Al

1l

(U (O)))
L |

I
im— |

LY

) I

(S —")

NG)

-

Pathways Through
the ROM

Guide to
Level Il BASIC
and DOS

Edited by George Blank

Robert M. Richardson
Roger Fuller

John T. Phillipp
George Blank

John Hartford

Cover lllustration
Elaine Cheever

S,

SoftSide Publications
6 South Street
Milford, New Hampshire 03055

ABOUT THIS BOOK

As this book is being prepared for publication, sales of the
Radio Shack TRS$-80 microcomputer are approaching
200,000 and another computer, the Video Genie, is being
developed that will use the same software. These small
but powerful general purpose computers are driven by the
same BASIC interpreter, Microsoft BASIC, known to
TRS-80 purchasers as Level || BASIC.

Finding adequate documentation on Microsoft BASIC
has been a continuing problem. Microsoft has a
dominating position in the field as the author of APPLE,
PET, ALTAIR, KIM, and Heathkit BASIC as well asthe one
described in this book, and they have been
understandably reluctant to make it easy on a potential
competitor by selling the documented source code for
their product.

We respect their rights to their product, and for that
reason do not supply source and object code in this book.
We do provide sufficient comments and a disassembler so
that you can create your own source code, but to do this
you must first purchase one of these computers, so that
Microsoft receives its due royalties.

This book is a compilation of four items previously
published separately. The TRS-80 Disassembled
Handbook was published by Richcraft Engineering Ltd.
of Chautauqua, NY at $10.00 (copyright © 1980 Richcraft
Engineering, Ltd). Supermap, Level I ROM
Documentation, was published by Fuller Software of
Grand Prairie, Texas for $18.95 (copyright (c) 1979 Fuller
Software). HEX-MEM, the BASIC monitor by John T.
Phillipp, was published in the February 1980 issue of
Prog/80 Magazine and The Z-80 Disassembler by George
Blank in the June, 1980 issue (copyright (¢) 1980 SoftSide
Publications, Milford, NH 03055 — subscription price, $15
a year for 6 issues). We are grateful to the authors for
granting us permission to collect their works for the
convenience of our readers.

The Forward, Introduction, and first 9 chapters of this
book are from The TRS-80 Disassembled Handbook by
Robert M. Richardson, and are presented as a series of
lessons in the use of ROM subroutines. Chapter 10 is
Supermap by Roger Fuller, which lists, in sequential
order, comments on the contents of the Level || BASIC
ROM indexed to hexadecimal memory locations. Chapter
11 is HEX-MEM, a monitor program written in BASIC to
enable readers to examine the ROM directly and
experiment with machine language programming.
Chapter 12 is a complete Z-80 disassembler, which in
conjunction with a computer, a printer and the comments
in Chapter 10, will enable the reader to produce a
commented source listing of the Level || BASIC ROM for
personal use.

Chapter 13 contains comments on the Disk Operating
Systems TRSDOS and NEWDOS by John Hartford.
Chapter 14 is the specification sheet for the floppy disk
controller chip used in the TRS-80, manufactured by
Western Digital. Our thanks to Western Digital for
permission to reprint this material.

These programs, while very useful, will not satisfy the
serious programmer, who will desire more powerful
programming tools. For those who do their programming
on cassette based machines, we recommend the Radio
Shack EDITOR ASSEMBLER and a machine language
monitor like T-BUG, RSM-1, RSM-1S, RSM-2, or STAD.
Of the monitors, we recommend STAD (for symbolic
trace and debug) which has more features, including
multiple breakpoints, creation of symbol tables, and the

ability to handle both tape and disk 1/0, at an excellent
price. Programmers with disk systems have a greater
choice, with a fine monitor, DEBUG, included in the TRS-
DOS operating system. This lacks a disassembler, tape
170 ability, and the trace routines of STAD, so you may
still find the other program useful. Forassembly language
programming, Apparat provides a disk version of the
Radio Shack EDITOR ASSEMBLER as part of their
NEWDOS+ package (you must still purchase the original
from Radio Shack to get the documentation), or you can
purchase Microsoft's powerful MACRO ASSEMBLER. T-
BUG, TRS-DOS and the EDITOR ASSEMBLER are
available from Radio Shack. STAD, NEWDOS+, RSM-2,
and the Microsoft M-80 MACRO ASSEMBLER may be
purchased from The Software Exchange, P.O. Box 68,
Milford, NH (toll free telephone order line (800) 258-1790.)

We should not neglect to give credit where credit is due:
TRS-80 and TRS-DOS are trademarks of Radio Shack,
Division of Tandy Corporation. Z-80 is a trademark of
Zilog Corporation, and the Z-80 assembly language
mnemonics are copyrighted by the same company.

This entire book is copyright © 1980 SoftSide Publi-
cations, Milford, NH 03055. Printed in the United States of
America.

All rights reserved. No part of this publication may be
reproduced, stored in any retrieval system, ortransmitted
in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior
written permission of the publisher and the individual
copyright owners.

Introduction and Chapters 1through 9 copyright © 1980
by Richcraft Engineering, Ltd., Chautauqua, NY 14722,

Chapter 10 copyright © 1979 Fuller Software, Grand
Prairie, TX 75051.

Z-80 Disassembler copyright © 1980 George Blank,
Milford, NH 03055.

WD1771 Controller Specification Sheet Copyright ©
1980 Western Digital

TRS-80, TRS-DOS, and Radio Shack are registered
trademarks of The Radio Shack Division of Tandy
Corporation.

Z-80 is aregistered trademark of Zilog Corporation and
the Z-80 assembly language mnemonics are copyrighted
by Zilog.

Microsoft BASIC is a proprietary product of Microsoft
Corporation and is copyrighted by them. For this reason,
we have not provided a listing of the Level || BASIC ROM.

Table of Contents

Part 1
(from THE TRS-80 DISASSEMBLED HANDBOOK by Robert M. Richardson)

13} €e Yo 1¥ e} 4 o) o PSS AP 1
1. Decoding Level Il ROM Function Call Locations 3
2. Integer, Single, and Double Precision Arithmetic.................... 9
3. Using ROM Trig, Exponent, Log and Similar Subroutines 15
4. Additional ROM Subroutinescciiiiiniiiiineineiineneens 19
5. Alphabetical List of ROM Call Addressescvvviiiiienn 23
6. Multi-Base Number Conversion (program)........c.coeeeeveenneneenns 25
7. Print All Zeroes with a Slash (program)c.vieieeiievenee.. 29-
8. Self Test QUESHIONSottt i i i i i it eeiecaioanennn 32
9. Bibliography and Self Test AnSwers.coiviiiiiiiiiiniinenn. 36

Part Il

(from SUPERMAP by Roger Fuller)

10. Sequential Comments on ROM Subroutines0. 41

Part 11

(from PROG/80 Magazine, February and June 1980)

11. HEX-MEM Monitor (program) by John T. Phillipp.................. 69
12. Z-80 Disassembler (program) by George Blank 74

Part IV
13. DOS Map by John Hartford it 79
14. WD1771 Controller Specification Sheet 93

Appendix — Reference Table of Memory Contents 112

introduction to the
TRS-80 Disassembled Handbook

This handbook started out as a collection of lectures
prepared as "fill-routines” by the author while on the tour
circuit promoting his new book, “"The Gunnplexer
Cookbook — A 10 GHz Microwave Primer.” It is a rather
long jump (at least in frequency and wavelength) from the
1.77 MHz clock of the TRS-80 to the 10250 MHz band
where the Gunnplexer operates, but surprisingly the
microwave buff and computer buff have more in common
than meets the eye; i.e., aneedto communicate whether it
be by simple fm voice modulation or ASCII digital data
link.

This handbook is NOT for the beginning assembly
language programmer who should certainly learn the
fundamentals of the art before attempting to use the
shortcuts and "tight code” programming made possible
by using the myriad excellent Level 1| ROM subroutines
presented. The moderately experienced assembly
language programmer who understands the difference
between his/her JPs and JRs, SETs and RESets, and BITs
and bytes will find that utilizing Level Il ROM subroutines
opens up an entirely new vista to the wonderful world of
assembly language programming. Many dull but
demanding rote subroutines may now be accomplished
often with a single CALL compared with previous multi-
line/multipage programming that had to be entered a line
at a time. Programmers arise. Cast off the yoke of
ignorance and START HAVING FUN writing assembly
language programs that run 300+ times faster than BASIC
in less than 1/10th the memory. With practice, you (and
the author) will soon be writing assembly language
programs as quickly and with as little effort as those
written in BASIC, FORTRAN, COBOL, or PASCAL.

Disassembled machine code of any variety WITHOUT
comments is worth about as much as a TRS-80 without
electric power. Constants, address table entry points, and
data lists are translated into utter meaningless/mislead-
ing garbage by the disassembler program. Disassembled
Level Il ROM prints out EX AF,AF’' from memory locations
005AH, 1479H, 1619H, 18BAH, 18BCH, etc., etc., when in
actuality none of the alternate register pairs are ever used
in this ROM’s BASIC program.

Decoding and making any sense out of any object code
program is impossible if one does not at least have a clue
to the program'’s intended function. Fortunately we know
exactly what Level Il ROM’s functions and capabilities
are, so what appeared to be an impossible decoding
problem is reduced to only an extremely difficult one. So
difficult in fact, thateven Radio Shack’s computer division
in Fort Worth, Texas does not fully understand this
excellent "Tight Code” written by Microsoft's Paul Allen
and Bill Gates. An example that proves this point is the
Radio Shack book, "“TRS-80 Assembly Language
Programming,” #62-20086, that was introduced midyear
1979 has virtually no references to Level II ROM
subroutines of any variety.

The level of difficulty in decoding the TRS-80 ROM may
be measured by the fact that after 2 years of worldwide
use by over 200,000 computer buffs ranging from
beginners to advanced programmers with years of
experience, the Level Il ROM entry points for virtually ALL
the BASIC functions and related subroutines have never
been published with comments, or disclosed by anyone,
anywhere, EXCEPT to a very limited audience by a genius
named Andrew Hildebrand, located in the southwestern
wilderness of the US.

This handbook is dedicated to Mr. Hildebrand's genius,
to his persistence in unraveling a very tangled web, and to

1

him personally for this very considerable
accomplishment. The author’s only contribution is this
handbook which will hopefully remove the shroud of
mystery from a previous "black hole” by attempting to
make the subject understandable to hobbyists, high
school and college students, and even computer science
professors (many of whom do not have the slightest idea
of how to efficiently utilize the myriad Level || ROM
subroutines in TRS-80 assembly language
programming). This handbook will also assist users in
decoding the majority of ROM subroutines in ALL
Microsoft BASIC's including those used by APPLE, PET,
KIM, Heathkit, et al microcomputer systems.

Each section of this handbook is hopefully self-
explanatory. The self-test questions and answers in
chapters 8 and 9 allow you to check your progress after
each Chapter.

Acknowiedgements:

Without the generous aid and assistance of both Nancy
A. Courtney and Margaret C. Merz this handbook would
have never come to pass. Their encouragement, hard
work, and persistent insistence that we keep at it are
gratefully appreciated.

Additional Thank Yous:

To the late Charles Tandy for his courage and
investment in making the TRS-80 a happening; to
Mumford Micro for a 3-speed clock; to Western 1/0 for an
IBM Selectric printer that never quits; to Apparat for
NEWDOSH+, to Shrayer for Electric Pencil; to Microsoft for
the world's most extensively used BASIC; and lastly to
Radio Shack, who in spite of other shortcomings, build
the WORLD'S MOST COST EFFECTIVE MICRO-
COMPUTER. Thank you each and every one.

Robert M. Richardson March 1980
Chautauqua Lake, New York 14722

Summary

Chapter 1 illustrates how the majority of the ROM
functions’ CALL locations are decoded.

Chapter 2 includes three source/object code programs
and text illustrating the use of simple ROM +-*/ integer,
single precision, and double precision arithmetic
subroutines.

Chapter 3 describes how to use the trigonometric,
exponent, log, CINT, CSGN, CDBL, et al, functions in
concert with the RAM accumulator and "CS"” store, plusa
demonstration program.

Chapter 4 covers a number of the more useful and impor-
tant Level || ROM ancillary subroutines.

Chapter 5 is a summary of virtually all BASIC function
CALL addresses.

Chapter 6 presents and explains an extremely useful
number conversion program thatis virtually amust for the
serious assembly language programmer working with the
TRS-80. It is written in BASIC for comprehension/modifi-
cation and covers:

— DECIMAL TO BINARY ENTER D

— BINARY TO DECIMAL ENTER B

— HEXADECIMAL TO BINARY ENTER HB

— DECIMAL TO HEXADECIMAL ENTER DH

-— HEXADECIMAL TO DECIMAL ENTER HD

— SPLIT TRS-80 TO DECIMAL ENTER SP

— DECIMAL TO SPLIT HEXADECIMAL ENTER DS
— SPLIT HEXADECIMAL TO DECIMAL ENTER SD

The first five conversions are obvious ones. The sixth,
SPLIT TRS-80 TO DECIMAL, is unigue in that it takes
decimal values displayed viathe TRS-80 PEEK command
from two adjacent memory locations (two INPUTS
required), then converts them to hex, reverses the two hex
numbers as the Z-80 stores LSB first and MSB second,
then converts the four digit hex number to decimal, and
displays it on video. This conversion is a real time saver
when extracting addresses (0 to 65535) from ROM or
RAM.

Chapter 7 is a useful print all zeroes with a slash program.

Chapter 8 includes self-test questions for Chapters 1
through 7.

Chapter 9 is a bibliography and answers to the self-test.

Chapter 10 is a listing of comments on the Level HROM, in
sequential order and indexed to the hexadecimal memory
address.

Chapter 11 is a monitor program provided here for
convenience in making HEX and ASClI memory dumps of
the Level 1| ROM.

Chapter 12 is a Z-80 disassembler with the ability to
assign labels to individual memory locations on printout.
It is provided to make it possible for readers to assign
labels based on the comments in Chapter 10 and print out
commented source code from their own computer.

Chapter 13 is a Iistiﬁg of comments on TRSDOS and
NEWDOS, in sequential order and indexed to the
hexadecimal memory address.

Chapter 14 is the specification sheet for the WD1771
Controller Chip.

Decoding Level Il ROM
Function Call Locations

Introduction:

During the past two years, the Level || BASIC written by
Microsoft originally for the TRS-80 has become the
standard de facto BASIC used by virtually every
significant microcomputer manufacturer. As of January
1980, the number of microcomputers delivered to end
users with Level Il or modest variations of Level || BASIC
is estimated to exceed 300,000. With the number of
BASICs in the marketplace counted in the dozens,
including Hewlett-Packard BASIC, General Electric
BASIC, and even monolithic IBM’s "VS BASIC,” there
must be a number of good reasons for the near universal
adoption of Microsoft’'s BASIC.

1. Is it cheap? Answer: no, in actuality the license to use
this BASIC is incredibly expensive. Heathkit does not
charge hobbyists $100 a copy (just for the program) for
fun.

2. Is it efficient? Answer: you bet it is. Previous BASICs
the author has studied required 22K to 32K memory to
minimally perform the same functions, ifindeed as many.

3. Is it cost-effective? Answer: even at the high licensing
price it is VERY cost-effective when one considers the
tradeoffs between available program memory remaining
with the inherent 64K maximum imposed by most all 8 bit
~ microprocessors of the current generation. Some of the
other BASICs mentioned above only leave the user about
18K of useful RAM when a disk operating system and
extended disk BASIC program is added. Thisis ridiculous

Let's now take a look at the prodigious functions and
their CALL locations in this marvel of "tight code”
programming written by Paul Allen and Bill Gates. We
doubt if there was any intentional encrypting involved
when the program was written as encryption takes
memory and memory costs money either directly or
indirectly as pointed out above. The main reason it has
been difficult to decode the Level Il ROM was brought
about primarily by its compactness; i.e., nothing wasted,
nothing unused, and no easily deciphered points telling
the code breaker, "here | am, use me.”

Level il ROM Function Name Locations:

These are the easiest to find of all. Look at memory
locations 5712 through 6172. Figure 1 is an excruciatingly
simple BASIC program that will display these names and
their location on video for you. The first letter of each
name’'s MSB is masked by subtracting 128 to obtain its
ASCII equivalent. Figure 2 is a print out of this program.
Remember, the numbers are the name’s location, NOT the
CALL location.

Figure 1

16 ° WICROSOFT BASIC FUNCTIONS NAME (LIST
IN LEWEL 1T ROM

28 CLSFORN=SP12TOE175: Y=PEEK (N2 IFY>127

THER'Y="~12 : FI=

25 Z=h+1: IFPEEKCZ 22127 THENPRINTCHRS (W) "
="; ELSEGOTOES

3G PRINTM, : GOTO4E

35 PRINTCHRS (0,

5]

in a 64K MEM system. 48 MEXT
Figure 2

END = 5712 FOR =5715 RESET =5718 SET = 5723
CLS = 5726 CMD = 5729 RANDOM = 5732 NEXT = 5738
DATA = 5742 INPUT = 5746 DIM = 5751 READ = 5754
LET = 5758 GOTO = 5761 RUN = 5765 IF = 5768
RESTORE = 5770 GOSUB =5777 RETURN =5782 REM = 5788
STOP = 5791 ELSE = 5795 TRON = 5799 TROFF = 5803
DEFSTR =5808 DEFINT =5814 DEFSNG = 5820 DEFDBL =5826
LINE = 5832 EDIT = 5836 ERROR =5840 RESUME = 5845
ouT = 58A1 ON = 5854 OPEN = 5856 FIELD = 5860
GET = 5865 PUT = 5868 CLOSE =5871 LOAD = 5876
MERGE =5880 NAME = 5885 KILL = 5889 LSET = 5893
RSET = 5897 SAVE = 5901 SYSTEM = 5905 LPRINT =5911
DEF = 5917 POKE = 5920 PRINT = 5924 CONT = 5929
LIST = 5933 LLIST = 5937 DELETE =5942 AUTO = 5948
CLEAR =5952 CLOAD =5957 CSAVE =5962 NEW = 5967
TAB(= 5970 TO = 5974 FN = 5976 USING =5978
VARPTR =5983 USR = 5989 ERL = 5992 ERR = 5995
STRINGS$ =5998 INSTR = 6005 POINT =6010 TIMES$ = 6015
MEM = 6020 INKEY$ =6023 THEN = 6029 NOT = 6033
STEP = 6036 + = 6040 - = 6041 * = 6042
/ = 6043 * = 6044 AND = 6045 OR = 6048
> = 6050 = = 6051 < = 6052 SGN = 6053
INT = 6056 ABS = 6059 FRE = 6062 INP = 6065
POS = 6068 SQR = 6071 RND = 6074 LOG = 6077
EXP = 6080 CcoSs = 6083 SIN = 6086 TAN = 6089
ATN = 6092 PEEK = 6095 cVI = 6099 Cvs = 6102
CcVvD = 6105 EOF = 6108 LOC = 6111 LOF = 6114
MKI$ = 6117 MKS$ = 6121 MKD$ = 6125 CINT = 6129
CSNG = 6133 CDBL = 6137 FIX = 6141 LEN = 6144
STR$ = 6147 VAL = 6151 ASC = 6154 CHRS$ = 6157
LEFT$ = 6161 RIGHT$ =6166 MID$ = 6172

Matching BASIC Functions with ROM CALL Addresses:

Now the decoding game becomes somewhat more
interesting. Not difficult yet, because no tricky
encipherment was used. We should remember that
encoding costs memory and memory = money. One does
not have to search very far in memory for the location of
each BASIC function’s CALL address.

These addresses are split into two groups. The first
group begins a few bytes after the end of the function

name list at MEM location 6178 and runs through 6451:.
This group covers all functions from END through 'less’

than’. The second group begins at MEM location 5640 and
runs through 5711. This group includes all BASIC
functions from SGN through the end of the function list,
MIDS$.

With the exception of those BASIC functions from TAB
to ‘less than', all CALL locations are stored in MEM using
the standard Zilog Z-80 format (the genius of Federico
Faggin, Z-80 creator appears again), with the LSB (least
significant byte) first, and the MSB (most significant byte)
second, in the following memory location. Figure 3
illustrates a little BASIC program that will display the
BASIC function, an = sign, then the MEM location of the
stored CALL address for this specific function and lastly
the CALL address in standard TRS-80 "PEEK" format.

Figure 3

18 PROGEAM TO MATCH BASIC FUNCTIONS

WITH CRLL RCDRESSES

15 7

“H CLS PREINTYFUNCT=RAD0LRESS
FUNCT=RADDRESS |LER~-HMER

LSBE-MSE

25 A=E175 FORE=5712T0 uh'“? WeFEEK (Y TR

137 THENY =Y-128

I F=EL IFPREER 2 2 A 27 THEHPR INTOHRE (Y s ¢
="; ELSEGOTO45

Z5 OH=R+2) TFR=RE52THE MA=SG46H

48 FRINTA, PEEE AN "= FEEK CA+L 2, GOTOSE

45 FRIMTCHRESCY

SE MEXT

Figure 4 is a printout of those addresses whose
LSB/MSB are directly translatable to CALL addresses.
The other functions’ CALL addresses are fully covered in
Chapter 5. Figure 5 is a printout of Level || ROM MEM
locations 1600H through 18FFH to illustrate how Level Ii
ROM BASIC function CALL locations are determined.

FUNCT = ADDRESS
END = 6718 C1hg
RESET = 6182
CLS = 6186
RANDOM =6190
DATA = 6194
DIM = 6198
LET = 6202
RUN = 6206

RESTORE =6210
RETURN =6214
STOP = 6218
TRON = 6222
DEFSTR = 6226
DEFSNG =6230

LINE = 6234
ERROR = 6238
ouT = 6242
OPEN = 6246
GET = 6250
CLOSE = 6254
MERGE = 6258
KILL = 6262
RSET = 6266
SYSTEM =6270
DEF = 6274
PRINT = 6278
LIST = 6282
DELETE = 6286
CLEAR = 6290
CSAVE = 6294
INT = 5642
FRE = 5646
POS = 5650
RND = 5654
EXP = 5658
SIN = 5662
ATN = 5666
CVI = 5670
CvD = 5674
LOC = 5678
MKI$ = 5682
MKD$ = 5686
CSNG = 5690
FIX = 5694
STR$ = 5698
ASC = 5702
LEFT$ = 5706

Figure 4

Function=CALL Address MEM Location CALL-Address

LSB-MSB
174 -29
56 - 1
201 - 1
211 - 1
5 -31
8 -38
33 -31
163 -30
145 -29
222 -30
169 -29
247 -29
0 -30
6 -30
163 -65
244 -31
251 -42
121 -65
127 -65

245 -39

82 -65
94 -65
100 -65
106 -65
112 -65
177 -10
38 -11
54 -40
15 -42
97 -42
154 -42

FUNCT = ADDRESS
FOR = 6180
SET = 6184
CMD = 6188
NEXT = 6192
INPUT = 6196
READ = 6200
GOTO = 6204
IF = 6208
GOSUB =6212
REM = 6216
ELSE = 6220
TROFF = 6224
DEFINT =6228
DEFDBL =6232
EDIT = 6236
RESUME = 6240
ON = 6244
FIELD = 6248
PUT = 6252
LOAD = 6256
NAME = 6260
LSET = 6264
SAVE = 6268
LPRINT =6272
POKE = 6276
CONT = 6280
LLIST = 6284
AUTO = 6288
CLOAD =6292
NEW = 6296
ABS = 5685+
INP = 5648
SQR = 5652
LOG = 5656
cos = 5660
TAN = 5664
PEEK = 5668
Cvs = 5672
EOF = 5676
LOF = 5680
MKS$ = 5684
CINT = 5688
CDBL = 5692
LEN = 5696
VAL = 5700
CHRS$ = 5704
RIGHT$ =5708

LSB-MSB
161 -28
53 - 1
115 -65
182 -34
154 -33
239 -33
194 -30
57 -32
177 -30
7 -31
7 -31
248 -29
3 -30
9 -30
96 -46
175 -31
108 -31
124 -65
130 -65
136 -65
142 -65
151 -65
160 -65
103 -32
177 -44
228 -29
41 -43
8 -32
31 -44
73 -27
119-9
239 -42
231 19
9-8
65 -21
168 -21
170 -44
88 -65
97 -65
103 -65
109 -65
127 -10
219 -10
3 -42
197 -42
31 -42
145 -42

0]
1616
62
6@
1640
1654
1668
1608
165
1698
16h8
1688
160@
16D
ieE@
16Fa
1768
174
172
173
1748
1738
1?66
1778
iven
7%
1708
1788
1708
1704
i#a
170
1660
1810
1820
1838
1848
1856
1868
1878
1688
1859
1888
1688
1808
18Da
18E@
16F8

Figure 5

Converting BASIC Function CALL Addresses to Hex and

Decimal:

BLORF RA VF GO GRG0 B BRED T AR 7Y B0 4 &7
FFARAFSFEP I 4 M W UHIBHF G
MIGBRIGAMAZABHAEHL4 44
&7 41 6 41 oD 41 76 44 7F BA B @A DB @A 26 6B
BAREBOWMAARIFALBAARA
C%4F 44 C6 4F 52 02 45 53 45 54 D3 45 4 (2 40
5% 03 4D 44 DZ 41 4E 44 4F 4D (E 4558 4 (4 41
5441 L9 4E ST 04 494D D2 45 41 M (T 45
54 7 4F o4 4F D2 55 4E (246 D2 45 5% 54 4F 52
45 (7 dF 52 55 42 D2 45 54 S5 52 4 D2 45 4D 03
4 dF 5B 05 40 53 45 [4 52 4F 4E D4 G2 4F 46 46
(4454653 M52 (44546 49 4E 4 T4 4546 13
4E 47 C4 45 46 44 42 40 I 49 4F 45 (5 44 49 54
(552524F 20245 35D CF 0S4 OF 4
FRGUEFHKACHTHAMD M
LA STA T HF MDA D
HBEGLATCTTHHERBTHAIHE
43 D3 59 53 54 45 40 00 54 52 49 48 4 04 45 46
D 4F 4B 45 19 52 49 4E 54 [T 4F 4F B4 IC 48 53
LA PR H4GLHEHEDHF
CTA045 41 52 CT A0 AF 4 4 T3 3 4L S 451X
4557 D4 a1 42 2B DAAF LR 4E DI T3 49 4E 47 D6
diemdRERRGRAHRRIES
G249 AE 47 A CIAE T4 T2 DB AF 4948 4 4
45 4 45 24 D 45 40 09 4E 4B 45 59 24 4 48 45
4E CE 4F 54 DX 54 45 50 B Al RROAF DB C1 4E 44
(FSZBEBDBODR 47 AECHAE 4 01 42 53 (6 52
45 C9 4E 5 DR 4F 53 03 51 52 D2 4 44 (T 4F 47
MR EMMAELH¥ED
AHBPRBPVCEBRHRMOHF &L
dF43CC4F 46 CD 4B 49 24 (D 4B 53 24 0D 4R 44
24 L3 45 4E 54 (3 53 4F 47 (3 44 42 4C 06 49 58
CC 45 4E D3 54 52 24 D6 41 4C C1 5% 43 (3 48 52
HBICA546 54 24 D2 4947 4854 24 0D 49 44 24
BEbMICBH DM TTHATH
B2 @BIFHRABBFANFRIERIE
99 10 P1 4E DE AE @7 4F A9 1D &7 IF F7 D
FB 1D @a 1E 83 4k 66 1€ @9 1E AX 41 68 2E F4 IF
FFAFFBERECIFTIM LU P 24085 4
80 41 8B 41 8 41 91 41 97 41 98 44 A 41 B2 @2
6PABUBM AL FRHEIDAERBIBER
BBARIEIFAFBABIOBALITT N
e lRBRROER TFORF4EGABLEA 7T B 70 OC AL
D ES 8D 78 GR 16 @7 13 07 47 8 A2 o8 @ 6A D2
B L7 4B F2 6B 98 24 39 UR 4E 4o 53 4F 52 47 4F
44 46 43 4F D6 4F 4D T5 40 42 53 44 44 F 3B 49
4454 b aF SRAC MR M AIHEE R R D
45 4D 4F 46 44 4C 33 D6 8B 6F 70 DE 62 67 78 DE

165
161
1624
1638
1648
1658
1668
1678
168
1694
16AE
168
1609
1608
ek
16F@
irag
Tl
1726
1744
174
1758
1766
v
1784
1794
17h@
17e8
1708
174
178
17
168
1818
182@
184
1848
1852
1868
1878
1689
189
18R8
1584
1804
1808
1868
18Fa

- T - - i

o~ vy

pc:: i e e 2

D B e M e 2 T g B - s B = N v B e B

[eve B & & S-S « I

=X ;o

= -4

]

o

e B - R B = B < B B S an - - B S B

- -

LA R e R |

— e T ST

TP o <C

& R T3 OAED Ty

Lo T

1

— T

~ — >

X s % W

]

—

WY OS MTE 3oL

wy o=

&

Lo SR B = T B B o]

oo IR o

b~ B K e B e B e B w2 T <4 [az B~ i € BN el o & B i 4 Lo p B e = b

-

U

b e

L& 4 I wp R ~ B = B A L I -~ =]

p o]

™o o G = T g

o

TR E TP M

-

e = = i o B

o= oo

]

RN u]

Ra B~ e BV T = I p B o B < A- <~ T

= 0 T

Z=Z Mmooy

o -t

W Mo 3 oM oo

= oun

<+ oI X

A pemd T v T

b

f—

— et — M

N =®m

G

Do)

— T o

= X -4

L

E e XM o=

=& oy

P e T D

oy B o I

e |

m e

W O OC T3

[N

Converting the BASIC function CALL addresses
printed out in Figure 4 to hexadecimal and decimal is
certainly simple, but nevertheless a tedious job whether
done with a calculator or using Disk BASIC’s &H function.
There is a considerably easier way to do it.

The Multi-Base Number Conversion Program presen-
ted in Chapter 6 makes the conversion of the CALL loca-
tions to hexadecimal and decimal a real pleasure instead
of a rote chore. This program may be easily modified to
take the LSB and MSB from Figure 3’s program output
and automatically generate the CALL's decimal and
hexadecimal location, but for simplicity’s sake let's run
through Chapter 6's standard number conversion routine
for generating the CALL address for the first function
shown in Figure 4, which is END.

Load the conversion program. We will use the
program’'s SPLIT DECIMAL TO DECIMAL routine so
press ‘'SP’ ENTER. Figure 4 shows that END’'s CALL
location is LSB = 174 and MSB = 29. The program will
display "DECIMAL?". Press 174 then ENTER. After a
moment, the 174 will disappear and "DECIMAL?" will

Figure 6

FUNCTION HEX DECIMAL
END 1DAE 7598
RESET 0138 312
CLS 01C9 457
RANDOM 01D3 467
DATA 1F05 7941
DIM 2608 9736
LET 1F21 7969
RUN 1EA3 7843
RESTORE 1D91 7569
RETURN 1EDE 7902
STOP 1DA9 7593
TRON 1DF7 7671
DEFSTR 1E00 7680
DEFSNG 1E06 7686
LINE 41A3 16803
ERROR 1FF4 8180
ouT 2AFB 11003
OPEN 4179 16761
GET 417F 16767
CLOSE 4185 16773
MERGE 4188 16779
KILL 4191 16785
RSET 419A 16794
SYSTEM 02B2 690
DEF 415B 16731
PRINT 206F 8303
LIST 2B2E 11054
DELETE 2BC6 11206
CLEAR 1E7A 7802
CSAVE 2BF5 11253
INT 0B37 2871
FRE 27D4 10196
POS 27F5 10229
RND 14C9 5321
EXP 1439 5177
SIN 1547 5447
ATN 158D 5565
CvI 4152 16722
CVD 415E 16734
LOC 4164 16740
MKI$ 416A 16746
MKD$ 4170 16752
CSNG 0AB1 2737
FIX 0B26 2854
STR$ 2836 10294
ASC 2A0F 10767
LEFT$ 2A61 10849
MiD$ 2A0A 10906

again be displayed on video. Now, press 29 then ENTER.
Faster than a speeding bullet, HEXADECIMAL 1DAE will
be displayed on video followed by DECIMAL 7598 a
second or two later. Aha, it really does work.

The conversion program’s iogic and flow is as follows:
1. Convert '174' to hexadecimal and store it.
2. Convert '29' to hexadecimal and store it.
3. Reverse the two hexadecimal numbers so it will
read MSB/LSB.
4. Display the hexadecimal number on video.
5. Convert the hexadecimal number to decimal.
6. Display the decimal number on video.

Figure 6 is an exact printout of Figure 4’'s BASIC
function CALL addresses in both hexadecimal and
decimal. Those CALL addresses above 12288 are of
course for coupling to DOS/Disk. So far, so good. Now
let’'s JP to Chapter 2 and get some experience using Level
Il ROM’s subroutines with integer, single precision, and
double precision arithmetic. We will initially only be doing
3rd grade add, subtract, multiply, and divide, but we will
be doing itwith only afew CALLs instead of lines/pages of
assembly language programming.

FUNCTION HEX DECIMAL
FOR 1CA1 7329
SET 0135 309
CMD 4173 16755
NEXT 22B6 8886
INPUT 219A 8602
READ 21EF 8687
GOTO 1EC2 7874
IF 2039 8249
GOSUB 1EB1 7857
REM 1F07 7943
ELSE 1FO7 7943
TROFF 1DF8 7672
DEFINT 1E03 7683
DEFDBL 1E09 7689
EDIT 2E60 11872
RESUME 1FAF 8111
ON 1F6C 8044
FIELD 417C 16764
PUT 4182 16770
LOAD 4188 16776
NAME 418E 16782
LSET 4197 16791
SAVE 41A0 16800
LPRINT 2067 8295
POKE 2CB1 11441
CONT 1DE4 7652
LLIST 2B29 11049
AUTO 2008 8200
CLOAD 2C1F 11295
NEW 1B49 6985
ABS 0977 2423
INP 2AEF 10991
SQR 13E7 5095
LOG 0809 2057
COS 1541 5441
TAN 15A8 5544
PEEK 2CAA 11434
CVvs 4158 16728
EOF 4161 16737
LOF 4167 16743
MKS$ 416D 16749
CINT OA7F 2687
CDBL 0ADB 2779
LEN 2A03 10755
VAL 2AC5 10949
CHRS$ 2A1F 10783
RIGHTS$ 2A91 10897

Integer, Single, and Double
Precision Arithmetic

Introduction:

After one has recovered from the shock of learning the
fundamentals of assembly language programming it is
ridiculous to "reinvent the wheel” by writing dozens of
lines or pages of source code to perform simple single and
double precision arithmetic calculations when these
routines already exist in Level {I ROM and may be
accessed with a single call.

Assembly language programming with its resulting
source code programs running 300+ times faster than
BASIC and requiring on the average only 1/10th as much
memory to perform the same functions as BASIC is very
helpful for the serious amateur programmer who wishes
to advance beyond the inherent limitations of BASIC,
FORTRAN, COBOL, PASCAL or any of the high level
computer languages. Prior to this book, assembly
language programmers were forced to learn by rote those
assembly language subroutines for ALL the functions that
were already extant in the Level I| ROM because no one
had ever figured out exactly how to access all these
subroutines; i.e., break the beautifully "TIGHT CODE"
code written by Microsoft's Paul Allen and Bill Gates.

Assembly language programmers arise! The Level ||
ROM code has now been broken. As every cryptographer
knows, every lock has a key. It is just that some locks take
a bit longer to pick than others, (ask N.S.A. or MI.5 about
this). For some perverse reason, (probably money and the
Chinese secrecy syndrome), neither Radio Shack or
Microsoft have been willing to come forward and tell the
200,000+ TRS-80 users how to use the myriad Level ||
ROM subroutines in assembly language programs. This
point is best illustrated by Radio Shack’s book, “TRS-80
Assembly Language Programming,” introduced in mid-
1979 which leads the would-be assembly language
programmer into T-Bug (surely the height of backward-
ness/retrogression), and then goes on with multiline
demonstration programs covering keyboard scan, video
display, fill, move, muladd, mulsub, compare, mul16,
div16, etc. that could be accomplished with only a few
tines of assembly language programming IF the extant
Level Il ROM subroutines had been used. If you have
mastered Level || BASIC, you should have great fun with
this totally NEW approach to assembly language
programming. By mastering Level Il BASIC you have
demonstrated that you have the skills and persistence to
become an advanced assembly language programmer
with only a few weeks study rather than what heretofore
took many months or years. The supposed "experts” in
the field of assembly language programming have
created an aura and mystique about the subject which is
totally undeserved and seeks only to promote their own
self esteem. Let us take a brief look at how very simple
assembly language programming can be by illustrating
our point with a few simple arithmetic programs that
almost exclusively use Level || ROM subroutines.

Fundamentals of Level I ROM Arithmetic:

ROM arithmetic subroutines are virtually identical to
those you would HAVE to write were they not NOW
available to the assembly language programmer. This is
true whether we are discussing integer, single precision,
double precision, addition, subtraction, multiplication,
division, as well as ALL the trigonometric, exponential,
and log functions too. In fact, it is true for all Level | ROM
functions which are nothing more than binary bytes we
may manipulate as long as we know where they are
located. Let's get on with the primer for + - * and /.

ROM (read-only-memory) means just what it says,
READ-ONLY. Since it may be only read from, Level !l
ROM uses the RAM memory from 14302 to 17129 for all its
housekeeping chores. The keyboard, from 14336 to 15360
is not really RAM at all, but a simple key/switch matrix
which the rest of the system thinks is RAM. Video memory
occupies memory locations 15360 to 16383. Except for
memory locations 14302 to 143386, all the non-disk Level |
RAM housekeeping chores are done between 16384 and
17129. Three RAM memory locations are of particular
interest while discussing arithmetic + - * / subroutines.
They are the ACCUMulator, CDBL store (or "CS"
abbreviation), and NT (number type). Arithmetic numbers
stashed in RAM use the following conventions: integer =
LSB first and MSB second using two's complement
format, and single and double precision numbers =
normalized exponential format with 129 added to the
exponent and the high bit of the MSB reflecting the + or -
sign of the number. Do not concern yourself with these
number formats as our Level Il ROM will handle all the
conversions necessary if we use them properly. The
ACCUM occupies memory locations 411DH through
4124H (8 bytes) and CDBL store occupies 4127H through
412EH, also 8 bytes. We must concern ourselves with NT
(number type) as it will "blow"” our whole subroutine if we
try to perform arithmetic operations with dissimilar
number types; i.e., add an integer to a double precision
number, etc. Do not fretthough, ROM lets us use its CINT,
CSGN, CDBL functions with only a single CALL to make
the numbers we are using compatible.

CINT = CALL 0A7FH CSNG = CALL 0AB1H CDBL =
CALL OADBH

The 3 programs in this chapter provide these functions
in each routine, so it takes real effortto foul them up if you
abide by each number type's minimal rules.

The NT (number type) single byte storage in RAM is
located at 40AFH. NT (40AFH) =2 foraninteger number, =
3 for a string, = 4 for a single precision number, and =8 for
a double precision number. To change these numbers to
ASCIl and display them on video, simply ADD 30H to the
contents of MEM location 40AFH and output to the video
display as follows:

LD A,(40AFH) ;NT location
ADD A,30H ;convert to ASCII
CALL 032AH ;display on video

Integer Arithmetic + - * / :

Figure 7 is the demonstration program that will allow
you to add, subtract, multiply, or divide integers strictly

using the ROM subroutines. Fast? You betitis. As soon as
you press ENTER you'll have the answer. Remember,
your Model | TRS-80 with its clock running at
approximately 1,774,000 cycles per second is no
slowpoke. Instead of BASIC’s "slowsville”, you are now
conversing with your Z-80 microprocessor directly, IN
ITS OWN LANGUAGE. With no interpreter (BASIC)
required, it will zap along at what appears to be the speed
of light. All this integer program does is to place the first
number you input into the DE register, the second number
you input into the HL register, and then CALL whatever +-
*/ operation you requested. This simple program is
completely straightforward except forline 330's PUSH HL
and line 400's POP DE. The stack begins at RAM memory
location 4288H when operating in the SYSTEM mode.
What we are doing here is “saving” the first integer
number in the stack by PUSHing HL in line 330. The
program then uses the HL register in obtaining the second
number you input in line 340. The POP DE in line 400
merely takes the previous HL value from the stack and
places it into the DE register. The stack couldn't care less
where its contents go as it is just a sophisticated FILO

10

(first-in-last-out) memory created and controlled by your
Z-80/ROM (unless you choose to modify its location with
the LD SP (stack pointer) opcode and operand
instruction. Remember, integer arithmetic is nothing
more than placing the 'F'irst number in the DE register,
the 'S’econd number in the HL register, and specifying
which +-*/ operation you desire with the following
CALLS:

ADD CALL 0BD2H SUBTRACT = CALL 0BD7H
MULTIPLY = CALL 0BF2H DIVIDE = CALL 2490H

The result of any of these operations is always placed in
the ACCUM. To display the result on video, merely:

CALL OFBDH ;convert ACCUM to ASCII
string

CALL 28ATH ;display ASCII string on
video

That is all there is to it. Simplesville personified.

Single Precision Arithmetic + - /:

This is very similar to integer arithmetic, except ROM
now wants the 'F'irst number in registers BC and DE, and
the 'S'econd number in the ACCUM. The desired
operation is performed by:

SUBTRACT = CALL 0713H
DIVIDE = CALL 08A2H

ADD = CALL 0716H
MULTIPLY = CALL 0847H

Figure 7 Source Code

For memory storage, we again use the stack as shownin
lines 340 and 350 PUSH instructions, and lines 420 and
430 POP same. Figures 9 and 10 are the source code and
object code for the single precision arithmetic
demonstration program.

Double Precision Arithmetic +-*/:

Is not significantly different from either integer orsingle
precision arithmetic subroutines, except now ROM wants
the 'F'irst number in the ACCUM and the 'S'econd
number in the CDBL store RAM location. Desired
operation is performed by:

ADD = CALL 077CH SUBTRACT = CALL 0C70H
MULTIPLY = CALL ODATHDIVIDE = CALL ODE5H

Figures 11 and 12 are the source and object code for the
double precision arithmetic demonstration program.

Summary:

Each of these source code programs may be input by
the user in about 5 minutes time using the EXCELLENT
Radio Shack Editor/Assembler that was written by Zilog’s
President and in-house-genius, Federico Faggin, and his
staff. Previous assembly language teaching programs
required months of study and page upon page of source
code to accomplish all the double precision arithmetic
routines. Now the average TRS-80 buff can master the
subject in a matter of hours.

Figure 8 Object Code

FElae INTEGER ARITHMETIC DEMOWSTRATION PROGRAR

aEliE

BELZE ISING LEVEL 11 ROM SUBROUTIMES + - % /

HE1 38
vhBE fEldE WeUCH BRI TIaEH i= Z2eEE DECTMAL
7l e 5E ORG WICH s FROGRAM WILL STERT HERE
FOaE TE4F |E@icE BEGIM LD F. 4FH "0 OPERATION DESIRED
7hEz CDZABT A@17a CALL HI2AH ;DISPLAY "0 ON YIDED
70ES ZERF BELoR LD F. ZFH i= HRCIT 2
FDET CDZABE GRL9G CALL BIZAH iDOOIT ~ O VYIDED
vhEA ZEZE HAZEHE LD A, 20N i= RSCIT SPACE
TOBC COZAEE GEZ1E CALL BHIZAH ;DOIT ~ OW YIDED
7DEF CD4%068 80224 CARLL AdaH P EYBDOINMPUT 4+ - %
iz COZABT BEZ3EE CARLL EE2AH s DISPLAY FURCTION
ThAS IZFEFD @O24A LD CFLUNCT 2. A s STASH DESIRED OPERBTION
Fhig ZEaD GEZSE LD A, A0H sBDH = SKIP A LINE
FLAA CDZARE PEZCA CALL HE2AH ;D0 IT - OW VIDED
7oAl ZEd6 QA2 7E LD R: d&H P "F" = FIRST NUMBER
POAF ChZREE GE2EE CARLL BEZAH 00 IT ~ OW VIDEDG
7hz2 CORZIE BGH29E CARLL 1BEZH s KYBDAYIDED TNFUT ROUTINE
0Es Y AAZEE RET 18H iSCAW $ SET C FLAG
7hzé CDECBE 68344 CALL GEGCH GASCIT-ACCUM RET MIN
7029 COVFaR DEzz28 CALL BAVFH ; CONVERT TO INTEGER
bzt ES BEzIa FUSH HL i SAVE INTEGER IM STRCK
7020 ESZ aaz4e Lb A 52H $ME" = SECOND NUMBER
vh2F Ch2ZABE GEI5H CALL B32AH ;DISPLAY "S" ON VIDED
7022 CDRziB @@368 CALL 1BE=H s KYBDAVIDED INFUT ROUTINE
7035 DY BAZVE RET 16H iSCAN SET C FLAG
7036 CDACBE BBZ26 CALL @ESCH JASCIT TO ACCUM RET MIN
70b39 COFPFBAR 083298 CARLL BATFH ; CONVERT TO INTEGER
7D3C D1 Ga466 POF DE ;PREVIOUS HL TO DE REG
7D3D ZAPBYD 08410 LD A, (FUNCT sRECALL + - % / FROM MEM
7046 FEZB aad 26 cp Z2BH IS IT + 7
7héz 2822 Bo430 IR Z; ADD + IF S0 GOTO ADD
vD44 FEZD 69448 CpP 2DH 1 0T - 7

11

D46 TRz

748

VDA 2

vhdi
7haE
FhsSE
ThE2
TOES
TLsT
TOSR
FhER
FheaE
TS
ThES

et Y

FhoE
7hiag
7hiER
vhaz
Fhas

FhEv

7heR =

rhas
FLuaF
7z
viis
TDis
7R
bk e
vhiaF
vhaz
7hes
7D2e
7h2g
Th2t
TOEF
7hz=0
7Dz
FO3T
7036
70z9
D3R
vD3D
vhd@
T
7hdz
7045

ChEAEz
ZERE

COZAEE
ChEDEF
CDhAFZE
ZEGD

ChEAEs

1599

. CDhD2ER

12E4

- CDCVEE

180F
CDFzeB

4 1EDA
L COEEzd

ZE4F
Ch2REs

Chao0E
CharRaz
287D
IERD
ChzA@z
ZE4&
Ch2Raz
CDEZE
Dy
CDRCEE
ChBE1GA
CDhBEFRY
s

DS
ZESZ
Chzraz
CORZ1R
Dy
CDECRE
CDE1BA
D1

]
IASE7D
FEZB

A4S0
ARG &R
AR TH
ARdan
A4S
ARSEE

face a0

o B s B]
WL

b e

ol =

= o

L n

n ied Bk
LI O Y B n S

bxn]
&=
sy
=
=

o =
b} !
-
p-‘ }—l-
o I

o

oSy G T o
o e s s 5
e e s R Ly

W SIS B R ¢ S O !ﬁ,]

Pecn B T e I v) 03

ki

o B 5o B Ul o B x]
= & X &

ol Db Ld 3 P R
Dl e S B L

A el B (R n a B |

215
ARIzE
AEz4E
HAZ5H
BazeE
aazva
Bazaa
BEZ5E
G406
AE446
aad26
Badza
Ba44a
vad56

fica]
ex]

WIDED

ALD

LB

MULT

3 LIVIDE

JE
R
JR
CrP
IR
.0
CALL
Lla
CALL
CALL
CALL
L0
CALL
IR
CALL
JR
CALL
IR
CALL
TR
CRLL

Figure 9

W4lCH

BEGIN

A Z0H

EEGIM
BRDZH
YIDED
apcy

YIGED
ERFZH
WIDED
2420EH

Figure 10

s IF =0 GOTO SUBTRACT
I 1T & 2

SIF 2 GOTO MULTIRLY
dIs 1T & 7

JIF 50 GOTo DIVIDE

i ZDH 15 ASCIT = 21GHM
J000IT - OM YIDED
i=RSCIT SPACE

(D0 IT - OW WIDED
PORY ACCUM TG STRING
sDISFLAY STRING OM VIDED
i= SKIP A LINE

D0 IT - ON WIDED

s REFERT ROUTINE

RDD DE + HL

s OUTPUT RESULT

S SURTRACT DE - HL
SOUTRUT RESULT
PMULTIPLY DE # HL
SOUTPUT RESULT
sDIVIDE DE & HL

STHGLE PRECISION ARITHMETIC DEMONSTRATION PROGRAM

USIMG LEYEL 11 ROM SUBRDUTIMES + - # / BY W4alCH

EQL
(RG
LD
CALL
LD
CALL
1.0
CHLL
CALL
CALL.
LD
LD
CALL
LD
CALL
CHLL
RST
CALL
CALL
CRLL
FLUSH
PLSH
LD
CALL
CALL
RST
CALL
CALL
FOP
POF
LD
cP

VLB
WaLICH
A 4FH
BAI2AH
f. ZFH
H=2AH
A, 268H
HE2AH
G349
HE2ZAH

CFURCT 2. A

A BDH
BIZAH
A 45H
BT2AH
1BBZH
16H
BE&CH
BAB1H
A9BFH
BC

DE

A, S3H
BEZAH
1BBZH
16H
BEACH
BRBIH
DE

B

A (FUNCT?
2BH

o= ZZEEE DECTHAL
s FROGRAM WILL STRART HERE

PO OPERATION DESIRED

P DISPLAY "0" ON VIDED

3= RASCIT 2

D00OOIT - OW YIDED

i= ASCIT SFACE

DOIT - ON MIDED

SEVBD THPUT + - &
 DISPLAY FUNCTION

i STASH DESTIRED OPERATION
;EDH = SKIP A LINE

sDOOIT - ON YIDED

s "FY = FIRST HUMBER

DO IT - ON YIDED

s KYERAYIDED INPUT ROUTINE
;SCAN % SET € FLAG
ASCITI-ACCUIM RET MIN

P CONY STNGLE PRECISION
FLOAD BCDE FROM ACCUM

P STORE IW STACK

i STORE IN STACK

P US" = SECOND NUMBER
DISPLAY "S" ON YIDEQ

s KYBDAYIDED INPUT ROUTINE
iSCAM $ SET C FLAG

P RSCIT TO RCCUM RET MIN

; CONY TO SINGLE PRECISION
s RESTORE DE REGISTER

i RESTORE BC REGISTER
iRECALL + - # / FROM MEM
;IS IT + 7

12

13

747
Thdas
7hdE
7DD
ThaF
I i |
I Uax S
7055
TOET
7DOSH
B s
TOSF
ThEZ
a5
ThET
YA
Fhas
FDEF
ThTd
774
ThVE
TR
7hVE
FDOVE
ThaE
ThoG
FHRGIAG
RDD
BEGIN

L e

2 el
FEZD
2524
FEZH

P
c‘.'Hc‘.'S

FEZF
SRR
ZEZD
Ch2HEZ
ZE2A
ChaARz
CoBLGF
CORFZE
ZEAD
Ch2ARAS
15894
Chisa?y
18E4
CDAZE7
18DF
Chd7as
120R
CORZEE
1805
e

TOTAL
el
vaEa

OIYIDE FDVE

FUNCT
MULT
SLB

YIDED 7DSS

W4LICH

Dk
FDaR
7han
Tz
Fhas
The?
TDER
Fhac
7har
vhiz
7015
7h18

ThER

IE4F
ChzAES
ZEZF
Chzras
IE26
COZAEE
Chaae
COZARAZ
I28CTD

EAD

704A CDZABZ

701D ZE

46

7DiF COZAGZ

‘b2z

CDEZ1R

0as D7

D26

CDaeSEE

ARG A IR
ARG T P
Aa4aE JE
515 A Y] R
AESEA IR
BRI 8 P
ARSZA JR
aasca YIDED LD
HASAE CALL
1517 ebwls LD
RASER CHLL
AESTR CALL
BRSEA CALL
HAS3A LD
ARRAER CALL
A @ JE
AEEZE ADD CALL
FAS T IR
pRc4nR SLB CALL
ARRSE IR
ARSRE MULT CHLL
AERTE JE
wasRn DIVIDE CALL
B JE
AETER FUNCT DEFE
BTG END

ERRIOES

BREZE BRdeR

BA1AE ARGLE

ARSER GBS

HATEA ARz4R BEddiR

RRRR EESEE

Aedl AR4RA

BESEZE BREEA ARCSE

peddl BR1SE AEVIA

Figure 11

515K REtS

A4 W4UCH
BEL56
5
B 7E
ala ket
Ga1
G EE
qEz18
anzze
1%
aaE246
aa258
GAzaE
BRzya
aazae
AE298
sl
BEz1A

BEGIM

2. ADD
Z0H
Zo5e
ZAH
ZaMULT
ZFH
DIVIDE

AFEDH
ZEATH
A: BDH
AZ2AH
BEGIH
ATEH
WIDED
H71EH
VIDED
HE4TH
YIDED
ARAZH
VIDED
7]

WLICH

Figure 12

IF 50 GOTO ARD

fI5 1T - 7

P IF 50 GOTO SUBTRACT
P15 OIT & %

s TF S0 GOTO MULTIFLY

IS IT & 7

s IF S0 GOTO DIYVIDE

JEDH OIS RASCIT = SIGH
;00 IT - 0N WIDED
i=RSCIT SPACE

DO IT - OM MIDED

s CONY ACCUM TO STRING
DISPLAY STRING OW WIDED
i= SKEIP A LINE

sD0IT - oM MIDED

i REPERT ROUTINE

s ADD BCDE REGS TO RCCUM
OUTRPUT RFSULT

s SUR ACCUM FM BCDE REGE
;OUTPUT RESLILY

s MULT ACCUM & BORE REGS
FOUTPUT RESILLT

s DIV ACCTUM THTO RCDE
OUTPUT RESULT

P SAYE BYTE-STASH FUNCTION
;EL FIM = EL PRIMERO

DOUBLE PRECISION DEMONSTRATION PROGRAM

USTNG LEVEL 11 ROM SUEROUTIHES

EQU
ORG
LD
CALL
LD
CALL.
LD
CALL
CALL
CALL
LD
LD
CALL
LD
CARLL
CALL
T
CALL

VOEEH
W4LICH
A. 4FH
BEZAH
A, ZFH

Do R o]

ed ST) B bl T
[LN R LS R LS I

e}

I

= 3 DS o~
[O
s

+ - % L

i= Z2E860 DECIMAL

s PROGRAM WILL START HERE
;0" OPERATION DESIRED
DISFLAY "0 0N YIDED

i= RASCIT 2

00 IT - OWN YIDEOD
i="RSCIT SPACE

;00 IT ~ ON VIDED

P KYBD O INPUT + - %

i DTSFLAY FUNCTION

i STASH DESIRED OPERATION
i@bH = SKIF A LINE

iDOOIT - OW VIDED

P "F" = FIRST HUMBER
iDOOIT - ON VIDED
 EYBDAYIDED TNPUT ROUTINE
S SCAN § SET C FLAG
fRASCTTS TO ACCUM RET CDBL

7029 144041
7D2C 248070
702F 8688
7021 CDD789
7D24 ZESZ
7D36 CD2RBZ
7039 CDB21B
7D3C D7
702D CDESBE
7046 CDFCB9
7D42 148D7D
7046 211D41
7049 G688
704B CDDYA9
7D4E ZRECTD
7D51 FEZR
7D53 2823
7055 FEZD
7057 2824
7059 FE2A
70SE 2625
7050
7DSF 2#
vDE1 ZEX
7OR3 LDz

L CO2ART
~E CDEDEF
W6E COATZE

» CD7aar
18DF

¢ CDAR1GD
7085 180A
F0ET CLESHD
PORA 1505
FORC oG
BaRe

D

anage TOTAL
ADC: 707
BEGIN 7DG@
DIVIDE vDE?
FUNCT 7DBC
RULT 7D&2
SUB 707D
TACCUM ?D8D
VIDEO 7DA1
WaUCH 7Dee
7079 1805
7078 @@
7068

58068 TOTAL
RDD 7DE7
BEGIN 7Do@
DIVIDE 7D7¢
FUNCT 7D78
RULT 7071
SuB 7D6eC
VIDED 7DS8
W4UCH 7D@d

LD
LD
LD
CALL
LD
CRLL
CRLL
RST
CRLL
CALL
LD
LD
LD
CALL
LD
cP
IR
CcpP
IR
CcF
Ri%
cP
IR

ASSe YIDED LD

SR MILT

van LDIVIDE

s rge(
@a7vze
Bac4a
ERRORS
ARG4E
Ga1aa
Ba7aa
aavza
Agege
BARGA
Bavza
BB558
@914
AR6AN
BBE78
88688
ERRORS
88596
82168

FaR50
Ga67a
88638
68eie
6a50a
801406

~Ea SR

CHLL
LD
CARLL
CALL
CALL
Lo
CHLL
IR
AL
IR
rCALL
Ik
CAHLL
IR
CALL
IR
DEFE
DEFS
END

Al

FLINCT
TRCCUM

@ndan
217150
@aB540a
ABz248 AR4na
Basz6
BAsoa
pA33A AEdzA

DE, 441DH
HL, TRCCUM
B, 8

8307H

A, 53H
B32RH
1BB3H

16H

BEESH
B9FCH

DE, TRCCUM
HL, 411DH
818
B9b7H

A, (FUNCT>
2BH

Z, ADD
2DH

2, SUB
2AH
SaMULT
“FH

2. DIVTLE
A. ZDH
AIZRH

H. 26

M3ZARH

HFROH
JEATH

BEGIN
AT TH
VIDFO
ACTEH
YIDED
AlATH
YIDEDN
ADESH
YIDEQ
(4]

]

WALICH

AB6SH GRE7E BBGI8 BEBT1E

06150 6A740
IR

FUNCT DEFR
END

20430

BASSD

00450

Gaz40 76410
38478
63450

YIDEOD
@
W4UCH

BB680 08620 BBE40 BBOED

62156 08689

; ROVE FROM RCCUM RAM MEM
; TO TEMPORARY RCCUM STASH
; NUMBER OF BYTES TO MOVE
;HOYE IT - SUBROUTINE

i "S" = SECOND NUMBER

; DISPLAY *S" ON YIDEO

; KYBD/VIDED INPUT ROUTINE
;SCAN $ SET C FLRG
;RSCII$ TO RCCUM RET CDBL
; TRANSFER ACCUM TO CDBL

; HOVE ACCUM FROM STRSH TO
i PERMANENT RAM LOCATION

i NUMBER OF BYTES TO MOVE
JMOVE IT - RIGHT NOW
;RECRLL + - % / FROM MEM
IS IT + 2

- IF S GOTCO ADD

IS IT - 7

IF S0 GOTO SUBTRACT

IS IT % 7

(IF S0 GOTO MULTIRLY

SIS IT 47

IF S0 GOTO DIVIDE

:ZDH IS ASCIT = SIGHN
JDOIT - ON WIDED

i =HSCTT SPACE

DOOIT - ON YIDED

SCONY ACCUM TO STRING
COISPLAY STRING ON YIDECQ
i= SKIF A LINE

GO0 TT - OW WIDED

i REFERT ROLITINE

RGO ACCHM TO0 CDEL
FOUTRUHT RESINT

(SUR TDEL FROM ACCHM
SOUTRUT RESINT

CMULT RCCHM « CDEL
COLTPOT RESLLT

DIV ACCTLM BY CDBL
OUTPUT RESILT

i SAYE BYTE-STRSH FUNCTION
 TEMPORARY ACCHM STHSH
FAMATELIR RACTID CALL LTRS

; QUTPUT RESULT
i SAVE BYTE-STRASH FUNCTION
; AMATEUR RADIQ CALL LTRS

Using Level Il ROM Subroutines
in Advanced Assembly Language
Programming
Trigonometric, Log, Exponent, and
Other Functions
(notes from a lecture)

Here is an interesting test program for the advanced
assembly language programmer. It allows the user to
access and test many of the myriad arithmetic/trigono-
metric subroutines that are extant in the excellent TRS-80
Level Il ROM that was written by Microsoft's Bill Gates
and Paul Allen.

The beginning assembly language programmer should
certainly be taught and learn the how, why, and
wherefores of writing fundamental arithmetic/trig
functions by him/her self, but once these techniques have
been mastered as part of the learning process, it is
certainly inefficient, time wasting, and rather ridiculous to
reinvent the wheel by duplicating in assembly language
those subroutines already extant in the Level || ROM.

Table 1 lists those functions and their addresses that
may be accessed and tested by this mini-program that
only occupies 144 bytes of high memory and may be
entered using the TRS-80 Editor/Assembler in about 5
minutes.

Figure 13 is a print-out of the test program’s source
code and Figure 14 a listing of the program’s object code.
As may be easily seen, the majority of this program is
written using Level || ROM subroutines. Were these
subroutines not used in this particular assembly language
test program, it would require approximately 10 times as
much program memory and occupy 550 rather than 55
assembly language program lines.

Program Flow:

The comments included with the source code program
delineate each ‘line’s function. There is no need to
duplicate or expand upon the comments here as they are
largely self-explanatory. This program operates equally
well with non-disk Level Il, DOS 2.1, DOS 2.2 and
NEWDOS+. Program operation is as follows:

1. Load the program under the SYSTEM or DOS
command. Give it any name you wish. We like the
program name DISCOV, for discovery, since that is what
the program is all about. After loading is complete, typein
/32000 to activate the program (with disk you must first
load BASIC, then type SYSTEM, ENTER, and then type in
/32000 ENTER, if you loaded the program in DOS).

2. The letter 'N' ? will appear on video. The program is
asking you for a number to work on. Any number up to 16
digits is all right depending on the function you wish to
test. Let us start out with asimple example by entering the
number 10000, a nice round easily visualized number,
ENTER.

3. The numbers 2’ '10000' will appear on the next line of
the video display. The '2' is the number "type’ brilliantly
calculated by the Level Il ROM. Since we are dealing only
with numbers in this article we will blithely skip over
strings, etc. for the time being. The number types are as
follows: 2 = integer, 4 = single precision, and 8 = double
precision. Table 1 lists those operations that can be
performed on a number for a given number type; i.e., itis
against the rules to take the square root SQR of an integer.
We must first change it.

4. On the following line of the video display you will see 'C
?'. The program is asking you what type of CONVERSION
you wish. Let's enter 2737 which = CSNG, change our
number from an integer to single precision, ENTER. The
next line will show, "4’ "10000'. We now have a single
precision number to work with, so let's now try taking its
square root by typing in 5095 = SQR, then ENTER.
ZAP..the next line shows '100'. Ah, the miracle of modern
computer science at work. It sure was easier than writing a
complete stand-alone assembly language square root
subroutine. Let’s try it again. Type in 5095 ENTER. Again
the line below displays the square root; this time the
numeral 10.

5. Stick around as this is only the beginning. To insert a
new number to try your program on merely type in 32000
ENTER. This brilliantly brings us back to where we started
by displaying ‘N ?'. Is 32000 a subroutine? Sureitis. You
wrote it. Our assembly language program does not
discriminate between ROM or RAM. It doesn't care.

6. We could go on and on converting numbers like
deriving the natural LOG of any number and then
restoring it with the EXP command, and/or deriving the
TANgent of a number, then its arc tangent ATN, and then
the TANgent again...ad infinitum. You may escape this
conversion routine any time you wish by typing 6681
ENTER which will take you back to BASIC with a READY
displayed. All you need do to return to your conversion
routine istype SYSTEM then ENTER and type /32000 then
ENTER.

This exercise covers only a few of the subroutines
extant in Level Il BASIC ROM that are illustrated in Table
1.

Assembly language programming is the Mt. Everest of
our hobby. You master it and you climb it because it is
there. An assembly language program may run 300 times
faster and use 1/10th as much memory as the same
program in BASIC.

Learning to talk to your computer in its own language
rather than through an interpreter (BASIC, FORTRAN,
PASCAL, or what-have-you), is probably one of the most
satisfying and rewarding experiences you will ever have if
you have the patience and fortitude to master it.

Addendum:

The demonstration program illustrated in Figure 13 will
easily perform many more functions than the short list
covered in Table 1. Make a note to come back to this
program after you have finished Chapter 4 and have
become familiar with data movement and data conversion
subroutines.

Most of the arithmetic + - * / subroutines using integer,
single precision, and double precision numbers may be
used by judiciously storing one number in "CS”, the
CDBL Store. CALL 2556 decimal = 09FCH moves data
from the ACCUM to "CS”. The next number is then input
by loading “32000" into CONV ? and then entering this
number in the ACCUM.

By keeping close track of the NT (number type) so you
call the appropriate arithmetic/conversion subroutine,
and using the data movement subroutines covered in the
next chapter, it is quite easy for this demo program to
calculate LOG to the base 10, manipulatetrig functions as
desired, etc. Though you will never write a real-time
program such as that given in Figure 13, it nevertheless
offers you an excellent opportunity to practice and
become familiar with Chapter 4’s data conversion and
data movement subroutines. Besides, it is an intellectual
challenge...and challenges are fun when you WIN.

16

17

7haa
FhaE
g h5 Y]
The2
7hEs
7DhRAE
vhiag
ThaEn
ThEE
704
Thid
TG
719
vDiC
vhiF
b1
D24
707
7h2R
7h2C
Th2F
D31

7Dh34

FUNCTION
ABS

ATN

BASIC
BASIC
BREAK
CDBL

CINT

CLS

COS

CSNG

EXP

FIX

INT

INVERT SIGN
INVERT SIGN
LOG
MEMORY
RANDOM
RETURN
RND (see limits)
SGN

note: number types
2 = integer; 4 = single precision; 8 = double precision

NUMBER TYPE

2-4-8
4-8

(RETURN L It)
(RETURN DISK)
(RST ADDRESS)

SIN

SQR

TAN
s RE
aetia
ZE4E Ga128
CDZABS BELZA
CDEILE GBldn
b7 G S
CDeCBE a6isE
Ge AE P E
[aa1aa
111041 BEL9E
218370 pazea
@aas aEz2ie
CLU7es Ba226
112741 0@G236
217870 66246
aans aaz5e
CobyYas o@2en
IARF4E GBz7a
ETETD GEzee
ezl gaz%a
CDzABT oa366
326 Bazie
CDzABS 6azz2e
CDBDBF BBz34

2-4
4-8
2-4-8
4-8
2-8
4-8
2-4
2
2
4-8
4-8
(DEFINE SIZE)
2-4-8
(TO SUBROUTINE)
2-4-8
2
4-8
4-8
4-8
Figure 13
WaUCH Ef FhBEH
ORG W4LICH
LD R: 4EH
CALL HEZRH
CALL 1BB3H
R5T 1@H
CARLL BEBCH
RETURN EX AF. AF "
Exk
LD DE. 4141DH
LD HL. STORE
LD B 8
CARLL @30vH
LD DE. 4127H
L HL. COBL
LD B, 8
CARLL ash?H
LD R, C4ERFH
LD (FLAGY. A
ADD f. 48
CALL BI26H
LD A, 28H
CRLL BX2AH
CALL GFBDH

DECIMAL HEXADECIMAL
2423 0977
5565 158D
6681 1A19

112 0075
16396 400C
2779 0ADB
2687 0AT7F
457 01C9
5441 1541
2737 0AB1
5177 1439
2854 0B26
2871 0B37
3153 0C51
2434 0982
2057 0809
181 00B5
467 01D3
32000 7D00
5321 14C9
2442 098A
5447 1547
5095 13E7
5544 15A8

ivDEgH = 37668 DECIMAL

i PROGRAM WILL START HERE

i dEH="H"=HNIMBER DESIRED *
s DISPLAY "W 0N VIDED

P KYEDAYIDED INFUT ROUTINE
i SCAM STRING - SET © FLAG
FASCII-ACCUM RET MINIMUM

i EXCHRNGE REGISTERS-

3 TO PRESERVE WHLUES

i MOVE MEM RCCUM DATHR FROM
i T TEMPORARY STRSH

s NUMBER OF BYTES TO MOVE

sMOVE IT - SUBROUTINE

i MOVE CDEL DATA FROM-

i TO TEMPORARY STASH

; NUMBER OF BYTES TO MOVE

iMOVE IT - SUBROUTINE

i NUMBER TYPE MEM LOCATION
i MOVE TO TEMFORARY STRSH

s CONVERT TO RSCIT NUMBER

i DISPLAY NUMBER TYPE

i 20H = RSCIT SPACE

; DISPLAY SPACE ON VIDEO

; CONV MEM RCCUM TO RSCII$

D3I7
A¢

TOER
5 L
Th3EF
7hd4
Thdd
7hav
7hd4g
vhaE
Fh4E
I s
7054
V [J T
FhEg
TOEC
TDEF
Tz
Thed
FDET
FLER
ThED
7T
sl
7h7d
7hvs
vDhVE
FLFT
BEE1
5715
B
BRES
ThEa
HERRE
CheL
COWY
FLAG
RETUR
STORE
W41ICH

COAVZE Baz
ZEAD 515
CLEZAE aa

ZE43 518

ChzREs HEES
COEEIRE B@Ts
L7 Fd A
COECRE 86
CDYFER @

150

L

=

A
oo S B S

sEx
$ s

1
2
SEVEVD BBd3A
LIFEYD BBd444
212741 @Rd5a
BREn HRSAE
CODFPEY ARdFA
118370 BR42E
214041 Gadoa
HERE HESE

Sh
BES

ChO7FaS
ERPETD BESZ
IZAF4E BAST
218070 @

ES HASSA
ZRVEFD ARSEA
ES BESTH
(51 BASER
[AE9E
(e HEAR

HBELQ

TOTAL FPPHP’
TVE ARE3EA
FOTY ARGZE
7OTE GESLE

N FOEC G678

ThEE BBnda

Thea Galan

CARLL
LI
CALL
LD
CALL
CALL
)
CALL
CHLL.
LD
L0
LD
L
CRLL
L
LD
LI
CALL.
LD
LD
LD
FlLIZH
LD
PLISH
Es
Esxr
RET

3 FLAG CEF=

BEz4E GRd44a
aRdza AESEA
BAZER RS2
RS 4@
BAZEE ARSE
116 BEESH

2EATH

H. EbH
HEIZH

AH: 43H
ZRAH
1BEZH
14H
AERCH
BHTFH
COOMY Y, HL
DE. COEL
HL., 4127H
BJ :-:-:

AalTH

DE, STORE
HL. 4410H
B. 8
A9DTH

A CFLAG)
CHARFHY . A
HL: FETURN
HL.

HL s CCOMY
HL

AF. RF-

LI O I

L

o

WCH

i DISPLAY CONVERTED NUMEER
s BOH=EKIFP A LINESTARRE RTH
;0017 - OW VIGED DISPLAY

MO = DOMYERSION MWUMEBERT

iDTSPLAY "CY ON YIDED
FENBDSYIDED THPUT RDUTINE
P SCAN STRING - SET 0 FLAG
SASCTI-ACCUM RET MINIHUH
s CONVERT T0 INTEGER

P STORE CONVERSION ADDRESS
PMOVE CRBL DRTA FM STASH-
i TO PERMARENT RDLDRESS
i HUMBER OF BYTES TO MOVE
PMOVE IT - SUBROUTTHE
s MOVE MEM ACCUM FM STASH-
3 TO PERMANENT ADDRESS
 HUMBER OF BYTEZ TO MOVE
SMOME TT - SUBROUTINE
i NUMBER TYRE FROM STRSH-

3 TO PEREMANENT PGORESS

i RETURN MEM LOCAT IOM-
SLOADED THTO STACK.
PCOMVERZION MEM LOCATION-
FLOAD OM TOF OF STACK.

i RESTORE REGISTERS-

PTOORIGIMAL YALLES
s SMERKY CALL-TOP OF STRCK

i MUMBER TYPE STHEH

P COMVERSION ADDEESS STASH
.LDEL DATA STASH
P ACCUMULATOR STASH

PHMATELR RACIO CALL LTRS

18

Ancillary Level Il ROM Subroutines

Introduction:

Chapters 2 and 3 used a number of Level || ROM
ancillary subroutines that were not fully explained except
for a few words in the source code comment column.
Using Level Il ROM BASIC functions’ CALL subroutines
efficiently requires a modest understanding of how to use
other ancillary ROM subroutines that are there just
waiting to be used. They include: KEYBOARD input,
MOVE data, COMPARE data, CONVERT data, VIDEO

PEEK (14337) = @ A
PEEK (14338) = H |
PEEK (14340) = P Q
PEEK (14344) = X Y
PEEK (14352) = 0 1
PEEK (14368) = 8 9
PEEK (14400) = ENT CL
PEEK (14464) = SHIFT

VALUE = 1 2

The keyboard/switch matrix will output the VALUESs
shown above when a single key is pressed at the
corresponding MEM location. For multiple keys pressed
simultaneously, add up thevaluesforeach key; i.e., "JKL"
=4+8+ 16 =28 total at MEM location 14338 decimal. With
these facts in hand it is easy to see how very simply
NEWDOS+ includes the feature of line printing out the
video display contents whenever "JKL" are pressed
simultaneously. Now, go write a brief assembly language
program that will do so with non-disk Level Il. For the
inveterate experimenter, try this little 1 line program and

R

output, and LINE PRINTER output amongst others. This
chapter will present the CALL addresses and briefly
explain the most useful ROM ancillary subroutines that
will truly make shorthand assembly language
programming a reality for you.

Keyboard Review:

Every advanced assembly language programmer
knows that the keyboard is simply nothing more than a
key/switch matrix that “looks like” RAM memory to Level
I ROM. The keyboard's eight MEM locations are shown
below in decimal. UA = up arrow, DA = down arrow, LA =
left arrow and RA = right arrow.

B C D E F G

J K L M N (0]

R S T U Vv W

4

2 3 4 5 6 7

: ; , - . /
BRK UA DA LA RA SPA

4 8 16 32 64 128

press any combination of keys in the PEEK (14338) row:
10 X=PEEK(14338) :PRINT@478,X:GOTO10

The three most useful Level I ROM ancillary
subroutines for the keyboard follow. CALL locations are
in hex.

CALL 002B: This is the most fundamental keyboard
subroutine that scans the entire keyboard and returns the
ASCII character in the "A" register. A JR -Z loop must be
created to repeat the scan as shown below:

KYBD CALL 002BH
CP A,00H
JR ZKYBD

Whenever a key is pressed, the CP (compare) "A" register
with 00H is NOT zero so the program falls through to the
line following JR Z,KYBD. This was the most commonly
used keyboard subroutine by early assembly language
programmers who did not know any better. It is seldom
used any longer.

CALL 0049: This is the ROM subroutine most similar to
BASIC's INKEY$ function. It automatically scans the
keyboard UNTIL a key is pressed and then places the
value in "A" register. No assembly language loop
subroutine is required. A giant step forward from the
002BH fundamental keyboard CALL.

CALL 1BB3: This is the main keyboard subroutine you will
be using most frequently. It first displays the "?" prompt.
Then input via the keyboard is converted to string format
and terminated with a zero (up to 255 bytes). This string is
stored at 40A7H + string length. It is usually followed by a
RST 10 which sets the "C" flag. See the programs in
Chapters 2 and 3 which use this call. This call
automatically outputs keyboard input to the device
specified by the contents of MEM location (409CH) : -1 =
cassette, 0 = video display and +1 = line printer. ROM
initializes (409CH)=0. This subroutine is surely one of the
most time saving, valuable, and frequently used ROM
subroutines you will be using henceforth. A single CALL
1BB3H will replace dozens of lines, if not pages, of
assembly language programming for you.

Data Movement:

Level Il ROM ancillary subroutines exist for moving
data in assembly language programs FROM - TO virtually
any and all locations conceivable, often with only asingle
CALL. They are tremendous time and line savers and well
worth becoming acquainted with on a first-hand basis.

Once of the most useful data movement subroutines is
that given in the data movement tables’s first line, CALL
09A4H. This CALL automatically transfers either an
integer or single precision number from the ACCUM at
MEM locations 411DH through 4124DH to the stack. POP
BC and then POP DE will retrieve the number. If the
number is single precision, registers BCDE will contain it.
If an integer, register DE will hold the number.

Though ALL the data movement subroutines are very
useful, those in lines "J” and "K" deserve special note.
Each will MOVE up to 255 bytes from (DE) to (HL). The
subroutine at "J" rquires that the number of bytes to be
moved be in the "A" register, and the subroutine at "K”
requires that the number of bytes to be moved be in the
"B" register.

NT = number type which is stored in MEM at 40AFH: 2 =
integer, 4 = double precision, and 8 = double precision.
CS=CDBL store.

20

Data Movement Table

NO. FROM TO

A. ACCUM STACK
B. (HL)+ ACCUM
C. BCDE ACCUM
D. ACCUM BCDE
E. (HL)+ BCDE
F. ACCUM (HL)+
G. (DE)+ (HL)+
H. (HL)+ (DE)+
I (DE)+ (HL)+
J. (DE)+ (HL)+
K. (DE)+ (HL)+
L. "CS" ACCUM
M. ACCUM "CSs"
N. HL ACCUM
. DE HL

P. HL DE

Q. BC STACK
R. DE STACK
S. HL STACK
T. STACK HL

u. STACK DE

V. STACK BC

Note: Lines "O" through "V" are just plain old Z-80
OPCODES, but are included to remind the programmer
that when dealing with integers or single precision
numbers they often are the simplest means of moving or
temporarily storing data. See Chapter 2 where PUSH and
POP are used to store both integer and single precision
numbers while these registers are being used for other
purposes.

CALL NT(40AFH)
09A4H/2468 2,4
09B1H/2481 4
09B4H/2484 4
09BFH/2495 4
09C2H/2498 4
09CBH/2507 4
09CEH/2510 4
09D2H/2514 2,4,8
09D3H/2515 2,4,8
09D6H/2518 A REG
09D7H/2519 B REG
09F4H/2548 2,48
09FCH/2556 24,8
0A9AH/2714 2
EX DE,HL 2
EX DE,HL 2
PUSH BC 2.4
PUSH DE 24
PUSH HL 2
POP HL 2
POP DE 2,4
POP BC 2,4

Data Comparisons:

Equal to, less then, and greater than are some of the
most frequently used functions in computer
programming. Level || ROM very thoughtfully includes
these functions that may be performed with a single
CALL. The resultis returned in the "A" register and = zero
if the compare is equal, = +1 if the compare is » ,and =255
(OFFH) if the compare is ¢ .

Compare Table

£

0. ITEM # 1 SUBTRACT

HL -
ACCUM -
HL -
ACCUM -
IICSH

ACCUM

mmoow>

DETERMINE

Note: No. F above is same as the BASIC SGN function, but
returns to register "A": zero if ACCUM =0, +1if ACCUM
greater than zero, and 255 (OFFH) if ACCUM is less than
zero.

DATA CONVERSIONS

ITEM #2 CALL NT(40AFH)
DE 1C90H 2
BCDE 0AOCH 4

DE 0A39H 2
"C8" 0A4FH 8
ACCUM 0A78H 8
SIGN 0994H 2,4,8

Data Conversions:

Are straightforward and very necessary in most all
arithmetic operations as the NT (number type) must
match-up with the CALL subroutine’s function; i.e.,
integer, single precision or double precision + - * /. The
most useful conversions are:

CALL OA7FH: any ACCUM to integer ACCUM (CINT).

CALL 0AB1H: any ACCUM to single precision ACCUM (CSNG).
CALL OACCH: integer ACCUM to single precision ACCUM.

CALL OACFH: integer HL to single precision ACCUM.

CALL OADBH: any ACCUM to double precision ACCUM.

CALL OE65H: ASCH string to ACCUM in double precision format.
CALL OEBCH: ASCII string to ACCUM;NT will = minimum required.

Arithmetlc Call Summary

integer No.

Add 0BD2H/3026
DE+HL

0BC7H/3015
DE-HL

0BF2H/3058
DE*HL

2480H/10560
DE/HL

Subtract
Multiply

Divide

21

Single Preclsion Double Precision

0716H/1814 0C77H/3191
BCDE+ACCUM ACCUM+"CS"
0713H/1811 0C70H/3184
BCDE-ACCUM ACCUM-"CS"
0847H/2119 08A2H/2210
BCDE*ACCUM ACCUM*"CS"
08A2H/2210 ODESH/3557
BCDE/ACCUM ACCUM/"CS"

Note: NT (number type) at (40AFH) must agree with
operation CALLed. NT: 2 = integer, 3 = string, 4 = single
precision, and 8 = double precision.

* ACCUM at MEM locations 411DH through 4124H.

* "CS" = CDBL Store at MEM 4127H through 412EH.

Video Display:

Most TRS-80 video display subroutines have been well
known to computer buffs the last 2 years, including the
fundamental ROM video subroutine, CALL 033H which
displays the "A" register on video. CALL 032AH which
displays the "A" register on video if MEM location 409CH
contains a zero which is the value stored upon
initialization. Most IMPORTANTLY, CALL 032AH does
indeed store the video display LINE cursor position at
MEM location 40A6H which is very useful and eliminates
redundant programming on your part.

One of the most important subroutines for reflecting
keyboard input on video is CALL 1BB3H which was
covered earlier in this Chapter. This CALL displays the
string beginning at (HL) and terminated with a zero on
video if MEM location 409CH contains a zero. The video
display control block, page D/1, Level Il Manual in
conjunction with the line cursor position at 40A6H aliows
you to modify and/or use the video display as you wish.

One of the more fascinating assembly language
exercises using the video display, is to write a "tight”
source code program that creates SPLIT-SCREEN video
operation. The upper half of the video display serves as
the RECEIVE sector for Morse code, radio teletype (ASClI
now allowed), or even simple phone line MODEM
communications, while the lower half of the video display
would serve as the TRANSMIT segment. This segment
allows the user either "look-ahead” or "type-ahead” FIFO
(first-in-first-out) operation from RAM at whatever output
baud rate desired. If you have the uppercase/lowercase
modification recommended by Electric Pencil, it is a
simple matter to have those characters that have already
been transmitted in uppercase, and those characters yet
to be transmitted in lowercase. Alternatively, a moving
cursor or a moving CHR$(170) figure may be used to
indicate what data has been transmitted versus data yet to
be transmitted in the TRANSMIT sector of the video
display. Both halves of the video display operate entirely
independently; i.e., from their own separate video MEMs
in RAM with their own scrolling, etc. The transmit sector
utilizes the Z-80's interrupt mode for “type-ahead”
simplex operation. Remember, the last 7 bits of video
memory is just plain old RAMand may be used for storage
(as in FIFO) just like any other RAM memory segment.

Line Printer:

Much like the video display, there are few significant
new surprises about line printer ROM subroutines. Again,
the value stored in MEM location 409CH determines
where the output from CALL032AH and 1BB3H keyboard
subroutines goes; i.e., if (409CH) contains +1, the output
will go to the line printer. As shown on page D/1 of the
Level Il Manual, the line printer address is 37E8H and line
printer control block from MEM locations 4025H to
204CH. MEM location 37E8H will contain the value 63
decimal = ASCil ? whenyourline printer is ready to accept
another character (handshake). A few cheap surplus
printers do not have this handshake feature and should be
avoided like the plague; caveat emptor, especially with old
Datel printers, even those with the handshake feature, do
not even make good boat anchors for small dinghys. As
soon as MEM location 37E8H receives the 63 handshake
from your line printer it is ok (in most cases) to load the
next character to be printed into (37E8H) via A" register
and the LD opcode. An exception to this rule is illustrated

in Chapter 7's "Print All Zeroes With A Slash Program”,
where an extra 20 millisecond delay was required to allow
the vibration from a BACKSPACE to dampen/die out.

This slash/zero program has not been previously
published and illustrates a few interesting points about
line printer programming. It intercepts the NEXT
character to be printed by modifying the line printer driver
address at 4026H and 4027H to allow a moment’s
branching to this brief routine. It justs so happens that the
"C" register contains the NEXT character to be printed
when using the LLIST command with non-disk Level II,
DOS 2.1, DOS 2.2, and NEWDOS+, as well as the
NEWDOS+ "JKL" feature that LPRINTS the contents of
the video display. By simply testing the next character to
be printed, a variety of options are made available to the
programmer.

To illustrate a few points, let us assume that your line
printer utilizes IBM's highest-quality heavy-duty Selectric
mechanism like the Western 1/O (IBM #2970) Printer
Terminal. These can be purchased used and refurbished
with interface to the TRS-80, for $1100. Only 8 years ago,
these IBM #2970's sold new for over $7000 each. Today,
they are the industry’s most cost-effective printers. They
are the best choice for those who demand IBM quality
print-out in both lower and upper case,, in addition to the
decided advantage of being able to use any or all of the
myriad type faces offered in inexpensive IBM Selectric
snap-in elements.

Even the excellent ASCII IBM elements do not include
the zero with a slash across it as it looks strange indeed to
non-computer types reading a business letter. In some
program listings though, it is of considerable assistance
to the reader to have the slash/zero printed as such, to
avoid confusing zeros with capital "O". Chapter 7's short
program prints all zeros with a slash and all lines with 64
characters. It may be modified to printall > =GT and all
= LT, etc., as desired. Asitis ateaching program, it may be
compacted considerably. Try cutting it down by 1/3rd.

22

Summary of Level Il ROM CALL Addresses
In Alphabetical Order

This summary includes the coupling CALL addresses
for DOS and Disk BASIC because they are called from
Level Il ROM. In addition, the link address for BREAK is
included as it may be intercepted at 400CH before calling
an RST and either rendered inoperative or used for

BASIC HEX CALL
FUNCTION ADDRESS
ABS 0977
ASC 2A0F
AUTO 2008
CDBL 0ADB
CINT OAT7F
CLOAD 2C1F
CLS 01C9
CONT 1DE4
CSAVE 2BF5
CvD 415E
Cvs 4158
DEF 415B
DEFINT 1E03
DEFSTR 1E00
DIM 2608
ELSE 1F07
EOF 4161
ERR 24CF
EXP 1439
FiIX 0B26
FN 4155
GET 417F
GOTO 1EC2
INKEY$ 019D
INPUT 219A
INT 0B37
LEFT$ 2A61
LET 1F21
LIST 2B2E
LOC 4164
LOG 0809
LPRINT 2067
MASTER F3GUM
MERGE 418B
MKD$ 4170
MKS$ 416D
NEW 1B49
NOT 25C4
OPEN 4179
PEEK 2CAA
POKE 2CB1
PRINT 206F
RANDOM 01D3
REM 1FO7
RESTORE 1D91
RESUME 1FAF
RND 14C9
RUN 1EAS3
SET 0135
SIN 1547
STOP 1DA9
STRING$ 2A2F
TAN 15A8
TROFF 1DF8
USR 27FE
VAL 2AC5

* footnote: ELSE = 1F07 hex is questionable even though
ROM points to his address. ROM also points to 1F07 for
the REM function which appears correct. It may be only
an improperly shadow-masked bit on this particular Level
I ROM chip.

whatever purpose the programmer wishes. One extra
bonus for disk users under the heading "MASTER" is the
master password "F3GUM"”, which will allow you to
access ANY protected file in either DOS or Disk BASIC
when using DOS 2.1, DOS 2.2, or NEWDOS+. (Thank you,
Manny Garcia.) Every lock has a key and "F3GUM" will
allow you to LOAD, KILL, transfer or do whatever you
wish with any disk file/program whether SIP (system-
invisible-protected) or otherwise.

BASIC HEX CALL
FUNCTION ADDRESS
&H 4194
ATN 15BD
BREAK 400C
CHR$ 2A1F
CLEAR 1E7A
CLOSE 4185
CMD 4173
COs 1541
CSNG 0AB1
CVI 4152
DATA 1F05
DEFDBL 1E09
DEFSNG 1E06
DELETE 2BC6
EDIT 2E60
END 1DAE
ERL 24DD
ERROR 1FF4
FIELD 417C
FOR 1CA1
FRE 27D4
GOSUB 1EB1
IF 2039
INP 2AEF
INSTR 419D
KILL 4191
LEN 2A03
LINE 41A3
LOAD 4188
LOF 4167
LLIST 2B29
LSET 4197
MEM 27C9
MID$ 2A9A
MKI$ 416A
NAME 418E
NEXT 22B6
ON 1F6C
ouT 2AFB
POINT 0133
POS 27F5
PUT 4218
READ 21EF
RESET 0138
RETURN 1EDE
RIGHTS 2A91
RSET 419A
SAVE 41A0
SGN 098A
SQR 13E7
STR$ 2836
SYSTEM 02B2
TIME$ 4176
TRON 1DF7
VARPTR 24EB

24

SEE CLS CLEARZEE

518 CHMbT

528 PRINT

538 TOHERRORGOTOS4E

S48 “RESUMESSEH

ThE PRINT" M4 UCH HWHUMBEER COMNMERSION FEREO

GRAM

SEa PRINT

SYE PRIMT® - DECIMAL TO BIMARY EWTER D

S8 PRINT - BINARY T DECIMAL ENTER B

596 PRINT® - HEXADECIMAL TO BINARY EWTER HE

A PRINTY - DECIMAL TO HEZRDECIMAL ENTER [H

&18 FRINT® - HESAGECIMAL TO DECIMAL ENTER HE

a2l PRINT® - SPLIT DECIMAL TO DECIMAL ENTER SF

£3@ PRINWT® - DECIMAL TO SFLIT HEXRDECIMAL ENTER DS

fdE PRINTY - SPLIT HEXADECIMAL TO DECIMAL ENTER =0 "
£5E THPUTHAE CLS

EEl ITFARE="HE"GOTO1556

arH IFARE="[H"THENOE$=""

&28 IFARS="DS"THENARF="DH" . 0B$="[%

a9 TFPRE="SLGOTOLS86

TER IFARF="HO"GOTOLS5E@

718 IFAR$F="B*GOTOSEH

728 REM DECIMAL TO BIMARY COWMVERSTON

TEA CLS: IMPUT" DECIMAL MO " ¥ IFX-65535GOTOVZEA

PAB A=INTORA2) AR=K-24R B=INTCAA2) BE=A-2+B C=INT{BA2 Co=B-2%0
790 D=INTOCA2) Dh=C-24D E=IMTODA2) EE=D-2+E F=INTC(EA2) - FF=E-24F
TEBA G=IHTOFA2) Ga=F-240G H= INTLGA2) (HH=G-2%H : T=THT(HAZ) TI=H-2%1
TP JI=INTCI 20 JI=1-2%0 K=INTCI/2) (kE=J-24K L=THT K A20 - LL=K-2%L
TR M=THTCLAZ) - MM=L-2#M N=THT (MA2 0 Mh=M-24M D= TRTONA2 3 O0=H=- 20
IR PRP=0-2+IHT OS2

G688 YE=STRECPPOSETRECODDHETRECNN +ETRE CMM O +STRECLL I FETRECKK I +5TR
FOITHETRECT I IHSTRECHR I HETRECGGI+STREFF 145 TRECEE M HETRECDD I +5TRE
(CCP4STRECBREIHSTRECAAD

218 IFAA$="5P"THENNO=HO+L OB$="DS" GOTOL206

226 IFAA$="DH"ANDEES=""THENFRINT : PRINT" HENRDECIMAL " :GOTOL266
836 IFOB$="03"G0TOLZ068

2468 FRINT" BINARY #"Y$: INPUTR GOTOPZE

856 REM BINARY TO DECIMAL CONVERSION

BEE CLS:INPUTY 46, 8. OR 4 DIGIT BINARY WO "iAA

S7E CLS PRINTAR: "DIGIT BINARY MO i INPUTHRE

280 IFLENCK$ »AAGOTOSRE

23908 FORZ=1TORA: X=VALIMIDECRE, 2, 400 IFE=1THENA=

oEE IFZ=2THENB=X

B TFZ=ITHENC=X

TFZ=4THEHND=}K

IFAR=BGOTOYVEELSEIFAR=16G0TOS @

8 NEXT

S8 Y=FeS+Bed+CaZ+D

8 PRINT" DECIMAL"Y : INFUTR : GOTO27E

78 IFZ2=5THENE=X

9868 IFZ=6THENF=X

998 IFZ=7THENG=¥

1666 TFZ=CTHENH=X

1818 IFAR=16GO0TOLA5E

(RN I ST e
& oon B oo
)

1628 NEXT
1628 Y=A+128+Bxe4+CaI2+Drl EE#G+F R4 +Gk+H
1646 PRINT" DECIMAL™Y: INPUTR : GOTOS7E

1858 IFZ=9THENI=X

26

27

1856 TFF=1ATHEMI=}
1670 TFZ=11THENK=Y
158 IF2=12THENL=Y
1896 TFZ=13THENM=
14860 TF7=14THEHH=
1116 TF2=15THEND=}
1428 TFZ=16THENP=Y
1136 HEXT

L PREFEE A TR TR 22 A D A SE A 4 2B S+ F 4 B2 4GS S 208+ T
w0 2E TS d + S0 Ll A e M 4 T 2 4P
1158 FRINT PRINT® DECTMAL™: % THFUTR
1188 IFRAE="SP"GOTORIE
1178 IFRAE="B"GOTOETH
1186 IFARE="HI"GOTOLS45
1498 TFARE="SD"GOTI SEE
1238 DHE=MIDEYE 1. 00 GOEURLZSH
B DHE=MIDEYE 20 20 GOSURLZSE
20 DHE=MTIDECYSE, A7 80 GOSUEL 256
A DHE=MIDECYE. 25, 8 GRELEL 258
248 PRINT® i THPUTR - GOTOFE
A DH=YALCDHED - TFDH=ATHENDHE="0
126 IFDH=1THEMDHE="1{
1276 IFDH=1ATHENDHE="2
ZE8 TFOH=11THENDHS="T
i TFDH=188THEHDHE="4
TFiH=1 81 THEHDHE="5
4 IFDH=118THENDHE="¢
i IFOH=1 11 THENDHE="7
TFOH=180ETHENDHE="5
TFDH=16601 THENDHF="3
1Z568 IFDH=1B818THENDHE="H
EE IFDH=181 1 THENDHS="R
A TFDH=11 BATHENDHS="T
i IFDH=1 181 THEMDHE="D
TFDH=1118THENDHE="E
1486 IFDH=1111THENDHE="F
18 IFGBRF="[S" THENGD=G0+1
A TFR0=1 THENRES=DHS - RETURN
E IFRD=2THENSS$=0HE RETURN
TFOR=STHENTT$=0HE RETIIEN
A IFOR=4THENUUE=DHS
A IFOES="DS"ANDAAS="DH"THEHFRINT - FRINT" SPLIT HEX TTE UUE
i FRE S5 =0 THPUTR - GOTOFEA
1478 IFOES="DS"ANDAAS="SP"RNDHD=1 THENFF £=TT$+1IUS D0O=6 - GOTOF =6
1436 TFOBE="D%"ANDAAE="SF "ANDHO=2 THENSS =T TE+UILE - HE=0058+FF§ - ND=0
CRE=ECPRINT" HEXADECIMAL " #% GOTOLSSH
1496 PRIMTDHE: (RETUREMN
1588 “SPLIT HEY TO DECIMAL COWVERSION
1516 CLS: IHPUT"SFLIT HERX HO " SHE
1526 S1$=L EFT#$(SHS, 20 2 JE=RIGHTE SHE, 22
1530 KE="" HE=0T8+5 T4 GOTOA S8
1548 REM HEX TO DECIMAL AMD HEY TO BIMARY CONYERSION
1558 X$="" INFUT"HEXRDECTMAL NO. " =f
15688 TFLENCXE > <34G0TOL550
1576 FORNR=1TO4 AF=MIDE E KX 10
1586 IFARS$="A"THENAS$="GRRE
1536 IFA$F="1"THEMNRE="G0G1
1688 IFAS="2"THENAS="8818

1618 TFR$="3"THENA$="0G11

1a28 IFAZ="4"THEHR$="6166

1638 IFAF="S"THEHAS="a181

1648 TFRE="&"THENAS="0115

1656 IFA$="7"THENAF="6111

1668 IFR$="2"THEHA$=" 1060

1678 TFRAF="9"THENA$="16G1

16860 IFA$="A"THENAS="1618

1630 IFAS="E"THEMAE="1611

1766 IFR$="C"THENA$="1166

1718 IFR$F="D"THEMR$="1161

1726 IFA$="E"THENA$="1118

1730 TFRAS="F"THFMNAS="4111

1748 NN=NN+1

1756 OHNNGOTOLFER, 1778, 1738, 1796

1758 BEE=A%: Tew - GOTOLSTE

1778 ChE=A%: ATHH GOTOS?E
76 DhE=AT- MEXT 3 GOTO4STA

1798 EE$=A%

1518 TFARS="HE"THENFRINTA$: " BINARY " INPUTR:CLS GOTOLSSH

1828 AR=1E: GOTOESE
1836 END
aa ¢

15
1858 7 NOTE: PROGRAM UTILIZES Z998 BYTES OF MEW

FFES

TFa?
7F2A
FF2E
YFZE
TF2F
7F3
TFz4
7FIS
7R
TFI7
FEs
FFER
FFZED

T
TH
FEZ8
COSRTF
Ei

[
£
F1
CEabhes

PFAB 15

TFaz
TF 44
TFa7
TFaq
TR
TF4E
RS
7RSI
7FEE
RS
7FSA
7FSE
TFSE

ZE8iE
TSTF
18DE
ChEzE?
ZEAD
IZERET
12EF
TAESET

. CDSEPF

COEERF
IERE
I2EBET
BEBA
GeEa

! 1BFE

@D
C2varr
3

177F

o = o B
DS aRR
SR

Sl O =
fEERE= R

-
Pin]

GIERERY
FE 76
FAE BE

T S 8
LRI el
b}

[xcn}
=
A
X DS O] =i
- =

=
Lo ded O B

B s W
=

]

Pu By

1
]

=
)
i
)
kY 'm?
A

ROk I

At By B]

=
Conale’
pn)

ot T

=3 T

i)
s BERH)
K]
=

fsod I Rx]

HEEE

als

3

¥
=]
o

=0
pux]

Py e
S OE & &
by R

face(]
bl

=
ba]

PN

fan]

iad P oms (T
]

o)
By
>N]

G B R B R T D I T A S O . R L

AR

=
P £-

=3 E

R & &
o Ny

o0

PO I B)

b |
O S Ty O B ot P R & D

P I o B B TR o I o R oy B i B
or TRV R ar B B B oy B A

| = [0 S T

(O]

=
on R £

BAC4H
AASSE
BAcEH

SOURCE CODE PROGRAM TO PRINT ALL FEROS WITH A SLASH

WITH AUTO CARRIAGE RETURM @ &4 CHARACTERS WHEW LLIST

; COLNT

STAET

FINTS

1 ELFIM

RT NG

REZET

CARRET

TEST

FERO

DELAY

DELAYL
DELAYZ

NRG
Fad
DEFW
FUSH
FLEH
FLISH
FLISH
(MK
CP
JR
1D
CF
IR
LD
THC
LD
LD
CF
CRLL
FOF
PP
FiF
PO
JP
LD
LD
Je
LD
1.D
JE
CALL
LD
LD
TR
LD
EBIT
IR
RET
CRLL
LD
LD
CALL
CALL
LD
LD
LG
LD
DIWZ
DEC
JP
RET
ORG
DEFUW

FFA5H s =EER5Y DECIMAL ORTGTN

FFL5H sMEM L OCATION FOR CHAR. COUNTER
COLMT FHSSEMBLER SAVES 2 BYTES B FFI15H
AF P SAYE REGISTERS IN STRCE MEMORY
B

DE

HL

H. PMERT CHARRCTER TO FRIMT IM © REG
AlbH i 1% IT A CARRIAGE RETURNY

SoMOTHE G ERIT WA THOREMERTTHG COUNTER

A CCTHINT D P COUNTER YARLLE FROM MEM
AdiaH 15 IT &4 DECIMAL = FND OF LINE?
& CHRRET J1F s, GOTO CARR. RETURN
A COOUNT 2 s IF RETURN FM CRRERET

A s ARD +4 CHARACTER O L THE

CCOUMT . R sHEW COUNT HUMEER TO MEM
A C S MEST CHARACTER TO PRINT IN © REG
Z6H P EAH=RSCTT ZERD IS IT R ZEROT

HL s RESTORE REGS TO ORIG. CONDE

A3E0H G GOTOD ROM STD. PRINTER ROUTIME
A B8H RESET CHARACTER COUNTER-
COOUNT 2R i IN MEMORY
ELFIN : QUICK DEPRETURE
R.0EH S RESET CHARACTER-
CCOUNT Y. A P COUMTER TN MEMORY
FINIS ALl DOME
TEST TERT IF PRINTER READYY
A.B0H s BlH = ASCIT CARRTIAGE RETURM
{EVESHY. A DO CARRIAGE RETURN
FESET GOTO RESET CHARARCTER COUNTER
A CEFEAHD i PRINTER MEM LOCHTION
Ve H i PRINTER READY HAMDSHAKE?
NZ. TEST JLOOP TIL HANDSHAKE
RETURM TO LINE AFTER CALL
TEST i 15 PRINTER RERADY?
A 2FH i ZFH=RSCIT SLASH
(EFESHY A SPRINT “/¢ SLASH
TEST i IS PRINTER READNY?
GELAY i 26 MILLTSECOND DELAY
R, B8H s E2H = RECTT BRCKSPACE
{IVEEHY. A i DO BRCKSPACE
C.AAH : INITIRLIZE DELAY-
. aH JLOOPS TO ALLOW SELECTRIC-
DELAYZ PRINT HERD TIME TO SETTLE DOWN-
C i FROM BACKSPACE VIBRATION AND-
M. DELAYL i FOR TRACK TO LOCK
i RETURN TO LINE AFTER CRLL DELAY
48268 5 PUT ADDRESS OF STRRET IM PRINTER-
START DRIVER RDDRESS AT 482¢&H MEMORY.

30

31

7F15

YF1S B8
TF1S

AREaE TOTAL
CARRET FFa%
COLWT PRI

DELAY
DELAYY FF7a

DELAYZ FF72 B

ELFIM
FIHI=
HOTHC
RESET
STHRT
TE=T

ZERD

7F 4
7FET
VFIB
TF42
TFA7

TFSR

FFEE BEE

TF53 6

HEETE
HEGDE
ARESE

ERFORS
FRd 46
BEd 5E

oG s B wx]
oo 5
Tyoody LN
oty
oy B

PV
=
b

W]
1

BHZCE
HEER

o
b
il
Py
S

ORG COUNT i CHRRACTER COUNTER MEM ADDRESS-
DEFE BiEH S IMITIALIZE AT ZERG

EHD COLUNT GFIRST LIME OF SUBRGUTTHE

BRZ4R BESTE BAZYNE AATH GA4ZE GESTH

Self-Test Questions

The following pages of self-test questions cover a number of important points in the preceding chapters and
demonstration programs. If you understand the logic, program flow, and rationale of each chapter/program’s contents,
you should have little difficuity in answering the questions. If a question’s answer is not clear, re-read/study the
appropriate chapter and/or demonstration program till osmosis occurs, as in time it will indeed permeate. If all else fails,
try putting this handbook under your pillow and sleeping on it. (ED.)

Self-Test Questions for Chapter 1:
1. What is meant by masking the most significant bit (MSB)?

2. What are the decimal and hexadecimal locations in ROM for the Level Il functions’ NAMES?
From
/
to
/

3. Why are disk BASIC’s functions’ names and coupling addresses in non-disk Level || BASIC ROM?

4. How would you mask the MSB of any MEM location in a simple program written in BASIC?

5. How many MEM groups (separate address segments) do the BASIC functions’ CALL addresses occupy? Beginning
locations?

A

B.
C.
D.

6. Name the 2 geniuses at Microsoft who wrote Level Il and disk BASIC (luckily they did not write DOS 2.1 or 2.2).
A
G
7. Why are the BASIC functions’ CALL addresses in Level Il ROM expressed LSB first and MSB second?

8. What are the decimal values of PEEK 5666 and 56677 What Level Il function’s CALL address do they represent?
A.
/
B.
9. What are the MEM locations in decimal and hex of the following PEEK values? A. 194-30 B. 15-42 C. 255-255 D. 0-255
A.

32

Self-Test - Chapter 2:

1. On the average, how much faster will efficiently written assembly language programs run than BASIC? MEM required?
A.
B.
2. What do we call the 2 RAM arithmetic storage locations?
A.
B.
3. What is the NT (number type) for the following numbers?
A. 10000
B. 33000
C.1.011
D. 11111111
4. Where is the NT (number type) stored in RAM memory?

5. What type of numbers are represented by NT (number type) =7
A 2=
B.3=
C 4=
D. 8=
6. In Figure 7, what is accomplished by line 3107

7. In Figure 7, what is accomplished by line 3207

8. In Figure 9, what is accomplished by lines 340/3507

9. In Figure 11, what is accomplished by line 3107

10. How many significant digits in a CDBL argument?

NOTES

Self-Test Questions - Chapter 3:
1. Does Level Il ROM ever use the Z-80 alternate register pairs AF' - BC' - DE’ - HL' ?

2. Where is the ROM CALL location to move "B" register bytes from MEM location XXXX to MEM location YYYY?

3. How many MEM locations in the ACCUM and CDBL store? Where?

4. How is the NT (number type) converted to ASCII?

5. What CALL converts the ACCUM to an ASCII string?

6. What function does Figure 13’s line 420 perform? Why?

7. What is the difference between CINT and INT?

8. What is the difference between RANDOM and RND?

9. How is the conversion MEM location CALLed in Figure 13?

10. How is the RETURN MEM location CALLed in Figure 13?

33

Self-Test Questions - Chapter 4:
1. What is the value of PEEK (14464) if one shift key is pressed? If both shift keys are pressed?

2. What is the value of PEEK (14338) if H, I, J, K, L, M, N, and O keys are pressed simultaneously?

3. What is the major difference between CALL 002BH and 0049H?

4. What data is stored at MEM location 409CH?

5. What is the simplest way to store an integer and single precision number in RAM (not counting the ACCUM and CDBL
store)?

6. Where are data comparison results stored? What values?

7. What is the value of the "A"” register if CALL 0994H is used and the ACCUM contains -1.99999999997

8. What CALL is used to change any value to an integer? To a single precision number? To a double precision number?

9. What is the value of NT RAM storage for a string?

10. What value will MEM location 37E8H contain when the line printer is ready (handshake)? What MEM location is loaded
with the NEXT character to be printed?

11. Write a brief assembly language program to output to the video display a message of ANY length using the CALL
28A7H subroutine.

Note: This subroutine will output a string of up to 63 characters with non-disk Level Il. By concatenating the strings with
additional DEFM OPCODES, the message length is only limited to 240 bytes/CALL 28A7H.

Self-Test Questions - Chapter 5:
Fill in decimal CALL locations for these Level Il functions using Chapter 7’s Multi-Base Conversion Program:

BASIC CALL BASIC CALL
FUNCTION ADDRESS FUNCTION ADDRESS
ABS ASC
ATN AUTO
CDBL CHR$
CINT CLEAR
CLOAD CLS
CONT COos
CSAVE 'SNG
DATA DEFDBL
DEFINT DEFSNG
DEFSTR DELETE
DIM EDIT
ELSE END
ERR ERL
ERROR EXP

FIX FOR
FRE GOosuB
GOTO IF
INKEY$ INP
INPUT INSTR
INT LEFTS
LEN LIST
LOG LLIST
LPRINT MEM
MID$ NEW
NEXT NOT

ON ouT
PEEK POINT
POKE POS
PRINT RANDOM
READ REM
RESET RESTORE
RESUME RIGHTS
RND RUN
SET SGN
SIN SQR
STOP STR$
STRINGS$ SYSTEM
TAN TROFF
TRON USR

VARPTR VAL 34

Self-Test Questions - Chapters 6 and 8:
1. A. In Chapter 8's "Number Conversion Program”, is line 510 only for disk BASIC? B. Should it be deleted for non-disk?

2. How many fundamental number conversions are performed by Chapter 6's "Number Conversion Program”?

3. How is the "SPLIT DECIMAL TO DECIMAL" conversion performed?

4.1n Chapter 7's program, rewrite lines 170-200 and 330-360 to use EX AF,AF’" and EXX OPCODES instead of the stack for
storage. Be VERY careful.

5. A. In line 490, rewrite this line to use the CP (compare) OPCODE instead of BIT 7,A. B. What is the difference?

6. Why are lines 590-630 necessary with IBM Selectric printers?

7. If you had a line printer with 130 characters per line capability (most IBM Selectric Printer Terminals have it) how would
you modify this program to use all 130 positions?

Bibliography and Answers to Self-Test Questions
Bibliography and Books Available:

Using the consumers’ scale of: BEST buy, GOOD buy, FAIR buy, POOR buy, and utterly WRETCHED, there is nothing
on the market today for the TRS-80 assembly programmer that rates much higher than FAIR in this reviewer’s opinion,
with two exceptions. They are both for the advanced assembly language programmer and are:

BEST:

Andrew Hildebrand’s
"Software Technical Manual”, @ $40.
Houston Micro Computer Technologies
5313 Bissonnet Street
Bellaire, Texas 77401

GOOD:
Lance Leventhal's
"Z-80 Assembly Language Programming”, @ $15.
Adam Osborne & Associates
630 Bancroft Way
Berkeley, California 94710

Both of the above books assume that the reader has at least a few years of experience of 8080A assembly language
programming experience before jumping into the Z-80.

There is really nothing truly worthwile available for the beginning assembly language programmer. This includes Radio
Shack’s "TRS-80 Assembly Language Programming,” at $3.95. Even at $3.95 it is grossly OVERPRICED and in our kindest
moments deserves our WRETCHED rating. There is nothing else for the beginner but garbage, but if one is truly hungry
enough and holds one’s nose, garbage is better than starving to death.

The following books have received our FAIR consumers’ rating because of considerable generosity on our reviewer’s
part.

FAIR:
"Z-80 Programming For Logic Design”
great for typewriter mechanics

"The Z-80 Microcomputer Handbook"”
the cover should be a clue to the buyer

"Z-80 Software Gourmet Guide and Cookbook”
cooked tripe is still tripe

What the 200,000+ TRS-80 owners above the 5th grade level are awaiting is WB0VP’s new book on the subject of
assembly language programming. W60VP is Dr. David Lien, Dean of San Diego University, a professional educator.

Dave Lien wrote the "User’s Manual for Level I,” which is certainly the finest tutorial for beginning BASIC programmers
from age 12 to 80 ever published, and followed it up in the fall of '79 with “Learning Level Il,” which also deserves an
excellent rating. If and when Dave publishes tutorials on disk BASIC and assembly language programming, they will
indeed be on the best-seller list.

35

Answers to Questions on Chapters 1 to 7
Note:

Advanced assembly language programmers’ will undoubtedly think many of the questions naive to the point of
ridiculousness. Indeed, many questions are absurdly simple to DRIVE HOME points to those readers who may NOT be as
advanced as others. It is a difficult balancing act, so we ask for your patience and understanding.

Answers to Chapter 1:

1. Assume that PEEK (5712) = 197 decimal. 5712 is MEM location 1650H. Now, 197 decimal = 11000101 binary. The left
most bit is a 1 which is masked (eliminated). It now =1000101 binary =69 decimal = ASCII "E"”. Since 10000000 binary =128
decimal this same bit may be masked by simply subtracting 128 from the PEEK decimal value.

2. From 5712 decimal/1650H to 6172 decimal/181CH.

3. They are all CALLed by non-disk Level Il ROM. If no disk is present or operating = L3/ERROR.

4, Subtract 128 from the PEEK value.

5. Two.

6. From 6178 decimal/1822H to 6297 decimal/1899H, and from 5642 decimal/160AH to 5711 decimal/164FH.

7. Convenience plus allowing modest upward compatibility between the earlier 8080 microprocessor and the newer Z-80,
both invented/designed by Dr. Frederico Faggin (President of Zilog).

8. 189 and 21 decimal.
9. ATN = arc tangent with output value in radians.

10. A. 7874 decimal/1EC2H
B. 10767 decimal/2A0FH
C. 65535 decimal/FFFFH
D. 65280 decimal/FFOOH

Answers to Chapter 2:

1. A. 300 to 350+ times faster.
B. 1/10th as much memory.

2. ACCUM and CDBL Store; ("CS" abbreviation).

2
4 (> 32767)

=4
=8
E:
MEM location at 40AFH.

2 = integer
B. 4 = single precision
C. 8 = double precision.

6. CALL OE6CH changes an arithmetic string to minimum NT and stores it in the ACCUM in the appropriate format, plus
storing the NT in MEM location 40 AFH.

7. CALL OA7FH = CINT which changes ANY number in the range of +32767 to -32768 to an integer.
8. Uses stack MEM in RAM to store the single precision value of registers BCDE while BCDE are used in following CAL Ls.

B
C.
D.
NOTE: 3 = string
. NT
A.

9. See answer to question 6, above. CALL OE65H is similar, but stores the number in the ACCUM in double precision
format and sets the NT in MEM location 40AFH to 8.

10. THIS MAY SL}RPRISE YOU. Answer: only as many digits as contained in the argument. Up to 17 digits maximum. If the
argument contains 10 significant digits, the last 7 digits will be meaningless. See Radio Shack’s "Microcomputer
Newsletter”, October '79, page 2 for an excellent explanation.

37

Answers to Chapter 3:

1. NO, they are never used in Level Il ROM as this Microsoft BASIC is sort of the son of an earlier 8080 BASIC and the 8080
has neither OPCODE. This allows YOU to use it whenever desired and save 4+ bytes compared with PUSH and POP.

2. CALL 09D7H/2519 decimal.

3. Eight in each one.

4. ADD A 48 ;converts to ASCII.

5. CALL OFBDH converts ACCUM to a string (address in HL), and NT in MEM location 40AFH = 3.

6. A. Converts any number in CINT range in ACCUM to integer.
B. All ROM CALL locations are integers, so acts as a trap for erroneous input.

7. RANDOM re-initializes the Z-80 random number generator. RND with NT =2 = integer, generates a pseudo-random
number between 1 and the integer value in the ACCUM. RND with NT =4 =asingle precision number, generates a pseudo
random single precision number between zero and the number in the ACCUM which must = or > 1.

8. INT returns a round number (no decimal points) for ANY number. CINT changes any number with up to 7 digits to an
integer within the range of +32767 and -32768.

9. Line 600's OPCODE is a RET which effectively POPs the top number off the stack, thus CALLing the CONV MEM
location.

10. Since each listed CONVersion subroutine ends with a RET, this effects a POP the top number off of the stack, which is
the RETURN address. This is a very useful ploy at times.

Answers to Chapter 4:

1. A1
B. 1

2. 255 decimal

3. CALL 002BH scans the keyboard ONCE. CALL 0049H scans the keyboard till NOT zero (till any key is pressed).
Virtuallay the same as INKEY$ in BASIC.

4. MEM location 409CH stores "output” directions for CALL 1BB3H (among others). Initialized at Zero = video display, +1=
line printer, and -1 = cassette.

5. A. PUSH DE or PUSH HL.
B. PUSH BC and PUSH DE.
C. Move 8 bytes from ACCUM to MEM via CALL 09D6H or 09D7H.

6. A. In the "A" register.
B. Zero.
C. +1.
D. 255 (OFFH).

7. 255 decimal - 11111111 binary - OFFH hex

8. A. CALL 0B37H/2871 decimal = INT; CINT'’s range is limited.
B. CALL 0AB1H/2737 decimal = CSNG
C. CALL 0ADBH/2779 decimal = CDBL.

9. 3 decimal
10. A. 63 decimal = ASCIl 7 (what next?).
B. 37E8H
11. X
W4UCH EQU 7DO0O0H ;MESSAGE PROGRAM
ORG W4UCH ;7DO0H = 32000 DECIMAL
LD HL,STRING ;'STRING MEM ADDRESS
CALL 28A7H ;DISPLAY $ SUBROUTINE
;SEE NOTE BELOW
STRING DEFM '"USING LEVEL Il ROM SUBROUTINES'
DEFB 0 ;END OF MESSAGE DELIMITER
JP 1A19H ;RETURN TO BASIC
END W4UCH ;CONCATENATE ANY LENGTH TO 240 BYTES.

38

Answers to Chapter 5
Level 1l BASIC Function Call Addresses in Decimal

BASIC CALL BASIC CALL
FUNCTION ADDRESS FUNCTION ADDRESS
ABS 2423 ASC 10767
ATN 5565 AUTO 8200
CDBL 2779 CHR$ 10783
CINT 2687 CLEAR 7802
CLOAD 11295 CLS 457
CONT 7652 CcOS 5441
CSAVE 11253 CSNG 2737
DATA 7941 DEFDBL 7689
DEFINT 7683 DEFSNG 7686
DEFSTR 7680 DELETE 11206
DIM 9736 EDIT 11872
ELSE 7943 END 7598
ERL 9437 ERR 9423
ERROR 8180 EXP 5177
FIX 2854 FOR 7329
FRE 10196 GOSsuUB 7857
GOTO 7874 IF 8249
INKEY$ 413 INP 10991
INPUT 8602 INSTR 16787
INT 2871 LEFT$ 10849
LEN 10755 LIST 10054
LOG 2057 LLIST 11049
LPRINT 8295 MEM 10185
MID$ 10906 NEW 6985
NEXT 8886 NOT 9668
ON 8044 ouT 11003
PEEK 11434 POINT 307
POKE 11441 POS 10229
PRINT 8303 RANDOM 467
READ 8687 REM 7943
RESET 312 RESTORE 7569
RESUME 8111 RIGHTS$ 10897
RND 5321 RUN 7843
SET 309 SGN 2442
SIN 5447 SQR 5095
STOP 7593 STR$ 10294
STRING$ 10799 SYSTEM 690
TAN 5544 TROFF 7672
TRON 7671 USR 10238
VARPTR 9461 VAL 10949

39

Answers to Chapters 6 and 7:

1. A. YES: to speed-up disk a bit
B. YES: remove from non-disk

2. A. To round-off division by 2 to an integer = a short-cut in the decimal to binary conversion equation.
B. 4 fundamental conversions — rest are only messages.

- decimal to binary . lines 740 - 840
- binary to decimal : lines 860 - 1150
- binary to hexadecimal . lines 1200 - 1490
- hexadecimal to binary : lines 1550 - 1810

3. The first decimal number is converted to hex and stored in FF$ in line 1470. The second decimal number is then
converted to hex and stored in 8S$ in line 1480. FF$ and SS$ are then reversed and made = to X$ in line 1480. The correct
hex number which is X$ is then displayed on video in line 1480. This hex number, X$, is then converted to binary, and next
converted to decimal, and then displayed on video. Though very SHOW when decimal, and then displayed on video.
Though very SLOW when written in BASIC, it still beats a Hewlett-Packard calculator.

4.

00170 START EX AF,AF' ;EXCHANGE ALTERNATE REGS.
00180 LD AC 'NEXT CHAR. TO "A" REGISTER
00190 EXX JEXCHANGE BC DE HL ALT. REG

delete lines 00200 and 00210
NOTE: Since the NEXT character to be printed is in the “C" register, we MUST load it into "A” BEFORE exchange.

00330 ELFIN EX AF,AF' JEXCHANGE ALTERNATE REGS.

00340 EXX ;EXCHANGE BD DE HL ALT. REG

delete lines 00350 and 00360

NOTE: This little exercise deleted 4 lines and 4+ bytes. A very decided improvement and good technique.

5.00490 CP 3FH ;is it ASCIl ? = 63 decimal

6. Backspace vibrates most IBM Selectric printers quite severely. Try your printer without these lines. Use only if
necessary.

7. Change line 250 to read:
00250 CP 082H ;is it 130 decimal = end of line?
FINAL REQUEST: Please send ANY errors you find to:

RICHCRAFT ENGINEERING LTD
DRAWER 1065
CHAUTAUQUA, NY 14722

40

Level [l ROM Function Address Table

Function Token Address Function Token Address Function Token Address
ABS D9 0977 GosuB 91 1EB1 READ 8B 21EF
AND D2 25FD GOTO 8D 1EC2 REM 93 1FO7
ASC Fé 2A0F 1F 8F 2039 RESET 82 0138
ATN E4 15BD INKEY$ C9 019D RESTORE 90 1D91
AUTO B7 2008 INP DB 2AEF RESUME 9F 1FAF
CDBL F1 0ADB INPUT 89 219A RETURN 92 1EDE
CHR$ F7 2A1F INSTR Cc5 419D RIGHT$ F9 2A91
CINT EF 0A7F INT D8 0B37 RND DE 14C9
CLEAR B8 1E7A KILL AA 4191 RSET AC 419A
CLOAD* B9 2C1F LEFT$ F8 2A61 RUN 8E 1EA3
CLOSE A6 4185 LEN F3 2A03 SAVE AD 41A0
CLS 84 01C9 LET 8C 1F21 SET 83 0135
CMD 85 4173 LINE 9C 41A3 SGN 07 098A
CONT B3 1DE4 LIST B4 2B2E SIN E2 1547
coOSs E1 1541 LLIST B5 2B29 SQR CD 13E7
CSAVE BA 2BF5 LOAD A7 4188 STEP cC 2B01
CSNG FO 0AB1 LOC EA 4164 STOP 94 1DA9
CvD E8 415E LOF EB 4167 STR$ F4 2836
CVI E6 4152 LOG DF 0809 STRING$ C4 2A2F
CVSs E7 4158 LPRINT AF 2067 SYSTEM* AE 02B2
DATA 88 1F05 LSET AB 4197 TAB(BC 2137
DEF BD 415B MEM C8 27C9 TAN E3 15A8
DEFDBL 9B 1E09 MERGE A8 418B THEN CA -
DEFINT 99 1E03 MID$ FA 2A9A TIMES$ C7 4176
DEFSNG 9A 1E06 MKD$ EE 4170 TO BD ———-
DEFSTR 98 1E00 MKI$ EC 416A TROFF 97 1DF8
DELETE B6 2BC6 MKS$ ED 416D TRON 96 1DF8
DIM 8A 2608 NAME A9 418E USING BF 2CBD
EDIT 9D 2E60 NEW BB 1B49 USR C1 27FE
ELSE 95 1FO7 NEXT 87 22B6 VAL FF 2ACS5
END 80 1DAE NOT CB 25C4 VARPTR Cco 24EB
EOF E9 4161 ON Al 1F6C + CD 249F
ERL Cc2 24DD OPEN A2 4179 - CE 2532
ERR C3 24CF OR D3 25F7 * CF ——
ERROR 9E 1FF4 ouT AO 2AFB / DO ————
EXP EO 1439 PEEK E5 2CAA T D1
FIELD A3 417C POINT C6 0132 > D4 ————
FIX F2 0B26 POKE B1 2CB1 = D5 ———-
FN BE 4155 POS DC 27F5 < D6 -
FOR 81 1CA1 PRINT B2 206F & 26 4194
FRE DA 27D4 PUT A5 4182 ' 3A 93 FB ——
GET Ad 4174 RANDOM 86 01D3

This alphabetic list of functions will help you find ROM routines quickly. The hex addresses refer to memory and the
comments by memory address on the following pages.

NOTE: SUPERMAP is designed to be transferred to a disassembled listing of LEVEL |l BASIC. Three and five
digit numbers are decimals. All 4 digit numbers are hexadecimal.

42

43

SUPERMAP by Roger Fuller

0000 Power on routine Turn off clock Zero A Then jump

0008 RST 8H: (HL)-((SP)) SN ERROR if non zero

0010 RST 10H: Increment HL, pass through string ignore CR and spaces. Set C if next character numeric.
Reset C if not.

0013 Keyboard routine (see 002B)

0018 RST 18H: HL-DE Z set if equal. C set if DE>HL.

001B Display routine

0020 RST 20: If NTF=8 C is reset else C set. A=NTF-3 S and Z flags valid. Maintains BC, DE, HL.

0028 RST 28H BREAK vector

002B Scan keyboard return with char in A Uses AF, DE

0033 Display byte in A on screen

003B Printer driver entry
0049 Scan keys wait for key pressed Uses AF, DE

KEYBOARD LOOKUP TABLE

0050 (ENTER)
0051 (ENTER) SHIFT
0052 (CLEAR)

0053 (CLEAR) SHIFT
0054 (BREAK)

0055 (BREAK) SHIFT
0056 (UP ARROW)

0057 (UP ARROW) SHIFT
0058 (DOWN ARROW)

0059 (DOWN ARROW) SHIFT
005A (LEFT ARROW)

005B (LEFT ARROW) SHIFT
005C (RIGHT ARROW)
005D (RIGHT ARROW) SHIFT
005E (SPACE)

005F (SPACE) SHIFT

NOTE: SUPERMAP is designed to be transferred to a disassembled listing of LEVEL |l BASIC. Three and five
digit numbers are decimals.

*See table of tape formats at end of chapter.

0060

0066

0075
0osB
0091

009F
0oB2
00B5
ooBs
00BB
00BE
00CO
00C1
0oc2
00C4
00C7
0oCC
00CD
00CE
00CF
00DO0
00D1
00D2

00D6
00DA
O0ODF
00E1
00E2
00E3
00E4
00ES5

00E7
00E8
00EB
00EC
O00EF
00F2
00F5
00F6
00F9
00FC
O00FF
0102

0105
0111

012D

0132*
0135*
0138”

019D*

01C9”

01D3*

Delay loop BC is counter 14.65 microseconds each loop

NMI RESET

Non DOS initialization area move 18F7-191C to 4080-40A6

41E8 to input buffer address pointer (40A7)

Load dummy jump vectors in DOS commands jump addresses. Jump will be to L3 ERROR (012D) instead
of DOS. Used during Level |l interpretation of BASIC program. Command entry points.
Place return commands in DOS link area (these are used by Level Il machine routines)
'MEMORY SIZE' routine Clear screen

Point to 'MEMORY SIZE' message

Display it

Wait for user input

If (BREAK) ask again

Locate 1st char

Is it anything?

if so skip memory size routine

Test for end of actual memory. Used when (ENTER) is given to memory size question
HL=memory pointer

Get a byte in memory

Save it in B for later

Complement it

Put it back where you got it

See if memory was there to receive it

Put back original byte

Do until memory fails test

Convert input

SN ERROR if not numeric input

Load test byte

Save current memory byte

Put in test byte

Was memory there to receive it?

Restore memory

Go back to memory size routine if user was wishful thinking (NOTE: you end up with less memory
available even if you exceed actual size by 1)
Point to end of memory -1

Load minimum memory size

Check for under size

OM ERROR if under 17430 Then since BC=0000 return in error routine will result in a JP to 0000
Prepare to reduce memory by 050

Save end of memory

Reduce by 050 (CLEAR 050)

Save string space pointer

Revelation 21:5

Point to 'RADIO SHACK..." message

Display it

On to the farm

'MEMORY SIZE' message
'RADIO SHACK LEVEL Il BASIC' message

L3 ERROR entry point

POINT
SET
RESET

INKEY$

Clear screen Displays code for CLS

RANDOM Uses refresh register

44

45

01D9

01F8
01F9

0212

021E
0221

0234

0235

0241
0243
0248
024C
0251
0253

0264
0268
026A
0268
026E
026F
0270
0271
0273
0276
0277

027E
0284
0287
0289
028A
028D
028F
0291

0293
0296
0297
0298
0298
029D
029F
02A1
02A4

Make a cassette pulse

Turn cassette off
Bit 2 controls motor 1=on 0=off

Reset the tape input circuit
Out reg A to port FF

..

Read bit (1 or 0)

Wait for timing 'PIP’

Delay

Reset input circuit

Delay

Look for 'PIP’ if present then bit=1. If not then bit=0

..

Write a byte

8 bits to send

Save byte in A
Send timing PIP
Restore byte

Bit to carry

Save byte

Jump if bitisto be a 0
Send PIP for a bit=1
Next bit

Loop til done

..

Delay for a bit=0

Turn on cassette

Write leader and sync byte Ready 255 count
Byte to send is 00

Send byte

Loop til done

Sync byte

Send it, return when done

..

Turn on cassette

Find leader and sync byte
Zero A

Get a bit

Sync bit yet?

No loop til so

Get A *

Send left *

Send right *

02A9 Get 2 bytes from tape

02AC Save

02AF Turn off cassette

02B2* System RET if non DOS
02B5 Initialize stack in input buffer area
02B8 Return to beginning of line See SYSTEM and EDITOR/ASSEMBLER
02BA Get " prompt tape formats at end of chapter.

02BD Display it

02C0 Wait for input

02C3 Bail out if (BREAK)

02C6 Locate first character

02C7 SN ERROR if dry run (no input)
02CA Check for jump command (/)
02CC If jump

02CE Find leader

02D1 Read a byte

02D4 System header?

02D6 No? Loop back

02D8 File name block length (6)
02DA First character

02DB End of block?

02DC Yes? Blink *

02DE Read a byte

02E1 Correct character?

02E2 Point to next character

02E3 If not correct start over

02E5 Finish a 6 pack

02E7 'Twinkle Twinkle Little *'
02EA Read a byte

02ED Entry point header?

02EF If yes

02F1 Data header?

02F3 If not

02F5 Read byte

02F8 Save # data bytes

02F9 Get load address

02FC Low order byte of address to initialize check sum
02FD Save check sum

02FE Read a byte

0301 Putitin place

0302 Point to next place

0303 Retreive check sum

0304 Update it

0305 Loop til block read

0307 Read check sum

030A Check it

030B Loop back if okay

030D GetaC

030F Display it

0312 Loop back anyway

0314 Get 2 bytes and put in HL

031D Jump routine

0322 Check for an address, evaluate input
0329 Jumpto it

032A Output byte to tape, video, or printer (409C)= -1,0,1
032B Save byte

032C Return if non DOS

032F Get device type flag

0333 Restore byte

0335 Write to tape

0338 Write to printer

033A Write to video

0342 Update cursor position (0-3F limit)

0348 Check for double width. (403D)=8 for 32 character line. (403D)=0 for 64 character line.
0355 Reset if cursor position beyond end of line

0361 Keyboard input to buffer. Input routine for keyboard
0362 Reset last key storage

0365 Reset line cursor position

036C Load buffer pointer (normally 41E8)

036F Buffer length=240. Use insert to add more
0371 Return with full buffer

0375 C = input length

0376 BC = input length

0378 HL = end of input length pointer

0379 Terminate input with 00 flag

037B Return pointer to beginning of buffer

0380 Back up for RST 10

0381 If (BREAK)

0384 Called by DOS exit 41AF. Loop til key pressed

038B Return printer carriage to beginning of next line if required
038C Select video output

038F Get printer position

0382 Check for beginning of line

0393 If so return

0394 Get CR

0397 Send it

039C Output to line printer

03AD Get a 0 to reset print position
034A |If top of form

03A8 If line feed

03AA Get CR

03AD Send it

03B1 Get printer position

03BA Get character

03C2 Driver entry routine

03C9 Save return address

03CD Put character to display in C

03CE Get device type flag, (DE)=1,7,6 for keyboard, video, line printer
03CF B=1 keyboard B=2 video or printer

03D1 Non DOS put0in A

03DC Jump to appropriate driver routine

03E3 Keyboard driver HL=keyboard buffer pointer
03E6 BC=Row address pointer

03ES D=Row counter (0 to 6)

03EC SaveinE

03EB Get row byte at (BC)

03ED Keep America beautiful

03F0 Go if key pressed

03F2 Bump row counter

03F3 Bump keyboard buffer pointer

03F4 Point to next row

03F6 Go next row til all but (SHIFT) tested
03F9 Return if no key pressed (A=0)

02FA Save row byte

03FB Get row count

03FF Put row count *8 in D

0400 Ready teting mask Bit position = Column #
0402 Load mask

0403 Test for key

0404 Jump if found

0406 Bump column # for test

0407 Move test bit to next column

0409 Do again

..

0405 Get shift bit

040E Save inB

040F Load row bit * 8+column #

0410 Add 064 to it (this adjusts for ASCII letters)
0412 Test for non letter code

0414 Go if non letter (last 3 rows)

0416 Send shift bit to carry

0418 Skip lower case adjustment if no shift
041A Convert to lower case

041C Save in D

041D Get row 6 bits

0420 Test for down arrow

0422 Go if not down arrow

0424 Retrieve character

0425 Adjust

0429 Test for last row

042B Jump if last row

042D Readjust to rows 4,5 A=row * 8 + column # + 016
042F Check for=or) or?

0431 Jump if not

0433 Adjust ASCII

0435 Get shift bit

0437 Jump if not shift

0439 Adjust ASCII

043B Jump

043D A=(row * 8 + column # - 048) * 2
043E Get shift bit

0440 Jump if not

0442 A=column # ™2 + 1

0443 Point to code table

0446 Displacement

0449 Compute position in table
044A Get ASCII code

044B Save character

044C Load delay count

044F Delay

0452 Retreive character

0453 Check for (BREAK)

0455 Leave with character
0457 Return

0458 Video driver
045B Screen cursor position in HL
045E Jump if just entered from 3DC

..

0467 Get character

046A If control character

046F If graphic or space compression
0473 If not a letter

0479 If upper case

047B Change to upper case

04A1 Cursor to beginning of line

..

04A6 Check for space compression code
04A8 If graphic

04AA Remove bias

04AF Get space

04B1 Send it

04B4 Loop til decompressed

..

04B8 Turn on cursor

04BD Turn off cursor

04C0 Home cursor

04C3 Change to 64 character mode

..

49

04CE
04D2

04DA

04EC

04F6
04FB
04FE

0506
050C
050E
0513
051D
0521
0523
0529
052D
0531
05635
053A
053C

0554
0557
0558
055E
0562

058D
0591
0595
0599
059F
05A2
05A5
05A6
05A9
05AD
05B0
05B2

05B4
05B5
05B8
05BB
05BE
05C0
05CA
05C7
05C8
05CC

05D1

05D9
05DF
05ED
060C

Backspace and erase
Check for 64 character

..

Go double width
Set mode flag
Go double

..

Save return address

If backspace

If no function 2,3,4,5,6,7,9
If turn on cursor

If double width

If shift back arrow

If right arrow

If down arrow

If up arrow

If home cursor

If beginning of line

If erase to end of line
If erase to end of frame

Scroll display Point to top of display
Point to row 2

15 rows to move

Hup one two Hup one two
Blank out row 16

Printer driver routine

Top of form wanted?

Top of form wanted?

Top of form

Get lines per page (4028)
Subtract current line position (4029)
Place # remaining lines in B
Printer ready?

Wait til so

Send a LF

Til job is done

Zero count

..

Send character out
Printer ready?
Wait til so

Send character
CR?

If not

Bump line counter
Page?

If not

Zero line counter

..

Printer hand shake. Ready if A=(0011XXXX). Bit 7=0 (not busy).
Bit 6=0 (Paper OK). Bit 5=1 (Device selected).
Bit 4=1 (No Fault). Bits 3,2,1,0 not teted.

Input routine HL points to input area
C=buffer bytes remaining (240 at start)
Return with key pressed in A

Put character in buffer

0613 Print it

0619 If clear screen hit, clear buffer. (This is why clearing screen with keyboard erases typed but unentered
code)

0630 Backup cursor

0641 Double width

0674 Initialization Move 06D2-0707 to 4000-4035
0683 Do above 128 times (beat a dead horse)
0689 Zero 4036 to 405D

068B Test for BREAK

0690 If not BREAK

0693 Load new stack

0696 Get disc status

069C If non DOS

06A1 Select drive

06A4 Point to controller
06AA Restore

06AF Twiddle thumbs
06B2 Test for READY
06B7 Zero sector register
06BD Read

06C9 Go DOS loader

06CC Entered on NMI RESET (see 0066)

06D2- RST jump addresses, I/0O device control block
0707

070B Floating point addition ARITH=(HL) + ARITH

0710 Floating point subtraction ARITH=(HL)-ARITH
0713 Floating point subtraction ARITH=BCDE-ARITH
0716 Floating point addition ARITH=BCDE+ARITH
07B2 OV ERROR entry point

0809 LOG ARITH=LOG(ARITH) NOTE: See 411D to 4124 for ARITH

0847 Floating point multiplication ARITH=BCDE*ARITH
08A2 Floating point division : ARITH=BCDE/ARITH

0955 Check ARITH for Zero

0977 ABS: ARITH=ABS(ARITH). Integer or single in and out.

NTF required and maintained.
0982 ARITH=-ARITH: Single only. Maintains BC, DE

..

098A* SGN accept floating point or integer. Output integer in ARITH

..

0994 Check sign of ARITH, FLOAT or INTEGER. Requires NTF. A=00 if ARITH=0. A=01 if ARITH
greater than 0. A=FF if ARITH less than 0. S and Z flags also valid

..

09A4 Load single ARITH to stack. To retrieve POP BC, POP DE. A,BC,HL unaltered.
09B1 Load single: ARITH=(HL)(HL+1)(HL+2)(HL+3)
09B4 Load single: ARITH=BCDE. HL unaltered

51

09BF
09C2
09CB
09CE

09D2
09D3
09D6
08D7
0SF4
09FC

0AOC

0A39

0A4F
0A78

O0A7F*
0A83
0A84
0A87

0A9A
0ASD

0AB1*

0ACC
0ACF

0ADB*

0AF4

O0AF6

0B26*

0B37*
0B38
0B39
0B3B

0C70
0C77

O0DA1
0DES
0E65

0E6C

0E7B
0E80
OE84
OE89

Load single: BCDE=ARITH.

Load single: BCDE=(HL)(HL+1)(HL+2)(HL+3)
Move from (ARITH) to (HL) 4 bytes

Move from (DE) to (HL) 4 bytes

Move from (HL) to (DE) NTF bytes
Move from (DE) to (HL) NTF bytes
Move from (DE) to (HL) A bytes
Move from (DE) to (HL) B bytes

ARITH=ARITHX + NTF
ARITHX=ARITH + NTF

..............

Single compare: ARITH-BCDE

..

Double compare: ARITH-ARITHEX
Double compare: ARITHEX-ARITH

NOTE: See 4127 to 412E for ARITHEX

CINT

Already integer

TM ERROR if string

If double convert to single

Return to BASIC with output of user routine in HL.
Flag it integer

INTEGER ARITH to SINGLE ARITH conversion
INTEGER HL to SINGLE ARITH conversion

CDBL: ARITH(DOUBLE)=ARITH(INTEGER OR SINGLE). Requires NTF

TEST NTF=3 (STRING). If string return else error.
BC,DE,HL unaltered.

TM ERROR entry point

FIX: If floating point truncate to integer and return floating POINT. If integer return.

INT

If integer

If double

TM ERROR if string

DBL precision subtraction: ARITH=ARITH-ARITHEX
DBL precision addition: ARITH=ARITH+ARITHEX

DBL precision multiplication: ARITH=ARITH*ARITHEX
DBL precision division: ARITH=ARITH/ARITHEX

Load double precision ASCIl constant to ARITH. Point HL to input string delimited by 0 or

comma. After load HL points to delimiter

Load ASCII constant to ARITH. Return the least necessary number type (see Level Il manual for

rules) Point HL to input string delimited by 0 or comma
If -

If +

If numeric

If.

OESE
0E92
0E97
0E9C

0F40

OFAB

OFAF

OFBD

13E7"
1439*

14C9*

1541
1547~
15A8”

15BD*

1608

1650
1821

1822

191D
1930
1955
197A

199A
199D
19A0
19A2
19E6
19ES
19EF
19EF
19F0
19F2
19F5
19F6
19F7
19FA
19FB
19FE
1A06
1A0D
1A0E
1A14
1A17
1A19
1A1C
1A1F
1A22

If E
If %
If #
If!

Multiply HL by ten

Output "IN message

Output A line #

ARITH and NTF to ASCII conversion HL points to string

SQR
EXP

RND

..

TABLE OF ENTRY POINTS FOR LEVEL Il BASIC COMMANDS

RESERVED WORD LIST FOR LEVEL Il COMMANDS
End of table marker

See chart at beginning of Chapter

Table of jump addresses for entry points of BASIC instructions.

'"ERROR’, 'IN’, 'READY’, 'BREAK’ strings for BASIC messages
If (409A)=2 SN ERROR output GOTO edit mode

1Q testing service

OM ERROR entry point

Divide by zero ERROR entry point

NF ERROR entry point

RW ERROR entry point

Error output routine. Error code in E
Return to beginning of line. Zero A
Point HL to bottom of error message table
Non DOS return

Zero D

Get A 'Y

Display it

Add error code displacement to pointer
Get error message

Display 1st charcter

Numeric check

Display 2nd character

Point to '"ERROR’

Display it

If DE=(40EA)

Then power up RESET

Display 'IN’ line #

Load A TAB(1)

Return to BASIC command mode ('"READY' routine) Print A
Return if non DOS

Turn off cassette

Return to beginning of line or CR. Zero A

52

1A25 Point to 'READY’' message

1A28 Output it

1A2B Get error code

1A2E Test for SN ERROR

1A30 Call if SN ERROR

1A33 Return address

1A39 Get AUTO flag (AUTO=non zero)
1A3D Jump for non AUTO

1A3F Get current line #

1A43 Output line #

1A48 See if line # occupied (Carry set) Read to display if match
1A4B Get an asterisk

1A4D Print a space or an asterisk

1A4F Get a space otherwise

1A51 Display correct character

1A54 Input into buffer

1A58 (BREAK) sets carry

1A5A Turn off AUTO and jump back

1A60 Get line increment

1A63 Add to current line #

1A69 (BREAK) if oversize line # results
1A6C (BREAK) if line # > 65529X

1A76 Get prompt

1A78 Display it

1A7B Input into buffer

1A7E Jump back if BREAK

1A81 Find first character

1A84 Jump back if null

1A88 Check for numeric then scan past line # (line # is in DE)
1A8B Scan

1A99 Encode input into Level Il tokens
1A9D Flags decide if command mode
1A9E Encoded statement pointer

1AA1 Non DOS return

1AA4 If command mode?

1AA7 Save line #

1AA8 Save line length

1AA8 Zero

1AAA Reset resume + return flag

1AAD Scan 1st token

1AB1 Save line #

1ABF Save the line #

1AB5 Search for a matching line # C=none Z=found
1AB9 If none make room

1ABF Jump for match

1AC6 Line length

1AC7 HL=new end of BASIC program
1AC9 Make sure brain won't overflow
1ACD Store end of BASIC program pointer
1ADO HL=line to be moved

1AD3 HL=line # pointer

1AD6 DE=line #

1AD9 HL=line pointer (text)

1AE1 Move new line into place

1AE6 Loop til line is moved

1AE9 Fix line pointers

1AEC Non DOS return

1AEF Here's why editing a program destroys variables, etc.
1AF2 Non DOS return

1AF5 Back to the farm

1AFC Fix the line pointers routine
1B01 Return if end of BASIC
1B02 Move

1B03
1B04
1B06
1B08
1BOA
1BOE

1B2C
1B2F
1B31
1B35
1B36
1B3B
1B3C
1B3D
1B44
1B46
1B47

1B49~
1B4A
184D
1B50
1B53
1B56
1B5A
1B64
1B6C
1B6F
1B74
1B77
1B7A

1888
1B83
1B86
1889
1B90
1895
1B9A
1BA1
1BA4

1BB3

1BCO
1BCH
1BC6
1BCC
1BCD
1BD3
1BD9
1BEO
1BE4
1BE6
1BE8
1BEB
1BEE
1BF2
1BF5
1BF6
1BF9
1BFD
1BFE
1C00

Past

The next line pointer and line #
Check for end of line

Don't quit til you succeed

Get the job done

Rerun Roadrunner cartoon

Search for matching line # in BASIC. DE=desired line #. Get first line from (40A4)
Save pointer in BC

Check for end of BASIC program (stay out of junkyards)
Return if end

Point to current line #

HL=current line #

Match? Z=yes C=HL=<DE

Next line pointer to HL

Return if match found (carry set)

Return (no such line)

Try next line #

NEW

Clear screen

Start of BASIC program
TROFF

Turn off AUTO

Erase program by making its leaders zilch
Reset end of program pointer
26 variables

Set to single precision here
Reset resume flag

Reset on error storage

Reset CONT location

Get End of Memory

Restore DATA pointer

Get end of BASIC location

Reset variables pointer

Reset arrays pointer

Get start of string space pointer

Set stack pointer to start of string space - 2
SP=string space pointer

Select video Finish printing

Turn off cassette

Print '?" and input from keyboard Go on CR

Encode buffer into tokens

Reset flag

HL=input buffer pointer

Get 1st character from buffer

If space

If string

If end of line

Get buffer character

Check for print abbreviation

Get print token

Substitute

Get character

If non alpha numeric

If numeric

Save input pointer-2

Load reserved word list pointer-1
Save line length

Save continuation address

End of reserved word list test mask
Get character

The LEVEL Il ROM does not use the alternate registers.

54

1C03 If not lowercase

1C07 If not uppercase

1C09 Convert to uppercase

1CO0C Save character

1COE Point to reserved word list
1COF Check for beginning of word (CHAR+80)
1C10 Try again if not

1C13 Bump count

1C14 Get reserved word character
1C15 Check for end of list

1C17 Continuation if word not found
1C18 s it same as buffer character?
1C19 Next reserved word if not
1C27 |If not GOTO

1C31 Make upper case if needed
1C37 Next character

..

1C46 If not ELSE

1C4C If not’

1C4E Load colon

1C50 Next

1C53 Load REM (1 for the price of 3)

1C90 RST 18H code

1C96 RST 08H code

1CA1* FOR

1CFB Check for 'STEP' token

1CFD Default value of 1

1CFF If not 'STEP’

1D4A '(LINE NUMBER)' TRON usage

..

1D5A BASIC interpreter

1D60 Remove bias

1D62 Check for a token

1D62 Jump if not

1D6A Double remainder (Required for 2 byte addresses)
1D6B Save offset

iD6C INB

1D6F Point to vectors

1D72 Locate desired routine address
1D73 Low byteto C

1D75 High byte to B

1D76 Save on stack

..

1D78 RST 16

1D91* RESTORE
1D92 Get beginning of program
1D96 Restore DATA pointer

1D9B Display line number

1DA0 Check for pause

1DA2 Wait for keystroke to resume
1DA5 Save it

1DA8 01=BREAK

1DAg* STOP

1DD4 Select video

1DD7 Return to beginning of line

1DAE* END

1DE4*
1DEB

1DF7*
1DF8*

1E00”
1E03*
1E06™
1E09*
1E0B
1EQOE
1E11
1E12
1E13
1E15
1E16
1E17
1E18
1E1A
1E1D
1E20
1E21
1E23
1E24
1E25
1E26
1E27
1E28
1E29
1E2A
1E2D
1E2F
1E30
1E31
1E32
1E33
1E35
1E36
1E37
1E39
1E3A
1E3B

1E3D

1E4F
1E50
1E53
1E57
1E5A
1E5B
1E5E
1ESF
1E60
1E61
1E62
1E65
1E66
1E69
1E6B
1E6C
1E6GD
1E6E
1E6F
1E70
1E72
1E73
1E75

CONT
Output CN ERROR if (40F7)=0

TRON AF=TRON
TROFF

DEFSTR

DEFINT

DEFSNG

DEFDBL

Check for syntax (Letter needed in DEF---)
Get address of SN ERROR

Save on stack for possible use

SN ERROR if no letter

Convert ASCH letter to displacement into table of 26 letters
Save displacement in C

Save displacement in B

Get next character

Is it —

If not don't use a range

Check for letter

SN ERROR if not

Get displacement

Putin B

Get to next character

Load ending point

Subtract beginning point

SN ERROR if variables reversed
Bump count (in case variables same)
Save next character pointer and clear SN ERROR vector
Load start of variable definition area
Zero B

Determine ending point

Set variable type flag

Bump table pointer

Reduce count

Loop til count zero

Return next character pointer

Get next character

Is it a comma?

If not

Get next variable

DEF--- again

..

Check for letter in (HL). Set C if not else reset

Get character

Is it a period?

Get period address

Jump if period

For RST 10

Initialize DE DE-=line # on exit
Locate 1st character and numeric check
Return if non numeric

Save location

Save ASCII numeric digit
Oversize limit (65520)
Pre-flight

SN ERROR if DE > 1998
HL=DE

HL=(HL + DE)

HL=(HL + DE) + (HL + DE)
HL=(HL + DE + HL + DE) + DE
HL=(HL+DE+HL+DE+DE) + (HL+DE+HL+DE+DE)=4"HL + 6*DE=010"DE
Retrieve ASCII numeric digit
Convert ASCIl code to #

Save #in E

Zero D so DE=#

Add # to subtotal (HL)

56

57

1E76
1E77

1E7A*
1E7D
1E84
1E8D
1E9C

1EA3”
1EB1*

1EC2*
1ED9

1EDE*
1EEC
1F05*
1FO7*

1F21*

1F6C”

1F70*
1F80
1F89
1F8E
1F91
1F92

1FAF*
1FB3
1FB4

1FF4*
2003

2008~
200B
2019
2022
2025
2028
202B
202E
2036

2039*
2044
2060

2067"
207B
207F
2082
2083
2089

206F*
2076*
2093*

20A5

DE=010"DE + #
Restore pointer

CLEAR

Compute the amount as an integer
END OF MEM pointer

OM ERROR if HL= DE

Load string pointer

RUN
GOSsuUB

GOTO Evaluate line #
UL ERROR entry point

RETURN

RG ERROR entry point
DATA

REM

ELSE

LET

ON

ON ERROR

If UL ERROR

Get error flag

Get error code

Load into E for error routine
Jump

RESUME Point to error flag
Check it
RW ERROR if zero

ERROR
UE ERROR entry point

AUTO

Save default value of 10
Save line # increment

If SN ERROR

Check for zero increment
FC ERROR if Z

Save increment

Set AUTO flag

Back to the farm

IF
IF THEN
IF NOT ELSE

LPRINT Select line printer for output
If expression isn't integer

Point to display

Compute location

Save it

Update cursor

..

PRINT

PRINT @ Evaluate expression
PRINT # Write leader and sync byte
If PRINT USING

20AA If PRINT TAB (

20B0 If comma

20B5 If semicolon

20BE If string

20FE Used to return to beginning of line and zero A
2137* TAB (

2169 Output device T,V,P,-1,0,1

216D Turn off cassette if needed
2171 Select video

..

2178 'REDO’' message string

219A* INPUT

219D REDO

21A9* INPUT #
21AD 250 bytes limit
21AF POINT

21B2 Read a byte
21B5 Into the buffer
21B7 CR yet?

21BB Loop back
21BE End of file marker
21C0 Turn off tape

..

21EF* READ

227C 'EXTRA IGNORED' string

22B6* NEXT

2337 Evaluate expression Putin ARITH : PointHL to address of 1st character Terminate with 00 or,or)
or:

..

2490 Integer divide. Output in single precision

249F* +

24A2 MO ERROR ifZ
24A5 |IF numeric
24A8 Check for letter
24AB IF letter

24B0 IF +

24B4 IF .

24B9 IF -

24BE IF QUOTE
24C3 |IF NOT

24C8 IF &

..

24CD IF NOT ERR
24CF* ERR

..

24DB IF NOT ERL
24DD* ERL

..

24E9 IF NOT VARPTR
24EB* VARPTR

..

2501 IF USR
2506 IF INSTR
250B IF MEM

2510 IF TIME$
2515 IF POINT
251A IF INKEY$
251F IF STRINGS
2524 IF FN

2532* -

2540 ASClI variableto ARITH : Putvariablein ARITH and set NTF. Point HL to 1stcharacter Returnswith

HL pointing to next character after variable.

25D9 RST 20H

P2) o A ©] o P

25FD* AND

2608 DIM

260D Locate or create if not found variables: Point HL to 1stcharacter of variable. Returns with DE pointing
to variable’s address and HL pointing to the next character after variable.

2612 Check for letter

2615 SN ERROR if C

261B If numeric

2620 If not a letter

2624 If numeric

2626 Check for letter

2629 If numeric

262E Set return address to 2652 before going
2633 1If % (INTEGER D=2)
2637 1f $ (STRING D=3)
263B If | (SINGLE D=4)
2640 If # (DOUBLE D=8)
273D BS ERROR entry point

27C9* MEM
27CB Zero NTF
27CE Call FRE routine

27D4* FRE Get free space pointer
27DD If not a string

27E5 Get start of string space
27E9 Get end of string space
27F1 HL=END - START

27F5* POS Get cursor position
27FB Return via USR reentry HL is position

27FE* USR

2801 Next character

2806 Set reentry point

280A Get NTF

2810 Call AF string

2815 (408E) contains entry point to USR routine

...

2831 1D ERROR entry point

2836* STR$

2866 QUOTE

2891 NTF = string

28A1 ST ERROR entry point

28A7 Output a message; Point HL to starting address of string;
selected by (409C). Updates line cursor position

Mark end with a 00 or 22 Output device

2A03* LEN

2A0F* ASC

2A1F* CHR$

2A2F* STRING$

2A61* LEFT$

2A91* RIGHTS

2A9A* MID$

2AC5" VAL

2AEF* INP Get port addresses
2AF2 Load it

2AF5 Input from correct port
2AF8 Return via USR code

2AFB* OUT Get byte
2AFE Output it

2B01* Step

2B02 Compute value of expression
2B06 Convert it to integer

2B0B MSB to A

2B0C Check for overflow

2BOE Get port #

2B11 Set port # for input
2B14 Set port # for output
2B17 Syntax check

2B1C Compute value

2B1F Convert to integer
2B22 FC ERROR if overflow

2B29* LLIST (same as LIST only output device is line printer)
2B2E* LIST

2B2F Get first line pointer

2B32 Save it

2B38 BC=Next line pointer

2B40 Check for end of BASIC program

2B41 Back to the farm when the chores are done
2B44 DOS link

2B5E Output a line #

2B61 Get a space

2B64 Output it

2B67 Call Mr. Spock for his opinion of this message
2B6A Get buffer pointer

2B6D Spock's interpretation

2B70 CR+LF if needed

2B73 Next line

..

2B75 Get character

2B76 End of text

2B77 If so

2B78 Output character to correct device
2B7B Next character

2B7C Loop til done

60

..

2B7E Convert line to human readable form
2B7F Buffer pointer to HL
2B85 Line limit

..

2B8C Get first character

2B8D Is it end of text marker?

2B8E Point to the next character
2B8F Save in (BC)

2B90 If end of text

2B91 If not a token

2B96 If not REM

2BA5 Remove bias on token

2BA8 Load token's word position in BASIC reserved word list
2BAS Get pointer to reserved word table
2BAC Get a byte

2BAD Check for beginning of a word
2BAE Point to next character

2BAF Loop til correct word found
2BB2 Drop count

2BB3 Loop back if not correct word
2BB5 Convert to upper case

2BB7 Put character in buffer

2BB8 Bump pointer

2BB9 Drop limit

2BBA Jump if end of line

2BBD Get next character of word
2BBE Point to next character

2BBF Check for end of word

2BCO0 Loop back if not end of word
2BC3 Restore buffer pointer

2BC4 Next word

2BC6* DELETE

2BF5* CSAVE Write leader and sync byte
2BF8 Evaluate character following CSAVE
2BFF D3=Header for BASIC tape

2C04 Write once

2C04 Write twice

2C07 Send file name to tape

2C0B Start of program

2COF End of program

2C12 Get a byte

2C13 Point to next

2C14 Send byte

2C17 Done?

3C18 Loop til done

2C1A Off cassette

2C1F* CLOAD
2C40 TROFF + NEW

2C47 3 count for header ife fhlBéAésl:Sp:Zi?e format at end
2C49 Get a byte)
2C4C D3?

2C4E If not reset count and try again
2C50 Loop til header found

2C52 Get file name (1 byte)

2C57 If only CLOAD

2C59 s tape file name correct?
2C5A Go bad if not

2C5C Beginning of BASIC ID HL
2C5F Load count for 3 zeros which determine end of BASIC tape

2C61 Read a byte

2C64 Save it for later

2C65 Same as original?

2C66 Same location?

2C67 NZ means bad

2C69 Put byte into memory note: Validity is checked before placement

2C6A Check for OM ERROR

2C6D Retrieve byte

2C6E Check for a zero

2C6F Point to next memory location

2C70 |f not a zero (end of line) Resets zero count
2C72 Twinkle Twinkle (end of line)

2C75 Loop til end of program (3 zeros)
2C77 Update end of program pointer
2C74 Point to 'READY' message

2C7D Display it

2C80 Turn off cassette

2C83 Beginning of BASIC to HL

2C86 Save it

2C87 Return to farm after fixing addresses

2C8A Point to 'BAD’ message

2C93 Give the news

2C90 Back to the farm

2C93 Display file letter

2C96 3 count for end of program test
2C98 Read byte

2C9B Zero?

2C9C If not reset count try again
2C9E Loop til 3 zeros

2CA0 Search for next program

2CA3 Try next program

2CAA* PEEK Evaluate expression as integer
2CAD Get byte

2CAE Return via USR code

2CA5 'BAD' message string

2CB1* POKE Compute address
2CB4 Save it

2CB5 Check syntax

2CB6 Next

2CB7 Compute value of operand
2CBA Retrieve address

2CBB POKE it in

2CBD* USING

..

2E49 Print a plus if D non zero

2E60* EDIT Getline

2E64 DE=line #

2E66 Put line # in storage

2EBA Search for matching line #
2E6D UL ERROR if not found (NC)
2E70 Address of line to HL
2E72 Point to line #

2E74 Putline #in BC

2E78 Save line # on stack

2E79 Convert line to ASCII
2E7E Output line #

2E81 Output blank

2E86 Point to buffer

2E89 Send cursor

2E8E Save buffer pointer

2E91 C=length of line

2E95 Search for end of line
2E98 Zero A

2E99 Zero D

2E9B Get a key

2EBB (BACK SPACE)
2EC0 (ENTER)?

2EC7 (SPACE)?

2EC9 Upper case?

2ECB Change to lowercase
2ECF Q uit?

2ED4 L ist line?

2ED9 S earch?

2EDD | nsert?

2EE2 D elete?

2EE7 C hange?

2EEC E nd?

2EF1 X tra?

2EF6 K ill?

2EFA H ack?

2EFF A gain?

2F01 Not valid character if NZ get another
2F07 Start over

..

2FOA Space routine

2F16 KILL routine
2F1C Search routine
2F1D Get the character

2F40 Output area pointed by HL

2F4A DELETE routine
2F4D Print 'V
2F5F Print 'l

2F65 Change routine
2F68 Get character
2F6C Print it

2F71 Reduce count
2F72 Loop til done

...

2F75 HACK routine
2F78 XTRA routine
2F7D Insert routine
2F84 Back space
2F88 CR?

2F8D Escape?

2FEQ Leave edit mode after displaying line

2FF6 Quit routine

3000- Reserved there is nothing here no memory at all

37DE DOS communication status address
37DF DOS communication data address
37E0 Interrupt latch address

37E1 Disk drive select latch address ~
37E2 Cassette drive latch address

37E8 Line printer port address

37EC Floppy disk controller address -

KEYBOARD MEMORY

coL#= 0 1 2 3 4 5 6 7

3801 ROW 0 @ A B C D E F G

3802 ROW 1 H | J K L M N o

3804 ROW?2 P Q R S T U \'% W
3808 ROWS3 X Y 4

3810 ROW 4 ! " # $ % & ‘

1 2 3 4 5 6 7

3820 ROWS5 () . + = = ?

8 9 ; , - /

3840 ROW6 ENT CLS BRK T | & 3 sPcC
3880 ROW 7 SHIFT
Video memory

RST 8

RST 10
RST 24
RST 32

"RST 40

RST 48

RST 56

KEYBOARD CONTROL BLOCK

Device type

Driver address (intercept here for debounce)
0

0

0

K

"

--------- VIDEO CONTROL BLOCK

Device type

Driver address

Cursor position in memory (2 bytes)
Cursor character

IDI

IOI

--------- LPRINTER CONTROL BLOCK

Device type
Driver address
lines per page kept here

. X - P

Current line # printer is on ; 1/»/»,/,,»
TR

9 ' ((f/,"

P S

IRI //

Print size flag 0=64 characters 8=32 characters Also used in tape output to prevent resetting size
during an OUT 255

Not used in Level Il non DOS (good place for debounce routine)

......... TIME$ STORAGE AREA

4046
4080-
408D
408E
4090 -

25 MS ticks

Seconds

Minutes

Hours

Year

Day

Month

Calculate remainder in floating point division

Entry pointer to USR routines
Random number generator secondary seed

64

4093 INP routine

4094 Port #

4096 OUT routine

4097 Port #

4099 INKEY$ storage (and SHIFT @ Pause release key)
409A Error code storage for RESUME use

409B Printer line width counter (for pretty printing!)
409C Device type flag -1=TAPE 0=VIDEO 1=LPRINTER
409D Print # use

40A0 Start of string space pointer

40A2 Current line being processed

40A4 Start of BASIC program pointer

40A6 Line cursor position used for tab

40A7 Input buffer pointer

40AA LSB of seed for RND

40AB LSB of seed for RND Also used in RANDOM
40AC MSB of seed for RND

40AE Flag byte for DIM statement

40AF NTF (number type flag) 2=INTEGER 3=STRING 4=SINGLE 8=DOUBLE
40B0 Compressor flag for 1BCO

40B1 Top of BASIC memory pointer

40B3 String work area pointer

40B5 String work area

40D3 String length

40D4 Start address of string/next string address

40D6 Memory size

40D8 Comma control matrix for PRINT USING

40DC DIM use

40DE PRINT USING

40DF Entry point storage for SYSTEM tapes

40E1 AUTO flag 0O=not AUTO Else AUTO

40E2 Auto increment

40E4 Auto line number

40E6 Encoded statement pointer

40E8 Stack pointer pointer

40EA Line number of error in RESUME

40EC Line number for edit and list when you use period instead of number
40EE Used during RESUME

40F5 Last line # executed

40F7 Used to CONT

40F9 Simple variables pointer

40FB Arrays pointer

40FD Free space

40FF Data pointer

--------- VARIABLE TYPE DECLARATION TABLE

4101- 2=INTEGER 4=SINGLE 8=DOUBLE 3=STRING

411B TRON FLAG O0=TROFF

NOTES ON THE EDITOR ASSEMBLER

4113 Top of memory pointer

4115 Start of buffer pointer

41C3 Start of symbol table pointer

4301 Keyboard driver entry address pointer
4309 Video driver address pointer

4311 Lprinter driver address pointer

45AA Lprinter driver (patch your printer here)
4905 Command table (have a feast)

4925 B command (go someplace new)

ARITH
INTEGER SINGLE DOUBLE

411D LSB
411E LSB
411F LSB
4120 LSB
4121 LSB LSB LSB
4122 MSB LsSB LSB
4123 MSB MSB
4124 EXP EXP
ARITHEX
4127 LSB LSB LSB
4128 MSB LSB LSB
4129 L.SB LSB LSB
412A EXP LSB
412B LSB
412C LSB
412D MSB
412E EXP

4125 Sign Byte
412F Sign Byte
4130 Line # work area pointer

--------- DOS ENTRY POINTS
414A- Additional section of RAM like ARITH and ARITHEX for division and trig functions. Does not have a sign
4151 byte

..

4152 CVI
4155 FN
4158 CVS
415B DEF
4158 CVD
4161 EOF
4164 LOC
4167 LOF
416A MKI$
416D MKS$
4170 MKD$
4173 CMD
4176 TIMES$
4179 OPEN
417C FIELD
417F GET
4182 PUT
4185 CLOSE
4188 LOAD
418B MERGE
418E NAME

66

67

4191 KILL

4194
4197
419A
419D

&
LSET
RSET
INSTR

41A0 SAVE
41A3 LINE

41A6
41A9
41AC
41AF
41B2
41B5
41B8
41BB
418E
41C1H
41C4
41C7
41CA
41CD
41D0

Level Il and Disk BASIC relays from ROM routines (this is the area to modify to intercept BASIC routines)
Error code index relay

USR relay

Command mode at initialization

Fill BASIC keyboard buffer relay

Command mode relay at EDIT/DIRECT switch

Command mode relay at termination before initialize

Command mode relay before restart

NEW and END relay

Relay to change default in routine to transfer control from OUTPUT (032A) back to device held at 409C
OUTPUT relay device transfer

Keyboard routine relay

RUN relay

PRINT relay

secondary PRINT relay

Relay for carriage return output (add your linefeed this way!)

41D3 PRINT TAB (relay)

41D6
41D9
41DC
41DF
41E2

41E5

41E8-

42E7
42E8

42E9

INPUT relay

MID$ relay

Secondary READ relay

LIST relay (disable LIST here!)

SYSTEM relay (put E9Q here and get AUTO start!)

INPUT BUFFER AREA
1/0 Buffer

Buffer control bytes
Keyboard Buffer (Level Il only)

Separator byte for Level Il

BASICally only the beginning!

LEADER

D3 D3 D3
XX

LSB
MSB
LSB
MSB

XX ..

00

00 00

LEADER
55

XX XX XX XX XX XX

3C

XX

LSB
MSB

XX ... XX
XX

78
LSB
MSB

LEADER
D3

XX XX XX XX XX XX
#1 #2 #3 #4 #5

20
XX ... XX
oD
1A
LSB
MSB
LSB
MSB
XX ... XX
00
00 00

TAPE FORMATS

BASIC TAPE FORMAT
256 zeros followed by an A5 sync byte

BASIC header
File name

Next line's address
Pointer
Line number

Line contents
End of line marker

End of file markers

SYSTEM TAPE FORMAT
256 zeros followed by a A5 sync byte

System format header byte
6 character file name

Data header
Data length 00=256 bytes
Loading
Address
Line itself
Checksum of line bytes and load address

End of file marker
Entry
Address

EDITOR ASSEMBLER SOURCE TAPE FORMAT

256 zeros followed by an A5 sync byte

Source header
File name

Line # in ASCII (bit 7 is set)
Data header

Line (128 bytes maximum)
End of line marker

End of file marker

BASIC RAM STORAGE FORMAT

Address of

next line
Line # in

binary form

Line contents
End of line marker

End of file marker

HEX MEM by John T. Phillipp, M.D.

If you are seriously investigating Level Il ROM routines,
you will need a way to examine memory. This particular
monitor is quite limited, as it will not save a machine
language program, set breakpoints, execute, or display
and access the Z-80 registers. If you are using a disk
system, you will find DEBUG more useful. In a tape
system, we recommend STAD from The Software
Exchange. However, this monitor will provide several
memory examination capabilities in the absence of a
more sophisticated monitor.

HEXMEM is a BASIC program which duplicates some
of the functions of machine language monitors like TRS-
DOS DEBUG and the RSM-2 monitor by Small Systems
Software. Although it doesn’t support all of the functions
of these sophisticated monitors (it does not access the Z-
80 registers, for example), it does enable the user to
convert hexadecimal numbers, display memory in hex or
ASCIl in a format similar to the machine language
monitors, modify memory, enter machine language
programs directly, load other BASIC programs into
memory with HEXMEM and save HEXMEM and other
BASIC programs on tape.

The code for HEXMEM takes 2,399 bytes, leaving 13,173
bytes for the other programs inaLevel Il, 16K TRS-80. Itis
densely packed into line numbers 1-28 without REM
statements. This makes the program logic hard to follow,
but was necessary since any program loaded into
memory with HEXMEM must have line numbers greater
than HEXMEM itself. HEXMEM can reside in memory with
any BASIC program whose line numbers begin with line
30 or higher.

Commands — all commands are single letters. When
HEXMEM asks COMMAND? type the command letter
(ENTER). HEXMEM will return to COMMAND? after the
command has been executed.

SUMMARY OF COMMANDS

H— Hexadecimal
D— Decimal

-Converts hex to decimal value
-Converts decimal to hexadecimal
value

-Converts any hex or decimal
value to ASCII character

M— Memory Dump -Displays block of memory as hex
values

-Displays block of memory as
ASCII characters

-Displays and edits the contents of
a memory location

-Enters machine language
programs

G— Graphics

A— ASCIl Dump
E— Edit

O— Object Code

L— Load -CLOADs a BASIC program into
memory with HEXMEM

C— Combine -MERGES a BASIC program on
tape with one in memory

S— Save —CSAVEs a BASIC program and

HEXMEN on tape

EXPLANATION OF COMMANDS

H — Hexadecimal

This routine will convert any hexadecimal number up to
10 digits to its decimal equivalent, although very large
numbers will be displayed in decimal by exponential
notation. Leading zeroes need not be entered 0AF2 and
AF2 will be converted the same way. Type the
hexadecimal number (ENTER).

D — Decimal
This routine will convert any decimal number from 0 to
65,535t0 its hexadecimal equivalent. Larger numbers will

not be converted as the routine will not produce a
hexadecimal number more than 4 digits in length. Type
the decimal number (ENTER).

Addition and subtraction of hexadecimal numbers may
be done using the H and D commands providing the
difference is not less than 0 northe sum greaterthan FFFF
hex (65,535 decimal). Use the Hcommandtoconvert both
numbers to decimal, perform the desired operation, then
use the D command to convert the result to hexadecimal.

G — Graphics

This routine will convert a hexadecimal number in the
range 0 to FF or a decimal number in the range 0 to 255 to
its ASCIl character, graphics character, or space
compression code representation.

Hexadecimal numbers need only be typed, then
(ENTER) but decimal numbers must be followed by an X
(enter as 127X, for example). If the X is omitted, HEXMEM
will consider the number to be hexadecimal and an
erroneous conversion will result.

M — Memory Dump (HEX)
see also A — ASCII Dump

This routine will display the contents of any block of
memory in hexadecimal.

HEXMEM asks for ADDRESS (HEX)#1? Type any
hexadecimal address from O to the top of memory (4FFF
for a4K machine, 7FFF for a 16K machine) then (ENTER).

Use the D command to convert decimal addresses into
hex for the M command.

HEXMEM then asks for ADDRESS (HEX)#2? Type a
hexadecimal address which is larger than ADDRESS
(HEX)#1. If no ADDRESS (HEX)#2 is typed, and only
(ENTER) is pressed, HEXMEM will display from
ADDRESS (HEX)#1 to the top of memory.

NOTE: HEXMEM is programmed for a 16K machine. If
you have more or less memory line 8 in the program must
be changed:

If H2$ = " THEN D6 =
32767(16K)
49151(32K)
65545(48K)
20479(4K)

HEXMEM will display memory in lines of 16 bytes each.
The address of each line is on the far left of the screen. For
example, if the starting address is 4FB3 HEX the screen
will display:
4FBO: XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX
4FCO: XXX XX XX XX XX XX XX
XXX XX XX XX XX XX XX

and so on, where XX is any hexadecimal number from 00
to FF. The address of the first byte of each line will always
end in 0.

To stop the dump at any point, press any key on the
keyboard. To continue the dump, press any key except K.
Pressing K will return to COMMAND?

A — ASCII Dump

This routine will display the contents of any block of
memory as its ASCII equivalents. Control characters and
graphics characters are displayed as periods (.). (The
ASCI| equivalent of any HEX or decimal digit (00-255) can
be displayed using the G command.)

The ADDRESS (HEX)? prompts should be answered in
the same manner as for the M command, and the memory
display is in the same 16 byte line format.

The A command is particularly useful for searching the
memory for a BASIC program. Try displaying addresses

70

1600 to 1700 HEX using this command. This is the area
where the Level 11 BASIC ROM stores its command table.
HEXMEM itself resides in addresses 42EA to 4C48 HEX
(17130 to 19528 decimal) and can be displayed by the A
command.

E — Edit Memory
see also O - Object Code Enter

This routine is used to modify a single memory location
by replacing its current value with a new one.

HEXMEM asks ADDRESS TO CHANGE? Type in any
Hex or decimal address from 0 to the top of memory, then
(ENTER). Decimal numbers must be followed by an x, or
HEXMEM will consider them to be hexadecimal and
errors will result.

The current contents of that memory location will be
displayed in Hex and decimal.

HEXMEM will then ask for the NEW VALUE? Typeinthe
desired value from 0 to FF Hex or 0-25 decimal. Again,
decimal numbers must be followed by an X. Then press
(ENTER). The contents of the memory location will be
erased, the new value will be entered and HEXMEM will
return to COMMAND?

Pressing (ENTER) after the NEW VALUE? prompt
leaves the contents unchanged and returns to
COMMAND? This may be used to PEEK at one memory
location rather than using the M command, especially if
you want to know the address contents in decimal.

Addresses from 0 to 3000 HEX (0 to 1288 decimal)
comprise the Level Il ROM and cannot be changed by the
E command. Addresses from 3001 to 42E8 HEX (12290 to
17128 decimal) are RAM and may be changed although
they are used by Level || BASIC for housekeeping and
Input and Output.

Changing them may cause the system to crash. Try it
though — there is no danger to the TRS-80 hardware from
the keyboard. At worst, you may have to press RESET and
re-load HEXMEM.

O — Object Code Enter

This routine is similar to the E command and is used for
modifying a consecutive series of memory locations as
when entering a machine language (object code)
program.

After the starting address is entered and its contents
changed with a new HEX (or decimal plus X) value,
HEXMEM advances to the next memory location, displays
its value in HEX and decimal and accepts the new value.

Typing K for the value leaves the memory location
unchanged and returns to COMMAND?

L — Load BASIC Program
This routine allows a BASIC program to be CLOADed
into memory co-resident with the HEXMEM monitor.

In order to CLOAD a BASIC program without erasing
the program in memory (HEXMEM), some PEEKing and
POKEing is necessary. HEXMEM does most of the work.
However, after the CLOAD is complete, two more memory
locations must be POKEd. These values — POKE 16548,
233 : POKE 16549,66 — should be typed in and (ENTER)
pressed. The combined program (HEXMEM + BASIC
program) may then be LISTed, RUN, CSAVEd (with the S
command), EDITed, etc.

The line numbers of the BASIC program must be higher
than those of HEXMEM, or HEXMEM will be erased during
the CLOAD HEXMEM uses line numbers 1-29 so the
BASIC program should start at line 30 or higher.

C — Combine BASIC Programs

This routine will MERGE a BASIC program on tape with
one in memory. As with the L command, the program on
tape must have higher line numbers than the one in
memory, or the program in memory will be erased during
the CLOAD.

The same two memory locations must be POKEd after
the CLOAD as with the L command. Follow the prompts
on the screen.

The C command will enable frequently used sub-
routines to be stored on tape and then added to new main
programs as needed, saving the trouble of retyping them.

After the programs are combined in memory, type
DELETE 1-29 (ENTER) to erease HEXMEM. The
combined program may then be LISTed, RUN or CSAVEd
on tape.

S — Save

This routine will CSAVE HEXMEM and any other BASIC

program in memory on cassette tape.

This is an example of how BASIC stores program text.
The ASCII dump and the HEX dump are looking at the
same block of memory — address.

188 REM * THIS IS LINE 166
116 “ LINE 118 - RBBREVIATION FOR REM *
126 PRINT "THIS IS LINE 126 ?

Pressing (ENTER) with no value leaves the memory REM

location unchanged and advances to the next.
COMMRRND? M
ADDRESS (HE®Y #47 7218
RDDRESS (HEX) #27 7235F
r2i8: 41 31 24 3A BR 22 41 22 68 32 72 &4 88 93 28 2R
7228 26 54 48 49 353 28 49 53 20 4C 49 4E 45 26 31 26
7238: 36 68 5C 72 6E 88 2R 93 FB 2B 4C 49 4E 45 28 21
248 31 28 298 20 28 41 42 42 52 45 56 49 41 34 49 4F
7258: 4E 28 46 4F 32 28 52 45 4D 26 2R 89 7F 72 78 68
COMMAND 7 {{ HEX DUMP (M COMMARND)> >2>_

71

COMMAND? A
ADDRESS (HEX) #17 7218
ADDRESS (HEXY #27 725F

vl A1 & : . " A" . 2 R D . #
Tadn: T H IS I s L I NE 1 8
7238: @ ~ RN . . L I N E i
7244 1 @ - A B E R EV T RTTIO
7258 N F OER R E M * . - R ¥
COMMAND? < ASCII OUMP (A COMMARNG: >3-

1 CLEAR1GG:CLS :DIMH(LE), HE(16), K$(160 ¥e="01234567EORBCDEF " : DATA
Ila“) |l1|l" |I2II’ “3") "4") "5".’ "6“J II?"J IISH' “9") llﬂll'. IIBII} !IC“’ "D") "E"J llF":
YE="28" :U$="HIGHEST LINE IN MEMORY":D$=""T$="TO ERASE HEXMEM, T
YPE: DELETE 1-2& <ENTER>":.~

* HEXMEM VER 1.1 #

2 P=8:0=@: INPUT"COMMAND"; C$: IFC$="H"THENZELSEIFC$="0"THEN4ELSEIF
CE="G"THENSELSEIFCS$="M"THENGELSETFC$="A"THENP=1 : GOTOSELSEIFC$="E
"THEMLSELSEIFCS="0"THENO=1 GOTOASELSEIFC$="L"THEN24ELSEIFC$="C"T
HERE=LE DE=TE GOTOZGEL SR TFCHF="2" THFHZEF] SFRRTMT "+ THVAL T+ GOTH

3 INPUT"HEXADECIMAL"; A% A$="0"+A$ GOSUBLS PRINT" DECIMAL =";D:G
0102

4 INPUT"DECIMAL"; D:GOSUB2L PRINT" HEXADECIMAL = “; HECL)+HS(2)4H
$U30+HE 45 GOTO2

3 INPUT"HEX OR DEC (TYPE X AFTER DECIMAL}"; M$: IFRIGHT$(MS$, 1) ¥
"THENA$=M$: GOSUBL9 : MM=DEL SEMM=YAL (M$>

6 IFMMCI2THENGS="CONTROL CHARACTER"ELSEIFMM=Z20RMM=128THENGS="SP
RCE"ELSETFMM{A92THENGS=CHR$ (MMIELSE IFMMC=255THENGS="TAB FOR"+STR
$UMM~192)+" SPRCES"

7 PRINT" ASCII CHARACTER = "; G$:GOTO2

8 Hi$="" Hz$="" INPUT"RDDRESS (HEX) #1";Hi$: A$=Hi$ GOSUBLS:GOSUB
27 :D3=D: INPUT"ADDRESS (HEX) #2"; H2$: R$=H2$:GOSUBLY: DE=D:LF=1 W=D
S:PRINTHL$": "; :IFH2$=""THEND&=Z27E7

9 FORM=D3TODE : G$=1NKEY$: IFG$<{>" "GOSUB26

1@ IFLF=17THENLF=1W=hi+16:PRINTCHR$(29) :D=N:GOSUB21 : PRINTH$(1); H
$C2YHS(ZI HEC4; "

11 Md=M:IFML>32767 THENML=ML-65535

12 D=PEEK(M1) : IFP=1THENGOSUBZ23ELSEGOSUB22

13 PRINTH$(Z); HEC4); " " (LF=LF+1: IFLF=9PRINT" *;

14 NEXTH:PRINT . GOTO2

13 INPUT"ADDRESS TO CHANGE (KEX OR DEC - TYPE X RFTER DEC)>";M$:1
FM$="K" THENGOTOZELSEIFRIGHT$(M$, 1> <>" X" THENAS=M$: GOSUBLY : MM=DELS
EMH=YRL (M$>

16 PRINT"CURRENT CONTENTS: “; : IFMM>32767 THENMM=MM-65535

17 CC=PEEK(MM):D=CC:GOSUB22 :PRINTH$(2)+H$(4); " HEX ("; CC; "DECIM
ALY :M$="" PRINT: INPUT"NEW YRLUE (HEX OR DEC - TYPE X AFTER DEC)
i M$ IFM$=""THENNN=CCELSEIFM$="K" THENGOTOZELSE IFRIGHT$(M$, 1)<>"¥
"THENA$=M$: GOSUBAS : NN=DELSENN=VAL (M$)

18 POKEMM, NN: IFO=BTHENGOTO1SELSEPRINT"NEXT ADDRESS - "; :MM=MM+1:
GOTO46

19 D=8:K=1:FORJ=1TOLENCR$)> -1 :K=K#16 :NEXTJ :K=INT(K+ 81):FORI=1TOL
ENCA$) (FORJ=4T016: IFMID$ (RS, 1, 12=MID$(X$, J, 1) THENGOTO2OELSENEXTJ
28 D=D+Kx(J-1) :K=K/16 : NEXTI : RETURN

24 H(1)=INT(D/4096) : D1=D-H(1)*4896 - H(2)=INT(D1/256) : D2=D1~-H(2)*2
36 H(3)=INT(D2/16) : D3=D2-H(2)*16 : H(4)=D3 : FORX=1T04 : RESTORE : FORZ=
BTOH(X) : READHS (XD : NEXTZ . NEXTX : RETURN

22 H()=INT(D/16) :D1=D-H(3)%16: H(4)=D1 :FORX=3T04 : RESTORE : FORZ=0T
OHCA) - RERDHS (XD : NEXTZ : NEXTX : RETURN

72

23 H$(Ip=" " IFD<IZTHENHS$(4)=". * RETURNELSEIFD>427THENHE(45=" "
RETURHELSEHS$(4»=CHR$ (D) :RETURN ‘

24 PRINT"BE SURE LINE NUMBERS RARE GRERTER THRN "; ¥4 ". ":PRINT"WH
EM TAPE RECORDER STOPS, TYPE:":PRINT"POKE 16548, 233: POKE 16349,
66 <ENTER>":PRINTD$:PRINT:PRINT"PRESS <ENTER> WHEN RERDY TO *
CLOAD " : INPUTR1S$

25 IFPEEK{16633)>=2THENPOKE16548, PEEK(16633)-2: POKELE549, PEEK (16
£34) : CLOADELSEPOKE16548, PEEK(16633)+254 : POKE16549, PEEK (166340 -1:
CLORD

26 G$=INKEVYS$: IFGE=""THENGOTOZEELSEIFGS="K" THENPRINT : GOTOZELSERET
URN

27 IF(D<46)0R(HAS="")THEND=6 : H1$="60608" : RETURNELSEIFD/16=INT(D/1
&) THENRE TURNELSED=D~ (D~ TNT{(D/16 %16 : GOSUB2L : HL$=H$ (15 +HE(2) +HE$C

3I2+HE (4 :RETURN

28 CLS PRINT"PRESS <{ENTER> WHEM RERDY TO

SHI#E L] H]

One HEX number of 2 digits OO - FF HEX can store the
numbers 0-255 decimal, the same as 1 8-bit binary byte.

By looking at the LISTing, and comparing it to the HEX
and ASCIl dump one can learn how BASIC stores the
program lines.

OO is used by BASIC as the terminator of every line.
Following 00 are 4 bytes (4 HEX digits) which are
housekeeping for BASIC. The first 2 bytes are the memory
address of the start of the next line, given with the least
significant byte first, most significant byte last.

At location 7219, the address bytes are 7232 meaning
that the next program line (line 110) starts at memory
address 7232. Looking atthe HEX dump, itis seen that the
terminator of line 100 (00) is at address 7231 and 7232 is
the beginning of the next line.

The next two bytes 64 00 in addresses 721B-721C are
the BASIC line number of the line given in HEX least
significant byte first -00 64 HEX equals 100 decimal (use
the H command). This is why BASIC line numbers cannot
exceed 65,535. 2 bytes can only store up to FFFF HEX.

Lines 110 (006E HEX), 120 (0078 HEX), 130 (0082 HEX)
up to line 200 (00C8 HEX) of the demonstration program
may be identified the same way as line 100 was.

If the byte following the line terminator00is0 (meaning
address of the start of the next line is 0) BASIC assumes it
has reached the end of the program. This is as far as the
program can be LISTed on the screen, even though the
complete program remains in memory and can be
accessed by the A or M commands.

After the four housekeeping bytes, BASIC starts the
text of the line. To conserve memory space as 1 byte
abbreviations:

80 HEX = END

81 HEX = FOR

8A HEX = DIM

87 HEX = NEXT
8D HEX = GOTO
91 HEX = GOSUB
92 HEX = RETURN

93 HEX = REM
D5 HEX = = (Equals sign)
and so on.

The rest of the line is stored as the HEX equivalent of the
decimal ASCIl character codes. The complete list (in
decimal which can be converted to HEX by the D
command) may be found on page C/2 of the LEVEL 1l
BASIC REFERENCE MANUAL.

73

% CSAVE *":INPUTA4$:C

08 — 1F are the cursor control codes,

20 — 7F are ASCII character codes

80 — BF are graphic codes

CO — FF are space compression codes (tab 0-63 spaces)

This method of storage and housekeeping explains the
"garbage” seen on the screen after a bad CLOAD is
LISTed.

If any byte of the code in memory has been changed to
00, BASIC assumes the next 2 bytes are the starting
address of the next line, and the 2 bytes after that are the
line number. Following bytes are LISTed as the full
printing of the command abbreviations (see BASIC
TOKENS). This mess is complicated by the fact that HEX
digits 08-1F are moving the cursor all over the screen and
causing the commands to be printed anywhere at
random.

Z-80 Disassembler
by George Blank

Perhaps the most useful form in which this book could
have been printed would have been with a complete
disassembled and commented line listing of Level Il
BASIC. The cost of purchasing publishing rights for this
was prohibitive, so we are instead providing a way foryou
to make your own, if you have a Level Il BASIC computer.

This program will disassemble the full Z-80 (trademark
of Zilog Corporation) set of amost 700 instructions. In
addition, the ability to construct a symbol table and
reserve data blocks in the disassembled listing has been
added for a truly useful listing.

Since one of the best features of BASIC programming is

IF (PEEK(14312)=63 AND C>15)

ENTER) " ;X$:C=0

If you wanted to stop after 15 lines on the screen or 60
on the printer.

The line numbers begin at 30 to make iteasy to combine
this program with HEXMEM. Then you could either patch
the programs with a GOTO from HEXMEM or use the
command "RUN 30" to use the disassembler. By
removing all the REM statements, you may stili be able to
load another BASIC program above HEXMEM and the
disassembler, as long as there are no conflicts in the
numbering of the programs.

If you wish to allow for the entry of hexadecimal
addresses for the start and finish of your disassembly,
there is a conversion routine from hex to decimal at Lines
178 - 186. The routines to convert decimal to hex are
located at Lines 70, 73-78 and 84. If you wish to print
displacement addresses in $ or + and - form, the routine
currently used to calculate hex address jumped to is in
Lines 80 - 82.

To use the symbol table, answer "Y" when asked if you
wish to construct a symbol table. Then choose hex or

the ease with which programs may be modified for special
uses, many remark statements have been included.
Particular routines that users may wish to modify include
the automatic printout routine in Line 62 and the count-
and-stop routine in Line 69.

The automatic printout routine works by testing the
printer-ready status bit at Location 14312. If it finds the
value 63, indicating that the printer is on and ready for
data, it sends data to the printer. If you have no printer,
you may wish to remove this routine, and if your printer
does not use the handshake at 14312, you may wish to
change the print option.

If you want a continuous printout, you may simply
delete Line 69, or you may modify the counter (C is the
number of lines printed) to fit the page size on your
printer. For example, you might use:

OR C>60 THEN INPUT" (PRESS

decimal entry and enter first the memory location and
then your chosen symbol. Table entry will end when you
fail to enter a value or symbol, or when your address
exceeds the ending point you have chosen for your
symbolic dump. If you wish to print the symbol table after
your memory dump, add a flag equal to the value of Sin
Line 176 just before the final GOTO (SE=S), change Line
63 to:

63 if M>=ME then 192

and add a routine to take the addresses stored in the array
MS(0) to MS(SE), convert them to hexadecimal if you
wish, and print the corresponding symbol from the array
AS(0) to AS(SE). If you really want to be fancy, add a
routine to ignore the data blocks on the first pass through
the table, then print the data blocks after the symbol table.

The symbol table routine reserves the symbols "DATA"

and "EOD" for the start and finish data blocks. If the
program, during execution, comes across the symbol

"DATA", it sets DA to 1inLine 165 and the program jumps
to the data routine at 188to 191 from Line 72. Then, once it
comes across the symbol "EOD", it sets DA to 2 in Line
165 and back to 0 (Data flag off) in Line 188.

30 REM * -39 DISAGSEMBLER * COPYRIGHT (C) 1986 GEORGE BLANK

31 CLEARLGGA- DEFSTRA: DEF INTE-L, N-2- DINAHCLS) - DIMAC 262

%2 FORB=8T015 READAH(B) ‘NEXT:FORB=ATO7:READAD(ED ‘NEXT FORE=ATOA: RERDAP(B) -NEXT -FORB=ATA? -READRT (B) N
EXT :FORB=GT07 - READRF (B) :NEXT - FORE=GT07:READAACE) ‘NEXTRC()="HL" " RC(3)="A"

33 REM # AHCB-15) *

34 DATR 8,1, 2.3 4.5.6. 7.5, % A8, T D EF
35 REM * AD(B-7) #*

36 DATA B, G DG ESH L CHLDWR

37 REM * AP(B-13) %

38 DATA BC, DE, HL, 5P AF, CBCY, DY, CHLD, CSPY, AR
39 REM * RICB-7) %

46 DATA ADD, ADC, SUR, SBC, AND. XOR, OR. CP

41 REW » AF(B-7) *

42 DATR W2, 2, NC. C, PO, PE.P H

43 REH * RACB-7) *

44 DATR RLC. RRC, RL. RR» SLA, SRA: SRL, SRL

45 REW * INPUT RDDRESSES T0 DISASSEMBLE =

75

46 C=:CLS PRINT"Z-88 DISASSEMBLER" - INPUT"STARTING ADDRESS (DECTMAL}"; MB: INPUTYENDING ADDRESS"; ME M=
MR INPUTDO YOU WANT TO CREARTE R SYMBOL TRBLE™:A: IFLEFT$C(A, 1)="Y"GOSUB169

47 A="":GOTOES REM + CONTENTS OF 4 BYTES OF MEWORY =

48 D=PEEKCNI Y :DA=PEEK(NZ) - DZ=PEEK (N2} - U3=PEEK (N4) - GOSGUBRE - Dd=D 3 D5=D/16 - DR=D-CD4 - DF=({D/16-D3)42 IF
D4CETHENSBEL SETFD4<16THENGL ELSETFDSC12THENRS ELSESG

49 REM * 0P CODES @BH TO 3FH *

58 RD=RDCD4):RP=AP(DS) - TFDRCATHENSL ELSEIFDF=@THENRP=AP(DS) R="LD "+AP+", " GOSUB?6 GOT(62 ELSER="AD

D HL, "+AF- GOTOEZ
51 IFDRCITHENSZ ELSETFDF=GANDDACATHENA="LD ¢"+AP+"), A" GOTOA2 ELSEIFDF=AANDD4SITHENA="LD " - GOSUB?4-
R=fi+", “+ACCDS) GOTOEZ ELSER="LD M, ("+AP+")" - IFD4SZTHENA="LD "ACIDS)+", " - GOSLE?P4 GOTOEZ ELSE6Z

52 IFDRC>ITHENST ELSETFOF=BTHENA="INC "+AP GOTOA2 ELSER="DEC "+AF GOTO62

53 IFDR=4THENA="TNC "+AD " GOTOEZ

S4 TFDR=STHENR="DEC "+AD:GOT06Z

55 TFDR=GTHENR="LD "+FD4", " GOSUBTE - GOTOAZ

56 IFDR=7THENSE ELSETFD4=ATHENA="NOPELSE TFD4=1THENA="EX AF, AF ‘' "ELSE IFD4=2THENA="DINZ "EL SE IFD4=3THEN
A=" JRELSE IFD4=4THENR="JR NZ"ELSEIFD4=STHENA="JR Z"ELSETFD4=ATHENA="IR NCPELSER="JR C°

57 IFD4¢ZTHENGZ ELSERR

S8 IFD4=ATHENR="RLCAEL SE IFD4=1THENR="RRCA"ELSE TFD4=2THENR="RLA"EL SE IFD4=3THENA="RRA"EL SE 1FD4=4 THENR
="DAA"EL SE TFD4=STHENA="CPL"EL SE TFD4=ATHENF="SCF "EL SER="CLF ™

59 GOTOE2

£8 REM % OF CODES 48 - 7F # L0 R, F #

1 A="LD "+ADCD4-E0+", "+RDCDR) - TFD=11RTHENA="HALT"

62 NeM+d: M=MH: A=LEF THOAX, N4T) - N=B- PRINTTABCE YRXTAEC 2E0RSTRBCIEA - TFPEEK 14312 =6 2L PRINTRLTRECE AT
REC 20ASTRBCZAIA

63 IFMGMETHENINPUT CFRESS ENTERDY: %8 GiTid6 ELSE47

64 REM % NEXT MEMORY LOCRTION *

65 TFMCI27RRTHENNA=MELSENY =M-65536

66 TFMCIZP67 THENNZ =M+ EL SEN2=H-655 16+

£7 TFMCIZPAETHENNT=M+ 2EL SENI=M-65536+2

68 TFMCI2PESTHENNG=H+ IEL SENd=M-£5536+3

£9 =041 TFC=1STHENINPUT SPRESS EMTERD™: ¥$ - (=

78 HE=TNTCMA4BIE) - H1= TNTC CH-R0EAHE) #256) - HE=TNT (M- AR9ERHEHZ554H1 1) A6 - HE=P{ 4B564HEA+ DS6HL +1E4H2
) - RL=AHCHB I HAHCHL 4AHCHZ 4 RHCHT O+ " PRINTRL * "

71 IFSYBTHENLG4

72 TFDESBTHENLSOEL SE48

7% REM % PRINT 2 DIGIT HEX COBE IN ©) #

74 A=Re" (" GOSUBPE A=A+ RETURN

75 REM * PRINT 2 DIGIT HEX CODE %

76 H=DZ: GOSUBRA - GOSUEPR - N+ - RETURN

77 REM * PRINT 1 DIGIT HEX CODE

78 H=D1L - GOSLESS - N=N+1 -RETIRN

79 REM # CALCULATE DISPLACEMENT

8 F=F" " :H=D1 - IFH 27 THENH=H-256

81 REM % PROGRAM COUNTER = +2 % PRINT HEY RDDRESS #

82 MH=HHM4+2 : D2=INT (HH/256) - D1=MH-2564D2 - GOSUBTE - N=N-1 - GOTOR2

8% REM * CONVERT BYTE TO HEX *

4 HI=INTCHAR) ReReRHOHL) - Hi=H-HL#16 - A=RRHCHL) RETURN

&5 REM # CONYERT CONTENT OF MEMORY 70 HEXRDECIMAL #

86 H=D-GOSUBB4 A=R+" *:H=D1 GOSUBS4 - F=Re™ " H=D2:GOSUBE4 - A=F+" " H=D3-GOSUBR4- FIK=A+" *-A=""-RETURN
87 REM * OF CODES 99 - BF # REGISTER ARITHMETIC *

88 A=RICD4-16)+" "+AD(DR) - GNTOGZ

59 REM * OF CODES A@ - FF EXCEPT CB DD ED FD *

98 D4=D4-24 AF=AF (D4) : IFDR=ATHENR="RET "+fF -GOTOEZELSEIFDR=2THENA="JP "4AF+", " GDSUB76 - GOTOGZELSEIFD
R=4THENA="CALL "+AF+", " GOSUB76: GOTOGZELSEIFDR=7THENA="RST ":H=D4+8 GOSIIBE4 GOTOSZELSE IFDR=6THENR=RI
(D4)+" R, ":H=D1 : GOSLIES4 - GOTNE2

91 IFDF=1THENI3ELSEIFDR=1THENAP(Z)="FF" :R="FOP "+AP(D5-12) -AP(3)="5P" - GOTOSZELSE TFDR=STHENAP(2)="FF *
“A="PUSH "+AP(DS-12) : AP(Z)="SP" - GOTO62

92 IFD4=GTHENR="IP " :GOSUB76 GOTOGZELSE IFD4=2THENA="0UT " GOSUB?PS A=A+, A" - GOTO62ZELSE IFD4=4THENR="EX
SF, HL* - GOTO6ZELSER="D1" - GOTOEZ

93 IFDR=STHEN94 ELSEIFDR=1THENSS ELSEIFD4=1THENS? ELSEIFD4=3THENA="IN R, " GOSUB?S GOTO6Z ELSEIFD4=5T
HENA="EX DE, HL":GOT(62 ELSER="EI1":GOT062

94 IFD4=1THENA="CALL *:GOSUB76:GOTOE2ELSE IFDA=3THENLAMEL SEIFD4=STHEN T3EL SE106

95 IFD4=1THENR="RET" : GOTOS2ELSE IFD4=3THENR="EXX" - GOTOSZELSE IFD4=STHENA="JP (HL)" GOTCS2ELSER="JF M, "
-GOSUB?6 . GOTOE2

9 REM * (P CODES CB XX *

97 NeN+1:DA=D1/2:DB=01-8%DA: IFDR>?THENOSEL SEA=RA(DA)+" "+ADCDB) - GOT062

98 IFDAMSTHENGOELSER="BIT "+8H(DA-2)+AD(DB) -GOTO62

76

77

99 TFDAYZITHENAGRELSER="RES “+RHC(DA-16)+AD(DB) -GATORZ

166 A="SET "+AHCDA-24)+ADIDR) - GOTORZ

101 REM *+ ADJUST NN FOR 4 BYTE OP CODE *

1Bz =Dz D2=D%-RETURN

183 REM * OF CODES DD ¥¥ *

104 AY="T14" GOTO4@8

1685 PEM & OF CODES FD XX #

106 AY="1y"

187 REM * RY = IX R IY % AZ = (I¥4DISY OR (I¥4DIS) *

168 N=f+d:A=""-H=D2 GOSUBRS - AZ=" ("+AY+"+"+F+" 3" -A="" - Dd=D1 /5

189 REM + HEX HALF BYTES OF SECOND BYTE: RW=MSHE AX=LSHE #

146 H=D4 -GOSUB24 - Ak=LEF TR, 1) AX=RIGHTS(H, 1) -A="" - TFDL=203THEN1 28

141 REM * XDB9 TO ¥D39 *

112 TFDADS7THENIL4 ELSETFRYN="G"THENAP (2 =Ry A="A0D "+RAY+", "+AP (VAL CAND Y -APCZO="HL" GOTORZ

14% REM = D21 TO XDZE %

114 TFDA=3ITHEMA="LD “+AY+". " GNSURLAZ GOGUETE - GOTORZELSETFDI=24THENA="LD " GOSUBL62 GOSUBY4: A=A+", "
+AY - GOTOSZEL SETFDA=TSTHENA="TNC "+8Y GOTOA2ELSETFDI=42THENA="LD "+AY+", " GOSIB1G2 : GOSUB?4 - GOTOA2ELSE
IFOA=43THENR="DEC "+RAY GOTOEZ

145 IFDA=SZTHENA="TNC "+RZ N=N+1 GOTOS2ELSEIFDA=S3THENA="DEC "+AZ N=N+1 GOTOGZELSEIFUA=S4THENR="LD "
HZ+", 7 W=D GOSLBRY - GOTOAZ

116 REM % XDEaxY TO XDEERK #

117 TFDUAA THENAA9EL SETFDICPROR (NOTCAX="E ORAX="E"))THEN14A ELSER="LD "+ADCDA-E)+", "+A2 N=N+1 ' GOTOA
P4

143 REM # XD7OXK TO XD7PEXK %

149 IFDAAPTHENAZBELSER="LD "+AZ+", "+ADCDL-112) -H=h+1 - GOTOAZ

126 TFDADAZITHENI2? ELSEIFDM=119THENR="LD "+AZ+", A" N=N+1 GOTO62 ELSEIFDA=126THENA="LD A, "+RZ N=N+i:
GOT0A2 ELSE14R

121 REM * CULL INGPERABLE CODES #

122 IFDA9BTHENI 26EL SETFAX="A"THEN124EL SE IFRAX="E"THEN124ELSE14B

123 REM #® XDBAXK T XDBEXX #

124 R=RI(D-16)+" A, “+AZ N=N+i GOTOEZ

125 REW # ¥DE4 TO XDF2 *

126 IFDA=225THENR="POP “+RY GOTOA2ELSEIFDA=227THENA="EX (SP), "+AY GOTOE2ELSETFDI=229THENA="PLISH "+RY
-GOTOSZELSEIFDA=233THENA="JP ("+A¥4+")" GOTOAZELSETFDA=249THENR="LD SP, "+RY :GOTOA2ELSEL4@

427 REM # TNDEXED BIT AND ROTATE GROUP = DD CB AND FD CB *

128 D4=DI/8 . DR=D3-8xD4 - IFDRCOETHENI 4G

129 TFD4RTHENR=RR(D4)+" "+AZ N=N+2: IFD4=ATHEN14E ELSEAS

139 D4=D4-3: IFD4<STHENA="B1T"EL SED4=D4~5: IFD4(STHENR="RES"ELSED4=D4-& A="ET"

131 R=ReSTRECDE)4Y, "+AZ N=N42 GOTDRZ

132 REW = ED GROUP # CULL INOPERRTIVE CODES #

133 N=N+1: IFDACE40RDIBB0R (D1 M AZANDDL 1) OR (D1 7ARNDDACA 7D00R (D1 >4 79ANDDA (164) THEN1 46

134 TFDAC124THENI42 ELSETFDICI43THENL4G

435 REM * EDAB T EDBE % BLOCK TRANGFER AND SERRCH *

136 D=D4: IFD>4596="L0I1" : IFD>16GR="CP1": IFD>161R="INI": IFD>462R="0UT1" : IFD>167R="LDD" : IFD>168R="CPD":
IFDASR="TND" : IFO>4 76R="0UTD" - IFDX 75R="LDIR" : IFDX{76R="CPIR" : IFD>177A="INIR" : IFD>478R="0TIR" - IFD>1
83A="LDDR" : IFD>184RA="CPDR" : IFD>L8STHENR="INDR"

137 1FD=187THENA="NTDR"

138 GOTOE2

439 REM = INOPERATIVE CODE * ADJUST FOR SINGLE BYTE =

148 N=N-1:R="-DRTR-" GOTOGZ

141 REM % ED4B TO ED7BRXXX *

142 D=D1-64 D4=D/8:D5=D/16:DR=D-84D4 : DF=(D/16-D5)%2 RL="(LH"

143 REM * EDXB =

144 TFDROBTHEMA4GELSER="IN "+RD(D4>+", "+RL: IFD4=6THENI4BELSES2

145 REH = EDX1 EDX9 =%

146 TFDROATHENL4BELSER="0UT (C). "+RD(D4) : IFD4=6THEN14BELSEC2

147 REM * EDX2 EDMR %

148 IFDR2THENASAELSEIFDF=BTHERR="SBC HL, "+RP(DS) :GOTO62ELSER="RDC HL, "+RP(D3) GOTDG2

449 REM % EDX3 EDHB %

158 IFDRYITHENIS4FLSER="LD ":GOSUB1SE: IFDF=BTHENGOSUB?4 -A=R+", "+RP(DIIELSER=A+RP(DS)+", " GOSUB74

151 REM * N EDRY EDEB #

152 TFD5=2THENL 4GELSER2

153 REM * EDd4 %

154 TFDROG4THENASAELSETFD4=RTHENA="NEG" - GOTOAZ ELSE14@

155 REM # ED4S ED4D *

156 TFORCSTHENASRELSETFOSATHENLABEL SETFOF=GTHENA="RETN" - GOTOAZEL SEA="RETI" - GOTORZ

157 REM # ED4S EDSE EDSE #

158 IFDRGETHENIE1ELSETFD=6THENR="TM A" -ELSETFD=22THENA="1M 1"ELSEIFD=3ATHENA="TM 2"ELSE14@
159 GOTORZ

168 KEM # EDKY #

SEd TFL=FTHEMA="1LD T, AVELSETFD=15THEMAR="LD F. A"ELZ=
LU0 AL TUELSETFL=24THEMNA="1.I" A R"ELSETFL=Z2THENA="RRL
EMA="RLD"ELSEL 4G

162 GOTORZ

163 1$=INKEY$ TF1$=""THENIAZ ELSEPRINTI$ RETURN

164 RS=""" IFM>=MS{ SN THENRS=RASISNY - SN=5+L - TFSNZETHENS=R

165 IFAS="DATA" THENDB=1ELSETFRS="EOD"THENDB=2

166 GOTOP2

167 5=5-MG(5) : IFSCATHENS=A

1628 GOTIM?R

169 CLS-PRINT"SYMBOL TABLE CONSTRUCTTON":PRINT -FRINT"IF YOU WANT A SYMBOL TABLE, OU MUST ENTER ERCH

ADDRESS AND THE" PRINT"SYMEOL YOU WANT. YOU MUST ENTER THE RDDRESSES IN NUMERICAL":PRINT'ORDER. WM

BOLS ARE LIMITED TO SIX CHARACTERS AND 188 SYMBOLS. "

176 PRINT:PRINT"TWO SYMBOLS ARE RESERVED FOR SPECIAL USE:":PRINTTAB{AY"USE ‘DRTR" TO INDICATE THE ST
ART OF A BLOCK OF DATA"-PRINTTAB(E)"USE “EODY TO INDICATE THE END OF R BLOCK OF DRTA. "

174 DIM RSCA03) -DIM WMS{16@) - 5=8: SN=@

172 PRINT:PRINT"PRESS {ENTER: AFTER LAST SYMBOL TO END INPUT:PRINT"DO YOU WISH TO ENTER HEX OR DECI
BAL RDDRESSES (HADY"-GOSUBLER

172 IFI$="H"THENAYY

174 PRINTS; : TNPUT"HEMORY LOCATION (DECIMAL)": MS(5)

175 TFMSCSOCATHENLAPEL SE TFMS (S XMEORMS (S) MPTHENPRINT - RETURN

176 INPUT"CSYMBOLS"; ASCS) - TFASCS)=""THENPRINT - RETURNELSEMP=MS(5) - 5=5+1 GOTOM73

177 INPUT"MEMORY LOCATION CHEXADECIMAL":A

178 ME=8:L=LEN(R) - ONLGISUB183, 182, 181, 180

179 PRINT -RETURN

188 AH=LEFT$CA. 1) -A=RIGHT$(A, 3) GOSUBLES : Mo=MH*4B%6

181 RH=LEFT${R, 1) - R=RIGHT$(A, 2) - GOSUBLES - MG=MS+MH*256

182 AH=LEFT$(A; 1) - R=RIGHT$(A, 1) : GOSUBLRT : MS=M5+MH*1E

183 AH=A-GOSUBST: MG=HS+HH PRINT"DECIMAL : "; MS; (MS(S)=MS:GOTO17S

124 REM # CONVERT HEX TO DECIMAL *

185 FOR®=BTO15: TFRHCX)=AHTHENMH=X - RETURN

186 NEXT:MH=8 RETURN

187 REW * DATR BLOCK PRINTOUT %

188 D=PEEKM1) -H=D:GOSUIES4 - AX=A: IFDB=2THENDB=#

189 1F D>31 AND DCS6 THEN A=CHR$(R) ELSE A=* *

196 GOTO 62

ETFD=03THEMMA:="

78

Map of TRSDOS and NEWDOS
by John Hartford

Using Disk Operating System routines is complex for
two reasons. The DOS does a lot of different things and it
does them in a complex way with overlay techniques.
Overlay technique means that the sameareain memory is
used for a number of different programs. Not only that,
but the different programs that use the same memory can
even call each other.

How the System Initializes

When you turn on your computer, control is transferred
to memory location 0000H in the ROM. If you press
RESET, control is transferred to 0066H. Both of these
routines jump to 0674H, which initializes pointers in RAM
and checks the floppy disk controller chip to see if an
expansion interface is connected. If the chip is active,
control jumps to a routine at 069FH, which is the boot-
strap routine.

The bootstrap loads sector 0, track 0, from drive 0, into
locations 4200H to 42FFH in RAM from the disk drive.
Then control is transferred to 4200 to run the boot routine.
The boot looks in the directory on the disk for SYS0/SYS,
and if it is on the disk, loads it into memory, then jumps to
the execution address for SYS0/SYS.

Pages

Recall the memory map of the TRS-80. Itis organized as
follows:

0000 to 2FFF Level || BASIC ROM

3000 to 37DF empty

37E0 to 37FF Memory Mapped Input/
Output

3800 to 3BFF Keyboard

3C00 to 3FFF
4000 to 7FFF
8000 to BFFF Second 16K RAM
C000 to FFFF Third 16K RAM

If we divide RAM into 256 byte pages, then the first two
hex digits of the memory address is the page number. For
example, 4200to 42FF would be page 42, and 0000 to OOFF
is page 0.

Pages 40 and 41 are reserved memory for both Level 1|
BASIC and the Disk Operating System. This area holds
pointers, addresses, data, and modifiable programs used
by either (or both) BASIC and DOS.

Page 42 is an overlay area. It is the |I/0 buffer page and
operating area for the BOOT, and later a general 1/0
buffer for the DOS. In Level || BASIC it is part of the
keyboard buffer. A buffer is any section of memory that
holds data temporarily before it is moved to the place it
belongs or where itcan be checked for correctness before
being used.

Pages 43 through 4C are loaded from SYS0/SYS and
form the core of the Disk Operating System, remainingin
the system at all times. Page 43 has reserved memory from
4300 to 4317, a keyboard buffer from 4318 to 4357, and a
number of patches fixing mistakes in other programs,
primarily Level 11 I/0 routines in TRSDOS and patches to
TRSDOS in NEWDOS.

Page 44 is largely a jump table, allowing fixed jumps
from ROM or RAM to be redirected to any area in memory.

Page 45 contains interrupt data and routines for
handling interrupts.

Video Display memory
First 16K RAM

Page 46 contains the programs that actually talk to the
floppy disk controller in order to move data to and from
the disk and random access memory.

Pages 47, 48, and 49 handle random access disk
operations including caiculations.

Pages 4A and 4B (to 4BA1) read and write the directory,
including the granule allocation table, but not the hash
index table.

The page from 4BA2 to 4CAB controls and loads the
overlays, while the rest of page 4C prints the clock, the
calendar, and the trace program counter number. Yes, the
calendar is there, it is justanother feature like devices that
were forgotten before being fully implemented.

Page 4D is a disk 1/0 buffer.

Overlay Area 1 (4E00 to 51FF)

Pages 4E through 51 contain overlay area number 1.
The contents of an overlay area depend on what the disk
operating system is doing at the time. Overlay number 1is
very busy. Immediately after RESET, this area contains
the second part of SYS0/SYS. This initializes the pointers
in reserved memory, and sets up the data control blocks,
the stack, and the interrupt mode.

Once this is done, SYS0/SYS is replaced by SYS1/SYS
in overlay 1. This program tells you DOS READY and
interprets what you type in once you press [ENTER]. After
that, the contents of overlay one are determined by your
DOS command.

When you open files so that they can be read by DOS or
BASIC, this is done by SYS2/SYS in overlay 1. When you
close or kill files, this area holds SYS3/SYS. NEWDOS
COPY also uses SYS3/SYS to format disks for full disk
copying. SYS4/SYS loads the error messages here when
you make a mistake. DEBUG (SYS5/SYS) also loads into
overlay one.

Overlay Area 2 (5200 up, potentially as far as FFFF)

SYS6/SYS uses 5200 to 60FF to execute the DOS
library commands, except for directory, which also uses
6100 through 68FF.

BASIC, BACKUP, COPY, and many purchased utility
programs all start around page 52. If one program resides
here, obviously another cannot use the same memory.
But do not assume that just because you did not change
what was in this area, nothing else did.

Summary

It is convenient to think of two different types of
memory use inthe command area. First, there is the perm-
anent area, from 4400 to 4CFF which operates the disks,
performs certain calculations, and services interrupt
requests. Pages 40, 41, and 43 are used as reserved or
scratchpad memory, and pages 42 and 4D as disk input/
output buffers. Think of this area as a collection of utility
programs waiting to be called.

The second kind of memory use is for transient
programs which are used once and then discarded. if you
want to use them again they must be reloaded from disk,
with a few exceptions. Most of them load to the same
place; SYS1, SYS2, SYS3, SYS4, and SYS5 all load into
pages 4E to 51.

Other programs use a different area of RAM starting at
page 52. This location is used by SYS6, BASIC, BACKUP,
and COPY, among others. The relationship in the overlay
areas is not greatly different from a series of BASIC
programs calling each other from disk, but never

80

coexisting in memory. Note that when you are in BASIC,
the BASIC interpreter extensions for disk BASIC are
always in the second overlay area.

Calling an Overlay

The DOS calls overlays by loading the accumulator
with a one byte code and executing arestart5. Inthis case
the low nibble contains the number of the SYSTEM file
plus two, and the high nibble contains eight plus the
number of the command to be executed.

For example, to do a KILL, you want command 2 of
SYS3/SYS. The command number would be 8+2, or A,
and the system is 3+2, or 5. Therefore you load A5 into the
accumulator and RST5. If you wanted to load a program
without executing it, treat it as a command 0. SYS3/SYS
would require a 85, 8+0 for the command and 3+2 for the
program.

This transfers control to the overlay control routine at
4BA?2 in SYS0. RST5 (EF Hex) is a one byte call, but

routine 4BA2 discards the return address. Therefore, in
order to call 4BA2, you must call the three byte routine
which loads the accumulator with the desired command
and does a RST5. At4BA2, the routine checks the leftmost
bit of accumulator A. If it is set, it is accepted as a valid
command. It splits the high and low nibble and saves the
byte at 430E, comparing the low nibble with the last one
saved to see if the overlay being called is already in RAM.
If not, it loads the new overlay. Then the overlay is calied.
The call is usually to a jump table, except for SYS4 (error
messages) and SYS5 (DEBUG), which have only one
command. The jump table in the other routines uses the
high nibble in accumulator A to select theappropriate sub
command.

TRSDOS SYMBOL TABLE - SYSO

(KERNAL)

4300 - TRACK number of DRIVE 0
4301 = TRACK number of DRIVE 1
4302 - TRACK number of DRIVE 2
4303 - TRACK number of DRIVE 3

4304 - Directory TRACK of DRIVE 0

4305 - Directory TRACK of DRIVE 1

4306 - Directory TRACK of DRIVE 2

4307 - Directory TRACK of DRIVE 3

4308 - DRIVE number in binary = DATA for 4600
4309 - BIT SET indicates DRIVE number

430A - Stacker Storage -
430E - Last command to DOS

Pointer Caller

430F -~ Semaphore byte:

HIGHBIT = DEBUG FLAG

LOWBIT = PROTECTION FLAG

BIT 4 = SYS6
76543210
! I 1 PROTECTION FLAG
! I SYS6 FLAG
! BASIC CHAINING
DEBUG (SYS5) FLAG

4312 - JUMP director for positive DOS commands

4318 - DOS keyboard buffer

4358 - New Keyboard DCB

4378 - Change keyboard driver
4398 - Wait for NOT BUSY

43AC - Select Drive control
43B6 - "DEVICE" DATA

43D1 -

43D8 - DOS keyboard driver

4358 - BIT 7 = CONTROL SWITCH

435F - RELAY for 47CF

-—- (TRSDOS ONLY)
--- (TRSDOS ONLY)
---= (TRSDOS ONLY)
-—-— (TRSDOS ONLY)
-—— (TRSDOS ONLY)

Fetch A = End of File offset === (TRSDOS ONLY)

—== (TRSDOS ONLY)
=== (NewDOS ONLY)
—== (NewDOS ONLY)

4366 - READ SECTOR and decrement NRN === (NewDOS ONLY)
4377 - KEYBOARD modification DRIVER === (NewDOS ONLY)

43B1 - SCREEN printer routine

81

=== (NewDOS ONLY)

43DD
4400
4405
4409
440D
4410
4413
4416
4419
441C
4420
4424
4428
442C
4430
4433
4436
4439
443C
443F
4442
4445
4448
4448B
444D
4455

4467
446A
446D
4470
4473

4476
4480
44A0
44B0
44B4
44B8
44CF
44DF

Page

4500
4518
4538
454F
4560
458E
45A3
4574
45A5
45AF
45B0
45B1
45B2
45CE

- Get TRACK number of SYSTEM FILES === (NewDOS ONLY)
- (93/EF) = VECTOR RESTART

- (B3/EF) = (#3 OF SYS1)

- JUMP to 44B0 = DISPLAY ERROR

- JUMP to 44B4 which is RST 6(87) = Get DEBUG

- JUMP to 4596 turn on INTERRUPT

- JUMP to 4593 turn off INTERRUPT

= JUMP to 45A5 turn on CALLER

- JUMP to 458E turn off CALLER

LN L T I | I

- (C3/EF) = move a FILE NAME-(FCB)-from (HL) to (DE)
- (A4/EF) = INIT

- (94/EF) = OPEN

- (95/EF) = CLOSE

- . (A5/EF) =

KILL
= LOAD MACHINE LANGUAGE FILE
LOAD and RUN MACHINE LANGUAGE FILE

- JUMP TO 4Cl6
- JUMP TO 4CO06

= JUMP TO 476D READ
- JUMP TO 478B WRITE
- JUMP TO 47AS8 VERIFY

POSITION to first RECORD NUMBER
POSITION to (BC) RECORD NUMBER
POSITION to next RECORD NUMBER
POSITION to last RECORD NUMBER

- JUMP TO 4756
= JUMP TO 4700
- JUMP TO 4737
= JUMP TO 475F
- "RESTORE"
- Issue a DISK COMMAND
= WAIT = and RENAME DISK DRIVE the SAME
(to prevent timeout)
- JUMP to 44CF OUT 1 line to VIDEO
- JUMP to 44DF OUT 1 line to PRINTER
= JUMP to 4CB7 GET TIME
= JUMP to 4CD2 GET DATE
- (D3/EF) = (#5 OF SYSl) = add a default extension
If none- to which
HL points

Wowowononwunon

L B I

- (E3/EF) = (#6 of SYSl)
- Full-sized BUFFER for FILE FCB, DCB, and I/O
- Short DATA BUFFER = OPEN DCB DATA
- (86/EF) = Display an ERROR MESSAGE
- RST 6(F7) = Get DEBUG
- LD HLA, (HL) = and (PUT-GET 47AE) or (JP (HL))
- (0D/03) = Out 1 line to VIDEO
- (0D/03) = Out 1 line to PRINTER
(0D or 03 terminates output)

45 - INTERRUPT Page

= INDIRECT ADDRESS DATA FOR 4560 = INTERRUPT ADDR DATA
= RST 7(FF) = INTERRUPTS

— BRANCH = SAVE REGISTER, FETCH ADDRESS, and EXECUTE

—= BRANCH = If BREAK key down

- LD HL,((HL)) = do five times and JUMP

= TURN OFF

- (A2) / ADDRESS

- (45) / of C9

= Turn on caller (Do not RETURN)
= (B2) / ADDRESS

- (45) / and

- (05) / SWITCH

= Adjust CLOCK and CALENDAR each SECOND
= TIME CONSTANTS ---= (NewDOS ONLY)

82

45CF - PATCHES --- (NewDOS ONLY)
45E3 - PART of DISK COMMANDS --- (NewDOS ONLY)
45F3 - PAUSE and FETCH STATUS --- (NewDOS ONLY)

Page 46 - DISK COMMAND PAGE

4600 - SELECT DRIVE REGISTER C
4639 - SET BIT in A Value in A register Mod 8
4647 - SET TRACK and LOAD SECTOR REGISTER

D = TRACK E = Sector
4658 - Do DISK COMMAND in A
4661 - Issue DISK COMMAND and wait until done
4669 - wait until DISK CONTROLLER not busy
4671 - DISK COMMAND common
46DD -~ Give READ command
46E6 - Give WRITE command
46EF - Give WRITE/FA command (SYSTEM files)
46F3 -~ Give VERIFY command

4700 - Position to BC RECORD NUMBER = (FROM 4442)
4717 - Common for all positions

4737 - Position to next RECORD NUMBER = (FROM 4445)
4756 - Position to first RECORD NUMBER = (FROM 443F)
475F - Position to last RECORD NUMBER = (FROM 4448)
476D - READ = (FROM 4436)

478B - WRITE = (FROM 4439)

47A8 - VERIFY = (FROM 443C)

47AE - GET or PUT next BYTE in BUFFER
47BB - GET = READ subroutine
47DA - PUT = WRITE subroutine
47FF - Store (I/0O BLOCK) EOF DATA
480E - READ next SECTOR
482D - Get values for 46DD, give READ, and EXECUTE
483E - Do the WRITE with parameters
4878 - On CLOSE, check status for write on last sector
4883 - Fetch current byte in buffer - C BYTE COUNT
DE ADDRESS
4892 - STACKER = Point IX to the I/O BUFFER
48B3 - RETURN = UNSTACKER
48B9 - CP NRN,ERN = next FIND RECORD NUMBER
48DC - Get ready to READ or WRITE
49B5 - Find file location on DISK DIRECTORY ENTRY
4A00 - Does DIRECTORY WRITE for updating file
4AC1 - DIRECTORY READ
4AD6 - DIRECTORY WRITE
4AF0 - GRANULE ALLOCATION READ GAT READ
4B03 - GRANULE ALLOCATION WRITE GAT WRITE
4B1lE - Convert DECIMAL into TRACK/SECTOR/BYTE in DIRECTORY
4B35 = READ 1 SECTOR - expected to be a SECTOR of DIRECTORY
4B55 = LOAD REGISTER D with DIRECTORY TRACK NUMBER
4B5D - TEST the A-TH BIT in B
4B6A - Multiply HL by A, put answer in HLA, put HL into DE
4B84 - Divide HL by A, put answer in HL, and remainder in A
4BI9F - (AF) / GOOD
4BAO0 - (C9) / RETURN
4BA2 (EF/RST 5/NO RETURN) = DOS OVERLAY caller

W

4C06
4C16
4C89
4CA9
4CD2
4CD9
PAGE
PAGE
PAGE
6FFF

PAGE

76543210
A= NCCC/NNNN
/ CMD# / SYS#+2

If BIT 7 ZERO, then NOT VALID, JUMP to 4312

- LOAD and GO - a machine language file

- LOAD

- a machine language file

- Fetch next byte from buffer

- DISPLAY CLOCK - which is at 4CAC

- DISPLAY CALENDAR

- DISPLAY "TRACE" = (PC of INTERRUPT)

4D - BUFFER

4E - OVERLAY

52 - OVERLAY FOR LIBRARY

= END OF ALL DOS

70 and following - RAM

DCB
DEC
ERN
FCB
GAT
NRN

Device Control Block
DIRectory Entry Code

End Record Number

File Control Block
Granule Allocation Table
Next Record Number

(from 4433)
(from 4430)

84

85

4E00
4E1F

4E48
4E4E
4E87
4E90
4EA4
4EBD
4F56

4FA7
4FCO

4FF4
502A

507D
50DF
5104
511F
514C
5162
5191
51A0
51AF
51B5
51B9
51C3

4E00
4E12
4EDS8
4F50
4FA7

5027
5081

509B
50AB
50B6
50D1
50FD

5123
5141
5154
5180

TRSDOS SYMBOL TABLE - SYS1
(Human I/O Interface)

Start of JUMP TABLE
(93) //Reinitialize DOS and
(A3) //PROMPT and ACCEPT COMMANDS
JP (DE) = JUMP to LOCATION in REGISTER DE
(B3) = OBEY COMMAND (LIB or MACHINE LANGUAGE PROG)
Displays "WHAT?"
LIB Calls (SYS6)
LIB Part 1 = ASCII list of BASIC2, DEBUG, and TRACE
LIB Listing Part 2
(C3) = Move file name from location pointed to
by HL to location pointed to by DE
CONNECTORS
(D3) = Add default extension pointed
to by HL to file name
String Mover (ALPHA-NUMERIC only)
Match-Maker In BC Match list

DE = Data
Out C = Counter
DE = Address
(E3) = Evaluate inside parentheses
Evaluate (YES/NO): (ON/OFF) (Default is OFF)

Convert ASCII DECIMAL to BINARY INTEGER
Convert ASCII HEX to BINARY INTEGER
BASIC2

DEBUG

TRACE

Checks for parentheses

Six-byte buffer

w CMD 1]

"DOS READY"

"WHAT?"

TRSDOS SYMBOL TABLE - SYS2
(OPEN)

Start of JUMP TABLE

(94) = OPEN
(Ad) = INITIAL
(B4) = Add a file to the DIRectory

Change file DCB to "OPEN" = Set Flags, Load pointers
(Replaces file name)
Generate Special FCB at 5154
from buffer pointed to by HL
Move B ALPHA-NUMERIC bytes starting at locatlon
pointed to by HL to location pointed to by DE
Generate HIT Hash value
/Random start to
/Find an empty spot in HIT
Password encoder
Disk Drive Tester (Exits with Z flag set on)
(disk=in door-closed power-on)
Load HIT into RAM (Page 4D)
Save HIT from RAM onto disk
Buffer for total file description
Decrement EOF markers

4E00
4E0D
4E95
4F72
4FCE
4FF0
4FFD
500C
501B
5022
5033
503C
5040
5047
504F
5059

4E00
4F36

4E00
4E4B
4E99
4E9A
4E9E
4EAS8
4EAE
4EC6
4ECB
4ECF
4EE5
4EEA
4F2E
4F45
4F54
4F80
4FBO
4FCA
4FDB
5011
505D
50B7

DCB Device Control Block

EOF = End-of-File
FCB = File Control Block
HIT = Hash Index Table

TRSDOS SYMBOL TABLE - SYS3

Start of JUMP TABLE (old) --— (TRSDOS only)
(95) = CLOSE a file
On CLOSE, WRITE file name into FCB
(A5) = KILL a file
/SECOND PART OF 5047
Reset the A-th bit of B
READ HIT into page 51
WRITE HIT into disk from page 51
Divide (HL) by (A) but decrement if no remainder
DIR READ but increment EOF if byte number = 0
Pseudo-subroutine to get D (Track)
Get DIRectory track number
DIRectory WRITE
GAT READ and free granules

NEWDOS beginning of JUMP TABLE --- (NEWDOS only)
Formatter for COPY/CMD --- (NEWDOS only)
EOF = End-of=-File
FCB = File Control Block
GAT = Granule Allocation Table
HIT = Hash Index Table

TRSDOS SYMBOL TABLE - SYS4

Decode error coded in a Register into ASCII
ASCII data

TRSDOS SYMBOL TABLE - SYS5
(DEBUG)

Enter and Save registers

DEBUG Command loop

Register format

Full scan

Update

Display

: = Increment memory display
Decrement memory display

H = Presentation

Draw a screen display

Do another line

Line formatter

Terminate process

Branch to fetch LEVEL II cursor for own use
Register ASCII data

GO

Load register and GO

[N T 1 | I VI 1|

>

"Store a break-point

Memory modify
Register change
C & I = Single step
Single step return calculator
86

87

50C0
50CC
50DB
50E0
510E
5115
5131
5165
5180
518A
51A3
51BF
51D0
51D4
51D9
51E2
51EF
51F2
51F6
51F9
51FC

5200
5251
526B
5283
529D
52B1
52C5
52D3
52EA
5315
533A
536A
5454
5477
5504
5515
553A
5543
554C
5551
5571
5591

PAGE

5700
5748
574F
57B6

57D7
589F
58BE
58C4
5914

- Relative JUMP calculator

- Indexed calculator

- Common loop point for calculators

- Disassembly data

- (ED prefix)

- (FD & DD prefix)

- Subroutine for scan display

- Subroutine=0QUT a memory marker (To video) or 2 blanks
- (Branch for following marker)

- Fetch and echo key from keyboard

- Get a number -(ASCII HEX)- from keyboard
- Convert ASCII to HEX (C=NO/NC=0K)

- OUT byte pointed to by HL to video --- (HEX)
- OUT HL to video -=-— (HEX)
- OUT A to video —-=—- (HEX)
- OUT right nibble --- (HEX)
- OUT A and blank

- OUT blank

- OUT 3 bytes -—-- (ASCII)
- OUT 2 bytes --- (ASCII)
- OUT 1 byte -—— (ASCII)

TRSDOS SYMBOL TABLE - SYS6
(Obey LIB Commands)

- Start of JUMP TABLE

- Refuse to obey

- Do nothing

- AUTO

- Get date

- Get time

- Turn clock ON or OFF

- Display ERROR ('BAD FORMAT')

- Convert 2-digit numbers to BINARY
- "DEVICE" (Do nothing at all)

- LIBrary

- PROTect

- Encode new password

- ASCII

- VERIFY (ON or OFF)

- Check keyboard for BREAK or PAUSE

- ERROR = 'FILE SPEC REQUIRED'
- ERROR = 'DEVICE SPEC REQUIRED'
- ERROR = 'DISK ERROR IN A'

- FCB buffer A
- FCB buffer B
- ASCII

56 -- Input/Output buffer

- APPEND

~ Relay to 57B6

-~ COPY file (disk-to-disk)

- Transfer function -- use buffer A as input DCB
use buffer B as output DCB

- Dump

- Get transfer address for dump

- Display a line and quit

- ASCII

-~ KILL

592C - LIST
5994 - LOAD
59AC - PRINT

PAGE 5A -- Input/Output buffer

5B00 - ATTRIBute
5B3A - JUMP TABLE for ATTRIBute types

5B4D - Protection (of ATTRIBute)
5B69 - Change protection

5B97 - Invisible (of ATTRIBute)
5BA7 - Access password (of ATTRIBute)
5BBC - Update password (of ATTRIBute)
5BD1 - Subroutine to search for terminator
5BE0 - Branch from 5BD1 if '=' is found

5BF7 - Set new ATTRIButes into DIRectory
5C6F - DIRectory

5DE1l - Erase DIRectory from RAM

5DF1 - DIRectory with attributes

5E3E - LD DE = Track and sector of file pointed to by HL
5E67 - Match tables and ASCII

5EE0 - FREE

5F9C - RENAME

6028 - Display ERROR '"DRIVE SPEC ERROR'
604E - Display ERROR 'DUPLICATE FILE NAME'
606C - Convert BINARY into DECIMAL ASCII
60A7 - Divide = (3 bytes pointes to by HL)/C

PAGES 61 to 68 - buffer to hold DIRectory in 'DIR'

Device Control Block
File Control Block

DCB
FCB

TRSDOS RESIDENT MEMORY

4000 - (C3) / RST 1 (CF), JP 0005, and CALL 0005

4001 - (96) / Compares (HL) to byte following CF

4002 - (1C) / (RST 1 code). If true, jumps to 1D78
/ (RST 2), otherwise gives SYNTAX ERROR

4003 - (C3) / RST 2 (D7) fetches next non blank byte

4004 - (78) / using HL as a text pointer. C flag set

4005 - (1ID) / for a number, S flag for a BASIC token
Z and S are set by accumulator

4006 - (C3) / RST 3 (DF)

4007 - (90) / Compares HL and DE and sets flags

4008 - (1C)

4009 - (C3) / RST 4 (E7) Compares contents of 40AF

400A - (D9) / (number type) with 8. C clear indicates

400B - (25) / double precision, S and C set for integer

C set and S clear for single precison
Z set for string

400C - (C3) /

400D - (A2) / RST 5(EF) // JP 4BA2 = OVERLAY
400E - (4B) / // CONTROL
400F - (c3) /

4010 - (B4) / RST 6(F7) // JP 44B4 = TO

4011 - (44) / // DEBUG
4012 - (C3) /

4013 - (18) / RST 7(FF) // JP 4518 = TO

4014 - (45) / // INTERRUPTS

88

89

4015
4016
4017
4018
4019
401A
401B
401C

401D
401E
401F
4020
4021
4022
4023
4024

4025
4026
4027
4028
4029
402A
402B
402C

402D
402E
402F

4030
4031
4032
4033
4034
4035

4036
4037
4038
4039
403A
403B
403C

403D
403E
403F

4040

I %

KEYBOARD DCB *

(01)
(D8)
(43)
(00)
(00)
(00)
(4B)
(49)

/

VIDEO DCB

(07)
(5B)
(04)
(8F)
(3C)
(00)
(44)
(4F)

/

/
/

DCB type 1
/ 43D8 CONTAINS THE
/ ADDRESS OF THE DRIVER

/ KI (device name)

DCB type 7

/ ADDRESS OF

/ THE DRIVER

The

CURSOR position

/ Character in cursor
DO (device name)

LINE PRINTER DCB *

(06)
(8D)
(05)
(43)
(00)
(00)
(50)
(52)

/

/

DCB type 6

/ ADDRESS OF
/ THE DRIVER
Lines per page
/ Line counter

(not used)

/ PR (device name)

* TRSDOS GO VECTOR *

(C3)
(00)
(44)

(3E)
(A3)
(EF)
(C3)
(BB)
(44)

/
/
/

/ JUMP (Calls SyYsl -
/ TO beginning of DOS)
/ 4400

/ LD A,A3 / C7 = RST O
(conditional jump if DEBUG active)

/ RST 5

JUMP

TO

44BB

KEYBOARD MEMORY RAM *

(00)
(00)
(00)
(00)
(00)
(00)
(00)

(Row storage for debounce and keyboard
rollover routines)

CASSETTE PULSER and WIDE MODE VIDEO MEMORY *

(00)
(22)
(01)

(00)

/ CLOCK = COUNT of 25 MSEC INTERRUPTS

4042
4043

4044
4045
4046

4047
4048

4049
404A

404B
404cC

* BINARY TIME *
4041 -

404D -

404E
404F
4050

4051
4052
4053
4054
4055
4056
4057
4058
4059
405A
405B
405C

405D
405E
405F
4060
4061
4062
4063
4064

4065
4066
4067
4068
4069
406A
406B
406C
406D
406E
406F

| I O B

(00) / SECONDS
(00) / MINUTES
(00) / HOURS
BINARY DATE *
(00) / YEAR
(00) / DAY
(00) / MONTH
(00) (Storage for second overlay address)
(52)
(FF) / TOP MEMORY
(BF) / In TRSDOS and Disk BASIC
(3F) / INTERRUPT
(CO0) / DATA
INTERRUPT ADDRESSES *
(37)
(45)
(37)
(45)
(37)
(45) (All point to 4537)
(37)
(45)
(37)
(45)
(37)
(45)
(37)
(45)
(37)
(45)
DEBUG STORAGE inactive // active *
// RST // Flag for type of display
// ADDRESS // for use with RST "INTERRUPTS"
/ RST DATA
// RST // // also - MEMORY POINTER
// ADDRESS // // during display
/ RST DATA
(LOW) / DEBUG DISPLAY // POINTS to DEBUG
(HIGH) / POINTER // REGISTER DATA
DEBUG REGISTER HOLDERS (OFF STACK) *
F
A
C
B
E
D
L
H
Fl
A!
CI

4070 - B'
4071 - E?
4072 - D’
4073 - L'
4074 - H!
4075 - IX (LOW)
4076 - IX (HIGH)
4077 - IY (LOwW)
4078 - 1Y (HIGH)
4079 - SP (LOW) // OLD
407A - SP (HIGH) // OLD
407B - PC (LOW)
407C - PC (HIGH)
407D - // Null in DOS (Initialization stack pointer
407E - // in Level II BASIC)
407F - //
4300 - (11) // TRACK of DRIVE 0
4301 - (11) // TRACK of DRIVE 1
4302 - (11) // TRACK of DRIVE 2
4303 - (11) // TRACK of DRIVE 3
4304 - (11) // DIRECTORY TRACK of DRIVE 0
4305 - (11) // DIRECTORY TRACK of DRIVE 1
4306 - (11) // DIRECTORY TRACK of DRIVE 2
4307 - (11) // DIRECTORY TRACK of DRIVE 3
4308 - (00) / Drive number in binary (Data for 4600)
4309 - (01) / Bit SET indicates DRIVE number
430A - (80/FF)
430B - (44/66)
430C - (FE)
430D - (4B)
430E - (87) // Hold last command to DOS
430F - (01) / HIGHBIT = DEBUG FLAG
LOWBIT = PROTECTION FLAG
BIT 4 = FLAG for SYS6
4310 - (00)
4311 - (11)
4312 - (C3) // Jump director for position
commands to EF - DOS commands
4313 - (4D/43)
4314 - (4B/5D)
4315 - (00/C3) // CLEAR while doing overlay
C3 when DEBUG FLAG SET
4316 - (FF/OF)
4317 - (FF/40)
* KEYBOARD BUFFER (64 BYTES?) *
4318 - (42)
4319 - (41)
431A - (53)
431B - (49)
431C - (43)
431D - (0D)
431E - (2C)
431F - (49)
4320 - (29)
4321 -~ (0D)
4322 - (FF)

]

4328 - (FF)

4330
4338
4340
4348
4350

FF
FF

FE
XX
XX
XX
XX

FF
FF

FB

XX
XX

FF
FF

FF
FF

00

XX

FF
FF

XX
XX

FF
FF

(FF)
(FF)
(00)
(00)
(00)

Data Organization on Disk

Data is organized on disk in a definite format. Sections
of the format are separated by filler blocks to allow
synchronization. The filler blocks usually contain 14
bytes of FF and 6 bytes of 00. Here is a typical file
organization.

FF FF FF FF FF FF FF FF
FF FF 00 00 00 00 00 00 Filler block

Address mark

Track number, separator
Sector number

Format multiplier

2 Byte checksum

FF FF FF FF FF FF FF FF

FF FF 00 00 00 O 00 O Filler block
Data mark

XX Data
Checksum

FF FF FF FF FF FF FF FF
FF FF 00 00 00 00 00 00 Filler block

92

FD1771-01 Floppy Disk
Formatter/Controller

Western Digital Corporation

FEATURES
® SOFT SECTOR FORMAT COMPATIBILITY
® AUTOMATIC TRACK SEEK WITH VERIFICATION

® READ MODE
Single/Multiple Sector Write with Automatic Sector
Search or Entire Track Read
Selectable 128 Byte or Variable Length Sector

® WRITE MODE
Single/Multiple Sector Write with Automatic Sector
Search ;
Entire Track Write for Diskette Formatting

® PROGRAMMABLE CONTROLS
Selectable Track-to-Track Stepping Time
Selectable Head Setting and Head Engage Times
Selectable Three Phase or Step and Direction and
Head Positioning Motor Controls

® SYSTEM COMPATIBILITY
Double Buffering of Data 8-Bit Bi-Directional Bus for
Data, Control and Status
DMA or Programmed Data Transfers
All Inputs and Outputs are TTL Compatible

APPLICATIONS
@ FLOPPY DISK DRIVE INTERFACE

@ SINGLE OR MULTIPLE DRIVE CONTROLLER/
FORMATTER

® NEW MINI-FLOPPY CONTROLLER

GENERAL DESCRIPTION

The FD1771 is a MOS/LSI device that performs the
functions of a Floppy Disk Controller/Formatter. The
device is designed to be included in the disk drive elec-
tronics, and contains a flexible interface organization that
accommodates the interface signals from most drive
manufacturers. The FD1771 is compatible with the IBM
3740 data entry system format.

The processor interface consists of an 8-bit bi-
directional bus for data, status, and control word trans-
fers. The FD1771 is set up to operate on a multiplexed bus
with other bus-oriented devices.

The FD1771 is fabricated in N-channel Silicon Gate
MOS technology and is TTL compatible on all inputs and
outputs. The A and B suffixes are for ceramic and plastic
packages, respectively.

FDDATA
~ DATA) ,> _ o fDCLock
Ve (-5V)] 1 S 4087 vpp(+12v) A0 - 5V
WE] 2 3917 INTRQ a X753 /
& 38[7 oRQ = €1
q 4 B B COMPUTER FLOPPY DISK - FLOPPY
RE LJ 37{3 DINT INTERFACE AE CONTROLLER: wD DISK
Ag O 5 36[7) WPAT aE FORMATTER o DRIVE
w
Ay (] 8 s P
J—— MR WPRT
bAld] 7 3417 TROO
DAL (] 8 13| WF WF
BALZ (] 9 32} READY 1
OAT3 Qw0 317 wo 5y TROO
— FD1771 FD17T1
Dals (] n 3007 WG READY
BALS (12 291 1G43 TG 48
DATE (13 28[7) HLD 10K 10K PHi STEP
7]14 <
DAL7 (] 277 FODATA PH2 DIRC
PHi/STEP []15 2617 FDCLK ORQ
BES) : o INTRO PH8
PH2/DIRC (] 16 25077 XTDS
PH3 [17 24[7 CLK CLK (2 MHZ) - ,
3 8 23 HLT "
Nt / =
MR]9 22 TEsT " -T]
(GND)Vsg [] 20 213 Ve 1+ 5v) S
HLD [
LT © 1 ONE sHOT
IF
PIN CONNECTIONS Vss Vaa Voo Ve Lo UFusED

L T T

= 5 12 5

FD1771 SYSTEM BLOCK DIAGRAM

94

ORGANIZATION

The Floppy Disk Formatter block diagram is illustrated
below. The primary sections include the parallel
processor interface and the Floppy Disk interface.

Data Shift Register: This 8-bit register assembles serial
data from the Read Data input (FDDATA) during Read
operations and transfers serial data to the Write Data out-
put during Write operations.

Data Register: This 8-bit register is used as a holding
register during Disk Read and Write operations. In Disk
Read operations the assembled data byte is transferred in
parallel to the Data Register from the Data Shift Register.
In Disk Write operations information is transferred in
parallel from the Data Register to the Data Shift Register.

Function

PIN OUTS
Pin No. Pin Name Symbol
1 Power Supplies Vgg/NC
19 MASTER RESET MR
20 Vss
21 Vece
40 VbD
Computer Interface
2 WRITE ENABLE WE
3 CHIP SELECT [
4 READ ENABLE RE
56 REGISTER SELECT Ao, A1
LINES
7-14 DATA ACCESS LINES | DALO-DAL7Y
24 CLOCK CLK
38 DATA REQUEST DRQ
39 INTERRUPT REQUEST | INTRQ
Floppy Disk Interface:
15 Phase 1/Step PH1/STEP

-5V

A logic low on this input resets the device and loads
“03” into the command register. The Not Ready
(Status bit 7) is reset during MR ACTIVE. When MR
is brought to a logic high, a Restore Command is
executed, regardless of the state of the Ready signal
from the drive.

Ground

+5V

+12V

A logic low on this input gates data on the DAL into
the selected register when CS is low.

A logic low on thisinput selects the chip and enables
computer communication with the device.

A logic low on this input controls the placeme_rlg_of
data from a selected register on the DAL whenCSiis
low.

These inputs select the register to receive/transfer
data on the DAL lines under RE and WE control:

A1 Ao RE WE

0 0 Status Register Command Register
0 1 Track Register Track Register

1 0 Sector Register Sector Register

1 1 Data Register Data Register

Eight bit inverted bidirectional bus used for transfer
of data, control, and status. This bus is a receiver
enabled by WE or a transmitter enabled by RE.

This input requires a free-running 2 MHz + 1% square
wave clock for internal timing reference.

This open drain output indicates that the DR con-
tains assembled data in Read operations, or the DR
is empty in Write operations. This signal is reset
when serviced by the computer through reading or
loading the DR in Read or Write operation, respec-
tively. Use 10K pull-up resistor to +5.

This open drain output is set at the completion or
termination of any operation and is reset when a
new command is loaded into the command register.
Use 10K pull-up resistor to +5.

If the 3PM input is a logic low the three-phase motor
control is selected and PH1, PHZ, and PH3 outputs

95

Pin No. Pin Name Symbol Function

16 Phase 2/Direction PH2/DIRC | form aoneactivelowsignaloutofthree. PH1isactive
low after MR. if the 3PM input is a logic high the step

17 Phase 3 PH3 and direction motor control is selected. The step
output contains a 4 usec high signal for each step

18 3-Phase Motor Select | 3PM and the direction output is active high when stepping
in; active low when stepping out.

22 TEST TEST This input is used for testing purposes only and
should be tied to +5V or left open by the user.

23 HEAD LOAD TIMING | HLT The HLT input is sampled after 10 ms. When a logic
high is sampled on the HLT input the head is assumed
to be engaged.

25 EXTERNAL DATA XTDS A logic low on this input selects external data

SEPARATION separation. A logic high or open selects the internal
data separator.

26 FLOPPY DISK CLOCK | FDCLOCK | This input receives the externally separated clock

(External Separation) when XTDS =0. If XTDS = 1, this input should be tied
to a logic high.

27 FLOPPY DISK DATA FDDATA | Thisinput receives the raw read disk data if XTDS=1,
or the externally separated data if XTDS=0.

28 HEAD LOAD HLD The HLD output controls the loading of the Read-
Write head against the media.

29 Track Greater than 43 | TG43 This output informs the drive that the Read-Write
head is positioned between tracks44-76. This output
is valid only during Read and Write commands.

30 WRITE GATE WG This output is made valid when writing is to be per-
formed on the diskette.

31 WRITE DATA wD This output contains both clock and data bits of
500 ns duration.

32 Ready READY This input indicates disk readiness and is sampled
for a logic high before Read or Write commands are
performed. If Ready is low, the Read or Write oper-
ation is not performed and an interrupt is generated.
A Seek operation is performed regardless of the state
of Ready. The Ready input appears in inverted format
as Status Register bit 7.

33 WRITE FAULT WF This input detects wiring faults indications from the
drive. When WG=1 and WF goes low, the current
Write command is terminated and the Write Fault
status bit is set. The WF input should be made inactive
(high) when WG becomes inactive.

34 TRACK 00 TROO This input informs the FD1771 that the Read-Write
head is positioned over Track 00 when a logic low.

35 INDEX PULSE P Input, when low for a minimum of 10 usec, informs
the FD1771 when an index mark is encountered on
the diskette.

36 WRITE PROTECT WPRT This input is sampled whenever a Write command is
received. A logic low terminates the command and
sets the Write Protect status bit.

37 DISK INITIALIZATION | DINT The iput is sampled whenever a Write Track com-

mand is received. If DINT=0, the operation is termin-
ated and the Write Protect status bit is set.

96

When executing the Seek command, the Data Register
holds the address of the desired Track position. This
register can be loaded from the DAL and gated onto the
DAL under processor control.

Track Reglster: This 8-bit register holds the track number
of the current Read/Write head position. ltisincremented
by one every time the head is stepped in (towards track
76) and decremented by one when the head is stepped out
(towards track 00). The contents of the register are
compared with the recorded track number in the 1D field
during disk Read, Write, and Verify operations. The Track
Register can be loaded from or transferred to the DAL.
This Register should not be loaded when this device is
busy.

Sector Reglster (SR): This 8-bit register holds the address
of the desired sector position. The contents of the register
are compared with the recorded sector number in the ID
field during disk Read or Write operations. The Sector
Register contents can be loaded from or transferred to
the DAL. This register should not be loaded when the
device is busy.

Command Reglster (CR): This 8-bit register holds the
command presently being executed. This register should
not be loaded when the device is busy unless the
execution of the current command is to be overridden.
This latter action results in an interrupt. The command
register can be loaded from the DAL, but not read onto the
DAL.

Status Register (STR): This 8-bit register holds device
Status information. The meaning of the Status bits are a
function of the contents of the Command Register. This
register can be read onto the DAL, but notloaded from the
DAL.

CRC Logle: This logic is used to check or to generate the
16-bit Cyclic Redundancy Check (CRC). The polynomial
is: G(x) = x"® + x12 + x5 + d1.

The CRC includes all information starting with the
address mark and up to the CRC characters. The CRC
register is preset to ones prior to data being shifted
through the circuit.

A —
(DAL)
A
DATA OUT
BUFFERS
3
DATA COMMAND SECTOR TRACK q_:_ STATUS
REG REG REG REG REG
% FD DATA
DATA DATA [@——
o S SEPA-
REG SHIFT " RATOR |, FD CLOCK
| L N
L | U XTDS
WRITE DATA AM
< DETECTOR
(TO DISK)
CRC LOGIC |«g WG
TG43
DRQ WPRT
INTRQ ol v_\—p
- AR TIMING AND DISK o r
VR CONTROL CONTROL INTERFACE TROO
R <
CcS CONTROL READY
R CONTROL CONTROL EHI/STEP
WE . <2 PH2/DIRC
AQ PH3
Al e 3 PM
& , DINT
HLD
CLK (2 MHZ) . TS S

FD1771 BLOCK DIAGRAM

Arlthmetic/Logic Unit (ALU): The ALU is a serial
comparator, incrementer, and decrementer and is used
for register modification and comparisons with the disk
recorded ID field.

AM Detector: The Address Mark detectoris used to detect
ID, Data, and Index address marks during Read and Write
operations.

Timing and Control: All computer and Floppy Disk
Interface controls are generated through this logic. The
internal device timing is generated from a 2.0 MHz
external crystal clock.

PROCESSOR INTERFACE

The interface to the processorisaccomplished through
the eight Data Access Lines (DAL) and associated control
97

signals. The DAL are used to transfer Data, Status, and
Control words out of, or into the FD1771. The DAL are
three-state buffers that are enabled as output drivers
when Chip Select (CS) and Read Enable (RE) are active
(tow logic state) or act as input receivers when CS and
Write Enable (WE) are active.

When transfer of data with the Fioppy Disk Controlleris
required by the host processor, the device address is
decoded and CS is made low. The least-significant
address bits A1 and AO, combined with the signals RE
during a Read operation or WE during a Write operation
are interpreted as selecting the following registers:

A1-A0 READ (RE) WRITE (WE)
0 0 | Status Register | Command Register
0 1 Track Register Track Register
1 0 | Sector Register | Sector Register
11 Data Register Data Register

During Director Memory Access (DMA) types of data
transfers between the Data Register of the FD1771 and the
Processor, the Data Request (DRQ) outputis used in Data
Transfer control. This signal also appears as status bit 1
during Read and Write operations.

On Disk Read operations the Data Request is activated
(set high) when an assembled serial input byte is
transferred in parallel to the Data Register. This bit is
cleared when the Data Register is read by the processor. If
the Data Register is read after one or more characters are
lost, by having new data transferred into the register prior
to processor readout, the Lost Data bit is set in the Status
Register. The Read operation continues until the end of
sector is reached.

On Disk Write operations the Data Request is activated
when the Data Register transfers its contents to the Data
Shift Register, and requires a new data byte. It is reset
when the Data Register is loaded with new data by the
processor. If new data is not loaded at the time the next
serial byte is required by the Floppy Disk, a byte of zeroes
is written on the diskette and the Lost Data bit is set in the
Status Register.

The Lost Data bit and certain other bits in the Status
Register will activate the interrupt request (INTRQ). The
interrupt line is also activated with normal completion or
abnormal termination of all controller operations. The
INTRQ signal remains active until reset by reading the
Status Register to the processor or by the loading of the
Command Register. In addition, the INTRQ is generated if
a Force Interrupt command condition is met.

FLOPPY DISK INTERFACE

The Floppy Disk interface consists of head positioning
controls write gate controls, and data transfers. A 2.0
MHz £ 1% square wave clock is required at the CLK input
for internal control timing (may be 1.0 MHz for mini

floppy).

HEAD POSITIONING

Four commands cause positioning of the Read-Write
head (see Command Section). The period of each
positioning step is specified by the r field in bits 1 and 0 of
the command word. After the last directional step, an
additional 10 milliseconds of head setting time takes
place. The four programmable stepping rates are
tabulated below.

The rates (shown in Table 1) can be applied to a Three-
Phase Motor or a Step-Direction Motor through the
device interface. When the 3PM input is connected to
ground, the device operates with a three phase motor
control interface, with one active low signal per phase on
the three output signals PH1, PH2, and PH3. The stepping
sequence, when steppingin, is Phases 1-2-3-1, and when
stepping out, Phases 1-3-2-1. Phase 1 is active low after
Master Reset. Note: PH3 needs an inverter if used.

The Step-Direction Motor Control interface is activated
by leaving input 3PM open or connecting it to +5V. The
Phase 1 pin PH1 becomes a Step pulse of 4 microseconds
width. The Phase 2 pin PH2 becomes a direction control

with a high voltage on this pin indicating a Step In, and a
low voltage indicating a Step Out. The Direction output is
valid a minimum of 24 s prior to the activation of the
Step pulse.

When a Seek, Step or Restore command is executed, an
optional verification of Read-Write head position can be
performed by setting bit 2 in the command word toalogic
1. The verification operation begins at the end of the 10
millisecond settling time after the head is loaded against
the media. The track number from the first encountered
ID Field is compared against the contents of the Track
Register. If the track numbers compare and the ID Field
Cyclic Redundancy Check (CRC) is correct, the verify
operation is complete. If track comparison is not made but
the CRC checks, an interrupt is generated, the Seek Error
status (Bit 4) is set and the Busy status bit is reset.

Table 1. STEPPING RATES

1771-X1 1771-X1 1771 or -X1 1771 or -X1
CLK=2 MHz | CLK=1 MHz | CLK=2 MHz CLK=1 MHz
rioro TEST=1 TEST=1 TEST=0 TEST=0
00 6ms 12ms Approx. Approx.
0 1 Bms 12ms 400us* 800us™
10 10ms 20ms
11 20ms 40ms

*For exact times consult WDC.

The Head Load (HLD) output controls the movement of
the read/write head against the disk for data recording or
retrieval. It isactivated at the beginning of a Read, Write (E
flag On) or Verify operation, or a Seek or Step operation
with the head load bit, h, a logic one remains activated
until the third index pulse following the last operation
which uses the read/write head. Reading or Writing does
not occur until a minimum of 10 msec delay after the HLD
signal is made active. If executing the type 2 commands
with the E flag off, there is no 10 msec delay and the head
is assumed to be engaged. The delay is determined by
sampling of the Head Load Timing (HLT) input after 10
msec. A high state input, generated from the Head Load
output transition and delayed externally, identifies
engagement of the head against the disk. In the Seek and
Step commands, the head is loaded at the start of the
command execution when the h bit is a logic one. In a
verify command the head is loaded after stepping to the
destination track on the disk whenever the h bit is a logic
zero.

DISK READ OPERATION

The 2.0 MHz external clock provided to the device is
internally divided by 4 to form the 500 kHz clock rate for
data transfer. When reading data from a diskette this
divider is synchronized to transitions of the Read Data
(FDDATA) input. When a transition does not occur on the
500 kHz clock active state, the clock divider circuitinjects
a clock to maintain a continuous 500 kHz data clock. The
500 kHz data clock is further divided by 2 internally to
separate the clock and information bits. The divider is
phased to the information by the detection of the address
mark.

In the internal data read and separation mode the Read
Data input toggles from one state to the opposite state for
each logic one bit of clock or information. This signal can
be derived from the amplified, differentiated, and sliced
Read Head signal, or by the output of a flip-flop toggling
on the Read Data pulses. This input is sampled by the 2
MHz clock to detect transitions.

98

The chip can also operate on externally separated data,
as supplied by methods such as Phase Lock loop, One
Shots, or variable frequency oscillators. This is
accomplished by grounding the External Data Separator
(XTDS) INPUT. When the Read Data input makes a high-
to-low transition, the information input to the FDDATA
line is clocked into the Data Shift Register. The assembled
8-bit datafrom the Data Shift Register are then transferred
to the Data Register.

The normal sector length for Read or Write operations
with the IBM 3740 format is 128 bytes. This format or
binary multiples of 128 bytes will be adopted by setting a
logic 1 in Bit 3 of the Read and Write commands.
Additionally, a variable sector length feature is provided
which allows an indicator recorded in the ID Field to
control the length of the sector. Variable sector lengths
can be read or written in Read or Write commands,
respectively, by setting a logic 0 in Bit 3 of the command
word. The sector length indicator specifies the number of
16 byte groups of 16 x N, where N is equal to 1 to 256
groups. An indicator of all zeroes is interpreted as 256
sixteen byte groups.

DISK WRITE OPERATION

After data is loaded from the processor into the Data
Register, and is transferred to the Data Shift Register, data
will be shifted serially through the Write Data (WD)
output. Interlaced with each bit of data is a positive clock
pulse of 0.5 microsecond duration. This signal may be
used to externally toggle a flip-flop to control the
direction of Write Current flow.

When writing is to take place on the diskette the Write
Gate (WG) output is activated, allowing current to flow
into the Read/Write head. As a precaution to erroneous
writing, the first data byte must be loaded into the Data
Register in response to a Data Request from the FD1771
before the Write Gate signal can be activated.

Writing is inhibited when the Write Protect input is a
logic low, in which case any Write command is
immediately terminated, an interrupt is generated and the
Write Protect status bit is set. The Write Fault input, when
activated, signifies a writing fault condition detected in
disk drive electronics such as failure to detect write
current flow when the Write Gate is activated. On
detection of this fault the FD1771 terminates the current
command, and sets the Write Fault bit (bit 5) in the Status
Word. The Write Fault input should be made inactive
when the Write Gate output becomes inactive.

Whenever a Read or Write command is received the
FD1771 samples the READY input. If thisinputis logic low
the command is not executed and an interrupt is
generated. The Seek or Step commands are performed
regardless of the state of the READY input.

-COMMAND DESCRIPTION

The FD1771 will accept and execute eleven commands.
Command words should only be loaded in the Command
Register when the Busy status bit is off (status bit0). The
one exception is the Force Interrupt command. Whenever
a command is being executed, the Busy status bit is set.
When a command is completed, an interrupt is generated
and the Busy status bit is reset. The Status Register
indicates whether the completed command encountered
an error or was fault-free. For ease of discussion,
commands are divided into four types. Commands and
types are summarized in Table 2.

99

TYPE 1 COMMANDS

The Type 1 Commands include the RESTORE, SEEK,
STEP, STEP-IN, and STEP-OUT commands. Each of the
Type 1 Commands contain a rate field ror1), which
determines the stepping motor rate as defined in Table 1,
below.

The Type 1 Commands contain a head load flag (h)
which determines if the head is to be loaded at the

Table 2. COMMAND SUMMARY

BITS
TYPE COMMAND 76 5 43 2 1 0
| Restore 000 Oh V 1 10
| Seek 000 1t h V r1t r0
| Step 001 uhVrr0
l Step In 010 uhV r r0
| Step Out 011 uhV t1 10
I Read Command 100 mb&E 0 O
1 Write Command 101 mb E at a0
11 Read Address 110 00 E 0O O
1 Read Track 111 001 0 s
11 Write Track 111 101 0 O
v Force Interrupt 110 113 1o 14 4

Note: Bits shown in TRUE form.

Table 3. FLAG SUMMARY

TYPE 1
h=Head L.oad flag (Bit 3)

h =1, Load head at beginning
h =0, Do not load head at beginning

V=Verify flag (Bit 2)
V =1, Verify on last track
V =0, No verify
r1r0=Stepping motor rate (Bits 1-0)

Refer to Table 1 for rate summary
u=Update flag (Bit 4)

u =1, Update Track register
u = 0, No update

Table 4. FLAG SUMMARY

TYPE Il

m = Multiple Record flag (Bit 4)

m=0, Single Record
m=1, Multiple Records

b = Block length flag (Bit 3)

b=1, IBM format (128 to 1024 bytes)
b=0, Non-IBM format (16 to 4096 bytes)

ata0=Data Address Mark (Bits 1-0)

ala0 = 00,FB (Data Mark)

aia0 = 01,FA (User defined)

ata0 = 10,F9 (User defined)

ata0 = 11,F8 (Deleted Data Mark)

Table 5. FLAG SUMMARY

TYPE 11l

s = Synchronize flag (Bit 0)

s$=0, Synchronize to AM
1

's=1, Do Not Synchronize to AM

TYPE IV

li = Interrupt Condition flags (Bits 3-0)

lp=1, Not Ready to Ready Transition
11=1, Ready to Not Ready Transition
I12=1, Index Pulse

I3=1, Immediate interrupt

E = Enable HLD to 10 msec Delay

E=1, Enable HLD, HLT and 10 msec Delay
E=0, Head is assumed Engaged and thereis
no 10 msec Delay

beginning of the command. If h=1, the head is loaded at
the beginning of the command (HLD output is made
active). If h=0, HLD is deactivated. Once the head is
loaded, the head will remain engaged until the FD1771
receives a command that specifically disengages the
head. If the FD1771 does not receive any commands after
two revolutions of the disk, the head will be automatically
disengaged (HLD made inactive). The Head Load Timing
Input is sampled after a 10 ms delay, wahen reading or
writing on the disk is to occur.

The Type 1 Commands also contain a verification (V)
flag which determines if a verification operation is to take
place on the destination track. If V=1, a verification is
performed; if V=0, no verification is performed.

During verification, the head is loaded and after an
internal 10 ms delay, the HLT inputis sampled. When HLT
is active (logic true), the first encountered ID field is read
off the disk. The track address of the ID Field is then
compared to the Track Register, if there is a match and a
valid ID CRC, the verification is complete, an interrupt is
generated and the BUSY status bit is reset. Ifthereisnota
match but there is valid ID CRC, an interrupt is generated,
the Seek Error status bit (Status Bit 4) is set and the BUSY
status bit is reset. If there is a match but not a valid CRC
the CRC error status bit is set (Status Bit 3), and the next
encountered ID Field is read from the disk for the
verification operation. If an ID Field with a valid CRC
cannot be found after two revolutions of the disk, the
FD1771 terminates the operation and sends an interrupt
(INTRQ).

The STEP, STEP-IN, and STEP-OUT commands
contain an UPDATE flag (U). When U=1, the track register
is updated by one for each step. When U=0, the track
register is not updated.

HAS

A TYPE |

< COMMAND BEEN

RECEIVED
2

SET BUSY, RESET CAC,
SEEK ERROR. DRQ. INTRQ

YES

SET HLD RESET HLD

SET
DIRECTION

RESET
OIRECTION

¢ NO ~RESTORE u-1

- TYPE | COMMAND FLOW

RESTORE (SEEK TRACK 0)

Upon receipt of this command the Track 00 (TROO)
input is sampled. If TROO is active low indicating the Read-
Write head is positioned overtrack 0, the Track Register is
loaded with zeroes and an interrupt is generated. If TROO
is not active low, stepping pulses (pins 15 to 17) at arate
specified by the rirofield are issued until the TROO input is
activated. At this time the TR is loaded with zeroes and an
interrupt is generated. If the TROO input does not go active
low after 255 stepping pulses, the FD1771 terminates
operation, interrupts, and sets the Seek error status bit.
Note that the RESTORE command is executed when MR
goes from an active to an inactive state. A verification
operation takes place if the V flag is set. The h bit allows
the head to be loaded at the start of command.

SEEK

The command assumes that the Track Register
contains the track number of the current position of the
Read-Write head and the Data Register contains the
desired track number. The FD1771 will update the Track
register and issue stepping pulses in the appropriate
direction until the contents of the Track register are equal

100

\/

(DR TO DSA l

SET DIRECTION

RESET DIRECTION
. T

YES

NO
| -1 TOTR] | +1TOTR 1
. T

HEAD AT

TRACK 0 AND

DIRECTION
B

ISSUE
ONE STEP PULSE

!

DELAY ACCORDING
TO R1. RO FIELD

COMMAND
A STEP, STEP-IN.
OR STEP-OUT
?

YES

TYPE | COMMAND FLOW

to the contents of the data register (the desired track
location). A verification operation takes place if the V flag
is on. The h bit allows the head to be loaded at the start of
the command. An interrupt is generated at the completion
of the command.

STEP

Upon receipt of this command, the FD1771 issues one
stepping pulse to the disk drive. The stepping motor
direction is the same as in the previous step command.
After a delay determined by the riro field, a verification
takes place if the V flag is on. If the U flag ison, the TR is
updated. The h bit allows the head to be loaded at the start
of the command. An interrupt is generated at the
completion of the command.

101

NO
INTRQ RESEY BUSY
| YES

INTRQ. RESET BUSY
SET SEEK ERROR

HAS
1D AM BEEN
DETECTED
?

NO

ERROR

DOES

TR= TRACK

ADDRESS OF 1D

FIELD
?

YES

INTRQ INTRQ, RESET BUSY
RESET BUSY SET SEEK ERROR

NOTE: 1F TEST - 0 THERE IS NO 10 MS DELAY
IF TEST 1 AND CLK ' 1 MHz. THERE IS A 20MS DELAY

TYPE | COMMAND FLOW

STEP-IN

Upon receipt of this command, the FD1771 issues one
stepping pulse in the direction towards track 76. If the U
flag is on, the Track Register is incremented by one. After
a delay determined by the riro field, a verification takes
place if the V flag is on. The h bit allows the head to be
loaded at the start of the command. An interrupt is
generated at the completion of the command.

STEP-OUT

Upon receipt of this command, the FD1771 issues one
stepping pulse in the direction towards track 0. If the U
flag is on, the TR is decremented by one. After a delay
determined by the rirofield, a verification takes place if the
V flag is on. The h bit allows the head to be loaded at the
start of the command. An interrupt is generated at the
completion of the command.

TYPE Il COMMANDS

The Type || Commands include the Read Sector(s) and
Write Sector(s) commands. Prior to loading the Type Il

command into the COMMAND REGISTER, the computer
must load the Sector Register with the desired sector
number. Upon receipt of the Type || command, the Busy
status bit is set. If the E flag=1 (this is the normal case),
HLD is made active and HLT is sampled after a 10 msec
delay. If the E flag is 0, the head is assumed to be engaged
and there is no 10 msec delay. The ID field and the Data
Field format are shown below.

When an ID field is located on the disk, the FD1771
compares the track number of the ID field with the Track
Register. If there is not a match, the next encountered ID
field isread and acomparison isagain made. Iftherewas a
match, the next encountered ID field is compared with the
Sector Register. If there is not a Sector match, the next
encountered ID field is read off the disk and comparisons

again made. If the ID field CRC is correct, the data field is
then located and will be either written into, or read from
depending on the command. The FD1771 must find an ID
field with a track number, Sector number, and CRC within
two revolutions of the disk; otherwise, the Record Not
Found status bit is set (Status bit 3) and the command is
terminated with an interrupt.

Each of the Type Il Commands contain a (b) flag which
in conjunction with the sector length field contents of the
ID determines the length (number of characters) of the
Data field.

For IBM 3740 compatibility, the b flag should equal 1.
The numbers of bytes in the data field (sector) is the 128 x
2" where n = 0,1,2,3.

1D TRACK SECTOR SECTOR CRC |CRC BATA CRC |CRC
GAP | AM NUMBER | ZERO | NUMBER LENGTH 1 2 GAP AM DATAFIELD]| 1 2
ID FIELD DATA FIELD

IDAM = ID Address Mark — DATA = (FE)16 CLK = (C7)1g
Data AM = Data Address Mark — DATA = (F8, F9, FA, or FB),

CLK = (C7)4¢
Forb =1
Sector Length Number of Bytes
Field (Hex) in Sector (Decimal)
00 128
01 256
02 512
03 1024

When the b flag equals zero, the sector length field (n)
muitiplied by 16 determines the number of bytes in the
sector or data field as shown below.

Forb=0
Sector Length Number of Bytes
Field (Hex) in Sector (Decimal)
01 16
02 32
03 48
04 64
FF 4080
00 4096

Each of the Type Il commands also contain a (m) flag
which determines if the multiple records (sectors) are to
be read or written, depending uponthe command. lf m=0 a
single sector is read or written and an interrupt is
generated at the completion of the command. If m=1,
mulitple records are read or written with the sector
register internaily updated so that an address verification
can occur on the next record. The FD1771 will continue to
read or write muitiple records and update the sector
register until the sector register exceeds the number of
sectors on the track or until the Force Interrupt command
is loaded into the command register, which terminated
the command and generates an interrupt.

IS
TYPE Il
COMMAND
RECEIVED

NO

SET BUSY RESET DRQ LOSTY
DATA RECORD NOT FOUND &
STATUS BITS 5 8 6 INTRQ

INTRQ
RESET BUSY

SET HLD

"SEE NOTE

HAS

10 MS

EXPIRED
k]

SET
TG43

INTRQ. RESET BUSY
SET WRITE PROTECT

NOTE IF TEST 0 THERE IS NO10MSDELAY
1 TEST VAND CLK 1 MHz THERE 15 A 20MS DELAY

TYPE Il COMMAND FLOW
102

READ COMMAND

Upon receipt of the Read command, the head is loaded,
the BUSY status bit set, and when an ID field is
encountered that has the correct track number, correct
sector number, and correct CRC, the data field is
presented to the computer. The Data Address Mark of the

data field must be found within 28 bytes of the correct
field: if not, the Record Not Found status bit is set and the
operation is terminated. When the first character or byte
of the data field has been shifted through the DSR, it is
transferred to the DR, and DRQ is generated. When the
next byte is accumulated in the DSR, it is transferred to

INTRQ, RESET BUSY

HAVE
3 INDEX HOLES >—&>
SET RECORD-NOT FOUND,

PASSED
2

' no

HAS

NO IDAM

BEEN
DETECTED
B

DOES

TR = TRACK

ADODRESS OF 1D

FIELD
i)

NO

NO SR : SECTOR
ADDRESS OF 1D

FIELD
2

| YES

BRING IN SECTOR LENGTH FIELD
COMPUTE LENGTH FROM b FLAG
STORE LENGTH IN INTERNAL
REGISTER

1S

THERE A

CRC ERROR
2

SET CRC YES
STATUS ERROR =

READ

9

HAS

DATA AM

< OCCURED WITHIN

12-28 BYTES,
2

INTRQ, RESET BUSY
SET RECORD-NOT FOUND

PUT RECORD TYPE IN
STATUS REG BITS 4 & 5

o YES

FIRST BYTE
< BEEN ASSEMBLED
IN DSR

HAS
NEXT BYTE

BEEN ASSEMBLED

READ BY

COMPUTER

DRQ - 0
2

SET DATA
LOST

I

HAVE

ALL BYTES

BEEN INPUT
7

SECTOR REG

U ‘ INTRQ RESET BUSY ,

INTRQ RESET BUSY
SET CRC ERROR

TYPE Il COMMAND FLOW

the DR and another DRQ is generated. |f the computer has
not read the previous contents of the DR before a new
character is transferred that character is lost and the Lost
Data status bit is set. This sequence continues until the
complete data field has been input to the computer. If
there is a CRC error at the end of the data field, the CRC
error status bit is set, and the command is terminated
(even if it is a multiple record command).

At the end of the Read operation, the type of Data
Address Mark encountered in the data field is recorded in
the Status Register (Bits 5 and 6) as shown below.

Status Status Data AM
Bit 5 Bit 6 (Hex)
0 0 FB
0 1 FA
1 0 F9
1 1 F8

103

TYPE Il COMMAND FLOW

WRITE COMMAND

Upon receipt of the Write command, the head is loaded
(HLD active) and the BUSY status bit is set. When an ID
field is encountered that has the correct track number,
correct sector number, and correct CRC, a DRQ is
generated. The FD1771 counts off 11 bytes from the CRC
field and the Write Gate (WG) output is made active if the
DRQ is serviced (i.e., the DR has been loaded by the
computer). If DRQ has not been serviced, thecommand is
terminated and the Lost Data status bit is set. If the DRQ
has been serviced, the WG is made active and six bytes of
zeros are then written on the disk. At this time the Data
Address Mark is then written on the disk as determined by
the aao field of the command as shown on next page.

The FD1771 then writes the data field and generates
DRQs to the computer. If the DRQ is not serviced in time
for continuous writing the Lost Data status bitissetand a
byte of zeros is written on the disk. The command is not
terminated. After the last data byte has been written on the

Data Mark Clock Mark
ail a0 (Hex) (Hex)
0 0 FB C7
0 1 FA Cc7
1 0 F9 C7

disk, the two-byte CRC is computed internally and written
on the disk followed by one byte gap of logic ones. The
WG outputs is then deactivated.

\

[DELAY 2 BYTES OF GAP]

1

l SET DRQ

i

l DELAY 8 BYTES OF GAP

Ha
DR BEEN
LOADED BY
COMPUTER
{DAQ « 0)

?

e{ INTRQ RESET 8USY
SET LOST DATA

5 YES
\

l DELAY 1 BYTE OF GAP]

i

TURN ON WG & WRITE
6 BYTES OF ZEROS

i

WRITE DATA AM
ACCORDING TO At, AQ FIELD
OF WRITE COMMAND

I
=1

[DR TO DSR, SET DRQ]

!

l WRITE BYTE TO DISK]

SET DATA
LOST
WRITE BYTE
OF ZERQS

> WRITE CAC
WRITE 1 BYTE OF ONES

TURN OFF WG

HAVE

ALL BYTES

BEEN WRITTEN
?

encountered ID field is then read in from the disk, and the
six data bytes of the ID field are assembled and
transferred to the DR, and a DRQ is generated for each
byte. The six bytes of the ID field are shown below.

TRACK SIDE SECTOR |SECTOR|CRC| CRC
ADDR [NUMBER| ADDRESS|LENGTH| 1 2

1 2 3 4 5 6

TYPE 1l COMMAND FLOW
TYPE Il COMMANDS

READ ADDRESS

Upon receipt of the Read Address command, the head
is loadedand the BUSY Status bit is set.The next

Although the CRC characters are transferred to the
computer, the FD1771 checks for validity and the CRC
error status bit is set if there is a CRC error. The Sector
Address of the ID field is written into the Sector Register.
At the end of the operation an interrupt is generated and
the BUSY Status is reset.

READ TRACK

Upon receipt of the Read Track command, the head is
loaded and the BUSY status bit is set. Reading starts with
the leading edge of the first encountered index mark and
continues until the next index pulse. As each byte is
assembled it is transferred to the Data Register and the
Data Request is generated for each byte. No CRC
checking is performed. Gaps are included in the input
data stream. If bit 0(S) of the command is a 0, the
accumulation of bytes is synchronized to each Address
Mark encountered. Upon completion of the command,
the interrupt is activated.

WRITE TRACK

Upon receipt of the Write Track command, the head is
loaded and the BUSY status bit is set. Writing starts with
the leading edge of the first encountered index pulse and
continues until the next index pulse, at which time the
interrupt is activated. The Data Request is activated
immediately upon receiving the command, but writing will
not start until after the first byte has been loaded into the
Data Register. If the DR has not been loaded by the time
the index pulse is encountered the operation is
terminated making the device Not Busy, the Lost Data
status bit is set, and the Interrupt is activated. If a byte is
not present in the DR when needed, a byte of zeros is
substituted. Address Marks and CRC characters are
written on the disk by detecting certain data byte patterns
in the outgoing data stream as shown in the table below .
The CRC generator is initialized when any data byte from
F8 to FE is aboutto be transferred from the DR to the DSR.

104

ENTER

1S

THIS A

WRITE TRACK
2

SET BUSY. RESET DRQ
LOST DATA. STATUS
BiTS4 5 86

INTRQ
RESET BUSY

SET HLD

HAS

10 MS

EXPIRED
2

PHYS
INDEX MARK?

HAS
DR BEEN
LOADED?

INTRQ 1
SET DATA LOST

INTRQ RESET
BUSY SET WPRT

SET DRQ

PHYS
INDE X MARK?

HAS
DR BEEN
LOADED?

YES NO

0

| DR TO DSR]

!

SET DRQ

WRITE 2 CRC
CHARS CLK FF

WRITE FC
CLK D7

WRITE FD FE -
F8-FBCLK C7 e

WRITE DSR
CLK FF

INTRQ e
BESET BUSY

HAS
DR BEEN
tOADED
?

YES NO | WRITE BYTE OF ZEROS

SET DATA LOST

TYPE Il COMMAND WRITE TRACK
CONTROL BYTES FOR INITIALIZATION

DATA CLOCK
PATTERN MARK
(HEX) INTERPRETATION (HEX)
F7 Write CRC Character FF
F8 Data Address Mark c7
F9 Data Address Mark C7
FA Data Address Mark C7
FB Data Address Mark Cc7
FC Index Address Mark D7
FD Spare
FE ID Address Mark c7

105

TYPE Il COMMAND WRITE TRACK

The Write Track Command will not execute if the DINT
input is grounded; instead, the Write Protect status bit is
set and the interrupt is activated. Note that one F7 pattern
generates two CRC characters.

TYPE IV COMMAND
Force Interrupt

This command can be loaded into the command
register at any time. If there is a current command under
execution (BUSY status bit set), the command will be
terminated and an interrupt will be generated when the
condition specified in the Ig through I3 field is detected.
The interrupt conditions are shown below:

In=Not-Ready-To-Ready Transition
|;=Ready-To-Not-Ready Transition

I2=Every Index Pulse

|3=Immediate Interrupt (Requires reset, see note)

Note: If Ig - 13 = 0, there is no interrupt generated but the
current cominand is terminated and busy is reset. This is
the only command that will clear the immediate interrupt.

STATUS DESCRIPTION

Upon receipt of any command, except the Force
Interrupt command, the Busy Status bit is set and the rest
of the status bits are updated or cleared for the new
command. If the Force Interrupt Command is received

when there is a current command under execution, the The format of the Status Register is shown below.

Busy status bit is reset, and the rest of the status bits are

unchanged. If the Force Interrupt command is received (BITS)

when there is not a current command under execution,

the Busy Status bit is reset and the rest of the status bits 7 6 5 4 3 2 1 0
are updated or cleared in this case, Status reflects the s7 S6 S5 sS4 S3 g2 S1 S0
Type | commands.

Status varies according to the type of command
executed as shown in Table 6.

Table 6. STATUS REGISTER SUMMARY

ALL TYPE I READ READ WRITE
BiT | COMMANDS ADDRESS READ TRACK WRITE TRACK
S7 | NOT READY NOT READY NOT READY NOT READY | NOT READY NOT READY
S6 | WRITE PROTECT] 0 RECORD TYPE| 0 WRITE PROTECT| WRITE PROTECT
S5 | HEAD ENGAGED| 0 RECORD TYPE| 0 WRITE FAULT WRITE FAULT
S4 | SEEK ERROR ID NOT FOUND | RECORD NOT | 0 RECORD NOT 0

FOUND FOUND

S3 | CRC ERROR CRC ERROR CRC ERROR 0 CRC ERROR 0
S2 | TRACK 0 LOST DATA LOST DATA LOST DATA | LOST DATA LOST DATA
S1 | INDEX DRQ DRQ DRQ DRQ DRQ
S0 |BUSY BUSY BUSY BUSY BUSY BUSY

STATUS FOR TYPE | COMMANDS

BIT NAME MEANING

S7 NOT READY This bit when setindicates the drive is not ready. When reset itindicates that
the drive is ready. This bit is an inverted copy of the READY input and
logically “ored” with MR.

S6 PROTECTED When set, indicates Write Protect is activated. This bit is an inverted copy of
WRPT input.

S5 HEAD LOADED When set, it indicates the head is loaded and engaged. This bit is a logical
"and” of HLD and HLT signals.

S4 SEEK ERROR When set, the desired track was not verified. This bit is reset to 0 when
updated.

S3 CRC ERROR When set, there was one or more CRC errors encountered on an unsucces-
sful track verification operation. This bit is reset to 0 when updated.

S2 TRACK 00 When set, indicates Read-Write head is positioned to Track 0. This bitis an
inverted copy of the TROO input.

S1 INDEX When set, indicates index mark detected from drive. This bit is an inverted
copy of the IP input.

SO0 BUSY When set, command isin progress. When reset, nocommand is in progress.

106

STATUS BITS FOR TYPE Il AND Iil COMMANDS

MEANING

This bit when set indicates the drive is not ready. When reset, it indicates
that the drive is ready. This bit is an inverted copy of the READY input and
"ored” with MR. The TYPE Il and Il Commands will not execute unless the

On Read Record: It indicates the MSB of record-type code from data field
address mark. On Read Track: Not Used. On any Write Track: It indicatesa
Write Protect. This bit is reset when updated.

On Read Record: it indicates the LSB of record-type code from data field
address mark. On Read Track: Not Used: On any Write Track: It indicates a
Write Fault. This bit is reset when updated.

When set, it indicates that the desired track and sector were notfound. This

If S4 is set, an error is found in one or more ID fields; otherwise it indicates
error in data field. This bit is reset when updated.

When set, it indicates the computer did not respond to DRQ in one byte
time. This bit is reset to zero when updated.

This bit is a copy of the DRQ output. When set, itindicates the DRisfullona
Read operation or the DR is empty on a Write operation. This bit is reset to

When set, command is under execution. When reset, no command is under

BIT NAME
S7 NOT READY

drive is ready.
S6 RECORD TYPE/WRITE PROTECT
S5 RECORD TYPE/WRITE FAULT
S4 RECORD NOT FOUND

bit is reset when updated.
S3 CRC ERROR
S2 LOST DATA
S1 DATA REQUEST

zero when up
S0 BUSY

execution.

FORMATTING THE DISK (Refer to sectlon on Type
11l Commands for flow diagrams.)

Formatting the disk is a relatively simple task when
operating programmed |/O or when operating under DMA
control with a large amount of memory. When operating
under DMA with limited amount of memory, formatting is
a more difficult task. This is because gaps as well as data
must be provided at the computer interface.

Formatting the disk is accomplished by positioning the
R/W head over the desired track number and issuing the
Write Track command. Upon receipt of the Write Track
command, the FD1771 raises the Data Request signal. At
this point in time, the user loads the Data Register with
desired data to be written on the disk. For every byte of
information to be written on the disk, a Data Request is
generated. This sequence continues from one index mark
to the next index mark. Normally, whatever data pattern
appears in the Data Register is written on the disk with a
clock mark of (FF)16. However, if the FD1771 detects a
data pattern 6n F7 through FE in the Data Register, this is
interpreted as data address marks with missing clocks or
CRC generation. For instance, an FE pattern will be
interpreted as an ID address mark (DATA-FE,CLK-C7)
and the CRC will be initialized. An F7 pattern will generate
two CRC characters. As a consequence, the patterns F7
through FE must not appear in the gaps, data fields, or ID
fields. Also, CRCs must be generated by an F7 pattern.

Disks may be formatted in IBM 3740 formats with sector
lengths of 128,256,512, or 1024 bytes, or may be formatted
in non-1BM format with sector lengths of 16 to 4096 bytes
in 16-byte increments. IBM 3740 at the present time only
defines two formats. One format with 128 bytes/sector
and the other with 256 bytes/sector. The next section
deals with the IBM 3740 format with 128 bytes/sector
followed by a section of non-IBM formats.

IBM 3740 Formats—128 Bytes/Sector

The IBM format with 128 bytes/sector is depicted in the
Track Format figure on the following page. In order to
create this format, the user must issue the Write Track

107

command, and load the data register with the following
values. For every byte to be written there is one data
request.

Number Hex Value of
of Bytes Byte Written
40 00 or FF
6 00
. 1 FC (Index Mark)
.26 00 or FF
6 00
1 FE (ID Address Mark)
1 Track Number (0 through 4C)
1 00
1 Sector Number (1 through 1A)
1 00
1 F7 (two CRCs written)
11 00 or FF
6 00
1 FB (Data Address Mark)
128 Data (IBM uses E5)
1 F7 (two CRCs written)
L 27 00 or FF
247" 00 or FF

* Write bracketed field 26 times
* * Continue writing until FD1771 interrupts out.
Approximately 247 bytes.

Non-IBM Formats

Non-IBM formats are very similar to the IBM formats
except a different algorithm is used to ascertain the sector
length from the sector length byte in the ID field. This
permits a wide range of sector lengths from 16 to 4096
bytes. Refer to Section V, Type Il commands with b flag
equal to zero. Note that F7 through FE must not appear in
the sector length byte of the ID field.

in formatting the FD1771, only two requirements
regarding GAP sizes must be met. GAP 2 (i.e., the gap
between the ID field and data field) must be 17 bytes of
which the last 6 bytes must be zero and that every address

mark be preceded by at least one byte of zeros. However, References:

it is repommended that every GAP be at least 17 byt‘es 1) IBM Diskette OEM Information GA21-9190-1.
long with 6 bytes of zeros. The FD1771 does not require SA900 IBM C tibility Ref M |—Sh t
the index address mark (i.e., DATA=FC,CLK=D7) and 2) SA900 ompatibility Reference Manual—Shugar

Associates.
need not be present.
PHYSICAL INDEX ——J_—‘—-I
46 BYTES ‘L / INDEX ADDRESS MARK
GAP 1 GAP 2 GAP 3 o o a
22{3 pggﬁzc;sx POST- Q - ID JDATA FIELD| DATA & o DATA FIELD C o DATA FIELD T8 DATA FIELD GAP 4
RECORD 320 BYTES NDEX (280 | GaP | RECORD | GAP | 089 lgapz| RECORD | GaP3 | @99 |car2| Recoro | <% | 284 |oarz| mecomo
% NOMINAL 32 wz] NO 1 33 Wz NO 2 0z NO 3 et NO 26

BYTES | © |lBYTES BYTES | « o «

I Lo >/
BYTE BYTE
1 2 3 4 5 6 7 1 2-129 130 131

DATA OR
*] DELETED
TRACK SECTOR CRC CRC 128 BYTES OF USER CRC CRC
ADDRESS ZEROES ZEROES DATA
MARK | ADDRESS ADORESS BYTE1 | BYTE2 ADDRESS DATA BYTE 1 BYTE 2
MARK
T T
1 1
! i
GAP 2 | \ GAP 3
! {
QO OR FF { 00 FF | OO OR FF
L 11 BYTES ! 6 BYTES —on| 4—] 1BYTE L— 32 BYTES ‘_J
WRITE GATE TURN ON FOR UPDATE \— WRITE GATE TURN-OFF FOR UPDATE
OF NEXT DATA FIELD OF PREVIOUS DATA FIELD

TRACK FORMAT

ELECTRICAL CHARACTERISTICS OPERATING CHARACTERISTICS (DC)
Maximum Ratings TA=0°C to 70°C, Vpp=+12.0V £.6V
Vpp With respect to Vgg (Ground) +20 to -0.3V VBB=5.0 .5V,Vgg=0V,Vpi=+5V 1;25\’.
Max Voltage to any input with respect to Vgg+20 to -0.3V Ipp=10 ma Nominal, Ic¢=30 ma Nominal
Operating Temperature 0°C to 70°C 'BB=0.4 «a Nominal
Storage Temperature -565°C to +125°C
Symbol Characteristic Min. Type. Manx. Units Condiltions

L Input Leakage 10 #A VinN=VDD

Ito Output Leakage 10 #A VouTt=vYDD

ViIH Input High Voltage 2.6 \

ViL Input Low Voltage (All Inputs) 0.8 \Y

VOH Output High Voitage 2.8 \ 10=-100 4« A

VoL Output Low Voltage 0.45 v 10=-1.0 mA
TIMING CHARACTERISTICS NOTE: Timings are given for 2 MHz Clock. For those
TA=0°C to 70°C,Vpp=+12V .6V timings noted, values will double when chip is operated at
Vgg=-5V -25V'\,/SS:0VvVCC=+5V + o5V 1 MHz. Use 1 MHz when using mini-floppy.

108

Read Operations

Symbol Characterlstic Min. Typ. Max. | Unlts Conditions
TSET Setup ADDR and CS to RE__ 100 nsec
THLD Hold ADDR and CS from RE 10 nsec
TRE RE Pulse Width ___ 450 nsec CL = 25 pf
TDRR DRQ Reset from RE__ 750 | nsec
TIRR INTRQ Reset from RE 3000 | nsec
TDACC Data Access from RE 450 | nsec CL = 25 pf
TDOH Data Hold from RE 50 150 | nsec CL = 25 pf
Write Operations
Symbol Characteristic Min. Typ. Max. | Unlis Conditions
TSET Setup ADDR and CS to WE _ 100 nsec
THLD Hold ADDR and CS from WE 10 nsec
TWE WE Pulse Width 450 300 nsec
TDRR DRQ Reset from WE 750 nsec
TIRR INTRQ Reset from WWE 300 | nsec See Note
TDS Data Setup to WE 350 nsec
TDH Data Hold from WE 150 nsec
External Data Separation (XTDS= 0)
Symbol Characterlstic Min. | Typ. | Max. | Units Conditions
TPWX Pulse Width Read Data & Read Clock 150 350 nsec
TCX Clock Cycle External 2500 nsec
TDEX Data to Clock 500 nsec
TDDX Data to Data Cycle 2500 nsec
T~ ~ 32 uS f
32:s .| —of }-o—-Tnnn
- l DRQVOL —J—-e ———]

DRQ vOL ———[D —-lL.__T ”

1

! T

t prer— mu‘—————‘
]

1 sorvico —o={

1
AD A1 CS —J

)
INTRO

T Lo =

[T
f=-

" bow

DATA VALID (DAL)
READ DATA
(BUFFERS TR1-STATED)

b ey

Toacc

NOTE
1 CS MAY BE PEAMANENTLY TIED LOW IF DESIRED
2 FOR READ TRACK COMMAND THIS TIME MAY BE 12" TO 32" uSEC WHEN S 0

3 tporyice WORST CASE 26 uSEC
*TIME DOUBLES WHEN CLK 1 MHZ

INTRQ

WE

¥l

)
o t
service oL
HLD <t &6
A0 A1 CS —-l ‘____..______ it
VIH
Twe

Tser '—g

__._J““T:________

DATA VALID (DAL}
WRITE DATA

b o5 —|

T
DH

NOJTE

1 C8 MAY BE PERMANENTLY TIED LOW IF DESIRED

2 WHEN WRITING DATA INTO THIS SECTOR TRACK OR DATA REGISTER USER CANNOT
READ THIS REGISTER UNTIL AT LEAST B uSEC AFTER THE RISING EDGE OF WE WHEN
WRITING INTO THE COMMAND REGISTER STATUS 1S NOT VALID UNTIL SOME 20uSEC
LATER THESE TIMES ARE DOUBLED WHEN CLK) MHZ

3 tygrvice WORST CASE 24 uSEC

+ _TIME DOUBLES WHEN CLK 1 MHZ

READ ENABLE TIMING

WRITE ENABLE TIMING

X105 0
EXTERNAL CATA
SEPARATION

*’-J I-‘-’ PwWx
FDCLOCK __I !

4

=

o e

M

MISSING
CUOCK

#

[i

t cx

MISSING
DATA

|

-
I

A b o e
M T

FDDATA

NOTE

F‘*'UH“L 7

1 ABOVE TIMES ARE DOUBLED WHEN CLK 1 MHZ
2 CONTACT WDC FOR EXTERNAL CLOCK DATA SEPARATOR CIRCUITS
3 FDCLKANDFDDATAMAY BE REVERSED FD1771 DECIDES WHAT 1S CLOCK AND WHAT IS DATA

F="otx -

1
DOx

—

e]

109

Internal Data Separation (XTDS =1)

READ TIMING (XTDS - 0)

Symbol Characteristic Min. Typ. | Max. | Units Conditions
TPWI Pulse Width Data and Clock 150 1000 nsec
TCI Clock Cycle Internal 3500 5000 | nsec
Write Data Timing
Symbol Characterlstic Min. | Typ. | Max. | Units Conditions
TWGD Write Gate to Data 1200 nsec 300 nsec * CLK tolerance
TPWW Pulse Width Write Data 500 600 nsec
TCDW Clock to Data 2000 nsec + CLK tolerance
TCS Clock Cycle Write 4000 nsec %+ CLK tolerance
TWGH Write Gate Hold to Data 0 100 nsec
Miscellaneous Timing
Symbol Characterlstic Min. | Typ. | Max. | Units Conditions
TCD1 Clock Duty 175 nsec 2 MHz * 1% See Note
TCD2 Clock Duty 210 nsec
TSTP Step Pulse Output 3800 4200 | nsec
TDIR Direct Setup to Step 24 nsec
TMR Master Reset Pulse Width 10 usec These times doubled
TIP Index Pulse Width 10 usec when CLK = 1 MHz
TWF Write Fault Pulse Width 10 usec
i
E’D—ESRNAL DATA) [—__.I "
WUsT 88 TED i T
{ F! wi ' pw‘A-I l_‘ 4_} "o ’* }_‘J - MR 2—~—————1 I———————————-() it
FODATA __m ITl I_D—l m_~ |-.— ‘VM“
} Ta + Tar . -~ Ten -
’W i oot o o] ,I‘
- Q.HA.OED'AR‘EA }.—:;”‘

T

INTERNAL DATA SEPARATION MAY WORK FOR SOME APPLICATIONS HOWEVER
FOR APPLICATIONS REQUIRING MIGH (1ATA RECOVERY RELIAHILITY
WOC RECOMMENDS EXTERNAL DATA SEPARATION BE USED

10 s

")
van YRR N {
DIRE oy

sree

STEPOUT

Tom "sie R

T 1T R T A

WL

READ TIMING (XTDS - 1)

MISCELLANEOUS TIMING

110

4

LAST DATA BIT
TO BE WRITTEN

WRITE DATA TIMING

nnnnnnnn

““““““““““ annan xﬂHl"LTHPﬂﬂ nnnoa

woex T LUU goououuntuyu

e = an - oo DO

200 2080 .
2025 MAX | 610 " MAX l
e |
MAX : ‘ e MAX e

T, | |+ TR -
- I s) P
MIN @J 1..,. Ht-_ 014 125

035 ofle 055

S‘IS ?%g —«—1 l‘, 055 g;:: ;M?ri ‘-'— gg "" 110 521 MIN
FD1771A CERAMIC PACKAGE FD1771B PLASTIC PACKAGE

111

Information furnished by Western Digital Corporation is believed to be
accurate and reliable. However, no responsibility is assumed by Western
Digital Corporation for its use; nor any infringements of patents or other
rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of Western
Digitat Corporation. Western Digital Corporation reserves the right to
change said circuitry at any time without notice.

WESTERN DIGITAL CORPORATION

3128 Redhill Avenue, Box 2180
Newport Beach, CA 92663
(714) 557-3550, TWX 910-595-1139

Al

TABLE 1

DEC HEX EXT Z-80 OP CODE ASCII TRS-80 CONTROLS

000 00 NOP NUL

001 01 NN NN LD BC,NN SOH

002 02 LD (BC),A STX

003 03 INC BC ETX

004 04 INC B EOT

005 05 DEC B ENQ

006 06 NN LD B,;N ACK

007 07 RLCA BEL

008 08 EX AF,AF' BS BACKSPACE
009 09 ADD HL,BC HT

010 0A LD A, (BC) LF LINE FEED
011 0B DEC BC vT VERTICAL TAB
012 0C INC C FF FORM FEED
013 0D DEC C CR CARRIAGE RETURN
014 OE NN LD C,N S0 CURSOR ON
015 oF RRCA SI CURSOR OFF
016 10 DD DJNZ DIS DLE

017 11 NN NN LD DE,NN DC1

018 12 LD (DE),A DC2

019 13 INC DE DC3

020 14 INC D DC4

021 15 DEC D NAK

022 16 NN LD D,N SYN

023 17 RLA ETB CONVERT TO 32 CHAR
024 18 DD JR DIS CAN BACKSPACE CURSOR
025 19 ADD HL,DE EM ADVANCE CURSOR
026 1A LD A, (DE) SUB CRT DOWN LINE
027 1B DEC DE ESC CRT UP LINE
028 1C INC E FS HOME CURSOR
029 1D DEC E GS BEGIN LINE
030 1E NN LD E,N RS ERASE LINE
031 1F RRA Us CLEAR FRAME
032 20 DD JR NZ,DIS SP (SPACE)

033 21 NN NN LD HL,NN !

034 22 NN NN LD (NN) ,HL "

035 23 INC HL #

036 24 INC H $

037 25 DEC H %

038 26 NN LD H,N &

039 27 DAA ' ;

040 28 DD JR Z,DIS (

041 29 ADD HL,HL)

042 2A NN NN LD HL, (NN) *

043 2B DEC HL +

044 2C INC L ’

045 2D DEC L -

046 2E NN LD L,N .

047 2F CPL /

048 30 DD JR NC,DIS 0

049 31 NN NN LD SP,NN 1

050 32 NN NN LD (NN),A 2

051 33 INC SP 3

052 34 INC (HL) 4

053 35 DEC (HL) 5

054 36 NN LD (HL),N 6

055 37 SCF 7

056 38 DD JR C,DIS 8

057 39 ADD HL,SP 9

058 3A NN NN LD A, (NN) :

059 3B DEC SP :

060 3C INC A <

061 3D DEC A =

062 3E NN LD A,N >

063 3F CCF ?

113

DEC

064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

116
117
118
119
120
121
122
123
124
125
126
127

Z-80

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LD
LD
LD
LD
LD
LD
LD
LD

TABLE 2

OP CODE

HL)

!DEF‘DSMUOUJDAT'EEMUOW
[

| W N W N N NN NSNS NWwwW W %W ow o

meUOUJPAt‘mmUOWD’EmeUOUU
[

[spl=sfieciiasiyesiiagsiiaciie s ool ol oo oo v e lvvlvivEv o No Xo Re Ro ke Re e Re R R Re Re Re R Re s Bee)
jaci
[

W W | VW N W N W W N W W W W W AW W W W W N WS

~~P e

Em:ﬂﬁ « N % 9 s =
B ~HImUow~

(HL

ASCII

NMXE<EdRAOQTWOSEH RRWHITAMO QAT D l\Lﬁi\(_‘_)NK:ME<CHU>WIO*UOZSI?’NQHEO"QMUOUJ>’®

DEL

TRS-80 BASIC

114

115

DEC

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

170
171
172
173
174
175
176
177
178

179
180
181
182
183
184
185

187
188
189
190
191

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
AND
AND
AND
AND
AND
AND
AND
AND
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
OR

OR

OR

OR
OR
OR
OR
OR
CP
Cp
CP

Cp
CPp
Cp
Cp

TABLE 3

OP CODE

- w W W W W™W W W W W W N W W W™

P~CIDEHUOER~CDmOOW

AFEMUOUJDPD’DD’D’D’DDEFEMUOWPDPI}’B’PD’D’B’D’TPB’D’B’DB’
=

o]
[

~ImmoOw
jas} P~ DImOOwW >

P~ Z@mUOUQW

GRAPHIC

ikl

80 81 82 83

L

84 85 86 87

1l

88 89 B8A 8B

{4

8C 8D 8E

o

90 91 92

Il

94 95 96 97

ddd

98 93 9A 9B

RE

9C 9D 9 OF

A fnli

A0 A1 A2 A3

bR

A4 A5 AB A7

1l

AB A9 AA AB

BO B1 B2 B3

B4 B5 B6 B7

TRS-80 BASIC

END
FOR
RESET
SET
CLS
CMD
RANDOM
NEXT
DATA
INPUT
DIM
READ
LET
GOTO
RUN

IF
RESTORE
GOSUB
RETURN
REM
STOP
ELSE
TRON
TROFF
DEFSTR
DEFINT
DEFSNG
DEFDBL
LINE
EDIT
ERROR
RESUME

SYSTEM
LPRINT
DEF
POKE
PRINT

CONT
LIST
LLIST
DELETE
AUTO
CLEAR
CLOAD
CSAVE
NEW
TAB (
TO

FN
USING

DEC

192
193
194
195
196
197
198
199
200
201
202

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

DC
DD
DE
DF
EO
El

E3
E4
E5
E6
E7
ES8
E9
EA
EB
EC
ED
EE

FO
Fl
F2
F3
F4
F5

F7
F8
F9
FA
FB
FC
FD
FE
FF

EXT Z-80 OP CODE
RET NZ
POP BC
NN NN JP NZ,NN
NN NN JP NN
NN NN CALL NZ,NN
PUSH BC
NN ADD A,N
RST 0
RET Z
RET
NN NN JP Z,NN
(EXTENDED INSTRUCTION SET)
NN NN CALL Z,NN ‘
NN NN CALL NN
NN ADC A,N
RST 8
RET NC
POP DE
NN NN JP NC,NN
NN OUT N,A
NN NN CALL NC,NN
PUSH DE
NN SUB N
RST 10H
RET C
EXX
NN NN JP C,NN
NN IN A,N
NN NN CALL C,NN
(EXTENDED INSTRUCTION SET)
NN SBC A,N
RST 18H
RET PO
POP HL
NN NN JP PO,NN
EX (SP),HL
NN NN CALL PO,NN
PUSH HL
NN AND N
RST 20H
RET PE
JP (HL)
NN NN JP PE,NN
EX DE,HL
NN NN CALL PE,NN
(EXTENDED INSTRUCTION SET)
NN XOR N
RST 28H
RET P
POP AF
NN NN JP P,NN
DI
NN NN CALL P,NN
PUSH AF
NN OR N
RST 30H
RET M
LD SP,HL
NN NN JP M,NN
EI
NN NN CALL M,NN
(EXTENDED INSTRUCTION SET)
NN CP N
RST 38H

TABLE 4

TAB

H
CSCWwWwooNOUEWNDHFO

TRS-80 BASIC

VARPTR
USR
ERL
ERR
STRINGS
INSTR
POINT
TIMES
MEM
INKEYS
THEN
NOT
STEP

AT VOR-PN 1 +
d

- W0
20
=

ABS
FRE
INP
POS
SQR
RND
LOG
EXP
Ccos
SIN
TAN
ATN
PEEK
CVI
CvVs

EOF
LOC
LOF
MKIS
MKS$
MKDS
CINT
CSNG
CDBL
FIX
LEN
STRS
VAL
ASC
CHRS
LEFTS
RIGHTS
MIDS

' (REM)

116

Pathways through
the ROM

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf

