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FROM THE EDITOR

This book begins a new effort by BYTE Publications to provide our readers with the best
available manuscripts on the major topics of interest to the home computerist. Included in the
new series of BYTE’s books are reprints of the best articles from past issues of BYTE magazine,
plus new material which has not been printed anywhere before. The books will be organized in
logical volumes of related topics. This provides the reader with vital information from previous
BYTE issues which he or she might have missed, new material that has not appeared in the
magazine, plus a book covering one specific theme for quick, easy reference.

Manuscripts included in these books are of the same high quality as those found in BYTE
magazine, because we use the same stringent criteria in selecting new manuscripts for inclusion
in these books as we do in choosing them for the magazine. Generally, the additional criterion
used to select manuscripts for the books instead of the magazine is a constraint on the length of
articles used in the magazine itself. In addition, we receive so many quality manuscripts that we
could never possibly include them all in BYTE magazine. Therefore, in our efforts to give the
reader all the information needed to be a successful microcomputerist, we have decided to
make these manuscripts available in book form.

The book that you are holding in your hands is the first in a series on the general topic of
Programming Techniques. This particular book deals with the details of the theory behind the
design of the various aspects of programs. Anyone who has programmed for any length of time
will agree that the most critical part of writing a program of any kind (application, system
software, etc) is in the design phase, both the initial specifications and the program logic design.
The actual coding of the program amounts to more of a mechanical process once the initial
design of the program has taken place. Therefore, it is easy to see that unless the original design
of the program is correct, the program cannot be expected to work as per specifications.

The purpose of this book, then, is to provide the personal computer user with the techniques
needed to design efficient, effective, maintainable programs. Included in the topics covered are
structured program design, modular programming techniques, program logic design, and
examples of some of the more common traps the casual, as well as the experienced, program-
mer may fall into. In addition, details on various aspects of the actual program functions, such
as hashed tables and binary tree processing, are included.

Further books in this series will make available new techniques and further developments of
the existing ones as they occur. This will allow you, the personal computer user, to stay up to
date with the current technology of programming skills.

Blaise W. Liffick
Editor






PROGRAM STRUCTURE



About This Section

For the last several years, those of us whose profession has been programming (applications,
systems, scientific, whatever) have been bombarded on all sides with the latest philosophies of
programming: structured, modular, top down, bottom up, GOTOless, etc. Not only do we get
encouragement from employers to embrace whatever the most current popular technique for
coding is, but we also get it from others in our profession who are adherents to one or the other
philosophy. This is not to imply that any or all of the techniques do not have merit, but most
of the coding philosophers are talking only about just that: coding. The main thrust of their
basic arguments is against poor coding practices. And that’s just fine. But they forgot one
important detail: once a program has been designed, all the coding techniques in the world are
generally ineffective because the major portion of the program logic has already been set! The
specifications and initial design of the program predetermines to a great extent how the coding
can be performed.

In the following section, the techniques for designing effective programs are presented. Both
the amateur and professional programmer will profit from these practical techniques of design
by being able to produce essentially error-free code. And for the amateur programmer there is
an added bonus for following these practices: instant documentation! By carefully designing
the function of the program before ever coding a single line, you insure that once the coding /s
completed, you can add something at any time. The code written so long ago will be easily
understood, and you will know where and how to make any necessary changes.

In addition, if everyone followed similar guidelines for designing programs, trading programs
would be a painless and easy way to expand your program library. You could instantly under-
stand what anyone else’s program was doing. And while someone’s 6800 code definitely will
not run on your 8080 machine, the program has already been totally designed and can be easily
coded into any other language!



Structured Program Design

In the world of electronics, no experi-
menter in his right mind would build a cir-
cuit by throwing a few parts together with
some wire and some hope, then attaching a
line cord and plugging it in to see if it works.
Not only are you likely to destroy some
very expensive parts, but it is also a good
way to get fried, or at least get a new hairdo.

Yet, after all the trouble that a serious
microcomputer hobbyist will take to insure
that his circuit is put together correctly be-
fore he ever turns it on, he will invariably
try to program his new computer by using
a technique analogous to the one above.
That is why his programs almost never
run right the first time, if indeed they ever
manage to run right at all. It is also why
many microcomputer buffs stay up until

David A Higgins

odd hours of the night drinking coffee by
the gallon in an effort to find that one
little bug.

But there is hope. I'm sure that nearly
everyone involved with computers has heard
something about structured programming in
one form or another. It is not really a new
technigue, having been preached about for
many years. However, the tools and meth-
odologies available to design programs have
changed radically over the years.

In the beginning there were flowcharts,
which looked like five-dimensional octopi
or the corporate structure of a conglom-
erate. Despite the absence of a consistent
approach that would enable everyone to
design a program using flowcharts, those
programmers who did bother to work out

Figure 1: The Warnier-Orr

diagram showing the basic r GET PLAYER'S NAME
) . ASK IF PLAYER WANTS INSTRUCTIONS
structure of the BUG pro-
gram. YES PRINT GAME INSTRUCTIONS
BEGIN {0,1)
PROGRAM
NO 8K
{0,1) .
.
(‘
BEGIN GAME INITIALIZE BUG PARTS
“BUG 4
PROGRAM -~
PLAYER'S TURN see figure 2
GAMES TURNS
{1.9) (1,1
COMPUTER’S TURN see figure 2
[ €MD TURN { see figure 3
END GAME GET NEW PLAYER'S NAME
.
END {smp
PROGRAM
.




their problem with a flowchart first usually
scemed to have more luck in getting pro-
grams to run sooner and better than
programmers who did not.

Structuring Tools

The development of mathematics would
surely have been stymied if Roman numerals
had been retained as our number system. In
much the same manner, the science of
structured program design would have been
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mired down if only flowcnharts had oeen
available for developing programs. |t is not
that calculus is impossible with Roman
numerals, it's just that it's extremely dif-
ficult. Thus, over the years, a number of
design and documentation tools were devel-
oped to better enable a programmer to
understand the problem before going out to
do battle with the program.

TOP-DOWN or GOTO-less programming,
developed by Dijkstra and others, was pro-
bably the first major attempt to solve the
design versus coding problem. Dijkstra sim-
ply observed that the more GOTOs that
were in a program, the less likely it was to
run correctly. Dijkstra called such programs
“spaghetti bowl” programs, because if you
drew a line from each GOTO in the program
to its destination, you ended up with a mess
that looked like a bow! of spaghetti. He
showed how any program could be written
with just a few simple flow structures
wiihout any GGTOs. s techniques pio-
duced simple, readable code that was easy
to test and maintain, So, the big push among
design aficionados was to eliminate the
GOTOs in their programming. Although
TOP-DOWN programming was a big advance-
ment over flowcharting, it was just that:
programming. It was a technique for coding
a program, not necessarily designing it.

Another technique, IBM’s HIPO (and
tater HIPO-DB) entered the design field
almost by chance, being primarily a docu-
mentation tool that was also being used
for program design. The major drawback to
HIPO techniques, besides the fact that they
did not work well for designing a program,
was their tendency to produce 50 pages of
documentation for a three page program.

Warnier-Orr Diagrams — A New Approach

Within the last four years a new tech-
nique for program design has evolved from
the work of Jean-Dominque Warnier (pro-
nounced warn'-yay) in France, and Kenneth
T Orr of Langston, Kitch and Associates in
Topeka KS. The technigue has foundations
in set theory and Boolean algebra, and holds
much promise for program design appli-
cations. Warnier-Orr diagrams, as we have
called them here in the United States, aliow
programmers to design faster than ever
pefore, to code programs with little or no
effort, and produce programs that usually
run correctly the first time. The approach
is not limited to small programs. Nothing
will make a believer out of someone quicker
than a 20 page COBOL program which runs

Figure 2: Diagram of the logic for the PLAYER and C OMPUTER TURNS  correctly the first time. The Warnier-Orr
routines of the BUG program. Note that jtem means “‘the complement of item.”  technique stresses design over coding and
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contends that once a problem is designed, it
does not matter what programming language
you code it in! At Langston, Kitch and Asso-
ciates, people have used the technique
to program in COBOL, PL/I, ALGOL,
FORTRAN, BASIC, RPGII and assembler
languages. It works equally well for all of
them.

Warnier-Orr Diagram

The simplest way to learn about Warnier-
Orr diagrams is to see examples of them.
Warnier-Orr diagrams are very easy to learn
and use; however, be forewarned that this is
a technique that is sometimes deceptively
simple, but not as trivial as it often seems.

Let's consider the relatively simple game
of BUG. In this game the computer rolls a
die, once for itself and once for its oppo-
nent. Each number of the die corresponds to
a part of the BUG’s anatomy: 1 = BODY,
2 = NECK, 3 = HEAD, 4 = ANTENNAE,
5 =TAIL, and 6 = LEGS. The object of the
game is to finish your bug before the com-
puter finishes its bug. Other rules: you must
have a body before you can have legs, a neck
or a tail; you must have a neck before you
can have a head, and you must have a head
before you can have antennae. One body,
one neck, one head, one tail, six legs and
two antennae are needed to complete a bug.
Figure 1 is a Warnier-Orr diagram showing
the basic structure of the BUG program.

The Warnier-Orr diagram is read left to
right, top to bottom, just like conventional
English text. The brackets enclose logically
related operations, the largest of which is the
program itself. The BUG program is com-
posed of three logical sections:

® The BEGIN PROGRAM section,
where the player's name is requested
and there is an explanation of the
game rules. Note that the (3 symbol
between the modules YES and NO
denotes the exclusive OR function,
meaning that one or the other but not
both of the modules will be per-
formed. Observe also that this is re-
flected in the number of times that
each module may be performed: O if
the condition is false and 1 if the
condition is true.

® The process section, GAMES, where
the playing of the game actually takes
place. The (1,g) denotes that the sec-
tion is to be performed at least once,
and possibly many (g) times.

® The END PROGRAM section, which
in this case is empty, but which
usually contains things such as the
closing of files, the goodbye message,
etc.

The rest of the brackets decompose in a
similar fashion. The GAMES procedure
breaks down into the beginning of the game,
(BEGIN GAME), the turns that each player
takes (TURNS), and the end of the game
(END GAME).

Notice that logically there are things that
only happen at the beginning of the program
and things that only happen during the play-
ing of the game itself. The Warnier-Orr di-

(-

HAS EITHER PLAYER COMPLETED A BUG
r
COMPUTER WINS DISPLAY
0,1) “I WINY
YES (0,1) 4 @

ENDTURN ﬁ OPPONENT WINS DISPLAY
0.1) “YOU WIN®

@ \_DECLARE END OF GAME

{GO ON TO NEXT TURN

Figure 3: Warnier-Orr diagram for the ending of a turn or a game.

NO (0,1)

Listing 1: A structured BASIC program that was written using the Warnier-
Orr diagrams of figures 1 thru 3. This code executed correctly the first time
even though it was the author's first attempt at writing a BASIC program.

10 REM BUG PROGRAM

20 REM BEGIN PROGRAM

30 DIM HEAD(2), BODY(2), LEGS(2), TAIL(2), ANTE(2), NECK(2), CNT(2)

40 GOSUB 120

50 REM GAMES (1,G)

60 LET EPGM=0

70 GOSUB 200

80 IF EPGM=0 THEN GOTO 70

90 REM END PROGRAM

100 STOP

110 REM BEGIN PROGRAM SUBROUTINE

120 PRINT ‘ENTER YOUR FIRST NAME'

130 INPUT :NAMES$

140 PRINT ‘DO YOU WANT AN EXPLANATION OF THE RULES; ENTER YES
OR NO.'

150 INPUT ANSS$

165 LET TEST = SCOMP ('YES' ,ANSS$)

160 IF TEST =0 THEN GOSUB 1200 ELSE ;

170 RETURN

180 REM GAMES SUBROUTINE

190 REM BEGIN GAME

200 GOSuB 290

210 REMTURNS (1,T)

220 LET EGAM =0

230 GOSUB 390

240 IF EGAM =0 THEN 230

250 REM END GAME

260 GOSUB 1150

270 RETURN

280 REM BEGIN GAME SUBROUTINE

200 LET BODY(1), BODY(2) =0

295 LET CNT(1),CNT(2) =0

300 LET NECKI(1).NECK(2) =0

11



Listing 1, continued:

310
320
330

350
360
370
380
390
400
410
420
430

450
460
470
480
490
500
510
520
530
540
550
560

570
580

590
600

610
620

630
640

650
670
700
710
720
730
740
750
760
770
780
790
800
810
820
830

850
860
870
880
890

900

910
920
930
940
950
960
970
980
990
1000
1010
1020

1030
1040
1050
1060
1070
1080

12

LET HEAD(1), HEAD(2) =0

LET ANTE(1), ANTE(2) =0

LET TAIL(1), TAILI2) =0

LET LEGS(1), LEGS{2) =0

RETURN

REM TURNS SUBROUTINE

REM PLAYERS TURN

REM LET PLAYER START TURN

PRINT ‘HIT RETURN TO ROLL DIE’

INPUT A

LET PLAY =1

GOSUB 520

REM COMPUTERS TURN

LET PLAY =2

GOSUB 520

REM END TURN

GOSUB 1060

RETURN

REM TURN SUBROUTINE

REM PLAY=1,PLAYERS TURN—PLAY=2;:COMPUTERS TURN
REM ROLL DIE

LET ROLL = FIX® (({(RND (0}) *6.0)) +1

PRINT : “ROLL ISA ", ROLL

IF ROLL =1 THEN IF BODY (PLAY) #1 THEN GOSUB 690 ELSE ; ELSE ;
IF ROLL=1 THEN 650

IF ROLL =2 THEN IF BODY (PLAY) =1 THEN IF NECK (PLAY) #1
THEN GOSUB 760

IF ROLL=2 THEN 650

IF ROLL = 3 THEN IF BODY (PLAY) =1 THEN IF NECK (PLAY) =1
THEN IF HEAD (PLAY) #1 THEN GOSUB 820

IF ROLL=3 THEN 650

IF ROLL =4 THEN IF HEAD (PLAY) =1 THEN IF ANTE (PLAY) &2
THEN GOSUB 880

IF ROLL=4 THEN 650

IF ROLL =5 THEN IF BODY (PLAY) =1 THEN IF TAIL (PLAY) #1
THEN GOSUB 940

IF ROLL=5 THEN 650

IF ROLL =6 THEN IF BODY (PLAY) =1 THEN IF LEGS(PLAY)
#6 THEN GOSUB 1000

RETURN

REM BODY SUBROUTINE

IF PLAY =1 THEN PRINT : NAMES$, ** 'S BUG HAS A HEAD"
IF PLAY =2 THEN PRINT : “COMPUTER'S BUG HAS A HEAD"
LET CNT (PLAY) =1

LET BODY (PLAY) =1

RETURN

REM NECK SUBROUTINE

IF PLAY = 1 THEN PRINT : NAMES$, " 'S BUG HAS A NECK"’

IF PLAY = 2 THEN PRINT : “COMPUTER’S BUG HAS A NECK""
LET CNT (PLAY) = CNT (PLAY) +1

LET NECK (PLAY) =1

RETURN

REM HEAD SUBROUTINE

IF PLAY = 1 THEN PRINT : NAMES, “ ‘S BUG HAS A BODY"

IF PLAY =2 THEN PRINT : “COMPUTER'S BUG HAS A BODY"
LET CNT (PLAY) = CNT (PLAY) +1

LET HEAD (PLAY) =1

RETURN

REM ANTENNAE SUBROUTINE

LET ANTE(PLAY) = ANTE(PLAY) +1

IF PLAY =1 THEN PRINT : NAMES$, 'S BUG HAS ",

ANTE (1), " ANTENNAE."”

IF PLAY =2 THEN PRINT : “COMPUTER’S BUG HAS", ANTE (2)
*“ ANTENNAE."”

LET CNT (PLAY) = CNT (PLAY) +1

RETURN )

REM TAIL SUBROUTINE

IF PLAY = 1 THEN PRINT : NAMES, " ‘S BUG HAS A TAIL"

IF PLAY = 2 THEN PRINT : “COMPUTER’S BUG HAS A TAIL"
LET CNT (PLAY) = CNT (PLAY) +1

LET TAIL (PLAY) =1

RETURN

REM LEGS SUBROUTINE

LET LEGS(PLAY) = LEGS(PLAY) +1

IF PLAY = 1 THEN PRINT : NAMES, " * S BUG HAS ", LEGS (1), " LEGS.”
IF PLAY =2 THEN PRINT : "COMPUTER'S BUG HAS “, LEGS (2),
“LEGS.”

LET CNT (PLAY) = CNT (PLAY) +1

RETURN

REM END TURN SUBROUTINE

IF CNT (1) =12 THEN 1090 .

IF CNT (2) =12 THEN 1110

GOTO 1130

agrams allow you to see very easily just
where and when a particular event must take
place. After examining figure 1 carefully to
make sure that you understand how the
diagrams work, move on to the explanation
of the PLAYER and COMPUTER TURNS
section shown in figure 2.

In figure 2, we have represented the logic
for each of the players' turns during the
game. At the beginning of each turn, the die
is rolled to determine the part of the BUG's
body that the player may receive. Whatever
the roll, we then have a logical path to
follow. Again, please note that the presence
of the @ between each of the possible
rolls denotes mutual exclusion, ie: only one
of the paths may be selected. This partic-
ular structure is known as a case statement.

If the player rolls a 4, we first find the
instructions to follow for a roll of 4 and
check to see if the player has a BUG head.
If he does, we then check to see whether or
not the player already has two antennae.
If he does, then we do nothing. If he does
not have two antennae yet, we give him
one antenna. If he does not have a BUG
head, then again we do nothing. In a similar
fashion, all of the possible rolls and their
associated procedures are explained. Now
let’s move on to the Warnier-Orr diagram for
the end of the turn, which is shown in figure
3.

If either player has won the game at the
end of a turn, the computer declares the
winner and ends the game. If neither player
has won, the computer does nothing and
cycles through for another turn.

Structured Programming

Having fully understood the problem,
coding the BUG program is a simple and
straightforward process. For this particular
example | coded the program shown in list-
ing 1in a version of BASIC.

As you can see, each bracket of the
original Warnier-Orr diagram roughly corre-
sponds to a subroutine in the finished code:
the process GAMES, for instance, becomes
the subroutine at line number 180 which is
called repeatedly by the branch at line 80
until EPGM equals 1, indicating that no
more games are to be played; the process
BEGIN PROGRAM is handled by the sub-
routine at line 110, and so forth.
The resultant code is:

® easy to read and understand
® easy to change and maintain
® already documented

® |ogically correct.

It is also a program that will run correctly
the first time, barring unforeseen syntax



errors for those of us who can’t type or
spell. All of this is possible because the
program was thoroughly designed before
it was even partially coded.

Conclusion

Warnier-Orr diagrams are a giant leap in
the right direction for structured program-
ming. They represent an attitude which, for
the first time since people have been playing
with computers, can lead to consistently
reliable software that is very easy to main-
tain. Currently, most data processing de-
partments spend over 80% of their time
and effort repairing old code that has
suddenly gone bad. Warnier-Orr diagrams
also provide the means to produce software
of a quality that has never before been
possible.

If you think that you are interested in
using Warnier-Orr diagrams to help you
solve some of your software headaches, by
all means try them. But as | mentioned
above, this technique looks deceptively
simple, and you may not have much success.
Understanding a diagram such as the one
presented in this text is one thing; creating
one from scratch is another.

If you do get bogged down, please feel
free to write us for more information. If you
try them, like them, and think you've done
something exciting with them, again feel free
to write us and tell us what you've done.®

Listing 1, continued:

1090
1100
1110
1120
1130
1140
1150
1160
1165
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260

1270
1280
1290
1210

PRINT : NAMES, ** ‘S BUG IS FINISHED’ YOU WIN"
GOTC 1120

PRINT : “COMPUTER’S BUG IS FINISHED, | WIN"'
LET EGAM =1

RETURN

REM END GAME SUBROUTINE

PRINT : “DOES ANYONE ELSE WANT TO PLAY"

INPUT ANSS$

LET TEST = SCOMP (ANSS, 'YES")

IF TEST # 0 THEN LET EPGM =1

RETURN

REM EXPLANATION OF RULES SUBROUTINE

PRINT “THE GAME OF BUG IS PLAYED AS FOLLOWS:”

PRINT “ A DIE ISROLLED BY THE COMPUTER, AND EACH NUMBER"*
PRINT “ ON THE DIE CORRESPONDS TO A PART OF THE BUG'S
PRINT “ BODY: 1=BODY, 2=NECK, 3=HEAD, 4=ANTENNAE, 5=TAIL"
PRINT " 6=L.EGS. YOU NEED 1 BODY, 1 NECK, 1 HEAD, 2 ANTENNAE"
PRINT 1 TAIL, AND 6 LEGS TO COMPLETE A BUG."

PRINT “ THE OBJECT OF THE GAME IS TO BUILD YOUR BUG
BEFORE"

PRINT “ COMPUTER BUILDS HIS.”

PRINT " —HIT RETURN WHEN YOU ARE READY TO PLAY.”

INPUT A

RETURN
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David A Higgins

Part 1: Design Methodology

Any successful program design method-
ology must be able to do several things: it
must produce consistent, low cost, high
reliability results; it must produce them
quickly, while still allowing for easy mainte-
nance later and, it must be simple enough to
allow anyone (and { do mean anyone) to use
it. Warnier-Orr  diagrams (after Jean-
Dominique Warnier in France and Kenneth
T Orr in the United States) satisfy all of the
above requirements with an added bonus;
they produce structured programs that
nearly always run correctly at the first
effective trial. They allow people to produce
superprograms without being superprogram-
mers.

The purpose of this article is to show how
to develop and code a structured program
using the Warnier-Orr methodology from
start to finish. The technique is a straight-
forward approach to producing correct pro-
grams. It is just as valid and successful for
personal microcomputer applications as it is
for megacomputer applications in the world
of business, science and industry. | feel that
this method of designing a program is one of
the most advanced state of the art software
development techniques in existence today.
It is a concise, step by step method with
predictable results.

Step One: identify the Qutput

This is the first, the primary and the most
important rule of all for the construction of
a correct program. It cannot be emphasized
enough. The failure to first identify the
outputs of a program is usually the primary
reason programs fail to run correctly,

You must ask yourself the questions:
“How will | be able to tell when | am
through with this program?” “What will the

printed, displayed and punched outputs
physically look like?"” “What will the pro-
gram be able to do?”" All of these questions
must be thoroughly answered before you
can even begin to think of coding the
program. Skipping this step because “Aw, |
know what | want to do,” or “‘Gee, thisisn’t
any fun, let’s start coding,” is a common
mistake, and although you may get away
with it on a small program once in a while,
omitting it will kill you more often than not.

A good example of the kind of trouble
you can get into by assuming that you know
everything about a problem can be found in
a recent popular film. In the movie Jeremiah
Johnson, jeremiah befriends an old hunter
and trapper in the mountains. The old
hunter asks Jeremiah if he can skin a bear.
“Of course | can,” he replies. In the next
scene, we see the old man running down a
hill towards the cabin closely pursued by a
very large bear. The hunter runs into the
open front door, leaps out of the back
window and yells: “There ... you skin that
one and V'll go get you another.” Jeremiah
failed to do one basic thing; he forgot to ask
whether the bear he was supposed to skin
was dead. Skinning a dead bear is one thing,
skinning one that is still running around the
room trying to skin you is quite another.
Just as writing a program after it has been
properly defined is one thing, and trying to
write one when you aren’t even sure what it
is supposed to do when you are finished is
another.

Defining outputs is not really an un-
reasonable requirement to make; after all, no
building contractor would begin construc-
tion without first knowing what the finished
building was supposed to look like; no
electrical engineer would start soldering



parts together without a schematic diagram,
In fact, no profession (reliable profession
anyway) involved in the business of putting
things together ever starts to build anything
unless they know what it will look like after
they are done. Yet, that is precisely the way
most programmers try to write programs.
Then they wonder what went wrong when
they have problems. The same programming
principles which apply to the professional
apply just as much to the amateur, for no
one’s time is unlimited.

After defining all of the outputs of the
program, the next step is to define the
logical data base, although you will probably
never really spend much time at this step
with most personal microcomputer applica-
tions.

Step Two: Define the Logical Data Base

The reason this step is trivial for many
personal use applications is because the
logical data base typically consists of only
one numeric field. It is typically the field
holding a person’s response to a program
generated question. For illustrative purposes
let us look at a home computer application
that requires a slightly more complex data
base arrangement. Take for instance a com-
puter program that would balance the family
checkbook and produce a financial report
each month. The report designed in step one
might look something like figure 1.

If you were keeping manual records that
you wanted to be able to search very easily,
you would keep each one of those entries,
perhaps on index cards, filed by year, by
month and by date. Figure 2 illustrates a
way of representing the logical data struc-
ture for the checkbook balance report in
Warnier-Orr notation.

In figure 2, you can see the logical data
structure for the checkbook balance report.
The report is organized by year; within each
year by months; within each month by days;
and within each day by transactions, which
are either debits (checks) or credits (de-
posits). Note that year, month, day, and
transactions all appear in the report at least
once and possibly many times; thus we see
the notation (1,n) in the diagram. Having an
entry for a day that had no transactions or
having a monthly report with no days is
hardly worth the trouble. However, each
transaction is either a credit transaction
{credit occurring once, and debit not occur-
ring) or a debit transaction (debit occurring
once and credit not occurring). This con-
dition is reflected on the chart by the “‘@”
symbol, which is the symbol for mutual
exclusion.

One important point needs to be made

MONTHLY FINANCIAL REPORT
FOR THE MONTH OF JANUARY 1977

DATE CHECK# TO:
1 978 GROCERY STORE
-MILK, BREAD, EGGS
1 979 PHONE COMPANY
3 980 GAS BILL
5 981 GEORGE FREDRICK
~SHOVELLING SNOW
2 PAYCHECK DEPOSIT
6 982 ELECTRIC COMPANY
31 1013 BYTE MAGAZINE

~SUBSCRIPTION RENEWAL

BALANCE FORWARD OF

DEBIT
2,23

CREDIT

37.14
25.61
5.00

312.18
23.15

12.00

CURRENT BALANCE

$231

.90

BALANCE

229

192.
166.
156.

469.
445.

237.

237

.67

53
92
92

10
95

11

.11

Figure 1: Proposed output of a computer program for balancing a checkbook

and producing an end of month report.

here. The diagram of figure 2 is not the
logical data base for this report; it is only the
report’s logical data structure. Making a
chart of the logical data base requires that
we map the data elements that appear in the
report onto the logical report structure, as
we have done in figure 3. In figure 2 we
showed conceptual relationships of one part
of the structure to another. In figure 3 we've
filled in the required details needed to
complete each level of the structure. One
level of the structure corresponds to one
bracket and the levels are counted left to
right.

Step Three: Define the Physical Data Base

Defining the physical data base of a pro-
gram is largely a packaging decision: what
physical arrangement of the data in the
computer will best suit the needs of the
program. The only help | can give you on
this is the simple suggestion that the physical

r r ”
N YEAR MONTH DAY
CHECK FILE 4 (Ly) { (1,m) {°0%
~ . \

”~
DEBIT
0,1}

CREDIT

Al
\(0 }

Figure 2. Logical data structure for the checkbook balance report. The
notation (1,n) indicates an operation will take place at least once and upton

times, inclusive,
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CHECK YEAR
FILE (1y)

\

f
YEAR NUMBER

MONTH
{1.m}

(
NAME OF MONTH

DAY
(1,04}

BALANCE FORWARD

~
DAY NUMBER

(1,1

Figure 3: The logical data
base is generated by map-
ping the data elements
that appear in the report
onto the logical data struc-
ture.
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\CURRENT BALANCE L

ﬁ TRANSACTIONS

rd
CHECK NUMBER
“TO" DESCRIPTION
DEBIT
GRN “FOR" DESCRIPTION
0,1)
AMOUNT
\ e
CREDIT CREDIT DESCRIPTION
o.n AMOUNT
BALANCE AMOUNT

\.

representation should mirror the logical
representation in all but the most extreme
cases. These are hardware decisions. You
may wish to construct a file one way if you
are using a cassette tape storage system; you
may construct it another way if you have a
floppy disk. You would not want to impose
a file structure that forced a cassette tape to
behave like a disk by running back and forth
through the tape at high speed. That is a
good way to burn up a tape drive in a hurry.
Ultimately, as memories become faster,
more versatile and more efficient, the phys-
ical data base will probably always be able to
mirror the logical data base. Magnetic bubble
memories, for instance, have no moving
parts to burn up.

In the checkbook balance report program
the simplest physical data base would be a
sequential file. The necessary information
and a brief description of each transaction
could be stored in the order shown in figure
4, read left to right.

Given that we have a file with this
information on it which is sorted by vear,
month, day and transaction, producing a
report program is almost a trivial exercise.

Step Four: Design the Process Structure

Since in this case we are working with a
single program, the process structure will
ultimately represent the program structure.
Were we designing an entire system, an
accounts receivable system for instance, the
process structure would represent many pro-
grams and the associated system procedures
that would operate them. The process struc-
ture is obtained from the same logical data
structure that the logical data base was
derived from.

Referring again to both figures 1 and 2,
we can begin to design the program from the
bottom to the top. Looking first at the left-
most bracket of figure 2, which for this step
is labeled REPORT PROGRAM, we could
draw a structure thus:

rd

I'd
START PROGRAM QOPEN FILES

{CLOSE FILES

REPORT PROGRAM

END PROGRAM

check or

deposit qescription description  transaction
, date , flag g field 1 , field 2 q number amount
LI i v T ¥ L

Figure 4: A sequential file with a record format such as this is the simplest
physical data base for the checkbook program. The information that is
needed has been decided by the logical data base. The order they are put on
the file depends on exactly what you intend to do. Since in this case we will
be sorting by date, the date of the transaction appears first on the file.



Note that program structure is denoted by
left to right positioning, and that sequences
of operations are noted top (first) to bottom
(last).

We can see that the only thing for us to
do at the beginning of the program is to
open the files, and the only thing to do at
the end of the program is to close the files
we have used. Moving right to the YEAR
bracket, the process END YEAR must be
defined. For this program there is nothing to
do at the end of the year, so we fill in the
bracket with the notation SKIP:

YEAR
.y}

END YEAR {SK!P

For the bracket labeled MONTH, there is

the matter of printing the CURRENT
BALANCE at the end of the month:

MONTH
1mi

END MONTH {PRINT CURRENT BALANCE

There are no processes to be performed at
the end of each DAY, therefore we show the
END DAY process the same way as the END
YEAR process:

DAY
1.d)

END DAY {SKIP

Figure 5: Completed Warnier-Orr diagram for a checkbook balancing report program. This program arrangement will probably
result in the smallest amount of memory being used. The sequences of operations at any given level (left-right position) are
read from top to bottom. A level of operations corresponds to a logical level of procedure calls in a block structured program-

ming language.

9 QPEN FILES
BEGIN PROGRAM SET INITIAL VALUES
READ FIRST RECORD

(BEGIN YEAR <SKIP

8 PRINT HEADINGS
BEGIN MONTH PRINT STARTING BALANCE

INITIALIZE RUNNING BALANCE

YEAR MONTH
REPORT PROGRAM | (%Y o
END YEAR

\END MONTH CPRlNT CURRENT BALANCE

(SKIP

(“secin DAY <sm
A ( SKIP
BEGIN )
TRANSACTIONS MOVE CHECK NUMBER, CHECK "T0", AND
CHECK AMOUNT TO PRINT LINE
SUBTRACT CHECK AMOUNT FROM RUNNING BALANCE
oesyT MOVE RUNNING BALANCE TO PRINT LINE
’ PRINT A LINE
PRINT SECOND LINE (0,1)
SPACE INE
(_SPACE ONE LIN
TRANSACTIONS ®
14
(" MOVE DEPOSIT AMOUNT, DEPOSIT DESCRIPTION
TO PRINT LINE
. ADD DEPOSIT AMOUNT TO RUNNING BALANCE
CREDI
0.1 MOVE RUNNING BALANCE TO PRINT LINE
PRINT A LINE
SPACE ONE LINE
U ONE Li
END TRANSACTION ( GET NEXT RECORD
A
END DAY (sxw

\END PROGRAM <CLOSE FILES

17



18

The TRANSACTIONS process is where
most of the work is done. For each CREDIT
or DEBIT, one line and possibly a second
(for DEBIT) is printed, showing the appro-
priate information; the running balance is
updated, and the next record must be read:

r
MOVE CHECK NUMBER,
CHECK "TO”". AND
CHECK AMOUNT

TO PRINT LINE

FROM RUNNING BALANCE
DEBIT
PRINT LINE

PRINT A LINE
PRINT SECOND LINE (0.1}

SPACE ONE LINE
TRANSACTIONS D -
a0 MOVE DEPOSIT AMOUNT,
TO PRINT LINE
ADD DEPOSIT AMOUNT TO
cREDIT RUNNING BALANCE
PRINT LINE

PRINT A LINE

SPACE ONE LINE
~

END

TRANS.
\ACTION {GET NEXT RECORD

SUBTRACT CHECK AMOUNT

10.1) MOVE RUNNING BALANCE TO

DEPOSIT DESCRIPTION

MOVE RUNNING BALANCE TO

With this much of the program design
done, the only things to be filled in are the
BEGIN brackets for each level. The entire
diagram with these processes added is shown
in figure 5.

Looking at the Warnier-Orr diagram for
the checkbook balance program, you can see
the entire series of events which must take
place to correctly process the report as it
was given. Note also that this is the only
correct structure that will produce the

checkbook balance report. Any other struc-
ture that will produce the report is iso-
morphic to this structure. The structure is
also optimal in operation, in the sense that
nothing is ever done unless it must be done.

The program which is coded from this
structure will also have some predictable
features. It will run as quickly as possible. 1t
will usually require the least amount of
storage. It is very easy to maintain, and it
will run correctly at the first effective trial.
Not bad dividends for a half hour of extra
work. Syntax runs are not effective trials,
but, with a little diligence and effort, syntax
errors can also be brought under control.

Part 2 will show how easy it is to fill in
the details of structured programs using
Warnier-Orr diagrams.®



Structured Programming

with Warnier-Orr Diagrams

David A Higgins

Part 2: Coding the Program

In part T we carefully constructed a errors resulting from shoddy coding tech-
design structure. In order to make the most niques as well as problems with maintenance
of that structure a few words about pro- seem to indicate that a great deal of care
gramming style are in order. While it is true should be exercised in the construction of
to a certain extent that any method of the actual program code.
coding the structure will produce a logically For this particular example, I'll use a
correct program, matters of syntactical fairly standard version of BASIC that

: OPEN FILES
BEGIN PROGRAM SET INITIAL VALUES
READ FIRST RECORD
/BEGIN YEAR <SKIP
8 PRINT HEADINGS
BEGIN MONTH PRINT STARTING BALANCE
INITIALIZE RUNNING BALANCE
.
BEGIN DAY (SKIP (
sKIP
( BEGIN 7
TRANSACTIONS MOVE CHECK NUMBER, CHECK '"TO", AND
CHECK AMOUNT TO PRINT LINE
SUBTRACT CHECK AMOUNT FROM RUNNING BALANCE
D(%Bl‘)l‘ MOVE RUNNING BALANCE TO PRINT LINE
,1
PRINT A LINE
PRINT SECOND LINE (0,1)
SPACE ONE LINE
® .
YEAR MONTH pay TRANSACTIONS
REPORT PROGRAM /' 171y (1,m) 1.d) 1.1 -
MOVE DEPOSIT AMOUNT, DEPOSIT DESCRIPTION
TO PRINT LINE
CREDIT ADD DEPOSIT AMOUNT TO RUNNING BALANCE
EDN
{0,1} < MOVE RUNNING BALANCE TO PRINT LINE
PRINT A LINE
SPACE ONE LINE
\ ONE LI
END TRANSACTION (GET NEXT RECORD
END DAY (SKIP
\END MONTH <PRINT CURRENT BALANCE
END YEAR < SKIP
.
\END PROGRAM (CLOSE FILES

Figure 1: Final Warnier-Orr diagram description of the checkbook balance report program (reproduced from part 1).
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COMPLEMENT
DIFFERENCE

r———=- -
: DIFFERENCE L
| EXTENT T
 EN— -

MATCH j

SUBTRACT
SUBJECT V
FROM
OBJECT V

NEGATIVE

RESULT

ZERO

P

POSITIVE

GET
IDENTIFICATION
CODE

GET VERTICAL
EXTENT OF
OBJECT

0

Orr representation.

20

A

N
YES
? N

YES

USE VSIGHT
TO DETERMINE

FLAG STATUS

]

]

USE HMATCH
TO DETERMINE
SIGHTING
FLAG STATUS

‘ RETURN ’

Figure 2: This a a flowchart chosen at random for comparison to a Warnier-

A

runs on a J100 Jacquard Systems com-
puter. The concepts and construction
rules are just as applicable to Tiny BASIC,
assembly language, and especially APL.
Obeying the following five coding con-
ventions will help you write a program that
will execute on the first time.

Coding Convention 1: Names Should Be
Indicative of Function

For versions of BASIC that only allow
one letter names, this is often a little hard,
but for most other languages with multiple
character symbols, it is a must. For instance,
a field that contains an amount should be
labeled AMOUNT, an address field should
probably be called ADRESS, and so
forth. Cutesy names: SNEEZY, DOPLY,
GRUMPY, HELL (a perennial favorite label
for adolescent COBOL. programmers) are
to be strictly avoided.

Coding Convention 2: Comments Should
Be Used Freely

Comment lines in programs written in
obscure languages, APL for instance, should
probably outnumber actual lines of code.
Comment lines are especially useful for
explaining unclear methods of calculation,
complex decisions, etc.

Coding Convention 3: Every Bracket of a
Warnier-Orr Diagram Should Represent a
New Subroutine

Languages that do not permit subrou-
tines or languages that limit the levels of
nesting of subroutines are very tricky to
use and should be avoided if at all possible.
Save your spare change for three or four
weeks and go buy a better version of BASIC;
there are plenty of good ones on the mar-
ket. In BASIC, each subroutine should be
clearly labeled with REMark statements.

Coding Convention 4: Subroutines Should
Be as Short as Possible

If a subroutine contains too many state-
ments it is difficult to understand and main-
tain. It also means you are probably doing
something in this subroutine that should
be put in another subsequent subroutine.
In most high level languages a practical
limit of 10 to 20 statements is appropriate.
This rule is standard structured program
ming practice.

Coding Convention 5: GO TOs Should Be
Avoided

In higher level languages, GO TOs can
often and should be eliminated entirely.
However, in versions of BASIC that do not



have a DO verb and in assembler, GO TOs
are often necessary. Utmost care is urged
whenever a GO TO is used; it should only
be used as a last resort. In assembly lan-
guage, use of arbitrary jumps or branches
should be avoided.

When coding the program, the order of
the subroutines is not crucial. The only
piece of code that must be fixed in any
certain location is the highest fevel bracket
which must be the first executable line,
or lines, of code. One possible way of
coding the first section is to omit the first
bracket and consider the code as the main
program. For BASIC, subroutine calls are
left unnumbered until the subroutine is
actually written. In this case, we use nnn to
indicate an unknown number.

100 REM CHECKBOOK BALANCE REPORT PROGRAM

110 REM BEGIN PROGRAM

120 GOSUB nnn

130 REM YEAR (1,Y)

140 LET ENDYR = FALSE

150 GOSUB nnn

160 IF ENDYR = FALSE THEN GOTO 150
170 REM END PROGRAM

180 GOSUB nnn

190 END

Another way to program this section would
be to have the above piece of code as a sub-
routine to an even higher level procedure as
follows.

80 REM CHECKBOOK BALANCE REPORT PROGRAM
90 GOSUB 110
95 END

100 through 180 as above

200 RETURN

Either way of coding is acceptable. Note
that the GO TO in statement 160 is used to
create the structure of a DO UNTIL, a
feature that is not available with this par-
ticular BASIC.

The center path of the Warnier-Orr dia-
gram is the easiest to begin to code at this
point. So the code for the YEAR, the
MONTH, and the DAY routines is shown
next; for the subroutine YEAR:

250 REM YEARLY PROCEDURE

260 REM BEGIN YEAR

270 GOSUB nnn

280 REM MONTHS (1,M)

290 LET ENDMO = FALSE

300 GOSUB nnn

310 IF ENDMO = FALSE THEN GOTO 300
320 REM END YEAR

330 GOSUB nnn

340 RETURN

For the subroutine MONTH:

350 REM MONTHLY PROCEDURE

360 REM BEGIN MONTH

370 GOSUB nnn

380 REM DAYS (1,D)

390 LET ENDAY = FALSE

400 GOSUB nnn

410 IF ENDAY = FALSE THEN GOTO 400
420 REM END MONTH

430 GOSUB nnn

440 RETURN

For the subroutine DAY

450 REM DAILY PROCEDURE

460 REM BEGIN DAY

470 GOSUB nnn

480 REM TRANSACTIONS (1,T)

490 LET ENDTRN = FALSE

500 GOSUB nnn

510 IF ENDTRN = FALSE THEN GOTO 500
520 REM END DAY

530 GOSUB nnn

540 RETURN

The TRANSACTIONS process breaks down
as follows:

550 REM TRANSACTIONS ROUTINE

560 REM CREDIT (0,1) OR DEBIT (0,1)

$70 IF CDFLAG = CREDIT THEN GOSUB nnn ELSE GOSUB nnn

580 REM END TRANSACTION
590 GOSUB nnn
600 RETURN

Subroutine DEBIT is coded a bit dif-
ferently from the way it was designed for
one simple reason. BASIC will let you out-
put from the same fields that were read
in as input; many languages do not. There-
fore, the only code remaining in the sub-
routine is the subtraction of the amount
from the running balance and the print
commands.

610 REM DEBIT PROCEDURE

620 LET RUNBAL = RUNBAL - AMOUNT

650 PRINT ON PRINTR: DAY, CHKNUM, DESCl1l, DRAMT, CRAMT, RUNBAL
660 IF DESC2 # SPACES THEN PRINT ON PRINTER: DESC2

670 PRINT ON PRINTR: SPACES

680 RETURN

The symbol # is the not equal to operator.
Note that this code makes no attempt to
format the output line. Although the facility
is available with this version of BASIC, it
differs greatly from other line formatting
BASICs around, and would serve only to
confuse the immediate issue.

The CREDIT process is very similar to
the DEBIT process.

690 REM  CREDIT PROCEDURE
700 LET RUNBAL = RUNBAL + AMOUNT
730 PRINT ON PRINTR: DAY, DESCl, CRAMT, DRAMT, RUNBAL
740 PRINT ON PRINTR: SPACES
750 RETURN
The only remaining subroutines to be
coded appear below:
760 REM  END TRANSACTION
763 LET OLDDAY = DAY
770 INPUT PROM CHECKL: DAY, CDFLAG, DESCL, DESC2,
CHKNLM, & AMOUNT
775 ON ENDFILE GOSUB ~an continued on page 24
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Figure 3: The original flowchart in figure 2 converted into Warnier-Orr diagram. This is a much

simpler looking diagram and is easier to follow and explain to someone

., Since it is broken down

ined and

into sections it can be programmed as a series of subroutines that can be easily mainta

modifed. Note that item means “the complement of item.”
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Listing 1: BASIC source listing for the checkbook balance report program.
Each of the subroutines can be matched with one of the brackets in the
diagram of figure 1. The individual modules that do not contain any code
should be left as they are to facilitate easy maintenance in the future.

100 REM CHECKBOOK BALANCE REPORT PROGRAM 965 LET OLDDAY = DAY
110 970 INPUT FROM CHECKS:DAY,CHKNUM,CDFLAG,DESC1,DESC2, AMOUNT
120 REM BEGIN PROGRAM ) 980 ON ENDFILE CHECKS GOSUB 1030
130 GOsuB 1090 985 IF OLDDAY # DAY THEN LET ENDTR = TRUE
140 990 RETURN
150 REM YEAR (1,Y) 1000
160 LET ENDYR = FALSE 1010 REM *Xk*ARAARAAKARAARRK A AR KA KRR KA Ak R R dkhhok
170 GOSUB 280 1020 REM END OF FILE
- 180 IF ENDYR = FALSE THEN GOTO 170 1025
190 1030 LET ENDAY, ENDMO, ENDTR, ENDYR = TRUE
200 REM END PROGRAM 1040 RETURN
210 GOSUB 1290 1050
220 END 1060 REM *A xR hkhk Rk hhkh Rk kA h kAR ARk AR R R AN KKK KRR AR
230 1070 REM BEGIN PROGRAM PROCEDURE
240 REM KAKRKRA A AR AR AR KA A AR kA A IR AA R IR AR IR R AR KRR A 1080
250 REM YEARLY PROCEDURE 1090 OPEN 'CHECKS',SYMBOLIC, INPUT:CHECKS
260 1100 STRING SPACES, CDFLAG, DESCl, DESC2, MONTH
270 REM BEGIN YEAR 1110 DECIMAL AMOUNT, BALANC, RUNBAL
280 GOSUB 1470 1120 LET TRUE = 1
290 1130 LET FALSE = 1
300 REM MONTH (1,M) 1140 LET SPACES = '
310 LET ENDMO = FALSE 1150 INPUT FROM CHECKS: DAY, CHKNUM, CDFLAG, DESCl, DESC2,
320 GOSUB 430 AMOUNT, BALANC, & MONTH, YEAR
330 IF ENDMO = FALSE THEN :0TO 320 1160 RETURN
340 . 1170
350 REM END YEAR 1180 REM *AkdkhrkhkhhhhhhhhAhkhkkr kA rh kR ARk kA kA Ak
360 GOSUB 1390 1190 REM BEGIN MONTH
370 RETURN 1200
380 1210 PRINT ' CHECKBALANCE REPORT'
390 REM * ¥k hkkhkhhkhhkhhkhkkhhk kk kXA XXX AR RR AR AR Ak Ak 1220 PRINT :! FOR THE MONTH OF ' :MONTH;YEAR
400 REM MONTHLY PROCEDURE 1230 PRINT :SPACES, 'BALANCE FORWARD OF ';BALANC
410 1235 LET RUNBAL = BALANC
420 REM BEGIN MONTH 1240 PRINT :'DAY CHECK# FOR DEBIT CREDIT BALANCE'
430 GOSUB 1210 1250 RETURN
440 1260
450 REM DAYS (1,D) 1265 REM *hhkkhdk kA hk kR kA X AR AR AR KRR KRR AR AR K
460 LET ENDAY = FALSE 1270 REM END PROGRAM
470 GOSUB 580 1280
480 IF ENDAY = FALSE THEN GOTO 470 1290 CLOSE CHECKS
490 1300 RETURN
500 REM END MONTH 1310
510 GOSUB 1340 1315 REM A ¥ h Ak Akk kA Ak AR RISk Ak kA KA AR KA XAk kh Ak ko
520 RETURN 1320 REM END MONTH
530 1330
S40 REM XX A A kA kA kA AA AR AARA R A KA R AR R AR AR RARARRNRRR 1340 PRINT :'CURRENT BALANCE ' ,RUNBAL
550 REM DAILY PROCEDURE 1350 RETURN
560 1360
570 REM BEGIN DAY 1365 REM *Akkkhkkkkrh kA rhk kA hh Ak kA ke h ke hkk kAR KRRk
580 GOSUB 1500 1370 REM END YEAR
590 1380
600 REM TRANSACTIONS (1,T) 1390 RETURN
610 LET ENDTR = FALSE 1400
620 GOSUB 720 1405 REM ***kkhhkkhkuh Rk hh kR Ak ko kA khk ke Rk Rk k&
630 IF ENDTR = FALSE THEN GOTO 620 1410 REM END DAY
640 1420
650 REM END DAY 1430 RETURN
660 GOSUB 1430 1440
665 RETURN 1445 REM *hkhhhkakk kXA R AN ARk RARA R AR R KAk kR Rk ek NN
670 1450 REM BEGIN YEAR
680 REM KhhkR AR AT AKRR KRR R Ik A AR ARk kA h kAR ARR R A RARK 1460
690 REM TRANSACTIONS PROCEDURE 1470 - ...~ RETURN"
700 1480 "
710 REM CREDIT (0, 1) OR DEBIT (0, 1) 1485 REM *Adkkkrahokehhhkkkkhkk kAR Rk kkhkk ARk A kN
720 IF CDFLAG = DEBIT THEN GOSUB 800 ELSE GOSUB 890%230 REM BEGIN DAY
730 5
740 REM END TRANSACTION 1500 RETURN
750 GOSUB 965
760 RETURN
770

T75 REM **hhdhkkhhhhhk Ak Ak hh A XA KAk AR KAk ok kA KKk
780 REM DEBIT PROCEDURE

790

800 LET RUNBAL = RUNBAL = AMOUNT

810 PRINT :DAY;CHKNUM;DESC1;' * ; AMOUNT; RUNBAL
820 IF DESC2 # ' ' THEN PRINT :SPACES;DESC2

830 PRINT :SPACES

840 RETURN

850

BE0 REM *AhkXAhhhkh Ak Ak bk hk Ak kA ARKARKAKI AR AR KRR AR
870 REM CREDIT PROCEDURE

880

890 LET RUNBAL = RUNBAL + AMOUNT

900 PRINT :DAY' ' ; DESCL; AMOUNT; * ' : RUNBAL
910 PRINT :SPACES

920 RETURN

930

Q40 REM **hXh AR ARAKRARKKAARNR AR AR RR AR AR AR AR A AR AR

950 REM END TRANSACTION
960

23



continued from page 21
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778
780

790
BOO
810

820
830
840
850
860
870
880

890
900
920

IF OLDDAY # DAY THEN LET ENDAT = TRUE
RETURN

REM END OF CHECK FILE DEFAULT SUBROUTINE

LET ENDAY, ENDTR, ENDMO, ENDYR = TRUE
RETURN

REM BEGIN MONTH PROCEDURE

PRINT ON PRINTR: HDR1$
LET RUNBAL = BALANC
PRINT ON PRINTR: RUNBAL
PRINT ON PRINTR: HDR2$
PRINT ON PRINTR: SPACES
RETURN

REM END MONTH PROCEDURE

PRINT ON PRINTR: RUNBAL
RETURN

The program is finished with the BEGIN
PROGRAM and the END PROGRAM sub-
routines, which arc not developed here,
and the replacing of the untagged GOSUBs
coded before. The modules for which a
GOSUB was generated should probably
remain a part of the program cven though
they contain no code. They make main-
tenance much easier. The entire working
program with formatting and other embel-
lishments appears in listing 1.

Conclusion

The art of programming has become
a process which can be taught to anyonc
who needs to use it, which is something
that we have not been able to accomplish
until very recently. Admittedly, the tech-
nique for developing programs presented
here is sometimes tedious and not very
creative, but it will get the job done. In the
personal computer field a lot of enthusiasts
probably enjoy programming on the fly
and spending all night debugging. But
for those who don’t, including myself,
and who aren’t satisfied with just running
someone clse’s canned programs, there is
an alternative. As the pioneer in this
methodology, Jean-Dominique Warnier, puts
it: “If you don't have time to do it right,
do you have time to do it over?” Real-
istically, one cannot say that this method-
ology is the ultimate in software process

design or that it is completely right. It is
not. Something is sure to come along in the
future that is better. But, for now, it is
certainly a large step in the right direction.a

Onice | finished reading about the ease
with which Warnier-Orr diagrams could
be used | decided to take a sample flowchart
and convert it into the Warnier-Orr form to
see how much of a difference there actually
was. | happened to be working on an article
by Geoffrey Guss (entitled ‘Starfleet”)
which contained a large number of flow-
charts. Choosing one at random | converted
it. Figure 2 is the original flowchart. Fig-
ure 3 is the converted diagram. | think
the Warnier-Orr form is much easier to read
and understand.

When designing with flowcharts it is
sometimes difficult not to cross lines or
have u great deal of redundancy in the pro-
gram which makes it difficult to follow.
All the arrows going dcross the paper are
very distracting and hard to follow. The
Warnier-Orr diagram does not have this
disturbing problem. It is very easy to fol-
low the program through the various
subroutines.

The Warnier-Orr diagram lends itself
to structured program writing. If you con-
sider euch of the separate brackets another
subroutine it is very easy to write the pro-
gram just as it stands from top to bottom.
When we use conventional flowchart tech-
niques we end up leaping about the program
to perform statements that are at various
parts of the same routine. In my opinion
the Warnier-Orr diagram is a quantum leap
in the direction of aid for structured pro-
gram designers.

Ray Cote
Editor
BYTE Publications




Warnier-Orr Diagrams:

GT Wedemeyer

The article “Structured Program Delsign”
in the October 1977 BYTE, page 146, has
certainly simplified my thinking. However,
the use of the symbol seems to violate
a rule implicit in the Warnier-Orr diagram
that one need not and in fact must not go
up in a list contained within a bracket of a
given order. The @ symbol requires
checking up and down the list of case
statements. | believe that what is meant
is illustrated in figure 1. In this example
CASE } is equivalent to ROLL = “).”
This manner of diagramming clarifies the
relationship between statements having
alternatives and statements not having
alternatives. It also eliminates the need for
the instruction SKIP, since the finding of
no more items in a list of a given order is
the equivalent of an instruction to return
to the proper place in the list of the next
lower order, where the order of a list is
its position from left to right as shown
in figure 2.

| would like to define the instruction
RETURN to mean “‘in the list of next lower
order than the list in which this instruction
is found, complete the step immediately
following the lowest completed step.”
Although this instruction seems implicit,
as | indicated above, | would prefer that
it be explicitly stated, and | think it would
make the diagrams more easily followed.

Dave Higgins replies:

it appears from your letter that you are
very interested in using the Warnier-Orr
diagramming techniques. | think you will be
pleased with the results.

I'd like to comment on the suggestions
you made for improving the diagrams.
Unlike flowcharts, which have become quite
rigid and inflexible in form, the Warnier-
Orr diagrams are still in a relative infancy,
and do still change occasionally. We here at
Langston, Kitch have made some minor
modifications to the diagrams in the last
year in order to add some capabilities that
were previously vague or nonexistent.
We are continually evaluating the diagrams,
looking for shortcomings or ambiguities,
and therefore welcome suggestions along
these lines. It is in this light that | considered
your suggestions for revising some of the
notation.

1
page 9 of this edition.

Some Further Thoughts

Figure 1.
BEGIN TURN
(= ROLL DIE)
DETERMINE “J” PICK RANDOM “J"* BETWEEN
ONE AND SIX
CHOOSE CASE " {CASE 1
{CASE 2
{cases
{CAS'E 6
(RETURN)
Figure 2.
ORDER 1 ORDER 2 ORDER3 ..... ORDER n

First of all, with respect to your ideas
concerning the representational form of a
CASE statement: | think your objection
to the use of the (3) symbol stems from the
fact that there are two primary ways to
actually code a CASE structure. One way is
with the use of a “computed GOTO or
GOSUB.” The diagram you show is ideally
suited for translation into a computed
GOTO, which would look something like
listing 1. But | don’t think this is a worth-
while change to make to the basic form
of the diagrams themselves. The reason is
this: although your method works fine for
CASE statements that lend themselves to
computed GOTO’s, there are a whole host
of other CASE statements where the use of
a computed GOTO is an extreme inconven-
ience. Take, for example, the CASE of
figure 3. It would be inconvenient to have to
rig up a computed GOTO to execute this
CASE. It is much simpler to code it using
a “nested IF”’ statement, which is the other

25
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Figure 3.

NN

Listing 1.

Listing 2.

DAY=(3/'I1O)NDAY {/\/VV\

®

DAY = TUESDAY { 2000
(0,1)

®

DAY=V\(IEDNESDAY { AV
0,1)

300 REM CASE STATEMENT

310 REM DETERMINE CASE "J"

320 LET J=INT(RND{0)*6+1)

330 ON J GOTO 340,380,420,460,500,540
340 REM CASE 1

350 .
case 1 process

370 GOTO 570

380 REM  CASE 2
290 i
case 2 process
410 GOTO 570

cases 3-6 as above

570 REM END CASE

300 REM CASE STATEMENT
310 IF D$-“MONDAY" THEN 330 ELSE IF D$="TUESDAY’ THEN 360
ELSE IF D$="WEDNESDAY" THEN 400

320 GOTO 440

330 REM CASE 1: DAY = MONDAY

monday process

350 GOTO 440

360 REM CASE 2: DAY = TUESDAY

tuesday process

390 REM CASE 3: DAY = WEDNESDAY

wednesday process

440 REM END CASE

Listing 3.

300 REM CASE STATEMENT

310 {F D$="MONDAY" THEN 350
320 IF D$="TUESDAY" THEN 400
330 IF D$="WEDNESDAY"” THEN 480
340 GOTO 500

350 REM CASE 1: DAY = MONDAY

monday process

390 GOTO 500
400 REM CASE 2: DAY = TUESDAY

tuesday process

440 GOTO 500
450 REM CASE 3: DAY = WEDNESDAY

wednesday process

500 REM END CASE

popular way to code CASE statements. In
pseudocode, this CASE is:

IF DAY = MONDAY

THEN MONDAY-ROUTINE
ELSE IF DAY = TUESDAY

THEN TUESDAY-ROUTINE
ELSE IF DAY = WEDNESDAY

THEN WEDNESDAY-ROUTINE

You can see the natural one-to-one corre-
spondence between the Warnier-Orr diagram
and the pseudo-code. This is easily trans-
fated to code in listing 2. Listing 3 shows an
alternative for those BASICs without the
nested |F capability. This is the preferred
method for coding a case statement because
this method will work for a//f CASE state-
ments, regardless of whether or not the
CASE is suited for a computed GOTO.
Also, with the computed GOTO, you must
be sure that your )’ is restricted to the
proper range. This is not to say thai you
can never use the computed GOTO; just
be sure that its use is justified and then
be very careful. Personally, | feel it is more
trouble than it is worth,

As for the elimination of the brackets
with “SKIP” in them: | don’t believe that
you really want to do this. For instance, in
the BUG game published in the October
1977 BYTE2, no action is taken when a
player rolls a “BODY” on the dice but
already has a body. This bracket is filled
with the notation “SKIP,” which indicates
that, although the bracket is an essential
part of the logic of the diagram, nothing
is to be done there. However, in future
versions of the game, you might just decide
to tell the player that “YOU ALREADY
HAVE A BODY” when that condition
occurs. If the original diagram is left with
the empty brackets intact, you have a
fixed and ready place to put that PRINT
command. The design is very easy to change
and the documentation for the new program
is only a matter of erasing one line and
replacing it with another.

Also, | don't believe that we need to add
the (RETURN) command at the end of the
brackets as you suggest. As you state, the
return to the next highest level in the
diagram is already implied at the end of each
bracket: therefore adding (RETURN) on
each bracket would amount to a lot of
“pusywork,” which would clutter up
the diagrams with a lot of unnecessary
information.

Again, I’d like to thank you for your
suggestions and extend an invitation for all
the readers of BYTE to submit their sug-
gestions for improvement of the Warnier-
Orr diagrams to either Langston, Kitch and
Associates or to me for examination, 8

2
page 9 of this edition.



An Outline Method For

Program Design

Since | am dedicated to being human, |
always try to maximize the returns of an
effort while minimizing the effort (a more
technical way of saying “Getting the mostest
for the leastest'’). Therefore, when | read the
article by David A Higgins on the Warnier-
Orr diagram techniques!, I thought “AHA!”
(or something like that). This is it! The
method | now use requires thought, logic
and care to get good results. Perhaps the
Warnier-Orr method is easier.

1 carefully, logically, and thoughtfully
constructed a Warnier-Orr diagram of a
program. It worked. | then carelessly,
illogically, and unthinkingly constructed
a Warnier-Orr diagram of a program. It not
only bombed, it hung the computer up.

The conclusion is, therefore, obvious. If
| already have a method that works every
time | use it and I'm familiar with it, why
change? Well, so much for the obvious. If
it’s better, change.

| studied the Warnier-Orr diagram that
Mr Higgins included in his article to deter-
mine if it was better than my method or if
it had something more to offer (I carefully
laid aside most of my prejudices), when
low and behold, the two methods are the
same; only the form is different. Let me
sneak in an advantage of my method. It
can be stuck in the program as a remark.

| did just that in my version of BUG.
You can see that my version (listing 1) of
the Warnier-Orr method is in the form of a
simple block outline similar to the type
forgotten from school. It simply outlines
in logical sequence what you want done.
Whenever a question needs to be answered,
a substatement is generated until all the
questions are answered. If nothing happens,
simply continue on (just like life).

Try either the Warnier-Orr method or
this method. They both work and all you
have to lose are ulcers, sleepless nights. . .

! page 9 of this edition

Jerry Goff

Listing 1: FORTRAN version of BUG program using logical diagramming
comments. The entire logic of the program is inserted at the start for docu-

mentation purposes. This way you are never further from the documentation

than a program listing.

ernt
2002
aend
wmea
nens
pne
anaz
(Ll koY ]
naR9
vate
anLt
®a12
@213
fnga
no1s
0016
3%
ee18
ret9
ro20
pe21
ae2e
nees3
pe24
028
wpae
an2r
en28
oe29
an3g
endt
end2
033
2234
eu3s
en36
0837
ead8
939
(4414
0041
fnaz
2043
np4a
0045
0046
eoa4y
Poas
0049
apse
0951
nes2
an53
o054
[L:EL]
ness
ees5?
wass
ees9
weoea
oesl
FRE2
[l ]
on64
nassd
AAE66
ane7
[ d-1.]
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PROGRAM BUG
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% B) INITIALIZE PARAMETERS

¢ C) SET COUNTER FOR COMPUTERS TURN
« [*) ROLL NIE
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kP 21MX COMPUTER
RUG ROWS=w18BODY
BUG COLUMNSewwisCOMPUTER
WIN{1)SCOMPUTER

DIEwy?
YES GIVE A BODY
DIER2?
YES
HAVE A BoDY?
YES GIVE A NECK
DIEs3?
YES
HMAVE A NECK?
YES GIVE A MEAD
N1Ee4?
YES
HAVE A HEAD?
YES
FEWER THAN 2 ANTENNAE?
YES GIVE 1 ANTENNA
DIEss?
YES
MAVE A BODY?
YES GIVE A TAIL
DIE=&?
YES
HAVE A BODY?
YES
FEWER THAN 8 LEGS?
YES GIVE t LEG
ARE THERE 6 LEGS FOR THIS PLAYER?
Y

ES
ARE THERE 2 ANTENNAE?
YES
IS THERE 1 TAIL?
YES SAVE THIS PLAYER AS A NINNER
HAVE BOTH PLAYERS HAD THEIR TURN?
NO SET COUNTER FOR PLAYERS TURN & CONTINUE AT D
I8 THERE A WINNER?
NO CONTINUE AT €
YES  PRINT TME SCORES
I8 THE COMPUTER THE WINNER?
YES  PRINT THE COMPUTER WINS
NO PRINT THE PLAYER WINS
ARE THEY BOTH WINNERS?
YES PRINT 1T'8 A DRAW
PLAY AGAIN?
YES  CONTINUE AT B
NO END PROGRAM

JERRY €, GOFF
2aMNECK 3I8MEAD 4RANTENNA
28PLAYER

WIN(2)BPLAYER

LAAA SRR AR AR A L AR R i sl d Rl ddeddtitltllstilg )

DIMENSION BUG(8,2),WIN(2),ITIME(S),IYEAR(Y)
DATA L,M,INTEG,REAL /181,668,328,325,3/

S8TAIL 6aLEGS

L A N B N B N N R N AN R ENEEINS NN RN ENEREIJNZEEIWNENEDEIENENES ISR
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L]
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Listing 1, continued:

HweRe g 00 3 1oy,2
re7e DO 2 J=1,6
fe7y RUG(J,I)un
ounr2 WIN{Y)op
9ers 2 CONTINUE
(A} CONTINUE
*e78 €
narzée € LA T T T 2 ] 8]
aar7 € « CALL THE TIME FROM THE COMPUTER &
ne78 C LA AR AL L LT L L L L R R R R R R R
en79 ¢
080 ICODEsYY
ARy CALL EXECCICODE,ITIME,IYEAR)
oes2 XaFLOAT(ITIME(1))
aeRry3 X8X/100.9
eesd €
apas ¢ L R e T Y L Lt
fe86 C & START THE GAME, COMPUTER 1SY @

E a7 € L T L R Y S R L ]

2 (421
n989 6 PO 107 Key,2
eger €
orgy € LI 2 R T T T 1Y
wog2 € ¢ ROLL THE DIE »
@093 ¢ NCHCHUPHAHOA GO AY
ae94 €
7ness 7 IXTINT (MeREAL)
ness TRANDEMOD(MuIXeL, INTEG)
wnoy X8 (FLOAT(IRAND) 0, 5) /REAL
wees NaINT (1%, QeX)
noos IF (N,CT.8.0R,N,LT,13 6870 7
alae €

5 #ier C LA A AR L AL R L T R R R L R T
= a1pe € w GO TO THE ACDRESS CALLED BY THE DIE Ll

Pe3 C L L e e T LR ey
#viers €
21035 GO TO (1@,20,37,40,50,60),N
ai1ne 1@ BUG(1,K) 8y
a1e7 GO0 7@
ein8 20 IF (BUG(1,K),EQ,1) BUG(2,K)sy
13143 GOTO 70
2110 30 IF (BUG(2,K),EQ.1) BUG(3,K)m}
nitt GOTO 7o
vit2 4@ IF (BUG(3,K) oER,1,ANDBUGC4,K) ,LT,2) BUG(4,K)BBUG(4,K) el
?113 GOTD 7
f114 5@ IF (BUG(Y,K) EQ.1) BUG(5,K)s)

: P18 GOTD 7@

5 7116 60 IF(BUG(1,K) ,EQ,1,AND,BUG(B,K) ,LT,8) BUG(E,K)BBUG (B, K)o}

. f117 C
®§18 ¢ L T T e R R A LT
119 € o CHECK IF THERE 1S A WINNER @
2122 € AR A AL L R L L L]
P12y C
6122 70 IF(BUG(G,K),ED.?.AND,BUG(S,K),EQ.!.AND,BUG(G.K).EQ,G] HIN(K) B
@123 1ae CONTINUE
2124 €
@125 C R L T R L L
n1e6 € ¢ JUST SOME FORMAY STATEMENTS &
8127 € LA LA e T E T e T L 3 L]
f1es €
w29 78 FORMAY (/,"COMPUTER HAS &")
7130 BOA FORMAT (" PLAYER HAS &%)
13t 88 FORMAY f!2-2xn"BDDVr"r1212Xv"HEADl”rIEDQXO"NECKDN'
n132 62,2, "ANTENNA, ", 12,2X,"TAIL,",12,2X," "LEGSY)
2133 €
#1334 € LA L L L LRIy
wisds ¢C % CHECK FOR A WINNER AFTER BOTH HAVE PLAYED -]
A136 € LA L L L L e
2137 €
138 IF (WIt(1)oEQ,B8.AND,wIN(2).EQ,B) GOTOD 6
7isg €
140 € LA T L T L L L L L L T e
P14y C ¢ IF THERE I8 A WINNER, WRITE THE SCORES AND HHO HON ]
o142 € LAl L L L L L L LR
p143 C
ALaa HRITE (i8,75)
ny45 WRITE (18,85) BUG(1,1),8UG(2,1),BUB(3,1),BUGB(4,15,BUG(S5,15,BUB(B,1)
@346 WRITE(1®,80)
0147 WRITF (103,88) BUG(1,2),RUG(R,2),BUG(3,2),BUG(4,2),BUG(5,2),BUG(6,2)
ngé8 IF (WIN(1),EQ,1) WRITE(10,110)
2148 10 FORMAT (" DUE YO INCREDIBLE SKILL, I WIN®)
PL80 IF (WIN(2) ,EQ,1) WRITE(10,128)
@181 120 FORMAT (¥ WITH ALL YOUR LUCK, YOU MANABED TO WINW)
B182 IF (WINC1).EQ.1,AND WINC2),EQ,1) WRITE(16,130)
@153 13@ FORMAT (" BUT IT'S A& DRAW ANYHOKM,/)
2154 WRITE (1@,140)
7”185 €
7156 € LA L L LA T AL LTy L L T e L R L L
@157 € ¢ PROGRAM EXIT (THIS IS HANDY POR STOPPING THE PROGRAM) L]
2158 € LA AL LR AL L L T L T L T P TP T T T P T Py
2189 €
®160 140 FORMAT (" WANT TO PLAY AGAIN? §0YES, 28N3 L1)]
9161 READ(1G,%) ANS
B162 IF (ANS,EQy1) GOTOD 1§
6163 END a

28



Common Mistakes

Using Warnier-Orr Diagrams

In my opinion, one of the best program
and system design methods is the Warnier-
Orr structured systems design approach,
which | described previously (*“‘Structured
Program Design,” page 146,! October 1977
BYTE; “Structured Programming with
Warnier-Orr Diagrams,” page 104,2 Decem-
ber 1977 and page 122, January 1978
BYTE). This article is being presented be-
cause of the interest expressed in this sub-
ject, and because a lot of people will be
trying these techniques for the first time.
Newcomers to this methodology often have
many questions about their work, and want
to know whether or not what they are doing
is correct. The purpose of this article is to
outline a few of the more common mistakes
that beginners make when using this tech-
nique.

Philosophical Errors

Many first time users of the Warnier-Orr
diagrams tend to make mistakes which are so
similar that they are worth examining. The
biggest and most common mistakes tend to
be a direct result of what we can call philo-
sophical errors; not really a misuse of the
techniques so much as a misunderstanding of
the techniques. The most common error
stems from the fact that many computer
programmers tend to be obsessed with the
desire to write some kind of code at the very
beginning of the design process. This prob-
lem usually manifests itself in any or all of
the following three ways:

® Trying to code the program while

designing it (called the design-a-little,
code-a-little approach).

® Relying too heavily on language

restrictions and considerations while
doing logical design.

® Skipping the design phase altogether

because:
a) the program is “'too easy” or
b) the programmer is “‘too smart.”

Any of the above practices will destroy

1pagr:* 9 of this edition
page 14 of this edition
page 19 of this edition

David A Higgins

Editorial Note. ..

Since publishing David Higgins’ first two articles on Warnier-Orr diagram-
ming techniques, we have received a number of letters from people expressing
the message (paraphrased) “if 1 have this or that self-documenting structured
programming language, why should I use Warnier-Orr techniques? After all, if
a program in my language is logically equivalent to the Warnier-Orr structure,
and it is directly executable, | see no need for an extra layer of documen-
tation.”

A very real answer to this objection is that it is correct. There is no point
to using Warnier-Orr techniques if you properly use a language such as
PASCAL which, having structured programming constructs built in, allows
long descriptive names for variables and procedures, and as a result can sup-
port self-documenting code.

But most currently used languages in personal computifig do not easily
support self-documenting code and modern concepts of structured program-
ming. The usefulness of the Warnier-Orr methodology is that it provides a
disciplined way of imposing such structure on a language such as BASIC,
FORTRAN or assembly language. In effect, the Warnier-Orr discipline is a
programming language which is intended for hand translation into one of the
existing unstructured languages. . . Carl Helmers, Editorial Director

BYTE Publications

most if not all of the effectiveness of the
Warnier-Orr methodology [or any other
structured programming methodology for
that matter. . . CHJ. It will certainly cause
you to waste a great deal of time.

If you try to use the first technique, the
design-a-little, code-a-little approach, you
will probably be in for quite a bit of erasing
or retyping when you have to change the
design because you coded yourself into a
corner that you can't design your way out
of. Your program will tend to be twice as
long as it should have been and half as
efficient. You will probably be in for a lot of
debugging runs while trying to put back into
the code everything that you left out when
you changed the design. As you can see, this
technique just naturally generates problems.

The second technique described above is
a common mistake that veteran program-
mers almost always seem to make: relying
too heavily on the program language they
will be using while doing the program design.
Consider the two examples of program
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(a)

1000

H1 > 400
(0,1}

®

H1 > 40.0
(0,1}

Vi=
(H1-40.0)
*{S1*1.5)

{v1 0.0

b HOURS SET OVERTIME PAY =
(t) VY(‘,"?)KE”‘"’ {HOURS WORKED OVER 40) TIMES
- {SALARY AT TIME AND ONE-HALF)
COMPUTE OVERTIME PAY @

FOURS WORKED > 40

0,1)

{SET OVERTIME PAY = ZERO

Figure 1: DOs and DON'Ts of Warnier-Orr diagramming. Figure 1a looks like actual program
code and should not be used when trying to logically design a program. Figure 1b shows the
correct method. The entire diagram contains only logical statements which could be coded

into any computer language.

30

designs shown in figure 1. Both figures 1a and
1b are diagrams of the same process: compu-
tation of overtime wages. The diagram in
figure 1a however seems to be the type that
veteran programmers will almost always try
to draw. Note its heavy stress on the lan-
guage aspect of the function. It almost looks
like part of a BASIC program cut out and
pasted on a diagram. Contrast that diagram
with the one of figure 1b which correctly
details the logical process being performed.
You can see that if figure 1a was the only
documentation for this particular procedure,
you would probably not be able to tell what
that piece of code was supposed to be doing.
You might have some idea because this pro-
gram seems to have semimeaningful field
names from which you might deduce some
purpose. All we can teli for sure from
figure 1a is that some part of the program is
going to crunch acouple of numbers. What
numbers it is going to crunch and just what
for are anvone’s guess. On the other hand, it
is impossible to misunderstand what the
process diagrammed in figure 1b is doing. It
is very easy to read and comprehend because
it shows the logical side of the procedure.

This stress of the logical over the physical
while designing with the Warnier-Orr dia-
grams is essential to their correct usage.
Designing as in figure 1a serves absolutely no
purpose as far as understanding the process
that is being described and is essentially
worthless as far as documentation is con-
cerned. Even though you might be able to
tell what that diagram does the day you
draw it, you probably won't be able to
understand it in six months. Someone else
who wants to use your documentation might
never understand it.

As long as we’re on the subject of docu-

Productivity
>

Time

Figure 2: Typical productivity curve of
programmer being introduced to Warnier-
Orr diagram methodology.

mentation, | might mention that through the
development period of this technique, many
people were concerned that the diagrams
might become too far removed from the
actual code, which would render them use-
less as effective documentation. They wor-
ried that since the diagrams depicted the
logical side of the problem, they had little or
no relevance to the physical (real world)
side. Those fears were easily put aside with
two diagramming and coding conventions,
as follows:

@ Physical mileposts on the Warnier-Orr
diagrams.

@ logical symbol tables in the programs.

Thus, when we actually wrote code that

{ooked like that of figure 1a, we would tie it

to the logical figure 1b by adding the follow-
ing to the diagram.

:STMT# 1000

COMPUTE OVERTIME PAY



This would be included in the program itself
by using comment statements:

1000 REM COMPUTE OVERTIME PAY

1001 REM HFLD = HOURS WORKED

1002 REM OVTFLD = OVERTIME PAY
SALFLD =SALARY

1003 REM

This allows us to have a very clear and
concise, one to one mapping between the
logical diagram and the physical code. Refer-
ences between the two diagrams are quite
easy. If, for instance, you want to know
what a particular section of code is supposed
to be doing, you need only to look it up on
the logical diagram. Similarly, if you want to
find out which part of the program is
carrying out a particular logical function,
you have the location information at your
fingertips. This is excellent documentation
in the event that you or someone else might
someday want to make a modification to
your code.

The third common philosophical error,
that of skipping the design phase altogether,
is a real problem to most newcomers. In
fact, if you look at a typical productivity
curve for a programmer who is introduced to
the Warnier-Orr diagrams, it generally looks
something like the curve in figure 2.

A currently productive programmer pro-
ducing work at a constant rate up until the
time the Warnier-Orr techniques are intro-
duced (point A), will typically show an ini-
tial burst of very high productivity (point B).
This is usually followed by a slump (point C)
where the programmer sinks back to or just
above his previous level of work. Eventually,
he will climb back up to a new, higher level
of work (point D), where he will usually stay.
This peculiar slump at point C seems to be
primarily due to the fact that since the pro-
grammer has begun to feel comfortable with
the new technique and has had some initial
success with it, he begins to feel confident
enough to try to do the work without doing
the diagrams first. He soon realizes that the
quality of his work has dropped off and
starts to do the diagrams once again, this
time for good, and his work level rises up to
a new, higher level that will remain fairly
constant.

Apparently, the only way to get new
people to avoid this temptation is to fore-
warn them that it does tend to happen, so
that if and when they find themselves on the
downhill side of the productivity curve, they
can recognize the trap in time to escape the
worst of it.

(PRODUCT CODE=A

’

®

DETERMINE UNIT | PRODUCT CODE=8B
PRICE < (0,1)

®

PRODUCT CODE=C
(0,1)

END PRICE

.

UNIT PRICE IS IN
PRICE FIELD #1

GO TO END PRICE

UNIT PRICE = $7.00
GO TO END PRICE

{GO TO COMPUTE MARKE1

PRICE

Figure 3: Example case statements making use of logically illegal GOTO state-
ments. When a set of statements is finished the diagram will logically fall
through all of the other exclusive ORs, ®, and arrive at the END PRICE

section. Thus no GOTO need be shown.

So much for the philosophical errors.
There are also a few common technicaj
errors that people make, and we'll look at
those next.

Technical Errors

For a lot of people who are just starting
to program and may be unfamiliar with
structured programming techniques, some of
the diagramming methods may seem to be a
bit uncomfortable. One of the most often
seen technical errors is the attempted use of
a GOTO statement on the diagram. The case
statement shown in figure 3 illustrates this
problem.

Two of the occurrences of the GOTOs in
figure 3 are incorrect and the other is am-
biguous. The GOTOs in “PRODUCT CODE =
A” and in “PRODUCT CODE = B” are
unnecessary and incorrect. The default
logical linkages will see to it that the appro-
priate steps are executed. The GOTO at
“PRODUCT CODE = C” is unclear. If it is
supposed to mean that we are to cease
execution of this process and jump to the
procedure “COMPUTE MARKET PRICE”
to begin processing, then its usage is incor-
rect. If on the other hand it means that
“COMPUTE MARKET PRICE” is a com-
mon utility routine and is described else-
where in the system, then the GOTO is
misleading. Instead, we should have written:

0,1}

...SEE PAGE #3,

PRODUCT CODE=C {COMPUTE MARKET PRICE

if the process was expanded on a different
page of the diagram; or something like the
words *...SEE ABOVE” or *“...SEE
BELOW?” if that process appears elsewhere
on the same page. The GOTO is a physical
entity to be used at execution and is not a
logical relationship, so it does not belong on
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Figure 4: Example of a case statement with
processes that are mutually exclusive and
mutually independent.

-
MONDAY
(0,1

®

TUESDAY,
(0,1)
SELECT DAY OF J @

THE WEEK
FRIDAY
0,1)
OTHER
K (0,1)

Figure 5: When a case statement has mutually ina’ependent and mutually

ovirdiroliin ctatnmanmte thn o Lo 1y A, 1 Fry
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out changing the logic of the diagram.

SELECT DAY OF
THE WEEK

any ordor w Ptla
Gor WiIisd

(0,1}

®

TUESDAY{
J {0,1)
®

MONDAY{
(0,1)
®
FRIDAY

L 01 {

-
MONDAY, TUESDAY OR FRIDAY {

Figure 6: Although this is a working Warnier-Orr diagram, the case statements

are not mutually independent.

.

-
PLAYER F(i(/)\?)NO BODY {SKIP

®

PLAYER HAS NO NECK

ROLL IS A 4" ﬁ
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{SKIP
PLAYER HAS NO HEAD

(0.1) <SKIP
®

PLAYER ALREADY HAS
TWO ANTENNAE {SKIP
{0,1)

®

PLAYER ALREADY HAS {GIVE PLAYER

TWO ANTENNAE AN ANTENNA

IF ‘player has no body’
THEN .
ELSE IF p!ayer has no neck’
THEN .

ELSE iF player has no head’
THEN .

ELSE IF ’player has two antennag’
THEN ...

ELSE ‘give player one antenna’

Listing 1: Typical if-then-else structure for
Warnier-Orr diagram of figure 6.

alogical Warnier-Orr diagram.

Another common technical mistake is
one that is a little harder to catch, and is one
that even professionals with this technique
will make if they aren’t careful. Consider the
case statement shown in figure 4.

Note that in this case statement, not only
are the processes outlined mutually exclusive
(only one of the cases is true), but they are
also mutually independent.
order within the case statement does not
matter. It would be just as correct for
me to have written the diagram as shown in
figure 5.

In an earlier article “Structured Program
Design” (Oct 77 BYTE)*#, the game of BUG
was outlined. In the game, a die is rolled for
each player and each number of the die
corresponds to a part of the bug’s body; the
player finishing his bug first wins the game.
If aplayerrolls a 4 for instance, he is entitled
to one antenna. But he must have already
acquired a body, a neck and a head in that
order before he can receive an antenna. He
needs a total of two antennae if he is to
complete a bug.

Many people would try to code that proc-
ess as a case statement as in figure 6. The
process in figure 6 certainly looks correct,
and indeed, if you code it as a case state-
ment, as in listing 1, it will even run correctly.

However, this process is not a case state-
ment. It is more properly called a pseudo-
case statement, because each of its cases is
mutually dependent. The cases cannot be
reordered within the statement without
destroying its logic. Notice that rearrange-
ment of the case statement diagram as
shown in figure 7 does not work at all. This
arrangement will give the player an antenna
anytime a four is rolled, until he has two
antennae, regardless of whether or not he
already has a body, a neck or a head. A more
correct logical interpretation of the case
structure we want is shown in figure 8.

You might also notice that since the bug
must have a body before it can have a neck
(and a neck before it can have a head) if we
merely check for the presence of the head,
we will be indirectly checking for the neck
and the body, so that figure 9 is an equivalent

Thoae e et
EriagL 13, LIt

a
page 9 of this edition



structure.

Another common technical error is the
misuse or lack of use of the (0,1) notation in
conjunction with the exclusive OR, ®. Many
times, people will simply write:

CONDITION A {

®

CONDITION B {

TEST

By this they often imply the (0,1) notation
with the use of the symbol @ alone. Actually,
this is not incorrect; in fact, for most people
familiar with the diagrams, this notation
seems to be just as clear. But for users not
quite familiar with the Warnier-Orr diagrams
it is probably best to go ahead and include
the (0,1).

To conclude, I'lf reiterate a point made in
an earlier article: Understanding a Warnier-
Orr diagram is very easy; creating one from
scratch is much harder than it looks.®

f'
PLAYER HAS 2 ANTENNAE

GIVE PLAYER
(0,1) AN ANTENNA
PLAYER H(/)-\?)NO HEAD {SK'P
ROLLISA“4" { PLAYER F(ié\?,NO BODY {SKIP

PLAYER HO/'x1s)No NECK <SK|P

®

PLAYER HAS 2 ANTENNAE

SKIP
L (0,1)

Figure 7: When the statements in figure 6 are rearranged as shown, it can be

seen that the program fails to work as desired.

Figure 8: This method of
approaching the stated
“bug” problem is more
logically correct than that
of figure 6. All of the
statements at each level of
the diagram are mutually
exclusive and mutually
independent.

ROLL IS A 14" 4

ROLLISA 4" 4

PLAYER HAS A BODY _4
(0.1}

O]

PLAYER HAS A BODY
(0,1}

PLAYER HAS 2
ANTENNAE
0.1

©

PLAYER HAS A HEAD <
0.1

PLAYER HAS A NECK <
0.1)

ANTENNAE
(0,1}

O

L
O]

PLAYER HAS A HEAD { SKIP
(0.1)

-

PLAYER(S;:?A NECK { SKIP

-

{ SKIP

PLAYER HAS A HEAD

(0,1) {SK'P

N

PLAYER HAS 2

{

{

SKiP

GIVE PLAYER
AN ANTENNAE

- PLAYER HAS 2
PLAYER(%?A HEAD ANTENNAE {SKIP
‘ (0,1)
@ PLAYERHAS2 [ GIVE PLAYER
ANTENNAE AN
0,1) ANTENNAE

Figure 9: Since a bug must have a head in order to have an antennae, and a body and neck to
have a head, the search process can be shortened by just checking for the presence of a head.
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Programming

Albert D Hearn

if you have don me programming
you know that it's one of the most en-
joyable and satisfying parts of personal
computer use. The very thought that the
vast power in the small system’s processor
is limited only by the program that you
write for it is tremendously exciting.

If you are new to the computer game,
the programs you have written up to now
have probably been relatively small and
uncomplicated, but you have developed
a lot of experience and confidence from
them. Most likely you haven’t used any
particular technique in designing and writ-
ing your programs: you have probably
approached program design in an informal
way and relied upon your good senses to
guide you in this unfamiliar task. You have
probably also gained an understanding of
the full capabilities of the instruction set
and some of the little tricks (yes, ADDing
a binary number to itself really does result
in a left shift of one bit) which can be so
useful. You are also capable of writing 10
routines to do about any kind of data
transfer you want.

So now you are ready to do a program
which does something really useful. The
program you have in mind is going to be
larger and more complicated than those
you have done previously. While you might
not expect this, your previous informal
methods of designing and coding might
possibly be inadequate and could cause
you much grief if you attempt to use them
on a larger program.

Hopefully, | can help you prevent these
kinds of difficulties by showing you in this
article an easy to use method of designing
and structuring larger programs which can
greatly simplify your personal efforts,
regardless of complexity.

haun dane come nrg
¢ some P

The Concept

Someone once said, “To solve a complex
problem, simply break it down into a num-
ber of less complex pieces, then proceed to
solve it one piece at a time."” This approach
has been used for many years in the design
and building of electronic equipment. It
results in a “building block,” or “‘modular’
construction, where each block or module
does some distinct part of the total function
of the equipment. For instance, think of the
last time you saw a diagram of a radio re-
ceiver. It was probably in the form of a set
of separate blocks representing the RF
amplifier, mixer, IF amplifier, and so on.
The blocks were all connected with flow
lines showing the sequence in which each
equipment module processed a signal coming
from the antenna, The diagram enabled the
reader to understand the function of the
radio one module at a time, in relation to
the whole radio.

So how does the idea of using building
biocks and solving problems piecemcal
relate to the programming of personal
computers? The answer is that these same
ideas are very applicable to programming
and have been in use in commercial pro-
gramming for a number of years. There is
no reason ihai good use of them can't b¢
made in the amateur computer hobby also.

Top-down Design

Top-down design of microprocessor pro-
grams requires that you first have a clear .
notion about what it is that you want the
program to do. You should ask yourself
questions like, “What function do | want
performed?”, “What input information is
available?”, and “What output information



tevel | (highest)

Figure 1: A basic top-
down design diagram is a
structure like this. The
number of levels may vary,
and the number of boxes
may vary, but the basic

level 2

idea is given by this level 3 {lowest)
prototype.
checkbook implied implied comparison of checkbook
bank stmt inputs balance outputs and bank balances
deposit slips checkbook errors
checks corrections
L
: Figure 2: The first level of
oo yTTTTTTTT K design is the act of saying
e ey - Doy

or action do | expect?”” When you can
answer these questions, you've actually
completed the highest fevel of design.

The basic principle of top-down design
procedure says that you start at a very high
level of function definition and then pro-
gressively expand that function into more
and more detail until you're at a low enough
level to begin coding your program,
Actually, this is a very natural way to
design solutions to any problem, but, for
some reason, this method was very slowly
applied to programming. The top-down
method is different from bottom-up, where
the concern is for coding and details before
a real program design has been done. Bot-
tom-up methods work on the “how’’ aspects
of the program before the ‘“‘what" aspects.
An analogy of this method would be the
building of a house, using no structural
plans, by first laying down a convenient
foundation and then gradually adding
wood and stone until some desirable struc-
ture has evolved.

Let’'s take an example of a function
that could be performed on a microproc-
essor system for the purpose of illustrating
the technique of modular, top-down pro-
gram design. The function, monthly check-
book balancing, was selected because it is
a process that is familiar to most of us and
it contains all of the elements which make it
a good example,

In order to design what you want the
program to do, begin by drawing a multi-
level design diagram like the one shown

in figure 1. The diagram will describe what
the program does at a number of different
levels of detail, starting with the highest
jevel which is a single block describing the
overall function. The next lower level of
blocks breaks the higher level function into
a number of more detailed subfunctions.
The next level takes those blocks and breaks
them into even greater detail, and so on.
An important point to remember is that the
total function of the program is represented
at each level.

Figure 2 illustrates the first steps in the
top-down design of your checkbook balanc-
ing program. The first block simply states
that the program will balance your check-
book. There are no details in that block and
it certainly doesn’t invite coding at this
point in the design. For input, you know
that you will have your checkbook entries,
monthly statement from the bank, deposit
slips and cancelled checks. The output you
want is a comparison of your checkbook
balance (adjusted for recent deposits, ser-
vice charges and outstanding checks) and the
balance shown on the bank statement. You
also want to know where any errors were
made and what corrections are required.

The second level of design, shown in
figure 3, breaks the first level block into
three major subfunctions. Although this sub-
division could have been done differently in
terms of the content of the second level
blocks, the sum total of those functions
always adds up to the entire function of the
program. The idea is that you start the

“l want a program to do
thus and so.” Here “thus
and so "' is defined to mean
checkbook balancing.
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Figure 3: Once the ftirst
level of design has been batance
determined, the next level checkbook
is specified by breaking up
the task into parts which
are  fundamentally inde- ]
pendent of one another. bolance bon
N . . compare ban
Here, checkbook balancing golun?tes checks and ond checkbook
is viewed as three separate €post charges balances
modules of function.
balance
checkbook
match deposits
in checkbook [ ]
against bank
statement balance
l checks and
charges
odjust bank
balance for l [
any late I I r 1 I )
deposits 1 | l
I match cancelled adjust check- adjust bank
checks to check- book balance balance for
match cancelled book entries and for any bank any outstand~
checks to check~- bank statement charges ing checks

book entries and
bank statement

|

adjust check~
book balance
for any bank
charges

|

adjust bank
baiance for
any outstand-
ing checks

compare bank
balance to
checkbook
balance

determine any
differences and
corrgct

mistakes
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lar structure of the ap-
plication is determined in
a hierarchy such as those
exemplified in figures ] to
4, then attention can be
given to sequencing of
functions. This flowchart
shows general level se-
quencing of the checkbook
balancing application.
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Figure 4: Carrying the process one step further, the next level is shown here for one of the

branches of the structure of the programs.

process slowly and don’t attempt to develop
too much detail too soon. Keep the number
of subfunctions small, five or fewer, under
each function block. Don't worry about the
order in which these subfunctions will be
performed in your program. Remember,
you're only concerned at this point about
what is to be done, not how it is to be done.

Next, take the design to the next iower
level by further subdividing each of the
second level blocks. Figure 4 illustrates a
portion of this step. just make sure that
each subblock represents a complete sub-
function and that the subfunctions at any
ievel are equivaient to the program function.

You might ask at this point, “How many
levels must | go through?”, or “How do |
know when to stop?” There is no precise
answer to these questions, although the fol-
lowing guidelines should help. In general,
you will find that you should stop when the
lowest level of functions is so simple that
you can easily write a program module to
do each one. A module should be considered
to have about 50 program instructions, or
fess. Experience will help you to know when
you have reached this point. Also, you will
find that the more complex the program,
the more design levels you will need; general-

ly, about three or four levels will be
sufficient.

Another method of determining if you've
carried the design to a low enough level
comes about almost automatically. If you
are attempting to complete one of the lower
levels and you find that the order of sub-
function execution is becoming difficult to
ignore, then you've probably gone far
enough. Also, if you find that it is becoming
necessary to show that program branching
or decision making is required (top-down de-
sign diagrams should show no decision logic),
then you know that you have about the
right ievel of design. You are now ready to
start  thinking about the how of your
program. )

Modular Construction.

if you try to make each block at the
lowest level of your design diagram into a
module, you might determine that some
blocks are simple and can be combined
into fewer modules. On the other hand,
there will probably be blocks which would
result in modules larger than the minimum
size of 50 instructions we have established.
In this case, take the blocks through one or



more additional levels of design.

Now decide what sequence the functions
should be performed in. Begin drawing a
flowchart showing the required sequence.
Will each function be performed for each
pass through the program? If not, add deci-
sion blocks showing the conditions under
which each such function is executed. Also
add any function blocks which may be
necessary to initialize data, clear tables,
{O data, etc.

Figure 5 shows a sequence of functions
which results from the design of your exam-
ple checkbook balancing program. Actually,
the functions shown are probably too high
level for this step, but for the sake of illustra-
tion, the diagram should make the point.

At this time, | would recommend that
you consider making use of a special pro-
gram structure called an executive routine,
which offers some significant advantages.
The executive is the main routine in the
program and primarily contains calls to
the function modules which do all the
processing duties. It makes all decisions
about the sequence of execution. It also
contains the starting and ending points of
the program. The objective of the executive
is 1o concentrate most of the decision logic
and common function of the program into
a separate routine which becomes another
program module.

In this way, the function modules need
not, and should not, make sequencing deci-
sions. They should never directly pass con-
trol to another function module. This should
be done only through the executive. A func-
tion module’s only responsibility is to be
given control by the executive, do its
assigned job, and then return control back to
the executive. Function modules are written
in the form of subroutines using the call and
return facilities of the programming language
being used. They should also contain a
generous sprinkling of comment statements
to insure a high degree of understandability,
as well as a well-defined 10 interface to the
outside world and the rest of the program.

Figure 6 illustrates the final step in the
modular, top-down design of your check-
book balancing program. You have added an
executive routine and some necessary house-
keeping routines. You could begin coding
the program from this flowchart by first
writing the executive and the associated
subroutine calls for each of the processing
modules. By writing dummy subroutines
which simply return control when they are
called, you can test your executive for cor-
rect operation without the need for the real
processing modules.

The next step, of course, is writing the
processing routines. This is simplified by the
design approach described in this article

executive ! processing details

|
|
[
1
|
r
'
: input and
1 cail format all
; required
| data
! return I
1
I
late : add late
deposits DI : call deposits
P X to bank
‘ i baiance
no i
. { return
|
|
' match cancelled
} call checks to check-
i book and bank
: statement
1]
. return
f
]
Tank { subtract
an i
charges yes ' call charges
F I from
\ checkbook
: return
i
]
out- I subtract
standing N\ Yes ! call checks
checks ' from bank
s ! baiance
no i
2 | return
T
i
; compare
, call bank
! balance to
: checkbook
' return
T
i
! indicate
Tismatch S\ YeS I call amt of mis-
P ; match and
t locate error
no |
» | return
1
t
end

processing
subroutine

modules

Figure 6: While the sequencing of the diagram shown in figure 5 is adequate,
it is often useful to explicitly partition all sequencing of execution in a
separate module called the ‘“executive” for the application. This flowchart
shows a simple example of such an executive program which sequences the

major operations of the application.

because it allows you to work on each routine
as a separate unit which can be written and
tested independently of all other routines in
the program. When all routines are com-
pleted, they simply plug into the executive
to form a total program. Later, if you want
to change the sequence of execution, add or
delete functions, it can be simply a matter of
manipulating modular routines. ®
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Some

Microprocessor  programming, at this
point in time, is a black art. Once you have
learned the basic instruction set, you're on
your own. Some people get the knack of
this mysterious task fairly quickly, and
some do not. Those who do well seem to
have developed some sort of system for
going about it. The point is that an or-
ganized, systematic approach is required
if there is any hope for continued program-
ming success. The purpose of this article
is to describe to you one such method
which has become very popular with pro-
grammers of all types, using all kinds of
computers from micros to the giants.

Concept

What we're looking for is simplicity in
the writing of programs. This is usually
achieved if the program can be reduced
to a collection of basic components which
fit together in very well-defined ways. This
is the concept behind structured program-
ming.

Any program can be considered to have
only two basic building blocks. One is the

‘'ords About Program Structure

Albert D Hearn

process block shown in figure 1. It simply
performs some defined function, or proc-
ess. It might represent a simple function
requiring only a few, maybe only one, in-
structions in the program, or a much larger
function requiring many instructions. What-
ever it does, it has one input and one output.

The second basic block is the decision
block shown in figure 2. This elementary
capability of any computer is that which
gives it all its power and flexibility. It is
the ability to alter the path taken by the
program based upon the value of some
parameter or condition which can be tested
by certain instruction types. For example,
two numbers can be compared and a test for
equality used to decide which of two pro-
gram paths will be taken as a result.

These two fundamental building blocks
will now be used in the construction of a
set of basic program structures with which
any other program can be built. The three
general structures are called sequence, if-
then-else and loop. Variations of these will
be examined, as well as combinations which
can be used to build more complex functions.

Figure 1: The process block is the “black box” of programming: it is entered
by a single input path, does some arbitrary operations upon data, and is
exited by a single output path. The “arbitrary operations” can be as simple
as one step in an arithmetic calculation, or as complex as a compilation ofa
program — it all depends on the point of view taken.

Figure 2: The decision block is a simpler concept than the process block, in
the sense that the amount of computation required rarely approaches the
generality of an “arbitrary process.” A decision block has one input and,
depending upon a binary condition, takes one of two output paths. In this
figure, the names “true,” ‘“then” and ‘yes" denote one possible path; the
names “false,” “else” and “no” describe the other possible path. In pro-
gramming languages, the “then” or “else’’ terminology for the two paths
is frequently built into the language design; the other terms are frequently
seen in flowchart representations of programs.
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Figure 3: The sequence structure is the simplest programming structure.

Default flow: Vertical flow is It can be viewed from the outside as the equivalent of a process block, but
from the top of a diagram toward upon close examination it is found to contain one or more process blocks.

the bottom, and horizontal flow
is from the left of a diagram to-
wards the right, unless explicit
flow Is used. Thus:

Basic Structures
IMPLIED FLOW .
SHOWN BY ARROWS The simplest of the program structures,

shown in figure 3, is the sequence structure,
which is composed of one or more process
blocks strung together serially. Like the
process block from which it is built, the
sequence structure has only one input path
and one output path. In fact, you will soon
see that one of the rules that we want all

Explicit flow: Vertical flow structures to conform to is that they have a
upward, or horizontal flow left- single input path and output path. Further-
ward in a drawing, is shown with more, an entire program, which can be rep-

an explicit arrow at the end of the resented by one large process block, should
flow path, thus: also conform to this rule.

The next structure is the /if-then-else
structure, shown in figure 4. It consists of

@ ———

T o AT e a decision block and two process blocks.
OF OTH WITH w Only one of the process blocks is executed
TO LEFT OR for any single pass through the structure.
M The result of the test or comparison repre-

SINGLE
INPUT ---—» IF-THEN-ELSE
PATH ¢ STRUCTURE
e ——— -
Merged flow: When two or i I
three paths of flow merge the //ﬂ"@z : I ASSUMED FLOW
two or three inputs to the joint éﬁf | : OF EXECUTION
path have arrows noted: e T i i
I FALSE (ELSE, NO) |
| 1
INPUTS INPUT INPUTS
NPUTS | FALSE TRUE |
FROM THE OUTSIDE PROCESS PROCESS |
THIS LOOKS LIKE |
A PROCESS BLOCK | pory Ve I ¢
| PATHS |
oUTPUT OUTPUT QUTPUT L__Jg_'!__ wd o - —— —— — ————— — 4
SINGLE 4
QUTPUT-~= <[>
PATH

Figure 4: The if-then-else structure Is composed of a decision block and two
process blocks. The process blocks may themselves be viewed as any form of
structure with a single input and a single output path, and thus might in fact
be sequence structures, if-then-else structures, etc.
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sented by the decision block determines
which process block is chosen. Notice that
regardless of which path is taken there is
one common exit path from the if-then-else
structure. This is required to maintain our
single exit philosophy.

An if-then-else structure does exactly
what it says: /f a condition is true, then
take a specified action, else take a specified
alternate action. However, there are times
when only one action is required in only
one of the paths. No action is necessary
in the other path. In an actual flow dia-
gram, this is of course shown by drawing
a flow line in place of one or the other
process block of the /if-then-else structure
since the most trivial process is simply
going to the next process without doing
anything. Note however that only one of the
process blocks can be made up of this
simplest case of ‘“do nothing” since if both
process blocks were eliminated from the
if-then-else structure, the net effect would
be to “do nothing” all the time whether
or not the condition was true or false.

The if part of an if-then-else structure is
simply any program instruction which can
perform a test and take one of two paths
depending upon the outcome. In an as-
sembly language, this is usually a condi-
tional jump or a branch instruction based
upon the outcome of some comparison,
arithmetic operation or other operation
which affects processor status flags used in
such branches and jumps. The branching
instruction specifies the destination address
of the beginning of one path, whether it is
the then or the efse leg is arbitrarily defined,
and the next sequential instruction is as-
sumed to begin the opposite path.

Some higher level fanguages like BASIC
have ready-made /f-then-else instructions.
BASIC has IF and THEN; ELSE is implied.
The following shows how an if-then-else
would look in BASIC:

1 IF X=Y THEN 10

------ } FALSE PART

------- } TRUE PART

in this example, the e/se code immediately
follows the IF instruction. The GOTO 15
ends the efse path and causes the program
to branch to the common exit point at
line 15. The then path starts at line 10 and
ends at line 15. [BASIC Is considered to be
an  “unstructured” language because of

the need for an explicit GOTO following
the “false part” of an IF-THEN-ELSE
construction.)

If you use assembly language in your
programming, and your assembler has a
macroinstruction capability, then you can
write your own /if-then-else macros. It is
beyond the scope of this article to describe
how this is done, but it isn’t very difficult.

If you use assembly fanguage and don’t
have facilities for writing macros, then you
can simulate the function of the macro-
assembler in order to gain the advantages
of structured programming. Simply sit
down and write yourself a set of standard
if-then-else structures. Take the five or
six most common decision types (equal,
not equal, zero, greater than, etc) and write
skeleton programs for each. Leave blanks
for the actual condition to be tested, and
leave space for the actual code which will
perform the then and else functions. Later,
when you need an /f-then-else while writing
a program, you can draw upon your set of
prewritten structures. Not only does this
eliminate your having to invent similar pro-
gram sequences over and over again, but it
also prevents many bugs and greatly eases
the effort you have to put into program
writing.

The last basic structure is the /oop,
which provides a means of repeating a se-
quence of instructions until some stop
condition is found to exist. There are two
kinds of loop structures: do-until and
do-while.

A do-until structure, shown in figure 5,
performs the function in the process block
at least once. After that, a test is done to
determine if the condition for stopping the
process looping has been found true. As
long as the condition is not true, the loop-
ing continues. When it becomes true the
looping ends and the exit path is taken.
This type of structure can be used, for

values, looking for a particular value. If you
know that the table will always contain a
matching entry, the program routine need
not be more complicated by logic to detect
end-of-table before a matching value is
found. Notice that the first table entry is
always examined before the decision is made
to continue (this is because the ending
condition decision is based upon the value
of that entry).

The second type of loop is the do-while,
shown in figure 6. The difference between
this and the do-until structure is that the
test is done before the process block is
executed. In many cases there is not a lot
of significance to this difference because
both types of structures can do the same



jobs.

In specific situations you will find that
one form will usually be better suited or
more convenient than the other. The pri-
mary difference to remember is that the
do-until form always executes the process
block at least once whether or not the
until condition is true, and that the do-
while may not execute the process at all if
the while condition is false at the time of
the first test. Experience will best teach
you which to use in the various situations.

A variation of the loop structures of
either form might be considered, the endless
loop or do-forever. This form of loop occurs
when the while or until condition is never
changed to allow execution of the output
path of the structure. Intentional endless
foops are occasionally used, as in the low
level programming trick of hanging up
execution in a tight loop to flag errors,
or the quite legitimate endless loops which
form the outer level of control of a typical
executive or monitor program. But for most
programming purposes, an endless loop is a
bug or error in the program.

An Example

Now using the basic structures, we can
construct a program of any size and com-
plexity by combining and nesting in any
manner as long as some fundamental rules
are adhered to:

@ The program as a process should have
only one input path and one output
path.

® Structures within the program can
be nested but each structure must be
totally contained within the structure
in which it is being nested (this will be
illustrated later).

® There should be no branching unless
it is part of a structure (for example,
the GOTOs required in languages like
BASIC).

@ Refrain from attempting to optimize
the program by violating the above
rules. There is a right time for this
later.

Before we look at an example of struc-
turing a program, let's first look at how
nesting of basic structures works. Figure 7
shows a flowchart of a program which,
overall, could be represented by a single
if-then-else. But when it is looked at in more
detail, the else leg contains another if-then-
else as part of the instruction sequence
there; the efse leg of that structure con-
tains yet another if-then-else. The heavy
outlines show that each of the nested struc-
tures,are totally enclosed by their parent

SINGLE
INPUT —memm Ty )
PATH 4 DO-UNTIL STRUCTURE
———t
‘ —]'
,,,nﬂ% : 1 ASSUMED FLOW
OF EXECUTION
P 1 PROCESS |
e (EXECUTES [
-3 i 110 2
i TIMES) |
FROM THE OUTSIDE | !
TH!S LOOKS LIKE | colrilh(‘)u{T"lLON FALSE !
A PROCESS BLOCK | |
[ |
| |
I S, |
SINGLE
OQUTPUT ===~ v
PATH

Figure 5: The do-until structure is a looping form whose purpose is to exe-
cute a given process block at least once. After executing the process block,
the “until condition” is tested and if found to be false, execution loops back
to repeat the process block before testing the condition again.

structures; there is no overlap. A BASIC-
like program to perform the function shown
in figure 7 appears as listing 1. Again, |
use outlines to illustrate that each structure
is embedded in its entirety within another
higher level structure. Notice that | have
used indentation of lines to increase the
readability of the program. Each separate
structure should be at a different level of
indentation than its parent.

SINGLE i
INPUT ~-o—p
PATH y DO-WHILE STRUCTURE
- 77 1
I N I
Py | | assumED FLOw
~ | | OF EXECUTION
S
I

|
|
PROCESS |
|
|
l

' WHILENG 7
| <conpiTion>IEME f (EXECUTES
FROM THE OUTSIDE 0 To s
THIS LOOKS LIKE |
4 PROCESS BLOCK |
R
SINGLE
QUTPUT == e <L ¢4
PATH

Figure 6: The do-while structure is a looping form whose purpose is to exe-
cute a given process block only if the “while condition” is true. Thus it can
execute the process block zero times if the condition is false initially, or an
arbitrary number of times so long as the condition remains true during re-
peated execution of the process block.
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Listing 1: A BASIC-like
program equivalent for the
flowchart of figure 7. The
lines in the picture em-
phasize the structured pro-
gramming formalism.

¥
SINGLE 1
INPUT  —m= =}
PATH
| |
| |
|
I PROCESS @ |
' :
[ .
| r———T"" 1
| I I
I { A>B ELSE { |-
| l ’ B
: I THEN PROCESS R ! {
: } I
| | r = |
I I | 1
| I | | |
[ | | [
[ [ ! P
! ! ' pnocess s | | | |
i i | ROCESS ! ! !
| | i i
| | ! wﬂ_________l ' '
i | [ I
| | L_...__ ___________ - l
[ : :
|
l I e e e e e e e e e e s s o e e -
[ ) i
i
I 4
SINGLE
QUTPUT-~~ =3
PATH

Figure 7: The various types of structures can be nested by noting that any
place where a process block Is indicated, a more complex structure can be
used since it, too, only has one input path and one output path of execution.
Thus, for example, this flowchart shows nesting of a process Q block and an
if-then-else structure as the else part of the if-then-else structure with condi-
tion X=Y2. This second if-then-else in turn has a third if-then-else as part of
its else part. The outlines show the nesting of one structure within another.

42

10
20
30

31
32

IF X=Y THEN 32
process Q

IF A>B THEN 31

process R

{F C<D THEN 30
process S
CONTINUE

CONTINUE

END




Figure 8: An unstructured
flowchart performs an end-
less process as might be
implemented in an auto-
mobile interlock. This Is a
complete and viable solu-
tion of the problem, but it
involves numerous branch-
ing operations performed
in anuncontrolled (GOTO)

"DO FOREVER" _l

fashion.

SOUND THE
BUZZER

ENDLESS LOOP , I
THIS ACTS LIKE THE PROCESS BLOCK I[N DO-FOREVER
r _________________________________ 7
|
' YES (THEN)
| |
| NO (ELSE) THIS ACTS LIKE FALSE |
| PROCESS BLOCK OF /F-THEN-ELSE |
[ T T T T T e e T T e e e e e e e e e e e 1
| | s
| [ )
' NO {ELSE) |
| |
| YES (THEN) |
l p——— - ——IRUE PROCESS | ____ L FALSE PROCESS |
|
{ I | [
| | I
| i NO (EL SE) I [
| ] | | | THIS 1S TRUE
| | YES (THEN) | YES (THEN) l | F/,?‘?rcfsg/sv -2{55
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Figure 9: Taking the algorithm of figure 8 and casting It into a standardized, structured pro-
gramming form eliminates all GOTO operations in languages with a complete if-then-else
structure, and in languages like BASIC, reduces use of GOTO operations to standardized struc-
tures. In this flowchart, we've positioned all the blocks to emphasize the nesting of structure.
One of the primary reasons for the emphasis on structured programming is one of communica-
tions of ideas to other programmers (or the ariginating programmer at a later date). The claim
Is made that a flowchart like this one, and its equivalent representation In listing 2, provide a
standardized way of communicating algorithms which makes the listing or chart easier to under-

stand and read.
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Listing 2: A BASIC-like
application program for
activating a buzzer of an
automobile given several
conditions. A subroutine
BUZZ js indicated (by a
call with the keyword
GOSUB) to actually sound
a noise during the loop.
In this BASIC-like repre-
sentation, several liberties
with syntax have been
taken.
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Let’s look now at an example of a simple
program and show how a structured version
might differ from an unstructured version.

The program is one which might be part
of a future automobile computer control
system using a microprocessor. lts purpose
is to trigger a buzzer if the ignition key is
left in the lock when the left front door is
opened, or if the headlights are left on
when the key is not in the lock. A delay is
performed before conditions are checked
again.

The flowchart in figure 8 shows how we
might have drawn it without attempting to
apply any of the principles of structured
programming. Now, look at figure 9 which
shows the structured version. Both forms
of the program do the same function, but
the structured form is clearly more straight-
forward and easier to write code from.

Basically, a number of things happened
to the flowchart when it was structured.
First, all the branches {or GOTOQs) became
forward branches except those in loop
structures. This allows for reading the chart
from top to bottom in an orderly way.
Secondly, each decision block and process
block has been put into a proper structure
and nested totally within its parent struc-
ture. Thirdly, every structure regardless
of its place in the overall program has only
one input and one output.

One thing has happened that might ap-
pear to be a little strange to you. The se-
quence structure which performs the buzzer
function appears twice now, where it only
appeared once before. This is necessary in
order to keep the structure clean. Remem-

1 LET X=0

2 | IF KEY #ON THEN 7

3 LET X=X+1

4 IF X=5000 THEN 6

5 GOTO 3

6 GOTO 13

7 | IF KEY=INLOCK THEN 11
8 IF LIGHT #*ON THEN 10
9 GOSUB BUZZ
10 GOTO 13
11 | IF DOOR FOPEN THEN 13
12 GOSUB BUZZ
13 | CONTINUE
14 GOTO 1

ber, you cannot simply branch into the
other buzzer block because those two
structures would then overlap. The inef-
ficiency implied by the double appearance
of that block might bother you, but it will
probably turn out that the block will be
written as a subroutine and the only in-
efficiency will be an extra call instruction.

Listing 2 is a BASIC-like program for the
structured flowchart. (Here “BASIC-like"”
means using the syntax of BASIC but
allowing variable names to be many char-
acters in length for purposes of illustrating
their meaning.) | have not attempted to
make the program complete and have taken
some liberties in order to illustrate my
points.

A few words of explanation are in order.
First, the instructions at lines 3, 4 and 5
represent a do-until structure which is used
to implement a delay by simply increment-
ing a counter (X) until it reaches a large
value. the name BUZZ represents the line
number of a subroutine (not shown) which
activates an electronic buzzer in the car’s
dash.

Now is the time to go back and look at
the program to make it more efficient in
its operation or in the amount of memory
required. This should be done only if it is
absolutely necessary. if it is necessary, try
to maintain the structuring to the extent
that it doesn't destroy the clarity of the
program or increase its complexity. In our
example program, notice that there are
three CONTINUE instructions at lines
13, 14 and 15 leading to a GOTO at line
16. The speed of the routine can be im-
proved and the memory requirements can
be reduced by eliminating the CONTINUEs
and changing any instruction which refer-
ences any of them to go to line 16. Alter-
natively, you could change each of those
references to go directly to line 1 although
you would be seriously interfering with the
intent of structuring.

In conclusion, | invite you to try the
techniques described in this article when you
write your next program. If you have done
it any other way before, it takes a little
getting used to, but | think you will ulti-

+al that it h Iat ffar
mateiy agree inat it nas a ot ¢ oiver.

Hopefully, you will see the benefits in the
form of less time spent getting your pro-
gram designed, written and debugged. In
short, | believe that it can help make pro-
gramming even more enjoyable.B



Applied Structured Programming

. . .and How to Use It: Part 1

Regardless of whether you’re a newcomer
to computers or a devoted computer en-
thusiast who occasionally manages to dream
in hexadecimal, one thing is true: there’s
always room for improvement in your
programming. Unless you are exceptionally
orderly, you probably dive right into flow-
charting or coding a problem, erase and do a
lot of filling in when you remember some-
thing you hadn’'t thought of earlier, wind up
with a final program where insertions choke
your original code like weeds in a garden,
and spend too much time correcting mis-
takes you think you shouldn't have made.
And when you finish the program that (you
think) is finally running, you complain to
yourself, “There has got to be a better
way!”

There is, and it's called structured pro-
gramming. No, it isn’t a language, and it
isn't just a way to write a program. It's a
philosophy of design that pays close atten-
tion to how a program comes to be written
and tries to suggest ways to do each step
more efficiently.

Structured programming evolved less than
ten years ago, when computer programmers
finally faced programs too big to under-
stand, when the cost of writing and de-
bugging software began to exceed the ex-
pense of using extra hardware and computer
time. The school of structured programming
evolved after E W Dijkstra voiced several
thought provoking opinions, one of which
was that many of our programming prob-
lems are caused by (over)use of the un-
restricted GOTO statement, which is present
in every high level fanguage from COBOL to
FORTRAN. And many people nodded their
heads enthusiastically, for who hasn't traced
the bug in a program to an unexpected
juxtaposition of GOTOs?

Structured programming seems to help
the habitual problems of even the most
conscientious programmer, problems like
how to write and debug a large program,
how to fix (or better, to keep from hap-

Gregg Williams

pening in the first place) bugs in programs
that crash after working correctly for
months or years, or how to add to an
already working program without causing
unexpected side effects. But how doyou do
structured programming in a language that
permits unlimited GOTOs?

Specifically, how do you do structured
programming in BASIC, which is the uni-
versal language for the microcomputer
user? Simple — you use GOTOs to imple-
ment the three basic structured program-
ming structures that can theoretically repre-
sent any problem — sequence, do. . .while
and Jf...then...else — and use GOTOs
for nothing else.

What's the catch? You have to make
yourself do it. The trade-off is simple:
some discipline, a bit more planning in the
early stages of designing a program, maybe
a few extra lines of code in exchange for less
total time spent in programming and getting
a new program to work, less time spent de-
bugging, and less chance of unexpected
“blowups” happening later. It does seem to
take more time, but that’s because your
lazy brain is protesting the exercise of little
gray cells in thinking out a program and
applying discipline; but the total time can
be less, and the total frustration less.

I've been doing structured programming
for some time as | write this (| got into it
largely due to the complexity of the pro-
gramming job | have at work), and now |
wonder why anyone gets let out of program-
ming classes without learning structured
programming as the Gospel according to
Dijkstra. Still, I've found several places
where by-the-book structured programming
is a bit awkward; and since | do have GOTOs
to work with in BASIC, | found it hard to
justify not using them when they can be
used to simplify a program while still re-
taining the properties of “straight’ struc-
tured programs.

This article, then, will deal with using
structured programming in BASIC (with
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Int?;fenon Conditional Expression Its tnverse
= # X3>5 X3<5
N < X=50rY<0 X#Sand Y >0
> P R>(5+3) R<(8+3)
and | or K2 > K3 and K2 > K4 K2 € K3 or K2 < K4

(a)

(b)

Figure 1: Generating the inverse of a conditional expression. When converting structured
pseudocode to BASIC code, the logical inverse of u conditional expression must often be in-
serted in an |F statement. At (a) is a table where euch line contains two symbols, each of which
is the inverse of the other. The rule for creating the inverse of a given expression is to replace
every occurrence of the eight symbols in (a) with its inverse; (b) shows some examples of this.
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emphasis on the word wusing) and with some

extra programming structures | have found
useful.

Some Preliminaries

Before | begin, | need to get two points
out of the way. The first has to do with a
property of the three basic control struc-
tures that must be duplicated by any pro-
posed control structure for the latter to be
suitable for a structured program. (I'm
pointing this out to justify my additions
and modifications to the three basic control
structures.) In a word, each of the three
structures in strict structured programming
has the property called “one-in, one-out.”
This means that every time control of the
program passes through this block (I will be
calling the code between the boundaries of
a control structure a “block’’), it always
starts with the same (first) statement and
always exits through the same (last) state-
ment - in other words, only one way in,
only one way out. This allows a program to
be constructed like a series of beads on a
string, each of which can be examined and
changed without inadvertently changing any
of the others. (This is another property of
structured programming control structures,
the functional independence of each
module. Given the same input, a module
should perform the same operations regard-
less of what has happened in previous
blocks.)

The second point is simply one of defini-
tion. In structured programming, we have
situations where a block of code is done
when a certain relationship holds true;
if it is false, we do not do that block of
code. These relationships, called conditional
or relational expressions, are true or false
depending on the current values of variables
contained in the expression; examples are
X1 = Y1, B>3, D+K1 # K2. In structured

programming, we do a block of code when a
certain condition is met; to express this in
RASIC, we must use the |F statement to
branch around the same code when the
condition is not met, that is, when the logi-
cal opposite or inverse of the same ex-
pression is true.

Several examples will help you here.
When is X>5 false (for what values of X)?
When is K1 # 3 false? When is C=100
false? The answers are respectively when
XS5, Ki =3, and C<100. Why? Because the
opposite of “‘greater than” (as in X>5) is
“less than or equal to”’; the opposite of ‘“‘not
equal to” (as in K1 # 3) is “equal to”; and
the opposite of ‘“greater than or equal to”
(as in C=100) is “less than.” And the con-
verse is true as well, that is, the opposite of
“less than or equal to” is “‘greater than,”
and so on. This also works with interchang-
ing the logical connectives AND and OR (for
example, the opposite of “G>5 AND
Al = 0”7 is “G<5 OR Al # 0”). The justi-
fication for this line of reasoning can be
found in any book on elementary logic (see
DeMorgan’s Law or DeMorgan’s Theorem
as it is variously known).

Because of all this, a simple table (see
figure 1) allows us to find the inverse of a
conditional expression. The rule to apply
is: for a given expression, replace every
occurrence of the symbols <, >, <, >,
=, #, AND and OR, with the other symbol
in the same row; the new expression is now
the inverse of the first conditional
expression.

Putting It in BASIC

Once we have the three basic control
structures of sequence, Jif...then. . .else
and do. . .while, we can look back to the
moment before their invention and say,
yes, because we are time bound creatures
tied to the idea of serial or time ordered



cause and effect, how else could we do any-
thing? One either does tasks in sequence,
or does a task until it no longer needs doing,
or does one thing if something is true and
another thing if it is not. How else can you
decide on how to do a thing? (Unfor-
tunately, when people stopped doing things
by hand and programmed a computer to
do them “for them,” this intuitive causality
was sometimes left behind. It's fitting that
we returned to this intuitive causality only
when the problem of writing computer
programs was itself attacked as a problem.)

The three basic control structures written
in convenient pseudocode are listed with
their flowchart equivalents in figure 2. Note
that, in an /f. . .then. . .else sequence, in no
way can both blocks 1 and 2 be done during
the same pass, and that the decision whether
to do a block 1 through n times in the
do. . .while is made at the beginning of the
block so that it is possible for a do. . .while
block to do the enclosed blocks zero times.

Given these three control structures,
every problem must be broken into varying
levels of subproblems, each of which can
ultimately be expressed as a combination of
straight sequence, /f. . .then. . .else sequences
and do.. .while loops. How would you
initially break these problems down using
the above control structures?

1. Given a number N, print the num-
ber, its reciprocal, and -1 times
the number;

2. Average five test scores A, B, C, D,
and E, to an average of V, including
a 5 point curve if the initial average
is below 70 points;

3. Print out the reciprocals of the num-
bers 1, 2, 3, ... while the reciprocals
are greater than 0.005.

Figure 2: The three basic
control structures includ-
ing pseudocode and flow-
chart equivalents: (a) se-
quence, (b) if.. .then...
else, (¢) do...while. A
“block” of code is one or
more statements and/or
do. . .while and if.. .then
. . .else structures.
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print N
print 1/N
print -N
Given a number N, print the

number, its reciprocal, and 1
times the number;

(a)

Figure 3: Three problems with their solu-
tions in structured pseudocode (see text).

V=(A+B+C+D+E})/5
ifVv <70
then \V=V+5
endif

N=1

do while (1/N) > 0.005
print 1/N
N=N+1

endwhile

Average five test scores A, B,
C, D, and E, to an average of
V, including a 5 point curve if
the initial average is below 70
points;

(&)

Print out the reciprocals of the
numbers 1, 2, 3, ... while the
reciprocals are greater than
0.005.

(c)
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if {condition) 110 IF (inverse of condition) GOTO 270

then 120
block 1
block 2
pblocks 1 and 2
else
block 3
250
endif
260 GOTO 520
(a) 270
block 3
510

620 (next statement after F)

Figure 5: The if.. .then.. .else structure: (a) pseudocode, (b) BASIC equiv-
alent. The first statement (here line 110) is always an IF statement branch-
ing on the inverse of the condition given in the pseudocode; the branch is
made to line 270, two lines past the last line performed by the “then” branch
(line 250). The next statements are the code represented by the “then”
branch (here lines 120 to 250), followed by a GOTO to the first statement
after the “else” code (here line 260, branching to line 520). After the GOTO
js the code for the “else” branch of the if. . .then. . .else statement (here lines
270 to 510). In actual practice of course appropriate line numbers would be
used in the BASIC program.

do while {condition)

black 1 Figure 6: The do. . .while
block 2 structure: (a) pseudocode,
andwhile (b) BASIC equivalent. The

first statement (here line
(a) 110) is an [F statement

that branches on the in-

_ verse of the given con-

110 IF (inverse of condition) GOTO 390 dition to line 390, two
120 lines after the end of the
do. . .while loop. The
statements comprising the
body of the loop are next

|
blocks 1 and 2 (here lines 120 to 370),

370 followed by a GOTO to
380 GOTO 110 the first line of the loop
(here line 380).

300 (next statement after do. . .while 1oop)

(b)
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statement 1 110 (statement 1 3

statement 2 120 (statement 2 >

statement 3 130 (statement 3 2

statement 10 200 (statement 1 €)

(a) (b)

Figure 4: The ‘equence” structure>. The
translation from pseudocode (a) to £3ASIC
code (b) is simply one of coding severeal lines
in ascending sequence.,

(The answers are in figure 3.)

Once the idea of solving problems i con-
trol structure forms becomes natural, coding
the problem in BASIC is no more than a
straightforward translation (see figures 4, 5
and 6). Notice as mentioned before, that it
is the inverse of the condition in the do...
while and the if. . .then. . .else that appears
in the BASIC code; this is because BASIC
uses conditions for jumping instead of for
not jumping. Except for that, coding struc-
tured BASIC is no more than a matter of
practice.

After enough time for structured pro-
gramming to become second nature to me,
i found that certain applications of strict
structured programming resulted in pro-
grams that were overly bulky or inelegant.
Take the example of a program that sums up
user entered numbers until a zero is en-
countered. The structured pseudocode and
BASIC equivalent are shown in figures 7a
and 7b. But notice that flag F1 exists only
to signal that the do...while 100p should
be terminated immediately, a situation
fully determined by whether or not the last
input N is zero. The test of N in statement
150 is the second thing done in the loop
that goes from 130 to 190; if control could
transfer at the end of the loop to 140,
which drops into the test at 150, we could
throw away F1 and the do...while loop
at 130, as in 7b, for a savings of one variable
and several lines! This happens a lot in
programs that interact with the user, so |
thought, what if 1 devise a structure called
“read X and do while (condition of X)?”
It is still one-in, one-out; it's easy to under-
stand; and it’s barely different from a plain
do. . .while. So | used it and began looking
for other opportunities to add constructs



of (a) translated into
BASIC. (¢) is an equiv-

. . sum =0 110 S=0
Figure  7:  Improving
“strict” structured pro- flag =1 120 F1=1
gramming:  (a) is the do while flag=1 130 IF F141 GOTO 200
pseudocode for a problem )
to add user inputs until a input num 140 INPUT N
zero is encountered, using i aum#0 150 IF N=0 GOTO 180
only sequence, if...then
...else and do... while.
(b) is the pseudocode sum=sum-+num 160 5=S+N

170 GOTO 130

alent BASIC solution that flag=0 180 F1=0
saves three lines of code ,
and one variable by slight- endif
ly bending the form of a endwhile 190 GOTO 130
str ucmre,d programming {next statement) 200 (next statement)
do. . .while /oop.
(a) (b)

110 §=0

140 INPUT N

150 IF N=0 GOTO 200

160 S=S+N
170 GOTO 140

200 (next statement)

(c)

to structured programming as originally
conceived.

Do. . .until

The structure closest to the three basic
contral structures is the do...until loop,
iflustrated in figure 8. The main difference
between it and the do. . .while loop is that,
in the do. . .until loop, the expression to be
evaluated is the last statement in the loop
instead of the first; this insures that the
body of the loop is done at least once.

A do.. .until loop is written in BASIC by
writing the statements in the body of the
loop, then adding an IF statement that
branches to the first statement of the loop
if the condition is not met (the inverse of
the original conditional expression is used
here).

Consider our earlier problem of adding
a number of user inputs until a zero is en-
countered. The solution to this, using the
do. . .until structure, is given in figure 9.
Notice in the pseudocode that I've put the
conditional relation on the last line of the

Figure 8: The do. . .until
loop: (a) pseudocode, (b)
flowchart, (c) BASIC

equivalent. The  first
statements (here lines 110
to 380) are the code for
blocks 1 thru n. The next
and last statement (here
fine 390) is an IF state-
ment that branches on the
inverse of the condition
listed in the pseudocode to
the first statement of the
do. . .until loop (here line
170).

BLOCK |
do until test 110
block 1 BLOCk 2 120
block 2 ! blocks 1--n
H
] .
. BLOCK N 380
block n 390 IF (inverse of condition) GOTO 110
endif {condition) 400 (next statement)
FALSE
TRUE
3
(a) i (b) (c)
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Figure 9: Illustration of

pseudocode, (b) BASIC
equivalent. The problem
illustrated is to create code
that will sum all user
inputs until a zero s

the sum.

§$=0

do...until  Joop: (a) do until test of N

100 S=0
input N 110 INPUT N
§=S+N 120 S=S+N
endloop if N =0 130 IF N#O GOTO 110

encountered, then print print S

(a) (b)

140 PRINT 'SUM IS"; 8§

loop to remind the user that the test is made
at the end, not the beginning, of the loop.
You may prefer to write the conditional
expression on the same line as the words
do until (in this case, line 2 of the pseudo-
code as do until N = 0), but you will have to
remember that the test is delaved until
after the last line of the loop.

Looking at the BASIC code, there is a
one-to-one correspondence between the
pseudocode and BASIC code except that
line 2, the do until line, has no equivalent,
and line 5, the endloop line, translates into

an IF statement that completes the loop
only if N # 0 (that is, only if the inverse
of the conditional statement is true). (L.ook-
ing back at figure 7c, we see that we have
improved on our read N and do until N =0
loop by one statement, mainly because a
do until will always have one less BASIC
statement than its corresponding do while.)

Case

The case statement is used when the value
of a variable determines which of N mutu-
ally exclusive blocks of code is to be exe-

case on N 110 GOTO 120, 200, 250 ON N 110 IF N#1 GOTO 190
if N=1, block 1 120 120
if N=2, block 2
block 1 block 1
if N=3, block 3 . )
180 180
endcase
190 GOTO 320 190 IF N£2 GOTO 240
200 200
block 2 . block 2
230 ] 230
240 GOTO 320 240 IF N#3 GOTO 320
250 250
. block 3 . block 3
310 310
320 (next statement) 320 (next statement)
(a) (b) (c)

Figure 10: The case statement: (a) an example in pseudocode, (b) the example in BASIC using
a computed GOTO, (c) the example using a series of IF statements. The computed GOTO (b) is
used when the values that N takes can be “boiled down” to the integers 1, 2, 3, ... (for ex-
ample, if N took the values 10, 15, 20, we would GOTO on (N-5)/5). A series of |F statements
(c) would be used when the values of N are irregular and (b) cannot be used.
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100 FOR 1=1TO 200

170 IF A> B GOTO 220

ok

220

350 NEXT I

360 (next statement)

(a)

100 FOR I=1 TO 200

170 IF A>B GOTO 700

wrong

350 NEXT!

360 (next statement)

(b)

100 FOR I=1 TO 9999
110 IF A> B GOTO 360

350 NEXTI

360 (next statement)

(c)

ok

Figure 11: Uses of FOR...NEXT loops in structured programming. A FOR. . NEXT loop is
okay if no statement within the loop ever transfers control outside the main loop; see (a). The
situation in (b) is definitely not structured; there is no way to guarantee that line 360 (and sub-
sequent lines) will be done when the FOR. . NEXT loop is completed. A do. . .while loop may
be fashioned as in (c), which is equivalent to do while A<B. Note that the index of the loop, I,
is simply “‘marking time"’ but as such cannot be used for another purpose within the loop.

BLOCK |

TRUE

FALSE

BLOCK 2

TRUE

FALSE

BLOCK 3

TRUE Yy

FALSE

(a)

beginloop
block 1
exitif (condition 1)
black 2
exitif (condition 2)
block 3

endl/oop

(b)

Figure 12: The beginloop
.. .exitif. . .endloop struc-
ture: (a) flowchart, (b)
pseudocode, (c) BASIC
equivalent. Notice the IF
statements (here at 160,
320 and 450) all branching
ta the first line of the next
structure (here line 470,
two lines after the end of
block 3). The second line
after the end of block 3
(here line 460) is a GOTO
that jumps to the first
statement of block 1.

110

150
160
170

310
320
330

440
450
460
470

block 1

IF (condition 1) GOTO 470

block 2

IF {condition 2) GOTO 470

block 3

IF (condition 3) GOTO 470
GOTO 110

{next statement)

(c)

5



52

BLOCK |

FALSE

TRUE

BLOCK 2

TRUE

TRUE

beginblock
block 1

loopif {condition 1)
block 2
loopif (condition 2)

block 3

loopif {condition 3)

endblock

(b)

Figure 13: The begin-
block . . . loopif . . . exit-
block structure: (a) flow-
chart, (b) pseudocode, (c)
BASIC equivalent. Notice
that the [|F statements
(here at 160, 320 and
460) go to the beginning
of block 1 and that they
branch on the condition

110

block 1
150
160 IF (condition 1) GOTO 110
170

block 2
310
320 IF (condition 2) GOTO 110
330

block 3

450

460 IF (condition 3) GOTO 110

470 (next statement)

(c)

(a) itself, not the

inverse,

cuted (with control passing to the next
statement after the chosen block is per-
formed); from this, you can see that the
if.. .then. . .else structure is a special case
statement with N =2,

A case statement is implemented in
BASIC by either sequential IF statements or,
if the variable can be ‘“boiled down" to an
integer ranging from 1 to N, a computed
GOTO statement. Remember that, since
control eventually passes to the first state-
ment after the case statement, no block
within the case statement may contain a
GOTO statement except as the last state-
ment within a block branching to the first
statement after the case statement; to do
otherwise would damage the structure’s
property of one-in, one-out.

An example of a case pseudocode state-
ment and two BASIC equivalents is given in
figure 10. Note that, when using a computed
GOTO, each block of code must end with
GOTO nnn, where nnn is the next line
after the case statement. in figure 10c, IF
statements are used to branch around the
blocks of code if the variable N does not
have the appropriate value for that block.,

Subroutines, User Defined Functions, and
FOR. . .NEXT Loops

One of the most important features of
a structured program is that it is composed
of one-in, one-out blocks that are not
jumped into or exited from except at the
beginning or the end of the block. There-
fore, as far as | am concerned, there is no
reason from the structured programming
point of view why | can’t use both sub-
routines and user defined functions (using
the DEF statement) in my structured
programs; they are both one-in, one-out
constructs of BASIC and save repeating
identical code,

Using the FOR...NEXT loop is a dif-
ferent matter. Unlike the subroutine or the
user defined function, control can be trans-
ferred from anywhere inside the loop to
anywhere outside the loop; in this case, a
FOR...NEXT loop by itself is unsuitable
for a structured program and should be re-
placed by either a do...until or a do...
while loop (if used properly, a FOR...
NEXT loop can be used to implement
either of these; see figure 11). But a
FOR...NEXT loop's most valid use is



simply as a shorthand for a block of code to
be repeated identically a given number of
times. Used this way, the loop keeps the
one-in, one-out feature necessary to all
structured programming control structures.

Beginloop. . .exitif. . .endloop

The beginloop. . .exitif. . .endloop struc-
ture is described in several books detailing
advanced structured programming tech-
niques, and while it does not have the gut
level intuitive appeal the basic three do, it
keeps popping up in programs | write, so
it must be fairly useful.

The flowchart for the beginloop. ..
exitif. . .endloop structure is in figure 12a.
it is basically a loop with several exit points
(do. . .while and do. . .until can be seen as
specific cases of this general form). It has
one entrance and one exit (several exit
points, but the transfer of control is always
to the next statement after the loop struc-
ture), and an example in pseudocode and
BASIC is shown in figures 12b and 12c.
Note that here the conditional expression
and not its opposite is translated from
pseudocode into BASIC (see lines 160, 320
and 450, figure 12c).

Other Structures

Even with all the above structures, |
keep finding situations that can’t be fitted
into any of them. So when several situa-
tions came up repeatedly, | modified exist-
ing structures to fit them and still be of
the most general use. But, for the structures
that remain, the emphasis is more on con-
venience than on utility.

A very useful variation of the begin-
loop. . .exitif. . .endloop structure is one
that loops (instead of exits) when certain
conditions occur. | call this a beginblock. . .
foopif. . .endblock structure (see figure 13);
it is very useful for performing a certain
operation until all of a series of conditions
are met. An example of this is the code in
figure 14 that requests from the user an
integer input between 1 and 10; notice that
we Joopif the input N is not between 1 and
10, and we also foopif N is not an integer.

| have created another pseudocode in-
struction called read. . .until valid for the
specific purpose of reading and validating
a user input, usually when the validation
process is very simple. The BASIC code for
the above problem is the same as in figure
14b (unless you want to add some error
message statements), and the pseudocode
is simply:

beginblock
input N 110 INPUT N
foopif N>10 or N<1 120 IF N>10 or N<1 GOTO 110
loopif N # INT(N) 130 IF N # INT(N} GOTO 110
endblock
(next statement} 140 (next statement)
(a)

Figure 14: An example of beginblock. . .loopif. . .endblock: (a) pseudocode,
(b) BASIC equivalent. The problem illustrated is to get an input from the
user that is both between 1 and 10 and an integer. Here the second block

(between the two loopifs) is empty.

read N until valid
jnvalid if N not between 1 and 10
invalid if N not integer

with the two invalid lines not necessarily
written down. (Notice that for the last two
structures, the conditional expressions used
in the pseudocode are not inverted when
transferred to the BASIC code.)

The Beginning of the End

Those are all the structures I’ve come up
with. They may or may not be justified in
your mind by the improvements they allow
over “strict” structured programming; but
each of them is (at worst) a shorthand
that takes the programmer a step further
from planning a program in instructions and
a step closer to planning in well-defined
subtasks. And because these subtasks are
always a proper subset of any language
that allows unlimited GOTOs, it is simple
to write structured programs in BASIC (or
in any other all-purpose language), using
modules of code that are functionally in-
dependent and “one-in, one-out.”

However, there are several other aspects
of problem solving — problem definition,
program design, debugging and testing, and
program revision — that can benefit from the
application of a methodical technique (and
this becomes less of a luxury and more of a
necessity as program size increases). In the
second part of this article I'll use the prob-
lem of writing a game to play NIM to
illustrate the use of structured programming
in the entire problem solving process.®
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In part 1 | covered the basic constructs
of structured programming, several addi-
tional structures (see table 1), and how to
program them in BASIC, Now [ want
to show my idea, at least, of good program-
ming habits, as well as the application of
structured programming techniques to the
entire range of problem solving. As an
example, 1 will show how | went about
writing a program that plays the game of
NIM

NIM as a Computer Game

| picked NIM because it is simply ana-
lyzed, making it possible to concentrate on
the writing of the program and not on the
development of the computer's playing
strategy.

Basic Structured Constructs

sequence
if. . .then. . .else

o sarhs 2
G, L LWITHEG

Added Structured Constructs

do. . .until

case

subroutines

for loops

beginloop. . .exitif. . .endloop
beginblock. . .loopif. . .endblock
read. . .and do while

read. . .until valid

Table 1: The constructs of applied
structured programming, as explained in
part 1. The ‘“basic” constructs are
universally recognized as being sufficient
to implement any program; the ‘“added”
constructs are recommended by the author
as extensions of the basic consiructs that
make structured programming more ver-
satile and manageable.

Gregg Williams

The rules are as follows: the game starts
with a pile of, say, 17 sticks. Players alter-
nate turns, taking one, two or three sticks.
The person taking the last stick loses.

It doesn’'t take much analysis to show
that a player is in a “safe” position if there
are 1, 5, 9, 13,. . .pieces after his or her
move. No matter how an opponent moves,
the player can take enough sticks (four
minus opponent’s move) to put the game
back to a “safe’” position. The player’s
opponent is hamstrung and will definitely
lose.

The computer’s strategy is given in table
2 and is based on what the pile of sticks
looks like in terms of multiples of 4. The
computer wants to leave the pile in the
form (4n+1), a safe position for it. But
the computer is in a bad situation if the
pile looks like (4n+1) at the beginning of
its turn (it also means the human player
is in a “safe” position and will win if the
correct moves are made). In this case, the
moves of 1, 2 and 3 all leave the computer
in an “unsafe’ position; so, for this program,
| decided to let the computer take 1 so as to
prolong the game.

A Problem Solving Approach

Before | get into the hand waving that
will enable you to see how | wrote this pro-
gram, I'd like to give you an overview of
how | think a program should be attacked
3 la structured programming.

Step 1: Define the program in terms of
what it will and will not do. Don’t laugh—
who hasn’t been coding a program only to
remember, “‘Omigosh, | forgot to put in
something to . . . ."” Keeping last minute
additions or afterthoughts to a minimum
reduces the possibility of unexpected
interaction between statements, often called
bugs, glitches, blowups and so on.

Step 2: Flowchart *the big picture.” A
lot of this is intuitive, but it means break the
program into the first subprograms that
come to mind, and show where these come



in program flow. Unless a program is very
simple, it is hard to go straight past this
step into step 3; | have to literally see the
program flow in flowchart form before |
can begin thinking in terms of if. . .then
.. .else and do. . .while and other control
structures.

Step 3: Translate this into an overview
with structured pseudocode. By now you
have to have a loose idea of what the sub-
programs (let’s call them modules) will do.
You don't have to have module definition
pinned down to the finest point, for simply
having thought in terms of modules means
you've already put more thought into this
stage than most people do. Also, gluing
the modules together with structured
pseudocode gets you started toward a
structured program. It won’t be structured
unless it starts structured.

Step 4: Program each module in pseudo-
code. Aha, here’s where you find out what
you've left out. Notice | said “program.”’
| mean it: you should write out exactly
how a module will be executed as if it
were the program that goes into the com-
puter. The pseudocode should be so detailed
that translating it into BASIC (or any other
language) is almost a mechanical chore. This
step may cause you to go back to step 3,
but that’s okay, for it is probably faster to
revise on paper than in the computer.

A note on modules: a key factor in the
success of a structured program is the
functional independence of modules. This
means that a module should do a certain
thing regardless of what the modules before
it do, thus minimizing the possibility of
unexpected  module interaction.  For
example, if module A is designed to perform
some computation on variables X and Y
giving result Z, the only way module B,
which calls module A, should be able
to influence results is by changing the
inputs X and Y prior to the call. The
internal machinations of B should not
affect A except through the identified
input and output parameters of block A.

Step 5: Translate each module into
BASIC code. Using the forms | outlined
in part 1, going from pseudocode modules
to BASIC modules is a mechanical trans-
lation process; the only thing you really
need to think about is assigning and keeping
track of variables and functions. 1 use a
chart to do that; see figure 8 for an example.

Step 6: Test each module. You're on
your own here, but you must do something
to check out what a module is supposed to
be doing in terms of function, input and
output. This is a “bottom up” approach
to programming (note, however, that the
design is ‘“top down”). Although *“top

Number of Sticks
in Pile at Beginning
of Computer’s Turn

4n 3
4n+1 1
4n+2 1
4n+3 2

Number of Sticks
Computer Takes

down” programming has been praised for
its ability to catch unexpected module
interaction, | ask: how can it until those
modules (mistakes and all) have themselves
been written? (An incisive analysis of the
design process is given by Knuth in The Art
of Computer Programming, Fundamental
Algorithms, volume 1, pages 187 to 189 in
the second edition.)

Step 7: Test the program. Glue the
modules together with the BASIC equiva-
lent of the pseudocode from step 3. Start
it running and hunt down bugs. Even if it
works, keep hunting until you are tired
of running the program. The brevity of
this step (and the assurance that the
program will not one day unexpectedly
blow up) is your reward for the work done
in the first six steps.

Step 8: If you add to the program, add
structured code. 1 know it’s hard to do. It’s
even hard for me to do, and I'm the one
who's writing this article. But, unless the
addition is extremely trivial, make sure
that the code you add fits in, in a structured
sense. Don't jeopardize functional indepen-
dence. Do break down a module if
necessary to rewrite it.

NIM: Initial Design (Steps 1 thru 3)

Now we’re ready to work on the NIM
playing program. After thinking about the
possibilities, | decided on this rough working
definition: This program will play a series of
NIM games against a human opponent. It
will use the residue of four algorithm for its
strategy and will give the user the option of
choosing who goes first and how many
sticks are in the pile; the default will be 17
sticks and human goes first, an automatic
win for the computer. The program will also
check human inputs for validity.

My initial flowchart is in figure 1. Notice
that there are four basic modules: initiali-
zation, player-turn, computer-turn and
evaluation. \f you want to go into more
complex detail (and you will have to in a
larger program), you can say that initiali-
zation basically sets the number of sticks
in the pile and who goes first. Player-turn
accepts a move, checks its validity, and
subtracts the move from the pile. Computer-
turn analyzes the pile, chooses a move, and
subtracts the move from the pile. Evaluation

Resulting
Position for
Computer

safe
unsafe
safe
safe

Table 2: Computer’s strat-
egy for the NIM game.
Either player is guaranteed
a win (assuming that
player makes no mistakes)
if the pile of sticks is a
number of the form 4n+1
at the end of hisfher turn.
Notice that when the play
begins with 4n+l sticks,
the computer is forced to
take one, two or three
sticks and so leaves itself
in an unsafe position at
the end of its move,
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Figure 1: A high level ( BEGIN )
flowchart for the NIM pro-

gram. Most of the blocks
represent  some  large
chunk of the overall prob-
lem; such blocks are called INITIALIZATION
“modules.” Actions com-
mon to more than one
block should be brought
outside the blocks and
shared. For example, the
block labeled *‘evaluation”
was part of both modules

“playerturn” and ‘“com-

putel“‘tul'ﬂ” until it was PLAYER-TURN COMPUTER~TURN

seen that it could be v
brought outside and made A
a module of its own.

=P
M
m!_
D=

ON

UAT
0ARD)

SET TO
OTHER PLAYER

YES

MESSAGES

Figure 2: The structured pseudocode overview. This overview, equivalent to
the flowchari of figure i, is written in a pseudocomputer language and is
the first step past the flowchart toward a completed BASIC program. Notice
that the modules which will be filled in as details are later noted as names
enclosed in parentheses, that preliminary variables are used and given descrip-

tive names, and that the entire problem is outlined by this pseudoprogram.

(1] NIM:
1 games-played = 0
2 do until test of endsession
3 do until test of gamewon
4 {initialize)
5 if computer's-turn = 0 then
6 (player-turn)
7 else
8 {computer-turn)
9 endif
10 (evaluate)
1 computer’s-turn = 1 .~ computer's-turn
12 endloop if gamewon
13 print endgame messages and ask if user wants to play again
14 receive user response
15 if response = yes [ie: if endsession = 0]
16 games-played = games-played +1
17 endif
18 endloop if endsession
19 end-of-program

checks to see if the pile is down to 1 (in
which case the winner is declared) and also
makes several comments as endgame ap-
proaches (this is the only module whose
function grew as the module was written).

The first real work is done with the crea-
tion of the structured pseudocode overview
in figure 2. The process is fairly simple here
because the program is well-defined as a
flowchart; but with a flowchart that has
constructs that are definitely not recog-
nizable control structures, you have to twist
the flowchart (maybe even rewrite it) until
you can see ii in terms of sequence, if, . .
then. . .else and do. . .while.

Notice that at this step you begin to
define flags. There will be a flag (which will
have a value of 1 or 0, standing for true or
false) representing the status of endsession,
gaitiewoii and compuier's-turn. Notice aiso
that variable names are descriptive enough
for the reader to understand exactly
what is happening; be sure to keep this first
pseudocode overview readable.

NIM: Detailed Design (Step 4)

The bulk of thinking from here on out is
in this step, the writing of each module of
pseudocode. You will probably discover
changes and additions you need to make;
the advantage of doing so at this point is
that it is easier to make corrections and
revisions in pseudocode than it is to make
them in BASIC. One reason for this is that,
since pseudocode is not read by the com-
puter, you do not have to spend any time
making sure that it is syntactically correct
(instead, you spend the same time making
more changes); another is that pseudocode is
easier to change because it is easier to
read. Compare the pseudocode “if who-
plays-first = computer, then. . .”” with the
BASIC statement “1600 IF P=0 GOTO
1660.”

The pseudocode for my basic modules
is in figures 3 thru 7. Although | made
really only one draft of each module
before | translated it to BASIC, the
draft itself contains many erasures
and insertions; for me, working in pencil
is a must. You may find an operation
that occurs several times within the
different modules; if so, you'll want to
make it either a module or a subroutine. In
the case of the NIM program, | decided to
make a module out of the part of code
needed to print the current board position.
I could have left it as part of the evaluate
module, but to do so would have obscured
the module’s purpose with too much detail.
As it stands, the only information given in
the evaluate module is “Print current board



Figure 3: The initialize module.

Relative
Line No

CONOORWN=O

BASIC

Line No

220
230
240
260
280
310
310
330
360
380
390
400

420
440
460
470
490
500
510

init

Pseudocode

ialize:
if games-played = 0
ask if user wants instructions
read user-answer until valid
if answer is ‘yes’
print instructions
endif
endif
ask user if he wants to choose number sticks and who goes first
read user-choice until valid
if userchoice = default
number-of-sticks = 17
computer’s-turn = 0
else
ask user how many sticks to begin with
read number-of-sticks and do while number-of-sticks <13
error message ‘sorry. we have to have at least 13 sticks’
endwhile
ask user who goes first
read computer’s-turn until valid
endif

The pseudocode in figures 3 to 7 represents the second level of breaking

a problem into subproblems (the first level was from defined problem to
the structured overview of figure 2). Notice that the trend is to write the
lines so that they are easily understood rather than to make them look
like formal computer code. The numbers in front of most of the lines
represent the beginning line numbers of the equivalent statements in the
BASIC program.

Figure 4. The player-turn module.

Relative
Line No

OCONINHEWN—-O

BAS
Line

810
845
830
840
850
855
860
860
870
875
880
880
900
920

‘I“Co Pseudocode

player-turn:
do until test of invalid-move
valid-move = 1
ask user for his move
input user-move
if user-move not between 1 and 3
print error message
valid-move = Q
endif
if user-move > number-of-sticks
print error message
valid-move = 0
endif
endloop if valid-move = 1
number-of-sticks = number-of-sticks — user-move

Figure 5: The computer-turn module.

Relative
Line No

-0

N WN

BAS

IC

Line No Pseudocode

—_ computer-turn:

1120 remainder = number-of-sticks modulo 4

1140 case on remainder

1150 if remainder=0, then computer’s-move=3

1170 if remainder=1, then computer's-move=1

1170 if remainder=2, then computer’s-move=1

1190 if remainder=3, then computer's-move=2

1210 number-of-sticks = number-of-sticks — computer’s-move

1230 print computer’'s-move to user




Relative
Line No

ODONNNHLWN=O

BASIC
Line No

1415
1520
1540
1550

1570
1670
1570
1590
1600
1620
1630
1640
1640

1660
1670
1690
1700
1720
1730
1740

1760
1760
1760
1760
1760

Pseudocode

evaluate:

(print-board)
if number-of-sticks = 1
if computer’'s-turn = 1
print computer-loses message
else
print user-loses message
endif
endif
if number-of-sticks between 6 and 8
if computer’s-turn = 1
if RND < 0.6
print computer-resigns message
number-of-sticks = 1
endif
else
ifRND 0.3
print you're-in-trouble message
ask if user wants to resign
input user-answer until valid
if usar-answer = ‘yes’
print user-resigns message
number-of-sticks = 1
else
print nasty answer
endif
endif
endif
endif

Figure 6: The evaluate module. “RND" refers to a random number between
zero and one; when either player resigns, number-of-sticks is set to 1 to signal

end-ofgame.
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position,” which tells the reader exactly
what is being done; if the reader wants more
detailed knowledge, it is possible to refer to
the print-board module.

The value of pseudocode can be seen in
the fact that very little in the program needs
to be explained. This is why high level lan-
guages which are closer to pseudocode make
better programming languages than BASIC.
Figures 3 and 4 are complicated only by
read. . .untif valid statements that check user
responses (the checking of input data is
usually a good idea unless your computer
has real space problems). The computer-turn
module, figure 5, implements the computer
strategy of table 2.

In the evaluate module, figure 6, if both
players play perfect games and the number
of sticks is six, seven, or eight, the player
who has just moved will definitely lose the
game (the opponent can take one, two or
three sticks, respectively, finishing with five
sticks, a ‘‘safe” position for the opponent).
The if statement beginning “If number-sticks
between 6 and 8" (line 9 of figure 6) and
ending with the last “endif” of the module
takes care of this situation. If the computer
is about to lose, it resigns six-tenths of the
time; otherwise, it gives the human a chance
to resign three-tenths of the time. (Notice,
in figure 1, that the eva/uate module comes

before the variable computer's-turn is
changed, so that, in the evaluate module,
computer’s-turn=0 means that the human
has just played and that the computer’s turn
is next.)

NIM: Translating to BASIC (Step 5)

Two aspects of the pseudocode-to-BASIC
translation need attention: the translation
itself (covered in Part 1), and the assign-
ment of variable names and meanings. The
translation, although it requires attention,
is straightforward enough once you are used
to it. Assigning BASIC line numbers cor-
responding to relative line numbers of
pseudocode (given in figures 3 to 7) should
make matters easier.

The assignment of variable names,
however, is another matter. Each named
variable or flag must be replaced with a
letter or letter-plus-digit name. | think it is a
good idea to keep track of what names have
been used, what modules they are used in,
and what they are used for. An example of
the chart | usually make (here, for the NIM
program) is in figure 8. | also try to decide
whether or not | need to store a variable’s
value for use later in the program; if not, |
can use the same variable later and save a
few bytes of storage (when compared with
creating and using a new variable).

When writing a module of BASIC code, |
write the entire module, using a circled
letter in colored pencil to link the space
after a GOTO to the line number it belongs
with. Then | number the entire module
and replace the circled letters with the cor-
rect line numbers.

Comments are very important and, unless
you are working with severe memory restric-
tions, there is no excuse for your not using
them. (Even with memory problems, put
comments in your final draft and keep a
copy.) For example, the comment

2150 REM K IS THE SUM OF | AND )
2160K =1+J

is extremely lame. But if, in its place, you
write

2150 REM K 1S SUM OF FIRST AND
SECOND GROUP SCORES

then, within the context of the program, the
comment will probably remind you (after a
long absence) of several things you'd for-
gotten. Given the restrictions on variable
names in BASIC, comments are more neces-
sary than they would be in languages with
longer name possibilities.



1 might point out several places where
you should always use comment statements.
One is at the beginning of the program for
a summary of the name of the program,
your name as its author, purpose, and so on.
See lines 50 to 70 in the NIM program in
listing 1 for example.

Another place to put comments is at the
beginning and end of modules, if possible,
with some eye-catching typography. BASIC
programs do seem to run together after a
while (see lines 200, 520, 800, 930 and
others in listing 1).

A third place to put comments is just
before a major control structure (ie: one
spanning more than a few lines of code).
Gertrude Stein might not have said, “An if
is an if is an if. . .,”” but she should have.
Things are easier if you know that an IF
statement is actually the beginning of a
do. . .until, an if. . .then. . .else, or some-
thing else. For example, look at the com-
ments at lines 810 and 890 of the NIM
program:

0810 REM DO UNTIL 900; ENDLOOP IF
VALID {V=1)

{body of do. . .until)

0900 iF V =0 GOTO 0820

A glance at line 810 tells us we are beginning
a do. . .until that ends at 900; it also tells us
the condition and the reason for looping.

Heavily commenting a program reaps
such intangible benefits that it is difficult to
justify the time, memory and effort that
commenting requires. You have always
heard that comment lines greatly help a
programmer who must examine a program
weeks or months after it is written. But you
probably do not realize that the very act of
writing down the comment, of trying to find
the most important few words that will help
to clarify the situation, that this very act not
only helps you to remember a given fact
longer, it also causes you to analyze the
given situation (and thereby understand it
better), maybe even to find a mistake you
had not seen.

Remember, comments may take effort,
but the whole idea of structured program-
ming techniques is that effort on the front
end will save greater efforts later on.

NIM: Testing (Steps 6 and 7)

A module is tested by writing code
around it that provides it with the variables
that affect the module’s behavior and state-
ments that somehow display the module’s
output. Then the module-plus-test-routine
should be run, varying the inputs across
their spectrum as much as is practical
(testing all possible input combinations is
the only foolproof method but, alas, be-

Relative BASIC

Line No Line No Pseudocode
0 e print-board:
1 1415 print 'THE BOARD I§';
2 1420 sticks = number-of-sticks
3 1430 do while sticks > 5
4 1440 print ‘//111’;
5 1450 sticks = sticks ~5
6 1460 endwhile
7 1470 for | = 1 to sticks
8 1480 print */";
9 1490 next |
10 1500 print*’

Figure 7: The print-board module. This module Is actually part of the
evaluate module but is separated from it for purposes of clarity. Sticks Iis
a new variable that is decremented to zero as the current board position is
printed; notice the semicolons in the print statements that make the state-

ments print on the same line, as in BASIC.

o
3
g | %
S| 21s8|¢
5| 8 a | 3
. = | 3| 5|3
Variable g | s 4 ]
Name Use
N1 number of games completed;
used outside all modules
C X user-choice to choose sticks and
first player, temporary
Cc X user-choice to resign, temporary
X X X X number-of-sticks
P X X computer’s-turn; indicates next to
play: computer=1, player=0
\" X during player's turn, indicates
if move valid: 1=yes, O0=no
M1 X player-move
both=1,20r3
M9 X computer-move
R X remainder of number-of-sticks {S)
modulo 4, temporary
S1 X equivalent to S, destroyed by the
print-board module

Figure 8: A table to keep track of variables used. This table shows which valid
BASIC variable names are being used; in which modules they are used; the
variable’s meaning and whether or not the variable’s value needs to be saved.
Note that C is a temporary variable; since its value in the initialize module
need not be saved, it is used again in the evaluate module for another pur-
pose. In a more complex program, you would make a note by the variable
name if it is an array (numeric or character) as opposed to a simple variable.

comes infeasible very quickly). The outputs
should be predicted before the test is run
and then verified; ‘‘eyeballing” the outputs
often lets mistakes slip by that you would
otherwise catch.

Program testing is usually more frus-
trating than module testing, mainly because
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Listing 1: The completed NIM game, written in BASIC. This program plays
multiple games of NIM against a human opponent with endgame messages
to the user that differ from game to game. The two most important charac- gram behavior and output for a given set of
teristics of the program are, first, the liberal use of REM statements, and inputs remains much the same as for module
second, the coding of the program in terms of structured programming con- testing.

trol structures, which greatly simplifies program design and debugging. (This Because | had only four modules and

only the most elusive bugs evade module
testing. But the method of predicting pro-

program was run on an 1BM 5100.)

[
0060
Q070
gian
g2o0
42140
n220
02348
0240
0250
42460
0270
2280

REM #%xNIM PROGRAM. WRTTTEN BY GREGG WILLIAMS®x
REM »*WRITTEN 15 APR 77, LAST UPBATE 14 APR 77x%»
REM % TRY IT--TT7 CAN BE BEATEN "%
N1=0

REM :=%x®% MODULE INTTIALTZE --ENI' AT S20  mxwxs
REM - -GIVE USER TNGTRUCTION OPTION IF FIRST GAME (N1=0).-
IF N1#6 G 1} 0320

PRINT DO YOU WANT INSTRUCTIONS? (i=YES, 0=2NOY°
INPUT N1

TF NI#D&N1#1 GOTO 0240

IF Ni=0 GOTO 0320

PRINT

PRINT ~OKAY NIM 16 PLAYED WITH 17 OR MORD STICKS. WITH AT

such a simple design, | skipped module tests
and went on to test the entire program
by playing a few games. | found the fol-
lowing errors: two typing errors, flag V
was not set (line 845 was added), and a
flag was set wrong at 1540. At this point,
the program was functionally working.

NIM: Additions (Step 8)

At this point, the NIM program is

06290 PRINT “MOVE CONSTSTING OF THE PLAYFR'® 8§ TAKING 1., 2, OR 3° . .

0300 PRINT ~PLAYING PIKCES, OR ' STICKS *. WF ALTERNATE TURNG.® finished and running. However, playing
0310 PRINT AND THE PLAYER FORCED TO TAKE THF LAST STICK LOSES.- ! . .

0320 PRINT - several games, [ noticed little things that
0330 PRINT -1 USUALEY PLAY WITH 17 STICKG AND YOU GOING FIRST.®

034
(354
83410
6374
0380
0390
ou00
0410
20
Quig
[LEA]
a0
au 7l
[IEREY
auve
0504
0510
0520

PRINT TYPE 1 TF THAT 6 OK WITH YOU. 0 OTHERWLISE
PRINT
INPUT
TE CATAC#0 GOTO 0360

IF C=0 60TO o424

G-17

P

GO0 1524

PRINT “HOW MANY STICKS IO YOU WANT 10 START WITH?
TNPUT &

TP % 1.3 GOTO 0480

PRINT  ¥XGDRRY. WE HAVE TO HAVE AT LEABT 13 STICKSAw®
GOTO Ouby

PRINT " °

PRINT "TYPE ZEROQ (0) TO GO FIRST; ELSE TYPE 1

INPUT P

TF PEORP#1 GOTO 0500

REM - END OF MODULE INITTALIZE-

bothered me: lines of output bunching
together when they were not logically
connected, error messages that needed
to be included, the computer writing
“MY MOVE IS 1 STICKS,” to name a
few. So | repaired several things, mostly
evident from lines in the BASIC program
not ending in zero.

One option that does not show is the
if. . .then statement at lines 220 and 230

0590 REM ‘ that skips the asking-of-rules (lines 2 thru 6
0600 IF P=1 GOTO 1100 . . N
0610 REM in figure 3) for every game but the first.

[N
0818
aBg2o
9830
08440
0845
0850
085S
0860
0870
087%

REM wx%  MODGULE USER S-TURN--ENTE 930 wsw:
REM . DO UNTIL 9200, ENBLODP IF MOVE IS8 VALID (V=i)..
PRINT 7

PRINT “YOUR TURN--ENTER YOUR MOVE®

INPUT M1

V=1

TF M1:1R8M1.3 GOTO 0870

PRINT 'YOUR MOVE ISN' ‘T BETWEEN 1 AND 3°

V=40

1F M1:5 GOTO 0B90

PRINT ~THERE AREN''T THAT MANY PIECES LEFT

Fortunately, this could be added fairly
easily by adding a new variable, games-
played (or N1), updating it (at line 1990),
and by placing lines 230 thru 320 in an
if. . .then structure that gets done only if
games-played equals zero.

0880 V=0 T .

0890 REM :=NEXT STHMT IS TEST FOR ENDN OF DO UNTIL LOOP:: Sometimes it takes more effort to add
0900 IF V=0 GOTO 0820 . ] . .
0910 REM +<TAKE AWAY FROM CURRENT NUMDER OF STICKS: - code so that the resulting program is still

09240
0930
1000
11410

§=8~M1

REM :<END OF MODULE USER S-TURN:.

GOTO 1460

REM - «%x% MODULE COMPUTER S-TURN-~FND 1280 #xx0 >

structured. But programs resemble organisms
in that they tend to grow quite a bit after

110 REM <-R 15 (HSTICKS) HOIULO 4 the first time they are “finished.” So, in

1130 REM CANE STMT,--R HAG VALUE 0.1 2,7, S0 BN 08 R+t the interest of maintaining a structured

1140 GOTO 1150.1170,1170,1190 ON (R41) . . .

1150 M9-3 program (which is easier to work on), |

e 391? 1:1" make it a rule to add structured code to my

1 ey e programs. In my experience programming

1200 REM . DECREMFNI STICKS ARDR TRFORM USFR OF YOUR MOVE at WOrk, it’s been Worth ‘t

1710 8285 M9 .

1220 PRINY

12320 PRINT "My MOVF IG-, M7, STICK', .

1233 IF M9=1 GOTO 1238 ’ Final Thoughts

123% PRINT &

1236 GOTO 1210

1938 PRINT & If hi | | h that I've con-

1940 REM  END OF MODULE COMPUTER- HOVE - nothing else, ope

1250 REM o, H H H H

1400 REM -:¥%%  HODULE EVALUATE: ~END 1770 #xx v'n(’ed YOU thzt t'r:;e S'plfn‘t n plarl')nlng IS

1410 REM ¢ PRINT CURRENT BOARI o .

LRSI AN later’ paid back, and wit mterest{ ecause

A0 SIS ore 1 that’s what structured programming is all

10 BRINT /7777 about. By planning your program before

450 61=81 9 . . o . .

1460 GOTO 1430 you write it, you eliminate time wasted in
7 - - 5 " N . .

tean prrn 0 finding out what you've forgotten; by

1490 NEXY I H . H

1500 PRINT ° planning your program to fit certain control

121’8 ?EM“;iIf’(JﬁTiEgﬁ:l DO THE FOLLOWING; NEXT STMT STARTS 1580: structures (thereby causing program flow to

1505 PRINT - take a recognizable form), you save time by

1530 REM <«NESTED IF~-IF COMP S TURN, RESIGN; ELSE USER LDSES:: . ' T

1540 IF p=1 GOTO 1570 not having to untangle the spaghetti-like
a5t PRI OUCH! IT LOOKS LIKE ] S T ONE~-NICE 6. LV H N .

1560 GOTO 1560 HE 1 LOST THAT ONE--NIEE GATE structures that you might otherwise come up

1570 PRINT 'SORRY, CHUM! THAT 'S THE LAST STRAW--YOU LOSE.® \Vith

15680 REM «<NEXT IF DEALS WITH COMP/USER RESIGNATION IF F=4,7,8-r M

1590 IF 5+8i6:6 GOT0 1770
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Listing 1, continued:

1600 IF P00 GOTO 1668

1610 RFM TF COMP 14 10 Play. HE MAYT DR MAY NOT REGIGN

1628 IF RNIL L& 6010 1440

1630 PRINT "ABGGHTY  yOH VI LOT M. T UAN SEE . 1 REGION,

1440 §~1

1630 6UTO 1270

16460 1F RND- .3 GOIO 1770
166% PRINT °°

1670 PRINT "NO MATIFR WHAT i B, Y7 °VE GOT YOU. 1D YOU WONT®

1686 PRINT 'TO REDIGN LRALETULLY. OR 1} WE FIGHT 17 OUI=".

1696 PRINT * <1 Tu RESIGN, 0 10 PLAYYS
1700 INPUT ©

1710 IF C#O&C#1 GOTO 1200

1720 1F ©-0 60TO 1740

1730 PRINT "OK, 1 ALCEPT YOUR RISHIGNATION. GOOD GANME . -

1740 5=1

1750 GOTO 1770

1760 PRINT "0K, CLOWN, 17°°S YOUR FUNERAL

1770 REM END OF MODULE EVALUATE

1900 REM CHANGE P TO REILEFCT NEW PLAYER

1910 P~1-P

1920 REM « DON'T LOOP IF END-OF -GANE (GIVEN BY & -1
1930 IF §:1 GOTO 6600

1940 PRINT °°

1950 PRINT "HO YOU WANT 1O PLAY ANOTHER GAME™ i -YEL,

1940 INPUT C

1970 1 CHIREC#D GOTA 1940
19868 TF C-0 GOTN 01w
1970 N1-N1+1

2000 GOTO 02608

0N

20110 PRINT "OK. CALL ™ Ub WHEN YUU™ "VE GOT MURF TiME.”

2000 PNI
3000 RiM i v hH i PRUGRANM

Structured programming in its broadest
sense is several things. On the highest level,
it is completely knowing the problem. On
a middle level, it is the recursive process of
repeatedly breaking a problem into subpro-
blems until each subproblem, at whatever
level, presents a self-evident solution. (Also,
this level requires some awareness of the
basic control structures.) On the lowest
level, structured programming is writing
each subproblem (using one of several
given control structures) so that program
flow is standardized to one of several recog-
nizable and easily traced patterns.

It’s strange that computer programmers
took so long to analyze their own pro-
gramming methods, especially since analysis
is so necessary to the problem solving
process. But the analysis was finally done,
giving birth to the idea of structured pro-
gramming.

Structured programming is not univer-
sally acclaimed. But the fight between pure
structured and pure unstructured pro-
gramming is largely an academic one. In the
field, applied structured programming (or
many of its techniques, under different
names) is essential to programming complex,
real world problems. And that means that,
even in programs of computer experi-
menters, it couldn’t hurt.®
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Decision Tables:

IF {condition CONDITION CONDITION
statement) STUB ENTRY
(action ACTION ACTION
THEN statement) STUB ENTRY

Figure 1: Basic elements of a decision table. A decision table is a formal
listing of a series of interconnecting facts and possible alternative actions

associated with a particular situation or process.

Rule I Rulel lRule

TABLEHEADER] 1 ] 2} ... m
Row?t + . . ! '_ '
Row2 | I .
Row3_ I 1T

i I R
| | |

—_—— e e AP DU R B
Rown ] I l

Figure 2: Additional decision table elements. The table header (or name)

allows each table to be uniquely referenced.

EXTENDED ENTRY EXAMPLE 1 2 3 ELSE

Compare Amount to Discount Amt1s - Amt Gr -

Amount Disc Disc

Compare Quantity to Quantity Qty 1s - Qty Gr -

on Hand on Hand on Hand

Billing Rate Regular Discount -

Quantity to Ship Ordered Ordered -

Investigate - - ERROR
Figure 3: Example of an extended entry decision table.

MIXED ENTRY EXAMPLE 1 3 ELSE
Ordered 2 Discount Amount N Y Y -
Buyer Type Retail — | Wholesale -
Give Discount Billing - X — -
Back Order Ordered Less
on Hand Amount X - X -
Investigate Error — - - X

Figure 4: Example of a mixed entry decision table.
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How to Plan Your Programs

Thomas G Bohon

“Oh, no,” you say to yourself, “Another
one of those fancy techniques which no
one can understand, | can't use, and | can
definitely get along without!”

Did something like the above pass
through your mind when you read the title
of this article? Well, put aside ycur doubts
for a second and read a bit further. | think
you'll be pleasantly surprised to learn that
you already know the process I'm1 going to
describe and, in fact, probably use it in a
very informal way every day. All | want to
do here is to formalize what ycu already
know and show you how you can apply
this knowledge to make the job of program-
ming your home computer a little easier.

What am | talking about? Decision
tables, of course. And, after reading this
article, you should have a better understand-
ing of what they are, how they are con-
structed, and how to use them effectively.

Some Definitions Before We Begin

A decision table is simply a formalized
presentation of the mental process each of
us goes through every time we are con-
fronted with a series of facts which require
us to decide on one course of action or
another. Stated another way, a decision
table is merely the writing down of the
facts and possible alternative actions asso-
ciated with a particular situation or process.

In programming, decision tables act as
effective substitutes for, or as an aid to,
the block diagrams associated with prelim-
inary flowcharting. They are used primarily
when the situation being studied involves
complex decision logic, since the decision
table presents not only the original con-
dition but also the course of action in
an easy to understand and easy to use
tabular form.

There are two main sections of a deci-
sion table (see figure 1). The upper section
(shown as exactly half of the table, a situa-
tion not necessarily found in an actual
situation) presents the possible conditions
upon which the decision will be based.
The lower portion (again, not recessarily
half of the table) presents all possible



actions resulting from the possible decisions
in the upper portion.

Each portion of the table is further
broken up into two sections, with the left
hand section being called the stub and the
right hand section called the entry. Thus,
in our typical decision tabie we have a
condition stub and a condition entry in the
upper portion, and an action stub and an
action entry in the lower portion.

Figure 2 shows the remaining elements
of a decision table. Note that there is a
table header (sometimes called the /abel
or name) which allows each table to be
uniquely referenced. This is necessary
in complex situations where the condi-
tions and actions may require multiple
tables.

Each rule in the entries is identified
by a rule number. The condition stub
describes a condition in a way that may
be answered either yes or no {in one kind
of table} or with a specific value. The
condition entry provides the means of
completing the condition statement. The
action stub describes the action(s) to be
taken, while the action entry provides
the means of showing completion of the
actions.

Decision tables are generally classified
by the type of information recorded in the
entries. There are three types generally
accepted:

® Limited Entry: This is the most

widely used and, because of its sim-
ilarity to binary logic, is most suited
for computer oriented applications.
Condition entries are limited to a
Y, N or — {meaning not applicable).
Action entries are limited to Xs. In
order to accomplish this, the con-

dition stub must be written so that a
true-false condition exists, and the

action stub must describe the com-
plete action to be taken. The example
in this article will be of this type.

@ Extended Entry: In this type of deci-
sion table, the entry portion is merely
an extension of the stub portion. The
stub describes the variable and the
entry describes the possible values
which the variable can assume. This
type of table is quite well-suited for
those situations in which only a few
variables occur, except that those
few variables may assume many differ-
ent values. Figure 3 is an example of
this type of table.

Note: For those readers
who would like to learn
more about decision tables,
| recommend the following
books:

Automatic Data Process-
ing: Principles and Pro-
cedures by E Awad and
DPMA

Decision Tables and Their
Practical Application in
Data Processing by
Thomas Gildersleeve.

Both of these books are
published by Prentice-Hall,
1970. | would also be
happy to answer any ques-
tions raised by my article.

Ciosed Table Example #1 1 2 3 F/gure 5: Examp /es_ ‘Of
open and closed decision
condition tables. An open table has
condition as its last action in each
action rule a branch to the next
action table in the series. Closed
502 X tables return control to
- the tables that call them
action . .
upon completion of their
DO 3 X 3
. routines.
action
Ciosed Table Example #2 1 2
condition Open Table Example #1 1 2 3
condition condition
action condition
action action
RETURN X X action
action
GOTO2 X X X
Closed Table Example #3 1 2 3
condition
condition Open Table Example #2 1 2
condition condition
action condition
action action
EXIT X X X action
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© Mixed Entry: As the name implies,
this type of decision table has rows
which contain either limited or ex-
tended entries. See figure 4 for an
example.

As mentioned above, complex situations
may require more than one table, or you
may place different types of decisions in
different tables. Obviously, there must be
a way for one table to reference another
and indeed there is. How? Simply by the
type of table you build. An open table
has as its last action in each rule a branch
to the next table in the series. This transfer
is a permanent one and is accomplished by
an action stub of GO TO n. A closed table,
on the other hand, uses an action stub of
DO n or PERFORM n with the idea that,
after the called table is completed, control
will return to the calling table and the
indicated actions from that point on will
continue. Return from the called table is
through an EXIT or RETURN action entry.
Figure 5 gives examples of both open and
closed decision tables.

How to Construct a Decision Table

The first step in constructing an effective
decision table is to state the problem in a
clear and concise manner. For example,
suppose we wish to construct a table for the
following hypothetical situation:

Your firm, which manufactures fridgets
for home computers, often sells on credit.
If a customer pleces an order which
exceeds his/her previously established
limit, the order should be forwarded to
the credit manager for approval prior to
filling and shipping it. However, if the
customer has purchased more than $600
in the past six months, he[she is consid-
ered a reqular customer, and in such
cases tentative approval is assumed and
the order is filled but not shipped until
credit appoval is received. There is also a
minimum order value of $100 from all
customers and all orders less than this
amount must be returned unfilled unless
the order is from a regular customer in
which case it may be filled and shipped.
All orders over $500 in value receive a
10% discount and all orders over $750
receive an additional 5% discount. How-
ever, the discounts apply only for regular
customers as defined above.

By stating the situation as we have, we
have completed the first step in our decision
table construction (I realize that | said the
statement should be clear and concise, but
we have to have something to work with!).

The second step in our construction
process is to isolate and list both the condi-

tions which will affect our eventual decision
and the possible actions we may take:

Conditions Actions

Regular customer Request credit approval
Order exceeds credit limit Fill the order
Order less than minimum  Ship the order

Order less than $500 Reject the order

Order is over $500, Give 10% discount
less than $750 Give 15% discount

Order is over $750 No discount

At this point we should stop and examine
our lists for correctness and add any items
which have been omitted. In our example,
the last three items in each list are redundant:
obviously, a single order cannot possibly
require all three checks nor is it necessary to
keep all three actions. It would be much
simpler to check each order for “over $500”
and “over $750,” assuming that the only
possible other condition will be ‘“under
$500.” Similarly, instead of listing all three
discount possibilities, why not list “give
10%” and “give an additional 5%" — this
covers all possibilities. After our examina-
tion and the elimination of these redundant
conditions, we have the following revised
lists [Note: There is no implied relationship
between Conditions and Actions at this
point][:

Conditions Actions

Regular customer Request credit approval
Order exceeds credit limit Reject the order
Order less than minimum  Give 10% discount

Order over $500 Give additional 5%
Order over $750 discount
Fill the order

Ship the order

The next step is to place these conditions
and actions into a formal table structure.
A general rule to follow when constructing
the actual table is to list the actions in the
order in which they are to be performed.
Further, a condition entry is left blank
{(not applicable) only if the condition is
either not possible or is overshadowed by
other conditions also present. Our table,
in skeleton form, appears as in figure 6.

After we have filled out the condition
and action stubs of our table, we must
complete the entry portion by filling in the
rules. This is accomplished by returning to
the original problem statement and carefully
marking the condition entries and the asso-
ciated action entries. This is shown in
figure 7a.

The final step in building our decision
table is to insure completeness and eliminate
both redundancy and contradiction. Con-
tradiction is best eliminated by careful
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Regular customer

Order exceeds credit imit

Credit approval received

Order less than minimum amount
Order > $500, less than $750
Order > $750

Request credit approval

Give 10% discount

Give additional 5% discount

Fill the order

Ship the order

Reject the order

Investigate error

Figure 6: A preliminary decision table based on the example in text.
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Figure 7a: A skeleton decision table developed from the preliminary table in
figure 6.
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Figure 7b: The final corrected declision table for the example in text.



66

examination of the problem statement to
insure that the conditions and actions we
entered into the table earlier do not con-
tradict each other. Insuring completeness
is fairly simple if we understand the ‘‘else
rule.” Put simply, this rule says that, if none
of the other rules listed hold, we also have a
specific action to take. In the case of our
table in figure 7a, the “else rule’ says we are
to investigate the error condition.

Redundancy

Eliminating redundancy is a bit more
complicated. There are various rules and
methods for doing this, and we will discuss
only one of them. Certainly this is not the
only “right” method. Also, keep in mind that
throughout the following discussion we are
dealing only with two rules which have the
same indicated actions.

The first law for eliminating redundance
says:

If, with the exception of one condi-
tion, two rules have the same condition
entries and, for that one condition, one
rule has a Y entry and the other an N
entry, then the two rules can be com-
bined into one rule with the entry for
that condition becoming indifferent (not
applicable).

Let's apply this law to our table in fig-
ure 7a. Note that rules 2 and 6 seem to fit
the criteria: they both have the same action
entries and the same condition entries,
making them candidates for elimination. We
can thus combine these two rules with the
result shown in figure 7b. Note that rules 3
and 9 almost fit our criteria for possible
elimination: the only difference is that
there are two conditions with different
entries, and we are allowed only one by our
rule. No other rule pairs fit the criteria and,
after combining the two rules as in figure 7b,
we may safely assume that our table passes
this first law of redundancy elimination
processing.

The next test to apply can be stated as
follows:

Each pair of rules remaining after
application of the test above must have
at least one condition for which one rule
has a Y entry and the other an N entry.

Those pairs of rules which meet this test
are said to be independent of each other,
while those which fail this test are said to
be dependent on each other. Dependency
at this point in our tests indicates that the
table still contains either redundancy (it
has a dependent rule pair with the same
actions) or contradiction (there is a depen-

dent rule pair with different actions). Let’s
examine our table.

Pairing each rule with each of the others,
one at a time (eg: pair 1 and 2, then 1 and 3,
2 and 3, 3 and 4, and so on), we check the
conditions for a Y in one rule and an N in
the other. This isn’t as time-consuming as it
appears, since we can assume the pair is
independent upon encountering the first
occurrence of the Y-N condition. We can
see, after examining all rule pairs, that none
of them are dependent. We can therefore
assume that our table is indeed nonredun-
dant and that it does not contain any
contradictions.

Note: /f we had found a dependent rule
pair, we would have had to apply the
following rules to eliminate the redundancy:

1. If one rule js pure and the other
mixed, then the pure rule is contained
in the mixed rule and the pure rule
may be eliminated. (A pure rule is
one in which all entries are either Y or
N, while a mixed rule has both Y and
N entries.)

2. If both rules are mixed, there is at
least one pure rule which is common
to both which you can eliminate from
one of the original rules.

We won't go into these here, since they
usually appear only in more complicated
applications. | mention them simply to make
our discussion complete.

Once our decision table is built and we
have completed the error checking pro-
cedures mentioned above, we can use the
table as a basis for either a preliminary flow-
chart or, with the addition of the necessary
1O routines, go directly to the coding phase
of our programming. The path we take at
this point depends entirely on how carefully
we have constructed our table.

Conclusion

We have seen how we can go from a gen-
eralized problem statement to a list of pos-
sible conditions and actions to a completely
checked out and (we hope) error-free de-
cision table. Of course, like any other new
procedure, you will have to use it several
times before you become comfortable with
the process. But no matter how difficult or
complicated it seems, | urge you to try it
not once but several times in actual program-
ming situations. After doing so, I'm sure
you'll agree that using decision tables greatly
increases your productivity and eliminates
the situation in which, almost at the end of
a long program, you discover one little
condition you forgot back at the beginning,
which is where you end up again in short
order!®



Programming Entomology

An entomologist is a bug expert. When he
sees an insect, it isn’t just a bug to him (in
fact, he will vociferously protest that not all
insects are bugs); it has a particular habitat,
lifespan, favorite food, and breeding pattern.
Nor is his knowledge just academic; he can
tell you how to protect yourself from a
harmful one by killing it or keeping it away.

The same sort of knowledge is necessary
for programming. The skilled programmer
knows what kinds of bugs may attack a
program, how to track them down, and how
to keep them from getting there in the first
place. He knows the ways to get at particular
bugs, as well as the general treatments which
are effective against all of them.

The first thing to realize about bugs
is that they don’t appear by spontaneous
generation. They have a creator, and their
creator is the programmer. (Throughout
this article, | am speaking only of user
program bugs; hardware bugs are an entirely
different breed, subject to different laws,
and systems software may be beyond your
control.) No matter how outrageously the
program is acting, it's only following orders.
So what you have to ask about a bug in
your program is: how did you put it there?
What kinds of mistakes are you prone to
make? If you caught a certain bug in one
part of the program, might you have put
the same kind of bug elsewhere as well?
“Thou art God” . . .and thou must take
care of thy creation.

But the fact that each programmer
creates his own bugs doesn’t mean there
aren’t species of bugs found in everyone’s
programs. Knowing about these species can
be a great timesaver, especially when the
species can be identified by the effects.

One of the most common bugs is the
Clobbered Value, found where the pro-
grammer assumes the content of a register
or the value of a variable is the same as
before, but it isn't. Take this attempt to
exchange the values of two variables:

10LETX=Y
0LETY=X

This fails because when statement 20 is

Gary McGath

executed, the value of X has already been
clobbered by the previous statement, with
the result that Y never gets changed at all.

Clobbered Values are frequently found
on subroutine exits. It’s easy to write a
harmless looking CALL or GOSUB (possibly
to a routine you haven't written yet) and
assume everything will remain the same. But
strange things can happen if the subroutine
unexpectedly changes some values.

A not too distant relative of the Clob-
bered Value is the Zapped Stack, found only
in machine and assembly code. 1t appears
most often by pushing items onto the pro-
gram’s stack at the start of a subroutine,
then failing to pop them, or popping too
many things at the end. Another way to
invite this bug is to use the stack pointer
for some other purpose during the course
of a subroutine.

Subroutines are also the habitat of the
Botched Call. A certain protocol is needed
to call any particular subroutine. If, when
you write a call to a subroutine, you expect
a value to be returned in the wrong place,
or you assume the subroutine will do some-
thing which it actually won’t (or vice versa),
this bug will have gained a foothold. The
difference between a Clobbered Value and
a Botched Call is that when you have the
latter, the subroutine is doing the right
thing; the calling program is just mistaken
in its expectations.

Another species of bug lurks in jumps,
branches, and GOTOs. The Branch Bug
is so difficult to fight that serious attempts
have been made to wipe out its habitat;
languages and programming styles {struc-
tured programming) have been developed
that use no jumps. The Branch Bug comes
in two varieties: jumping to the wrong
place, and jumping to the right place with
inadequate preparation. The first of these
is easy to produce in languages where
statement labels have to be numbers (eg:
BASIC and FORTRAN, especially BASIC,
where every statement has to be numbered
whether it’s ever going to be a jump destina-
tion or not). The jump with inadequate

preparation is similar 1o fhe Botched Cal\,

Clobbered Value Bug:
Your program changes the
value of avariable ata
time and place which is
unintended. The detection
difficulty ranges from the
obvious (after if is found)
to the subtle (before it is
found).
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Botched Call Bug: The
Botched Call Bug is like
the proverbial square peg
in a round hole: Unless

the peg or the edge of the
hole yields, sparks will fly.

Zapped Stack Bug:
Stack oriented machines
and software are both
very egalitarian with
respect to pushes

and pops. They like

to have the same
number of items pushed
as are later popped, or
else they'll transform
themselves from tranquil
and placid programs into
memory zapping monsters.

but it can often be harder to figure out if the
program has a complex flow pattern.

A few special methods are applicable
to fighting the Branch Bug. One of these
is program flow analysis. A look at the
possible paths a program can take will
often reveal some of these bugs. Is there
a part of the program that can never be
reached? Are there traps in the program,
loops that can never terminate? Are there
jumps which will result in variables being
used without having been set to a value?

In languages like BASIC, where every
statement is labeled, it’s helpful to set off
statements that can be reached by jumps
either by using special statement numbers
or by pointing them out in comment state-
ments. In any language, the statements
that can be reached by jumps should be
logical breaking points in some sense,
places where a new unit of work begins.
Except in desperate situations where
economy is all-important, jumps should
be used to satisfy the logic of the program,
not to save a few instructions.

If a subroutine call can be used instead
of a jump, it probably should be used. A
subroutine will send you back where you
came from, so figuring out the flow of the
program is easier. For many purposes,
you can treat a subroutine as a unit when
studying the program; as a single instruction
that happens to do complicated things.
You can’t do this with the instructions
reached by a jump.

The next bug in our survey feeds on
apples and oranges. More generally speaking,
the Mismatched Unit is found where the
units or dimensions of the quantities being
used in a program aren’t the ones actually
needed. Take the program statement LET
V =D * T, where D is a distance in miles,
T is the time traveled in hours, and V is
intended to be the traveler’s average velocity
in miles per hour. By using simple algebra
on the units, you can see that the result
obtained will be units of miles times hours,
not miles per (ie: divided by) hour.

Bugs of this type are harder to spot when
the mismatched variables are further apart
in the program, but consistency will keep
them from occurring. Simply be sure you
know in advance what units each variable
has to come in.

Assembly and machine language program-
ming allow an especially messy type of
Mismatched Unit to show up: mismatches
between addresses and data, or between
absolute addresses and relative addresses
(values to be added to a base address). To
avoid this bug, watch out for the different
addressing modes of different instructions.

Another bug with a specialized habitat
is the Fencepost Bug, named for its ten-
dency to rest in problems like this one:
“If you are putting up a wire fence 100
feet long, supported by posts every 10 feet,
how many posts do you need?” Another
name for this bug is the Boundary Condition
Bug; it's always found in connection with
the start or end of some sequence, where
special treatment is needed. One form
manifests itself in confusion over whether
the first element of a group is number O or
number 1. Another is found in the attempt
to relate each element of an array to the
next, as in this statement:

IF T(I) <T(1+1) GO TO 100

Try this one setting | equal to the dimension
of T.

Finally, we come to the most insidious
of all bugs, the Timing Bug. The character-
istic that makes this bug so fearsome is that
a program infested by one may run correctly
once but not the next time; it may even run
correctly 99 times but fail on the hundredth,
using exactly the same data each time. To
make matters worse, running programs in
single step mode will usually drive Timing
Bugs into undetectable hiding.

As the name suggests, the Timing Bug is
one that shows up depending on the order
in which asynchronous events (events that
have an unpredictable relationship in time)



Mismatched Unit Bug: A
result of inadequate
analysis of a calculation,
the Mismatched Unit Bug
results in strange elixirs.
When both apples and
oranges are thrown into
the analytical engine,
what is the nature of the
juice which flows out?

occur. Systems that have interrupt facilities
are especially prone to being attacked by
Timing Bugs, since an interrupt routine may
be executed at a different point in the pro-
gram each time it's run. An interrupt routine
may, for instance, set up certain variables
to be used by the main program. If another
interrupt of the same kind can occur before
the variables have been processed by the
main program, and if that interrupt changes
those variables, unpredictable results can
occur. Yet most of the time, interrupts
may not occur that close together, so the
bad result is said to be nonrepeatable. This
means that repeated runs of the program
can’t be used to systematically close in on
the bug.

The Timing Bug: This
most subtle of all bugs
spends most of its time
relaxing, and suddenly
taking a swipe at appar-
ently random times.

A Timing Bug can also live on direct
memory access (DMA). Some mass
storage devices can read or write data in
bulk without the intervention of the
processor, using those memory access
cycles which the processor doesn't use.
The length of time a DMA transfer will
take is, at best, very difficult to predict;
so a Timing Bug can strike if memory
which is accessed by DMA can be accessed
or modified by the processor.

Since Timing Bugs are so hard to hunt
down, extra efforts should be made to avoid
giving them a foothold. Be extra careful in
writing interrupt handlers or DMA com-
mands. Watch for places where interrupts
need to be disabled. As for the indentifica-
tion of Timing Bugs, the following rule is
useful: if you can prove, in a precise instruc-
tion by instruction study, that what
happened couldn’t possibly have happened
from the execution of those instructions,
suspect a Timing Bug; something else was
happening during the execution of those
instructions.

Incidentally, it’s possible to encounter
bugs much like Timing Bugs even without
interrupts or DMA. An input or output
device, such as a keyboard, is asynchronous
with the program; the exact behavior of the
program will depend on the behavior of
these devices. For instance, a program
which accepts keyboard input and accu-
mulates it in a buffer may work fine for
you, yet a faster typist may make it fail
because no provision was made for the
chance of exceeding the buffer’s capacity.
But in a situation like this, it's at least
possible to look at every call to an input
routine and tell what its effects might be.

This completes our survey of important
species of bugs (I have nothing useful to say
about the Common Typo, though it does
have to be fought). Others will no doubt
discover voracious breeds which | have
overlooked, and perhaps they will improve
on some of the classifications | have men-
tioned. But knowing about the species
which are listed here will hopefully be
a help in identifying and killing the bugs
in your own programs.

Branch Bug: Jumping
blindly about in memory,
the Branch Bug is always
on a collision course with
valid execution of a

program.
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This doesn’t mean that classifying
bugs is all there is to entomology, neither
the biological kind nor the kind being
discussed here. Entomology wouldn’t
be a science if it cculdn’t say things that
are true of all bugs, regardless of species.
What 1 have discussed so far is differentia-
tion; but integration is equally important.

The basic fact that unifies ali bugs is the
one which | mentioned at the beginning of
this article: they're all creations of the pro-
grammer. And this fact allows the use of a
broad-spectrum  killer against all bugs:
DDT, standing for Design, Documentation,
and Testing. Let’s take them in order:

® Design. The best way to stay bug-free
is to write programs without bugs. This may
sound like superfluous advice, but pro-
grammers (myself included) are often
tempted into writing programs quickly,
rather than writing them well. The attempt
usually fails, since such programs will
usually cost more in debugging time than
the time saved in writing them.

An error born of pragmatism is to
suppose that it doesn’t matter how you
desigh a program, as long as it works.
There are two problems with this idea.
The first is that if you use any method
that appears to do the job, without
regard for well organized design, it will
be a lot harder to ever make the program
work. The second problem is that even if
the program works for its immediate pur-
pose, it will be harder to make changes to
meet new needs, since a particular ad hoc
solution may not be generalizable.

The first step in designing a program is
to lay out a complete plan of attack before
writing it. Decide what data structures you
will need, and what method you will use.
Data structures are often the key to the
whole program. First plan the program in a
few large steps; then decide what each step
will consist of in more specific terms; then
repeat the procedure until you're down to
the level of your chosen programming lan-
guage. This is the principle of structured pro-
gramming, and also of mental unit-economy:
avoid having to think about more things at
once than your mind can handle. If you can
keep everything relevant to a particular
operztion in your head, you're not likely to
put bugs into its implementation.

Flowcharting is often recommended for
program design, but it's cumbersome and
doesn’t lend itself to representing a hierar-
chical design. Another approach is to use a
well designed programming language, such as
ALGOL or APL, to write the design. Since
you aren’t actually going to run the program
in that language, you can assume any fea-
tures that would make the job easier. The

point of this is to have a representation of
the program that you can undersiand with-
out strain, so that you don’t lose sight of
your overall plan while chasing down details
of implementation. If you do have bugs
after doing this, at least they won't be part
of the whole design of the program.

@ Documentation. The main reason for
writing up the way a program works isn’t to
explain it to someone else; it's to make sure
you understand it yourself. Documentation
shouldn’t be an afterthought; it should begin
with the design of the program (when you
write what it is going to do), and continue
with comments written along with the
instructions.

Good documentation isn’t found in sheer
number of comments (though there should
be a lot); it’s found in comments that ex-
plain the operation of the program. Com-
ments are especially needed for data, sub-
routines, and points reachable by jumps.
Variables and constants should be explained
so that the reader will see how they can be
used; this allows us to spot threats to
them, such as Mismatched Units and Clob-
bered Values. If the language allows, give
constants names rather than using their
numeric values throughout the program;
this makes updating easier and renders
the Common Typo’s attacks more con-
spicuous. Subroutines should be prefaced
with a description of how they are called,
what inputs are needed, what values are
returned, and what information may be
destroyed in the process. Jump points
should have an explanation of the con-
ditions under which they are reached.

To make a program at least partly self-
documenting, the name of a routine or
variable should indicate its use. One of the
major weaknesses of BASIC is that it doesn’t
allow this to be done very much; this is a
reason for having a lot of comment state-
ments to explain what BASIC variables
and subroutines are used for.

Just as a sample, here’s a preface to a
hypothetical 8080 assembly language sub-
routine (see box). The comments explicitly
define linkage conventions.

The protection provided against Botched
Calls should be obvious.

® Testing. If you follow the approach
outlined so far, you’ll have a better chance
of getting your program to work, but you
may still have planted a few bugs inadver-
tently. So you have to test the program
before declaring it bug-free. Testing
should begin with a simple version of the
program, if possible; but it should begin
only after the program has been written
with enough care so that there’s a chance



of not finding any bugs.

Use whatever debugging tools are avail-
able. High-level languages will usually pro-
vide useful information when the program
goes wrong. Versions of BASIC that allow
single statements to be executed make it
possible to find something about the
conditions under which an error occurred.

When working in machine language, a
debugging program will ease discovery of
bugs. Such a program allows the user to
put breakpoints into the program being
tested (returning control to the debugger
when the program counter reaches a certain
address) and to examine and modify regis-
ters and memory. These programs range
from simple 1 K monitors to powerful
symbolic debuggers like Digital Equipment
Corporation’s DDT (Dynamic Debugging
Tool, no relation to the name as used here).
Having one of these in ROM can be a
tremendous help.

If the program works the first time, try it
again with different data to make sure.
Check out simple cases. Sometimes a pro-
gram will work in complicated cases, but be
bitten by the Fencepost Bug in simple ones.
Check out more complicated cases. If
possible, use a random number table as a
source of test data, along with handpicked
cases.

If the program doesn’t work the first
time, try it again with different data. Aim
for the simplest case possible. If you cah
get the program to do something right,
that will cut down the number of places
where bugs may be lurking.

When a program is being tested, the work

is easiest if execution comes to a screeching
halt as soon as something goes wrong. A
program may be able to run a while after
crucial damage has occurred, only to
clobber all of memory before stopping.
If this happens, it can be almost impossible
to localize the source of the disaster. But
if the program makes periodic checks for
error conditions (such as impossible values
or invalid relationships) and reports them,
there’s a better chance of discovering just
where things went wrong. For instance,
a routine that fills a block of memory
between two addresses might check to make
sure that the low address is really lower
than the high address. Redundant tests
may slow down the program, but they
can be taken out when all the bugs are
known to be dead.

The overriding consideration to remem-
ber in the use of this Design, Document and
Test technique is that it's open-ended. It
will, in principle, kill any kind of bug; but
a new approach to design, a better scheme
of documentation, or a novel test may be
needed for subtle species. Approaching
bugs scientifically means thinking about
them. It means recognizing that any bug
will have important similarities to pre-
viously encountered bugs; and that it may
have equally important differences. So
when you find yourself struggling to dis-
cover what's wrong with a program whose
behavior is incomprehensible, you can
console yourself with the thought that you
may be about to make an exciting entomo-
logical discovery that you can use repeat-
edly.@

COMPUTE PROBABILITY OF WIDGET BREAKAGE
INPUT — MASS OF WIDGET (GRAMS) IN REGISTER PAIR BC
AGE OF WIDGET (DAYS) IN REGISTER PAIR DE
OUTPUT — PROBABILITY OF BREAKAGE (PERCENT) IN REGISTER PAIR BC
ALL OTHER REGISTERS ARE CLOBBERED
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About This Section

This section deals mainly with one of the more difficult aspects of a program’s structure
tables. For any but the most elementary applications the programmer finds that he (she) needs
to construct some kind of table for a variety of purposes: branching, symbols, data. In fact,
note that virtually any file of data can ultimately be thought of as a table. This section should
answer many of your questions about a variety of tables.

The second topic covered in this section is how to create and maintain binary trees. This
subject has a reputation which scares a fot of people from using trees. But when working with
large amounts of unsorted data, many times the fastest way to reference any particular piece of

it is by arranging it using a binary tree approach. Now there is no longer anything to fear about
binary trees.



An Introduction to Tables

The construction and use of program
tables is the gateway to developing powerful
programs. The new programmer may have
trouble getting to know the concept of
tables, but time spent learning about tables
is well worth the effort.

The first few programs to go into your
home computer are likely to be written
using a multitude of IF tests: If a value
equals 1, branch to a particular routine; if
equal to 2, another branch; if over 3, yet
another branch; and so on. After a while
this gets to be a lot of work. Programmers
quickly learn to use table structures to
simplify decision making.

Tables are called by many names, de-
pending on the language and the application:
arrays, vectors and matrices, to name three.
Even the concept of a “file” is usually justa
large table which follows the same structural
rules but is stored on disk or tape.

Table Elements

Most of the tables we meet in books,
forms and so on consist of data arranged
in rows and columns. Each row usually
contains a record about something. Name,
address, age, phone number might be the
record of a schoolmate. Each item of this
record, such as name, is called a field. In
most cases, each record contains the same
number of fields; this is called a rectangular
table because of its appearance when
printed, and is by far the easiest type to
handle.

Rows and columns can be interchanged,
of course, by laying the table on its side.
Let’s look at two ways to encode this small
table:

Name Age Phone
Joe 14 515-3838
John 18 216-3001
Pete 17 414-3377

First we could encode each line this way:

F James Butterfield

record1 field1 Joe
field2 14
field3 5153838

This is the most common, and usually the
handiest way to set up the table. It's logical,
easy to change or to add new items, and not
difficult to program a search routine for. All
the data for a particular line of the original
table is in one record. However, during this
search, we must leap 12 bytes or so each
time we wish to examine a new record. This
may or may not be convenient to do, de-
pending on hardware characteristics. By
laying the table on its side, we could write:

record1 field1 Joe

field 2 John
field 3 Pete
record2 field1 14
field2 18
...etc

This method is in some ways like de-
voting a separate table to each kind of data
in the big table: a table of names, a table of
ages, etc. This type of organization might
make it a little easier to search for a name,
but it becomes tougher to add a new name
to the list, and harder to read. But either
way works.

Order of Items

One of the most important decisions you
must make in designing a table is how to
order the records. For small tables it
doesn’t matter very much. But as tables get
bigger, it becomes important not to waste
time on lengthy searches.

At first glance, the simple answer is to
put the most often used items at the top of
the table where they'll be found first, a pro-
cedure which frequently works well. But
you must know roughly how often each
table item is likely to be used. If the usage
pattern changes, your table lookup becomes
inefficient. Beware of elaborate schemes to
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rearrange the table order as usage changes:
they can quickly use up more time than they
save.

An excellent method for ordering tables
is to use the table address itself as the item
to be matched. Let’s clarify this with an
example. Suppose we have a character in
Baudot (5 level) code that we want to trans-
late, say, to ASCIL. The lowest value possible
is blank, or 00000 (decimal zero). The
highest value is the letters shift, or binary
11111 (decimal 31). If we add this char-
acter, as a binary number, to the table base
address, we'll create an address ranging from
TABLE+0 to TABLE+31. In each of these
table locations, the corresponding ASCII
character will be stored. We'd have to make
provision for both upper case and lower case
Baudot, of course. The important thing
about this kind of table is that we never have
to search it. We go straight to the address
we want.

The most common way of ordering items
in a table is sequential, ie: in ascending or
descending order, alphabetically or numeri-
cally. Usually we must pick one particular
field for the sequence, the one we expect
to sezrch most often.

We get many advantages when we have a
sequential table. The program can detect
right away if it has “gone past” the item it’s
looking for, so that it won't waste time
searching through the rest of the records.
With a little more programming effort, we
can write a binary search program that
passes through a table very quickly. The bi-
nary search routine works by examining the
middle of the table and deciding if the de-
sired item is above or below this point. From
then on, the program concentrates exclu-
sively on the remaining half of the table, and
looks at its midpoint in the same way. Each
step cuts the remaining portion of the table
in half; eventually the desired location is
found or a conclusion of *no match” results.

A sequential table is the only type that
can be used for a continuous value calcula-
tion. You may recognize the following par-
tial table-

Income
less than 2350
less than 2375
less than 2400

UINO;'
x

This table associates a continuous value,
income, with unique tax amounts. If your
income was $2378.54 you do not escape tax
because there isn't an exact value of
$2378.54 in the table. For your program to

find such an intermediate value, the table
must be sequential.

There are several drawbacks to sequential
tables. The first is the problem of getting the
table in sequential order and keeping it that
way during deletions and additions. The
second is that only one field is in sequence.
This means that the user may have to re-sort
the whole table to start searching on a new
field.

Advanced Techniques

When it is desired to arrange a table in
some order, there may be some difficulty
moving the items around, especially if they
are large and clumsy.

One way to get around this is to leave the
data in its original order and build a separate
table called an index which gives the order
in which the data should be read. This way,
instead of moving the data around, the index
is simply changed as necessary.

Another way to achieve a similar effect is
by chaining. This attaches an extra field to
each record which points to the record to be
looked at next. The program must have a
starting point that tells which record is to
be examined first. From then on, the pro-
gram follows the chain to the last record.

Indexing and chaining are both relatively
complex, but they have one important ad-
vantage: the same file can have two indices
or two chains so that it is simultaneously
sorted two different ways. This feature can
sometimes eliminate many time-consuming
sorts.

Tables which are not rectangular are a
source of difficulty. If we are recording,
for example, names of parents and their
children, we soon face the problem of
some parents having only one child, while
others have seven or more. Should we allow
seven slots for each set of parents and waste
precious memory? We could build z complex
table structure to allow for a variable num-
ber of fields (children). This is practical, of
course, but sometimes we can eliminate the
problem by making the table intc a list of
the children rather than the parents.

Another special case which is often
encountered is the triangular table, which
resembles a square split along the diagonal,
with the two halves containing the same
numbers. For example, if you calculate a
table of mileages between cities, vou don't
need to store both the Buffalo to Denver
and the Denver to Buffalo mileages; they
are of course the same. But trying to store
only half the table to save memory turns
out to be a difficult task. You'll need a
medium sized program to get to the right
spot in the table.




Access

The addressing modes of your machine
warrant study to determine the best way
to scan tables. If you have a hardware index
register, that’s usually the best way both in
terms of speed and programming con-
venience. Each microprocessor has its idio-
syncrasies. An 8 bit index will only cover a
table size of 256 locations. Sometimes,
though, an index doesn’t modify a full
address, but only an 8 bit offset. In this case
the index must hold a full address rather
than a simple table position. How easy is the
index to modify as you step through the
table? An increment command that adds
one to the index value is of limited value
if you want to jump 12 locations at a time.

If indexing isn’t convenient for a given
job, indirect addressing is the next best bet.
Put the address of the start of your table
into an indirect address location; then add to

it as necessary until you reach the end of the
table.

Don't hestitate to search a table back-
wards if it’s convenient. This facilitates
searches when using certain types of in-

dexing.

Program Intercommunication

One program segment can communicate
with another by means of tables. In fact,
processors which feature a common memory
use this technique. When working with an
interrupt structure, the recommended pro-
cedure is to have one program prepare a
table of material for another to pick up.
This becomes a good way to segment large
projects into convenient modules. Each
module can be separately debugged by
preparing a set of test input tables and
examining the output tables it produces.
On very large jobs, this kind of segmen-
tation is an excellent way to divide work
among several people. Even online debugging
becomes easier, since the tables can be
readily viewed at any time.

Conclusion

Tables are a good way to arrange data
in a compact, visible and easy to modify
form. New programmers sometimes have
problems getting used to designing and
using them, but they are well worth the
effort.®
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ashed Sym

Hashing is the meat and potatoes of symbol table

handling.

A Note About Notation

The routines described
in this article are repres-
ented in two notations.
Figures 1 through 5 show
the various algorithms in
the Warnier-Orr structured
programming  discipline.
This notation is more fully
described in David Higgin's
articles in the PROGRAM
STRUCTURE section of
this edition. Listings 1
through 5 provide the
author’s  corresponding
8080 assembly language
versions of the pro-
grams. . .BL
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It is often necessary to convert alpha-
numeric code into numeric code efficiently.
This article describes how to do this using a
powerful data structure called the hashed
symbol table. Assembly language code is
included for the 8080 microprocessor, but
the algorithnis and structures apply to any
computer.

A symbol table is a set of ordered pairs
called entries. The first element of each pair
contains a symbol (usually in ASCH) and the
second contains the object the symbol
represents. There are three operations which
are applied to a symbol table:

® Lookup (also czlled search): An input

symbol, called the key, is compared to
the symbol in an entry of the symbol
table. When a match occurs, the object
associated with the symbol is output,
If no match occurs, this condition is
indicated;

© lInsert: An entry is appended to the

symbol table;

@ Delete: An entry is removed from the

symbol table.

A structure to make these operations easy
and efficient is the object of this article.

LEXCMP
(1, n)

END

.

ol Table

John Beetem

Lookup

Lookup, if done wrong, can be a very
time consuming operation. The most funda-
mental lookup structure is a simple array
where the entries are placed sequentially in
memory. If the number of entries is large,
lookup is quite slow because the key must
be compared to half of the entries on the
average. A sorted array of entries can be
searched by methods such as a binary search,
which is considerably better (and much
more complicated.}) But the be:t method
seems to be one called hashing.

A hashed symbol table consists of many
arrays of entries, called buckets (my system
uses 64 arrays). Each element in a bucket
has the same hash code for its symbol. A
hash code is computed from the symbol
itself using a pseudo random method, such
as adding the binary representations of all
the characters in the symbol and using the
low order six bits of the result. Using a good
hashing method, the symbols are well
distributed over the buckets, and each
bucket is fairly short.

(" BEGIN {g“ key

get character to compare

compare characters

e(c(;)u?l) set not equal flag
p
BEGIN
get next character
equal J last character in string %et equal flag
(0,1) (0,1}
last character in string {SKIP
_END

Figure 1: LEXCMP compares two ASCI/ strings. My format assumes that the
last byte of each string is marked by its sign bit being set. The strings can be
of any length, and don’t have to both be the same length. Equality of strings
is indicated by returning with the match flag set. Otherwise the match flag is

cleared.




To lookup a key, the following algorithm
is used:

® Compute the hash code;

@ Use the code to find the bucket;

@ Use a simple sequential search through

the bucket to match the key.

Since each bucket is short, this is an
efficient way to perform the lookup.

To insert or delete an entry, first hash the
symbol to find the right bucket, then insert
or delete the entry into or from that bucket,
This last operation is dependent on bucket
structure, and will be discussed presently.

Storage could be a problem. Would it
make sense to have 64 different arrays, one
for each bucket? No, because one bucket
could become filled while others are empty,
and it’s silly to run out of space when there
is plenty left. So it would be nice to store all
the entries in the same array in memory.
How does one indicate the bucket structure?

Linked List

A linked list consists of a group of things
called nodes. Each node contains data and
one or more pointers to other nodes. (A
binary tree is a linked list.) This structure is
used to solve our problem as follows:

Each node contains a symbol table entry
and the sixteen bit address of the next node
in the same bucket. There is also a 128 byte
array containing the sixteen bit addresses of
the first node in each bucket. An address
such that the high byte is zero indicates that
there are no more nodes in that bucket. The

fB EGIN {clear register
HASH A offset
<
(1,n)
-
END

(BEGIN

END

LEXCMP: LDAX ;Load A with character addressed by BC.
CMP ;Compare with character addressed by HL.

RNZ ;i not equal, return with zero flag clear.

2w

INX B ;Advance to next character in each string.
INX H

ORA A :If not last character in both strings,

JP LEXCMP ;Then continue comparison, else:

XRA A ;Set zero flag and clear carry flag.

RET ;Return,

Listing 1: Subroutine LEXCMP [LEXical CoMPare] compares two ASCII
strings. The addresses of the beginning of the strings are stored in the HL and
BC registers. The last byte of each string is marked by its sign being set. The
strings can be of any length, and don’t have to be the same length. Equality
of strings is indicated by returning with the zero flag set, otherwise the zero
flag is clear.

BUCKET: [block of 128 bytes, initially zero.]
HASH: XRA A Clear A,
XRA M ;XOR next character in string.
INX H ;Advance to next character.
JP HASH+1 ;If not last character, continue hashing.
ANI 3F ;Use low 6 bits of result as hash code.
MVI H,00 ;Load HL with hash code.
MOV LA
DAD H ;Double hash code since addresses are two
Jbytes long.
LXI D,BUCKET ;Load DE with address of bucket pointer
;array.
DAD D ;HL Contains address of the pair of bytes
rontaining the address of the first node
;in the bucket.
RET ;Return,

Listing 2: Subroutine HASH computes the hash code of the symbol “in” the
HL registers by exclusive OR'ing the characters in the string.

HASH returns the hash code in A, and the address of the address of the first
node in the bucket in HL.

get first character in symbol

perform exclusive OR operation between register and character

get next character

last character {SKlP

{0,1) r
@ BEGIN

use low order 6 bits as hash code

double hash code
last character <
(0,1) get beginning address of BUCKET

add beginning address to hash code to get hash address
L END

Figure 2: HASH computes the hash code of the symbol by exclusive-OR’ing
the characters in the string. HASH returns the hash code and the address of
the address of the first node in the bucket.
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LOOKUP <
loop
(1,n)

BEGIN {save key

~
BEGIN

@

HASH {hash symbol to get first node in bucket

get address of next node

address of next node =0 {set no match flag
(0,1)

f'
BEGIN

{0,1)

END

END
-

address of next node =0

{0,1)

@

matched
(0,1}

{SKIP

END

Figure 3: LOOKUP searches for the key symbol in the symbol table. When
the symbol is matched, the address of the parameters represented by the
symbol are returned and the match flag is cleared. If the symbol cannot be
found, LOOKUP returns with the match flag set.

LOOKUP: MoV
MOV

CALL

MOV
INX
MOV
Mov
ORA
STC
RZ2
MOV
Mov
INX
INX
PUSH
CALL
POP
RZ

XCHG
JMP

LOOP:

=T

mPUIM IOm
my og 2 3
pr

EXCMP

WrOITIrT

LoopP

:Save address of key in BC,

shash symbol: HL contains address of the
address of the first node in the bucket.
;Load DE with address of next node in list,

;Load A with high byte of address
;I DE is zero {symbol not matched)
tthen (set carry.

: Return,)

;Load HL with address of node.

Span {pass over} 2 byte field containing
address of next node in list.

;Save address of key.

;Compare key to symbol in node.

;Restore address of key into BC.

;Return if successful match. (Carry cleared
;by LEXCMP)

;Load HL with address of address of next
node in list,

;Continue search through bucket.

Listing 3: Subroutine LOOKUP searches for the symbo/! “in” the HL registers
(the key) in the symbol table. On the symbol’s first match, the address of the
parameters represented by the symbol are returned in HL with carry clear. If
the symbol cannot be found, LOOKUP returns with carry set.
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matched {;et next node

LEXCMP {compare key and symbol

logical structure of memory (as the program
sees it) is different from the physical struc-
ture of memory. The buckets are stored in
the same region of memory and there is no
“crosstalk” between buckets.

Symbols consist of a variable length array
of bytes containing 7 bit ASCII characters.
The last character in the symbol is indicated
by the sign bit being set, whereas the other
characters have the sign bit clear. This is
necessary so that both ends of the symbol
are known.

A complete node consists of:

@ 16 bit address of the next node
byte 1 contains the low 8 bits,
byte 2 contains the high 8 bits

® n bytes of symbol in ASCIL.

® m bytes of parameters represented
by the symbol.

We are now ready to look at some code.

The Routines

Subroutine LEXCMP (figure 1) is used to
compare two ASCH character strings. The
strings need not be of equal length.

LEXCMP works as follows: the first
two characters are compared. If they are not
equal, LEXCMP returns with a not equal flag
set. If the first two characters are equal,



LEXCMP checks if those were the last
characters in the strings. If so, LEXCMP
returns with the not equal flag set; other-
wise, the next two characters are compared,
and so on.

Subroutine HASH (figure 2) computes
the hash code of a symbol. HASH then
computes the address of the pointer to the
correct bucket.

HASH uses an exclusive-OR function to
hash the characters. This makes it very easy
to detect the end of the symbol, as only the
last character will set the sign bit in the A
register. BUCKET is the starting address of a
128 byte array containing the addresses of
the first node in each bucket.

Subroutine LOOKUP (figure 3) searches
for a key. If the key cannot be found in the
table, LOOKUP returns with a not found
flag set; otherwise, LOOKUP returns the
address of the parameters associated with
the symbol, and clears the not found flag.

Subroutine INSERT, shown in figure 4,
inserts a node into the symbol table. This is
very easy to do using the linked structure.
Only two addresses must be moved. The first
node in the bucket is linked to the new
node, and the address in the BUCKET array
links to the new node; thus, the new node
becomes the first node in the bucket.

Subroutine DELETE, figure 5, removes a
node from the symbol table. DELETE
requires that the node to be deleted was the
last node inserted into the bucket. This is
not as severe a {imitation as one might think.
(In a compiler such as ALGOL, symbols go
out of existence in reverse of the order they
came into existence; exactly what goes on
here.) This limitation simplifies the DELETE
operation considerably, and also simplifies
reclamation of space (reusing memory freed
by deleting nodes.)

DELETE moves the address in the link
field of the first node in the bucket into the
proper element of the BUCKET array. Thus
the second node in the bucket becomes the
first node. Notice that the INSERT and
DELETE operations are exactly PUSH and
POP operations, where the stack is organized
as a linked list instead of a contiguous array.

This set of routines could be the basis for
any symbolic data handling program. The
structures are not limited to ASCH and
could be used for any code, for example, a
phonetic language. This system is the sym-
bolic backbone of a compiler or interpreter:
LISP could be kept very happy. Notice that
you can have a symbol defined many times:
The most recent assignment is valid (it has
“extent”), yet the older ones still exist (they
have “scope’”). This is caused by this inser-
tion and deletion method, and is the basis
for block structured languages.

INSERT <

END
.

~
BEGIN < get symbol

HASH Q’\ash symbol to get first node in bucket
get address of new node's iink field
get address of first node in bucket

make new node first node in bucket

Figure 4: INSERT inserts a node into the symbol table. The new node

becomes the first node in the bucket,

INSERT: PUSH
INX
INX
CALL

POP
MOV
STAX

MOV
INX
MOov
MOV
INX
STAX
RET

IITIT
>
1]
I

=

™

=z

coErr ©O>O0
[w)

save address of new node.

break {move up to) to symbol.

span link bytes. ’

;hash symbol: HL contains address of address
;of first node in bucket.

;Load D with address of new node’s link field.
:Get address of first node in bucket.

Set link of new node to point to first node in
;bucket.

;Make new node first node in bucket.

;Do above to second bytes of addresses.

;Return,

Listing 4: Subroutine INSERT inserts the node addressed by HL into the
symbol table. The new node becomes the first node in the bucket.

BEG‘N{get address of second node

DELETE HASH @ash symbol to get first node in bucket

END

make second node first node

Figure 5: DELETE removes a node from the symbol table. This node must be
the first node in the bucket. The second node in the bucket becomes the first

node.

DELETE: MOV
INX
MOV
INX
CALL

Mov
INX

MOV
RET

CM
H
B.M
H

HASH

M,C

H
M,B

;Load BC with address of second node.

;Hash symbol: HL contains address of address
;of first node in bucket.

‘Make second node in bucket the first node in
;bucket.

;Return.

Listing 5: Subroutine DELETE removes the node whose address is in HL
from the symbol table. This node must be the first node in the bucket. The
second node in the bucket becomes the first node.
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Table 1

Address

0000
0002
002C
002E
007E
1000
1002

1004
1006

1008
100A
100C
100E

1010
1012
1014
1016

1018
101A
101C
101E

1020
1022
1024
1026

Initial
Data

0000
0000

0000
0000

0000

0000
‘B,//A
‘T,00
1234

0000
'C,/'A
T,00
4638

0000
‘A'C
'T,30
AF00

0000
TA
'B,00
6878

0000
T A
'C,00
7897

After
Insert
BAT

0000
0000

0000
1000

0000

0000
‘B,/A
‘T.00
1234

0000
'C/A
T.00
4688

0000
‘A,'C
T.00
AF00

0000
T/A
‘B,00
6878

0000
T/ A
'C,00
7897

After
Insert
CAT

0000
0000

— 1008
-1000

0000

0000
‘B,/A
'T,00
1234

—= 0000
'CLA
'T,00
4688

0000
'A,'C
'T,00
AFQ0

0000
TA
‘B,00
6878

0000
TA
'C,00
7897

After After
Insert Delete
TAB ACT
0000 0000
0000 0000
—-1010J —1 OOSJ
1018 1018
0000 0000
~0000 0000
‘B,’A ‘B,’A
‘T,00 ‘T,00
1234 1234
#0000 ~~0000
'C’A 'C' A
T,00 ‘T,00
4688 4688
»1008] 1008
'A,'C 'AC
T,00 ‘T,00
AFQ0 AF00
—1000- “—=1000-
IT,'A 'T,'A
'B,00 ‘B,00
6878 6878
0000 0000
‘TA T/A
'C,00 ‘C,00
7897 7897

After

Insert
TAC

0000
0000

— 1020
—1018

0000

—-0000
'‘B/A

1234




This is one method of storing a hashed symbol table. Assume that the
symbols we will be working with are already in memory starting at hexa-
decimal address 1000. Each entry consists of three parts:

® the address of the symbol which follows this one in the bucket;

@ the symbol itself;

@ the value represented by the symbol.

For the purposes of this discussion, the symbols are assumed to be four
characters long and followed by a two byte value.

Column one in table 1 shows how memory is initially arranged. BUCKET
occupies memory from hexadecimal address 0000 to O07E. This allows
arrangement of 64 buckets. All pointers in the symbol and hash tables are
initialized to zero. A pointer value of zero indicates that this symbol is the
last one in that particular bucket since that address is not defined in the
symbol table.

Insertion

The first symbol that will be entered into the BUCKET table is BAT. The
symbol BAT hashes to hexadecimal location 002E. The pointer at address
002E s 0000. This means that there are no symbols in this particular bucket.
We now set this location equal to hexadecimal 1000 which is the address of
the symbol.

The next symbol we wish to insert is CAT. This symbol hashes to hexa-
decimal location 002C. Since this location is also equal to zero, indicating no
symbols in the bucket, we point it to CAT at location 1008.

The third symbol to be inserted (ACT) hashes to the same location that
CAT did since it contains the same letters. Since there are already symbols in
this bucket, we search the entire bucket to make sure that this symbol is not
already contained within the bucket. Since it is not, we will place it at the
head of the bucket. This is done by having the first pointer in the bucket
point to this symbol (hexadecimal address 1010). The pointer that ACT has is
adjusted to hexadecimal address 1008 to point to CAT. CAT’s pointer is still
0000 indicating that it is the last symbol in the bucket.

Deletion

The particular format that we have adopted requires that any symbol that
is to be deleted must be the first node of a bucket. This implies that it was
the last symbol added to that bucket.

Suppose we want to delete the symbol ACT. ACT is the last symbol that
was inserted into the bucket located at hexadecimal address 002C. If the
pointer at this location js changed to point at the second symbol in the
bucket, ACT is effectively eliminated from the hash table,

If this method is employed, the minimum number of pointers need to be
changed when inserting or deleting a symbol. [Insertion requires that the
pointer at the head of the bucket point to the new symbol location, and the
new symbol points to the node that used to be at the head of the bucket.
Deletion requires changing only the pointer at the head of the bucket from
the first node to the second node of the bucket. ®

83



Figure 1: An Opcode Table Organized for
Direct Access. Note that with this particular
organization the first data byte of each entry
is related to the address of the entry within
the table, in a sorted sequence.

TABLE: 00 N 0 P
+4: 01 L D R

+8: 02 S T R
+12: 03 A D D
+16: 04 A N D
+20: 05 R o T
+24: 06 c L R
+28: 07 S T P

Hashing is a technique used to speed up
table searching operations by making posi-
tion in the table depend upon the data.
Many newcomers to programming reject
hashing as an overly complicated technique
useful only by the designer of exotic systems
software, but this is not the case. Any large
program, written for fun or profit, may
include tasks of accessing, storing, or modi-
fying entries in a table or array. Most game
playing programs include a number of such
tasks. Application of hashing techniques can
often dramatically improve the performance
of these programs. This article will explore
the use of hashing (sometimes called key-to-
address transformation) as a simple but
effective mechanism for accessing stored
data. These techniques can be used in
applications where the data is organized
randomly and where each item has a unique
key associated with it. For example, con-

Listing 1: Typical 8080 code sequence for a linear search of a table until the
first byte of the current table entry matches the value in the accumulator. In
this listing, the HL register pair must be preset to the eddress of the table, the
DE register pair must be set with the number of bytes per table entry, the B
register must contain the number of entries to search (maximum 255) and the
key value sought must be loaded in A. This is by no means the only possible
8080 linear search strategy.

FIND: CcMP M Check for a match;
RZ If so then exit;
DAD D Advance to next table entry;
DCR B Decrement count;
JNZ FIND Continue till end;
JMP ERR Table exhausted, treat as error;
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sider a table that contains computer opcode
mnemonics and their associated value as
used in an assembler; by using the opcode
value as a key this table could be used to
determine the mnemonic associated with
any particular value. Such a table is an
integral part of any disassembler.

In any computer, a particular entry in a
table can be specified by the starting address
of the entry. Locating an item in a table
implies that the starting address for that
item must be determined. One possible
method that can be used to determine the
address, and by far the most common
method, is to examine each item sequen-
tially, starting with the first item, until the
desired item is located and hence the item
address determined. This approach is termed
a linear search and as you can see by the
the 8080 subroutine of listing 1, it is simple
to code. The big disadvantage of a linear
search is that it is costly in terms of
processing time because, on the average, at
least one half of the table entries must be
examined before locating the desired item. If
the table is moderately large and numerous
accesses are required, then the table lookup
processing time will constitute a significant
part of the total processing time.

An alternative to the linear search in-
volves storing the information in a sorted
fashion based upon the key. Howaver, even
the best known algorithms for locating data
in a sorted table require an average of LogoN
tests, where N is the table size. Therefore,
a table with, iet’s say, 500 entries requires an
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Figure 2: A Hash Accessed Table. Note that
with the hash algorithm described in the
text, three elements of this table map into
identical starting entries, resulting in a re-
hash requirement indicated by the arrows

and dotted lines.

average of nine tests to locate an arbitrary
item. Although this is a considerable
improvement over the linear search, which
would require an average of 250 tests to
locate an item, hashing techniques require
considerably fewer tests than either method,
without the added burden of sorting.

The Key

The fundamental idea behind any hashing
technique is that instead of searching the
table to determine the address of a particular
entry, an attempt is made to calculate the
address using the key. That is, a subroutine
is written which, when given any desired
key, calculates the table location containing
the item associated with that key. If this
calculation is successful, then the desired
item is located with a single search.

The first step is to determine the key.
This choice will depend upon the intended
use of the tabie. In the opcode table
mentioned earlier, the opcode value is the
key since all lookup requests are of the
form: “What is the mnemonic for the
opcode X?" On the other hand, if this same
table were incorporated in an assembier or
compiler, then the mnemonic would be the
key because requests are now of the form:
“What is the opcode value for mnemonic
X?”, In all of our examples, we will assume
that the opcode value is the key.

Direct Access Hash

Imagine that there are only a limited
number of opcode values and it so happens
that, although the value is eight bits long,
the opcode is uniquely determined by the
rightmost three bits. If a table, called
TABLE, is created with eight 4 byte entries,
and the mnemonic and value for each
opcode is placed in the table entry whose
address is found by multiplying the right-
most three bits of the opcode by four and

adding the results to the base address of the
table, then a simple subroutine can calculate
the precise location of any entry. That
subroutine, shown in listing 2 for an 8080,
simply strips off the rightmost three bits of
the key, multiplies them by four, and adds
in the starting address of the table as shown
in figure 1. Entries are added to the table in
the same manner. Tables of this type are
called direct access and are most commonly
used for conversions; that is, converting
from one character code to another, from
opcode values to mnemonics, etc. In many
direct access tables the actual key is not even
stored in the table since a comparison is not
necessary to determine the proper entry.

Open Hash

The direct access method would ob-
viously break down if certain opcode
mnemonics were associated with values
whose rightmost three bits were equal. In
this case, where direct access is infeasible,
the algorithm must be slightly modified. A
subroutine is still used to calculate the
address, but since it is no longer possible to

Editor’s Note:

In this article, we repre-
sent several algorithms in a
structured pseudo code
form appropriate to the
discussion. These algo-
rithms are referenced by
numbers in brackets, as in
[n] for algorithm n. Each
algorithm should be
thought of as a formal
procedure, which in prac-
tice would be called as a
subroutine.

Listing 2: Typical 8080 code sequence for direct hash with a table of eight
entries, each entry being four bytes in length. In a direct hash approach, the
actual data value (in this case, a number from 0 to 7) being sought is used to
determine the offset in the table directly. Here the calculation is made
according to the formula: ADDR := BASE +4 * (A & 7) where A is the value
of the entry being sought, BASE is the starting address of the table, and
ADDR is the effective address of the table element involved.

FIND: LXI H,TABLE

ANI 7

RLC

RLC

ADD L

MOV LA

MVi A0
ADC H

MOV HA

RET

HL:=Table pointer;
Extract rightmost three bits;
Multiply by four;

Add the table address;

HL:=Entry address;
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successfully calculate the location of all
entries, some type of searching algorithm
must be employed to pinpoint the position
of the entry, given the calculated position.
The initial predicted position of the table
item is called the hash index and the
procedure which produces the hash index is
called the hashing function. For the remain-
der of our discussion, HASH is used to
denote that subroutine and therefore
HASH(K) denotes the hash index for a
particular key, K.

Before considering how the information
is initially entered in a hash table, it may be
useful to examine the process used to locate
an arbitrary entry in a hash accessed table. If
KEY is used to denote the key associated
with the desired entry, and TABLE, a table
consisting of N entries (each of which are B
bytes long), then the algorithm to locate the
entry that is associated with KEY, using
hash techniques, is as follows:

[1] 1. 1Jd:= HASH(KEY);
2. do until {I=J—1} [worst case end test for search failure] ;
3. if @ TABLE + | * B) = 0 then [element not present, search failure] ;
4. do; call ERROR; return; end;
5. if @ TABLE +1 * B) = KEY then
6. return [the item has been located] ;
7. f:=1+1;
8. if I = N then I := 0 [wrap around table space limit] ;
9. end;
10. call ERROR [element not present, search failure] ;

In this algorithm, specified in a structured
pseudo code form, step 1 calculates an initial
estimate of the location of the item associ-

KEY ated with KEY, the hash index. This value is

saved in | for the worst case end test in the
do until construct of step 2. In steps 3 and
4, the algorithm tests for a null entry end of
search criterion and calls an ERROR routine
if this is detected. Return to the calling
program follows detection and flagging of
¥ 1] the search failure condition. Then the algo-
rithm tests to see if the current entry is

\ + / equal to KEY at step 5; if this condition is
found, the algorithm terminates with a

return operation at step 6. Otherwise, the

i next index is calculated at step 7, an end

Ry .

around wrap condition is tested at step 8,
FOLDED KEY and the do loop is closed at step 9 with an
end statement. If the loop execution ends
through the test on line 2, step 10 is reached
Figure 3: Folding Keys. and an error condition is flagged before an
When it is desired to retain automatic return assumed after the last line
the significance of all the of such a procedure.
bits in a key while com- Consider again the opcode table example.
pressing the total number If the hash procedure is defined as HASH(K)
of bits used, folding by = REMAINDER(K/8), then each table item
some operation such as ad- shown in figure 2 can be located by at most
dition can be used. three searches using algorithm [1].
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Defining HASH

In choosing a hash function, you must
attempt to define a general procedure, using
a minimal number of simple computations,
which produces an even distribution of hash
indices for a random selection of possible
keys. If we knew that all op codes were even
numbers, then the hashing function
HASH(K) = REMAINDER(K/8) would not
be efficient, because it will produce only
even numbers. This simple example illus-
trates that the hashing function must be
carefully selected to suit the particular appli-
cation. It should also be noted that it is not
necessary for the key to be a numeric value.
If alphanumeric or other keys are used, the
hashing function should ignore the data type
and simply perform numeric or logical ma-
nipulations of the key as though it were
numeric.

One of the most widely utilized, and
historically the first, hashing function has
already been mentioned. If N is the size of
the table (in terms of the number of entries,
not the number of bytes) the hash index is
the remainder of the key divided by N. More
precisely stated, HASH(K) = REMAIN-
DER{K/N). In a machine such as the 8080
which lacks division capability, this function
will be made significantly faster by re-
stricting the length of the table to a power
of two (ie: N=2M). If N= 2V then the
REMAINDER (IK/N) also happens to be the
rightmost M bits of K and a divide operation
is no longer required. The remainder is
selected by a logical AND operation.

The remaindering function will not
produce well distributed hash indexes if
many of the entries end with the same bit
sequence. This situation is frequently en-
countered when dealing with alphanumeric
data. Changing the table size to a prime
number usually improves distribution, but
now we are back to the unwanted divide
operation for calculating the remainder,
There are two other alternatives to this
problem. The first is a technique called
folding as diagrammed in figure 3. This
method applies the remaindering algorithm
to the bit string that is obtained by adding
the upper half of the internal binary repre-
sentation of the key to the lower half. This
minor improvement minimizes the effect of
patterns that may occur within the key. You
should be careful what improvisations are
made to the folding technique. Fcr example,
substituting a logical AND for the add
sounds good, but will merely make matters
worse. If in doubt, try experimenting with
various keys by examining the effects of key
value in a test program to grind out hash
indices.



A second method for minimizing the
effect of similar bit patterns in the key, best
applied to tables of size 2M, is called
squaring. This consists of selecting the center
M bits of the number that is obtained by
multiplying the key by itself. Since the
middle bits of the product depend upon all
of the bits in the key, this method generally
produces a uniform distribution of hash
indices.

Since the squaring method is safest, it
may appear that one should always use it.
This is certainly not the case because the
purpose of hashing is to save processing time
and although squaring is the most general
technique, it is unfortunately the slowest
since it relies on a multiply operation which
the 8080 and many other small processors
lack. It is often acceptable to settle on a
slightly less efficient hash function if such a
function is substantially faster. The guideline
for selecting the hash function is to employ
a more complex function only in those
specific cases where a simple function fails
to produce an adequate distribution of hash
indices. But remember, any hash function is
better than a linear search. Why? A linear
search is a hash access where HASH{K)=0
for all values of K, therefore any distribution
is better than none. This degeneracy is
evident in algorithm [1] when the data item
sought is not in the table, and the algorithm
searches every location.

Multibyte Hash

Until now, we have tacitly assumed that
the entire key can be contained in one byte.
This is impractical, and the hashing concept
is easily extended to cover those cases where
the key occupies more than a single byte. If
the key is continued in byte locations
(K1, ... Kj) then a multibyte hash function,
HASHM, can be defined in terms of
any of the previous hash functions as
"HASHM(K,}) = HASH(K1+ ... +Kj). That is,
any of the single byte hash functions are
applied to the sum, ignore carry, of the
bytes in the muitibyte key. As you see in
figure 4, this is similar to the folding
technique just mentioned.

Another possibility for a multibyte hash,
which should be used with some degree of
caution since it may not provide an even
distribution, is to apply a single byte hash
function to the last byte {or any other byte
of your choosing) of the multibyte key. This
eliminates the time required to add the
words of a multibyte key. As usual, the
programmer is faced with a time versus
efficiency tradeoff.

Guidelines
In summary, the sole purpose of a hash-

ing function is to calculate an initial table
index for a linear search, given a specific
key. There is no one best algorithm and the
number of algorithms available is bounded
only by your imagination. The general guide-
lines to follow when designing your hashing
function are:

1. Keep it simple — Remember, the goal is
to locate an item in the minimum
amount of time. If the perfect hash
requires more time than a linear
search, it is useless!

2. Insure an even distribution; beware of
weird bit patterns.in the key.

3. Check out the operation of the func-
tion prior to employing it as a hash
function. There is often an over-
whelming urge to give it the smoke
test, but hash indices are used to form
memory addresses so it may be dif-
ficult to isolate bugs in the hash
function after you've incorporated it
into a table lookup procedure. Save
yourself some time, check the table
lookup subroutines first.

Building the Table

Obviously, for the hash access algorithm
to operate smoothly, the table items must
have been entered into the table properly.
The relative ease with which entries can be
made in a hashed table is an important
advantage of hash techniques. Remember,
even though a sorted search is reasonably
efficient for locating an entry, the entire
table must be sorted before any access is
allowed. Thus, if accesses were to be inter-
mixed with entries, the algorithm would be
grossly inefficient due to the amount of
resorting required.

MULTI-BYTE KEY

\ +

/

!

COMBINED KEY

Figure 4: The principle of folding key elements can be extended to a
multibyte key. The multibyte hashing scheme might be employed where a

key is a character string field.
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Before any entries can be made in the
hash table, the key field of the table must be
initialized to some flag value which is not
encountered as a possible key. If a table
entry contains this value, then it can be
assumed that the entry is unoccupied. The
most common value used to designate an
empty table entry is the integer zero, and
assuming this to be the case, the algorithm
to add an item associated with KEY, to the
table of N entries (each B bytes long) is:

1.J := HASHI(KEY);
do until (1=J—1) [worst case end test for search failure] ;
if @ TABLE +1 * B) = O then
do;
[enter the item at (TABLE +1 * B)];
return;
end;
l:=1+1;
if | =N then | :=0 [wrap around table space limit] ;

end;
call ERROR [no room left in table] ;

Notice that the lookup algorithm [1] and
the entry algorithm [2] are very similar in
nature. The loop control is identical, and the
only difference is in the actions taken. It is
quite possible to make an automatic entry
occur whenever a key is not found as
indicated by a null key value found during a
search. The following algorithm combines
both operations.

1,J ;= HASH(KEY);
do until (I=J—1) [worst case end test for search failure] ;

if @ TABLE + 1 * B) = KEY then
return [the item has been located] ;
if @ TABLE + | * B) = 0 then
do;
[enter the item at (TABLE +1 * B)];
return;
end;
l:=1+1;
if 1 = N then | :=0 [end wrap around table space limit] ;

end;
call ERROR [if this point is reached, table is full] ;

In addition to adding or locating entries,
it may also be necessary to delete entries. To
delete an item, you might think that we
could merely locate the item and then set
the table entry to zero, thus making it
available for future entries. However, if that
approach were taken, not only would the
desired entry be deleted, but other entries
might be made inaccessible. The reason that
other entries would be lost is that the
searching terminates when an unused loca-
tion is found. As an example, setting the
entry at (TABLE + 20) in figure 2 to zero
would also make the entry at (TABLE + 24)

TABLE:

+2:
+3:

+5:
+6:
+7:
+8:

+10:
+11:

o (=} o
+ DHAwRIOr=2ov020

+28:
+29:
+30:
+31:

o

vHn~"

Figure 5: Horizontal Or-
ganization of Tables. In
this method of organiza-
tion, all the bytes of a data
entry are assigned to con-
tiguous addresses.
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Hash Access Method
% Itams T Sorted With Rehash Indicated Below
Occupied Search Search Linear Random Day's Wt Inc
10% 25 56 1.1 1.1 11 1.0
50% 125 79 15 14 14 14
75% 187 85 25 20 2.0 1.9
a0% 225 88 55 28 2.7 25

Table 1: Comparison of Table Access Methods. This table gives the results of
an experiment with random data to test out the various methods of access.
The tables were filled to the percentage levels indicated at the left. A table
size of 500 possible entries was used. The access methods shown are described

in text.



inaccessible. Therefore, an alternate scheme
must be used to delete entries. TABLE: 00 BYTEO
The first step is to select a deleted entry +1: 01 +1
flag that is distinguishable from the unused +2: 02 +2
entry flag and is also not allowable as a key. Ii gg :i
Then, whenever an entry is to be deleted this +5: 05 +5
new value replaces the entry. The new flag +6: 06 +6
indicates that the entry is available for +7: 07 +7
future additions to the table but does not +8f N BYTE1
terminate a search operation. If 0 is used to +:g 'g :;
denote an unused entry and —1 is used to +11: A +3
denote a deleted entry, then the complete +12: A +4
hashing algorithm is: +13: R +5
+14; C +6
+15: S +7
[41 1. 1J:= HASHIKEY); . :
2. dountil (I=J—1) [worst case end test for search failure] ; . .
2. if @éZ‘ABLE +1* B} =KEY then +24: [] BYTE3
. ; ) +25: R +1
5. if [entry is to be deief(ed] then [delete the entry] +26: R +2
6. @(TABLE +1 * B) := —1; +27: D +3
7. return [item has been located 1 ; +28: D +4
8. __end; . +29: T +5
9. if @ TABLE + 1 * B) = 0 then [this is a null entry so} +30: R +6
10. do; ) +31: P +7
11. [enter the item at (TABLE + B * |)];
12, return;
13. end;
14, ti=1+1; Figure 6: Vertical Organization of Tables. In
15. if 1 = N then | = 0 [end wrap around table space limit]; this method of organization, a multibyte
16. end: table element is treated as “n” single byte

17.  call ERROR [if this point is reached, table is full];

This algorithm either locates an item or
adds the item to the first available location.
If an item is to be deleted it is first located
and then the key field of the table entry
is set to —1.

Collisions

A collision occurs whenever
HASH(KEY1) = HASH(KEY2}, but KEY1
# KEY2. As discussed earlier, a good hash-
ing function will avoid this condition, but
the problems caused by collisions cannot be
ignored. Note for example that the hash
index for opcodes 04, 24 and 34 in the table
shown in figure 2 is 4 and hence these
entries collide.

What happens when two entries collide?
The only solution we’ve discussed thus far is
to search the table, in a circular fashion,
from the point of impact as in algorithms
[1] to [4]. If, in general, a collision occurs,
then the resulting search, good or bad, is
called a rehash. The process mentioned
above, namely, searching the table in a
circular fashion from point of impact, is
called a linear rehash, and as you might
expect falls into the bad category. Other
more efficient algorithms will be discussed
later.

If we denote the rehashing algorithm by
REHASH, then the general hashing lookup
algorithm may be restated in its final form:

66,15

[ N

in each entry. Each of the “n’’ subtables has
a length (in bytes) equal to the number of

elements in the table.

subtables where “n” is the number of bytes

{5]

1. 1,d := HASH{KEY);
2. K:=0;
3. do until (REHASH(1,J)=J) [worst case end test for search failure] ;
4, if @ TABLE +1 * B) = KEY then [we have a match so]
5. do;
6. if [entry is to be deleted] then [delete the entry]
7. @TABLE+1 *B) :=—1;
8. return;
9, end;
10. if {{K=0) & [deletion or null element @ TABLE + 1 * B)]) then
11. K := I [save last available table entry index] ;
12. if @ TABLE +1 * B) = 0 then [this is a null entry so]
13. do;
14. [enter the item at (TABLE + B * K), next available slot] ;
15. return;
16. end;
17. I := REHASH (1,J) [REHASH results in 0 < | < N where N is table size] ;
18. end;

19.  call ERROR [if this point is reached, table is full] ;

The linear rehash that we've been using
implicitly in [4] as steps 14 and 15 is
described as REHASH(I) = (I+1)[mod N],
where (I+1)[mod N] means that if (I+1) is
greater than or equal to N, then N is
subtracted from the value (I+1). This insures
that the table is searched in a circular
manner. The operation X[mod N], called X
modulo N, is used in most rehashing algo-
rithms to limit the range. Mathematically, it
is the remainder of X/N; but whenever we
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use Xlmod N| it can be calculated as
described above (ie: subtract N if X is
greater than or equal to N). Here again we
have avoided the use of a divide operation to
provide a more efficient function. Note that
step 10 includes a check which reclaims
deleted entries, a process not included in
algorithm [4].

improved Rehash

The problem with the simple linear re-
hash is that the table will not fill uniformly.
This condition is referred to as clustering
and causes an increase in the average number
of tests required to locate an item in the
table. As an example, a cluster can be seen
forming at TABLE+16, +20, and +24 in the
table shown in figure 2.

There are a number of nonlinear algo-
rithms which perform the rehash function
without causing the clustering problems
mentioned above. Although the computer
science literature abounds with such algo-
rithms, a majority of them fall into one of
three classes. An attempt has been made to
select the simplest and best from each class
and present them here.

Pseudorandom Rehash

The first class of rehashing algorithms is
the pseudorandom rehash and is based upon
a pseudorandom number generator. The
pseudorandom number generator used is not
important, but it must be of the non-
repeating variety. That is, it must generate
all possible values before any previous value
is repeated. It must also generate all of the
integers in the range 0, ..., N where N is the
table size. The following simple procedure
incorporates a common random number
generator and will perform the rehash func-
tion for any table of size N= 2M, The
variable R is internal to the rehashing func-
tion, but it must be preset to one whenever
the function HASH is initiated (je: step 1 of
algorithm [5]).

[6] REHASH (1,J):
1. R := REMAINDER (R*5 / N*4);
2. REHASH := (R/4 + J) [mod N];

If you're seeking the most efficient imple-
mentation of this one, the REMAIN-
DER(R*5/N*4) is just the rightmost M+2
bits of R*5 because N=2V¥ and 4*N=
22+9M=pM+2_ Furthermore, the divide
operation i step 2 can be replaced by a
right shift of two positions. Finally, if you
think of R*5 as R*¥4+R, then it’s easy to see
how to reduce that multiply operation to
left shift and addition operations.

Let’s look at the sequence generated by

this rehash routine. If our table is eight
entries long and the initial hash index is, let’s
say, 4, then R takes on the values
1,6,7,4,5,2,3,1, so the table would be
searched in the order 4{initial index),
5,2,3,0,1,6,7. How does this avoid the clus-
tering situation? Hf we chose another initial
index, say, 5, then the table is searched in
the order S5(initial index),6,3,4,1,2,7,0. As
you see, the entry searched after entry 5 will
depend upon the initial index. If the initial
index was 4, then 2 is searched after 5; but if
the initial index was 5, then 6 follows 5. In a
linear search, 6 always follows 5. This
dependence upon the initial index is what
avoids the clustering.

Quadratic Rehash

A second class of algorithms for rehashing
is the guadratic rehash and these are based
upon a quadratic function. The major draw-
back with most algorithms in this class is
that they search only one half of the table,
so two different rehashing algorithms are
required. The most efficient quadratic re-
hash, and one which does search the entire
table, was first introduced by Colin Day [see
bibliography, reference 1]. Day’s algorithm
can only be applied to a table whose size is a
prime number that produces a remainder of
1 when it is divided by 4 (eg: 5=4*1+1,
401=4*100+1). At first glance, this appears to
place a great many restrictions on the
allowable size of the table; but don’t despair,
because experience will show tha: a number
satisfying the required condition can be
found very near any desired value. Be certain
that you use an acceptable number or the
procedure will not search all locations of the
table. Like the last rehashing function an
internal variable is used. The variable, R,
must be preset to (—N) whenever the func-
tion HASH is called. The quadratic rehash
process is {remember that the mod operation
is just a conditional subtraction):

[7]  REHASH{L)):
1. R:=R+2;
2. REHASH := (I + IR!) [mod N];

If we look at the sequence generated by
this procedure, we see that R takes on the
values (for a table of size 11=4%2+3)
-11,-9,~7,-5,-3,~1,1,3,5,7,9,11. There-
fore, if the initial index were 4 the table
would be searched in the order: 4{initial
index}, 2,9,3,6,7,8,0,5,1,10. One major dif-
ference between this algorithrn and the
random rehash is that this one calculates the
next index based on the previous one. The
random rehash calculates the next index
based on the initial index.



Weighted Increment Rehash

The last, and probably the simplest,
method for performing the rehash is called a
weighted  increment [see  bibliography,
reference 2f. This one is unique because it
uses the hash index to calculate an incre-
ment which is in turn used to step through
the table. The table size is again restricted to
a power of 2, and whenever the function
HASH is called, the variable R is preset to
{2*J+1)[mod NJ, where } is the initial hash
index. The weighted increment method is:

[8] REHASH({LJ):
1. REHASH := {I+R) [mod N] ;

This process is very much like a linear
rehash. In fact if R were always set to 1 it
would be a linear rehash; however R depends
on the hash index. If our table is eight
entries long and the initial index is 5 then
R=2*5+1|{mod 8]=11-8=3 and the table
items are searched in the order
5,0,3,6,1,4,7,2. Since the increment is a
constant for any particular hash index, we
can improve the basic hash algorithm when
using this rehash technique. You will notice
that all memory references are of the form
(TABLE+1*B), where B is the number of
bytes. We can avoid that multiply by in-
cluding it in the computation of R. If we let
R=({(2*J+1)[mod N])*B, then all of the
table references become (TABLE+I). If we
also initialize 1 to TABLE+HASH(KEY) we
can make alf references as just (1).

Laying Doubts to Rest

You might conceivably ask, ‘“What is
gained by using a complex rehashing func-
tion?"; or if you’re one of the more cynical
observers, “Why use hashing at ali?”. In an
attempt to answer these questions, a simple
experiment was performed. First a table of
approximately 500 entries was filled with
randomly generated entries and then each
entry was located in the table using the
jookup technique under test. This simple
experiment provides an insight into the
comparative efficiency of table lookup algo-
rithms. Table 1 summarizes the resuits of the
experiment. This data clearly illustrates that
there is significant improvement in table
lookup time when hashing is utilized. Fur-
thermore, when a complex rehashing algo-
rithm is incorporated in the search pro-
cedure, the statistics are again improved. It is
worth noting again that, although the num-
ber of tests for a sorted table is not
tremendously large, the approach is very
inefficient if the table must be accessed
before being filled with entries.

One other surprising fact about the aver-
age search length (the number of tests

required) for hash accessed tables is that it
does not depend upon the length of the
table. Rather, the search length depends
only upon the load factor or the percentage
of occupied items in the table. This means
that you can expect the average search time
for a table of size 10,000 to be about the
same as the search time for a table of size
500! This is surely not the case with the
linear or sorted search. While the average
linear search length skyrockets to 4,500 (for
a 90% full table of size 10,000), the average
hash search length remains at less than six!
Although table 1 seems to indicate that
the weighted increment is most efficient, we
must be careful not to read too much into
these results. The statistics in table 1 were
obtained using randomly generated keys in
the test program. When actual keys are used
the search statistics will vary somewhat
because actual keys are rarely perfectly
random. For example, the search length for
a weighted increment search is adversely
effected by bit patterns in the key. The best
way to insure that you are using the most
optimal search procedure is to repeat the
experiment with a sample of actual keys. If a
finely tuned algorithm is not important,
then the weighted increment is probably the
better choice because it is simple and can be
applied to any format of table. As we will
see shortly, most of the algorithms work
best if the table is rearranged in memory.

Application

There are a number of “tricks” which can
be used to improve efficiency. A number of
them have already been mentioned. Through-
out our discussion we have assumed that
each table entry occupies more than a
single byte. If each table entry is B bytes
long, then the typical memory reference is
(TABLE+I*B). It would be desirable to
eliminate or at least reduce the multiply
operation. We already discussed how to
eliminate the multiply if a weighted incre-
ment rehash is used. Another method to
eliminate a multiply is table reorganization.

All of the tables discussed so far were
horizontally organized. This means-that the
items are stored as shown in figure 5. This is
the most common table organization. An
alternative organization is a vertical organiza-
tion such as in figure 6. If you have
organized your table vertically then the first
byte of an item is addressed by (TABLE+I)
and the multiply is gone. All of the other
bytes in the item are addressed by
(BYTEN+I) where BYTEN is the address of
the nth byte of the first item. Thus by
organizing the data vertically we eliminate a
multiply operation. This vertical arrange-
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ment is practical from other aspects also.
Consider searching the table for all items
containing a specific value in the third byte.
Since the third byte of each item is stored
sequentially  this search operation s
simplified.

Conclusion

We have tried to show that hashing is not
nearly as complicated as you might have
thought. By using these techniques perhaps
you can regain a valuable slice of your
microprocessor’s processing load.®
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GLOSSARY

Clustering: Grouping of elements within a table
caused by equal hash indices.

Collision: Two elements with the same hash index.

Direct access hash: A hash algorithm which pre-
cludes collision. That is, no two elements have
identical hash inclices.

Disassembler: A program to translate object code
to assembly language. Inverse of an assembler.

Folding: Procedure for randomizing the bhash
index. The upper and lower half of the key are
added together before the index is calculated.

Horizontal table: A table whose entries are stored
sequentially. That is, (entry one, byte one), {entry
one, byte two), etc.

Hash index: The initial estimate of the location of
an entry within the table.

Hashing: A nonlinear algorithm for storing/
retrieving data from a table.

Hashing function: The algorithm or procedure for
calculating the hash index.

Key: Field within an entry that is used to locate
the entry. For example, surnames are the key field
of the entries of a telephone directory.

Linear rehash: A method for resolving collisions.

The table is searched sequentially from the point
of impact.

Linear search: Table search which exarnines each
item starting with the first item and proceeding
sequentially.

MOD: Remainder of one number divided by
another, That is, X MOD Y is the rernainder of
X/Y.

Pseudorandom rehash: A method for resolving
collisions. A nonrepeating random number genera-
tor is used to determine the next entry to be
searched.

Quadratic prime: A prime number which produces
a remainder of 3 when divided by 4.

Quadratic rehash: A method for resolving col-
lisions. A quadratic or second degree function is
used to determine the next entry to be searched.

Rehash: Any algorithm for resolving collisions.

Squaring: Procedure for randomizing the hash
index. The key is multiplied by itself before the
hash index is computed.

Vertical table: A table where the bytes of each
entry are stored sequentially. That is (entry one,
byte one), {entry two, byte one), etc. FORTRAN
stores arrays in this manner.

Weighted increment rehash: A method for resolv-
ing collisions. The hash index is used to determine
the next entry to be searched.
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“Making Hash With Tables” by Terry
Dollhoff [BYTE, January 1977, page 18" ]
is a good introduction to hash tables. How-
ever, gquadratic methods for collision avoid-
ance do not have to be complicated or suffer
from “half table search.” If the table length
is a power of 2 and the quadratic increment
is 3 as in the following simple and fast algo-
rithm, then none of the table will be ex-
cluded from the search.

I have been using this scheme since about
1970 but have never seen it reported in the
literature. Your readers may write to me
for a copy of the proof that it works.®

A Quadratic Hash Table

The following algorithm assumes that
the table length is a power of 2, the table
words were initialized to VIRGIN, and
MASK has a value equal to the table length
minus 1.

1. Set DELt0 0.

2. Set | to hash code of KEY.

3. Let I=I.LAND.MASK (ie: AND | with

MASK).

4. If TABLE (1}=VIRGIN then go to
NOTFOUND. (Note that TABLE(l)
refers to the contents of location
TABLE+I).

5. If TABLE(lI)=KEY then go to
FOUND.

6. Let DEL=(DEL+3).AND.MASK.

7. if DEL=0 then go to FULL. (Note
that DEL gets back to O only after
the whole table has been searched.)

8. Let I=(14+DEL}.AND.MASK.

9. Go to step 4.

On return to the user's program via the
NOTFOUND, or FOUND exits, the index, i,
will point to the spot for a new table entry
or the found entry respectively. The FULL
return means the KEY was not found and
that the table is full. Note that the value
VIRGIN may not equal any possible value

of KEY.

1page 84 in this edition

Improving Quadratic Rehash

John F Herbster
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The Care and Feeding

of Binary Trees

Many computer applications require
sorting, searching, or both. While hashingis a
useful tool for maintaining tables, it does
not lend itself to particularly dense tables
and is of no use in sorting. This article
describes the use of binary trees to perform
both sorting and searching at high speed
with modest overhead.

Although numerous applications require
sorting and searching, a good example that
requires both is the label table in an assem-
bler. During assembly, fast access is required
each time a label is referenced, and, at the
end, the table must be sorted if it is to be
listed in alphabeticai order.

Like all things, binary trees have advan-
tages and disadvantages. They deal best with
large amounts of data encountered in
random order. This property makes them
ideal for use in assemblers and other applica-
tions with similar data. Binary trees provide
a method which is just the opposite of
sequential searching or bubble sorting, which
are at their best with small amounts of data.

Recognizing Binary Trees

The term ‘binary tree’ refers to a method
of linking data records together in memory.
Typically the records remain in memory in
the same order in which they were encoun-
tered. Pointers are used to link them together
in an ordered manner. The creation and use
of these pointers is the heart of a binary tree.

In an assembler, for example, each label
entry might contain the label itself, a one
byte flag and a 16 bit value, as shown in
figure 1. In order to be used as a binary tree,
each entry must include two address pointers
of 16 bits each, for a total of four bytes.
These pointers are called wp and down
pointers since they will be used to point to
higher and lower entries in the tree (more
about that later). Our example now looks
like figure 2.

In most discussions of trees, they are
called ‘trees’ but are drawn upside down like
roots. Others say this is silly and draw their

Cam Farnell

trees right side up. In an effort to please all
and offend none, trees are represented here
on their sides. This has the advantage that
up and down references, when applied to
pointers, actually mean up and down in the
figure, which is not true with the other
representations.

A simple tree structure following our
example would appear as in figure 3. For
simplicity, only the label and the pointers
have been shown. This tree is already built;
we'll get to the logic on how to build one
shortly.

Figure 1. Possible data arrangement for label
entries for an assembler label table.

{ zot | 03 [ oooo |
LABEL FLAG VALUE

Figure 2. To use the binary tree structure,
each entry must also have two pointers to
point to the entry before it and the one
after it.

| zor | 03 | o000 | oooo | oooo |

LABEL FLAG VALUE uP DOWN
POINTER POINTER

Figure 3. Simple binary tree structure. The
first label encountered is MAT. This label
leads up to GO or down to RUN, both of
which end the tree.
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The pointers link the tree together. The
up pointer in each entry points to the rest of
the tree which is above the current item
while the down pointer points to those items
below the current entry.

Null pointers are pointers which don't
point anywhere. These are shown in the
diagram as asterisks (*) and are usually
represented in memory as zero. Null pointers
indicate that a particular entry is the end of
a branch.

Searching a Binary Tree

To search for an item in a binary tree,
start with the first item (MAT in the exam-
ple) and compare it to the item being looked
for. If the item being searched is above the
current entry in the sort sequence follow
the up pointer, while if it is below, follow
the down pointer. The procedure is repeated
until either a match is found or a null
pointer is encountered. The latter case
indicates that the item searched for isn't in
the tree. The logic for searching such a tree
is shown in listing 1.

To search the tree for the word GO, start
at MAT and perform a comparison. Since
GO is above MAT, take the up pointer from
MAT which points to GO, producing a
match and stopping the search.

Growing Binary Trees

Once we have the routine to search a tree,
adding items is easy. To add an item to the
tree search it first to make sure the item isn't
already there. Using the example above, first
search the tree in order to add the label
NUM. Comparing with MAT indicates that
NUM is below, so follow the down pointer
which points to RUN. Comparing with

{search pointer = address of first tree entry)

DO UNTIL

{current entry = required entry)

IF {current entry > required entry} THEN

IF {current up-pointer = 0) THEN
(search pointer = address of current up-pointer)
{return signaling ‘not found’)
ELSE
(search pointer = current up-pointer)
ENDIF
ELSE
IF {current down-pointer = 0) THEN
(search pointer = address of current down-pointer)
{return signaling ‘not found')
ELSE
(search pointer = current down-pointer)
ENDIF
ENDIF
ENDDO

(return signaling ‘found’)

Listing 1. Binary tree search logic. This logical routine will search the entire
binary tree until the looked for label is found or a null pointer is encountered.
This listing expresses the logic in a “pseudo code” language.
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RUN indicates that NUM is above RUN, so
follow the up pointer from RUN. But since
the up pointer is a null pointer there is no
match and the search is terminated. This
null pointer, however, is the one that should
point to our new entry. To add NUM simply
build an entry for it at the end of the table
{(with both its pointers set to null) and then
adjust the null up pointer from RUN to
point to the new entry for NUM. The tree is
now as shown in figure 4. The logic for
adding a new item to the tree is shown in
listing 2.

The procedure given above tells how to
add items to an existing tree but doesn’t tell
how to get the tree started in the first place.
To start a tree, take the first item to be
added to the tree and build an entry for it
with both its pointers set to null. Since itis
the first item in the tree there are no poin-
ters to it,

[ ]7]

n] 7]
Figure 4. Inserting another entry to the
binary tree. The up pointer from RUN is
now pointing to the new label which is lower
than MAT but higher than RUN.

Sorting with Binary Trees

So much for searching. What about
sorting? Although it may not zppear so,
once a tree has been built it is actually
sorted as well. This can be seen by placing a
piece of paper over figure 4 and slowly
sliding it down. The iabels will appear in
sequence because the diagram shows them in
logicai order. Reading them back from the
computer’s memory isn’t quite this simple,
since the logical order is given by the poin-
ters rather than by physical order, but it's
not very hard either.

The logic to read back a tree in order
consists, in a nutshell, of performing the
instructions in table 1.

The complete algorithm for this process
is shown in listing 3. In order to remember
the path followed a stack is used. Zach stack
entry requires 3 bytes: 2 for a 16 bit pointer
and one for a flag to indicate if the path was
via an up or down pointer.



(call the search routine)
IF (the item was found) THEN
(return signaling ‘duplicate’}
ENDIF
{build an entry for the new item)
(get the pointer left by the search routine)
{use this pointer to store the address of the new entry. ..}
{. .. over the null pointer that terminated the search)
{return signaling completion)

Listing 2. Binary tree data insertion logic. This routine tses the search routine
to find if the item is already in the tree. If it is not, the search routine returns
with the pointer indicating the null pointer that ended the search. The new
entry will be added to the tree at this position.

(search pointer = address of first tree entry)
DO FOREVER
IF {current up-pointer = 0) THEN
(print the current entry)
DO WHILE {current down-pointer = 0}
IF (stack is empty) THEN
{return)
ENDIF
(search pointer = top pointer from stack)
(search flag = top flag from stack)
(pop the stack)
DO WHILE (search flag = ‘D)
IF (stack is empty) THEN
{return)
ENDIF
{search pointer = top pointer from stack)
(search flag = top flag from stack)
(pop the stack)
ENDDO
(print the current entry)
ENDDO
{push the stack)
(top stack pointer = search pointer)
{top stack flag="'D")
(search pointer = current down-pointer)
ELSE
{push the stack)
(top stack pointer = search pointer)
(top stack flag="U’)
{search pointer = current up-pointer)
ENDIF
ENDDO

Listing 3. This list of instructions is the procedure that is followed when
sorting a binary tree.



Start at the root of the tree (‘MAT' in the example).

If there is an up pointer, follow it and make a record of the path followed.

When returning from following the up pointer (or if the up pointer was null), print
the current entry, then follow the down pointer and make a record of the path.

When both pointers have been processed (or if the down pointer is null) back up to
the previous entry.

The sort is done when an attempt is made to back up to the previous entry and there
is no previous entry found.

Table 1. Instructions for carrying out a sort of a binary tree.

Start and the beginning of the tree (MAT).

MAT has an up pointer, so follow it, pushing the address of MAT (the entry being
come from) and a U flag (to indicate that the path followed an up pointer) onto the
stack.

The entry being pointed to now is GO.

GO has a null up pointer which requires no action.

Having processed GO's up pointer, GO is printed.

GO also has a null down pointer which requires no action.

Since both of GO's pointers have been processed, the stack is popped.

The entry now being pointed to is MAT.

Since a U flag was popped, the up pointer (but not the down pointer) has been
examined; therefore MAT is printed.

MAT has a valid down pointer, so it is followed and the address of MAT and a D flag
(since the path was via a down pointer) are pushed onto the stack.

The entry being pointed to is now RUN.

RUN has a valid up pointer, so the address of RUN and a U flag are pushed onto the
stack.

The entry being pointed to is NUM.

Since both of the pointers are null, NUM is printed and the stack is popped.

The entry being pointed to is now RUN.

Since RUN's up pointer has already been processed, RUN is printed.

RUN's down pointer is null so the stack is again popped.

MAT is now being pointed to.

Having examined both the up and down pointers of MAT, an attempt is made to pop
the stack.

Since the stack is empty, it cannot be popped. This signals that all processing is
complete.

Table 2. This is a trace of the procedure for reading back and printing the
example tree of figure 4 using the logic routines of listing 3.
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To illustrate this, table 2 is a trace of the
procedure necessary to read back and print
the example tree from figure 4.

This procedure will work for a tree of any
size as long as there is enough room for the
stack. The maximum number of stack entries
required during the sorted readback depends
on the order in which the data is placed in
the tree. If the data comes in in random
order, then the number of stack entries will
not be much greater than the base 2 logarithm
of the number of entries. For example, a
stack with a depth of 16 should handle a
tree containing up to about 64,000 entries.
The worst case for stack depth occurs when
the data was already sorted, or reverse sorted,
when read in. This case will require as many
stack entries as there are items in the tree.

Optimizing Binary Trees

If the tree routines use the lower 32 K
bytes of address space, the sort readback
stack can be reduced to two bytes per entry
by using the high order address bit in place
of the up or down flag. If this is done, the
high order bit will probably have to be
masked off before addresses from the stack
are used to access memory.

It is possible to balance a binary tree as it
is being built. Such a tree will always require
a minimum number of comparisons for a
search and a minimum amount of stack
depth during sort readback. On the other
hand, balancing a tree requires two more
bits per entry (hence probably an extra
byte) and is quite complex. The balancing
algorithm is too complicated to include here;
however, a complete description can be
found in The Art of Computer Programming,
Volume 3 by Donald Knuth.m
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