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Introduction

It is the intent of this book to impart a basic understanding of
microprocessor configurations and functions, and to describe
the requirements and techniques of microprocessor pro-
gramming in sufficient detail that any user may, in
conjunction with the literature for a specific microprocessor,
define a useful system and prepare working programs with
little difficulty.

Emphasis has been placed here on describing the in-
teraction of the hardware and software systems, the fun-
damentals of processor arithmetic, and numerical conver-
sions both to and from readable decimal numbers and their
equivalent machine representations. Also discussed in some
detail are scaling techniques for magnitude control of
fixed-point processor data, the basics of floating-point
arithmetic, and the efficient use of instruction and data
storage. Such important elements are often under-emphasized
today by programmers and programming instructors who
have come to depend upon powerful compilers using
near-English or near-algebraic programming languages. But
many would-be programmers do not have unlimited access to
a large-scale computer system with almost unlimited
memory. Though such compilers can and often do play an
important role in later stages of microprocessor programming
and system design, it is the purpose of this book to bridge the
gap between the elementary microprocessor programming
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techniques and the more sophisticated techniques that are
becoming available. A good understanding of a micro-
processor’s features and limitations, as well as established
programming techniques, will make it much easier to write
simple programs and to make best use of advanced
computer-oriented programming systems.

The evolution of microprocessors and programming
techniques goes back over many years, and it might prove
helpful to gain a brief overview to place things in the proper
perspective. Digital computational hardware has been in use
since the days of the clever Chinese mathematicians who used
simple beads as memory devices, although in fact all
arithmetic operations were done in the head of the operator.
Actually, the first successful attempt to mechanize arithmetic
processes was made by Charles Babbage, who, in 1830,
designed and built a ““calculating engine’” to compute artillery
tables. This ““engine™ consisted of sets of gears and counters
that approximated the generation of table entries by use of
finite differences. The earliest electronic digital computer, the
ENIAC, was developed in 1945 by Eckert and Mauckley at the
Moore School of Engineering. This machine consisted of an
arithmetic center and a memory that stored information in
flip-flop bistable registers for rapid retrieval and use by the
arithmetic and control portion. This was not a stored-program
machine, however. The first truly general-purpose machine,
called the EDSAC, was built by a group headed by M. V.
Wilkes at Cambridge University in England. The Wilkes team
was the first to use assemblers and subroutine libraries, as
well as making other contributions to programming
techniques and procedures.

The development of other digital computers came rapidly
and can be thought of as occurring in four *‘rounds.”” The first
round included the development of large and very expensive
scientific and business computer systems such as the IBM 700
series, Univac 1103, etc. The second round included medium-
or small-scale machines that were intended for use by
scientific and engineering organizations; these sold in the
price range of $50,000 to $100,000. The third round resulted
from engineering efforts directed toward increasing inherent
reliability, reducing size, and providing “building blocks™ or
modules that could be purchased separately and combined to
form a single system.
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Coincident with the latter part of the first round was the
development of compilation programs to ease the pro-
gramming burden. And by the mid 1960s, the old 256-word
cathode-ray-tube memory in the Bureau of Standards’
Western Automatic Computer (SWAC), an impressive
machine built in the early 1950s, gave way to a 128,000-word
high-speed core memory.

The fourth round was driven by the ability of industry to
provide small, reliable, and inexpensive semiconductor
devices, each containing thousands of transistors and diodes
(so-called large scale integration, or LSI). This then paved the
way for the powerful but small minicomputers.

The microprocessor (or microcomputer) is a very recent
configuration based on the organization of the minicomputer,
but using only LSI for memory and logic electronics. A
minimally configured microprocessor system consists of a
power source, a central processing unit, two memories and an
input/output mechanism with interfacing electronics. Either
the central processor or a memory device with well over 1000
storage elements can be contained on one silicon chip
approximately 0.2 inch square.

The technology permitting this high circuit density was
initially spurred on by the requirements of military and space
programs during the 1960s, and has grown phenomenally in the
last five years. With the broadening production base,
primarily in the United States and the Far East, the unit cost
of a useful set of microcomputer devices had dropped from
around $1500 in 1972 to approximately $150 for equivalent
computational capability by late 1975. Even more recently,
several central processor units have dropped in price from $60
to $20 each for small quantities. The result of this kind of price
erosion is that the computational power derived from a
roomful of hardware in the 1950s is now available to a user on a
few silicon chips for about $100, with several complete
single-chip microprocessor systems already beginning to
reach the marketplace.

The result of this relatively inexpensive computational
tool is a tremendously expanding interest in designing and
programming microprocessor systems for an unbelievably
wide variety of applications. And, of course, experimenters
and hobbyists have quickly welcomed the microprocessor as
yet another sophisticated toy evolving from our technological
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society, But whether a mere curiosity or an important
component in an industrial system, the microprocessor has
found solid footing in today’s world, and both the
serious-minded experimenter and the modern engineer need to
know the essential architectural characteristics and pro-
gramming techniques of these microprocessors in order to
achieve the computational functions they desire.

M. W. McMurran
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Chapter 1
Basic Microprocessor

Organization and
Functions

The systems described here are called microcomputers about
as often as they are called microprocessors. Traditionally, the
term microprocessor was reserved to describe the central
processing unit (CPU), which contains various registers used
to store and manipulate numbers and instructions, thereby
performing arithmetic and logic operations. Present usage,
however, tends toward calling an entire assembly of devices a
microprocessor since the CPU cannot by itself do useful work.
Thus the CPU is considered just a part of a larger mi-
croprocessor system.

Microprocessors are assembled from a wide variety of
integrated circuit (IC) building blocks and so can assume an
even wider variety of useful configurations. This variety,
however, does not lend itself to an introductory discussion of
microprocessors, so it is desirable to first select a rep-
resentative system as the basis of discussion. Variations of
this basic system, as they occur in real systems, will then be
treated as modifications of the central theme.

The basic system we will use is based on the Rockwell
PPS-4 system. We will call this configuration AMP—standing
for A Micro-Processor. The AMP system illustrated in Fig. 1-1
is made up of a central processor unit (CPU) that is a
large-scale integration (LSI) device performing the arith-
metic and logic functions, a metal-oxide semiconductor (MOS)
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Fig.1-1. AMP organization and data flow.

read-only memory (ROM) used for permanently storing
programs and data, a MOS random-access memory (RAM)
used as a “scratchpad” memory for temporarily storing
modified instructions and results from calculations, and an
input/output controller (I0OC) used to direct and format data
traveling between the CPU and the outside world.

The processor also needs an appropriate power supply, so
the AMP will use +5 and —12 DC supplies. A crystal-controlled
clock provides the basic timing source and completes the
electrical components. The basic clock rate is 200 kHz and is
separated into four phases for control of the internal MOS
logic. For input/output the AMP uses a keyboard and a simple
pointer.

Data flow in this system is via two information channels,
or buses. This configuration requires individual devices to be
smart enough to talk only during proper time slots. Since the
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clock signals are common to all devices, system syn-
chronization is relatively easy to achieve. We will consider all
devices to be PMOS (P-channel MOS), though other options
would be NMOS, CMOS, or I’L.. A description of these various
technologies is given in Chapter 13.

The microprocessor obeys a set of operating rules similar
to those of any stored-program digital computer. Processor
functions are determined by the CPU under control of a set of
instruction patterns, most of which are permanently stored in
the ROM. These patterns are decoded by the CPU, resulting in
the execution of an operation belonging to one of the following
instruction classes or groups, which include some examples of
the instruction types and characteristics of each group.

Arithmetic and Logic Instructions. Examples: Add two
binary numbers. Logically combine two binary numbers (see
Chapter 3).

Data Transfer Instructions. Examples: Load data from
memory into an internal CPU register. Store data from an
internal CPU register into memory. Exchange data between
two registers. Load data from instruction memory (ROM) into
aCPU register. (These instructions are termed immediates.)

Control Transfer Instructions. Examples: Take next
instruction out of normal sequence if content of selected
register is less than zero. Skip one instruction if a particular
bit equals one.

Input/Output Instructions. These instructions are strongly
dependent upon the type of processor used. Examples: Load n
bits (binary digits) from an external device into a CPU
register, or directly into memory. Read single-bit input lines
and transfer the data into a CPU register. Transfer n bits of
output data with the appropriate timing control to an external
device.

The various permitted or recognized instructions that a
microprocessor will accept is referred to as the instruction set.
The PPS instruction set, which is the basis for the AMP
instructions, is quite flexible and often complex. For example,
the execution of some of these instructions will cause as many
as four independent operations to be performed simul-
taneously.

To reduce the work of decoding the bit patterns that
represent these instructions, the CPU will normally first
determine the class, and then the specific instruction type
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within the class. As a result, the bit patterns defining
instructions within classes generally have something in
common. In addition to the instruction groups introduced here,
microprocessors more sophisticated than the AMP have
instructions that further extend the processor’s capability.
Notable are:

Shift Instructions. Most microprocessors have the
capability of shifting the binary contents of a register, usually
the accumulator, either right a fixed number of spaces or left a
fixed or variable number of spaces to provide for the
arithmetic operations discussed in Chapters 5 and 6. The
simple instruction list chosen for the AMP contains only a
right shift command, and this makes programming the AMP a
bit more involved than programming some other processors.

Stacking Instructions. A stack is a series of registers
connected together so that data enters and leaves through only
the first, or top, register. Stacks are generally used for storing
reference addresses, usually the next address of an instruction
occuring before the microprocessor was interrupted for some
reason. Stacking instructions are usually of two types: push
instructions store a new address on the top of the stack,
pushing any other addresses deeper into the stack registers,
while pop instructions raise the addresses in the stack
registers to expose the next in order at the top. This procedure
permits the orderly storing and removal of address data, and
itis discussed further in Chapters 11 and 12.

Multiplication and Division. These functions are now being
built into microprocessor hardware as new processors are
introduced, thus significantly adding to the effective speed of
these machines. Multiplication and division operations are
performed by automatically creating strings of instructions
{subroutines), Each time the function is needed, control is
transferred to these subroutines. Multiplication is then
mechanized by a controlled set of successive additions, and
division by a controlled set of subtractions. This permits 20 to
100 instructions to be automatically executed for each multiply
or divide instruction, depending upon the precision needed and
the idiosyncrasies of the processor used. The resulting
trade-off penalty in the excecution time of this method when
compared with a separate hardware mechanization is often
quite severe, but of course the approach is simpler and
cheaper.
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MICROPROCESSOR CONFIGURATION

The microprocessor consists of many components whose
functions differ to perform specific tasks. Because the CPU is
the heart of any microprocessor system, we will first examine
the CPU and its internal elements in some detail. This will be
followed by a discussion of the remaining major components of
the microprocessor system.

The CPU. The AMP CPU contains registers whose
contents determine the storage locations of the next
instruction to be executed. When a specific address register is
accessed, the CPU places that address on the address bus, and
the ROM connected to that bus is commanded to fetch the
instruction in memory stored at that address. This instruction
is returned to the CPU over the instruction/data bus. The CPU
then decodes the instruction to extract the functional data and
if necessary determines the location of the operand—the data
to be worked on. The CPU causes the operand (if any) to be
read from the particular ROM or RAM where it is stored,
executes the operation indicated by the instruction, and
determines the address of the next instruction. Figure 1-2
indicates the various CPU functional elements and shows the
direction of data flow with arrowheads.

Program (P) and Data Address (B) Registers. These
registers hold the addresses of the program instruction to be
executed and the data to be extracted from memory. The
address pattern in P is placed on the address bus and
transmitted to the ROM, The ROM responds by placing the
encoded instruction (or data in the case of immediate
instructions) on the lines of the instruction/data bus. The
contents of the P register is normally incremented by one each
cycle, providing for stepping through the program sequence.
But this sequence can be broken by executing a branch
command or by unconditionally breaking off the sequence. In
these cases we override the address incrementation by
executing special instructions designed for this purpose. The B
register supplies address control to direct data transfer
between the CPU and the RAM, The content of B is modified
under program control and is set to zero on application of
power,

Clock Decode. This section interprets the basic clock
signals and distributes them to the CPU registers, providing
proper timing and synchronization,
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Save Registers (SA and SB). While program control is
temporarily passed to a subroutine (see Chapter 4), these
special registers provide memory for holding the return
instruction address. The SA register also communicates with
the accumulator to provide for more than two levels of
subroutine control.

ALU and Accumulator (A). Together these units perform
all arithmetic and logic functions. The accumulator in the
AMP is 8 bits long, and this defines the basic length of the data
word or byte that a the microprocessor handles.

X Register. This 8-bit register can communicate with both
the B register and the accumulator, providing intermediate
storage for arithmetic and data information.

Carry (C) Register. This register is 1 bit long. It contains
the final carry resulting from an addition operation and
enables the processor to work on data in integral multiples of 8
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bits (with a bit of extra effort). The information held in C may
also be used in branching operation.

Q Register. This is also a 1-bit register. It holds the state of
the carry after the first 4 bits have been processed, permitting
the addition and subtraction of numbers in a binary-
coded-decimal format (see Chapters 2and 4).

Instruction Decode Register. This register makes sense
out of the instruction bit patterns, according to the
predetermined logic of the CPU. (We will discuss this in some
detail in Chapter 4.) The complete AMP instruction set
description and timing can be found in Appendix E.

IOC Enable Signal. This provides control to the IOC device
for input/output data transfers, and advises the RAM when an
input/output operation is about to occur so it is prepared to
respond.

Discrete Input and Qutput Registers. These are each 4 bits
long. The output register is under program control and
provides commands to the I0C, causing it to accept keyboard
inputs or to take data from the instruction/data bus and send it
to the printer. The discrete input register, when sampled by
the program, may be used as an indicator of “‘printer ready”’
or ‘‘data available” from the 10C.

Output Drivers. These perform signal amplification and
conditioning for information to be sent off-chip because of the
added loads imposed by chip-to-chip communication.

Power-On Detector. This provides for starting a desired
computational sequence when power is applied to the CPU.
The discrete registers are set to all zeros (off). The CPU is
placed into the halt mode by setting the content of the
instruction decode register to a halt or no-operation
configuration. The program address register is set to all zeros,
to prepare for reading the first instruction from location 000 of
ROM-0.

THE ROMS

The AMP has two ROMs (ROM-1 and ROM-2) into which
information has been permanently written, but from which
information can be read many times. ROMs are used to hold
program instructions and data that need never be changed.
Normally about 95% of the instruction memory in large
computers falls into this category, but not all, because of the
necessity to alter programs. However, all AMP instructions
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will be taken from ROMs since the penalty for this is small if
given a reasonable capability for address modification. The
fraction of ROM data storage needed is quite dependent upon
the program structure, but is generally about 10% of the total
data requirement. Some microprocessors permit the addition
of RAMs for program storage, but we will consider this to be
merely an embellishment of the basic AMP system.

The primary reason for using a ROM instead of a RAM is
one of compactness, with a secondary advantage of data
integrity, since the ROM configuration is established by the
use of one or more unique masks during the device processing,
Once fabricated and tested, the probability of errors
emanating from the ROM is quite small. ROMs suffer no
permanent upset from all but the most severe power
transients.

The programmer must be very sure of the accuracy of his
program before committing the code to mask fabrication,
which is a moderately expensive step. To aid him in program
checkout, other memory types are made available by the
manufacturer, which are functionally interchangeable with a
ROM but the information stored can be altered. Most readers
will probably find that one of the alterable memories will serve
their purposes quite adequately, so they may never use a
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ROM. These are called PROMs (Programmable ROMs) and
are electrically programmable. Some popular PROMs are
erasable (all locations set to zero) by exposure to ultraviolet
light.

The AMP ROM functional configuration can be seen in
Fig. 1-3. The ROM is an 8192-bit unit organized in 1024 8-bit
groups. The selected ROM must respond to an inquiry from the
CPU only during specific time slots. This timing control is
accomplished by the clock decode block, which identifies the
proper time, using the common clocking signal as reference.
Since fixed information is stored in the ROM (coefficients for
evaluating trigonometric functions, addressing and book-
keeping constants, scale factors, etc.), the data flow must be
handled in a manner to prevent confusing the numerical
information from program instruction. This is accomplished
by identifying a class of data transfer instructions that cause
the ROM byte immediately following the instruction code to be
steered to the accumulator.

ROM addressing is accomplished first by the chip select,
which determines when a particular ROM is being asked to
supply data. (In the AMP there are only two ROMSs, but for
most real processors, several ROMs are likely to be used,
requiring each to be able to identify when it is spoken to.) Once
having selected the proper ROM, the particular 8-bit group
desired must be identified. The address of this group is
transmitted from the CPU to the ROM and is put into the form
of X-Y coordinates by the address decoder. It is by
determining this intersection that the ROM selects the
addressed information,

The storage area contains a pattern of 8192 1's and 0’s in an
orderly format that simplifies reading the proper 8-bit groups
when selected. Because signals that are used to control and
transfer data within the ROM chip are not normally adequate
to provide reliable transmission between chips, output drivers
are provided.

The RAM

While it is proper to consider the RAM a true ran-
dom-access memory, the ROM is also random access insofar
as reading is concerned. It is a bit of a misnomer to distinguish
the two memory configurations in this fashion, but the
acronyms have stuck and are unlikely to change. The AMP
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RAM contains 2048 bits of storage organized in 256 8-bit groups.
When commanded, information is transferred to the CPU
accumulator in one clock phase time. This is accomplished by
the RAM placing the 8-bit content of the addressed location in
the RAM output registers, which in turn place the data in
parallel on the 8 lines of the instruction data bus.

The functional configuration of the RAM is equivalent to
that of the ROM. The similarities can be seen from examining
Fig. 1-3 and 1-4. Differences lie in the storage area, in the clock
decode, and the input/output register which, unlike the ROM,
must handle incoming data as well as outgoing.

The RAM storage area is not as densely packed as that of a
ROM, and this results because of the larger number of
transistors required to construct each memory cell in the
RAM. For equal amounts of memory storage, a RAM needs
about four times as much chip area as a ROM.

Clocking is also somewhat different. The RAM must
receive and supply data during a different time slot than the
ROM, so the RAM clock decoder looks for different clock
phasing.

Clock

The AMP clock, also called the clock generator (see Fig.
1-5), provides two synchronous wave forms (A Clock and B
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Clock) which control the timing of the microprocessor. The
device has an internal oscillator stabilized by a 3.6 MHz quartz
crystal. The crystal frequency is divided by 18 in the
count-down controller to obtain the basic 200 kHz clock
frequency. Drivers are provided as in the other devices to
amplify clock signal levels, assuring reliable system
performance.

Input/Output Controller (I10C)

The AMP IOC (Fig. 1-6), provides 8 static (discrete)
outputs and accepts 8 inputs. It controls the data exchange
with the peripheral keyboard and teletypewriter mechanisms.
The I0C interprets an operation code supplied by the ROM
under control of the CPU, to control data flow to and from the
input receiver, output register and the CPU accumulator.
Output drivers are used to provide proper amplification. Once
set, data remains on the output lines until altered, and remains
in the input receiver until transferred, thus capturing the
latest keyboard inputs. Data is transferred either by copying
the content of the CPU accumulator into the output register for
ultimate destination to the teletypewriter, or transmission of
the contents of the input receiver into the accumulator.
Information transfers are initiated by the CPU using the I0C
enable signal from the CPU instruction decode register. If the
decoded instruction is other than an input/output instruction,
data memory (RAM) is selected and the IOC enable is not
turned on.

These packaged MOS devices comprising the AMP are
interconnected by means of a printed circuit board containing
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Fig. 1-5. AMP clock block diagram.
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the necessary electrical paths formed from etched copper
conductors. Figure 1-7 is a photograph of a Rockwell system
assembled on a printed board.

Fig. 1-7. Microprocessor ALU assembly
board. (Courtesy Rockwell International)
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Summary

The AMP System is not complex. It is illustrative of the
simpler microprocessor configurations. Because of the
distributed and cooperative nature of the bus-oriented or-
ganizations, data flow may at first appear loosely struc-
tured, with many devices talking on the same “party line.”
But the CPU is the traffic director; the synchronized timing
insures that the messages requested or transmitted by the
CPU are on the buses at exactly the proper time to be handled
by the proper devices. Next we turn out attention to the
language of digital equipment—the binary and associated
number systems.
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The decimal number system is considered by nearly all people
to be natural and easy to use. Further, it allows for the
implementation of an orderly set of arithmetic rules. The
decimal system is undoubtedly a consequence of our having
five fingers on each hand, which permitted our ancestors, as
well as most of us when we were children, to count to five,
twice, before we ran out of fingers and had to do something
more advanced to count higher. That ‘‘something” involved
the development of a set of rules that let us mark the number
of times that we had exceeded the counting capacity of ten
fingers, while not increasing the number of digits or
“admissible marks” used so that the same arithmetic could be
used throughout the system. The Romans did not recognize the
utility of a positional system until it was too late, and they
were tied to their cumbersome Roman numerals. The decimal
system has served us well, at least until digital computers
made the scene.

The language of microprocessors is the language of
switches. A properly operating switch is either open or closed.
A properly operating MOS gate is either conducting or not
conducting. This style of operation allows only two stable
states. A stable on state is normally designated by a I and
stable off stage by a 0. Stable is used here to mean that the
switch is indeed fully open or closed, or the gate is either fully
turned on or off. If we try to samole the state during a
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Fig. 2-1. Zero-to-one transition waveform.

transition period, we cannot reliably determine the state the
element is in. In the case of MOS or other semiconductor
switches, the transition from a 0 to a 1 will probably look like
Fig. 2-1. We will consider only those cases where the existence
of the proper state has been fully established.

BINARY INTEGERS

We are now faced with the problem of using these bistable,
or binary, states as vehicles for computations that we can
relate to our familiar decimal system. Because we have
available in the binary system only the symbols 0 and 1, and
desire a positional notation structure, we count as we would in
decimal, but can use only the 0 or 1 before we exhaust the
symbol set; we must create new digit positions (columns) to
continue counting. The value of a 1 in the new higher order
column is then 2 times the value of a 1 in the old,

Table 2-1 indicates the binary counting sequence and the
equivalence of binary and decimal integers. The right-most
binary integer is multiplied by 2 or 1; the next 2' or 2; the
next by 2° or 4, and so on. These numbers are then added to
obtain the decimal equivalent. As an example, the binary
number 1001101 can be expressed as

(IX2)+O0X2)+0x2)+
AX2)+(1X2)+(0x2)+(1x2)
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Table. 2-1. Value of Binary Digits Expressed as Decimal Numbers

VALUE OF BINARY DIGITS
EXPRESSED AS DECIMAL
BINARY COUNT | NUMBERS DECIMAL COUNT

0 ) 0
1 ) !
10 @+ 0) 2
" @+1) 3
100 @+0+0) 4
101 @+0+1) 5
110 @+ 2+0) 6
1 @+2+1) 7

or6d +0-+0+8+4+0+1=175,.(norder todistinguish
between numbers expressed in the various systems where a
misunderstanding is likely, we will use a subscript, 10 for
decimal, 2 for binary, etc.)

BINARY ARITHMETIC

Binary addition (Table 2-2) is quite simple. A complete
table of binary summation performed bit-by-bit is also shown
in Table 2-3, which includes all possible combinations of
addend, augend, and carry. The state of the carry determines
any addition to be made into the next higher-order column.
Table 2-3 can be simplified by observing that the order of
addition is commutative, that is 0 +1=1+0, and as a
consequence, only four entries are needed to generate all
unique sum and carry combinations.

Adding two binary numbers is illustrated by the following
example:

100010000 }carry digit (initially 0)
2041() = 110011002
+ 170,, = +10101010,
374, = 101110110,

Table 2-2. Binary Addition Table

E%vx&ox
w 0101
5]

21|10
ADDEND
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Table 2-3. Two-Argument Binary Summation

AUGEND ADDEND CARRY NEW CARRY SUMDIGIT

—t ) CD ot DO
— D — D e (D - O
e ek el ODOOO
— i et D - OO

Note that each digit multiplies the appropriate power of 2.
2 27 28 2 20 2 20 2t 2
1 0 1.1 1 0 1 10

or,

256 128 64 32 16
1 0 1 1 1

The result expressed in decimal is
256 + 64 + 32 + 16 + 4 + 2 = 374y

8§ 421
0110

COMPLEMENTATION

Direct binary subtraction could be performed in the same
way as decimal subtraction, but no processor does subtraction
in this fashion. The problem is that you would not only have to
mechanize the subtraction process, you would also be faced
with the fact that you cannot depend upon a “‘borrow” digit
being conveniently available in the position immediately to the
left of the one in which the subtraction is taking place. This
complicates the processor hardware design unnecessarily.
For example, consider the problem:

10010001, = 145,
— 1111111, = — 127y

To solve this problem directly, you perform the first digit
subtraction easily. But then you are required to generate a
borrow to operate on the second digit from the right. You have
to search left three digits to find a 1, change that 1to a 0, all the
intervening 0’s to 1's, perform the subtraction, and add 1 into
the result (to correct for the difference between 1000 and 0111).
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This is not the orderly process we would like to mechanize.
Instead, negative numbers are expressed in complementary
form, and arithmetic is performed on these complements.
Complementary arithmetic may be used to perform
subtractions in any number system.

Returning to the decimal system, we can define a 9's
complement as the result of subtracting the number in
question from all 9's. For example, the 9’s complement of 3756
is 6243:

9999
= 3756
6243

If we wish to subtract 3756 from 7682, it can almost be done by
adding the 9's complement of 3756 to 7682:
7682
+ 6243
13925
Among other things, you will note that the answer 1395 is too
large, so another step is required to bring us closer to the
correct answer. The complement was obtained by adding 9999
to —3756, so we first correct this situation by subtracting
10,000, which effectively removes the left-most digit:

13,925

- 10,000

3,925
(The left-most 1 resulting from the final carry in the addition
operation could have been blocked in the processor to obtain
the same result.) We must now make one last correction by
adding 1 to 3925 (since 10,000 — 9999 = 1), giving the correct
result of 3926. The process can be made a bit simpler by
defining a 10’s complement as being the 9’s complement plus 1,
thus removing the need to add in a final 1 to obtain the correct
result, but slightly complicating the complementation process.

Binary Complements

The use of complementary arithmetic to perform decimal
subtraction is of little real value since it saves no work.
However, in the binary system, real savings are achieved. The
binary complementation process is identical to that used in the
decimal system. We may define a I's complement and a 2’s
complement as follows:
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To determine the 1's complement, the number is
subtracted from all 1's. This subtraction amounts to nothing
more than exchanging the 0's for 1's and the 1's for 0’s in the
number in question. For example, the 1I's complement of
101101101001, is 010010010110 .

The 2's complement is equal to the 1’s complement plus 1,
and it is normally formed by the following process: First,
examine the least significant digit; if it is a 0, copy it and all
contiguous zeros until the first 1 is found. Copy this first 1 also.
Invert all other digits as in 1's complementation. For example,
the 2’s complement of 110110101000 is 001001011000.

Virtually all processors use 2's complement arithmetic.
Negative numbers are identified by a 1 in the most significant,
or sign bit position, and are stored in 2’s complement form. A

= 45, may be stored in the AMP’s 8-bit data word as

[1]1 0 1 00 1 1]=-45
sign bit-/ \—numerical bits-—/
The addition of +75,, to —45, is performed as follows:

combined{|011 00101 1]=+7u

by +

addition {{1[1 0 1 0 0 1 1|=-45, (complementary

form)

- (0 in the sign bit
carry({)——[() [0 0 1 1 11 0]=+30, is a plus)
Note that the final carry falls off the left-hand end of the
register, thus correcting for the addition performed in
creating the 2's complement. Note also that arithmetic is
performed on the sign bit exactly as on the data bits.
The addition of —10,, and —45,y looks like:

(t]1 11010 1]=-11y
+
[1]1 0 10 0 1 1}=—45,

allin
compiementary form

Il 001 00 0]=-56
1

To check the result we can complement our representation for
—56 to obtain the result in a readable absolute-value form.
(Note that if the complementation operation is done twice, or
an even number of times, we will have our original number
back.)
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—56in2's complementform [1]1 0 0 1 0 0 0]

+56, sign and absolutevalue [0}0 1 1 1 0 0 0]
32 + 16+ 8 =56

BINARY MULTIPLICATION

The multiplication of binary numbers expressed as sign
and absolute value is quite simple. Because the multiplier
digits can only be 1 or 0, we either add or don’t add the shifted
multiplicand into the partial product, depending upon the
value of each multiplier digit examined. If we work from least
to most significant bit, the multiplicand is added and then
shifted left to prepare for the next cycle. (We may also work
from most to least significant, in which case the multiplicand
is shifted right each time a multiplier digit is examined.) For
instance,

10 10 = 1010

100 12,
101000
1010000

1111000 = 120,

In this example, both multiplier and multiplicand were
considered to be positive. Where it is possible for the
multiplier to be expressed in 2's complement form (negative),
things become more complex. It is no longer enough to simply
examine the multiplier bits, one by one, to control the addition,
nor is it possible to simply invert the meaning of these
multiplier digits when operating on numbers expressed in 2's
complement form. Fortunately, several methods have been
devised to handle this problem efficiently. The techniques
described here can be used as the basis for multiplication
subroutines as well as for hardware multiplication.

Example 1
First, let us consider the case where the multiplier is
greater than zero and the multiplicand is less than zero.

multiplicand—35 [1]1 0 1 1 1 0 1}

multiplier x 75 [0J1 0 0 1 0 1 1j

175
245

~2625
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Since the arguments are each 8 bits long we must have
available a double-length or 16-bit register to hold the partial
product. In this example we will use the least significant digit
of the multiplier to control the additions and shifts. This least
significant digit is a one, so the multiplicand will be added into
the product register, which was initially set to all zeros.

Step 1:

Product

register

Shift right
one place

[t 1 0111010000000 0]

(1 1 101 1 10i10000000]

(Insert a one in the highest order digit position when each right
shift operation is performed.)

In order to isolate the least significant multiplier bit for
control, the multiplier register may also be shifted right. Once
the multiplier bit is used for control, it is of no further use and
can be thrown away. If register space is at a premium, the
partial product can be developed by using a single 8-bit
register and shifting the lower-order bits into the vacated bit
positions of the multiplier register. At any rate, we have now
shifted the multiplier right, yielding

(X 01 0 0 1 0 1}

where X indicates ‘‘don’t care.”
Step 2: The least significant multiplier bit is a one, so we
once again add the multiplicand into the partial product.

E’f:fiﬁé‘{“a‘luomm1510000000[

Shift right '
oneplace (L L 1 00 101111000000

Shift multiplier right one place IXX 0100 1 0}

Step 3: The least significant multiplier bit is a zero, so we
shift the multiplier and product registers each right one place.

Product

111 10010i1 110000 0]

register

Multiplier IXXX0100 1]
Step 4: Add multiplicand and shift right.

New partial

product L1 0 0 1 111711102000 0]
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Shift right
one place
Multiplier X XXX010 0]

Steps 5 and 6: The multiplier control digit is zero for both
steps, so the partial product is shifted right twice:

New partial y
product [T 111100 1:1 111110 0]

Multiplier XXXXXX0 1]

Step 7: The multiplier control digit is a one.

New partial
product

Multiplier [XXXXXXX o]

The last control digit is a zero, but this is the sign of the
multiplier. Since it is a zero in this case, the only result would
be to shift the product right one place. So the final result is

[T 11 1010110111111}
[

Depending upon how we choose to scale the problem, this
final shift may or may not be proper. If we follow the scaling
rules of Chapter 4, we do not want to execute another shift and
will terminate the multiplication here. The resulting binary
point is then 14 digits to the right of the sign position (having
multiplied two 7-digit numbers together). The product
expressed in absolute value formis

[ZTo 0101 00{L 000001 0]
-y
~ (2048 + 512 + 64 4+ 1) = ~2625

We can now consider the general case, where either or both the
multiplier and multiplicand can be negative.

[T 110011 1:1 111000 0j

[T 110101 10 111111 0]

Defining Conditions

The multiplier (z) and multiplicand (y) are contained in
an 8-bit word with the sign as the most significant bit.

If the multiplier and multiplicand are both greater than or
equal to zero, there is no problem. If the multiplier is greater
than or equal to zero and the multiplicand is less than zero,
negative partial sums are developed in complementary form
and this is still not a problem (Example 1).

If the multiplier is less than zero, the register value is
expressed as 2° -z, so that a product (zy) is expressed as
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(2 — 1) y, or 2°y — zy. The product can then be corrected by
subtracting 2° y at the completion of the multiplication. This
can be done by realizing that the sign digit is “1’’ if the
multiplier is less than zero, so that we can subtract the product
of the sign digit and y from the partial product, instead of
multiplying by the sign digit of the multiplier.

All of this leads to a fairly simple rule:

To generate the product of two binary numbers
where either, or both, may be negative and ez-
pressed as 2’s complements, form the product as in
Ezample 1, correcting the result by taking the pro-
duct of the most significant digit of the multiplier
and the complement of the multiplicand, adding
this to a properly shifted partial product. The re-
sulting final product will always be proper.

Example 2
Using the preceding rule, we will generate the product:
—35
X =175
2625
Initial values are
Multiplicand [1f1 01110 1]
Multiplier [1fo 1101 0 1]

{Product register is set to all zeros.)

Step 1: Add multiplicand to product register and shift right
one place.

Product
register

Step 2: Shift product register right one place.
{1 11101 110100000 0]

Step 3: Add multiplicand and shift.

(1 1101010 0010000 0]
Step 4: Shift right one place.

[1111010100010000]
Step 5: Add multiplicand and shift.

[11101001 0000100 0]

(111011 10f1000000 0}
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Step 6: Add multiplicand and shift.

[1 11 00011 00000710 0]
Step 7: Shift right one place.

[11 110001 1000001 0]

Step 8: Subtract by adding the complement of the
multiplicand to the partial product.

[0 0010100 10000010]
for the final correct product of +2625.

PRECISION

Binary requires more digits to express comparable
precision than the digits of a decimal number. In fact, it
requires approximately 10 bits to express the same
information as contained in 3 decimal digits, since 2" = 1024,
while 10° = 1000. The actual number of bits required to satisfy
the required precision can be determined by the general
relationship, 2 = 10*, solving for x when you know the
required value of A. Taking the logarithm to the base 10 of both
sides of the equation, we have

zlogn (2) = A
or
z = A/0.30103

So a 5-digit decimal number would require approximately
5/0.301 = 16.6 bits, which we would round up or down to 16 or
17 bits, as circumstances demanded, to express the equivalent
precision of the decimal number.

If the decimal number does not range up to a full decade,
you adjust for this by using a fractional value for A. For
example, if the required precision is to express numbers up to
decimal 500, then 500 = 10*, or A = log, (500) = 2.7. From
this value we find that x = 2.7/0.301, or about 9 bits.

OCTAL AND HEXADECIMAL SYSTEMS

Because binary representations require long strings of
digits to express numbers of useful precision, it has been found
desirable to use other number systems having more
admissible marks, and for which the conversions to and from
binary are simple.
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Table 2-4. Decimal, Octal, and Binary Equivalence

DECIMAL OCTAL BINARY
0 0 0
1 1 i
2 2 10
3 3 11
4 4 100
5 5 101
6 6 110
7 7 11
8 10 1000
9 11 1001

10 12 1010

Octal System

Since 8 is equal to 2° , we can form the octal equivalent of a
binary number by simply grouping the bits in sets of three and
assigning symbols to each element of the set. Table 2-4 lists the
equivalencies for small integral values.

The conversion from binary to octal is trivial. The binary
number is marked off in groups of 3 and the conversion
performed by reference to decimal digits 0—7 of Table 2-4. The
equivalent octal and binary representations are

Binary 111 101 100 010
Octal 7 5 4 2

The octal number is then written as 7542, .
The conversion from octal to binary is simply the reverse.

Octal 4 0 3 5 6
Binary 100 000 011 101 110

To add octal numbers we must use the rules for octal
arithmetic. By reference to the octal addition table, Table 2-5,
we can form sums. As two examples, we have:

4,745 3,754s
+3,643; +17,6214
10,6104 13,6755

Complementation of octal numbers is performed in the
same manner as complementation of decimal or binary. In the
case of octal, the 7’s complement may be taken by subtracting
the number in question from all 7’s, using octal arithmetic
which, in this special case, is the same as decimal arithmetic.
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Table 2-5. Octal Addition Table

+lo 1 2 3 4 5 & 7
olo 1 2 3 4 5 6 7
1 2 3 4 5 6 7 10
2 4 5 6 7 10 1
3 6 7 10 1 12
4 0 1 12 13
5 12 13 14
6 14 15
7 16

The §’s complement is then formed by adding 1, also using
octal arithmetic. For example, the 7’s complement of 6720; is

7777
—6720
1057

The 8’s complement is then

1057
L
10603
Octal complementation can also be performed by
complementing the binary equivalent and converting to octal.
Since the processor representation is binary, the latter is often
more convenient. To form the 8’s complement of 6720; we first
form the 2’'s complement of 110 111 010 000., which is
001 000 110 000,. Converting this result to octal we have
10605 .
Octal multiplication is performed exactly as mul-
tiplication in the decimal system but using octal arith-
metic. Referring to Table 2-6, we have

1735% = 989

X 46y = 3810
13456 7912
7564 2967

111316, = 375821
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fable 2-6. Octal Multiplication Table

X111 2 3 4 5 6 7
141 2 3 4 5 6 7
2 4 6 10 12 14 16
3 1 14 17 22 25
4 20 24 30 34
5 31 36 43
6 4 52
7 61
Hexadecimal

We chose 3-bit groups to form octal digits because we
wanted a compact notation without introducing unusual
symbols. While octal is commonly used as an intermediate
notation for large computer systems having word lengths of 30
to 36 bits, microprocessors with 4-, 8-, and 16-bit organization
for data words will more naturally use 4-bit groups. Since
2* = 16, we can express numbers from 0 through 15, in a
hezadecimal group. To do so we must introduce new symbols
for decimal numbers 10 through 15. Because IBM selected A,
B, C, D, E, and F, most manufacturers have followed suit
(Bendix chose U, V, W, X, Y, and Z for their G15 and G20
computer systems in the late 1950’s, but it didn’t stick).
Hexadecimal (‘hex” for short) digits and their binary and
decimal equivalents are shown in Table 2-7. We must however,
define rules for hexadecimal arithmetic as we did for the
binary and octal operation. Table 2-8 and Appendix A are the
hexadecimal addition and multiplication tables, respectively,
and provide sufficient definition to begin to work within the
hexadecimal system. The following are three examples of
hexadecimal arithmetic.

Addition of two hexadecimal numbers:

6K8s = 1768
+3CDy = + 9731
AB5s = 2741,

where the value of
AB5; = (10 X 16*) + (11 X 16) + 5 = 2560 + 176 + 5 = 2741,
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Table 2-7. Decimal, Hexadecimal (Hex), and Binary Equivalence

DECIMAL | HEXADECIMAL BINARY }
0 ' 0 0
i i 1
2 2 10
3 3 11
4 4 100
5 5 101
6 6 110
7 7 i
8 8 1000
9 ? 1001

10 A 1010
11 B 1011
12 C 1100
13 D 1ot
14 E 1110
15 F 11

Multiplication of two hexadecimal numbers:

IB315 = 43510
X 575 = X 87n
BE5
87F

93D5;s = 37,8450

To form the 16’s complement of a hexadecimal number,
we simply subtract that number from all F’s and add 1. The
16’s complement of D439 is

FFFF
—D439
2BC6
+ 1
2BC7

NUMBER CONVERSIONS

The preceding operational rules for addition, multi-
plication, and subtraction apply to binary and binary-com-
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patible systems. Division can be performed by reference to
addition and multiplication tables, but should be used
sparingly.

So far, the discussion has been limited to operations with
whole numbers. Once in a number system, using the
arithmetic of that system, fractions and integers are handled
identically. However, when converting from one system to
another, where the conversions cannot be made directly, the
rules for operating on fractions are different than those for
integers. For purposes of establishing rules for converting
from one system to another, we propose the following
definitions:

radical point—the symbol separating the integer digits
from the fraction digits. Decimal point and binary point are
terms used for specific cases.

familiar number system—the system whose arithmetic
rules we are following. If we are using hexadecimal
arithmetic, then hexadecimal is the “familiar” system, at
least for the moment,

foreign number system—any other system than what we
happen to be using at the moment. If we are using binary
arithmetic, then decimal would be a “foreign’ system.

Using these definitions, we can reduce the number of
different rules we must follow to obtain number equivalents in
various systems.

Table 2-8. Hexadecimal Addition Table

A

A

B 10
C 10 11
D [ SV
E 10 11 12 13
F 10 11 12 13 14
10

n

12

13

14
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12 13 14 15 16
1314 15 16 17
14 15 16 17 18
1516 17 18 19
16 17 18 19 1A
18 19 1A 18
1A 18 1C

1c 10
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Converting Integers

To convert an integer expressed in a familiar base to an
equivalent one in a foreign base, apply the following rule:

Successively divide by the foreign base ex-
pressed as a familiar number, using familiar
arithmetic, pick, off the remainders and form the
resulting foreign number from these remainders.
The remainder, as a result of the first division, is
the least significant digit and the remainder, result-
ing from the division yielding a zero quotient is the
most significant digit of the new number.

For example, convert 296,, to octal:
37
8 [296
24
56

56
0 (1st remainder is 03 )

5 (2nd remainder is 5; )

0
84

L
g

e

(3rd remainderis4;)

The resulting equivalent octal number is 450.
Convert 450, to decimal:

35

12 [450
36

70

62
6 (1st remainder is 6 )
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2
1235
2

11 (2nd remainder is 9, )

0
122
0

2 (3rd remainder is 2,9 )
The resulting equivalent decimal number is 296.

Hartmann Conversion

The following algorithm is quite useful for number
conversion. It is called the Hartmann method and was
originally published in Computer Design, April 1967, by
Sigmund Hartmann. The advantage of this method is that it
permits the use of decimal arithmetic when converting from a
nondecimal to a decimal base. The rule can be stated as
follows:

To convert an octal number to an equivalent
number, using decimal arithmetic, first double the
most significant digit of the octal number as though
it were a decimal digit, then shift it one place right
and subtract it from the original octal number using
decimal arithmetic, successively choosing the re-
sulting two most-significant digits, and then the
three most-significant, etc. Continue this operation
until subtraction is performed at the least signifi-
cant digit position. The resulting number is the
equivalent decimal integer.

Examples:
450 (octal) 1762  (octal)
-8 =200
370 1562
~ 74 300
296 (decimal equivalent) 1262

—252
1010  (decimal equivalent)

The general rules are stated in Table 2-9 for converting to
a decimal base, together with a binary example. (Conversion
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Table 2-9. Rules for the Hartmann Conversion Technique

RULES EXAMPLE
{Decimal arithmetic is used exclusively} Convert 1011;to decimal
1 Subtract 10 from the old base Call this dilference M M=2-10==~8

2 Multiply the Most Significant Digit of the number to be converted by {(1I{-8)= -8

M.
3. Shift the product from (2) one place to the right and add to the 2 most 10{11)
significant digits of the original number -8

27T
4 Multiply the result from (3) by M (2)(~8)= =16
5. Shift the product from (4) one place to the right and add to it the pro- 2111}
duct from (3) and the next most significant digit. - 16

5(1]

6 Repeat the procedure of (4) and {5) until the least significant digit is re: {5)(~8)= =40

ached. The result is the decimal equivalent 51

Rt ——
1149=10113

from decimal, of course, is quite conveniently done using
conventional techniques.) For the mathematically inclined, a
proof of this method can be found in Appendix B. The method
can be used for conversion of hexadecimal numbers, but must
be applied digit by digit because the symbols A through F are
unique to hexadecimal making the method somewhat
awkward. If desired, conversions can always be made by
simply expressing the number in the new base as we have done
earlier.

To convert A16C;; to decimal, form the following sum of
products:

Al6C;s = A(16%) + 1(16%) + 6(16) + C
Since A = 10, and C = 12y,
A16Cis = (40,960 + 256 + 96 + 12)1 = 41,324

Fractions

So far we have considered only integers, whereas numbers
expressed in most systems consist of both integers and
fractions. Further, we must expect to truncate or round
infinite fractions if we are to be able to stay within the limited
number of digits in our processor. The problem is that a finite
fraction in one system may very well be an infinite fraction in
another. For example, decimal 0.6 becomes octal 0.46314631...
and hexadecimal 0.1 becomes decimal 0.166666... . The
following rule applies:
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To obtain an equivalent foreign representation
of a fraction expressed in a familiar system,
multiply the fraction in the familiar system by the
foreign base expressed as a familiar number, using
familiar arithmetic. Use the digit appearing to the
left of the radical point as the most significant digit
of the fraction, and express this in the foreign base.
Again multiply the resulting fraction only, and re-
peat until either an adequate number of digits is ob-
tained or the precision of the resulting foreign
number is equivalent to that of the original familiar
one.

Example: convert 0.7489,, to octal. We multiply by the
octal base (8) expressed as a decimal number.
0.7489

5]0.991

==} Nlco

710.9296

0.436

0.494

(M) -3
o Wjos oo

2]0.9552

The resulting octal fraction is then 0.5773%; .

Example: convert 0.A72;; to decimal. Since the decimal
base is A expressed as a hexadecimal number, conversion is
performed multiplying successively by A using hexadecimal
arithmetic.

0.A72

6| 874

488

k|

(3]

D50

520

14

340
The decimal equivalent is then 0,65283,, .
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The Hartmann method may also be used to convert
fractions by considering them to be composed of a numerator
and denominator, converting the numerator as an integer, and
dividing through by the denominator expressed as a decimal
integer, using decimal arithmetic.

An alternate scheme for the conversion of an octal fraction
to an equivalent decimal fraction is stated without proof:

Initially multiply the least significant “good”
digit of the octal fraction by 0.025 and add the pro-
duct to the octal fraction using decimal arithmetic.
Then move to the next least significant “good” digit
and all following digits—use this digit group as the
multiplicand. Now continue the process until the
most significant digit has been included as the
multiplicand. The result is the equivalent decimal

fraction.
Example: convert 0.5773; to decimal.
0.577300
+ 000075 = (0.0003) x (0.025)
0.57737500
+ 00184375 = (0.007375 x (0.025)
0.57921875
+ 01980468 = {0.07921875) x (0.025)
0.59902343
+ 0.14975585 = (0.59902343) x (0.025)
0.74877928,,

This should be rounded to 0.7488,, (4 digits) to maintain nearly
equivalent precision. (Some useless precision is implied, since
3 decimal digits aren’t enough and 4 is too many.)

In addition to the converson methods discussed, a table of
hexadecimal integer equivalents can be found in Appendix C
together with a brief discussion of their use.

BINARY-CODED DECIMAL NUMBERS

Thus far we have been primarily concerned with binary
and binary-derived systems used for the convenience of the
processor. Because most of us prefer decimal, the bi-
nary-coded decimal (BCD) character set has been defined to
permit communication with the processor in a decimal form.
In fact, it is possible to perform an artificial arithmetic in this
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pseudo-decimal system. Most hand-held calculators work
entirely in BCD even though the internal arithmetic is more
cumbersome and requires additional memory when compared
with straight binary arithmetic. The advantage is that the
input/output conversions normally needed to obtain the binary
equivalent on input, and the decimal equivalent on output, are
trivial when BCD is used. BCD representation is nothing more
than the familiar 4-bit equivalents used for hexadecimal, but
restricted to the decimal digits 0-9, as shown in Table 2-10.

The AMP typewriter is driven using BCD from the CPU,
one digit at a time. Other operations and symbols (e.g.,
carriage return, line feed space, decimal point, and minus
sign) are controlled by remaining unused 4-bit characters.
Similarly, the keyboard inputs are coded in BCD when they
arrive at the CPU.

BCD Addition
In the case of a 4-bit processor, BCD addition of positive
numbers is performed easily as long as the sum is less than 10.

0101 = 5
+0010 = 42
0111 = 71(] )
But when the sum is 10 or greater, difficulties arise, as in
0110 = 6
1101 = 13y,

Here the sum is 13,,, which the CPU adder expresses as Dy .
But two BCD characters are required to represent 13, , and

Table 2-10. BCD and Decimal Equivalence

BCD DECIMAL

0000
0001

0010
0011

0100
0101
0110
0111
1000
1001

NVONOCGHRWN ~O
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these are formed by adding 6,, to an illegal BCD character
(1010, 1011, 1100, 1101, 1111) and then adding the resulting
carry to the next digit position. This in effect, ‘“skips over’’ the
illegal characters, forming the proper BCD representation.

1101 = 13
0110 = 6 (binary to BCD correction)
]110011 =19, = 13BCD

carry

To obtain the proper answer of 0001 0011, zeros must be
originally placed in the 4 bits of the most significant character
set. When the C (carry flip-flop) is sampled, the resulting 1is
added in.

In the case of the AMP 8-bit adder, two instructions are
provided to permit processing of BCD characters, two at a
time. The first of these instructions is DC, and it causes a BCD
66 to be added to the accumulator prior to binary addition. The
second instruction, DCC, is used after the addition has taken
place, to correct the addition by adding a correction factor.

To provide sufficient information to determine whether or
not a correction is needed, the AMP CPU uses two flag bits,
called C and Q. The Q bit is set to one if a carry is generated in
adding the four bits corresponding to the least significant BCD
digit. The C bit is set to one if a carry is generated by the
second BCD digit held in the CPU’s 8-bit register. The Q is
termed an intermediate carry, and this carry bit is set to zero
after executing a DCC instruction. When the DCC instructionis
issued, the states of the C and Q bits are examined, and the
AMP hardware causes the appropriate correction factor
(Table 2-11) to be added to the accumulator.

The following comments may help in understanding the
rationale behind the correcton factors givenin Table 2-11:

@ If C = 0and Q = 0 after the addition is complete, this
indicates that no carries have been generated and that

Table 2-11. BCD Corrections

c aQ BINARY HEXADECIMAL
0 0 10011010 9A
1 0 10100000 A0
0 1 11111010 FA
1 1 00000000 00
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the 66 added initially to the accumulator must be
removed. The reason for adding the 66 in the first
place was to automatically correct any sum exceeding
decimal 99. But if no carries were generated, then the
sum is obviously less than decimal 99, so each BCD
digit is in error. This situation is corrected by
subtracting 66 from the accumulator, which is
accomplished by adding the 2’s complement of 66 , or
9A; . Carries generated by this operation are cleared
by the CPU adder when the DCC instruction is
completed.

@ If C = 1land Q = 0, the least significant digit (LSD) is
correct, but the most significant digit (MSD) is in
error. This is accomplished by subtracting 60, , which
is the same as adding the 2’s complement, which is
A0;s . The Q is reset to zero, while the C remains one to
indicate that the accumulator has added two digits
that total more than decimal 99.

® IfC=0andQ =1, the MSD is correct and the LSD is
in error. Therefore 6 must be subtracted from the LSD
by adding the 2’s complement of 06,; , which is FAg .
The corrected sum is less than decimal 99, so both C
and Q are reset to zero.

® If C =1 and Q = 1, nothing more need be done since
the sum is correct.

An example of BCD arithmetic is the addition of decimal
64 and 27, which would produce a carry in Q but not in C. The
operations are as follows:

Load decimal 64 0110 0100(C =10,Q = 0)
Add 66 correction (DC) 0110 0110
Sum 1100 1010¢(C =0,Q = 0)
Add decimal 27 0010 0111
Sum 1111 0001 (C = 0,Q = 1)
Add correction (DCC) 1010 0000
Final sum is decimal 91 1001 0001 (C =0,Q = 0)
BCD Subtraction

Subtraction is performed in the same manner as addition
except that the subtrahend must be complemented. The sign is
contained in C and the result is expressed in BCD 10’s
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complement if the number is negative. The one-digit (4-bit)
case follows directly from 4-bit BCD addition. The 8-bit case is

a bit more complex.

Example: (-4) + (=7) = —11.

Load —4 (2’s complement) 1100

Add —7 (2’s complement) 1001

Sum 1 0101 (note carry bit at left)
Add --6 correction 1010

Sum (complementary form) 111

Example: 25 — 76.

Load 25 (absolute value) 0010 0101 (C = 0,Q = 0)
Add —76 (10’s complement) 1000 1010
Sum (both digits) 1010 1111(C =0,Q = 0)
Add correction (Table 2-11) 1001 1010

Final sum is —51 (complemented) 0100 1001 (C = 0,Q = 0)

Notice that a preliminary correction (adding 66) is not
necessary for subtraction. The compensation defined by Table
2-11 is sufficient.

Conversions

Binary-to-BCD conversions may be performed by the
methods discussed earlier in the chapter. For example, let’s
convert 0.11011101 to BCD.

Since the conversion is to a form of decimal number, the
binary fraction should be multiplied by 1010 (10, ) using
binary arithmetic, and the most significant BCD digits are
picked off 4 bits at a time after each multiplication. Using the
simpler form of binary multiplication by 1010,

We shift right once 0110 11101
Then right twice more 0001 1011101
1000 1010001

We have multiplied by 10,,, so the radical point is now shifted
four places right. (Chapter 4 addresses the rules). The first
BCD digit is 1000, or 8,, . The remaining number, 0.1010001 is
now multiplied by 1010

Shift right 0101 0001
Shift right twice more 0001 010001
Sum 0110 010101
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The next BCD digit is 0110, or 6. Since 8 binary digits have the
same precision as 2.4 decimal digits, it is only necessary to
find 3 BCD digits, so the final step is

Shift right 0010 101
Shift right twice more 0000 10101
Sum 0011 01001

The final BCD digit is 0011 or 3,, for a BCD equivalent of 0.863.
This can be checked by observing that

0.11011101; = 0.5 + 0.25 + 0.0625 + 0.0312 + 0.0156 + 0.0039

Integers can be converted as well, with the methods of this
chapter, using division and picking off remainders. Re-
mainders are not always easy to come by in a micro-
processor, so a preferred method is to convert a fracton by
assuming the binary point to be at the left end of the register,
then moving the decimal point to the correct position after the
conversion is complete. The danger here is the conversion may
be in error by round-off or truncation, affecting the value of
the least significant integral digit.

Further operations using binary, hexadecimal, and BCD in
various programs will be discussed in later chapters dealing
with the AMP instruction set and programming techniques.
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Logical operations can be reduced to a structured form, which
is the basis for the mechanization of processor functions and
for the organization of the program. These operations are
performed on “sets” of things , where a set is defined as a
collection of objects, all of which possess (or don’t possess) an
attribute or property. For example, all integers form a set,
and all 8-bit microprocessors form another set. Sets may be
combined by algebraic methods to form other sets. To discuss
these operations, we will need a few definitions:

U is the universal set; it has everything init.

N is the null set; it has nothing init.

A subset is a set wholly contained within another set. For
example, the set of prime numbers is a subset of the
set of integers. Similarly, the null set is a subset of all
sets, while all other sets are subsets of the universal
set, and every set is a subset of itself.

The symbol < is used to denote a subset. For example,
N< U means that N is a subset of U. If A is a set, then
AcA. If Bis a set and if AcB and B A, then A = B,
meaning that the two sets are equivalent.

The union of sets A and B is often termed the logical sum
of sets A and B. This operation is denoted by writing
A + B, and the result is another set which consists of
all the things in A or B or both.
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The intersection of A and B is often termed the logical
product of sets A and B. This operation is denoted by writing
A°B, A X B, (A)(B), or simply AB, and it defines a set which
consists only of those things in both A and B.

We can now list some additional important properties of
sets, using the preceding defined operations:

A+B=B+A
AB = BA
AA = A

A+A=A
AU = A
AN =N

A+N=A

IfCceD,thenC+D=D,CD =C

Some of these properties are identical with those of ordinary
algebra; others suchas AA = Aand A + A = Aarenot.
Another operation, termed complementation, is needed.
The complement of A consists of all things which are not in A,
and the complement of A is normally denoted as A or A’. Thus,

A+A=1U
AA =N
IfCeD, thenD<eC

One last operation definition is quite useful. It is normally
termed the ezclusive OR, often written as @ . A ® B
consists of those things which belong to A or to B, but not to
both. If A and B are binary numbers, the exclusive OR can be
thought of as an add without carry. This function is useful in
mechanizing binary adders, as we shall see a bit later.

A truth table for the @ function is:

A APB=C

- = o |

0
0
1
1

[
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Aninteresting property of @ isifC=A® B,thenB=A®C
andA =B ®C.

A C A+C=B B+C=A
0 0 0 0
0 1 1 0
1 1 0 1
1 0 1 1

This property has been used to encrypt and decrypt messages
using the same secure bit pattern at both sender and receiver.

INTRODUCTION TO BOOLEAN ALGEBRA

The techniques described here were first organized by
George Boole in 1847 and published in Laws of Thought in 1854.
Boolean algebra considers variables that exist in one of two
states (0 and 1), and this is directly applicable to the binary
integers. This Algebra may be defined in terms of two binary
operations (an operator mapping two Boolean variables into
one Boolean variable) and a unary operation (an operator
mapping one Boolean variable into one Boolean variable). The
binary operators are + (OR) and ¢ (AND).

0+0=0 00 = 0
0+1=1 00 = 0
1+0=1 10 = 0
1+1=1 el =1

The unary operator is variously called the prime, bar,
complement, or NOT operator, which are defined as

0 =0=1
1"=1=0

The OR operator is analogous to switches in parallel, while
the AND operator is analogous to switches in series, if we
define a “1” as representing a closed switch and a *0” as
representing an open one. Logically, both OR and AND have
intuitively satisfying meanings, that is, if a “1”’ is defined as
representing a true statement and a ““0”’ one which is false,
then the Boolean AND operator becomes equivalent to the
logical ““and,’” and the Boolean OR to the logical “‘or.”

The laws or operations of Boolean algebra follow
immediately from the following operator definitions.
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1. Complementation:
A+A=1 AA=0
2. Involution:
A=A
3. Intersection:
IPA=A (0cA=0
4. Union:
1+A=10+A=A
5. Idempotent:
A+A=A AA=A

Boolean variables also possess certain of the common
algebraic properties.
6. Boolean operations are commutative:
A'B=BA A+B=B+A
7. Boolean operations are associative:
A+B+C =(A+B) +C=(A+C) +B
A(BC) = (AB)C = (AC)B
{We drop the dot symbol at this point and replace it by
parentheses or the juxtaposition of AB).
8. Boolean operations are distributive:
A(B + C) = AB + AC

The verification of the commutative associative, and
distributive operations can also be done by truth tables.
Armed with this knowledge, we can prove identities by
algebraic manipulation.

Example 1:

A(A + B) = AA + ABdistributive law
= A + AB idempotent law
= A(1 + B) distributive law
= A union and intersection laws

Example 2:
A+ AB = A(1+B) + AB
—A+AB+KB
=A+B(A+ 4
=A+B

The identity of Example 2 is an important one to recognize and
is commonly used to simplify Boolean expressions.

Example 3: Does A + Bequal AB? L
Here we will prove that A+ B+ AB=1, and (A + B)
(AB) = 0, and deduce that since both examples are true, then

55



At
) /‘éA\ T 1/1
S A—A] 1 B
ABYO
S %
— LM
“MLL I

Fig. 3-1. Venn diagram

AB is the complement of A + B and therefore AB = A + B
(involutionlaw).

A+B+ AB=(A+AB) +B

=(A+B)+B since A+ AB=A + B (see
example 2)
A+ (B+B
A+1
1

I

(A + B) (AB) = AAB + ABB
= (AA)B + A(BB)
= (0)B + A(0)since XX =0
(complementation)
=040
=0

This and its dual, (A + B) = AB, are examples of De
Morgan’s theorem and are especially useful. It may be
illustrative at this point to introduce and use Venn diagrams to
provide a visual realization of De Morgan’s theorems.

In Fig. 3-1 consider all A as contained within the area
having horizontal shading and B within the area having
vertical shading. The unshaded area represents those
elements which belong neither to A nor to B. Then A + B is
denoted by the entire shaded area (whether horizontal or
vertical). The representation of (A + B) is exactly the
unshaded area, which of course is not A and not B (AB).
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VEITCH DIAGRAMS

This form of graphical presentation, also referred to as a
Karnaugh map, is very useful in the reduction of Boolean
expressions. Consider the Boolean expression ABC +
ABC + AB. A reduction is not immediately obvious from
inspection and will only result from more or less inspired
algebraic manipulation. Suppose we represent each two-level
state of A, B, and C by an area on a diagram organized as Fig.
3-2, where the two left-hand columns represent A true, the top
row B true, and the two middle columns C true. There are 2° or
8 different states available as we would expect. Each segment
of the diagram is marked with the associated state. Note that
the diagram can also be thought of as being composed of
larger segments; for example, the left column is exactly AC.
This can also be seen by observing the following identity:

ABC + ABC = AC(B + B) = AT
Aterm of the form ABC is called a minterm since it covers the
minimum area of the diagram. Conversely, A, B, and C are
called maxterms since they cover the maximum area that can
be occupied by a single term.

Returning to the original expression ABC + ABC + AB,
shown in Fig. 3-3, by recognizing the areas covered, we can
regroup as AC + BC, which is certainly simpler by most
criteria than the original expression. A reduction by algebraic
manipulation would require several steps:

ABC + AB + ABC = ABC + A (B + BO)

=A((B+0) + ABC
(A + AC) + AC
(A+C) + AC
+ BC + AC
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Fig. 3-2. Three-term Veitch diagram.
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Fig. 3-3. ABC + AB + ABC plotted usmg athree-term Veitch diagram.

Here, if we had not seen the Veitch diagram, we might
have been tempted to stop. However, it is clear from the
diagram that AB is wholly contained within AC + BC. This
can be shown by multiplying AB by a “‘well chosen’’ unity,
C + C, so that:

AB + BC + AC ) + BC + AC
C + BC + AC
+B) + BC(1 +4)

Veitch diagrams can be used for the graphical reduction of
Boolean expressions of any number of variables. However, as
the number of variables increases, the use of the Veitch
becomes more cumbersome and the recognition of
equivalences more difficult. But minterms can always be
combined if they are adjacent in the same row or column, or at
opposite ends of the same row or column.

BINARY ADDERS

An elemental function of the AMP processor is one of
adding two 8-bit numbers. To perform the addition as fast as
possible, the AMP processes all eight bits during one major
clock period. This is called parallel addition. However, to
better understand the summing operation and the logic
required, we will first describe a one-bit-at-a-time or serial
adder.

The Serial Adder

The serial adder consists of a shift register in which inputs
are partial 1-bit sums. These are inserted at one end, then
shifted one digit position each clock pulse. A means of
generating each partial sum and associated carry is provided
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by logic external to the shift register. We have chosen for
discussion an 8-bit, right circular shift register (Fig. 3-4),
identifying the bit positions as A, through A;, and the
controlling clock as ¢.

Data modification can take place only when the clock
pulse is true assuring synchronous operation. The logic for the
shift register is then

A =An¢) A =A4¢
A5=A7¢ A, =A3(b
As = As o AL =Ad
A4=A5¢ Ao =A1€b

where each memory position in Fig. 3-4, except A;, merely
copies the one to its left.

Since we want the clock to be enabled only during the time
we wish to perform the addition, the storage elements must be
able to hold data for long periods of time. Such storage
elements are termed static elements, as opposed to dynamic
elements that must be actively refreshed periodically. The
adder mechanizes the binary sums appearing in Table 2-3,
where the inputs to the adder are the addend (A), the augend
contents of memory (M), the carry bit (C), the initialization
timing pulse (T, ), and the sum digit (S). Then from Table 2-3
the 1-set and 0-set terms for the sums are

15 = (A)MC + A, MC + A, MC + A, MC)o
The 1-set and 0-set terms for the carry (C) are
1° = (A, MC + A, MC + A, MC + A, MC)§
0° = (A MC+ A MC + A MC+AMO¢+ Ty

Figures 3-5 and 3-6 are the Veitch diagrams for the 1-set
sum and carry logic. The clock is not shown since it is common
to all terms. Also T, (which resets the sum and carry to start
off the addition with a clean slate) is not shown either. The
pattern in Fig. 3-5 suggests no simplification since no adjacent
squares are covered. Many alternate forms, including the use
of the exclusive OR, have been used. Their attractiveness is

L ]
A7—0-A6->A bo{ A —oAa—bA2—>A1->A-—]

T
b ] o} b b 0] b o}
Fig. 3-4. Clocked right-circular shift register.
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Fig. 3-5. Veitch diagram: One-set sum logic terms.

dependent upon the hardware used to mechanize the adder,
but for our purposes this is an adequate form.

The pattern in Fig. 3-6 suggests the following
simplification:

1° = (A C+ MC + A M)

The 0-set sum logic covers the Veitch squares not covered by
the 1-set terms, so no further simplification is evident by this
analysis. The 0-set carry, however, can be simplified to:

0° = (MC+ MA, + A0¢+Tog

The functional or schematic mechanization of micro-
processor systems is often depicted using symbolic logic
elements to represent the required Boolean expressions. In
addition to the functions discussed, the use of NAND and NOR
logic is quite common. (NAND is a contraction for NOT AND,
and NOR for NOT OR.) Logic symbol conventions have been
locally adopted (but are by no means standard) to represent
the various logic functions: one commonly used set is shown in

A

f._-—_—/\o———-\
{7//4/// NI
c AgM,C

Ag MoC A.M.C

.
)

AM,C

i
| ——

M

Fig. 3-6. Veitch diagram: One-set carry logic terms.
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Fig. 3-7. Using these symbols a schematic diagram of a serial
adder is shown in Fig. 3-8.

The Paralleil Adder

With today’s integrated circuit technology, there is no
longer a need to accept the time delay associated with
one-bit-at-a-time operation in order to save hardware. All
microprocessors use parallel arithmetic. The AMP (Rock-
well PPS-8) adder is 8 bits in length, accepts 2 parallel inputs

A oseem——
AND AB
B m—————
A
NAND AB=A+ B
B ——
A
OR A+B
B
A
NOR A¥ B=AB
B
EXCLUSIVE A A B
OR 5 ®
A —)
EXCLUSIVE
NOR 5 AD B

AMPLIFIER \ A
OR BUFFER /

INVERTER > _
ornOoT A A

Fig 3-7 Logicelement symbols.
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Table 3-1.

a b ¢ $i=a; + b; ;=% + C;
0 0 0 0 0
0 0 1 0 1
o 1 0 1 1
0 1 1 1 0
1 0 0 1 1
1 0 1 1 0
1 1 0 0 0
1 1 1 0 1

(A and B) and an initial carry (C, ). From this data, the adder
generates a sum (S). The process is as follows:

A and B are both binary fractions such that

A=2a;/2+as/4+3a5/8+¢ o “"*}'30/2B
B=0b;/2+Ds/4+Dbs/8 400 04b /2

The sum is:
S=A+B=S7/2+25/4+°°'+SO/28

The 1° term from the serial adder is

C:1=aib +ac +be

As an alternate mechanization to the more straight-
forward AND and OR Logic, the AMP uses exclusive-OR
elements to simplify the mechanization somewhat, with the
result that

S =a @b @
¢ = (@ia ®bia)ca + aiabia

The generation of a sum digit using exclusive-OR logic is done
according to the truth table in Table 3-1. A mechanization of
the sum generation is illustrated in Fig. 3-9, where the carry
into (CIN) terms represent the inputs generated by the c
equations.

For the parallel adder, the logic equations for ¢ are

generated as CIN; terms, the first four of which are as
follows:
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b, by b,
ay bg aq b3 a, b
CIN, CINg CIN,
So S, s,

Fig. 3-9. Partial schematic diagram showing generation of sum terms with
exclusive-OR gates.

CIN, (C) (ADD)

CIN, (C) (ADD) (as ® bo) + (aw bo) (ADD)

CIN, = [(C) (ADD) (a0 @ by) + (a0 by ) (ADD)]
(s ®by) + (a1 b)) (ADD)

CIN; = {[(C)(ADD) (a» @ bo) + (a0 hy)
(ADD)](a, @b:) + (aiby) (ADD)}
(3, ® b2) + (a2by) (ADD)

i

Figure 3-10 illustrates the logic generation of the first
three CIN terms. By now you can see that a pattern is evident
in both the logic and equations. Instead of setting the carry
flip-flop, as was done in the serial adder, the set logic is
duplicated in each stage and combined with the A; and M
terms. As a result, the carry into bit position 8 looks like quite
amess, but Fig. 3-10 illustrates that the various CIN terms are
generated successively and used as the input to the next group
of logic gates. Thus, while the logic equations may look
formidable, the actual logic circuits consist merely of
repetitive stages, each of which generates another CIN term.

- The ADD input in Fig. 3-10 is the add mode control, which
is made true when an addition is commanded. Note that the
stage of the carry flip-flop itself need not change during the
8-bit addition, but it will normally be set or reset depending
upon the presence or absence of a carry out from the eighth bit
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position at the completion of the addition. The AMP uses this
carry flip-flop in the instruction ADI (add immediate and skip
or carry out), which is explained in Chapter 5. With this
instruction, the previous state of the carry flip-flop is
preserved, even though an addition has taken place.

Four-Phase MOS Logic

It is now necessary to say a few words about the use of
four-phase MOS logic. The basic processor clock is composed
of two separate, but synchronized clocks, A and B. From these
two timing sources, four clock signals are determined, and
these are denoted ¢, , ¢ , ¢ , ¢4 . The time during which each
is true in relationship to A and B is shown in Fig. 5-14.

The use of separate, phased clocks permits multiple
functions to be performed serially in one major clock period.
The parallel adder takes advantage of this fact to propagate

T -

r !— CiN,
ADD ADD
I~
0

CINg

C}DA "

ADD - CIN2
N N
) : a, )

ADD ADD

T o

Fig. 3-10. Generation of carry-in terms for bits 0, 1, and 2.
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the carry from the least to the most significant digit position in
one major clock time. Carry determination is the hang-up of
parallel adders, since the carry into bit position i is not known
until position i-1 has been processed. If this delay is accepted,
an 8-bit adder cannot generate a sum in four minor clock
periods. But because MOS logic is used, it is not necessary to
propagate both 1-set and 0-set terms. Instead, only the 1-set
need be considered. (It so happens that the complement is
propagated inthe PPS-8, but this is simply a matter of needing
the complement itself for other logic.)

MOS dynamic logic operates by gating signals. Either a
particular gate conducts or it does not. For four-phase MOS
logic, the clock times are used to control three sequential
modes of operation: precharge, sample (or evaluate) and
hold. During precharge, selected gate capacitors are charged
negatively. During sample, a controlled set of capacitors are
discharged, allowing their previous stage to determine the
voltage on other capacitors, thus transferring the information.
During hold, the capacitors simply hold their charge.
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Chapter 4
Fixed-Point Arithmetic

An observant programmer once remarked that “life is too
short to write more than one fixed-point program.” The
trouble lies in the fact that the microprocessor does not keep
track of the position of the radical point (or binary point). It
neither knows nor cares where the programmer places it. This
means that the programmer must provide a method of keeping
such records externally or write a separate program designed
to keep the records for him. Obviously, the nuisance involved
might not appeal to some programmers, but there are many
simple applications where fixed-point arithmetic is quite
satisfactory.

CONVENTIONS

The usual convention is to consider all numbers in the
processor memory as being less than or equal to one in
absolute value. This definition permits the establishment of a
reference position by placing the binary point between the
most significant digit and the sign bit of the data word. Thus
the sign bit is zero if the number is positive, and one if the
number is negative. For example, the numbers +0.5 and -0.25
would be represented like this:

[oj1 000000}

+0.5

[1]1 10000 0] =-025

where the arrowheads mark the location of the binary point.
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It is this “fixing” of the reference that gives rise to the
term fized point. Other more convenient techniques are
available in which the service program keeps track of the
binary point for you. These techniques are known as floating
point, and they are discussed in Chapter 7,

A 2’s complement processor cannot contain a +1 under
these rules, but it can hold a ~1, as 10000000. Note that this is
truly a —1, for if it is added to +0.5, which is 01000000, the
result is —0.5, or 11000000.

The preceding numbers are considered as being in
machine units, or in a binary scale of zero. We shall define this
binary scale, using the letter B, as the number of digit
positions to the right of the zero position that the binary point
must be shifted to obtain the proper value of the number. Thus
for each piece of fixed-point data, there must be an associated
binary scale.

The reason for requiring a binary scale is illustrated by
the following number held in memory, for which different
binary scales may be assigned.

[o]1 101 00 0]
~-B—"=— 1B

For B = 0, the value of this number is +0.1101.
For B = 1, the value is +1.101

For B = 7, the value is +1,101,000.

For B = 10, the value is +1,101,000,000.

For B = -3, the value is +0.0001101.

Note that the binary point of the number need not fall
within the register. Leading or trailing zeros may be attached
to the number in memory as required to form the proper
magnitude. Normally numbers should be held at a scale such
that there are no leading zeros in memory (or leading ones if
the number is negative and in complementary form), which is
to insure maximum utilization of the available bit positions.
This situation is termed the minimum binary scale, for which
values can be found in Appendix D,

A number cannot be held at a scale less than the minimum
scale, Any attempt to do so will result in an incorrect
representation by the processor. When this occurs during an
arithmetic operation, the unfortunate result is known as
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overflow. For example, the number 30,y can be heldat B = 5,
for which the binary representation is

[o]1 11100 0

But the number cannot be properly held at B = 4, or the result
would look like this

f1]{1 11000 o

which the processor might interpret as a negative number
because of the one shifted into the sign bit position.

Fixed-point arithmetic involves a deliberate effort on the
part of the programmer to maintain a running account of the
magnitudes of the variables encountered throughout the
program. Fortunately, this effort can be organized acording to
well-defined rules.

SCALING RULES FOR FIXED-POINT
ARITHMETIC OPERATIONS

Whenever fixed-point arithmetic is used, the binary scale
of the quantity at every step in the calculation must be
considered. To assist in keeping accurate account of the
magnitudes, it has been found useful to include the binary
scale of the result of each arithmetic operation in the program
comments. (In the following examples, the binary scale as-
sociated with each number is shown in parentheses.)

Addition

The binary scale of the addend must be equal to that of the
augend. This also happens to be the binary scale of the sum,
though an adjustment in scale may be required in the sum to
prevent an overflow condition. For example, 8.4 + 2.4
= 10.,4 ) appears in the processor as

+8 [of1 000000] B=+9

+2 [0Jo 0 1 0‘0 0 0] (B = +4)

10 fof1 01 0.0 0 0} (B = +4)
—-+4—s]

Example: Add 7.,5 and 9,4 . Since the addend is stored
at a different binary scale than the augend, it will first be
necessary to shift at least one position in order to have equal
binary scales. But shifting the 7 to the right one place to give
both numbers a binary scale of +4 is not adequate since the
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sum of the two numbers is 16, or 2', and so requires a
minimum binary scale of +5 to prevent overflow. Only by
shifting both numbers to obtain a binary scale of +5 will
the accumulator be able to accommodate the sum without
overflow. Thus the addition must take place as
7|+5: + 9a+51 = 16(+5) .

Subtraction

The binary scale of the subtrahend must be equal to that of
the minuend. This is also the binary scale of the difference.
The binary scale for each subtraction should be chosen to
accommodate the subtrahend, minuend, and difference.

Example: 36 — (—-40) = +76. The minuend and
subtrahend both have a minimum binary scale of +6 since
they are numerically less than ¥ = 64. However, the
difference is equal to +76, which has a minimum binary scale
of +7. Thus, the minuend and subtrahend must be shifted so
that B = +7 for each, and then the difference will be
accommodated in the accumulator without overflow.

Multiplication

The binary scale of the product is equal to the sum of the
binary scale of the multiplicand and the binary scale of the
multiplier.

A few current processors have multiplication capability
built into their hardware, but most require programmed
subroutines. In either case the rule for the binary scale must
be adhered to if overflow is to be prevented. This rule will also
yield the largest possible number of significant digits for the
product, though the potential presence of leading zeros in the
product may mean that the product will not always be at its
minimum binary scale. The number of digits that are
significant, of course, depends upon the number of significant
digits in the original data.

Example: (—526) X (3867) = —2,034,042. Here the binary
scales of the multiplicand and multiplier are +10 and +12, so
the product must have B = +22. In this case the product is
more than 2° but less than 2", indicating that the adjusted
scale of the product is B = +21 since there is one leading zero
when B = +22.

Division

The binary scale of the quotient is equal to the binary scale

of the dividend minus the binary scale of the devisor. The
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divisor must be greater in magnitude than the dividend as they
are positioned in the registers.

Few commercially available processors at this writing
have hardware division capability. There are algorithms
available from which to program a division subroutine (see
Chapter 6), but all will require adherence to the division rule.

Example: 124 + 63 = 1.97. Here the dividend has B = +7
and the division has B = +6. The quotient then has
B =7 - 6 = +1. Since a subtraction is involved in figuring
the binary scale of the quotient, it is possible for the quotient to
have a binary that is larger than that of the dividend.

When performing division, the binary representation is
often written in groups of four, to correspond to hexadecimal
notation, but this grouping is only for our convenience and does
not exist in the processor. The numbers in the preceding
example would then be written as

lof1 1111 0 0]

7 C

fof1 111110}

N p—) S~
7 E

Note that even though the divisor is larger than the dividend,
both are positioned in their respective registers as required by
their minimum binary scale. This is a necessary and sufficient
condition to insure proper division. Of course, after completion
of the division, it may be necessary to shift the position of the
quotient to obtain a proper minimum binary scale.

Exponentiation

The binary scale of a number raised to a positive integral
power is equal to the product of the original binary scale and
the power to which the number is raised.

Most operations of evaluating powers of numbers involve
raising a number to a positive integral power, such as d’
and n*. But this process really amounts to successive
multiplications in which the number is multiplied by itself the
required number of times. Thus n’* would be evaluated as
n X n X n, where the scaling rule is applied to each successive
product. For example, if n is at a binary scale of 4, the binary
scale of ©* would be 4 + 4 =8, by the scaling rule for
multiplication, or 4 X 2 =8, by the scaling rule for
exponentiation. To form n® with one more multiplication, the
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base of n? , which is 8, would be added to the base of n, which is
4, to obtain a new base of 12. However, using the
exponentiation rule, the same result would be arrived at since
4 X 3 = 12. And since the entire operation is the result of
successive multiplications, overflow cannot occur in this
simple form of exponentiation.

Root Extraction

Root extraction is, of course, a form of exponentiation
using fractional exponents, such as a”* = Va. The same
scaling rule applies to root extraction as to the case of simple
exponentiation, but with one catch—the resulting binary scale
must be modified if the product of the number base and the
exponent results in an answer that is not an integer. This
modification can take one of two forms:

1. The mantissa can be shifted, with corresponding
additions or subtractions to the binary scale.

2. The fractional portion of the binary scale can be
converted into an equivalent multiplying factor that is
used to correct the mantissa value.

Example: Find the square root of 5. The number 5 would
be held in the register at B = 3, so the mantissa, or fraction,
would appear as

fof1 0 10 0 0 o}

But 3 x 0.5 = 1.5, and this is not an acceptable base. This
problem can be fixed in this case by shifting the mantissa one
place, thereby changing the base to 4, and 4 X 0.5 = 2, which
is aninteger. The mantissa would then appear as

folo 10 10 0 0}

The calculated square root (2.236...) is thenheldat B = 2 as

[ol1 000 11 1]

There is also an alternate method for computing the
square root of 5, and this method entails taking the square root
of the mantissa as if it were a number held at B = 0. In the
preceding example, the binary number would be interpreted
as 0,101, or 0.625, . The square root is computed directly and
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is approximately 0.791;, and this would appear in the register
as

folt 10010 1]

Now by applying our rule, the binary scale of the answer
should have been 3 x 0.5 = 1.5. The fractional part (0.5) can
be removed by simply multiplying the mantissa of our answer
by a predetermined constant of 2'° = \/2 at a binary scale
of 1, following the usual rules of multiplication. Thus,
0.791 X 1.414 = 1.118,, . Increasing the base by the remainder
(that is, 1.5 — 0.5 = 1) doubles the result, yielding 2.236;
which is held at B = 2 as before.

Similarly, all real exponents can be expressed as the sum
of an integer and a fraction (negative exponents included), so
the real cases are covered here. It may happen that the
multiplicative constant needed is a bit difficult to compute,
such as 2'**" | but it will nevertheless be a constant and can
always be calculated beforehand.

The advantage of using a multiplicative constant to take
care of the fractional part of the exponent lies in the fact that it
does not require excessive shifting of the mantissa, as the first
example required. Any shifting will usually be to the right, and
if the root is a nasty one, say n''"', several right shifts (11, 22,
33, etc.) may have to be made to find an integer number for the
binary scale. In fact there is real danger that the mantissa
may disappear altogether as it is shifted entirely out of the
register. So, even though method 1 may be simpler, method 2
affords more precision.

Precision

So far, we have been primarily concerned with avoiding an
overflow condition. Also damaging, in the sense that the result
will be in error, is loss of precision. In the extreme case, you
may find an erroneously computed result of zero because
sequential calculations have been performed at binary scales
greater than the minimum, and the register length was
insufficient to hold enough significant digits with numbers so
scaled. This sad condition is termed underflow though purists
restrict the use of this term to floating-point arithmetic (see
Chapter 7). In either event, the result is an unexpected zero.

Most processors have an overflow flag that can be tested
to determine whether or not an overflow has occurred since
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that last time the flag was tested or reset. AMP uses the carry
flip-flop for this purpose. No microprocessor today provides a
similar protection for underflow.

To maximize precision and avoid underflows, use binary
scales as near the minimum as possible. Where the result of a
previous computation is not at the minimum scale, it is better
to shift the result left and then perform the required
arithmetic, rather than doing further operations prior to
rescaling.

It may be that the word length that was originally chosen
was simply insufficient to hold enough bits to maintain the
required precision, even though minimum or near-minimum
scales were used throughout. If this occurs, there is no option
other than to increase the operating word length by adding
bytes. This is generally awkward to do once the program is
written. Memory fields must be expanded, counter limits
changed, and addresses modified to accommodate these new
bytes. Careful analyses will help, but there are no sure-fire
systems that easily yield the minimum required word length.
Two configurations to be wary of are:

1. The subtraction of two nearly equal numbers. Look for
a possible problem, reordering or reformulating the
program to avoid this precision loss or by deferring it
as late as possible in the computational cycle.

2. Division. This is very often troublesome since the
problem must be scaled to provide for the combination
of the smallest denominator and the largest
numerator. Other number pairs will yield smaller
quotients and hence significance is likely to be lost at
these points in the problem. While similar precision
loss can occur all operations, the range of quotient
values is often larger than the range of sum and
difference values for many real problems. The best
answer is to use the divide operation sparingly. Where
necessary, a test may be added in the program to
examine the values of the numerator and denominator
and, where necessary, to rescale either or both to
provide for a smaller scale to properly contain the
quotient.

For most real problems the scale factor will have included
a physical quantity (minutes, feet, radians, etc.). These units
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of course are handled externally in identical fashion to the
familiar dimensional analysis. For example,

[A ;2 feet] [B.s pounds]

- = P, ft-lb/sec’
[M, . seconds] [N seconds]

The first topic of Chapter 12 will be concerned with more
complex (less natural) numeric scale factors when there is an
advantage to be gained from their use in instruction count or
computational speed.
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Program development can be thought of as occuring in four
steps—specifying requirements, flow charting, coding, and
testing. These steps are explained as follows:

Specifying Requirements. The programmer should have
available, at the start, a complete set of demands on the
program. Input data magnitudes and format; maximum
allowable solution times; equations to be solved; output
requirements and formats. The problem should usually be well
understood before the programmer proceeds any further.

Flow Charting. The flow chart is a picture of the program
paths, It is a very necessary tool. Flow charts are often
prepared in conjunction with the generation of specifications
and modified as the requirements change to fit within the
hardware constraints. Because you are using a micro-
processor, you will find that you will be concerned about
available time and memory to a greater degree than when
programming a larger computer system. This is part of the
fun—to successfully solve a constrained problem using
ingenuity. A complete but not necessarily detailed flow chart
should be available before the coding is begun.

Coding. Using the manuals prepared by the manufacturer,
examine the programming aids and input forms, then decide
which form you wish to use. Virtually no one generates code
in pure machine binary or hexadecimal since assembly
programs are available for all microprocessor systems on the
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market. Assembly programs usually generate one machine
instruction for each input statement, also providing some
rudimentary error checks, a more-or-less readable listing (see
Fig. 5-1), and the ability to conveniently replace or relocate
blocks of code. Assembly programs often can be run on the
microprocessor for which they assemble code, provided
sufficient memory and the right peripheral equipment are
available. More often, they are run on other, larger machines,
generating outputs that can be read into the PROM or used to
generate ROM masks. Such assemblers are known as cross
assemblers.

Testing. The testing or checkout phase normally begins
with a code check at the desk to remove obvious errors. The
program is then entered into a PROM and executed to assure
that it functions logically and runs to completion. When the
program passes these preliminary tests, numerical results
from the program are compared with predetermined answers
from a set of test problems. The complexity of this checkout is
normally determined by the programmer himself—he should
be reasonably assured that there are no errors or *‘bugs”
remaining. Trace routines, simulators, emulators, etc., are
often made available by the manufacturer to somewhat
simplify the task of detecting and removing program errors
(see Chapter 8). A common misconception among pro-
grammers concerns the time required to adequately check out
a program. Almost all seriously underestimate this effort for
significant programs—the checkout phase will normally take
about half of the total calendar time needed to develop the
program,

Let’s assume that the program requirements have been
properly stated, since we can’t do much about that step here,
and proceed to a discussion of program organization and flow
charting.

FLOW CHARTS

The flow chart in Fig. 5-2 doesn’t represent a
mathematical problem, but does demonstrate the pictorial
value of such a chart. Sequences of activities can be easily
seen, as can points at which decisions are made, yielding one
of two or more possible courses of action. Loops are defined
where one of the two possible paths is to go back and perform
and same (or almost the same)activity again. Functional as
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NO
GET DRESSED GET DRESSED
IN SUIT & TIE IN ANYTHING
! BUT SUIT&TIE
EAT
BREAKFAST EAT
X BREAi(FAST
LIE AROUND
HOUSE

DRIVETO
WORK

S———
LOOK BUSY
SHUFFLE
PAPER

GET
HEADACHE

——>¢ YES

EATLUNCH

SHUFFLE
MORE PAPERS

YES

DRIVE HOME

Fig. 5-2. Flow chart of an ordinary day.




ENTER
¢

SUBTRACT
a, FROMa, |

YES NO
[2%>ay a aazl

SUBTRACT SUBTRACT
a;FROMa, 3, FROMa, !

NO YES YES NO
{3% 35 a>a,l 13> |

SUBTRACT SUBTRACT SUBTRACT
a, FROMa2 a, FROM a, a, FROMa,

Fig. 5-8. An explicit program flow to find the largest of four numbers.

well as pictorial efficiency results from observing that some
activities performed at different times are common—our man
always does the same thing from dinner on, regardless of
whether it is a work day or the weekend.

We will now apply some of these observations to logical
and mathematical sequences.

To Loop or Not to Loop

Suppose we wished to find the largest number of a set of 4
positive numbers (A, A;, A;, Ay). (We will settle for one
chosen arbitrarily, if two or more numbers are equal.) Figures
5-3 and 5-4 are program flow diagrams that define solutions to
this problem. Even when operating upon only four numbers,
these flows have become unwieldly, and both forms are
unthinkable for use with, say, 100 numbers. The program
represented by Fig. 5-3 is quite wasteful of memory, requiring
an inordinate number of instructions, which increase linearly
as the size of the number set to be tested increases. This
program, however, requires the fewest machine cycles and,
therefore, runs faster than any other configuration, The flow of
Fig. 5-4 is better than that of 5-3 in terms of instruction count
because common storage is used to hold the largest number
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ENTER

SUBTRACT
A,FROM A,
YES NO
/3~2>A1
STORE STORE
A,IN A, IN
“COMMON" “COMMON"
SUBTRACT
A, FROM
“cBMMON'
YES NO
STORE
IN %
“COMMON"
| SUBTRACT
A, FROM
“CcHMMON™
YES NO
STORE
SnﬁfA4 “COMMON"
AS
LARGEST NUMBER LARGESS SUMBER

@<

Fig. 5-4. A second explicit program flow to find the largest of four num-
bers.
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ENTER

INITIALIZATION

1. Set initial subtraction
“address’ to address of A1
2.Set“Limit" to 3

3. Set “common’’ to zero

SUBTRACT
CONTENT OF
“ADDRESS" FROM
CONTENT OF
"COMMON"

STORE A
IN“COMMON™

) —

SUBTRACGCT
1 FROM
“LIMITY

STORE “COMMON"
AS
LARGEST NUMBER

INCREMENT
“ADDRESS™

Fig. 5-5. A program loop to find the largest of a set of numbers.




found to date, but the program runs a little slower because of
the intermediate data storage required. The program flow in
Fig. 54 is not particularly useful for substantial data sets

either.
Figure 5-5 represents a loop that will run slower than the

preceding configurations, but it is more efficient in instruction
count and can handle large strings of data by merely changing
the limit variable during initialization. The use of a loop places
a constraint upon data storage, in that data must be stored in
orderly fashion in the data memory. Use of adjacent cells as
depicted here is common but not mandatory. Any orderly
process that can be used to predict the address of the next data
element can be used.

Iteration

Iterative techniques are particularly suited to digital
processors. They are commonly used for optimization, and
where explicit solutions are either difficult or impossible in
terms of known functions. As an example of this technique, the
determination of a quadratic root (R,) by the Newton-
Raphson method is described.

The plan of attack is pxctured in Fig. 5-6. The parabola
chosen for the example is described by the equation
x? =(y + 1)/2. We choose a first guess, M; =(Z:, 41 ), then
determine the tangent to the curve at M, and move down the

FIRST GUESS

M)

ROOT2 (Ry ROOT1(Ry

Fig. 5-6, Iterative Newton-Raphson technique for finding quadratic roots.
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tangent to y = 0, finding the corresponding z. We now move
back to the curve, holding z constant, and get a new value,
M, = (x2, y2). The process is repeated as many times as
necessary until the magnitude of resulting yx is less than a
predetermined error limit, e When this occurs, the
corresponding zy is the root we were after.

We must be careful, however, to pick M, large enough
such that we don’t find the wrong root (we could be iterating
toward R;). In the case used here, any positive x would work,
but to be safe, we chose the largest positive number the
processor can hold as the first guess (z; ).

The general form of Newton-Raphson quadratic
approximationis:

Ine =28 — (Yn/Un')

where n and n + 1 denote the successive guesses, and yy ' is
the slope of the curve at point n:

Yn =2’ —1
Yo | = dan

We have also decided that we will be satisfied that ay is our
root when the corresponding value of yy is less than
2% = 1/256, a fairly crude approximation, so € is set equal to
1/256.

The equation to be mechanized in the processor is

Ine1 = In — (2o 2 — 1) /42y

And the process is to be continued until yx <1/256. Figure 5-7
is one flow chart representation for the solution; others are
possible, but the one shown should yield an efficient program.

Let us now shift the discussion to the processor hardware
implementation of the program sequence, first examining the
AMP memory organization and addressing.

MEMORY ADDRESSING AND PAGING

Efficient use of microprocessor memories requires a
rather thorough understanding of the memory organizations
and special-purpose storage regions. Each memory type and
configuration is likely to present some new bookkeeping
challenges. Conventional computers are organized such that
the internal memory is most often a single block of words
beginning at address 0, and numbered sequentially through to
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the last word. Both instructions and data are generally
contained in the same high-speed memory. The only
distinction occurs at access time, depending upon whether the
computer is in an instruction read or an operand read state at
the time the information is extracted from memory.

The microprocessor will normally use some type of ROM
for storing most instructions and fixed data, and a RAM for
holding variable data. The content of the data address (or B)
register is used to address RAM, while the contents of the
program address (or P) register is used to address ROM.
These two memories are addressed independently by the basic
AMP CPU. In fact, when using the AMP the independence is so
strong that arithmetic instruction modification is not possible.
This precludes treating an instruction as data, modifying it,
and then executing the modified instruction. While this is a
limitation that might prevent the programmer from creating
some clever code, it also prevents some rather subtle errors
that might arise from this kind of operation. However, thisis a

START
SETX, TO
0.1111111
(FIRST GUESS)
|
Lo
COMPUTE 1
YN = 2XN2—- 1
AND STORE
YES @ NO
MOVE X, COMPUTE
TOR, Yy =4,
& STORE
PRINTR, ‘l
COMPUTE
] Xys1=Xn — Yn/4Xy
HALT I

Fig. 5-7. Newton-Raphson iteration flow diagram.
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BU BM BL
A

r hd f .
B,,1Bio| Bo| Bs | B, | Bs| Bs| BalBs|Ba]By]Bo

! RAM ' ROW " COLUMN 1

i  ADDRESS |  ADDRESS i  ADDRESS |

Fig. 5-8. Organization of data address (B) register.

limitation not found in processors that permit a freer
interchange of data.

RAM Addressing

The AMP data address word is contained in the 12-bit B
register, which is logically separated into three 4-bit partial
registers, BU, BM, and BL—B upper, middle, and lower—as
depicted in Fig. 5-8. The BU Field specifies one particular
256 X 8-bit RAM from a maximum of 16 possible addressed
memory chips. (0000 in BU selects RAM-0; 1111 selects
RAM-15.) BM and BL provide the coordinates for one of 256
available 8-bit words in accordance with Fig. 5-9,

Since our AMP has only one RAM chip, it will be identified
as RAM-0. The address of word 6A in RAM-0 would then
appear in B as 06A,; . Word 6A is logically located as shown in
Fig. 5-9. The B register can be modified in several ways. It is
initially set to all zeros when power-on becomes true. It can be
set to known addresses by use of a pair of load B instructions
(see Appendix E), which put predetermined fixed information
from the ROM into B. It can also be modified under control of a
set of register exchange instructions, which cause data
exchange between B and A, or B and X, permitting variable
information from data memory to be transferred into B. BL
can also be incremented or decremented under program
control.

ROM Addressing

The P register is a 12-bit register that contains sufficient
information to address the ROM program memory. Unlike the
B register, the P register contains counter logic that
increments the P counter each time an instruction is executed.
The P register is set to zero after power reset, and it can also
be set under program control to an arbitrary value by the
execution of one of several control transfer instructions or
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incremented by an additional count as a result of the execution
of conditional transfer instructions when the specified con-
dition is met.

The P counter is composed of only the least significant 6
bits of the P register, so that upon power reset, the P register
can count only from 0 to 63, . It then cycles back through 0.
Only the execution of a transfer instruction can alter the most
significant 6 bits of P. The reason for this kind of operation is to
save instruction word length, and hence program memory. A
more complete addressing capability would imply that each
control transfer instruction contains enough bits to fully
address any word within a ROM (or a block of ROMs).

The address compaction method used here is known as
paging. The ROM can be thought of as a book divided into
pages that are directly addressable without requiring the
execution of a transfer instruction. The P register organization
is shown in Fig. 5-10, and the hexadecimal address to page and
ROM numbers in Table 5-1. The word address corresponds to
the counter portion. A page then consists of 64 words. All words
on a page can be addressed using the 6-bit counter.

Upon power reset, the P register, like the B register, is set
to zero. This means that the first instruction to be executed
will be taken from ROM-0, page-0, word-0. The ROM-0 data is
further subdivided into special-purpose pages (see Fig. 5-11),

ADDRESSEDBY BL
01234586789 ABCDETF

W
WORD 6A

ONE OF 256
8-BIT WORDS

ADDRESSED BY BM
MTMOCWP>POONOOHWON = O

Fig.5-9. RAM address organization.
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ROM PAGE

NUMBER NUMBER WORD ADDRESS
PiylPiol Po| PalP7 | Pe| Ps|Pal| PafPa] Pi|Po
STATIC REGISTER - COUNTER -

Fig. 5-10. Program (P) register organization.

but this is not true of any other ROM. While pages 0, 1, and 2 of
ROMS-0 can contain general instructions, page 3 (beginning at
address 0C0,; and ending at address OFFs contains address
pointers—8-bit groups that indicate (point to) a subroutine

Table 5-1. ROM Address Equivalences

ROM | PAGE |HEXRANGE
0 0 000-03F
0 1 040-07F
0 2 080-0BF
0 3 0C0-OFF
0 4 100-13F
0 5 140-17F
0 6 180-1BF
0 7 1CO-1FF
0 8 200-23F
0 9 240-27F
0 10 280-2BF
0 11 2C0-2FF
0 12 300-33F
0 13 340-37F
0 14 380-3BF
0 15 3C0-3FF
1 16 400-43F
1 17 440-47F
1 18 480-4BF
1 19 4C0-4FF
1 20 500-53F
1 21 540-57F
1 22 580-58F
1 23 5C0-5FF
1 24 600-63F
1 25 640-67F
1 26 680-6BF
1 27 6CO-6FF
1 28 700-73F
1 29 740-77F
1 30 780-7BF
1 31 7CO-7FF
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entry address, used in conjunction with the transfer and mark
(TM) instruction.

Data stored in locations OC0;s through OCFs (the first 16
words in ROM-0, page-3) may be addressed by the LB
instruction, which occupies only one ROM word. This provides
a very efficient access to these locations. To save additional
program memory, TM instruction entry addresses are
provided in pages 4 through 7 of ROM-0 (addresses 100
through 1FF ).

The use of special-purpose instructions having limited
scope is typical of microprocessor organization and adds to the
challenge of programming.

INSTRUCTION SET

The AMP processor recognizes 44 distinct instructions or
commands. The majority are 1-byte (8-bit) instructions. These
8 bits are used as operation code (op-code) designators,

400} 4101420} 430

SUBROUTINE
MEMORY

LOCATIONS PAGES 4-15

ADDRESSED BY
LB INSTRUCTION /

PAGE 1[040 [ 050 | 060 ] 070 | N« /
Q00 | 010 | 020 | 030 3
A £
<
003

001
L

g02 \ \43F /
PAGE 0| 004
005 N x
008 POINTER
007 \ LOCATION
008 \

009 S
00A X
008 | /&
00C N

00D ]

00E

O00F 1 O1F | 02F | Q3F [~

Fig. 5-11. Schematic of AMP ROM system
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although some of the 256 possible combinations are used in
conjunction with a few instructions to specify addresses, or for
bit patterns used to partially load registers. Five of the AMP
instructions require 2 bytes (16 bits), where the added
information is used to specify addresses or to load the
accumulator with data from a ROM. All microprocessors have
a somewhat similar instruction structure, although the 8-bit
instruction formats may be restricted to a 4-bit operation code,
permitting as few as 16 primary operations, with the other 4
bits used as partial addresses and modifiers to designate
instruction subclasses.

The AMP instructions are logically separated into the
groups introduced earlier (with some overlap) and
summarized in Appendix E. We begin the discussion of the
instruction set with the 14 instructions that comprise the
arithmetic and logic group, identifying each instruction, giving
a brief description of the function, the mnemonic code, and the
number of machine cycles used in execution.

Arithmetic and Logic Group

1. Add (A). One cycle. Execution of this instruction causes
the content of the addressed RAM memory M selected by the B
register to be added to the accumulator. The state of the C
flip-flop is ignored at the start of the addition; however, C is
set to one at execution completion if there is a carry out of the
eighth bit position.

2. Add With Carry (ADC). One cycle. Operates similarly to
add except that the previous state of C is used in forming the
new sum.

Example: If [M], (read “content of M”’) is 11011110 (or
BE;) and [A] = 11101001 (E9 ), then [C] = 1. Therefore,
upon the execution of the add (A) instruction, the new
[A] = 11000111 (C75) and the new [C]=1. Upon the
execution of add with carry (ADC), [A] = 11001000 (C8;) and
thenew [C] = 1.

3. Add and Skip if Carry is Set (ASK). One cycle. See
ADSK.

4. Add with Carry and Skip if Carry is Set (ADSK). One
cycle. The arithmetic functions of the ASK and ADSK
instructions are identical with those for add, and add with
carry, (A and ADC). In addition, if the resulting carry is set to
one, the next ROM word is ignored, providing a program
branch on the state of C.
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5. Decimal Correct 1 (DC). One cycle. See DCC.

6. Decimal Correct 2 (DCC). One cycle. The DC and DCC
instruction pair is used to generate BCD sums. Their operation
is described in Chapter 2 and is not repeated here.

7. Add Immediate and Skip on Carry Out (ADI). Two
cycles. This instruction provides a means for using data
obtained from the ROM. It is not particularly efficient since
only 8 bits can be obtained at a time, at the expense of 16 bits of
memory and two machine cycles; however, the skip or
branching operation compensates somewhat. The 8-bit content
of ROM immediately following the byte containing the op-code
is added to the content of A (C is ignored). If the carry out is a
one, the next instruction in sequence is ignored. (Carry out is
used here to describe the logic information that would
normally be used to set C, although C is not used or changed.)

Example: Initially [A] = 76 and [C] = 0. After the
execution of ADI, the new [A] = 22, which is 76 + AC. The
carry out is one, so the next ROM location is skipped, but the
[C] is still zero.

8. Logical AND (AND). One cycle. See EOR.

9. Logical OR (OR). One cycle. See EOR.

10. Logical Exclusive OR (EOR). One cycle. Instructions
8. 9. and 10 cause the stated logical operation to be performed
on the [A] and [M] with the result becoming the new [A]. [M]
isunchanged.

Example: [A] = D9 and [M] = 72. The execution of AND
will cause the new [A] = 50. The execution of OR will cause
the new [A] = FB. The execution of EOR will cause the new
[A] = AB.

11. Complement (COMP). One cycle. The execution of
COMP causes the [A] to be replaced with the 1I’s complement
of [A]. For example, if [A] = D9, the execution of COMP will
cause the new [A] = 26. This instruction is used to perform
subtraction and is normally used in conjunction with the SC
instruction to obtain the 2’s complement. But if you prefer, you
canprogram the AMP to perform 1’s complement subtraction.

12. Set Carry Flip-flop (SC). One cycle. See RC.

13. Reset Carry Flip-flop (RC). One cycle. The SC and RC
instruction pair cause C to be set to a known state. The
execution of SC causes C to be set to one. The execution of RC
causes C to be set to zero.

14. Accumulator Right Shift (ARS). One cycle. This
instruction shifts the [A] one place to the right. The bit shifted

o1



out of A replaces the original [C]. The value initially placed in
C is shifted into the most significant bit position of A. The bit
retention in C enables multibyte shifts. The ability to place
either a one or zero in C prior to the execution of ARS permits
the proper arithmetic shifting of both positive and negative
numbers.

Example 1: The word being operated on in AMP consists
of 4bytes (32 bits):

[STbyte 3] byte 2| byte 1| byte 0]

(Byte 3 contains the sign bit in the most significant position.)
To shift the entire word right one place and preserve the
proper arithmetic configuration, first determine the sign of the
word to be shifted. If it is negative, a one is initially placed into
the C flip-flop, which will cause a one to be shifted into the sign
position. If the number is positive, a zero should be initially put
into C to propagate into the sign. If byte 3 of a negative number

contains
]1!1 011000}

Prior to execution of ARS, 1-C, meaning a one is loaded into
C. After execution of ARS,

[A]:llﬁll()llOOI

andthenew C = 0.
If byte 2 contains

F o0 110101

C is left unchanged from one. After execution of the second
ARS,

(A1=fo 101101 0]

andthenew C = 1.

Data Transfer Group

There are nine instructions in this group. The basic or
“primitive’’ forms are load and ezchange.

The load instructions describe an instruction set which
causes the selected 8-bit content of RAM or of a CPU register
to replace the content of the accumulator or another CPU
register. Time for execution of this instruction set is one major
cycle or about 5 microseconds (usec).
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The exchange instructions will cause the selected 8-bit
(12-bit in the case of SA and SB) content of RAM or of a CPU
register to be exchanged with the content of the accumulator
of another CPU register. Where the exchange is between CPU
registers, these instructions are executed in one cycle. Where
the exchange occurs between RAM and the accumulator, two
major cycles are required since 8 bits of data must be
transferred in each direction over an 8-line instruction/data
bus. (The PPS-4 System, which is the basis for AMP
architecture, operates using a 4-bit data word; 4-bit transfers
can be made over the 8-bit bus each way in only one machine
cycle by PPS-4.)

A cycle instruction is in the AMP repertoire. This is CYS,
which causes an 8-bit right shift of the content of the SA
Register, with the least significant 8 bits originally in SA
replacing the content of A. Meanwhile the original content of A
is shifted into the most significant 8 bits of SA. This is typical of
the cycle or ‘‘long shift” instruction found on many
microprocessors. Several of this class of instructions are often
included in the instruction set to facilitate addressing and
information transfer.

In addition to the basic function of these instructions, a
secondary or tertiary operation may also be performed. These
permit the programmer to save both time and memory where
the auxiliary functions are useful to him. It also may create a
problem for him when he finds that the instruction he selected
destroyed information that he was counting on using later.
Three instructions in the data transfer group are of this genre.

With this introduction let us now examine the set. The
instructions are:

1. Load Accumulator (L.D). One cycle. See EX.

2. Exchange the Contents of A and RAM (EX). Two cycles.
Upon execution of LD the content of the 8-bit memory word
addressed by the B register replaces the content of the
accumulator. The original content of A is destroyed. Upon
executing both EX and LD, the content of addressed RAM
replaces the content of A. In the case of EX, the content of A
also replaces the original content of the addressed memory
word.

In addition to the primary functions, an accompanying
secondary operation is performed by LD and EX, which is that
of modifying the BM register. The new content of BM after
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executing either instruction is determined by the previous
content of BM combined by an exclusive OR with the least
significant 3 bits of the instruction word.

Example: At the time of reading an LD instruction, the
AMP registers and RAM contained the following hexadecimal
information:

P B A RAM Byte 056 ROM Btye 02C
02C 056 62 F 36

After executing the LD instruction, the register contents are
modified as follows:

02D 036 F (RAM and ROM are unchanged)
The result is:

1. The P register is incremented by one in preparation
for reading the next instruction in sequence.

2. BM (the middle byte of B) is 5, or 0101 , , and the lower
3 bits is exclusive-OR-ed with the least significant 3
bits of the instruction word read from ROM, which is
6, or 110, . Performing an exclusive OR between 101
and 110 yields the result 011, and this replaces the
original lower 3 bits of BM, making B equal 036 instead
of 056.

3. The content of location 056 in ROM is then loaded into
register A.

While the reason for the exclusive-OR modification of the
B register is not immediately clear, it is sufficient at this time
to merely observe that B must be modified in some manner
unless we wish to access the same information again. This
modification of B is one method, and as you will see it turns out
to be quite convenient.

3. Exchange and Decrement B (EXD). Two cycles. This is
one of the complex multifunction instructions and it operates
as an extension of the EX instruction. In addition to all of the
EX functions, EXD causes a further modification to the
B register by subtracting one from BL, and if BL = 111111,
the next instruction is skipped, thus generating a branch
command. EXD requires 2 machine cycles because of the 8-bit
memory interchange. In this one instruction, data is modified,
the middle portion of the data address register is modified, the
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lower portion is decremented, and a program branch point is
established.

4. Load Accumulator Immediate (LDI). Two cycles. LDI
is a 2-byte instruction. The first byte is read in one cycle. Once
the instruction is decoded, P is incremented and the second
byte is read during the next cycle, replacing the accumulator
content. Only the first in a string of LDI’s is executed (see
discussion of LB and LBL). The use of LDI is the primary
means of obtaining constant data stored in program memory.

5. Load A From X (LAX). One cycle. The content of the
accumulator is replaced by the 8-bit content of the X register.
The original content of the accumulator is destroyed.

6. Load X From A (LXA). One cycle. The content of the X
register is replaced by the content of the accumulator. The
original content of the X register is destroyed.

7. Exchange X and A (XAX). One cycle. The contents of X
and A are exchanged.

8. Exchange SA and SB (XS). One cycle. The 12-bit
contents of SA and SB are exchanged.

9. Cycle SA and A (CYS). One cycle. SAis a 12-bit program
register. As we will see later, its primary function is to hold the
address of the instruction to which control will be returned
after executing a subroutine. It is necessary to provide a
means of communication between this register and the
accurnulator to allow address modification, and to “‘save’ the
save register for multi-level subroutine work. This instruction
causes :he least significant 8 bits of SA to be shifted into A;
meanwhile the content of A is shifted into the most significant
8 bits of SA (the original most significant 4 bits are chifted
down into the least significant 4-bits of SA).

Data Address Modification Group

There are nine instructions in this Group. Eight of them
permanently modify all or part of the B register. The ninth,
SAG, causes a temporary (one-shot) modification of the B
register output, without affecting the content of the register
itself.

1. Load B Indirect (LB). Two cycles. Execution of this
instruction causes BM and BL to be loaded with a selected byte
from page 3 of ROM-0. The byte address is contained in the
lower 4 bits of the 8-bit instruction field (0,; addresses byte 0,
F addresses byte 15). BU is set to 0. SB, the second of the
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program-address save registers, is destroyed as a result of
shifting program through it.

This destruction of SB by the execution of LB is an
example of an instruction that does some bad things along with
the good. Microprocessors have many instructions of this ilk
that sometimes have undesirable side effects. There is no
reason apparent on the surface why SB should be destroyed—it
is simply a function of the CPU logic. Most of the time we will
not be relying on the content of SB to be retained over an LB
instruction, so the damage is minimized. Bul unless the
programmer is alert to this subtlety, when the content of SB is
important, the program will be in error after the execution of
anLB,

2. Load B Long (LBL). Two cycles. Because of the need to
use 8 bits of data to load BL and BM this instruction uses 2
bytes of ROM. The second ROM byte is loaded into BL and
BM. BU issetto 0.

A special condition is associated with the LDI, LB, and
LBL instructions. When a string of these instructions occurs,
only the first instruction encountered is executed—all others
are considered as “‘no operations” (no-op’s). This permits the
programmer to address a specific data word by entering a
string at the desired point. Consider the following simple
program.

INSTRUCTION LOCATION ~ OPERATION OPERAND
A LBL 01
A+1 LBL 05
A+2 LBL 09
A+3 LBL 0D
A+4 LBL 11
A+3 LD

Entering this string at the top, the processor would encounter
the first LBL instruction, loading the B register’s lower 2 bytes
with 01 and causing the processor to fetch the next data from
RAM address 001. Had the string been entered at point A + 3,
the LBL instruction would have loaded 0D into the B register,
and the next address would have been 00D.

3. Increment BL and Skip (INCB). One cycle. The content
of BL will be incremented by one, providing the capability of
stepping through 16 pieces of data, If the new content of BL is
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0000, the next ROM word will be ignored, providing a branch
point in the program.

4. Decrement BL and Skip (DCB), One cycle. This
instruction operates much as INCB and causes a one to be
subtracted from BL. If the new content of BL is 1111, the next
ROM word will be ignored.

3. Load BM and LB with A (LBA). One cycle. See LBX.

6. Load BM and BL with X (LBX). One cycle. The LBA and
LBX pair of instructions causes the least significant 8 bits of
the B register to be loaded with the contents of A and X
respectively. The execution of LBA also causes the content of
the currently addressed RAM location to be copied into A.

7. Exchange BL, BM, and A (XBA). One cycle. See XBX.

8. Exchange BL, BM, and X (XBX). One cycle. The XBA
and XBX pair of instructions causes the least significant 8 bits
of the B register to be exchanged with the contents of A and X
respectively.

9. Special Address (SAG). One cycle. The lines containing
address data from BU and BM are set to zero, regardless of
the content of B. This forces data to be read from row 0 of
RAM-0 for the next cycle only. The purpose of this instruction
is to provide a convenient means of addressing these locations.
The contents of B are unaffected.

The Control Transfer Group

There are eight instructions in this group. No instruction
has a function other than to change the content of the P, SA, or
SB registers. Some of the previously discussed instructions
also affect these registers, but they did more than just modify
the registers. The instructions are:

1. Transfer Control (T). One cycle. Execution of this
instruction causes the next instruction to be read from the
designated ROM word on the current page. This is
accomplished by replacing the content of the least significant 6
bits of P by the least significant 6 bits of the instruction word
{the “‘immediate field” of the instruction). The transfer
control instruction uses 64 of the 256 bit patterns available for
instruction designation.

2. Transfer and Mark (TM). Two cycles. See RTN,

3. Return (RTN). One cycle. The TM and RTN instruction
pair is used to transfer control to a subroutine, while at the
same time providing for a return to the proper spot in the main
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Fig. 5-12. Control sequence of transfer and return operations.

program. The address of the return location is one greater
than the address of the TM instruction. Upon executing TM,
the return location is placed in the SA register for safekeeping
during the subroutine execution. The existing content of SA is
transferred to SB to accommodate linking when two
subroutine levels are used. Transfer of control to the
subroutine is accomplished by first loading the content of one
of the 48 consecutive addresses in page 3 of ROM-0
(hexadecimal locations 0D0 through OFF) in the least
significant 8 bits of the P register, and setting the 4 most
significant bits to 0001. This causes the subroutine entry to be
in ROM-0, pages 4 through 7. Further, 256 words are identified
for subroutine memory by expending only 48 instruction codes.

The return (RTN) instruction transfers the content of SA
to P, and the content of SB to SA, in effect reversing the link
storages set up by TM. The next instruction executed after
obeying an RTN will be taken from the location of the
last-executed TM instruction plus one.

Example: It is required to transfer from the main
program to a subroutine entitled MTRX, which in turn uses a
subroutine entitled FPAD. Control will be transferred back to
the main program upon the completion of the MTRX function.
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The flow of the transfer and return operations is shown in Fig.
5-12. The absolute code represented by the flow chart would

look like this:

ROM Location

300

301

0D0
100

130

131

13F
0F1

140

16D

Instruction

TM (DO)

LXA

00
LB

L]

TM (F1)

COMP

RTN
40

LXA

RTN

Comments

Transfer to start of MTRX,
location 100 [16th word of
page 3, ROM-0]*P, 301-->SA
Return from MTRX

MTRX entry address, location 100

MTRX entry (SAhasreturnaddress
tomainprogram)

Transfer to start of FPAD, location
140 (50th word of page 3, ROM-0)—P,
131—8SA, 301—SB

Returnfrom FPAD

Returntomainprogram. 301->P
FPADentry address, location 140

FPAD entry (SA has return address
to MTRX, SB has returnaddressto
mainprogram)

Returnto MTRX. 131-P, 301—SA

4. Transfer Long (TL). Two cycles. This instruction will
cause control to be transferred to any ROM word in AMP.
Unfortunately, TL must use two ROM words to have sufficient
addressing capability and thus uses two machine cycles. The
first byte contains the operation code and address data to
modify bits 9 through 12 of P. The second byte replaces bits 1
through 8 of P.

5. Return and Skip (RTSK). One cycle. RTSK operates
similarly to RTN. The only difference is that the return is to
the second ROM word following the location of the TM
instruction, which permits a controlled return based upon the
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outcome of an event in the subroutine. This is quite handy for
error returns; for example, if the main program asks a SQRT
subroutine to find the square root of a negative number, SQRT
may RTSK back to the main program rather than RTN to
express its contempt. (Be sure when RTSK is used that the
instruction in TM location plus one is a 1-byte command,
otherwise RTSK will transfer control to the second half of a
2-byte instruction, with attendant surprises.)

6. Skip on Carry Flip-Flop (SKC). One cycle. Execution of
this instruction causes the next ROM word to be skipped if
C=1

7. Skip on A Equal to Zero (SKZ). One cycle. Execution of
SKZ causes the next ROM word to be skippedif A = 0.

8. Skip on BL (SKBI). One cycle. Execution of SKBI
causes the next ROM word to be skipped if the content of BL. is
equal to the SKBI immediate field. This instruction is designed
to provide a convenient means for branching out of a loop
where BL is being incremented or decremented. Of course, no
more than 16 passes through the loop are allowed if an SKBI is
to be used without an additional test to define the branch.

{The caution stated for RTSK applies also to SKC, SKZ,
and SKBI. No instruction requiring more than one byte should
follow any skip instruction.)
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Fig. 6-13. Timing diagram for AMP input/output and long instructions.

Input/Output Group

The remaining AMP instruction group to be discussed is
the input/output group, There are four instructions in this
group. They are:

1. Output Long (OL). Two cycles. See IL,

2. Input Long (IL). Two cycles, Both OL and IL are
two-word instructions. They control data transfer between the
accumulator and the instruction/data (I/D) bus, and at the
same time enable and direct the IOC device. The content of the
first word identifies the instruction as an IL or OL and causes
the second word to be ignored by the normal processing logic,
First-word data also preconditions the RAM and I0C to expect
input/output activity, The second word is directed onto the I/D
bus. Bits 1-4 are used to define the input/output operation.
Bits 5—8 are reserved for addressing more than one IOC.
{Since our AMP uses only one I0C device, these bits are
effectively ignored.)

During the data transfer time following an OL instruction
(see Fig. 5-13) the content of the accumulator is copied onto
the ID bus. If the operation code sent to the IOC designates an
output (teleprinter operation), the content of the accumulator
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is gated through to the teleprinter via the output register. If
the operation code asks for an input, the content of the input
register is placed on the ID bus and copied by the accumulator.

The IOC configuration described here is a simplified
version of a real input/output control device. Because it is
highly desirable for a microprocessor to be connected to
several different peripheral units at once, the operation code
structure of an IOC will normally include the selection of one
of several such units, and may also include a data conversion
capability to condition information exchanged, accom-
modating special timing constraints that are functions of the
external hardware (print motor select signals, display strobes
ete.)

3. Discrete Input (DIA). One cycle. Execution of DIA
causes the content of the 4-bit discrete input register to be
copied into the least significant 4 bits of A. The most
significant 4 bits of A are unaffected.

4. Discrete Qutput (DOA). One cycle. Execution of DOA
causes the least significant 4 bits of the contents of A to be
transmitted to the discrete output register. The discrete output
register can be altered only by a DOA instruction, or by the
removal of power. The input register follows the information
presented on the four lines tied to the external world.

INTRODUCTION TO ASSEMBLERS

An assembly program represents an attempt on the part of
the manufacturer (or the user) to remove some of the
drudgery associated with programming, by supplying a
program to handle input data in a fashion more amenable to
the programmer than hexadecimal or binary. A simple or
basic assembler will permit entering instructions and data in a
usable symbolic form; it will provide for symbolic and relative
addressing; and it will provide some form of error checking.
These provisions are each discussed in the following topics.

Entering Instructions and Data

It is easy to enter instructions and data using an assembler
that provides for symbolic codes. The use of mnemonics is a
prime example. The assembler will accept RTN as
designating the return instruction rather than making the
programmer enter the code 05. Numerical data may also be
entered symbolically—a ZRO or similar designator will likely

102



be used to enter a zero into some addressed location, and other
designators may be used for =, ¢, ete.

Decimal data can also be entered directly using an
identifier such as DEC. The assembler would then convert the
number to binary or hexadecimal and store it for use as an
integer. But the assembler could also accept symbolic codes to
convert decimal numbers to their minimum binary scale (see
Chapter 4), printing out the scale factor used. On the other
hand, the assembler may require that the number be entered
at a binary scale of zero, and this requires that the decimal
number be divided by an integral power of two, such that the
magnitude of the resulting fraction is less than one.

Example: We wish to store the decimal number 75.291.
The assembler wants a number at a binary scale of zero. This
is accomplished, in this case, by dividing the decimal number
by 2" = 128, so that

75.291/128 = 0.58821

and the resulting number is less than one, as required. We will
then either note that the number is stored at a binary scale of 7
or rescale the problem to insure that all input data is less than
one in magnitude. If we choose to rescale, we could of course
have picked a decimal scale factor, rather than binary, and
merely divided the input data by a power of 10. But unless we
are working in BCD, we will probably be using binary and
scaling the numbers internally, so there is little sense in
working with two scaling systems, one for converting
input/output data and another for machine arithmetic.

Normally, instructions having complex forms are made
easier to specify when using the assembler. If the programmer
desires the transfer to be to a particular word in ROM, the T
(transfer) instruction might be written as T 081 or T02, 1 in
absolute assembler code for a transfer to ROM-0, page 2, word
1. (AMP pure machine code would require specifying the last 6
bits of the hexadecimal operation code for a transfer.)
Further, the assembler will check to see if the specified
location can be reached by a T command, and if not, will
generate a diagnostic.

Symbelic and Relative Addressing

The assembler will provide some facility for symbolic and
relative addressing. It is often inconvenient to be required to
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specify the exact memory location or locations used, and when
coding in pure machine language, that of course is precisely
what must be done. The assembler provides for labeling of
addresses to simplify communication within and among
programs, and to facilitate moving blocks of code in memory.
The flow chart of Fiig. 5-14 represents the logic of the following
assembly code, whose purpose is to relocate a group of bytes in
the AMP RAM.

LABEL OP CODE  OPERAND COMMENTS
REL LBL BREL  Specifies address of reg-
ister to be moved
LDI F Causes 15 (address of re-
ceiving register) to be loaded
into A
XBA 0—)BM, Fls “">BL, [BM,
BL]—A
LXA [A]-X
XBX [X]«[BM, BL]
LD [M]—A
DECB 0 [BL] — 1-BL, skip if
[BL] = 1111
T *4+1
XBX [X1<[BM, BL]
EXD [M]<>[A]
[BL] — 1-BL, Skip if
[BL] = 1111
T * 6 Continue the move
RTN Return to calling program
BREL DEC (16) Identifies decimal number
entry

At the time the assembler source program is generated, a set
of labels are decided upon by the programmer to define the
starting points of various blocks of code. These labels may be
numeric, alphabetic, or a combination of alphabetic, numeric,
and symbolic ( + , —, <, %) characters. Each label canmean
only one thing for each assembled program. In the example,
REL and BREL are such labels. This subroutine is entered at
REL, while BREL locates a particular piece of data, which in
this case is a decimal 16 (or hexadecimal 10.) (The DEC
pseudo op code tells the assembler to treat the operand as
decimal data.)
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INITIALIZE
B AND R

?

LOAD WORD
TOBE MOVED
AND MODIFY B

STORE
WORD INM
AND INCREMENT B.
INCREMENT

Fig. 5-14. The flow chart relocating a group of bytes in the AMP RAM.

The T instructions use relative addresses such as * + 1
and * — 6. This addressing form tells the assembler that
control is to be transferred to the statement occurring ahead or
behind the present statement by a predetermined amount. For
example, * + 1 means the very next statement in sequence,
while *—6 means to go back 6 statements. But note that the
statement count is not necessarily the same as the actual
number of memory locations, since more than one byte
location may be needed to implement one assembly statement.

It is not necessary, or even desirable, to identify each
statement with a label. It is only necessary if that statement is
to be referred to by other parts of the program. To aid in
bookkeeping, most assemblers will also print out
cross-reference tables identifying the routines that refer to or
use each labeled statement.

As long as all addresses are either symbolic or relative to
a symbolic lable, the assembler has some freedom in locating
or relocating the program. The idiosyncracies of the mi-
croprocessor hardware will often constrain the available
locations. Initial power-on rules, paging, and special-use ROM
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and RAM regions are examples of constrairits that must be
considered when the assembly program is written. The
programmer may specify absolute memory location to the
assembler if he chooses, but when he does, he has fixed in
memory that part of his code, and in effect removed from use
one of the more powerful features of assembly programs.

Error Checking

The assembler will provide some error checking facility
but don’t count too much on the assembler finding program
errors. The sort of things that assemblers are designed to
catch are mostly clerical errors. After all, the assembler does
not know what you want to do, so it normally flags out only
obvious inconsistencies, such as two different statements
giving the same label; specification of an op code that does not
exist in the assembler table; specification of a number that
cannot be held at an indicated binary scale; addressing
locations in a different page of memory with a short-form
instruction. These are all examples of errors that should be
caught by a reasonably complete assembler. Where errors
exist, the assembler should (although not always) assemble
what it can, supplying dummy labels where necessary,
increasing the binary scale to the minimum, and using a
long-form instruction to attempt to correct, or at least work
around, some of the preceding error examples.

There will be a bit more said about assemblers in Chapter
8. This introductory discussion was intended to give a cursory
understanding of the general functions of assembly programs.
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Chapter 6
Programs
and Subroutines

Now that we have examined in some detail the basic
microprocessor (microcomputer) functions, number systems,
the AMP instruction list, and introduced the use of assemblers,
we are now ready to tackle some simple illustrative programs.
The format chosen is a combination of assembler input code
and machine absolute hexadecimal. Depending upon the
system and the assembler used, hexadecimal may be printed
out by the assembler as an aid to debugging. (Everyone will
find it necessary at one time or another to examine binary
information directly from the microprocessor memory, if only
to make certain that the assembler really knew what it was
doing.) Flow charts are provided for most programs.
Comments are included to explain the code in a step-by-step,
although abbreviated, fashion with a discussion of the salient
points of each programming example following the sample
code.

INITIALIZATION ROUTINE (ST)

The following is typical of the initialization program
entered immediately after power is turned on. The states of
the various registers and outputs cannot be guaranteed and so
must be set to known conditions under program control. The
transfer in location 000 is a logically unnecessary instruction,
but is used here to provide a 5 usec delay, allowing power
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transients to settle before data generation and transfer are
started.

ROM oP
LABEL LOCATION CODE OPERAND HEX COMMENTS
ST 000 T *41 81. Transfer to 001
001 LB-I::I 0 00\, Bregister set
002 00 to 0 (0—B)
003 LDI 0 70\ Accumulator set
004 00 to 0 (0—A)
005 DOA 0 1D Discrete outputs
setto0
006 RC 24 Carrysetto
0 (0—-C)
007 OL 0 21  Setoutputsto0
008 01
e [ e ° [}
o ° -] @ [}

ZERO RAM SUBROUTINE (ZORM)

This subroutine, which we will call ZORM, puts zeros in &
group of sequential bytes in RAM. The flow chart for this

simple routine is shown in Fig. 6-1.

ROM opP
LABEL LOCATION CODE OPERAND HEX COMMENTS

ZORM 100 —LDI 0 70 0—A
101 00
102 EXD 0 28 0-M, [M]—A
T ZORM (*

103 -~2) 80 Transfer back
104 RTN 05 Return to main
program

This subroutine must be entered using the TM (transfer
and mark) instruction. Upon completion, execution of the
return command will cause the return address previously
stored in SA by the main program to replace the content of P,
The B register must also have been loaded to the location of
the first word to be set to zero.

EXD causes the content of A to be exchanged with the
addressed memory word, placing a zero in memory. Si-
multaneously, the content of M replaces the content of A, but
since A is set to zero before the next word is stored, this is of no
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ZERO THE RAM
LOCATION ADDRESSED
BYB

!

INCREMENT B

Fig. 6-1. ZORM flow diagram.

consequence. EXD further causes the content of BL to be
decremented by one during each execution. The content of BM
isunchanged since a zero is coded as the EXD operand.

When the content of BL is 1111, the T instruction is
skipped, causing the RTN to be executed. Note that the final
RAM location to be set to zero must have a hexadecimal zero
in the least significant digit of its address, since the ZORM
subroutine will continue until the content of BL is 1111, and the
zeros are stored before the content of BL is decremented and
tested.

The operand of the transfer (T) instruction indicated in the
ZORM program is *—3, which is a form of relative addressing.
But this particular feature of the program depends upon the
assembler configuration, so either relative or absolute
addressing may be required to transfer control back to the
ZORM label address.

WORD SHIFT SUBROUTINE (WRS)

This WRS program shifts a group of 7 bytes in RAM,
moving them down by one word space. Prior to entry into the
routine, B must be loaded with the address the first byte to be
moved. In addition, BL must be set to zero. The flow chart for
this program is shown in Fig. 6-2.
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ROM
LABEL LOCATION OPCODE OPERAND HEX COMMENTS

WRS 120 —EX 0 38 [A]l-M, [M]—A
121 INCB 17 [BL] + 1-BL,
skip if [BL] =0
122 SKBI 8 48 Skipif [BL] =8
123 +—T :] WRS A0 Transfer back
124 LBL 0 00 Load Bto0
125 00
126 RTN 05

Upon entry, the content of M, designated by B, is copied
into A by the exchange instruction. The content of A, which
could be anything, is copied into M, but since the useful
information from M is now in A, no harm is done. BL is now
incremented (INCB). The new value can never be zero, so the
skip will not occur. We will skip out, however, when [BL] = 8,
having shifted information from addresses XX0 through XX6
to addresses XX1 through XX7, where XX0 represents the
address of the first byte. At completion, we set B to zero, as a
courtesy to the next routine, and then exit.

BIT DESIGNATION SUBROUTINE (BDS)

The BDS subroutine causes one of the four least significant
bits specified by the entry address to be artibrarily set to one,
Such a routine may be used to prepare for a discrete output
(DOA). The content of B must be set by the calling program to

EXCHANGE
[AJAND [M] . .
INCREMENT BL Fig. 6-2. WRS flow diagram.

ARE
ALL WORDS
SHIFTED

RETURN <=
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specify the byte location. The BDS logic is sufficiently simple
that no flow chart is shown.

ROM oP

LABEL _LOCATION CODE OPERAND HEX COMMENTS

BDS1 130 LDI 1 70 1-bit1
131 01

BDS2 132 LDI 2 70 1-bit 2
133 02

BDS3 134 LDI 4 70 1-bit 3
135 04

BDS4 136 LDI 8 70 1-bit 4
137 08 [M] OR-ed with [A]
138 OR oF

coM1 139 EX 0 38 [A]-[M]
13A LDI 0 70 0—[A]
13B 00
13C RTN 05

Labels are used here to designate a set of entries into the
BDS subroutine. The label COM1 is further used to facilitate
entry by other programs into the last part of the BDS
subroutine, to execute a commonly used string of code at the
end of BDS. The entry locations of BDS1 through BDS4 are
specified by pointers located in ROM-0, page 3, which can also
be addressed symbolically using the assembler.

SKIP ON CARRY ZERO SUBROUTINE (SKCZ)

This simple subroutine demonstrates the use of the return
and skip (RTSK) instruction. The function of the SKCZ routine
is to provide a means to skip the next instruction in the main
program i% tgxﬁ carry is zero.

LABEL LOCATION OPCODE OPERAND HEX COMMENTS

SKCZ 140 SKC 15 SkipifC =1
141 RTNSK 07
142 RTN « 05

If C = 0, return to the main program is via the RTNSK
instruction, which will cause the normal return location to be
skipped and the next instruction in sequence to be the first one
executed, If C = 1, the exit is via the familiar RTN. The
existence of an instruction of the form of RTNSK permits a
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decision to be made in a subroutine, with the result of that
decision modifying a sequence in the main program.

Increment/Decrement Byte Subroutine (IDBS)
This subroutine will increment or decrement any
designated byte in RAM-0. The subroutine can be entered at

several points, two of which (IDBS3 and IDBS4) require the B
register to be loaded by the calling program.

ROM oP
LABEL LOCATION CODE OPERAND HEX COMMENTS
IDBS1 144 LBL 2F 00 Load
145 2F Byte address for
decrement (or *+3)
146 T— IDBS4 8B :
IDBS2 147 LBL 00 Load
148 C3 Byte address for
increment
IDBS3 149 LDI 1 70 Incrementation
constant
14A 01
IDBS4 14B LDI=! FF 70 Decrementation
constant is 255,
14C FF
14D A 0B Add without carry
4E EX 0 38 Adjusted byte--»M
H¥F T COM1 B9 ExittoCOM1

The IDBS1 entry loads the B register with the address of
the byte to be decremented. IDBS2 does the same for the byte
to be incremented. The IDBS3 and IDBS4 entries perform the
incrementation or decrementation and store the result back in
RAM-0. Note that IDBS uses a common exit (COM1) with BDS
saving a few instructions.

BINARY LEFT SHIFT (BLS) SUBROUTINE

AMP has no left shift instructions, so this shifting function
must be mechanized by a subroutine. The technique used here
is based on the fact that a binary left shift is equivalent to
multiplication by two, which is the same as adding the number
to itself. The BLS subroutine requires the B register to contain
the RAM address of the byte to be shifted, and the content of C
to be set to zero upon initial entry.
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ROM oP
LABEL LOCATION CODE OPERAND HEX COMMENTS

BLS 105 LD 0 30 [M] addressed B—A
106 ADC 0A Add with carry
107 EX 0 38 [A]--[M]
108 RTN 05 Exit

BLS can also be used to perform a right shift by successive
reentries without resetting the carry.

Examples: Shift 11101110 left one place on initial entry of
BLS and C = 0 During execution of BLS, 11101110 is added to
itself:

[C] [A]
11101110 Initial value in A
11101110 Add A to itself
II] 11011100 Final value in A

The original number is shifted left, with the ‘1’ that started in
the most significant bit position, ending up in the carry. In the
event that the byte just shifted is part of a longer word, the
reentry of BLS addressing the next byte should not reset the
carry. The carry one will then propagate into the least sig-
nificant bit position of the next byte.

The shift method is also legitimate arithmetically if we are
processing a single byte. Since the number is negative and
expressed in 2's complement form, the leading 1’s (except for
the sign bit) are not significant. By complementing the initial
and final values, we see the final value is twice the initial.

Sign and complement 111101110} Initial

Sign and absolute value | 1j0010010| Values

Sign and complement 111011100 | Final

Sign and absolute value |1{0 100100 | Values
Binary Right Shift

Although AMP has a right shift instruction (ARS)
mechanized in the hardware, it is possible to use the BLS
routine unchanged to shift a byte one bit to the right at the
expense of execution time. Inasmuch as some 4-bit processors
do not have a right shift in their instruction repertoire, an
example is in order.

Example: Let us assume, for the sake of the example, that
the processor in question has a 4-bit arithmetic register, but is
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otherwise configured as the AMP BLS is initially entered as
before, and on subsequent entries, the carry is left alone:

[C1 [M]

E_-l 0111 Initial value
0111 Add

[0] {1110 Value after 1st execution
1110 Add

1100 Value after 2nd execution
1100 Add

1001 Value after 3rd execution
1001 Add

001 Value after 4th execution

The original number is shifted one bit to the right, with the
digit shifted from the right hand of the register, ending in the
carry flip flop. This bit is available to propagate into the most
significant position of the next lower order byte. Notice that if
the number is negative, that the carry flip flop must be one-set
oninitial entry to propagate a one into the sign bit position.

General Register Exchange (GX)

The GX subroutine exchanges the contents of designated
RAM-0 multibyte registers. The register sets are further
addressed by the two LBL instructions, with the entry point
determining which are to be exchanged. If the entry is at GX3,
the LBLs in the calling program are used to designate the
register set.

ROM OP
LABEL LOCATION CODE OPERAND HEX COMMENTS
GX1 120 LBL R1 00 Addressof R1
121 ()
GX2 122 LBL R2 00 Addressof R2
123 ()
GX3 124 LDI () 70
195 () Dj address—A
126 XBA 19 Address of first
byte—B
127 LXA 1B R; address—X,
address of first
exchange—A
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ROM op
LABEL LOCATION CODE OPERAND HEX COMMENTS

128 —LD 0 30 Byte—A
129 XBX 18 Exchange
addresses
12A EX 0 38 D-R
12B DECB 1F {BL] — 1-BL
12C T * 41 AD Transferto
‘] avoid skip
12D XBX: 18 Exchange
address again
12E EXD 0 28 Complete byte
exchange,
decrement B
12F LT *7 A8
130 RTN 05
R1 DEC ()
R2 DEC ()

This GX subroutine shares a common memory with the
earlier WRS subroutine, so if both GX and WRS are to be used
in the same program, one or the other routine will have to be
relocated.

The last two addresses given for R, and R, are indicated
(with parentheses) as being decimal, but most assemblers
permit symbolic operands to be used.

The contents of the registers are specified within the
subroutine by the GX1 and GX2 entries, or the contents of one
internally specified and one externally specified register are
exchanged. The latter exchange requires that the B register be
loaded with the address, and then the subroutine is entered at
GX3. Note that the second LBL will not be executed on a GX1
entry, so that in effect GX1 addresses R, as one of the
registers to be exchanged, while GX2 addresses R, . Note also
that this routine may be used to address registers that “wrap
around’”’ a page of memory, for if the last page address is
exceeded, the subsequent addresses are taken from the
beginning of the page.

It is often helpful to examine the contents of the CPU
registers at critical steps in the computation cycle to
determine if the program will function as anticipated. As an
example of this kind of analysis, consider the first pass of the
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Table 6-1. Step-by-Step Analysis of GX Subroutine

REGISTER CONTENTS

INSTRUCTION P B8 X A COMMENTS
LBL 120 R - - R, address—B
LBL 122 R - - Second LBL. ignored
LDl 124 R - D D,address—A
XBA 126 D - R
LXA 127 D R R
LD 128 D R D] First byte of D; —>A
XBX 129 R D 1] Exchange B and X
EX 12A R D [A] D}-R
DECB 12B R - D [R] Decrement B
T 12C R -1 D [R} Transfer control
XBX 120 D R -1 [R] Exchange B and X
EXD 12 D ~1 R -1 0] [R}-D
T 12F D ~1 R -1 (23] Transfer control
LD 128 D -1 R -1 D ~1] Second byte of D; —A

GX subroutine, beginning with a P register value of 120 after
execution of the instruction at that location. This analysis
results in Table 6-1.

FIXED-POINT BCD ADDITION SUBROUTINE (FXA)

The FXA flow chart is shown in Fig. 6-3 and the RAM map
in Fig. 6-4. This subroutine is an example of a 2n digit, BCD
arithmetic routine. In this case, n = 7 for a 14-decimal-digit
number. Note that the digits are stored in reverse order (N,
and N,; are the least significant digits of words Ni and N: ), to
take advantage of the EXD instruction that causes BL to be
decremented.

ROM oP
LABEL LOCATION CODE OPERAND HEX COMMENTS
FXA 110 RC 24 0-C
111 LB N1 C4 N, address—B
N 112 —LD 1 31 N,—A N,
address-—»B
113 DC 6D 66 + [A]l—A
114 ADC 0A AddN;
115 DCC 6E Correct to valid BCD
116 EXD-1 29  Store BCD sum digit,
decrement, and
modify B
117 —T N 92 Continue addition
118 RTN 05 Returntomain
program
N1 0C4 EQU 6 06 Hex integer pointer
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SETBTO
LOCATION N, AND
RESET ¢

—

PERFORM
BCD ADDITION
AND UPDATE B

HAVE
ALL DIGITS
BEEN ADDED

Fig. 6-3. FXA flow diagram.

The LD instruction causes BM to be modified by the
exclusive-OR of the contents of BM and the last 3 bits of the LD
op code field. In this case, a one was chosen in the LD field,
setting BM to one after the first execution of LD (1® 0 = 1).
After the EXD execution, BM is reset to zero (1® 1 =0,
permitting addressing of the second digit of the first number
since BL has been decremented. The sum digits are stored
over the N, digits since the B register was not modified

Fig. 6-4. FXA RAM map.

" "BM CONTENTS
0 1 2 3 —&-
0Nz | Noy
11 Nyg [ Nog
2 N5 | Nos
8| Nyg|Nag
4| Nig|Nps
o 5 N2 Naa
6 Ni; [Ny
i
= 7
g
3 8
-9
)
A
B
(o}
D
E
F
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between the pickup of N, digits and the storage of the sum. In
the event both N; and N: are greater than zero, and the
addition results in an overflow, C is set to one at the completion
of the routine. Both N, and N: must be at the same decimal
scale (the decimal points must be aligned), and the scale must
be adequate to accommodate the magnitude of the sum.

SORTING PROGRAM (SORT)

To further demonstrate data addressing, and as an
excercise in the use of X, A, and B registers, assume that it is
required to sort through a 64-word block of 8-bit data. All
numbers greater than 73;; in magnitude must be moved to a
storage region for further processing. The sorting operation is
to be made several times on the data as it is continuously
loaded by the processing program, so the use of a subroutine is
indicated. The flow chart is shown in Fig. 6-5, and the AMP
code is as follows,

ROM oP
LABEL LOCATION CODE OPERAND HEX COMMENTS
310 ™ DO Transfer to SORT
0ODO 0oC OC SORT entry (10C)
311 LB Return from SORT
SORT 10C LB CO LoadB
10D LD1 () 70 Destinationaddress
—A
10E () Destinationaddress,
D
10F EX 0 38 D-—»050, gibberish
....;A
110 LDI () 70 Source address—A
111 ( ) Sourceaddress,S
112 INCB 17 [051]—B
113 EX 0 38 S—051, gibberish—A
SORT1 114 LD 0 30 S—A
115 ADI 1 6C IncrementSandtest
116 01
117 T *4+2 99 Continue
118 EET 05 Returnwhencomplete
119 XA 1B Incremented S—X
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ROM op
LABEL LOCATION CODE OPERAND HEX COMMENTS

11A EX 0 38 Incremented S—051
051, —A
11B XBX 18  S—B,[051]—-X
11C LD 0 30 S—A
11D ADI 8C 6C Addcomplementof 73
11E 8C
11F T *+15 AF S=<73(Notedecimal
relative address)
120 LD 0 30 S>7 ,S—A
121 XBX 18 [051]—B
122 DECB 1F  [050]—B
LXA 1B S-X
LD 0 30 D—A
ADI 1 6C D + 1(newD)—A
01
XBA 19 newD->B,[050]—A
XAX 1A 050—X,S—A
EX 0 38 S-»newDlocation
XBX 18 [050]—B, D—X
LAX 12 D-—A
EX 0 38  D-->050
INCB 17 [051]1-B
T SORT1I 94 Transferback
XBX<d 18 [051]--B
T SORT1 94 Transferback
50

In this SORT program, destination address D is assigned
to memory location 050, while source address S is held in
memory location 051. While this code is not intended to be an
example of an efficient technique, it does show a straight-
forward arithmetic method to pick up and store addresses
from the 64-byte block, taking into account the unpredictability
of the store addresses. Because the AMP has no store
instruction (only an exchange of the accumulator and memory
contents), it is necessary to save the accumulator content in
the X register if it is needed after the EX instruction is
executed—an example of a multipurpose instruction that does
too much for the case at hand.
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MAIN PROGRAM

TRANSFER AND
MARK TO
SORT
S,
7 SORTENTRY
; INITIALIZE
DECREMENT WORKING STORE
B,ETC. WITH FIRST
ADDRESSES
SET B WITH
DATA ADDRESS
LOAD DATA
INCREMENT B
AND STORE IN
DATA ADDRESS
SET|B|TO
STORE ADDRESS
AND STORE DATA
RETURNl v
INCREMENT B
AND STORE
1
HAVE
‘64 PIECES OF
DATA BEEN
CHECKED

Fig. 6-5. SORT flow diagram

FIXED-POINT BCD SUBTRACTION SUBROUTINE (FXS)
The FXS subroutine is very similar to the FXA. The flow
chart logic and the data storage map are the same as those
shown for the FXA. Because the COMP instruction causes the
1's complement of A to be formed, C must be one-set (SC) and

added in initially to form the 2’s (or 10’s) complement.
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LABEL OP CODE OPERAND COMMENTS

FXS SC 1-C
LB N1 N, address—B
FXS1 LDe— 1 N, —A, N; address—B
COMP 1’s complement of N,
ADC N, - N
DCC Correct to valid BCD
EXD 1 Decrement BL, modify BM,
and store partial sum
T— FXS1 Continue
RTN Return
N1 EQU Cé Hex integer data, location of
LB pointer address

For this and the following routines, the absolute octal
addresses and codes are not shown. The coding here is thus
representative of the input data fed to an assembler, which
then assigns such addresses as it compiles the actual
machine-language programs.

RETURN ADDRESS SAVE SUBROUTINE (PSHP)

This sequence establishes a third-level subroutine
hierarchy.

LABEL  OP CODE OPERAND COMMENTS
PSHP XS [SA]«>[SB]
LBL SC SC address—>B
CY 8 least significant bits
of SA—A
EXD 0 [A]--RAM
[T *2 Not finished
XS Restore [SA]
RTN Third-level save
SC EQU () register address

The execution of the XS instruction causes the content of
SA to be exchanged with SB. This places the second-level
subroutine return address in SA and the first-level address in
SB. The LBL causes B to be loaded with the address of a RAM
location that will be used as the third-level subroutine save
register (SC). Eight bits of the original content of SB (now in
SA) are cycled into the accumulator and then into RAM by the
first execution of the CYS and EXD instructions. The
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INITIALIZATION
SA+-SB
SC ADDRESS +B

CYCLE SAAND
ACCUMULATOR

EXCHANG
[A]AND [M].
EXCHANGE
OMPLETE?

L YES

REESTABLISH
AAND SA

Fig.6-6. PSHP flow diagram.

remaining 4 bits are placed into RAM during the second pass.
The final XS execution reestablishes the original content of the
SA register (see Fig. 6-6). The resulting content of the SB
register is of no value.

FIXED-POINT BINARY ADDITION SUBROUTINE (FBA)
This subroutine is quite similar to the BCD addition

routine (FXA), using essentially the same program logic, but

since the addition is in natural binary, the coding is more

straightforward.
LABEL OPCODE  OPERAND COMMENTS
FBA RC 0-C
LB N1 N, address—B
D 1 N; —A, N;: address—B
ADC N; + N; + C—A
EXD 1 Sum->N; , N; address—B
T ] *—3 Not Complete
RTN Exit
N1 EQU C3 Address of pointer to N,
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With the value of 3 chosen for the initial address of N;,
four bytes are added before the content of BL is 1111 and the
routine is exited. The RAM map is similar to Fig. 6-4, with Ny,
and N, the least significant digit locations used by FBA.

FIXED-POINT BINARY SUBTRACTION SUBROUTINE

(FBS)

FBS differs from FBA only in the setting of the carry and
the formation of the 1’s complement of N, . FBS causes the
4-byte N, to be subtracted from N; . Addressing is identical to

that of FBA, as shown in Fig. 6-7.

LABEL OP CODE OPERAND COMMENTS
FBS SC 1-C
LB N1 N, address—B
LD 1 N, -»A, N; address—B
COM I’s complement of N;
ADC N; — Ni—A
Sunl——-)Nz

EXD 1
0
RTN=

SETUP
N,=1
1

SET ADDRESS
POINTERS

—— ]

ADDNTH

BYTES OF
CANDD

NBYTES
ADDED

Fig. 6-7. FBA flow diagram.
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This is the last of the specific AMP program examples,
though reference will be made throughout the book to AMP
functions as examples of microprocessor operation and
architecture. The discussion of larger and more sophisticated
programs is beyond the intent of this book, although the
complex codes are nearly always generated by dividing the
problem into manageable subsets (subroutines) similar to the
ones of our examples, and then building a calling program to
utilize the subroutines in proper sequence. Because of a desire
to illustrate as much of the AMP instruction repertoire as
possible, minimal coding was not always achieved.

124



Chapter 7

Floating-Point
Arithmetic

While it is always possible to solve problems using fixed-point
arithmetic, the difficulties involved provided incentives to
both hardware designers and programmers to mechanize
methods by which the arithmetic unit or a service program
could keep track of the radical point during computation. The
technique is known as floating-point and is simply an extension
of scientific notation, where a number is expressed as the
product of a number lying between 1 and 10 (or alternately 0.1
and 1) and an integral power of 10. For example,

375.92 = 3,7592x 10° = 0.37592 1¢°
0.0001764 =1.764x10"* = 0.1764x10°*

Binary numbers can be expressed in a like manner:

1011101.11; = 1.01110111x10; * = 0.101110111X10 ’
0.00000110101 = 1.110101X10; ** = 0.1110101x10, **

Where 10,° =2° and 10, *® = 2°°. This notation can be
further shortened by not writing down the 10 since regardless
of the number system used, the most natural multiplier is an
integral power of 10 in any base. Thus we can write:

0.1110101x10™* = 0.1110101 | -5

This suggests a format where the mantissa (the number lying
between 0.1 and 1 in this case) and the characteristic (the
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SIGN BIT, 1= MINUS, 0=PLUS SIGN BIT (IF USED)
l—- DATA WORD

) 7/

MANTISSA CHARACTERISTIC
N BITS, DEPENDING TYPICALLY 8 BITS
UPON DESIRED PRECISION

Fig. 7-1. AMP floating-point word format.

power of 10 of the multiplier) are contained in adjacent sets of
bytes and operated upon according to the scaling rules of
Chapter 5.

CONVENTIONS

Like most things in the digital computing world, there are
no firm standards. But common usage (and common sense)
have given rise to formats similar to that in Fig. 7-1. The
characteristie, or floating-point scale, is quite often held as an
8-bit number whose value is equal to 128-B, where B is the
binary scale discussed in Chapter 4, and 128 is a constant that
permits B to range from —127 to +128. An equivalent and
more straightforward approach is to divide the 8 bits into a
sign bit with 7 magnitide bits, as in complement notation.

The mantissa is constrained to be less than one in absolute
value. If it is negative, it is held in 2’s complement form. The
mantissa is nearly always held at the minimum binary scale
(normalized). If we assume that a precision of one part in %
is adequate, we will then require a 24-bit mantissa (including
sign). Expressed in decimal form, this corresponds to about
one part in 16,000,000. Most problems to be addressed by a
microprocessor can be adequately handled by a mantissa that
is 24 bits or less.

This system will then accommodate fairly large numbers
ranging from 27'% to 2*'*, corresponding to a decimal range
of approximately 107* to 10** . The symmetry of this range
results from our definitions. The smallest magnitude that can
be held under these rules is 0.1, x2™'¥ or 27'* , and the largest
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magnitude is 0.1111...x2" or almost 2" . It is possible to hold
numbers smaller in magnitude than 2~ if normalization is
not required, for then insignificant leading zeros would be
permitted.

For discussion, assume that one floating-point word
occupies four 8-bit bytes—three bytes for the mantissa and one
byte for the characteristic. In keeping with common
terminology, we will talk about this word as residing in a
register, although in fact the “register” is merely a group of
bytes held in RAM, having a size determined by our program.
For example, the number 255, would appear in memory as
four 8-bit bytes:

byte 3 byte 2 byte 1 byte 0
loj1111111] [10000000][00000000][01111000]
< mantissa »| characteristic

(128-B)

Byte 3 contains the sign bit, which is zero since 255 is positive.
Bytes 3, 2, and 1 hold the mantissa at minimum binary scale,
S0 255, appears as 0.11111111;. From observation or from
Appendix D, the minimum binary scale is found to be 8;
therefore in our example the characteristic is 128 — 8 = 120,
or 1111000, . In hexadecimal this floating-point number can be
expressed as four two-digit bytes: 7F 80 00 78.

ARITHMETIC

In performing arithmetic on floating-point numbers, the
rules for binary scaling are mechanized together with
operations necessary to prevent overflow. Thus the mantissa
and characteristic arithmetic are both done in fixed point. The
result is a combination nearly always yielding maximum
precision. While all large computers and most small ones have
floating-point capability in their hardware, today’s micro-
processors are, without exception, fixed-point systems.
Floating-point arithmetic must be accomplished by sub-
routines.

In the case of addition and subtraction, the subroutine
must examine each of the two numbers to be added and
determine the appropriate scale such that the sum can be
contained without overflow. The subroutine should also
recognize when overflow or underflow are inevitable, and act
accordingly. It must normalize or left-adjust the result such
that there are no leading zeros, and alsv adjust the scale.
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A second class of so-called floating-point routines may be
encountered where BCD arithmetic is used. Preparatory to
BCD addition or subtraction, these routines simply line up the
radical points, which may be identified using an illegal BCD
character or by a counter whose contents point to the position.
Overflow will normally be checked. The BCD numbers are
held in a manner that will allow maximum precision as long as
the radical point is contained in the register, so data will not be
normalized, but rather held with the radical point at the
position required by the latest operation.

We will now discuss the operation of a typical true n-byte
floating-point subroutine where the addend and augend are in
binary 2’s complement form, and held as normalized numbers.

FLOATING-POINT ADDITION AND SUBTRACTION

The flow chart of Fig. 7-2 is indicative of the logic required
for a binary floating-point addition and subtraction subroutine.
Execution of the routine is separable into three parts. Part 1
handles the setups and any shifts necessary to equate the
characteristics by lining up the binary points of the two
arguments, C and D. Part 2 performs the addition or
subtraction. Part 3 adjusts the sum or difference so that it is
contained in the assigned register with no insignificant leading
digits, restores the necessary data, and exits to the main
program.

The subroutine is entered at FPAD for addition or FPSB
for subtraction, where a flag (F1) is set either to a one or to
zero for the add/subtract control used in Part 2. The required
common initialization is also performed. The two char-
acteristics are then examined to determine if they are equal, If
the format of the number is that of Fig. 7-1, the characteristics
are each held in one 8-bit byte and a simple accumulator
zero-test on the difference will suffice. If the characteristics
are unequal, then the number associated with the smaller
scale (larger characteristic) will be shifted right one bit at a
time by the RS (right shift) second-level subroutine until the
scales are equal. The RS test for the proper characteristic
must pass here because we are only modifying one
characteristic to be equal to a known valid one. With this
mechanization, it is quite possible that the mantissa may be
shifted out of the register, one bit at a time, until it is zero.
Shifting will then continue until the scales are equal, using up
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unnecessary time. A test may be inserted at the return from
RS in Part 1 to count the number of right shifts performed,
with a test limit equal to the number of bits in the register. Or
alternately, you could examine the mantissa for a zero. If
either test were satisfied, the smaller characteristic could be
used for both numbers, or the remaining non-zero number
would be used for the sum or difference (complemented if
necessary). When the two scales are found to be equal, Part 1
has done its job and control is transferred to Part 2.

In Part 2, any required setup is performed, and F1 is
examined to determine if addition or subtracton should take
place. If addition, the carry is zero-set and byte-by-byte
addition is performed; if subtraction, the carry is one-set, the
I's complement of D is taken, and once again byte-by-byte
addition is performed. (Depending upon the processor used,
some efficiencies may be realized by making some of this
coding common).

Part 3 tidies up the arithmetic by correcting any overflow
and by normalizing the scale of the sum. After the arithmetic
is performed, it is possible that a potential overflow has
occurred, with the overflow bit residing in the most significant
digit position (sign bit). This overflow can be corrected by
recognizing the existence of the overflow condition, shifting
the mantissa right one place, recovering the sign bit from the
carry, and adjusting the characteristic. (There is only the
possibility of a 1-bit overflow, so the shifting operation need be
done only once.) Where the resulting signs are different (like
signs of subtraction arguments), an overflow is not possible,
The programming in the ¢‘is sign proper” box must look for the
sign combinations of Table 7-1 that result in overflow.
Fortunately, the only combinations needed result in a

Table 7-1. Addition and Subtraction Overflow Sign Combinations

ADDITION SUBTRACTION
Signof C** + 0 +1 4+ - O IR R — -
SignofD* + 1 - - - 4+ A+ - -
Sign of result + -1 + | - + - -1+ 1 -1+
MSB for no overflow 0 1 0 1 0 1 1 0 1 0
MSB for overfiow 1 * ' 0 * * 0 1 .

*Overflow is not possible
**C and D are interchangeable under addition, so the four redundant
cases are not shown.
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SECOND-LEVEL SUBROUTINES
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@

SETUP
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SHIFT NTH
BIT LEFT
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)
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YES
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CHARACTERISTIC
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IS NEW
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LDECREMENTNI

9 YES
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Fig. 7-2. Floating-point addition-subtraction subroutine flow chart.
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predictable sign. The RS will put everything right, as long as
the proper sign bit is placed in the carry prior to transfer to
RS. At this point, the functions of Part 2 are complete.

Part 3 also provides for normalization by left-shifting the
mantissa until no leading insignificant digits are present, and
by modifying the characteristic. If no potential overflow has
occurred, the NML subroutine is entered, which shifts the
mantissa left one bit at a time and also adjusts the
characteristic. After each reentry into the main routine, the
sign bit is checked to determine when it changes state, for
when this occurs, the mantissa has been shifted one place too
many and must be shifted back one by the RS subroutine. At
this point, the mantissa contains no leading insignificant
digits, providing maximum precision of the arithmetic
operations. Of course, the precision of the number just
normalized was not enhanced, since insignificant zeros were
shifted into the right-hand end of the register as the mantissa
was being shifted left, but the precision of subsequent
opeations using this data is probably improved.

It is possible that the range of the characteristic is not
sufficient to handle the magnitude of the resulting sum or
difference. While this occurrence is not likely, it represents a
true floating-point overflow and must be recognized. In this
case, the characteristic will overflow from the maximum
positive scale indication of 00000000 (B = +128) to the
maximum negative indication of 11111111 (B = —127). Or, if
we try to establish a scale more negative than —127, an
indicated scale of +128 will result. Both RS and NML have
tests for these conditions. If found by RS, the overflow flag is
set and the add/subtract routine is exited immediately. If
found by NML, it simply means that the number cannot be
normalized within the range we have chosen for the
characteristic. It was decided for the example to leave the
mantissa unnormalized in this case, but not to set an error
flag. A bit more will be said about characteristic arithmetic in
the following discussion on floating-point multiplication.

FLOATING-POINT MULTIPLICATION

The AMP has no multiplication capability. Whether we
choose to program in fixed or floating point, a subroutine must
be generated to enable multiplication. Floating-point mul-
tiplication was chosen to develop a typical program flow. The
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technique used is based on the multiplication example in
Chapter 2. Recall that fixed-point overflow cannot occur as a
result of multiplication, so no overflow tests are necessary to
insure a proper mantissa. However, floating-point overflow or
underflow can occur, with the product characteristic
exceeding the allowable range as a result of addition of the
characteristics of the multiplier and multiplicand. Binary
multiplication algorithms handling more than one bit at a time
are available for those who wish to trade complexity for speed.
BCD techniques are also available.

The FMP subroutine is a one-bit-per-basic cycle sub-
routine. It is entered with a transfer and mark (TM) with
address pointers set for the IER (multiplier) and ICAND
(multiplicand) registers. The word format is open, but the
program flow was generated with the format described earlier
inthe chapter in mind.

Upon entry into FMP, the necessary initialization is
performed, including setting the PROD (product) register to
zero. Normally, PROD would be a double-length register to
hold the product, but the high-order bit positions of the IER
register are vacated (see Chapter 2, Multiplication) as the
partial product is shifted right, so a single-length PROD
register attached to IER in the following manner will suffice:

B3 | B2 | Bl++B3 | B2 | Bl

}— PROD —} IER |

As in floating-point addition, the new characteristic is
computed by using fixed-point addition on the characteristic
byte. If the binary scale is contained in the characteristic in
the form of 128-B, a bit of thought must be given to determining
the rules for overflow or underflow. The characteristic will
have the configurations for selected binary scales shown in
Table 7-2. Note that overflow occurs when the characteristic is
forced to pass through zero or to exceed 255, as when B is +128
or —127. Adjusting the characteristic of the product is more
straightforwardly accomplished by adding the characteristics
of the two numbers, and then adding 128,y or 80:s to correct the
result. For example, if the scales of the two numbers are 30
and 50, their characteristics would be 98 and 78, respectively.
The sum of the two characteristics is then 176, and when 128 is
added, the result is 48 (actually 304, but the overflow in the
8-bit register is ignored). A characteristic of 48 corresponds to
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Fig. 7-3. Floating-point multiplication subroutine flow chart.
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Table 7-2. Comparison of Selected Binary Scales and Their Charac-

teristics
BINARY SCALE (B) CHARACTERISTIC
DECIMAL HEXADECIMAL DECIMAL HEXADECIMAL
—“———mmm
0 0 128 80
64 40 64 40
-64 40 192 co
-64 - 40 192 cO
128 80 0 00
-127 ~7F 255 FF

a base of 80, which is the sum of the two original bases, as
required. If the characteristic was equal to the base (not
128—B), then the characteristics of the numbers can be added
directly without correction.

Once the characteristic of the product is judged proper,
control is transferred to the MRS (multiply, right shift)
subroutine. The MRS examines the most significant bit of the
PROD register and places it into the carry flip-flop so that the
bit will be re-entered into the most significant digit position
when the contents of the PROD and ITER are shifted right.
The shift begins with the most significant byte of PROD, and
ends with the least significant digit of ITER: the next
multiplier control bit ends up in the carry flip-flop.

If the new value of the carry is zero, then no addition is
performed and MRS is re-entered, once again shifting the
combination of PROD and ITER right and obtaining a new
multiplier control digit. If the new value in the carry is a one
(C = 1), the content of ICAND is added to PROD before MRS
is re-entered. When the iterative portion of the multiplication
is complete, MRS is entered for the last time, with control
returning to the final correction routine.

To complete the operation, the carry bit is once again
examined, and if found to be one, a subtraction is performed to
correct for any error resulting from a multiplicand or
multiplier, or both, appearing in 2’s complement notation. The
subtraction takes place by adding the complement of ICAND
to the PROD. When the subtraction is completed, or if the
carry was initially zero, the subroutine returns control to the
calling program.
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Programming a microprocessor is a more involved task than
programming a “full service” digital computer. By com-
parison, the aids and services available to the program-
mer of a microprocessor are still incomplete. Microproces-
sors are new, therefore the associated hardware and software
have not yet had time to mature. However, most
manufacturers have recognized that one of the more powerful
sales tools for the hardware is the availability of a full line of
programming aids. Those companies that intend to stay in the
business are now spending a significant portion of their
research and development budget to add both software and
hardware aids to their product line. So we can soon expect to
see major improvements in ancillary microprocessor
systems.

LOADERS

The loader is probably the simplest form of programming
aid. The loader may be nothing more than a few hand-entered
or permanently stored instructions, but it is usually a
moderate-sized routine that permits direct entry of
instructions or variable data by keyboard or tape, with
absolute address information for the data to be stored. The
problem, of course, is how to load the information. When
approaching a microprocessor with a completely empty
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memory, you must find a way to begin to enter the
information, for the microprocessor will not have a loading
program to assist you. But once the program has been
permanently stored in ROM, any required loading routine will
be part of the normal instruction sequence, so the problem is
solved.

The loader is a set of instructions that enables the input
media to set up a starting address, read in one byte at a time,
and store it in either RAM or PROM. The loading address is
incremented either by the hardware or by the loader, de-
pending upon the routine and the microprocessor used. The
loader should also be able to recognize the end of a block of
data and to prepare for addressing a new block. For
processors using paged memory, data is normally entered one
page at a time.

A relocatable loader is one that will reposition blocks of
code in absolute memory, to make room for additions or to
compact the code, thereby eliminating some transfer
instructions. These loaders, however, require block start and
stop information and so are not used much for mi-
croprocessor programming since the relocatable loader
functions are normally satisfied by reassembling the source
code.

THE MICROPROCESSOR AS AN ASSEMBLER HOST

The most common microprocessor programming aid is
the assembler. (Typical assembler functions have been briefly
discussed in Chapter 5.) There are several different vehicles
used to provide convenient access to an assembler. There are
also editors, simulators, emulators, etc., so that the assembled
program may be executed on the spot, and any errors found
easily corrected.

The microprocessor itself can be used to host the
assembler accessing a larger machine in a time-share mode
via a smaller, but still inteiligent terminal. Such assemblers
have been written to run on most of the commercially
available microprocessors, but they have limited com-
putational ability (primarily limited by throughput and
memory capacity, and secondarily limited by available
peripheral equipment). Consequently, an assembler written
for a microprocessor host will be limited in relation to the
functions of one written to take advantage of the features of
more complex machines.
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The Resident Assembler

A typical resident assembler is a two-pass program. The
first pass converts the symbolic op codes and nonbinary data
to binary, stores this information away in absolute machine
addresses, and establishes a label table. Clerical errors are
flagged out, such as misspelled or nonexistent op codes. The
second pass equates addresses to the assigned labels, setting
up equivalences and assigning absolute addresses to the
binary code. Processor idiosyncrasies are accounted for, and
additional error checks are performed. Examples of errors
detected at the second pass are failure to define a label, and
finding a label defined twice.

Most assemblers use as input data the 128-character ASCII
set (Table 9-1). The input data is formed in statements. The
statement in turn is subdivided into fields. A typical assembler
format is used in Chapters 5 and 6, and the fields used there
were label, op code, operand, and comments. The absolute
ROM location and hexadecimal data equivalents were shown
only to indicate the relationship of the mnemonic and absolute
information; they are not normally included with the input
data.

LABEL FIELD

The format of the label field is determined by the
assembler, There is usually a limit of six alphanumeric
characters, with a maximum of 256 or 512 labels, depending
upon available memory.

The label field may also be used to designate a comment
statement, where the entire statement is treated as a comment
rather than data for information appearing in the fourth field.
In this case, the assembler passes over the comment
statement without allocating memory or assigning an address
toit.

Because of the assembler structure, there can be illegal
combinations of characters that, though not logically
incorrect, will cause an error diagnostic. For example, some
assemblers look for only alphabetic characters in the label
field, so if others are used, an error will be flagged.,

Op Code or Operator Field

The mnemonic codes for the processor op codes, together
with pseudo instructions to the assembler, make up the data in
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this field. Pseudo instructions, often called pseudo ops or
assembler instructions, do not result in assembly of
microprocessor op codes, but rather tell the assembler to
perform certain functions. Examples of pseudo instructions
are:

EQU—Causes a designated label to be equated to the
indicated hexadecimal number.

DEC—Causes a designated label to be equated to the
indicated decimal number.

ORG—Defines the starting point of a block of code.

END—Designates the end of the source program.

Most rudimentary assemblers are critical of simple input
errors. For instance, if the op code is an LBL and it is entered
with a space as LB L, an error flag will most likely be set.
Likewise, if the assembler wants a comma after the op code
and no comma is there, an error will be indicated. Conversely,
if the assembler does not want a comma and one is present, an
error will also be set.

Operand Field

This field is used to indicate the addresses of operands,
immediate data, and to further define execution of certain
instructions not requiring address information, These in-
structions are typified by shift instructions, where the number
in the operand field tells the processor the number of places to
shift the operand right or left. Since hexadecimal numbers can
be alphabetic, the assembler must be notified by an auxiliary
agreed-upon symbol, whether by an alphabetic combination in
the operand field as a label or by an absolute number (a
literal). The symbols 1" or “*” in front of the operand entry
is commonly used to designate hexadecimal data.

Comment Field

Comments are used only for readability in the program
listing. They are usually held for printing by the assembler
during its first pass and is ignored during the second pass.
Comments can utilize any character set that the peripherals
recognize,

Figure 8-1 is a representative listing prepared by a
resident assembler for the Rockwell PPS-4 microprocessor.
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8
*FIXED-POINT BINARY ADDITION SUBROUTINE
FBARC” 0toC

LB N1 N1ADDRESS TOB
LD1 N1 TO AN2 ADDRESS TO B
ADC N1+N2+CTOA INPUT
EXD 1 SUM TO N2, N1 ADDRESS TO B
T*-3 NOT COMPLETE
RTN
N1 EQU C3
END
100W1
*FIXED-POINT BINARY ADDITION SUBROUTINE A
0100 24 FBARC* 0TOC
0101 CO LB N1 N1ADDRESS TOB
0102 30 LD 1 N1TOAN2 ADDRESS TO B
0103 0A ADC N1 + N2 + CTOA ;ASSEMBLER
0104 28 EXD 1 SUM TO N2, N1 ADDRESS TO B OUTPUT
0105 80 T*-3 NOT COMPLETE
0106 05 RTN
N1EQUC3
END J
100W2
010010 OBJECT CODE
24C331 0A298205

Fig. 8-1. Sample resident assembler printout.

The first data group is the input information as it is typed into
the assembler. The second data group is the first pass
response, and it includes the assigned addresses and basic
hexadecimal equivalent op codes. The third data group is the
assembled object code with the starting address of location
0100. This last group is preserved on paper tape punched by the
assembler for loading the PROM (programmable read-only
memory). The address of N1, content of location OC3, has been
omitted.

DIAGNOSTICS

As we have observed, error detection and diagnosis by
assemblers are usually less than the best; however, a few
words are still in order regarding some specific errors that
should be caught by the assembler and brought to the attention
of the programmer.

Memory Contents Exceeded

The assembler will be keeping track of the memory usage,
and therefore almost certainly will be able to provide
diagnostics that say:
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Page Is Full—You must use a long transfer to continue.

ROM or RAM Is Full--This one can be real trouble. If the
program cannot be compressed or functions deleted,
the only answer is more memory for the system.

Special Memories Are Full—Where literal or command
pools, stack pointer memory, special input/output
buffers, or other special-purpose memories are used,
this message will alert the programmer to the fact
that the world is finite.

Invalid Cedes

These messages will usually indicate some kind of clerical
error.

Invalid Op Code—Usually a typing or keypunch error.

Syntax Error—Too many or not enough commas,
parentheses, asterisks, spaces, ete.

Undefined Symbol—Usually an input typing or keypunch
error.

Symbol Defined More Than Once—Poor bookkeeping.

Improper Program Structure

Label Not Present Or Undefined—Labels are required on
pseudo-ops such as EQU. If a label is not used, this
diagnostic message is likely. If control is transferred
to an undefined label, a similar message should be
used.

Transfer Is Beyond Page Boundary-—Here the pro-
grammer inadvertently addressed a location that
could not be reached by the type of transfer
instruction he was using.

There will be other message types referring to specific
errors created by the limitations of the particular mi-
croprocessor and assembler combination used. None of these
messages are welcome, but it is much easier to find and
correct an error when it is pointed out.

Typical Operation

 As an example of resident assembler operation using
paper tape as the storage media, we will briefly discuss the
operation of the PPS-8 assembler. This assembler uses paper
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tape as the primary input and storage media. Standard
operating procedure dictates that the source program be
prepared off-line using a teletypewriter.

Once the tape has been punched, it can be placed on the
reader and read by Pass 1 of the assembler. The PPS-8MP
assembler uses the 128-character ASCII set. (Any one of the
first group of 16 codes is treated as a statement delimiter, and
if two or more appear in succession in the source program, all
but the first are ignored.) Pass 1 creates the symbol table but
does not store source data. The tape must be once again
positioned on the reader and Pass 2 addressed from the
teletypewriter. Pass 2 generates the source-object listing.
Both Pass 1 and 2 provide some error checks and printout
diagnostics where errors are found. Pass 3 provides an object
program in a format suitable for use with the loader provided
for the PPS-8.

THE SIMULATOR OR EMULATOR

Simulators provide a program execution sequence which
is identical to that of the microprocessor, but for which the
programmer has considerably more visibility. If the program
is initially run on the microprocessor, monitoring of program
execution is most often done by observing a bank of lights or a
simple digital display providing the hexadecimal location of
the last instruction executed and values of selected register
constants.

Unless Transfers, Halts, Printout Commands and Pauses
are inserted into the assembled code, no intermediate results
are directly observable. The act of modifying the code to add
visibility for checkout is commonly done, even where
simulators are used, but additional opportunities for error are
created when the patches are removed and the final *‘checked
out” code is compressed.

THE TEXT-EDITOR

For those systems using a bulk input media (paper tape,
magnetic tape, punched cards) to the assembler, it is
inconvenient to go back and recreate the entire source data set
when corrections are to be made. The test-editor provides a
system that modifies designated pieces of data and prepares a
new corrected tape or deck, together with a printed record of
the changes made and of the resulting complete data set.
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The editor operates by reading the test to be altered into a
buffer. The buffer is usually limited in memory such that the
source data must be handled in pieces that will fit in the buffer,
and the loading process is repeated until the entire text has
been edited. A typical set of commands available to the user of
an editor are as follows.

1. Set buffer pointer.

2. Add or append = lines of text.

3. Delete n lines of text.

4. Move buffer pointer n character positions forward.
5. Punch specific characters (end-of-file, no-ops, etc),
6. Punch buffer contents,

7. Search for specific string in buffer.

8. Insert text into specific location in buffer,

9. Delete mth through nth character.

10. Insert specific character into buffer,

TIME-SHARED SYSTEMS

Manufacturers and service bureaus have cooperated in
providing rather complete assembly, compilation, and
simulation programs that are resident on large computers and
accessed by terminals in the customer’s plant. The access is
nearly always over telephone lines and is initiated by dialing
the telephone number of the remote computer facility. This
mode of operation requires a fairly intelligent local terminal.

The terminal equipment should include a paper tape or
card reader, a teletypewriter, a cathode-ray tube (CRT)
display, some auxiliary memory (disc or magnetic tape), and
a reasonably competent minicomputer to control the
peripherals and operate interactively with the big computer.

The user will pay for the terminal equipment, the
telephone line rental, and the main-frame time actually used
at the central computer. During normally busy periods,
several programs are running nearly simultaneously on the
big machines, but each user pays only for the portion of the
central processor time directly involved with this program,
Even though rental of machines in this class is quite expensive
($200—$1000 per hour, depending upon machine con-
figuration), the total cost to assemble a 500-statement
program is generally less than $10, excluding the cost of the
terminal.
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Fig. 8-2. Photograph of PPS-4MP assemulator system. (Courtesy Rockwell
International)

Time-shared systems require the creation of an initial
input data file for the assembler source code, which is
maintained at the central facility and updated as the file is
accessed. In addition to the source code, secondary files are
generated and normally consist of one or two assembler output
files and a simulator input file compatible with the machine
configuration or configurations simulated at the central
computer. This permits the source code to be assembled, and a
simulation verification performed in a single sitting.

Use of a time-shared system is initiated by “logging on,”
which consists of calling the number of the central computer,
identifying the terminal, and identifying the specific user. The
exact procedure is dependent upon the company providing the
service, the executive program used, and the terminal
configuration.

THE ASSEMULATOR

Another class of programming aid utilizing a combination
of hardware and software techniques is known as an
assemulator. The title is a contraction of the terms assembler
and simulator (or emulator), which describes the services
rendered. A typical example is the PPS-4MP assemulator
system shown in Fig. 8-2. The assemulator processing center is
composed of the PPS-4 CPU, 256 4-bit words of scratch-pad
RAM, two general-purpose I/0 devices, and a clock generator.
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The PPS-4MP block diagram is shown in Fig. 8-3. The CPU has
access to all internal blocks shown in the diagram and takes its
instructions from either the ROM or the RWM (read-write
memory).

The selection of the program set used is switchable from
the console. The ROM programs are those which make up the
operating system. The program in the RWM are the object
codes (the programs being developed or checked out). At the
programmer’s option the assernulator will assemble or edit
the program, or permit it to be executed on the spot. The
assembly and utility programs in ROM are referred to as the
chip-based operating system (CBOS). The permanent storage
media used with the basic assemulator is paper tape, and both
source and object code are preserved as punched holes on
paper tape.

Source Program

The source program is in assembler language and consists
of mnemonic-coded data similar in form to the AMP routines
discussed earlier. Specific formats are necessary to instruct
the CBOS system as to which data are comments, operands, or
labels.

Upon entering the source data into PPS-4MP memory via
paper tape, a second paper tape is punched to preserve the
assembled information. Program errors will likely be found
during the debugging process, so the programmer will want to
punch yet another tape containing the newly discovered
corrections. To facilitate the process, the edit function is
provided, permitting corrections to be made and a new tape to
be punched by reading in the old tape and manually entering
only changes, deletions, or additions.

Assembly

Assembly of the source program is performed by the
utility assembler, which is a two-pass assembler. Passes 1 and
2 operate independently, and each requires separate in-
itialization. Upon the completion of pass 2, an object tape will
be punched that can be loaded into the RWM of the
assemulator ready for execution and emulation by PPS-4MP.

Simulation
During initial program execution, a single step or single
cycle mode of operation is very useful in permitting the

145



HIGH SPEED
PAPER TAPE >
READER
TELETYPE
OR PR
TI TERMINAL INTERFACE \ B
HEX DATA
AND < . DATA
CONTROL > s
KEYBOARD R
PPS-4 CPU DATA
. SNAPSHOT
AND B ANDFRONT [P
CLOCK LOGIC PANEL CONTROL
&
PROM —
ADDRESS PROGRAMMER
BUS B A
PROGRAM
|  MEMORY  |fg——p
(RWM)
MEMORY
CONTROL >
> LOGIC
i
. ROM
(CBOS)
> DATA s
RAM
] scratc
- PAD RAM N >

PPS-4MP BLOCK DIAGRAM

Fig. 8-3. PPS-4MP block diagram. (Courtesy Rockwell International)
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programmer to observe the execution of his program, one
command at a time. He can view the register contents at the
completion of each instruction to determine the goodness of his
code. In addition to the single-cycle mode, the programmer
may dump all of the program memory on paper or magnetic
tape (if available) or on printed hard copy.

Program data may be entered into the PROMs when the
checkout has progressed to the point where the programmer is
satisfied with the accuracy of his program. Capability exists
within the PPS-4MP to verify the proper entry of this data by
comparing the PROM contents bit-by-bit with the latest
contents of the RWM.
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Chapter

)ata Exchange and
Use of Peripherals

An important and growing use of the microprocessor is in data
formatting and control. Information must be put into forms
that the outside world can accept. Data must be received in
similar forms and then translated into the 2's complement
binary that is natural to the processor. Further, transmitted
data is subject to contamination from several sources, and in
general, the longer and more complex the transmission link,
the higher the error rate. So the microprocessor may be
assigned the task of determining whether or not a data group is
likely to contain errors. For example, it may be asked to select
the “‘best’’ available data from several redundant sets, or to
“correct’’ an apparently faulty reception using partially
redundant data.

DATA FORMAT STANDARDS

Some data format standards exist. Punched card and
paper tape formats have been established for some time and
have wide acceptance. Two of the most used standard code
systems are ASCII (American Standard Code for Information
Interchange) and EBCDIC (Extended Binary-Coded Decimal
Interchange Code).

ASCII is a 7-bit code used to provide a numeric rep-
resentation of alphanumeric and formatting data. ASCII is an
incomplete set in that several of the possible codes are without
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meaning. Hexadecimal to ASCII equivalencies are listed in

Table 9-1.

EBCDIC (pronounced either ee-be-dick or ib-si-dick) is an
8-bit code yielding 256 possible combinations, but as in ASCII,
many of the combinations are not used. EBCDIC can be
thought of as being divided into two 4-bit groups—the
high-order group contains the zone bits; the low-order group,
the digit bits. This grouping corresponds to the zone and digit

Table 9-1, ASCIl Character Codes

ASCl ASCFIIL ASCil
HEX CHARACTER HEX fg{\ER HEX |CHARACTER
0 - IF No equivalence 3F ? 5F
20 blank or space 40 @ 60
21 ! 4 A 61 a
22 o 42 B 62 b
23 # 43 ¢ 63 ¢
24 $ 44 ) 64 d
25 % 45 3 65 e
26 & 46 F 66 f
27 ' 47 6 67 g
28 ( 48 H 68 h
29 ) 49 1 69 i
2A * A d 6A N
2B + 48 K 68 k
2C ' 4c L 6C 1
2D - 4p M 6D m
2F . 4E N 6E n
2F / aF 0 6F 0
30 0 50 P 70 p
31 1 51 q 71 q
32 2 52 R 72 r
33 3 53 s 73 s
34 4 54 T 74 t
35 5 55 ] 75 u
36 6 56 v 76 v
37 7 57 W 77 W
38 8 58 X 78 x
39 9 59 Y 79 y
3A : 5A 7 7A z
38 ; 58 [
3c < 5C \
30 = 5D ]
3E > 5F
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Table 9-2. EBCDIC Alphabetic and Numeric Character Codes

CHARACTER EBCDIC ZONE BITS DIGITS BITS HEX
A 1100 0001 C1
B 1100 0010 c2
C 1100 0011 Cc3
D 1100 0100 C4
E 1100 0101 C5
F 1100 0110 C6
G 1100 o1 c7
H 1100 1000 Cc8
| 1100 1001 Cc9
J 1101 0001 D1
K 1101 0010 D2
L 1101 0011 D3
M 1101 0100 D4
N 1101 0101 D5
0 1101 0110 D6
P 1101 01N D7
Q 1101 1000 D8
R 1101 1001 D9
S 1110 0010 E2
T 1110 oon E3
u 1110 0100 E4
Vv 1110 0101 E5
w 1110 0110 E6
X 1110 0111 E7
Y 1110 1000 E8
Z 1110 1001 ES
0 1111 0000 FO
1 111 0001 F1
2 1111 0010 F2
3 111 0011 F3
4 1111 0100 F4
5 1111 0101 F5
6 1111 0110 F&
7 111 0111 F7
8 1111 1000 F8
9 1111 1001 F9

punches of punched-card code. Hexadecimal to EBCDIC
equivalencies for alphabetic and numeric characters can be
found in Table 9-2. For format characters, other zone bit
combinations are used.

Punched cards are probably the most common form of
data input to digital equipment. Cards are not the over-
whelming source media in the microprocessor community as
they are for the larger systems, but are still in very general
use. The most common code used for punched cards today is
due to H. Hollerith who used cards for data handling in the
1890s. The cards are often called Hollerith cards, and the code
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the Hollerith card code. One column is used for each
character, so that 80 characters are contained on an 80-column
card. As seen in Fig. 9-1, the numbers are represented by a
punch in rows 0-9. The letters are represented by double
punches—A through I by a row-12 punch and a digit punch in
rows 1-9, and J through R by an row-11 punch and a punch in
rows 2-9. Format characters use other combinations.

Punched paper tape is a common input/output media for
microprocessors. Paper tape is available for widths of 5, 7, and
8 channels, where a channel is a single binary digit position.
(See Fig. 9-2 for an example of 8-channel tape having ASCII
characters). A timing reference must be available on the tape
to tell the tape reader that a digit is being processed. This
timing signal is generated by sprocket holes, which are the
small holes near the center of the tape. Photo readers are the
most commonly used tape input devices, and they take
advantage of the smaller sprocket hole to insure that if a data
hole is present, it is squarely on the sensing element at the
time the sprocket hole says ‘‘read.” Paper tape is slow,
cumbersome, and error prone, but the readers and punches
are simple devices and hence relatively inexpensive, which
accounts for the continuing use of this media. Paper tape is
normally read at a rate of 500 to 2000 characters per second
and punched at 200—300 characters per second.

PARITY CHECK

Errors are more likely to occur during data transmission
than during internal computation, so it is generally a prudent
step to provide a means of determining, within reasonable
probability, if a data error has occurred during transmission.
We could, for instance, exercise the option of asking for a
retransmission of data so that we could compare it with the
received data, bit by bit. This is an example of redundant
transmission on a comparitively large scale, but some type of
redundant information must be transmitted for some sort of
comparison to be made.

Parity checks provide a lower redundancy (fewer extra
bits required) and simply involve counting the number of ones
(or zeros) in a fixed-length data group, determining if this
count is odd or even, and then forcing the count to be either odd
or even by appending one more digit (the parity bit) to the data
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group. If we expect an odd number of ones, this is termed odd
parity; and even number of ones is even parity.

Example: A data group consists of 8 bits of useful data and
1 bit for parity. Odd parity is the rule. The data group to be
transmitted is 4A; = 01001010 . Since there are an odd
number of ones already in the group, the parity bit is set to
zero to maintain odd parity.

Clearly a simple parity check does not guarantee proper
transmission since compensating errors can occur that would
permit data to pass the parity check, but still be in error. If the
data line is noisy enough to exhibit more than an occasional
transmission data error, then multiple parity errors will likely
occur.

Parity is quite often set and checked by hardware such as
the M6800 ACIA device. A few processors have an instruction
that simply sets or tests parity, as in the Intel 8080. The
following parity check (PCK) program demonstrates a
technique to determine if the number of ones in a byte in the
AMP memory are odd or even.

LABEL OP CODE OPERAND COMMENTS
PCK LDI INI Initial counter value
LBI* CTR Counter address
EX 0 Initialize counter
LBI* BTE Byte address
LD 0 Byte—A
XAX Byte—X
LBI* PAR Parity address
LDI 0 0—A
EX 0 0-->PAR
—e STR XAX Byte—A
ARS Byte shifted right one place, LSB—C
XAX Byte—X
LDI 0 0—A
ADC [C] + [PAR]—A
EX 1 «1”’ count—PAR, CTR address—BM
LD Load counter
A Add [CTR] + [CTR]
EX 1 [A]-CTR, PAR address—BM
SKC If C = 1, skip
o T:I STR Transfer back
INE RTN Exit
EQU
CTR EQU ()
BTE EQU () } Initial conditions
PAR EQU ()

*“The LBl 's could equally well be LB’s
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At the completion of PCK the binary count of the number
of ones in the byte in question is continued in PAR. All that
need be done by the main program is to load (PAR) and shift
right to load C with the least significant digit (LSD). If this is a
one, then there were an odd number of ones in the original
byte: if C = 0 then there were an even number.

CHECK SUM

Although the PCK routine may not be the cleverest
subroutine ever written, it demonstrates that a bit of ma-
nipulation is necessary to determine the value of the parity bit
in the absence of specific hardware checks. A checking
technique which is more easily implemented in most
processors is that of the check sum. Here all the transmitted
words or bytes are simply added together, without regard to
overflows. The resulting characteristic sum is then trans-
mitted along with the good data.

The program at the receiving end adds everything up in
the same way and compares the new check sum with the
transmitted one. Often it is found to be convenient to transmit
the 2's complement of the check sum so that the receiving
processor can simply add up everything, including the check
sum, and compare the result to zero.

The check sum is not as positive an indicator of good or
bad transmission as a parity bit in every word or byte, but it is
easier to use and is fairly effective. The check sum suffers to a
greater degree from the possibility of occurrence of
compensating errors than does the parity check.

KEYBOARD INTERFACE

Keyboards used as input devices are wired as matrixes in
which a depressed key completes a circuit between a row line
and a column line, as shown in Fig. 9-3. In actual operation,
these lines are referred to as the keyboard lines and the strobe
lines. The strobe lines are driven sequentially by the CPU,
while the keyboard lines are sampled to determine if any key
has been depressed. A depressed key will carry the strobe
signal from one of the strobe lines when it is energized and
route the pulse to one of the keyboard lines, where the
combination of strobe line and keyboard line is used to
determine precisely which key was depressed.
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KEYBOARD STROBES

KEYBOARD LINES

Fig. 9-3. Simple keyboard schematic diagram.

The strobe lines are often time-shared with those of the
display for economy of hardware and software, since this
technique reduces the number of conductors required and
simplifies the decoding to a simple time-division multiplexing
process.

The keyboard lines, on the other hand, are normally
dedicated to keyboard sampling because the keys are
depressed and released erratically, making it necessary to
employ some kind of sampling scheme to determine if the key
has just been depressed or if it is still being held down. This
sampling process is essential to prevent repetitive entries of
the same key each time the strobe line is pulsed. The sampling
process is then used to establish valid key entries. Most people
hold a key down for about 200 to 300 milliseconds, though much
longer times are possible. And it is very difficult to make a key
closure on any keyboard for less than 35 to 45 milliseconds.
Allowing about 5 milliseconds for opening and closure noise of
the contacts, a sampling interval of 10 to 15 milliseconds is
suggested. This interval is long enough to avoid sampling a
noise pulse more than once, and short enough to insure two
successive samples of good information for all but in-
tentionally shortened key strokes.
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The logic of a typical keyboard sampling routine is shown
inthe flow chart of Fig. 9-5. The subroutine defined by this flow
chart issues strobes and immediately samples the set of
keyboard lines, storing the state of each set of keyboard inputs
as each strobe (discrete output) is issued. It then examines
each of the stored inputs to see if any response occurred.
Failing to receive a positive return, the subroutine resets the
sample and flag-1 registers, clearing the slate to begin
sampling the next input. Logic is provided to insure that the
two successive samples were from the same key closure, and
that the input is accepted only once (flag-1is set when the data
is found to be valid). In addition to the two successive samples,
this routine requires that the key show open for at least one
sample before another input will be accepted (flag-1 is reset
only upon an error or upon finding all keys up). The location
labeled valid holds the valid keyboard input data, and is loaded
only once by the KBS subroutine for each accepted input. The
processing routine must zero this location before reentering
KBS to avoid accepting the same datum twice. It may be
necessary to provide for a stack of valid key data if the
processing routine cannot get around fast enough to be sure
that valid is unloaded before it can be loaded a second time by
KBS.

DISPLAY DRIVE

Microprocessor output display devices range from the
simple seven-segment LED (light-emitting diode) display to
sophisticated CRTs. Included in this list are gas discharge
(orange-colored) and flourescent (blue-green) displays. All
segmented displays (Fig. 9-6) are controlled by the same
general logic, although the gas discharge units utilize an initial

5msec 5 msec
KEY ™ vax. ™ max. [+
OPEN OV L.
CLOSURE OPENING
TRANSIENT TRANSIENT
KEY
CLOSED -4V v 4 |
sv ’*50 500 MSEC(VAR!ABLE)*’

Fig. 9-4. Typical keystroke waveform.
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(ENTERED EVERY 10-15 MILLISECONDS @
DURING PERIOD KEYBOARD IS ENABLED)

SET
INITIAL
CONDITIONS

44._____._

ISSUE
NTH STROBE

v
EXAMINE
AND
STROBE
KEYBOARD
INPUTS

STROBES
ISSUED

KEYBOARD

YES
' (RESET-

ENABLING

REET no NEXTINPUT)
SAMPLE {
(RESET REGISTER
OR ] SET SAMPLE
ERROR) | ReseT ||TOKEYBOARD
FLAG-1 STROBE

MOVE (SAMPLE)
TO VALID

i
: SET
FLAG-1TO1

Fig. 9-5. Flow of a representative keyboard sampling routine
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starting pulse and require a cutoff pulse to prevent unwanted
segment glow. Digits are usually selected by the same discrete
outputs from the microprocessor that are used for the
keyboard strobes (Fig. 9-7). When these outputs are used to
drive a display, the keyboard lines should not be sampled, and
when the keyboard is driven, the segment control should be
turned off to avoid unwanted display flicker.

A display program should first select the digit to be driven,
then output 3 bits of data to the segment decoder, which will
provide a seven-or eight-line output (depending if decimal
point is used) to directly drive the correct segments. (An
example of this type circuit is the Rockwell display
controller.) A table look-up scheme normally provides the
conversion between the BCD digit representation in the CPU
and the segments to be driven. In the usual scanning-type
display it is desirable to refresh the display units at least 10
times per second, though a refresh rate of less than 20 times
per second will cause an LED display to appear to flicker when
it is moved rapidly from side to side. Other display types
exhibit longer persistence and continue to emit light for up to
100 milliseconds, thus reducing the flicker effect.

ONE OF SEVEN
b fa—SEGMENTS

<9/>
¢ \//7

Fig. 9-6. Configuration of a standard seven-segment display with decimal
point.
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l 3 i KEYBOARD l

Fig. 9-7. Typical display-drive schematic using CPU discrete outputs.

AUXILIARY STORAGE MEDIA

While punched cards and paper tape are the more popular
storage elements for microcomputer programs and data, they
do not normally suffice for on-line storage because of handling
and access difficulties. Neither media can be used for
unattended auxiliary storage where data is temporarily
transferred to the outside to make room in internal RAM for
more recent data, with the expectation that information held
outside can be recalled at any time under CPU control.
Magnetic tapes and magnetic disks are the favorite elements
used for temporary bulk external storage.

Magnetic Tape

Magnetic tape is a very adequate, reasonably reliable
storage media where high-speed data storage and retrieval is
not an important factor. The latency time to find the desired
block of data is variable, depending on whether the beginning
of the block is just under the read head or buried deeply in the
tape reel. As bulk storage, magnetic tape has no present-day
peer since there is no upper bound to the number of tape reels
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that can be kept in inventory. The capacity of a 7-track
2400-foot tape reel can be as much as 20 megabytes, with the
cost per byte well below any competitive system. Reading and
writing is a serial operation, byte by byte, which causes tape
access time (after the block of data has been found) to be
measured in tenths of seconds rather than microseconds or
milliseconds.

In addition to the reeled tape decks, cassettes are
becoming more popular for use with microprocessor systems.
These units are physically similar to cassettes used by the
music industry. They have limited storage capacity, but
microprocessors seldom need megabyte volumes. They are
easy to handle, of very convenient size and, most importantly,
the tape is protected from the environment to a greater degree
than tape on open reels.

Disks

These systems are becoming more prevalent with time.
The disk has a number of advantages over other auxiliary
storage media. Although disk systems are more costly than
magnetic tape systems, they provide bulk storage with a very
reasonable access time, and a maximum latency measured in
the tens or hundreds of milliseconds. Bit transfer rates are
typically one megahertz or greater. Storage costs are between
1/8 and 1/2 cent per bit.

Floppy disk systems are becoming quite popular with
microprocessor users because of the simpler disk con-
figuration, and hence relatively inexpensive systems. The data
transfer rate is of the order of 250 kilobits per second,
somewhat slower than the megahertz rates quoted for
conventional disk systems. The IBM floppy disk track format
is shown in Fig. 9-8, which gives an indication of the indexing,
addressing, and formatting required when dealing with this
type of auxiliary memory system. Floppy disk manufacturers
advertise that their systems can be used to replace paper tape
devices with little or no impact to the processor software.
These units are quite compact, considering that they are
rotating memory systems, and occupy about 3 cubic feet and
weigh about 50 pounds. A system of this size has a disk
capacity of perhaps 250,000 8-bit bytes.
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Chapter 10

Compilers

It is apparent that there are significant gains to be made by
constructing microprocessor programs in as natural a manner
as possible. Perhaps the ideal situation will occur some day
when the programmer can shout commands at a processor
and have those verbal instructions properly interpreted,
stored, and executed. (This is not as far-fetched as it appears
on the surface. Considerable effort has been expended on
developing pattern recognition techniques for “‘training’’ an
input device to recognize a set of words or phrases.) However,
until such a system is available, precise written instructions
form the basis for communicating with computing systems.
Assemblers are a partial answer, for as we have seen, they
suffer from the fact that they are constructed to satisfy the
machine, not the man. With few exceptions, assemblers
translate input statements one-for-one into machine language.
Some rather clever assemblers exist, but by and large, they
are created from relatively unsophisticated blocks of code.
Interpreters represented another major step forward in
allowing the programmers to create code in a more acceptable
format to him. The interpreter program examines the source
code, picks it apart, and executes it on the spot by converting
the program line-by-line to machine language. This permits
the interpreter’s problem to be bounded to the most complex
single statement that can be formed in the interpreter
language (with some added data storage control). The
fundamental problem with interpreters is that they don’t do
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anything until the program is to be executed, then use many
machine instructions to decipher and sequentially execute
each operation, thus significantly slowing down the com-
putation.

Simulators, as in the simulation routines mentioned in
Chapter 8, are virtually all interpretive. Speed is not normally
critical for simulators except when the simulated micro-
processor is expected to work in real time handling inputs and
outputs in the same fashion as the real processor.

Compilers, however, work on source code before exe-
cution. They generate several machine language instructions
from each source statement. The compiler is then out of the
way, its job completed, and the resulting program runs at
machine speed.

BASIC COMPILER CONFIGURATION

Compilers are composed of a complex code, with the
number of instructions used to implement a compiler of ten
numbering in the thousands. A compiler can be thought of as
existing in two parts, together with an extensive library of
utility routines. The first part is a discriminator that
determines the sense of each statement of the source code. The
second part is composed of a set of generators that produce
assembly code, based on information in each of the source
statements.

Compilers either work from the ““top down” where a
statement form is assumed and tests are made on the scanned
input data to determine the validity of the assumption, or from
the **bottom up”’ where nothing is assumed. The statement is
scanned a character at a time, testing against the rules until a
valid statement type is determined. Compilers available at
this writing for microprocessors are FORTRAN IV, MPL, and
PL/M. FORTRAN and MPL will be briefly described here.

FORTRAN

Probably the most common scientific programming
language used in the Free World is FORTRAN. The general
acceptance of FORTRAN is almost entirely due to the fact that
IBM dominated the computer market at the time FORTRAN
was introduced (ca. 1959) to an even greater degree than it
dominates it today. In addition, the FORTRAN source lan-
guage is easy to use and efficient.
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A word of caution is necessary at this point. There are
many versions of the FORTRAN language. The differences
among them are often subtle, but unintentional programming
errors can arise from relying on general FORTRAN de-
scriptions (even the one here) instead of the specific rules
associated with the version at hand.

The name FORTRAN is derived from FORmula
TRANslation. FORTRAN is a truly near-algebraic language
using algebraic symbols whenever the communications media
permits. As with most compilers, the FORTRAN compiler
works into an assembler. Your source code is compiled into a
standard assembly code, which in turn is converted into
machine language. This means that to modify a version of
FORTRAN for a particular microprocessor, it is not necessary
to reprogram the compiler, but rather to recode the assembler
output to fit the idiosyncrasies of the microprocessor.

The FORTRAN compiler will not run on the micro-
processor, but rather on one of the larger computer systems.
Often, access to the compiler will be by means of a terminal
working into a large Mach-2 computer with the main frame
time-shared with many other users.

Basic FORTRAN

Unfamiliarity with FORTRAN is becoming rare, but a
quick review may prove to be useful.

The FORTRAN source language is composed of state-
ments. The format is generally one statement per input line. A
simple FORTRAN program composed of four statements is:

READ, I, J
PRINT, 1, J
STOP
END

This program causes data to be read into the microprocessor
and printed out in a standard print format, where one is
available. (Format statements will likely be needed to provide
format control for most FORTRAN versions encountered.)

Because input media for FORTRAN are normally
80-column IBM cards (Fig. 9-1), one input line is composed of
80 or less characters, with the meanings dependent upon the
columns used. FORTRAN coding forms normally have the
column designators printed on them:
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Columns 1—5 contain the statement number field (label).
Any valid unsigned non-zero character can be used, and these
include capital letters A—Z, decimal numbers 0—9 blanks, and
special characters: ¢ ),.* + — =/

Column 6 contains a continuation designator (other than 0
or blank), indicating that the input line is not a new statement
but rather part of the preceding statement. Usually no more
than 10 continuations are permitted in a single statement.

Columns 7—72 contain the statement.

Columns 73— 80 contain an identification or sequence field.
Decks of any size or importance should always be sequenced.
(Too often a deck is dropped, and having to manually reorder a
deck of any size tends to ruin an otherwise good day).

Every FORTRAN statement contains at least one
keyword. This is a word or symbol that clues the compiler to
what the statement is about. Other data forms used are
constants and variables. (Blanks have meaning when used
with character strings or literal constants, but blanks should
not occur within a variable name; otherwise they can be
rather freely used to improve readability.)

Comments are designated by a C in column 1. They are not
part of the program; they are ignored by the compiler and
printed out on the listing unchanged.

Arithmetic assignment statements used in FORTRAN
look like equalities, but as in AMP assembler code and in other
computer code forms, the equal sign means *is replaced by.”
As an example, a valid FORTRAN statement is:
ALPHA = BETA + DELTA. Execution of this statement
causes the values in locations BETA and DELTA to be added
together. The sum is then placed in location ALPHA. The
statement BETA + DELTA = ALPHA is meaningless in
FORTRAN since there is no way the compiler can decide
where to put ALPHA. If we wish to increment a counter, we
may write: CTR = CTR + 1, which has meaning only when
the equal sign means “‘is replaced by .”

Arithmetic operations are

+ Addition
- Subtraction
* Multiplication
/ Division
E Exponentiation
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As in algebra, the value of the result often depends on the
order of execution of the various arithmetic operations.
FORTRAN utilizes algebraic hierarchy rules: Exponentiation
is performed first, multiplication and division next, addition
and subtraction last. When two operations at the same level
are encountered, the operations are performed from left to
right, except for exponentiation, which is performed from
right to left. The FORTRAN Statement, B = A/C*D is
evaluated as (A/C)D, not A/(CD). In the FORTRAN
statement B = A**C**D, the C° term is evaluated first since
itis the exponent of A.

Parentheses are invaluable in FORTRAN; they bind sets
of arithmetic operations together. Again, the operations are
performed in algebraic order, with the innermost paren-
thetical expression evaluated first. In the statement

A = (((B*C + D) + (E/F + G)) — B*2)

(B*C + D) is evaluated, then (E/F + G}, then the sum, and
finally B**2 is subtracted, forming A.

As an example of a simple FORTRAN program, recall the
Newton iteration in Chapter 5. The defining equation is

et =2y — (2287 — 1)/4xx

This process to continue until 2zx* — 1 = yv, differs from
zero by no more than 1/256, or 0.0039. A FORTRAN program to
accomplish this is as follows:

LABEL STATEMENT
1 XN=1
2 YN = 2*XN**2 — 1
[F (0039 ~ YN)3.34
3 XN = XN — YN ¢4*XN)
GOTO2
1 WRITE ¢ 6.5) XN
3 FORMAT(F 1035,
END

A sample coding sheet for the program is shown in Fig.
10-1, and the FORTRAN output is given in Fig. 10-2 with the
answer 0.70833. This program generally follows the logic of the
flow chart of Fig. 5-7, but because Fig. 5-7 was prepared with
the more involved coding rules of the AMP in mind, there is
not a one-to-one correspondence.
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Transfer Statements

The preceding example also used both conditional (IF) and
unconditional transfer statements, not previously discussed.
The IF conditional transfer statement is a powerful tool of
FORTRAN. There are two forms: the arithmetic IF and the
logical IF .

The arithmetic IF is of the form: IF (arithmetic
expression) Li, L., Ls, where the L’s are labels of program
statements. The IF statement causes the program to branch to
Li if the current value of the statement within the parentheses
is less than zero, to L, if it equals zero, and to Ls if it is greater
than zero.

The logical IF form is: IF (logical expression) single
statement. If the logical expression is true, the single
statement is executed. If the expression is false, control passes
to the next instruction in sequence.

GO TO Statement

The GO TO statement is most often used as in the
preceding example, which illustrates an unconditional
transfer statement. The general form is: GO TO (or GOTO)
label. This form causes program control to be transferred to
the statement associated with the GO TO label. There are two
other forms of GO TO: the computed GO TO and the assigned
GO TO.

In the computed GO TO, the general statement form is:
GO TO (L, L2,...Ly) integer. The L’s are statement labels,
and the integer is a variable which, when it assumes a value
between 1 and N, causes control to be transferred to the

FORTRAN IV Gl RELEASE 2,0 MATN DATE = 76243
C NFWTON RAP-4SON SQUARF ROOT ROUTINFE

ool 1 XN = ]

0002 2 YN = 2 # XN #2% 2 « ]

0003 IF (40039 = YN ) 34344

0004 I XN = XN = YN / (4 # XN)

0005 Go T0 2

000A 4 WRITE ( 6 o S5 ) XN

0007 5 FORMAT ( F 10,5 )

0008 END

0470833

Fig. 10-2 FORTRAN output for Newton-Raphson routine.
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corresponding statement label. That is, when the GO TO
statement is executed, the value of the integer at that time is
used to effect the appropriate transfer.

The assigned GO TO statement is of the general form: GO
TO integer (Li , L: ...Lx ). The integer in this statement is also
a variable, but it is used in conjunction with a separate
assignment statement that must precede the GO TO
statement. The assignment statement is of the form: ASSIGN
L TO I, where L is the label and I is an integer. The purpose of
the assigned GO TO is to provide a method by which branches
from several different points in the program may be
established. When the GO TO is executed, control goes to the
labeled statement last assigned to the integer variable. For
example, ASSIGN 10 TO KALL means that integer variable
KALL is now assigned to label 10, so if the statement GO TO
KALL (7, 10, 25) appears later in the program, control is
immediately transferred to label 10, provided 10 is the most
recent assignment to KALL.

DO Statements

The general form of the DO statement is: DO label
variable = starting value, ending value, increment. Where the
starting, ending, and increment values can be constants or
integer variables.

Examples:

DO80I =1,100,3
A =C{M +B(MD
80 CONTINUE

In this case, the arithmetic statement will be executed with
variable values for A(I) = A(1), A(4), A(7), ... A(100). Once
the limit of I = 100 is exceeded, the program exits from the
loop. The label 80 specified in the DO statement defines the last
statement executed in the DO loop. The statements following
the DO and continuing until the final statement are the range
of the DO, and the value of the variable may not be respecified
within this range. The final statement must follow (on the
coding sheet) the DO statement.

DO loops can also be nested; that is, one or more DO loops
can be contained within another DO loop. However, if a DO
loop is contained within another, it must be wholly
contained—all statements within the range of an inner DO
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must be within the range of the outer DO. In most versions of
FORTRAN, the last statement in a DO loop cannot be another
DO. or a STOP, PAUSE, GO TO, or arithmetic IF. Consult the
manual for the particular version you are using for the rules of
your game. The CONTINUE statement in our example may be
used as insurance against ending a DO loop with a forbidden
statement.

Dimension Statement

In dealing with arrays of numbers, it is often convenient to
be able to label the entire array. Arrays may represent
matrixes of coefficients of simultaneous equations, elements
of vectors, or any other kind of ordered data. The DIMENSION
statement provides a means of naming the array, and of
limiting the number of elements contained.

Example: DIMENSION A(35), B(64), C(3,16). Here,
arrays A and B are one-dimensional arrays having a maxi-
mum of 35 and 64 elements, respectively. Array C is
two-dimensional, having no more than 3 rows and 16 colunns.

When referring to an array element, indexes must be
used; for example, A(35) = ALPH + 1, where the index (35)
indicates the 35th element of array A. The power of the
DIMENSION statement comes from the use of variables
rather than constants as the indexes. For example,
A(I + 2*J) = ALPH + 1, where arithmetic can be done on I
and J. This suggests a rather powerful tool for matrix
operations.

Input/Output Data Forms

FORTRAN has very flexible input/output, but not all these
capabilities are needed for most programs generated for
microprocessors. Integer and floating-point data is used most
often. FORTRAN has two input/output types: formatted and
unformatted. Formatted data makes possible a conversion
between the data as it is held in memory and the more familiar
characters, letters, and numerals used for communication
with the outside world. Record or unformatted data is
transferred between memory and external hardware in
unchanged (and generally unreadable) form.

Formatted information transfer is controlled by WRITE
and FORMAT statements.
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The FORMAT Statement

Consider the data to be handled as a continuous character
stream. The FORMAT statement causes this stream to be
broken into lines, often called records. For example,

Line 1 ABCDE1762
Line 2 FGHIJKL954
Line 3 MNOPQR100

And the lines are further broken into fields, or columns of
characters.
Data characteristics must also be specified:

10375 5-digit integer
T Logical
9.124 Floating point
MICRO Character

The general FORMAT statement is: LABEL FORMAT (scale
factor, repetition factor, format code, number of character
positions in the field, number of character positions to the right
of the decimal point). The scale factor is optional and
identifies the power of 10 by which the value in machine units
should be multiplied to yield the value in problem units. The
repetition factor is also optional and is used to denote the
number of identical consecutive fields on a line. The format
code specifies the data type and includes the following letter
codes:

Integer

Floating point

Floating point (exponential form)
Floating point (double precision)
General

Logical

Character

Hexadecimal

Literal data

Skip

Fixed position

HMIINSCQUE T e

(These may or may not all be available in the particular
version of FORTRAN you are using.)

As an example, consider the F (floating point) format
code. In our Newton-Raphson example, we chose a
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floating-point format, FORMAT (F 10.5), which indicates 10
characters in the field, with 5 characters to the right of the
decimal point. The general formis: (F T . R), where T is the
total number of characters in the field, and R is the number of
characters to the right of the decimal point.

Read and Write Statements

These statements identify the values to be transmitted,
where they come from or go to, and the controlling FORMAT
statement (declared separately). The general forms are:
READ (unit, format, END = label 1, ERR = label 2) list; and
WROTE (unit, format) list. Here, unit identifies the file or
logical unit that data comes from or goes to, format is the label
of the controlling FORMAT statement, and list is the list of
data to be operated upon. END and ERR are options, where
label 1 is associated with END and is the label of the statement
to which control is transferred when there is no more data to
read, while label 2 is the statement to which control should be
transferred if an input error occurs.

Summary

Though much more could be said about the FORTRAN
compiler, it is the main objective of this book to acquaint you
with a few of its main features so that you will investigate its
use in creating a microprocessor code. The conveniences
offered by such a compiler can do much to alleviate the chores
involved in generating lengthy and involved assembly lan-
guage codes for any microprocessor system.

MPL COMPILER LANGUAGE

Both Intel and Motorola have introduced compilers
structured specifically for microprocessor applications, and
most notably for use with their 8080 and 6800 microprocessors.
The Intel language is known as PL/M, the Motorola as MPL.
MPL has been chosen for discussion as a representative higher
order language having both bit and character manipulation
capability. The following is based on preliminary data
available at the time of writing.

The MPL compiler, like the FORTRAN compiler, develops
assembly language code. In the case of MPL, the compiler
output is compatible with the M6800 macro assembler, which
creates the machine language program for the 6800 system.
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MPL source programs are made up of statement sets and
these statements fall into the following classes.

Specification Statements. Statements in this category are
used to declare characteristics of variables and arrays.

Procedure Statements. These define operating proce-
dures.

Arithmetic Statements. These statements cause useful
work to be done. Computations performed as a result of these
statements will replace the current value of a labeled or
indexed variable.

Control Statements. These permit the programmer to
control program flow and to terminate execution.

Procedural, arithmetic, and control statements are
considered executable, while specification statements are not.
The normal order of an MPL program entity is: (1) procedure
statement, (2) specification statement, (3) at least one
executable statement, and (4) the END statement. As with
FORTRAN, the 80-column card is considered the basic input
medium. MPL statements are written within columns 1
through 72, with continuations possible except when dealing
with constants.

Statement Labels. Labels consist from one to six
alphabetic or numeric characters, with the first character
constrained to be alphabetic. Labels must be followed by a
colon. Provision is made within MPL to accept raw assembler
code, which is identified as such by a dollar sign in the first
column. When assembler code statements are encountered by
the compiler, the contents are passed unaltered to the input to
the assembler. (This is a very handy option when dealing with
microprocessor code.)

Comments. A comment string as long as needed can be
used in MPL. Identification of a comment may be either by
(A) enclosing the comment within /* and */, or (B) closing a
preceding statement by an exclamation point and following the
exclamation point by the comment.

Data Formats

MPL handles several data classes. Since we are dealing
here with a compiler tailored for use with a microprocessor,
binary representations are quite evident. The data classes
are:
Bit String. Seven bits, BIT (7) through BIT(1), are
identified as single-bit fields. These may be set or tested
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individually. BIT(8) is used for an 8-bit field that can be
manipulated with Boolean operators, cycled, and tested.

Binary Integer. BINARY(1) identifies one-byte (single
precision) operations. BINARY (2) identifies two-byte (double
precision) operations. Tests, arithmetic operations including
shifts. and logical operations may be performed on binary
integers.

ASCII Numeric. DECIMAL(1) through DECIMAL(12),
SIGNED DECIMAL(1) through SIGNED DECIMAL(12), and
DECIMALC(I, J) or SIGNED DECIMAL (I, J) identify decimal
data presented in ASCII format (see Table 9-1). Index I is the
total digit count in the word and index J is the digit count after
the decimal point. This data is packed one digit per byte plus
one byte for the sign, where needed. Addition, subtraction,
test, and replacement are operations that may be performed
upon this class of data.

ASCII Alphanumeric. CHARACTER (M) defines an ASCII
character set (Table 9-1) that occupies M bytes, one byte per
character, where M ranges from 1 through 255.

Variable Data

The meaning and use of MPL variables is sufficiently
similar to FORTRAN that the details need not be discussed
here. MPL variable types may be binary bit string, numeric
ASCII, or literal string (alphanumeric ASCII). The variable
type must be declared by a DECLARE statement before the
variable can be legally used.

Constant Data

MPL constants are of five types: binary, hexadecimal,
integer, string, and address constants.

Binary Constants. These are represented by a string of
bits followed by the letter B. Binary constants occupy one or
two bytes.

Hexadecimal Constants. These are represented by a
hexadecimal number either enclosed in double quotes or in no
quotes at all, and followed by the letter H. If no quotes are
used, the first character must be numeric (0—9). Hexadecimal
data occupies either one or two bytes.

Integer Constants. Binary integers occupy either one or
two bytes. Numeric ASCII constants occupy from 1 to 12 bytes.
Integer constants may be positive, negative, or zero.
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String Constants. These are a set of ASCII characters
enclosed in single quotes. String constants are packed 1 ASCII
character per byte and may be between 1 and 255 bytes in
length. Example: ‘SUM OF".

Address Constants. These are a set of ASCII characters
enclosed in single quotes and which denote the value of an
address.

Symbolies. Symbolics identify an array and its associated
elements, a variable, a procedure name, and of course a
statement label. Symbolic names must be uniquely defined
within a program. Further, MPL has reserved some symbolic
configurations as key words, and they may not be used
otherwise. (Four character sets with the letter Z as the first
character are off limits.)

Arrays

As in FORTRAN, array notation provides a compact
means of addressing ordered data sets by first identifying the
dimension and type of the array, then identifying the row and
column of the desired array element.

Example: A 4-row by 3-column MATRIX labelled MATX
can be identified to MPL by the statement: DECLARE MATX
(4.3).

A reference to the array element at row 4, column 2 would
be made as MATX (4, 2). The array elements can also be
identified by variable indexes.

Indexing. Index units (sometimes called subscripts) are
sets of integers separated by commas that are used to identify
array elements. Index values must be greater than zero and
less than 256, and they must be positive. Indexed arrays can be
of the form ABC (I), DIAG (I — 2),or ZED(I - 1,J,K + 4),
but three indexes are the maximum that MPL will accept.

Pointers. Because the M6800 does not have hardware
multiplication, indexed operations will likely use more
machine cycles than this alternate scheme of array
addressing. A data set is addressed by pointers using a 2-byte
binary integer. A pointer is established by one of two formats,
either V:P or P—V, where V is the variable label and P is the
pointer.

Arithmetic and Logic Expressions

MPL expressions are composed of primaries (operands)
and operators. A primary can be composed of data declared as
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BIT, BINARY, CHARACTER, or DECIMAL. The operators
are:

SYMBOL OPERATION

+ Addition
- Subtraction. also can be used as a “"unary minus"
Multiplication

Division
SHIFT Shift
IAND Logical AND
IOR LogicOR
[EOR Logic exclusive OR (or EOR)

If more than one primary appears in an expression, as it
usually will, the primaries must be separated by an operator.
For example, the shift operation is written as A SHIFT B,
where A is the primary to be shifted, and B is a constant
(either positive or negative) that defines the direction and
number of places the operand is to be shifted. A positive value
of B commands a left shift, while a negative value commands
aright shift. The order of operations is what one should expect,
and the MPL precedence rank is:

1. Unary minus (used to denote a negative number)
2. SHIFT

3. Logic AND, OR, EOR

4. Multiplication, division

5. Addition, subtraction

The first operation on the list is performed before the second,
and so on, when several operations are encountered in the
same arithmetic expression.

The unary minus is treated as zero minus the primary; for
example, A = —B is considered A = 0 — B. Parentheses are
used here as they are used in FORTRAN, to bind operations in
a manner acceptable to the programmer when the MPL order
of operation is awkward to use.

Statements
The statement types used in MPL are:

Origin. This statement has an input format of ORIGIN
“Hex”. This is really an instruction to the assembler to
reinitialize the origin address. If no origin statement appears,
the first address will be 00.
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Declare. The format of a DECLARE statement is rather
complex. Rather than discuss it in detail here, we will observe
that DECLARE is used to define and identify a data structure.
To this end DECLARE may be used to set down the level
(matrix, row, column), name, data type, and dimension.
DECLARE may also be used to initialize variables.

Arithmetic Assignment. This statement takes the form:
variable = arithmetic expression. (Again note that the equal
sign is used to mean ‘‘is replaced by.”) As an example of an
MPL operation, consider that the following variables have
been specified: 1 is a BINARY (1) variable, C and D are
DECIMAL (5) variables, and A(2,2) is BINARY (2) array.
The arithmetic assignment C = D causes the value of D to
replace the current value of C; I = C causes the value of C to
be converted to pure binary and then to replace the current
value of I; C = A(1,2) causes the content of row 1, column 2 of
array A to be converted to a numeric ASCII character that
then replaces the current value of C; and A(2,1) = C causes
the current value of C to be converted to double-precision
binary which then replaces the current value of row 2, column
1of array A.

Control Statements. GO TO , IF, DO, and END are dealt
with by MPL in the same fashion as in FORTRAN.

Procedures

A program in MPL vernacular is a procedure. A main
procedure is a main program and is identified either by the
statement PROCEDURE OPTIONS (main), where MPL
compiles the entire program into RAM, or by PROCEDURE
OPTIONS (main, stack name), with the identification of a
stack name. The stack name causes the compiler to compile
the program into both ROM and RAM, using the general rule
of compiling declared addresses into RAM and declared
procedures into ROM.

Subroutine Procedures. A subroutine procedure has the
general form PROCEDURE label (A, Az, ... Ax), where the
A’s are a list of arguments associated with the procedure. The
subroutine is called by a CALL statement in the form CALL
SUB (A, B, C), where SUB in this example is the label of the
subroutine procedure, and A, B, and C are its arguments.
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Summary

MPL is available on the Xerox Sigma 9 and the GE MK III
time-sharing systems. MPL programs appear similar to
FORTRAN in arithmetic structure, but are significantly
different in input format. Again, the best procedure is to
carefully examine the idiosyncracies of the specific compiler
system you plan to use.

PL/M COMPILER LANGUAGE

The PL/M language is a higher order language originally
designed for use with the Intel 8008 microprocessor, which is
compatible with the more recent 8080 system. The PL/M
compiler is also a cross-compiler built to run on a larger
machine. (It is not possible today to execute any PL/M version
on either the 8008 or the 8080.)

PL/M includes a complete symbolic addressing capability
and a number of basic statements directing character,
arithmetic, and logic operations on 8- and 16-bit bytes. The
arithmetic and logic statements are nearly algebraic. A set of
conditional statements are built around IF A, THEN B, ELSE
C. where A is a conditional relationship, which if true, then B
occurs; but if A is not true, then C is executed.

Due to its more restricted usage, we will not further
explore PL/M, but if an 8008 or an 8080 system is envisioned,
PL/M will deserve your consideration. There are sufficient
similarities to the preceding compiler languages, though, that
you should be able to quickly grasp the major operating
features.

SUMMARY

The objective of the limited discussions in this chapter has
been to alert the user of microprocessor hardware to the
features and structures of higher level languages, some of
which are tailored to the unique problems associated with
creating reasonably-efficient microprocessor codes, while
offering the programming advantages of these languages.
However, the prospective user should also be aware that
compiler code will not, in general, be as efficient as
hand-created assembler code when considering either
execution times or amount of memory used.

But compilers are getting better. In fact, HAL, a high-level
language compiler used for developing control programs for
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the Space Shuttle, actually did better than the programmer
using a machine language assembler on a few benchmark
programs.

Even so, it is prudent to expect at least a 25% increase in
execution time and about a 20% increase in required memory
when using a compiler instead of an assembler. At the same
time, the program development cycle, using a compiler, can
be almost cut in half for programs not involving a lot of bit
handling. Where the choice exists, and the program is
significant, a rather careful consideration of the prospective
advantages and disadvantages should be made before deciding
on the source language.
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Chapter 11

Microprocessor
Configurations

There are a myriad of microprocessor systems on the market
today—each one having unique characteristics, but all
possessing some elements in common. Rather than dwelling
on the differences, it is probably better to examine the com-
mon features and similarities of today’s systems.

All microprocessors use parallel digital arithmetic. All
operate in binary. Although some advertise BCD operation,
deep down inside, their arithmetic is binary. BCD is handled in
a manner similar, if not identical, to the discussion of BCD in
Chapter 2.

All microprocessors have some kind of a data bus
structure. The information transfer among devices is via this
data bus. (New systems such as the Rockwell PPS-4-1
integrate the entire microprocessor on a single chip.) And all
have internally stored programs.

The instruction sets range from at least 40 unique
instructions to over 100. For example, the Intersil 6100 has
over 40 instructions, as does the National IMP 8, while the Intel
8080 has 110.

To date, all systems in quantity production use MOS or
TTL technology, with the exception of the TI SBP0400 that uses
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I?L. The MOS systems use either PMOS or NMOS, with the
NMOS units being inherently faster (see Chapter 12). The
PMOS systems tend to make up for their slower clock rates by
using clever logic, exemplified by the multifaceted instruction
repertoire of AMP. PMOS systems range in cycle time from
about 0.7 to 4 microseconds, while NMOs systems operate in
the region of 0.3 to 2 microseconds.

Power supplies are characteristically 5 and *12 volts,
with the newer designs requiring only a single supply, usually
5volts.

All competitive microprocessor systems have ROMs,
PROMS, and RAMs available in various configurations. These
are identical in use to the AMP RAMs and ROMs. Salient
information concerning some of the more popular micro-
processors available today is given in Table 11-1 (with thanks
to A.O. Williman and H. Jelenek).

Because of the general acceptance of the Motorola M6800,
Intel 8080, and the Rockwell PPS-8 systems, these three have
been chosen from among those systems in Table 11-1 for more
detailed discussion.

MOTOROLA M6800 MICROPROCESSOR

The M6800 is an NMOS microprocessor system built
around a bus-oriented 8-bit parallel CPU called a mi-
croprocessing unit (MPU). The minor cycle (basic) clock is 1
megahertz as compared with the 200 kilohertz of AMP. The
M6800 has a minimum instruction execution time of 2
microseconds. Unlike the AMP, the M6800 has two
accumulators. A 16-bit index register is available for memory
addressing. In addition, the M6800 has a 16-bit stack pointer
containing the next available address in the push-down/pop-up
stack. The program counter is also a 16-bit register containing
the program address. A flag or condition code register stores
the results of ALU operation.

A typical M6800 device configuration and bus structure is
shown in Fig. 11-1. The MPU communicates with the other
devices via the 8-bit data bus, the 12-bit address bus, and the
4-bit chip select bus (for memory paging). Bus control,
read/write control, and system timing are provided by five
signal lines. Finally, control of the MPU itself is provided via
five inputs to the MPU and one output, which are termed the
processor control lines. The devices shown in addition to the
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KEYBOARD AND PRINTER

Fig. 11-1. M6800 system configuration.

CPU are the RAM; the ROM; the asynchronous com-
munications interface adapter (ACIA), which performs data
error checking, control, and formatting of serial asynchronous
information transmitted and received by the M6800 system;
and the peripheral interface adapter (PIA), which provides
control of information interchange between the M6800 and
peripheral equipment using two 8-bit bidirectional data buses
for peripheral communication and four control lines. A clock,
consisting of a one megahertz oscillator, driver, and buffer,
provides basic system timing (the M6800 system uses a
2-phase clock). A 5 volt DC, switched power supply completes
the electrical components.

The M6800 has the ability to communicate with peripherals
through the PIA and ACIA. Almost any configuration can be
accommodated that does not exceed the maximum data rate.
A 0 to 600 bit per second modem (modulator-demodulator) is
available from Motorola to be used with equipment having a
serial data transmission requirement.

We will now briefly examine some of the characteristics of
the principal M6800 component devices.
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Fig. 11-2. M6800 CPU block diagram. To provide for 16-bit operation, the
program counter, stack pointer, and index register each consist of two
8-bit registers, with the H portion holding the higher 8 bits and the L por-
tion holding the lower.

The MPU

Figure 11-2 is a block diagram of the MPU, showing
principal functional elements. The MC6800 has seven address
modes, selectable by instruction type. These are:

Implied Addressing. This is performed by 1-byte instructions.
Some instructions in the set do not require a defined address.
For example, the ABA instruction causes the content of
accumulator A to be added to accumulator B, and the sum
stored in accumulator A. Another class of instructions
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requires an address, but identifies a register holding the
address information. Examples are push (PSH) and pull
(PUL), which derive address information from the stack
pointer register (Fig. 11-2).

Accumulator Addressing. This address class consists of
1-byte (8-bit) instructions. Either the A or B accurnulator is
selected as the operand address (really an implied address,
but specified separately).

Immediate Addressing. The operand is contained in the
second byte of a 2-byte instruction, or in the second and third
bytes of the LDS (load stack pointer) and LDX (load index
register) instructions.

Direct Addressing. These are all 2-byte instructions with
the address contained in the second byte, permitting the
selection of one of 256 addresses, beginning at location 0 and
ending at location 255. Execution times are reduced when
accessing information stored in these locations.

Extended Addressing. Here the address contained in the
second byte of a 3-byte instruction addresses the 8 high-order
operand bits while the third byte addresses the 8 low-order
bits.

Relative Addressing requires 2-byte instructions, where
the address contained in the second byte is added to the 8 least
significant bits of the program counter. (An offset of +2 is
automatically added to the counter by the hardware, per-
mitting the next instruction to be selected from —126 bytes to
+129 bytes away from the present instruction). Instructions in
this class are conditional transfers.

Indexed Addressing is performed by a set of 2-byte
instructions, where the second byte is added to the content of
the index register. This sum is used to address the operand,
but is held in temporary storage so the content of the index
register is unchanged unless intentionally incremented, de-
cremented, or reloaded.

MPU REGISTER COMPLEMENT

The Program Counter is a 2-byte register (H and L)
containing the current instruction address. The program
counter is incremented by one at each instruction execution
time, permitting sequential program flow unless modified by a
transfer instruction.
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Stack Pointer is a 2-byte register containing the RAM
address of the next available location in the stack.

The Index Register is a 2-byte register used to store a
16-bit memory address to provide a means of temporary
address modification when in the indexed addressing mode.
The index register can also be used as a data storage register.

Accumulators A and B are each 8-bit registers used to hold
the results of the arithmetic and logic operations.

The Condition Code Register is an 8-bit register that holds
the results of arithmetic operations for testing and program
branch control. (The two high-order bits are not presently used
and are arbitrarily set to one). The condition code register
configurationis

7 6 5 4 3 2 1 0
fi]fufriNfzfvic]
where C holds the carry-out of bit number 7 (really the eighth

bit) unless reset.

V holds the overflow state as a result of a test of the latest
addition operation.

7 is one-set if the addressed accumulator content is zero.

N is one-set if the addressed accumulator content is less
than zero.

I indicates the persence of an interrupt.

H holds the value of the intermediate carry for BCD
operation,

The Arithmetic and Logic Unit (ALU) performs the basic
arithmetic and logic manipulations in conjunction with the
accumulators. (In short, it does what all ALUs do.)

The Buffers provide the necessary drive, shaping,
matching, and time delays to provide for orderly data
transmission on and off the MPU chip.

Instruction Set

Table 11-2 gives an overview of the M6800 instruction set,
The actions of most of the op codes are self-explanatory,
although access to an M6800 programming manual is man-
datory before any serious programming should be done.

The RAM

The MCM 6810A read/write memory is & 128 x 8-bit RAM
(Fig. 11-3). This RAM has six chip-select inputs and seven
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Fig. 11-3. MB800 RAM block diagram.

address inputs interfacing directly to the address bus. The
RAM is addressed by information on the chip-select lines,
which are decoded in straight-forward fashion by the chip-
select gate. A byte within the RAM is selected by decoding
information on the seven address lines. Two-way data transfer
between the RAM and the MPU is performed via the data bus.
An external read/write control is provided, telling the RAM
when to transmit or to accept and store information.

The ROM

The MCM 6830A ROM is a 1024 x 8-bit fixed, static mem-
ory with a 500 nanosecond access time (Fig. 11-4). Its con-
figuration closely resembles that of the RAM. Salient dif-
ferences are the three additional address lines needed to
address 1024 bytes rather than the RAM’'s 128, the four
chip-select lines, and the absence of a read/write signal, which
of course is not needed by the ROM. The ROM has a
significantly higher memory storage capacity than that of the
RAM.

Peripheral Interface Adapter

Each MC 6820 PIA (Fig. 11-5) provides for a bidirectional
8-bit data bus communication with the MPU, and two similarly
configured 8-bit buses are used for data transfer with the
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Table 11-2. Motorola M6800 Microprocessor instruction Set

MNENORMIC DESCRIPTION
ABA Add accumulators
ADC Add with carry
ADD Add
AND Logic and
ASL Arithmetic shift left
ASR Arithmetic shift right
BCC Branch if carry is clear
BCS Branch if carry is set
BEQ Branch if equal to zero
BGE Branch if greater or equal to zero
BGT Branch if greater than zero
BHI Branch if higher
BIT Bit test
BLE Branch if less or equal
BLS Branch if lower or same
BLT Branch if less than zero
BMI Branch if minus
BNE Branch if not equal to zero
BPL Branch if plus
BRA Branch always
BSR Branch to subroutine
BVC Branch if overflow is clear
BVS Branch if overflow is set
CBA Compare accumulators
CcLC Clear carry
CLi Clear interrupt mask
CLR Clear
CcLv Clear overfiow
CMP Compare
COM Complement
CPX Compare index register
DAA Decimal adjust
DEC Decrement
DES Decrement stack pointer
DEX Decrement index register
EOR Exclusive OR
INC Increment
INS Increment stack pointer

outside world. The two peripheral buses can be programmed
as either inputs or outputs. Three chip-select inputs are used
for device addressing. In addition, two programmable control
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Table 11-2. (con't.)

MNEMONIC DESCRIPTION
INX Increment index register
JMP Jump
JSR Jump to subroutine
LDA Load accumulator
LDS Load stack pointer
LDX Load index register
LSR Logical shift right
NEG Negate
NOP No operation
ORA Inclusive OR
PSH Push Data
PUL Pull data
ROL Rotate left
ROR Rotate right
RTi Return from interrupt
RTS Return from subroutine
SBA Subtract accumulators
SBC Subtract with carry
SEC Set carry
SEI Setinterrupt mask
SEV Set overflow
STA Store accumulator
STS Store stack register
STX Store index register
SuB Subtract
Swi Software interrupt
TAB Transfer accumulators
TAP Transfer accumulators to condition code register
TBA Transfer accumulators
TAP Transfer condition code register to accumulator
TST Test
TSX Transfer stack pointer to index register
TXS Transfer index register to stack pointer
WAI Wait for interrupt

registers are available to provide command signals to the
peripherals. The PIA will normally be programmed by the
MPU during execution of the system initialization routines.
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Asynchronous Communications Interface Adapter

This is a rather complex interface device (Fig. 11-6). It
provides for data transfer between the M6800 and peripherals
over two serial data lines by converting the parallel 8-bit data
onthe data bus to a serial bit stream, and adding the necessary
clocking for transmission data control. Serial data is received,
together with its associated clock, parity (see Chapter 9) is
checked (either odd or even, selected by the MPU), and the
serial data is assembled in the parallel buffer for transmission
tothe MPU via the data bus.

INTEL 8080 MICROPROCESSOR

It is probably today’s most commonly used micropro-
cessor configuration. The Intel 8080 is an 8-bit parallel
microprocessor (microcomputer) using NMOS technology
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= ¥ (]
ong
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& o | READWRITE [ 3 3
T 21| conTroL TRANSMIT <
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Fig 11-6 M6800 asynchronous communications interface adapter (ACIA)
block diagram
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Fig. 11-7. Minimal 8080 system configuration.

and, the required supply voltages are =5 and +12 volts. The
8080 is source-code compatible with the Intel 8008 CPU (MCS-8
system). The 8080A CPU utilizes an 8-bit accumulator and six
8-bit working registers that can be optionally addressed either
singly or in paris for single- or double-precision operations. In
addition, the 8080A may address RAMs without address
restrictions as a last-in/first-out (LIFO) stack. The CPU also
has four 8-bit temporary registers and five flag bits for storing
program status.

The 8080 is structured around a 16-line address bus and an
8-line instruction data bus. (See Fig. 11-7 for the data flow
structure of a minimal 8080 system.) The data bus provides for
8-bit bidirectional communication among the CPU, ROM,
RAM, and input/output devices. The 16-bit address bus is
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unidirectional, carrying information to the memories and to
the input/output devices and providing for a maximum for
65,536 unique addresses. Up to 256 input devices and 256 output
devices can be addressed via this bus.

An interlock is provided via the hold signal under CPU
control. When hold is commanded true by the CPU, the
address and data buses are floated. These lines are then, in
effect, disconnected and may be tied to peripheral interface
devices and direct memory access (DMA) channels.

8080A CPU

Referring to Fig. 11-8, we see that the 8080 has a num-
ber of internal Registers, separated by function into three
categories: general registers, program control registers and
internal registers. The general and program control registers
and their functions are:

NAME DESIGNA- USED FOR LENGTH
TOR (BYTES)
Accumulator A General-purpose arithmetic 1
and logic operations
B Register B General storage or most 1
significant half of 2-byte
register BC
C Register C General storage or least 1
significant half of BC
D Register D General storage or most 1
significant half of 2-byte
register DEE
E Register E General storage or least 1
significant half of DE
H Register H General storage or most 1
significant half of 2-byte
register HL.
L Register L General storage or least 2
significant half of HL
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NAME

DESIGNA-
TOR

USED FOR

LENGTH
(BYTES)

Program Counter PC

Stack Pointer

Flag Register
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SP

F

G

Contains the address of the
instruction to be executed.
The content of PC drives
the address bus lines dur-
ing an instruction read or
“fetch.”

Contains the address of the
latest data byte to be
placed in the stack.

Contains five 1-bit stack
registers, which are as
follows:

Carry/borrow out of the
most significant bit of the
ALU

Intermediate carry out of
the fourth bit of the ALU.
Used for BCD operations.
(C, is identical in function
to AMP’s Q.)

Contains a 1 when [A] is
equal to zero, otherwise
[Z1=10

Contains a 1 when the MSB
of (A) is a 1, otherwise
[S] =10

Contains a 1 when [A] has
an even number of one’s;
contains a 0 when [A] has
an odd number of one’s.
Thus, P can be used to
generate a natural odd
parity.
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The internal registers are not directly accessible by the
programmer. They are the 8-bit instruction register, the
accumulator latch, the temporary register, the incre-
ment/decrement address latch, the bus latch and buffer, and
the address buffer. These registers are used for intermediate
or temporary storage of data, for holding input information,
and for holding addresses and data for off-chip transmission.

8080 Instructions

The basic 8080 clock rate is 2 megahertz. The time re-
quired to execute an instruction varies, depending upon the
operation and the number of memory references used. As
a reference point, 8080 add time is 2 microseconds. An in-
struction requires from one to five machine (or memory)
cycles for fetch and execute. Each machine cycle requires 3 to
5 of the basic 0.5 microsecond clock periods. (The idle states
wait, hold, and halt continue for an indefinite time, depending
upon external controls). The 8080 instruction execution uses a
minimum of four clock periods for non-memory referencing
operations of register exchanges and accumulator arithmetic
operations, and a maximum of 18 periods for the most complex
instructions. At the 2 megahertz clock rate, the range of
execution times is then 2 to 9usec.

8080 Instruction Set
The 8080A instruction set is composed of the following
groups:

Transfers, data registers, and memory

Branches and subroutine calls

Load/store accumulator

Save/restore data registers

Double-length data register operations: increment, de-
crement, direct load/store H&L, load immediate,
and index register operations

Indirect transfer

Stack pointer modifications

Logic operations

Binary Arithmetic

Decimal Arithmetic

Set/reset enable flip-flop

Increment/decrement memory of data registers
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The instruction list summary is contained in Table 11-3,
indicating the mnemonic operation code commonly used, a
brief description of the instruction operation, and the number
of bytes of memory occupied. (Subroutine calls and returns
may use additional cycles, depending upon the state of the
condition flags).

The instructions are 1, 2, or 3 bytes long and are stored as:

lbyte D;...... Dy Op code
2bytes D; ....Dy Op code
D; ....Dy Operand

3 bytes D; ....Dy Op code

D; ....Dy Operand 1 or low-order address
D; ....Dy Operand 2 or high-order address

Read-Only Memories

The 8316A ROM (Fig. 11-9) contains 16,384 bits of
permanent storage, organized in 2048 8-bit bytes. The access
time is 850 nanoseconds, The 8316A operates from a single

DATA BUS
i
OUTPUTBUFFER  [e— CHIP
SELECT
— 1 DECODE
% -u-{ Y-DECODER (1 OF 16) | 1
wn
7 &
T & - CHIP
a 2 & SELECT
< = w PROG.
-é = 9 ™
P o« || 16,384-BIT S
A B ROM MATRIX -
o (@] 5
S o CHIP Q
< a SELECT ‘__d
X INPUT [*T®
BUFFER| | &
I (&)

Fig. 11-9, Intel 8316 ROM block diagram.
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Table 11-3. Intel 8080 Instruction Set

INSTRUCTION

MNEMONIC DESCRIPTION LENGTH

(BYTES)
MOV rt,r2 Move register to register 1
MOV M,r Move register to memory 1
MOV r,M Move memory to register 1
HLT Halt 1
MVir Moverimmediate register 2
MVIM Move immediate register 2
INRr Increment register 1
DCRr Decremet register 1
INR M Increment memory 1
DCRM Decrement memory 1
ADDr Add register to A 1
ADCr Add register to A with carry 1
SUBr Subtract register from A 1
SBBr Subtract register from A with borrow 1
ANA T And register with A 1
XRAT Exclusive-OR register with A 1
ORAT OR register with A 1
CMPr Compare register with A 1
ADDM Add memory to A 1
ADCM Add memory to A with carry 1
SUBM Subtract memory from A 1
SBBM Subtract memory from A with borrow 1
ANAM And memory with A 1
XRAM Exciusive -OR memory with A 1
ORAM OR memory with A 1
CMPM Compare memory with A 1
ADI Add immediate to A 2
ACI Add immediate to A with carry 2
Sul Subtractimmediate from A 2
SBi Subtractimmediate from A with borrow 2
ANI And immediate with A 2
XRI Exclusive-OR immediate with A 2
ORi OR immediate with A 2
CPI Compare immediate with A 2
RLC Rotate A left 1
RRC Rotate A right 1
RAL Rotate A left through carry 1
RAR Rotate Aright through carry 1
JMP Jump unconditional 3
Jc Jump on carry 3
JNC Jump on no carry 3
Jz Jump on zero 3
JNZ Jump on no zero 3
JP Jump on positive 3
JM Jump on minus 3
JPE Jump on parity even 3
JPO Jump on parity odd 3
CALL Call unconditional 3
cC Calion carry 3
CNC Callonno carry 3
cZ Call on zero 3
CNZ Call on no zero 3
CP Call on positive 3
CM Call on minus 3
CPE Call on parity even 3
CPO Call on parity odd 3
RET Return 1
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Table 11-3{con’t.)

INSTRUCTION
MNEMONIC DESCRIPTION LENGTH
(BYTES)
RC Return on carry 1
RNC Return on no carry 1
RZ Return on zero 1
RNZ Return on no zero 1
RP Return on positive 1
RM Return on minus 1
RPE Return on parity even 1
RPO Return on parity odd 1
RST Restart 1
IN Input 2
ouT Output 2
LXIB Load immediate register pairB&C 3
LXID Load immediate register pairD&E 3
LXIH Load immediate register pairH& L 3
LX1SP Load immediate stack pointer 3
PUSHB Push register pair B & C on stack 1
PUSHD Push register pair D & E on stack 1
PUSHH Push register pair H& L on stack 1
PUSH PSW Push A and flags on stack 1
POPB Pop register pair B & C off stack 1
POPD Pop register pair D & E off stack 1
POPH Pop register pair H & L off stack 1
POP PSW Pop A and flags off stack 1
STA Store A direct 3
LDA Load A direct 3
XCHG Exahange D & E, H & L registers 1
XTHL Exhange top of stack, H&L 1
SPHL H &L to stack pointer 1
PCHL H &L to program counter 1
DADB AddB& CtoH&L 1
DADD AddC&EtoH&L 1
DADH AddH&L toH&L 1
DAD SP Add stack pointertoH & L. 1
STAXB Store A indirect 1
STAXD Stare A indirect 1
LDAX B Load Aindirect 1
LDZX D Load A indirect 1
INX B Increment B & C registers 1
INXD Increment D & E registers 1
INX H Increment H & L registers 1
INX SP Increment stack pointer 1
DCXB DecrementB&C 1
DCXD DecrementD & E 1
DCXH Decrement H & L 1
DCX SP Decrement stack pointer 1
CMA Compliment A 1
STC Set carry 1
CcMC Complement carry 1
DAA Decimal adjust A 1
SHLD Store H & L direct 3
LHLD Load H & L direct 3
El Enable interrupts 1
DI Disable interrupt 1
NOP No operation 1
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45-volt power supply. The 8308 ROM is also available, having
one-half the storage capacity of the 8316 (8192 bits organized as
1024 8-bit words). The access time of the 8308 is almost one-half
that of the 8316 (450 nanoseconds). Both ROM are TTL
compatible on input and output.

As in other systems, chip-select logic permits the selective
addressing of multiple ROM within an 8080 system. Address
decoding in the 8316A is performed by X-Y decoders, where 7
address lines drive the X-decoder, and 4 drive the Y. The
X-decoder selects 16 bytes for presentation to the Y-decoder
which then, using the information on 4 address lines, selects 1
of the 16 bytes for presentation to the output register. The
ROM’s output goes to the 8212 input/output port, rather than
directly to the data bus.

Random-Access Memory

The 8101 RAM (Fig. 11-10) is a 1024-bit memory organized
in 256 4-bit bytes. The RAM organization is not directly
compatible with an 8-bit processor, so 2 RAMs must be used,
one supplying the low-order 4 bits of the 8080 byte to the data
bus, and the other supplying the 4 high-order bits.

w
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Q |
@ || MEMORY MATRIX
& 2 32x32
2 2
m A
o {
7 o
m ™
w COLUMN SELECT 5
T =1 ANDDRIVERS =3
S P
(o)
<C
w INPUT
" DATA
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s
Q AL
CHIP SELECT  3BITS OF ADDRESS

Fig. 11-10. Intel 8101 RAM block diagram.
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The RAM’s output goes to the data bus via the 8212
input/output port. Address information is received directly
from the address bus. The 8101 access time is 1300
nanoseconds. Another version, functionally identical to the
8101, the 8101-2, is a faster memory having an 850 nanosecond
access delay. The RAM is composed of static logic and
therefore needs no clock or refresh to retain memory. Readout
is nondestructive; outputs are TTL compatible.

Input/Output Port

The 8212 is a bipolar input/output interface device that is
also used as an 8080 system component. It is logically a simple
device, so no functional block diagram is shown. The 8212 is a
parallel 8-bit latch/butfer, providing 8 tristate outputs driven
by 8 inputs. Once set, the 8212 can hold information in its
register until modified or cleared. A clear input control is
provided. The device can accept low-level ROM and RAM
signals, providing sufficient amplification to interface with the
8080 CPU.

ROCKWELL PPS-8 MICROPROCESSOR

The PPS-8 is an 8-bit parallel microprocessor system. It is
the successor to the PPS-4 on which AMP is based. The PPS-8
architecture is built around a bus-oriented structure, im-
plemented with PMOS technology, and using a 4-phase clock.
Because multiple operations are available as the result of
single instruction execution, the effective computational rate
is higher than the 200—256 kilohertz clock rate would indicate.

The PPS-8 organization is distributed to a degree since the
various LSI integrated circuits making up the system have
built-in intelligence. This further adds to the system
throughput by permitting simultaneous execution of several
normally serial operations during each minor clock cycle.

A typical system block diagram and data flow is shown in
Fig. 11-11. The PPS-8 instruction and operand access time is 2
microseconds, with 4 to 5 usec required for a complete
processor cycle (one-byte instruction read, data access, and
execution). Decimal (BCD) addition and subtraction take 12
psec per digit. The PPS-8 has over 90 instructions (Table 11-4),
and they include the use of pooled data, instructions, and
indirect addresses.
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Table 11-4. Rockwell PPS-8 Instruction Set

MNEMONIC

DESCRIPTION

TIMING CYCLES
(BYTES)

Register Instr,

LY
LX
Lz
XAX
XAY
XAZ
XY
LXA
LYA
LZA
XAL.
LLA
XL
LAI
LXi
Lyl
L
LAL

LXL

Lyt
LZL

Data Transfe

L
LN

LD
LDXL

LNXL

LNCX

LDCX

LNXY

SN

SD
SNXL

uctions

Load Y from data memory
Load X from data memory
Load Z from datamemory
Exchange Aand X
Exchange Aand Y
Exchange AandZ
Exchange X and Y
Load X from A
Load Y from A
Load Z from A
Exchange A and L upper
L.oad L upper fromA
Exchange L with Zand X
Load Aimmediate
Load X immediate
Load Y immediate
Load Z immediate
Load accumulator through
link register; address
to program memory
Load X through link
register; address to
program memory
Load Y through link register;
address to program memory
Load Z through link register;
address to program memory
rinstructions

toad A

Load A; increment and
test data address

Load A; decrement and
test data address

Load A; decrement test: and
exchange data address
with L

Load A; increment test; and
exchange data address
withL

Load A: increment test and
ccempare exchange data
address with L

Load A: decrement test and
compare data address:
exchange data address
with L

Load A: increment and test
data address: exchange
XandY

Store A

Store A; increment and test
data address

Store A:; decrement and test
data address

Store A: increment and test
data address. exchange

with L

2cycle(1or2)
2cycle(1or2)
2cycle(1ord)
1cycle(1)
1cycle(t)
1cycle(1)
1cycle(1)
1cycle(1)
tcycle(l)
1cycle (1)
1cycle(1)
1cycle (1)
1cycle(1)
3cycle(1,2,0r3)
3cycle(1,2, or 3)
3cycle(1,2o0r3)
3cycle(1,20r 3)
3cycle(1or2)

3cycle(1or2)
3cycle(1or?)

3cycle{1or2)

1 cycle, 1 byte
1cycle, 1 byte

1cycle, 1 byte

1cycle, 1 byte

1 cycle, 1 byte

1 cycle 1byte

1t cycie 1ovte

1 cycle, 1 byte
1 cycle, 1 byte
1 ¢ycle, 1 byte
1 cycle, 1 byte

1cycle, 1 byte
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Table 11-4(con'’t.)

TIMING CYCLES

MNEMONIC DESCRIPTION (BYTES)
Data Transfer Instructions
SDXL Store A; decrement and test 1cycle, 1 byte
data address: exchange
with L
SNCX Store A; increment test; 1 cycle, 1 byte
compare data address
exchange with L
SDCX Store A: decrement test: 1cycle. 1 byte
compare data address;
exchange with L
SNXY Store A; increment and test 1cycle. 1 byte
data address:
exchange X and Y
X Exchange 2 cycles, 2 bytes
XN Exchange A and M; increment 2cycles, 2 bytes
and test data address
X0 Exchange A and M: decrement 2 cycles, 2 bytes
and test data address
XNXL Exchange A and M: increment 2cycles, 2 bytes
and test data address:
exchange with L.
Data Transfer Instructions
XDXL Exchange A and M: decrement 2 cycles. 2 bytes
and test data address:
exchange with L
XNCX Exchange A and M: increment 2 cycles, 2 bytes
test and compare data
address; exchange with L
XDCX Exchange A and M; decrement 2cycles, 2 bytes
test and comoare data
address: exchange with L.
XNXY Exchange A and M" increment

and test address;
exchange X and Y

Increment Decrement Instructions

INXY
DEXY
INCX
DECX

INCA
INCY

DECY

Increment X: test and
exchange with Y
Decrement X test and
exchange with Y
Increment and test X
Decrement and test Y
Increment A
Increment and test Y Note:
this instruction may not be
preceded by askipasitisa
combination of XY and INXY
Decrement and test Y Note:
this instruction may not be
preceded by askipasitisa
combination of XY and DEXY

Bit Manipulation instructions

RAR

Rotate accumulator right one
bit through carry

2cycles. 2 bytes

1cycle 1byte
1cycle, 1 byte
1 cycle. 1 byte
1cycle. 1 byte

1cycle 1 byte
2cycles 2 bytes

2 cycles, 2 bytes

1 cycle, 1 byte with no
branch
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Table 11-4 (con't.)

MNEMONIC

'DESCRIPTION

TIMING CYCLES
(BYTES)

Bit Manipulation Instructions

RAL Rotate accumulator left one
bit through carry branch

MOR Move digit right: shift four
bits right branch

MDL Move digit left: shift four
bits left branch

sC Setcarry toone

RC Reset carry to zero

SB Set bit N in memory to one

AN Logic AND of memory with
accumulator

OR Logic OR of memory with

accumulator

EOR Logic exclusive—OR or
memory with accumulator

coM complement accumulator

ANI Logic AND of immediate value
with accumulator

Arithmetic Instructions

A Add

AC Add with carry

ASK Add and skip if carryis set

ACSK Add with carry and skip if
carry is set

DC Decimal correct 1

DCC Decimal correct 2

AISK Add immed:ate and sKip if
flop 1s not used or changed

Skip/Branch Instructions

B Branch unconditionally
Branch tag seton
prior instruction

NOP No operation

BD! Branch and disable interrupts.
Branch tag seton
prior instuction

SKZ or BNZ Skip nextinstruction if
accumulator is zero

SKNZ or BZ Skip next instruction
accumulator is not zero

SKC or BNC Skip nextinstructionif carry
Isone

SKNC or BC Skip nextinstriction if carry
isnotone

SKP or BN Skip nextinstruction if positive

branch

SKN or BP Skip nextinstruction if negative

SKE or BNE Skip next instruction if A
equals memory addressed
byZ. X

BBT Branch if bittrue

BBF Branch if bit false

Subreutine Instructions

BL Branch and link to subroutine

BT Return 3 cycles-

1 cycle, 1 bytewith no
1 cycle. 1 bytewith no
tcycle, 1 byte with no

1 cycle, 1 byte
1cycle. 1 byte
2cycles, 1 or 2bytes
1cycle, 1 byte

1cycle, 1 byte
1 cycle, 1 byte

1cycle. 1 byte
3cycles 1, 2 or3bytes

1 cycle 1 byte
1 cycle 1 byte
1 cycle 1 byte
t cycle 1 byte

1 cycle 1 byte
1cycle 1 byte
3cycles- 1. 2or 3bytes

1 or 2cycles- 1 or 2 bytes]

1cycle-1 byte
2cycles-2 bytes

1 cycle~1byte plus any
branch

1 cycle-1byte plus any
branch

1 cycle-1byte plus any
branch

1 cycie-1byte plus any
branch

1 cycle-1 byte plus any

1 cycle-1 byte pius any
branch

2 cycle-1 byte plus any
branch

2 or 3cycles- 2 or 3 bytes|
2 or 3cycles- 2 or 3 bytes

3 cycles-1 or 2 bytes
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Table 11-4 (con’t.)

TIMING CYCLES
MNEMONIC ‘DESCRIPTION (BYTES)

Subroutine Instructions

RSK Return and skip next instruction 3cycles-1byte
RTI Return and enable interrupts 3 cycles-1 byte

Stack Instructions

PSHA Push accumulator into memory 2 cycles-1 or 2 bytes
addressed by stack register

PSHX Push X into memory addressed 2 cycles 1 or 2 bytes
by stack register

PSHY Push Y into memory addressed 2 cycles1 or 2 bytes
by stack register

PSHZ Push Z into memory addressed 2cycles-1or 2 bytes
by stack register

POPA Pop data into accumulator 2 cycles1 or 2 bytes

from memory addressed by
decremented stack register:
then test

POPX Pop data into X from memory 2 cycles-1 or 2 bytes
addressed by decremented
stack register; then test
POPY Pop datainto Y from memory 2 cycles1 or 2 bytes
addressed by decremented
stack register: then test
POPZ Pop datainto Z trom memory 2 cycles-1 or 2 bytes
addressed by decremented
stack register: then test

PSHL Push L into memory addressed 3 cycies-1 byte
by stack register: and load
AandWinto L

POPL Pop datainto L from memory 3 cycles-1 byte

addressed by decremented
stack register

Input/Output Instructions

IN Input 8 bits 2 cycles-2 bytes
ouT: Output 8 bits 2 cycles-2 bytes
104 input and output 4 bits 2 cycles-2 bytes
RIS Read interrupt status 2cycles- 2 bytes

Figure 11-12 is a block diagram illustrating the basic
features of the 11806 CPU. The CPU has:

The necessary logic to obtain and decode instructions from
the ROMs,

A 14-bit P register for controlling the ROM addresses.

An 8-bit parallel arithmetic/logic unit (ALU).

Three 8-bit registers (X, Y, Z) for RAM operand ad-
dressing,

A 16-bit L register for subroutine linking, RAM operand
addressing, and ROM indirect addressing.

A 5-bit stack pointer (S).
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Fig. 11-11. Rockwell PPS-8 system configuration and data flow.

Multiplexed drivers and receivers to provide the proper
electrical interface with the address and instruc-
tion/data bus.

Logic for priority interrupts, and for a direct memory
access (DMA) mode.

Instruction Decode. The logic identified by this box in Fig.
11-12 takes in the instruction bit pattern, determines the
required operation(s) and controls the execution. PPS-8 in-
structions can be one, two, or three bytes long, requiring one
major clock cycle per byte for execution.

P Register. This program, or instruction address register,
contains the address of the instruction currently being
executed. Its function is identical to that of the AMP P
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register, however the least significant 7 bits of the PPS-8
register are incremented, permitting the addressing of 128
instructions within a page. The P register is set to zero with the
“power on’’ signal (PO), causing the first instruction to be
taken from ROM-0, page-0, word-0.

Arithmetic/Logic Unit. The ALU’s 8-bit adder generates a
sum and a carry within one major clock cycle. The carry
flipflop (C) and the intermediate flip-flop (Q) hold carry
information out of the position of the eight bit and the fourth
bit, respectively, to facilitate multi-byte operations and
packed BCD arithmetic (see Chapter 2). The A register is the
primary data register in the CPU and, like other accumulators
in other microprocessors, is the prime source and destination
of data.

The X Register holds the 7 least significant bits of the
14-bit operand (RAM) address. The most significant bit of the
8-bit X register is an upper RAM address control bit. If this bit
is one, the Z register content controls the most significant half
of the RAM address field; if the bit is zero, the most significant
half of the RAM address field is set to all zeros. The X register
may be loaded, stored, incremented, and decremented under
program control.

The Z Register contains the 7 most significant bits of the
14-bit RAM address. It may also be used as a general-purpose
8-bit storage register.

The Y Register is an alternate least-significant-RAM-
address register (alternate to X). It may be used as a counter,
or as a general-purpose 8-bit storage registers.

The L Register contains a return address after a transfer
to a subroutine or receiving an interrupt. It functions similarly
to the SA and SB registers of AMP. In addition, L is used as an
address register for indirect ROM operands, an alternate
RAM address register, or as a pair of 8-bit storage registers.

The S Register is a 5-bit up/down counter and is used as
the address pointer to a 32-byte stack in the PPS-8 RAM. The S
register is incremented each time data is added to the stack,
and decremented each time data is retrieved. (See discussion
on push-down/pop-up stacks in Chapter 12.)

W Register. This 8-bit register serves as an internal buffer
and storage register. In addition it is used as an intermediate
register during the execution of load-accumulator, link, and
push-A-into-L instructions.
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Clock Decode. This logic takes the A and B clock signals
transmitted from the clock generator and derives the 4-phase
MOS clock needed by the CPU’s internal logic.

Drivers and Receivers. These elements properly condition
the electrical signals for off-chip data transmission and
reception.

Read-Only Memory

This is a PMOS memory having twice the storage capacity
of the AMP ROM, but being functionally identical to it. The
PPS-8 ROM is a 16,384-bit memory organized in 2048 8-bit
bytes. Memory access time is 1.8 usec. For the ROM
functional configuration see Fig. 1-3. The ROM part number is
A52XX, where the last two digits are used to identify specific
ROMs having customer-dependent patterns.

The ROM is addressed using the 14-bit CPU address
outputs for a maximum of 2 or 16,384 bytes. An extension is
available by use of a separate address-select line that permits
32,768 bytes to be addressed in two banks of eight ROMs each.

Random-Access Memory

The PPS-8 RAM (No. 10809) is a 2048-bit memory
organized in 256 8-bit bytes. It is logically identical with the
AMP RAM, whose block diagram can be seen in Fig. 1-4. The
PPS-8 RAM is a dynamic memory with internal refresh logic.
Access time is the same as that for the ROM (1.8 usec). As
with the ROM, the CPU can directly address a maximum of
16,384 data bytes on 64 RAMs. Expansions beyond this are
accommodated by utilizing an Input-Output Control Signal in
conjunction with a minor wiring change to select additional
bands.

Clock Generator and
General-Purpose Input/Qutput Controller

These devices are identical in function to the AMP clock
and AMP IOC respectively. Simplified block diagrams are
shown in Figs. 1-5 and 1-6.

Serial Data Controller

This device is a digital transmitter/receiver used to in-
terface the PPS-8 system to a serial data channel. The SDC
can handle full duplex (simultaneous transmission and re-
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Fig. 11-13. PPS-8 serial data controller (SDC) block diagram,

ception) operation at synchronous rates up to 256,000 bits per
second, or asynchronous rates up to 18,000. Figure 11-13 is the
SDC block diagram showing signal flow onto, within, and off of

the chip. Features of primary interest are:

The availability of direct memory load or read (DMA) in
conjunction with the direct memory access control

device

Error detection capability (even or odd parity, framing,

and dropout)

Simultaneous transmission and reception at different data

rates
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Programmable transmission modes: Asynchronous char-
acters of 5, 6, 7, or 8 bits; synchronous character of 8
bits

Buffered data handling

Programmable character search mode

The reception data flow is from the serial data input line,
through the synchronizer, to the parity check (if required),
then to the receiver buffer, and on to the instruction/data bus.
The receiver clock provides the necessary timing. For
asynchronous reception, the clock rate is established at 16
times the expected reception rate to permit the incoming data
to be sampled at a frequency high enough to insure that all
transitions are sampled at least once.

Transmitted data is received on the instruction/data bus,
flows to the transmitter buffer. Parity is then added if
required. The formatted message is sent to the transmitter
synchronizer and put out on the serial data output line, which
istimed by the transmitter clock.

The function registers are two 8-bit registers which are
loaded with control words to establish the operating modes.
The three status registers are each 4 bits long and hold
information concerning the quality of reception. The receive
compare register is used in conjunction with a search feature
that permits PPS-8 to receive selected data on a serial party
line, by serially looking for predetermined characters to
determine validity of incoming data.

Parallel Data Controller

The PDC interfaces the PPS-8 with two 8-bit parallel
data channels, A and B, with each channel having 8 lines of
data and 2 control lines. Each channel has a dedicated 8-bit
data buffer and function register. The two channels utilize a
common 5-bit device status register and a 4-bit interrupt status
register. The control of each channel is under CPU program
control. Functional elements and data flow are depicted in
Fig. 11-14.

The contents of the input data lines are copied into the
appropriate data buffer during phase two of the basic clock
cycle. The CPU reads the resulting data at any time. During
output the data lines are driven continuously and directly from
the data buffers, which can be loaded by the CPU at any time.

213



DATA Cl-AIANNEL A DATA CHqANNEL B

)
DRIVER/RECEIVER DRIVER/RECEIVER
3
———
S
DATA DATA CLOCK
one] -+ O
BUFFER A BUFFERB| L | DECODE[ |J
1 ! FUNCTIONS
_| FUNCTION|__
A
FUNCTION| |
B
DEVICE
=] STATUS
I INTERRUPT
»| STATUS
SELECT <
LOGIC <
; ‘ o
|| INSTRUGTION| | ADDRESS 74
MULTIPLEXER DECODE AND COMPARATOR ul
DRIVER/ INTERRUPT &
RECEIVER CONTROL 2
i §
¥
e}
INSTRUCTION/DATA BUS

Fig. 11-14. PPS-8 parallel data controller block diagram.

Data transmission can be either clocked or unclocked. A
“handshake’’ input and output is also available; in this mode
two control lines are used to provide a ready signal and to
acknowledge receipt of data from the peripheral hardware.

Direct Memory Access Controller

This device allows PPS-8 input/output peripherals to
access RAM without interrupting normal program execution
(see Chapter 12). This is accomplished by utilizing memory
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access time termed, cycle stealing, but otherwise it leaves the
program flow unchanged.

The DMAC controls the address bus and commands two
memory control signals during direct memory access
operations. One DMAC controls eight distinct channels, with
two-way communications possible through time multiplexing.
A priority system insures that requests will be honored
sequentially, in order of the predetermined priority sequence.

Figure 11-15 is the DMAC block diagram. The DMAC has
eight 14-bit address registers, and eight 8-bit record length
registers to service the eight DMA channels. The data hold
register enables sampling the content of a record length
register by the CPU. As can be seen from Fig. 11-11 the DMAC
interfaces with either the parallel data control or the serial
data control.

As an example of DMAC operation, consider a single I/0
device connected to a DMAC. At the time the device desires
memory access, it transmits a request over DMA channel 0.
The DMAC forwards the request to the CPU which ac-
knowledges the request at the time of completion of execution
of the first non-input/output instruction after receipt of the
inquiry. The CPU then waits while the DMA accesses RAM by:

1. Acknowledging the CPU response.

2. Placing on the address bus the address of the RAM
location sought.

3. Driving the read inhibit (RIH) and write I/0 (W/I10)
false or true, depending upon whether data is to be
read from or written into the RAM.

4. The I/O device then placed data on the instruc-
tion/data bus or accepts data fromit.

The DMAC increments the appropriate address register
from the selected counter and then repeats the preceding
operation until:

1. The I/0 device is satisfied.

2. Therecord length register cycles from 255 to zero.

3. The lower address register cycles from all ones to all
Zeros.

4. Interrupt 0 (high priority) goes true.

5. The DMAC is asked to service a higher priority
channel.
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Fig. 11-15. PPS-8 direct memory access controtler (DMAC) block diagram.

Specific available system configurations and program-
ming data concerning the PPS-8 can be obtained from
Rockwell International, Microelectronics Device Division,
Anaheim, California.

216



Chapter 12

Special Programming
Techniques

As the programmer gains familiarity with the microprocessor
structure and the supporting software packages, he will find
that his programs will become more efficient, both in memory
used and in execution time required. In this chapter, we
explore some techniques that have been found useful in
creating real-time data handling and process control pro-
grams, in the hope that they may stimulate the reader in
determining new and more efficient solutions for his
microprocessor programs.

NON-INTEGRAL POWER-OF-TWO SCALING

In Chapter 4 we discussed the use of the binary scale for
keeping track of the numerical values of variables, while
permitting the microprocessor to perform arithmetic in
groups of binary digits. Although the scaling rules provide a
well-structured way of maintaining values of variables, the
restriction that the scale factor be an integral power of two is
unnecessary and may adversely affect the problem solution.

The placement of a binary point at the left-hand end of the
register is unchanged from the discussion of Chapter 4, and it
is still required that we deal only with binary fractions when
expressing data in machine units. This means that we must
select an appropriate scale factor, which we will use to divide
the input number (given in problem units) such that the
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resulting quotient magnitude (in machine units) is always less
than one. In order to reconstruct the output answers so that
they appear in the proper units, it is then necessary to carry
this scale factor as an implied multiplier externally to the
microprocessor.

The binary fraction held in the microprocessor is equal
the number (in problem units) divided by the maximum
register value (a power of two). To reverse the procedure, the
number (in problem units) is then equal to the product of the
binary fraction in the microprocessor and the maximum
register value.

An equivalent scale factor may also be stated as being
equal to the value of a bit appearing in a particular position,
usually the least significant. Thus it is possible to refer the
scale factor to either the maximum register value or to the
least significant bit, with the choice being left up to the
programmer.

Microprocessor Example

To illustrate these scaling methods, assume that our
microprocessor is sampling a varying voltage that is pro-
portional to an angular error signal. The voltage is con-
verted to a binary signal by an 8-bit analog-to-digital con-
verter. The input to the converter varies over a range of +35
volts and yields an angular indication of 10~* radians per volt.
The processor is expected to establish a recent time history of
this voltage from eight samples, determine the short-term
average, and send out a control signal to drive the error
toward zero. The control signal is of opposite sign and is
proportional to the average error. In general, the faster the
voltage can be sampled and the control signal computed, the
better control is achieved. Error excursions will then be less
and the system’s stability will be enhanced.

Examining specifications in this problem, we see that the
actual error angle is quite small: (£5V) (10~ rad/V)
= +5x 10™* radian (actually 4.98 x 107" since the most
significant bit would have a value of 2.5 X 107*). The value of
the least significant bit in the 8-bit register is then
(5% 1071)/2® = 1.95 x 10°° radian. Working with the least
significant bit then, we can derive an appropriate scale factor
by dividing by the factor 2", selecting the smallest value of Y
such that the quotient is less than one. In this case, however, it
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is necessary to use a negative value of exponent since the
number is much less than one to begin with. Thus if Y = —18,
the quotient will be about 0.51. The scaling is now manageable,
and the averaging can be performed. To simplify conversion
arithmetic, it is easier to perform multiplication rather than
division, so division by the factor 2¥ can be replaced with
multiplication by 27Y . Upon output, a second multiplication
can then be used to rescale the result in the output register to
develop the proper magnitude of the output voltage for control.

One, or perhaps both, of these multiplications may be
unnecessary. Arithmetic can clearly be performed at a scale
of 1.95 X 10~° radians (using as reference the value of the
least significant digit), in which case no scaling is required to
change the 8-bit input data. And in the example, if the output
and input scale factors were the same, no multiplications
would be needed. Thus it might only be necessary to accept the
raw 8-bit input data, process it, and then correct the output
scale if it has changed. In simple cases of addition and sub-
traction the scale is not likely to change as drastically as in
multiplication or division (where scale factors are added and
subtracted).

Since we selected a power of two (2° = 8) for the sample
size, the averaging is most efficiently performed by shifting
the input data right three places before addition, regardless of
the scale factor used, and then adding the new datum to the
sum of the previous seven digits. The averaging process then
reduces to that of adding a new datum and subtracting an old
one. In most similar problems the averaging period is
selectable within reasonable bounds, and because of the
convenience associated with shifting, powers of two are
clearly preferred.

Additon and Subtraction

The scaling rules for addition and subtraction of
non-integral powers of two can be stated as follows: The scale
factors must be equal, and the use of the maximum register
values is preferred. If the scale factor is referred to the least
significant bit (LSB), then the largest quantity (mazimum
value) that can be contained in the word is equal to B 2" — 1,
where B is the scale factor and N is the register length
excluding the sign bit. An addition or subtraction operation
that leads to a result exceeding this maximum value will, of
course, result in an overflow.
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Multiplication

In multiplication the scale factor is truly a factor, so
multiplication in the processor implies the associated
multiplication of external scale factors. The general form of
the maximum register value after multiplication is: (LSB,)
(LSB;) (2V') (2¥), where we are neglecting the small
difference between 2¥ and 2" <« 1, and N represents the
register length excluding the sign bit. Thus if register lengths
N, and N. are equal, the expression reduces to (LSB 1)
(LSB.) (22V).

Example: A 15-bit memory register contains the number
0.39562 stored at an LSB scale of 0.0000245 radian. A second
15-bit register contains 0.6152 at an LSB scale of 0.001831 sec”!.
The product, 0.2434, is a measure of angular velocity in radians
per second. Now the maximum values of the registers are

(2®) (0.0000245) = 0.8028
(2" ) (0.001831) = 60

The maximum value of the product register is then
0.8028) (60) = 48.17
and the numerical value of the LSB is
(48.17) /2" = 0.001470

for a 15-bit register (N = 15).
Division

The scaling for division is similar to the procedure fol-
lowed for multiplication, with the exception that the scale of
the denominator is divided into the scale of the numerator to
determine the scale of the quotient. Division can produce an
overflow, but if the maximum value of the quotient register is
selected to contain the scaled quotient, no overflow will result.

Example: Register A contains the value 5 scaled with a
maximum register value of 6.283. Register B contains the
value 8.4 scaled with a maximum register value of 16. The
resulting quotient (A/B) is 0.595, which is scaled at the value
0.3927 for a full register. But since 0.59 is clearly larger than
0.3927, an overflow will occur. The difficulty here is that the
denominator is significantly smaller than the maximum
register value, leading to a larger quotient than can be
contained under the given scalings. To obtain a correct result,

220



the numbers held in either register A, or register B, or both
must be rescaled to provide for a maximum product value that
is greater than 0.3927.

PUSH-DOWN/POP-UP STACKS

Several of today’s processors have facilities for handling
data in stack form. The continual updating of data is often
unwieldy. particularly when the data storage and retrieval are
interleaved. Perhaps the best analogy is an inventory system
in which bins are initially stocked with material having a
limited shelf life. Material extraction proceeds according to
either a first-in/first-out (FIFO) system or to a last-
in/first-out (LIFO) system. New material is added to the bins
as it arrives from the suppliers at unpredictable intervals.
This new material must be identified, and its time of entry into
the inventory system noted, to maintain the FIFO or LIFO
record systems.

The relation to data handling is rather precise, for by
replacing material with data, the analogy describes a common
problem encountered when the microprocessor is expected to
manage and manipulate data arriving from an asynchronous
source. Stack manipulations make this handling more
straightforward. Microprocessors available at this writing do
not mechanize FIFO systems because of the more complex
data handling required.

A brute-force (and not too bright) approach to the LIFO
stack problem is to define a block of RAM to hold the stacked
data. Each time a word of information is added to the stack,
move the entire stack ‘‘down’” in memory, though at the cost of
at least two machine cycles per datum move. If a word is then
extracted, all other data in the stack is moved up, once again
at the same cost in execution time.

But clearly the same LIFO stack effect can be achieved by
simply manipulating addresses, rather than the actual data.
All microprocessors having this feature operate in the same
general fashion (see Intel 8080 and Rockwell PPS-8 Chapter
11). A special address register holds the address of the next
element to be stored in the stack. This pointer can be thought
of as running up and down as the size of the stack increases
and decreases. Where LIFO is used, it is only necessary to
maintain a running account of the top data element. Since data
will not be removed from or added to the ‘‘bottom’’ of the stack
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(except, of course, the first piece of data entered), the initial
address remains fixed. The stack is therefore empty if the
address pointer is equal to the address location at the bottom
of the stack.

INTERRUPT HANDLING

When coupled to any set of peripheral devices that demand
attention from the CPU on short notice, some means of
interrupting the normal program flow without affecting the
program sequence is required. Most commercial micro-
processors have the capability of handling one or more of these
interrupts. Characteristically, the interrupt, when received,
causes program control (after completing execution of the
current instruction) to be transferred to the first instruction of
a service and data-handling sequence, with the address of the
next instruction of the normal program flow stored as a return.
This service sequence normally ignores further interrupts,
saves register data for restoration of the normal program flow
upon completion of the interrupt handling, identifies the
interrupt (if more than one is possible), identifies the
peripheral unit that caused the interrupt to be issued, and
transfers to the proper routine to service that particular unit.
Upon completion, register contents are restored, the
interrupts enabled once again, and control transferred to the
mainstream routine via execution of the return instruction.

Interrupts are then nothing more than unexpected
transfers under control of an outside source, normally those
devices that handle input/output data. However, interrupts
are also used for timing control when a program is intended to
operate in real time, relying on a precise external timer. Here,
the entire routine, not just the present instruction, must be
completed before the interrupt can take over control. Program
control then ties up in a loop (usually a one-word transfer to
itself) until restated by the presence of the interrupt, thus
maintaining precise execution timing at the beginning of each
computational cycle.

Several interrupts may be available, each of them used to
control ultimate entry to a specific service program. There is,
however, the possibility of interrupts occurring nearly si-
multaneously, or continually modifying program control, with
the net effect that the processor either becomes confused or is
tied up servicing interrupts. Thus, a priority system is usually
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established in which priority designations are assigned to each
interrupt line. The occurrence of a priority-1 interrupt then
masks out all other interrupts of priority 2, 3, 4, etc. The
occurrence of a priority-2 interrupt masks out priority 3, 4, ete.
Such priorities can normally be established under CPU control
and changed as the program functions require.

DIRECT MEMORY ACCESS

Input/output operations rob time from the CPU’s normal
computational cycle. Very often all that is required of the
processor is to transfer data between an input or output buffer
and processor memory, so no reformatting or arithmetic is
needed. Under these circumstances, a direct memory access
(DMA) function can save vital machine cycles and program
storage.

Most DMA operations still steal time from the mainstream
program by using clock time normally devoted to RAM
access. {ROM readout is not usually subject to DMA
operation.) At the completion of execution of most instructions
(input/output instructions are common exceptions), the CPU
acknowledges the receipt of a DMA inquiry, enters an “idle”
mode by releasing control of both the address and data buses
(or their equivalents), and allows the DMA controlling device
to read from or write into RAM as it desires. Depending upon
the configuration, one or more bytes may be accessed before
control is transferred back to the CPU. DMA is particularly
useful where rapid response to the peripheral device is
required, such as the use of DMA access to drive and refresh
CRT displays. (See Chapter 11, Intel 8080 and Rockwell
PPS-8). '

POOLED DATA

Where the microprocessor has an instruction format re-
quiring the frequent use of multibyte instructions or long
constant data strings, the opportunity exists to store this
information only once, and then reference it, using single-byte
commands, thus saving memory. Using the Rockwell PPS-8 as
an example, three data pools are used: the command pool
(instructions), the literal pool (data bytes), and the sub-
routine entry pool (branch instruction address bytes). These
pools occupy specific locations in pages 0 and 1 of the PPS-8
ROM.
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As an example of the memory efficiency gained, a 3-byte
PPS-§ instruction, if used 25 times in a program, would occupy
75 bytes of memory. But when identified in a data pool, the
instruction would occupy only one byte in the program flow
each time the instruction is used (a total of 25 bytes) and two
bytes in the data pool, for a total of 27 bytes instead of 75. The
instruction requires only two bytes stored in the pool since the
instruction type has already been identified by the address
specified by the main program; it does not then need to be
re-specified.

The use of data pools is not mandatory—they are
established primarily to save memory. If you are certain that
such memory savings are not necessary, the use of these pools
with their attendent complications can be avoided.

NON-BINARY COUNTERS

The positional-notation binary system satisfies all the
requirements for general calculations. But for purposes of
simply counting, any unique sequence of stable states is
sufficient. The use of systems other than binary is motivated
by hardware or software simplicity, or by the need to form a
sequence having a desirable property that binary does not.

shift Counters

Perhaps the simplest form of a shift counter is to place a
1-bit somewhere in a word and shift it until it reaches the end,
noting the different states or counts.

Example 1: A left shift (or binary addition) inserts zeros
at the right.

0...01
0...010
0..0100
0010..0
010...0
10....0
0...0

Example2: A logic right shift inserts zeros at the high-order
end.
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Example: 3 An arithmetic right shift copies the sign bit into
thenext lower order bit.

1000...000
1100...000
1110...000

°
°

[

1111...100
1111...110
1111...111

All of the preceding counters will count only the same
number of stable states as there are bits in the word, making
them relatively inefficient. But for programming purposes, no
separate incrementation is required, initialization is simple,
and the count termination can be determined by either a zero
testorsigntest.

Gray-Code Counters

In many transmission applications of ordered data, it is
desirable to have as few state changes in the transmitted
values as is possible. But binary-represented data does not
satisfy this criterium. For example, the addition of one count
to 01111111 creates the new value 10000000, in which all the ones
have been changed to zeros and the zero to a one--the
maximum possible number of state changes.

In contrast, the Gray code produces a count sequence in
which there is exactly one state change per count, a zero may
change to a one, or a one to a zero, but both changes cannot
occur at the same time. The changes occurring in the Gray
code as the count progresses are fully predictable and
therefore decodable.
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Table 12-1. Four-Bit Binary and Gray Code Equivalence

BINARY GRAY CODE
0000 0000
0001 0001
p010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100
1000 1100
1001 1101
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001
ARRR! 1000

Table 12-1 lists the binary and Gray code equivalences,
and such a look-up table could be incorporated into the
microprocessor system to facilitate conversion. But for direct
counting the look-up table can be replaced by simple
conversion algorithms that operate directly upon the stored
data.

Gray Code to Binary. The starting condition is that the
high-order bits of both number systems must be equal; that is
By = Gy .Binary and Gray code always use the same number
of digits to represent equivalent numbers. Proceeding from
the high-order bits to the low-order bits, the conversion takes
place bit by bit, applying the formula

Gk = Bk @ Bk +1

Therefore, to convert 1011; to Gray code, we first set the
fourth, or MSD, of the Gray code number equal to the binary
number; in this case Gy = B; =1. The next bits are
converted as follows:

Gy =B;®B, =0@1=1
G, =B:@®B; =1®@0=1
G =B ®B:=191=10

So the Gray code is 1110.
Gray Code to Binary. The conversion procedure follows
the formulas:
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Bn = Gn
By = Gk @ Bk

If we then wish to convert 1110 in Gray code back to binary, we
proceed as follows:

B4 =G4 =1
B;; =G3 ®B4 -"—1@1
Bz =G2 @Ba ‘-—“1@0
BI=G1@BZ 20@1

So we once again have 1011, .

Counting. The Gray-code counting sequency is started by
setting the initial conditions to all zeros. Counting is conducted
by setting the least significant bit to one; that is, G, = 1. At
the second count, the next higher order bit is set to one. For the
third count, the low-order bit is set to zero. The counting
pattern continues as illustrated in Table 12-1. The bit
configuration from one count to the next then varies by only
one bit change, which is the salient characteristic of Gray-code
counters.

0
1
1

Polynomial Counters

A predictable, recursive count can be generated using
simple exclusive-OR logic, similar to that used in the
Gray-code counter. For this we take an N-bit register holding
bits numbered in the sequence Ay.,, An-2 ...As, A;, A¢. The
counting proceeds by calculating A; @ Ao, then right-shifting
the N-bit number and inserting the newly calculated bit at the
left so that it becomes the new Ay, . The old A, is shifted out
of the register and is lost.

Two special cases must be considered when starting the
polynomial counter. First, if the counter is initially set to all
zeros, the counter would never get started because 0 @ 0 = 0.
Second, if the counter is set to any value other than all zeros,
the counter will cycle through all possible combinatorial
values except zero. Thus, if the counter is initially set to all
zeros, it will remain in that state until deliberately set to
another state; and when set to another state, it will then cycle
through all 2% — 1 unique number combinations before
repeating. For example, if a 4-bit counter is preset to binary
1000, it will cycle through the number sequence shown in Table
12-2, repeating the sequence again at step 16. Whatever the
counter length, if the counter is preset with a one in its most
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Table 12-2. Four-Bit Polynomial Counter Sequence

SEQUENCE POLYNOMIAL
NUMBER BINARY HEX
1 1000 8
2 0100 4
3 0010 2
4 1001 9
5 1100 Cc
6 0110 6
7 1011 B
8 0101 5
9 1010 A
10 1101 D
11 1110 E
12 1111 F
13 o111 7
14 0011 3
15 0001 1
16 1000 8

significant bit, the cycle will end with only a one in its least
significant bit before repeating the sequence, which indicates
that a test for one could be used to check for completion.
Because of the relative simplicity of mechanizing such a
counter, program sequencers and other internal processor
counters may operate according to the polynomial algorithm.
Since all possible binary combinations are used during the
count, with none repeated, this is an efficient counting system.
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Chapter 13

Characteristics
and Fabrication
of Microprocessors

The technology that has made possible the small size and low
cost of today’s microprocessors is of more than passing
interest to the engineers, scientists, and laymen who are
configuring and creating the software for these systems. The
fabrication techniques give insight into the structures and, to a
degree, the functions of the various devices that comprise a
microprocessor chip set.

PMOS AND NMOS DEVICES

The starting material used is a single crystal silicon wafer
having a precisely controlled orientation of the crystal lattice
with respect to the silicon surface. This control is important to
obtain the desired electrical parameters, particularly due to
phenomena that occur very near the silicon surface.

Patterns are applied to the silicon and subsequent layers
with the aid of photoresist—an organic material that changes
character when light (usually ultraviolet)) impinges upon it,
permitting a precise pattern to be retained by the resist when
it is exposed through a mask. (Figure 13-5, discussed later,
shows the use of the photoresist and the resulting patterns.)
Masks are made in a precision optical facility capable of
resolving lines to the order of 1 micron (10™° meter). Precision
is paramount to obtdin the dense patterns needed.
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Fig. 13-1. Silicon wafer, chip, and MOSFET. (Courtesy Rockwell Interna-
tional)

About 100 devices, all identical, are fabricated at one time
on a single wafer. Figure 13-1 shows a wafer approximately
two inches in diameter, containing a complement of those
devices, also called chips or die. Figure 13-2 shows two
photographs taken at different magnifications of the surface of
a PMOS die, showing the oxide steps and metal conductor
lines.

PMOS devices have been available since 1964, with the
process maturing in the intervening years. Initially, most
manufacturers used a *“high voltage” process, requiring
supply voltages on the order of —30 volts. More recently,
manufacturers have produced “low voltage” devices
operating in the range of 17 volts (45, —12). Low-voltage
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P-channel MOS requires about half the operating power used
by devices made by the high-voltage process. Low-voltage
devices are also compatible with TTL voltages, allowing a
microprocessor built from low-voltage PMOS to be more
easily integrated into a system where common TTL bipolar
logic is used.

MOS logic is made using field-effect transistors (FETS),
with perhaps a few resistors, capacitors, and diodes. An FET
is symmetric and hence unipolar (bidirectional). We will
briefly discuss the enhancement-type P- and N-channel
devices. To understand their operation, the construction
should be understood. Looking at the N-channel device of Fig.
13-3, we observe that the channels of N material are separated
by P-type material. N-type material has an excess of free
electrons: hence the conduction mechanism is one of electron
flow. The P material has a deficiency of free electrons such
that a barrier exists, impeding current flow from source to
drain even though a source —drain potential exists.

However, if we apply a positive potential to the gate, the
available electrons in the P material are swept into the area
underneath the gate, creating a conductive path, since there
are now free electrons available between the N regions. The
more positive the potential applied to the gate, the stronger the
potential field and the more electrons attracted into the re-
gion. The P material under the gate is said to be enhanced
with electrons, so this configuration is known as an en-
hancement-type FET. The metal gate is isolated from the
source and drain by silicon dioxide (Si0; ) insulator, so no gate
current flows.

The switching mechanism is entirely due to the field
established. A gate bias voltage of about one volt (relative to
the potential of the P substrate) will start conduction.
Saturation then occurs at a gate bias of about 44 volts, and
this corresponds to a condition in which no further increase in
source—drain curent occurs for a further increase in positive
potential applied to the gate.

The AMP P-channel devices operate in the same fashion
as the N-channel, except that the N and P materials are in-
terchanged, the charge carriers are holes (absence of
electrons), and the potentials are reversed. It turns out that
N-channel devices operate at higher speeds than cor-
respondingly designed P-channel devices because electrons
have a higher mobility in silicon than do holes.
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Fig. 13-2. Photograph of PMOS LIS. (A) at 85-times magnification. (B) ata
magnification of 1700 times, showing oxide steps and metal. (Courtesy
Rockwell International)
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The creation of N and P materials is accomplished by
doping the silicon by adding minute quantities of electron
donor and acceptor impurities, or by forcibly implanting ions,
using an electron beam gun or by a combination of both
processes. The ion implantation method is a newer technique
and has rapidly matured. Virtually all manufacturers today
are using some form of ion implantation to fabricate MOS
microprocessor parts. The impurity quantities are much
easier to control and the depth distribution desired by the
designer is much easier to achieve.

Figure 13-4 is a pictorial outline of the process steps
required to fabricate the PMOS low-voltage enhancement
FETs used in AMP. The starting material is a silicon wafer
about 10 mils (0.01 inches) thick, lightly doped with an N-type
material. The dimensions shown for the thicknesses of various
layers are given in microns, where 1u = 1 X 10™° meter.

Step 1 is the growth of a silicon dioxide layer over the
entire surface. This is normally done in a furnace by passing
superheated steam past the wafer.

Steps 2—3 are the application and development of the
photoresist to define the P regions.

Steps 4—5 show the surface configuration after etching the
oxide where the P regions are to be formed, and removing the
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Fig. 13-3. Cross section of P- and N-channel MOSFET configurations with
schematics.
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protective photoresist. (Note that the etch stops at the silicon
surface). Also, for clarity, steps 5 and those subsequent show
the FET cut through the center, comparable to the FETs in
Fig. 13-3.

Steps 6—10 configure the gate oxide by first growing a
thicker oxide layer to accommodate the required gate oxide
thickness, etching everything but the gate area. This also
removes the oxide once again from the potential P regions.

Step 11 adds the acceptor impurity to the P region by
passing boron bromide gas across the wafer. The boron
diffuses somewhat into the unprotected silicon surface. This
process physically adds the impurity to the silicon rather than
doping by ion implantation. (If implantation were to be used, it
would likely be done at this point, before the oxide growth and
replacing both the boron addition and “‘drive.”)

Step 12 accomplishes two things at once. First, the boron
deposited in step 11 is not of sufficient depth to provide the
needed P region, so the boron is ‘““driven in’’ at high tem-
peratures, (Actually, boron atoms diffuse into the silicon at
high temperature.) At the same time, oxide is grown over the
top of the P material.

Steps 13—14 provide for precise definition of the gate area
and prepare for establishing the source and drain contacts,

Steps 15—16 define a further growth of oxide and the
growth of a silicon nitride layer. Silicon nitride is a very
tenacious, dense material with a high dielectric constant. The
presence of sodium is deadly to MOS devices. Sodium ions are
highly mobile and hence carry charge where it isn’t wanted.
Silicon nitride is a very effective barrier against sodium so it is
the use of silicon nitride that has permitted the packaging of
these devices in plastic, allowing the prices to come down one
more notch.

Step 17 frees the areas where the source and drain
contacts are to be made.

Steps 18—19 provide the metal conductive pattern, first by
evaporating a thin layer of aluminum over the entire surface,
then by masking those areas where the metal is to be retained
and etching away all unwanted aluminum through the mask.
At this point, the FET is electrically complete.

Steps 21—22 provide a protective overcoat of siloz (silicon
dioxide), similar to the oxide layer that was grown in Step 1.
This time, however, the silicon dioxide layer is not grown, but
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Fig. 13-4. continued
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STEP 8--DEVELOP PHOTORESIST
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Fig. 13-4. continued
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STEP 14—STRIP TO EXPOSE THIN GATE AREA AND CONTACTS
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Fig. 13-4. continued
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STEP 19—APPLY AND DEVELOP PHOTORESIST FOR METAL
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Fig. 13-4 continued
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Fig. 13-5. CMOS-S0S structure with magnification of about 250 times.
(Courtesy Rockwell International).

deposited directly on the wafer from silane (8i0, + methane).
The deposited layer of silox is not as dense or continuous a film
as the thermally grown oxide, but it is still more than adequate
to protect the device from mechanical damage. Holes are then
cut through the silox layer to expose the contact pads, and
1-mil diameter wires are attached to make contact to the
outside world. The conductive paths of the MOS device are
formed either by the P (or N) channels, or by the top metal
layer, or both. To provide crossings the path goes from the
metal down to a P region, then crosses other metal lines, and
emerges again on the other side. Even so, the interconnection
problem on a MOS chip is not trivial, and this places some
restrictions on the designs.

COMPLEMENTARY MOS (CMOS)

CMOS combines N- and P-channel transistors. The N-
channel transistor normally drives the P-channel transistor.
(See Fig. 13-5 for a typical CMOS configuration.) One CMOS
transistor is always turned on and the other turned off. The
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primary advantages of CMOS are low power and high speed
relative to N- and P-channel MOS processes. The prime
disadvantage lies in the more complex fabrication process.
CMOS circuits can operate at 20 MHz with a power con-
sumption of only a few microwatts. Consequently, more and
more CMOS devices will be seen as the requirements for high
speed and low power toughen, particularly for military
applications.

A variation of CMOS, offering even higher speeds and
lower power, is CMOS-SOS (CMOS on silicon on sapphire, or
just CMOS on sapphire.) The use of a sapphire substrate
provides almost perfect isolation between adjacent devices,
thus reducing the unwanted coupling capacitance that ad-
versely affects speed. The isolating substrate also further
reduces the required power. Such devices are becoming
available at this writing as microprocessor components and
should help push processor clock speeds into the 10 MHz range.

INTEGRATED INJECTION LOGIC (I* L)

A debate concerning the superiority of MOS vs bipolar
integration has been going on for about the last ten years. Until
recently, the argument has been academic, since the two
technologies did not directly clash in the marketplace. MOS
had a clear superiority in unit cost and in functional density,
while bipolar devices had a clear edge in speed. However,
MOS—particularly CMOS--has been increasingly invading the
high-speed bipolar market, while bipolar devices have been
achieving even higher densities at lower costs.

The primary speed limitation in both bipolar and MOS
large-scale integration (LSI) is the ability to charge and
discharge internal capacitances. In the case of bipolar
devices, any significant improvement must be made by
decreasing capacitances. This decrease is tied directly to
decreasing device area, which in turn is dependent upon the
quality of the photolithographic process. MOS speeds have
been increased by several means—use of high-dielectric
insulators, insulating with sapphire substrates, employing
N-channel devices, etc. Meanwhile, the bipolar designers have
achieved excellent densities while maintaining high speeds
using integrated-injection logic (I*L), also called merged
transistor logic (MTL).
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Fig. 13-6. I2L device cross section and associated schematic.

The improvements of I L over more conventional bipolar
devices come principally from shrinking the direct-coupled
transistor logic into a single equivalent complementary
transistor. A schematic and corresponding I’L device
structure is shown in Fig. 13-6. The vertical NPN transistor
(Q: ) has multiple collectors and operates as an inverter. The
lateral PNP transistor (Q.) is used as a current source and
load. Several I’ L microprocessor devices are now available
with others to be introduced. For example, a 4-bit slice chip,
the SBP-0400, contains over 1400 gates and includes most of the
functions required for 4-bit parallel processing.

The user can expect a great deal from these newer
technologies and should not be disappointed. Microprocessor
devices should be available soon with speeds in the range of
0.4—0.5 million operations per second, fully parallel, with
built-in floating-point arithmetic and hardware multiply and
divide. Such devices will be easier to use and will be supported
by continually advancing software packages, thus making
unnecessary much of the bookkeeping required when using
today’s processors. At the same time, I suspect that some of
the fun of communicating directly with a microprocessor in its
own language will be lost.
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Appendix A

Single-Digit Hexadecimal
(Hex) Multiplication Table

1 2 3 4 5 6 7 8 9 A B8 C D E F
1 1 2 3 4 5 6 7 8 9 A8 C D E F
2 4 6 8 A [ E 10 a2 Ml 18 1A IC I
3 9 C F 12 15 18 18 €| 21 24 27 2A 2D
4 10 14 18 1c 20 24 281 2C 30 34 3B 3IC
5 19 1E 23 28 20 32} 3F 3C 41 4 4B
6 24 2A 30 36 3C| 42 48 4E 54 S5A
7 3 38 IF 46 4D 54 58 62 &9
8 40 48 50| 58 60 68 70 78
9 51 5Al 63 6C 75 7€ 87
A 641 6E 78 82 8BC 96
8 79 84 8F 9A AS
C 90 9C A8 B4
D A? 86 3
E Cc4 D2

El

(Courtesy Rockwell international)
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Appendix

A Proof of the Hartmann
Conversion System

Any integer N expressed in a positional notation system is
of the form

Ni =a.d" + Qo™+
+a b+ a =3%_1ab +a

where b is the base and the a, the coefficients.
We wish to find a new set of coefficients such that

E‘{iﬂaib‘ 4+ Qo =3F .4

iB' + A

where B is the new base. If we are looking for the new number
{N;),then

N, =N:;=a + 35214
[B' + (b' — B')]

where B' is added and subtracted term by term and
expressed as a summation.
We can express (b' — B')as

(b —B) (b"'B" +

BB+ ...+ b*B"")
by dividing (b' — B') by (b — B).
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If we now substitute equation (4) into (3), we have
N =a + 2% & [B' + M +
b*B + ..+ bB"?* + B'™')]
where M = (b — B),

If we now refer to the example of Table 2-10 and apply
equation (5), we have

b=2
B=10
M=(b-B) =2-10=38
a =1
a =1
a =0
as =1
K=3

So:
1011 = 1+ 1[10 + (--8) (1)] + 0[100 + (—8) (10 + 2)]

+ 1[(1000) + (—8) (100 + 20 + 4)]
=14+0+2+8
= 1110

(Courtesy Rockwell International)

249



rsions

POWERS OF TWO
20 n 27

0 1.61
105

2 0.25
3 0.125

16 4 0.062 5

32 5 0.081 25
64 6 0.015 625
128 7 0.007 812 5

256 8 0.003 906 25

512 9 0.001 953 125
1 024 10 0.000 976 562 5
2 048 11 0.000 483 281 25

4 096 12 0.000 244 140 625

8 192 13 0.000 122 070 312 5
16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 20 0.000 000 953 674 316 406 25

2 097 152 21 0.000 000 476 837 158 203 125

4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 731 25

16 777 216 24 0.000 000 059 604 644 775 390 625

33 554 432 25 0.000 000 029 802 322 387 695 312 §
67 108 864 26 0.000 000 014 901 161 193 847 656 25
134 217 728 27 0.000 000 007 450 580 596 923 823 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 §

(This data courtesy of Rockwell International)

SO > BN
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TABLE OF POWERS OF SIXTEEN, o

L1 167
' ® 00000 00000 00000 00000 .x 10
® ! 042500 00000 00000 00000 x 107"
286 2 039062 50000 00000 00000 x 1072
4 0% 3 024414 06250 00000 00000 = 107
& 53 4 0.15258 78906 25000 00000 = 10°*
1 048 5% 5 09537 43164 06250 00000 x 1070
6 77 216 6 059604 64477 53905 25000 x 107
248 435 456 7 Q37252 90298 46190 40635 x 1070
4 294 97 29 8 020280 06436 5389 62891 x 1077
68 719 476 73 9 04551 91522 83668 51807 x 10710
VM9 S 627 776 W0 09949 47017 72928 2792 = 10”12
17 592 186 044 416 M 056843 41886 08080 14870 = 1073
20 474 976 710 656 12 035527 13678 80050 09294 x 10°'4
4 503 599 627 370 496 13 022204 45049 25031 20608 x 10710
72 057 594 037 927 936 14 0.13877 78780 7B144 56755 =x 10.]6
1 152 921 504 606 846 976 15 0.86736 17379 68403 5472% x \0“8
TABLE OF POWERS OF TEN 4
W . [
1 @  1.0000 0000 0000 €000
A 1 01999 9999 9999 9994
64 2 028F5 C20F 5C28 F5C3 x 167
3E8 3 04189 3748 C6A7 EFPE x 162
2710 4 0.68DB 8BAC 710C B296 x 167
1 86A0 5  0AICS AC47 1847 8423 x 164
F 4240 6  010C6 F7A0 BSED 8037 x 1674
98 9680 7 0.JAD7 F29A BCAF 4858 x 1675
SF5 E100 8 024F3 1DC4 6118 73BF x 1670
3B9A CA0Q 9 04488 2FA0 9B5A S52CC x 167
2 5408 400 10 06DF3 7F67 SEF6 EADF x 16°°
17 4876 £800 M OAFEB FFOB CB24 AAFF x 167
E8 D4AS 1000 2 00197 9981 20EA 1119 x 167
218 4E72 A00D 13 01C25 Cc268 4976 8ic2 x 1610
5AF3 107A 4000 14 02009 370D 4257 3604 x 1671
3 8D7E A4C6 8000 15 0480E BE7B 9D58 566D x 162
23 B6F2 6FCI 0000 16 0734A CASF 6226 FOAE x 16°°
163 4578 5DBA 0000 7 08877 AA32 36A4 B449 x 16
DEO B6B3 A764 0000 18 01272 5001 D243 ABAl x 6%
BAC7 2304 89E8 0000 19 0.1D83 C94F B6D2 ACIS x 16°'°
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HEXADECIMAL-DECIMAL INTEGER CONVERSION

The following table provides for direct conversions
between hexadecimal integers in the range 0--FFF and
decimal integers in the range 0—4095. For conversion of larger
integers, the table values may be added to the following

figures:

Hexadecimal

01 000
02 000
03 000
04 000
05 000
06 000
07 000
08 000
09 000
0A 000
0B 000
0C 000
0D 000
OE 000
OF 000
10 000
11 000
12 000
13 000
14 000
15 000
16 000
17 000
18 000
19 000
1A 000
18 000
1C 000
1D 000
1E 000
IF 000

252

Decimal

4 096
8192
12 288
16 384
20 480
24 576
28 672
32768
36 864
40 960
45 056
49 152
53 248
57 344
61 440
65 536
69 632
73728
77 824
81 920
86 016
90 112
94 208
98 304
102 400
106 496
110 592
114 488
118 784
122 880
126 976

Hexadecimal

20 000
30 000
40 000
50 000
60 000
70 000
80 000
90 000
A0 000
BO 000
C0 000
DO 000
€0 000
F0 000
100 000
200 000
300 000
400 000
500 000
600 000
700 000
800 000
900 000
A00 000
800 000
€00 000
D00 000
€00 000
F00 000
1 000 000
2 000 000

Decimal

131 072
196 608
262 144
327 680
393 216
458 752
524 288
589 824
655 360
720 896
786 432
851 968
917 504
983 040

1 048 576
2 097 152
3145728
4 194 304
5 242 880
6 291 456
7 340 032
8 388 608
9437 184
10 485 760
11534 336
12 582 912
13 631 488
14 680 064
15 728 640
16 777 216
33 554 432
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DECIMAL
NUMBER
RANGE

549
274

137

264

755
877
438
719
359
179
589
294
147
073
536
268
134

67

33

16

813

906

953

476

738

869

934

967

483

741

870

435

217

108

554

7

BINARY
SCALE

888.
+39
944

+38
472

+37

736
+36

368
+35

184 :
+34

592 - -
+33

296
+32

648
+31

824 - -
+30

912 :
+29

456
+28

728 :
+27

864 -

+26

432
+25

216 ;

DECIMAL
NUMBER
RANGE

8 388
4 194
2 097
1 048
524
262
131
65
32
16

BINARY
SCALE

608
304
152
576
288
144
072
536
768
384
192
096
048
024
512

256

+24

+23

+22

+21

———

+20

+19

+18

+17

+16

e ———

+15

+14

+13

+12

+11

+10

+9




256,
128.

0.5
0.25
0.125
0.062
0.031
0.015
0.007
0.003
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

DECIMAL
NUMBER

RANGE

25

625
812
906
953
976
4388
244
122
061
030
015
007
003
001
000
000
000
000

25

125
562
281
140
070
035
517
258
629
814
907
953
476
238
119

25

625
312
156
578
789
394
697
348
674
837
418
209

25

125
062
531
265
632
316
158
579
289

25

625
812
406
203
101
550

BINARY

25

125
562
781

SCALE
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index

A arithmetic 28
Accumulator 18 -coded decimals (BCD) 46
Adder complements 30
parallel 61 integers 27
serial 58 left shift subroutine (BLS) 112
Addition multiplication 32
BCD 47 precision of 36
fixed-point 69 right subroutine (ARS) 113
Address, pointers 88  Bit designation subroutine (DBS) 110
Algebra, Boolean 54 Boolean algebra 54
ALU 18
Arithmetic C
binary 28 Carry register 18
fixed-point 67 Characteristic 125
Assemulator 144 Check sum 155
Assembler Chip
definition 163 pased operating system (CBOS) 145
entering data 102 definition 230
entering instructions 102 (1ock
error checking 106 AMP 22
explanation 102 decode, definitionanduse 21
relative addressing 103 decode register 17
symbolic addressing 103 Complements
binary 30
B of sets 53
BCD Complementary MOS 240
addition 47 Complementation 29
binary-coded decimals 46 Compiler
conversions 50 definition 164
subtraction 49 FORTRAN 164
Binary MPL 173
adders 58 PL/M 179
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Condition code
Conditional transfer
Convention
fixed-point arithmetic
floating-point arithmetic
Conversions
BCD
familiar number system
foreign number system
Hartmann
number
radical point
Converting
fractions
integers
Counters
gray-code
non-binary
polynomial
shift
CPU

D

Data
address registers
format standards

Devices
enhancement-type P
PMOS, NMOS
N-channel

Diagnostics

Diagrams, Veitch

Digit bits

Direct memory access

Discrete input/output register

Disks

Display drive

Division, fixed-point

Drivers

E

Emulator
Even parity
Exclusive OR
Exponentiation

F

Fabrication of PMOS
Familiar number system
Field

comment

label

op code

operand

operator

276

182
87

67
126

50
41
41
43
40
41

44
42

225
224
227
224

17

16
148

231
229
231
140
57
149
223
19
162
157
70
19

144
154
53
7

233
41

139
138
138
139
138

Fixed-point
addition
addition subroutine (FBA}
addition subroutine (FXA)
arithmetic
arithmetic conventions
division
multiplication
precision
scaling rule
subtraction

69
122
116

67

67

70

70

73

69

70

subtraction subroutine (FBS) 123
subtraction subroutine (FXS) 120

Floating-point
arithmetic, addition
arithmetic conventions
arithmetic, description
arithmetic explanation
arithmetic, multiplication
arithmetic, subtraction
Flow charts
Foreign number system
FORTRAN
arithmetic statements
definition
derivation
descriptive statements
dimension statement
DO statements
FORMAT statement
GO TO statement
input/output data forms
read and write statements
transfer statements
Fractions, conversion of

G
Gray-code counters

General register exchange (GX)

Group
arithmetic
control transfer
data address modification
data transfer
input/output
logic

H

Hartmann conversion
Hexadecimal system
Hollerith cards

I

Initialization routine (ST}
Input/output controller

128
126
125
127
132
128

77

41

166
165
164
165
171
170
172
169
171
173
169

4

225
114

90
97
95

101

43
39
150

107
23



Instructions
arithmetic and logic
control transfer 15
data transfer 15
decode register 19
input/output 15
multiplication, division 16
set 89
shift 16
stacking 16
binary 27
conversion of 42

Intel
8080, definition 194
8080, input/output port 203
8080, instructions 198
8080 instruction set 198
8080, internal registers 195
8080 microprocessor 193

8080, random-access memory 202
8080, read-only memories 199

Interpreter, definition 163
Interrupt 222
Intersection, of sets 53
I0C enable signal 19
K
Keyboard interface 155
L
Loaders 136
Logic
explanation of 52
integrated injection 241
MOS 65
Loops 80
M
Magnetic tape 160
Mantissa 125
Maxterm 57
Memory addressing 84
Microprocessor
assembler host 137
configuration 17
definition 13
description 13
general instructions 15
history of 9
logic 52
Rams 21
ROMs 19
Minterm 57
MOS
complementary 240
logic 65

Motorola

15 M6800, definition

M6800 Microprocessor

MPL

arithmetic and

logic expressions
arithmetic statement
arrays

comments

constant data

control statements
data formats

declare statement
definition

main procedures
operators of primaries
origin statement
primary expressions
procedure statements
specification statements
statement labels
subroutine procedures
variable data

MPU

accumulators A and B
accumulator addressing
arithmetic and logic unit

182
182

176
178
176
174
175
174
174
178
173
178
177
177
176
174
174
174
178
175

188
187
188

asynchronous cornmunications

interface adapter
buffers
condition code register
direct addressing
extended addressing
functional elements
immediate addressing
implied addressing
index register
indexed addressing

peripheral interface adapter

program counter
RAM

relative addressing
ROM

stack pointer

Multiplication

defining conditions
fixed-point

N

N-channel device
Non-binary counters
Non-integral

power-of-two scaling

addition and subtraction

193
188
188
187
187
186
187
186
188
187
189
187
188
187
189
188

32
70

231
224

219

power-of-two scaling, division 220

power-of-two scaling,
explanation

217

277



power-of two scaling,
microprocessor example
power-of-two scaling,
multiplication
Null set
Number conversions

]

Octal system
Odd parity
QOverflow

Paging
Parallel adder
Parity check
Photoresist, definition
PL/M

definition

derivation
PMOS

fabrication of enhancement

NMOS devices
Pool

command

literal

routine entry
Pooled data
Polynomial counters
Power-on detector
Precision, binary system
Processor control
Program registers
Programming

coding

flow charting

requirements

Q
Qregister

R

Radical point

RAM
addressing

Register
carry
clock decode
discrete input and output
general exchange (GX)
instruction decode
program and data address
Q
save
X

278

218

22
52

37
154
73

87
61
151
229

179
179

233
229

223
223
223
223
2217
19
36
182
16

76

76
76

19

Return address subroutine (PSHP)

Rockwell

PPS-8, arithmetic/logic

PPS-8, clock decode

PPS-8, direct memory
access controller

PPS-8, drivers and receivers

PPS-8, instruction decode

PPS-8 instruction set

PPS-8, L register

PPS-8 Microprocessor,
definition

PPS-8 Microprocessor,
description

PPS-8, P Register

121

210
211

214
211
208
24
210

203

203
208

PPS-8, parallel data controller

213

PPS-8, random-access memory

PPS-8, read-only memory
PPS-8, S register
PPS-8, serial data controller
PPS-8, W Register
PPS-8, X Register
PPS-8, Y Register
PPS-8, Z Register
ROMs
addressing
Root extraction
Routine, initialization (ST)

S

Save registers
Serial adder
Set, instruction
Shift counters
Silox, definition
Simulator
definition
Skip on carry subroutine (SKCZy
Sorting program (SORT)
Stacks, push-down/pop-up
Standards, data format
Subroutine
binary lift shift (BLS)
binary right (ARS)
BIT designation (DBS)
fixed-point addition (FXA)
fixed-point addition (FBA)

211
211
210
211
210
210
210
210

19

86

7%
107

18

58

89
224
234
142
164
111
118
221
148

12
113
110
116
122

fixed-point subtraction (FBS) 123
fixed-point subtraction (FXS) 120

return address (PSHP)
skip on carry (SKCZ)
word shift (WRS)
ZERO RAM (ZORM)

121
111
109
108



Subtraction
BCD
fixed-point
hexadecimal
octal
time-shared

T
Text-editor
Time-shared systems

¢}
Underflow

Union, of sets
Universal set

49
70

37
143

142
143

73
52
52

v
Veitch diagrams

w
Word shift subroutine (WRS)

X
X-Register

z

Zero RAM subroutine (ZORM)
Zone bits

57

109

18

108
149
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