THE
PROGRAMMERS

GUIDE
TO

LDOS/TRSDOS
VERSION 6

ll:)

ROY SOLTOFF

The Prosrommer's Guide to LDOS/TRS00S Version 6

; by
Row Sol toff, BSEE

MISOSYS
Alexandria, Virsinia

Copyright (c) 1983 MISOSYS
A1l Rights Reserved

First Edition - 1983
Second Edition - 1984

Reproduction in any manner, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without expressed written permission is
prohibited.

Disclaimer:

While MISOSYS has taken every precaution in the preparation of this book, it
assumes no responsibility for errors or omissions. Neither is any liability

assumed for damages resulting from the use of the information contained
herein. '

LDOS is a trademark of Logical Systems, Incorporated. .
TRSDOS is a trademark of Tandy Corporation.

CP/M is a trademark of Digital Research Incorporated.
IBM is a trademark of International Business Machines, Inc.

MISOSYS, Inc.
P. 0. Box 239
Sterling, Virginia 22170-0239

This book is dedicated to my first daughter, Stacey Elizabeth, whose birth
the eighth of June of 1983 provided me my proudest moment in life. There is
no way that I can sufficiently thank my wife, Brenda, for nurturing and
bringing forth this new human being - but I'11 try.

- iii -

Preface

Many thousands of users take it upon themselves to explore the workings
of an operating system so as to gain a better understanding of application
software interfacing. This has always been such a waste of programmer talent
because the system's designers usually know the best interfacing procedures.
A complex operating system has many ideosyncracies. Because of this, some
procedures work much better than others to accomplish the same goal.

An operating system in this day and age demands that precious talent not
be wasted. LDOS Version 6 is a complex operating system. There should not be
a void of information that the programmer needs to properly write his or her
software. For the programmer, this book should fill that void. It is not
intended as an assembly language learning tool nor is it intended as an
expose' of ‘"mysteries" concerning the internal workings of the operating
system. This book conveys that information which is essential to the job of
programming application software, utilities, device drivers and filters.

It is very important for the programmer to keep PORTABILITY paramount in
the thinking that goes along with program design. LDOS Version 6 was designed
to provide portability for application software by incorporating standard
protocols and conventions for all interfacing. Keep that 1in mind when you
explore the contents of this book.

Knowing full well that the microcomputer community inherently finds
distasteful the prospect of reading documentation cover-to-cover prior to
jumping in and getting their feet wet, this book includes an index. Then
again, what kind of book omits an index? Feel free to access the information
randomly, although I recommend that a sequential scanning is more suited to
the Tearning process.

The chapter contents have been designed to be self contained. Thus, you
may find some small repetition of subject matter where it was felt that a
term or concept may not have been carried over from an earlier chapter due to
an indexed access of the subject matter.

I have tried to be complete within the subjects discussed. As there are
some proprietary items within the operating system, confidentiality precludes
their appearance in this book. However, any work of this magnitude is bound
to omit a detail. If you feel that a subject should have been included,
please bring it to the publisher's attention. Remember that the desire to
foster the development of portable software may mean that certain points may
have been omitted to preclude the writing of non-portable machine specific
software. Where you must write machine specific software, it is recommended
that you obtain the manufacturer's hardware technical manual.

The programming examples were coded with the PRO-CREATE assembler which
is available from MISOSYS. References to SuperVisor Calls in the form @XXXX
should have a corresponding EQU statement which defines the SVC number.

For those individuals firmly entrenched in operating system exploration,
I heartily recommend THE SOURCE, a three-volume set of books that provide the
complete set of assembler source listings that constitute LDOS Version 6.2.0.
THE SOURCE 1is available from Logical Systems, Inc.

Lastly, the author 1is always open to suggestions for improving this

book. Certainly if you uncover erroneous data, suggest that it be corrected
in the next printing. I wish you successful programming.

- iv =

Table of Contents

Chapter 1 - An Operating System Overview

LDOS Version 6 - An Operating System Overvieweiveeeeeennns 1
Chapter 2 - Device Input/Output Interfacing
Device I/0 N GeNeral ciuiveeeveeeeeeeeeeasencosesosescanacncacnosns 11
The Device Control BTOCK tevveeereeroereecnsensensascassascsancons 12
Accessing Device COntrol BTOCKS wiveeererenececeocasconcscannnnans 14
Device Chain ITTusStrations .uiceveeieeereeeeeeneenesesesssnscannoas 14
Device Driver/Filter Template ..cciiiiieeeneeenececocasscssancanns 22
@CTL Interfacing to Device Drivers .eeieeececsecscessoessssncnsnnns 28
Chapter 3 - Disk Drive Input/Output Interfacing
General Disk Drive Configurations ...iceeeeeeeecscesesonosoanse ... 34
Drive Control Table c.ceveoeeeencesecossenssosccocesososasannsnsns 37
Disk Controller CommunicationsSeeeieeeresneascoseonsnnnsasonns 44
Hard Disk Allocation SChemesviieeeeeeeesossacscsoscsosconcans 50
Placement of DiSk Drivers c.eeeeveceeeeeeeeceeoseeonosassscncnsnns 54

Chapter 4 - The DOS Directory Structure

General Directory Conventionseeeeceeeeecoocessocsscoocsconns 57
The Granule ATTocation Table cveeeieeeeeeenenencaseoaceceascnsoosns 59
The Hash IndeXx Table t.veieereeeeeneenocncocsoscosssoanonnncnsnsans 64
The Directory Record StrUCTUre ... eeeeeeeeeeenocsseeonsoncannsan 68
Chapter 5 - Disk File Access and Control
General File Structures ...eeieeecneesscossococonoscassnssacscnans 75
Controlling Disk FilesS tiveveeinrernennnsnocasacasesssassnsoananns 78
Accessing Disk FilesS teeeieereerecreeeeseoseosensosossessoncnnosss 86
The File Control BTOCK ceveeeeeeeeeneancoseasonseaseasesssacananns 91
Chapter 6 - Interfacing via SuperVisor Calls
SuperVisor Call Linkage s..eeeeeseosocacecsvcscsssssosscssaosssans 99
Program Entry and Exit conditions ...eeeeeeeeeeeeneenseionnconnns 100
SuperVisor Calls Listed Alphabetically cceeeeeneeenetoocnncnncane 101
SuperVisor Calls Listed Numerically vieeeeeeeeeerenneeoesennceens 103
SuperVisor Calls Listed by Function Group...ceeeeeeeeeeeeecocanns 106
SuperVisor Call Details vuiveeececeseocssocnsvsnsoacssscsnesonanes 109
Appendix - Miscellaneous Subject Matter
Boot Initialization ICNFG interfacingcveeeviricnencenneenns 143
BREAK, PAUSE, ENTER Interrupt Latch Handlingceievevevennnns 145
Disk Load Module FOrmat ...eeeeieeeereersoceocossoscnsssansnnanns 149
Error Message Dictionary «ceieveeeeeececscerosossnsosssssesasanns 154
Header Protocol of Memory ModulesSciieeeiiinenecrnceosssaanse 160
Interrupt Task Processor Interfacing ..eveeeeeeeeecenseecsanennnns 162
Low Memory Details vuuveieeeeeeeerenieresonnossoceanssssnnasnasons 166
Memory Bank SwitChing .e.veiieeniiereneenronenrsnscsscosonssasans 169
Non-interrupt Background Task (KITSK) Interfacingccveuenn 174
System Disk BOOt TraCk .ueeeeieeeereeoencnocoosescsacnsscosanssnnns 176
System Overlay Contents and ACCESS vevveerereeeeorcensssnnscnasans 179
Using the System Parameter SCannerieeieeeecccesconsansnnnnns 182
Sample Filters [TRAP, SLASHO, BOLDFACE] «vveeeeneeeeneneeonncanns 189
List Of FIigUres ..iiiieininineneeeoasosotosesoscacososssascosnansonnos 201
T - 203

Operating System Overview

LDOS VERSION 6 - AN OPERATING SYSTEM OVERVIEW

After spending a few hours at any computer show featuring micro-
computers, it becomes obvious that most 8-bit machines Tlook surprisingly
similar. Each comes equipped more or less with the following features: CRT
monitor, keyboard, one or more 5-1/4" or 8" floppy disk drives (usually
5-1/4" wminifloppies), 64K-128K of RAM, and a processor card. With the
industry seemingly adopting CP/M as an operating system pseudo-standard, the
chip usually chosen is Zilog's Z-80 microprocessor. The design of these
machines must be sufficiently straight forward. While each competing
manufacturer attempts to make its machine more desirable by implementing
greater reliability, flexible interfacing, more peripheral support,
additional hardware features, attractive packaging, and Tower cost,
cognizance of the cost effectiveness of utilizing smarter software may just
be the important ingredient sometimes overlooked.

Alternative operating systems are available that bring a great deal of
main-frame power to the microcomputer. One such system, LDOS Version 6 [or
its Ticensed dialects such as TRSDOS 61, is a classic example of a truly
powerful operating system designed for an eight bit microcomputer using the
Z-80 processor chip. LDOS provides a single-user system with total device
independence, dynamic file space allocation, extensive file management, job
control language structures, a large library of utilities, plus the ability
to easily interface to disk storage devices with capacities from 88 kilobyte
minifloppies to multi-megabyte winchester disk drives. Error trapping and an
English-Tike command structure help make LDOS a user-friendly but powerful
operating system.

The primary design obligation of LDOS 1is to ensure MEDIA COMPATIBILITY
across all machines running the DOS (within the 5-1/4 or 8" size). This means
that a user must be able to take a diskette and use it across all machines
running LDOS - so Tlong as the hardware permits that size diskette. To
accomplish this, the DOS has a "standard" 5-1/4" structure - both single
density and double density. It also has a “"standard" 8" diskette structure.
The structure goes beyond just the format and allocation schemes - it covers
the entire directory makeup.

The hardware architecture chosen for LDOS Version 6 is a Z-80 based
microcomputer with a minimum of 64K RAM and 80 by 24 video screen size. The
DOS includes a bank-switching SuperVisor Call that implements memory bank
switching. The SVC permits switching a memory segment (usually the top 32K)
with up to seven auxiliary 32K memory banks. It also supports the controlled
transfer of execution to a location within the bank at the option of the
user. The system maintains supervision of the resident bank to ensure that
the standard bank (bank 0) is always resident during certain operations (disk
I/0, character 1/0, and interrupt task handling). The DOS is designed to
operate starting from address zero (page O origin) and is 100% SuperVisor
Call (SVC) accessed. System data items needed by application software are
also available via SVCs.

Figure 1-1 represents a block diagram of the operating system.
Essentially, there are two Tlevels of interaction to the system - command
level and primitive level. At the command level, the operator enters a
command which requests the execution of some function [perhaps the listing of

a file, the displaying of a disk directory, the running of a BASIC program,

1-1

The Programmers Guide to LDOS/TRSDOS Version 6

or the compiling of a C language source filel. The command interpreter parses
the wuser entry, determines whether the request is for a system function or
user-supplied function, then arranges for the necessary system resources.
Control is transferred to the module necessary to satisfy the request. The
system passes parameter pointers to the module and expects a return code upon
the module's completion.

VER
COMMAND DISK DRIV
INTERPRETER - KI

F
DCT | ¥ DRIVER

SYSTEM

LOADER DCB [=+ DRIVER

FCB '« DRIVER

FILE ACCESS
ROUTINES PR

Figure 1-1: LDOS Block Structure \~_,,~f””—_

System resources and data quantities are requested via a SuperVisor Call
(SVC) processor. An SVC is associated with all system primitives (i.e. get a
character, put a character, open a file, add a task, rename a file, ...).
Application software written 1in a low-level language (such as assembler)
makes direct use of the SVC. Programs using a high-level language (i.e.
BASIC, C, PASCAL, ...) need not bother with the SVC as system interfacing is
accomplished within the language interpreter or compiler.

The DOS supports up to eight logical disk packs or volumes logically
numbered 0-7. Each floppy, be it one or two sided, is treated as a single
volume. Hard disk drives (winchesters) may be treated as a single volume or
partitioned into multiple volumes. A Drive Control Table (DCT) contains the
parameters associated with each disk (number of cylinders, heads, and sectors
per track for example) and also interfaces the disk driver software to the
system.

Operating System Overview

Character Input/Output devices (i.e. keyboard, video display, printer,
RS-232 serial ports, ...) and their associated software driver routines are
interfaced to the system via Device Control Blocks (DCB). 1I/0 devices are
identified by a two-character device name such as KI (keyboard input), DO
(video output), PR (printer), and CL (communications line). Whenever a device
is specified, it is denoted by an asterisk followed by the device name to
form a complete "device specification". The reason for this will soon become
evident. Additional devices can be defined to the system once an appropriate
software driver 1is available. The device name selection is left up to the
user.

A collection of data stored on disk is termed a file and is denoted by a
file specification. A complete file specification consists of five parts: a
file name of up to eight characters, a file extension of up to three
characters, a file password of up to eight characters, the logical drive
specification, and optionally, in certain cases of Partitioned Data Sets
(PDS), a member specification of up to eight characters. Whenever users
institute a structured naming convention, most files are accessible via the
file name reference only. The DOS will search all drives for a file if the
drive specification is omitted from the file specification. Also, many system
utilities and user applications can use default file extensions to separate
files into classes. For example, PRO-CREATE, a popular assembler running
under the DOS, will automatically use the file extension "/ASM" for its
source files and "/CMD" for its object code generation thus alleviating the
user of the necessity to enter the file extensions (it also helps to prevent
inadvertantly overwriting one file with another). Similarly, LDOS makes
extensive use of default file extensions such as "JCL" for all Job Control
Language, "TXT" for ASCII listings, "FLT" for all device filters, etc.

File specifications and device specifications are generally inter-
changeable. Thus, wherever a file specification is needed, a device
specification can usually be entered. This is one of the examples of device
independence in the system. The protocol used in character I/0 is identical
across logical devices (i.e. *KI, *PR, *SO, ...) and disk files. Thus,
character 1/0 is handled the same way regardless of the physical device
identified in the Device/File Control Block (DCB/FCB) - be it physical
keyboard, printer, or disk file. For example, the COPY utility is used
primarily to copy a file from one disk to another as in:

COPY ARTICLE/TXT:0 TO ARTICLE/TXT:1

which creates a duplicate on drive 1 of the file specified "ARTICLE/TXT"
located on drive 0. In lieu of the file specifications, device specifications
could equally be used as in the following:

COPY *KI TO *PR

which copies keyboard input directly to the printer. With ease, a keyboard
can be added to a daisy-wheel printer turning it into a temporary typewriter.
Perhaps a more useful illustration would be the convenience of directing
program output to video display, printer, or a file depending on the
device/file specification provided.

The acquisition of disk file space is completely transparent to the
user. This frees the user from worrying about sectors, tracks, cylinders,

1-3

The Programmers Guide to LDOS/TRSDOS Version 6

heads, and even disk drives in most cases. File space is obtained dynamically
for any given file when space 1is required. Since directory accesses are
dynamic (i.e. any time directory information requires updating, a disk access
is made), users can change floppy diskettes in a disk drive after any open
files on the disk have been closed with out having to "log" the action.

Files do not have to occupy contiguous space on a disk but can exist in
blocks of space called extents. Linkage maps exist in a file's directory
which connect each extent. Access to a file 1is achieved by placing the file
specification in a File Control Block (FCB), referencing a user disk file I/0
buffer, and issuing the "OPEN" SVC. The provision of a separate file buffer
for each file greatly adds to the system's flexibility. Directory information
needed by the file access vroutines is then placed in the "open" FCB.
Thereafter, SVC requests for file positioning, reading, and writing are
available to access any record in the file. Fixed record lengths of from one
to 256 bytes are available directly at the SVC level. Languages, such as
BASIC, generally provide sequential files with variable record lengths.

Although the functions supported are many, a minimum of the machine's
RAM space is required by LDOS. This 1is achieved by having only frequently
used routines resident in memory while others are brought in to an overlay
region on an as-required basis. All of the functions identified 1in Figure
1-1, dincluding the device and disk drivers (both floppy and hard), are
contained in a 9K memory space which includes a 1.5K (1536 bytes) system
overlay region. Another 3K region is used for the execution of system library
commands but may be used by applications that do not request system library
functions. Functionally, the DOS 1is divided into seven regions: system low
core (LOWCORE), Input/Output driver region (IOR), resident system (SYSRES),
System Overlay Region (SOR), Library Overlay Region (LOR), User Program
Region (UPR), and high memory region (HIMEM). The UPR extends from X'3000'
through HIGH$. Figure 1-2 illustrates these regions. The DOS normally does
not use HIMEM; however, certain user-specified requests must be satisfied by
use of high memory. For example, SPOOL filter and buffer space use high
memory. KSM filter and data space wuse high memory. A pointer to the top of
HIMEM is available via an SVC and programs must honor this HIGH$ pointer.

The interrupt task scheduler listed in figure 1-2 under SYSRES schedules
the execution of small background tasks at periodic intervals. The time
intervals are determined primarily by a hardware generated interrupt to the
Z-80 processor. A desirable minimum interrupt rate would be 40-60 Hz. This
"clock" is software divided to produce "high", medium, and "low" level task
control. The DOS provides for eight TJow Tlevel tasks, three medium level
tasks, and one high Tevel task. For example, with a 60Hz interrupt rate, one
task can be performed at 16.7ms intervals, three discrete tasks can be
processed at 33.3ms intervals while eight other tasks are processed at 267ms
intervals. The types of tasks generally operating from such a scheduler would
be software time of day routines, printer despooling routines, address trace
functions, keyboard type ahead scanning, blinking cursor routines, or other
processes that need to be examined at periodic intervals.

As a specific example of how software can reduce hardware costs, briefly
examine keyboard type-ahead. This feature 1is quite significant to a fast
typist. Even slow operator entry can gain from type ahead by the ability to
enter responses in anticipation of known queries. Even if the hardware does
not provide an interrupt generating keyboard, the DOS implements a 64-128
(depending on release) character type ahead buffer via task polling which is

1-4

Operating System Overview

adequate for all operators.

I I
| LOWCORE: X'0000' - @$SYS |
| RST vectors, NMI vector, System flags, Date, |
| Time, System FCB, DEBUG register save area, |
| JCL FCB, Command FCB, SVC Table, DCB Table, [
| System stack, Miscellaneous data, Command input |
| buffer, Drive Control Table, Device I/0 handler,|
{ Clock task, Memory management routines. |
| IOR: @$SYS - X'12FF!

| Keyboard, Video, Printer, and Disk drivers.

[SYSRES: X'1300' - X'1DFF'

| File access routines, SVC processor, System
| overlay handler, System program loader,

| Interrupt Task Schedular, System buffer.

| SOR: X'1EQQ' - X'23FF!' |
| Execution region for system overlays 2-5, 9-13, |
| overlay disk file buffer.

| LOR: X'2400' - X'25FF' & X'2600' - X'2FFF®
| Execution region for system library comands
| contained in libraries A, B, & C.

| UPR: X'3000' - (HIGH$)

| Execution region for user transient programs
| (note: programs not accessing the system

| libraries can start at X'2600'.

i
1
]
i
]
i
]
]
]
I
]
]
]
]
]
1
1
]
]
i
]
]
1
]
]
i
]
]
]
]
1
]
]
1
1
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

| HIMEM: (HIGH$)+1 - X'FFFF! I
| Region for relocation of extended system and |
| user static modules. I
I I

The task scheduler is also used by the despooling function of the
printer spooler. The DOS spooler implements a combination of memory and disk
buffers to temporarily hold the printer output. This output is despooled to
the printer under the control of the task scheduler. The function, being
transparent to the wuser, can continue the despooling even after the
application generating the output is finished and another started. When the
system contains 128K (or more) of RAM, the extra RAM can be set aside for the
spooler's memory buffer.

The primary function of any operating system is to provide the user with
a facility for managing and accessing files stored on disk storage devices.
Since the user must not be burdened with the physical details of the storage
devices themselves, it is the operating system's responsibility to translate
all file vrecord access requests into specific drive, track, sector, and head

1-5

The Programmers Guide to LDOS/TRSDOS Version 6

parameters that pinpoint the storage 1location of each record. The DOS
supports a wide range of disk storage capacities. Let's take a brief look at
how a disk drive is organized

Each track is formatted into a specific quantity of 256-byte sectors
with a maximum capacity of 32 sectors per track. Sectors are grouped into
blocks called "granules" which vary in size according to total track
capacity. Whenever additional disk space is needed for a file, an additional
granule is allocated. The granule thus becomes the minimum size storage unit.
Where multiple headed drives are in use, the track numbers on a surface are
duplicated on each surface with all similarly numbered tracks constituting a
cylinder. Cylinder capacities also have an upper limit of 256 sectors per
cylinder or eight granules per cylinder while the system supports a maximum
of eight heads per drive.

In order to evenly use the entire surface of a drive, files are
uniformly distributed across each surface [note: LSI unfortunately has
changed to a fixed allocation scheme effective with release 6.1]. That means
the head has a tendency to be randomly located whenever a directory access is
needed. Because of this, each disk drive's directory 1is placed on the
cylinder closest to its midpoint which provides a tendency to minimize the
average seek time for directory accesses. The directory, of course, contains
information on each file stored on the drive as well as additional tables and
codes pertinent to the drive.

The first sector of the directory contains a granule allocation table
(GAT). The GAT is bit mapped to each granule of space on the drive. Other
fields in the GAT contain the PACK NAME, DATE of creation, pack PASSWORD, and
data pertaining to the configuration of the drive.

The system can support a capacity of 13 Megabytes of directly
addressable storage on each of eight drives. Rigid disk drives of greater
capacities can be supported by partitioning them into two or more logical
drives. Also, where a physical parameter exceeds the wupper limits,
translation techniques can be used in software. Again, the flexibility of the
system provided through intelligent software allows for easy interfacing.

When a file is to be opened for access, the system needs to search the
directory for its directory record. Search time is minimized by using a
hashing technique to reduce the 1l-character string formed from the file name
and extension to a one-byte value. The hash code for each file is stored in a
Hash Index Table (HIT) which is the second sector of the directory. Each
position in this table corresponds to a specific directory entry record. The
hash table, being a sector in Tlength, can index a maximum of 256 directory
records or files. The directory itself is sized according to disk capacity by
being a maximum of one cylinder (up to 34 sectors). Thus, the larger the disk
storage capacity, the larger its directory, and the greater the number of
file names that can be stored.

To open a file, therefore, the file name and extension are gathered from
the specification and put through the hashing algorithm. The HIT sector is
read and searched for a matching value. When a match is found, the directory
sector containing the corresponding directory record is read. To guard
against a different file name/ext hashing to the same value (which is called
a collision), the 1ll-byte string is then checked for a match. If the correct
record has not been retrieved, the HIT is examined further.

1-6

Operating System Overview

The directory record contains information such as the date the file was
last modified, its update and access password codes, its access level, other
attributes such as whether it is a SYStem or PDS file and if a backup has
been made, the relative number of the last sector in the file and the last
byte within the last sector. The record also contains the physical storage in
use by the file by pointing to the cylinder, relative starting granule, and
number of contiguous granules for each extent linking up the file. When a
file has more than four extents, additional directory vrecords are used as
required with forward and backward pointers linking each record.

A feature considered important by many users is the flexibility of the
file management utilities. These utilities include such functions as copying
files from one drive to another, appending two files together, listing files
with structured formatting, renaming files, removing files, obtaining disk
directories, and making archival backups of your "favorite" files. All are
popular functions with BACKUP being one of the most important in Tight of the
tremendous capacity available when using Targe storage devices.

Ever since small winchester drives started to appear interfaced to small
microcomputers, the question of how to backup these devices Toomed large.
Although some installations consider streaming tape for backup (relatively
expensive as an added cost) while others are incorporating video cassette
recorder interfaces (assumes the availability of VCRs at the micro site or
another added cost), by far the most popular method has been the use of
floppy diskettes (least expensive and widely available). Floppies do have a
serious drawback. When comparing the available capacities of a single floppy
to a small winchester, it soon becomes obvious that a good handful of
diskettes are required to backup the hard drive.

A sophisticated backup wutility can ease the frustration of archiving
hard disk files. For one thing, with the availability of 80-track 2-headed
minifloppies, over 700 Kilobytes can be stored on a single 5-1/4" diskette
when recorded in double density. With 2-headed 8" drives, 1.2 Megabytes of
storage exist on a floppy diskette. For another thing, the backup utility
provides exceptional flexibility as can be evidenced by the following command
examples:

BACKUP :4 TO :2

will copy all files from Tlogical drive 4 to logical drive 2. If both drives
are floppies having the same physical configuration (i.e. both 40-track
2-headed with the same density), then the backup will automatically be
performed track by track called "mirror image".

BACKUP /TXT:3 TO :5 (OLD)

will copy all files with a file extension of "TXT" from logical drive 3 to
logical drive 5 but only if the file already exists on logical drive 5. The
use of the "OLD" parameter permits organization of archival copies.

BACKUP R$S/BAS:4 TO :2 (MOD,DATE="11/09/82-11/15/82")
will make copies of all files from logical drive 4 with a filename starting

with the character "R", the third character "S", with any character
acceptable in all other file name character positions. Also, files must have

1-7

The Programmers Guide to LDOS/TRSDOS Version 6

been last modified between the dates of November 9, 1982 through November
15, 1982 inclusive in order to be included in the backup. In addition, the
file must not have been backed up since it was last modified.

These examples illustrate the extreme flexibility of managing archival
copies of working files. When used in a hard drive environment, large
capacity floppy diskettes can be used to store selected "classes" of files
with working files backed up 1in a structured manor only if they have been
modified. Daily "churning" of working files is minimal, thus a procedure that
enables a backup only if a modification has been done to a working file
within a class certainly lends itself to optimum file management techniques
without the need for expensive backup hardware. For those cases where a
single file exceeds the capacity of a single floppy, a separate utility
provides diskette spanning capabilities for the backup.

The command to obtain a directory display is used frequently 1in most
machine environments. The DOS directory command Tisting is sorted by file
name/ext. When the Tength of a listing exceeds the line capacity of the video
display, paging is performed with a pause at each page. The listing provides
data on the protection Tlevel, logical vrecord 1length, file Tlength (in
kilobytes), date of last update, and whether a backup copy exists, for each
file 1in the directory. A partial file specification can be requested to Timit
the Tisting to those files in the "class" similar to the BACKUP utility.

Disk files are supported with two types of access - Record I/0 and
character I/0. Logical Records of from one to 256 bytes in Tlength can be read
or written using the GREAD or G@WRITE SVC requests. Record I/0 can be random
access (by position SVC requests prior to READ/WRITE) or sequential access
using repetitive READs or WRITEs. Character 1I/0 is accomplished by GGET and
@PUT SVC requests and is essentially the same as record I/0 with a Logical
Record Length (LRL) equal to one. However, if GET and PUT are used to
implement sequential access, then a file can be considered a character 1/0
device just 1like a printer, a serial port, or a video display device. A byte
I/0 request is therefore independent of the physical device "“connected" to
the control block which is requesting the I/0. This makes the system "device
independent".

Routing, filtering, and linking is 100% - devices may be routed to files
and subsequently filtered and 1linked. A priority 1level hierarchy is
established according to bit assignments in the DCB: file, NIL, route, link,
and filter (file being the highest). Filters are assigned control blocks in
the DCB table area which supports up to 31 entries. Each device driver and
filter has its own entry. The establishment of a LINK also uses a DCB entry
to maintain the pointers wused for each device in the LINK. Several system
library commands, such as the FILTER, LINK, RESET, ROUTE, and SET commands,
are provided that are used to support device independence. An illustration of
the use of these commands Tends well to wunderstanding the full power of
device independence. For example, if a suitable software driver (with a
filename of RS232/DVR) is available for a serial port (RS-232 channel), then
a simple:

SET *CL TO RS232

will establish the serial port as a device with "CL" as the device name. Now
that such a device is available, the user can:

Operating System Overview

LINK *KI TO *CL
LINK *DO TO *CL

and the micro is established as a "host" because the serial communications
line has been 1linked to both the machine's keyboard and its video display -
the primary input and output devices of the machine.

Device I/0 can also be massaged with transformation functions, called
filters. For example, an EBCDIC to ASCII translation filter is available that
when applied to the serial port by a simple:

SET *XL TO XLATE USING EBCDIC
FILTER *CL WITH XLATE

the micro can be tied to an IBM mainframe which supports only EBCDIC ports.
Want to implement a DVORAK keyboard? By simply filtering the *KI device with
the DVORAK translation filter, the keyboard is reorganized - with NO hardware
changes required. Many filters are available to format print output, trap
specific character codes, perform upper/lower case conversions - the Timits
are boundless. That's flexibility!

Now that you have a flavor of the capabilities of the DOS, this guide
can be used to understand how to interface your programs. The bulk of LDOS
Version 6 is machine independent. What this means to you as a programmer is
that once you write an application to run under LDOS 6.x, it is portable to
any machine running version 6. A1l you need do is utilize the standard
interfacing procedures discussed in this programmers guide. Let the DOS do
what an operating system is supposed to do - interface the application to the
hardware.

The Programmers Guide to LDOS/TRSDOS Version 6

This page intentionally left blank

1-10

Device Input/Output Interfacing

DEVICE I/0 IN GENERAL

Devices interface to the operating system through driver modules.
Character-oriented devices (keyboards, video display tubes, printers, and
serial terminals, to name but a few), have their drivers connected to the DOS
by Device Control Block (DCB) tables [this dis in contrast to disk-type
devices which have drivers connected to the system through Drive Control
Tables (DCT)]. The purpose of the DCB is to associate a device name with the
device hardware itself. A device specification (abbreviated as "devspec") is
formed by prefixing an asterisk to the device name. Programs may then
reference the device via the device specification in order to identify a
particular device for character 1/0.

There are three input/output functions that are associated with all
character-oriented devices. The "GET" function obtains a character from the
device. The "PUT" function sends a character to the device. The ™"CTL"
function provides a means of communicating with the device driver and
generally does not invoke input/output with the physical device itself. It is
up to the device driver to ensure that the device is currently able to take
the character in the case of PUT as well as detect the availability of a
character in the case of GET and return the proper condition.

Disk files may also be interfaced via character I/0 as well as record
I/0 [file access via record I/0 is discussed in chapter 5, DISK FILE ACCESS
AND CONTROL]. A disk file's actual physical storage location on a disk drive
is transparent to the user by referencing the file with its associated name
(more properly termed its file specification or "filespec"). The operating
system permits filespecs and devspecs to be used equivalently in most cases.
Character I/0 is thus independent of a device or file. The DOS permits the
redirection of character I/0 at the command Tlevel. Because of this,
applications must expect character I/0 to be associated with a disk file as
well as a standard character-oriented device. The DOS provides a uniform
protocol for I/0 handshaking regardless of character device.

There are three major operations associated with devices. One of these
is "routing" which implements the support of 1/0 redirection. Another is
Tinking which is wused to connect two or more devices together. The third
operation associated with devices uses filters to achieve filtering. Filters
are progran modules that can be logically placed between the Device Control
Block associated with a device and the device driver connected to the DCB.
This operation will form what is called a "device chain". More than one
filter module may be placed in the DCB-to-driver chain. These filters bear a
very close resemblance to device drivers. In fact, they also utilize the
Device Control Block tables to associate their memory storage Tocation with
the name assigned to them when they are installed.

This section will discuss the activities that take place between a
Device Control Block and a device so that you will better understand the
concepts of character 1/0. In this manner, you will have no problem in

writing device filters and drivers - at least as far as DOS interfacing goes.

2 - 11

The Programmers Guide to LDOS/TRSDOS Version 6

THE DEVICE CONTROL BLOCK

The Device Control Block (DCB) is used to interface with various logical
devices such as the keyboard, the video display, a printer, a communications
line, or other device defined by your hardware implementation. The DCB is
composed of eight bytes divided into four fields: TYPE, VECTOR, SYSDATA, and
NAME. Figure 2-1 illustrates the DCB. The TYPE field is a one-byte field that
describes the capabilities and current state of the DCB (state indicative of
routed, Tlinked, filtered, etc.). The VECTOR field is a two-byte field that
initially 1is a pointer to the entry-point of the driver or filter module
associated with the DCB. The SYSDATA field is a three-byte field that is used
by the system to support Tlinking and routing. The NAME field is a two-byte
field that contains the name associated with the device.

I
| TYPE |VECTOR| SYSDATA | NAME |
I

| |_I_| I
7654321015 0723 015 0

The DCB follows a strict format that defines the utilization of all four
fields. The programmer need be concerned only with the TYPE and VECTOR
fields. The system requires sole use of the SYSDATA field. It also maintains
the NAME field thus usually necessitating no programmer intervention. The DCB
format must be followed in all Device Control Blocks established by the user.
The following information provides specifications for each field of the DCB.

TYPE Field - <Byte 0>

Bit 7 => This bit specifies that the Control Block is actually a
File Control Block (FCB) with the file in an OPEN
condition. Since there is a great deal of similarity
between DCBs and FCBs, and devices may be routed to
files, tracing a path through a device chain may reveal
a "device" with this bit set, indicating a routing to a
file.

Bit 6 => This bit specifies that the DCB is associated with a
FILTER module. The VECTOR field then contains the entry
point of the filter. A filter initializer must set this
bit when the module is assigned to the DCB.

Bit 5 => This bit specifies that the DCB (say device AA) is Tinked
to another device associated with a DCB (say device BB).
The VECTOR field of AA will point to a dummy LINK DCB (say
device LK) which was established by the system when the
LINK library command was invoked. The VECTOR field of LK
then will point to the original VECTOR contents of AA

2 - 12

Device Input/Output Interfacing

while the SYSDATA field will contain a pointer to the BB
DCB. A picture is said to be worth a thousand words. The
device chain linkage will be illustrated Tater.

Bit 4 => This bit specifies that the device defined by the DCB is
routed to another character-oriented device or file. The
VECTOR field will either point to a DCB if the route
destination is a device or it will contain a pointer to
the file's FCB field contained in the route module
established by the system's ROUTE library command.

Bit 3 => This bit specifies that the device defined by the DCB is
a NIL device. Any output directed to the device will be
discarded. Any input request will be satisfied with a
ZERO return condition.

Bit 2 => This bit specifies that the device defined by the DCB is
capable of handling requests generated by the @CTL Super-
Visor Call.

Bit 1 => This bit specifies that the device defined by the DCB is
capable of handling output requests which come from the
@PUT SuperVisor Call.

Bit 0 => This bit specifies that the device defined by the DCB is
capable of handling requests for input which come from
the ®GET SuperVisor Call.

VECTOR Field - <Bytes 1 - 2>

This field initially will contain the address of the driver routine that
supports the device hardware associated with the DCB. In the case of
programmer-installed drivers, the driver initialization code must 1load the
driver's entry point into the VECTOR field of its respective DCB. Likewise,
when a filter module is established (via the SET library command), its entry
point is placed into the VECTOR field. Once established by either the system
or the driver/module initialization code to point to the module's entry
point, the VECTOR field is then maintained by the system to effect routing,
linking, and filtering.

SYSDATA Field - <Bytes 3-5>

These three bytes are used by the system for routing and 1linking and are
unavailable for any other purpose.

NAME Field - <Bytes 6 - 7>

Byte 6 of this field contains the first character and byte 7 the second
character of the device specification name. The system uses the device name
field as a reference in searching the Device Control Block tables. When a DCB
is assigned by the system during a SET or ROUTE command, this device name
field will be loaded by the system with the device specification name ppassed
in the command invocation. Programs requesting a spare DCB via the GGTDCB

2 - 13

The Programmers Guide to LDOS/TRSDOS Version 6

SuperVisor Call (and a binary ZERO name), are responsible for loading this
name field.

If the device has been routed to a file and a search of the device chain
shows a TYPE byte with bit-7 set, then the respective control block is an
FCB. In this case, byte 6 of the field will contain the DRIVE number of the
drive containing the file and byte 7 will contain the Directory Entry Code
(DEC) of the file.

ACCESSING DEVICE CONTROL BLOCKS

The system maintains space in low memory for the storage of the Device
Control Block records. There 1is space sufficient for 31 records. The first
DCB will always be associated with the system device named *KI. Therefore, a
pointer to the first block may be determined by using the @GTDCB SuperVisor
Call as follows:

LD DE, 'IK' sLoad name in reverse order
LD A,@GTDCB ;Identify the SVC

RST 40 ;Invoke the SVC

JP NZ,ERROR ;Transfer if not found

Upon return from the SVC, register HL will contain a pointer to the DCB
associated with *KI. An error will result only if the DCB name field was
altered. Spare DCB records are filled with binary zeroes. Therefore, a spare
DCB record may be located by loading register pair DE with a binary zero
value prior to issuing the SVC.

The DOS command "DEVICE (B=Y)" can be used to obtain a linkage map of
all device chains. As can be observed from such a Tisting, all 31 control
blocks are not 1in use. Additional devices are defined by using the SET
library command. Any device assigned by the user to a spare control block,
may be removed from the system after the device is RESET by using the "REMOVE
devspec" command. The DOS defined devices are protected and cannot be
removed.

DEVICE CHAIN ILLUSTRATIONS

Before we can illustrate the device chain, it 1is necessary to first
reiterate the memory module header protocol as required by the system. It is
essential that this protocol be wused for all modules placed into protected
memory so that the system can properly deal with module access and device
I/0.

Header Protocol

Each module placed into protected memory will incorporate a facimile of
the following code at the start of the module:

ENTRY JR BEGIN ;Branch around Tinkage
STUFHI DW $-$;To contain last byte used

2 - 14

Device Input/Output Interfacing

DB MODBGN-ENTRY-5 ;Calculate length of 'NAME'

DB 'MODNAME ' ;Name of this module
MODDCB DW $-$;To contain DCB pointer for module
SPARE DW 0 ;Reserved by the DOS

. ;Any data area needed
BEGIN EQU $;Followed by module code

The appendix is another source of information concerning the header protocol.
It is sufficient for the illustration of device chains to understand that the
MODDCB will contain a pointer that points to the Device Control Block
established for the module during the execution of the SET Tibrary command.
This pointer is passed in register pair DE to the module's initialization
code by SET. The programmer writing the module code adds a routine which
loads this valuue into MODDCB.

Sample DCB Structure

B L iy ——

For the purpose of this illustration, let's imagine three active DCBs.
The first DCB is associated with the printer driver and has device
specification of "*PR" (its devspec). We have also installed a filter via the
SET command that performs a backspace followed by the output of a slash when
it detects an ASCII zero (0). This filter has a devspec of "*S0". Lastly, we
have a filter that toggles a boldface mode for a printer. This filter has a
devspec of "*BF". To avoid confusion in the illustration, the devspec will be
used to reference the DCB and the module names PRINTER, SLASHO, and BOLDFACE
will be used to identify the entry point of the driver or filter module.

We can now show this arrangement of DCB contents and module MODDCB
contents as follows:

l I
Figure 2-2: Initial DCB Table

|
| TYPE VECTOR NAME MODULE/MODDCB |
[|
]
06 PRINTER PR I PRINTER/*PR	
47 SLASHO SO	SLASHO/*S0
	N
47 BOLDFACE BF	BOLDFACE/*BF

Note that the DCBs in figure 2-2 associated with the filters have bit-6
of the TYPE byte set to indicate that they are filters. Also note that the
MODDCB pointer points to the DCB which points to the module. Where a filter's
MODDCB is pointing to the DCB of the filter, this 1is indicative of an

2 - 15

The Programmers Guide to LDOS/TRSDOS Version 6

inactive filter.

Filtering

Filters are written (as you will later learn) to perform all I/0 via the

@CHNIO SuperVisor Call. This SVC wuses the contents of MODDCB within the
filter invoking the SVC. Thus, the filter 1/0 is independent of any address

by being handled completely through the SVC. If you perform a system command
such as:

FILTER *PR USING *SO

the operating system will swap the first three bytes of the *PR DCB with the
*S0 DCB. This arrangement will establish that shown in figure 2-3.

| I
Figure 2-3: DCB Table Modified

I
| TYPE VECTOR NAME MODULE/MODDCB |
| -mmm oo ---- I
I I ||
| 47 SLASHO PR | PRINTER/*PR } I
I I I
I I
I | ||
| 06 PRINTER SO | SLASHO/*SO | |
I I |
I I
I I I
| 47 BOLDFACE BF | BOLDFACE/*BF | |
I I
I I
I I
I I

Let's follow what happens to an G@PUT which references the *PR device.
The system passes control to SLASHO (which is pointed to by the *PR vector).
This filter performs its character transformation, as required, and sends
characters down the chain by picking up the pointer contained in its MODDCB
(a pointer to the *SO DCB) then issuing the @CHNIO SVC. The SVC handles the
call by passing control to PRINTER which is the pointer now stored in the
VECTOR field of *S0.

If we now try to issue the command:
FILTER *PR USING *SO

the system will prohibit it since the *SO Device Control Block does not show
up as a filter (bit-6 of the TYPE byte is reset!). However, if we filter *PR
using the *BF device, we achieve the arrangement in figure 2-4 after the
system swaps the first three bytes of *PR with the first three bytes of *BF.

Examine the arrangement in figure 2-4 closely. Note that the contents of

MODDCB for each module are exactly what they were initialized to. Even though
the *PR device has been twice filtered, the module itself needs absolutely no

2 - 16

Device Input/Output Interfacing

change whatsoever. An *PUT to the *PR device (say with an *PRT SVC) may be a
little more complicated now, but functions perfectly well. The system first
passes control to BOLDFACE (which is pointed to by the *PR vector). This
filter performs its necessary device stream massaging and sends characters
down the chain by picking up the pointer contained in its MODDCB (a pointer
to the *BF DCB) then issuing the @CHNIO SVC. The SVC handles the call by
passing control to SLASHO which is the pointer now stored in the VECTOR field
of *BF. The SLASHO filter performs its character transformation, as required,
and sends characters down the chain by picking up the pointer contained in
its MODDCB (a pointer to the *SO DCB) then issuing the @CHNIO SVC. The SVC
handles the call by passing control to PRINTER which is the pointer now
stored in the VECTOR field of *SO0. Upon completion, a series of RET
izsyructions pass the return code back through the modules making up the
chain.

I
| TYPE VECTOR NAME MODULE/MODDCB

Figure 2-4: DCB Table Further Modified

|

|
[SN—— |
| | ||
I 47 BOLDFACE PR | PRINTER/*PR | |
| | ||
| | N
{ 06 PRINTER SO } SLASHO/*S0 { }
| | o
| 47 SLASHO BF | BOLDFACE/*BF | |
| |
| |
| |
| |

It is interesting to observe that the process of removing the filters
from the device chain is exactly the same as the process to add them into the
chain. We can unhook the filters by exchanging the first three bytes of the
DCBs in the order of last-in first-out (LIFQ). Thus if you exchange the *PR
and *BF Device Control Block TYPE and VECTOR fields, you will obtain the
arrangement previously shown in figure 2-3. The RESET 1library command does
this for the entire chain.

By now you should be able to notice that we could equally as well remove
just the SLASHO filter if we swap the bytes associated with the *BF and *S0
Device Control Blocks! A1l that is needed is a facility to do the following:

1. Identify what filter (by module name) is to be removed;
2. Locate the filter in memory via the BGTMOD SuperVisor Call;
3. Obtain the MODOCB pointer to its Device Control Block;

4. Scan through all DCBs to find the DCB pointing to the filter;

[$)]

. Then swap the three bytes.

2 - 17

The Programmers Guide to LDOS/TRSDOS Version 6

Routing

Routing conveys the facility of I/0 redirection. This function allows
programs to be independent of the physical device actually handling the 1/0.
By maintaining a constant reference within a program to a particular DCB, the
physical I/0 can be channeled to some other device completely transparent to
the program. This is achieved through altering the connection between the DCB
and its initial driver by reconnecting the DCB to some other driver. The
operating system handles all of the functions of implementing the DCB
alteration when the ROUTE Tibrary command is invoked. The "routed-to" device
may be another DCB identified by a devspec or it could be a disk file
identified by a filespec. Let's Took at an example.

If we, for instance, invoke the command:
ROUTE *PR TO FILE/TXT:3

the DOS performs a two-stage process. First, it establishes a 32-byte File
Control Block and 256-byte buffer for the FILE/TXT:3 disk file. It places
this "data" into high memory prefixed with the header protocol. Second, it
saves the "route-from" VECTOR and TYPE fields in the SYSDATA field of the DCB
while it revises the VECTOR to point to the "routed-to" FCB. The TYPE field
is also altered to show a ROUTE 1is in effect. The DCBs will now look like
figure 2-5.

| TYPE VECTOR SYSDATA NAME MODULE/MODDCB

l
I
-
10 FCB-FILE PRINTER/06 PR | PRINTER/*PR | |
| |
I

l

I

l

!

80 3l-bytes of FCB data FCB
Figure 2-5: DCB Table After ROUTE

Let's now follow an output request to the *PR device. The DOS device I1/0
handler will recognize the ROUTE bit (bit-4 of the TYPE byte) and update the
register linkage so that the FCB will be pointed to instead of the DCB.
Noticing that the control block now indicates a disk file (bit-7 of the TYPE
byte), the I/0 handler will pass control to the character I/0 file routines.

The action taken by the operating system to reset a DCB that has been

routed is to first close the file, if a filespec was the initial "route-to",
then recover the original TYPE and VECTOR from the SYSDATA field.

Filtering a Routed Device

Let's suppose we have a text file that needs line feeds removed (it may
be a CP/M file that uses CR-LF as the end-of-line protocol). We could write a

2 - 18

Device Input/Output Interfacing

program to vread the file and write out to another file all characters that
are not a line feed. We could also wuse a trap filter that is handy. We want
to be able to filter the file with this trap filter. Using the routing
identical to that shown in figure 2-5, establish the trap filter and invoke
it with:

SET *LF USING TRAP (CHAR=10)
FILTER *PR USING *LF

Figure 2-6 will now reflect the DCB structure after this series of commands.
It is now easy to LIST the source file with the (P,T=N) option. This will
direct a copy of the file to the *PR device (while suppressing tab
expansion). As can be observed from the figure, the device handler passes *PR
I/0 requests to the TRAP filter. After performing whatever filtering is
necessary, the @CHNIO request will reference the *LF Device Control Block
(which is pointed to by the MODDCB field). The device handler then notes that
the ROUTE bit 1is set and continues to control the @PUT request as was done
under figure 2-5. A simple "RESET *PR" wupon completion will close the
filtered FILE/TXT.

I
| TYPE VECTOR SYSDATA NAME MODULE/MODDCB

I I
47~ TRAP PRINTER/06 PR | PRINTER/*PR |

80 3l-bytes of FCB data FCB

I I
10 FCB-FILE LF | TRAP/*LF |

| |
I Figure 2-6: Filtering a Route I
| I

Linking is handled by establishing a link Device Control Block storage
area for each LINK command invoked. For example, if you “LINK *DO TO *PR", we
can illustrate the DCB area as shown in figure 2-7. The *DO Device Control
Block now vectors to the newly established *.0 DCB while the TYPE byte
identifies the link. Notice that *LO has both the VIDEQ vectors and a pointer
to the *PR DCB (we can conceptualize this as a two legged fork). The system's
device handler recognizes that a link is in effect (from *D0's TYPE byte)
whereupon it establishes a fork via the link DCB, *L0. It uses the third byte
of LO's SYSDATA field to store the direction indicator. After a return from
VIDEO without error, the device handler takes the other fork leg (to *PR).

2 -19

The Programmers Guide to LDOS/TRSDOS Version 6

Figure 2-7: Linking Devices

I
| TYPE VECTOR SYSDATA NAME MODULE/MODDCB I
[|
| I .
| 20 *L0 DO I VIDEO/*DO | |
I | .
I I
I | |
| 06 PRINTER PR | PRINTER/*PR |
: ' a
| 07 VIDEO *PR LO I
I I
I I
I I

The legs of the fork are entered based on the I/0 direction and the
return code from a leg. @PUT requests will be sent to the "left" leg of the
fork. Providing no error 1is encountered, the "right" leg of the fork will be
entered. The return code passed back to the caller will be either an error
from the 1left leg, an error from the right leg, or a no-error condition.
Requests for BGET, will be passed first to the left leg. Only if the Teft leg
has no input available will the right 1leg be entered. @CTL requests are
handled Tike @PUT.

Linking can be applied to a devspec that has been filtered, routed, or
linked. There is no restriction on combinations. Thus, you can link a device
that is already linked and filtered and routed. Figure 2-8 depicts the result
of linking a device that has already been routed. It is left up to the reader
as an exercise to derive the series of commands that composed the associated
DCBs/FCB as well as tracing through the device chain for I/0.

| TYPE VECTOR SYSDATA NAME MODULE/MODDCB

| e mmmmmmme e —ee-

20 *L1 DO | VIDEO/*DO |
I |

80 31-bytes of FCB data FCB

10 FCB/FILE DD

07 VIDEO *DD L1

Figure 2-8: Linking a Routed Device

2 - 20

Device Input/Output Interfacing

Device Chain Hierarchy

- - - - - -

It is possible for the Device Control Block TYPE byte to have more than
one bit set in the positions 3-7 (positions 0-2 usually have multiple bits
set depending on the I/0 supported by the driver). Because of this, the
system must utilize a priority Tlevel to indicate what function is to be
interpreted. The device 1/0 handler hierarchy is illustrated in figure 2-9.

[l
| Bit-7: Disk File character 1/0 |
| Bit-3: NIL device - no 1/0 |
| Bit-4: ROUTE to DCB or FCB |
| Bit-5: LINK to 2nd DCB I
{ Bit-6: FILTERed DCB or filter }
l |
l |

Figure 2-9: DCB Hierarchy

The preceding discussion should shed a great deal of Tlight on the
handling of device I/0 by the operating system. You should also understand
that in order to accomplish this device independence and flexible handling of
character 1/0, the programmer of device drivers and filters must adhere to a
strict protocol of handshaking the modules with the operating system. The
next section will explore device I/0 lTooked at from the standpoint of the
modules and drivers. Once you grasp these requirements, you will be in total
control of filters and device drivers.

2 - 21

The Programmers Guide to LDOS/TRSDOS Version 6

DEVICE DRIVER/FILTER TEMPLATE

The system contains command level procedures that provide easy access to
device references so that modifications may be made to the way in which
devices are treated by the system. A1l devices require some type of driving
program (a device driver) that is used to handshake the device with the
system and cater to the special features and requirements of the device
hardware. Some drivers are already implemented within the operating system to
handle standard devices. For instance, drivers for handshaking the keyboard,
video display, parallel printer port, and RS-232 serial port are included
with the system.

Some devices are completely supported with the existing drivers in the
total DOS environment. Other devices may need a little more support. The
characteristics of a driver may be modified by the introduction of a FILTER.
For instance, suppose your printer required a line feed upon receipt of a
carriage return to advance the paper. The printer driver does not provide
this function. Instead of writing a completely new printer driver, only a
filter need be included to add that single function (the FORMS/FLT filter
which incorporates this function is usually provided with the system).

The DOS provides two commands to aid in interfacing drivers and filters.
The SET command is used to define a new device, re-define an existing device,
or install a filter module while assigning it a device name. FILTER is used
to place the installed filter into an existing device chain.

The SET command takes the device specification from the command line
"SET *XY to filespec" and searches the Device Control Block tables for a
matching device name. If the requested device 1is not defined in your
configuration, SET establishes a Device Control Block for the new device.
Control then passes to the DRIVER or FILTER with register pair DE containing
the address of the Device Control Block record assigned to the "SET" device.

Register pair HL points to the command line character separating the
DRIVER/FILTER program filespec and optional parameters. This provides the
module initialization routines with the opportunity of parsing a parameter
string by wusing a parameter table and the @PARAM SuperVisor Call. SET
provides a default file extension of /FLT since the function of adding
filters to the system is the more usual case.

The SET and FILTER commands are designed such that the DRIVER or FILTER
program should first load into the User Program Region (starting at X'3000').
After parsing any options or parameters, the module initialization routine
automatically relocates the resident module to high memory (or low memory if
sufficient space is available - see the section on Placing Disk Drivers in
chapter 3). HIGH$ (or the Driver Input/Output Region pointer) must be
properly set after your module relocates.

Samples of filters are provided in the Appendix which should demonstrate
the technique of writing the relocating driver portion of your routine. The
remaining sections in this chapter discuss the handshaking and initialization
requirements necessary for device drivers and filters.

2 - 22

Device Input/Output Interfacing

I/0 Primitives

-

Device independence has its roots in "character 1/0". The term shall
apply to any I/0 passed through a device channel, one character or byte at a
time. Three primitive routines are available at the assembly Tanguage level
for byte I/0. Primitive is not used here to imply rudimentary but rather
elementary. Just as the atom is considered a basic building block of
molecules, these byte I/0 primitives can be used to build larger routines.
The three DOS SuperVisor Calls are designated OGET, @PUT, and GOCTL. OGET is
used to input a byte from a device or file. @PUT is used to output a byte to
a device or file. @CTL is used to communicate with the driver routine
servicing the device (the character file 1/0 routines ignore @CTL requests).

Other SuperVisor Calls are available that perform byte 1/0, such as @KBD
(scan the *KI device and return the key code if a character is available),
@DSP (send a character to the *D0O device), and @PRT (send a character to the
*PR device). These functions operate by first loading register pair DE with a
pointer to a specific Device Control Block (DCB) assigned for wuse by the
device, then issuing an @GET or @PUT SuperVisor Call for the respective input
or output requests.

When the DOS device handler passes control over to the device driver
routine, the 7-80 flag conditions are unique for each different primitive.
This provides a method that the drivers can use to establish what primitive
was used to access the routine and thus distribute the 1/0 request to the
proper driver or filter subroutine - according to the direction of the
request - input, output, or control! Figure 2-10 illustrates the FLAG
register conditions prevailing upon entry to a driver or filter.

| l
l = OGET primitive |
| Z,NC = @PUT primitive |
| NZ,NC = BCTL primitive |
l !
I l
I |

Figure 2-10: Flag Conventions

Register B contains the 1/0 direction code (1 = GET, 2 = PUT, or 4 = CTL)
while register C will contain the character code that was passed in an OPUT
or GCTL SuperVisor Call. Register IX will point to the TYPE byte of the
Device Control Block being referenced. Registers BC, DE, HL, and IX have been
saved on the stack and thus are available for use. Remember that any given
module may have been filtered or linked; therefore, do not expect the DCB
address in IX to be a constant over time. If the module is a filter, it will
be invoking the @CHNIQ SuperVisor Call. Thus it will be important to save
those registers that must stay unchanged prior to invoking @CHNIOQ.

I/0 Separation

Now let's move on to the device driver linkage used to separate out the
@GET, @PUT, and ®CTL calls. Remember the FLAG register direction conditions
shown in figure 2-10 that were set according to the primitive byte 1/0

2 - 23

The Programmers Guide to LDOS/TRSDOS Version 6

routine that got us to the driver. These conditions provide the key to the
separation process. Consider the following protocol for the driver or filter
header.

ENTRY JR BEGIN ;Branch around linkage
STUFHI DW $-$;To contain last byte used
DB MODDCB-BEGIN-5 ;Calculate length of 'NAME'
DB 'MODNAME' ;Name of this module
MODDCB DW $-% ;To contain DCB pointer for module
DW 0 ;Reserved by the DOS
BEGIN EQU $
;*.—_*:*
; Actual module code start
;*:*:*
JR C,WASGET ;Go if OGET request
JR Z,WASPUT ;6o if BPUT request
JR WASCTL ;Was BCTL request

At the entry of the driver, an absolute relative jump instruction
executes which causes a branch around some data. Ignore, for a moment, the
header data which is discussed in the appendix. At the Tlabel "BEGIN", a test
is made on the CARRY FLAG. If the CARRY was set, then it must have been the
result of an input request (@GET). Thus, an input request could be directed
to that part of the module which handles character INPUT.

If the request was not from the @GET primitive, the CARRY will not be
set. The next test is if the ZERO FLAG is set. The ZERO condition prevailed
when an @PUT primitive was the initial request. Thus the jump to WASPUT can
transfer to that part of the module that deals specifically with character
OUTPUT.

If neither the ZERO nor CARRY flags are set, the routine falls through
to the next instruction, a jump to WASCTL - that part of the module that
would handle @CTL requests. Obviously,the module code that handles GOCTL
requests could be placed immediately after the first two tests thereby
obviating the need for the "JR WASCTL". Some modules are written to assume
that @CTL requests are to be handled exactly like @PUT requests although this
is not recommended. The processing of @CTL requests is entirely up to the
function of the driver and the author thereof with the exception that the
author should not deviate from the functions identified in the @CTL
INTERFACING section. When a device has been routed to a disk file, the DOS
will ignore GCTL requests. That is, the @CTL codes will not be written to the
disk file. The functions of @CTL requests are covered as a separate topic
later in this chapter.

Device Driver/Filter Return Codes

- - — - ——— " - - - _ " " - - -

One last topic needs to be discussed relating to drivers - the subject
of register handshaking conventions. On @GET requests, the character input
should be placed in the accumulator. On output requests (either @PUT or
@CTL), the character is obtained from register C. It is extremely important
for drivers and filters to observe return codes. Specifically, if the request
is @GET and no byte is available, the driver returns an NZ condition with the
accumulator containing a zero (i.e. OR'1 : LD A,0 : RET). If a byte is
available, the byte is placed in the accumulator and the Z-flag 1is set (i.e.

2 - 24

Device Input/Output Interfacing

LD A,CHAR : CP A : RET). If there is an input error, the error code is
returned in the accumulator and the Z-flag is reset (i.e. LD A,ERRNUM : OR A
: RET). On output requests, the Z-flag is set if no output error occured. The
accumulator may be loaded with the character that was output; however,
applications invoking an @PUT cannot depend on the accumulator containing the
output character on return from the SVC - the character will, however, still
be contained in the C register! In the case of an output error, the
accumulator must be loaded with the error code and the Z-flag reset as shown
above.

Filter Interfacing

A filter module is inserted between the DCB and driver routine (or
between the DCB and the current filter when applied to a DCB already
filtered). The application of insertion 1is performed by the DOS FILTER
command once the filter module is resident and associated with a device name.
The function of residing a filter module is a responsibility shared by the
SET library command and the programmer's filter initialization routine.

The wusual linkage for a filter is to access the chained module by
calling the ®CHNIO SuperVisor Call with specific linkage data in registers IX
and BC. Register IX is Toaded with the filter's DCB pointer obtained from the
memory header MODDCB pointer. Register B must contain the I/0 direction code
(1 = GET, 2 =PUT, 4 =C(TL). This code is already in register B when the
filter is entered. You can either keep register B undisturbed or load it with
the direction code based on the primitive request. Also, output requests will
expect the output character to be in register C.

Filter Initialization

The DCB pointer obtained from MODDCB for the interfacing, is originally
obtained from the operating system. It 1is passed in register DE by the SET
command and is Toaded into MODDCB by your filter initialization routine. The
initialization routine also relocates the filter to high (or Tow) memory
while adjusting any absolute address reference with a suitable relocation
routine. The DOS takes care of loading the DCB's NAME field with the
associated device name passed in the SET command. The filter initializer must
attach itself to the DCB assigned by the SET command by loading the TYPE and
VECTOR fields. The TYPE field 1is loaded with an ORing of the filter bit
(bit-6) and any valid direction bits (bits 0-2). If the initialization front
end transfers the DCB pointer from DE to IX and loads the filter's entry
address into register pair HL, the following code could be used to establish
the TYPE byte and vector for a filter which supports GET, PUT, and CTL:

LD (IX),40H.0R.7 ;Init DCB type to
LD (IX+1),L 5 FILTER, G/P/C I/0,
LD (IX+2),H ;5 & stuff vector

One final point concerns a test that should be made by the filter
initializer. The operating system permits the execution of any load module. A
filter program is a load module. To guard against the execution of a filter
program by inadvertantly entering its full file specification at DOS Ready,
the system provides the programmer with an indicator that execution is under
control of the SET command. When SET passes control to a filter program, it

2 - 25

The Programmers Guide to LDOS/TRSDOS Version 6

will set bit-3 of the CFLAGS (the system request bit). Thus, by testing this
bit wupon entry to the program, an error exit can be taken if the system
request bit is not set. An error message of the form:

Must install via SET

can be logged and the program aborted. The system automatically resets the
system request bit upon regaining control at DOS Ready.

A Partial Filter

- - - -

A filter module can operate on input, output, control, or any
combination based on the author's design. The memory header provides a region
for user data storage conveniently indexed by the module. An illustration of
a filter follows. The purpose of the filter is to add a line feed on output
whenever a carriage return is to be sent. Although the filter requires no
data storage, the technique for accessing data storage is shown. Pay close
attention to the method of passing characters to the device chain (@CHNIO).

ENTRY JR BEGIN ;Branch to start
DW FLTEND-1 ;Last byte used by module
DB 6,'SAMPLE' ;Name length and name

MODDCB DW $-% ;Ptr to DCB loaded by initialization
DW 0 ;Reserved

;*:*:*

: Data storage area for your filter

ck=k=%

DATAS EQU $
DATAL EQU $-DATA$

DB 0 ;Data storage
DATA2 EQU $-DATAS
DB 0 ;Data storage
;*:*:*
R Start of filter
; *=k=%
BEGIN JR Z,GOTPUT ;Go if OPUT
e k=%k=
3 OGET and @CTL requests are chained to the next module
5 attached to the device. This is accomplished by falling
; through to the @CHAINIO call. Note that the sample filter
; does not effect the B register, so the filter does not
; have to Toad it with the direction code.
,*:*:*
FLTPUT PUSH IX ;Save our data pointer
LD IX, (MODDCB) ;Grab the DCB vector
RX01 EQU $-2
LD A,BCHNIO ; & chain to it
RST 40
POP IX
RET
;*:*:*
; Filter code
;*:*:*
GOTPUT LD [X,DATAS ;Base register is used to
RX02 EQU $-2 ; index data as (IX+DATAL),...

2 - 26

Device Input/Output Interfacing

LD A,C sP/u char to test
CP CR ;If not CR, put it
JR NZ,FLTPUT
CALL FLTPUT ; else put it
RX03 EQU $-2
RET NZ ;Back on error
LD C,LF ;Add line feed
JR FLTPUT
FLTEND EQU $
;*:*:*
5 Relocation table
;*:*:*
RELTAB DW RX01,RX02,RX03

TABLEN EQU $-RELTAB/2

The relocation table, RELTAB, would be used by the filter initialization
relocation routine. Complete filters are listed in the appendix.

External Access of Module Data

It is sometimes necessary to access the data region of a resident module
from outside the module. Perhaps a wutility to alter the data is useful (for
instance, the SETCOM command alters the data of the COM driver supplied with
the system. The GGTMOD SuperVisor Call is wused to obtain two pointers. One
points to the entry point ot the module while the other points to the MODDCB
field. If the data is located immediately following the reserved word in the
module header, incrementing the MODDCB pointer by four will point it to the
data area. The utility uses the module name assigned in the header to locate
the module in memory. As an example, Tlet's illustrate an update to DATAL in
the above filter.

LD DE,FLTSTRS ;Point to module name

LD A,BGTMOD ;Identify the SVC

RST 40

JR NZ,NOTRES ;Process "module noot resident"

LD HL,4 ;Use pointer in DE to

ADD HL,DE ; index past MODDCB & reserved

LD A, (VALUE) ;P/u your new value

LD (HL),A ; & stuff into resident module
FLTSTR$ DB 'SAMPLE',3 ;Search string

2 - 27

The Programmers Guide to LDOS/TRSDOS Version 6

@CTL INTERFACING TO DEVICE DRIVERS

This section discusses the GOCTL functions supported by the system
supplied device drivers. @CTL functions are invoked by loading register pair
DE with a pointer to the Device Control Block (DCB), loading the function
code into register C, and issuing the @OCTL SuperVisor Call. The DCB address
can be Tocated by either wusing the @GTDCB SVC or OPENing a File Control Block
containing the device specification and using the FCB address.

The DOS has assigned function codes for specific operations. Although
these operations are not universal across all drivers, the designated
function code should be used only for the operation assigned. Rarely will you
find a driver that utilizes all of these codes. A driver that accepts a
function code to perform an operation should provide a return code as if the
request was ©OPUT. Where a driver does not wish to accept a specific code or
codes, it should return a "no-error" vresult. Function codes 1in the range
<0-31,255> are reserved by the operating system. Function codes in the range

<32-254> are available for programmer use. The following operations are
assigned function codes:

CODE OPERATION

- - - - - —— - - - - a S e s A e e G e - . -

0 Return status of device (Z = available, NZ = not
available). Where applicable, return an image of the
status in the accumulator.

1 Request a <BREAK> or force an attention interrupt.
2 Execute any driver initialization code.
3 Reset any driver buffers and clear any pending I/0.

4 Interface a "wakeup" vector for interrupt driven
drivers. Register IY should contain the execution
transfer address to be passed control after the
driver handles the interrupt. On return from the
OCTL call, register IY will contain the previous
"wakeup" vector. If a zero is passed in register IY,
the "wakeup" vectoring will be disabled.

5 Reserved by the DOS.

6 Reserved by the DOS.

7 Reserved by the DOS.

8 Return the next character in the input buffer but
do not empty it from the buffer. A return condition
of A =0 and NZ indicates no character is pending.
A <> 0 and NZ indicates an error while Z indicates
success while A contains the character.

9-31 These codes are reserved by the DOS.

2 - 28

Device Input/Output Interfacing

The system-supplied drivers support some of these functions. The
following sections cover what control functions are supported and suggests
possible uses. The module name can be used with the @GTMOD SuperVisor Call to
obtain the entry point of the driver. This is useful to obtain access to the
data areas associated with each driver.

Keyboard driver [system driver assigned to *KI]

e - - - - - — m " - - - - - - . -

A function value of X'03' will clear the type-ahead buffer. This serves
the same purpose as repeated calls to @KBD until no character is available. A
function value of X'FF' will remain undocumented as its use is proprietary to
Tandy Corporation and its function 1is not supported across all licensed
versions of LDOS Version 6. All other function values are treated as OGET

requests.

The module name assigned to this driver is "$KI". Its data area includes
the following:

+0 - Contains the last character entered.

+1 - Contains the repeat time check which is the system's timer
value that when reached will result in a repeat of the last
character if the keycode scanned has not changed.

+2 - Contains the waiting time in timer units that must transpire

before a character can initially be repeated. This value is
altered by SETKI (W=dd).

+3 - Contains the repeat rate in timer units. This value is altered
by SETKI (R=dd).

Video driver [system driver assigned to *D0]

A1l OCTL requests are treated as if they were @PUT requests.

The module name assigned to this driver is "$D0". Its data area includes
the following:

+0 - Bits 0-2 contain the number of video lines to protect against
scrolling. Bit 3 denotes the action to be taken for character
values in the range <192-255>. If set, the values are treated
as displayable characters. If reset, the values are treated as
space compression codes in excess 192 (i.e. 0-63). Bit 4 will
denote the action to be taken for character values in the range
<1-31>. If set, the value is interpreted as a displayable char-
acter. If reset, the value is treated as a video function code
as identified in your operating system user manual. Bits 5-7
are reserved by the DOS.

+1 - Contains the low order address of the cursor. You must use the
@VDCTL SuperVisor to reference the cursor by row,column.

+2 - Contains the high order address of the cursor. You must use the
©@VDCTL SuperVisor to reference the cursor by row,column.

2 - 29

The Programmers Guide to LDOS/TRSDOS Version 6

+3 - Contains the character that is currently at the cursor position.
+4 - Contains the character code defining the cursor.

Printer driver [system driver assigned to *PR]

The printer driver is transparent to all code values when requested by
the @PUT SuperVisor Call. That means that all values from X'00' through X'FF'
(0-255) can be sent to the printer. The printer driver accepts a function
value of X'00' via the GOCTL request to return the printer status. If the
printer is available, the Z-flag will be set and the usual A register status
image is an X'30'. If the Z-flag is reset, the accumulator will contain the
four high-order bits of the parallel printer port (bits 4-7).

The module name assigned to this driver is "$PR". There exists no data
area within the printer driver.

Forms Filter [non-resident system filter for forms control]

- . - e A N . S D D M3 am D N A R e - oo

If the FORMS filter is attached to the *PR device, then various codes
are trapped and used by the filter according to user options as follows:

X'OD' - Generates a carriage return and optionally a line feed
(ADDLF). It will form feed as required.

X'OA' - Is treated the same as X'0D'.
X'0C' - Will form feed (via repeated Tine feeds if soft form feed).
X'09' - Will advance to the next tab column.

X'06' - Will set top-of-form by resetting the internal
line counter to zero.

Other character codes may be altered depending on the user translation option
(XLATE).

The FORMS filter's module name is "$FF". 1Its data area includes the
following:

+0 - Contains the maximum lines per page.
+1 - Is used by the filter as a line counter.

+2 - Contains the maximum number of lines to print prior to a FORM
FEED operation.

+3 - Is used by the filter as a character counter.
+4 - Contains the character value that is to be translated.

+5 - Contains the character value that <+4> is to become.

2 - 30

Device Input/Output Interfacing

+6 - Contains the number of spaces to indent after an automatic
NEWLINE is issued.

+7 - Bit 0 specifies that a LINE FEED is to be added after each
carriage RETURN. Bit 1 specifies the mode of FORM FEED -
a 0 indicates SOFT (multiple line feeds) while a 1 indicates
HARD (send X'OC' to the driver).

+8 - Contains the maximum number of characters to print on a line
prior to issuing an automatic NEWLINE. A value of zero indicates
that no automatic NEWLINE is to be issued.

+9 - Contains the column of the left hand margin. The filter will
provide this count of spaces after a physical carriage RETURN.

COM driver [non-resident system driver for the RS-232C]

This driver handles the interfacing between the RS-232C hardware and
character I/0 (usually the *CL device).

An @CTL function value of X'00' will return an image of the RS-232
status register in the accumulator. The Z-flag will be set if the RS-232 is
available for “sending" (i.e. transmit holding register empty and flag
conditions matching as specified by the default protocol or that established
by the user via SETCOM). A function value of X'01' will transmit a "modem
break" until the next character is @PUT to the driver. A function value of
X'02' will re-initialize the serial port hardware to the values last
established by SETCOM. A function value of X'04' will enable/disable the
WAKEUP feature. A1l other function values are ignored and the driver will
return with register A containing a zero value and the Z-flag set.

The WAKEUP feature deserves additional treatment since it can be quite
useful for application software specializing in communications. The RS-232
hardware is wusually equipped with the capability of generating a wmachine
interrupt when any of three conditions prevail: transmit holding register
empty, received character available, or an error condition has been detected
(framing error, parity error, etc.). The COM driver makes use of the
"received character available" interrupt to take control when a fully-formed
character is 1in the receive holding register. The COM driver services the
interrupt by reading the character and storing it in a one-character buffer.
COM would then normally return from the interrupt while it awaits the next
@GET request to take the character.

An application can request that instead of returning from the interrupt,
control is passed to the application for IMMEDIATE ATTENTION. It is important
to note that this action would be occurring during interrupt handling and any
processing by the application must be kept at a minimum before control is
returned to COM via an RET instruction.

If you wuse an @CTL function value of X'04', then vregister IY must
contain the address of the handling routine in your application. Upon return
from the @CTL request, register IY will contain the address of the previous
WAKEUP vector. This should be restored to the COM driver when your
application is finished with the WAKEUP feature.

2 - 31

The Programmers Guide to LDOS/TRSDOS Version 6

When control is passed to your WAKEUP vector upon detecting a "receive
character available" interrupt, certain information is immediately available.
Register A will contain an image of the serial port UART status register. The
Z-flag will be set if a valid character is actually available. The character,
if any, is in the C-register. Since system overhead takes a small amount of
time in the GGET SuperVisor Call, you may only have to @GET the character via
standard device interfacing. This will ensure that any filtering or Tlinking
in the *CL device chain will be honored. If, on the other hand, your
application is attempting to transfer data at a very high rate (9600 baud or
higher), you may need to bypass the GOGET SuperVisor Call and use the
character immediately available in the C-register. Note that this will ignore
any device chain Tinkage.

The module name of the COM driver is "$CL". Its data area includes the
following:

+0

Contains the handshake mask established according to the default
conventions (or those established via SETCOM). This mask is used
by COM and needs no concern from the programmer.

+1 - Contains the serial port control image (this image may turn out
to be dependent on specific RS-232 hardware.
Bit 7 => Parity [1 = EVEN; O = 0DD]
Bits 6 & 5 => Word Tength [00 =5; 10 = 6; 01 = 7; 11 = 8]
Bit 4 => Number of STOP bits [1 = 2 bits; 0 =1 bit]
Bit 3 => Parity enable/disable [1 = disable; O = enable]
Bit 2 => Transmit data [1 = enable; 0 = BREAK]
Bit 1 => Data Terminal Ready lead [0 = ON; 1 = OFF]
Bit 0 => Request To Send Tead [0 = ON; 1 = OFF]

+2 - Contains the code for the baud rate.

+3 - Flag to indicate KFLAG$ support [1 = ON; O = OFF]
Effective with LDOS 6.2.0, this byte contains the BREAK
character code, LOGBRK. If non-zero, then reception of that
byte value from the communications line will cause the BREAK
bit of the KFLAG$ to be set. If zero, no input character
will be interpreted as a BREAK.

+4 - One-character buffer flag [80H = no character; 0 = character]

+5 - Storage for the one-character buffer.

2 - 32

Disk Drive Input/Output Interfacing

GENERAL DISK DRIVE CONFIGURATION

This chapter is designed to fully explain the purpose of the Disk
Controller Communications SuperVisor Calls. It will also completely describe
the fields constituting the Drive Control Table. We will cover the protocol
Tinkage that interfaces the disk driver to the DOS. Finally, we will discuss
some of the concepts that are associated with interfacing hard disk drives.
There are two reasons for this chapter. On one hand, you may be interested in
using the disk primitives to write disk-oriented utility programs. A good
foundation in the functions of the controller primitives is essential. On the
other hand, you may have the need to write a disk driver that supports a hard
disk controller. In this case, it is essential to understand the requirements
of the system for communicating with disk devices. Before we can begin these
topics, we must gain a knowledge of the configuration of disk storage
devices.

The Disk Operating System incorporates the term "disk" because the
operating system is associated with and directly supports disk drive storage
devices. Although many users of small microcomputers may be used to systems
with two or three disk drives, the Version 6 DOS supports up to eight disk
storage devices. The most typical type of disk drive used in systems running
Version 6 is the floppy disk drive. The hardware that interfaces the floppy
disk drive to the computer is called a Floppy Disk Controller (FDC). The
controller includes all of the electronics necessary to control and translate
operating system commands into control pulses which the drive uses to perform
mechanical actions (such as head stepping, drive select, head load, etc) and
data transfer.

The floppy disk drives are usually connected to the computer in a
multiplexed arrangement. This means that all data and control signals share a
common cabling. Where more than one disk drive is connected to the cable, a
means of uniquely selecting one drive at a time must be provided. Over the
years, a standard of drive selection has been developed that all floppy disk
drives adhere to. This standard incorporates four separate drive select lines
between the computer and all disk drives. These drive select lines are
designated DSO, DS1, DS2, and DS3. Each disk drive is then jumpered to
connect to only one of the drive select lines. Sometimes the drives connect
to all of the lines while each plug on the cable severs all select Tines but
one - each cable plug a different select line. Thus, the computer hardware
will, in general, support the handling of four floppy disk drives [some
companies manufacture a multiplex device that uses the four drive selects as
a binary number thus multiplexing up to 15 floppy drives].

Although the typical hardware configuration supports four floppy disk
drives, the DOS has provisions for referencing eight distinct logical drives
numbered 0-7. We use the term "logical" in case we have a single drive that
is partitioned into multiple drives with each partition being referenced by a
different drive number. The four extra positions are usually used with
installations that connect hard disk drives in addition to the floppies. The
DOS stresses device independence. Disk drives are treated no differently. In
order to gain a high level of independence, the DOS uses a standardized set
of SuperVisor Call functions we will term "Disk Controller Communications".
These SVCs are primitive functions that should provide all of the activities
needed to communicate I/0 requests to the disk controller that's interfacing
a disk drive.

3 - 33

The Programmers Guide to LDOS/TRSDOS Version 6

The system also maintains a Drive Control Table (DCT) that stores the
parameters associated with each of the eight logical drives. Disk drive
parameters refer to how the total storage space on a drive is divided up into
addressable units. Floppy disk drives use a removable flexible media which
has one or two surfaces coated with a magnetic layer of particles. Hard disk
drives wuse either fixed rigid platters or removable cartridges that contain
rigid platters also containing magnetic layers of particles. Each platter of
a hard drive contains two surfaces. Regardless of the disk drive type, the
magnetic layer of particles on each surface is magnetized into concentric
circles of storage areas called TRACKs. Each track is then divided into
subareas called SECTORs. Each sector is uniquely identified by a pattern of
information preceding each sector called an ID FIELD. The division of a
surface into sectors may be envisioned as a pie cut up into equal sized
pieces. The process of generating each of the tracks and sectors is termed
the formatting process. The physical length of a sector will be greater on
the outer tracks of the surface than the inner tracks of the surface (similar
to the grooves of a phonograph record). Although the number of sectors per
track may vary from one media type to another, the number of sectors in each
track of the same media must always be a constant.

The DOS assigns numbers to every sector, every track, and every surface.
Surfaces are numbered consecutively by one starting from zero. Tracks are
numbered consecutively by one starting from zero at the outermost portion of
the disk giving the innermost track the highest number. A CYLINDER consists
of the like-numbered tracks on all surfaces. For example, on a two-surface
media, track zero of surface zero and track zero of surface one are grouped
together into cylinder zero.

Floppy disk drives use a read/write head that is positioned lateral to
the disk surface. The head can step in towards the center of the disk and
step out to the circumference of the disk while the disk rotates on its hub.
The rotational speed is 300 rpm for 5-1/4" floppy disk drives and 360 rpm for
8" floppy disk drives. Hard disk drives rotate at speeds of 3600 rpm and
higher. Because the physical lengths of the sector vary from the outer to the
inner track, the bit density of each sector varies per track. Therefore, the
amount of information stored in all sectors is dependent on the maximum bit
density permitted 1in its shortest sized sector. Some manufacturers of
computer systems are using a design which keeps the bit density per sector
constant by use of a variable speed drive which maintains a constant linear
velocity of the surface across the head regardless of the track position.
This technique promotes a greater capacity for storage but requires a more
precisely controlled drive. If such a drive control were utilized under this
DOS, a suitable translation filter would be needed which would permit the DOS
to think that each track still contained the same number of sectors.

If we concern ourselves with a 5-1/4" double density floppy drive
rotating at 300 rpm, we can calculate that a disk makes one complete rotation
every 200 ms (60/300). Since there are 18 sectors per track, a sector's ID
FIELD passes by the drive's head every 11.1 ms. In a system where the
transfer of data to and from the disk is under the control of the CPU rather
than through auxiliary Direct Memory Access (DMA) hardware, the CPU spends
its time handshaking with the controller while transferring each byte of
data. If we are trying to access a series of sectors sequentially (as would
be the case with a sequentially accessed file), there will rarely be
sufficient time for the CPU to establish the handshaking with the controller

3 - 34

Disk Drive Input/Qutput Interfacing

for the access of the next sector once it has finished transferring the
current sector. Thus, if we number the sectors consecutively, most Tikely the
ID FIELD of the sector we next want to read has just passed by the head and
we must wait a complete revolution of the disk before getting to the ID FIELD
again. In fact, the worst case would require us to wait just under 211.1 ms
per sector while the time to read an entire track would be 3.8 seconds!

A practical solution to increasing the data transfer is to stagger the
sector numbers so that the next sector to transfer is arriving at the head
just after we start looking for it. If we could read many sectors per single
rotation, we could speed up the transfer of data. This can be done when the
disk is formatted. It can also be done when the disk is accessed by means of
a lookup table that translates a Tlogical sector number to a staggered
physical sector number. The process of staggering the sector numbers is
termed INTERLEAVE. An interleave of two means that sequential sector numbers
are in every second physical sector. An interleave of three uses every third
position. For a single density 5-1/4 diskette, this pattern would be
0-5-1-6-2-7-3-8-4-9. An 18 sector per track diskette with an interleave of
three would have a pattern of 0-6-12-1-7-13-2-8-14-3-9-15-4-10-16-5-11-17.
The interleave can be precisely calculated with knowledge of the total time
it takes to execute the machine instructions between sector 1/0. This is
generally a most difficult task; therefore, interleave patterns are generally
derived empirically. Sometimes, the apparent difference in access speed
across different systems stems from a poor selection of the sector
interleave. The Version 6 DOS uses the method of applying the interleave
during the formatting process. The sectors in each track are therefore
numbered in a staggered order. [Most CP/M systems format sequential sector
numbers and use a sector interleave translation table to translate sequential
access requests to the staggered number when the access is madel].

One other attempt at increasing the sequential access of sectors is to
examine the time between transferring the Tlast sector number of a track and
sector zero of the next higher track [for the moment let's not compound the
situation of two sided diskettes where the sectors on the second side rotate
in an order reverse of the obverse side]. The time lag will include the
sector interleave plus the track-to-track step time. Thus it might make sense
to not start each track with sector number zero, but to optimize the starting
number so that the position of sector zero will have its ID FIELD just coming
up to the head by the time that the drive has stepped and is ready to scan
for the ID FIELD. This staggering is termed TRACK SKEW. The DOS introduces
such a skew during the formatting process; however, such a skew is probably
optimum for only one track-to-track stepping rate. With all of this, we still
can state that each track contains like numbered sectors - regardless of
track number or surface. Therefore, each sector on a disk is designated
unique by its respective sector, surface, and track numbers.

When the operating system formats a diskette (or hard disk), all of the
parameters associated with the diskette are predetermined. Thus the number of
sectors per track, number of sectors per granule and thus the granules per
track, number of sides (or surfaces), and number of cylinders are all
designated as well as the density of the media in the case of floppy
diskettes. Some of these figures (density, sides, granules per track) are
written to fields in the Granule Allocation Table which is part of the
directory (see chapter 4). Others (sectors per track, sectors per granule, in
addition to the former quantities) are part of the DCT fields. When the
system attempts to open a file on a disk, it uses the @CKDRV SuperVisor Call

3 -35

The Programmers Guide to LDOS/TRSDOS Version 6

function to ascertain the availability of the disk and then logs the disk
once it finds it available. The function of "logging" will update the DIRCYL
field (providing the driver returns proper system sector error codes), then
update the DBLBIT field and the MAXCYL field based on information stored in
the GAT. It 1is up to the driver to sense the density of the floppy media [the
"data record not found" controller error is the usual indication that the
driver must toggle to the alternate density. If a data record ID FIELD is not
readable under both single density and double density, then the assumption is
that the corresponding sector is not on the disk and the error is passed back
to the system]. The toggling function of the driver includes the updating of
the CONFIGURATION FIELD in the DCT appropriate to the density being selected.

The SVC disk primitives are funneled through a common system routine
that establishes a linkage protocol between the operating system and the disk
device driver(s). When an I/0 request is invoked by a higher level SVC, such
as a request to READ a file record, the request is translated to that disk
primitive needed to satisfy the function. The Tlinkage protocol is uniform
across all disk devices that are connected to the system. This makes the
access of files transparent to size or nature of the disk device within the
scope of the DCT parameters acceptable to the system.

3 - 36

Disk Drive Input/Qutput Interfacing

DRIVE CONTROL TABLE (DCT)

The Drive Control Table (DCT) is the way in which the DOS interfaces the
operating system with specific disk driver routines. This table is one of the
examples of the versatility of the system as it embodies within it the method
of customizing the parameters of a drive so that each disk drive may
incorporate a unique set of parameters. For instance, one drive may be a
35-track single headed drive. Another may be an 80-track dual headed. While a

third may yet be a 5 megabyte hard drive. Ingenuity and oddball hardware will
mix well to provide an easy interface.

The DCT contains the information relating to the granule size. In the
case of floppies, granule sizes are standardized by the system according to
the disk size and density. Chapter 4 contains more information on granule
allocation sizes. Data on the number of sectors per track, number of heads,
number of partitions, and maximum number of cylinders is also contained in
the DCT for each drive. This data is an essential ingredient in the
allocation and accessibility of file records and therefore must be accurately
introduced. The table contains a maximum of eight DCT records - one record
for each logical drive designated 0-7. Each DCT record is fielded as follows:

DCT VECTOR - <Bytes 0-2>

This three-byte field specifies whether the logical drive position is
enabled or disabled. The system will not attempt to communicate with a
logical drive number whose OCT position 1is considered disabled. If the
position is enabled, then the field will also contain the address vector of
the disk driver module that communicates with the controller interfacing the
disk drive. The first byte of the DCT VECTOR would contain an X'C3*' value if
the drive position is enabled (an X'C3' represents an absolute jump [JP nnnn]
instruction in Z-80 machine code). If the drive is disabled, this byte will
be an X'C9' value (an X'C9' represents an absolute return [RET] from
subroutine instruction in Z-80 machine code).

The second and third bytes of the field will contain the vector transfer
address of the disk driver module that communicates with the controller. The
operating system typically places the disk drivers in the lTow memory driver
region. A "stock" system has available in this region, memory sufficient to
store additional drivers that are not supplied by the system. The DOS will
dynamically use this Jlow memory region based on requests to invoke system
drivers and filters (such as the COM/DVR or FORMS/FLT). A retrievable pointer
to the first available memory address in this region can be used to locate
the origin of a user-supplied driver or filter (if sufficient space is
available). This will be discussed in a later section.

DCT FLAG-1 - <Byte 3>

This field contains a series of sub-field parameters associated with the
disk drive specifications. The field is encoded as follows:

Bit 7 => Set to 1 will indicate the disk device is "software"

write protected. It is the responsibility of the disk
driver to check this bit on any disk primitive that

3 - 37

Bit 6

Bit 5

Bit 4

Bit 3

The

=>

=>

=>

=>

Programmers Guide to LDOS/TRSDOS Version 6

references a WRITE operation (i.e. write sector, write
system sector, format track, or format device) and return
a "Write protected disk" error code (error 15) if set.

If set to a "1", it indicates that the floppy diskette
currently being accessed is formatted in double density.
If set to a "0" it indicates that the diskette is single
density. The disk driver is responsible for maintaining
this bit by recognizing the density of the disk it is
accessing. The bit is used both by the driver in the
drive selection process and by the system in informative
messages by such things as DEVICE displays, DIRectory
displays, and FREE displays. This bit is not referenced
by the system if the DCT is associated with a hard drive
(see bit 3 of this field).

If this bit is set to a "1", the drive associated with
the DCT position is an 8" drive. This bit will be a "O"
if the drive associated with the DCT position is a 5-1/4"
drive. This bit is initially set by whatever installs the
disk driver (see the FLOPPY/DCT utility). In the install-
ation of a hard disk driver, this bit should be set
according to the size of the hard drive - 5" or 8". In
the case of floppy drives, the system formatter will use
this bit to adjust its formatting data to 5" or 8". It is
also used to adjust informative messages as mentioned
under bit-6.

This bit is used to store the side selection number for a
current access of a diskette. It is a storage area usable
by the disk driver to place the side number calculated
from the relative sector passed in the disk primitive
request. The system passes a relative sector number based
upon the number of sectors per cylinder. On a two-headed
floppy disk drive, by dividing the relative sector number
by the number of sectors per track, the result will be
indicative of the side selection number, 0 or 1. The
routine performing the calculation can then place the
result in this bit of the DCT for the use of the drive
selection routine. The bit value will match the side
indicator bit in the sector header as written by the FDC.
Hard disk drivers will use storage space internal to the
driver to hold such a result.

If this bit is set to a "1", it indicates that the DCT
position is associated with a hard drive (Winchester).

A "O" in this bit position indicates a floppy disk drive
is associated with the DCT position. The bit is used by
the system in informative messages by such things as
DEVICE displays, DIRectory displays, and FREE displays.
In addition, the system's GCKDRV routine uses this bit
to inhibit its automatic logging of a hard drive while
it restricts its checking to write protect status only.

3 - 38

Bit 2 =>

Bits 1-0 =>

Disk Drive Input/Output Interfacing

This bit is set by the system to indicate the minumum
time delay required after selecting a floppy disk drive
whose motors are not currently running. It must be used
by floppy disk drivers to adjust their time delay between
selection of the floppy drive and the first poll of the
status register. A "1" value indicates the minimum delay
to be 0.5 seconds while a "0" value indicates the delay
to be 1.0 seconds. The time delay can be introduced via

a request of the G@PAUSE SuperVisor Call with an
appropriate count.

This subfield is used for different purposes depending

on whether the drive associated with the DCT is a floppy
drive or a hard drive. For floppies, the field contains
the step rate specification code (0-3) for the floppy
disk controller. With a Western Digital 179X FDC or
equivalent, the codes correspond to a step rate of 6, 12,
20, and 30ms at an FDC clock speed of 1 MHz and 3, 6, 10,
and 15ms at an FDC clock speed of 2 MHz. For hard disk
drives, this field is usually associated with the drive
select code of the hard disk drive (binary value 0-3).

DCT FLAG-2 <Byte 4>

- - -

This byte contains additional drive specifications and parameters. The
field is encoded as follows:

Bit 7

Bit 6

Bit 5

=> Effective with 6.2, this bit is used to inhibit @CKDRV.

Ul

If set to a "1", no @CKDRV will be performed by GOPEN
when accessing that drive.

This bit is used as a flag to the formatter. If set to a
"1", it indicates that the controller is capable of
double density operation. In this case, the formatter
defaults to double density formatting unless the user
overrides the default. If set to a "0", the formatter
will default to single density formatting. For control-
lers capable of double density operation, this bit is
usually set.

This bit is used for different purposes depending on
whether the drive associated with the DCT is a floppy
drive or a hard drive. For floppies, a "1" indicates that
the diskette currently mounted in the drive is a two
sided diskette while a "0" indicates that the diskette is
a single-sided diskette. This bit is updated whenever the
disk is Togged by the system or whenever a program
invokes the @CKDRV SuperVisor Call. Note that if a dual
sided diskette is placed into a two-headed disk drive
that previously accessed a single-sided diskette, the
system will not recognize the second side of the new
diskette until the logging process. When the DCT is
associated with a hard disk drive, this bit may be used
to indicate that a logical cylinder represents two
physical cylinders thereby providing support for twice

3 -39

The Programmers Guide to LDOS/TRSDOS Version 6

as many cylinders as limited by the Granule Allocation
Table (the GAT limits the number of logical cylinders to
203 - thus by using this bit, hard drives to 406 cyl-
inders can be supported as a single logical drive). In
the case of hard drives, this bit is termed the "DBLBIT"
bit.

Bit 4 => This bit is used to indicate the controller associated
with the DCT position is an "alien" controller. The term,
"alien", refers to a controller that does not return
index pulses in its status register. The system uses
index pulse transitions in a finite time period (usually
0.5 seconds) to detect the presence of a rotating disk-
ette. If a disk drive does not contain a diskette, or
does but the drive door is open, the status obtained on
continuous selection of the drive will not indicate the
presence of any index pulse transitions. By examining the
state of the index pulse over a period of time
corresponding to 2.5 possible rotations of a disk, the
lack of an OFF-ON-OFF transition state will indicate that
the drive is not available. If a controller does not
return the state of an index pulse in the controller
status byte, then the system will never be able to detect
the availability of the drive if it maintains the state
transition examination in the logging process. This bit
should be set when such controllers are used to inhibit
the @CKDRV routine from performing such an examination
and proceed to the configuration Togging.

Bits 3-0 => This subfield is used for different purposes depending
on whether the drive associated with the DCT is a floppy
drive or a hard drive. For floppies, the field contains
the physical drive address (1, 2, 4, or 8) corresponding
to the drive select line (DSO, DS1, DS2, or DS3). Thus,
only one of the four bits will ever be set. Hard drive
installations that partition a drive by head, may use
this field to indicate the relative starting head number
of the logical drive partition. This provides support for
a drive of up to 16 heads although 4 heads is typical.

CURCYL - <Byte 5>

—-—— - - - - -

This field is wused for different purposes depending on whether the drive
associated with the DCT is a floppy drive or a hard drive. For floppies, the
field is used by the disk driver to store the current cylinder position of
the disk drive assigned to the DCT position. Since a Floppy Disk controller
js used to access up to four different drives, when it accesses a drive, its
track register must be loaded with correct information as to the current
track position of the head. The current cylinder position is maintained by
the disk driver in this storage field. The driver can then be use this field
to reload the FDC track register prior to a seek operation and update the
field to the cylinder requested in the seek. Hard disk controllers generally
contain their own internal track register that 1is not accessible to a
software driver. This means that hard disk drivers do not need to maintain
the current cylinder position in this field. The field is thus available for

3 - 40

Disk Drive Input/Output Interfacing

the storage of other data items as required by the hard disk driver. Other
data items may include the total quantity of heads on the physical drive (as
needed by XEBEC controllers), the complex drive select code (as used by Lobo
Drives UniVersal Controller), or data associated with drive partitioning by
cylinder rather than by head.

MAXCYL - <Byte 6>

This field contains the highest numbered logical cylinder on the drive
referenced from a starting cylinder numbered "0". Thus, a 35-cylinder drive
would be entered as X'22', a 40-cylinder drive as X'27', and an 80-cylinder
drive as X'4F'. A typical 153-cylinder ST-506 compatible winchester drive
would have an entry of X'98'. If a hard drive has more than 203 cylinders but
less than 407 cylinders and is to be maintained as a single drive (or one
partitioned by heads), then the system must access it as if each two physical
cylinders were a single cylinder with twice as much capacity (although the
system will still limit the Tlogical cylinder to not exceed 256 sectors). In
that case, the MAXCYL entry will be half of the actual quantity and bit-5 of
the FLAG-2 field will be set. For example, an SA-1000 drive (8" winchester)
has 256 cylinders, four surfaces, and 32 sectors per track. If this drive is
treated as a single volume (no partitioning), the MAXCYL entry is X'7F'
indicating the highest numbered cylinder 1is 127 (128 cylinders). The DBLBIT
bit is set indicating a logical cylinder is composed of two physical
cylinders.

CONFIGURATION FIELD - <Bytes 7-8>

. - - -~ - — - . -

This two-byte field contains information concerning the physical space
parameters of the disk drive and how space 1is allocated per cylinder. Its
entries are encoded as follows:

Bits 7-5 => This subfield contains the number of heads (surfaces)
assigned to the logical partition of a hard disk drive.
In the case of floppy disk drives, this entry should be
a B'000'. For example, a four-head hard drive with a
two-head partition would have a B'O0l' in this subfield.
The entry is zero relative, thus a one-head partition
is B'000', a two-head partition would be B'001', and an
eight-head partition would be B'111"'.

Bits 4-0 => This subfield contains the highest numbered sector on a
track numbered relative from zero. A ten-sector-per-track
drive would show an X'09' entry. A 32-sector-per-track
hard drive would show an X'lF'.

Bits 7-5 => This subfield contains the quantity of granules per track
allocated to the disk drive according to the number of
sectors per granule. Since the field is 3-bits in length,

3 - 41

The Programmers Guide to LDOS/TRSDOS Version 6

the entry is offset from zero. Thus, one granule per
track is entered as B'000', two as B'001', etc. In the
case of floppy disk drives, this figure is standardized
for 5-1/4" and 8" media as identified in chapter 4. If
the DCT is associated with a hard drive, then the figure
entered here refers to the number of granules in a
physical cylinder according to the number of surfaces.

If the DBLBIT bit is set, this entry then represents half
of the granules on a logical cylinder. The total granules
per logical cylinder is computed by the doubling the
value contained in this field if bit-5 of DCT FLAG-2 is
set. Let's illustrate this again using the SA-1000 drive.
If we configure the drive as a single volume with 16
sectors per granule, a physical track has two granules
per track. Since the drive has four surfaces, a physical
cylinder has eight granules. However, since the DBLBIT
bit must be set to indicate double the 128 cylinders
shown in the MAXCYL field, the system would have to
double the granules per cylinder computing 16 GPC. This
is clearly in violation of the system's upper limit of
eight granules per cylinder maximum. Therefore, our
example SA-1000 drive would be configured with 32 sectors
per granule, one granule per track, four granules per
physical cylinder. The DBLBIT bit would provide eight
logical granules per logical cylinder. Therefore, this
subfield would have an entry to indicate four granules.

Bits 4-0 => This field contains the quantity of sectors per granule
that is used in the configuration of the disk. In the
case of floppy disk drives, this figure is standardized
for 5-1/4" and 8" media as identified in chapter 4. Hard
disk drive granule sizes are assigned by the implementor
of the hard disk drive system.

DIRCYL - <Byte 9

This field contains the cylinder where the directory is located. For any
directory access, the system will use the contents of this field as a pointer
to the cylinder containing the disk's directory. The system attempts to
maintain the integrity of this field by using the status returned when the
driver reads a system sector in contrast to a non-system sector (chapter 4
discusses the wuse of data address mark conventions in disk sectors). If the
system expects to be reading a directory sector but does not get the error
code 6 ("Attempted to read system data sector"), it will read the BOOT sector
and obtain the directory cylinder storage byte located therein for a second
attempt to read the directory sector. After an unsuccessful second attempt
(including whatever retries are performed per attempt by the driver), the
system posts a read or write error depending on the original request. This
error will eventually be <classified as a GAT, HIT or DIRECTORY error if the
attempt was an I/0 request for the GAT, HIT or a directory entry sector
respectively. Realizing that most hard disk controllers do NOT support a data
address mark convention, the hard disk driver must simulate the READ SYSTEM
SECTOR error code when an @ORDSEC or G@VRSEC request is made to the directory
cylinder. Since the only indication of where the directory is TJlocated is
contained in this field, it is paramount to the functioning of the hard disk

3 - 42

Disk Drive Input/Output Interfacing

environment that this field be correctly maintained. The system's LOG command
will always reload this field with the BOOT sector's directory cylinder
pointer. Thus, it may be necessary to highlight the function of LOG in any
written information pertinent to the hard disk system user.

I | I
| VECTOR | FLAG | FLAG
C3/C9} ADDTESS 1 1 f 2

3 -43

The Programmers Guide to LDOS/TRSDOS Version 6

DISK CONTROLLER COMMUNICATIONS

The function of DISK CONTROLLER COMMUNICATIONS is to communicate
operating system commands to a disk driver so that the driver can translate
these commands into commands acceptable to the disk controller. Before we
Took at the command functions provided by the system, let's take a look at
the commands available 1in a typical floppy disk controller - the Western
Digital 179X series. Figure 3-2 summarizes these commands. If you are
interested in the detailed specifications of such a controller, you should
obtain the "FD 179X-02 Floppy Disk Formatter/Controller Family" manual
published by the Western Digital Corporation.

RESTORE - Recalibrate drive to cylinder 0 position

SEEK - Reposition head to a specified cylinder

STEP - Move the head one cylinder position

STEP IN - Move the head one cylinder to the higher track
STEP 0OUT - Move the head one cylinder to the Tower track

i

I |
I I
I I
| I
| |
| READ SECTOR Transfer the specified sector from disk to CPU |
} WRITE SECTOR Transfer the specified sector from CPU to disk }
I I
I I
| I
I I
| I
I I

READ ADDRESS Transfer data from the next ID FIELD encountered
READ TRACK Transfer an entire track of data from disk to CPU
WRITE TRACK - Transfer an entire track of data from CPU to disk
FORCE INTERRUPT - Abort the pending controller operation

Figure 3-2: Floppy Disk Controller Commands

Since the DOS also supports hard disk drives, let's look at the commands
available in some typical hard disk controllers. The following three figures
will summarize the commands supported by the Lobo Drives UniVersal (UVC), the
Western Digital WD-1000, and the XEBEC S-1410 controllers.

NO OPERATION - Test if controller available
READ SECTOR - Transfer the specified sector from disk to CPU
READ DISK - Read entire disk without data transfer

READ UNTIL FLAW - Read disk until encountering an error

I

I

|

| WRITE SECTOR - Transfer the specified sector from CPU to disk
|

|

I Figure 3-3: Lobo-UVC Controller Commands

I

I
|
I
|
FORMAT DISK - Format entire disk |
|
I
I
I

If we compare the typical Hard Disk Controller [let's abbreviate this
term to "HDC"] commands to the commands available in the typical Floppy Disk
Controller [we will also abbreviate this term to "FDC"], we find that the HDC
generally has very few commands for communication between the CPU [most hard
disk systems refer to the CPU as the "HOST"] and the controller. The $-1410
HDC has a preponderance of commands; however, close examination reveals many
commands for testing and diagnostics. Each HDC mentioned performs its own

3 - 44

Disk Drive Input/Output Interfacing

automatic SEEK operation; therefore, it is generally not even necessary for
the HDC driver to utilize that command. The HDC driver, will most typically
involve READ, WRITE, and FORMAT operations.

RESTORE - Recalibrate drive to track O

SEEK - Position the read/write head to a cylinder
READ SECTOR - Transfer the specified sector from disk to CPU
FORMAT TRACK - Initialize the ID and DATA fields of the track

I I
| I
| |
I
| WRITE SECTOR - Transfer the specified sector from CPU to disk |
I I
I I
} Figure 3-4: WD-1000 Controller Commands 1

TEST DRIVE READY - Test if drive is ready

RECALIBRATE - Recalibrate drive to track O

REQUEST SENSE STATUS - Return the 4-byte drive/controller status
FORMAT DRIVE - Format entire disk

CHECK TRACK FORMAT - Check track for correct ID and interleave
FORMAT TRACK - Initialize the ID and DATA fields of the track
READ - Read the specified sector(s) from disk to CPU
WRITE - Write the specified sector(s) from CPU to disk
SEEK - Position the read/write head to a cylinder

READ ECC BURST ERROR LENGTH - Read the byte containing ECC data
RAM DIAGNOSTIC - Test the controller's RAM buffer

DRIVE DIAGNOSTIC - Test the drive-to-controller interface
CONTROLLER INTERNAL DIAGNOSTICS - Perform controller self-test
READ LONG - Read a sector and four ECC bytes

WRITE LONG - Write a sector and four ECC bytes

Figure 3-5: S-1410 Controller Commands

|
I
I
I
I
|
I
I
|
| INITIALIZE DRIVE CHARACTERISTICS - Configure controller for drive
I
I
I
I
I
I
|
|
|

The process of drive selection is unique from HDC to HDC as well as the
adaptor that electronically interfaces the HDC to the host. FDC drivers are
typically more involved with the additional commands for stepping and seeking
while performing a little more bookkeeping operations. There is also a great
more involvement in the format operation for the FDC driver over the HDC
driver.

The DOS provides 16 SuperVisor Calls that are used to pass operating
system function requests to a disk controller - be it an FDC or an HDC.
Figure 3-6 reviews these functions that are detailed in chapter 6. If we try
to correlate the SVC functions with the FDC commands, we observe that the DOS
provides no facility for requesting a STEP, STEP OUT, nor a FORCE INTERRUPT.
This is not an oversight. The force interrupt is a function that is not
needed from a higher level such as the DOS, but would most Tikely be usable
directly within the FDC driver. Also, since the FOC does its own track
stepping via the SEEK request, the STEP command from the DOS is only needed

3 - 45

The Programmers Guide to LDOS/TRSDOS Version 6

during the format operation. The DOS limits this to STEP IN since the disk
only needs to be stepped in one direction during the format operation. The
remaining SVCs supply the higher Tlevel functions to communicate all of the
DOS requests to the controller.

NAME ~ NUMBER FUNCTION DESCRIPTION

| |
| @DCSTAT 40 0* Test disk controller status |
| @SLCT 41 1* Select a disk drive |
| G@DCINIT 42 2 Initialize a disk controller |
| GDCRES 43 3 Reset a disk controller |
| @RSTOR 44 4* Restore a drive to cylinder 0 |
| @STEPI 45 h* Issue track step-in to controller |
| OSEEK 46 6% Seek to a disk cylinder |
| G@RSLCT 47 7% Reselect a busy drive until available |
| ©RDHDR 48 8 Read ID field |
| @RDSEC 49 9* Read a disk sector |
| GVRSEC 50 10* Verify the readability of a disk sector

| GRDTRK 51 11 Read a disk track

| GHDFMT 52 12* Format an entire drive |
| GWRSEC 53 13* Write a disk sector

| GWRSSC 54 14* Write a disk directory sector

| GWRTRK 55 15%* Write a disk track (format data) |
I

| Figure 3-6: Disk Controller Communications

I

I

Note: Functions asterisked are supported by the DOS floppy driver |

Before taking a look at the HDC commands versus the disk controller
communications functions, let's address exactly what functions are used in
the DOS. The DOS spends a great percentage of the controller's time in
reading and writing. These DOS functions use GRDSEC to read disk sectors,
GWRSEC and @WRSSC to write non-system and system sectors respectively. Where
the application 1is requesting verification (or where the DOS is writing a
system sector), then the GOVRSEC function is wused which should read the
designated sector without disturbing the disk file I/0 buffer. Next, the
lTogging function uses @SEEK and @RSLCT to obtain status from the disk. FORMAT
uses @WRTRK for the FDC and @HDFMT for the HDC as well as @OSLCT, G@RSTOR, and
@STEPIN 1in addition to the previous SVCs. BACKUP and FORMAT also use G@DCSTAT
to make sure that the drive is enabled. These functions are indicated by an
asterisk in figure 3-6. The four remaining functions, @DCINIT, @DCRES,
GRDHDR, and GRDTRK are provided in case utility software needs these requests
for communications with custom drivers [NOTE THAT THE FDC DRIVER SUPPLIED
WITH THE DOS DOES NOT SUPPORT THESE FUNCTIONS].

If we look at the HDC commands, we observe that although the DOS
commands provided can not uniquely request all of the commands of every
controller, the DOS commands do provide the means to satisfy all of the
necessary functions. In fact, some DOS functions are not even needed in the
case of the HDC and hard disk system.

When the operating system passes the SVC request to the disk driver

The manner in which the driver controller Tlinkage is established is by
passing a function value contained in register "B" to the software driver

3 - 46

Disk Drive Input/Output Interfacing

that interfaces to the controller. Sixteen functions have been defined within
the DOS. The table in figure 3-6 briefly describes these functions.

At this point, it would be beneficial to discuss exactly what operations
are performed by the operating system when it receives one of the Disk
Controller Communications SVC requests. A1l of the requests use register C to
reference the logical drive number. The DOS uses this value to index the
Drive Control Table and obtain a pointer to the DCT record associated with

the logical drive. After saving the index register, the DOS places the
pointer into IY.

The DOS saves register pair BC and places the function code
corresponding to the function as shown in figure 3-6 into register B. The DOS
will also issue an @BANK request to bring in bank zero. This operation will
ensure that bank zero is resident for a disk I/0 operation. It also Timits
the Tlocation of disk drivers or disk filters [1ike MONITOR available from
Logical Systems, Inc.] to reside in either the low memory driver region or in
upper memory of bank zero. Upon return from the disk driver, the DOS will
restore the previously resident RAM with another @BANK request.

The DOS then places an "Illegal drive number" error code (32) into the
accumulator, resets the Z-flag, then executes a "CALL" to a "JP (IY)"
instruction. The purpose of this strange linkage becomes evident when we
examine the vresult. The first byte of the DCT is interpreted as an RET
instruction if the drive is disabled. Since register 1Y is pointing to that
byte, the 1linkage will return back to the caller with the "Illegal drive
number" error. If the drive is enabled, the first DCT byte is interpreted as
a JUMP instruction which will transfer control to the entry point of the
driver. We can now show the uniform register protocol upon entry to a disk
driver. This protocol is illustrated in figure 3-7.

AF => Irrelevant upon entry to the driver

Figure 3-7: Disk Driver Register Protocol

| |
| B => Contains the function code of the request <0-15> |
| C => Contains the logical drive number <0-7> |
| D => Contains the cylinder being requested <0-202> |
| E => Contains the relative sector being requested <0-255> |
| HL => Contains a pointer to the I/0 buffer, where applicable |
| IY => Contains a pointer to the proper Drive Control Table entry |
| A <= Must be loaded with one of the error dictionary codes |
| BC <= Can be altered by the disk driver |
| DE <= Must be preserved by the disk driver |
| HL <= Must be preserved by the disk driver |
| IY <= Shouuld be preserved by the disk driver |
| F <= The Z-flag should be set if A=0, otherwise reset the Z-flag |
l |
I |
I I

The remainder of this section introduces a skeletal disk driver. It will
contain only the functions that are associated with protocol required by the
DOS. There is no expectation that you will learn how to write a disk driver
from this publication; you will learn how to put the functions into your
driver that are required by the DOS!

3 - 47

The Programmers Guide to LDOS/TRSDOS Version 6

Skeletal Disk Driver

MODPTR
BEGIN

ek =k=%

;*:*:*
SLCT
ek =k=%

RSTOR

ck=k=%

STEPI

sh=k=k
s

SEEK

chk=k=%

Ve we Ve v

ek=k=%k

RSLCT

sk=k=%
9

DISKIO

w

JR BEGIN ;The driver starts with the

DW DVREND ; DOS standard header

DB MODPTR-ENTRY-5 ;Length of 'MODNAME'

DB '"MODNAME ! ;Name for GBGTMOD requests

DW 0 ;These pointers are unused

DW 0

LD A,B ;The first test will return

OR A ; to the caller on @DCSTAT
RET VA ; and set the Z-flag with A=0
cP 7 ;

JP Z,RSLCT ;Transfer on @RSLCT

JP NC,DISKIO sTransfer on physical I/0 request

FUNCTIONS 1-6 NEED TO BE PARSED
;As required

;As required

LD (I1Y+5),0 :Needed if a floppy

. ;As required if a floppy
INC (IY+5) s Bump CURCYL

. ;As required

LD (IY+5),D ;Update CURCYL

The RSLCT function should return with the hardware
write protection status. Set bit 6 of the accumulator
to indicate the drive is write-protected

;As required

BIT 2,8 ;Test if read or write commands
JR NZ,WRCMD ;Transfer if functions <12-15>

Functions 8-11 need to be parsed
;If you want to support it

;Read a sector of data
;Don't alter the buffer

On RDSEC and VRSEC, if the read referenced the
directory cylinder and was successful,

then you need to return an error code 6. A floppy
disk controller will provide the indicated status.
Hard disk users may have to compare the requested
cylinder to DIRCYL in the DCT.

;If you want to support it

3 - 48

WRCMD

WRCMD1
s K=k ok
HDFMT
s K=k=k
WRSEC
s k=kzk
WRSSC

s k=k=k
L]

WRTRK

Disk Drive Input/OQutput Interfacing

BIT 7,(1Y+3) ;Check for software write protect
JR Z,WRCMD1 ;Transfer if no soft WP

LD A,15 ;Set "Write protected disk" error
RET

. ;Now parse functions 12-15

;May be used for hard drives
sWrite with X'FB' data address mark

;Write with X'F8' data address mark
;May be for floppy or hard drives

NOTE: Hard disk drivers may want to exclude the FORMAT
function from the driver if a separate formatter is
supplied. This guards against program crashes inadvertantly
entering the driver with a register setup depicting FORMAT

Error codes returned to the system under abnormal
conditions must be in the error dictionary. Hard disk

drivers should attempt to translate the controller error
code to the most reasonable DOS equivalent.

EQU $-1

3-49

The Programmers Guide to LDOS/TRSDOS Version 6

HARD DISK ALLOCATION SCHEMES

The integrator of a hard disk usually has to consider some form of hard
disk partitioning. Why is this to be considered? A hard disk has a minimum of
5 megabytes of storage space. The demand for storage never abates; thus, 10
megabyte, 20 megabyte, and higher capacities are being integrated into the
microcomputer environment. The version 6 DOS has Tlimitations on the total
size of a storage device that 1is addressable as a single volume. These are
limitations stemming from the size of the directory. A device is limited to a
maximum of 256 sectors per logical cylinder, and 203 logical cylinders. Given
a standard sector size of 256 bytes, the DOS can address 13.3 megabytes
total. If the target drive exceeds this capacity, then it must be divided
into more than one drive in order to address its total capacity.

The DOS also Timits the number of files per logical drive to 256 (of
which two are taken up by the BOOT/SYS and DIR/SYS files). Although data base
applications may find the most practical arrangement is a single volume, the
typical use of even a 5 megabyte drive will find the file slots filled before
all of the space is allocated - thus space is wasted [It is possible and
highly practical for the hard disk integrator to consider combining
individual static files into members of a partitioned data set to free wup
multiple file slots. PRO-PaDS is a utility program capable of creating and
maintaining such files]. Therefore, even with the smaller 5 megabyte drive,
there exists a rationale for partitioning.

Once the decision is made to divide a drive, the question arises as to
how to go about such a division. There are three methods of partitioning. One
is to divide the drive by cylinder. For example, Take a 306 cylinder, four
head, 10 megabyte drive. This can be divided into two drives with the first
logical drive using cylinders 0-152 while the second uses cylinders 153-306.
The DOS actually uses logical cylinder numbers 0-152 for both partitions and
the hard disk driver must recognize that it needs to translate the 0-152 for
the second partition into the range 153-306. Obviously, one can divide up the
drive into partitions smaller than 5 megabytes. A second method 1is to divide
the drive so that all of the cylinders are included in a single logical
volume, but volumes use different heads. Thus, the previously mentioned drive
could be divided into two, three, or four 1logical drives. A third method
would be to translate the drive's physical parameters into quantities
acceptable to the system while staying within the maximum number of 256
sectors per logical cylinder.

There are advantages and disadvantages to each method. First, our
discussion of floppy configurations pointed out a use for addressing as much
capacity in a single cylinder prior to having to step the drive. This means
that we would lean towards divisions by cylinder. However, if we are
alternately selecting different partitions, the drive must be stepped a great
distance to get to each partition. Another problem is that a head crash would
essentially wipe out all drives since a single head is used on all
partitions. Of course, if the drive physically has more than 406 cylinders,
it must be partitioned by cylinders (or translation) to address the higher
cylinders.

Partitioning by head provides Tess sectors per physical cylinder;

however, since hard drives today usually use very fast buffered seek, the
stepping time to advance a track is minimal. A head crash will also only wipe

3 - 50

Disk Drive Input/Output Interfacing

out a single Togical drive.

Translation methods can be wuseful with drives whose parameters do not
lend themselves to the DOS Tlimits (a 39 sector per track drive, for
instance). A drawback to translation methods is the difficulty in keeping
logical cylinders referencing a physical cylinder.

The important point in any method, is that the driver must be written to
do the conversions as the operating system's reference is to logical cylinder

and sector within that cylinder when it issues an I/0 request. The driver may

make use of the CURCYL byte and FLAG-2, bits 3-0 for storage of partition
specific data. The driver can also establish its own table when these DCT

giglds do not provide sufficient space to store the quantities needed by the
river.

Let's take a look at a few examples. The number of file slots identified
assumes that all logical drives are considered to be data drives. Subtract 14
from the number for each SYSTEM drive. In the first, case we will use an
ST-506 type drive which has four heads and 153 cylinders. This will be the
division of a 5 megabyte drive partitioned by head. Figure 3-8 illustrates
the DCT parameters to divide the drive into two logical drives of 2.5
megabytes each. Notice that we are using 8-sector granules (2K). Since we can
have at most, eight granules per cylinder, the minumum granule size is 2K. We

could have allocated sixteen sectors per granule providing four granules per
cylinder.

I
START MAX # OF MAX DIR FILE |
HEAD CYL HEADS SEC GPT SPG CYL SLOTS |

- . v - - - - - — -

I
|
}
| 0 152 2 32z 8 8 76 254
| 2 152 2 32 8 8 76 254
I
I
|

Figure 3-8: 5 Meg divided; 2-2.5

We could just as well divide this drive into a 1.25 megabyte volume and
a 3.75 megabyte volume. This arrangement is illustrated in figure 3-9. This
arrangement forces us to allocate granules in l6-sector blocks.

| START MAX # OF MAX DIR FILE |
| HEAD CYL HEADS SEC GPT SPG CYL SLOTS |

D e - - - - -—— -

0 152 1 32 4 8 /6 238
1 152 3 32 6 16 76 254

Figure 3-9: 5 Meg divided; 1.25, 3.75

If we divide up the drive into three Tlogical volumes, we will develop
two volumes of 1.25 megabytes each and one volume of 2.5 megabytes. This

3 -51

The Programmers Guide to LDOS/TRSDOS Version 6

arrangement will also provide more file slots.

|
| START MAX # OF MAX DIR FILE |
| HEAD CYL HEADS SEC GPT SPG CYL SLOTS |

0 152 1 32 4 8 76 238

I
1 152 1 32 4 8 76 238 |
2 152 2 32 8 8 76 254 |
I
I
I

Figure 3-10: 5 Meg divided; 2-1.25, 1-2.5

The last division of a 5 megabyte 4-head drive to illustrate is as four
separate drives of 1.25 megabytes each. This partitioning provides the
greatest number of file slots. Where the environment will have a great deal
of small files, it is probably best to use this arrangement.

I
| START MAX # OF MAX DIR FILE
{ HEAD CYL HEADS SEC GPT SPG CYL SLOTS |
0 152 1 32 4 4 76 238
1 152 1 32 4 4 76 238
2 152 1 32 4 4 /6 238
3 152 1 32 4 4

I

|

76 238 |
I
Figure 3-11: 5 Meg divided; 4-1.25 |
I

DBLBIT HEAD CYL HEADS SEC GPT SPG CYL SLOTS

T T T e T

1 0 152 2 32 4 16 76 254

| I
I START MAX # OF MAX DIR FILE I
I

I I
I I
|1 0 152 1 32 4 8 76 254 |
|1 1 152 1 32 4 8 76 254 |
I I
| I
I I

Figure 3-12: 5 Meg divided; 2-2.5

Five megabyte drives exist that use 2 heads (a single platter) and
incorporate 306 cylinders. If we want to divide up this type of drive by
head, we can have at most, two partitions. Since this drive requires the
DBLBIT, it will be illustrated in figure 3-12 as both a single and a dual
volume. An important observation is that a Tlogical cylinder is two physical
cylinders. Although the drive has 306 cylinders, the cylinder figures in the
DCT reflect the logical quantities of half as many. Also, the granules per
track figures are representative of a PHYSICAL cylinder. These figures will

3 - 52

Disk Drive Input/Output Interfacing

be doubled by the system in the calculation of granules per cylinder since
the DBLBIT is set.

From these figures illustrating the configurations of 5 megabyte drives,
it should be relatively easy to develop the necessary Drive Control Table
data for drives of 10, 15, 20, and higher megabyte capacity.

3 -53

The Programmers Guide to LDOS/TRSDOS Version 6

PLACEMENT OF DISK DRIVERS

Disk drivers are usually placed into memory by an initialization program
which executes from the SYSTEM (DRIVE=n,DRIVER="filespec®) library command.
This DOS facility will load and execute your driver initializer identified by
the "filespec". A file extension of "/DCT" 1is the default. Upon passing
control to this DCT driver, register pair DE will be pointing to the DCT
record associated with the DRIVE=n entry. If the DRIVE parameter was omitted
from the SYSTEM command, register pair DE will contain a zero. The function
of the initializer is to prepare the driver and DCT tables according to any
parameters required for setup of the driver. The initializer then identifies
where in memory the driver is to be placed, relocates any absolute address
references, then places it into memory. The last function is to insert the
entry address into the Drive Control Table.

One other point concerns a test that should be made by the driver
jnitializer that is to be invoked by the SYSTEM command. The operating system
permits the execution of any load module. A driver program is a load module.
To guard against its execution from DOS Ready by inadvertantly entering its
full file specification, the system provides the programmer with an indicator
that execution is under control of the SYSTEM command. When SYSTEM passes
control to a driver program, it will set bit-3 of the CFLAG$ (the system
request bit). Thus, by testing this bit upon entry to the program, an error
exit can be taken if the system request bit is not set. An error message such
as the following can be logged and the program aborted.

Must install via SYSTEM (DRIVE=n,DRIVER="filespec")

The DOS provides a limited device driver region in low memory. This is
where the keyboard, video, printer, and floppy disk drivers are located. User
specified device drivers (such as the COM driver) are placed in this region
if sufficient space is available. Otherwise, they are relocated to the high
memory region and protected. The MemDISK driver must reside in the low memory
device driver region. A hard disk driver supplied by LSI is usually placed in
low memory. The low memory driver region is filled from the bottom up in
contrast to the high memory region which is filled from the top down. The
maximum address usable 1is X'12FF'. The system has a pointer which maintains
the first available memory address in this region. This driver I/0 region
pointer is always positioned as the two bytes Jjust prior to the *KI Device
Control Block. Let's take a look at some partial routines to obtain and use
this driver pointer.

3 kmkmk

R Obtain low memory driver pointer

; k*=k=%
LD DE, ' IK" ;Locate pointer to *KI DCB
LD A,BGTDCB ; via GGTDCB SVC
RST 40
JP NZ,IOERR ;No error unless KI clobbered!
DEC HL ;Decrement to driver pointer
LD D, (HL) ;P/u hi-order of pointer,
DEC HL ; decrement to and p/u
LD E, (HL) - 3 lo-order of pointer
LD (LCPTR+1),HL ;Save ptr for later

3 -54

Disk Drive Input/Output Interfacing

5 Make sure driver will fit into (POINTER)-X'l2FF'
ck=k=%
LD HL,DVREND-DVRBGN ;Calculate driver length
ADD HL ,DE ;Start address + driver length
LD (SVEND+1),HL ;Temp save of new pointer
LD BC,1300H ;sMaximum address + 1
XOR A sReset carry flag
SBC HL,BC sNo room if STARTHLENGTH >= 1300H
JP NC, NOROOM ; fit in low core
3 *=k=%
: Move driver into low memory after relocating
3 any absolute adddress references
;*:*:*
LCPTR LD HL, $-$ sP/u saved driver pointer
LD E, (HL) ;Get the lo-order,
INC HL s bump to hi-order,
LD D, (HL) ; & get it for start of move
PUSH DE ;Save start address for ENTRY
PUSH HL ;Save driver memory pointer
LD HL , DVRBGN ;Point to start of driver
LD BC,DVREND-DVRBGN;Calc driver length
LDIR ; & move into driver region
POP HL sNow pick up the saved
LD (HL),D ; pointer again and reset
DEC HL ; it to point to the
LD (HL),E ; NEW first available address
POP DE sRecover for ENTRY stuff into DCT

If insufficient room exists in the low memory driver region (perhaps it
is already filled with COM/DVR, MemDISK/DCT, FORMS/FLT, or some additional
driver/filter), then your initialization program should obtain the high
memory pointer (HIGH$) via the @HIGH$ SuperVisor Call and relocate the driver
to high memory. Remember the HIGH$ pointer points to the first available high
memory address but the memory is filled towards lower addresses. The sample
filter listed in the Appendix illustrates a high memory relocation.

3 -55

The Programmers Guide to LDOS/TRSDOS Version 6

This page intentionally left blank

3 - 56

The DOS Directory Structure

GENERAL DIRECTORY CONVENTIONS

The disk operating system uses a one-level directory structure to
logically associate a file specification (including the access of any record
in that file) to the physical storage space on a disk occupied by the file.
This DOS directory occupies an entire cylinder on the disk drive (or logical
disk drive if a hard disk is partitioned into multiple logical drives). The
directory itself is considered a file with the specification "DIR/SYS".

The directory is composed of three primary parts: A Granule Allocation
Table (GAT) contains information pertinent to the allocation of physical disk
space. The GAT also contains data that may be considered the disk pack
identification. The second part of the directory is a Hash Index Table (HIT)
which 1is used by the DOS to speed access to individual directory records
associated with each file stored on the disk. The last part of the directory
contains the access information pertinent to each disk file. This information
is termed the FILE DIRECTORY ENTRY records.

Before delving into the detailed descriptions of each part, one
important item must be discussed concerning the directory. The soft-sectored
floppy disk format was first designed by IBM for the 3740. This format
defined an identification field for each physical sector on the disk.
Preceding the sector is a byte termed the "Data Address Mark". IBM defined
two distinct data address marks: An X'FB' was assigned for a sector that
contained actual data. An X'F8' was assigned to a "deleted" sector (i.e. one
whose data is deleted and the sector is available for use). The convention of
use for these data address marks in this operating system is to assign the
X'FB' to indicate any "ordinary" sector on the disk - an "ordinary" sector is
any sector that is not part of the directory. The X'F8' data address mark is
used for all sectors constituting the directory cylinder.

Disk controllers used to access the disk will generally return an
indication in a status register of the data address mark detected when
reading any given sector. The DOS capitalizes on this scheme by using the
returned status as an indicator of what type of sector was read - a directory
sector or non-directory sector. When a read-sector (GRDSEC) service request
is satisfied by a disk driver, it 1is the responsibility of the driver to
return this status to the caller. If a "normal" sector is successfully read,
the driver returns a no-error indication. If a directory sector is
successfully read, the driver returns an error code 6 - "Attempted to read
system data record".

The first sector (cylinder 0, sector 0) of each disk contains a pointer
to the cylinder containing the directory. This pointer is the third byte of
the sector. There is also a field in the Drive Control Table which contains a
copy of that pointer. When the system requests a read of a directory sector
and is returned status which indicates that a regular sector was read instead
of a directory sector, it assumes that the disk has been changed since it
Tast accessed the directory and the new disk has its directory on a different
cylinder. The system then updates the Drive Control Table (DCT) field by
reading the first sector and retrieving its directory cylinder pointer. This
condition is used by the system to constantly keep current information on the
disk each time the directory cylinder 1is accessed [the ®@OPEN and GINIT
SuperVisor Calls also act to keep the system current on the disk structure by
logging the disk identification via the @CKDRV SuperVisor Call and updating

4 - 57

The Programmer's Guide to LDOS/TRSDOS Version 6

its DCT fields accordingly].

Because of the Data Address Mark conventions employed in the DOS, two
SuperVisor Calls have been provided to read/write directory sectors. The
@RDSSC (SVC-85) will read a directory sector and update, where necessary, the
Drive Control Table directory cylinder field. The @WRSSC (SVC-54) can be used
to write a sector to the directory and properly identify the correct Data
Address Mark. Directory sector writes should be verified with the @VRSEC

SuperVisor Call. Expect to obtain an error code 6 as previously noted.

4 - 58

The DOS Directory Structure

THE GRANULE ALLOCATION TABLE (GAT)

The Granule Allocation Table (GAT) contains a section of information
pertinent to the allocation of physical storage space on the disk. For floppy
disk drives, this section is composed of two tables: The ALLOCATION table
specifies what areas of the disk are allocated or wunavailable for use while
the LOCKOUT table specifies what areas of the disk are physically unusable.
For winchester drives (hard drives), the LOCKOUT table is not used and the
ALLOCATION table is extended to include the GAT space normally used by the
floppy lockout table. The GAT is wholly contained in the first sector of the
directory cylinder. Additional fields are stored within the GAT sector that
describe the disk (its pack identification). The GAT also contains certain
data specific to the formatting configuration of the disk.

An entire disk is divided into cylinders (tracks) and sectors. The
standard sector size is 256 bytes in length. Each cylinder has a specified
constant quantity of sectors. Because the DOS uses a single 8-bit register to
communicate sector numbers, it will support a maximum of 256 sectors per
cylinder. A group of sectors 1is allocated whenever additional space is
needed. This group is termed a GRANULE and is always a constant size for any
given disk. This does not mean that the granule is the same size for all
disks. The size of a granule generally increases with the increasing size of
the disk storage device. The choice of a granule size is a compromise over
minimum file Tlengths and overhead during the dynamic allocation process. It
is somewhat dependent on the number of sectors per cylinder because the
number of sectors per granule must divide evenly into the number of sectors
per cylinder.

The ALLOCATION and LOCKOUT tables are actually bit maps that associate
one granule of space per bit. One byte is used to store the information on a
single cylinder; therefore, the GAT is configured to provide for a maximum of
eight granules per cylinder. In these tables, each bit that is set indicates
a corresponding granule in use (or locked out). A reset bit indicates a
granule free to be used. In the GAT allocation and Tlockout bytes, bit O
corresponds to the first relative granule on a cylinder (denoted as granule
0). Bit 1 corresponds to the second relative granule (denoted as granule 1),
bit 2 the third (denoted as granule 2), and so on through bit 7 for the
eighth granule (denoted as granule 7). This is illustrated in figure 4-1.

I

I

| |7T6[5T413T21110717T615T41312[110][716[5[413[2|1]0]]...
| | cylinder 0 || cylinder 1 || cylinder 2 |]|...
| 1111100111 111000JJ211110°00]|
[[|| [
I
l

I

A 5-1/4" single density diskette is formatted at ten sectors per track,
five sectors per granule, two granules per track. A two-sided diskette has
twice the number of granules per track available on each cylinder. Thus, the
single density single, sided 5-1/4" configuration will use only bits 0 and 1

4 - 59

The Programmer's Guide to LDOS/TRSDOS Version 6

of each GAT byte. The remaining GAT byte will contain all 1's - thereby
denoting wunavailable granules. A 5-1/4" double density diskette is formatted
at 18 sectors per track, six sectors per granule, three granules per track.
Thus, this configuration will wuse bits 0, 1, and 2 of each GAT byte. The
standard granule allocation conventions used by the DOS for floppy diskettes
are as shown in figure 4-2.

I
SECTORS PER SECTORS PER GRANULES PER MAXIMUM |
l

TRACK GRANULE TRACK CYLINDERS
___ |
5" SDEN 10 5 2 96
3 96
8" SDEN 16 8 2 77
8" DDEN 30 10 3

Figure 4-2 assumes single sided media. The DOS supports two-sided operation
within the confines of the hardware interfacing the physical drives to the
CPU. A two-headed floppy drive functions as a single volume with the second
side treated as an extension of the first in a true cylinder structure. A bit
in the Drive Control Table (DCT) indicates one-sided or two-sided drive
configuration.

A winchester-type hard disk also has a similar configuration. However,
since many different sizes of winchesters are available, the recommended
configurations for representative hard drives are covered in chapter 3 - DISK
FILE ACCESS AND CONTROL. For the purposes of this chapter, it is sufficient
to mention that hard drives may use the first 203 GAT bytes to reference
ALLOCATION information (positions X'00' through X'CA'). Hard drives that
exceed 203 physical cylinders require remapping or partitioning. Methods of
achieving remapping and partitioning are also discussed in chapter 3.

The following describes the structure of the Granule Allocation Table
and the information contained in it. The numbers in angle brackets indicate
the relative positions of the field within the GAT. Figure 4-3 illustrates
the entire GAT.

ALLOCATION TABLE - <Bytes X'00' - X'5F'>

This table contains a bit image of what space is available for use (and
conversely what space 1is not available). GAT+0 corresponds to cylinder O,
GAT+l corresponds to cylinder 1, GAT+2 corresponds to cylinder 2, and so
forth. As previously noted, bit O of each byte corresponds to the first
granule on the cylinder, bit 1 corresponds to the second granule, etc. A "1"
indicates the granule is not available for wuse. The amount of GAT space
assigned to this table permits a maximum of 96 «cylinders; however, the
formatter restricts the format of 8" media to 77 cylinders.

4 - 60

The DOS Directory Structure

LOCKOUT TABLE - <Bytes X'60' - X'BF'>

This table contains a bit image of what space has been locked out from
use. Granules may be locked out because they either do not physically exist
(i.e. granules 3-7 on 5-1/4" double density floppy media) or the verify
process of the floppy formatter had detected a bad sector in a granule. The
table corresponds on a cylinder for cylinder basis as does the allocation
table. It is used specifically during mirror-image backup functions to
determine if the disk has the available capacity to effect a backup of the
source diskette.

EXTENDED ALLOCATION TABLE - <Bytes X'CO' - X'CA'>

This table is used in hard drive configurations by extending the
ALLOCATION table from X'00' through X'CA' and omitting a distinct lockout
table. The table then provides a capacity of up to 203 cylinders. The hard
drive DBLBIT bit 1is available in the Drive Control Table to permit combining
two physical cylinders into a single logical cylinder provided the Timit of
256 sectors per cylinder is not exceeded. This arrangement therefore provides
support for up to 406 cylinders. Lockout information, where available, is
generally denoted by setting the appropriate bit assigned in the ALLOCATION
table. Hard drives generally cannot be backed up in a mirror-image manner and
ths BACKUP utility will prohibit it by automatically entering the RECONSTRUCT
mode.

DOS VERSION - <Byte X'CB'>

This field contains the operating system version used in formatting the
disk. Disks formatted under DOS 6.0 will have a value of X'60' contained in
this byte. It is used to determine whether or not the disk contains all of
the parameters needed for DOS 6.0 operation.

CYLINDER EXCESS - <Byte X'CC'>

This byte contains the number of logical cylinders in excess of 35. It
is used to minimize the time vrequired to compute the maximum cylinder
formatted on the diskette and to update the Drive Control Table. It s
designed to be excess 35 so as to provide complete compatibility with
previous systems that restricted the floppies to 35 tracks and did not
maintain the byte. This field is read to update the Drive Control Table
during the process of logging the disk by the @CKDRV SuperVisor Call process.

DISK CONFIGURATION - <Byte X'CD'>

This byte contains data specific to the formatting of the diskette. It
is fielded as follows:

Bit 7 => Set to "1" indicates the disk is a DATA disk; thus all but
two directory slots are available for data files. Set to a 0
indicates that the disk is a SYSTEM disk which reserves
14 additional directory slots for system files providing

4 - 61

The Programmer's Guide to LDOS/TRSDQOS Version 6

a maximum of 240 directory entries for data files.

Bit 6 => Set to "1" implies double density formatting. Set to O
implies single density formatting.

Bit 5 => Set to "1" indicates two-sided floppy media. Set to O
indicates single-sided floppy media.

Bit 4 => This is reserved for internal system use.
Bit 3 => This is reserved for internal system use.

Bits 2-0 => Contain one less than the number of granules per
track that were used in the formatting process.

DISK PACK PASSWORD - <Bytes X'CE' - X'CF'>

This field contains the 16-bit hash code of the disk master password.
Its storage is in standard low-order high-order format. The password itself
must be composed of the characters <A-Z, 0-9> with the first character
alphabetic. The 16-bit hash code can be obtained from the DOS for any given
password. This is done by placing the password string into an 8-character
buffer left-justified and padded with spaces then invoking a system overlay.
The following code illustrates this operation.

HASHMPW LD DE,PSWDPTR ;Point to the 8-char buffer

LD A,0E4H ;Specify password hash function
RST 40 ;Issue the RST instruction

The 16-bit password hash code will be returned in register pair HL. Registers
AF, B, DE, and HL are altered. The operating system will not return to the
address following the RST 40 instruction when the SVC function code is an
internal system request code (i.e. has bit-7 set) but will return to the
previous caller. Thus, it is necessary to CALL this routine.

PACK NAME - <Bytes X'DO' - X'D7'>

This field contains the diskette pack name. This is the same name
displayed at boot up if the diskette is a system diskette used for the boot
operation [specifically, the boot name is obtained from the System
Information Sector but is managed coincidentally by FORMAT and ATTRIB. It is
also the name displayed during a FREE or DIR or obtained by the @DODIR
SuperVisor Call. The name is assigned during the formatting operation or
reassigned during an ATTRIB renaming operation.

PACK DATE - <Bytes X'D8' - X'DF'>

This field contains the date that the disk was formatted or the date
that it was used as the destination in a mirror-image backup operation. If
the diskette is used during a BOOT, this date will be displayed adjacent to
the pack name [actually, the boot date is obtained from the System
Information Sector but is managed coincidentally by BACKUP].

4 - 62

The DOS Directory Structure

RESERVED FIELD - <Bytes X'E0' - X'F4'>

- . - - e G - - - . . e -

This field is reserved for future use under DOS version 6. It formerly
contained the AUTO command buffer under earlier versions of the DOS; however,
since Version 6 supports 79-character command lines, the System Information
Sector now holds the AUTO command buffer for use during a BOOT operation.

MEDIA DATA BLOCK - <Bytes X'F4*' - X'FF'>

L R e e e e e e -

Effective with LDOS 6.2.0, this field contains a header sub-field and a
sub-field replicating the last seven bytes of the drive control table in use
and associated with the media when the media was formatted.

Bytes 0-3: contains an X'03' followed by the string, "LSI".
Bytes 4-10: replicates the last seven bytes of the DCT during format.

eSS st -t - ittt - - - - - - -t P -t - P - - - - -+ T 1

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF
Figure 4-3: Granule Allocation Table Illustrated

Note: "#"= DOS Version;"+"= Cyl Excess;"*"= Configuration

I I
| I
I I
00		00	
ol		01	
02	ALLOCATION TABLE	02	
03		03	
04		04	
05		05	
06		06	
07		07	
08	FLOPPY LOCKOUT TABLE	08	
09	HARD DRIVE ALLOCATION TABLE	09	
OA		0A	
08B		08	
OC	EXTENDED ALLOC	#_+[_*[MPW_	OC
OD	_PACK NAME	PACK DATE	OD]
OF	RESERVED	OF	
OF		OF	
I			
I I
I I
I I
I I
I I
I |

4 - 63

The Programmer's Guide to LDOS/TRSDOS Version 6

THE HASH INDEX TABLE (HIT)

The Hash Index Table is the key to addressing any file in the directory.
It is designed so as to pinpoint the location of a file's primary directory
entry with a minimum of disk accesses. A minimum quantity of disk accesses is
useful to keep system overhead low while at the same time providing for rapid
file access.

When an application requests the system to open a file, the system must
locate that File's Primary Directory Entry (FPDE) record which contains the
disk storage data needed to address the file. The procedure that the system
uses to locate a file's FPDE is to first take the file name and extension and
construct an 1l-byte field with the file name left justified and padded with
blanks so as to fill out eight positions. The file extension 1is then
inserted, padded with blanks, and will occupy the three least significant
bytes of the 1l-byte field. The resulting string is illustrated in figure
4-4, This field is then processed through a hashing algorithm which produces
a single byte value in the range X'01' through X'FF' (a hash value of X'00'
is reserved to indicate a spare HIT position). The following code may be used
to obtain the one-byte hash code for an ll-character NAME/EXT buffer.

HASHSPEC LD HL,SPECPTR ;Point to the 8-char buffer
LD A,0D4H ;Specify filename hash function
RST 40 ;Issue the RST instruction

The one-byte hash code is returned in the accumulator. Registers AF, B and HL
are altered. The operating system will not return to the address following
the RST 40 instruction when the SVC function code 1is an internal system
request code (i.e. has bit-7 set) but will return to the previous caller.
Thus, it is necessary to CALL this routine.

Each file's hash code 1is stored in the Hash Index Table (HIT) at a
position which is associated with the FPDE record containing the file's
access information. After the OPEN routine obtains the hash code for the file
identified in the file specification, it searches the HIT for a matching hash
code. Since more than one ll-byte string can hash to identical codes, the
opportunity for a "collision" exists (a collision is where two or more file
names result in the same hash code). For this reason, the search algorithm
will sequentially scan the HIT for a matching code entry and when found, will
then read the FPDE record corresponding to the matching HIT position. OPEN
will then compare the file name/ext stored in the FPDE record with that
provided in the file specification. If both match, the file's FPDE directory
record has been found. If the two fields do not match, the HIT entry was a
collision and the algorithm continues its search from where it left off. If a

4 - 64

[—

The DOS Directory Structure

match to the hash code is not found in the HIT, the file does not exist on
that disk drive. If the user passed a drive specification (drivespec) as part
of the file specification, a "File not found" error will be returned. If no
drivespec was passed, the system will search all drives in logical number
order starting with drive 0. If the @INIT SuperVisor Call was used to open
the file, the system will first use @OPEN to determine the possible existance
of the file. If @OPEN advises that the file has not been found, then GINIT
will create the file by obtaining a spare HIT position then constructing the
corresponding FPDE.

The position of a file's hash code entry in the Hash Index Table is
called the Directory Entry Code (DEC) for the file. A1l files will have at
least one DEC. A contiguous block of granules allocated to a file is termed
an EXTENT. The FPDE record contains fields to hold the data on four extents.
Files that use more than four extents because they are either large (an
extent can address a maximum of 32 contiguous granules) or fractured into
non-contiguous space require extra directory records to hold the additional
extents. These additional records are termed the File's Extended Directory
Entries (FXDE) which also have four extent fields each. A Directory Entry
Code is also wused to associate an FXDE with a HIT entry. Thus, a file will
have DECs for each FXDE record and use up more than one filename slot in the
HIT. Therefore, to maximize the quantity of file slots available, you should
keep your files below five extents wherever possible.

The FPDE and FXDE records are contained in the remaining sectors of the
directory cylinder. The Directory Entry Codes are mapped to the FPDE/FXDE
records by each DEC's position in the Hash Index Table. Conceptualize the HIT
as eight rows of 32-byte fields as shown in figure 4-5. Each row will be
mapped to one of the directory entry records in a directory sector. The first
HIT row to the first directory entry record, the second HIT row to the second
directory entry record, and so forth. Each column of the HIT field (the 0-31)
is mapped to a directory entry sector. The first column is mapped to the
first directory entry sector in the directory cylinder (not including the GAT
and HIT). Therefore, the first column corresponds to sector number 2, the
second column to sector number 3, and so forth. The maximum quantity of HIT
columns actually used will be governed by the disk formatting according to
the formula: N = (number of sectors per track times the number of sides)
minus two.

In the 5-1/4" double density single-sided configuration, there exists
eighteen sectors per cylinder - of which two are reserved for the GAT and
HIT. Since only sixteen directory entry sectors are possible, only the first
sixteen positions of each HIT field are used. Other formats will use more or
less columns of the HIT, depending on the quantity of sectors per cylinder in
the formatting scheme.

This arrangement works nicely when dealt with in assembly Tlanguage for
interfacing. Consider the DEC value of X'84'. If this value is loaded into
the accumulator, a simple:

AND 1FH ;Strip off row and
ADD A,2 ; calculate sector

will extract the sector number of the directory cylinder containing the
file's directory entry. If that same value of X'84' was operated on by:

4 - 65

The Programmer's Guide to LDOS/TRSDOS Version 6

AND OEOH ;Strip off sector and keep row

the resultant value will be the Tlow-order starting byte of the directory
entry record assuming that the directory sector was read into a buffer
starting at a page boundary. This procedure makes for easy access to the
directory record. The system provides two routines, @DIRRD and @DIRWR, that
will read/write the correct directory entry sector corresponding to a DEC.
The directory I/0 uses the system buffer and a pointer in the HL register
pair is automatically positioned to the proper FPDE (the buffer is on a page
boundary for physical I/0). @DIRWR performs verification after write!

The following figure may help to visualize the correlation of the Hash
Index Table to the directory entry records. Each byte value shown represents
the position in the HIT and is, in fact, the Directory Entry Code value. The
actual contents of each byte will be either an X'00" indicating a spare DEC,
or the one-byte hash code of the file occupying the corresponding directory
entry record.

Row 2 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

Row 3 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

Row 4 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

Row 5 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

Row 6 AD Al A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

Row 7 CO C1 C2C3C4C5¢C6C7C8¢C9CACBCCCDCECF

Row 8 EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

I
Figure 4-5: Directory Entry Codes |
I
Note: Valid DECs for 5-1/4 1-sided DDEN in BOLDFACE |

The eight directory entry records for the directory entry sector
numbered 2 would correspond to DEC assignments in HIT positions 00, 20, 40,
60, 80, A0, CO, and EO. The positions shown in figure 4-6 are reserved for
system overlays on a system disk (as determined from the configuration field
defined 1in the section on the Granule Allocation Table). These entry

4 - 66

The DOS Directory Structure

positions, of course, correspond to the first two rows of each directory
entry sector for the first eight directory entry sectors. Since the operating
system accesses these overlays by the DEC position in the HIT rather than by
file name, these positions are always reserved for system disks. Data disks
reserve only positions 00 (BOOT/SYS) and 01 (DIR/SYS).

I I
| 00 -> BOOT/SYS 04 -> SYS2/SYS 20 -> SYS6/SYS 24 -> SYS10/SYS |
| 01 -> DIR/SYS 05 -> SYS3/SYS 21 -> SYS7/SYS 25 -> SYS11/SYS |
| 02 -> SYSO/SYS 06 -> SYS4/SYS 22 -> SYS8/SYS 26 -> SYS12/SYS |
! 03 -> SYS1/SYS 07 -> SYS5/SYS 23 -> SYS9/SYS 27 -> SYS13/SYS %
I I
l |

Figure 4-6: Directory Entry Codes reserved for SYSTEM files

The Hash Index Table 1limits the design of the system to a maximum
support of 256 files on any one logical drive. With the current state of the
art in hard disk drive technology, that limit may prove too small a number.
Obviously, additional file slots are available by partitioning a hard drive
into two or more Tlogical drives with each partition containing its own
directory. The customized hard disk driver then translates the 1logical
cylinder/sector information to physical parameters. This concept is discussed
in detail in chapter 3.

4 - 67

The Programmer's Guide to LDOS/TRSDOS Version 6

THE DIRECTORY RECORD STRUCTURE

The disk directory contains the information sufficient to access all
files on the disk. We have already shown that disk space allocation is
defined in the Granule Allocation Table. We have also revealed in the
previous section how the operating system uses file hash codes stored in the
Hash Index Table to locate the Directory Entry Code for each file. Each DEC
refers to a specific directory entry record. A directory record is 32-bytes
in length. Thus, each directory entry sector contains eight directory entry
records.

The HIT was shown to contain a maximum of 256 Directory Entry Codes.
Since there are eight entries per sector, the maximum number of directory
entry sectors is 32 (256 divided by 8). If we add one sector for the GAT and
one for the HIT, we discover that the maximum length of the entire directory
can be 34 sectors. The directory must be contained completely on a single
cylinder. Therefore, the exact length of the directory and hence the number
of directory entries is highly dependent on the size of a cylinder. For
example, an 18-sector per cylinder formatted disk will have 16 directory
entries and hence 16 times 8 or 128 directory entries. Consult the section on
the HIT for the formula calculating the number of directory sectors.

SECTORS PER DIRECTORY FILES AVAILABLE PER DIRECTORY
I CYLINDER RECORDS TOTAL SYSTEM DISK DATA DISK |
5" SDEN-1 10 8 64 48 62
| 5" SDEN-2 20 18 144 128 142 |
5" DDEN-1 18 16 128 112 126
5" DDEN-2 36 32 256 240 254
| 8" SDEN-1 16 14 112 96 110 l
8" SDEN-2 32 30 240 224 238
8" DDEN-1 30 28 224 208 222
| 8" DDEN-2 60 32 256 240 254 {
| = = = = = e - -
5" HARD-<1> 128 32 256 240 254
5" HARD-<2> 64%*2 32*2=64 256%*2=512 240*1+ 254*2=508
254*1=494
5" HARD-<4> 32*4 30*%4=120 240%4=960 224*1+ 238*4=952

Figure 4-7: Directory entries for various media

Note: Hard drive values show total entries for all partitions.
"<x>" denotes the number of logical drives.

|
I
|
I
| 238*3=938
I
I
|
I
I

The first two directory entries of the first eight directory entry
sectors are reserved for system overlays on a SYSTEM disk. A DATA disk
reserves only the first directory entry of the first two directory entry
sectors. The total capacity of files 1is equal to the number of directory
sectors times eight (since 256/32 = 8). The quantity available for wuse will
always be reduced by 16 on a SYSTEM disk or by two on a DATA disk to account

4 - 68

The DOS Directory Structure

for those entries reserved for the operating system. Figure 4-7 shows the
record capacity (file capacity) of each floppy format type. The dash suffix
on the density indicator represents the number of sides formated. The figure
also lists representative values for 5 megabyte winchester drives (typical
ST-506 compatible: 4 heads, 32 sectors per track, 153 tracks per head).

Because of the Data Address Mark conventions employed in the operating
system, two SuperVisor Calls have been provided to read/write directory entry
sectors. The @DIRRD (SVC-87) will read a directory entry sector into the
system buffer when passed a drive and DEC. Register pair HL s automatically
positioned to the proper directory entry in the buffer corresponding to the
DEC (the buffer is on a page boundary for physical 1/0). This buffer can be
written back to the directory using the @DIRWR (SVC-88), again by specifying
only the drive and DEC.

Any sector of the directory may be requested for 1/0 by using either
@RDSSC (SVC-85) for reading (which will update the Drive Control Table
directory cylinder field where required) or GWRSSC (SVC-54) can be used to
write a sector to the directory and properly identify the correct Data
Address Mark. Directory sector writes should be verified with the @VRSEC
SuperVisor Call. Expect to obtain an error code 6 as previously noted. This
procedure makes for easy access to the GAT and HIT directory records.
Abbreviated contents of the directory may also be retrieved via the @DODIR
and GRAMDIR Supervisor Calls.

Finally, since the directory 1is conceptualized as a data file and
contains its own directory entry, DIR/SYS, the directory can be treated as a
file and OPENed - just 1like any other file. READ access is granted for this
method. Under no circumstances should you attempt to write to the directory
by defeating the password protection when the directory js opened as a file
and accessed as such. Failure to heed this warning may make the directory
unreadable.

The expert programmer may find useful information in the directory -
especially for those that write catalog programs. Since the directory
information s so vital to the friendliness of programs, the system displays
a great deal of information on each file via the directory command. The
following provides detailed information on the contents of each directory
entry field. The numbers contained in angle brackets refer to the relative
byte(s) of the field in the record.

ATTRIBUTES - <Byte 0>

This byte contains the entire attributes of the designated file. It is
encoded as follows:

Bit 7 => This bit flag is used to indicate whether the directory
entry is the file's primary directory entry (FPDE) or
one of its extended directory entries (FXDE). Since a
directory entry can contain information on up to four
extents, a file that is fractured into more than four
extents requires additional directory records. If this
bit is a "0", the entry is an FPDE. If set to a "1, the
entry is an FXDE.

4 - 69

The Programmer's Guide to LDOS/TRSDOS Version 6

Bit 6 =>
Bit 5 =>
Bit 4 =>
Bit 3 =>
Bits 0-2 =>

A SYStem file is noted by setting this bit to a "1". If

set to a "0", the file is declared a non-system file. It
is used as a reference in DOS utilities and as a double

check when the DOS overlay loader accesses a file in the
reserved HIT entries.

This bit is used to designate the corresponding file as a
Partitioned Data Set. The PDS is a library file managed
by a utility program called PRO-PaDS. The utility is
available from MISOSYS.

This activity bit is used to indicate whether the
directory record is in use or not. If set to "1", the
record is in use. If set to a "0", the directory record
is not active although it may appear to contain
directory information. A previously active file is
removed only by resetting this bit, removing its HIT
entry, and deallocating its space. Thus, the FPDE is
left intact except for this bit.

Specifies the visibility; if "1", the file is INVisible
to a DIRectory display or other library function where
visibility is a parameter. If a "0", then the file is
declared VISible.

Contain the access protection level of the file. The
3-bit binary value is encoded as follows:

0 - FULL 1 - REMOVE 2 - RENAME 3 - WRITE
4 - UPDATE 5 - READ 6 - EXEC 7 - NO ACCESS

FLAG FIELD - <Byte 1>

This field contains four file flags in bits 7-4. The low-order nibble is
associated with the DATE field. The flags are encoded as follows:

Bit 7

Bit 6

Bit 5

=>

=>

=>

When this bit is set, the system will be kept from
deallocating any unused space at the end of the file
when the file is closed. This bit will be set to a "1"
if the file was "CREATEd" by the DOS library command,
CREATE. Such a file will never shrink in size. The file
will remain as Targe as its Targest allocation.

This flag is termed the "MOD flag". If this flag is set
to a "1", it indicates that the file has not been backed
up since its last modification. The BACKUP utility is the
only DOS facility that will reset this flag. It is set
during the file close operation if the File Control Block
(FCB+0, Bit 2) indicated a modification of file data.

This bit is set by the system when a file is opened with
UPDATE or greater access. It is used to detect the
presence of an open file for subsequent OPENs of the same
file. The bit is reset by the CLOSE operation.

4 - 70

The DOS Directory Structure

Bit 4 => This bit is used internally by the system.

If the ATTRIBUTE field identifies the record as an FXDE, then this
entire byte (flags and month) will contain the Directory Entry Code of the
directory entry forward linked to this one. This entry is the backward link.

MODIFICATION DATE - <Bytes 1 - 2>

- - - - - . - . . - -

This field is composed of 12 bits, the low-order nibble of DIR+l and the
entire byte of DIR+2. It contains the month, day, and year for the day that
the file was last modified. The field is encoded as follows.

Bits 11-8 => Contain the binary month of the last modification date.

If this field is a zero, the system date was not set
when the file was established nor since if it was
updated.

Bits 7-3 => Contain the binary day of last modification.

Bits 2-0 => Contain the binary YEAR - 1980. That is to say that 1980
would be coded as 000, 1981 as 001, 1982 as 010, etc.

EOF OFFSET - <Byte 3>

This field contains the end-of-file offset byte. It points to the

position in the ending sector of where the next byte can be placed. If EOF
OFFSET is a zero, it means that a full sector of 256 bytes had been written
to the last sector of the file and the next byte must be written to a new
sector. This byte, and the ending record number (ERN), form a triad pointer
to the byte position immediately following the last byte written.

LOGICAL RECORD LENGTH - <Byte 4>

This field contains the Logical Record Length (LRL) specified when the
file was initially generated (via @INIT) or subsequently changed by being
overwritten with some file that has another LRL via "COPY (CLONE)" or
"BACKUP". A value of "O" indicates that the LRL is equal to 256.

FILE NAME - <Bytes 5 - 12>

This field contains the name portion of the file specification. The file
name will be left justified and padded with trailing blanks. The name will
always be in upper case characters <A-Z, 0-9>. If a file has FXDE records in
addition to the FPDE, only the FPDE will contain the filename in this field.

FILE EXTENSION - <Bytes 13 - 15>

This field contains the extension portion of the file specification. As
in the name field, it is left Justified and padded with trailing blanks. If a
file has FXDE records in addition to the FPDE, only the FPDE will contain the
file extension in this field.

4 - 71

The Programmer's Guide to LDOS/TRSDOS Version 6

OWNER PASSWORD - <Bytes 16 - 17>

D e b R e ———

This field contains the hash code of the OWNER password. The OWNER
password is used to gain full access to a password protected file. Passwords
are assigned at file creation and/or changed with the ATTRIB library command.
The 16-bit hash code for a file password can be obtained using the method
shown for obtaining the disk master password hash code.

USER PASSWORD - <Bytes 18 - 19> ‘

This field contains the hash code of the USER password. THE USER
password is required to access the file at the 1level of protection identified
in the attribute field. Passwords are assigned at file creation and/or
changed with the ATTRIB library command. The 16-bit hash code for a file
password can be obtained us1ng the method shown for obtaining the disk master
password hash code. ; i gw ; .

ENDING RECORD NUMBER - <Bytes 20 - 21>

This field contan'ns‘T the ending record number (ERN) which is based on
full sectors. If the ERN is zero, it indicates a file where no writing has
taken p]ace (or a lot of writing whereby you forgot to close the file).
the LRL is not 256, the ERN value represents the sector where the EQF occurs
Each time a sector is written to the disk, the ERN is advanced by one - even
if the sector is not a full sector. Thus, if ERN shows 3, and EOF OFFSET
shows 0, then three fulé $sectors pabe been written (relative 0, 1, and 2).

ERN shows 3 and EOF OFFSET show$ 62, then two full sectors and one part1a1
sector of 62 bytes have been written.

EXTENT DATA FIELDS - <Bytes 22 - 29>

- - - "o - . e e N e e e e RD wm A e G 0 e e

The extent data fields contain data on the allocation of disk space for
the file. Each field is composed of 16-bits and can contain the allocation
information for a maximum of 32 contiguous granules. Their contents tell you
what cylinder stores the first granule of the extent, what is the relative
number of that granule, and how many contiguous granules are in use in the
extent. Each extent is encoded according to the pattern illustrated for
extent field 1.

Extent Field 1 - <Bytes 22-23>

. - - — - - - - " - s W > em e e A D Am e e e

Bits 15-8 => Contain the cylinder number for the starting granule
of that extent. The extent uses space on the disk
starting from this cylinder and the sector based on the
starting granule, for as many granules as are noted in
bits 4-0.

Bits 7-5 => Contain the relative granule number (0-7) in the cylinder
which is the first granule of the file for that extent.
This value is numbered starting from zero. (i.e. a "0"
indicates that the first granule in use is the first

4 - 72

The DOS Directory Structure

granule on the cylinder. This would be sector 0. A "1"
would indicate that the first granule in use is the
second granule on the cylinder. If there are 6 sectors
per granule, sector 6 would start the extent. A "2" would
indicate that the first granule in use is the third on
the cylinder. If there are 6 sectors per granule, then
the first sector in use would be sector 12.)

Bits 4-0 => Contain the quantity of contiguous granules in the
extent. The value is relative to 0. Therefore a "0"
value implies one granule, "1" implies two, and so
forth. Since the field is 5 bits, it contains a
maximum of X'1F' or 31, which would represent 32
contiguous granules.

Extent Field 2 - <Bytes 24-25> - Structured the same as 1.

- - - - — - . A - A e e e S S R S e e G A e M S M e D e e T e e
- - . - —__ - - - " - n - . 40 M e e e e e G N M T T e D T e e e e e e e D e e
- - - ——— - - - 0 . - - - . D D WD G e N O e G W e S S A G em e e e -

This field is a flag noting whether or not a link exists to an extended
directory record. If no further directory records are linked, the byte will
contain X'FF'. If the value is X'FE', a Tlink is recorded to an extended
directory entry.

FXDE LINK POINTER - <Byte 31>

This is the forward link to the extended directory noted by the FXDE
LINK FLAG. The Tlink pointer is the Directory Entry Code (DEC) of the extended
directory record. The FXDE will then contain the Directory Entry Code of this
directory entry in the FLAG field and the month sub-field of the DATE field.
This other DEC becomes the backward Tlink.

Figure 4-8 represents one directory entry record illustrating a file
with two extents.

4 - 73

The Programmer's Guide to LDOS/TRSDOS Version 6

- ATTRIBUTES [active directory entry record]
|- FLAGS [Modified and not backed up]
| |- DATE of last modification [July 15, 1983]
: | |- EOF OFFSET [position to PUT next byte = 189]
I
I

| | |- LRL [256]

[|- Name [HITINFO]
| |
| 10 47 7B BD 00 48 49 54 49 4E 46 4F 20 53 43 52
| 96 42 96 42 25 00 1D 46 23 40 FF FF FF FF FF FF

l
I
I
l
l
{
| | |- Extension [SCR] |
|
|
{
| | | | |- FXDE 1ink [no FXDE] |
| | | | - Extent 4 [unused] l
| | |- Extent 3 [unused]
[|- Extent 2 [starts cyl 35, gran 2, 1 granl]
|- Extent 1 [starts cyl 29, gran 2, 7 grans] I
| |- ERN [37 sectors written]
| - User PASSWORD [blanks]

- Owner PASSWORD [blanks] l

Figure 4-8: Illustration of a directory record entry

4 -74

Disk File Access and Control

GENERAL FILE STRUCTURES

The primary reason we make use of computer systems is to aid wus in
managing large volumes of data. Our computers utilize the Disk Operating
System (DOS), the fundamental purpose of which is to make an easier Jjob of
handling the storage of that data. We usually want rapid access to data;
therefore, the random access disk storage device is the selected storage
medium due to its inherent speed in accessing data. These devices take two
forms, floppy disks with either one or two heads which use a single diskette
with corresponding one or two surfaces, and winchester hard disk drives which
consist of one or more platters with each platter consisting of two surfaces.
The hard disk drive may use either a fixed or removable media.

Regardless of the disk drive type, each surface is divided into
concentric circles of storage area called tracks. Each track 1is then
subdivided by a fixed number of subareas called sectors. Although the number
of sectors per track may vary from one media type to another, the number of
sectors in each track of the same media is constant. The DOS assigns numbers
to every sector, every track, and every surface. Surfaces are numbered
consecutively by one starting from zero. Tracks are numbered consecutively by
one starting from zero at the outermost portion of the disk giving the
innermost track the highest number. A CYLINDER consists of the like numbered
tracks on all surfaces. For example, on a two-surface media, track zero of
surface zero and track zero of surface one are grouped together into cylinder
zero. The sectors in each track are numbered starting from zero. Thus, each
track contains Tike numbered sectors - regardless of track number or surface.
Therefore, each sector on a disk 1is designated unique by 1its respective
sector, surface, and track numbers.

Data is stored 1in these sectors. Obviously, if your program had to keep
track of all the sectors your data was occupying, you would have to make the
program necessarily complex [if this is not obvious, you will become a
believer after reading the section on file access]. The DOS alleviates you of
this task by totally managing the storage space. It does this by associating
an 8-character name with the storage areas assigned to a logically connected
set of data called a file. Thus, the name becomes a FILENAME. The DOS also
permits a 3-character extension to be affixed to that name to better classify
the type of file: data, text, command program, etc. This extension is termed
the FILE EXTENSION. You can attach a unique PASSWORD and access level such as
EXECute only or READ only to each file 1in order to provide a greater degree
of protection to the information contained in the file. Furthermore, the file
can be placed on any of up to eight disk storage devices. Each disk drive is
assigned a DRIVE number from zero to seven. Therefore, to uniquely reference
a file, we put together the NAME, EXTENSION, PASSWORD, and DRIVE and refer to
the result as a FILE SPECIFICATION. The term, file specification, is rather
long so we shorten it to "filespec".

In order to assign space on a disk for storage of file data, the DOS
groups together a quantity of sectors into a GRANULE. The size of the granule
varies according to the capacity of the media. This variation in size was
discussed in the GRANULE ALLOCATION TABLE section. The DOS assigns space
dynamically to a file. This means that space is reserved for the file only
when the file needs it. The process whereby the system looks for additional
space is termed the ALLOCATION process. The DOS would prefer to allocate
granules that are connected sequentially to each other. The sequential

5-175

The Programmers Guide to LDOS/TRSDOS Version 6

connections are only logical 1in nature, not physical connections. The DOS
prefers to access a disk drive device in a particular order to optimize the
transfer of data. Since the time to step the head from one cylinder to
another is greater than the time to access a sector in the cylinder where the
head is positioned, it 1is far preferable to access all sectors of a cylinder
before stepping to another cylinder. If we Took at sequential access of a
file, we then would want to conceptualize a sequential connection to start
from track zero, surface zero, sector zero incrementing the numbers like the
odometer in a car as it travels the turnpike. In this manner, all sectors of
a cylinder are accessed before the disk drive has to step to the next
cylinder.

It is not always possible to allocate space consecutively. For instance,
say we want to add a granule to an existing file but the next granule
consecutive to the last granule of the file has already been allocated to
another file. Our file must then be fractured into more than one piece. We
term each piece of the file an EXTENT. The system's file access routines
logically connect each EXTENT so to a program accessing the file, it appears
as if the file exists as one continuous allocation of space.

The disk directory stores all the allocation data on each file contained
on the disk. Allocation data on a particular file 1is stored in a directory
entry record. Each record can hold the allocation information on up to four
extents. The first record 1is termed the File's Primary Directory Entry or
FPDE while all succeeding directory records are considered to be the File's
Extended Directory Entries or FXDE records. In order to access the file data,
the system's file access routines must utilize the information contained in
the file's FPDE.

[t is impractical to have to read the FPDE each time another sector of
data 1is transferred. Therefore, the scheme employed is to access the
directory once in a process to obtain all of the file's access information
and place the information into a memory area termed a File Control Block
(FCB). The actual process is termed "opening the file". The reverse process,
that of updating the directory entry once the access of a file is complete is
termed "closing the file". The DOS provides SuperVisor Call requests to
perform the OPEN and CLOSE functions. These type of requests are called "file
control" functions since they give you the means of controlling the disk
file. Other types of requests are associated with accessing the data in a
file and are thus called "file access" requests. INTERFACING VIA SUPERVISOR
CALLS, chapter 6, describes each access and control SuperVisor Call.

Data 1is generally collected into units called RECORDS. These may be
fixed-length records with each record being exactly the same Tlength or they
may be variable length records where the 1length of the record varies from
record to record. Fixed-length records can be accessed sequentially (i.e.
starting from record zero and continuing to the last record of the file).
This type of access is termed RECORD I/0. The DOS supports fixed length
records from one to 255 characters in length by automatically handling the
blocking and deblocking of records into and out of the disk file I/0 buffer.
Since the DOS standardizes disk file I/0 buffer sizes at 256 characters each,
record Tlengths of 256 are handled directly without recourse to the blocking
and deblocking used on shorter records and these records can also be
transfered to and from the disk more quickly. Record sizes larger than 256
can be wused in an application program; however, the blocking and deblocking
of records must be performed entirely within the application while, in

5-176

Disk File Access and Control

general, the application will use 256-character records to and from the
system. Henceforth, any reference to the term RECORD will consider to be
associated with a record which ranges from 1 to 256 characters in length.

Fixed length records can also be accessed directly by record number
(which is customarily called RANDOM ACCESS). The DOS provides SuperVisor Call
requests to position the record pointer maintained in the File Control Block
to the record of choice. The application can then address the record via READ
or WRITE SuperVisor Call access requests. Additional SVCs provide other
functions associated with the access of a file.

The structure of variable length records 1is highly dependent on the
programming language used to code the program. Most high-level languages
(BASIC, FORTRAN, etc) provide variable length file structures which may not
be equivalent across each language. One common structure which is supported
by more than one language is to use a character or character combination to
represent the end of the record. The BASIC language operating under Version 6
uses the ASCIT code X'OD' which is a CARRIAGE RETURN to indicate the end of a
variable Tlength record. Some systems use CARRIAGE RETURN followed by LINE
FEED (X'0OA'). Some Tanguages use a one-byte or two-byte length indicator
within the record to indicate the actual length of the record. Program files
that are directly executable are, in fact, variable length record files which
use a one-byte length field within each record. These "load module" files
even include a vrecord TYPE character which permits the specification of
different records for different purposes within the same file.

Some files may not even be able to be conceptualized as containing fixed
or variable Tength records. You might consider a word processing text file as
not falling into the above classification although each paragraph may, in
fact, be a "record". Other files may be variable length but include an index
which points to the beginning of each record or group of records. The records
are accessed sequentially after the record pointer is extracted from the
index. This type of access is usually called Indexed Sequential Access Method
(ISAM). Both the operating system's library files and the Partitioned Data
Set files supported under the PRO-PaDS wutility are ISAM files. The bottom
line is for you to determine the type of access you want to employ after
exploring the nature of your data and understanding how the system accesses
disk files.

There are three methods which are used in application programs to access
disk files. The first method 1is to consider the file as a stream of
characters. This access method uses the GET and PUT character I/0 SuperVisor
Call functions and was discussed in chapter 2, DEVICE INPUT/OUTPUT
INTERFACING. The second method is where your file contains physically
consistant fixed length records. In this case, it is probably practical to
consider RECORD I/0. The third method is to use 256-byte records and perform
your own blocking or deblocking as required.

The following sections describe the methods used to control and access
files. The Tlast section completely describes the fields in the File Control
Block which is used in all interfacing of disk files.

5-77

The Programmers Guide to LDOS/TRSDOS Version 6

CONTROLLING DISK FILES

When a file is to be opened for access, the application program
initially provides the file specification to the DOS by placing it in the
File Control Block (FCB) which will be used for the file. The program then
invokes the OPEN function. The DOS, in turn, searches the disk drive(s) for
the file's directory entry. Once found, it replaces the filespec in the FCB
with information needed by the file access routines. The system then manages
the FCB contents according to the demands of the file access requests. The
following sections will illustrate some of these control functions.

Getting Filespecs

From where does a program obtain the filespec? You are already familiar
with the DOS commands that appear to get the filespec from the command line.
Let's take a Tlook at this method. You will T1learn from the chapter on
SuperVisor Calls that when the system transfers control to a program,
register pair HL contains a pointer to the first non-blank character on the
command line which terminated the name of the executing program. Let us
assume that our program will use a command line syntax as follows:

PROGRAM-NAME FILE-SPECIFICATION (PARAMETERS)

The command-line pointer will be pointing to the first character of the file
specification. For the moment, let's make the filespec entry mandatory. We
can then code the routine to fetch the filespec as follows:

ENTRY LD DE,FCB1 ;Point to FCB
LD A,BFSPEC ;Identify the SVC
RST 40 sInvoke the SVC

JP NZ,SPCERR ;Transfer on error

The OFSPEC SVC will transfer the filespec contained on the command line into
the FCB. Any conversion to upper case will be performed as required which
permits the entry of the filespec in wupper or Tlower case. Typically, you
would want to provide a default file extension to save the user the time it
takes to enter up to four additional characters when the application is
designed for a class of file (such as TXT, ASM, JCL extensions). A default
file extension will not override any extension entered with the filespec. A
default will add an extension provided by the program only if the user
omitted one. This default can be added as follows:

PUSH HL ;0on't disturb command line pointer
LD HL, TXTEXT ;Point to storage of default
LD DE,FCB1 sPoint to FCB as required
LD A,BFEXT ;Identify the SVC
RST 40 sInvoke the SVC
POP HL sRestore the pointer
TXTEXT DB TXT! ;Data field for default extent

5-178

Disk File Access and Control

Other times we may want to prompt the user to enter a filespec. This is
achieved through a combination of @DSPLY and @KEYIN as follows:

LD HL,SPCMSG$;Point to message

LD A,@DSPLY ;Identify the SVC

RST 40 ;Invoke the SVC

LD HL,FCB1 ;Use the FCB for input buffer
LD BC,31<8.0R.0 ;Specify 31 chars & C=0

LD A,@KEYIN ;SVC for Tine input

RST 40 ;Invoke the SVC

JP C,GOTBRK ;Transfer on <BREAK>

LD D,H ;Copy the FCB pointer to DE
LD E,L

LD A,@FSPEC ;Now parse the entry to

RST 40 : handle 1/c to U/C

JP NZ,SPCERR

SPCMSG$ bB "Enter the input filespec',13

This routine will display the "Enter the input filespec" message and place
the user input into the FCB. The G@FSPEC request will then process the user
entry to convert any Tlower case to upper case while it tests the validity of
the entry.

Password Protection of Files

Any discussion concerning the opening of disk files must begin with a
discussion of file password protection. This is a subject that has not been
too well wunderstood and deserves sufficient explanation. File protection is a
process whereby access to a file can be 1limited to either a level of access
(read, write, remove, etc,), to the entry of a password, or to both a level
of access and a password requirement. The DOS achieves this file protection
capability through a combination of two password fields and a protection
level field for each file. The file password fields are termed the OWNER
password and the USER password. Users familiar with earlier versions of the
DOS may be familiar with the earlier corresponding terms of UPDATE and ACCESS
which were changed in release 6 to OWNER and USER respectively to avoid any
confusion with the protection level.

The protection Tlevel field (we will use the term PROT) is associated
with the USER password and indicates what Tevel of access to the file is
granted when the USER password is part of the file specification at the time
that the file is opened. The different Tlevels of access granted are shown in
figure 5-1. Suppose that the access level is READ. If the filespec includes
the USER password, then the file will be opened but the system will only
permit the opener to read the file, not to write to it. Any SuperVisor Call
request for updating, writing, renaming, or removing will return the "Attempt
to access protected file" error. If the OWNER password is part of the
filespec when the file is opened, the system will permit all levels of access
regardless of any USER password or protection level.

5-179

The Programmers Guide to LDOS/TRSDOS Version 6

NONE - You cannot access the file. This PROT is used for system files.
EXEC - You can only run the program file.
READ - You can read the file.

UPDATE - You can write to an existing file without extending it.
WRITE - You can write to and extend the file.
RENAME - You can change the name/extension of the file.
- You
FULL - You can change the protection level and passwords of the file.

Figure 5-1: Access protection levels

|
I
I
I
|
l
can delete the file from the disk.
|
I
I
Note: Each level grants the access listed above it. |

I

I
I
I
I
I
|
{ REMOVE
I
I
I
I
|

Passwords are assigned to files in one of two ways. If a password is
part of the filespec when the file is first created with the @INIT SuperVisor
Call function, then that password will become both the OWNER and USER
passwords. The protection 1level will be FULL but since both password fields
are in use, the password must be entered for any access to the file. The
second method of applying password protection is to use the ATTRIB Tlibrary
command. This command allows you to change both passwords and protection
level - assuming you have the access authority based on the file's existing
protection.

A password can be composed of nothing but blanks. This is in effect, no
password at all since the entry of NOTHING is interpreted as a blank field
and thus will grant access according to the Tlevel associated with the
password field. For instance, if the OWNER password field is blank, the file
has no protection whatsoever even if the USER password field is non-blank
because a filespec without a password entry will match the blank OWNER
password thus granting full access. It is important for the OWNER password to
be non-blank if the file is to be protected in any manner.

A common situation is to find the OWNER password kept private to those
individual(s) either maintaining the application or responsible for the
integrity of the file contents while providing a blank USER password with a
protection level set to the minimum level of access needed by the user. For
instance, if the user only needs to read a file, set the protection level to
READ. This user can then read the file without having to bother with a
password but that user cannot write to the file, cannot remove it from the
disk, cannot rename the file, nor can the wuser change the protection level of
the file. However, the maintainer can step in to deal with file maintenance
at a higher level of access given the OWNER password.

Where use of a file needs to be restricted to an individual out of a
group of individuals, then the USER password field should have a non-blank
password that is distinct from the OWNER password. The access protection
level is still kept to the minimum necessary for the user. This scenario will
then permit that individual the minimum access to the file while excluding
all others (unless, of course, the user shares his knowledge of the password
with others).

5 - 80

Disk File Access and Control

It may be practical for any given installation to consider protecting
all files to the minimum access Tlevel expected of them. Thus any file whose
primary access 1is READ only would be protected accordingly. There will be
less chance to inadvertantly remove the file by mistake or mistakenly write
to it - a common error when dealing with applications that frequently prompt
the user for the entry of file specifications.

A high level 1language permits you the opportunity of indicating your
access level in the language syntax. For example, BASIC requires you to
specify whether a sequentially accessed file is to be INPUT or OUTPUT
corresponding to READ or WRITE. The operating system has no facility for
identifying the maximum Tevel of access desired for any particular opening of
the file except through the passwords and access protection level.

Opening Files

Files opened with UPDATE or greater access are indicated as open in
their directory entry record by the setting of a "file open bit". Any
subsequent open attempt will result in a force to READ access protection and
return the appropriate "File already open" error code. This is designed
primarily for the use of shared access multiplexed disk drives where files
are shared among a number of users. This arrangement will restrict the
altering (but not reading) of file data to only one user at a time. It is
therefore important for applications to CLOSE files as soon as the
application is finished with the file access. It is also important for
applications to trap the "File already open" error and take appropriate
action. Realize that files protected to READ only, may be opened by multiple
users and still be opened for updating by the maintainer providing the proper
OWNER password is provided. The importance of maintaining proper Jlevels of
file protection through the use of passwords and protected access levels
should not be taken lightly.

For the convenience of applications that access files only for reading,
a facility for forcing the file access to READ only when a file is opened has
been provided in the DOS. This facility will inhibit the "file open bit" and
set the File Control Block access permission to READ (providing that the
access permission level granted according to the password entered was READ or
greater). Under this linkage, it is not necessary to close the file when you
are finished accessing it as no directory updating will be done. Of course if
you want the system to recover the filespec and place it into the FCB, you
will have to close the file. Check the discussion covering the FORCE-to-READ
flag (bit-0 of the SFLAG$) in the @FLAGS SuperVisor Call. Note that once the
FORCE-to-READ flag has been set, the next @OPEN or G@INIT SuperVisor Call
request will automatically reset the bit after satisfying the request.

When a file is opened, the system needs to be told where the disk file
[/0 buffer is located. This buffer 1is used to transfer a full sector of data
to and from the disk. The system also needs to be told what Logical Record
Length (LRL) is to be used while the file 1is open. If the LRL at open time
differs from the LRL of the file as noted in the directory, the OPEN routine
will return an "LRL open fault" error code BUT THE FILE WILL STILL BE
PROPERLY OPENED ACCORDING TO THE LRL PASSED IN THE OPEN REQUEST. The error
code is your indication that a different LRL is being wused. If the LRL is
256, then the system does not block and deblock the data records and will
expect that all data to I/0 will be using the disk file [/0 buffer. If the

5 - 81

The Programmers Guide to LDOS/TRSDOS Version 6

LRL is in the range <1-255>, then the disk file I/0 buffer is used only for
transferring full sectors to and from the disk. Say, for example, a file has
200-byte records, the second record of the file is partially contained in the
first sector and partially contained in the second sector. The file is said
to SPAN two sectors. This requires a separate buffer to hold the record data
while the system uses the disk file 1/0 buffer for the transfer of the
sector. The program then will specify a USER RECORD buffer (UREC) that will
be used by the system to transfer the data records to and from the disk file
I/0 buffer on each I/0 request. Thus, whenever a file record spans two
sectors, the system will have the necessary buffering regions to fully block
and deblock the record. Note that the arrangement of separate disk file 1I/0
buffers for each file provides greater flexibility for accessing multiple
files coincidentally.

To illustrate the linkage necessary to open an existing file, we will be
referencing an 80-byte record length file with the specification,
BULKLOAD/DAT:2. The file has an OWNER password, blank USER password with
protection level of WRITE. The filespec has been placed into the File Control
Block as shown in figure 5-2. Note that the filespec is left justified and is
terminated with an ETX (X'03') character. The ETX is automatically placed as
the terminator when a file specification is parsed into the FCB by the @FSPEC
SuperVisor Call function. A carriage RETURN (X'0OD') could equally be used if
your program is completely controlling the placement of the filespec into the
FCB. The remainder of the FCB contents is inconsequential as anything past
the ETX or RETURN is completely ignored by the OPEN process.

Once the FCB is filled with the filespec, we can open the file using
linkage such as this:

LD HL,FILEBUF ;Point to the disk file I/0 buffer

LD DE,FCB1 ;Point to the File Control Block
LD B,80 ;Specify the Logical Record Length
LD A,GOPEN ;Identify the SVC
RST 40 sInvoke the SVC
JP NZ,TOERR ;Transfer on a returned error
ORG $<-8+1<8 ;Set PC to page origin

FILEBUF DS 256 ;Reserve space for file buffer

Many programs are coded so that the data areas are placed at the end of the
program. As you become adept at file handling, you will discover that
accessing file buffers that are placed at a page boundary 1is not only easier,
but sometimes more efficient depending on your specific use of the buffer.
The "ORG" pseudo-O0P in the above routine serves the purpose of establishing

5 - 82

Disk File Access and Control

the program counter at a page origin. This provides for the access of each
byte in the buffer by indexing the low-order byte of a 16-bit register pair.

If you are going to create a new file, all that needs to be changed in
the routine illustrated is to replace the "LD A,GOPEN" with "LD A,@INIT".
Specifics on the protocol of @INIT are located in chapter 6. The G@INIT
SuperVisor Call can also be used to open an existing file. Your use of either
@GOPEN or @INIT is dependent on the purpose of the file. If your application
is going to write a file that can be either existing or new, then @INIT is
the choice. @INIT will inform you as to whether it located an existing file
or created a new one (the carry flag is set if a new file is created). This
information may be useful to your application. If it is a requirement that
the file be existing, then GOPEN should be used.

[f it 1is mandatory that the file NOT be existing, then the system
provides a few capabilities to support this requirement. You can first GOPEN
the file. If the file is successfully opened, then you know that the file is
existing and can take the appropriate action. If the file did not open
successfully, you should check the error code returned by the system to
verify that it returned a "File not found" error as other errors may not
imply the non-existance of the file [for instance, the LRL provided with
@OPEN may be different than that stored in the directory entry giving an "LRL
open fault" error]. Another interesting technique for detecting the existance
of a file 1is to attempt to RENAME it using the same name. This can be done
with the @RENAME SuperVisor Call by copying the filespec into a second FCB
for use as the "new" but identical name. The @RENAME routine will always
first check the existance of the file before determining RENAME permission
and verifying that the new name differs from the old. If GRENAME returns a
"File not found" error, you will know that the file does not exist. If the
file does exist, GRENAME should return either an "Illegal access to protected
file" error (if you do not have RENAME permission) or an "Illegal file name"
error due to the duplicate name. The GRENAME method uses slightly less system
overhead and thus will execute faster. It also will not attempt to set the
directory's "file open bit" thereby performing one less directory write.

Closing Files

The reverse operation of opening a file, be it @INIT or GOPEN, is the
CLOSE operation. Remember that files opened with UPDATE or greater access
must be closed in order to update the directory entry record. The updating
process will change the modification date and set the MODification flag bit
if any writing has occurred. The updating process also alters the end-of-file
information if a sequentially accessed file has been either extended or
shortened. Finally, the updating process resets the "file open bit". The
CLOSE operation wuses the information that the system has been maintaining in
the FCB. Thus, you close a file simply by passing the FCB pointer to the
SuperVisor Call as follows:

LD DE,FCBI1 ;Point to the open File Control Block
LD A,BCLOSE ;Identify the SVC

RST 40 ;Invoke the SVC

JP NZ,TOERR sTransfer on a returned error

5 - 83

The Programmers Guide to LDOS/TRSDOS Version 6

Miscellaneous File Control

- - - n - - - = - = . - . wn . -

Before we leave the topic of file control let's address some lesser used
control requests. First we have the removal of a file. The system's REMOVE
Tibrary command can delete a file from the disk when at DOS Ready or command
level. You could also remove a file by passing a "REMOVE filespec" command
line to the system via the @CMNDR SuperVisor Call request. If we consider the
DOS command level to be the highest Tlevel, then the lowest level is via
assembly language SVCs. The SVC method of file removal requires that the file
first be opened. The reason for this requirement 1is based on the overlay
structure of the system. The file control routines are resident in system
overlays rather than in the memory resident portion of the system like the
file access routines. It so happens that the routines to open a file are in
an overlay (SYS2) different from the overlay containing the routines to
remove a file (SYS10). Since the system has no provision for system overlays
to invoke functions in other overlays, your application program “supervises"
the two functions of opening and removal. This linkage is as follows:

LD DE,FCB1 ;Point to the FCB holding the filespec
LD A,BQOPEN ;Identify the SVC

RST 40 ;Invoke the SVC

JR Z,0PENOK ;Continue if no open error

cp 42 ;Check on "LRL open fault"

JR NZ,RMVERR sError if anything else
OPENOK LD A,BREMOV ;Identify the SVC

RST 40 ;Invoke the SVC
RMVERR JP NZ,IOERR sTransfer on a returned error

Notice that we did not need to reference a disk file I/0 buffer since no I1/0
was going to be performed (why waste the three bytes for the instruction?).
Also, since we are going to ignore "LRL open fault" errors, there is no need
to put an LRL value into register B.

When the system removes a file, it first deallocates the space taken up
by the file by resetting the appropriate bits in the Granule Allocation
Table. In the deallocation process, all of the file's extended directory
entry (FXDE) records are zeroed and their <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>