- 7
v # ' ]
/I
4

BY DAVID L. HEISERMAN

o |
1 L, -
~ & o Wl
T il » _._:'I.'.__ :
' e
! L E _...I‘
i '..-..._ il
r g ke M ¥ & -
. b i oy e
- ; ey
. \ 1 v
'
- L]
A W o
¥
- L

A programmer’s
guide to using PASCAL,

Ty PASCAL and Supersoft \’U*

%, . Tiny PASCAL .. .including actual ~,"
A, % Programseand helpful exercises!

rrrrr

'''''''
g



PASCAL




Other TAB books by the author:

No. 714 Radio Astronomy for the Amateur

No. 841 Build Your Own Working Robot

No. 971 Miniprocessors: From Calculators to Computers

No. 1101 How To Design & Build Your Own Custom TV Games
No. 1241 How To Build Your Own Self-Programming Robot

Dedication

To Kin-Man Chung and Herbert Yuen, whose labor of love brings
the power of Pascal to home computer users.



BY DAVID L. HEISERMAN

[TAB]TAB BOOKS Inc.

DGE SUMMIT




FIRST EDITION
SEVENTH PRINTING
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Copyright © 1980 by TAB BOOKS Inc.
Library of Congress Cataloging in Publication Data

Heiserman, David L 1940-
PASCAL.

“TAB#1205."
Includes index.
i. PASCAL (Computer program language) 2. TRS—80
(Computer)—Programming. |. Title.
QA76.73.P2H44 001.64'24 80-14309
ISBN 0-8306-9934-1
ISBN 0-8306-1205-X (pbk.)

Cover photo courtesy of Highland Industries.



Preface

Pascal has always been a computer language with great promise
and potential. Much of that promise and potential has already been
realized, and many experts describe it as the ideal programming
language.

Indeed, it appears that Pascal takes the best of all other
languages and rejects their shortcomings. Pascal is essentially
simple to learn, understand and apply. It can fit into just about any
sort of computer environment.

Unless a computer system is specifically designed to work in
Pascal, however, its compiler takes up a great-
deal of memory space. In a personal computer environment, the
full-blown version requires at least 32k of RAM and two disk
drives. Such systems are now available, but relatively few per-
sonal computer users can afford so much hardware.

Two computer researchers and graduate students at the Uni-
versity of Illinois came to the rescue in 1978, developing a scaled-
down version of Pascal that is now commonly known as Tiny
Pascal. Kin-Man Chung and Herbert Yuen published a complete
summary of their Tiny Pascal in the September, October and
November 1978 issues of Byte magazine.

Tiny Pascal, the subject of this book, fits into a 16k personal
computing system. The articles just cited, as well as a few sub-
sequent ones, present Tiny Pascal compilers in North Star BASIC
and 8080 assembly language.




As far as more casual home computer users are concerned, the
next breakthrough in Pascal came about in 1979 when Supersoft
began marketing a simple cassette tape version of Tiny Pascal for
both the North Star and TRS-80 systems. The material in this book
is specifically aimed toward using Supersoft’s TRS-80 version of
Tiny Pascal. It is thus possible to work through this entire book,
learning the fundamentals of Pascal and having a lot of fun with the
examples, having no more equipment than a Level I, 16k TRS-80
system and Supersoft’s Tiny Pascal cassette tape.

That does not mean users of other personal computing sys-
tems are left in the dark, though. With the exception of some
graphics routines that are unique ot the TRS-80, all the material in
this book can be carried over to any other system that will adapt
Tiny Pascal compilers in the future.

On a personal note, I have studied, used and written about
many other computer languages for personal computers, but I have
never had such an impression of computing “power” that I get from
Tiny Pascal. It is exciting to be able to share this impression with
you.

David L. Heiserman



Contents

S G L ORI

1 USINg ThiS BOOK ..cucvvrrcacrresisnssssrcsssansssasssesmssssmssssssssssssensd
BASIC and Pascal—Limitations of a Programming Book—Book
Format

2 Getting Started With Pascal reeesssssreseersrenrensanessssanesesaesnses 19

Getting Tiny Pascal Into Your TRS-80—Wiping Out an Old
Program—Entering a New Program From the Keyboard—
Compiling a Program—Running a Program—Short Pascal
Programs—Summary of Basic Operating Procedures—Modifying
Programs While In EDIT—Learning By Doing—Saving Pascal
Programs On Cassette Tape—Testing Your Skills With More
Programs—Out-of-Memory Error Signal

3 Begin With BEGIN..........c.ccoennercerennsensnnsssssnsennrsnssassassscanes 30
Reading Syntax Diagrams—Simple Program Examples—Step-
by-Step Analysis of WRITE Statements—Varying Formats

4 Screen Control and Graphics With WRITE..........cccccoe0e0ee.. 39
Controlling the Cursor With WRITE—Printing ASCII Characters
With WRITE—Doing TRS-80 Graphics With WRITE—Some
Thoughts About the WRITE Statement

5 Declaring Variables and Inputting With READ vevnsenenrenennans D2
Declaring Variables—Entering Integers With READ—Integer and
Hexinteger Formats for WRITE—Putting Together Complete
READ and WRITE Pascal Programs—Sample Programs Using
READ and WRITE Statements

6 Pascal Arithmetic and Logic Operations ..........eceuerseseeseen 70
The Assignment Statement—Adding, Subtracting, Muitiplying and
Dividing—Modulo, Shift-Left and Shift-Right Operations—The IF
... THEN . .. ELSE Conditional Statement—An Important
Arithmetic/Logic Demo Program—Doing Logic With AND, OR and
NOT—Summary of Syntax Diagrams Used

'7 Applications of REPEAT . . . UNTIL Loops SUOTRRPTRTRRRRN - X
Syntax Rules for REPEAT . . . UNTIL—Counting Events With
REPEAT . . . UNTIL—Using REPEAT . . . UNTIL for Timing
Operations—Writing Unending Loops—Goof-Proofing Entries
With REPEAT . . . UNTIL—A Four-Function Calculator Program




10
11

12

13

14

15

Two More Looping Statements:

WHILE . . . DO and FOR . . . DO.
The Syntax Rules—Some Applications of WHILE . . . DO—Some
Applications of FOR . . . DO sessrersaressssssnsasassessasasssnnsnsessansess 108

A Miscellany of Pascal and Tiny Pascal Operations........119
Remarks for Pascal—Declaring Constants in Pascal—Sorting
Statements With CASE . . . OF—Two Math Expressions Peculiar

to Tiny Pascal—TRS-80 “Set/Reset” Graphics With Pascal
PLOT—The MEM Statement—The INKEY Statement

Procedure, Function and Array Operations............. ceeereenn 136
Simple Procedures—Procedures With Value Parameters—The
Function Operation—Tiny Pascal's One-Dimensional Array

Games of Chance..........ceceireereerscncannanan SRR |- 7
Work Through All Programs—Coin Toss Game-—Russian
Roulette Game—Numeric Dice Roll Game—Graphic Dice Roll
Game—Roulette Wheel Game—Graphic Slot Machine Game....

Some Computer Graphics In a Pascal Format................. 208
A Line Sketching Program—Missile Shoot Game—Flow Chart for
IF...THEN ... ELSE Programming—The Ultimate in Graphics:
Real-Time Animation

Some Just For Fun Pastimes........... reoweses wmsasess rereesusenes 252
One Player High/Low Game—A Two Player Hangman Game—
Making Headlines

Writing Your Own Pascal Programs........... vemseremsesssareans 299
Structured Programming—Top-Down Versus Bottom-Up
Programming—Writing a Tiny Pascal Program From the Top and
Down—Writing a Tiny Pascal Program From the Bottom and
Up—Combining Top-Down and Bottom-Up Programming

Space Ranger Mission Game...........ccoeerensererssssnsesnaneres 299
Getting SPACE RANGER MISSION In and Up—Running SPACE
RANGER MISSION—A First Lesson in Spaceship Piloting—A
Short Course In Finding and Repairing Nav Beacons—A Seek-
and-Desfroy Training Mission—Playing the Game of SPACE
RANGER MISSION—Declarations, Functions and Procedures for
SPACE RANGER MISSION—SPACE RANGER MISSION Main-

line Program

Translating BASIC Into Tiny Pascal ............ weersrerersanes .. 325
Direct Conversions From BASIC into Tiny Pascal—Program
Statements—Arithmetic Functions—Changing Programs From
BASIC Into Tiny Pascal

APDENUIN e e T 335

Charts and Diagrams

Index...ccceeerennnnnee ceerneranansreressrensasarens U . L



Chapter 1
Using This Book

Learning to use a new programming language is always a rather
involved process. Sometimes it is fun and sometimes it is ex-
tremely frustrating. Always it is hard work.

The general subject of this book is learning to use the rela-
tively new Pascal programming language. More specifically, the
book is about Tiny Pascal. Even more specifically, it is about
Supersoft Tiny Pascal for the TRS-80 personal computer system.

BASIC AND PASCAL

It takes a lot of work to learn how to use Pascal, Tiny Pascal
and Supersoft Tiny Pascal. You will find the task easier if you have
already mastered the BASIC programming language, however.
Obviously the job will be even easier and more fun if you have
access to a computer system that can handle the examples and
exercises included in this book.

Assuming you already have some working acquaintance with
BASIC, you are going to find Pascal is quite different and, in some
respects, rather confusing at first. But your knowledge of BASIC
will most likely be more of a help to you than a hindrance.

BASIC, you see, is a very down-to-earth programming lan-
guage. It is possible to build BASIC programs using a kind of
thinking that isn’t much different from everyday analytical think-
ing. All you have to do is learn the almost plain English BASIC
syntax forms, play with them to see exactly how they work, and

9




then start putting things together. BASIC, in fact, was invented for
beginning programmers who have no real feeling for formal pro-
gramming language structures.

Pascal, on the other hand, demands a very rigorous and fairly
abstract approach. While there might be a dozen suitable ways to
do a given job in BASIC, Pascal’s formal structure might allow only
two approaches at the most.

The more experience you've had with BASIC, however, the
more smoothly you can ease into Pascal. The idea here is that a lot
of experience with BASIC gradually forces you to think in highly
structured and analytical terms. If you have done more than simply
copy BASIC programs others have written for you or if you have
written programs having more than a handful of steps, you've at
least brushed against the kind of thinking required for program-
ming in Pascal.

So a previous knowledge of BASIC is a two-edged sword when
it comes to learning Pascal. On one hand, you will find that the kind
of thinking that goes into developing moderately sophisticated
BASIC programs will serve as a firm stepping stone for getting
started in Pascal. On the other hand, you will have to break some
old habits, especially some questionable programming habits that
BASIC can tolerate but Pascal cannot.

Sure, it is going to be a lot of hard work. It is going to get
frustrating at times. But it can be a lot of fun, too. Judging from the
rate that Pascal is growing in popularity, your work will pay off big
dividends in the long run.

LIMITATIONS OF A PROGRAMMING BOOK

It is virtually impossible, or certainly impractical, to write a
computer programming book that covers all possible ways in which
the language is used. No language of any significance is perfectly
portable. None can be perfectly transferred from one kind of com-
puting machine to another. There are always minor variations.

For example, Standard Pascal, as originally developed by
Niklaus Wirth and others between 1968 and 1973, is not at all
suitable for small personal computers. At the time of this writing, a
Standard Pascal or UCSD (University of California at San Diego)
version calls for a personal computing system having 32k of RAM
and two disk drives. Those specifications are far beyond the reach
of most home computer users.

In an attempt to reach people who have more modest comput-
ers, Kin-Man Chung and Herbert Yuen developed a trimmed-down

10



version of Standard Pascal. They called it Tiny Pascal, and it seems
likely that name is going to stick.

Tiny Pascal works exactly like its parent, but simply has
fewer features available. Tiny Pascal, for instance, works only
with integer arithmetic and cannot handle string variables very
well. It retains the powerful structural nature of Standard Pascal,
however. So whatever procedures you learn with Tiny Pascal carry
directly over to the Standard version.

Tiny Pascal, though, was originally developed on a North Star
computing system. And while that might be a fine system, it has
operating characteristics that do not carry over directly to other
personal computers.

There is a need to refine the language even further. The Tiny
Pascal featured in this book has all the features of Chung and Yuen
Tiny Pascal. The differences involve mainly some special com-
mands for doing graphics and getting programs loaded to and from
cassette tape. Aside from these machine-dependent differences,
what you learn about Tiny Pascal in this book applies to Tiny Pascal
on any personal computing system.

The final specifications are these. You will need a TRS-80
with at least 16k of RAM and Level II capability. That’s the most
popular TRS-80 format, anyway. Plus, you will need a Tiny Pascal
program package from Supersoft.

Current economic difficulties in the world make it rather
pointless to specify the price of a Supersoft Tiny Pascal package for
the TRS-80. Perhaps it is enough to say that it costs no more than
three conventional BASIC computer game cassettes. To get a
current price, write Supersoft, P.O. Box 1628, Champaign, IL
61820.

What you are about to learn is Tiny Pascal for the TRS-80.
With the exception of a few machine-dependent commands, what
you learn here is applicable to Tiny Pascal on any machine. And
what you learn about Tiny Pascal can be applied to full-blown
Standard or UCSD Pascal systems.

In other words, you won't be learning all there is to know
about Pascal from this book. What you do learn will serve you well
if you are ever confronted with a Standard Pascal system. In any
event, you will be learning how to cope with the special quality of
Pascal and that’s the most difficult part of the job.

BOOK FORMAT
Pascal is a highly structured language. It is very systematic,
and the layout of this book reflects that special character. Just as

11



you are forced to build Pascal programs in a particular fashion, you
will find that you must go through the text, examples and exercises
in this book from beginning to end.

You should not try to step into the middle of the book and start
fromthere. You are going to miss some important ideas if you try to
skip around.

Bear with the scheme setup here. It works, even if it occa-
sionally seems to get a little boring or tedious. Just pretend there is
a teacher watching over your shoulder. Work out all the exercises,
whether you think you have to or not.

While you will find a lot of exercises and examples written out
for you in this book, you will see few suggestions concerning ideas
for making up your own programs. It’s simply taken for granted that
you will want to make up your own programs as you go along. Do it!
Try making up your own Pascal programs as you learn new things.
You can learn a lot more from making your own mistakes than from

the immediate success offered by the specific examples in this
book.

12



Chapter 2
Getting Started With Pascal

The purpose of this chapter is twofold. I want to get you acquainted
with the ways Supersoft Tiny Pascal is loaded and handled, and
give you something of an intuitive feeling for Pascal.

The first part of the chapter is really a how-to manual for
loading and using the Supersoft Tiny Pascal package. It describes
how to get the program from cassette tape and into your machine,
how to write in programs, how to use the editing features and how
to execute programs in Pascal.

The second part of this chapter offers a series of fun-and-
games Pascal programs that you can write into the computer
yourself. If you wish, you can save them on cassette tape for future
use.

The point of the examples is to show you what Pascal pro-
grams look like and, of course, to give you some experience
working with the Tiny Pascal package. The programs are pre-
sented without any technical discussion. You’ll start getting plenty
of that in Chapter 3.

GETTING TINY PASCAL INTO YOUR TRS-80

Place the Supersoft Tiny Pascal cassette tape into your cas-
sette machine and make sure it is rewound to the start. To obtain
the tape, write to Supersoft at the address givenin the first chapter.

Initialize your TRS-80 to get the MEMORY SIZE? message.
At this time, you won’t have to reserve any memory space, SO
simply respond by striking the ENTER key.

13




Then type SYSTEM and do an ENTER. You should see a *? on
the screen.

Set the cassette player to PLAY, type PASCAL and strike the
ENTER key. The cassette player should begin running im-
mediately.

If all is going well, you should soon see two asterisks in the
upper right-hand corner of the screen. These are the same as-
terisks you see whenever loading any cassette program on the
TRS-80. The second asterisk will blink on and off at 4-second
intervals.

Take a break at this point. The program loads in something on
the order of 3 minutes.

When the program is loaded, you will see another *? on the
screen and the cassette player will stop running. Type a slash
symbol, /, do an ENTER, and you're in business.

Actually the instructions to this point are identical to loading
any SYSTEM program into the TRS-80. The only unique feature is
the file name, PASCAL.

After entering the slash symbol, the screen will clear. You
will see the message, TINY PASCAL, followed by a version
number in the upper left-hand corner of the screen.

The Supersoft cassette loads a sample program as well as the
Pascal programming. If you want to see it run, enter Q and then
enter R. The program will begin running, drawing all sorts of nifty
graphics on the screen. The message, THE SHOW IS OVER,
appears when the program is done.

You can run this program again by simply entering R. Yes,
entering R amounts to doing a RUN command.

Of course, you haven’t bought the Supersoft Tiny Pascal tape
just to watch this one program. It is time to clear out that program
and try entering a different one from the keyboard.

WIPING OUT AN OLD PROGRAM

To erase any program written into the Tiny Pascal system,
first enter a Q. In Supersoft Tiny Pascal, Q means to quit whatever
you are doing. Maybe you have been running a Pascal program and
now you want to erase it. First you have to QUIT the running
phase. So enter Q.

After entering the Q, you will see some information on the
screen that says things about the number of lines in the current
program, the number of bytes it occupies and the absolute (actual)
memory locations. There is also a phrase, PTR AT LINE, followed

14



by a number. That one tells you where the program counter is
setting at the moment. If all this doesn’t make much sense at this
point, don’t worry about it.

You still haven’t wiped out the program. You have simply
QUIT doing the RUN operation and returned to the system
monitor. So enter an E.

Entering an E puts the system into its EDIT mode. The
system prints out the same general information about number of
lines, bytes and so on. You'll see, however, that the pointer is set
to line 1 of the program. That’s still not really relevant to what you
are trying to do now, which is wipe out the program.

While you're at it, though, notice something else. After you
entered the Q, the system skipped a line on the screen and printed
a period symbol. The period symbol is the prompt character whenever
the system is in the monitor mode. Whenever you see a period used
as the prompt symbol, you know the system s in its monitor mode.

You responded to the period by entering an E. The system
repeated the technical information about the program, and then
printed a greater-than symbol. The greater-than symbol is the prompt
character whenever the system is in the edit mode.

So you've gone to the monitor mode and then to the edit mode.
Now here is where you wipe out the existing program. Enter D*.
This time you don’t see a lot of technical information, just the
comment, EMPTY FILE . . . ENTER TEXT.

So the old program is gone and the system is waiting for a new
program. The prompt character is now a question mark. The
question mark is the prompt character whenever the system is in the
programming mode. Whenever you see a question mark prompt
character, you know the system is expecting you to enter some
new information.

In summary, here’s how to wipe out an existing program.

® ENTERQ
® ENTERE
® ENTER D*

ENTERING A NEW PROGRAM FROM THE KEYBOARD

Suppose you have wiped out all existing programs by using the
procedures described in the previous section. Doing so, you are
left with the message:

EMPTY FILE. . .ENTER TEXT
?—

15




The message tells you there are no programs in the current
file. It’s wide open for a new one. Try entering this program. Copy
it one line at a time, ending each line by striking the ENTER key.
Example 2-1

BEGIN

WRITE (28, 31, 'YOU HAVE JUST ENTERED A PASCAL
PROGRAM")

END.

When you are through, the screen should look something
like this:
EMPTY FILE . . . ENTER TEXT
?BEGIN
?WRITE ?28, 31, ‘YOU HAVE JUST ENTERED A PASCAL
PROGRAM))

?END.
?—

The system is still in the PROGRAM mode. How do you know
that? The question mark prompt symbol tells you so.

Now strike the ENTER key again, and you should get this
message:

FILE HAS 3 LINES 66 BYTES (498E-49CF) PTR

AT LINE 3

Sure enough, the program has three lines. Count them. It also
occupies 66 bytes of memory in hexadecimal address locations
498E to 49CF. The program pointer happens to be at the last line.

You cannot add any more lines of information at this time
because the system is no longer in the PROGRAM mode. It
happens to be in the EDIT mode as signaled by the greater-than
prompt character.

If you have made any mistakes in writing the program, wipe
out the whole works by entering D* and starting over.

In summary, to enter a new program from the keyboard:

@® Delete the existing program.
@ Enter the new lines of text.

e  Strike the ENTER Ley to get to the EDIT mode.

For the time being, correcting any errors in the program is a
matter of deleting the whole thing from the EDIT mode and start-
ing over from scratch. You will find out how to modify a program
and correct minor errors later on.

16



COMPILING A PROGRAM

A Tiny Pascal program cannot be run immediately after it is
written. It must be compiled first. It must be translated from the
Pascal character text or source program into machine language or
object program. Standard and UCSD Pascal takes care of the com-
piling job automatically, but Tiny Pascal does not. You must tell the
system to compile a new program before it can be run.

To compile your new program, return to the MONITOR mode
by entering a Q. How can you be sure the system has returned to
the MONITOR mode? It uses a period for the prompt symbol.

Now enter C. In Supersoft Tiny Pascal, entering a C from the
MONITOR mode tells the system to compile the existing source
program.

Using the program suggested in the previous section, the
system prints out this information when you compile it:

.C

BEGIN

WRITE (28, 31, 'YOU HAVE JUST ENTERED A PASCAL

PROGRAM")

END.

56 CODES. 49D@-4A07

If you have made any syntax errors in the Pascal source
program, the system will pick them up during the COMPILE
phase. In fact, Tiny Pascal won’t complete the compiling operation
until the program is error free.

The little message at the end of the program listing tells you
that the machine language version of your program occupies mem-
ory locations hex 49D@ through 4A@7. That really isn’t important
information at this point, but it might be mildly interesting if you
have ever done any machine language programming before.

To compile a program:

@ Get into the MONITOR mode by entering Q.

® Enter C.

@ Hope the whole thing gets compiled without any error
messages.

RUNNING A PROGRAM

A Tiny Pascal program can be run only from the MONITOR
mode. In other words, you cannot expect to run a program unless
the current prompt symbol is a period. After compiling a program,

17




the system is automatically in the MONITOR mode. That means a
program is ready to run the moment the compiling operation is
done.

To run a program, simply enter R for “run.”

If you run the program that is used as an example through
these discussions, it clears the screen and then prints:

YOU HAVE JUST ENTERED A PASCAL PROGRAM

Incidentally, Pascal programs do not automatically clear the
screen when they are run. It so happens that the program you
entered contained some instructions that told the system to clear
the screen. (No more CLS, dear BASIC buffs).

When the computer has executed the entire program, it prints
the period prompt character, followed by the cursor. That signifies
that the system is still in the MONITOR mode, and that you canrun
the program again by simply entering an R.

Now you can wipe out that program by going to the EDIT
mode, entering an E. Then enter D* The system is ready to
receive the next program from the keyboard.

SHORT PASCAL PROGRAMS

Here are a few simple Pascal programs that are intended to
give you some exercise in entering, compiling, running and erasing
programs. If you make any mistakes, just get into the EDIT mode
and enter D* That will erase the entire program and set up the
system for entering it again, without the error this time.

Some of these programs are set up to end automatically after
doing just one or two short operations. Whenever a program ends,
you will see the MONITOR mode prompt symbol, a period, on the
screen.

A few of the programs do not end at all on their own accord, or
they run for a very long time. To halt an ongoing program, simply
strike the BREAK key one time. If you want the program to resume
from that point, just strike any other key.

Whenever you want to stop an ongoing program and return to
the MONITOR mode, strike the BREAK key twice in succession.
You'll know it worked when you see the period prompt symbol.
Example 2-2

(* COUNTER *)

VAR L, N: INTEGER;

BEGIN

WRITE (28, 31, ‘COUNTER’),

FOR L:=1TO 8 DO

18



WRITE (13);
N:=0;
WHILE N<1000 DO
BEGIN
WRITE (220, N#);
FOR L:=1 TO 5¢¢ DO
L:=L+1;
WRITE (29, 30);
N:=N+1;
END
END.
Example 2-3
(* SUMS *)
VAR FIRST, SECOND: INTEGER;
BEGIN
WRITE (28, 31, ‘SUMS’, 13, 13);
WRITE (ENTER AN INTEGER BETWEEN - 15000 AND
+15000°, 13);
READ (FIRST#);
WRITE (ENTER ANOTHER INTEGER IN THE SAME
RANGE’, 13),
READ (SECOND#);
WRITE (28, 31, 13, 13, 13, FIRST#, ‘+’, SECOND#, ‘=,
FIRST+SECOND#);
FOR FIRST:=1 TO 8 DO
WRITE (13);
WRITE (ENTER TO DO AGAIN’)
END.
Example 2-4
(* STAIRS *)
VAR H, HQ, V, VO:INTEGER,;
BEGIN
WRITE @28, 31, 210, ‘STRIKE SPACE BAR TO EXIT THIS
PROGRAM);
HO:=0; VO:=0,
REPEAT
FOR V:=V@ TO 47 DO
BEGIN
FOR H:=H@ TO HO+4 DO
PLOT #H, V, 1)
END;
HO:=H@+4; VO:=V0+2;

19




UNTIL V@:=47;
REPEAT;

UNTIL INKEY=32
END.

Example 2-5

(* POWERS OF N %)
VAR LINE, N: INTEGER;
BEGIN
WRITE (28, 31, 215, “** POWERS OF N **, 13);
WRITE (N’, 207, ‘N 2ND’, 207, ‘N 3RD’, 13);
FOR LINE:=¢ TO 63 DO

WRITE (3%,
FOR N:=¢ TO 1¢ DO

WRITE (N#, 207, N*N#, 211, N*N*N#, 13);
WRITE (27)
END.

SUMMARY OF BASIC OPERATING PROCEDURES

The information presented thus far in this chapter can be

summarized as follows:

20

—Load the Supersoft TRS-80 Tiny Pascal tape as a SYSTEM
program having the file name PASCAL.

—There are three basic operating modes, each having its
own prompt character: MONITOR, period prompt sym-
bol; EDIT, greater-than prompt symbol; PROGRAM,
question mark prompt symbol.

--The MONITOR mode is “home base.” Programs are com-
piled and run from MONITOR.

—To get into MONITOR from EDIT or PROGRAM, enter
Q.

—To get into EDIT from MONITOR, enter E. To get into
EDIT from PROGRAM, strike the ENTER key twice in
succession.

—One way to get into PROGRAM is to enter D* while in the
EDIT mode.

—A complete program is delected by entering D* while in
the EDIT mode.

—All programs must be compiled before they can be run.
Programs are compiled by entering C while in the
MONITOR mode.

—Compiled programs are run by entering R while in the
MONITOR mode.



MODIFYING PROGRAMS WHILE IN EDIT

Programmers, no matter how much experience they have,
make programming errors. So far in this chapter, it has been
suggested that you deal with program errors by deleting the entire
program and rewriting it from scratch. Obviously that isn't the
most efficient way to deal with errors, especially when the prog-
ram is fairly long.

Tiny Pascal includes a rather nice editing feature that lets you
correct programming errors by either inserting a new line of
information or deleting an old one. Quite often you will deal with an
error by applying both procedures in succession, deleting a line
containing an error and then inserting a corrected version in its
place.

You have probably guessed by now that the system must be in
the EDIT mode in order to make deletions and insertions. You're
right. In the EDIT mode, entering a D deletes a line of text.
Entering and I allows you to insert any number of lines of text.

To get a feeling for how Tiny Pascal editing works, enter this
little program.

Example 2-6A

(* ERROR PROGRAM *)

VAR X, Y: INTEGER

READ X#, Y#);

WRITE (X+Y)#)

END.

Example 2-6A has an error in it. Don’t worry about what the
error is at this time. Pretend you don’t know it exists, and try
compiling the program.

The compiler will pick up the error, and you will see some-
thing like this on the screen:

.C

(* ERROR PROGRAM *)

VAR X, Y: INTEGER

READ<ERROR 14

ERROR 14-Missing Semicolon

ERROR 14. .. ? What is that? Look back at the listing of Tiny
Pascal syntax errors in the Appendix, and you will find that ERROR
14 means that a semicolon is missing.

It so happens that the line reading VAR X, Y: INTEGER
should end with a semicolon. It shouldread VAR X, Y: INTEGER;.

21



Unfortunately the system does not know for sure that you have
omitted the semicolon until the compiler has moved on to the next
program statement. For that reason, the less-than pointer and
error message appear on the next line.

It would be nice if the error message pointed directly to the
problem, but it rarely does. It usually shows up in the next program
statement. You'll simply have to get used to that little feature.

At any rate, the compiler prevents you from fully compiling a
program that contains a syntax error. It spells out the nature of the
error for you. Now you have to correct the error before the
program can be compiled properly and run.

When the compiler picked up the error for you, it returned a
period prompt symbol. That means the system is still in the
MONITOR mode. Remember that compiling is a MONITOR oper-
ation. So you have to get into the EDIT mode in order to make the
necessary correction.

Enter E to get into EDIT, and you will see something like this
on the screen:

.C

(* ERROR PROGRAM *)
VAR X, Y:INTEGER
READ<ERROR 14

.E

FILEHAS 5LINES 67 BYTES (498E-49D0)PTRATLINE 1
> e

Now the system is in the EDIT mode as signaled by the greater-
than prompt character.

There are several different ways to handle this particular
editing job—inserting the semicolon at the end of the VAR line. In
any event, the general idea is to get to the line containing the error,
delete that line, and replace it with a corrected version.

Editing in BASIC is made rather simple because all lines of
text carry line numbers. In BASIC, you can get to a particular line
by simply specifying its line number. Pascal, however, does not
use line numbers, so you have to home in on a particular line by
more subtle means.

In this case, notice that the EDIT data message, that automat-
ically printed line that contains information about the number of
lines and bytes, says the pointer (PTR)is at line 1. The system, in
other words, is “looking” at line 1 at the moment.

22



The error, however, is in the second line of the program. To
get to that line, enter N. Entering an N while in the EDIT mode
moves the pointer down one line. Here is what you will see on the
screen:

>N

VAR X, Y: INTEGER

> e

Sure enough. There’s the next line printed out for you. That
happens to be the line that contains the error, so delete it by
entering D. Entering D in the EDIT mode deletes the current prog-
ram line. The information on the screen now looks like this:

>N

VAR X, Y: INTEGER

>D

Jo- -

The faulty line is now gone, and the next step is to insert a
corrected version in its place. Begin by entering I, for “insert.”
Entering an I in the EDIT mode sets up the system for inserting a new
line of text.

>N

VAR X, Y: INTEGER

>D

>

?

Now the system is prepared to accept a new line of text. Inthis
instance, you should enter VAR X, Y: INTEGER;.

N
VAR X, Y: INTEGER
D
I

? VAR X, Y: INTEGER;
?

Compiling

The revised line is now inserted into the program. The pre-
sence of the question mark prompt character indicates the system
is ready to accept yet another line of text. But since this particular
program calls for just a one-line correction, it is time to try compil-
ing again.

First, you have to get out of the insert mode (actually the
PROGRAM mode —see the question mark?). Strike the ENTER

23




key one more time, and you will see the greater-than prompt
character:

N
VAR X, Y: INTEGER
D
I

? VAR X, Y: INTEGER;
?

That means the system is back in the EDIT mode. You have to
compile from MONITOR, so enter Q. Sure enough, there’s the
period signaling the MONITOR mode. Now compile by entering C.

.C

(* ERROR PROGRAM *)

VAR X, Y: INTEGER;

READ<ERROR 18

ERROR 18 and Its Correction

Rats! There is another error in the program. According to the
error listing in the Appendix, ERROR 18 means there is an error in
the declaration part of the program. You probably don’t know what
that means at this point in the game, but it seems that a BEGIN
statement ought to appear between VAR X, Y: INTEGER; and
READ (X#, Y#);. So go back to the EDIT mode.

The information text indicates that the program pointer is at
line 1. The new line of text, however, should be inserted between
the second and third lines. You want to work it out so that VAR X,
Y: INTEGER; is the current line, and then insert BEGIN.

You can get down to that second line by entering N. Then
enter I to get into the INSERT mode, and respond to the question
mark by entering BEGIN.

Get out of the INSERT/PROGRAM mode by striking the
ENTER key, return to the MONITOR by entering Q, and then
compile by entering C. The compiler ought to make it all the way
through this time. There are no more syntax errors.

The corrected version of the program in Example 2-6A should
look like this:

Example 2-6B

(* ERROR PROGRAM *)
VAR X, Y: INTEGER,;

24



BEGIN

READ (X#, Y#),
WRITE (X+Y)#)
END.

Getting To the Right Line

All you can really do in the EDIT mode is delete and insert
lines of text. The.trick to editing in Tiny Pascal is getting to the
desired line of text.

In the examples just cited, getting to the desired place in the
program was a matter of moving down one line, by entering an N for
“next.” But what if you want to move down maybe 20 lines ina long
program? Does that mean you have to enter N 20 times in succes-
sion? No, not really. You can move down any number of program
lines by entering Nn, where # is the number of lines you want to
move. Entering N12, for example, moves the pointer down 12 lines
below the current one. N1 is the same thing as just plain N.

You can also move upward any number of lines by entering
Un. Entering U6 moves the pointer 6 lines above the current one.
Entering just plain U moves the pointer to the next line above the
current one.

So by entering Us and N, it is possible to move up and down
any desired number of lines in the program—only while in the
EDIT mode, of course. Once you get to the desired place in the
program in this fashion, you can do the necessary delete and insert
operations.

More Editing Tricks

There is yet another handy operation that is possible in the
EDIT mode. Enter P* and the system prints the entire program
listing. That operation is the same as doing a LIST in BASIC.

There are a couple of more editing tricks available in the
Supersoft Tiny Pascal package. You have enough at your disposal
for the time being, however. If you want to see how some of the
other procedures work, consult the Supersoft manual.

Here is a brief summary of the editing procedures described in
this section:

® To delete a line of text, enter D. To delete the entire
program listing, enter D*,

® Toinsert one or more new lines of text, first enter I and
then enter the new lines.

® To move the program pointer downward »# number of
lines, enter Nx.

25




© To move the program pointer upward » number of
lines, enter Un.

© Toview the entire program listing, enter P*. To view#
lines of text in succession, enter Px.

LEARNING BY DOING

There is a lot of material presented in this chapter. And there
is little doubt that many readers are confused by the whole thing.

The best way to clear up the confusion and get some good
Pascal programming under way is by doing it. Dig in and make
mistakes. You'll learn from your mistakes, and the material in this
chapter should help bail you out of some of the problems. In fact,
some people learn better by setting aside the book and doing
everything on their own, referring back to the book only when all
theories have been exhausted.

So what if you don’t know exactly how to do things in the most
efficient manner? As long as you can get the job done, that’s
adequate for the time being. You will most likely find yourself
perfecting the necessary skills as you go along and get more
first-hand experience.

SAVING PASCAL PROGRAMS ON CASSETTE TAPE

Suppose you have entered and compiled a Tiny Pascal prog-
ram that you would like to save on cassette tape. The job isn't
difficult.

First, make sure the system is in the MONITOR mode. Then
set up the cassette machine for recording.

Enter WS, followed by a file name of your choosing. The file
name cannot have more than six characters; other than that, you
are free to invent file names of any sort.

Suppose, for example, you want to record the Pascal program
called FUNNY1. Set the system to the MONITOR mode, set up
the cassette machine for recording, and enter WS FUNNY1.

The cassette machine starts running and continues running
until the program is recorded. At that time, the cassette machine
stops and you see the MONITOR prompt symbol on the screen.
The job is done.

To load a Pascal program from cassette tape, make sure the

1A 11 URAA LQAOITL

program file is empty. Get the computer into the MONITOR mode
and set the cassette machine for playback. Then enter LS, followed
by the program’s file name.

The cassette machine stops when the program is fully loaded.
All you do after that is compile the program and run it.

26



Remember: every program must be compiled before it can be run.
A new program entered from the keyboard must be compiled. A
program that has been edited must be compiled. And a program
entered from cassette tape must be compiled.

The procedures for getting Pascal programs onto tape and
from tape into the machine are nearly identical to the ways you
handle BASIC recording. Simply remember the job has to be done
in the MONITOR mode. You enter WS and a file name to record,
and LS and a file name to load the program from tape.

TESTING YOUR SKILLS WITH MORE PROGRAMS

Here are a few more Tiny Pascal programs. Give them all a
try. If you make any mistakes, correct them by using the editing
procedures rather than wiping out the whole thing. Also, try saving
some of the more interesting ones on cassette tape.

Example 2-7

(* NESTED RECTANGLES *)
VAR H¢, H1, V@, VI:INTEGER;

PROC DRAW;
VAR H, V:INTEGER;
BEGIN
FOR H:=H¢ TO H1 DO
BEGIN
PLOT (H, V@, 1); PLOT H, V1, 1)
END;
FOR V:=V@¢ TO V1 DO
BEGIN
PLOT H¢, V, 1), PLOT H1, V, 1)
END;
END;
BEGIN

HO:=0; H1:=127; VU:=0; V1:=47,
WRITE (28, 31);

REPEAT

WHILE (H0<H1) AND (V@<V1) DO
BEGIN
DRAW;
HO:=H0+4; H1:=H1-4; V@:=V@+2; V1:
=V1-2;
END;

UNTIL INKEY=32;

END.

27




Example 2-8

(* DICE ROLL *)
VAR LINE: INTEGER;
PROC RANDOM;
VAR M, N, P: INTEGER,;
BEGIN
REPEAT
M:=N*25;
IF M ¢ THEN
M:=ABS(M);
N:=M;P:=M
P:=P MOD 7;
UNTIL P @;
WRITE P#)
END;
BEGIN
WRITE@28, 31, 22¢, ‘DICE ROLL’);
FOR LINE:=1 TO 8 DO
WRITE (13, 220);
RANDOM;
WRITE 32, 32);
RANDOM;
WRITE (13, 13, 13, 13, ‘ENTER R TO ROLL AGAIN")
END.

Example 2-9

(* ASCII DEMO *)
VAR N: INTEGER;
BEGIN
WRITE (28, 31, ‘HERE IS THE COMPLETE TRS-80 ASCII
CHARACTER SET:’);
WRITE(3, 13);
FOR N:=32 TO 191 DO
WRITE (N);
END.
OUT-OF-MEMORY ERROR SIGNAL

When you get to the point where you are developing rather
long and involved Tiny Pascal programs, you are bound to come
across an ERROR 1001 when attempting to compile them. This is
the system’s “out-of-memory” error signal.

28



Under normal circumstances, both your source program and
its P-code version will reside in the memory. When compiling very
long source programs, however, it is entirely possible to run out of
memory space before the P-code version is completely compiled.

What can you do about it? Basically, the idea is to tell the
system to give up the source program, writing over it with the
P-code version. This version is absolutely necessary for running
the program. The disadvantage is that your written-out source
program is lost in the process.

There are a couple of ways to handle the situation, but here is
the one I have found to be most helpful in the long run. First,
compile your finished source program by entering C/-P instead of
C. That will compile the program, checking for syntax errors,
without actually generating the P-cdde. The idea is to iron.out all
the syntax errors.

Then save the entire source program on cassette tape by
doing a WS file name. The source program is thus saved for future
use and, debugging.

With the source program still residing in memory, compile the
P-code version by entering P/-S. This operation generates the
P-code right over your source program. It will destroy the source
program. Remember, though, that you have saved it for future use
on cassette tape.

Now the program can be run and tested for programming
errors. Hopefully, you won't find any programming errors. Cer-
tainly there won’t be any syntax errors. Running the C/-P routine
should have taken care of that little matter.

If you decide you want to change something in the program,
you must reload the source version from the cassette tape. The
P-code version, itself, cannot be altered from the keyboard. Once
you make the necessary corrections in the source program start the
sequence all over again. Do a C/-P to check for syntax errors. Save
the source program on cassette tape. Compile the program with
P/-S. Run the P-code version.

Eventually, you will end up with a recorded version of the
source program that satisfies you. It can be loaded into the system,
compiled with C/-S and run at any later time. None of this applies,
of course, if you do not see an ERROR 1001 when attempting to
compile with an ordinary C command.

29




Chapter 3
Begin With BEGIN

One of the hallmarks of Pascal, including Tiny Pascal, is the
orderly and logical fashion in which programs must be written.
There is a whole family of syntax rules that you must follow in
precise detail, and you are probably going to stumble over some of
them at first. Once you begin grasping the idea of Pascal syntax,
you will find the rules are, themselves, very logical and rather easy
to remember.

The task of learning and recalling Pascal syntax rules can be
made much easier when you learn to read syntex diagrams. In fact,
the whole essence of Pascal can be summarized in about three
pages of syntax diagrams.

So even though it is possible to write a book of this sort
without making any references to syntax diagrams, it would be
foolish to try it. Knowing how to read these diagrams makes it
possible to learn Pascal much more effectively. This chapter intro-
duces a few of the most fundamental Pascal programming steps
and, at the same time, shows how to read syntax diagrams.

READING SYNTAX DIAGRAMS
Figure 3-1 is the syntax diagram for ahsclutely any program
written in Pascal. The term BLOCK enclosed in the rectangle
represents everything that goes into the structure of the program.
Reading the syntax diagram in Fig. 3-1 in the direction the
arrows are pointing, —from left to right, —every Pascal program
first consists of a block.

30



PROGRAM

—>—  BLOCK —»-@

Fig. 3-1. Syntax diagram for any Pascal program.

After the BLOCK comes a circle with a period inside it. That
symbol indicates that every Pascal program must end with a period.
Look back through the examples in Chapter 2, and you should find
every one of them ending with a period.

Thus any Pascal program begins with a block of operations and
concludes with a period. That’s what the syntax diagram in Fig. 3-1
says.

Symbols

But what is that BLOCK? On a syntax diagram, any expres-
sion enclosed within a rectangular figure represents something
that has to be defined somewhere else. The BLOCK in Fig. 3-1, in
other words, has to be defined. Putting it even more simply,
someone, somewhere along the line, has to specify the operation to
be included in the BLOCK.

On the other hand, terms enclosed in circles or rectangles
with rounded corners indicate things that do not require definition.
The period in the circle in Fig. 3-1says a period character must end
a Pascal program. The “period” doesn’t need further defining. A
period is a period, no matter how you look at it.

There is a third kind of symbol appearing on a syntax diagram:
arrows. Arrows indicate the direction of flow of events.

And that’s all, just three symbols. There is a rectangle that
indicates operations that are defined elsewhere, a circle or
rounded rectangle enclosing self-defined steps, and arrows indicat-
ing the direction of activity.

Seem too simple? Maybe it is, because nothing can be done
until block is defined better.

Defining BLOCK

The simplest way to define BLOCK and have a program that
does anything useful is to apply the syntax diagram in Fig. 3-2.

31




The BEGIN ... END block in Fig. 3-2 shows one of four
possible block arrangements. These are the elements that fit into
the BLOCK rectangle in Fig. 3-1.

This one begins by telling you to print BLOCK, followed by
some undefined STATEMENT. After you write the STATE-
MENT, whatever that might be, the diagram shows you have a
choice of two different things to do. One possible path is to a literal
rendition of the word, END. Writing BEGIN, some STATEMENT
and END terminates this block operation.

But if you wish, the diagram shows you can loop back to
another statement, provided you write a semicolon along the way.
Here are some valid BEGIN ... END block sequences:

BEGIN
statement
END

BEGIN

statement; statement
END

BEGIN

statement; statement; statement; statement
END

The syntax diagram in Fig. 3-2 shows that you can include any
number of statements, just as long as you insert a semicolon
between them. Apparently the work isn’t done yet, however. The
STATEMENT block in Fig. 3-2 is not defined.

WRITE Statement Formats

Figure 3-3 is the syntax diagram for one of 12 Tiny Pascal
statements. This is a WRITE statement, one of the simplest that
does anything useful at all.

BLOCK

BEGIN STATEMENT B END

Fig. 3-2. Syntax diagram for the BEGIN ... END block.

32



STATEMENT

EXPRESSION

Fig. 3-3. Syntax diagram for the Pascal WRITE statement.

The syntax diagram in Fig. 3-3 says a statement can be made
up of the word WRITE and EXPRESSION enclosed in parenth-
eses. Some valid WRITE statements would have these formats:

WRITE (expression)
WRITE (expression, expression)
WRITE (expression, expression, expression)

A WRITE statement can include any number of expressions,
as long as the expressions are separated by commas and all the
expressions are enclosed in a single set of parentheses.

String Constant

But EXPRESSION is left undefined in Fig. 3-3. Will this ever
end? To keep this discussion to manageable proportions, the
analysis of several more syntax diagrams shows that it is possible
to build an expression from a STRING CONSTANT. Figure 3-4 is
the syntax diagram for a string constant.

Finally, you see a syntax diagram that is completely self-
defined. There are no rectangles with sharp corners.

Writing a string constant is a matter of enclosing one or more
keyboard characters within a set of apostrophes. The characters
can be alphanumerics, spaces and any other symbols on the
keyboard. Note from the syntax diagram that the characters are not
separated by commas.

Here are some valid string constants:

‘PASCALISFUN—WHEN YOU GET TO KNOW HIM!’
‘E EQUALS MC SQUARED’

‘SOME COMPUTER PEOPLE GO CRAZY IN AN IN-
TERESTING WAY’

33



Go back to Fig. 3-1 and work your way through to Fig. 34
again. Figure 3-1 says that a complete Pascal program consists of a
block that ends with a period. Figure 3-2 indicates that a block can
be composed of BEGIN, followed by any number of statements,
and concluded with END. Figure 3-3 says the STATEMENT can
be put together from WRITE, followed by any number of expres-
sions enclosed in a single set of parentheses. And Fig. 3-4 indicates
that an expression can be composed of any number of keyboard
characters enclosed within a set of apostrophes.

The whole thing fits together like a Tinker Toy set. Whatever
is left undefined at one stage is at least partly defined by the next
one. The entire process continues until every step is fully defined.
Figure 3-5 shows everything assembled into one syntax diagram.

SIMPLE PROGRAM EXAMPLES

Here are some simple Pascal programs that are written ac-
cording to the overall diagram in Fig. 3-5. Try them; they work.

Example 3-1
BEGIN
WRITE(HELLO THERE)
END.

Example 3-2
BEGIN
WRITE (HOW ABOUT THIS?, ‘IT WORKS’)
END.

Example 3-3
BEGIN
WRITE(THIS WORKS’);
WRITE(TOO’)
END.

EXPRESSION

CHARACTER

Fig. 3-4. Syntax diagram for the STRING CONSTANT expression.

34



PROGRAM

BEGIN

Fig. 3-5. A complete syntax diagram for Pascal programs using a BEGIN...END
block, WRITE statements and STRING CONSTANT expressions.

Example 3-1 represents a BEGIN ... END block operation. It
includes a single WRITE statement which, in turn, is composed of
a single string constant.

Example 3-2 is also a BEGIN ... END block operation with a
single WRITE statement; but the statement is made up of two
expressions. The expressions in that case are both string con-
stants.

Example 3-3 uses two WRITE statements. Each contains a
single string constant.

The three examples just cited hardly cover all possible prog-
rams that can come out of the syntax diagram in Fig. 3-5. Work
through each of the examples yourself, carefully noting how they
follow the syntax diagram. And then try making up some programs
of your own. If you goof up, the compiler will let you know about it.

STEP-BY-STEP ANALYSIS OF WRITE STATEMENTS

For the sake of readers who are still hazy about how to
interpret syntax diagrams, this is a good place to analyze them one
step at atime. Refer to the diagram in Fig. 3-5 again, and see how it
is a very specific guide to writing Pascal programs.

Beginning at the left-hand side of the drawing (where the
reading of syntax diagrams usually begins), the first step is to enter
BEGIN. And then the diagram says the next step is to write
WRITE.

For the sake of clarity, rather than necessity, these words are
usually printed on separate lines. For instance:

BEGIN
WRITE

35




Next, the diagram says that every WRITE must be followed
by a left parenthesis. Since the purpose of the diagram is to write
some string characters, the next item on the list is an apostrophe.

Thus far, the diagram says you must do this:

BEGIN
WRITE(

There has been no choice in the selection of words and symbols to
this point.

CHARACTER Phase

A CHARACTER of some sort comes after the first apos-
trophe. It can be any keyboard character you want to use. After
writing the first character, you reach the first choice point in the
diagram. You have the choice of going to the right, entering an
apostrophe and ending the CHARACTER phase of the job, or
looping back to the beginning of the CHARACTER phase. In actual
practice, you can loop around through the CHARACTER phase
about 250 times before leaving it.

To keep things simple, suppose you loop through the
CHARACTER phase often enough to write the characters for
HELLO. So when you're through with the CHARACTER phase,
the program looks like this:

BEGIN
WRITE(HELLO

The diagram says you must conclude a character writing phase
with an apostrophe. There’s no choice in the matter.

BEGIN
WRITE(HELLO’

Choice Points

Now comes another choice point, the one between the second
apostrophe and right parentheseis character. This choice point
gives you the option of either writing a right parenthesis and
concluding the WRITE statement, or looping back through a
comma symbol to the beginning of an entirely new CHARACTER
phase.

Assuming you want to write another set of characters, you
must write a comma, an apostrophe, another set of characters and
another apostrophe. For example:

36



BEGIN
WRITE (HELLO’, ‘THERE’

Now you are at the choice point between the apostrophe and
right-parenthesis symbol again. Opting to write another set of
characters, you must enter a comma, an apostrophe, and another
set of characters concluded with an apostrophe. See this:

BEGIN
WRITE(HELLO’, ‘THERE’, ‘HOW ARE YOU?’

Suppose this time you want to conclude the WRITE state-
ment, rather than looping back through the comma to generate yet
another string of characters. The diagram says you must enter a
right-parenthesis character. Thus:

BEGIN
WRITE (HELLO’, ‘THERE’, ‘HOW ARE YOU?")

You are now at another choice point. You can either conclude
the program by entering END and a period, or loop back through a
semicolon to begin an entirely new WRITE statement.

If you choose to loop back to do another WRITE statement,
enter the semicolon, enter WRITE, followed by a left parenthesis,
an apostrophe and a whole new set of string characters. Using just
one string expression this time, the overall program looks like
this:

BEGIN
WRITE(HELLO’, “THERE’,"HOW ARE YOU?"),
WRITE ('l AM FINE, THANK YOU.”)

At this time, you are back to the choice point between ending
the program or entering a semicolon to begin yet another WRITE
statement. Opting to end the program, you must write the word
END, followed by a period.

BEGIN

WRITE(HELLO’, ‘THERE’,"HOW ARE YOU?’);
WRITE( T AM FINE, THANK YOU.")

END.

You have worked your way through the syntax diagram in Fig.
3-5 from beginning to end. And that makes up a complete Pascal
program. Compile and run it to see something like this on the
screen:
HELLO THERE. HOW ARE YOU? I AM FINE, THANK
YOU.

37



VARYING FORMATS

The syntax of the program is critical. The syntax diagram
must be followed to the tiniest detail. Aside from the actual syntax,
however, you can write out the program in just about any sort of
format you choose. For instance, there is no critical reason why
BEGIN, WRITE, WRITE and END should start on separate lines
of the program. Also, the expressions within the parentheses could
be written on lines separate from their respective WRITE state-
ments. In fact, the whole program could be written as a one-liner:

BEGIN WRITE(HELLO’, ‘THERE’,". HOW ARE YOU?’);
WRITE(1 AM FINE, THANK YOU.’) END.

The program still follows the syntax rules, and it will run the
same way as the 4-line version. But the 1-liner is terribly confusing
to anyone trying to understand what the program is supposed to do.
Evenif you aren’t interested in what others think of your programs,
you will find that long-line programs are very difficult to edit.

So an orderly program format pays off in the long run. Gener-
ally, that means beginning each new statement on a new line.

38



Chapter 4
Screen Control and
Graphics With WRITE

The WRITE statement described in Chapter 3 is good for more
than simply writing out simple string constants. It is also one of the
primary screen control statements, and that is what this chapter is
about.

CONTROLLING THE CURSOR WITH WRITE

You have probably noticed by now that the CLEAR key on
your TRS-80 has no effect on Tiny Pascal screen operations. All of
your programs, compile listings and general doodling on the screen
cannot be cleared away in the usual fashion. It remains on the
screen until it is scrolled off the top by subsequent keyboard
operations.

It turns out that the screen cannot be cleared while the system
is accepting commands from the keyboard, but it is altogether
possible to insert a screen clearing operation into a Tiny Pascal
program. The operation works just like the CLS statement in
BASIC.

To see the Tiny Pascal version of CLS at work, enter, compile
and run the following program:

Example 4-1

BEGIN
WRITE (28, 31)
END.

39




Upon executing this program, the system clears the screen
and places the MONITOR prompt symbol, a period, at the cursor’s
home position at the upper left-hand corner of the screen. That’s it.
WRITE (28, 31) is the Tiny Pascal version of BASIC’s CLS.

The program in Example 4-1 follows the syntax rules that are
painstakingly drawn out for you in Chapter 3. The only difference of
special note is that this new program uses integer constants as
expressions. The examples in Chapter 3 all used string constants
as expressions. Figure 4-1 shows the syntax diagram for EX-
PRESSION, extended to include both string and integer constants.

The big question now is this one. What is so special about the
constants 28 and 31 that makes the system clear the screen and
drive the cursor to its home position?

If you take a look at the Appendix in this book or the listing of
Control Codes: 1-31 in your TRS-80 user’s manual, you will find
that code 28 homes the cursor and code 31 clears the screen to the
end of the screen frame. Performing those two control operations
in succession amounts to doing a CLS in BASIC.

You will want to use this screen clearing WRITE statement
rather often in your Pascal program writing experience. Just about
every program ought to begin that way, clearir 7 unnecessary text
from the screen before writing out information that is more relev-
ant to the programming task at hand.

EXPRESSION

STRING

A CHARACTER )=

INTEGER

Fig. 4-1. Syntax diagram for an EXPRESSION offering STRING and INTEGER
options.

40



Figure 4-2 shows the complete evolution of Pascal syntax
diagrams that eventually leads to writing string constants, integer
constants or both. The diagrams are identical to those in Chapter 3,
up to Fig. 4-2D. At that point, the programmer has the option of
writing either a STRING or INTEGER expression.

STRING Expression

Writing a STRING expression (Fig. 4-2E) is a matter of
entering an apostrophe, followed by any delivered combination of
keyboard characters and concluded with another apostrophe. The
diagram in this case is no different from that in Fig. 3-4.

Figure 4-2F is the syntax diagram for writing an integer
constant. In this instance, there are no apostrophes enclosing the
expression; it is simply any combination of keyboard digits, 0
through 9, written in succession.

The little screen clearing program in Example 4-1 follows the
syntax evolution in Fig. 4-2. The BLOCK is a BEGIN . . . END
operation. The STATEMENT is a WRITE; and in this particular
case, the EXPRESSION is a series of two INTEGER entries, 28
and 31.

The STRING expression option is not used in Example 4-1.
Take a look at these examples, however. Try them on your
machine to convince yourself that they work.

Example 4-2A

BEGIN

WRITE (28, 31);

WRITE (NOW THE SCREEN IS CLEARED’)
END.

Example 4-2B
BEGIN

WRITE (28, 31, ‘'NOW THE SCREEN IS CLEARED’)
END.

Examples 4-2A and 4-2B do the same job. They clear the
screen, home the cursor and write the message NOW THE
SCREENIS CLEARED in the upper left-hand corner of the screen.
The only programming difference is that Example 4-2A carries the
screen clearing and message printing operations at two separate
WRITE statements, while Example 4-2B combines those two
operations into a single WRITE statement. Whether you choose to
apply the 2-line or 1-line WRITE statement is purely a matter of
personal preference.

41




Of course the entire program could be written on a single line
without violating any of the syntax rules:

Example 4-2C

BEGIN WRITE (28, 31, ‘NOW THE SCREEN IS CLEAR’)
END.

But again, the problem with the single-line programming
approach is that the entire line must be altered if you happen to
make any mistakes.

You ought to make a note of the fact that string expressions
must be enclosed in apostrophes, while integer expressions are
not. That’s the only way the computer can tell the difference
between the two.

WRITE/INTEGER Statements

Interpreting these programming examples in the light of the
syntax diagrams in Fig. 4-2 is important. But the main issue is now
that you can gain complete control over cursor operations by means
of WRITE/INTEGER statements.

Suppose you not only want to clear the screen, but write a
string message near the center of the top line. Try this:

Example 4-3A

BEGIN

WRITE 28, 31, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25);
WRITE (THIS MESSAGE IS CENTERED ON THE TOP
LINE’)

END.

First convince yourself that the Pascal program in Example
4-3A follows the syntax evolution in Fig. 4-2. There are two
WRITE statements that are properly separated by a semicolon.
The first WRITE statement contains a series of 2-digit INTEGER
operations, each separated by commas. That comes about by com-
bining Figs. 4-2C and 4-2F. The second WRITE statement is
composed of a single STRING expression.

25 Codes

The first WRITE statement includes three different control
codes: 28, 31 and 25. By beginning the integer sequence with the
28, 31 combination, the system first homes the cursor and clears
the entire screen. After that you find twelve 25 codes. What do 25

42



*(4) ‘uoissaidxa ONIHLS & Bunum 1o} weibeip xejuAg (3) uoisseidxe HIDILNI 10 DNIHLS & Joyye Bunm jo uondo su Buimoys wiesbeip xeuis
(Q) wewsiEls 31 1HM Joj weibelp xejuAs () %001q NI "NID3g oyt 10) weibeip xejuis (g) weiboid jeased Aue Joj weibep xeis (v) 2-v bi4

Juejsuoo Jebajul ue Bupum Joy welbep xeuAs Mu

© e

HIDALINI ONIHIS

0]

ONIELS

NOISS3HdX3

NOISS3HdX3

ANINILVLS

o

o) O] oo

»0018 WYHOO0Hd

ANIW3LYLS




codes do? According to the Appendix, a 25 control code moves the
cursor one character space to the right.

The first WRITE line in Example 4-3A thus homes the cursor,
clears the screen and moves the cursor 12 character spaces to the
right. As a result, the message THIS MESSAGE IS CENTERED
ON THE TOP LINE does indeed describe itself. Of course, you
can vary the starting point of the message by changing the number
of 25 codes in the first WRITE line.

Writing out so many 25 codes, just to position the message
some distance to the right, can be something of a nuisance. Cer-
tainly the idea does the job, and is often a handy notion; but there is
amore efficient way to move messages to the right. The improved
method takes advantage of a set of TAB code numbers.

Try the program in Example 4-3A, and then compare the
results with this version:

Example 4-3B

BEGIN

WRITE @8, 31, 204);

WRITE (THIS MESSAGE IS CENTERED ON THE TOP
LINE")

END.

Example 4-3B does exactly the same thing as 4-3A, and
without having to enter twelve 25 codes in succession. That 204
control code in Example 4-3B does the same job as the twelve
successive 25s in Example 4-3A.

TAB Control Feature

To see the meaning of code 204, refer to the Appendix. You
will see that control codes 192 through 255 are reserved for TAB
operations. The cursor is automatically tabbed some number of
spaces to the right, depending on which number you enter between
192 and 255.

If you use 192, you will find that the cursor isn’t moved at all.
But if you use the high extreme (255), you will find the cursor
tabhed all the way to the end of the line, The control number 2¢4
used in Example 4-3B falls within this range. Since 204 is the sum
of 192 plus 12, it follows that code 2¢4 tabs the cursor 12 spaces to
the right. Getting the TAB feature to space 2@ spaces to the right,
by way of another example, is a matter of using control code
192420, or 212.

44



To get a feeling for this TAB control feature, edit Example
4-3B several different times, using control numbers other than 204
in each case. Naturally, if you use control numbers that are too
large, you will find the system breaking the message at the end of
the first line and printing the rest of it at the beginning of the second
line.

Line Feed Operations

So to this point, you know how to use WRITE/INTEGER
statements to home the cursor (code 28), clear the screen (code 31
following 28), and position the cursor anywhere on the top line of
the screen (codes 192 through 255). The next control code trick of
special importance is the one that sends the cursor downward any
desired number of lines. This is a downward line feed operation
caused by control code 26. Try this example:

Example 4-4

BEGIN

WRITE (28, 31, 26, 26, 26, 26, 26, 26, 26, 26);

WRITE (‘THIS MESSAGE IS ON THE MIDDLE LINE’)

END.

The first WRITE statement homes the cursor, clears the
screen, and then does eight downward line feeds in succession.
Those eight successive line feed operations carry the cursor
downward eight lines from its home position, very near the middle
of the screen.

Unfortunately, there is no simple control code trick for
eliminating the need for writing a bunch of 26s in sequence. If you
want to move down 10 lines, you must write ten 26 codes in
succession.

This is, however, an entirely different approach to simplifying
the notion of doing a number of line feeds in succession, but it
involves a Pascal repetitive statement that isn’t described until
later in this book. In the meantime, you’ll have to live with the
process of writing a 26 control code for each downward line feed
you want to do.

Play around with the program in Example 4-4, altering the
number of line feed codes. Remember that your TRS-80 screen can
handle only 16 lines at a time. After that, see if you can figure out
what Example 4-5 is supposed to do and how it does it.

Example 4-5

BEGIN
WRITE 28, 31, 26, 26, 26, 26, 26, 26, 26, 26, 202),

45



WRITE (‘THIS MESSAGE IS IN THE CENTER OF THE
SCREEN")
END.

Code 13

Another control code of special importance to Tiny Pascal
programming is code 13: line feed with carriage return. The follow-
ing examples demonstrate the value of this particular control code.

Example 4-6A

BEGIN
WRITE (28, 31, ‘FIRST MESSAGE’, ‘SECOND MESSAGE’)
END.

Enter, compile and run the program in Example 4-6A, and you
will see something like this on the screen:

FIRST MESSAGESECOND MESSAGE

Now that’s a mess. The second message is butted up against
the end of the first one. Of course, you could separate them by
inserting a space control code between the two string messages:

Example 4-6B
BEGIN
WRITE 28, 31, ‘FIRST MESSAGE’, 25, ‘SECOND MES-

SAGE")
END.

Or:

Example 4-6C
BEGIN
WRITE @28, 31, ‘FIRST MESSAGE’, 32, ‘SECOND MES-
SAGE")
END.

Examples 4-6B and 4-6C both insert a space between the two
messages, resulting in a display that looks like this:

FIRST MESSAGE SECOND MESSAGE

The only difference between those two programs is that they
use different control codes for inserting the space. Example 4-6B
uses a 25 code to advance the cursor one space to the right, while
Example 4-6C does the same thing with a control code version of
striking the SPACE BAR (code 32). It makes no difference which
code you use.

46



But here is the real point of this discussion. How can you get
the two messages printed at the beginning of separate lines? How
do you get a display that looks like this?

FIRST MESSAGE

SECOND MESSAGE

Writing Messages As Separate WRITE Statements

It might seem logical to do the job by writing the two mes-
sages as separate WRITE statements:

Example 4-6D

BEGIN

WRITE (28, 31, ‘FIRST MESSAGE’);
WRITE (SECOND MESSAGE’)
END.

Enter, compile and run Example 4-6D, and you see this on the
screen:

FIRST MESSAGESECOND MESSAGE

No, writing messages on separate WRITE lines doesn’t help
matters at all. Standard Pascal handles this sort of problem by
offering two different WRITE statements: WRITE and WRITELN.
Tiny Pascal cannot offer such an option, however, andit is necessary
lo specify a line feed/carriage return control code whenever lines of
text are to be printed on successive lines. Try either of the
following programs, and you’ll see things working out better:

Example 4-6E
BEGIN
WRITE (28, 31, ‘FIRST MESSAGE’, 13, ‘SECOND MES-
SAGE’)
END.

Example 4-6F

BEGIN

WRITE @8, 31, ‘FIRST MESSAGE’, 13);
WRITE (SECOND MESSAGE")

END.

Examples 4-6E and 4-6F do exactly the same thing:

FIRST MESSAGE
SECOND MESSAGE

47



Tiny Pascal does not perform a line feed /carriage return operation
without being told to do so by means of a control code 13.

Study the complete list of control codes in the Appendix and
try some of them in WRITE statements for yourself. Most of them
are self explanatory. With a bit of playing around, you can get a
good understanding of their nice features and shortcomings.

Virtually all of these control codes are used a number of times
throughout this book. For the most part, they will be presented
with little or no further comment.

PRINTING ASCil CHARACTERS WITH WRITE

Every character key on your TRS-80 keyboard is assigned an
unique ASCII character code number. These codes can be re-
presented by decimal numbers 32 through 128, and you will find
them completely summarized in the Appendix and in your TRS-80
user's manual.

Just as it is possible to do cursor control operations by includ-
ing some control code numbers in WRITE statements, it is possi-
ble to print any keyboard character by including their respective
code numbers in WRITE statements. Here is a little demonstration
of that fact:

Example 4-7
BEGIN

WRITE (28, 31, ¥, 13, 13, 42)
END.

Example 4-7 is a legitimate and complete Pascal program. It
follows the syntax rules, using a WRITE statement composed of
five integer expressions and one string expression.

Reading that WRITE statement from left to right, it says:

Home the cursor (control code 28)

Clear the frame (control code 31)

Print an asterisk (* string constant)

Do two successive linefeed/carriage returns (control
code 13)

Do control 42.

Contirol/42

What is “control 42?” According to the ASCII character list-
ings, doing a 42 is the same thing as printing an asterisk. So this
program clears the screen and homes the cursor, prints an asterisk
by means of a string constant, skips down two lines and prints
another asterisk by means of an ASCII command.

48



The program in Example 4-7 clearly shows that you have the
option of printing a keyboard character as either a string constant
or ASCII integer. Incidentally, the example shows how powerful
WRITE statements can be when it comes to controlling screen
activity. You can cram a lot of different kinds of operations into a
single WRITE statement.

At any rate, whether you choose to print a keyboard character
as a string or ASCII integer constant is a matter of personal
preference and common sense. For example, there is little point in
using ASCII code integers for writing messages having a lot of
characters in them. The system can write BILL two different ways:

WRITE (BILL") or WRITE (66, 73, 76, 76)
Obviously, using the string version, ‘BILL’, is both easier to write

and understand after it is inserted into the program. Using the
ASCII version is both cumbersome and difficult to interpret.

Advantages of ASCII Codes

So why bother with ASCII codes at all? There are a couple of
reasons.

For one, it is slightly easier to write a single character mes-
sage in ASCII form than as a string. You don’t have to enclose the
ASCII code in apostrophes. Doing ASCII 42 is somewhat simpler
and faster than programming the string version, ‘*.

A second advantage of using ASCII integer codes is that it
becomes possible to print all four arrow characters. Using the
string feature, it is possible to print only the up arrow (4). Trying to
fit the other three arrow figures into apostrophes causes some
unwanted cursor motions.

To see what this is all about, try these two little programs.
Example 4-8A

BEGIN
WRITE (28, 31, 91, 92, 93, 94)
END.

Example 4-8B
BEGIN
WRITE 28, 31, f * <, )
END.

Upon entering, compiling and running the Pascal program in
Example 4-8A, you should see all four arrow characters on the
screen:

49




He—

But you cannot even get Example 4-8B entered into the machine.
You can only get as far as specifying the up-arrow character. As
soon as you try to enter the down-arrow character as a string
constant in Example 4-8B, you will find that the cursor simply
drops down one line without printing the arrow at all. The same
sort of thing happens when trying to specify the left- and right-
arrow characters as string constants.

Now the fact that you can, indeed, print all four kinds of arrows
using ASCII codes as integer constants in Pascal might seem to be
a trivial advantage. Don’t you imagine, however, that little arrows
pointing in different directions will make handy characters for
Pascal computer games and things of that sort? Sure they will.

DOING TRS-80 GRAPHICS WITH WRITE

Applying WRITE commands to cursor control and ASCII
characters is a matter that is identical to all kinds of computer
systems using any version of Pascal. The TRS-80, however, has an
unique graphics format that is accessed in an identical fashion, by
means of WRITE/INTEGER statements.

TRS-80 graphics symbols are built into integer locations 128
through 191. These 64 different graphics are summarized in the
Appendix.

Each of these little characters occupies a single character
space on the screen, and they can be called by a WRITE statement.
Doing a WRITE (153), for example, causes a little vertical, zig-zag
figure to appear on the screen, while doing a WRITE (170/) makes a
narrow vertical line appear. So it is possible to play with the
graphics to generate some interesting patterns on the screen.

Example 4-9

BEGIN
WRITE (28, 31, 153, 13, 153, 13, 153, 13, 153)
END.

Example 4-9 generates the simple, but potentially useful,
figure illustrated in Fig. 4-3. The WRITE statement first homes
the cursor, clears the field, prints character 153, does a line
feed/carriage return, then prints another 153 character and so on.

This is a cumbersome way to go about generating a complex
set of figures on the screen. Most of the tedium will be eliminated
when you've had a chance to work with some Pascal statements
that do repetitive operations for you.

50



Fig. 4-3. Resuits of running the
graphics program in Example 4-9.
Note that blacks and whites are re-
versed for clarity.

In the meantime, you will find it fun and instructive to write
short Pascal programs that include WRITE statements calling the
figures from the Appendix. If you want to see the entire graphics
character set printed out on the screen, go back to Example 2-9.
That little program in Example 2-9 prints out the entire ASCII and
graphics format between code 32 and 191.

SOME THOUGHTS ABOUT THE WRITE STATEMENT

You have just spent two chapters of this book working with the
Pascal WRITE statement. Figure 4-2 is especially important in this
respect because it shows how the WRITE statement fits into a
BEGIN . . . END BLOCK, and further shows how WRITE state-
ments can be specified as STRING constants or INTEGER con-
stants.

The importance of the WRITE statement in Pascal warrants
two chapters in this book and even more, as you will see later on. A
WRITE statement in Pascal carries far more weight thana PRINT
statement in BASIC. A single compound WRITE statement —one
made up of a number of different string and integer expressions—
can carry the burden of a lot of programming operations.

In practice, the only thing that limits the length and complex-
ity of a WRITE statement is the fact that Tiny Pascal can accept
only 255 characters (only 255?) in a “single line.” In a practical
sense, however, a WRITE line should be kept relatively short so
that you, as the programmer, can make editing changes without
having to wipe out dozens of expressions. Lengthy WRITE sequ-
ences, in other words, should be broken up into a series of succes-
sive, relatively short WRITE statements.

51




Chapter 5

Declaring Variables
And Inputting With READ

Writing computer programs without using variables is like having
cars without wheels. They look nice and make a lot of noise, but
they can'’t really go anywhere. Then, too, some of the most in-
teresting and useful programs are those giving the operator a
chance to interact from the keyboard.

None of the examples cited in Chapters 3 and 4 includes
variables or on-line keyboard operations. You aren’t going very far
in the business of writing and understanding Pascal programs until
you know how to handle both of these situations.

Unfortunately, it is impossible to do anything meaningful with
keyboard inputs until you understand Pascal variables. Most in-
formation entered from the keyboard is entered as values for
variables. So you must study variables before doing anything with
keyboard inputs.

Now that, in itself, isn’t bad. The problem is that you are not
yet in a position to work with Pascal variables without knowing
how to work with keyboard inputs.

It looks like one of those crazy catch-22 situations. But there
is a way around it. We will simply describe the nature of Pascal
variables first, reserving specific, working examples until later in
the chapter.

What this means is that you won’t be able to test your under-
standing of Pascal variables until you get to the second part of the
chapter. You will probably end up going through this chapter at

52



least two times-—once to get the general idea, and then again to
test the ideas on a first-hand basis. Here goes.

DECLARING VARIABLES

Every variable used in a Pascal program must be declared, or
specified, before it is used. In BASIC, you can pop a new variable
into a program as the mood and need arise. Not so in Pascal. The
machine must know in advance the name of every variable it will
encounter in the operating portion of the program.

IDENTIFIER FORMAT

Pascal variables are declared in a BLOCK operation, and the
syntax diagram in Fig. 5-1 shows how it works. According to that
diagram, you first write VAR (for VARiable, of course), followed
by something called an IDENTIFIER.

The IDENTIFIER rectangle in Fig. 5-1A is the only portion of
that diagram that isn’t completely defined. It is a fairly simple
affair, however; and it is defined for you in Fig. 5-1B.

An IDENTIFIER consists of a letter—any one of the 26
letters of the alphabet—followed by nothing at all, or any combina-
tion of letters and digits. According to Fig. 5-1B, some valid
identifiers would be:

ALPHA1

SNOOPY
FUNNY9

NUMBER
SIM1DO
The syntax diagram for IDENTIFIER does not allow spaces or
any other special keyboard characters, just alphanumerics between
A and Z and ¢ and 9. However, A2345 would be valid even though it
appears to contain a number larger than 9. Actually, it is a letter
followed by a sequence of four digits. That’s okay.
AnIDENTIFIER can be of any length, but in Tiny Pascal only
the first four characters are significant. Any beyond the fourth are
ignored. The significance of this fact is that you must be careful to
distinguish two similar identifiers within the first four characters.
The machine, for instance, cannot tell the difference between
identifiers NUMBER!1 and NUMBER2. FIRSTNO and SEC-
ONDNO, on the other hand, are perfectly distinguishable.
One of the nice things about the Pascal IDENTIFIER format is
that the identifiers, or variable names, can be literally descriptive,

53



something rarely possible in BASIC. You can, for example,
specify a variable for synchronizing operations with SYNCHNO or
spell out a line drawing variable with LINEDRW.

Variable Declaration Block

Itis the great flexibility in the selection of variable names that
gives Pascal programs a peculiar and sometimes confusing appear-
ance. All those nifty variable names, or identifiers, appear to be
names of statements. “What does SYNCHNO do?” It looks like
some sort of command or program statement, especially to people
schooled in BASIC. But they search the Pascal literature for a
description of SYNCHNO and cannot find it. It is simply a variable
name the programmer dreamed up. At any rate, begin a variable
declaration block by writing VAR, followed by an IDENTIFIER.

According to the syntax diagram in Fig. 5-1A, if you are
specifying only one variable, the next step is to write a colon,
followed by writing INTEGER and a semicolon. Here is an exam-
ple of a declaration block for a single variable identifier, SNOOK.

IDENTIFIER : ‘ -

BLOCK

e O ()
®

LETTER

IDENTIFIER

LETTER

Fig. 5-1. Syntax diagram for declaring Pascal variables. (A) Main syntax diag-
ram. (B) Syntax diagram for IDENTIFIER.

54



VAR SNOOK:INTEGER;

More often than not, however, you will have to specify more
than one variable. That begin the case, the syntax diagram in Fig.
5-1A tells you to separate them with a comma. Here is a declaration
block that specifies five different variables:

VAR X,X0,Y,Z,Z2:INTEGER;

The syntax diagram also shows that you can write more than
one variable line:

VAR DE,DF,DG,E:INTEGER;
SNOOK,HOOK,SOMEL:INTEGER;

Being able to split up the variable declaration lines as shown in
that last example comes in handy on several occasions. For one, it
is handy when specifying a very long list of variables, a list so long
that it would otherwise spill off the right-hand side of the screen
and onto the beginning of the next line.

There will be times when you will forget to declare some of
the variables at the beginning of the program. Rather than having to
edit the existing variable declaration line, simply insert another
one below it.

Finally, being able to split up this block lets you specify
different kinds of variable on different lines. Variables for one sort
of application can be grouped on one line, while variables for an
entirely different set of operations can be put onto another line.

Inpractice, there is no limit to the number of variables you can
specify. As long as you follow the syntax rules for IDENTIFIER,
the nature of the variable names is a matter of applying your own
common sense and imagnation.

If you haven’t noticed already, you can see that the syntax
diagram for declaring variable names ends on the same line where
it starts. All of the syntax diagrams shown to this point are open
ended. This one is not, implying it must be used in conjunction with
another BLOCK sequence. For our immediate purposes, the vari-
able declaration block must be used with the BEGIN...END block
already described in Chapters 3 and 4.

BLOCK Syntax Diagram

A variable declaration block is not adequate for defining a
complete Pascal program. Figure 5-2 shows a complete BLOCK
syntax diagram that incorporates both the BEGIN ... END opera-
tion and a variable declaration step.

55




The syntax diagram in Fig. 5-2 indicates something else of
importance. The variable declaration operation must be inserted
ahead of the BEGIN...END operation. See the downward direction
of the arrows along the left-hand side of the drawing. This is
consistent with the earlier statement that all variables must be
declared before the program, itself, can be run.

A program generated from the diagram in Fig. 5-2 takes this
sort of form:

VAR X,Y,Z:INTEGER;
BEGIN

(statement using variables

X,Y and Z)

END.

ENTERING INTEGERS WITH READ

One of the most common ways to assign values to Pascal
variables is from the keyboard, via the READ statement. Just as
Pascal's WRITE statement includes the elements of a PRINT
statement in BASIC, Pascal's READ statement works much like an
INPUT statement in BASIC.

Figure 5-3 is the syntax diagram for the READ statement. It
begins by telling you to enter READ, followed by a left paren-
thesis. After that, you specify an IDENTIFIER already declared in
the VAR ... INTEGER part of the program. So whatever you enter
as part of the READ statement will be assigned to that particular
variable, or identifier.

The READ statement always concludes with a right paren-
thesis. And if you are using more than one identifier in the state-
ment, they are to be separated by commas.

At this point, you are probably wondering about the pound
sign (#) and percent sign(%) characters in the READ statement.
Following the flow of the syntax diagram, you can see that each
IDENTIFIER can be followed by a pound sign, a percent sign, or
nothing at all. For example, if the identifier happens to be variable

56



X1, the READ statement for evaluating that variable could be
written as:

READX1#)
or

READX1%)
or

READ(X1)

Inserting a pound sign after the IDENTIFIER in a READ
statement tells the system to expect an integer entered in a
decimal format. The decimal integers can be anywhere between
—32767 and +32767.

Inserting a per cent sign after the IDENTIFIER in a READ
statement tells the system to expect 4-place hexadecimal number.
Hex values can be anywhere between #@@@ and FFFF, excluding
80@@. So you have the option of entering integer values in either an
ordinary decimal format or a computer-oriented hexadecimal for-
mat.

Using neither a pound sign or percent sign after the IDEN-
TIFIER in a READ statement tells the system to assign the
decimal ASCII code to whatever character is entered from the
keyboard. So if you respond to READ (X1) by entering a numeral 9,
X1 will take on the value of 57, the decimal ASCII code for the 9
character. By the same token, responding to READ (X1) by striking
the A key gives the IDENTIFIER a value of 65, which is the
decimal ASCII number for upper case A.

BLOCK

‘b—-ﬂl IDENTIFIER

(N
\/

O
s
O,

—<

—»—{ STATEMENT >j ( eno ) >
(N
o/

Fig. 5-2. Composite syntax diagram for variable declaration and BEGIN ... END
portions of BLOCK.

INTEGER

57




This business of specifying decimal, hexadecimal or ASCII
interpretation of a READ statement IDENTIFIER is unique to
Tiny Pascal. Standard Pascal wouldn’t know what to do with a

pound sign or percent sign suffix.
Identifiers specified in the VAR ... INTEGER part of a Pascal ’

program can thus be evaluated from the keyboard by means of a
READ statement. Putting together everything described so far in
this chapter, a Pascal program can take the following form:

VAR FOO, EXIT,S@:INTEGER,;
BEGIN
READ (FOO#,EXIT#,S0#);

(other Pascal statements)

END.

The variables declared at the beginning of this particular
program are FOO, EXIT and S@. They are later evaluated by a
READ statement, and entered as decimal numbers.

Now you are almost to a point where you can do something
useful with this information. There are just a couple of points to
consider yet.

INTEGER AND HEXINTEGER FORMATS FOR WRITE

Although Chapters 3 and 4 dealt almost exclusively with
applications of the WRITE statement, you were promised that
there was more to come. And here it is.

STATEMENT

INDENTIFIER

Fig. 5-3. Syntax diagram for the READ statement.

58



Ny N o,
_/ M

Fig. 5-4. Syntax diagram for the WRITE statement, modified to include decimal
and hexadecimal renditions of integer values.

Throughout those two earlier chapters, the WRITE statement
was used for printing string constants (any combination of
keyboard characters enclosed within apostrophes), doing cursor
control operations, printing characters from ASCII code numbers,
and generating TRS-80 graphics figures from code numbers. In
view of the fact that you have just learned how to evaluate Pascal
variables by means of a READ statement, it is time to show how to
WRITE the values of such variables. And that calls for modifying
the syntax diagram for the WRITE statement.

Figure 5-4 shows the syntax diagram for the complete WRITE
statement. This is it. There will be no need for further modifica-
tions later on.

The complete syntax diagram for the WRITE statement very
closely resembles that of the READ statement in Fig. 5-3. You first
print WRITE, followed by a left parenthesis. Then you specify an
EXPRESSION. The EXPRESSION is then followed by a pound
sign, a percent sign, or nothing at all. The WRITE statement
always concludes with a right parenthesis; if you need more than
one EXPRESSION within the statement, they are to be separated
by a comma.

In Chapters 3 and 4, you were never instructed to write a
pound sign or percent sign after the EXPRESSION in a WRITE
statement. Using neither of these suffix characters, the WRITE
statement behaves as described in those two earlier chapters.

Now here is the new stuff. The EXPRESSION part of a
WRITE statement can be a variable name, or IDENTIFIER. If that

59



kind of EXPRESSION is followed by a pound sign, the WRITE
statement will print out the value of the variable in a decimal
format. Following that variable EXPRESSION with a percent sign,
on the other hand, tells the system to write the value of the variable
in a hexadeciamal format. That is what you must know in order to
do anything usefu! with all the material presented in this chapter.
Here are a couple of programming examples to help you see
how this all works. Study them to see if you can figure out what
they should do. Then enter, compile and run them. The next
section of this chapter will analyze the scheme in more detail.

Example 5-1

VAR X:INTEGER;
BEGIN

WRITE (28,31);
READX#),
WRITE(13,X#)
END.

Example 5-2

VAR ASCILINTEGER;
BEGIN

WRITE (28,31);
READASCII);
WRITE(13,ASCII)
END.

PUTTING TOGETHER COMPLETE
READ AND WRITE PASCAL PROGRAMS

Figure 5-5 summarizes all the syntax rules embodied in the
material presented thus far in this book. The diagrams are shown in
a evolutionary sequence, with the undefined rectangles in opera-
tion being defined in the following diagram, or nearly so.

The elemental starting point is the PROGRAM operation in
Fig. 5-5A. As you have seen before, a complete Pascal program can
be represented by a BLOCK and terminated with a period. Look
back at all of the complete programming examples, and you will
find them ending with that period.

Figure 5-5B defines the BLOCK. Thus far, you have been
considering two kinds of BLOCK operations: the variable declara-
tion and BEGIN ... END operations.

60



To declare the variables for the program, first write VAR,
followed by an IDENTIFIER. Now the IDENTIFIER is left unde-
fined in Fig. 5-5B, but it is subsequently defined in a complete
fashion in Fig. 5-5C.

The IDENTIFIER begins with any letter of the alphabet, and
then is followed by any combination of letters and numerals. Note,
however, that it is entirely possible to specify an IDENTIFIER
having just that first letter. Also bear in mind that, in Tiny Pascal,
only the first four alphanumeric characters in the IDENTIFIER are
significant. Anything beyond four characters is simply ignored by
the machine.

With the IDENTIFIER thus defined in Fig. 5-5C, you can
complete the syntax rules for the variable declaration portion of
BLOCK inFig. 5-5B. Any number of identifiers can follow VAR, as
long as they are separated by a comma. After specifying all of the
variable identifiers, the diagram in Fig. 5-5B says you should write
a colon, the word INTEGER —and a semicolon.

That particular sequence of programming characters can con-
clude the variable declaration part of BLOCK. But the diagram
shows that you also have the option of entering another set of
IDENTIFIER steps.

The main body of a Pascal program is always enclosed bet-
ween the BEGIN ... END part of the BLOCK. After specifying the
variables, then, you write BEGIN, followed by one or more EX-
PRESSION steps, and conclude with END.

Fitting together Figs. 5-5A, 5-5B and 5-5C, Pascal programs
take on the general form:

VAR identifier, identifier:INTEGER;

BEGIN

statement;

statement;

statement

END.

Of course this is just one example of an infinite variety.

Defining STATEMENT

The analysis is far from complete, because STATEMENT in
Fig. 5-5B is not self-defined. So look at the definition of
STATEMENT in Fig. 5-5D.

The Pascal statements described so far in this book fall into
two categories: WRITE statements and READ statements. Ac-
cording to Fig. 5-5D, you build a WRITE statement by printing

61




WRITE, a left parenthesis, and some sort of EXPRESSION. The
EXPRESSION, whatever it might be, is to be followed by a pound
sign, a percent sign or nothing at all. If the WRITE statement is to
include more than one EXPRESSION, the individual expressions
are to be separated by commas. In any event, the WRITE state-
ment always ends with a right parenthesis character.

The EXPRESSION part of the WRITE statement in Fig. 5-5D
is not self defining. So look at Fig. 5-5E to see the syntax format for
EXPRESSION.

Defining CONSTANT

According to Fig. 5-5E, EXPRESSION consists of a CON-
STANT or a VARIABLE. Neither are self defining, so they have to
be defined by their own syntax diagrams.

CONSTANT is defined in Fig. 5-5F as either an INTEGER, a
STRING or a HEXINTEGER. Those three elements are defined in
Figs. 5-5G, 5-5H and 5-5I respectively.

INTEGER is built up of a series of digits that can be prefixed
by a plus sign, a minus sign or nothing at all. Using a plus sign prefix
indicates a positive integer, as does no prefix character at all. A
minus sign prefix, as you might have guessed by now, indicates a
negative integer value. While you're at it, keep in mind that
Supersoft Tiny Pascal handles INTEGER values between — 32767
and +32767.

Figure 5-5H defines the STRING portion of CONSTANT. A
STRING, as you have seen before, consists of an apostrophe,
followed by any number of keyboard characters and concluded with
another apostrophe.

Figure 5-51 defines the HEXINTEGER part of the CON-
STANT diagram in Fig. 5-5F. HEXINTEGER consists of four hex
digits, no more and no less. The range of hex constants in Tiny
Pascal is between 0000 and FFFF. Of course, you have to know
something about hexadecimal numbers before this means anything
at all to you.

By this time, you've probably lost track of where this is all
going. What you have been doing through the last part of the
discussion is defining the CONSTANT portion of EXPRESSION in

Fi ig. 5- 5E. The process of uc;uuug CONSTANT OCCuplC(l discus-

sions of Figs. 5-5F, 5-5G, 5-5H and 5-5L.
Defining VARIABLE

What remains to be done is to define the VARIABLE part of
EXPRESSION in Fig. 5-5E. That’s easy at this point. VARIABLE

62



is simply defined as an IDENTIFIER in Fig. 5-5J; and IDEN-
TIFIER has already been defined for you in Fig. 5-5C.

So if you put all these syntax diagrams together, there are no
rectangles that are left undefined. Everything, in one way or
another, winds up in circle or rounded rectangular figures. And that
is necessary for defining a complete Pascal program.

In theory, at least, it is possible to assemble all the syntax
diagrams in Fig. 5-5 into one, giant syntax diagram that describes
everything you have studied so far in this book. That would be quite
a task for anyone, and Pascal users very rarely go to such trouble.
Most are content looking at the evolutionary sequence.

SAMPLE PROGRAMS USING READ AND WRITE STATEMENTS
Example 5-3

VAR FIRST, SECOND:INTEGER;

BEGIN

WRITE 28,31, ‘ENTER FIRST INTEGER’, 13);
READFIRST#),

WRITE(ENTER SECOND INTEGER’,13);

READ(SECOND#);
WRITE (28,31, ‘HERE ARE YOUR TWO INTE-
GERS?,13,13);

WRITE (YOUR FIRST INTEGER WAS®, 32, FIRST#,13);
WRITE(YOUR SECOND INTEGER WAS’,32,SECOND#)
END.

The first line in Example 5-3 declares the integer variables to
be used in the program. In this case, the variables are assigned to
identifiers FIRST and SECOND. That first line completely satis-
fies the syntax rules for the variable declaration part of a program
BLOCK. See Fig. 5-5B.

The second line in the program marks the beginning of the
BEGIN ... END portion of the BLOCK operation. Of course that
syntax is satisfied by the END appearing on the final line of the
program. The actual operating part of the program as usual, is
represented by all the STATEMENT lines between BEGIN and
END.

The first STATEMENT operation is a write statement ap-
pearing on the third line of the program. That particular WRITE
statement includes four EXPRESSION operations. The first two
expressions and the last one are unsigned constants that aren’t
suffixed by either a pound sign or percent sign. The system will
thus interpret those numbers as ASCII-type operations, specifi-
cally control operations.

63




PROGRAM

> BLOCK b o

IDENTIFIER

INTEGER

LETTER
IDENTIFIER
LETTER > -
DIGIT
STATEMENT

EXPRESSION

IDENTIFIER

Fig. 5-5. Complete syntax evolution of Tiny Pascal. (A) PROGRAM operation.
(B) Definition of BLOCK. (C) Definition of IDENTIFIER. (D) Definition of STATE-
MENT. (E) Syntax format for EXPRESSION. (F) Definition of CONSTANT. (G)
Definition of INTEGER. (H) Definition of STRING. (l) Definition of HEXIN-
TEGER.(J)VARIABLE is defined as an IDENTIFIER.

64



EXPRESSION

CONSTANT

VARIABLE

INTEGER

CONSTANT
. INTEGER l
STRING

HEXINTEGER

HEXINTEGER

DIGIT

®

STRING

—b—C MEX DIGIT

Daal Das

HEX DIGIT H HEX DIGIT >—>—< HEX DIGIT

VARIABLE

f

65




Recall that the 28,31 combination homes the cursor and clears
the screen. The 13 appearing at the end of the WRITE statement
does a line feed and carriage return. The WRITE statement in the
third line of Example 5-3 also contains a string constant, ENTER
FIRST INTEGER. From an operation point of view, then, the
WRITE statement in the third line of the program in Example 5-3
homes the cursor, clears the screen, prints out ENTER FIRST
INTEGER, and sets the cursor to the beginning of the next line of
the screen.

The READ statement in the fourth line of the program tells
the system to accept a decimal integer from the keyboard. After
you enter that integer, the next line in the program causes the
system to print the message, ENTER SECOND INTEGER. That
WRITE statement includes both the message printing string con-
stant as well as a code 13 that causes another line feed/carriage
return.

READ(SECOND#) tells the system to wait around for you to
enter a keyboard, integer value for variable SECOND. The pound
sign prefix means the system is expecting the integer to be in a
decimal form. The seventh line in Example 5-3 is another WRITE
statement that homes the cursor, clears the screen, prints HERE
ARE YOUR TWO INTEGERS, and then does two line feed/
carriage return operations in succession (double spacing, in other
words).

The two concluding WRITE statements simply print an ap-
propriate message, generate a space (ASCII code 32), print the
value of a variable in decimal form, and then either a line feed/
carriage return or nothing. Finally, note that the program in Exam-
ple 5-3 contains seven statements, each separated from the next
one by a semicolon.

That particular example does not demonstrate all the syntax
rules designated in Fig. 5-5. You should be able to see how the
program fits the syntax diagrams perfectly. If it didn't fit the
diagrams perfectly, it wouldn’t compile, much less run properly.

The View After Compiling

After compiling the program in Exampie 5-3 and running it,
you should see the screen clear and this message appearing in the
upper left-hand corner:

ENTER FIRST INTEGER
?

66



Whenever the system encounters a READ statement, it automati-
cally generates a question mark prompt character. The INPUT
statement in BASIC does the same sort of thing for you.

Incidentally, the only reason the question mark appears at the
beginning of the next line is because of the 13 ASCII code at the end
of the WRITE statement in line 3 of the program. If you didn’t end
that particular WRITE statement that way, the question mark
would appear at the end of the word, INTEGER.

Suppose you respond to the question mark by entering deci-
mal number 123. The screen then looks like this:

ENTER FIRST INTEGER

2123

ENTER SECOND INTEGER

?
Sofar, the program is down to the second READ statement. Maybe
you respond to the new question mark by entering decimal 94.
After doing that, the screen clears and this sort of test appears in
the upper left-hand corner of the screen:

HERE ARE YOUR TWO INTEGERS:

YOUR FIRST INTEGER WAS 123
YOUR SECOND INTEGER WAS 9¢

And that’s it. As a program, it isn't very spectacular. If you study it
in conjunction with all the other material presented in this chapter
(expecially Fig. 5-5), you will see how much you have all ready
learned about programming in Pascal.

More Examples

The remaining examples in this chapter will not be analyzed in
such great detail. You will find just a few comments about some of
the special features. It is up to you to confirm their validity by
comparing them with the syntax diagrams in Fig. 5-5.

Example 5-4

VAR ASCILINTEGER;
BEGIN

WRITE28,31,'ENTER AN INTEGER BETWEEN 128 AND
191’,13);
READASCII#);

WRITE(28,31,'HERE IS THE TRS-80 GRAPHIC
FOR’,32,ASCII#);

67




WRITE(13,13,ASCII)
END.

Example 5-4 allows you to select one of the graphics generat-
ing numbers for the TRS-80 system, and then it is shown to you.
The variable is declared as ASCII, and it is read as a decimal value
in the READ statement line. In the WRITE line that follows, the
value of the decimal number is written out for you be means of the
ASCII# expression.

Note, however, that the ASCII variable in the final WRITE
statement does not carry a percent sign suffix. Without that suffix,
the system is instructed to carry out the ASCII-type operation
designated by the number you entered. In other words, the ASCII
expression in the final WRITE statement causes the TRS-80
graphics symbol, itself, to appear on the screen. Contrast that
effect with ASCII# expression appearing in other places in the
program.

Example 5-5

VAR X0,X1,X2,X3:INTEGER;

BEGIN

WRITE (28,31,'RESPOND TO THE QUESTION MARKS BY

ENTERING AN INTEGER’,13);

READX0#,X1#,X2#,X3#);

WRITE (X0#,32,X1#,32,X2#,32,X3#,13,13,' DONE")

END.

Example 5-5 shows the application of a multiple IDENTIFIER
READ statement. The four variables are to be entered from the
keyboard as decimal values and in the order specified in the READ
statement. The final WRITE statement simply reprints those val-
ues, inserting a space between them and concluding the program
by writing DONE.

Example 5-6

VAR DEC:INTEGER,;

BEGIN

WRITE(28,31,215,'DECIMAL-TO-HEX CONVERSION,
13,13);

WRITE(ENTER ANY DECIMAL INTEGER BETWEEN
—32767 and +32767,13);

READDEC#),

WRITE(13,13,13,13,'THE HEX VERSION OF’,DEC#/is
" DEC%)

END.

68



The fact that Tiny Pascal works so easily in both decimal and
hexadecimal numbering formats brings up the possibility of writing
small programs that convert between the two numbering systems.
In Example 5-6, the READ statement accepts a number in decimal
terms. The WRITE statement that concludes the program prints
out the number, both in a decimal and then in a hex format. Contrast
the DEC#and DEC% expressions in that WRITE statement.

Here is a similar sort of program that converts from hex to
decimal:

Example 5-7

VAR HEX:INTEGER;

BEGIN

WRITE (28,31,215,'HEX-TO-DECIMAL CONVER-
SION’,13,13);

WRITE(CENTER ANY HEX INTEGER BETWEEN 0000
AND FFFF’,13);

READMHEX%);

WRITE(13,13,13,13,"THE DECIMAL VERSION OF
"HEX%," IS ', HEX #)

END.

69



Chapter 6
Pascal Arithmetic
and Logic Operations

Arithmetic and logic operations play powerful roles in any sort of
computer programming, and of course Pascal programming is no
exception. Even if the purpose of a program is something far
removed from performing arithmetic calculations for the operator,
the routines quite often reside in the program as controlling opera-
tions. An example is counting the number of times a certain step is
carried out.

In order to keep this discussion as simple and to the point as
possible, it is assumed that you, the reader, already have a working
understanding of the fundamental arithmetic and logical operators.
Many operators carry over to Pascal from BASIC, so inequality
expressions such as <, >, <>, < =and = should not be strangers
to you. You should also know the technical meanings of AND, OR
and NOT.

You will find brief explanations of operators that are quite
different from any found in BASIC. Beyond that, you are on your
own as far as the definitions are concerned.

THE ASSIGNMENT STATEMENT

Pascal uses an assignment statement that often acts a stumbl-
ing block for people accustomed to working in BASIC. The assign-
ment statement is a 2-character statement, represented by a colon
immediately followed by an equal sign. It looks like this:

70



It is a bona fide Pascal statement that ranks right up there in
importance with WRITE and READ statements. The purpose of
the assignment statement is to assign a value to a variable.

The statement, A:=2, means that the value of 2 is assigned to
variable A. A slightly more complex assignment statement might
take the form, A:=X+Y. In that case, the sum of variables X and Y
(assuming they have been assigned constant values in an earlier
operation) is assigned to variable A.

Here is a short Pascal program that uses the assignment
statement:

VAR FOO:INTEGER;
BEGIN
READFOO#),
FOO:=FOO0+1¢;
WRITE FOO#)
END.

What does the program above do? Well, FOO is declared as
the only variable for the program. Then after beginning the prog-
ram, the system accepts a decimal value for FOO from the
keyboard that comes about by the READ statement.

The assignment statement appears in the fourth line, where
variable FOO is assigned its old value plus 10. The program then
writes the decimal value of FOO, just so you know it really did the
intended job.

It is at this point that some people get a little bit confused.
They ask, “Why use that complicated, 2-character assignment
statement when a simple equal sign should do the job?”

It turns out that an equal sign, used alone, expresses a logical
equality between two factors. An equal sign cannot be used for
setting the value of a variable. A=10 means that A is equal to 10,
and it does not mean, “set A equal to 10.”

Whenever you want to set the value of a variable, you must
use an assignment operator. That holds true in BASIC as well as
Pascal.

“Hold on there!” you say. “Doesn’t the statement A=1¢ in
BASIC set the value of variable A to 10?” No, it doesn’t; but LET
A=10 does.

As BASIC evolved through the years, it began tolerating an
ever increasing amount of sloppiness on the part of its program-
mers. In BASIC, LET A=10is an assignment statement; and the
LET part of the statement signals that fact. As time passed, it

71




became possible to do the same thing without having to begin with
the LET part of the statement. Hence, the confusion between using
an equal sign as part of an assignment statement and using it (quite
rightly) as a simple expression of equality between two factors.

Whether you are really confused by this matter or not, the fact
remains that you must assign values to variables by means of the
assignment statement, using the := characters to do the job.

Figure 6-1 is the syntax diagram for the assignment state-
ment. It begins by stating some variable name, or identifier, then
shows the assignment characters and, finally, some well-defined
numerical expression.

You will be seeing more examples of assignment statements
as you work your way through this chapter and, indeed, the rest of
this book. They are inescapable little critters in Pascal program-
ming.

ADDING, SUBTRACTING, MULTIPLYING AND DIVIDING

You will not find much unusual about Pascal arithmetic. Here
is a listing of the four basic operators:

+ summing operator

—  subtraction operator

*  multiplication operator
DIV division operator

Only the division operator, DIV, is different from BASIC.
‘There’s a good reason for that particular difference. Tiny Pascal,
you see, works with purely integer arithmetic. That means it
works only with “whole” numbers. Tiny Pascal cannot deal with
fractional decimals.

So whenever you specify the math expression, X:=1¢ DIV 2,
a value of 5 is going to be assigned to variable X. That’s fine. But
whenever you specify a division problem such as X:=13 DIV 4, you
are going to get 3 for an answer.

Whenever a division problem in Tiny Pascal has a fractional
part to its answer, that fractional part is truncated. To put it in
everyday terms, the fractional part is dropped.

Sorry about that. It’s one of the prices that must be paid for
getting Pascal into a computer having 16k of memory. Of course,
Standard Pascal can handle decimals and even exponential expres-
sions. Tiny Pascal cannot.

While Tiny Pascal has some shortcomings when it comes to
division problems, it does allow you to insert math expressions

72



STATEMENT

—-— VARIABLE —->~

EXPRESSION |——b—

VARIABLE

———-——— IDENTIFIER —®———

Fig. 6-1. Syntax diagram for the assignment statement.

within parentheses. Besides, parenthetical math expressions can
be nested to perform some rather complex mathematical opera-
tions. You will see some examples of this later in this section.

Order of Precedence

Pascal, like all other programming languages, assigns
priorities or an order of precedence to its math operators. Expres-
sions enclosed within parentheses, for example, are always exe-
cuted first. The multiplication and division have equal precedence,
one order lower than parenthetical expressions.

Summing and subtraction operations take the lowest prece-
dence. There’s nothing at all unusual about this order of prece-
dence.

Figure 6-2 shows the syntax diagrams for the four elementary
Pascal math operations. This particular set of diagrams fit into the
EXPRESSION rectangle for the assignment statement in Fig. 6-1.

Math Expression

According to Fig. 6-2A, a math expression begins with a plus
sign (for a positive TERM), a minus sign (for a negative TERM), or
no sign at all for an implied positive TERM). After that comes one
or more TERMs. If you choose to use just one TERM, the diagram
in Fig. 6-2A is concluded. But if you use more than one TERM,
they must be separated by summing or subtraction operators, + or

Here are some possible formats for Fig. 6-2A:

73




term

term-+term
+term—term
~term+term—term

You can loop around through the second TERM rectangle in Fig.
6-2A as many times as necessary to do the math job at hand.

That’s nice, but unfortunately TERM isn’t self-defining in Fig.
6-2A. So you have to take into account the syntax diagram for
TERM as it is shown in Fig. 6-2B.

According to Fig. 6-2B, TERM always begins with a FAC-
TOR. You then have the option of concluding the operation or
looping around through a second FACTOR and separating the two
with a multiplication or division operator. Here are some possible
TERM formats from the diagram in Fig. 6-2B:

factor *factor

factor DIV factor

factor *factor DIV factor
factor*actor*factor DIV factor

As in the case of the math EXPRESSION diagram in Fig. 6-24, it is
possible to build up some very complex combinations of multiplica-
tion and division operations. Loop through the second FACTOR
rectangle as often as necessary to get the math job done.

More Definitions

But FACTOR is left undefined in Fig. 6-2A, so it’s necessary
to look at its definition in Fig. 6-2C. According to that diagram, a
FACTOR can consist of a CONSTANT, a VARIABLE or a whole
new EXPRESSION enclosed in parentheses.

CONSTANT and VARIABLE are not defined here because
you have seen their definitions in earlier discussions. Putting it
simply, a CONSTANT is some number and a VARIABLE is some
previously declared IDENTIFIER that has a numerical value
assigned to it.

The EXPRESSION enclosed within quotes in Fig. 6-2C
brings up an intriguing point. How is EXPRESSION defined? Well,
it is defined by the diagram in Fig. 6-2. In order to define EXPRES-
SION in Fig. 6-2C, you have to go back to Fig. 6-2A and start all
over again. And if you want, you can put another EXPRESSION
within EXPRESSION. That's the nested EXPRESSION idea.

The following list shows some complete Pascal assignment
statements:

74



A:=1¢
A:=A+1

A:=-B+C*1¢

A:=B-C DIV E+12
:=—(A*B+2) DIV B*B

B:=— (X-Y*Y)+2*A DIV ({4*Z+10))

EXPRESSION

b

>

TERM

TERM

i TERM

~—-p—1 FACTOR :

v

FACTOR

©

A\ 4

.

FACTOR
\—"—"‘— CONSTANT
v"_— VARIABLE

\

k»——@-——— EXP

RESSION

I

O

C)

\ 4

Fig. 6-2. (A) A math expression begins with a plus sign, a minus sign or no sign
at all. (B) Syntax diagram for TERM. (C) Definition of FACTOR.

75




While the actual mathematical operations might be of questionable
value in some instances, these examples at least demonstrate the
workings of the syntax diagrams in Figs. 6-1 and 6-2.

All things considered, the only difference between the four
fundamental arithmetic operations in Tiny Pascal and standard
BASIC is Pascal’s DIV operator. That difference is made necessary
by the fact that Tiny Pascal works only with integer arithmetic.

MODULO, SHIFT-LEFT AND SHIFT-RIGHT OPERATIONS

Tiny Pascal includes three arithmetic-related operations that
might seem altogether new to people having limited experience
with computer technology. They can be handy operations, how-
ever, because they can help make up for the shortcomings of purely
integer arithmetic. And you can be sure that's why Chung and Yuen
have included them in Tiny Pascal.

Technically speaking, the MOD operator (short for modulo)
returns the modulus of two expressions. So what in the world does
that mean? Setting aside the technical jargon, it means that it
generates the remainder created by a division operation.

Now you should recall that the DIV operation in Tiny Pascal
divides two factors and leaves off any remainder. Well, the MOD
operator determines the remainder that results from the division of
two terms.

For example, 5 MOD 2 turns out to be equal to 1. Five divided
by 2 is equal to 2, with a remainder of 1. That remainder is the
modulus of the expression.

So evenif you cannot divide 13 by 4 in Tiny Pascal and come up
with the correct answer, at least the MOD operation will show you
the remainder. Look at this sequence of operation that might be
included in a Tiny Pascal program:

A:=23 DIV 5;
R:=23 MOD 5;

After executing these two statements, variable A will be set
to 4 and variable R will be set to 3. In plain English, 23 divided by 5
equals 4 with a remainder of 3. DIV does the division and MOD
yields the remainder.

What about this sequence?

A:=10¢ DIV 1¢
R:=16¢ MOD 109

In this case, A is set to a value of 10and R is set to . One hundred
divided by 10 equals 10 with a remainder of 0.

76



You will also find later in this book that the MOD operator is
quite useful for generating psuedo-random numbers. No, Tiny
Pascal does not include a RND function.

If the MOD operator seems a bit abstract, consider the shift-
left (SHL) and shift-right (SHR) operators. Like the MOD
operator, SHL and SHR can be quite useful for making up division
programs that handle fractional parts. But understanding these two
operator calls for getting down to the machine’s binary working
level.

Whenever your computer is working with a decimal number
27, for example, that number is represented in some memory
register as an 8-bit binary number, 00011011. If, for some reason,
the system shifts that binary number two places to the left, you no
longer have 00011011 but 01101100. The pattern, you notice,
moves two bit positions to the left. Zeros fill in the spaces thus
created.

That particular operation is carried out whenever the Pascal
system sees the term 27 SHL 2. The binary version of that first
number is shifted to the left by a number of places specified by the
second number.

Look at the situation this way:

27= 00011011
27 SHL 2= 01101100

Obviously that shifted number is no longer equal to 27. Infact, the
decimal rendition is 108. Thus 27 SHL 2 = 108.
The same general idea holds for shift-right (SHR) operations:

27= 00011011
27 SHR 2= 00000110
SHR shifts the binary number to the right by two places in that
example, and the result is decimal 6: 27 SHR 2=6.

Most Tiny Pascal users will find the SHL and SHR operators
of limited usefulness, but anyone acquainted with machine lan-
guage arithmetic will find them of great interest.

MOD, SHL and SHR fit into the arithmetic syntax as shown in

Fig. 6-3. That diagram is actually an expanded version of the
TERM diagram in Fig. 6-2B.

THEIF ... THEN . . . ELSE CONDITIONAL STATEMENT

Returning to grounds that are perhaps more familiar to most
readers, it is time to consider the Pascal IF . . . THEN. .. ELSE
conditional statement. In the process, you are going to have a

77




TERM

~—d— FACTOR
( o H MOD >%
FACTOR

Fig. 6-3. TERM syntax diagram expanded to include MOD, SHL and SHR.

chance to see the relational operators (=,>,>=, etc.) at work.
Figure 6-4 shows the syntax diagrams for the IF . . . THEN . ..
ELSE statement and the relational expressions that are normally
included in the conditional statement.

According to Fig. 6-4A, the Pascal conditional statement
begins with IF, followed by some sort of EXPRESSION. After that
comes a2 THEN and a STATEMENT.,

The choice point after the first STATEMENT rectangle in
Fig. 6-4A allows the option of doing an ELSE/STATEMENT
combination or ending the statement. Generally, the conditional
statements take forms such as these:

IF expression THEN statement;
IF expression THEN statement ELSE statement;
or even

IF expression THEN statement
ELSE IF expression THEN statement
ELSE IF expression THEN statement;

In other words, it is possible to do a simple IF . . . THEN
statement, a somewhat more complex IF | | | THEN . , | ELSE
statement, or even a rather involved set of “nested” conditional
statements.

It is diffiuclt to overrate the importance of this conditional
syntax in Pascal, especially Tiny Pascal. Tiny Pascal does not have

any capability of doing GOTO-like operations. One cannot jump

78



around freely in a Tiny Pascal program. It is only through the
intelligent and imaginative application of the conditionals that
makes many control operations possible at all. You can certainly
expect to see some examples that illustrate this particular point
later on.

Syntax Definitions for EXPRESSION and STATEMENT Rectangles

In the meantime, you should round out the syntax diagram in
Fig. 6-4A by coming up with syntax definitions for the EXPRES-
SION and STATEMENT rectangles. EXPRESSION, in this case,
is at least partly defined for you in Fig. 6-4B. It consists of
something called a SIMPLE EXPRESSION that is followed by
nothing, or one of the six relational operators and another SIMPLE
EXPRESSION.

Now, a SIMPLE EXPRESSION can be defined in terms of the
diagrams you have already studied in Fig. 6-2. In other words, a
SIMPLE EXPRESSION can be a constant, a variable or, indeed,
any sort of math expression.

A STATEMENT, of course, is any of the four Pascal state-
ments defined so far in this book: READ, WRITE, the assignment
statement, andnow the IF . . . THEN conditional statement, itself.

Here are a few examples of complete Pascal conditional
statements. See if you can trace their syntax before trying some of
the programming examples.

IF A=1¢ THEN
WRITE (DONE’),

IF ADIVB > C THEN
READ (NEWNO#)
ELSE WRITE (DONE’);

IF A=B THEN
WRITE (A#, ‘EQUALS’, B#)
ELSE IF A >B THEN
WRITE (A#, ‘IS GREATER THAN’, B#)
ELSE IF A<B THEN
WRITE (A#, ‘IS LESS THAN ', B#);

The indentations are not at all necessary in any of these

examples. Such a trick, however, tends to simplify the task of
interpreting the written program.

79




Programs

Here is the sort of question a teacher might ask on an exam.
Why aren’t all the statements included in the IF . . . THEN
statement ended with a semicolon? Think about that one for a little
bit. Itis important, and the only way to justify the right answer is by
going through the appropriate syntax diagrams. Incidentally, you
will find the answer to that particular question tucked away in a
later discussion. Now here are some complete programs that
illustrate much of what you have learned so far in this chapter.

Example 6-1

VAR FIRST, SECOND:INTEGER;

BEGIN

WRITE (28, 31, ‘FIRST NUMBER");

READ (FIRST#),

WRITE 28, 31, ‘SECOND NUMBER");

READ (SECOND#),

IF FIRST=SECOND THEN
WRITE (28, 31, FIRST#, 32, ‘AND’, 32,SECOND#,
32, ‘ARE EQUAL")

END.

Example 6-2

VAR FIRST, SECOND: INTEGER,;
BEGIN
WRITE (28, 31, ‘FIRST NUMBER’);
READ (FIRST#),
WRITE (28, 31, SECOND NUMBER'),
READ (SECOND#);
WRITE (28, 31, FIRST#, 32, ‘AND’, 32, SECOND#, 32,
‘ARE’, 32);
IF FIRST=SECOND THEN

WRITE (EQUAL’)

ELSE WRITE (NOT EQUAL")
END.

Note that the program in Example 6-1 simply ends if the two
variables, FIRST and SECOND, are not equal. Example 6-2,
however, expands on the idea to write something else even if the
two variables are not equal. Being able to use the ELSE portion
of the conditional statement makes a lot of difference sometimes.

Example 6-3 expands further on this same idea.

80



STATEMENT

- ° EXPRESSION m STATEMENT ELSE STATEMENT

EXPRESSION

SIMPLE
EXPRESSION

G SIMPLE
EXPRESSION

Fig. 6-4. (A) Syntax diagram for building IF... THEN...ELSE statements. (B) an
EXPRESSION consists of a SIMPLE EXPRESSION that is either foliowed by

nothing or one of the six relational operators and another SIMPLE EXPRES-
SION.

Example 6-3

VAR FIRST, SECOND:INTEGER;

BEGIN

WRITE (28, 31, ‘FIRST NUMBER"),

READ (FIRST#);

WRITE (28, 31, ‘SECOND NUMBER’);

READ (SECOND#);

WRITE (28, 31, FIRST#, 32, ‘1S, 32);

IF FIRST=SECOND THEN
WRITE (EQUAL TO’, 32, SECOND#)
ELSE IF FIRST>SECOND THEN
WRITE (GREATER THAN’, 32, SECOND#);

ELSE WRITE(LESS THAN’, 32, SECOND #);
END.

AN IMPORTANT ARITHMETIC/LOGIC DEMO PROGRAM

The Pascal program listed in Example 6-4 is so important at
this stage of the game that it is worth devoting a special section to
it. The special importance of this program lies in the fact that it
embodies a number of programming procedures that have not been
discussed in detail, compares some alternate procedures that have
been described in several different places, and demonstrates the
workings of the IF . . . THEN statement and operators DIV and
MOD.

It might be a good idea to enter, compile and run this program
several times before studying the rather extensive commentary.
Bear in mind while entering this program that the line numbers are
not legitimate parts of the program, but rather guides for the

81



technical discussion that follows. So ignore the line numbers when
putting this program into your computer.

Example 6-4

line 1 VAR PROG, X, Y:INTEGER;
line 2 BEGIN
line 3 WRITE (28, 31, 215, ‘DIVISION DEMONSTRATOR,

13,

13);

line 4 WRITE (‘DO YOU WANT TO SEE THE
REMAINDERS—Y OR N’, 13);

line 5 READPROG);

line 6 IF PROG=89 THEN

line 7
line 8

line 9

line 10
line 11
line 12
line 13

line 13.5

line 14

BEGIN

WRITE (28, 31, 215, ‘DIVISION WITH REMAIN-
DER’, 13, 13);

WRITE (ENTER DIVIDEND');

READ X#);

WRITE (ENTER DIVISOR’);

READ(Y#);

WRITE (13, 13, 200, X#, ‘/, Y#, ‘=", X DIV
Y)#)

WRITE( 32," WITH REMAINDER OF ',32,
(XMODY) #)

END

line 15 ELSE IF PROG=78 THEN

line 16
line 17

line 18
line 19
line 20
line 21
line 22

line 23
line 24
line 25
line 26

line 27

BEGIN
WRITE (28, 31, 215, ‘DIVISION WITHOUT
REMAINDER’, 13, 13);
WRITE (CENTER DIVIDEND");
READX#);
WRITE (ENTER DIVISOR’);
READ(Y#),
WRITE (13, 13, 200, X#, 47, Y#, 61, (X DIV
Y)#);
IF X MOD Y<>¢ THEN
WRITE 32, 43)
END;
WRITE (13, 13, 13, 13, ‘ENTER R TO DO
AGAIN’)
END.

Program Function
Before getting into an analysis of how this program works,
take a look at what it is supposed to do. Upon running the program,

82



you should see the screen clear, and then the following messages:

DIVISION DEMONSTRATOR
DO YOU WANT TO SEE THE REMAINDERS —Y OR N—

The program wants to know whether you want to do division
showing the remainder or division without showing the remainder.
In this case, the system responds immediately when you strike a
key. You will find you do not have to do an ENTER. What's more, if
you strike a character other than Y or N, the program defaults to its
end, telling you to ENTER R TO DO AGAIN.

Suppose you respond to the initial message by striking the Y
key. The program immediately clears the screen and prints a
message format that looks something like this:

DIVISION WITH REMAINDER
ENTER DIVIDEND? _

You are to respond by entering any integer between — 32767 and
+32767. This time you do indeed have to strike the ENTER key to
keep the program rolling along. For the sake of this discussion,
assume you respond by entering integer 123. After that, the screen
looks like this:

DIVISION WITH REMAINDER

ENTER DIVIDEND?123
ENTER DIVISOR? _

Enter the divisor, say, 19. Here’s what happens:
DIVISION WITH REMAINDER

ENTER DIVIDEND?123
ENTER DIVISOR?19

123/19=6 WITH A REMAINDER OF 9

ENTER R TO DO AGAIN

So there it is: 123 divided by 19 equals 6 with aremainder of 9.
The final message on the screen simply informs you that the
program can be run again by entering R.

If you elect to run the program without showing the remainder
(striking the N key), the final screen display would be slightly
different:

83



DIVISION WITHOUT REMAINDER
ENTER DIVIDEND?123
ENTER DIVISOR?19

123/19=6 +
ENTER R TO DO AGAIN

In this case, the program does the division operation, but
merely prints a plus sign to indicate that a remainder exists. The
plus sign does not appear if your numbers divide evenly and there is
no remainder.

Certainly the program is rather trivial from an operator’s
viewpoint. It doesn’t do anything very exciting, but the way it
works is very important at this point.

Two BLOCKS Parts

First notice that the program in Example 6-4 has two parts to
its BLOCK. There is the declaration of variables in line 1, and a
BEGIN. . . END operation between line 2 and line 27. Of course,
the PROGRAM ends with a period in line 27.

The BEGIN . . . END portion of the major BLOCK operation
is made up of a series of five statements: WRITE statements in
lines 3 and 4, a READ statement in line 5, and IF . . . THEN . . .
ELSE statement occupying lines 6 through 25, and a final WRITE
statement in line 26. Notice that each of these five BLOCK state-
ments are separated from one another by semicolons: lines 3, 4 and
5end with a semicolon, theIF. .. THEN. .. ELSE statement ends
with a semicolon in line 25, and line 26 does also.

Are you beginning to appreciate the systematic structure of
Pascal programming? The program BLOCK ends with a period,
there are two major sections in the block, and the block is divided
into a sequence of STATEMENT operations —five of them in this
case.

From the viewpoint of Pascal structure, the major WRITE and
READ statements are rather straightforward. They include some
tricks not yet introducedin this book, but that has nothing to do
with the program structure.

Conditionals

As far as the structure is concerned, the major IF . . . THEN
. . . ELSE statement calls for a lot of discussion. Note that the

84



consequences of satisfying either part of the IF . . . THEN . ..
ELSE statement are rather extensive and, in fact, call for the use of
their own BEGIN . . . END formats.

If the conditional in line 6 is satisfied and, indeed, variable
PROG is equal to 89 (the ASCII code for the letter Y), the system
executes the series of statements enclosed between BEGIN and
END, between lines 7 and 14.

If, on the other hand, the conditional in line 6 is nof satisfied,
the system jumps down to the ELSE clause in line 15. That line
tests variable PROG for a value of 78 (the ASCII code for the letter
N). And if PROG=78, the system executes the BEGIN . . . END
block of operations between lines 16 and 25.

But if neither conditional is satisfied PROG equals something
other than 89 or 78), the system defaults to the major statement
following the IF . . . THEN . . . ELSE statement. That happens to
be the WRITE statement in line 26.

Sub-blocks

Returning now to the subblock between lines 7 and 14, you
will find that it contains six statements of its own: four WRITE
statements and two READ statements, each separated from the
others by semicolons. So this little block within a statement fol-
lows the same syntax rules as statements within the major block of
operations do.

There is nothing else of structural importance in that block
between lines 7 and 14, so consider the block, the BEGIN . . . END
sequence between lines 16 and 25. The subblock between lines 16
and 25 contains seven statements: 4 WRITE statements, two
READ statements, and a single IF . . . THEN statement. Thisis a
Pascal BLOCK in its own right, and can certainly containanIF . . .
THEN statement of its own. That secondary conditional appears in
line 23. If it is satisfied, the system goes to line 24 and does a
WRITE operation. If that conditional in line 23 is not satisfied, the
system defaults to the next statement in the block, END in line 25.

You ought to be seeing the distinctive Pascal programming
structure by now. There are expressions within statements,
blocks within statements, and statements within blocks. All fol-
low their respective syntax rules.

Questions and Answers
Here are a few questions and answers that are intended to
bring home the Pascal structure/syntax in Example 6-4.

85



Why does END in line 27 conclude with a period, while the
END in line 25 concludes with a semicolon? The END in line 27
belongs to the BEGIN in line 2; since the entire Pascal program
lies between lines 2 and 27, the syntax rules for PROGRAM dictate
that it conclude with a period.

The END in line 25, however, happens to rest at the end of a
long, singleIF... THEN. .. ELSE statement. That statement has
to be separated from the next one (the WRITE statement inline 26)
by a semicolon. That’s what the semicolon is for in line 25. The fact
that it follows an END is coincidental as far as structure is con-
cerned.

Why is there no punctuation at all after the END in line 14?
The END delimiter in line 13 merely marks the conclusion of a
BEGIN. . . END block of statements that begin at line 7. You will
not find any syntax rules that say a block of statements has to end
with any sort of punctuation. Statements are separated by a
semicolon; but line 14 does not mark the end of the IF . . . THEN
. . . ELSE statement that encompasses it. Hence, no punctuation.

These questions about punctuation after an END can be im-
portant to Pascal novices. There seems to be a natural sort of
feeling that every END delimiter must be concluded with some
punctuation. There is, however, no necessary relationships bet-
ween END and some punctuation. The punctuation is often there,
but for entirely different reasons, namely to separate statements
that happen to end with END, or to conclude an entire program.

Why do some of the WRITE statements in Example 6-4 end
with a semicolon while others do not? Those ending with a semico-
lon you see, are immediately followed by another statement.
Semicolons, from a structural viewpoint, are used only to separate
statements.

The WRITE statement in line 13 does not conclude with a
semicolon because the END delimiter following it is nof a state-
ment. It is a delimiter that signals the end of a BEGIN . . . END
block of statements.

At this point in your experience with Pascal programming, it
is far more important to understand the structural characteristics of
Example 6-4 than any of its other features. Certainly it is approp-
riate to discuss some of the other features in a moment. Until you
grasp the careful, systematic and distinctive structure of Pascal,
though, the other nice little features aren’t going to do you much
good.

86



Features Unrelated to Pascal Syntax

Now consider some of the features of Example 6-4 that aren’t
directly related to Pascal structure and syntax. The first point of
interest is the READ(PROG) statement in line 5. It is the point
where you are supposed to designate whether or not you want to
see the remainder of a division operation. This is done by assigning
a value to variable PROG from the keyboard. The important point
is that PROG is not followed by a pound sign or a percent sign. In
other words, PROG is assigned a value that is neither a decimal nor
a hexadecimal value. So what kind of value is it?

Whenever you do a READ(variable) statement, the system
looks for you to strike any key on the keyboard. Upon striking the
key, the variable immediately takes on a value equal to the ASCII
code for that key. Strike any key, and the READ (variable) state-
ment is immediately executed. There is no waiting around for you
to strike the ENTER key. You should have noticed that when you
ran the program yourself.

Line 5 thus forces variable PROG to take on a number that is
equal to the ASCII code for any key you happen to strike. Line 6
then tests that value, and the line is satisfied if PROG happens to
equal 89. What is the significance of 89? Well, it is the ASCII code
for keyboard character Y. If you struck the Y key in response to line
5, PROG has a value of 89 and the conditional in line 6 is satisfied.
As a result the system executes the block of statements between
lines 7 and 14.

But if PROG does not equal 89, the system skips down to the
corresponding ELSE clause in line 15. Here the value of PROG is
tested for 78. Of course, 78 is the ASCII code for the keyboard
character N. So if you hit the N key in response to the
READPROG) statement in line 5, the condition in line 15 is
satisfied. The system executes the block of statements between
lines 16 and 25.

Finally, you might strike some key other than Y or N in
response to line 5. PROG will not be 89 or 78, so neither condition
(ine 6 and line 15) is satisfied. In that case, the system passes
through the IF . .. THEN. . . ELSE statement without doing any of
the operations for one block of statements or another. It also
covers for keyboard goofs on the part of the operator. It responds to
an operator error by immediately doing four line feed/carriage
returns in succession, printing ENTER R TO DO AGAIN and
concluding the program.

87




I don’t think you will find anything especially puzzling about
the operations in lines 7 through 14. Just note that the two READ
statements specify a variable followed by a pound sign. In both of
those instances, the system accepts integers in decimal form and
waits for you to strike the ENTER key before moving to the next
step in the program.

More on WRITE Statements

But do compare the WRITE statements in lines 13 and 22.
Both do the same task, but in different ways. Specifically, line 13
prints out the /and = as string constants. The same two characters
are printed by line 22, but they are called in a different fashion.
Instead of calling a slash symbol by specifying it as a string con-
stant, the WRITE statement in line 22 calls that same symbol as an
ASCII character. Check the listing of ASCII character codes in the
Appendix, and you will see that decimal 42 represents the slash
character. By the same token, the string specifier for the equal sign
in line 13 is replaced by the ASCII-call version in line 22 -—code
number 61.

When it comes to printing keyboard symbols on the screen,
you always have the choice of specifying them as a string constant
or calling them via an ASCII code number. Take your pick. You'll
find both techniques used in this book.

Along the same line of thinking, what is the significance of the
WRITE (32, 43) statement in line 24? Code 32, according to the
Appendix, simply calls a space operation. Code 43, however, is the
ASCII designator for a plus sign. Provided the conditional in line 23
is satisfied, the system responds by doing a space, followed by a
plus sign. That’s the point in the program where you see a +
whenever a remainder is supposed to follow a division operation.

Now here is something new. Notice the X DIV Y)# expres-
sion appearing at the end of the WRITE statements in lines 13 and
22. The syntax diagrams in this chapter show that it is altogether
possible to build an EXPRESSION within a WRITE statement that
consists of math terms and factors. In these instances X is divided
by Y as part of the WRITE statements that embody them.

Certainly it is possible to solve the division problem as a
separate program statement, doing something such as Z:=X DIV
Y. After that, include a Z# expression within a WRITE statement.
That approach would mean adding another variable to line 1 and
including two assignment statements.

88



The only problem with doing math operations within WRITE
statements is that the math operation must conclude with a pound
sign, if, of course. the “answer” is to be printed out in decimal
form. In our particular case here, the pound sign must apply to the
entire math operation. It is thus necessary to enclose the operation
within parentheses to make sure the pound sign applies to the
overall operation, and not just part of it. You should be able to

analyze all other features of the program in Example 6-4 on your
own.

DOING LOGIC WITH AND, OR AND NOT

Tiny Pascal includes three Boolean operators that can be quite
helpful when it comes to making program control decisions. The
following discussion assumes you already have some understand-
ing of the technical meanings of the AND, OR and NOT operators.
If that isn’t the case, you can find the necessary definitions in any
number of books on computer logic, digital electronics and even
general encyclopedias.

First, here are a few examples of IF . . . THEN statements
that include the Boolean logical operators:

IF (A=10) AND (B=2) THEN

or

IF (A>B) OR (A=24) THEN

or

IF (A*2<=C) AND (C>10¢) OR (A=2) THEN

or

[F NOT ((A=1¢) OR (B*2>12)) THEN

You should be able to justify the syntax in all these examples
by referring to the summary of syntax diagrams at the end of this
chapter. In order to understand them in an unambiguous fashion,
however, you must know that the AND operator takes precedence
over OR. In the third example, then, the system first deals with the
AND relationship between (A*2<=C) and (C>100) before it tests
the OR relationship with A=2. Using parentheses to clarify the
precedence in that third example, it reads:

IF (A*2<=C) AND (C>100)) OR (A=2) THEN

89




PROGRAM

BLOCK

IDENTIFIER

INTEGER

STATEMENT

VARIABLE = EX 1ON A

O] wonesoon { o)

EXPRESSION

IDENTIFIER

Fig. 6-5. Composite syntax diagrams for all material described so far in the book.
(A) PROGRAM diagram. (B) BLOCK diagram. (C) STATEMENT diagram. (D)
EXPRESSION diagram. (E) SIMPLE EXPRESSION diagram. (F) TERM diag-
ram.(G)FACTORdiagram.(H) CONSTANTdiagram.

90



EXPRESSION

SIMPLE
EXPRESSION

SIMPLE
EXPRESSION i ]‘ 3 3 3
SIMPLE
EXPRESSION
> { TERM

TERM

e 259555

FACTOR

CONSTANT

Pvmmme
@ EXPRESSION

0 EXPRESSION l

CONSTANT

INDENTIFIER

INTEGER

STRING

HEXINTEGER

(il

91



VARIABLE

—b— IDENTIFIER

IDENTIFIER

® = r .
.
INTEGER

STRING

HEX INTEGER

»v—(Hex D!G!THHEX D|G|T>—o—(Hex DlGlT}—b—CHEX DIG!T}—P—

Fig. 6-5. Composite syntax diagrams for all material described so far in the book.
(1) VARIABLE diagram. (J) IDENTIFIER diagram. (K) INTEGER diagram. (L)
STRINGdiagram. (M)HEXINTEGERdiagram.

Numerous examples through the remainder of this book will
illustrate the application of these Boolean operators for you.

SUMMARY OF SYNTAX DIAGRAMS USED

The diagrams in Fig. 6-5 represent the syntax rules for all
blocks, statements, expressions, terms and factors described thus
far in this book. Follow their evolution carefully, making sure you
know what is happening or can happen anywhere along the way.

If you are really conscientious about the matter, you will come
up with some program combinations you haven’t seen in this book
yet. Try programming them for yourself. You should be able to do
that by now.

92



Chapter 7

Applications of
REPEAT . . . UNTIL Loops

At last! It is time to begin working with a Pascal repetitive, or
looping, statement. It might have seemed to you that the discus-
sions through Chapter 6 were getting a bit tedious and boring, and
maybe they were. The most interesting kinds of programs gener-
ally contain at least one repetitive operation; and it has been
getting difficult to devise fun examples without being able to do
that. Now things really get rolling.

This chapter features the Pascal REPEAT . . . UNTIL state-
ment, which is one of three possible repetitive statements. This
one is perhaps the most commonly used of them all.

SYNTAX RULES FOR REPEAT ... UNTIL"

Figure 7-1 shows the syntax diagram for the REPEAT
.. .UNTIL repetitive statement. It consists of the word REPEAT,
followed by any number of program statements. There can be any
number of STATEMENT lines, just as long as they are separated
by semicolons (as usual).

After the STATEMENT lines comes the word UNTIL, fol-
lowed by any legal Pascal EXPRESSION. Refer backtoFig. 6-5if
you need some reminders about the definitions of STATEMENT
and EXPRESSION.

Thus, a REPEAT . . . UNTIL statement generally takes this
kind of form:

93



STATEMENT

REPEAT STATEMENT

p— EXPRESSION [~

Fig. 7-1. Syntax diagram for the REPEAT...UNTIL statement.

REPEAT
statement;
statement;
statement

UNTIL expression

The operation of the REPEAT . . . UNTIL statement is
conceptually simple. All it does is REPEAT the list of specified
STATEMENTSs UNTIL the conditions specified in EXPRESSION
are met. Here’s an example:

REPEAT
N:=N+1
UNTIL N=1¢

That example repeats the N:=N+1 operation, incrementing the
value of N until it is equal to 10.

Now things are really beginning to take shape. Try these two
programs:
Example 7-1A

VAR N:INTEGER;
BEGIN
WRITE (28, 31);
N:=¢;
REPEAT
WRITE(IN#, 32);
N:=N+1
UNTIL N=1¢
END.

Example 7-1A counts for you, printing numerals @ through 9 hori-
zontally across the screen. The value of N is initialized at zero by
the assignment statement in the fourth line of the program. After

%4




that the program repeats two statements, printing the current
value of N and then incrementing N, until N is equal to 10. Then the
program ends.

Example 7-1B does the same sort of task, but counts by fives
from zero through 50. You will find that the numerals are listed
vertically this time. Which statement caused the change in the
direction of the printing?

Example 7-1B

VAR N:INTEGER

BEGIN

WRITE @28, 31);

N:=0;

REPEAT
WRITE (N#, 13);
N:=N+5

UNTIL N>50

END.

COUNTING EVENTS WITH REPEAT. . .UNTIL

While one of the other Pascal repetitive statements is some-
times easier to use for counting applications, REPEAT. . .UNTIL
can do the jobs quite nicely, too. The following programming
examples illustrate some of the different ways REPEAT. . .UNTIL
counting can be used.

Example 7-2

VAR SPOTZ:INTEGER;
BEGIN
WRITE @8, 31);
SPOTZ:=0;
REPEAT
WRITE 42);
SPOTZ:=SPOTZ+1
UNTIL SPOTZ>63
END.

The program in Example 7-2 prints a string of 64 asterisks
along the top line of the screen. The statement WRITE (42) is the
one responsible for calling the asterisk character in ASCII. Try
substituting some other ASCII character codes in that particular
statement, maybe question mark (ASCII 63) or a dollar sign (ASCII
36).

95




Example 7-3
VAR FIG, LINE:INTEGER;
BEGIN
WRITE @28, 31);
FIG:=0; LINE:=0;
REPEAT
WRITE(13);
LINE:=LINE+1
UNTIL LINE>S§;
REPEAT
WRITE42);
FIG:=FIG+1
UNTIL FIG>63
END.

The program in Example 7-3 prints a string of 64 asterisks
across the middle line on the screen. It takes two REPEAT
.. .UNTIL statements to do the job. The first one, working with
variable LINE, does a series of eight line feed/carriage returns
(the WRITE(13) statement) to carry the cursor to the middle line
on the screen. The second REPEAT. . .UNTIL statement uses
variable FIG and WRITE@42) to print the line of asterisks.

Notice that the two variables in Example 7-3 happen to be
initialized to 0 on the same line. That is a 2-statement line that
reflects the fact that the two operations have identical meanings.
Writing the two statements on the same line is purely a matter of
personal taste, however.

Nesting Statements

The next programming example, Example 7-4, is built around
a sequence of three REPEAT. . .UNTIL statements. The second
one, itself, contains yet another REPEAT . . .UNTIL. These
repetitive statements, in other words, can be nested, one serving
as a valid statement within another.

Example 7-4
VAR TOP, BOT, SIDES, SKIP:INTEGER,;
BEGIN
WRITE 28, 31);
TOP:=0;
REPEAT
WRITE(176);
TOP:=TOP+1

96



UNTIL TOP>62;

WRITE(13);
SIDES:=¢;
REPEAT
WRITE (149);
SKIP:=(;
REPEAT
WRITE(32);
SKIP:=SKIP+1
UNTIL SKIP>6(;

WRITE(176, 13);
SIDES:=SIDES+1
UNTIL SIDES>12;
BOT:=¢,
REPEAT
WRITE(131);
BOT:=BOT+1
UNTIL BOT>62
END.

From an operator’s point of view, the program in Example 7-4
simply clears the screen and draws a neat rectangle that virtually
fills the screen. From a programmer’s point of view, the important
things are the nesting of a REPEAT . . . UNTIL statement and the
use of some TRS-80 graphics symbols.

The names of the variables declared in the first line are rather
descriptive of the roles they play in the rectangle drawing task.
TOP is used for drawing the top edge, SIDES draws the sides, and
BOT is used for drawing the bottom edge of the rectangle figure.

As mentioned earlier, the program is built around three major
REPEAT. . .UNTIL loops. The first uses variable TOP and
graphics code number 176 to draw the top edge, while the last loop
uses variable BOT and graphics code 131 to draw the bottom line.

The most important point is the fact that the middle REPEAT.
. .UNTIL loop first draws graphics code 149, and then uses another
REPEAT. . .UNTIL loop to move the cursor to the right-hand side
of the screen. SKIP counts the number of spaces (ASCII control
code 32) the cursor should move between drawing an element of
the left side and right side of the figure.

Study that side drawing, nested loop operation carefully. It
represents one of the most useful and powerful Pascal structures.

Example 7-4, incidentally, could be improved significantly,
using fewer variables and statements. It is presented in the present

97




form for the sake of clarity, but you already possess the know-how
to reduce the number of variables to two and cut the number of
statements by about one-third. Try it.

Counting Keyboard Operations

In an entirely different vein, REPEAT. . . UNTIL can be used
for counting keyboard operations. The next example illustrates
this particular point.

Example 7-5

VAR SUM, ENTRY, NUMBER:INTEGER;
BEGIN
WRITE @28, 31)
SUM:=@,ENTRY:=0;
REPEAT
ENTRY:=ENTRY+1;
WRITE (ENTRY NUMBER’, ENTRY#, ‘OF 1¢°);
READ(NUMBER#);
SUM:=SUM+NUMBER,;
UNTIL ENTRY=16;
WRITE 28, 31, ‘THE SUM IS’, SUM#)
END.

This program asks you to enter 10 different integers, one ata
time. It keeps track of the number of integers you've entered. And
when you have entered the 10th integer, as determined by the
ENTRY variable, it clears the screen and prints the sum of your 10
numbers.

USING REPEAT. . .UNTIL FOR TIMING OPERATIONS

A number of programming situations call for building timing or
time delay loops. The lightning-fast character is not a positive
attribute under all possible conditions; things have to be slowed
down sometimes. The short program in Example 7-6 represents a
Pascal timing operation.

Example 7-6
VAR TIME:INTECER;
BEGIN
WRITE @8, 31, ‘TIMING NOW’);
TIME: =0,
REPEAT
TIME:=TIME+1

98



UNTIL TIME=1000,
WRITE@8, 31, ‘“TIMING DONE")
END.

Upon running the program in Example 7-6, you see the screen
clear and the message TIMING NOW in the upper left-hand
corner. That message remains there for almost exactly 1 second;
then it is replaced with TIME DONE.

REPEAT. . .UNTIL statement handles the 1-second timing
operation, using variable TIME as a counter. Essentially, the loop
counts from zero to 1000; since TRS-80 Tiny Pascal executes the
loop in about 1 millisecond, it figures that 1000 loopings will add up
to a l-second delay. Change the UNTIL expression to read
TIME =500, and you will find the delay interval increased to about
5 seconds.

Time Bomb Program

Example 7-7 is a novel little program that illustrates some
important structural features. You might want to run it before
attempting to analyze it.

Example 7-7

VAR INT, TIME:INTEGER;

BEGIN

TIME: =1,

REPEAT
WRITE@8, 31, ‘TICK"),
INT: =@,
REPEAT

INT:=INT+1;
UNTIL INT=1000,
WRITE@28, 31, ‘TOCK"),
INT:=0;
REPEAT
INT:=INT+1;
‘UNTIL INT=1000;
TIME:=TIME+1;
UNTIL TIME=1¢;
WRITE@28, 31, ‘BOOM !!!I")
END.

The “time bomb” program in Example 7-7 prints the words
TICK and TOCK alternately on the screen. Each of the two mes-
sages appears for 1 second, and they run that way for 10 cycles.

99




The total time delay—before seeing BOOM !!! written on the
screen—is about 20 seconds.

The major REPEAT. . .UNTIL loop uses the TIME variable
to count the number of TICK/TOCK cycles. That loop begins on
line 4 and ends at the third line from the bottom.

Now the major REPEAT. . .UNTIL loop, among other things,
includes a sequence of two more REPEAT. . .UNTIL loops. These
two “inner” loops are responsible for timing the TICK and TOCK
intervals.

The program in Example 7-7 is thus built around a sequential
pair of REPEAT. . .UNTIL timing loops that are fit into a larger
REPEAT. . .UNTIL loop that does a counting job.

Real time bombs, however, ought to have provisions for
presetting the time delay interval. You should not be restricted to
the fixed 20-second interval inherent in the last example. Hereis a
somewhat better “time bomb” that lets you input the desired time
delay (number of TICK/TOCK cycles):

Example 7-8
VAR INT, TIME, DELAY:INTEGER;
BEGIN
WRITE (28, 31, ‘HOW MUCH TIME DELAY-IN SEC-
ONDS’);
READDELAY#),
TIME:=1;
REPEAT
WRITE 28, 31, ‘TICK),
INT:=0;
REPEAT
INT:=INT+1;
UNTIL INT=500;
WRITE @8, 31, ‘TOCK"),
INT:=¢;
REPEAT
INT:=INT+1;
UNTIL INT =500,
TIME:=TIME +1,;
UNTIL TIME =DELAY;
WRITE @28, 31, ‘BOOM!!!I")
END.
Stopwatch Program
The next example shows how to use REPEAT. . .UNTIL
loops to make a computerized stopwatch. In this case, the display

100



shows the passage of seconds and tenths of seconds from 0:0 to
99:9. Does this one give you any ideas about building a Pascal
program for a real-time clock?

Example 7-9
VAR SEC, TENTH, DEL:INTEGER;
BEGIN
SEC:=0;
REPEAT
TENTH:=¢;
REPEAT
DEL: =@,
REPEAT
DEL:=DEL+1

UNTIL DEL=99;
WRITE 28, 31, SEC#, ‘’, TENTH#);
TENTH:=TENTH+1;
UNTIL TENTH=9
WRITE (28, 31, SEC#, ‘', TENTH#);
SEC:=SEC+1
UNTIL SEC=10¢
END.

Example 7-9 does its job by means of three nested REPEAT
.. . UNTIL repetitive statements. The innermost of the three uses
variable DEL to create a time delay interval of about one-tenth of a
second. Each time that loop is satisfied, the middle loop incre-
ments the value of variable TENTH. TENTH is thus incremented
at one-tenth of a second intervals.

The counting range for TENTH is set by that middle loop to
zero through 9. And when TENTH is restarted at zero, the outer-
most counting loop —the oneusing variables SEC —isincremented.

The counting range for the outer loop is between zero and 100.
Since the last WRITE operation prints the value of SEC before
SEC is incremented again, the counter actually counts up to 99:9.
Loops within loops within loops—it all fits the Pascal structure
quite nicely.

See if you can modify Example 7-9 to work as a rocket launch-
ing counter. Make it count backwards from 99:9 to 0:0 seconds. All
the assignment statements have to be changed.

WRITING UNENDING LOOPS
If you have any experience with writing BASIC programs, you
have most likely run into the sort of panicky situation where you

101



accidentally write a program having an unending loop. It is very
easy to write unending loops in BASIC. Pascal, however, doesn't
allows such accidents to occur easily.

In fact, you generally have to work carefully to build an
endless loop on purpose. It can be done, though. As an example,
suppose you want a program that counts by ones from zero to
infinity.

Sorry, but Tiny Pascal cannot handle numbers larger than
32767. So you cannot count to infinity. But you can structure a loop
that will cycle endlessly through the range of numbers available in
Tiny Pascal. Here it is:

Example 7-10

VAR N:INTEGER;
BEGIN
N:=0;
REPEAT
WRITEN#, 13);
N:=N+1
UNTIL N<>N
END.

What? REPEAT UNTIL N doesn’t equal N? That doesn't
make any sense. A number is always equal to itself. How can the
UNTIL expression ever be satisfied? Well, it can’t. That’s the trick
to building endless loops in Pascal. Just set up an expression that is
logically impossible to satisfy.

That example, incidentally, counts through the entire range of
Tiny Pascal numbers. It begins at zero and increments to 32767.
After that the counting switches to negative integers, counting
from — 32767 to — 1. Then it starts all over from zero again. That is
an incidental point right now, but you ought to file it away in your
memory for possible future reference.

Example 7-10 illustrates the operation of an endless Pascal
loop, but the program isn't really a very practical one. The next
example shows how to use an endless loop for more realistic
purposes.

Example 7-11
VAR NUM, ACC, CYC:INTEGER;
BEGIN
ACC:=¢,
WRITE (28, 31);
REPEAT

102



WRITE(NEW NUMBER);
READNUM#),
ACC:=ACC+NUM;

WRITE(13, ‘SUM IS’, ACC#, 13)

UNTIL CYC<>CYC

END

Example 7-11 works like a calculator that sums signed inte-
gers. It asks youtoentera number; then it sums that number witha
subtotal already assigned to variable ACC. Then it writes the
accumulated sum and asks for the next number.

The program runs without end, because the UNTIL expres-
sion CYC<>CYC cannever be satisfied. The only way to get out of
the program is by striking the BREAK key twice iil SUCCESSIOML.

In this case, variable CYC is used as a “dummy” variable. It is
never initialized, and it is only used as part of the impossible
UNTIL expression. There is really no need to introduce such a
dummy variable; ACC<>ACC or NUM<>NUM would do the job
just as well. Using the dummy is just one of those stylistic features
some programmers like to employ for clarity.

Although the program in Example 7-11 can handle any number
of entries (because of the endless loop feature), it isn’t always
desirable to break out of the loop by terminating the entire prog-
ram. The operations in Example 7-11. for instance, might be
followed by more programming. If the only way to end the sumning
phase is by breaking out of the program, you'll never get to the
operations that follow it.

Here is one way to handle the situation:

Example 7-12

VAR NUM, ACC, CYC:INTEGER;

BEGIN

WK1 &o, o1

ACC:=(; CYC:=0,

REPEAT
WRITE(NEW NUMBER’);
READNUM#);
ACC:=ACC+NUN;
WRITE(13, ‘SUM IS’, ACC#, 13, ‘STRIKE + KEY

TO ADD ANOTHER’, 13);

READ (CYC)

UNTIL CYC<>43;

WRITE(DONE ---- GRAND TOTAL IS’, ACC#)

END.

103



This program does the same calculator-type adding as Exam-
ple 7-11, but CYC s no longer a simple dummy variable. Its value is
read as an ASCII character code in the READ(CYC) statement; and
the UNTIL expression, CYC<>43, allows the REPEAT. . .UN-
TIL cycle to loop around until CYC happens to read a value of 43. If
you refer to the listing of ASCII codes in the Appendix, you will find
that 43 is the ASCII code for the plus sign. So the loop repeats until
you strike (no ENTER is necessary) something other than the +
key.

Run the program in Example 7-12. You will see that you can
keep on adding numbers as long as you answer the STRIKE + KEY
TO ADD ANOTHER message by striking something other than
the + key. The ENTER key works nicely in this case. When you
answer the message by striking something other than the + key the
UNTIL expression is satisfied. The system breaks out of the loop
and goes to the next statement.

GOOF-PROOFING ENTRIES WITH REPEAT. . .UNTIL

Programs that make it necessary for an operator to enter
information from the keyboard are susceptible to operator errors.
Some programs are more sensitive to operator errors than others.
It is always a good idea to include some provisions for prompting an
error-prone operator, making that individual repeat an input opera-
tion until it is done right.

Example 7-13 does little more than demand a certain kind of
input. It can be used just about anywhere in a larger program that
calls for operator goof-proofing.

Example 7-13

VAR NUMBER:INTEGER;

BEGIN

REPEAT

WRITE (28, 31, ‘'ENTER AN INTEGER BETWEEN
¢ AND 9
READ(NUMBER#)

UNTIL(NUMBER>=0@) AND NUMBER<=9);

WRITE(13, NUMBER#, ‘IS FINE.")

END.

The program in Example 7-13 simply asks you to enter an
integer between 0 and 9 inclusively, and the system remains in the
REPEAT. . .UNTIL loop until you answer that request properly.
The UNTIL expression, you see, is not satisfied until the
NUMBER variable is both greater than or equal to zero (a positive
integer) and less than or equal to 9.

104



The UNTIL expression dictates the terms of the entry. Until
the operator meets those standards, the system continues asking
for the number. The program will finally print the number and
message, IS FINE, when the operator manages to enter an integer
that is indeed between 0 and 9. It isn't a very exciting little
program, but it makes the point.

A number of program schemes call for prompting the operator
to answer a question by entering YES or NO. Unless there are
some provisions for goof-proofing this kind of operation, there is
always the chance that the program will whip off into some un-
wanted parts of the program memory. Here is a Y/N scheme that
uses ASCII-character codes to satisfy the REPEAT. . .UNTIL
goof-proofing loop:

Example 7-14

VAR RESPO, FIELD, NUMBER:INTEGER;
BEGIN
WRITE (28, 31);
REPEAT
WRITE (DO YOU WANT TO SEE ME DO MY
THING — Y OR N’);
READRESPO)
UNTIL RESPO=89) OR RESPO=78);
IF RESPO=89 THEN
BEGIN
WRITE(@28, 31);
FIELD:=@;
REPEAT
WRITE92, 13);
FIELD:=FIELD+1
UNTIL FIELD>8;
NUMBER:=0;
REPEAT
WRITE(NUMBER#, 32);
NUMBER:=NUMBER+1
UNTIL NUMBER>9
END
ELSE WRITE 28, 31, ‘OK, JUST WAIT UNTIL YOU WANT
TO SHOW OFF!!’)
END.

This program latches into the first REPEAT. . .UNTIL loop
until the operator strikes either the Y or N keys, ASCII 89 or 78

105



respectively. Then, and only then, will the program proceed.
While the remainder of the program has no direct bearing on the
subject of goof-proofing, it is nevertheless worthy of some study in
its own right. For instance, see if you can completely justify the
syntax of the rather extensiveIF. . . THEN. . .ELSE expressions.

A FOUR-FUNCTION CALCULATOR PROGRAM

The following program illustrates the application of many
principles described in Chapters 6 and 7, including a bit of operator
goof-proofing discussed in the previous section of this chapter.

Example 7-15

VAR SGN, NUM, ACC, REM:INTEGER;
BEGIN
REPEAT
REPEAT
WRITE 28, 31, ACC#),
IF REM<>(@ THEN
WRITE(32, ‘REMAINDER OF’, REM#);
WRITE(13, 13, 13, 13, ‘TO ENTER
ANOTHER NUMBER?’, 13, 200);
WRITE(TYPE OPERATOR (+, —, * OR /)
AND ENTER NUMBER;);
WRITE (13, 13, ‘TO ENT EH PROGRAM:;
13, 200);
WRITE(TYPE = AND ENTER @, 13);
REM:=@;
READSGN, NUM#)
UNTIL (SGN=43) OR (SGN=45) OR (SGN=42)
OR (SGN=47) OR (SGN=61);
IF SGN=43 THEN ACC:=ACC+NUM
ELSE IF SGN=45 THEN ACC:=ACC~-NUM
ELSE IF SGN=42 THEN ACC:=ACC*NUM
ELSE IF SGN=47 THEN
BEGIN
REM:=ACC MOD NUM;
ACC:=ACC DIV NUM
END;
UNTIL SGN=61;
WRITE (28, 31, ACC#);
IF REM<>0 THEN WRITE (32, ‘REMAINDER OF’,
REM#)
END.

106



Upon running this calculator program, you first see this set of
messages on the screen:

g
TO ENTER ANOTHER NUMBER:
TYPE OPERATOR (+, -, * OR /) AND
ENTER NUMBER
TO END THE PROGRAM:
TYPE = AND ENTER ¢

‘The zero appearing in the upper left-hand corner of the screen
is the current subtotal. At the beginning of the process, that value
is zero as it should be. According to the instructions on the screen,
you should next specify an arithmetic operation (add, subtract,
multiply or divide), and then type some number, followed by
striking the ENTER key.

The system responds immediately whenever you strike the
operator symbol. The operator is entered into the system as an
ASCII character code and assigned to variable SGN. See the
READ(SGN, NUM#) statement. The system responds by printing
a question mark that indicates it is time to type the first number and
strike the ENTER key. You have to strike the ENTER key in this
case because the number value is assigned to variable NUM; that
variable is taken as a decimal value by the READ(SGN, NUM#)
statement.

The REPEAT. . .UNTIL statement that encloses the main
message writing and READ(SGN, NUM#) statements makes up a
goof-proofing loop. It does not allow the program to proceed until
the operator enters a valid math symbol. Note the ASCII codes in
the UNTIL expression: UNTIL (SGN=43) OR (SGN=45), etc.
The system loops through this part of the program until the
operator enters a valid math symbol and a number.

‘The remainder of the program executes tne designaied maii
operations, prints the result in the upper left-hand corner of the
screen, and repeats the operator/number message writing sequ-
ence. You can continue doing calculator-type operations until you
enter an equal sign as a math operator, followed by entering 0. That
kind of operation satisfies the major REPEAT. . .UNTIL loop that
ends with UNTIL SGN=61. Sure enough, entering an equal sign
(ASCII code number 61) gets the system out of its main loop and
brings things to a close. As is the case with most of the examples in
this book, you will be better off attempting to justify the syntax of
this example than simply playing with the program and taking the
syntax for granted.

107



Chapter 8
Two More
Looping Statements:

WHILE...DO And FOR...DO
M

While the REPEAT...UNTIL loop might be the most commonly
usedrepetitive statement in Pascal, there are two others that make
up for some shortcomings inherent in REPEAT...UNTIL. This
chapter first points out the essential characteristics of
WHILE...DO and FOR...DO loops, and compares them with RE-
PEAT...UNTIL. After making those important contrasts and com-
parisons, you will have a chance to use them in some demonstra-
tion programs.

THE SYNTAX RULES

Figure 8-1 shows the syntax diagrams for all three of Pascal’s
repetitive loop statements, including the REPEAT...UNTIL loop
you studied in the previous chapter of this book.

A WHILE...DO statement takes this general form:

WHILE expression DO
statement

If you want to make some variable increment from zero to 9,
using a WHILE... DO loop, you can use this sort of sequence within
a program:

NUMBER:=¢;
WHILE NUMBER<1¢ DO
NUMBER:=NUMBER+1;

In essence, the program says to increment variable NUMBER
WHILE, or as long as, NUMBER is less than 10. In other words,
WHILE...DO executes its statement as long as its expression is
satisfied. If the value of NUMBER were intialized to 20, or any

108



other number equal to or larger than 10, the WHILE...DO loop in
this instance would be skipped altogether.
WHILE...DO Statement Features

Comparing the syntax diagrams for WHILE...DO and RE-
PEAT...UNTIL, you should be able to see two important differ-
ences. For one, the WHILE... DO statement allows only one
statement to be executed within it. Unlike the statement for RE-
PEAT...UNTIL, there are no provisions for executing multiple
statements separated by semicolons.

Does that mean that a WHILE...DO statement is good for
running just one statement? The syntax diagram would seem to
imply that. But if you refer back to Fig. 6-5C, you will see that
BEGIN...END is a legitimate Pascal statement as well as one of
the major block operations.

So the single STATEMENT in WHILE...DO can be occupied
by a BEGIN...END sequence. Thus, you often see statements
with this sort of form:

NUMBER:=6;

WHILE NUMBER<1¢ DO
BEGIN
WRITE(NUMBER#),
NUMBER:=NUMBER+1
END;

Inpractice, it is thus possible to construct WHILE...DO loops
that encompass any number of statements just as long as those
statements are, in turn, encompassed by a single BEGIN...END
statement. The most practical form of a WHILE...DO loop is more
like this:

WHILE expression DO
BEGIN

expression
expression

EN D;
A second feature of WHILE...DO is the fact that its STATE-
MENT is not executed if its EXPRESSION is not satisfied. Be-

109




cause the value of variable NUMBER is set to 10 before the
WHILE...DO loop is encountered, the loop in this next example is
never executed:

NUMBER:=15

WHILE NUMBER<1¢ DO
BEGIN
WRITE(NUMBER#);
NUMBER:=NUMBER+1
END;

The fact that the computer does not have to execute the
STATEMENT portion of a WHILE... DO loop might seem obvious
and trivial, but not after comparing it with REPEAT...UNTIL.

The statements encompassed by a REPEAT...UNTIL loop
must be executed at least one time. The statement within a
WHILE...DO loop need not be executed at all. Here is what makes
the difference.

Ina REPEAT...UNTIL loop, the condition for breaking out of
the loop is specified after the statement listings. The computer
must execute the list of statements before it knows whether or not
it should break out of the loop.

In a WHILE...DO loop, the condition for breaking out of the
loop is specified ahead of its statement listing. The computer thus
knows in advance whether or not it should execute the statement
that follows.

FOR...DQ Statement Features

The FOR...DOrepetitive statement is used whenever a given
set of statements is to be executed a predetermined number of
times. It is so much like BASIC’s FOR...NEXT loop that some

comparisons are inevitable. According to the syntax diagram in
Fig. 8-1, FOR...DO statements take this general form:

FOR identifier := expression TO expression DO
statement

More specifically:

FOR NUMBER:=1 TO 9 DO
WRITE NUMBER#);

That one prints number 1 through 9 for you. Each time
FOR...DO executes its accompanying statement, the value of
IDENTIFIER is incremented by one, beginning with the first
number and ending with the second number in the EXPRESSION

110



part. In that particular example, the value of variable NUMBER is
incremented between 1 and 9, writing the value of the number each
time. It works just like this BASIC sequence:

line number FOR N=1TO 9
line number PRINT N
line number NEXT N

The FOR...DO syntax diagram also shows that it is possible
to count backwards. Look at this example:

FOR NUMBER:= 9 DOWNTO ¢
WRITE(NUMBER#);

That one writes numbers backwards from 9 to 0. You've
probably figured out the difference for yourself. A TO delimiter
causes the FOR...DO variable to increment upward, while the
DOWNTO delimiter causes it to decrement or count backwards by
ones.

As in the case of the UNTIL...DO statement, FOR...DO
allows only one STATEMENT to be executed within the context of
its syntax diagram. As you have already seen in the case of UN-
TIL...DO, it is possible to “cheat” the system by using a BE-
GIN...END statement which, itself, can be made up of any number
of individual statements.

SOME APPLICATIONS OF WHILE...DO

Example 8-1 uses the WHILE...DO repetitive statement to
list numbers zero through 9.

Example 8-1
VAR NUM:INTEGER;

BEGIN
NUM:=0;

STATEMENT

A{STATEMENT { e ) on

O
@ oN @ STATEMENT o

IDENTIFIER }—’—@’-{EXPRESSION - EXPRESSION @ STATEMENT

Fig. 8-1. Syntax diagram for Pascal’s three repetitive statements.

111




WHILE NUM<1¢ DO
BEGIN
WRITE(NUM#,32);
NUM:=NUM+1
END;

WRITE (13, DONE")

END.

Then Example 8-2 shows the application of a sequence of
WHILE...DO statements and some cursor graphics:
Example 8-2

VAR CHAR,NUM:INTEGER;

BEGIN

WRITE 28,31,'WHAT CHARACTER);

READ(CHAR);

WRITE (28,31);

NUM:=0;

WHILE NUM<9 DO

BEGIN
WRITE(13);
NUM:=NUM+1
END;

NUM:=@;

WHILE NUM<64 DO
BEGIN
WRITE(CHAR);
NUM:=NUM+1
END;

END.

Application Of Nested WHILE...DO Loops

Example 8-3 illustrates the application of nested
WHILE...DO loops. Runit and then see if you can figure out how it
works. Pay special attention to the Pascal structure and syntax.
Example 8-3

VAR SPACE, LINE:INTEGER;
BEGIN
WRITE (28,31);
LINE:=0;
WHILE LINE<8 DO
BEGIN
SPACE:=(;
WHILE SPACE<32 DO

112



BEGIN
WRITE32);
SPACE:=SPACE+1
END;
WRITE(191,13);
LINE:=LINE+1
SPACE:=-1;
WHILE SPACE< 63 DO
BEGIN
IF SPACE=31 THEN
WRITE(191)
ELSE WRITE(131);
SPACE:=SPACE+1
END;
LINE:=LINE+1;
WHILE LINE < 14 DO
BEGIN
SPACE:=0
WHILE SPACE <32 DO
BEGIN
WRITE@32);
SPACE:=SPACE+1
END;
WRITE(191,13);
LINE:=LINE+1
END;
WRITE (‘2-DIMENSIONAL COORDINATES’)
END.

Frankly, the program in Example 8-3 could do its job in a
somewhat simpler fashion, using one of the tab code numbers for
placing the vertical coordinate. This particular approach, however,
shows the construction of nested WHILE...DO loops.

Timing Programs Around WHILE...DO Statements

Of course, it is entirely possible to make up timing programs
around the WHILE...DO statement. Example 8-4 shows how such
a scheme can be applied, but you will find in the section following
this one that FOR... DO statements make the most efficient sorts of
timing loops.

Example 8-4
VAR TIME,INT:INTEGER;
BEGIN

113



3

WRITE (28,31,‘SPECIFY DELAY INTERVAL IN MIL-
LISECONDS”);
READ(TIME#),
WRITE (28,31, ‘TIMING NOW’);
INT:=0¢
WHILE INT<TIME DO
INT:=INT+1;
WRITE(28,31,'BOOM 1!!,13,13,“TIMING DONE")
END.

And here is a slowed-down counter:

Example 8-5

VAR NUMBER, TIME, INT:INTEGER;:

BEGIN

WRITE(28,31,' HOW HIGH DO YOU WANT TO COUNT");

READ(TIME#);

NUMBER: =@;

WHILE NUMBER<=TIME DO
BEGIN
WRITE 28,31, NUMBER#);
INT:=0
WHILE INT <500 DO

INT:=INT+1;

NUMBER:=NUMBER+1
END;

WRITE(13,13,' DONE’)

END.

How would you go about making up an unending loop with the
WHILE . . . DO statement? Just set up some impossible condi-
tions, such as:

WHILE FIX<>FIX DO
statement
That one uses a dummy variable you have to specify in the variable
declaration line, but it executes its statement forever, or until you
do a BREAK from the keyboard.

It is a bit easier to build an unending loop accidentally when
fooling around with WHILE...DO. Back in Example 8-3, delete one
of the LINE:=LINE+1 statements. Pretend you forgot to put it in,
and watch that program draw one section of the coordinates from
here to eternity. By failing to increment the value of variable
LINE, you will never reach the logical specifications for breaking
out of a LINE loop.

114



WHILE...DO Approach To Goof Proofing

Here is how WHILE...DO can be used for goof-proofing
keyboard information:

Example 8-6A

VAR X:INTEGER;

BEGIN

X:=10;

WHILE X<1¢) OR X> 1¢) DO
BEGIN
WRITE(28,31,'ENTER AN INTEGER BETWEEN
¢ and 10,

READ(X#)

END;
WRITE(28,31,‘GOOD JOB. X="X#)
END.

Using this particular approach to goof-proofing (making cer-
tain the operator enters an integer that is indeed between 0 and
10), it is necessary to initialize variable X to some value that does
not meet the WHILE...DO criteria. If, for example, you initialized
X at 0, the WHILE...DO loop would never be executed. Try it.

Comparison With REPEAT...UNTIL Version

Now compare that example with this REPEAT...UNTIL ver-
sion of the same thing:

Example 8-6B

VAR X:INTEGER,;

BEGIN

REPEAT

WRITE (28,31,'ENTER AN INTEGER BETWEEN
¢ and 1¢);
READX#)

UNTIL X<=0) AND<«=1¢);

WRITE28,31,°GOOD JOB. X='X#)

END.

The fact that a REPEAT...UNTIL sequence of statements is
run one time before the results are tested makes that version seem
simpler than the WHILE...DO version in Example 8-6A. The point
is that the WHILE...DO repetitive statement, as nice as it might be
under some circumstances, is not always the most effective choice.
Of course, the same is true for the REPEAT...UNTIL statement.

115



In Examples 8-6A and 8-6B, it so happens that the RE-
PEAT...UNTIL wins out.

SOME APPLICATIONS OF FOR...D0

The FOR...DO statement is most appropriate whenever you
want to execute a block of statements specific, well-defined
number times. The nice thing about this statement, compared with
the other two, is that the incrementing or decrementing operations
are automatic. Compare these:

Example 8-7A

VAR X:INTEGER

BEGI

X:=(;

REPEAT

WRITE X#,32);
X:=X+1
UNTIL X>9;
END.
Example 8-7B

VAR X:INTEGER;
BEGIN
X:=0;
WHILE X<10 DO
BEGIN
WRITE X#,32);
X:=X+1
END;
END.

Example 8-7C

VAR X:INTEGER;

BEGIN

FOR X:=0/ TO 9 DO
WRITE X#,32)

END.

All three of these examples do the same thing. They print
numerals 0 through 9, with spaces inserted between them. It's
quite apparent from looking at the examples that the FOR...DO
scheme is easier to program. Remember, it is built for counting,

Time delays are even simpler with FOR...DO:

Example 8-8

VAR TIME, INT:INTEGER;
BEGIN

116



WRITE (28,31,'ENTER TIME DELAY IN MIL-
LISECONDS’);

READ(TIME#);

WRITE(28,31,'NOW TIMING’);

FOR INT:=¢ TO TIME DO;

WRITE (28,31, BOOM !! TIMING IS DONE’)

END.

Timing and Counter Loops

The entire timing operation in Example 8-8 is handled by the
line, FOR INT:=0'TO TIME DO;. Does that look like a proper sort
of Pascal FOR...DO statement? Where is the STATEMENT part
of it?

Well, Pascal can handle something call null statements that
don’t do anything. The fact that a 1-line timing statement concludes
with a semicolon implies that a do-nothing statement is inserted
between the word DO and the semicolon. In other words, the
statement calls for incrementing the value of INT from 0 to TIME,
and doing nothing else in the meantime.

It's hard to imagine a timing loop that is any easier to imple-
ment than that one is. Don’t forget that FOR...DO loops can count
backwards, too.

Example 8-9

VAR TIM,INT:INTEGER;
BEGIN
WRITE (28,31,'ROCKET LAUNCH DEMO’);
FOR TIM:=0 TO 2500 DO;
FOR TIM:=1¢0 DOWNTO ¢ DO
BEGIN
WRITE (28,31, TIM#);
FOR INT:=0 TO 1¢00DO;
END;
WRITE(13,‘BLAST OFF!!")
END.

Example 8-9 includes two upward-counting timing loops and a
down-counting counter loop. The first timing loop, made up of FOR
TIM:=0'TO 2500, gives the operator about 2.5 seconds to view the
title of the program, ROCKET LAUNCH DEMO. TIM is the
incrementing variable for that one. The second upward-counting
timing loop uses variable INT, and provides a 1-second delay
between each of the down-counting intervals.

117




The statement TIM:=1¢ DOWNTO ¢ DO is the one that
generates the figures you see on the screen. The DOWNTO
portion is responsible for making the thing count backwards for
you.

Another Digital Stopwatch

As you might imagine by now, FOR...DO loops are great for
clock and timekeeping operations. Here is a FOR...DO version of
the “digital stopwatch” already featured in Example 7-9 of Chapter
7:

Example 8-10

VAR SEC,TENTH,DEL:INTEGER;

BEGIN

WRITE28,31);

FOR SEC:=@ TO 99 DO

FOR TENTH:=¢ TO 9 DO
BEGIN
FOR DEL:=0 TO 10¢ DO;
WRITE28,31,SEC#,‘", TENTH#)
END
END.

Now isn’t that a lot simpler than Example 7-9? FOR...DO
loops really come to the forefront when it is necessary to count
through a specific number of steps.

Here’s a question of syntax regarding Example 8-10. Why isn’t
the FOR SEC:=0/ TO 99 DO statement immediately followed by a
BEGIN...END sequence? The FOR TENTH:=¢ TO 9 DO state-
ment is.

The first FOR...DO is not followed by a BEGIN for the simple
reason that the rest of the program comprises one statement. A
FOR...DO statement can be followed by just one statement, as
illustrated in Fig. 8-1. Through most of the examples cited so far, it
has been necessary to follow a FOR...DO statement with more
than one other statement. That’s where the BEGIN...END comes
into the picture. A BEGIN...END fakes the FOR...DO into think-
ing it is just working with one statement. The fact that BE-
GIN...END, itself, contains more than one statement is perfectly
okay.

As far as Pascal structure is concerned, FOR SEC:=¢ TO 99
DO is followed by just one statement, another FOR...DO. The fact
that the second FOR...DO contains more than one statement (as
allowed by BEGIN...END) is incidental.

118



Chapter 9
A Miscellany Of Pascal

And Tiny Pascal Operation

Pascal, and Tiny Pascal for TRS-80 in particular, include some
operations that are generally rather simple. Few of the operations
described in this chapter fit very well into any of the preceding
discussions, so they're brought together here for the sake of tying
up some loose ends.

Most of these operations are quite useful, and some are vital
under certain programming situations. So while this is something
of a catch-all chapter, study the ideas as carefully as you would any
others.

REMARKS FOR PASCAL

In BASIC, REM statements give you a chance to write out
some commentary in any program. Such statements are never
acted upon by the computer, but merely serve as convenient ways
to write explanatory notes or labels in the program listing itself.

The Pascal counterpart of BASIC's REM statement is any
string of characters or comment enclosed within the 2-character
form, (*and *). Standard Pascal calls for enclosing remarks within
curly brackets. Since very few personal computers have those
symbols on the keyboard, Tiny Pascal substitutes the 2-character
combinations cited here.

Pascal remarks can be inserted anywhere in the program,
anywhere on a separate line, or right on the same line with some
regular program text. Here are a few examples:

119




VAR FUN,SILLY,DOIT:INTEGER; (*DECLARE THE
VARIABLES *)

or
BEGIN
(* INITIALIZE THE VARIABLES *)
FUN:=0;

or

(*LINE 1 * BEGIN
(*LINE 2 *) FUN:=¢;

While many programmers object strongly to the prospect of
using too many remarks in a program, the statements are indeed
very helpful when it comes to designating the beginning of different
kinds of operations. There isn’t much else of practical value to be
explained. Pascal remarks are simple to use. From now on, you
will find a lot of them in programming examples.

DECLARING CONSTANTS IN PASCAL

Itis possible to dream up anumber of instances where it would
be nice to call some long numbers by means of an identifier, rather
than having to write out the number each time it is to be used.
Suppose, for instance, you have to begin some counting operations
from 15360 a number of different times within a given program.
Rather than writing out that number every time you need it, you
can assign it to an identifier and then simply call that identifier
whenever you need the number.

Constants are declared at the beginning of a Pascal programin
much the same way variables are. Figure 9-1 shows the syntax
diagram for CONST.

To declare a constant, begin by writing CONST, followed by
anIDENTIFIER, an equal sign and the desired CONSTANT value.
If you want to declare more than one constant, simply separate
them with a semicolon. In any event, be sure to end the operation
with a semicolon.

Here are a couple of examples:

CONST HCOUNT=15360;
HEND=16660;

120



or

CONST BLINKS=1234;

Aside from using the proper syntax rules, the important thing
about declaring constants is that you write the CONST line before
anything else in Tiny Pascal. The constants must be declared even
before the variables are.

Example 9-1
gﬁgﬂé%%%%f%; (* DECLARE THE CONSTANT *)
. : )
INTEGER: (* DECLARE THE VARIABLE *)
BEGIN ) *
WRITE (28,31) (* CLEAR THE SCREEN AND *)

(* HOME THE CURSOR )

FOR HCOUNT:=¢ TO
STOP DO

WRITE 42); (* PRINT ASTERISKS %)
END.

The constant in Example 9-1 is identified, or declared, as
STOP, and it is evaluated at decimal 63. It is called later in the

program to set the limit on the number of asterisks this thing
prints.

SORTING STATEMENTS WITH CASE...OF
Now here is a more powerful sort of Pascal operation. It bears

some resemblance to BASIC’s ON...GOTO statement, letting the

system select one of any number of lines according to the value of
some number.

It is the relative complexity of the syntax, rather than its basic
idea, that makes the CASE...OF statement a bit tricky to use at
first. Start out by looking at its syntax diagram in Fig. 9-2.

Days Of The Week Program

If that diagram blows your mind, run the program in Example
9-2, compare its listing with the syntax diagram, and see if you can
begin figuring it out from there.

Example 9-2

(* DAYS OF THE WEEK *)
VAR DAY:INTEGER;

121




BLOCK

N—>—{ CONST IDENTIFIER _»@-.4 CONSTANT

a

Fig. 9-1. Syntax diagram for declaring constants with CONST.

BEGIN

WRITE 28,31,'ENTER A DAY NUMBER BETWEEN 1
AND 7, 13);

READ (DAY#);

WRITE(13,13,'DAY ’,DAY#,* OF THE WEEK IS:’,13,200);
CASE DAY OF

1: WRITE('SUNDAY’);
2:WRITE(‘MONDAY’);

3: WRITE('TUESDAY");

4: WRITE(WEDNESDAY);
5:WRITE(THURSDAY);

6: WRITE(FRIDAY);
7:WRITE('SATURDAY’)

ELSE WRITE(‘WHAT?? THERE IS NO SUCH DAY!!")
END
END.

The program in Example 9-2 asks you to enter a number for
DAY between 1and 7 inclusively. The CASE...OF statement then
translates that number into the name of a day, printing it out on the
screen for you. If you mess up the entry and put in a number that is
not between 1 and 7, the ELSE portion of the CASE...OF state-
ment informs you of your lack of cooperation.

The numbers preceding the colons and WRITE statements
represent the possible integer values of variable DAY. Once that

122



value is entered via the READ statement, the CASE...OF state-
ment searches its own list for a matching number. Upon finding a
match, it executes the statement following it. Then it skips down to
the END part of CASE...OF to get on with the rest of the program.
In this case, however, there is no programming left.

Compare the listing in Example 9-2 with the specifications in

the syntax diagram in Fig. 9-2. See if you can justify the whole
CASE...OF operation.

School Test Program

The next example demonstrates a nice feature of CASE...OF,
doing a set of operations under more than one numerical condition.

Example 9-3

(* SIMPLE Q&A *)
VAR ANS:INTEGER;
BEGIN
WRITE 28,31,"QUESTION:");
WRITE(13,13,"WHO IS BURIED IN GRANT",39,'S
TOMB?'13,13);
WRITE(2¢4,(1) A. LINCOLN’,13);
WRITE(200,'2) B. BUNNY',13);
WRITE (200,'3) G. WASHINGTON",13);
WRITE(200,'(4) U.S. GRANT',13);
WRITE (20¢,’(5) NONE OF THE ABOVE’,13);
READ(ANS#);
CASE ANS OF
1,2,3,5: WRITE(WRONG!! RUN AGAIN’);
4: WRITE(RIGHT!!SMART, AREN’,39,'T YOU?)
END(* OF CASE *)
END.

Example 9-3 is one of those school-type, multiple-choice
questions. The operator is supposed to respond to one of the five
choices by entering a number between 1 and 5. The CASE...OF
statement then sorts out the right answer, writing appropriate
messages.

The point of this illustration is to show how more than one
number designation can be assigned to a single case statement.

123



"407"a8VD Joy wesbep xejuis z-6 Big

AN3W3LVLS

ANIWILVYLS

ANVISNGO

NOISS3HdX3

AINIWILYLS

124



Answers 1,2,3 and 5, for instance, are assigned to the first case —
the one printing out the WRONG!! message. Answer number 4,
however, is assigned to the second case statement.

The values of the constants in CASE statements can be
scrambled any way you want, there is no practical limit on the
number of case constants you can use, and you can use integers of
any size. The only thing to bear in mind is that one particular case
constant should be specified just one time. If you happen to specifiy
the same case constant more than once, the computer responds
only to the first one.

Example 9-3, incidentally, contains no ELSE clause. So if the
operator enters a number not included in the list of case constants,
the program simply comes to an end. The ELSE clause in a
CASE...OF statement is optional, but it is usually very handy.

Playing Card Program

Example 9-4 shows how CASE...OF is handy for translating
or decoding numbers.

Example 9-4

(* CARDS *)
VAR VALUE:INTEGER,;
BEGIN
WRITE@28,31);
FOR VALUE:=2 TO 14 DO
BEGIN
CASE VALUE OF
2,3,4,5,6,7,8,9,10: WRITE(VALUE#);
11: WRITE(JACK);
12: WRITE(QUEEN);
13: WRITE(KING’);
14: WRITE(ACE’)
END; (*OF CASE %)
WRITE@32)
END (* OF COUNTING *)
END.

The program in Example 9-4 uses a FOR...DO counting loop
to generate integers between 2 and 14. Those integers are trans-
lated by CASE...OF into playing card values. Upon running this
program, here is what you should see on the screen:

2345678910 JACK QUEEN KING ACE

125




Does that little example give you any ideas about Pascal games you
might want to devise in the future?

Program Consisting 0f Three Smaller Programs

There are two more features of the CASE... OF statement that
are worthy of special note at this time. First, consider the EX-
PRESSION part of the statement. In all of the examples cited so
far, EXPRESSION has been nothing more than a particular vari-
able identifier. It can, however, be any sort of mathematical ex-
pression. The CONSTANT values in CASE...OF can, in other
words, be scaled according to some sort of mathematical opera-
tion.

The second remaining point is that the operations performed
within a CASE...OF statement need not be 1-line WRITE state-
ments (as in all the foregoing examples). The syntax diagram in
Fig. 9-1 show that each CONSTANT value must be followed by a
single STATEMENT. You should recall from the previous chapter
that BEGIN...END comprises a “single” statement, and that such
a statement can, itself, be made up of a whole lot of others.
Example 9-5 illustrates both of these points.

Example 9-5

(* HAIRY CASE DEMO *)
VAR VAL, SPACE,LINE: INTEGER;
BEGIN (* THE PROGRAM *)
WRITE(28,31,'ENTER AN INTEGER BETWEEN 0 AND 2',13);
READ (VAL#) ;
WRITE(28,31);
CASE VAL+1 OF
1:FOR LINE:=1 TO 4 DO
BEGIN (* LINE OPS ¥*)
FOR SPACE:=1 TO 21 DO
WRITE(42);
WRITE(13)
END; (* OF LINE OPS *)
2:BEGIN (* OPS FOR CASE #2 *)
FOR LINE:=1 TO 4 DO
WRITE(13);
FOR LINE:=1 TO 4 DO
BEGIN (* LINE OPS *)
FOR SPACE:=1 TO 21 DO
WRITE(32);
FOR SPACE:=1 TO 21 DO
WRITE (42) ;
WRITE(13)
END (* OF LINE OPS *)
END; (* OF OPS FOR CASE #2 *)
3:BEGIN (* OPS FOR CASE #3 *)
FOR LINE:=1 TO 8 DO
WRITE(13);
FOR LINE:=1 TO 4 DO

126



BEGIN (* LINE OPS *)

FOR SPACE:=1 TO 42 DO
WRITE(32);

FOR SPACE:=1 TO 21 DO
WRITE (42) ;

WRITE(13)

END (* OF LINE OPS *)

END (* OF OPS FOR CASE #3 *)
ELSE WRITE('ENTRY NOT BETWEEN 0 AND 2 ... RUN AGAIN')
END (* OF CASE STATEMENT *)

END. (* OF PROGRAM *)

The program in Example 9-5 is made up of three different
smaller programs, each selected according to the CASE...OF
statement. The operator is first asked to input a number between 0
and 2. The value is then assigned to variable VAL.

At the beginning of the CASE...OF statement, VAL is in-
cremented by 1 to yield case constants of 1,2 and 3, instead of 0, 1
and 2. This is done merely for purposes of illustration to show that
case values can be scaled.

At any rate, the value of VAR+1 determines which one of the
three case programs is executed . Actually all three programs do
the same sort of thing, printing a 21 x 4 rectangle made up of
asterisks. Case 1, however, places the rectangle in the upper
left-hand corner of the screen. Case 2 puts it near the middle of the
screen. Case 3 places the rectangle near the lower right-hand
corner.

Granted, this isn’t an especially exciting program. There are
probably easier ways to go about doing it. The point, though, is to
show how the statements within a case statement can be complete
little Pascal programs in their ownright. As you might imagine, the
whole thing can get rather complex, even more complex than the
program in Example 9-5.

This example also shows some nice Pascal structuring as well
as some tricky little bits of syntax. Justify as many of the opera-
tions, structural qualities and syntax features as you can. You get
an “A” for the chapter if you can see a reason why everything is
done(or not done).

Do you see any reason why CASE...OF statements cannot be
nested? Can you think of why you might want to put some
CASE...OF statements within a CASE...OF statement? Think
about it. Better yet, back up your thinking by trying it.

TWO MATH EXPRESSIONS PECULIAR TO TINY PASCAL

Supersoft’s version of Tiny Pascal includes two math expres-
sions that do not appear in Standard Pascal. The ABS(expressiomn)
returns the absolute value of any expression enclosed within the

127




parentheses. The SQR (expression) returns the square of any ex-
pression enclosed within the parentheses.

Both expressions perform the same functions as their coun-
terparts in BASIC. Actually they are FUNCTION identifiers.
Since you have not encountered FUNCTION blocks in this book
yet, the fact probably has little significance. For the time being,
you can be content to use these functions in a straightforward
fashion. For instance:

Example 9-6

VAR NUM:INTEGER;

BEGIN

WRITE (28,31, ENTER AN INTEGER’,13);
READ(NUM#),

NUM:=ABS(NUM);

WRITE(13,13,NUM#)

END.

Example 9-6 requests any integer from the keyboard, assigns
the value to variable NUM, and then works out the absolute value
of the number. Of course, the whole program doesn’t have much
meaning until you decide to enter some negative numbers.

Example 9-7

VAR NUM:INTEGER;

BEGIN

WRITE (28,31,'ENTER AN INTEGER’,13);
READ(NUM#);

NUM:=SQRNNUM);
WRITE(13,13,NUM#)

END.

Example 9-7 figures the square of whatever number you enter
from the keyboard. It’s as simple as that.

TRS-80 “SET/RESET” GRAPHICS WITH PASCAL PLOT

The unique character of TRS-80 plotting graphics can be
handled with Tiny Pascal PLOT statements. This one statement,
properly handled, does the job of two in BASIC—SET (expression,
expression) and RESET (expression, expression).

Recall that your TRS-80 screen can, for graphics purposes, be

divided up into a 127 x 47 coordinate system. You can set a spot of
light on the screen, at any desired point, by doing a SET(x,y),

128



where x is the horizontal coordinate (between 0 and 127) and yis
the vertical coordinate (between 0 and 47). By the same token, you
can erase any such spot on the screen by doing a RESET (x,y).

The statement for doing the same sort of thing in TRS-80 Tiny
Pascal is PLOT(x,y,z). The x and y terms represent constant
values or expressions for the x and y coordinates, respectively.
The zis fixed at a value of 1 or 0. If it is set to 1, the statement does
a SET operation and places a point of light on the screen. If z=0,
the statement does a RESET for you.

Actually the z in PLOT(x,y,z) can be any expression. If the
result is an odd-numbered value, the statement sets the point of
light. If the z expression turns out to be even-valued (or 0), it
resets the point of light.

The following program first fills the screen with light by doing
a SET-type operation for all coordinate positions on the screen.
Then when you respond to the question mark by striking the
ENTER key, the program RESETS all the points.

Example 9-8

VAR X,Y,MORE:INTEGER;
BEGIN
FOR Y:=0 TO 47 DO
FOR X:=0 TO 127 DO
PLOT(X,Y,1);
WRITE(?");
READMORE);
FOR Y:= 47 DOWNTO ¢ DO
FOR X:=127 DOWNTO ¢ DO
PLOTXY, 9
END.

Then try it again with a new wrinkle:
Example 9-9
VAR X,Y,Z:INTEGER;
BEGIN
FORY:=0 TO 47 DO
BEGIN
IF Y THEN Z:=0¢
ELSE Z:=1;
FOR X:=(@f TO 127 DO
PLOTX,Y,X+Z)
END
END.

129




Example 9-9 draws a finely graded checkerboard on the
screen. But notice the statement IF Y THEN Z:=0. Its meaning
isn’t obvious according to anything you have studied thus far, so
here’s some explanation. That sort of statement is saying: IF the
value of variable Y is odd, THEN assign 0 to variable Z. Such a
statement is responsive to odd-numbered values.

It is tempting to begin playing around with some exciting
graphics at this point. Do so if you wish; but you will find a lot of
graphics worked out for you in the latter sections of this book. For
the moment, there are some special statements of importance.

TRS-80 BASIC has a POINT (x,y) function that works in con-
junction with its SET and RESET statements. In TRS-80 graphics,
POINT looks at the coordinates specified by x and y, and returns a
value of 1 or 0, depending upon whether that point is SET or
RESET. The same kind of statement is included in Supersoft Tiny
Pascal for the TRS-80. It is the POINT (x,y,) statement.

How about that! You have just seen the one and only statement
that is absolutely common to both TRS-80 BASIC and Tiny Pascal.
Read about POINT (x,y) in your BASIC manual, and you will know
how to use it in Tiny Pascal.

THE MEM STATEMENT

You have probably heard a lot of talk about how Pascal runs
faster than BASIC. If you base your own opinion of the matter on
the programs in Examples 9-8 and 9-9, you might have some
serious reservations about the high-speed reputation of Pascal.
Frankly, those two graphics operations are quite slow.

To ally your fears about the capabilities of your Tiny Pascal,
give this next example a try.

Example 9-10

VAR PLACE:INTEGER

BEGIN

FOR PLACE:=1536¢ TO 16383 DO

MEM@LACE):=191

END.

Now that’s a lot better. This program fills the screen with
light, just as Example 9-8 does, but this one does italot faster. The
key to higher speeds is the MEM statement.

A MEM STATEMENT takes this general form:

MEM (expression): =expression

130



And it is about the same thing as TRS-80 BASIC’s POKE (expres-
sion) statement. The expression in parentheses designates a
memory address, and the assignment expression specifies the data
to be written into that memory address.

As in the case of POKE statements in BASIC, you have to be
careful about MEM-ing around in your computer’s memory. One
little miscalculation, and you can wipe out the entire program, and
maybe even the Tiny Pascal editor/compiler.

Graphics Operations

The program in Example 9-10 increments through memory
addresses 15360 through 16383, depositing a code 191 in each
place. What does that mean? Well, on your TRS-80, addresses
15360 through 16383 are devoted to the video memory. Any intel-
ligible data inserted into that section of memory will create a
character or graphic element on the screen. Code 191, the code
being fed into all the video memory, represents a graphic that fills
the entire character space. See the Appendix.

Of course you can substitute other character codes for the 191
in Example 9-10, and come up with a screen full of other things.
Dollar signs are nice.

Modify Example 9-10 as shown next, and you'll find the
graphics running even faster. Why? The computer works in
hexadecimal right from the start, and there is no need to do any
decimal-to-hexadecimal conversions (for the benefit of those who
haven't gotten around to learning the hex system yet).

Example 9-11

VAR PLACE:INTEGER;

BEGIN

FOR PLACE:=%3C0¢ TO %3FFF DO
MEM(PLACE):=191

END.

It’s the same idea, and the same program, with a different
counting format and a higher speed. The percent signs appearing
ahead of the hex numbers designate the numbers as hex integers.
Using no percent prefix, as has been done everywhere before in
this book, implies a decimal format.

It is entirely possible to turn around the MEM statement you
have been using here, and create the effect of a TRS-80 BASIC
PEEK statement:

identifier: =MEM (expression)

131




This statement assigns to an identifier the data stored in memory
address expression.

If you want to snoop around in your system'’s memory, just doa
bunch of these operations:

Example 9-12

VAR PLACE:INTEGER;

BEGIN

WRITE(WHAT ADDRESS—IN DECIMAL’,13);
READ(PLACE#)

PLACE:=MEM(PLACE);

WRITE(13,PLACE#)

END.

Other Uses

The MEM expression is good for doing things other than
graphics operations. You can, for instance, write machine language
programs, storing hex codes in portions of memory you choose for
yourself. And then there is this intriguing possibility:

MEM(expression): =MEM (expression)

That's something you can use to transfer a byte of information from
one place to another in the system’s memory.

Tiny Pascal does not have arrays. But the MEM statement
comes to the rescue, providing a 1-dimensional array of any de-
sired length. You will find an entire section devoted to Tiny Pascal
arrays later in the book.

It is difficult to overestimate the usefulness and power of the
MEM statement in Tiny Pascal. The only problem for some people

is that one must know their system pretty well to get the full
benefit.

THE INKEY STATEMENT

The INKEY function in Tiny Pascal works very much like its
TRS-80 BASIC counterpart, the INKEY$ function. This function
causes the computer to scan the keyboard and pick up the ASCII
code for any key that happens to be depressed at the moment. Ifno
keys are depressed during the INKEY keyboard scanning opera-
tion, the INKEY function returns ASCII code number 0.

While INKEY does indeed allow the operator to assign values
from the keyboard, its function is quite different from the READ
statement. The main difference is tnat a READ statement forces
the program to stop until there is some response from the operator.

132



On the other hand, an INKEY statement does not necessarily halt
the program execution.

Perhaps the features of the INKEY statement are better
demonstrated than explained in words. So here it goes:

Example 9-13

BEGIN
WHILE INKEY<>13 DO;
END.

Example 9-13 certainly appears to be a very simple program.
And itis. Literally, it says, “Until the operator strikes the ENTER
key (13 is the ASCII code number assigned to the ENTER KEY),
do nothing.” So the program does nothing until the operator strikes
the enter key. Then the program simply ends. While the program s
running, you can depress any other key you want and nothing
happens. The program is sensitive only to the ENTER key by
virtue of the fact that the WHILE...DO statement is no longer
satisfied when that key is hit.

Consult the table of ASCII codes in the Appendix. Replace the
number 13 in Example 9-13 with codes representing other keys.

Escape Route

Repetitive operations built around INKEY functions must have
a well defined means of “escape.” When you run the program in
Example 9-13, you will find you cannot get out of the loop by
striking the BREAK key. INKEY functions override the BREAK
operation; if you enter a program that has no possible way to end,
you can end the program only by doing a manual RESET. Doing a
manual reset on your TRS-80 returns it to BASIC. The Tiny Pascal
routine is completely lost, and you have to load the Pascal system
tape all over again.

Here is an example of how you can mess yourself up with the
INKEY function, use WHILE INKEY<>1000 DO in Example
9-13. There is no code number 1¢@§ for the keyboard, so the
program will not end until you RESET or turn off the computer.

Here is amore interesting application of the INKEY function:

Example 9-14

VAR X:INTEGER;

BEGIN

REPEAT
REPEAT

133



X:=INKEY
UNTIL X(>@;
WRITE(X#,32,X%,32,X)
UNTIL X=32
END.

The program in Example 9-14 scans the keyboard until you
strike one of the keys. It then writes a line showing the decimal and
hexadecimal codes for the ASCII character as well as the character
figure itself. The program’s “escape route” is through ASCII code
32, the space bar.

Striking the space bar, in other words, ends the program. Itis
aprogram that is quite helpful to users who want to learn their way
around the ASCII keyboard a little better.

Example 9-15

(* INKEY CONTROL DEMO *)
VAR X,NUM: INTEGER;
BEGIN
WRITE (28,31, STRIKE THE ENTER KEY TO START’);
REPEAT
WHILE INKEY<>13 DO;
FOR NUM:=0 TO 9 DO WRITE(NUM, 32);
WRITE(13,13,'STRIKE ENTERKEY TO DO AGAIN’);
WRITE(13,'STRIKE SPACE BAR TO END THE
PROGRAM);
REPEAT
X:=INKEY
UNTIL X=13) OR (X=32),
WRITE(28,31)
UNTIL X=32
END.

Writing Integers

Upon running this program, you are greeted with the heading
message, STRIKE THE ENTER KEY TO START. The program
thenrepeats the WHILE INKEY 13 DO statement until you strike
the ENTER key. Continuing the program is thus contingent upon
striking the ENTER key at that point.

Then the program simply writes out integers 0 through 9.
After that, the program offers two alternatives, either STRIKE
THE ENTER KEY TO DO AGAIN or STRIKE SPACE BAR TO
END THE PROGRAM.

134



At that point, the system repeats the X:=INKEY operation
until you strike one of those two keys. If you strike the ENTER
key, X is assigned ASCII number 13. The system repeats the
counting operation. But if you strike the SPACE BAR, X takes on
the ASCII code number 32. The major REPEAT...UNTIL loop is
satisfied. As aresult, the program ends. You will find other applica-
tions of the INKEY statement in numerous program examples
throughout the remainder of this book.

135




Chapter 10
Procedure, Function

and Array Operations

The three operations featured in this chapter conclude the list of
Pascal operations that are included in Tiny Pascal. The fact that
they are presented last is certainly no reflection on their impor-
tance; nor is it really any indication of their difficulty. The only
reason for introducing procedures and functions at the end of the
list is so the examples can incorporate principles described in
earlier chapters of this book. The array operation is offered here
only because it is the only command left in Tiny Pascal. It didn’t
seem to fit in anywhere else.

SIMPLE PROCEDURES

A procedure operation is Pascal’s idea of a program sub-
routine. It is a little program, often complete in itself, that can be
called from a master or mainline program. BASIC has its GOSUB
and RETURN commands for working with subroutines, and Pascal
has its PROC command.

Just to make certain you understand some of the reasons for
using subroutines in the first place, compare the programs in
Examples 10-1A and 10-1B. Example 10-1A is written without the
benefit of a procedure, while Example 10-1B does the same job, but
with the help of a procedure operation.

The basic idea of the program in this example is to first print a
string of asterisks across the top of the screen, and then show a
timed sequence of numbers from 0 through 9. The screen is cleared

136



and a string of plus signs appears across the top. The timed
counting sequence occurs again. Finally, the program shows a
string of commas, followed by that same sequence of numbers.
The practical significance of such a program is certainly ques-
tionable. But the point is to illustrate the vast differences between
programs written with procedures and those that are written with-
out procedures.
Example 10-1A

VAR FIG, TIME, LINE:INTEGER;

BEGIN
WRITE @28, 31);
FOR LINE:=0 TO 63 DO WRITE@2), (* PRINT AS-
TERISKS *)
FIG:=(; (* COUNT SEQUENCE *)
WHILE FIG<1¢' DO
BEGIN

FOR TIME:=@ TO 50¢ DO;

WRITE FIG#, 32);

FIG:=FIG+1

END;
WRITE 28, 31);
FOR LINE:=0 TO 63 DO WRITE@3); (*PRINT PLUS

SIGNS *)

FIG:=@; (* COUNT SEQUENCE *)
WHILE FIG<1¢ DO

BEGIN

FOR TIME:=0 TO 50¢ DO;

WRITE (FIG#, 32);

FIG:=FIG+1

END;
WRITE 28, 31);
FOR LINE:=0'TO 63 DO WRITE @4); (*PRINT COMMAS *)
FIG:=¢; (* COUNT SEQUENCE *)
WHILE FIG<1¢ DO

BEGIN

FOR TIME: =@ TO 50¢ DO;

WRITE FIG#, 32);

FIG:=FIG+1

END
END.

Note in Example 10-1A that the COUNT SEQUENCE of
operations has to be reproduced three different times. Why write a

137




certain sequence of operations again and again, when they can be
represented by a single PROC operation? See the next example.

Example 10-1B
VAR LINE:INTEGER;
PROC COUNT;
VAR TIME, FIG:INTEGER;
BEGIN
FIG:=¢;
WHILE FIG<10 DO
BEGIN
FOR TIME:=0 TO 5¢¢ DO;
WRITE FIG#, 32);

FIG:=FIG+1
END
END;
BEGIN
WRITE (28, 31);
FOR LINE:=@ TO 63 DO WRITE42); (* PRINT AS-
TERISKS *)
COUNT; (* COUNT SEQUENCE *)

WRITE 28, 31);
FOR LINE:=¢ TO 63 DO WRITE@43); (* PRINT PLUS

SIGNS *)
COUNT; (* COUNT SEQUENCE *)
WRITE 28, 31);
FOR LINE:=0'TO 63 DO WRITE (44); (*PRINT COMMAS *)
COUNT (* COUNT SEQUENCE *)
END.

Examples 10-1A and 10-1B do exactly the same job, but in
entirely different ways. An operator would never know the differ-
ence, but someone setting up the program certainly would. The
COUNT SEQUENCE operations have to be written out three
times in Example 10-1A. But in Example 10-1B, the same sequ-
ence is given a name of its own (COUNT) and specified just one
time as a procedure. Calling the counting sequence is a simple
matter of specifying COUNT as a Pascal statement, a new state-
ment that is custom defined.

Defining a Procedure

Figure 10-1 shows the syntax diagram for simple PROC oper-
ations. They are called “simple” here to distinguish them from a

138



‘ainpaooid ajdwis e 1o} weibelp xejuis "1-01 b4

a
N4

A001d

H3l41IN3AI

o04dd

»oo01g |

[*)]

13




slightly different sort of PROC operation that is described in the
next section of this chapter.

At any rate, Fig. 10-1 shows that a PROC is defined as part of a
larger program BLOCK. What isn’t shown is the fact that PROC
must be defined after the variables for the program are declared.
Notice in Example 10-1B that variable LINE is declared before the
PROCedure is.

So start the process of defining a procedure by writing PROC
and then any identifier name you want it to have. The name in
Example 10-1B happens tobe COUNT. You can call it anything you
want, just soitisn’t identical to one of the Pascal delimiters such as
WRITE, READ, FOR, etc.

A semicolon must follow the procedure IDENTIFIER name,
such as PROC COUNT;. Then the syntax diagram shows a
BLOCK. A whole BLOCK of its own? Right! A procedure is a
complete Pascal program in its own right. That means you have to
declare the variables it uses, start out with a BEGIN, end with an
END, and things like that.

Example 10-2
(* CHECKER %
VAR PHASE:INTEGER;
PROC WHITEFIRST;

VAR WLINE, WSPACE:INTEGER;

BEGIN

FOR WLINE:=1 TO 2 DO
FOR WSPACE:=¢ TO 63 DO
IF WSPACE DIV 8 THEN
WRITE (191)
ELSE WRITE@32)
END;

PROC BLACKFIRST;

VAR BLINE, BSPACE:INTEGER;

BEGIN

FOR BLINE:=1 TO 2 DO
FOR BSPACE:=0 TO 63 DO
IF WSPACE DIV 8 THEN
WRITE@32)
ELSE WRITE (191)
END;

BEGIN (* MAINLINE PROGRAM *)
WRITE (28);

140



FOR PHASE:=1 TO 4 DO
BEGIN
WHITEFIRST;
BLACKFIRST;

END

END.

Checkerhoard Pattern

Example 10-2 uses a series of two procedure subroutines,
named WHITEFIRST and BLACKFIRST, to build a nice checker-
board pattern on the screen. The mainline program is relatively
simple, calling the two procedures alternately, four times in suc-
cession.

Notice that WHITEFIRST and BLACKFIRST are practically
identical. The only difference is that WHITEFIRST prints a line of
alternate black and white spaces, beginning with a white space.
BLACKFIRST, on the other hand, begins the same sort of opera-
tion with a black square instead of a white one. By alternating these
two operations in the mainline program, the overall effect is that of
a checkerboard pattern.

A Pascal program can contain just about any desired number of
different procedures. Just bear in mind that they are Pascal’s
version of subroutines, and carry with them the same reasons for
using them in the first place.

You have seen in Example 10-1B that procedures are handy
whenever a certain set of operations has to be performed a number
of different times. They save both a lot of programming time and
memory space. Then in Example 10-2 you can see how easy it
would be to alter the size of the checkerboard pattern without
having to overhaul the entire program. This particular advantage of
using procedures makes it quite easy to expand and modify existing
Pascal programs.

All that, plus the ability to nest procedures —inserting proce-
dures within procedures. Supersoft Tiny Pascal allows you to nest
up to 7 deep. Just remember one rule. When nesting procedures,
any procedure that is called must be written into the program
listing ahead of the one that calls it.

The need for nesting procedures arises only when working
with rather complex programs or attempting to make drastic mod-
ifications of existing ones. For this reason, specific examples of
nested procedures aren’t appropriate at this time. However, you
will find some nested procedures in the latter chapters of this book.

141



PROCEDURES WITH VALUE PARAMETERS

The examples of procedures presented so far in this chapter
are wholly independent of any variable values established in the
mainline program. The “simple” procedures are simply called to do
a specific task that has no particular relevance to any values in the
mainline program.

Itis often necessary, however, toruna procedure, using some
numerical value established during the course of the mainline
program. The value of some variable must be passed to the proce-
dure before it knows exactly what it is supposed to do. Procedures
that are capable of accepting numerical values from the mainline
program, or other procedures, are called value parameter proce-
dures.

Suppose, for example, you want a program that accepts an
integer value from the keyboard and then draws a horizontal line
having a length proportional to the value of that number. The idea is
to use a value parameter procedure to draw the line; in order to do
the job properly, the procedure must know how long the line is
supposed to be. And that value is passed to the value parameter
procedure. Simple procedures cannot accept variable values from
outside itself.

Figure 10-2 shows the syntax diagram for both simple and
value parameter procedures. Simple procedures bypass the need
for writing any parentheses and identifiers, while value parameter
procedures must use them.

LENGTH Variable
Here is a program that uses a value parameter procedure:
Example 10-3

VAR LENGTH:INTEGER; (* DECLARE VARIABLE FOR
MAINLINE *)
PROC DRAW (LENGTH); (* DEFINE VALUE PARAME-
TER PROCEDURE *)
VAR SPACE:INTEGER; (* DECLARE PROC VARIABLE *)
BEGIN
FOR SPACE:=0/ TO LENGTH DO WRITE@42)
END;
BEGIN (* BEGIN MAINLINE PROGRAM *)
WRITE @8, 31);
REPEAT

142



WRITE(CENTER @ TO 63, 32);
READ(LENGTH#); (*SET THE VALUE OF LENGTH
VARIABLE *)
DRAW (LENGTH); (* CALL THE DRAW PROCEDURE *)
WRITE(13)
UNTIL LENGTH<>LENGTH
END.

The value parameter in Example 10-3 is LENGTH. Notice
that it is declared as a variable for the mainline program in the first
line, and then it is cited again as a procedure parameter in the
second line. Declaring it as a mainline program variable makes it
possible to fool around with the value of LENGTH in the mainline
part of the program. Citing it as a parameter in procedure DRAW
lets the numerical value of that same variable be carried into the
DRAW operations.

The whole idea of the program, itself, is to print some desig-
nated number of asterisks along a line on the screen. In the
process, the LENGTH variable carries the number of asterisks to
be printed to the DRAW procedure where it is needed most. A
simple procedure wouldn't have the foggiest idea what LENGTH
means. Give Example 10-3 a try on your own machine.

INCHWORM Program

Example 10-4 is a little animation demonstration program that
uses a set of three value parameter procedures. All three happen to
use the same parameter variable, PLACE, but it just turned out
that way. Pascal programs having more than one value parameter
procedure quite often use different variables for each one. The

( < O L BLOCK

Fig. 10-2. Syntax diagram for simple and value parameter procedures.

143




program in Example 10-4 is called INCHWORM, and you have to
see its animation effects first hand to appreciate it fully. What you
will see is the figure of a little worm that moves across the screen
by first bunching itself up and then stretching out.

Example 10-4

(* INCHWORM *)
VAR PLACE,FRAME,DELAY:INTEGER;
PROC FR1 (PLACE);
BEGIN
MEM (PLACE) :=176;
MEM (PLACE+1) :=176;
MEM (PLACE+2) :=191;
MEM (PLACE+3) :=131;
MEM (PLACE+4) : =191;
MEM (PLACE+5) :=176;
MEM (PLACE+6) :=176;
MEM(PLACE+7) :=188;
MEM (PLACE+8) : =188
END;
PROC FR2(PLACE);
VAR DX:INTEGER;
BEGIN
FOR DX:=0 TO 9 DO
MEM (PLACE+DX) :=176;
MEM (PLACE+10) :=188;
MEM({PLACE+11) :=188
END;
PROC ERASE (PLACE);
VAR DX:INTEGER;
BEGIN
FOR DX:=0 TO 11 DO
MEM (PLACE+DX) :=32
END;
(* BEGIN MAINLINE PROGRAM ¥)
BEGIN
WRITE(28,31);
FOR PLACE:=15424 TO 16242 DO
BEGIN
IF FRAME=1 THEN
FR1 (PLACE)
ELSE
FR2 (PLACE) ;
FOR DELAY:=0 TO 100 DO;
ERASE (PLACE) ;
IF FRAME=1 THEN
FRAME : =2
ELSE
FRAME:=1
END
END.

The INCHWORM program in Example 10-4 uses three value
parameter procedures: FR1(PLACE), FRZ2(PLACE) and

144



ERASE(PLACE). Procedure FR1(PLACE) draws the inchworm
figure in its bunched-up position, while FR2PLACE) draws the
worm in its stretched-out position.

Animation Sequence

The animation sequence thus consists of two frames. One
frame ought to be erased before the other is drawn. It is necessary
to use an erasing operation, ERASE(PLACE).

The animation sequence is controlled by the mainline prog-
ram. The mainline program calls the frame drawing and erasing
procedures in the appropriate sequence. The main program also
increments the worm’s position on the screen. Variable PLACE is
the position counter for the worm figure. As that variable increases
in value (by means of a FOR. . .TO statement), the positions for
drawing the frames and erasing them changes as well.

You will find value parameter procedures specified in nearly
all the animation sequences described later in this book. Many of
those procedures will work according to more than one value
parameter. An animation frame such as BIFRAME(BPLACE,
PHASE, FNO) might draw one or more slightly different figures,
depending on the value of FNO from the mainline program. It
draws those figures at a place determined by value parameter
BPLACE and perhaps erases part of the figure, depending on the
value of the PHASE variable. Value parameter procedures are
indeed powerful tools in the world of Pascal programming.

Variahle Parameter Procedures

Before going to the subject of Pascal functions, you should
become aware of the fact that Standard Pascal has a third type of
procedure called a variable parameter procedure. This one not only
accepts values from the mainline program, but can pass values back
to the mainline. The practical significance is that a variable
parameter procedure can do some operations that alter the values
of variables used within the program that calls it. Value parameter
procedures cannot pass values back to the calling program.

That is one of the little shortcomings, one of the tradeoffs,
necessary for making Tiny Pascal workable in relatively small
personal computer systems. There is a way, however, to do some
mathematical operations and pass the result back to the mainline or
calling program. The trick is to use Pascal’s function operation.

145




THE FUNCTION OPERATION

In the course of devising real programs, it is often necessary
to perform a particular mathematical operation a number of diffe-
rent times at different places in the program. Tiny Pascal offers a
number of useful math functions: ABS(X), SQR(X), ADIV B, etc. It
is possible, though, to make up such functions of your own and use
them in the same sort of way.

Devising your own function commands is a matter of applying
the FUNC statement. The function statement, like procedures,
must be declared and defined in the early part of the Pascal prog-
ram. Normally it is declared and defined before any of the proce-
dures are. Figure 10-3 is the syntax diagram for FUNC.

Declaration and Definition

When declaring and defining the function, first write FUNC,
followed by an IDENTIFIER. After that you have the option of
simply entering an semicolon and a BLOCK of operations that
define the function, or preceding the semicolon and BLOCK witha
set of one or more variable identifiers.

Actually, a function is declared and defined exactly as proce-
dures are. The only difference is that the initial delimiter is FUNC
instead of PROC.

Here is a very simple function block:

FUNC CUBEX);
BEGIN
CUBE:=X*X*X
END;

BLOCK

\»——(FUNCH IDENTIFIER

8

Fig. 10-3. Syntax diagram for FUNCtion.

146




This one picks up a value of X from the calling program, and then
sets the value of variable CUBE to the cube of X (3 Xs multiplied
together). The value of CUBE is then passed back to the calling
program.
Maybe the calling program, at least a portion of it, looks like
this:
FOR X:=¢ TO 9 DO

BEGIN

CUBEX);

WRITE(X#, 32, CUBEX)#, 13)

END;

As the FOR. . .TO statement increments the value of variable X,
the program calls function CUBE(X) just as though it is a math
function already built into the Pascal system. The program writes
each value of X, followed by its cube.
The complete program could look like this:
Example 10-5
(* CUBES *)
VAR X:INTEGER,;
FUNC CUBEX),
BEGIN
CUBE:=X*X*X
END;
BEGIN
WRITE @28, 31);
FOR X:=¢ TO 9 DO
BEGIN
WRITE(X#, 32, CUBEX)#, 13)
END
END.

Random Number Generating Process

In Example 10-5, function CUBE(X) s called as an expression
within 2 WRITE statement. You can treat functions you define
yourself as you would most other functions in Pascal.

You are well aware of the fact that Tiny Pascal does not
include a random number generator. If you weren't fully aware of
that bit of news, you are enlightened now. A random number
generating process, however, lends itself quite nicely to being
done as a Pascal function. Here it is. Mark this place in the book,

147




because you will most likely want to refer to it whenever you begin
writing game programs of your own.

Example 10-6

FUNC RND@®RLOW, RHIGH);

VAR M,P:INTEGER;

BEGIN

REPEAT
M:=N*3125;
IF M<@¢ THEN M:=ABS(M);
N:=M;P:=M;
P:=P MOD RHIGH

UNTIL (P>=RLOW) AND (P<=RHIGH);

RND:=P

END;

The theory behind the operation of this particular random
number generating algorithm is described in some detail in Chap-
ter 11. It is sufficient for now to realize that this function generates
random numbers between the values specified for RLOW and
RHIGH.

Just for the sake of demonstrating the use of this custom-made
random function, try the program in Example 10-7. It simply prints
out a list of random numbers between 1 and 9, but you can alter the
range by changing the values RLOW and RHIGH) carried to the
function as values.

Example 10-7

(* RANDOM LIST *)
VAR LINE, N:INTEGER;
FUNC RND@RLOW, RHIGH);
VAR M,P:INTEGER;
BEGIN
REPEAT
M:=N*3125;
IF M ¢ THEN M:=ABS(M);
N:=M;P:=M;
P:=P MOD RLOW
UNTIL (P = RLOW) AND (P =RHIGH);
RND:=P
END;
BEGIN
WRITE@8, 31, ‘ENTER A SEED NUMBER BETWEEN 999

148



AND 9999', 13);

READ(N#);
WRITE 28, 31);
FOR LINE:=1 TO 1¢ DO

WRITE®RND(1,9), 13)
END.

By calling function RND (1, 9) in the WRITE statement, the
values of RLOW and RHIGH are preset to 1 and 9 respectively.

The function responds by returning random numbers between
those two extremes.

TINY PASCAL'S ONE-DIMENSIONAL ARRAY

Tiny Pascal allows one-dimensional arrays, and they are
applied just as they are in BASIC. Like procedures, variables,
constants and functions must be declared as defined before they can
be called from the program, as must the arrays.

Figure 10-4 is the syntax diagram for declaring an array.
Arrays are fairly simple to use in Pascal, but the syntax for declar-
ing them is rather cumbersome. Here is the general form.

VAR identifier: ARRAY (constant) OF INTEGER;

Constant is an integer representing the largest subscript in the
array and identifier is the name of the array you want to assign.

By way of a specific example, suppose you want to create an
array called BUGGER and allow subscripts 0 through 9. The array
declaration line then looks like this:

VAR BUGGER: ARRAY(9) OF INTEGER;

In other parts of the program, then, you have access to
BUGGER(®@®), BUGGER(1), BUGGER(2). .. BUGGER(9). All are
variables you can use at will.

Example 10-8 is a simple program intended to demonstrate
some of the features fo Tiny Pascal’s array.

Example 10-8

(* ARRAY DEMO %)

VAR NUM:INTEGER;

VAR MULTI:ARRAY(9) OF INTEGER;

BEGIN

WRITE @8, 31);

FOR NUM:=0 TO 9 DO
MULT(NUM):=10*NUM,;

FOR NUM:=¢ TO 9 DO

149




"AvHHY ue Buueoap Joj weibelp yejuAs ‘p-01 Bi4

OO

@

AINVLISNOO

H3I41LN3Al

150



WRITEMULTINUM)#, 13);
END.

Upon running this program, you will see a simple listing of
numbers 0 through 90 in increments of 10. The how of the matter is
far more important that the what in this case.

Example 10-8 defines a 10-element array (subscripts 0
through 9) as MULT. That takes place in the array declaration line,
VAR MULT:ARRAY(9) OF INTEGER.

After that, the mainline part of the program uses variable
NUM and a FOR. . .TO statement to set the values of the array
elements to 10 times the value of NUM. That’s the statement, FOR
NUM:=0¢ TO 9 DO MULT(NUM):=1¢*NUM. As a result of this
operation, the elements of the array take on this form:

MULT@)=0

MULT1)=1¢
MULT@2)=2¢
MULT@)=3¢
MULT@)=40
MULT(5)=5¢
MULT 6)=60
MULT(7)=7¢
MULT 8)=8¢
MULT(9)=90¢

Finally, the mainline program asks the system to write out the
contents of the array, one element at a time. As NUM is again
incremented from ¢ through 9 by a second FOR. . .TO operation,
the contents of the array is written out on the screen.

Even though Tiny Pascal is limited to 1-dimensional arrays, it
is possible to use a number of different arrays. The only limitation
on the number of arrays and number of elements in each array is the
size of your memory. Declaring an array, you see, sets aside a
portion of working memory for the array data. The more array
elements you declare, the less memory you have available for the
program.

The fact that it is possible to use any number of 1-dimensional
arrays brings up the possiblity of synthesizing multi-dimensional
arrays. You can, in other words, “fake” the behavior of multi-
dimensional arrays by a clever application of two or more
1-dimensional arrays. That technique, however, is beyond the
scope of this book. Watch for articles on the subject in some of the
more popular personal computing magazines.

151




Chapter 11
Games of Chance

It is virtually impossible to put together a single book that de-
scribes all possible Pascal programming situations and techniques.
Even Tiny Pascal is so rich in possibilities that general discussions
of programming techniques would turn out to be just about endless
and, worst of all, rather dull.

There is, however, a way to keep things brief and yet mean-
ingful and exciting. This chapter marks the beginning of such a
phase of your Pascal learning experience.

WORK THROUGH ALL PROGRAMS

Instead of dealing with general programming ideas, the pro-
cedure through the remainder of this book is to show you a particu-
lar Tiny Pascal program (usually a game), describe how it runs
from an operator’s point of view, and then analyze the program,
itself, to see how it works.

It is absolutely essential you work with every one of these
programs, whether you happen to be interested in playing the
games or not. The reason it is important to work withall the games

is that each one includes at least one important Pascal program-

t one important Pascal program
ming principle which you might not encounter anywhere else in the
book.

The first game presented in this chapter, for instance, is a
rather simple heads/tails coin toss game. You might not have a
whole lot of interest in playing such a game on your computer, but

152



you should work with it anyhow. Why? It introduces two notions
you might find important later in this book and in your future
experiences with the Pascal language.

You should work through the -programs in the order you find
them here. The reasoning is straightforward. The explanation of
how one particular program works might be based upon things you
should have learned from an earlier program.

In short, you ought to prepare yourself to work all the prog-
rams remaining in this book, and work them in the order they are
presented. Study each one carefully, but have some fun with them,
too.

If you study the programs conscientiously, and refer back to
the technical discussions in the first 10 chapters as necessary, I can
promise you will soon be a competent Pascal programmer.

COIN TOSS GAME

The COIN TOSS game presented here is a computerized
version of the old heads/tails game. See Fig. 11-1 for the flow
chart. The program gives you a chance to call HEADS or TAILS. It
then “flips” the coin for you and tells you whether or not there is a
match. You have a 50/50 chance of being right; and if you call it
right, you win. If you don'’t call it right, you lose.

That’s a simple idea. Here is how it works on the screen. Upon
running the program, you will see this:

COIN TOSS
CALL IT —HEADS OR TAILS

You should respond by striking either the H key (for selecting
HEADS) or the T key (for calling TAILS. You don’t have to do an
ENTER because, as you will see in the analysis of the program, the
system is using an INKEY function to pick up your call.

Suppose, for the sake of this discussion, you call HEADS and
lose. The actual toss turns up TAILS. In such a situation, the
display on the screen looks like this:

COIN TOSS

CALL IT—HEADS OR TAILS

YOUR CHOICE WAS HEADS THE TOSS IS TAILS
SORRY . .. YOU LOSE

ENTER TO DO AGAIN? _

163




ENTER

P

DECLARE
VARIABLES

<

‘DO AGAIN'
MESSAGE

HEADING

‘CALL IT’

FLIP =
FLIP* —1

Y
SET VALUE

CHOICE
MESSAGE

TOSS
MESSAGE

___

'YOU LOSE’
MESSAGE

FLASH
‘YOU WIN'

|

Fig. 11-1. Flow chart for COIN TOSS program.

154




To play again, all you have to do is strike the ENTER key.
That action brings up the original CALL IT message, and you're in
business again.

Whenever you manage to call the toss right, the SORRY . . .
YOU LOSE message is replaced by YOU MATCHED IT{! One of
the aame’s nragramming featuree i that the winning message
flashed on and off five times.

The game continues until you strike the BREAK key twice in
succession. Then you can rerun the program, dump it onto tape or
do whatever else you want with it.

Program
Here is the COIN TOSS program:

(* COIN TOSS *)
VAR FLIP,VALUE,LINE,SPACE: INTEGER;
BEGIN
REPEAT
WRITE(28,31,220,'COIN TOSS');
WRITE(13,13,"'CALL IT -- HEADS OR TAILS',13,13);
FLIP:==1;
REPEAT
FLIP:=FLIP*(~1);
VALUE;=INKEY
UNTIL (VALUE=72) OR (VALUE=84);
WRITE(200, 'YOUR CHOICE WAS ');
IF VALUE=72 THEN WRITE('HEADS')
ELSE IF VALUE=84 THEN WRITE('TAILS');
WRITE(200,'THE TOSS 1S ');:
IF FLIP=1 THEN WRITE('HEADS')
ELSE IF FLIP=~1 THEN WRITE('TAILS'):
WRITE(13,13);
IF ((FLIP=1) AND (VALUE=72)) OR ((FLIP=-1)
AND (VALUE=84)) THEN
BEGIN
SPACE:=0;
REPEAT
WRITE(215,'YOU MATHCED IT!!');
FOR LINE:=0 1O 250 DO;
WRITE(29,30);
FOR LINE:=0 TO 100 DO;
SPACE:=SPACE+1
UNTIL SPACE>S5;
END
ELSE WRITE('SORRY ... YOU LOSE!);
FUR LINE:=L 90 6 DO WRITE(13);
WRITE('ENTER TO DO AGAIN');
READ (SPACE#)
UNTIL LINE<>LINE
END.

Variables
The variable declaration line specifies four variables: FLIP,
VALUE, LINE and SPACE. FLIP is assigned to the coinitself. The

155



program “flips” the coin for you, and the result is saved as variable
FLIP. You will find that FLIP is equal to either 1 or —1, 1 repre-
senting a HEADS flip and —1 representing TAILS. One of the
important Pascal “tricks” introduced in this program is the way
FLIP varies between integers 1 and — 1 in a quasi-random fashion.
More about that shortly.

Variable VALUE is assigned to the HEADS or TAILS desig-
nation you “call.” You can see from the program that VALUE is
read from the keyboard as either 72 or 84, the ASCII codes for H
and T respectively. So if you select HEADS by striking the H key,
VALUE takes on a value of 72. Striking the T key to call TAILS
gives VALUE a value of 84.

Variables LINE and SPACE are used in a couple of different
ways. As its name implies, LINE is used for setting up the vertical
position of some of the text on the screen. It is also used for timing
the flashing YOU MATCHED IT!! message and building an endless
game playing loop. Variable SPACE is used to set the duration of
the flashing MATCHED message and serve as a dummy variable
for repeating the game when the player strikes the ENTER key.

Causing some variables in a program to serve more than one
purpose does little more than reduce the number of variables
required for doing the program. Such a trick is bound to cause some
confusion for the unwary student, however. The “trick” of using
multiple-purpose variables is used here, and indeed through the
rest of this book, in order to get you out of the “unwary student”
class as effectively as possible. The program’s major BEGIN . . .
END block starts directly after the variable declaration line, and
concludes with END. on the last line.

Structure
Ina structural sense, the program is just one big REPEAT . ..

UNTIL loop. The REPEAT part of the statement appears on the
line following BEGIN, and concludes with UNTIL LINE LINE in
the next to last line of the program. Since it is logically impossible
to satisfy the LINE LINE condition, it follows that the program will
loop indefinitely. In other words, you can do as many coin tosses as
you want.

The first two WRITE statements in the program set up the
CLIN TOSS heading and the CALL IT, HEADS OR TAILS mes-
sage. Directly after that, variable FLIP is initialized at —1. The
coin is always tossed with TAILS showing initially.

After the FLIP: =—1 assignment statement comes a brief
REPEAT ... UNTIL statement. Within that repetitive statement

156



you find an assignment FLIP:=FLIP*~ 1. Since the value of FLIP
is initially set to — 1, it figures that FLIP alternates between 1 and
—1 each time this repetitive loop is executed.

How many “flips” of this sort take place? The VALUE:=IN-
KEY statement has a lot to do with the answer to that question.
Until the operator depresses one of the keys on the keyboard,
INKEY (and, hence, VALUE) will be equal to 0. But VALUE will
take on a different value the instant the operator strikes a key.

If that key happens to be an H or T, VALUE will be set to
either 72 or 84, the ASCII codes for H and T. Under either of those
conditions, the UNTIL condition is satisfied and the repetitive loop
is broken. The important thing is that FLIP takes ona 1 or —1
value, depending upon whether the loop is executed an odd or even
number of times.

The loop is executed so rapidly that the player has no way of
reckoning whether the loop will be ending with a 1 or — 1 assigned
to FLIP. For all practical purposes, the scheme makes upa 1 or -1
random number generator.

Upon leaving the REPEAT . . . UNTIL loop that follows the
FLIP:=-1 statement, the operational part of the game is over.
FLIP has a value indicating what the coin is showing, and VALUE
carries the player’s call. The rest of the program is devoted to
testing for a MATCH and printing out the appropriate messages.

A good MATCH is detected by the compound logic statement:
IF ((FLIP=1) AND (VALUE=72)) OR ((FLIP=-1) AND
(VALUE=84)) THEN. The first part of the statement detects
successful HEADS matches while the second part detects success-
ful TAILS matches. If either case is satisfied, the player wins and
the system goes through a short routine that flashes the YOU
MATCHED IT!! message.

If the logic statement is not satisfied, there is a mismatch
between FLIP and VALUE. The system executes the ELSE part of
the statement, writing the message SORRY . . . YOU LOSE.
Whether the player calls a MATCH or not, the program does a
series of six WRITE(13) statements to carry the cursor near the
bottom of the screen where it prints the invitation to play the game
again.

Message Flashing Technique

The message flashing technique calls for further explanation
here. That particular operation is initialized with the assignment

statement, SPACE:=0, and then it is built around a sequence of
REPEAT . . . UNTIL statements.

1657




WRITE (215, 'YOU MATCHED IT!!) situates that particular
message near the horizontal center of the screen. The tab 215 part
of the statement takes care of that positioning operation. FOR
LINE:=0 TO 250 DO; actually does nothing while variable line is
incremented to 250. It is a timing operation that lasts about % of a
second.

The next statement WRITE (29, 30) is a command operation
that returns the cursor to the beginning of the current line— the one
carrying the YOU MATCHED IT!! message—and then clears it. In
other words, that particular WRITE statement erases the YOU
MATCHED IT!! message, but nothing else on the screen is af-
fected.

After that you find another time delay operation built around
FOR LINE:=0 TO 10@;. This is a 1/10 of a second time delay.

Putting together these operations, the system writes the
YOU MATCHED IT!! messages and displays it for about % of a
second. Then it erases the message for about 1/10 of a second.
Since these operations are enclosed within a REPEAT loop, the
timing operations are executed until variable SPACE is in-
cremented beyond a value of 5.

SPACE is initialized at 0, and then increments (by
SPACE:=SPACE+1) each time the message timing operations
are performed. The overall effect is that YOU MATCHED IT!!
flashes on and off five times.

Play the COIN TOSS game a few times, run through the
program to make sure you see how it works, and then see if you can
justify all the syntax. If you can manage that, you are really getting
somewhere with this business of understanding Pascal program-
ming.

Now the important thing about the COIN TOSS program is not
the game itself. Sure, it’s fun to play, but the essential thing is the
programming features it demonstrates. As shown in the next game
program, these same principles can be applied to generate what
appears to be an entirely different game.

RUSSIAN ROULETTE GAME

Russian roulette is a nasty little life-or-death game that can be
played in a harmless fashion on your personal computer. You have a
six-round revolver, and insert one live round into a chamber of your
choosing. Give the cylinder a spin and pull the trigger. If you “win,”
you hear just a clicking sound and you live to try a stupid thing like

158



that again some other day. If you lose, you might hear a loud
BANG!! Whether or not you actually hear the sound is purely
academic. You're dead in any case.

Your chances of coming out alive are 5 out of 6. It figures,
then, that your chances of losing are 1 out of 6. The program is flow
charted in Fig. 11-2.

Upon running the program, you get some messages on the
screen that look something like this:

RUSSIAN ROULETTE

WHICH CHAMBER WILL HAVE THE LIVE ROUND?

(ENTER A NUMBER BETWEEN 1 AND 6)
?

Do that; ENTER a number between 1 and 6. If you goof up and
try entering a number outside that range, the system politely
requests you to do it again.

After entering a number between 1 and 6, you see this sort of
message on the screen:

**FIRST PLAYER**

ENTER TO PULL THE TRIGGER . ..

It takes at least two people to make Russian Roulette exciting.
This message asks the first of two players to do their thing and pull
the trigger.

Suppose you started the game by inserting the live round into
chamber 4. If the first player doesn’t happen to pull the trigger at
chamber 4, he or she lives. Upon doing the ENTER TO PULL THE
TRIGGER, the screen shows this:

CLICK!! YOU'RE SAFE. ..

THAT WAS CHAMBER 2

That informative little message appears for about 2.5 sec-
onds. Then the screen clears and the second player is invited to
pull the trigger. Actually the cylinder is spun again, too, so the next
chamber isn’t necessarily the one that comes up next.

The screen shows:

**SECOND PLAYER**

ENTER TO PULL THE TRIGGER . .. _

159



And the second player is supposed to do an ENTER. The odds are
still 5 out of 6 in favor of the player, but suppose he or she loses. In
that case you see:

BANG!!

YOU'RE DEAD
The game is over. The message, ENTER R TO PLAY AGAIN,
appears near the lower left-hand corner of the screen. If you elect
to play again, the program starts from the beginning, requesting a
chamber number and so on.

Program

From a programming point of view, one of the more interest-
ing features is the way in which the play alternates between two
players until one of them loses. That part of the program is a
repetitive loop. It ends only when one of the players happens to
turn up a random number that matches the one entered from the
keyboard at the beginning of the game. Unlike the COIN TOSS
game, this one is not automatically repeated from beginning to end.
Telling the operator to ENTER R TO PLAY AGAIN is justa tricky
way to say the whole program should be run from the start.

(* RUSSIAN ROULETTE *)
VAR LINE,ROUND,FIRE,PLAY:INTEGER;
BEGIN
WRITE(28,31,215, '"RUSSIAN ROULETTE') ;
FOR LINE:=1 TO 8 DO WRITE(13);
REPEAT
WRITE('WHICH CHAMBER WILL HAVE THE LIVE ROUND?',13);
WRITE(' (ENTER A NUMBER BETWEEN 1 AND 6)',13)
READ (ROUND#)
UNTIL (ROUND>=1) AND (ROUND<=6) ;
PLAY:=1;
REPEAT
WRITE(28,31,215);
CASE PLAY OF
1:WRITE('** FIRST PLAYER *k1) .,
-1:WRITE('** SECOND PLAYER *% 1)
END;
WRITE(13,13,'ENTER TO PULL THE TRIGGER...');
FIRE:=1;
WHILE INKEY<>13 DO
BEGIN
FIRE:=FIRE+]1;
IF FIRE>6 THEN FIRE:=1
END;
IF FIRE<>ROUND THEN
BEGIN
FOR LINE:=1 TO 8 DO WRITE(13);
WRITE(220,'CLICK!! YOU',39,'RE SAFE...,');
WRITE(13,13,'THAT WAS CHAMBER ' FIRE#);

.
r

160



DECLARE
VARIABLES

HEADING

WHICH
CHAMBER?

‘CLICK
MESSAGES

l

PLAY: =
PLAY" -1

—

‘SECOND FLASH
PLAYER' [ ‘FIRST PLAYER ‘BANGII

I [ MESSAGE

‘PULL TRIGGER'

"AGAIN'
FIRE: =1 MESSAGE

Fig. 11-2. Flow chart for RUSSIAN ROULETTE program.

161




FOR LINE:=0 TO 2500 DO
END;
PLAY:=PLAY* (-1);
UNTIL FIRE=ROUND;
FOR LINE:=1 TO 4 DO WRITE(13);
WRITE(210,'BANG!!',13,13);
FIRE:=0;
REPEAT
WRITE(220,'YOU',39,'RE DEAD');
FOR LINE:=0 TO 1006 DO;
WRITE(29,30);
FOR LINE:=0 TO 50 DO;
FIRE:=FIRE+1l
UNTIL FIRE>10;
WRITE(13,13,'ENTER R TO PLAY AGAIN')
END.

Variables

The variable declaration line specifies variables LINE,
ROUND, FIRE and PLAY. ROUND is used exclusively for carry-
ing the value of the chamber that has a live round in it. That value is
read from the keyboard at the statement, READ (ROUND#), and it
carries that value until one of the players gets a BANG!! and the
game is started again from scratch.

Variable PLAY is used only for designating FIRST PLAYER
or SECOND PLAYER. It does its job by employing the multiply-
by-minus one trick introduced in the COIN TOSS game. PLAY is
initially assigned a value of 1 to indicate it’s up to FIRST PLAYER
to pull the trigger. After the playing sequence for the first player is
done (assuming he or she gets a CLICK!!), you can find a
PLAY:=PLAY*(~ 1)statement. That changes the value of PLAY to
~1, indicating a playing phase for SECOND PLAYER.

PLAY thus alternates between values of 1 and — 1 until some-
one gets a BANG!! That's how the system alternates between
cycles for two different players.

You've seen that same programming trick used for a different
purpose in the COIN TOSS game. Now that you have seen it used
twice, there should be no need to explain it in such detail whenever
it is applied in any of the games to follow.

Variables FIRE and LINE are both used for a couple of diffe-
rent purposes. One of the most critical applications of FIRE is to
pick a quasi-random number between 1 and 6, a number represent-

ing the chamber thatis in place when a player pulls the trigger. The

player gets a BANG!! whenever it turns out that FIRE is equal to
ROUND. If a player gets a CLICK!!, it means FIRE is not equal to

ROUND.
Every time a player pulls the trigger, the program generates a

randomly selected value for FIRE. After a player gets a BANG!!,

162



however, there is no need to save the current value of FIRE. It is
used for an entirely different purpose, to time the interval that the
flashing BANG! message appears on the screen.

Variable LINE is used for both setting the vertical position of
some messages on the screen and timing the durations of the on and
off phases of the flashing BANG!! message. So much for defining
the purposes of the variables.

Structure

Now look at the first REPEAT . . . UNTIL loop, which invites
the player to enter a number between 1 and 6. The purpose of this
loop is to make certain that variable ROUND does indeed get a
value between 1 and 6 inclusively. It is a goof-proofing loop that can
repeat its request until you enter the right sort of number. The
game cannot proceed until you enter a value for ROUND that is
both equal to or greater than 1 and, at the same time, less then or
equal to 6. Those conditions are spelled out in the UNTIL portion

of that first REPEAT . . . UNTIL statement.
You have already seen how the value of PLAY alternates

between -1 and 1, depending upon which player is supposed to pull
the trigger next. The next important idea is to see how these two
numbers are translated into text that is more meaningful to the
players. The job in this instance is done with a CASE...OF state-
ment. Specifically, it’s done with a CASE PLAY OF statement.
According to that statement in the program, the system prints
** FIRST PLAYER ** whenever PLAY is set at 1, and writes **
SECOND PLAYER ** whenever PLAY is equal to — 1. Tiny Pascal
cannot handle complex strings as variables, so it is necessary to do
this sort of translation between integer values and string writing
operations. Standard Pascal can handle strings as variables, but

Tiny Pascal cannot.
The moment a player is invited to pull the trigger, the prog-

ram goes into a cyclic counting loop that very rapidly cycles
between 1 and 6, assigning the values to FIRE as it goes along.
This loop is controlled by the statement, WHILE INKEY<>13
DO, and the counting operations are those encompassed by that
repetitive statement.

To put it bluntly, FIRE counts like a bat between 1 and 6 until
the player strikes the ENTER key and INKEY is indeed set to 13 as
aresult. Look at the control codes in the Appendix, and you will see
that line feed/carriage return—doing ENTER —is code 13. There
is no way that a player can interrupt the counting cycle at some

desired number. So, in effect, the loop is a tricky way to come up
with a random number between 1 and 6.

163



The statement, IF FIRE<>ROUND THEN, begins a com-
parison operation. If FIRE does not equal ROUND, the system
prints the CLICK!! message, informs the player which FIRE value
was “randomly” selected, and flips the value of PLAY. When it
turns out that FIRE=ROUND, the whole CLICK!! routine is
bypassed and operations pick up at the line, FOR LINE:=1 TO 4
DO WRITE(13). The REPEAT...UNTIL statement following that
line holds a number of statements that flash the BANG!! and write
out YOU'RE DEAD.

See if you can figure out for yourself how the program can
write the apostrophe in the contraction, YOU'RE. Remember, you
cannot simply insert an apostrophe character into a string state-
ment without the system thinking it is the end of the string.

NUMERIC DICE ROLL GAME

Rolling dice is generally something better done with real dice
than by means of a computer simulation. The programming in-
volved in simulating dice rolls includes some procedures that can
be quite useful in other kinds of situations, so you will find two
different kinds of dice rolling simulation programs presented here.
See Fig. 11-3 for the flow chart.

The dice rolling game demonstrated in this section allows the
user to select the number of dice tobe rolled. Itis possible to select
a single dice or a thousand of them. While the latter might be far
beyond the realm of practical necessity, the game nevertheless
illustrates the operation of a nice pseudo-random number
generator.

When this program is first run, the player sees these mes-
sages:

NUMERIC DICE GAME

HOW MANY DICE? _

Respond by entering any number you want. For the sake of
this discussion, choose a common number of dice, say, two of
them. Remember the game runs exactly the same way, no matter
how many dice you specify at this point.

After entering the number of dice, the ENTER TO START
message appears on the screen. Responding by striking the
ENTER key, you get something like this:

1,3

ENTER TO ROLL AGAIN
STRIKE SPACE BAR TO END __

164



The 1,3 combination represents the dice values “thrown” by
the first roll. At that point, the player has the option of rolling the
dice again by striking the ENTER key or ending the whole thing by
striking the space bar.

Striking the ENTER key at this point simply brings up another
set of values for the two dice and reprints the messages just
described. The dice can be rolled any number of times by simply
striking the ENTER key.

The only way to change the number of dice being rolled is to
respond to the messages by striking the space bar. That terminates
the program. It canthenbe run again, andthe HOW MANY DICE? _
inquiry will appear. Maybe you ENTER a 5 this time. The system
will then print the values for five dice every time you strike the
ENTER key. The display might look something like this:

2,5,4,4,3
ENTER TO ROLL AGAIN

STRIKE SPACE BAR TO END —
Program

This program is fun to run for a short while. Since it has no
scorekeeping features, though, it can get tiresome. The real meat
of the thing is in the programming itself.

(* NUMERIC DICE ROLL *)
VAR DINO,SEED,M,N,P,NUM:INTEGER;
BEGIN
(* HEADING *)
WRITE (28,311,215, 'NUMERIC DICE ROLL');
WRITE(13,13,'HOW MANY DICE');
READ (DINO#) ;
WRITE(13,13,'ENTER TO START'):;
(* SYSTEM PICKS SEED NUMBER *)
WHILE INKEY<>13 DO
BEGIN
SEED:=SEED+1;
IF (SEED<99) OR (SEED>999) THEN SEED:=99;
END;
N:=SEED;
(* RUN DICE SELECT *)
REPEAT
WRITE(28,31);
NUM:=1;
REPEAT
REPEAT
M:=N*125;
IF M<O0 THEN M:=ABS(M);
N:=M;P:=M;
P:=P MOD 7+1

165



(4%

WON

(ON/Q) 301Q
40 438ANN
"3iIN3

|

ONIAVIH

]

S3NGVIHVA
JHY103d

166



‘wesBoid TI0H IOIA DIHIWNN 10} UBYD MOl "E-Li "Bid

@

i

SIOVSSIN
ANOda.

S3OVSSIN
NIVOV. A
N

I+ WNN

= ‘NNN

d J1iEM

91
WOQNVH = -d

L= NN

AN a3sas =N

167



UNTIL P<>7;

WRITE (P#,44) ;

NUM: =NUM+1
UNTIL NUM>DINO;
WRITE(8) ;

(* DICE SELECT/PRINT IS DONE *)

FOR NUM:=1 TO 8 DO WRITE(13);
WRITE('ENTER TO ROLL AGAIN',13,'STRIKE THE SPACE BAR
TO END'); READ (NUM) ;
UNTIL NUM=32;
WRITE(28,31,'NUMERIC DICE ROLL IS DONE');
WRITE(13,'DO A RUN TO START AGAIN')
END.

Variables

The variables declared in this program are DINO,
SEED,M,N,P and NUM. DINO is a variable that carries the
number of dice you want to roll. Its value is set at the
READ(DINO#) statement near the beginning of the program.

NUM serves two different purposes. Its main purpose is to
keep track of the number of die values the machine has actually
selected for you. The system, as you will see shortly, continues
picking random die values and printing them on the screen until
NUM is equal to DINO—until the system picks and prints a
number of figures equal to the number of them vou want to see.

NUM plays a secondary role near the enu of the program. If
the user strikes the space bar in response to the STRIKE THE
SPACE BAR TO END message, the statement, READ(NUM),
sets NUM to 32. That situation breaks a repetitive loop and brings
the program to a close.

There is no direct relationship between the two roles of the
NUM variable. Using it in two different situations simply reduces
the number of variables required for writing the program.

SEED, N,M and P are all used as part of a psuedo-random
number generator. If you haven't noticed by now, you should
realize that Tiny Pascal does not include a handy RANDOM func-
tion as BASIC and other languages do. Give some special attention
to the forthcoming description of how this random generator
works. You will find it appearing in a number of different programs
through the remainder of this book. Wherever it is feasible, the
programs will use the same variable names to remind you that it is
this same sort of generator at work.

Pseudo-Random Number Generator

In theory, there is no such thing as a true random number
generator program. The algorithms used for producing a series of

168



random numbers will always repeat themselves after a while. The
idea is to get the series of numbers as long as possible before that
cycle starts all over again.

There is no point in going into the theory of this sort of
psuedo-random number generator in great detail. It is sufficient to
point out some general ideas that will not only explain how the
algorithm works in these programs, but let you build custom
versions for your own games in the future.

The very heart of the psuedo-random generator begins with
the statement M:=N*125. Variable N is a number selected earlier
in the program, and we will have more to say about its origin later
on. For now, consider it a noncritical integer value between 99 and
999. So that first statement line assigns a value of N time 125 to
variable M.

Where does that 125 come from? As a rule of thumb, that
number has to be an odd power of 5. The power in this case is 3,
5°=125. It could be 3125 (5°) or 3125(5") as well; but 125 is the
smallest and most easily remembered number in that power
series. So the previously selected “mystery” number N is multip-
lied by an odd power of 5.

The result of the multiplication is sometimes a negative
number. It turns out that negative numbers are quite undesirable
here, so the next statement simply makes sure M is positive.
M:=ABS(M) always returns a positive value for M.

Two assignment statements in succession give the value of M
to variables N and P. N is no longer a “mystery” number. Variable
Pisthen, itself, used in the modulus expression: P: =P MOD 7+1.

The overall result is that P turns out to be anumber between 1
and, sometimes, 7. It's usually a number between 1 and 6, exactly
the range for a die. The UNTIL <>7 works in conjunction with the
preceding REPEAT statement to eliminate those 7s that some-
times pop out of the algorithm. If P turns out to be equal to 7, the
whole random number algorithm runs again to get a number within
the range of 1 to 6 inclusively. Incidentally, without adding 1 to the
7 in the modulo statement, the system would come up with 0 now
and then.

What remains to be done is to explain the origin of the variable
N. That number is technically called the SEED for the pseudo-
random number generator. That number determines where the
cycle of numbers begins. It turns out that the randomness of the
numbers is even better if the SEED is, itself, randomly generated.
The value of SEED is selected by one of those INKEY-interrupted,

169




fast-as-a-bat counters featured in the COIN TOSS and RUSSIAN
ROULETTE games.

WHILE INKEY 13, SEED counts like mad between 99 and
999. There’s no telling where that count will be when the operator
strikes the ENTER key to make INKEY equal to control code
number 13. That’s how the system picks up the SEED number for
the pseudo-random number algorithm.

If you want to see this number generator do its work, run the
dice game and specify a 100 dice or so. It will print out 100 numbers
that are pretty well scrambled. See if you can find a repeating
sequence.

To get more technical information about this process, consult
a more academic text for the topic, multiplicative-congruential
method of generating pseudo-random numbers. Or maybe you'd
just like to see that it works for yourself. It's easier to remember
how to do it than to remember what it’s called.

So the dice roll program picks up a SEED number and uses it
as a basis for generating and printing randomly distributed num-
bers between 1 and 6. This sequence loops around until the number
of die values equals the number you want to see.

The remainder of the program is fairly straightforward. The
only thing different from the things done thus far is the option of
rolling again by striking the ENTER key or ending the program by
striking the space bar.

Advantage Of The Algorithm

Before moving to the next dice roll game, consider this ques-
tion. Why use such a complicated number generating process (a
multiplicative-congruential method of generating pseudo-random
numbers) when the simple, INKEY-interrupted fast counter
method works so well in the COIN TOSS and RUSSIAN
ROULETTE games?

The problem here is that the INKEY-interrupted counter
method relies on a random number of milliseconds between the
presentation of a message and the operator striking the ENTER
key. That means the scheme must include one key operation for
each random number required. If you want to roll two dice, using
this INKEY-interrupt method, you'd have tostrike the ENTER key
twice in succession. That can get awkward.

The SEED-and-algorithm technique can be repeated any
number of times based on a single SEED number. In the COIN
TOSS and RUSSIAN ROULETTE games, it was necessary to get
just one randomly generated number for each play. The INKEY-

170



interrupt method works quite nicely. But the dice game calls for
more than one random number; Hence, there is a desirability for
the more complex, but easier to use algorithm.

GRAPHIC DICE ROLL GAME

This program is also a dice roll simulation. Instead of simply
showing some numerals that indicate the value of the rolls,the
actual die patterns appear near the center of the screen. It’s a cute
effect that I have been wanting to do on my TRS-80 for quite some
time. It seemed too much trouble using BASIC, but Tiny Pascal
makes it a lot easier.

The only tradeoff is that this program displays just two dice,
no more and no less. But it’s still fun to watch. See Fig. 11-4.

There are no fancy player controls built into the program. The
graphics part is extensive enough for an elementary Pascal prog-
ram. When you begin running the program, you see a heading near
the center and top of the screen, GRAPHIC DICE ROLL. A couple
of lines below that you see the instruction, ENTER TO START.

Striking the ENTER key at that point, the screen clears and
you can see the outline of two dice emerging near the middle of the
screen. The outline is filled with the distinctive die pattern of 1to 6
dots. Then another message, ENTER TO ROLL AGAIN, appears
on the screen.

You can strike the ENTER key to roll the dice as many times
as you choese. Itis possible to break out of the program and end the
matter by either striking the BREAK key twice in succession or
striking the space bar when the program requests another roll.

As mentioned earlier, this program emphasizes the graphics
angle. You will find that most of the graphics is done by means of
procedures, Pascal’s version of subroutines. For the sake of clari-
ty, the procedures are flow charted separately in Figs. 11-6 and
11-7. The mainline part of the program is flow charted for you in
Fig. 11-5.

NOTE: BLACKS AND WHITE ARE REVERSED

Fig. 11-4. Graphic format for GRAPHIC DICE ROLL GAME.

171



Program

The program is presented here as it is to be entered into your
computer. In order to understand what is going on at any point in
the program, you'll have to consult the appropriate flow chart. If
you start feeling lost, just remember that Pascal works according
to a very well-defined structure. Once you can sort out the struc-
ture, you can see exactly how it all works. First, the program:

(* DRAW DICE GAME *)
VAR D1,D2,DIENO,SEED,M,N,P:INTEGER;
(* DICE OUTLINE DRAWING PROCEDURES *)
PROC HDRAW (DX,DY);
BEGIN
PLOT(DX,DY,1);
PLOT(DX,DY+11,1)
END;
PROC VDRAW(DX,DY);
BEGIN
PLOT(DX,DY,1);
PL.OT(DX+1,DY,1)
END;
PROC DIEDRAW;
VAR DX,DY:INTEGER;
BEGIN
WRITE(28,31);
FOR DX:=34 TO 61 DO HDRAW(DX,18);
FOR DX:=66 TO 92 DO HDRAW(DX,18);
FOR DY:=18 TO 29 DO
BEGIN
VDRAW (34,DY);
VDRAW (60,DY) ;
VDRAW (66 ,DY) ;
VDRAW (92,DY)
END
END;
(* DICE VALUE DRAWING PROCEDURES *)
PROC MIDDOT (DIENO) ;
VAR DY,DX:INTEGER;
BEGIN
FOR DY:=23 TO 24 DO
FOR DX:=47+DIENO TO 48+DIENO DO
PLOT(DX,DY,1)
END;
PROC ULLRDOT (DIENO) ;
VAR DY,DX:INTEGER;
BEGIN
FOR DY:=20 TO 21 DO
FOR DX:=40+DIENO TO 41+DIENOC DO
PLOT(DX,DY,1);
FOR DY:=26 TO 27 DO
FOR DX:=54+DIENO TO 55+DIENO DO
PLOT(DX,DY, 1)
END;
PROC LLURDOT (DIENO) ;
VAR DY,DX:INTEGER;

172



BEGIN
FOR DY:=26 TO 27 DO
FOR DX:=40+DIENTO TO 41+DIENO DO
PLOT(DX,DY,1);
FOR DY:=20 TO 21 DO
FOR DX:=54+DIENO TO 55+DIENO DO
PLOT(DX,DY,1)
END;
PROC LRDOT(DIENO) ;
VAR DY,DX:INTEGER;
BEGIN
FOR DY:=23 TO 24 DO
BEGIN
FOR DX:=40+DIENO TO 41+DIENO DO
PLOT(DX,DY,1);
FOR DX:=54+4+DIENO TO 55+DIENO DO
PLOT(DX,DY,1)
END
END;
PROC VALDRAW (DIENO,VAL);
BEGIN
CASE VAL OF
1:MIDDOT(DIENO) ;
2:ULLRDOT(DIENO) ;
3:BEGIN
MIDDOT(DIENO) ;
ULLRDOT(DIENO)
END;
4 :BEGIN
ULLRDOT (DIENO) ;
LLURDOT (DIENO)
END;
5:BEGIN
MIDDOT (DIENO) ;
ULLRDOT (DIENO) ;
LLURDOT (DIENO)
END;
6 :BEGIN
ULLRDOT (DIENO) ;
LLURDOT (DIENO) ;
LRDOT (DIENO)
END (* OF CASE #6 *)
END (* OF ENTIRE CASE STATEMENT *)
END; (* OF PROCEDURE *)
(* BEGINNING OF MAINLINE PROGRAM *)
BEGIN
WRITE(28,31,'GRAPHIC DICE ROLL');
WRITE(13,13,'ENTER TO START');
(* PICK SEED VALUE *)
WHILE INKEY <> 13 DO
BEGIN
SEED:=SEED+1;
IF (SEED<99) OR (SEED>999) THEN SEED:=99
END;
N:=SEED;
(* PICK RANDOM NUMBERS BETWEEN 1 AND 6 *)
REPEAT
DIENO:=0;

173



WHILE DIENO<=32 DO
BEGIN
REPEAT
M:=N*125;
IF M<0 THEN M:=ABS(M);
N:=M;P:=M;
P:=P MOD 7
UNTIL (P>=1) AND (P<=6);
IF DIENO=0 THEN Dl:=P
ELSE IF DIENO=32 THEN D2:=P;
DIENO:=DIENO+32
END;
DIEDRAW;
VALDRAW (0,D1);
VALDRAW(32,D2);
WRITE('ENTER TO ROLL AGAIN');

READ(D1);
UNTIL D1=32
END.

Mainline Flow Chart

So much for the program itself. Now begin comparing the
program with the flow charts in Figs. 11-5 through 11-7.

The flow chart for the mainline program (Fig. 11-5) ought to
appear somewhat familiar. It is much the same as the program for
NUMERIC DICE ROLL. See Fig. 11-3.

Those two flow charts look much alike because they do much
the same job. They pick random numbers between 1 and 6 for some
dice values.

Running through the mainline flow chart in Fig. 11-5, you can
see that the program first writes out an appropriate heading, and
then gets down to the job of selecting a SEED value for the
pseudo-random number generator. The SEED value is chosen by
letting a SEED counter “buzz” between 99 and 999 until the
operator depresses the ENTER key. Whatever value SEED hap-
pens to have at that moment is then assigned to variable N.

This graphic dice game has only two dice, so DIENO (the dice
counter) is initially set to 0. See the block DIENO: =@ in Fig. 11-5.
Then the program picks a random number between 1 and 6, using
the same technique described in some detail in the previous sec-
tion of this chapter.

After picking a randomly generated number between 1 and 6,
the system wants to know if DIENO is still equal to 0. Well,
DIENO was set to 0 a few steps before, and nothing has happened
to change that fact, not yet, anyway. So DIENO is equal to 0 and, as
a result, variable D1 is set to the value pulled from the random
number generator. D1 represents the value to be printed on the
first die figure.

174



DECLARE
MAINLINE
VARIABLES
[ HEADING l —
CALL VALDRAW
SEED o
SEED: = FIRST DIE
CALL VALDRAW
FOR
SECOND DIE
‘ROLL AGAIN
MESSAGES
ENTER
Y

IDIE NO: =0

PICK RANDOM
NUMBER (P)

[CALL DIEDRAW I

Fig. 11-5. Flow chart for the mainline program of GRAPHIC DICE ROLL.

175



The random number generator has to be used twice in succes-
sion, one time for each die. So after the program picks a value for
D1, DIENO is set to 32. Just why the program uses the number 32
will become apparent when you see how the dots are printed on the
die figures. At any rate, DIENO is now equal to 32, and the
program loops back up to pick a second random number.

Since DIENO is no longer equal to 0 but 32 instead, the
flow chart shows variable D2 being set to P. In other words, the
value of the second die is set to the random number picked during
the second pass through this loop.

At this point, the program has done little more than pick a pair
of random numbers between 1 and 6. Those two values have been
assigned to D1 and D2.

The program then calls a procedure named DIEDRAW. Then
it calls procedure VALDRAW twice in succession, but under
slightly different conditions.

As you will see in a moment, DIEDRAW simply draws the
outlines of the two dice figures on the screen. The VALDRAW
procedure thenfills in those die figures with spots representing the
die patterns for numbers D1 and D2.

DIEDRAW is called just one time. There is no need to draw
the outlines of the die figures more than once. VALDRAW, how-
ever, is called twice—first to draw the spots for die value D1, and
then again to draw the spots for die value D2.

After the program does all those drawing procedures, it ends
up with some of the usual sorts of PLAY AGAIN messages. When
the player decides to play again (by striking the ENTER key), the
program picks up where DIENO is initialized to 0. The program
picks two more random die values, draws the die figures and fills
them with the appropriate spot patterns.

There is really no need to pick a new SEED value for every
roll of the dice. It turns out that a single SEED value, selected only
when the program is first run, is good for hundreds of rolls.

Now that you've worked your way through the mainline flow
chart, it is time to correlate it with the actual Tiny Pascal prog-
ramming. The mainline program might not be easy to find at first.
Recall that the variables for a mainline program must be declared at
the very beginning of the program. After that, all the procedures
must be defined. So the mainline program actually begins at the
first line of the GRAPHIC DICE ROLL program, but then doesn’t
resume until the latter part of the overall program. Just look for the
comment line, BEGINNING OF MAINLINE PROGRAM.

176



After that comment line, you will find things picking up with
the heading and ENTER TO START message. The program then
follows the flow chart in Fig. 11-5 very closely to the end.

DIEDRAW, HDRAW and VDRAW Procedures

The first procedure called from the mainline program is
DIEDRAW. Remember,that is the one that simply draws the
outline of the two dice figures on the screen. That procedure is flow
charted for you in Fig. 11-6.

According to the DIEDRAW flow chart, things begin by dec-
laring the variables used in that particular procedure. Right after
that, the program clears the screen. The screen clearing operation
is important at this stage because it wipes out the die values drawn
on the screen during any previous rolls.

But then DIEDRAW calls another procedure, HDRAW. You
bet. The system is using nested procedures. HDRAW is responsi-
ble for drawing the horizontal components of the die outlines, tops
and bottoms, in other words. You can see the top and bottom
drawing operations specified in the little HDRAW flow chart in
Fig. 11-6A. .

The game uses two dice, so DIEDRAW has to call HDRA
twice in succession, once for the first die and then again for the
second one. When you get a chance to study the actual program-
ming for DIEDRAW and HDRAW, you will see that DIEDRAW
passes variable values DX and DY to HDRAW. Those values
determine where the horizontal lines will be actually drawn.

To complete the die figures, the system has to draw four
vertical lines, one for each of the two sides of the two dice. That is
why you see procedure VDRAW called four times in succession.
VDRAW, flow charted in Fig. 11-6C, simply draws two vertical
lines right beside each other. The system has to draw two adjacent
lines in order to give the vertical lines the same width as the
horizontal ones.

So DIEDRAW calls VDRAW four times, passing variables DX
and DY to tell VDRAW exactly where the lines are to be drawn.
Procedure DIEDRAW and its own procedures, HDRAW and
VDRAW, appear very early in the GRAPHIC DICE ROLL prog-
ram. Just look for the comment line, DICE OUTLINE DRAWING
PROCEDURES. The first procedure you see after that comment
line is HDRAW. After that comes VDRAW, and finally there is
DIEDRAW.

Since DIEDRAW calls procedures HDRAW and VDRAW,
Pascal structure requires that the called procedures be specified

177




CALL DIEDRAW

DECLARE
DIEDRAW
VARIABLES

CLEAR SCREEN

CALL HDRAW
FOR
FIRST DIE

CALL HDRAW
FOR
SECOND DIE

CALL VDRAW

FOR
LEFT SIDE, CALL HDRAW CALL VDRAW
FIRST DIE

[

DRAW TOP DRAW SIDE
CALLF\CI)[;RAW OF DIE A
RIGHT SIDE. [ |
FIRST DIE
[ DRAW WIDEN SIDE
BOTTOM OF DIE
CALL VDRAW OF DIE
FOR I ]
LEFT SIDE ( RETURN TO ) ( RETURN TO )
ND DIE
SECO DIEDRAW DIEDRAW
CALL VDRAW @ G
FOR
RIGHT SIDE,
SECOND DIE

RETURN TO
MAINLINE

Fig. 11-6. Flow charts for GRAPHIC DICE ROLL procedures. (A) DIEDRAW
procedure. (B) HDRAW procedure. (C) VDRAW procedure.

178




before the calling procedure is. Just as you have to declare all
variables before a program that uses them can be run, you must
specify all procedures before any other procedure or program that
calls them. Hence, HDRAW and VDRAW are specified ahead of
DIEDRAW in the program; DIEDRAW is, in turn, specified ahead
of the program that calls it, the mainline program.

To this point in the discussion, you've seen how the mainline
program selects randomly generated values for the dice and then
gets into the graphics end of the matter by drawing the outlines of
the two dice. Now it’s time to see how the dice values are trans-
lated into little patterns of spots within the dice figures.

VALDRAW Procedure

The spot drawing procedure, VALDRAW, is flow charted in
Fig. 11-7. That might appear to be a rather extensive flow chart at
first sight, but it really isn't very difficult to understand.

When VALDRAW is called from the mainline program, it
knows the value of the die being drawn on the screen. Values D1
and D2 are carried to VALDRAW by variable VAL. According to
that flow chart, the value of variable VAL determines which one of
six kinds of operations will take place.

If, for example, VAL is equal to 1, the VAL =1 conditional is
satisfied and the system calls procedure MIDDOT. More proce-
dures within procedures? You bet. And what does procedure
MIDDOT do? Look at the four little squares at the bottom of Fig.
11-7, and you will see what all the subprocedures do. MIDDOT
places a dot in the center of the die figure being drawn at the
moment.

When VAL is equal to 1, then, the system calls MIDDOT.
MIDDOT puts a dot in the center of the appropriate die figure.
That’s what a “1” die value is supposed to look like.

When VAL is equal to 2, the flow chart shows that VALDRAW
calls another procedure named ULLRDOT. According to the fi-
gures at the bottom of Fig. 11-7, ULLRDOT places spots in the
upper-left and lower-right corners of the die figure.

Consider just one more example. Suppose VAL is equal to 3
when the mainline program calls VALDRAW, In that case, condi-
tional VAL =3 is satisfied. VALDRAW calls two different proce-
dures in succession, first MIDDOT and then ULLRDOT. If you put
those two spot drawing operations together in this fashion, you end
up with a die figure having 3 spots running diagonally, from upper
left to lower right. Sure enough, that makes it look like you rolled a
“3” on the die.

179



CALL
VALDRAW

CALL ULLRDOT

I CALL LLURDOT

CALL MIDDOT I

CALL ULLRDOT

l

CALL LLURDOT

CALL ULLRDOT

CALL LLURDOT]

N'y I
CALL LRDOT

! :

RETURN TO
MAINLINE B

MIDDOT ULLRDOT LRDOT

m

=

Fig. 11-7. Flow chartfor VALDRAW procedure, GRAPHIC DICE ROLL GAME.

180



I CALL MIDDOT
CALL ULLRDOT
CALL MIDDOT
CALL ULLRDOT
A
2
]
LLURDOT

181




Work your way through values of 4, 5 and 6 on your own. You
will see that each one calls a combination of spot drawing proce-
dures that work together to paint the appropriate set of spots on the
die figure.

In the GRAPHIC DICE ROLL program, you can find VAL-
DRAW and its 4 nested procedures under the comment line, DICE
VALUE DRAWING PROCEDURES. As dictated by formal Pascal
structure, the “inside” procedures are specified ahead of the pro-
cedure that calls them. So you see MIDDOT, ULLURDOT,
LLURDOT and LRDOT clearly spelled out before you can get
down to the VALDRAW procedure that calls them. So you see
MIDDOT, ULLURDOT, LLURDOT and LRDOT clearly spelled
out before you can get down to the VALDRAW procedure that calls
them. All of them follow the flow chart in Fig. 11-7 quite closely.

So there you have a complete breakdown of the GRAPHIC
DICE ROLL game. There is a lot to be learned about nested
procedures and TRS-80 graphics guised as Tiny Pascal PLOT
graphics. To get the most from this program, you'll have to dig out
a lot of the details on your own.

ROULETTE WHEEL GAME

This game program is not quite as graphic as the dice roll
game presented in the previous section. This one, however, incor-
porates some user control schemes and number-to-string transla-
tions that add to its interest.

Format

The format is that of a roulette wheel game. A sequence of 32
numbers, 0 through 31, flashes in the middle of the screen. The
flashing is rather rapid at first, but then it gradually slows downtoa
stop. The final number is, of course, the winning number.

The numbers are assigned red or black colors. In half the
cases, the even numbers are red and odd numbers are black. In the
other half of the cases the situation is reversed. The odd numbers
are red and the even ones are black. That scheme makes the game
come close to looking like a real roulette wheel.

Actually this game is more like a real game than the others
described thus far in this chapter. Here you are invited to select the
type of bet you want to make, betting on an odd or even winning
number, ared or black winning color, or a combination of odd/even
and red/black. Your odds of winning in the first two kind of bets are
1:2, and the payoff (f you win) is 2:1. In the third case, however,
the odds of winning are just 1:4. Of course, the payoff is 4:1.

182



Upon running this program, you first see this text on the
screen:

** ROULETTE WHEEL BET TYPES **

SELECT ONE BY NUMBER:

1—COLOR (2:1 PAYOFF)
2—ODD/EVEN (:1 PAYOFF)
3—COLOR AND ODD/EVEN (4:1 PAYOFF)

ENTER CHOICE (1, 20R 3) ... ?—

You respond by entering one of those three numbers. Upon
doing so, the screen text changes according to the type of bet you
selected. If you selected bet type 1, the next thing you see is a
request for a color:

COLOR: RED OR BLACK

But if you picked number 2, you see:

ODD OR EVEN

Selecting bet type 3, you get two requests in succession:
COLOR: RED OR BLACK

After_;rou reply to that request you get:
ODD OR EVEN

So you first get a choice of three kinds of bets. Then the
system asks for the appropriate betting details: color, odd/even or
both.

When you have entered your betting detail, the screen clears
and you see your bet rewritten for you at the upper left-hand corner
of the screen. The message ENTER TO SPIN THE WHEEL
appears at the middle of the screen.

Striking the ENTER key then begins the spinning action. You
see the sequence of wheel numbers and their corresponding colors
flashing near the center of the screen. As mentioned earlier in this
section, the numbers and their colors flash by rather rapidly at
first, but then eventually slow down to a halt. The action is simulat-
ing that of a real roulette wheel.

When the “wheel” finally comes to a stop, the program in-
forms you of your level of success or failure. If you have picked a

183




winner, you see one of the following, depending on the type of bet
you originally made.

YOU WIN AT -2:1 PAYOFF!!
or

YOU WIN AT 4:1 PAYOFF!!
In the event you fail to pick a winner (which happens most of
the time as roulette wheels always favor the house), you see:

SORRY . .. YOU LOSE YOUR BET

In any event, the program prints ENTER TO PLAY AGAIN. You
get a chance to select another kind of bet and betting details after
than. Then the whole program repeats itself.

Program

Here is the program, presented exactly as it should be entered
into your system:

(* ROULETTE WHEEL GAME *)
VAR LINE,SPACE,TYPE,PCOLOR,POE,NUM,GCOLOR,GOE,TIME:

INTEGER;

BEGIN
REPEAT (* ENTIRE GAME *)

REPEAT (* BET TYPE SELECTION *)
WRITE(28,31,210,'** ROULETTE WHEEL BET TYPES **'});
WRITE(13,13,'SELECT ONE BY NUMBER:');
WRITE(13,13,200,'l -- COLOR (2:1 PAYOFF)');
WRITE(13,200,'2 -- ODD/EVEN (2:1 PAYOFF)');
WRITE(13,200,'3 -- COLOR AND ODD/EVEN (4:1PAYOFF)'});
FOR LINE:=1 TO 6 DO WRITE(13);

WRITE (*ENTER CHOICE (1,2 OR 3)...'):
READ (TYPE#)

UNTIL (TYPE>=1) AND (TYPE<=3);

WRITE(28,31,210,'** ROULETTE WHEEL BETTING DETAIL
*%1,13,13);

CASE TYPE OF
1 :REPEAT

WRITE('COLOR: RED OR BLACK',13);
READ (PCOLOR)
UNTIL (PCOLOR=82) OR (PCOLOR=66) ;
2 :REPEAT
WRITE('ODD OR EVEN');
READ (POE)
UNTIL (POE=75) OR (POE=G6S);
3 :BEGIN
REPEAT
WRITE('COLOR: RED OR BLACK',13);
READ (PCOLOR)
UNTIL (PCOLOR=82) OR (PCOLOR=66) ;
REPEAT

184



WRITE(13,'0ODD OR EVEN');
READ (POE)
UNTIL (POE=79) OR (POE=69)
END (* OF CASE #3 *)
END; (* OF ENTIRE CASE STATEMENT *)
WRITE(28,31,'YOUR BET IS: "
CASE TYPE OF
1,3:1IF PCOLOR=82 THEN WRITE ('RED')
ELSE IF PCOLOR=66 THEN WRITE ('BLACK');
2: 1IF POE=79 THEN WRITE('ODD')
ELSE IF POE=69 THEN WRITE('EVEN')
END; (* OF CASE STATEMENT *)
IF (TYPE=3) AND (POE=79) THEN WRITE('~-0ODD')
LSE IF (TYPE=3) AND (POE=69) THEN WRITE('~-EVEN'):
FOR LINE:=1 TO 7 DO WRITE(13);
WRITE('ENTER TO SPIN THE WHEEL');
(* SPINNING AND DECODING SEQUENCE *)
WHILE INKEY<>13 DO
BEGIN
NUM:=NUM+1;
IF NUM>31 THEN NUM:=0
END;
TIME:=1000;
REPEAT
WRITE(29,30,220,NUM#) ;
IF ((NUM>=0) AND (NUM<=7)) OR( (NUM>=16)AND (NUM<=23))
THEN LINE:=1
ELSE LINE:=2;
CASE LINE OF
1:IF NUM MOD 2=0 THEN
BEGIN
GCOLOR:=82;
WRITE('--~RED');
GOE:=69
END
ELSE
BEGIN
GCOLOR:=66;
WRITE('--BLACK');
GOE:=79
END;
2:IF NUM MOD 2=0 THEN
BEGIN
GCOLOR:=66;
WRITE('--BLACK');
GOE:=69
END
ELSE
BEGIN
GCOLOR:=82;
WRITE('--RED');
GOE:=79
END (* OF CASE #2 *)
END; (* OF ENTIRE CASE STATEMENT *)
FOR SPACE:=TIME TO 1000 DO;
TIME:=TIME-10;
NUM: =NUM+1;
IF NUM>31 THEN NUM:=0

185




UNTIL TIME=400;
FOR LINE:=1 TO 4 DO WRITE(13);
(* SHOW RESULTS SEQUENCE *)
CASE TYPE OF
1:IF PCOLOR=GCOLOR THEN
WRITE('YOU WIN AT 2:1 PAYOFF!1')
ELSE WRITE('SORRY ... YOU LOSE YOUR BET');
2:IF POE=GOE THEN
WRITE('YOU WIN AT 2:1 PAYOFF!!')
ELSE WRITE('SORRY ... YOU LOSE YOUR BET');
3:IF (PCOLOR=GCOLOR) AND (POE=GOE) THEN
WRITE('YOU WIN AT 4:1 PAYOFF!!')
ELSE WRITE('SORRY ... YOU LOSE YOUR BET')
END; (* OF CASE ¥*)
WRITE(13,220,'ENTER TO PLAY AGAIN');
READ (SPACE) ;
UNTIL SPACE<>SPACE
END.

Disadvantages

The flow charts for this ROULETTE WHEEL GAME prog-
ram occupy Figs. 11-8 through 11-11. The analysis is somewhat
simplified by the fact that this program contains no formal proce-
dures. At the same time, it is made to appear rather complicated
because of the need to translate between numerical and string
expressions a number of different times. Sigh! I wish Tiny Pascal
could handle extended string variables.

While on the subject of Tiny Pascal’s few shortcomings, this
program very clearly shows the disadvantages of not being able to
carry variable values from a procedure to a mainline program. As a
result of this little problem, you will see some operations repeated
several times throughout the listing. Double sigh!

Don'’t feel too badly about your Tiny Pascal, though. It just so
happens that this particular program brings together the disadvan-
taged under one heading. That, of course, tends to make things
seem worse than they really are. So much for the bad stuff. It
should be pointed out, but not dwelled upon.

Detail Phase Flow Chart

Figure 11-8is a flow chart of the opening part of the program.
You can see that it first calls for declaring the variables. Directly
after than it writes out the BET TYPE listing iliusiraied eariier.
The system expects a value for variable TYPE at that point, and
that should be a number 1, 2 or 3 from the keyboard. Recall that
entering a 1 at this point sets up the betting on color, 2 sets up
things for betting on an odd/even win, and 3 establishes a bet that
combines color and odd/even.

186



DECLARE
VARIABLES

WRITE
TYPE OF BET
TEXT

WRITE
COLOR REQUEST
READ
COLOR (PCOLOR)

1
WRITE WRITE COLOR
ODD/EVEN REQ. REQUEST
READ READ COLOR
OFE (POE) {PCOLOR)
VALID VALID
vy Yy

Fig. 11-8. Flow chart for detail phase of the ROULETTE WHEEL program.

187



The value of the TYPE variable is thus very important through
the remainder of the program. Since it is so very important, the
program includes a goof-proofing step, the VALID conditional. If it
so happens TYPE is not VALID (because the player responded
with a value other than 1, 2 or 3), the system repeats the TYPE OF
BET listing and waits for another reply from the keyboard.

Upon getting a VALID value for TYPE, the program then
requests the appropriate kind of detail. Specifically, it looks for an
input expressing the player’s desire to bet red or black, odd or
even, or a combination of color and odd/even, all depending on the

bet TYPE selected earlier.
After the flow chart block, ‘DETAIL' HEADING, you see a

series of three TYPE conditionals. If TYPE= 1, the system re-
quests a color from the player. The color must be read as either red
or black. If the player happens to enter something other than one of
those two colors, the input is considered invalid. The VALID
conditional then returns to repeat the request and give the player
an opportunity to do the job right.

While the system does indeed request a color, it actually
responds to the first letter of whatever color you try to type on the
keyboard. If you attempt to respond by typing RED, for instance,
you will see the system responding the moment you strike the R
key. The two remaining letters in that word are not relevant at all.
Typing R then assigns the number 82 to variable PCOLOR. Deci-
mal 82 is the ASCII code for the letter R, and PCOLOR (Player
COLOR) will carry that value throughout the program.

If you want to respond to the TYPE=1 request by entering
BLACK, the system will assign the number 66 to variable
PCOLOR. That 66, as you might imagine by now, is the ASCII code
for the letter B.

Soif you first select a TYPE 1 bet, the TYPE =1 conditional in
Fig. 11-8 is satisfied. After you respond to the request for a color,
this part of the program is concluded with PCOLOR equal to 82 or
66, depending on whether you selected red or black.

The other two TYPE conditionals work much the same way.
Whenever TYPE=2 is satisfied, the system requests an EVEN or
ODD entry. Your response, assuming it is valid, is carried as a
value for variable POE (Player Odd or Even). The values thus
assigned to POE are either 69 or 79, ASCII codes for letters E and
O respectively. Satisfying the TYPE=3 conditional brings up the
color and odd/even requests in succession.

By the time the system gets to the end of the flow chart in Fig.
11-8, variable TYPE is carrying a number representing the type of

188



0

YOUR BET
IS
MESSAGE

WRITE
‘RED

WRITE
‘0D0D

WRITE
—ODD

Fig. 11-9. Flow chart for bet message phase of the ROULETTE WHEEL

program.

189




bet you've made. Variable PCOLOR is carrying a color code you've
selected, and variable POE carries your odd/even selection. That
concludes the opening part of the program.

Referring back to the program, the flow chart in Fig. 8-11
covers the lines from the beginning and down to the line carrying
the comment, OF ENTIRE CASE. See if you can see a correspon-
dence between the blocks on the flow chart and the lines of Pascal
programming.

Betting Details Flow Chart

In the excitement of watching the roulette wheel spin, players
sometimes forget the exact details of their bet. The flow chart in
Fig. 11-9represents a portion of the program that reconstructs and
writes out the betting details near the top of the screen. Those
details remain there through the remainder of the program.

“Reconstructs” is an important word here. In the opening
phase of the program, the player’s inputs were translated into
ASCII numbers. That was necessary because Tiny Pascal cannot
work with string expressions, just integers. In this second phase of
the program, you want to see string expressions, plain English
words, on the screen. That means it is necessary to translate from
integer values to strings again.

The process begins by writing, YOU BET IS, and then it ends
up “filling in the blank” with a verbal description of your bet. Here’s
how it does the job.

The messages depends on which TYPE of bet you've made. If
you made bet type 1 or 3, the conditional, TYPE=1 OR 3, is
satisfied. The system then checks the color you entered. That
color, you recall, is carried as an ASCII number by variable
PCOLOR. If PCOLOR happens to be equal to 82 (letter R), the
system “fills in the blank” by writing out RED. The full message at
the top of the screen would then be YOUR BET IS RED. If you are
betting on black, PCOLOR=82 is not satisfied but PCOLOR=66is
satisfied. The system then completes the sentence by printing out
BLACK instead of RED.

Satisfying the TYPE=2 conditional calls up the same sort of
operations, but they are oriented toward the ODD/EVEN selec-
tion. If vou selected bet TYPE 3, the flow chart in Fig. 11-9 shows
you would satisfy two conditionals, TYPE=1 OR 3 and TYPE=3,
In the first case, the system would print out your color choice. In
the second, it would print out your selection of odd or even.

Now this happens to be one of those programming situations
where the flow chart appears to be far, far more involved than the

190



program that implements it. All of the decisions and writing carried
out by the flow chart in Fig. 11-9 is done in the few lines between
the comment, OF ENTIRE CASE and the line that specifies
WRITE (ENTERTO SPIN THE WHEEL’). This particular exam-
ple very clearly demonstrates the power of Pascal's CASE...OF
statement. It does a whole lot of flow charting in a very few lines of
program test.

Spinning Phase Flow Chart

The next step in the program is to spin the wheel. That part of
the operation is flow charted for you in Fig. 11-10.

‘The flow chart shows the program skipping a couple of lines on
the screen. The betting summary just described is to remain near
the top of the screen, but the spinning effect is to be situated near
the middle. Thus, you need to skip a few lines downward.

The next operation is to print an ENTER message. To be
exact, the program tells the play: ENTER TO SPIN THE WHEEL.

Having worked with some roulette wheel games before in
BASIC, I've found the simplest approach to “spinning the wheel” is
to start that spin at some random number and then let the system
cycle through a prescribed number of counts. Doing the job the
more “natural” way —picking a random number and making the
count advance that many places—causes some real hairy prog-
ramming processes. So why do things the hard way, when a bit of
creative imagination shows a much simpler alternative that works
just as well?

This spinning scheme picks a random starting number bet-
ween 0 and 31 and assigns it to variable NUM. That is done by
letting NUM “buzz” between 0 and 31 until the operator strikes the
ENTER key. Satisfying the ENTER conditional in Fig. 11-10 picks

the value for NUM.
Variable TIME is then set to 1000, and the system enters a

rather large and involved looping operation. This loop is responsi-
ble for doing three things. First, it causes the number on the screen
to cycle between 0 and 31 (beginning at the NUM value). At the
same time, it assigns colors, red or black, to the numbers as they
flash on the screen. Finally, the loop is responsible for the slowing
down effect of the flashing numbers and colors. All of this begins at

the block labeled CLEAR DISPLAY.
CLEAR DISPLAY erases any information on the middle line

of the screen. Immediately after that, however, the value of NUM
variable is written there. In essence, the system displays the first
in a long series of numbers that are to represent the spinning effect
of the roulette wheel.

191




L+HNNN="ANN

O —3WIL=3NIL

AA

0004< :
30vdS

1+30VdS
=:30VdS

INIL="30VdS

0='WNN

WNON 3115Mm

AVdSIa
gv310

L+HWNN=NNN
2it

i

JOVSS3IN
H3LNI, 3LEm

SaNIT diYs

192



‘weiboid T33HM F1L1L3TINOY 2yl Jo eseyd Buiuuids ay; 1o} Weyo mol4 “0L-11 B4

T T T — 1
| e=300 || es=309 || e=309 | | ee=i300 |
[ [ I [
Sovia-—. N Z Sovia-.
_ mEEs | [au- auum| | c3u- awem| | 90" |
[ “ [
_ 8u.mo._oow | | es=wo009 | | ze=w01009 | | 9=:wi01000 |

1

[s2]

19




The next job is to assign a particular color to that number. The
scheme employed in this roulette game is to assign the color RED
to even numbers falling within two quadrants of the “wheel.”
Quadrants

To see how this works, you must see that the range of
numbers between 0 and 31 can be divided exactly into four quad-
rants. The first quadrant has numbers 0 through 7, the second has
numbers 8 through 15, the third has numbers 16 through 23, and
the fourth has number 24 through 31. Each quadrant has eight
numbers apiece.

The first and third quadrants assign the color red to even
numbers. That is taken care of by the conditional §<=NUM<=7
combined with 16<=NUM< =23. If either of those conditionals is
satisfied, it means the count is in quadrants 1 or 3. As a result of
satisfying either of those conditionals, variable LINE is set to a
value of 1.

Failing to satisfy either of those two conditionals means the
count must be somewhere in quadrants 2 or 4. In that case, variable
LINE is set to a value of 2.

The next operations in Fig. 11-10 are a pair of LINE condi-
tionals: LINE=1 and LINE=2. Suppose LINE=1 is satisfied. In
other words, the NUM count is in either quadrant 1 or 3. The next
conditional asks whether the number is odd or even. If the number
is even, the NUM EVEN conditional is satisfied . The system,
among a couple of other things, writes RED after the number
appearing in the middle of the screen at the moment. On the other
hand, if the NUM EVEN conditional is not satisfied, the system,
again among other things, prints BLACK after the number in the
middle of the screen. Satisfying LINE=2, instead of LINE=1, just
reverses the situation printing BLACK after the number if it is
even and RED if it’s odd.

Values For GCOLOR, and GOE

The operations following conditions that satisfy LINE=1 and
LINE =2 include setting a value for GCOLOR and GOE. What are
those variables? They are the game’s version of PCOLOR and
POE. Recall that the player selects the values of PCOLOR and
POE in the opening phase of ihe gaine. Those variables represent
the player’s choice of color and odd/even respectively.

GCOLOR is the color assigned to the number appearing on the
screen at any given moment during the spin. GOE is a variable
representing the odd or even character of that same number on the
screen.

194



As the wheel “spins,” the values assigned to variables
GCOLOR and GOE switch around quite a bit. But in any event,
GCOLOR is equal to either 66 or 82, the ASCII codes for B and R.
GOE is equal to either 69 or 79, the ASCII codes for E and O. At
any given moment during the spinning of the wheel, the color and
odd/even character of the number appearing in the middle of the
screen is carried as variables GCOLOR and GOE.

The final phase of the operation flow charted in Fig. 11-101is to
slow down the spinning action and eventually bring it to a stop.
When things come to a halt, the existing values of GCOLOR and
GOE represent the winning combinations. But that’s getting ahead
of the discussion.

Slow-Down Effect

The next series of steps on the flow chart begin with
SPACE:=TIME and end with the conditional, TIME=400. These
are the steps most responsible for changing the number that flashes
on the screen and slowing down the spinning effect.

The heart of the slow-down effect is the block
SPACE:=SPACE+1 and conditional SPACE greater than 1000.
That is a time delay loop that runs until variable SPACE is greater
than 1000. But what is the value of SPACE when the counting
begins? The block preceding the timing loop tells you that SPACE
is set equal to variable TIME.

What is TIME equal to? In the early part of this flow chart:
TIME is set to 1000. On the first pass through this part of the
program, the time delay certainly is not very long. Incrementing
SPACE just one count satisfies the SPACE greater than 1000
conditional, and the timing is done. That isn’t very exciting.

But notice that TIME is decreased by 10 in the step following
the time delay loop. The next time the system gets around to
SPACE:TIME, SPACE will be 990 and the time delay will run
through 11 cycles instead of just one. After that, TIME is de-
creased by 10 again. The next time delay will be even longer.

The time delay operation thus grows longer each time the
system executes the big loop in Fig. 11-10. And that continues until
TIME=400. By then, the delay is getting close to ¥ of a second,
and it’s time to think about stopping the spinning action.

That is how the slow-down effect of the “spin” takes place. In
the meantime, variable NUM is being incremented and cycled
between 0 and 31. NUM, yourecall, is displayed as a number in the
middle of the screen.

195



‘WIN'

MESSAGE

‘LOSE’

MESSAGE
¥

‘PLAY AGAIN’
MESSAGE
N
ENTER
Y

®

Fig. 11-11. Flow chart for the closing phase of the ROULETTE WHEEL prog-
ram.

196



PCOLOR

=GCOLOR

Y

POE=GOE —
' NY
NY ‘WIN’
"WIN' MESSAGE
MESSAGE
'LOSE'’
MESSAGE
'LOSE’

MESSAGE

Final Phase Flow Chart

Figure 11-11 is the flow chart for the final phase of the game. It
is here that the system compares the winning number and color
with the player’s bet.

The exact nature and extent of the comparison operations
depend on the value of variable TYPE, the type of bet the player
made before spinning the wheel. If TYPE=1, the system compares
PCOLOR (the player’s choice of color) with GCOLOR (the color of
the winning number). If the two happen to be equal, as determined
by conditional PCOLOR=GCOLOR, then the system prints out
the appropriate WIN message. If the colors do not match, however,
the system prints out the LOSE message.

197




If the player selected bet TYPE 2, the system compares POE
and GOE, the player’s choice of odd or even against the odd/even
nature of the winning number. The system then prints the approp-
riate WIN or LOSE message. Selecting TYPE 3 merely calls for
comparing both the color variables and the odd/even variables.

To wrap up the play, the system prints a PLAY AGAIN
message, and waits at conditional ENTER for a reply from the
keyboard. Upon getting that reply, the program cycles all the way
back to the TYPE OF BET selection operations shown on the flow
chart in Fig. 11-8. The whole business thus begins all over again.
The actual program steps for the flow chart in Fig. 11-11 fall
between the comment line, SHOW RESULTS SEQUENCE, tothe
end.

GRAPHIC SLOT MACHINE GAME

Slot machines are popular gadgets in the world of popular
betting. Here is a program that simulates the action of a slot
machine in a highly graphic fashion. This is another program that
can be best appreciated after playing with it on your computer for a
while. Enter the program and have some fun with it. Then you'll be
in a better position to analyze its workings.

When you first run this SLOT MACHINE program, you will
see a message telling you to ENTER TO START. At the same
time, the screen shows three empty slots. This is the only time the
slots will be empty.

When you do that first ENTER, the fun begins. You see
patterns of characters flashing through the three slots. The pat-
terns in the slot on the left begin slowing down, and come to a stop
after about five cycles. Immediately after that, the patterns in the
middle slot begin slowing down; they, too, eventually come to a
stop. Finally the slot on the right shows the same slow-down-and-
stop effect. Now you have the final result.

This particular SLOT MACHINE program has no built-in
scoring, so you'll have to work that out for yourself. Usually you
win nothing if all three slots show different patterns. You will run
something on the order of a 10:1 payoff if two of the slots show
identical patterns. And the payoff is quite large if all three slots
show the same pattern. The jackpot is usually reserved for one
particular pattern (cherries) appearing in all three slots.

Graphic Format

This game doesn’t show cherries, apples, wavy lines or any-
thing like that. It could be done, but only after writing a very

198



DONE...ENTER TO PLAY AGAIN

8884 o ((((
&8&& e ({
&&&& " ((((
888& n ((((

Fig. 11-12. Graphic format for the SLOT MACHINE GAME.

complicated graphics program. It does, however, show 10 different
4 x4 patterns of ASCII characters. See the example in Fig. 11-12.

Actually the slots work according to a counter that cycles
between 34 and 43. If you refer to the ASCII code table in the
Appendix, you will see that those numbers represent a series of
punctuation marks, beginning with quotation marks and ending
with the plus sign. The counters in the drawing in Fig. 11-12
happened to stop at ASCII decimal codes 38, 39 and 40—the
ampersand, apostrophe and right parenthesis, respectively.

You can play the game any number of times by simply striking
the ENTER key. You don’t even have to feed the machine a quarter
(but then the payoff is just pretend, too).

Program

Here is the program:

(* SLOT MACHINE *)
VAR SEED,S1,S2,S3,PHASE,M,N,P,TIMES, INTERVAL: INTEGER;
(* SLOT DRAWING PROCEDURE *)
PROC SLOTDRAW;
VAR DX,DY:INTEGER;
BEGIN
WRITE(28,31);
FOR DX:=28 TO 99 DO
BEGIN
PLOT(DX,13,1);
PLOT(DX,28,1)
END;
FOR DY:=13 TO 28 DO
BEGIN
FOR DX:=28 TO 29 DO
BEGIN
PLOT(DX,DY,1);
PLOT (DX+70,DY,1)
END;

FOR DX:=50 TO 53 DO
BEGIN
PLOT(DX,DY,1);
PLOT(DX+24,DY,1)
END

END

199




END; (* OF PROCEDURE *)
(* SLOT FIGURE DRAWING PROCEDURE *)
PROC DRAW(S1,S82,S3);
CONST DSTART=15762;
VAR DX,DY:INTEGER;
BEGIN
FOR DY:=0 TO 2 DO
FOR DX:=0 TO 3 DO
BEGIN
MEM (DSTART+DX+64*DY) : =81
MEM (DSTART+DX+12+64*DY)
MEM (DSTART+DX+24+64*DY)
END
END;
(* BEGINNING OF SLOT MACHINE MAINLINE PROGRAM *)
BEGIN
SLOTDRAW ;
WRITE('ENTER TO BEGIN PLAY');
(* PICK UP SEED NUMBER FOR RANDOM GENERATOR *)
WHILE INKEY<>13 DO
BEGIN
SEED:=SEED+1 ;
IF (SEED<99) OR (SEED>999) THEN SEED:=99;
END;
N:=SEED;
(* RESTART POINT FOR REPEATED PLAYS *)
REPEAT
(* SELECT RANDOM STARTING POINTS FOR THE THREE SLOTS *)
FOR PHASE:=1 TO 3 DO
BEGIN
REPEAT
M:=N*16807;
IF M<0 THEN M:=ABS(M):;
N:=M;P:=M;
P:=P MOD 61
UNTIL (P>=34) AND (P<=43);
CASE PHASE OF

i
=82;
=83

1:81:=P;
2:52:=P;
3:83:=P

UNTIL (P>=34) AND (P<=43);
CASE PHASE OF
1:81:=P;
2:52:=P;
3:83:=P
END; (* OF CASE STATEMENT *)
END;
(* OLOW DOWN AND STOP FIRST SLOT *)
INTERVAL:=0;
REPEAT
FOR TIMES:=0 TO INTERVAL DO
BEGIN
DRAW(S1,S82,83);
S2:=52+1;
IF S2>43 THEN S2:=34;
$3:=83+1;
IF $3>43 THEN S3:=34
END;

200



S1l:=S1+1;
IF S1>43 THEN S1:=34;
INTERVAL:=INTERVAL+2
UNTIL INTERVAL>10;
(* SLOW DOWN AND STOP SECOND SLOT *)

INTERVAL:=0;

REPEAT
FOR TIMES:=0 TO INTERVAL DO
BEGIN
DRAW(S1,S2,S83);

S3:=83+1;
IF S3>43 THEN S3:=34;
END;
S2:=82+1;
IF S2>43 THEN S2:=34;
INTERVAL:=INTERVAL+2
UNTIL INTERVAL>10;
(* SLOW DOWN AND STOP THIRD SLOT *)
INTERVAL:=0;
REPEAT
FOR TIMES:=0 TO INTERVAL
DO DRAW(S1,S2,83);
S3:=83+1;
IF S3>43 THEN S3:=34;
INTERVAL:=INTERVAL+2
UNTIL INTERVAL>10;

(* INVITATION TO PLAY AGAIN *)
WRITE(28,30,'DONE ... ENTER TO PLAY AGAIN');
READ (TIMES) ;

WRITE(28,30);

UNTIL TIMES<>13

END.

DRAW and SLOTDRAW Procedures

The program can be divided into three basic parts: the main-
line program, procedure SLOTDRAW and procedure DRAW. The
mainline program takes care of every operation except those re-
quiring some drawing activity on the screen. The procedures take
care of that task.

The SLOTDRAW procedure, the first one listed in the prog-
ram, merely draws the outline of the slots. Notice the use of PLOT
graphics in this case. The idea is quite similar to the one used for
drawing the outline of the dice in the GRAPHIC DICE ROLL game
described in an earlier section of this chapter.

The DRAW procedure appears directly after the SLOTDRAW
listing. DRAW is responsible for generating the 4 x4 patterns of
ASCII characters within the three slot outlines. In this case,
though, PLOT graphics isn’t fast enough to achieve a rapid spinning
effect. PLOT graphics is good enough for drawing out the slot
outlines, but it is far too slow for simulating slot patterns as they
spin, slow down and eventually come to a halt on the screen.

201




So if you look at the DRAW procedure, you will see it uses
Pascal MEM graphics. The graphic charters are dumped directly
into the TRS-80 video memory, and there is no time wasted going
through a lot of internal conversion operations. The need for high
speed graphics dictates the use of the MEM graphics procedures in
this program.

You have to understand TRS-80 SET and POKE graphics in
order to understand the workings of the SLOTDRAW and DRAW
procedures. Indeed, if you do understand TRS-80 graphics, you
won't have much trouble understanding these Pascal procedures.
On the other hand, if you don’t understand TRS-80 graphics, you
would have trouble following any discussion that might be pre-
sented here. So it’s up to you to work out the ways the DRAW and
SLOTDRAW procedures work.

Win Select Phase Flow Chart

The mainline program is flow charted in Figs. 11-13 and
11-14. The operation of particular importance in this mainline
program is the way in which the slot patterns slow down and stop,
one at a time and from left to right. The remaining operations ought
to seem somewhat familiar. They have appeared in earlier prog-
rams.

Figure 11-13 blocks out the opening phase of the game. It
begins, as usual, by declaring the variables for the mainline prog-
ram. Then it calls SLOTDRAW to draw the outline of the slots.

The next step is to select the seed value for the program’s
pseudo-random number generator. This is another of those
INKEY-interrupted counting operations that ultimately ends with a
number somewhere between 99 and 999. See the operations in the
program that directly follow the comment, PICK UP SEED
NUMBER FOR RANDOM GENERATOR.

The SLOT MACHINE program requires three random num-
bers between 34 and 43. Looking at the flow chart in Fig. 11-13,
you can see this operation beginning and PHASE:1 and ending
when the conditional, PHASE greater than 3, is satisfied.

The three successive PHASE conditional and PHASE count-
ing operations simply pick the three random numbers, one at a
time, and assign them to variables S1, S2 and S3, in that order.
Those three S variables turn out to be the ASCII number codes for
the patterns to appear on the slots.

As in the case of the ROULETTE WHEEL game described
earlier in this chapter, the spinning action of the three slots begins
at a random number, and then cycles through a prescribed number

202



RUN

DECLARE
VARIABLES

[

CALL
SLOTDRAW

I

SELECT SEED

PHASE:=1

FETCH A
RANDOME 34<P=43
NUMBER(P)

S1.:=P

S2:=P

PHASE:=PHASE+1

B

Fig. 11-13. Flow chart for the win select phase of the SLOT MACHINE GAME.

203




O

INTERVAL:=0

CALL DRAW

[

$2:=82+1

S3: =53+ 1
Y
$3>43 S3 =34
Ny I
TIMES:=
TIMES+1

S1:=34

INTERVAL:=

oo~y A

INTERVAL+2

Fig. 11-14. Flow chart for the spin phase of the SLOT MACHINE GAME.

204



INTERVAL:=0

TIMES: =0

CALL DRAW

83:=83+1

Y

$3>43 —-&—-——-l

S53:=34

TIMES:=
TIMES+1

R

$2:=82+1

Y
$52>43
$52:=34

e 1

INTERVAL:=
INTERVAL+2

205




INTERVAL:=0

TIMES:=0

—

CALL DRAW

TIMES:=
TIMES+1

83:=83 + 1

INTERVAL:=
INTERVAL =2

WRITE
PLAY AGAIN'
MESSAGE

Fig. 11-14. Flow chart for the spin phase of the SLOT MACHINE GAME.

206



of counts. That, you recall, is a lot easier than trying to get the
spinning action to stop at some random number.
By the time the operations reach the end of the flow chart in

Fig. 11-13, the program has drawn the outline of the three slots on
the screen and picked random starting numbers for the slot action.

The latter is carried by variables S1, S2 and S3.

Spin Phase Flow Chart

Most of the operations flow charted in Fig. 11-14 represent
these involved in slowing down and stopping the graphic impres-
sions in the slot figures. The chart might appear to be very compli-
cated at first, but it is really a set of operations that are repeated
until the spinning action is done.

The slow-down-and-stop action is achieved in a fashion that is
quite different from that of the ROULETTE WHEEL. Rather than
injecting an increasingly long time delay into the display action of
the slot that is slowing down, this scheme sets up an increasingly
large ratio between the number of times the slot counters are
incremented.

For example, the instant the first slot is to begin slowing down
its rate of change, it is changing just as frequently as the other two.
But then the second and third slots are incremented twice before
the first one is. The second and third are incremented four times
before the third one changes, and so on, until the two “fast” slots
are changing 10 times faster than the one that is supposed to stop.

After the spinning action for the first slot is over, the counting
for the middle slot begins taking place less often than that of the last
slot. The first slot is supposed to be stopped now, so its count isn’t
changing at all.

Eventually the counting rate ratio between the second and
third slot reaches such a large number that the second or middle
slot stops. The first and middle figures remain stationary while the
third slot slows to a stop. This is areliable little trick that creates a
rather convincing impression of a slot machine action.

Throughout the flow chart in Fig. 11-13, variable INTERVAL
determines how many times the slowing-down counter will cycle
before it stops. Note that there are three blocks labeled INTER-
VAL:=0. Each of them marks the beginning of a slow-down-and-
stop operation.

Variable TIMES sets the counting ratio between the slot that
is supposed to slow down and the slot(s) that are to remain running
at full speed. The operation CALL DRAW is inserted into the

207




counting loops for the three phases of the spinning action. DRAW is
the procedure responsible for printing the ASCII character pattern
inside the slot figures. Since the figures on the screen have to be
updated with every count of the fast counters, it figures that the
operation should take place with every count. A lot of the opera-
tions in Fig. 11-14 merely lock the counting range of variables S1,
S2 and S3 between 34 and 43, the ASCII codes for the slot machine
patterns.

Now that you know what the variables are for, you should be
able to follow the flow chart fairly well. Note that all three S
variables are included in the first counting loop, but that variable S1
is missing from the second and third counting loop. Why is S1
missing from those two counting loops? It isn’t supposed to change
its value once it comes to a stop. Likewise, variable S2is present in
the first and second counting loops, but not the third.

Finally, the third counting loop involves only the S3 variable.
You can see these three counting cycles programmed as SLOW-
DOWN AND STOP FIRST SLOT, SLOW DOWN AND STOP
SECOND SLOT and SLOW DOWN AND STOP THIRD SLOT in
the mainline program.

Returning to Fig. 11-14, the play ends with a message, DONE
... ENTER TOPLAY AGAIN. The player can “pull the arm” again
by striking the ENTER key. That action satisfies the ENTER
conditional and sends control back to point B, the PHASE:=1
operation, in Fig. 11-13. There the program picks up a new set of
random numbers for the S counters.

208



Chapter 12
Some Computer
Grapis In A Pascal Format

Judging from the title of the previous chapter, one would conclude
that it dealt with a variety of games of chance. And indeed it did.
But perhaps you noticed the strong emphasis on flow chart analysis
of the programs. That chapter emphasized the programs’ opera-
tions from a flow chart perspective, and the Pascal structure
seemed to be set into the background.

Now this chapter deals with computer graphics. Here, again,
it will live up to its promise. However, the emphasis will be upon
Pascal structures, how they develop and how they can be modified.

A LINE SKETCHING PROGRAM

TRS-80 Tiny Pascal lends itself quite nicely to a computerized
version of the popular Etch-A-Sketch™ toy. Here the drawing of
straight line segments is controlled by striking the appropriate
keys on the keyboard: D for a downward step, U for an upward
step, L for aleft step and R for a right step. The whole thing adds up
to a nice pastime, especially for youngsters.

Here is the program for the first version:

(* SKETCH V.1 *)
VAR X,Y,ERROR,EXIT,MOVE: INTEGER;
BEGIN
WRITE(28,31);
WRITE('ENTER UP, DOWN, LEFT, RIGHT OR END');
Y:=3;X:=0;
PLOT(X,Y,1);
REPEAT

REPEAT

ERROR:=0;EXIT:=0;

209




REPEAT
MOVE:=INKEY

UNTIL MOVE<>0;

CASE MOVE OF
'U':IF ¥>3 THEN Y:=Y-1;
'D':IF Y<47 THEN Y:=Y+l;
'L':IF X>0 THEN X:=X-1;
'R':IF X<127 THEN X:=X+1;
'EY :EXIT:=1
ELSE ERROR:=1

END; (* OF CASE STATEMENT *)

UNTIL NOT ERROR;

PLOT(X,Y,1)
UNTIL EXIT
END.,

Enter, compile and run SKETCH V. 1. Play with it and make a
mental note of any shortcomings you might find. You will have a
chance to correct some of the program’s annoying characteristics
later in this section.

Structure
Take special note of the Pascal structure in this program. It

begins by declaring the variables and then goes to a block that
starts with BEGIN and terminates at END. With the exception of
the opening remark and declaration lines, the entire program is
enclosed within that one big block. This scheme can be rep-
resented this way:

REMARK
DECLARATION
BLOCK.
The clock, itself, is divided into a number of first-order state-
ments. The first-order statements within the block look like this:

WRITE expression;
WRITE expression;
ASSIGNMENT; ASSIGNMENT;
PLOT expression;
REPEAT

statements
UNTIL EXIT

In all, there are only six statements of the first order. Re-
member that REPEAT ... UNTIL is just one statement. The rest of
the program is written within that one first-order REPEAT ...
UNTIL statement.

Technically speaking, there are only two statements within
the first-order REPEAT...UNTIL. They are:

210



REPEAT

statements
UNTIL NOT ERROR;
PLOTX,Y,1)

For our present purposes, these are the program’s second-order
statements. They are the two highest-order statements within the
first-order REPEAT...UNTIL statement. Putting things together
as described so far, the Pascal structure of SKETCH V. 1looks like
this:

REMARK
VARIABLE DECLARATION
BEGIN
WRITE expression;
WRITE expression;
ASSIGNMENT; ASSIGNMENT;
PLOT expression,;
REPEAT

REPEAT

statements

UNTIL NOT ERROR;
PLOT expression
UNTIL EXIT
END.

The indented lines represent the second-order statements of this
program.

The second-order REPEAT... UNTIL statement is composed
of statements of the third order:

ASSIGNMENT;ASSIGNMENT;
REPEAT
statement
UNTIL MOVE ¢;
CASE MOVE OF

case statements
END;

That figures out to a total of four third-order statements. Like
REPEAT...UNTIL, CASE...OF...END makes up just one state-
ment.

Now the third-order REPEAT... UNTIL statement is made up
of just one fourth-order statement, MOVE:=INKEY. And there

211




are five case statements. That accounts for the entire SKETCH
V.1 program.

Indentation Scheme

While indentations are used throughout this book to separate
the different orders of statements, such a procedure is not neces-
sary as far as the computer is concerned. The indentations make it
easier to pick out the different orders and see the Pascal structure
more clearly.

Without using the indentation scheme, a programmer runs the
risk of losing sight of which UNTIL goes with which REPEAT.
Likewise, there can be some trouble matching up ENDs and BE-
GINs.

But the advantages of using the indentation scheme to clarify
the orders of Pascal statements is perhaps no better realized than
when it is time to modify a finished program. To see how this works
out, let’s modify the SKETCH V.1 program.

Blinking Routine

One of the shortcomings of the program is that the user cannot
see where the “blip” is whenever it is laying on a previously drawn
line segment. The “blip” is white, and so is any line segment it
might be tracing over. The simplest and perhaps most effective
way to cure this particular difficulty is by having the “blip” blink off
and on.

Writing a blinking routine isn't difficult. It is just a matter of
writing a PLOT(XX,Y,¥) ... PLOT(X,Y,1) sequence somewhere in
the program. PLOT(X,Y,) effectively turns off the blip, while
PLOT(X,Y, 1) turns it on again. The only question concerns where
to insert that sequence in the program.

It turns out that most of the program'’s execution time is spent
looping around the third-order statement, REPEAT ... UNTIL
MOVE<>#. So why not include the two PLOT statements within
that REPEAT ... UNTIL loop?

Put your system into the EDIT mode, and insert the off/on
PLOT statements to make the REPEAT ... UNTIL look like this:

REPEAT
PLOTX,Y,?);
MOVE:=INKEY;
PLOTX,Y,1)

UNTIL MOVE <>,

212



That adds two more fourth-order statements to the program. Al-
lowing the original MOVE:=INKEY to fall between the two new
PLOT statements provides some time delay between turning the
blip off and on.

Compile the program again and try it out for yourself. You will
find a vast improvement in the ease of drawing lines on the screen.

There is yet another desirable sort of modification, giving the
operator a chance to erase previously drawn line segments and skip
over parts of the screen without leaving a white trail behind.
Properly handled, the erasing and skipping modifications amount
to one and the same thing. The modification, however, is far more
extensive than adding the blinking effect.

The basic idea is to give the operator the option of operating
the sketching program in one of two different modes: a PLOT mode
and an X-OUT mode. In the PLOT mode, the thing works just as
before, plotting a line wherever the blip is directed. In the new
X-OUT mode, however, the blip effectively erases anything in its
path. That includes previously drawn line segments as well as
portions of the screen that are already blank.

The little blip still blinks off and on in either mode. You can
still see where it is, even in the X-OUT mode.

SKETCH V.2 Program

The following revised version of SKETCH can be created by
doing some EDIT surgery on the existing version. Here is what the
new version, SKETCH V.2, should look like when the modifica-
tions are completed:

(* SKETCH V.2 *)
VAR X,Y,ERROR,EXIT,MOVE,BLANK:INTEGER;
BEGIN
WRITE(28,31);
WRITE('ENTER UP,DOWN,LEFT,RIGHT,X~-0UT,PLOT OR END');
Y:=3;X:=0;BLANK:=0;
REPEAT
REPEAT
ERROR:=0;EXIT:=0;
REPEAT
IF BLANK THEN PLOT(X,¥Y,1l)
ELSE PLOT(X,Y,0);
MOVE:=INKEY;
IF BLANK THEN PLOT(X,Y,0)
ELSE PLOT(X,Y,1)
UNTIL MOVE<K>0;
CASE MOVE OF
'U':IF Y>3 THEN Y:=Y-1;
'D':IF Y<47 THEN Y:=Y+1;
'L':IF X>0 THEN X:=X-1;

213




"R':IF X<127 THEN X:=X+1;
'E':EXIT:=1;
'X'":BLANK:=1;
'P':BLANK:=0
ELSE ERROR:=1
END;
UNTIL NOT ERROR;
IF BLANK THEN PLOT(X,Y,0)
ELSE PLOT(X,Y,1)
UNTIL EXIT
END.

Now the mode of operation, PLOT or X-OUT, is signaled by
the value of a new variable, BLANK. The program is in the PLOT
mode whenever BLANK = §. It is in the X-OUT mode whenever
BLANK=1. So the first modifications involve adding BLANK to
the variable declaration line, and initializing BLANK at 0 before
starting the first-order REPEAT...UNTIL loop. Initializing the
BLANK in this fashion automatically puts the program into the
PLOT mode when the program is first started. That’s not neces-
sary, but it’s nice.

Statement Analysis

Looking at the third-order statements, the CASE statement
must have provisions for accepting the PLOT and X-OUT charac-
ters from the keyboard, So the X and P cases are added. Striking
the X key sets BLANK to 1, and striking the P key returns it to
Zero.

Another third-order statement is affected by the mode of
operation. The case in point is the PLOT statement that concludes
the first-order REPEAT...UNTIL statement. Instead of always
plotting a point with PLOT(X,Y, 1) the statement must erase the
point with a PLOT(X,Y,0) when the program is in the X-OUT
mode. What was originally a simple PLOT statement now becomes
a conditional statement. IF BLANK (=1 is implied), THEN
PLOT(X,Y,0) ELSE (BLANK=( is implied) PLOT(X,Y,1).

Buried in the program at the fourth order is the blip blinking
feature. In the original version (modified to include the blinking
effect), the off-first-then-on-again sequence was appropriate. And
it is still appropriate whenever the system is in the PLOT mode.
But in the X-OUT mode, the blinking sequence must be reversed.
Otherwise, the blip will leave behind a spot of light in both modes,
thus defeating the purpose of the entire modification. So the blink
PLOT statements are written as conditional statements that de-
pend on whether the system is in the PLOT or X-OUT mode.

While these modifications have been done for you here, you
can perhaps see how difficult the job would have been if the

214



programmer had no understanding of Pascal structures. Using the
indentation scheme to separate the different orders of statements
helped considerably.

The modifications did not alter the general structure of the
original SKETCH program. All the first-order statements re-
mained first-order statements, second orders remained second
orders, etc. Indeed the modifications for creating the second ver-
sion of SKETCH introduced more statements, but there were no
changes in the orders of statements. The program is fundamentally
the same.

So the program, SKETCH V.2, lets you sketch all sorts of
interesting figures on the screen. When it comes to designing
computer games, wouldn’t it be nice if you could transfer the figure
created via the SKETCH V.2 to a game program? Suppose, for
example, you want to write a program for some sort of space wars
game. You need some complex figures to do the job in the most
interesting fashion. You can create interesting figures with
SKETCH V.2, but it isn't always easy to come up with the program
steps for drawing such figures for other purposes.

SKETCH V.3 Program

The following program, SKETCH V.3, modifies the basic
SKETCH idea so that you can determine the plotting points for
every line segment in the figure. You can draw a figure as with
SKETCH V.2, use the new figure to determine the coordinates of
every point in the figure, and then use those coordinates for
recreating the same figure within another program.

Unfortunately it takes a great deal of sophisticated program-
ming to create a figure with the SKETCH program, and then
transfer it automatically to another program that will use the
figure. By way of a compromise, the scheme suggested here makes
it necessary for you to write down the coordinates of the plots.
Re-enter them when you are writing the new program. Maybe that
sounds like too much work, but then so does trying to create a
complex figure from nothing more than abstract PLOT coordi-
nates.

The SKETCH V.3 program is essentially identical to
SKETCH V.2 right down to the point where you do an END
command. Using SKETCH V.2, striking the E key simply brings
the orogram to an end. But when using the SKETCH V.3 version,
striking the E key begins the copy phase of the job.

215



In that copy phase, the program scans the screen horizontally,
from left to right. Then it drops down one and scans it from left to
right. The scanning operation stops, however, whenever the point
being scanned happens to be a line segment which you “drew” on
the screen during the drawing phase of the program. Whenever the
program stops at such a segment, it writes out the PLOT coordi-
nates for you. Then you can copy down the coordinates and strike
the ENTER key to continue the scanning operation. The program
comes to an end after it has scanned the entire screen for you.

Now you have a written record of the PLOT coordinates for
the figure. They can be entered into a game program at any later
time.

(* SKETCH V.3 *)
VAR X,Y,ERROR,EXIT,MOVE,BLANK:INTEGER;
BEGIN
WRITE(28,31);
WRITE( 'ENTER UP,DOWN,LEFT,RIGHT,X~-0UT,PLOT OR END');
Y:=3;X:=0;BLANK:=0;
REPEAT
REPEAT
ERROR:=0; EXIT:=0;
REPEAT
IF BLANK THEN PLOT(X,Y,1)
ELSE PLOT(X,Y,0):
MOVE:=INKEY;
IF BLANK THEN PLOT(X,Y,0)
ELSE PLOT(X,Y,1)
UNTIL MOVE<>0;
CASE MOVE OF
'Ut:IF Y>3 THEN Y:=Y-1;
'DY:IF Y<47 THEN Y:=Y+l;
'L':IF X>0 THEN X:=X-1;
'RY:IF X<127 THEN X:=X+1;
'E':EXIT:=1;
'X':BLANK:=1;
'P':BLANK:=0
ELSE ERROR:=1
END;
UNTIL NOT ERROR;
IF BLANK THEN PLOT(X,Y,0)
ELSE PLOT(X,Y,1)
UNTIL EXIT;
WRITE(28,30,'COPY PHASE -- ENTER TO START') ;
WHILE INKEY<>13 DO;
FOR Y:=3 TO 47 DO
FOR X:=0 TO 127 DO
IF POINT(X,Y) THEN
BEGIN
WRITE(28,30,X#,"',',Y#,32,32,'ENTER TO CONTINUE');
REPEAT
PLOT(X,Y,0);
MOVE:=INKEY;

216



PLOT(X,Y,1)
UNTIL MOVE=13
END;
WRITE(28,30,"'DONE')
END.

COPY PHASE Operation

You can see from the listing for SKETCH V.3 that it is
identical to SKETCH V.2 down to the line following UNTIL EXIT.
Version 2 ends after that, but version 3 enters the COPY PHASE of
the program.

As far as the COPY PHASE of SKETCH V.31is concerned, itis
a 4-statement operation. From a structural point of view, it is built
around these first-order statements:

WRITE expression
WHILE expression DO;
FOR expression TO expression DO

statements
WRITE expression

After that, the entire program comes to an END.

The first-order FOR. . . TO. . .DO statement is made up of a
single second-order statement, a FOR expression TO expression
DO. That one second-order statement encompasses a single,
third-order IF expression THEN statement. Finally, the IF. .
.THEN statement includes a BEGIN. . .END statement made up of
three fourth-order statements and a set of three fifth-order state-
ments.

Statements within statements within statements within
statements is what Pascal structure is all about. Get accustomed to
Pascal structure, and you're on your way to being an effective
Pascal programmer.

MISSILE SHOOT GAME

Here is a program for video game buffs. A sequence of 10
enemy ballistic missiles invades your air space. It is your respon-
sibility to shoot themn down with your own antiballistic missile.
Except for the scoring and instruction messages, the game is
enti, ely one of animated graphics.

Figure 12-1 shows how the screen might look during a game of
MISSILE SHOOT. The missile near the top of the screen is flying
from left to right. That is the enemy missile.

The little missile figure at the bottom of the screen is your
own antiballistic missile. You fire it by striking the ENTER key. If

217




you “lead” the enemy missile properly, you will hit and destroy it,
and rack up a point in the SCORE column.

The tricky part of the game is that the altitude and speed of the
enemy missile are never known in advance. They simply appear at
the left side of the screen. Some come in at low altitudes and some
approach at high altitudes. There is no correspondence between
the speed and altitude of the enemy missile.

The speed of your antiballistic missile is always the same, and
that is a feature in the player’s favor. Actually, that’s about the only
thing in the player’s favor. Even the timing between the approach
of new enemy missiles varies.

This is a comparatively complex game program. The compiled
version, if you write it exactly as shown here, occupies something
on the order of 1300 bytes of memory. It isn’t the length of the
program that is of primary importance at this point in the discus-
sion. Aside from being an unusually long Pascal program it uses
some rather involved Pascal structures. You are going to find a
great deal of space in this section devoted to analyzing the struc-
tural peculiarities of this program. It’s important, believe me.

The first thing you should do, however, is enter the program
into your computer and play with it for a while. That experience
will give you some advantages when it comes to analyzing how the
structure works.

The structure for a program of this size has little meaning,
however, until you understand all the little processes involved. So

TRY 4 OF 10 SCORE:2

ENEMY

/ MISSILE

PLAYER'S
MISSILE

BLACK AND WHITE REVERSED)

Fig. 12-1. Screen format for MISSILE SHOOT game.

218



the second step in our analysis project is to break the program
down in a flow chart fashion.

Finally, you will have a chance to see the Pascal structuring. If
that isn’t enough to keep you busy for a while, you can then get
involved in modifying the program to make it work even better.
You migth add some features that will heighten the excitement of
playing with it.

Program
Here is the programfor the first version of MISSILE SHOOT:

(* MISSILE SHOOT V.l *)
VAR MSTART,MSPEED,N,SCORE,TRY,GDELAY,APLACE ,MPLACE:
INTEGER;
FFLAG,MDELAY,FIRE,MDONE,AMISS,HIT,MTRY ,AGAIN,SEED:
INTEGER;
FUNC RND(RLOW,RHIGH) ;
VAR M,P:INTEGER;
BEGIN
REPEAT
:=N*3125;
IF M<0 THEN M:=ABS(M);
N:=M;P:=M;
P:=P MOD RHIGH
UNTIL (P>=RLOW) AND (P<=RHIGH);
RND:=P
END; (* OF FUNCTION *)
FUNC SEED;
VAR SEED:INTEGER;
BEGIN
SEED:=SEED+1;
IF SEED>999 THEN SEED:=99
END; (* OF FUNCTION *)
PROC MFIG(MPLACE,PHASE);
VAR MX:INTEGER;
BEGIN
IF PHASE=1 THEN
BEGIN
MEM (MPLACE) :=162;
MEM (MPLACE+1) :=191;
FOR MX:=2 TO 5 DO
MEM (MPLACE+MX) : =140
END
ELSE
BEGIN
FOR MX:=0 TO 1 DO
MEM (MPLACE+MX) :=32;
FOR MX:=2 TO 5 DO
MEM (MPLACE+MX) :=32
END
END; (* OF PROCEDURE *)
PROC AFIG(APLACE,PHASE);
VAR AY:INTEGER;
BEGIN

219




IF PHASE=1 THEN
BEGIN
MEM (APLACE) :=136;
MEM (APLACE+1) :=191;
MEM (APLACE+2) : =132;
MEM(APLACE+64) :=188;
MEM (APLACE+65) :=191;
MEM (APLACE+66) : =188
END
ELSE
BEGIN
FOR AY:=0 TO 2 DO
MEM (APLACE+AY) :=32;
FOR AY:=64 TO 66 DO
MEM (APLACE+AY) :=32
END
END; (* OF PROCEDURE *)
PROC SPEED (DELAY);
VAR TIME:INTEGER;
BEGIN
FOR TIME:=0 TO DELAY DO;
END; (* OF PROCEDURE *)
PROC UPDATE (TRY,SCORE) ;
BEGIN
WRITE(28,30);
WRITE('TRY ',TRY#,' OF 10 SCORE:' ,SCORE#)
END;
(* BEGINNING OF MAINLINE PROGRAM *)
BEGIN
N:=SEED;
AGAIN:=0;
WHILE AGAIN<>32 DO
BEGIN
WRITE (28,311,215, ** MISSILLE SHOOTING GAME **',13
/13) 7
WRITE ('TEN MISSILES WILL INVADE YOUR AIR SPACE.'
$13) 5
WRITE ('STRIKE THE ENTER KEY TO FIRE YOUR
ANTIBALLISTIC® ,13);
WRITE('MISSILE.',13,13,'DO ENTER TO START THE
GAME ..."):
WHILE INKEY<>13 DO;
WRITE (28,31);
SCORE:=0;
FOR TRY:=1 TO 10 DO
BEGIN
UPDATE (‘TRY, SCORE) ;
MSTART:=15488+64*RND(0,5);
MPLACE : =MSTART;
MSPEED:=10*RND(1,5) ;
GDELAY:=RND(100,1000);
APLACE:=16224;
AFIG(APLACE,1l);
SPEED (GDELAY) ;
FFLAG:=0;MDONE:=0;AMISS:=0;HIT:=0;
REPEAT
MDELAY:=0;
REPEAT
IF NOT FFLAG THEN

220



BEGIN
FIRE:=INKEY;
IF FIRE=13 THEN
FFLAG:=1
END;
MDELAY : =MDELAY+1
UNTIL MDELAY>=MSPEED;
MFIG(MPLACE,0);
MPLACE : =MPLACE+1;
IF NOT (MPLACE>=MSTART+57) THEN
BEGIN
MFIG(MPLACE,1l);
IF FFLAG THEN
BEGIN
AFIG(APLACE,0);
APLACE:=APLACE~-64;
IF NOT (APLACE<15487) THEN
BEGIN
AFIG(APLACE,1);
FOR MTRY:=1 TO 5 DO
IF (MTRY+MPLACE)=APLACE THEN
BEGIN
HIT:=1;
SCORE:=SCORE+1;
MFIG(MPLACE,Q);
AFIG(APLACE,0)
END;
END
ELSE
BEGIN
AMISS:=1;
MFIG(MPLACE,O);
END;
END
ELSE
FFLAG:=0;
END
ELSE
BEGIN
MDONE:=1;
AFIG(APLACE,0)
END;
UNTIL( (MDONE=1) OR (AMISS=1) OR (HIT=1));
UPDATE (TRY, SCORE) ;
END;
WRITE(13,'GAME DONE -- DO ENTER TO PLAY AGAIN');
WRITE(13,205,'STRIKE THE SPACE BAR TO END THE
PROGRAM') ;
REPEAT
AGAIN:=INKEY;
N:=SEED
UNTIL (AGAIN=13) OR (AGAIN=32);
END
END.

Declaring Mainline Program Values
The first stages of the flow chart and structure analysis of
MISSILE SHOOT V.1 are straightforward. There are a lot of lines

221




of program information in that opening part of the task. But it
doesn’t add up to anything significantly different from what has
been done before.

The first operation on the flow chart in Fig. 12-2, for instance,
isto declare all the variables for the mainline program. Sure, there
are quite a few variables. They take up two declaration lines. But
variables shouldn’t frighten you by now. They are just semi-
descriptive names of values that will change from time to time
during the execution of the main part of the program.

After declaring the mainline variables, the flow chart indicates
some definitions of functions and procedures. As usual, Pascal
functions and procedures follow the declaration of mainline vari-
ables.

This particular program happens to have two functions and
four procedures. Look at the program listing and count them.
These functions and procedures take up about one-third of the
entire program.

RND Function

The first function defined in the program listing is called RND,
and it works from two variables from the mainline program, RLOW
and RHIGH. This function should look rather familiar to you. It has
been used a number of times earlier in this book, and its job is to
generate a quasi-random set of integers between values RLOW and
RHIGH. In this MISSILE SHOOT program, the RND function is
called a number of times for different purposes. RND, for example,
sets the altitude of the enemy attack missile (variable MSTART),
the attack missile’s speed (variable MSPEED), and the delay
interval between successive attacks (variable GDELAY).

SEED Function

You should realize from earlier discussions that the random
number generator will tend to duplicate the same sequence of
quasi-random numbers unless it is seeded with a number that is
generated in a random fashion. That is the purpose of the second
function in the program known as SEED.

Function SEED is called from a couple of different places in
the mainline program. Each time it is called, it ensures a non-
repeating sequence of missile attacks. That scheme keeps the
game fair for players who haven't played the game in the past and
have no feeling for what is going to happen next.

222



So there are the two functions for the program. Now look at
the first procedure.

MFIG Procedure

Procedure MFIG is responsible for drawing and erasing the
attack missile figure on the screen. Its variable from the mainline
program are MPLACE and PHASE. MPLACE is a number that
sets the position of the enemy missile on the screen, while PHASE
is equal to either 1 or 0, depending upon whether the procedure is
supposed to draw or erase the figure.

If procedure MFIG(16550, 1) is called from the mainline
program, it will draw the enemy missile figure, beginning at
graphics point 1655@. The viewer gets the impression that the
figure is moving from left to right across the screen when the
missile figure is first erased from its present position and then
redrawn one graphics position to the right. The following sequence
of calls illustrates how this works:

PLACE:=16550;
MFIG®PLACE, 1)
MFIG(PLACE, @),
MFIG(PLACE+1, 1);
MFIG(PLACE+1, @),
MFIG(PLACE+2, 1);

That particular sequence of operations first initializes the
position of the enemy missile at graphics point 16550, and then it
calls the MFIG procedure to draw the figure. Immediately after
that, MFIG(PLACE, ) erases the figure. The sequence then calls
for redrawing the figure one place to the left of where it was
originally drawn. The same figure is erased after that, and a new
version is drawn two places to the left of the original point. The
overall effect is a smooth movement of the enemy missile from left
to right across the screen. Of course, the sequence continues as
long as the figure is to remain moving in that direction.

Notice that procedure MFIG uses MEM graphics as opposed
to the slower PLOT graphics. You will have to refer to the table of
TRS-80 ASCII graphics in the Appendix if you want to see how the
procedure assembles the enemy missile figure.

AFIG, SPEED and UPDATE Procedures

Procedure AFIG draws or erases the image of the player’s
missile. The basic operation of this procedure is identical to that of

223



DECLARE
MAINLINE
VARIABLES

DEFINE ALL
FUNCTIONS
AND
PROCEDURES

[

PICK SEED
VALUE

P

START ENEMY
SPEED DELAY

WRITE
GAME HEADING

START

Y

CLEAR SCREEN,
INITIALIZE
TRY & SCORE

&

INCREMENT
SPEED DELAY

ERASE ENEMY
MISSILE

—

UPDATE
SCORE MESSAGE

]

FETCH ENEMY

SET ENEMY
MOVE

A B

ALTITUDE,
SPEED,
DELAY TO
LAUNCH
INITIALIZE DF‘G:’!STEEMY
AND DRAW SET ENEMY
PLAYER'S DONE FLAG
MISSILE [
: FFLAG=1
ERASE
ENEMY LAUNCH ) PLAYER
DELAY MISSILE
ERASE PLAYER
RESET FLAGS { MISSILE RESET
| FIRE
SET PLAYER FLAG
‘ MOVE
A T
¢ D E F

Fig. 12-2. Flow chart for MISSILE SHOOT game.

224



SET
DRAW PLAYER PLAYER

MISSILE e

FLAG

N

ERASE

Y ENEMY
| seTHTRaG | [ MSSLE

INCREMENT
SCORE

ERASE
ENEMY,
PLAYER,
MISSILES

!

INCREMENT
TRY

aLAZ

TRY>10

Y

WRITE'AGAIN'
MESSAGE

AGAIN

225




the MFIG procedure. The figure is drawn a bit differently, how-
ever, and the missile moves from bottom to top, rather than from
left to right across the screen. Variables APLACE and PHASE for
procedure AFIG indicate the current position of the player’s mis-
sile and whether it should be drawn or erased.

The third procedure in the program listing is called SPEED.
This is nothing more than a time delay subroutine that occupies the
time necessary for counting variable TIME from 0 to DELAY.
Variable DELAY is carried to the SPEED procedure from the
mainline program. Variable TIME, however, is used only within
this particular procedure, and is not declared in the list of variables
for the mainline program.

Procedure UPDATE simply updates the scoring on the
screen, generating the figures for writing out the TRY value and
SCORE. Now that wasn’t too bad, was it?

Beginning Operations

Returning to the flow chart in Fig. 12-2, the next step follow-
ing the definition of all the functions and procedures is picking the
SEED value for the random number generator. That step deter-
mines the sequence of enemy missile altitudes, speeds and delays
for the entire game program.

The flow chart then calls for writing out the heading messages
and waiting for the player to strike the ENTER key to get the game
started. Once the game is started, the system clears the screenand
initializes the TRY and SCORE variables. TRY is a mainline
variable that keeps track of the number of attacks in a game. The
game, as shown here, runs for 10 successive attacks, so you will
find TRY incrementing from 1 to 10 as the game progresses. The
game comes to an end after the tenth TRY.

SCORE, as you might imagine, is the player’s score counter.
It increments each time the player manages to lob his missile into
the attack missile.

All of that gets a particular game started. The remainder of the
program controls events for a given attack sequence within the
10-TRY game.

According to the flow chart, the next operation is that of
updating the score on the screen. You can find this point in the
program listing as the line, UPDATE(TRY, SCORE), two lines
below the statement, FOR TRY:=1 TO 1¢ DO.

The system picks random numbers for the enemy missile’s
attack altitude, speed and delay. These operations appear in the

226



program listing as a sequence of assignment statements involving
MSTART, MPLACE, MSPEED and GDELAY.

The enemy missile is ready for a TRY at this point in the
process. First, the system has to draw the player’s missile at its
initial position at the bottom of the screen. That is done by the
assignment sequence, APLACE:=16224 and AFIG(APLACE, 1),
in the program listing. The operations appear on the flow chart in
Fig. 12-2 as INITIALIZE AND DRAW PLAYER’S MISSILE.
Flag Variables

The next step is to delay the launch of the enemy missile, and
that is done by SPEED(GDELAY) in the program. Just before the
enemy missile is actually launched, however, it is necessary to
reset a group of flags.

The flags in this game are just variables taking on values of 1
or 0, depending upon the events that have transpired during the
game. FFLAG, for example, has a value of 0 if the enemy missile
has been launched, but the player’s missile has not. Once the
player’s missile is launched, FFLAG is set to a value of 1.

MDONE is another flag variable. This one indicates whether
or not the enemy missile has reached the right-hand extreme of its
travel across the screen. That variable is at 0 until that criterion is
reached. At that time, MDONE is set to 1.

AMISS is a flag variable that indicates whether or not the
player’s missile has reached the top of the screen. HIT is the last
flag in the group, and it signals whether or not a contact has
occurred between the two missiles. In both of these instances, a 0
indicates “no” and a 1 indicates “yes.”

Everything is ready for an attack at this point. But the se-
quence of events that follows depends upon whether or not the
player’s missile has been launched. See the FFLAG=1 conditional
in the flow chart.

If the player’s missile has not been fired, conditional
FFLAG=1is not satisfied, and the player is given a chance to do so
by means of the FIRE conditional. If, during that time, the player
strikes the ENTER key to fire the missile, the FIRE conditional is
satisfied and FFLAG is set to 1. FFLAG then remains at a value of 1
throughout the attack sequence, indicating that the player has
indeed launched his missile. Notice that the FIRE conditional is
bypassed once FFLAG is set to 1.

Looping Operation

After checking out the status of the player’s missile firing

opportunity, the system increments the speed delay. If the speed

227



delay is not done, the DELAY DONE conditional is not satisfied,
and the flag checking sequence is repeated. The system thus loops
around this sequence until the speed delay is done.

The purpose of this particular looping operation is to give the
player an opportunity to launch his missile and provide a time delay
necessary for making the enemy missile move at a reasonably slow
pace across the screen. The loop, in other words, actually per-
forms two functions at one time. The animation effect could be
seriously degraded if these two operations were performed sepa-
rately. The INKEY operation for triggering the player’s missile
requires frequent repetition to be reliable. There is no point in
building a separate loop for that INKEY operation when the missile
speed control requires the same sort of operation.

So the loop between conditionals FFLAG=1 and DELAY
DONE in Fig. 12-2 does double duty. These operations can be
found in the program listing as a REPEAT . . . UNTIL loop that
begins with the statement, MDELAY:=0.

Animation Sequence

The next group of operations are responsible for the actual
animation effects and picking up the end points of the attack sequ-
ence. The animation effects involve moving the enemy missile
across the screen by using the MFIG procedure and incrementing
its MPLACE value. The player’s missile is likewise moved up the
screen, provided it has been launched.

The three end points for the repeating animation sequence
have been described already: the enemy missile reaching the
right-hand extreme of its travel (indicating either a missed shot or
none at all), the player’s missile reaching the top of the screen
(indicating a missed shot), or the two figures colliding (indicating a
successful shot on the player’s part).

No matter how the sequence turns out, the TRY counter is
incremented by the INCREMENT TRY block in Fig. 12-2, If TRY
is less than 10, the game loops back to the point where it updates
the score and sets up another launching sequence.

But if it happens that TRY is greater than 10, it is time to
conclude the game. The system prints out an appropriate message
and waits for the plaver to satisfy the AGAIN conditional by
striking the ENTER key. Then the system loops back to the point
where it writes the new game heading and waits for another
ENTER operation to initialize the TRY and SCORE counters.

If you have made a conscientious effort to understand the
Pascal language as you have progressed through this book, you

228



should have little trouble following the first half of the structure in
the Pascal program listing for this game. But things might begin
looking a bit peculiar at the point where the animation sequence
begins.

On the flow chart in Fig. 12-2, the sequence in question begins
with the conditional ENEMY AT RIGHT EDGE and ends at IN-
CREMENT TRY. The flow chart looks rather ordinary and, hope-
fully, you have little trouble following it.

The Pascal listing for this sequence begins with IF NOT
(MPLACE>=MSTART+57) THEN and runs down through the
statement, UNTIL (MDONE=1) OR (AMISS=1) OR (HIT=1)).
Structurally speaking, the whole animation procedure is one big,
fatIF ... THEN. .. ELSE statement. Translated into terms more
consistent with the flow chart, that sequence--the Pascal
structure —reads something like this:

IF the enemy missile is NOT at the right edge of the screen
THEN BEGIN
draw the enemy missile;
IF the player missile has been launched THEN
BEGIN
erase the player missile;
move the player missile up one line;
IF the player missile is NOT at the top of the screen THEN
BEGIN
draw the player missile figure;
check to see if there is contact
IF there is contact THEN
BEGIN
set HIT flag to 1;
increment the SCORE;
erase the enemy missile figure;
erase the player missile figure
END; sequence begun 5 lines above
END the sequence begun 10 lines above
ELSE alternative to player missile NOT at top
BEGIN
set AMISS flag to 1;
erase enemy missile figure
END; the sequence begun 3 lines above
ELSE alternative to player missile having been launched
set FIRE flag to zero
END the sequence begun 26 lines above

229



ELSE alternative to enemy missile NOT at right edge
BEGIN
set MDONE flag to 1;
erase the player missile figure
END; the sequence begun 3 lines above

You were promised in an earlier chapter that Pascal IF . . .
THEN. . . ELSE statements would prove quite valuable. And here
they are, nested four deep to handle an impressive set of program
operations. To be sure, it is possible to do the same sort of thing
usingtheIF ... THEN. .. ELSE statements in BASIC, but BASIC
programmers rarely think in terms of highly structured formats.
Instead, we get off the hook with a lot of GOTO statements that eat
up big doses of time and memory. Tiny Pascal does not include
GOTO statements, so Pascal programmers are forced into the
highly structured and quite efficient form of thinking.

Incidentally, Standard Pascal does include a GOTO statement
that many programmers tend to abuse. In a manner of speaking, it’s
fortunate that Chung and Yuen—the originators of Tiny Pascal —
saw fit to leave the GOTO statement out of their version of Pascal.
To catch the essence and elegance of the nested IF . . . THEN
structure demonstrated in this game program, try looking at a more
general example.

FLOW CHART FOR IF . . . THEN . . . ELSE PROGRAMMING

Figure 12-3 is the flow chart for a general sequence of condi-
tionals and operations. It really makes no difference what the
conditionals are testing or what the DO statements are doing. The
important thing here is the structure of the thing. Example 12-1
shows the Pascal structure for such a scheme:

Example 12-1

IF A THEN >
BEGIN > e
DOU;

IFB THEN—-—-——-—-—->—T
BEGIN ————>—
DOV;

IF C THEN—>
DO W

ELSE ——<

DO X

END—<

230



ELSE ' !
DOY
END
ELSE
DO Z;

The arrows and lines drawn onto the program point out the
corresponding elements of the nested statements. Structurally
speaking, the program is of the form:

IF A THEN
statement

ELSE

DO Z;

That statement, however, takes this form:

BEGIN
statement
END

So considering just the first- and second-order statements,
the program in Example 12-1 looks like:

IF A THEN
BEGIN
statement
END
ELSE
DO Z;

Now the statement in that version takes the general form:

DO ;

IF BE THEN
statement

ELSE

DOY
Merging that with what has been done thus far:

IF A THEN
BEGIN
DO U;

IF B THEN
statement
ELSE
DOY

END

ELSE
DO Z;

231




N
A &
Y
DO U
N
B b oz
Y
DOV
DOY
N
DOW CO X
A

Fig. 12-3. Flow chart for a general nested, IF...THEN...ELSE programming
situation.

If you are following the evolution of this pattern, you might
suspect that the statement in this instance takes the form:
BEGIN
DO V;
IF C THEN
DO W
ELSE
DO X

Fit that segment into the evolutionary scheme, and you end up with
the program as it appears in Example 12-1.

The nested IF . . . THEN . . . ELSE statements in the
MISSILE SHOOT game follow the same general pattern. Some of

232



the operations within the statements are a bit more involved, but
that does not alter the fact that Pascal programs are, indeed, built
around nested statements.

THE ULTIMATE IN GRAPHICS: REAL-TIME ANIMATION

It is one thing to draw a picture of some sort on the CRT
screen. But it is quite something else to make that picture behave
in a complex, animated fashion.

Computer animation works on the same principle as animated
films. The basic idea is to show a series of still pictures in a
sequence that is rapid enough to fool the eye into thinking the
pictures are moving.

The real problem with computer animation is not the nature of
the programs, themselves, but the magnitude of the programming
task. This section offers a simple 4-frame animation sequence as an
example. In principle, there is nothing at all tricky about the
process. At the risk of being overly repetitive, I must say thereisa
lot of work involved in getting the sequence running on the screen.

There can be little room for argument about the fact that
real-time animation must be carried out using MEM graphics.
PLOT graphics is far too slow on the TRS-80 to allow the rapid
sequencing of complicated pictures. The pictures must be drawn
directly into the system’s video memory.

Where do the “pictures” come from? The pictures must be
built up, one element at a time, according to the TRS-80 graphics
code listed in the Appendix. These elements have to be carefully
selected and then worked into a program as part of a MEM state-
ment.

Recall that a Tiny Pascal MEM statement takes the general
form, MEM (expression): =expression. In the context of MEM
graphics, this statement takes the special form, MEM(ad-
dress): =graphic code, where address is the position of the element
on the screen and graphic code is the ASCII code number for the
element.

The allowable range of addresses for MEM graphics is bet-
ween decimal 15360 and 16383. Do any MEM operations outside
that range, and you run the risk of destroying your own program,
the Tiny Pascal program, or both.

If you want to try some graphics to get a feeling for the idea,
try Example 12-2.

Example 12-2

(* SEE GRAPHICS *)
VAR N: INTEGER;

233




BEGIN

WRITE 28, 31);

FOR N:=15360 TO 15422 DO
MEM®) :=N-15231

END;

That will print out the TRS-80 graphics. The screen addres-
ses run between 15360 (upper left-hand corner) and 15422 (almost
to the end of the second line). If you work through the math in that
example, you will find that the graphics codes run between 129 and
191, the entire family of graphic elements listed in the Appendix.

Planning the Frames

The first step in preparing a real-time animation sequence is
to plan the frames. A helpful tool in this case is Radio Shack’s
TRS-80 Video Display Worksheet. Pads of these worksheets are
available through any Radio Shack store that handles TRS-80
equipment and supplies.

The handy feature of these worksheets is the way they draw
out the six segments for each character space. You will have to
work out the MEM addressing on those sheets for yourself, how-
ever. Atthe time of this writing, Radio Shack isn't including video
address coordinates on the worksheets. The TAB, PRINT and
PLOT coordinates are there, but the POKE/PEEK coordinates —
(BASIC’s counterpart of Pascal’s MEM) are not.

Sketch the figure for the first frame on the worksheet, being
careful to follow the character-segment lines. You will have to
compromise on the resolution at times, showing some jagged lines
where you would rather have smooth ones, but the overall resolu-
tionisn'tbad. At least the resolution is good enough for doing some
fantastic graphics.

Translation Into TRS-80 Graphic Code Numbers

So sketch out the figure, and fill in the dark areas of the
screen. When you're done with this part of the job, you will have a
good idea of what graphic elements you will need to produce the
desired image. Now here comes a time-consuming part that calls
for your full attention, translating the drawn graphic elements into
TRS-80 graphic code numbers.

You can write the program so that it draws the picture ele-
ments inany order you want. There is no reason why one drawing
pattern would be better than any other. As long as you have a
choice, you might as well be systematic about it. The more sys-

234



tematic you are at this point, the less chance you have of making
errors.

So list the graphics code numbers as they would appear as the
picture is scanned from left to right, and from top to bottom. List
the first horizontal line of codes from left to right, proceeded to the
next line down, and list the codes for that line.

Scanning the picture in that particular fashion won’t make it
any easier for the system to draw it. The computer can build MEM
images with the elements presented in any order. The advantage is
that the systematic scanning lets you double check or troubleshoot
your listing much easier. It makes it easier to locate an element you
might want to change.

Starting Address

Once you have the orderly listing of graphics codes, pick a
starting address and assign it to the first element to be drawn. If
you decided to follow the scanning scheme I have just suggested,
that first address will represent the position of the picture element
in the upper left-hand corner of the image.

The next picture element to the right will then have the
starting address, plus 1. The next element ought to take the
starting address plus 2, and so on, to the end of the first line.

START

_:\ 0 1 2 3 4 5 ONE2x3ELEMENT
| CHARACTER SPACE

Ve

—9 (SEE APPENDIX C FOR
+0 | DETAILS)
+64
NN EXAMPLE:

— —_ THIS SPACE IS
START + 64 + 3
+128 = START + 67

Fig. 12-4. Example of field drawing an animation figure.

235




Begin the second line by adding 64 to the starting address.
There are 64 graphics elements in each line on the screen. So
adding 64 to any of the addresses sets up the system for drawing a
new element directly below the old one.

The second element in the second line thus has an address
equal to the starting address plus 65. The third element’s address
is the starting address plus 66, and so on through the end of the
second line.

The third line begins at the starting address plus 128, and the
left-to-right scanning is achieved by incrementing that number.
See the drawing in Fig. 12-4.

Once you have the listing of addresses and element codes, you
can assign them to a series of MEM statements, perhaps a rather
long series. In the worst case, there will be a MEM statement for
every element in the picture.

MEM Statements Program

At any rate, you can assign a procedure name to the picture,
and enter it into your computer. Suppose, for instance, you name
the procedure 1IFRAME. You can then check it on the computer by
writing procedure 1IFRAME and all your MEM statements into a
program. This sort of program will do the job:

Example 12-3

(* GRAPHICS %)
PROC 1 FRAME;

BEGIN

(all your MEM statements here)

END;
BEGIN
WRITE(28,31);
1IFRAME
END.

The program, itself is exceedingly simple. The complexity of
the procedure, IFRAME, depends on the size of your picture.

Then go through the same process to develop a set of MEM
statements for the second frame, and enter it into the computer as
procedure IFRAME. You can then test the new procedure as a
separate program, or you can combine it with the first frame to see
the animation sequence beginning to take shape.

2-Frame Animation Program
Here is a little 2-frame animation program:

236



Example 12-4
(* GRAPHICS *)
VAR DELAY;INTEGER;
PROC 1FRAME;
BEGIN
(MEM statements for frame 1 here)
END;
PROC 2FRAME;
BEGIN
(MEM statement for frame 2 here)

END;

BEGIN REPEAT
WRITE(28,31);

1FRAME

FOR DELAY:=0 TO 10¢ DO;
WRITE (28,31),

2FRAME;

FOR DELAY:=0 TO 1¢0¢ DO
UNTIL DELAY<>DELAY
END.

The program displays the two frames, one at a time and in an
unending sequence. A delay interval inserted after drawing each
frame slows down the action to a reasonable rate. You can slow the
rate even more by increasing the delay interval.

Now suppose the idea is to build a 2-frame sequence of a figure
running across the screen. The two frames, themselves, show the
figure in two basic running positions. As the program is shown in
Example 12-4, the figure won’t make any progress across the
screen. The animation will take place in just one spot.

To give the figure some motion across the screen—in addition
to the animation—simply increment the value of the starting ad-
dress. Run a frame, clear the screen, increment the starting ad-
dress, and draw the second frame. That would make the figure
move from left to right across the screen,

Decrementing the starting address for the frames makes the
figure move to the left. Incrementing in steps of 64 makes the
figure move downward. Decrementing the starting address by 64
makes it move upward.

Be careful when planning these address changing programs.
You certainly don’t want the figure (or any part of it) to wander
outside the video memory space.

237




Before taking a look at a specific example of some real-time
animation, consider this important point. There will be times when
you don’t want to clear the entire screen between successive
animation frames. Perhaps you are running two animated figures at
the same time, and you don’t want to erase both images at the same
time.

The way around that little problem is to write an erasing
procedure for each figure. The erasing procedure would do a
MEM(addresses):=32 through the area covered by the image.
Write a FOR...TO...DO loop to cycle the addresses through the
frame area, and let the code 32 erase the character spaces as it goes
along.

In a sense, this is pinpoint erasing. It saves any other images
that might be on the screen at the same time.

Figures 12-5 through 12-8 show four frames for an animation
sequence. The sequence in this case represents the figure of a little
girl who can both run and jump. Ultimately, the program will show
the girl running across the screen, occasionally hopping up into the
air. You will see variable GPLACE as the starting address and all of
the graphics codes written in a systematic manner below each of
the frames.

Frame 1Program

Here is a program for displaying Frame 1 Fig. 12-5 on the
screen. The reason for running this program is to test the accuracy
of the drawing code numbers. You will note that statements from
Fig. 12-5 that call for placing a blank space on the screen are
omitted from the program. There is no need to specify them,
because the screen is always cleared before the figure is drawn. A
blank space will thus be a blank space, whether you specify it in the
graphics program or not.

Example 12-5

(* GIRL AT PLAY V.1 *)
VAR DELAY,GPLACE:INTEGER;
(* FRAME 1 PROCEDURE ¥*)
PROC FR1 (GPLACE,PHASE);

VAR DX,DY:INTEGER;

BEGIN

LF NOT PHASE THEN

FOR DY:=0 TO 2 DO
FOR DX:=0 TO 4 DO
MEM (GPLACE+DX+64*DY) : =32
ELSE
BEGIN
MEM (GPLACE) :=136;

238



MEM (GPLACE+1) :=175;
MEM (GPLACE+2) :=159;
MEM (GPLACE+65) :=187;
MEM (GPLACE+66) :=191;
MEM (GPLACE+67) :=157;
MEM (GPLACE+128) :=178;
MEM (GPLACE+129) :=159;
MEM (GPLACE+130) :=135;
MEM (GPLACE+131) :=175;
MEM (GPLACE+132) :=180
END
END;
(* BEGINNING OF MAINLINE *)
BEGIN
WRITE(28,31);
GPLACE:=15770;
REPEAT
FR1 (GPLACE,1) ;
FOR DELAY:=0 TO 1000 DO;
FR1 (GPLACE,Q) ;
FOR DELAY:=0 TO 500 DO;
FR1 (GPLACE,0)
UNTIL DELAY<>DELAY
END.

Two variables, GPLACE and PHASE, are carried to the FR1
frame-drawing feature. GPLACE designates the starting address
of the figure-drawing operation, and PHASE indicates whether the
figure should be drawn (PHASE=1) or erased PHASE=0).

The mainline program thus calls for alternately drawing and
erasing the figure, inserting time delays between each operation.
The program cycles indefinitely, or until you strike the BREAK
key twice in succession.

Enter and compile the program in Example 12-5. Run it to
check the accuracy of the drawing and erasing feature.

Program With MEM Statements For Frame 2

Example 12-6 is extended to include the MEM drawing
statements for Frame 2 in Fig. 12-6. The mainline program ani-
mates the figure to some extent by drawing Frame 1, erasing it,
drawing Frame 2, erasing it, and going back to Frame 1 again.

Note that the erasing operations for both frames is now
specified as a separate procedure, ER12. That saves some un-
necessary duplication of erasing steps in the two figure-drawing
procedures.

Example 12-6

(* GIRL AT PLAY V.2 *)
VAR DELAY,GPLACE:INTEGER;
(* ERASE PROCEDURE -- 1,2 *)

239




PROC ER12(GPLACE) ;
VAR DX,DY:INTEGER;
BEGIN
FOR DY:=0 TO 2 DO
FOR DX:=0 TO 4 DO
MEM (GPLACE+DX+464*DY) : =32
END;
(* FRAME 1 PROCEDURE *)
PROC FR1 (GPLACE,PHASE);
BEGIN
IF NOT PHASE THEN ER12(GPLACE)
ELSE
BEGIN
MEM (GPLACE) : =136;
MEM (GPLACE+1) :=175;
MEM (GPLACE+2) :=159;
MEM (GPLACE+65) :=187;
MEM (GPLACE+66) :=191;
MEM (GPLACE+67) :=157;
MEM (GPLACE+128) :=178;
MEM (GPLACE+129) :=159;
MEM (GPLACE+130) :=135;
MEM (GPLACE+131) :=175;
MEM (GPLACE+132) :=180
END
END;
(* FRAME 2 PROCEDURE *)
PROC FR2(GPLACE,PHASE);
BEGIN
IF NOT PHASE THEN ER12(GPLACE)
ELSE
BEGIN
MEM (GPLACE) :=136;
MEM (GPLACE+1) :=175;
MEM (GPLACE+2) :=159;
MEM (GPLACE+65) :=187;
MEM (GPLACE+66) :=191;
MEM (GPLACE+67) :=157;
MEM (GPLACE+128) :=130;
MEM (GPLACE+129) :=131;
MEM (GPLACE+130) :=191;
MEM (GPLACE+131) :=179
END
END;
(* BEGINNING OF MAINLINE *)
BEGIN

WRITE(28,31);
GPLACE:=15770;
REPEAT

FR1 (GPLACE,1) ;
FOR DELAY:=0 TO 10 DO;
FR1 (GPLACE,0) ;
FR2 (GPLACE,1) ;
FOR DELAY:=0 TO 10 DO;
FR2 (GPLACE,0)

UNTIL DELAY<>DELAY

END.

240



FRAME 1

G PLACE+0 = 136

G PLACE +1 =175

G PLACE +2 = 159

G PLACE +3 = 32

G PLACE +4 = 32

G PLACE +64 = 32

G PLACE +65 = 187
G PLACE +66 = 191
G PLACE +67 =157
G PLACE +68 = 32
G PLACE +128 = 178
G PLACE +129 = 159
G PLACE +130 =135
G PLACE +131 = 175
G PLACE +132 = 180

Fig. 12-5. Preliminary drawing and graphics codes for Frame 1 of the GIRL AT

PLAY animation sequence.

241




FRAME 2

G PLACE +0 = 136
G PLACE +0 =175
G PLACE +2 = 159
64*1 G PLACE +3 =32

G PLACE +4 =32
_ G PLACE +64 = 32

G PLACE +65 = 187
G PLACE +66 = 191
G PLACE +67 = 157
G PLACE +68 = 32
_"" G PLACE +128 = 136
G PLACE +129 = 131
G PLACE +130 = 191
G PLACE +131 = 179
G PLACE +132 = 32

Fig. 12-6. Preliminary drawing and graphics codes for Frame 2 of the GIRL AT
PLAY animation sequence.

With the program in Example 12-6, the figure of the girl
should appear to run at one place on the screen. If you want to slow
her down a little bit, just extend the DELAY range in the mainline
portion of the program.

If the program is in good working order, you are ready to add
some translation effect to the figure. The idea is to make the girl
move from left to right across the screen as her legs show the
running effect.

Revised Version Of The Mainline Program

There is no need to change any of the procedures as they
appear in Example 12-6, but you do have to rework the mainline
program. Use the Tiny Pascal editing feature to do this, and you

242



will save the trouble of having to enter all the procedures again.
Here is the revised version of the mainline program:

Example 12-7

(* BEGINNING OF MAINLINE *)

BEGIN

WRITE(28,31);

REPEAT
GPLACE:=15810;
REPEAT

FR1 (GPLACE,1);
FOR DELAY:=0 TO 100 DO;
FR1 (GPLACE,0) ;
GPLACE :=GPLACE+1;
FR2 (GPLACE,1);
FOR DELAY:=0 TO 100 DO;
FR2 (GPLACE, Q)
UNTIL GPLACE=15873
UNTIL DELAY<>DELAY
END.

Compile and run this version, and you'll see the little girl
stroll across the screen. The next task is to enter procedures for
drawing Frames 3 and 4, based on the codes generated from Figs.
12-7 and 12-8. Use the system’s edit mode to insert the ER34
erasing procedure just after ER12, and FR3 and FR4 procedures
just after the FR2 procedure already stored in your system.

Procedures For Frames 3 and 4

Here are the new procedures for the GIRL AT PLAY pro-
gram:
Example 12-8

(* ERASE PROCEDURE == 3,4 *)
PROC ER34(GPLACE) ;

VAR DX,DY:INTEGER;

BEGIN

FOR DY:=0 TO 3 DO

FOR DX:=0 TO 7 DO
MEM (GPLACE+DX+64*DY) :=32
END;

(* FRAME 3 PROCEDURE *)
PROC FR3 (GPLACE,PHASE) ;
BEGIN
IF NOT PHASE THEN ER34(GPLACE)
ELSE
BEGIN
MEM (GPLACE+5) :=176;
MEM (GPLACE+64) :=139;
MEM (GPLACE+65) :=180;
MEM (GPLACE+67) :=175;
MEM (GPLACE+68) :=159;

243




MEM (GPLACE+70) :=184;
MEM (GPLACE+71) :=135;
MEM (GPLACE+129) :=131;
MEM (GPLACE+130) :=179;
MEM(GPLACE+131) :=191;
MEM(GPLACE+132) :=191;
MEM (GPLACE+133) :=179;
MEM (GPLACE+134) :=131;
MEM(GPLACE+192) :=140;
MEM (GPLACE+193) :=143;
MEM (GPLACE+194) :=129;
MEM(GPLACE+198) :=143;
MEM(GPLACE+199) : =140
END
END;
(* FRAME 4 PROCEDURE *)
PROC FR4(GPLACE, PHASE);
BEGIN
IF NOT PHASE THEN ER34(GPLACE)
ELSE
BEGIN
MEM(GPLACE+5) :=176;
MEM (GPLACE+67) :=175;
MEM(GPLACE+68) :=159;
MEM (GPLACE+128) :=176;
MEM (GPLACE+129) :=158;
MEM (GPLACE+130) :=135;
MEM (GPLACE+131) :=175;
MEM(GPLACE+132) :=159;
MEM(GPLACE+133) :=139;
MEM (GPLACE+134) :=173;
MEM (GPLACE+135) :=176;
MEM (GPLACE+193) :=176;
MEM(GPLACE+194) :=190;
MEM (GPLACE+195) :=135;
MEM(GPLACE+196) :=139;
MEM (GPLACE+197) :=189;
MEM(GPLACE+198) :=176
END
END;

Editing The Mainline Program

Now edit the mainline program to test the operation of proce-
dures ER34, FR3 and FR4:

Example 12-9

(* MAINLINE *)
BEGIN
WRITE (28,31);
GPLACE:=15816;
REPEAT
FR3(GPLACE, 1),
FOR DELAY:=0 TO 100¢ DO;

244



FR3(GPLACE,0),
FR4(GPLACE, 1);
FOR DELAY:=¢/ TO 10¢ DO;
FR4(GPLACE, )

UNTIL DELAY<*DELAY

END.

What you should have now is the mainline programin Example
12-9 coming after procedures FR3 and FR4 in Example 12-8. The
program’s variable declaration line should appear as it does in
Example 12-6, followed by ER12 from that same example. The
ER34 listing from Example 12-8 should follow ER12, and then you
should find listings for procedures FR1 and FR2 as they are pre-
sented in Example 12-6.

If you are confused by the placement of all this, here is a more
brief description:

Variable declaration line

PROC ER12(GPLACE);

PROC ER34(GPLACE);

PROC FR1(GPLACE ,PHASE);

PROC FR2(GPLACE,PHASE);

PROC FR3(GPLACE,PHASE);

PROC FR4(GPLACE,PHASE);

MAINLINE PROGRAM FROM EXAMPLE 12-9

Compile and run the program as it stands at this time. You
should see the figure jumping up and down, near the left hand side
of the screen. Debug any parts of the figure that might seem
defective. Now you are ready to put together a complete mainline
program, one that combines the running and jumping motions.

To be on the safe side, you ought to save the program on
cassette tape before putting together the final mainline program.
Just in case you make a mistake in setting the values for GPLACE,
you will have a copy of all the procedures on that tape. Remember,
running the figure outside the video memory will most likely
destroy the entire program, and you've invested a considerable
amount of time getting it into the machine.

Reworking The Mainline Program

With the program saved on tape, rework the mainline program
to look like this one:

245



FRAME 3

GPLACE + THRU G PLACE +4 = 32
GPLACE +5 =176

GPLACE + 6, GPLACE +7 =32
GPLACE + 64 = 139

GPLACE + 65 = 180

GPLACE + 66 =32

GPLACE +67 =175

GPLACE + 68 = 159

GPLACE + 69 =32

GPLACE + 70 = 184

GPLACE +71 =135

GPLACE + 128 =32

GPLACE + 129 = 131

GPLACE + 130 = 179

GPLACE + 131, GPLACE + 132 = 191
GPLACE + 133 = 179

GPLACE + 133 = 131

GPLACE + 135 =32

GPLACE + 192 = 140

GPLACE + 193 = 143

GPLACE + 194 = 129

GPLACE + 195, GPLACE + 196 = 32
GPLACE + 195, GPLACE + 196 = 32
GPLACE + 197 = = 130

GPLACE + 198 = 143

GPLACE + 199 = 140

Fig. 12-7. Preliminary drawing and graphics codes for Frame 3 of the GIRL AT
PLAY animation sequence.

246



Example 12-10

(* BEGINNING OF MAINLINE *)
BEGIN
WRITE(28,31);
REPEAT
GPLACE:=15810;
REPEAT
FR1 (GPLACE,1);
FOR DELAY:=0 TO 10 DO;
FR1 (GPLACE,0) ;
GPLACE:=GPLACE+1;
IF (GPLACE=15825) OR (GPLACE=15835) THEN
BEGIN
FOR UD:=0 TO 4 DO
BEGIN
FR4 (GPLACE-64*UD,1) ;
FOR DELAY:=0 TO 5 DO;
FR4 (GPLACE-64*UD,0) ;
FR3 (GPLACE-64*UD,1) ;
FOR DELAY:=0 TO 5 DO;
FR3 (GPLACE-64*UD,0)
END;
FOR UD:=4 DOWNTO 0 DO
BEGIN
FR3 (GPLACE~64*UD,1) ;
FOR DELAY:=0 TO 5 DO;
FR3 (GPLACE-64*UD,0) ;
FR4 (GPLACE~64*UD, 1) ;
FOR DELAY:=0 TO 5 DO;
FR4 (GPLACE-64*UD,0)
END;
GPLACE:=GPLACE+l
END;
FR2 (GPLACE,1) ;
FOR DELAY:=0 TO 10 DO;
FR2 (GPLACE,0) ;
UNTIL GPLACE=15873
UNTIL DELAY<>DELAY
END*

This mainline adds a new variable, UD. So you must edit the
original variable declaration line to include it. The new line should
look like this:

VAR DELAY, GPLACE,UD:INTEGER;

After making that little chance, the program is ready to com-
pile and run. You should see the girl running across the screen,
jumping up and down at two different places along the way.

The way she flaps her arms and legs around when jumping
makes one think she might be trying to fly. Certainly you are free to
tinker with the mainline program to get just about any animation
effect you want.

247




64*2

64*3

FRAME 4

G PLACE +0 THRU G PLACE +4 = 32
G PLACE +5 =176

G PLACE +6, G PLACE +7 = 32

G PLACE +64 THRU G PLACE +66 = 32
G PLACE +67 = 175

G PLACE +68 = 159

G PLACE +69 THRU G PLACE + 71 = 32
G PLACE +128 = 176

G PLACE +129 = 158

G PLACE +130 = 135

G PLACE +131 = 175

G PLACE +132 = 159

G PLACE +133 = 139

G PLACE +134 = 173

G PLACE +135 = 176

G PLACE +192 = 32

G PLACE +193 = 176

G PLACE +194 = 190

G PLACE + 195 = 135

G PLACE +196 = 139

G PLACE +197 = 189

G PLACE +198 = 176

G PLACE +199 = 32

il

Fig. 12-8. Preliminary drawing and graphics codes for Frame 4 of the GIRL AT
PLAY animation sequence.

248




Complete GIRL AT PLAY Program

This chapter closes with a complete listing for GIRL AT
PLAY. If you have been having any difficulties with the animation
examples, try checking your listing—Iline by line—against this
one.

(* GIRL AT PLAY V.3 *)
VAR DELAY,GPLACE:INTEGER;
(* ERASE PROCEDURE -- 1,2 *)
PROC ER12{GPLACE);
VAR DX,DY:INTEGER;
BEGIN
FOR DY:=0 TO 2 DO
FOR DX:=0 TO 4 DO
MEM (GPLACE+DX+64*DY) : =32
END;
(* ERASE PROCEDURE =-- 3,4 *)
PROC ER34(GPLACE);
VAR DX,DY:INTEGER;
BEGIN
FOR DY:=0 TO 3 DO
FOR DX:=0 TO 7 DO
MEM (GPLACE+DX+64*DY) : =32
END;
(* FRAME 1 PROCEDURE *)
PROC FR1 (GPLACE,PHASE);
BEGIN
IF NOT PHASE THEN ER12(GPLACE)
ELSE
BEGIN
MEM (GPLACE) :=136;
MEM (GPLACE+1) :=175;
MEM (GPLACE+2) :=159;
MEM (GPLACE+65) :=187;
MEM (GPLACE+66) : =191;
MEM (GPLACE+67) :=157;
MEM (GPLACE+128) :=178;
MEM (GPLACE+129) :=159;
MEM(GPLACE+130) :=135;
MEM (GPLACE+131) :=175;
MEM (GPLACE+132) : =180
END
END;
(* FRAME 2 PROCEDURE *)
PROC FR2(GPLACE,PHASE);
BEGIN
IF NOT PHASE THEN ER12(GPLACE)
ELSE
BEGIN
MEM(GPLACE) :=136;
MEM (GPLACE+1) :=175;
MEM (GPLACE+2) : =159;
MEM (GPLACE+65) :=187;
MEM (GPLACE+66) :=191;
MEM (GPLACE+67) :=157;
MEM (GPLACE+128) :=130;

249




MEM (GPLACE+129) :=131;
MEM(GPLACE+130):=191;
MEM (GPLACE+131) :=179
END
END;
(* FRAME 3 PROCEDURE *)
PROC FR3 (GPLACE,PHASE) ;
BEGIN
IF NOT PHASE THEN ER34 (GPLACE)
ELSE
BEGIN
MEM (GPL.ACE+5) :=176;
MEM (GPLACE+64) :=139;
MEM (GPLACE+65) :=180;
MEM (GPLACE+67) :=175;
MEM(GPLACE+68):=159;
MEM(GPLACE+70):=184;
MEM(GPLACE+71):=135;
MEM (GPLACE+129) :=131;
MEM (GPLACE+130) :=179;
MBM(GPLACE+131):=191;
MEM (GPLACE+132) :=191;
MEM(GPLACE+133):=179;
MEM (GPLACE+134) :=131;
MEM (GPLACE+192) :=140;
MEM(GPLACE+193):=143;
MEM(GPLACE+194):=129;
MEM(GPLACE+198):=143;
MEM(GPLACE+199):=140
END
END;
(* FRAME 4 PROCEDURE ¥)
PROC FR4 (GPLACE,PHASE) ;
BEGIN
IF NOT PHASE THEN ER34 (GPLACE)
ELSE
BEGIN
MEM (GPLACE+5) :=176;
MEM (GPLACE+67) :=175;
MEM(GPLACE+68):=159;
MEM(GPLACE+128):=176;
MEM(GPLACE+129):=158;
MEM(GPLACE+130):=135;
MEM (GPLACE+131) :=175;
MEM (GPLACE+132) :=159;
MEM(GPLACE+133):=139;
MEM (GPLACE+134) :=173;
MEM (GPLACE+135) :=176;
MEM (GPLACE+193) :=176;
MEM (GPLACE+194) :=190;
MEM (GPLACE+195) :=135;
MEM(GPLACE+196):=139;
MEM(GPLACE+197):=189;
MEM (GPLACE+198) : =176
END
END;
(* BEGINNING OF MAINLINE ¥)
BEGIN

250



WRITE(28,31);
REPEAT
GPLACE:=15810;
REPEAT
FR1 (GPLACE,1);
FOR DELAY:=0 TO 10 DO;
FR1 (GPLACE,0) ;
GPLACE: =GPLACE+1;
IF (GPLACE=15825) OR (GPLACE=15835)
BEGIN
FOR UD:=0 TO 4 DO
BEGIN
FR4 (GPLACE-64*UD,1) ;
FOR DELAY:=0 TO 5 DO;
FR4 (GPLACE-64*UD,0) ;
FR3 (GPLACE-64*UD,1) ;
FOR DELAY:=0 TO 5 DO;
FR3 (GPLACE-64*UD,0)
END;
FOR UD:=4 DOWNTO 0 DO
BEGIN
FR3 (GPLACE-64*UD,1) ;
FOR DELAY:=0 TO 5 DO;
FR3 (GPLACE-64*UD,0) ;
FR4 (GPLACE~64*UD,1) ;
FOR DELAY:=0 TO 5 DO;
FR4 (GPLACE-64*UD,0)
END;
GPLACE : =GPLACE+1
END;
FR2 (GPLACE,1);
FOR DELAY:=0 TO 10 DO;
FR2 (GPLACE,0) ;
UNTIL GPLACE=15873
UNTIL DELAY<>DELAY

END

THEN

251



Chapter 13
Some Just For Fun Pastimes

The three Tiny Pascal programs offered in this chapter are of
rather modest proportions, but they can be fun for one or two
players. The text accompanying these programs simply describes
their operating features and points out a couple of special prog-
ramming steps.

ONE PLAYER HIGH/LOW GAME

A “high/low” game presented earlier in this book required
two players, one to enter the mystery number and another to
discover it. This version is intended for one player. The program
selects the mystery number.

Format

Upon running the program, you will first see the heading, **
ONE PLAYER HIGH/LOW GAME™*, followed by the request,
ENTER TO START. Between the time you start the program and
do the ENTER, variable SEED counts like crazy between 0 and
1000. There is no telling where that counter will be when you
strike the ENTER key to start the game, so the SEED value makes
a fine “mystery” number for the game.

After striking the ENTER key to get things started, you see
OK, THE MYSTERY NUMBER IS IN PLACE, AND IT IS A

NUMBER BETWEEN ¢ and 100¢. ENTER YOUR FIRST
GUESS.

252



You respond by entering any number you want. The program
will tell you whether the number is TOO LARGE, TOO SMALL or
YOU GOT IT!!!.

If the number you entered is less than or greater than the
mystery number, you are asked to enter your next guess. But if
(and when) you enter the number that matches the mystery
number, YOU GOT IT!!! flashes on and off 10 times, followed by a
listing of the mystery number and the number of tries you used to
find the right number.

Program

Here is the program:

(X ONE-FLAYER HIGH/LOW %)
VAR SEEDsPNUMySCOREs TIME » AGAINyFHASE L INTEGER $
BEGIN

WRITEC28+319215y/ X%k ONE-FLAYER HIGH/LOW X% »13y13)5
WRITE( "ENTER TO START ...’ )}
WHILE INKEY<>13 DO
BEGIN
IF (SEED<$) OR (SEED:1#¢#¢) THEN
SEED$=5¢§ 3
SEED!=SEELi+1
END;
REPEAT
WRITEC 28531y’ OKy THE HYSTERY NUMBER IS IN PLACE’ »i3)s
WRITE(“AND IT IS A NUMBER BETWEEN # AND 1644, »13,13)5
WRITE(“ENTER YOUR FIRST GUESS.../s13);
SCORE $=4;
REPEAT
READ (PNUM#);
WRITE(28,31)5
IF PNUM>SEED THEN
WRITE( PNUM#s32,/ IS TOO LARGE’ s13s’TRY AGAIN +.4 )
ELSE IF PNUM<SEEL THEN
WRITECPNUME, 32,7 15 TOO SMALLY » 4139’ TRY AGALN.. .7 73
SCORE $ =SCORE+1
UNTIL PNUM=SEED;
FOR FHASES=¢ TO W/ 1O
BEGIN
WRITE( 2853192285/ YOU GOT LIT!1! )5
FOR TIME:=¢ TO 14§ DO
WRITEC28531)5

FOR TIME:=f TO 14¢ 1O
ENIt;

253




WRITE( 135 THE MYSTERY NUMBER WAS ‘ ySEED#,13,13)5
WRITECYOU GOT IT IN ’sSCORE#»y’ TRIES. 1351375
WRITECENTER TO PLAY ABAIN...’ )}
WRITEC 13/ OR STRIKE THE SFACE BAR TO END THE FROGRAM. " )3
AGAINS =4}
MHILE NOT((AGAIN=32) OR (AGAIN=13)) DO
BEGIN
AGAINS =INKEY$
IF SEED>1#%% THEN SEEDS=A;
SEED}=SEED+1
END
UNTIL AGAIN=32;
WRITE(28531)

END.

A TWO PLAYER HANGMAN GAME

The game of HANGMAN illustrated here adds some special
excitement to the old pencil-and-paper version. It is a two player
game. One player is responsible for entering a “secret” word into
the program, and the other player’s job is to figure out what that
word is. The guesser is allowed 10 wrong guesses before he or she
is effectively hanged.

Format

Running the program, you first see HANGMAN: ENTER
YOUR SECRET WORD. USE NO MORE THAN 10 LETTERS,
AND MAKE SURE YOUR VICTIM IS NOT LOOKING OVER
YOUR SHOULDER!

The player acting as the hangman can then enter up to 10
letters—no punctuation, spaces or numerals allowed. In fact, the
program locks out the keyboard for everything but the 26 letters of
the alphabet.

The hangman strikes the ENTER key when the spelling is
done. Then the program reprints the word and asks whether or not
itis OK. The hangman responds witha Y or N. If the response is N
(for “no”), the hangman has a chance to enter the secret word
again. This little feature makes it possible to correct errors in
spelling, change your mind about the secret word and so on.

After responding to the OK? with a Y, the system clears the
screen and prints VICTIM: DO YOUR THING TO SAVE YOUR
NECK. . . At that time some dashes appear near the center of the
screen. Each dash represents a letter in the secret word.

254



The victim, or guesser, types a letter on the keyboard. Ifitisa
letter included in the secret word, it appears among the dashes and
at the places it should appear in the finished word.

But if the letter is not part of the secret word, it is printed at
the bottom of the screen. The “hang” counter is moved one step
closer to the deadly count of 10.

The guesser continues entering letters until one of two things
happen. Either the secret word is completely filled in or the tenth
wrong guess occurs. In the former case, the victim’s neck is saved.
If the victim doesn’t match the letters after 10 wrong guesses, it’s
all over. ARRGH—YOU ARE DEAD . ..

The program makes use of three arrays. One of these arrays,
STR, keeps track of the letters in the secret word. Array PSTR
keeps track of the victim’s correct guesses, and WSTR saves the
list of wrong guesses.

Program

If you are a bit weak when it comes to working with arrays,
you might find a thorough study of this program quite helpful.

(* HANGMAN *)
VAR N,C,O0K,X,LINE,DONE,WN,PN,PC,PW:INTEGER;
STR:ARRAY(10) OF INTEGER;
PSTR:ARRAY (10) OF INTEGER;
WSTR:ARRAY(10) OF INTEGER;
BEGIN
(* BANGMAN ENTERS THE SECRET WORD *)
REPEAT
WRITE(28,31,'HANGMAN: ENTER YOUR SECRET WORD',13);
WRITE('(UP TO 10 LETTERS)...',13,13);
N:=1;C:=0;0K:=0;
REPEAT
REPEAT
C:=INKEY
UNTIL (C=13) OR ((C>=65) AND (C<=90));
IF C<>13 THEN
BEGIN
STR(N) :=C;
WRITE(STR(N)) ;
N:=N+1
END
UNTIL (C=13) OR (N>10);
N:=N-1;
WRITE(28,31,'THE SECRET WORD 1S:',32);
FOR X:=1 TO N DO WRITE(STR(X)):
WRITE(13,'IS THE WORD OK? YES OR NO ...');
READ (OK)
UNTIL OK='Y';
(* BEGINNING OF THE "VICTIM" PHASE *)
FOR X:=0 TO 100 DO
BEGIN
PSTR(X) :=0;

255



WSTR(X) :=0
END;
WN:=1;PN:=0;
WHILE (PN<N) AND (WN<=10) DO
BEGIN
WRITE(28,31,'VICTIM: DO YOUR THING TO SAVE YOUR
NECK ...');
FOR LINE:=1 TO 8 DO WRITE(13);
PN:=0;
WRITE(215);
FOR X:=1 TO N DO
BEGIN
IF PSTR(X)=STR(X) THEN
BEGIN
WRITE(STR(X) ,32);
PN:=PN+1
END
ELSE WRITE(45,32);
END;
IF PN<KN THEN
BEGIN
REPEAT
WRITE(13,'PICK A LETTER eee' 13);
WRITE (*WRONG LETTERS ALREADY USED ARE:',13);
FOR X:=1 TO WN DO WRITE(WSTR(X) ,32);
READ (PC)
UNTIL (PC>=65) AND (PC<=90);
PW:=0;
FOR X:=1 TO N DO
IF PC=STR(X) THEN
BEGIN
PW:=PW+l;
PSTR(X) :=PC
END;
IF PW=0 THEN
BEGIN
WSTR(WN) : =PC;
WN s =WN+1
END;
END;
END;
WRITE(13);
IF PN>=N THEN
FOR X:=1 TO 10 DO
BEGIN
WRITE( 'YOU JUST SAVED YOURSELF!!l');
FOR DONE:=0 TO 250 DO;
WRITE(29,30);
FOR DONE:=0 TO 50 DO;
END
ELSE WRITE ('ARRGH ~-- YOU ARE DEAD')
END.

MAKING HEADLINES

Editors of small town newspapers are sometimes hard pres-
sed to come up with some good headlines. Here is little program
intended to make up any number of headlines on demand.

256



Actually it is a goofy little thing that is at least good for a few
chuckles. The program prints out a noun, verb and another noun to
simulate the effect of a complete sentence. The silly part of the
whole thing is that the nouns and verb are selected at random from
a prepared list.

Indeed, MOUSE GIVES BIRTH TO ELEPHANT is headline
material. If you don’t happen to agree with that point, you can
certainly make up some nouns and verbs of your own choosing. Just
don’t tell anyone you got the idea for X-rated computer programs
from this book!

There is one point of technical interest in this program. You
have seen that Tiny Pascal doesn’t handle string information very
well, at least not as easily as Level II, TRS-80 BASIC. Well, here
is a way to assemble strings, using the CASE statement.

(* HEADLINES *)
VAR AGAIN,N,LINE,SEED:INTEGER;
FUNC RND(RLOW,RHIGH) ;
VAR M,P:INTEGER;
BEGIN
REPEAT
M:=N*3125;
IF M<0 THEN M:=ABS(M):
N:=M;P:=M;
P:=P MOD RHIGH
UNTIL (P>=RLOW) AND (P<=RHIGH):;
RND:=P
END;
PROC SETUP (NOUN,VERB) ;
BEGIN
CASE NOUN OF
1:WRITE('BOY');
2:WRITE('CAT');
tWRITE('DOG') ;
tWRITE('ELEPHANT') ;

:WRITE('GOOSE') ;

:WRITE('SNAKE') ;

:WRITE('SNAIL');

tWRITE( 'MOUSE');
9:WRITE('FLEA');

10:WRITE('TURTLE")
END;

CASE VERB OF
1:WRITE('EATS');
2:WRITE('JUMPS OVER');
3:WRITE('BEATS UP');
4:WRITE('HASSLES') ;
5:WRITE('GIVES BIRTH TO');
6 :WRITE ( 'CRAWLS UNDER');
7:WRITE( 'REARRANGES FACE OF');
8:WRITE('FALLS IN LOVE WITH');
9:WRITE('SHOOTS') ;

O~y Ut bW

257




10:WRITE('ROBS')
END;
WRITE(32)
END;
(* BEGIN MAINLINE PROGRAM *)
BEGIN
WRITE(28,31);
FOR LINE:=1 TO 8 DO WRITE(13);
WRITE(210,'"TODAY',39,'S HEADLINES, TOMORROW' ,39,'S
NEWS"',13);
WRITE(13,'SEE IT ALL HERE BY STRIKING THE ENTER
KEY...',13);
WHILE INKEY<>13 DO
BEGIN
IF (SEED<99) OR (SEED>999) THEN SEED:=99;
SEED:=SEED+1
END;
N:=SEED;
WRITE(28,31);
WRITE(215,"'**** HEADLINE **%%!);
FOR LINE:=1 TO 8 DO WRITE(13);
WHILE AGAIN=AGAIN DO
BEGIN
SETUP(RND(1,10) ,0);
SETUP (0U,RND(1,10));
SETUP(RND(1,10),0);
FOR AGAIN:=0 TO 5000 DO;
WRITE(29,30)
END
END.

258



Chapter 14
Writing Your Own Pascal Programs

Most sources of information about Pascal programming, including
this book, praise the language’s highly structured form. Pascal
lends itself to structured programming methods and, indeed, rises
out of a need for encouraging all programmers to use structured
programming.

STRUCTURED PROGRAMMING

What is structured programming? It is a logical process for
writing and organizing computer programs that fits virtually any
computer language. Any programmer taking the trouble to master
at least the basic elements of structured programming can save a
great deal of programming time, especially when it comes to
debugging and cleaning up a new program. Using commonly ac-
cepted methods of structured programming also makes it easier for
others tofollow the operations ina program and get a feeling for the
intent of the original programmer.

While the topic of structured programming is appropriate to
any book about writing programs, it is especially relevant to Pas-
cal. In fact, learning to use Pascal properly automatically leads one
to use some of the basic ideas of structured programming. If I were
ever to write a book about structured programming, I would use
Pascal as the model and then eventually show how the same ideas
can be applied to other programming languages.

259



Even though it is unlikely that anyone could completely de-
scribe structured programming in a single chapter of one book, it is
quite possible to outline the basic ideas, especially if they're
framed in the context of Pascal, even Tiny Pascal. This is such a
chapter.

By the time you complete your study of this chapter, you
ought to be able to set up some pretty sophisticated Pascal prog-
rams of your own. Even if you don’t do a whole lot of Pascal
programming in the future, you will at least be convinced that
structured programming is a powerful tool.

TOP-DOWN VERSUS BOTTOM-UP PROGRAMMING
In an academic sense, there are two distinctly different ways

to approach the problem of writing a new computer program: from
the top and down, or from the bottom and up.

When using the top-down approach, the program gradually
evolves around a master program. On paper, the programmer
starts out by listing the major operations in the order they are to
occur. Maybe the list really begins as a general flow chart—one
showing blocks for the basic operations and just the more critical
conditional steps.

After the programmer is satisfied that the main sequence of
operations is taking the project in the right direction, it is time to
begin sketching in some details. We won't deal with too much
detail at first, just enough to point out the sorts of things that should
happen within each of the major operations.

With the secondary steps thus outlined, the programmer be-
gins elaborating in even greater detail. And the process of filling in
more and more detail continues until the program is finally done.

Top-down programming is an evolutionary process that be-
gins with a few major points, and then grows to have subpoints
within points and then points within the subpoints. In a sense, the
matter of writing programs from the “top-down” is like making a
formal outline for a term paper. It begins with a select group of
major points and gradually breaks down into any number of levels of
subpoints.

The essential character of top-down programming is that the
overall program gradually develops. This is done instead of first
building a lot of complete program “modules,” and assembling all
the modules with a mainline program. The contrasting idea, inci-
dentally, is the essence of bottom-up structuring.

When writing a program from the bottom and upward, the
main idea is to divide the programming operation into a lot of

260



separate modules of operations. One module does one of the jobs,
another does a different sort of task and so on. Each module is
complete within itself. Of course, the programmer doesn’t have a
full program until the little modules are strung together.

The modules, for example, could be described as subroutines
or procedures. Each can be run and tested on the computer before
they are “cast into concrete.” When the programmer has all the
modules designed and debugged, it is time to call them in the
appropriate sequence from a master program.

If the modules have been designed properly, the master pro-
gram should turn out to be relatively simple. At least it shouldn’t
take long to get the master program written and running.

Top-down and bottom-up programming both have their merits
and drawbacks. While some programmers suggest that one is al-
ways better than the other, the practical reality of the matter is that
competent programmers end up using both approaches.

The next section in this chapter goes through an example of a
Tiny Pascal program that is written in a top-down fashion. The
section after that illustrates a purely bottom-up programming pro-
cedure, and the final section demonstrates the advisability of using
both approaches at the same time.

WRITING A TINY PASCAL PROGRAM FROM THE TOP AND DOWN

Suppose you want to write a program for testing your re-
flexes. The general idea is to writea GET READY . . . message on
the screen. At some undetermined time later, turn on a square of
light. The experimenter is supposed to strike the ENTER key as
soon as the light appears, as soon as possible. The reaction time
then appears, in milliseconds, after the experimenter makes the
response.

Preliminary Flow Chart for Reflexes Program

Figure 14-1 shows a preliminary flow chart for this particular
program. The first five blocks spell out the initial operations:
CLEAR THE SCREEN, WRITE THE HEADING, PICK A RAN-
DOM DELAY NUMBER and INITIALIZE THE DELAY
COUNTER. After doing those things, the program halts until the
user strikes the ENTER key to signal he or she is ready to begin
the experiment.

After the experimenter signals the time to start a trial, the
flow chart shows CLEAR THE SCREEN, WRITE “GET READY”

261



MESSAGE and BEGIN DELAY. These operations mark the be-
ginning of the part of the experiment where the user is anxiously
waiting for the signal light to go on.

Since it is possible to “cheat” the experiment by continuously
tapping on the ENTER key during the waiting interval, it is neces-
sary to work the program so that this sort of cheating immediately
prints out a TOO SOON message and ends the program.

If the DELAY DONE conditional is not satisfied —the timing
interval isn’t over and the signal light hasn't yet appeared—the
flow chart shows an ENTER conditional. That ENTER is looking
for an illegal tap of the ENTER key. If that ENTER conditional is
satisfied, the program does a WRITE “TOO SOON” MESSAGE
and bypasses all the other steps to bring things to an end.

If the user doesn’t tap the ENTER key before the right signal
appears, the ENTER conditional is not satisfied. The “get ready”
timing procedes without interruption. Once the delay is done
(conditional DELAY DONE is satisfied), the system turns on a
square of light CHOW SQUARE) and starts the millisecond timer
(START TIMER).

The timer continues running until its ENTER conditional is
satisfied. In other words, the timer runs until the experimenter
strikes the ENTER key. The moment that ENTER conditional is
satisfied, the flow chart calls for STOP TIMER, SHOW TIME
COUNT and END.

The flow chart in Fig. 14-1 simply shows the general sequence
of operations and, in a general way, defines the nature of each of the
operations. There are a lot of details that must be filled in, but at
this point in the top-down process the programmer shouldn’t be
overly concerned. He should not become confused and carried
away with a lot of little details. This is simply an overall sketch of
what is to be done.

Outline of the Reflex Program

There are no references to specific programming languages.
The flow chart, as it stands, can apply to any kind of computer
system that has a keyboard input and a CRT input. It is actually
possible to begin writing something of a program without regard to
the language to be used. Such a procedure is beyond the scope of
this book. For our purposes, the next step is to sketch out the main
operations in a Tiny Pascal, TRS-80 format. Example 14-1 is a
preliminary pencil-and-paper outline of the program.

262



Example 14-1

(* REACTION TIME *)

VARLINE, START, TIME, DELAY, ENTER, STOP:
INTEGER;

BEGIN

WRITE@8, 31, “** REACTION TIME TEST **);

FOR LINE:=1 TO 8 DO WRITE(13);

WRITE (STRIKE ENTER KEY TO START . . .");

pick random number for delay TIME variable;

zero the reaction time counter;

READ(START);

WRITE (28, 31, ‘GET READY . . .";

DELAY:=¢;

WHILE DELAY<TIME) AND (ENTER=0) DO
BEGIN

ENTER:=INKEY;
DELAY:=DELAY+1
END;
IF ENTER=0 THEN
BEGIN
show the square of light;
REPEAT
increment reaction time counter;
STOP:=INKEY
UNTIL STOP=13;
WRITE (13, status of the reaction time counter#)
ELSE WRITE (13, ‘TOO SOON . . . RUN AGAIN’)
END.

Stubs

The program, as it appears in Example 14-1, is not ready to
enter and run. There are too many operations still described in
general terms. See the lines written in lower case letters. The
ideas that aren’t specified in formal Pascal are sometimes called
stubs.

Even though Example 14-1 still contains some stubs, it is
complete from a structural viewpoint. All the basic elements are
indicated as either formal Pascal syntax or stubs; and that is the
hallmark of top-down programming. In this first pass through the
program, you have a BEGIN and an END. All that remains to be
done, as far as writing the program is concerned, is to replace the
stubs with formal Pascal operations.

263




Fig. 14-1. Preliminary flow
chart for REACTION TIME
program. See Examples
14-1 through 14-4.

RUN

CLEAR THE
SCREEN

I

WRITE THE
HEADING

I

PICK A
RANDOM
DELAY
NUMBER

I

INITIALIZE
THE DELAY
COUNTER

READY

CLEAR THE
SCREEN
I

WRITE
GET READY

MESSAGE

SHOW
SQUARE

START
TIMER

ENTER

Y

STOP THE
TIMER

SHOW
TIME

L

WRITE
TOO SOON
MESSAGE

264




Some top-down programmers would like to take the semi-
program in Example 14-1 and work it so that it can be entered and
run. The program wouldn’t do everything, but it would execute the
operations that have been formalized to this point. Getting that
partial program into the computer has at least two advantages.

Executable Version of Example 14-1

First, it gives you a chance to work out any little details such
as the spacing of the lines and messages on the screen. Second,
running this much of the program makes it easier to enter the
remaining parts as you develop them. Here is a workable version of
the listing in Example 14-1.

Example 14-2

(* REACTION TIME*®*)
VARLINE, START, TIME, DELAY, ENTER, STOP:
INTEGER;
BEGIN
WRITE (28, 31, ‘** REACTION TIME TEST **);
FOR LINE:=1 TO 8 DO WRITE (13);
WRITE (STRIKE THE ENTER KEY TO START . . .");
READ (START);
WRITE (28, 31, ‘GET READY . . .");
DELAY:=0; ENTER:=@;
TIME: =1000;
WHILE (DELAY<TIME) AND (ENTER=0) DO
BEGIN
ENTER:=INKEY;
DELAY:=DELAY+1

END;
IF ENTER=0 THEN

BEGIN

REPEAT

STOP:=INKEY

UNTIL STOP=13

END
ELSE WRITE (13, ‘TOO SOON . . . RUN AGAIN’)
END.

The program in Example 14-2 does not do everything
specified on the original flow chart. Rather, it is an executable
version of the preliminary program in Example 14-1. The stubs are
left out, but in some cases they have to be replaced with a reason-
able substitute.

265




For example, it is possible to skip the operation, “zero the
reaction time counter,” and run without incrementing that counter
and showing its status near the end of the program. Thus, any
references to the reaction time counter can be skipped for the time
being.

You cannot test the workings of the DELAY operation, how-
ever, without having some value for variable TIME. In the final
version of the program, TIME will be selected by a random number
generator. Since the preliminary version doesn’t include a formal
representation of that number generator, variable TIME must be
set by some other means, temporarily, that is. So the program in
Example 14-2 shows a TIME:=1000 statement. That statement
will be deleted later on.

Like the stubs for working with the reaction time counter, the
process of showing the square of light is simply omitted. You can
thus enter the program as it is shown in Example 14-2. Given the
fact that some operations are missing, it still runs in a meaningful
fashion.

Actually, I must confess that my first version of Example 14-2
did not run properly. It wouldn’t compile completely because I
accidentally omitted the END that belongs after the statement,
UNTIL STOP=13. Look at Example 14-1, and you'll find it is
missing there, too. I mention this little accident on my part to
emphasize the fact that running a partial program which is being
evolved in a top-down fashion is a good way to uncover problems
while everything is still of manageable proportions.

Running the Program

Running the program as it stands in Example 14-2, you should
first see the heading messages. The message, ** REACTION
TIME TEST *¥ ought to be centered at the top of the screen.
Make a note toinclude a 215 tab operation in the WRITE statement
the next time.

Upon striking the ENTER key to start the test, the GET
READY message appears at the upper left-hand corner of the
screen. That’s okay. To test the TOO SOON feature, strike the
ENTER key within about 5 seconds. You should get the TOO
SOON message.

Run the program again, and wait about 10 seconds before
striking the ENTER key. If the DELAY counting is working, the
program will come to an end without showing the TOO MUCH
message.

266



That completes the first series of tests on this top-down
preparation. It is now time to fill in some of the stubs.

Square of Light Stub

Maybe the most meaningful stub to work into the program is
the one for lighting the square of light at the end of the delay
interval. While you're at it, you might as well write in the random
number generator and set TIME equal to that number.

Example 14-3
(* REACTION TIME *)
VAR LINE, START, TIME, DELAY, ENTER, STOP:
INTEGER;
N, M, P, DY, DX:INTEGER;
BEGIN
WRITE @28, 31, 215, ‘** REACTION TIME TEST **);
FOR LINE:=1 TO 8 DO WRITE(13),
WRITE(STRIKE ENTER KEY TO START. . .”);
REPEAT
M:=N*3125;
IF M ¢ THEN M:=ABS(M);
N:=M;P:=M;
P:=P MOD 5060
UNTIL (P>=1000) AND P <=5000);
READ(START);
WRITE@8, 31, ‘GET READY . . .",
DELAY:=(; ENTER:=0,
TIME:=P;
WHILEMDELAY TIME) AND (ENTER=() DO
BEGIN
ENTER:=INKEY;
DELAY:=DELAY+1
END;
IF ENTER=¢ THEN
BEGIN
FOR DY:=1TO 4 DO
FOR DX:=1TO 8 DO PLOT(DX+32, DY+5, 1);
REPEAT
STOP:=INKEY
UNTIL STOP =13
END
ELSE WRITE(13, ‘TOO SOON . .. RUN AGAIN’)
END.

267




Enter and run this version, and you should see the square of
light blinking on at the end of some randomly selected interval. The
response time counter isn't in the program, at least not yet. But the
program can run. Of course, it is possible to work out any syntax
errors and change any little operating feature that isn't working
quite as expected.

As an example of the latter (not being completely satisfied
with a feature), I wasn’t especially pleased with the way the system
draws the square of light. It’s drawn too slowly, and a user who is
really fast on the draw might strike the enter key before the square
is completely drawn. So I made a note to replace the PLOT graphic
in that case with a MEM graphic which will, of course, draw that
square a whole lot faster.

Reaction Time Counter

The next and final major step is to work in the reaction time
counter.

Example 14-4

(* REACTION TIME *)
VARLINE, START, TIME, DELAY, ENTER, STOP:
INTEGER;
N, M, P, DY, DX, COUNTER:INTEGER;
BEGIN
WRITE @28, 31, 215, ‘“** REACTION TIME TEST **),
FOR LINE:=1 TO 8 DO WRITE(13),
WRITE(STRIKE THE ENTER KEY TO START. . .”);
REPEAT
M:=N*3125;
IF M<@¢ THEN M:= ABS(M),
N:=M;P:=M;
P:=P MOD 5000
UNTIL (P>=1000) AND @ <=5000);
COUNTER:=¢;
READ(STARTY);
WRITE@8, 31, ‘GET READY. . .");
DELAY:=0; ENTER:=0,
TIME:=P;
WHILE (DELAY<TIME) AND (ENTER= @) DO
BEGIN
ENTER:=INKEY;

268



DELAY:=DELAY+1
END;
IF ENTER=0 THEN
BEGIN
FOR DY:=1 TO 4 DO
FOR DX:=1 TO 8 DO PLOT(DX+32, DY+5, 1);

REPEAT
COUNTER:=COUNTER+1;
STOP:=INKEY

UNTIL STOP=13;
WRITE(13, 13, ‘REACTION TIME IS,
(COUNTER*2)#, THOUSANDTHS OF A SECOND”);
END
ELSE WRITE(13, ‘TOO SOON . . . RUN AGAIN’)
END.

Example 14-4 represents the complete REACTION TIME TEST
program, at least as far as it was defined in the original flow chart
and program in Example 14-1. It turns out that my concern about
being able to hit the ENTER key before the square was completely
drawn was a needless concern. Upon trying to beat the square, I
found it couldn’t be done. That’s the sort of thing that the top-down
approach to programming can resolve for you.

Perhaps you would like to work on the program a bit more,
doing things such as adding a more complete set of instructions at
the beginning and tinkering with the COUNTER to make it a bit
more accurate. That is up to you, the programmer.

At any rate, the program was developed here in a top-down
fashion. In a matter of speaking, the program was “complete” from
the start. All the additional work involved adding in the stubs and
debugging the routine. The next section of this chapter deals with
the matter of writing a program in a bottom-up fashion.

WRITING A TINY PASCAL PROGRAM FROM THE BOTTOM AND UP

The basic idea behind writing a program from the bottom-up is
to work out a set of complete program modules —major sections of
the program that are, in themselves, completely workable and free
of bugs. The final step is to string all those modules together with a
main program.

Preliminary Flow Chart for an Arrow Shooting Game
Figure 14-2 shows the preliminary flow chart for an arrow
shooting game. The idea is to launch an arrow figure at a large

269




white square that is bouncing up and down on the right-hand side of
the screen. If you hit the square with the arrow, the score shows an
additional point. If you miss, there is no added score.

The game runs for 10 arrow shots. The trick is that you never
know exactly where the arrow will be positioned along the left-
hand side of the screen. So there is some skill involved.

For the sake of writing the program in a bottom-up fashion, the
operations can be divided into a number of basic steps. First, there
are the operations involved in doing the heading: writing the
heading messages, clearing the screen and picking a seed number
for the random number generator.

The second set of operations concern fixing the random posi-
tion of the arrow at the left-hand side of the screen. At about the
same time, the target square ought to begin bouncing up and down
on the right-hand side of the screen.

The next major block of operations are responsible for launch-
ing the arrow at the target figure. Then the program calls for a set
of conditional steps that determine whether the arrow reaches the
right-hand side fo the screen without touching the target figure
(that amounts to a missed shot), or whether the arrow strikes the
target figure (that’s a hit).

Finally, the program updates the score and tests for the tenth
shot. If the tenth shot has just occurred, the program concludes.
Otherwise, it loops back up to the point where the arrow figure is
drawn again in a new, randomly selected point on the left side of the
screen.

That amounts to a complete flow chart representation of the
program’s main events. There are some details that have to be
resolved, but that can wait until later in the bottom-up process.

Heading Information Module

Getting the programming process underway, you are free to
start with any of the major operations, structural modules, to be
specific. For the sake of getting started, begin with the easiest
module, the one that prints out the heading information.

That part of the program might look something like this:

Example 14-5
(FARROW SHOOT *)
(*HEADING*)
WRITE @8, 31, 220, “** ARROW SHOOT GAME **, 13,
13);
WRITE(STRIKE THE ENTER KEY TO START’);

270



WHILE INKEY<>13 DO
BEGIN
IF (SEED<99) OR (SEED>999) THEN SEED:=99;
SEED:=SEED+1
END;

That looks pretty good for a program module. It clears the
screen, prints the name of the game across the middle of the top
line, and then counts SEED numbers rather rapidly until the player
strikes the ENTER key to get the game started. The problem is
that it isn’t a complete Pascal program as it stands. In order to
check it out, you must fill in some details. Declare the SEED
variable, begin the block with BEGIN and end it with END.

Even if you do round out the module in Example 14-5 so that it
can be run on the computer, you have no way of knowing whether or
not the SEED counter is actually picking up a number between 99
and 999 when the user strikes the ENTER key. So you also have to
write in a testing line. A good test line in this case is
WRITE (SEED#). That will write out the selected SEED number
for you.

Here is a suggested on-line program for the heading module:

Example 14-6

(* ARROW SHOOT *%
VAR SEED:INTEGER;
BEGIN
(* HEADING *)
WRITE 28, 31, 220, “*** ARROW SHOOT GAME **, 13,
13);
WRITE(STRIKE ENTER KEY TO START’);
WHILE INKEY<>13 DO
BEGIN
IF (SEED<99) OR (SEED>999) THEN SEED:=99;
SEED:=SEED+1
END;
WRITE (SEED#)
END.

Enter Example 14-6 into your computer, and you will find it
runs just fine. I ranit 10 times in succession and never came up with
the same seed number twice. Of course, all of the SEED values
were between 99 and 999.

That completes the work on one module. Now you can either
keep it in program memory, using it every time you test another

271




CLEAR THE
SCREEN

WRITE THE
HEADING

Y

INITIALIZE

ARROW Yy FIX SEED
POSITION TO 99

1
BEGIN q—————-—_J

BOUNCING
THE TARGET

INCREMENT
SHOOT\_N SEED

ARROW, [

% Y
MOVE THE
ARROW

SET THE
HIT FLAG

-

INCREMENT

THE SCORE
Ny
INCREMENT
TRY

UPDATE SCORE |
DISPLAY

Fig. 14-2. Preliminary flow chart for ARROW SHOOT program. See Examples
14-5 through 14-16.

272




module, or write it down so that it can be cleared from memory. It
is generally better in the long run to record the module (without the
test lines) on paper; then wipe out the whole thing to make room for
the next module. Getting modules interacting at this point in the
process can cause more trouble than it’s worth.

Incidentally, I thought the 220 tabulation code moved the **
ARROW SHOOT GAME ** heading too far to the right. So when1
copied the program onto paper, I changed that number to 215.

Target-Moving Module

It really doesn’t make much difference which major operation
you choose for the second module in this particular bottom-up
process. I was quite interested in the technique of making the
white square move up and down along the right-hand side of the
screen, so I picked that as the next module.

Example 14-7

(* START MOVING THE TARGET *)
TARGET:=1631¢; PHASE:=-1;
REPEAT
REPEAT
TARGET:=TARGET+64*PHASE;
FOR DX:=1TO0O 3 DO
MEM(TARGET+DX):=191;
FOR DELAY:=(¢ TO 100 DO;
FOR DX:=1TO 3 DO
MEM(TARGET+DX):=32
UNTIL(TARGET<15424) OR (TARGET>16315);
PHASE:=PHASE*(—1)
UNTIL (arrow hits the target) OR (arrow hits the right
side);

Example 14-7 indicates the general flow of operations for
making a lighted square move up and down on the left side of the
screen. It cannot be compiled and tested, however, until you write
in some other statements. For example:

Example 14-8

(* ARROW SHOOT *)

VAR TARGET, PHASE, DX, DELAY: INTEGER;
BEGIN

( * START MOVING THE TARGET *)
TARGET: = 16310@; PHASE: = -1,
REPEAT

273




REPEAT
TARGET:=TARGET+64*PHASE;
FOR DX:=1 TO 3 DO
MEM(TARGET+DX) :=191;
FOR DELAY:=0 TO 10¢ DO;
FOR DX:=1 TO 3 DO
MEM(TARGET+DX) :=32
UNTIL (TARGET 15424) OR (TARGET 16315);
PHASE:=PHASE*(- 1)
UNTIL TARGET TARGET
END.

This target-moving module can be run and tested in the form
shown in Example 14-8. The statement, UNTIL TARGET
TARGET, is included for testing purposes. It makes certain the
program continues running until you strike the BREAK key to get
out of it.

You might want to experiment with the time delay line that
actually sets the speed of the bouncing target. That is the line, FOR
DELAY:=(¢ TO 100 DO. Just change around the value of 100 to
something larger to slow down the bouncing effect. Making that
same number smaller increases the bouncing speed.

When you are satisfied with the target bouncing module,
record your figures on paper for future reference. Remember that
many of the statements in Example 14-8 are included just for
testing purposes. The extra statements won’t appear in the version
that will be inserted into the final program at a later time.

Arrow-Moving Module

The next module ought to be the one that fires the arrow figure
from left to right across the screen. Here is a working draft of that
arrow-moving module.
Example 14-9

( * FIRE THE ARROW *)
SARROW:=15424+ random number between ¢ and 15;
ARROW:=SARROW;
REPEAT
ARROW:=ARROW +1;
MEM(ARROW):=94;
FOR DELAY:=¢ TO 1¢ DO;
MEMARROW) :=32
UNTIL (ARROW>=SARROW+63) OR (ARROW=target
position);

274



That is just the general approach and how it will look in the
finished program. To run and test it, you have to fit in some other
statements.

Example 14-10

( * ARROW SHOOT %)
VAR SARROW, ARROW, DELAY:INTEGER;
BEGIN
( * FIRE THE ARROW *)
SARROW:=15424;
ARROW:=SARROW;
REPEAT
ARROW:=ARROW+1;
MEMARROW):=%4;
FOR DELAY:=(¢ TO 1¢ DO;
MEMARROW): =32
UNTIL (ARROW=SARROW+63)
END.

Every time you run the module in Example 14-10, you see a
little arrow flying across the top of the screen, from left to right.
You might want to insert a WRITE (28,31) statement after the
BEGIN. That will clear the program statements from the screen
before the arrow is launched. It really doesn’t make any difference
at this point.

Maybe you have noticed that there is no reason to work with
these module in any particular order. That is generally the case
when doing bottom-up programming. Sometimes, though, a bit of
common sense dictates working with a couple of modules in a
particular order. So far, it hasn’t made any real difference which
modules you tackle next.

Random Number Generator Module

The only remaining module of any significant complexity is
the one that generates the random number for setting the initial
vertical position of the arrow figure. You have already seen the
random number generator a number of times through this book, so
there is no need to present it here in a general form. Instead, go
directly to the testing form that can be run on the computer:

275



Example 14-11

(* ARROW SHOOT *)
VAR N,M,P, SEED: INTEGER;

BEGIN
(* INITIALIZE ARROW POSITION *)
N:=SEED;
REPEAT
REPEAT
M:=N*3125;
IF M<@ THEN M:=ABS(M);
N:=M;P:=M;
P:=P MOD 15;
UNTIL (P>=0) AND P<=15);
WRITE(P#,32)
UNTIL P<>P
END.

This testing routine fills the screen with random numbers
between ¢ and 15. Let it run for a while; then strike the BREAK
key to stop it. Check to make certain all numbers between @ and 15
are indeed generated by the program. Oops, that isn't right! There
are no 15s in the list.

That is easy to fix, though. Just change P:=P MOD 15 to read
P:=P MOD 17. Try the program again, and you will see the 15s are
there. Checking these little modules certainly pays off.

To this point, everything has been written and tested in a
piecemeal fashion. There are a couple of minor steps yet to be
prepared such as the scorekeeping, counting the number of arrows
shot and making the decisions about when to end the overall
program. Those details, however, can be included as you assemble
the modules into a finished program.

Entering Heading Operations

Clear out the program memory, and start stringing things
together from the beginning. First enter the heading operations
from Example 14-12. Don’t worry about declaring all the variables
for the program. Just work with the ones required for the module
you're entering at the moment.

When the HEADING module is in place, your programming
should look something like this:

276



Example 14-12

(* ARROW SHOOT *)
VAR SEED:INTEGER;
BEGIN
(* HEADING *)
WRITE (28,31,215,** ARROW SHOOT GAME **,13,13);
WRITE('YOU HAVE 10 CHANCES TO HIT A
MOVING TARGET WITH AN ARROW',13);
WRITE(WHEN YOU WANT TO SHOOT THAT
ARROW, JUST STRIKE THE ENTER’);
WRITE(13,32,’KEY.",13,13,13,'STRIKE THE ENTER
KEY TO START...",
WHILE INKEY 13 DO
BEGIN
IF(SEED<99) OR (SEED>999) THEN SEED: =99;
SEED:=SEED+1
END;
END.

That is a bit different from the original version outlined in
Example 14-5 and tested by Example 14-6. But the changes do not
affect the actual operation of the program. They merely help clarify
what the player is supposed to do. Nothing is cast in concrete when
it comes to embellishing a program as you work it into its final
form.

N: = SEED Statement

Run this part of the program to make sure everything is
working as expected. Then, since the SEED number is now availa-
ble, add on the random number generating algorithm from Example
14-11, leaving out the REPEAT...UNTIL loop that forced it to run
continuously for testing purposes. After making a few more minor
adjustments the program should look much like this:

Example 14-13

(* ARROW SHOOT *)

VAR SEED,N,M,P:INTEGER;

BEGIN

(* HEADING *)

WRITE 28,31,215,** ARROW SHOOT GAME **,13,13);
WRITE ('YOU HAVE 10 CHANCESTO HIT A

277




MOVING TARGET WITH AN ARROW; 13);

WRITE (WHEN YOU WANT TO SHOOT THAT
ARROW, JUST STRIKE THE ENTER)

WRITE (13,’KEY.’, 13,13,13,'STRIKE THE ENTER
KEY TO START...";
WHILE INKEY<>13 DO
BEGIN
IF (SEED<99) OR (SEED>999) THEN SEED:=99;
SEED:=SEED+1
END;
(* INITTIALIZE ARROW POSITION *)
N:=SEED;
REPEAT
M:=N*3125;
IF M<0 THEN M:=ABS(M);
N:=M;P:=M;
PL=P MOD 17
UNTIL (P>=0) AND (P<=15);
END.

The statement, N:=SEED is the one that ties the two mod-

ules together.

Adding The Arrow-Firing Module

Now add on the module that positions and fires the arrow

across the screen. That comes from Example 14-9.

Example 14-14

278

(* ARROW SHOOT *)

VAR SEED,N,M,P,SARROW, ARROW, DELAY:
INTEGER;

BEGIN

(* HEADING *)

WRITE (28,31,215,** ARROW SHOOT GAME **,13,13);

WRITE ('YOU HAVE 10 CHANCES TO HIT A
MOVING TARGET WITH AN ARROW. /,13);

WRITE(WHEN YOU WANT TO SHOOT THAT
ARROW, jUST STRIKE THE ENTER "

WRITE (13,'’KEY.",13,13,13,'STRIKE THE ENTER
KEY TO START...")

WHILE INKEY<>13 DO

BEGIN



IF (SEED<99) OR (SEED>999) THEN SEED:=99;
SEED:=SEED+1
END;
(* INITIALIZE ARROW POSITION *)
N:=SEED;
REPEAT
M:=N*3125;
IF M<(@ THEN M:=ABS(M):
N:=M;P: =M;
P:=P MOD 17
UNTIL (P>=0) AND P<=13);
(* FIRE THE ARROW *)
WRITE(28,31);
SARROW =15424+64*P;
ARROW:=SARROW;
MEM(@SARROW): =94;
WHILE INKEY<>13 DO;
MEMGSARROW):=32;
REPEAT
ARROW:=ARROW+1;
MEM(ARROW): =94,
FOR DELAY:=(¢ TO 10 DO;
MEM(ARROW): =32
UNTIL ARROW=SARROW+63)
END.

Several new statements are required to merge FIRE THE
ARROW module with INITIALIZE ARROW POSITION. The new
ones are a WRITE (28,31) which clears the heading messages from
the screen; WHILE INKEY 13 to stop the progress of the program
until the player strike the ENTER key to fire the arrow, and an
extra set of statements that first draw the arrow figure and then
erase it. Both are required for showing the arrow in its initial
position.

Working In The Target-Moving Module

Before attempting to test the program to the point illustrated
by Example 14-15, note a slight change in the range of random
numbers. In the INITIALIZE ARROW POSITION module, a
statement that read UNTIL (P>=0) AND (P<=15) now reads
UNTIL (P>=0) AND (P<=13). The range of random numbers had
to be reduced from 15 to 13 at the upper end. The modified
initialization statement, SARROW:=15424+64*4, made it possi-

279




ble to run the arrow out of the video memory and into places where
it can totally mess up the program, Tiny Pascal’s programming and
just about everything else in the system.

Running the program as it stands thus far, you can see the
headings, strike the ENTER key to start the game, see the arrow
figure in a randomly selected position, and then fire the arrow a-
cross the screen. The program simply ends when the arrow reaches
the extreme right-hand side of the screen.

By this time, you should be able to appreciate some clear
distinctions between top-down and bottom-up program design
methods. Both methods work, but their similarity seems to end at
that.

The next step is a trickier one. Working in the START MOV-
ING THE TARGET module (from Example 14-7) is not simply a
matter of sticking it onto the end of the existing program and
perhaps adding a few transition statements. Rather, this new
modul® has to be closely meshed with the FIRE THE ARROW
MODULE. The two have to mesh in such a way that the target can
be bouncing while the arrow figure is being initialized and fired
across the screen.

Example 14-15 is the result of merging the START MOVING
THE TARGET with FIRE THE ARROW. Frankly, this was quite a
tough job. The listing represents the result of a lot of cut-and-try
modifications as well as thoughtful programming.

Example 14-15

(* ARROW SHOOT *)

VAR SEED, N, M, P,SARROW, ARROW, DELAY:
INTEGER;
DX, TARGET,FARROW,PHASE,DARROW:INTEGER;

BEGIN
(* HEADING *)
WRITE(28,31,215,** ARROW SHOOT GAME **Y,13,13);
WRITE(‘'YOU HAVE 10 CHANCES TO HIT A MOVING
TARGET WITH AN ARROW. /,13);
WRITE(WHEN YOU WANT TO SHOOT THAT ARROW,
JUST STRIKE THE ENTER ;
WRITE(13,’KEY.’,13,13,13,'STRIKE THE ENTER
KEY TO START...";
WHILE INKEY<>13 DO
BEGIN
IF (SEED<99) OR (SEED>999) THEN SEED: =99;

280



SEED:=SEED+1
END;
(* INITIALIZE ARROW POSITION *)
N:=SEED;
REPEAT
M:=N*3125;
IF M<@ THEN M:=ABS(M);
N:=M;P:=M;
P:=P MOD 17
UNTIL (P>=0) AND P<=13);
(* INITIALIZE FIGURES *)
WRITE (28,31);
SARROW:=15424+64*P; ARROW:=SARROW;
MEM(SARROW): =94;
FARROW:=@:PHASE:=-1;
TARGET:=16316;
(* START MOVING THE TARGET *)
REPEAT
TARGET:=TARGET+64*PHASE;
FOR DX:=1 TO 3 DO
MEM(TARGET+DX):=191;
DELAY:=¢;
WHILE DELAY<10 DO
BEGIN
IF NOT FARROW THEN
BEGIN
FARROW:=INKEY;
IF FARROW=13 THEN
FARROW:=1
ELSE “
FARROW:=(;
END
ELSE IF (FARROW=1) AND (ARROW<
(SARROW+63)) THEN
BEGIN
MEMARROW):=32;
ARROW:=ARROW+1;
MEMARROW): =94
END;
DELAY:=DELAY+1
END;
IF (TARGET<15424) OR (TARGET>16315)THEN

281




PHASE:=PHASE*(-1);
FOR DX:=1TO 3 DO
MEM(TARGET+DX):=32
UNTIL (ARROW=TARGET) OR (ARROW>=(SARROW
+63))
END.

Now all of the modules developed at earlier points in this
bottom-up programming process are incorporated into a master
program. All that remains to be done is fit in the scoring feature
and, perhaps, touch up a few minor points.

Final Version Of The Arrow Shooting Game
Here is the final version:
Example 14-16

(* ARROW SHOOT *)
VAR SEED,N,M,P,SARROW,ARROW,DELAY: INTEGER;
DX, TARGET,FARROW, PHASE, SCORE, TRY : INTEGER;
RATE,HIT: INTEGER;
BEGIN
(* HEADING *)
WRITE(28,31,215,'** ARROW SHOOT GAME **)',13,13);
WRITE('YOU HAVE 10 CHANCES TO HIT A MOVING TARGET
WITH AN ARROW.',13);
WRITE( "WHEN YOU WANT TO SHOOT THAT ARROW, JUST
STRIKE THE ENTER');
WRITE(13,'KEY.',13,13,13,'ENTER DESIRED LEVEL OF
DIFFICULTY:"');
REPEAT
WRITE(13,13,200,'1 - BEGINNER',13,200,'2 - PRETTY
GOoOD',13,200,'3 - EXPERT',13);
READ (RATE#)
UNTIL (RATE>=1) AND (RATE<=3);
WRITE (28,31,'0K, STRIKE THE ENTER KEY TO START...');
WHILE INKEY<>13 DO
BEGIN
IF (SEED<99) OR (SEED>999) THEN SEED:=99;
SEED:=SEED+1
END;
(* INITIALIZE ARROW POSITION *)
N:=SEED;
WRITE(28,31);
SCORE:=0;TRY:=0;
REPEAT
TRY :=TRY+1;HIT:=0;
WRITE(29,30,'TRY:"',TRY#,200,'SCORE:',SCORE#);
REPEAT
M:=N*3125;
IF M<0 THEN M:=ABS(M):;
N:=M;P:=M;
P:=P MOD 17
UNTIL (P>=0) AND (P<=13);

282



(* INITIALIZE ARROW AND TARGET *)
SARROW:=15424+64*P; ARROW: =SARROW;
MEM (SARROW) :=94;

FARROW:=0; PHASE:=~1;
TARGET:=16310;

(* START MOVING THE TARGET *)
REPEAT
TARGET : =TARGET+6 4 * PHASE;

FOR DX:=1 TO 3 DO
MEM (TARGET+DX) :=191;
DELAY:=0;
WHILE DELAY<(40-10*RATE) DO
BEGIN
IF NOT FARROW THEN
BEGIN
FARROW:=INKEY;
IF FARROW=13 THEN
FARROW:=1
ELSE
FARROW:=0;
END
ELSE IF (FARROW=1) AND (ARROW<(SARROW+63)) THEN
BEGIN
MEM (ARROW) :=32;
ARROW : =ARROW+1;
MEM (ARROW) :=94;
IF ARROW=TARGET THEN

HIT:=1
END;
DELAY:=DELAY+1
END;

IF (TARGET<15424) OR (TARGET>16315) THEN
PHASE:=PHASE* (~1);
FOR DX:=1 TO 3 DO
MEM (TARGET+DX) :=32;
UNTIL (HIT=1) OR (ARROW>=(SARROW+63));
IF HIT THEN
SCORE:=SCORE+1;
UNTIL TRY=10; _
WRITE(29,30,'GAME DONE',13,'FINAL SCORE IS ',SCORE#,’

OuT OF 10',13,13,'ENTER R TO PLAY AGAIN...');
END.

That was a lot of work. The important thing, however, is that
the program works, and it is fun to play.

The fact that the bottom-up procedures for writing this prog-
ram seemed rather involved is no accident. Indeed, it is often more
work to assemble a program via the bottom-up route than by the
top-down method. But the bottom-up procedure yielded a fine
program here; one can only wonder if it would have been any easier
and faster to do it by the top-down method.

COMBINING TOP-DOWN AND BOTTOM-UP PROGRAMMING
Perhaps you suspect by now that the most effective way to
prepare structured programs is by applying both the top-down and

283




bottom-up methods. It is quite likely the ARROW SHOOT prog-
ram would have gone together a bit easier if some top-down
methods had been used in at least a couple of places.

The game used in this illustration might be called SCREW-
BALL GOLF. The game consists of nine different “hole” frames.
The idea is to get to the hole in the present frame with a little ball
figure. The player works through 10 different hole frames, and a
scoring feature keeps track of the total number of strokes required
for hitting all 10 holes. The idea is to play 9 holes with the lowest
possible stroke score.

The catch is that the ball is a screwhall. It moves in a spiral
path rather than a straight line. Before making each stroke, the
player must specify the amount of horizontal, vertical and total
distance motion.

Itisn't an easy game. The tricky ball motion isn’t the end of the
challenge. The holes rarely show up in the same position each
time.

Preliminary Flow Chart For SCREWBALL GOLF

Figure 14-3 shows the preliminary flow chart for SCREW-
BALL GOLF. The first phase of the game merealy spells out some
heading information and gives the systema chance to pick a random
seed number for the random number generator.

The second phase sets the positions of the current hole and
initial position of the ball. The player specifies the motion
parameters for the stroke.

After the player makes the swing, the ball begins to move in
its screwy way, hopefully toward the hole. This phase of the
operation is terminated by one of three conditionals: BALL AT
HOLE, BALL IN ROUGH or MOVE DONE.

Satisfying the BALL AT HOLE conditional is a matter of
getting the ball to the hole. That’s the goal of every swing. The ball
must not be allowed to roam off the screen, however, and the
BALL IN ROUGH conditional is responsible for detecting that
undesirable state.

As mentioned earlier, the player specifies the total distance

the ball is to travel. So there is a need for a MOVE DONE
conditional.

Any one of these three conditionals end up having the ball stop
moving. If the ball happens to be at the hole, as detected by the
HOLE FLAG conditional, the system increments the hole number,
checks to see if all 10holes have been played, and then either starts
a new hole frame or ends the game.

284



CLEAR THE
SCREEN
WRITE THE!
HEADING N
Y
INCREMENT
HOLE NO.
N
<< HOLE>10
UPDATE SCORE,
DISPLAY Y
DONE
DRAW HOLE, MESSAGE,
BALL TOTAL
B SCORE

["MovE THE
BALL

SET HOLE
FLAG

l STOP BALL

Fig. 14-3. Preliminary flow chart for SCREWBALL GOLF. See Examples 14-17
through 14-21.

285




If the HOLE FLAG conditional is not satisfied, the player is
told to set up another stroke. The game is ready to move the ball
again.

Bear in mind, however, that the whole purpose of this present
discussion is to illustrate how effectively top-down and bottom-up
structured programming methods can be used together.

For instance, it would appear that the process of moving the
ball across the screen in its screwy fashion would make a nice
bottom-up module. It cannot be a formal Pascal procedure because
it must carry the final position of the ball back to the main program.
On the other hand, it cannot be a Pascal function because there are
too many non-mathematical steps (drawing the ball figure) in-
volved. So this ball moving module must be an integral part of the
main program, and it ought to be written and tested first.

MOVE BALL Module

The general flow of events, in a partial Tiny Pascal Program-
ming format, looks something like this:

Example 14-17

(* MOVE BALL %)
BEGIN
FHOLE:=(; BDONE:=0:ROUGH:=0¢; SWING: =0,
player sets up ball motion
WHILE SWING 13 DO;
REPEAT
move the ball
IF NOT BALL=HOLE THEN
IF NOT ball in the rough THEN
IF move is done THEN
BDONE:=1
ELSE ROUGH:=1
ELSE FHOLE:=1;
UNTIL FHOLE OR BDONE OR ROUGH
END.

That is a ball motion module being treated as an element in a
bottom-up programming process. The module, however, is being
developed in a top-down fashion. It isn’t complete yet as there are
some details to be filled in. But the overall structure of the thing is
set.

286



Example 14-18

(* SCREWBALL GOLF *)
VAR DY, DX, XBALL,YBALL,DE-
LAY,FHOLE,DMOVE,BDONE,ROUGH:INTEGER;
MOVE:INTEGER;
BEGIN
(*MOVE BALL %
WRITE (28,31);
FOR DY:=0 TO 2 DO
FOR DX:=0 TO 4 DO
PLOT(120+DX,10+DY,1);
FHOLE:=0;BDONE:=0; ROUGH: =0
XBALL:=@;YBALL: =12; DMOVE: =2¢0;
PLOTXBALL,YBALL, 1),
WHILE INKEY<>13 DO;
MOVE:=¢;
REPEAT
PLOT(XBALL,YBALL,®);
XBALL:=XBALL+1;
IF NOT POINTXBALL,YBALL) THEN
IF NOT (XBAL>127) OR (XBALL<®) OR
(YBALL>47) OR
(YBALL<0)) THEN
BEGIN
PLOTXBALL,YBALL,1);
MOVE:=MOVE+1;
IF MOVE>=DMOVE THEN
BDONE:=1;
FOR DELAY:=(¢/ TO 20 DO;
END
ELSE ROUGH:=1
ELSE
BEGIN
FHOLE:=1;
PLOTXBALL,YBALL,®)
END;
UNTIL FHOLE OR BDONE OR ROUGH
END.
Checking FHOLE, BDONE and ROUGH

The MOVE BALL module in Example 14-18 can be run on the
computer for testing purposes. The ball can be fired across the

287




screen to the hole, doing an automatic hole-in-one shot. The ideais
to see whether or not the FHOLE scheme really works.

Check out the BDONE scheme (the one that allows only a
certain distance of motion). Modify the program so that variable
DMOVE is initialized to 5@ instead of 20@. That way the ball should
stop short of the hole.

To check the ROUGH detector, return the DMOVE initializ-
ing point back to 200. Raise the initial position of the ball so that it
cannot hit the hole. That will run the ball off the screen and into the
rough. To make that modification, initialize YBALL at 8 instead of
12.

Those tests for FHOLE, BDONE and ROUGH are a little
awkward because they call for modifying the actual program list-
ing. An alternative would be to write in some READ statements
that allow you to set the values of ball motion and DMOVE from the
keyboard. That way it is possible to test the different operations
each time the program is run.

With the major flags thus checked out, it is time to work in
some more programming. Making the ball move through its screwy
motions seems to be the appropriate part to handle next.

Screwhall Motions

Figure 14-4 shows the four different screwball motions for
this SCREWBALL GOLF game. The basic pattern of motion is
made up of six horizontal increments, four vertical increments, two
horizontals and then two more vertical increments. This 6, 4, 2, 2
pattern makes up a 14-increment cycle of motion.

Motion 1 is basically a movement to the upper right, motion 2
works the ball in an upward and to the left direction, motion 3
moves the ball downward and to the right, while motion 4 carries it
downward and to the left. Of course, itis possible to come up with a
lot of other combinations of screwball motions. But these suffice
for an interesting and challenging round of golf.

Example 14-19 shows the motion controls fit into the program
in a top-down fashion. It is a matter of taking the program in
Example 14-18, adding in some motion control functions and round-
ing out the process with a few more mainline statements. The new
version, incidentally, also contains the READ statements for let-
ting the user specify the distance and direction of the ball’s motion.

Example 14-19

(* SCREWBALL GOLF *)
VAR DY, DX, XBALL, YBALL, DELAY, FHOLE,

288



DMOVE, BDONE, ROUGH:INTEGER;
MOVE, UD, RL, CYC:INTEGER;
FUNC MOT (UD, RL);
BEGIN
IF (UD=‘U’) AND RL=‘R’) THEN MOT:=1
ELSE IF (UD=‘U’) AND RL="L") THEN MOT:=2
ELSE IF (UD=D’) AND RL=R’) THEN MOT:=3
ELSE IF (UD=‘D’) AND RL="L") THEN MOT:=4
ELSE MOT:=¢
END;
FUNC PHASE MOT, CYC);
BEGIN
IF MOT=0@ THEN PHASE:=¢
ELSE CASE CYC OF
1, 2, 3, 4, 5, 6: CASE MOT OF
1, 3: PHASE:=1;
2, 4: PHASE:=2
END;
7, 8, 9, 10: CASE MOT OF
1, 2: PHASE:=4;
3, 4: PHASE:=3
END;
11, 12: CASE MOT OF
2, 4: PHASE:=1;
1, 3: PHASE:=2
END;
13, 14: CASE MOT OF
1, 2: PHASE:=3;
3, 4:PHASE:=4
END
END
END;
BEGIN
(* INITIALIZE *)
WRITE (28, 31);
FOR DY:=0/ TO 2 DO
FOR DX:=0 TO 4 DO
PLOT(12¢0+DX, 10+DY, 1);
FHOLE:=(J;BDONE:=0;ROUGH:=0;
XBALL:=@;YBALL:=12;
PLOTXBALL, YBALL, 1);
WRITE (28, 30);

289




(-2)

Y 4 (+4)

(+2)
¥(-2)
2(+4)
+6 <
( ':c) (~6)
-4y
(+2){
e e

& (+2)

Fig. 14-4. Patterns of ball motion for SCREWBALL GOLF. (A) Up and right. (B)
Up and left. (C) Down and right. (D) Down and left.

290



(* SET UP THE STROKE *)
WRITE (13, 3¢, ‘UP OR DOWN?’);
READ @UD);
WRITE (29, 30, ‘LEFT OR RIGHT?");
READRL);
WRITE 29, 30, ‘DISTANCE *);
READ(DMOVE#);
(* DO THE STROKE *)
MOVE:=§;CYC:=1;
REPEAT
PLOTXBALL, YBALL, @),
CASE PHASE (MOT(D, RL), CYC) OF
1: XBALL:=XBALL+1;
2: XBALL:=XBALL-1;
3: YBALL:=YBALL+1;
4: YBALL:=YBALL-1;
END;
IF NOT POINT(XBALL, YBALL) THEN
IF NOT (XBALL>127) OR (XBALL<®)
OR (YBALL>47) OR
(YBALL<0)) THEN
BEGIN
PLOT(XBALL, YBALL,1);
MOVE:=MOVE+1;
CYC:=CYC+1;
IF CYC>=14 THEN CYC:=1;
IF MOVE>=DMOVE THEN BDONE:=1;
FOR DELAY:=¢ TO 1¢ DO;
END
ELSE ROUGH:=1;
ELSE
BEGIN
FHOLE:=1;
PLOT(XBALL, YBALL, ¢)
END;
UNTIL FHOLE OR BDONE OR ROUGH
END.

The program isn’t complete, so you cannot expect a full range
of tests at this time. The only motion specification that does
anything significant is a DOWN, RIGHT at a distance of maybe a
100 or more. You cannot hit the hole, not yet, anyway.

291



Multiple Stroke Feature

The next draft of the SCREWBALL GOLF program extends
the listing to let the player make any number of strokes required for
getting to the hole. Adding a STROKE counter and display seemed
to work in at the same time.

In the process of fitting the multiple stroke feature, I unco-
vered a major bug in the game. The ball could not be hit out of the
rough. It wasn’t possible to pick up that problem while running
Example 14-19, but it certainly showed up this time around.

The cure amounts to pulling the ball one increment out of the
rough. To penalize an overzealous player, the STROKE counter is
automatically incremented by two whenever the ball is hit out of
the rough condition. That was a little wrinkle that occurred to me
only after dealing with the ROUGH problem. Working with both
bottom-up and top-down programming methods often suggest new
wrinkles to make programs work more efficiently or effectively.

One-Hole Golf Game Program

I then played with the program for a while, and decided tofitin
a random number generator to set the intitial positions of the ball
and hole. You will find that feature, along with the STROKE and
ROUGH ideas, fits into Example 14-20. The program listing, as it
stands in Example 14-20, is a nice one-hole of SCREWBALL
GOLF. Maybe you'll want to conclude the programming at this
point.
Example 14-20

(* SCREWBALL GOLF *)

VAR DY, DX, XBALL, YBALL, DELAY, FHOLE, DMOVE,
BDONE, ROUGH:INTEGER;
MOVE, UD, RL, CYC, STROKE, SEED, N,
XHOLE, YHOLE:INTEGER;

FUNC MOT®UD, RL);
BEGIN
IF (UD=U") AND RL=R’) THEN MOT:=1
ELSE IF (UD=U") AND RL=L") THEN MOT:=2
ELSE IF (UD=D’) AND (RL=R’) THEN MOT:=3
ELSE IF (UD=D’) AND (RL=L") THEN MOT:=4
ELSE MOT:=0
END;

FUNC PHASE MOT, CYC);
BEGIN
IF MOT:=¢ THEN PHASE:=(¢

292



ELSE CASE CYC OF
1, 2, 3, 4, 5, 6: CASE MOT OF
1, 3: PHASE:=1;
2, 4: PHASE:=2
END;
7, 8, 9, 1¢: CASE MOT OF
1, 2: PHASE:=4;
3, 4: PHASE:=3
END;
11, 12: CASE MOT OF
2, 4: PHASE:=1;
1, 3: PHASE:=2
END;
13, 14: CASE MOT OF
1, 2: PHASE:=3;
3, 4: PHASE:=4
END
END
END;
FUNC RND RLOW, RPIGH);
VAR M,P:INTEGER;
BEGIN
REPEAT
M:=N+3125;
IF M<@ THEN M:=ABS(M);
N:=M;P:=M;
P:=P MOD RHIGH
UNTIL (P>=RLOW) AND (P<=RHIGH);
RND:=P
END;
(* BEGINNING OF MAINLINE PROGRAM *)
BEGIN
WRITE 28, 31, 215, ‘** SCREWBALL GOLF GAME **);
WRITE(13, 13, ‘YOUR ARE ABOUT TO PLAY 1¢
HOLES OF GOLF);
WRITE (13, ‘WITH A SCREWBALL—THAT IS A
KIND OF BALL,):
WRITE (13, ‘AND NOT SOME KIND OF PARTNER?!);

WRITE(13, 13, ‘STRIKE ENTER KEY TO START . . .");
WHILE INKEY <>13 DO

BEGIN
IF (SEED<99) OR (SEED>999) THEN SEED:=99;

293




204

SEED:=SEED+1
END;
N:=SEED;
(* INITIALIZE *)
WRITE (28, 31);
XHOLE:=RND(100, 120); YHOLE:=RND(10¢, 40);
FOR DY:=@ TO 2 DO

FOR DX:=@ TO 4 DO

PLOTXHOLE+DX, YHOLD+DY, 1);
XBALL:=0;YBALL:=RND(4, 3¢);
FHOLE:=0@;STROKE:=¢,

REPEAT

BDONE:=6¢; ROUGH:=¢,

PLOTXBALL, YBALL,1);

WRITE (28, 30);

(* SET UP THE STROKE *)

WRITE (13, 30, ‘UP OR DOWN?");
READ@UD);

WRITE (29, 3¢, ‘LEFT OR RIGHT?’);
READRL);

WRITE (29, 30, ‘DISTANCE ')
READ(MDMOVE#),
STROKE:=STROKE+1;

WRITE 27, 30, ‘STROKE ’, STROKE#),
(* DO THE STROKE *)

MOVE:=@; CYC:=1];

REPEAT

PLOTXBALL, YBALL,0®),

CASE PHASE MOTUD,RL), CYC) OR
1:XBALL:=XBALL+ 1;
2:XBALL:=XBALL-1;
3:YBALL:=YBALL+1;
4:YBALL:=YBALL~-1
END;

IF NOT POINT (XBALL, YBALL) THEN
IF NOT(XBALL>=127) OR (XBALL<=@)OR

(BALL>=47) OR (YBALL<=6)) THEN
BEGIN
PLOT XBALL, YBALL, 1)
MOVE:=MOVE+1;
CYC:=CYC+1;
IF CYC>=14 THEN CYC:=1;



IF MOVE>=DMOVE THEN BDONE:=1;
FOR DELAY:=¢ TO 1¢ DO;
END
ELSE
BEGIN
ROUGH:=1;
STROKE:=STROKE+2;
WRITE (220, ‘IN THE ROUGH —LOSE
2 STROKES"),
FOR DELAY:=0 TO 250¢ DO;
IF XBALL<=@ THEN XBALL:=XBALL+1
ELSE IF XBALL>=127 THEN
XBALL:=XBALL~1
ELSE IF YBALL<=6 THEN YBALL:=
YBALL+1
ELSE IF YBALL>=47 THEN YBALL:
=YBALL~1
END
ELSE
BEGIN
FHOLE:=1;
PLOT(XBALL, YBALL, 6)
END;
UNTIL FHOLE OR BDONE OR ROUGH;
UNTIL FHOLE
END.
Nine-Hole Version

All that remains is to polish off the top-down procedure by
fitting in a HOLE counter, something to keep track of the strokes

for nine different holes. Here is the finished version of the
SCREWBALL GOLF game:

(* SCREWBALL GOLF *)

VAR DY,DX,XBALL,YBALL,DELAY, FHOLE , DMOVE , BDONE , ROUGH :
INTEGER;
MOVE, UD, RL, CYC, STROKE , SEED, N, XHOLE ,YHOLE , HOLE
INTEGER;
FUNC MOT(UD,RL);
BEGIN
IF (UD='U') AND (RL='R') THEN MOT:=1
ELSE IF (UD='U') AND (RL='L') THEN MOT:=2
ELSE IFJ (UD='D') AND (RL='R') THEN MOT:=3
ELSE IF (UD='D') AND (RL='L') THEN MOT:=4
ELSE MOT:=f§f
END;

295




FUNC PHASE (MOT,CYC) ;
BEGIN
IF MOT=@ THEN PHASE:=f
ELSE CASE CYC OF
1,2,3,4,5,6: CASE MOT OF
1,3:PHASE:=1;
2,4 :PHASE :=2
END;
7,8,9,1f: CASE MOT OF
1,2: PHASE:=4;
3,4: PHASE:=3
END;
11,12: CASE MOT OF
2,4: PHASE:=1;
3,4: PHASE:=2

END;
13,14: CASE MOT OF
1,2: PHASE:=3;
3,4: PHASE:=4
END
END
END;

FUNC RND(RLOW,RHIGH) ;
VAR M,P:INTEGER;
BEGIN
REPEAT
M:=N*¥3125;
IF M,§ THEN M:=ABS (M) ;
N:=M;P:=M;
P.:=P MOD RHIMGH
UNTIL (P.=RLOW) AND (P,=RHIGH);
RND:=P

END;
(* BEGINNING OF MAINLINE PROGRAM %)
BEGIN
WRITE (13,13, 'STRIKE THE ENTER KEY TO START');
WHILE INKEY,.13 DO
BEGIN
IF (SEED,99) OR (SEED.999) THEN SEED:=99;
SEED : =SEED+1
END;

N:=SEED;
HOLE : =@ ; STROKNE : =ff ;
(* MOVE BALL *)
REPEAT
HOLE ; =HOLE+1;
WRITE(28,31);
XHOLE : =RND(1#p , 12#) ; YHOLE : =RND( 1§, 48) ;
FOR DY:=f TO 2 DO
FOR DX:=@ TO & DO
PLOT (XHOLE+DX, VHOLE4DY, 1) ;
XBALL:=@; YBALL:=RND (1§, 38) ;
FHOLE : =0 ;
REPEAT
BDONE : =(f ; ROUGH : ={f ;
POLOT (XBALL,YBALL, 1) ;
(* SET UP THE STROKE *)

296



WRITE (28,34, 'HOLE ', HOLE{#,215,
'STROKES : ', STROKE#,13) ;
WRITE(29,3@,'UP OR DOWN?');

READ(UD) ;

WRITE (29,30, 'LEFT OR RIGHT?');
READ(RL) ;

WRITE (29,30, 'DISTANCE ');

READ (DMOVE#) ;

WRITE(2P7,30) ;
STROKE : =STROKE+1 ;
(* DO THE STROKE *)
MOVE :=f;CYC:=1;
REPEAT
PLOT (XBALL, YBALL, §) ;
CASE PHASE(MOT(UD,RL) ,CYC) OF
1:XBALL:=XBALL+1;
2 :XBALL:=XBALL-1;
3:YBALL:=YBALL+1;
4 :YBALL :=YBALL-1
END;
IF NOT POINT(XBALL,YBALL) THEN
IF NOT ((XBALL.127) OR (XBALL,=f) OR (YBALL.=47)

OR (YBALL,=6)) THEN
BEGIN
PLOT (XBALL, YBALL,1);
MOVE : =MOVE+1;
CYC:=CYC+1;
IF CYC.=14 THEN CYC:=1;
RIF MOVE.=DMOVE THEN
BDONE:=1;
FOR DELAY:=f TO 1ff DO;
END
ELSE
BEGIN
ROUGH:=1;
STROKE : =STROKE+2 ;
WRITE(22@,'ROUGH -- LOSE 2 STROKES');
FOR DELAY:=§ TO 256§ DO;
IF XBALSL,=@ THEN XBALL:=XBALL+1
ELSE IF XBALL.=127 THEN XBALL:=XBALL-1l
ELSE IF YBALL,=6 THEN YBALL:=YBALL+1
ELSE IF YBALL.=47 THEN YBALL:=YBALL-1
END
ELSE
BEGIN
FHOLE :=1;
PLOT (XBALL, YBAYTLL,#)
END;
UNTIL FHOLE OR BDONE OR ROUGH;
UNTIL FHOLE;
UNTIL HOLE.=9;
WRITE (28,31, 'NINE HOLES OF GOLF COMPLETED WITH ',
STROKE#, ' STROKES');
WRITE(13,13, '"ENTER R TO PLAY ANOTHER

NINE HOLES...')
END.

297




C/-P Command

There itis, the SCREWBALL GOLF program. It is debugged,
polished and tested. But if you've been using the indentations in a
conscientious fashion, you are finding you cannot compile it in the
usual way. You get ERROR 1001 because there is not enough
memory in a 16K computer for both the source and P-code versions
of this program.

To deal with this situation, get the system into the MONITOR
mode and enter C/-P. That command checks the syntax of the
program for you, compiling without actually generating code.
Debug the syntax as necessary to get the C/-P command to run
through the entire program. Then, to be on the safe side, put the
source program onto cassette tape, entering it as something like
WS GOLF.

Once you have saved that valuable source program on tape,
compile the source program in the computer by entering C/-S.
That command compiles the P-code right over the source code
program. The source code is thus destroyed, but there is then
sufficient memory space for the P-code version.

After the system compiles the P-code, the program is ready to
run. It has been a lot of work, but it is certainly worth it. Personal-
ly, I find SCREWBALL GOLF one of the most fascinating and
challenging games around. If you ever want to modify the program,
just load the source version from the cassette tape, make your
modifications, and then check the syntax with the C/-P command
again.

The really important point, as far as the work in this chapter is
concerned, is that using both top-down and hottom-up program-
ming methods make it possible to develop some pretty complicated
programs. Without using a highly structured approach to this
GOLF game, I seriously doubt many hobby computer people could
do the job.

298



Chapter 15
Space Ranger Mission Game

Space war and pursuit games have been closely associated with
computer games for a long time now. As long as programmers
continue coming up with fresh ideas, these kinds of games promise
to be around for a long time to come.

The game featured in this chapter is a space war /pursuit game
that pushes Tiny Pascal very close to its limits. Actually there is no
limit to the sophistication of a Tiny Pascal game, but here it is the
4.5k of RAM available for source programs that runs very short.
Using the source program format suggested later in this chapter,
SPACE RANGER MISSION takes up a bit over program space
allowed by a 16k, Tiny Pascal system. Of the 4. 5k-bytes of RAM
space allowed for source and/or P-codes, the source version of this
game, alone, takes up a bit over 4.2k-bytes. The shorter compiled
version uses a bit over 2k-bytes.

So SPACE RANGER MISSION is a big game--a big
program —in the context of Supersoft’s Tiny Pascal format for 16k
computer systems. But it isn’t the size of the program that is
important. The only practical consequence of its large size is the
time and effort required for entering the source program, debug-
ging it and generating the P-code version.

The program uses a good many of the Pascal principles de-
scribed up to this point in the book. You will firid only one really
new concept introduced here, and even that ought to make good
sense if you've followed everything carefully before.

299




The material in this chapter approaches the program from a
number of different angles. You can study as much as you like,
learning as much as you care to learn. For instance, you can simply
load the source code from the master listing in the next section of
this chapter, check it for syntax errors, load the source onto
cassette tape for future use, compile the program and start playing
the game. You really don’t have to study the features of the Pascal
programming at all.

But even if you decide to ignore the finer workings of the
program, you will find there is a lot to learn about playing the game.
It is a game of strategy and skill that can be made about as simple or
as complex as you like.

In short, you can get about as much from the material in this
chapter, the program and the game as you want to get from it. No
matter how you decide to handle things, you are going to have a lot
of fun playing SPACE RANGER MISSION.

GETTING SPACE RANGER MISSION IN AND UP

Set up your computer for Tiny Pascal. Clear out any old
programming, put on a fresh pot of coffee and get ready to start
loading the source program listed here.

Unless you peek ahead in this chapter and do some study of the
Pascal functions and procedures used in the program, much of the
source program listing won't make much sense. I have had to do
away with much of the indentation of lines operations required for
formal structured programming. For the sake of conserving prog-
ram space, first, second and third-order statements are often run
together on the same line. Multiple-statement lines are used
through most of the listings for functions and procedures. And
that’s confusing.

So type in the source programina literal fashion, following the
listing as closely as you can. If you happen to make any serious
typing errors, you will find them when you attempt to compile the
source program.

I have compromised some program space, however, in order
to write the mainline portion of the program in the standard
structure-indentation format. That part of the job will most likely
seem easier to enter.

So load the source program as listed here —the whole thing.
Don’t bother trying to compile it at any point along the way.

When the entire source program is into your computer, check
for errors by doing a compile without generating the P-code. In

300



other words, get into the monitor mode and do a C/—P. Any errors
will show up that way.

Edit out the errors as they arise, and continue doing the C/—P
until the entire listing is checked without errors. Next, load the
source listing onto cassette tape, using a command and file name
such as WS RNGE.

Now you are in a position to check out the program in its
P-code format. Do a C/—S (compile P-code without the source).
That operation writes the P-code version right over the source
listing in your system memory, but that’s the price we have to pay
for using such long programs. Of course, that’s why it was impor-
tant to save the source listing on cassette tape.

Now it’s time to run the program. What happens at that point is
the subject of the section following the source listing.

(* SPACE RANGE MISSION *)
VAR OBJ,N,SEED,CHANGE,CFLAG, PHASE, ENGO,DELAY : INTEGER;
XCOORD:ARRAY (10)OF INTEGER;YCOORD:ARRAY(10) OF INTEGER;
XVEC:ARRAY (10) OF INTEGER;YVEC:ARRAY(10) OF INTEGER;
TYPE:ARRAY(10) OF INTEGER;LIVE:ARRAY(10) OF INTEGER;
(* RANDOM NO. *)
FUNC RND(RLOW,RHIGH) ; VAR M,P:INTEGER;
BEGIN REPEAT
M:=N*3125;IF M<0 THEN M:=ABS(M);N:=M;P:=M;
P:=P MOD RHIGH UNTIL (P>=RLOW) AND (P<=RHIGH);
RND:=P END;
(* RELATIVE COORDS *)
FUNC RCOORD (ELESHIP,ELETARG) ; BEGIN
RCOORD:=ELETARG~-ELESHIP END:
(* RANGE *)
FUNC RANGE (XSHIP,YSHIP,XTARG,YTARG) ;VAR XDIST,YDIST,
SCALE,RAD,ROOT: INTEGER; BEGIN
XDIST:=ABS (RCOORD (XSHIP,XTARG)) ;YDIST:=ABS (RCOORD
(YSHIP,YTARG) ); IF XDIST>=10*YDIST THEN RANGE:=XDIST;
IF YDIST>=10*XDIST THEN RANGE:=YDIST;
IF NOT((XDIST>=10*YDIST) OR (YDIST>=10*XDIST))
THEN BEGIN
IF (XDIST<=100) AND (YDISST<=100) THEN SCALE:=1 ELSE
BEGIN
SCALE:=10;XDIST:=XDIST DIV 10;YDIST:=YDIST DIV 10 END;
RAD:=SQR(XDIST)+SQR(YDIST) ; ROOT:=0;
REPEAT ROOT:=ROOT+1 UNTIL SQR(ROOT)>=RAD;
IF (SQR(ROOT)~-RAD)> (ABS{SQR{ROOT-1)~RAD)) THEN ROOT:
=ROOT-1;
RANGE:=ROOT*SCALE END END;
(* OBJECT STATUS *)
PROC ENESTAT(XSHIP,YSHIP,XENE,YENE,LIVE,TYPE) ;VAR
ENEDIST:INTEGER; BEGIN
ENEDIST:=RANGE (XSHIP,YSHIP,XENE,YENE); CASE TYPE OF
0:IF ENEDIST>100 THEN WRITE('OUT OF RANGE')
ELSE WRITE('RANGE:',ENEDIST#,"'X="',RCOORD(XSHIP,0)#,"
Y=',RCOORD (YSHIP,0) #);

301




1:IF NOT LIVE THEN WRITE('DESTROYED')ELSE BEGIN

IF ENEDIST>100 THEN WRITE('NOT IN RANGE')

ELSE WRITE('RANGE:',ENEDIST#,"' X="',RCOORD (XSHIP,
XENE)#,' Y=',RCOORD(YSHIP,YENE) #) END;

2:IF NOT LIVE THEN WRITE('RANGE:',ENEDIST#,' NAV
INOPERATIVE')

ELSE WRITE('RANGE:',ENEDIST#,'X=",RCOORD (XSHIP,
XENE)#,! Y=',RCOORD(YSHIP,YENE) #) END;

WRITE(13) END;

(* MOVE SHIP *)

FUNC SHIPMOVE(ELESHIP,DIRSHIP);VAR NEWDIR:INTEGER;
BEGIN

IF (ELESHIP+DIRSHIP<0) OR (ELESHIP+DIRSHIP>1000) .

THEN SHIPMOVE:=ELESHIP ELSE SHIPMOVE:=ELESHIP+DIRSHIP
END;

(* MAINLINE PROGRAM *)

BEGIN

(* SEED *)

WRITE(28,31,'ENTER TO START THE GAME...'):;

WHILE. INKEY<>13 DO BEGIN
IF (SEED<99) OR (SEED>999) THEN SEED:=99;SEED:=SEED+1
END;

(* INITIALIZE GAME *)

N:=SEED; CFLAG:=0; PHASE:=1;WRITE(28,31);

FOR OBJ:=0 TO 1 DO BEGIN
XCOORD (OBJ) : =0 ; YCOORD (OBJ) :=0; TYPE (OBJ) : =0; LIVE (OBJ)
:=1 END;

FOR OBJ:=2 TO 10 DO BEGIN
XCOORD (OBJ) :=RND(100,900) ; YCOORD (OBJ) :=RND(100,900)
AND;

FOR OBJ:=2 TO 6 DO BEGIN

LIVE(OBJ) :=1;TYPE(OBJ) :=1;

REPEAT XVEC(OBJ) :=(RND(1,3)=2);YVEC(OBJ) :=(RND(1,3)-2)

UNTIL NOT((XVEC(OBJ)=0) AND (YVEC(OBJ)=0)) END;

FOR OBJ:=7 TO 10 DO BEGIN

LIVE(OBJ) :=0; TYPE (OBJ) :=2;XVEC(OBJ) :=0; YVEC (OBJ) : =0
END;

(* START GAME *)
REPEAT )
WRITE(28,31,210, 'CURRENT NAVIGATION STATUS',13,13);
REPEAT
WRITE(28,13) ;CHANGE:=0;
FOR OBJ:=1 TO 10 DO
BEGIN
IF NOT CFLAG THEN
BEGIN
DELAY:=0;
WHILE (DELAY<10) AND (CHANGE=0) DO
BEGIN
CHANGE:=INKEY;
DELAY : =DELAY+1
END;
IF CHANGE<>0 THEN CFLAG:=1
END;
CASE OBJ OF
1:WRITE('HOME-~"');
2:WRITE ('ADVERSARY~~");

302



3:WRITE('HULK #l--');
4:WRITE('HULK #2--');
5:WRITE('HULK #3--');
6 :WRITE('HULK #4--"');
7:WRITE('NAV BEACON #l=--1')
8:WRITE( 'NAV BEACON #2--')

1)

)

~ we e

9:WRITE('NAV BEACON #3--
10:WRITE('NAV BEACON #4--
END;
ENESTAT (XCOORD(0) ,YCOORD (0) ,XCOORD (OBJ) ,YCOORD (OBJ) ,
LIVE(OBJ) ,TYPZ (OBJ))
END;
(* MOVE THINGS *)
XCOORD(0) : =SHIPMOVE (XCOORD (0) ,XVEC(0));
YCOORD (0) : =SHIPMOVE (YCOORD (0) ,YVEC(0) ) ;
IF PHASE>(0 THEN
FOR ENGO:=2 TO 6 DO
IF LIVE(ENGO)=1 THEN
BEGIN
XCOORD (ENGO) : =XCOORD ( ENGO) +XVEC ( ENGO) ;
IF (XCOORD(ENGO)<0) OR (XCOORD(ENGO)>1000)
THEN
XVEC (ENGO) : =XVEC (ENGO) * (~1) ;
YCOORD (ENGO) : =YCOORD ( ENGO) +YVEC (ENGO) ;
IF (YCOORD (ENGO)<0) OR (YCOORD({ENGO)>1000) THEN
YVEC (ENGO) :=YVEC (ENGO) *(~1) ;
END;
PHASE:=PHASE* (-1)
UNTIL CFLAG=1;
CFLAG:=0;
CASE CHANGE OF

'U'sYVEC(0) :=1;
ID':YVEC(0) :=-1;
'"L':XVEC(0) :==~1;
"R':XVEC(0) :=1;

'S':BEGIN XVEC(0):=0;YVEC(0):=0 END;
'N':FOR OBJ:=7 TO 10 DO
IF RANGE (XCOORD{(0) ,YCOORD(0) ,XCOORD (OBJ) ,YCOORD
(OBJ) ) <=2 TIEN LIVE(OBJ):=1; F':FOR OBJ:=2TO 6DO
IF RANGE (XCOORD(0) ,YCOORD (0) ,XCOORD (OBJ} ,

YCOORD (OBJ) ) <=10 "HEN LIVE(OBJ):=0
END;
UNTIL CHANGE='X'
END.

RUNNING SPACE RANGER MISSION

With the program compiled and the P-code version residing in
memory, do a run. You should be greeted with the message
ENTER TO START THE GAME . . .

Technically, the point of this simple heading is to generate a
seed number for the program’s quasi-random number generator.
It’s a trick used many different times in programs already described
in this book.

303




Starting the Game

Strike the ENTER key to get the game started. This sort of
display should then appear on the screen:

CURRENT NAVIGATION STATUS
HOME —RANGE: 0 X=0 Y=0¢
ADVERSARY—NOT IN RANGE
HULK #1—NOT IN RANGE
HULK #2—NOT IN RANGE
HULK #3—NOT IN RANGE
HULK #4—NOT IN RANGE
NAVBEACON #1—RANGE:520 NAV INOPERATIVE
NAVBEACON #2—RANGE:860 NAVINOPERATIVE
NAVBEACON #3—RANGE:470 NAVINOPERATIVE
NAVBEACON #4 —RANGE:1100 NAVINOPERATIVE

You will notice these lines appearing to blink in sequence.
What you are seeing is the space navigation data being updated.

The three zeros on the HOME line should read as zeros
whenever you first start the game. That is an indication you are
starting the mission from home base. The range is 0 space units,
ard the conrdirates of home base are likewise ¢f and 0.

It is possible, but highly unlikely, that the lines for ADVER-
SARY and HULKS 1 through 4 will show anything but NOT IN
RANGE at the very beginning of a game. The RANGE figures for
NAV BEACON 1 through 4, however, will be different for each
game. Your figures for NAV BEACON ranges will be quite diffe-
rent from those cited in this example.

The objective at this point is merely to check out the operation
of the program, and not to start playing a game. So don’t worry
about the meaning of the figures on the screen at this point. Just
follow the discussion for a bit.

As a first test, strike the U key several times in succession.
This amounts to a “blast off,” and you should see the Y figure in the
HOME line beginning to increment in a negative direction. With
each updating scan, that number will change in a sequence such as
—~4, —5, -6 and so on. At the same time, you should see the
RANGE figure increasing in a positive direction.

Now strike the R key several times until you see the X figure
for the HOME line beginning to increment in a negative direction.
That amounts to a course change at right angles to the direction of
blast-off. The RANGE figure for HOME should now show the

304



length of the hypotenuse of a right triangle having the X and Y
figures as the lengths of sides.

In the context of this space game, you have left home and set a
course in space having certain X and Y components of motion. the
program is continuously updating the RANGE from home as you
move along.

Losing Contact With HOME

The HOME figures will continue showing the coordinates of
your position in space and the distance to HOME until the distance
exceeds 100 space units. At that time, your ship loses contact with
home, and you are left rather alone in space.

Here is an example of what the display might look like, shortly
after losing contact with HOME:

CURRENT NAVIGATION STATUS
HOME —OUT OF RANGE
ADVERSARY—NOT IN RANGE
HULK #1-—NOT IN RANGE
HULK #2—NOT IN RANGE
HULK #3—NOT IN RANGE
HULK #4—NOT IN RANGE
NAV BEACON #1—-RANGE:366NAVINOPERATIVE
NAV BEACON #2—RANGE:71¢ NAVINOPERATIVE
NAV BEACON #3—RANGE:320 NAV INOPERATIVE
NAV BEACON #4 —RANGE:93¢NAV INOPERATIVE

You can see that HOME is OUT OF RANGE, more than 100
space units behind. Note, however, that you are a lot closer to all
four NAV BEACON stations. Compare these NAV BEACON
ranges with those appearing in the previous example.

So you have left HOME, but moved closer to all four naviga-
tion beacons. That’s good, because one of the objectives of your
mission is to visit each of the inoperative navigation beacons
(reduce the range to 0) and repair them. Once they are repaired,
the display will show your ship’s relative position in space.

Let me repeat, however, that the objective at this point is
merely to test the working of the game program. Strike the S key
about six times in rapid succession. That should stop your motion
in space. The range figures for the NAV BEACON lines have been
decrementing rather slowly all along, but now they should come to
a complete stop.

305




ADVERSARY and HULK Lines

Sit back and watch the display for a while. This might seem to
be a rather dull task, but keep an eye on the ADVERSARY and
HULK lines. Although you are now stationary in space, these
objects are not. The ADVERSARY and HULKS are moving about
at random. Sooner or later, one of them is going to move into your
navigation radar range.

While writing this paragraph, it so happened that HULK #4
moved within 100 space units. By the time I was ready to write
down the figures, it had moved to a range of 89 space units, with X
and Y coordinates of —10 and 88 respectively. Here is what the
display looked like:

CURRENT NAVIGATION STATUS
HOME—OUT OF RANGE
ADVERSARY—NOT IN RANGE
HULK #1—NOT IN RANGE
HULK #2—NOT IN RANGE
HULK #3—NOT IN RANGE
HULK #4—RANGE:89 X=-10 Y=88
NAV BEACON#1—RANGE:360 NAV INOPERATIVE
NAV BEACON #2—RANGE:710 NAVINOPERATIVE
NAV BEACON #3—RANGE:32¢6 NAVINOPERATIVE
NAVBEACON #4 —RANGE:93¢ NAVINOPERATIVE

If you think of yourself as a spaceship pilot resting motionless
in deep space, it’s sort of spooky watching these ADVERSARY and
HULK objects move into, through and out of radar range. Once you
learn how to fly your spaceship, you will want to chase down some
of them. Maybe a crash course in operating the ship is in order now.

A FIRST LESSON IN SPACESHIP PILOTING

Getting a feeling for the peculiarities of piloting this spaceship
is best done near HOME where you can watch the HOME naviga-
tion figures. If the program is already running, you can abort it by
either striking the BREAK key or the X key. You might have to
strike them several times in succession before you pick up the Tiny
Pascal monitor cursor. If you have just loaded and compiled the
program, simply do a run,

Inany event, you should be back to the point where the HOME
linereads HOME —RANGE:¢) X=@# Y=0. That means you're at
home and resting on the launching pad.

For navigation purposes, the universe is an X—Y coordinate
system having HOME at coordinates @, ¢. All positions in space

306



relative to HOME are to the right and upward. And that means you
can blast off from HOME in only two directions, to the right or
upward. That is accomplished by striking the R or U keys, respec-
tively.

You will notice that you sometimes have to strike a key
several times in succession before seeing a response on the naviga-
tion readout. The control mechanisms on your ship aren’t very
precise, mainly because you are living in a day when the earth’s
space program has been suffering from all sorts of problems for the
better part of a century. That also accounts for why the NAV
BEACON objects are inoperative.

Your first piloting lesson will amount to leaving home and
flying around within the 100 space-unit range of your radar. The
five control keys you will need for the lesson are: U, upward
motion, an increasing and upward motion from HOME; D, down-
ward motion, a decreasing and downward motion toward HOME;
R, right-direction motion, an increasing and right motion from
HOME; L, left-direction, a decreasing and left motion toward
HOME; and S, dead stop relative to HOME.

The only way you know you are moving at all relative to home
is by noting changes in the RANGE figure and one or both of the
X-Y direction figures. Of course, you know you are moving away
from home when the RANGE figure is steadily increasing. You are
moving toward home when the RANGE figure shows a steady
decrease.

The actual direction you are moving relative to home can be
deduced from the X and Y coordinate figures. If, for example, the X
figure is increasing, your motion has a right-motion component. If
that same figure is decreasing, your motion must have a left-
direction component instead.

Using the same line of thinking, an increasing value of Y
indicates you are moving up and away from home. A decreasing
value shows your motion has a downward component.

You can fly combinations of X and Y directions at the same
time. But it is obviously impossible to fly to the right and to the left
at the same time.

If things ever get out of hand and you lose track of which
direction you are flying, just strike the S key to stop things. That
will give you time to plan your next navigation step.

One further important point is that your ship cannot fly ouside
the 1000 by 1000 space-unit coordinates of the universe. If you
happen to run into the “edge of the universe,” the component of

307




motion in the direction of the edge will simply fail to work. For
example, suppose you are flying to the left and upward. You hit the
left-hand edge of the universe, but there is plenty of space above.
All you will notice is that the left-hand component of motion (the X
figure) will stop changing suddenly. The Y figure will continue
increasing, but the X figure stops. It is up to you to spot these
things and take the appropriate action.

So blast off with an upward (U key), right-hand (R key) motion
or a combination of the two. Fly some short distance from home,
stop (S key) and make a change in course. Fly around, staying
within the 100 space-unit range for the time being. Get accustomed
to the fussy controls, having to strike the control keys several
times in rapid succession before seeing the desired results.

When you think you are getting the hang of it, fly a bit beyond
the 100 space-unit range of your navigation radar. Don’t go too far
out because you want to find your way back.

How do you know which way to go when you’ve lost navigation
contact? That little problem is left to your own ingenuity. Perhaps
you will make a habit of keeping a log of your course changes. That
little gimmick will always help you find your way around.

In fact, this whole game is a great exercise in navigation
methods. Ultimately, the game is best played by those who take
the trouble to chart their courses and course changes, using the
minimal amount of information sometimes available on the display.

A SHORT COURSE IN FINDING AND REPAIRING NAV BEACONS

As mentioned earlier, you are carrying out your mission in a
day when the earth’s space program has fallen into a state of
disarray. One of the objectives of the mission is to repair all four
navigation beacons, thereby making it easier to navigate through
the universe.

There are four navigation stations in space that are running on
their last legs. The only information available from them is their
range. At the beginning of the mission, you haven't the slightest
idea where they are or just how far away they are.

So part of the game strategy is to blast off from earth and set up
a course that causes the range figures for the NAV BEACON
objects to decrease steadily. As long as those figures are decreas-
ing, you know you are at least moving in the right general direction.

Why not start out after the navigation station having the
smallest range figure? Play around with course changes until you
notice the range figure for that station decreasing steadily.

308



You will notice that the range figure changes very slowly at
first, but decreases more rapidly as you approach the nav station’s
beacon.

As you close in on a nav beacon, you will most likely reach a
point where the range figure no longer shows a steady decrease.
Rather, it remains steady for a while and then begins to increase.
That is a sure sign you are overshooting it. It’s time to stop and
make a change of course.

The first change will have to be an educated guess. You are
flying blind and by the seat of your pants. Play around with your
direction controls until you see the range figure decreasing again.
This takes some real patience and analytical thinking on your part.

When you get within 2 space units of an inoperative navigation
beacon, stop (strike the S key) and fix the thing. How do you repair
a broken navigation beacon? It’s simple, really. Just strike the N
key. That’ll do it.

You know you've fixed the beacon when your status readout
suddenly begins showing the X and Y coordinates of that beacon.
From that time on, you can use those figures to fix your position in
space relative to that nav beacon. If you want some more practice
finding and repairing nav beacons, blast off from the repaired one
and search out another inoperative one.

While you are learning to find and repair navigation beacons,
you will occasionally pick up some radar information from the
ADVERSARY and the HULK objects. Tracking them down can be
pretty tricky and, worst of all, chasing after them can make you lose
track of the beacon you’re trying to find.

For the purposes of this exercise, then, you ought to ignore
the other objects. They’re harmless, anyway.

To this point in your training, you should be able to blast off
from home, find and repair all four beacons and (here is the real
catch)find your way back home. Keep track of how long it takes you
to do this job, and you'll begin getting an idea of how long it takes to
play the whole game.

Think about some strategy now. Wouldn't it be most helpful to
make up a chart of the universe —a large sheet of coordinate paper
showing HOME at the lower left-hand corner? Before leaving
home, you could inscribe large arcs having radii equal to the range
of the navigation beacons. If you keep track of your course changes,
you can get a fairly good idea of where those beacons are located
relative to home. After you repair the last one, you will have an
idea about the course to fly in order to return home.

309




Infact, if you don’t keep a log of some sort, it is going to take
many hours of trial-and-error flying to get within the 100 space-unit
range of the HOME radar. You can find your way home by sys-
tematically following the “edges of the universe,” though.

A SEEK-AND-DESTROY TRAINING MISSION

The final lesson in your basic space ranger training program is
to seek out and destroy the ADVERSARY or one of the HULK
objects. Unlike the NAV BEACON objects, ADVERSARY and
HULK objects are in continuous motion in space as long as they
live.

These “live” objects aren’t easy to find, either. You haven't
the slightest notion about where they are until one of them moves
within the 100 space-unit range of your radar. That means you have
to cruise space, perhaps setting up a systematic search pattern of
motion, until one of these objects moves within range.

If you think it was hard to track down a stationary navigation
beacon, wait until you have to chase down a moving target. You
have two elements in your favor, however. First, your ship canfly
twice as fast as ADVERSARY or one of the HULK figures. The
second point in your favor is that these objects always travel in
straight lines. So in spite of sloppy controls, your spacecraft can
outmaneuver the moving objects rather well.

For the sake of carrying out this training mission, run the
program from the start, blast off from earth, and set a course
diagonally (U and R controls) across space. Sooner or later, one of
the objects will run into your 100 space-unit radar range. When that
happens, the display will also start giving you range and relative
coordinate information.

Remember that a — X value means the object is to your left,
and that you must set a course with an L component in order to
approach it. A positive X value means the object is to yourright. By
the same line of thinking, — Y values means the object is below,
while positive values of Y means it is above.

When an object falls into your radar range, start making the
course corrections necessary for catching up withit. It isn’t an easy
task, especially while the object remains close to the 100 space-
unit limit.

Close in on the target. When the range figure is within 10
space units, strike the F key. Striking the F key sends out your
deadly destructive force field. If you hit the object, the status
display will show the message DESTROYED.

310



If you have carried out your lessons with the NAV BEACON
objects properly, you shouldn’t have too much trouble closing in on
one of the moving objects. The real problem is finding the one you
want to destroy. In keeping with the way things seem to go inreal
life, finding the last one is the most difficult task of all. You simply
have to cruise around in space until you find it.

PLAYING THE GAME OF SPACE RANGER MISSION

The objective of the game is to leave earth, repair all four
navigation beacons, destroy all moving ADVERSARY and HULK
objects and then return to earth. In the light of your training
sessions, you can appreciate the difficulty in carrying out the
complete mission.

It can take a skilled player several hours to complete the
mission, and sometimes it cannot be done in one session. If you
must leave the game for any length of time, simply strike the S key
to bring your spaceship to a halt. The ADVERSARY and HULK
objects that are still alive will continue to roam about freely, but
that won't spoil the game at all.

There is some merit in having three people playing the game.
One can act as the pilot, operating the control keys and making
critical decisions. Another player can work as a navigator, attempt-
ing to keep track of course changes and the positions of stationary
objects. The third player can be a radar operator, keeping an eye
open for unexpected intrusions of the moving objects. Having a
radar operator is especially important when the pilot is preoc-
cupied with the job of repairing a navigation station or tracking
another moving object in space. Table 15-1 summarizes the key
controls for this SPACE RANGER MISSION game.

DECLARATIONS, FUNCTIONS AND
PROCEDURES FOR SPACE RANGER MISSION

The complete program listing for SPACE RANGER MIS-
SION offered earlier in this chapter is written to conserve memory

Table 15-1. Summary of Key Controls for SPACE RANGER MISSION.

U—upward motion relative to HOME

D—downward motion relative to HOME
L—left-direction motion relative to HOME
R—right-direction motion relative to HOME

N—repair a NAV BEACON

F—fire a force field

X—abort the mission (same as striking the BREAK key)

311



space. Clarity of programming procedures and the formal methods
for writing structured programs were sacrificed in order to get the
source program into the memory space available. The bottom line
of this tradeoff is that the declarations, functions and procedures
are rather hard to follow, let alone understand.

For the benefit of readers who are interested in understanding
the workings of the SPACE RANGER MISSION game, the listing
in this section shows the formal, clearer programming format.
Please understand that the program cannot be entered with this
format. You must stick with the format shown earlier in this
chapter. Attempting to enter the game in this fashion will turn out
to be a waste of time for you. Once the 4.5K of program space is
used up (by entering an excessively long source program), the
system latches up without warning. All the work you've done to
that point will be totally lost.

Listing
Here is the listing, excluding the mainline program, written in
a clearer fashion:

(* SPACE RANGE MISSION *)
VAR OBJ,N,SEBD,CHANGE,CFLAG,PHASE,ENGO,DELAY:INTEGER;
(* DECLARE ARRAYS *)
XCOORD:ARRAY (10) OF INTEGER;
YCOORD:ARRAY (10) OF INTEGER;
XVEC:ARRAY (10) OF INTEGER;
YVEC:ARRAY (10) OF INTEGER;
TYPE:ARRAY (10) OF INTEGER;
LIVE:ARRAY(10) OF INTEGER;

(* RANDOM NO. *)
FUNC RND(RLOW,RHIGH) ;
VAR M,P:INTEGER;
BEGIN
REPEAT
M:=N*3125;
IF M<0 THEN M:=ABS(M);
N:=M;P:=M;
P:=P MOD RHIGH

UNTIL (P>=RLOW) AND (P<=RHIGH);

RND:=P
END;

(* RELATIVE COORDS *)
FUNC RCOORD (ELESHIP,ELETARG) ;

BEGIN

RCOORD: =ELETARG-ELESHIP
END;
(* RANGE *)

FUNC RANGE (XSHIP,YSHIP,XTARG,YTARG);

VAR XDIST,YDIST,SCALE,RAD,ROOT: INTEGER;
BEGIN
XDIST:=ABS (RCOORD (XSHIP,XTARG) ) ;
YDIST:=ABS (RCOORD (YSHIP,YTARG)) ;

312



IF XDIST>=10*YDIST THEN
RANGE:=XDIST;
IF YDIST>=10*XDIST THEN
RANGE:=YDIST;
IF NOT((XDIST>=10*YDIST) OR (YDIST>=10*XDIST)) THEN

BEGIN

IF (XDIST<=100) AND (YDIST<=100) THEN
SCALE:=1

ELSE
BEGIN
SCALE:=10;

XDIST:=XDIST DIV 10;
YDIST:=YDIST DIV 10
END;
RAD:=SQR(XDIST)+SQR(YDIST) ;
ROOT:=0;
REPEAT
ROOT:=RO0T+1
UNTIL SQR(ROOT) >=RAD;
IF (SQR(ROOT)-RAD)> (ABS(SQR(ROOT-1)~RAD)) THEN
ROOT:=RO0OT-1;
RANGE : =ROOT*SCALE
END
END;
(* OBJECT STATUS *)
PROC ENESTAT(XSHIP,YSHIP,XENE,YENE,LIVE,TYPE);
VAR ENEDIST:INTEGER;
BEGIN
ENEDIST:=RANGE (XSHIP,YSHIP,XENE,YENE);
CASE TYPE OF
0:IF ENEDIST>100 THEN
WRITE('OUT OF RANGE')
ELSE
WRITE('RANGE:',ENEDIST#,' X=',RCOORD(XSHIP,0)#,
="' ,RCOORD(YSHIP,0) #);
1:IF NOT LIVE THEN
WRITE('DESTROYED')
ELSE
BEGIN
IF ENEDIST>100 THEN
WRITE('NOT IN RANGE')

ELSE
WRITE ( 'RANGE:',ENEDIST#,' X="',RCOORD (XSHIP,
XENE) #, ' =1,RCOORD (YSHIP,YENE) #)

END;

2:IF NOT LIVE THEN
WRITE('RANGE:',ENEDIST#,' NAV INOPERATIVE')

ELSE
WRITE('RANGE:',ENEDIST#,' X=',RCOORD (XSHIP,
XENE) #, ' =',RCOORD (YSHIP, YENE) #)
END; (* OF CASE STATEMENT *)
WRITE(13)

END; (* OF FUNCTION *)

(* MOVE SHIP ¥*)

FUNC SHIPMOVE(ELESHIP,DIRSHIP);
VAR NEWDIR:INTEGER;

BEGIN

313



IF (ELESHIP+DIRSHIP<0) OR (ELESHIP+DIRSHIP>1000) THEN
SHIPMOVE:=ELESHIP
ELSE
SHIPMOVE:=ELESHIP+DIRSHIP
END;
BEGIN
END.

DECLARE ARRAYS Section

As usual, the mainline program variables must be declared at
the beginning of the program. They do not have much meaning at
that point, so begin your analysis of the program with the section
commented DECLARE ARRAYS.

The game uses six 10-element arrays, each element repre-
senting a subscripted variable associated with objects in the game.
Table 15-2 shows that each element in the arrays is associated with
one particular object. Element 0 in each array, for example, repre-
sents variables associated with your spaceship. The 2-elements
represent the adversary, the 3-elements represent HULK #1, and
SO on.

Table 15-3 then defines each array. For example, the array
XCOORD holds the absolute X component of every object’s posi-
tion on the screen. Carrying the example a bit further, element 4 in
the XCOORD array holds the X position of HULK #2. Element 5 of
that same XCOORD array, on the other hand, holds the X coordi-
nate of HULK #3.

So there are 11 relevant objects in the game program, ranging
from your own spaceship (element 0) through NAV BEACON #4
(element 10). And there are six different variables associated with
each object in the game, ranging from their X coordinates
(XCOORD) through an indication of whether or not the objects are
“alive” (LIVE). Arrays such as these must be declared early in the
program, but in this case they don’t have much bearing on the
analysis until a bit later in the listing.

0—PLAYER'S OWN SPACESHIP
1—HOME
2—ADVERSARY
3—HULK #1

Table 15-2. Definition of Elements 4—HULK #2

Within Each Array. 5—~HULK #3
6—HULK #4

7—NAV BEACON #1
8—NAV BEACON #2
9—NAV BEACON #3
10—NAV BEACON #4

314



The next major declaration is the one for generating some
random numbers. This begins at the comment, RANDOM NO.,
and it is virtually identical to the random functions used quite often
in earlier sections of this book. There is no need for further
discussion of the random function at this time.

RCOORD Function

The comment RELATIVE COORDS brings up the next im-
portant declaration section. RCOORD is a fairly simple Pascal
function, doing nothing more than calculating the X and Y coordi-
nates of some object relative to your own space ship. If, for
example, an object happens to be 10 units above and 4 units to the
left of your spaceship, this function is responsible for generating
the numbers 10 and —4 —the values ultimately assigned to the X
and Y coordinates displayed on the screen for that particular object.

The RCOORD function requires two variables at the outset,
ELESHIP and ELETARG. ELESHIP represents the absolute X or
Y coordinates of the spaceship, and ELETARG represents the
absolute X or Y coordinates of the other object within radar range.
By “absolute” coordinates, I mean the actual X and Y distances
from HOME, the origin of the entire universe coordinate system.

So all that RCOORD does is to subtract the X or Y component
of your spaceship’s location from the corresponding X or Y coordi-
nates of the other object. The result is a number, one that is
positive or negative, showing the relative bearing of the object
from your spaceship.

As an example, suppose the spaceship is at absolute coordi-
nates X=100 and Y=250. That means the ship is 100 units to the

Table 15-3. Definition of Arrays.

XCOORD—X coordinate of distance from HOME
YCOORD-Y coordinate of distance from HOME
XVEC—X component of motion (1, 0 or —1)
YVEC—Y component of motion (1, 0 or —1)
TYPE-—Type of object (0, 1 or 2)
Where 0 is HOME and players own spaceship
1 is a movable, but destructible object
2 is a stationary NAV BEACON
LIVE—operational status (0 or 1)
Where 0 is DESTROYED or INOPERATIVE
1 is alive or fully operational

315



right and 250 units above HOME. At the same time, an object
within radar range might have absolute coordinates X=120 and
Y=245. Cranking these two sets of X values into the function,
RCOORD(100,120), yields a relative X coordinate of 120-100, or
20 space units. The object, in other words, is 20 units to the right of
you.

Working the same function, using the Y values in this exam-
ple, the function turns out a relative Y bearing of ~ 5. That means
the object is 5 space units below you. In a manner of speaking,
function RCOORD translates absolute coordinates of your space-
ship and some object into relative coordinates, which are relative
to your position in space.

RANGE Statement

The declaration statements commented RANGE turn out to
be a bit more involved than RCOORD. In this case, the problemis
to solve a square root using integer arithmetic. The general idea is
to use the relative X and Y coordinates generated by RCOORD to
solve the Pythagorean theorem and come up with the range.

In any X-Y coordinate system, the distance between two
points can be calculated by this equation:

VX + Y
where X is the horizontal component of the distance and Y is the
vertical component.

It is difficult to come up with a precise solution to the range
equation when you're limited to integer values. We simply have to
live with some inaccuracies. The answers will be whole numbers,
even though most situations call for fractional parts. Being
forewarned that this function will produce estimated range values,
take a look at how it can be done.

The variables declared for RANGE include XDIST, YDIST,
SCALE, RAD and ROOT. The meanings of these variables will
become apparent as you go along here.

Calculating XDIST and YDIST

The first operational statements call for running the RCOORD
function a couple of times. The first time that function is called, the
idea is to determine the absolute value of the X distance to the
object. For the sake of calculating the range of the object, the sign
of the X components (whether it is negative or positive) isn’t
relevant. So XDIST, the absolute value of the X distance, is
calculated by a relatively simple process. YDIST, the Y component

316



of the distance to the object, is then calculated the same way, using
the same RCOORD function.

Now here comes the first bit of range estimating. There is
little point in going through a lot of careful calculations whenever
one component of the distances is more than 10 times the other.
Any right triangle having one side more than 10 times longer than
the other will always produce a hypotenuse that is very nearly
equal to the length of the longer side. Hence, you have the two
conditional statements that test the relative values of XDIST and
YDIST. In the first case, if XDIST turns out to be 10 or more times
greater than YDIST, the program simply sets RANGE equal to
XDIST. The function is done. By the same token, if YDIST is 10 or
more times larger than XDIST, the function immediately sets
RANGE to the value of YDIST.

Those are the simple solutions to the matter of calculating'
range. The tricky part comes in whenever XDIST isn’t much larger
than YDIST, or YDIST isn’t much larger than XDIST. The remain-
der of the RANGE function is devoted to solving the triangle.

The first step in solving for RANGE at this point is to test the
values for distances of 100 or more. Supersoft Tiny Pascal cannot
handle numbers larger than a 16-bit binary format allows. That’s
about 32,000 in the positive and negative directions. By checking
for XDIST and YDIST values greater than 100, the program is
eliminating the possibility of having an oversized number crop up
later in the function.

So if XDIST and YDIST are both less than or equal to 100, a
variable called SCALE is set to a value of 1. Otherwise, SCALE is
set to 10, and the two distances are divided by 10. Dividing larger
numbers by 10 ensures none of the later operations will yield a sum
greater than the system can handle.

RAD and ROOT Variables

Now you should be down to the statement
RAD:=SQRXDIST)+SQU(YDIST). This one squares the two
values and sums them, effectively performing the X?+Y? part of the
range finding job. Variable RAD thus stands for “radicand,” the
number under the root symbol in the basic range equation.

The function then sets a trial root, variable ROOT, to 0. Then
a REPEAT statement causes ROOT to increment UNTIL its
square is equal or greater than the RAD value. At that point, ROOT

is pretty close to the square root of the RAD value, and that’s what
this whole thing is about.

317



The function could be ended shortly after this point, but an
extra IF. . . THEN statement provides a bit more accuracy to the
operation. That conditional statement compares the differences
between the squared ROOT value and RAD under two different
conditions. The first part gets the difference between ROOT? and
RAD, while the second part backs up the value of ROOT by one
number and does a similar comparison: (ROOT—1Y—RAD.

In essence, the statement is asking, “Which value is closer to
being the square root of RAD? ROOT or ROOT—1?" It looks for a
possible “overshoot” during the ROOT-incrementing phase of the
operation, making the ROOT:=ROOT—1 correction if that value
turns out to be closer to the square root of RAD than ROOT is.

By this point in the function, ROOT is as close to being the
square root of RAD as integer arithmetic will allow. The remaining
operation is to set RANGE equal to the ROOT value. But wait!
Weren't very large values of XDIST and YDIST divided by 10
earlier in the program? Yes, they were; and a variable SCALE
carried a value of 1 or 10, depending on whether that division-by-10
took place or did not.

Recall that SCALE was set to a value of 1 if there was no
division by 10, and it was set to 10 if the division was carried out.
So the statement RANGE:=ROOT*SCALE straightens out—
scales the final value —by multiplying ROOT by SCALE.

This is the first time a root function has been described in this
book. You might want to mark the page so you can find it for your
own programs at some later time.

The function RANGE is thus called whenever it is necessary
to compute the range between your spaceship and some other
object in space. The variables that must be carried into this func-
tion are XSHIP, YSHIP, XTARG and YTARG. Those represent
the X coordinates of your ship and the target, and the Y coordinates
of the same.

ENESTAT Procedure

Procedure ENESTAT begins under the comment OBJECT
STATUS. The main purpose of this procedure is to determine
whether or not an object is within radar range and figure out
whether the object in question is dead, alive, inoperative and so
on.

As aprocedure, ENESTAT does not calculate any values that
are carried back to the statement that calls it. That is always the

318



purpose of a Pascal function. That is not to say that calculations
aren’t carried out within the procedure, however.

Variables that must be available when running ENESTAT
include XSHIP, YSHIP, XENE and YENE. These are the absolute
X and Y components of your ship and the “enemy’s” position in
space. LIVE is a value 1 or O that indicates whether or not the
object in question is fully operational. A value of 1 indicates the
object is indeed operational, while a value of 0 means it is de-
stroyed or inoperative.

The TYPE variable is an integer between 0 and 2. The O-type
object is HOME, the 1-types are the five moving objects (ADVER-
SARY and the four HULK things), and the 2-types are the four NAV
BEACON objects.

The only variable used solely within this procedure is
ENEDIST, actually the range between your spaceship and the
object in question. So upon calling procedure ENESTAT, it first
calculates the range to the object being considered. This is a simple
matter of calling the RANGE function just described.

Then the program uses a CASE statement to sort out opera-
tions according to the TYPE of object being studied. If the object is
type 0 (HOME), the first consideration is the distance to HOME. If
the distance to HOME is greater than 100 space units, this proce-
dure writes the message OUT OF RANGE on the screen. If you
have already played the game, you are quite familiar with that one.

On the other hand, if HOME distance is less than 100 space
units, the program calls for writing RANGE:, followed by the
calculated range figure, the X distance to HOME and the Y distance
to HOME. The X and Y components of the distance to HOME are
both calculated by calling the RCOORD function. RCOORD
(XSHIP, ) provides the X distance, and RCOORD(YSHIP, )
yields the Y component of the distance to HOME.

Type-1 Object

If this procedure is being run with a type-1 object, case value 1
applies. Here, the first test is to see whether or not the object is
“alive.” If it is not alive, the program calls for writing DE-
STROYED on the screen. This message occurs after you've killed
the ADVERSARY of any of the HULK objects.

But if a type-1 object is alive and well, the ELSE part of the
statement does a couple of things. First, there is a test to see
whether or not that particular object is within the 100 space-unit

319




range of your radar. If not, the system prints NOT IN RANGE.
Otherwise, it calculates the range, X component of the distance
and direction and the Y component of distance and direction. Those
values are simultaneously printed on the screen.

NAV BEACON Objects

Type-2 objects, the NAV BEACON objects, follow CASE 2. If
the objects are still inoperative (not alive), the statement simply
prints the range and the message, NAV INOPERATIVE. Other-
wise, the program prints out the range and the relative bearings in
an X-Y format.

Taking an overall view of this ENESTAT procedure, it is
responsible for providing the data presented to you on the screen.
In the process, it calls most of the functions described to this point
in the analysis.

The final segment of this declaration phase of the program is
labeled MOVE SHIP. In the simplest terms, this functionis the one
that makes the spaceship move around in space. To run the func-
tion, you must provide variables ELESHIP and DIRSHIP. ELE-
SHIP is the absolute value of the ship’s distance from HOME as
expressed, in turn, as X and Y coordinates. DIRSHIP is a value of
—1, 0 or1, indicating the direction of motionrelative to HOME. As
you will see in this function, those DIRSHIP values are generally
added to ELESHIP, thereby changing the X and Y coordinates by 1
unit, — 1 unit or no units at all.

The only point of minor complication is that SHIPMOVE also
determines whether or not your spaceship is at the edge of the
universe. If your absolute coordinates for X or Y are trying to go
less than 0 (you are at the very bottom or left-hand edge) or greater
than 1000 (you are at the top or right-hand edge), the function
disallows further motion in that direction.

SPACE RANGER MISSION MAINLINE PROGRAM

The mainline programming for the game is listed in the first
version of the program. Refer back to the first part of this chapter.

The first part of the mainline program is labeled with the
comment SEED. The WRITE statement under SEED clears the
screen and prints the heading, ENTER TO START THE GAME...

This heading is really a delay tactic used for generating a seed
number for the random number generator, function RND. While
the player is sitting around reading the heading message, the
SEED sequence counts values of variable SEED between 99 and

320



999. When the player finally strikes the ENTER key, the WHILE
INKEY<>13 statements causes a break from the sequence, with
SEED equal to some number between 99 and 999.

Object Initialization

The next step in the mainline program is to INITIALIZE
GAME. Here, variable N is set to the SEED value, variables
CFLAG and PHASE are set to 0 and 1 respectively, and the screen
is cleared once again by a WRITE (28,31) statement.

Then there are a number of initializing steps involving vari-
able OBJ. OB]J is going to be an integer between 0 and 10, repre-
senting each of the elements within the game arrays outlined in
Table 15-2. The overall idea is to set the initial values of each
object’s position in space, direction of motion (if applicable), object
TYPE and operational status.

Now that is a lot of variables to initialize. But the job is kept to
manageable proportions by using the arrays declared at the begin-
ning of the program.

So the first OBJ initializing operation involves objects Oand 1,
PLAYER’S OWN SPACESHIP and HOME. For both objects, this
part of the initializing program sets their coordinates to 0,0 and
establishes them as TYPE-0. They are both set as LIVE objects as
well.

The second phase involves objects 2 to 10, everything except
SPACESHIP and HOME. Here, the initial X and Y coordinates in
space are set to random numbers between 100 and 900 space units
from HOME. This means that the ADVERSARY, all four HULK
objects and the four NAV BEACON stations are scattered at
random in space.

The third phase of object initialization involves objects 2
through 6. These are the moving objects, and the program in-
itializes them as LIVE and TYPE-1 objects. After that, they are
given random motion vectors that exclude a pair of zeros. If these
objects were permitted XVEC and YVEC values of zero on both
counts, they would be motionless in space throughout the game.
And we don’t want that to happen. Hence, the need for a REPEAT
sequence that continues picking random values until XVEC and
YVEC are not both zero. One of the two motion vectors can be 0,
but not both.

The last segment of the object-initializing operation involves
the navigation beacons, objects 7 through 10. You can see that they
are not LIVE initially. They are set to their INOPERATIVE condi-

321




tion as long as LIVE=0. They are also classified here as TYPE-2
objects. Finally, their motion vectors, XVEC and YVEC, are set to
zero so that they do not move in space.

Printing Sequence

That concludes the initializing portion of the game. The next
item on the agenda is commented START GAME.

The major task of the program is that of printing the current
navigation status on the screen of the CRT. The printing sequence

opens with a REPEAT statement that implies the program is going
to cycle through the process continuously until something happens
to stop it. If you read down to the end of the program, you will find
that the UNTIL part of this statement calls for a variable CHANGE
being set to character X. Recall that you abort the entire game by
striking the X key. This is the REPEAT . . . UNTIL sequence that
key interrupts.

After the intitial REPEAT line, you find a WRITE statement
that formats the message, CURRENT NAVIGATION STATUS,
near the center and top of the screen. After dropping down two
lines, the program enters another REPEAT sequence. This is the
sequence responsible for updating the navigation information on
the screen. It begins with a WRITE(28, 13), which returns the
cursor to the upper left-hand corner of the screen and then line
feeds it down one line below the CURRENT NAVIGATION
STATUS message.

Also, take careful note of the fact that a variable CHANGE is
set to 0 at the beginning of this information updating sequence. The
next line reads: FOR OBJ:=1 TO 10. This implies that everything
within the subsequent BEGIN ... END series of operations will
involve all 10 game objects in sequence.

CFLAG Variable

The next set of statements are built around that CFLAG
variable. If the CFLAG is not set to 1, the systemuses a WHILE ...
DO statement to cycle through an INKEY operation up to 10 times.
This cycling of the INKEY operation takes place until the operator
sirikes some key on the keyboard or the 10 INKEY cycles are
done. If the operator does indeed hit a key during this cycling
interval, variable CFLAG is set to 1. So variable CFLAG is equal to
1 or 0 at this time, depending on whether or not the operator
strikes some key during the INKEY-cycling process.

322



CASE Statement

Setting aside CFLAG for the moment, the next set of opera-
tion are built around a CASE statement. What happens here de-
pends on which object is being considered at the time. Recall that
variable OB]J is being cycled between 1 and 10 as all this takes
place. That means one of the 10 CASE messages are going to be
printed on the screen,

If, for instance, the system happens to be working with
OBJ =5, that means it is dealing with terms associated with HULK
#3. When the program gets down to this CASE statement, it prints
HULK #3—.

When the CASE statement has been executed, the program
calls the function ENESTAT. That function, described in the pre-
vious section of this chapter, calculates ranges, relative coordi-
nates, checks LIVE status, TYPE and prints the appropriate infor-
mation on the screen. And it prints that information right after the
message printed during the preceding CASE statement.

Soif the system is running OBJ=5, ENESTAT is dealing with
the relevant parameters for HULK #3. The CASE statement
prints HULK #3. The following ENESTAT function fills out the
rest of the same line.

Object-Moving Sequence

A section of the mainline program called MOVE THINGS
comes next. As the comment implies, the purpose here is to
change the coordinates of the moving objects according to the
values of their motion vectors, XVEC and YVEC.

The first motion always deals with OBJECT 0, your own
spaceship. The two lines update the x and y coordinates of the
spaceship by means of function SHIPMOVE which, in turn, carries
variables established by executing four other functions: XCOORD,
XVEC, YCOORD and YVEC. In short, those two lines move the
spaceship.

The next few lines are responsible for moving all the AD-
VERSARY and HULK objects that are supposed to move. To do
this, variable ENGO is cycled between 2 and 6, object numbers for
the movable objects. Their positions in space are adjusted in much
the same way that those of the player’s spaceship are by function
SHIPMOVE. The main difference here, however, is that the vec-
tors are automatically reversed in direction whenever the object
comes into contact with the edge of the universe. See, for example,
the statement:

323




IF XCOORD(ENGO)<0) OR XCOORD(ENGO)>1000)
THEN XVECENGO):=XVECENGO)*(-1)

If the X coordinate of the object attempts to drop below or go
above the edges of space, the motion vector is reversed. It is not
set to 0, or stopped, as is the case for the player’s spaceship. Inany
event, it turns out that the current value of VEC is added to the
object’s present position, thus causing it to move through space.

Variable PHASE appearing around this object-moving sequ-
ence is responsible for setting new object positions just one time
for every two times the player’s spaceship coordinates are up-
dated. The effect of this every-other-time feature is that the AD-
VERSARY and HULK objects move no more than half as fast as the
player’s spaceship.

Then there is an UNTIL CFLAG=1 statement. The UNTIL
refers back to the screen updating operations. Recall that CFLAG
is set to 1 only if the player strikes akey duringan INKEY cycling
process. Otherwise, CFLAG is set to 0.

So whether or not the system executes the CASE CHANGE
OF statement depends on whether or not the player has hit a key to
set CFLAG equal to 1. If not, the system repeats the screen
updating and moving operations. But if the player did hit a key,
CFLAG s equal to 1. It is time to take some action based on the key
the player hit.

The CASE CHANGE OF statement effectively decodes the
key operation, taking action appropriate to the situation. These
operations can alter the motion vectors of the player’s spaceship,
fix a navigation station if the RANGE function shows that the nav
station is in range, or fire the weapon and “kill” a moving object.

After taking that action, the program returns to the beginning
of the screen updating operation. In short, the mainline program
updates the navigation information on the screen. It gives the
player an opportunity to signal a change of status is in order, to
move his spaceship position twice as fast as any other moving
object and to take any action specified by striking a control key.

324



Chapter 16

Translating
BASIC Into Tiny Pascal

Now that you know more about Pascal than ever before, you might
have a notion about converting some of your favorite BASIC prog-
rams into Tiny Pascal. [ have for you some good news and some bad
news.

The good news is that there are a lot of BASIC commands and
statements that can be carried over directly into Tiny Pascal. The
bad news is that Tiny Pascal cannot deal with string statements and
floating-point arithmetic very well, so it is difficult to translate
BASIC programs having those statements and functions in them.

Another bit of bad news is that so many BASIC programs are
written in a haphazard, albeit workable, fashion. The Tiny Pascal
compiler doesn’t like haphazard programs, so you might end up
rewriting portions of the original BASIC program. In spite of the
bad news, it is possible to salvage a good share of many BASIC
programs, thereby allowing you to rewrite portions of your favorite
programs into Pascal with little effort.

DIRECT CONVERSIONS FROM BASIC TO TINY PASCAL

There are a good many keyboard commands and program
statements in BASIC that have direct, or nearly direct, counter-
parts in Tiny Pascal.

Keyboard Commands

BASIC: CLOAD ‘file name”
Tiny Pascal: LS file name or LP file name

325




These commands load programs from cassette tape into the
machine. Both the TRS-80 BASIC and Tiny Pascal versions call for
afile name, but BASIC has the added requirement of enclosing the
file name within quotes.

Tiny Pascal offers the option of loading either source-code
versions (LS file name) or previously compiled P-code versions
(LP file name). Of course, a program written onto cassette tape asa
source-code must be loaded as such, and the same goes for the
P-code loading operation.

BASIC: CSAVE “file name”
Tiny Pascal: WS file name or WP file name

These commands write programs from the computer’s prog-
ram memory onto cassette tape. Tiny Pascal programs can be
written onto tape in either the source-code or P-code formats. WS
file name saves the source-code version, while WP file name saves
the P-code version.

BASIC: DELETE mm-n»n
Tiny Pascal: D nn

The idea here is to delete a certain number of program lines.
In TRS-80 BASIC, you can delete the lines numbered mm through
nn. If, for example, you want to delete BASIC program lines 100
through 200, the command would be DELETE 100-200.

Since Tiny Pascal does not have numbered program lines, the
command D nn deletes nn lines downward from the current pointer
position. To delete the next five lines of Pascal programming, you
would do D 5.

In either language, omitting the mm or nn numbers deletes
only the current line.

BASIC: NEW
Tiny Pascal: D*

These commands delete the entire program.

BASIC:LIST mm-nn
Tiny Pascal: P or P nn or P*

It is important to be able to view selected portions of a
program on the CRT. That is the point of these commands. In

326



BASIC, doing a LIST mm-nn lists the program from line number
mm tonn, LIST -mm lists the program up to line number mm, LIST
mm-, lists the program from line mm to the end, and LIST displays
the entire program, from beginning to end.

Not having numbered lines, Tiny Pascal’s version of the
BASIC LIST mm-nn is somewhat restricted in its application. It is
possible to achieve the same results, however, with some prac-
tice.

In Tiny Pascal, entering P lists the current line, P nn lists the
next nn lines, and P*does a complete listing of the program. These
listing commands in Tiny Pascal can be used only with a source
program and in the system’s edit mode.

BASIC: RUN mm
Tiny Pascal: R

In BASIC, doing a RUN mm command begins execution of the
program from line number mm. If you omit the mm number, the
execution begins from the lowest-numbered line.

By the very nature of Pascal programming, it is virtually
impossible to run a program from anywhere but at the very begin-
ning. Thus, the execution of a compiled Tiny Pascal program can
begin with nothing but a single command, R.

BASIC: EDIT mm
Tiny Pascal: E

These commands put the system into its edit mode, making it
possible to alter the program without having to dump the whole
thing and start over from scratch.

TRS-80 BASIC allows you to edit one line at a time by
entering EDIT mm, where mm is the line number for the statement
that needs some work.

Entering E in Tiny Pascal begins the editing operation at the
first line of the program. Again, the fact that Pascal does not use
line numbers makes the editing operation seem awkward at first.
Tiny Pascal, however, makes up for the lack of line numbers by
allowing you to skip around within the program rather easily.

The following summary of Tiny Pascal editing commands
allows you to get to a specific program line without an undue
amount of trouble:

® U-—move up one line in the program.
® Unn—move up #nn lines in the program.

327




U*—move up to the first line in the program.
N-—move down line in the program.

Nnn —move down n# lines in the program.
N*—move down to the last line in the program.

Edit-Mode Operations

BASIC: strike the ENTER key
Tiny Pascal: Q

These keyboard operations terminate the edit mode and re-
turn operations to the command mode or monitor.

BASIC: X
Tiny Pascal: X

Display the remainder of the current program line, move the
cursor to the end of that line, and allow insertion of additional
characters.

BASIC: 1
Tiny Pascal: I

This command allows the insertion of new material. In
BASIC, this insert operation lets you insert new characters into
the current line only. Inserting a whole new line in BASIC is a
matter of entering an appropriate line number and statement from
the command mode.

In Tiny Pascal, I is used for inserting a whole new line of
program text. In the current versions of Tiny Pascal, it is not
possible to insert characters within a line without deleting and
re-entering everything else to the end of that line.

Input/Output Statements

BASIC: PRINT expression
Tiny Pascal: WRITE (expression)

These program statements print characters on the CRT.

In BASIC PRINT math expression causes the numerical re-
sults of a math expression to be printed. PRINT X+2, for instance,
prints out 5 on the CRT if X happens to be equal to 3 at the time.
WRITE (math expression#) does the same thing in Tiny Pascal.

PRINT “string” in BASIC lets you print out any string mes-
sage or character enclosed in quotes. WRITE (‘string’) ac-
complishes the same thing in Tiny Pascal.

328



Itis possible to write multiple-expression printing statements
in both languages. There are some differences in the ways the two
languages respond to punctuation between the expressions.

In BASIC, for instance, expressions separated by commas
cause those expressions to be separated horizontally on the screen
by one standard print zone. Tiny Pascal has no single-expression
statement for a print zone format. In fact, expressions within a
single Pascal WRITE statement must be separated by nothing but
commas.

Another difference between the two languages (when it comes
to multiple-expression printing statements) is that Tiny Pascal
must be told to do a line feed/carriage return. The same sort of
BASIC statement must include a semicolon between expressions
to avoid an automatic line feed/carriage return.

To print multiple expressions without a line feed/carriage
return, do:

PRINT (expression; expression in BASIC
and
WRITE (expression, expression in Tiny Pascal

In these instances, the two expressions will be printed side-by-
side on the CRT.

Printing expressions on separate lines can be done this way:

PRINT (expression):PRINT (expression) in BASIC
and
WRITE (expression, 13, expresston) in Tiny Pascal

The number 13 in the Tiny Pascal version is interpreted as the
ASCII control code for doing a line feed /carriage return on the CRT
screen.

BASIC: INPUT variable
Tiny Pascal: READ (@ariable)

These statements bring execution of the program to a halt
until the operator enters some value for the variable from the
keyboard. In Tiny Pascal, the variable is generally limited to
numerical values, although it is possible to enter single-character
strings.

To assign some value to variable G, the appropriate BASIC
statement is INPUT G. In Tiny Pascal, it is READ(G#).

Like the PRINT and WRITE statements, it is possible to
assign values to more than one variable within a single INPUT or

READ statement. Both languages call for separating the variable
names by commas.

329




PROGRAM STATEMENTS
BASIC: DIM arraydim)
Tiny Pascal: VAR array: ARRAY(@im) OF INTEGER;

Setting the dimensions of an array in BASIC is one of the few
declaration statements in that language. In both instances, array is
the variable name assigned to the array, and dim is an integer
specifying the size of the array.

Although TRS-80 Level-II BASIC permits multi-dimensioned
arrays, Tiny Pascal allows only 1-dimensional arrays. So if you see
DIM array(@dim-1, dim-2, dim-3) in a BASIC program, you know
you are going to have to get pretty clever to do the same sort of
3-dimensional array operations in Tiny Pascal.

BASIC: LET variable=expression or variable=expression
Tiny Pascal: variable:=expression

These are the fundamental assignment statements that attach
the value of expression to a designated variable. If you see some-
thing such as LET A=X+23 in BASIC, you can do the same thing in
Tiny Pascal with A:=X+23.

BASIC: END
Tiny Pascal: END.

These statements mark the end of a program. They return the
system from the program to the command/monitor mode.

BASIC: ON expression GOTO line 1, . . ., line n
Tiny Pascal: CASE expression OF

line 1:

line n:

The equivalence between these statements in BASIC and
Tiny Pascal is a bit tenuous. It is offered here because it works
under many circumstances and at the hands of a programmer who is
thoroughly acquainted with the nature of the two. The general idea
is to skip to a certain line of programming, based on the value of
some expression.

BASIC: FOR variable=expression TO expression . . . NEXT
variable

Tiny Pascal: FOR variable:=expression TO expression DO

In their simplest forms, these two statements perform the
same kinds of looping operations. As presented here, they both

330



increment the value of variable, one integer value at a time, from
the first expression through the second expression.

The BASIC version has the advantage of allowing the prog-
rammer to add a STEP value, thereby allowing the statement to
increase or decrease the variable value by steps other than 1.
These two examples do the same thing:

FOR Z=25 TO @ STEP -1 ... NEXT Z in BASIC

and
FOR Z:=25 DOWNTO ¢ DO in Tiny Pascal

Stepping at values other than 1 or —1 in Tiny Pascal calls for
programming several statements. Suppose the BASIC statement
reads:

FOR F=0/ TO 100 STEP 1¢. . . NEXTF.
The Tiny Pascal counterpart is:
F:=0;
WHILE F<=10¢ DO
BEGIN

F:=i*‘+10
END;

BASIC: REM message

Tiny Pascal: (* message *)

Neither of these statements are executed during the running
of a program. They simply allow the programmer to insert
explanatory text into a program listing,

BASIC: IF expression THEN statement ELSE statement

Tiny Pascal: IF expression THEN statement ELSE statement
These common conditional statements are identical and work

exactly the same way in both languages. The ELSE clause is

optional in both instances.

BASIC: CLS

Tiny Pascal: WRITE@28, 31)

These statements clear the CRT screen and send the cursor to
the upper left-hand corner.

331




SET/PLOT Statements

BASIC: SET¢, »)
Tiny Pascal: PLOT(, y,1)

The SET/PLOT statements print a rectangular spot of light
on the CRT at horizontal coordinate point x and vertical component
y. The value of x is limited to integers 0 through 127, while the
value of y must be between 0 and 47.

BASIC: RESET(, )
Tiny Pascal: PLOTG, y, 0)
These are the complements of the SET/PLOT statements

just described. The idea s to “erase” arectangle of light previously
drawn on the screen by a SET or PLOT statement.

POKE/MEM and PEEK/MEM Statements

BASIC: POKE location, value
Tiny Pascal: MEM (ocation):=value

These statements write a 1-byte value into a 4-byte memory
location. Tiny Pascal has the advantage of allowing location and
value to be expressed either in decimal or hexadecimal form.
BASIC allows decimal integers only.

Unless specified otherwise, the location and value integers in
Tiny Pascal will be taken as decimal values. By adding a percent
sign, %, at the beginning of the integers, they can be expressed in
hexadecimal form.

BASIC: PEEK((location)
Tiny Pascal: variable:=MEM{(ocation)

These are the complements of the POKE/MEM statements
just described. Instead of writing data into a memory location,
however, these PEEK/MEM statements read data from the
specified memory location.

Port Number and Value Statements
BASIC: OUT port number, value
Tiny Pascal: OUTP port number, value

The idea here is to send a value to an external device having
some specified port number. The statements are very nearly iden-
tical in both languages.

332



BASIC: INP ¢ort number)
Tiny Pascal: INP (ort number)

The statements are identical in form and application. In either
case, they return a value present at the designated port number.

Cursor Moving Statements

BASIC: TAB »
Tiny Pascal: 192+

These statements move the cursor n places to the right. Used
most often in conjunction with PRINT/WRITE statements, they
generally take the form PRINT TAB®#) expression or
WRITE(192+4n, expression). In both instances, expression will
appear on the screen, beginning n character spaces to the right of
the present cursor position.

In Tiny Pascal, the value of n is limited to the range of 0
through 63.

ARITHMETIC FUNCTIONS

Most arithmetic functions in TRS-80 Level-Il BASIC are
difficult to translate into Tiny Pascal. The main problem is that so
many of the BASIC math functions call for floating-point arithme-
tic, and Tiny Pascal has no such provisions. One notable exception
is the ABS(expression) function, which is identical in form and
application in both languages.

Some of the BASIC math functions can be “faked” by means of
Tiny Pascal subroutines (functions), but the form of the sub-
routines depends on the application at hand. The scheme for finding
the square root of a number in the SPACE RANGER MISSION
game (Chapter 15), for example, is quite suitable for that particular
game. But it might not have the precision required for other kinds
of applications.

CHANGING PROGRAMS FROM BASIC INTO TINY PASCAL

While it is possible to make a number of direct translations of
BASIC statements to equivalent statements in Tiny Pascal, it is
often very difficult to take an entire BASIC program and translate
it, point for point, into a proper Tiny Pascal format.

Take any short BASIC program as an example, and see if you
can make a direct translation into Tiny Pascal. In some cases, you
can do it with some success, but most attempts are bound to fail
somewhere down the line.

333




One thing that signals a difficult, if not impossible, task is the
appearance of numerous arithmetic function such as SIN, TAN and
EXP. These transcendental functions are possible in Tiny Pascal
only with the greatest amount of effort and mathematical know-
how. The problem is that such functions very rarely fit into an
integer-based system.

Another kind of BASIC statement to avoid is any involving the
manipulation of string variables. While UCSD Pascal can handle
strings, Tiny Pascal cannot.

Finally, there is the matter of program structure. BASIC does
not demand the same high degree of careful structuring that is the
hallmark of Pascal. Some BASIC programmers do, indeed, apply
formal structuring processes during the development of a program;
if that is the case, there is a good chance you can make a fairly easy
transition from BASIC to Tiny Pascal.

But the nature of BASIC allows some pretty sloppy program-
ming to yield satisfactory results. Many BASIC programs, even
those sold commercially, are really patchwork quilts assembled
from bits and pieces of programs. Such programs can work quite
nicely, but closer inspection shows they were assembled in a
trial-and-error fashion, with that old GOTO statement getting the
programmer out of just about any conceivable logical dead end.

Unstructured BASIC programs are just about impossible to
translate into Tiny Pascal. If you can do it, you can probably fit
square pegs into round holes.

Unfortunately, getting a BASIC program into a Tiny Pascal
format calls for tearing the BASIC version to pieces, figuring out
how it works, generating a flow chart and writing the Pascal
version from scratch. Incidentally, if you think I am being a bit
harsh about sloppy, but workable, BASIC programming, try a little
experiment for yourself. First, try translating some BASIC into
Tiny Pascal. It won’t take long to find out how difficult the job can
be.

Then try going the other way. Try translating a Tiny Pascal
program into BASIC. Things run a lot more smoothly all down the
line.

The Pascal program must be highly structured and well or-
ganized before it can even be compiled. So starting out with a wel
organized program makes it much simpler to translate into a diffe
rent program format or language.

Who knows? Maybe you will never do a whole lot of program-
ming in Pascal. But after working your way through this book, you
are bound to become a much better BASIC programmer than most.

334



Appendix

PROGRAM

—»—{ BLOCK

Fig. A-1. Syntax diagram for a Tiny Pascal PROGRAM.

335




“1saisiul [euswLadxs Jo 8q ybiw jey} SSP0OO IBYI0 J0) jenuew 08-SH.L

oA Ynsuog “a1ay umoys aJe feosed Aull yosiedng 0g-SH 1 10} [NJOsN o arendoidde pslapisuod S8poo 10sINd 8soul AIUC ‘310N

€9 pue 0 Josing
usemieq sebajui {82)3LIUMm 8y} SLWOH 82
u+zg61 ue s| U aieym pes)
S 18qUINU d13ym 1ybu ayy o (£2)3L1HM -aul] premdn I
(TBqunu)3 LiHMm seoRds uQel  GG2-264 pos}
BWEl} JO (92)3 1M -aull piemumoq 9z
(1€)3LIHM pus 0} Jea|) ie 90Eds 8UO 108N
(52)3LIHM a0UBADY G2
sul (¥2)3LIHM soedsyoeg ve
. lualing sy} Jo uinyas aben
(0e)3LIEM pu 0} ase.3 o€ (E1)3LIHM -1eojpaajeury e
aul| Juaund aul
ay} jo Buiuuib JUBLIND asels
(62)3.LIHM -aq 0} J08IND 62 (8)aL1Hm pue soedsyoeg 8
INIWILYLS (1ewnaq) INIWILYLS (jeunasg)
TVISYd ANIL NOILINNA apog 1Y9SYd ANIL NOILONN apog

'$3poY joquo) losing [IJSY 08-S¥L 1-V 9igel

336



Table A-2. ASCH Character Codes.

CODE CHARACTER CODE CHARACTER

Decimal  Hex Decimal Hex
32 0020 space 64 0040 c
33 0021 ! 65 0041 A
34 0022 " 66 0042 B
35 0023 # 67 0043 C
36 0024 $ 68 0044 D
37 0025 % 69 0045 E
38 0026 & 70 0046 F
39 0027 ' (apostrophe) 71 0047 G
40 0028 ( 72 0048 H
41 0029 ) 73 0049 |
42 002A * 74 004A J
43 002B + 75 004B K
44 002C , (comma) 76 004C L
45 002D - 77 004D M
46 002E . (period) 78  004E N
47 002F / 79 004F o}
48 0030 0 80 0050 P
49 0031 1 81 0051 Q
50 0032 2 82 0052 R
51 0033 3 83 0053 S
52 0034 4 84 0054 T
53 0035 5 85 0056 u
54 0036 6 86 0057 \
55 0037 7 87 0058 W
56 0038 8 88 0059 X
57 0039 9 89 005A Y
58 003A : 90 005B Y4
59  003B ; 91 005C t
60 003C < 92 005D
61 003D = 93 005C <+
62 003E > 94 005D »
63 003F ? 95 005E —

337




136 137 138 139 140 141 142 143

144 145 146 147 148 149 150 151

152 153 155 156 157 158 159

Fig. A-2. TRS-80 graphics code format.

338



167

175

183

165 166

164

173 174

172

182

181

163

171

180

179

161 162

160

169 170

168

178

177

176

187 188 189 190 191

186

339




)

40

1INVLISNOO

{ "4393iNnt > &

H3AHIINIAI

INVLSNOD

A4

H3141LN3Al

340



"“MOO01g 1o} weibeip xeAs ‘g-v "bid

N
—/

H3I4ILNIAE

()
(N

IN3INW3ILVIS

H341INI3AI

A 4

©00Td

NID38

ONNd

\

®

\4

341




11910
H3IOD3LNI

7T

HAODIUINIXIH  —e—
11910
ONIHLS |.IAJ
SENRE]]
H3O3LNI |.AIJ H3i41LN3al
SEINER
H3131LN3AI lllrél
INVLISNOD

342



"HIDILINI X3IH PUB DNIHLS HIDILNI ‘INVLSNOD ‘H3I4ILNIQI Jo} weibeip xejuis "v-v ‘bl

IA:A LI91a xaH vlum LI91a X3H v;.lm LI9Ia X3H WAIA 11910 XaH Ull@ll

H3IO3LINI X3H

‘ H3LOVHVYHO ‘

ONIHLS

343




&

GN3

o
U

IN3IN3LVLS

)

PN

N4

2

&

©

NOISS3HdXH

H3IILNIAI
34NAa3004d \

7Y

NOISS3HdX3

J1GVIHVA I.A.IIJ

IN3IW3LVIS 9

344



"INIWILVILS Joj sweibeip xeluAs ‘G-v Bi4

a

NOISS3HdX3

TLNN

INIW3LVIS

aN3 AININ3ILVLS 3513

INIWILVLS

IN3N3ILVYLS

LNVLSNOO

D
N4

LNIWILVLS

lv3ad3yd
NOISS3HdX3 ITHM

m

7

ININILVYILS

4
| NOISS3HJX3 | asvo
4

@l NOISS3HdX3

(3

345



"INIWILVLS Joj sweibep xeis G-y ‘B4

< NOISSIHdX3 NOISSIHdX3
o)
T\
@ é M NOISS3HdX3
N——e—| IN3IWILVLS
NOISS3HdAX3 NOISSIHdX3 fe{ = }&{ HIIILNIAI

HOd

346



"WH3L pue NOISSIHJX3 ITdWIS ‘NOISSIHIXT ‘ITaVIHVA Joj sweibeip xeAis ‘g-v Big

NOISSaddx3 |
Idwis |
« . NOISS3HdX3
ERENIR
NOISSIHAX3
NOISS3HJX3 H3IIINIal —e—
J19VIHVA

347




‘WH3L PUB NOIS STHAX3 TTdNIS *NOISSIHAX ‘I1aVIHVA 10} sweibelp xeis 'g-y ‘bl

HOLOV
< m 3 HOLOVH —at—
Wy3L

WH3L IJ
< p ¢ WHIL | )¢
NOISSAHdX3
I1dWIS

348



A

Adding
ADVERSARY lines
AFIG procedures
Algorithm, advantage
AND operator
Animation, reai-time
Animation sequence
Arithmetic/logic demo program
Arrow shootling

game, final version

preliminary flow chart
ASCIi characters,

printing with WRITE
ASCI! codes, advantages
Assignment statement

Basic, and Pascal
Basic operating

procedures, summary
BASIC to Tiny

Pascal, arithmetic functions

72
306
223
170

223
145
81

282
269

48
48
70

9
20

333

direct conversions 325
program statements 330
set/plot statements 332
BDONE, checking 287
BLOCK 30
defining 31
parts 84
symbols 31
syntax diagram 58
4
CASE. OF, sorting statements 121
CASE statement 323
CGLAG variable 322
CHARACTER phase 36
choice points 36
Checkboard pattern 141
Code 13 46
COIN TOSS game 153-158
variables 155
COIN TOSS program 155
Compiling, the view after 66
CONSTANT, defining 62
Control 42 48
COPY PHASE operation 217
Counter loops 17

Cursor, controlling with Write 39
[}
Days of the week program 121
DECLARE ARRAYS section 314
DIEDRAW procedures 177
Digital stopwatch 118
Dividing 72
DRAW procedures 201

E
ENESTAT procedure
Entering heading operations

318
276

ERROR 14 missing semicolon 21
ERROR 18. its correction 4
Error signal, out-of-memory 29
Escape route 133
EXPRESSION rectangies.

syntax definitions 79

F
FHOLE, checking
FOR . DO, applications
FOR . DO statement, features
Formats, varying
Four-function calculator program 106
Frame 1 program 238

287
116
110

38

FUNCTION operation 146
declaration 146
definition 146

G

GCOLOR, values 194

GIRL AT PLAY program 249

GOE, values 194

GRAPHIC DICE
ROLL game 171177
program 172

GRAPHIC SLOT .
MACHINE game 198-208
program 199

Graphics operations 131
ultimate 233

H

HDRAW procedures 177

Headlines, making 256

HULK lines 306

Index

IDENTIFIER 53
IF. THEN. ELSE
conditional staternent 77
IF. THEN  ELSE
programming. fiow chart 230
INCHWORM program 143
INKEY statement 132
L
Line skelching program 209
Loop statements syntax rules 108
M
Mainline program. editing 244
revised version 242
reworking 245
space ranger misssion 320
Math expression 73
MEM STATEMENT 130
programs 236
uses 132

Messages. writing as
separate WRITE slatements 47
MFIG procedure 223

MISSILE SHOOT game 217
MISSILE SHOOT program 219
Modulo 76
arrow-moving 274
heading information 270
MOVE BALL 286
random number generator 275
target-moving 279 273
MOVE BALL module 286
Multiplying 72
N
NAV BEACONS finding 308
objects 320
repairing 308
NOT operator 89
Null statements 117
NUMERIC DICE
ROLL game 164-168
NUMERIC DICE ROLL program 165
0
ONE PLAYER
HIGH/LOW game 252.254

349




ONE PLAYER

HIGH/LOW program 253
Order of precedence 73
OR operator 89
Out-of-memary error signal 29

P
Parameters. value 142

variable 145
Pascal arithmetic 72
Pascal, book format 11

declaring constants 120

definitions 74

remarks 119

simple procedures 136
Pascal programs.

saving on cassette tape 26

short 18-20

Pascal syntax. features unrelated 87

Playing card program 125
Procedure. defining 138
Program, consisting
of 3 smaller programs 126
COIN TOSS 155
days of the weeks 121
GIRL AT PLAY 249
GRAPHIC DICE ROLL 172
GRAPHIC SLOT MACHINE 199
INCHWORM 143
MISSILE SHOOT 219
NUMERIC DICE ROLL 165
ONE PLAYER HIGH/LOW 253
playing card 125
ROULETTE WHEEL 184
RUSSIAN ROULETTE 160
school test 123
SKETCH v.2 213
SKETCH V.3 215
TWO PLAYER HANGMAN 255
Program with MEM
statements for frame 2 238

Programming book. limitations 10
Programming. combining
top-down & bottom-up
structured
top-down versus bottom-up
Programs. changing from

283
258
260

BASIC into TINY Pascal 333
compiling 16
entering a new one

from the keyboard 15
modifying while in edit 21
running 17
saving on cassette tape 26
short Pascal 18-20
simple examples 34
testing your skills 27

wiping out an old one 14

work through 152
Pseudo-random
number generator 168

350

RAD variables 317
Random number

generating process 147
Random number

generator module 275
RANGE statement 316
RCOORD function 315

REACTION TIME
READ & WRITE Pascal

263-269

programs, putting together 60
READ & WRITE statements,

sample programs 83
READ. entering integers with 56
Real-time animation 233
Reflex program 261

REPEAT...UNTIL
counting events with 95
counting keyboard operations 98

goof-proafing entries 104
nesting statements 96
syntax rules 93
using for iming operations 98
version, comparison with 115
RND function 222
ROOT variables 317
ROUGH, checking 287

ROULETTE WHEEL game 182-198
ROULETTE WHEEL program 184
RUSSIAN ROULETTE game158-164
RUSSIAN ROULETTE program 160

S

School test program 123
SCREWBALL GOLF 284-298
prefiminary fiow chan 284
SEED function 222
Seek-and-destroy
training mission 310
Shift-left operation 76

Shift-right operation

SKETCH V.2 program 213
SKETCH V.3 program 215
SLOTDRAW procedures 201
Space ranger
mission. declarations 311
tunctions 311
getting in & up 300
mainline program 320
playing the game 311
procedures 311
running 303
Spaceship piloting. first lesson 306
SPEED procedures 223

STATEMENT delining 61
STATEMENT rectangles

syntax definitions 79
Stopwatch program 100
STRING CONSTANT 33
STRING expression 41
Structured programming 259
Stubs 263

Sub-blocks 85
Subtracting 72
Syntax diagrams, reading 30

summary of 92

T

TAB control feature 44
Time bomb program 99
Tirning loops 17
Tiny Pascal, editing tricks 25

getting into your TRS-80 13

one-dimensional array 149
Tiny Pascat program from

bottom & up, writing 269
Tiny Pascal program from

top & down, wiiting 261
TRS-80 graphic code

numbers transiation 234
TRS-80 graphics,

doing with WRITE 50
THS-80 "setreset” graphics 128
2-frame animation program 236
TWO PLAYER HANGMAN
game 254-256
TWO PLAYER HANGMAN

program 255

'}

Unending loops, writing 101
UPDATE procedures 223
v
VALDRAW procedure 179
Value parameters 142
Value parameters procedures 142

145
length variable 142
Variables, declaring 53
Variable declaration block 54
VARIABLE  defining 62
VDRAW procedures 177
w
WHILE ..DO applications 1M
approach to goof proofing 115
WHILE .. DO nested
loops, application 12

WHILE...DO statement features 109
timing programs

WRITE/ANTEGER statements 42

WRITE staternent 51

tormats 32

integer & hexinteger formats 58

more on 88

step-by-step analysis 35

Writing integers 134
X

XDIST. calculating 316
Y

YDIST. caleulating 316



PASCAL

by David L. Heiserman

This latest book by David Heiserman covers, in depth, the excit-
ing new computer language, PASCAL, a convenient programming
language that can easily be loaded into a TRS-80 computer and used
for virtually any purpose: practice program development, math
problem-solving, or playing unusual games. Nothing is left out . . . this
practical manual thoroughly covers syntax, statements, logic opera-
tions, declaring constants, declaring variables, writing statements and
unending loops, and everything else you need to start writing useful
and versatile programs in PASCAL.

Starting with an explanation of how to load a Tiny PASCAL
cassette into a TRS-80 system, Heiserman goes through all the steps
necessary to become proficient in this new language. The author
explains how to read syntax diagrams; use WRITE statements to print
characters and do TRS-80 graphics; enter integers with READ state-
ments; use logic with AND, OR and NOT; write and use REPEAT . . .
UNTIL loops, use PLOT to set/reset TRS-80 graphics; apply other
looping statements, etc. It's all here, for Tiny PASCAL and Supersoft
Tiny PASCAL, as well as for the standard version. And, after showing
you the basics, Heiserman tells you how to use them to play games,
modify PASCAL structures, translate BASIC programs into Tiny
PASCAL, and even write new programs of your own. Step-by-step
data makes it all extremely easy!

David Heiserman is an independent R & D consultant who works
In the development of machine intelligence. He is the author of more
than a hundred articles on scientific and technical subjects, as well as

several popular TAB books on robotics and electronics. He lives in
Columbus, OH.

OTHER POPULAR TAB BOOKS OF INTEREST

24 Tested, Ready-To-Run Game Programs in BASIC Computer Programming Handbook (No. 752—
(No. 1085—$9.95 paper; $14.95 hard) $11.95 paper only)

Computerist's Handy Databook/Dictionary (No. Simplified Computer Programming—Including
1069—3$4.95 paper only) the Easy RPG Way (No. 676—$8.95 paper only)

The A to Z Book of Computer Games (No. 1062— Programmer’s Guide to LISP (No. 1045—$9.95
$9.95 paper; $14.95 hard) paper; $13.95 hard)

The BASIC Cookbook (No. 1055—$5.95 paper; The Most Popular Subroutines in BASIC (No.
$10.95 hard) 1050—$7.95 paper; $13.95 hard)

97 Practical Programs & Games in BASIC (No. 1001 Things To Do With Your Personal Comput-
1000—$7.95 paper; $13.95 hard) er (No. 1160—$9.95 paper; $13.95 hard)

[TAB| TAB BOOKS Inc.

Blue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

FPT > $11.50 ISBN 0-830bk-1205-X

FRICES HIGHER IN CANADA 1095-0780






