0S-9 User Notes

Volume One

By: Peter C. Dibble

Copyright ° Peter C. Dibble and The Computer Publishing Center

Peter Dibble

0S-9 User Notes Volume I

April 1985

ii. O0S-9 User Notes Volume I

CONTENTS

Part 1: Columns

-

Introductions
Column One .
Opening Remarks .
GIMIX-II1 0S-9 . . .
A Null Device
Documentation for Nu11 Dev1ce Descr1ptor
Nu11 Program
Column Two .
0s-8 Leve1 Two Vers1on 1
Generating a New Bootstrap
Building a New System Disk e e e e e e e e e e e e e e
Using Multipie Processes+ + « v v v v 000 10
Column Three . e e e e e e e e 11
The FORK Superv1ser Service Request e B |
Communications Via the Parameter Area .o . B
Assembly Language Procedures for FORKing Processes e e e e e 11
StrtTask-0ne s .18
Driver One o oo e e e e e e e e s e e 14
Column, Four . e e e e e e e e e e e e e ey e e e e 15
Bas1c/Basic09 . A 11
Interprocess Communicat1on .o T 1 -1
Communication via the Parameter Area e e e e e e e e e e 15
Data Modules . . e e e e e e e e e e e e e 16
Locking Data Modu1es O 16
Locker Program00 18
Calc Program o e e e e s e e e e 2
Driver Programo e e e e e e s 22
Column Five . S 3 =)
More About Lock1ng 11
Getting a Good “"Mix" ., 25
An Assembly Language Program Wh1ch Sets Pr1nter 0pt1ons e ... 27
The 0S-9 User’s Group -3
The Future of this Column -4}
POpt Program« .« « « v e oo . B
Column Six . < £
New Release of Microware Pascal <
0$-9 Directories . . < 1
Standard Terminal Support for OS 9 < 1
Column Seven . . . O 2 |
A Letter . . e -
Letter from Bengt A]]an Bergva]l P -
Parammod . . . Ce e e e e e e e e e e e e e e e e 44
Help_ B 45
Column Eight . . - ¥
The 0S~-9 User Seminar O ¥ 4
Shell Commands . P -1 -]
A Logical Device Driver O < £ -1
VCIA Device Driver v . . . < B4
Column Nine N . - 1<}
Protection . . . -1
The "Suspend State" . - ¥ 4
Column Ten . . O -1
More About Computers at SchooT - 1]
Pipes . . -1
A More Advanced Approach to Pipes e -1e]
Installation . . e -
Operation and Modification . - 13
welcome COCO « . « « o v v v e e e e e e s . B2
The Users Group e - 14
Bword e
CharCt+ « v e e e e e e e e e e e e e e e e e e e . B4
Grapher O -1 -}
StrtTask oo e e e e e e e e e e e e e BT
Rast . . Y £ o]
Column Eleven -~ The OS 9 I/O System O <
The Unified Input/Dutput System Y A<
Changing 0S-9’s Device Support Y £
Column Twelve -- The CoCo .. O 4
Notes on Compuserve Y A 4
Thank You GIMIX Y £ -
A Handy Shortcut 18
Column Thirteen . O - B
Big System Hardware e - 2
Big System Software -2
The Compuserve 0S-8 SIG T - 3

OCOUOWOINOOUTN W

Contents iii

DS-9 on the Color Computer
Installation of Beep/Beeper
Applications for /Beep
The Users Group
Sound .
Beeper
TestBeep
Column Fourteen

More About the CoCo D1sk Dr1ver

where Next? .
More Noise from the CoCo
This Month’s Driver
The Users Group
Beeper2
TBeep2 .

Column Fifteen . .
The 0S-8 Sem1nar
OFlex .
New Manuals
C Functions
The Butterfly
Dynaspel) Ce .
A Nice Experience
Tricks for Level Two
TstSSig - . .o
FRexp
Modf

Column Sixteen
Standards

Standards that are the User s Respons1b\11ty

The Users Group

Column Seventeen -- The First Step Into OS 9

Format
Backup
Dir e
Chx and Chd
Oops . .
CMUW1BQMeu
My Life N .
Non-standard Hardware
Directories as Files
DList Program
DList2 Program
id Program
DFormat Program
Column Nineteen . .
More Games with Dtrector1es
Dr Program
DirSgz Program

Part 2: Reviews

A Review of O-F .

General System Description
Limitations e
Operation

Evaluation

Summary .

Review of 0S-9 CIS COBOL
Overview .
Enhancements
Limitations
Benchmarks
Summary
COBOL Test Program
COBOL Sieve . .
COBOL Benchmark program

Review of Software by Clearbrook Softwara Group

DEdit .
Overview PN
Details e e e
Limitations
Summary
BTS ...
Overview
Details
Limitations
Summary

D-Series Utilities -- DDIR, DDEL,

Overview

iv 0S-9 User Notes Volume I

DCOPY and DATTR

118

119

121
121
121
121
121
122
123
123
123
124
125
125
126
128
129
131
131
131
131
131
131
131
131
131
132
132
132
132

Details

Problems and L1m1tat1ons

Summary . .
Recons1derat1on .

A Review of DynaCalc for 0S- 9
Overview Coe .
Some Details .
iLimitations and Prob)ems
Summary

Review of Dynam1te
Overview .

Some Details
Operation
Limitations
Summary

A Review of RMS

Overview .
Some Details
Flaws

Summary .

Review Of RMA and RLINK
Overview .

Some Details

The Separate Assemb1y Fa
Some Internals . .
Limitations
summary

Index

FIGURES

Execution Sequence for Lockout
Output of DIR Command

Sampie Startup file

Password File Entry

Sample Input for rast program
Hex dump of a directory
Dynacalc Terminal Support
Samplie RMS Definition

RMA Macro

Definitions files routinely included in assemblies

Dynamite Label Classes

Dynamite Addressing Modes

c111ty

TABLES

Contents

132
132
133
133
135
135
135
136
136
137
137
137
138
138
138
141
141
141
142
142
145
145
145
146
146
147
147

148

25
55
56
57
62
108
135
141

145

27
137

137

v

vi 0S-9 User Notes Volume I

Part 1 COLUMNS

Columns 1

2 0S-9 User Notes Volume I

INTRODUCTIONS

This book is an anthology of all I have
written for 68 Micro Journal since I start-
ed writing the 05-89 User Notes column in
February 1883. Some errors in spelling and
grammar have teen removed (I imagine others
nhave crept in to take their place.), but I
forced myself to leave in mistakes that I
made . The most glaring have footnotes
pointing out the truth.

This document was prepared using Water-
oo Script and a Xerox 9700 Laser Printer.
This let me add footnotes, figures, boxes,
and an index to the coclumns. All the foot-
notes are additions I made while preparing
this anthology. The figures and boxes are

features 1 wished for when 1 was preparing
the original coiumn. The contents are from
the column, but the presentation is differ-
ent.

The peopie at the University of Roches-
ter Computing Center deserve special thanks
for their help with this document. This
book pushed some of the 1imits of the sys-
tem. They were always friendly and help-
ful.

The index 1is an attempt to make the
helter-skelter arrangement of the columns
bearable. Each month I write about what
takes my fancy. Sometimes I write about
several things. Columns written like that
don‘t combine into a cohesive book very
well, I hope the index will guide you to
the information you need wherever it hides.

Introductions 3

4 0S-9 User Notes Volume I

COLUMN ONE

OPENING REMARKS

This is the first of what 1 hope will be a
fong series of columns about 0S-9 Level
Two. I plan on discussing some interesting
aspect of programming in each column. I
also intend to use this as a soap box for
my radical ideas about computing in hopes
of stirring up some controversy. My comput-
er was financed largely by teaching comput-
er science. Please bear with me when I have
a fit of teaching.

First, by way of introduction, I work
as a systems programmer on a variety of
machines. I teach computer science courses
at a local technical college, and take com-
puter science courses at the local univer-
sity. I worked my way up to my job as a
systems programmer through years of work on
payroll, student systems, and other busi-
ness programming type things - you might
say I paid my dues. I got started on micro-
computers by building SWTPC’'s 6808 computer
kit. I now own two mongrel computers, one
small, running only FLEX, and seldom used,
the other large and frequently used. My
large computer has a GIMIX DMA disk con-
troller, and a GIMIX 6809 CPU board, two
eight inch disk drives, 344K of useful mem-
ory, and assorted 1/0 boards. It can run
0S-8 Level Two or FLEX.

I have a collection of strong opinions
about computing in general, and microcom-
puting in particular. The most relevant
opinion is that I think the staggering sum
1 spent to buy 0S$S-9 Level Two together with
languages and utilities was money that
could nmot have been better spent though I
do wish the prices were lower. I think
everyone should get to watch their computer
seem to come alive, not just those people
who are willing to work two jobs and live
on pasta to save enough money. I belong to
the school of radicals who believe that
Basic is bad for your brain. I l1ike Pas-
cal, but find 1t a little dull. Assembly
language is lots of fun, but slow going. I
am looking forward to getting C; it sounds
promising.

1 think it 1is practically immoral to
force even two people to attempt to use a
6808 at the same time. The fact that it
sometimes does a passable job with several
users is not a sign that there is plenty of
power for several users. The 6809 only runs
just so fast. No operating system can make
it run faster. Digital Equipment Corp.
seems to think its small VAX is probably a
good single user machine. 1 have noticed
that the Xerox Star is very slow when it’s
editing. Both of those computers can run
circles around any 6809 machine (and cost
far more). Both of them run software writ-
ten by top quality programmers. The differ-
ence is that those computers are expected
to make things as easy &as possible for
their users at any reasonable expense. Peo-
ple who use and program microcomputers
don’t expect that much out of their
machines. Our machines are microcomputers.
We expect them to do the same kinds of
things other microcomputers do. Our
machines are smali, but they are part of a
new generation. They can do the work of
several of last generation’s micros. We can

use that power to give several users the
same poor service, but I would rather see
one user well pleased by a computer than
several somewhat dissatisfied users.

There is some truly excellent software
available for the 6809. I would rate Micro-
ware’s Pascal as one of the best Pascals I
have used on any machine. A lot of features
are missing from 0S-8 Level Two, but what
is there is up to the highest standards and
it should be easy to add most of what’s
missing. From my reading of the manual,
BasicO8 seems to be an excellent language
(as Basic goes). I own a great deal of
software for FLEX and 0S-9, but I can’t
think of any other programs in that league.
1 am open to suggestions. The chailenge is
to be at least as good as any similar pro-
gram on ANY MACHINE. For example, I would
love to find an editor that qualifies. My
1ife would be much easier if I could run an
editor comparable to EMACS, XEDIT, SPF, or
SED on my micro. DYNACALC seems, from its
advertisements, to be as good as any of the
Visiclones, maybe the best of them. I am
holding a grudge against that program
because it only supports 3000 cells (under
0S-9 Level Two) That‘s as good as most
visicliones, but 1 have enough memory for
much more than that. The chance to be the
first spread sheet program to support
aimost a2 megabyte of storage (maybe 30000
cells) in memory on a micro was only a few
hundred instructions away, and they didn’t
do it. 1 would like to propose some pro-
gramming challenges to the 6808 community.

1 have used spelling checkers that can
be asked for a list of suggestions for the
spelling of a questionable word. The good
ones will provide synonyms on demand too.
Doing this at a decent clip, and fitting
the dictionary on a floppy disk should be
an interesting chalienge.

1 don’t know of any high level language
for the 6808 that can use more than 64K
even with restrictions. No, I take that
back. Microware’s Pascal can use a sort of
virtual storage scheme to deal with more
than 64K of code, but there is no easy way
to use more than 64K of data. wWhat I had in
mind was a language that could make use of
extended addressing. There are lots of use-
ful tricks, playing with the DAT, using
software interrupts cleverly, or simply
running all procedures (subroutines {if you
like that term better) as FORKed tasks.
Minicomputers used to be l1imited to a 64K
address space. Some of the tricks used to
fit big programs into them can probably be
adapted to our problems.

A state-of-the-art editor would go =a
iong way toward promoting the 6808. As
basic reguirements, such an editor should
be a screen editor capable of using any
available memory. It should include the
ability to edit multiple files of arbitrary
size without resorting to the "new" or
*more" kludge. 1t should include the best
of Wylbur, EMACS, and the other common edi-
tors.

If 1 seem a little shrill about soft-
ware, it is because 1 see my beloved 6808
machine being squeezed out by the flood of
high guality microcomputers on the market.
From my point of view, the best feature of
the 6808 is its elegant architecture. It is

Column One 5

o0 easy to program that it should be pull-
ng ahead of the field with a flood of
superb software. 1 see only a trickle.

GIMIX-IIl1 0OS-9

Ok, now 1’11 get off the socap box and
down to business. I am thinking of selling
both my computers. I positively lust after
the new GIMIX CPU board and "level Three"
operating system. If there is another
microcomputer en the market that does what
it does, I haven’t heard of it. Large com-
puters such as IBM 370 architecture, and
large DECs can cause attempts to write into
'‘protected storage" or execute invalid
instructions to fail. Special code is exe-
cuted whenever a program attempts either of
these activities. Usually the program that
did it is stopped. Microcomputers don’t do
that kind of thing. The computer will do
something (maybe something ridiculous such
as "halt and catch fire") with any data its
program counter is pointed at. This can
cause a faulty program to go out of control
in unpredictable ways. There is no way for
the microprocessor to know that it
shouldn‘t write into some part of memory.
If you want you can write your name all
over the Basic0S interpreter. The results
of that kind of thing are disastrous, par-
ticularly if you are sharing the interpret-

er with someone. You just have to make
very sure programs you write never try to
execute, or write into anything they

shouldn’t. Of course that is just good pro-
gramming.

The new board from GIMIX was designed
to work with 05-8. It is alleged to support
protectec storage and to prevent invalid
operations from being presented to the
microprocessor. This should prevent any
program from interfering with any other
program, even, in many cases, f{tself. For
those of you who try to support several
users, if you use the new GIMIX hard/
software no user shoulid be able to cause
the system, or another user's program to
fail. Even people l1ike me who don’t share
time with anyone can gain a 1ot from this
kind of safety net. Sometimes when I am
debugging a program everything just comes
10 a stop and I have to re-boot in order to
continue. It is even worse when there is a
long pause then the disk starts seeking. I
haven’t had any data destroyed that way
yet, but I worry. This new hardware should
give everyone who can afford it a lot of
peace of mind. GIMIX has aliso been able to
remove every trace of the operating system
from each task’s address space. Programs
can be run with up to 64K. The board and
accompanying software have lots of other
features, but the other one that excites me
2 1ot is the memory-to-memory DMA. A 1ot of
time is spent moving data from one address
space to another in 0S-9 Level Two. This
involves several operations for each byte
and slows I1/0 operations and other inter-
task communications down guite a lot. The
special hardware on this new CPU board can
move blocks of data at 2 cycles per byte.
At two megahertz that comes to one million
bytes per second. I understand that, all
things taken together, the new system runs
0S-9 substantially faster than what I have
now. 1 want to find out for myself. If you
see an advertisement from me in the classi-

6 0S-9 User Notes Volume I

fied section you wil) know] broke down and
got a new, faster, better 6809 computer.

A NULL DEVICE

One of the nicest features of 05-9
(both 1levels) is the relative ease with
which it can be adapted to new hardware.
For example, there is a module included
with the operating system called ACIA which
is responsible for interfacing the rest of
the system with ACIAs (Asynchronous Commu-
nications Interface Controliers, or serial
ports). There is another module called PIA
which does a similar job for parallel
ports, and another module which deals with
whatever type of disk controller you have -
more modules if you have more than one type
of disk controller. If you feel the need
you can add more Device Drivers (the name
of this type of module) any time you 1like.
If you want to write your own driver, it is
good to have an example to work from. The
source for ACIA and PIA (available from
Microware) are both good starting places
though I found ACIA more useful.

There 1is a rather odd sort of device
which is available with most operating sSys-
tems, but not 0S-9. I have seen it called
DUMMY and NULL. This device makes anything
written to 1t disappear, and returns an
endfile if it is read from. It is surpris-
ing how often it is nice to have any easy
way to throw data away.

The Null Device Driver that I am going
to present here is a SCF (Seguential Char-
acter file) type device. The requirements
for this kind of driver are given in the
0S-9 System Programmer’s Manual, but in
general there are six entry points: Ini-
tialize device, read, write, get device
status, set device status, and terminate
the device. This driver is so simple that
of those six, five just clear the carry bit
and return. Read 1is the only operation
requiring more than two l1ines of code. Read
is supposed to return with the character
read in accumulator A. If an error takes
place, the carry bit should be turned on,
and the error code placed in accumulator B.
We want to return end-of-file, which is an
error, and I have found that is a good idea
to return null (Chr(0)) as the character
read even if {1t is end-of-file. I return
the end-of-file from the driver though it
is usually generated by the SCF file manag-
er. If you want to modify the program such
that the file manager is the module that
generates the end-of-file, load accumulator
A with the end-file character which can be
found in the path descriptor (pointed to by
Y) and return with carry clear.

A Device Driver may be used for several
devices provided that they use the same
hardware. Each individual device is
described by a "Device Descriptor" which
includes everything unique to a particular
device such as the address of the device.
The NL device descriptor is at the bottom
of the program. It will be loaded into mem-
ory at the same time as the Driver although
it will show up as a2 separate module in the
module directory.

DOCUMENTATION FOR NULL DEVICE
DESCRIPTOR

If the file Null is loaded and the module
NL is linked a new device called /NL will
become available for input and output.

059 Load Null
0S89 Link NL

The device NL will accept input in any
guantity and simply make it disappear. If a
read is directed at it, it will reply <end
of file>. Other than eating data without a
sign it acts 1ike a perfectly normal SCF

NULL PROGRAM

Microware 05-9 Assembler 2.1
Dummy I1/0 driver - Definitions

08/05/84 22:40:30

type device...
one!

Example:
0S9: asm MyProg o #48k >/nl &

Would assemble MyProg
make all
pear.

in background

Note:
input.

Be careful

will act very oddly if /NL
input device for them.

Page 001

00001 NAM Dummy 1/0 driver

00002 TTL Definitions

00003 *— *
00004 * Dummy 1July82 Peter Dibble *
00005 * return end of file to any read *
00006 * Put any output down the ¥1t bucket . *
00007 * No error returns *
00008 % Public Domain software as of 19Feb83. *
00009 Fmmo—— *
00010 IFP1 use /DO/DEFS/Defslist
00012 ENDC

00013 OOEl Type set DRIVR+OBJCT

00016 0082 Revs set REENT+2

00015 0000 87CDO0O2E MOD Dummgl,DumNam ,Type,Revs, Entr ,Memsize
00016 D 001D . ORG V.SC leave space for S Fman overhea
00017 D 001D Memsize equ .

00018 000D 07 fcb READ.+WRITE.+EXEC. driver mode
00019 TTL Dummy I/0 Driver

00020 OQOOE 446DF9 DumNam fecs /Dmy/ i

00021 0011 01 fcb 1 Edition number
00022 0012 Entry .

00023 W 0012 16000F lbra Init

00024 W 0015 160Q00E lbra Read

00025 W 0018 160009 lbra Write

00026 W 001B 160006 lbra GetStat

00027 W 001E 160003 lbra PutStat

00028 w 0021 160000 l1bra Term

00029 0024 Init

00030 0024 Write

00031 0024 GetStat

00032 0024 PutStat

00033 0024 Term

00034 0024 5F clrb zero return code
00035 0025 39 rts Do nothing

00036 0026 Read

00037 0026 4F clra

00038 0027 53 comb set carry flag
00039 0028 C6D3 1db JESEOF return end of file
00040 002A 39 rts return

00041 002B 848D35 emod

00042 002E Dummy1 e%u *

00043 TTL Device Descriptor

00044 * . _ *
00045 * NL device descriptor *
00046 * *
00047 OOF1 Type set DEVIC+OBICT

00048 0000 87CDOO1E mod DDend,DDNam, TEKe ,Revs, FMNam,DRVNam
00049 Q00D 07 feb READ, +HRITE EC. modes

00050 QO0OE FF0000 fcd SFF 0,0 PORT ADDRESS OF 0
00051 0011 0100 fcb T.8CF Options

00052 0013 4ECC DDNam fcs / device name

00053 0015 5343C6 FMNam fes /SCF/ File Manager Name
00054 0018 446DF9 DRVNam fcs /Dmy/

00055 001B BD5979 emod

00056 0O01E DDend equ ¥

Column One

a very fast and efficient

its (non-error path) output disap-

when using /NL for
Some programs (such as debug) don’t
respond to <End of File> - these programs

is used as the

8 0S-9 User Notes Volume I

COLUMN TWO

0S-9 LEVEL TWO VERSION 1.1

I just installed 0S-9 Level Two Version
1.1. Finally it‘s not ‘“preliminary" any
more. Since 05-9 never was very unreliable
it is hard to tell whether it is more reli-
able, but it is very easy to appreciate the
new utilities. 1 spent months writing a PWD
program. It prints the name of the current
data or execution directory. I hoped some-
day maybe I could sell that program. Well,
Microware beat me to it. The new versions
of 0S-8 include PWD and PXD, Print Working
Directory and Print eXecution Directory.
They also added a DELDIR command which
deletes a directory with all the files in
it, a command called IDENT which dispiays
information about modules in files, a file
comparison utility calied CMP, and two com-
mands called BINEX and EXBIN which convert
a file to and from Motorola standard
S-Record format. DCHECK, the program which
checks disk structure, now seems to work
correctly, and DSAVE, the command which
constructs a procedure file to copy groups
of files, has been substantially enhanced,
but Level Two users will have to continue
to live with numeric error messages. A com-
mand called PRINTERR, which is supposed to
instruct the operating system to use text

error messages, wasn’‘'t on my distribution
disk.

An important new feature in 0S-8 is
support for XON/XOFF. The ASCII character
set incliudes 32 special codes such as back-
space ($08) and escape ($1B) which don’t
generally represent printable characters,
but still have defined meanings. XON and
XOFF are among the more useful of these
special codes. If, for instance, you have a
terminal which usually runs at 19.2KB, but
can only accept input at about 200 charac-
ters per second when it is in insert mode,
it would be nice to be able to constantly
adjust the speed at which the computer is
transmitting to match the speed at which
the terminal can receive. In general you
can‘t do that, but often it is sufficient
to be able to tell the computer to *“hold
it," and “"go ahead." If the computer can
deal with XOn/XOff protocol, it will “hold
it" whenever it receives an XOff, and "go
ahead" whenever it receives an X0On. There
are quite a few terminals and printers
around which run much better when they are
attached to a computer which supports XOn/
XO0ff. It is interesting to note that XOff
(often called DC3) 1is entered as <CTRL>S,
and XOn (DC1) 1is <CTRL>Q. In order to use
this protocol you’ve got to find some char-
acter other than <CTRL>Q to use as the
‘quit" character. 1 wonder whether Frank
Hogg 18 going to be able to adjust DynaStar
so it can 1ive without <CTRL>Q and <CTRL>S.

GENERATING A NEW BOOTSTRAP

One of the first thinge I do with a new
version of DS~8 is put together 2 new boot-
strap. There is nothing really wrong with
the bootstrap that comes with the system,
but I have my own Device Descriptors and
Drivers, and even if] didn’‘t need to, I
probably would want to re-generate the

bootstrap just on the principle of the
thing. The modules in the bootstrap are
automatically 1loaded when the system is
booted, packed efficiently into memory, and
made permanent. It sounds as though, if you
have enough memory, it would be a good idea
to include 1in the bootstrap file all the
modules you wouild 1ike permanently in memo-
ry. Don‘t do 1t! Modules in the boot file
are not only permanently in storage, they
are also permanently attached to the other
programs in the boct. Say you put a P-Code
interpreter in the bootstrap - when you
link to that module in order to use it, you
drag everything else in the bootstrap along
with {1t. If you have a 48K bootstrap you
would only be able to run programs which
use up to about 12K total. Modules you
expect to 1ink to should not be inciuded in
the bootstrap. If you include a utility
command such as COPY, you may find that you
can only use a relatively small amount of
memory with COPY. The best way to handle
commonly used commands is to merge just
less than some smai} multiple of 4K of them
into a utilities file and load it using a
LOAD command in the startup file. Since my
system allocates memory 1in blocks of 4K,
small programs 1ike COPY and PWD only waste
memory if they are loaded by themselves. By
collecting groups of programs together you
use memory more efficiently, essentially
keeping two or more programs in the space
normally allocated to one. If your version
of 0S-9 allocates memory in different sized
hunks, the size of the group of programs
should be changed to reflect the new con-
straints. Users of (Level One systems don‘t
have to worry about any of this stuff.

The first time I generated a new boot-
strap was a little bit intimidating. It is
important to realize that, provided you are
marginally careful (den’t spill chocolate
milk on an important disk, etc.), the worst
you can do is waste your time. If you don’‘t
have a2 lot of memory the chance to remove
unused device descriptors from the boot-
strap may be worth the trouble finvolved in
running OSBGEN. If you want to change any
modules which are in the bootstrap
(addresses in Device Descriptors for
instance), the cleanest way to do it is to
modify them them with DEBUG, save the modi-
fied modules, fix their CRC with VERIFY,
and builid a new bootstrap with the modified
modules. A module must be saved on disk in
order to0 be inciuded in the bootstrap. You
shouid use the SAVE command to create files
containing each module you might want in
the new bootstrap. Buiid a file with the
names of those files you want to combine
into the new bootstrap, and use that 11ist
of files as input to O0SSGEN. Finally use
DCOPY to copy &11 the other files on your
system disk over to the new one.

BUILDING A NEW SYSTEM DISK

I have many files on my system disk that
are not part of the 0S-9 operating system.
An important part of installing a new ver-
sion of 0S~8 which is not mentioned in the
manuals is copying al) the non-0S-9 files
you need onto your new system disk. I have
discovered an easy way to do this. I imag-
ine most of you 0S-9 users already know
this trick, but I wish someone had told me
about it a year ago. By running DSAVE on

Column Two 9

vour old system disk you can create a file
containing a copy command for each of the
files on your old system disk. If you add a
"-x" as one of the first few lines in that
file 1t won’'t quit if one of the commands
fails. The copy commands for files that are
already on the new disk will fail, but the
procedure will precede to the next command
instead of quitting. The result is a disk
with all the files you want on it.

USING MULTIPLE PROCESSES

Most of the programming I do is on machines
with far more than 64K available to each
program. It is easy to get used to having
effectively unlimited memory. The 6808 can
only use 64K, but with the help of 0S-9
Level Two (not Level One) it is possible to
use more memory than most people can
afford. Over the next few months I expect
to spend some time discussing various ways
of doing this.:

One of the basic facilities in 0S-9
(and most other sophisticated operating
systems) is called FORK. The effect of FORK
is to set a program up and start it running
wrthout interfering with the program which
FORKed 1t. Each FORKed program is called a
Process or a Task. A process can run for
all practical purposes at the same time as
the program that FORKed it. Part cf setting
a process up is finding enough memory for
it to run. In 0S-8 lLevel Two each process
runs 1N its own “"address space"... that is,
no user process shares any memory with any
other process except by special arrange-
ment. If you have enough memory, each pro-
cess can occupy all of 1its 64K address
space except a shred reserved for 05-9.

I have been spending a lot of time
writing a program which 1 call a ‘"smart
terminal" program. It started out as a pro-
gram to allow me to communicate with a
variety of computers without having to
unhook my terminal from my computer, and
fuss with half/full duplex. It just keeps
growing. DOne thing 1 decided to do was
include a way of printing a screen full of
data. You can’'t just stop everything and
print the screen; it would take sco long to
print that the input buffer from the modem
would overflow, and at best data would be
lost. A solution is to use a FORKed process
to print the screen. Dnce 1 realized that I
could start a process to print the screen,
I carried it a step farther and fixed
things so I can ask tc have lots of screens
printed, start a process for each screen,
and let them queue up for & chance at the
printer while the process doing the smart
terminal bit runs heerfully along. At
about 4K per process (the minimum alloca-
tion on my Level Two system) I can queue up
about 20 screens in the 200K I usually have
available. Using the more efficient alloca-
tion of storage available under Level One I
could probably have queued up about 10
screens in a 56K system. I admit this is a
trivial example of the use of extended
storage, but the point i1s that this 1is a
simple example of the kind of thing you can
do with extended storage. It is easiest to

1
The module is reentrant, so only the

variable storage needs to be allocated
for each process beyond the first.

10 0S-9 User Notes Volume I

use multiple processes toc get at lots of
Storage wnen you can spin off a task that
can run 1n isolation. Communicating between
processes is a harder problem than running
them in isolation. Several method for com-
munication will be developed in later col-
umns .

COLUMN THREE

THE FORK SUPERVISER SERVICE
REQUEST

A large number of the exciting things that
can be done with 0S-8 involve processes.
Every program running under 0S-8 is a pro-
cess. Each process runs as if it had the
machine to itself (except for speed). When
a new process is started, 05-9 1loads the
Program module for the process if it isn’t
already in core, creates a Process Descrip-
tor for it, allocates the necessary amount
" of memory, gives it standard input and out-
put files, and lets the new process go.
One of the ongoing tasks of the operating
system is to divide processor time between
all processes 80 that the system’s resourc-
es are used as efficiently as possible, and
all the processes run without too many
noticeable jerks. You can tel!l 0S-9 +to
favor a process by giving it a high priori-
ty (with the SETPR command), or you can
pgive a process a low priority i1f you don‘t
much care how quickly it runs.

A new process is created with the 0S-8
service reqguest F$Fork. Before issuing
this service raguest you must set up the
registers as follows:

X Address of the name of the
module you want to FORK or the
file that contains the module.

Y The size of the parameter
area.
U The beginning address of the

parameter area.

A The Language/Type code. That
is, the type of module you
want to fork. BasicO8 has to
be treated differently from
object code.

B The amount of optional storage
to give the new process.

COMMUNICATIONS VIA THE PARAMETER
AREA

when the FORK Service request is used to
start a new process 0S-9 is able to send a
block of data to the new process using the
parameter area. The new process will be
started with X pointing to the start of a
copy of the parameter area and D containing
the length of the parameter area. In lan-
guages other than assembler, the parameter
area can be found by noting that the param-
eter area is the place where the shell
places the command tline parameters for a
program. The shell usually starts programs
by FORKing them, so in any language, if you
can get 1o the command 1ine parameters, you
can get at parameters passed through Fork
in the same way.

By using the parameter area you can
pass 2 1ot of information t0 & new process,
but you can’‘t get anything back through the
parameter area. Remember that the parame-
ter area gets copied into the new process’s
address space. It is l1ike & Pascal pass-

by-vaiue parameter -- changes don‘t get
back to the invoking process. Stitl, for
many jobs, the one time, one way communica-

tion afforded by the parameter area is suf-
ficient.

ASSEMBLY LANGUAGE PROCEDURES FOR
FORKING PROCESSES

Neither Basic08 nor Pascal has all the nec-
essary functions for dealing with forked
processes, but they can be reached through
assembly language Subroutines. I have
included two short assembly language sub-
routines which should help. StrtTask, and
WaitTask are meant to be called from
Basic08, though modified versions could be
called from Pascal or any other normal lan-
guage ., StrtTask starts execution of a pro-
cass, and WaitTask waits until a child of
the calling process completes before
returning to the caller. These aren‘t
exampies of elegant coding, but they are
good enough to play around with from
Basic08. The BasicO9 programs Driver, and
BTest are respectively a driver for the
assembly language modules and a stub for
testing them.

StrtTask is an interface between a
Basic0OS program and the 0$-8 Fork service
request. Normally, a fork is done with the
SHELL statement in Basic08. By wusing
StrtTesk instead of SHELL to start “child®
processes, & program can gain better con-
trol of the parameters. StrtTask allows
full control of the F$fork system service
request.

The first parameter which StrtTask
expects 1s the name of the module to be
started. It should be passed as a charac-
ter string with a terminator, SsSuch as a
space or carriage return, after the last
character of the module name. If the mod-
ule might not be in memory, the name of the
file which should be loaded to get the mod-
ule should be the first parameter instead
of just the module’s name. The F$Fork sys-
tem service reguest description in the 0S-8
System Programmer’'s Manual has more details
about this, and all the other parameters
for StrtTask.

The second parameter is the process
number of the new task. It is a byte field
which need not be initialized. StrtTask
will place the process number of the newly
started process in this byte. This is the
only parameter which 1{is returned from
StrtTask. The process number is useful if
you want to communicate with the new pro-
cess, or to wait for a particular process
to complete.

The third parameter is the language/
type byte which describes the module you
want to run as a child process. The easi-
est way to discover the proper value for
this byte is by checking the module you
want to fork. You can see the language/
type byte for a module by loading it and
doing & MDIR E command, or by doing a IDENT
command on the file the module 1is in.
Remember that this byte 1s displayed 1in
hex . Object code programs (generated from
assembly language) generally have a
language/type byte of $i11, or decimal 17.

Column Three 11

The fourth and fifth parameters are the
‘ength of the parameter area to be passed
0 the forked process, and the parameter
area itself. The parameter area can be any
type of data you want to pass to the new
process. The length of the parameter area
is passed as an integer. If you invoke a
module which 1is usually started from the
shell, the parameters should be a character
string terminated with a carriage return.
If you want to invoke a module which runs
under Basic08, it is particularly important
to include the carriage return at the end
of the parameter area (which contains the
name of the BasicO09 I-code module to run
and any parameters for it). Strange things
happen if you don’t.

The last parameter 1is the amount of
optional storage space you want to give the

new process. This {s the number usually
placed after the "#" on a shell command
line. The number can range from zero to

255 (it is a byte field), and may only be
in units of pages, not Kbytes.

If the fork service request itself gets
a bad return code, 1t will be returned to
the calling program as an error. In gener-
al the new process will still be running
when StrtTask returns to the calling pro-
gram, so there is no way to know what the
completion code of the new process is
(going to be).

Sometimes you may want to start a pro-
cess going and continue without waiting for
the new process to complete, but you may
need to wait for it to complete at some
point. This is where WaitTask comes in.
WaitTask will wait (just sit there) until
one of its children (a child of the program
that called WaitTask) completes. If there
are several children, the first one to com-
plete will let WaitTask return to its call-
er. If there are no children, WaitTask
will return with an error. 1If a child pro-
cess terminates before 1t is waited for,
its process descriptor will linger around
in memory until a wait {is done by the
parent process.

WaitTask has two parameters, both of
which are set by WaitTask. The first
parameter is a byte containing the process
number of the process whose completion let
wWaitTask return, The second parameter is
the completion code of that process. If
there are several children that might ter-
minate, the process number parameter can be
used to cause the calling program to keep
calling waitTask until the necessary pro-
cess completes.

To use this package of modules
(StrtTask, WaitTask, Driver, and BTest):

Assemble a file containing StrtTask
and WaitTask

asm StrtTask o #24k
Save the packed form of BTest

BASICO9

in BTest

save

pack

12 05-9 User Notes Volume I

Toad StrtTask and WaitTask
load StrtTask

or if you are still in Basic0O8
$load StrtTask

Type in Driver
program}

{the basic driver

run Driver

There are a 1ot of interesting things
that can be done with these modules. You
can fork any program you want, not just
packed BasicO8 modules, but the special
features of the shell, such as 1/0 redirec-
tion, aren’t provided by StrtTask. You
don‘t need to wait for the new process to
complete, but if the new process does I/0
to standard paths, it can be very hard to
tell what is going on on the screen. If
you haven’t made a mistake that causes sev-
eral processes to use the terminal for 1/0
at the same time yet, you should. It is
educational.

The thing about new processes that par-
ticularly excites me is that under Level
Two each new process gets a new address
space with up to 64K. The main problem
with the modules included with this column
is that there is only one-way communication
with forked processes. The parameter area
goes from the parent to the child, but the
child only sends a completion code back to
the parent. There are easier ways to com-
municate. We’ll get to them later.

A version of StrtTask with support for
pipes appears in Column Ten.

STRTTASK-ONE

ttl Start a subtask (called from Basic09)
nam StrtTask
StrtTask is a subroutine for Basic09.
Start a named module as a subtask.
Let the new task run asynchronously.
return the new tasks Erocess number, and the
condition code from the Fork.
Calling sequence:
run StrtTask (Name, Process Num, Lang Type,
) Param_L, Paraf, Opt_size)
Name is any length, but has a valid terminator
(high bit set on last byte, or delimiter after it)

Process_Num byte field, process number of new task.
Lang Type byte field, language/type byte for
forked module. .

Param_L, integer field, length of parameter area.

Param field of any type, parameter area to be
passed to forked process. . .

Opt_Size byte field, optional data area size in
pages.

Process_Num, and Return_Code are altered by
StrtTask, no other parameters are.

PIREAETRAP AR ETE XK X I b I I O
PR EE R EE R E BN IR I R

IFP1
use /HO/DEFS/defslist
ENDC

Type set SBRTN+OBJCT
Revs set REENT+1
mod TLen,StrtTask,Tyfe,Revs,SEntry,O
StrtTask fcs /StrtTask/
feb 1 version
SEntr
l1dd S get garam count
cmpd #6 are there 6 params?
bne BadExit no; leave now.
ldx 4,S address of module name
16,5 length of parameters
lda [12,S] type of module to invoke
1db {24,S] optional data area size
ldu 20,S pointer to parameters
0S9 FSFork start the new process
bes ?adE it2
sta [8,S] save new process number
clrb clear carry
rts return
BadExit
coma set carry
BadExit2
rts return
EMOD
TLen equ *)
ttl Wait for a (child) process to complete
nam WaitTask

Column Three 13

R et cm e o o e e e e e i o e e e o e e %

* WaitTask is a subroutine for Basic(09
Wait for the a child process to complete.
Return the process ID of the process that completed”
in parameter one.
X Return the competion code of the process
in parameter two. . .
This subroutine will wait using no CPU time until
a child process completes. .
If a child cgmfleted just before WaitTask was
called, it will return almost immediatly.
1f there are no children, an error will be returned
with a process number of 0.
Calling sequence:

RUN WaitTask (Process_No, Comp_Code))
. both process_no and Comp_éode ate BYTE variables.
Type set SBRTN+OBJCT
Revs set REENT+1

mod WLen WaltTask,Tyfe,Revs,WEntry,O
WaitTask fcs /WaitTask/

fcb 1 edition
WEntry

clr [4,S] zero the process ID

ldd 2,8 param. count

cmpd #2 i1f not exactly 2 params then .

bne WBExit2 the caller is making a bad mistake

0S9 FSWait wait for a child

bcs WBExjt
sta Y&,SI return the process ID
stb [8,5] return the completion code
rts return
WBExit2
coma set carry
WBExit
rts return
EMOD
WLen equ *
end

EIE I O IR R I R

DRIVER ONE

PROCEDURE Driver .

DIM process No,Comp Code,Opt Size,Lang Type:BYTE
DIM Parm L:INTEGER - -

DIM nameTSTRING

DIN Parms : STRING [20]

* Set up to call StrtTask which will fork the named
: module, passing it the parameter string in Parms.

* % % %

name="BasicQ9 "

8rocegs_No=0

pt_Size=0 .

Lang_Type=$11 \(* attriputes of forked module (object code, program)
Parms="BTest"+CHR$(13) \(* The parms must end thﬁ <CR> for Basic09
ﬁirm_L=LEN(Parms) \(* The length of the parameters must be correct

Q Call assembler subroutines to Fork and wait for the started
g: process

tUN StgtTaskgname,process No,Lang_Type,Parm L,Parms,Opt Size)
KEN WaitTask (process No,Comp_Code) - -

\
g: Acknowledge that everything is done

PRINT "Forked task complete"

PRINT "Completion code for process "; process_No; " was "; Comp_Code

14 0S-9 User Notes Volume I

COLUMN FOUR

BASIC/BASICOS

A month ago I installied Basic08 on my
machine. I have been proud of not having a
Basic on my computer, but OF (An 0S-9/Flex
copy program) requires Basic09, so I swal-
lowed my pride and installed Basic. I have
spent too many hours breaking students of
the bad habits they learned in elementary
computing courses taught using Basic to
have any affection at all for that lan-
guage, but I think I could tearn to 1love

‘Basic08. It 1is able to masquerade as
Basic, but {1t feels just 1ike a modern
structured programming language to me. 1

am sure that there were valid marketing
reasons for including "basic" in the name
of Basic09, but I wish they had named it
Advanced Programming Language or something:
I would feel much more comfortable learning

to love the language if it had a different
name.

INTERPROCESS COMMUNICATION

Last Column I promised to continue
wrestling with the problem of communication
between processes writing about pro-
cesses without using technical terms is
getting to be too much for me. I am going
to give loose definitions of some of the
important terms here.

Process or Task

A module (Program, subroutine,
or whatever) which the oper-
ating system views as an
independent piece of work. A
program is usually a process
though sometimes a program is
divided into several process-
es.

Concurrent processes
Strictly speaking concurrent
processes must actually run at
the same time. This requires
a separate processor for each
process. The term is some-
times loosely applied to pro-
cesses (1ike 0S-9‘s) that are
actually using one processor
in turns, but seem to be run-
ning at the same time.
Dispatch Give & process access to the
processor. The operating
system will dispatch each
active process in turn. Only
one process can be running at
any time, so0 the operating
system must have a way of
interrupting a2 process as well
as dispatching 1t.
Schedule Closely related to dispatch.
If the operating system shows
any intelligence at all about
which process to dispatch
next, it can be said to
schedule them.

Spawn Create a new process. This is
2 more general term than FORK
because not all operating

systems call the operation
which spawns a new process
FORK.

Parent/Child The process that spawns a new
process 1is called the Parent
(used to be father) of the new
process. The new process is
said to be the child (used to
be son) of the process which
spawned it. The family tree
analogy can be taken as far as
you like; processes can have
siblings, ancestors, descen-
dants. ..

Asynchronous Not depending on the same
clock.

Don‘t take these definitions as gospel.
They are superficial -- barely enough to be
useful in the context of this column.

COMMUNICATION VIA THE PARAMETER
AREA

Passing a parameter area to a FORKED
process is simple, but of limited useful-
ness. The 1imitations associated with com-
munication with processes via the parameter
area are that the communication is general-
ly one way, and that, since a copy of the
parameter area is made for the new process,
large parameter areas will use a lot of
memory, and increase the length of time the
FORK operation takes. Under 0S-9 Level
One, 211 processes share one 64K address
space along with all the assorted system
overhead (0S-9 itself, memory mapped 1/0,
etc). Spawning a new process with a 20K
parameter area will cost 40K just for the
parameter area (20K for the original and
20K for the new process’s copy). That kind
of thing can chew up a 1ot of memory in
short order. wWith Level Two, the memory
problem isn‘t so important, but, uniess you
have the Gimix III wversion of 0S-9, it is
time consuming to copy a large parameter
area into a new address space.

Some of the characteristics of the
parameter area make 1t possible for new
families of bugs to creep into programs
that use them for inter-process communica-
tions, Under 0S-9 Level Two, each new pro-
cess gets 1ts own address space. There is
no sign of any other process 1in that
address space except a copy of the parame-
ter area passed from the parent process.
If the parameter area includes any address-
es, they will be pointing to places that
were significant in the parent’s address
space. In the new process’'s address space
those addresses may be empty or contain
something unexpected. The tricky thing
about this is that, under Level One,
addresses in the parameter area are mean-
ingful. Since there 1is only one address
space, the addresses just reach out into
the parent’s memory and grab, or change,
the data the parent pointed them at. Being
able to read and change data in the parent
process’s memory is a mixed blessing.

Llet’'s say you want to print the con-
tents of an array without stopping to wait
for the printer. A very good way to do
this is to spawn a task to do it. If you
pass the array to the new task as a parame-

Column Four 15

ter, everything will be fine except that,
if the array is large, you may run out of
memory . If you conserve memory by passing
only the address of the array, everything
will still be fine (under Level One) pro-
vided that neither process changes the
array while the child is running. If the
child changes the array, it is very likely
to be a surprise for the parent. If the
parent changes the array (e.g., by starting
to work on new data) the child will see the
changes, and print an array that is part
the old one and part the new one.

It would not be too hard to track down
the reason for that kind of garbled print-
ing, but there is an especially virulent
form of that bug which not only is hard to
find once you set out to look for it, but
also sometimes doesn’t show up under most
forms of testing and 1looks suspiciously
like a hardware glitch. The operating sys-
tem iets each process run for a fraction of
a second, then interrupts it and dispatches
another process. If you read some of

another process’s data, then change it and

put it back (something 1ike A = A + 1,
which reads A, adds 1 to it, and stores the
result in A), you can‘t be sure that the
other process hasn’t changed the data
between the time you read it and the time
you wrote it unless you have masked inter-
rupts for the duration of the operation. If
some process changed the value of A in the
middie of the add, the new value of A will
be wiped out when the result of the addi-
tion is put into A. Every process 100ks
entirely innocent when viewed alone, but,
taken together, they are chaos. If you
change a program with this kind of error,
even to add diagnostics, the problem may
seem to disappear. The timing has to be
very precise for this kind of error to show
up, and (Murphy’'s Law being what it is) the
timing 1is never what you want it to be.
Finding and fixing this kind of bug is the
kind of thing that makes a programmer want
t0 join a commune and raise corn.

0S-9 Level Two prevents this kind of
trouble with the parameter area by making
addresses in the parameter area unusable.
Some programmers working in 05-9 Level One
without a crystal ball to predict the
nature of Level Two passed address to other
processes. Their programs (1 bel ieve
DYNASTAR/DYNAFORM is an example) have
restrictions when they are used under 0S$-9
Level! Two because under Level Two those
addresses are not meaningful.

If addresses are included in the param-
eter area, and you are using Level One, a
process can send data to its parent by
changing the parent’s variables. If you
prudently don’t use that questionabie
trick, this type of communication is 1like
heredity: strictly from parent to chiid.

DATA MODULES

The parameter area is certainly the
simplest path for inter-process communica-
tion, but there are are several other meth-
ods. The most powerful tool for inter-
process communication is the "data module."
The data module is a rather mysterious mod-
ule type intended to be used to store col-
lections of constant data. The usefulness

16 0S-9 User Notes Volume I

of data moduies stems from the way 05-9's
LINK system service reguest works.

The LINK regquest returns the address of
the module you link to. Level One simply
returns the address, but Level Two must put
the module in gquestion into the address
space of the process that does the LINK in
order to be able to provide a meaningful
address. If the module is marked "reent-
rant," the system memory map will be
adjusted so the memory containing the mod-
ule being linked to will appear in the
address space of each process which is
LINKed to it. This is a way to make a
block of memory accessible to several pro-
cesses. By making & module reentrant you
assure the operating system that severa)
processes can use the module without inter-
fering with one another. Usually that
means nobody changes the module. In the
case of a shared data module it is some-
times a good idea to lie to 0S-9. If you
let a single process change a reentrant
data module while other processes only read
what’s there, there 1is not much chance of
getting into trouble. Data modules can be
written into by many processes, but this
reguires careful management. The probilems
which can plague Level One users playing
with two way communications through the
parameter area all apply to shared data
modules which are written into by more than
one process.

A rather annoying problem with data
modules 1is that they must be loaded from
disk like any other module. It is possible
to build 2 module in memory, but the system
service request which forces 0s-9 to
include the module in its directory of mod-
ules in memory 1is a supervisor state
request. It is possible to circumvent that
restriction, but the method is too involved
to tackie this month.

LOCKING DATA MODULES

It is practical to have a data module
with two or more "writers" because there
are ways to "lock" a data module. A lock
is a system for checking that a resource is
free, then, if it is free, marking it "in
use." Every program that uses a shared
resource must check and respect the l1ock in
order for it to be effective, but there is
no way to enforce the locking in such a way
that no program can get at the shared mod-
ule without going through the locking pro-
tocol (GIMIX III might provide a way to do
this). The easiest way to lock a module
(or anything else) is to write a pair of
operating system services to lock and
uniock any specified resource. These ser-
vices are usually called ENQ/DEQ after the
sensible English words enqueue and dequeue,
or P/V after two Dutch words. Dijkstra is
responsible for the P/V terminology; IBM
may have thought up ENQ/DEQ. Perhaps 1’11
write the 0S-9 function handlers for P and
V someday, but until <those services are
available, modules can be locked quite
effectively in any assembly language pro-
gram.

There are several instructions in the
6808 instruction set which can read and
write memory all in one instruction.
Altering a byte by reading and writing it

in one instruction prevents any other pro-
cess from accessing the byte in the middle
of the alteration. The machine instruc-
tions that read and write in one instruc-

tion are: shift instructions, rotate
instructions, increment, decrement, comple-
ment, and negate. The instructions which

are usually used for "locking" a module are
increment and decrement. The basic idea is
that you set aside a locking byte in the
data module with an initial value of -1.
To lock the module, increment the byte,
and, if increment returns with the 2zero
flag set, continue; the module is locked.
If the zero flag is not set some other pro-
cess has the module locked, so decrement
the locking byte, and sleep for a while..
then try again. See the assembly language
modules Lock, and UnLock, for examples of
this procedure.

The LINK service request is only abtle
to find modules that are already in memory.
If the module is not in memory it must be
loaded from disk wusing the LOAD service
request. This problem could be dealt with
by writing two assembly language Subrou-
tines, one to do LINKs, the other to do
LOADs. This offers the most flexibility,
but requires the calling program to know
more about 0S-9 than I like. The assembly
language program that accompanies this col-
umn attempts to load a module from the exe-
cution directory if it can’‘t be found in
memory . The problem with this approach is
that the file which contains the data mod-
ule must have the same name as the module.

The data module 1tself 1is created by
the assemblier. The main difference between
2 data module and a program module is that
a2 data module has no permanent storage size
in the module header, and no execltable
code . 1 use the execution offset field in
the module header to point to the beginning
of the shareable data. By convention, I
use the first byte in the shareable data as
a locking byte. For 0S-8 Level One users,
it is good to keep the module to a multiple
of 256 bytes. Under (Level Two, a module
loaded by itself will use a multiple of the
page size (usually 4096 or 2048 bytes), but
a module loaded from a file containing sev-
eral modules will share a page with other
modules from that file if it can.

Together, the assembly language modules
SLink, SUnlink, Lock, and Unlock, provide
the tools necessary for & Basic0OS program
10 use shareable data modules. Before a
data module can be used, it must be 1inked
to; SLink returns the address at which 05-8
placed the data module. This address will
be usable until the module 1is UnlLinked.
Before any data in the module is used or
changed, the module should be locked by
calling Lock. Lock will not return control
to the calling program until it has control
of the data moduie. It would be possible
to rewrite lock so it would return with an
error code if some other process had con-
trol of the data module, aliowing the call-
ing program to choose to do something other
than wait if the module is not available.
As soon as possible after locking the data
module, 1t should be uniocked to release
other processes waiting for the data mod-
ule. Before stopping, a program that 1inks
a module should unlink it. 0S-2 maintains
a counter of how many times a module has
been 1inked to, and deletes the module from
memory when {ts 1ink count goes to zero.

I have included two trivial Basic08
programs to demonstrate module locking.
Calc only calculates the sum of the squares
of a list of numbers, but it could be the
mainstay of a mail system, a matrix manipu-
lation routine, or a print spooler (to name
a few possibilities). Driver2 is a program
who’'s greatest virtue is that it calls
Calc. There are two forms of locking going
on in the Driver-DataMod-Calc system: the
first byte of data in DataMod 1is used by
Lock. The second byte of data in DataMod
is used for communication between Driver2
and Calc. Each process waits for this byte
to take on a value set by the other process
before 1t accesses the rest of DataMod.
This is a very simple protocol which can
only be used in trivial cases such as sig-
naling between two modules. In this case,
the main lock 1is used to prevent several
modules from trying to change the communi-
cations byte at the same time. Once a pro-
cess gets the 1lock, "no other process can
get 1t until the process holding the 1lock
releases 1it. The process which has the
lock can use the communications byte, and
the rest of the data module, to call for
the services of Calc in an organized fash-
ion.

I use a module from last month’‘s column
called StrtTask in this set of programs.
If you are especially interested in memory
efficiency, merge the file containing the
StrtTask module with the file containing
this month’‘s assembly Jlanguage modules.
Calc must be packed in order to work (at
any rate, 1 can‘t puzzie out any reasonabile
way to use it in source form). To make the
contraption go, load the file containing
SLink, sunLink, Lock, and UnLock. If
StrtTask 1s in a separate file you might
want to load that too; then start up
Basic08 and run Driver2. Driver2 will pause
for 2 while, starting up Calc, then ask for
a number five times. Give i1t small numbers
-- they have to fit into byte variables.
when all five numbers are entered, Calc
will calculate the sum of <their squares
which will be dispiayed by Driver2. If you
want to try 1t again, reply Y to the next
prompt. The last thing Driver2 will do
before ending 18 ask whether you want to
shut down Calc. You do. In a system with
several processes using Calc you would want
to leave it running, but, with only one
process using Calic, it will just be a nui-
sance if it is not cleaned up when its one
user terminates.

Column Four 17

LOCKER PROGRAM

%

PR I o e

SLink)
Attempt to link to a module. .
If it isn't found attempt to load it.
Return the address of the module header, and the
entry address.
Errors: .
1 Y;o?g number of arguments in parameter
ist.
other Return code from F$Link, or FSLoad.

Calling sequence (from Basic09) is:
RUN Link (Module Name, Module Type,
Header Addr, Entry Addr)

Module_Name is a character string containing the
“name of the module which should be linked

to. It should be terminated with a <CR>.
Module_Type is a byte contain1n§ the language/
gzge of the module. A dafa

Header_Agdr is the address of the module header of

the linked module. It is returned from
Link, Integer field,

Entry Addr is an integer field which is used to
return the address of the entry point of
linked module.

module would be

ifpl .

use /h0O/defs/defslist

endc

TTL Subroutine callable from Basic09 to do Link SSR
MOD LinkEnd,LinkNam,SBRTN+OBJCT,REENT+1,LinkEnt,LnkMemS

LinkNam fcs /SLink/

fcb 1 version

LnkMemS equ .
LinkEnt

cmpd
bne LinkErrl .

ldd 14,5 get length of entry address field
cmpd #2

bne LinkErr2 .
1dd 18,S get length of header address field
cmpd #2

bne LinkErr2

ldx ? S ?odule name's address

1da 18,8

shs U

§9 FSLink

bcc LinkRtn Carry clear; clean return

uls U
gmpb #ESNEMod Non-existent module?
bra LinkErr2 no; bad error was bne
ldx ? S Todule name's address

lda g,s

must be four

ldd 2#2 get parameter count

Type/Language

Type/Language
hs

s

889 FSLoad
bec LinkRtn
puls U

LinkErr2

coma
rts return with error code in B and carry set

LinkErrl

ldb #SFE error code of 1
cgmb set carry
rts

LinkR

18

st¥
puls U
clrb clear carry
rts return

EMOD

n
stu 114,8] Header address

18,S] data address

0S-9 User Notes Volume I

%o ok o O Ok ok ok 3 Sk ok O O O RO SRR % N R

LinkEnd equ *

*NAM SUnLink .
* SUnlink Unlink a Linked Module. *
* Call1n6 sequence (from Basic09). *
* RUN Unlink (Header_ Addr) *
* Errors: - *
* 1 Wrong number of arguments in parameter *
* list. *
: other Error code from FSUnlink. :
* Header_Addr is the integer address of the header *
* Teturned from the link request for the *
: module you want to unlink. :

TTL Subroutine callable from Basic09 to do Unlink SSR
MOD UnlkEnd,UnlkNam,SBRTN+OBJCT,REENT+1,UnlkEnt,ULkMenS
UnlkNam fcs ;SUnLink}
fcb 1 version
ULkMemS equ .
UnlkEnt
1dd 2,5 get parameter count
cmpd #1 must be one
bne ULnkErrl not one; error

shs U
Pau [6,S] get module header's address
0S9 FSUnlink unlink the module
puls U recover U

return code and carry set by FS$Unlink
rts return
ULnkErrl

1db #$FE

comb

rts

EMOD
UnlkEnd equ *

*

NAM Lock
* *
* lock Lock grotocgl . *
* Wait for a "lock" byte to indicate unlocked, then *
* lock the byte. *
* Calling sequence: *
* RUN Unlock (Lock Addr) *
* Errors: - . *
: 1 Wrong number of arguments in parameter list. :
* Lock Addr is the integer address of the byte used *
: foT the locking protocol. :

TTL Subroutine callable from Basic09 to perform "lock" protocol

MOD LockEnd,LockNam,SBRTN+OBJCT,REENT+1,LockEnt,LokMemS
LockNam fcs /Lock/
£cb 1 version
LokMemS equ .
LockEnt
ldd 2,S get parameter count
cmpd #1 must be one .
bne LockErrl not one; error exit
LockLqgop
1dx [4,S] %et address of lock byte
inc ,X test and set it
beq Locked . .
dec ,X can't get it
K

ldx interval for brief sleep (tunable)
0S9 FSSleep
bra LockLoop

Locked
clrb turn off carry
rts return
LockErrl
1db #SFE
comb
rts return
EMOD
LockEnd equ *
*NAM UnLock

* UnLock Perform the Unlock protocol
: Rgs%ore the "lock'” byte to the unlocked
state.

* % NN

Column Four

18

%*

RUN OnLock (Lock Addr) *

* Lock_Addr is the ifiteger address of the byte *
* used for the locking protocol. i

TTL Subroutine callable from Basic09 to perform UnLock

MOD ULokEnd,ULokNam, SBRTN+OBJCT,REENT+1,ULokEnt,ULokMemS
ULokNam fcs)UnLock/

fcb 1 version
ULokMemS equ .
ULokEnt

ldd 2 S get parameter count

cmpd must be one

bne ok rrl not one; error exit

ldx get address of lock byte

dec ,X release the lock

clrb set carry bit off

rts return
ULokErrl

1db #SFE error code of 1

comb set carry

rts

EMOD
ULokEnd equ ¥

NAM DataMod
*TTL A Lockable data module N
* This a generic data module. *
* It contains a locking b{te and up to 232 *
i bytes of unspecified da :

MOD ModEnd,ModNam,DATA, REENT+1 LockByte,O
ModNam fcs /DataMod/

fecb 1 edxtxon
LockByte feb -

UnSpec fecec /12 5678901 34 6789012345678901234567890/ 40
fec /1234567890123456789012345678901234567890/ 80

fec /1234567890123456789012345678901234567890/ 120

fec /1234567890123456789012345678901234567890/ 160

fce /1234567890123456789012345678901234567890/ 200

fcc /12345678901234567890123456789012/ 232

EMOD
ModEnd equ *

20 0S-9 User Notes Volume I

CALC PROGRAM
P&OCEDURE Calc

Calculate the sum of the squares of the numbers

* stored in DataMod.) .

A process signals that it wants service by storing a

* hex 0l in the byte one off the start of data in DataMod.

When Calc sees a 1 in_that byte, it calculates the sum of

the squares and guts it at 7 and 8 off the start of data in

* DataMod, then sets the status byte (1 off the start) to hex 00
indicating that calculation 1s done.

DIM Module_Name:STRING

DIM Module Type:BYTE

DIM Header Addr,Data Addr:INTEGER

DIM Status™Addr,Array Addr,Return Addr:INTEGER
DiM sum, 1 : INTEGER - - -

: Setup

Module Type=S$40

Module Name="DataMod"+CHR$ (13)

RUN SLink (Module Name,Module Type,Header Addr,Data Addr)
Status Addr=Data”Addr+l - - -
Array Addr=Data_Addr+2

Return_Addr=Dat3_Addr+7 .

POKE STatus_Addr,0 \(* set idle (ready for work)

* Wait for the status byte in DataMod to
: indicate that an operation i1s waiting to be done.

WHILE PEEK(Status Addr)<>1 DO

SHELL '"SLEEP 2" ~—

ENDWHILE

WHILE PEEK(Status Addr)=1 DO

sum=0 -

FOR i=0 TO 4)

§E§=sgm+PEEK(Array_Addr+1)*PEEK(Array_Addr+i)
1

(* The calculation is done. Save the result
POKE Return Addr,sum/256
POKE Return”Addr+1,MOD(sum,256)
and indicate that the results are ready
POKE Status Addr,0
WHILE PEEK(Status_Addr)=0 DO
SHELL "SLEEP 2"
ENDWHILE
ENDWHILE
POKE Status_Addr,0 \(* we're dead
%gg SUnLinkTHeader_Addr)

Column Four 21

DRIVER PROGRAM
PROCEDURE Driver2
”®

* Driver for "Locker"
Demonstates simple Module lock/unlock

Operation:

Link to DataMod .

Fork Calc (a simple process for demonstration purposes)

Wait for the second Data byte in datamod to become $00
indicating that Calc is running.

Start of Loop

Lock DataMod

Store data into bytes 2, 3, 4, 5, and 6 off the start of
data in DataMod

Change the bzte at 1 off the start of data in DataMod to $01
1n§1cat1n§ that there is data in the module to be operated on
Wait for the second data bYte_to change $00

Get the result of the calulation (an integer) at 7 and 8

off the start of data in DataMod.

Unlock DataMod

Loop until end is called for

Lock DataMod

Change the the first data byte to $02 (which tells calc to stop)
Wait for the first data byte in DataMod to change to a $00
Unlock DataMod

UnLink DataMod
All done

b I I O

DIM Header Addr,i:INTEGER

DIM Process Num,Module T¥§e:BYTE
DIM Param Leén,Data Addr:INTEGER
DIM Opt Size,op:BYTE

DIM Num?TINTEGE

DIM Params:STRING

DIM Module Name:STRING

DIM NY:STRING

Module Type=$40

Header Addr=0

Data Addr=0

ModuTe Name="DataMo"+CHRS (S80+ASC("d"))

RUN SLInk (Module Name,Module Type,Header Addr,Data Addr)
* Set up for FORK operation . - -

Module_TZpe'SZI \(* Subroutine/Object code

Params="Cale"+CHRS (13) .

Param Len=LEN (Params)

Opt_Size=10 .

Module_Name="Basic09'"+CHRS (13)

RUN StTtTask (Module Name,Process_Num,Module_Type,Patam_Len,Paramsv,Dpt_Size)

I Calc is starting now

* Wait for the first data byte in DataMod to become zero
: the first data byte is located at the address in Data_Address

GOSUB 100 \(* wait for calc to send ready

*
: Calc is running. Send it data

REPEAT
RUN Lock(Data Addr)
: load DataMod with data

FOR i=2 TO 6

INPUT "Enter a number (1..255), or 0 to stop):",Num

POKE Data Addr+i,Num '

NEXT i -

POKE Data Addr+1,1 \(* mark the module "ready for operation"
GOSUS 1007\ (* wait for calc to indicate read

PRINT "Sum of squares is "; PEEK(Data Addr+7
RUN UnLock (Data_Addr) -

INPUT "More calculations? (Y,N):",NY

UNTIL NY="N" OR NY="n"

INPUT "Shut Down Calc Module? (Y,N):",NY

IF NY="Y" OR NY="y" THEN

RUN Lock (Data_Addr)

22 0S-9 User Notes Volume 1

¥*256+PEEK(Data_Addrv+8)

POKE Data Addr+1,2 \(* command for stop
WHILE PEER(Data Addr+1)<>0 DO

SHELL "SLEEP 2'"™

ENDWHILE

RUN Unlock (Data_Addr)

RUN SUnLink (Header Addr)

ENDIF -

END

100 (* Wait for the status byte in DataMod to
(* indicate ready

WHILE PEEK(Data Addr+1)<>0 DO

SHELL "SLEEP 2"~

ENDWHILE

RETURN

Column Four 23

24 0S-9 User Notes Volume 1

COLUMN FIVE

MORE ABOUT LOCKING

Last month I discussed shared data modules,
and demonstrated a locking method which
could be used to permit only one process at
a time to access a data module, or, for
that matter, any shareable resource.

The locking protocel I demonstrated
last month has two serious problems. One
is only a probiem for those who, 1ike most
of us, can only run more than one process
by sharing a processor between several pro-
cesses. The other probliem limits the use-
fulness of concurrent processes. Both
problems have solutions.

The 1locking algorithm 1 demonstrated
last month used a technique called "busy
waiting." This 1is usually the easiest way
to make a process wait until something hap-
pens, but 1t wastes processor cycles. I
tried to reduce the amount of time wasted
in the locking module as much as possible
by putting a "sleep" in its wait loop, but
the solution I gave was, nevertheiess,
inefficient. If waiting for the lock uses
processor time, even very slowly, all you
have to do 1is 1line up enough processes
waiting for the lock and you can slow the
computer down to a crawl. You might think
that you could always make the waiting pro-
cesses as cheap to run as necessary by put-
ting & longer sleep into the wait loop, but
if the sleep is made very long, there may
be a significant time during which the lock
is off and the 211 the processes which want
it are sleeping. If the goal is perform-
ance, (using performance in the same sense
as "high performance car") it is not good
to leave a scarce resource like the 1lock
unused for any length of time. {The goal is
to design an algorithm which allows waiting
processes to be completely idle until the
lock is availabie, then awakens one process
and gives it the lock. .

If each procass is running on its own
processor, the processor running a waiting
process has nothing better to do than zip
around the wait loop. Some people think
busy waiting 1is bad even then. I tend
toward the opposite extreme. The problems
with busy waiting are obvious, the alterna-
tives have +trickier problems. The issues
involved in choosing a busy waiting algor-
ithm over & more sophisticated one are much
like those involved in choosing a bubble
sort over one of the flashier sorting
algorithms, that is, for a small probiem
the simple algorithm will do fine.

The other problem with the 1locking
algorithm I gave is that it permits "lock-
out," ie. a process can wait forever with-
out ever getting the lock even when no oth-
er process holds the Jlock forever. If
there will seldom be a process waiting for
the lock, lockout isn‘t a big problem, but
for locks that usually have a process or
more waiiing for them lockout is an impor-
tant consideration.

It 1s tricky to detect lockout in an
algorithm, but here are the basic rules for
finding 1t: Imagine that you are control-
jing the computer’s dispatcher (deciding

which process runs and for how long). It
is your job to prevent a certain process
from ever getting the 1lock. You may run
any mix of programs you 1ike any way Yyou
like except that the process you are trying
to prevent from getting the 1lock must be
allowed to run every now and then. If it
is possibie to prevent that process from
ever getting the lock, there 1is lockout.
The sequence of events that demonstrates
that lockout is possible for the algorithm
1 gave last month 1is: Two processes are
running, A and B. Both processes are simple
programs which just get the 1lock then
release it again and again. Either process
could be 1locked out, but the "execution
sequence" 1in figure Figure 1 only demon-
strates that process B can be locked out.

Start
¢ lock
B: trY to lock
A: unlock
A: lock
B: try to lock
A: lock
etc.
Figure 1: Execution Sequence
for Lockout

You see that by allowing process A to run
iong -enough so that can get the lock again
each time it releases it I can shut process
B out completely. This may seem unfair,
but it shows that the algorithm permits
Tockout. Murphy‘s law certainliy dictates
that if it is possible to prevent a process
from ever getting the lock (and you want it
to get the lock), the improbable execution
sequence which leads to lockout will happen
at the worst possible moment. This is one
of the kinds of problem that cause strange
behavior in complicated systems.

There are many ways to do locking that
don’t use busy waiting or have deadlock. I
am not going to discuss these tricks this
month, but I will leave you with two hints.
The 0S-8 SEND service request offers an
alternative to busy waiting. Locking can be
done without deadliock by using any of sev-
eral algorithms including one called the
Doorman Algorithm.

GETTING A GOOD "MIX"

The standard use for multiple processes is
to make maximum use of a processor when the
work to be done involves a lot of waiting
for outside events, such as terminal input.
A process could spend most of 1its time
waiting for input from a terminal, and del-
egate any major work to child processes.
This way the program would aimost always be
ready to accept input from the terminal,
even when some previous piece of work was
still in progress. Using a special process
to print a screen is & particularly apt use
of this principle. There 1s really no rea-
son why someone should have to wait for a
print request to complete before continu-
ing,and there is usually no need for the

Column Five 25

process that is doing the printing to com-
municate with its parent process. The pro-
cess that is driving the printer spends
most of its time waiting for the printer,
and the process that is responsible for the
screen is, very likely, spending most of
its time waiting for input from the termi-
nal. These tasks can be in progress at the
same time with almost no effect on one
another. when one process is waiting for
something. the other process can run with-
out interference. With tasks like printing
and screen handling, the computer will
spend most of its time with both processes
waiting.

Some programs run well together, other
programs interfere badly with each other.
Finding good sets of programs to run at the
same time, and adjusting their priorities
so they all will run as fast as possible is
called finding a good "mix." Tuning hard-
ware and software so a single program can
run as fast as possible is a complicated
job, but choosing groups of programs which
will run well together, and tuning the sys-
tem so the groups will run as fast as pos-
sible is more of a black art. I like to
keep my personal computer rather 1lightly
loaded (no more than two or three processes
active at a time), but it is good question
just how much time a computer should spend
waiting. If you give the machine so much
work to do that it never has toc wait, each
process will run siowly. A computer <that
has no resources in reserve is said to be
saturated.

Consider the case of a program which is
reading from the terminal. Usually, in a
saturated computer, there are several pro-
cesses waiting for processor time at any
moment . The process waiting for the input
character will have to wait for at least
one process, maybe several, to have their
turn before it will get a chance to run.
If each process gets a turn one tenth of
second long, and there are an average of
two processes waiting to run, then a pro-
cess will take about two tenths of a second
to respond to a simple keystroke. That
comes to 5 characters per second, or 300
characters per minute. Ffor perspective, my
terminal repeats at 10 characters per sec-
ond.

Fortunately, programs running under
0s-9 don’‘t actually do any 1/0. 0S-8 is
arranged so that input and output are done
by 0S-$ rather than by user programs. The
device drivers are responsible for all 1/0.
05-9 always gives very fast service to
device drivers. Almost anything will be
interrupted to allow a device driver to
deal with input or output. Some device
drivers have a reservoir for 100 (or so)
characters which they can save up and give
tc a process in a burst next time the pro-
cess is started.

For the best performance a computer
should be kept idle most of the time, that
way it will immediately jump on any work
you give it. It would be nice to have
enough money to0 buy overpowered computers
80 there would be 1lots of idle time and
excellent performance, but i{if money is a
concern you have to strike a compromise
between getting fast response, and getting
the maximum amount of work out of your
machine.

26 0S-9 User Notes Volume I

It is possible to speed up important
processes by changing their priority. The
heavier the load on a computer, the more
important it 1is to fuss with priorities.
An edit session, & listing to the printer,
and an assembly can share the machine very
nicely if the priorities are properly set.
The edit session is interacting with an
impatient human, so it should have a high
priority assigned to it. Since editing
usually involves a 1ot of dead time while
the human doing the editing stares at the
screen, the editor will actually use very
little processor time. The process that is
printing is very much the same story. It
isn‘t interacting with a human, but even a
200 character per second printer is slow by
computer standards. The process that is
driving the printer should be given an
intermediate priority so it will be able to
run the printer at a good clip without
interfering to any great extent with the
edit process. The assembly should be given
a very low priority. Assemblies are the
type of thing that will use a lot of pro-

. cessor time if they are allowed. Even if

it is given & 1low priority, the assembly
will get time +that the other processes
don’t want, so since both will usually be
waiting for something, the assembly will
get pienty of time.

Most business programs, as well as com-
pilers, assemblers., and disk utility pro-
grams, spend a lot of time waiting for the
disk to do something. The sound of a disk
clucking and buzzing is & pleasant busy
sound, but it actually signifies wasted
time. While the disk is doing mechanical
things like starting, Sseeking, loading the
head, and even turning, some program is
likely to be waiting. 0S-9 makes some
effort to speed disk access, but with sev-
eral processes wanting to access the same
disk the problem is more than a small oper-
ating system can handle. There are stan-
dard tricks for reducing the amount of time
a program spends waiting for the disk
drive. The easiest of these for a regular
user to get at is the use of large buffers.
Most programs that access the disk will run
faster if they are given enough storage 8o
they can read and write large blocks of
data. If you want to hear some very busy
noises from your drives, start a COPY with
only a little bit of memory, then do a DIR
for a2 large directory on the same disk Yyou
are COPYing on. The disk drive will chuck-
le madly as it shuttles back and forth from
directory to file in an attempt to serve
both the copy program and the DIR command.
Switching from file to file on a disk (even
a Winchester) is slow. The best way to
deal with this is to avoid the problem by
not running more than one program accessing
a particular drive at a time. It will be
obvious if there is a probiem. If programs
are run in the wrong combinations, they
will run very slowly, and the disk will
sound very active. If you have to make the
best of a bad mix, give processes as much
memory as you can. Well designed programs
can use extra storage to cut down disk
usage, or to transfer (read or write) more
data for each turn they get.

AN ASSEMBLY LANGUAGE PROGRAM
WHICH SETS PRINTER OPTIONS

I just installed a new printer on my sys-
tem, an Okidata Microiine 92 (nice print-
er). 1 used toc set the options on my MX80
with a group of procedure files. An exam-
ple would be the file called Comprint which
contained the command "display Of >/p". It
would have been possible to set the printer
to compressed printing mode by typing the
display command instead of invoking the
procedure file by typing /d0/comprint, but
1 can never remember the Epson control
codes. Installing a new printer seemed
like a good excuse to find a better way of
setting the printer options. The program
POpt 1s the first complete assembly lan-
guage program 1 have published here. I
hope you find it as useful as I do.

POpt doesn‘t do anything technically
exciting, but it is a fairly simple assem-
bly language program which includes most of
the elements found in assembler programs,.
1 am going to go through the interesting
points of the program moving generailly from
the beginning to the end.

The NAM and TTL statements in the first
two lines of the program are purely cosmet-
ic. They provide information which the
assembler puts in the page headings. The
block following those two 1tines 1is the
introductory comment for the program. A1l
comments might be considered cosmetic, but
although they don’t generate any code, I
think of them as essential parts of assem-
bly language programs. Any line with an
asterisk in column one is a comment; the
box I cdraw around the comment is just to
make it look nice.

I1f you are looking at the output of the
assembler, the two lines after the intro-
ductory comment are IFP1 and ENDC. In the
original source there 1is a line between
these, "use /dO/defs/defslist", which calls
in a list of USE commands which make files
containing all the system definitions part
of the program. These definitions help
make the rest of the program more readable.
The words Prgrm+0Objct would have to be
replaced with the much less understandable
$11 if the system definitions, or some oth-
er similar set of definitions, weren’t
included {n the program. Throughout the
rest of the program | used the symbols
defined in the definitions files (and a few
additional SET commands in the program
itsel¥) whenever 1 could. The IFP1/ENDC
which is wrapped around the use statement
prevents the extra files from being read on
the second pass the assembler takes through
the file. No statement in the system defi-
nitions defines any memory so there igs no
reason for the assembier to read it on both
the first and second passes; not reading 1t
during the second pass saves a good deal of
time, and prevents the lines in the defini-
tions from being included in the program’s
line numbering. The lines used from the
definitions files don’t print both because
they aren‘t read on the second pass (when
output is generated), and because the first
line in the definitions file is the assem-
bly directive OPT -1 which directs the
assembler not to print anything until it
encounters the OPT 1 directive. The defi-
nitions files 1 routinely include in assem-
blies are listed in table Table 1.

Table 1: Definitions files

routinely included in
assemblies

0S9Defs
089SysDefs
0S910Defs
OS9RBFDefs
0S9SCFDefs

There are a 1ot of symbols in all those
files; a program with the full set of defi-
nition files generally needs to be assem-
bled in a region of at least 24K to accom-
modate the large symbol table. If you want
to use your memory more economically, cre-
ate a stripped down definitions file with
only the definitions you expect to use, and
use it instead of the standard files; but
be prepared to scrap your file and build a
new one if you get a new version of the
operating system. Level One and Level Two
definitely have different definitions, and
if you dig around deep enough in the oper-
ating system, it is unwise to count on
things staying fixed even from version to
version.

A few l1ines down from the ENDC is the
MOD statement. This statement generates
the 0S-9 module header, & block of data
which 0S-9 needs. The fields in the module
header are:

. PROGRAM LENGTH

Trying to fill in a number here would
be foolish. The assembler can figure
out the length of the module for you.
The symbol Pgmien is defined in the
last ltine of this program.

. SYMBOL USED FOR PROGRAM NAME LOCATION

This 1isn‘t the program name itself,
but the name you choose to assign to
the location containing the name. I
like the name “Name®" for that loca-
tion. The program’s name i{is usually
placed close to the module header, but
it can be placed elsewhere in the
modutle if it is convenient for you to
do it that way.

. MODULE TYPE

I 1ike to define the module type as a
symbol before the MOD statement and
just put the symbol here. The module
type tells 05-8 what kind of thing to
expect this module to do. This module
is a program (not a subroutine or
data), and it consists of object code
(not data or some sort of intermediate
code) .

. REVISION

This field contains two types of
information. It indicates whether the
module is reentrant, usable by several
different users at the same time, and
gives the revision number of the pro-
gram. Most well written programs are
reentrant, so, since 05-9 uses reent-
rant modules more efficiently than
non-reentrant modules, most programs

Column Five 27

should be labeled reentrant. The
revision number is used when 2 module
is Jloaded from disk to determine
whether the module should replace a
module by the same name already 1in
memory. A module with a higher revi-
sion number will replace a module with
a lower number.This is particularly
useful if you want to override a mod-
ule which has been placed in ROM.
Unless you want to supersede a module
in memory the revision should be 1.

. ENTRY POINT

The name assigned to the first
instruction in the program. I usually
insert a line before the first
instruction in the program with this
name on it. This saves a little bit
of typing if 1 want to add instruc-~
tions before the first instruction in
a program.

. MINIMUM AMOUNT OF PERMANENT STORAGE
REQUIRED

The amount of storage the program will
need in addition to the storage used
for the module itself. This number,
like the program length, can be cal-
culated by the assembler -- note the
MemSize equ . a few

The line after the MOD statement tells the
assembler t0 reserve space for one byte of
storage. The next two lines reserve 255
more bytes. The total memory requirements
of this program are one byte for the print-
er’s path number, and 255 bytes for the
stack. The stack probably doesn’t need to
be that large for this simpie program, but
0S-8 1is geing to allocate memory in 256
byte units even on a level 1 system, S0 I
played it safe and sgquandered the memory on
the stack. The results of allocating too
little space for the stack are very unplea-
sant.

The equate after the rmb for the stack
uses the ".* special symbol which means
the current offset in the data definitions.
This is an easy way to get the assembler to
tell us how much storage the program will
need for use in the MOD statement.

The next two lines are the module’s
name (pointed to by the module name field
in the module header), and the version num-
pber. The module name must be defined with
a8 FCS statement. This type of data defini-
tion closes the string it is defining by
setting the high order bit on in the last
byte -- “t" is $F4 instead of $74. This
lets 0S-9 know where the end of the name
is. The byte after the name is by conven-
tion the version number of the program.
Some utility programs display this number,
but it is optional. Nothing awful wilil
happen if you start right in with data or
program after the program name.

The version number is the last overhead
until the very end of the program. The
fcc’s and fcb’‘s for the next 40 or so lines
define constants needed i{in the program.
About the only interesting thing about them
is that each of the strings defined with a
fcc is followed by fcb C$CR, a carriage
return. At first 1t 1looks like I could
have saved space by using one <CR> for all
the strings, but 1t turns out that the

28 0S-9 User Notes Volume I

extra code needed for that approach uses
more memory than the extra carriage
returns.

The program scans the parameter string,
and if certain characters are found, sends
Character strings to the printer. There
are three phases: first the input length,
in D, is checked. If it is one (or lower)
there is no parameter string; in this case
display a menu of options. Second, scan
the parameter string for the character "/*"
which denotes & device name. If there is a
device name in the parameter, open that
device as the printer, otherwise open the
device /P. Third, scan the parameter
string again ignoring any characters in a
device name. Transiate each character to
upper case and compare the translated char-
acter to each significant character. Each
time a significant character is found,
transmit the appropriate character string
to the printer, and send ‘a line to the
standard output path describing what has
been done.

There are a couple of simple tricks
which are useful while scanning the parame-
ter string. The shell always terminates
the parameter string with a carriage
return. This lets me terminate the scan
when 1 encounter a carriage return instead
of having to count bytes. Data bytes may
have the parity bit on or off. I remove
the parity bit with "anda #$7F." If the
parity bit is left on, twice as many com-
parisons need to be done. For example, "a"
could be $61 or $E1. In this case, 1
thought it would be best to treat both
upper and lower case characters as the
same. The easiest way to do this is to
translate all lower case letters to upper
case (or vice versa if you like). Once you
determine that a character is an upper case
letter it can be translated to a lower case
letter by subtracting $20 from it, or and-
ing %11011111 with it.

There are two sections of this program
responsible for output. Common1 writes
strings two bytes long to the printer. It
uses the I$write service request which
writes a specified number of characters
without any editing. There is nothing spe-
cial about two bytes:; it is just the length
of the Jongest control string I wanted to
be able to send to the printer. I padded
the shorter control strings to two bytes by
adding a $00, a null, to them. Common2
writes up to 80 characters to the standard
output path. Common2 uses the I$writin
service reguest which treats the carriage
return as a special case. when it encoun-
ters a carriage return it does whatever the
path descriptor 1i1s set up to do on end of
tine (normally send <CR><LF>) and returns.
This means that by terminating each string
to be written by Common2 with a <CR> 1 make
it unnecessary to know the length of any of
the strings.

This program ends 1in either of two
pltaces. If there are no errors, after the
second scan the program branches to Exit
which clears the .carry bit in the condition
code and performs the F$Exit service
reguest returning control to 05-8. If
there is an error, control goes to ErrXit
which sets the carry bit and returns con-
trol to 0S-9. You might expect that the
best way to set or clear the carry bit in

the condition code register is with the
andcc and orcc instructions. Those
instructions certainly are able to turn the
carry bit on and off, but the COM instruc-
tion turns the carry bit on faster (and the
CLR instruction turns it off faster) than
the obvious instruction. whenever the A or
B accumulator is free, it is fastest to set
or clear the carry flag by playing with the
accumulator.

At the very end of POpt there are two
final 1ines of overhead. The EMOD direc-
tive causes the assembler 10 generate a
checksum for the module which is used when
this program is run to make certain that
the module 1is wvalid and undamaged. The
1ine with "PgmLen equ *" calculates the
length of the module for use in the MOD
statement at the very beginning of the mod-
ule.

THE 0S-9 USER'S GROUP

An 0S-9 User’s Group was formed ltast sum-
mer . I couldn’t say it’s thriving, but it
is coming along. The club has a telephone

bulietin board, and 1lots of dreams. It
isn‘’t going to go anywhere unless plenty of
0S-9 users join it. Membership is $25 for
individuals (payable to 0S-8 Users Group
c/o Terry Straehley 1005 Roble Lane, Santa
Barbara CA 93103). I strongly suggest that
all 0S$-9 users join the group. Even with
the relatively small membership the group
now has, a lot of interesting information
passes through the bulletin board. If we
all join, this group could become a great
resource.,

THE FUTURE OF THIS COLUMN

There is enough material for another six
months or more of columns about concurrent
processes, but I am going to move on to
some other subjects for a while. It seems
there are a great many new 0S-8 users out
there, some of whom have written to me ask-
ing for help with the fundamentals of the
system. The program this month is a first
attempt to help these people. 111 try to
devote at least part of this column to 0S-9
basics for the next few months.

Column Five 29

POPT PROGRAM

Microware 0S-9 Assembler 2.1 08/05/84 23:06:32 Page 001
POpt - Change Printer Setup Options for ML 93
00001 NAM POpt ,
8888% . TTL Change Printer Setup Options £or ML 93
00004 * Printer Setup Options *
00005 * ¢ Correspondence Quality *
00006 * *
00007 * 0 Ten CPI *
00008 * 2 12 CPI *
00009 * 7 17 CPI *
00010 * Double Width Characters *
00011 * 5 Five CPI *
00012 * 6 Six CPI *
00013 * 8 Eight CPI *
00014 * L) *
00015 * r reset to initial conditions *
00016 * . *
00017 * / Lead in for alternate path name. Default ¥
00018 * is /P. The path name must either be the *
00019 * last parameter, or separated from the next *
00020 * parameter by a delimiter. *
00021 *) o *
00022 * The options are specified as parameters when *
00023 * POpt is run. If no options are specified, a menu *
00024 * is presented. *
00025 * *
00026 % Examples: *
00027 * pogt'rCZ *
00028 * -> rinter Reset *
00029 * -> Cogresgondgnce Quality Printing *
00030 * -> Print Density twelve characters per inch ¥
00031 * *
00032 * pogt_r6 /pl *
00033 * -> rinter Reset ¥
00034 * -> Print Density six characters per inch *
00035 * -> {output was directed to the printer at /gl }*
00036 * You can put the print options on either or bot *
888%; : 51d§s of/t?e deyxcghname... /o1 I
g popt rc /p is the same as opt r c
00039 K e e e o e e e - -g- p - ——
00040 IFP1
D0042 ENDC
10043 0011 Type set Prgrm+Objct
“h044 0081 Revs set ReEnt+l
-5 0000 87CD04BA MOD Pgmlen,Name,Type,Revs,Entry,MemSize
« .46 D 0000 PrtPthN rmb 1
~u047 OOFF StackSz set 255
00048 D 0001 . rmb StackSz space for stack
00049 D 0100 Memsize equ .
00050 000D 504F70F4 Name fes /POpt/
00051 0011 01 Edition fecb 1
00052 0001 StdOut set 1 Number of Standard Output Path
00053 0012 2F50 DPrtNam fcc "/P" Default Printer Name
00054 0014 QD fcb CSCR
00055 KXk dekkk
00056 * Responses for each printer option set
00057 *

00058 OOIi 88726965 Msg5CPI ggg égéént density five characters per inch (
00060 004% 5372696E Msg6CPI ggg égéént density six characters per inch (d
00062 0082 88726965 Msg8CPI ggg égéint density 8.5 characters per inch (d
00064 OOBg 5872696E MsglOCPI ggg égéént density 10 characters per inch (no
00066 OOEg 8872696E Msgl2CP1 ggg égéént density twelve characters per inch
00068 010C 8072696E Msgl7CPI fcc /Print density 17 characters per inch/

00069 0130 OD feb CSCR

00070 0131 436F7272 MsgCQ fcc /Correspondence Quality Printing/
00071 0150 OD fcb CSCR

00072 0151 5072696E MsgRst fce /Printer Reset/

00073 O15E OD feb CSCR

30 0S-9 User Notes Volume I

Microware 0S-9 Assembler 2.1

08/05/84 23:06:37 Page 003

POpt - Change Printer Setup Options for ML 93

00142
N0143
u0144
00145
00146
C 47
{ 48
00149
00150
00151
00152
00153
00154
00155
00156
00157
19158
3159
;0160
11161
0n162
0163
0164
50165
00166
00167

[
(e You]
o ot b
e oYe Ja Yo te To Teo do LN ENEN

~N AN WOV

32

f No alternate printer path found :
0343 LooplD
0343 308DFCCB leax DPrtNam,PCR
0347 20ED bra Loopll Open the default printer path
0349 LooplE
0349 %536 puls D,X,Y restore .
* Loop2 scans the parameter string for *
* grxnter control options. If an option is *
* tound the corresponding subroutine 1is x
: called. i
034B Loop2
034B A680 lda X+
034D 847F anda ;$7F clear parity bit
034F 810D cmpa #S0D <CR>?
0351 2738 beq X1
0353 8120 cmpa #$20 control character?
0355 23F4 bls oop2 yes; loop
0357 812F cmpa ! start of a path name?
0359 iOZ?OOEO lbeq SkipPN Yes; Skig over the path name
* Translate lower to upper case if *
* necessary. *
K e e e *
035D 816 cmpa f'a
035F 2506 blo oop2l
0361 817A cmpa #'z
0363 2202 bhi oop2l
0365 8020 suba #52 lower to upper case
0367 . Loop2l)
: Analyse the parameter i
0367 8152 cmpa #'R reset?
0369 2724 beq Reset
036B 8143 cmpa #'C Correspondence quality?
036D 2734 beq Q
036F 8130 cmpa #'O Ten CPI
0371 2743 beq enCPI
0373 8132 cmpa '2 Twelve CPI
0375 2751 beq wlvCPI
0377 8135 cmpa #'5 Five CPI1?
0379 2760 beq iveCPI
037B 8136 cmpa '6 6 CP1
037D 276F beq ixCP1
037F 8137 cmpa '7 Seventeen CPI
0381 277E beg vntnCPI)
0383 8138 cmpa '8 Eight and a half CPI?
0385 10270088 lbeq EightCPI
0389 20C0 bra Loop2
038B Exit
038B 5F clrb) set B (return code) to O and t
038C 103F06 0S9 FSExit return to 0S-9
038F Reset
038F 3410 shs X
0391 308DFDD8 eax CCRst,PCR point at Reset control string
0395 17008F lbsr Commonl write it
0398 308DFDB5 leax MsgRst,PCR point at remark
039C 170094 1bsr Common write it
039F 3510 uls X
03A1 2048 ra Loop2 go search for next option
03A3 cQ
03A3 3410 shs X
03A5 308DFDB6 eax CCCQ,PCR
03A9 8D7C bsr Commonl
03AB 308DFD82 leax MsgCQ,PCR
03AF 170081 lbsr Common2
03B2 3510 uls X
03B4 2095 ra Loop2

0S-9 User Notes

Volume I

Microware 0S-9 Assembler 2.1 08/05/84 2%:8%:34 Page 002

POpt - Change Printer Setup Options for M

00074

COQOODOOO00D
QOO OODOO0O00O
Pk e ot et ond o et ot o et e ek
N b et b o e et et e ot et
OOVRINN D WNI-OC

ek seskok
* Printer Control Strings
015F 1B31 CCCQ fcb 15,"1 Set correspondence quality
0161 1EIF CC5CPI fcb 1E,$1F Five CPI
0163 1CI1F CC6CPI fcb 1C,S1F Six CPI
0165 1DIF CC8CPI fcb $1D,81F Eight CPI
0167 1E00 CCOCPI fecb S1E,OQ Ten CPI
0169 1C00 CC2CPI fcb 21C,0 Twelve CPI
016B 1DOO CC7CPI fcb 1D,0 Seventeen CPI
016D ... CCRst fcb $18,0 reset printer
Sed R srstsbsdedtst
i The Menu
016F 4E6F206D ErrMsgl fcc /No more than 127 bytes of parameters are
01A0 OD feb CSCR
01Al 492F4F20 ErrMsg2 fcc .1/0 error on printer path.
01BA 0D fcb CSCR
01BB 504F7074 Menul fcc /POEt accepts the following parameters:/
0lE1 OD feb CSC
01E2 2052202D Menu2 fce / R - Reset the printer/
01F8 0D feb CSCR .)
01F9 2043202D Menu3 fee / C - Correspondence quality print/
021A 0D fcb CSCR
021B 2035202D Menuk fce / 5 - Print at five characters per inch/
0241 0D fcb CSCR))
0242 2036202D Menu5 fcc / 6 - Print at six characters per inch/
0267 0D fcb CSCR
0268 2038202D Menubé fcc / 8 - Print at eight and a half character
0294 0D fcb CSCR
0298 2030202D Menu7 fcc / 0 - Print at ten characters per inch/
02C0 0D feb CSCR
02C1 2032202D Menu8 fece / 2 - Print at twelve characters per inch
02E9 0D fcb CSCR]
02EA 2037202D Menu9 fce / 7 - Print at seventeen characters per i
0315 0D fecb CSCR
0316 Entry
ok dede s s ook o
* X points to the start of the parameter area.
* Y points to the end of the parameter area.
* The last character in the parameter area is a <CR>.
i D contains the length of the parameter area.
0316 10830001 cmfd #1 Check length of parameter area
0314 10230137 lbls Menu if there 1s nothing there; Dis
031E 10830080 cmpd #128 It's hard to deal with paramet
0322 1024017E lbhs rrorl high; parameter area too long
| S, f—— — %
i Search parameters for output device overide®
0326 3436 pshs D,X,Y save everything
0328 Loopl
0328 A680 1da X+ .)
032A 847F anda #S7F clear parity bit
032C 810D cmpa {#50D <CR>?
032E 2713 beq ooplD
0330 812F cmpa #'/ start of path name?
0332 26F4 bne oogl
0334 301F leax -1, back up one to /
0336 N Loopll B
: Open alternate printer path :
0336 8602 lda {Write.
0338 103F84 0S9 I$Open
033B 1025014F lbes Error2
033F 9700 sta PrtPthN save the path number
0341 2006 bra LooplE

Column Five 31

Microware 0S-9 Assembler 2.1

: 08/05/84 23:06:39
POpt - Change Printer Setup Options for ML 93

00214 03B6 TenCPI

00215 03B6 3410 shs X

00216 03B8 308DFDAB eax CCOCPI,PCR

00217 03BC 8D69 bsr Commoni

00218 O3BE 308DFCF3 leax MsglOCPI,PCR

00219 03C2 8D6F bsr Common2

00220 03C4 3510 uls X

00221 0Q3C6 2083 ra Loop2

00222 03C8 TwivCPI

00223 (03C8 3410 shs X

00224 03Ca 308DFD9B eax (CC2CPI,PCR

00225 Q3CE 8D57 bsr Commoni

00226 03D0 308DFDOF leax Msgl2CPI,PCR

00227 03D4 8D5D bsr Common2

00228 03D6 3510 uls X

00229 03D8 16FF70) bra Loop2

00230 03DB FiveCPI

00231 03DB 3410 shs X

00232 03DD 308DFD80O eax CC5CPI,PCR

00233 0Q3El 8D44 bsr Commonl

00234 03E3 308DFC2E leax Msg5CPI,PCR

00235 03E7 8D4a bsr Common2

00236 03E9 3510 uls X

00237 OQ3EB 16FF5D . bra Loop2

00238 O3EE SixCPI

00239 O03EE 3410 shs X

00240 03F0 308DFD6F eax CC6CPI,PCR

00241 03F4 8D31 bsr Commoni

00242 0Q3F6 308DFC51 leax Msg6CPI,PCR

00243 03FA 8D37 bsr Common2

00244 03FC 3510 uls X

00245 O3FE 16FF4aA bra Loop2

00246 0401 SvntnCP1I

00247 0401 3410 shs X

00248 0403 308DFD64 eax CC7CPI,PCR

00249 0407 8DI1E bsr Common

00250 0409 308DFCFF leax Msgl7CPI,PCR

00251 040D 8D24 bsr Common2

00252 040F 3510 uls X

00253 0411 16FF37 . bra Loop2

00254 0414 EightCPI

00255 0414 3410 shs X

00256 0416 308DFD4B eax CC8CPI,PCR

00257 041A BDOB bsr Commonl

00258 041C 308DFC60 leax Msg8CPI,PCR

00259 0420 8Dl11 bsr Common2

00260 0422 3510 uls

00261 0424 16FF24 bra Loop2

00262 0427 Commonl

00263 0427 9600 lda PrtPthN Printer Path Number
00264 0429 108E0002 ld 2 length
00265 042D 103F8A 0S ISWrite

00266 0430 255C bes Error2 1/0 error on printer path
00267 0432 39 rts

00268 0433 Common2

00269 0433 8601 lda #StdOut output path for remarks
00270 0435 108E0050 ld #80 max length of strings
00271 0439 103F8C 0s ISWritLn

00272 043C 39 rts

00273 * ——— e *
00274 * Skip over alternate printer path name *
00275 * *
00276 043D SkipPN

00277 043D A680 lda X+

00278 043F 847F anda #S7F

00279 0441 810D cmpa #CSCR <CR>?
00280 0443 1027FF44 1beq x1it ves; done
00281 0447 8120 cmpa fCSSPAC <space>?
00282 0449 1027FEFE lbeq Loop2 end of path name
00283 044D 812C cmpa ﬁ',

00284 044F 1027FEF8 lbeq Loop2 end of path name
00285 0453 20E8 bra SkipPN

Column Five

Page 004

33

Microware 0S-9 Assembler 2.1 08/05/84 23:06:41 Page 005
POpt - Change Printer Setup Options for ML 93

00286 0455 Menu

00287 0455 308DFD62 leax Menul,PCR

00288 0459 8DD8 bsr Common2

00289 0458 308DFD83 leax Menu2,PCR

00290 045F 8DD2 bsr Common2

00291 0461 308DFD94 leax Menu3,PCR

00292 0465 8DCC bsr Common2

00293 0467 308DFDBO leax Menu4,PCR

00294 046B 8DC6 bsr Common2

00295 046D 308DFDD1 leax Menu5,PCR

00296 0471 8DCO bsr Common2

00297 0473 308DFDF1 leax Menu6,PCR

00298 0477 8DBA bsr Common2

00299 0479 308DFEIE leax Menu7,PCR

00300 047D 8DB4 bsr Common2

00301 047F 308DFE3E leax Menu8,PCR

00302 0483 8DAE bsr Common2

00303 0485 308DFE61 leax Menu9,PCR

00304 0489 8DAS8 bsr Common2

00305 048B 16FEFD lbra Exit .

00306 Rt -~ -

00307 * End with an error %

00308 e e e e e e e e e *

00309 048E Error2 equ * Error in printer path
00310 048E 3404 Yshs B save error code
00311 0490 108E0050 dy 280

00312 0494 308DFD0O9 leax rrMsg2,PCR

00313 0498 8602 lda 2

00314 049A 103F8C 0s9 ISWritLn

00315 049D 3504 Suls B recover error code
00316 049F 103FOF S9 FSPErr print error message
00317 0442 200F bra ErrXit

00318 04a4 Errorl equ * Parameter string too long
00319 04A4 108E0050 idy gSO

00320 04A8 308DFCC3 leax ErrMsgl,PCR

00321 04AC 8602 lda 2 Error output
90322 04AE 103F8C 089 SWritLn

00323 04B1 C601 . 1db {1 error code
00324 04B3 ErrXit

00325 04B3 43 coma set carry

00326 04B4 103F06 089 FSExit

00327 04B7 285030 EMOD

00328 04BA Pgmlen equ *

00000 error(s)

00000 warning(s)

S04BA 01210 program bytes generated
0100 00256 data bytes allocated
24F1 09457 bytes used for symbols

34 78-9 User Notes Volume I

COLUMN SIX

0S-9 by itself does very little useful
work. You won‘t find an editor, assembler,
compiler, spelling checker, or payroll sys-
tem anywhere on the standard distribution
disk. That isn’t to say that you can’t get
these programs for 0S-8, or even that some
of them aren’t sometimes packaged with the
operating system (Gimix packages Micro-
ware'’s editor, assembler, debugger,
Basic09, and RunB with every 0S-9 system),
but 0S-8 can be purchased with no frills,
and in that form it is essentially useless.

For an experienced microcomputer user
with lots of friends using 0S-9 and a near-
by store with a large stock of 0S-9 soft-
ware the task of choosing the right array
of software could be fun, but for me it was

frightening. The Jleast expensive software
I could find cost about fifty dollars a
crack, and it went up fast from there. I

dign‘’t know anyone running 0S-9, and,
though there were many computer stores in
Rochester, the only one which dealt in 6808
based machines believed strongly (nearly
exclusively) in TSC software. I gritted my
teeth and bought what looked good to me. I
was surprised to find that everything 1
bought was at least OK. In retrospect I
can see that it wasn‘t so very surprising
that 1 was lucky in my software purchases;
most of the software for 0S-8 is good.

with 0$-8 I got the Microware Editor,
Assembler, Debugger. and Pascal. I have no
special love for the Microware Debugger,
but I still use it because it is the only
game in town. It usually is packaged with
0s-8, and it is hard to get along without,
especially if you do assembly language pro-
gramming, but I hope Microware feels a
touch of humiliation each time they send
out a copy of that program -- it is not up
to the standard set by their other pro-
grams. The assembler is unexciting, but it
does the job. There are other assemblers
around, but the Microware assembler is the
standard.

The Microware Editor is hard to classi-
fy. It 1is the only non-screen-oriented
editor for 0S-9 that I know of. It works
fine as a simple editor, but it might be
more accurate to call it a simple string
processing language. The editor features
multiple work spaces, and a high powered
macro language which can be used to write
fairly sophisticated programs. The bad
side of all this sophistication is that it
is a little bit hard to use the editor for
simple things. 1 have never been able to
figure out how to copy a range of 1lines
without using a disk file as a temporary
holding place. I don‘’t use the Microware
Editor very frequently since I got a
screen-oriented editor, but 1 got a lot of
work done on it when it was the only editor
I had, and I still use it occasionally. 1
should add that some people think editors
like the Microware editor are better for
programming than the more word processing
oriented editors.

It is hard for me to be moderate in my
praise for Microware’s Pascal. 1 wish it
included a debugger, and the procedure for
linking to externa)l procedures is a bit
clumsy, but I love it. I use it to develop

programs for classes where the students use
DEC Pascal and IBM Pascal and have no com-
patibility problems. There are enough
enhancements to make this Pascal useful for
real applications (such as a PROMPT built-
in procedure which forces out the contents
of an output buffer without a carriage
return). The compiler generates intermedi-
ate code which can be executed by either of
two interpreters (one normal, and the other
supporting large programs by a paging
arrangement), or translated into efficient
native code.

Recently 1 got Basic09. You may have
guessed from my comments that I am getting
to like it even though it is called Basic.

I have DynaStar, Dynaform, and DynaS-
rell from Frank Hogg Labs. None of these
programs are excepticnal, but I use them
all regularly. DynaStar is a screen-
oriented editor with which I have typed and
revised many hundreds of pages. It is best
at editing documents, but usable for pro-
grams . I expect the reason the program is
called DynaStar is that it borrows heavily
from Wordstar. My mother uses Wordstar,
and I find that 1 can heip her untangle
some problems with Wordstar by assuming
that it is keystroke for keystroke identi-
cal with DynaStar. I have some small com-
plaints about DynaStar, but the bottom line
is that I like it well enough to have spent
hundreds of hours using it.

DynafForm is a text formatting/mail
merge program. It is full of fancy Mail-
Merge features that I never use. I use it
to print files with optional page headers
and trailers, underlining, and bold print-
ing. A few times 1 have used 1its ability
to0 generate indexes and a table of con-
tents. DynaForm doesn’t do well when com-
pared to the high powered text formatting
packages used on large computers, but I
don’'t think it is intended to compete with
that kind of thing. The thing about Dyna-
Form that annoys me most frequently is that
it can’‘t be customized to use the special
features of my printer. It prints bold
text by simply printing the bold characters
three times. DynaStar can be used to imbed
printer control characters in text, but
DynaForm only knows one way to print bold
or underlined text. 1 also wish it would
use the standard input and output paths
instead of allocating special paths.

DynaStar and DynaForm were written by
Allan Jost. They show signs of being writ-
ten by a programmer with a very profession-
al attitude. They are not loaded with fea-
tures but they are so reliable that I just
take them for granted.

DynaSpell is a spelling checker. 1
need a spelling checker very badly. Some
people buy computers to run a spreadsheet
program. I might have bought one to run a
spelling checker. DynaSpell essentiatlly
looks up each word in a document in a set
of dictionaries. Any words that it doesn’t
find are treated as questionable words.
These words can be fixed, saccepted as is,
or accepted and added to a dictionary.
DynaSpell isn’t as carefully written as the
programs by Allan Jost; there is nothing
major wrong, but the meticulous care isn’t
there. When DynaSpell runs out of space to
store words in, it spews out pages of

Column Six 35

‘overflow" messages. There 1is no way to
ciheck the contents of the directory when
DynaSpell is asking for the name of the
file to check. when you abort the program
(with a control C) in order to check the
directory again, DynaSpell leaves the ter-
minal‘s device descriptor in a strange
state. DynaSpell has most of the features
commonly found in spelling checkers for
microcomputers, but it doesn’t compare with
similar programs on larger machines. Maybe
a spelling checker 1is one of those tasks
which needs fast machines with large memo-
ries. I want a spelling checker which
helps me correct misspelled words by giving
me a tist of suggested spellings, and a
built. in thesaurus would be another nice
touch. Still, 1 use DynaSpell when it is
inconvenient to ship my files off the the
IBM to be checked. It isn’t a great pro-
gram, but it does its job.

1 reviewed DynaCalc a few months ago.
I stil1 like the program, and it is still
heavily used. I wouldn’t have chosen Dyna-
Calic as part of my core group of software
(I mostly program and write with my comput-
er) but I can imagine people who might not
need any other program.

NEW RELEASE OF MICROWARE PASCAL

1 just got release 2.0 of Microware’'s Pas-
cal. It is a major revision, including a
new intermediate code language, & single
general purpose I-code-to-native-code
transiator, and new run time support mod-
uies. 1 didn’t do any careful comparisons
of the two versions, but I get the strong
feeling that the new release compiles fast-
er, and runs faster. The new manual is
significantly better organized and more
complete than the old one, but still makes
no attempt to teach Pascal. Two new stan-
dard functions have been added: GETCHAR,
which returns a single character from
input, and IOREADY, which returns true if
there 1is input ready. These new functions
snould be useful for interactive applica-
tions 1ike editors.

0S-9 DIRECTORIES

A directory is a special type of file con-
taining information about files. It could
be seen as something l1ike a library’s card
file. It contains the names of files along
with information about them, especially
where they can be found. Unlike anything a
proper library would contain, the entries
in a directory aren’t kept in any particu-
larly useful order. You can get a format-
ted listing of the contents of a directory
with the DIR command.

0S-9, like UNIX and many other multi-
user operating systems, supports hierar-
chies of directories on disk. Directories
can be used for a number of things, or. if
you like, largely ignored. A directory can
contain any number of other directories in
adaition to norma! files.

Every disk has a root directory on it
which is created when the disk is format-
ted, and cannot be done away with. Uniess
you fuss around with INIT and SYSGO the

36 0S-9 User Notes Volume I

disk you boot off of must have a directory
called CMDS in its root directory. There
may also be a SYS, and a DEFS directory in
the root directory on the boot disk when
you install 0S-8.

You (the user) can create new directo-
ries with the MAKDIR command. To use the
command type MAKDIR followed by the name of
the new directory you want to create:

MAKDIR /D1/SOURCE.DIRECTORY

It has become a convention to use capitail
letters for directories’ names. 0s-9
doesn’t have any trouble with lower case
directory names, but it is an easy way of
reminding oneself which files are directo-
ries.

It is sometimes tricky to keep track of
a library of several hundred (maybe thou-
sand) files. Multiple directories are a
major help in organizing files in such a
way as to maximize the chance of finding
them again. Long ago I found that I
couldn’t fit all my files on one disk (that
was a 100K floppy back then). 1 put each
major project on .a separate disk. when 1
got disk drives with greater data capacity,
I found that it wasn’t an wunadulterated
good thing. Each disk contained so many
files that it was a major job to locate a
file even knowing which disk it was on. I
worked out naming conventions that made the
job easier, but they used up the first two
characters of each file name -- the result-
ing file names were pretty cryptic. I
still keep hundreds of files on each disk,
but my Jargest directory has about forty
files in it.

The root directory on a disk I have
labeled “pascali® contains nothing but sev-
en directories: DIST.SRC, UTIL.SRC,
SUBR.SRC, BUGS, DEFS, DOC, and PCODE. Each
of those directory names describes what 1
expect to find in them pretty well (to me
anyhow) . Each directory with programs in
it contains a directory caliled DDC which
contains related documentation,. If it
seems like I have large numbers of directo-
ries called DOC, it’s true. Pretty near
everything needs documentation. Somet imes
1 +ind that a directory begins to get out
of control. Projects that I expect to need
about ten files have a2 way of expanding to
forty or fifty files. A project 1ike that
really belongs in a directory of 1its own,
so I create a new directory in the directo-
ry that contains the files for the project,
and move all the files that are part of
that project into the new directory.

Any file can be accessed by giving its
full name, e.g.,
/D1/UTIL.SRC/DFIX/Compacter would denote
the file Compacter in the directory DFIX
which is in the directory UTIL.SRC in the
root directory on disk D1, but that’s more
typing than I would choose to do except as
an act of desperation. The most commonly
used shortcuts are the CHD, and CHX com-
mands. The CHD command changes the direc-
tory which is treated as the root directory
for data. CHX does the same thing for the
execution directory.

when 0S-9 is booted the data directory
is set to the root directory of the boot
disk, and the execution directory is set to

CMDS in the root directory on the boot
disk. If you want to use filtes in the root
directory on the boot disk, all you need to
do is give the file name, if you want to
use files in a directory which is in that
directory you give the name of the directo-
ry with the file name, e.g., to get at the
file 0S8Defs in DEFS in the data directory
use DEFS/0SSDefs. If the default data
directory isn’t convenient for you, a new
directory can be selected with the CHD com-
mand, for example, to change the data
directory to the root directory on /D1 use
CHD /D1. The CHX command works the same
way CHD does, but it effects the execution
directory.

There are two special entries in every
directory. The "." entry points to the
directory itself, and the *.." entry
points to the directory the current direc-
tory is in, the parent directory. A typi-
cal use of the ".." entry is to refer to
sibling directories. when a project gets
large,r I break it up into a set of directo-
ries, all in a directory which I set aside
for the project. 1f a2 program needs access
to the file HexDefs in the directory DEFS
which is a sibling of the directory SRC
(where the program is), 1 can use the
shorthand name "../DEFS/HexDefs" for the
file. I have found this a good convention
to stay with. As long as I continue to
keep related families of files in directo-
ries that are siblings, the notation
v, ./DEFS" will always get me to the appro-
priate DEFS directory, and "../DOC" will
always refer to the related Documentation
directory.

To experiment with directories, start
with a disk with some empty space on it,
and use CHD to set the data directory to
the root directory. Build some directoe-
ries:

MAKDIR TESTDI1
MAKDIR TESTD2
MAKDIR TESTD3

Make things a little more complicated:

CHD TESTD2
MAKDIR TESTD21
MAKDIR TESTD22
MAKDIR TESTD23
CHD TESTD21
MAKDIR TESTD211
MAKDIR TESTD212
MAKDIR TESTD213
CHD ../TESTD22
MARDIR TESTD221
MAKDIR TESTD222
CHD ../TESTD23
MAKDIR TESTD231
MAKDIR TESTD232

Now we're back at the root directory. The
DIR command should show the files that were
in the directory before you started this
experiment plus the directories TESTDt,
TESTD2, and TESTD3. DIR TESTD1 will show
an empty directory. DIk TESTD2 wili show
the directories TESTD21, TESTD22, and
TESTD23.
show the contents of the directory TESTD23:

The following commands will all’

DIR TESTD2/TESTD23

DIR ./TESTD2/TESTD23

CHD TESTD2 ; DIR TESTD23
CHD TESTD2/TESTD23; DIR

The first two command lines leave the data
directory at the root directory. The third
command line moves the data directory to
TESTD2, and the fourth command 1line moves
the data directory all the way out to
TESTD23.

It is easy to create new directories,
but a 1ittle involved to delete a directo-
ry. Perhaps it 1is a good thing that it
reguires more than one quick operation to
remove a directory. If a directory with
files in it is erased, all the files in the
removed directory will remain on the disk,
but 0S-8 won’‘t be able to 1locate them.
ODlder versions of 0S-9 don‘t have any com-
mand which will delete a directory. To do
away with a directory with these older ver-
sions: delete all the files (and directo-
ries) in the directory, use the ATTR com-
mand to change the directory into a normal
file (ATTR <dirname> -d), and delete the
file that used to be the directory. Be
particularly careful not to use ATTR to
change the directory into a regular file
until the directory is empty. There is no
easy way to change the file back into a
directory so you can delete the files in
it. wWith the new release of 0S-8, the com-
mand DELDIR can be used to delete directo-
ries. DELDIR simply automates the steps I
just went through.

Directories are an important feature of
UNIX-1ike operating systems. They allow
files to be grouped in manageable clusters,
and make it easier to handle many concur-
rent users.

I am preparing to eat some of the words
I set down in my first column. I am look-
ing forward to this with a good deal of
pleasure -- they were critical words. Some
people have gone to a fair amount of effort
10 convince me that I was wrong. If things
go well 1’11 hold the word eating ceremony
next month.

Column Six 37

3 0S-9 User Notes Volume I

STANDARD TERMINAL SUPPORT
FOR 0S-9

ODne of the first programs I wrote for a
micro played "Life." The game starts with a
given pattern, and, by repeatedly applying
a set of rules, generates and displays new
patterns. If the patterns are displayed
properly on a CRT, the changing figures on
the screen can be fascinating. (Note: Life
was invented by John Horton Conway, anc has
pbeen extensively discussed in Scientific
American and BYTE.) I wanted my program to
be usable with most terminals; so after
investing a few days in the program, 1
spent another few weeks trying to make it
"device independent." I never reallty fin-
ished. It was an uncommonly fast game,
but, since 1 couldn’t generalize the termi-
nal control, no-one without a H19 will ever
pe able to enjoy it.

Many micros avoid this problem by not
using a terminal (e.g.. the Color Comput-
er), but people, like me, who program com-
puters without &a built-in screen must
either use only those control codes common
to all terminals (1ike carriage return, and
line feed), or expend a lot of effort writ-
ing special code to handle different termi-
nals.

Full screen editors are the prime exam-
ple of a type of program that must have
control of some of the features of the ter-
minal, but many other high quality programs
support some of the features that most ter-
minals share. Every program with general-
ized terminal support must be configured
for the terminal (or terminals) it is sup-
posed to work with as part of the installa-
tion of the program.

Some programs use a special module
which contains terminal-specific code for a
few crucial functions. It is simple to
install a program that uses this kinda of
terminal control provided that the neces-
sary module 1is provided. If a suitable
module for your terminal is not available,
a new one must be written in assembly lan-
guage . -

Another approach to generalized termi-
nal control is to use a configuration pro-
gram to ask questions about the terminal
peing used and store the information in
tables which enable a single terminal con-
trol moduie to drive any reasonable type of
terminatl.

It is sad to see so much effort used
solving the same problem over and over. It
is so hard to write a program so it can be
adjusted for use with any terminal that
even some commercial programs don’'t do it,
For small programs it can take more work to
implement terminal support than to write
the rest of the program. Frank Hogg Labs
seems to have developed a standard for ter-
minal control, the GOTOXY module. Once the
module 1is installed for one program, it
need not be done again except for a new
type of terminal. If every software dis-
triputor would standardize on GOTOXY, it
would make l1ife a lot easier for program-
mers and purchasers of software. Frank
Hogg tells me the GOTOXY modules are not
proprietary, so this is an alternative =«-
UCSD Pasca) makes do with no more. Unfor-

tunately, GOTOXY is hard to call from some
languages, and supports a terribly limited
set of operations.

I would 1l1ike to propose a standard
interface for CRT terminals. It would be
much easier for Microware +to build the
standard control system than for me to do
it, but it Jooks like the job is mine. 1
will kick the problems I find around for a
month or so. Please help me with this. If
I have to devise a standard in a vacuum, it
may not please enough people to be widely
used.

Any standard is a compromise. The most
important goal is to make it easy for any

programmer to use the interface. This
ruies out all the language-specific inter-
faces. The other two important goals are

that all the currently existing programs
with (or without) terminal control moduies
must continue to operate without modifica“
tion, and that the interface should provide
the most sophisticated terminal control
possible.

Since many languages can’t use
GETSTAT/SETSTAT, or other exotic ways of
doing 1/0, 1 believe the standard terminal
control module should either be a callable
module like GOTOXY, or some form of filter.
The callable module would be more effi-
cient; but different languages call subrou-
tines differently, and it would be sad to
forsake the built-in 1/0 facilities of a
language in order to route all terminal 1/0
through a single mcdule. There are several
places a module could be placed in the ter-
minal I/0 path where it could act as a fil-
ter isolating terminal specific control
strings on the terminal side of the filter,
and standard strings on the program side.
I don‘’t believe that the difference in
efficiency between the filter and the sub-
routine method of terminal control is altl
that great. The filter method seems toO be
the best approach to the terminal-
independent program problem.

The filter method reguires that all
programs act as if they are being used with
some standard terminal. That terminal
could be imaginary, but with so many dif-
ferent terminals available why invent
another. Two terminals seem 1like attrac-
tive choices: the VT52 and the VT100. The
VT100 is especiaily attractive because it
implements the ANSII standard. It would be
nice to go with the accepted standard, and
I think 1 will finally decide to use a sub-
set of the ANSII standard -- a subset
because 1 don’t relish the idea of trying
to emulate all those flashy features on a
dumb CRT. The worst disadvantage of the
ANSII standard protocol is that its cursor
control sequences will be hard to generate
in assembly language programs. The row and
column have to be in ASCII characters. It
hurts me to think of a programmer being
forced to include binary-to-ASCII conver-
sion code in his program just so the termi-
nal control module can convert the numbers
back to kinary. The V752 is representative
of most moderately intelligent terminals.
It certainly includes every function I
would want to incliude in the subset of the
ANSI] standard 1 plan to implement. 1In the
short run the VT52 is a better choice than
the VT100; it could be emuiated more effi-
ciently, and would be just as useful as any
practical subset of the ANSII standard.

Staadard Terminal Support for 0S-9 39

$ti¥1, I believe that in the 1long run
:ghering to the most widely accepted stan-
~ard is the best policy. 1 am looking for
a gooo excuse to use the VT52 as the stan-
card, but haven’t found a good enough one
vet.

The choice of the subset is another
tricky decision. The minimum useful subset
is either the direct cursor positioning
command, or the set of cursor up, down,
left, and right commands. Actually. home
cursor is adequate for most purposes, but
it takes a substantial amount of work to
program for a terminal that is that dumb.
There are many powerful commands that make
it easier to program for a terminal, and,
more important, cut down the number of
characters that need to be sent to the ter-
minal to accomplish some operation. If
fewer characters need to be sent to (say)
clear the screen, then the screen will
clear faster and the number of interrupts
the computer will need to service will be
decreased. However, the more fancy termi-
nal control commands are 1included in the
standard, the larger the terminal control
moduie will get.

There 18 no reason the filter +trick
can’t be applied to terminal input as well
as output. For some of the less powerful
terminals it will be necessary to pass all
input through the filter it order to know
where the cursor is; however, all terminals
will benefit from filtered input. An input
filter will permit standard program func-
tion keys, arrow keys, the clear screen
key, and perhaps some other special keys to

4.0. 0S-9 User Notes Volume I

be defined.

The following is a 1ist of terminal
control strings in descending order of
likelihood to be in the subset:

. Direct cursor positioning

. Clear to end of line

. PFkeys/Clear Key/Arrow Keys

. Alternate cursor (block/
underscore)/normal cursor

. Highlight on/off (either reverse video
or intensify)

. 25th (or other special) line support

The following are significantly harder:

. Save cursor position/return to saved
position

. Insert/delete line

. Delete character

. Enter/leave insert character mode

I will consult everyomne 1 can think of
about this, and hope the people I don’t
think of will write or call me with their
thoughts. After a month or two’s thought,
I will try to write the coce to support the
standard for at least one terminal. I
would appreciate any help or advice I can
get.

COLUMN SEVEN

Last month I promised that I would eat
some words this month. In the first column
I wrote for 68 Micro Journal, 1 said that 1
was sorry hno ohe was using more than 64K
for a single program under 0S-8, and I made
the point rather strongly that 680%-based
computers should not be shared.

Several months ago David Brown asked me
to look at his version of MUMPS for the
6809 . Strictly speaking, since MUMPS
doesn’t run under 0S-9, it is out of my
area, but it is intriguing. The version of
MUMPS David Brown sent me uses a fairly
sophisticated virtual memory scheme, and is
not effected by 64K boundaries. Since it
doesn’t run under 0S-9, I still challenge
someone to be the first with a program that
uses more than 64K at once under 0$-9, but
since Dave Brown’s work is impressive, 1
gave it a mixed but generally nice review.

My mother is the secretary of the
school board back in the town where I grew
up. She has given me a very interesting
pipeline into the workings of a municipal
school system. Recently there has been a
1ot of fuss about computers at school.
Pre-college schools have to make a number
of difficult decisions in the process of
integrating computers in the educational
process. Even the choice of the best com-
puter is complicated for them by the scar-
city of good software for their purposes
(and their uncertainty concerning what
software they need), and by the worst kind
of financial problems. when 1 heard that
my home town was going to commit itself to
a gagglie of microcomputers running Basic, 1
felt motivated to research the subject with
an eye toward talking them out of Basic.
The 0S-9 users’ group’s bulletin board is
often a good source of information, and in
this case it was surprisingly useful; it
turns out that many 05-S8 users are involved
in education. Once started on the idea
that 05-9 might be a good solution for some
of a schools system’s problems, I rubbed
some figures together and came to some con-
clusions that shouldn’t have surprised me.

It is clear that financial considera-
tions are crucially important to all the
school! systems I know of. One micro can be
inexpensive enough to fit into a budget,
but one Apple is not very useful for teach-
ing a class of thirty. I figure that a
high school computer l1ab should be set up
to teach Pascal, word processing, the use
of a spread sheet, and the use of computers
in the sciences. 1 know from experience
that students can be lab partners and work
as a team of two without too much trouble,
but three or more students working together
will have problems. Figuring thirty stu-
dents in a class, the l1ab will need fifteen

stations. The minimum configuration I can
put together is fifteen micros, each
including:

. A spread sheet -- $100.00

. Pascal -- $200.00

. wordstar type editor -- $300.00

. Operating system -- $100.00

. One 5.25" floppy drive and contrciler
-- $600.00

. A printer -- $250.00

. A monitor -- $200.00

. The micro -~ $500.00

A1l those prices are rough, but reflect the
cheap alternative, not the guality that
students deserve. Each micro will come to
$2250.00 (though 1 doubt that they could
actually be put together for that littie).
Fifteen of them cost $33750.00. That’s
serjous money, and it only buys a minimal
system for each lab team.

If a large 0S-9 system could handle
fifteen students, it would be possible to
purchase a top of the l1ime CPU with a hard
disk, a floppy disk, fifteen serial ports
(intelligent), a half meg of memory, and
top of the 1ine software, for about
$14,000.00. Ffifteen very nice terminals
would cost $9000.00 bringing the cost of
the system to $23,000.00. Two thousand dol-
lars will buy a very nice printer, bringing
the total cost to about $25,000.

I have talked to several people who run
many users on a Gimix-IIl system. If half
of what the Gimix-III users say is true, it
would be reasonable to have eight or ten
students sharing a machine. If all that
they say is true, it might be possible to
hook thirty students to one CPU and expect
them toc run at a reasonable speed. I now
have a second terminal on my level two sys-
tem. 1 can say from my own experience that
my system can handie two users with very
few signs of being loaded down.

Based on what I know about my system,
and what I have beer able to find out about
Gimix-1I1I, I think a2 Gimix-III system with
at least 256K of memory would be able to
handle four to six users with a level of
service that I would find acceptable. Giv-
en a choice of a toy computer with bargain
basement software, and the bare minimum of
peripherals, or a fifteenth of a fully con-
figured Gimix~II1 system; 1 would pick the
piece of a large system like a flash.

I confess to being an 1ivory tower
idealist. I want people to like computers,
so I flinch at the idea of giving out slic-
es of computer so small that there is not
enough power to allow software to be
friendly. That means that I think a indi-
vidual deserves at least a level two system
with lots of memory. Realistically, most
hobbyists can’t afford to commit that much
money to their computer; businesses need a
much stronger argument than friendly rela-
tionships between staff and computers; and
schools simply have to choose the Jleast
expensive way to do things most of the
time. I maintain that I am philosophically
opposed to sharing micros, but i{if I am
forced to consider the alternatives, I am
strongly in favor of sharing a computer --
provided it is the right computer.

Column Seven 41

A LETTER

The assembler program which was 1nclud-
ed with the letter, and which I will

Don Williams sent me a letter from Bengt- include here, is an interesting extension
Allan Bergvall whc sent along an interest- on the program called "StrtTask" which 1
ing program that amounts to a special sort gave a few months ago. If we were using
of shell for Basic0S programs. It gives me real UNIX we would solve the problem of
encouragement in my plan to write a passing parameters to BASIC0OS programs by
enhanced shell, but is useful as it stands. modifying the shell; ParamMod is a sort of
His letter follows this column. . special purpose mini-shell which runs

BASICO® programs.

LETTER FROM BENGT-ALLAN BERGVALL

Microware's BASICO9 1is an excellent interpreter, easy to use for producing your
own utilities. Unfortunately, it is lacking a straightforward method of passing
arameters. For example, if you are going to write a "Help" utility, you want to
ype

0S9:help dir

to learn about the dir command. This is impossible if Help is a BASIC09 program.
If Help is a packed BASIC09 program, interpreted by RunB, you can type

0S9:help

only, and let the program ask you what help you want. If you don't have RunB,
you have to type

0S9:basic09 #5k help

However, even if Microware doesn't tell you, you can also pass parameters in RunB
or BASICO9 by using the syntax

0S9:help ("dir'") or 089:basic09 #5k help("dir")

and using the PARAM statement in the Help program. This is OK if you will use

the program rarely, but if the program will be used often, and perhaps not by
yourselt, this is a very clumsy syntax.

The desired syntax can of course be accomplished by writing Help in another
language that permits the desired parameter syntax, i.e. in assembler. This is
probably the wrong way for a user utility pro§ram. To solve the problem, I have
written a short 'universal" program in assembler, called ParamMod, with the fol-
lowing characteristics:

. ParamMod allows the desired parameter syntax.

o ParamMod transforms the parameter list from the desired syntax to the syntax
required by BASIC09 or RunB. The resulting parameters are all of the type

STRING. To be used as numeric types, the strings have to be transformed
using the VAL function.

. ParamMod forks to either BASIC09 or RunB, and the main program is written in
BASICO9.
. ParamMod has to duplicated and customized on three text strings and needed

BASICO9 memory for each utility:
- innam

The wanted utility name. In the given case, Help. Other utilities could
be names Compare or Analyze.

- Outname

The name of the file that contains the BASICQ9 procedure and performs
the desired action. It could be named Help B or /D0/COM/Compare B or
AnalyzeBody.interprt. - -

- interprt

The name of the BASICO9 interpreter to be forked to. Either BASIC09 if
outname is a saved procedure or RunB if it is a packed procedure.

- Memory

The total number of bytes needed for the procedures and their data are-
as.

42 0S-9 User Notes Volume 1

_In the followinﬁ, we are assuming you are writing a Help utility. For other
utilities, change the names accordingly.

First customize ParamMod's three text strings and BASIC09 estimated memory
size with‘your text editor. Then assemble it with Microware's assembler, using
the command:

0S9:asm ParamMod o=Help #10k
and the resulting code for Help will be in your execution directory.

Then write your BASICO9 program, naming the outermost procedure Help B. You
must save or pack Help B to run it through Help. RUN it from within BASICU9 with
the command (including parameter):

B:Shelp dir

You may also during the development phase run the program without Help. In that
case you must use BASIC09 parameter syntax:

B:run help b("dir'")

Included is the assembly listing for ParamMod, customized for a Help utility and
a dummy Help B program.

Bengt Allan Bergvall

Blavingev,

§-561 49 Huskvarna

Sweden

Column Seven 43

PARAMMOD

* Program written by Bengt-Allan Bergvall, Blavingev. 1,
s-561 49 Huskvarna, sweden.

Program to reformat a parameter list from an easily
tyged form to the clumsier form required when running a
BASIC09 program.

Given the command

¥ 0S9:help paraml param2 param4 (note the extra space)
* This program will fork to the RunB or BASIC09 program

* Help B as if given the equivalent command:

* 0S9:"BASICO9 §5k Help B("paraml","param2","","param4")

This program is general and can reformat the resulting
parameter list up to 256 characters, but the name
strings inname and outname has to be changed for each
* implementation.

¥ if interprt is runB, then outname has to be a packed
* BASICO9 program in the execution directory.

If interprt is BASICO9 then outname has to be a saved

* BASICO9 proigam either in the present data directory or
% in another file with outname giving the full path name,
e.g., /DO/COM/Help B .

* The memory needed by BASICO9 or RunB must also be
iven.
ngm arameter list modifier

ttl for BASICO9 or RunB

1f
usg /DO/DEFS/defslist
endc (use os9defs))
mod pgend, inname,prgrm+objct,reent+1
fdb pgstart,stack
* data variables
parend5 rmb 2 output parameter limit -5
outpar rmb 256
varend equ .
stck rmb 200 stack area
stack equ , stack pointer
FFT T AR KK ek KR F kS ko ke kdk ok sk

*% Customization area

inname fc¢s .Helf. Name of utilit¥

o%t%a%e fcs .Help_ B. Name of BASICO9 procedure
c

interprt fcs .BASICO9. Either BASICO09 or runB

* Total memory needed in b{tes by BASIC09 or RunB

* process: (eauivalent to the needed BASIC09 MEM value)
memory equ 5000

** End customization
ootk e ke bl ek ek Yk bk sk sk ke kskor

pgstart

* Modify parameter list from free form into BASICQ9

* string form. Example of free form: paraml param? paramé
: Resul%xnﬁ BASICO9 string form:

Help_B("paraml","paramZ","","param4")
* prepare limit check for parameter list, allow for
ending last parenthesis.
leay varend-5,U
sty parend5
* copy outname into output parameter list
shs X
eay outpar,U
leax outname,PCR
namechar lda ,X+
beq nameend
sta ,Yt+
bra namechar
nameend puls X input parameter list

*

X append modified input parameter list to output

parameter list
Ida #'(
sta ,Y+

44 0S-9 User Notes Volume I

archar lda ,X+)

* check the resulting parameter list not too long
cmpy parend5

blo parOK

comb set carrg

1db #56 BASIC09 parameter error

0S9 FSExit

parOK cm%a #520 space?
beq nextpar .
cmpa #S0D carriage return ends parameter list
beq lastpar
sta ,Y+
bra parchar
* reformat next parameter
nextpar lda #'"
sta ,Yt
lda #',
sta ,Y+
1da J#l"
sta ,Y+
bra parchar
* list.end
lastpar lda #'"
sta ,Y+
lda #)
sta ,Y+ .
lda #S0D carriage return
sta ,Y+

fork to intergrt (RUnB or BASICO09)
leax interprt,PCR
1dy #5100 allow one page parameters
leau outpar,U
lda f%rgrm+ob

$

¥

jct
1db # memory+§55)/256 data area
089 FSFork
bes ut
0S9 FSWait
bes vt
clrb no error
ut 0S9 FSExit
emod
pgend equ *
end

HELP B

PROCEDURE Help B

REM Du@m{ Help—utilit¥
REM prinis the ﬁarame er
PAR text :STRING

PRINT text

BYE \REM bye needed to give automatic return to 05-9 when run by Basic09

Column Seven

45

& 0S-9 User Notes Volume I

COLUMN EIGHT

THE 0S-9 USER SEMINAR

On August 12 the 0S-9 User Seminar opened
rather siowly as 1 and a few other people
stood in line in front of the exhibit hal)l
on the third floor of the Des Moines Mar-
riott. wWe watched as various Microware
staff struggled to get a Radio Shack com-
puter (running 0S-8 of course) interfaced
with a television. when I got into the
hall, 1 was surprised at the number of
exhibitors. I have always thought of the
05-8 community as about the size of a large

family -- there were 24 booths listed 1in
the exhibitor guide. I had a ball wander-
ing through the hall, meeting people I have

only known through phone conversations, and
seeing some exciting hardware.

Several of the exhibitors were showing
machines that used 0S~9 as a process con-
trol environment. One booth sported a rack
of equipment that would have been more at
home next to an assembly line.

Smoke Signal broadcasting had a video
tape rig showing a movie of a military-
looking man. I remember a bugle _gnd a lot
of strutting up and down, but I just can’t
remember what he was talking about; I think
he was promoting the TMP package. Smoke
Signal had a compact SS50 based machine
that I have never seen before.

There were a couple of Japanese engi-
neers demonstrating Fujitsu FM-7 and FM-11
computers. Very well done. I wish they
were available in this country. A particu-
larly nice feature of the software on the
Fujitsu machines was split-screen support.
I saw them editing on one part of the
screen while two other sections displayed
moving graphics ... all running at the same
time.

Tano was showing a Dragon computer,

imported (1 believe) from England. The
Dragon is a small, inexpensive computer
with color graphics and 05-8 Level One. I

only saw it playing games, but it does that
pretty weil.

Privac was showing the graphics board
that I have been coveting for months now.
It looks even better in reality than it
appears in an advertisement. There was a
program running almost continuously that
demonstrated the board. Figures and char-
acters would appear, disappear, rotate, and
float across the screen. I had always won-
dered how well the Privac board was sup-
ported under 0S-9; it turns out that 0S$S-9
is the operating system they use. The demo
program was written in Basic0S.

Wires from the Gimix booth seemed to
spread all over the hall. The 05-9 User
Group, JBM Group, and Frank Hogg Labs atl)
were borrowing computer services from
Gimix. Perhaps to demonstrate the tireless
ability of GMX-Il] to spew characters out
on many terminals, unused terminals were
kept busy listing strange programs. when-
ever I walked by, one of the terminals at
the FHL booth was listing a COBOL program.
At the Gimix booth I met the engineer
responsible for my hardware (who is also

the president and the service manager of
Gimix). He thinks Gimix hardware should
move in about the same direction I want it
to go. If things go well, there should be
some terrific new hardware coming out some-
time in the indefinite future.

The JBM Group is hard for me to charac-
terize. They had some wutilities that
sounded good except that they were written
at least partly in Basic09. The thing that
upset and fascinated me was that they have
a sort which they claim runs very fast.
They claim to have compared their sort to a
standard disk-based merge sort, and come
out significantly better. Either the algor-
ithm used by the program they compared
theirs to was not the best available in the
literature, or their claim may have to be
placed in the same class as perpetual
motion machines. The man who invented
their sorting algorithm wasn’t there for me
to ask about the details of his method, and
I had no way to check their figures, so I
will continue to view their sort with skep-
ticism; however, even if it 1is only an
average sort, its manual documents a2 fine
general sorting program of a type which is
much needed by serious 0S-8 users. They had
several other packages inciuding a set of
BasicO9 subroutines for ISAM file handling
that sounded much less exotic, but inter-
esting.

There were, of course, many exhibitors
I haven’t mentioned (for example Micro-
ware’s own booth), but I don‘t intend to
make this column into a walking tour of the
exhibit hall.

Friday there was plenty of time to look
around. Saturday and Sunday were so busy
there was barely time to eat. Microware
filled most of the weekend with classes,
presentations, and “roundtabies" ranging
from 0S-8 and Basic08 Features, which cov-
ered things 1ike the Basic0S8 editor, to the
0S-8 Roundtable, which gave us a chance to
interrogate the parents of 0S-8 about its
workings. In the evenings a few of the
exhibitors ran "hospitality suites" which
gave some of us an excuse to stay up late
and talk about our computers.

Saturday night there was a meeting of
the 0S-9 User Group. The User Group is
having some troubles which seem to stem
mostly from having only a few members
spread over a wide geographical area. we
elected officers for the next year: Dale
Puckett (President), myself (Vice Presi-
dent), Goerge Dorner (Treasurer), and Tom
Murphy (Secretary). we are respectively
responsibie for the Software Exchange Com-
mittee, the Membership Committee, the Com-
munications Committee, and the By Laws Com-
mittee.

Monday those of us who were still left
around went off to Microware’s offices. I
had a chance to discuss some of the diffi-
culties I am having with 0S-9 and C with
the appropriate people, and discovered that
those programmers are serijously crowded.
They desperately need to make the move to a
larger facility that they have been plan-
ning.

Column Eight 47

SHELL COMMANDS

"he shell is a program that interprets com-
‘and 1ines and does what 1is called for.
“"nme full UNIX shell 1is a programming lan-
guage in itself. The 0$-9 shelil is only a
subset of the UNIX shell, but it has enough
flexibility to be useful. The first thing
to learn about the shell is how to use the
built-in shell commands. The chd, chx, ex,
kill, w, and setpr commands are built into
the shell. The shell commands are used to
control the envaironment of the programs
that are run by the shell.

1 use the chd command, which i{s the
command which changes the working data
directory, more than any other shell com-
mand. The working data directory is the
directory which will be used for most files
you read or write without specifying a
directory in the file name. It is usually
much better to change the working directory
than to explicitly include directories in
file names so 1 frequently change directo-
ries as 1 change from one task to another.
It is a rare day when I use the chx com-
mand, the command which changes the working
execution directory, even once. 1 imagine
that someone with & smailer system disk
than mine would use the chx command much
more freguently than 1 do because 05-8
remembers where the working directories are
on disk, and needs to be reset with chd and
chx commands when a cisk 18 changed. If
you forget to change directories when you
change di1sks, 05S-9 will give you a nasty
message next time you try to use the direc-
tory. I have never gotten into trouble by
forgetting, but it is not wise to trust an
operating system too far.

The ex command should be classed as an
advanced command. It replaces the shell
with another program. Replacing the shell
is certainly a good thing to be able to do,
especially for users with smaller systems,
put it can have disconcerting results --
mainly that when the program ends, the
shell won’‘t be there.

The rest of the shell commands are pri-
marily useful for those who run programs
concurrently. You can instruct the shell
to start a program running, then give you
another shell prompt by putting an & after
the command on the command line:

089: dir >/p&

would list the files in the data directory
on the printer while you run other pro-
grams.

If you run programs concurrently, the
kill, setpr, and w commands will be useful.
The kill command should be used about the
way you use the quit control key (usually
<CNTL>Q or <CNTL>E). The quit key only
works on the last program to do I/0 to the
terminal, the kill command works on any
program. The setpr command is used to con-
trol the way the computer’s resources are
divided up. The higher the priority of a
program, the larger a share of the computer
it will get, and the faster it will run. A
program’'s (or, more properly, process’s)
priority can be anywhere in the range 1 to

255. The w command causes the shell to
wait for a child process to finish. That
means that the shell won’t prompt for

ancther command until a program that was

48 08-9 User Notes Volume I

started by it terminates. The main use of
this command is to recover from the mistake
of running a program that does 1/0 to the
terminal {in background. The usefulness of
the w command can be appreciated by trying
the following experiment:

089: dir x&

Now try to get some useful work done
when you are disgusted with the screwy

behavior of your terminal, type w at the
0SS prompt:
0S9: w

There 1is one particularly nice feature
of the shell which is, so far as I know,

undocumented. If you run a program 1like
the assembler with its output directed
somewhere other than the terminal, then

decide that you would like to run another
program at the same time, 'you can cut the
assembly 1loose from the shell with the
interrupt control key (usually <CNTL>C).
The interrupt control key will usually ter-
minate the program which most recently did
1/0 to the terminal, but, if the program in
control of the terminal (the assempbler in
this case) doesn’t do any 1/0 to the termi-
nal at all, it won’t kill it. Instead, the
shell sees the interrupt. and converts the
program 1in control of the terminal to a
concurrent program.

A LOGICAL DEVICE DRIVER

This column 1is an experiment with a new
format. There is a demand for information
for new 0S-9 users, but I have also heard
requests for more advanced discussions. In
this column I am tryinpg to include some-
thing for everyone. What follows may be of
general interest. but, for an inexperienced
computer user, it may be heavy going.

Several months back I started a project
whose objective was to find a2 way to give
0S-9 a terminal-independent way to control
CRTs. I have a special device driver which
does just what is called for, but it is
built around Microware’s ACIA source. I
may be able to get permission from Micro-
ware to publish the modified driver, but I
would rather not have the terminal mapping
tied that closely to the computer’'s 1/0
port. Not every computer uses an ACIA chip
for its serial interface, and my special
dariver only works with ACIA serial inter-
face chips. what is needed is a virtual,
or logical, device that can insulate the
terminal mapping code from the physical
interface.

The idea of a logical device driver has
many applications beyond a terminal-
independent interface. At the User Seminar
I spent some time talking to the engineers
from the Fujitsu booth. They wanted my
opinion - of a proposal to make logical
devices a part of 0S-9 in order to allow
the system drive to have a consistent name
regardless of the type of hardware being
used. This would make it easier to write
programs that referenced fijes on the sys-
tem drive. A logical device can certainly
do this. It would be possible to set up a
logical disk with some obvious name 1like
SYS, and have it know the name of the phys-

ical drive being used as the system drive:
DO, HO, or whatever.

The iaea can be extended even further.
There is no compelling reason why the log-
ical device should refer to exactly one
physical drive. The 1logical device could
refer to several physical devices or just a
part of one.

Some possible uses of the concept are:

. A disk drive with associated cache
storage.
. A neat, and fairly easy way to support

spiit screen terminal displays with
each section of the screen treated as
a separate terminal.

. A gateway to a network.

. A way to associate a printer with a
terminal for screen dumps.

. A terminal-independent interface.

The device driver 1 have included with
the column is a logical SCF device driver
for 2 Level Two system. A RBF driver, or a
driver for Level One would be somewhat dif-
ferent, but only the details would need to
be changed. The driver, which 1 named
VCIA, doesn’t do anything at all except
waste time. It is a skeleton for something
interesting to be built on.

Starting from the top, let’s go through
the interesting parts of the program. A
logical driver must Jlook just like a real
driver to the system, so it must have the
type Drivr+Objct, and it must have a byte
after the normal module header reflecting
the modes in which the driver can be used.
This one says it is good for update, it
might be a good idea to add execution. The
storage required by a device driver is
called the device static storage, it is
allocated, and partly initialized by the
file manager, in this case SCF. The file
manager uses the first section of the
device static storage, the storage reserved
for it with the "org V.SCF."

Performance is crucial at this level.
Every character read from or written to the
terminal will pass through this module s©O
even a small improvement in efficiency is
good. Normal! good coding practice is still
important, but the priorities shift some-
what. SCF will branch to entry, entry+3,
entry+6 depending on what service it
wants. The normal convention 1is to put a
list of 1lbra instructions here, but a bra
instruction is a little faster, so 1 used
them and padded them to three bytes each
with nops (which are never executed in this
context).

The INIT call must find the physical
device driver and set up the proper envi-
ronment for it. The physical driver, which
I calt P.D., is found and mapped into the
address space with a F$SLINK caltl. This is
a bit tricky. in Level Two, the moduie is
linked into the address space belonging to
the process doing the 1link. The device
driver uses the process number of the pro-
cess that opened 1it, but it runs in the
system address space. I had to fool the
operating system into thinking I was run-

ning under the system process number by
playing with the pointers in the system
direct page. If this were Level One, 1
think I could have simply used a F$SLink
call without all the fussing around.

The real device driver is going to need
its own device static storage, sc the log-
ical device driver plays SCF for a moment
and gets the amount of storage P.D. needs.
I use the Level Two system memory request,
Level One users can probably use the Leve!
One analog. The address of the memory must
be saved for future calls, and I save the
size for convenience.

One never knows when SCF will change
its part of the static storage, so before
each call information from VCIA’s static
storage must be copied to P.D.’s static
storage, and after each call information
must be copied back from P.D.‘s static
storage, to VCIA’‘s.

The INIT call, and each other call,
basically changes from VCIA‘s static stor-
age to P.D.’s - and calls the appropriate
entry in P.D. *

The TERM entry is responsible for
cleaning up as the device is closed. After
calling P.D. to allow it to close down the
physical device., it frees the device static
memory that INIT allocated for P.D., and
unlinks P.D. It is worth noting that TERM
is the mirror image of INIT.

The device descriptor I use for VCIA is
called VTERM. Since SCF thinks VTERM is a
rea)l device, its device descriptor is
important. Even the address of the port
that VTERM uses is important. If you keep
things as simple as 1 did, the logical
device driver will map everything including
the information from the device descriptor
directly to the physical device driver,
but, 1if you want to support something 1ike
split screen, you will have to give each
logical terminal a different port address,
or SCF will know they all are referring to
the same device, and get in the way.

Fortunately this virtual driver works
with GIMIX I/0 processors. This is pure
tuck because GIMIX doesn’t publish enough
information about their driver for me to
design an interface for it. Let’s consider
this a gentle push for Richard Don at Gimix
to release more information about his pro-
prietary software.

It should be possible to move a good
deal less data back and forth between
VCIA’s and P.D.’s static storage than I do,
but I played it safe in spite of the large
cost. It would be good to try to find some
fields that don’t need moving so time could
be saved by not moving them.

This module demonstrates that, although
0S-8 Leve! One is compatible with Level Two
for user programs, it is not compatible for
system modules. This shouldn‘t be a sur-
prise, but it is something to be cautious
akout. In many cases all that needs to be
changed is an entry in a definitions file,
but if you try to run VCIA as it stands in
2 Level One system, the best you can hope
for is that it will give an error code and
quit.

Column Eight 49

Debugging code in system state 1is nog
something 1 will do if I have a choice.
The debugger won’t work on modules that
need to run in system state, and debugging
code that writes out helpful messages as a
program runs doesn’t make sense in a device
driver module. If the driver doesn’t work
what do you write to? I debugged this mod-
ule by using its return code. If you have
VCIA set carry before it returns to SCF,
the program that is trying to use it will
get the value that was in the B accumulator
when VCIA returned to SCF. This a slow way
to learn things, but it works.

One final point: it is expensive, but
otherwise impeccable technigque to pilie log-
1cal device on logical device. VCIA has no
way of knowing whether the device it
pelieves controls the physical device is
real or logical.

Microware is said to have an "Over the
top" debugger that can be used to debug
system software. The only person I know
that has Jlooked into it says it doesn’t
wome with version 1.2 of 0S-8. It seems
Michaware now uses debugging hardware.

50 XS-9 User Notes Volume I

VCIA DEVICE DRIVER

nam vcia)
L ttl Virtual (logical) device driver

P B R

T e s et e i it i e e R P . e e e 7 S S S S S S Y St e e S D e G S B e B 4 *
* This module should be used as a SCF (Sequential %
* Character File) device driver. It doesn't *
* drive any specific device, but, rather, calls *
* a physical device driver, such as ACIA, to *
* deal with the physical device. *
* Possible uses:) *
* Mapping various terminals to a standard ¥
* * Imp gment1n§ windows. *
* * Linking a PIA and an ACIA to provide *
: switchable printing of terminal output i
As it stands this module is a dummy. It passes *

all calls through with minimum interference. :

The INIT call must set up the environment for *

the device driver before passing the call on. t

k2

Read, write, getstat, and setstat can Yrobably *

get away with less than they do, but all *
variables are magped between control blocks *

to ensure that this module is transparent. :

The TERM call must release memory allocated for *

* the physical driver before returning. *

*

<

IFP1 use /DO/DEFS/defslist
E;BC/HO/DEFS/defslist

Type set Drivr+0Objct
Revs set ReEnt+l .

MOD Vcialen,Name,Type,Revs,Entry,MemSize

fcb Updat. Driver can be used for updated (read + write)
Name fcs /VCIA/

fcb 1 edition number

PDNam fcs /ACIA/
ook e e K K

*

* Device static storage for this virtual driver

org V.SCF room for SCF variables
PDModH rmb 2 Pointer to Physical Driver's Header
PDModE rmb 2 Pointer to Physical Driver's Entry
PDModM rmb 2 Pointer to Physical Driver's Static Memory
PDModMS rmb 2 amount of memory allocated for PD static mem
MemSize equ .

spc. 2
N3 - F ——
* Block of entry points

bra Init
nop pad out each entry to three bytes
bra Read

P .
bra Write
brg GetStat

brg PutStat
no
lbra Term

[
*gg***********

Init finds the driver it will use a gh¥sica1 device driver,
and allocates and initiallizes its static storage
Passed: .

U Points to static storage

Y Points to device descriptor

st % N N N

e ek ok

* adjust process number to system process
: so the link will be into the system address spare.

ldd D.Proc
pshs D save A

Column Eight 51

1dd D.SysPrc

std D.Proc

lda #T Ee driver module tyE

leax PDNam,PCR point X at the name of the P Driver
0S89 F$L1nk

puls D restore old process number

std D.Proc

lbcs Errorl

1dx 2,S§ pX address of device static store to x
stu PDModH save P.D.'s Module Header address

sty PDModE,X save P.D.'s Entry address

ldd MgMem ,U memory requirement of P Driver
0S9. F SRqum request system Memory

lbcs Errorl

std PDModMS,X save amount of memory allocated
stu PDModM, X save pointer to memory

S sk s s K ok e e

* At this po1nt ?o1nts at vcia's static storage
* U points to P.D.'s static storage

"

1db #V.SCF length to move
SR BV RE

* Move the entire set gart of the device static storage
I into P.D.'s static store.

LMoveE
decb
bmi XMove
lda B,X
sta B,U
bra LMoveE go around loop again

XMove
Euls Y but leave U in the stack
Fdede Rk sisesede et

* U points to P.D.'s static storage
* Y points to the device descriptor

ldx PDModE,X
jsr DSInit,X do P D init

tfr U,X
puls U
*B****E*
* now X points at PD static store

* U points at vcia static store
ki3

*

bsr MapIln

puls B,PC return to SCF
spc

SCF needs to see any changes the hysical device
driver makes to V.Paus, (or V 5

* X points at P.D. static storage

U points at vcia static storage.

MapIn
ldb V.Paus,X
stb V.Paus, U
1db V.Err,X
stb V.Err,U
rts
spc 2

Read
1db #DSRead
bra Common

sgc

GetStat
1db #D$GSta
bra Common
spc 2

PutStat
1db #DSPSta
bra Common
spc

Write

52 0S-9 User Notes Volume I

ldb #DSWrit
«SPC e e e e
* Code used by all entries except INIT
: Passed B -- offset from P.D's entry point for this op.
Common

shs D,U

% o %

%

%
’\-

T

- ———— ——— . s o - (e e o o S o S o T o o e " - o = e o o

The physical device driver needs to have

V.LPRC, and V.BUSY copied to it each time it is

called.

At this point U points at vcia static storage.

X points at P.D static storage.

V.LPRC,U
V.LPRC.X
V.LPRC+2,U
V.LPRC+2,X
V.LPRC+4,U Line
V.LPRC+4,X
V.LPRC+6.,U Dev2
V.LPRC+6.X
V.LPRC+8,U Intr
V.LPRC+8,X
V.LPRC+10,U PChr
V.LPRC+10.X
V.LPRC+12.U XOn
X.LPRC+12,X

The P.D, requires Y, and A to be as they were
when vcia was called. A and Y haven't been
been disturbed. .

U must point to P.D.'s static storage.

When Common was called,

B pointed to the offset from P.D.'s entry point

that we should jump to.

l1dx
ldu

PDModE, U
PDModM,U

puls D recover offset in P.D. and A from stack

Jsr
thr

o
U,X point X at PD static storage

puls U recover pointer to veia static
shs B save return code

sr

MapIn (X points to PD statie, U points to veia static)

puls B,PC return to SCF

spc 2

spc 2

erm

1db ﬁDSTerm

bsr Common call PD

pshs CC,B,U CC and error # from P.D.
tfr U,X .

ldu PDModM,X address of PD static storage
ldd PDModMS,X size of memory

0S9 FSSRtMem return memory

bes Error2

1du PDModH,X address of module header
o3 3% ve 3 3 3k e 3¢

: adjust process descriptor to system process

ldd

D.Proc

gshs D save D

dd
std

089

D.SysPrc
D.Proc

1
FSUnLink unlink PD

puls D recover old process descriptor

std
bcs

D.Proc and restore it in place
Error2

spc 1

puls CC,B,U,PC return to SCF
spc 2

Errorl

puls Y,U

rts

o 4

Column Eight

53

Error2
leas 2,S clear CC and B off stack
puls U,PC return to SCF
spe 2
EROD

Vcialen equ

use vterm
END

*

. QS-9 User Notes Volume I

COLUMN NINE

PROTECTION

As 1 was working away,
problem of choosing a
month’s column, I deleted a bunch of files
by mistake. Worse, I didn‘’t notice that I
had done myself in until minutes later
too late to get the files back. This event
made the choice of a subject for this month
substantially easier. The first topic for
this month is file security.

distracted by the
topic for this

Users on 0S-92 are known by a number.
If you use DS-9 as it came off the distri-
bution disk you will be the only user and

have tne user number 0. User O is special:
UNIX users would call him the superuser.
The superuser has special privileges that
enable him to circumvent the protection of
files. A1l other wusers, and, to some
extent the superuser, are separated from
disk files by 0S-9's file protection
scheme.

If you use the DIR command with the
option:

0S9: DIR E

ngn

you will get a l1ist of the files
current working directory with a
information about each file as
in Figure 2.

in your
lot of
iltlustrated

directory of . 19:50:32
Owner Last modified attributes sector bytecount name
1 83/05/10 2234 ===-—- wr co 4141 Columné
1 83/09/11 2351 ~s-~r-wr AF 45BD Column8
1 83/06/11 1630 -------r B4 6081 Column5
0 83/09/14 2036 d-ewrewr BD 3E0 PROGRAMS
1 83/08/28 1614 ~—--r-wr 245 8E9 Dictionry
Figure 2: Output of DIR Command
The information in this display that from coming about. whoever gets to the
relates to a file’s protection are its own- file first has exclusive access to it unti)
er and attributes. A1l the files in this he closes it. If several users want to
directory, except ,the file (a directory read a file at the same time there is usu-
file) called PROGRAMS, belong to user num- ally no reason not to let them do so, prob-

ber 1. The type of protection given to a
file depends on the contents of the attri-
butes field.

The first position in the attributes
field 1is for the directory attribute.
Directory files have several special char-
acteristics, the one relating to protection
is that they can‘t be deleted with the DEL
command.

The second position
field is the shareable attribute. If there
is an "s" 1in this position, the file can
only be accessed by one process at a time.

in the attribute

The next six positions in the attribute
field are two groups of three attributes
each: public execute, write and read, and
private execute write and read. If a pub-
lic attribute is on (indicated by a letter
instead of dash in that position) then any
user can do that ciass of operations. If a
private attribute is on, the owner of the
file can do that class of operation.

The file called Columnd has typical
protection. User {, who is the owner of
the file, can read or write it, and nobody

else can do anything to
that it is there.

it except observe

Column8 is protected such that any user
can read the file, but only user 1 can
write to it. It also has the non-shareable-

attribute which protects it against being
accessed by more than one user at a time.
The non-shareable attribute prevents things.

from getting confusing when user 1 is-
updating the file and some other user is:
reading it, by preventing that situation:

lems start to appear when a user wants to
write to the file while other access it,
and things get really sticky if several
users want to update the file at the same
time. The non-shareable attribute is most
important when several users want write to
a file concurrently.

The protection of columnS demonstrates
one of the more useful applications of file
protection in a single user system. It is
impossible for anyone, even the owner of
the file, to write to it without first
changing its attributes. Since the class
of operations controlled by write protec-
tion includes writing, renaming, and delet-
ing, & file which is write protected can‘t
be deleted by mistake. If I had write pro-
tected my files I wouldn’t have been able
to delete them without thinking about it.

It would appear to be impossible to
ever delete a write protected file, but the
owner of the file can use the attr command
to change the attributes. The procedure
for deleting a write protected file is: use
the attr command to remove the write pro-
tection:

0S9: attr column5 w

Then delete the file with the norma?l
command.

del

None of the data files in this directo-
ry have the execute attribute. They are
all text files and manifestly not executa-

ble. 0S-8 will only 1oad a file for execu-
tion if it has the executable attribute.
The separation of the execute attribute

from the read attribute makes it possible

Column Nine 55

to create an execute-only file. It would
ne difficult for someone to copy, dump, or
disassemble an execute-only file. The

execute-only attribute is a wuseful trick
for protecting proprietary software.

Echo Press carriage return to
Echo Press carriage return to
Echo Press carriage return to
TSMON /ITl&
TSMON /IT2&
TSMON /TERM

Figure 3: Sample Startup file

initiate logon >/TERM
initiate logon >/IT1
initiate logon >/IT2

A particularly sneaky problem is relat-
ed to the execute attribute. Merging exe-
cutable files together to form a file with
all the modules used by some program, or to
allow a set of popular utilities to be
loaded compactly under Level Two, will cre-
ate a file which doesn’t have the execute
attribute. 0S-8 won’t let you execute or
load the resulting file. It gives an error
214, "NO PERMISSION.*" The fix for this
problem is to use the ATTR command to give
the file the executable attribute.

If you don’t intend to have more than
one user On your computer there is no rea-
son for you to worry about user numbers.
1f you want to share your computer with

other people -- either taking turns using
the computer or using 0S-8 as a muliti-user
operating system -- it 1is a good idea to

have a separate user number for each person
who uses the computer. The best way to set
your user number is to start the TSMON pro-
cess in the startup file. The last line in
the startup file should be something like:

TSMON /TERM

TSMON will just sit there until you type a
carriage return. This may give you the
mpression that something is wrong with the
zomputer unless you are ready for this
~tolid lack of activity. To comfort myself
I include the tine:

ECHO Press carriage return to

initiate logon>/TERM

before the TSMON command 1in the startup
file. It leaves directions on the screen
after I boot the system. If you are lucky
enough to own a system large enough to sup-
port three terminals, the sequence of com-
mands in Figure 3 should be included in the
startup file to get everything going. It
is imoortant to start the last TSMON as a
foreground task (no &).

The main business of TSMON is done by
the LOGIN command. The LOGIN command uses
files called password and motd which must
be in the SYS directory on the same disk
the default data directory is on (normally
/DO). The password file includes the user-
name, user-number, and, optionally, a pass-
word for each user authorized to use the
computer. It also includes a lot of infor-
mation used to set up the environment for
each user. The full contents of each line
in the password file are:

3 User Name
. Password
. User Number

56 0S-9 User Notes Volume 1

. Initial priority

. Initial execution directory {(usually
)

. Initial data directory (usually .)

. Initial program to execute (usually
“shell")

The login command prompts for a user-name,
and, if that user has a password in the
password file, for a password. If the
user-name isn‘t in the password file, or
the password isn’t correct, LOGIN announces
the mistake and prompts for user name
again.

The 1login command protects each user
number from unauthorized use by insisting
on getting a good user-name/password match
before letting someone use a user-number.
Many different users can share a user- num-
ber, allowing them to share files in a
group. but each user-name can only be asso-
ciated with one user number.

If you find a need to change your user
number in the middle of & session with your
computer you may be able do it with the
LOGIN command. The LOGIN command can only
be used if your default data directory is
on the same disk the password file is on.
The LOGIN command needs to read the pass-
word file. If you protect the password
file against public read to keep everyone
from browsing through the passwords, nobody
but the superuser can use the LOGIN com-
mand.

The motd file contains the "message of
the day."” 1If there is any text in motd it
will be displayed on the screen each time
anyone logs on. It can be used to display
a general greeting, or to give system sta-
tus information of general interest; e.g.,
“We are running a new release of Pascal
today . "

Some tricks can be done with the "ini-
tial program" in the password file. It is
possible to specify not only the initial
program, but also a parameter string for
it. This opens up extensive possibilities.
Most operating systems allow a user to have
the commands in a file (sometimes called a
user profile or a login command file) exe-
cuted every time he logs on. If you are
willing to accept some 1limiations, the
initial command can be used to do much more
than start a shell for you when you log on.

The simplest possible entry in the
password file might go something like:

myname,,3,100,.,.,shell

which would set up a user called myname.
Myname would have a wusernumber of 3, and
would be started with a priority of 100.
His data and execution directories would be
standard -- for most systems /DO and
/DO/CMDS. Whenever myname logs in a shell
will be stared for him.

A somewhat more demanding user can make
the password file do much more for him. If
the 1ine in Figure 4 is inserted in the
password file, it sets up a user with a
password of xyzzy, gives him non-standard
data and execution directories, and runs
FREE and MFREE for him before leaving him
running a shell.

Figure 4:

Password File Entry

hisname, xyzzy,2,150,/D0O/HISDIR, /DO/BASICX,shell free;mfreejex shell

- The important thing is that the sequence of
commands the user wants executed must start
with the name of the program that will
interpret the rest of the line. If that
program is the shell, the last command in
that shell’'s parameter string must be an ex
for whatever command you want to start the
user with.

If you want to start a user with a par-
ticulariy long script of commands, perhaps
enough commands to hoid him for an entire

session, use a shell command file. The
trick is to have the 1initial command be
"shell" with a file name as the parameter.

If the file 1isn’t 1in +the default data
directory its full path-name must be speci-
fied. A sample password file entry might
go like:

hername,wltrs,5,130,.,.,
shell her.cmd.file ; ex shell

In this case the file "her.cmd.file" must
be in the systenr default data directory.
The command file invoked at login is just
like any other shell command file. The
important restriction to remember is that
the shell command file is run by a differ-
ent shell from the one that the user will
be using when the command file is finished.
If you change the directories in the com-
mand file, those changes will effect only
the shell running the commands, not the
shell that will be running after the com-
mand file is done.

THE "SUSPEND STATE"

Microware has added a nifty performance
enhancement to the latest version of 0S-8.
They discovered that device drivers were
spending a significant amount of time using
the F$SEND service request (SR) to communi-
cate between the interrupt service routine
for the port and the rest of the device
driver. In order to understand why the
send was done you need some background in
the way the 0S-9 SCF device drivers work.
The simplest way to write a device driver
is to read and write to the port directly
from the read and write entries of the
driver, but this requires that the driver
go into a wait loop while the interface
chip is performing the operation. A wait
ioop isn‘t a bad thing if the processor has
nothing to do until the 1/0 is complete,
but, in an environment like 0S-S, there are
likely to be several tasks waiting to get
done. The “right" way to write a device
driver under 05-8 is to have the actual 1/0
done by an interrupt service routine, and
have the read and write entries of the
device driver share queues with the inter-

rupt routine.

A character to be written goes to the
write entry of the device driver which puts
the character into the write queue if there
is space for it, or goes to sleep if there
isn‘t. The interface chip should be set to
generate an finterrupt whenever it is ready
to write another character. The interrupt
service routine will be started every time
an interrupt is received from the port it
is responsible for. If the interrupt was
an output interrupt, thé interrupt service
routine will take a character out of the
output queue and send it to the port. If
the device driver is sleeping, waiting for
an empty slot in the queue to appear, the
interrupt service routine should send it a
wakeup signat.

The procedure for reading a character
is roughly the reverse of that for writing.
The queue for input goes from the interrupt
routine to the read entry and the device
driver sleeps if a read is done when the
queue is empty.

A1l this sending from the interrupt
service routine to the driver is expensive.
A new system state called the "“Suspend
State” was invented to keep device drivers
from having to use F$SEND requests to start
and stop its read and write operations.
The "suspend state" is a lot like a light
nap. The process 1is in the grey area
between sleep and activity. Suspended pro-
cesses remain in the active process queue
where they quickly age to the top of the
gueue, but while the suspend bit is on in
their process descriptor they can’t be
scheduled. To wake a suspended process up
just turn the suspend bit off in its pro-
cess descriptor. The folliowing code would
wake a suspended process from the interrupt
routine of a driver:

ldx (Address of Frocess
descriptor for the process
ou want to awaken)
lda #&55-Suspend
anda PSState,X
sta PSState,X

This sequence of instructions can be done a
great deal faster than a F$SEND.

A process can suspend itself by turning
the suspend bit in its process descriptor
on, then sleeping for a tick. The sieep 15
just a way of giving up the rest of the
time slice. Even without the F$Sleep, next
time the dispatcher sees the suspended pro-
cess descriptor it will treat it as sus-
pended, and won’t start it again until the
suspend bit is turned off.

Column Nine 57

There are & few important limitations
to the suspend state. The first is that a
process can’t get out of suspend state on
its own. The second limitation is that the
suspend bit is 1in the process descriptor
which is the in the system address space.
A non-system process has no easy way of

58 Q%9 User Notes Volume I

directly modifying the process descriptor.
The 1last limitation 1is implicit in the
advantage of suspend state, suspended pro-
cesses stay in the active process queue.
They will slow the dispatcher down slightly
because it will have to pass over them each
time it looks for the next process to run.

COLUMN TEN

MORE ABOUT COMPUTERS AT SCHOOL

I had my first chance to 1look through a
microscope when I was very young. My sis-
ter was deeply ingrossed in the microscopic
world so I, being a typical younger broth-
er, hung around and made a pest of myself

until she showed me what she was working
on. I couldr’t see anything but a blur
which sometimes faded out altogether. I

didn’t see much point in looking at a blur.
As years went by I was given my own micro-
scope, but chemistry sets, and my own
experiments, were much more interesting. b
still had trouble getting interested in
blurs.

In ninth grade 1 encountered a real
microscope for the first time. It was a
fine old instrument. The teacher treated
it with- great respect, and insisted that we
do the same. when I first used it 1 got a
surprise that stays with me to this day.
It was nothing l1ike the microscopes 1 had
used before, focusing it with the fine
adjustment knob was no problem, and when
something was in focus, even a singie cell
or a bacterium, it was very clear. 1 could
have happily spent weeks peering through
the eyepiece at everything I could fit on
the stage. Eventually the class moved on
1o other things, but I had a new apprecia-
tion for the world of the very smaill.

It is unfair to blame my parents for
not getting me a high quality microscope
when I was eight, but it bothers me to
think of what I missed. I was fascinated
by what the microscope revealed when I was
a teenager. The effect would have been
even stronger if I had been younger.

My experience with the microscope 1is
what makes me keep compliaining about the
tendency of schools to use the lowest qgual-
ity hardware and software they can find.
The younger the students, the lower the
quality. The argument is that sophisticat-
ed hardware and software isn’t needed for
any but the most advanced students. This
is a serious error. wWith computers "fool-
proof" means either trivial, or very
sophisticated. It requires good hardware,
and excellent software to deal satisfacto-
rily with the worst a child can do. The
kids at most schools are getting the same
kind of experience with computers I got
with my eariy microscope only a blurry
image of what it should be.

The section of a column I wrote a few
months ago about computers for schools has
drawn more comment than any other column I
have written, maybe more than 211 of them
put together. Some people wrote to agree,
others disagreed. 1 was glad to hear from
those who agreed with me, but I was most
interested in the letters from people who
took issue with one or more of my points.
Two of my points drew particularly heavy
criticism. I calculated the price of an
imaginary (but realistic) single-user com-
puter. Several peopie thought an adequate
computer could be purchased for less than 1
suggested. I also spent some time wishing
schools would stop using Basic. It didn’'t
surprise me that several readers felt Basic
was a fine language.

The l1ittle story about the microscope
was intended to address the question: "why
bother to provide decent computers at
school?" Students should be given a chance
to use a computer that they don’t have to
struggle with, and a language that encour-
ages clear thinking. Kids don’t know
enough to complain about Basic on the
Cheapest computer that can be found. I do,
so I am complaining for them.

There were about five more paragraphs
here about Basic, and the evils of skimping
on computers for children,. but while re-
reading the clumn I .decided that I -sounded
a bit shrill: = Please forgive the abrupt
transition, but the smooth conciusion of

this argument has been pruned with a2 quick
block-delete.

PIPES

One of the most useful features of 05-9
(and UNIX) 1is the pipe. Pipes by them-
selves aren’t good for much, but if you
build a good set of “software tools," pipes
make many tasks surprisingly easy.

A pipe is a special device which forms
a connection between two programs such that
the output from one is directed into the
input of the other. The shell is a major
user of pipes. You can ask the shell to
connect the standard output of one program
to the standard input of anocther by putting
an exclamation point "!" petween the com-
mands . The "!" separates commands 1ike the
";" and "8&" do, but it also redirects the
output of the command before it into the
input of the command after i{t. You could
get the same effect by using intermediate
files (Have the first command save its out-
put into a disk file. Wwhen the first com-
mand ends, run the second command with its
input coming from the file the first com-
mand wrote.), but intermediate files are
neither as fast nor as easy to use as
pipes.

when you first start using 0S-9, pipes
won’t be of much use to you. For one thing
they are a bit confusing, but, more impor-
tant, the standard 0S-8 utilities don‘t
include many filters,

A filter is a program which reads from
the standard input fiie and writes to the
standard output file until end of file on
standard input. They can be used without
pipes, but, in combination with pipes, a
good toolbox of filters can be among the
most usefu?l facilities available under
0s~9.

The most elementary filter would simply
copy bytes from standard input to standard
output. More advanced filters change data
on 1ts way through. Some common filters
sort the data, break it into words, remove
duplicate 1lines, count bytes, words, and
Tines, and translate upper case letters to
lower case.

It is relatively easy to write specia}
filters to solve problems one at a time.

The trick is to write filters which, in
combination with others, can do 1ots of
useful things. I have a filter which 1

Column Ten 59

call "words" (available from the 05-8 Users
sroup, but too long for this column) which
oreaks the input up into one word per line.
I wrote another program which counts the
number of <CR>s in the input and writes
that number out when the end of the input
is reached. I can hook those two programs
together with a pipe to form a command 1ine
that counts the words in a file:

0S9: words <columnlO ! linect

That command 1ine feeds columni0 into words
which slices it up, one word per line. The
output of words is fed into the standard
input of linect which responds by giving me
the number of 1ines in its input -- the
number of words in columnioO. I can use
linect by itself to find the number of
lines in a file.

I have written other filters called
sort and unig. Sort sorts the standard
input into the output. Unig removes dupli-
cate lines; for example:

Line One
Junk Line
Junk Line
Junk Line
Another line

would come out of Uniq

Line One
Junk Line
Another line

The commapa line:
0S9: words <coll0 ! sort ! unig

would break columniO into words, sort the
list, remove duplicate lines, and give me a
sorted 1ist of the words I used in that
column.

Since 1 have written a number of pro-
grams in assembler and Basic09 for this
column, I thought I might 1include a few
filters written in Pasca?l this month.
“nfortunately old releases of 0S-9 had a
“law in PIPEMAN which prevented it from
“orking with Pascal programs. Pascal
“ewinds its standard input file when it
ztarts. PIPEMAN wouldn’t put up with a
“ewind with the upshot that filters written
‘n Pascal couldn’t even get started. The
easiest language I know for writing filters
is C, but since C isn‘t as widely used as
assembier and Basic08, 1’11 include two
filters, BwWord in Basic08, and CharCt in
assembier.

Both Bword and LineCt are crude pro-
grams. They are nowhere near as efficient
as they can be. In particular, reading one
character at a time is intensely bad prac-
tice under 0S-8S. Both of these programs
could be generalized by using command
parameters more extensively.

CharCt counts the number of occurrences
of the first character in the command 1ine
parameter area in the standard inpu* file.
It could be generalized to look for c-arac-
ter strings, or regular expressioms. It
might alsoc be improved by using more than
three bytes for the counter.

The shell always places at least z car-

60 0S-9 User Notes Volume I

riage return in the parameter area passed
to 2 program it starts (FORKs). CharcCt
relies on this to give it an easy way to
default to counting carriage returns in its
input. If you want to count some other
character use it as a parameter on the com-
mand line:

0S9: charct . <testfile
would count periods in testfile.

089: charct <testfile
would count carriage returns in testfile.

BWord splits the input file into 1ines,
one word per line. A word is defined as a
string of characters between spaces, tabs,
or carriage returns. It would be more gen-
erally useful if it would define a word as
a string of characters delimited by any
given set of characters. One use of this
that comes to mind is to divide a file into
sentences by breaking it at each period.

BWords should be entered with Basic09,
and packed. If you have RUNB you can run
words with a command line 1ike:

0S9: words <testfile

which will divide the text in testfile into
words. If you don‘t have RUNB you might
need to use a somewhat longer command)ine:

0S9: basic09 words <testfile

It is easy to spend a great deal of
effort writing filters you will never use.
What is needed is a2 set of general purpose
tools. There are several sources for good
ideas for filters. Books about UNIX often
give descriptions of filters which are com-
monly used under UNIX. In general, i{f a
concept is useful for UNIX it will also be
for 0S-9. The standard programming book,
Software Tools, by Kernighan and Plauger,

is an especially good source for ideas and
algorithms.

A MORE ADVANCED APPROACH TO
PIPES

The Shell uses pipes to connect strings of
its children together. Any program that
has access to 0S-8 system calls can use the
same trick the shell uses to make the stan-
dard output of one of its children feecd
directly into the standard input of
another, but it is simpler to use pipes as
a connection between & process and its
parent. If you need a formatted l1ist of
processes (the information given by the
procs command) you can either mess with the
process descriptors yourself, or use a pipe
to intercept the output from procs.

If your algorithm can be divided into
severa)l sections that communicate in only
one direction (Say, one section collects
information, the second sorts it, and the
third formats a report.), the job can easi-
ly be done by three separate processes dis-
patched from the command 1line with the
shell managing the pipes. If the steps
aren‘t fixed (Perhaps you either report or
update a file depending on the date.), it
might be easier to deal with the pipes

yourself. This type of thing reguires
pipes to be defined for each new process’s
standard input path.

Using a pipe as the standard output
path from a child process is useful for
more than intercepting the output from sys-
tem wutilities. The first experiments to
try with this mechanism are with system
utilities, but the most interesting appli-
cations are with processes designed espe-
cially for this use. An example might be a
program which uses a process attached via a
pipe to get data from a remote computer.
The process at the end of the pipe would
dial the remote computer up, go through the
logon formalities, and deal with any commu-
nication protoceols. The main process would
just read distilled information from the
pipe.

A1l three standard paths can be used
for pipes. I haven’t thought of a use for
all three paths, but a combination of input
and output paths is useful. The child pro-
cess is given work to do through its stan-
dard input path and returns the results of
its work through its standard, or error,
output path. The parent process gives the
child work through one pipe and at an
appropriate time (maybe much later) gets
the results by reading from a different
pipe.

A FORKed process inherits the three
standard paths of 1its parent. If it were
OK to give up after setting up pipes, the
way to set them up would be to close the
standard files, and create three pipes, one
each for path one, two and three. The
instructions to open a pipe in the standard
input path would be:

Pipe fcs '"/PIPE"

lda #0 std in
0S9 ISCLOSE
leax Pipe,PCR
lda jJUPDATE.
0S9 ISOPEN

New paths always take the lowest available
path number so the pipe would fall into
path zero. A process forked from this pro-
cess would inherit its standard paths
including the pipe in path zero. The new
process would treat its path O as a normal
standard input path. Characters written
into the pipe by the parent would be read
by the child.

If a pipe is opened with no process
FORKed to use it, the pipe will act tike a
queue. A process can write a limited num-

ber of bytes into the pipe and read them
out again in the same order they were writ-
ten. If there isn’t room in the queue for
the data from a write to be stored the pro-
cess doing the write will be put to sleep
until there 1is space to complete the write.
1f the process that reads from the pipe is
the same one that is sleeping until the
queue empties a 1ittle there is a deadlock.
A deadliock can only be avoided, or broken
by some outside agency the human at the
terminal for instance. Because of this
deadiock problem, and the small size of the
queue in the pipe, the idea of using a pipe
as a queue is only a novelty.

The example of communications via pipes
that 1 have invented is a BasicO8 program

that prompts for pairs of coordinates, and
passes the pairs to a C program which
"rasterizes" the lines between the points
defined by the coordinates. The BasicO8
program passes as many pairs as it likes to
the C program, then closes the path it has
been writing the data to. when the parent
closes his end of the pipe the child will
get an end-of-file. The C program sends
the rasterized data back through its stan-
dard output path. This data consists of a
string of 2zeros and ones indicating where
dots should be placed on each horizontal
Tine in order to draw the vectors received
as input.

Rasterizing vector graphics information
is & particularly good application for a
separate process. In a2 Level Two system
each process can use an entire address
space of almost 64K. The size and resolu-
tion of the graph that is produced depends
on the amount of memory available for the
bit map of the graph. 1 have a version of
rast that uses 46K for its bit map and can
generate an 8"X8" graph on my Okidata at 72
dots per inch. I am not very experienced
with graphics; there is probably a much
better way to rasterize data than what 1
used. My program seems too complicated for
such a simple task, but it works.

It is particularly

important to keep

track of interactions between two processes
communicating via pipes. If the processes
ever get into a situation where both are

waiting for input from a pipe leading to
the other process, they will be stuck until
you free them by killing one of the pro-
cesses.

The important part of this system of
programs is an assembly language subroutine
for the BasicOS program. The subroutine is
descended from the StrtTask subroutine I
published months ago, but has been enhanced
tc open pipes to the new process. The
I$DUP call is used to preserve the standard
input and output files of the BasicO9 pro-
gram while paths zeroc and one are turned

into paths then back 1into whatever they
were before.

Installation

This system of programs is written in three

separate languages. If you don’t have C it
should be fairly easy to translate rast
into Basic08, but if you rewrite rast in
Basic0O9 be certain that you don’t try to
fork it directly. Basic08 shouid be the
program you fork; rast should be the param-
eter. If you want to keep the old StrtTask
around, rename either it or the new one.
Grapher should be typed into BasicO8 and
saved. Particularly if you are using Leve!
One, you should pack Grapher and use RunB
to save memory. In Summary:

. Enter StrtTask and rast.c using an
editor

J Assemble StirtTask

. Compile rast.c

. Enter Grapher using BasicO®

. Save the source

Column Ten 61

. 1f you intend to run Grapher- from the
command line add the line: BYE to the
end of Grapher and Pack Grapher

k] Run Grapher which will 1load StrtTask
and rast from the execution directory

Operation and Modification

Grapher will prompt for pairs of coordi-
nates. After each pair is entered it will
ask you to verify that you want to plot
that line. Be careful with this. There is
no validation in any part of this system.
There is no reason it shouldn’t be there
either. Please add enough error checking
to make you comfortable if you intend to do
more than play with this program a little.
If you try to draw a line way off into the
wild blue yonder your computer will give it
a good try, mashing everything in its way.
After you enter the last pair of coordi-
nates respond to the (y,n,d) prompt with D.
The D response sends the last pair to rast
and charts the response from rast on the
screen. I 1ike to draw conservative pat-
terns like the one given by the input in
figure Figure 5.

0079 23

023790

00023

00790

011 79 11

39 0 39 23

Figure 5 Sample Input for rast

program

Rast is set up to rasterize a 80 by 24
graph. That is the size of a standard ter-
minal, but if you want to deal with larger
or smaller graphs, change VDIMENSION to the
number of vertical dots in the graph, and
HDIMENSION to the number of horizontal
dots.

Pipes are a powerful tool for interpro-
cess communications. They can be used with
good effect to solve aimost any interpro-
cess communication problem if the connec-
tron can be made. The worst problem with
pipes is that they can only be used between
processes that are very closely related
(between siblings, or parent/child). There
is also a performance problem under Level
Two; not only is there the cost of a system
request per transfer, but 0S5-9 has to move
the characters from one address space to
another -- taking a surprising length of
Time. If you feel ambitious you will find
‘nat it is possible to make a major per-

srmance improvement to rast by using a
compression algorithm on its output.

62 0S-9 User Notes Volume I

WELCOME COCO

1 have been reading messages in the COCO
special 1interest group on Compuserve. It
sounds like Microware put a real version of
0S-9 on that little machine. I am serious-
1y impressed with the reality of a very
inexpensive computer with a UNIX-like, mul-
titasking, even -- if 1 may stretch a2 point
-- multi-user operating system. There may
be a number of interesting ways to inte-
grate COCOs with each other and with larger
0S-8 systems to get a bargain version of
advanced distributed computing. It may not
be too much to hope for that Tandy will
find a way to put 0S-89 Level Two on some
descendant of the COCO. There is some
chance that 1 will be able to take the
viewpoint of a COCD user in this column in
the future. [haven‘t made up my mind yet,
but I need a Level One system. and the Col-
or Computer may be the way to get one. I
would appreciate advice.

THE USERS GROUP

The executive committee of the 0S-9 Users,
Group has met twice since the annual meet-
ing (1 am writing this in November). We
nave struggled with various issues and
defined assorted policies, mostly rather
dull. Very likely by the time this column
is printed the members will have received a
newsletter, and everyone will have seen
information 1in this and other magazines.
Right now our software library is ready to
go. I know it has good stuff in it; sever-
a2l programs of mine are part of the collec-
tion. Dur plan 1is to give &a standard
selection of software from the library to
the existing membership and to each new
member. The other programs in the 1ibrary
will be available for small amounts of mon-
ey, or software contributions. The address
of the Users Group is:

0S-9 Users Group

PO Box 8027

Des Moines, Iowa

50301

BWORD
PROCEDURE bword
0000

0036 * Filter to divide input into words. One word per *
006C * line. *
OOAZ % ———— ————— e e e e e e e *
00D8 DIM chr:BYTE
00DF DIM inword:BOOLEAN
00E6 DIM StdOut,StdIn,StdErr:INTEGER
00F5 ON ERROR GOTO 100
00FB StdIn=0
0102 StdOut=1

StdErr=2

inword=FALSE

LOOP

GET #StdIn chr
IF inword THEN
IF chr“ASC(" ") OR chr=9 OR chr=13 THEN
inword=FALSE
WRITE #StdOut
ELSE

PRINT #StdOut,CHRS (chr);
ENDIF
ELSE

I{Schr=ASC(" ") OR chr=9 OR chr=13 THEN

inword=TR
ENPRINT #StdOut CHRS (chr) ;
ENDIF
ENDLOOP
BYE
100 REM end of file handler
DIM errnum:INTEGER
errnum=ERR
IF errnum=211 THEN
BYE

ELSE
ON ERROR
g%éNT #StdErr,"Error Number: "; errnum

ENDIF

[aelelalelwlololelelwlmlalolo]ololelolo ol ool ool o)
i lvivlelviolel -k g tellelNale To 1o 1o Yo Yo XU, LU, I P o —
Owoo %\!U’U‘M WD OO UNW~ILWTD JENORO\O

Column Ten 63

CHARCT

Microware 0S-9 Assembler 2.1 11/08/83 22:55:20 Page 001
CharCt - Count a occurances of a specified character

00001 NAM CharCt

8888% N TTL Count a occurances of a specxfxed character
00004 * CharCt Written 1 November 83 *
00005 * Last Modified 5 November 83 *
00006 * A filter to count occurances of an spec1f1ed*
00007 * character in the standard input. ¥f no

00008 * character is specified, default to counting *
00009 x carriage returns. *
00010 F e e *
00011 IFP1

00013 ENDC

00014 0011 - Type set Prgrm+0Objct

00015 0081 Revs set ReEnt+l]

00016 0000 87CD00%A MOD ggmlen ,CharCt,Type,Revs,Entry,Memsize
00017 D 0000 Count rmb stored in BCD
00018 D 0003 InChr rmb 1

00019 D 0004 TstChr rmb 1

00020 D 0005 QutStr rmb 6

00021 D 000B CR rmb 1 for a CR

00022 D 000C rmb 200 Stack

00023 D 00D4 Memsize equ .

00024 000D 43686172 CharCt fes /CharCt/

00025 0013 Q1 feb 1 version)
00026 e e e e e *
00027 * At entry: *
00028 * U and DP point at local storage. *
00029 * X points at the parameter area. *
00030 e e e e *
00031 0014 Entry

00032 0014 OFQO clr Count

00033 0016 OF01 clr Count+]

00034 0018 OF0Q2 clr Count+2

00035 001A A684 1da ,X

00036 001C 9704 sta TstChr

00037 001E 3043 leax InChr,U

00038 0020 108E0001 ldy #1 characters to read
00039 0024 Loop

00040 0024 8600 lda #O std in

00041 0026 103Fr89 0Ss9 SREAD

00042 0029 251E bcs Quit

00043 002B D603 1db InChr

00044 002D D104 cmpb TstChr

00045 002F 26F3 bne Loop

00046 * -—= e e e *
00047 * Increment Count *
00048 K e e *
00049 0031 8601 1da gl

00050 0033 9BO2 adda Count+2

00051 0035 19 daa

00052 0036 9702 sta Count+2

00053 0038 8600 1da 0

00054 003a 9901 adca ount+1

00055 003C 19 daa

00056 003D 9701 sta Count+l

64 0S-9 User Notes Volume I

Microware 0S-9 Assembler 2.1 11/08/83 22:55:28 Page 002
CharCt -~ Count a occurances of a specified character

00057 003F 8600 lda #0

00058 0041 9900 adca Count

00059 0043 19 daa

00060 0044 9700 sta Count

00061 0046 4F clra std in

00062 0047 20DB bra Loop

00063 H e -- -— -—-%

00064 * If we reached EOF print the total count and *

00065 * exit. *

00066 * If some other caused us to stop. Return *

00067 * with an error code. *

00068 * - -- - -

00069 0049 Quit

00070 0049 C1D3 cmpb JESEOF

00071 004B 2636 bne xit

00072 004D 3045 leax OQutStr,U

00073 004F 9600 lda Count

00074 0051 8D33 bsr Cnvt

00075 0053 9601 lda Count+1

00076 0055 8D2F bsr Cnvt

00077 0057 9602 lda Count+2

00078 0059 8D2B bsr Cnvt

00079 005B 3045 leax OutStr,U

00080 005D 960A lda QutStr+5 mark last position in OutStr
00081 OO5F 84A80 ora #S80 set carry bit

00082 0061 970A sta OutStr+5

00083 0063 108E0007 ldy 7 length

00084 0067 8630 lda #'0

00085 0069 FndLen

00086 0069 Al184 cmpa L X

00087 006B 2606 bne OutPut

00088 006D 313F leay ~-1,Y decrease length

00089 006F 3001 leax 1,X

00090 0071 20F6 bra FndlLen

00091 0073 OutPut

00092 0073 860D lda gSOD <CR>

00093 0075 970B sta R

00094 0077 960A lda OutStr+5

00095 0079 847F anda g$7F clear the carry bit out
88839 007B 9704 sta utStr+5

00098 007D 8601 lda #1 std out

00099 00Q7F 103F8C 0S9 ISWRITLN .

00100 0082 SF . clrb clean up for exit
00101 0083 Exit

00102 0083 103F06 0Ss9 FSExit

00103 0086 Cnvt

00104 0086 1F89 tfr A,B

00105 0088 44 lsra shift the high order nible into low
00106 0089 44 lsra

00107 008A 44 lsra

00108 008B 44 lsra)
00109 008C 8B30 adda #'0 convert to ASCII digit
00110 OO8E A780 sta X+

00111 0090 C4OF andb {/SOF remove high order nyble
00112 0092 CB30 addb #'0 convert to ASCII digit
00113 0094 E780 stb s X+

00114 0096 39 rts

00115 0097 A1D953 EMOD

00116 009A Pgmlen equ ¥

Column Ten 65

GRAPHER
PROCEDURE Grapher

0000 DI grocess No,Comp_Code,Opt_Size,Lang_Type:BYTE
0013 DIM Parm L: TNTEGER
001A DIM InPipe, OuEP pe:BYTE
0025 DIM ch:STRING i
0031 DIM YN:STRING
0038 DIM x1,yl,x2, KZ INTEGER
004B DIM name:STRI
0052 DIM Parms:STRING[20]
005E A e e e e e *
009C * Set up to call StrtTask which will fork the named *
8??3 r module, passing it the parameter string in Parms. ;
0156 name="rast"
0161 rocess No=0
0168 pt_Size=0
016F Lang_Type=$11 \(* attributes of forked module (object code, program)
01AC Parms '+CHRS 13;
8%%; Parm_ L=LEN(Parms \(* The length of the parameters must be correct
0230 * Call assembler subroutines to Fork and wait for the started *
0271 X process
02B2 e e e e "
02F3 RUN StrtTask (name,process_No, Lang Type,Parm L,Parms,Opt_Size
InP1pe*OutP1pe)
0320 F e e e e e e e e e e
0361 * Write data for 'rast' into path #InPipe which *
8%%% i corresponds to the standard input path for rast :
0424 PRINT "Enter the end oints of lines you want drawn. X must be in"
0461 PRINT "the range 0..79. Y must be in the range 0..23
0493 LOOP
0495 INPUT "Eg%eréx Y coordinates for the ends of a line: ",xl
y
04D7 PRIN?’“The line will be drawn between ("; x1; ","; y% ")’a dz("")"
Yy XZ4; ”y
0521 INPUT "OK ? (Yes No,Done): ",YN
053E YN=LEFT$(YN
0549 F YN="y" OR YN="Y" THEN
055E PRINT #InPipe,"1",x1,yl,x2,y2
0578 ENDIF
057A EXITIF YN="d" OR YN="D" THEN
058F PRINT #InPipe,"1",x1,yl,x2,y2
0549 ENDEXI
05AD ENDLOOP
05B1 ON ERROR GOTO 100
0587 CLOSE #InPipe
05BD - - e —————— %
O5FE . When #InPipe is closed rast will get an end-of-file *
063F * on its standard input path. *
0680 * e e - *
06C1 LOOP
06c3 (F e —em—mm e *
0704 * Read from #fOutPipe (which corresponds to rast's standard *
0745 * output until end-of-file on that path, The end-of-file *
0786 * indicates that the other end of the pipe has been closed *
ngg * (in this case rast has ended). x
=49 GET #0utPi e ch
253 IF ch="0"
860 PRINT " "'
0866 ELSE
086A PUT #1,ch
0873 ENDI
0875 ENDLOOP
0879 100
087D ON ERROR
0880 CLOSE #0utPipe
0886 RUN Na1tTask%process No,Comp_Code)
0895 IF Comp Code<>0 THEN™
084Al PRINT "Completion code for '"; name; " # "; process No; " was "
; Comp_Code
08D4 ENDIF

66 0S-9 User Notes Volume I

STRTTASK

Microware 0S-9 Assembler 2.1 11/08/83 23:33:26 Page 001
StrtTask - Start a subtask (called from Basic(09)

00001 ttl Start a subtask (called from Basic09)

00002 . nam StrtTask

00003 H e Tt e e *

00004 * StrtTask is a subroutine for Basic(09. *

00005 * Start a named module as a subtask. *

00006 % Let the new task run asynchronously. *

00007 * Open plges to the modules standard in and standard*

00008 * out paths. *

00009 * Return the new tasks process number, the path *

00010 * numbers for the pipes, and the condition code *

00011 * from the Fork. *

00012 * Calling sequence: *

00013 * run StrtTask (Name, Process Num, Lang Type, *

00014 * Param L, Para®, Opt size *

00015 *) InPipeN, OutPipeNF N *

00016 * Name is any length, but has a valid terminator *

888%; : (high bit set on last byte, or delimiter after it):

888%3 i Eroce%sﬂNug Eytg_f%gldi proces7tnumbgrtoffnew task.:
an pe e field, language e e for

00021 % forKed module. guage/type B¥ *

00022 * Param L, integer field, length of parameter area. *

00023 * Param field of any type, parameter area to be *

00024 * passed to forked process. *

00025 * Opt_Size byte field, optional data area size in *

00026 * pages.) *

00027 * InPipeN, integer field, path number *

00028 * QutPipeN, integer field, path number *

00029 * Process_Num, InPipeN, OutPipeN, and Return_Code *

00030 * are altered by StrtTask, no other parametefs are. *

00031 Fmmm S e e *

00032 IFP1

00034 ENDC

00035 Lt

00036 * Offsets to arguments

00037 *

00038 0002 ACount equ 2

00039 0004 ModuleN equ 4

00040 0008 ProcNum equ 8

00041 000C ModType equ 12

00042 0010 Parmlen equ 16

00043 0014 Parms equ 20

00044 0018 MDatSize equ 24

00045 00]1C InPipeN equ 28

00046 0020 OutPipeN equ 32

00048 0021 Type set SBRTN+0OBJCT

00049 0081 Revs set REENT+1

00050 0000 Stdln equ O

00051 0001 StdOut equ 1

00052 0000 87CDOOB1 mod TLen,StrtTask,Type,Revs,SEntry,0

00053 Q00D 53747274 StrtTask fcs /StrtTask/

00054 Q015 2F504950 Pipe fcs '/PIPE"

00055 0014 01 fcb 1 version

00056 001B SEntry

00057 001B EC62 ldd ACount,S get garam count

00058 001D 10830008 cmpd #8 . are there 8 params?

88828 0021 £0260083 lbne adExit no; leave now. N

00061 * Set up Pipes for StdIn and StdOut. *

00062 * The procedure is: =

00063 * Dup the stdin and stdout paths to save them. *

00064 * Close stdin and stdout. *

00065 * Open /PIPE twice. One will be path O the next*

00066 * gath 1. *

00067 * Fork the new process. *

00068 Koo e *

00069 * Offsets from S for local storage

00070 0000 DStdin equ

00071 0001 DStdOut equ 1

00072 0002 LocalSiz equ

00073 *

Column Ten 67

Microware 0S-9 Assembler 2. 11/08/83 23:33:36 Page 002
StrtTask - Start a subtask (called from Basic(9)

“0074 0025 327E leas -LocalSiz,S make space for temp storage

10075 0027 8600 lda fStdIn

J0076 0029 103F82 0s9 $Dup Dup Stdin

20077 002C 257D bes BadEX1t2

00078 002E A7E4 sta DStdIn,S

00079 0030 8601 lda #StdOut

00080 0032 103F82 0s9 SDup Dup StdOut

00081 0035 2574 bes BadEX1t2

00082 0037 A761 sta DStdOut,S

00083

00084 0039 8600 lda {#StdIn

00085 003B 103F8F 0S89 ISClose Close Stdln

00086 00Q3E 256B bcs BadExit2

00087 0040 8601 lda {5tdOut

00088 0042 103F8F 089 ISClose Close StdOut

88888 0045 2564 bcs BadExit2

00091 0047 308DFFCA leax Pipe,PCR

00092 004B 8603 lda FfUPDAT.

00093 004D 103F84 0s9 SOpen Open a pipe in path 0

00094 0050 2559 . bes BadExit2

00095 * This will be path O

00096

00097 0052 308DFFBF leax Pipe,PCR

00098 0056 8603 lda #UPDAT.

00099 0058 103F84 0s9 IS$O0pen Open a pipe in path 1

00100 005B 254E bes BadExit2

00101 * This will be path 1

00102 005D 103F82 0S9 ISDup Dup it

00103 0060 2549 bes ?adEX1t2

88%8? 0062 A7F822 sta LocalSiz+OutPipeN,S]

00106 0065 8600 lda #StdIn .

00107 0067 103F82 0Ss9 Dup it

00108 006A 253F bes ?adExth

88%?8 006C A7F81E sta LocalSiz+InPipeN,S]

00111 006F AE66 ldx ocalSiz+ModuleN,S address of module name

00112 0071 10AEF812 ldy LocalSiz+ParmLen, ST length of parameters

00113 0075 A6F80E lda Localez+M0dT§pe S/, type of module to invoke

00114 0078 E6F81a 1db LocalSiz+MDat 1ze S] optional data area size

00115 O007B EEE816 ldu LocalSizt+Parms, ointer to parameters

00116 O007E 103F03 0S9 F$Fork start the new process

00117 0081 2528 bes adExit2

891%8 0083 A7F80A sta LocalSiz+ProcNum,S] save new process number
L.y e

00120 . * Restore the original stdin and stdout files to *

00121 * paths 0 and 1. *

00122 K e - *

00123 0086 8600 l1da fStdIn Close Stdin and StdOut

00124 0088 103F8F 0s9 lose

00125 008B 8601 lda #StdOut

00126 008D 1Q3F8F 0s9 SClose

00127 0090 A6E4 lda DStdIn,S path number of duped stdin

00128 0092 103F82 0s9 I1SDu dup it into path 8

00129 0095 A6E4 lda DStdln,S

00130 0097 103F8F 0S89 ISClose and close it

00131 0094 A661 lda DStdOut S path number of duged stdout

00132 009C 103F82 0S9 ISDu dup it into path

00133 009F A661 lda DStdOut,S

00134 00Al 103F8F 0S89 ISClose and close it

00135 00A4 3262 leas LocalSiz,S clear stack

00136 00A6 5F clrb clear carry

00137 00A7 39 rts return

68 0S-9 User Notes Volume I

Microware 05-9 Assembler 2.1 11/08/83 23:33:45
StrtTask - Start a subtask (called from Basic09)

Page 003

00138 00a8 BadExit

00139 00A8 43 coma . set carry

00140 00A9 327E . leas -LocalSiz,S dummy push

00141 00AB BadExit2

00142 00AB 3262 leas LocalSiz,S clear stack

00143 00AD 39 rts return

00144 O0AE 239951 EMOD

00145 00B1 TLen equ ¥

00146 ttl Wait for a (child) process to complete
00147 nam WaitTask

00148 Ko e e e *
00149 * WaitTask is a subroutine for Basic09 *
00150 * Wait for the a child process to complete. *
00151 * Return the process ID of the process that completed®
00152 * in parameter one. *
00153 * Return the competion code of the process *
00154 * in parameter two.) *
00155 * This subroutine will wait using no CPU time until *
00156 * a chlld'Yrocess completes. .

00157 * If a child cquleted just before WaitTask was *
00158 * called, it will return almost immediatly. *
00159 * If there are no children, an error will be returned™
00160 * with a process number of 0 *
00161 * . Calling sequence: *
00162 * RUN WaitTask (Process No, Comp_Code) . *
88%22 : both process_no and Comp_Code are BYTE variables. I
00165 0021 Type set SBRTN+OBICT

00166 0081 Revs set REENT+1

00167 0000 87CD0032) mod WLen,WaitTask,Type,Revs,WEntry,0
00168 000D 57616974 WaitTask fcs /WaitTask/ ~

00169 0015 01 feb 1 edition

00170 0016 WEntry

00171 0016 6FF804 clr [4,5] zero the process ID
00172 0019 EC62 ldd 2,S param count

00173 001B 10830002 cmpd #2) if not exactly 2 params then,
00174 O001F 260C bne WBExit2 the caller is making a bad mistake
00175 0021 103F04 0S9 FSWait wait for a child
00176 0024 2508 bes BEx;t

00177 0026 A7F804 sta 4,51 return the process ID
00178 0029 E7F808 stb 8,S return the completion code
00179 002C 39 . rts return

00180 002D WBExit2

00181 002D 43 . coma set carry

00182 002E WBExit

00183 002E 39 rts return

00184 002F 4C34C4 EMOD

00185 0032 WlLen equ ¥

00186 end

00000 error(s)

00000 warning(s)

SOOE3 00227 program bytes generated
$0000 00000 data bytes allocated
$218B 08587 bytes used for symbols

Column Ten

69

KAST
9 November 1983 0:14 Rasterizing Program Page 1

#include <stdio.h>
define VDIMENSION 24
define HDIMENSION 80
define BYTES HDIMENSION/B
define TRUE
deflne FALSE 0

\\,:“'m"\:m:“'—w\
I
|
|
1
|
|
|
|
!
|
|
}
|
i
|
|
1
}
|
]
t
|
|
i
1
|
|
|
|
[}
t
I
|
|
}
f
]
|
|
|
|
i
|
|
I
|
|
|
1
|
|
|
|
b

Data Structure *
The rasterized data is kegt in an array of bits. *
* The Setbit and BitSet routines are responsible for *
determining which bit correspondes to each *

position. They also are the only procedures with *
i access to the "bit" array. :/

ain()

int x1, yl, x2, y2;

int 1;

char op; /* takes values of Line (n,n,n,n)
Circle (n,n,
Spline (open) (n,n,n,n,n,n)
Spline (closed) (n,n,n,n,n
23 x/ ‘

2 register int j;

26 while (scanf("%c %d %d %d %d",&op, &x1,&yl, &x2,&y2) != EOF)
27 /* lgnore "op' for now */

DO NI N b b 1 ot o Bd et ot et ek
OOV~ NS WO OVO~IO I EWN -
o

lul”lele

28 if (x1 < x2)
29 draw(xl,x2,yl,y2);
30 else
g% draw(x2,x1,y2,yl);
32 for : (i=VDIMENSION-1;i>=0;i--)
35 for (j=0; j<HDIMENSION; j++)
36 %char b1tset J,lj "1' : '0Y);
37 prxntf("
3 et
eturn;
29 f /* end of main */
2% draw(xl, TZ,y%,yZ% 2:
nt x1, x2, y yl;
44 i
45 int deltay, deltax, x, y, dy, dx;
46 float e, slopg,
zg register int 1i;
49 deltay = y2 yl
50 deltaz = 12—
51 x = xl
52 y
53 g(deltax == deltay) & (deltay == _0))
54 * special case —- draw a point *
55 plot (x,y);
56 return,
57
58
gg if (deltax > deltay)
61 if ideltax == ()
62 * prevent dxv;sxon by zero */
63 ¥ = (yl <= y2 { y2; .
64 or (1=0; 1<-((de1 ay >Y 0) 7 deltay : -deltay);i++)
65 plot(x y++
29 return;
68 slope = (floatgdeltay/(float)deltax;
69 if ?slope >= 0
70
;% ; = siope-O.S;
y = 1]
73 }
74 els
75 ?
76 e = slope+0 5;
77 dy = -
78 }

70 0S-9 User Notes Volume I

O0O0O0OOOOOO VWV WOV \ONO\D\D 00000000 000000000000]

WOV AN EWRNIOWR~IA N B WRNI OO NLSWR—ROWVONIRAN L WN O OR IR NEWRNHOWOUYRANEWN OV YO WNOW

et ek md ek b b e feh bk e ok e o e ok ek ok P e Bt s Bk fd B o d ek i e e et et fd e o e o ok o etk b e et et B et

LA SRS EEEELEWWWWWWWUWWRNININEINIBINIDINI N 14 b bbbt ot bt bt ot ot 4

9 November 1983 0:14 Rasterizing Program Page 2

for (i=0; i<=deltax; it++)
{ /* actually draw the line */
plot x,{);
1f (Es ope > 0.03 && Ee>0.033 I
(slope < 0.0) && (e<0.0)))

+= dy;
} Z -= dg;
x++;
e t+= sloTe;
} /* actually draw the line */

els?

slope = (float)deltax/(float)deltay;
if ?slope > 0)

e = slope-0.5;
dx = 1;
}
els?

e = slope+0.5;
dx = —-1;

for (i20; ismdeltays it%) . .

* draw a line with slope greater than one *
* for this type of line y needs to be
; incremented more frequently than x. *

___ 'k/
lot(x,y);
?f°§§’st0pe > 0) && (20)) || ((slope < 0) & (e<0)))

x += dx;
e —-= dx;
}
VAR
e += slope;

}

return;
} /* end of draw ¥/

plot (x,y)
nt x,y;

setbit (x,y);
return;

static char bit [VDIMENSION] [BYTES];

setbit (x,y)
tnt X,y
int temp=1;
register int tx;
temp = temp << (x%8);
SRR LS .
bit{yl Ttx] = bitly] [tx] | temp;
return;

}

bitset (x,y)
nt x,y;
int temp=1;

temp = temp << (x%8);
return(bit%y][x}S{ & temp);

Column Ten 71

72 ©o&8 User Notes Volume 1

LULUMN ELEVEN —-- THE 0S-9
1/0 SYSTEM

0S-9 uses a mooular 1/0 system designed for
simplicity and flexibility. Because of
this modularity an exceptionally ambitious
user could write a new I/0 subsystem and
graft it into 0S5S-8 without making any
changes to the rest of the operating sys-
tem. But there are other aspects of the
1/0 system which don’t require any program-
ming to exploit, and so useful that new
0S-8 users should play with them as soon as
possible.

THE UNIFIED INPUT/OUTPUT SYSTEM

Each 0S-9 process has three standard paths
(files) open when it starts. Path O is
called standard input, Path 1 is standard
output, and path 2 is standard error. It
is possible for a program to close these
paths and re-open them for its own purpos-
es, but most programs leave them open and
use them as one might think they should be
used.

The standard input path usually reads
from the keyboard (terminal), and is used
as the primary source of input from the
user. Programs can and often do open other
input files, sometimes the majority of the
input is from some path other than standard
input, but standard input is by convention
the path used for communication with the
user.

The standard output path typically
writes to the screen (terminal), and is
used for routine output to the user. Every
character that appears on your screen prob-
ably came from a standard output path.

The standard error path is seldom used.
By convention it is used for error messag-
es. Normally the standard error path is
directed to the screen together with the
standard output path. The rationale for
having separate paths for routine output
and error messages rises from a special
characteristic of the standard paths. Each
of the paths can be directed wherever the
user wishes before a program is started.
This can prove useful when it is convenient
to have different things done with error
messages than with the rest of the output
of a program.

The standard paths are open when a pro-
gram starts because they are inherited from
the process that started it, in most cases
the shell. The shell takes advantage of
this ability to pass its standard paths on
to the programs it starts to change the
paths from the standard (all to the termi-
nal) to any other disposition a user might
specify.

Options on & shell command 1ine indi-
cate to the shell what needs to be done to

the standard paths. The options are
">xxxxx" for "redirect standard output to
XXXXX, " "<xxxxx" for ‘"redirect standard
input to xxxxx," and ">>xxxxx" for "redi-

rect standard error to xxxxx." If any stan-
dard path is not redirected it 1is simply

inherited from the shell; it usually goes '

to the terminal.

The ability to redirect the standard
paths is called device independent 1I/0
because paths can be directed to any
device, not just another device of the same
type as the default device for the path.
The power of this feature is easiest to see
with a few examples:

0S9: list filename

Is a command with no redirection. It lists
the contents of the file called "filename"
on the screen through the standard output
path.

0S9: list filename >/P

l1ists the contents of filename on the
device called /P, usually the printer. The
single ">" at the end of the command tells
the shell to redirect the standard output
to the file whose name foliows the >. 1
can’t think of any reason for someone to
want to put the output of the 1ist command
into a disk file, but:

059: 1list filename >lstfile

does just that. It puts the output of the
1ist command into a file named 1stfile. 1If
you are using a multi-user system you can
send the output of a command to another
user with a command like:

089: asm test.a 1 >/T2

which would send the 1listing from the
assembly of test.a to the device called
/T2, which is usually a terminal.

I redirect Standard Output more than
the other paths, but there are reasons to
redirect the other paths as well. The
Standard Input path is the one which pro-
grams usually read from. A program can be
fed a canned script of commands by redi-
recting its Standard Input to a disk file
with the commands in 1it. I sometimes
insert this command in my startup file:

debug <startup.debug >/NL

This runs the Microware debugger with its
input coming from startup.debug, and its
output going to a special SCF device which
I made public in the first column I wrote
(/NL is a2 null device -- it makes anything
you send to it disappear). By putting
debug in my startup file like this I can
easily apply patches to resident modules
every time I boot my system.

The Standard Error path is wused so
infrequently that it is easy to forget that
it exists. It is the path which programs
usually use for serious error messages.
Usually, it 1is a good idea to leave the
Standard Error path directed to the screen,
but sometimes it should be redirected.
Some compilers send syntax errors, or at
least summary statistics out the Standard
Error path. If you want to run a program
that uses the Standard Error path in back-
ground while you edit in foreground, it is
wise to redirect the both the Standard Out-
put and the Standard Error paths of the
compiler to disk files or the printer, oth-
erwise you may find messages from the com-
piler cropping up 1in the middie of your
screen at awkward times.

Column Eleven -- The 0S-9 I/0 System 73

Rec rection almost always works fine,
"ut there are some problems lurking around.
.t shouldn’t be the responsibility of a
iser to watch out for these problems, but
1S5S-8 is designed with the assumption that
arograms will follow some conventions
applying to their wuse of the standard
paths. Some programs rely on dealing with
particular devices. These programs should
open special paths to those devices, but
some use the standard paths for device
dependent 1/0. These programs should be
avoided if possible.

The typical 0S-9 system comes with
three types of files, Sequential Character
Files, Random Block Files, and Pipes.
Sequential Character Files (usually called
SCF files) are written or read from begin-
ning to end. The most common SCF files are
Terminal input and output, printer output,
and modem input and output. The bytes in a
RBF file (files handled by the RBFMAN file
manager) can be read in any order. Disk
files and other files like them, such as
files in bubble memory or main memory, are
usually RBF files. There is only one type
of Pipe file, that is a temporary file kept
in main memory which is used a buffer
between one program’s output and another
program’s input.

Unless a program concerns itself with
timing 1ssues or uses the more exotic
GETSTAT/SETSTAT system service requests,
there is no way for it to tell the differ-
ence between one device and another provid-
ed the devices are of the same type (RBF,
SCF, or Pipe). Some programs can’‘t have
their standard I/0 redirected to a RBF file
or & Pipe, but the great majority can. If
a program uses SCF-specific GETSTAT/SETSTAT
codes it will only be possible to use it
with the proper type of files, but all but
one of the programs that 1 know of from
Microware and other major vendors can have
their I1/0 redirected without restriction.
The one exception is Microware’s Pascal
with old versions of 0S-8. A1l programs
written in that language, 1including the
compiler itself, try to rewind their stan-
dard output file when it starts. The SCF
file manager deals with this strange
reguest correctly by " ignoring it, but the
Pipe manager returns an error if anyone
tries to rewind it. If you try to redirect
the output of a program written in Pascal
to a Pipe, the program will die as soon as
it’s started. Microware has a fix for this
probliem if you run into it.

CHANGING 0S-9'S DEVICE SUPPORT

The modular design of 0S-9‘s I/0 system
allows new devices to be added and the sup-
port of old devices to be enhanced with the
only restrictions being the wishes and
pbudget of the person responsible, and the
memory constraints of the computer. Sup-
port for 1/0 starts at the IOMAN module
which fields each 1/0 system service
request and sometimes does & little work
before passing it off to the appropriate
module. File managers including SCF and
RBF are the next leve)l down from IOMAN;
they do most of the file handling work that
isn’t specific to a particular piece of
hardware. The device drivers, such as ACIA
and PIA, handle the interface with the 1/0
hardware. The device descriptor modules

74 0S-9 User Notes Volume I

contain the directions which all these mod-
ules follow. There is a descriptor for
each device in an 0S-9 system containing no
executable instructions, but 1lots of data
which controls the other 1/0 modules.

Hardware that requires compiicated new
modules for the 1/0 system should come with
the necessary modules. The hardware vendor
has to have the modules written (or write
them), but a customer need only load the

modules =-- normally by including them in
his boot =-- in order to add software sup-
port for the device to his system, This

sets 0S-9 apart from many operating systems
in which a major part of the operating sys-
tem has to be changed for any new device.

Hardware vendors often need to write
1/0 modules in order to sell their products
to the 0S-9 community, but anyone can write
1/0 modules if the need or the mood takes
them. Writing an entire new I1/0 subsystem
would require a lot of work, but most prob-
lems can be solved with much less effort.
Many devices can be accommodated by 05-9
without any serious programming at all by
creating new device descriptors. Device
descriptor modules specify how each device
is to be treated. The device descriptor
contains fields which indicate (to I0MAN)
which file manager and device driver should
be used for the device, an absolute physi-
cal address for the device, and any other
data specific to the particular device

The first 18 bytes of all device
descriptors have the same format. The
first nine bytes are common to all module
headers (Sync Bytes, Module size, Offset to

Module Name, Type/Language ($F1),
Attributes/Revision, and Header Parity
check) . Of these, the mcdule attributes

are most interesting in the context of the
device descriptor. If the device descrip-
tor module is marked reentrant, the device
can be used by more than one process at a
time; otherwise, it can only be linked to
or opened by one process at a time. Device
descriptors which are not reentrant are not
only restricted to use by only one process
at a time, they can’t be linked to by debug
at a2l1 i{if they are in the boot. Some
devices, such as the printer, shouldn’t be
reentrant uniess you feel very ready to be
responsible. 0S-9 will happily mix output
from several programs line by line on the
printer {if you tell it to.

The format of the next nine bytes is
common to &all device descriptors. The
fields are: the offset to the File Manager
name (e.g., RBF) for two bytes, the offset
to the Device Driver name (e.g.., ACIA) for
two bytes , the mode (what the device can
do, e.g. Read/write/execute) for one byte,
the device controller’s real address for
three bytes, and the length of the initial-
ization table.

After the first 18 bytes, different
types of devices have different fieids.
The initialization table which follows the
byte with its length contains most of the
fields that are interesting to play with.
After the initializat:c~ table there 1is
nothing but module names and the CRC.

There are eleven fie ds in the initial-
ization table for RBF-type devices (disk
drives). The first field is one byte long

and contains a 1 indicating that this is a

RBF device. The other fields are:

. drive number

. step rate

o device type

. media density (O=single, t=double)

. number of cylinders (two bytes long)

. number of surfaces, verify (O=verify
writes)

. default sectors per track for two
bytes

J default sectors per track on track

zero for two bytes
. sector interleave factor
. segment allocation size

The step rate can take on values of 0..3
with the higher numbers refiecting higher
stepping rates.

In the device type byte three bits are
significant. Bit zero indicates a 8" flop-
py if it is one. Bit six indicates a non-
standard format is being used if it is one.
Bit seven being one indicates that the
device is & hard disk.

In the media density byte two bits are
significant. Bit zero = 1 indicates that
the device can handle doublie density. Bit
one = 1| indicates that the disk is capable
of double track density (96 tpi).

The fields in the device descriptor are
interpreted by the device driver and the
file manager. Changing a value in the
device descriptor can’‘t force the other
modules to do something they weren’t writ-
ten to do. For example, it probably isn‘t
possible to use the device driver which is
designed for floppy disks to control a hard
disk -- changing the device type byte won't

change the capabilities of the device driv-
er. It is the option of the person writing
the device driver to ignore anything in the
device descriptor he wants. This means
that there is no guarantee that the options
in the device descriptor will work. 1 have
heard that the floppy disk driver on the
color computer ignores many of the options.
1’11 confirm this when I get one.

A different set of fields are
initialization table for SCF devices.
of these fields control the 1line-editing
function of the SCF manager. These are the
values that are temporarily set by TMODE.
They can be set permanently by changing
them in the device descriptor.

in the
Most

The initialization table in the device
descriptor is copied into the path descrip-
tor when & path is opened. There it can be
changed and read by GETSTAT/SETSTAT calls,
but the change applies only to that partic-
uliar path. Changes to the device descrip-
tor become the default for all paths opened
to that device.

The easiest way to change the device

descriptors is with debug. If, for exam-
ple, you want to add a new terminal to your
system which you don‘t have a device
descriptor for, you can modify a similar

descriptor with debug to fit your require-
ment (probably changing only the controller
address and mocule name), save the result
with the save command, and verify it with
the update option to fix 1its CRC. The
resulting module can be l1ocaded and used.

A device descriptor can be modified
even while the device it specifies is in
use because the descriptor igiself is sel-

dom referenced. In fact, as far as I know,
the device descriptor is only used when a
path is opened to the device.

The device descriptor is the control-
1ing part of the 0S-9 I/0 structure. There
are several things that can be done with
them that 1 haven’t covered vyet, but that
will be material for other columns.

Column Eleven -- The 0S-9 I/O System 75

765 0S-9 User Notes Volume I

COLUMN TWELVE -- THE COCO

I now have a Radio Shack Color Computer
with 0S-8S. I had hoped that this column
would be about my first experiences as a
new CoCo/0S-9 Level One user, but 1 have
only had a few hours to play with the new
machine and this column is due.

Even just a few hours with the CoCo
version of 0S-8 is enough to form some
first impressions. First, that really is
0S-8 in there. Al1 the standard commands

and utility programs are included. Even
XMDODE, which didn’t come with my Level Two
system, was on the CoCo 05-9 disk. I am

impressed with the performance of the CoCo.
I am used to & two megahertz GIMIX system,
and the CoCo 1s distinctly slower than
that; but, 1 bet BasicO8 on a CoCo would
give an IBM-PC running its version of Basic
a good race. I hope 1 have a chance to do
some benchmarks soon.

For a user moving from Color Basic to
0S-9 the change must be wonderful, but con-
fusing. 05$-9 brings out much of the power
hidden in that little off-white box. It
also demonstrates the limitations of the
Color Computer. After this column I intend
to concentrate on positive aspects of the
CoCo, but right up front I have to say that
my new CoCo is a sit-down Jlawnmower with
the soul of a Grand Pre racer. I want to
get my complaining out of the way early, so
this column is elected.

Dn the hardware side, I guess my com-
plaints can be summarized as: this computer
seems to bave been designed to sell for
under a thousand dollars, It is really
unfair for me to think that this computer
should have DMA (Direct Memory Access) for
its disk I/D and a chip to do its serial
1/0. By doing those tasks 1in software
Radio Shack hurt 0S-9‘s performance, but
they also kept the cost of the computer
down.

Certainily, my main reaction to the
Radio Shack version of 0S-8 was pleasure,
but that didn‘t keep me from finding a few
things to compliain about. In my last col-
umn 1 hinted that the disk driver inciluded
with CoCo 0S-9 doesn’'t adhere to 0S-9 stan-
dards. I didn’t make a strong statement
because 1 didn’t know from personal experi-
ence. 1 can tentatively confirm the infor-
mation now -- the CCDisk disk ariver
doesn’t seem to refer to the parameters set
in the disk device descriptors.

The documentation that came with 0S-9
was also a disappointment. I expected
entirely new books explaining the trickier
aspects of 0$-9 so any fool could under-
stand it. The manuals I got are just
prettied-up versions of the Microware manu-
als with some parts missing. The documen-
tation seems to have been very Qquickly
done. I checked out the section on device
descriptors first thing; the manual
ncludes a full description of the device
descriptor with no indication that some
parameters don’t work on the CoCo. Most of
the information from Microware’'s manuals
about adapting 0S-9 to a new system are
missing from Radio Shack’s 05-8 documenta-
tion.

My complaints may sound significant,
but they are not. The hardware limitations
of the Color Computer are no worse than one
would expect in a low-cost computer. The
limited disk driver is only waiting to be
replaced by a more general one. If no one
else writes one, I may do it myself. The
documentation probliem is an invitation to
peoplie like me. If 0S-9 on the CoCo con-
tinues to be as big a success as it has
been, books will appear about it in fairly
short order.

NOTES ON COMPUSERVE

I spent over two hours reading through
the messages in the new 0%$-9 SIG on Compu-
serve. That bulietin board is really pick-
ing up! People are beginning to buy
BasicO8 for the CoCc and are having trouble
installing 1t. Some messages went some-
thing like: I installed BasicO8 on my sys-
tem and it doesn‘t work =-- HELP. I can’t
imagine how anyone is able to figure out
what went wrong from that kind of com-
plaint; 1 certainly couldn’t. Several oth-
er people gave more detailed descriptions
of their troubles. It sounded to me 1ike
they were having troubles with directories.

when you start O0S-9 running it will
find a directory called /DO/CMDS on your
system disk. This {is the directory 0S-9
will always execute programs out of unless
you explicitly direct it to another direc-
tory. Specifically, if you give the com-
mand

BASICO9

0S-8 will ook for an executable file
called BASICOS in the /DO/CMDS directory.
If it finds the program, everything is
fine; otherwise, 0S~8 will search the
default data directory (initially /DO) for
a file called BASICOS. If BASICOS in found
in the data directory it will be taken a2s a
shell command file, and a shell will- be
started up to execute the commands. If
that file turns out to be full of the
machine code for Basic09, the shell will be
understandably confused. If you copy
BasicO8 from its distribution disk to the
root directory for your system disk {(which
is what the command:

copy /D1/basic09 Basic09

will do) your shell will get wrapped around
the axle in about the way I just described.
The way to avoid that problem is to put
BasicO8 in your execution directory with a
command 1ike:

co D1/basic09
So8Ychns/basicds

The system disk on my CoCo 1is very
full. If 1 had any number of my own pro-
grams on that disk it would overflow. When
that happens it is time to divide the files
on that disk between two disks. One way to
spl(t things up is to put BasicO3 and a few
other programs that are freqgquently used
with BasicO8 on a disk by themselves, and
replace the system disk with the specia)
Basic09 disk when it is time to use Basic.
There is nothing wrong with the idea, but
there is a nice pitfall waiting here too.

Column Twelve -- The CoCo 77

Directories are files, and, to save time,
095-9 remembers where the files you are
using are on disk. When you boot 0S-8 it
determines where the directory /DO/CMDS is
and will 1look right there next time it
needs to find a program. If you pull out
the system disk and put in your special
Basic09 disk, 0S-8 will read the location
on the BasicO9 disk where the /DO/CMDS
directory was on the system disk. In the
best case you will get a meaningful error,
but you may not. The way to get around
this problem is to remember to change your
execution (and perhaps your data) directory
when you change the disk it is on. That
is:

Take the system disk out
Put the Basic09 disk in
type CHX /DO/CMDS

which will cause 0S5-8 to find the /DO/CMDS
directory again. Of course, if you decide
to call the execution directory on your
Basic disk something other than CMDS,
that’'s fine; just change the execution
directory appropriately. For example:

0S9: CHX /DO/BASIC.CMDS

If you put BasicO8 on a disk separate
from many of your other programs you may
find yourseilf unable to get at some impor-
tant program while you are using Basic0S.
There are at least three ways to solve this
problem.

0S~9 lets you load programs into memory
and keep them there. You don‘t want to
load too many because main memory is a very
limited resource, but sometimes it can
prove very useful to have a program or two
in memory. If you insert your Basic disk,
oad /DO/CMDS/basic08 (note that I speci-
f:ied the full directory name instead of
crenging the execution directory -- either
e will work, but this way I won’‘’t need to
z-imge the directory back), then remove the
tzs1c disk and put the system disk back in.
~ow Basic0O9 is in main memory. VYou can see
Bas1cO09 in the output of the MDIR command,
and the MFREE command will show that there
is much less free memory in the system than
there was before you loaded Basic08. Now,
if you type

089: basic09

you will find yourself in basic much faster
than when it had to be loaded from disk.
To get rid of the copy of Basic09 in main
memory use the UNLINK command:

089: UNLINK basic09

If there is some small number of small
programs you want to use from within
BasicO2 you can load them into memory while
the system disk is mounted. For example:

78 0S-9 User Notes Volume I

0S9: LOAD copy
0S9: LOAD list

remove the system disk
insert the basic disk

0S9: CHX /D0O/CMDS

and perhaps change the data
directory

0S9: CHD /DO/BASIC.PROGS
then start basic09
0S9: BASICO9

If, for one reason or another, neither
of these tricks will serve, you can change
the execution directory from within
BasicQ8. For example, starting from a time
when Basic08 is running with the basic disk
on drive /DO: ’

Replace the basic disk with the disk with
the programs you need

B: chx /DO/CMDS or whatever
do what needs to be done, then, before

exiting from basic, replace the basic disk
in the drive.

The BasicO$ CHX command onty changes
the execution directory within Basic08 and
any programs that are run from it. when
you exit from BasicO8 the directories that
were active before you started BasicO8 will
be active again.

THANK YOU GIMIX

Ever since the CoCo version of 0S-9 was
announced with a different disk format from
all other versions of 0S-9 the users of
large 0S-9 systems have been grumbling
about the incompatibility of our disk for-
mats and the CoCo format. GIMIX has
released a new floppy disk driver for their
systems that supports reading and (if you
have a 40 track drive) writing disks in
CoCo 0S-9 format. I am very grateful, and
I am sure I represent many other 05-9 users
when I thank GIMIX for their efforts.

A HANDY SHORTCUT

I always use 32K when I run Dynastar,
and I aimost always use 24K for the Micro-
ware Assembler. I am seldom content to use
the minimum memory requirement given in the
module header for any program. 1 have mod-
ified the module headers of several pro-
grams so they will automatically request
the amount of memory I usually request for
them. Debug can be used to do this. The
commands which will modify Dynastar (DS) to
default to its maximum memory size (32K)
instead of the minimum (8K) are:

load ds

using 128 pages.

debug

1 ds

. .tb To Eoint at the permanent storage size in
the module header.

25 The value of this byte is $20

=FF

Q The change is made so quit debug

Test ds to make certain the new default is working.
I first made certain 1 could edit a large file, then
invoked procs from within ds and noted that ds was

If you want to make the change permanent
use the following sequence:

0S9: save /DO/x ds
0S9: verify U </D0/x
>/D0/CMDS/ds 2

Check its attributes
0S9: attr /DO/CMDS/ds2

You will find that the execute and public

execute attributes are missing, so turn
them on

0S9: attr /DO/CMDS/ds2 e pw
Save the old version
0S9: rename /D0O/CMDS/ds old.ds

Install the new one

0S9: rename /D0O/CMDS/ds2 ds

Column Twelve -- The CoCo 79

80 1&9 User Notes Volume I

COLUMN THIRTEEN

BIG SYSTEM HARDWARE

Gimix has offered CoCo owners an
attractive deal. Gimix its value. Even
with this roughly thousand dollar break in
the price of a Gimix the upgrade is expen-
sive, but, speaking as a person who has
used a Gimix for many many hours, if you
can find the money, take this oppcrtunity.
what makes it worth thousands of dollars to
move from a CoCo to a SS50 system? The
most important difference 1is that every-
thing works right on the larger systems.
Another is that the more expensive systems
are faster. A twoc megahertz 6809 runs more
than twice as fast as a CoCo in its nornal
mode . The DMA disk controlier and other
powerful I/0 devices also make a noticable
difference.

The upgrade from a CoCo to a SS50 sys-
tem isn‘t the end of the 1line. A1l the
major SS50 systems that support 0S-8 sup-
port both 0S-9 Level One and Level Two.
The move to Level Two involves a new ver-
sion of the 0S-9 operating system, but no
change in applications programs. A1l the
modern SSS5C systems 1 know of can be
upgraded with little or no change to the
hardware (the main requirement 1is memory
management hardware). I imagine that 0S-9
Level Two might run with the 56K of memory
that Level One uses, but just barely. Lev-
el Two begins to come into its own at 12BK.
At 344K, I have never run out of memory.

BIG SYSTEM SOFTWARE

There is a bit of controversy arising
in the 0S-9 worid. Smoke Signal Bsoadcast-
ing has been responsible for a lot of 6808
software over the years. There is even an
operating system which they are responsible
for. Now they are contributing to 0S-8
sof tware. My understanding is that Smoke
commissioned someone to work on the version
of 0S-9 licensed to them. Their consultant
made 0S-2 less modular in order to improve
its performance. The Smoke users 1 know
confirm that the revisions make the Smoke
version of 05-9 run faster than it used to.
Running faster would seem to be an advan-
tage, but the changes Smoke has made turn
out to be a mixed blessing. There appear
to be subtle incompatibilities between 0S-9
as it comes from Microware and 0S-8 from
Smoke Signal Broadcasting. I have spoken
to Microware and they say that they can’t
support Smoke‘s version of 0S-8 (that may
have changed by the time you read this). I
have had trouble exchanging software with
Smoke users.

The Smoke users are amazingly tolerant.
I have read exchanges on the Compuserve
0S-8 SIG in which Smoke users exchange tips
on ways to prevent the DIR command from
intermittently producing junk.

This problem was resolved to everyone’s
satisfaction when Smoke agreed to offer
their users a choice of modified or
unmodified 0S-9.

I certainly approve of improving 0S-9's
performance, but it is very important that
an operating system be as standard as pos-
sible. If 1 were buying a system from
Smoke Signal Broadcasting, I would want
strong assurances that their version of
0S-8 was compatible with Microware’s on
every level. A good test would be that all
applications programs and system modules
that run under standard 0S$-8 should run
under the modified one, and vice versa.

THE COMPUSERVE 0S-9 SIG

The 0S-9 Special Interest Group on Com-
puserve is booming. Messages flow through
the bulletin board so fast I am beginning
t0 question my ability to read them atll.
Many experienced 0S-9 users regularly check
in, but it is a particularly good resource
for newcomers. 1 strongly suggest that yolu
join Compuserve if there is an access point
close to you. It is worth it even if you
only use it to access the 0S-9 SIG.

0S-9 ON THE COLOR COMPUTER

I have been saying nasty things about
Tandy which aren’t true. I blamed the
sloppy programming in the CCDISK device
driver on Tandy when it seems the blame
should fall on Microware and Microsoft.
The bootstrap for the CoCo 1is in ROM.
There is only one bootstrap ROM, designed
by Microsoft for use with Color Disk Basic
(I guess). Microware had to design the
Colo impiementation of 0S-9 so it could be
loaded with that Bootstrap. The CoCo boot
ROM reads 15 sectors off track 35 into a
fixed location in memory. The 0SSBoot file
had to fit 1into those 15 sectors. This
memory constraint forced Microware to pay
even more attention to writing compact code
than they usualiy do. Since 6809 instruc-
tions that do direct memory references take
less memory than indexed instructions,
Microware used them whenever they could.
Since versatile device drivers take more
memory than limited drivers, they wrote
limited drivers, Tandy, 1 apologize for
the nasty thoughts 1 sent your way.

] decided to write this month’s project
for the CoCo. I noticed that Color Basic
has a number of commands which make assort-
ed honks and beeps emerge from my TV.
Basic09 has no way to make those noises. 1
checked the "Color Computer Technical Ref-
erence Manual" for information about the
sound generator, and found that the Color
Computer generates sound with a Digital to
Analog converter. The output from the D/A
converter is routed through an analog mul-
tiplexer to the moaulator, and hence to the
TV. It Jooked 1ike 0S-8 could learn to
make noise.

1 expect that the reason Microware
didn’t include sound generation in their
0S-8 for the Color Computer is that sound
generation with an D/A converter is a very
time dependent operation. A note is played
by gradually (in computer terms) raising
and lowering the voltage generated by the
D/A converter. This has to be done with a
timing locp in & program. The timing loop
must have exclusive use of the computer, or

Column Thirteen 81

the rate at which the voltage rises and
Yalls will vary causing the note being gen-
~rated to rise and fall. Some people might
find the resulting vyodel! surprising. A
program can give itself exclusive use of
the computer by masking out interrupts, but
locking out interrupts for more than a few
millionths of a second is antisocial behav-
ior for any program -- even a part of the
operating system,

Still, the ability to at least be able
to generate & beep seems important to me.
1 started by writing a program called Sound
to investigate sound production. The pro-
gram generates a saw-tooth wave that sounds
rather like a saber saw cutting thin ply-
wood, but it works. The most important
discoveries I made while writing Sound were
how to initialize the multipliexer so the
D/A converter’s output would be routed to
the TV. The control registers at $FFO3 and
$FF23 both need to be modified. The fact
that they could be modified was another
interesting discovery, I am used to con-
trol registers being either readabie or
writeable. These registers are to some
extent read/write. CoCo programmers may
take this for granted, but I was pleasantly
surprised.

Once the control registers are set,
sound can be generated by simply writing
different values 11nto the most significant
6 bits of the byvte at $FF20. The faster
the value is changed the higher the pitch.
I wrcte the program to send 1000 waves,
then stop.

Trere is lots of room for improvement
in Sound. The guality of the note created
by the program could be improved, and the
program might even be made to play a song.
I decided to drop Sound and work on build-
ing 2 Device Driver for the D/A converter.

The Device descriptor 1 wrote for the
D/A converter, Beep, is ailmost as small as
a Device Descriptor can be. The D/A con-
verter is not a random access device so I
decide to use the SCF file manager to drive
it. There are no options except the one
byte which indicates that it is a SCF
device. There are three addresses in the
descriptor. Normally =a descriptor only
needs one port address, but in this case,
since the three addresses used in making
the D/A converter make sound aren‘t relat-
ed, I included all the addresses explicit-
ly.

The Device Driver, called Beeper, is
not interrupt driven. Most 0S-8 device
drivers use interrupts to give them a way
to avoid wait loops, but I couldn’t find a
way to get the D/A converter to generate
interrupts. In this case interrupts wer-
en’t necessary; the device responds as fast
as data can be pumped into it.

The initialization entry puts some val-
ues that will be needed in the termination
routine into device static storage, and
sets the two PIA registers that need to be
adjusted to permit sound to be made. The
termination entry sets the two control reg-
"isters back the way they were before Beeper
started, and the GetStat and PutStat
entries don’t do anything at all. The read
and write entries deal with the fact that
the D/A converter only uses the high-order

82 0S-9 User Notes Volume I

six bits of the register it is accessed
through.

INSTALLATION OF BEEP/BEEPER

Beep and Beeper have to be typed in and
assembled. As wusual, the USE statements
between the IFP1{ and ENDC don’t come out in
the assembly listing. You will have to
include use statements for both OSSDEFS and
SCFDEFS for these programs. when vyou
assemble the Beeper file it will generate a
file 1in the execution directory called
Beeper with both Beep and Beeper in it.

To use beeper first load it with the
0S-9 command line:

0S9: load beeper

then 1ink beeper with the command line:

0S9: link beeper

Since beeper is the second module in the
file it will have a tendency to disappear
if you don’t 1ink it.

As a first try you can get a low growl
out of your computer by listing a file to
/Beep. 1 used

0S9: list beeper >/beep

To get a more interesting sound out of
the device you will need to feed it mean-
ingful data. The BasicQS program called
TestBeep generates 2 thousand bytes of sine
wave . TestBeep is intenaed to be packed
and run out of the execution directory. If
it is run from source the BYE should be
removed. It takes a ltong time to initialize
the array, so be patient. The wave can be
sent one byte at a time with a loop like:

for I=1 to 1000
put #sound,note(I)
next I

But 0S-9 doesn’t do very well at outputting
a single character at a time. This program
segment demonstrates that by generating a
low, raspy note. To get a higher, smoother
note I sent the entire thousand-byte array
with one write. The quality of the tone
still leaves a lot to be desired, but it’s
ihe best I could do quickly.

APPLICATIONS FOR /BEEP

I imagine that the timbre of the tone
generated by TestBeep could be improved by
spending more time with the wave form: the
rough sin wave I use is pretty crude. Cer-
tainly the pitch can be varied by changing
the frequency of the wave. 1 discovered
that TestBeep just as it stands is a useful
demonstration of 0S-9‘s multitasking behav-
ior, 1 started TestBeep with the command
line:

0S9: BASICO9 TestBeepé
if you have RUNB
0S9: TestBeep&

ran a

will work fine. This runs the program as a code.
background task. Wnen the nocise started, I
variety of different programs and

noticed the effect on the sound.

THE USERS GROUP

If you want to generate a higher pitch

than you can get out of Beeper, 1 suggest I hope all the members of the 05-9
doing more work in the device driver. The Users group will have their disks by the
approach I have in mind is to add a buffer time you read this. 1 am afraid that some
in the device static storage for Beeper. of you will have received the wrong type of
when Beeper receives a request to write a gisk. 1 am responsible for this. Wwe don’t
Zero value it will load the next 256 bytes have any record of the type of disk (size
written into the buffer. when the buffer and format) any of our early members use.
isn‘t being locaded, each value written o Some of the peopie who have joined recently
Beep will indicate a number of times to have included information about their disk,
send the buffer out the D/A. I believe but in most cases 1 have had to guess. If
that this approach will prove to be really you get a disk you can’t deal with, write
useful, especially 1if there 1is a default to the Users Group address, and we will try
wave Jloaded into the buffer by the INIT t0 get you a disk you can read.

SOUND

Microware 0S-9 Assembler 2.1 02/15/
Sound — Sound generator for CoCo

00001
00002
00003
00005
00006
00007
00008
00009
00010
00011
00012
00013

elelelvicivlele

84 03:00:48 Page 001

nam Sound
ttl Sound generator for CoCo
IFPl
ENDC
TYPE SET PRGRM+OBJCT
87CD0065 MOD ENDSND,NAM, TYPE,REENT+1,ENTRY,DSIZE
CNTL RMB 2 Address of D/A control registe
CNTL2 RMB 2 Address of another D/A control
PORT RMB 2 Address of D/A input
CNTR RMB 2 Number of waves to send
CNTLV RMB 1 Initial value of first Control
CNTL2V RMB 1 Initial value of other control
RMB 200 STACK
DSIZE EQU .
534F554E NAM FCS /SOUND/
ENTRY EQU *
Fedkodkd ok ek T o
* Initialize addresses in local storage
CCFF23 LDD gSFF23
DDOO STD NTL
CCFF20 LDD gSFFZO
DDO4 STD ORT
CCFFO03 LDD #SFFOS
DD0O2 STD NTL2
Fok KKk dsek
* Save initial values of control registers
* and set them to route D/A output to sound
A6D4 LDA [CNTL,U]
9708 STA CNTLV
8A08 ORA #3508
A7D4 STA CNTL, U]
A6D802 LDa [CNTL3,U)
9709 STA CNTL2V
84F7 ANDA %SFF-SOB
A7D802 STA CNTL2,U]
Jek ook kK ko
* 1Initialize the counter
CCO3ES8 LDD #1000
DD06 STD NTR
Fddkhkkkkk
* Send waves
LOOP2
8600 LDA #0

Column Thirteen 83

Microware 0S-9 Assembler 2.1 02/15/84 03:00:55 Page 002
Sound - Sound generator for CoCo

00049 o ot S ok oo sk v sk sk

20050 * Send each wave

20051 *

D0052 003a LOOP1

00053 003a A7D804 STA PORT, U]
00054 003D 8B04 ADDA 4

00055 003F 12 NOP

00056 0040 12 NOP

00057 0041 12 NOP

00058 0042 12 NOP

00059 0043 12 NOP

00060 0044 12 NOP

00061 0045 12 NOP

00062 0046 12 NOP

00063 0047 12 NOP

00064 0048 8100 CMPA {0

00065 004A 26EE BNE LOOP1
00066 sk ok oS st v koot

00067 * End of sendig% one wave.

00068 * See if we still need to send more
00069 *

00070 004C DCO6 LDD CNTR

00071 004E 830001 SUBD gl

20072 0051 DDO6 STD NTR

00073 0053 26E3 BNE LOOP2
00074 FF ok ok dek

888;2 i Restore initial values to control registers
00077 0055 9608 LDA NTLV
00078 0057 A7D4 STA CNTL, U]
00079 0059 9609 LDA %NTLZV
00080 005B A7D802 STA CNTL2,U]
00081 005E 5F CLRB clear carrx
00082 005F 103F06 0S89 FSEXIT return to 0S-9
00083 0062 528D69 EMOD

00084 0065 ENDSND EQU *

00000 error(s)
00000 warning(s)
7065 00101 program bytes generated
“D2 00210 data bytes allocated
ZF8 03832 bytes used for symbols

BEEPER

Microware 0S-9 Assembler 2.1 02/15/84 02:59:46 Page 001
BEEPER - 0S-9 System Symbol Definitions

00001 NAM BEEPER

00002 IFP1

00006 ENDC

00007 USE BEEP Device Descriptor

00008 TTL DEVICE DESCRIPTOR

00009 NAM BEEP

00010 00F1 TYPE SET DEVIC+0OBJCT

00011 0000 87CD0027 MOD BPEND, BPNAM, TYPE,REENT+1, FMNAME , DRVNAM
00012 000D 03 FCB READ.+WRITE. MODES

888%2 O0CE FFFF20 FCB SFF,$FF,$20 PORT ADDRESS

00015 0011 01 FCB OPTL Length of options section
00016 0012 OPTIONS ESU *

00017 0012 00 FCB DT.SCF

888%3 0001 OPTL EQU *~OPTIONS

00020 0013 FF23 CNTL1 FDB FF23 address of control byte 1
00021 0015 FFO3 CNTL2 FDB FF03 address of control byte 2
00022 0017 424545D0 BPNAM FCS /BEEP/ name of this module

00023 001B 5343Cé6 FMNAME FCS /SCF/ File Manager name

00024 OOlE 42454550 DRVNAM FCS /BEEPER/ Device driver name

00025 0024 58AEA3 EMOD

00026 0027 BPEND EQU *

00027 TTL DEVICE DRIVER FOR D/A

B4 0S-9 User Notes Volume I

Microware 05-9 Assembler 2.1 02/15/84 02:59:50 Page 002
BEEP - DEVICE DRIVER FOR D/a

00028 0OE1l TYPE SET DRIVR+0OBJCT

00029 0081 REVS SET REENT+1

00030 0000 87CD0076 MOD BPREND, BPRNAM, TYPE,REVS,ENTER ,MEMSIZE
00031 000D 03 FCB READ.+WRITE. DRIVER MODE

00032 000E 42454550 BPRNAM FCS /BEEPER/

00033 0014 01 FCB 1 EDITION

00034 oo ook sk de s v v de S e ek o

00035 * Device Static storage

00039 * .

888%8 D 001D st s oo ORG V.SCF System part of Static Storage
00039 * Local part of static storage

00040 *

00041 D 001D PORTA RMB 2 PORT ADDRESS

00042 D 0O1F CTL1V RMB 1 HOLD CNTL1 VAL

00043 D 0020 CTL2V RMB 1 HOLD CNTL2 VALUE

00044 D 0021 CTL1A RMB 2 HOLD CNTL1 ADDR

00045 D 0023 CTL2A RMB 2 HOLD CNTL2 ADDR

00046 D 0025 MEMSIZE EQU .

00047

00048 ook e o oo sk Fe o e ok

00049 * Entry vectors

00050 *

00051 0015 ENTER

00052 W 0015 16000F LBRA INIT

00053 W 0018 16002C LBRA READ

00054 W 001B 160031 LBRA WRITE

00055 W O0lE 16003E LBRA GETSTAT

00056 W 0021 16003B LBRA PUTSTAT

00057 W 0024 16003A LBRA TERM

00058 0027 INIT

00059 Fok gkt

00060 * U ADDRESS OF DEVICE STATIC STORAGE

8882% : Y ADDRESS OF DEVICE DESCRIPTOR MODULE

00063 0027 AEA813 LDX CNTL1,Y Get control address 1 out of D
00064 002A AFC821 STX CTL1A,U Save the address

00065 002D A684 LDA , X Get the present value of cntl
00066 002F A7C81F STA CTL1V,U save it for later restore
00067 0032 8A08 ORA #S08 set it for sound

88828 0034 A784 STA , X

00070 0036 AEA815 LDX CNTL2,Y do the same stuff for cntl2
00071 0039 AFC823 STX CTL2A,U

00072 003C A684 LDA . X

00073 003E A7C820 STA CTL2V,U

00074 0041 84F7 ANDA fISFF-508

00075 0043 A784 STA , X

00076

00077 0045 5F CLRB CLEAR CARRY

00078 0046 39 RTS RETURN

Column Thirteen 85

Microware 0S-9 Assembler 2.1 02/15/84 02:59:58 Page 003
SEEP - DEVICE DRIVER FOR D/A

00079 0047 READ

00080 Peo et de s seot ot

00081 * U ADDRESS OF DEVICE STATIC STORAGE

00082 * Y ADDRESS OF PATH DESCRIPTOR

88832 : RETURN CHARACTER READ IN A

00085 0047 AE41L LDX V.PORT,U Bort address from device descr
00086 0049 A684 LDA , X /A value

00087 004B 44 LSRA

00088 004C 44 LSRA Shift out low order bits
00089 004D 5F CLRB Clear carry

00090 004E 39 RTS

00091 004F WRITE

00092 Fededks sk

00093 * U DEVICE STATIC STORAGE

00094 * Y PATH DESCRIPTOR

00095 * A VALUE TO WRITE

00096

00097 QQ4F AE41 LDX V.PORT,U , ,

00098 0051 48 LSLA Shift out high order bits
00099 0052 48 LSLA

00100 0053 3402 PSHS A save value to write

00101 0055 A684 LDA X Get current value at Port
00102 0057 8403 ANDA #200000011 clear D/A value

00103 0059 AAEQ ORA , S+ put value to write in
00104 005B A784 STA , X send it

00105 005D 5F CLRB

00106 005E 39 RTS RETURN

onIa? 005F GETSTAT

¢.°"5 OOSF PUTSTAT

[005F 5F CLRB

.10 0060 39 RTS

7,11l 0061 TERM

30112 e destdeskstst

38{%2 : U DEVICE STATIC STORAGE

00115 0061 AEC821 LDX CTL1A,U restore original Cntll value
00116 0064 A6C81F *LDA CTL1lV,U

00117 0067 A784 STA , X

00118 0069 AEC823 LDX CTL2A,U restore original Cntl2 value
00119 006C A6C820 LDA CTL2V,U

00120 0QO6F A784 STA , X

00121 0071 5F CLRB clear carry

00122 0072 39 RTS

00123 0073 A182B1 EMOD

00124 0076 BPREND EQU *

00000 error(s)

00006 warning(s)
$009D 00157 program bytes generated
$0008 00008 data bytes allocated
$164B 05707 bytes used for symbols

TESTBEEP

PROCEDURE TESTBEEP
DIM NOTE(1000) :BYTE
DIM I:INTEGER
DIM SOUND:INTE
OPEN #SOUND "/BEEP" WRITE
FOR I=1 TO 1000
NOTE (I)=32* (1+SIN(I))
NEXT I

FOR I=1 TO 100
PUT #SOUND,NOTE
NEXT 1

BYE

86 D0S-9 User Notes Volume I

COLUMN FOURTEEN

MORE ABOUT THE COCO DISK DRIVER

After in sending last month’‘s column I
had second thoughts about what I said about
the O0S-9 disk driver for the CoCo. I
didn‘t believe what I had written. The
gist of what I said was that Microware and
Microsoft together were to blame for the
non-standard disk driver incliuded with the
CoCo 0S-9. The boot ROM in the CoCo loads
just 15 sectors from track 34 on the boot
disk into set locations in memory and jumps
to them. This is Microsoft’s idea of a
nice way to boot a computer. what I said
last month was that Microware managed to
squeeze all of D0S$-8 into those 15 sectors
by extensive compression of the code. This
sounded pretty extreme to me, but I thought
that was what I had heard from Ken Kaplan
out at Microware.

Later, 1 became certain that I misun-
derstood Ken. There is no way all the core
resident parts of 0S-9 could be sgueezed
into that amount of disk, and, if all of
05-9 was loaded by the ROM boot, why does
the CoCo have a two stage boot?

I called Microware to check my facts.
1 was wrong. In the first stage of the
boot the CoCo ROM does 1load data from 15
sectors on track 34 into memory and jump to
it, but only a few important parts of 0S-8
are loaded: the kernal, the Init module,
and the 0S-9 bootstrap. These are the mod-
ules that are found in ROM on other 0S-8
systems. The next stage of the boot uses
the 0S-9 bootstrap which was loaded in the
first pass to do a normal 0S-9 boot. The
parts of 0S-9 loaded in the first phase of
the boot had to be squeezed hard, but much
of the disk driver is loaded in the second
phase of the boot.

There were a number of ways for Micro-
ware to get a full-featured disk driver
into the CoCo, but they didan’t. The
restrictions on the first phase of the boot
forced them to deviate from 0S-9 standards
in the boot module part of the disk driver,
1 believe they couldn’t find a way to
interest Tandy in the extra work (and memo-
ry) required to discard the boot after its
work was done and load a driver that worked
independently. That 1is certainly reason-
able. why should Tandy be interested in
making it easy for people to use non-Tandy
peripherals?

In any case, the problem seems t0 be
solved. p. P. Johnson is advertising
software that Jlets CoCo 0S-9 deal with
every disk format my Gimix can handle. I
haven‘t tried his software, but I bhave
heard from satisfied customers. I also own
a 256K memory board made by Dan Johnson. 1
purchased one of the first boards he sold
and had the kind of difficuities one might
expect. I came to respect Dan Johnson
while we struggied together to fix the
problems which 1 discovered. He is gocd
with hardware and software and VERY consci-
entious. I can’‘’t recommend the software
because I haven’t tried it (yet). 1 do
recommend the man who sells it.

WHERE NEXT?

I have two very different 0S-9 systenms,
a very large Gimix Level Two system and a
CoCo. They fall at almost opposite
extremes of the spectrum of microcomputers.
The CoCo is sc light and small that I think
nothing of tucking it under my arm and
walking a mile down to campus. The Gimix
is so0 heavy that 1 am daunted by the
thought of moving that stack of hardware
even a few feet. The CoCo can’t really
handie more than one concurrent user. I
routinely have two users on my Gimix and
know people whose Gimix machines typically

serve four or more concurrent users. The
CoCo includes full graphics and a "termi-
nal" protocol which is consistent across

all CoCos. This is a big issue for other
0S-8 users, particularly software develop-
ers who have to write programs which can be
configured for any terminal.

Noting the similarities and differences
between these computers has given me a Jlot
of ideas about the kind of hardware I would
like to see DS-9 rumning on. 1 imagine atll
computer users spend some time dreaming
about the system they would have if only...

My dream computer is a personal comput-
er, or, to use the popular phrase, a per-
sonal work station. I have grown used to
the idea of 0S5-8 Level Two a2s a multi-user
operating system, but I still prefer to
think of it as a very powerful single-user
system. Sharing computers is a way to save
money . when I imagine the computer I would
like, I don’t consicder money first.

Naturally, my dream computer runs 05-9
Level Two. It includes a bit-mapped screen
(color optional), several dedicated proces-
sors, support for some graphics input
device (1 haven’t chosen between 2 bit pad,
a mouse and a light pen), and more than
plenty of memory.

Many people seem to think that 128K is
the right amount to run 05-8 Level Two in.
Now you CAN run Level Two in even less, but
you don‘t really appreciate it until vyou
get to at least 192K. My dream machine
would have at least 182K upgradable to
256K, better still, 512K. There are soO
many uses for memory! Solid state disk
drives or caches give better access times
than hard disks but use a 1ot of memory.
Complex programs can take lots of memory,
but, when they are well written, they are
powerful and easy to use. Sometimes 1ots
of memory is needed for simple storage of
data. I know a woman who keeps running out
of space for her qugad sheet on an IBM PC.
She has about 600K! So lets put lots of
memory in the dream machine.

Graphics hardware is never good enough.
At any rate that’s the way 1 react to it.
If the resolution and the number of colors
is sufficient, the screen takes too long to
update. If data is displayed by fussing
with parameter 1ists and registers, the
system is too limited. If the screen is
bit-mapped, it takes too much attention
from the CPU to control! the screen. The
best solution seems to be to have a sepa-

5
Of course, with that much RAM you need

extra high-capacity disks to save what
you’re working on.

Column Fourteen 87

rate processor that deals with a2 bit-mapped
display. If the graphics processor has a
very high speed connection to the rest of
the system, and can be dynamically pro-
grammed to do more than just update the
screen, the result should be speed and
flexibility in graphics.

There is use for more than one special
processor in my dream computer. If graph-
ics support is included in the package, it
would be foolish to require a terminal to
be attached to the computer; an attached
keyboard wouid be sufficient. A dedicated
processor to scan the keyboard would take
another load off the main processor. The
other 1/0 devices could also use their own
processors. My Gimix uses a 6809 on one of
its serial cards to take some of the inter-
rupt load off the main processor. It
speeds my machine up a little, but doesn’t
have any other use. If the software for
the 1/0 processor was loaded (and reloaded)
by the main processor it would let the
serial board be programmed to handie high-
speed networks and other applications where
timing is important. Even disk controllers
could use their own special processors. I
don‘t know of any programmable disk con-
troliers they could do for disk I/0 what
smart seria cards has done for terminal
1/0. The Gimix intelligent serial card con-
tains a gooc part of SCFMAN. By unioading
this work onto a special processor more
cycles are left for user programs. RBFMAN
is more complicated than SCFMAN and uses
more CPU time. If most of that work could
be done by a separate processor still more
of the resources of the main processor
would be available for the user.

In fact, why talk about the main pro-
cessor? In many cases 0S-8 processes don’‘t
share memory with one another. If the
dream computer had a bus where additional
processor boards with some memory and per-
haps 1/0 could be inserted, 0S-9 could run
independent processes on their own proce-
dures. Most personal work station users
don’‘t need to run more than three or four
processes at a time, so including many of
what amounts to0 separate computers in the
package would be wasteful. But, if the pow-
er is available the applications will
arrive.

Mice are making a big splash these
days . The Xerox Star, the Apple Macintosh
and Lisa, and lots of more expensive work
stations are using them. I would definite-
1y pick a mouse over a2 joy stick. I have
more trouble deciding that a light pen or
graphics pad isn’t a better tool than a
mouse. The graphics pad 1is very precise
and the stylus can be used about like a
mouse. The arguments against graphics pads
are that they are expensive, require desk
space, and, for some applications, force
the person using them to mentally map from
the bit pad to the screen. The cost prob-
lem I will ignore -~ after all this is a
dream computer. The other two problems
apply to mice as well. A light pen doesn’t
require desk space or a mental mapping, but
I don’'t find them very precise and my hand
obscures the screen when I am pointing. I
can’t make up my mind.

A fancy computer like this deserves
fancy software. The peanut-butter and jel-
ly programs now available for 05-8 just
don‘t live up to the hardware.

88 0S-9 User Notes Volume I

My pet peeve with 0S-8 software has
always been its lack of excellent editors.
I like Dynastar fine, and I have heard nice
things about Screditor and Stylograph, but
these programs are at least five years
behind the state-of-the-art. My dream
machine deserves something special. Do you
suppose EMACS could be ported to 0S-8?

A real database program would be nice.
Something more than a filing cabinet or
stack of index cards metaphor.

I bet Knuth’s TeX would run on some-
thing like this. Some good graphics pro-
grams, especially a graphics editor would
make the graphics support a 10t more use-
ful. A real statistical program 1ike SAS,
or SPSS would make some peopie happy. Oth-
ers need really good communications soft-
ware.

Languages aren‘t as important as the
software written in them, but 05-92 is still
painfully short of languages. 1 bet APL
would run well under 0S-9. Fortran is old
fashion, but we really should bhave it.
Those are the fundamental Jlanguages, but
there is an endiess list, including: Pilot,
PL/1, Logc, Smalltaik, and others.

Networking is another sexy topic these
days. Expensive computers (which my dream
machine is turning out to be) are generally
used by peopie for whom communication is
terribly important. Electronic mail, elec-
tronic calendars. and sharing of files and
other resources are Iimportant to them.
0S-8 doesn’t inciude networking software,
but I think it will be at least as easy to
run over a network as any other operating
system.

Enough of the dreaming. Truly, my
dream machine is not so very far away. 1/0
processors exist, and I am sure more are
coming. I have heard tailk about slave pro-
cessors. There are graphics boards avail-
able for the SS-50 bus that are a 1ot like
what 1 have in my dream machine. The CoCo
comes with bit mapped graphics standard.

For my Gimix I can hope for 1/0 and
slave processors and a better (and less
expensive) graphics board. For my CoCo 1
can aim low and hope for a disk controller
with an onboard buffer, or aim high and
look for a resal Level Two system with as
much done 1in hardware as possible (1/0,
sound, and graphics). From my viewpoint as
a2 Level Two user I think Tandy would be
crazy not to offer a CoCo with Level! Two.
For a software person like me, it is fun to
think up lots of things that hardware peo-
ple should do for us, but the most impor-
tant part of any computer is its software.

Some of my software wish list will have
to wait for better hardware, in particular
for more memory. Much of it can be done
now. I have done some primitive networking
myself. A really special database program
or editor would push a 6809 hard, but might
be possible. 1 have heard from people who
are wcrking on lots of nice things for
0S-2. Pretty near every piece of software
for my dream machine is a project someone
is working on now.

MORE NOISE FROM THE COCO

Last month 1 included a driver for the
Digital-to-Analog converter in the CoCo.
That driver was useful for Ilow-speed D/A
applications, but it didn‘t do very well at
sound generation. The highest pitch my
driver could manage was something of a gur-
gle. The speed problem wasn’t in the driv-
er. It takes a long time for a character
to get through SCFMAN, Even when a block
of characters goes through together there
is enough delay in the transmission of each
character to make smooth, high- freguency
waves impossible. Fortunately, generating
music isn‘’t the only purpose for an D/A
converter. Controliing lab instruments,
motors, and such are all fine applications
which only reguire a voltage to be changed
infrequently -- 10 times per second at
most.

I ended last month’‘s column with a few
suggestions for ways to make the D/A driver
better at generating sound. This month I

went ahead and took my suggestions. This
month’s A/D driver does a pretty good job
of making music. It even makes nice

chords. 1 made the improvement I suggested
last month. If the driver receives a zero,
it places the next 360 bytes sent to it in
a special buffer. Characters that don‘t go
intoc the buffer cause the contents of the
buffer to be transmitted through the D/A a
number of times corresponding to the magni-
tude of the character written. Since it
takes a fixed amount of time to transmit
the buffer, each character from $01 to $FF
will take a fixed amount of time to send.
This way each character sends a note of a
set duration whatever the pitch.

At first I used a buffer 128 byted
tong. That was easy to handle in BEEPER,
but it was hard to build a wave in. It is
important that a whole number of cycles fit
into the buffer. It was difficult to gen-
erate a wave that fit precisely into 128
values. Numbers like 90 and 360 work bet-
ter when angles are measured in degrees (if
they are measured in radians it is hard to
make any integers come out evenly.) 1
tried a 90 byte buffer, but I found it hard
to store smooth, high-pitched tones in it.
After the buffer got over 128 bytes long, I
used the D register to offset the index
into it so length didn’t make much differ-
ence. I chose 360 bytes as the length of
the buffer because it is5 an easy number to
work with when generating the wave.

Interrupts are a probiem to time-
dependent things like music. I tried
BEEPER with interrupts masked and unmasked.
when interrupts are unmasked the sound is
definitely not pure; however, when the
interrupts are masked lots of bad things
happen. With interrupts masked nothing
happens except operation of the D/A. Time
doesn’t get updated, the keyboard doesn’t
get scanned, and, if you are using the
RS-232 port, it comes to a halt. In the
version of BEEPER included with this column
I commented out the ORCC and ANDCC. Try it
both ways and choose for yourself.

THIS MONTH'S DRIVER

I got a little carried away with the
test driver for BEEPER. The program calls
for a magnitude and frequency for a wave
(the numbers are only relative). The sine
wave generated with these numbers is added
to whatever wave has already been generat-
ed. The resulting wave is displayed. If a
Y is entered, the wave is loaded into BEEP-
ER‘s buffer and a few beeps are sent, if an
A is entered another sine wave is prompted
for and added to the existing wave, and if
anything else is entered the wave is erased

and the program starts over with a clean
slate.

I am afraid that this test driver is
another program that needs work. BEEPER
truncates numbers greater than 63 to 63.
If the sum of the sine waves 1loaded into
BEEPER’s buffer is greater than 63 at any
point the wave will be clipped (as hi-fi
people say). It would be good if TBEEP2
would check for this. I also get pretty
frustrated when I don’t like the last sine
wave 1 added to a wave I am building and
have to wipe out the entire waveform to get
rid of it. On the other hand I am rather
partial to the graphic display of the wave-
form.

THE USERS GROUP

Things aren’t moving as quickly for the
0S-9 Users Group as we hoped they would.
we published our first news letter (called
MOTD) months ago. By the way, if you are a
member and didn‘t receive a copy of MOTD,
send a note to the Users Group. Our system
for keeping track of members seems pretty
reliable, but it may have cracks in it. Wwe
are working on the second issue. The most
important thing to most members seems to be
the software exchange. There have been a
number of problems getting the software
exchange disks out. The most interesting
probliem has been & disk incompatibility
between 40 track disks written by 80 track
drives on two different manufacturer’s sys-
tems. Watch for this problem!

There alsc seems to be some trouble
getting disks. Three dollars per disk
delivered to a member is a very low price.
It’'s hard to be too impatient. In any
case, barring another serious hold-up, the
disks should be in the mail by late March.
Let me say again that we don’t know the
disk format many users need. If I guess
wrong, send the Users Group a letter and
we’ll try to find a way to straighten
things out.

Column Fourteen 89

BEEPER2

M:croware 0S-9 Assembler 2.1 03/
LZEPER - 0S-9 System Symbol Definitions

00024
00025

0000 87CD0027
000E g%FFZO
0011 O1

0012 00

0013 FF23
FF03

0017 424545D0

001B 5343C6

001E 42454550
0024 58AEA3

TYPE

OPTIONS
OPTL

CNTL1
CNTL2
BPNAM
FMNAME
DRVNAM

BPEND

Microware 0S-9 Assembler 2.1
BEEP - DEVICE DRIVER FOR D/a

00026
00027
00028

1
0008 87CD0O0D8

oo Ugouooou
[]
o
N
ol

03
000E 42454550

01
Fededkded kg sk
* Entry po

16000F
160042

rx
[Jen Yoo Ten fan]
[sn]en oY en [un)

kb dookoksdk

TYPE
REVS

PORTA
CTL1vV
CTL2V
CTL1A
CTL2A
COFFSET
BUFLEN
BUFFER
MEMSIZE

BPRNAM

ints

ENTER

INIT

03/13/84 20:31:36 Page 001
NAM BEEPER
IFP1 Use OS9DEFS, SCFDEFS and IODEF
ENDC and ENDC
USE BEEP
TTL DEVICE DESCRIPTOR
NAM BEEP
SET DEVIC+OBJICT
MOD BPEND, BPNAM, TYPE,REENT+1, FMNAME , DRVNANM
FCB READ.+WRITE. MODES
FCB SFF,SFF,$20 PORT ADDRESS
FCB OPTL Length of options section
EQU *
FCB DT.SCF
EQU *-OPTIONS
FDB SFF23 address of control byte 1
FDB SFFO3 address of control byte 2
FCS /BEEP/ name of this module
FCS /SCF/ File Manager name
FCS /BEEPER/ Device driver name
EMOD
EQU *
TTL DEVICE DRIVER FOR D/A
03/13/84 20:31:41 Page 002
SET DRIVR+OBICT
SET REENT+1
MOD BPREND, BPRNAM, TYPE,REVS,ENTER ,MEMSIZE
ORG V.SCF
RMB 2 PORT ADDRESS
RMB 1 HOLD CNTL1 VAL
RMB 1 HOLD CNTL2 VALUE
RMB 2 HOLD CNTL1 ADDR
RMB 2 HOLD CNTL2 ADDR
RMB 2 OFFSET IN BUFFER
EQU 90*4
RMB BUFLEN
EQU .
FCB READ.+WRITE. DRIVER MODE
FCS /BEEPER/ Program Name
FCB 1 EDITION
LBRA INIT
LBRA READ
LBRA WRITE
LBRA GETSTAT
LBRA PUTSTAT
LBRA TERM

* U ADDRESS OF DEVICE STATIC STORAGE
: Y ADDRESS OF DEVICE DESCRIPTOR MODULE

0027 AEA813

0048 E7C825
004B E7C826
004E 39

LDX
STX
LDA
STA
ORA
STA
LDX
STX
LDA
STA
ANDA
STa
BSR
CLRB
STB
STB
RTS

0S-9 User Notes Volume I

CNTL1,Y Move the address of cntll byte
CTL1A,U from the D.Descriptor to stati
, X save the value of the cntll by
CTL1V,U

#508

set one of the bits

, that turns on sound

CNTL2,Y Move the address of cntl2 byte
CTL2A,U from the D.Desc to static stor
, 3 save the value of the cntl2 by
CTL2V,U

#SFF-808 set the other bit
X that turns on sound
INITBUF Initialize the sound buffer
CLEAR CARRY
COFFSET,U Coffset is a two byte field
COFFSET+1,U
RETURN

Microware 0S-9 Assembler 2.1
BEEP - DEVICE DRIVER FOR D/A

03/13/84 20:31:51

Page 003

00074 Fo st sk s v ok sk vl sk

00075 * Put something that won't sound too bad

000676 * into the sound buffer

00077 *

00078 Q04F INITBUF

00079 004F 30C827 LEAX BUFFER,U

00080 0052 CCO167 LDD #BUFLEN-1

00081 0055 INITLOOP

00082 0055 E78B STB D,X

00083 0057 830001 Susd #1

00084 005A 2CF9 BGE INITLOOP

00085 005C 39 RTS

00086 005D READ

00087 B

00088 * U ADDRESS OF DEVICE STATIC STORAGE

00089 * Yy ADDRESS OF PATH DESCRIPTOR

00090 * RETURN CHARACTER READ IN A

00091 *

00092 005D AE41 LDX V.PORT,U

00093 005F A684 LDA . get the value in the D/A regis
00094 0061 44 LSRA

00095 0062 44 LSRA Shift out the low order bytes
00096 0063 5F CLRB Clear carry

00097 0064 39 RTS

00098 0065 WRITE

00099 Fekdkdkkt

00100 * U DEVICE STATIC STORAGE

00101 * Y PATH DESCRIPTOR

00102 * A VALUE TO WRITE

00103 * _

00104 0065 6DC826 TST COFFSET+1,U If coffset isn't zero

00105 0068 263F BNE DEFINE we are in the process of filli
00106 006A 6DC825 TST COFFSET,U ©buffer. We have to tst both C
00107 006D 263A BNE DEFINE

00108 006F 4D TSTA If the character to write is 0
00109 0070 272F BEQ SDEFINE the sound buffer

00110 o

88%%% : LOOP THROUGH BUFFER

00113 0072 30C827 LEAX BUFFER,U the address of the sound buffe
00114 0075 3402 PSHS A SAVE COUNT

00115 * ORCC #INTMASKS Shut off interrupts

00116 0077 CYCLE

00117 0077 CCO167 LDD gBUFLEN-l Offset in buffer

00118 007A 3406 PSHS Save offset

00119 007C WLOOP

00120 007C A68B LbA D,X get a byte out of buffer
00121 007E 3410 PSHS X

00122 *%%* on second thought it would have been

00123 ¥*%% petter to just do a leax BUFFER,U later instead

00124 **%% of saving this value here

00125 0080 AE4] LDX V.PORT,U The address of the D/A registe
00126 0082 3402 PSHS A Build the byte to store in the
00127 0084 A684 LDA X register

00128 0086 8403 ANDA #%.00000011

00129 0088 AAEQ ORA , S+

00130 008A A784 STA . Store the new D/A value

00131 008C 3510 PULS X recover the buffer address
00132 **k*** gee note .

00133 OO8E ECE4 LDD S et the new offset in buffer
00134 0090 830001 SUBD #1 ecriment the offset

00135 0093 EDE4 STD , S .]

00136 0095 2CES5 BGE WLOOP if it isn't negative send the
00137 0097 3262 LEAS 2,8 Clear stack

00138 0099 6AE4 DEC .S decriment repeat count

00139 009B 26DA BNE CYCLE cycle if not zero

00140 * ANDCC #SFF-INTMASKS

00141 009D 3261 LEAS 1,8 CLEAR STACK

00142 009F 5F CLRB

00143 00AO0 39 RTS

00144

00145 00al SDEFINE

00146 00Al CC0168 LDD gBUFLEN

00147 00A4 EDC825 STD OFFSET,U

00148 00A7 5F CLRB CLEAR CARRY

00149 00A8 39 RTS

Column Fourteen 91

Microware 0S-9 Assembler 2.1 03/13/84 20:31:58 Page 004
BEEP - DEVICE DRIVER FOR D/A

00150 ek ok s ek sk otk
00151 * Load the Sound buffer
00152 *
00153 00A9 DEFINE
00154 00A9 48 LSLA Prepare the value
00155 00AaA 48 LSLA
00156 00AB 3402 PSHS A save it
00157 00AD ECC825 LDD COFFSET,U Current offset
00158 00BO 830001 SUBD #1
00159 00B3 EDC825 STD COFFSET,U Update offset
00160 00B6 30C827 LEAX BUFFER,U)
00161 00BY9 308B LEAX D,X location to store this byte at
00162 00BB 3502 PULS A get the byte
00163 Q00BD A784 STA , X store it
00164 QOBF 5F CLRB
00165 00CO 39 RTS
00166 00Cl GETSTAT
00167 00C1 PUTSTAT
00168 00Cl 5F CLRB
00169 00C2 39 RTS
00170 00C3 TERM
00171 Fedekekddekk
88%;% K U DEVICE STATIC STORAGE
00174 00C3 AEC821 LDX CTL1A,U
00175 00C6 A6C81F LDA CTL1V,U
00176 00C9 A784 STA WX restore the original ctll valu
00177 OOCB AEC823 LDX CTL2A,U
00178 00CE A6C820 LDA CTL2v,U
00179 00Dl A784 STA ,X restore the original c¢tl2 valu
00180 00D3 5F CLRB
00181 0OOD4 39 RTS
00182 00D5 A60D8D EMOD
00183 00D8 BPREND EQU *
90000 error(s)
00003 warning(s)
"I0FF 00255 program bytes generated
.172 00370 data bytes allocated
316D2 05842 bytes used for symbols
TBEEP2
PROCEDURE TBEEP2
0000 * - = —mmm—————— -
0032 * TBeep2 is a test driver for the device driver
0062 * BEEPER. It loads BEEPER with a wave form,
883; ; then sends it a few more characters to test the tone.
00F9 *
00FC * Note is an array which contains the values which will be sent to
g%gg * the D/A to form a note
015B DIM NOTE(360) :BYTE
0167 DIM 1,J,K:INTEGER
0176 DIM SOUND:INTEGER \(* Path number for A/D
0193 DIM MAGNITUDE, FREQ: INTEGER \(* variables used to form the waveform
01C4 DIM C:BYTE \(* a utility one-byte variable
gégg DIM CMD:STRING \(* waveform command
0204 OPEN #SOUND,"/BEEP":WRITE
0214 DEG \(* Use degrees for angles
022F (* Initialize Note to zeros
024A FOR I=1 TO 360
025B NOTE (1) =0
0266 NEXT 1
0271
0272 *
0275 * Build waveform
0286 *
0289 LOOP
028B RUN GFX("ALPHA") \(* make screen printable
0280 Get parameters for a sin wave
‘02D0 INPUT "MAGNITUDE”™ ' MAGNITUDE
02E3 INPUT "FREQUENCY: ",FREQ
GRE6 *
RS * add the sin wave to the wave in NOTE

T2 0S5-9 User Notes Volume I

100

(*
FOR I=1 TO 360

NENOTE(I)=NOTE(1)+MAGNITUDE*(1+SIN(I*FREQ))

: Display the graph

RUN GFX("MODE",0,1)
FOR I=1 TO 180

J=NOTE (I*2)-2

K=J+4

IF J<0 THEN J=0

ENDIF

J=J*2

K=K*2

IF J>192 THEN J=192

ENDIF

IF K>192 THEN K=192

ENDIF

RUN GFX("LINE”,I,J,I,K)
NEXT 1

* Display a little bit of the next cycle
: to demonstate the the wave is continuous

FOR I=181 TO
J=NOTE (¢I- 180)*2) -2
K=J+4
IF J<0 THEN J=0
ENDIF

J=J*2
=K*

K=K*2
IF J>192 THEN J=192
ENDIF
IF K>192 THEN K=192

ENDIF
RUN GFX("“LINE",1,J,1,K)
NE I

* There is no prompt because the screen is full of
graph1cs, but enter Y<CR> A<CR>, or N<CR> after
he graph has been drawn

INPUT CMD
EXITIF CMD="Y" THEN
ENDEXIT
IF CMD<>"A'" THEN
FOR I=1 TO 360 \(* The waveform is bad,
NOTE(I)=0 \(* zero it and start over
NEXT 1
ENDIF
RUN GFX("CLEAR')
ENDLOOP
RUN GFXE"ALPHA")
RUN GEX("QUIT™)
C=0 \(* a zero tells the driver to use the next 360 characters
PUT #SOUND,C \(* to build a new form
PUT #SOUND,NOTE \(* send the new form
PRIN "STARTING SOUND"

i Send a few beeps of different lengths
FO% §=100 TO 250 STEP 50
PUT gSOUND,C
GOSUB 100
PRINT “END OF LOOP ",1I
NEXT 1
END
*
g: Delay a little
FOR J=1 TO 500

NEXT J
RETURN

Column Fourteen

83

94 0S-9 User Notes Volume I

COLUMN FIFTEEN

THE 0S-9 SEMINAR

I went to the 0S-9 users seminar last sum-
mer, so did almost every person I‘ve heard
of in the 0S-9 community. It was interest-
ing walking through the exhibit hall and
listening to the speakers. The thing that
makes me willing to go halfway across the
country to take part in the seminar this
summer is the fun I had last year talking
with other 0S$-9 people. Most of us, myself
included, spend our lives in a world where
every other microcomputer user thinks the
worid ends right past PC-DOS and CPM. Last
summer I fairly wallowed in the pleasure of
being with hundreds of people who shared my
interest in 0S-9. We argued, agreed, com-
plained, puzzied, and applauded about
things that are dear to 0S$-89 users (and not
many others). :

1f you need a practical reason to spend
a long weekend in Des Moines, bring a ques-
tion with you. 1If you have been itching to
show the person on the Microware hotline a
problem that he can’‘t reproduce, he’ll be
there. Go demonstrate the problem your-
self. If you want to suggest that 05-8
badly needs a WALL command you can probably
find someone important and back him into a
corner about it.

A1l the important vendors were there
last year -~- 1 assume they’1l1l be back. If
they come, you’ll be able to check the
Smoke Signal version of 0S-9 for compati-
bility with other versions. Try a few
things on the GIMIX III. I hope Privac
comes again; their graphics board is much
more impressive in motion than in an adver-
tisement. I imagine there’ll be a bunch of
new vendors there showing CoCo products.

The vendors and Microware staff not-
withstanding, the best place to .l1ook for
answers will be standing or sitting beside
you (very likely at breakfast or some other
improbable time). Last year 1 found the
other users at the Seminar a mine of useful
information. If you are a vendor, go to
the Seminar even if you don’t have a booth.
It is a great place to test the water.

The Seminar is a businesslike affair,
but it is also something of a party: Jeanne
Kaplan’s party. Everyone who has dealt
with Microware for any length of time knows
that Jeanne is a consummate organizer.
Last year everything ticked along smoothly
despite the fact that she must have been
siowed down a little by the child she was
about to have. Last year Microware hosted
a bangquet and a fancy brunch. The Governor
of lowa came and gave us a littie talk over
dinner. Ken Kaplan handed out prizes to
indiviguals who had made particularty dis-
tinguished contributions to the 0S-8 commu-
nity. At the brunch more prizes were hand-
ed out. I wonder what is in store for us
this year.

Microware is going to give the Users
Group some software for a raffle. I don’t
know just how it will be organized yet, but

the plian is to hand the prizes out at the
Sunday morning brunch.

Last year we heard a 10t about the new
68000 version of 0S-8. This year we may be
able to see one in action. That’s not
official from Microware, but there are
signs that it may be ready.

I guess it sounds like I‘m advertising
the Seminar. I suppose I am. I wouldn’t
miss it for the worid, and I hope 1’11 see
you there.

OFLEX

Just today I received a copy of OFlex.
This program runs Flex as a process in an
0S-8 Level Two system. I'm afraid it’'s
been too long since 1 used Flex with any
regularity for me to give the program a'
good workout. Still, I ran a few Flex pro-
grams and checked out the interface to
0s-8.

I remembered from “The Soul of a New
Machine" that Adventure was an important
test used on new hardware. I have a ver-
sion of Adventure which runs under Flex, so
I ran through a dozen rooms or so with it
and grabbed two or three treasures ... NoO
probiem. I compiled a Pascal program using
the TSC Pascal compiler with no difficul-
ties except some trouble remembering how to
use Fiex.

Part of the OFlex package is a program
called XCOPY that runs under OFlex. XCopy
can copy from 0S-9 files to Flex files and
back. I tried every combination I could
think of and couldn‘t make it fail. That
brings up the one important failing 1 could
find in OFlex; there is no FORMAT utility.
I guess FDORMAT is too near the hardware to
run in what amounts to a virtual machine.

OFlex can read and write Flex disks.
It can also format files on an 0S-9 disk so
the files can be treated as Flex disks by
OFlex. The files are accessed through a
command called ASNDISK. Using ASNDISK,
files can be associated with each disk num-
ber (1 through 4). This is a useful fea-
ture for Flex. I shudder to think of the
problem it would be dealing with a hard
disk full of Flex files. With OFlex the
hard disk can be broken up into many small-
er virtual disks giving manageable bunchs
of files to work with.

OFlex isn‘t reentrant. This is sad,
but, as I remember it, many Flex programs
change flags and pointers inside Flex.
Because it isn‘t reentrant, each instance
of OFiex running under 0S-8 needs a full
60K, but, if the memory is available, many
users can run OFlex on the same machine.
This could be viewed as an easy way of get-
ting multi-user Filex.

OFlex is 1licensed from TSC and Frank
Hogg Labs. As far as I can tell it is reg-
ular Flex with modified I/0 which feeds
into DS-9. It ran the programs I tried
flawlessly, but 1 know of several Flex pro-
grams (I’ve written some myself) which use
memory-mapped 1/0 directly instead of going
through Flex. They won’t work under OFlex.
Anyhow, I1f you have 0S-9 and you wish you

Column Fifteen 95

epuld run most of your old Flex programs,
r at least read the old disks, OFlex will
o what you need. If you have no particu-
Var need for 0S-9 but figure OFlex might be
an improved way to run Fiex, you must be
very brave. It is an improvement over reg-
ular Flex 1in several ways, but one day a
program you desperately want to run won‘t
work with this mutation of Flex. In any
case try OFlex with your software before
you rely on it.

NEW MANUALS

I got a stack of new 0S-2 Manuals last
week . I‘'m not an authority on most of the
0S-9 Manuals, but I‘ve practically memor-
ized the System Programmer’s Manual. The
new manual is a big improvement over the
old one. There is & section on memory man-
agement for Level Two and & section on
pipes with a few assembly language exam-
ples. The Level Two Service Requests are
in with the other requests, not isolated in
an appendix. Speaking of Service Requests,
the manual goes into a good deal more
detail than it used to on some of them.
The explanation of Chain takes more than
two pages, Exit takes about a page and a
guarter, as does Intercept.

The new manual contains lots of useful
snippets of code demonstrating tricky
points. 1 was particularly pleased to see
five chunks of about ten 1lines each that
cover the most obscure parts of an inter-
rupt driven device driver. 1 believe those
chunks of code were taken straight out of
the ACIA device driver.

Microware has been producing steadily
petter manuals for the last two years. The
~ew Systems manual is their best so far.
:f it had been available last January, 1
might never have seen a need for this col-
umn.

C FUNCTIONS

1 have been working on a program to
model a probiem in distributed systems for
a course I am taking. I needed some func-
tions to manipulate floating point numbers
as a separate mantissa and exponent. 1
spent most of an evening fussing around
witn assembler before I gave up and wrote
the functions mostly in C. It was such a
frustrating experience that 1 decided to
include them in this column. I wrote frexp
and modf to duplicate functions that are
part of the UNIX math library.

Frexp returns the mantissa of val as a
double less than one, and stores the expo-
nent in the integer pointed to by eptr.
The exponent is for a power of two; that
is, the number was (val=x*2**exp).

Modf separates a double into an integer
part and a fractional part. The integer
part is stored at the address in ptr (a2s =&
double), and the fractional part is
returned (also as a doubie).

I wrote most of the code for these

functions in C because I couldn‘t do it in
assembler. I certainly tried, but Micro-

96 0S-9 User Notes Volume I

ware C uses lots of internal subroutines
and a special static $torage location
called flacc (floating point accumulator)
to do floating point calculations. I had
lots of trouble finding the floating point
number and returning the number to the
caller. As you can see from the progranms,
my solution was to use C to do everything
in modf, and to find val and return a value
in frexp.

THE BUTTERFLY

It Jooks like the Computer Science
Depariment here at the University of
Rochester is going to get a computer called
a Butterfly. It is named after the network
used to connect 1its processors together.
The Butterfly that will be coming here has
128 68000 microprocessors. Each 6800C has
at least 512K of memory and, potentially,
its own buss. They are all able to read and
write one another’‘s memory. I hear that
this computer will have the fastest
instruction rate in the world. Of course,
instruction rates are an almost meaningless
measure, but won’t that be a marvelous com-
puter to develope paralilel algorithms on!

‘It’s coming with a UNIX-1ike operating sys-

tem, but I can’‘t help but wonder whether it
could run 0S-9.

DYNASPELL

Last summer at the CS$-9 Users Seminar I
met Dale Puckett at dinner -- before we
were both elected as Users Group officers.
I had been a 1loyal user of Dynaspell, a
program written by Dale Puckett, but 1
wasn’t entirely happy with it. In fact 1
had written a very mixed short review of it
in this column. During dinner I made Dale
sit through a careful explanation of my
criticism of his program, and a long dis-
cussion of what I thought 2 spelling check-
er should do.

Dale was very patient with me. He even
encouraged me to go into more depth about
my ideas for the perfect spelling checker.
1 told him that I would write a new, more
complete review of Dynaspell i{if he would
send me a version that deserved fresh con-
sideration. Some months later I got a
package from Dale including something pret-
ty close to my dream spelling checker. we
went through some iterations working out
various probiems. Now I owe Dynaspel® a
review. I have been very sliow about writ-
ing that review, so let me summarize here.
I'11 go 1into more depth ancther month.
Dynaspell isn’t perfect, but I haven’t been
able to find any bugs in the latest ver-
sion. It is much faster than the early
version I had. It is able to 1look near
misses up 1in its dictionary and suggest
corrections when it suspects a spelling
error.

My remaining complaint about Dynaspell
is that the new features don‘t go far
enough. The "look up" feature isn’‘t as
selective as a would like. It often finds
more possible speliings for a word than it
can fit on the screen. On the other hand
it sometimes doesn’t search widely enough
to find the correct spelling for me. b

also wish it would give me the features of
a screen oriented text editor when it finds
a spelling editor. Dynaspell! has a mode in
which spelling errors can be viewed in con-
text, but the context it shows is a screen-
full of the document up to and including
the word in error. 1 would l1ike to be able
to move forward and backward throught the
document, and to change words other than
the one in error.

I wused my early copy of Dynaspell
because 1 need a spelling checked badly and
it was the best I had. I use it more often
and more happily now. It is one of the
best spelling checkers 1 know: mainframe
programs included.

A NICE EXPERIENCE

Early last summer] bought a TeleVideo
870 terminal. They were just becoming
available on the market; in fact, 1 had a
hard time finding one. It seems the boat
bringing a large shipment in from overseas
had sunk. I'm not certain I believe that,
but it was definitely difficult to find one

10 buy. I finally found one, got it home,
and started using it. Nice terminal. Big
screen, hice Kkeyboard. Aimost too flexi-
ble.

After about a week I started finding
bugs. A few commands didn’t work right. I
called the number in the manual and talked
to an engineer. The next day I got a pack-
age via Federal Express with new firmware
ROMS. That wasn’t the end of the problems
with the terminal. I'm one of those annoy-
ing people who reads the entire manual then
tries all the strange combinations of com-
mands just to see what they will do, and
the 870 has a manual about two thirds of an
inch thick. The last time I called them I
told them that I needed a feature which was
documented in the manual, but which the
errata with the manual said was not imple-
mented (downloadable fonts). Without a com-
plaint they sent me a whole new logic board
which supports that feature.

I don’t think I would recommend the
TeleVideo terminal to most 0S-8 users. The
terminal costs over a thousand dollars.
That makes it hard to justify when a ade-
quate terminal only costs five or six hun-
dred dollars. For those who take terminals
seriously, it is worth what it costs. It
supports ANSI standard and VT52 contro}
seguences, and includes about every feature
I can imagine except full graphics (they
say that’s coming).

The best thing about the 9870 is the
excellent support TeleVideo gives. Many
large vendors seem to lose interest after
they sell you their product. TeleVideo has
gone out of their way for me again and
again.

TRICKS FOR LEVEL TWO

I just learned about 0S9P3 in the new
0S-8 System Programmer'’'s Manual. 1 have
often wished for an easy way to add System
Service Requests to D$-89. Under Level One,
it isn’t too hard, but under Level Two it

has reguired either slight of hand or very
strange practices. Only modules running in
the system address space can add Service
Requests, but 0S-S doesn’t include a way to
run a process in the system address space.
I have run device drivers and file managers
just to add Service reguests, and consid-
ered renaming 0SSP2 as 0SSP21 and adding my
own 0S8P2 which will 1ink to and call
0sSoP21.

Microware has included something 1like
that last trick in Level Two. After 0S9P2
is finished initializing (all it does is
set up a list of Service Requests) it tries
to find 0SSP3. There 1is no 0S8P3 unless
the user adds it to the boot file, so it
pgenerally fails to find the module, but if
it finds 0S9P3 it executes it as a system
moduie. This opens up 10ts of interesting
possibilities.

Other interesting possibilities are
suggested by the SS.SIG and SS.Relea SetS-
tat codes. SS.SIG instructs 0S-9 to send a
specified signal when data is ready from a
path. The easy use for this is to wait for
output from several paths at once. This is
especially good for things 1like "modem*
programs that need to wait for input from
two paths simul taneously. wWithout this
SetStat the only way to handle that problem
was to poll both paths.

It isn‘t difficult to write a program
that polls a number of paths. In fact,
polling is the way most of the more primi-
tive microcomputer operating systems work.
The problem with polling is that it wastes
tremendous amounts of CPU power. I seldom
type faster than 2 characters per second.
If a program has to poll for my input it
will look for something to read thousands
of times before it gets anything.

With SS.SIG it should be possible to do
a couple of SetStats and wait for a signal.
While an 0S-8 program waits it uses essen-
tially nothing but memory. This should
make modem programs and other programs with
similar probiems much more efficient.

The other use I can think of for S$S.SIG
is to solve the probiem that devices can’t
be preempted. If you have a system with
more than one terminal you have probably
noticed that if you send a message to
another terminal, the message waits until
the user at the other terminal types a car-
riage return, That’'s because there is a
program (e.g. the shell) trying to read
from that terminal. Until the read is fin-
ished 0S-8 won‘t allow any process to write
to it. SS.SIG gives us a way to break that
deadlock by not leaving a read active.

I have included a trivial program which
demonstrates the use of the SS$.SIG setstat
with this Column. It doesn’t do anything
useful -- just copies 1lines from standard
input +to standard output. The exciting
thing is that it works! I ran tstssig on
one terminal; typed a few lines into it to
make certain that it worked; left it at its
prompt, and went to my other terminal. I
typed

Echo Hi there >/term

on the other terminal and it appeared imme-
diately on the terminal running tstssig. I

Column Fifteen g7

went back to the terminal running tstssig
and typed a blank. The blank caused a si1g9-
nal to be sent to tstssig letting it pro-
ceed to the I%$Readln. Once the read was
“up" /term was locked. 1 tried to send
another message to /term and found that I
had to wait until I typed a carriage return

98 I®-9 Urar Notes Volume I

on /term before the message was delivered
and the echo command completed.

I wonder whether the §S.SIG trick
should be used as a matter of policy when
long waits for input are expected.

TSTSSIG

Microware 05-9 Assembler 2.1
tstssig — Test SSIG set stat

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010

%
3

*
o

87CD0072
54737473

01
3D3DBE

sekdededdetd
*

308D0050
103F09

308DFFF2
108E0003

8601
103F84A
2536

103F0A
D6

4
2000

tstssig has no

04/11/84 21:58:57 Page 001

nam tstssi
ttl Test SSIG set stat

. Test SS.SIG SetStat Service request. *
This program will copy lines from standard input *
to standard output without tying the device *
used for standard input up with a read, or using *
excessive amounts of CPU time by polling the *
standard input

path. ¥*

practical use that I can think of. *

Loop

StrtRead

DoEcho

DoSSIG

__ *
IFP1 use os9defs
ENDC
Type set Obéct+Prgrm
Revs set ReEnt+1
StdOut set 1
StdIn set 0 .
SSCode set 4 code used to indicate input wa
LineSiz set 100
Stacksiz set 200 .
mod TstLen,TstNam, Type,Revs,Entry,MemSize
TstNam fcs /Tstssig/
Edition fcb 1
Prompt fecs [==>/
PromptL equ *-Prompt N
Static Storage :
IntNo rmb 1 Save the signal from the trap
Line rmb LineSiz Storage for a line to echo
. rmb Stacksiz
MemSize equ .
Entry

Set up signal intercept trap

leax Trap,PCR Address of Interrupt trap code
0S9 FSIept

leax Prompt,PCR

1dy {#fPromptlL

lda StdOut .

0s9 SWrite Write the prompt
bcs Error

lda #Stdln

1db #SS.Ready

0S9 ISGetStt™ any data ready?

bcs DoSSIG No; wait for a signal

leax Line,U.

1dy #LineSiz

lda #StdIn)

0S9 ISReadln Read a line

bcs Error

lda #StdOut .

0S9 ISWritln and echo it back out

bes Error .
bra Loop Go prompt for the next line

ldb #SS.SSIG setstat function code
ldx #SSCode
0S9 ISSetStt

#0

0S9 FS$Sleep Sleep until an interrupt comes
s, B,
cmp ode
étrtRead
coma set carry
bra Error

Column Fifteen 99

Microware 0S—-9 Assembler 2.1
tstssig — Test SSIG set stat

00073

N=OOVONIANE WO WO IO B N

DO R N 1t et ot fead s b ok o o

MODF

OWONIANEWNO WO D WNI—

BB DO R =t b b o ot o ot oot e i
(VST N To

Lo

04/11/84 21:59:04

0064 Error
0064 C1D3 cmpb {#ESEof
0066 2601 bne Exit
0068 5F clrb
0069 Exit
0069 103F06 0S9 FSExit
Yo Y % S v v v e g vk Sk ook ot
I Trivial Interrupt trap
006C Trap
006C E7C4 stb IntNo,U
006E 3B rti
006F BAD34F emod
0072 Tstlen equ *

double

frexg(val 1ptr)

double

val;

?nt ’1ptr,

r %1
in

ster double *rp;
exp;

rp = &val;

/x

#asm

ldb 7,U
addb #1
sex
std

lda glz
sta

#endasm

1ptr =

fegurn(

/* modf

and stores the in
by ptr.

*

#define MAXLONG 134217727

double

at this point U contains

ﬁet C exponent

save exp

val)}

Page 002

EOF isn't an error

save the interrupt code

the address of val */

returns the €051t1ve fractional part of val.

modf (val, ptr)

double

val ptr;

double tmp;
if(gal > MAXLONG)

tmE
r

*ptr = val;
rgturn(O 05 ;

= (long)val;
= val - tmp,

return(tmp)

/* truncate to int by coercion to long*,

{7~9 User Notes Volume I

eger part in the double pointed to

* f

COLUMN SIKTEEN

STANDARDS

Several months ago I mentioned Smoke’s
special version of 0S-9 Level Two 1in this
column. The questions]I posed about its
compatibility with Microware 05-2 stirred
up a lot of commotion, but thanks to Don
Williams’ intervention no blood was shed.
Smoke Signal has agreed to give customers a
choice of the accelerated Smoke version of
0S-29 or the Microware version. I think
Smoke Signal deserves much credit for
offering their customers this alternative.
Some, perhaps mest, people who use 05-8
need extra speed enough to take the risk
associated with a version of 0S-8 not just
like everyone else’s. Cautious people
(like me) can ask Smoke to send them the
Microware version of D0S-9.

It probably seems strange that I, a
person who 1likes to fuss with operating
systems, should get so worked up about
changes to 0S-8. After all, 1 enjoy adding
non-standard features to 05-8; I even pub-
1ish some of them in this column.

Let me examine the question of stan-
dards from a few points of view. There are
things to be said for ignoring standards:
mostly that ignoring existing standards is
the way new, improved ones are born. How~
ever, consumers find standards convenient,
and producers typically find standards cru-
cial.

Good examples of standards that beg to
be ignored can be found in the busses
invented in the early days of microcomput-
ers. Engineers I know agree that the S$-100
bus is poorly designed. They would love to
be able to make a few changes to its speci-
fications. Our own SS-5C bus has gone
through some evolution, but extending the
address space beyond a megabyte will
require further changes to the standard.

I don’t know hardware very well, but I
imagine electrical engineers learn to work
around standards about the same way pro-
grammers do. Strict adherence to standards
even when they have been outgrown often
results in a "kludge." Either the old code
is left there and a new structure builit on
top of it, or it is entirely replaced with
code that does things "right," and adher-
ence to the standard is added on as a spe-
cial case, something ugly hanging off the
side of the new idea. Both of these solu-
tions look 1ike poor design.

IBM is a good example of a company, in
fact an industry, caught on a horns of a
standard. Years ago they invented the 360
architecture, a computer architecture that
they used for all their computers. The
idea of having a l1ine of compatible comput-
ers caught on nicely. Later, they extended
the 360 architecture to include virtual
memory and a few other goodies, giving the
370 earchitecture. It was also qguite suc-
cessful. Customers seemed to appreciate
being able to move to more powerful comput-
ers without rewriting any software. Most
recently, IBM produced XA, an extension of
the 370 architecture which 370 customers
can move to relatively painlessiy.

While these hardware changes were going
on, operating systems were being improved.
Programs that ran under MFT (an old operat-
ing system for 360s) should run with no
important changes under the latest version
of MVS. This level of compatibility exists
only because IBM has stuck grimly to its
standards. This practice has brought them
success, but not critical acclaim. I know
operating system experts who pretend to
feel sick when MVS is mentioned =-- with
some justification. That operating system
contains layer after layer of history. In
some places the complexity is so0 thick it
is practically impossible to figure out
what the programmer was trying to do. I
imagine that, if the effort which goes into
adapting MVS and 370 architecture to modern
needs were directed toward designing new
hardware and software, the result would be
much faster and more useful thanr IBM’s cur-
rent 370-type products. 1 bet there aré
numerous engineers and computer scientists
at IBM who yearn to junk the old standards
in favor of something better.

Standards like S-100, $§-50, and
360/370 architecture have tied manufactur-
ers to dinosaurs. They can’t depart from
their standards without hurting, and per-
haps 1losing customers. The big computer
and software manufacturers probably have
mixed feeling about standards. The consum-
ers of their products feel about the same
way.

It is hard to resist a sexy new comput-
er or piece of software. The non-standard
offerings are frequently faster and in var-
ious ways better thamn the more conservative
ones. The problem 1is that non-standard
computers or operating systems are risky.
The excitement of being the only person in
the state with some fast, elegant operating
system fades fast when you have troubles
with software availability.

We are lucky to be using hardware and
software that have good standards. CoCo
users are dealing with only one vendor and
one machine. It is a shame Tandy didn‘t
decide to use the same disk format all the
other 0S$-9 systems do, but at least that
problem is well known. It should be easy
to exchange software and bhardware between
CoCos.

The SS-50 bus is also a good standard
which has been carefully respected by the
vendors that support it. I ran my Gimix
disk controller board with a SWTPc CPU
board and memory boards from three differ-
ent sources for about a year with no trou-
ble. If all those manufacturers hadn’t
respected the S5-50 standard, I couldn’t
have done that.

Microware 05-9 is solid across all the
machines 1 know of. It is even possible to
move from Level One to Level Two without
changing software (provided the programs
were written to appropriate standards). An
0S-9 user can trade from a CoCo to a Helix
to a Gimix II1I system without rewriting any
programs excepl where they use special 1/0
features of each computer (1ike graphics on
the CoCo). A software house can use their
Gimix IIl1 system with its high speed and
debugping facilities to develop software
which will run on a CoCo. Usually we can
order software without paying attention to
the manufacturer of our machine.

Column Sixteen 101

The standards within 0S-8 are as 1mpor-
‘ant as the interface to user programs.
“e device drivers and other system modules

include with the column occasionally
saould run on any 0S-9 system with suitable
hardware. I rely on Microware to0o stick
with the interfaces between system modules
that they have specified. If 1 ever find
the money for it, I will be able to buy a
graphics board for my system. If the ven-
dor is selling it for the 0S-9 market, it
will come with software to hook it into my
system. That software will almost certain-
1y work because 1its author wrote it and
tested it on a system with the same inter-
faces between system modules as mine.

Programmers have the most to gain from

carefully followed standards. If someone
buys a program that doesn’t run on his com-
puter, he will complain -- maybe return the

program. This is a problem for the consum-
er, but for the author of that program it
is a disaster. Imagine what it would fee)
11ke to spend thousands of hours creating a
masterpiece of a program, then discover
that it would only run on a few of the com-
puters you had counted on for your market.
wWith Microware 0S-8 on any supported com-
puter a programmer can be confident that
that won’'t happen.

Programmers would 1like to see more
standards in the 0%-38 world. I have wished

and worked for a standard terminal inter-
face for a year now. It is a shame that
each programmer who wants to sell his pro-

grams has to invent a way to adapt his pro-
gram to whatever kind of terminal it might
encounter. A standard here would save days
in program development time for each pro-
gram that used it, encourage more program-
mers to use terminal features supported by
the standard, and give purchasers confi-
dence that a program would work with their
terminals.

STANDARDS THAT ARE THE USER'S
RESPONSIBILITY

If your system comes to you non-
standard in some way, you should complain
to the person responsibie. Once you have
it, it’s your baby. You can generate addi-
tional standards to simplify your system,
or let chaos grow in your system.

Several areas come to mind as good
places to institute standards. Directory
structure is an especially good place to
devise a standard. If you write a 1ot of
programs, you may need a naming convention.
A set of standards for documentation might
help keep it up-to-date.

There are two policies that can be used
to guide the construction of directory
structures. The directories can be
arranged by what the contents are (pro-
grams, text, spread sheet info.), or by
what they are for (sort programs, house-
hold, User Group files). Each method has
its charm. I use both, each where it seems
appropriate, but I wish I had decided early
which way I wanted to go and stuck with it.
Sometimes I have to search for minutes
before I find a file 1 haven’t used in a
few months.

102 0S-9 User Notes Volume I

It is a good guestion whether documen-
tation for a project should be in the same
directory with the source of programs for
that project, in a sibling of that directo-
ry dedicated to documentation for several
projects (or just for a single project), or
in a directory which is the child of the
directory with the socurce in 1t.

Some people think that directories
should contain either only other directo-
ries, or only data files. I don’t think 1
like that idea, but 1 can see some value in
it.

Program names deserve serious thought.
The shorter they are the faster they can be
typed. It is easier to type L than LIST,
but the shorter names are the more cryptic
they become. LOOK or LOGOFF could also be
abbreviated L. It has to be clear what the
abbreviation stands for. It makes sense to
me to give short names to frequently used
programs. The names of the commands will
stay fresh in the mind if they are fre-
quently used even if they aren’t very mne-
monic. Less frequently used programs
should have longer names both to save short
names for more frequently used commands,
and to jog the memory about their function.

THE USERS GROUP

The 0S-9 Users Group plans to submit a
1ist of "requirements® to Microware at the
0S$-9 Seminar this summer. If you have
spotted a flaw in Microware’'s software that
you think is of general interest, or would
like to suggest that a new feature should
be added to one of their products, this
would be a good way to bring it to Micro-
ware’'s attention. Submit your suggestion
in writing to the Users Group early enough
that it will reach us at least a few weeks
pefore the Seminar. Please keep it to
about a page or less. We will have copies
of all the suggestions available at the
Users Group booth at the seminar. The sug-
gestions will be discussed at the Users
Group meeting and those about which we can
reach a consensus will be given to Micro-
ware. we will try to get an official
response to each suggestion from Microware
-- something like: impossible, not inter-
ested, will do, wonderful suggestion, or
already done.

COLUMN SEVENTEEN -- THE
FIRST STEP INTO 0S-9

There has been some call recently for
information for the beginning user of 05-9.
Color Computer users new to 05-9 feel
swamped by the number of details involved
in the operating system. This column is an
attempt to make 0S-9 seem simpler to new
users.

The 0S-8 operating system has started
to develop a reputation for complexity and
obscurity =-- in other werds, user hostili-
ty. It is an unjust accusation. The thing
that makes 0S-9 appear confusing is the way
it is presented. There are many subtle
features 1in the operating system, and a
large array of utilities. The manuals that
come with it could help but don’t. The
0S-9 manuals were written as reference man-
uals, not tutorials. They drop everything
on you at once. A new 0%-9 user who is
experienced with computers or very brave
should read the manuals, wrap his mind
around the whole thing, and sit down at the
computer to enjoy 0S-9. That is the quick,
brute force, way to learn 0%-8, but iif it
doesn’t work for you, I recommend a gentier
approach.

My copy of CoCo 0S-8 includes about
fifty commandgs. A1l these commands are
important to at least some people, but most
of them are only confusing to to new 0S-8
users. The entire English language
inciudes more than a hundred thousand
words, but most people only use fewer than
twenty thousand of them, and it is possible
to communicate with a vocabulary of a thou-
sand words or less. Operating systems like
Unix and 0S-9 are much like English in that

respect. 0Of all the commands available
under 0S5-9 about a dozen are really neces-
sary. The bare minimum set of 0S-8 com-

mands are:

. backup
. copy

. del

. dir

. edit

. format
. free

. list

. rename
. shell
The shell 1is the program which processes

the commands you type into 0S-8 and runs
the other commands. Several commands are

built into the shell. They are:
J chd

. chx

. ex

. w

. kil
. setpr

The only shell commands that you really
need to know are chd and chx, If you mean
to do assembly language programming you
will also need:

. asm

. debug

If you will be using BasicO8 you will need:
. Basic08

. RunB

. GFX

Of atll these commands there are four
that need explanation especially badly.
Format needs to be discussed because it is
dangerous; if it is used carelessly it can
destroy important information. BACKUP is a
relatively fast way to copy an entire disk
(it is a good thing to get into the habit
of doing this):; perhaps a careful discus-
sion of BACKUP will encourage people to use
it more. Explaining DIR is a good excuse
to say a few things about directories: an
important feature of 05-9. CHX and CHD
aliso relate to directories, and seem
straightforward. What they are supposed to
do matters less to a person with a 0S-9 on
a small computer than their unofficial side
effects.

FORMAT

The format command is the first one to use.
Until a disk has been formatted it is unu-
sable to 0S-8. The format command writes a
pattern on the disk which marks the disk
off into sectors (which amount to pigeon-
noles for 0S-9 to store data in). After
writing the pattern format checks the disk
to make certain the pattern is recorded
correctly on the disk. If it isn’t, format
will note that the sectors where the errors
occurred are faulty, and those sectors
won’t be used to store data. Format also
writes some information which will be used
to manage files on that disk. In the pro-
cess of doing all this the format program
completely erases the disk. If the disk is
fresh out of a box of new disks you can
feel certain that there is nothing on the
disk that you care about, but, if it is one
you are recycling, be careful. After for-
mat s started any data that was on that
disk is gone forever.

Put the disk you want to format in the
drive you aren‘t using for the system disk
(I'm going to assume you have your system
disk in the drive 0$-9 calls /DO, and the
disk you want to format in drive /D1).
Invoke the format command by typing FORMAT
/D1 at the 0S-9 prompt. The command 1ine
should look like:

0S9 : FORMAT /D1

to which you should get the response:

Column Seventeen -~ The First Step Into 0S-9 103

COLOR COMPUTER FORMATTER
FORMATTING DRIVE /DI
Y (YES) OR N (NO)
READY?

This is format giving you a chance to
change your mind. It is also a way for you
to format disks if you only have one drive,
by asking format to format the disk in
drive /DO and replacing the system disk
with the disk you want to format in at this
point. In either case double check that
you are about to format the correct disk.
If you want to be especially safe take your
svstem disk out of drive /DO at this point
even if you are formatting the disk in
drive one. There is no danger of format
writing on the wrong disk, but you can’t be
too careful. If you reply N to the READY?
prompt format will quit immediately leaving
the disk intact. If you reply Y, there
will be a pause (23 seconds on my CoCo)

then format will prompt you for a name for
the disk. The prompt will look 1like:

DISK NAME:

At this point enter the name you have
assigned to the disk. The name can be up
to 32 characters long and may include
blanks. Folilow the disk name with an
ENTER. Format will now check the disk. As
it checks each track on the disk it will
write the track number to the screen in
hexadecimal (base 16). If you have a thir-
ty five track drive, the numbers will be
from 000 to 022. Then format will print
the message:

NUMBER OF GOOD SECTORS: $000276

I1f the number is smaller than 276 (a base
16 number which 1is 630 in decimal) some
sectors were faulty.

If you want to demonstrate to yourself
at format did something to the disk try
e FREE command on the new disk. Enter

~ne command FREE /Dit. The command 1line
should l1ook tike:

0S9:FREE /D1

The response should be something like:

disk name CREATED ON 84/01/24
CAPACITY; 630 SECTORS (1-SECTOR
CLUSTERS)

620 FREE SECTORS, LARGEST BLOCK
620 SECTORS

wWhere "disk name" in the first line of the
response will be the name you gave the disk
when you formatted it.

BACKUP

The next command to use after the format
command is BACKUP, It is crucial to have a
backup copy of each software distribution
disk you have. If you make an error that
damages the only disk with an significant
piece of software on it you will have ‘o
wait until you can get a replacement for
the disk before you can use your computer
again. Even if the time wasted waiting for
the replacement disk isn’t important to
you, consider that replacement disks cost
money .

104 0S-8 User Notes Volume I

Backup is a relatively fast way to cre-
ate an exact copy of a disk. It has many
options, but the simplest way to use the
command is to just give the command BACKUP.
The command 1ine should look like:

0S9:BACKUP The resgonse will be:
gEADY TO BACKUP FROM /DO TO /D1

At this point put the disk you want to copy
in /DO and a formatted disk which has noth-
ing you want to keep on it in drive /D1
Then check the disk in /D1 BACKUP will
erase anything that’s on that disk. when
you are certain everything is 0K type Y.
Now BACKUP will double check with you by
telling you the name of the disk in drive
/Di. The message will look like:

THE DISK
IS BEING SCRATCHED
OK ?: ’

‘.

If you reply Y to this, the backup from the
disk in /DO to the disk in /D1 will take
place. The disk in /D1 will become an
exact copy of the disk in /DO right down to
the disk’s name.

The BACKUP command takes what seems
like a 1long time to run. There are two
things that can speed it up. One is to use
the -V option which prevents the cecpy from
being verified. I don’t suggest that any-
one use this option. The other way to
speed BACKUP up is to instruct 0S-8 to give
it extra memory to run in. BACKUP can use
extra memory to run more Qquickly. BACKUP
ran for one minute 58 seconds when I start-
ed it with the command line:

0S9:BACKUP

Normally BACKUP uses 19 pages of memory.
If you give it more -- say 100 pages --
with the command 1ine:

059 :BACKUP #100

it runs in one minute 48 seconds. It is
also gquieter because the heads on the disks
don’t load and unlocad as often.

DIR

The command which tells you what files are
one your disks is the the Dir (short for
directory) command. If you just type DIR
after booting 0S-9 you will get a response
1ike

DIRECTORY OF . 23:55:08
0SSBOOT CMDS SYS
DEFS STARTUP

This means that you are listing the current
directory which is known by the pseudonym
"." at 11:55:08 in the evening. The files
in that directory are 0SSBOOT, CMDS, SYS,
DEFS. and STARTUP. Now , in fact only
0SSBOOT and STARTUP are normal files, the
other three files are subdirectories. Sub-
directories are such an interesting topic
that they were the subject of their own
column some months ago, and won’t be cov-
ered any more than absolutely necessary

here. To find out more about the files than
their names use the command DIR E.

0S9:DIR E
which will respond:

DIRECTORY OF . 23:59:57
CREATED ON OWNER NAME
ATTR START SIZE
83/06/02 1921 OS9BOOT
------ A 3032
83/06/02 1956 0 CMDS
D-EWREWR 3C 6A0
83/06/02 2002 0 SYS
D-EWREWR 164 AQ
83/06/02 2002 0 DEFS
D-EWREWR 17F Co
83/06/02 2003 0 STARTUP
-=—-R-WR 1F5 E

then it will stop because the screen is
full. when you are ready to continue hit
any key I usually press the space bar.
That was the end of the directory, so all
you get after you let the output continue
is a few btank lines and a new 0SS prompt.

Two of the fields in the DIR E output
are of no special interest until you become
an advanced 0S$-8 user: OWNER, and START.
The first two fields for each file are the
date and time the file was created. The
date is in the usual YY/MM/DD format and
the time is in HHMM format with hours rang-
ing from OO0 to 23. The attributes field
contains information about what the file
can be used for. The main thing now is
that files with a D as the first character
in the attribute field are directories.
Files with a dash as the first character in
their attribute field are normal files.

The other option which can be used with
the DIR command is X. The X option is a
short hand way to get the directory of the
execution directory; that is, the directory
05-9 searches for programs, l1ike the com-
mands, you ask it to run. The command
line:

DIR X

will give you a rather long 1ist of all the
files in your execution directory. If you
haven’t written any of your own programs,
this will be a l1ist of all the commands and
utility programs which came with 05-9. You
will probably have to press the space bar
in the middle of the output of this com-
mand. It is more than one page long.

CHX AND CHD

Chx stands for Change Execution Directory,
Chd for Change Data Directory. 0s-8
expects to fing alil commands, whether they
are part of the operating system or some-
thing you wrote, in the execution directo-
ry. A1l files that you don’t mean to exe-
cute are looked for in the data directory.
(There are ways around both of these
restrictions, but let’s skip that for now.)
After you boot 0S-2 you will find that the
execution directory is /DO/CMDS and the

data directory is /DO. If you have a sec-
ond drive (I have been assuming that you
do) you will probably want to use that for
data. The command:

CHD /D1

will cause all future references to data
files to Yook for them on /Di.

To speed 0S-9 up, the location of the
directory file on the disk is kept in memo-
ry. This leads to the side effect of the
Chd and Chx commands. when you read the
directory 0S-9 goes directly to the direc-
tory’s location on disk and starts reading
... imagine what would happen if you fooled
0S-9 by changing disks. You change disks
and type a command 1ike

LIST FOO
or even just DIR. Your operating system
will start reading where the directory is
supposed to be. Since the disk with a

directory at the selected spot is sitting
in its envelope and some other disk is in
the drive, 0S-8 will find something unex-
pected where the directory was. The resutlt
could be any of several error messages.
The solution to this problem is to always
give 0S-8 a chance to find the directories
on a new disk by giving it Chad and Chx com-
mands as necessary when you change disks.

There 1is one last tricky thing about
the Chx/Chd commands’ special use. If you
keep things simple it will seem that vou
only need to use the Chx command, but this
is just a special case. 1 suggest that you
learn how to make girectories and use them
when you can, but, until you start using
them, the new disks you use to store data
will only have the directory FORMAT auto-
matically creates (calied the '"root direc-
tory"). The root directory is always at
the same location on a disk. Because of
this special fact about the root directory
0S-8 1s always able to find it, and chang-
ing disks that only have the root directory
on them won’t cause any trouble. The exe-
cution directory is usually not the root
directory, so this special case doesn’t
generally apply to it.

The set of commands I have mentioned in
this column might be considered a “starter
set" for 0S-8. The dozens of commands I
left out are certainly worth learning, but
you can get 0S-8 working with these few.

OOPS

I neglected to mention a few months ago
that OFlex as reviewed 1in this column is
available only from Gimix. Richard Don,
the salesman for Gimix, explained the gen-
eoclogy of OFlex to me. It is Flex by TSC
adapted by Richard Hogg to run under 05-8.
Gimix provides enhanced disk Device Drivers
to support Flex’s requirements, and made
some enhancements to Richard Hogg’s design.
Anyone who takeus out licenses from TSC and
Richard Hogg can sell OFlex, but the ver-
sion 1 reviewed has features added by
Gimix.

Column Seventeen -- The First Step Into 0S-9 105

106. 0S-9 User Notes Volume I

COLUMN EIGHTEEN

MY LIFE

I‘m afraid this month’s column will be a
little short. I just bought a house.
Nothing major wrong with it, but I‘m living
in the first floor while I fix up the
upstairs. Pites of boxes are everywhere,
and it seems like everything I need is in a
box at the center of an unknown pile. This
disorder has not helped me get a 1ot of
computing done.

I don’t mean to turn this column into a
diary, but there are a few other important
items. A kitten is helping me write this.
I got him to help make my house seem home-
like, but he likes to help type. I enjoy
his help, but I hope he will switch to
sleep-in-the-lap mode soon.

This fall I will finally become a full-
time graduate student. I have been study-
ing Computer Science part time for years,
but it seemed that the field was moving
ahead faster than I was learning it. It is
a scary business going back to college
after being a working man for years, but
I'm fairly quivering with eagerness. I
have one more column to write as a free
man, then 1 will be a student. I think 1
can get permission to keep writing this
column. I hope my studies add some spice
to my writing.

NON-STANDARD HARDWARE

A fair amount of the 05S-8 mail I get
asks about special versions of 0S-S. Many
people have old SWTPc systems they would
like to run 0S-S on. There are a2lso a few
people with home-brew 6808 systems who’'d
like to port 0S-8. The news for these peo-
pie is mostly bad.

There used to be a SWTPc version of
0S-9 Level One, but I don’t think it is
solid any more. O0S-9 Level Two is sold only
through hardware manufacturers, and SWTPc
hasn’'t licensed it. If you have your own
home-brew design, you can license 0S-9 from
Microware, but the price is ridicuious
unless you mean to sell it.

Two years ago (or more) Microware used
to sell a2 generic version of 05-9 Level
One. You could buy it directly from Micro-
ware and adapt it to whatever system you
wantea. 1 guess a few people must have
purchased that version of DS-8 and tied up
Microware’s hotline for days with the trou-
ble they had getting 1t going. The effort
they had to put into helping people use the
generic 0S-8 was more than Microware could
afford, so they dropped the product. This
policy seems to be mainly a way of avoiding
piracy. The theory is that if the people
who sell the hardware have to buy the right
to sell DS-9, they will see to it that peo-
ple buy an operating system insteac of
stealing it.

Officially there is no way to get 0S-8
for your SWTPc, or home-brew machine.
Unofficially, there are ways. An important
features of 0S$-9 is its hardware indepen-

dence. The clock and I/0 devices are han-
died by drivers. The interfaces to the
drivers are general enough that any reason-
able hardware can be accommodated. Micro-
ware will sell the source to several device
drivers and a few clock drivers. with a
copy of 0S-9 for any machine, a working
0S-8 to build the new 05-8 on, and a col-
lection of source from Microware it should
be possible for an experienced programmer
to adapt 0S-8 to any 6808-based machine I
have heard of.

It isn’t hard to buy a copy of 0S-9 to
customize. Try a few manufactures. when I
was building crazy systems I did a lot of
business with AAA Chicago6 Computing; they
might be able to help you. You don’t care
what version of 0S-8 you get unless you can
pget one that is already partly compatible
with your system. You’1ll have to write a
clock driver, a disk driver, and, if you
use an unusual serial chip, a SCF driver. '
If you want to adapt Level Two, you’ll have
to buy a version of 0S$5-9 that is designed
for the memory management hardware you
have. Memory management is done in the 0S-9
kernel (0SSP1). It isn‘t easy to adapt
without lots of source code the kind
of source Microware sells as part of an OEM
license very expensive.

If anyone has 0%-8 running on unsup-
ported nardware let me know. Microware
doesn’t officially want to support you, but
they might not object if we set up a func-
tion of the Users Group to help you out.
If there 1is enough interest, maybe we can
find a reliable source of adaptable 05-8.
In any case, 1’11 report any tips you send
me in this column.

DIRECTORIES AS FILES

A directory is a special type of file,
If they are handled correctly, they can be
opened and used without much trouble. If
you try to list or dump a directory file,
you will have trouble. Directory files can
only be opened using the directory access
mode; and Dump, List, Copy, and most other
0S-9 utiiities don’t use this mcde.

The easiest thing to do with a directo-
ry is to simply read it and copy it to
standard output. The program called DList
copies the current directory to standard
output. You can see the contents of the
current data directory by assembiing DList
and typing

0S9: DList ! Dump

Directories contain many unprintable char-
acters, so if you don‘t use Dump to format
the output you will get gibberish on the
screen. You may even make your terminal do
strange things.

It occurs to me that Radio Shack seills
the least expensive 0S$-9 around. Micro-
ware has a few versions of Level One for
Motorolla systems that they can sell.
The Radio Shack 0S-8 has a non-standard
disk format that you can avoid by buying
the more expensive Motorolla software.

Column Eighteen 107

I have a directory with only the file 0S9:DList ! Dump >tmp
containing DList in it. I ran DList with
the command 1ine: The contents of Tmp are listed in Figure 6.
Addr 01 23 45 67 89 AB CD EF 02468ACE]
0000 2EAE 0000 0000 0000 0000 0000 0000 0000cccveeevenn
0010 0000 0000 0000 0000 0000 0000 0000 OlBY9vivvveesea9
0020 AE0Q 0000 0000 0000 0000 0000 0000 0000evvinnunnnn
0030 0000 0000 0000 0000 0000 0000 0000 054Dvereeaesss.M
0040 746D FO00 0000 0000 0000 0000 0000 0000 tmp......eveewsn
0050 0000 0000 0000 0000 0000 0000 0000 0765ovevenen
0060 &444C 6973 F443 4830 B700 0000 0000 0000 DListCHO7.......
0070 0000 0000 0000 0000 0000 0000 0000 0763 ...ciiivcecassst
Figure 6: Hex dump of a directory
Each entry in the directory takes two lines It would be nice to add the "e" option
in the dump. The first two entries are to the 1d command, but an extended directo-

self~referencing. The entry 1is first;
the name ".." (2EAE) is at the beginning of
the entry. The disk address of the file
descriptor (0001B8) for the parent of this

directory is at the end of the entry. The
second entry is for *“.* (AE) which is the
alias for this directory. The address

associated with that (00054D) points to the
file gescriptor for this directory.

The entry for tmp is for the file I put
the dump into. The last entry looks 1like
it is for DListCHO7, but if you look at the
hex part of the dump you will see that the
high bit of the "t" is on, meaning that it
is the last character in the string. The
characters "CHO7" are an artifact of a pre-
vicus use of the entry for the file
SCRATCHCT.

DList could be changed to edit the con-
tents of the directory before passing it to
standard output. The first two entries are
always for "." and "..". There is usually
no need to notice them. There can also be
null entries in the directory. When a file
is cdeleted the first byte in the directory
entry is set to $00 making it into a null
entry. DList could check for null entries
and suppress them.

DList2 is an enhanced version of DList.
It uses I$Seek to skip the first 1two
entries, then copies all entries that don’t
start with $00 to standard output.

The next feature to add would be for-
matting the output so it could be read
without wusing Dump. The address of the
file descriptor isn’t likely to be worth
seeing often, so the final program, 1d,
just prints the file names. A useful
directory list program needs to be able to
1ist the contents of directories other than
the current default so I added that func-
tion. Ld can take a directory name on the
command line. It wouldn’t be too hard toO
add the x option by opening the directory
with the execution attribute, but that’s a
function I didn’t add. The program deter-
mines whether a directory name was given by
checking the length of the parameter area.
If the parameter area is only one byte
long, it only contains a carriage return,
otherwise it contains a directory name ter-
minated with a carriage return.

108 0S-9 User Notes Volume I

ry involves lots of numbers and dates. The
code to format all that information would
make a long program. Instead, I have writ-
ten a Basic09 program that takes the output
of DList2 and generates a more extensive

report. There is room, for lots of improve-
ment i{in DFormat; I only print the file
name, creation date, last modified date,

and file size, and I don’t sort the list in
any special order. Improvements 1ike these
are, as they say., “left for the reader."

Each directory entry contains the disk
address of the file descriptor sector for
the file. The file adescriptor contains all
the interesting informatyon about a file.
we need to read the file gescriptor, but
all we know is its disk address, and the
only way to get at a2 particular sector on a

disk is with physical-sector I1/0. Normally
physical-sector 1/0 is done by opening a
device; e.g. dump /DO&. Since there is no

easy way to find out the name of the drive
the directory is on, the /DO€ type of trick
isn’t useful. There is an interesting var-
iation on physical~sector 1/0 which I
haven’t been able to find documented any-
where. If you open the file €&, it will
open the drive the data directory 1s on for
physical 1/0. I1f you open it for execu-
tion, it will open the drive with the exe-
cution directory on it for physical 1/0.

Since DList2 is feeding this program,
and DList2 can only read the current data
directory, DFormat assumes the directory is
on the same disk as the data directory.

I ysed a useful
command .
a u/u
mat.

trick from the UNIX s
Directory files are indicated by
after them in the 1isting from DFor-

If you have a UNIX-like sort program
available the combination of DList2 and
DFormat can be made even more useful. By
sorting on the various fields in the output
from DFormat you can get the listing alpha-
betically by name, by increasing size, or
in chronoiogical order.

If you have RunB type DFormat in,
it, and pack it. Then use
mand Tine like:

0S9:DList2 !

save
it with a com-

DFormat

If you don’t have RunB,
something like:

DLIST PROGRAM

Microware 0S-9 Assembler 2.1
DList - List the Current Directory

00001

you’ll need to use

nam
00002 ttl
00003 IFP1
00005 ENDC
00006 0011 type set
00007 0081 Revs set
00008 0000 87CD0043 mod
00009
00010 D 0000 DPath rmb
00011 D 0001 Buffer rmb
00012 p 0021 Stack rmb
00013 D OOE9 Memsize equ
00014
00015 000D 444C6973 Name fcs
00016- 0012 01 Version fcb
00017 0013 2EAO Dirname fcs
00018
00019 0015 Entry
00020 0015 8681 lda
00021 0017 308DFFF8 leax
00022 001B 103F84 0S9
00023 00lE 251D bes
00024 0020 9700 sta
00025 0022 RLoop
00026 0022 3041 leax
00027 0024 108E0020 ld
00028 0028 103F89 0S
00029 002B 250B bes
00030 002D 8601 1da
00031 002F 103F8A 0S9
00032 0032 2509 bes
00033 0034 9600 l1da
00034 0036 20EA bra
00035 0038 TEof
00036 0038 C1D3 cmpb
00037 003a 2601 bne
00038 003C 5F clrb
00039 003D Error
00040 003D 103F06 059
00041 0040 69C250 EMOD
00042 0043 MEnd equ
00000 error(s)
0 warning

0S9:DList2 ! basic09 DFormat

07/13/84 12:07:52

DList

List the Current Directory

PRGRM+0OBJCT
REENT+1

MEnd,Name, Type,Revs,Entry,Memsize

/DIR.+READ.
irname, PCR
I1SOpen

Error

DPath

#1 Std output
ISWrite

Error

DPath

RLoop

FESEOF
rror

FSExit return
*

Directory path number .
buffer for directory entries

s .
ogram bytes generated

00E9 00233 data bytes allocated
223F 08767 bytes used for symbols

§0043 00067 pr

Column Eighteen

Page 001

109

JLIST2 PROGRAM

ticroware 0S-9 Assembler 2.1
.sL1st2 - List the Current Directory

:0001

nam
30002 ttl
(0003 IFP1
00005 ENDC
00006 0011 type set
00007 0081 Revs set
00008 0000 87CD0057 mod
00009

00010 D 0000 DPath rmb
00011 D 0001 Buffer rmb
00012 D 0021 Stack rmb
00013 D 0OE9 Memsize equ
00014

00015 000D 444C6973 Name fcs
00016 0013 01 Version fcb
00017 0014 2EAO Dirname fcs
00018

00019 0016 Entry

00020 0016 8681 l1da
20021 0018 308DFFF8 leax
00022 001C 103F84 0s9
00023 QO01F 2530 bes
00024 0021 9700 sta
00025 0023 3440 shs
00026 0025 CEO0040 du
00027 0028 8E0000 ldx
00028 002B 103r88 0S9
00029 002E 3540 uls
00030 0030 251F cs
00031 0032 RLoop

00032 0032 3041 leax
00033 0034 RLoop2

00034 0034 108E0020 id
00035 0038 103F89 0S
00036 003B 250F bes
00037 003D 6D4l tst
00038 Q03F 27F3 beq
00039 0041 8601 lda
00040 0043 103r8a 059
00041 0046 2509 bes
00042 0048 9600 1da
00043 004A 20E6 bra
00044 004C TEof

00045 004C C1D3 cmpb
00046 O04E 2601 bne
00047 0050 5F clrb
00048 0051 Error

00049 0051 103F06 0S9
00050 0054 C80070 EMOD
00051 0057 MEnd equ

00000 error (s)

warning (s)
$0057 00087 program bytes generated
SO0E9 00233 data bytes allocated
S224E 08782 bytes used for symbols

110 0S-9 User Notes Volume I

07/13/84 12:08:17

Page 001
DList2 '
List the Current Directory
PRGRM+OBICT
REENT+1
MEnd,Name, Type,Revs,Entry,Memsize
1 Directory path number
32 buffer for directory entries
200
{DListZ/
/. /

!DIR.+READ. file access mode
irname,PCR file name "."

I1SOpen
Error
DPath save the path number
U save U
?32*2
10 ,
I$Seek skip over . and .. entries
U restore U
Error
Buffer,U
{32
ISRead
TEof
Buffer,U null entry?
RLoop2 es: skip it and read again
1 td output
ISWrite
Error .
DPath directory path
RLoop read again
#ESEOF Is this EOF?
Error no; error
yes; return happy
FSExit return

b

LD PROGRAM

Microware 0S-9 Assembler 2.1 07/13/84 12:08:29 Page 001
ld - List Files in a Directory

00001 nam 1d . .)

00002 ttl List Files in a Directory

00003 IFP1

00005 ENDC

00006 0011 type set PRGRM+0BJCT

00007 0081 Revs set REENT+1

88888 0000 87CD0072 mod MEnd,Name,Type,Revs,Entry,Memsize
00010 D 0000 DPath rmb 1 Directory path number
00011 D 0001 Buffer rmb 32 buffer for directory entries
00012 D 0021 Stack rmb 200

00013 D OOE9 Memsize equ .

00014

00015 000D 6CE4 Name fecs /1d/

00016 00OF 01 Version fcb 1

00017 0010 2EAQ Dirname fcs /. /

00018

00019 0012 Entry

00020 0012 10830001 cmpd #1 length of parameter string
00021 0016 2204 bhi 1rNGivn

00022 * If more than one byte of parameters

00023 * assume file name on command line. Otherwise use "."
00024 0018 308DFFF& leax Dirname,PCR use "." as directory
00025 001C DirNGivn

00026 001C 8681 lda #DIR.+READ. file access mode

00027 OOlE 103F84 0S9 ISOpen

00028 0021 2532 bes Error

00029 0023 9700 sta DPath save the path number

00030 0025 3440 shs U save U

00031 0027 CEQO040 du #32%2

00032 002a 8EQ000 l1dx 0

00033 002D 103Fr88 0Ss9 ISSeek skip over . and .. entries
00034 0030 3540 uls U restore U

00035 0032 2521 cs Error

00036 0034 RLoop

00037 0034 3041 leax Buffer,U

00038 0036 RLoop2

00039 0036 108EQ020 ld #32

00040 003A 103F89 0s ISRead

00041 003D 2511 bes TEof

00042 O0O3F 6D41 tst Buffer,U null entry?

00043 0041 27F3 beq RLoop2 es: skig it and read again
00044 0043 8D13 bsr Edit repare file name for printing
00045 0045 8601 lda #1 Std output

00046 0047 103F8C 0s9 ISHritLln

00047 004A 2509 bcs Error)

00048 004C 9600 lda DPath directory path

00049 OO4E 20E4 bra Rloop read again

00050 0050 TEof)

00051 0050 C1D3 cmpb #ESEOF Is this EOF?

00052 0052 2601 bne rror no; error

00053 0054 5F clrb yes; return happy

00054 0055 Error .

00055 0055 103F06) 0S9 FSExit return

00056 0058 Edit

00057 0058 5F cirdb

00058 0059 ELoop

00059 0059 6D85 tst B,X

00060 005B 2B0O7 bmi ELoopX .

00061 005D 270B beq EError A name can't end in a null
00062 0O5F 5C inch

00063 0060 Cl1D empb #29

00064 0062 25F5 blo Loop A name can't be more than 29 b
00065 0064 ELoopX

00066 0064 860D lda #S0D <CR>

00067 0066 5C incdb

00068 0067 A785 sta B,X

00069 0069 39 rts

Column Eighteen 111

Microware 0S-9 Assembler 2.1 07/13/84 12:08:32 Page 002
id - List Files in a Directory

Q0070 0064 EError

00071 0064 860D lda #S0D

00072 006C A784 sta , X Return null line for errors
00073 006E 39 rts

00074 006F 6FABBC EMOD

00075 0072 MEnd equ

00000 error(s)

00000 warning(s)

S0072 00114 program bytes generated
SOOE9 00233 data bytes allocated
$2299 08857 bytes used for symbols

DFORMAT PROGRAM

PROCEDURE DFormat
0000 TYPE dirfmt=name:STRING[29]; 1sn(3):BYTE

001B TYPE SegLFmt=SLsn(3) :BYTE; Seglen:INTEGER
0031 TYPE fdimt=attr:BYTE; owner:;INTEGER; ModDate(5),LinkCt,
‘ . _FileSize(4),CDate(3) :BYTE; SegLlist (48):SegLFmt

0070 DIM DirEnt:dirfmt

0079 DIM FD:fdfmt

0082 DIM Real LSN:REAL

0089 DIM i,errnum:; INTEGER

0094 DIM PPath:BYTE \REM Physical I0 path number

00B6 OPEN #PPath,"@":READ

00C2 LOQP

00C4 GET #0,DirEnt

00CD ON ERROR GOTO 10

00D3 REM Change name from assembler string format to

0102 REM Basic09 string format by plunking a $00 at the end of it.

013E FOR 1=1 TO 29

014E EXITIF ASC(MIDS (DirEnt.name,i,1))>127 THEN

0164 DirEnt.name=LEFTS (DirEnt.name,1)

0177 ENDEXIT

017B NEXT 1

0186 REM change the LSN of the FD sector from three bytes

01B9 REM to a real number ¢

0lcc Real LSN=DirEnt.1sn(3)+256* (DirEnt.1sn(2)+256%

- DirEnt.lsn(1))

01lF4 SEEK gPPath,Real LSN*256

0203 GET #PPath,FD —

020D PRINT DirEnt.name;

0216 IF FD.attr>127 THEN

0225 PRINT “/";

022B ENDIF

022D PRINT " “; FD.ModDate(l); "/"; FD.ModDate(2); "/";
FD.ModDate(3); " "; FD.ModDate(4); ,

0265 PRINT "-"; FD.ModDate(5); " ; FD.CDate(l); "/";
FD.CDate(2); "/"; FD.CDate(3);

029C PRINT " "; FD.FileSize 4)+256*(FD.Fi1eSizeS?)+256*
(FD.FileSize (2) +256*FD.FileSize (1)))

02D2 ENDLOOP

02b6 10 REM error handler

02E9 errnum=ERR

02EF IF errnum=211 THEN \REM end of file

0309 CLOSE {#PPath

030F END

0311 ELSE

0315 PRINT "Error number '"; errnum

0324 END

032C ENDIF

032E END

112 0S-9 User Notes Volume I

COLUMN NINETEEN

MORE GAMES WITH DIRECTORIES

Last month I discussed reading from direc-
tory files. This month 111 stay with
directories and add some additional tricks.

The directory formatting command at the
end of this column is a useful version of
the DIR command. It doesn’t illustrate any
ideas that weren’t covered in last column,
but it is a single program that is faster
to use than the pipeline of programs 1 pre-
sented last month.

I have found that C is a good language
to write quick system level programs. Of
course, assembly language still has some
advantages over any high-level language;
not least +that almost everyone with 0S-9
has an assembler. A functional directory
command in assembler would be just too long
for one month’s column, and not interesting
enough to devote several months to. So the
first program for this column is an inte-
grated directory formatting command. It is
written in C. It could be translated to
Basic08 without too much trouble, but that
would require loading Basic0O8S every time
you want to list a directory. Sorry, peo-
ple without C.

Radio Shack is selling Microware C at
an impressively low price. It is a good
investment.

Think of dr as a good starting point.
It is easy to get it to sort its output.
Adding the ability to select only files
that meet certain c¢riteria for display is
harder but useful enough to be worth the
effort. working this up into a full-screen
command environment is something I’'ve been
promising myself time to do ..., but I
haven’t yet.

You can write directories as well as
read them. There are good reasons to do
this. Renaming files is one reason. The
rename command simply writes a new name
over the old one in the directory. Delet-
ing and creating files are other reasons to
write intc directory files, but RBFMan
takes care of those operations. Most other
things you would want to change about a
file invoive writing into the file descrip-
tor sector for the file. That’'s just as
easy as writing the directory. Easier.

There is an easy way to make C read a
directory file, but there is no eguivalent
method for updating directory files. The
combination of attributes required to write
into a2 directory can be used from assem-
bler, or from the lower level parts of C,
but it seems Microware wanted to make it a
bit tricky to mess with directories.
Before I continue 1let me add to their
implicit warning. If you are not brave and
experienced don’t even think of updating a
directory file!

writing on directory files is a danger-
ous thing to do. If you make a mistake you
can loose files, or even mess up the struc-
ture of the entire disk. DON’'T jump in and
try programs that write to the directory on
an important disk.

After making certain that your program
doesn’t damage the directory under normal
circumstances, think about extraordinary
situations. How does the program behave if
the system crashes right in the middie of
the change? Can trouble start if two pro-
grams try to make a change at the same
time? wWhat will a program reading the
directory while you make your change see?

Another area where you can get in trou-
ble and discover interesting new possibili-
ties hidden in the 0S-9 file structure is
the possibility for having several directo-
ry entries pointing at the same file.

There is & 1ink count in each file
descriptor sector. This count will always
be one 1in normal 0$-9 systems, but the
field offers a way to tell 0S-9 (RBFMan)
that there are two or more directory
entries pointing at a file.

This trick will certainly cause DCHECK
to have fits. If you link two directory
files to one another (nNot just with the
file name) DCHECK will loop between the two
directories forever. Even {f you don‘t get
this extreme DCHECK will note that more
than one file is using the clusters belong-
ing to the file with which you’re playing.
I have a deadly fascination with this trick
of linking to a file several times. The
parts to put it together are all there, but
for some reason Microware hasn’t built it
into 0S-8 yet.

My bet 1is that the reason for multiple
links to files remaining dormant in 0S5-9 is
the recovery probiem this feature creates.
It is impossible to update the link count
in the file descriptor and change the num-
ber of directory entries pointing to a file

simul taneousiy. There 1is always some way
to crash the system between the two opera-
tions -- pulling the plug will work.

If the 1ink count is greater than the
number of directory entries actually 1inked
to the file, the file will eventually be
left around with no directory entries
pointing at it. The disk space for the
file will be allocated and there will be no
easy way to return them.

If the 1ink count is smalier than the
number of directory entries linked to the
file the result is worse. Eventually there
will be a directory entry pointing to a
file that isn‘t there. The sectors that
used to belong to the file could be part of
another file or just free; in either case
the result is chaos.

It looks impossible. There is trouble
whether the file descriptor is updated
before or after the directory. There are
two solutions.

One possibility is to 1live with the
problem. An experienced user can fuss
around with the allocation map and directo-
ry entries, and repair a damaged disk.
Most of the work can be automated. Comput-
ers don’t crash often. Crhances are they
won’t crash in the middie of a directory
operation. ...

The alternative is to use "stable stor-

age" tricks, Every time 0S-28 starts up
look for evidence of a crash, and every

Column Nineteen 113

time you update a directory prepare for
one. This slows directory updates, systems
startup, and even disk mounts; but it pre-
vents users from having to worry about
recovery.

Neither method sounds 05-9-1ike. I use
the "live with the problem" method. 1’ve
never had reason tc regret it, but I am
prepared for the worsz. The '"stable stor-
age" method 1is interesting ... worth a
brief discussion.

Here is & way to reliably wupdate a
directory:

1. Copy the entire directory including
file descriptors to a special spot,
with its address known to recovery
routines (in a tabie Jlocated at
some known spot).

2. Update the copy of the directory.

3. Put the address of the old directo-
ry in the same table as the address
of the new one with a mark indicat-
ing that it is old.

4. Put the address of the updated
directory in the directory’s
parent.

5. Remcve the new directory from the
table.

6. Delete the o0ld directory removing

it from the table.

114 2S-9 User Notes Volume I

Step 4 1involves a single operation that

changes the directory structure visible to

the public. Until step 4 1is executed no

program knows about the change. After step

4 there is a consistent updated directory.
Recovery works as follows:

. IF THERE ISN'T ANYTHING IN THE "TABLE"

NO recovery necessary

. IF THERE 1S A POINTER MARKED "OLD" AND
NO NEW POINTER

delete the old directory

. IF THERE IS ONLY A NEW DIRECTORY 1IN
THE TABLE
delete it.

. IF BOTH POINTERS ARE IN THE TABLE

continue from step 4 1in the update
procedure

Things fall apart again if two process-
es might simultaneously update the directo-
ry, or the file descriptors attached to it.
If that is permitted the protocol! gets com-
plicated. Too complicated for this column.

I‘'m not going to try to present a pro-
gram implementing stable storage this
month. Just a simple program to sgueeze
the null entries out of a directory.

DR PROGRAM

1 ?@nclude <stdio.h>
include <ctype.h>

include <modes.h>

finclude <direct.h>

static struct dirent DirEntrx;'
static FILE *fopen(), *dir, *disk;

/ __ %
* dr directory read *
* Read and format all the important fields in a *
* directory entry and the attached FDs. *
* To allow formalting, sorting, and searching programs*
* the best access to this data it is just prlnged *
* without titles. *
* There are no options. A directory name may be given*
* as a command line argument., If i¥ isn't tKe current®
: data directory will be listed. i/

main(argc,argv)
int argc;

?har *argv(];

char temp[120];
char device 301;
register int i;

pflinit();
argv++; /* bump past program name in args*/
if (arge > 1)
strcpy(temp, *argv) ;
else
strcpy (temp,"."); /* default directory */

if(gdir = fopen(temp, "d")) == NULL) /* open the directory */
fprintf(stderr,"%s can't be read as a directory\n",temp) ;
exit(1);

}

LWNHOOVOYONNLD WOV NS WN—HOWRNIONNEWRIHO WO IR LT WA

strcpy(?evice,"@”g; /* default device is data directory device */
mp

if(&e 0] ==/

1= 0;

PSS LD LWWWWWWWILWLWWRNINITNINI BRI DI BINI NI DN et b fout ot b b b b s
n

~d £
NN WR— OO IR B WA= OO0 IO U £ W RO

device[i] = temp[i]'

while @safnum(temp ++1D) || templ[i] == '.' | temp[i] == ' ");
deviceli++] = '@';

device{i] = '\0';
fprintf(stderr,"Device: %s\n'",device);

te

/* ______________________ —-—%

Open the device containing the directory :

we're about to list.
K - - — ____*/

if((?isk = fopen(device,'"r")) == NULL)

fp;én%f(stderr,”Error %“d opening device s\n'",ferror(disk),device):
exi s

}

freadg&DirEntry, sizeof DirEntry, 1, dirg; /* skip . entry */
fread (&DirEntry, sizeof DirEntry, 1, dir); /* skip .. entry */
e *

* Read and format directory entries until EOF*
: Null entries are ignored by putEntry.

while (fread(&DirEntry, sizeof DirEntry, 1, dirg != NULL)
putEntry (DirEntry.dir_name,DirEntry.dir_addr);

NN SISNINN O AN OO ntntihnbnOvnbnnn

exit (0);
78

79
80 putEntry(Name,Address)

Column Nineteen 115

ihar *Name, *Address;

char CName[30];
long LSN;

if (Name [0] == '\O") .
return; /* Null entry */

00000

fixname (CName,Name); /* change 0S-9 string (high-bit)
to C format string *

13tol (&4LSN,Address,1); /* make LSN usefull */

printf ("%s",CName) ; /* reformatted file name */
expansion(LSN) ; /* rest of the information */
return;

}
static struct fildes FD;

expansion(LSN) /* print everything interesting about a file */
ong LSN;

if(gseek(disk, LSN*256, 0) == EOF)

fprintf(stderr, "Disk seek error %Zd\n",ferror(disk));
exit(1);

if(?read(&FD, sizeof FD, 1, disk) == NULL)

fprintf(stderr,"Disk read error %d\n",ferror(disk));
exit(1);

format_attr (FD.fd att);
grlnth" %u" ,FD.fd own);
ormat_date (FD.fd date,3);)
grxntfr” %d %1d",FD.fd link, FD.fd fsize);
ormat_date (FD.fd_dcr,3); -
printfT"\n");
return;

fixname(goodname,badname) /* convert from 0S-9 string to C string *
K

WWRIRININI NI NI BIRIRI N bt bt i ot 12t = p2 = 1 O O QO O O O O O O OO OO\ OO \O OO\ 000000 000000

NHO\DM\IO\thWNHO\Om\JO\U\waD—IO\OW\IO\ULL\WNF—‘C)\O&\IO\U’IbWN!—'O\Om\JO\U!bWN'—‘O\OO)\IO\UI.L\UJNHO\OQ\IO\MwaHO\OQ\IO\U\I:wNH

ihar goodname, *badname;
g register int i;
i=0;
do

*goodname++ = *badname & '\x7f';
while ((*badname++ > 0) && (++i <= 29));
*goodname = '\0';
return;

}

format_attr(attr) /* print file attributes */
ihar attr;

if(attr & S IFDIR) /* is it a directory? */
printf ("7 [d"; ; Y

€

printf (" [");

if (attr & S_ISHARE)
printf (" ps');

if(attr & S IOEXEC)
printf (""pe");
if(attr & S IOWRITE)

"

printf ("pw");

*

els

ot o B et et ek e o b o ek ek o b o o o o o o e ot o b b e b o et b o o b ot o ol o et et e e fd et b e b et et b b et B e e R

o nunnbnbnvinnun s e PP LWWWWW

1le 0S-S User Notes Volume I

\D 0000 00 00 00 00 00 00 00 00 ~J J ~J ~J IO\

NI IND b b b ot b brsd fncd ok ot b e o o o et ot fcd et b fd ek o o fmd frcd o o e e fd b B 2
= OO O~ N LW~ OVRIT N WRNI—OWOOSNA NS WOV

OOV WOOOVOOO

if (attr &
printf(
&

if(attr & S IEXEC)
printf(""e");

if (attr & S_IWRITE)
printf ("w'");

S_IOREAD)
t Pf”) ;

if(attr & S_IREAD)

_prxntf NERE
printf ("]");
return;

}

format_date(date,x) /* print a date in readable form */

chat *date; /* yymmdd (hhmm)
int x; /* number of entries in the date array */

char *month_name();

PE%ntf("5§Zd %s 19%02d",date[2], month_name(date(1]), date[0]);
1f(x >= '

printf (' %d:%024", date[3], date[4]);

printf (') ") ;

return;

}

char :month_name(n) /* return name of n-th month */
nt n;

staiic char *name(] =

"illegal month",
"January"
"February"
"March'" yo
"April" ’
||M3y7| ’
"Juneh,
"July" .
"August",
"September',
"chober",
"November",
"December"

};

return((n <1 || n > 12) ? name[0] : name[n]);

}

Column Nineteen 117

DIRSQZ PROGRAM

S2WN—OWOWRSNIN NS WRIEO WO ~IRN N W=

DO A NI N B 1t b bt b b o ot e o

H
\Vele RN

A Ubhnnbhninnbnhnn
N OO0 N WO

108

#include <stdio.h>
téinclude <direct.h>
#include <modes.h>

static struct dirent DirEntry;
static int dir; /* path number

/% DirSqz */
* This program can be used to press the null
entries out of large directories that have
been hit with many deletions.

;gin()

long strt_ptr, end_ptr, backup();

pflinit ();
if((dir = open(".", S_IFDIR+S_IREAD+S_IWRITE)) == NULL)

fpgi?5§(stderr,"Error opening the directory %d\n",ferror(dir));
exit ; |

strt _ptr = sizeof DirEntry * 2; /* point past . and .. */
getstat (2, dir, &end Etr); /* length of the file */

end ptr -= sizeof DiTEntry; /* point back from end */
end_ptr = backup(end_ptr,strt_p r);

forg;strt_ptr < end_ptr; strt_ptr += sizeof DirEntry)

lseek (dir,strt_ptr,0); .
read(dir, &DirEntry, sizeof DirEntry);
if(?irEntry.dxr_name[O] == '\0')

end ptr = backup(end ptr, strt gtr); .
- * leaves DirEntry with good data */

if(end_Etr <= strt_ptr)
break;

lseek(dir, strt_ptr, 0); .

write(dir, &DirEntry, sizeof DirEntry);

lseek (dir, end_ptr, b);

write(dir, , ;

end_ptr = backup(end ptr,strt_ptr);

ey —

}
exit (0);

long backup(end ptr,strt ptr)
iong end_ptr, strt_ ptT;

fori;end_ptr >= strt_ptr;end_ptr -= sizeof DirEntry)
lseek (dir, end ptr, 0);]
read(dir, &DirEntry, sizeof DirEntry);
if(DirEntry.dir name[Oi = '\0")
break; -

return(end_ptr);

0S-9 User Notes Volume 1

Part 2 REVIEWS

Reviews 119

12D 0S-9 User Notes Volume I

A REVIEW OF O-F

A few weeks ago I spent most of a Saturday
hooking my old SWTPC FLEX machine to my new
machine as a remote computer so I could use
it to write a FLEX-format disk. It felt
rather odd using my "smart terminal" pro-
gram to communicate with a machine less
than a foot away. The process involves
shuffling disks drives back and forth, and
much opening and shutting of cabinets. 1
don’t like it much. My new machine has
GIMIX software switching, so 1 can run FLEX
on it, but even the remarkable GIMIX CPU
board can’t run both operating systems at
once. On occasion 1 have uploaded a file
from one 0S to an IBM and then downloaded
it with the other 0S, accompliishing a
change of disk format from FLEX to 0S-9 or
vice-versa. These methods are all inele-
gant, ad hoc solutions to a problem. Dr.
Matthew Scudiere has come up with a much
cleaner solution: He has written an
0S-9/FLEX copy program called O-F.

GENERAL SYSTEM DESCRIPTION

This O0SS/FLEX copy program is a BASICOS
program which allows the user to convert an
0S-8 format disk into a hybrid form which
can be read and written by FLEX. In the
process of doing this it makes the disk
inaccessiblie to 0S-8 except as an entire
disk (i.e. /Dne) but O-F is able to copy
files to and from the hybrid disk, and read
the FLEX directory. The disk that results
from the reformatting is enough like stan-
dard FLEX format that FLEX doesn’t know the
disk isn‘t one of its own.

LIMITATIONS

Only freshly formatted, single sided 5 or 8
inch disks with no bad sectors can be used,
and there is no way to use a disk which is
in real FLEX format (formatted by the FLEX
NEWDISK or FORMAT program). The FLEX to
0S~-8 copy part of the program expands tab
characters into strings of blanks by
defauilt, but there is an option which caus-
es the file to be copied intact. Of course,
this program doesn’t make any attempt to
convert FLEX programs into 0S-9 programs.
That is work for other programs.

OPERATION

In order to run 0-F you must first start
BasicO8. The version I tested was in source
form, so I had to load it and run 1t. If it
1s distributed as BasicO9 I-Code it should

be possible to just run it.

The program
lists 7 options:

0 Directions
1 FLEX Directory
2 Copy FLEX text file to 0S8
3 Copy 0S9 path to FLEX
4 Delete FLEX File
5 Reformat 0S8 Disk
6 Exit program
and prompts for a selection. "Directions"

produces a quick summary of the function of
the program, about half a screen full.
"FLEX Directory" 1lists the basic informa-
tion in the directory of a pseudo-FLEX
disk: file name, Begin, End, Size, and
date. It also gives the number of sectors
used on the disk, and the number of sectors
left. The "Copy FLEX text file to 0S9" dia-
logue is:

FLEX Compatible source Drive ID

FLEX file name to copy =-—
Copy to 0S9 destination path --

The “Compatible source Drive ID" is tnhe
device name for the disk that has been ref-
ormatted; that wasn‘t too clear to me. The
"Copy 0S9 path to FLEX" dialogue is:

Drive ID -- .
FLEX File name to write (Caps)

Copy FROM 0S9 SOURCE path —-
To delete a FLEX file, select 4, then:
Flex compatible source Drive ID

FLEX file name to delete (use
proper case) —-

The dialogue for reformatting a disk is
very cautious:

Drive ID --
Are you sure? --
Overwrite —— <old volume name>

Are you sure? —-
5-in or 8-in disk? --

I tried reformatting and writing on 5 inch
disks (SS/SD, SS/DD, 40 track and 80
track), and 8 inch disks of all permuta-
tions. It worked on the 5 inch disks, and
on SS single and double density 8 inch
disks. I was abie to read psuedo-FLEX files
created by O0-F from FLEX without any trou-
ble. 0~-F had no trouble reading files
written by FLEX on disks reformated by O-F.
The reformatted disks were also fully usa-
ble in FLEX. FLEX truly thinks the refor-
matted disk is one of its own. One nice
touch is that the program puts two entries
in the 0S-8 root directory of the reformat-
ted disk:

[*% NO 0S9 Files Allowed **

(This is a FLEX copy disk) J

These entries appear if you do a DIR com-
mand on the reformatted disk, letting you
know very quickly that this disk is spe-
cial.

EVALUATION

This is a competent and very useful pro-
gram. It is especially well equipped with
error messages and informative text. 1In
fact, although it came without a manual, 1
was able to follow the built-in directions
without any trouble. I do hope that a manu-

A Review of O-F 121

al is available by the time this program
hits the market. A program without a manual
seems somehow unbalanced even if it is usa-
nle without documentation. A nice extra is
+hat it appears that this program may be
distributed in source form.

0-F works by tricking FLEX. This
together with the variety of disk formats
that FLEX might use forces the program have
some oad restrictions. The most serious
limitation is the restriction to specially
formatted disks. It certainly would be nice
to be able to drag out a four year old FLEX
disk and read it with this program. The
restriction to single sided disks is rea-
sonable 1in the context of copying files
from one format to the other. For some
people the most important limitation will
be the language reguirement. Since this is
a Basic09 program, you must have Basic09 to
be able to run it. It could be a measure of
the desperate need for a program like this
one that it is being hustied out in BasicQ8
form.

One of 0O-F’s strongest points 1is the
cautious approach it takes to the user.

272 0S-9 User Notes Volume 1

This program doesn‘t know how to deal with
double sided disks, but it doesn’t just
tell you so, it won’t let you use them. You
get a message clearly telling you that
double sided disks are not-ok if you try.
Similar messages appear if you try to use a
disk that is flawed in a number of other
ways.

SUMMARY

O~-F 1is available from DATA-COMP. It isn’t
really a program of general interest
there are probably some 05S-2 users who
don’t have FLEX or friends with FLEX.
Those people have very little use for this
program. The group of people this program
should prove most useful to are the owners
of software-switching machines. Using this
program they can convenientiy transfer date
between operating systems. There are a lot
of FLEX users out there -- our close rela-
tives in the computer world. It is good to
be able to exchange disks with them even if
we have to be the ones to provide the
disks.

REVIEW OF 0S-9 C1S COBOL

OVERVIEW

COBOL 1is a big language. an old lan-
guage, and an extremely popular language.
Some languages were designed to be compiled
and run on small computers; COBOL was not.
COBOL is vehemently detested by many people
involved with computers, but, despite all
the nasty publicity it gets, COBOL is prob-
ably the most used computer language in the
world. If you need to hire an experienced
programmer for a business application, you
will find the hunting best if you shoot for
a COBOL programmer. COBOL was one of the
first compiled languages developed for com-
puters (around 1960), and it has been being
(arguably) improved since then. The fully
“improved" version of COBOL is an enormous
language whose compiler is fully capable of
needing the best part of a megabyte of mem-
ory to run properiy.

There are standards against which any
version of COBOL should be measured. ANSI
(American National Standards Institute) has
defined a COBOL standard which constitutes
the official definition of the language.
CIS COBOL was written to conform to the
ANS] standard definition of COBOL.

To guote the manual: "CIS COBOL is ANSI
COBOL as given in ‘American National Stan-
dard Programming Language COBOL’ (ANSI
X3.23 1874)." It includes Jlevel 1 of the
ANS] definition of COBOL along with a -few
parts of level 2. This doesn’t mean that
CIS COBOL is the version of the language
you may have used on a mainframe computer,
but it does mean that if vou don’t use the
enhancements that CIS COBOL includes, the
programs you write using it will run essen-
tially unmodified on any other computer
that runs level 2 or higher of ANSI COBOL.
Also, since CIS COBOL is compiled to inter-
mediate code, programs written in it can be
run on any computer that has the appropri-
ate interpreter. If you read the adds in
BYTE, you will see that CIS COBOL is imple-
mented for many computers.

I didn‘t test CIS COBOL exhaustively
for conformance to the standard, but 1 did
write a few programs in it. I am used to
IBM‘s VS-COBOL, and a version of UNIVAC
COBOL; both are highly enhanced versions of
higher levels of ANSI COBOL than CIS COBOL.
It took me a while to learn which of my
favorite programming tricks aren’t possible
under level 1 of ANSI COBOL, but, after 1
learned the limitations I had to live with,
I found that I could write programs with no
more difficulty than I usually experience
when writing in COBOL. I wish 1 nad been
able toc transfer a program from the IBM to
my micro and compile it, but I don’t know
of any real programs written to be compiled
by ANSI level! 1 COBOL. Transferring a pro-
gram in the other direction is no probiem.

There is far too much to CIS COBOL for
me to say with certainty that it all works,
but 1 understand that the language has
actually been successfuily tested against a
set of standard test programs.

ENHANCEMENTS

Standard COBOL doesn’‘t support the
interactive microcomputer environment very
well, but CIS COBOL inciudes enhancements
to the ACCEPT and DISPLAY statements that
make it relatively easy to display screens
of data, and accept data from fields
defined on the screen. Information can be
accepted from, or displayed at, a particu-
lar cursor location. An input field can be
defined as numeric only, in which case any
inappropriate characters (like "A") won’t
be accepted. When a field is filled with
data, the cursor automatically jumps to the
beginning of the next field. There are
special keys which jump the cursor forward
and backward & field at a time. Special
function keys can be defined. They act
like a carriage return (terminate entry
into a screen), but a program can determine
whether a screen was terminated by a car-
riage return or a function key, and which
function key was used. The location of the
cursor when carriage return was pressed is
also available. The net effect of these
enhancements is that it is fairly easy to
write CIS COBOL programs that accept and
display screens of data.

In addition to the wusual! COBOL file
organizations (including ISAM), CIS COBOL

allows an organization they call "lTine
sequential." Line sequential files are
variable length record files, in which the

records are terminated by carriage returns.
This makes it easy to read and write files
that Pascal would call “files of text." The
most generally important examples of files
of this type are files created by text edi-
tors, and tine by line output to a terminal
or printer. The other access modes Sup-
ported by CIS COBOL are: seguential, rela-
tive, and indexed. The names of files can
be specified at run time using statements
like:

SELECT FILE~15 ASSIGN TO
FILE-15-NAME.

ACCEPT FILE-15-NAME.
OPEN INPUT FILE-15.

In addition to the standard ANSI debug fea-
tures, CIS COBOL has a2 respectable interac-
tive debugger. The commands available
under this debugger are:

Review of 0S-9 CIS COBOL 123

P - Displag the current program counter]
G - Set a breakpoint
X - Single steg .
D - Display data at specified offset in data division
A - Change memory (ASCII)
S - Set block for display or change
/ - Display block
. — Change bytes in block
T - Trace paragraphs
L - Write R,L%
M - Define a debug macro
$ - End a macro definition
C - Display a specified character
; - precedes a comment (for describing macros)
L]
The interactive debugger can be used on any
COBOL program by including +D on the com- The Nucleus
mand line that invokes the program, e.g., Table Handling
“unC 4D test.int. This means that you can Sequential Input and Dutput
use the debugger on a program without hav- Relative Input and Output
ing to do anything special when you compile Indexed Input and Output
it. Segmentation
Library (Copy)
Microware bhas included eight subrou- Inter-program communication
tines in the COBOL run time system which debug
can be called from a COBOL program.
MOVE-BLOCK is a procedure that can be used CIS CDOBOL supports parts of level 2 of ANSI COBOL
to do a high speed move of a block of data. inciuding:
ABORT terminates the program with an error
code. CHAIN makes the standard 05-8 F$Chain . Nested IF
system call available. The FUN-KEY subrou-
tine can be used after a ACCEPT statement . PERFORM UNTIL
to find out if a function key was pressed
instead of the carriage return key, and] The START statement for Relative and
which one. DATE returns the date and, Indexed 1/0
optionally, the time. SHELL invokes a
shell, passing it a specified string. CHX . Full level 2 Inter-program communica-
d CHD change the execution and data tion
. rectories for the program.
The subroutines in the run time system
are called by number. CIS COBOL can also LIMITATIONS
call subroutines which are either COBOL
l-code, or object code. The CALL statement 1 was disappointed with some of the
looks 1like: restrictions of the 1low Jlevel of COBOL
impiemented for CIS COBOL, but not very
CALL "/DO/SUBLIB/TEST.SUB.1" surprised. 1 am more upset by some prob-
USING ... lems with terminal support, and the CONFIG
ON OVERFLOW utility that is used to customize the run
time package for a particular type of ter-
The called program is loaded into memory if minal.
it is not already there, and, depending on
whether the module header indicates that it The features of advanced Jlevels of
is I-code or object code, interpreted or COBOL that I missed most were AND and OR in
executed. If there is no room in memory IF statements. It is possible to do with-
for the new module, the ON OVERFLOW clause out boolean operations 1in IF statements,
in the CALL statement gets control. The but I am not used to having to work around
CANCEL verb unlinks a subroutine, freeing a limitation like that. Another very popu-
the memory it is using. lar feature which is missing in CIS COBOL
is the SORT statement. A surprising number
In addition to these methods of calling of production COBOL programs include at
external subroutines, CIS COBOL supports least one sort, and it would be hard to
program segmentaticon, which can be used to eliminate a sort from a program without a
divide the program into sections that will major redesign.
remain on disk until they are needed. Seg-
ments use memory efficiently at the cost of The run time system which interprets
extra disk I1/0 by sharing a common pool of the COBOL intermediate code also includes
overlay memory. routines for terminal control. It is cus-
tomized for a terminal by a utility program
In addition to supporting ANSI COEOL called CONFIG. I was not impressed with
level 1, including: CONFIG. My favorite terminal uses the ANSI

standard terminal control sequences

CONFIG was clearly not written with my ter-
minal in mind. 1 struggled for two eve-
nings trying to get RunC configured for my
TeleVideo with no success. Finally, I gave
up and turned to my H-19, which was much
more 1like what CONFIG wanted ... I had
COBOL runmning in ten minutes. There were

124 0S-9 User Notes Volume I

three fundamental problems with CONFIG’S
handling of my TeleVideo’s control seguenc-
es. CONFIG expected most terminal control
strings to be no more than three characters
long; several of the ANSI strings are long-
er than that. CONFIG simply can’'t deal
with the ANSI direct cursor positioning
sequence; I circumvented that problem by
pretending that my terminal didn‘t have a
direct cursor positioning command, and
specifying relative positioning. CONFIG
can only deal! with commands that move the
cursor one row or column at a time in rela-
tive positioning mode. Since the ANSI
strings that cause the cursor to move one
row or column are three characters long,
this is a slow way to adjust the cursor
position. The clear-screen sequence for my
terminal is four characters 1long; so I

couldn’t use it. RunC tries to fake 2
clear-screen somehow, but it makes a real
mess of it. The clear-screen seqguence

somehow came out as a string of thousands
of <bell> characters. I understand that a
more recent version of CONFIG than the one
1 have allows a four character string for
the clear-screen sequence. I think that
would have made it possible for me to get
my TeleVideo working with COBOL.

CONFIG forms a trap for the unwary
user. Once you start into it there is no
turning back. If you change your ming
about the response you just keved 1in, you
have to wait until you reach the end of the
entire (long) string of questions, and ask
to be allowed to change a large subset of
Vvour answers. when you are going through
CONFIG to fix a mistake or change an exist-
ing terminal description to fit a new ter-
minal, you have to fill in 1the correct
answer to each question. There is no way
to select a default, or keep the old value.
It is true that CONFIG is not likely to be
a2 heavily used utility, but I found it so
hard to use that I would much rather have
written a few subroutines to support my
terminals.

Once 1 got the screen support working,
1 found that I wasn’t pleased with the way
it worked. I believe that when the cursor
leaves & numeric field, the field should be
right justified and zero filled. The
screen handling package in CIS COBOL seems
to agree with me to some extent. If you
enter a "." in an integer field i1t will
right justify and zero fill, but if you
exit the field with a carriage return (end-
ing the entire screen) or down arrow (mov-
ing to the next field), a test for numeric
in the program will indicate that the fieid
1S not numeric. If the field has editing
characters in it the field is inclined to
end up left justified and zero filled.

I am used to getting useful, english
error messages from COBOL; CIS COBOL gives
error messages with numeric codes in them
indicating what the error is. Even after I
looked up the error, it wasn’t clear what
the problem was. For instance, when I
hadn’t declared a variable it told me that
there was a type mismatch in the statement
using the undeclared variable,. when I
tried to use AND and OR, it gave me the
same error. I ended up treating the error
message as "something’s wrong around here."

BENCHMARKS

I ran two benchmarks against this COBOL:
one for speed at numeric processing (the
sieve), the other for speed in handling
ISAM files. I adjusted the prime number
program from the January 1983 BYTE slightly
to fit ANSI level one, and ran it. This
version of COBOL would have fallen nearly
at the bottom of the chart given in that
BYTE, between Microsoft COBOL and RMCOBOL.
It took 541 seconds to find the first 1899
primes. I could have made the program run
somewhat faster by using indexing instead
of subscripting, but that would have
spoiled the benchmark. I have to admit
that I felt silly writing a Eratosthenes
Sieve program in COBOL. Testing COBOL for
its ability to find prime numbers 1is 1ike
testing programmers for their ability to
read Latin; they may be able to do it but
it is hardly relevant. I ran that bench-
mark because it is the most used benchmark
for microcomputer languages, but 1 also ran
another non-standard, but, I think, more
relevant, benchmark.

I constructed a benchmark program which
gives a good measure of the speed with
which the language handles indexed 1/0.
Indexed I/0 is very important to the group
of users who might use COBOL. Interpreting
the results of a benchmark that involves
I/0 is a little tricky. Certainly the file
structure the language uses is very impor-
tant, especially with a large indexed file;
but the access time for the disk 1is an
important factor, and the time the operat-
ing system takes for a context switch is
somewhat important.

I built a file 10,000 records long of
55 byte records with five byte keys and
then read it randomly reading two records
alternately from each end. It took 2615
seconds to build the file and 3233 seconds
to read the file (it would, of course, have
been possible to read it faster if 1 had
read seguentially). I ran these benchmarks
on a GIMIX system with a CM 5000 Winchester
(a file that size would not have fit on my
8" floppies). 1 used 0S-8 Level Two on a 2
mhz 6809. The performance would have been
much worse if I had used a fioppy instead
of a Winchester, and somewhat better if I
had used GMX-1II.

I compiled three COBOL programs on the
same machine 1 ran the benchmarks on. A
simple merge program which I haven’t
included with this review took 45 seconds
to compile, the sieve compiled in 35 sec-
onds, and the ISAM test program took 43
seconds.

SUMMARY

It is possible to get past the problems
with CONFIG, to 1learn to 1live with the
primitive error messages, and to feel com-
fortable with the screen handling conven-
tions. what is left 1s a substantia)
impiementation of an old, but useful lan-
guage. I don‘t think everyone should run
out and buy this package, but, for a few
people, it could be uniquely useful. If
you want to use a group of COBOL programs
on microcomputer, it would certainly be
easier to convert them from one level of

Review of 0S-9 CIS COBOL 125

COBOL to another than to
into an entirely different 1language. CIs
COBOL woulid be a good teaching tool for
schools unable to afford time on a machine
with a full-blown COBOL compiler. It
should be relatively easy to find program-
mers who can work in COBOL. with CIS
COEQL, a microcomputer could be used as a
development envirornment for COBOL programs,
though the 1low 1level of CIS COBOL would
prevent this in most cases. Perhaps the
most significant advantage of CIS COBOL
over other languages is that programs writ-

transliate them

ten in CIS COBOL can be moved 11n I-Code
form to a variety of other machines and
operating systems, and run without source

code. UCSD Pascal has shown that this is
an asset even though it can’t generally run
under a normal operating system.

CIS COBOL was written by Micro Focus
Limited. Microware wrote a run time pack-
age for it that allows any program written

to be run under 05-9. By writing a run
time package for CIS COBOL, and arranging
to license it for 05$-9, Microware made a
large collection of business software
available to 0S-8 users. If you are look-
ing for a nice accounting system, payroll,
MRP system, or whatever, check with Micro-
ware. They have a long list of vendors
offering programs which run under the CIS
COBOL run time system.

Some small number of people will find
Microware’s version of CI$ COBOL just what
they need. If you think you are one of
those peoptle, 1 recommend that you get the
manual before you commit to the language.
The manuals won’t be any help to you if you
don’t know CDBOL, but, if you do, they will
leave you with an accurate impression of
the ‘language, and either leave you impa-
tient to get the software, or disappointed
about some important m1ss1ng feature (most
likely sort).

in CIS COBDL, including CIS COBOL itself,
COBOL TEST PROGRAM
% CIS COBOL V4.4 Test.CBL PAGE: 0001

IDENTIFICATION DIVISION.
PROGRAM-ID. FIRST-TEST.PROGRAM.
AUTHOR. PETER DIBBLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION,
SOURCE-COMPUTER. GIMIX.
OBJECT-COMPUTER. GIMIX.
INPUT-OUTPUT SECTION.
FILE~-CONTROL.

SELECT INPUT-1 ASSIGN ":CI:"

ORGANIZATION IS LINE SEQUENTIAL.
SELECT MERGE-FILE ASSIGN MERGE-NAME.
SELECT TEMP-FILE ASSIGN "MERGE.TEMP".

DATA DIVISION.

FILE SECTION.

FD INPUT-1;
RECORD 40
BLOCK 5;

LABEL RECORDS ARE STANDARD.

01 INPUT-1-LINE
FD MERGE-FILE;
RECORD 20:
BLOCK 10;
LABEL RECORDS ARE STANDARD.
01 MERGE-LINE
FD TEMP-FILE;
RECORD 20
BLOCK 10
LABEL RECORDS ARE STANDARD.
01 TEMP-LINE
WORKING-STORAGE SECTION.
01 IN-THIS
01 LINE-FMT REDEFINES IN-THIS.
02 KEEP-THIS

04 FILLER
04 CARRIAGE-RETURN
02 FILLER

01 MERGE-THIS

01 FILE-STAT
PROCEDURE DIVISION.
START-UP.

PIC X(40).
PIC X(20).

PIC X(20).
PIC X(40) VALUE SPACES.

;IC X(19).
PIC

(2).
PIC X(20) VALUE SPACES.

PIC X VALUE "Q"

* PARAMETERS ARE GIVEN IN THE FIRST RECORD OF STD. INPUT

OPEN INPUT INPUT-1.

READ INPUT-1 INTO MERGE-NAME.

OPEN INPUT MERGE-FILE,
OPEN OUTPUT TEMP-FILE.

DISPLAY '"MERGING STANDARD INPUT WITH ", MERGE-NAME.

126 0S-9 User Notes Volume 1

*% CIS COBOL V4.4 Test.CBL PAGE: 0002

READ INPUT-1 INTO IN-THIS;
AT END MOVE HIGH-VALUES TO IN-THIS.
PERFORM FIX-IN.
READ MERGE-FILE INTO MERGE-THIS;
AT END MOVE HIGH-VALUES TO MERGE-THIS.
MAIN-SECTION.
PERFORM MERGE-LOOP UNTIL FILE-STAT EQUAL TO "1".
MOVE "0" TO FILE-STAT.
CLOSE MERGE-FILE.
OPEN OUTPUT MERGE-FILE.
CLOSE TEMP-FILE,
OPEN INPUT TEMP-FILE.
PERFORM READ-TEMP.
PERFORM COPY-TEMP-TO-MERGE UNTIL FILE-STAT EQUAL TO "1".
STOP RUN.
MERGE-LOOP.
PERFORM PICK-NEXT.
WRITE TEMP-LINE.
END-MERGE-LOOP,
EXIT.
PICK-NEXT.
IF KEEP-THIS < MERGE-THIS
THEN

PERFORM FIX-IN

MOVE KEEP-THIS TO TEMP-LINE

READ INPUT-1 INTO IN-THIS;
ELSE AT END PERFORM END-IN

MOVE MERGE~THIS TO TEMP-LINE
READ MERGE-FILE INTO MERGE-THIS;
AT END PERFORM END-MERGE.
PICK-NEXT-END.

EXIT.
END-IN.
MOVE HIGH-VALUES TO IN-THIS.

IF MERGE-THIS = HIGH-VALUES

THEN
MOVE "1" TO FILE-STAT.
END-MERGE.

MOVE HIGH-VALUES TO MERGE-THIS.
IF IN-THIS = HIGH-VALUES
THEN
MOVE "1'" TO FILE-STAT.
FIX-IN.

MOVE X"OD" TO CARRIAGE-RETURN.
COPY-TEMP-TO-MERGE.

WRITE MERGE-LINE.

PERFORM READ-TEMP.
END-COPY-TEMP-TO-MERGE.

EXIT.
READ-TEMP.

READ TEMP-FILE; AT END PERFORM END-TEMP.

MOVE TEMP-LINE TO MERGE-LINE.
END—REQD—TEMP.
END-TEMP.

MOVE "1" TO FILE-STAT.
END-INPUT.

MOVE HIGH-VALUES TO IN-THIS.
END-MERGE-1IN.

MOVE HIGH-VALUES TO MERGE-THIS.
END-PROGRAMN.

EXIT.

*% CIS COBOL V4.4 REVISION 0

** COMPILER COPYRIGHT (C) 1978,1981 MICRO FOCUS LTD

URN rp/

*% ERRORS=00000 DATA=00791 CODE=00489 DICT=00654:01229/01883 GSA FLAG

Review of 0S-9 CIS COBOL

127

COBOL SIEVE
% CIS COBOL V4.4

_ EXI
*% CIS COBOL V4.

128

¥

siev.cbl PAGE: 0001
IDENTIFICATION DIVISION.
PROGRAM-ID., SIEVE.
AUTHOR. PETER DIBBLE.
ENVIRONMENT DIVISION.
WORKING-STORAGE SECTION.
77 PRIME PIC 9(5) COMP.
77 PRIME-COUNT PIC 9(5) COMP.
77 1 PIC 9(4) COMP.
77 K PIC 9(5) COMP.
01 BIT-ARRAY.
03 BIT OCCURS 8191 TIMES PIC 9 COMP.
PROCEDURE DIVISION.
START~UP.
DISPLAY "TEN ITERATIONS'".
PERFORM SIEVE THROUGH SIEVE-END.
DISPLAY "PRIMES FOUND: ", PRIME-COUNT.
STOP RUN.
SIEVE.
MOVE ZERO TO PRIME-COUNT.
MOVE 1 TO 1I.
PERFORM INIT-BITS 8191 TIMES.
MOVE 1 TO I.
PERFORM SCAN-FOR-PRIMES THROUGH END-SCAN-FOR-PRIMES
8191 TIMES.
SIEVE-END.
EXIT
INIT-BITS.
MOVE 1 TO BIT (1).
ADD 1 TO 1I.
END-INIT-BITS.
EXIT.
SCAN-FOR-PRIMES.
IF BIT (I) = 0
THEN
GO TO NOT-PRIME.
ADD I I 1 GIVING PRIME.
DISPLAY PRIME.
ADD 1 PRIME GIVING K.
PERFORM STRIKOUT UNTIL K > 8191.
ADD 1 TO PRIME-COUNT.
NOT-PRIME.
ADD 1 TO I.
END-SCAN-FOR~PRIMES.
EXIT
STRIKOUT.
MOVE O TO BIT (K).
ADD PRIME TO K.
END—PROG_?AM.
4 REVISION 0O URN rp/

0S-% User Notes Volume I

COBOL BENCHMARK PROGRAM

ek

*% CIS COBOL V4.4 Bnch.CBL PAGE: 0001

IDENTIFICATION DIVISION.
PROGRAM-ID. ISAM-BENCHMARK
AUTHOR. PETER DIBBLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION,
SOURCE-COMPUTER. GIMIX.
OBJECT-COMPUTER. GIMIX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT ISAM-FILE-1 ASSIGN "ISAM.FILE";
ORGANIZATION IS INDEXED,
ACCESS MODE IS SEQUENTIAL;
RECORD KEY IS ISAM-KEY-1.
SELECT ISAM-FILE-2 ASSIGN "ISAM. FILEY;
ORGANIZATION IS INDEXED;
ACCESS MODE IS RANDOM;
RECORD KEY IS ISAM-KEY-2.
DATA DIVISION.
FILE SECTION.
FD ISAM-FILE-1;
DATA RECORD ISAM-RECORD-1.
01 ISAM-RECORD-1.
03 ISAM-KEY-1 PIC 9
03 FILLER PIC X(50
FD ISAM-FILE-2;
DATA RECORD ISAM-RECORD-2.
01 ISAM-RECORD-2.

03 ISAM-KEY-2 PIC 9%9) COMP-3.
03 FILLER PIC X(50).
WORKING-STORAGE SECTION.
77 KEY-NO PIC 9(9) COMP-3 VALUE O.
77 HI~NUMBER PIC 9(9) COMP-3.
77 LO-NUMBER PIC 9(9) COMP-3.
77 DATE PIC XXX VALUE ''004".
01 WORK-DATA.
03 WORK-KEY PIC 9%9) COMP-3,
03 I-DATA PIC X(50).
01 SYSTEM-DATE.
03 YEAR PIC 99.
03 MONTH PIC 99.
03 DAY PIC 99.
01 SYSTEM-TIME.
03 HOUR PIC 99.
03 MINUTE PIC 99.
03 SECOND PIC 99.
PROCEDURE DIVISION.
START-UP.

OPEN OUTPUT ISAM-FILE-1.

MOVE ;AgSORTED DATA: NAME, ADDRESS, ETC, OR WHATEVER" TO
ATA

ADD 1 KEY-NO GIVING LO-NUMBER.

MOVE KEY-NO TO WORK—KEY.

DISPLAY "START BUILD".

CALL DATE USING SYSTEM-DATE, SYSTEM—T ME

DISPLAY "TIME " HOUR, ":", MINUT ": ', SECOND

Review of 0S-9 CIS COBOL

129

** CIS COBOL V4.4 Bnch.CBL

PERFORM ADD-RECORD 10000 TIMES.

CLOSE ISAM-FILE-1

DISPLAY "BUILD DONE'.

CALL DATE USING SYSTEM-DATE, SYSTEM-TIME,
DISPLAY "TIME " HOUR, ":", MINUTE, ":", SECOND
MOVE WORK-KEY TO HI-NUMBER.

DISPLAY "READ STARTING".

OPEN INPUT ISAM-FILE-2.

PERFORM TEST-READS 2500 TIMES.

CLOSE ISAM-FILE-2.

CALL DATE USING SYSTEM-DATE, SYSTEM-TIME.

DISPLAY "TIME " HOUR, ":", MINUTE ":", SECOND
DISPLAY "READ DONE",
STOP RUN.

ADD-RECORD.

ADD 1 TO WORK-KEY.
WRITE ISAM-RECORD-1 FROM WORK-DATA;
ERROR-1 INVALID KEY PERFORM ERROR-1.

DISPLAY "INVALID KEY: ", ISAM-KEY-1.
TEST-READS.
PERFORM READ-HIGH.
PERFORM READ-HIGH.
PERFORM READ-LOW.
PERFORM READ-LOW.
READ-HIGH.
MOVE HI-NUMBER TO ISAM-KEY-2, WORK-KEY.
READ ISAM-FILE-2; INVALID KEY PERFORM ERROR-2.
SUBTRACT 1 FROM WORK-KEY GIVING HI-NUMBER.
ERROR-2.
DISPLAY "INVALID KEY: ", WORK-KEY.
READ-LOW.
MOVE LO-NUMBER TO WORK-KEY, ISAM-KEY-2.
READ ISAM-FILE-2; INVALID KEY PERFORM ERROR-2.
ADD 1 WORK-KEY GIVING LO~NUMBER.
END-PROGRAM.

EXIT.
© CIS COBOL V4.4 REVISION O
‘* COMPILER COPYRIGHT (C) 1978,1981 MICRO FOCUS LTD
** ERRORS=00000 DATA=00705 CODE=00703 DICT=00612:01271/01883 GSA FLAG

Bkey

0S-9 User Notes Volume 1I

PAGE: 0002

URN rp/

REVIEW OF SOFTWARE BY
CLEARBROOK SOFTWARE GROUP

DEDIT

Overview

DEdit is a screen-oriented editor which is
intended for wuse on non-text files. It
displays the contents of a file (or an
entire disk) in what amounts to "dump" for-
mat for inspection and modification. I
think it should be possible to configure
DEdit for any terminal that has direct cur-
sor positioning support.

Details

DEdit is a minimal, but adequate, editor.
It has a set of 16 one-keystroke commands
consisting of five cursor control keys
(up,down,left,right, and home), eight edi-
tor control keys (exit, reread sector, next
sector, previous sector, write sector, and
read specified sector), three keys to con-
trol a "find" facility (find, again, and
abort find). The remaining two commands
control the edit "windows."

DEdit can display either two or three
windows at a time. The main window is a
hexadecimal format display of a sector of
the file being edited. To the right of the
hexadecimal display is an ASCII display of
the printable characters in the sector. The
third window, positioned near the top of
the screen, is the binary representation of
the character which the cursor 1is posi-
tioned to. There is a command to move the
cursor from window to window, and a command
to turn the binary window on and off.

The characters corresponding to the 16
commands are specified by a table in the
DEdit program who’s location is given 1in
the documentation. 1 found the choice of
command characters strange, &and promptly
changed them to something I could remember;
it was fairly easy to change the table with
debug (I could have used DEdit).

Another table in the DEdit program
describes the characteristics of your ter-
minal. DEdit is supplied configured for the
TVI S10, but can be altered to work with
most other terminals. The terminal must
support direct cursor positioning, and a
clear screen/home cursor sequence that is
no more than four bytes long.

Limitations

There are no Sserious drawbacks to
DEdit. It works reliably, and has enough
features to be useful. DEdit seems to have
been designed to be used for emergency
repairs to directories, and other special
purposes. This kind of use doesn’t call for
a feature packed editor; still, I am disap-
pointed in the bare-bones approach Clear-
brook took to this problem.

The three main uses ! would have for
this kind of editor are placing special
characters in text files, fussing with
directories (unerasing files), and zapping
modules. For zapping text files it would
be nice to be able to eliminate the hex
window for qguick scanning of a file, Per-
haps a one byte hex window could be kept at
the top of the screen the way the binary
window is. Fussing with directories would
be much easier if the editor would format
the directory in a meaningful way -- the
format is right there in the System Pro-
grammer’s Manual, but I appreciate programs
that make things easier for me. The module
format s another one that could be dis-
played more meaningfully. The module header
could be separated from the rest of the
module and the parts of it labeled. Disas-
sembled format would be another nice fea-
ture.

Even a bare-bones editor needs a good
manual. DEdit’s manual 1is not good. For
anyone but a brave and experienced hacker
the poor documentation could entirely rule
out use of this program. The commands are
all described on one page together with
directions for changing the command charac-
ters. The terminal description table Iis
described in two and a half pages in suffi-
cient detail that any experienced assembly
language programmer should be able to con-
figure the program for a terminal
eventually. 1 spent quite a while learning
that the numeric fields were unsigned.
Despite the fact that one- byte fields are
aimost always signed in 6808 machine lan-
guage, the unsigned nature of these fields
was never mentioned. Perhaps it should have
been obvious to me (after all, cursor posi-
tions are never negative), but I used about
ten minutes figuring this out.

Summary

For someone who needs a disk editor right
now, DEdit would be a useful utility. For
anyone who can wait, I would recommend
hanging on; this program has more features
than the various free ones 1 know of, but
not enocugh to make it worth the money to
someone who will only use it occasionally.

BT9

Overview

BTS is a module which maintains files in a
pinary tree format. The BTS module can be
called from Basic08, or any other language
which can use the BasicO8 calling seguence.

Details

Fourteen commands can be passed to BTS
aliowing random access, and sequential
access (forward or backwards) to files
buitt and maintained through BTS. The com-
mands are:

Review of Software by Clearbrook Software Group 131

-~ Read file header
(done after open)
- Write file header
(done before close)
| - Read a record
- Write a record
- Add a record
- Quick add
- Update current record
- Delete current record
- Find = key
- Find >= key
- Find record with lowest key
- Find record with highest key
- Find next higher record
- Find next lower record

The documentation is marginal, but there is
a gdemonstration program which is a great
help.

Limitations

There is a tremendous problem with this
program. They picked the wrong file struc-
ture. A binary tree 1isn’t even the data
structure of choice for use in high speed
memory when the data is not static. A ptain
cinary tree like what BT9 uses will struc-
ture data in the worst possible way when
the data is added in sorted order. On disk
the idea of a binary tree is just horrify-
ing.

Trees from a family called bichromatic
trees have the characteristic that they
don‘t grow long branches causing poor per-
formance. Most data structures texts
include AVL trees and 2-3 trees from this
family. The most popular, and probably the
pest, type of tree to use on disks is the
E-tree. A B-tree is something like a binary
tree, but it coesn’t have nasty habits 1like
the binary tree, and it is much faster than
the binary tree when the date 1s on disk.

Af ter accuﬁing this program of wusing
the wrong data structure it hardly seems
reasonable to bother with any other prob-
lems, but there is one other major probiem
that would be a good deal easier to fix.
BT9 takes a rather casual attitude toward
disk errors. They are reported to the user,
out not refliected to the calling program 11n
2ny way. This sloppy treatment of errors
makes it impossible for a program to
attempt any form of automatic recovery from
disk errors.

Summary

can only imagine using this module to
sulve a problem in a quick and dirty way.
It would not be very difficult to write a
module which was upwardly compatible with
this one but used a B-tree data structure.

Since this review was written Clearbrook
has announced a package that supports
B-Trees.

132 0S-9 User Notes Volume I

D-SERIES UTILITIES -- DDIR,
DDEL, DCOPY AND DATTR

Overview

1 bet every 05-9 user has been waiting for
these programs. They are generalizations on
the DIR, DEL, COPY, and ATTR commands which
work on multiple files.

Details

A1l the D-Series command include a <file
spec> option as one of the parameters. The
<file spec> can include part of a file
name, an attribute of the file (ie D S PR
PW PE R W and E), a user number, or 0 to
indicate the user’s own files. These can be
combined with AND, OR, NOT and parenthesis.
The <«<file spec> is used by the D-Series
commands to select the files which will be
acted on.

The DDIR command gives a simple (one
column) list of all the files which meet
the selection criteria in a specified
directory and, optionally, in lower level
directories. The output of of DDIR is for-
matted by indenting for each level into the
directories which makes it quite readabile.

The DDel command deletes all the fites
meeting the selection criteria. It can
optionally prompt before deleting each
file, list the files as they are deleted,
and search the specified directory and al)}
lower level directories.

The DAttr can change the attributes and
owner of files meeting the selection cri-
teria. The options are the same as for DDel
with the addition of a set of options to
specify the new file attributes and owner.
Only a superuser (user 0) can change the
owner of files he doesn’t own.

The DCopy command copies all files
meeting the selection criteria from a
selected directory to another selected
directed. The options are:

. prompt before copying
. list files as they are copied
. copy files 1in specified and lower

directories
. make directories

. delete files which already exist 1in
destination directory

Problems and Limitations

The file selection criteria used with these
commands are not as elaborate as the cri-
teria the equivalent UNIX commands use. 1In
particular there are no wiid cards or pat-
tern matching options.

If any command line parameters are
specified for the DDir, DDel, and DAttr
commands the directory name must be includ-
ed on the command line. Most 0S-8 commands

use "." as the default directory, and the
D-Series commands do if no parameters are
given. It seems inconsistent that they
don’t always allow the directory to be
defaulted.

The DDIR command sometimesareturns with
an error 211 (end of file). It is my
theory that this is returned from the last
read of the directory, and is entirely
innocent, but shouldn’t be returned to the
shell.

minor complaint about the documenta-
tion: every time “pr pw" should have been

in the documentation, "pr pr" was there
instead.
Summary

The D-Series commands are very useful. They
are not without faults, but, especially for
systems with large capacity disks (lots of
files), they are almost essential.

Reconsideration

I sent this review to Clearbrook Software
Group for their comments. They returned
the letter which I have included with this
review, revisions to the documentation for
the editor, a new edgﬁor. and a config
program for the editor.

The documentation is much improved,
although it still suffers from having been
written by a knowledgeabie person. They
include directions for recovering a deleted
file which are useful, and what appears to
be a screen dump of a dedit screen which is
also nice to have. With the original docu-
mentation, I spent a while trying to use
DEdit before I realized that 1 had it con-
figured wrong.

I had trouble with the “config_dedit"
program they sent me; it sometimes just
stopped. It was a packed Basic08 program
so I couldn’t tell whether :t was an incom-
patibility with my BasicO2, or something
eise.

The new version of DEdit is identical
to the one 1 already had. 1 ran the 0S-9
compare utility, cmp, against them and
found they only differed in the bytes that
are changed when the terminal configuration
is done.

The improvements to the documentation
are nice, and the configuration program
seems like it might make it a good deal
easier to set DEdit up for a terminal, if
it would work.

This problem (error 211) has since been
f ixed

The letter isn’t included here, but it
detailed the improvements they had made,
and said that DEDIT did what it was
intended to do very nicely.

Review of Software by Clearbrook Software Group

133

134 0VS-9 User Notes Volume I

A REVIEW OgngNACALC FOR

OVERVIEW

DYNACALC is a very capable electronic
spread sheet program. It is enough like alil
the other spread sheet programs (visi-
clones) so anyone familiar with one of them
should be able to adjust to DYNACALC very
guickly. DYNACALC s not a great leap
beyond all other electronic spread sheets,
but it is a very good example of the cur-
rent state of the art.

A electronic spread sheet program makes
the terminal appear to be looking at a sec-
tion of a large grid. The %cells" in the
grid can each contain a number, eqguation,
or character string. The eguations usually
operate on the contents of other cells (A
column of cells might contain monthly
expenses, and another cell somewhere on the
grid might contain the sum of all the cells
in the column of expenses.) The special
thing about electronic spread sheets as
opposed to paper spread sheets is that when
a number or equation on an electronic
spread sheet is changed, all the cells that
depend on that value are updated to refilect
the change. This is a simple idea, but such
a good idea that I know of many people who
have purchased computers just to be get at
this kind of program.

SOME DETAILS

DYNACALC is a large 6808 assembly language
program which has beerl available under FLEX
since last year. It is now also available
under 0S~8. The 0S-8 version doesn’t seem
tike warmed over FLEX code; it seems 110
have been designed for 0S-8. It is reent-
rant (the same module can be used by any
number of simultaneous users), and uses
standard input and output. Practically any
CRT +type terminal can be supported. 1In
fact, the warranty for DYNACALC says that
if you have a CRT terminal with at least 80
characters per 1ine and direct cursor
addressing:

1f your terminal has the
required characteristics, but
you are unable to configure

DYNACALC to work properly
(using the INSTALL utility),
send us your original DYNACALC
diskette and a copy of the
operator’'s manual for your
CRT. We will either make it
work on your terminal, at no
extra charge to you, or refund
your full DYNACALC purchase
price.

That is a very impressive commitment! 1If
you have several users on your system with
different types of terminal, you can get
DYNACALC to support them all concurrently
if you have each terminal type use a dif-
ferent data directory, and put the appro-
priate terminal file in each directory.

DYNACALC can save the contents of a
spread sheet in a file that can be read by
other programs. I wouldn‘t call the files
easy to use, but they aren’t impossible to
use either, and the format is clearly docu-
mented. DYNACALC’s saved data is hard to
use because the format of the file reflects
DYNACALC's flexible attitude towards the
user - it will take any sort of data scat-
tered around anywhere you like. If you want
to create a file for DYNACALC to use as
data for a spread sheet, you don’t have to
cope with the vicissitudes of humans. It is
a relatively simplie job to create data
files for DYNACALC.

An excellent help facility is an inte-
gral part of the program, though you can
remove it to save space if you want. Most
of the time you can type a "?" to access a
screen of terse explanations of your
options. The help screens do not take the
place of reading the manual, but they can
provide a quick jog of the memory. There
are also 12 error codes which I wish all
visiclones had. Spread sheets can take on
some of the attributes of complicated pro-
grams, especially hard to find bugs. Imag-
ine trying to debug a program with only one
error message 1ike “Sorry, I can’t do
that," "Say wha?" or whatever.

My copy of DYNACALC came the terminal
files 1listed 1in Figure 7. I recognize
SWTPC, Hazeltine, Adds, Heathkit/Zenith,
ADM, and Televideo in there. Even if your
terminal isn’t in that 1list, you can use
the INSTALL.DC utility to build a terminal
file for your terminal.

ct 82 ct 82 92 c8200
c8Z w c8Z w92 h 1400
h_1500 adds_vpt adds_3a
act_iv adm 3a ansi
pe_550 info_100 igq_120
Figure 7: Dynacaic Terminal Support

A particulariy strong point of DYNACALC
is the set of powerful functions it sup-
ports, including basic math (trig, log/exp,
sguare root, max/min, pi, int, round, and
absolute value), ‘“group" functions (sum,
average, standard deviation, net present
value, choose, 1lookup, and index), and a
bunch of miscellaneous functions. Choose
selects the nth entry from a 1ist, lookup
is the standard visiclone lookup function,

and index 1s 1like 1lookup except that it
scans for an exact match instead of greater
than. Many of DYNACALC’s functions work
witn either character strings or numbers.
This expands the usefulness of the func-
tions substantiailly.

DYNACALC has commands which move rows
and columns around, and do insert and
delete operations on them. The fanciest

A{Review of DynaCalc for 0S-9 135

command in this family is the sort command,
which allows you to sort rows or cotlumns
pased on the values in a column oOr row
respectively.

I have never been entirely pleased with
the speed of any program. O0f course I wish
DYNACALC ran faster, but I don’t remember
using a spread sheet program on a microcom-
puter that ran faster.

LIMITATIONS AND PROBLEMS

The only real probliem with DYNACALC is with
its terminal support, and I‘'m not sure it
could have been done much better without
losing generality. The +terminal support
probtem is not a major one. In fact, I
imagine that after a few months of using
the program I will feel nothing but affec-
tion for it.

It is hard to choose characters to use
as arrow -‘keys. DYNACALC uses curly and
square brackets as cursor control keys by
default. This 1is a good choice if you want
to drive it with a disk file, but not very
intuitive. If you like this choice as 1it-
tle as 1 did you can change it with
INSTALL. Unfortunately install onily allows
you to use single characters as control
keys; my terminal, 1like most terminals,
sends escape seguences when the arrow keys
are pressed.

Screen updating is not as fast and
smooth as it is on machines that have inte-
gral screen support. I: understand that a
9600 baud terminal can’t possibly compete
with memory mapped video, but I believe
that, 1if the insert and delete character
and line facilities on my terminal were
used, the screen could be updated more

136 0S-9 User Notes Volume I

auickly. It would have been hard to make
DYNACALC support more advanced terminals
while still supporting "“dumb® terminals,
but I wish it had been done.

SUMMARY

DYNACALC is a fine program, but although it
seems to have been written by a programmer
familiar with 0%-9, it doesn’t make the
fullest use of the power of 0S-8. I wish
DYNACALC could use all available memory
instead of just 64K, and I wish printing
was handled by a separate process so I
could start a copy of a sheet printing,
then continue work on the originail. Extend-
ed memory probably could have been used
under Level Two without degrading the pro-
gram under Level One, and multiple process-
es are supported by both levels of 0$-9.

I find myself expecting a great deal of
DYNACALC. My carping at its terminal sup-
port (which is in many ways unusually
good), and pushing for support of fancy
0S-8 features is a reflection of my very
high opinion of the program.

1 know people who find it reasonable to
buy a personal computer just to have an
electronic spread sheet. DYNACALC 1is an
excellient spread sheet program. It can help
with any number of business problems, sim-
ple problems in the sciences, and just
plain showing off the computer to the unin-
itiated. 1 think DYNACALC 1is a program
which should be included in the toolkit of
most 0S-8 users. One warning, spreadsheet
programs tend to be popular. I am afraid
that I will have to wait for a crack at my
machine more often now that I have DYNACALC
on it.

REVIEW OF DYNAMITE

OVERVIEW

Dynamite is 8 disassembler for the
6809/6800 sold by Computer Systems Center.
The version 1 tested runs under 0S-9, but
there are other versions for FLEX and Uni-
FLEX. Disassemblers are able to convert a
file of executable object (machine) code
into a program in assembly language. It is
important to realize that Dynamite won’t
work on intermediate code, such as Basic09
packed files, and it won’t always convert
object files 1into the original language.
Dynamite can convert an executable object
module generated by any language into
assembly language. Even if the program was
written in a higher Jlevel Jlanguage 1like
Pascal or C, Dynamite wiil only produce
assembler.

If you have reliabie software and don’t
1ike to dig around in your system much, you
have no need for Dynamite. Don’t waste
your money. If you would like to fix (mod-
ify) your software, or just want to under-
stand it as only someone with the source

code can, Dynamite, or some other disassem-
bler, 1is wvaluable. I have disassembled
many pages of code by hand. Those hours of
work qualify me to say that disassembly is
just the type of work which should be left
to computers.

SOME DETAILS

Dynamite can be used to get a quick look at
source that could have generated an object
file. The command:

DYNAMITE filename a

will disassemble the module in the file
called filename and send its output, which
looks like the the output of an assembler,
to the terminal. The "a" option telils
Dynamite to give the ascii equivaltent of
each printable character it encounters dur-
ing the disassembly. This simple disassem-
bly is enough in many cases. If the module
is more complicated than is easy to under-
stand without meaningful labels, the next
step is to help Dynamite do a better job of
decoding the module until its output s
understandabie.

Direct references
PCR references
Extended references
Hex constant
Decimal constant

ASCII constant
System function name

— N> rU

Table 2: Dynamite Label Classes

Decimal or Hex constant depending on magnitude

Dot

D - Direct page .
- Extended addressing
- Relative

~m

Table 3: Dynamite Addressing Modes

1 - one byte immediate (any register)

D - Immediate with Accumulator .
x,#Y,gU,#S - Immediate with other registers
,Y,U,S - Indexed by X,Y,U, or SP

Dynamite doesn’t distinguish between
data and instructions while disassembling.
This results in some very strange output as
blocks of constants are disassembled. Even
the name of the program pointed to in the
module header is decoded into assembly lan-
guage instructions. The "a" option makes
it easy to find the data areas, and Dyna-
mite can be told where they are either
through its standard input or in its com-
mand file. Once Dynamite knows where the
data areas are, it will stop disassembling
them as instructions. Instead, it wil)
label the entries in the data area, and
disassemble them into constants
(fcb,fcc,...).

when Dynamite is run without any gui-
dance, it invents names for everything it
encounters that might have had a name in
the original program. Addresses, offsets,
and immediate data all are given names.

Names for immediate data and offsets are
useful. Names for offsets in PCR instruc-
tions are VERY useful because, although
different references to a location will
have different PCR of fsets, Dynamite
resolves them to the same name.

An assembly language program more than
about a page long is hard to read unless it
has meaningful names. Dynamite gives names
that consist of a letter and a number.
More meaningful names can be assignhed by
using a label file.

Dynamite can use two classes of files
with label definitions in the form of

eguates. It always uses a "system name"
file which contains the names used for each
0S8 call. Wnhen the instruction:

0S9 ISOpen

Review of Dynamite 137

is decoded the "I1$0Open" comes from the sys-
tem name file. The second file full of

labe) definitions is the "label file." The
jabel file’s name has to be given in the
Dynamite command line. Each line 1in the

label file is of the form:

label EQU value class

for example:
Init EQU $24 L

where Init is the label, $24 is the value
and "L" is the class. Initially eight
label! classes are defined: see Table 2.
These classes are sufficient for a simple
disassembly, but I found myself defining
additional classes very soon. A class is
defined by putting some labels in the label
file with that class. All the unused let-
ters A..Z can be used as new classes. For
example. when 1 disassemble modules from
0S-8, I usually have to define labels for
offsets in the System Direct Page, and the
process descriptor. For the System Direct
Page the D class is fine, but for the pro-
cess descriptor I have t¢ define a new
class. I usually use P.

Dynamite will use its default classes
of labels wherever they are appropriate
unless it is given Iinstructions to use
another class of label. A good disassem-
bler needs to be able to assign labels to
values very specifically. Although 8 is
the offset of the P$User in the process
descriptor control block, it wouidn’t gen-
erally be 2 good idea to assign the name
vsiiser to the value 8 throughout a program.

-~amite gives you two ways to Iimit the
.upe in which a label is used. A class of
abel 1is activated by a command of the

form:

<mode> <class> [<offset>]
<range>

The modes are listed in Table 3. The class

is a default class, or one defined in the

label file. The offset is added to a value

before the proper label is looked up, then
nclugded in the disassembly listing. This
ld be used to generate instructions
e

lda {CR+$80

in the disassembly. The range gives the
range of offsets from the start of the mod-
ule being disassembled over which the map-
ping given by this command is in effect.

Commands can come either from standard
input after Dynamite is started, or from a
command file.

1f the reason for disassembling a mod-
ule is to learn how it works, the 1listing
generated by Dynamite should be enough. If
the goal is to revise the original program,
Dynamite can generate a file which contains
source which can be assembled with the
Microware Sstandard assembler, or any com-
patible assembler to give a module identi-
cal to the original.

The 0S-9 version of Dynamite expects to
disassemble 6808 instructions from a file
with modules in 0S-9 format, but there is
an option which causes it to disassemble a
file into 6800 1nstructions and another

138 0S~9 User Notes Volume I

option which tells it to expect to find the
module 1in Motorola or FLEX format instead
of the usual 0S-9 format.

OPERATION

I use Dynamite to sort of chew away at the
edges of a program until I have it reduced
to an understandable listing. First I let
Dynamite have its head, and produce a list-
ing using all its defaults. Using this
listing, 1 start building the 1labels and
commands files. At first I just define the
data areas and a few labels. Then I go
through a cycle of running Dynamite then
using the output to refine and extend the
contents of the commands and labels files
until the listing satisfies me. Then I ask
Dynamite to generate a file with the source
in it. This file is the best I can do with
Dynamite. It isn‘t well formatted, and has
no comments. The final polishing has to be
done with an editor.

Please realize that if you disassemble
proprietary software (such as Dynamite
itself) the same laws and moral obligations
that should prevent you from passing out
copies of the original program apply to the
disassembled program.

LIMITATIONS

when 1 first tried to use Dynamite, I had a
terrible time. I plamed the documentation.
Determined not to be unfair, 1 sat down and
read the manual from start to finish. 1
won‘t say it was easy reacing, but once I
had chewed my way through it 1 understood
how to use Dynamite. The manual is a 1it-
tle brief for the manual of a program that
does such tricky work, but it is complete.
It is not set up to be skipped through!

Dynamite‘’s advertising might lead a
person to believe that disassembling a mod-
ule with Dynamite is easy. You run Dyna-
mite against a file and it falls apart intc
neat code. This 1is not true at all...
disassembling a module is hard. You have
to figure out all the tricks the person who
wrote the program used. This is not too
hard to do for a short, simple program, but
long tangled modules are much harder to
disassemble than they are to read in com-
mented source form, and some modules are
hard to understand even when the original
source is in front of you.

It seems a 1little silly to design a
disassembler with the ability to insert
comments iJin its output, but Dynamite is
such a compiete product that I am a little
disappointed that there 1is no way to
include a "comment file" in the input for
Dynami te. I understand that Computer Sys-
tems Center 1s working on this shortcoming.

SUMMARY

I am very impressed with Dynamite. It does
about as good a job of helping a person to
disassemble a module as it can do. For
example, if Dynamite finds that a labe!?
falls in the middle of an instruction, it

throws in an ORG to adjust the PC so the
label falls at the start of an instruction.
This keeps data areas from throwing the
disassembly out of whack; usually if there
is a data area in a program, there is a
reference to the first instruction after
the data area which Dynamite can use to get
itself lined up again if it hasn‘t been
told that the data area is there and has
gotten itself wrapped around the axle by
trying to turn data into instructions.

Dynamite is designed to be useful for
several different types of disassembly.
The quick disassembly can be done without
building any files. The meost important

information can be suppiied interactively.
Used this way Dynmamite can produce a usable
listing in just a few minutes. The full
power and flexibility of the program shows
up when a higher quality listing is the
goal. Dynamite lends itself to the process
of successive refinements that leads to a
clear disassembly.

1 don’t recommend Dynamite for every
0S-8 user. In fact, 1 imagine there are
not many 0S-9 users who have a need for
this type of software, but for those who
need a disassembler, Dynamite is everything
it should be.

Review of Dynamite 139

140 0S-9 User Notes Volume I

A REVIEW OF RMS

RMS (Record Management System) is a primi-
tive, but useful tool for organizing and
processing data. It isn’t a database sys-
tem, or even a polished record management
system, but, nevertheless, 1 rather 1ike
it.

OVERVIEW

RMS stores data using at least two files.
The _rms file contains data. It must be
formatted in advance using the RMSNEW util-
ity. The _dic file contains a description
of the data in the _rms file. The _dic
file must be created with a text editor
before any data can be placed in the _rms
file. A third file type _ndx (index) is
used when a _rms file must be sorted on
some key other than the one designated in
the dictionary file. Many _ndx files can
be generated, one for each ordering of the
file. Index files can be created with the
INDEX wutility, or any other program that
generates a file with a key value on each
line.

RMS has to know many things about your
terminal before it can be used. A file
called rms_trm must be build with a text
editor and placed in the root directory of
/DO, or the directory which will be the
default data directory when RMS is run.
The rms_trm file must contain the hexadeci-
mal representations of 88 bytes of data
including 31 terminal characteristics and
command codes.

SOME DETAILS

RMS saves information in record groups con-
sisting of one ‘'primary" record and any
number of "secondary" records related to
the primary record. The secondary records
aren’t required, but they are important
whern a variable amount of information is to
be associated with each primary record.

I use primary and secondary records in
the database of Prairie Home Companion (an
excellent program on Public Radio each Sat-
urday evening) programs I keep. Some
information about each week’s show fits
nicely in the primary record: a date, and a
comment to act as a title for that week’s
show. I maintain secondary records to save
the names of the guests, notes on each mon-
olog, and notes on each "advertisement." I
use the secondary records because although
I could probably put a ceiling on the num-
ber of guests, monologs and adds that might
occur in a program, the ceilings would have
to be much higher than the usual numbers,
RMS assumes that all fields will have data
in them when it allocates space for a
record; so leaving space for data that
isn’t usually needed would waste lots of
file space. Since I only use as many Ssec-
ondary records as 1 need, they use space
comparatively efficientiy.

The dictionary file associated with
each RMS file defines the structure of the
data in the fiie and the way the records
are displayed on the screen. If secondary
records are used, the dictionary file con-
tains the formats for primary and secondary
records.

The first line in the dictionary file
contains the title for the primary records.
This title is displiayed on the screen when
the RMS editor is being used to edit a pri-

mary record. Lines following the title
line are used to define fields in the
record, one field per line. The first
field is the "key" for the record. The key

can be used to setlect records for editing
very quickly. The line defining a field
contains the name of the fielid, the length
of the field, the type of data to be stored
in it (alphanumeric, numeric, money, or
date), the prompt to use in the editor, and
various data validation options. The field
can be made optional, a minimum length can
be specified, and a range or list of accep-
table values can be given.

The dictionary file I use for my Prai-
rie Home Companion file demonstrates some
of the features of RMS. I include it here
as an example.

Home
"Date aired:" ;
xComments: "

"Prairaie

DATE 8 D
COMMENT1 50 A%
COMMENT2 50 A%
POINTI 15 A%
gOINTZ 15 A%

"Special Notes: .
" Y .
]

Companion"

" .
*

DATE 8 D "Date aired:" ;

TYPE 1 A " Type (Sponsor, Powdermilk,Monolog, Guest, Other):" [s,P
SUBJECT 50 A* "Subject: " 3

SUBJECT2 40 aA* " "3}

SUBJECT3 40 A* " "

Figure 8: Sanplie RMS Definition J

The only fields on which I used valida-
tion are the date fields, which RMS vali-
dates for possible dates, and the TYPE
field, which I only permit to take one of
five values. RMS formats the data on the
screen using a few simple rules. The

fields are placed in order starting in the
upper left corner and working left-to-right
and top-to-bottom. RMS won’t split a field
and its prompt between two 1ines. It is
possible to have some effect on the screen

A Review of RMS 141

M,0,G]

format by adding leading blanks to prompts,
put not much. Trying to do something radi-
cal -- like add a blank line -- makes a
terrible mess on the screen.

The dollar signs mark the end of each
record definition.

The lengths of the primary and secon-
dary records are 138 bytes and 138 bytes.
I kept the lengths about the same because
RMS allocates only one size of record. It
must Jleave space for the largest possible
record; so, when two record formats are
used, the difference in size between the
two records is wasted for each small record
stored in the file.

I used an important trick on the secon-
dary record. Since RMS only understands
two record formats, I used the secondary
format for five different types of records.
The TYPE field in a secondary record indi-
cates the meaning of the information in the
rest of that record.

The RMS editor is used to add, delete,
and update records in an RMS file. It is
also able to search through the file either
sequentially, or by key.

The RMS report writer 1is powerful, but
not versatile. It takes as input an rms
file, a report specification file, and
sometimes an index file. The report speci-
fication file is something like a program.
“he language used reminds me of RPG. It
can contain commands which select or
excluge records. Any number of 1lines can
pe printed for each record selected. Spe-
cial lines can be printed at the start of a
report, at the end of a report, at the end
of a group of records, and at the top of
2ach page. Page breaks happen when a page
is full, or (optionally) after each prima-
ry, or secondary record is processed.
inere are no arithmetic commands in the
report generator, but various accumulators
are kept: the number of selected records,
the number of selected groups, the number
of selected secondary records, and totals
and subtotals for each numeric field.

By default reports are generated with
records sorted in ascending order on their
key . Other orders can be specified by
using an index file.

Index files can be generated by the
JWNDEX utility. INDEX produces a file that
contains a list of record key values. If
records are selected from the RMS file in
the order specified in the i1ndex file they
will be in the order specified when INDEX
was run to create the index file. For
example:

INDEX phc Points Pointl

would generate an index file called Points
which could be used to sort the phc RMS
file 1in ascending order on the POINTH1
field. Index files can be edited to gener-
ate orderings that are beyond INDEX’'s abil-
ities.

The RMSCOPY utility can be used to copy
RMS files, but it can also do much more.
RMSCOPY can be used to add fields to a
file. remove fields, or merge similar RMS
files.

142 0S-9 User Notes Volume I

FLAWS

Setting RMS up is exceptionally difficult.
It took me hours to get the _trm file
right. The worst part of my problem was
that RMS didn‘t help me uncover problems,
it just wouldn’t work. I have a terminal
which uses ANSI standard control seqguences
which some programs have trouble with.
Other people might not have quite as hard a
time as I did.

The documentation keeps referring to
file names with dots in them, but RMS
always uses underscores. I called the pro-
gram’s author to ask about this. It seems
that when RMS was written for 0S-9 dots
weren‘t allowed in file names. I assume
that there is a FLEX version of RMS which
uses dots where the manual says they should
be. Since 0S-8 now permits dots in file
names, RMS could be adjusted to fit its
manual, or the document could be updated to
reflect the use of underscores. That nei-
ther of these things has been done indi-
cates a negligent attitude that is disturb-
ing. ’

It is practically impossible tc format
the screen any way other than the way RMS
wants it. This would be easier to take if
I 1iked the way RMS formats the screen. 1
prefer to use up the whole screen, and RMS
packs the fields as cliose together as pos-
sible.

RMS’s file structure is wasteful of
disk space. Since it can’t handle
variable-length fields or records, it uses
more space per record than is necessary in
almost every case. It also has to format
the entire file before any records can be
placed in it. It would be more consistent
with 0S-8 conventions to start off with a
small file and enlarge it as required.

Index files aren’t automatically updat-
ed. That means that if you generate an
index file, then insert or delete records
in the _rms file, the index file is out of
date and has to be made over again. It is
easy to forget to make new index files, and
RMS doesn’t do anything to make it easier.

SUMMARY

I find RMS useful, but frustrating. It is
not a database program; it doesn‘t even
pretend to be. Before I could discover how
useful RMS is I had to get it set up and
got used to its limitations. These were so
discouraging that I almost gave up on the
program. I'm glad I didn’t. I use the RMS
editor as tool for searching quickly
through large files, and generating reports
on the contents of those files. 1 wish RMS
could deal with multiple keys, but, for
many applications, one key is plenty. As a
report generator RMS is quite good, includ-
ing all the most commonly used features.
It would be better if there was some way to
do arithmetic, but I’m surprised how well 1
can make do with what’s there.

I had heard that RMS was incltined to
crash, but I haven’t been able to get it to
do anything unexpected except when I messed
up its _trm file, or tried to get it to
format the screen in a way contrary to its
nature.

RMS is not a highly polished program.
In fact, it’s primitive. Not primitive in
a sloppy sense ... more simple and rough-
hewn ... like a well build log cabin. It
makes me want to write a real database prec-

gram for 0S-9,

get around to that,

but, since 1 probably won’‘t

I expect that RMS will

continue to ge't a moderate amount of use

around here.

A Review of RMS

143

144 ‘089 User Notes Volume I

AVAd Y A AIVY UL DT HIVW RLIND

RMA (Relocating Macro Assembler) and RLINK
(Relocating Linker) are new programs from
Microware. They are required for C (and
probably for future Jlanguages from Micro-
ware), and are currently bundied with C.
Those who already have the C compiler from
Microware shouldn’t consider purchasing
RMA/RLINK -~ they already have them under
the names c.asm and c.link.

OVERVIEW

It is easier to explain RLINK’S purpose
than RMA’s. RLINK takes one or more files
created by RMA and turns them into an exe-
cutable module. RMA is a tool which makes
writing large programs easier with a moder-
ately good macro facility and a variety of
tools which permit a program to be divided
into several pieces which can be assembled
separately.

This separate assembly is the really
important part of RMA. With separate
assembly it is easy to build a tibrary of
procedures which can be called from any
program. Structured programming requires
that each procedgure be as independent of
other procedures as possible. It is much
easier to do this when each module has
clear connections to other modules -- in
particular, any shared data should be not-
ed; RMA makes it easy to isoclate proce-
dures, and makes it hard to hide shared

data.

SOME DETAILS

RMA includes the usual conditional assembly
sStatements:

. FAIL

Generates an assembler error and a
message.

. IF/ELSE/ENDC

Do just what they should. ELSE 1is
optional.

. REPT /ENDR

repeats a set of statements a speci-
fied number of times.

These statements can be used in the body of
a program, or in macros. Macros amount to
procedures, or specially defined irstruc-
tions which can be used very much as if
they were 6808 instructions. A macro is
defined by the MACRO/ENDM statements. A
macro can be given parameters which are
referred to within the macro by a backslash
followed by a number: \1 would be the first
parameter, \2 the second, etc. The number
of parameters given is available through
the special operator \#, and the length of
any parameter is available through the
operator \Ln where n is the number of the
argument whose length is in guestion.

Swap MACRO . exchanges bytes in memory
* argl -- points to memory location
* arg2 -- anotber location
* arg3 —- the number of bytes to swap (a constant)
IFNE \# - check the number of args.
FAIL Swap: must have exactly three arguments
ENDC
shs A,B,X,Y
eas —1,§ Make work space on stack
leax \1,U address of first variable
leay \2,U address of second variable
1db” #\3 number of bytes to swap
ble \@Lx if none; stop
\@Lp lda B,X
sta ,
lda B,Y
sta B,X
lda ,$§
sta B,Y
decb
bne \@Lp

clear work space

Review of RMA and RLINK 145

when a macro needs unigue Jlabels, RMA
offers the \& operator. This operator
returns an & followed by a number unique to
sach invocation of each macro.

A sample RMA macro can be found in Fig-
ure 8. This macro could be invoked with
tne statement:

Swap Varl,var2,20

which could be used as many times as neces-
sary 1n a program with Swap def ined.

The Separate Assembly Facility

RMA includes statements which define three
different "program sections."

The PSECT section contains program code
and constants. RMA can only deal with one
PSECT per assembly. The PSECT statement
incjudes all the data given in the MOD
statement in ASM except the module 1length,
but only the entrypoint argument to PSECT
is an address. The parameters are:

. NAME

Up to 20 byte name for the PSECT
. TYPELANG

the type/language for the PSECT
° ATTRREV

the attribute (Retnt ?) and revision
leve)l of the PSECT

. EDITION

the edition number to be used for the
executable module.

. STACKSIZE

The estimated size of the stack for
this procedure.

. ENTRY

The Label used for the first instruc-
tion to be executed in the PSECT.

I1f the PSECT is the mainline segment of the
program being written, all the arguments
must have values; for example:

PSECT Example,Prgrm+Objct,
ReEnt+1,1,250,EntryPt

Procedures which are used as subroutines
must have zeros in some fields; for exam-
ple:

PSECT SubProc,0,0,0,100,0

The PSECT section contains only con-
stant data: instruction mnemonics, 0S8,
fcc, fdb, fcs, fcb, rzb (reserve zero-value
bytes, VSECT, ENDSECT, and END. In partic-
ular rmb is not allowed in a PSECT.

The VSECT section reserves memory jloca-
tions. It has two forms:

VSECT DP

reserves space in the direct page, and just

146 05-9 User Notes Volume I

VSECT

reserves space outside the direct page.
The VSECTs are used for the variables that
would normalily be addressed off the U reg-
ister in an 0S-8 program. Normally only
the rmb instruction is used in a VSECT, but
for elaborate programs it is possible to
have variables automatically initiallized.
If you are willing to include the initial-
lization code in your program (it is
included with RMA) you can use fcc, fdb,
fecs, fcb, and rzb in a VSECT along with
rmb . It is important that there 1is no
official way to know where variables allo-
cated in a VSECT will be relative to other
variables. Your program will be able to
find its variables, but finding relation-
ships between the addresses of variables at
assembly time is hard.

As many VSECTs as convenient can appear
in a PSECT.

If VSECT 1is used inside the PSECT, as
it usually is, it will cause the linker to
allocate space for the variables in it. If
a VSECT is placed outside the PSECT it will
make the variables in the VSECT known in
the code, but not allocate any storage.
This 1is a useful trick for cases when you
know that a block of variables has already
been allocated and you want access to all
of them. 1 haven’t tried this, and I can’t
find it ir the manual, but Microware
declares it will work.

A CSECT is just a way to assign values
to names. They are used extensively in the
DEFS files for RMA. DOnly the rmb statement
can be used in a CSECT. If the CSECT
statement is given an argument, that argu-
ment is the starting value in the CSECT,
otherwise the values in the CSECT start at
zero.

Every program sector must be terminated
with an ENDSECT. A PSECT can contain other
sectors, but in general sectors should not
be nested. .

A label can be made globally available
by following it with a coion *:" when it is
defined. If a label isn’'t global, it is
only known in the PSECT where it is
def ined. If a label isn’t global, it can
be used to represent a different thing in
each, separately assembled, file.

Speaking of labels: RMA permits labels
up to nine characters long and always dis-
tinguishes upper and lower case letters.

The files that are produced by RMA,
called relocatable files, can be decoded by
a program called RDUMP which is included
with RMA. RDUMP can give anything from a
quick summary to an exhaustive dump of
information about symbols referenced and
defined in the file being investigated.

SOME INTERNALS

Since RMA has no way of telling what off-
sets RLINK will assign tc variables defined
in VSECTS, it is often unable to use the
small-offset forms of the indexed instruc-
tions. References to data in VSECTS are
assembled as 16 bit offsets. RMA records

information about variables defined and
used in a PSECT which is used by RLINK.
RLINK goes through the files it is linking
filling in the blanks left by RMA.

RLINK accepts a list of files to link
and libraries to use. It will link all the
files on the command line even if the main-
line PSECT doesn’t reference anything in
them. If there are any references left
unresolved, RLINK will search the
1ibrary(s) for the PSECTs needed to resolve
the references. A library is simply a
group of PSECTs merged together: the MERGE
command does this nicely. PSECTS in a
library can call one another,. but, since
the tlibrary is read sequentially, unre-
solved references must be to PSECT further
along in the file, or in another 1ibrary
which will be searched later.

LIMITATIONS

1 haven’t been able to discover an easy
way to have RMA calculate the length of a
group of variables in a VSECT. The concept
of a useful data position counter ("." in
ASM) doesn’t exist in RMA. There are sev-
eral counters (Direct Page, Uninitialized
data, and initiallized data), and, in any
case, the 1linker has the 1last word on
addresses. I got used to this problem, and
I can‘t think of any way for Microware tc
design it out of RMA without i{introducing
other problems, but it is a serious prob-
iem. The tack of a "." caused other habits
I have to generate errors as well.

RMA’s inability to determine offsets in
2 VSECT causes the 16 bit offset instruc-
tions to be used more than they are in pro-
grams assembled with ASM. These instruc-
tions are relatively long and siow. At
first this really upset me, but my experi-
ence and Microware’s indicates that it
isn‘t a significant problem. I converted
several very large (5000 to 10000 lines of
code) programs from ASM to RMA and they
generally got a littlie smaller. Microware
declares that they have converted Basic09
from ASM to RMA, and that it got a little
smaller through the conversion. I attri-
bute the small decrease in size to better
coding habits that RMA encourages. Still,
in the last analysis, programs assemblied by
ASM can be made to run faster than programs
assembled by RMA.

This 1is really nit-picking, but the
command l1ine option which should set the
width of the tisting which RMA can produce
doesn’t work. It’s not that important, but
little problems like that could give a less
forgiving person than me a bad impression
that would spoil the excellent job done on
the really important parts of the product.

I found several problems 1in the first
copy of RMA that I got, some of them guite
serious. I now have edition five. If you
have an earlier edition, I would strongly
recommend getting an update. If you mean
to use c.asm as a stand-alone assembler,
you should also see to it that you have an
up-to-date revision. The problems were
tricky things that wouldn’t generally show
up with correct code, but 1 haven’t been
able to uncover any bugs other than the
probiem with the width of the listing in
the current revision of RMA

Converting programs from the standard
assembler to RMA is not as simple as one
might think. TJo start with the standard
DEFS files won’t work, and Microware didn’t
include complete DEFS files with RMA. I
frequently use " " that had to be dealt
with. RMA can’t handle as many symbols as
the standard assembler before the symbol
table overfiows. This meant that I
couldn’t just convert a program into RMA, I
had to use RMA. A large program MUST be
broken down into several PSECTs and assem-
bled in pieces then 1inked.

SUMMARY
I think RMA/RLINK 1is wonderful. I am a
serious assembly language programmer . I

write large programs that take a long time
to assemble, and have quantities of chunks,
of code that I "“USE" in assembler programs
to prevent myself from having to rewrite

commonly used procedures. RMA lets me
build 1libraries, and assemble only the
small part of a program that I change. I

also care about structured programming, and
RMA lets me use that disciptine for assem-
bly tanguage programs.

Assembly language procedures to be
called from C must be written in RMA, and I
have been able to call C procedures from
RMA programs. RMA comes with the C compi-
ler, but the documentation that is included
in the C manual isn’t sufficient to make
full use of c.asm/c.link. The information
1 have given in this review may supplement
the C manual enough, but, if not, I would
recommend purchasing a copy of the
RMA/RLINK manual from Microware.

The standard assembler is easier to use
for short and simplie programs. RMA has a
1ot more power, and 1is correspondingly
harder to use. Nevertheless, if you are
serious about assembler, RMA/RLINK is
important to have. Even if the added
structure doesn’t mean anything to you, the
large amounts of time that you won’t spend
waiting for big programs to assemble will
be worth the investment in money and time
that RMA requires.

Review of RMA and RLINK 147

248 0S-9 User Notes Volume I

ACIA ... 48

Active Process Queue ... 58
ANSI Protocol ... 38
Application Programs ... 35

B-Trees ... 131

Basic0g8 ... 15, 35

Basic09 Installation ... 77

Binary Trees ... 131

Boot file ... 9
Construction ... @

BTS ... 13t

Buffers ... 26

Busy wWaiting ... 25

Bword ... 60

C Asm ... 145
C Functions - Floating Point ... 86
C Language ... 96, 113
C Link ... 145
Cache ... 49
Calec ... 21
Carry Bit ... 29
Changing Disks ... 78
Changing I/0 Configuration ... 74
CharCt ... 80
CHD ... 37
CHX ... 37
CIS CoBOL ... 123
Clearbrook Software Group ... 131
coBOL ... 123
COBOL Debugger ... 124
CoCO ... 62, 77, 8%
CoCo Disk Driver ... 87
Commands ... 9
ATTR ... 37
Backup ... 103-104
CHD ... 37, 103, 105
CHX ... 37, 48, 103, 105
DCHECK ... 113
DELDIR ... 8
DIR ... 55, 103-104
DSAVE ... 8
EX ... 48
Format ... 103
IDENT ... 8
Kill ... 48
LOAD ... 78
LOGIN ... 56
MAKDIR ... 36
MDIR ... 78
MFREE ... 78
0SS9GEN ... 9
PRINTERR ... ©
PWD ... 8
PXD ... 9
Setpr ... 48
TSMON ... 56
UNLINK ... 78
W ... 48
Compuserve ... 77, 81
Concurrency problems ... 16
Busy waiting ... 25, 57
Execution Sequence ... 25
Lockout ... 25

D-Series ... 132

D/A Converter (CoCo) ... 88
Data Base ... 141
Data Directory ... 36
DAttr ... 132

DCopy ... 132

DDel ... 132

DDir ... 132

Debugger ... 35
Debugging ... 50
Dedit ... 131
DefsList ... 27

INDEX

Device Descriptor ... 74
Device Driver ... 6
Beeper ... 82
Logical ... 48
Null ... 6
Null Program ... 7
0S-9 Service ... 26
Service Routine ... 57
Static Storage ... 49
Device Drivers ... 26
Device Independance ... 74
Directories ... 36
Anonymous ... 37
Changing Disks ... 78
CHD ... 37
CHX ... 37
Data Directoy ... 36
Default directories ... 105
Dir command ... 104
Directories as files ... 107
DirSgz ... 118
br ... 115
Execution Directory ... 36
Formatted listing ... 113
Location on Disk ... 4B
MAKDIR ... 36
Multiple Links to a File ... 113
Reading Directories ... 107
Root ... 36
Upgdating ... 113
DirSgz ... 118
Disk Contention ... 26
Dispatcher ... 57
Dissassemblers ... 137
Dr ... 148
Driver.Device ... 57
Driver2 ... 22
DYNACALC ... 135
Dynaform ... 35
Dynamite ... 137
DynaSpell ... 35, 96
DynaStar ... 35

Edit ... 35

Editors ... 88

Enqueue/Dequeue ... 16

Entry Point ... 28

Execute Only files ... 56
Execution Directory ... 36
Execution file attribute ... 108
Execution Sequence ... 25

File Attributes ... 55
File Descriptor ... 108
File Security ... 55
File Sharing ... 55
File . Attributes ... 55
Filter ... 39

Flex ... 85

Frank Hogg Labs ... 35
Fujitsu ... 47

Gerneric 0S-9 ... 107
GETSTAT/PUTSTAT ... 38
Gimix ... 47, 814

GIMIX I11 ... &

GOTOXY ... 38

Graphics ... 61

Graphics hardware ... 87

1/G Managers ... 74

1/0 redirection ... 73

1/0 System ... 73

IFP1/ENDC ... 27

Initial Program ... 56
Initialization Table ... 75
Interrupt Service Routine ... 57
Interrupts ... 57, 88

Index 149

1sam 47, 123
47

(o.P.)

ul3M Group

Johnson, Dan 87
Level 11 Memory Requirements
Locker ... 18

Lock ing i6-17

Lockout

Macros 145
Memory for Level 11
Memory Management
Mice . 88
M1x 25
Module Type
Modules ... 16
Data Modules ... 16
Entry Point 28
Locking 16-17
Memory requirement
Modulie Size ... 17
Module Type 27
Reentrant 27
Revision 27
Shared ... 16
Storage Reguirement ... 28
version Number 28
MOTD 56
:1ti-Processors
t.ltitasking
WJUMPS ... 41

87
107

27

78

88
82

on-Standard Hardware 107
C~F ..
OFl1ex
OS9P1
nssP3

121
95,
107
97

105

P/V ... 16
Parameter String terminator
Paramod 42
vascal ... 5, 35-36
Brief Review
Microware ... 5
Release 2.0 (Microware)
virtual Storage ... 5
ssword 56
-essword file
7ipes ... 59
Algerithm Partition via
Bug in PIPEMan 60
Direct from programs
Example of a Pipeline
Filters 59
internals ... 61
Interprocess
Overview ...
Snell 58
words (Filter)
POpt 27, 30
Porting 0S-9 107
“~inter Options ... 27
“riority 26
brivac ... 47
Processes ... 10
Address Space ... 12
Background ... 48
Busy Waiting 25, 57
Concurrency problems ... 16
Concurrent ... 15
Execution Sequence 25
Getting a good Mix 25
Interprocess Communication

35

56

60

62
59

59

Lockout 25
Parameter Area 11, 15
Priority 26

Program length 27

150

8

28

36

60

1

15

0S5-9 User Notes Volume I

Programs ... 13
Beeper 84
Beeper2 S0
Bword 63
Calc ... 21
CharCt ... 64
COBOL Benchmark
Cobol Sieve
Cobol Test
DFormat
DirSqgz
DList
DList2
Dr 115
Driver One ... 14
Driver Two 22
FRexp 100
Getting a good Mix
Grapher 66
Help_B ... 45
g ... 111
Locker ... 18
Modf 100
ParamMod 44
POpt 30
Rast
Sound 83
StrtTask ... 67
StrtTask One ... 13
TBeep2 82
TestBeep 86
TstSSig 99
vcia ... 51

Protection

. t28
128
126
112
118
108
110

25

27,
70

S5

Rasterization ... 61
Record Management
Recovery 113
Reentrant 16, 27
Revision ... 27
RLINK 145

RMA 145

RMS 141

RunB 80

141

School 59
Schools ... 41
Separate Assembly 145
Service Reqguests ... 10

F$Fork ... 11

F$Send 57

Fork ... 10

Link ... 16

SetStat SS.SIG ... 97
Shared modules ... 186
Shell 28
SHELL Commands ..
SHELL Push 48
Smoke Signal Broadcasting

101

Sort 47, 60
Sound Generation ... 81
Spelling Checker 96
Split Screen
Spread Sheet
SS.SIG Setstat
Stable Storage
Standard Error ...
Standard Error Path
Standard 1/0 Paths
Standard lnput
Standard Qutput .
Standards 39, 10t
Startup Fite 56,
Storage Reguirement
Suspend State ... 57

ref id=Proces.Suspend State
SWTPC 107

48

48
1385
97
113
73
73
73

73

73

73
28

Tanc Dragon 47
Televideo 97

Terminal Commands 40

a7,

81,

57

Terminal Handling ... 123

Terminal Support ... 38

Time Sharing ... 56

Tone Generation ... 88

Translation Lower to Upper Case ... 28
Tuning ... 26

Unigq ... 60

UNIX ... 36

Use ... 27

User Number ... 56

User Seminar
Users Group

Vcia

51

Version Number

VTerm
wWaveform

XOn/XOf f

48

82

8

47

28

‘28, 47, 62

Index

151

152 0S-9 User Notes Volume I

	OS-9 User Notes
	Table of Contents
	Part 1: Columns
	Part 2: Reviews
	Figures
	Tables

	Part 1: Columns
	Introductions
	Column 1
	Opening Remarks
	GIMIX-III OS-9
	A Null Device
	Documentation For Null Device Descriptor
	Null Program

	Column 2
	OS-9 Level Two Version 1.1
	Generating A New Bootstrap
	Building A New System Disk
	Using Multiple Processes

	Column 3
	The FORK Superviser Service Request
	Communications Via the Parameter Area
	Assembly Language Procedures for FORKing Processes
	StrtTask-One
	Driver One

	Column 4
	BASIC/BASIC09
	Interprocess Communication
	Communication Via the Parameter Area
	Data Modules
	Locking Data Modules
	Locker Program
	Calc Program
	Driver Program

	Column 5
	More About Locking
	Getting A Good 'Mix"
	An Assembly Language Program Which Sets Printer Options
	The OS-9 User's group
	The Future of This Column
	POpt Program

	Column 6
	New Release of Microware Pascal
	OS-9 Directories

	Standard Terminal Support for OS-9
	Column 7
	A Letter
	A Letter From Bengt-Allan Bergvall
	Paramod
	Help_B

	Column 8
	The OS-9 User Seminar
	Shell Commands
	A Logical Device Driver
	VCIA Device Driver

	Column 9
	Protection
	The "Suspend State"

	Column 10
	More About Computers At School
	Pipes
	A More Advanced Approach to Pipes
	Installation
	Operation and Modification

	Welcome COCO
	The Users Group
	BWord
	CharCt
	Grapher
	StrtTask
	Rast

	Column 11 -- The OS-9 I/O System
	The Unified Input/Output System
	Changing OS-9's Device Support

	Column 12 -- The COCO
	Notes on Compuserve
	Thank You GIMIX
	A Handy Shortcut

	Column 13
	Big System Hardware
	Big System Software
	The Compuserve OS-9 SIG
	OS-9 on the Color Computer
	Installation of Beep/Beeper
	Applications for /Beep
	The Users Group
	Sound
	Beeper
	TestBeep

	Column 14
	More About the COCO Disk Driver
	Where Next?
	More Nose from the COCO
	This Month's Driver
	The Users Group
	Beeper2
	Beep
	TBeep2

	Column 15
	The OS-9 Seminar
	OFlex
	New Manuals
	 C Functions
	The Butterfly
	Dynaspell
	A Nice Experience
	Tricks for Level Two
	TstSSIg
	FRexp
	Modf

	Column 16
	Standards
	Standards that are the User's Responsibility
	The Users Group

	Column 17 -- The First Step Into OS-9
	Format
	Backup
	Dir
	CHX and CHD
	Oops

	Column 18
	My Life
	Non-Standard Hardware
	Directories as Files
	DList Program
	DList2 Program
	ld Program
	DFormat Program

	Column 19
	More Games with Directories
	Dr Program
	DirSqz Program

	Part 2: Reviews
	A Review of O-F
	General System Description
	Limitations
	Operation
	Evaluation
	Summary

	Review of OS-9 CIS COBOL
	Overview
	Enhancements
	Limitations
	Benchmarks
	Summary
	COBOL Test Program
	COBOL Sieve
	COBOL Benchmark Program

	Review of Software by Clearbrook Software Group
	DEdit
	Overview
	Details
	Limitations
	Summary

	BT9
	Overview
	Details
	Limitations
	Summary

	D-Series Utilities -- DDIR, DDEL, DCOPY and DATTR
	Overview
	Details
	Problems and Limitations
	Summary
	Reconsideration

	A Review of DynaCalc for OS-9
	Overview
	Some Details
	Limitations and Problems
	Summary

	Review of Dynamite
	Overview
	Some Details
	Operation
	Limitations
	Summary

	A Review of RMS
	Overview
	Some Details
	Flaws
	Summary

	A Review of RMA and RLINK
	Overview
	Some Details
	The Seperate Assembly Facility

	Some Internals
	Limitations
	Summary

	Index

