you how to use them, whether your goal is

accounting, games, inventory, programmed instruction, ham radio,
self-education, or almost any other application.

Chapter 1 provides a review of Level II BASIC statements and
commands. We'll discuss the four modes of Level II—command,
execution, edit, and monitor—and the commands associated with
each.

Chapter 2 discusses the types of variables provided in Level II
BASIC, binary representation, and logical functions.

“Strings and Things” are discussed in Chapter 3. String formats,
ASCII data, string operations, cursor control, and text editing are
a few of the subjects presented.

Display of reports, columnating data, PRINT USING, line
printer format, and other topics related to displaying or printing
data in alphanumeric form are covered'in Chapter 4.

Chapter 5 discusses the approaches to displaying graphics data
on the TRS-80 video screen. We'll describe four techniques that
range from display of graphs to high-speed animation.

“Tables, Chessboards, and the Fourth Dimension” (Chapter 6)
discusses lists, tables, arrays, and other ways to organize data
within BASIC programs.

One of the most critical areas in BASIC programming is that
of searching and sorting data. Chapter 7 discusses the various
methods that can be used to perform these functions.

Chapter 8 describes the built-in precision, numeric, random
number, and trigonometric functions available in Level II BASIC.

Cassette tape operations are discussed in Chapter 9. Tape for-
mats and methods for “blocking” data are described, along with
file operations.

Chapter 10 discusses general problems in “debugging” BASIC
programs, the error functions in BASIC, and error processing.

Level IT BASIC has the ability to interface to assembly-language
coding; Chapter 11 describes how you can do this to utilize the
high speed of assembly language for operations that must be
very efficient.

The last chapter describes the structure of Level II BASIC in
regard to ROM subroutines, tokens, variable storage, and other “in-
ternals” that are not normally available to the BASIC programmer.

WiriaM BARDEN, Jr.

To Gaga and Steve

Contents

CHAPTER 1

A Goop BASIC Founpation

I'd Like to Make a Statement — Program Flow — Pick a Statement,
Any Statement — Number Crunchies, the New Computer Energy
Food — Command Performance — Editors Are Not So Hard Bitten
After All

CHAPTER 2

To Be PRECISE . .

A Long Time Ago in a Computer System Far, Far Away — Integer

Variables — Murphy’s Rule Number 32K — Single-Precision Vari-
ables — Double or Nothing — A Treatise on the Use of Numbers
Great and Small With Special Reference to the TRS-80 — Once
More Unto the Breach

CHAPTER 3

STRINGS AND THINGS Ce e
ASCII Strings — From One to Hundreds -~ String Operations:
Comparison and Concatenation — Printing the Unprintable — Left,
Right, Left, Right, Mid, Right . . . — The STRINGS String — Nu-
meric to Strings and Back Again — A Thousand Cursors Upon You,
Effendi! — The Universal Gee Whiz Input — Text Editing — Another
Approach

[N2]

-1

CHAPTER 4

Our Latest Report INDICATES 62
One From Column A and One From Column B — There’s No Justi-
fication for This . . . — Dollars and Cents — $4.50 for a Slice of
Cheesecake? — All the Data That's Fit to Print (And Some That
Isn’t)

CHAPTER 5

Graruic EXAMPLES« . . . 18

Back to the Books . . . — SETting Good Examples — Plotting Along

With SET/RESET — Guns Versus Butter — A Moving Experience
— Good Points to Consider — The POKE Graphics Method — String
Graphics and the Chattanooga TRS-80 — String Graphics Using
Dummy Strings — Graphics Review — How to Draw a Straight Line

CHAPTER 6

TasLes, CHESSBOARDS, AND THE FourtH DiMeNsiIoN 99

BASIC DATA Lists — READs and RESTOREs — Mixing It Up —
Array of Hope — One-Dimensional Arrays — Look It Up in the
Index — Tables and the Boarding House Reach — Two Dimensions
and Beyond — Initializing Arrays

CHAPTER 7

TuEe SEaRCcH FOR BETTER DATA AND SORTING IT AL Our . . 121
Unordered Data: No Order at All — Ordered Lists — The Binary
S~arch Mystery — Algorithms of a Different Sort — Rising With
the Tide — The (New) Shell Game — Toward a Faster Sort —
Mergers Are B:g Business

CHAPTER 8

Tue TRS-80 FuncrioNs PERFECTLY 142

What? More Precision Operations? — Are You Good at Fractions?
— A Sign Function: Absolutely! — Pick a Number, Any Number —
Trigonometric (Say What?) Functions

CHAPTER 9

Howto Ger ITAtconTare160
Tape Commands — Follow the Leader — Why Is There a Question
Mark After CLOAD?P? — What's That (Blinking) Asterisk? — Using
PRINT# and INPUT# — Space, Speed, and (S)Packing — Se-
quential Cassette Files — Two Cassettes Are Better Than One

CHAPTER 10

To Ern Is Huoman . . . 171

Unprintable Errors and Other Types — Trapping the Wild Error —
Error Processing — Simulating Errors — Debugging

CHAPTER 11

Son or BASIC Mkeets THE Macuine Cope MonstTeEr . . . 184

Hello, Mr. Chips — TRS-80 Memory Layout — SYSTEM Tapes —
Using the USR(0) Call — Any Arguments? — Getting an Argument
Back — Handling Two-Way Passing and Multiple Arguments —
Handling Multiple Machine-Language Subroutines — A Neat
Method for Embedding Machine-Language Subroutines in BASIC
Code

CHAPTER 12

POKEmnG ArRounD N MEMORY 204

An Approach to PEEKing — BASIC Statement Format — The Search
for Variables — Houston, We're Going to Change the DCBs on Our
TRS-80 Before the EVA . . . — Keyboard Kapers — Cassette Opera-
tions — Further Investigation Shows . . .

INbEX91

CHAPTER 1

A Good BASIC Foundation

This book is applications oriented. It is not meant to be a refer-
ence manual—the Level II BASIC Reference Manual is ideal for
that. Here’s what Programming Techniques for Level IT BASIC will
do for you:

® Provide further explanation of how Level II Commands op-
erate in practical applications

® Show you various approaches to solving applications problems
such as searching for data, high-speed graphics, and string
manipulation

® Give some insight into the “internals” of Level II BASIC so
you can speed up your programs and make them more effi-
cient

® Reveal some useful programming tricks for Level II BASIC,
such as assembly-language embedded in BASIC strings and
repeat keys for keyboard input

The book is meant to be both a tutorial manual and a collection
of modules; you can sit down and read it straight through (we are
in no way assuming liability for optical damage for this feat) or
you can leave it on the shelf and refer to it for various applications
problems as they crop up.

All right . . . Do you have the TRS-80 plugged in and warmed
up? Have you sandpapered your finger tips for optimizing your key-
board input?

In this chapter well present some BASIC basics. Feel free to
skip the chapter if you're well-versed in aspects of Level II BA-
SIC . . . such as program flow, statement types, variables, and the
Editor. (We will, however, have an armed guard who will peri-

9

te
A you BASIC READERS HAVE BEEN FOREWARNED... NOW [WANT To

HeaR SomE HicH-LEveL BASIC LANGUAGE ... Twis 1s A TeSTL/ »

odically be visiting our readers and testing them on the aspects
of BASIC applications. Forewarned is forearmed. . . .)

T'd Like to Make a Statement

All BASIC programs are made up of BASIC lines that contain
statements. A statement is simply a command that tells the TRS-80
to perform some action in the high-level BASIC language. A BA-
SIC interpreter translates each BASIC statement into instructions
that the Z-80 microprocessor in the TRS-80 can understand. One
BASIC statement may generate hundreds of Z-80 machine-lan-
guage instructions. Since the machine-language instructions oper-
ate in millionths of a second, each BASIC statement is interpreted
by the BASIC interpreter very rapidly.

Every BASIC statement line has a statement number. These are
assigned by the programmer (that’s you) and may be any number
from 0 to 65529. The remainder of the statement line has text that
defines the BASIC statements in the statement line. A typical pro-
gram is shown below. This program asks for your name and then
prints a greeting and a question.

COMMENTS
180 INPUT "NAME "3A% Tinput name
280 PRINT "HI "3A$ "greeting
328 INPUT "ARE YOU ENJOYING THIS BOOK"3B$ ’auery
4@0 IF Bs<>"YES" GOTO 30@ ga if not ves
5@@ PRINT *THAT'S FINEs ";A$ PPraper resPOnse

10

s

This program shows the power of the computer in altering pub-
lic opinion, as it will not accept no for an answer. (Programs such
as this have been instrumental in creating survey data for the au-
thor’s book promotions.)

There are five BASIC statement lines in this short program. Pro-
gram execution starts at line number 100 where the BASIC state-
ment INPUT “NAME ”;A$ is encountered. The BASIC interpreter,
which is a machine-language program in ROM (Read-Only-Mem-
ory) translates the “INPUT” statement into a display of NAME?
and then waits for you to type in your name,

After you type your name and press “ENTER”, the string of
characters making up the name is assigned the variable name A$.
Future references to A$ will refer to that string of characters.

The next statement line executed is line 200, which displays
“HI ” followed by your name (variable A$).

Next, line 300 causes the BASIC interpreter to print “ARE YOU
ENJOYING THIS BOOK?” and wait for the answer. You then type
“YES”, “NO”, “SOMEWHAT”, or another string of characters fol-
lowed by “ENTER”. This string of characters is assigned the
name B$.

Next, statement 400 tests the string of characters (variable B$)
to see if it is “YES”. If it is not (<>), the program GOes TO state-
ment line 300 again where the question is again typed and waits
for your response: if the answer is “YES”, statement line 500 prints
“THAT’S FINE, ” followed by your name.

Program Flow

This short program illustrates some important aspects about
BASIC (and many other programming languages). Programs flow
from beginning to end with each statement line numbered in as-
cending order (200 follows 100, 300 follows 200, and so forth).
Program flow may be altered by testing conditions within the pro-
gram. The program tested for the “YES” response and altered the
flow either back to statement line 300 or allowed the program to
“drop through” to line 500. In a typical program, there may be
dozens of these tests, and the program paths will be altered accord-
ing to the results of the tests to create a type of tree structure shown
in Figure 1-1.

Let’s discuss the statement format again. The line numbers in
the above program are in increments of 100. They could just as
well have been any ascending sequence of numbers such as 101, 102,
222, 535, 65500 or 110, 120, 130, 140, 150. A common technique is
to use increments of 10 (110, 120, 130, and so forth). Statement
lines are then added between existing statement lines by entering

11

NO YES

! : MCONDAY OR
{ i | TUESDAY?

FEMALE

MALE OR
FEMALE?

A LESS
THAN B?

"YES”
RESPONSE?

Figure 1-1. Program tree structure.

a new line with a number that is in sequence between the two ex-
isting statement numbers. If we want to add a new statement be-
tween 200 and 300, for example, we could type

250 PRINT “I'M A LIBRA” 'trs-80 must be an astrology nut

Statement line 250 would then appear between 200 and 300.

The remainder of the statement lines are the text of the state-
ments. As you know from reading the Level II BASIC Reference
Manual {What? Guard . . .), multiple statements may be put into
one line. We could say

100 INPUT “NAME “;A$:PRINT “HI ";A$

in place of statement lines 100 and 200 above, for example. The
colon (:) marks the beginning of a new statement. The advantages

12

of this format are that it saves space in memory (data associated
with the line number takes up four bytes of RAM memory) and
it saves time (each new statement line is referenced by the preced-
ing line and must be found in a list of statement lines). The dis-
advantage is that crowded lines make a program very difficult to
read or follow. This code

1030 FL=1:GOSUBIBE=M$="BEACPS&":FORI=1TO7=IFIN$=M1D$(M$~Is1)THENM=I
1835 I=7=NEXT=GOTOI@37ELSENEXT=PRINTCHR$(8)==GOTO]DSB
1837 IF M>1ANDF=@ANDM<}7THENGOSUB?5@B:IFIN$=“B"THEN1@QQ

is almost incomprehensible to anyone not skilled in codes and ci-
phers. To avoid confusing you, we'll be using single statement lines
in our code, with blanks and remarks. The code below shows this
technique. The brackets indicate levels of loops (we'll cover this
aspect of coding shortly); the single quote marks the beginning of
a comment. Most of our lines will be commented to help you fol-
low the program flow. When you enter the programs, disregard re-
marks, since they will slow down the programs and create some
differences between measured times in the book and actual times,
(The effect of using a quote for a comment is to actually create a
new statement of the form :REM!) You can also leave out blanks.

REMARKS: DO
NOT ENTER
A
r
100@ PRINT CHR$(Z28)1CHR$(31)+: heme and clear ecreen
1108 PRINT CHR$(28):CHR$(14)% "hoeme and turn on cursor
1200 H=63 “imitial horizontal
1300 V=14 “imitial vertical
1408 FOR I=1 TO H — upper
150@ PRINT CHR$(Z5): F ‘move to right
1600 NEXT 1 Tloap
1700 FOR I=1 TO ¥ s z1de
1880 PRINT CHR$(26): ‘move do
1900 NEXT I = T looe
2000 v=y-1 ‘adiust vertical INNER
H=H-1 Tadaust horizontal LOOPS
FOR I=1 TO H Thottom
PRINT CHR$(24): b
2400 NEXT Y >
2500 FOR I=1 TO ¥ Tleft cide
2608 PRINT CHR$(Z7): ‘move up
2708 NEXT I = leor
2800 V=V-1 “addust vertical
2900 H=H-1 Tadtust horizantal
3002 GOTO 1400 = "loor far next szeiral
OUTER /
Loop

Pick a Statement, Any Statement

Now that we know the statement line format, the only other thing
required to construct a program is to choose the right combinations
of statement types. Not as easy as it sounds, is it? However, to help
in this task we've attempted to categorize all of the Level II BASIC

13

statement types in one table called Level II BASIC Statements and
Commands (Table 1-1). Let’s go through the basic categories for
review.

BRANCHes alter the sequence of a program by either a condi-
tional or unconditional branch. GOTO 100 will unconditionally
transfer control to statement 100. Conditional branches transfer
control if the conditions are met; otherwise, the next statement line
in sequence is interpreted.

There is one type of unconditional branch in Level I BASIC, the
GOTO. It transfers control to the named statement number

100 GOTO 200 ‘unconditionally jump fo line 200

There are four types of conditional branches. IF . .. THEN (line
number) transfers control to a statement if the condition before the
THEN is met.

100 1F A=1 THEN 200 ‘ump i A=1
200 IF A$="ED" THEN 300 ‘jump if A$="ED"

The first THEN above transfers control to statement line 200 if
variable A is equal to 1. The second THEN transfers control to
statement line 300 if the string variable A$ is equal to “ED”.

The second type of conditional branch is the IF . . . THEN ac-
tion, such as

200 IF A=1.23 THEN PRINT “1.23” ‘print valve if 1.23
The third type of conditional branch is the IF . . . THEN . ..
ELSE. This may transfer control to another statement line as in

100 IF A=0 THEN 200 ELSE 300 ‘jump to 200 if A=0
‘otherwise jump to 300

or it may cause other actions as in

100 IF A=0 THEN PRINT “0’" ELSE PRINT ‘print 0" or “NOT 0
“NOT 0"

which prints “0” if variable A equals 0 or “NOT 0~ if variable A
does not equal 0.

The last type of conditional branch is ON . .. GOTO. . .. This
statement type transfers control to a specified line number accord-
ing to the condition before the GOTO.

100 ON A GOTO 100,200,300 ‘jump to 100 if A=1, 200

‘if A=2, 300 if A=3, next

‘line if none
The above example will transfer control to line 100 if variable A
is equal to 1, line 200 if A is 2, line 300 if A is 3, or will not branch
if A is other than 1, 2, or 3.

Another type of statement that alters the flow of BASIC programs
is the subroutine-type statement. A subroutine is a conveniently

14

Table 1-1. Level II BASIC Statements and Commands

LEVEL Ii BASIC STATEMENTS

Branches

GOTO n

IF: THEN n

IF: THEN . .

IF : THEN : ELSE . .

ON : GOTO I,m,n, . ..

Cassette Tape
INPUT #-1,list
PRINT #-1,list

Commands
AUTO n,v
CLEAR k
CLOAD “string”
CLOAD? “string”
CONT

CSAVE “string””
DELETE |-m

EDIT n

LIST I-m

NEW

RUN n

SYSTEM

TROFF

TRON

Data Tables and Arrays

DATA list

DIM name (dim1,dim2, . . .dimk)
READ list

RESTORE

Define Variable Type
DEFDBL letter range
DEFINT letter range
DEFSNG letter range
DEFSTR letter range

Error Functions
ERL

ERR/2+1

ERROR code

ON ERROR GOTO n
RESUME n

Functions
ABS(e)
ATN(e)
CDBL(e)
CiNT(e)
COS(e)
CSNG(e)

Branch to line n
Conditional branch
Conditional action

Computed GOTO

Read list
Write list

Auto line # at n with v increments
Clear k bytes

Load cassette file “string”
Check file “string””
Continue

Write cassette file ““string”
Delete lines | thru m
invoke EDIT mode for fine n
List lines | thru m

Clear program

Begin execution at line n
Invoke MONITOR mode
Turn off trace

Turn on trace

Establish data table
Establish array
Read from data
Reset data pointer

Double precision
Integer

Single precision
String

Get error line #
Get error code
Simulate error
Error trap

Resume execution

Absolute value
Arc tangent
Double precision
Integer (small)
Cosine

Single precision

15

Table 1-1 cont. Level II BASIC Statements and Commands

Functions—cont.
EXP(e)
FiX(e)
INT(e)
LOG{e)
RANDOM
RND(e)
SGN(e)
SIN{e)
SQR(e)
TAN(e}

Graphics
CLS
POINT(x,y)
POS(0)
RESET(x,y)
SET(x,v)

Input

INPUT list

INPUT “string’’:list
INP(port}

INKEY$

Loop Control
FOR name=e TO e STEPe
NEXT name

Machine Language
PEEK(address)
POKE address,v
USR(0)
VARPTR(variable)

Miscellaneous
END

LET e=e

MEM

REM

STOP

Operators
+,=*/

T

<> L=>=<>=
AND,OR,NOT

+

Output
OUT port,v

Printing

PRINT list
PRINT TAB(k). .
PRINT @. . .

16

Natural exponential
Truncation

integer (large)
Natural log

Reseed generator
Pseudo-random #
Sign (~1,0,+1)
Sine

Square root
Tangent

Clear screen

Get —1 if on, 0 if off
Get cursor position
Clear point

Set point

Input list of items
Print & input

Input value of port
Get one-char string

Define loop
Continue and terminate loop

Get value at address
tore v in address

Call subroutine

Get address of variable

End execution
Assignment

Get # of unused bytes
Remark

Stop execution (break)
Multiple statements/In

Arithmetic
Exponentiation
Relational and string
Logical

String concatenation

Output v to port

Print list of items
Tab
Print at

Table 1-1 cont. Level II BASIC Statements and Commands

Printing—cont.
PRINT USING $,list

‘.

String
ASC("string”)
CHR$(e)
FRE($)

LEN($)

LEFT$($,v)
MIDS($,p.v)
RIGHT$($,v)
STR$(e)
STRINGS$(v, “char’}
VAL("”string”’)
Subroutines
GOSUB n

ON e GOSUB I,m,n, . ..
RETURN

Variables
A-Z
Ax-Zx where x is A-Z or 0-9

U= ow

m

Key:

n

k.v,w
““string”’
fem

list
name

letter range
(x.v})

“char”
e
l,mn, ...

Formatted print
No tab
Tab

Get ASCHI code

Get one-character string
Get amount of space
Get length of string

Get first v characters

Get length v, start p
Return last v characters
Convert numeric to string
Get string of v chr
Convert string to num

Subroutine call
Computed subroutine call
Subroutine return

String suffix

Integer suffix

Single-precision suffix

Double-precision suffix

Scientific notation suffix
(double precision)

Scientific notation suffix
(single precision)

Relational expression

Line number

Other action or n

Constant

Text string

Lines I-m

ftem list

Var name

Initial letter from a-d.e
Graphics x=01t0 127, y=01to 47 or e
String variable

i-chr str

Expression, variable, or constant
Line numbers

LEVEL I BASIC MONITOR MODE (SYSTEM)

SYSTEM

*? name
*?/address
*?/

Invokes monitor mode
Loads object file ““name””
Execute at address (dec)
Execute at default addr

17

Table 1-1 cont. Level II BASIC Statements and Commands

LEVEL 1l BASIC EDIT MODE

EDIT n Enter EDIT mode for line n

A Cancel changes already made

nC Change n characters

nD Delete n characters to right

E End edit, save changes

H Delete remainder of line &

! Insert

nKc Delete all characters till nth
occurrence of character ¢

L List remainder of line

Q End edit and cancel all chngs

nSc Search for nth occurrence of ¢

Display remainder, move end

n+ Backspace n spaces

shiftt Escape from edit subcommand

nspace Move n characters to right

LEVEL II BASIC ERROR CODES

BS 9 Subscript out of range

CN 17 Can’t continue

DD 10 Redimensioned array

FC 5 tHlegal function call

FD 22 Bad file data

D 12 Illegal direct

L3 23 Disk BASIC

LS 15 String too long

MO 21 Missing operand

NF 1 NEXT without FOR

NR 18 No RESUME

oD 4 Out of data

oM 7 Out of memory

oS 14 Out of string space

ov 6 Overflow

RG 3 Return without GOSUB

RW 19 RESUME without error

SN 2 Syntax error

ST 16 String formula too complex

™ 13 Type mismatch

UE 20 Unprintable error

uL 8 Undefined line

/0 I Division by zero

grouped set of from 1 to hundreds of BASIC statements. A call is
made to a subroutine by a GOSUB statement, as in

100 A==} ‘set A to 1
200 GOSUB 10000 ‘go to subroutine
300 B=A ‘new value of A from subroutine

which transfers control to statement number 10000. The GOSUB’s
action is identical to a GOTO except that the return point of 300 is

18

recorded by the BASIC interpreter. At the end of the subroutine a
RETURN statement causes a return to the statement following the
GOSUB. Let’s see how this works. Suppose that we have a subrou-
tine to skip 3 lines.

100 PRINT “LINE 1 ‘now on line 1

200 GOSUB 1000 ‘skip 3 lines
300 PRINT “LINE 5" ‘now on line 5

%

1000 PRINT ‘skip line
1010 PRINT ‘skip line
1020 PRINT ‘skip line
1030 RETURN ‘return after GOSUB

(The squiggly line in the above code does not mean the artist is
nervous. It stands for other BASIC code that has been left out.)
First statement 100 is executed. Next, the “GOSUB 1000” causes the
four lines of subroutine 1000 to be executed. The last line returns
control to statement 300.

Subroutines are generally used to save memory. If, for example, a
program needs to skip three lines in a number of places, it would
make sense to have the code for skipping three lines at one spot
rather than dozens of places in the program.

The statement type ON . . . GOSUB operates exactly the same
as the ON . .. GOTO except that control is returned to the state-
ment following the one calling the subroutine.

Loops in BASIC allow a program to repeat operations, rather
than coding the operations as a long repetitious list of BASIC state-
ments. Suppose, for example, that it is necessary to fill the video
display with asterisks. One way to do this would be to print an
asterisk 1024 times, one for each video display position.

100 PRINT "**; ‘print “*'' at current
‘location
200 PRINT “*7; ‘another
300 PRINT “*"; ‘and another and another . . .
etc.

An easier way would be to create a loop of 1024 repetitions that
would accomplish the action in a very short piece of BASIC code.

200 PRINT “*"; ‘each time print “*“
300 NEXT | ‘continue loop

The loop is initialized by the FOR ... TO ... STEP . . . state-
ment which tells the BASIC interpreter to repeat the action from 1
to 1024 times using variable “I” to count the number of times
through the loop. The NEXT statement marks the end of the loop

100 FOR 1=1 TO 1024 STEP 1 [:’loop 1024 times

19

and causes control to return to the FOR ... TO ... STEP statement
for the next repetition of the loop. Within the loop between the
FOR ... TO ...STEP and NEXT statements, loop action of vir-
tually any type or range may occur. (If “STEP” is not used, an in-
crement of 1 is assumed; we've included STEP in this example for
clarity.)

BASIC programs use two types of operands—constants and vari-
ables. Constants are exactly that—set values that never change, for
example, 3.14159 for pi and 999-99-9999 for a Social Security num-
ber. Variables can change and are simply names that the program
sets aside for holding such things as index counts, subtotals, and
character strings. Variable names are defined by one or two (or
more) alphanumeric characters, the first of which must be alpha-
betic (AA, Al, Z2 are valid variable names). Variable types are
related to the size and accuracy of the data that will be held in the
variable.

Integer variables hold the number range —32768 to +32767 and
are denoted by variables with a “%” suffix, as in A2% or A9%.
Single-precision variables allow mixed numbers with seven decimal
digits (1.234343 X 1030) and a range of 10~38 to 10+3¢ (wide enough
to accommodate subatomic to stellar measurements). Single-preci-
sion variables are denoted by a “I” suffix as in A2! or Z2!, or simply
the variable name without any suffix. Double-precision variables
extend the number of significant digits (all of the “accurate” digits)
that may be held to 14 (1.2343434343434 X 10'°) and are denoted
by a “#” suffix as in A2# or AL#.

Variable types may also be defined by a set of DEFINE VARI-
ABLE TYPE commands that define a range of alphabetic names
that specify an appropriate variable type.

There are certain rules for the use of the proper variable types
in BASIC programming. These are discussed in Chapter 2 along
with the storage requirements for variable types and information
relating to precision. Chapter 2 also discusses the binary number-
ing system and the logical operators AND, OR, and NOT.

STRING statements allow a program to handle strings of charac-
ters such as “TRS-80” or “1234 BASIC STREET, LEVEL IL” You
can manipulate portions of strings with the LEFT$, MIDS$, or
RIGHTS$ statements. With other statements, you can convert be-
tween strings and numeric data (ASC, CHR$, STR$, VAL).
STRINGS$ generates a string composed of the same character re-
peated a specified number of times. LEN computes the length of
a given string, while FRE$ finds the remaining space available in
RAM for strings of all types. Strings are one of the most powerful
features of Level II BASIC, and we'll cover them in Chapter 3.

PRINT statements cause an output of data to the video display.

20

PRINT LIST prints one or more items including variables or char-
acter strings.

100 PRINT “A EQUALS ;A ‘print value of A

for example, prints “A EQUALSY” followed by the value of variable
A. The PRINT TAB function allows a program to “tab over” to a
specified column before printing another item.

100 PRINT TAB(50);A ‘tab and print A

for example, moves the display cursor to tab position 50 and then
prints the value of variable A.

PRINT @ prints at any given character position {out of 1024) on
the video display.

100 PRINT @512, “THIS IS LINE 8" ‘print at line 8

prints the message at line 8 of the 16 lines of the screen, starting
at the extreme left.

PRINT USING $ is a somewhat complicated and powerful state-
ment that allows you to format printing in regard to leading zeroes,
decimal points, and a bunch of other goodies. We'll talk about it
in detail along with the other PRINT statements in Chapter 4.

GRAPHICs statements are for those of you who want to display
graphics data on the video display. Graphics means “non-character”
data. The Display is divided up into a matrix of 128 by 48 elements,
each one of which can be turned on (SET), off {RESET), or tested
(POINT). Other graphics statements clear the entire screen (CLS)
or find the current cursor position (POS). There are many tech-
niques for displaying both character and graphics data on the video
display, and we’ll get to those in Chapter 5.

DATA TABLES and ARRAY-type statements define data lists
(DATA) or arrays of data (DIM). Data lists are lists of constants
that may be read sequentially using READ and RESTORE state-
ments. Arrays are ordered lists of data in one or more dimensions
that can be accessed in random fashion. Data lists and arrays are
covered in Chapter 6. Searching and sorting data in lists and arrays,
a very important topic, is covered in Chapter 7.

TRS-80 Level II BASIC includes a set of built-in FUNCTIONS.
These functions are statements that perform specialized functions
rather than general-purpose actions. Trigonometric functions in
Level IT BASIC include SIN (sine of an angle), COS (cosine of an
angle), TAN (tangent of an angle), and ATN (arc tangent). Num-
erical and mathematical functions include ABS (absolute value),
CDBL (double-precision), CINT (integer), CSNG (single-preci-
sion), EXP (natural exponential, or antilog), FIX (truncation),
INT (whole number), LOG (natural log), SGN (sign of a num-
ber), and SQR (square root). RANDOM and RND allow genera-

21

tion of random numbers for simulation, games, and other applica-
tions. Functions and their use in various applications are described
in Chapter 8.

BASIC allows cassette tape operations using two statement
types, INPUT #-1 and PRINT #-1. INPUT #-1 inputs a single
record of data for use in a program, while PRINT #-1 outputs a
single record to cassette tape. Each record may contain a number
of variables or constant data. Chapter 9 describes practical appli-
cations of cassette tape.

A number of statements and functions in BASIC allow for error
checking in programs. Errors occur as a result of operator error,
illegal operations (such as division by zero), or hardware faults.
When errors do occur, Level 11 BASIC provides the mechanism
to unravel the error and take corrective action.

ERROR lets you simulate an error condition to check out the
error-handling portion of your BASIC code. ERL and ERR/2+1
return the line number at which the error occurred and the error
code number, respectively. ON ERROR GOTO . . . sets up the line
number of the error-processing routine, while RESUME . . . re-
sumes program execution after an error occurs. Errors are treated
in Chapter 10 (if you start making too many of them, maybe you
should skip right to that chapter).

While most programmers want to program exclusively in the
high-level BASIC language, there are provisions in the interpreter
to interface BASIC programs with machine code. The advantages
are execution speeds of up to several hundred times the BASIC
interpretation speed and added versatility.

PEEK and POKE allow you to look at or change memory loca-
tions in ROM or RAM to change the action of the BASIC inter-
preter or just for your own enlightenment. A special USR call
allows BASIC to pass control to an assembly-language routine.
VARPTR finds the address of a BASIC variable for the purpose
of passing parameters or for direct examination or modification.

Chapter 11 discusses how assembly language routines can be
used in BASIC. Chapter 12 uses PEEKs, POKEs, and other state-
ments to reveal some of the deep, dark secrets of the “internals”
of the BASIC interpreter and the organization of memory.

Number Crunchies, the New Computer Energy Food

We've described most of the BASIC statements available in
TRS-80 Level II BASIC, but we haven't really talked a great deal
about “number-crunching” operators, the processing that BASIC
can perform. Of course, BASIC can add (+), subtract (—), multi-
ply (*), and divide (/) variables and constants, but the impres-

22

sive thing is that BASIC does it while automatically adjusting the
number of digits and range of the number. You (the programmer)
are relieved of the responsibility of remembering number ranges
and decimal-point position (unlike early computers . . . may not
sound like a big deal, but believe me, it is . . .). Exponentiation
(1) is also easily accomplished. Typical examples of sequences of
processing operations are shown below

100 4/3*PI*R13 ‘find volume of sphere

%

200 ST=GR*(100—DS) ‘gross times discounted price

23

«__

We've glossed over another operator, the or equivalence
operator. An equals sign, of course, sets a variable on the left of
the equation equal to an expression, constant, or variable on the
right of the equation. The forgotten statement type “LET” may be
used in conjunction with an equals sign as in

100 LET A=1.235

but the LET really only remains as an anachronism for compati-
bility with previous BASICs. There is really no reason to use it, and
we will not in this book.

Not only can BASIC perform arithmetic and exponentiation
functions, but it can also perform comparisons. Comparisons of
less than (<), greater than (>), less than or equal (<=), greater
than or equal (>=), equal {=), and not equal (<>) are easily
performed on all types of variables including string variables. A
unique string concatenation operator (+) allows two or more
strings to be joined together.

100 A$="NOW IS+ THE TIME'+" FOR .. .”

Command Performance

Up to this point in our monograph on Level II BASIC, we've
been talking about BASIC program operation. As you know from
the Level II BASIC Reference Manual, however, there are really
four modes of operation—Command, Execution, Edit, and Monitor.

The Command mode is essentially a supervising mode that con-
trols the loading of a BASIC program, some cursory editing, de-
bugging, and listing.

A BASIC program on cassette tape is loaded by the command
CLOAD and can be checked for accuracy with a program in RAM
by the CLOAD? command. Another cassette-related command,
CSAVE, saves the BASIC program in RAM memory on cassette
tape.

The three other modes of operation are invoked by the three
commands RUN (execute), EDIT (edit mode), and SYSTEM
(monitor). RUN causes the current BASIC program in RAM to,
well . . ., run, starting at the first line number, if none is specified,
or at a specified line number. (RUN 10000 starts execution at line
10000.) Of course, you can stop any program that is running by
pressing the BREAK key.

EDIT invokes the edit mode, which we’ll discuss in a moment.
(However, the Command mode allows some limited editing.)
Lines can be deleted by typing the line number followed by
ENTER. Lines can be modified simply by retyping the line num-
ber with the new contents. Lines can be inserted using the tech-

24

nique we spoke of in an earlier example—using a line number in
the interval between two existing line numbers. Another delete
command (strangely enough designated DELETE) deletes a range
of lines (DELETE 10000-10999 deletes all program lines from
10000 to 10999). The last editing-type command is AUTO, which
provides automatic line numbering, starting at a given line num-
ber and incrementing by a given value. (AUTO 100,20, for ex-
ample, starts at line 100 and increments by 20 for each new line.)

The command CLEAR clears a given area for strings. Since the
string area is at the top of RAM memory, the BASIC interpreter
must know where the string area ends and everything else begins.
(We'll discuss this topic in Chapter 3.)

The CONT command continues after a STOP statement. The
STOP statement can be used to stop execution at any point, after
which you can examine variables and other data to your heart’s
content (and then CONTinue on).

Two other commands related to debugging, TRON and TROFF
(trace on and trace off), turn the trace capability on or off. The
trace function displays each line number on the screen as it is exe-
cuted, so you can see the program flow. The STOP statement and
CONT, TRON, and TROFF commands are discussed in Chapter
10 in a general discussion of debugging, a nasty job of getting rid
of 8-bit and other species of program bugs.

NEW is a doomsday command that wipes out the current BASIC
program in RAM memory and initializes all BASIC interpreter pa-
rameters. (Use it carefully!)

The LIST command lists the current BASIC program on the
screen; LLIST performs the same function on a system line printer.

The SYSTEM command invokes the monitor mode, used to load
machine-language tapes into the system and to transfer control to
machine-language routines that have been loaded. These topics are
covered in Chapter 11.

Editors Are Not So Hard Bitten After All

The Edit Mode in Level II BASIC is invoked by the EDIT com-
mand. The Edit actions are well documented in the Level I BASIC
Reference Manual, but we'll provide a recap here. Basically, the
Edit Mode allows an edit of an individual line. The cursor may be
positioned one position to the right on the line by typing “space”
or n positions to the right by typing n space (20 “space” moves
the cursor 20 positions to the right). The cursor may be moved to
the left one position by typing “<” or n spaces by typing “n<.”

Once the cursor is positioned to the proper point on the line, you
can delete characters by typing “D” (or several characters can be

25

deleted by typing “nD”). You can change characters by typing “c”
followed by the character to be used in place of the changed char-
acter (or by “nC,” followed by the string of characters to be used
for the change). Characters can be inserted by typing “T” followed
by the characters to be inserted.

The “E” character Ends the Edit and saves the changes made,
while the Q command Quits the Edit and cancels all changes,
leaving the line as it was before the Edit. The A command is simi-
lar to the Q except that it cancels All changes already made, but
the system remains in the Edit mode. The L command Lists the
entire line.

The H command Hacks off the line from the current cursor po-
sition and sets the insert mode; now you can insert additional char-
acters. The X command is similar, but positions the cursor to the
end of the line for the insert.

The K command Kills all characters up to a specified character
(Kc) or kills all characters up to the nth occurrence of a specified
character nKe. This last command would kill the “NOWISTHE”
portion of “NOWISTHETIMEFORALLGOODPROGRAMMERS”
with a command of “2KT.”

The S command enables you to Search for a given character (Sc)
or the nth occurrence of the character. A command of “2ST,” for
example, would position the cursor as follows:

NOW IS THE TIME FOR ALL GOOD PROGRAMMERS

Have you memorized the list? (Guard . . . find out the address of
that reader in Des Moines . . .) All of this information can be
gleaned from the Level II BASIC Reference Manual, but we've
presented it here as a review. We'll be using a lot of examples in
the chapters to follow. You'll be able to learn the use of some of
the more exotic statements by practical example, so don’t be too
dismayed if you don’t understand all of the commands or their
applications. That’s what we’re here for.

26

CHAPTER 2

To Be Precise . . .

We'll be considering the subjects of binary numbers, BASIC va-
riables, number ranges, and precision in this chapter. These are not
as stufty as they sound and are easier to understand than you might
think. Don't let the subjects scare you off . . . (Guard! Stop that
reader from turning the page . . .) You will be amply rewarded with
BASIC programs that are faster and use up less memory, and in the
bargain you may get to see some of the internal workings of BASIC.

A Long Time Ago in a Computer System Far, Far Away

Let’s digress for a moment and talk about the Zzarth race of the
Sirius star system. As we all know, Zzarthians have 8§ hands with
one finger on each hand. (Baseball umpires there have a heck of a
time with signals. . . .) Back in Zzarthian antiquity when the frog-
like Zzarthian speech was first developing, some of the more astute
members of the tribe used fingers to denote the number of znab-
beasts that were seen in the hunt. One finger meant one znabbeast,
two meant two, and so forth. The limit of this was, of course, 8
znabbeasts, represented by eight arms with 8 fingers held high as
shown in Figure 2-1.

Since the number of znabbeasts in a qwany varied from several
to well over a hundred, this description left something to be desired.
One day, however, a strange monolith appeared with the markings
“A registered trademark of TANDY Corporation” in the lower-right
hand corner. . . . The following day, one of the younger Zzarthians
(by the name of Ed, if you must know) approached the elders’
council and declared, “T've just invented a new system to report on

27

[(d

ALL YoU READERS wHo TURNED THE FAGE are OUT /!

znabbeasts.” Naturally reluctant, as are all elders when approached
by radicals, the elders soon became excited as the advantages of
this system became apparent.

“Watch,” said Ed. “One znabbeast is represented by arm 0 with
one finger held out. Two znabbeasts by arm 1 with its finger. Three
by arm 1 and arm 0. Four by arm 2 only. Five by arm 2 and arm 0.”

“Wait!” cried the elders in dismay. “Write it up and make some
photocopies for us so well be able to understand it a little better.”

Table 2-1 is what Ed created.

The Zzarthian system became known as the binary system after
the chief, Bin Ary, claimed credit for it, as elders are wont to do.

28

Table 2-1. Binary Representation

OO0 OCOOODOOOOCOOOOOON

osp»
3

[I
VONOCGAWN—O

CO0000O00O0OOOOOOOOOOO O
CO000O00O00O00OO0ODOCOOOOOW
e~ 0000000000000 0O0
COQO—~ = = m L0000 0O0O0O0OW
CO0O0O—~ =~ = 0000~ —=——~00O0ON
-‘—‘OO—'-‘OO—‘—‘OO""—‘OO“"—‘OO"
O~ 0O ~O0O~-0~0—~0~0—0—~0—~0O0
L I T T
o

69

1 = 143

o
(=1
o
— NS — AN O A O AAS
il

1 = 255

Znabbeasts
Znabbeast

Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts
Znabbeasts

Znabbeasts

Znabbeasts

Znabbeasts

Znabbeasts

Figure 2-1, Zzarthian binary representation.

29

It is exactly equivalent to the system used in digital computers to-
day. Each collection of 8 arms is called a byte. Each arm has one
finger, which is either a 1 (up) or 0 (down). Each arm in effect
represents a power of two just as our decimal system represents a
power of ten.

The largest number that can be held in a byte is 11111111, or
128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255. The smallest number is
00000000, or 0. Any number from 0 through 255 can be repre-
sented by zeros and ones in the appropriate positions.

This scheme of positional notation can be extended to two or
more bytes. When this is done for two bytes, much larger numbers
can be represented, as shown in Table 2-2. Note that the 15th bit,
or binary digit, is a 0, so that in two bytes we have only 15 bits
(15-0) instead of 16. We'll see why later.

Table 2-2, Two-Byte Binary Representation

Binary Decimal
15 14 13 12 11 10 9 8 7 6 1
0 0 0 0 O 0O0OOOGOCOOO0O0O0 0
0 0 0 0 0 00O0O0O0OOOO0 01 1
0O 0 0 0 0 001 000O0GO0O0O00 256
0 0 0 0 0 001000O0O0O0O01 257
001000%000000000 8192
0 1 1 0 0 0000O0O0O0O0O0GO0O0 24576
0110002000000001 24577
o1 1 1t 1 61010111011 31419
o 1 1 1 1 11111111 30767

Integer Variables

This scheme of two-byte storage should enable us to store num-
bers from 0 (00000000/00000000) through 16,384 + 8192 + 4096 +
2048 4- 1024 + 512 4+ 256 + 128 + 64 + 32+ 16 -8+ 4+ 2+ 1=

30

32,767 (01111111/11111111). Let’s look at the two-byte storage for-
mat in BASIC. It’s called integer format and is defined by a variable
with a % sign after it, such as A%, AA%, or Z1%.

First of all, let’s verify that we can indeed store 0 through 32,767.
The program below stores the input value but gives an OV (over-
flow) error for values greater than 32,767.

100 INPUT A% ‘input an integer value
200 GOTO 100 ‘loop on input

By adding a VARPTR statement and some PEEK statements, we
can see where in RAM memory the A% variable is stored and what
it looks like. The VARPTR returns the RAM address where A% is
stored. RAM, as you know, occupies from 16,384 to 32,767 (16K
System), 49,150 (32K System), or 65,535 (48K System), each lo-
cation containing one byte (8-arms worth) of data. Each RAM
location is “addressed” by reference to an address value of 16,384
through 32,767 (16K), 49,150 (32K), or 65,535 (48K). PEEK re-
trieves the value of each byte, which is 0-255.

180 INPUT A% "get 1nteger variable
280 B=VARPTR(AZ) *find address

308 PRINT B ‘erint 1t

4P@ PRINT PEEK(R) *print 1 bvte

588 PRINT PEEK(B+1) Tprint mE bvte

600 GOTO 120 Tlooep for next

The first number printed in this program is the address of A%.
The next two numbers printed are the contents of the two bytes
that make up the variable. Try inputs from 0-32767 (or above)
and see what happens.

If you tried values for A% between 0 and 255, you saw that the
first byte (ls, or least significant byte) was used to store the value,
and the second was zero. For example, a value of 10 results in

10 (first byte)
0 {second byte)

and a value of 255 results in

255 (first byte)
0 (second byte)

If you tried values larger than 255, you saw that both the second
and first bytes were used. For example, a value of 257 results in

1 (first byte)
1 (second byte)

and a value of 1000 results in

232 (first byte)
3 (second byte)

31

8 "BITS" PER BYTE

LOWEST
MEMORY | 0 11071 1 110 1 | "LOW-ORDER" BYTE

ADDRESS
HIGHEST

MEMORY [0 J 0 | 1 1 0|1
ADDRESS

[y
—

"HIGH-ORDER " BYTE

ADDRESS SHOWN ABOVE IS
0011011101011101 =14173

J

HIGH-ORDER LOW~6RDER
BYTE BYTE

Figure 2-2. Two-byte storage.

The first byte is the low-order byte, while the second byte is the
high-order byte. This arrangement is true for all byte storage in the
TRS-80 and is shown in Figure 2-2 for various values. We can see
this better if we use some additional code to recompute the input
value from the two bytes at which we've PEEKed.

1000 INPUT AZ ‘get 1nteder varaable
1102 B=VARPTR(AZ) *find addre=zz

1280 PRINT B prant 1t

13@8@ PRINT PEEK(B) "erant 1z byte

1488 PRINT PEEK(B+1) ‘pPraint ms byvte

1500 C=PEEK(BE+11%256+PEER(B) Trecompute 1nput value
1680 PRINT C ‘and prant a3t

1780 GOTO 1028 Tlaoe for next

The 1500 statement verifies that the two bytes do make up the
input value by multiplying the high-order byte by 256 and adding
the low-order byte, essentially converting from two 8-bit bytes into
a 16-bit binary value.

As an example, suppose that we entered A% = 1000. The low-
order byte (PEEK (B)) is 232, and the high-order byte (PEEK
(B+1)) is 3. Multiplying 3 by 256 is 768, plus 232 equals 1000.

A% = 1000

PEEK (B) = 232
PEEK (B+1) =3
3 956 + 232 = 1000 =

32

What about that 15th bit? The 15th bit is used for a sign bit.
Not only can we store 0 to +32767 in two bytes, but we can store
—1 to —32768. Run the program above with negative input values
and let’s see what we get.

This time we displayed mysterious data. Inputting —111, for ex-
ample, displays

=111
145
255
65425

The first two values are the contents of the two bytes for variable
A%, but the next value is certainly not —111. The answer here is
that negative numbers are stored in a form called two’s comple-
ment in binary. In this form, negative numbers are stored by find-
ing the positive equivalent in binary and then changing all zero
bits to one, all one bits to zero, and adding one. This simplifies
hardware design and is used in almost all digital computers. To
find the equivalent negative number for A%, check the value C =
PEEK(B+1) * 256 4+ PEEK(B). If it is over 32767, perform the
computation 65536 — C, and you will have the equivalent negative
number stored.

1600 IF C>>32767 THEN PRINT "—*/;65536—C ELSE PRINT C

The integer format is good for expressing the range of numbers
from —32768 through 0 to +32767. It always requires two bytes
and will never approximate the number, but will hold the precise
number. If you attempt to use an integer format with a result
greater than +32767 or less than —32768, an OV (overflow) error
will result, since the BASIC interpreter does not know how to
handle an integer number that requires more than two bytes.

Murphy’s Rule Number 32K

At this point, we had better mention another rule which is re-
lated to the computation of negative numbers. When PEEKs and
POKES are used in this book, they will work fine if the address
argument is 32767 or less. For example,

100 FOR 1=0 to 32767 ‘peek at memory loop

200 PRINT PEEK (I) ‘i see you
300 NEXT | ‘loop here

will print out all address locations from 0 through 32767. However,
if the address is 32768 or more, the value used in the PEEK or

33

POKE must be (ADDRESS—65536). The reason for this is that
PEEK and POKE look for an integer limit of +32767. Numbers
over that limit are treated as invalid numbers. PEEK and POKE
must therefore be fooled into accepting addresses in the range of
32768-65535. An example of this is
100 FOR =0 TO 65535 ‘peek at memory loop
200 IF 1< 32768 PRINT PEEK(I) ELSE PRINT PEEK (1—65536)
300 NEXT I ‘loop here

Most of the examples in this book use the lower 32K for POKE-
ing values or in PEEKing at data. However, if an address in the
upper 32K is involved, an OV error will result unless the computa-
tion above is performed.

The % suffix specifies integer format, but this format may also
be specified by a define variable type statement such as

100 DEFINT A-B ‘all varicbles A-B will be integer

The above example makes all variables in the range A through B
automatic integer variables.

Single-Precision Variables

Obviously, we would have some difficulty in dealing only with
integer variables. It would not even allow reasonable calculations
on checking accounts (although the ability to express negative
numbers might conceivably help in dealing with my checking ac-
count). One of the most valuable features of BASIC is that it al-
lows us to operate with very large and very small numbers auto-
matically, unlike machine language, the “Tiny” languages, or other
less powerful languages. We are able to do this with single-preci-
sion and double-precision numbers.

Let’s use the following code to define the number ranges and
precision for this type of number. By the way, this format is the
“default” format for variables in the system, although a suffix of
“I” may also be used.

Z003 INPUT A Tinput single-Precision
2100 A=A/2 *find smaller values
2203 PRINT A ‘Prant

2380 GOTO 2100 “loeop Tor next

In inputting various values of A, we can see that the smallest
number that can be held in this format is 1.XXXE-38 (use
“SHIFT@” to stop the display at any time). By changing state-
ment 2100 to A = A*2, we see also that the largest number is about
5.XXXE~+38. (The E format simply means that the following num-
ber is a power of 10. E—38 means 10~28, and E+38 means 10%%.)

34

The complete range of single-precision variables, then, is about 76
powers of 10, providing the capability to express subatomic dis-
tances to the number of atoms in the universe!

The precision, however, is a different story. This format allows
only seven decimal digits of precision. (BASIC will print only six
of these.) Digits beyond that range are rounded off. When we mul-
tiply 123456 by 33 we should get 4,074,048, but actually get
4,074,050. Once again, the reason for this is limitations on variable
storage. Single-precision variables take up four bytes of storage in
RAM. About 3 bytes of that is devoted to the significant-digit part,
or mantissa, of the number representation, while one byte is de-
voted to the exponent, as shown in Figure 2-3. The 3-byte integer
provides 24 bits (one bit is always 1) to allow a range of numbers

BYTE 0 BYTE 1 BYTE 2 BYTE 3
LEAST SIG BYTE NEXT SIG BYTE MOST SIG BYTE EXPONENT
IsioN EXPONENT
1 = NEGATIVE IS POWER

0 = POSITIVE OF TWO

Figure 2-3. Single-precision storage.

from about —16,777,216 to +16,777,215 to be expressed without
loss of digits. (The exponent is a power of two allowing about
2-128 to 2+327 to be handled, or roughly 10—37 to 10+37.) Up to a
certain point, a number is held as straight binary in the 24 bits,
while beyond this point the integer holds only the most significant
portion of the number.

You may (if you have masochistic tendencies) care to further
explore the wonderful world of floating-point formats by using
the VARPTR command to retrieve and display the storage of data
in a single-precision variable, as shown below (see Figure 2-4).

3180 B=VARPTR(A) *find lecation
3202 PRINT PEEK(R) s PEEK(B+1)« ‘erant first 2 bvtes
330@ PRINT PEEK(B+2)3PEEK(B+3) ‘Print next 2 bytes

3200 INPUT A [’u:Put single-pPrecision
3400 GOTO 3000 “loep for next

Double or Nothing

Because seven decimal digits are not quite precision enough for
some calculations (imagine trying to compute federal budgets in
six figures), Level II BASIC provides for a double-precision for-
mat. As the astute reader .may have surmised, double-precision
doubles (or more than doubles) the amount of precision available
in BASIC. As a matter of fact, it allows for 17 significant deci-

35

DECIMAL

VARIABLE IN MEMORY NUMBER
ENTERED
0 0 221 0 0
0 0 0 129 1
0 0 0 130 2
0 0 64 130 3

0 80 80 140 \ 3333

0 53 2 144 1 33333

160 194 34 147 333333

ALWAYS A ? 80 30 140:
L

ONE BIT \ 140 — 128 = 12 BITS IN INTEGER
0 (1)101 0000 0101 0000 0000 0000
[——
+ 3333

NUMBER IN 12 BITS

Figure 2-4. Single-precision storage examples.

mal digits (now were finally approaching the realm of some of
the smaller government agencies). Only 16 digits will ever be
PRINTed.

To obtain this precision, the integer portion of the floating point
variable is increased in size from 3 bytes {24 bits) to 7 bytes, as
shown in Figure 2-5. Seven bytes allow 56 bits of precision, or
approximately to 36,000,000,000,000,000. Note that the range of
the number expressed is still limited by the exponent portion of
the variable.

Double-precision variables are represented by a # suffix, as in
“A#” or “Z2#”. When the double precision is used in scientific
notation, a “D” replaces the “E” for the exponent, as, for example,
in “1.23456789D+18".

36

BYTE 0 BYTE 1 BYTE 2 BYTE 3

LEAST SIG BYTE NEXT LST SIG BYTE —
BYTE 4 BYTES BYTE 6 BYTE7
- NEXT MOST SIG BYTE MOST SIG BYTE EXPONENT
! SIGN
1 = NEGATIVE
0 = POSITIVE

Figure 2-5. Double-precision storage.

As in the case of integers and single-precision variables, double-
precision variables may be defined by a DEFDBL statement that
specifies a variable range.

100 DEFDBL A-B ‘all variables A-B will be double precision

specifies that all variables starting with A or B will be double-
precision variables.

If you're still harboring latent masochistic tendencies (evidenced
by listening to CSAVE tapes on your 150-watt stereo), you can in-
vestigate double-precision formats and storage by

1@@ INPUT A# ‘input doeuble-pPrecizion
208 P=VARPTR{A#) ‘find lecatian

10@ FOR 1=0 TO 7 “zef B time laap

40@ PRINT PEEK(B+1). [‘erint byvte

SB@ NEXT Tlawe to next erant

68Q@ GOTO 100 “looe back ke nsb oipeot

When should integers be used? When should single-precision
variables be used? And when should double-precision variables be
used? Fortunately, the great French mathematician Blaise Pascal
gave us the answer in

A Treatise on the Use of Numbers Great and Small
With Special Reference to the TRS-80

In the old days of computers, three years ago, mMEemory was very
dear. Today, one can buy a bit of memory (pun intended) for a
penny or so a bit. The point is that even a parsimonious (Editor’s
note: Stay away from polysyllabic words!) programmer can afford
to use single-precision (default) variables and not be very con-
cerned about memory requirements. Double-precision can be used
when required, but shouldn’t be used for all variables, because, in
addition to memory storage requirements, the computation speed
is less efficient. The exception to the use of single-precision over

37

integer variables is when an array of variables is used. Arrays, by
their very nature (see Chapter 6) take up a great deal of memory
space, and it is prudent to use integer variables if possible. Other-
wise, don’t be too concerned about widespread use of single-pre-
cision, rather than integer variables.

As a recap, Table 2-3 shows the ranges, precision, and storage
requirements of integer, single-precision, and double-precision vari-
ables. Memorize this table and then eat it to avoid revealing inter-
nal secrets to other personal-computer users.

Table 2-3. Variable Ranges, Precision, and Storage

Variable

Type Range Precision Storage
integer - 32768 to 5 integer 2 bytes

+32767 decimal digits

Single- About 1 X 10% 7 decimal 4 bytes
precision to1 X 1078 digits
Double- About 1 X 10% 17 8 bytes
precision tol X 107%% decimal digits

Once More Unto the Breach

Tl bet you thought we were done with discussions of binary
number systems. It's our unpleasant duty to inform you that we'll
have to continue the discussion (Guard! Watch that BASIC pro-
grammer . . .). Actually, the commands we're going to discuss here
are very simple and should pose no problem in understanding.
What's more, theyll enable you to manipulate data down to the bit
level, which can be a very powerful capability and one that many
BASIC interpreters do not provide. The three commands we'll be
discussing in this section are AND, OR, and NOT.

These commands are called logical operators. They are used to
handle logical expressions. What are logical expressions? Generally,
logical expressions can be equated to true and false. True and false,
of course, can be translated into a binary 1 and 0, respectively. Sup-
pose we write a logical expression for a visit to your mother-in-law’s
house. We will call the end result of the expression “VISIT”. If
VISIT =1, we will go on the journey; if VISIT =0, we will not.
The expression I usually work with is:

VISIT == (GAS IN CAR) AND (NOT WEEKDAY) AND (NOT BEHIND
IN WRITING BOOKS) AND (NOT TOO HOT) AND (FEELING
OK) AND (HAVE ENOUGH MONEY)

38

This expression says that if we have gas anp if it is not a weekday
AND so forth . . . then we can perform the visit. By equating each
of these expressions to a 1 (true) or 0 (false), then we see that

1 = 1 AND T AND 1 AND T AND 1 AND 1

VISIT will equal 1 (true) if and only if all of the conditions are
true.

Another logical expression might be one relating to one called
OVERDRAWN. OVERDRAWN is true (1) or false (0) as fol-
lows:

OVERDRAWN = (WIFE MAKES CHECKING ACCT ERROR) OR (HUSBAND MAKES
CHECKING ACCT ERROR) OR (UNEXPECTED BILL) OR (EXPECTED BILL)
As we can see, OVERDRAWN is almost always true (1) because
one or the other condition is probably true.
A third type of logical expression that will illustrate logical oper-
ators is

SOLVENT = NOT (OVERDRAWN)

This is easy to understand.

There is nothing magical, therefore, about logical operators or
expressions. They were developed by Plato, George Boole (a 19th
century mathematician), Claude Shannon (a 20th century research
engineer), and others. They are really an attempt to define real-
world conditions in convenient symbolic form.

The anp function, as we have seen, states that a result condition
is true if one condition AND another {aND others) are true. If either
of the conditions is false, the result condition is false. If we are
working with two conditions, we can diagram this as:

ISTCONDITION 0 0 1 1
2ND CONDITION 0 1 0 1
1

RESULT 0 00

The or function states that a result condition is true if either one
or another (or others) is true. We can state this as:

1ST CONDITION 0 0
2ND CONDITION 0 1
RESULT 0 1
The ~Not function states that the result condition is true if the

input condition is false and false if the input condition is true

11
01
11

INPUT CONDITION 0 1

RESULT 10

For the most part, we spend a great deal of time in BASIC pro-
grams writing down logical conditions, most of which are em-
bedded in 1r statements

39

119 CLS clear screen

120 INPUT “VALUE 1="3A Tinput value 1
130 IF A»=D AND A<Z56 GOTO 148 ELSE GQTO 120

148 INPUT "VALUE 2="3B input value 2
150 IF Bx=@ AND A<Z56 GOTO 16@ ELSE GOTO 140

16@ INPUT “ANDs; ORs OR NOT="3AS% anput tvpe

170 IF A$<:"AND" AND A$<>"CGR" AND AS<FTNOT® GOTO 160

180 PRINT "VALUE 1 IN DECIMAL IS5 "3A5"IN BINARY 18":

208 C=A *for subroutine
210 GOSUBR 10000 Tconvert to binary
220 PRINT "VALUE 2 IN DECIMAL IS "3B:i"IN BIMNARY I8":

238 =B *for subroutine
4@ GOSUR 10000 “convert to binary
6@ IF A$="AND" THEN C=A AND B >find and result
263 IF A$="OR" THEN C=A OR B "find or result
265 IF A$="NOT" THEN C=NOT B "find not result
Z7@ PRINT "RESULT 1IN DECIMAL IS "3:C3"IN BINARY IS":

Z80 GOSUR 10008 “convert to binary
Z9@ IF INKEY$="" GOTC 290 ELSE GOTO 110

10000 RP@=C~INTL(C/2Z)*Z2 “find bt B

10210 C=INT(C/I) "next auctient

10020 Bl=C~INT(C/R2)%2

10@38 C=INT{C/2)

18040 B2=C-INT{C/2)*2

108580 C=INT(C/2)

10060 B3I=C-INT(C/2)*2

10078 C=INT(C/2)

108380 B4=C—INT(C/2)*2

1089@ C=INT(C/Z)

10180 BS=C-INT(C/2)*2

1011@ C=INT(C/2)

10120 B&=C—INT(C/2)*Z

18132 C=INT(C/2)

10140 B7=C~INT(C/Z)*2

10150 PRINT B73R&3B53P43R3RZIB1ER *erint binary
10168 RETURN return to calling pro@

Figure 2-6. Binary exerciser program.

100 IF (A=0 AND B=0) GOTO 1000

?

200 IF (A<C5 AND A>0) GOTO 1115

1000 IF (A=1 OR A=2) A=A+17

:

2000 IF (A$="ED"” OR A$ ="JIM") THEN B$="ANIMAL" ELSE B$="MINERAL"

However, logical operators can also be used with binary values.
Let’s see how this works by constructing a binary exercise program.
This program will illustrate binary operations by allowing you to
input two 8-bit values. The values will be displayed in decimal and
binary, and then you can specify an anND, oR, or NoT function to
observe how the binary functions work. See Figure 2-6.

The key to this program is the decimal-to-binary conversion sub-
routine at 10000. It implements a conversion from decimal to binary
called “divide and save remainders.” To see how this works, let’s
convert a decimal number to binary on paper, as shown in Figure

40

2-7. We divide the decimal number by 2 and save remainders. The
remainders in reverse order are the binary number. This method
always works for any size of decimal number, although it does get
tedious for numbers over 3 trillion. In the program, BO is the first
remainder, Bl the next, up to B7 for the last. The “INT” function
finds the integer (quotient without remainder) of the divide. Mul-
tiplying the quotient by two and subtracting it from the current
number gives the remainder. At the end of the subroutine, the re-
mainders are printed in reverse order.

This program could have been made much shorter by using ar-
rays and other clever coding, but the important thing here is to see
how the binary operators work. Entering VALUE 1 = 255 and
VALUE 2 = 15, and specifying an “anp”, for example, results in
an AND of 255 and 15. The value of 255 in binary is

while the value of 15 is

6000

When these two values are anped, each bit position of the eight
is aNped separately and does not affect any other bit position.

1 1 1 1 1 1 1 1
ANDO ANDO ANDO ANDO AND1 ANDT AND1 ANDI

0 0 0 0 1 1 1 1

We know from the rules of logical operators that 0 anp 0 is 0,
1 anp 0is 0, 0 AnD 1is 0, and 1 anp 1 is 1, and the result reflects
this.

As another example, let’s or 170 and 112. Expressed in binary,
these values are

41

NN
;H:\o
Pl
[eom]

7

[NS AT L]
o N
OO £
pro i)
DD

L;}
(=23
=
—

11000001000101 = 12357

PO NN
[ony
LI DA f et
o | | OO O
£ |||
e w i R e)
—CD OO

™ N N
(&%)
<2
o0
(X
=
<

~N
)-—'—_‘
[atil=p]
o
=
~Jjoo
=
s

Figure 2-7. Pencil-and-paper decimal-to-binary conversion.

010 010 0111 0000

1
] L2 l L 16
l 8 ‘ 32
\ 32 64
! 128 —

—_ 112
170

-—
—

As in the case of anping, each bit is considered separately

1 1] 1 0 1 0 1 0
ORO OR1 OR1 OR1 ORO ORO ORO ORO

1 1 1 1 1 0 1 0

We know from the rules of oring that 0 or 0is 0, 1 or 0 is 1, 0 or
1lis 1, and 1 or 1 is 1, and this is shown in the result.

The third example is the NoT. The NoT in this program takes the
~ot function of VALUE B as the result. If the input value is 170,
then the ~ot looks at each bit and takes the complement. This is
just a two-dollar word for the opposite state. If a bit is a 0, then
the result bit is a 1. If a bit is a 1, then the result bit is a 0.

1 0 1 0 1 0 1 0
NOT NOT NOT NOT NOT NOT NOT NOT

0 1 0 1 0 1 0 1

At this point, you're probably saying, “Fine, we anp 255 and 15
and get 15, we or 170 and 112 and get 250, and we wor 170 and
get 85—what’s the practical application? (Aha . . . you were say-
ing that!) The anp, or, and NoT are not used as frequently as com-
mon BASIC operators, but they can be very valuable at times.

The anp and or are used primarily to do bit manipulation of
individual bits in RAM, turning specified bits on or off. We'll see
some examples of applications later in the book (We promise!).

42

CHAPTER 3

Strings and Things

(Subtitle: Never the Twine Shall Meet)

In the last chapter we talked about the use and storage of nu-
meric variables. In this chapter, we'll talk about another type of
variable, the string variable. String variables are simply strings of
alphabetic, numeric, and special characters that usually represent
meaningful text data. Since there are operations that occur again
and again in text processing, such as searching for given characters
(such as a name) or comparing one string with another, Level II
BASIC has a number of string functions built into it to make the
job of processing string data easier. This chapter will describe what
string variables are, how they are stored, and what types of opera-
tions can be done with the built-in BASIC string commands.

Have YOU BEEN
STRINGING ME

ASCII Strings

In general, all strings are made up of ASCII characters. At least
that was the original intent of strings, to provide a means to group
keyboard or displayable characters, such as “YES”, “NO”, “12345P7,
“TRS-80”, or “*®***” wunder a single variable name. By clever
(some would say devious) means, the string definition can also
include non-alphabetic, numeric, or special characters. (We'll look
at those a little bit later in the chapter.)

Legitimate names for string variables include any names that
would ordinarily be used for any variables, suflixed by a “§”. An
alternate way to define a range of string variables is by a DEFSTR
command which defines all variables in the given range to be
strings. DEFSTR A-B would automatically define variables such
as AA, AB, and BB as string variables, and they would be synony-
mous with AAS$, AB$, and BBS$.

The first question that comes to mind is “What is an ASCI
character?” ASCII stands for American Standard Code for Infor-
mation Interchange. A “standards” society has established certain
standards for computers. It's certainly desirable to have all com-
puters speaking the same language. In fact, many computers do
speak the same language when it comes to common printable
characters. That language is ASCII codes.

ASCII is basically a seven-bit code. As we know from our com-
prehensive and diligent study of Chapter 2 (Guard! Arrest that
reader . . .), seven bits of data can define 128 different codes, from
000 0000 to 111 1111. In ASCIL, those 128 codes are used to repre-
sent alphabetic, numeric, and special characters, and control codes,
as shown in Table 3-1. The control-codes portion of ASCII from 0
to 31 are somewhat non-standard from computer to computer. The
15-code used in the TRS-80 to turn off the cursor, for example, is
used in another computer to shift to upper case.

The displayable portions of the ASCII codes used on the TRS-80
are from code 32 through 127, as shown in the table. These are
basically grouped into special characters (space) through (/), nu-
merics (0-9), special characters (:) through (@), upper case
(A-Z), cursor controls (] through __), and lower case (a-z and
others). The standard TRS-80 has no provision for displaying
lower-case characters. Lower-case characters, however, are still
usable when output to a TRS-80 system printer such as the Quick
Printer I or IL. They simply can’t be stored in the video display
memory.

The program shown below uses the INKEY$ function to get a
one-character string from the keyboard and then display the key
pressed in displayable form and its ASCII equivalent. Note that

44

Table 3-1. ASCII Code;

Code Character Code Character | Code Character | Code Character
0 32 Space 64 @ 96 @
1 33 { 65 A 97 a
2 34 “ 66 B 98 b
3 35 # 67 C 99 c
4 36 $ 68 D 100 d
5 37 % 69 E 101 e
-] 38 & 70 F 102 f
7 39 : 71 G 103 g
8 Backspace/erase 40 (72 H 104 h
9 41) 73 i 105 i

10 Carriage return 42 * 74 J 106 i
11 Carriage return 43 + 75 K 107 k
12 Carriage return 44 , 76 L 108 I
13 Carriage return 45 - 77 M 109 m
14 Cursor on 46 . 78 N 110 n

15 Cursor off 47 / 79 o] 1m o

16 48 0 80 P 112 p
17 49 1 81 Q 113 q
18 50 2 82 R 114 r
19 51 3 83 S 115 s
20 52 4 84 T 116 t
21 53 5 85 U 117 u
22 54 6 86 \Y 118 v
23 32 character mode| 55 7 87 w 119 w
24 <-cursor 56 8 88 X 120 X
25 ->cursor 57 9 89 Y 121 y
26 dcursor 58 : 90 z 122 z
27 teursor 59 H 91 tor{ 123
28 Home cursor 60 < 92 tor] 124
29 Cursor to line start | 61 = 93 - 125
30 Erase to end 62 > 94 - 126

of line
31 Clear to end 63 ? 95 —_ 127

of frame
Control Codes Special/Numerics Upper Case Lower Case

the lower-case characters are read from the keyboard and appear
in the proper ASCII code when the shift key is used (118 for
lower-case v, for example, versus 86 for upper-case V), but that
the video display can only display an upper-case V.

108 CLS ‘clear screen

200 As=INKEYS$ input character

30@ IF A$="" GOTO 208 back 1f no kev input
4@0 PRINT @ 5341A%:ASC{AS) "erint keve ascii

580 &OTO Z0B *loer back for next chr

From One to Hundreds

The INKEY$ function created a one-character string when a key
was pressed. Level II BASIC allows us to handle up to 255 char-

45

LOCATION
16384 SYSTEM VARIABLES*

PROGRAM
STORAGE
AREA
@ BUILDS
$ UP
SIMPLE VARIABLE BUILDS
STORAGE AREA ? DOWN
Y
ARRAY N
STORAGE COQ@EANT
AREA
¥
FREE
MEMORY

STACK'AREA
0P OF | AREA RESERVED BY
MEMORY | MEMORY SIZE? INPUT*

Figure 3-1. String storage area.

acters in a string. Many of the strings well be working with will
be less than 64 characters, since that size will conveniently fit on
one display line.

String variables are stored in RAM memory below the stack, as
shown in Figure 3-1. As a matter of fact, they are up above every
other type of storage in the TRS-80. Because the BASIC inter-
preter must know how much storage 1s required for strings, a
CLEAR statement should be one of the first things that a BASIC
program specifies when strings are to be used. Performing a
CLEAR 2000, for example, clears 2000 bytes at the top of RAM

46

memory, just below any storage reserved by the MEMORY SIZE?
input. If no CLEAR statement is specified, the BASIC interpreter,
being a somewhat paranoid sort, goes ahead on the assumption
you may throw in some strings anyway and reserves 50 bytes.

Each string variable occupies one byte for each character of the
string, plus an additional six bytes—3 for the string name (AZS$,
AA$) and 3 for the length of the string and address. As in the
case of simple variables (no slur intended on their mental abili-
ties), the VARPTR command can be used to sneak a look at the
variable in RAM. When VARPTR is used with a string variable,
it returns an address that points to a block containing the infor-
mation shown in Figure 3-2.

A% = "NOW IS THE TIME. . "
A = VARPTR (A$)

A POINTS TO

BYTE D A$ LENGTH

BYTE 1 LS BYTE OF A$ LOCATION }

BYTE 2 | MS BYTE OF A$ LOCATION (BYTE 2) X 256 + (BYTE 1)

POINTS TO STRING LOCATION J
— N

0
W
b
|
S

I I
| 1
I f

Figure 3-2. VARPTR use with strings.
You might gain some insight into string storage by running the

program below, which prints out the location of the string as it
is input.

1008 CLEAR 500 clear string space
112@ INPUT A3 i Tinput string

1200 B=VARPTR(AS$) *find location

1380 C=PEEK(B) 9et length

1400 D=PEEK(B+1}) 1s address byte
1500 E=PEEK(B+2) ‘ms address bvte
1600 PRINT *length="3C ‘erint length

1708 PRINT "LOCATION="3;E%256+D erint lacation
1800 GOTO 1100 *leor to next input

47

Note how the location in RAM memory where the string is stored
starts off at the top of memory and decrements down for each new
input of A$. BASIC uses up all available string storage space (the
CLEARed area) until it does not have more available, and then
goes back to “clean up” and reshuffle the string data into the
CLEARed area.

This accounts for those mysterious delays that sometimes occur
when one is working with large programs with many strings. The
program has used up the string storage space, and the interpreter
must reallocate string space to create new room.

You can check the amount of free space that is available for
strings by another BASIC string function, FRES. It reports on the
number of bytes available in the CLEARed area at any given time.

90 CLEAR 50 ‘clear string space

100 PRINT FRE(A$) ‘print amount of free string space
110 INPUT A$ ‘input a string

120 GOTO 100 ‘loop back to print

The variable used in FRE is any legitimate string variable name,
used or unused. It is a “dummy” variable name and has no bearing
on the report on the amount of all string space available. In the
above case, the initial amount of string space available is 50 bytes.
This 50 bytes is reduced by the length of the A$ entered.

String Operations: -Comparison and Concatenation

Unlike numeric variables, string variables cannot be added, sub-
tracted, multiplied, divided, anped, ored, or have any of the other
operations performed on them that we can normally do with inte-
ger or single- or double-precision variables. Of course, the reason
for this is that such operations are meaningless when we are con-
sidering a string of ASCII values representing character data. The
common operations that can be performed, however, are compari-
sons and concatenation. Say what? Yes, the last term is another one
of those terms of computer jargon whose definition is really very
simple.

Concatenation means to link together, as in a chain. (As a matter
of fact, a hanging chain or other line forms a curve known as a
catenary, hence the derivation—just thought you'd want to know.)
Two separate string variables can be linked together by the string
concatenation operator “+” to form a single string variable. This may
occur as many times as necessary (see Figure 3-3).

A good example of concatenation uses the INKEY$ function to
construct an ever-lengthening string variable. We used the INKEY$
variable earlier in the chapter, but let’s discuss it a little more.
INKEY$ looks at the keyboard for one instant in time. What in-

48

100 AS = "THIS IS A MN”
200 B$ = "EMONIC DEV”
300 C$ = "ICE TO REME"

400 D$ = "MBER CONCA"
500 E$ = "TENATION!”
600 F$ = A$ + B + C$ + DS + E$

F$ BUTCHER
SHOP

"THE FINEST LINK SAUSAGES”

Figure 3-3. String concatenation.

stant? We can see approximately how often INKEY$ scans the
keyboard by the program below. This code continuously uses
INKEYS to look at the keyboard. If no key is pressed, a null string
(0 length) is returned. A null string corresponds to “ ”. If a key
is pressed, a one-character string made up of the keyboard char-
acter is created. RUN the program and wait about ten seconds
before pressing a key. The count of I is about 790, signifying about
79 scans per second. This means that 79 times per second, the
BASIC interpreter looks at the keyboard, at least for this code.
Naturally, the statements I = I+1 and IF A$="" GOTO take some
time to process, and the BASIC interpreter is not looking at the
keyboard the entire time—perhaps it is looking at the keyboard ¥4
of the time, as shown in Figure 3-4. However, the scanning rate
is quite high and fast enough even for a prize-winning typist at
150 words per minute (13 characters per second).

Z008 1=0 ‘set count to @

2108 I=1I+1 r‘start of loop
2200 As=INKEY$ *get character
2320 IF As="" GOTC 2100 “leorp until chrote

2408 PRINT A$s1 eraint charscount

In any event, let’s get back to the INKEY$ concatenation (Edi-
tor’s note: Try not to digress—these readers’ attention spans are as
short as my Uncle Harry who . . .). We can do a continuous con-
catenation as fast as you can type using the following code, which
prints the length of the string and the string while concatenating a
new one-character string from the keyboard.

49

i
i
! LINE LINE LINE
2100 2200 2300
(INKEY$)
LINE LINE LINE
2100 2200 2300
(INKEYS)
LINE LINE LINE
2100 2200 2300
(INKEYS) |
¥

TOTAL TIME
“—— FOR LINES —{
2100, 2200, AND 2300
TIME FOR
LINE 2200

Figure 3-4. INKEYS$ scan rate.

3008 CLEAR 260 *clear stringd space
3100 A=LEN(A%) *find string lengdth
3208 A$=A%+INKEYS add new char to string
3300 IF LEN(A$)=A GOTO 3208 ELSE PRINT LEN{(A$):A$

340@ GOTO 3100 "loop for nxt character

Initially, 260 bytes are CLEARed for string space to permit a
maximum string length of 255 bytes to be created. Variable A is
set equal to the length of the A$ string, which is initially 0. (The
LEN function returns the current length of a specified string.)
Next, the INKEY$ function is used to concatenate any keyboard
character input. If none is input, A$ is the same as before the
INKEY$ operation, as is the LENgth. The new length of A$ is

50

then compared to the old length A. If they are equal, no new
character has been input, and a return is made back to the INKEY$
function. If they are unequal, a new character has been added, and
the new length and string are printed with a GOTO to the state-
ment to set A equal to the new length for the next comparison.

Strings may be compared just as numeric variables may be com-
pared. The same relational operators of < (less than), > (greater
than), = (equal), <> (unequal), <= (less than or equal), or
>= (greater than or equal) are used.

I¥’s easy to see how one string can be equal to or not equal to
another, but what is the meaning of “less than,” “greater than,”
and the others? The answer lies in ASCII codes. Comparisons are
made on the basis of ASCII codes and their binary equivalents.
From Table 3-1, we can see that a space is the “lowest-valued”
ASCII character, while the lower-case characters are the highest.
A string of “A C” (with A, space, C) will be “less than” “AAC,”
and a string of “?A” will be “greater than” “=A”. In a case where
strings are of unequal length but otherwise identical, the shorter
string is less than the longer string. “AA” is less than “AA5”, for
example. The code below will let you investigate the comparisons
of two strings.

120 CLEAR 500 “clear =tring =space
20@ INPUT A%sB$ TinPut twa strings
300 IF A$<BP$ PRINT A%$3:"<";B$ ‘prant 31f lecs than
4@@ IF A$=B$ PRINT A%:"="3:B$ Terint 1f eaual

508 IF A$>B$ PRINT A$:">"3Bs$ 'erint 1f greater than

&8 GOTO 280 “locp for 1nput

Printing the Unprintable

No, this is not an excursion into “blue” books, although some of
you had better watch your exclamations while running some of the
routines presented here. We have seen how to convert from a single
printable character into the equivalent ASCII code by the ASC
(“A”) command, but how do we convert the other way, from a
code to a character? The CHRS$ lets us do just that. CHRS is ex-
tremely powerful since it lets us embed all kinds of unusual char-
acters in a character string, characters that simply can’t be input
from the keyboard! The argument of CHRS$ is a numeric value from
0 to 255, or an expression that is equivalent to those values. The
code below displays all characters from 32 to 191. The ASCII codes
from 192 to 255 are not printed, as they are tabs for 0 to 63 spaces
and scroll the display off the screen. The codes from 0 to 31 are
also not displayed, as some of them cause screen clearing, line
clearing, and so forth.

51

1260 CLS Pclear screen

1100 FOR I=32 TO 191 ‘azcil codes

1200 PRINT CHR$(IJ: [7PP1nt character
1300 NEXT I Tlear for nest

14080 GOTCG 1400 Tloup here Tor diseplav

The interesting thing about the display is that not only are char-
acters displayed that can’t be generated from the keyboard (such
as !, <, and >), but the graphics character codes are also displayed.
It is possible, then, to incorporate graphics character codes from
128-191 into a character string! This is an exciting concept because
strings are printed very rapidly, and we may be able to use this to
advantage to get “high-speed” graphics. We'll discuss this concept
further in Chapter 3.

The CHR$ function can be used to compare any non-printable
character in the program. A backspace, for example, does not re-
sult in a displayable “<”, but rather is converted into a code of 8.
We can look for that code using a CHR$ (8) function:

2000 B3=INKEY$ "get character

2180 IF RB$="" GOTO 2000 f-'trv again 1if null
7200 IF B$<>CHR$(8) GOTO 2500 i "9a 1f not b=

2300 PRINT “"BACKSPACE" { 'backspace faund
2428 GOTO 2000 det next character
2500 A$=AS+BS l-'concatenate

2608 PRINT A% "erint gurrent string

2700 GOTO 2000 get newt character

Left, Right, Left, Right, Mid, Right . ..

We're allowed to link or concatenate two strings, but are not al-
lowed to truncate a string into a shorter string directly. How do we
then access parts of strings? There are several approaches to a
problem such as this. The ways in which Level II BASIC ap-
proaches it are from the right, from the left, and from the middle.
(I know, I know . . . I just couldn’t resist.) The three methods are
implemented by the LEFT$, RIGHT$, and MID$ functions. They
allow all or a portion of a string variable to be accessed starting
from the right or left, or by taking a portion out of the middle, as
shown in Figure 3-5.

CHARACTER CHARACTER
i 40

| |
A$ = "NOW IS THE) TIME [FOR AL GOOD PROGRAMMERS)"
1 I

LEFTS (AS,10) MID$ (AS,17.7) RIGHTS (A$.9)
GETS LEFT 10 GETS MIDDLE GETS RIGHT
CHARACTERS 7 CHARACTERS 9 CHARACTERS
STARTING WITH
CHARACTER 17

Figure 3-5. Accessing strings.

52

The LEFTS$ function gets the first n characters from the left of
the string variable. B$§ = LEFT$(“A MAN A PLAN A CANAL
PANAMA”,5) would set B$ equal to “A MAN”.

The RIGHTS$ function gets the last n characters from the right
of the string variable. B$ = RIGHT$(“A MAN A PLAN A CANAL
PANAMA?”,5) would set B$ equal to “ANAMA”. The following rou-
tine shows how this can be used to retrieve characters from the
right or left.

3000 A$="A MAN A PLAN A CANAL PANAMA" ’palindrome!

3180 FOR I=1 TO LEN(A$) Touter looe

3208 PRINT LEFTS$(AS.1) r’Prlnt from left
3300 FOR J=0 TO 50 C‘xnner Taor
34080 NEXT J Tfor delay
3508 NEXT 1 *larger and lardger
36@@8 FOR I=1 TO LEN{A%) Touter laoop

3700 PRINT TAR(LEN(A$)-I)3RIGHTS(A%s 1) PPrint from r19ht
380@ FOR J=0 TO S50 E’lnner laop
3908 NEXT J Tfar delav

4008 NEXT 1 “larger and larger

The MIDS$ function is used to take a portion of a string out of
the middle. MID$ specifies a string variable, a starting location
(from the left), and the number of characters to be retrieved. B$
= MID$(“A MAN A PLAN A CANAL PANAMA”10,5) would
create B$ = “LAN A”. The following code creates two strings, one
made by concatenating single characters starting from the left, and
the other made by concatenating single characters starting from the
right; both use the MID$ function.

50 CLEAR 400 “clear string seace
188 A$="A MAN A PLAN A& CANAL PANAMA™ ‘read 1t sdrawkcab

200 FOR I=1 TO LEN{(A$) Tloep Tor mid

308 R$=MID$(A%+I+11+P3 ‘from left

400 C$=MIDS$(ASLEN(AS$) ~I+1+1)+(3 Pfrom right

D00 NEXT I *centinue

488 PRINT B$ Terint left strang
70@ PRINT C$ ‘erint ri9ht string

The STRINGS$ String

One of the remaining string functions that we haven’t mentioned
yet is the STRINGS$ function. With STRINGS$, you can create a
string of identical characters. The format of STRING$ is STRING$
(n,“c”), where n is a value from 0 to 255 and “c” is either a string
or value (or expression). The character or value represented will
be replicated n number of times. For example, PRINT STRING$
(20,#”) prints 20 pound signs and PRINT STRING$(32,63) prints
32 question marks (63 is the ASCII code for “?”).

The value in STRING$ may be any value from 0 to 255, includ-
ing graphics characters. (The graphics potential for STRINGS is
discussed in Chapter 5.) STRINGS$ is especially handy for printing
headings, filling in display fields with fill characters, or filling in
strings with fill characters.

53

Numeric to Strings and Back Again

We have two more string functions to investigate before trying
our hand at a generalized input routine, cursor control, text edit-
ing, and some other functions. If you'll bear with us (Guard, that
gun is not necessary . . .), we'll complete this discussion of string
functions by looking at two powerful functions, STR$ and VAL.

STR$ converts a given numeric value or expression into a string.
The string can then easily be edited and processed for printing or
display.

PRINT STR$(12.34)

for example, converts the single-precision variable 12.34 into the
string variable “ 12.34”, six characters long, and

PRINT STR$(1E—06)

converts the single-precision variable 1x10—¢ into the string vari-
able “ 1E—06”, six characters long. A leading blank appears before
the numeric value in the string to allow for a possible minus sign
as in

PRINT STR$(—9999)

which would generate “—9999”, five characters long.

VAL operates in reverse fashion from STR$; it converts a string
variable or expression into a numeric value—eVALuates it. The
string variable must be either numeric characters, a decimal point,
or exponent {E or D). Evaluation stops on the first (non-E or D)
alphabetic or special character encountered.

Expression Result
VAL(""12.34") 12.34
VAL(“12E—06") 1.2E—05
VAL(""9999.9999") 9999.9999
VAL("“12D—06") 1.2D—05
VAL{"TEXT100") 0
VAL("T00TEXT") 160

Note that if the string starts with a non-numeric character, it
evaluates as zero. :

VAL can be used to convert a string of numeric data to a more
compact numeric variable form. This saves memory for large
amounts of numeric data; but more importantly, it drastically re-
duces the amount of processing time required.

A Thousand Cursors Upon You, Effendi!

Knowing what we now know about the manipulation of strings,
large and small, it should be a simple matter to produce some use-
ful general-purpose text-handling routines. Some of the things we'll

54

R

be discussing in the remainder of this chapter will be cursor con-
trol, generalized string inputs, and text editing.

Just how do we manipulate the cursor? If we look at Table 3-1
again we see that there are indeed cursor control characters that
can be output to the screen. These are backspace cursor (24), ad-
vance cursor (25), down cursor {26), up cursor (27), home cursor
to character position 0, line 0 (28), and move to beginning of line
(29). In addition to these, we can turn the cursor on (14), and off
(15).

As an example of how we can implement these cursor codes, look
at the routine below. It moves the cursor to the home position
(CHR$(28)), clears the screen (CHR$(31)), moves back to home
(CHR$(28)), and turns on the cursor (CHR$(14)). The cursor is
then moved in spiral fashion until it retreats to the screen center.

1208 PRINT CHR$(28)3CHR$(313 “home and clear ccreen
11@@ PRINT CHR$(2B):CHR$(14)3 *home and turn on curser
1200 H=63 “inmrtial horizontal
1388 V=14 Tinitial vertical

1400 FOR I=1 TO H - TupPer

150@ PRINT CHR$(25): [’move to right
1600 NEXT I *locer

178@ FOR I=t TO V¥ "right side

1800 PRINT CHR$(26):3 ['move dawrn

1900 NEXT 1 *loop

zZ088 V=v-1 Tadaust vertical
2108 H=H-1 Yadouzt horizontal
220@ FOR I=1 TO H Thottom

2308 PRINT CHR$(Z4): [’move to left
2400 NEXT I *looe

25@8 FOR I=1 TO V Tleft side

2600 PRINT CHR$(27): [’move up

2788 NEXT I "loor

28008 V=v-1 YadJyust vertical
2908 H=H-1 adJust horizental
3008 GOTO 14020 ~ *loep for next =eiral

The above code is more than a little showy and not too useful
(unless you're a spiral freak). However, it does show that we have
complete control over the cursor and related screen control char-
acters in our BASIC programming. We can use this fact to advan-
tage in writing a good generalized input routine.

The Universal Gee Whiz Input

This routine is meant to exercise our string capabilities, but also
to provide a general-purpose keyboard input routine. On input, it
is desirable to have a routine that will accept string input from any
of the 1024 input positions. A “HlI” string of blanks or an existing
character string such as “MM/DD/YY” should be available to ini-
tialize the input area. Another nicety is the ability to move the cur-
sor within the field to any position to permit modification of previ-

55

CURSOR READY FIELDS CONTROLLED
FOR INPUT BY CURSOR
Y

\

. LAsr,NAMEl
FIRST . NAME... RS W

L BEMPLOYEE '_--!_soc.ssc L S W
DESCRIPTION o

\
BORDER DRAWN
BY GRAPHICS
(SEE CHAPTER 5)

Figure 3-6. Form £ll-in.

ously input or existing text. Also, control characters that might
create ambiguous conditions, such as down cursor, must be ignored.

A generalized input routine such as this allows easy form fill-in
as shown in Figure 3-6. The form is made up of several fields, each
of which may be controlled by the input routine. Another example
would be modification of existing strings under cursor control
rather than by retyping the entire string.

The program shown in Figure 3-7 provides all of these features.
The subroutine is CALLed with string variable ZA$ containing the
fill string to be used. The “@” location for the strizg is contained
in variable ZC (0-1023). When the subroutine is CALLed, the fill
field will be printed at the spot designated, and data may then be
entered from the keyboard. The fill field must be all on one line
for proper operation. The cursor may be moved without destroying
the data by “<” and “>”. The cursor may not be moved past the
start of the field or past the end of the field. When the data has

56

4@ REM CLEAR SCREEN AND CALL SUBROQUTINE

5@ CLS

10D ZAS=" XAEXKERHEXXRRR"

200 7¢=512

308 GOSUR tRooD

4@@ PRINT ZA$

500 GOTO 40

19@@@ REM PRINT FILL FIELD AND PACKSPACE CURSOR TO START
200@@ PRINT 8ZCsZA$35CHRS(14):

@218 FOR ZF=1 TO LEN(ZA%$)

20020 PRINT CHR$(Z413

D@30 NEXT ZF

2@@35 REM SET CURSOR POSITION TG 1 AND GET KEY PRESS
20040 2G=1

20050 IH$=INKEY$

2006@ IF ZH$="" GOTO Z0050

20065 REM TEST FOR LFT CURSORsRT CURSORsENTERs AND VALID CHAR
20@78 IF ZH$=CHR$(8) QR ZH$=CHR$(9) OR ZH$=CHR${(13) GOTO G080
ZB@75 IF ZH$<CHR$(3Z) GOTO 2050

ZQVB@ IF ZH$<»CHR$(8) GOTO 20120

Z@@B5 REM LEFT CURSOR ROUTINE. DONT GO PAST START

2089@ 1IF 2G=1 GOTO Z@BS@ ELSE PRINT CHRS(Z4):

28100 I16=7G-1

28118 GOTO 20058

2012@ IF ZHS<>CHR$(9) GOTO @160

2@125 REM RIGHT CURSOR ROUTINE. DONT GO PAST END

20138 IF ZG>=LEN(ZA$) GOTO 20058 ELSE PRINT CHR$(Z5)3
20140 1G=ZG+1

ZB153Q0 GOTO o058

Z@16@ IF ZH$<>CHR$(13) GOTO 2019Q

2@165 REM ENTER ROUTINE. PRINT FINAL STRING AND RETURN
20170 PRINT QZCs CHR$(157:ZA%

20180 RETURN

20185 REM VALID CHARACTER ROUTINE. PRINT CHARACTERs ADJUST CURSCR
201990 ZG=7G+1

20200 IF Z6:LEN(ZA%$)+1 PRINT CHR$(Z4;:

20210 IF ZGrLEN(ZAS$)+1 ZG=ZG—1

20220 PRINT IH$:

20230 ZAS=LEFT$(ZA%$s (ZG~2) 1+ZHS+RIGHTS(ZASs LEN(ZAS$)I~2G+1)
20240 GOTO 20050

Figure 3-7. Universal Gee Whiz Input.

been properly input, the “ENTER” key causes a return to the call-
ing program. The subroutine is shown with a short driver program
illustrating its use. For maximum input speed, this code should be
compressed by removing REMark statements, using multiple state-
ment lines, and locating it with “low-valued” line numbers.

Within the subroutine, ZG is used to mark the current cursor po-
sition within the field. ZG will always contain a value of 1 to LEN
(ZA$). ZG is adjusted for left cursor (8), right cursor (9), or for
any new character. Control characters other than 8, 9, or ENTER
(13) are ignored. Whenever a new character is entered, the sub-
routine finds the portion of the field string left of the cursor, con-
catenates the input character ZH$, and concatenates the portion of
the field string right of the cursor to create a new string equivalent
to the display on the screen. This string is passed back to the call-
ing code as the updated string and is also left on the screen after
the cursor is turned off and the display restored.

In spite of the heading, this input routine does not contain all
the “bells and whistles” that could be put in. However, it should
suffice for many applications.

57

Text Editing

Strings are a natural format for text editing applications pro-
grams. Text editing is also called word processing. Text editing
allows a user to manipulate text for manuscripts, letters, and other
appearance-oriented printing. A comprehensive text editor provides
for deletion and insertion of characters, words, paragraphs, and
blocks, automatically justifies (creates an even margin), counts the
words in a block, and performs other sophisticated functions. We
can’t create a complete text editor in this chapter, but we can illus-
trate some of the ways a BASIC text-editing program could be im-
plemented.

Three common operations in text editing are searching, deleting,
and inserting. Most text editors allow a user to search a string for
a given string contained within it. We can make full use of the
comparison capabilities for string variables to implement a search.
The code in Figure 3-8 inputs a string of text that creates a text

1000 CLS ‘clear screen

1@108 CLEAR 1000 Tclear string srace

1020 INPUT “TEXT BASE:" A% Tinput text te search

1938 INPUT "SEARCH STRING":B$ “inPut string to find

1040 CLS clear screen

1@5@ PRINT @ 5125A% “print string to be searched
126@ FOR I=1 TO LEN(AS)-LEN(B$)+1 *setup loop for search
107@ IF MID$(A%:I,LEN(P$))=B$ GOTCO 1185 "ge 1f string found

1088 NEXT 1 *continue search

1@9@ PRINT B$:i* NOT FOUND* “strin9 not found here

1108 GOTO 1108 *loop here

1105 I=I-1 TadJiust for computation
1118 PRINT CHR$(14):CHR$(2ZB) 1 turn on cursor and hame
1128 FOR J=@ TO 7+INT(1/&4) “zetur loop to find line
1138 PRINT CHR$(Zé)3 [’down cursor

1140 NEXT J ‘continue till line fnd
1145 IF I-INT(1/64)%64=0 GOTO 1180 *9¢ 1f character rosition @
1158 FOR J=1 TOQ I-INT(I/&64)%64 *setur loor to Tind char
1160 PRINT CHR&(Z37: [’advance cursor

1170 NEXT J *cantinue till char fnd
1188 GOTO 1180 "loap here at end

Figure 3-8. String search operations.

base and then inputs a search string to be found within the text
base. Obviously, the search string must be shorter than the text
base. If the string is found, the cursor is moved to the position of
the string. The cursor movement portion of the program has to con-
sider the number of lines to move down (7 to get to @ 512 plus
INT(1/64) to get to the proper text line [there are 64 characters to
a line]) and the number of positions to the right after the proper
line is found (I-INT(I/64)).

Deletions of characters within text normally cause the remaining
text to “snake up” into the space left by the deleted characters, as
shown in Figure 3-9. BASIC code to implement the delete function
(not shown) might reconfigure the string with the current cursor

58

CL::%SROSEI?_?E%SS N DELETIONS OF CHARACTERS WITHIN

TEXT_NORMALLY CAUSE THE REMAIN FIRST DELETION
ING TEXT TO 'SNAKE UP" INTO TH

DELETIONS OF CHARACTERS WITHIN
TEXT ORMALLY CAUSE THE REMAINI SECOND DELETION
NG TEXT TO 'SNAKE UP' INTO THE

DELETIONS OF CHARACTERS WITHIN
TEXT RMALLY CAUSE THE REMAININ THIRD DELETION
G TEXT TO 'SNAKE UP' INTO THE

Figure 3-9. Deleting characters in text.

character deleted and print it at the same screen position. The code
could insert by reconfiguring the string with an insert character
inserted at the current cursor position and “snaking” the string

down as characters are inserted. These operations are shown in
Figure 3-10.

1. INITIAL TEXT

THIS IS A SAMPLE OF TEXT
\
CURSOR

2. PRESSING "A" DELETES AT CURRENT CURSOR
POSITION. A NEW STRING IS CONSTRUCTED FROM
THE RIGHT AND LEFT PORTIONS OF TEXT.

THIS 1}S{A SAMPLE OF TEXT|

/S y
LEFTS CHARACTER RIGHTS NEW STRING =
PORTION TO BE DELETED PORTION LEFT$ + RIGHTS

THIS | A SAMPLE OF TEXT

3. PRESSING A NON-CONTROL KEY INSERTS THE
CHARACTER AT CURRENT CURSOR POSITION + 1
SO THAT "TEXT” FLOWS 1O LEFT.

[THIS IS A SIMPLE OF TEXT|

S 7 !
LEFTS CURSOR RIGHTS NEW STRING =
PORTION PORTION LEFT$ + CHARACTER
FOR INSERT + RIGHTS
THIS IS A SAMPLE OF TEXT
Figure 3-10. Text editing deletes and inserts.

59

This code might perform two functions—delete and insert, along
with cursor positioning. The “+” and “~” keys would position the
cursor anywhere along the text string. Pressing “t” would delete
the character at the current cursor position and snake the remain-
ing text up. Pressing any non-control key would insert text at the
current cursor position and snake the text down.

The biggest problem in this application is cursor positioning. The
cursor must be referenced to a known starting point and adjusted
not only right or left, but up and down as well for line starts and
ends. For each delete, a new string might be constructed from the
left and right portions of the current string with the character re-
moved at the current cursor position. For each insert, a new string
might be constructed from the left and right portions of the current
string with the character at the current cursor position embedded
between the two strings; the cursor could then be moved over one
position to the right so that the text is built from left to right.

Another Approach

The implementation of the text editing application above used
strings to handle insertions, deletions, and other text-editing func-

START OF RAM

TEXT AREA QOIUJFJDLALKD
HELP | AM BEING HELD
PRISONER INRAM Ei
JKFDLALSKDIEURP

SCROLL
UP TEXT
VIDEO THIS IS TEXT DISPLAYE T
DISPLAY D ON SCREEN JKSOPX
ZABLNOQSVHKDJ
"WINDOW" SLIEOWIEJDJDLSKD
SCROLL
DOWN
TEXT
JKFKFKFKFKFKFK

AWOMAN IS AWOMAN
BUT A TRS-80 IS A EIW
EIWOEIFJDKSLSLDKFJ
END OF RAM
TEXT AREA

Figure 3-11. Text editing using display memory.

60

tions. Another approach to the problem is to treat the entire video
display memory as several huge strings. The screen is actually a
memory that will store displayable (and graphics) characters, so
it is an excellent way to implement such an application. Insertions
of characters can be handled by moving blocks of screen memory
down from the current cursor position to the end of screen memory
(16383). Deletions can be handled by moving a block of screen
memory up. The screen represents a “window” of a much larger
text area in this case, with the window scrolling up and down to
allow display and text editing functions on various portions of the
text (see Figure 3-11). We'll discuss display applications more fully
in Chapter 5, and the reader may be able to get a better picture
(pun intended) of the types of things that can be done in working
with the display memory.

61

CHAPTER 4

ur Latest Reporl Indicates

In this chapter, we'll provide some information about printing
reports on the screen and on the system line printer. We'll also dis-
cuss in detail the use of PRINT USING, a powerful statement for
formatting string and numeric values.

Why do we want to format reports? First, there’s the aesthetic
aspect. Nobody likes to see sloppy, uncolumnated reports coming
out of a powerful computer system. The processing involved may
be spectacular, but the effect of a cluttered report may be disas-
trous. (Or vice versa. I once saw several vice presidents of an air-
craft manufacturer literally enthralled by meaningless data nicely
printed on a system they had ordered that wasn't quite ready.)
Secondly, to produce useful reports, displays, and other graphics,
the programmer is forced to define some format for the report to
follow with pagination (new pages), columnization (putting data
in proper columns), and menus (lists of choices to prompt the
user).

One From Column A and One From Column B

The PRINT statement is easy to understand. A PRINT statement
with a single item and no comma or semicolon at the end prints
the item at the start of the next line on the screen and then moves
the cursor position to the start of the next line as shown in Fig-
ure 4-1.

100 PRINT 4.55 ‘print 4.55 and move to next line
200 GOTO 200 ‘loop here

62

CURSOR

POSITIONED RUN
Figure 4-1. Simple print action. E*E?IETA&I ER 4.55
455 -

The data printed in this first case is $4.55b; because the number
was a positive number, a blank is printed in place of a “+” sign.
If the number is a negative number, such as —8.95, then the nega-
tive sign is printed, followed by the magnitude of the number. In
both cases, the number also has a trailing blank in addition to the
leading blank or negative sign. You can see this by the code below,
which uses a semicolon to specify that the cursor is not moved to
the next line, but remains where it is after the print. The cursor in this
case normally must be imagined, as it is not active during execution
of the program unless we turn it on in the program. We've turned
it on before doing the PRINT, using the cursor-on code (14) that
we discussed in Chapter 3 (see Figure 4-2).

100 PRINT CHR$(14) ‘turn on cursor
200 PRINT —4.5;4.5; ‘print two values
300 GOTO 300 ‘loop here

Notice that the format is —4.55b4.5; each print is five character po-
sitions on the screen, one for the sign, three for the “4.5” and a
trailing blank.

The unfortunate thing about printing in this fashion is that vari-
ables are not fixed-length. When variables are printed, leading and
trailing zeroes are always suppressed as in the display from this
code

200 PRINT I11.1; ‘print | to the 1.1 power

100 FOR I1=0 TO 1000 l:’loop 1001 times
300 NEXT ‘continue

How do we go about columnating data in this simple case? One
way to do it, of course, is by using a comma instead of a semicolon
to tab to the next print zone. The print zones on the video display
are positions 0, 16, 32, and 48, and using a comma after each print
item will print data in four nice, neat little columns.

100 FOR 1=0 TO 1000

200 PRINT I11.1, ‘use tab on prints
300 NEXT

63

>300.60710.300
>RUN

READY
>100.PRINT . CHRS(14)
>200.PRINT -4.5:4.5;

-

\
CURSOR POSITION
AFTER PRINT

Figure 4-2. Variable printing.

This is definitely an improvement, but there are still problems
with the appearance of the data—namely, the decimal points don’t
line up. There are other problems with this type of columnization,
also. The world is not always a four-column world, as evidenced
by the new tax-return formats. Sometimes, we would like to
squeeze eight columns of data onto the screen, especially if we
know that the variables will be limited to six digits plus sign and
trailing blank. And how about the case of dollars and cents data?
We would like to see the .00 cents displayed instead of being sup-
pressed in cases when we're dealing with the almighty dollar.

The first problem of additional columns may be partially solved
by a PRINT TAB statement. PRINT TAB moves the cursor posi-
tion to a specified character position along the line from 1 to 64.
PRINT TAB may be used to produce a display of more than the
four print-zone columns by tabbing over to the next column after
printing a data item. This works, providing the length of the data
item is known to be less than the width of the column plus 2.
Suppose, for example, the data items to be printed are three digits.
Adding one trailing blank and one leading blank defines a column

64

of five characters and a total

of 12 columns, as shown in the code
below and in Figure 4-3.

108 FOR I=1 TO &0 STEP 5 Ttab 551@915....
200 PRINT TAB(I)s123: [’Prmt dummy value
388 NEXT 1 “looe

48B3 PRINT “line feed

388 GOTO 120 Tnext set

Here we've “dummied up” the value to guarantee that we have
three digits each time. When we use values that may be any num-
ber of digits from 1 to 4, we get the same problem as previously:
columns that are not right justified, as shown in Figure 4-4,

1828 FOR I=1 TO 60 STEP 5 ™~ "tab S5y1@s515s...

1188 PRINT TAB(I1)3RND(999): [‘pr-1nt tab and 1-3 chars
1208 NEXT I *laopr

1308 PRINT *line feed

140@ GOTO 1000 "next set

23 123 123 123 123 123

123 23 123 i23 123 123

123 123 123 123 123 123
123 123 123 123 123 123 123 123 123 123 123 123
123 123 123 123 123 t23 123 123 123 123 t23 123
123 123 123 123 123 123 123 123 123 123 123 123
123 123 123 123 123 123 123 123 123 123 123 123
123 123 123 123 123 123 123 23 123 123 123 123
123 123 123 123 123 123 123 123 123 123 123 123
123 123 123 123 123 123 123 123 123 t23 (23 123
123 123 t23 123 123 123 123 123 123 123 123 123
123 123 £23 123 123 123 123 123 123 123 123 123
123 123 123 Iii' 123 123 123 123 123 123 123 23
123 123 123 23 123 123 t23 123 123 123 123 123
123 123 123 123 i23 123 P23 123
123 123 123 (23 123 123 123 123
”

12 COLUMNS

51238
b = TRAILING OR LEADING SPACE

Figure 4-3. Columnating example 1.

928 83 49 303 482 825 467 951 158 864
980 298 78¢ 356 78 99 564 717 632 711
177 404 778 210 693 i8S 712 161 915 656

381 624 864 397 225 462 549 366 327 217
608 687 424 877 82 93§ 887 817 643 847 413 388
621 38 610 483 76 815 291 a07 841 766 337 738
326 118 38 1714 59 846 233 948 985 535 50 112
514 987 255 876 317 583 214 375 869 386 653 135
754 10 835 316 706 221 477 6§95 407 301 424 400
33 1§55 72 391 §52 £13 536 699 173 836 5§78 411
141 80 274 398 286 389 436 806 286 708 787 288
821 856 880 9886 811 479 173 271 91 113 446 221

858 704 451 468 138 460 807 685 672

225 43 37¢ 23¢9 940 28
4 78 6886 848 159 631

176 618 234 543 417 964

MANY COLUMNS CONTAIN
ENTRIES THAT ARE NOT
“RIGHT JUSTIFIED”

Figure 4-4. Columnating example 2.

There’s No Justification for This . . .

How do we solve the problem of justifying data? Since we can’t
predict the number of digits in a variable beforehand, we must
somehow find the length before printing. For string data, this pa-
rameter is easy to find as we have the LEN function. But wait!
Don’t we have the ability to convert numeric data to string data?
(You really should have read Chapter 3. Guard, get that name and
address . . .) Yes, the STR$ function converts a numeric variable
or constant to a string. If we convert to a string and then use the
LEN function to find the string length, we can handle justification
of columns. Let’s see how it works.

66

Z@@@ INPUT *JUSTIFY Y/N"3A& Tinput sustify action
218@ FOR I=1 TO 55 STEP & Ttab 1s7513s...
2280 A=RND{9999) r.’get 1-4 dig9its
Z300 IF A$="N" THEN PRINT TAB(I)3;A3; ELSE GOTO 2500

2400 GOTO 2800 Tfoer next laop
2500 B$=STR$(A) Tconvert fto straing
2600 C=LEN(R$) "find length

2708 PRINT TAB(I+5-C)3B&$s "tab and Prant
2800 NEXT I ‘Tawp

2988 PRINT ‘get pext line

3008 GOTO 2100 Tagain

The program above first asks for a decision on justification. If the
answer is “N”, then ten columns of 14 digits are printed as we have
been doing—each variable is printed with a leading blank (for
sign) and a trailing blank plus 1 to 4 digits, making a column entry
three to six digits. If the answer is a “Y”, then the 1 to 4 digit value
from RND(9999) is converted to a string by STR$(A). Note that
STR$ converts the numeric value with a leading blank for positive
values (or a minus sign) and no trailing blank. The length of the
string is therefore 2 to 5 digits. The tab position to be used is the
extreme left of the column for a five-character string

TAB=I45-5=],
three positions over for a string of 2 digits
TAB=I+5-2=1+3,

or intermediate positions for strings of four or three characters (see
Figure 4-5). Our display in this case definitely gets an “A” for
neatness.

Dollars and Cents

Changing a numeric to a string by means of STR$ may be done
for all types of numeric data so that the length of the field may be
computed before printing. When the numeric data includes a deci-
mal point, the decimal point will also be converted.

100 PRINT STR$(111.77) ‘convert and print

will print “111.77”. However, we still have the same problem with
the decimal point! If the variable is 111.5000, it will be printed as
“111.57 rather than a dollars and cents value of 111.50. Also, 111.00
will be printed as “111” and 111.234 will be printed as “111.234”!
How do we make cents out of such a value? One way to accomplish
this is to scan the resulting string variable after the STR$ conver-
sion for the decimal point and to add a decimal point and trailing
zeroes as required. The following subroutine takes an input vari-
able ZZ and converts it to a dollars and cents format in string va-
riable Z78$.

67

10000 ZZ$=STRH(ZZ) Teonvert to sztraing
1201® FOR I=1 TO LEN(ZZI$) “look for dec ent
10020 IF MID$(ZZ$+Is1)="." GOTO 10040 ['90 if found

10830 NEXT I Tleop

10084@ ZZ%$=11%+",00" ‘not fnd—add cents

10050 RETURN "return to calling prog
100690 IF I=LEN(ZZ$)—2Z RETURN Treturn 1T HB.HH

10870 IF I<LEN(ZZ$)-1 GOTO 190100 "g9¢ 1f not #H#.H

10080 ZZ$=271%+"@" ‘convert to ##.H#

18092 RETURN "return te calling pProg
18100 ZZ2%$=LEFT$(ZZ%sI+2) Tuse only 2 cents digits
10118 RETURN return to calling eprog

There are five cases in the above subroutine. ZZ may be con-
verted to a string of the form ##, with no decimal point and no
characters for the cents. In this case, the search for the decimal
point using MIDS$ is not successful, and a new ZZ$ is created by
adding “.00” to the original string. The second case occurs when

8573 8229 1408 6487 5660 5699 9173 81186
8139 6985 8358 1393 9389 5585 3596 7074
2726 1675 6074 7156 2020} 9840 8705 B549

200 1952 55 1471 32331 8014 3482 5804
6134 1777 1209 893 5486 72256 2625 9282 6034 39
5714 6923 390 7879 5937 5651 7874 5 5824 5068
611 6477 6314 508 7119 4892 2107 8504 3410 4594

7986 9764 1577 8389 624 8631 5882 1176 8416 6055
6390 8650 8932 5063 5 538 3704 3729 9078 8300

582 6§37 7539 1363 3578 3855 44586 29430 2186 6404
5133 7704 6359 9223 89713 8603 8571 1639 9264 982
3852 9338 9377 6849 7479 9832 1258 5586 6860 5427

318 5666 4866 3693 2279 3874 9181 5433 6750 2023
(174 3606 9020 5230 3356 7239 5354

2571 9659 2570 3544 9666

3038 864 2675 4515 9946

EVERY ENTRY IS
RIGHT JUSTIFIED

Figure 4-5. Use of STR$ function for columnating.

68

ZZ$="##4##", a string with a decimal point and two cents char-
acters. In this case (I=LEN(ZZ$)—2), nothing must be done and
a RETURN is made. The third case occurs when ZZ$="###".
In this case (I=LEN(ZZ$)—1), only a “0” needs to be added.
The fourth case occurs when ZZ$="#####. ”, a string of more
than two cents digits. In this case, we must shorten the string by
taking only the first two cents digits and taking the left-hand side
of the string up to the decimal point plus two digits. Three notes
on the technique used above:

1. The case “##.” never occurs because the decimal point would
always be deleted.

2. The technique of truncating the digits to the right is not neces-
sarily the best way to handle the fractional cents. Millionaire
programmers have been produced when such fractional cents
have gone into other checking accounts.

3. The code above could be replaced by two statements. (Extra!
Extra! Writer Mobbed by Angry Readers!)

All right! T know that you're angry with me for going through the
code above when it could have been replaced by two instructions.
However, I just wanted to show you how powerful that one instruc-
tion was. The instruction is . . . (may I have the envelope please?)

PRINT USING!

The entire code above could have been replaced by

10000 PRINT USING “# ### . ##22 ‘print dollars, cents
10010 RETURN ‘return

In the PRINT USING statement above, the “#” characters de-
fined a digit position for a numeric field, and the decimal point
defined the decimal point location within the feld. If the value in
ZZ had more than two digits to the right of the decimal point, they
would have been “rounded off” to produce only two digits; if the
Z7 value had fewer than two digits to the right of the decimal
point, then the remaining digit positions would have been filled
with zeroes. If the numeric value had fewer than four digits to the
left of the decimal point, the remaining positions would have been
filled with spaces. Neat, eh?

Let’s look at some of the other capabilities of the PRINT USING
statement. Another “field specifier” character that may be added in
the definition string is a comma. Since the PRINT USING is used
primarily for accounting-type applications, an obvious use of a
comma is to provide the comma for large dollar amounts.

69

50 INPUT A ‘provide input
100 AS="f#H# HFHH FH# ‘define string

200 PRINT USING A$;A ‘print using A$ string

300 GOTO 50 ‘return to input

The PRINT USING statement above should handle many of the
reader’s weekly paychecks and provide a printout of such amounts
as 1,232.77, 66,327.00, and 121,067.99. The comma and decimal
points may be inserted anywhere within the string, but such string
field specifiers as #.#,## are not too meaningful and may confuse
the BASIC interpreter.

How about dollar signs? I'm glad you asked. One dollar sign
used as a field specifier will cause a dollar sign to be printed at the
left with intervening print positions filled with spaces. PRINT
USING “$#####4#" will enable printouts such as $1000 00,
$b651.23, and $HB77.79, $6H50.36. Two dollar signs used as field
specifiers will float the dollar sign and put it directly before the
fist digit printed. PRINT USING “$$###+#. ## produces print-
outs such as $1111.77, $13.24, $1.77, and $0.34. Note that dollar
amounts less than one dollar are printed with a leading 0 for the
dollar amount in both the floating and non-floating dollar-sign case.

Have any of you ever altered your paychecks to increase your
weekly wage—no, of course not (Guard, let’s get those names . . .).
One safeguard against such action is the use of asterisk characters
before the printing of the dollar amount. When a **$ field specifier
is used in PRINT USING, asterisks will occupy all field positions
before a floating dollar sign. PRINT USING “**$######", for
example, will produce amounts such as **#*8§11.11, *#$1000.99,
#$10000.10, and $100000 00. Note that the maximum amount that
“sogupd #4” can hold is $999999.99 with seven characters in-
cluding “$” to the left of the decimal point.

Accounting type information sometimes uses a trailing minus
sign after the amount. When the field specifier “—” is used at the
end of a field, a minus will be printed if the amount is negative.
100 AS="HHHFHH# tH#—" ‘define string
200 PRINT USING A$;A ‘print using A$
prints 22.23— when A is negative or 22.23 when A is positive.

When an initial + or — sign is required, a + sign placed at the
beginning of the field results in a “+” character for positive num-
bers or a “—” character for negative numbers. PRINT USING
+##.## produces +12.22, +1.22, +0.22, —12.22, —1.22, or —0.22.

The % and ! field specifiers are used to denote string fields that
must be printed. When the first character of a string must be
printed, “1” is used.

100 A$="1234" 'string
200 PRINT USING “¥;A$ ‘print first character

70

Table 4-1, PRINT USING Field Specifiers

PRINT USING AS; N
Specifier Description AS$ N Result
Numeric field #it# 13 613
#i# 2 62
#i# -2 -2
Decimal point ## HE 1.2 $1.20
position #H #iH 1.2 $1.200
#i HH —1.2 -1.200
+ Leading or trailing +#.4 —-1.128 —1.1
sign oy 1.123 +1.1
#H4+ —1.123 1.1—~
#.#+ 1.123 1.1+
— |Trailing sign #H— —1.123 i~
if negative #.4— 1.123 1.6
*x Leading asterisks i 73 23.53 *23.53
*rf H 2.53 **2.53
$$ |Floating dollar SO#H. # 123.53 $123.53
sign SOHH #H 12.53 $$12.53
SS#H . #H 1.25 $6$1.25
**$ |leading blanks, **SHE B 123.53 *$123.53
floating dollar **SHE 12.35 **$12.35
SHE HE 1.23 *$1.23
1 |Exponential format # ##te 51235 0.51E+05
(scientific notation) ## #1t 51235 ©5.12E+04
! Single character ! 1234 1
of string 1 “ABCD” A
% % [First two characters % % ““ABCD" AB
.of string
%..% [First two + spaces %tbb% “*ABCDEFG” ABCDE
of string

for example prints “1”. The % field specifier prints either the first
two left characters of a string, as in
100 A$="1234" ‘string
200 PRINT USING “%%‘;A$ ‘print first two characters
which prints “12”, or two plus the number of spaces between the
% characters, as in
100 A$="1234"
200 PRINT USING “% %":A$
which prints “1234”.
Table 4-1 shows all PRINT USING field specifiers and examples
of their use.)
When more than one variable is to be printed, then each variable
of the list uses the same field specifiers.

100 A$="##, #u#" Tusing straing
200 A=11.11 *dummy

30 B=z.22 Tancther

488 C=.33 Yand another
508 D=4.44 *etill ancther
&B8 PRINT USING A%$3A58,CsD ‘print all four

Kj !

will print “11.1162.2250.3354.44”. Note that even though a comma
was specified, the form of the printout used a five-character field
with no leading or trailing blanks or tabs; four characters were the
field specifiers and one was the decimal point. When the string
field specifiers “%” and “!” are used, then it is possible to construct
complex formats for printing, such as the code below which takes

the first two characters of string A$ and prints them, prints a 7,
and then prints the first three characters of string B$.

1000 A$="1234" *first strang
110@ Bs="5478" Tgecond string
1200 PRINT USING *%4.% %" 1A%+B%$ *print PORTIONS OF BOTH

In this example, the field specifiers were used one at a time in con-
junction with the variable list to define the printing. A weird oper-
ation? Yes, but we will never say that such operations will not find
widespread use for fear of letters from Boise, Idaho, that start out
“I don’t see how you can say that multiple string field specifiers are
not used often! I use them all the time in my hog breeding program!
Furthermore, your gross humor is irritating and . . .7

PRINT USING can be used with double-precision variables to
provide formatted printing of variables to 14 digits of dollar
amounts and two cents digits, which should handle receivables
for most of the current TRS-80 business applications.

PRINT USING provides a very convenient means to produce
formatted printing of variables and saves a great deal of special
coding to accomplish this formatting, as we saw earlier in the
chapter. Conservative estimates by recent industry experts indi-
cate about 100,737 lines of code annually saved as a direct result
of the PRINT USING statement. And there are those who say
BASIC is not very powerful!

$4.50 for a Slice of Cheesecake?

Menus are used not only in posh restaurants, but in posh com-
puter software. You've seen menus on Radio Shack software, but
let’s illustrate the use of them to jog your memory. Suppose that we
have written an applications program to process weather data.
When the program is first loaded, it may display a menu of func-
tions that may be selected, as shown in Figure 4-6. If entry 4 is
desired, then the user types a “4”, and a new menu of items related
to “annual weather data” is displayed for further selection. This
type of implementation is termed “menu-driven.” Menus provide an
easy-to-use format that is very descriptive. This section should defi-
nitely be interpreted as a plug for menu use. (I have a brother-in-
law in the menu-printing business.) Menu printing is easy, of

72

I ENTER NEW.WEATHER DATA
MODIFY WEATHER DATA
CHANGE WEATHER DATA
ANNUAL WEATHER DATA
SAVE WEATHER DATA

@ o s N

LOAD WEATHER DATA

ENTER SELECTION

Figure 4-6. Menu use.

course, and may be implemented by a series of TABs and text,
followed by a PRINT @ and INKEY$ input as shown below.

1500 CLS ‘clear szcreen

151@ PRINT TAB(15):"1 ENTER NEW WEATHER DATA"

1520 PRINT TAB(15)3*Z MODIFY WEATHER DATA"

153@ PRINT TAB(15)31"3 CHANGE WEATHER DATA"

1348 PRINT TAB(15)3"4 ANNUAL WEATHER DATA®

155@ PRINT TAB(15)3"5 SAVE WEATHER DATA"

1560 PRINT TAR(15)3"4 LOAD WEATHER DATA"

157@ PRINT & 656 "ENTER SELECTION®

1580 A=VAL (INKEVY$) et value

159@ IF A=Q OR A>& GOTO 1570 ELSE ON A GOTO =008, 3000, 40005000, 4008, 7000

The code above first clears the screen and then prints the menu
selections. A TAB is done for each selection to center the selection.
After the selections are displayed, the prompt message “ENTER
SELECTION” is displayed at a convenient place beyond the menu
selections. The input choice is detected by an INKEY$ statement
which will return a one-character string of the key pressed or a null
if no keys are pressed. If no keys are pressed or if no numeric key
is pressed, VAL(INKEY$) will equal 0, and a GOTO back to the
PRINT @ is made to display the selection message and to look for
the next input. In some respects, this procedure is very bad. It does
not inform an inexperienced operator that he has pressed the wrong
key—it simply ignores it. Oh, I know—what idiot would choose any-

73

thing but the right key? Still, it is always best to attempt to make
things “idiot proof,” to avoid “cuteness,” and to be as informative
as possible for this type of interactive input. (Sad to say, I was once
jailed for damage to capital equipment when attempting to use a
program with a bug that ignored my correct input and kept repeat-
ing “DUMMY! CAN'T YOU READ? NOW ENTER AGAIN AND
DO IT CORRECT! [sic].”) A better response might be

1508 CLS ‘clear zcreen
151@ PRINT TAB(15):"1 ENTER NEW WEATHER DATA"

1528 PRINT TAB(15):"2 MODIFY WEATHER DATA"

1530 PRINT TAB(15):"3 CHANGE WEATHER DATA"

1540 PRINT TAR(15)3"4 ANNUAL WEATHER DATA"

1558 PRINT TAB(15):1"5 SAVE WEATHER DATA”

1560 PRINT TAB(15):“6 LOAD WEATHER DATA"

1570 PRINT @ 6564 "ENTER SELECTION"

1580 A$=INKEYS *get character

oYUl b L b

159@ IF As="" GOTO 1580 ELSE A=VAL(A$)| 'convert 1f net null

1600 IF A<>@ AND A<7 GUTO 1660 'ga 1f carrect

161@ PRINT & 718s " INCORRECT RESPONSE" | "notifw user

14628 FOR I=1 TO 200 E ‘delav loop

1638 NEXT 1 lowp

1640 PRINT & 7184" "] biank error ms9

1650 GOTO 1580 Ttrw agaln

1660 PRINT "CORRECT RESPONSE™ Taction for carrect ineuT
1678 END Tadditianal code here

More work? Sure, but much more responsive to inexperienced oper-
ators. (When made into a subroutine, it really does not create a
great deal of additional work or code, either.)

7%
(/ B

7
a7,

T
S
), \Y
L
[N
]

LS
s

9
o

S-S

74

All the Data That’s Fit to Print
(And Some That Isn't)

If you've made it through the above sermon, youre about to
be rewarded with some interesting material about line printers.
Level II BASIC has built-in provisions for printing to line printers,
of course.

The two commands that are used to print to a line printer are the
command LLIST and the statement LPRINT. LLIST is normally
used to list a BASIC program on the system line printer, while
LPRINT is used within a BASIC program to print data in much
the same way as a standard PRINT is used. Operation of the LLIST
is very straightforward—the format is identical to the LIST com-
mand for screen display.

LLIST 100-300

for example, would list program lines 100 to 300 on the system line
printer.

LPRINT may be used in similar fashion to PRINT, but you
should consider the characteristics of the system line printer. The
number of tab positions on the display is 64, but the number of tab
positions on some line printers is limited, either physically or under
software control, to fewer than 64 (20 or 40). In this case, existing
code that specifies tabs greater than line-printer print positions will
have to be modified for proper columnization and report printing,
Conversely, some printers allow more than 64 print positions on a
line, and you may use the expanded line to include more informa-
tion on reports. TABs are produced by “padding” text with enough
spaces to move to the proper tab position.

One of the differences between PRINT data on the display and
LPRINTing on the system line printer is that the display is al-
ways “ready,” but the line printer may not be in a ready condition
due to being out of paper or being “off-line.” When this “not ready”
condition exists, the BASIC interpreter will continuously monitor
the state of the line printer until it becomes ready. The ready state
of the line printer may be determined by the following code

100 IF PEEK(14312)<>>63 THEN PRINT “NOT READY” ELSE PRINT “READY”

The code above looks at the line printer by addressing location
14312. This system address is not memory, but is the line-printer
address (37E8 in hexadecimal). The PEEK effectively reads a byte
of status from the line printer. If the line printer is not connected
in the system, this status will be 11111111; otherwise, the status bits
will be as shown in Figure 4-7. Although you could detect each bit
by anping values and comparing the results, it is sufficient to simply
make the test above and print out an appropriate error message to

75

7 6 5 4 3 2 1 0
1 1 1

A ’ ~ —
‘ L ALWAYS 1
1 = FAULT “NORMALLY" 1
1 = UNIT SELECT "NORMALLY" 1
]

QUT OF PAPER "NORMALLY" 0
1 = BUSY "NORMALLY" 0

Figure 4-7. Line-printer status bits.

[y

the system user. Here again, this error message may be used to in-
form an inexperienced operator of the line-printer condition.

Another difference between the display and line printer concerns
pagination. The display lines scroll off the screen as new lines are
printed, and this is adequate for many applications where hard
copy is not required. The line printer operates in identical fashion
to the display except, of course, that all printed lines are saved on
the continuous scroll of line-printer paper. If the material covers
more than one page, it is not conveniently spaced for reproduction
or for “bursting” the pages for notebooks. The solution to pagina-
tion is built into Level II BASIC at memory locations 16424 and
16495. RAM location 16424 holds the number of lines per page,
while 16425 holds a current line count. The number of lines per
page is initialized to 67, and the line count is initialized to 0. As
each line is printed, the line count is increased by 1. If the line count
equals the number of lines per page, then the line count is reset to 0.
You can see this by the following code, which displays the line num-
ber after each line is printed.

200 PRINT PEEK(16425) ‘display line number

100 LPRINT “LPTEST” l'— ‘print line
300 GOTO 100 ‘loop back

On many printers, the number of vertical lines per inch is six.
If the print area is to be 10 inches, well have 60 lines per page and
a margin of three lines (% inch) on the top and three lines on the
bottom. The code below is in the form of a subroutine that looks at
the current line number and skips six lines if the line number is 60,
to provide a suitable margin for top and bottom. To use the sub-
routine for printing, set the current line count to 0 before using the
line printer by

100 POKE 16425,0 ‘reset current line count

At the same time, adjust the line printer to “top of form” by posi-
tioning the paper to three lines down from the top. Every time an

76

LPRINT is performed, call the subroutine so that the “top of form”
may be implemented at the 60th line. A typical call would be

1200 LPRINT “VALUE='"/;2Z
1210 GOSUB 10000
1220 GOTO 1200

The code follows

10000 ZZ=PEEK(1&425) *9et line count

12810 IF ZZ<»6@ RETURN Treturn 1T net time
10028 FOR ZI=1 TO & “leor for 6 lines
10@3@ LPRINT ™ * r’Prxnt line (WITH BLK)
18042 NEXT 71 “loar

18050 POKE 16425:0 clear line count

120468 RETURN ‘return to cailing prog

Another difference between the line printer and display is that
the character sets of each are different. In most cases, the characters
from ASCII 32 to ASCII 127 are identical, or very similar, This
range defines special characters, numerics, special characters, upper
case, special characters, and lower case, in that order (refer to Ta-
ble 3-1). The codes 128 through 191 are graphics codes and tab
codes that will probably not be accepted by the line printer, or will
cause printing of (somewhat) unpredictable line-printer charac-
ters. The codes from 0 to 31 will vary with the line printer. Some
line printers have programmable character and line widths, and
others have programmable line spacing and things such as the BEL
code. (The BEL [bell] codes are used on teletypewriters to attract
the operator’s attention for such things as important wire-service
news stories.) Here, I will give standard writing ploy number 127—
refer to your system line printer operating manual for specific in-
structions.

We'll be looking at some of the other aspects of using the line
printer in Chapter 12 (“POKEing Around in Memory”) when we
discuss the video display and line-printer device control blocks
(DCBs).

77

CHAPTER 5

Graphic Examples

We'll be discussing one of the most interesting features of Level
II BASIC in this chapter, the ability to create displays of graphics
data. The graphics character set allows us selectively to turn on and
off 6144 picture elements on the screen of the TRS-80. Graphics
allows us to create graphs, forms, and animated pictures. There are
several techniques for using graphics, and we’ll be discussing each,
including a technique of high-speed graphics using strings.

Back to the Books . ..

Before we discuss the techniques, however, let’s discuss the me-
chanics of how graphics are implemented on the TRS-80. (Guard,
stop that reader from sneaking off. . . .) We know from previous
chapters that there are 1024 print positions on the display screen,
as shown in Figure 5-1. Each of the 1024 print positions is repre-
sented by one byte in video-display memory as shown in the figure.
The electronics in the TRS-80 automatically and continuously cy-
cles through each of the 1024 video display memory bytes 30 times
per second. If a byte holds a value of less than 128 (less than
10000000 in binary), then the logic in the video display electronics
says, “Aha, I detect a displayable character!” It then converts the
character code into a displayable character of 5 by 7 dots as shown
in Figure 5-2 (the top row is always blank). The dots are config-
ured to represent the ASCII character set shown in Table 3-1.

However, if the video-display memory byte for any print posi-
tion of the 1024 is greater than 127, the logic in the video-display
electronics says, “Another one of those darn graphics characters—

78

y
,/’\b

“Come Back!... e saw JMPLEMENT... Nor Execore!’

troublemakers, every one. Let’s see now, how does that scheme
work again?” The scheme that befuddles the logic also befuddles
many BASIC programmers. If the code in video-display memory is
greater than or equal to 128, the first two bits are ignored, as shown

PRINT PRINT
POSITION 0 POSITION 63
{15360 {15423
PRINT]THESE ARE THE PRINT POSITIONS
POSéPON——-ON THE TRS-80 SCREEN EIEOWO-
(15424) KDJFLSLKDJFJKDEIWOEIURTQPQO!
PRINT ng!T%N
POSITION ——EIQOPURJKLIFSKDJFIE WITH 1024}~ 1023
360 (16383)

{XXXXX) = VIDEO DISPLAY MEMORY BYTE

Figure 5-1. Screen print positions.

79

5 DOTS
CICICICIC] ALWAYS BLANK

Figure 5-2. Character matrix.

18 | 7 00TS

SIX SEGMENTS OF A
CHARACTER POSITION
IN GRAPHICS MODE

BIT | BIT
- 0|1
| @
BIT | BIT
T 2| 3
@ | ®
BIT | BIT
4|5
(16 | 32
| .
R
10X XXXXX VIDEO DISPLAY

/ N\ MEMORY BYTE
ALWAYS A ONE [GNORED
FOR GRAPHICS

Figure 5-3. TRS-80 graphics format.

in Figure 5-3. The next six bits represent the on/off condition of six
segments of the character position, as shown in the figure.

The logic here is readily understood by the binary code in the
six bits. The first bit (bit 0) defines the on/off status of the upper
left segment, bit 1 defines the upper right, bit 2 defines the middle
left, bit 3 the middle right, bit 4 the lower left, and bit 5 the lower
right. The graphics codes for all of the possible combinations from
128 through 191 are shown in Figure 5-4. To construct any com-
bination, though, all you have to do is sketch the six segments, indi-
cate the on/off condition, and then add the binary weights to 128
to get the corresponding graphics code for the character, as shown
in Figure 5-5. The example in the figure produces the code 128+1
(upper left) + 8 (middle right) + 16 (lower left) = 153.

80

H,..
N
“

o
[
(=1

—
w
—

132

Eme
-
A"
"N

133

134 135

136

-
A
-
“ull
R E
E
="
B

ot
w
-~

ot
[
oo

—
[
k-3

140

141

142 143

144

-

—
o
~

-
(=23
°Eij

s

184

145

m
.
m

153

"
-
"l
m B
-
"
-

161

"
.
w i
“ull
“um
e
“m

169

-
—
el

177

"
-
B

185

"
-
Bl
_ &
_
=
_

Figure 5-4. TRS-80 graphics characters.

146

154

162

170

178

186

147

155

163

i71

ot
-~
-3

187

148

1

164

m .
=
ml
nlll

94

149

—
-
-

150 151

159

167

175

183

191

81

Figure 5-5. Constructing
combinations of graphics.

153 = GRAPHICS CODE

SETting Good Examples

Now that we know the mechanics of the graphics characters, let’s
use the simplest technique of graphics programming to SET some
good examples. The SET, RESET, and POINT commands allow us
to selectively set any of the 6144 picture elements. (Hereafter, we'll
use the term pixel for picture element, an abbreviation coined from
the name of an early graphics pioneer, Max von Pixel.) The ar-
rangement we now have for the 6144 pixels is shown in Figure 5-6.
There are 128 across {2 per character position) and 48 down (3 per

PIXEL O PIXEL PIXEL 127
X=0Y=0)_ — 128 S . (X=127.Y=0)
PIXEL 128 []

X=0Y=1)"]

128 X 48 =

6144 PIXELS 48 PIXELS
PIXEL 6016 < PIXEL 6143
X=0Y=47) (X=127.Y=47)

Figure 5-6. Display pixels.

82

character position) for a total of 128 x 48 = 6144. Numbering is
from left to right with a range of 0 through 127, and from top to
bottom with a range of 0 through 47. The format of the SET,
RESET, and POINT command is

SET(x,y)
RESET(x,y)
POINT(x,y)

SET and RESET, of course, set or reset the specified pixel.
POINT returns the value of the pixel, 0 for off, or 1 for on. Is
POINT useful? Does the TRS-80 sleep in the woods? { Wait a min-
ute, how did sleeping in the woods get into the act . . . P) Since the
video display is a memory, it stores the current on/off status of each
point. This can be very useful in determining the point status with-
out referring to another memory location. More on that later.

One of the more common things that is done to the display is to
“white it out.” The following code whites out the display by two
nested loops that use the SET statement. Run the program, but
before you do, get out that old trusty stopwatch you were using in
your jogging program (you've just got to do something about that
paunch . . .). Record the time it takes to white out the screen and
save it for comparison with some high-speed techniques we'll be
using later.

128 CLS Tclear screen

110 FOR X=B TOQ 127 Touter loop

128 FOR Y=0 TO 47 Tinner loopP

130 SET (XsY) ['set point

148 NEXT Y 9o down columnsz
150 NEXT X “and then across

160 GOTO 14608 *for nice screen displav

Got it? I have about 49 seconds. (Some of the later techniques will
cut down on that time by a factor of 100!)

Plotting Along With SET/RESET

The SET/RESET technique of graphics is a slow method for dis-
playing patterns, but it does lend itself very well to plotting graphs.
As a matter of fact, it is probably the fastest method for displaying
graphs of any we’ll be discussing.

If you recall those happy days of high-school algebra, you may
remember that the “standard” convention for graphs was as shown
in Figure 5-7. X is along the horizontal axis, and y is along the ver-
tical axis. X increases toward the right, and y increases toward the
top. We have a somewhat different situation with the x;y coordi-
nates for the TRS-80 display. X increases to the right, but the x
axis is at the fop and the y axis increases toward the bottom. Prob-

83

—X - -3 X
\ORIGIN
x =0
y=20
v
-y

Figure 5-7. “Standard” graphing.

lem: How do we translate from the standard graph to the TRS-80
display? Let’s plot a simple function to see how we can do this.

Guns Versus Butter

Suppose that we take a classic problem of Guns versus Butter. In
this example, we will attempt to solve the economic problems that
have been perplexing our country for some time. To make the prob-
lem more visible, well graph it on the oI’ TRS-80.

Guns cost $40 each, while butter costs $4 per pound. If we have
$200 to spend, we may divide it up between guns and butter. First
of all, let'’s define the limits of the graph. If we buy 5 guns, then
we've used up our $200, and we have 0 pounds of butter. If we buy
50 pounds of butter, then we can’t afford guns. It looks suspiciously,
then, as though the number of guns ranges from 0 through 5 and
the number of pounds of butter ranges from 0 through 50. We can
now set up the layout of the graph we’d like to draw on the video
display (see Figure 5-8).

ROOM FOR O
TO 5 GUNS

ROOM FOR 50 POUNDS
OF BUTTER (GRADE A)
Figure 5-8. Graph skeleton example.

84

Like most graphing problems of this type, we can divide the work
into two parts, drawing the skeleton of the graph, and drawing the
points themselves, or plotting.

The skeleton of the graph can be drawn by drawing one horizon-
tal line and one vertical line. The vertical line runs from y=0
through 47, and we can draw it by

208 FOR Y=0@ TO 47 “zetuer loop
388 SET (@.Y) [‘dr-am column
408 NEXT Y *continue

The horizontal line runs from x=0 through 127 on line 47, and
we can draw it by

502 FOR X=@ TO 127 “setup laop
&B@ SET(Xs47) [’dram row
700 NEXT X Tcontinue

To complete the skeleton, we need some way of marking the in-
crements of guns and butter and some labels. We'll use a blank spot
every 2 points for butter, and a blank spot every 9 points for guns.
(We chose these increments because the maximum value of 50
pounds of butter would be at x=100 and the maximum value of 5
guns would be at y=45; neither value would cause illegitimate x
or y values.)

The following code would clear the tick marks and label each
of the axes.

8@@ FOR X=X TO 100 STEP 2 ‘setur tick looe
F@0 RESET (X»47) [’b]ank tick mark
1000 NEXT X Tcontinue

1188 FOR Y=47 TO 2 STEP ~9 ~’zetupr tick Tooe
1200 RESET (@,Y) [_’b}ank tick mark
13880 NEXT Y ‘eontinue

1400 PRINT & 54 "GUNS": ‘vertical title
1508 PRINT & 936, "BUTTER": *horizontal title

The skeleton we have now looks like Figure 5-9. All we need to do
at this point to solve the world’s economic problems is to do some
meaningful plotting. The problem resolves into

GUNS * $40 + # LBS BUTTER * $4 = $200

One way of implementing this problem is to step the number of
guns from 0 through 5, since we know that this is the range of the
number of guns. The code below does this and computes the num-
ber of pounds of butter for each quantity of guns.

1608 FOR G=8 TO 5 r"setur computation
1700 B=(200-G*40)/4 compute butter
1808 NEXT & ‘continue

85

|
l
I Figure 5-9. Partial skeleton.
l
|

The only remaining thing to do is to plot the points for each set
of guns and butter. The horizontal distance or displacement for the
x value defining the number of pounds of butter is found by taking
B, the number of pounds of butter, and multiplying it by 2 (there
are two increments for every pound of butter). The vertical dis-
tance for the y value defining the number of guns is found by mul-
tiplying G, the number of guns, by 9 (there are 9 increments for

every gun). Putting this calculation in the above code produces

1600 FOR G=0 TO 3 ’zetupr computation
1700 B=(Z00-G*4D)/4 Tcompute butter
1728 X=B*2 >y displacement
1748 Y=47-G*7 v displacement
1768 SET (XY 'set point

1802 NEXT G Teontinue

With the addition of a screen clear at the beginning, the com-
pleted program looks like this

1808 CLS ‘clear soreen

280 FOR Y=0 TOQ 47 Tzetur looP

3B SET (@4 Y) [‘dram catumn

4@@ NEXT Y ‘centinue

500 FOR X=B8 TO 127 ‘eetur laop

608 SET(X,47) {-’dram -1}

700 NEXT X “reoantinue

8pB FOR X=Z TO 100 STEP 2 setup tick ltoor
928 RESET (Xs47) [’b]ank tick mark
1088 NEXT X ‘continue

112® FOR Y=47 TG 2 STEP -9 ‘zetup tick loop
1208 RESET (@,Y) [:’blank tick mark
1300 NEXT Y Teontinue

1400 PRINT & 5,"GUNS": “vertical title
150@ PRINT @ 9363 "RUTTER": "harizontal title

3

1608 FOR G=@ 70O 35
1700 B=(z00-Gx4@) /4

tup compPutation
mpute butter

1720 X=B*2 dizrlacement
1748 Y=47-G*9 dizplacement
1768 SET (XsY) ‘zet puant

1808 NEXT G ‘continue

1968 GOTO 1700 “loep here for diselav

The most important point (no pun intended) in the above pro-
gram is that the usual graphic y value must be converted to the
screen graph y system by subtraction from 47. This must always
be done for a graph with y coordinate at the bottom of the display.

1740 Y=47—-G*9 ‘y displacement

86

¥

The Guns and Butter graph illustrates the general approach that
you should take in graphing a particular function, or set of points
that define a graphical relationship.

1. Determine the appropriate ranges of both the x and y vari-
ables.

2. Draw the skeleton of the graph and mark off the horizontal
and vertical axes with appropriate tick marks to cover the
range. Numeric values, of course, may be put on or near the
axes.

3. Compute the function and get x,y values.

4. Convert the x,y values to the TRS-80 video coordinates by us-
ing the same x value, but by finding a new y value by subtract-
ing the old value from 47.

5. Plot the point by a SET.

6. Repeat for all points.

In the above example, we used values for x and y that were some-
what contrived. X and y turned out to be integer values only; that
is, none of the x and y values were mixed numbers containing inte-
gers and fractions. What happens if we do use mixed numbers for
x and y? If we attempt to set, say, x=12.7 and y=13.5, the x,y values
are truncated to x=12 and y=13. This means that x and y can be
computed without worrying about invalid values, unless x is less
than 0, x is greater than or equal to 128, or y is greater than or equal
to 48.

A Moving Experience

The SET and RESET commands can be used together to give
the illusion of motion for dots, lines, starships, flying rolling pins,
and other items. Let’s take the simplest case first, a moving dot.
To make a dot appear to move, the dot must be SET in one posi-
tion, RESET in that position, and then SET in the next position.
The timing should be such that the motion appears fluid (see Fig-
ure 5-10).

The simplest code for this is shown below. The speed of the
single dot moving across line 24 is about 1% seconds per crossing.

= L [L
> MOTION
SET RESET SET RESET

Figure 5-10. Simple animation.

87

This is about the maximum speed for a SET/RESET approach.
The dot can be slowed down by inserting “time wasters” at state-
ment 350. Try various “time wasters” such as 350 REM or 350 A=0
or 350 A=1%2 to see how they affect the speed of the dot.

180 CLS *clear screen

200 FOR X=8 TO 127 Tamimation loop
3B@ SET (X124) ‘tuen dot on
4B RESET (Xs24) "turn dot off

500 NEXT X *continue

The same principle of animation may be applied to more complex
figures. The more complex the figures, of course, the more difficult
it is to know which dots to turn on and off. We'll show some more
examples of animation later in this chapter when we discuss some of
the faster graphics methods.

Good Points to Censider

What the heck is the purpose of the POINT command? Beats me
—let’s go on to the next subject. . . .

But seriously, folks . . . the POINT command is a way of check-
ing each of the 6144 pixels on the video display to see whether they
are turned on or off. But don’t we know at all times whether or not
the pixels are on or off? Not necessarily. We could keep track of all
pixels that are on in a long table, and then search that table to find
out the state of the pixel in question. But why not use the POINT
command to check the pixel without spending a lot of time search-
ing through a table of values? After all, each pixel is really a one-
bit (0 or 1) memory in itself. The POINT command makes it pos-
sible to check the state of any one of the 6144 bits that represent the
pixels on the screen.

There are times when it’s very convenient to use the POINT
command in place of keeping a long list of turned-on pixels. Sup-
pose that we have turned on points at random and now wish to
check whether a pixel is on. The code below shows a simple exam-
ple of the approach. It searches the video memory by a POINT
command to find the one pixel that has been turned on by a random
selection. The random selection was made by the RND command,
which we'll talk about a little later on.

1008 CLs Tclear screen

1180 X=RND(127) "find random x 1 te 127
1200 Y=RND{47) ‘find randem v 1 te 47
130@ SET (X+Y) Tturn on Polnt

1400 FOR X=0 TO 127 Tzetur cuter loop
1500 FOR Y=8 TOQ 47 *setur inner loop
1608 IF POINT(XsY)=-1 PRINT Xs5Y [’Pr:nt 1f Point on
17@@ NEXT Y ‘continue search

1BDO NEXT X “continue with outer

88

Notice that a —1 was returned for the POINT in only one case,
the case in which the pixel was found to be ON. All other pixels
caused the POINT to return a zero, indicating that they were OFF.

The POKE Graphics Method

The second approach to graphics that can be used is the POKE
method. We know that video-display memory is exactly that, a set
of 1024 memory locations. The addresses of the 1024 locations range
from 15360 to 16383. This area is in the first 16K (16 x 1024) loca-
tions of the TRS-80 memory address range. The video-display mem-
ory shares this memory along with Level II BASIC and some dedi-
cated addresses for the line printer and other devices (see Fig-
ure 5-11).

LOCATION
0
BASIC
—~ INTERPRETER 4+
IN ROM
12287
12288 FIRST 16K (16384)
LOCATIONS IN MEMORY
DEDICATED
ADDRESSES
(LINE PRINTER, ETC))
15359
15360 1024 LOCATIONS
VIDEO DISPLAY
16383 | MEMORY
16384
34 START OF i
! RAM ‘
i t

Figure 5-11. Video-display addresses.
To address any of the 1024 print positions, all that we must do
is find the displacement of the print position from the start of video-
display memory as shown in Figure 5-12. Since there are 64 char-

89

DEDICATED

LOCATION | ADDRESSES
]
(START) 15360 —— -—15423 (LINE 0, CHARACTER
15424 — ~-— 15487 POSITION 63)
15488 —— (LINE 1, CP 63)
VIDEO
DISPLAY
MEMORY
16320 —f | [-—16383 (LINE 15, CP 83)
LINE 15.CPOY ! !
(' START OF }
iI RAM i
f

Figure 5-12. Finding the print-position displacement.

acters per line and 16 lines per display, the video-display memory
address for any character position is 15360 + (line number *64) +
(character position in line). To address line 8, character position
10, for example, we find

15360 + 64 * 8 + 10 = 15882

Here, we were using 0 as the first line number and first character
position on the line. Referring to our ASCII codes of Table 3-1,
we can store a “1” on that character position on the screen by

100 CLS ‘for set
200 POKE 15882,49 ‘set pixel
300 GOTO 300 ‘loop here

The POKE method is very useful when we must fill the same
graphics character across an entire line or portion of a line. Did you
save the timing of the SET/RESET “white-out’? Let’s compare it
with one using the POKE method. The following code whites out
the display by POKEing a 191 (10111111) into each of the 1024
character positions of the video display. The value 191 represents
all ones for the six pixels and a one bit to signify graphics. For the
fastest speed, don’t enter the comments!

18 CLS Tclear zcreen

2@ FOR X=15360 TO 16383 Tzereen memory limits
3@ POKE X»191 [’aﬂ 6 pixels an

4@ NEXT X Tcantinue

58 GOTO 50 Ttacks nice

90

Seven and a half seconds! Quite a difference between the POKE
and SET/RESET methods!

Of course, any of the 64 patterns shown in Figure 5-4 may be
output as a line or portion of a line using the POKE technique.
The following code draws a stop light using the POKE method.
When the areas involved are small, the method is fast enough that
you can at least think about animation techniques.

7@ DATA 19151315 131+1915191513141315191
92 DATA 19151315131+191+131217151515131
P4 DATA 128,1705149,128

18D CL.S "clear zcreen

118 FOR I=0 TO 4 ~ setur row loor

120 FOR J=08 TO 3 “setupr column looe
139 READ A ‘aet grarhics value
14@ POKE 15360+350+J+1%b45A ‘pake 1nto rowscolumn
138 NEXT J Qo for next column
168 NEXT I —’do for next row

178 FOR I=8 TO = i~ zetup 1i9ht autput

180 POKE 15360+351+1%641167 *flash light

190 POKE 1536@+352+1%b45 167 in twe positians

195 IF I=1 THEN K=300 ELSE K=1000 Tuse shoprt value far vel
208 FOR J=8 TO K E’tzmxng Teap

218 NEXT J *for light

220 POKE 15360+351+1%645 131 H ‘now turn of f l1ght

230 POKE 153608+352+1%&4, 131 i in twe positions

240 NEXT I L = coentinue

258 GOTO 170 Tlaop for next cvcle

How about addressing the 6144 pixels randomly using the POKE
technique? I was afraid youd ask. . . . While it’s easy to compute
the address of a character position for the POKE, it’s rather difficult
to compute the address of a pixel. Furthermore, computing the
pixel address and performing a POKE for the pixel bit actually
takes longer than the equivalent SET/RESET. For those masoch-
istic programmers out there who wish to try it anyway. . . .

To find the POKE address for a given x,y, perform the follow-
ing steps.

. Divide x by 2 and save the quotient as XQ. XQ=INT(X/2)
. Save the remainder as XR. XR=X—(XQ*2)

. Divide y by 3 and save the quotient as YQ. YQ=INT(Y/3)
. Save the remainder as YR. YR=Y—(YQ*®3)

. The POKE address is given by A=15360+YQ®64-+XQ.

To SET a bit using POKE,

Ut i O DO =

1. Get the value at the POKE address by B=PEEK(A).

2. Or in a bit value as follows: B=B OR 21(YR*2+XR).

3. Make certain the most significant bit is set by oring in 128.
B=B OR 128

4. POKE the value back in the address. POKE A,B

91

To RESET a bit using POKE, change the value in step 2 to
255—21(YR*2+XR) and anp instead of oring.

B=B AND (255—21(YR*2+XR))

String Graphics and the Chattanooga TRS-80

Do you still have that stop watch available? Execute the follow-
ing program to “white-out” the screen, and time its duration.

190 CLEAR 5008 Telear string sPace
208 CL8 Tclear sareen

20 A$=STRINGS (64 CHRE(191 1) get graphics string
400 FOR I=1 TO 16 “zetupr looP

500 PRINT As$: [’Pr—;nt line

408 NEXT I “looe

768 GOTO 700 for diselav

This time the screen white-out took less than a second! Obvi-
ously, this method is the fastest of any so far—75 times as fast as
the SET/RESET method and 10 times faster than the POKE imple-
mentation. This method uses one of several methods to establish a
string variable. Once the string has been established, it can be
PRINTed very rapidly because it requires no computation; the
string values are just simply printed as they appear!

To see another example of this method, let’s establish a display
other than a continuous string of the same pattern. We'll use an
old-time locomotive as the pattern we want, as shown in Figure 5-
13. The choo-choo is made up of 36 character positions with 6 pixels
in each character position, as shown in the figure.

12

+ + +
(]
N OO I OO

\

et
~3
~N

CPO CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8CPCP10CP11

TOP
ROW

MIDDLE
ROW

BOTTOM
ROW

i |

Figure 5-13. Choo-choc pattern.

92

We must take each of the 36 character positions and translate
them into a proper graphics code by referring to Figure 5-4. When
we do this, the codes are

TOP ROW 188,188,140,140,172,128,128,128,139,191,135,128
MIDDLE ROW 186,191,188,188,190,191,191,191,191,191,191,157
BOTTOM ROW 130,139,191,191,135,131,131,139,191,191,135,129

Just to be certain that we have the proper codes, let's draw the
figure in the center of the screen. We'll use three strings, one for
each row in the figure.

120 CLEAR 1000 ‘clear string space

208 CLS ‘clear screen

322 A$=CHR$(188)+CHR$(ISB)+CHR$(14@)+CHR$(149)+CHR$(172)+CHR$(128)+CHR5(XZB)+CHR$(ﬂ
408 B$=CHR$(186)+CHR$(191)+CHR$(lBE)+CHR$(1BB)+CHR$(19B)+CHR$(1911+CHR$(!91)+CHR$(U
520 C$=CHR$(13@)+CHR$(139)+CHR$(191!+CHR$(19!)+CHR$(135)+CHR$(1331+CHR5(131)+CHR$(ﬂ

&2@ PRINT & 5389,A%: ‘erint first row
700 PRINT 3 602:B%$: "Prant second row
808 PRINT & 666:C$: ‘print third row
200 GOTC 920 “loer here tTar diselay

To make the choo-choo move, we'll move it a character position
at a time. If we add leading blanks to the strings, we will get an
automatic erase of the old image. With the addition of some smoke,
we've completed the animation

840 IF RND(3)=1 GOTO 850 ELSE PRINT @ I—54,"0";

108 CLEAR 1000 ‘clear string crPace

20@ CLS ‘clear screen

320 As=" “+CHR$(188)+CHR$(188)+CHR$(140)+CHR$(14Q)+CHR5(172)+CHR$(12S)+CHR$(128)+CH5
400 Bs= ‘+CHR$(!B&I+CHR$(191)+CHR$(188)+CHR5(188)+CHR$(190)+CHR$(191)+CHR$(191)+CH(
508 C$=" "+CHR$(l3ﬁ)#CHR$(139)+CHR$(191)+CHRS(191}+CHR§(135?+CHR$(13!)+CHR$(131)+CHF

688 FOR I=51% TO 543 Tsetur loor for movement
650 PRINT 3 1:4%: Terint first row

700 PRINT @ I+64sBs%s 'Print second row

808 PRINT @ I+128,C$: ‘eraint third row

825 FOR J=1 TO z@ E’delav for effect
B3@ NEXT J Yleor

848 IF RND(3)=1 GOTO B50 ELSE PRINT @ I-S4,"@":

8580 NEXT I ‘moeve to the right
08 GOTO 908 "loor here for diseplavy

Note that in the above code, we used a timing loop (FOR J=1
TO 20: NEXT J) to actually slow down the animation! We're mak-
ing progress in speeding up our graphics! Another trick we could
have used would be to add cursor characters in the string so that A$,
B$, and C$ would be concatenated into one super string. Adding
STRING$ (13,CHR$(24)) and CHR$(26) would move the cur-
sor left 13 positions and down one position, in preparation for the
next row. You might like to work that out on your own (reviewing
cursor positioning in Chapter 3 will help refresh your memory about
cursor movement).

93

String Graphics Using Dummy Strings

There is an additional technique that we can use to implement
string graphics, the technique of “dummy strings.” For this method,
we use a dummy string equal in length to the desired string and then
fill in the graphics characters required. When a number of strings
are used for graphics, this technique saves on string initialization
and string storage requirements, and is easier to use. We'll see how
this works using one large string with cursor control movements.

1000 CLS Tclear screen’

110Q A$="THIS IS A DUMMY STRING TO BE FILLED WITH GRAPHICS AND CURSOR CHARS!
1200 DATA 1285 1885 188 1405 140 172 1285 1285 1285 139+ 191,135,128

1250 DATA 26124128y 241241241 241241 241244249 241244 24

1300 DATA 128>1Bés 1915188, 1868, 190:19151915191519111915191+157

1350 DATA 2632432412674+ 241241245263 245241241241 24

1400 DATA 1285130+ 1391191+ 1915135, 1315131:139+19151915135,129

1500 B=VARPTR{AS)

1600 C=PEEK(B+2)*%2536+PEEK(B+1) *find actual address

1708 FOR I=C TO C+66 "setup loor to fill =tring
1880 READ A “get one bvte value
190@ POKE I»A (.’Poke 1trto string

=p00 NEXT 1 “~ *laopP

2108 FOR I=512 TO 360 “setur loor to move
22@@ PRINT @ I:A%$: erint one long straing
230@ FOR J=1 TO 30 delay for effect
2408 NEXT J “lacp

2450 IF RND(3)=1 GOTO 2500 ELSE PRINT 8 I-54,"8"%

2508 NEXT I “*meve to right

2608 GOTO 2600 to retain diselay

Unlike the other string graphics mode, no CLEAR is necessary,
since the BASIC interpreter will use the string text in the A$ state-
ment for PRINTing the string. The dummy string is established by
using any text string that is equal to the number of graphics char-
acters to be printed. Next, the graphics characters themselves are
constructed using a DATA statement. The first two rows have the
cursor control characters 26 (down cursor) and 24 (left cursor) ap-
pended to move the cursor back to the beginning of the next row.

We know from Chapter 3 that the VARPTR function will find the
address of the string variable parameters for A$ in the following
order:

(B) = A$ length
(B+1) = Least significant byte of A$ address
(B+2) = Most significant byte of A$ address

C is computed to contain the address of A$. This address, unlike a
string that has been constructed from CHR$ or concatenation, is the
address of the string within the A$ statement itself. The READ loop
reads each of the DATA values and puts them into the dummy
string. Now we have a string for A$ made up of the actual graphics
characters we require. This is used in the PRINT@ statement in the
same fashion as the other string graphics mode, except that we now
have one large string.

94

The speed of this graphics method is about the same or slightly
faster than the previous string method, once the dummy string has
been filled with the proper characters. The program below “whites
out” the screen using this method.

3002 A%=" ‘64 sraces here!

3100 B=VARFPTR(AS%) "8et strin9 block locn
2208 A=PEEK(B+Z2)*Z56+PEEK(B+1) 8¢t address of string
3308 FOR I=A TO A+63 ‘zet fill locp

3400 POKE 15191 [’fiﬂ with all on chrs
3508 NEXT I “loop

34608 CLS ‘clear screen

3700 FOR I=t TO 16 setur laop for lines
3800 PRINT A$: i1l lane °

3908 NEXT I “loop

4000 GOTO 40008 *leor for appearance

One important point about this method: Do not attempt to edit the
lines after they have been initialized!

Graphics Review

We've discussed four graphics methods: the SET/RESET method,
the POKE method, the string method, and the dummy string method.

Let’s just recap how to apply these methods: Use SET/RESET for
plotting graphs and random data. This method is useful any time
points must be-displayed that are not in the same area, or that do
not have a similar pattern. The POKE method is used as a simple,
direct way to draw horizontal or vertical line segments that have
an identical pattern or for drawing blocks of patterns (and it’s much
faster than the SET/RESET method). The string methods are used
when animation is to be performed. They're extremely fast but re-
quire a great deal of work in translating the graphics patterns to
be output into corresponding data values. The dummy string method
is perhaps the easiest for setting up a large number of graphics data,
but it does require a means to move the data into the dummy string.

Is there a faster graphics method? Yes, there is a method that is
even a hundred times faster than the string method. The kicker is
that this method uses machine language. We'll be describing some
of the interfacing techniques to machine-language subroutines in a
later chapter, but we cannot cover the subject in less than another
book! Take a look at our TRS-80 Assembly-Language Programming
(62-2006) if you're interested in learning how to create machine-
language programs.

How to Draw a Straight Line

Drawing a straight line on the video display is not always easy
to do. The TRS-80 video screen is divided into 128 by 48 picture ele-
ments, as we have seen. Now, the more pixels that there are on a

95

display, the finer the resolution of the display, and the straighter the
lines that can be drawn. Compare the line drawn on a portion of a
screen that has 100 pixels (10 by 10) with one that has 400 (20 by
20) (see Figure 5-14).

10

Figure 5-14. Drawing straight lines.

In attempting to draw a straight line between two points, a cer-
tain amount of “jaggedness” has crept in. This jaggedness is unavoid-
able, and the 6144 pixels on the TRS-80 represent a good compro-
mise between a reasonable resolution and a manageable number of
points. (Remember, each point takes a discrete amount of time to
process, and painting a white screen with 128 by 128 pixels would
take about 2% times as long as 6144 pixels.)

How can we draw a reasonably straight line between two points?
One way this could be done, of course, would be to work with the
equation of a straight line for a graph. Everyone knows that this is
Y=MX*C. Or is it Y=MX/C ... ? Or, wait a minute . . . I've got it
here in my notes. . . .

On second thought, let’s look at a way that is just as efficient
(probably more so) and that takes very little math and no analytic
geometry. Suppose that we have two points that must be connected
by a straight line. We've shown the number of points between the
two points in Figure 5-15.

The following code draws a straight line between the two points
by determining the minimum number of points to fill every pixel
between the two points. The code tries to minimize SETting the
same pixel ON more than once, since this is an obvious waste of
time. On the other hand, it makes certain that every pixel of the
jagged line between the two points is SET that must be SET. Of

96

X2—X1 IN THE x OR HORIZONTAL DIRECTION
Y2—Y1 IN THE y OR VERTICAL DIRECTION

X2—X1

X1yl

THESE PIXELS MUST BE FILLED

Y2—-Y1

X2Y2

Figure 5-15. Connecting two points.

course the code is a subroutine and must be called using something
such as:

100 INPUT X1, Y1, X2, Y2 ‘2 points
110 GOSUB 10000 ‘call line subroutine
120 GOTO 100 ‘loop

12800 IF ABS(X2-X1)<ABS(Y2-Y1) GOTO 10200

10005 DY=(YZ-Y1)/ABRS(XZ-X1) ’get delta v

1021@ IF X2>X1 GOTO 1807@ o if x2 TO RIGHT
10820 FOR I=X1 TO X2 STEP -1 2 to left

1@@83@ SET (I.Y1) *set point

10040 Yi=Yi+DY add delta v

18045 IF Yi<@ THEN Yi=0 "may hapPen once
1@05@ NEXT I ~tcontinue laop
100462 RETURN ‘return te calling erog
10078 FOR I=X1 TO¢ X2 %2 to raight

18080 SET (I.Y1} “set epoant

10090 Yi=Yi+DY add delta v

10873 IF Yi<@ THEN Yi=@ *mav happen conce
12188 NEXT I ~cantinue loop
1@11@ RETURN ‘return to calling prog
18208 DX=(XZ~X1)/ARS(YZ2-Y1) *find delta

10205 IF YZ>Y1 GOTO 10300 ‘g 1f v2 below

10210 FOR I=Y1 TG YZ STEP -1 — *vZ above

10220 SET (X1s1) *set point

10230 X1=X1+4DX Tadd delta x

18235 IF X1<@ THEN X1=0 "mavy hapeen once
10240 NEXT 1 " Tcontinue loop
18258 RETURN "return to calling sro9
18382 FOR I=Y1 TO YZ — w2 above

10310 SET (X1s1) Tset poant

10328 X1=X1+DX add delta x

1@325 IF X1<0 THEN Xi=0 ’mav hapren once
18338 NEXT I meentinue loop
18348 RETURN Treturn

97

The code above functions as follows: It compares the distance in
the y direction with the distance in the x direction. If the x distance
is greater, then the code will step x in increments of 1 from X1 to
X2. For each x step, a “delta” value of y is added to the current Y1
value. The DY value is derived from the y distance divided by the
number of steps in x. If the x distance is less than the y distance,
then the code will step y in increments of 1 from Y1 to Y2 and vary
X1 by adding a delta x. In the process of adding DX or DY, it is
possible to go over Y1=47 or X1=127. However, as we saw earlier,
an x or y value that is fractionally over is truncated. Given sufficient
precision, X1 and Y1 will never be equal to or greater than 128 or
48, respectively.

A different situation exists when the value of X1 or Y1 decreases.
Because the delta is fractional, X1 or Y1 may become very small
negative numbers. Because of this, a check is made for negative X1
or Y1, and the variable is set to 0 if a negative value has been com-
puted. The negative value will only occur on the last point to be
SET and only on the extreme top (Y) or left (X).

A test driver for the subroutine in the code below will allow you
to input X1, Y1, X2, Y2 values to exercise the subroutine.

The subroutine may be used as the lines are required, or it may
be used to draw an initial pattern by setting up values in a DATA
statement or array and by READing the values with a call to the
subroutine for each set of four as shown below. A convenient way
to detect the end of the data is by an illegal set of points such as
-1, ~-L
188 DATA 20,20:30,20
200 DATA 30+20:30:30
308 DATA 30:38,20.30
400 DATA 20, 30:20.20
580 DATA Z0s20,30,38
4608 DATA 20,303.30.20

700 DATA —1s—1s—1s-1
75@ CLS Tclear soreen

0@ IF Xi=-1 GOTOQ 900 Tleor for aesthetics
1000 GOSUB 10000 “draw that line

800 READ X13Y14X21Y2 [’read twe point definiticons
112@ GOTO 882 Tlooe for next line

98

CHAPTER 6

Tables, Chessboards, and the
Fourth Dimension

In this chapter and the next, well be talking about how to orga-
nize data. In the jargon of computer science, organization of data
is treated under the name data structures. The three data structures
we'll discuss in this chapter are lists, tables, and arrays. In the next
chapter, we’ll talk about how to maintain the order of tables and
arrays, and about a third type of data structure called a linked list.
We'll limit our discussion to those data structures used commonly
in BASIC programs and forget about such esoteric structures as the
Flying Buttress Array, the Catenary String, and the Starboard List,
all of which cause computer science students many sleepless mid-
term nights,

The simplest form of a data structure is a list of items. A list rep-
resents a set of data that is probably related in some fashion. An ex-
ample might be a shopping list for the grocery store:

11b butter

1 qt milk

3 sm tomatoes

1 can orange juice

1 qtoil

1 can peas
All the items are related except one. Which one? Exactly—the 3 sm
tomatoes are the only items that are not packaged! This only points

to the fact that lists can include any number of related or non-related
items at the user’s discretion.

99

THIS IS BETTER THAN
TABLES, ChessB0ARDS AND DIMENSIONS])

BASIC DATA Lists

We have a built-in provision in Level II BASIC for creating a list.
The DATA statement allows us to build a list as long as the memory
we have available. The DATA statements below build our list.

1@ DATA "1 LB. BUTTER"

12 DATA "1 a7 MILK"®

14 DATA "3 5M TOMATQEB"

16 DATA "1 CAN ORANGE JUICE”
18 DATA "1 @T OIL"

2@ DATA "1 CAN PEAS”

We can read the list by performing a READ command. The code
shown below continuously READs the list we established in state-
ments 10-20 until it runs out of data. At that point, the BASIC inter-
preter, having looked throughout the current BASIC program un-

successfully for more DATA statements, prints the message “OD

100

ITEM "1 LB BUTTER"
5
3.7

1
2
3
Figure 6-1. Example of DATA list. 4 "1 QT OIL”
5
6
7

377258
.005
2

ERROR IN 1000”. In the case of this list, each string (such as “1 LB
BUTTER”) was one item in the list. Every time a READ was per-
formed, the next item from the list was read.

1000 READ A$

1010 GOTO 1000

We can have any number of items in the DATA list as long as we
either have a data statement for each one or separate the items by
commas. The types of items in the list can also be mixed—we can
intersperse strings with numeric data of several types. BASIC auto-
matically makes each entry a separate item. The statements
100 DATA “1 LB BUTTER”,53.7,"1 QT OIL”

110 DATA 377258,.005,2

would create a list of 7 items arranged as shown in Figure 6-1.
Every time a READ was performed, the next item in the list would
be read. Of course, we could not have tried reading a string with a
“100 READ A”. If we had, an error would have resulted.

We mentioned earlier that the list could be as long as the mem-
ory available. When using DATA statements, there is only one list.
And that list includes every DATA statement in the current program,
the same way that the Lord High Executioner’s list in the Mikado
included all of his enemies.

DATA “PEOPLE WHO HAVE FLABBY HANDS AND IRRITATING LAUGHS"

DATA “PERSONS WHO IN SHAKING HANDS WITH YOU SHAKE HANDS
WITH YOU LIKE THAT“

DATA “THE BANJO SERENADER AND THE OTHERS OF HIS RACE”

When we have three DATA statements in a 2000 statement pro-
gram, one at the beginning, one at the middle, and one at the end,
such as

100 DATA 0,1,1,2,3,58

1200 DATA 13,21,34,55

2000 DATA 89,144,233

101

100 CLS Tolear noreen

11@ PRINT "height vz we1ght" "print title

12 INPUT "1nput hei®ht in inches"3IH “input hei1ght

138 IF IH<5@ OR IH»7Z GOTO 120 kew aQain 1f off zcale

140 RESTORE ‘rezet pointer

15@ READ HTsWT ‘read hfswt from Tist

160 IF HT=IH PRINT "FOR HEIGHT OF"sHT:"WEIGHT SHOULD BE"IWT ELSE GOTO 158
17@ GOTO 120 gg for next ht

188 DATA 50165151:67352:75953:88:55, 9535565 1815,57- 1865585111
190 DATA 59+ 1201401125161+ 131:62, 1369635 1445641 14816551565 665161
200 DATA 6711676821726+ 180s 701 184,7152535724 197

Figure 6-2. DATA list program.

then we've created a fourteen-element list of items. The data state-
ments can be put anywhere; the BASIC interpreter will skip over
them in the normal flow of execution and simply note where they
are and that they constitute the one and only data list.

READs and RESTOREs

Every time a READ is executed, another item in the data list is
read, and an imaginary pointer is adjusted to point to the next
DATA item. Actually, the pointer is not so imaginary. There is a
pointer used in the BASIC interpreter, but it is not accessible to
John Q. Programmer, except via the RESTORE statement. The
RESTORE resets the pointer to the beginning of the DATA list.
Any time we want to start at the beginning of the DATA list, we
can take advantage of the RESTORE.

A good example is shown in Figure 6-2, where we have a program
to access the DATA list to find the average weight for a given height.
In this case, the data is arranged in groups of two, height (in inches)
followed by average weight (in pounds). Every READ reads two
items, height into HT and weight into WT. When the height matches
a given input height, then the weight is printed. A RESTORE then
resets the pointer in preparation for the next input. Note that a mul-
tiple READ has been done with two variables. We can read as many
variables as we can pack into each READ statement.

Mixing It Up

Having one huge DATA list of mixed variables is a mixed blessing.
It’s a convenient way to establish a long list of constant data, but it
does not allow an easy way to set up independent data lists. If we

read three different sets of data, as in this example,

188 REM LIST OF TELEFHONE NUMBERS
11@ DATA "5535-1212"."999-800@" « "999-1234"

1200 REM LIST OF DISTANCES IN MILES
1218 DATA 1.2+3.615.719.2+11.8

1836 REM LIST OF LISTS
1840 DATA *“STARBOARD":"PORT""BOTTOMS UP"

102

then we wind up with one integrated list of 11 items. How do we
locate each group conveniently? We could be aware of the number
of items in each group. That way, to get to the third group, the list
of lists, we could execute

2080 RESTORE ‘rezet Foanter

2100 FOR I=G TO = Tzetup for first 9rour
2200 READ A% [’read and throw away
2388 NEXT Tluoe

2408 FOR I=@ TO 4 Tsetup for Znd 9raur
250@ READ A [‘read and throw awav

2600 NEXT
2700 REM WHEW! FINALLY MADE IT°®

Ploeop

This code bypasses the first two groups by READing and discarding
DATA items. Two separate READs must be made because the first
group is a string list while the second group is a numeric list.
Another way to find the proper group is to insert a unique code at
the beginning of each group and then search for that code to set the
pointer to the proper data. This technique is shown in Figure 6-3,

1008 DATA -1

1018 DATA 2315565785 115:5:4:6589,101

1020 DATA -2

1@32 DATA 5+1617+45:666s77389:17:3

1040 DATA -3

1858 DATA 3:455.637.8+93.08155

1060 RESTORE ‘reset data pointer
1070 READ A search for -

1880 IF A<>-2 GOTC 1070 ‘read again 1f not -2
1890 REM NOW POSITIONED AT SECOND LIST

Figure 6-3. Using multiple DATA sets.

where a search is made for —2, which is the second group of data.
When —2 is found, the data in the second group can be accessed.
Obviously, a —2 cannot be a DATA item anywhere in the DATA
list, nor can any of the other values that are used for codes that mark
the position. Clearly, we have reached the end of our list in noting
the usefulness of the DATA, READ, and RESTORE commands.
Let’s move on to more useful data structures, but remember the
DATA list as a powerful data structure for short programs, and, as
we shall see, a means for initializing data in another data structure
called an array.

Array of Hope

One of the more powerful data structures we have in Level II
BASIC is the array. What's an array? Thought you'd never ask . . .
an array is an ordered list. The list may be one-dimensional, two-
dimensional, three-dimensional, or many-dimensional. The number
of dimensions relates to how data in the list is accessed or obtained.

103

One-Dimensional Arrays

A good example of a one-dimensional array is a shopping list.
Wait a minute . . . didn’t we go through this some other time? I have
a feeling of deja vu. . . . Actually, the shopping list presented earlier
under DATA statements is a one-dimensional array, as are the other
examples of DATA statements. The primary differences, however,
are that the DATA statement produced a list of constant data that
could not be modified and could not be easily accessed except in
sequential fashion, starting from the beginning. A one-dimensional
array, on the other hand, may be easily modified and accessed.

As an illustration of a one-dimensional array, let’s set up an array
called AG (AGe) that will hold the ages of 100 people. The equiva-
lent DATA statement approach would be

100 DATA 33,50,12,2,7,105,969

where the ages are known beforehand. (We have included Methu-
selah’s age for contrast.) Using a one-dimensional array, though, we
reserve space for the 100 ages by a DIMension statement.

100 DIM AG(99)

Note that the DIM statement specified an upper limit of 99. The
number of items, or elements, in the array is 0-99 or 100. The num-
ber specified in the DIMension statement is always one less than
the number of elements in the array.

When the BASIC interpreter encounters a DIM statement such
as the one above, it reserves, or allocates, an area in RAM memory
for array AG made up of 100 elements. What is in the elements?
Initially, zeroes. It is up to the programmer to fill it with meaningful
data. (That’s usually the hardest part of programming.)

The array is represented in Figure 6-4. It is stored in RAM mem-
ory as a contiguous (consecutive) block, with the first element (0)
at the start (lowest RAM) location, and the last element at the
highest RAM location. Now let’s fill in those elements with mean-
ingful data. .

To access any element in the array, we simply give the name of
the array, AG, and a number from 0 to 99 representing the array
element. Of course, the number may be represented by a variable
or expression, also. To INPUT a number of ages and fill in the array,
for example, we can execute the code shown below.

3008 CLS Tclear sereen

3100 1=0 Tindex=0

320@ INPUT “ENTER AGE":3:A - Tinput aQe 1n vears
3300 AG(1Y=A Tstare 1noarraw

3480 I=I+1 L’p-:-)nt to next arrav el
3508 GOTC 300 9o for next age

104

LOWEST

RAM ADDRESS AG(0)
AG(1)
AG(2)
, 100 ELEMENTS
| | OF AG(e) ARRAY
HIGHEST
RAM ADDRESS AG(99) J

Figure 6-4. Example of one-dimensional array.

This code will fill array AG forever, especially since there is no
provision for ending the INPUT process. Initially, I is set to 0, and
the first entry is made by AG(0)=A after A has been set equal to
the INPUT value. Each time through the loop, I is incremented by
one to point to the next element of the array. If more than 100 en-
tries are made, a “BS ERROR” or “bad subscript” results.

To access any element of the array, all that’s necessary is to specify
AG(n), where n is any value 0 to 99. To find the 50th age, for exam-
ple, we may say

100 B=AG(49) ‘get 50th age

Look It Up in the Index

Arrays group similar items of data, and the elements of one-dimen-
sional data are accessed using an index value. In the case of the age
array above, the index of 0-99 represented the number of the age
entry. The first entry was at AG(0), the next at AG(1), and so forth.
This positional index is always maintained in arrays and makes them
much more powerful than DATA lists, where data is accessed in se-
quential fashion from beginning to end. In the age array above, we
stored the ages in sequential fashion as they were received. In many
cases, however, the position in the array is related to other than
chronological order. Suppose that we had a 100-element one-dimen-
sional array representing ages from 0 to 99 years—DIM AG(99)
(you old-timers don’t get riled up, now!). We could tabulate a count
of ages by incrementing the proper array element (corresponding to
an age) quite easily as shown below.

105

4008 CLS Telear sareen

41@0 INPUT "ENTER AGE":A ‘1aput agde

4200 AGLAI=AG(AI+] [‘1ncrement a@e count

4300 GOTO 4100 Tlanp

Here again, no check is made for a terminating condition. Also, no
check is made for an out-of-range subscript, although the BASIC
interpreter will give us a “BS” error if one is input.

The idea of indexing is a very useful one, indeed. It allows re-
lated data to be retrieved from a number of different arrays. Sup-
pose, for example, that we have several one-dimensional arrays rep-
resenting mailing-list data. An array called LN$ holds the last names,
one called FR$ holds the first names, one called SA$ holds the street
addresses, one called CT$ holds the cities, one called ST$ repre-
sents the states, and one called ZP$ holds the zip codes. This arrange-
ment is shown in Figure 6-5. If we require room for 100 names in the
mailing list, we can allocate space by the statements

5008 CLEAR 5800 ‘clear for string:s
510@ DIM LN$(9) *fast name arrav
5280 DIM FR$(99) *first name arcay
53080 DIM SAH(99) ‘street addrezz array
5400 DIM CT$(9N ity address arrav
55@8 DIM STH(97) *state address arrav
5608 DIM ZIP$(99) me. T1P &rray

By splitting up the data on each entry in the mailing list, we've
accomplished several things. First of all, we've made it easier to
access each element of an entry in the mailing list. If we want to
obtain the city, for example, we don’t have to search a large string
such as “PASCAL,BLAISE,123SORBONNE,PARIS, FRANCE,1623"
to find “PARIS”. Instead, we can simply pick up “PARIS” from the
CT$ array with the proper index such as CT$(52). Secondly, we've
made the speed of access faster. String manipulation is one of the
slowest parts of any software. To anyone who has spent hours watch-
ing a mailing-list sort only to have the line power go off about 3.2
seconds from the end of the task, this is a large benefit. To print the
mailing-list label, we can do

46@PD LPRINT FRE(I:® "3LN$(I) "erant firztslast name
6188 LPRINT SAs(1} "wRint sireet address
4208 LPRINT CT$(I:3" “3STs(Irs" "3ZP$(1) erint citvsstateszie

Tables and the Boarding House Reach

This is probably a good time to talk about tables. Tables are an-
other type of data structure closely related to one-dimensional ar-
rays. A good example of a table is a shopping list. (What? You say
we've used this example eight times already?!) A table is, like a
one-dimensional array, a collection of data arranged in convenient

106

€291 JINYYS SIHyd INNOGYOS €21 3SIV18 TYISYd = AYLNI HLN

ﬁ

— | L

L

(66)$dz

(66)$18

(66)519

\

(66)3vS

3

(66)3Y4

A

£291

JONYYA

Si4vd

INNOBYOS £Z1

ENLAL]

Tysyd

(0¢dz

(0)s18

0810

{Digvs

(0)gy4

(66)SNT

(0N

Figure 6-5. Related one-dimensional arrays.

107

form. While we tend to think of arrays as being a list of very similar
data (such as “states”), a table may have sub-groupings of data for
each entry, and a master key.

Let’s take the mailing-list example and build a table to hold mail-
ing-list entries. (Excuse me while I get a programmer’s plane and
some binary glue. . . .) All right, a typical table is shown in Fig-
ure 6-6. Each table is made up of entries. An entry is usually a fixed
length—so many characters or bytes. Each entry may be broken

TABLE | FIRST TABLE ENTRY
SECOND TABLE ENTRY
THIRD TABLE ENTRY

B
LAST TABLE ENTRY
TYPICAL ENTRY /
CHARACTER 0)
LAST NAME

(16 CHARACTERS) |FIELD 1

CHARACTER 16 FIRST NAME

(8 CHARACTERS) | T'ELD 2
CHARACTER 24 72 BYTES/
STREET FEp3 | CHARACTERS!
(16 CHARACTERS) ENTRY

CHARACTER 40
CITY
(16 CHARACTERS) | F'ELD 4

CHARACTER 56 |STATE}
{2)

7P
(5 cHARACTERS)| ELDS 38

/A
UNUSED(1) CHARACTER 60
Figure 6-6. Table structure.

108

down into fields, each field representing a piece of data associated
with the entry. One (or more) of the fields may be a key, which is
the data item that is searched for. In this mailing-list example, the
obvious key is last name, and related fields are first name, street,
city, state, and zip code. Each field keeps the same relative position
in the entry.

One way to build the table is to use an array. Each element of
the array will hold one entry, and the entire array will comprise the
table. The array may be “initialized” to the standard length of 72
bytes per entry (element) by a loop that sets up each element with
dummy characters.

90 CLEAR 8000

100 DIM A$(99) ‘100 entries

110 FOR I=0 TO 99 ‘! set up loop

120 A$() = STRING$(72,/*") [! fill with dummy characters
130 NEXT ! ‘ loop

Now we can use the string operators (LEFT$, MIDS, etc.) to access
the fields within each entry. If, for example, we wanted to change
the street for the 13th entry in the table, we could perform the fol-
lowing code

1000 A$(12) = LEFT$ (A$(12), 24) + “NEW STREET #*+**so | MID$ (A$(12),41,32)

Note that every field must be padded out so that the entry remains
at a length of 72 bytes to simplify access of fields in the general case.

Tables may be fixed length or variable length. Fixed-length tables
have a constant number of entries; while variable-length tables have
an open-ended number of entries. To find the start of any entry, we
compute the entry number times the length of each entry to find a
displacement, which is then used as a starting point to access the
fields. Suppose that we have a fixed entry length of 72 characters
per entry, and that 16 characters have been allocated to the last-
name field, as shown in Figure 6-7. To find the location of the first
name of the 51st entry, we would find the displacement of the en-
try by ’

50 X 72 = 3600

and then add 16 to point to the first name.

Cumbersome? Yes, and it's more difficult to work with tables in
BASIC than other software levels such as assembly level since it’s
hard to keep things a fixed length. Bear in mind, though, that this
type of data structure can be used when each entry can be made to
be a fixed length and may prove to be useful some cold, dark night
when you're bored with arrays and DATA lists.

109

ENTRY 0

ENTRY 1 DISPLACEMENT = 50 ENTRIES+
! L | 72 CHARACTERS/ENTRY = 3600

A\
\'
Y

ENTRY 50 —T

ENTRY LAST —1
LAST ENTRY

ADD 16 TO
LAS(TH';‘)AME POINT TO FIRST
NAME = 3616

FIRST NAME
8)

STREET
(16)

CITY
(16)

Figure 6-7. Table use.

Two Dimensions and Beyond

One-dimensional arrays are pretty easy to visualize. So are two-
dimensional arrays such as a chess or checkerboard, as Alice found
out in Through the Looking Glass (Figure 6-8):

“ .. and a most curious country it was. There were a number of
tiny brooks running straight across it from side to side, and the
ground between was divided up into squares by a number of
little green hedges, that reached from brook to brook. . .~

110

Figure 6-8. A two-dimensional array.

Two-dimensional arrays can be used to represent any two-dimen-
sional condition, such as chessboards, a matrix of a screen or printer
display, or a point on a graph.

Taking the case of a chessboard, for example, we have a square
configuration of 8 by 8 positions, for a total of 64 squares. We could
use a one-dimensional array of 64 elements, numbered 0 through 63,
each one corresponding to one of .the 64 squares. However, in this
case it is much simpler to relate a two-dimensional array to the
chessboard as shown in Figure 6-9.

Each of the squares is referenced by two values, representing the
row and column, as shown in the figure. As the first element of the
array is always numbered “0,” the first square of the chessboard will
be row 0 and column 0. We could use an order of “row, column” or
“column, row”; the choice is completely arbitrary. Whichever one
we use, of course, must be maintained for any reference to the ar-
ray. We will use a row, column orientation so that the upper left
square is designated row 0, column 0, the next square (knight) is
row 0, column 1, and so forth.

Any time we want to refer to a particular position on the chess-
board, we can find its row, column notation and then use the two
values to reference a two-dimensional array.

The array in this case is defined by
100 DIM A$(7,7)

Don’t forget that in defining the array the value in the parentheses
represents the maximum value of the array and not the number of

111

ROW 0 ROW 0O ROW O
COLUMN 0 COLUMN 1 COLUMNS COLUMN 7

\0 v 6

11

ROWS

g

iy i
IR N A=

ROW 7 ROW 7
COLUMN 0 COLUMN 7

Figure 6-9. Two-dimensional array for chessboard.

elements. In this case, the array is 8 by 8, but the “last” element is
referenced by (7,7).

Having defined the chessboard array, we can now reference any
position by two values, row and column. To “initialize” the array
to starting chess positions, we can use chess notation.

200 DIM A$(0,0)="BQR" ‘black queen’s rook
210 DIM A$(0,1)="BQKT” ‘black queen’s knight
220 DIM A$(0,2)="BQB" ‘black queen’s bishop

i

|

i

{

i

el

[:]

112

§6 YIAWNN L¥vd 404
Y3Q¥0 NO Y3dNNN

\

[~ =7

o o
o~
[«p <]
U

YIGWNN 1avd

031S3N03Y ¥ITWNN
43040 NO Y34WNN

ONVH NO YIGWAN

]

]

Figure 6-10. Two-dimensional array for inventory.

113

Of course, a two-dimensional or other size array does not need to
have a “physical” counterpart such as a chessboard. We can use
arrays to represent more abstract variables. Suppose that we have
an inventory of 100 parts, each with a part number of 0 through 99.
We can use a two-dimensional array to order the parts based on part
number and “status.” We'll let the second dimension be three values
representing number on hand, number on order, and number re-
quested, as shown in Figure 6-10. The DIMension statement for this
array is
100 DIM A(99,2)

where 99 represents the 100 parts and 2 represents the three “status”
indices of 0 for number on hand, 1 for number on order, and 2 for
number requested.

To find the number on hand for part number 55 (a left-hand-
threaded blidgit), we’d use

20 COLUMNS (X)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0010 19.0
0.1

20 ROWS (Y)

-t
o

191019 19.19

Figure 6-11. Life two-dimensional array.

114

200 B=A(55,0) ‘find number on hand
while

210 B=A(55,1) ‘find number on order
would find the number on order, and
220 B=A(55,2) ‘find number requested

would find the number requested.

One of the more fascinating numerical games to appear in recent
years is the game of Life. Life is very simple in concept but (as they
say, ominously) has far-reaching implications. Life is played on an
infinite two-dimensional array checkerboard. Since it’s rather hard
to fit an infinite array into a finite space (even in 48K), we'll limit
it to an array about 20 by 20. Each cell of the array can be defined
by a row and a column, as shown in Figure 6-11.

The rules of the game of Life are: We start off with some arbi-
trary pattern on the array, such as the one shown in Figure 6-12.

INITIAL
PATTERN
®
/
“DEAD” CELLS
bl P ARE BLANK
7
"LIVING”
CELLS

Figure 6-12. Life example.

Each cell is living (on) or dead (off). On the next generation,
whether a cell lives or dies depends on its neighbors. If it has fewer
than two neighbors, the cell dies from loneliness. If it has 4,5 6,7,
or 8 neighbors, the cell dies from overcrowded conditions. If a cell
has 2 or 3 neighbors, it survives to the next generation. In addition,
if any cell is dead and the number of neighbors is 3, then a new cell
is born on the next generation. These rules are shown in Figure 6-13.

The game proceeds from generation to generation, and it's fasci-
nating to watch whole colonies appear, die, spawn new patterns—in
general to watch a process analogous to . . . well . . . lifel (Based on
its interest, since 1975 Life has probably burned up hundreds of

115

EXAMPLE

® ® o e ©
® 9 @ ® © ¢ & ® @
® ® e ® o
GENERATION 1 GENERATION 2 GENERATION 3 GENERATION 4
RULES

® EVERY CELL WITH NO NEIGHBORS DIES ON NEXT GENERATION FROM LONELINESS.

® EVERY CELL WITH ONLY ONE NEIGHBOR DIES.

{2y A CELL WITH TWO NEIGHBORS SURVIVES.
®

3 @
® ¢
3) (3 A CELL WITH THREE NEIGHBORS SURVIVES.
e o
B & @
e ® ©
6B O @
@ ® © ACELL WITH FOUR OR MORE NEIGHBORS DIES FROM OVERCROWDING.
(3 @
® @
@ o
e @ AN EMPTY CELL WITH EXACTLY THREE NEIGHBORS IS A BIRTH CELL.
((3)) A NEW BIRTH OCCURS ON THE NEXT GENERATION.

Figure 6-13. Life rules.

millions of dollars worth of computer time on expensive computers.)
If you're interested in finding out more about Life (and there are
many subtleties), you can find material in hobbyist computer maga-
zines and back issues of Scientific American.

To set up our Life game, we'll use two arrays, one for the current
generation, and one for the next. This is a slow way to implement
the game, but it will allow us to do some manipulation of two-dimen-
sional arrays. The program is shown in Figure 6-14. (How ‘bout an
exercise for you: Speed up the operation 100-fold.)

The arrays are called A and B and are defined by the DIMension
statements DIM A(21,21) and DIM B(19,19). A is an array of 484
elements, 22 on a side, while B is an array of 400 elements, 20 on a

116

18 CLS
20 DIM A(21521)
3@ DIM B(19:19)

“clear screen
‘setup larg9e arravy
setur working array

4@ GE=1 "initialize Jeneration PART 1
100 INPUT XsV —input initial pattern PART 2
11@ IF X=-1 GOTO S0@ 3o 1f 1nput finiched

120 B{XsY)=1 set cell

130 GOTO 100 9o for next input

208 FOR X=0 TO 19 ~ [’herizantal loop PART 3
21@ FOR Y=8 T0 19 I 'vertical looe

220 A(X+1sY+11=B{X Y} Tadauzt for array sizes

230 B(XsY) =0 zero working array

240 NEXT Y = laap

258 NEXT X = laoe

328 FOR X=8 TO 19 r’loap for caomputatian PART 4
310 FOR Y=8 TO 19 ~*heriz and vert

320 NO=@ “init # of neirghtar:z

33@ IF A(X»Y)=1 NO=NG+1

342 IF A(X+1,Y3=1 NO=NG+1

338 IF A(X+2:Y)=1 NO=NO+1

360 IF A(XsY+1)=1 NO=NO+1

370 IF AIX+2:¥+1) NOsSNO+1

380 IF A(XsY+Z)=1 NO=NO+1

390 IF A(X+1sY+Z)=1 NO=NO+1

408 IF A(X+Z;Y+2)=1 NO=NO+1

418 IF NO=@ OR NO=1 B(XsY)=0

4Z@ IF NO=4 OR NO=5 0OR NO=6 OR NO=7 OR NO=B B(X,Y)=0

438 IF NO=2Z B(XsYI=A(X+1:Y+1)

440 IF NO=3 B(XsY)={

45@ NEXT Y “loop

460 NEXT X - Jaap

508 PRINT & B896» "GENERATION® ;GE PART 5
310 FOR X=8 TO 19 Tzetup for diselav

52@ FOR Y=0 TO 19 7 twe nested loops

S53@ IF B(XsY)=1 SET (X+54:Y+14) ELSE RESET(X+S4sY+14)

540 NEXT Y a P

55@ NEXT X ‘continue with loop

560 GE=GEti Thump 9eneratioN count

57@ GOTO Z0@ " leontinue with next Yen

Figure 6-14. Life program.

side. The periphery of A is never used and always contains zeroes.
A always contains the current generation, while B contains the next
generation. The program is made up of five parts. Part 1 initializes
the two arrays and sets variable GE to 1. GE is the “generation”
counter and increments by 1 for each generation.

Part 2 allows the user to input an initial pattern. A good one to
try is the “R pentomino” pattern of 10,11; 11,10, 11,11; 11,12; 12,10,
The form of the input is x,y, where x is the horizontal coordinate
for the array of 0 to 19, and y is the vertical coordinate of 0 to 19.
Inputting a —1,0 terminates the input. After inputting the initial
data, array B has been set to a one for every cell specified. A GOTO
part 5 prints array B by displaying it in the center of the screen. As
the screen center is at x=64 and y=24, the upper left-hand corner of
the array area will be at x=54, y=14. The cells in the B array are
converted to screen coordinates by the SET and RESET commands
which look at every element of the B array and either set or reset
a screen point.

Normally, the flow is part 3, part 4, part 5, and back to part 3
again. Part 3 transfers the last generation in the B array to the A

117

NO = NUMBER OF NEIGHBORS

CIRCLED CELL HAS 1 NEIGHBOR

® e

@
@

CIRCLED CELL HAS 2 NEIGHBORS

]

CIRCLED CELL HAS 3 NEIGHBORS

@ e
e

®© © ©
CIRCLED CELL HAS 4 NEIGHBORS
°®
e ©
CIRCLED CELL HAS 5 NEIGHBORS
©
o ©
CIRCLED CELL HAS 6 NEIGHBORS
e ©
(@ © CIRCLED CELL HAS 7 NEIGHBORS
)
®
CIRCLED CELL HAS 8 NEIGHBORS (MAXIMUM)
© © ©

Figure 6-15. Life computation.

118

array. The boundary of the A array is not used, so the A array really
starts at x=1, y=1.

Part 4 is the heart of the program that computes the next gener-
ation. Every cell in the A array now contains the last generation.
The program looks at every cell in the active area of A and computes
the number of neighboring cells (NO), as shown in Figure 6-15.
Each cell in B is set according to the number of neighbors in the
corresponding A cell, according to the Life rules. If NO is 2, the
B cell is set to the same value as the A cell. If NO is 3, a “birth”
occurs in the B cell. At the end of the computation in part 4, part 5
is entered so that the B array can be printed. Parts 3 through 5 are
then repeated for the next generation.

The Life program is a good exercise in array manipulations. We
actually translated one array (B) to a new position in the A array.
In addition, we converted the B array to a third two-dimensional ar-
ray, the screen. Note that the screen display is really a “hardware”
array of 128 by 48 points when we are in the graphics mode.

This version of Life could be speeded up considerably by using
only one array and by scanning for empty “horizontal” and “vertical”
lines. (Oops—didn’t mean to give away any secrets for your exercise.

We've seen one-dimensional arrays and two-dimensional arrays,
but how about three dimensions and above? Level II BASIC permits
any dimension of array, and in fact multi-dimensional arrays can
easily be used for mathematical problems such as computing three-
dimensional vectors. For non-mathematical processing, however, it
does get rather hard to visualize arrays above three dimensions. The
physical appearance of one-, two-, and three-dimensional arrays is
shown in Figure 6-16, along with their corresponding DIMension
statements.

About the only restriction on the use of arrays is their size. Large
areas will gobble up a great deal of memory in a very short time,
especially if the array variables are types that occupy a large number
of bytes. A three-dimensional array that is 20 by 20 by 20 and uses
integer variables DIM A% (19, 19, 19), for example, will use 20*20°
20%2 or 16000 bytes for the body of the array plus 12 more for pa-
rameters to describe the array. The same array using single-precision
variables (the default variable type) would be twice as large—32,012
bytes! You might want to investigate the storage requirements of ar-
rays by changing the DIMension statement in the program below
and RUNning the program with various DIMensions.

100 A=MEM
110 DIM A%(19,19,19)
120 PRINT “ARRAY USED “;A-MEM;’ BYTES"

119

DIMA®) [|19 9ELEMENTS
ONE-DIMENSIONAL
7
DIM A(Z.6) 4 28 ELEMENTS
TWO-DIMENSIONAL

L 7L L L

DIM Ai4.6.1)

70 ELEMENTS

5

7

7
THREE-DIMENSIONAL

Figure 6-16. Three common array models.
Initializing Arrays

Early in this chapter, we mentioned that arrays could be initialized
by using data from DATA lists. This is an excellent usage of both
DATA statements and arrays and is quite common. The DATA state-
ments are used to hold all of the initial data for program arrays in
any convenient order. One massive READ operation at the beginning
of the program goes through the DATA list and initializes all arrays
in the program that require a starting set of values. Since this is done
only at the beginning of the program, the initialization process may
be as complicated as required; thereafter, the arrays hold the proper
data and may be accessed in their normal “random-access” fashion.
Many programs from this point on will illustrate this procedure.

120

CHAPTER 7

The Search for Better Data
and Sorting It All QOut

In this chapter, we'll continue the saga of the “Data Structure
Conspiracy.” When we last left Ernie List (mild-mannered pro-
grammer known only to a select few as *xDATAMANX), he was
fighting his way out of a diabolical matrix constructed by his arch
enemy, Dr. Dimension.

In today’s episode we'll follow the adventures of Dataman as he
searches for the missing data and then attempts to sort it all out . . .

Although sometimes one wishes there was a real Dataman to or-
ganize and search for data, the techniques discussed in this chapter
should help define the ways in which data is organized and accessed.

Unordered Data—No Order At All

One way to order data, of course, is to not order it at all. The data
is simply dumped into an array as it comes in. There are certain
advantages to this if the number of data elements is small or if the
data is actually ordered on the basis of appearance. If the number
of data elements is large, however, it takes quite a length of time
to find a particular data element. To illustrate data ordering, search-
ing, sorting, and merging (sounds like a stock brokerage, eh?), we'll
use the “Standard” data list shown in Table 7-1. This is simply a
typical list of data that must be processed. Because much of the
processing of this type involves alphanumeric data, we’ve made the

121

data string data, although numeric data could just as easily have
been used.

The order in Table 7-1 appears to be unordered, but there is a
definite order—that of size. If we were working with a list according
to size, then this indeed would be an ordered list. From the stand-
point of an alphabetical list, however, the standard list is unordered.

Table 7-1. “Standard” Data List Unordered

ELECTRON (PART OF OUTPUT TO CASSETTE)

LA SMOG (PARTICULATE MATTER)

DIAMOND (20 POINTS)

PEA (FROM 1971 POLITICAL FUND RAISING DINNER)
MARBLE (SHOOTER)

#3 BALL BEARING (FROM SANTE FE REEFER CAR)
FABERGE EGG (FROM HERMITAGE)

BASEBALL (PETE ROSE AUTOGRAPH)

ORANGE (ONE OF THREE)

BOWLING BALL (USED FOR PERFECT 150 GAME)
BALLOON (WITH THE WORDS “THE TRS-80 IS A GAS")
BALL OF STRING (IN BEDROOM)

747 TIRE (SOUVENIR OF HAWAII TRIP)

DOUGHNUT {SIGN AT DRIVE-IN)

GOODYEAR BLIMP (WITH ANIMATED SIGN)
PERISPHERE (AT 1939 WORLD'S FAIR)

RAMA (IN CLARKE ORBIT)

PHOBOS (ONE OF TWO)

MARS (A PLUG FOR FUNDING)

EARTH (IS THERE INTELLIGENT LIFE HERE?)

Much of the time, we will be working with alphabetically ordered
lists in data processing on the TRS-80, although, as we see from the
example, the order may be based on parameters such as employee
number, zip code, disk track and sector number, or others. .

In this chapter, we'll be comparing some of the different tech-
niques used to find data and to order it, so it will be convenient for
us to have a “standard” way of timing the techniques. Another word
for the techniques or approaches to a problem is “Algorithm” (de-
rived, believe it or not, from Al Khwarizm, a ninth century Arabic
mathematician). Searching and sorting are some of the slowest pro-
cesses in BASIC and other types of programming since the amount
of data to be searched is usually very large and the search involves
time-consuming (string) comparisons. With a standard list of 20
items, however, the searches can’t take too long. . . .

The code below slows down the search or sort by a one-second
delay between comparisons and displays the current item in the
list being investigated. It is in the form of a subroutine which we'll
call for different searching algorithms.

122

108 CLS Tclear screen

110 DIM as(2d) . Taryay for data

120 FOR I=8 TO 19 ‘zetur for data to arrav
138 READ B3% ‘read data 1tem

140 A$(IY=B$ ‘move to arcav

158 NEXT I Tcentinue til dorne

160 INPUT "ITEM FOR SEARCH":C$ TinPut 1tem to be found
178 CLS “clear screen

180 FOR 1=0 TO0 @ ~’setup Yoor far diselay
19@ PRINT TAB(S)3IsA$(IIITAR(4@):1+105A%(1+1@)

Z@0 NEXT I L laee

218 FOR 1=0 TO 19 >setur lwor for search
220 GOSUP 20000 *prant action

Z3@ IF C$=AS(I1) GOTC 270 90 1f found

249 NEXT 1 ‘not foundscontinue

250 PRINT a894:"ITEM NOT FOUND k

268 GOTO 268 Tlawr here

27@ PRINT @ 8945 "ITEM FOUND AT "3l:* *

ZB@ GOTO ZBOD “leor here after find

308 DATA "ELECTRON"«"LA SMOG"s "DIAMOND" « "PEA" + “MARBLE"

310 DATA "#3 BALL BEARING","FABERGE EGG" v "RASEBALL" v "ORANGE " + "BOWL ING PALL"
320 DATA "BALLOON”.°BALL OF STRING"."747 TIRE™ « "DOUGHNUT" s *GOODYEAR BL.IMP"
330 DATA “PERISPHERE" s "RAMA" + " PHOBOS" ¢ "MARS" s *EARTH"

Z00@@ PRINT @ 894, "TESTING ENTRY # "1 ’print test action

Z@81@ FOR J=0 TO 180 “delay loop
20020 NEXT J Tlace
2003@ RETURN ‘return te callin9 eroSram

Figure 7-1. Sequential search of unordered list.

20000 REM A HAS ENTRY # ‘for display
20010 PRINT @ 896,“TESTING ENTRY # “;A ‘message
20020 FOR I=0 TO 100 " ‘timing loop
20030 NEXT I L ‘continve
20040 RETURN ‘return

The time required to search for a given entry in an unordered list
varies. At best, the sought entry is the first entry; at worst, it is the
last entry of the list. The average number of comparisons that must
be made in an unordered list is % the number of entries in the lst.
In the case of our “standard” list, the average search would involve
testing about ten entries.

The code in Figure 7-1 initializes a string array A$ with the twenty
string items (without comments) and then illustrates the searching
process for an unordered list.

The search time to find a particular data item is quite short for
this; we even had to slow it down for a reasonable display. If the
timing loop in the 20000 subroutine is taken out, however, you can
see that about one second is required to search the entire unordered
list for a data item that is not in the list. If the list is hundreds of
items long, it is easy to extrapolate and calculate that a linear search
of an unordered list may take several minutes. If we have a great
deal of repetitive searching to be done, say searching for items in an
inventory, the entire task could become very time-consuming,

Ordered Lists

It behooves us, then, to try to reduce the search time. The first
step in doing this is to order the list we have to search. In the case

123

of much data that we process in TRS-80 BASIC, this order will be
alphanumeric. Well, that’s easy enough—we’ll just alphabetize every-
thing. But what about the “#” character and digits such as “T"?

There is a definite order to all string data in Level IT BASIC. Its
order is defined by the ASCII character set used by Level II BASIC.
The character set for character codes 32 through 127 is shown in
Table 3-1. In an extraterrestial telephone directory ordered accord-
ing to these codes, a plasma drive mechanic with the last name of
9%ZZK will appear before a Zarful-dog trainer by the name of
&ANDER-SON. Names prefixed by lower-case letters such as an
itinerant Welshman by the name of “apRoberts” appear after WAN
Tailors.” Blanks or spaces, when used, will appear before just about
anything else; ROBERTS ED will come before ROBERTS,ED. It’s
somewhat important to know the order of things so that there are
no unpleasant surprises when the computer generates a list based
on the weights of the ASCII codes used.

When data is according to lower-valued items first, it is ordered
in ascending order. There is no reason that we cannot have other
orders, such as descending order, but we'll use ascending order in
all of the examples here. Table 7-2 gives our standard list in ascend-
ing order.

Table 7-2. “Standard” Data List Ordered

#3 BALL BEARING
747 TIRE

BALL OF STRING
BALLOON
BASEBALL
BOWLING BALL
DIAMOND
DOUGHNUT
EARTH

ELECTRON
FABERGE EGG
GOODYEAR BLIMP
LA SMOG
MARBLE

MARS

ORANGE

PEA

PERISPHERE
PHOBOS

RAMA

Now that all is in order, how do we efficiently search an ordered
list? Right away we're in better shape than with the unordered list
when we're dealing with data items that are not in the list. In the
case of the unordered list, we had to search the entire list to deter-

124

mine that a data item was not in the list. For a twenty-item list this
meant twenty comparisons. When we have an ordered list, we only
need to search forward in the list until we find an item whose weight
is greater than the item for which we are searching! This amounts
to comparing the input string with the string from the list and end-
ing the search if the list string < input string,

The average search for an equal distribution of items in the list
and items not in the list will be a search of about ten items. The
average search through an unordered list will be about fifteen items.
This linear search of an ordered list is shown in Figure 7-2.

180 CLS Tclear screen

118 DIM As(zZ®) Tarrav for data

12@ FOR I=D TO0 19 *zetur for data to arrav
138 READ B% [’read data item

140 A%(131=B$% ‘move to array

1580 NEXT I “continue til done

168 INPUT "ITEM FOR SEARCH":($ “inPut 2tem to be found

170 CL "clear screen

182 FOR 1I=0 TO 9 ’setup loor for diselav
19@ PRINT TAB(S5)3I3AS(I)3TAR(4D)I+105A$(I+10)

200 NEXT I Lrvaoe

21@ FOR I=0 70O 19 Tsetur lcop for search
220 GOSUBR Z0000R pPrint acticn

230 IF C$=A%(1) GOTO Z70 'go if found

235 IF C%<As$(1) GOTO 258 ’g¢ 1f past le9ical point
24@ NEXT I "net foundscontinue

238 PRINT 8896, “ITEM NOT FOUND "

26@ GOTO 268 "laor here

278 PRINT 3 B96,"ITEM FOUND AT *35I:" v

280 GOTO 280 "loep here after find

AQ@ DATA "#3 RALL BEARING"+"747 TIRE"»*BALL OF STRING":"RALLOON". "BASEBRALL"
310 DATA "BOWLING BALL"«"DIAMOND" . DOUGHNUT" s "EARTH"» "ELECTRON"

32@ DATA "FARERGE EGG","GOODYEAR BLIMP”".“LA SMOG"s"MARBLE"s "MARS"

338 DATA "ORANGEY."PEA"."PERISPHERE"» "PHOBOS" + "RAMA"

Z@0B0 PRINT & B896s"TESTING ENTRY # "31 ’erint test action

ZB@1@ FOR J=0 TO 100 “delav laop
ZBBZD NEXT J Tloewp
20838 RETURN Treturn te calling ero9ram

Figure 7-2. Sequential search of ordered list.

We could extend the idea of testing whether a list item is greater
than the search item further by taking every, say, fifth item and
doing a comparison on the list item and sought item. We could
then find out in a series of four steps in which general area of the
list it was. Then we could do a sequential search of that subgroup.
This would save considerable time on a long list. What is the ulti-
mate extension of this idea? Take off your shoes, light your pipe,
and T’ll recount a tale of adventure and intrigue I learned in the
Mediterranean. . . .

The Binary Search Mystery

Do you remember the paradox of Zeno and the Tortoise . . . or
was it Aristotle and the Hare? In any event, if you start off traveling

125

toward your front stoop from the sidewalk, and once each second
you go Y% the remaining distance, how long will it take you to ar-
rive at the stoop? Well, to make a long story short, although each
second the distance is decreased by one-half, you will never arrive,
as you take shorter and shorter steps. With luck, our search does
arrive, but the idea is somewhat the same. In the binary search, the
range to be searched is halved for each step, or iteration, of the
search.

Let’s see how this works. Suppose that we take our “standard list”
and search for “MARBLE” as shown in Figure 7-3. We know the

INPUT ITEM = "MARBLE"

1 | #3 BALL BEARING

2 | 747 TIRE

3 | BALL OF STRING

4 | BALLOON

5 | BASEBALL

6 | BOWLING BALL

7 | DIAMOND

8 | DOUGHNUT

9 | EARTH

10 | ELECTRON)

11 | FABERGE EGG -

12 | GOODYEAR BLIMP o @

13 | LA SMOG = Z zl@
14 | MARBLE] I B |
15 | MARS = @

16 | ORANGE =

17 | PEA =

18 | PERISPHERE

19 | PHOBOS

20 | RAMA

FIRST COMPARISON AT ITEM 10.
"ELECTRON” < "MARBLE," SO NEW RANGE IS 11-19.

(2)SECOND COMPARISON AT ITEM (19—11)2 + 11 = 15.
"MARS” > "MARBLE,"” SO NEW RANGE IS 11-14.

(3)THIRD COMPARISON AT ITEM (14—11)12 + 11 = 12
"GOODYEAR BLIMP" < "MARBLE.” SO NEW RANGE IS 13-14.

FOURTH COMPARISON AT ITEM (14—13)2 + 13 = 13.
"LA SMOG" < "MARBLE," SO ITEM MUST BE AT 14 (OR NOT IN LIST).

Figure 7-3. Binary search algorithm.

126

list is twenty items long. We'll search first midrange at item 10 and
compare the input item with the list item. The list item is less than
the input item, so we know that the item must be in the upper %
of the list, items 11-19. We'll split that range at 15 and compare
again. This time item 15 is greater than the input item, so we know
that the sought item is in the ¥ of the list from 11-14. The next
comparison is made at 12, where the list item is less than the input
item, making the next range 13 to 14. At 13, the list item is still less
than the input item. The list item is therefore at item 14 (or is not
there at alll).

This search is called a binary search and is one of the most effi-
cient searches for long lists of ordered data. The maximum number
of comparisons {or iterations) that must be performed is represented
by the power of 2 that results in a number greater than the number

122 CLS ‘clear zoreen

110 DIM A$(Z0) ‘arrav for data

120 FOR I=0 TO 19 r‘setup far data to arrav
130 READ B$ ‘read data 1tem

140 A$(1)=P% "move to array

15@ NEXT 1 ‘continue 11 done

160 INPUT "ITEM FOR SEARCHY:C$ “input 1tem to be found
178 CLS Tclear zoreen

180 FOR I1=0 TC¢ @ r'szetur Joop for dicplav
19@ PRINT TAB(S)5IAS(IIITAR(4D) 1 1+1@35A%(1+10)

200 NEXT I LA

28z HI=20 initialize hi 1tem

204 LO=0 ‘imitaalize lo 1tem

286 1=10 ‘initialize middle 1tem
@B FOR 1C=0 TO 4 item must be fnd in &
289 GOsUBR e dizplav actian

21@ 1IF A$(1)=C$ GOTO 27@ 9¢ 1f found

212 IF AS(I)<C$ THEN LO=I ELSE HI=I 'Pick 1/2 remalning
214 TI=INT((HI-LO) /2)+L0 "find new midpoint

216 NEXT IC Toontinue foop

#5352 FRINT aB94s “ITEM NOT FOUND “

268 GOTO 260 Tloap here

Y70 PRINT & 8965 "ITEM FOUND AT "sIs" "

288 GOTO 280 "looe here after find

32@ DATA “#3 BALL BEARING","747 TIRE"."PALL OF STRING" » "BALLOON" « "BASERALL"
310 DATA "BOWLING BALL" s "DIAMOND" y "DOUGHNUT" » "EARTH" + "ELECTRON®

328 DATA "FABERGE EGG"."GOODYEAR BLIMP"."LA SMOG" « "MARBLE" « "MARS"

330 DATA "ORANGE" s "PEA", "PERISPHERE® » " PHOROS" « " RAMA"

Z@00@ FRINT @ 896s"TESTING ENTRY # 31 *prant tesct action

20010 FOR J=@ TO 100 ‘delav loop
20820 NEXT J Tlooe
20030 RETURN return to caltling erogram

Figure 7-4. Binary search.

of items in the list. For example, if a list has 150 items, then 28 is
the next power of 2 larger than 150 (28 = 256). The power of two
is 8; therefore, a binary search will take 8 iterations to find out where
the item is in the ordered list, compared to an average of 75 for a
sequential search! The binary search is therefore quite powerful and
very efficient.

Let’s see how this works in a practical example. Figure 7-4 shows
a binary search for our standard list. The number of iterations here

127

is determined by 25, which is 32, the next power of two greater than
the size of the list, 20. The number of iterations is therefore 5. We've
set up a loop to go through 5 iterations at the end of which the input
string has not been found in the list. If the string is found, then the
loop is exited. Running the program in Figure 7-4 illustrates the
approximate speed of the binary search. For small lists, the “over-
head” of the additional string comparison is significant, but you will
find that as lists become longer and longer, it becomes less and less
of a factor.

There are other searching algorithms (as a matter of fact, there
are literally books full of them), but the sequential search and bi-
nary search are two of the most common techniques employed in
BASIC programming,.

Algorithms of a Different Sort

In the previous discussion, we've assumed that our list of items
to be searched was ordered. How do we order the list in the first
place? In the next few pages, we'll compare the ways in which data
can be sorted. Here, as in searching, there is enough descriptive
material on sorting to fill the national archives, but we’ll consider the
most common techniques for BASIC.

Suppose that we go back to our standard unordered list from

Table 7-1, and order it by several methods. The first method that
comes to mind is to sort the list using two arrays. We could go
through the first array (the list) and look for the smallest item.
After scanning the entire list, we now have the smallest item, which
can be put into the next element of the second array. Next, we would
look for the second smallest item, and so forth, until all of the items
from the unordered array have been moved to the sorted array. This
process is shown in Figure 7-5.
" The code for this sort is shown in Figure 7-6. This is a demon-
stration program that displays the data in both arrays as the sort
occurs. The main loop in the program starts off with the first entry
in the list array A$. This loop first looks for a “non-blanked” entry.
(As each entry is moved from the first array to the second array, it
is blanked by a string of “**®##”.) If it cannot find the next (0 to
19) non-blanked entry, the sort is done. If it does find a non-blank
entry, then it scans the remainder of the array for a data item smaller
than the current data item. If one is found, then the new item be-
comes the smallest. At the end of the scan, the smallest item remain-
ing is transferred to the second array and then blanked in the first
array. This process continues until all items have been transferred.
This “two-buffer” sort is perhaps the slowest of all sorts, but it is
direct and easy to code.

128

9@ Cl
10a@
200
300
400
500
600
7e8
1200
1120
1708
1800
19286
2200
2100
2200
2300
2400
24@5
2410
2415
2420
2425
2432
2500
2608
302
Jiee
3200
3328

ELECTRON

LA SMOG
CIAMOND

PEA

MARBLE

#3 BALL BEARING
FABERGE EGG
BASEBALL
ORANGE
BOWLING BALL
BALLOON

BALL OF STRING
747 TIRE
DOUGHNUT
GOODYEAR BLIMP
PERISPHERE
RAMA

PHOBOS-

MARS

EARTH

FIRST PASS

BUFFER 1 (ARRAY 1)
(UNSORTED)

SECOND PASS

|

#3 BALL BEARING
747 TIRE
t

\
ETC.

BUFFER 2 (ARRAY 2)
(BUILT UP FROM
BUFFER 1 DATA)

Figure 7-5. Two-buffer—sort algorithm.

T

LEAR 1000
DIM ASCLS)
DIM B$(19)
FOR I=@8 TO 19

’

y

string storageE
unsorted arrav

allocate woerkind arravy

~"setur 1oop for initialization
‘read data item

“store 1n arrav

‘mark b$ arrav entrv unused

= laor

allocate
allocate

imitialize b$ index

in b$

Qe 1f unused
*loor for smallest
[’new smallest
Tloor
‘mark unused
Tbume b%$ i1ndex
ARRAY"
[’loop fer display
*loar
— 90 far next entry
end messade

—’oeuter loor for nxt entry
*ge 1f unused
"make entry
‘clear screen
erint contents of arravs
start from bedinning
s "PEA" « "MARBLE"

DATA "#3 BALL BEARING":*FABERGE EGG"+"BASEBALL"+"ORANGE" + “BOWLING BALL®
DATA “BALLOON", "BALL OF STRING"+"747 TIRE"s "DOUGHNUT® s “GOCODYEAR BLIMP®

READ C$
AS(1)=C$
BS(I)="%k%u"
NEXT I

K=0

FOR I=@ TO 19

IF AS(D)="%xx%%" GOTQ 2500

FOR J=1 TCO 19

IF AS{J)="%%xx%" GOTO 2100

IF AS(JI)<A$(I) THEN I=J

NEXT J

BE(K)=A$(1)

AS(I)="%%kx%"

K=K+1

CLs

PRINT TAB(5)+"A%$ ARRAY"sTAB(43):"Bs$
FOR L=B TO 19

PRINT TAB(S5)sA$(L)>TAB(40)B$(L)
NEXT L

I=—1

NEXT 1

PRINT "SORT DONE® ’
DATA "ELECTRON®";"LA SMOG"s"DIAMOND®
DATA "PERISPHERE", "RAMA" s * PHOBOS®, *

MARS" « "EARTH"

Figure 7-6. Two-buffer sort.

129

Rising With the Tide

Another of the disadvantages of the two-buffer sort is that a great
deal of memory is required—twice that of the unsorted list. The sort
we'll talk about here—the bubble sort—requires only the memory for
the unsorted list itself. The separate elements of the list are moved
around within the list until they are ordered from beginning to end.
Because the lower-weighted or “lighter” elements “bubble” to the
top, the name “bubble-sort” is very descriptive. The algorithm works
as shown in Figure 7-7. Starting from the beginning of the list, each
item (1) is compared with the next item (I+1). If the next item is
of lower weight, the two items are swapped so that the lower-

One Pass Through a Bubble Sort of 9 Data items

Before Pass 39 79 1.9 29
3 o : 7
7 7 QDSWAP 1 1
1 1 1 933‘”’“’ 2 DSW P
2 2 2 2 9
6 6 6 6 6
g 5 5 5 5
8 3 8 8
4 4 4 4 4
6:9 59 8.9 4:9 After First Pass
; 3 3 3 3
7 7 7 7
1 i 1 1 1
é 2 2 2 2
6 6 6 6
9 D SWAP 5:) s 5 3
5 9 8 D 8 8
8 8 9./ SWAP 4DSWAP 4
4 4 4 9 9

N:M “N compared to M”
Figure 7-7. Bubble-sort algorithm.

weighted item rises to the top. This process continues until the end
of the list is reached. The program then goes back to the beginning
of the list and repeats the process. All items in the list have been
sorted when a complete pass is made through the list without any
swap of items having occurred.

Figure 7-8 shows a bubble sort implemented in our usual grand-
stand display mode. (People tend to watch anything on a screen in
these days of multiple-tv households.) This program shows the ac-
tual bubble sort, with, of course, a built-in display. { There is enough

130

“overhead” to dispense with a timing loop.) The sort routine itself
first resets the “swap flag” SW. If a pass is made through the list
without SW being set, then the list is sorted.

Next, the first element of the array is compared to the next. If
A$(I) > A$(I+1), then the two elements are swapped and SW is
set to 1. Otherwise, no swap is made. At the end of the loop, SW is
tested. If it equals one, at least one swap was made in the pass, and
the process is repeated once more; otherwise, the sort has been

completed.

182 CLs ‘clear szcreen

11@ DIM A$(28) Tarray for data

128 FOR I=8 TO 19 Tzetur for data to array
13@ READ Bs ‘read data item

148 AS(I)=R$ ‘move to arrav

150 NEXT 1 ‘centinue til done

155 FOR I=0 TO 18 STEP Z ’loop Tar array diselay
16@ GOSUR 20000 [‘disp]aY array

165 NEXT I "toas

17@ SW=@ 'zet chande flag

175 P=P+1 bump Pasz count

18@ FOR I=0 T0 18 setupr loor for =zort
190 IF AS(1)1<=A$(I+1) GOTQ 240 ‘8¢ if sorted (2 1tems)
200 BH=A$(1) Ttemporary steradge

210 AS(I)=A$(1+1) ‘mave 1tem up

220 AS(I+1)=Rs ‘move item down

23@ Su=1 ‘set chan9e flag

235 GOSUB 20000 ‘display change

248 NEXT I ‘continue with loge
245 PRINT 2896 "PASS";Ps ‘Print pasz count

238 IF SW=1 GOTO 170 ’9¢ a9ain if change

260 PRINT & B9&s; "SORT DONE" “done

278 GOTO 27D

3@0 DATA "ELECTRON®","LA SMOG™ 5 “DIAMOND” » " PEA® + "MARBLE"

310 DATA "#3 BALL BEARING”+ *FABERGE EGG"~ "BASEBALL" vy "ORANGE" + "BOWLING BALL"
320 DATA “BALLOON"«*BALL OF STRING"~"747 TIRE®s “DOUGHNUT” « "GOODYEAR BLIMP®
338 DATA "PERISPHERE" « "RAMA" + " PHOBOS " s "MARS" + "EARTH"

20020 CH=" b

20818 IF I1<18 PRINT B(I*64+5)1A$(113CSIELSE PRINT I-10)%64+35:A$(1)3C%3
20020 I=I+1

20038 IF I<1B PRINT B{I*64+5) 3 A$(1) 3 CHELSE PRINT AI-1Q) *64+35,A$(113C%s
20840 I=I-1

20050 RETURN

Figure 7-8. Bubble sort.

The worst-case time for this type of sort occurs when the list is
ordered in reverse order. Then a swap must be made for each set
of elements except for those not ordered at the bottom from previous
passes. For a twenty-item list, this worst case is 19+18+17-+ . . .
+2+1=190 swaps and nineteen passes, quite time consuming for a
sort! (You may want to reorder the list in worst-case fashion and note
the increased time.) The bubble sort becomes increasingly longer as
the list grows in size. One list twice as long as another may take ten
or twenty times the time to sort. Clearly, what we need is a faster
sort than the bubble sort, if we are ever going to get our mailing list
sorted and printed out.

131

The (New) Shell Game

One sort that is quite a bit faster than the bubble or double-buffer
sort is the Shell-Metzner sort, named after the originator, Shell, and
a modifier, Metzner. The Shell-Metzner sort divides up the sorting
task into several internal sorts as shown in Figure 7-9. The 16 ele-
ments shown in this example are divided first into eight groups of
two. The items for each set are sorted. Next the list is divided into

BEFORE FIRST AFTER AFTER AFTER AFTER
PASS SORT 1 SORT 2 SORT 3 SORT 4
19 1— 11— 1— 1
12 10 6 27—t 2
3+ 3 3— 3 —d 3
13 4 8 2 §——t 4
5 5 — 5—3 4——14 5
6 § 9 g —t §
16 14 4 §—rt 7
2 2 8 9—t 8
11 11— 7 —dt 77— 9
10— 12 10 10—1 10
4 — 4 14— n— 1
§ — 13 13 12—it 12
7 7 11— 14—r1 13
9 p— 12 13— 14
14 16 16 —— 16—t 15
15 15 15—t 15— 16
8 LISTS 4 1ISTS 2 LISTS 1 LIST A SORTED
OF 2 OF 4 OF 8 OF 16 {SIC) MESS
ENTRIES ENTRIES ENTRIES ENTRIES

Figure 7-9. Shell-Metzner sort algorithm.

four groups of four, and these elements are sorted in a manner remi-
niscent of the bubble sort. Then the list is divided into two groups
of eight with another bubble-like sort occurring. Finally, a sort of
one group of 16 is performed to end the sort. The entire sort has
been implemented in a maximum of 8+12+14+16=50 swaps in four
passes, whereas the maximum for the bubble sort would have been
15+14+13+ . . . +2+1=120 swaps and 15 passes.

The Shell-Metzner sort for our standard list is shown in Figure
7-10. Tt displays in similar fashion to the bubble sort discussed ear-
lier. The Shell-Metzner sort executes quite a bit more rapidly than
the bubble sort even for such a small list, and it will operate at
speeds hundreds of times faster for longer lists.

Toward a Faster Sort

Is the Shell-Metzner sort the ultimate sort? There are faster sorts,
such as Hoare’s Quicksort, but the Shell-Metzner is a good solid

132

100 CLs clear screen

11@ DIM A$(z@) Tarrav for data

12@ FOR I=8 TO 19 "setur for data te arrav
1380 READ BS$ ‘read data item

140 A$(1)=R$ ‘meve to arrav

15@ NEXT I ‘continue til done

155 FOR 1=8 TO 18 STEP 2 "leor for array display
157 J=I+1

160 GOSUR D000 [:‘displav array

165 NEXT I ’lacp

166 P=0 “set Pazs count to @

1780 M=208 set # of lizts to arrav =x
175 M=INT(M/2} Processing loar one

188 IF M=@ GOTO z27@ g0 1t done

182 P=pP+i

184 PRINT aB%é6s"PASS="j;

183 FOR 8T=8 TO M-1 ['erccescsing loor twa

19@ 1=87 “start of a list

195 J=8T+M

200 SW=2 *set chan9e switch to B
205 IF AS(I)< =AS(J) GOTO 235 ’1f orderedycontinue
210 Sk=1 ‘ot orderedsswap

215 B$=A%(I)
228 AS(1)=A%(I)
223 A$(J)=B% ‘move down

238 GOSUB ZpoBo *praint change

235 I=J i Tleok for next two

240 J=J+M L'entrleg

245 IF J<2@8 GOTO 285 9o 1f =till this list

25@ 1IF SW=B GOTO 268 8¢ 1f this list sorted

235 GOTO 19@ this list still unerdered
268 NEXT ST 8o for next list

265 GOTO 175 ‘9¢ for next zet of lists

278 PRINT 8 89645 "SORT DONE® “dont that beat all

288 GOTO 280 "loop here far arppearance

300 DATA "ELECTRONY, *LA SMOG", "DIAMOND"+ " PEA™ » "MARBLE"

310 DATA "#3 BALL BEARING"s"FABERGE EGG"+"BASEBALL" s "ORANGE®+ "BOWLING BALL"
328 DATA "BALLOON", "BALL OF STRING"s“747 TIRE","DOUGHNUT"+"GOODYEAR BLIMP"
338 DATA "PERISPHERE"."RAMA":"PHOBOS" «+ *MARS" » "EARTH"

20000 C$=* "

Z0@10 IF I<10 PRINT @(I%64+5),A%(I1)5CH3ELSE PRINT &(I-10)%54+35,A8(1) 0%
28038 IF J{1@ PRINT @(J*64+5):A8(J)1C$7ELSE PRINT O(J—-10)%64+35sAS(J11Cs
20058 RETURN

Ttemporary storage
‘mave up

Figure 7-10. Shell-Metzner sort.

sort that is still understandable to the BASIC user (and the author)
and can therefore be adapted to a variety of data structures.

How about another exercise? Find faster and faster sorts until
(in a relative way) you are able to sort your data even prior to load-
ing it into the machine!

Mergers Are Big Business

We've now talked about searches and sorts. Are you ready for
merges? (Wait! Come back!) Merges are another common opera-
tion in data processing. A merge takes (generally) sorted data from
one list and merges it into sorted data in a second list. Business data
processors call this creating a new master file from an old master
file and a transaction file. The transaction file contains the current
data, while the old master contains the previously ordered data base.

Merging, in the case of BASIC lists, involves obtaining a data item
to be merged and then searching a list for the point at which the

133

data item should be inserted, as shown in Figure 7-11. The data after
the insertion point is then moved down, and the data item is inserted
in the “gap.” The search technique can be any of the search types
we have discussed in this chapter.

Commonly, we would like to be able not only to search for and
insert data, but also to delete items from lists and modify existing
items in lists. These operations have a wide variety of uses from up-
dating inventories to maintaining directories of disk files.

OPERATION: MERGE "MACKEREL" INTO LIST

1. FIND INSERTION POINT 2. INSERT
#3 BALL BEARING #3 BALL BEARING
747 TIRE 747 TIRE
BALL OF STRING BALL OF STRING
BALLOON BALLOON
BASEBALL BASEBALL
BOWLING BALL BOWLING BALL
DIAMOND DIAMOND -—REMAINS
DOUGHNUT DOUGHNUT
EARTH EARTH
ELECTRON ELECTRON
FABERGE EGG FABERGE EGG
GOODYEAR BLIMP GOODYEAR BLIMP
LA SMOG LA SMOG
MARBLE _
MARS MACKEREL }—INSERT
ORANGE MARBLE
PEA MARS
PERISPHERE ORANGE
PHOBOS PEA -—MOVE DOWN ONE
RAMA PERISPHERE
PHOBOS
RAMA

Figure 7-11. Merging algorithm.

The deletion is the reverse of the insert, as shown in Figure 7-12.
The item to be deleted is located by a binary or other type of search
and then deleted by moving the remainder of the data in the list up
over the item to delete it. The last data item is then zeroed or blanked
to create a new “gap” at the end of the list. The process of moving
data in both the insert and delete functions can be very time con-
suming, as shown in this code that moves 200 elements of an array
up one block to simulate a deletion.

134

OPERATION: DELETE "EARTH" FROM LIST

1. FIND ITEM 2. DELETE
#3 BALL BEARING #3 BALL BEARING
747 TIRE 747 TIRE
BALL OF STRING BALL OF STRING
BALLOON BALLOON ~—— REMAINS
BASEBALL BASEBALL
BOWLING BALL BOWLING BALL
DIAMOND DIAMOND
DOUGHNUT DOUGHNUT
EARTH
ELECTRON ELECTRON
FABERGE EGG FABERGE EGG
GOODYEAR BLIMP GOODYEAR BLIMP
LA SMOG LA SMOG
MARBLE MARBLE _
MARS VARS MOVE UP ONE
ORANGE ORANGE
PEA PEA
PERISPHERE PERISPHERE
PHOBOS PHOBOS
RAMA RAMA

Figure 7-12. Deletion algorithm.

100 DIM A(2000) ‘establish array
110 For I=0 TO 1998 ‘start of loop
120 A(D=A(I+1) ["move up
130 NEXT | ‘loop

The above code takes about 26 seconds. If many block moves are
to be done for merge operations, might not there be a faster way to
maintain ordered lists? Ah yes, my friends . . . I have here a little
gem-dandy device called the . . .

~0 . EXCELLO \f
* Y *% \\\ LINKED LIST ./ %\ * Yk

Cures slow-speed merges, dandruff, loss of weight. . .
you ask? . . .
ture. ...
Linked lists are worth mentioning here because they are an effi-
cient data structure. The expense is a more complicated data struc-

. The price,
Well, my friend, only a little more complex data struc-

135

HD 6
POINTER TO
"HEAD” OF
LIST
AD) 27 172 Sa——
AL | 479 -1 D
a0 | 450 T g
S/
AB) 13 0 4
P
A% | 400 2 ___)
AG) | 399 4 .
AG) 1 I — y
AD | 195 8 D“—“\
A®) | 257 9 D
A9 | 320 10
ALO) | 365 5 :)
Al {11 7 D g
A12) 65 1 y
[— L W—
DATA POINTER
MEM TO NEXT
IN ITEM IN
LINKED LIST

LIST LAST = —1

Figure 7-13. Linked-list structure.

ture, together with larger storage requirements for data. A linked
list is shown in Figure 7-13.

The linked list is made up of data items which are linked to each
other by pointers. Because each element points to the next, the data
elements do not have to physically follow one another, as shown in
the figure. What is the advantage of this? Because a link may be
broken at any spot, a data item may easily be inserted or deleted.
Figure 7-14 shows an insert operation, for example. The item 345
is to be inserted in its proper place in the list, Starting from the head
of the list, a search is made for the insertion point, which is after

136

OPERATION: INSERT 345 IN LINKED LIST

1. FIND INSERTION POINT 2. CHANGE POINTERS
oy | 12) |z 12
Ay | 49 -1 an | an -1
A2 | 450 1 A2 | 450 1
M |1 0 A |13 0
ad | 400 2 AL 400 2
AG) | 399 4 e Am | 399 4 e
AR |1 3 ag) |1 3
an | 19 8 an |19 8
A8 | 257 9 - A | 257 9 -
A9 | 3 10 a9 | 320 13+
S
AL | 365 5 no) | 365 5 g
7
an |1 N PP S
M2 | e 1 PONT pan | 65 1
NEW ITEM AL3) | 365 - A3 | s 10)
*CHANGED
**ADDED

Figure 7-14. Insertion using linked list.

320 and before 365. The pointer at item 320 points to 365. This
pointer is changed to point to 13 (the number of the new item), and
the pointer associated with the new item is initialized to point to
item 10. The new item has been inserted in the list without moving
a large block of data.

Deletion of an item in a linked list is shown in Figure 7-15. Ttem
257 is to be deleted from the list. Item 195 points to item 257, which
points to item 320. Item 257 is removed by changing the pointer in
item 195 to point to 320. The storage associated with item 257 is
released back to a storage pool by blanking item 257 in some fashion
such as putting in an invalid item number.

Insertions and deletions of linked-list items can be done very rap-
idly once the insertion or deletion point is found. Because of the
pointer structure, however, the search to find the insertion or dele-
tion point is essentially a sequential search that starts from the head

137

OPERATION: DELETE 257 IN LINKED LIST

1. FIND ITEM TO BE DELETED 2. CHANGE POINTERS

aoy | 12) |z 12

AL | 479 -1 AL | 479 —1

A2) | 450 1 A2 | 450 1

A3 |13 0 AR |13 0

Ay | 400 2 A | 400 2

AG) | 399 ¢ e Am | 39 g P

A |1 3 A |1 3

Al | 195 8 An | 195 g]
L

A9 320 10 A9 320 10
A10) 365 5 L/ A10) 365 5
A{11) i1l 7 A1D) 111 7
A(12) 65 il A(12) 65 11

*CHANGED

*++*MARKED AS "UNUSED”
Figure 7-15. Deletion using linked list.

of the list; like all sequential searches, it is rather time consuming.

Let’s take a look at a practical example of the linked list concept
in BASIC. Figure 7-16 shows a linked-list structure for a list of alpha-
betic data, our standard Chapter 7 list of odds and ends. The struc-
ture has two arrays. Array A contains the pointers, while array A%
contains the items of the list. The pointers are actually the indices
to the elements of array A$. The last pointer is a —1 to signify that
there are no more items in the linked list.

Initially, the items in the linked list are ordered by initializing
the pointer array as shown in Figure 7-16. In this case, the items
are ordered physically as well as ordered in the linked list.

138

HD

A}

10

12
13
14
15

16

19
20

29

10

11

12

13

14

15

16

17

18

U)UIULUIUIVIVIUIVIVIVIU I VI UIVIVIE

19

-1

P2
; UNUSED
1
H

-2
[

A3(0)

19

20

29

#3 BALL BEARING

747 TIRE

BALL OF STRING

BALLOON

BASEBALL

BOWLING BALL

DIAMOND

DOUGHNUT

EARTH

ELECTRON

FABERGE EGG

GOODYEAR BLIMP

LA SMOG

MARBLE

MARS

ORANGE

PEA

PERISPHERE

PHOBOS

RAMA

o e

UNUSED

Figure 7-16. Example of linked list.

139

120 CL.S clear screen

110 CLEAR 1006 “clear string storade

120 DIM A(Z?) *pointer array

130 DIM AS(ZP) Titem array

140 FOR 1=0@ T0 1B — *lecap for first 19

15@ A(I)y=I+1 Tsetup entrs

160 READ B$ *read from data list
170 AS(1)=B% *and store in array
180 NEXT 1 Tloop til done

198 A{19)=—1 *last entr = -1

195 READ B$ *get last data i1tem

200 A%(I1)=B$ Tand eput 1n array

21@ FOR 1=28 TO 29 ~— *locp for unused entries
220 mark entr unused

230 AS(1)="%u*kx" L.’mark 1tem unused for disp
24@ NEXT I “loor

250 HD=2 *net head to firzt item
400 CLS *clear screen

418 PRINT "HD="3HD "head title

428 FOR I=0 TO 29 loep for items

438 PRINT TAR(5):1:A(1):A%{I) Terant 1tems

449 FOR J=0 TO 10 C "timing for dise
450 NEXT J Tlaap

460 NEXT 1 “loce for prant

5@@ INPUT "DELETE (D) OR INSERT (I)7"3:R$ Tprampt user

51@ IF B$<>"D" AND B4<»“I" GOTO 500 Ttest response

5z@ 1F B$="D" GOTO 200e ‘9o 1f delete

1089 FOR ZC=0 TO 29 “loop for unused 1tem
1018 IF A(IC)=-2 GOTCG 1050 [’90 1f unused

1020 NEXT ZC ‘o unused found vet
1230 PRINT “NO FREE ITEMS"® The free 1tems

18340 GOTO 500 "pack to command mode
1850 INPUT "STRING TQ INSERT":B$ “input ancsert strang
1060 ASC(ZC)=R% 'Fi11 imfto array

10790 1IF HD<»—-1 GOTC 1110 go 1f i1tems 1n Jast
1@8@ HD=ZC "head now current

1898 A(ZIC)=-1 “current now last

11086 GOTO 400 *hack to command

111@ ZL=HD last 1tem

112@ ZIN=A(ZL) ‘next item

1130 IF ZN<»-1 GOTO 1170 g 1f not end of list
1148 ACZL C change polnter

115@ A(ZC)=~1 *new end of 113
1160 GOTO 408 Tback for new vmmarnd
1178 1F B$>=A$(ZL) AND B$<AS(ZN) GOTO 1210 *check for 1nsert point
1188 ZL=INM ‘rot frd-continue
1198 ZIN=A(ZN) Chew next
GOTO 1130 keer looking
A{ZL)I=ZC *found—-change entr
A(ZC)=IN ‘current te n
GOTO 400 ‘hack for next command
IF HD 1 GoTe 2030 ‘delete here—9c 1f 1tems
PRINT *STRING NOT FOUND" "no 1tems 1n l1st
GOTO 580 ‘hack to command
INPUT "STRING TO DELETE":B$ “input delete strang
Zt.=—1 initialize last
z@50 ZIC=HD “amnitialize current
2860 IN=A(ZC) Tnext
Z@70 1IF A$(2C)=Bs$ GOTO 2120 ‘ga 1t found
Q8@ IF A(ZC)=—-1 GOTC 2818 ge 1if end of list
2098 ZL.=IC Trat this entry
2108 2C=A(1C) get next
Q6B Theep zearching
-1 HD=IN ELSE A(ZL)=ZIN *found-chande pntrs
A(ZC)=~2 mark unuied
AF(ZC) =" %xxx" "mark entrv for dizelay
GOTO 400 "back to command input

DATA "#3 BALL BEARING®.“747 TIRE"."BALL OF STRING®

DATA "BALLOON" » "BASEBALL "+ "BOWLING BALL".“DIAMOND®

DATA "DOUGHNUT" s "EARTH" « "ELECTRON" « "FABERGE EGG"+ "GOODYEAR BLIMP®
DATA "LA SMOG"+ "MARBLE"+ "MARS®» "ORANGE" s "PEA” + " PERISPHERE"

DATA "PHOBOS®« " RAMA"

Figure 7-17. Linked-list code.

140

The code shown in Figure 7-17 allows us to delete or insert items
in the linked list. The contents of the list are displayed on the screen
in the form

{_poinTer | rtEm |

so that you can see what is actually happening in the insertions and
deletions. Each deletion is handled by searching the A$ array by
using the pointers, starting with HD, a variable which points to the
first item of the linked list. When the item to be deleted is found,
the previous pointer is changed to the pointer value for the deleted
item, and the pointer element in A is marked as unused by setting
it to —2. Each insertion finds an unused position by searching the A
array for —2 and then searches the A$ array for the insertion point.
When it is found, the previous pointer is changed to the new loca-
tion, and the pointer for the new location is changed to the value
found in the previous location.

Naturally, we have provisions for deleting all items in the list
and for overflow of the size of the arrays. (A favorite trick for com-
puter science students is trying to “crash” the time-sharing system;
it’s human nature to look for loopholes, but we must warn you that
all programs in this book are perfect and that any such attempts will
result in confiscation of your TRS-80 monitor!)

That completes our discussion of data structures, sorting, search-
ing, and merging. We hope that this chapter will provide some alter-
natives in the way you arrange your data and maintain it in orderly
fashion. There is no optimum data arrangement or sorting technique
that will work for all cases. The “correct” techniques must be related
to the type, size, and speed requirements of the program and data
involved.

141

CHAPTER 8

The TRS-80 Functions Perfectly

In this chapter, well cover the built-in TRS-80 functions. Func-
tions are “built-in” operations to process specific things, rather than
general-purpose statements. Naturally, the specific things that the
functions process are commonly used operations, such as finding the
sine of an angle or generating a random number. Functions in Level
II BASIC can be divided into four different types—precision func-
tions, numeric functions, random-number functions, and trigonomet-
ric functions. We'll discuss all four and the applications of each.

What? More Precision Operations?

We know, we covered precision in Chapter 2. The statements in
Chapter 2, however, defined a variable as an integer, single-preci-
sion, or double-precision variable. The variables defined by the pre-
cision statements and suffixes remained that precision for the entire
program. The two functions presented here, CDBL and CSNG, allow
the user to force a double-precision or single-precision operation
without having to define the variables as double or single precision.
CSNG forces a single-precision result. If, for instance, we have two
double-precision variables, A# and B#, the results of any operations
would normally be carried out to 17 digits as in the code

190 CLS “clear screen

200 INPUT "A#="3A# Tinput ist de value
380 INPUT "BéH=":B4# ‘input Znd dp value
4@@ PRINT "A#*BH#="3AH#BH# *prant rroduct

508 GOTO Z00 9o for next set

Inputting A# = 1.22222222229222 and B# = 2.33333333333333
would result in an answer of 2.851851851851843. However, if we

142

forced the answer to single precision, using the CSNG function, the
answer would be 2.85185, a single-precision number.

1808 CLS Tclear screen

1180 INPUT "A#=";a# Tinput 1st dr value
1208 INPUT “R#="3;B# ‘input Znd de value
1302 PRINT "A#xBii="3CSNG(A#*BH) [’Frlnt ereduct =p

1400 GOTO 1100 "9 for newt set
The CSNG function is a means of limiting results to single-preci-

sion accuracy without having to introduce a single-precision variable
as in

2080 CLS Tclear screen

2100 INPUT “A#i="jsA# inPut izt de value
2200 INPUT "B#=";3;B# Tinrut Zrnd de value
2300 C=A#+B# Tconvert eproduct to sp
240@ PRINT "A#xB#="3(erant =F Product

2500 GOTO 2100 ‘Yo for next set

which would give the same result as the CSNG function above.
When the CSNG function converts a double-precision function to
single precision, it rounds off, rather than truncating, the least sig-
nificant digits.

The CDBL function operates in similar fashion to CSNG, except
that it forces a double-precision operation. CDBL performs the same
operation as the generation of the double-precision value C# from
Aand B

3000 CLS Tclear screen

3100 INPUT “A="3A Tinput 1zt = number
3200 INPUT "B=°3R [‘1nput Zrnd =P number
3308 C#=Axp Tcanvert to de

3400 PRINT "C#="1:Cits "CDRBL (A%E)="3CDRL (A%R)

3500 GOTO 3100 brga for next set

Converting to the double-precision format, by the way, cannot
“restore” accuracy to a number. If operations have been performed
in single precision in a program, then only seven digits of precision
are maintained (six are printed). Double-precision format must be
used continuously to guarantee 17 digits of accuracy!

Converting from single to double precision also has its pitfalls.
Converting the single-precision number 1.999995 should result in
1.9999950000000000, shouldn’t it? In fact, converting this number,
as in

100 PRINT CDBL(1.999995)

results in “1.999994874000549"! Similar conversions also produce
extraneous digits at the end.

A better method of converting from single to double precision is
to use the approach

143

100 A# =VAL(STR$(AD)

which converts the single-precision value of Al into a string value
and then converts the string into a double-precision numeric value.
(See Chapter 3 for a discussion of STR$ and VAL.) When this
method is used with 1.999995, a “rounded-off” value of “2” results,
without extraneous digits. We'll say more about truncation and
roundoff shortly.

Are You Good at Fractions?

There are several numerical functions in Level II BASIC that
help us in dealing with integers. They are CINT, INT, and FIX.

CINT returns an integer value in the range —32768 through
+32767. This is a comparable function to the CSNG and CDBL
functions we have just discussed. The CINT function is equivalent
to creating an integer value such as A% rather than forcing a con-
version to integer form with a function.

108 CLS Yelear screen

280 INPUT "A="3A Tinput 1st sp number
38B INPUT "B="3B “ineput 2nd =P number
4@QD CYL=AXB *find integer value
S@@ PRINT "C%="3:C%s "CINT(A*R)=":CINT(A*B)

508 GOTO 200 b-7ge for next set

Because of the way negative numbers are held in two’s comple-
ment form (see Chapter 2) and the truncation method of conversion,
CINT converts a negative fractional number to the next lowest in-
teger value. CINT will convert the following values as shown

Before After
CINT CINT
-1 —2
-1.9 -2
—12.001 -13
—32767.1 —32768

Positive fractions are converted to the integer portion of the number.
The fractional part is truncated, or chopped off.

Bofore After
CINT CINT

1.1 1

1.9 1

12.001 12

32767.1 32767

CINT is very similar to another integer function, “INT.” CINT is
a high-speed version of the more general INT. INT will work with

144

numbers greater than +32767 and less than —32768. Because INT
is more general, it is almost always used in BASIC programming in
preference to CINT.

CINT is commonly used in operations to find the remainders of
numbers. This type of operation comes up frequently in number
conversions and rounding operations. Decimal numbers can be con-
verted to binary or hexadecimal numbers by a common method
known as “divide and save remainders.” It’s a good application to
show the use of CINT.

Before we look at the code, let’s see the “pencil and paper” oper-
ation. Suppose we have a decimal number that we want to convert
to binary. We start by dividing by 2 and save the remainder at each
division, as shown in Figure 8-1. The remainders in reverse order
are the binary-number equivalent of the decimal number we started
with. This method works for any number base—binary, octal (8), or
hexadecimal (16).

0 Rl
21 RO
2{2 Rl
2[5 Rl
2711 RO 101100001 =353
222 RO
2044 RO
2188 RO
2176 Rl
2 1353

Figure 8-1. Decimal-to-binary conversion.

For those of you interested in assembly-language coding and for
anyone interested in binary representation, we present the following
subroutine to convert any given decimal number from 0 to 255 into
binary form. The number is in variable ZN, and the result is put in
array ZZ defined by a previous DIM ZZ(7).

18010 ZZ(ZI)1=IN-INTL{IN/2)#*2 "find remainder
10028 IN=INT(IN/2Z) *find quotient

10830 NEXT Z1 ‘centinue

18040 RETURN ‘return te calling prog

10880 FOR ZI=7 TO @ STEP -1 {:’setup 8 time loop

The subroutine does not check for a number outside the proper
range of 0 through 255. If a number greater than 255 is to be con-
verted, you'll get an incorrect answer. (Eight divisions will only re-
solve numbers that are 255 or less. You might like to try 16 divisions
with a 16-element array for use with numbers of 65535 or less.) The
number to be converted is in variable ZN. A one-dimensional array,

145

77, must have been defined previously. (Defining it in the subrou-
tine would result in a DD error for subsequent calls.) For eight
iterations through the loop, the number is divided by two to give
some quotient. This quotient will probably be a fractional number.
To find the integer portion of the quotient, INT is used. INT (ZN/ 2)
will give the integer quotient value. If this quotient is multiplied
by 2, and the result subtracted from the original number, we can find
the remainder. The remainder is calculated this way and stored in
the array in reverse order. An example might make this more hucid
(I'm even confused at this point).

Suppose we want to convert 213 to binary form. If we did it with
paper and pencil, we would have the calculation shown in Fig-
ure 8-2.

0 Rl
2{1 Rl
2[3 RO
206 Rl
9l13” RO 11010101=213
2(76 Rl
2[53 RO
27106 Rl
2 (213

Figure 82. Example of decimal-to-binary conversion.

When we do the same conversion using the subroutine, we get

the calculations shown in Figure 8-3.
We can use the subroutine above to practice our binary opera-
tions (don’t forget those anps and ors) or to PEEK at memory lo-
INT(ZNI2)=2 IN—INT(ZNI2)+2

| N N2 INT(ZNI2) i) n
7 213 106.5 106 212 —
6 106 53 53 106 0
5 53 265 26 52 1
4 26 13 13 26 0
3 13 65 6 12 1
2 6 3 3 6 0
1 3 15 1 2 1
0 1 05 0) ‘—+1
0 Rl
21 Rl
23 Ro
26 Rl
2113 RO
2126 Rl
253 RO
2 [106 Rl
213

Figure 8-3. Decimal-to-binary conversion algorithm.

146

cations for assembly-language work. To convert any number from
0 to 255, use the following code.

1002 DIM ZZ(7» allocate 8 dim arrav
1180 PRINT ~'new line

1200 INPUT "DECIMAL # TG BE CONVERTED":ZIN

130@ IF ZN>255 OR ZIN<K@ GOTO 1208 ‘check for range B-25%
14006 GOSUR 10000 Teanvert

15@@ PRINT "BINARY EQUIV IS5 "3 prant result msg

1600 FOR I=0 TO 7 Yloor for digats
17@8 PRINT ZZ{(1)s [’Prlnt digit

1BOB® NEXT ‘cantinue

1998 GOTO 1100 '9¢ for next number

To convert a given range of ROM or RAM memory locations, use
this code.

2080 DIM ZZ(7) ‘allecate 8 dim arravy
2100 INPUT "START LOCATION":A Tinput starting location
2200 INPUT "END LOCATION":B “input ending loecation
2308 FOR I=A TO B Tauter laop far locns
2400 IN=PEEK(I)} et next location
250@ GosuB 10000 “canvert byte

2680 PRINT “LOCATION="31:" CONTENTS=":t “lecation m=g

270@ FOR J=@ TO 7 "inner laop for digits
<BB@ PRINT ZZ(J)3 *epraint digaits

290@ NEXT J “ccontinue for 8
3088 PRINT ‘rnew line

3109 NEXT I ’det next lacation
3200 END

A second use of INT is to test whether a number is divisible by
another number. Many times, it's convenient to test whether this is
the seventh or tenth time through a loop, for example. If we are
displaying 16 lines of characters on the video display, we can pause
while the user scans the current page by keeping a count of the
number of lines and testing for multiples of 16. This code is not a
working program, but illustrates how the test may be integrated
in a program. A$ represents the ENTER response to the pause at
the 16th line. GOTO 800 is the branch to “other” processing.

1208 PRINT AsR

1812 CT=CT+1

1028 IF INT(CT/161=CT/1é6 THEN INPUT A%
1338 GOTO 8600

Another use of INT is to test whether a number is an integer value
(not a fraction). A convenient way to do this uses INT:

182 INPUT A ™ inpi.¢ test number
200 IF INT(A)=A PRINT "A IS INTEGER" ELSE PRINT "A NOT INTEGER®
388 6OTO 100 L continue for next

The fractional portion of any positive number can be found by
100 FR=A~—INT(A)
Since INT converts to the next lowest negative integer for negative
numbers, A —INT(A) will not give the correct result for A < 0.

147

However, still another function, FIX, will give the fractional por-
tion of a negative number or positive number correctly.
FIX truncates all fractional digits. Some examples are

Before After
FIX FIX

1.2 1

13.1 13

13.99 13

128.123 128
—1.1 -1
—3.3 -3
-128.99 —128
—99999.9 — 99999

Why are there so many ways to derive similar things? What is
truth? What is beauty? Some of the functions described above are
very similar, and it’s hard to know when to use one or the other,
but please don’t complain—the alternative might be a BASIC
stripped of all these niceties. It’s better to have too much than too
little (Guard—take down the name of that reader threatening to
go back to his hand calculator!).

A word should be said here about truncation and roundoff. We
have seen how INT and FIX truncate values. For small numbers
such as 1.9 or 2.7, the error resulting from truncation is quite large.
A roundoff scheme may be used to reduce this error for individual
numbers. In roundoff, we make some arbitrary judgment as to
whether the number should be rounded “up” to the next larger
integer or rounded “down” to the next smaller integer. (This scheme
can also be used for fractional numbers.) The following code rounds
up if the fraction is 0.5 or greater and rounds down if the fraction
is less than 0.5.

100 INPUT A ‘input test number
200 B=FIX(A} ‘—’huncate fraction
300 IF ABS(A—B)>=.5 B=B+]

400 PRINT AB ‘print input and result
500 GOTO 100 ‘continve for next

A Sign Function—Absolutely!
The SGN function is used to test for a negative, zero, or positive
result. Here again, we could do this by other means such as
100 IF A<CO0 GOTO 1000 ELSE IF A=0 GOTO 2000 ELSE GOTO 3000

The SGN function makes the job somewhat easier, however,
100 ON SGN(A)+2 GOTO 1000,2000,3000

The SGN returns —1 if the argument is less than 0, 0 if the number
is equal to 0, and 1 if the argument is greater than 0. In the state-

148

ment above, the result of —1, 0, or 1 is converted to 1, 2, or 3 by the
SGN(A) + 2 to cause a “computed” GOTO, transferring control
to 1000 for negative numbers, 2000 for numbers equal to 0, and
3000 for positive numbers.

Another simple-minded function is the absolute value. (Sorry, we
didn’t mean to shun the absolute value—we mean it’s easy to under-
stand.) The absolute value, as we know from Algebra One, returns
A if A is positive or zero, and returns —A if A is negative. All this
says is that the magnitude of the number is returned. A = ABS(—32)
returns 32 for A, A = ABS(~+32) returns 32 for A, and A = ABS(0)
returns 0 for 0. A zero value, by the way, is treated as a positive num-
ber in the TRS-80 hardware and software (and in virtually all other
computing systems). The absolute value function is used extensively
in many mathematical calculations, as, for example, to find the dis-
placement along the X axis for two points on a graph

100 DX=ABS(X2—X1)

Another mathematical function that is built into Level II BASIC
is the square root function, SQR. We know that we can find the
power of any number by using the exponentiation operator 1. SQR
simply duplicates the exponentiation function for A 1.5 and is some-
what faster. Of course, square roots are commmon operations in mathe-
matical routines, and it's convenient to have a built-in SQR function.

We won’t say much more about the EXP and LOG functions ex-
cept that EXP(A) is the exponential function e* and that LOG(A)
returns the natural logarithm of A. Natural logarithms are used ex-
tensively in higher mathematics.

Pick a Number, Any Number

Chances are the number you pick won’t be a random number, es-
pecially if you keep selecting numbers for some time. The computer
can be used (and has been used) for a number of years for simu-
lation of various real-world events. One of the powerful uses a
computer can be put to is to produce “pseudo-random” numbers
for use in simulations.

What are pseudo-random numbers and how do they differ from
random numbers? Truly random numbers can be produced by flip-
ping a coin. We cannot predict whether the next flip will be heads
or tails (assuming the coin is perfectly balanced and we are not
introducing any “tricks” in the flip). If we recorded the heads and
tails and equated them to ones and zeroes, we would have a long
list of binary numbers which could be broken up into bytes (see
Figure 8-4). The bytes would now represent a list of 8-bit binary
numbers ranging in value from 0 through 255. The distribution of

149

HEADS = 1
TAILS = 0

10011100011110001100100100110011...
10011100,01111000, 11001001, 00110011....

156, 120, 201, 51,

Figure 8-4. Random binary numbers.

the numbers would tend to be uniform the longer the list was made.
That is, if we had millions of numbers, the number of 0 values
would be about 1/256 of the total number, the number of 1 values
about 1/256 of the total, and so forth.

The problem of generating random numbers is not a trivial one,
and many articles (and books) have been written about the subject.
As a matter of fact, there are books of random numbers, used as lists
of good random numbers without bias. It's not only important to
have unpredictability in Las Vegas, but in computer simulation as
well. We can generate random numbers in the TRS-80 by manual
methods. If we increment a count fast enough and then stop the
count, we have a fairly random number. The following routine does
this by examining the shift key and stopping the count when it is
pressed. A count of 0 to 127 is generated. (The USR call here is
intended only for Level II and not Disk BASIC.)

100 A$=CHR$(58)+CHR$(12B)+CHR$(56)+CHR$(183)+CHR$(4B)+CHR$(25@)+CHR$(237)+
CHR$ (951 +CHR% (1111 +CHR$ {38) +CHRS (@) +CHR$ { 195) +CHR$ (154) +CHR$ (10)

508 B=VARPTR(A%$) get bloeck lecation
600 POKE 165265 PEERK(B+1) Tzetup usr call

700 POKE 16527, PEEK(B+Z) second bvte of address
8@ A=USR(@) ’call machine landuade
908 PRINT A *print value

1888 FOR I=@ TO 50 E delay for bounce
1100 NEXT I Tlaop

12080 GOTO B80@ Tga for next value

The “R” register in the CPU Z-80 microprocessor is continually
being updated by adding one. An instantaneous value from R will
be 0-127. (The character string at A$ constitutes an assembly-lan-
guage routine embedded in a “dummy string.” Well discuss this
technique in a later chapter.)

150

Isn’t there a more convenient method to generate random num-
bers? I'm glad you asked, son. Step over here and let me show you
this little gadget called the RND number generator. . . .

RND does not generate random numbers, but pseudo-random
numbers. Pseudo-random numbers are predictable in that if one
starts with the same seed number, the same sequence of numbers
will be generated each time. The numbers generated still have a
good distribution of values. Generating numbers from 0 to 255 would
result in about 1/256th of numbers equal to 0, 1/256th equal to 1,
and so forth. if done over long periods of time. The fact that the
series is predictable is not necessarily bad. We would like to be
able to repeat experiments and simulations from the same point,
after all, and working with truly random numbers does not provide
that capability.

Let’s look at a sequence of random numbers generated by the
RND function. The code below prints random numbers from 1 to
255. The format of the RND function is RND(A). If A is 0. a single-
precision value between 0 and 1 is generated. If A is 1 to 32767, a
pseudo-random value between 1 and the argument is printed. In
this case, the argument is 255 to generate a value from 1 to 255.

100 CLs
200 PRINT RND(255);" *;
300 GOTO 200

Did you see any repeats? (Well, it is somewhat fast.) The RAN-
DOM function reseeds the random-number generator. If RANDOM
is not used, then turning off the computer, turning it on, and exe-
cuting

100 PRINT RND(10000) ‘or other range

will produce the same number for each power-up. RANDOM en-
sures that a new sequence will be started more than 99 times out of
100. Power down again, power up, and execute

100 RANDOM ‘randomize
200 PRINT RND(10000) ‘print starting number

several times. You will see different starting values essentially gen-
erated by the same process of taking a count from a register as we
performed with our random program.

What is the provision for starting over from the same seed? Since
we cannot specify a starting seed value in RANDOM, we must do
some POKEing in memory. If we have a seed from 0 through 65535
in variable SD, we can reinitialize the seed by

151

180 FOR J=1 TO 5 *zetur for 3 lines

200 SD=12345 Tseed

300 POKE 16554.8 '@ te first seed btevie

40@ POKE 165561 INT(8D/236) *ms byte to third seed bvte
500 POKE 16559:5D-INT(SD/256)%256 *1s bvte to second seed bvte
4£@@ FOR I=1 TO 8 *setur for B values

700 PRINT RND{(12008)- [‘random # from 1-12800
880 NEXT I "get next number

0@ PRINT Tskaip line

1908 NEXT J ‘get next set of 8

1108 GOTO 1100 Ploep far COmPAr1S0n

The seed for any random generation is contained in the three
bytes of 16554 through 16556. We have arbitrarily zeroed the first
byte and put the value of SD into the next two. Any scheme such
as this could be used as long as the three bytes are always initialized
to the same value for the start of each new pseudo-random number
cycle.

RND can be used as a simulation tool for any number of real-
world events. Suppose, for example, that we want to simulate a
dice roll. Each die has a face value of one through six, and there
are two dice. We can easily simulate the roll of each die by using
RND(6), which will generate pseudo-random values of 1 through 6.

2@@d CLS *elear soreen

2100 R=0 D total # of ralls

2208 DIM NO(12) getup arrav for totals
2300 FOR I=0 TO 58 - "rall the dice

240@ PRINT 253@sRND(&) *get value of 1-6
2500 PRINT 855@sRND(&) *get value f 1-6
26@@ NEXT I "keep on rolling

2708 R=R+1 *bume # of rolls

2800 A=PEEK(15360+331)-48 ‘get current die value
2900 P=PEEK{1536@+5331)-48 *from screen Poasitions
3000 NO(A+E)=NO(A+B)+1 "itncrement total for point
31@@ PRINT & B50:"total # of rolls="3

379@ PRINT 84 998, = 3 4 5 6 7 8 % 18 11 12"

3300 PRINT Q972s°"3

3488 FOR 1=2 TO 12 *laer far totals

3500 PRINT USING "#i##" sNOL(I) 3 ‘erint totals

3400 NEXT ‘laap

3700 FOR 1=0 TO 58 ’pause before next rol
3800 NEXT I =T laop

3928 GOTO 2380 -’g¢ to rall again

The program continuously rolls the dice and prints out the totals
for each of the points 2 through 12. Let the program run for a while
to see how the totals compare to the odds of “making” 2 through 12.
The odds are given below in percentage of times a point will
come up.

Point Point
2 2.8% ?211.1%
3 56% 10 8.3%
4 8.3% 11 5.6%
511.1% 12 2.8%
6 13.9%

7 16.7%
8 13.9%

152

.

Another example of how RND may be used is in a simulation of
a fortune teller. In the program below, YES/NO questions are an-
swered by the MYSTIFYING ORACLE program. RND is used to
generate a value of 1 through 10. This value is then used to obtain
one of ten strings from string array A$ to answer the question. This
concept can be used in many similar cases to obtain random answers,
events, or conditions.

140 DIM AS(1@) TEErand arrav
150
160
179
180 A${41="YOU GOTTA BE KIDDING®

190 A%{5)="PLEASE REPHRASE"

208 AS(6)="FOSSIPLY"

218 AS(7I="EXCUSE MEs I HAVE ANOTHER CALL*
Z20 AS(B)="NOPE"

230 AS{FI="NEGATORY: GOOD BUDDY*

240 AF(1@)="SURE, WHY NOT"

2508 CLS 'clear screen
Z6@ PRINT “MYSTIFYING ORACLE" Ttitle meszade
270 INPUT "YES"3A$ ~ ‘inrPut sueztion
280 PRINT A$(RND(1@)3:* — NEXT QUESTION®
298 GOTO 270 b cantinue
90°
4
45°
> 00
c a
C
a
C
/ a
. s
‘ SINE =2
c

Figure 8-5. Sine function.

153

The distribution of answers in this program will be spread quite
evenly among A$(1) through A$(10) if a very large number of cases
are tried. If we want to “load” the program to bias it toward certain
responses, the same response could be used as many times as de-
sired.

Another technique used quite often in game programs is to gen-
erate that “random” catastrophic effect—the plague that strikes dur-
ing Hammurabi or the loss of photo torpedoes during Space War.
This can be accomplished “n times out of 100" by using a code
such as

1000 IF RND{100)=100 THEN
or
1000 IF RND(100)>96 THEN ...

The first example would be true one time out of 100 when RND
(100)=100, and the second example would be true four times out
of 100 when RND(100)=97, 98, 99, or 100.

TRIGONOMETRY

“QUITE FRANKLY,
M A LITTLE

WORRIED ABOUT.

THIS NEXT CLASS.??

154

SINE OF 135° = SINE OF 45° =
0.7071 0.7071
N\ 7/

/
SINE OF 225° =
— 0.7071

\
SINE OF 315° =
- 0.7071

Figure 8-6. Sine function through 360°.

Trigonometric (Say What?) Functions

The last group of functions we'll talk about are the trigonometric
functions, pronounced “Trig-och-no-met-ric” if you are a purist. The
trigonometric functions, as you might guess, are those arch enemies
of high school and college students—sines, cosines, and tangents.

We'll present a short review here, but feel free to peruse other
material, too, if you feel you need a better understanding of these
mathematical functions. (If you don’t feel that ambitious, just stick
around here.)

For any right triangle (a triangle with one right angle), the ratio
of the opposite side over the hypotenuse is called the sine, as shown
in Figure 8-5. Opposite to what? To a large eye that we've included
in the figure. When this angle is very small, the ratio a/c is very
small. If side ¢ is kept at a constant size, as the angle increases, side
a increases in size. Close to 90 degrees, the sides are about equal,
and at 90 degrees, the sides are equal.

If we continue through 90 degrees to 180 degrees, the ratio of
side @ to ¢ decreases down to 0 again. We can carry this through
360 degrees, as shown in Figure 8-6. Notice that for angles greater

155

+1-

—1-
Oo

{
90°

!
180°

!

270° 360°

Figure 8-7. Plotted sine function.

than 180 degrees, the sine is negative. This is true if we assume that
the triangles are constructed on an x-y graph with the points lo-

cated by standard x-y “rectangular” coordinates.
If we now graph the sine values for various angles from 0 through

360 degrees, we get the plot shown in Figure 8-7. The value of the
sine increases from 0 to 1 from 0 to 90 degrees, decreases from 1 to
0 from 90 to 180 degrees, decreases to —1 from 180 to 270 degrees,
and increases from —1 to 0 from 270 to 360 degrees.

CIRCUMFERENCE = 27R

S
\k‘\ 7
U L
1 4044 W
g
= 2
<3 R .-
o K=
® e
I
Cn
§
&
7 o
4)
)
%
Uy
5 RAD\P\NS

Figure 8-8. Radian measure.

156

The sine function, expressed by the graph, is used extensively in
mathematics and physics. Many physical events operate on a peri-
odic basis that follows the sine function.

Does everyone know the formula for the circumference of a cir-
cle? (Lef’s see, I have it here somewhere. . . .) It's 2 times pi times
the radius of the circle, as shown in Figure 8-8. The circumference
of a circle with radius of three feet is 2 * 3.14159 * 3, or 18.8496.
Because the circumference is 27r, a convenient unit known as a
radian was invented. A radian represents an angle of 360/27, or
about 57.296 degrees. It’s the angle represented by laying the radius
of a circle along the circumference as shown in the figure.

Trigonometric functions are often expressed in terms of radians
because they easily express critical angles around the circle, such as
45 (/4 radians), 90 (7/2 radians), 180 (= radians), 270 (37/4 ra-
dians), and 360 degrees (2w radians). If you would rather not worry
about radians, simply divide the angle youre using by 57.29578 to
convert from degrees to radians and forget about any mystery in-
volved.

Let’s display various values for the sine function from 0 to 360
degrees.

182 CLS *clear that screen

Z@@ FOR I=1 TO 360 g“’avoxd /@ errar

300 SET ((I/36D)%127:(26~23%(SIN(I/57.29578) 111

408 NEXT I - eantinue for 360 dedrees
500 GOTO 500 Tloer here for displaw

0 DEGREES 45 DEGREES 90 DEGREES

., Ao o
e b b =0
)
COSINE =2
c b
+1- /
0

! l !
0° 90° 180° 270° 360°

Figure 8-9. Cosine function.

157

TAN =

oo
AN
=3

CLOSE TO
0 DEGREES 45 DEGREES 70 DEGREES 90 DEGREES

/ CA
a a Cda

b b b b (very small)
8_.
6_
4-
2- B
0 T]
0° 45° 90°

Figure 8-10. Tangent function.

This plot uses the TRS-80 x coordinates from 0 to 127 and the
y coordinates from 1 to 23 to avoid problems with going over the
y=0 and x=127 boundaries. (We could also have explicitly checked
for y<0 or x>=128.) The plot shows the sine values from 1 to 360
degrees (0 to 2 radians) with the top of the screen representing 1
and the bottom representing —1, identical to the plot shown in
Figure 8-7.

The cosine function is similar to the sine function. It expresses
the ratio of side b divided by side c. As we can see from Figure 8-9,
the cosine graph starts off at 1 for an angle of 0 degrees, goes to 0
for an angle of 90 degrees, goes to —1 for 180 degrees, goes to 0 for
270 degrees, and returns to 1 for 360 degrees. The cosine function
also figures in a great many physical and mathematical relationships.
The format of the cosine function is identical to SIN, with the argu-
ment in radians.

The tangent function is the third common trigonometric function
represented in the TRS-80. It expresses the ratio of side a to b, as
shown in Figure 8-10. It's easy to see that for angles near 90 degrees,
the tangent increases to infinity, and for this reason it’s hard (if not
impossible) to graph. The format of the tangent is identical to SIN,
using radians for the argument. Whereas TAN(A) gives the tangent

158

ratio for a known angle, ATN(A) does the inverse. ATN(A) gives
the angle from the ratio. Both are used often in higher mathematics.
(That’s what tall math profs play with.)

1008 FOR 1I=Q TO 89 ‘foar @ to B9 deYrees
1180 A=TAN(I/57.29578) “find tangent

1200 B=ATN(A)

130@ PRINT I/57.29578:8
1400 NEXT I

*find angle from tangent
erint radianzsarctan(rad)
Pcontinue for B9 dedrees

159

CHAPTER 9

How to Get It All on Tape

Cassette tape is a fairly recent innovation for computer systems.
Previous systems used much more complicated digital magnetic tape
recorders that were (and are) very expensive. In this chapter, we'll
discuss the CSAVE, CLOAD, CLOAD?, INPUT#, and PRINT#
commands, tape data formats and speeds, blocking of records, files,
error recovery, and tape backups.

Tape Commands

There are three cassette tape commands in Level II BASIC—
CSAVE, CLOAD, and CLOAD?. The use of these is very straight-
forward. To save a BASIC program, set the cassette recorder level
to the proper setting, rewind the tape to the beginning (or a known
point using the cassette counter), set the tape recorder controls to
Record, and type in CSAVE “name”. The BASIC program will be
written out to cassette tape in roughly the same fashion that it is
stored in memory.

To reload the program or any other program stored on cassette,
reposition the recorder to the beginning of tape (or the counter po-
sition), set the recorder control to Playback, and type in CLOAD
or CLOAD “name”. The BASIC program will be read into RAM.

Simple and foolproof . . . What could go wrong? Well, a couple
of things. First of all, make certain that you are past the leader (the
non-magnetic material at the beginning of the tape) on the cassette.
Many tape recorders have trouble recording data on the leader
(that’s a joke, son!). Secondly, make certain that the level setting
on the tape recorder is at the recommended value for the type of

160

recorder you're using. It may take some experimentation to find the
optimum level for consistently good writes and reads. Thirdly, not
only must you be clear of the leader on the tape, but it’s a good
idea to erase a portion of the tape to “bracket” the starting point,
as shown in Figure 9-1. The reason for this third point is to be
found in the general tape format that’s used for Level II tape op-
erations.

teaper HMEAD BYPASS LEADER

ERASE TAPE

START IN MIDDLE
HEAD
—— OF ERASED AREA

ERASED

Figure 9-1. “Bracketing” tape writes.

Follow the Leader

All tape operations write data to the cassette by first writing
255 bytes of zeroes and by then writing a single byte of a value
of 165, as shown in Figure 9-2. The remainder of the write contains
the BASIC program or data to be written. On a subsequent read
(CLOAD), the tape read routine expects to find zeroes initially, fol-
lowed by the 165 value. As a matter of fact, it uses the 165 byte as
a “synchronization byte” or “sync byte” so that it knows where the
data starts,

Data is written on the cassette serially as a long string of binary
data. (There’s that darn binary again!) The 255 bytes of zeroes and
the one byte of 165 result in 2048 bits of “leader,” as shown in
Figure 9-2. When the CLOAD is performed (or when any tape
read is performed), the read goes something like this:

1. A bit is read.
2. The tape input routine moves this bit left into an 8-bit value.
3. The value is compared to 10100101 (165).

161

165"
SYNCHRONIZATION
BYTE

e a———
000000000000 000000[10100101 g
255 BYTES DATA
OF ZEROES STARTS

TAPE MOVEMENT
Figure 9-2. Tape format.

4. If the value is not equal to 10100101, step 1 is again performed.
If the value is 10100101, step 5 is performed.
5. Tape input routine prepares to read data.

You can think of this entire operation as moving an 8-bit “window”
along the string of leader bits until the 165 “sync byte” is found, as
shown in Figure 9-3. The tape input routines then know exactly
where the data is on the tape. The obvious reason for this is that
the tape cannot be accurately positioned manually because each bit
occupies about 1/250 inch on the tape and the tape must also be
“brought up to speed.”

To get back to our original discussion on erasing the tape to
bracket the starting point . . . What if we started in the middle of
“garbage” data before reading the tape? This could occur if we had
previously recorded data on the tape and repositioned the tape
sometime before the actual start of the new-leader, as shown in
Figure 9-4. Now, if the data included any 8 bits of data in the se-
ries 10100101, the tape input routine would be fooled into thinking
that this was a legitimate sync byte and would then start reading
data, which would be garbage. The chances of this happening are
about one in 1 inch of tape. So . . . please follow our advice about
bracketing the starting point on writes, or at least reposition the
counter slightly past the point at which writing started. (We'll be

ZERO BITS START OF
OF LEADER DATA
\ 10100101 |

§000000000010100101ﬁ

<rj 8-BIT WINDOW
LOOKSFOR10100101
TAPE MOVEMENT "SYNC" BYTE

Figure 9-3. Synchronization operation.

162

ERRONEOUS
START OF DATA

"GARBAGE"DATA 10100101
porioriiifiotoorotfiootq

<: ERRONEOUS
SYNC BYTE
TAPE MOVEMENT

Figure 9-4. Synchronization problems.

sending around our armed guard soon to RND (users) to remind
you . . .)

Returning to the CSAVE and CLOAD commands, let’s write out
a short program. The shortest program I know of is

100 REM

CSAVE this under “SHORT” and then CLOAD it in. Time the op-
eration. The entire operation took about 5 seconds. Most of the time
in this case is devoted to writing out the 255 bytes of zeroes. It’s
easy to figure out the time involved in writing out any known length
of data. We know from diligent study of our Radio Shack manuals
that Level II records at 500 baud and that 500 baud (in this case)
is about 500 bits per second. The amount of data per second, then,
is roughly 500/8 bytes, or 62.5 bytes per second. The leader of 255
bytes would therefore take about 255/62.5 or about 4 seconds to
write. We'll be using the 62.5 bytes per second in later discussion,
so it might behoove you to take this constant and have it engraved
on a wall plaque for reference in later reading . . . (we’ll wait while
youdo . ..).

Why Is There a Question Mark After CLOAD??

We'll be discussing this subject shortly, after we give a definitive
statement about truth and beauty. The question mark marks this
CLOAD as a “check” CLOAD. As you know from some late-hour
CLOADS, one of the things that always seems to occur (especially
at the end of the day) is to finish debugging a BASIC program,
CSAVE it on tape, CLOAD it in again, and have it give an error
part way through the load.

Unfortunately, at this point the program cannot be recovered,
and you don’t have an old copy. Ah yes, the trials of a programmer.
... The CLOAD? is a well-thought-out command to enable you to
compare what you have CSAVED with the program currently in

163

RAM {without destroying the program in RAM). Using CLOAD?
will result in many extra hours of sleep (I'll go for that!).

While we're on the subject, let’s pass on some more quick advice.
One can never have too many backups. Many times, I've been work-
ing late evening hours in a computer installation and seen the com-
puter systematically eat up the current program and many of the
backups. If you're making a CSAVE, it's a good idea to make two
copies on the same cassette or even on another cassette. Your TRS-80
may be hungry.

What's That (Blinking) Asterisk?

On a CLOAD or CLOAD? (and on other inputs), two asterisks
are used. One of them blinks on and off for every line of BASIC
program read. If you have excellent reflexes, you may be able to
verify that the number of program lines read in is correct during
a CLOAD operation.

Using PRINT# and INPUT#

CSAVE and the CLOAD commands are fairly easy to use and
understand. The cassette data is made up of the BASIC program
lines; all data is of about the same format on tape.

The PRINT# and INPUT# statements, though, are more general-
purpose. They are used to output variable-length data records to
the cassette and to input the records into the BASIC interpreter for
processing. Try the following:

18@ INPUT “READY TAPE"iA$ ‘wailt for Pozilion

708 PRINT #-1:"this 13z a tesi” Toutput one record

382 INPUT “"ready tare"3A$ *walt for tare pusitlconing
4@88 INPUT #-1.8B% TinPul one record

508 CLS ‘clear soreen

62@ PRINT @ 53@:8% ‘print input record

708 GOTO 700 *for dizplaw

This code shows the basic format for outputting and inputting
cassette data from a BASIC program. The “#” marks the PRINT
statement as cassette output and the INPUT statement as cassette
input. The —1 is used to refer to cassette tape unit number 1. (If you
have an Expansion Interface, it is possible to write to either of two
cassettes, and allowable numbers in the PRINT and INPUT state-
ments are —1 and —2.)

The operation above writes one record, made up of the string
“THIS IS A TEST” and the usual leader of 255 bytes of zeroes and
a sync byte, to the cassette. The record appears as shown in Fig-
ure 9-6. As you can see, most of the space in the record is made up
of leader and very little of data.

164

Rewind the tape and run the following program.

1000 INPUT "READY TAPE";A$ Twait for tare positioning
1108 PRINT #-14111,33,737,"THIS 15 A TEST"«1E-05
1200 GOTO 1100 “coentinually eutput record

Let the program run for several minutes. After accumulating sev-
eral minutes worth of data on the tape, key in the following program,
and run it after first rewinding the tape.

Z@00 DATA 17592E5a!81212@5915@1272@5;5352!18313297

210@ DATA 621105205151y 81 2452481 205151102 244 238
Z200 A$=°THIS IS A DUMMY FOR FILL'*

2308 A=VARPTR(AS$) ‘et address of block
2400 B=PEEK(A+11+PEEK(A+Z) %254 ‘8¢t address of string
Z50@ FOR I=R TO B+Z24 Tsetur Toor for poke
2602 READ C ‘read value

27080 POKE 1I5C poke 1nto string

ZB@BB NEXT 1 Tlowp far 5

2908 POKE 16526y (PEEK(A+1 1) “stere 1z byte of address
3008 POKE 16527+ (PEEK(A+2)) store mes bvte of address
3100 CLS "that ol clear zoreen
3208 A=USR(B) “eall to never return

The program above reads data files on cassette and displays the
data on the screen by using a short machine-language program filled
into the dummy string A$. (We'll learn more about this technique in
the next chapter.) Every new record is displayed on a new line.
This program can be used for any data tape. As we can see from
the data on the display, the format of the data on the tape is as
shown in Figure 9-5. Each numeric value in the string for the
PRINT#—1 was written onto the tape in ASCII with one leading
and one trailing blank, and a comma between data items. The string
value was written out without a leading or trailing blank.

The PRINT#, therefore, is really very similar to a print on the
display or line printer in that it writes out ASCII data rather than
binary values. This makes the data easy to read for a routine such
as the one above, but it makes the data storage somewhat inefficient.
(A binary value of 32767 would take 2 bytes instead of 5 bytes in
ASCII, for example.)

PRINT# will output any number of variables or constants that
can be contained within a line in the above format. Each list of
variables for the PRINT will be contained within one record, with
255 leading zeroes and the sync byte. A record is simply a some-
what arbitrary collection of variables, logically grouped into a sin-
gle area. A file of data consists of a number of records of related
data. If your TRS-80 was used to record time and temperature in
each record, for example, the Tuesday, September 25, 1979 tempera-
ture file might contain 48 records, one for every % hour temperature
reading.

The INPUT# statement is similar in action to a normal INPUT
statement. It reads the next record from cassette after first discard-

165

(LEADER (255 BYTES OF ZEROES, SYNC BYTE)j

t RECORD 1
&111.335.1)7375, THIS IS A TEST.ﬁlE—OSb}
| LEADER |

 RECORD 2
\111.335. 57375, THIS IS A TEST. B1E-05%)

l

ETC.
Figure 9-5. Tape data formats.

ing the zeroes and detecting the sync byte. It separates the ASCII
data items by looking for commas. It expects to find exactly the same
number of data items as there are on the INPUT# line and in the
same format. If the number of data items in the record does not
match the number specified on the INPUT# line, an OD (Out of
Data) error may result. If the types of data items do not match, an
FD (bad File Data) error results. The input routines in the BASIC
interpreter convert the ASCII data found in the record to the vari-
able types listed in the INPUT# line.

Now that we know something about the data format used by
Level II BASIC, we can accurately predict how long it will take
to read and write data from cassette. This is very important, since
the cassette is a relatively slow-speed device, operating at data
transfer rates 500 times slower than a TRS-80 floppy disk. It will
benefit us to spend some time discussing some thoughts about cas-
sette space, speed, and packing. (Sorry, I couldn’t find another “s
word for alliteration.)

Space, Speed, and (S)Packing

First of all, let’s consider how much data can be stored on a cas-
sette. If we write 62.5 bytes per second to a cassette, then we have
the following absolute storage capacities for one side of a C30 cas-
sette and a C60 cassette.

C30 = 15 minutes X 60 seconds X 62.5 bytes = 56250 bytes
minute second
C60 = 2 x C30 = 112500 bytes

We say absolute because this would be the storage capacity if the
cassette were used to read or write one huge record of this size with-

166

out inter-record gaps of zeroes and a sync byte. If we want to find
out how much record data can be put on the cassette, that’s another
story. We must really figure that out for each individual program
that writes to cassette. Let’s see how we do it in a sample case.

Suppose, to use the weather analogy again (it’s always fair
weather when good data gets together) . . . Let’s say that we have
the following PRINT# statement for weather data

100 PRINT # —1,MO,DA,YR,TM,WS,BP,WD

The variables are MO for month, DA for day, YR for year, TM
for temperature, WS for wind speed, BP for barometric pressure,
and WD for wind direction. If we assume 2 digits for month, day,
and year, and four digits plus decimal point for TM, WS, BP, and

00000000 —
256 BYTES
- OF LEADER,
SYNC
—=00000000F) .\
BMOD. DA, BYRD,B|)
TH. TMD . 5WS . WSD 5| ; BBVIES
BP.BP B DWD.WDHOO

Figure 9-6. Example of record format.

WD, then we have records that look like Figure 9-6. Each record
will contain about 48 ASCII bytes of data plus 256 bytes of leader
(zeroes and sync byte) for a grand total of 304 bytes. Now, how
many of these records can we get on a single side of a C60 cassette?
Easy ...

167

112500
304

Of course, in actual practice the number of ASCII characters per
variable may vary, trailing zeroes will be discarded, and so forth.
Still, we can get a pretty good idea of the number of records the
tape will actually hold by doing this type of analysis. Another ap-
proximate way to calculate the number of records is to assume that
each record is about 5% seconds long. Using this approximation and
knowing that there are 30 X 60 = 1800 seconds per side of a C60
cassette, we can approximate 340 records. This is not foo far off;
the smaller the number of variables in the record, the more accurate
this method is, of course.

Now, just for fun, let’s try packing data. Packie Data . . . wasn't
he Roy Autrey’s sidekick? No, we said packing data, another data-
processing buzzword. When data is packed or blocked, more than
one logical record is put in each physical record. We can put two
weather readings into each record very easily using arrays, by a
statement such as

= 370 records

100 PRINT # — 1,MO(1),DA(1),YR(),TM(1),WS(1),BF(1), WD(1),MO(I + 1), DA(t + 1), YR(1 + 1),
TM(ET),WS(1+1),BR(1+ 1), WD(I + 1)

This writes the first group of variables followed immediately by a

second group of variables. How much data storage have we gained

by this approach? The size of each record is now 256-+48+48 bytes,

or 352 bytes, and the number of records is

112500
352

However, since each record holds 2 sets of data, we have the equiva-
lent of 640 records, 170% of the number in the first case!

The practical limit is determined by two factors. The first is the
maximum size of the statement line (240 characters); the second is
the maximum record length (240 data characters or 596 total bytes).
The equivalent number of records for various blocking factors is
shown in Table 9-1. For example, in the case of records blocked
6 sets of variables to one record, we can squeeze 1242 sets of vari-
ables onto one side of a C60 cassette. Quite an improvement over
370 for an unblocked record! Of course, the smaller the size and
number of variables, the greater the blocking factor can be, up to
the limit of the statement line length or maximum record length.

We can say some interesting things about speed when records are
blocked. There is a direct relation between the blocking factor and
speed of access of any record; the more blocking employed, the
faster we will be able to read in the data. Using a blocking factor
of 8, for example, the 370th set of variables is about 30% “down

= 320 records

168

Table 9-1. Blocking Factor Versus Data, Sample Case

Number of Records
Maximum Number of | Times Blocking Factor
Blocking Number of Records, One Side (Equivalent Number
Factor Bytes/Record of C60 of Variable Sets)

1 304 370 370
2 352 320 640
3 400 281 843
4 448 251 1004
5 496 227 1135
6 544 207 1242

the tape” or about 9 minutes, while it is at the end {30 minutes)
of an unblocked tape.

Sequential Cassette Files

Is it practical to use cassette tape to hold data files for processing?
It all depends on the type of data file. If we want to process the
weather data we were discussing previously and have to find rec-
ords at random, then it is impractical to store the records on cassette
tape, because each time we require a new record we have to inter-
vene manually and rewind the tape to the beginning of the cassette
before the search. An example of this access of random records
would be a user requesting the weather data for July 27 at 12:30 pm,
then the data for June 10 at 10:00 am, then the data for March 11
at 5:00 am. The records are ordered on the tape in sequential fash-
ion based on the date and time. Each search for a random record
takes between no time and 30 minutes, with an average of 15 min-
utes (assuming one side of a cassette completely filled with data).
Fifteen minutes to access a record is intolerable, even for patient
TRS-80 programmers, and the manual intervention is also a nuisance.

If, however, we want to compile a list of all times when the tem-
perature was below —30 degrees and a second list of all times when
the wind speed was above 20 miles per hour, this is a relatively easy
and practical problem. One pass through the cassette could yield
two lists with the required data in about 30 minutes, not an unrea-
sonable time, especially when the manual intervention of rewinding
is not required.

The second type of processing is sequential in nature. Cassette
data files lend themselves fairly well to sequential processes, but
not at all to random processes. Cassette data files can efliciently
hold any data that can be ordered and processed sequentially.

It’s easy to see how sequential files can be generated. An initial
set of records is input into memory, blocked, and then output to

169

the cassette in ordered fashion. How are new records merged or old
records modified or deleted?

If your system has only one cassette recorder, then the size of the
file is limited by the amount of data that can be held in memory
and processed. Assuming that about half of the record is data and
half is leader (512-byte record), then we have about 45,000 bytes
maximum that we could put on one side of a C60 cassette. That
would stretch the limits of a 48K Level II BASIC system, since we
have about 48,340 bytes initially without a program to process the
data, but it gives some clue as to the maximum amount of data we
can handle with one cassette. In this case, all of the data records on
the cassette would have to be read into memory, the data processed
by adding new records, modifying old records, and deleting old rec-
ords, and a new cassette rewritten after the processing was done.

I hear a strident voice protesting (Guard! Confiscate his C60 cas-
settes—leave only the CYs!). No, data cannot be rewritten over rec-
ords on the tape, for two reasons. First of all, there is that manual
intervention again to reposition the cassette to the start of the record
to be modified by rewriting. Secondly, although there are expensive
incremental tape recorders for computer use, an audio cassette can-
not be repositioned accurately enough to guarantee that a new rec-
ord exactly overwrites the old. (Remember the possible erroneous
sync byte problem we discussed earlier?) The only way to update
an old file with new data is to rewrite all of the records after they've
been modified.

Two Cassettes Are Better Than One

Having two cassettes simplifies the file update problem consider-
ably. Of course, an Expansion Interface is necessary for operation of
the second cassette. One cassette is cassette number —1, and the
second is cassette number —2. The current transactions, whether
they are deletions, modifications, or additions, are input to the sys-
tem from the keyboard (or from a third cassette). Now the records
from the old master file (—1) are read one at a time and rewritten
to the new master fle (—2). If a record is to be modified, it is modi-
fied after it is read into memory, and rewritten to the new master
file. If a record is to be deleted, it is not written to the new master.
If a record is to be added, it is added between the two records of
the old master file.

The time involved to update an old master file into a new master
file on the second cassette is twice that of working with one cassette,
but the entire operation can go very smoothly and is fairly efficient
for sequential files.

170

CHAPTER 10

To Err Is Human

We're certain you, like the author, hardly ever make mistakes. . . .
In spite of that, well be discussing some of the common errors in
Level II BASIC programs in this chapter. We'll also talk about some
very handy features in BASIC that allow the computer to handle
errors automatically. Why is this important? Suppose you've devel-
oped a sophisticated BASIC program that does everything but tuck
you in at night. You have self-prompting messages, menus, and a
number of other things. In the course of running the program, how-
ever, let’s say you enter some invalid data which results in total
sales being divided by a number-of-months variable that is equal
to 0. Suddenly the program spits out “/0 ERROR IN 1088, and
you sit there dumbfounded. (Or at least sit there for about 20 milli-
seconds before starting to scream.)

BASIC has a built-in automatic error-handling provision that can
avoid problems such as this. It also provides the ability to simulate
the errors to check out the error logic itself.

Well also give you some homespun advice in this chapter on
general debugging philosophy, and well talk about some of the
built-in aids to debugging—such as the trace capability.

Unprintable Errors and Other Types

Our favorite error type is “unprintable error”; that's exactly the
way we feel about all errors! The unprintable error and all of the
other types are listed in Table 10-1. Let’s discuss each of them and
see how they are generated.

171

Table 10-1. Level II BASIC Error Codes

Error
Code Error Description
1 NF NEXT without FOR
2 SN Syntax error
3 RG Return without GOSUB
4 OD Out of data
5 FC illegal function call
6 OV Overflow
7 OM Out of memory
8 Ut Undefined line
9 BS Subscript out of range (bad subscript)
10 pD Redimensioned array
" /0 Division by zero
12 D llegal direct
13 T™M Type mismatch
14 OS Out of string space
15 LS String too long
16 ST String formula too complex
17 CN Can't continue
18 NR No RESUME
19 RW RESUME without error
20 UE Unprintable error
21 MO Missing operand
22 FD Bad file data
23 L3 Disk BASIC only

One of the most straightforward errors is the UL, or “undefined
line” error. This occurs when a statement line reference is made to
a line that doesn’t exist anywhere in the program.

1000 GOTO 2000 ‘go to 2000
1010 A=2*3.2+47Z ‘get total
3000 .PRINT “TOTAL= ;A ‘print it

The code above, for example, would result in “UL ERROR IN 1000.”

The SN, or syntax error, is another easy type of error to under-
stand. A syntax error occurs when the format of a statement line is
incorrect. Many times this occurs if the number and type of paren-
theses are incorrect. This ranges from simple statements such as

100 X=A(5/8

to complex giants such as

100 ZZ=(RIGHT(2B$,(A—2)*3))

The number of right parentheses must always match the number
of left parentheses. It’s a good idea to get into the habit of count-
ing and comparing parentheses in long, complex statement lines.

It's easy to miss an internal parenthesis. Syntax errors are also caused
by other errors in format such as

172

100 A=B//C
or
100 A$=LEFT$(B$)

Syntax errors are a kind of catchall for every type of statement for-
mat error.

The NEXT without FOR error, NF, and RETURN without
GOSUB, RG, are two program-format errors that are also obvious.
NF occurs when a loop is improperly set up without a FOR state-
ment, or the program branches to a point where a NEXT is to be
executed without being currently in a loop. An example of this is
100 GOTO 300 ‘goto 300
200 FOR i=1 TO 300 [‘start of loop
300 PRINT | ‘print index
400 NEXT ‘continue
The RG is similar; a RETURN is to be executed without currently
having called a subroutine.

OD, out of data, occurs when READ statements have read data
values until the end of all data has been reached. As you know from
previous chapters, all DATA statements anywhere in the program
constitute one table of DATA values. When a RESTORE is done,
a pointer is set back to the beginning of the DATA. Subsequent
reads read one data value for every item in the read list. An easy
error to make is to have a dummy terminating value to mark the end
of the DATA values and then not put in enough “dummies” to com-
plete the READS for multiple items. For example, suppose we are
reading three DATA values at a time and using a —1 to mark the
end of the values.

1830 READ AsB.C r’r‘ead 3 data values
158 IF A=-1 END ‘terminator 1z ~1
200 PRINT "A=“3As "B="3;E."(="3C L’Pr‘lnt values

258 GOTO 188 9o for next zet
300 DATA 1525354153565 7183%~1

The logic of the above program is flawed, since the last READ at-
tempts to read the next three values and can find only one. An OD
error results.

An illegal function call error, FC, occurs when youre using the
BASIC functions and specifying invalid arguments. For example,
what is the square root of a negative number? The code

100 A=SQR(—23)

will produce an FC error. Another type of invalid argument pro-
ducing the same results is a graphics related

100 SET(223,5)

or a matrix related
100 B=A(—1,0)

173

The OV error, overflow, results when a data value is too large for
the variable involved. As we saw in an earlier chapter, all variable
types have their limits, beyond which they will not be pushed.
Trying to INPUT a value greater than +32767 or less than —32768
will result in an OV error for

100 INPUT A%

as will attempting to input 1.1E127 for A or A#.
Choose one from the following: “OM, out of memory” occurs when

The RAM chips are pulled from their sockets.

. Bornstein takes a vacation.

. The stack builds down into the text/variable/array area.

. The program expands and the text/variable/array area moves
into the stack.

A new simple variable expands the text/variable/array area
into the stack.

. An array is dimensioned and the text/variable/array area ex-
pands into the stack.

. A CLEAR is performed that expands the string/ stack space
into the text/variable/array area.

. I forgot the question.

T Q0 = m Uowp

If you chose any of the above, you are probably right. Any time
the free memory between the text/variable/array area and the stack/
string area is small, the action of running the program may dimen-
sion arrays, clear string space, add new variables, or perform other
actions to use up the last available memory (see Figure 10-1).

Anticipating that some users might be prolific coders, the design-
ers of Level II BASIC were faced with two alternatives:

1. Let the program gobble itself up, or
2. Print an OM error.

They chose the latter. To see how much memory is still left under
various conditions, you may include a “PRINT MEM” at any point
in the program. Doing a rough estimate on the amount of storage
required by arrays also is a help. If you do run out of memory, pos-
sible alternatives are:

Reduce the program size by deleting REMarks and blanks, and
building multiple statement lines.

Make single-precision variables into integer variables when pos-
sible, especially for arrays.

Reduce the string area defined by CLEAR.

Segment the program into two or more sections.

174

An OS (out of string space) error related to OM occurs when the
string space allocated by a CLEAR statement is too small to handle
string manipulations. The string area may be made as large as re-

GENERALLY 1 i
USES MUCH PROGRAM
MEMORY l
GENERALLY SIMPLE
USES LITTLE VARIABLES
MEMORY i
GENERALLY l BUILDS
USES MUCH ARRAYS up
MEMORY i ? BUILDS
IIDOWN "
FREE MEMORY *CONSTANT
GENERALLY 4
USES LITTLE STACK
MEMORY
GENERALLY
USES MODERATE STRING
AMOUNT OF STORAGE*
MEMORY

Figure 10-1. Free memory area.

quired, subject to other storage, so don’t hesitate to throw caution
to the winds and say

100 CLEAR 20000

if required. This also eliminates or reduces dynamic string allocation
in the middle of execution. (You know, the interminable pauses that
make you think that it’s time to visit the repair enter.)

The BS, or subscript out of range, error occurs when an array sub-
script is greater than the dimension value specified in the DIM state-
ment or is otherwise incompatible. Arrays are specified by DIM val-
ues that represent the maxémum value for the dimension. For ex-
ample, the statement DIM A(5,5,5) specifies an array that is six by
six by six with values for each dimension of from 0 through 5.

175

Another array-related error is DD, a redimensioned array. Arrays
can be dimensioned once and once only, and cannot be redimen-
sioned. A DIM statement at the beginning of the program sets up
the array in the array storage area of memory by allocating memory
space for the array based on the variable type and the size of the
array. It is not permitted to redefine the array later in the program,
and, as a matter of fact, that’s just gosh-darn bad programming
practice.

We've probably all heard our math instructor say that division
by 0 is not possible or at least “undefined.” When the computer at-
tempts to divide by 0, the answer is the largest possible number
that can be held in the variable type. This is clearly wrong as the
answer for the integer calculation 333/0 is not 32767! Just as our
math instructor did not know what to do when he attempted to di-
vide a number by 0, neither does the BASIC interpreter, and it pro-
duces a /0 error.

The ID, or illegal direct, occurs when INPUT is entered as a
direct command. INPUT A,B is meaningless if not associated with
a statement line.

There are three error types associated with strings, TM, LS, and
ST. TM, type mismatch, occurs when the program attempts to de-
fine a string variable, a numeric value, or vice versa.

100 A$=1234
200 A="'STRING"

will both produce TM errors. The LS, or string too long, error will
occur if a string value exceeds 255 characters in length as in

1003 CLEAR 1060 *clear string storade
1180 A$="14 CHARACTERS!" ‘14 char straing

1208 B$=B&+AS Tconcatenate

1300 PRINT BS [’Wr'mt concatenated strang
1408 GOTO 1200 Tkeer on 21099109

The ST error, or string formula too complex, occurs when the BASIC
interpreter just cannot handle the machinations of the programmer.
I have never experienced the ST error (which may say something
about the sophistication of my coding!). We'll leave it up to you to
produce samples of string statements that produce this error.

The CN error, can’t continue, occurs when the program has
reached a logical end and a CONTinue statement is meaningless.
It is the interpreter's way of saying “THINK AGAIN, HAMMU-
RABIV”

The NR, RW, and UE errors will be discussed shortly when we
discuss the error functions.

The MO, or missing operand, error occurs for cases where an op-
eration is specified but no operand exists. The code

176

100 A=(5+32)/

will produce an MO error.

Bad file data, FD, occurs when a cassette read operation is taking
place and invalid data is read in as a result of bad data on the tape,
or “glitches” in reading the cassette. Errors such as this are classed
as recoverable or non-recoverable. A recoverable error means that
the same data may be reread and recovered. Unrecoverable gener-
ally means that three (or more) retries were unsuccessful in recov-
ering the data.

The last error code, L3, is displayed when a Disk BASIC command
is attempted without disk. An example of this would be an attempt
to execute a KILL command to kill a file or a non-existent disk. An
L3 error would result.

Trapping the Wild Error

As we're all aware, the BASIC interpreter stops program execu-
tion after encountering an error, prints the two-letter error type,
and returns to a READY condition. This is a reasonable action to
take in the general case. If you can anticipate the errors that may
occur, however, you can utilize the Level II Error functions to pro-
cess the errors and either correct the condition or prompt yourself
into correcting the condition. The error functions that you have
at your disposal are the “ON ERROR GOTO” trap (which trans-
fers to a given statement number for any error), a RESUME state-
ment (which acts as a type of CONTinue after the error), the ERL
and ERR/2+1 (which return an error line number and error code
number, respectively), and an error simulate, the ERROR function.
Before we discuss how we can trap errors, let’s talk briefly about
what errors we want to trap.

We could conceivably set up a program to trap (process) all er-
rors. However, some errors, such as SN, NF, and RG, are clearly
program logic errors. In other words, the program has not been suffi-
ciently debugged when these errors occur! Tt does not make sense to
process such errors that are involved with program logic. It does
make sense to process errors that are a result of incorrect data input
by the user, overflow conditions on input, division by 0, type mis-
match on input, or bad file data. The error trapping ability is meant
primarily as a means to make a program “idiot-proof” in the kindest
sense of the word—to anticipate the normal types of errors that oc-
cur primarily as a result of operator errors in inputting data.

Now that we know what errors we want to trap, let’s see how we
go about processing them. First, we’d better take a close look at the
“ON ERROR GOTO” statement. This statement defines an error
processing routine for the interpreter. Henceforth, any error condi-

177

tion will result not in a printout of the error type, but a transfer to
the line that begins the error processing routine.

100 ON ERROR GOTO 10000

informs the interpreter that the error processing routine is at line
10000 and that any errors that occur should cause an automatic
transfer to that line.

The ON ERROR GOTO function may be disabled by executing
an ON ERROR GOTO 0 statement at any time. By alternating be-
tween ON ERROR GOTO n and ON ERROR GOTO 0 statements,
error trapping may be turned on and off depending upon the section
of the program that is currently being executed. If, for example, the
program only handles error processing for bad cassette data, then
any time cassette data is not being INPUT an ON ERROR GOTO 0
may be executed to disable the trap.

The RESUME statement is used to resume normal operation after
error processing has taken place. There are three formats for the
RESUME.

1. RESUME or RESUME 0 causes a return to the statement where
the error occurred.

9. RESUME n causes a transfer of control to a specified line num-
ber n.

3. RESUME NEXT causes a transfer of control to the line imme-
diately after the line at which the error occurred.

We'll show examples for all three using the infamous /0 error type.
First, the RESUME case.

P00 ON ERROR GOTO 2500 "zetur error trap loon
2100 A=2/0 ‘cant divide bv @F

TZ@@ PRINT "LINE 200" Crrant Tine #

Z30@ PRINT *LINE 230@" ‘print Tine #

=400 END thiz 1¥ the end

=588 PRINT “"error trap" terpoar trap locatian

2608 RESUME ‘resume Proceszing @ 2200

Execution of this program causes the error-processing routine line
number to be stored by the interpreter as “2500.” A divide by 0 er-
ror results at line 2100, causing the interpreter to transfer control to
the error-processing routine at line 2500. This routine prints “ERROR
TRAP” and then executes a RESUME, which transfers control back
to line 2100, which causes a divide-by-0 error, which transfers con-

trol to the error-processing routine at line 2500 which, Well,
anyway, you get the idea.

3008 ON ERROR GOTO 3500 ‘zebup errar traep locn

3100 A=Z/0 "cant divide b B

3200 PRINT "LINE 3208 Tprint fine #

1300 PRINT “LINE 3300~ Tpeant tine #

340@ END ‘thiz 1z the end

a5@B PRINT "ERROR TRAPY terr trar Jocation

3680 RESUME 33080 “rezume eroceszing & 3300

178

Execution of this version causes an error trap to line 3500, print-
out of “ERROR TRAP”, and a transfer of control to line 3300 with
termination of the error condition.

4088 ON ERROR GOTO 4560 *setur errar trar locn
4100 A=2/@ Tcant divide by @
4208 PRINT "LINE 4z@0* ‘erant line #

4302 PRINT "LINE 4300 print line #

4400 END *thiz iz the end

4588 PRINT "ERROR TRAP" errvor trap location
44600 RESUME NEXT ‘resume next line

Execution of this version causes an error trap to line 4500, printout
of “ERROR TRAP”, and a transfer of control to the line immedi-
ately following the line causing the error condition, line 4200.

Error Processing

Error processing involves three steps: identifying the error, cor-
recting the error, and RESUMEing at a logical point. We'll talk about
the first two, since the third is dependent upon the success in solv-
ing the error condition.

There are two statements that we can use to identify the error,
ERL and ERR/2+1. ERR/2+1 provides the error code (see Table
10-1), while ERL provides the line number. The code below prints
out the error code and line number on which the error occurred.
Try running this code not only with the /0 error, but with other er-
roneous code at statement 200.

100 ON ERROR GOTO 500 Tsetur error trap lecn
200 A=Z/@ naughtys naughty!

300 PRINT "LINE 3@0" ‘eraint line #

4@ END Tend Program

@@ PRINT "ERROR#="3ERR/Z+1, "ERROR LINE="3;ERL

4B@ RESUME NEXT ‘resume at next line

If we only wish to process certain types of errors in our error pro-
cessing routine, we can easily eliminate the catastrophic errors such
as NEXT without FOR, syntax, and others by comparison of the
error type.

1008 ON ERROR GOTO 1400 ‘zetur error trae locn
1108 A=2/0 ‘again?!

12@@ PRINT "LINE 1z@0" Tprint line #

1300 END end ero9ram

14@@ A=ERR/Z+1 ‘et error code

15@@ IF A<>11 AND A<>13 AND A« 2 GOTO 1800

1688 PRINT “/D OR TM OR FD ERROR® ‘waz one of the three
1708 RESUME NEXT ‘rezume at next line
18@8 ON ERROR GOTO @ ‘reset error trap

1908 RESUME ‘rezume at errar line

The above code processes only a /0, type mismatch, or bad data
error by testing the error code ERR/2+1. If one of these three er-

179

rors occurs, a message is printed, and the program resumes at the
next line following the error. If none of these errors occurs, the error
trapping is reset by ON ERROR GOTO 0, and a RESUME causes
line 1100 to be re-executed resulting in the “normal” error type print-
out and the READY prompt by BASIC.

Having identified the errors we wish to process, how can we cor-
rect the conditions causing the error? This is really an unanswerable
question, since it depends so much upon the type of program. If the
error occurred because of overflow or type mismatch during data
entry, then it is relatively simple to output an error message that
prompts the user to re-enter the data. In word-processing applica-
tions, an out-of-memory error could result, and suitable action, such
as “fAushing” the text onto cassette, could be taken. Divide-by-zero
problems may be solved by re-entering the data, also. (Truthfully,
though, many divide-by-zero problems should be handled earlier by
checking the data for validity and proper range.)

An FD error, bad file data, may be hard to handle for cassette.
A floppy-disk may be easily reread, but cassette fle errors call
for repositioning. A step-by-step procedure may be implemented to
help the operator reposition the tape for a new try at reading. After
three tries or so, some other action must be taken to replace the lost
data, or the program may have to be terminated.

Simulating Errors

The last error function is the ERROR statement, which simulates
an error code. This is a handy feature for debugging the error trap-
ping functions. (The question, “What do we use to debug the debug
of the error trapping functions?” arises, but since we see an endless
loop appearing, well continue.) ERROR n produces a simulated
error. In the code above, we could have made line 1100

1100 ERROR 11

which would have the same effect as a /0 error.

The code below causes simulated errors for error codes 1 through
93. Each code is printed, and the error trap routine then causes exe-
cution at the NEXT line following the error line.

@@ ON ERROR GOTO 2400 Czetur erfor trap

210@ FOR I=1 TO 23 Toep for error codes
Z7@@ ERROR I [’z.xmulate @reor

2308 NEXT Tcontinue

350 END

2400 PRINT ERR/Z+1: ‘error Proacessing erant
2500 RESUME NEXT Trezume next line

Now for those three missing error codes, RW, NR, and UE.
All three are associated with error trapping or simulation. RW is

180

RESUME without error and occurs when a RESUME is encoun-
tered without a previous ON ERROR GOTO statement. NR is NO
RESUME and occurs when program end is reached while still in
an error trapping mode. The last, that !1!$#*!! unprintable error,
UE, is caused by attempting to simulate an error with an invalid
error code, as in

100 ERROR 87 RHEF-241

Debugging

In the old computer days ten years or so ago when computer time
was at a premium, the process of debugging a program was com-
pletely different than it is now on the TRS-80. The procedure then
(and now at larger computer installations) was to do a great deal
of “desk checking” of programs before “getting on” the machine.
Getting on amounted to submitting the program as one of fifty “jobs”
to be run on the computer installation. When its turn came, the
program would run, exercise some test data, and “blow up.” The
programmer would then retrieve the new listing and test data and
try to piece together what had happened in the program. The luxury
of having a computer to oneself was only infrequently possible, and
programmers were forced to adapt to this type of debugging.

In the
L e
* k& 7! dE VUN A ko

however, and in most personal computer systems, the debugging is
interactive. A programmer can monopolize the whole system (and
why not!) and debug his program until his program runs perfectly.
Some programmers, ingrained with the procedures of the computer
dark ages, may sneer at this method of debugging, but it is ex-
tremely efficient, fast, and with the tools in Level II BASIC, very
powerful.

The first step in efficient debugging, however, is good design.
The program does not have to be written, but flowcharting or list-
ing the steps may help in the on-line program editing. Breaking up
the program into separate modules performing well-defined func-
tions also helps for long programs. Generally, the more thought
given to good design, the less trouble there will be in debugging.

The next step, of course, is entering the program via the edit
mode. The AUTO feature of the editor may be used to sequence
line numbers automatically with increments of 10 to allow addi-
tions of statement lines during debugging. Give some thought also

1%

1S

181

to segmenting the functions of the program. A mailing-list program,
for example, that has add, delete, modify, read from cassette, and
write to cassette may be conveniently segmented into

Command Interpreter and Menus Lines 10-999

ADD Lines 1000-1999
DELETE Lines 2000-2999
MODIFY Lines 3000-3999
READ Lines 4000-4999
WRITE Lines 5000-5999

As sections of code are entered, there is no reason not to debug
on the spot with a RUN after setting up the proper values. If the
code segment at 1000-1999 is the add function, for instance, perform
a RUN 1000 to execute and debug the add function as a separate
entity. Breaking down the program into small portions for debugging
purposes will speed up the overall debugging process.

When the program blows up at a line and an error message of
“BS ERROR AT LINE 3250” is displayed, don’t scratch your head
and look at the listing. Don’t forget that the data causing the blowup
is still in RAM. Enter a series of PRINT statements in the command
mode to print out the current values of the variables causing the
blow-up.

SPRINT 1LJ,(A*2+17)

This method of dumping the variables at the occurrence of the bug
may be done as much as required.

If the bug is still present, put a STOP statement anywhere in the
program before the line at which the error occurs, and repeat the
process of displaying the variables to see where the error is intro-
duced. A type of “binary search” may be used to converge on the
statements causing the error; if things are all right up to a certain
point, halve the portion of the program remaining, STOP, and dis-
play the variables. CONTinue until the bug is found and squished.

The Trace option may also be used to help in debugging. Trace
may be turned on by TRON and off by TROFF. A trace on any
computer system traces the flow of the program by printing loca-
tions or line numbers that the program follows. The trace capability
on the TRS-80 is very fast because line numbers are displayed on the
screen, which is an efficient input/output device. TRON/TROFF
may be temporarily embedded in the program to trace only at the
point at which problems arise. It may also be used to flag the pro-
grammer that a certain section of the program has been erroneously
entered.

A “snapshot” capability may also be used in TRS-80 debugging.
Snapshots differ from traces in that they selectively display loca-

182

<8842><9830><9B840><9B4I>SNAP A= 20 = 8
<8842><9830><9840><9B4I>SNAP A= 7 1= 7
<9842><9B30><9B40><384I>SNAP A= 23 l= 12

EC

Figure 10-2. Example of snapshot.

tions or variables at different parts of the program. Suppose that
you are having problems with a section of code at line 9830. You
may invoke the Trace mode to print out the line and PRINT out
the troublesome variables directly after, and then turn off the trace.
Every time the program sequences through that portion of the pro-
gram, you will get a snapshot of the variables at that point, as shown
in Figure 10-2.

9825 TRON

IB3B A=A+1

9848 I=LEN(AS$)

9841 PRINT "SNAP: A="jA,"I="31
9842 TROFF

After you have found the last error in your program, it’s time to
start debugging in earnest! Not exactly debugging, but exercising,
actually. Run the program, and try as many combinations of inputs
and data as possible. Be like playful computer-science students at
time-sharing terminals who try to “crash” the system! If the pro-
gram is to be sold or even supplied free to friends, the users won’t
appreciate unexpected crashes of a “completely debugged” program!

183

CHAPTER 11

Son of BASIC Meets the
lachine Code Monster

Machine language, like English or French, has gone through many
changes since its inception. During the building of the pyramids,
machine language consisted mainly of groans and sighs. Later, dur-
ing the industrial revolution, clicks and whirs replaced the earlier
grunts. Still later, machine language made a transition to a silent
stream of ones and zeroes fed into a computer. The term machine
language is somewhat confusing to many BASIC programmers.
What is it? How can I use it? Why are we asking so many rhetori-
cal questions? These and other aspects of machine language will be
revealed in this chapter as we present

ettt o2

SON OF BASIC MEETS THE
MACHINE CODE MONSTER

006 O0C00O0Q00
Alan Load as Dr. Binary
Sylvia Compari as Gretchen

Knute Exchange as Bret Wonderguy

200
A Tandy Production — Fitmed in BASICvision

What we'll attempt in this chapter is to present the very rudiments
of machine-language or assembly-language programming and how

184

to interface to assembly-language code using BASIC. For a more
thorough treatment, see Radio Shack’s TRS-80 Assembly-Language
Programming (62-2006).

Hello, Mr. Chips

The TRS-80 is constructed around a microprocessor called the
Z-80. The Z-80 semiconductor chip is almost a complete micro-
computer in a piece of silicon material measuring a fraction of an
inch on each side. The semiconductor material is etched and pro-
cessed to contain miniature electronic components—tens of thousands
of them.

The Z-80, like its predecessors, has a built-in instruction set or
instruction repertoire. In the early days of computing when elec-
tronics were expensive, the amount of circuitry was limited and in
turn limited the number of instructions that could be implemented.
The actual instructions that the computer understood were such
simple primitives as add two 16-bit numbers, subtract two numbers,
compare two numbers, jump to a new location, and the like. Later,
as circuitry became less and less expensive, more instructions were
added. However, the number and types of instructions had a prac-
tical limit dictated by their generality. After all, specific instructions
such as “If this number is 512 or greater, subtract 23” have limited
application.

The instruction set in the Z-80 consists of hundreds of instructions.
At first, the sheer number of instructions seems overpowering, but
the instructions can be grouped into several dozen different cate-
gories. Within each category, the instructions are very similar in
many cases.

Within the Z-80 are a set of internal registers. The registers may
be thought of as additional memory locations similar to RAM mem-
ory. The registers accessible to the programmer are shown in F ig-
ure 11-1. Instructions within the Z-80 operate between the Z-80
registers or between registers and memory. Typical instructions
would be ones such as

LD A, (1234) Load register A with the contents of memory location 1234.
LD (17000),A Store the contents of register A into memory location 17000.
ADD AB Add register A and B and put results in A.

JP 1700 Jump to memory location 1700.

The instruction length varies from one byte for an instruction
such as ADD A,B to four bytes for an instruction such as LD A (IX),
which loads the A register with the memory location pointed to by
the IX register. The average instruction is about two bytes long.

Each instruction is represented by an operation code (opcode)
and operands within the instruction. For example, the 8-bit code

185

[—————TWO BYTES——

|— ONE BYTE—
A REGISTER)
F REGISTER
H REGISTER* GENERAL
L REGISTER* REGISTERS
B REGISTER** NORMALLY
C REGISTER** USED

D REGISTER***
E REGISTER***

A'REGISTER }

F'REGISTER

H'REGISTER™ GENERAL

L REGISTER* REGISTERS
B'REGISTER** NOT NORMALLY
C'REGISTER** USED

D'REGISTER***
E'REGISTER***

IX REGISTER } INDEX
IY REGISTER REGISTERS
SP REGISTER STACK POINTER
PC REGISTER PROGRAM COUNTER
[REGISTER | R REGISTER INTERRUPT REGISTER,

REFRESH REGISTER

E NOT NORMALLY USED
DENOTES REGISTERS BY PROGRAMMER

USED TOGETHER AS
"REGISTER PAIRS"

Figure 11-1. Z-80 registers.

Kk ET T
or

10000001 represents the instruction “Add the A register and C regis-
ter and put the result in the A register.” To make instructions such
as this easier to write down, every instruction has a mnemonic form,
such as “ADD A,C.” The number of bits for each instruction, then,
varies from 8 for a one-byte instruction to 32 for a four-byte instruc-
tion. The binary code for each instruction is called the machine-
language version of the instruction.

One could code a program in machine language. The stream of
ones and zeroes could then be fed into TRS-80 RAM by POKEs
and would execute as a machine-language program if properly called
by BASIC or by a SYSTEM command.

You can always recognize programmers who worked in the 1950s
by their eyeglass or contact-lens prescriptions. Coding in ones and
zeroes is somewhat tedious, to say the least. Machine-language

186

“WILSON IS THE LAST
OF THE ORIGINAL .
1950’ PROGRAMMERS

coding was quickly replaced by a form of coding called assembly-
language coding. In this scheme, instructions are still coded from
a table, but the table is referenced by an assembler program rather
than a programmer. The programmer supplies text mnemonics such
as “ADD A,B,” and the assembler program automatically assembles
them into the proper machine-language form.

The TRS-80, being a sophisticated computer, has quite a nice
interactive Assembler/Editor which can be used to assemble ma-
chine-language programs of several instructions to thousands. The
resulting machine-language code can then be manually POKEJ into
RAM or be input by means of a SYSTEM or T-BUG tape. We'll be
discussing both the use of SYSTEM tapes and the POKE method:
in this chapter. But first . . .

TRS-80 Memory Layout

Before we use any machine-language routines, we must get an
idea of the memory layout of the TRS-80. That way we will not be
(to use a technical term) clobbering any machine-language program
with which we are interfacing. Figure 11-2 shows the BASIC mem-
ory layout.

The first 12K bytes of the 64K bytes (remember, K=1024) of mem-
ory locations available to the TRS-80 are dedicated to the ROM

187

LOCATION
0

12287
12288

16384

65535

12K

ROM
LEVEL 1} BASIC
INTERPRETER*

1K VIDEQ MEMORY*
"WORKING STORAGE"*

BASIC PROGRAM
TEXT

SIMPLE
VARII;BLES

FREE
MEMORY

4
STRING
STORAGE

AREA**

MACHINE-LANGUAGE
RESERVED AREA**

16K

ROM

MEMORY,
RESERVED
ADDRESSES,
VIDEO MEMORY

16K RAM

|

T BUILDS
"DOWN"

*FIXED

**FIXED UNDER
USER CONTROL
16K RAM

16K RAM

188

Figure 11-2. BASIC memory layout.

containing the Level II BASIC interpreter. ROM, of course, is
Read-Only Memory and can’t be changed. The next 4K is a mix-
ture of video display memory, which is 1K bytes long and located
at the end of the 4K segment, and dedicated memory addresses.
The dedicated memory addresses do not exist as memory but are
detected by such system devices as printer logic and the RS-232
interface.

The next 4K to 48K of memory is RAM, or Random Access Mem-
ory. RAM can be read from and written into (Editor’s Note: Never
use a preposition to end a sentence with!). It can be loaded with
programs or data or can be altered by POKEs. Depending upon the
size of your system, you may have 4K, 16K, 32K, or 48K of RAM.
The memory location of RAM starts at 16384 and continues to 65535
for a 48K (RAM) system.

During the use of Level II BASIC, certain areas of the RAM are
used by the interpreter, as shown in Figure 11-2. The first portion
of RAM contains “Working Storage,” followed by BASIC program
text, simple variables, and arrays. As a BASIC program is created,
this area expands as new variables and statements are added; it is
not static, but “grows” toward high memory addresses.

At the same time the text, variables, and arrays are using up low
RAM, the string space and stack are using high memory. A CLEAR
statement clears a fixed area at the top of RAM for use as string
working storage. Immediately below the string space is the stack
area. The stack area is expanding and contracting as the BASIC in-
terpreter is run, but uses only several dozen bytes of memory or so
at any given time.

The area between the stack and arrays is free memory. The figure
is somewhat misleading, as free memory usually constitutes a major
portion of available memory, dependent upon the system memory
and program size.

The area of memory immediately at the end of RAM may be re-
served for use of machine-language code or any other use. When the
Level II interpreter asks (in its inimitable fashion)

MEMORY SIzE?

and patiently waits for your answer, it takes the value specified and
reserves the RAM area from “top of memory” to the specified value.
Specifying 63000 in a 48K system, for example, would reserve RAM
locations 63000-65535. These locations would never be used for
string or stack storage, or for any other interpreter use. If no value
is entered, no area is reserved.

How much memory can be reserved by the use of MEMORY
SIZEP—any reasonable amount. The BASIC interpreter must have
some memory available for program storage, variables, arrays, stack,

189

and string space, but as long as it has enough to cover every condi-
tion during BASIC program execution, the reserved area may be as
large as necessary.

SYSTEM Tapes

Now that we have a little knowledge about the TRS-80 memory
layout and machine code, let’s disregard the homily and do a dan-
gerous thing . . . create and use our first system tape. For this exer-
cise, we'll create a short assembly-language program to white out
the screen (do you have those stop watches ready?).

Our first step is to hand assemble the program using a table of
opcodes or to use the Radio Shack Editor/Assembler to create the
desired program.

The process of designing, coding, and debugging in assembly
language may be quite involved, and we can’t explain how to do
it in this one chapter. The end result of the designing, coding, and
debugging effort is shown in Figure 11-3. It is an assembly-language
listing representing the assembly-language program to perform the
screen white-out.

We will explain this one program fully to help you understand
assembly language a little better; we'll bypass complete explanations
of other assembly-language programs presented in the chapter. You
may ignore the actual assembly-language code and concentrate on
the techniques of interfacing to assembly-language subroutines, if
you wish.

The left-hand column of Figure 11-3 represents the memory loca-
tions where the program resides. These hexadecimal values are the
locations for the machine-language code found in the next column.

MEMORY LOCATIONS
FOR INSTRUCTIONS

MACHINE-LANGUAGE
INSTRUCTIONS
UNE NUMBERS SOURCE CODE
4400 Potea ORG 16944

4A00 210030 2110 WHITE ()] HL+ 15350 T3TART OF SCREEN
3110804 a1z Ln DE. 1024 1024 CHARACTER POSITIONS
JERF Da138 Loop i.D A 191 sALL OM

601402 p CHL v A 1ETORE ALL ON
3 20150 NG HL. 3 INCREMENT DISPLAY ADDRESS

4aBA 1B 00160 DEC DE IDECREMENT # OF BYTES
4nBE 7A Q0170 Lo P SGET MOST SIGNIFICANT
4ABC BF pe e OR E SMERGE LEAST SIGMIFICANT
440D ZOF7 a919@ IR NIy LOOF SLOOP IF NOT 1024
4ARE €9 OO0 RET JRETURM IF DONE
2000 20210 END
PORER TOTAL ERRORG v ~——v— ‘——~— v

o) LABELS MNEMONICS OPERANDS REMARKS
Look 406 COLUMN COLUMN COLUMN COLUMN

WHITE 4ARG

Figure 11-3. Assembly-language screen white-out.

190

The machine-language code consists of two, four, six, or eight hexa-
decimal digits representing one to four bytes of a machine-language
instruction. The next (third) column is a line number, identical to
BASIC line numbers. The remainder of the listing in the figure repre-
sents the source code of the program.

The assembly-language source code consists of four parts. The
fourth (extreme right) column has the comments of the program.
This column is optional. The second column of the source code has
the actual Z-80 mnemonic form of the instruction. This is a shorthand
representation of the instruction just as in BASIC statement types.
An instruction may have several operands, and these are contained
in the next column. The left-hand column of the source code holds
optional labels which are used in place of line numbers for jumps
(equivalent to GOTOs).

Now for the actual program to white out the screen . . .

Line 100 loads a CPU register {HL) with 15360, the address of
the video display start. A second CPU register (DE) is then loaded
with 1024, the number of characters on the screen. HL will be used
as a pointer to 15360-16383 throughout the program loop just as a
BASIC variable HL might be used for a POKE HL value. DE will
be used as a count of the number of screen positions actually whit-
ened, just as in the BASIC statement “FOR DE = 1024 TO 0 STEP
_1”

Lines 120 through 180 constitute a program loop. The loop is
performed 1024 times. Each time through the loop, the following
actions occur.

1. The CPU A register is loaded with 191, a value representing a
graphics “all ON” (line 120).

2. The contents of A (191) are stored into the video memory lo-
cation pointed to by HL (line 130).

3. The pointer in HL is incremented by 1 to point to the next
video memory location (line 140).

4. The count in DE is decremented by 1 (line 150). (When it

reaches 0, the loop will terminate.)

. The count in DE is tested for 0 (lines 160 and 170).

. If the count in DE is not zero, another loop is made back to

label LOOP. If the count is zero, the next instruction at line

190 is executed. (Line 180.)

When the count is zero after 1024 times through a loop, a

RETurn instruction is executed to return to the BASIC pro-

gram.

o200

~1

Where do we want this program to reside in RAM? To handle
the case of every reader (unless someone out there has one of the
early 3.3K TRS-80 systems), we'll plan on putting this program at

191

RAM location 20300, which is close to the top of a 4K RAM system.
The starting location for machine-language routines is important, be-
cause the codes for the instruction operands vary according to where
the instructions are placed in memory. Unlike BASIC, machine
language references are to absolute memory locations, rather than
line numbers of statements. As an interesting point, though, it just
so happens that this particular assembly-language routine is relocat-
able to any part of RAM; it does not have to be reassembled. All of
the machine-language routines in this book are relocatable in this
fashion.

There are two alternatives to using an assembly-language pro-
gram after it has been properly assembled, loading a SYSTEM tape
created by the Radio Shack Editor/Assembler or using the listing
values after assembly by POKEing them into memory. These two
alternatives will hold true for all programs in this chapter. We'll
explain how to use both methods for this program to white out
the screen.

The first alternative is assembling and loading a SYSTEM tape.
If we take the source program from Figure 11-3 and key it into the
Radio Shack Editor/Assembler, not only will we get the listing of
Figure 11-3, but the Editor/Assembler will generate a file on cas-
sette called the SYSTEM {object) file that can be loaded by a
SYSTEM command. To load the SYSTEM tape, type the following
after initializing BASIC:

MEMORY SIZE? 18944

RADIO SHACK LEVEL II BASIC
READY

>SYSTEM

*?(Name of tape)

The SYSTEM tape created by the Editor/Assembler will now load
under the name specified to the Editor/ Assembler (or “NONAME”
if none was specified). To get back to BASIC, hit BREAK after the
tape has loaded.

The second alternative is to POKE the machine-language values
from the assembly listing. After the assemble, we have two columns
on the assembly listing that represent the locations for the machine-
lan%fuage code (starting at 18944) and the machine-language code
itselr.

In this program, the following machine-language code was gen-
erated by assembly:

Hexadecimal

Location (From Fig. 11-3) Decimal
4A00 (18944) 21 33
4A01 00 0

192

4A02 3C 60

4A03 11 17
4A04 00 0
4A05 04 4
4A06 3E 62
4A07 BF 191
4A08 77 119
4A09 23 35
4A0A B 27
4A0B 7A 122
4A0C B3 179
4A0D 20 32
4AQE F7 247
4A0F (o 20

We have converted the hexadecimal code to decimal for POKEing,
as Level IT BASIC will only accept decimal values. The hexadecimal
values may be converted by reference to a hexadecimal-decimal con-
version table such as the one that can be found in the Editor/ Assem-
bler manual.

The 16 locations may be loaded by POKEing by simply perform-
ing a POKE 18944,xx in the command mode or by using the short
program below to input the starting address and the POKE values.

102 INPUT "START ADDRESS" A *start address for pokes
2B8 INPUT "VALUE® ;3B Tineut value @-255

322 IF B=-1 STOP "terminate on -1

408 POKE AsB ‘poke to newxt address
580 A=A+1 ‘increment next addresc

600 GOTO 200 90 for pext value

Using the USR(0) Call

The 16 bytes of data comprising the short machine-language sub-
routine are now in RAM from 18944 to 18959. How do we get to
the subroutine from BASIC? A relevant question . . .

The USR(x) function causes a transfer to an address somewhere
in RAM (or ROM). The address to be used in the call must have
been placed in locations 16526 and 16527 previous to the USR call.
In our case, we're using a machine-language program starting at
18944. Using standard address format, we must POKE the two bytes
of address value 18944 into locations 16526 and 16527. Standard ad-
dress format, as you may recall, is least significant byte followed by
most significant byte. The code for POKEing 18944 into 16526 and
16527 is

1008 MS=INT(1B944/256) “calculate ms brte of addre

1100 LS=18944-MS*256 *calculate 1s bvte of address
1200 POKE 14526515 Tsetup 1= bvte for usr
1308 POKE 16527:MS setur mz byte for use

193

The statement for MS finds the upper (most significant) 8 bits
of the address, and the code for LS finds the lower (least significant)
8 bits of the address. This scheme can be performed for any ad-
dress value.

The next step is actually to call the subroutine using a USR(0)
call. Tf all goes well, we should call the machine-language code,
white out the screen, and return to the next BASIC statement.

1000 MS=INT(1B8944/256) ‘calculate ms bvite of address
1100 LS=18944-M5*256 *ralculate 13 brte of address
1200 FOKE 16526415 “zetur 1z byite for use

1308 POKE 165Z7.MS ‘zetup ms bvte for use

1408 A=USR(®) ecall machine—language

1588 CLS Tclear soreen

1600 PRINT *HOORAY™ Tcheers

Did it work? (Guard, get the name of that reader who never runs
these routines. Better use a larger pad of paper . . .) If you speci-
fied a memory size of 18944, POKEd the data correctly (or loaded
a SYSTEM tape), and then used the program above, you will have
seen a rapid flash of white before your eyes similar to the one you
saw after writing out a check for a TRS-80 system. Did you time it?
The time to white out the screen in this case was about 1/25 of a
second, about 20 times faster than the fastest string graphics method!

Any Arguments?

The format of the USR(0) call set a variable (A) equal to the
USR call. The 0 within the function was a dummy argument. The
USR call provides for use of a real argument if the user desires. The
value or variable within the parentheses will then be passed to the
machine-language subroutine. Upon return, an argument will be
passed back by setting the specified variable (in this case, A) equal
to the argument to be returned.

What is the purpose of passing arguments back and forth? The
obvious answer is that machine-language subroutines may require
operands just as BASIC subroutines require operands. Let’s illustrate
how an argument is passed to a machine-language subroutine. Sup-
pose that we require a subroutine to delete a character on the screen
for word processing, sometimes called “text editing.” Word process-
ing enables us to construct text representing form letters, book manu-
scripts, or other text-related material. The deletion will cause the re-
maining text to “snake up.” The character position (0-1023) of the
character to be deleted will be passed to the machine-language sub-
routine, which will delete the character and snake up the remaining
text on the screen. The code for this machine-language function is
shown below.,

194

0Red CD7FBA Q0100 DELETE CALL 2687 3GET CURSCOR POSITION

Qeas Es agi1e PUSH HL iFOR TRANSFER
@224 DI 201z0 POP DE sNOW IN DE

@22as 210004 22130 LD HLs 1024 sFOR 1K SCREEN
ooes B7 20140 OR A sCLEAR CARRY
0va? EDSZ eaise SBC HLs DE 51024-POSITION
@88 ES 20160 PUBH HL 3 TRANSFER

2e0c Ci @a17a POP BC 37O BC

208D Z18@3C 0180 LD HiL. s 15360 $SCREEN START
oe1a 19 @190 ADD HLsDE sFIND POSITION
2e11 ES 28z00 PUSH HL sFOR TRANSFER
@312 D1 ouz10 POP DE FNOW IN DE

8213 23 az20 INC HL ;FOR SOURCE

@014 EDBG anz3e LDIR $BLOCK MOVE

@216 3EZB oBz40 L Ay 32 sBLANK

@@18 32FF3F @n25e LD (1638315 A STORE IN LAST POSITION
oB1B €9 PB268 RET $RETURN TC BASIC
2aes eez7a END

00028 TOTAL ERRORS
34754 TEXT AREA BYTES LEFT

DELETE 0000 22108

The code above first calls a subroutine at location 2687 in ROM.

This subroutine loads the HL register with the argument. If we
had said

100 A=USR(1011)

1011 would have been the argument passed to DELETE in HL
after we had CALLed the 2687 subroutine. Every time an argument
is to be passed to a machine-language subroutine, the “CALL 2687
must be executed to load the argument into the HL registers. This is
simply the way chosen to pass an argument between BASIC and a
machine-language subroutine in the TRS-80. There is nothing pro-
found about it.

With the argument of 0-1023 representing the character position
in HL, a PUSH and POP are performed to also transfer the argument
to the DE registers. Next, the argument is subtracted from 1024 to
give the number of bytes between the character position specified
and the end of the screen. HL is then loaded with the actual ad-
dress of the screen memory location by adding 15360, the start of
the screen memory, to the character position. This value is trans-
ferred to DE. One is then added to HL. All of this manipulation
was necessary to set up the HL, DE, and BC registers properly so
that a “Move Block” LDIR instruction could be executed. The LDIR
moves all memory locations in video memory from the character po-
sition plus one down one location to effectively delete the character
at the specified character position and “snake up” the text. As the
last location in the video memory had nothing to fill it, a blank is
used for the last screen character. The machine-code data after
assembly for this machine code is given below. It is also relocat-
able code that could be placed anywhere in memory.

195

Hexadecima' CD,7F,0A,E5,D1,21,00,04,87,ED,52,E5,C1,21,00,
3C,19.E5,D1,23,ED,B0,3E,20,32,FF 3F,C9
205.127,10,229.209,33,0,4,183,237,82,229,193,33,
0,60,25,229,209,35,237,176,62,32,50,255,63,201 +—

18944 18971

POKE the machine code above from 18944 through 18971 us-
ing the POKE program shown previously. Of course, once again,

MEMORY must have been set to 18944 before the POKEs. You can

optionally assemble this code and load a SYSTEM tape. if you do,

enter the following source line before assembly:

00090 ORG 18944

We now have the machine-language program in RAM ready to
be called by a BASIC “driver.” For the driver, we'll use a routine
to 1l the screen with simulated text. The routine will then ask for
the character position to be deleted, and delete the indicated char-
acter.

Decimal

Z0es CL.Ss

P10 INPUT "“CHARACTER POSITION=":k
2020 IF B40 OR BX1823 GOTO 2018
@30 FOR 1=15360 TO 16383

Celear soreen
Tinrut Positicn for deiete
Ttezt for valid pozition
Yzetupr loop Tor SCreen memory

A=RND (&)

IF A<x1 GOTO Z0BO
A=32

GOTO 2100
A=RND(9@)

IF A<6D GOTO Z@BB
POKE 1:1A

NEXT 1
MS=INT(18944/226)
LS=18944~M5*I56
POKE 1465261015
POKE 146327.MB

Trandom# for zPace
*ga 1T net zpace
rput word space everwy bbh
"aa to Till zcreen
'get alrha character
throw wut less than a
Tztore In soreen
Ttoor for 1K
‘get ms addrezz bvte
get 1z address bvie
store 1z for usr call
‘store me for use call

AS=INKEY$ E’test kevboard inPul

IF A$="" GOTO 2180 (_ Ploar 1T none

A=USR{8) L "pacs delete pozition
GOTO 2160 ‘delete at same position

The driver first clears the screen and asks for the character po-
sition for the delete. After a valid character position is input, the
screen memory is filled with random text characters including spaces
to simulate actual text. (A space is generated every five characters
or so by the A = RND(6) logic.) After the screen is filled, the stan-
dard POKE of the machine-language subroutine is made at 16526
and 16527. At the next key depression, the machine-language sub-
routine at 18944 is called by A = USR(B). B is the character posi-
tion previously input (0-1023). For every subsequent key depres-
sion, another character at the same character position is deleted as
the text snakes up. The important points in this example are:

1. An argument was passed to the machine-language subroutine
by USR(B).

9. The machine-language subroutine picked up the argument by
a “CALL 2687.”

196

Before we get on to a clever way to embed machine code in
BASIC statements, let’s cover two more topics about argument pass-
ing—passing arguments from the machine-language subroutine back
to the BASIC program and passing multiple arguments.

Getting an Argument Back

Suppose that we continue with our word-processing analogy and
create a machine-language subroutine to count the number of words
on the screen. If a word is defined as a string of characters bracketed
by spaces, we can easily count the words by counting the number
of spaces. The machine-language routine will scan video-display
memory and count the spaces, returning the word count as a vari-
able. The assembly-language code for this is below.

2B0E 11003C 82108 COUNT LD DEs 15360 $START OF SCREEN

Q023 Q10004 6o110 LD BCy 1024 1K CHARACTERS ON SCREEN
00Bs 10000 PO1z2 LD HL.s @ SINITIALIZE SPACE COUNT
2009 1A QB138@ LooP LD As (DE) 5GET CHARACTER

0BeA FEZQ 28140 cpP 3z 3TEST FOR SPACE

BoC 0ot oa150 JR NMZ . CONT 3G0 IF NOT SPACE

@RRE I3 22140 INC HL SBUMP SPACE COUNT

QoaF ok B0179 CONT DED B iDECREMENT LOOP COUNTER
2010 13 oB1oe INC DE BUMP LOCATION POINTER
2v1L 79 08198 Lo AsC SGET LS OF LOOP COUNT
P81z BB ! OR B SMERGE MS OF LOOP CNT
BO13 ZBF4 JR NZsLOOP @0 IF NOT 1w

2215 C374RA JF 2714 sDONE; RETURN TQ BASIC PROG
2lainle] END

BReBY TOTAL ERRORS
24749 TEXT AREA BYTES LEFT

CONT BBDF BB178 00150
COUNT 000e 02100
LOOP 2085 0130 B@z10

The code above first loads the DE register with the start of the
screen memory and the BC register with 1024, the number of lo-
cations to scan. HL is initialized to zero for the count. The code
loops through “LOOP” to “JR NZ,LOOP” comparing each video
display memory character with a space, ASCII 32. If a space is
found, the count in HL is bumped by one. Each time through the
loop, the address of the next memory location is incremented by
one (INC DE), and the number of locations left is decremented by
one (DEC BC). If the number of locations left in BC is not zero,
another pass through the loop is made. At the end of the loop, HL
contains the count of the number of spaces or words. The last action
is to execute a jump (JP) to location 2714. This transfers the count
in HL to the variable in the USR call. This is the “standard” way
to pass an argument back to a BASIC routine in the TRS-80. Note
that a “Return” (RET) instruction is not done in this case.

197

The machine code for this subroutine is shown below. POKE the
values after first setting memory size to 18944. This code, as were
the other two routines, is relocatable and can be placed anywhere in
memory. Optionally, you can assemble this code with the Editor/
Assembler and load the resulting SYSTEM tape. If you do, add the
following source line before assembly:

00090 ORG 18944

Hexadecimal 11,00,3C.01,00,04,21,00,00,1A FE,20,20,01,23,
08,13,79,80,20,F4,C3,9A,0A
Decimal 17,0,60,1,0,4,33,0,0,26,254,32,32,1,35,11,19,
121,176,32,244,195,154,10
18944
The BASIC driver for this subroutine fills the screen with simu-
lated text characters as before, except that it ensures that only one
space at a time is used. The number of spaces (words) is returned
in variable A and printed.

3008 CLS *clear screen

301@ FOR I=15368 TO 146383 rsetur loop for screen
3028 A=RND(6) ‘get # for space

3038 IF A<>1 GOTO 3070 "if not zpace continue
3840 POKE 1,32 Teoke zpPacCe

3050 I=1+1 *bump character pPositaon
306@ IF I=146384 GOTO 3110 "go 1f zcreen fill done
3078 A=RND(3@) get nuan-space character
3080 IF ALS GOTO 3076 “1gnore control codes
30898 POKE I,A “poke alrhabetac

3100 NEXT I *lgor to fill screen
3110 MS=INT(18944/256) "get me of address

31Z0 L.5=18944—-ME*¥256 "get 1z of addreszs

2130 POKE 165263L5 *poke for usr call

3140 POKE 16527MS "poke for usr call

3158 A=USR(D) call word ceunt routine
3168 CLS Tclear screen

3170 PRINT "NUMBER OF WORDS IS "3A *print number

3180 IF INKEY$="" GOTO 3180 ELSE GOTO 3000

Handling Two-Way Passing and Multiple Arguments

The above example showed the mechanism for passing arguments
back to the BASIC routine, and the example previous to that illus-
trated passing an argument to the machine-language routine. In
some cases, it is necessary to both pass an argument to the machine-
language routine and pass one back from the machine-language sub-
routine. An example of this might be a machine-language routine
that scanned the display memory for a given character and then
returned the character position of the character. In this case (we
won’t write the code), the call might be

100 A=USR(ASC(A$))

where A$ was the one-character string variable and A was the re-
turned character position 0-1023, or —1 if the character was not
found. In the corresponding machine-language code, the first in-

198

struction would “CALL 2687 to load the HL register with ASC(A$),
and the last instruction would be a “JP 2714” to take the character
position in HL and store it in variable A.

SEARCH CALL 2687 ;get argument

%

(other code)

P 2714 ireturn argument

We know from the above examples how single arguments can be
passed between a BASIC program and a machine-language sub-
routine, but how about multiple arguments? The HL register in the
Z-80 is 16 bits wide and can therefore hold an integer variable. All
arguments passed between BASIC and a machine-language subrou-
tine must be integer variables of 16 bits or less. (We used single-
precision arguments above that were converted by the 2687 routine
to integer values. We also took the integer argument from the sub-
routine and converted it to a single-precision form. As long as the
argument is between —32768 and +32767, this technique is valid,
although it is probably wise to use integer variables such as A%
or B% when setting up USR calls.)

If multiple arguments are required, it is possible to pack them
into a 16-bit integer variable. An example of this would be use of
a machine-language subroutine that drew a line from a given xy
point to another x,y point. The four arguments could be packed as
shown in Figure 11-4.

4 BITS 4 BITS
+ + + + + + Z-BYTE
BYTE 0 . X} . . Y.l ' INTEGER
o o VARIAB
BYTE 1 X2 Y2 xv%LE

Figure 11-4. Packing arguments.

The subroutine, of course, would have to unpack them into four
separate arguments. The packing code is shown below and assumes
variables X1, Y1, X2, and Y2 are the appropriate x,y values. The
packed result passed to the machine-language subroutine is in inte-
ger variable XY.

199

100 XY% =X1*4096+Y1*256+X2*16+Y2
200 A=USR(XY%)

T

Another method of passing as many arguments as required is
simply to make multiple calls to the machine-language subroutine.
On the first call, the subroutine starts counting the number of argu-
ments and does not process the arguments until all the necessary
arguments have been received. Typical code for this is shown below
100 A=USR(B%) ‘first argument
200 A=USR(C%) ‘second
300 A=USR(D%) ‘third
400 A=USR(E%) ‘fourth and goi
500 PRINT A ‘done

A final method for passing a number of arguments is to store the
arguments in a string. As in other examples we have seen, the string
is a “dummy” string whose only purpose is to be filled with argu-
ments for the machine-language subroutine. Suppose that we have
four integer arguments to pass to the machine-language subroutine.
We know that each integer argument requires two bytes and that
we need, therefore, eight bytes to hold the arguments. The code
below establishes a dummy string of eight bytes, finds the location
of the string by VARPTR, fills in four arguments of 1000, 2000, 3000,
and 4000, and then calls the machine-language subroutine with the
address of the dummy string. Arguments can also be passed back
to a BASIC program via the dummy string.

(LS, MS are precomputed address of subroutine.)

4000 "firzst argument

4010 second argdument
6823 C/l=3000 Pthaird argument

4030 DZ=4000 ‘fourth argument
L6040 A%=" 12345678 Tdumme strang

&850 B=VARPTR(A$) ‘address of Paramebter bl
6B6G C=PEERK{R+X2) ¥256+PEERK(B+1) raddrezz of straing

6270 POKE CHAZ fztore first arg

6088 PORE C+ZsB% ztare secend arg

60780 POKE C+45C% "store thicd arg

6188 POKE C+ébsD% Ystore Yourth arg

6118 POKE 163265LS *zetup address

6128 POKE 16527:MS Y for call

6138 A=USR(C) ‘call machine lan9uale

Handling Multiple Machine-Language Subroutines

Is there any reason for not having multiple machine-language sub-
routines? None whatsoever, Just remember to POKE the address of
the location of each new subroutine into 16526 and 16527 before the
USR call is executed. If machine-language subroutine 1 was at 18900

200

and subroutine 2 was at 18950, for example, the code to call the two
consecutively would be

180 FOKE 165265 18900-INT(1B90D/256) %2546

208 POKE 16527- INT(18988/256)

408 A=USR(®)

480 POKE 165265 18950-INT(18950/256) %256

50@ POKE 16527+ INT(1895@/254)
&0 B=USR(®)

Arguments to each subroutine could be handled by the same meth-
ods as we discussed above.

A Neat Method for Embedding Machine-Language
Subroutines in BASIC Code

Now let’s take a look at an extremely good method for using
machine-language subroutines in BASIC programs. The idea is to
construct a string variable by using the CHR$ function to embed
machine-language values in the string. Then the location of the string
is found by the VARPTR, the location is POKEd into locations 16526
and 16527, and a USR call is executed to perform the subroutine.
The advantage of this method is that no separate set of POKEs or
loading of a SYSTEM tape has to be done.

Let’s use a fourth example of machine-language code to see how
this technique works. First, we must assemble the subroutine as be-
fore. This particular subroutine contains two subroutines, one to
write the contents of the video display to cassette tape and the
second to read the cassette tape back and restore the display. The
subroutines may be called from any BASIC program that contains
them, so it is possible to save the appearance of the screen for game
displays, business reports, or error conditions and restore the dis-
play at any later time. The subroutines use the machine-language
cassette routines in Level II BASIC, so the entire process is very fast,

The machine-language code is presented below. The ROM rou-
tines CALLed are 212H (212 hexadecimal) (Define Cassette), 296H
(Find Leader and Sync Byte), 235H (Read Byte), 1F8H (Turn Off
Cassette), 287H (Write Leader and Sync Byte), and 264H (Write
Byte). “IN” reads 1024 bytes from cassette to restore the display,
while “OUT” writes out 1024 bytes from display memory. We can’t
go into detail on the cassette functions in this chapter, but we'll
cover some of the code in the next chapter, “POKEing Around in
Memory.”

o208 AF @160 1IN XOR A ;@ FOR CASSETTE 1

0BB1 CD1ZGZ 00110 Call. Z1EH $START CASSETTE

@024 CDYLD: BR1z0 CALL 2946H sFIND LEADERs SYNC BYTE
D207 21@03C De130 LD HL» 3CABH 38TART OF SCREEN

a02A 210004 30140 Lh 2Cs 1824 1K BYTES IN SCREEN
809D CD350z 20150 INI@ CALL “35H SREAD ONE BYTE

201

2010 77 00162 LD {(HL.IsA $STORE IN SCREEN MEMORY

a1l 23 20170 INC HL SPOINT TO NEXT LOCATION
etz og DEC ec sDECREMENT BYTE COUNT
@13 78 LD AR SGET MS BYTE OF COUNT
2014 B1 OR C $MERGE LS BYTE
@BB15 z@Fé JR NZs IN1D GO IF NOT 1K
2017 CDFB@I CaLL 1F8H sTURN OFF CASSETTE
a@ia C9 RET sRETURN
OR1E AF BRI4d OUT XOR A 3@ TO A
001C CDizBZ PRz50 CALL 212H sSTART CASSETTE
BRIF CDB70Z PBz6D CALL 287H sWRITE LEADER ON TAPE
2 2az70 LD HL» 3CO0H s8TART OF SCREEN MEMORY
02282 LD BC: 1024 sBEYTE CNT = 1K
PBz90 QUTLO LD A (HL) 5GET BYTE
20380 CALL 2b4H sWRITE ONE BYTE
28310 INC HL sPOINT TG NEXT
BO320 DEC BC sDECREMENT BYTE COUNT
2330 LD A B sGET MS BYTE OF COUNT
J PO340 OR c sMERGE LS BYTE
ZOF6 20350 JR NZsQUT1O 3G0 IF NOT 1K
= CDFBB81 BR350 CALL 1F8H $TURN OFF CASSETTE
co Ba370 RET s RETURN

20380 END
20008 TOTAL ERRORS
34334 TEXT AREA BYTES LEFT

IN 0000 2100
InNig BEOD BBi50 P0z10
auT @U1E 00240
OQUT1Q BB 20290 20350

The machine code for the subroutines is presented below in deci-
mal form. It's relocatable and can be used anywhere in RAM mem-
ory. The “IN” portion starts at the first byte, and the OUT portion

starts at the 28th byte.

175,205,18,2,205,150,2,33,0,60,1,0,4,
205,53,2,119,35,11,120,177,32,246,205,
248,1,201,175,205,18,2,205,135,2,33,0,
60,1,0,4,126,205,100,2,35,11,120,177,32,246,
205,248,1,201,255

The machine code above is converted to a string by one of two
methods. The first uses CHR$ to assemble a string of the codes
above.

100 ZA$=CHR$(175)+CHR$(18)+ ...

This method works fine, but there is a limit on the number of char-
acters per statement line, and it’s necessary to break up the string
into several separate strings and then concatenate to get an entire
contiguous string.

We'll use the second method, which assembles a string by moving
DATA values into a dummy string, similar to the graphics method
explored earlier in the book.

100 ZA$="THIS IS A DUMMY STRING THAT WILL BE FILLED WITH CHARACT"

208 ZA=VARPTR(ZA$) find address of block

300 IB=PEEK(ZA+11+PEEK(ZA+Z) %256 *find =ztring address

4@0 ZIC=1B+27 *find 2nd routine address
5PB FOR ZI=ZB TO (ZB+LEN(ZA%$)-1) *setup loop for pokeing
&80 READ ZZ "get bvte of mi

650 POKE Z1.2Z ‘poke ml brte

70@ NEXT ZI "loap til done

202

BB® DATA 1755205518525 2055 1505 2, 3358+ 602 1+ B 43 205,53
@0 DATA 251195355115 1205 1775325 2465 205+ 2485 15 201 4 175
1802 DATA 2@5a18:2;2@5s135:2;331896Qsi;0;4712612Q5sIBD
1182 DATA 253551151205 1775325266+ 2051 248+ 15201 5 255

The above code initializes the string to the machine-language val-
ues from the DATA statement. To call the OUT machine-language
subroutine, use the following code

1900 POKE 16526,(ZC—(INT(ZC/256)) +256
2000 POKE 16527,(INT(ZC/256))
2100 A=USR(0)

To call the IN machine-language subroutine, use the following code

2400 POKE 16526,ZB— (INT(ZB/256))*256
2500 POKE 16527,(INT(ZB/256))
2600 A=USR(0)

The complete “driver” is shown below. It fills the screen with ran-
dom data, dumps the screen to cassette tape, clears the screen, and
then restores the previous screen contents.

100 ZA$="THIS IS A DUMMY STRING THAT WILL BE FILLED WITH CHARACT®

200 ZA=VARPTR(ZAS$) *find address of block
380 IB=PEEK{ZA+11+PEEK(ZA+2) %256 *find s=tring addrece

408 ZC=7B+27 find 2nd routine address
580 FOR ZI=ZR TO {ZB+LEN{ZA$)-1) setur toer for pPukelng
&@8@ READ 2Z Get bvte of mi

658 POKE 21,72 ‘eoke ml bvte

708 NEXT 71 >loer til dene

B2@ DATA 175!2@5118;212@5115@;2;337B7é0v1s@v4’2®5’53
8@ DATA 291195355 1111204177532, 24652055 2481 11201+ 175
12@0 DATA Z@55 181 2: 2055 135, 2: 33101605 1105 45 1261 205, 100
1102 DATA 233551151201 1775321266+ 205+ 248, 11201+ 255

12088 CLS *clear screen

1250 INPUT "READY CASSETTEs PRESS ENTER"1AS

1302 FOR 1=1536@ TO 16383 ‘setyp for screen fil}
1408 A=RND(191) get character 1-191
1500 IF A<32 GOTO 1400 Tignore contral codes
160@ POKE 1,4 *fill screen

1700 NEXT 1 "loor til done

1900 POKE 16526y ZC—(INT(ZC/256) 1 %7256 ‘zetupr address

Z08@ POKE 16527, {INT{ZC/25671 ‘second byte

2180 A=USR(@) "call routine to dump screen
2208 INPUT “READY CASSETTE, PRESS ENTER” ;A$

2300 CLS ‘clear screen

2480 POKE 165263 ZR~(INT(ZB/256)) %256 setupr address

2308 POKE 16527+ (INT{ZB/25463) "second bvte

2680 A=USR(®) call routine to read screen
27@8 INPUT "AGAIN® ;A% “continue 1f desired

2808 GOTO 1Z08 *loap

This concludes our discussion of assembly and machine-language
interfacing. We hope you haven’t been frightened away, but rather
that you see the potential for interfacing short machine-language
routines in your BASIC programs for “time-critical” processing such
as display work and cassette use. In the next chapter, we'll be look-
ing at further machine-language topics when we discover some of
the deep, dark secrets of Level IT BASIC in ROM.

203

CHAPTER 12

POKEing Around in Memory

Are you one of those people who likes to find out how things work?
Do you like to take apart grandfather clocks, threshing machines,
and Boeing 747s? If so, you may be able to make BIG MONEY in
Level II Computer Programming. Since we can't put this advertise-
ment on a matchbook cover, we'll have to include it here, a logical
place, since this chapter will reveal how (to a certain extent) Level
I BASIC functions. Although we can’t provide a complete theory of
operation even in several pages, we can at least point out some of
the high points, such as statement format, variable and string stor-
age, device control blocks (DCBs), keyboard and cassette operation,
and some ROM assembly-language calls. Some of these items may
be used to great advantage in doing interesting things; others are

204

merely tutorial. We must caution you, however—if you tamper with
the “internals” of a system such as Level II, you must be prepared
to take the consequences if your experimentation doesn’t turn out.
Ready, Dr. Frankenstein? . . .

An Approach to PEEKing

First of all, we know that Level II BASIC is written in Z-80 ma-
machine code and that it occupies roughly ROM locations 0 through
12287, the first 12K of the 16K addresses dedicated to ROM and
system addresses (see Figure 11-2). If we know Z-80 assembly lan-
guage, one way to decode how the interpreter works would be to
PEEK at locations 0 on up and convert the data found there into
the equivalent Z-80 instructions. We could then sit down at our
leisure and follow these instructions to outline Level II BASIC
operation. To do this, however, we must be fairly adept at “read-
ing code.” At times, even experienced programmers have trouble
reading their own programs six months after they’ve written them.

The above approach is possible, however, and certainly has been
performed. Rather than hand translating each value found, various
Z-80 disassemblers are available that will automatically disassemble
values into the corresponding Z-80 mnemonics. As a matter of fact,
such a disassembler may be constructed using a BASIC program.
The approach here is to get a value from memory, decode the “op-
eration code” and operands, and print out the memory location,
op code mnemonic, and operands. A typical printout of such a dis-
assembler is shown in Figure 12-1.

We'll assume that you're not as conversant with Z-80 assembly
language as you could be and take another approach. Interspersed
with the assembly-language instructions in BASIC are sets of
ASCII data. Error messages and other types of messages are in
ASCII code, for example. Another ASCII-encoded set of data con-
sists of the BASIC program statements themselves. If we PEEK and
display in ASCII, we should be able to see all kinds of interesting
things appear on the display as we scan through memory, ROM and
RAM. Let’s give it a try. The following program scans memory start-
ing at a given location and continuing for 32K locations.

160 T7=0 Timitialize flag

11@ CLSs ‘clear screen

128 INPUT "START ADDRESS" ;B Tinput start address

13@ INPUT "ASCII ONLY Y/N*3C$ dive choice of data

140 FOR I=B TO 32767 Tzcan up to 32k

1580 A=PEEK(I) {—’Peek current lcecation
16B 1IF A<3Z OR A>9B GOTO 210 Qo 31 nat asoia

17@ IF T=@ PRIMT I3*/*3;CHR$(A)SELSE PRINT CHR$(AJ3

180 T=1 L_’set toecation flag
190 NEXT 1 ‘9et next lacation
@B STOP >ster at end of scan
210 IF T=1 PRINT Tif numerics IF
228 T=0 ‘rezet locn flag

i
i
Z3@ IF C$="N" PRINT I:"/"3A ! ’print locnsdata

4@ NEXT I —raet next lacation

205

2000
2001
Qooz
@aees
o008
ooas
aeac
@ean
2eid
@013
2ai4
2a1é
2818
QaiB
21c
QB1iE
0oz
@ae23
024
Qazé
@28
aezs
QB2ZE
@a3e
2033
2036
2038
2838
@03E
2040
2@43
@as4
0843
2e46
ava9
av4C
224D
QB4E
2850
2851
2852z
@253
2854
e57
258
2859
oa5A
@a58
@aesD
Qa5E

2060
@a6t

062z
2v63
1%
Bass
2067
BasC
286D
QBeF

F3

AF
C37406
C32040
C30040
El

E9
C39F06
C30340
c5
2601
182E
C304640
oss]
@602
1826
C30940
C3
6@4
181E
C3B(408
111340
1BE3
C30F40
111D40
18E3
C31240
112540
1808
€3D903
<9

a2

20
€3C203
CD28020

2820
2B

78

81
20FB
<
310086
3AEC37
3C
FEBZ
D2@a0e

DI
XOR

DEC
LD
OR
JR
RET
LD
LD
INC
cp
Je

A

D&74H
4B0OOH
4D00H

HL

(HL)
BLTFH
4D03M

8c

B4 @1H
DB46H
40@6H

8¢

B> 0ZH
QD46H
4009H

8c

B! Q4H
@B46H
4@acH
DEs 4B15H
2013H
4BOFH

DE s 4B1DH
@018H
4B12H . . .
DE: 4B25H Figure 12-1. Typical disassembly

0B1EH of a BASIC interpreter.
@sDIH

@3C2H
oBZBH
A

NZ
D@49+
C

C

BCs SRO1H
DE

As (BC)
As (DE)
AF s AF?
@RseH
HL s DE
NZs 0080H

BC
AB

c
NZ+ 0060H

SPs 0600H
Al (F7ECH)
A

ozH

NC+ B02a0H

The code on page 205 displays numeric and ASCIL data or only
ASCII data as requested by the user. Let’s use it to display ASCII
data only, starting at location 0. Use the “SHIFT @7 keys to stop
the display at any time; continue by hitting any key.

Some of the first ASCII data displayed consists of single “@” and
other characters. This simply means that some of the values stored
in ROM as instructions are also valid ASCII characters. Location
102, for example, is an ASCII “1” (49) which is also the operation

206

code for an “LD SP” assembly-language instruction. The point is that
even though data displays as an ASCII character, we can’t be cer-
tain that it doesn’t represent other data. We can be (fairly) certain,
however, that the string of ASCII at locations 261, “MEMORY
SIZE”, and 273, “RADIO SHACK LEVEL II BASIC” are the mes-
sages printed out at the start of Level II BASIC. Let’s continue . . .

The next interesting display starts at location 5713. The ASCII
data here is shown in Figure 12-2 and looks suspiciously like BASIC
statement words without the first letter. Let’s record that location
as an interesting spot and continue.

5713 /ND
57115 /7 198
5716 /OR
5718 / 210
57t9 /ESET
§723 /7 21
5724 JET
5726 / 195
5727 /ts
5728 /7 195
§730 /MD
5732 / 210
5733 /ANDOM

57138 / 206

5739 J/EXT

5742 /196

Figure 12-2. ASCII data in memory.

The next group of meaningful data is at location 6345. The string
is “NFSNRGODFCOVO . . . DL3”. These are the Level II error
codes arranged in order of their code numbers. Continuing, location
6441 has the “READY” message, and 8568 has the “PREDO” mes-
sage among others. The area from 12288 to 16383 may be skipped,
as this is the area dedicated to device addresses (no memory) or
video-display memory.

From 16384, we start to get very interesting displays. They seem to
contain portions of our program statements, but are not intact. For
example, “ “INPUT START ADDRESS”;B” is stored as ““START

207

ADDRESS”:B.” Other lines are stored in similar fashion. Let’s stop
at this point and investigate what’s happening to our nice text input.

BASIC Statement Format

Lets take a look at the statement “120 INPUT“START AD-
DRESS”:B.” First, find the start of ““START ADDRESS”;B.” It
should be close to 17129. Having found it, run the program starting
from about 5 locations before, listing both ASCII and numeric data.
For example, if “ “START ADDRESS”;B” was at 17148, list 17143 on.
A typical display of this line would look like

17143/21

17144/C

17145/120

17146/0

17147/137

17148/"START ADDRESS";B

What is the format of the line here? “ “START ADDRESS”;B”
is recognizable, but where is the “INPUT” portion? By experimen-
tation, one could soon find the format of BASIC statement lines.
We'll save you the midnight hours, though, and let you refer to
Figure 12-3, which shows the format.

BASIC statement lines start at location 17129. Each BASIC state-
ment line is made up of a line pointer to the next line (2 bytes), the
line number of the BASIC statement line, the text of the line in
ASCII and token format, and a 0 to mark the end of the line. (For

BYTE
0 1 2 3 4 LAST

NEXT LINE | THIS LINE
POINTER | NUMBER TEXT IN ASCH AND TOKENS 0

Figure 12-3. BASIC line format.

NEXT THIS
LINE LINE '
PNTR NUMBER
17500 [17900 [100 | TEXT FOR LINE 100 0
18000 [18040 | 120 | TEXT FOR LINE 120 10
17900 [18000 | 110 | TEXT FOR LINE 110 10
18040 [18200 | 130 | TEXT FOR LINE 130 1o

Figure 12-4. Linked BASIC lines.

208

those who read Chapter 7, this format is known as a “single-ended
linked list.”) This means that a BASIC program may consist of
lines that are not in physical order, as shown in Figure 12-4. This
arrangement permits easy editing of BASIC programs.

To see how a BASIC program is stored, we’ll use a BASIC pro-
gram to track itself. The program below lists the line formats of
itself by following the “thread” of the linked lines starting with the
line at location 17129.

10e@ CLs ‘clear soreen

1100 NL=17129 et to first RASIC line
1200 PRINT:PRINT skie twe lines

1380 PRINT “LINE AT °sNLj®:” *erant lecatian

1400 PRINT "NL POINTER="3PEEK(NL)+PEEK(NL+1) %256
1500 IF PEEK(NL)+PEEK(NL+1)%256=0 GOTCO 2400

16088 PRINT "LINE #=";PEEK(NL+2)+PEEK(NL+3) %256
170@ PRINT "TEXT FOLLOWS"

1800 FOR I=NL+4 TO NL+255 *zetup loor for chars

198@ IF PEER(I)=8 G010 Zz200 "9a 1f lipe end

Z008 IF PEEK(1143% OR PEEK(I)>9@ PRINT "/"3PEEK(I)3;*/"3ELSE PRINT CHR$(PEEK(I11s
21088 NEXT I Loycan

2200 NL=PEEK{NL)}+PEEK(NL+1 %254 ‘et next line address

230@ IF INKEY$="*" GOTC 2300 ELSE GOTO 1208

2488 PRINT "END OF PROGRAM" tend

Run the above program, and observe how the lines are linked
and the content of each of the lines. Numeric data is bracketed
by slashes (“/”), while ASCII data is simply printed out. The last
line of any program is a dummy line whose next line pointer is
equal to 0.

Within the text of every line are numeric values called tokens
that represent statement types. Why is this done? Using tokens
drastically shortens the storage of program lines. Storing a 178 value
in place of a “PRINT,” for example, saves four bytes. Since many
lines have multiple statements, it is easy to see how a 25% reduc-
tion or more in storage requirements could result.

The token codes may be listed easily if we recall that one of the
mysterious areas that we saw earlier in our ASCII display was at
5713. The area from 5712 on is a table of tokens that can be listed
by the following code.

188 CLS ‘clear zcreen

208 N=128 ‘imiftialize token #

300 FOR I=3712 TO 6175 *setur loop for table

408 A=PEEK(I) ’9et value from table

50@ IF A»12Z7 PRINT CHR$(1@)3N3" "3CHR$(A AND 127)% ELSE PRINT CHR$(A):
&80 IF A>127 THEN N=N+1 L’bump # 1f start

702 NEXT I Plaap for next tokern

For your convenience, the tokens are also listed in Table 12-1.
The first character of every token in the table has the most signifi-
cant bit set to delimit each statement character string from the next,
since they are “variable length.” This table also includes Disk BASIC
tokens that are not accessible in Level II BASIC. The token table

209

Table 12-1. Level II BASIC Tokens

128 END 169 NAME 210 AND
129 FOR 170 KilL 211 OR
130 RESET 171 LSET 212 >

131 SET 172 RSET 213 =
132 CiS 173 SAVE 214 <

133 CMD 174 SYSTEM 215 SGN
134 RANDOM 175 LPRINT 216 INT
135 NEXT 176 DEF 217 ABS
136 DATA 177 POKE 218 FRE
137 INPUT 178 PRINT 219 INP
138 DIM 179 CONT 1220 POS
139 READ 180 LIST 221 SQR
140 LET 181 LLIST 222 RND
141 GOTO 182 DELETE 223 LOG
142 RUN 183 AUTO 224 EXP
143 IF 184 CLEAR 225 COS
144 RESTORE 185 CLOAD 226 SIN
145 GOsUB 186 CSAVE 227 TAN
146 RETURN 187 NEW 228 ATN
147 REM 188 TAB(229 PEEK
148 STOP 189 TO 230 Cvi
149 ELSE 190 FN 231 Cv§
150 TRON 191 USING 232 CVD
151 TROFF 192 VARPIR 233 EOF
152 DEFSTR 193 USR 234 1OC
153 DEFINT 194 ERL 235 LOF
154 DEFSNG 195 ERR 236 MKI$
155 DEFDBL 196 STRINGS 237 MKS$
156 LINE 197 INSTR 238 MKD$
157 EDIT 198 POINT 239 CINT
158 ERROR 199 TIMES 240 CSNG
159 RESUME 200 MEM 241 CDBL
160 OUT 201 INKEY$ 242 FiX
161 ON 202 THEN 243 LEN
162 OPEN 203 NOT 244 STR$
163 FIELD 204 STEP 245 VAL
164 GET 205 + 246 ASC
165 PUT 206 - 247 CHR$
166 CLOSE 207 * 248 LEFT$
167 LOAD 208 / 249 RIGHT$
168 MERGE 209 t 250 MID$

is used in conjunction with a table of routine addresses starting at
6178. This table has a two-byte address for each processing routine,
arranged in the same order as the token table. The address for FOR,
for example, would be found at the second location in the table
(6180/6181). The addresses may be found by the usual PEEK(N)
+PEEK (N-+1)2256.

Knowing the structure of BASIC statement lines can be very help-
ful when you're designing programs to process BASIC programs
themselves. Such things as appending two programs, merging two

210

or more programs, compiling lists of the variables used in a program,
renumbering programs, and other utility functions are all possible
when we know the structure of Level II BASIC operations.

Suppose that we want to detect all occurrences of the REM state-
ment in a program, for example. We may wish to leave REMarks
in while we’re debugging a program, but to delete all REMarks
automatically after the final version of the program has been pro-
duced. (If there ever is a final version!). The first step in this pro-
cess would be to scan each statement line for REM tokens. The
code below does exactly that and lists all line numbers containing
a REM token.

1000 CLS *clear screen

1@1@ PRINT "REMARKS AT LINES:® Ttitle

1820 NL=17129 Tfirst BASIC line

183@ REM FIND NEXT LINE # ‘remark for test

1840 A=PEEK(NL)+PEEK(NL+1)%256 ~ "find address of next line
1050 REM FIND STATEMENT LINE # another rem far test

1068 B=PEEK(NL+2)+PEEK(NL+3) %254 ‘get current line #

1878 REM IF NEXT LINE IS ZEROs DONE *third remark

1380 IF A=@ GOTO 1200 g0 1f end of ero9ram

1290 REM BYPASS NXT LINEsST #

1108 NL=NL+4 point to text and tokens
1110 C=PEEK{NL} et text bvte

1i2@ REM IF C=0 END OF LINE ‘a remarkable program
113@ IF C=8 GOTO 1180 ’9e 1f end of line

114@ IF C=147 PRINT B Tif remark token Pr line #
1150 NL=NL+1 "point te next text byte
1168 GOTO 111@ ‘Peek at next line

1178 REM GET NEXT LINE # *last remark

1188 NL=A 'frem start of line processing
1199 GOTO 1048 — '%0 tao process line

1200@ PRINT *DONE" *must be done

The Search for Variables

Continuing with our investigative analysis of Level II . . . We've
seen how BASIC lines are stored, and we've looked at the token
format. Let’s next see if we can deduce something about variables
and arrays. We know from our work with VARPTR that we can
easily find the location of a simple variable. If we have two variables,
A and B, for example, we can print their locations by

2008 CLS ‘clear screen

2188 AY%=333 *dummy variable

2280 BY=b66b6 Tanother dummy

2300 LA=VARPTR(AX) ‘det first location
2400 LB=VARPTR(BZL) get second location

250@ PRINT "LOCATION OF A="3LAs"VALUE OF A="3(PEEK(LA)+PEEK{(LA+1)%254)
2608 PRINT "LOCATION OF B=";LB,"VALUE OF B="3:(PEEK(LB)+PEEK(LB+11%254)

Using a technique such as the above, we can easily trace simple
variables as they are assembled in RAM. We can also use the same
technique on array variables. VARPTR will also find the location
of the elements of an array, as shown in the code below, which
prints out all 34 locations of A(0) through A(33). It can be seen

211

that all array locations are contiguous—that is, in a block—and the
first element is first in the block followed by the second,

3000 DIM A(34) Tdummey Array

2190 FOR 1=0 TO 33 szetur loor Tor location
3200 B=VARPTR(A(I)} *find locns of elements
3380 PRINT B ‘erint lecations

3400 NEXT I Tloor
and so forth (Guard, arrest that reader for making that snide remark
about simple writers!).

What is the layout for multi-dimensional arrays? By means simi-
lar to the above, we can find out that multi-dimensional arrays build
data as shown in Figure 12-5. The code to illustrate the memory
arrangement for two dimensions is shown below.

4Q00 DEFINT A “define inteSer

4100 DIM A(Z.2) ‘establish 2-d4 arrayv

42@D FOR J=0 T0 2 "lewe for one dimensaon
4300 FOR 1= TO 2 'laop for second
440@ PRINT "I2J="113"+"3Js "VARPTR="3(VARPTR(A(I+J) 1

4508 NEXT I “reontinue

4608 NEXT J ‘centinue for first

Arrays are built directly below simple variables. Knowing the
array structure makes possible such things as creating machine-
language subroutines to perform a “super-fast” sort or search of
data in arrays or to perform high-speed matrix conversions.

String variables have been discussed in Chapter 3. VARPTR can
be used to find the location of any string. The argument returned
for VARPTR (“string”) points to a three-byte block containing the
string length and the two bytes of the string location. Strings are
located in one of two areas, either the string space area above the
stack but below the MEMORY SIZE? reserved area, or in the
BASIC statement line itself. As we saw in the graphics chapter, a
simple string of the form A$=“THIS IS A STRING” will have an
address equal to its statement line location. A string assembled from
concatenation, CHRS, or other methods will be in the “dynamic”
string area.

Houston, We're Going to Change the DCBs on
Our TRS-80 Before the EVA.. ..

Ah, acronyms and abbreviations! Would any computer system be
a true system without them? A DCB is a Device Control Block, and
any TRS-80 BASIC programmer subsequently caught using the full
name will be stripped of his number 2 pencils and display work-
sheets. In many computer systems, it is convenient to group param-
eters relating to an input/output device in a single block. One of

212

the reasons for this is to enable a logical device to be easily changed
to a physical device. Suppose that in our TRS-80 system we normally
print out on the logical PR device or printer output device. The ac-
tual physical device associated with the logical printing function
may be a Quick Printer L. If our installation also has Baudot tele-

TWO-DIMENSIONAL
DIM A(3,3)

[NCREASING
MEMORY
LOCATIONS

MULTI-DIMENSIONAL
ARRAYS

DIM A(LJLKL. . .R)

\

0.0

1.0

2.0

3.0

01

11

2.1

3.1

0.2

1.2

2.2

3.2

0.3

13

2.3

3.3

l

INCREASING
MEMORY
LOCATIONS

NEXT FASTEST

THIS DIMENSION CHANGES
"FASTEST" IN RESPECT T0
INCREASING MEMORY LOCATIONS

THREE-DIMENSIONAL
DIM A2,2,2)

0.0.0 121
1,00 221
20,0 0.0.2
0.1.0 1,02
1,10 202
210 012
020 112
12,0 212
220 0.2.2
001 122
1.0.1 222
2,01

011

111

211

0.2.1

\
THIS DIMENSION CHANGES
LEAST RAPIDLY

THIS DIMENSION CHANGES

Figure 12-5. Multi-dimensional array formats.

typewriter, we can quickly substitute this device for the Quick
Printer I by changing some variables in the PR DCB. The alterna-
tive to this would be to change all instructions associated with print-
ing within the ROM instructions themselves. Since this would in-

213

volve “burning in” a new ROM, you can see that the DCB method
is much to be preferred.

There are three DCBs in Level II BASIC associated with the key-
board input, video display, and line printing logical functions. The
DCBs themselves are located in RAM at the locations shown in Fig-
ure 12-6. Data to initialize the DCBs is moved from constants within

16405 1 DCB TYPE = 1
KEYBOARD 227 _
Bof z } DRIVER ADDRESS = 995
0
0
0
"K"
"‘l’
16413 7 DCB TYPE = 7
VIDEO 88 _
DRPEQ. ! } DRIVER ADDRESS = 1112
DCB & } CURSOR POSITION
0
"D "
"0 ”
16421 3 DCB TYPE = 6
LINE gggNTER 121 } DRIVER ADDRESS = 1421
67 LINES/ PAGE
g LINE COUNTER
"P "
IIR ”

Figure 12-6. DCBs.

the ROM code on power-up (data for the DCBs starts at ROM lo-
cation 1767). We can easily substitute 2 new keyboard input routine
by POKEing the proper address values into locations 16406 and
16407. Of course, the catch is that the new keyboard routine has to
be coded in machine language and stored in RAM at the specified
address. Similarly, we can “vector off” the video display and line
printer functions into new routines by changing their addresses.
Other parameters within the DCBs may be interrogated during
BASIC program execution. We have seen one example of this in
Chapter 4 when we examined and modified the running line count
in the line printer DCB to effect a “top of form” action. As a fur-
ther example of DCB use, let's change the driver address in the

214

video display DCB to enable a printout of the data on the screen.
The following code will perform this action.

5800 A=PEEK(16414) *Get dizelav byte

5100 B=PEEK(16415) *get cecond dizelavy bvte
5200 C=PEEK(16422) *et erinter byte

5300 D=PEEK(16423) *get second printer bvte
5408 POKE 1&6422:A1POKE 164238 'put dis drvr address to ie
5588 POKE 16414sC:POKE 16415,D put TP drvr addrezs to dise

After this change is made, any LIST or PRINT action will go to
the system line printer rather than the display. A possible applica-
tion for this is to switch between screen and line printer for pro-
gram output without having to add “LS” for “LPRINT”. The sys-
tem can be returned to the normal configuration by swapping the
two sets of addresses once more. Some characters that are valid
for the display will not be valid for a line printer, so you may make
the above changes at your own risk. (You can apply for ACME
Data/Program Insurance to protect your programs and data from
such catastrophic risks. Insurance void in those states with stringent
fraud laws.)

Keyboard Kapers

One very interesting subject that we should discuss because of its
potential use is the keyboard operation in Level II BASIC. As you
know, the INKEY$ function returns the string value of the keyboard
key that has been pressed. It is possible to bypass the routine that
does the decoding and read the keys directly. This is best done by
a machine-language routine, but there are several interesting BASIC
applications. Let’s see how the keyboard functions.

Figure 12-7 shows a simplified diagram of the keyboard. A row of
keys may be read by addressing 14337, 14338, 14340, 14344, 14352,
14368, 14400, or 14464. The value returned is dependent upon the
column of the key pressed. Table 12-2 shows the values returned for
addresses of various columns. Suppose we address location 14344.
Possible values we can get back are 1 for x, 2 for y, and 4 for z.
If more than one key is pressed simultaneously, we may also get a
merge of several values. If we press x, y, and z together, we geta7.
The following code detects key press in the x, Y, Z TOW.

180 CLS “¢lear =creen

ZB8 A=PEEK(14344) E Ttest xyvsz kevs

382 IF A=0@ GOTO Z00 “lear 31f nothing

400 IF A=1 PRINT "X" ELSE IF A=Z PRINT °V* ELSE IF A=4 PRINT "7*
500 GUTO 200 'ga for next kew

Try quickly pressing a key and holding the key down for some
time. With a quick key press, it is possible for the BASIC routine

215

ROW ADDRESS = 14337 @ @ @ @ @ @ @
Mololololelololo
Wololololojololo

olole

w(OOOOOOW
wOOOOOO00O
wn) 69 €= (D) (O O © €9
s or)

COLUMN VALUE:
1 4 8 16 32 64 128
Figure 12-7. Keyboard operation.
Table 12-2. Keyboard Decoding

14337 @/ A2 B/4 c/8 D/16 E/32 F/64 G/128
14338 H/1 172 /74 K/8 /16 M/32 N/64 0O/128
14340 73] Q/2 R/4 S/8 1716 U/32 V/64 W/i28
14344 X/ Y/2 Z/4
14352* 0/1 1/2 2/4 3/8 4/16 5/32 &/64 7/128
14368* 8/1 9/2 /4 ;/8 /16 -/32 /64 /7128
14400* ENT/1 CLR/2 BRK/4 t/8 /16 <732 —+/64 SP/128
14464* SHFT/1

*Lower case shown only

to miss a key; it simply is not fast enough to detect a key that is
held down for perhaps 1/50th of a second. When the opposite condi-
tion is tried, it appears to the routine that the key has been continu-
ously pressed. Because of these limitations, “scanning” of the key-
board is best done at a machine-language level. However, this de-
coding scheme may be used for such things as fast game control
where a key is simulating a real-time control, to produce a “repeat”
function for certain keys such as cursor movement keys, or to assign
“function” keys to keys that are not normally translated, such as
the “SHIFT” key (the shift key produces a 1 if pressed when address

14464 is read).

216

Another easy way to obtain a repeat key function is to zero the
RAM buffer used for the keys. The buffer is made up of seven loca-
tions, each location corresponding to a keyboard row, as shown in
Figure 12-8. If the location corresponding to the row in question is
zeroed after detecting a non-null string for the INKEY$ function,
INKEY$ will return another character if the key is still being pressed.
Normally, INKEY$ will not return another character until the key
is released and repressed. The code below circumvents this prob-
lem for the x, y, and z keys, but the scheme will work for any row
of keys by zeroing the proper buffer location.

18 AS=INKEY$ '9e¢t character
2B IF A%="" GOTO 1@ Tloor 21f npult

30 PRINT A% eraint apput char
4@ POKE 16441.0 ‘reset buffer

5@ GOTO 1@ Tloop

Cassette Operations

We saw in the last chapter how we could interface to some of the
machine-language cassette routines. The cassette reads and writes
data at rates of 500 baud, which represents byte (character) data
rates of 62.5 bytes per second. Data is transferred between the Z-80
and cassette a bit at a time; subroutines in Level II BASIC ROM
read a bit at a time and assemble 8 bits into a byte or take a given
byte and convert it to a stream of 8 bits for output. The byte data
rates of 62.5 bytes per second are marginal for BASIC operation,
and interface to the cassette routines should be done in machine
language. The addresses for the machine-language routines for cas-
sette operation are located as shown in Table 12-3.

Tape operation is controlled at the most basic level by three bits,
as shown in Figure 12-9. Two of the bits control the actual signal
level sent to the AUX jack of the cassette tape recorder. The third

Table 12-3. Machine-Language Cassette Routines

Location Routine Action

530 Define Cassette Defines cassette number and turns on
cassette. Cassette number, 0 or 1, must
be in A register before entry.

662 Find Leader/Sync Bypasses zero leader and finds sync
byte in preparation for read.

565 Read Bytes Reads one byte from cassette. A
register holds byte on exit.

504 Turn Off Cassette Turns off current cassette.

647 Write Leader/Sync Write zero leader and sync byte.

612 Write Byte Write byte to cassette. Byte must be in

A register before entry,

217

16438 @-G
16439 H-0
16440 P-W
X-1
0-17
8§ -1

16441
16442
16443
16444 ENTER —SPACE

Figure 12-8. Keyboard buffer.

bit controls the REM (ote) jack on the cassette tape recorder. A
fourth bit not connected with tape operation controls the 32/64
character mode of the display. All of the four bits are controlled by
a BASIC OUT statement. Executing an OUT with an “address” of
955 will address the four bits of the cassette/mode select “latch.”

To see how this works, try the following code. It will turn on the
cassette and then turn it off after a 10-second delay.

208 OUT 255:4 Tturn on castette
2108 FOR I=0 TO 4600 E’for a while

2208 NEXT 1 Tlmop fer delav
2308 OUT 235.0 Tturn of f cassette

The code above sets the third bit in the cassette/mode select latch.
This bit controls closure of the cassette relay.

The two bits normally used for audio output to the AUX input to
the tape recorder can also operate under BASIC control. The se-
quence to write out a pulse during machine-language operation is
to write a 1 (01), write a 2 (10), and then restore a “0” level by
writing a 0 (00). We can write out to the cassette under BASIC by
“toggling” these two bits after first turning on the recorder.

3800 QUT 2585+ 4 Tturn an cazsette
31080 FOR I=0 TO 5000 r’r~ecc~rd for a while
320@ OUT 25555 { Tautrut one level
3308 QUT 25544 L’and now the other
3400 NEXT 1 *cantinue
3500 OUT 235.0 Tturn off cazsette
QUT 255, VALUE
VALLE =0 — 15
7 6 5 4 3 2 1 0
-] = ~-1 -1 X1 X X|X
L—SIGNAL 1
SIGNAL 2
REMOTE
32/64 MODE

Figure 12-9. Tape operation.

218

Although we could make a somewhat “tighter” loop by multi-
statement lines, this is about the most efficient we can get. The re-
sulting pulses make up a square-wave tone as shown in Figure 12-10.
The best we can do under BASIC timing constraints is a low-pitched
tone that sounds similar to a buzz saw. The same technique can be
used with machine-language code to produce much higher-pitched

LT L

OUT 255,5
0UT 255,6
OUT 2555
OUT 255,6

Figure 12-10. “Square-wave” output.

The code above illustrates an important point. We had to set the
REM bit (value=4) on, and we had to keep it on when we output
values to the other two bits. Consequently, we output a 5 instead
of a1 (1or4)and a6 instead of a 2 (2 or 4).

The resulting tone produced by the code above could be fed into
an external audio amplifier for signalling purposes. (When you hear
the buzz saw, change the printer paper)

There’s one bit left in the cassette/mode select latch, the mode
select. Turning on this bit with a 1 sets the 32-character mode, while
turning it off sets the 64-character mode. The normal method for
setting this mode is to execute a PRINT CHR$(23), “set 32-char-
acter mode.” Unless this method is used, the (software) display
driver will get confused about the mode and only every other char-
acter will be displayed. It is not recommended to turn on the mode
select bit alone in BASIC. (If you must, PEEK at location 16445,
OR in an 8 value, and POKE the result back to 16445 after an
OUT 2558.)

Further Investigation Shows . . .

Would you like to investigate Level II BASIC further? The first
action to take would be to invest some time in a study of Z-80 as-
sembly language using the Radio Shack Editor/Assembler and TRS-
80 Assembly-Language Programming. Then, follow the clues to the
assembly-language routines such as the DCB driver address, the ad-
dresses of the statement processing routines in the 6180 table, and

219

Table 124. Level IT Processing Routine Addresses

Location
Decimal Hexadecimal Processing
43 002B Get character from keyboard. Do not wait for
input. On exit (A) =character or 0 if no key
press.
51 0033 Display ASCH byte. On eniry (A}=ASCHl byte.
59 003B Output byte to line printer. On entry (A)=ASClI
byte.
73 0049 Get character from keyboard. Wait for input.
On exit (A)=character in ASCIi.
96 0060 Timing Loop in 14.66 millisecond increments.
On entry (BC)=Delay #.
102 0066 Reset system.
457 01C9 Clear screen, home cursor.
Table 12-5. Communication Area Addresses
Number
Location of
Decimal | Hexadeclmal| Bytes Description
16405 4015 8 Keyboard DCB
16413 401D 8 Display DCB
16421 4025 8 Printer DCB
16438 4036 7 Keyboard Buffer
16445 403D 1 Qut FF Status
16544 40A0 2 Start of String Data Pointer
16546 40A2 2 Last Executed Line Pointer
16551 40A7 2 Input Buffer Pointer
16554 40AA 3 Random Number Seed
16607 40DF 2 Default Entry Point for SYSTEM/
16633 40F9 2 Start of Simple Variables/End of
Program Pointer
16635 40FB 2 Start of Arrays Pointer
16637 40FD 2 Start of Free Memory Pointer

others. Without detailed explanation, we’ll provide some hints in
Table 12-4 for some Level II processing routines that may be called
in assembly language or simply in BASIC. In addition, Table 12-5
supplies some of the interesting “Communication Area” variables
that may be accessed for BASIC operations.

220

A

Absolute
memory locations, 192
value, 149
Address value, 31
Algorithm(s), 122
sort, 128
Allocates, 104
Anp
function, 39
operation, 41
Argument(s), 51, 194-197
getting back, 197-198
multiple, handling, 198-200
packing, 199
unpacking, 199
Arrays, 21, 99, 103
initializing, 120
one-dimensional, 104-105
size of, 119
two-dimensional, 111-119
ASCII, 44
strings, 44-45
Assembly-language
coding, 187
listing, 190
Asterisk, blinking, 164
ATN, 159
AUTO command, 25
Axes, graph, 83-84

B

Base, data, 133
BASIC

code, embedding machine-language

subroutines in, 201-203
DATA lists, 100-102
statement format, 208-211

Binary
search, 125-128
system, 28-30
Bit, 30
manipulation, 42
sign, 33
Blocked data, 168
Branches, 14
Bubble sort, 130-131
Byte, 30
high-order, 32
low-order, 32
synchronization, 161, 162

Index

C
Call, 18
Cassette(s)
capacity, 166-169
files, sequential, 169-170
operations, 217-220
two, 170
Catenary, 48
CDBL, 143
Character sets, 77
Chessboard, 111-112
Chips, 185-187
CHRS$ function, 51-52
CINT, 144-145
CLEAR command, 25
CLOAD, 24, 160, 163
CLOAD?, 24, 163-164
CN, 176
Code(s)
control, 44
machine-language, 190-191
source, 191
Columnating data, 63-65
Columns, 62-65
Commands, 24-25
edit, 25-26
tape, 160-161
Comments, 191
Comparison(s), 24, 48-51
Complem-=nt, 42
two’s, 33
Concatenation, 48-51
Constants, 20
CONT command, 25
Contiguous block, 104
Control codes, 44

Conversion, decimal-to-binary, 40-41

Cosine, 158

CSAVE, 24, 160, 163

CSNG, 142-143

Cursor(s), 54-55
positioning, 60

D
Data
base, 133
lists, 21
BASIC, 100-102
print, 75-77

structures, 99
unordered, 121-123
DCBs, 212-215

221

DD, 176
Debugging, 25, 181-183
Decimal-to-binary conversion, 40-41,
145-147
DELETE command, 25
Deletion, 134, 137
Delimit, 209
Delta value, 98
Device control block, 212
Dimensions, 110-119
three or more, 119
Disassemblers, 205
Displacement, 86, 109
Distribution, 149-150, 154
Dollar(s)
and cents, 67-72
signs, 70
Double-precision variables, 20, 35-37
Driver, BASIC, 196

Dummy strings, string graphics using,

94-95

E

EDIT
command, 24
mode, 25-26
Editing, text, 58-61
Elements, 104
Entries, 108
Equivalence operator, 24
Error(s), 171-177
bad file data, 177
can’t continue, 176
data, out of, 173
Disk BASIC command, 177
divide by zero, 176
illegal
direct, 176
function call, 173
missing operand, 176-177
NEXT without FOR, 173
overflow, 174
processing, 179-180
redimensioned array, 176
RETURN without GOSUB, 173
simulating, 180-181
string
formula too complex, 176
space, out of, 175
too long, 176
subscript out of range, 175
syntax, 172-173
trapping the, 177-179
type mismatch, 176
undefined, 172
Exercising, 183

EXP, 149
Expansion Interface, 170
Exponent, 35

F
FC, 173

222

FD, 177
Field(s), 109
specifiers, PRINT USING, 71-72
File(s), 165
cassette, sequential, 169-170
Fill characters, 53
FIX, 148
Floating point variable, 36
Flow, program, 11-13
Format, statement, 11-13
Fractions, 144-148
Functions, 21-22, 142
trigonometric, 155-159

G

GOTO, 14
Graphics

mechanics of, 78-80

method, POKE, 89-92

review, 95

statements, 21

string, 92-93

dummy strings, using, 94-95

Graphing, general approach to, 87
Guns versus butter, 84-87

H
Hypotenuse, 155

ID, 176
Index, 105-106
Initializing arrays, 120
INKEYS$ function, 48-51, 215
Input, “Universal Gee Whiz,” 55-57
INPUT#, using, 164-166
Insert, 133-134
Insertion, 136-137
Instruction(s), 185-186
repertoire, 185
set, 185
INT, 146, 147
Integer variables, 20, 30-33
Interfacing, 190
Interpreter, BASIC, 11
Iteration, 126

J
Justification, 66-67

K
K, 187
Key, 108
Keyboard, 215-217

L

Labels, 191
Leader, 161-163
LEFTS$ function, 52-53
Length

fixed, 109

variable, 109

Life, game of, 115-119 Opcode, 185

Line Operands, 20
printer(s), 75-77 Operators, logical, 38-42
character set, 77 Or
straight, how to draw, 95-98 function, 39
Linked list, 99, 135-141 operation, 41-42
List(s), 99 Order
BASIC DATA, 100-102 ascending, 124
linked, 99, 135-141 descending, 124
ordered, 123-195 Ordered lists, 123-125
LIST command, 25 0s, 175
Listing, assembly-language, 190 oV, 174
LLIST command, 25, 75 Overflow, 141
Locomotive pattern, 92-93
LOG, 149 P
Logical operators, 38-42
Loops, 13, 19-20 Packing, 166-169
LPRINT command, 75 Pagination, 76
LS, 176 Parentheses, number of, 172
L3, 177 PEEK(s), 22
address limits for, 33-34
M PEEKing, 205-208
Pixel(s), 82, 88-89
Machine language, 186 Plotting, 83-87
code, 190-191 POINT command, 82-83, 88-89
instructions, 10 Pointers, 136
subroutines POKE(s), 22
embedding in BASIC code, address, 91
201-203 limits for, 33-34
multiple, 200-201 graphics method, 89-92
Mantissa, 35 Positional notation, 30
Margin, top and bottom, 76 Precision
Memory double, 142-144
layout, TRS-80, 187-190 operations, 142-144
locations, absolute, 192 single, 142-144
Menus, 72-74 Print
Merges, 133-141 data, 75-77
Microprocessor, 185 statements, 20-21
MIDS$ function, 52-53 PRINT USING
Mixed variables, 102-103 field specifiers, 71-72
MO, 176-177 statement, 69-72
Modes of operation, 24 Printers, line, 75-77
Moving, 87-88 PRINT#, using, 164-166
Program flow, 11-13
N Prompt message, 73
NEW command, 25 Pseudo-random numbers, 149-150, 151
NF, 173
Nort R
function, 39
operation, 42 Radian, 157
Number(s) RAM, 189
crunchies, 22-24 Random numbers, 149-154
great and small, 37-38 READs, 102
pseudo-random, 149-150, 151 Records, 164
random, 149-154 Registers, internal, 185
seed, 151 Relocatable routine, 192
statement, 10 RES}ET corrggand, 82-83, 87-88
§ i Resolution,
Numeric to strings, 54 RESTORES, 102
o RESUME statement, 178
oD, 173 RG, 173)
One-dimensional arrays, 104-105 RIGHTS$ function, 52-53

223

RND, 152-153
number generator, 151
ROM, 11, 189
Roundoff, 148
RUN command, 24

S
SD, 151-152

Search
binary, 125-128
for variables, 211-212
Seed number, 151
Segmenting, 182
Sequential cassette files, 169-170
SET command, 82-83, 37-88
Setting examples, 82-83
SGN function, 148-149
Shell-Metzner sort, 132
Sign(s), 70
bit, 33
function, 148-149
Simulating errors, 180-181
Simulation, 149
Sine, 155-158
Single-precision variables, 20, 34-35
Skeleton, graph, 85
SN, 172
Snapshot, 182-183
Sort(s)
algorithms, 128
bubble, 130-131
faster, 132-133
Shell-Metzner, 132
two-buffer, 128
Source code, 191
Space, 166-169
Speed, 166-169
SOR, 149
Square root function, 149
ST, 176
Statement(s), 10-11, 13-22
format, 11-13
BASIC, 208-211
number, 10
Storage of string variables, 46-48
Straight line, how to draw, 95-98
String(s)
ASCII, 44-45
comparison of, 51
concatenation operator, 24
dummy, string graphics using, 94-95
graphics, 92-93
dummy strings, using, 94-95
numeric to, 54
operations, 48-51
statements, 20
variables, storage of, 46-48
STRINGS$ function, 53
Structures, data, 99

224

Subroutine(s), 14-19
machine-language
embedding in BASIC code,
201-203
multiple, 200-201
Synchronization byte, 161, 162
SYSTEM
command, 24
tapes, 190-193

T

Tables, 99, 106-109

TAN, 158

Tangent, 158-159

Tape(s)
commands, 160-161
SYSTEM, 190-193

Text editing, 58-61, 194

“Time wasters,” 88

™, 176

Tokens, 209

Top of form, 76-77

Trace option, 182

Trapping the error, 177-179

Trigonometric functions, 155-159

TROFF command, 25

TRON command, 25

Truncated values, 87

Truncation, 148

Two(s)
-buffer sort, 128
complement, 33
-dimensional arrays, 111-119
-way passing, handling, 198-200

U
UL, 172
“Universal Gee Whiz” input, 55-57
Unordered data, 121-123
USR(0) call, 193-194

A"

Value, index, 105
Variable(s), 20

double-precision, 35-37

name, 11

search for, 211-212

single-precision, 34-35
VARPTR, 22

w

Weights, 124
Word processing, 58, 194

Z
Z-80, 185-186
Zero, divide by, 176
Zzarthians, 27-28

Radioe fhaek

gﬂ TANDY CORPORATION COMPANY

