
 Page 1

Microware OS-9/68000

by F.G. Swygert

OS-9 Quick Reference
and

Programmer's Guide
for

Professional OS-9/68000

the FARNA Fox!

Published by
 FARNA Systems

Page 2

OS-9 QRG & Programmers Guide

Copyright (c) 1994
by F.G. Swygert

ALL RIGHTS RESERVED

Distributed by:
FARNA Systems

Box 321
Warner Robins, GA 31099

Phone 912-328-7859

"OS-9" and "OS-9/68000" are trademarks of
Microware Systems Corp.

"Tandy" is a trademark of Tandy Corp.
"FARNA Systems" and the "FARNA Fox"

emblem are trademarks of FARNA Systems.

Published by FARNA Systems PB
First Edition

First Printing April 1994

 Page 3

Microware OS-9/68000

OS-9 Quick Reference
and

Programmer's Guide
for

OS-9/68000

(Based on Version 2.3)

CONTENTS:
Introduction 3
A Note on Redirection 4
1- The Shell 4
2- System Commands 5
3- Special Keys 22
4- µMACS Editor Commands 23
5- System Calls

User-State System Calls 28
I/O System Calls 38
System-State System Calls 28

6 - Standard Math Module Functions 46
7- System/Basic09 Error Codes 55

INTRODUCTION
One of the troublesome things about learning OS-9/68000 is that bulky

manual. It takes up lots of desk space, and it's sometimes hard to find that one
simple command needed to complete a project. And one has to refer to the
manual a LOT when first starting out- more than one cares to admit I'm sure!

This little Quick Reference Guide was designed to get that manual off
your desk and back on the bookshelf. It isn�t, however, a replacement for the
full manual. Only a brief description of commands and codes are given,
sometimes no more than the syntax for entering. Enough information is here
to jog one�s memory and get back on track, but the manual will still have to
be referred to for learning and heavy duty programming chores. Note also
that this QRG is based on the generic Microware manuals. Some systems
will have special key functions not listed here.

Any of you who have FARNA's QRG for CoCo OS-9 will be familiar
with the layout and content of this OSK edition. Indeed, the same template
was used for both! I hope you find this edition as helpful as the first. If you
have never seen the CoCo edition, well, let's just say enough were sold to
make this edition a very good opportunity!

F.G. Swygert

Page 4

OS-9 QRG & Programmers Guide

A Note on Redirection
OS-9 commands generally read from the keyboard and write to the

current screen. Almost all of them, however, can be sent elsewhere, using
the redirection symbols: < (input) > (output) >> (error output).

Some common redirections-
echo Hello>/w7 - would print �Hello� on window 7
List file>/p - lists file to parallel printer
utility -? >>/p - would print the help file

(note that help info often follows the error path)

1 - The Shell
The OS-9 shell is the built-in command interpreter. It is also user configu-
rable. The wildcards * (representing any string) and ? (representing any
single character) may be used with any command (built-in or external).
Built-in Shell Commands
The following commands are built-in the shell. all other commands are external- they are
separate utilities.

* Comment- nothing following on the same line is
processed. Used mostly in procedure files.

chd (path) Changes default data directory to specified (path)
chx (path) Changes default execution directory to specified (path)
ex (name) Exit shell and execute program (name)
kill (ID#) Abort process (ID#)
logoutTerminate current shell
set (options) Set shell options specified
setenv (var)(val) Set environment variable (var) to specified value (val)
unsetenv (var) Remove environment variable (var) from environment
w or wait Wait for all child processes to terminate

Shell Options
Options can be set by typing on the command line or by using the set command. A dash
in front of the command turns it on, no dash turns off.
ex: set -t echoes input lines, set t does not echo input lines

-e=(file) Print error messages from (file). If no file given, /dd/sys/
errmsg is assumed. If turned off, only error numbers and

brief descriptions will be listed.
-ne Do not print error messages (default)
-l Terminate login shell with logout command only.
-nl Terminate login shell with ESC key or CTRL [(default)
-p Display prompt
-p=(string) Displays (string) as prompt. Default prompt is $.
-np Do not display prompt
-v Verbose mode- display message for each directory

searched when executing a command.
-nv Verbose mode off (default).
-x Abort process upon error (default).
-nx Do not abort process upon error.

 Page 5

Microware OS-9/68000

The Shell Environment
There are eight shell environment variables. These dictate how the shell reacts to
subsequent commands. All shells use the parent shells environment unless changed.
Only the shell the changes are made in and subsequent shells are affected, not previous
shells. The first four (PORT, HOME, SHELL, USER) are automatically set when
logging onto a time-share system. They are set with the set or setenv commands for
single user systems. Note that environment variables are case sensitive- use the proper
case!

PORT Name of the terminal, usually /tx (where x is a number)
HOME Home, or default, directory. This is the users default data

directory when logged on. Also the directory used when
chd command is used with no directory name.
SHELL First process executed when system is started.
USER User name typed when prompted by login.
PATH Specifies directories to search through for a command/

program when a path is not given. Directories must be
separated by a colon (:). ex: /h0/cmds: /h0/sys: /h1/cmds

PROMPT Defines the current prompt. Use an @ in the prompt to
display the shell number (@ will be replaced by displayed
shell sequence number).

_sh Starting shell number. _sh0 will make the first shell
number "0" (no number displayed), the next 1 (@ in
prompt replaced with number 1), etc.

TERM Specifies type of terminal being used. Terminal types are
usually specified by manufacturers model number. Types
vary with system supplier. Others may be specified using
termcap. See manual for details.

1 - System Commands
Commands are given in bold capital letters. Items following in bold lowercase are
required. Items enclosed in parentheses () are optional. COMPLETE path lists must be
used in paths and names (file and directory) or current is assumed (path is synonymous
with in this booklet pathlist). Examples are in bold lowercase with an explanation. A
question mark will display the syntax for that command.

ATTR (options) filename (permission) Examine or change file security attributes.
filename is the name of the file to be examined or changed, including the complete path.
If no options or permissions are given, current attributes for filename are listed. More
than one filename can be specified on a single line. Wildcards may be used.
Options:
-a - do not display attributes
-x - search current execution directory only. Execution permission must be set for file
to be found.
-z - reads filename from standard input
-z=(file) - reads filename from (file)

(continued on next page)

Page 6

OS-9 QRG & Programmers Guide

ATTR (continued from previous page)
Permission:
d - file is a driectory
e - only owner can execute
r - only owner can read
s - non-shareable file
w - only owner can write
A �p� in front of e,r, or w means anyone (public) can access file. A minus sign (-) turns
permission(s) on. -n turns permission(s) off.
attr file -werpwpepr Gives permission for owner and public (anyone) to read, write,
or execute "file". attr -npwpepr * turns public permissions off for all files in the current
data directory

BACKUP (options)(device1)(device2) Backup data from one drive to another. If
no drive specified, /d0 to /d1 assumed. If only device1 specified, single drive assumed.
Both disks (source and destination) must be formatted the same.
Options:
-b(#)k - memory used in kilobytes. Default is 4k.
-r - continue backup if read error is encountered.
-v - verify off
backup -v -b40 /d1 /d0 backup, no verify, use 40K buffer, from /d1 to /d0

BINEX (options) (path1) (path2) Converts binary data file in path1 to Motorola S-
record file in path2.
Options:
-a(#) - #= load address
-s(#) - #= S-record type number
-x - search for path1 in current execution directory
S-record Types:
1 - Use two byte field address 7 - Terminate blocks of S3 records
2 - Use three byte field address 8 - Terminate blocks of S2 records
3 - Use four byte field address9 - Terminate blocks of S1 records

BREAK Stops all processes and passes control to the ROM debugger. Used ONLY
for system debugging. If called, the system console must be used t ocommunicate with
the debugger. Resume operation with debugger g[0] command

BUILD filename Creates an ASCII text file by copying keyboard input to filename.
Writes to file after enter is pressed. Press enter with no text or enter EOF character
(usually ESC key) to close file.
build /d1/TEXT/textfile Copies every keypress to an ASCII file on /d1, TEXT
directory, named "textfile".

 Page 7

Microware OS-9/68000

CFP (options) (path1) (path2) (etc.) Creates the temporary procedure file path1 in
the current data directory, and invokes the shell to execute the procedure. Path2, etc.,
is the file(s) t obe executed by path1. All asterics (*) are replaced with (path2)(etc.)
unless proceeded by a tilde (~).
Options:
-d - delete temporary file when done (default)
-nd - do not delete temporary file when done
-e - execute proceudre file (default)
-ne - do not execute procedure file, dump to standard output
-s=(string) - read (string) instead of procedure file. If string contains shell
 commands, entire option should be in quotes.
-t=(path) - create temporary file at path, not current data directory
-z - read file(s) from standard input, not path2
-z=(file) =- read file(s) from (file), not path2
cfp "-s=list * >/p" file1 file2 file3 lists the three named files to the printer.
cfp list.p file1 file2 file3 follows the instructions in procedure file list.p using the three
named files.

CHD (path) Changes current data directory to directory named in path. If no file
specified, path specified in HOME environment variable is used.

CHX path Changes current execution directory to directory named in path.

CMP file1 file2 (options) Compares binary values of data in the two files specified.
Displays address, hexadecimal value, and ASCII character of different bytes if
encountered. Summary of differences displayed.
Options:
-b=(#)k - specifies amount of memory to use (4K is default)
-s - Silent mode. Stops when first difference encountered and error message
 displayed.
-x - searches current execution directory for both files.
cmp -b=10k -x file1 file2 uses a 10K buffer, searches the current execution directory
for file1 and file2, then compares the files (if found)

CODE Prints hex value of all characters input after command execution. Unprintable
characters will display as a period. CTRL E or CTRL C abort command.

COMPRESS filename (options) Reads filename and writes a new file of the same
name with "_comp" appended to it in compressed format. Use on ASCII text files only!
Compressed file is about 30% smaller than original
(See EXPAND on page 14).
Options:
-d - delete original file
-n - create a new output file
-z - read filename from standard input
-z=(file) - read filename from file
compress filename creates a compressed file named "filename_comp". Original file
is retained.

Page 8

OS-9 QRG & Programmers Guide

COPY path1 path2 (options) Copies from one file or device to another. Path1 is
complete path and name of source, path2 complete path and name of destination.
Options:
-a - abort copy on error
-b=(#)k - memory used in kilobytes. Default is 4K
-p - do not print list of multiple files
-r - overwrite existing file
-v - verify new file
-w=(dir) - copy one or more files to directory (dir). Displays "continue (y/n)" on error
unless -a also specified.
-x - use current execution directory for path 1
copy /d0/text1 /d1/text2 -b=40k copies text1 on /d0 to text2 on /d1 using a 40K
buffer. copy /d0/*.* -w=/h0/TEXT copies all files on /d0 to /h0/TEXT.

COUNT (options) filename counts number of characters, lines, and/or words in a file.
Options:
-b - counts and gives breakdown of character occurrences.
-c - count chaacters
-l - count lines
-w - count words
-z - read filename(s) from standard input
-z=(file) - read filname(s) from (file)
count -bclw filename displays the number of times each character occurs, the number
of characters, lines, and words in filename.

DATE (options) Displays current system date and time.
Options:
-j - display Julian date and time
-m - display military (24 hour) date and time
date -j displays 359,1995 2:30:00pm (25 DEC, 1995, 2:30pm)
date -m displays December 25, 1995 Monday 14:30:00 (same as above)

DCHECK (options) drive Checks disk file structure in specified drive.
See manual before using -r option!
Options:
-d=(#) - print path to directory (#) deep
-r - maps a cluster found in file structure but not in bitmap in the bit map or the opposite.
Prompts off/on for each bit found.
-y - used with -r. Turns off prompts.
dcheck /d1 displays volume name, total sectors, bytes in allocation map, sector per
cluster, starting sector of root directory, number of sectors used for id, allocation map,
and root directory, number of directories and files, and the number of bytes used and
remaining free on disk.

DEINIZ (options) device1 (device2) (etc.) Deinitializes and detaches specified
device(s). One should only DEINIZ a device that was initialized with INIZ.
Options:
-z - read device names from standard input
-z=(file) - read device names from (file)
deiniz /p2 removes serial printer from system.

 Page 9

Microware OS-9/68000

DEL (options) file1 (file2) (etc.) Delete (erase) the specified file(s). Uses current
directories unless otherwise specified. Can only DEL files you have permission to write
to (see ATTR, page 7).
Options:
-p - prompt before deleting each file
-x - searches for file in current execution directory
-z - read file from standard input
-z=(file) - read file from (file)
del -p * prompts y/n before deleting every file in the current data directory

DELDIR (options) directory Deletes specified directory along with all associated
subdirectories and files. Prompts "Delete, List, or Quit (d, l, or q) ?".After listing files, a
"delete ? (y/n)" prompt will be displayed.
Options:
-f - delete files even if write permission is not set
-q - deletes all possible files and subdirectories with no prompts
-z - read directory from standard input
-z=(file) - read directory from (file)
deldir TEXT deletes directory TEXT and all subdirectories/files within it.

DEVS Displays the system's device table. Displays device descriptor, driver, file
manager, address of static storage, and use count in that order.
The first lines of the devs command display may look like this:
 Username OS-9/68K (ver.#) (max. number of devices)
 Device Driver File Mgr Data Ptr Links
 ----------- ----------- ------------- ------------- ------------
 term sc8x30 scf $003be3f0 3
 (etc.)

DIR (options) (path) Display contents of directory named in path. If no options or path
specified, current data directory is assumed.
Options:
-a - displays all files, including those starting with a period (.)
-d - adds a slash (/) to end of all directory names
-e - displays size, address, owner, permissions, and last date/time modified.
-n - displays directories only
-r - recursively displays directories with filenames
-r=(#) - recursively displays directories with filenames # directories deep
-s - displays unsorted directory/filename listing
-u - displays unformatted directory/filename listing
-x - current execution directory
-z - read directories to diplay from standard input
Options can be used without path and vice-versa.
dir -e /d0 displays directory of /d0 listing size, address, etc., of each file
dir -n *x /d0 displays only directories on /d0 ending with "x"

Page 10

OS-9 QRG & Programmers Guide

DSAVE (options) (path) Copies (backs up) all files from the current data directory
to path. Current data directory assumed if no path given.
Options:
-a - do not copy files beginning with a period (.)
-b# - amount of memory for copy to use in kilobytes
-d - copy only files with most recent dates if the same name
-d=(date) - copies only files with date after (date) specified
-e - execute output immediately
-i - indents directory levels
-l - don�t process directories below current level
-m - don�t include MAKDIR in path
-n - don't load COPY or CMP if -v specified
-o - use OS9GEN to make destination a bootable disk
-o=(name) - use specified (name) for bootfile (see -o, above)
-r - write source file over file in destination with same name
-s - skip file on error
-v - verify copy by forking to CMP after each file
dsave > /d1/makecopy make a procedure file on /d1 called make copy that will copy
all files in current data directory to another destination. To copy, chd to the destination
path, then run makecopy.
chd /d0; dsave -eb40 /d1 change data directory to source drive; copy using 40K buffer
all files on /d0 to /d1 immediately (no file created).

DUMP (options) (path) (address) Displays formatted listing of the physical data
content of (path) starting at hexadecimal (address), if address is specified. If no address,
beginning of file is used. If no path, keyboard input displays in hexadevimal.
Options:
-c - do not compress duplicate lines
-x - (path) is an execution directory. User must have execute permission
dump /d0/file displays:
(starting data bytes in hexadecimal format) (data bytes in
address) ASCII format)
Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
 ----- ------ ------ ------ ------ ------ ------ ------ ------
 0000 87CD 0038 002A F181 2800 2E00 3103 FFE0 . m . 8 .*q . (. . . 1. . .
(etc.)

ECHO (options) text Prints text to standard output, usually the current screen. Can
de redirected to any device). Used to create messages in procedure files or to send
initialization strings to a terminal.
Options:
-n - separate text with carriage return
-r - do not send carriage return at end of text (after <enter>)
-z - read text from standard input
-z=(file) - read text from (file)
echo �hello� displays �hello� on screen
echo �hello�; list textfile >/p prints �hello�on screen; prints textfile.

 Page 11

Microware OS-9/68000

EDT (options) filename Built-in text editor (line oriented). Loads filename and
displays last line. If no file found, a new one will be created. A ? prompt will be displayed.
First character on a line is interpreted as a command. Use a space as first character if
text is to be inserted.
Options:
-b=(#)K - opens editor with buffer (#)K larger than existing file, (#)K size for new file.
Default is 2K.
Commands:
- move cursor to line number
ESC or Q - close file and exit editor
ENTER - move down one line
+ # - move down # lines (default is 1)
- # - move up # lines (deafult is 1)
SPACE - insert line
d (#) - delete current line. A number deletes # of lines beginning w/ current.
l # - list # of lines. May be positive or negative (up or down list - default=1)
l * - list all lines in file
s (*) / (string) / - search for (string). If asterics (*) used, all occurrences of string will
be found, otherwise only first occurrence. Any character may be used for delimiters, not
just slash (/).
c (*) / (string1) / (string2) - search for (string1), replace with (string2). If asterics (*) used,
all occurrences of string will be found and replaced, otherwise only first occurrence. Any
character may be used for delimiters, not just slash (/).
edt -b=40K textfile will create (or load from current data directory) a text file named
"textfile" with a 40K buffer.

EVENTS Displays list of active processes currently on system. Gives ID number, name,
value of event variable, wait increment, signal increment, and link count.

EX filename (arguments) Terminates current shell then runs filename. If no other shell
open and no filename given, OS-9 will crash. Must always be the last command on a line.
ex basic starts Basic without a shell, saves memory.

EXPAND (options) filename Restores compressed files to their original size
Options:
-d - delete compressed file when finished
-n - send output to a file instead of standard output. Expanded file has �_exp� extension.
-z - read filename from standard input (default)
-z=(file) - read filename from (file)
expand -d file_comp will decompress compressed file_comp then delete the
compressed file (file_comp). See COMPRESS, page 9.

FIXMOD (options) modname Update and verify module modname parity and CRC.
Must have write access to modname. Can also be used to change module attrbutes.
Options:
-u - update module CRC or parity
-ub - fix sys/rev field in packed Basic subroutine module
-x - look for module in current execution directory
-z - read modname from standard input (default)
-z=(file) - read modname from (file)
fixmod xc checks parity and CRC for xc. fixmod -u xc checks and updates same.

Page 12

OS-9 QRG & Programmers Guide

FORMAT device (options) Formats device using options.
Options:
-c=(#) - format with (#) sectors per cluster, must be power of 2 (default is 1)
-1=(#) - format with interleave value (#)
-np - no physical format
-nv - no physical verification
-r - no prompts
-t=(#) - format (#) of tracks only
-v=(diskname) - format using (diskname). Can specify up to 32 characters. If spaces in
diskname, option and diskname must be in quotes.
-sd - single density (floppy only)
-dd - double density (floppy only)
-ss - single sided (floppy only)
-ds - double sided (floppy only)
format /d1 -r -ss -t=35 �-v=boot disk� formats a single sided 35 track disk in /d1
named boot disk without any prompts interrupting.
FREE drive Displays number of unused sectors, name, date created, cluster size, and
largest free block of disk in specified drive. Default drive used if none specified.

FRESTORE (options) (path) Restores files from multiple tape or disk backups (see
fsave, next). If no path given, /mt0 is assumed. Restore must start with the last backup
disk/tape, as that volume has the backup index.
Options:
-b=# - size of buffer in K
-c - verifies files without returning to shell
-d=drive - specifies source drive (default is /mt0)
-e - display all files in index as read from source
-f=file - restore from file
-i - display backup name, creation date, owner number, volume, and if index is on the
volume. No restoration is done, frestore terminates after display.
-p - suppress prompt for first volume
-s - restore all files from source without interactive shell
-t=directory - specifies alternate dir for temp index file (default=currentdata)
-v - same as -i except index is not noted
-x=# - specifies memory in K for temporary file.
frestore will restore tape(s) from /mt0 to the current data directory
frestore -d=/d0 -e /h0/NEW will restore from /d0, displaying each file as read, to the
NEW directory on /h0

FSAVE (options) (directory) Backsup directories over several disk or tape volumes.
If no path given, a level 0 backup of the current directory on /mt0 will be attempted.
Logical backup name, date, owner, bytes written, number of files, number of volumes,
and index volume will be displayed when finished.
-b=# - size of buffer in K
-d=device - specifies target device (default is /mt0)
-e - do not display path as backed up
-f=file - save to file
-g=# - backup files by group number # only

(continued on next page)

 Page 13

Microware OS-9/68000

FSAVE (continued from previous page)
-l=# - backup level #. A higher level number backsup only files made since the next lower
number.
-m=path - specifies the path for the backup log file (default is /h0/sys/backup_dates)
-p - no mount volume prompt for first volume
-s - display path of all files needing backup without backing up files
-t=directory - specifies alternate location for temporary index file
-u=# - backup only files bowned by user #
-v - do not verify disk volume when mounted
-x=# - specifies memory in K for temporary file
fsave -l=0 -d=/d0 does a level 0 backup of the current directory to /d0

GREP (options) string (file1) (file2) (etc.) Searches (file) for string. Special
modifiers may be used for string. If multiple files given, file name searched is displayed.
Modifiers:
Period (.) - match any ASCII character (except carriage return); ab.c will find abdc,
abxc, etc.
Tilde (~) - match string only at beginning of line; ab will find abcd, abxy, etc.
Square Brackets ([]) - define a range of characters for string;

[a-g] will match letters a-g; [h-ma-g] will match h-m and a-g
[~a-g] will match all characters except a-g

Asterics (*) - modifies preceding single character so that zero or more occurrences of
the single character; a* will find a, aaa, aaaaa, etc.
Dollar Sign ($) - match string only at end of line; ab$ will find cab, xyzab, etc.
Backslash (\) - allow search for special characters, such as \t (tab), \n (new line), \l (line
feed), \b (backspace), \f (form feed).
Options:
-c - count number of matching lines
-e=(string) - same as string in command line
-f=(file) - read string from (file)
-l - print name of file with matching line only
-n - print line number where string found
-s - do not display matching lines
-v - print all lines except those with matching string
-z - read file(s) from standard input
-z=(file) - read file names from (file)
NOTE: -l and -n; -n and -s cannot be used together.
grep abc file1 will find all lines containing the string abc
grep -c abc[~d-g] file1 file2 will find all occurences of abc followed by any characters
except defg in file 1 and file2, and will count the number of matching lines

HELP command1 (command2) (etc.) Displays help file for specified command(s).
File �helpmsg� must be in /dd/SYS directory. Many third party utilities have a built in help
file. Use utilityname -? to view help for most utilities, third party and standard.

Page 14

OS-9 QRG & Programmers Guide

IDENT (options) file1 (file2) (etc.) Displays header information for file or module
name (size, owner, CRC, parity, edition, type/language, attributes/revision, access
permission; for program modules also displays execution offsert, data size,stack size,
initialized data offset, offset to data reference list).
Options:
-m - assume name is a module in memory
-q - quick mode- only one line per module
-s - only display bad CRCs
-x - assume file name is in execution directory
-z - read file from standard input
-z=(file) - read file from (file)
ident -m dir displays info for dir command in memory

INIZ (options) device1 (device2) (etc.) Initializes (attaches) the specified device
driver(s). Link count will be incremented if device is already attached.
Options:
-z - read device from standard input
-z=(file) - read device from (file)
iniz /p2 initializes a newly attached serial printer

IRQS Displays system�s IRQ polling table in the following order: exception vector,
priority, hardware port address, driver�s static storage address, interrupt routine�s entry
point, driver name, device descriptor name.

KILL processID1 (processID2) (etc.) Terminates specified processID number.
Can only terminate a process with your user number attached. Attached to shell, not in
CMDS directory. Process ID of 0 will kill all processes owned by user.

LINK (options) module1 (module2) (etc.) Increases module link count by one.
When a module is loaded, link count is 1. Count becomes 2 when module is run. When
finished, count drops by 1, but module remains. Modules run from disk only has a count
of 1, and will be dropped as soon as it�s finished. Can switch to another window and link
a module rather than reloading. Once the count is reduced to 0, module �disappears� from
memory and must be re-loaded.
Options:
-z - read module from standard input
-z=(file) - read module from (file)
link format format compress increases the link count of format by two, of compress
by one. Note that format and compress must already be loaded.
LIST (options) file1 (file2) (etc.) Lists the contents of specified text file(s). Can list
to screen or other device. May be redirected.
Options:
-z - read file from standard input
-z=(file) - read file from (file)
list /d1/textfile lists �textfile� on /d1 to screen
list /d1/textfile >/p& lists �textfile� on /d1 to the printer as background process

 Page 15

Microware OS-9/68000

LOAD (options) module1 (module2) (etc.) Loads module(s) specified into memory.
Current execution directory assumed unless specified.
Options:
-d - load module from current data directory
-l - print pathlist of module to be loaded
-z - read module from standard input
-z=(file) - read module from (file)
load format places the format command in memory for fast execution

LOGIN (name) (, password) Provides security for timeshare systems. Requests
username and password (if not given with command) and checks against validation file.
Automatically sets usernumber, execution and data directories, and executes a program
in password file (usually shell). Automatically called by TSMON.

LOGOUT Terminates current shell. If current shell was activated by LOGIN, the
,logout procedure will be executed.

MAKDIR (options) directory Makes directory in current data directory unless path
is specified. As a general rule, all OS-9 directories use all uppercase letters in the name,
filenames are all lowercase or mixed.
Options:
-x - create directory in current execution directory
-z - read directory from standard input
-z=(file) - read directory from (file)
makdir /d1/CMDS creates a CMDS directory on /d1

MAKE (options) (file1) (file2) (etc.) (macro) Examines date of file(s) and file(s)
used to create. If file(s) used to create specified file(s) have newer dates than specified
file(s), specified file(s) will be updated. Generally used for compiling high level languages
and updating source files, but may be used for any files dependant on other updated files.
General file updating assumed here. Case dependant for directory and file names.
-f - read makefile from standard input
-f=(file) - reads makefile from (file)
-i - ignore errors
-n - display commands but do not execute
-s - execute commands without echo to screen
-t - update dates but not files
-u - run make regardless of file dates
-z - read file(s) from standard input
-z=(file) - read file(s) from (file)

MDIR (options) (module1) (module2) (etc.) Displays names of modules currently
in memory. If (module#) is used, only that module name will appear if found.
Options:
-a - display language written in instead of type
-e - display extended module directory; lists physical address, size, owner, revision level,
user count, and type (language with -a)
-t=(type) - display only modules of specified (type)
-u - display unformatted listing (generally used for piping output, etc.)

(continued on next page)

Page 16

OS-9 QRG & Programmers Guide

MDIR (continued from previous page)
mdir -e will display:
 Addr Size Owner Perm Type Revs Ed# Lnk Module name
002600 12136 12.3 ffff Sys 8000 9 0 kernel
(etc.)

MERGE (options) (file1) (file2) (etc.) Copies file(s) to standard output path. Output
can be redirected to any device. If no redirection specified, files will be listed to standard
output.
Options:
-b=(#) - size of buffer used (default is 4K)
-x - search current execution directory
-z - read file from standard input
-z=(file) - read file from (file)
merge -b=32k file1 file2 >file3 combines files1&2 into file3 in the current data
directory using a 32K buffer.

MFREE Displays beginning size of unassigned RAM blocks. -e displays number of free
segments, start address and size of each segment.

MODED (options) (module) Used to change Init module and device descriptor
modules. moded.fields file must be in sys directory.
Comands:
(E)DIT - edit current module. If no module was specified from command line, the editor
will prompt for a module name when invoked. The name of a field and its current value
and a prompt for a new value will be displayed. Type in new value or one of the following:

dash (-) - redisplays last field
period (.) - leave edit mode
question (?) - list edit commands
double question - list description of current field
enter - leave displayed value unchanged

(F)ILE - open a file of modules
(L)IST - list contents of current module
(M)ODULE - find module in file
(W)RITE - update module CRC and write to file
Q(UIT) - quit moded and return to shell
$ - go to shell to run a command
Options:
-f=(file) - specifies file with one or more modules to be loaded into buffer

OS9GEN device (options) (module1) (module 2) (etc.) Creates a bootable disk
by creating and linking OS9Boot file. Device is the drive with the disk to be made
bootable. Can make a copy of an existing boot file, add modules to a boot file, or create
a new boot file. When called and no options or modules listed, a file called tempboot is
made and existing OS9Boot (if any) is renamed OldBoot. If an OldBoot file is present,
it will be written over. Any modules listed will be copied to TempBoot then TempBoot
is renamed OS9Boot. Should only be used on a newly formatted disk, as an error will
occur if there is not enough contiguous space for OS9Boot.

(continued on next page)

 Page 17

Microware OS-9/68000

OS9GEN (continued from previous page)
Options:
-b=# - memory used in kilobytes (default is 4K)
-q=(file) - renames (file) OS9Boot (good for renaming OldBoot)
-s=# - expand TempBoot to #K in size
-x - search execution directory for modules
-z - read module(s) from standard input
-z=(file) - read module(s) from (file)
To copy a boot file from one disk to another: os9gen /d0 /d1/os9boot (from /d1 to /d0)
Command line may be used to add devices to an existing boot file: os9gen /d0 /d1/
os9boot -x newmod.L newmod.2 (copy os9boot from /d1 to /d0 and add newmods...
newmods in current execution directory)
To use a bootlist: os9gen /d0 -z=bootlist (bootlist in current data directory)

PD Displays path from root directory to current data directory. pd -x displays path from
root to current execution directory.

PR (file1) (file2) (etc.) (options) Lists formatted listing of file(s) to standard output.
May be redirected. Listing will be separated into pages (with numbers). Page number,
name of listing, and time/date listed will be at the top of each page. Default output is 1
line for header, 5 blank lines, 55 lines of text, then 5 blank lines (66 lines per page). Files
may be listed in multiple columns on same page (see -c, -k, and -m below).
Options:
-c=(character) - use character as column separator (space is default)
-f - pad page with new lines instead of form feed
-h=(#) - set # of blank lines after header
-k=(#) - set # of columns for multi-column output
-l=(#) - set left margin (default is 0)
-m - print multiple files side by side in columns
-n=(#) - line number increment (default is 0)
-o - truncate lines longer than right margin (default is line-wrap to next line)
-p=(#) - lines per page, not including last 5 lines (default is 61)
-r=(#) - set right margin (default is 79)
-t - don�t print header
-u=(name) - print (name) in header rather than file name
-x=(#) - starting page number (default is 1)
-z - read file from standard input
-z=(file) - read file from (file)
pr file1 >/p1 sends file1 to printer using default values
pr file1 file2 -m -k=2 >/p1 prints both files side by side on same page

PRINTENV lists defined environment variables (if any- see Shell, page 5) to standard
output.

PROCS (options) Displays list of user�s currently running processes at the moment
the command is given. Process ID, parent process ID, process owner (group and user),
priority, amount of memory being used, number of pending signals, status, CPU time
used, elapsedtime since process began, and the process name and I/O paths are shown
with no options.

(continued on next page)

Page 18

OS-9 QRG & Programmers Guide

PROCS (continued from previous page)
Options:
-a - alternate display. Displays process ID, parent ID, name and standard I/O paths, age
based on priority and length of time waited for processing, number of service request calls
made, number of I/O requests made, last system call made, number of bytes read,
number of bytes written.
-b - displays regular and alternate information
-e - displays all processes of all users

QSORT (file1) (file2) (etc.) (options) Quick sort file(s) by specified field (field one
is default). If no file(s) given, standard input assumed.
Options:
-c=(character) - (character) separates fileds (default is space). If an asterics(*),
comma(,) or period(.) is used option and character must be in quotes.
-f=(#) - sort on field (#). Only one field number may be specified
-z - read file(s) from standard input
-z=(file) - read file(s) from (file)
qsort file1 -f=3 �-c=,� sorts file1 by the third field, commas used in file1 as field
separators

RENAME file newname Renames the file (or directory) to newname. -x searches for
file beginning with the current execution directory.
rename /d1/cmds/util util2 renames util on the cmds directory of /d1 to util2

ROMSPLIT (options) file Divides a 16 or 32 bit ROM image file into eight bit files.
Default is 16 bit image into two eight bit files named file.0 (even bytes) and file.L (odd
bytes).
Options:
-q - split 32 bit image file into four eight bit files named file.0 (bytes 0,4,8,12, etc.), file.L
(bytes 1, 5, 9, 13, etc.), file.2 (bytes 2, 6, 10, 14, etc.), file.3 (bytes 3, 7, 11, 15, etc.)
-x - read input from execution directory

SAVE (options) (module1) (module2) (etc.) Copies specified modules from
memory into the current data directory. Created file(s) will have same name as
module(s). Each module saved to its own file unless -f option specified, then all modules
are saved together in the file given.
Options:
-f=(file) - save module(s) to (file)
-r - rewrite existing file(s)
-x - save file(s) to current execution directory
-z - read module(s) from standard input
-z=(file) - read module(s) from (file)
save dir copy copies the dir and copy command to the current data directory

SETIME (options) (y m d h m (s) (am/pm)) Sets system date and time to year (y),
month (m), day (d), hour (h), minutes (m), and optionally seconds (s). Military time (24
hour) may be used or am or pm specified. Date and time can be separated by colons,
semicolons, spaces, slashes, or commas. No separaters need be used, except a space
between date and time. If no date/time given, a prompt will be displayed.

(continued on next page)

 Page 19

Microware OS-9/68000

SETIME (continued from previous page)
Options:
-d - do not echo date/time when set
-s - read time from real time clock
setime 940501 1330 sets date and time to May 1, 1994, 1:30 pm
setime 940501 130 pm sets same

SETPR processID # Changes processID priority to #. Can set only for processes with
your user number attached. Lowest is 1, highest 65535.
setpr 3 65535 gives process 3 highest possible priority

SLEEP # Puts current process to sleep for # of �ticks� or seconds (-s changes count
to seconds rather than ticks). Duration of tick is system dependant. Default # is 0, causes
process to sleep until signaled to wake up.

TAPE (device) (options) Provides access to tape controller from a terminal. If no
device specified, /mt0 assumed. Options are executed in specific order: -z, -f, -b, -w, -
e, -r, -o; so tape can be manipulated on one command line.
Options:
-b=(#) - skip (#) of blocks. If (#) is negative, tape skips back (default is 1)
-e=(#) - erase (#) of blocks
-f=(#) - skips (#) of tapemarks. Skips back if (#) is negative (default is 1)
-o - put tape off-line
-r - rewind tape
-s - specify size of tape block
-t - retension tape
-w=(#) - write (#) of tapemarks (default is 1)
-z - read device name(s) from standard input (default is /mt0)
-z=(file) - read device name(s) from (file) (default is /mt0)
tape /mt0 -r -o rewinds /mt0 then puts it off-line
tape -f=6 -e=8 -r skips 6 tapemarks forward, erases 8 blocks, then rewinds tape on
default device /mt0

TEE (device 1) (device2) (etc.) Copies all text from standard input to devices listed.
Generally redirected through a pipe (!).
echo System Down For Backup ! tee /t1 /t2 /t3 /t4 displays echoed message on all
listed terminals. dir -e ! tee /p1 /dir.text will print a copy of the extended directory
and place a copy in the current data directory as file dir.text

TMODE (-w=path#) (parameter1) (parameter2) (etc.) Displays or temporarily
changes (current session only) terminal parameters. If no parameters given, current
parameters will be listed to standard output. A parameter given with no value will be re-
set to the default value. A parameter set to 0 will be turned off. Type, parity (par),
character length (cs), stop bits, and baud parameters cannot be changed by tmode but
will be displayed for information purposes. Path numbers are 0 (standard input), 1
(standard output), or 2 (error output). See xmode, page 22, for making permanent
changes.

(continued on next page)

Page 20

OS-9 QRG & Programmers Guide

TMODE (continued from previous page)
Parameters:
bsb - backspace erases characters (default)
nobsb - backspace doesn�t erase characters
bsl - backspace-space-backspace deletes terminal display line (default)
nobsl - disable backspace over a line
echo - input characters echo to screen (default)
noecho - disable echo
lf - turn on auto line feed to screen (default)
olf - turn off auto line feed
upc - uppercase characters only, converts all lower to upper.
noupc - upper and lower case characters (default)
pause - turn on screen pause when full, press space to resume
nopause - disable screen pause (default)
abort=hex - sets terminate character (default is $03, ctrl C)
baud=# - displays current baud rate
bell=hex - sets bell output character (default is $07)
bse=hex - sets output backspace chararacter (default is $08)
bsp=hex - sets input backspace chararacter (default is $08, ctrl H)
del=hex - sets input delete line character (default is $18, ctrl X)
dup=hex - sets character to duplicate last input line (default is $01, ctrl A)
eof=hex - sets input end-of-file chararacter (default is $1B, escape)
eor=hex - sets end-of-record input character (default is $0D, carriage return)
null=hex - sets number of nulls after carriage return (default is 0)
pag=# - sets # of video display lines, affects pause.
psc=hex - sets pause character (default is $17, ctrl W)
quit=hex - sets quit character (default is $05, ctrl E)
reprint=hex - sets reprint line character (default is $04, ctrl D)
type=hex - displays acia initialization values (parity, character size, number of stop bits)
par=x - displays parity as odd, even, or none
cs=# - displays character length in bits (8, 7, 6, or 5)
stop=# - displays number of stop bits (1, 1.5, or 2)
xon=hex - DC1 resume output character (default is $11, ctrl Q)
xoff=hex - DC2 stop output character (default is $13, ctrl S)
tabc=hex - tsb character (default is $09, ctrl I)
tabs=# - sets # of characters between tab stops (default is 4)
normal - sets all parameters to defaults
tmode xon=0 xoff=0 bell=0 turns xon, xoff, and bell off. tmode normal sets all
parameters back to the default settings.

TOUCH (options) file1 (file2) (etc.) Updates the last modification date of file(s) to
the current date. If specified file(s) not found, a file will be created with current date.
Options:
-c - do not create file if not found
-q - do not quit on error
-x - search current execution directory
-z - read file(s) from standard input
-z=(file) - read file(s) from (file)

 Page 21

Microware OS-9/68000

TR (options) string1 (string2) (path1) (path2) Converts characters in string1 to
characters in string2. Path1 is input (string1) and path2 is output (string2). If only one path
given, input (string1) is assumed and output will be to standard output. If no paths listed,
standard input and output is assumed. A dash (-) between characters specifies a range
of characters. A back slash allows use of the following special characters: \t = tab, \n
= new line, \l = line feed, \b = backspace, \f = form feed.
Options:
-c or -v - convert all ASCII characters to string2 except those listed in string1
-d - delete characters in string1 from string2
-s - squeeze consecutively repeated output characters into single characters
-z - read string(s) from standard input
-z=(file) - read string(s) from (file)
tr abc def /d0/text1 /d0/text2 changes all occurrences of abc in /d0/text1 to def on
/d0/text2.
tr a-c d converts evey occurrence of abc to d in standard input, output sent to standard
output.

TSMON (options) (terminal) Monitors idle terminals on a timesharing system and
initiates a login sequence when an idle terminal is requested. Logoff by sending end-of-
file character (usually escape). Up to 28 devices may be specified. More than one tsmon
process may be running at once for more than 28 terminals. tsmon generates a logout
message stating time this logon and total time for user.
Options:
-d - display ststistics (time, etc.) when ctrl\ ($1C) is typed
-l=program - fork to alternate login program
-p - display �welcome� message to each terminal being monitored
-r=program - fork to alternate shell program
-z - read terminal(s) from standard input
-z=(file) - read terminal(s) from (file)
tsmon -p /term /t1 /t2 /t3 /t4 prints welcome message on each of five listed terminals
being monitored.

UNLINK (options) module1 (module2) (etc.) Reduces named module link count
by one. Will be unloaded from memory once count reaches 0. If a module is named that
wasn�t loaded or is being used by another process, that process will crash, usually with
module not found error. Modules that are part of a merged file cannot be unlinked except
for first module in file, which is the �master� file. Unlink the master and the entire group
count will be reduced. All files merged in the group will show a count of 0. The file just
before the 0s is the master file (shows count for group).
Options:
-z - read module(s) from standard input
-z=(file) - read module(s) from (file)
unlink -z will wait for modules to be entered from standard input (usually keyboard)
unlink dir copy will reduce link count of dir and copy by one.

W Causes the shell to wait for the last child process to receive I/O before giving a prompt.

WAIT Causes the shell to wait for all child processes to end (terminate) before giving
a prompt.

Page 22

OS-9 QRG & Programmers Guide

XMODE (options) device (parameter1) (parameter2) (etc.) Displays initialization
parameters of any SCF-type device (screen, printer, RS-232 port, etc.) if no options
listed. Changes initialization parameters to those listed when parameter list is included.
Similar to TMODE, but XMODE updates remain as long as the computer is on during
current session. TMODE only works on open paths so effects are gone once current path
is closed. Parameters are same as TMODE (see for list, pages 19-20).
Options:
-z - read device(s) from standard input
-z=(file) - read device(s) from (file)
SPECIAL NOTE: Type, parity (par), cs (character length), stop (stop bits), and baud
can be changed by xmode. deiniz the module to be changed, use xmode to change, then
iniz the module for changes to take affect:
deiniz /p2
xmode baud=2400
iniz /p2

--(end of System Commands section)--

2 - Special Keys

KEY(S) FUNCTION

CTRL control key

CTRL A displays last line typed with cursor at end. Press ENTER to execute
or edit by backspacing. Repeat to display edited line.

CTRL C Aborts current program. Some programs intercept CTRL C, stops
the current program, and allows a return to a menu or continuation
of the program. In the shell, CTRL C converts the foreground
process to a background process, provided no terminal I/O
has begun.

CTRL D redisplay command line
CTRL E halts current program
CRTL H moves cursor one space left (backspace key can be used)
CTRL W temporarily halts video (scrolling). Any key restarts.
CTRL X delete current line
ESCAPE or sends end-of-file to program receiving keyboard input.
CTRL [Must be first on a line.
ENTER carriage return or execute current command line

 Page 23

Microware OS-9/68000

4 - µ µ µ µ µMACS Editor Commands

The uMACS editor is a very powerful screen oriented text editor. Multiple buffers can
be opened, allowing one to work on more than one file at once. Portions of one file may
even be cut and pasted from one file to another or to another area of the original file. In
fact, it is just short of a full fledged word processor. Many programmers use it as just that
for short letters, some adding a text formatter for better printed appearance. It is not the
purpose of this QRG to teach one to use the editor. For that one must refer to the manual.

To start uMACS type umacs filename1 (filename2) (etc.) (option) An unnamed
buffer will be opened if filename is not given. It can be named and saved later if
necessary. Key sequences are not case sensitive. ctrl = control key. Ctrl commands are
executed by holding the ctrl key while pressing the following keys. esc = escape key. Esc
commands are executed by pressing and releaseing the esc key and then pressing the
following key. Exit with ctrl X ctrl C (prompts to save changed files) or esc M (saves
all changed files before exiting).
Options:
-e - all files will be opened in edit mode (default)
-v - all files will be opened in view mode (may not be edited without changing modes)

There are 91 commands. They can be executed by the following key sequences or by
typing esc X. upon typing ctrl X, the cursor will then move to the bottom of the window
and wait for a command name to be typed. If the first or first few characters are typed
and then enter pressed, umacs will dispaly the first part of the command beginning with
the specified character(s), display a dash, and wait for the second part, which may be
entered in the same fashion (some command have one part, others more than two). When
a name is completed, it will be executed upon pressing enter. Commands with no key
sequence must be entered with esc X.

Key sequences can be changed with the bind-to-key (esc K) and unbind-key (esc ctrl
K) commands. Two character commands must begin with esc or ctrl X. To assign a
command to a key sequence, press ctrl K (or use esc X bind-to-key). A �: bind to key�
prompt will appear. Type the name of the command, a space, then the key sequence
combination. To change an existing key sequence, first unbind the current or default key
sequence with unbind-key (esc ctrl K) then use bind-to-key.

A file can be used to change command key sequences and build macros. Each time
umacs is executed it looks for the file �.umacsrc� in the home directory. Each line is
executed as umacs commands, one command per line. Other file names may be
executed with the execute-file command. If a command requires input, the input must
be supplied in the file in quotes.

(continued on next page)

Page 24

OS-9 QRG & Programmers Guide

uMACS Editor Commands (continued from previoous page)

Key and Help Commands:
Name Key Sequence Command
bind-to-key esc K define a key sequence
unbind-key esc ctrl K undefine a key sequence
execute-named-command esc X execute command by name
help esc ? open help buffer in view mode in

top half of screen
describe-key ctrl X? prompts for key sequence, displays

name or �not-bound�
describe-bindings none displays list of keys and commands
abort ctrl G abort command (only before

executed)
execute-file (file) none executes file as umacs command

file
exit-emacs ctrl X ctrl C prompts to save changed files

then exits
quick-exit esc Z save all changed files then exit

Editing Modes:
mMACS has four editing modes besides the -e (edit, default) and -v (view only) options.
A buffer may be opened in more than one mode. Modes are:
OVER - Overwrite mode, default is insert.
EXACT - All searches require exact case, default is case insensitive.
WRAP - Word wrap on. Default wraps characters, not words.
CMODE - Auto-indenting for writing C source code. Automatically turned on if buffer
name ends in .c or .h.

Name Key Sequence Command
add-mode ctrl XM adds mode to current buffer.

Prompts for mode
delete-mode ctrl X ctrl M delete mode from current

buffer. Prompts for mode
add-global-mode esc M adds mode to every new buffer
delete-global-mode esc ctrl M deletes mode from all buffers

Macro Commands:
Name Key Sequence Command
begin-macro ctrl X(marks beginning of a macro
end-macro ctrl X) marks end of a macro
execute-macro ctrl XE executes a defined macro

(continued on next page)

 Page 25

Microware OS-9/68000

uMACS Editor Commands (continued from previoous page)
File and Shell Commands:
Name Key Sequence Command
insert-file ctrl X ctrl I insert file at cursor
read-file ctrl X ctrl R read file into current buffer,

deleting existing contents
find-file ctrl X ctrl F read file into new buffer
change-file-name ctrl XN name or rename file in current

buffer
save-file ctrl XS save changed file
write-file ctrl X ctrl W write file to name given at

prompt
i-shell ctrl XC fork to a shell (esc to return to

umacs)
shell-command ctrl X! fork to shell, execute com-

mand given at prompt, return
Cursor Positioning:
Name Key Sequence Command
backward-character ctrl B move cursor 1 character back
forward-character ctrl F move cursor 1 char. forward
next-word esc F move cursor 1 word forward
previous-word esc B move cursor 1 word back
next-line ctrl N move cursor down 1 line
previous-line ctrl P move cursor up 1 line
next-paragraph esc N move cursor to next paragraph
previous-paragraph esc P move cursor to previous paragraph
next-page ctrl V next screen
previous-page ctrl Z previous screen
beginning-of-file esc < move cursor to file beginning
end-of-file esc > move cursor to file end
beginning-of-line ctrl A move cursor to line beginning
end-of-line ctrl E move cursor to line end
go-to-line esc G go to following line number

Inserting Text:
Name Key Sequence Command
insert-space ctrl C insert space to right of cursor
quote-character esc Q print following control char.
newline ctrl M insert line (same as enter)
open-line ctrl O insert new line character to

right of cursor
new-line-and-indent ctrl J or insert new line and indent same

linefeed as previous line
handle-tab ctrl I redefine or insert tab at cursor
insert-file ctrl X ctrl I insert file from directory at cursor

(continued on next page)

Page 26

OS-9 QRG & Programmers Guide

uMACS Editor Commands (continued from previoous page)
Deleting Text:
Name Key Sequence Command
delete-next-character ctrl D delete character at cursor
delete-previous-character ctrl H, back- delete character to left of

space, or delete cursor
delete-next-word esc ctrl D delete word beginning at cursor
delete-previous-word esc ctrl H or delete word from left of

esc backspace cursor to cursor
delete-blank-lines ctrl X ctrl O delete blank lines between text
kill-paragraph esc ctrl W delete paragraph at cursor
kill-region ctrl W delete marked block
kill-to-end-of-line ctrl K delete line from cursor
yank ctrl Y put last deleted item(s) in kill buffer

Search and Replace:
Name Key Sequence Command
search-forward esc S (text) move cursor forward to

following text
search-reverse esc R (text) move cursor back to

following text
hunt-forward none move cursor forward to next

occurence of last text
hunt-backward none move cursor backward to next

occurence of last text
replace-string ctrl R (text1) (text2) replace all occurences of text1

with text2
query-replace-string esc ctrl R (text1) (text2) prompt before replacing

text1 with text 2

Text Blocks (regions):
Blocks marked with a beginning marker and the cursor (cursor marks end).
Name Key Sequence Command
set-mark esc (period) or mark beginning of block

esc (space)
exchange-point-and-mark ctrl X ctrl X swap beginning of block with

cursor position
copy-region esc W copy block to kill buffer
kill-region ctrl W delete block
case-region-lower ctrl X ctrl L change all marked letters to

lower case
case-region-upper ctrl X ctrl U change all marked letters to

upper case
yank ctrl Y paste kill buffer to cursor

position

(continued on next page)

 Page 27

Microware OS-9/68000

uMACS Editor Commands (continued from previoous page)
Text Formatting:
Name Key Sequence Command
case-word-capitalize esc C change letter at cursor to

upper case
case-word-lower esc L change letters from cursor to

end of word to lower case
case-word-upper esc U change letters from cursor to

end of word to upper case
set-fill-column esc (#) ctrl XF set right margin to (#) spaces
fill-paragraph esc O reformat paragraph using new

right margin
transpose-characters ctrl T transpose (swap) character at cur-

sor with character to left of cursor

Buffer Commands:
Name Key Sequence Command
list-buffers ctrl X ctrl B list umacs buffers
select-buffer ctrl XB select buffer to be edited. Prompts

for buffer. Will create new buffer if
named doesn�t exist.

name-buffer esc ctrl N prompts for new buffer name
(change name)

next-buffer ctrl XX move to next buffer in list
(first if in last)

buffer-position ctrl X= display current line number
delete-buffer ctrl XK (buffer) delete (buffer) from memory.

Does not delete from disk.
execute-buffer none execute buffer as umacs

procedure file
Window Commands:
Each buffer is displayed in a separate window consisting of one line to the entire screen
(default is entire screen).
Name Key Sequence Command
split-current-window ctrl X2 copy current window in a new

window
next-window ctrl XN move cursor to next window
previous-window ctrl XP move cursor to previous window
move-window-up ctrl X ctrl P scroll current window up 1 line
move-window-down ctrl X ctrl N scroll current window down 1 line
scroll-next-up esc ctrl Z scroll next window up one page

(one screen)
scroll-next-down esc ctrl V scroll next window down one

page (one screen)
shrink-window ctrl X ctrl Z decrease size of current window
grow-window ctrl XZ or increase size of current

ctrl X ctrl window
delete-other-windows ctrl X1 delete all windows except current

(where cursor is)

Page 28

OS-9 QRG & Programmers Guide

5 - OS-9 System Calls

System calls communicate between the OS-9 operating system and machine language
programs. There are three categories of system calls: User-state, System-state, and I/
O. The user-state is the normal program environment. User-state calls do not normally
deal with system hardware. The system-state is the environment where system calls and
interrupts are normally executed. System-state calls often deal with system hardware.
I/O calls perform various I/O functions.

In the following listings, the system call is listed in bold followed by a brief description.
If there is no OUTPUT or ERROR OUTPUT listed, then there are no such functions
for that call.

User-State System Calls

F$Alarm - send a signal to calling process when specified time has elapsed.
INPUT: OUTPUT:
D0.L=ID (or 0) D0.L=ID
D1.W=function code
D2.L=signal code ERROR OUTPUT:
D3.L=time interval or time CC=carry set
D4.L=date D1.W=error code

A$Delete - removes any alarm that has not expired. If ID=0 all pending cancelled.
INPUT: ERROR OUTPUT:
D0.L=ID (or 0) CC=carry set

D1.W=error code

A$Set - send signal after specified time has elapsed. Time specified in system clock ticks
or 256ths of a second.
INPUT: OUTPUT:
D0.L=reserved, must be 0 D0.L=ID
D1.W=function code ERROR OUTPUT:
D2.W=signal code CC=carry set
D3.L=time interval D1.W=error code

A$Cycle - sends a recurring signal every set interval (system clcock ticks, 256ths/sec).
INPUT: OUTPUT:
D0.L=reserved, must be 0 D0.L=ID
D1.W=function code ERROR OUTPUT:
D2.L=signal code CC=carry set
D3.L=time interval D1.W=error code

A$AtDate - sends a signal at the specified date/time (to nearest second).
INPUT: OUPUT:
D0.L=reserved, must be 0 D0.L=ID
D1.W=function code
D2.L=signal code ERROR OUTPUT:
D3.L=time (00hhmmss) CC=carry set
D4.L=date (yyyymmdd) D1.W=error code

 Page 29

Microware OS-9/68000

A$AtJul - sends a signal at the specified Julian date/time (to nearest second).
INPUT: OUTPUT:
D0.L=reserved, must be 0 D0.L=ID
D1.W=function code
D2.L=signal code ERROR OUTPUT:
D3.L=time (secs after midnight) CC=carry set
D4.L=Julian day number D1.W=error code

F$AllBit - set bits in allocation bit map. Bit numbers from 0 to one less than number
of bits in map.
INPUT: ERROR OUTPUT:
D0.W= # of first bit CC=carry set
D1.W=number of bits to set D1.W=error code
(A0)=base address of bit map

F$CCtl - changes system instruction/data caches (if any). D0.L set to zero flushes
cache. Only system-state processes and super-group processes may change cache(s).
If bits are set, the following will occur (unset bits have no effect): 0 - enable data cache,
1 - disable data cache, 2 - flush data cache, 4 - enable instruction cache, 5 - disable
instruction cache, 6 - flush instruction cache. All other bits are reserved and remain unset.
INPUT: ERROR OUTPUT:
D0.L=reserved, must be 0 CC=carry set

D1.W=error code

F$Chain - load & execute new primary module, no new process created.
INPUT: ERROR OUTPUT:
D0.W=language/type code CC=carry set
D1.L=additional memory size D1.W=error code
D2.L=parameter size
D3.W= # of I/O paths to copy
D4.W=priority
(A0)=name pointer
(A1)=parameter pointer

F$CmpNam - compare two names. Case insensitive. Two wildcards: ? matches single
character, * matches string. Target name must be terminated with null byte.
INPUT: OUTPUT:
D1.W=length of source name CC=carry clear if match
(A0)=pointer to source ERROR OUTPUT:
(A1)=pointer to target CC=carry set

D1.W=error code

F$CpyMem - copy external memory into user�s buffer.
INPUT: ERROR OUTPUT:
D0.W=process ID of owner CC=C bit set
D1.L= # of bytes to copy D1.W=error code
(A0)=address of memory to copy
(A1)=destination buffer pointer

Page 30

OS-9 QRG & Programmers Guide

F$CRC - calculate new or check existing module CRC.
INPUT: OUTPUT:
D0.L=data byte count D1.L=updated CRC accumulator
D1.L=CRC accumulator address ERROR OUTPUT:
(A0)=pointer to data CC=carry set

D1.W=error code

F$DatMod - create data module.
INPUT: OUTPUT:
D0.L=data size D0.W=type/language
D1.W=attr/revision D1.W=attr/revision
D2.W=access permission (A0)=new name string pointer
D3.W=type language (A1)=module data pointer (exec entry)
D4.L=memory color type (A2)=module header pointer
(A0)=module name string pointer ERROR OUTPUT:
(A2)=process descriptor to put CC=carry set
 module in D1.W=error code

F$DelBit - clear allocation map bits.
INPUT: ERROR OUTPUT:
D0.W= # of first bit to clear CC=carry bit
D1.W= # of bits to clear D1.W=error code
(A0)=address of bit map

F$DExec - suspends process and executes a debugged child process.
INPUT: OUTPUT:
D0.W=child process ID D0.L= # of instructions executed
D1.L= # of instructions to exec. D1.L= # of instructions not executed
D2.W= # of breakpoints D2.W=exception occurred (offset if not 0)
(A0)=breakpoint list D3.W=classification of word
ERROR OUTPUT: D4.L=access address
CC=carry set D5.W=instruction register
D1.W=error code

F$DExit - terminates suspended child process created with F$DFork.
INPUT: ERROR OUTPUT:
D0.W= ID of child to terminate CC=carry set

D1.W=error code

F$DFork - creates suspended child process for debugger control.
INPUT: OUTPUT:
D0.W=module type/revision D0.W=child ID
D1.L=additional stack space (A0)=updated past module string
D2.L=parameter size (A2)=child�s registers in buffer
D3.W= # of I/O paths for child ERROR OUTPUT:
D4.W= priority CC=carry set
(A0)=name pointer or path D1.W=error code
(A1)=parameter pointr
(A2)=copy of child�s register buffer

 Page 31

Microware OS-9/68000

F$Event -create, delete, and manipulate events.
INPUT:
D1.W=event function code
Output and Error Output depends on function code.
F$Event Function Codes:
Ev$Link - link to an existing event by name.
INPUT: OUPTUT:
(A0)=name string pointer D0.L=ID #
Di.W=0 (function code) (A0)=updated past event name
ERROR OUTPUT:
CC=carry set
D1.W=error code

Ev$UnLnk - unlink an event.
INPUT: ERROR OUTPUT:
D0.L=ID # CC=carry set
D1.W=1 (function code) D1.W=error code

Ev$Creat - create a new event.
INPUT: OUTPUT:
D0.L=initial event variable D0.L=ID #
D1.W=2 (function code) (A0)=updated past event name
D2.W=auto-increment for Ev$Wait ERROR OUTPUT:
D3.W=auto-increment for Ev$Signal CC=carry set
(A0)=name string pointer D1.W=error code

Ev$Delet - delete an existing event.
INPUT: ERROR OUTPUT:
(A0)=name string pointer CC=carry set
D1.W=3 (function code) D1.W=error code
OUPUT:
(A0)=updated past event name

Ev$Wait - wait for an event to occur.
INPUT: OUTPUT:
D0.L=ID # D1.L=event value
D1.W=4 (function code) ERROR OUTPUT:
D2.L=minimum activation value CC=carry set
D3.L=maximum activation value D1.W=error code

Ev$WaitR - wait for a relative event to occur.
INPUT: OUTPUT:
D0.L=ID # D1.L=event value
D1.W=5 (function code) D2.L=minimum activation value
D2.L=minimum activation value D3.L=maximum activation value
D3.L=maximum activation value
ERROR OUTPUT:
CC=carry set
D1.W=error code

(continued on next page)

Page 32

OS-9 QRG & Programmers Guide

F$Event Function Codes: (continued from previous page)
Ev$Read - read an event value without waiting.
INPUT: ERROR OUTPUT:
D0.L=ID # CC=carry set
D1.W=6 (function code) D1.W=error code
OUTPUT:
D1.L=event value
D1.L=event value

Ev$Info - returns event information.
INPUT: OUTPUT:
D0.L=ID # to begin search D0.L=ID # found
D1.W=7 (function code) (A0)=data returned in buffer
(A0)=pointer to buffer for event info
ERROR OUTPUT:
CC=carry set
D1.W=error code

Ev$Signl - signals an event occurrence.
INPUT: ERROR OUTPUT:
D0.L=ID # CC=carry set
D1.W=MS bit set D1.W=error code
 LS bit=8 (function code)

Ev$Pulse - signals an event occurrence.
INPUT: ERROR OUTPUT:
D0.L=ID # CC=carry set
D1.W=MS bit set D1.W=error code
 LS bit=9 (function code)
D2.L=event pulse value

Ev$Set - set event variable and signal event occurrence.
INPUT: OUTPUT:
D0.L=ID # D1.L=previous event value
D1.W=MS bit set ERROR OUTPUT:
 LS bit=A (function code) CC=carry set
D2.L=new event value D1.L=error code

Ev$SetR - set relative event variable and signal an event.
INPUT: OUTPUT:
D0.L=ID # D1.L=previous event value
D1.W=MS bit set ERROR OUTPUT:
 LS bit=B (function code) CC=carry set
D2.L=increment for event variable D1.L=error code

(end of F$Event function codes)

 Page 33

Microware OS-9/68000

F$Exit - terminates the calling process (process terminates itself).
INPUT: ERROR OUTPUT:
D1.W=status to be returned to parent CC=carry set
OUTPUT: D1.W=error code
Process terminated

F$Fork - creates a new process which becomes a child of the calling process.
INPUT: OUTPUT:
D0.W=module type/revision D0.W=child ID
D1.L=additioanl memory size (A0)=updated module name
D2.L=parameter size ERROR OUTPUT:
D3.W= # of I/O paths to copy CC=carry set
D4.W=priority D1.W=error code
(A0)=module name pointer
(A1)-parameter pointer

F$GBlkMp - get copy of system free block map.
INPUT: OUTPUT:
D0.L=start address D0.L=minimum allocation size
D1.L=buffer size (bytes) D1.L= # of memory fragments
(A0)=buffer pointer D2.L= total RAM found
ERROR OUTPUT: D3.L=total free RAM
CC=carry set (A0)=fragment information
D1.W=error code

F$GModDr - get copy of system module directory.
INPUT: ERROR OUTPUT:
D1.L= Max bytes to copy CC=carry set
(A0)=buffer pointer D1.W=error code
OUTPUT:
D1.L= # of bytes copied

F$GPrDBT - get a copy of the process descriptor block table.
INPUT: ERROR OUTPUT:
D1.L= Max bytes to copy CC=carry set
(A0)=buffer pointer D1.W=error code
OUTPUT:
D1.L= # of bytes copied

F$GPrDsc 103F 18 - get copy of process descriptor.
INPUT: ERROR OUTPUT:
D0.W=process ID CC=carry set
D1.W=bytes to copy B=error code

F$Gregor - converts Julian date to Gregorian date.
INPUT: OUTPUT:
D0.L=time (secs since midnight) D0.L=time (00hhmmss)
D1.L=Julian date D1.L=date (yyyymmdd)
ERROR OUTPUT:
CC=carry set
D1.W=error code

Page 34

OS-9 QRG & Programmers Guide

F$Icpt - set signal intercept trap.
INPUT: OUTPUT:
(A0)=address of intercept routine Signal sent to process causes intercept
(A6)=address passed to routine to be called, process not killed.

F$ID - get process ID and user ID
INPUT: OUTPUT:
None D0.W=process ID
ERROR OUTPUT: D1.L=user ID
CC=carry set D2.W=priority
D1.W=error code

F$Julian - converts Gregorian date to Julian date
INPUT: OUTPUT:
D0.L=time (00hhmmss) D0.L=time (secs since midnight)
D1.L=date (yyyymmdd) D1.L=Julian date
ERROR OUTPUT:
CC=carry set
D1.W=error code

F$Link - link to named memory module.
INPUT: OUTPUT:
D0.W=type/language D0.W=type/language
(A0)=module name string pointer D1.W=attribute/revision label
ERROR CODE: (A0)=updated past module name
CC=carry set (A1)=module execution entry point
D1.W=error code (A2)=module pointer

F$Load - load module(s) from file.
INPUT: OUTPUT:
D0.B=access mode D0.W=type/language
D1.L=memory color type D1.W=attributes/revision level
(A0)=path strin pointer (A0)=updated beyond path name
ERROR OUTPUT: (A1)=exec entry point of first module
CC=carry set (A2)=module pointer
D1.W=error code

F$Mem - change process data memory.
INPUT: OUTPUT:
D0.L=memory size in bytes D0.L=memory size in bytes
ERROR OUTPUT: (A1)=pointer to new end of data +1
CC=carry set
B=error code

F$PErr - writes error message to standard path.
INPUT:
D0.W=error message path (0=none)
D1.W=error code

 Page 35

Microware OS-9/68000

F$PrsNam - scan input string for valid OS-9 path name.
INPUT: OUTPUT:
(A0)=name of string pointer D0.B=path delimiter
ERROR OUTPUT: D1.W=length of path
CC=carry set (A0)=path pointer updated past �/�
B=error code (A1)=address of last name char. +1

F$RTE - terminate a signal intercept routine and continue main program execution.
NO INPUT OR OUTPUT

F$SchBit - search memory allocation bit map for free memory block of specified size.
INPUT: OUTPUT:
D0.W=start bit to search for D0.W=first bit # found
D1.W= # of bits to find D1.W= # of bits found
(A0)=bit map pointer ERROR OUTPUT:
(A1)=end of bit map pointer +1 CC=carry bit

D1.W=error code

F$Send - send signal to process.
INPUT: ERROR OUTPUT:
D0.W=process ID CC=carry set
D1.W=signal code D1.W=error code

F$SetCRC - update the header parity and CRC of a module in memory.
INPUT: ERROR OUTPUT:
(A0)=module pointer CC=carry set

D1.W=error code

F$SetSys - chnge or examine a system global variable.
INPUT: OUTPUT:
D0.W=offset of variable to examine D2.L=original variable value
D1.L=size of variable ERROR OUTPUT:
D2.L=new value if change CC=carry bit

D1.W=error code

F$Sigmask -enable/disable signal mask.
INPUT: ERROR OUTPUT:
D0.L=reserved, must be 0 CC=carry bit
D1.L=signal level D1.W=error code

F$Sleep - temporarily turn process off.
INPUT: ERROR OUTPUT:
D0.L=sleep time (ticks) CC=carry set
OUPUT: D1.W=error code
D0.L=remaining time if started early

F$SPrior - change process priority.
INPUT: ERROR OUTPUT:
D0.W=process ID CC=carry set
D1.W=priority (0-65535) D1.W=error code

Page 36

OS-9 QRG & Programmers Guide

F$SRqCMem - allocate block of specific memory type.
INPUT: OUTPUT:
D0.L= # of bytes requested D0.L= # of bytes given
D1.L=memory type (A2)=pointer to memory block
ERROR OUTPUT:
CC=carry bit
D1.W=error code

F$SrqMem - allocate a block of memory from top of available system memory.
INPUT: OUTPUT:
D0.L= # of bytes requested D0.L= # of bytes given
ERROR OUTPUT: (A2)=pointer to memory block
CC=carry bit
D1.W=error code

F$SRtMem - returns a block of memory to the system.
INPUT: ERROR OUTPUT:
D0.L= # of bytes being returned CC=carry bit
(A2)=address of returned block D1.W=error code

F$SSpd - suspend a process.
INPUT: ERROR OUTPUT:
D0.W=process ID CC=carry bit

D1.W=error code

F$STime - set system date and time and start real-time clock.
INPUT: ERROR OUTPUT:
D0.L=time (00hhmmss) CC=carry bit
D1.L=date (yyyymmdd) D1.W=error code
OUTPUT:
clock is set

F$STrap - set process error trap routine.
INPUT: ERROR OUTPUT:
(A0)=exception stack to use CC=carry bit
(A1)=pointer to service request D1.W=error code
 initialization table

F$SUser - set group or user ID number.
INPUT: ERROR OUTPUT:
D1.L=group/user ID # CC=carry bit

D1.W=error code

F$SysDbg - starts system level debugger.
ERROR OUTPUT:
CC=carry bit
D1.W=error code

 Page 37

Microware OS-9/68000

F$Time - get system time and date.
INPUT: OUTPUT:
D0.W=format D0.L=time
 0=Gregorian D1.L=date
 1=Julian D2.W=day of week (0=Sun, 6=Sat)
 2=Gregorian w/ticks D3.L=tick rate/current tick
 3=Julian w/ticks
ERROR OUTPUT:
CC=carry bit
D1.W=error code

F$TLink - link or load named user trap handler module
INPUT: OUTPUT:
D0.W=trap # (A0)=updated past module name
D1.L=memory override (A1)=trap library entry point
(A0)= module name pointer (A2)=trap module pointer
 (0 to unlink)
ERROR OUTPUT:
CC=carry bit
D1.W=error code

F$Trans - translate a memory block address to/from external bus address.
INPUT: OUTPUT:
D0.L=size of block D0.L=size of translated block
D1.L=mode:0 - local to external (A0)=translated block address

 1 - external to local ERROR OUTPUT:
(A0)=block address CC=carry bit

D1.W=error code

F$UAcct - user accounting. Helps keep track of system/user activity.
INPUT: ERROR OUTPUT:
D0.W=function code CC=carry set
(A0)=process descriptor pointer D1.W=error code

F$UnLink - decrements module link count (by header address), removes if result is 0.
INPUT: ERROR OUTPUT:
(A2)=address of module header CC=carry set

D1.W=error code

F$UnLoad - decrements module link count (by name), removes if count=0.
INPUT: ERROR OUTPUT:
D0.W=type/language CC=carry set
(A0)=name pointer D1.W=error code
OUTPUT:
(A0)=updated past module name

F$Wait - temporarily turn off calling process until child terminates.
OUTPUT: ERROR OUTPUT:
D0.W=child process ID CC=carry set
D1.W=child exit status code D1.W=error code

Page 38

OS-9 QRG & Programmers Guide

I/O System Calls
I$Attach - attach or verify a device to system.
INPUT: ERROR OUTPUT:
D0.B=access mode CC=carry bit
(A0)=device name pointer D1.W=error code
OUTPUT:
(A2)=device table entry address

I$ChgDir - change working directory.
INPUT: OUTPUT:
D0.B=access mode (A0)=updated path
(A0)=path address ACCESS MODE PARAMETERS:
ERROR OUTPUT: 1=read only
CC=carry set 2=write only
B=error code 3=update

4=execute

I$Close - terminate I/O path.
INPUT: ERROR OUTPUT:
D0.W=path # CC=carry set

D1.W=error code

I$Create - create and open a file.
INPUT: OUTPUT:
D0.B=access mode (S,I,E,W,R) D0.W=path #
D1.W=attributes (A0)=update past pathlist
D2.L=allocation size ATTRIBUTE BITS:
(A0)=path pointer 0=read 4=public write
ERROR OUTPUT: 1=write 5=public exec.
D1.W=error code 2=execute 6=shareable
CC=carry set 3=public read

I$Delete - delete a file.
INPUT: ERROR OUTPUT:
D0.B=access mode CC=carry set
(A0)=pathname pointer B=error code
OUTPUT:
(A0)=updated past pathlist

I$Detach - remove device from system.
INPUT: ERROR OUTPUT:
(A2)=device table entry address CC=carry set

D1.W=error code

I$Dup - second path no. for same (duplicate) path (used to redirect I/O).
INPUT: OUTPUT:
D0.W= # of path to copy D0.W=new path #
ERROR OUTPUT:
CC=carry set
D1.W=error code

 Page 39

Microware OS-9/68000

I$GetStt - get status of file or device.
INPUT: ERROR OUTPUT:
D0.W=path CC=carry set
D1.W=function code D1.W=error code
Function Codes:
SS_DevNm (return device name)
INPUT: OUPUT:
D0.W=path # device name in storage area
D1.W=#SS_DevNm function code
(A0)=address of storage area

SS_EOF (test for end of file)
INPUT: ERROR OUTPUT:
D0.W=path # CC=carry set
D1.W=#SS_EOF function code D1.W=error code
OUTPUT:
D1.L=0 if not EOF

SS_CDFD (return file descriptor)
INPUT: ERROR OUTPUT:
D0.W=path # CC=carry set
D1.W=#SS_CDFD function code D1.W=error code
D2.W= # of bytes to copy
(A0)=pointer to descriptor buffer area

SS_FD (read file descriptor sector)
INPUT: OUTPUT:
D0.W=path # descriptor copied to buffer
D1.W=#SS_FD function code
D2.W= # of bytes to copy
(A0)=address of buffer area

SS_DFInf (get specific file descriptor sector)
INPUT: OUTPUT:
D0.W=path # descriptor copied to buffer
D1.W=#SS_FDInf function code
D2.W= # of bytes to copy
D3.L=FD sector address
(A0)=address of buffer area

SS_Free (return amount of free space on device)
INPUT: OUTPUT:
D0.L=path # D0.L=size of free space in bytes
D1.W=#SS_Free function code

(continued on next page)

Page 40

OS-9 QRG & Programmers Guide

I$GetStt Function Codes: (continued from page 47)
SS_Opt (read path descriptor option section)
INPUT: ERROR OUTPUT:
D0.W=path # CC=carry set
D1.W=#SS_Opt function code D1.W=error code
(A0)=128 byte status area OUTPUT:

Status packet copied to status area

SS_Pos (get current file position)
INPUT: ERROR OUTPUT:
D0.W=path # CC=carry set
D1.W=#SS_Pos function code D1.W=error code
OUTPUT:
D2.L=current file position

SS_Ready (check for data ready)
INPUT: ERROR OUTPUT:
D0.W=path # CC=carry set
D1.W=#SS_Ready function code D1.W=error code
OUTPUT:
D1.L= # of input characters available

SS_Size (return current file size)
INPUT: ERROR OUTPUT:
D0.W=path # CC=carry set
D1.W=#SS_Size function code D1.W=error code
OUTPUT:
D2.L=file size

(end of I$GetStt function codes)

I$MakDir - create and initialize directory.
INPUT: OUTPUT:
D0.B=mode (A0)=updated past pathname
D1.W=attributes ATTRIBUTE BITS:
D2.L=initial allocation size 0=read 4=public write
(A0)=path pointer 1=write 5=public exec.
ERROR OUTPUT: 2=execute 6=single user
CC=carry set 3=public read 7=any user/type
D1.W=error code
MODE BITS:
0=read 2=execute 7=directory
1=write 5=beginning directory size

I$Open - open path to existing file or device.
INPUT: OUTPUT:
D0.B=access mode (D,S,E,W,R) D0.W=path
(A0)=pathname pointer (A0)=updated past pathname
ERROR OUTPUT: ACCESS MODE BITS:
CC=carry set 0=read 1=write 2=execute
D1.W=error code 6=open non-shareable file 7=open dir file

 Page 41

Microware OS-9/68000

I$Read - read number of bytes from path.
INPUT: ERROR OUTPUT:
D0.W=path CC=carry set
D1.L=maximum # of bytes to read D1.W=error code
(A0)=storage address
OUTPUT:
D1.L= # of bytes read

I$ReadLn - read line of text and activate line editing.
INPUT: ERROR OUTPUT:
D0.W=path CC=carry set
D1.L=maximum # of bytes to read D1.W=error code
(A0)=input buffer address OUTPUT:

D1.L= # of bytes read

I$Seek - reposition file pointer.
INPUT: ERROR OUTPUT:
D0.W=path CC=carry set
D1.L=new position D1.W=error code

I$SetStt - set status of file or device.
INPUT: ERROR OUTPUT:
D0.W=path CC=carry set
D1.W=function code D1.W=error code
Function Codes:
SS_Attr (set file attributes)
INPUT:
D0.W=path D2.W=new attributes
D1.W=#SS_Attr function code

SS_Close (let driver know path is closed)
INPUT:
D0.W=path D1.W=SS_Close function code

SS_DCOff (send signal when Data Carrier Detect=false)
INPUT:
D0.W=path D2.W=signal code to be sent
D1.W=SS_DCOff function code

SS_DCOn (send signal when Data Carrier Detect=true)
INPUT:
D0.W=path D2.W=signal code to be sent
D1.W=SS_DCOn function code

SS_DsRTS (disable Ready to Transmit)
INPUT:
D0.W=path D1.W=SS_DsRTS function code

(continued on next page)

Page 42

OS-9 QRG & Programmers Guide

I$SetStt Function Codes: (continued from previous page)
SS_EnRTS (enable Ready to Transmit)
INPUT:
D0.W=path D1.W=SS_EnRTS function code

SS_Feed (erase tape)
INPUT:
D0.W=path D2.L= # of tape blocks to erase
D1.W=SS_Feed function code

SS_FD (write floppy disk sector)
INPUT:
D0.W=path (A0)=floppy disk sector image address
D1.W=#SS_FD function code

SS_Lock (lock out a record)
INPUT:
D0.W=path D2.L= # of bytes to lock out
D1.W=#SS_Lock function code

SS_Open (let driver know a path is open)
INPUT:
D0.W=path D1.W=SS_Open function code

SS_Opt (write option section of path descriptor)
INPUT:
D0.W=path (A0)=status packet address
D1.W=#SS_Opt function code

SS_Relea (release device from a request)
INPUT:
D0.W=path D1.W=SS_Relea function code

SS_Reset (restore disk drive head to track 0 or rewind tape)
INPUT:
D0.W=path D1.W=#SS_Reset function code

SS_RFM (skip tape marks)
INPUT:
D0.W=path D2.L= # of marks to skip
D1.W=SS_ function code

SS_Size (set file size)
INPUT:
D0.W=path D2.L=file size in bytes
D1.W=#SS_Size function code

(continued on next page)

 Page 43

Microware OS-9/68000

I$SetStt Function Codes: (continued from previous page)
SS_Skip (skip tape blocks)
INPUT:
D0.W=path D2.L= # of blocks to skip
D1.W=SS_Skip function code

SS_SSig (send signal when device has data ready)
INPUT:
D0.W=path D2.W=signal code
D1.W=SS_SSig function code

SS_Ticks (wait # of ticks for record release)
INPUT:
D0.W=path D2.L= # of ticks to wait
D1.W=#SS_Ticks function code

SS_WFM (write tape marks)
INPUT:
D0.W=path D2.L= # of tape marks to write
D1.W=SS_WFM function code

SS_WTrk (format disk track)
INPUT:
D0.W=path D3.W= Bit0=side (0 or 1)
D1.W=SS_WTrk function code Bit1=density (0=sgl, 1=dbl)
(A0)=track buffer address Bit2=track density (0=sgl, 1=dbl)
(A1)=interleave table address D4=interleave value
D2=track # to format

(end of I$SetStt function code)

I$Write - write to file or device.
INPUT: OUTPUT:
D0.W=path D1.L= # of bytes written
D1.L= # of bytes to write ERROR OUTPUT:
(A0)=buffer address CC=carry set

D1.W=error code

I$WritLn - write to file or device until carriage return.
INPUT: OUTPUT:
D0.W=path D1.L= # of bytes written
D1.L=maximum # of bytes to write ERROR OUTPUT:
(A0)=buffer address CC=carry set

 D1.W=error code

Page 44

OS-9 QRG & Programmers Guide

System-State System Calls
F$Alarm - set alarm.
INPUT: OUTPUT:
D0.L=alarm ID D0.L=alarm ID
D1.W=function code ERROR OUTPUT:
D2.L=reserved, must be 0 CC=carry set
D3.L=time or interval D1.W=error code
D4.L=date (if absolute time)
(A0)=register image
Function Codes:
A$Delete (delete pending alarm)
A$Set (execute system-state subroutine after set time interval)
A$Cycle (execute system-state subroutine every interval)
A$AtDate (execute system-state subroutine on Gregorian date/time)
A$AtJul (execute system-state subroutine on Julian date/time)
See manual for info on subroutines.

F$AllPD - allocate process/path descriptor storage area.
INPUT: OUTPUT:
(A0)=process/path table pointer D0.W=process/path #
ERROR OUTPUT: (A1)=process/path descriptor pointer
CC=carry set
D1.W=error code

F$AllPrc - allocate and initialize process descriptor.
OUTPUT: ERROR OUTPUT:
(A2)=descriptor pointer CC=carry set

D1.W=error code

F$AProc - insert a process into the active process queue for execution.
INPUT: ERROR OUTPUT:
(A0)=process desciptor address CC=carry set

D1.W=error code

F$DelPrc - deallocate process descriptor storage are (caller must return resources to
system).
INPUT: ERROR OUTPUT:
D0.W=process ID CC=C bit set

D1.W=error code

F$FindPD - find address of process or path descriptor.
INPUT: ERROR OUTPUT:
D0.W=process/path # CC=carry set
(A0)=process/path descriptor ptr D1.W=error code
OUTPUT:
(A1)=process/path descriptor pointer

 Page 45

Microware OS-9/68000

F$IRQ - add or remove device from IRQ (system) polling table.
INPUT: ERROR OUTPUT:
D0.B=vector # CC=carry set
D1.B=priority D1.W=error code
(A0)=IRQ entry point (0=delete)
(A2)=device static storage
(A3)=port address
F$IRQ service routine register:
INPUT: ERROR OUTPUT:
(A2)=global static pointer Carry set if device din�t cause interrupt
(A3)=port address
(A6)=system global data pointer
(A7)=system stack

F$Move - block-move data from one address to another.
INPUT: ERROR OUTPUT:
D2.L= # of bytes to copy CC=carry set
(A0)=source pointer D1.W=error code
(A2)=destination pointer

F$NProc - execute next process in active queue.
OUTPUT: ERROR OUTPUT:
control not returned to caller CC=carry set

D1.W=error code

F$Panic - kill system when a catastrphic occurrence is detected.
INPUT: OUTPUT:
D0.L=panic code does not usually return
ERROR OUTPUT: Defined Panic Codes:
CC=carry set K$Idle=no processes to execute
D1.W=error code K$PFail=power failure detected

F$RetPD - deallocate process or path descriptor.
INPUT: ERROR OUTPUT:
D0.W=process/path # CC=carry set
(A0)=process/path table pointer D1.W=error code

F$SSvc - add or replace a request in user & priveleged system service request table.
User-State System Service Requests:
INPUT: ERROR OUTPUT:
(A1)=service request init. table ptr CC=carry set
(A3)=user defined D1.W=error code
 (usually global static storage)
System-State System Service Requests:
INPUT: ERROR OUPUT:
D0-D4=user�s values CC=carry set
(A0)-(A2)=user�s values D1.W=error code
(A4)=current process descriptor pointer
(A5)=user register�s image pointer
(A6)=system global data pointer

Page 46

OS-9 QRG & Programmers Guide

F$VModul - check header parity and CRC of a module.
INPUT: ERROR OUTPUT:
D0.L=beginning of module group CC=carry set
D1.L=module size D1.W=error code
(A0)=module pointer

(end of system calls)

6 - Standard Math Module Function Subroutines

OS-9 is supplied with math subroutines for systems without a math coprocessor. The
software based modules can be easily replaced by coprocessor modules with no
application software changes. Calls are made in the format: TCALL T$Math,(function).
Functions are listed.

T$Acs - returns arc cosine (x) in radians.
INPUT: CONDITION CODE:
D0:D1 = x C=set on error
D2:D3 = precision
OUPUT: POSSIBLE ERROR:
D0:D1 =ArcCos(x) Illegal Argument

T$Asn - returns arc sine (x) in radians.
INPUT: CONDITION CODE:
D0:D1 = x C=set on error
D2:D3 = precision
OUPUT: POSSIBLE ERROR:
D0:D1 =ArcSin(x) Illegal Argument

T$Atn - returns arc tangent (x) in radians.
INPUT: CONDITION CODE:
D0:D1 = x C=set on error
D2:D3 = precision
OUPUT: POSSIBLE ERROR:
D0:D1 =ArcTan(x) Illegal Argument

T$AtoD - converts an ASCII string to a double-precision floating point number.
INPUT: CONDITION CODE:
(A0) = pointer to ASCII string N or Z = undefined
(sign)(digits).(digits) E (sign)(digits) V = set on under/over flow

C = set on error
OUPUT: POSSIBLE ERROR:
(A0) = updated pointer Not Number
D0:D1 = double-precision FP# Format Error

 Page 47

Microware OS-9/68000

T$AtoF - converts an ASCII string to a single precision floating point number.
INPUT: CONDITION CODE:
(A0) = pointer to ASCII string N or Z = undefined
(sign)(digits).(digits) E (sign)(digits) V = set on under/over flow

C = set on error
OUPUT: POSSIBLE ERROR:
(A0) = updated pointer Not Number
D0:D1 = single-precision FP# Format Error

T$AtoL - converts and ASCII string to a signed long integer.
INPUT: CONDITION CODE:
(A0) = pointer to ASCII string N or Z = undefined
 (sign)(digits) V = set on under/over flow
OUPUT: C = set on error
(A0) = updated pointer POSSIBLE ERROR:
D0.L = signed long integer Not Number

T$AtoN - returned results depend on condition codes.
INPUT: CONDITION CODE:
(A0) = pointer to ASCII string V=0 & N=1 = signed integer
OUPUT: V=0 & N=0 = unsigned integer
(A0) = updated pointer V=1 = double-precision FP number
D0 = # (if long signed/unsigned integer) POSSIBLE ERROR:
D0:D1 = # (if floating point) TrapV

T$AtoU - converts an ASCII string to an unsigned long integer.
INPUT: CONDITION CODE:
(A0) = pointer to ASCII string N or Z = undefined

(digits) V = set on under/over flow
OUPUT: C = set on error
(A0) = updated pointer POSSIBLE ERROR:
D0.L = unsigned long integer Not Number

T$Cos - returns cosine (x) of an angle in radians.
INPUT: CONDITION CODE:
D0:D1 = x C = always clear
D2:D3 = precision OUTPUT:

D0:D1 = Cos(x)

T$DAdd - add two double-precision floating point numbers.
INPUT: CONDITION CODE:
D0:D1 = addend N = set if result negative
D2:D3 = augend Z = set if result zero
OUTPUT: V = set on under/over flow
D0:D1 = result POSSIBLE ERROR:
C = always clear TrapV

Page 48

OS-9 QRG & Programmers Guide

T$DCmp - compare two double precision floating point numbers.
INPUT: CONDITION CODE:
D0:D1 = first operand N = set if second larger than first
D2:D3 = second operand Z = set if equal
OUTPUT: V = always clear
D0.L-D3.L = unchanged C = always clear

T$DDec - subtract 1.0 from a double precision floating point operand.
INPUT: CONDITION CODE:
D0:D1 = operand N = set if result negative
OUTPUT: Z = set if result zero
D0:D1 = result V = set on underflow
POSSIBLE ERROR: C = always clear
TrapV

T$DDiv - divide two sdouble precision floating point numbers.
INPUT: CONDITION CODE:
D0:D1 = dividend N = set if result is negative
D2:D3 = divisor Z = set if result is 0
OUTPUT: V = set on under/over flow, divide by 0
D0:D1 = result C = set on divide by 0
POSSIBLE ERROR:
TrapV

T$DInc - add 1.0 to a double precision floating point operand.
INPUT: CONDITION CODE:
D0:D1 = operand N = set if result negative
OUTPUT: Z = set if result zero
D0:D1 = result V = set on]overflow
POSSIBLE ERROR: C = always clear
TrapV

T$DInt - round floating point number to nearest integer.
INPUT: OUTPUT:
D0:D1 = number D0:D1 = rounded integer

T$DMul - multiply two double precision floating point numbers.
INPUT: CONDITION CODE:
D0:D1 = multiplicand N = set if result negative
D2:D3 = multiplier Z = set if result 0
OUPUT: V = set on under/over flow
D0:D1 = result C = always clear
POSSIBLE ERROR:
TrapV

T$DNeg - negate a double precision floating point number.
INPUT: CONDITION CODE:
D0:D1 = operand N = set if result negative
OUTPUT: Z = set if result 0
D0:D1 = result V & C = always clear

 Page 49

Microware OS-9/68000

T$DNrm - convert 64 bit binary number to double precision format.
INPUT: CONDITION CODE:
D0:D1 = 64 bit number N & Z = undefined
D2.L = exponent V & C = always clear
OUTPUT:
D0:D1 = double precision #

T$DSub - subtract two double precision floating point numbers.
INPUT: CONDITION CODE:
D0:D1 = minuend N = set if result negative
D2:D3 = subtrahend Z = set if result 0
OUPUT: V = set on under/over flow
D0:D1 = result C = always clear
POSSIBLE ERROR:
TrapV

T$DtoA - convert double precision floating point number to an ASCII string.
INPUT: CONDITION CODE:
D0:D1 = double precision # N = set if negative number
D2.L - low word = digits desired in result Z, V, C = undefined
 high word = digits desired after decimal OUTPUT:
(A0) = pointer to buffer (A0) = ASCII string

 D0.L = 2�s comp. exponent

T$DtoF - convert double precision floating point number to single precision floating point
number.
INPUT: CONDITION CODE:
D0:D1 = double precision # N, Z, C = undefined
OUTPUT: V = set on under/over flow
D0.L = single precision # POSSIBLE ERROR:

TrapV

T$DtoL - convert integer portion of a double precision floating point number to a signed
long integer (truncates fraction).
INPUT: CONDITION CODE:
D0:D1 = double precision # N = undefined
OUTPUT: Z = undefined
D0.L = signed long integer V = set on under/over flow
POSSIBLE ERROR: C = undefined
TrapV

T$DtoU - convert integer portion of a double precision floating point number to an
unsigned long integer (truncates fraction).
INPUT: CONDITION CODE:
D0:D1 = double precision # N = undefined
OUTPUT: Z = undefined
D0.L = unsigned long integer V = set on under/over flow
POSSIBLE ERROR: C = undefined
TrapV

Page 50

OS-9 QRG & Programmers Guide

T$DTrn - separate double precision floating point integer and fraction.
INPUT: OUTPUT:
D0:D1 = double precision # D0:D1 = integer
CONDITION CODE: D2:D3 = fraction
All = undefined

T$Exp - exponential function. Raises e (2.718282) to the x power.
INPUT: OUTPUT:
D0:D1 = x D0:D1 = exp(x)
D2:D3 = precision CONDITION CODE:

C = always clear

T$FAdd - add two single precision floating point numbers.
INPUT: CONDITION CODE:
D0.L = addend N = set if result negative
D1.L = augend Z = set if result 0
OUPUT: V = set on under/over flow
D0.L = result C = always clear
POSSIBLE ERROR: TrapV

T$FCmp - compare two single precision floating point numbers.
INPUT: CONDITION CODE:
D0.L = first operand N = set if second larger than first
D1.L = second operand Z = set if equal
OUTPUT: V = always clear
D0.L-D1.L = unchanged C = always clear

T$FDec - subtract 1.0 from a single precision floating point operand.
INPUT: CONDITION CODE:
D0.L = operand N = set if result negative
OUTPUT: Z = set if result zero
D0.L = result V = set on underflow
POSSIBLE ERROR: C = always clear
TrapV

T$FDiv - divide two single precision floating point numbers.
INPUT: CONDITION CODE:
D0.L = dividend N = set if result is negative
D1.L = divisor Z = set if result is 0
OUTPUT: V = set on under/over flow, divide by 0
D0.L = result C = set on divide by 0
POSSIBLE ERROR: TrapV

T$FInc - add 1.0 to single precision floating point operand.
INPUT: CONDITION CODE:
D0.L = operand N = set if result negative
OUTPUT: Z = set if result zero
D0.L = result V = set on]overflow
POSSIBLE ERROR: C = always clear
TrapV

 Page 51

Microware OS-9/68000

T$FInt - round floating point number to nearest integer.
INPUT: OUTPUT:
D0.L = number D0.L = rounded integer

T$FMul - multiply two single precision floating point numbers.
INPUT: CONDITION CODE:
D0.L = multiplicand N = set if result negative
D1.L = multiplier Z = set if result 0
OUPUT: V = set on under/over flow
D0.L = result C = always clear
POSSIBLE ERROR:
TrapV

T$FNeg - negate a single precision floating point number.
INPUT: CONDITION CODE:
D0.L = operand N = set if result negative
OUTPUT: Z = set if result 0
D0.L = result V & C = always clear

T$FSub - subtract two single precision floating point numbers.
INPUT: CONDITION CODE:
D0.L = minuend N = set if result negative
D1.L = subtrahend Z = set if result 0
OUPUT: V = set on under/over flow
D0:D1 = result C = always clear
POSSIBLE ERROR:
TrapV

T$FtoA - convert single precision floating point number to an ASCII string.
INPUT: CONDITION CODE:
D0.L = single precision # N = set if negative number
D2.L - low word = digits desired in result Z, V, C = undefined
 high word = digits desired after decimal OUTPUT:
(A0) = pointer to buffer (A0) = ASCII string

 D0.L = 2�s comp. exponent

T$FtoD - convert single precision floating point number to double precision floating point
number.
INPUT: CONDITION CODE:
D0.L = single precision # N, Z, C = undefined
OUTPUT: V = set on under/over flow
D0.L = single precision # POSSIBLE ERROR:

TrapV

T$FtoL - convert integer portion of a single precision floating point number to a signed
long integer (truncates fraction).
INPUT: CONDITION CODE:
D0.L = single precision # N, Z, C = undefined
OUTPUT: V = set on under/over flow
D0.L = signed long integer POSSIBLE ERROR: TrapV

Page 52

OS-9 QRG & Programmers Guide

T$FtoU - convert integer portion of a single precision floating point number to an
unsigned long integer (truncates fraction).
INPUT: CONDITION CODE:
D0.L = single precision # N, Z, C = undefined
OUTPUT: V = set on under/over flow
D0.L = unsigned long integer POSSIBLE ERROR:

TrapV

T$FTrn - separate single precision floating point integer and fraction.
INPUT: OUTPUT:
D0.L = single precision FP # D0.L = integer
CONDITION CODE:
All = undefined

T$LDiv - divide two long signed 32 bit integers.
INPUT: CONDITION CODE:
D0.L = dividend N = set if result negative
D1.L = divisor Z = set if result 0
OUTPUT: V = set on divide by 0
D0.L = result C = always clear

T$LMod - divide two long signed 32 bit integers, return remainder.
INPUT: CONDITION CODE:
D0.L = dividend N = set if result negative
D1.L = divisor Z = set if result 0
OUTPUT: V = set on divide by 0
D0.L = result (remainder) C = always clear

T$LMul - multiply two long signed 32 bit integers.
INPUT: CONDITION CODE:
D0.L = multiplicand N = set if result negative
D1.L = multiplier Z = set if result 0
OUTPUT: V = set on divide by 0
D0.L = result C = always clear

T$Log - natural logarithm of x.
INPUT: OUTPUT:
D0:D1 = x D0:D1 = log(x)
D2:D3 = precision CONDITION CODE:
POSSIBLE ERROR: C = set on error
Illegal Argument

T$Log10 - common logarithm of x.
INPUT: OUTPUT:
D0:D1 = x D0:D1 = log10(x)
D2:D3 = precision CONDITION CODE:
POSSIBLE ERROR: C = set on error
Illegal Argument

 Page 53

Microware OS-9/68000

T$LtoA - convert signed long integer to ASCII string (10 digits, leading zeroes used if
less than 10 digits).
INPUT: CONDITION CODE:
D0.L = signed long integer N = set if negative
(A0) = pointer to buffer Z, V , C = undefined
OUTPUT:
(A0) = ASCII string

T$LtoD - convert a signed long integer to a double precision floating point number.
INPUT: OUTPUT:
D0.L = signed long integer D0:D1 = double precision FP #
CONDITION CODE:
All undefined

T$LtoF - convert a signed long integer to a single precision floating point number.
INPUT: OUTPUT:
D0.L = signed long integer D0.L = single precision FP #
CONDITION CODE:
All undefined

T$Power - raise x to the y power.
INPUT: OUTPUT:
D0:D1 = x D0:D1 = x raised to y power
D2:D3 = y CONDITION CODE:
D4:D5 = precision C = set on error
POSSIBLE ERROR:
Illegal Argument

T$Sin - sine of an angle specified in radians.
INPUT: OUTPUT:
D0:D1 = angle (in radians) D0:D1 = sine
D2:D3 = precision CONDITION CODE:

C = always clear

T$Sqrt - square root of x.
INPUT: OUTPUT:
D0:D1 = x D0:D1 = square root of x
D2:D3 = precision CONDITION CODE:
POSSIBLE ERROR: C = set on error
Illegal Argument

T$Tan - tangent of an angle specified in radians
INPUT: OUTPUT:
D0:D1 = angle (in radians) D0:D1 = tangent
D2:D3 = precision
CONDITION CODE:
C = always clear

Page 54

OS-9 QRG & Programmers Guide

T$UDiv - divide two 32 bit unsigned integers.
INPUT: CONDITION CODE:
D0.L = dividend N = undefined
D1.L = divisor Z = set if result is 0
OUTPUT: V = set on divide by 0
D0.L = result C = always clear

T$UMod - divide two 32 bit unsigned integers, return remainder.
INPUT: CONDITION CODE:
D0.L = dividend N = undefined
D1.L = divisor Z = set if result is 0
OUTPUT: V = set on divide by 0
D0.L = result C = always clear

T$UMul - multiply two single precision floating point numbers.
INPUT: CONDITION CODE:
D0.L = multiplicand N = undefined
D1.L = multiplier Z = set if result 0
OUPUT: V = set on overflow
D0.L = result C = always clear

T$UtoA - convert unsigned long integer to ASCII string (10 digits, leading zeroes used
if less than 10 digits).
INPUT: OUTPUT:
D0.L = unsigned long integer (A0) = ASCII string
(A0) = pointer to buffer
CONDITION CODE:
All undefined

T$UtoD - convert unsigned long integer to double precision floating point number.
INPUT: OUTPUT:
D0.L = unsigned long integer D0:D1 = double precision FP #
CONDITION CODE:
All undefined

T$UtoF - convert unsigned long integer to single precision floating point number.
INPUT: OUTPUT:
D0.L = unsigned long integer D0.L = single precision FP #
CONDITION CODE:
All undefined

 Page 55

Microware OS-9/68000

7 - System/Basic Error Codes

Only built-in error codes are listed. Programs and programming languages may define
their own codes, which will not appear in the following listing. Entries are decimal number
(mnemonic, if available) followed by name. Numbers may have leading zeroes.

Signal Error Codes
02 KEYBOARD ABORT- CTRL E was pressed.
03 KEYBOARD INTERRUPT- CTRL C was pressed.

Basic Error Codes
10 UNRECOGNIZED SYMBOL
11 EXCESSIVE VERBIAGE
12 ILLEGAL STATEMENT CONSTRUCTION
13 I-CODE OVERFLOW- need more workspace memory
14 ILLEGAL CHANNEL REFERENCE- bad path number
15 ILLEGAL MODE- read,write, update; directory only
16 ILLEGAL NUMBER
17 ILLEGAL PREFIX
18 ILLEGAL OPERAND
19 ILLEGAL OPERATOR
20 ILLEGAL RECORD FIELD NAME
21 ILLEGAL DIMENSION
22 ILLEGAL DIMENSION
23 ILLEGAL RELATIONAL
24 ILLEGAL TYPE SUFFIX
25 TOO-LARGE DIMENSION
26 TOO-LARGE LINE NUMBER
27 MISSING ASSIGNMENT STATEMENT
28 MISSING PATH NUMBER
29 MISSING COMMA
30 MISSING DIMENSION
31 MISSING DO STATEMENT
32 MEMORY FULL- need more workspace memory
33 MISSING GOTO
34 MISSING LEFT PARENTHESIS
35 MISSING LINE REFERENCE
36 MISSING OPERAND
37 MISSING RIGHT PARENTHESIS
38 MISSING THEN STATEMENT
39 MISSING TO
40 MISSING VARIABLE REFERENCE
41 NO ENDING QUOTE
42 TOO MANY SUBSCRIPTS
43 UNKNOWN PROCEDURE
44 MULTIPLY-DEFINED PROCEDURE
45 DIVIDE BY ZERO
46 OPERAND TYPE MISMATCH
47 STRING STACK OVERFLOW

Page 56

OS-9 QRG & Programmers Guide

48 UNIMPLEMENTED ROUTINE
49 UNDEFINED VARIABLE
50 FLOATING OVERFLOW
51 LINE WITH COMPILER ERROR
52 VALUE OUT OF RANGE FOR DESTINATION
53 SUBROUTINE STACK OVERFLOW
54 SUBROUTINE STACK UNDERFLOW
55 SUBSCRIPT OUT OF RANGE
56 PARAMETER ERROR
57 SYSTEM STACK OVERFLOW
58 I/O TYPE MISMATCH
59 I/O NUMERIC INPUT FORMAT BAD
60 I/O CONVERSION number out of range
61 ILLEGAL INPUT FORMAT
62 I/O FORMAT REPEAT ERROR
63 I/O FORMAT SYNTAX ERROR
64 ILLEGAL PATH NUMBER
65 WRONG NUMBER OF SUBSCRIPTS
66 NON-RECORD-TYPE OPERAND
67 ILLEGAL ARGUMANT
68 ILLEGAL CONTROL STRUCTURE
69 UNMATCHED CONTROL STRUCTURE
70 ILLEGAL FOR VARIABLE
71 ILLEGAL EXPRESSION TYPE
72 ILLEGAL DECLARATIVE STATEMENT
73 ARRAY SIZE OVERFLOW
74 UNDEFINED LINE NUMBER
75 MULTIPLY-DEFINED LINE NUMBER
76 MULTIPLY-DEFINED VARIABLE
77 ILLEGAL INPUT VARIABLE
78 SEEK OUT OF RANGE
79 MISSING DATA STATEMENT
80 PRINT BUFFER OVERFLOW

(81-101 undefined for Basic or System)
Math Trap Handler Error Codes (64-67 also defined by Basic)
64 (E$IllFnc) ILLEGAL FUNCTION CODE
65 (E$FmtErr) FORMAT ERROR
66 (E$NotNum) NUMBER NOT FOUND
67 (E$IllArg) ILLEGAL ARGUMENT
Processor Exception Error Codes (100-155)
102 (E$BusErr) BUS ERROR- exception occured.
103 (E$AdrErr) ADDRESS ERROR- exception occured.
104 (E$IllIns) ILLEGAL INSTRUCTION- exception occured.
105 (E$ZerDiv) ZERO DIVIDE- can�t divide by zero.
106 (E$Chk) CHECK- CHK instruction exception occured.
107 (E$TrapV) TRAPV- TrapV instruction exception occured.
108 (E$Violat) PRIVILEGE VIOLATION- exception occured.
109 (E$Trace) UNINITIALIZED TRACE EXCEPTION- exception occured.
110 (E$1010) 1010 TRAP- A line emulator exception.
111 (E$1111) 1111 TRAP- F line emulator exception.

 Page 57

Microware OS-9/68000

113 COPROCESSOR PROTOCOL VIOLATION
114 FORMAT ERROR
115 UNINITIALIZED INTERRUPT OCCURRED

(116-123 undefined)
124 SPURIOUS INTERRUPT OCCURRED

(125-132 undefined)
133-147 (E$Trap) TRAP* uninitialized user TRAP* (*=1-15) executed
Floating Point Coprocessor (FPCP) Errors (148-155)
148 (E$FPUnordC) FPCP ERROR- branch or set on unordered condition
149 (E$FPInxact) FPCP ERROR- Inexact results
150 (E$FPDivZer) FRCP ERROR-divide by zero
151 (E$FPUndrFl) FPCP ERROR- underflow error
152 (E$FPOprErr) FPCP ERROR- operand error
153 (E$FPOverFl) FPCP ERROR- overflow error
154 (E$FPNotNum) FPCP ERROR- not a number (NAN) signaled
Processor Memory Management Unit (PMMU) Errors (156-163)
156 CONFIGURATION ERROR
157 ILLEGAL OPERATION
158 ACCESS LEVEL VIOLATION
Miscellaneous Error Codes (164-199)
164 (E$Permit) NO PERMISSION- user doesn�t have permission to perform function.
165 (E$Differ) DIFFERENT ARGUMENTS- F$ChkNam arguments don�t match.
166 (E$StkOvf) STACK OVERFLOW- pattern string to complex.
167 (E$EvntID) ILLEGAL EVENT ID- illegal ID number.
168 (E$EvNF) EVENT NAME NOT FOUND- name not in event table.
169 (E$EvBusy) EVENT BUSY- link count not 0.
170 (E$EvParm) IMPOSSIBLE EVENT PARAMETER- bad parameters passed

 to F$Event.
171 (E$Damage) SYSTEM DAMAGE- data structure corrupted.
172 (E$BadRev) INCOMPATIBLE REVISION- software incompatible with current

 OS revision.
173 (E$PthLost) PATH LOST- path no longer available.
174 (E$Bad Part) BAD PARTITION- partition data bad or not active.
General System Error Codes (200-239)
200 (E$PthFul) PATH TABLE FULL- can�t track any more files.
201 (E$BPNum) ILLEGAL PATH NUMBER- number to large or doesn�t exist.
202 (E$Poll) INTERRUPT POLLING TABLE FULL- no room for more entries.
203 (E$BMode) ILLEGAL MODE- device can�t perform function.
204 (E$DevOvf) DEVICE TABLE FULL- no more devices can be added.
205 (E$BMID) ILLEGAL MODULE HEADER- bad sync code, header parity, or

 CRC.
206 (E$DirFul) MODULE DIRECTORY FULL- modules can�t be entered.
207 (E$MemFul) MEMORY FULL- no more available memory.
208 (E$UnkSvc) ILLEGAL SERVICE REQUEST- issued system call has illegal code.
209 (E$ModBsy) MODULE BUSY- non-shareable module in use.
210 (E$BPAddr) BOUNDARY ERROR- memory allocation/deallocation not on page

 boundary.
211 (E$EOF) END OF FILE- read terminated.
212 (E$VctBsy) VECTOR BUSY- IRQ vector currently in use.
213 (E$NES) NON-EXISTING SEGMENT- file structure of device bad.

Page 58

OS-9 QRG & Programmers Guide214 (E$FNA) FILE NOT ACCESSIBLE- user doesn�t have access to perform
 specified operation.

215 (E$BPNam) BAD PATHNAME- syntax error in path.
216 (E$PNNF) PATH NAME NOT FOUND- can�t find path.
217 (E$SLF) SEGMENT LIST FULL- file to fragmented to be expanded.
218 (E$CEF) FILE ALREADY EXISTS- file exists in current directory
219 (E$IBA) ILLEGAL BLOCK ADDRESS- device file structure bad.
220 (E$HangUp) PHONE HANGUP - DATA CARRIER LOST- no carrier on

 RS-232 port.
221 (E$MNF) MODULE NOT FOUND- module not in directory.
222 (E$NoClk) NO CLOCK- system has no clock running.
223 (E$DelSP) SUICIDE ATTEMPT- attempt to return to stack.
224 (E$IPrcID) ILLEGAL PROCESS NUMBER- non-existant process.
225 (E$Param) BAD POLLING PARAMETER- impossible vector number passed

 to IRQ.
226 (E$NoChld) NO CHILDREN- wait service issued but no dependants.
227 (E$ITrap) ILLEGAL TRAP CODE- unavailable or invalid trap code.
228 (E$PrcAbt) PROCESS ABORTED- current process terminated.
229 (E$PrcFul) PROCESS TABLE FULL- no more processes can be run.
230 (E$IForkP) ILLEGAL PARAMETER AREA- fork passed bad boundaries.
231 (E$KwnMod) KNOWN MODULE- module already in memory.
232 (E$BMCRC) INCORRECT MODULE CRC- bad module CRC.
233 (E$USigP) UNPROCESSED SIGNAL PENDING- receiving process has

 signal pending.
234 (E$NEMod) NON-EXECUTABLE MODULE- module can�t be executed.
235 (E$BNam) BAD NAME- illegal name used.
236 (E$BMHP) BAD PARITY- module parity header bad.
237 (E$NoRAM) RAM FULL- no system RAM available.
238 (E$DNE) DIRECTORY NOT EMPTY
239 (E$NoTask) NO TASK NUMBER AVAILABLE- all in use.
Device Driver Error Codes (240-255)
240 (E$Unit) ILLEGAL DRIVE NUMBER
241 (E$Sect) BAD ERROR- sector # out of range or bad.
242 (E$WP) WRITE PROTECT- device write protected.
243 (E$CRC) CRC ERROR- bad CRC on read/write verify.
244 (E$Read) READ ERROR- disk read data error or terminal input overrun.
245 (E$Write) WRITE ERROR- error during device write.
246 (E$Ready) NOT READY- device not ready.
247 (E$Seek) SEEK ERROR- seek attempted on non-existant sector.
248 (E$Full) MEDIA FULL- not enough free disk space.
249 (E$BTyp) WRONG TYPE- attempt to read incompatible disk.
250 (E$DevBsy) DEVICE BUSY- non-shareable device in use.
251 (E$DIDC) DISK ID CHANGE- disk changed with files still open.
252 (E$Lock) RECORD IS LOCKED OUT- record is being used.
253 (E$Share) NON-SHAREABLE FILE BUSY- file being used.
254 (E$DeadLk) I/O DEADLOCK- two processes attempting to use same disk area.
255 (E$Format) DEVICE IS FORMAT PROTECTED- cannot format disk

 (check descriptor).

 Page 59

Microware OS-9/68000

"the world of 68' micros" offers support for ALL
Motorola processors. Current support is

predominantly for the Tandy Color Computer
(MC6809E), OS-9, and OS-9/68000 running on
BlackHawk/IMS, Computer Design Services,

Hazelwood, and Peripheral Technology 680x0 based
systems (MM/1, Delmar Systems, and FHL).

Other Motorola processors and microcontrollers
also covered. Receive eight issues per year
(approx. every six weeks) for only $23*,

four issues over six months for $12*.

* Canada/Mexico: $30/$16; Overseas , $40/$20 Air. All prices inU.S. funds.
Canadians may send Canadian Postal Money Orders. Checks accepted if drawn

on a U.S. bank with U.S. address (sorry, but Canadian U.S. dollar accounts cannot
be processed by our bank). All others must pay by International Money Order or
cash sent registered mail. Not responsible for cash payment sent via normal mail.

the world of

68'micros
Supporting Motorola Processors

Send Check or Money order to:
FARNA Systems

Box 321
Warner Robins, GA 31099

Do you want to learn more about
OS-9/68000 (OSK) or OS-9000

and systems designed specifically for OSK?

If so, you need a subscription to:

Page 60

OS-9 QRG & Programmers Guide

Professional OS-9 V2.3
Copyright 1994 by Microware Systems Corp.
All Rights Reserved

* Welcome to OS-9 *
* on the *
* Motorola 68030 *

$

FARNA Systems
Box 321

Warner Robins, Georgia
 31099-0321

Support for OS-9, OS-9/68000, and the Tandy Color Computer

	OS-9 Quick Reference
	Table of Contents
	Introduction
	A Note on Redirection
	1- Shell
	2- System Commands
	3- Special Keys
	4- uMACS Editor Commands
	5- OS-9 System Calls
	User State System Calls
	I/O System Calls
	System-State System Calls

	6- Standard Math Module Function Subroutines
	7- System/Basic Error Codes

